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1. Introduction
The chief executive officers of real-world factories have to deal with several challenges such
as globalization, the growing dynamics of the markets, the increase in customized products,
decreasing product life cycles and technological innovations. Therefore, they aim to conduct a
cost efficient production in order to remain competitive. The layout of the operating equipment
(in the following denoted as departments) is one of the main influencing factors and provides a
basis to uphold the long-term productivity and competitiveness [49, 96, 104]. This leads to facility
layout problems. One looks for a non-overlapping arrangement of the departments within a given
factory or within a factory with varying areas. The goal is to minimize the weighted distances
between the departments where the transport weights are based on aggregated information about
the transports between the departments [20]. The distance calculation between the departments
depends on the structure of the layout and the material handling-systems. Without restrictions
on the layout, even small instances are well-known to be rather challenging and deriving optimal
solutions for small instances is very time-consuming, see, e. g., [87, 103]. For this reason, one often
concentrates on special cases where the structure of the layout and the paths are restricted. These
facility layout problems can often be divided into smaller subproblems and these subproblems
can be solved independently, see Section B. Therefore, we mainly contribute to the Multi-Bay
Facility Layout Problem and its extensions as well as the Multi-Row Facility Layout Problem.
We start our description with the Multi-Bay Facility Layout Problem (MBFLP). We are given

a set of departments [n] := {1, . . . , n}, n ∈ N, with lengths `i, i ∈ [n], and pairwise weights
wij , i, j ∈ [n], i 6= j, and m ∈ N non-overlapping parallel rows R := [m]. The MBFLP looks for
an assignment ri ∈ R, i ∈ [n], of the departments to the rows R minimizing the weighted sum
of the center-to-center distances between the departments such that departments in the same
row do not overlap, see, e. g., [27, 28, 86]. The distance between departments in the same row
equals their horizontal distance and the distance between departments in distinct rows equals
the sum of their horizontal distance to a fixed left border plus the vertical distance |ri − rj |wBpath
for departments i, j ∈ [n], i < j, where wBpath ∈ R≥0 denotes the width of a path between two
rows. For an illustration we refer to Figure 1.0.1b. The distance calculation can be interpreted
in the following way. There are inner-row and inter-row material handling-systems, whereby
the inter-row material handling-system, e. g., an overhead bridge crane [26, 86], is fixed at the
left border. The rows might be separated by equipment, some free space for maintenance or
passageways [28]. The inter-row transport is more costly than the inner-row transport, because
two separate material handling systems have to be coordinated, the transfer mechanism is costly
(typically a larger capacity crane is used) and at this point the most delay and damages occur,
see [28, 86]. High inter-row transport costs can be included by enlarging wBpath. The departments
are given as one-dimensional objects, so we assume implicitly that the height of the departments
equals one. Thus, one can include the height of the departments in the distance calculation
by enlarging wBpath, for an illustration we refer to Figure 1.0.1b. If wBpath = 1, the height of the
departments is included and if wBpath > 1, then the width of the path is additionally taken into
account, and otherwise the width of the path is neglected.
We use distance variables dij = dji, i, j ∈ [n], i < j, to measure the center-to-center distances

between i and j as described above. We look for a vector r ∈ Rn of the assignment of the
departments to the rows and for a vector p ∈ Rn where pi, i ∈ [n], denotes the position of the
center of i, measured from a fixed left border such that all departments are to the right of this
border. Then, we aim to solve the following optimization problem to optimality

min
r∈Rn,p∈Rn

∑

i,j∈[n]
i<j

(wij + wji) dij

s. t. |pi − pj | ≥
`i + `j

2 , i, j ∈ [n], i < j, ri = rj ,
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dij = |pi − pj |, i, j ∈ [n], i < j, ri = rj ,

dij = pi + pj + |ri − rj |wBpath, i, j ∈ [n], i < j, ri 6= rj . (1.0.1)

Furthermore, we introduce an extension of the MBFLP with m = 3 rows denoted by (3-BFLP), the
so-called T-Row Facility Layout Problem (TRFLP). We are given two orthogonal rows R := {1, 2}
which form a T such that departments assigned to distinct rows cannot overlap. The distances
between the departments are measured in rectilinear directions and measuring the distances
between departments in distinct rows, one has to take the width of the path wTpath ∈ R≥0 into
account. The horizontal row is denoted by row 1 and the vertical row by row 2. Let pM ∈ R
denote the position in row 1 measured from a fixed left border which is directly opposite row 2.
If we interpret the rows as line segments and if wTpath = 0, then pM is the point of intersection of
row 1 and row 2. Then, the distance calculation in (1.0.1) is adapted such that

dij = |pi − pM |+ pj + wTpath, i, j ∈ [n], ri = 1, rj = 2, (1.0.2)

where pi ∈ R denotes the center position of i measured from a fixed left (upper) border if ri = 1
(ri = 2), i ∈ [n]. Note that in the model for the 3-BFLP and the TRFLP one might obtain pi ≤ 0
for some i ∈ [n].
The MBFLP is of special interest in practice because these layouts are commonly used layouts

in industry such as heavy manufacturing, e. g., steel production and bridge crane manufacturing,
and semiconductor fabrication [76, 86, 107]. Further, many real-world factory layouts implicitly
use these layout structures, see, e. g., [26, 76]. The TRFLP is a new facility layout problem and
an extension of the 3-BFLP as we will show in Section A, and hence the TRFLP arises in the
same areas of applications. The more complex path structure of the TRFLP in comparison to
the 3-BFLP can be used to divide large facility layout problems into smaller subproblems which
can be solved independently, see Section B. One advantage of the TRFLP in comparison to the
3-BFLP is that the inter-row material handling-system is not fixed at the left border, and hence
the weighted transport distances can be significantly smaller, which can be seen in Section A.

The special case of the MBFLP with m = 1 is called Single-Row Facility Layout Problem (SRFLP)
and is well-known to be NP-hard [5, 43, 94]. Thus, the MBFLP and the TRFLP are NP-hard as
well. Besides its application in factory planning the SRFLP arises in the arrangement of rooms in
hospitals [25, 40, 48] and the arrangement of books on a shelf [8]. The SRFLP is widely studied
[3, 4, 58, 64].

We illustrate the distance calculation of the SRFLP, the 3-BFLP and the TRFLP in the following
example (this example is presented in Section A). We set wTpath + 1 = wBpath, and thus the heights
of the departments in the 3-BFLP are taken into account.

Example 1.0.1. We consider an instance with n = 5 departments with lengths `1 = `3 = `4 =
4, `2 = 5, `5 = 2, and non-zero weights w12 = w23 = w24 = w34 = w45 = 1, w14 = 3 with
wTpath = 0 and wBpath = 1. In Figure 1.0.1 optimal layouts of the SRFLP, the 3-BFLP and the
TRFLP are illustrated:

a) An optimal single-row layout is illustrated in Figure 1.0.1a with an objective value of

1 · 4.5 + 3 · 4 + 1 · 4.5 + 1 · 8.5 + 1 · 13 + 1 · 3 = 45.5;

b) An optimal 3-Bay layout is depicted in Figure 1.0.1b with an objective value of

1 · 6.5 + 3 · 5 + 1 · 4.5 + 1 · 5.5 + 1 · 10 + 1 · 3 = 44.5;

c) An optimal T-row layout is shown in Figure 1.0.1c with an objective value of

1 · 6.5 + 3 · 2 + 1 · 4.5 + 1 · 4.5 + 1 · 9 + 1 · 3 = 33.5.

6
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(a) An optimal single-row layout with objective value
45.5.

5

1

32

4

(b) An optimal 3-Bay layout with
objective value 44.5.

3 2 4 5

1

(c) An optimal T-row layout with objective value 33.5 where
the center of 4 is on position pM in row 1.

Figure 1.0.1: We are given an instance with n = 5 departments with lengths `1 = `3 = `4 =
4, `2 = 5, `5 = 2, and non-zero weights w12 = w23 = w24 = w34 = w45 = 1, w14 = 3
with wTpath = 0, wBpath = 1. We illustrate optimal layouts for the SRFLP, the 3-BFLP
and the TRFLP where the center of 4 is on position pM in row 1 in the illustrated
T-row layout.

Highly related to the MBFLP is the Multi-Row Facility Layout Problem (MRFLP), see, e. g.,
[19, 20] with m ∈ N rows where the center-to-center distances between the departments are
measured in horizontal directions. For m = 2 this problem is called Double-Row Facility Layout
Problem (DRFLP), see, e. g., [12, 89, 101]. As all considered facility layout problems, the MRFLP
has application in factory planning and the MRFLP is NP-hard [12, 101]. Additionally, one can
use the DRFLP and the MRFLP to determine an arrangement of rooms in hospitals or schools
[7, 25, 40, 48].
The main difference between the MBFLP and the MRFLP concerns the distance calculation

between departments in distinct rows. In practice, this can be due to restrictions on the layout,
e. g., the rows might be separated by equipment, some free space for maintenance or passageways
[28]. Additionally, the available material handling systems determine the distance calculation.
As a result, in the MRFLP and in the DRFLP one might obtain free-spaces between neighboring
departments in the same rows. We illustrate the distance calculation of the DRFLP in the following
example (this example is presented in Section E).

Example 1.0.2. We are given an instance with n = 5 departments with lengths `1 = `3 = `4 = 2,
`2 = `5 = 1, and non-zero weights w12 = w45 = 3, w23 = w34 = 1.

a) An optimal single-row layout is depicted in Figure 1.0.2a with objective value

3 · 1.5 + 1 · 1.5 + 1 · 2 + 3 · 1.5 = 12.5.

b) An optimal double-row layout is illustrated in Figure 1.0.2b with objective value

3 · 0 + 1 · 1.5 + 1 · 1.5 + 3 · 0 = 3.

In this thesis we mainly contribute to the MBFLP and its extensions and the MRFLP. Several
heuristics derive solutions for these problems rather fast but without any knowledge about the
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(a) Illustration of an optimal single-row layout
with objective value 12.5.

1

2 3

4

5

(b) Illustration of an optimal double-row layout
with objective value 3.

Figure 1.0.2: We consider an instance with n = 5 departments with lengths `1 = `3 = `4 = 2,
`2 = `5 = 1 and non-zero weights w12 = w45 = 3, w23 = w34 = 1. We illustrate
optimal layouts for the SRFLP and the DRFLP and in the double-row layout there
arises free-space between department 1 and department 4 in row 1.

quality of the solution [12, 27, 33, 86]. Furthermore, exact approaches for the MBFLP are rare in
the literature and only small instances can be solved to optimality in reasonable time [42, 66]. In
contrast to the approaches in the literature, we focus on exact approaches for the MBFLP and we
present realistic extensions of the MBFLP in order to include aspects which are relevant in practice.
Since the size of the factory, and thus the costs of the initial investment increases with a large
number of rows, we focus on the 3-BFLP and the MBFLP with m = 4 rows (4-BFLP). For instance,
in a hospital each floor corresponds to a row and the initial investment costs for building a
hospital increases with the number of floors. In Section A we present an mixed-integer linear
programming (MILP) approach for the TRFLP based on extension of the well-known betweenness
variables. We show that the TRFLP is a generalization of the 3-BFLP and we adapt our approach
to the 3-BFLP. In Section B we present a new exact approach for the 3-BFLP and the 4-BFLP
and several further layout problems including extensions of the MBFLP. By comparing the optimal
solution value of several facility layout problems we support the chief executive officer to choose
a layout for a factory when a factory is built up from the ground.
Usually, in mathematical models only the transport loads are taken into account and for a

successful production further key performance indicators play an important role. Hence, in
Section C we present a combined optimization-simulation approach for the DRFLP. We extend
the current fastest model for the DRFLP [42] in various directions and the simulation is used to
detect possible bottlenecks in the production. In order to evaluate the quality of heuristically
determined double-row layouts, see, e. g., [12, 33, 89], we present in Section D the first known
non-trivial lower bounds for the DRFLP by interpreting a subproblem of the DRFLP as a parallel
identical machine scheduling problem. We further improve these lower bounds by an MILP model,
which is indeed not a formulation for the DRFLP. In Section E we study the relation between the
optimal value of the SRFLP and the MRFLP in the equidistant case where all departments have
the same length. In the equidistant case, we prove that the optimal value of the MRFLP is less
than or equal to the optimal value of the SRFLP divided by the number of rows. Considering the
DRFLP with arbitrary department lengths, we present a formula which states that the optimal
value of the SRFLP and the DRFLP might be close and we present an example which shows that
this formula is tight. We present heuristics for the DRFLP in the equidistant case and for the
general DRFLP and for both problems we improve some of the best known upper bounds for large
instances.
This thesis is structured as follows. In Section 2 we present a literature review on facility

layout problems. In Section 3 we summarize the five publications contributing to this thesis and
we outline the author’s contribution to the individual publications. In Section 4 the contributions
of the five publications and the connections between the individual publications are discussed. A
conclusion and an outlook for future work is given in Section 5. Finally, all five publications are
provided in the appendix.
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2. Literature review
Several classes of facility layout problems are studied in the literature, we refer to the surveys
[20, 38, 51] for an overview. This thesis contributes to mathematical optimization approaches
for facility layout problems and we mainly contribute to the Combined Cell Layout Problem
and extensions of the MBFLP, see Section 2.2, as well as the MRFLP, see Section 2.3. So in the
literature review we mainly focus on these problems as well. In Section 2.1 we mainly consider
special well-studied cases of the Combined Cell Layout Problem. In the following, let a set of
departments with lengths and weights be given as described in Section 1.

2.1. The single-row and the directed circular facility layout problem
We start our literature review with the SRFLP. In [94] a dynamic programming algorithm for
solving the SRFLP exactly is presented. However, in the last 20 years almost all exact approaches
for the SRFLP are either based on MILP formulations, see, e. g., [3, 4, 5, 13], or semidefinite
programming (SDP), see [17, 18, 21, 58, 59]. At first, we focus on the MILP approaches. The
MILP model of [3] and the integer linear programming (ILP) model [4] make use of ordering
variables. In [3] instances with up to 15 departments are solved to optimality in at most 7
hours and in [4] instances with up to 18 departments are solved to optimality in less than 6
hours. Several further classes of valid inequalities are presented in [13] and lower bounds for the
SRFLP are obtained with gaps less than 8 % to the best known upper bounds within a time limit
of 1 day for instances with up to 100 departments. The most promising ILP approach [5] for
calculating optimal single-row layouts is based on betweenness variables and instances with up to
35 departments are solved to optimality in at most 6 hours. A polyhedral study concerning this
approach can be found in [99]. The SDP approaches use products of ordering variables and the
SDP approach of [18] is able to solve instances with up to 30 departments to optimality within 32
hours. This approach is extended by [21] such that lower bounds with gaps of less than 5% for
instances with up to 100 departments can be calculated in 256 hours. Then, [58, 59] suggested a
strengthening of the semidefinite relaxation via inequalities based on 3-cycle-inequalities, see [81].
This leads to the current fastest approach for the SRFLP [58, 59] which is able to solve instances
with 36 departments in at most 20 minutes and one instance with 42 departments in less than
2 hours. Furthermore, for instances with up to 100 departments lower and upper bounds are
provided with gaps less than 2% in around 200 hours.
In the last years, several heuristic approaches are provided for the SRFLP using tabu search

[71, 98], scatter search [73], a genetic algorithm [36, 72], Lin–Kernighan [70] and variable
neighborhood search [46, 91]. A multi-start simulated annealing heuristic is presented in [93]
for the SRFLP which obtains the best known solutions or small gaps for instances from the
literature with 60 ≤ n ≤ 80 departments and even for instances with n = 1000 departments
the running time of this heuristic is at most one hour. Recently, a greedy randomized adaptive
search procedure is presented in [34] which could improve several results of [93] for instances with
200 ≤ n ≤ 500 departments and obtained solutions with objective value close to the best known
values presented in [93]. Besides that, there are heuristic approaches concerning extensions of the
SRFLP. In [79] a heuristic approach using a firework algorithm is presented for the SRFLP where
the positions of some departments are fixed or the ordering of some departments is known in
advance. The SRFLP with asymmetric and sequence-dependent clearance conditions between the
departments is considered in [84] and an artificial bee colony algorithm is presented. Further, a
construction heuristic based on three heuristic rules (greedy, random, linear program (LP) based)
is presented in [63] for the SRFLP with so called machine-spanning clearances, i. e., clearance
conditions which additionally have to be taken into account between departments which are not
neighboring. We refer to [64, 69] for two surveys on the SRFLP.
Given the SRFLP where all departments have the same length, we obtain the Single-Row

Equidistant Facility Layout Problem (SREFLP). The SREFLP is a special case of the Koopmans-

9



Beckmann version of the Quadratic Assignment Problem (KBQAP), see, e. g., [67, 77]. In the
KBQAP, we are given n departments and n locations, pairwise distances between the locations and
pairwise weights between the departments. Then, one looks for an assignment of the departments
to the locations such that the weighted distances between the departments are minimized. In
[53] it is shown that the best method for the SRFLP is better than methods especially designed
for the SREFLP, see, e. g., [90, 92].
In the Directed Circular Facility Layout Problem (DCFLP) the task is to find an arrangement

of the departments along a circle such that the weighted sum of the center-to-center distances
measured in clockwise direction is minimized. The DCFLP can be modeled as a Linear Ordering
Problem (LOP) [57, 60] where a set of nodes V = [n] and weights wij and wji, i, j ∈ V, i < j, are
given. Then, the LOP looks for a permutation of the nodes maximizing the sum of the weights
where the weight wij , i, j ∈ [n], i 6= j, is only taken into account if i is left to j, see, e. g., [44, 45].
Hence, in practice the DCFLP can be solved faster than the SRFLP, see [57, 60], which was so far
considered as the simplest available layout type. An SDP and an ILP approach is given in [60] as
well as heuristic approaches such that tight lower and upper bounds for instances with up to 100
departments are provided. According to [1, 74], the DCFLP has several practical advantages over
the SRFLP, e. g., relative low initial investment costs because of their space-saving design and
high material handling flexibility. The DCFLP arises by, e. g., determining a space-free alignment
around a cyclic conveyor system or the cyclic motion path of an industrial robot. We refer to
[60] for an overview of further circular layout problems.

2.2. The combined cell layout problem
Now, we consider a generalization of the SRFLP and the DCFLP, the so-called Combined Cell Layout
Problem (CCLP). We are given a set of cells C := {1, . . . ,m}, m ∈ [n], m ≥ 2, each with an (un-)
loading station whose position is denoted by pEk

, k ∈ C. The function t : C → {SRFLP, DCFLP}
specifies the associated layout type of each cell. For t(k) = SRFLP, k ∈ C, the position pEk

of the
loading station is fixed at the left or right border of cell k and for t(k) = DCFLP, k ∈ C, the loading
station can be placed on an arbitrary position along the circle. The inner-cell distances depend on
the type of the cell. The inter-cell distance between cell k ∈ C and cell o ∈ C, k < o, is denoted
by uko and the distance between departments in different cells equals the sum of the distances
of the departments to the respective loading station in the same cell plus the corresponding
inter-cell distance uko. We also write CCLP (m1,m2), m = m1 +m2, where m1 ∈ Z≥0 denotes
the number of cells of type SRFLP and m2 ∈ Z≥0 denotes the number of cells of type DCFLP.
Several special cases of the CCLP have been studied in the literature. If the assignment of

the departments to the cells is fixed, the problem is called Fixed-Cell Combined Cell Layout
Problem (FC-CCLP). For the FC-CCLP where additionally in each cell one department is fixed as
the loading station, the ILP model of [16] outperformed the SDP approach of [55]. To the best
of our knowledge, the approach of the publication in Section B is the first that considers the
CCLP without fixing one department as loading station and without pre-assigning departments to
given cells.
Considering the CCLP with t(k) = SRFLP for all k ∈ C and uko = |k − o|wBpath, k, o ∈ C, k < o,

we obtain the MBFLP where the cells are interpreted as parallel non-overlapping rows. Thus, the
CCLP is a generalization of the MBFLP. Often, two-stages procedures are used for the MBFLP and
its extensions where in the first step the assignment of the departments to the rows is determined
heuristically, and then a layout of the departments in the same row is calculated heuristically,
see, e. g., [27, 28, 86]. These layouts are usually calculated fast but without any knowledge about
the quality of the obtained solutions. In [86], the MBFLP is considered where additionally the size
of the rows is restricted, i. e., the sum of the lengths of the departments assigned to row k is at
most Fk, k ∈ [m]. However, in the computational experiments Fk = F ∈ R≥0, k ∈ [m], is chosen.
Then, in the first step the assignment of the departments to the rows is determined by solving
an MILP model neglecting distances between departments in the same row and minimizing the
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sum of the weighted inter-row distances between the departments in distinct rows such that the
sum of the lengths of the departments in row k does not exceed Fk, k ∈ [m]. In the second step
a dummy department n+ 1 with length `n+1 = 0 and weights wi(n+1) = w(n+1)i, i ∈ [n], which
are equal to the sum of the weights of i to departments [n] \ {i} which lie in a different row than
i, is added. One determines a layout of the departments in the same row respecting the dummy
department n+ 1 which is fixed at the border of the layout and the lengths of the departments
are set to one. Then, the dynamic programming algorithm of [94] is used to solve m single-row
instances independently.
Exact approaches for the MBFLP are rarely studied in the literature. In [42] an ILP model

is presented for the MBFLP where the assignment of the departments to the rows is fixed, and
instances with up to 25 departments and up to 5 rows are solved in less than one second. In
order to compute an optimal solution for the MBFLP one has to enumerate over all distinguishable
assignments of the departments to the rows. These results can be found in the computational
experiments in Section A. A survey on the MBFLP is given in [37].
The Flexible Multi-Bay Facility Layout Problem (FBFLP) is an extension of the MBFLP, see,

e. g., [28, 66, 76], where the departments are given as two-dimensional objects such that every
department has a length and a height. Then, the height of a row equals the height of a department
with the greatest height in that row and the vertical distance between two rows equals half of the
heights of these two rows plus the sum of the heights of the rows between them. The motivation
is that the rows are parallel and by calculating distances between departments in distinct rows,
the heights of the intermediate rows have to be taken into account. The departments have to
be arranged space-free within the bays. In contrast to the MBFLP, the number of rows is not
restricted. The MILP approach of [66] can solve one instance with 12 departments in less than
two hours but is not able to solve an instance with 11 departments within a given time limit of
24 hours. Besides the exact approach, the two-stage procedure of [86] is adapted to this case
by [28] and several further heuristics are presented using ant colony optimization algorithms
[30, 31, 76, 106]. A particle swarm optimization algorithm is presented in [75] for the FBFLP
where free-spaces between departments in horizontal and vertical directions are allowed within
the bays. Another extension of the FBFLP has been considered in [85] where several periods
are considered and the pairwise weights of the departments might change after a period. The
departments can be rearranged between the periods and the rearrangement leads to extra costs.
For this problem, a genetic algorithm is provided in [85]. In conclusion, exact approaches for the
MBFLP and the FBFLP are rare in the literature. A survey enclosing the FBFLP is given in [20].
The layout problem similar to the MBFLP but with uko = wBpath, k, o ∈ C, k < o, for some

wBpath ∈ R≥0 is denoted by Pier-Type Material Flow Pattern (PMFP). In [32] an MILP model for
the PMFP is presented, and an instance with 12 departments and up to five rows is considered
where a gap of around 95% is obtained after a time limit of 2 hours. The authors conclude with
the research question to develop a more efficient approach for the PMFP. The PMFP has application
in designing the layout of cross docking warehouses, e. g., there are some departments for receiving
incoming materials and the other departments are used for direct shipping of shipping supplies
[32]. We present a well-performing exact approach for the PMFP with m = 3 (3-PMFP) and m = 4
(4-PMFP) rows in Section B.

Furthermore, we present an exact approach for the 4-BFLP in Section B and we introduce an
extension of the 4-BFLP, the so-called X-Row Facility Layout Problem (XRFLP). The departments
are given as one-dimensional objects, so we assume that the height of the departments equals
one. Given four non-overlapping cells of type SRFLP which form an X and let dipEk

denote the
distance of the center of i ∈ [n] to pEk

if i is assigned to cell k ∈ [4]. Let C2 (C3) denote the set of
departments assigned to cell 2 (cell 3), then one has to ensure that the departments in cell 2 and
in cell 3 do not overlap, i. e., either dipE2

≥ 1 + `i
2 , i ∈ C2, or dipE3

≥ 1 + `i
2 , i ∈ C3, has to be

satisfied. For an illustration we refer to Figure 2.2.1 (the Figure is presented in Section B). The
XRFLP is an extension of the 4-BFLP because one additionally has to ensure that departments in
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Figure 2.2.1: Illustration of two feasible X-row layouts with n = 5 departments. Note that one
has to ensure that departments in cell 2 and cell 3 do not overlap.

cell 2 and cell 3 do not overlap. In factory planning it is realistic to take the width of the path
between cells into account because the products have to be transported between the departments
by a forklift or an automatic guided vehicle and the transportation systems usually travel in
a rectangular manner. Considering the XRFLP, let w1

path (w2
path) denote the width of the path

between cell 1 and cell 3 (cell 2 and cell 4). Measuring the distances between cell 2 and cell 3 we
do not cross a path, and hence we set the inter-cell distance to zero. In contrast, going from cell
1 to cell 4 we cross both paths, i. e., u14 = w1

path + w2
path. For the remaining inter-cell distances

we obtain u12 = u13 = w1
path and u24 = u34 = w2

path.
We refer to Section B for a theoretical and computational study of the relation of the optimal

solution values of the SRFLP, DCFLP, CCLP (2,0), CCLP (1,1), CCLP (0,2), TRFLP, 3-BFLP, 4-BFLP,
3-PMFP, 4-PMFP, and the XRFLP.

2.3. The multi-row facility layout problem
Several MILP approaches are available for the DRFLP [8, 10, 11, 29, 33, 102] (see [110] for a
correction of [33]). The ILP-based approach in [33] (see also the corresponding corrections by
[110]) can handle instances with up to 10 departments whereas the exact ILP approach of [8]
can solve instances with up to 12 departments to optimality. The latter model was improved
in [101] such that one is able to solve a DRFLP instance with 15 departments in at most 11
hours. However, the approach of [42] is the current fastest exact approach for the DRFLP as well
as the MRFLP and can solve DRFLP instances with up to 16 departments in less than 12 hours
and multi-row instances with up to 5 rows and 13 departments in less than 7 hours. From a
practical point of view the DRFLP seems much harder than the SRFLP. However, for both problems
MILP approaches based on betweenness variables outperform MILP approaches based on ordering
variables [4, 5, 8, 101].

To the best of our knowledge there has not been research done on computing non-trivial lower
bounds for the DRFLP. The approach of [42] enumerates over all distinguishable assignments of
the departments to the rows. Thus, one cannot use this approach for deriving lower bounds
for larger instances. The MILP models, see, e. g., [8, 101], make us of big-M -type constraints to
ensure the correct relation of position variables and ordering variables, and hence their linear
relaxations are rather weak. So using them in a branch-and-cut approach leads to weak lower
bounds and so to large gaps for medium-sized and large DRFLP instances, even after a longer
time limit because the root node gaps are hardly improved. For detailed computational results
we refer to Section D.

We are aware of only a few problem specific heuristic approaches for the DRFLP. In [33], two
departments with the pairwise greatest product of their weights and the sum of their lengths are
fixed directly opposite, and then according to five different rules the remaining departments are
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added to the layout, where in each step one department is assigned via a 1-opt algorithm. Note
that, given the assignment of the departments to the rows and the ordering of the departments
in the same row, one can determine the exact positions of the departments by solving an LP.
A related heuristic approach is given in [89]. The heuristic of [12] seems to calculate good
double-row layouts, but one drawback is the high running time. In [112] a multi-objective tabu
search is used for the DRFLP with the additional goal to minimize the area of the layout. Another
heuristic for an extended version of the DRFLP is given in [113] where the departments are given
as two-dimensional objects and vertical distances as well as certain clearance conditions are taken
into account. The DRFLP with clearance conditions is considered in [47] and a decomposed-based
heuristic is applied. Further heuristics for the DRFLP include dynamic aspects [22, 105]. A genetic
algorithm for an extended version of the MRFLP is presented in [97] and a three-stage heuristic is
provided in [111]. Recently, a two-stage heuristic has been presented in [19] for the MRFLP which
derives solutions quickly for m ≥ 3. However, without knowledge of good lower bounds it is
difficult to evaluate the quality of these heuristics.
Several special cases of the MRFLP and the DRFLP are studied in the literature which often

concern the arrangement or the lengths of the departments. In the Space-Free MRFLP and
Space-Free DRFLP (SF-MRFLP and SF-DRFLP) one restricts to a common left border of the rows
and spaces between neighboring departments in the same row are not allowed. Note that for
the CCLP and its special cases there always exists an optimal layout without spaces between
neighboring departments. Exact approaches for the SF-DRFLP were presented in [7, 41, 42, 54]
and heuristic approaches in [2, 68]. The approach of [42] is the current fastest approach for the
SF-DRFLP and, similar to the general DRFLP, instances with up to 16 departments are solved to
optimality in less than 12 hours. If additionally the row assignment of the departments is fixed
in the SF-MRFLP, we obtain the m-Parallel Row Ordering Problem (mPROP) and for m = 2 we
obtain the Parallel Row Ordering Problem (PROP) [9, 52, 82, 108]. The current fastest approach
for these problems is able to solve instances with up to 25 departments to optimality [42]. For
larger instances one can derive lower bounds via the SDP approach in [52].

Now we consider the MRFLP and the DRFLP where all departments have the same length, then
we obtain the Multi-Row Equidistant Facility Layout Problem (MREFLP) and the Double-Row
Equidistant Facility Layout Problem (DREFLP) [6, 56]. We assume in the following that the
lengths of the departments are equal to one in the MREFLP and in the DREFLP. In the MREFLP the
departments can be arranged on an integer grid and an ILP and an SDP model are presented
[14, 15]. Equidistant double-row and equidistant multi-row instances with up to 25 departments
are solved to optimality for 2 ≤ m ≤ 5. Moreover, gaps with less than 4 % are obtained for
instances with up to 50 departments and 2 ≤ m ≤ 5 [14, 15]. Due to the grid structure of optimal
solutions the MREFLP can be seen as a special case of the KBQAP, see, e. g., [80].
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3. Summary of the publications
In this chapter we summarize each of the five research publications which are the core of this
cumulative thesis. At the end of each section, the author’s contribution is summarized. The
first publication concerns an MILP approach for the TRFLP and the 3-BFLP and in the second
publication new exact approaches for the CCLP and extensions of the MBFLP are presented. In
the third, fourth and fifth publication we focus on the DRFLP presenting a combined simulation
and optimization approach, combinatorial lower bounds and a study of the relation between the
SRFLP and the DRFLP. Additionally, in the fifth publication the MREFLP is considered.
In order to secure a consistent terminology in this thesis, the notation in this Section might differ
from the notation in the publications.

3.1. A mixed-integer linear programming approach for the T-row and the
multi-bay facility layout problem

In this section we summarize the publication provided in Section A and Mirko Dahlbeck is the
sole author of this work.

In this work we introduce the TRFLP and we show that the TRFLP is a generalization of the
3-BFLP. Further, if wTpath ≤ wBpath, the optimal value of the TRFLP is less than or equal to the
optimal value of the 3-BFLP. We present an MILP approach for the TRFLP and the 3-BFLP based
on an extension of the well-known betweenness variables, see, e. g., [5, 42], which now can be
equal to one if the corresponding departments lie in different rows. We use transitivity constraints
to combine the extended betweenness variables with the remaining variables and we provide
cutting planes exploiting the crossroad structure. Hence, T-row (3-Bay) instances with up to 18
(17) departments are solved to optimality in less than 7 hours and we outperform the current
best exact approach for the 3-BFLP.

3.1.1. Our MILP approach

We start this section with the following proposition, which is essential for our algorithm:

Proposition 3.1.1. Given a T-row instance, there exists an optimal T-row layout where the
center of one department lies on position pM in row 1.

Therefore, we fix the center of sM ∈ [n] on position pM in row 1 and we denote the resulting
problem by (sM-TRFLP). The sM-TRFLP is NP-hard, but one can calculate the rectilinear center-
to-center distances between departments in distinct rows easier than in the TRFLP. So we set up
a MILP model for the sM-TRFLP which we solve with a branch-and-cut algorithm.

Then, our algorithm for the TRFLP works in the following way. For each sM ∈ [n] we heuristically
determine an sM -T-row layout, and we sort the departments by increasing order of the objective
values of the sM -T-row layouts. Let sM ∈ [n] be the first not yet considered department in this
sorting. Then, we solve the sM-TRFLP with our branch-and-cut algorithm where the current
best objective value is set as an upper bound, i. e., the branch-and-cut algorithm is interrupted if
the best lower bound exceeds the upper bound. We repeat this until the sM-TRFLP with the
described upper bound is solved for each sM ∈ [n].
We present a short summary of our MILP model for the sM-TRFLP. So, in the following, let

sM ∈ [n] be fixed. If i ∈ [n] and j ∈ [n] \ {i} lie in row 2 and i is above (below) j, we say that i
is left (right) to j. Then, we use ordering and assignment variables

zij =
{

1, i is left to j and i and j are in the same row,
0, otherwise,

i, j ∈ [n], i 6= j,
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yi =
{

1, if i lies in row 1,
0, otherwise,

i ∈ [n].

At first, we fix sM to row 1, see equation (3.1.1), and we ensure that i ∈ [n] \ {sM} is left or
right to sM if and only if i is in row 1, see equations (3.1.2)

ysM = 1, (3.1.1)
zisM + zsM i − yi = 0, i ∈ [n] \ {sM}. (3.1.2)

We add two dummy departments n + 1 and n + 2 with lengths `n+1 = `n+2 = 0 and weights
wij = wji = 0, i, j ∈ [n + 2], i < j, |{i, j} ∩ {n + 1, n + 2}| ≥ 1, to our model, and we fix n + 1
at the left border of row 1 and n + 2 at the left (upper) border of row 2. Then, we define
betweenness variables where at least one of the three departments is a dummy department or
sM in the following way

xikj = xjki =
{

1, if k lies between i and j in the same row,
0, otherwise,

i, j, k ∈ [n+ 2], |{i, j, k} ∩ {sM , n+ 1, n+ 2}| ≥ 1, i < j, |{i, j, k}| = 3. Remark that, given three
departments and one of them is equal to sM , n + 1 or n + 2, the corresponding betweenness
variables are only equal to one if all three departments lie in the same row. We show some
inequalities to combine these betweenness variables with the ordering and assignment variables

xisj + xsij + xsji − yi − yj ≥ −1, i, j ∈ [n] \ {sM}, i < j, s ∈ {sM , n+ 1}, (3.1.3)
xisj + xsij + xsji − yi ≤ 0, i, j ∈ [n] \ {sM}, i 6= j, s ∈ {sM , n+ 1}, (3.1.4)
xisM j − zisM − zsM j ≥ −1, i, j ∈ [n] \ {sM}, i 6= j, (3.1.5)
x(n+1)ij + x(n+2)ij − zij = 0, i, j ∈ [n] \ {sM}, i 6= j. (3.1.6)

If i ∈ [n] \ {sM} and j ∈ [n] \ {sM}, i < j, are assigned to row 1 and s ∈ {sM , n+ 1}, then the
sum of the corresponding three betweenness variable equals one, see inequalities (3.1.3). Let
i, j ∈ [n] \ {sM}, i 6= j. Inequalities (3.1.4) ensure that betweenness variables containing i, j and
sM or n+ 1 are equal to zero if i or j (or both) are assigned to row 2. Inequalities (3.1.5) are
related to the standard linearization, so if i is left to sM and j is right to sM in the same row,
then sM lies between i and j in the same row. Equations (3.1.6) ensure that i and j are in the
same row and i is left to j if and only if i is left to j in row 1 or row 2. So we are able to combine
x(n+2)ij , i, j ∈ [n] \ {sM}, i 6= j, with the ordering variables without using standard linearization.
Further inequalities are shown in Section A.

We want to give some insights about our branch-and-cut algorithm. At first, the LP consisting
of the inequalities included in the beginning is solved with xikj ∈ [0, 1], i, j, k ∈ [n+2], |{i, j, k}| =
3, i < j, zij ∈ [0, 1], i, j ∈ [n] \ {sM}, i 6= j, zisM ∈ [0, 1], i ∈ [n] \ {sM}, yi ∈ [0, 1], i ∈ [n], where
we define the betweenness variables xikj , i, j, k ∈ [n] \ {sM}, |{i, j, k}| = 3, i < j, below. Then,
violated cutting planes are added according to our separation strategy, we refer to Section A for
details. This LP is solved again until we obtain a binary solution, i. e., the y, z and x variables are
binary, or until no violated cutting plane can be found. The objective value of this (fractional)
solution is defined as the value of the root relaxation.

The distance between i ∈ [n] and j ∈ [n] \ {i} in the sM-TRFLP can be expressed by |pi− pM |+
pj + wTpath if i lies in row 1 and j in row 2, see equations (1.0.2). So one can use these equations
with big-M -constraints to combine the distance variables with the assignment variables to take
the row assignment of i and j into account. However, this leads to a rather bad root relaxation,
because these inequalities are often redundant for fractional values of y, e. g., if yi = yj = 1

2 these
inequalities are redundant. In further steps in the branch-and-cut algorithm, these lower bounds
are hardly improved for fractional values of y, so this leads to a poorly performing algorithm as
we will see in Section 3.1.4.
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Therefore, we aim to calculate the rectilinear center-to-center distances between the departments
without big-M -constraints. Our idea is to extend the definition of the betweenness variables.
Given an sM -T-row layout, we define B1 (B2) as the set of departments left (right) to sM and
B3 as the set of departments in row 2. Let i′ (j′) be the department in Ba (Bb) closest to
pM , a, b ∈ {1, 2, 3}, a 6= b. We arrange the departments Ba∪Bb on a straight line such that i′ and
j′ are neighboring as well as neighboring departments in the sM -T-row layout are neighboring.
Let i, j, k ∈ [n] \ {sM}, |{i, j, k}| = 3, i < j. We say that k ∈ [n] \ {sM} lies between i and j
if there exists a, b ∈ {1, 2, 3} such that k lies between i and j on the with Ba ∪ Bb associated
straight line. If a = b, then the departments in the set Ba are already arranged on a straight
line. In the sM-TRFLP an automated guided vehicle has to traverse every department which lies
between i and j. This motivates the following extension of the betweenness variables

xikj = xjki =
{

1, if k lies between i and j,
0, otherwise,

i, j, k ∈ [n] \ {sM}, |{i, j, k}| = 3, i < j. So our new betweenness variables xikj might also be
equal to one if i ∈ [n] \ {sM} and j ∈ [n] \ {sM}, i < j, lie in distinct rows, k ∈ [n] \ {sM , i, j}.
Since this version of betweenness variables seems to be a novelty in the layout planning literature,
we illustrate their usage by an example:

Example 3.1.2. We are given a T-row instance with n = 6 departments with lengths `1 = `5 =
3, `2 = 4, `3 = 1, `4 = `6 = 2. An sM -T-row layout with sM = 2 is illustrated in Figure 3.1.1
including the dummy departments 7 and 8. We summarize all betweenness variables which are
equal to one. We start with xikj , i, j, k ∈ [n], i < j, |{i, k, j}| = 3, where i and j lie in distinct
rows: x156 = x356 = x435 = x436 = x456 = 1. For betweenness variables containing sM or at
least one of the dummy departments, we get: x123 = x124 = x234 = x217 = x317 = x327 = x417 =
x427 = x437 = x658 = 1. Besides that we get x134 = 1 and the remaining betweenness variables
are equal to zero.

21 43

5

6

7

8

Figure 3.1.1: Illustration of a sM-TRFLP layout with sM = 2 where the dummy department 7
(8) is at the left (upper) border of row 1 (row 2). We summarize all extended
betweenness variables, i. e., betweenness variables which do not contain a dummy
department or sM , which are equal to one: x156 = x356 = x435 = x436 = x456 = 1.

We present the following inequalities to obtain the correct relation between our new extended
betweenness variables and betweenness variables containing sM or n+ 1

xikj − xsMki + xsMkj − x(n+2)ki + x(n+2)kj ≥ 0, i, j, k ∈ [n] \ {sM}, |{i, j, k}| = 3, (3.1.7)
xikj − xsMki − xsMkj − x(n+2)ki − x(n+2)kj ≤ 0, i, j, k ∈ [n] \ {sM}, |{i, j, k}| = 3, i < j,

(3.1.8)
xikj + xjik + xijk ≤ 1, i, j, k ∈ [n] \ {sM}, i < j < k. (3.1.9)
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sMi k j j

j

n+ 2

(a) Let xiksM
= 1. Then, k lies between

i and j if and only if k does not lie
between sM and j.

j

k

i

sMj j

n+ 2

(b) Let x(n+2)ki = 1. Then, k lies between
i and j if and only if k is not left to j
in row 2, i. e., x(n+2)kj = 0.

Figure 3.1.2: Let i, j, k ∈ [n] \ {sM}, |{i, j, k}| = 3. Visualization of inequalities (3.1.7) with
xsMki = 1 in Figure 3.1.2a and x(n+2)ki = 1 in Figure 3.1.2b. We illustrate possible
positions for j in dashed rectangles such that xikj = 1. The dummy department
n+ 1 is not illustrated here.

Considering three departments, at most one of them lies in the middle, see inequalities (3.1.9).
Let i, j, k ∈ [n] \ {sM}, |{i, j, k}| = 3, be fixed, and we consider inequalities (3.1.7). Let k lie
between i and sM (n+2) and let k not lie between sM (n+2) and j. Then, k lies between i and j,
for an illustration we refer to Figure 3.1.2a (3.1.2b). Otherwise, inequalities (3.1.7) are redundant.
By inequalities (3.1.8) we obtain upper bounds for xikj , i, j, k ∈ [n] \ {sM}, |{i, j, k}| = 3, i < j,
we refer to Section A for details.

It remains to calculate the rectilinear center-to-center distances between the departments. For
the sM-TRFLP there always exists an optimal space-free layout, i. e., an optimal layout without
free-spaces between neighboring departments in the same row. So we set

disM = `i
2 + `sM

2 yi + wTpath(1− yi) +
∑

k∈\{sM ,i}
`k(xiksM

+ x(n+2)ki), i ∈ [n] \ {sM}, (3.1.10)

dij = `i + `j
2 + (1− zij − zji)

(
wTpath + `sM

2

)
+

∑

k∈[n]\{i,j}
`kxikj , i, j ∈ [n] \ {sM}, i < j.

(3.1.11)

By equations (3.1.10) we calculate the rectilinear center-to-center distance between sM and
i ∈ [n] \ {sM} by summing up the lengths of all departments which are between i and sM

and i and n + 2. Additionally, we add `sM
2 if i lies in row 1 and wTpath if i is in row 2. By

equations (3.1.11) we measure the rectilinear center-to-center distance between i ∈ [n] \ {sM}
and j ∈ [n] \ {sM}, i < j. We add `sM

2 + wTpath if i and j lie in distinct rows and we add the sum
of the lengths of the departments between i and j. In Section A we exclude some constants and
we show how the distance variables can be neglected.

Additionally, we aim to eliminate symmetrical layouts. Let S = (π1, . . . , πn−1) denote an
arbitrary sorting of the departments [n] \ {sM}. If π1 is assigned to row 1, we fix π1 to the left of
sM , see equation (3.1.12). However, if π1 is assigned to row 2, we fix another department in row
1 to the left of sM . We continue in this manner, see inequalities (3.1.13). These inequalities are
related to symmetry breaking constraints for the graph coloring problem, see, [83, 88]. We set

zπ1sM − yπ1 = 0, (3.1.12)

zπjsM − yπj +
j−1∑

k=1
yπk
≥ 0, j = 2, . . . , n− 1. (3.1.13)
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3.1.2. Cutting planes

In the following, let sM ∈ [n] be fixed. In this section we describe further inequalities to
strengthen our formulation for the sM-TRFLP. Let i, j, k ∈ [n] \ {sM}, i < j < k, be given. In the
SRFLP the sum of the corresponding three betweenness variables, i. e., xikj + xjik + xijk, equals
one but this sum might be equal to zero in the sM-TRFLP. This is a significant difference because
in the root relaxation of our branch-and-cut algorithm the value of the betweenness variables
might be close to zero. This would lead to a rather bad objective value at the root relaxation.
Therefore, we present various lower bounds for the sum of the betweenness variables.

Proposition 3.1.3. Let sM ∈ [n]. Then, the following inequalities are valid for the sM-TRFLP

xikj + xjik + xijk + xisM j + xisMk + xjsMk ≥ 1, i, j, k ∈ [n] \ {sM}, i < j < k, (3.1.14)
xikj + xjik + xijk + xisMk + xjsMk − yk ≥ 0, i, j, k ∈ [n] \ {sM}, |{i, j, k}| = 3, i < j,

(3.1.15)
xikj + xjik + xijk − yi − yj − yk ≥ −2, i, j, k ∈ [n] \ {sM}, i < j < k. (3.1.16)

Proof. Let S := {i, j, k} ⊆ [n] \ {sM}, |{i, j, k}| = 3, i < j, be given. Note first that inequalities
(3.1.14)–(3.1.16) are satisfied if xikj + xijk + xjik equals one. It turns out that xikj + xijk + xjik
equals zero if and only if sM lies between two departments of the set S and the remaining
department in S lies in row 2. Otherwise, two or three departments are left or right to sM
(n + 2) and then by inequalities (3.1.7) one of the betweenness variables equals one. Thus,
inequalities (3.1.14) are valid. Consider inequalities (3.1.15) with yk = 1 and let the sum of the
corresponding betweenness variables be equal to zero, then sM lies between i and k or between j
and k. Inequalities (3.1.15) are satisfied if yk = 0. Given three departments which are assigned
to row 1, then the sum of the corresponding betweenness variables equals one, see inequalities
(3.1.16).

We want to give two comments regarding this proposition. At first, inequalities (3.1.14)–(3.1.15)
are not valid for betweenness variables known in the literature [5, 42] where the betweenness
variables are only equal to one if the corresponding three departments lie in the same row.
To see this, we consider an sM -T-row layout with k in row 1 and i and j in row 2, i, j, k ∈
[n] \ {sM}, |{i, j, k}| = 3. Then, one would obtain xikj + xjik + xijk + xisM j + xisMk + xjsMk = 0
and yk = 1, so inequalities (3.1.14)–(3.1.15) are not satisfied.
At second, we consider the following inequalities, which are related to inequalities (3.1.16)

xikj + xijk + xjik + yi + yj + yk ≥ 1, i, j, k ∈ [n] \ {sM}, i < j < k.

These inequalities are implied by inequalities (3.1.14) and inequalities (3.1.4).
We conclude our description of our MILP model for the sM-TRFLP by summarizing where we

use explicitly that the center of sM is fixed on position pM in row 1. At first, we use this by the
rectilinear center-to-center distance calculation between the departments. At second, we combine
our new extended betweenness variables with betweenness variables containing sM or n+ 2, see
inequalities (3.1.7)–(3.1.8). In addition, in the symmetry breaking constraints (3.1.12)–(3.1.13)
we use this as well. An alternative could be to set up an MILP model for the TRFLP and to
determine via binary variables the department whose center is on position pM in row 1. Then,
these new binary variables have to be added to the above mentioned inequalities. Recall that
during the branch-and-cut algorithm one most often obtains fractional solutions, so in this case
the above mentioned inequalities are significantly weaker or even redundant.

3.1.3. The multi-bay facility layout problem with three rows

Given a T-row instance, we add an additional dummy department n+3 with length `n+3 = 2wBpath
and weights wi(n+3) = w(n+3)i = 0, i ∈ [n + 2], to our model and we fix the center of the
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dummy department n+ 3 on position pM in row 1. Then, the obtained problem is denoted by
((n + 3)-TRFLP). So let an optimal (n + 3)-T-row layout be given with wTpath = 0. Then, we
assign the departments in the (n+ 3)-T-row layout to the left (right) of n+ 3 to row 1 (row 3)
in the 3-Bay layout in reversed order (without changing the order of the departments). The
departments in row 2 in the (n + 3)-T-row layout are assigned to row 2 in the 3-Bay layout
without changing the order of the departments in the same row. Hence, we obtain an optimal
3-Bay layout and vice versa. An immediate consequence is the following:

Proposition 3.1.4. Given a 3-BFLP instance with wBpath ∈ R≥0 and a dummy department with
length `n+3 = 2wBpath and weights wi(n+3) = w(n+3)i = 0, i ∈ [n + 2]. Then, the 3-BFLP is
equivalent to the (n+ 3)-TRFLP with wTpath = 0.

As a consequence, we can use our MILP model for the sM-TRFLP with sM = n + 3 for the
3-BFLP. In this case further improvements are presented in Section A. Note that one main
difference between solving the TRFLP and the 3-BFLP with our approach is that for the 3-BFLP
only one MILP model has to be solved. In Section A we discuss the relationship of the optimal
values of the TRFLP and the 3-BFLP and it turns out that, if wTpath ≤ wBpath, the optimal value of
the TRFLP is less than or equal to the optimal value of the 3-BFLP.

3.1.4. Computational experiments

Instances Source SRFLP 3-BFLP TRFLP H3-BFLP HTRFLP
Am11a [11] 10630.5 8795.5 8407.0 8814.5 8411.5
Am11b [11] 7375.5 6021.5 5665.0 6021.5 5667.5
Am12a [7, 8] 2901.0 2508.0 2354.5 2515.0 2354.5
Am12b [7, 8] 3280.5 2691.5 2539.5 2697.5 2548.5
Am13a [7] 4902.5 4021.5 3836.0 4204.5 3836.0
Am13b [7] 5698.0 4529.0 4362.5 4529.0 4362.5
Am14_1 [42] 5481.5 4560.5 4350.5 4565.5 4358.0
Am14a [102] 5673.0 4687.0 4446.5 4734.0 4448.0
Am14b [102] 5595.0 4665.0 4430.5 4683.0 4433.0
Am15 [3] 6305.0 5291.0 5071.0 5294.0 5079.0
HK15 [50] 33220.0 26494.0 26124.0 26495.0 26125.0
P16a [9] 14829.0 12287.5 11943.0 12326.0 11943.0
P16b [9] 11878.5 9781.0 9469.5 9784.5 9469.5
P17a new 14436.5 11852.0 11524.5 11888.5 11528.0
P17b new 15682.0 12691.5 12317.0 12874.0 12389.0
Am17 [4] 9254.0 7647.0 7315.0 7690.0 7318.0
P18a new 16118.5 12022.0’ TL 12863.5 12516.0
P18b new 17716.5 12972.5’ TL 14616.5 14072.0
Am18 [4] 10650.5 7990.5’ 8413.5 8835.5 8413.5

Table 3.1.1: Optimal values of the SRFLP, the 3-BFLP and the TRFLP for instances from the
literature with wTpath = 0, wBpath = 1. We write “TL” if the time limit of 8 hours is
exceeded. Lower bounds for the 3-BFLP are marked with “ ’ ” if the time limit is
exceeded or if we run out of memory storage. The optimal value of the TRFLP is up
to 6.1% smaller than the optimal value of the 3-BFLP and up to 23.4% than the
optimal value of the SRFLP.

In this section we summarize our computational results and we set wTpath = 0 and wBpath = 1,
so the heights of the departments in the 3-BFLP are taken into account. Further computational
experiments for greater values of wTpath and wBpath can be found in Section A. The optimal solution
values of the SRFLP, the 3-BFLP and the TRFLP are compared in columns three, four and five
of Table 3.1.1, and we write “TL” if the time limit of 8 hours is exceeded. If the 3-BFLP is
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not solved to optimality, the obtained lower bound is displayed and marked with “ ’ ”. Our
heuristically determined upper bounds for the 3-BFLP (TRFLP) are given in the sixth (seventh)
column denoted by “H3-BFLP” (“HTRFLP”).
The optimal value of the TRFLP (3-BFLP) is between 18.8% and 23.4% (13.5% and 20.5%)

smaller than the optimal value of the SRFLP, so the optimal values of the TRFLP and the 3-BFLP
are significantly smaller than the optimal value of the SRFLP. Further, the optimal value of the
TRFLP is between 1.4% and 6.1% smaller than the optimal value of the 3-BFLP, see Table 3.1.1.
These reductions on the sum of the weighted transport distances are remarkable since factories
are built for a long period, and the rearrangement of the departments is expensive. Hence, for
these instances the TRFLP is preferable to the 3-BFLP and the SRFLP. The 3-Bay instances with
18 departments are not solved to optimality, but we obtain lower bounds with gaps between
4.0% and 7.9% to heuristically determined upper bounds.

Instances Enu3-BFLP MILP3-BFLP EnuTRFLP MILP1 MILP2 MILP3 MILP4 MILPsame-row
Am11a 3:26 48 9:31 33 54 34 1:04 1:37
Am11b 3:35 1:19 10:11 20 41 16 41 1:27
Am12a 13:26 1:53 38:29 51 1:29 1:20 2:44 6:18
Am12b 13:30 1:01 40:19 42 1:15 50 2:35 6:40
Am13a 53:46 4:16 2:58:52 2:17 3:05 3:56 14:03 24:18
Am13b 53:34 9:31 3:01:51 2:17 2:58 5:02 10:16 18:33
Am14_1 3:45:33 1:28:24 TL 9:11 16:27 24:47 1:16:10 1:17:49
Am14a 3:28:30 13:23 TL 6:00 15:32 12:13 52:54 58:26
Am14b 3:28:47 13:37 TL 6:51 15:59 17:34 1:22:07 1:17:58
Am15 TL 25:24 TL 15:31 33:45 1:49:33 3:20:07 3:35:25
HK15 TL 17:51 TL 13:48 20:05 58:54 3:54:52 2:56:30
P16a TL 44:00 TL 1:12:31 3:27:04 TL TL TL
P16b TL 1:21:35 TL 1:09:58 2:42:40 6:04:38 TL TL
P17a TL 3:51:48 TL 3:32:27 TL TL TL TL
P17b TL 6:31:46 TL 3:37:59 TL TL TL TL
Am17 TL 4:58:37 TL 2:19:20 5:53:06 TL TL TL
P18a TL TL TL TL TL TL TL TL
P18b TL 5:23:22† TL TL TL TL TL TL
Am18 TL TL TL 6:01:58 TL TL TL TL

Table 3.1.2: Running times are given in sec, min:sec or in h:min:sec for instances from the
literature with wTpath = 0, wBpath = 1. We write “TL” if the time limit of 8 hours is
exceeded and the running time is marked with “†” if we run out of memory storage.
For the TRFLP, variant 1 delivers the fastest approach. We clearly outperform the
enumerative approach of [42] for the TRFLP and the 3-BFLP.

We are able to solve T-row instances with up to 18 departments and 3-Bay instances with
up to 17 departments to optimality, see Table 3.1.2. Our approach for the 3-BFLP (column
three) clearly outperforms the current best exact approach for the 3-BFLP [42] (column two). We
adapted the approach [42] to the TRFLP (column four) and our approach for the TRFLP (column
five) outperforms this approach as well. Neglecting inequalities (3.1.14)–(3.1.15) in our approach
(see column six), the running time is for almost all instances with at least 14 departments more
than twice as high as the running time of our best approach, so these inequalities significantly
improve the performance of our branch-and-cut algorithm. Several further inequalities are added
to our approach for the sM-TRFLP (column seven), and thus the objective value at the root node
is greater. However, this increases the running time in the further branching steps, and this
variant is slower than our best approach. Using this approach we are able to calculate lower
bounds for larger instances, we refer to Section A for the corresponding computational results.
We use standard linearization instead of the transitivity inequalities (3.1.7)–(3.1.8) (column eight)
to combine the extended betweenness variables with betweenness variables containing sM or n+2
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and the ordering and assignment variables, we refer to Section A for details. The running time is
significantly increased and this shows that the transitivity inequalities (3.1.7)–(3.1.8) significantly
improve the performance of our approach in comparison to inequalities based on the standard
linearization. Additionally, we clearly outperform an approach based on an MILP model for the
sM-TRFLP which consists of betweenness variables which are only equal to one if all departments
are in the same row (in this interpretation, betweenness variables are known in literature [5, 42]),
see column nine. In this approach big-M -constraints are used to combine distance variables and
assignments variables and the drawbacks of these inequalities in branch-and-cut algorithms are
discussed in Section 3.1.1.

The author’s contribution:
Mirko Dahlbeck is the sole author of this work, so the ideas, the proofs, the write-up and the
implementation are the author’s work.
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3.2. New exact approaches for the combined cell layout problem and extensions of
the multi-bay facility layout problem

In this section we summarize the publication given in Section B. This publication is joint work
with Anja Fischer, Kerstin Maier and Philipp Hungerländer.
In this summary we use the term “cell” instead of “row” in order to get a consistent terminology.

In this work we present a new exact approach for the CCLP where we enumerate over all
assignments of the departments to the cells and then solve several FC-CCLP. Then, we solve
the FC-CCLP by solving m appropriate subproblems independently. Considering the CCLP where
all cells of type SRFLP have the same inter-cell distances, we merge two cells of type SRFLP.
Thus, if the number of cells of type SRFLP is even, we halve the number of cells of type SRFLP,
and hence we significantly reduce the number of cell assignments that have to be considered.
Additionally, we describe the adaption of this approach to the 3-BFLP, the 4-BFLP and the XRFLP.
In a computational study we compare the computation times and the optimal values of these
facility layout problems in order to support the chief executive officer to choose a layout if a
factory is built up from the ground.

3.2.1. The combined cell layout problem

We consider the FC-CCLP and our goal is to solve the optimization problems in each cell
independently as done in [86] for an extension of the MBFLP. Considering cells of type SRFLP, one
can add a dummy department to each cell and fix it at the left border with length zero and the
weights between the dummy department and a department in the same cell equals the sum of
the weights of this department to departments in distinct cells. The weights between the dummy
department and departments in distinct rows are set to zero. For cells of type DCFLP one can use
a similar idea, but one does not necessarily need to add a dummy department. At the end of
this section we describe how these problems can be solved to optimality. We use the following
definition:

Definition 3.2.1. Given an FC-CCLP instance and let D ⊆ [n+m′], m′ ∈ N≥0, be a set of depart-
ments where n+ 1, n+ 2, . . . , n+m′ are dummy departments with lengths `n+1, `n+2, . . . , `n+m′ ∈
R≥0 and weights wiz = wzi = 0, i ∈ [n+m′], z ∈ {n+ 1, . . . , n+m′}, i 6= z. For the department
sM ∈ D we set

wisM ← wisM +
∑

j∈[n]\D
wij , i ∈ D \ {sM}, (3.2.1)

wsM i ← wsM i +
∑

j∈[n]\D
wji, i ∈ D \ {sM}, (3.2.2)

all other weights remain the same. Then, the aim of the optimization problem WA
(sM ,pz)(D) for

the updated weights is to find an optimal layout of the departments D respective the structure
of the cell A ∈ {SRFLP, DCFLP}. Additionally, pz, z ∈ {a, b}, specifies the position of sM , where
pa denotes that the position of sM can be chosen arbitrarily and pb expresses that sM has to lie
at the leftmost position of the layout. Let A = DCFLP and sM ∈ {n+ 1, . . . , n+m′}, then one
department of the set D \ {sM} may overlap with sM .

Note that in cells of type DCFLP one department may overlap with the dummy department in
the same cell because one department may overlap with the (un-) loading station as well. Given
an FC-CCLP instance, we add a dummy department with length zero and weights calculated via
(3.2.1)–(3.2.2) to each cell. Then, the weighted inter-cell distances are taken into account by the
dummy departments and hence, we are able to solve the FC-CCLP by solving the optimization
problems in each cell independently.
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Lemma 3.2.2. Given a fixed-cell combined cell layout instance where Ck, k ∈ C, denotes the
set of departments assigned to cell k and let the dummy department n+ k be added to cell k with
length `n+k = 0 and adapted weights for dummy department n+ k as described in (3.2.1)–(3.2.2)
for D = Ck ∪ {n+ k} and sM = n+ k. Then, the FC-CCLP is equivalent to solving the problems

WS
(n+k,pb)(Ck ∪ {n+ k}), k ∈ C with t(k) = SRFLP,

WD
(n+k,pa)(Ck ∪ {n+ k}), k ∈ C with t(k) = DCFLP,

and the sum of the optimal values (plus constant inter-cell weights) is equal to the optimal value
of the FC-CCLP.

Hence, the FC-CCLP can be divided into m sub-problems. In Section B we concentrate on cells
of type SRFLP and DCFLP, but note that the result of Lemma 3.2.2 is independent of the layout
type of the cells, and thus our approach can be extended to cells of other types such as the
DRFLP.
Now we consider an instance where all cells of type SRFLP have the same inter-cell distance,

i. e., uko = c for some constant c ∈ R≥0 for all k, o ∈ C, k < o, with {t(k), t(o)} ∩ {SRFLP} 6= ∅.
We briefly describe our main idea. We merge two cells of type SRFLP and we add one dummy
department with weights as described in (3.2.1)–(3.2.2) to this merged cell. The length of this
dummy department is chosen appropriate and now, the dummy department is not fixed at the
border. We solve this optimization problem, and then we assign the departments left (right) of
this dummy department to an original cell of type SRFLP in reversed order (without changing
the order of these departments). Thus, we halve the number of cells of type SRFLP if the number
of cells of type SRFLP is even.

Theorem 3.2.3. The CCLP (m1,m2) with uko = c ∈ R≥0 for all k, o ∈ C, k < o, with {t(k), t(o)}∩
{SRFLP} 6= ∅ is equivalent to enumerate over (dm1

2 e+m2)n

bm1
2 c! m2! cell assignments and solve the following

optimization problems for a fixed cell assignment exactly

WS
(n+k,pa)(Ck ∪ Ck+1 ∪ {n+ k}), k = 1, 3, . . . , h,

WS
(n+m1,pb)(Cm1 ∪ {n+m1}), if m1 is odd,

WD
(n+k,pa)(Ck ∪ {n+ k}), k = m1 + 1, . . . ,m,

with h = m1 − 1 if m1 is even and h = m1 − 2 if m1 is odd and the departments Ck are assigned
to cell k ∈ [m]. Apart from this the dummy department n+k is added to cell k for k = 1, 3, . . . , h,
k = m1 if m1 odd and k = m1 + 1, . . . ,m. Additionally, we have to compute some constants such
that inter-cell distances are calculated correctly.
Further, the SRFLP is equivalent to the CCLP (2,0).

In our algorithm we enumerate over at most (dm1
2 e+m2)n

bm1
2 c! m2! cell assignments because we only

need to consider distinguishable cell assignments. The current best objective value is set as an
upper bound, and if the upper bound is exceeded, we neglect the current cell assignment and
go to the next one. We solve cells of type DCFLP first since in practice the DCFLP is easier to
solve than the SRFLP, see [57, 60], and the results of [16, 55] indicate that in general the optimal
values of cells of type DCFLP are higher than the optimal values of cells of type SRFLP. Thus, we
hope to exceed the upper bound earlier such that we can neglect the current cell assignment.

Considering cells of type SRFLP, the WS
(n+k,pa)(Ck ∪Ck+1 ∪{n+ k}) can be solved by solving a

single-row instance with departments Ck∪Ck+1∪{n+k}. For solvingWS
(n+m̃1,pb)(Cm̃1∪{n+m̃1})

if m1 is odd with m̃1 = dm1
2 e, we can simply fix the dummy department n+ m̃1 at the border,

i. e.,

xi(n+m̃1)j = 0, i, j ∈ Cm̃1 , i < j,
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and then solve a single-row instance with departments Cm̃1 ∪ {n + m̃1} and these additional
equations.
Next, we focus on the subproblems of the FC-CCLP concerning cells of type DCFLP. Let Ck

denote the set of departments assigned to some cell k with t(k) = DCFLP. By the following
proposition we can use techniques from the directed-circular literature [16, 57, 60] for solving the
WD

(n+k,pa)(Ck ∪ {n+ k}) to optimality.

Proposition 3.2.4. Let an FC-CCLP instance be given where Ck, k ∈ C, denotes the set of
departments assigned to the cell k with t(k) = DCFLP. Let dummy department n+ k be assigned
to cell k with length `n+k = 0 and weights wi(n+k) = ∑

j∈[n]\Ck
wij, w(n+k)i = ∑

j∈[n]\Ck
wji (see

(3.2.1), (3.2.2)) and let Vk := {i ∈ Ck : wi(n+k) + w(n+k)i > 0} 6= ∅. Further, let v∗n+k denote
the optimal value of the WD

(n+k,pa)(Ck ∪ {n + k}) and let v∗sM
denote the optimal value of the

WD
(sM ,pa)(Ck), sM ∈ Vk, where in WD

(sM ,pa)(Ck) the weights of sM are adjusted according to (3.2.1),
(3.2.2). Then

v∗n+k = min{v∗sM
: sM ∈ Vk}. (3.2.3)

If Vk = ∅ for some k ∈ C with t(k) = DCFLP, we simply neglect the dummy department n+ k,
and then WD

(n+k,pa)(Ck ∪ {n + k}) is equivalent to the DCFLP with departments Ck. If Vk 6= ∅,
one can fix one department i ∈ Vk opposite n+ k and enumerate over each department in Ck
fixed opposite n + k, see Proposition 3.2.4. In summary, we obtain an optimal layout of the
WD

(n+k,pa)(Ck ∪ {n+ k}) by solving max{1, |Vk|} directed-circular instances.
To reduce the number of directed-circular instances that have to be solved, we set up an MILP

model to solve the WD
(n+k,pa)(Ck ∪ {n+ k}), Ck ⊆ [n], k ∈ C, Vk 6= ∅. One advantage of an MILP

model in comparison to an enumerative approach is that lower bounds are obtained quickly, and
hence to exclude unbalanced cell assignments earlier in our algorithm. Therefore, we use the
following binary variables

yi =
{

1, if i lies opposite n+ k,

0, otherwise,

for i ∈ Ck and we use ordering variables

zij =
{

1, if i lies to the left of j,
0, otherwise,

i, j ∈ Ck, i < j. Note that n + k is the leftmost department, and hence we neglect ordering
variables containing n+ k, see, e. g., [57, 60].

Let Dij , i, j ∈ Ck, i < j, denote the sum of the lengths of the departments k ∈ Ck \ {i} which
are left of j minus the sum of the lengths of the departments k ∈ Ck \ {j} which are left of
i. Note that Dij , i, j ∈ Ck, i < j, is negative if j is left to i. Further, let L = ∑

i∈Ck
`i and

ŵij = wij − min{wij , wji}, i, j ∈ Ck, i 6= j, ŵi(n+k) = wi(n+k), ŵ(n+k)i = w(n+k)i, i ∈ Ck. We
exclude the constant

WD
k =

∑

i,j∈Ck∪{n+k}
i 6=j

ŵij
`i + `j

2 +
∑

i,j∈Ck
i<j

min{wij , wji}L.

Let dij combined with the excluded constant measure the center-to-center distances between
i ∈ Ck and j ∈ Ck, i 6= j, measured in clockwise directions. We define Li = ∑

j∈Ck\{i} `j , i ∈ Ck,
and Lij = L− `i − `j , i, j ∈ Ck, i < j. Then, our MILP model with Vk 6= ∅ reads as follows

min
∑

i,j∈Ck∪{n+k}
i 6=j

ŵijdij
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s. t. 0 ≤ zij + zjk − zik ≤ 1, i, j, k ∈ Ck, i < j < k, (3.2.4)
Dij −

∑

k∈Ck\{i}
k<j

`kzkj +
∑

k∈Ck\{i}
k>j

`kzjk

+
∑

k∈Ck\{j}
k<i

`kzki −
∑

k∈Ck\{j}
k>i

`kzik = −
∑

k∈Ck
i<k<j

`k, i, j ∈ Ck, i < j, (3.2.5)

dij + Lijzij −Dij = Lij , i, j ∈ Ck, i < j, (3.2.6)
dji − Lijzij +Dij = 0, i, j ∈ Ck, i < j, (3.2.7)
∑

i∈Ck

yi = 1, (3.2.8)

zij − yi ≥ 0, i, j ∈ Ck, i < j, (3.2.9)
zij + yj ≤ 1, i, j ∈ Ck, i < j, (3.2.10)
yi = 0, i ∈ Ck \ Vk, (3.2.11)

d(n+k)i −
∑

j∈Ck
j<i

`jzji +
∑

j∈Ck
j>i

`jzij +
∑

j∈Ck

`j
2 yj =

∑

j∈Ck
j>i

`j , i ∈ Ck, (3.2.12)

dij ≥ 0, i, j ∈ Ck, i 6= j, (3.2.13)
di(n+k) + d(n+k)i + (Li + `i)yi = Li, i ∈ Ck, (3.2.14)

dij ≥ −
`i
2 , i, j ∈ Ck ∪ {n+ k}, i 6= j, (3.2.15)

|{i, j} ∩ {n+ k}| = 1,
yi ∈ {0, 1}, i ∈ Ck. (3.2.16)

Let k ∈ C. Inequalities (3.2.4) are the well-known 3-cycle-inequalities, which ensure transitivity
and suffice to induce a feasible ordering of the departments, see, e. g., [16, 57, 60]. Equations
(3.2.5) compute for each pair of departments i and j with i, j ∈ Ck, i < j, the sum of the lengths of
the departments k ∈ Ck \ {i} which are left of j minus the sum of the lengths of the departments
k ∈ Ck \ {j} which are left of i. By equations (3.2.6)–(3.2.7) we obtain the correct distance
between i and j with i, j ∈ Ck, i < j, i. e., if i lies left to j we get dij = Dij and dji = Lij −Dij

and otherwise dij = Lij + Dij and dji = −Dij with negative values of Dij in the latter case.
Inequalities (3.2.4)–(3.2.7) are taken from [16, 60].
Equations (3.2.8) ensure that exactly one department lies opposite n + k, see Proposition

3.2.4. According to the z variables we obtain an ordering of the departments and we ensure via
inequalities (3.2.9)–(3.2.10) that the department i′ ∈ Ck with yi′ = 1 is the leftmost department
of the set Ck. By Proposition 3.2.4 and our assumption Vk 6= ∅, we set yi, i ∈ Ck \ {Vk},
equal to zero, see equations (3.2.11). The distance calculation in equations (3.2.12) is similar
to the distance calculation in [16, 57, 60] where we additionally subtract half the length of the
department that is fixed opposite n+ k because we excluded the constant WD

k . By equations
(3.2.14) and inequalities (3.2.15) we obtain di(n+k) = d(n+k)i = − `i

2 , i ∈ Ck, if i lies opposite n+k.
In this case the distances di(n+k) and d(n+k)i, i ∈ Ck, are negative since we excluded the constant∑
i∈Ck

(wi(n+k) +w(n+k)i) `i2 . If i ∈ Ck does not lie opposite n+k, we obtain di(n+k) +d(n+k)i = Li,
see equations (3.2.14).

3.2.2. Extensions of the multi-bay facility layout problem

If wBpath = 0, one can immediately apply the results of Theorem 3.2.3 to the MBFLP. In this
section we investigate the case wBpath > 0 for the 3-BFLP and the 4-BFLP and we describe how
our approach can be extended to the XRFLP.
At first, we consider the 3-BFLP. We merge cell 1 and cell 2 and interpret cell 3 as new
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cell 2. Let C1 (C2) denote the set of departments assigned to the merged cell 1 (cell 2),
C1, C2 ⊆ [n], C1 ∩ C2 = ∅, such that C1 ∪̇ C2 = [n]. The dummy department n + 1 (n + 2) is
added to the merged cell 1 (cell 2) with `n+1 = 0 (`n+2 = 0) and weights wi(n+1) = ∑

j∈[n]\C1 wij ,
w(n+1)i = ∑

j∈[n]\C1 wji (wi(n+2) = ∑
j∈[n]\C2 wij , w(n+2)i = ∑

j∈[n]\C2 wji) (see (3.2.1)–(3.2.2)).
We exclude the constant∑i∈C1,j∈C2 (wij + wji)·wBpath and we fix an additional dummy department
n+ 3 to the merged cell 1 neighboring n+ 1 with lengths `n+3 = wBpath and weights wi(n+3) =
w(n+3)i = 0, i ∈ C1∪{n+1}. Then, we obtain an optimal solution for the 3-BFLP by enumerating
over C1, C2 ⊆ [n], C1 ∩C2 = ∅, C1 ∪̇ C2 = [n] and solving the WS

(n+1,pa)(C1 ∪ {n+ 1, n+ 3}) and
the WS

(n+2,pb)(C2 ∪ {n+ 2}).
If wBpath = 0, we can fix two departments to C1 and one has to consider 2n−2 generalized cell

assignments. If wBpath > 0, one department can be fixed to C1, and hence we have to consider
2n−1 generalized cell assignments. Hence, we can solve the 3-BFLP similar to the approach
summarized in the previous section. This approach differs from the approach of Section A where
a dummy department n+ 1 with length `n+1 = 2wBpath is added to cell 1 and its center position
is fixed on position pM . Then, we could add a dummy department n+ 2 to cell 2 as described
above, however, we cannot fix one department to cell 1 and hence, we cannot reduce the number
of cell assignments that have to be considered.

Next we consider layout problems with four original cells in detail. Recall that we assume that
the height of each department equals one. The following proposition is essential to solve the cells
of the XRFLP independently, and thus we derive a result similar to Theorem 3.2.3.

Proposition 3.2.5. Given an XRFLP instance. There always exists an optimal X-row layout
where some i ∈ [n] is contained in cell 3 and dipE3

= `i
2 .

Given an X-row instance, we want to ensure that departments in cell 2 and cell 3 do not
overlap. Therefore, we fix an additional dummy department n+ 3 at the border of cell 2 with
lengths `n+3 = 1 and weights wi(n+3) = w(n+3)i = 0, i ∈ [n+ 2], see Proposition 3.2.5.

At first, we consider the case where inter-cell distances are equal to zero, i. e., w1
path = w2

path = 0.
Then, one can solve the cells independently, see Lemma 3.2.2, and hence we can apply Theorem
3.2.3 with uko = 0, k, o ∈ [4], k < o, and we merge cell 1 and cell 3 as well as cell 2 and cell
4. The dummy department n+ 1 (n+ 2) is added to the merged cell 1 (cell 2) with `n+1 = 0
(`n+2 = 0) and weights as described in (3.2.1)–(3.2.2) and the merged cell 2 additionally contains
the dummy department n+ 3 which is neighboring n+ 2.
We include inter-cell distances in our approach for the XRFLP in the following way. For an

illustration we refer to Figure 3.2.1.

Corollary 3.2.6. Given an X-row instance with w1
path, w

2
path ≥ 1, and we set `n+1 = 0, `n+2 =

2 ·min{w2
path, 1}, `n+3 = |w2

path− 1|, `n+4 = w1
path, and n+ 1 (n+ 2) is neighboring n+ 4 (n+ 3).

We obtain an optimal X-row layout by enumerating over all assignments of the departments to the
cells C = {1, 2} and solving the WS

(n+1,pa)(C1∪{n+1, n+4}) and the WS
(n+2,pa)(C2∪{n+2, n+3})

where Ck, k ∈ [2], denotes the set of departments assigned to (merged) cell k and the weights of the
additional dummy departments are set to wi(n+3) = w(n+3)i = wi(n+4) = w(n+4)i = 0, i ∈ [n+ 2].

In our algorithm we solve the WS
(n+2,pa)(C2 ∪ {n + 2, n + 3}) first if |C2| ≤ |C1| + 1 and

otherwise we solve the WS
(n+1,pa)(C1 ∪ {n+ 1, n+ 4}) first with the idea to exclude unbalanced

cell assignments earlier.
Next we describe how to include inter-cell distances to the 4-BFLP in our approach. At first, we

merge cell 1 and cell 2 as well as cell 3 and cell 4. Hence, let C1 (C2) denote the set of departments
assigned to the merged cell 1 (cell 2). We exclude the constant ∑i∈C1,j∈C2 (wij + wji) ·wBpath and
solve the WS

(n+k,pa)(Ck ∪ {n+ k, n+ k + 2}), k ∈ {1, 2}, with an additional dummy department
n+ k + 2 with length `n+k+2 = wBpath and weights wi(n+k+2) = w(n+k+2)i = 0, i ∈ Ck ∪ {n+ k},
where n+ k + 2 is a neighboring department of n+ k. By Corollary 3.2.6 we obtain an optimal
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path deduced
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ure 3.2.1a.
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(c) Feasible layouts for the WS
(8,pa)({1, 2, 3, 4} ∪

{8, 11}) and the WS
(9,pa)({5, 6, 7} ∪ {9, 10}) with

w1
path = w2

path = 3 and `9 = `10 = 2, `11 = 3.
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3 41 2C1
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(d) X-row layout with `9 = `10 = 2, `11 = 3, de-
duced from the single-row layouts illustrated in
Figure 3.2.1c.

Figure 3.2.1: Visualization of obtained 4-Bay and X-row layouts with positive inter-cell distances
by solving appropriate single-row instances. In order to construct a 4-Bay layout
the departments left (right) to the dummy department 8 are assigned to cell 1 (cell
2) in reversed (the same) order and the departments left (right) to the dummy
department 9 are assigned to cell 4 (cell 3) in reversed (the same) order.

solution for the 4-BFLP by this method. For an illustration we refer to Figure 3.2.1. In our
algorithm we solve the WS

(n+2,pa)(C2 ∪ {n+ 2, n+ 3}) first if |C2| ≤ |C1| and otherwise we solve
the WS

(n+1,pa)(C1 ∪ {n+ 1, n+ 4})) first.
Considering the 4-BFLP with wBpath = 0, we can fix two departments to cell 1, and hence it

is sufficient to consider 2n−2 cell assignments. If wBpath > 0, one can fix one department to cell
1, and hence it is sufficient to consider 2n−1 cell assignments. In the proof of Proposition 3.2.5
symmetry breaking is used, see Section B, so in order to solve the XRFLP to optimality with our
approach one has to consider 2n cell assignments.

3.2.3. Computational results

In Table 3.2.1 we compare the optimal values of several facility layout problems where the inter-
cell distances are set to zero. For computational experiments with positive inter-cell distances
we refer to Section B. In the column “Source” we display the source of the symmetric instances.
We observe that the optimal value of the TRFLP is smaller than the optimal value of the 3-BFLP.
The optimal value of the 4-BFLP is slightly smaller than the optimal value of the XRFLP. For all
instances the optimal value of the XRFLP is smaller than the optimal value of the TRFLP and the
4-BFLP has the smallest optimal value. Recall that the SRFLP is equivalent to the CCLP (2,0), see
Theorem 3.2.3. The optimal value of the SRFLP is smaller than the optimal value of the CCLP
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Instances Source SRFLP CCLP (1,1) CCLP (0,2) 3-BFLP TRFLP 4-BFLP XRFLP
Am11a [11] 10630.5 9840.0 11178.5 8466.5 8407.0 6899.5 7038.5
Am11b [11] 7375.5 6802.5 7262.0 5694.5 5665.0 4864.5 4990.5
Am12a [7, 8] 2901.0 2702.5 3266.5 2382.0 2354.5 1994.0 2047.0
Am12b [7, 8] 3280.5 3042.5 3389.5 2557.5 2539.5 2172.5 2234.5
Am13a [7] 4902.5 4404.5 5283.5 3863.5 3836.0 3258.5 3327.5
Am13b [7] 5698.0 5046.0 6029.0 4376.0 4362.5 3642.0 3702.0
Am14_1 [42] 5481.5 5132.0 5766.5 4370.5 4350.5 3557.5 3634.5
Am14a [102] 5673.0 5263.0 6619.0 4475.0 4446.5 3773.0 3872.0
Am14b [102] 5595.0 5166.0 5725.0 4451.0 4430.5 3749.0 3838.0
Am15 [3] 6305.0 5961.5 6899.0 5093.0 5071.0 4237.0 4319.0
HK15 [50] 33220.0 30880.0 37440.0 26290.0 26125.0 21810.0 21891.0
P16a [9] 14829.0 14087.0 15125.0 11999.0 11943.0 10076.0 10194.0
P16b [9] 11878.5 11360.0 12768.5 9499.5 9469.5 7805.5 7921.5
P17a Section A 14436.5 14066.0 15930.0 11551.5 11524.5 9574.5 -
P17b Section A 15682.0 14870.5 16034.0 12389.0 12317.0 10174.0 -
Am17 [4] 9254.0 8604.0 10896.0 7345.0 7315.0 6044.0 -
P18a Section A 16118.5 15043.5 17904.0 12528.5 - 10266.5 -
P18b Section A 17716.5 16733.0 18022.5 14138.5 - - -
Am18 [4] 10650.5 10050.5 12274.5 8446.5 8413.5 6914.5 -

Table 3.2.1: We illustrated the optimal values of several facility layout problems for instances
from the literature where the inter-cell distances are set to zero. Instances marked
with “-” could not be solved to optimality within the time limit of 8 hours.

(0,2) here but the CCLP (1,1) has the smallest optimal value of these three problems in our tests.
The optimal values of the CCLP are greater than the ones of the 3-BFLP.

Our approach for the 3-BFLP as well as our enumerative approach for the TRFLP, see Section
B for details, can be found in column “our” in Table 3.2.2. The CCLP (0,2) with up to 18
departments could be solved in less than 30 minutes, see Table 3.2.2, by using our MILP approach
(column “MILP”). For these instances our MILP approach clearly outperforms the enumerative
approach (column “enu”) which can be derived immediately by the results of Lemma 3.2.2
and Proposition 3.2.4. Therefore, our approach outperforms the approach of [16, 55] as well
because their models do not contain dummy departments, and hence one would have to use
the enumerative approach. In order to compare our approach for the TRFLP and the 3-BFLP
with the approach of Section A, we make use of the heuristically determined upper bounds in
Section A. Considering the 3-BFLP we outperform the approach of Section A, see Table 3.2.2.
With our approach the TRFLP (the 4-BFLP) could be solved with up to 17 (18) departments
within a time limit of 8 hours and the XRFLP with up to 16 departments. Our MILP model for
the optimization problem in cell 1 in the TRFLP, see Section B, leads to a smaller running time
than the corresponding enumerative approach, see Table 3.2.2. However, the approach of Section
A can even solve one T-row instance with 18 departments and is for most T-row instances faster
than our approach. Additionally, computational tests for the 3-PMFP and the 4-PMFP can be
found in Section B.

The author’s contribution:
The main ideas of this publication which concern merging cells of type SRFLP and adapting the
approach to the 3-BFLP, 4-BFLP are the author’s work. Large parts of the ideas of adapting
this approach to the XRFLP are the author’s work as well. He contributed to ideas for the MILP
model in Section 4.2. Section 3 is joint work with Anja Fischer. The proof of Lemma 4 is
joint work with Anja Fischer and Kerstin Maier. The main result, Theorem 5, was proven by
the author under the revision of Anja Fischer. The proof of Proposition 8 is joint work with
Kerstin Maier and the proof of Proposition 7 and Proposition 10 were done by the author in
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advice of the coauthors. The write-up of Section 1 is joint work with Kerstin Maier and the
author is responsible for large parts of the write-up of Section 4 and Section 5. Additionally, the
implementation and the computational experiments are the author’s work.
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3.3. Combining simulation and optimization for extended double row facility layout
problems in factory planning

In this section we summarize the publication provided in Section C which is joint work with Uwe
Bracht, Anja Fischer and Thomas Krüger.

In this work we present a combined optimization-simulation approach for the DRFLP. In order
to handle many of the requirements posed on the layout in real-world production, the existing
mathematical optimization models have to be extended. For this we extend the mathematical
approach of [42] and we are able to solve a realistic double-row instance with 21 departments.
The start solution obtained via mathematical optimization is then the basis for the following
steps of the factory planners on a much finer level of detail.

3.3.1. Extensions of a DRFLP model

In the classic models for the DRFLP, see, e. g., [8, 33, 42], the following three assumptions are
made

1. the total size of the area needed for the arrangement is not limited,

2. vertical distances between the departments are neglected,

3. each department can be assigned to any of the two rows.

The approach of [42] enumerates over all distinguishable row assignments of the departments.
Then, the dummy department n+ 1 (n+ 2) is arranged at the left (right) border with `n+1 =
`n+2 = 0, wij = wji = 0, i ∈ [n + 2], j ∈ {n + 1, n + 2}, i < j, and an MILP model is used to
solve several DRFLP with fixed-row assignment (FR-DRFLP). In order to consider a fixed row
assignments, let R1 ⊆ [n] (R2 ⊆ [n]) denote the set of departments assigned to row 1 (row 2).
The dummy departments n+ 1 and n+ 2 are assigned to both rows. The MILP model of [42]
makes use of betweenness variables

xikj = xjki =
{

1, k lies between i and j in the same row,
0, otherwise,

for l ∈ {1, 2}, i, j, k ∈ Rl ∪ {n + 1, n + 2}, |{i, j, k}| = 3, i < j. Further, let dij = dji, i, j ∈
[n+ 2], i < j, measure the horizontal center-to-center distance between i and j. The betweenness
variables containing a dummy department n+ 1 or n+ 2 are combined with the distance variables
via big-M -inequalities. We refer to [42] for a description of the MILP model and to Section C for
a summary of the MILP model.

Usually, in factory planning the incoming warehouse and the shipping warehouse of a factory
are arranged at the left and at the right border, respectively. If this is the case, the dummy
departments n+ 1 and n+ 2 can be interpreted as these warehouses, see Figure 3.3.1. Of course,
we might obtain a better overall solution value if we drop the restriction on the position of both
warehouses. In this case they are treated as ordinary departments that have transport weights
to other departments and need a certain space.
In this section we extend the approach of [42] in order to overcome these three assumptions.

Let the departments be given as two-dimensional objects such that each department has a length
and a height. Then, the area of a layout is defined in the following way:

Definition 3.3.1. The area of a given layout is defined as the area of the minimum boundary
rectangle containing all departments.

By definition the area of a layout is equal to d(n+1)(n+2) · h, where h is the height of the layout.
Let hi denote the height of department i ∈ [n]. In the FR-DRFLP we compute the height of the
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Figure 3.3.1: Visualization of an extended DRFLP layout where we fixed the incoming and the

shipping warehouse to the border of the layout. One motivation for this arrangement
is that one hopes to receive rather linear transport flows between the departments.

layout by summing up the height of a department with the largest height in each row plus the
width of the path wDpath between the two rows, i. e., h = maxi∈R1hi + maxi∈R2hi + wDpath. So for
a fixed row assignment the height of a layout is constant. Assume that the area of the layout
may be at most F ∈ R≥0. Then, the linear inequality d(n+1)(n+2) ≤ F

h ensures that the area of
the layout is bounded by F . Further, we can neglect all row assignments where the sum of the
lengths of the departments in the same row exceeds F

h .
Apart from a restriction of the used area, there might appear so called blocked areas in real-world

factory planning problems. It is not allowed to place departments in these areas. This might be due
to already existing departments or due to safety restrictions. Let B1 = {[b1, b1 + g1], . . . , [bu, bu +
gu]} be the blocked areas in row 1 and B2 = {[bu+1, bu+1 + gu+1], . . . , [bv, bv + gv]} be the blocked
areas in row 2 for given bk, gk ≥ 0, k ∈ [v]. For each blocked area we introduce a new dummy
department, which we will call blocked department, with length equal to the length of the blocked
area. We place the center of the blocked department in the middle of the blocked area. So we get
the blocked departments n+ 3, n+ 4, . . . , (n+ 2 + |B1|+ |B2|) with length `n+2+k = gk for k ∈ [v].
The row assignment of the blocked departments is fixed, namely R1 = {(n+3), . . . , (n+2+ |B1|)}
are assigned to row 1 and R2 = {(n + 2 + |B1| + 1), . . . , (n + 2 + |B1| + |B2|)} to row 2. To
ensure that the blocked department n+ 2 + k lies exactly on the interval [bk, bk + gk], we set the
distance variable to

d(n+1)(n+2+k) = bk + gk
2 , k ∈ [v].

Next we include vertical distances between the departments in order to overcome the second
assumption stated in the beginning of this section. The departments are given as 2-dimensional
objects. The vertical center-to-center distance between two departments in the same row equals
the sum of the heights of these two departments. If two departments are in distinct rows, one
additionally adds wDpath. An example is illustrated in Figure 3.3.2. In conclusion, we only need
to add the following constant value to the objective value of some FR-DRFLP to include vertical
distances

∑

i,j∈[n]
i<j

hi + hj
2 (wij + wji) +

∑

i∈R1
j∈R2

wDpath (wij + wji) .

Naturally, the third assumption mentioned at the beginning of this section can easily be
dropped. If the row assignment of some departments is fixed in advance, this only helps us
because the number of possible row assignments decreases.
In this exact approach, we enumerate over all row assignments of the departments and solve

some MILP model in each step. One can fix one department to row 1, so there are in general
1
2 · 2n distinguishable row assignments that have to be considered. In realistic instances there
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n+ 1 n+ 2

Figure 3.3.2: Visualization of the vertical and horizontal center-to-center distances between three
departments.

appear departments of the same type, i. e., departments that have the same length and the same
transport weight w to all other departments. In our test case in Section 3.3.3 we consider such a
realistic instance. We use this additional information to reduce the number of distinguishable
row assignments significantly.

Theorem 3.3.2. Let k denote the number of different department types and let ai be the number
of departments of type i ∈ [k]. Then there are at most




1
2
∏

i∈[k]
(ai + 1)




distinguishable row assignments.

This formula is also correct if all departments have different types, because then ai = 1 for all
i ∈ [k] and k = n. We illustrate the advantages of Theorem 3.3.2 by a realistic example, see [95]
and Section 3.3.3.

Example 3.3.3. We are given n = 21 departments, where two departments appear four times,
three departments twice and seven departments just once. Without reduction, we have to test
220 = 1048576 row assignments. By Theorem 3.3.2 we obtain at most 1

2 · 5 · 5 · 3 · 3 · 3 · 27 = 43200
distinguishable row assignments.

Considering departments of the same type, we can strengthen our MILP model. We break
symmetries by fixing the ordering of departments of the same type in the same row. This
symmetry breaking is done in such a way that at least one optimal solution is preserved. Let ai1
departments of the same type i, i ∈ [k], be in row 1. We denote these departments, w. l. o. g., by
1, . . . , ai1 . Then, we fix the ordering of these departments by additional constraints, w. l. o. g.,
we use an ascending order. Since these departments are of the same type, they have the same
length and we can add

d(n+1)1 ≤ d(n+1)2 + `1 ≤ . . . ≤ d(n+1)(ai1 ) + (ai1 − 1) · `1

to our model. It follows immediately that we can set the betweenness variables which contain
dummy departments to

x(n+1)kl =
{

1, k, l ∈ [ai1 ], k < l,

0, k, l ∈ [ai1 ], k > l.

Similar equations can be added for department n + 2. Furthermore, we fix the associated
betweenness variables

xkuv =
{

1, k, u, v ∈ [ai1 ], k < u < v,

0, k, u, v ∈ [ai1 ], k < v and (u < k or u > v).
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3.3.2. Iterative combination of optimization and simulation

In mathematical models usually only the transport loads are taken into account. For a successful
production system, which highly depends on the decisions made during the factory planning
process, several further key performance indicators play a significant role. Therefore, we use
simulation. Given a layout of the departments, we generate dynamic and realistic information
about the transport processes by running a simulation. The simulation model allows

• the consideration of different distribution strategies for the material flow,

• adding different products,

• adjusting the processing sequences, i. e., in which order the products have to be processed,

• adjusting a production program which includes a production schedule and the number of
products.

A benefit of the simulation is that we can consider additional key performance indicators of the
production systems, among them output, throughput times, inventory, capacities, utilization
of resources. Further, the visualization of processes simplifies the understanding of complex
relations [24].

An analysis of the results including the key performance indicators is then the basis for further
improvements. If the current layout has to be improved, the DRFLP models are customized by
extending or adapting the mathematical models and the interplay between optimization and
simulation continues. One big advantage of our iterative layout creation is that afterwards we
can nicely compare the found solutions with respect to several indicators. So, the effect of certain
decisions becomes clear. The simulation might show, for instance, that the distances between
certain departments are too large for a smooth production. Then, we can restrict these distances
in the model, see Section 3.3.4.

Many simulation models are generated in 2D. This kind of department representation is quite
abstract and impedes the intuitive understanding of the layout and the production process.
Especially for layouts with an increased number of departments, the transparency of a DRFLP
solution with the 2D simulation model is limited. The integration of 3D models provides a
better overview for the planner as illustrated in Figure 3.3.3. Especially the product flow can be
demonstrated very quickly. Using a 3D simulation model on basis of the optimized layout can
simplify the virtual validation of the planned production area and the detection of bottlenecks.
All in all, simulation allows to control whether it will be possible to achieve the desired output of
the production system afterwards in real production.

3.3.3. Computational results

For testing our new approach for the extended DRFLP models in the simulation we use a well-known
application example [95]. It represents a real gearbox production and includes 21 departments
(with 12 types) and eight different products which are combined in an assembly department to an
end product. This example provides a solid data basis for the layout planning problem and the
simulation model. A 3D illustration of some layout for this instance, where the incoming and the
shipping warehouse are arranged at the borders, is given in Figure 3.3.3. This instance has already
been taken into account in Example 3.3.3. In our computational tests we used Theorem 3.3.2
and the additional symmetry breaking constraints for departments of the same type in the same
row. In Figure 3.3.4 we show the development of the running times in a logarithmic scale of
our optimization approach when we enlarge the number of the departments. In the tests we
start with 12 departments of different types and successively add one department in each step.
Hence, department type 3 appears twice when we consider 13 departments and three times when
we consider 14 departments and so on. Figure 3.3.4 shows that the original instance with all
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Figure 3.3.3: 3D illustration of a DRFLP layout with 21 departments [95]. This simulation was
derived using mathematical optimization. The incoming and the shipping warehouse
are arranged at the left and the right border, respectively.

departments can be solved in less than 14 hours, although it contains 21 departments and so five
departments more than the largest DRFLP instance solved to optimality in the literature before.
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Figure 3.3.4: Running times in seconds for variations of some realistic instance from [95]. We start
with 12 different department types and 12 departments and we add departments
successively according to the following order of the number of departments of each of
the 12 types: 1 1 4 1 2 2 4 1 2 1 1 1. The largest instance contains 21 departments.

In the simulation we tested the following five different solutions where in the first four variants
the incoming and shipping warehouse were arranged at the border:

1. A solution determined according to criteria usually used in factory planning where apart
from the transport weights one had a special look at the linearity of the flows. The heuristic
of Schmigalla [65, 100] was applied and afterwards the solution was improved by hand.

2. A solution determined according to criteria usually used in factory planning where all
departments of a type were interpreted as one big block and then these blocks were
arranged. The number of blocks that had to be arranged is smaller than the total number
of departments. So it was easier to build this layout by hand.
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3. We used our mathematical DRFLP model for deriving a solution. A 3D visualization of the
layout can be found in Figure 3.3.3.

4. We used our mathematical DRFLP model for deriving a solution. Additionally, all depart-
ments of the same type were interpreted as one big block and then these 12 blocks were
arranged.

5. Solution derived using our mathematical DRFLP model with arbitrary position of all de-
partments as well as of the incoming and the shipping warehouse (in our model these are
departments, too). This approach was also used for deriving the results in Figure 3.3.4.

In all five simulations we manufactured 36000 end products and determined afterwards the
average distance of each single product and the total distance traveled. The results can be
found in Table 3.3.1. The end product, which is obtained by combining all eight products in
an assembly department, is denoted as product 9. The second column in Table 3.3.1 shows
the number of transports (“Trans”) needed for each product 1, . . . , 9, and the next ten columns
show the distances for the five simulation variants where the left column (“single”) for each type
contains the information on the average transport distance of each single product and the right
column the total distance (“total”) traveled for all products of the same type.

The results show that our optimization model improves the solution significantly in comparison
to the solution determined by hand, especially if we do not restrict the positions of the warehouses
(Layout 5). Comparing Layout 1 and Layout 3, the solution obtained using optimization is better
than the solution obtained by applying the heuristic of Schmigalla followed by some improvement
steps by the factory planners. But even the optimized solution with blocks and fixed border,
illustrated in Layout 4, is better than the solutions determined by hand, illustrated in Layout 2.

Layout 1 Layout 2 Layout 3 Layout 4 Layout 5
P Trans single total single total single total single total single total
1 480 37.90 18192.0 38.70 18576.0 28.70 13776.00 29.15 13992.00 16.31 7828.8
2 90 37.90 3411.0 38.70 3483.0 28.70 2583.00 29.15 2623.50 16.31 1467.9
3 144 38.50 5544.0 44.85 6458.4 29.32 4222.08 35.91 5171.04 30.75 4428.0
4 60 37.90 2274.0 37.60 2256.0 28.70 1722.00 29.15 1749.00 39.60 2376.0
5 30 65.60 1968.0 71.90 2157.0 69.20 2076.00 70.40 2112.00 66.51 1995.3
6 60 55.96 3357.6 49.03 2941.8 55.66 3339.60 54.18 3250.80 54.27 3256.2
7 30 66.12 1983.6 71.89 2156.7 66.42 1992.60 70.90 2127.00 66.51 1995.3
8 120 37.90 4548.0 37.60 4512.0 28.70 3444.00 29.15 3498.00 39.00 4680.0
9 720 2.00 1440.0 2.00 1440.0 10.80 7776.00 11.20 8064.00 0.00 0.0

Total 42718.2 43980.9 40931.28 42587.34 28027.5

Table 3.3.1: Visualization of the results of the five simulations for our test case. In this production
all eight products are combined to an end product, denoted as product 9, see column
“P”. The entry “Total” in the first column refers to the total distance traveled in each
of the five layouts. Note that using our approach from mathematical optimization
with arbitrary department positions reduces the total distances significantly in
comparison with the other four variants.

3.3.4. Manufacturing different products

The simulation showed that transport distances might be rather high in an optimal layout if the
number of products of this type is small in comparison to the others. However, high transport
distances can increase the cycle time. For a smooth production we want to bound the transport
distances associated to single products. Let P denote the set of products and zp be the desired
number of product p ∈ P . Every product has its own transport matrix W p. The ij-th entry of
the matrix W p denotes the transport weights between department i and j for producing product
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p. The transport weight matrix W that we used before is built on the sum of the transport
matrices times the associated desired number of products, i. e., W = ∑

p∈P zp ·W p. Our aim is
now to investigate the influence of single products to the whole production.

Definition 3.3.4. For a product p ∈ P we define the transport distance as
∑

i,j∈[n]
i<j

(
wpij + wpji

)
dij ,

where wpij is the ij-th entry of the matrix W p.

We set up a desired distance dp ∈ R+ for the transport distance for each single product p ∈ P .
Of course, the desired transport distance depends on the amount of products zp for p ∈ P .
If this value is exceeded, we want to penalize this with a quadratic function f̃ which is later
approximated by some piecewise linear function. Let a ≥ dp be the highest possible transport
distance of product p ∈ P . Then we set f̃ : [0, a]→ [0, f̃(a)] such that

f̃(x) =





dp − x, x < dp,

0, x = dp,

(x− dp)2, x > dp.

To avoid a non-linear objective function, we approximate f̃ on the interval [dp, a] with a piecewise
linear, continuous, convex function f . Therefore, we use linear interpolation [23].

Let a product p ∈ P and points u1, . . . , uo be given with o ≥ 1 and ui ≥ dp sorted in ascending
order for i ∈ [o]. Then, we compute a linear approximation of f̃ between the points (ui, (ui−dp)2)
and (ui+1, (ui+1 − dp)2) for i = 1, . . . , o− 1. The resulting function f is piecewise linear and can
be written as f(x) = maxi=1,...,o(ai)Tx+ bi for ai, bi ∈ R and i ∈ [m]. We add the following term
to the objective function

zp · f



∑

i,j∈[n]
i<j

(
wpij + wpji

)
dij


 . (3.3.1)

This term can be linearized by replacing (3.3.1) with

zp · t

in the objective function and adding the constraints

aTi x+ bi ≤ t, i ∈ [o].

We may set up such a penalty function for every product p ∈ P .

The author’s contribution:
The ideas of the extensions of the basic DRFLP model as well as the result of Theorem 2 including
the proof are joint work with Anja Fischer. The write-up of Section 1 and Section 2 are joint
work with Anja Fischer as well. The author contributed to the write-up of Section 4 and he is
responsible for large parts of the write-up of Section 3 and Section 5.2.
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3.4. Decorous combinatorial lower bounds for row layout problems
In this section we summarize the publication provided in Section D which is joint work with
Anja Fischer and Frank Fischer.

The current best approach [42] for the DRFLP can solve only small double-row instances to
optimality in reasonable time and this enumerative approach cannot be used to derive lower
bounds for large-sized double-row instances. Further, lower bounds received via some branch-
and-cut algorithm within a given time limit of one hour for some DRFLP formulation from the
literature are rather weak as we will see in Table 3.4.1. In Section 3.4.1 we present two different
combinatorial lower bounds for the DRFLP based on a relation between some special DRFLP and
some parallel identical machine scheduling problem. In addition, these lower bounds are combined
with a new MILP model, see Section 3.4.2, which is indeed not a formulation for the DRFLP,
to further strengthen the lower bounds. The combinatorial lower bounds as well as the lower
bounding model can further be improved in the equidistant case.

3.4.1. Combinatorial lower bounds

Our approach for calculating lower bounds for the DRFLP is related to the following problem:

Definition 3.4.1. Given a set of jobs J with processing times qk ∈ R+ and weights wk ∈ R+, k ∈
J, one looks for an assignment of start times tk ∈ R+ of the jobs J to u ∈ N parallel identical
machines such that no two jobs overlap on one machine and such that the sum of the weighted
completion times ∑k∈J wkCk with Ck = tk + qk is minimized. For constant u we denote this
problem by Pu||

∑
wkCk.

The scheduling problem Pu||
∑
wkCk is weakly NP-hard, see, e. g., [78]. It is well known

that the unweighted case, i. e., Pu||
∑
Ck with wk = 1 for k ∈ J , can be solved to optimality in

polynomial time by the Shortest Processing Time rule (SPT), where one processes the jobs in
increasing order of their processing time.
Our aim is to compute lower bounds for the weighted distances of department i ∈ [n] to

departments S ⊆ [n] \ {i}. Let p ∈ Rn denote the center positions of the departments and let
r ∈ {1, 2}n denote the assignment of the departments to the rows. Further, let Ŵi(S) denote the
objective value of a feasible double-row layout with departments {i} ∪ S, S ⊆ [n] \ {i}, which
minimizes ∑j∈S (wij + wji) |pi − pj |. Adding the additional constraint pi = pj for some j ∈ S,
i. e., i lies directly opposite to j, then the corresponding optimization problem is denoted by
Ŵ(i,j)(S). It turns out that:

Proposition 3.4.2. Let (n,w, `) be a DRFLP instance and let i ∈ [n], S ⊆ [n] \ {i}. Then
Ŵi(S) = minj∈S Ŵ(i,j)(S).

In the following, we determine two different lower bounds for Ŵ(i,j)(S) given some DRFLP
instance. In both variants we interpret the optimization problem for computing Ŵ(i,j)(S) as a
scheduling problem P4||

∑
wkCk with weights wk = wik + wki, k ∈ S \ {j}. The departments

correspond to the jobs in the P4||
∑
wkCk and the lengths of the departments to the processing

times, i. e., qk = `k, k ∈ S \ {j}. Given a feasible solution of Ŵ(i,j)(S), then, as illustrated in
Figure 3.4.1, machine 1 and machine 2 of the scheduling problem correspond to row 1 in this
solution and machine 3 and machine 4 to row 2. Additionally, we have to take into account that
in the scheduling problem the completion times of the jobs are considered while in the DRFLP
one measures center-to-center distances between the departments.
Thus we are able to use methods from the scheduling literature to compute lower bounds

for the DRFLP. All lower bound calculations have in common that we sort the jobs in S \ {j}
by some given order. Respecting some machine-dependent non-availability times from zero to
a = (a1, . . . , a4) ∈ R4

+ ∪ {∞} (i. e., no job on machine k may start before ak, k = 1, . . . , 4), the
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Figure 3.4.1: Visualization of the connection of the DRFLP and parallel machine scheduling on
four machines. Here departments i and j lie opposite and we have to arrange
departments {s1, . . . , s6}. In the lower bound calculations we will partially adjust
the start of the jobs (departments) at a machine by half the length of i (see gray
area) or half the length of j. In the scheduling problem one considers the completion
times of the jobs while in the DRFLP one measures the center-to-center distances
between the departments.

jobs are assigned in a greedy manner. Whenever a machine becomes idle and is available one
assigns the next unscheduled job in the list non-preemptively. Our basic algorithm is summarized
in Algorithm 3.4.1.

Algorithm 3.4.1: Basic(S = (s1, . . . , s|S|), `S , a)
Input : parallel machine scheduling problem with ordered jobs S = (s1, . . . , s|S|),

processing times `S ∈ R|S|+ , non-availability times from zero to a = (a1, . . . , a4)
on the 4 machines

Output : completion times Csk
, sk ∈ S, as Cbasic(S, `S , a).

1 Initialize (¯̀1, ¯̀2, ¯̀3, ¯̀4)← (a1, . . . , a4).
2 for k = 1, . . . , |S| do

Choose m̄ ∈ arg min{¯̀o : o ∈ {1, 2, 3, 4}}.
¯̀
m̄ ← ¯̀

m̄ + `Ssk
.

Csk
← ¯̀

m̄.
3 return Csk

, sk ∈ S.

In our first combinatorial lower bound for Ŵ(i,j)(S), i ∈ [n], S ⊆ [n]\{i}, we fix i opposite j ∈ S
and we make use of the SPT rule, so we sort the departments S \ {j} by increasing length. The
departments are assigned as described in Algorithm 3.4.1. Recall that the SPT rule determines
an optimal solution for the P4||

∑
Ck (with wk = 1, k ∈ J). Then, we assign the highest weights

to departments closest to i and obtain a lower bound for Ŵ(i,j)(S). As illustrated in Figure 3.4.1,
machine 1 and machine 2 are not available from 0 to `i

2 and machine 3 and machine 4 from 0 to
`j
2 .

Definition 3.4.3. Let (n,w, `) be a DRFLP instance. Let i ∈ [n], S ⊆ [n] \ {i}, j ∈ S with
Sspt
j = (s1, . . . , s|S|−1) a sequence of departments in S \ {j} with length `S

spt
j = (`s1 , . . . , `s|S|−1)

ordered by increasing lengths and let

Cspt,(i,j)(S, `) := Cbasic(Sspt
j , `S

spt
j , ( `i2 ,

`i
2 ,

`j
2 ,

`j
2 ))

denote the completion times returned by Algorithm 3.4.1. Furthermore, let w′i• = (w′i1 +
w′1i, . . . , w

′
i(|S|−1) + w′(|S|−1)i) be the weights wik + wki of k ∈ S \ {j}, ordered decreasingly.
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Then the SPT-lower-bound is

W spt
(i,j)(S) :=

|S|−1∑

k=1
w′ik

(
Cspt,(i,j)
sk

(S, `)− `sk

2

)
.

In the special case of all weights being equal to one the SPT-distance-bound is

W dst
(i,j)(S) :=

|S|−1∑

k=1

(
Cspt,(i,j)
sk

(S, `)− `sk

2

)
.

The SPT-distance-bound cannot be used to derive bounds for the optimal value of the DRFLP.
However, it can be used to derive lower bounds for the (geometric) distances between the
departments themselves without regarding the amount of transports.

Now we consider a second variant for computing a lower bound for the Ŵ(i,j)(S) based on the
Smith rule which has been extended to P ||∑wkCk in the following way: The jobs are ordered
non-increasingly by their relative weights wk

qk
for k ∈ J and we assign each of the jobs using this

order to the next machine that gets idle. It is proven in [62] that the Smith rule for sorting the
jobs leads to a 1+

√
2

2 -approximation algorithm for the P ||∑wkCk. We set αKK := 1+
√

2
2 .

Definition 3.4.4. Let (n,w, `) be a DRFLP instance, and let i ∈ [n], S ⊆ [n] \ {i} and j ∈ S. We
denote by Ssc

j = (s1, . . . , s|S|−1) a sequence of departments S \ {j} with length vector `S
sc
j ordered

non-increasingly by wik+wki
`k

, k ∈ S \ {j}. Denote by

Csc,(i,j)(S, `) := Cbasic(Ssc
j , `

Ssc
j , (0, 0, 0, 0))

the completion times returned by Algorithm 3.4.1 for this ordering. Then the SCHED1-lower-bound
is

W sc
(i,j)(S) := 1

αKK

|S|−1∑

k=1
(wisk

+ wski) · Csc,(i,j)
sk

(S, `) +
|S|−1∑

k=1
(wisk

+ wski) · (1
2 min{`i, `j} − `sk

2 ).

(3.4.1)

In Section D we prove that W spt
(i,j)(S) and W sc

(i,j)(S) are indeed lower bounds for Ŵ(i,j)(S), i ∈
[n], j ∈ S ⊆ [n] \ {i}. Combining these results leads to a first combinatorial lower bound for the
optimal value of the DRFLP.

Theorem 3.4.5. Let Vi = {k ∈ [n] : wik + wki > 0}. The value

1
2
∑

i∈[n]
min
j∈Vi

max{W spt
(i,j)(Vi),W

sc
(i,j)(Vi)} (3.4.2)

is a lower bound on the optimal value of the DRFLP and can be computed in O (n3 · log(n)
)
.

In Section D a third combinatorial lower bound for Ŵ(i,j)(S) is presented and used in the
calculation of (3.4.2). Additionally, in Section D it is shown that the combinatorial lower bounds
can be extended to the MRFLP.

In the equidistant case, we can simplify the calculation of the SPT-lower-bound since an optimal
solution for the P4||

∑
wkCk can be determined by assigning the departments with the highest

weights first. So for i ∈ [n] we sort the departments in S ⊆ [n] \ {i} by decreasing weights
wik + wki, k ∈ S, and assign the departments in that order as close as possible to i, i. e., a
department with highest weight wik + wki, k ∈ S, lies directly opposite i. We denote this lower
bound by W sort

i (S).
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If we know that two departments i, j ∈ [n], i < j, overlap and so lie exactly opposite due to
the grid structure [15], we can determine a lower bound for the weighted distances of i and j to
the departments S ⊆ [n] \ {i, j}. For this we order the departments in S by decreasing weight
wik + wki + wjk + wkj , k ∈ S, and get a sequence SE-spt

i,j = (s1, . . . , s|S|). With

CE-spt,(i,j)(S) = Cbasic(SE-spt
i,j , (1, . . . , 1), (0, 0, 0, 0))

we denote the completion times returned by Algorithm 3.4.1 and we set

WE-spt
(i,j) (S) :=

|S|∑

k=1
(wisk

+ wski + wjsk
+ wskj)(CE-spt,(i,j)

sk
(S)). (3.4.3)

Proposition 3.4.6. Let (n,w,1) be a DREFLP instance. Let i, j ∈ [n], i < j, and S ⊆ [n] \ {i, j},
then for all equidistant double-row layouts with pi = pj we have

WE-spt
(i,j) (S) ≤

∑

k∈S
(wik + wki + wjk + wkj)|pi − pk|.

3.4.2. A lower bounding model

We aim to further improve the combinatorial lower bounds via an MILP model, which is indeed not
a formulation for the DRFLP. We use distance variables dij = dji ≥ 0, i, j ∈ [n], i < j, measuring
the horizontal center-to-center distances between i and j. In contrast to the literature, see,
e. g., [42, 101], where left-right ordering variables were used, we use binary overlap variables
xij = xji ∈ {0, 1}, i, j ∈ [n], i < j. Two departments i and j overlap if their positions satisfy
|pi − pj | < `i+`j

2 . The associated variables have the following interpretation

xij =
{

1, departments i and j lie in different rows and overlap,
0, otherwise.

We define a parameter ι ∈ {0, 1} which is one if and only if all department lengths are integral.
This is the case in almost all test instances in the literature. A short summary of our lower
bounding model for the DRFLP reads as follows.

min
∑

i,j∈[n]
i<j

(wij + wji) dij

∑

i,j∈S
i<j

xij ≤ |S| − 1, S ⊆ [n], |S| ≥ 2, (3.4.4)

∑

j∈S
dij ≥ min

j∈S
W dst

(i,j)(S), i ∈ [n], S ⊆ [n] \ {i}, (3.4.5)

∑

j∈S
(wij + wji) dij ≥ min

j∈S
max

{
W spt

(i,j)(S),
W sc

(i,j)(S)

}
, i ∈ [n], S ⊆ Vi, (3.4.6)

dij +
(
`i+`j

2

)
xij ≥ `i+`j

2 , i, j ∈ [n], i < j, (3.4.7)

dij +
(
M − `i − `j + 1

2 ι
)
xij ≤M − `i+`j

2 , i, j ∈ [n], i < j, (3.4.8)

dij + djk − dik ≥ 0, i, j, k ∈ [n], |{i, j, k}| = 3, i < k, (3.4.9)
xij = xji ∈ {0, 1}, i, j ∈ [n], i < j,

dij = dji ≥ 0, i, j ∈ [n], i < j.

The overlap variables in a double-row layout have to build a forest if we interpret them as edges
in a graph where each department represents a single node of the associated graph and two
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Figure 3.4.2: Visualization of the forest associated to the overlap variables of a double-row layout.
Each node represents a department and there exists an edge between two different
departments if and only if both overlap.

nodes (departments) are connected by an edge if both overlap in the layout, see Figure 3.4.2.
We ensure this by the well-known subtour elimination constraints (3.4.4), see, e. g., [35, 39], for
the complete description of the forest polytope.
We use our combinatorial bounds to bound the sum of the (weighted) distances between all

departments of some set S ⊂ [n], see (3.4.5)–(3.4.6). The distance of two departments that do
not overlap is at least the sum of half the lengths of these two departments, see inequalities
(3.4.7). On the other hand the distance of two departments that overlap cannot be larger than
the sum of half the lengths of both departments, see inequalities (3.4.8). Inequalities (3.4.8) are
redundant if two departments do not overlap, we refer to Section D for the calculation of the
big-M -value. Assuming integral department length we can even enforce that this value is 1

2 less
because the overlap is then at least one half (the departments are arranged on the half grid
according to [56]). As used in previous layout models, see, e. g., [13], the distance variables have
to satisfy the triangle inequalities (3.4.9).

We can further improve this lower bounding MILP model in the equidistant case. For the
DREFLP there always exists an optimal solution on the grid [15]. Therefore, we can restrict to
solutions where two departments overlap if and only if they lie directly opposite each other. So
the interpretation of our overlap variables changes to

xeij = xeji =
{

1, if i and j lie directly opposite each other,
0, otherwise,

i, j ∈ [n], i < j. A short summary of our model specialized to the DREFLP reads as follows.

min
∑

i,j∈[n]
i<j

(wij + wji) dij

∑

j∈[n]
j 6=i

xeij ≤ 1, i ∈ [n], (3.4.10)

∑

i,j∈[n]
i<j

xeij ≥ n−
⌈2n

3

⌉
+ 1, n ≥ 9, (3.4.11)

dij + xeij ≥ 1, i, j ∈ [n], i < j, (3.4.12)
dij +Mxeij ≤M, i, j ∈ [n], i < j, (3.4.13)
∑

i,j∈[n]
i<j

dij ≥
{ (n+1)n(n−1)

12 , n odd,
(n+2)n(n−2)

12 , n even,
(3.4.14)

∑

j∈S
(wij + wji) dij ≥W sort

i (S), i ∈ [n], S ⊆ Vi, (3.4.15)

∑

k∈S
((wik + wki)dik + (wjk + wkj)djk)
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− xeij(WE-spt
(i,j) (S)) ≥ 0, i, j ∈ [n], i < j, S ⊆ [n] \ {i, j}, (3.4.16)

xeij = xeji ∈ {0, 1}, i, j ∈ [n], i < j. (3.4.17)

There always exists an optimal solution to the DREFLP on the grid [15]. So each department
may overlap with at most one department, see (3.4.10). For n ≥ 9 there always exists an optimal
equidistant double-row layout which uses at most

⌈
2n
3

⌉
− 1 columns of the grid [15]. It follows

that at least n−
⌈

2n
3

⌉
+ 1 columns contain two departments, see (3.4.11). If two departments

overlap, their distance is zero, see (3.4.13), and otherwise at least one, see (3.4.12). In the
unweighted case of the DREFLP, i. e., if all weights are equal to one, an optimal solution can be
determined directly, see Section E, and this value is a lower bound for the sum of the distances in
the DREFLP, see (3.4.14). Note that we are not aware of a similar result for the DRFLP, so we take
advantage of the DREFLP structure here. Apart from this we can bound the sum of the weighted
distances of some i ∈ [n] to all departments S ⊆ Vi from below using our combinatorial bounds,
see (3.4.15). If two departments i, j ∈ [n], i < j, overlap, we can use WE-spt

(i,j) (S) defined in (3.4.3)
as a lower bound for the weighted distances of i and j to the departments S ⊆ [n] \ {i, j}, see
(3.4.16). If i and j do not overlap, inequality (3.4.16) is redundant.

Additionally, in Section D the combinatorial lower bounds as well as the lower bounding MILP
model are adapted to the PROP.

3.4.3. Computational results

Since only smaller instances were solved to optimality in the literature, we generate random
instances with n ∈ {20, 30, 40, 50}. To obtain a wide set of random instances we set the transport
density to 10%, 50% and 100% and we choose integer transport weights randomly between 1
and 10. The integral lengths of the departments are chosen randomly between 1 and 15 (see
Table 3.4.1). For each type we created ten instances. We denote these instances by nk where n
is the number of departments and k is the transport density. The first column “Instance” of the
tables displays the instances name.

The lower bound value obtained by applying Cplex with a given time limit of one hour for the
DRFLP formulation in [8] is given in column “Amaral”. Apart from this the tables contain our
combinatorial bound (3.4.2) as well as the lower bounds derived using branch-and-cut for our
lower bounding model within a given time limit of three or ten minutes, see columns “MILP3min”
and “MILP10min”, respectively. In order to show that our combinatorial lower bounds significantly
strengthen our lower bounding model we tested our MILP without using the combinatorial results
from Section 3.4.1. These results can be found in column MILPpure3min. We applied the heuristic of
[33] and afterwards a 1-opt and 2-opt exchange algorithm is applied. The resulting value is given
in column “heuristic” and the time spent for the heuristic including the exchange algorithms in
seconds is given in column “time heur.”. “GapAma.” refers to the average gaps using Cplex for
the model in [8] after a time limit of one hour and “Gap(3.4.2)”, “GapMILPpure” and “GapMILP” to
the average gaps of our combinatorial lower bound and of our lower bounding model without
and with the use of the combinatorial lower bounds, respectively.
Table 3.4.1 shows that our combinatorial lower bounds, which were computed in less than

one second, clearly outperform the lower bounds obtained via using Cplex within a time limit
of one hour for the DRFLP formulation in [8] on the randomly generated instances. These lower
bounds are rather weak because of big-M type constraints and a quadratic number of binary
decision variables and so the gaps are close to 100% for large n. Using branch-and-cut to
improve our bounds allows a significant strengthening to final gaps between 14% and 55%. For
the MILP variant that does not use the combinatorial bounds the gaps are much higher and
grow by increasing the number of departments. For instances with at least 40 departments the
average gaps are higher than 70%. Regarding (3.4.2) and our MILP the gaps are smaller for dense
instances. Enlarging the time limit for our MILP approach from 3 to 10 minutes usually has only
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Instance Amaral (3.4.2) MILPpure3min MILP3min MILP10min heuristic GapAma. Gap(3.4.2) GapMILPpure GapMILP time heur.
2010 338.79 289.86 468.14 500.60 505.45 617.35 38.13 51.29 19.11 14.21 3.15
2050 1527.12 3202.19 3626.43 5469.71 5495.22 8506.05 81.89 62.45 57.23 35.39 5.21
20100 3310.24 10431.77 8529.66 13986.62 14058.16 20943.10 83.95 50.29 59.15 32.84 7.09
3010 331.84 802.17 1018.18 1514.81 1520.63 2544.90 86.45 68.37 58.93 39.48 15.30
3050 2101.71 9839.95 8233.34 17484.33 17498.97 30996.05 93.22 68.33 73.41 43.56 30.81
30100 4291.18 34059.95 18287.52 43916.72 43931.98 69736.45 93.85 51.20 73.75 37.03 58.69
4010 432.03 1796.76 1904.74 3801.49 3973.69 8007.10 94.42 77.08 75.90 49.43 55.09
4050 3043.79 22713.90 13841.45 42319.98 42332.02 76055.40 95.99 70.16 81.78 44.39 142.88
40100 6090.44 80325.81 29964.70 102936.41 102974.79 167635.30 96.36 52.06 82.11 38.56 280.10
5010 17.82 3184.06 3053.28 6667.47 8725.34 18006.80 99.89 82.23 82.89 51.39 159.35
5050 52.36 42486.84 22313.42 79545.26 79550.13 149788.90 99.97 71.61 85.08 46.84 427.47
50100 63.18 156449.80 48166.27 199949.20 199949.20 328566.70 99.98 52.37 85.32 39.13 1009.80

Table 3.4.1: Results for randomly generated double-row instances with integral department
lengths between 1 and 15. We display the average values over ten instances each.
The average gaps are given in percent. Note that for six instances with n = 50 and
density 10 % we had to enlarge the time limit to five minutes for MILPpure.

Instances (3.4.2) for DREFLP MILP3min best ub Gap(3.4.2) GapMILP GapAnjos ILP 3h GapSDP 3h
Y20 4301 5821 6046 28.86 3.72 0.00 0.00
Y25 7032 9887 10170 30.86 2.78 1.22 0.36
Y30 9237 13315 13790 33.02 3.44 2.78 0.14
Y35 12607 18595 19087 33.95 2.58 21.27 0.26
Y40 15332 22809 23739 35.41 3.92 23.88 0.37
Y45 19952 29639 31442 36.54 5.73 26.35 0.65
Y50 25839 39450 41517 37.76 4.98 28.35 0.62

Table 3.4.2: Results for equidistant instances from the literature [15, 109]. The upper bounds
“best ub” are taken from [15]. We compared our lower bounding model with the ILP
and the SDP from [15] with a given time limit of three hours. The value of (3.4.2)
and MILP3min are rounded to integers.

a very small effect on the bound. So three minutes seem to be a good value. Furthermore, the
tables show that the quality of our lower bounds hardly deteriorates if one increases the number
of departments.
In Table 3.4.2 we compare our lower bounding model specialized to the DREFLP with a time

limit of three minutes with an ILP model for the DREFLP (denoted by “GapAnjos ILP 3h”) and an
SDP approach for the DREFLP [15] (denoted by “GapSDP 3h”) with a time limit of three hours. The
upper bounds (“best ub”) in Table 3.4.2 are taken from [15]. For benchmark instances from the
literature, see, e. g., [53, 109], with 20 to 50 departments the gaps of our combinatorial bounds
are around 35% and the gaps of our lower bounding model are between 2.58% and 5.73%. While
our lower bounding model outperforms the ILP approach of [15] for n ≥ 35, the SDP approach of
[15] provides the best lower bounds. One advantage of our approach is that the running time is
significantly smaller. For additional computational tests including lower bounds for the PROP we
refer to Section D.

The author’s contribution:
The author’s ideas concern the improvement of the combinatorial lower bounds and the MILP
approaches to the DREFLP and the PROP. The proofs for the correctness of the combinatorial
lower bounds are joint work by the author, Anja Fischer and Frank Fischer. A large part of
the write-up was done by the author and revised and further improved by Anja Fischer and
Frank Fischer. The author is responsible for a considerable part of the implementation and fully
responsible for the computational experiments.
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3.5. A study of the relation between the single-row and the double-row facility
layout problem

In this section we summarize the publication given in Section E which is joint work with Anja
Fischer and Philipp Hungerländer.

Only small instances can be solved to optimality in reasonable time for the DRFLP and the
DREFLP while good or optimal solutions for the SRFLP can be derived very fast. In the first part,
we focus on the equidistant case and we show that the optimal value of the MREFLP is less than or
equal to the optimal value of the SRFLP divided by the number of rows of the MREFLP. We derive
equidistant double-row layouts satisfying this property in a very short time and we improve some
of the best known upper bounds for the DREFLP. In the second part, we provide a formula for
the relation of the optimal value of the DRFLP and the SRFLP which shows that the optimal value
of the DRFLP and the SRFLP might be close. Additionally, we provide an example which shows
that this formula is tight. Furthermore, we present heuristic approaches for the DRFLP based on
good or optimal single-row layouts which can be calculated very fast and we improve the best
known upper bounds for large-sized instances. In the following, we denote the optimal value of
the MRFLP with m rows by v∗m.

3.5.1. The equidistant case

We are given an MREFLP instance. In [56] it is proven that there always exists an optimal multi-row
layout where the departments are arranged on the grid. We say that i ∈ [n] lies in column
j ∈ [n] if the center of i is located at the jth grid point. Then, we construct equidistant multi-row
layouts on the grid in the following way:

Definition 3.5.1. We are given an equidistant multi-row instance and an equidistant single-row
layout π. Then, the equidistant multi-row layout Lk(π), k ∈ [m], is constructed by assigning the
first k departments in the order of π to the first column and totally filling up all other columns
with the remaining departments in the order of π.

Let π be an equidistant single-row layout. The layouts Lk(π), k ∈ [m], contain possible spaces
only in the first and last column, we refer to Figure 3.5.1 for an illustration of the special
case m = 2. In the following theorem we provide a relation between the objective value of
an equidistant single-row layout π and the objective value of the associated multi-row layouts
L1(π), . . . , Lm(π).

21 n− 2 n

3 n− 1

31 n− 3 n− 1

42 n− 2 n

Figure 3.5.1: Illustration of the equidistant double-row layouts L1(π) on the left-hand side and
L2(π) on the right-hand side deduced from the single-row layout π = (1, . . . , n).
Note that in this drawing we assume, w. l. o. g., that n is even.

Theorem 3.5.2. Given an equidistant multi-row instance and an associated equidistant single-row
layout π with objective value v1 and let vLk(π) denote the objective value of layout Lk(π), k ∈ [m].
Then

∑

k∈[m]
vLk(π) = v1.
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Note that an equidistant instance with n departments where n is odd with weights wij +wji =
1, i, j ∈ [n], i < j, satisfies the equation v∗m = v∗1

m . Thus, in view of Theorem 3.5.2 we present the
relation between v∗1 and v∗m in the equidistant case.

Corollary 3.5.3. Given an equidistant multi-row instance and let v∗m (v∗1) denote the optimal
value of the MREFLP (SRFLP). Then

v∗m ≤
v∗1
m
. (3.5.1)

Given an equidistant multi-row instance and a single-row layout π with objective value v1.
Recall that several approaches are able to calculate good or optimal single-row layouts, see, e. g.,
[34, 58, 59, 93]. Then, Theorem 3.5.2 and Corollary 3.5.3 provide an easy way to construct
an equidistant multi-row layout with objective value vm based on π that satisfies vm ≤ v1

m by
computing the layouts L1(π), . . . , Lm(π) and choosing one layout with minimal objective value.
To further improve the layouts Li(π), i ∈ [m], in Section E an ILP model is set up which simplifies
to some LP to include free-space not only in the first and in the last column. Afterwards, exchange
algorithms are applied to further improve the resulting layout, we refer to Section E for details.

3.5.2. The double-row facility layout problem

Now we focus on the DRFLP with arbitrary department lengths. Since every single-row layout is
also a valid double-row layout, the optimal value of the DRFLP is less than or equal to the optimal
value of the SRFLP. We provide the following result:

Proposition 3.5.4. Let v∗1 (v∗2) denote the optimal value of the SRFLP (DRFLP). Then we get

(n− 1)v∗2 ≤ (n− 2)v∗1. (3.5.2)

We present the following instance to show that inequality (3.5.2) is tight. So for this instance
the optimal value of the SRFLP and the optimal value of the DRFLP are very close.

Instance 1. We are given an instance with n departments and we choose 0 < ε ≤ 1
10 . The

lengths are set to `1 = `2 = `3 = ε and `k = 2
εk−4 − `k−1, k ∈ [n], k ≥ 4, and non-zero weights are

set to w12 = w23 = 1 and w(k−1)k = εk−3, k ∈ [n], k ≥ 3.

In the following example we consider optimal single-row and double-row layouts of Instance 1
with n = 3, 4, 5:

Example 3.5.5. a) We are given n = 3: Then, we get v∗1 = 2ε and v∗2 = ε and hence
inequality v∗2

v∗1
> 1

2 − δ is satisfied for δ > 0.

b) Now we consider n = 4: Clearly, v∗1 = 3ε and an optimal double-row layout is depicted in
Figure 3.5.2 and has objective value v∗2(ε) = ε+ (1− ε) ε. Hence we have v∗2

v∗1
= ε(2−ε)

3ε =
2−ε

3 > 2
3 − δ if ε < 3δ.

c) Next we are given n = 5: Then, v∗1 = 4ε. An optimal double-row layout can be obtained by
arranging the first 4 departments as good as possible as illustrated in Figure 3.5.2, and then
additionally arrange department 5 such that the centers of departments 4 and 5 are as close
as possible, see Figure 3.5.2. Then, d45w45 = (p5−p4)w45 = ( `52 + `3− `4

2 )ε2 = ε−2ε2 + 2ε3

and thus v∗2 = ε + (1− ε) ε + ε
(
1− 2ε+ 2ε2) and the desired inequality v∗2

v∗1
> 3

4 − δ is
satisfied for δ > 3ε−2ε2

4 .

In the following lemma we show how Instance 1 can be solved to optimality and an immediate
consequence is that the double-row layouts considered in Example 3.5.5 are optimal:
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2

1 3

4

5

Figure 3.5.2: We are given Instance 1 with n = 4 (n = 5) with lengths `1 = `2 = `3 =
ε > 0, `4 = 2 − ε, (`5 = 2

ε − `4) and non-zero weights w12 = w23 = 1, w34 = ε
(w45 = ε2). An optimal single-row layout is π∗ = (1, 2, 3, 4) (π∗ = (1, 2, 3, 4, 5))
and has objective value v∗1 = 3ε (v∗1 = 4ε). The structure of an optimal double-
row layout for 0 < ε ≤ 1

10 is illustrated above for n = 4 and n = 5 where 5 is
illustrated as a dashed rectangle. We obtain v∗2 = ε + (1− ε) ε for n = 4 and
v∗2 = ε+ (1− ε) ε+ ε

(
1− 2ε+ 2ε2) for n = 5.

Lemma 3.5.6. Considering Instance 1 with n departments and 0 < ε ≤ 1
10 . Then, an optimal

double-row layout is obtained by arranging the departments in the order 1, . . . , n in an alternating
manner to the rows. In each step, one department is assigned at the rightmost possible position
such that the layout is space-free and such that 1 lies directly opposite 2.

We conclude that inequality (3.5.2) is tight for Instance 1 with n departments and 0 < ε ≤ 1
10 .

Theorem 3.5.7. Let n ≥ 3. Then, there exists a constant C > 0 such that for every 0 < ε ≤ 1
10

there exists a δ with 0 < δ ≤ Cε such that

v∗2
v∗1

>
n− 2
n− 1 − δ, (3.5.3)

where v∗1 (v∗2) denotes the optimal value of the SRFLP (DRFLP) with n departments of Instance 1.

3.5.3. Heuristic approaches for the DRFLP

There are three reasons for constructing double-row layouts based on single-row layouts. At first,
good or optimal single-row layouts can be obtained very fast, see, e. g., [34, 58, 91, 93]. At second,
our computational results, see Section 3.5.4, indicate that by going from single-row layouts to
double-row layouts the objective value is approximately halved. And the third reason is that
these double-row layouts can be calculated very fast, in particular, for heuristically determined
single-row layouts.
We present a heuristic based on a single-row layout π and we assume, w. l. o. g., π = (1, . . . , n).
The idea of our heuristic is that the ordering of departments in the same row is given via π, so it
remains to determine the row assignment of the departments as well as their exact positions. We
are given nmin, nmax ∈ N, nmin ≤ nmax, and in each step we add a set S of departments which
contains, if possible, at least nmin departments and at most nmax departments.
Let the set of departments [h], 0 ≤ h ≤ n, h ∈ N0, be already added to the double-row layout

(we start with h = 0 and we stop if h = n). If h+nmax ≥ n, all remaining departments are added
and we set S = {h + 1, . . . , n}. Otherwise, we interpret the departments H := {h + 1, . . . , n}
as nodes in a complete graph with weights wij + wji, i, j ∈ H, i < j. Our goal is to determine
some k′ and an associated set S := {h+ 1, h+ 2, . . . , k′} such that the sum of the total transport
weights between S and [n] \ [k′] is small. So we detect which departments should be considered
together in the next step. We set

k′ :=





arg minh+nmin≤k≤h+nmax
k∈N

∑
i=h+1,...,k
j=k+1,...,n

wij + wji, h+ nmax < n,

n, h+ nmax ≥ n.

So |S| ≤ nmax, and, if h + nmin ≤ n, then |S| ≥ nmin. The calculation of k′ is related to the
calculation of a constrained minimum cut in the graph described above.
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Then, we add the dummy department n+1 (n+2) to row 1 (row 2) with length `n+1 = `n+2 = 0
and weights wi(n+1) = w(n+1)i = wi(n+2) = w(n+2)i = 1

2
∑

i=h+1,...,k′
j=k′+1,...,n

wij + wji such that n + 1

(n + 2) is the rightmost department in row 1 (row 2). Knowing k′ and so S, our goal is to
determine a row assignment of the departments S such that departments in the same row are
sorted according to π and such that sum ∑

i,j∈[k′]∪{n+1,n+2}
i<j

(wij + wji) dij is minimized, i. e., we

have to solve a (small) double-row instance where the order of the departments in the same
row is known. For solving this problem we apply the approach of [42] and enumerate over
all distinguishable assignments of the departments S to the rows. Knowing the order of the
departments in the rows, each subproblem reduces to some LP with k′ + 2 departments. We
choose one of the row assignments for S where the layout has minimal objective value. In the
last step, when n ∈ S, the solution of the LP corresponds to a double-row layout including
possible free-spaces. The algorithm stops after returning this layout. We denote this heuristic by
mc(nmin, nmax). To further improve this layout, we set up an MILP model for the 1-opt algorithm.
Then, we apply the 1-opt (2-opt) approach until the solution cannot be improved by a 1-opt
(2-opt) step.

3.5.4. Computational results

We apply our heuristics based on best known single-row layouts, see, e. g., [70, 71, 73], and we
use a heuristic for the SRFLP with a short running time and which is easy to implement, i. e., we
start with a random single-row layout and apply a 1-opt algorithm and a 2-opt algorithm until
the single-row layout cannot be improved by a 1-opt or 2-opt step, respectively.
We start our computational study with the equidistant case. In Table 3.5.1 we display in

column two (column three) the objective value of a best known (heuristically determined) single-
row layout denoted by “Best known” (“Heuristic”). The objective value of the start layout and of
the final layout after applying our exchange algorithm is denoted by HBest (HHeur) and is based
on a best known single-row layout (heuristically determined single-row layout). The current best
upper bounds for these instances are derived by the SDP approach of [15] and the time limit is
set to 3 hours.

We observe that for all instances in Table 3.5.1 our heuristic based on best known single-row
layouts is better than the one based on heuristically determined single-row layouts. Note that
the obtained gaps of our single-row heuristic are rather small and the running time is at most
one minute, even for n = 100. For all large sko-instances with n ≥ 49 and given some best known
single-row layout, we improve the previously known best upper bounds in [15] with a significantly
smaller running time. Using our approach based on a heuristically determined single-row layout,
we obtain small gaps to the approach of [15], however, these layouts can be calculated in a few
minutes, including the corresponding single-row layout. Comparing the best solution values of
the SREFLP and the DREFLP one can see that the value of the DREFLP is strictly less than halve
the value of the SREFLP, but rather close to this value in our tests.
In Table 3.5.2 we consider the DRFLP and the notation is similar to Table 3.5.1. We compare

our results with the heuristic approach of [33]. We focus on sko-instances where good heuristi-
cally determined single-row layouts are available at https://www.philipphungerlaender.com/
benchmark-libraries/layout-lib/row-layout-instances/. Looking at the results for the
sko-instances in Table 3.5.2 all solutions derived using the mc heuristic based on best known
single-row layouts are better than the results of [33]. If we use the mc heuristic in combination
with our simple single-row heuristic, we could improve 5 out of 9 upper bounds in comparison
to the approach in [33]. The running time of the mc heuristic is slightly reduced by using a
best known single-row layout instead of a heuristically determined single-row layout and the
heuristic of [33] is a bit faster than the mc heuristic. For the mc heuristic based on some known
single-row layout, the exchange algorithm only slightly improves the start layout, so the running
time could be improved, by neglecting the exchange algorithms. Note that the layouts of [33] are
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SRFLP Start layout Exchange Time

Instance Best known Heuristic HBest HHeur HBest HHeur [15] HBest HHeur
sko42-1 25525 25525 12749 12749 12743 12743 12731 2 2
sko49-1 40967 42469 20477 21226 20470 21224 20512 6 6
sko56-1 64024 66083 31975 33011 31972 32932 31988 11 24
sko64-1 96883 98122 48418 49052 48409 49004 48574 23 45
sko72-1 139150 143317 69535 71607 69531 71603 69621 41 42
sko81-1 205106 208554 102549 104263 102549 104067 102793 1:10 4:36
sko100-1 378234 384049 189062 191982 189056 191964 - 3:31 3:56

Table 3.5.1: Heuristically determined upper bounds for equidistant double-row instances from
the literature [15]. Our heuristics are based on best known single-row layouts as well
as heuristically determined single-row layouts.

significantly improved by the exchange algorithms.

The author’s contribution:
The proofs of Theorem 5, Proposition 9 and Theorem 12 were done by the author in consultation
with Anja Fischer. The proof of Lemma 11, which is by far the largest proof in this publication,
was mainly done by the author and revised multiple times by Anja Fischer. The author’s ideas
concern the mincut heuristic and the MILP model for the 1-opt algorithm. He is responsible for a
large part of the implementation and fully responsible for the computational experiments.
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4. Discussion
In this section we first discuss the novelties of the five publications and afterwards we outline
connecting factors between them.

In Section A we show that there always exists an optimal T-row layout where one department
has its center position on position pM in row 1. Then, we enumerate over each department with its
center fixed on position pM in row 1. We present an MILP model for this subproblem of the TRFLP
based on an extension of the betweenness variables which can be in contrast to the literature
equal to one if the corresponding departments lie in different rows. This extension seems to be a
novelty in the layout planning literature and has two advantages. At first, the distances between
departments in different rows can be calculated without big-M -constraints. At second, we are
able to use transitivity constraints to ensure the correct relation of the extended betweenness
variables and the remaining variables. Thus, we avoid the usage of standard linearization to
couple the extended betweenness variables with the remaining variables. We provide cutting
planes exploiting the crossroad structure of the TRFLP. We prove that the TRFLP is a generalization
of the 3-BFLP, and hence we can adapt our MILP approach to the 3-BFLP. In order to evaluate
the performance of our approach, we set up an MILP approach based on betweenness variables
which can only be equal to one if the corresponding three departments lie in the same row (as
known in the literature). Further, we use a variant which uses standard linearization instead of
the transitivity inequalities and in another variant, we neglect some of the cutting planes. In
our computational study we show that we clearly outperform these approaches as well as the
current fastest exact approach for the 3-BFLP. Additionally, we consider star instances where one
department has a high length and high weights to the remaining departments. The lengths and
the weights of the remaining departments are smaller and the transport density of the remaining
departments is set to 20%, see Section A. It turns out that our approach works even better on
the considered star instances and T-row and 3-Bay instances with up to 20 departments are
solved within 4 hours. Besides the exact approaches, we obtain tight lower bounds for even larger
T-row and 3-Bay instances, and thus we can evaluate the quality of heuristically determined
layouts.
In Section B we present a new exact approach for the CCLP. Given a CCLP instance where all

cells of type SRFLP have the same inter-cell distances, we merge two cells of type SRFLP. If the
number of cells of type SRFLP is even, this result allows us to halve the number of cells of type
SRFLP. Then, we enumerate over all assignments of the departments to the (merged) cells and
solve several FC-CCLP. Thus, merging cells of type SRFLP reduces the number of cell assignments
that have to be considered significantly. We add a dummy department with appropriate length
and weights to each (merged) cell, and then the optimization problem in each (merged) cell
can be solved independently. Considering cells of type DCFLP, one department may overlap
with the dummy department and for the arising optimization problem we present a new MILP
model. In our computational results we show that the MILP approach outperforms an associated
enumerative approach. Furthermore, we introduce the XRFLP, which is a realistic extension of
the 4-BFLP with a more complex path structure. We extend our main result to the 3-BFLP, the
TRFLP, the 4-BFLP with positive inter-row distances and to the XRFLP with positive inter-cell
distances. A computational study is presented to compare the optimal solution values of several
facility layout problems to support the chief executive officer to choose a layout if a factory is
built from the ground up.
In Section C a combined optimization-simulation approach for the DRFLP is presented. We

extend the current fastest exact approach for the DRFLP in order to cover several aspects which
are important in practice. The simulation can detect possible bottlenecks in the production, and
then one can add further constraints to the DRFLP model. Considering departments of the same
type, we reduce the number of distinguishable row assignments that have to be considered such
that for the first time a double-row instance with 21 departments containing departments of the
same type is solved to optimality. We compare our mathematical model with classic methods
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from factory planning and we reduce the sum of the weighted transport distances significantly,
especially by using arbitrary positions for the warehouses.

In Section D we develop the first combinatorial lower bounds for the optimal solution value of
the DRFLP. Therefore, we interpret a subproblem of the DRFLP as a parallel identical machine
scheduling problem. Furthermore, we combine these bounds with a new MILP model, which is
indeed not a formulation for the DRFLP, to obtain even better lower bounds. We further improve
the combinatorial lower bounds and the lower bounding MILP model for the DREFLP and the
PROP. Even our combinatorial lower bounds are better than lower bounds received via some
branch-and-cut algorithm within a given time limit of one hour for some DRFLP formulation from
the literature. Additionally, our lower bounds can be calculated very fast and the combinatorial
lower bounds can be adapted to the MRFLP.

In Section E we study the relationship of the MREFLP and the SREFLP and we prove that v∗m ≤
v∗1
m

where v∗m denotes the optimal value of the MREFLP with m ∈ N rows. Given an equidistant
single-row layout with objective value v1, we derive a multi-row layout with objective value less
than or equal to v1

m . We can further improve such a layout by the inclusion of free spaces via
a new ILP model which simplifies to some LP model. For the DREFLP we improve some of the
best known upper bounds, in particular, for large instances and these layouts can be calculated
in a few minutes. In comparison, the SDP approach of [15] has a time limit of three hours and
includes a construction heuristic. Furthermore, we show that the optimal solution value of the
SRFLP and the DRFLP for the same instance might be close. In particular, we prove that the
following inequality holds (n− 1)v∗2 ≤ (n− 2)v∗1, where v∗1, v∗2 denote the optimal solution values
of the two problems. Additionally, we present an example where this bound is tight. However,
good or optimal single-row layouts can be a good starting point for deriving good double-row
layouts. We present two heuristics for the DRFLP, which rely on the ideas used for the MREFLP
and which can be calculated very fast. We obtain very small gaps to the best known upper
bounds for instances with 30 and 40 departments, but derive these solutions much faster and for
larger instances we outperform the heuristic of [33].
All five publications concern solution approaches for facility layout problems and these ap-

proaches bear many similarities. The considered facility layout problems are very challenging,
and thus we most often divide these problems into smaller subproblems. In Section A we set up
an MILP model for the sM-TRFLP instead of the TRFLP, sM ∈ [n], because this problem can be
solved easier in practice and this allows us to exploit the crossroad structure nicely. In Section
B (Section C) we enumerate over all distinguishable cell (row) assignments of the departments,
and thus we consider layout problems where the assignment of the departments to the cells
(rows) is known. Thus, in Section B we solve the optimization problem in each (merged) cell
independently. In Section C this enables us to include several realistic extensions and to improve
the approach for realistic instances with departments of the same type. In Section D we fix
i ∈ [n] opposite j ∈ [n] \ {i}, and then we are able to use a relation to a scheduling problem to
calculate combinatorial lower bounds for the weighted distances of i to departments S ⊆ [n] \ {i}.
In our heuristic approaches in Section E we assume that the order of the departments in the same
row is given by a single-row layout π, and hence it remains to determine the row assignment of
the departments and their exact positions.

The publications in Sections A–B are highly related since the same facility layout problems are
considered. Considering instances known in the literature, the approach of Section B is able to
solve larger 3-Bay instances than the approach of Section A. However, the approach of Section B
is not applied on star instances while the approach of Section A for the TRFLP and the 3-BFLP
performs significantly better on star instances. Additionally, the approach of Section A is able
to calculate tight lower bounds for the TRFLP and the 3-BFLP. For the TRFLP the approach of
Section A is for almost all instances from the literature faster than the approach of Section B.
One advantage of the approach of Section B is that several further facility layout problems are
considered. It is interesting to extend the MILP approach of Section B to the 4-BFLP and the
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XRFLP as well.
One can combine the results of Sections D–E such that one obtains lower and upper bounds

for the DRFLP. Thus, the lower bounds allow us to evaluate the quality of heuristically deter-
mined layouts. Both publications have in common that we nicely exploit the grid structure of
equidistant double-row layouts, and thus in both publications the results in the equidistant case
are significantly better than in the general case.

Furthermore, it is possible to adapt the combinatorial lower bounds to facility layout problems
considered in Sections A–B and these combinatorial lower bounds can then be improved by a
lower bounding MILP model. We expect that these lower bounds can be calculated faster than
the lower bounds in Section A for the TRFLP and the 3-BFLP, and thus one can calculate lower
bounds for even larger instances. However, one might obtain larger gaps between heuristically
determined upper bounds and the derived lower bounds than in Section A. Additionally, one can
adapt the heuristic approach of Section E to the TRFLP, see Section A.
Furthermore, the combined optimization-simulation approach of Section C can be used to

evaluate the determined layouts in Sections A–B and Section E in practice. Further key indicators
can be taken into account which are not included in the mathematical models to guarantee a
smooth production.
Our approaches in Sections A–C concern realistic extensions of facility layout problems. In

Sections A–B we introduce the TRFLP and the XRFLP, and therefore we consider generalizations of
the 3-BFLP and the 4-BFLP with a more complex crossroad structure, and thus a more complex
path structure. So we continue the line of research of Section C to extend facility layout problems
in order to include realistic aspects. Hence, these publications are closely related. In view of
the results of Section B facility layout problems can be decomposed in a combination of the
CCLP, the TRFLP, the XRFLP and the MRFLP. Thus, by solving the TRFLP and the XRFLP one can
solve real-world facility layout problems with more complex crossroad structures. One of our
goals is to support the chief executive officer to choose a layout when a factory is built from
the ground up. Besides the optimal solution values the available area as well as the available
material handling-systems play an enormous role to determine the layout. These two factors can
determine, for instance, whether the layout has a multi-row or multi-bay structure (or both).
Therefore, in this thesis several facility layout problems are studied and the corresponding optimal
solution values are compared.
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5. Conclusion and future work
Facility layout problems have wide applications in factory planning and the layout of departments
is one of the main influencing factors for the costs of the production within a factory [49, 104].
Without any restrictions on the layout, these problems are very challenging [87, 103]. For this
reason we concentrated on special cases where the structure of the layout and the paths are
restricted. In this thesis we mainly focused on the Combined Cell Layout Problem (CCLP) and its
special case the Multi-Bay Facility Layout Problem (MBFLP) and the Multi-Row Facility Layout
Problem (MRFLP). Further, we introduced the T-Row Facility Layout Problem (TRFLP) and the
X-Row Facility Layout Problem (XRFLP) which are extensions of the MBFLP with three (3-BFLP)
and four (4-BFLP) rows, respectively, with a more complex path structure.
Exact approaches for the CCLP and the MBFLP are rare in the literature, so we set up an

mixed-integer linear programming (MILP) approach for the TRFLP and the 3-BFLP based on an
extension of the betweenness variables which can now be equal to one even if the corresponding
departments lie in distinct rows. Several inequalities were provided exploiting the crossroad
structure of the layouts.
Further, we presented a new exact approach for the CCLP where we enumerated over all

assignments of the departments to the cells. If all cells of type Single-Row Facility Layout
Problem (SRFLP) have the same inter-cell distances, we merged two cells of type SRFLP, and
thus we halved the number of cells of type SRFLP if the number of cells of type SRFLP is even.
We extended this approach to the 3-BFLP, the 4-BFLP and the TRFLP with positive inter-row
distances and to the XRFLP with positive inter-cell distances. A theoretical and computational
study was presented to compare the optimal solution values of several facility layout problems to
support the chief executive officer to choose a layout if a factory is built from the ground up.

We extended the current fastest approach for the Double-Row Facility Layout Problem (DRFLP)
in order to include realistic aspects and we used a combined optimization-simulation approach for
the DRFLP. The simulation was used to detect possible bottlenecks in the production, and then
the model for the DRFLP could be further extended. We reduced the number of row assignments
of the departments that have to be considered if there are departments of the same type and
we were able for the first time to solve a double-row instance with 21 departments containing
departments of the same type.

Currently, heuristics are the only way to determine solutions for large DRFLP instances. In order
to evaluate the quality of heuristically determined layouts, we provided the first known non-trivial
lower bounds on the optimal solution value of the DRFLP. Interpreting some subproblem of the
DRFLP as a parallel identical machine scheduling problem, we computed combinatorial lower
bounds for the DRFLP. We set up an MILP model, which is not a formulation for the DRFLP, to
further strengthen our lower bounds. Additionally, we considered the Double-Row Equidistant
Facility Layout Problem (DREFLP) and the Parallel Row Ordering Problem (PROP) and we adapted
the combinatorial lower bounds and the MILP model to these cases.
We studied the relation between the optimal solution value of the Multi-Row Equidistant

Facility Layout Problem (MREFLP) and the Single-Row Equidistant Facility Layout Problem
(SREFLP) and proved that the optimal value of the MREFLP is less than or equal to the optimal
value of the SREFLP divided by the number of rows in the MREFLP. We constructed equidistant
double-row layouts satisfying this property and improved some of the best known upper bounds
for the DREFLP in combination with a short running time. For the general SRFLP and the general
DRFLP we provided a formula which shows that the corresponding optimal solution values might
be close. Further, we presented an example where this formula is tight. However, we constructed
two heuristics which derive good double-row layouts based on good or optimal single-row layouts
in a very short time.
It remains for future work to consider a facility layout problem in the shape of an U and

to extend the Directed Circular Facility Layout Problem (DCFLP) such that the departments
are arranged on a layout in the shape of a square. One can set up an MILP model for these

54



two problems based on our extension of the betweenness variables in Section A. Further, it
is interesting to set up an MILP model for the XRFLP and the MBFLP with at least four rows.
Therefore, one can use our extension of the betweenness variables and one can adapt our MILP
approach as well as our cutting planes, see Section A.

In our approach in Section B we considered cells of type SRFLP and DCFLP. A realistic extension
is to consider cells of other types, e. g., cells of type DRFLP. One can extend the TRFLP such that it
is allowed to arrange departments on both sides of the path. For this new problem, one can adapt
the MILP approach of Section A or one can use the approach of Section B and decompose this
problem into two cells of type DRFLP with additional constraints to ensure that the departments
at the crossroad do not overlap. A similar extension for the XRFLP is of practical interest as
well. Furthermore, a realistic extension is to consider two-dimensional departments with varying
height. Then, it might be harder to ensure in the XRFLP that departments in cell 2 and cell 3 do
not overlap.
An interesting extension of the MBFLP is the case where inter-row material handling-systems

are fixed at the left and at the right border of the layout. In this case, one can add two dummy
departments to each row and the idea of merging cells of type SRFLP, see Section B, might be
useful. Additionally, the CCLP can be extended such that in cells of type DCFLP the loading and
unloading stations might be on distinct positions.

From a practical point of view, it is interesting to extend the betweenness model for the SRFLP
such that it is capable of more realistic extensions such as individual in- and output positions of
the departments and to take certain clearance conditions into account.
The rearrangement of the departments in a factory is expensive, so the departments are

arranged for several years. Thus, the inclusion of robustness aspect is important because the
production program and hence the transport weights between the departments might change,
and hence it seems to be fruitful to continue the line of research of [61].
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A mixed-integer linear programming approach
for the T-row and the multi-bay facility layout

problem

Mirko Dahlbeck �∗

We introduce a new facility layout problem, the so-called T-Row Facility Layout
Problem (TRFLP). The TRFLP consists of a set of one-dimensional departments
with pairwise transport weights between them and two orthogonal rows which form
a T such that departments in different rows cannot overlap. The aim is to find a
non-overlapping assignment of the departments to the rows such that the sum of
the weighted center-to-center distances measured rectilinear directions is minimized.
The TRFLP is a generalization of the well-known Multi-Bay Facility Layout Problem
with three rows (3-BFLP). Both problems, the TRFLP and the 3-BFLP, have wide
applications, e.g., factory planning, semiconductor fabrication and arranging rooms
in hospitals.
In this work we present a mixed-integer linear programming approach for the

TRFLP and the 3-BFLP based on an extension of the well-known betweenness
variables which now can be equal to one if the corresponding departments lie in
different rows. One advantage of our formulation is the calculation of inter-row
distances without big-M-type constraints. We provide cutting planes exploiting the
crossroad structure in the layout, and hence T-row (3-Bay) instances with up to
18 (17) departments are solved to optimality in less than 7 hours. The best known
approach for the 3-BFLP is clearly outperformed. Additionally, tight lower bounds
for larger instances are calculated to evaluate our heuristically determined layouts.

Key words. Facilities planning and design; Mixed-Integer Linear Programming; Row Layout
Problem

∗TU Dortmund University, Faculty of Business and Economics, Vogelpothsweg 87, D-44227 Dortmund; Georg-
August-Universität Göttingen, Institute for Numerical and Applied Mathematics, Lotzestr. 16-18, D-37083
Göttingen, mirko.dahlbeck@tu-dortmund.de

1



1 Introduction
We introduce a new facility layout problem, the so-called T-Row Facility Layout Problem (TRFLP).
We are given a set of departments [n] := {1, . . . , n}, n ∈ N, with lengths `i, i ∈ [n], and symmetric
pairwise weights wij = wji, i, j ∈ [n], i < j, and two orthogonal rows R := {1, 2} which form a T
such that departments in different rows cannot overlap. One looks for an assignment r : [n]→ R
of the departments to the rows R minimizing the weighted sum of the center-to-center distances
between the departments measured in rectilinear directions such that departments in the same
row do not overlap. By measuring the distances between departments in distinct rows, one has
to take the width of the path wTpath ∈ R≥0 into account.
The horizontal row is denoted by row 1 and the vertical row by row 2. We use distance variables
dij = dji, i, j ∈ [n], i < j, to measure the center-to-center distances measured in rectilinear
directions between i and j. Let pM ∈ R denote the position in row 1 measured from a fixed left
border which is directly opposite row 2. If wTpath = 0, then pM is the point of intersection of row
1 and row 2. We look for a vector r ∈ Rn of the assignment of the departments to the rows
and for a vector p ∈ Rn of the center positions of the departments measured from a fixed left
(upper) border if ri = 1 (ri = 2), i ∈ [n], such that the following optimization problem is solved
to optimality

min
r∈Rn,p∈Rn

∑

i,j∈[n]
i<j

wijdij

s. t. |pi − pj | ≥
`i + `j

2 , i, j ∈ [n], i < j, ri = rj ,

dij = |pi − pj |, i, j ∈ [n], i < j, ri = rj ,

dij = |pi − pM |+ pj + wTpath, i, j ∈ [n], ri = 1, rj = 2. (1)

In this model for the TRFLP one might obtain pi ≤ 0 for some i ∈ [n], depending on the position
pM . Setting R := [m],m ∈ N, as the set of m non-overlapping parallel rows and adapting the
distance calculation in equations (1) with 1 ≤ wBpath ∈ R, such that

dij = pi + pj + |ri − rj |wBpath, i, j ∈ [n], i < j, ri 6= rj ,

where pi, i ∈ [n], denotes the position of the center of i, measured from a fixed left border such
that all departments are to the right of this border, then we obtain the Multi-Bay Facility Layout
Problem (MBFLP) with m rows1, see, e. g., [43, 63, 67, 79]. The distance calculation can be
interpreted in the following way. There are inner-row and inter-row material handling-systems,
whereby the inter-row material handling-system, e. g., an overhead bridge crane [23, 67], is fixed
at the left border. The rows might be separated by equipment, some free space for maintenance
or passageways [25]. The inter-row transport is more costly than the inner-row transport, because
two separate material handling systems have to be coordinated, the transfer mechanism is costly
(typically a larger capacity crane is used) and at this point the most delay and damages occur,
see [25, 67]. Calculating the distances between departments in row 1 (row 3) and row 2, we take
wBpath into account. Measuring the distances between departments in row 1 and row 3, we cross
the path twice, so we take 2 · wBpath into account. The departments are given as one-dimensional
objects, so we assume implicitly that the height of the departments equals one. Therefore, we
assume wBpath ≥ 1 such that the height of the departments is included in the width of the path.
We refer to Figure 1b for an illustration. If wBpath > 1, then the width of the path is taken into
account, and otherwise the width of the path is neglected. Therefore, we set wTpath + 1 = wBpath
in the following.

1In order to ensure a consistent terminology we use the term row. In the literature [67] usually the term bay is
used.
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In Section 4 we study the relation between the TRFLP and the MBFLP with m = 3 rows denoted
by (3-BFLP). It turns out that the TRFLP is a generalization of the 3-BFLP and the optimal value
of the TRFLP is less than or equal to the optimal value of the 3-BFLP if wTpath ≤ wBpath.

The MBFLP and the TRFLP are of special interest in practice because these layouts are commonly
used layouts in industry such as heavy manufacturing, e. g., steel production and bridge crane
manufacturing, and semiconductor fabrication [63, 67, 80]. Many real-world factory layouts
implicitly use these layout structures, see, e. g., [23, 63], and factory layout problems can often
be decomposed, see [36, 67]. Therefore, real factory layouts often reduce to a combination of
bay layouts, T-row layouts and further layouts. In real factory layout problems often a complex
path structure arises containing several crossroads. One motivation of this paper is to study
a facility layout problem with a complex path structure and the path structure in the TRFLP
is more complex than in the 3-BFLP, because of the more complex crossroad structure. Hence,
we extend the 3-BFLP in order to include realistic aspects. A second advantage of the TRFLP in
comparison to the MBFLP is that the inter-row material handling-system is not fixed at the left
border, and hence the weighted transport distances can be significantly smaller. The layout of
the departments highly influences the costs of the production, see, e. g., [20, 48, 77].

Additionally, the TRFLP can be applied for arranging shops in shopping malls where two levels
are separated by a moving stairway or an elevator. Further, the MBFLP and the TRFLP are relevant
for arranging rooms in hospitals where often only one side of a corridor has windows [72]. The
task is to assign the rooms of the patients along the window side such that the sum of the
traveled distances between the rooms of the patients and nurses is minimized. In the TRFLP the
moving stairway or the elevator is not fixed at the border of the level (row), and hence the sum
of the traveled distances can be reduced in comparison to the 3-BFLP.

The special case of the MBFLP with m = 1 is called Single-Row Facility Layout Problem (SRFLP)
and it is known to be NP-hard [3, 44, 72]. Thus, the MBFLP and the TRFLP are NP-hard as
well. Besides its application in factory planning the SRFLP arises in the arrangement of rooms in
hospitals [21, 40, 47] and the arrangement of books on a shelf [6]. The SRFLP is widely studied
[1, 2, 55, 58].

The MBFLP where the distance between the rows equals a constant c ∈ R+ is called Pier-Type
Material Flow Pattern (PMFP) and has application in designing the layout of cross docking
warehouses, e. g., there are some dock departments for receiving incoming materials and the
other departments are used for direct shipping of shipping supplies [29].

We illustrate the distance calculation of the SRFLP, the 3-BFLP and the TRFLP in the following
example. We set wTpath + 1 = wBpath and thus the height of the departments in the 3-BFLP is
taken into account.

Example 1. We consider an instance with n = 5 departments with lengths `1 = `3 = `4 = 4, `2 =
5, `5 = 2, and non-zero weights w12 = w23 = w24 = w34 = w45 = 1, w14 = 3 with wTpath = 0 and
wBpath = 1. In Figure 1 optimal layouts of the SRFLP, the 3-BFLP and the TRFLP are illustrated:

a) An optimal single-row layout is illustrated in Figure 1a with an objective value of

1 · 4.5 + 3 · 4 + 1 · 4.5 + 1 · 8.5 + 1 · 13 + 1 · 3 = 45.5;

b) An optimal 3-Bay layout is depicted in Figure 1b with an objective value of

1 · 6.5 + 3 · 5 + 1 · 4.5 + 1 · 5.5 + 1 · 10 + 1 · 3 = 44.5;

c) An optimal T-row layout is shown in Figure 1c with an objective value of

1 · 6.5 + 3 · 2 + 1 · 4.5 + 1 · 4.5 + 1 · 9 + 1 · 3 = 33.5.
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5 4 1 2 3

(a) An optimal single-row layout with objective value 45.5.

5

1

32

4

(b) An optimal 3-Bay layout
with objective value 44.5.

3 2 4 5

1

(c) An optimal T-row layout with objective value
33.5 where the center of 4 is on position pM in

row 1.

Figure 1: We are given an instance with n = 5 departments with lengths `1 = `3 = `4 = 4, `2 =
5, `5 = 2, and non-zero weights w12 = w23 = w24 = w34 = w45 = 1, w14 = 3 with
wTpath = 0, wBpath = 1. We illustrate optimal layouts for the SRFLP, the 3-BFLP and the
TRFLP where the center of 4 is on position pM in row 1 in the illustrated T-row layout.

In the following example we consider three optimal T-row layouts with different departments
on position pM in row 1. Note that, if we consider only the departments in an optimal T-row
layout, then such an optimal layout might have the shape of an L.

Example 2. We are given a T-row instance with n = 5 departments with lengths `1 = `2 =
5, `3 = `5 = 3, `4 = 2, and non-zero weights w12 = w13 = 3, w23 = w34 = w35 = 2, w24 = w45 =
1, wTpath = 1, and pM = 15. We obtain an optimal layout where the center of 1 (3) is on position
pM in row 1, see Figure 2a (2c). In the optimal T-row layout illustrated in Figure 2b the center
positions of the departments are the following: p1 = 16.5, p2 = 2.5, p3 = 12.5, p4 = 10, p5 = 7.5,
i. e., pi 6= pM , i ∈ [5].

a) An optimal T-row layout is illustrated in Figure 2a with an objective value of

3 · 3.5 + 3 · 4 + 2 · 7.5 + 1 · 10 + 2 · 2.5 + 2 · 5 + 1 · 2.5 = 65;

b) An optimal T-row layout is depicted in Figure 2b with an objective value of

3 · 5 + 3 · 4 + 2 · 6 + 1 · 8.5 + 2 · 2.5 + 2 · 5 + 1 · 2.5 = 65;

c) An optimal T-row layout is shown in Figure 2c with an objective value of

3 · 7.5 + 3 · 4 + 2 · 3.5 + 1 · 6 + 2 · 2.5 + 2 · 5 + 1 · 2.5 = 65.

1.1 Literature Review
Almost all exact approaches for the SRFLP are either based on integer linear programming (ILP),
see, e. g., [1, 2, 3, 11], or semidefinite programming (SDP), see [15, 16, 18, 55, 56]. The current
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5 4 3 1

2

(a) An optimal T-row layout with p1 = pM

and 1 is in row 1.

5 4 3 1

2

(b) An optimal T-row layout with
pi 6= pM , i ∈ [n].

5 4 3 1

2

(c) An optimal T-row layout with p3 = pM

and 3 is in row 1.

Figure 2: We are given a T-row instance with n = 5 and `1 = `2 = 5, `3 = `5 = 3, `4 = 2 and
non-zero weights w12 = w13 = 3, w23 = w34 = w35 = 2, w24 = w45 = 1 with wTpath = 1.
Three optimal T-row layouts with objective value 65 are illustrated, and a black circle
is displayed on position pM in row 1.

best ILP approach of [3] makes use of betweenness variables and can solve instances with up to
35 departments in at most 6 hours while the current best SDP approach [55, 56] is able to solve
instances with 36 departments in at most 20 minutes and one instance with 42 departments in
less than 2 hours. Furthermore, lower and upper bounds are provided with gaps less than 2%
for instances with up to 100 departments in around 200 hours. Note that the machine used in
[55, 56] is faster than the machine used in [3]. Besides the exact approaches there have been
various heuristic approaches presented in the last years [33, 37, 45, 60, 61, 70, 71, 74]. We refer
to [58] for a recent survey.
The MBFLP and several extensions have been extensively studied in the literature [17, 38, 43,

62, 63, 67]. In [67], the MBFLP is considered where additionally the lengths of the rows are
restricted. Then, a two-stage procedure is presented where in the first step the assignment of
the departments is determined by solving a mixed-integer linear programming (MILP) approach
neglecting inner-row distances and minimizing the weighted inter-row distances. In the second
step a dummy department n + 1 with length `n+1 = 0 and weights wi(n+1) = w(n+1)i, i ∈ [n],
which are equal to the sum of the weights of i to all departments which lie in a different row than
i, is added. Then, the layout in each row is determined by setting the lengths of the departments
to one and applying the dynamic programming algorithm of [72] to solve m single-row instances
independently. This approach is extended by [24] to instances containing departments of the same
type, i. e., departments with the same length and the same transport weights to the remaining
departments. Two-stage procedures are often used for the MBFLP and its extensions, see, e. g.,
[24, 25, 67], but without knowledge about the quality of the obtained solution. In [43] an ILP
model is presented for the MBFLP where the assignment of the departments to the rows is fixed,
and instances with up to 25 departments and up to 5 rows are solved in less than one second. In
order to compute an optimal solution for the MBFLP one has to enumerate over all distinguishable
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assignments of the departments to the rows. A survey for the MBFLP is given in [38].
The Flexible Multi-Bay Facility Layout Problem (FBFLP) is an extension of the MBFLP, see,

e. g., [17, 25, 59, 63], where the departments are given as two-dimensional objects, i. e., the
departments have a length and a height. The height of a row equals the height of a department
with the highest height in that row. The vertical distance between two rows equals half of the
heights of these two rows plus the sum of the heights of the rows between them. In contrast to
the MBFLP, there is no upper bound for the number of rows given. The MILP approach of [59] can
solve one instance with 12 departments in less than two hours but is not able to solve an instance
with 11 departments within a given time limit of 24 hours. Besides the exact approach, the
above described two-stage procedure is adapted to this case by [25] and several further heuristics
are presented [27, 62, 63, 66, 79].
In [29] a MILP model for the PMFP is presented, and an instance with 12 departments and up

to five rows is considered where a gap of around 95% was obtained after a time limit of 2 hours.
The authors conclude with the research question to develop a more efficient approach for the
PMFP. We refer to [14, 31, 51, 53, 64, 80] for further extensions of the MBFLP.

Highly related to the MBFLP is the Multi-Row Facility Layout Problem (MRFLP) where distances
are measured only in horizontal directions. For m = 2 this problem is called Double-Row
Facility Layout Problem (DRFLP) and several MILP approaches are available for the DRFLP
[6, 8, 9, 26, 30, 76] (see [82] for a correction of [30]). The enumerative approach of [42, 43] is the
current best approach for the DRFLP and the MRFLP and is able to solve double-row instances with
up to 16 departments in less than 12 hours and multi-row instances with up to 13 departments
and 5 rows in at most 7 hours. Heuristics for the DRFLP and the MRFLP, including extensions,
are given in [10, 19, 30, 46, 69, 73, 78, 83, 84]. The special case where all departments have the
same length is considered in [4, 12, 13, 54], and the current best approach is given in [13] where
instances with up to 25 departments and up to 5 rows are solved to optimality within a time
limit of 3 hours. For further literature about facility layout planning we refer to the surveys
[17, 39, 50].

1.2 Our Contribution
In this section, we describe our main contribution. We study the well-known betweenness
variables and we show that it is sufficient to choose (n− 1)(n− 2) of the betweenness variables as
binary variables in the MILP model of [3]. Currently, all betweenness variables, i. e., n(n−1)(n−2)

3 ,
are chosen to be binary, see, e. g. [3, 22, 43].

The TRFLP is a generalization of the SRFLP and the 3-BFLP with a more complex path structure,
and hence we continue the line of research to extend facility layout problems in order to include
realistic aspects. At first, we show that there always exists an optimal T-row layout where one
department has its center position on position pM in row 1. Then, we enumerate over each
department with its center fixed on position pM in row 1. We present a MILP model for this
subproblem of the TRFLP based on an extension of the betweenness variables which can be in
contrast to the literature equal to one if the corresponding departments lie in different rows.
This extension has two advantages. At first, the distances between departments in different
rows can be calculated without big-M -constraints. At second, we use transitivity constraints
(instead of standard linearization) to ensure that we obtain the correct relation of the extended
betweenness variables and the remaining variables. We provide cutting planes exploring the
crossroad structure of the TRFLP to compute lower bounds for the extended betweenness variables.
In order to evaluate the performance of our approach, we set up a MILP approach based on
betweenness variables which can only be equal to one if the corresponding three departments
are in the same row. Further, we use a variant which uses standard linearization instead of the
transitivity inequalities and in another variant, we neglect some of the cutting planes. In our
computational study we show that we clearly outperform these approaches.
Further, we adapt our approach and obtain a MILP model for the 3-BFLP. The current best
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known approach for the 3-BFLP can be adapted to the TRFLP, and for both problems our approach
clearly outperforms the best known approach from the literature. In addition, we are able to
compute tight lower bounds for even larger T-row and 3-Bay instances to evaluate the quality of
our heuristically determined layouts.

2 The Single-Row Facility Layout Problem
In this paper we study betweenness variables and we present an extension in Section 3.2. In
this section we prove that it is sufficient to choose (n− 1)(n− 2) of the n(n−1)(n−2)

3 betweenness
variables as binary variables. Betweenness variables are defined as follows in the literature, see,
e. g., [3, 22, 28, 43]

xjki = xikj =
{

1, if k lies between i and j in the same row,
0, otherwise,

i, j, k ∈ [n], |{i, j, k}| = 3, i < j. Based on these betweenness variables the following ILP model is
introduced in [3] for the SRFLP with the constant C := ∑

i,j∈[n]
i<j

`i+`j
2 wij

C + min
∑

i,j∈[n]
i<j

wij
∑

k∈[n]\{i,j}
`kxikj (2)

s.t. xikj + xjik + xijk = 1, i, j, k ∈ [n], i < j < k, (3)
− xihj + xihk + xjhk ≥ 0, i, j, k, h ∈ [n], |{i, j, k, h}| = 4, (4)
xihj + xihk + xjhk ≤ 2, i, j, k, h ∈ [n], i < j < k, |{i, j, k, h}| = 4, (5)
xikj ∈ {0, 1}, i, j, k ∈ [n], i < j, |{i, j, k}| = 3. (6)

Equations (3) ensure that, given three departments, exactly one of them lies in the middle.
The departments satisfy certain transitivity conditions, see inequalities (4)–(5). There always
exists an optimal space-free single-row layout, i. e., a single-row layout without spaces between
two neighboring departments, so the distance between i ∈ [n] and j ∈ [n], i < j, is calculated
by summing up the lengths of all departments which lie between them, see (2). By inequalities
(3)–(6) one obtains a feasible ordering of the departments, see [3]. A polyhedral study is given in
[75].

In [3] a lower bounding strategy is used where the LP (2)–(5) with xikj ∈ [0, 1], i, j, k ∈ [n], i <
j, |{i, j, k}| = 3, is solved and, while there exists violated cuts and the solution is not integral, the
violated cuts are added and the resulting LP is solved again. All instances considered in [3] are
solved to optimality by this method but in general, there is no guarantee to obtain an optimal
solution. One reason for using this lower bounding approach instead of using a branch-and-cut
algorithm might be that this model has O(n3) binary variables. We provide the following result

Proposition 1. Given inequalities (3)–(5), it is sufficient to choose (n− 1)(n− 2) betweenness
variables as binary variables to obtain a correct ordering of the departments.

Proof. Let s ∈ [n] be fixed. We set xsij , xsji, xisj ∈ {0, 1}, i, j ∈ [n], i < j, and xikj ∈ [0, 1],
i, j, k ∈ [n]\{s}, |{i, j, k}| = 3, i < j. We will show that xikj , i, j, k ∈ [n]\{s}, |{i, j, k}| = 3, i < j,
is equal to one if xski + xskj = 1, and equal to zero otherwise, i. e., xikj ∈ {0, 1}. Therefore, we
distinguish between the following three cases

1) Let xski + xskj = 1. Then, we obtain xikj = 1 by inequalities (4), as desired.

2) Let xski = xskj = 1. By inequalities (5) we get xikj = 0.

3) Let xski = xskj = 0. It follows by inequalities (4) that xikj = 0.
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Therefore, we obtain xikj ∈ {0, 1}, i, j, k ∈ [n] \ {s}, |{i, j, k}| = 3, i < j, and according to [3] we
obtain a feasible ordering of the departments. Furthermore, one can use equations (3) to reduce
the number of variables as done in [3], i. e., xsji = 1− xsij − xisj , i, j ∈ [n] \ {s}, i < j, and hence
we obtain (n− 1)(n− 2) binary variables.

By fixing s ∈ [n] and choosing only xsij and xisj , i, j ∈ [n] \ {s}, i < j, as binary variables,
one influences the branching strategy of the MILP solver using a branch-and-cut algorithm,
and hence the performance of the branch-and-cut algorithm can be improved. However, the
number of branches is in general not reduced by this method, but it supports the idea to apply
branch-and-cut algorithms on MILP models based on betweenness variables.

3 The T-Row Facility Layout Problem
Approaches for the MBFLP are often based on heuristics without knowledge about the quality of
the solution, see, e. g., [24, 25, 67], and MILP models for the MBFLP and its extensions are not
able to solve instances with 12 departments in reasonable time [29, 59]. Therefore, we present
a new exact approach for the TRFLP. At first, in Section 3.1, we prove that there always exists
an optimal T-row layout where the center of one department in row 1 is on position pM . In a
branch-and-cut approach we enumerate over each department with its center fixed on position
pM in row 1 and in Section 3.2 we present a MILP model for this problem based on ordering,
assignment and betweenness variables. We extend the betweenness variables such that they can
be equal to one if the corresponding three departments lie in distinct rows, and thus we are
able to calculate the distance between departments in distinct rows without big-M -constraints.
Transitivity constraints are used to ensure the correct relation of these betweenness variables
and the remaining variables. In Section 3.3 we present various cutting planes especially designed
for the TRFLP, where the center of sM ∈ [n] is fixed on position pM in row 1, to strengthen our
branch-and-cut algorithm and in Section 3.4 we derive diverse heuristic approaches. We describe
our separation strategy in Section 3.5.

3.1 Our Algorithm
We start this section with the following proposition, which is essential for our algorithm

Proposition 2. Given a T-row instance, then there exists an optimal T-row layout where the
center of one department lies on position pM in row 1.

The proof is related to a proof of [34]. Given a DRFLP instance with objective function
min∑j∈[n]\{i}wijdij , i ∈ [n], there exists an double-row optimal layout where k ∈ [n] \ {i} lies
directly opposite i.

Proof. We assume, w. l. o. g., that an optimal T-row layout contains at least one department in
row 1 because if all departments would be in row 2, one can simply shift these departments to
row 1 without changing the order of the departments and without increasing the objective value
of the layout. So let an optimal T-row layout with at least one department in row 1 be given
and we assume for all i ∈ [n] in row 1 that pi 6= pM . Let B1 (B2) denote the set of departments
in row 1 with pi < pM (pi > pM ), i ∈ [n], and let B3 denote the set of departments in row 2. We
assume, w. l. o. g., ∑k∈B3

i∈B1
wik ≥

∑
k∈B3
i∈B2

wik, and we shift all departments in row 1 to the right
until the center of the first department lies on position pM . By this method we do not increase
the objective value, and the desired result is proven.

Therefore, we fix the center of sM ∈ [n] on position pM in row 1 and we denote the resulting
problem by (sM-TRFLP). Our algorithm for the TRFLP works as follows. For each sM ∈ [n] we
heuristically determine a sM -T-row layout, and we sort the departments by increasing order of the
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objective values of the sM -T-row layouts. Let sM ∈ [n] be the first not yet considered department
in this sorting. Then, we solve the sM-TRFLP with our branch-and-cut algorithm where the
current best objective value is set as an upper bound, i. e., the branch-and-cut algorithm is
interrupted if the best lower bound exceeds the upper bound. We repeat this until the sM-TRFLP
with the described upper bound is solved for each sM ∈ [n]. Our algorithm is summarized in
Algorithm 1.

Algorithm 1: Exact solution approach for the TRFLP
Input :T-row instance with departments [n] with lengths `i, i ∈ [n], and pairwise

weights wij = wji, i, j ∈ [n], i < j, wTpath ∈ R≥0.
Output :Optimal value v∗ of the TRFLP.

1 for k = 1, . . . , n do
sM ← k.
Determine an upper bound uk for the sM-TRFLP heuristically.

2 Sort the departments in ascending order according to their upper bounds ↪→ (s1, . . . , sn).
3 Set v∗ ← us1 .
4 for k = 1, . . . , n do

sM ← sk.
Compute optimal value v of the sM-TRFLP with the additional constraint that the
optimal value is smaller than or equal to the upper bound v∗ (v ←∞ otherwise).

5 if v < v∗ then
v∗ ← v.

6 return v∗.

The question arises, whether the number of departments where the centers are fixed on
position pM in row 1 can be reduced, e. g., one could try to arrange only the centers of the three
departments on position pM in row 1, which are at the left border of an optimal 3-Bay layout
Example 3. We consider an instance with n = 4 departments with lengths `1 = `3 = 5, `2 =
`4 = 7, and non-zero weights w12 = w13 = w23 = 1, w14 = 3, with wTpath = 0 and wBpath = 1. In
an optimal 3-Bay layout, 1 and 4 are neighboring without free-space in the same row and 1, 2
and 3 are on the left border of a row, see Figure 3a for an illustration. Therefore, the optimal
value of the 3-BFLP is 39. In an optimal T-row layout the center of 4 lies on position pM in row
1, illustrated in Figure 3b, with objective value 29.5.

However, if there are departments of the same type as recently considered in [20, 24, 46] for
related layout problems, one just has to fix the center of one department of each type on position
pM in row 1.

3.2 A MILP model for the sM-TRFLP

In this section we present a MILP model for the sM-TRFLP, sM ∈ [n]. So, in the following,
let sM ∈ [n] be fixed. Our MILP model makes use of the well-known ordering and assignment
variables. If i ∈ [n] and j ∈ [n] \ {i} lie in row 2 and i is above (below) j, we say that i is left
(right) to j. Then, we define

zij =
{

1, i is left to j and i and j are in the same row
0, otherwise,

i, j ∈ [n], i 6= j. Furthermore, we use assignment variables

yi =
{

1, if i lies in row 1
0, otherwise,
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1 4

3

2

(a) optimal 3-Bay layout with 1,2 and 3 at the
left border.

1

3

2

4

(b) optimal T-row layout where the center of 4
is on position pM in row 1.

Figure 3: We are given an instance with n = 4 departments with `1 = `3 = 5, `2 = `4 = 7, and
non-zero weights w12 = w13 = w23 = 1, w14 = 3, with wTpath = 0, wBpath = 1. An optimal
3-Bay layout is illustrated on the left-hand side with objective value 39 and an optimal
T-row layout is illustrated on the right-hand side with objective value 29.5.

i ∈ [n]. At first, we fix sM to row 1, see equation (7), and we ensure that i ∈ [n] \ {sM} is left or
right to sM if and only if i is in row 1, see equations (8)

ysM = 1, (7)
zisM + zsM i − yi = 0, i ∈ [n] \ {sM}. (8)

We add two dummy departments n + 1 and n + 2 with lengths `n+1 = `n+2 = 0 and weights
wi(n+1) = w(n+1)i = w(n+2)i = wi(n+2) = 0, i ∈ [n] \ {sM}, to our model, and we fix n+ 1 at the
left border of row 1 and n+ 2 at the left (upper) border of row 2. Then, we define betweenness
variables in the following way where at least one of the three departments is a dummy department
or sM

xikj = xjki =
{

1, if k lies between i and j in the same row
0, otherwise,

i, j, k ∈ [n + 2], |{i, j, k} ∩ {sM , n + 1, n + 2}| ≥ 1, i < j, |{i, j, k}| = 3. Remark that, given
three departments and one of them is equal to sM , n + 1 or n + 2, then the corresponding
betweenness variables are only equal to one if all three departments lie in the same row. In this
way betweenness variables were used successfully in the literature, see, e. g., [3, 22, 43, 76]. The
correct relation of the betweenness and the assignment variables are ensured by the following
inequalities

xisj + xsij + xsji − yi ≤ 0, i, j ∈ [n] \ {sM}, i 6= j, s ∈ {sM , n+ 1}, (9)
x(n+2)ij + x(n+2)ji + yi ≤ 1, i, j ∈ [n] \ {sM}, i 6= j, (10)
xisj + xsij + xsji − yi − yj ≥ −1, i, j ∈ [n] \ {sM}, i < j, s ∈ {sM , n+ 1}, (11)
x(n+2)ij + x(n+2)ji + yi + yj ≥ 1, i, j ∈ [n] \ {sM}, i < j. (12)
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Inequalities (9) ensure that betweenness variables containing i, j and sM or n + 1, i, j ∈
[n] \ {sM}, i 6= j, are equal to zero if i or j (or both) are assigned to row 2. The sum of
the corresponding three betweenness variables equals one if i and j are assigned to row 1, see
inequalities (11). Similar inequalities are used for the dummy department n+ 2, see inequalities
(10) and inequalities (12).

Betweenness variables containing sM are equal to the sum of two products of ordering variables,
e. g., xsM ij = zsM i · zij + zji · zisM , i, j ∈ [n] \ {sM}, i 6= j. Therefore, we use lower bounds related
to the standard linearization, see inequalities (13)–(15). Note that the corresponding upper
bounds are implied by inequalities (7)–(10)

xisM j ≥ zisM + zsM j − 1, i, j ∈ [n] \ {sM}, i 6= j, (13)
xsM ij ≥ zsM i + zij − 1, i, j ∈ [n] \ {sM}, i 6= j, (14)
xsM ij ≥ zji + zisM − 1, i, j ∈ [n] \ {sM}, i 6= j, (15)
x(n+1)ij + x(n+2)ij − zij = 0, i, j ∈ [n] \ {sM}, i 6= j, (16)
xisM j + xsM ij + xsM ji − x(n+1)ij − x(n+1)ji = 0, i, j ∈ [n] \ {sM}, i < j, (17)
xi(n+1)j + xi(n+2)j = 0, i, j ∈ [n], i < j. (18)

Let i, j ∈ [n] \ {sM}, i 6= j. Then, i and j are in the same row and i is left to j if and only if i is
left to j in row 1 or row 2, see equations (16). Further, i is left or right to j in row 1 if and only
if xisM j + xsM ij + xsM ji equals one, see equations (17). Equations (18) ensure that the dummy
departments are fixed at the border. While the dummy department n+ 2 is necessary for our
formulation for the sM-TRFLP, we mainly use the dummy department n+ 1 to relate x(n+2)ij
and x(n+2)ji, i, j ∈ [n] \ {sM}, i < j, with the ordering variables, see equations (16). Hence, we
avoid the usage of standard linearization in this case.
In [8] a MILP model for the DRFLP is presented which consists of ordering variables σij which

are equal to one if i ∈ [n] is to the left of j ∈ [n], i 6= j, and i and j are in the same row or i is in
row 2 and j is in row 1. The distances between the centers of the departments are calculated via
big-M -type constraints. Let R1 (R2) denote the set of departments assigned to row 1 (row 2) in
a double-row layout. Then, we assign the departments in R1 to row 2 such that the departments
in R1 are to the right of the departments in R2 without changing the order of the departments
in R1 and in R2. By this method, the value of the ordering variables is not influenced, so the
ordering variables σ are equal to ordering variables in a single-row layout. Therefore, this method
differs significantly from our method described below.
The distance between i ∈ [n] and j ∈ [n] \ {i} in the sM-TRFLP can be expressed by |pi −

pM |+ pj + wTpath if i lies in row 1 and j in row 2. Using this idea in a branch-and-cut algorithm
coupled with big-M -constraints to couple the row assignment of i and j, leads to a rather bad
root relaxation and to a poorly performing algorithm as we will see in Section 5. We aim
to calculate the distances between the departments by betweenness, ordering and assignment
variables without big-M -constraints. Therefore, we extend the definition of the betweenness
variables. Given a sM -T-row layout, we define B1 (B2) as the set of departments left (right) to
sM and B3 as the set of departments in row 2. Let i′ (j′) be the department in Ba (Bb) closest to
pM , a, b ∈ {1, 2, 3}, a 6= b. We arrange the departments Ba∪Bb on a straight line such that i′ and
j′ are neighboring as well as neighboring departments in the sM -T-row layout are neighboring.
Let i, j, k ∈ [n] \ {sM}, |{i, j, k}| = 3, i < j. We say that k ∈ [n] \ {sM} lies between i and j
if there exists a, b ∈ {1, 2, 3} such that k lies between i and j on the with Ba ∪ Bb associated
straight line. If a = b, then the departments in the set Ba are already arranged on a straight
line. In the sM-TRFLP an automated guided vehicle has to traverse every k which lies between i
and j. This motivates the following extension of the betweenness variables

xikj = xjki =
{

1, if k lies between i and j
0, otherwise,
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i, j, k ∈ [n] \ {sM}, |{i, j, k}| = 3, i < j. So our new betweenness variables xikj might also be
equal to one if i ∈ [n] and j ∈ [n], i < j, lie in distinct rows, k ∈ [n] \ {i, j}. Since this version of
betweenness variables seems to be a novelty in the layout planning literature, we illustrate their
usage by an example
Example 4. We are given a T-row instance with n = 6 departments with lengths `1 = `5 =
3, `2 = 4, `3 = 1, `4 = `6 = 2. A sM -T-row layout with sM = 2 is illustrated in Figure 4 including
the dummy departments 7 and 8. We summarize all betweenness variables which are equal to
one. We start with xikj , i, j, k ∈ [n], i < j, |{i, k, j}| = 3, where i and j lie in distinct rows:
x156 = x356 = x435 = x436 = x456 = 1. For betweenness variables containing sM or at least one
of the dummy departments, we get: x123 = x124 = x234 = x217 = x317 = x327 = x417 = x427 =
x437 = x856 = 1. Besides that we get x134 = 1 and the remaining betweenness variables are equal
to zero.

21 43

5

6

7

8

Figure 4: Illustration of a sM-TRFLP layout with sM = 2 where the dummy departments 7 (8) is
at the left (upper) border of row 1 (row 2). We summarize all extended betweenness
variables which are equal to one: x156 = x356 = x435 = x436 = x456 = 1.

We present the following inequalities to obtain the correct relation between our new extended
betweenness variables and betweenness variables containing sM or a dummy department

xikj − xsMki + xsMkj − x(n+2)ki + x(n+2)kj ≥ 0, i, j, k ∈ [n] \ {sM}, |{i, j, k}| = 3, (19)
xikj − xsMki − xsMkj − x(n+2)ki − x(n+2)kj ≤ 0, i, j, k ∈ [n] \ {sM}, |{i, j, k}| = 3, i < j, (20)
xikj + xjik + xijk ≤ 1, i, j, k ∈ [n] \ {sM}, i < j < k. (21)

Considering three departments, at most one of them lies in the middle, see inequalities (21).
Let i, j, k ∈ [n] \ {sM}, |{i, j, k}| = 3, be fixed, and we consider inequalities (19). Recall that
xsMki +x(n+2)ki ≤ 1 by inequalities (9)–(10). Let k lie between i and sM (n+ 2) and let k not lie
between sM (n+2) and j. Then, k lies between i and j, we refer to Figure 5a (5b) for an illustration.
Otherwise, inequalities (19) are redundant. Now, let i, j, k ∈ [n] \ {sM}, |{i, j, k}| = 3, i < j.
Recall that B1 (B2) denotes the set of departments left (right) to sM and B3 denotes the set
of departments in row 2. If k ∈ Ba, a ∈ {1, 2, 3}, and i, j /∈ Ba, then k does not lie between i
and j, see inequalities (20). Now, let i, k ∈ Ba, a ∈ {1, 2, 3}, and we set s = sM if a ∈ {1, 2}
and s = n + 2 if a = 3. Let j ∈ Bb, b ∈ {1, 2, 3}, b 6= a, and let k lie between i and j, then k
lies between i and s, see inequalities (20). Let j ∈ Ba and let k lie between i and j, then k lies
between i and s or j and s and inequalities (9) are satisfied. This leads to the following remark
Remark 1. Let i, j and k lie in the same row, i, j, k ∈ [n] \ {sM}, |{i, j, k}| = 3, i < j. We set
s = sM (s = n+ 2) if i lies in row 1 (row 2) and then we obtain by inequalities (19)–(20)

xikj − xski + xskj ≥ 0,
xikj − xskj + xski ≥ 0,
xikj − xski − xskj ≤ 0.

Hence, inequalities (19)–(20) are an extension of inequalities (4) with departments [n] \ {sM}.
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sMi k j j

j

n+ 2

(a) Let xiksM
= 1. Then, k lies between

i and j if and only if k does not lie
between sM and j.

j

k

i

sMj j

n+ 2

(b) Let x(n+2)ki = 1. Then, k lies between
i and j if and only if k is not left to j
in row 2, i. e., x(n+2)kj = 0.

Figure 5: Let i, j, k ∈ [n] \ {sM}, |{i, j, k}| = 3. Visualization of inequalities (19) with xsMki = 1
in Figure 5a and x(n+2)ki = 1 in Figure 5b. We illustrate possible positions for j in
dashed rectangles such that xikj = 1. The dummy department n+ 1 is not illustrated
here.

It remains to calculate the rectilinear center-to-center distances between the departments.
The minimal distance between i and j, i, j ∈ [n] \ {sM}, i < j, in the sM-TRFLP equals `i+`j

2
and, assuming that i and j lie in different rows, one can add `sM

2 + wTpath. Further, the minimal
distance between i ∈ [n] \ {sM} and sM is `i

2 and assuming that i lies in row 2 we add wTpath, so
altogether we exclude the following constant value from our model

WsM :=
∑

i∈[n]\{sM}
wisM

(
`i
2 + wTpath

)
+

∑

i,j∈[n]\{sM}
i<j

wij

(
`i
2 + `j

2 + `sM

2 + wTpath

)
. (22)

For the sM-TRFLP there always exists an optimal space-free layout, i. e., an optimal layout
without free-spaces between neighboring departments in the same row. So we neglect distance
variables and we compute the distances between the departments in the following way

(
−wTpath −

`sM

2

)
(zij + zji) +

∑

k∈[n]\{i,j}
`kxikj , i, j ∈ [n] \ {sM}, i < j, (23)

(
`sM

2 − wTpath
)
yi +

∑

k∈[n]\{sM ,i}
`k(xiksM

+ x(n+2)ki), i ∈ [n] \ {sM}. (24)

By (23) and (22) we measure the rectilinear center-to-center distance between i ∈ [n] \ {sM} and
j ∈ [n] \ {sM}, i < j. We subtract `sM

2 +wTpath if i and j lie in the same row, see (22), and we add
the sum of the lengths of the departments between i and j. If i and j lie in row 1 and sM lies
between them, then xisM j = 1 and we take `sM into account. By (24) and (22) we calculate the
rectilinear center-to-center distance between sM and i ∈ [n] \ {sM} by summing up the lengths of
all departments which are between i and sM and i and n+ 2. Additionally, we add `sM

2 − wTpath
if i lies in row 1. This leads to the following result

Theorem 3. Let sM ∈ [n] and WsM be calculated as described in equation (22). Then

WsM + min
∑

i,j∈[n]\{sM}
i<j

wij

(
−wTpath −

`sM

2

)
(zij + zji)

+
∑

i,j∈[n]\{sM}
i<j

wij
∑

k∈[n]\{i,j}
`kxikj
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+
∑

i∈[n]\{sM}
wisM

(
`sM

2 − wTpath
)
yi

+
∑

i∈[n]\{sM}
wisM

∑

k∈[n]\{sM ,i}
`k(xiksM

+ x(n+2)ki)

s. t. yi ∈ {0, 1}, i ∈ [n],
zij ∈ {0, 1}, i, j ∈ [n] \ {sM}, i < j,

zij ∈ [0, 1], i, j ∈ [n] \ {sM}, i > j,

zisM ∈ {0, 1}, i ∈ [n] \ {sM},
zsM i ∈ [0, 1], i ∈ [n] \ {sM},
0 ≤ xikj ≤ 1, i, j, k ∈ [n+ 2], i < j,

|{i, j, k}| = 3,

subject to inequalities (7)–(21) is a MILP model for the sM-TRFLP.

Proof. Let sM ∈ [n] be fixed. This proof is structured as follows. At first, we show that the z
variables are set to binary values and we prove that the z and y variables satisfy inequalities of a
model from the scheduling literature [32]. Hence, we obtain the correct relation of the z and y
variables and a correct ordering of the departments in the same row. Then we show that the
x variables are set to binary values as well. We show the correct relation of the x and y and z
variables where we distinguish between our new extended x variables and x variables containing
sM or dummy departments.

By equations (8) we obtain binary values for zsM i, i ∈ [n]\{sM}. Let i, j ∈ [n]\{sM}, i < j. By
equations (16) and inequalities (9)–(10) together with zij ∈ {0, 1}, we obtain x(n+1)ij , x(n+2)ij ∈
{0, 1}. If yi 6= yj we obtain by inequalities (9)–(10) that 0 = x(n+1)ji + x(n+2)ji = zji, see
equations (16). Otherwise let, w. l. o. g., yi = yj = 1. Then, by inequalities (9) and inequalities
(11) we get x(n+1)ij + x(n+1)ji = 1. Since x(n+1)ij ∈ {0, 1}, we obtain x(n+1)ji ∈ {0, 1} as well.
This implies zji ∈ {0, 1}, see equations (16). In conclusion, the z variables and the x variables
containing dummy departments are set to binary values and these x variables are coupled
correctly to the z variables.
Next we show that the following inequalities are satisfied

zij + zji + yi − yj ≤ 1, i, j ∈ [n], i 6= j, (25)
yi + yj − zij − zji ≤ 1, i, j ∈ [n], i < j, (26)
yi + yj + zij + zji ≥ 1, i, j ∈ [n], i < j, (27)
zki + zij + zjk − zik − zji − zkj ≤ 1, i, j, k ∈ [n], |{i, j, k}| = 3. (28)

Let i, j ∈ [n] \ {sM}, i 6= j, be given. By equations (16) and inequalities (9)–(10) we obtain

zij + zji + yi − yj = x(n+1)ij + x(n+1)ji + x(n+2)ij + x(n+2)ji + yi − yj ≤ 1,

and thus inequalities (25) are satisfied. By similar arguments, inequalities (16) together with
inequalities (11)–(12) imply inequalities (26)–(27). If i, j ∈ [n] and |{i, j} ∩ {sM}| = 1, then
inequalities (25)–(27) are implied by inequalities (7)–(8).

It remains to prove that inequalities (28) are satisfied if yi ∈ {0, 1}, i ∈ [n], and zij ∈ {0, 1}, i, j ∈
[n], i 6= j. Assume, on the contrary, inequalities (28) are violated by some i, j, k ∈ [n], |{i, j, k}| = 3.
Let zij = zjk = 1 and by inequalities (25) we obtain yi = yj = yk. If zki = 0, we obtain by
inequalities (26)–(27) that zik = 1, and thus inequalities (28) are satisfied. It remains to consider
the case zki = 1.

a) Let yi = yj = yk = 0. It follows by equation (7) that |{i, j, k} ∩ {sM}| = 0. Then, we
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obtain by inequalities (19), inequalities (9) and inequalities (16) that

xikj ≥ x(n+2)ki − x(n+2)kj = zki − zkj = 1
xjik ≥ x(n+2)ij − x(n+2)ik = zij − zik = 1,

a contradiction to inequalities (21).

b) Let yi = yj = yk = 1, |{i, j, k} ∩ {sM}| = 1, and we assume, w. l. o. g., k = sM . Then, by
inequalities (13)–(14) we obtain

xjsM i ≥ zjsM + zsM i − 1 = 1,
xsM ij ≥ zsM i + zij − 1 = 1,

a contradiction to inequalities (9).

c) Let yi = yj = yk = 1 and |{i, j, k} ∩ {sM}| = 0. By symmetry, it is sufficient to consider
the case that two or three departments of the set {i, j, k} are to the right of sM .
1) Let zsMk = zsM i = zsM j = 1. Then, xsM ij = xsMki = xsM jk = 1, see inequalities (14),

and thus we get by inequalities (9)–(10) and inequalities (19) that

xikj ≥ xsMki − xsMkj = 1,
xkij ≥ xsM ij − xsM ik = 1,

a contradiction to inequalities (21).
2) Let zksM

= 1 and zsM i = zsM j = 1. Then, we obtain by inequalities (13)–(14) that
xksM j = 1 and xsMkj ≥ zksM

+ zjk − 1 = 1, a contradiction to inequalities (9).

According to [32], we obtain by inequalities (25)–(28) together with yi ∈ {0, 1}, i ∈ [n], zij ∈
{0, 1}, i, j ∈ [n], i 6= j, the correct relation between the z and y variables and a correct ordering
of the departments in the same row.

The x variables containing sM are coupled by inequalities (13)–(15), which are highly related
to the standard linearization, see, e. g., [14, 52, 76], to the z variables. Inequalities (7)–(10) imply
the upper bounds from the standard linearization. Hence, these variables obtain binary values
and are coupled correctly to the z and y variables.

It remains to consider our new extended x variables. Let i, j, k ∈ [n] \ {sM}, |{i, j, k}| = 3, be
fixed. We use the following notation: s ∈ {sM , n + 2} with s = sM if yi = 1 and s = n + 2 if
yi = 0. Note that if yi = yk, we obtain xtki = xtkj = 0, t ∈ {sM , n + 2} \ {s}, by inequalities
(9)–(10). Similar to the proof of Proposition 1, it is sufficient to show that xikj equals one if
xski + xskj = 1 and equals zero otherwise. We distinguish between the following three cases
depending on the assignment of i, j and k to the rows

a) Let yi = yj = yk. The following three cases can be distinguished
1) Let xski + xskj = 1. By inequalities (19) we obtain xikj = 1.
2) Let xski = xskj = 1. The x variables containing s have the correct relation to the z

variables, so they satisfy transitivity properties, i. e., xisj = 0, and thus xsij + xsji = 1
by inequalities (11)–(12). Further, by inequalities (21) we get xsik + xsjk = 0. As a
result, we obtain by inequalities (19)

xjik + xijk ≥ xsij + xsji = 1,

and thus xikj = 0, see inequalities (21).
3) Let xski = xskj = 0. By inequalities (20) it follows immediately that xikj = 0.
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b) Let, w. l. o. g., yk = yi and yk 6= yj . By inequalities (9)–(10) we get xskj = 0. So by
inequalities (19)–(20) we obtain xikj = xski.

c) Let yi = yj and yi 6= yk. Then, we obtain xikj = 0 by inequalities (20).

There always exists an optimal space-free T-row layout, the x, z and y variables are set to binary
values and are coupled correctly, so the distance calculation, see (23)–(24), is correct. This
concludes the proof.

Let S = (π1, . . . , πn−1) denote an arbitrary sorting of the departments [n] \ {sM}. In order to
eliminate symmetrical layouts, we fix one department in row 1 to the left of sM , see equation
(29). However, if this department is assigned to row 2, we fix another department in row 1 to the
left of sM . We continue in this manner, see inequalities (30). These inequalities are related to
symmetry breaking constraints for the graph coloring problem, see, [65, 68]. We set

zπ1sM − yπ1 = 0, (29)

zπjsM − yπj +
j−1∑

k=1
yπk
≥ 0, j = 2, . . . , n− 1. (30)

If `sM
2 = wTpath, one can use stronger symmetry breaking constraints, let S = (π1, . . . , πn−1)

denote an arbitrary sorting of the departments [n] \ {sM}. Then,
yπ1 = 1, (31)
zπ1sM = 1, (32)
yπ2 = 1, (33)

yπj −
j−1∑

k=2
zπksM ≥ 3− j, j = 3, . . . , n− 1. (34)

In the case `sM
2 = wTpath, we may fix π1 ∈ [n] \ {sM} in row 1 to the left of sM , see equations

(31)–(32), and in addition, we fix π2 ∈ [n] \ {sM} to row 1, see equation (33). If π2 is to the
left of sM , we fix another department to row 1 until one department is to the right of sM , see
inequalities (34). Note that inequalities (34) are redundant for j ∈ [n− 1], j ≥ 3, if zπksM = 0
for some k ∈ [n] \ {sM}, 2 ≤ k < j.
Further, in an optimal sM -T-row layout at least one department is contained in row 2 if

wTpath = 0, so in this case we set
∑

i∈[n]\{sM}
yi ≤ n− 2. (35)

3.3 Cutting Planes
In the following, let sM ∈ [n] be fixed. In this section we describe further inequalities to
strengthen our formulation for the sM-TRFLP. Let i, j, k ∈ [n] \ {sM}, i < j < k, be given.
Remark again that in the SRFLP the sum of the corresponding three betweenness variables, i. e.,
xikj + xjik + xijk, equals one, see equations (3), but might be equal to zero in the sM-TRFLP.
This is a significant difference because in the root relaxation of our branch-and-cut algorithm the
value of the betweenness variables might be close to zero. Therefore, in this section, we present
various lower bounds for the sum of the betweenness variables

Proposition 4. Let sM ∈ [n]. The following inequalities are valid for the sM-TRFLP

xikj + xjik + xijk + xisM j + xisMk + xjsMk ≥ 1, i, j, k ∈ [n] \ {sM}, i < j < k, (36)
xikj + xjik + xijk + xisMk + xjsMk − yk ≥ 0, i, j, k ∈ [n] \ {sM}, |{i, j, k}| = 3, i < j, (37)
xikj + xjik + xijk − yi − yj − yk ≥ −2, i, j, k ∈ [n] \ {sM}, i < j < k. (38)

16



Proof. Let S := {i, j, k} ⊆ [n] \ {sM}, |{i, j, k}| = 3, i < j, be given. Note first that inequalities
(36)–(38) are satisfied if xikj + xijk + xjik equals one. It turns out that xikj + xijk + xjik equals
zero if and only if sM lies between two departments of the set S and the remaining department
in S lies in row 2. Otherwise, two or three departments are left or right to sM (n+ 2) and then
by inequalities (19) one of the betweenness variables equals one. Thus, inequalities (36) are
valid. Consider inequalities (37) with yk = 1 and let the sum of the corresponding betweenness
variables be equal to zero, then sM lies between i and k or between j and k. Inequalities (37)
are satisfied if yk = 0. Given three departments which are assigned to row 1, then the sum of the
corresponding betweenness variables equals one, see inequalities (38).

Note that inequalities (36)–(37) are not valid for betweenness variables known in literature and
in Section 5 we demonstrate that inequalities (36)–(37) significantly improve the performance of
our branch-and-cut algorithm.
In the SRFLP we obtain ∑i,j,k∈[n]

i<j
i 6=k 6=j

xikj =
(n

3
)
by equations (3). However, this equation is not

valid for the sM-TRFLP, and thus we present lower bounds for the sum of the betweenness
variables in the sM-TRFLP distinguishing whether sM or n+ 2 are contained or not.
Proposition 5. Let sM ∈ [n] and S ⊆ [n] \ {sM}, |S| ≥ 4. Then, the following inequality is valid
for the sM-TRFLP

∑

i,j∈S
i<j

(
xisM j + xsM ij + xsM ji + x(n+2)ij + x(n+2)ji

)
≥
(⌈ |S|

2

⌉

2

)
+
(⌊ |S|

2

⌋

2

)
, (39)

and for S ⊆ [n] \ {sM}, n1 =
⌈ |S|

3

⌉
, n2 =

⌊ |S|
3

⌋
, n3 = |S| − n1 − n2, the following inequality

∑

i,j,k∈S
i<j

i 6=k 6=j

xikj ≥
(
|S|
3

)
− n1 · n2 · n3 (40)

is valid for the sM-TRFLP.
Proof. Let S ⊆ [n] \ {sM}, |S| ≥ 4. Recall that, given a sM -T-row layout, B1 (B2) denotes the
set of departments left (right) to sM and B3 denotes the set of departments in row 2. Then, we
obtain

∑

i,j∈S
i<j

(
xisM j + xsM ij + xsM ji + x(n+2)ij + x(n+2)ji

)
=
(
|B1|+ |B2|

2

)
+
(
|B3|

2

)
,

if |B1| + |B2| ≥ 2, |B3| ≥ 2 (otherwise we can neglect the corresponding binomial coefficient
on the right-hand side). Interpreting B′ = B1 ∪B2 and computing the minimum value of the
right-hand side subject to B′ ∪̇ B3 = S, B′, B3 ⊆ S,B′ ∩B3 = ∅, we obtain the desired result,
see inequalities (39).
Now we consider inequalities (40), so let S ⊆ [n] \ {sM} be given. We are given a sM -T-row

layout, then xikj + xijk + xjik, i, j, k ∈ [n], i < j < k, equals zero if and only if i, j and k lie
pairwise in distinct sets B1, B2 and B3. So we obtain

∑

i,j,k∈S
i<j

i 6=k 6=j

xikj =
(
|S|
3

)
− |B1| · |B2| · |B3|.

Computing the minimum value of the right-hand side is equivalent to maximize |B1| · |B2| · |B3|
subject to B1 ∪̇ B2 ∪̇ B3 = S, B1, B2, B3 ⊆ S,B1 ∩B2 ∩B3 = ∅, and thus we obtain the desired
result.
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In addition, we are able to adapt inequalities (39) to the case with |S| = 3 in the following way
∑

i,j∈S
i<j

(
x(n+2)ij + x(n+2)ji

)
+
∑

i∈S
yi ≥ 2, S ∈ [n] \ {sM}, |S| = 3. (41)

Let S ⊆ [n] \ {sM}, |S| = 3, and a sM -T-row layout be given. Inequalities (41) are satisfied if
at least two departments of the set S are in row 1. So let two (three) departments be in row 2.
Then, ∑i,j∈S

i<j
x(n+2)ij + x(n+2)ji = 1 ( = 3) and inequalities (41) are satisfied.

Next we consider the special case of inequalities (40) with |S| = 4, S ⊆ [n] \ {sM}, and we
obtain ∑i,j,k∈S

i 6=k 6=j
i<j

xikj ≥ 2. This lower bound is tight if and only if each of the sets B1, B2 and B3

contains at least one department of the set S, because otherwise S ⊆ Ba ∪ Bb, a, b ∈ {1, 2, 3},
and hence the sum of the betweenness variables of the departments in S equals 4. So we present
further lower bounds for the case with |S| = 4.
Proposition 6. Let sM ∈ [n] and S ⊆ [n] \ {sM}, |S| = 4. Then, the following inequalities are
valid for the sM-TRFLP

∑

i,j,k∈S
i<j

i 6=k 6=j

xikj +
∑

i∈S
yi ≥ 4, (42)

∑

i,j,k∈S
i<j

i 6=k 6=j

xikj −
∑

i∈S
yi ≥ −1, (43)

∑

i,j,k∈S
i<j

i 6=k 6=j

xikj −
∑

s∈{sM ,n+2}
2 (xspq + xsqp + xspt + xstp) ≥ 0, p, q, t ∈ S, |{p, q, t}| = 3, q < t, (44)

∑

i,j,k∈S
i<j

i 6=k 6=j

xikj +
∑

i,j∈S
i<j

xisM j −
∑

i∈S
yi + xsM qp + xsMpq ≥ 1, p, q ∈ S, p < q. (45)

Proof. Let S = {i, j, k, h} ⊆ [n] \ {sM}, |S| = 4, and let a sM -T-row layout be given. Recall that
B1 (B2) denotes the set of departments left (right) to sM and B3 denotes the set of departments
in row 2. If ∑p∈S yp ≥ 2, then inequalities (42) are satisfied by inequalities (40) with |S| = 4.
Otherwise, at most one department is assigned to row 1. Then, S ⊆ Ba ∪B3, a ∈ {1, 2}, and thus
the sum of the corresponding betweenness variables equals 4. Inequalities (43) are satisfied by
inequalities (40) if at most three departments are assigned to row 1. Otherwise, all departments
are in row 1 and inequalities (43) are satisfied. Inequalities (44) ensure that if three departments
lie in the same set Ba, a ∈ {1, 2, 3}, then the sum of the corresponding betweenness variables is
equal to 4. Otherwise, inequalities (44) are satisfied by inequalities (40).
It remains to consider inequalities (45), let p, q ∈ S, p < q. If at most one department is

assigned to row 1, then inequalities (45) are satisfied by inequalities (40). So let two (three)
departments be in row 1, and we assume at first, that the departments are, w. l. o. g., left to
sM . Then, S ⊆ B1 ∪ B3 and the sum of the corresponding betweenness variables equals 4.
Otherwise we obtain ∑i,j∈S

i<j
xisM j = 1 (∑i,j∈S

i<j
xisM j = 2), and thus inequalities (45) are satisfied.

It remains to consider the case where all departments are assigned to row 1. Then, the sum of
the corresponding betweenness variables equals 4 and in addition, we get by inequalities (11)
xpsM q + xsMpq + xsM qp = 1, which proves the desired result.

In the next proposition, we show that inequalities from the SRFLP can be used for the sM-TRFLP,
although an extension of the betweenness variables is used. The slightly adapted inequalities
(46)–(47) and inequalities (49) were introduced in [3] for the SRFLP.
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Proposition 7. Let sM ∈ [n]. The following inequalities are valid for the sM-TRFLP

− xihj + xihk + xjhk ≥ 0, i, j, k, h ∈ [n] \ {sM}, |{i, j, k, h}| = 4, (46)
xihj + xihk + xjhk ≤ 2, i, j, k, h ∈ [n], |{i, j, k, h}| = 4, i < j < k, h 6= {sM},

(47)
xisM j + xisMk − xsMkj − xsM jk − yi ≤ 0, i, j, k ∈ [n] \ {sM}, i 6= j, j < k. (48)

Let β ≥ 6 be an even integer, k ∈ S ⊆ [n] \ {sM} and let S1, S2 ⊆ S \ {k} with |S1| = β
2 such

that S1 ∪̇ S2 = S \ {k}, S1 ∩ S2 = ∅. Then, the following inequalities
∑

i,j∈S1
i<j

xikj +
∑

i,j∈S2
i<j

xikj −
∑

i∈S1
j∈S2

xikj ≤ 0, (49)

are valid for the sM-TRFLP.

The proof of the correctness of inequalities (49) for the sM-TRFLP is an extension of the proof
of [41] for the correctness of inequalities (49) for the SRFLP.

Proof. Let i, j, k, h ∈ [n]\{sM}, |{i, j, k, h}| = 4, and a sM -T-row layout be given. Recall that B1
(B2) denotes the set of departments in row 1 left (right) to sM and B3 the set of departments in
row 2. If i, j, k, h ∈ Ba ∪Bb, a, b ∈ {1, 2, 3}, inequalities (46) are satisfied since these inequalities
are valid for the SRFLP. If xihj = 0, then inequalities (46) are redundant, so it remains to
consider the case xihj = 1. We assume, w. l. o. g., i, h ∈ Ba, j ∈ Bb, a, b ∈ {1, 2, 3}, a 6= b, and
k ∈ Bc, c ∈ {1, 2, 3} \ {a, b}. It follows immediately that xihk = 1, see inequalities (19), and thus
inequalities (46) are satisfied.
Next we consider inequalities (47). Let a sM -T-row layout and i, j, k, h ∈ [n], |{i, j, k, h}| =

4, i < j < k, h 6= sM , be given. We shift the departments in the set B2 ∩ {i, j, k, h} to the left
of sM without changing the order of the departments B1 ∪ (B2 ∩ {i, j, k, h}). By this method
we only increase the sum of the corresponding betweenness variables. Then, i, j, k, h ∈ B1 ∪B3
and inequalities (47) are satisfied because these inequalities are valid for the SRFLP. Now we
investigate inequalities (48). Let i lie in row 1, let sM lie between i and j and let sM lie between i
and k. Then, k lies between sM and j or j lies between k and sM , see inequalities (48). Otherwise,
inequalities (48) are redundant.

Next we consider inequalities (49). We are given a sM -T-row layout and let k ∈ S ⊆ [n] \ {sM}
lie in row 1, w. l. o. g., left to sM . Let β ≥ 6 be an even integer and let S1, S2 ⊆ S \ {k}, |S1| =
β
2 , S1 ∪̇ S2 = S \ {k}, S1 ∩ S2 = ∅.
Then, we denote by `1 (`2) the number of departments in S1 (S2) left to k. Let r1 (r2) denote

the number of departments right to k in row 1 and let u1 (u2) denote the number of departments
in S1 (S2) in row 2. Then

∑

i,j∈S1
i<j

xikj +
∑

i,j∈S2
i<j

xikj −
∑

i∈S1
j∈S2

xikj

= `1(r1 + u1) + `2(r2 + u2)− `1(r2 + u2)− `2(r1 + u1)
= (`1 − `2)(r1 + u1 − r2 − u2) ≤ 0,

where the last inequality is satisfied since `1 + r1 + u1 = 1 + `2 + r2 + u2. The proof is similar if
k lies in row 2.

3.4 Heuristic approaches
Let sM ∈ [n]. In this section we describe heuristic approaches for the sM-TRFLP which are applied
in Algorithm 1. We use five heuristics to compute start layouts for the sM-TRFLP. Afterwards
we apply exchange approaches to further improve these start layouts.
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We fix the center of sM ∈ [n] on position pM in row 1, and then iteratively add the remaining
departments to the layout, see [30] for a related heuristic approach for the DRFLP. Let B1 (B2)
denote the set of departments left (right) to sM and B3 the set of departments in row 2 in the
current constructed layout. We set ¯̀

i := `sM
2 +∑

j∈Bi
`j , i = 1, 2, ¯̀3 := wTpath +∑

j∈B3 `j and
a := arg min{¯̀1, ¯̀2, ¯̀3}. In the first heuristic we sort the departments [n] \ {sM} in ascending
order according to their lengths. The sorted departments are sequentially added space-free to
the layout, if a = 1 at the leftmost position in row 1 and otherwise at the rightmost position in
row 1 or row 2, respectively, see Algorithm 2.

Algorithm 2: Heuristic approach for the sM-TRFLP
Input : sM ∈ [n], S = (s1, . . . , sn−1) is a sorting of the departments [n] \ {sM} with

lengths `i ∈ R+, i ∈ [n], wTpath ∈ R≥0.
Output : positions psk

and row assignment rsk
, sk ∈ S, of the departments [n] \ {sM}.

1 Initialize (¯̀1, ¯̀2, ¯̀3)← ( `sM
2 ,

`sM
2 , wTpath).

2 for k = 1, . . . , n− 1 do
Choose a ∈ arg min{¯̀o : o ∈ {1, 2, 3}}.

3 if a = 1 then
psk
← pM − ¯̀

a − `sk
2 .

¯̀
a ← ¯̀

a + `sk
.

rsk
← 1.

4 if a = 2 then
psk
← pM + ¯̀

a + `sk
2 .

¯̀
a ← ¯̀

a + `sk
.

rsk
← 1.

5 if a = 3 then
psk
← ¯̀

a + `sk
2 − wTpath.

¯̀
a ← ¯̀

a + `sk
.

rsk
← 2.

6 return psk
, rsk

, sk ∈ S.

In the following heuristic approaches we assign the departments in the following way. Let,
w. l. o. g., the departments 1, . . . , j ∈ [n] \ {sM} be assigned to the sM -T-row layout and let,
R1 = (1, 2, . . . , sM , . . . , i), i ∈ [n]\{sM}, i ≤ j, (R2 = (i+1, . . . , j)) denote the set of departments
assigned to row 1 (row 2), as well as the sorting of the departments in row 1 (row 2). We assign
h ∈ [n], h > j, on all possible positions in R1 and R2 and then we choose a layout with minimal
objective value, i. e., h is assigned at its current best position (note that the center of h is not
assigned on position pM in row 1).
In our second heuristic approach we sort the departments in ascending order according to

their lengths and, in contrast to the first heuristic, in each step a department is placed at
its current best position. Next we divide the departments [n] \ {sM} into two sets depending
whether wisM = 0 or wisM > 0, i ∈ [n] \ {sM}, i. e., S1 := {i ∈ [n] \ {sM} : wisM = 0} and
S2 := {i ∈ [n] \ {sM} : wisM > 0}. Then, we sort the departments in each set in decreasing order
according to their relative weights, i. e., ∑j∈[n]

i 6=j

wij

`i
, i ∈ [n] \ {sM}. In the third (fourth) heuristic

we assign the departments in the set S2 (S1), and afterwards the departments in the set S1 (S2)
in the determined order to the layout. In each step the considered department is assigned at its
current best position.

In [35] a good or optimal single-row layout is given and according to different rules a double-row
layout is constructed. Given an optimal or near-optimal single-row layout, in the fifth heuristic
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we assign departments in that order space-free to row 1, where the center of sM is fixed on
position pM in row 1. In the first step we arrange one department to row 2 which reduces the
objective value of the current layout at most. Then, in further steps, we choose one department
from row 1 which reduces the objective value at most when we assign it on its best position in
row 2, and we arrange it at that position. We apply these steps until we do not improve the
objective value by rearranging one department from row 1 to row 2.
After determining start layouts, we use a 1-opt and a 2-opt improvement heuristic. At first

we apply a 1-opt heuristic where we place in each step one department on its current best
position. Afterwards, in our 2-opt heuristic, we simply exchange the position of two departments.
Whenever we obtain a better solution during the opt heuristics, we swap the departments and
we apply the k-opt heuristic until the layout is k-optimal, k ∈ {1, 2}.

3.5 Separation
In this section we describe three variants for branch-and-cut algorithms based on inequalities
(7)–(21) and inequalities (29)–(49). In the first variant we include inequalities (7),(9)–(16),
(18)–(19), (35) and inequalities (39) with S = [n] \ {sM} from the beginning. Due to equations
(8) we can eliminate n− 1 ordering variables by setting

zsM i = yi − zisM , i ∈ [n] \ {sM}.

The sorting of the departments in our symmetry breaking constraints (29)–(30) or, if `sM
2 = wTpath,

inequalities (31)–(34), is determined in the following way. We choose a heuristically determined
sM -T-row layout with minimal objective value, see Section 3.4, and denote B1 (B2) as the set
of departments left (right) to sM and let B3 denote the set of departments in row 2. Then,
we compute v(i) := ∑

j∈Bi

k∈[n]
k 6=j

wjk

`k
, i ∈ {1, 2}, and we set a := arg min{v(1), v(2)}. In inequalities

(29)–(30) we assign the departments in the set Ba first, then Bb, b ∈ {1, 2} \ {a}, and at last B3
where the departments in each set Bm,m ∈ {1, 2, 3}, are sorted in ascending order according of
their positions, i. e., we start with the leftmost department of each set.
In the next part we describe the separation of the remaining inequalities. We only add

inequalities for a set S ⊆ [n] which are violated (at least) by the constant 0.4. We separate
inequalities (20)–(21) and inequalities (41) by brute-force enumeration.
Given a relaxation x̄, z̄ and ȳ. Preliminary tests indicate to separate equations (17) if i, j ∈

[n] \ {sM}, i < j, lie in the same row, hence, due to equations (16), we add equations (17) if
x̄isM j + x̄sM ij + x̄sM ji − x̄(n+2)ij − x̄(n+2)ji < −0.4.
Let i, j, k ∈ [n] \ {sM}, i < j < k, be given. Inequalities (36)–(38) are mainly used for

computing lower bounds for xikj + xijk + xjik, so, given a relaxation x̄, ȳ, we compute

max





1− x̄isM j − x̄isMk − x̄jsMk,

−2 + ȳi + ȳj + ȳk,

ȳk − x̄isMk − x̄jsMk,

ȳj − x̄isM j − x̄ksM j ,

ȳi − x̄ksM i − x̄jsM i.

Then, we add one of the five inequalities (36)–(38) with S = {i, j, k} where the maximum value
above is attained. Recall that we only add the inequality if it is violated by at least 0.4.
In variant 2 of our separation strategy we use the same separation strategy as in variant

1 but we neglect inequalities (36)–(37) in order to verify that these inequalities improve the
performance of our branch-and-cut algorithm.
In variant 3 we use the same strategy as in variant 1, and additionally we add inequalities

(40) with S = [n] \ {sM} from the beginning and we separate inequalities (40) by brute-force
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enumeration for S ⊆ [n] \ {sM} with |S| = 4, 5, 6, 7, where we only add inequalities which are
violated by at least 1, 2, 4 or 8, respectively. We separate inequalities (42)–(48) by brute-force
enumeration where we only add inequalities (42)–(45) and inequalities (46)–(48) violated by at
least 1 or 0.5, respectively. We separate inequalities (49) with β = 6 by complete brute-force
enumeration and we only add inequalities violated by at least 2.

4 The Multi-Bay Facility Layout Problem with three rows
The current known MILP models for the MBFLP and its extensions, are not able to solve instances
with 12 departments in reasonable time [29, 59], so we describe the adaption of our MILP model
for the sM-TRFLP, sM ∈ [n], to the 3-BFLP.
Given a T-row instance, we add an additional dummy department n+ 3 with length `n+3 =

2wBpath and weights wi(n+3) = w(n+3)i = 0, i ∈ [n + 2], to our model and we fix the center of
the dummy department n + 3 on position pM in row 1, the obtained problem is denoted by
((n+ 3)-TRFLP). We use the following connecting between the 3-BFLP and the (n+ 3)-TRFLP.
Let an optimal (n+ 3)-T-row layout be given with wTpath = 0. We assign the departments in the
T-row layout to the left (right) of n+ 3 to row 1 (row 3) in the 3-Bay layout and the departments
in row 2 in the T-row layout to row 2 in the 3-Bay layout without changing the order of the
departments in the same row. Hence, we obtain an optimal 3-Bay layout and vice versa. An
immediate consequence is the following

Proposition 8. Given a 3-BFLP instance with wBpath ∈ R≥0 and a dummy department with length
`n+3 = 2wBpath and weights wi(n+3) = w(n+3)i = 0, i ∈ [n+ 2]. Then, the 3-BFLP is equivalent to
the (n+ 3)-TRFLP with wTpath = 0.

Now we compare the optimal values of the SRFLP, the TRFLP and the 3-BFLP. Note first that
if wTpath ≤ wBpath, then the optimal value of the TRFLP is less than or equal to the optimal value
of the (n+ 3)-TRFLP with wTpath = 0, and thus smaller than or equal to the optimal value of the
3-BFLP by Proposition 8. In the following, we consider an instance which cannot be divided into
two or more smaller independent instances. If wTpath ≤ wBpath and wBpath ≥ 1, then the optimal
value of the TRFLP is equal to the optimal value of the 3-BFLP if and only the optimal value of
the TRFLP is equal to the optimal value of the SRFLP. If wTpath <

maxi∈[n] `i
2 , then the optimal value

of the TRFLP is smaller than the optimal value of the SRFLP. So for wTpath = 0 and wBpath = 1, the
optimal value of the TRFLP is smaller than the optimal value of the 3-BFLP. However, one can
construct instances such that the optimal value of the TRFLP is equal to the optimal value of the
SRFLP if wTpath ≥

maxi∈[n] `i
2 .

One main difference between solving the TRFLP and the 3-BFLP with our approach is that
for the 3-BFLP only one MILP model has to be solved. We adapt our MILP model for the
sM-TRFLP, sM ∈ [n], to the (n+ 3)-TRFLP with wTpath = 0 and we only describe the differences
in the following. We use the z, y and x variables in the same manner as above including the
dummy department n + 3, i. e., we define zij for i, j ∈ [n] ∪ {n + 3}, i 6= j, and xikj with
i, j, k ∈ [n+ 3], i < j, |{i, j, k}| = 3. We neglect inequality (35). The distances between the i ∈ [n]
and j ∈ [n], i < j, are calculated as described in (23), see (22) for the calculation of the excluded
constant. We are able to use symmetry breaking constraints (29)–(30) from the sM-TRFLP and
the departments are sorted as described in Section 3.5.

To further strengthen our branch-and-cut algorithm, we use the following inequalities for the
(n+ 3)-TRFLP where inequalities (50) are used in [6, 76] for the DRFLP

zij + zji + zik + zki + zjk + zkj ≥ 1, i, j, k ∈ [n], i < j < k, (50)
xikj + xijk + xjik + xi(n+3)j − yk ≤ 1, i, j, k ∈ [n], i < j < k. (51)
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Given three departments, at least two of them lie in the same row, see inequalities (50). Let
i, j, k ∈ [n], i < j < k, and let yk = 0, then either the sum of the corresponding three betweenness
variables equals zero or n+ 3 does not lie between i and j, see inequalities (51). Inequalities (51)
are redundant if yk = 1, see inequalities (21).

In order to get upper bounds on the optimal value of the (n+ 3)-TRFLP, we use the first three
heuristic approaches for the sM-TRFLP, sM ∈ [n], presented in Section 3.4. Since wi(n+3) =
w(n+3)i = 0, i ∈ [n], the fourth heuristic equals the third heuristic so we exclude it. In the fifth
heuristic, we arrange the dummy department n+ 3 to the right of the

⌊
n
2
⌋
leftmost department

in a given single-row layout. Then, we proceed as described in the fifth heuristic.
We mainly use the same separation strategy for the (n+3)-TRFLP as for the sM-TRFLP, sM ∈ [n],

so we only describe the differences here. We include inequalities (20) from the beginning if
wBpath > 1, otherwise we separate inequalities (20) as described in Section 3.5. We separate
inequalities (50) by brute-force enumeration. Given a relaxation x̄, ȳ and i, j, k ∈ [n], i < j < k,
we separate inequalities (21) and inequalities (51) in the following way. We calculate

min





1
ȳk − x̄i(n+3)j ,

ȳj − x̄i(n+3)k,

ȳi − x̄j(n+3)k,

and we add one of the four corresponding inequalities where the minimum value is attained.

5 Computational Experiments
In this section we present our computational results. The computational experiments are
implemented in C++, and we use Cplex 12.9 as an MILP Solver [57]. All results were conducted
on a 2.10GHz quad-core using Virtual Box 6 running on Debian GNU/Linux 8 in single processor
mode. In all tests Cplex generated cuts are not added and we set wTpath + 1 = wBpath, as discussed
in the introduction.

5.1 Computational Results for the TRFLP and the 3-BFLP

In this paper we focus on the TRFLP and the 3-BFLP, so applying Proposition 1 is left for future
work. At first, we describe the usage of our heuristic approaches in Algorithm 1. For sM ∈ [n],
we determine five start layouts with our heuristics for the sM-TRFLP and we apply a 1-opt and
2-opt improvement heuristic on each start layout. Our heuristic approach for the TRFLP simply
chooses a sM -T-row layout with minimal objective value, sM ∈ [n], and the minimal objective
value is used as an upper bound in Algorithm 1. The single-row instances in the fifth heuristic
were solved to optimality using the model summarized in Section 2. We generate new instances
which are larger than literature instances in the same way as described in [7]. All instances are
available from the author.
In the first two columns in Table 1 the instance, whereby the number denotes the number of

departments in that instance, and its source is given. In the next three columns we compare
the optimal solution values of the SRFLP, the 3-BFLP and the TRFLP, and we write “TL” if the
time limit of 8 hours is exceeded. If the 3-BFLP is not solved to optimality, the obtained lower
bound is displayed and marked with “ ’ ”. Our heuristically determined upper bounds for the
TRFLP (3-BFLP) are given in the sixth (seventh) column denoted by “HTRFLP” (“H3-BFLP”). Due to
computational accuracy, some zij ∈ [0, 1], i, j ∈ [n] \ {sM}, j > i, achieve values with very small
gaps to zero or one. Hence, the values in Table 1, Table 3 and Table 4 are optimal neglecting
computational accuracy. The corresponding values are rounded up such that 2 ·OPT (I) ∈ Z for
T-row and 3-Bay instances I since wij ∈ Z, i, j ∈ [n], i < j.
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Instances Source SRFLP 3-BFLP TRFLP H3-BFLP HTRFLP
Am11a [9] 10630.5 8795.5 8407.0 8814.5 8411.5
Am11b [9] 7375.5 6021.5 5665.0 6021.5 5667.5
Am12a [5, 6] 2901.0 2508.0 2354.5 2515.0 2354.5
Am12b [5, 6] 3280.5 2691.5 2539.5 2697.5 2548.5
Am13a [5] 4902.5 4021.5 3836.0 4204.5 3836.0
Am13b [5] 5698.0 4529.0 4362.5 4529.0 4362.5
Am14_1 [43] 5481.5 4560.5 4350.5 4565.5 4358.0
Am14a [76] 5673.0 4687.0 4446.5 4734.0 4448.0
Am14b [76] 5595.0 4665.0 4430.5 4683.0 4433.0
Am15 [1] 6305.0 5291.0 5071.0 5294.0 5079.0
HK15 [49] 33220.0 26494.0 26124.0 26495.0 26125.0
P16a [7] 14829.0 12287.5 11943.0 12326.0 11943.0
P16b [7] 11878.5 9781.0 9469.5 9784.5 9469.5
P17a new 14436.5 11852.0 11524.5 11888.5 11528.0
P17b new 15682.0 12691.5 12317.0 12874.0 12389.0
Am17 [2] 9254.0 7647.0 7315.0 7690.0 7318.0
P18a new 16118.5 12022.0’ TL 12863.5 12516.0
P18b new 17716.5 12972.5’ TL 14616.5 14072.0
Am18 [2] 10650.5 7990.5’ 8413.5 8835.5 8413.5

Table 1: Optimal values of the SRFLP, the 3-BFLP and the TRFLP as well as heuristically de-
termined upper bounds are displayed for instances from the literature with wTpath =
0, wBpath = 1. We write “TL” if the time limit of 8 hours is exceeded. Lower bounds
for the 3-BFLP are marked with “ ’ ” if the time limit is exceeded or if we run out of
memory storage. The optimal value of the TRFLP is up to 6.1% smaller than the optimal
value of the 3-BFLP and up to 23.4% than the optimal value of the SRFLP.

In Table 1 we set wTpath = 0 and wBpath = 1. The optimal value of the TRFLP (3-BFLP) is
between 18.8% and 23.4% (13.5% and 20.5%) smaller than the optimal value of the SRFLP, so
the optimal values of the TRFLP and the 3-BFLP are significantly smaller than the optimal value
of the SRFLP. Further, the optimal value of the TRFLP is between 1.4% and 6.1% smaller than
the optimal value of the 3-BFLP, see Table 1. So for these instances the TRFLP is preferable to
the 3-BFLP and the SRFLP. These reductions of the optimal values are remarkable since factories
are built for a long period, and the rearrangement of the departments is expensive. For the
TRFLP, the heuristic derives gaps with less than 1% to the optimal solution values and five
optimal layouts. In addition, in eleven instances the department with its center arranged first
on position pM in Algorithm 1 for the TRFLP has its center position on pM in the calculated
optimal T-row layout. The heuristics were computed in less than one second. For the 3-BFLP the
heuristic derives two optimal layouts and for the instance Am13a the gap is around 4.4%. For
the remaining instances, the gaps are less than 1.5%. The 3-Bay instances with 18 departments
are not solved to optimality, but we obtain lower bounds with tight gaps to the heuristically
determined upper bounds, i. e., the gaps are between 4.0% and 7.9%.

In Table 2 we compare the running times of several approaches for the 3-BFLP and the TRFLP,
given in sec, min:sec and h:min:sec. In column 2 we display the running time of the current best
exact approach for the 3-BFLP by [43] where the 3-BFLP is solved with fixed row assignment
and we enumerate over all distinguishable row assignments as suggested in [43]. Adapting this
approach to the sM-TRFLP and using Algorithm 1, we obtain an optimal solution for the TRFLP
and the running time is displayed in column 4. In both approaches, a heuristically determined
upper bound is used. In the fifth, sixth and seventh column we display the running time of our
separation variant i ∈ [3], see Section 3.5, denoted by “MILPi”. In the eights column we mainly use
the same separation strategy as in variant 1, but we use standard linearization, see inequalities
(59)–(61) in the appendix, to couple our new extended betweenness variables to the ordering,
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assignment and betweenness variables containing dummy departments or sM . This variant is
denoted by variant 4 and we do not use the transitivity inequalities (19)–(20). Additionally,
we set up a MILP model for the sM-TRFLP which consists of betweenness variables which are
only equal to one if all departments are in the same row (in this version, betweenness variables
are known in the literature). The distances between i ∈ [n] \ {sM} and j ∈ [n] \ {sM}, i < j,
are calculated via big-M -constraints and the betweenness variables are coupled via standard
linearization to the ordering variables. Note that the transitivity inequalities (19)–(20) are not
valid for this MILP model. We refer to the appendix for a description and the running time of
Algorithm 1 using this MILP model is summarized in the ninth column. We use a time limit of 8
hours and we write “TL” if the time limit is exceeded.
Considering the TRFLP, variant 1 clearly outperforms the other approaches because all con-

sidered T-row instances with 17 departments and even one instance with 18 departments were
solved to optimality within the time limit of 8 hours. The second best approach is variant 2 where
one T-row instance with 17 departments is solved to optimality. Note that inequalities (36)–(37),
which are neglected in variant 2, are not valid for betweenness variables used in the literature,
i. e., betweenness variables which can only be equal to one if the three departments are in the
same row. The running time of our approach using variant 2 is for almost all instances with at
least 14 departments more than twice as high as the running time of our approach using variant
1. Thus, the inequalities (36)–(37) significantly improve the performance of our algorithm.

The sM-TRFLP model summarized in the appendix is significantly weaker than variant 1
because standard linearization is used to couple the betweenness variables and the ordering
variables and big-M -constraints are used to calculate distances between departments in distinct
rows. Using this approach, only instances with up to 15 departments were solved to optimality
within the time limit of 8 hours while in the approach of variant 1 instances with 15 departments
were solved to optimality in less than 20 minutes. Considering variant 4, the performance is
even worse than the performance of the sM-TRFLP model summarized in the appendix. This
shows that the transitivity inequalities (19)–(20) significantly improve the performance of our
approach in comparison to the standard linearization. In comparison to variant 1, in variant 3
significantly more inequalities are added, and thus the gap at the root node is smaller. However,
this increases the running time in the further branching steps, and hence variant 3 is slower than
variant 1. In conclusion, our experiments show that our extension of the betweenness variables in
combination with the transitivity inequalities (19)–(20) and inequalities (36)–(37) significantly
improve the performance of our branch-and-cut algorithm. For all instances which were solved
to optimality, our best approach for the TRFLP is faster than our approach for the 3-BFLP.

The enumerative approach of [43] is only able to solve 3-Bay instances with up to 14 departments
and T-row instances with up to 13 departments within 8 hours. For larger instances, the running
time is exceeded. In the corresponding TRFLP approach one enumerates over each department
with its center position fixed on position pM in row 1, and therefore one has to consider more MILP
models than in the 3-BFLP. Thus, the running time is higher. In contrast, our approach (variant
1) is able to solve T-row instances with 13 departments in a few minutes and 3-Bay instances
with 14 departments in less than 15 minutes. So for both problems we clearly outperform the
approach of [43].

The inter-row transport is more costly than the inner-row transport, see, e. g.,[25, 67]. Therefore,
we investigate the effect of enlarging wTpath + 1 = wBpath on the optimal value of the TRFLP and
the 3-BFLP. In the previous results we observed that our approaches clearly outperformed the
enumerative approaches, so in Table 3 and Table 4 we apply only our best fitting approaches,
i. e., variant 1 for the TRFLP. The notation in Table 3 and Table 4 is similar to the notation
above and we denote by “Time3-BFLP” and “TimeTRFLP” the running time of our approach for the
3-BFLP and the TRFLP, respectively, and by “TRFLP” and “3-BFLP” the objective value of the
TRFLP and 3-BFLP.

We consider literature instances in Table 3 with wTpath+ 1 = wBpath = 4 and wTpath+ 1 = wBpath =
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Instances Enu3-BFLP MILP3-BFLP EnuTRFLP MILP1 MILP2 MILP3 MILP4 MILPsame-row
Am11a 3:26 48 9:31 33 54 34 1:04 1:37
Am11b 3:35 1:19 10:11 20 41 16 41 1:27
Am12a 13:26 1:53 38:29 51 1:29 1:20 2:44 6:18
Am12b 13:30 1:01 40:19 42 1:15 50 2:35 6:40
Am13a 53:46 4:16 2:58:52 2:17 3:05 3:56 14:03 24:18
Am13b 53:34 9:31 3:01:51 2:17 2:58 5:02 10:16 18:33
Am14_1 3:45:33 1:28:24 TL 9:11 16:27 24:47 1:16:10 1:17:49
Am14a 3:28:30 13:23 TL 6:00 15:32 12:13 52:54 58:26
Am14b 3:28:47 13:37 TL 6:51 15:59 17:34 1:22:07 1:17:58
Am15 TL 25:24 TL 15:31 33:45 1:49:33 3:20:07 3:35:25
HK15 TL 17:51 TL 13:48 20:05 58:54 3:54:52 2:56:30
P16a TL 44:00 TL 1:12:31 3:27:04 TL TL TL
P16b TL 1:21:35 TL 1:09:58 2:42:40 6:04:38 TL TL
P17a TL 3:51:48 TL 3:32:27 TL TL TL TL
P17b TL 6:31:46 TL 3:37:59 TL TL TL TL
Am17 TL 4:58:37 TL 2:19:20 5:53:06 TL TL TL
P18a TL TL TL TL TL TL TL TL
P18b TL 5:23:22† TL TL TL TL TL TL
Am18 TL TL TL 6:01:58 TL TL TL TL

Table 2: Running times are given in sec, min:sec or in h:min:sec for instances from the literature
with wTpath = 0, wBpath = 1. We write “TL” if the time limit of 8 hours is exceeded and
the running time is marked with “†” if we run out of memory storage. For the TRFLP,
variant 1 delivers the fastest approach. We clearly outperform the enumerative approach
of [43] for the TRFLP and the 3-BFLP.

11. By enlarging wBpath, the running time of the 3-BFLP approach is for some instances significantly
increased and for some instances significantly decreased. In contrast to the case of wBpath = 1, we
are able to solve one 3-Bay instance with 18 departments to optimality. Note that for larger
values of wBpath we run more often out of memory storage. For the TRFLP the running time is only
slightly influenced (neglecting instance P17b) by enlarging wTpath, so our approach works well
with large values of wTpath and wBpath. For wTpath = 3 and wBpath = 4 (wTpath = 10 and wBpath = 11),
the optimal value of the TRFLP is between 2.4% and 11.4% (3.7% and 12.2%) smaller than
the optimal value of the 3-BFLP. So by enlarging wTpath and wBpath, the gap between the optimal
value of the TRFLP and the optimal value of the 3-BFLP is increased in our computational results.
The optimal value of the TRFLP with wTpath = 3 (wTpath = 10) is between 1.2% and 7.7% (3.9%
and 18.3%) greater than the optimal value of the TRFLP with wTpath = 0. The optimal value of
the 3-BFLP with wBpath = 4 is between 2.3% and 13.0% greater than the optimal value of the
3-BFLP with wBpath = 0 and the 3-BFLP with wBpath = 11 has 13 times the same optimal value as
the SRFLP. So with wBpath ≥ 11 the departments are often arranged in one row. In contrast, the
optimal value of the TRFLP with wTpath = 10 is up to 12.3% smaller than the optimal value of the
SRFLP.
In addition, we generate star instances with `1 = 20 and we choose the remaining integer

department lengths randomly between 1 and 15. We set integer transport weights w1i, i ∈ [n], i ≥
2, randomly between 10 and 20 and for the remaining departments we set the transport density
of 20% and we choose integer transport weights randomly between 1 and 10. We generate 5
instances for each n and we use a time limit of 4 hours for our branch-and-cut algorithm. If the
3-BFLP is not solved to optimality, the obtained lower bound is displayed and marked it with “ ’
”.

The TRFLP was solved to optimality for all instances with up to 19 departments and we were
able to solve four of the five instances with 20 departments in less than four hours, see Table
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wT
path = 3, wB

path = 4 wT
path = 10, wB

path = 11

Instances 3-BFLP TRFLP Time3-BFLP TimeTRFLP 3-BFLP TRFLP Time3-BFLP TimeTRFLP
Am11a 9774.5 8902.0 25 28 10630.5 9852.5 13 26
Am11b 6890.5 6118.5 10 16 7375.5 6930.5 10 12
Am12a 2862.0 2552.0 1:29 51 2901.0 2793.5 20 37
Am12b 3093.5 2740.5 1:38 40 3280.5 3081.5 40 38
Am13a 4489.5 4077.0 5:02 2:01 4902.5 4517.5 1:26 2:04
Am13b 4956.0 4581.5 1:41 1:54 5698.0 4999.0 8:07 1:54
Am14_1 5114.5 4642.0 31:33 8:53 5481.5 5169.5 3:17 10:17
Am14a 5296.0 4751.0 17:11 5:35 5673.0 5327.5 4:43 5:10
Am14b 5248.0 4739.5 8:36 6:47 5595.0 5323.0 3:28 7:45
Am15 5869.0 5378.0 22:30 15:53 6305.0 5946.5 12:20 17:26
HK15 27107.0 26446.0 52:28 13:04 28486.0 27180.0 15:57 12:04
P16a 13142.5 12381.0 2:22:28 1:18:48 14828.5 13233.0 2:38:45 1:13:21
P16b 10583.5 9882.5 2:00:08 1:12:04 11878.5 10627.5 2:57:12 1:05:12
P17a 10770.0’ 11956.5 4:04:58† 3:57:30 13429.5’ 12871.0 5:46:33† 3:48:33
P17b 13596.5 12779.0 6:51:30 3:06:40 14332.5’ 13761.0 4:46:06† 5:09:02
Am17 8516.0 7767.5 3:32:13 2:20:52 9254.0 8590.0 2:19:17 1:51:48
P18a 11750.0’ TL TL TL 13496.5’ TL 6:22:30† TL
P18b 13732.0’ 5289.5 6:27:55† TL 14250.5’ TL 4:19:38† TL
Am18 9744.5 8911.5 5:51:56 5:41:57 10650.5 9807.5 4:00:48 5:49:05

Table 3: Optimal values of the 3-BFLP and the TRFLP for instances from the literature with
wTpath + 1 = wBpath = 4 as well as wTpath + 1 = wBpath = 11. We write “TL” if the time limit
of 8 hours is exceeded and the running time is marked with “†” if we run out of memory
storage. The running times are given in sec, min:sec or h:min:sec. If the 3-BFLP is not
solved to optimality, the obtained lower bounds are marked with “ ’ ”.

4. For the 3-BFLP, all instances with 18 departments and four (two) instances with 19 (20)
departments were solved to optimality. For most star instances, the TRFLP is solved faster than
the 3-BFLP. The optimal value of the TRFLP is between 26.2% and 40.8% smaller than the
optimal value of the SRFLP and by 8.5% to 33.1% smaller than the optimal value of the 3-BFLP.
So for the considered instances, the TRFLP and the 3-BFLP are preferable to the SRFLP and the
TRFLP is preferable to the 3-BFLP. Again, our heuristic approaches obtain small gaps, i. e., less
than 6.3% for the 3-Bay instances and for almost all T-row instances less than 2.0%.
Furthermore, we use variant 3 to compute lower bounds for larger T-row instances and all

additionally added inequalities in variant 3 in comparison to variant 1 are also added to the
3-BFLP using the same separation strategy. The calculation of heuristics by Cplex is disabled.
We interrupt the branch-and-cut algorithm when we reach the root node, i. e., at first the LP
consisting of the inequalities included in the beginning is solved with xikj ∈ [0, 1], |{i, j, k}| =
3, i < j, zij ∈ [0, 1], i, j ∈ [n] \ {sM}, i 6= j, zisM ∈ [0, 1], i ∈ [n] \ {sM}, yi ∈ [0, 1], i ∈ [n], and
then violated cutting planes are added according to our separation strategy. This LP is solved
again until we obtain a binary solution, i. e., the y, z and x variables are binary, or until no
violated cutting plane can be found. Besides this, we use Algorithm 1 as described above for the
TRFLP. We set a time limit of 4 hours and if we exceed this time limit we display the current best
lower bound for the 3-BFLP. The instances P19a, P19b and P19c are generated as described
in [7], the instances with n ∈ {20, 21, 22, 23} are taken from [7] and the instances with n = 24
are taken from [81]. In Table 5 we denote by “ L3-BFLP” (“LTRFLP”) the obtained lower bound
for the 3-BFLP (TRFLP) in the second and third column and we rounded the lower bounds such
that 2 · L3-BFLP ∈ Z (2 · LTRFLP ∈ Z). The objective values of our heuristically determined upper
bounds are denoted by H3-BFLP and HTRFLP for the 3-BFLP and the TRFLP, respectively. The gap
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Instance SRFLP 3-BFLP TRFLP H3-BFLP HTRFLP Time3-BFLP TimeTRFLP
11a 2875.0 2543.0 1702.0 2550.0 1702.0 5 0
11b 4346.5 3482.5 2847.5 3513.5 2847.5 12 2
11c 3417.0 3019.0 2301.0 3112.0 2301.0 10 1
11d 4180.0 3412.0 2878.0 3412.0 2878.0 5 2
11e 4334.5 3679.5 3098.5 3720.5 3122.5 8 4
12a 7903.0 6333.0 5540.0 6403.0 5540.0 2:20 13
12b 5587.0 4598.0 3911.0 4642.0 3925.0 10 6
12c 3914.0 3286.0 2529.0 3338.0 2529.0 15 2
12d 5876.5 4803.5 4027.5 4892.5 4040.5 21 8
12e 7809.0 6199.0 5583.0 6299.0 5583.0 1:08 15
13a 5584.5 4700.5 3823.5 4779.5 3829.5 40 11
13b 5036.5 4247.5 3290.5 4247.5 3290.5 18 4
13c 6023.5 4877.5 4040.5 4877.5 4040.5 50 20
13d 5952.0 4838.0 4036.0 4956.0 4036.0 55 27
13e 4944.0 4170.0 3266.0 4220.0 3281.0 51 8
14a 7153.5 5900.5 5276.5 6023.5 5276.5 1:45 1:01
14b 7933.0 6524.0 5640.0 6703.0 5640.0 1:36 48
14c 6251.0 5195.0 4150.0 5259.0 4185.0 1:32 23
14d 6782.0 5784.0 4884.0 5830.0 4884.0 1:31 26
14e 6913.5 5800.5 4935.5 5874.5 5034.5 55 49
15a 7668.0 6120.0 5312.0 6208.0 5312.0 2:02 1:31
15b 7730.5 6317.5 5298.5 6317.5 5355.5 5:38 1:36
15c 6387.0 5199.0 4225.0 5199.0 4225.0 7:02 1:27
15d 6559.5 5608.5 4609.5 5662.5 4609.5 3:06 48
15e 6929.0 5567.0 4643.0 5601.0 4662.0 8:09 3:37
16a 9461.0 7663.0 6564.0 8142.0 6779.0 7:48 3:54
16b 11912.0 9376.0 8356.0 9376.0 8356.0 10:00 10:15
16c 11351.5 9122.5 8082.5 9255.5 8113.5 8:58 6:27
16d 8073.5 6548.5 5521.5 6609.5 5535.5 8:28 3:23
16e 8184.0 6541.0 5561.0 6541.0 5577.0 3:49 4:49
17a 11063.0 8985.0 7853.0 9036.0 7853.0 1:50:14 13:47
17b 13692.5 10913.5 9876.5 10970.5 10009.5 36:31 34:34
17c 11101.0 8812.0 7640.0 8865.0 7640.0 27:24 12:06
17d 9753.0 7981.0 6823.0 8213.0 6929.0 23:10 9:59
17e 9879.4 7957.5 6736.5 8027.5 6810.5 26:19 9:37
18a 15157.5 12288.5 11108.5 12455.5 11214.5 1:16:55 36:08
18b 10254.5 8142.5 7037.5 8315.5 7088.5 1:01:53 25:32
18c 12847.5 10370.5 9264.5 10406.5 9285.5 1:14:52 38:36
18d 9437.0 7638.0 6464.0 7720.0 6483.0 1:58:08 21:11
18e 11769.0 9661.0 8538.0 9661.0 8538.0 1:00:53 32:16
19a 14371.5 11353.0 10046.5 11433.5 10148.5 1:48:11 1:40:54
19b 14110.5 11414.5 10203.5 11693.5 10203.5 3:53:33 1:19:15
19c 10119.0 8100.0 6637.0 8337.0 6731.0 1:11:44 25:56
19d 12821.0 8805.5’ 8848.0 10200.0 8848.0 TL 1:58:16
19e 13209.0 10380.0 9495.0 10484.0 9575.0 1:56:34 2:37:10
20a 11826.0 9529.0 8257.0 9828.0 8288.0 2:08:43 1:27:44
20b 15956.5 12397.0 TL 12446.5 12127.5 3:12:02 TL
20c 14191.0 8471.0’ 9826.0 11192.0 9827.0 TL 3:28:52
20d 16047.5 11876.0’ 11540.5 12826.5 11540.5 TL 3:51:36
20e 11882.5 8384.0’ 8097.5 9462.5 8105.5 TL 2:39:25

Table 4: Optimal values for the SRFLP, the 3-BFLP and the TRFLP for randomly generated star
instances are displayed. The running times are given in sec, min:sec or in h:min:sec.
Note that the TRFLP was solved to optimality for four instances with n = 20 departments.
The optimal value of the TRFLP is up to 33.1% smaller than the optimal value of the
3-BFLP and up to 40.8% smaller than the optimal value of the SRFLP.
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is calculated by

Gapa = Ha − La
Ha

· 100, a ∈ {3-BFLP,TRFLP}.

and the gap for the 3-BFLP (TRFLP) is given in the sixth (seventh) column denoted by “Gap3-BFLP”
(“GapTRFLP”) . Considering our results in Table 5, we obtain lower bounds for T-row instances
with up to 22 departments with gaps less than 9.68% to heuristically determined upper bounds.
For four of the five instances with 22 departments and for all larger instances the time limit
was exceeded, and hence we are not able to derive non-trivial lower bounds for the TRFLP.
If the root node is reached in the time limit of 4 hours, we obtain gaps between 2.23% and
7.90% to heuristically determined upper bounds for 3-Bay instances with up to 24 departments.
Considering the instances P24a and P24c, the root node was not reached and therefore the gaps
are higher, i. e., up to 10.12%. In conclusion, our approach is able to calculate tight lower bounds
for the TRFLP and the 3-BFLP whereby the lower bounds for the 3-BFLP are generally better.

6 Conclusion and Future Work
In this paper we introduced a new facility layout problem, the so-called T-Row Facility Layout
Problem (TRFLP), which is a generalization of the Multi-Bay Facility Layout Problem (MBFLP)
with m = 3 rows denoted by (3-BFLP). The TRFLP and the MBFLP have several applications,
e. g., in heavy manufacturing and semiconductor fabrication. The TRFLP has a more complex
path structure than the 3-BFLP and we proved there always exists an optimal T-row layout
where one department has its center position on pM in row 1. In a branch-and-cut approach we
enumerated over each department with its center fixed on position pM in row 1 and we presented
a mixed-integer linear programming (MILP) model for this problem based on an extension of
the betweenness variables which might be in contrast to the literature equal to one if the
corresponding departments lie in different rows. Transitivity inequalities are used to ensure the
correct relation of these extended betweenness variables to the remaining variables. To strengthen
our formulation we provided cutting planes exploring the crossroad structure of the TRFLP. In
addition, we adapted our MILP model to the 3-BFLP.

We were able to solve T-row and 3-bay instances from the literature with up to 18 departments
within a given time limit of 8 hours and we clearly outperform the current best approach from
the literature. Further, we outperform a MILP approach based on betweenness variables as known
in the literature and we observed in our computational results that the transitivity inequalities
(in comparison to the standard linearization) and the cutting planes significantly improve the
performance of our approach. Additionally, we considered star instances and we were able to solve
even larger instances of this type for the TRFLP and the 3-BFLP. According to our computational
results, the TRFLP is preferable to the 3-BFLP and the SRFLP if a factory is built from the ground
up, because the optimal value is significantly smaller and in factory planning the departments
are arranged for a long period since the rearrangement of the departments is expensive. So even
a small reduction of the yearly production costs can reduce the total production costs over a long
period significantly. In addition, our approach is able to calculate tight lower bounds for even
larger T-row and 3-Bay instances to evaluate the quality of heuristically determined layouts.
It remains for future work to consider facility layouts in the shape of an X or an U and the

MBFLP with m = 4 and m = 5. Therefore, one can use our extension of the betweenness variables
and one can adapt our MILP approach as well as our cutting planes. From a practical point of
view, it is interesting to extend the betweenness model for the SRFLP such that it is capable of
more realistic extensions such as individual in- and output positions of the departments and to
use the result of Proposition 1 to improve the performance of the branch-and-cut algorithm for
the SRFLP.
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Instance L3-BFLP LTRFLP H3-BFLP HTRFLP Gap3-BFLP GapTRFLP Time3-BFLP TimeTRFLP
Am11a 8450.0 7823.5 8814.5 8411.5 4.14% 6.99% 5 8
Am11b 5882.0 5431.0 6021.5 5667.5 2.32% 4.17% 5 4
Am12a 2382.5 2207.5 2515.0 2354.5 5.27% 6.24% 18 13
Am12b 2621.5 2482.0 2697.5 2548.5 2.82% 2.61% 15 25
Am13a 3872.5 3688.0 4204.5 3836.0 7.90% 3.86% 37 43
Am13b 4357.0 4215.5 4529.0 4362.5 3.80% 3.37% 38 1:12
Am14_1 4359.0 4079.5 4565.5 4358.0 4.52% 6.39% 1:21 2:03
Am14a 4560.0 4273.5 4734.0 4448.0 3.68% 3.92% 59 1:43
Am14b 4482.5 4200.5 4683.0 4433.0 4.28% 5.24% 1:03 2:03
Am15 4953.0 4744.5 5294.0 5079.0 6.44% 6.59% 1:06 4:33
HK15 25521.5 24528.5 26495.0 26125.0 3.67% 6.11% 2:04 4:30
P16a 11536.0 10911.0 12326.0 11943.0 6.41% 8.64% 1:58 12:02
P16b 9305.5 8677.5 9784.5 9469.5 4.90% 8.36% 2:25 14:26
P17a 11344.5 10428.5 11888.5 11528.0 4.58% 9.54% 3:23 21:26
P17b 12207.5 11388.0 12874.0 12389.0 5.18% 8.08% 5:06 33:43
Am17 7267.5 6788.5 7690.0 7318.0 5.49% 7.24% 5:02 18:38
P18a 12333.0 11611.0 12863.5 12516.0 4.12% 7.23% 8:52 56:12
P18b 13746.0 12578.0 14616.5 14072.0 6.00% 0.62% 6:50 25:47
Am18 8318.0 7758.0 8835.5 8413.5 5.86% 7.79% 6:56 36:06
P19a 14049.5 13140.5 14715.5 14289.5 4.53% 8.04% 6:26 53:53
P19b 18074.5 16975.5 19166.5 18660.0 5.70% 9.03% 10:24 1:14:46
P19c 9865.0 9230.0 10455.0 9989.5 5.64% 7.60% 6:53 59:02
P20a 18485.5 17297.0 19204.5 18716.5 3.74% 7.58% 20:46 2:46:18
P20b 19277.5 17897.0 20427.0 19816.0 5.63% 9.68% 18:18 1:52:04
H20 11882.5 11138.0 12576.0 12087.0 5.51% 7.85% 38:06 2:52:48
P21a 10382.5 9645.5 10862.5 10439.0 4.42% 7.60% 23:50 3:10:40
P21b 17646.0 16354.5 18233.0 17806.0 3.22% 8.15% 17:07 1:26:56
P21c 16811.0 15799.0 17806.0 17100.0 5.59% 7.61% 21:22 2:55:49
P22a 12912.5 - 13757.0 13238.0 6.14% - 32:21 TL
P22b 22686.0 - 24096.0 23359.5 5.85% - 36:59 TL
P22c 21413.0 19922.5 22940.0 22036.0 6.66% 9.59% 35:55 3:28:12
P23a 14790.5 - 15975.0 15248.5 7.41% - 3:39:59 TL
P23b 22532.5 - 23484.5 22968.0 4.05% - 1:34:25 TL
P23c 22206.0 - 23617.0 22956.5 5.97% - 1:34:36 TL
P24a 16529.0 - 18390.0 17728.0 10.12% - TL TL
P24b 23478.5 - 25219.5 24578.5 6.90% - 2:13:54 TL
P24c 25114.0 - 27020.0 26058.5 7.05% - TL TL
P24d 23519.0 - 25113.0 24366.0 6.35% - 3:37:30 TL
P24e 27066.0 - 28809.0 28200.0 6.05% - 2:00:17 TL

Table 5: Calculation of lower bounds for the 3-BFLP and the TRFLP with a given time limit of 4
hours and the computation of the branch-and-cut algorithm is interrupted at the root
node. We use variant 3 of our separation strategy. The gaps of the lower bounds for the
3-BFLP are less than 10.12% to heuristically determined upper bounds for the 3-BFLP
and even better if the root node is reached during the time limit. The computation
time in the last two columns are given in sec, min:sec, h:min:sec and we write “ TL ” if
the time limit of 4 hours is exceeded.
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Appendix
We present a MILP model for the sM-TRFLP, based on betweenness variables which can only be
equal to one, if the corresponding three departments are in the same row, see, e. g., [3, 22, 28, 43].
The dummy departments n+ 1 and n+ 2 are added to the model as described in Section 3.2.
Then

xjki = xikj =
{

1, if k lies between i and j in the same row,
0, otherwise,

i, j, k ∈ [n+ 2], |{i, j, k}| = 3, i < j. The ordering and assignment variables are used as described
in Section 3.2

zij =
{

1, i is left to j and i and j are in the same row
0, otherwise,

i, j ∈ [n], i 6= j, and

yi =
{

1, if i lies in row 1
0, otherwise,

i ∈ [n]. Further, let dij = dji denote the distance between i ∈ [n] and j ∈ [n], i < j, mea-
sured in rectilinear directions. Let sM ∈ [n] be fixed. We exclude the constant W T :=∑
i,j∈[n]\{sM}

i<j

`i+`j
2 wij + ∑

i∈[n]\{sM}wisM

`i
2 . Then our MILP model for the sM-TRFLP with

M := 2 ·∑k∈[n] `k reads as follows
∑

i,j∈[n]
i<j

wijdij

s. t. (7)− (18), (21),
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xikj − zik − zkj ≥ −1, i, j, k ∈ [n] \ {sM}, i < j, |{i, j, k}| = 3,
(52)

xikj − zjk − zki ≥ −1, i, j, k ∈ [n] \ {sM}, i < j, |{i, j, k}| = 3,
(53)

dij −
∑

k∈[n]\{i,j}
`kxikj ≥ 0, i, j ∈ [n], i < j, (54)

disM + yi

(
wTpath −

`sM

2

)

−
∑

k∈[n]\{i,sM}
`k
(
xiksM

+ x(n+2)ki
)

= wTpath, i ∈ [n] \ {sM}, (55)

dij ≥ disM + djsM −M(1− yi + yj), i, j ∈ [n] \ {sM}, i < j, (56)
dij ≥ disM + djsM −M(1 + yi − yj), i, j ∈ [n] \ {sM}, i < j, (57)
dij ≥ 0, i, j ∈ [n], i 6= j. (58)

Inequalities (52)–(53) are related to the standard linearization to calculate lower bounds for the
betweenness variables. Note that upper bounds are obtained by inequalities (21). Previous tests,
which we do not mention here, indicate that upper bounds obtained by the standard linearization
do not improve this approach. The distance between i ∈ [n] \ {sM} and j ∈ [n] \ {sM}, i < j,
is calculated via inequalities (54) if i and j are in the same row, otherwise inequalities (54) are
redundant. The distance between i ∈ [n] \ {sM} and sM is calculated by inequalities (55). If
i ∈ [n] \ {sM} lies in row 1 (row 2) and j ∈ [n] \ {sM}, i < j, in row 2 (row 1), their distance
is calculated by inequalities (56) ((57)). The y, z and x variables are chosen as described in
Theorem 3. The z variables are set to binary values as shown in the proof of Theorem 3. Further,
xikj , i, j, k ∈ [n], i < j, |{i, j, k}| = 3, is set to a binary value if wij > 0 by inequalities (52)–(53),
inequalities (21) and since the objective function is minimized. If wij = 0, the objective function
is not influenced by the value of xikj .

Inequalities (7), inequalities (9)–(18) and inequalities (52)-(57) are included from the beginning
and inequalities (21) are separated as described in Section 3.3. For the usage of equations (8)
we refer to Section 3.3. Additionally, we use inequalities (38), (39), (41) as described in Section
3.3 and we use the symmetry breaking constraints (29)–(30). Here, betweenness variables can
only be equal to one if the corresponding departments lie in the same row, hence inequalities
(19)-(20) and inequalities (36)-(37) are not valid for this MILP model.

In the following, we describe the standard linearization used in the approach denoted by variant
4 for the TRFLP in Table 2. We use standard linearization (instead of inequalities (19)–(20)) to
couple the extended betweenness variables, i. e.,

xikj − zik − zkj ≥ −1, i, j, k ∈ [n] \ {sM}, |{i, j, k}| = 3, (59)
xikj − xsMki + yj ≥ 0, i, j, k ∈ [n] \ {sM}, |{i, j, k}| = 3, (60)
xikj − x(n+2)ki − yj ≥ −1, i, j, k ∈ [n] \ {sM}, |{i, j, k}| = 3. (61)

The inequalities (59)–(61) are included from the beginning and the inequalities (19)–(20) are
neglected. Besides this, we use variant 1 as described in Section 3.5. The corresponding upper
bounds are obtained by inequalities (21) and previous tests, which we do not mention here,
indicate that upper bounds related to the standard linearization do not improve this approach.
The y, z and x variables are chosen as described in Theorem 3. The z variables are set to binary
values as shown in the proof of Theorem 3. Further, xikj , i, j, k ∈ [n], i < j, |{i, j, k}| = 3, is set
to a binary value if wij > 0 by inequalities (59)–(61), inequalities (21) and since the objective
function is minimized. If wij = 0, the objective function is not influenced by the value of xikj .
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In this paper we consider the Combined Cell Layout Problem (CCLP), the Multi-Bay
Facility Layout Problem (MBFLP) and several generalizations of the MBFLP, which
have wide applications, e.g., in factory planning, heavy manufacturing, semiconductor
fabrication and arranging rooms in hospitals. Given a set of cells of type single-row
or directed-circular and a set of one-dimensional departments with pairwise transport
weights between them, the CCLP asks for an assignment of the departments to
the cells such that departments in the same cell do not overlap and such that the
sum of the weighted center-to-center distances is minimized. Distances between
departments in the same cell are measured according to the layout type of the cell
and otherwise their distance equals the sum of the distances to the associated (un-)
loading stations of the cells plus possible space between the cells. We solve the CCLP
exactly by enumerating over all assignments of the departments to the cells and
solving several CCLP with fixed-cell assignment. We show how to reduce the number
of distinguishable cell assignments significantly by merging two cells of type single-row.
This leads to new well-performing exact approaches for the CCLP, the MBFLP and
its generalizations where arising subproblems are solved via (new) mixed-integer
linear programming models. In a computational study we compare the computation
times and the optimal values of various facility layout problems in order to support
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1 Introduction
The aim of facility layout problems is to find an optimal non-overlapping arrangement of
departments inside a plant according to a given objective function, e. g., minimizing material-
handling costs. It constitutes an important problem for manufacturing industries as up to 50%
of manufacturing costs are due to moving parts between different facilities, and thus a good
arrangement of facilities might reduce up to 30% of material-handling costs [53]. In contrast, a
poor layout can add up to 36% of material-handling costs [16]. Especially in terms of Industry
4.0 and Smart Manufacturing minimizing material-handling costs, and hence finding an optimal
layout of the departments within the facilities, plays an enormous role [2, 46].
In this work we consider various facility layout problems and propose new well-performing

exact approaches for solving them. We are given the following setting for all layout problems
considered: A set of n ∈ N one-dimensional departments [n] := {1, . . . , n}, with lengths `i, i ∈ [n],
and pairwise weights wij , i, j ∈ [n], i 6= j, and a set of cells C. The task is to minimize the sum
of the weighted center-to-center distances of the departments such that departments in the same
cell do not overlap. The considered problems differ in two aspects – the structure of the layout,
i. e., the number of cells and their (un-) loading positions – and the distance calculation. We
describe the differences in the following.

At first, we consider problems consisting of one cell and we deal with the Single-Row Facility
Layout Problem (SRFLP) and the Directed Circular Facility Layout Problem (DCFLP). In the
SRFLP one looks for an arrangement of the departments in one row such that the weighted sum
of the horizontal center-to-center distances between the departments is minimized. Like for
all other layout problems considered in this work, the arrangement of machines within flexible
manufacturing systems is a perfect application example [29]. Further, applications can be found in
the alignment of departments in office buildings, hospitals or in supermarkets [52], the assignment
of files to disk cylinders in computer storage, and the design of warehouse layouts [42, 48]. In
the DCFLP the task is to find an arrangement of the departments along a circle such that the
weighted sum of the center-to-center distances measured in clockwise direction is minimized.
According to [1, 44], the DCFLP has several practical advantages over the SRFLP, e. g., relative low
initial investment costs because of their space-saving design and high material handling flexibility.
The DCFLP arises by, e. g., determining a space-free alignment around a cyclic conveyor system or
the cyclic motion path of an industrial robot. Both, the SRFLP and the DCFLP are widely studied,
see, e. g., [5, 15, 36, 37, 38, 40].
The focus of this work lies on facility layout problems consisting of several cells where we

concentrate on problems with up to four cells in the computational experiments. At first, we
consider the Combined Cell Layout Problem (CCLP), which is a generalization of the SRFLP and
the DCFLP. We are given a set of cells C := {1, . . . ,m}, m ∈ [n], m ≥ 2, each with an (un-)
loading station whose position is denoted by pEk , k ∈ C (in this paper we always assume that
loading and unloading station of a cell are the same). The function t : C → {SRFLP, DCFLP}
specifies the associated layout type of each cell. For t(k) = SRFLP, k ∈ C, the position pEk of the
loading station is fixed at the left or right border of cell k and for t(k) = DCFLP, k ∈ C, the loading
station can be placed on an arbitrary position along the circle. The inner-cell distances depend on
the type of the cell. The inter-cell distance between cell k ∈ C and cell o ∈ C, k < o, is denoted
by uko and the distance between departments in different cells equals the sum of the distances
of the departments to the respective loading station in the same cell plus the corresponding
inter-cell distance uko. We also write CCLP (m1,m2), m = m1 +m2, where m1 ∈ Z≥0 denotes
the number of cells of type SRFLP and m2 ∈ Z≥0 denotes the number of cells of type DCFLP.

Several variants of the CCLP have been studied in the literature in more detail. If the assignment
of the departments to the cells is fixed, the problem is called Fixed-Cell Combined Cell Layout
Problem (FC-CCLP)1. If t(k) = SRFLP for all k ∈ C, then this problem is denoted as Multi-Bay

1In [15, 32] this problem is denoted by Combined Cell Layout Problem instead of Fixed-Cell Combined Cell
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Facility Layout Problem (MBFLP), see, e. g., [26, 41, 47]. The cells are arranged in a non-overlapping
and in a parallel way, and hence the inter-cell distance is set to uko = wpath(o− k), k, o ∈ C, k <
o, wpath ∈ R≥0. The MBFLP is in particular interesting in practice in heavy manufacturing, e. g.,
steel production and bridge crane manufacturing, and semiconductor fabrication [45, 47, 54], as
well as arranging the rooms of the patients in hospitals where often only one side of a corridor has
windows [48]. Many real-world factory layouts implicitly use these layout structures, see, e. g.,
[18, 45]. The layout problem similar to the MBFLP but with uko = wpath for some wpath ∈ R≥0 is
denoted by Pier-Type Material Flow Pattern (PMFP), see [21]. The PMFP has applications in the
design of cross docking warehouses [21]. The size of the factory, and thus the costs of the initial
investment increases with a large number of cells. Hence, we focus on the MBFLP and the PMFP
with m = 3 and m = 4 which we call (3-BFLP), (4-BFLP), (3-PMFP) and (4-PMFP), respectively.
For instance, in a hospital each floor corresponds to a cell and the initial investment costs for
building a hospital usually increase with the number of floors. The departments are given as
one-dimensional objects. Hence, we assume implicitly that the departments have the same height
and we assume, w. l. o. g., that the height equals one. In the MBFLP with m ≥ 3 the vertical
distance between a department in cell i and a department in cell j, i, j ∈ [m], i < j, is at least
the height of row i plus the height of the cells between cell i and cell j. The vertical distances
can be included by enlarging wpath, thus, in the following, we assume that the vertical distance
is included in wpath if wpath > 0.
The T-Row Facility Layout Problem (TRFLP) was introduced in [23] and consists of two cells

of type SRFLP where the position of the loading station in cell 2 is fixed at the border and in cell
1 the position pE1 can be chosen arbitrarily. It is shown in [23] that the TRFLP is an extension of
the 3-BFLP, and hence has the same applications. For further applications we refer to [23].
We continue this line of research and introduce the X-Row Facility Layout Problem (XRFLP).

Recall that we assume that the height of the departments equals one. Given four non-overlapping
cells of type SRFLP which form an X and let dipEk denote the distance of the center of i ∈ [n] to
pEk if i is assigned to cell k ∈ [4]. Let C2 (C3) denote the set of departments assigned to cell 2
(cell 3), then one has to ensure that the departments in cell 2 and in cell 3 do not overlap, i. e.,
either dipE2

≥ 1 + `i
2 , i ∈ C2, or dipE3

≥ 1 + `i
2 , i ∈ C3, has to be satisfied. For an illustration

we refer to Figure 1d. The XRFLP is an extension of the 4-BFLP because one has to ensure
additionally that departments in cell 2 and cell 3 do not overlap. In factory planning it is
realistic to take the width of the path between cells into account because the products have to
be transported between the departments by a forklift or an automatic guided vehicle and the
transportation systems usually travel in a rectangular manner. Considering the XRFLP, let w1

path

(w2
path) denote the width of the path between cell 1 and cell 3 (cell 2 and cell 4). Measuring the

distances between cell 2 and cell 3 we do not cross a path, and hence we set the inter-cell distance
to zero. In contrast, going from cell 1 to cell 4 we cross both paths, i. e., u14 = w1

path + w2
path.

For the remaining inter-cell distances we obtain u12 = u13 = w1
path and u24 = u34 = w2

path.
We illustrate the distance calculation of the problems considered above by the following

example.

Example 1. We are given an instance with n = 5 departments with lengths `2 = 1, `1 = `3 =
`4 = 2, `5 = 3 and non-zero weights w15 = w24 = w31 = 1, w21 = w23 = w52 = 2, w42 = 3. The
inter-cell distances w1

path, w2
path for the XRFLP are set to zero as well as u12 = 0 for the CCLP

(1,1) and the CCLP (0,2). Optimal layouts of different facility layout problems are depicted in
Figure 1. Note that in the X-row layout department 2 is in cell 3.

a) An optimal single-row layout is illustrated in Figure 1a with objective value

2 · 1.5 + 1 · 5 + 1 · 2.5 + 2 · 3.5 + (3 + 1) · 1.5 + 2 · 4 = 31.5;

Layout Problem and additionally one department in each cell is fixed opposite the (un-) loading station.
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b) an optimal directed-circular layout is illustrated in Figure 1b with objective value

1 · 2.5 + 2 · 3.5 + 2 · 1.5 + 1 · 8.5 + 1 · 2 + 3 · 1.5 + 2 · 4 = 35.5;

c) an optimal T-row layout is illustrated in Figure 1c with objective value

2 · 0.5 + 1 · 2 + 1 · 2.5 + 2 · 2.5 + (3 + 1) · 1.5 + 2 · 3 = 22.5;

d) an optimal X-row layout is illustrated in Figure 1d with objective value

2 · 1.5 + 1 · 3 + 1 · 2.5 + 2 · 2.5 + (3 + 1) · 1.5 + 2 · 2 = 23.5;

e) an optimal combined cell layout with two circular layout cells is illustrated in Figure 1e
with objective value

2 · 1.5 + 1 · (2 + 1.5) + 1 · 2.5 + 2 · (0 + 2) + (3 + 1) · 0 + 2 · 2 = 17;

f) an optimal combined cell layout with one single-row and one circular layout cell is illustrated
in Figure 1f with objective value

2 · 1.5 + 1 · (3 + 1.5) + 1 · 2.5 + 2 · (0 + 3) + (3 + 1) · (0 + 1) + 2 · 2 = 24.

In the following example we compare the distance calculation of the 3-BFLP and the 4-BFLP
with the distance calculation of the 3-PMFP and the 4-PMFP.

Example 2. We are given an instance with n = 5 departments with lengths `1 = `5 = 6, `3 =
`4 = 5, `2 = 2 and non-zero weights w12 = 2, w13 = w14 = w15 = w34 = w35 = 1, wpath = 1.
Optimal 3-Bay, 4-Bay, 3-Pier-Type and 4-Pier-Type layouts are illustrated in Figure 2.

a) An optimal 3-Bay layout is illustrated in Figure 2a with an objective value of

2 · 4 + 6.5 + 11.5 + 7 + 5 + 7.5 = 45.5;

b) An optimal 4-Bay layout is illustrated in Figure 2b with an objective value of

2 · 4 + 6.5 + 7.5 + 7 + 6 + 7.5 = 42.5;

c) An optimal 3-Pier-Type layout is illustrated in Figure 2c with an objective value of

2 · 4 + 6.5 + 11.5 + 7 + 5 + 6.5 = 44.5;

d) An optimal 4-Pier-Type layout is illustrated in Figure 2d with an objective value of

2 · 4 + 6.5 + 6.5 + 7 + 6 + 6.5 = 40.5.
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(a) Optimal single-row layout with
objective value 31.5.
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(d) Optimal X-row layout with objective value 23.5.
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(e) Optimal combined cell layout for two circular
layout cells (pE1 and pE2 lie above departments
2 and 4, respectively) with objective value 17.

5
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(f) Optimal combined cell layout for one single-row and one circular layout
cell (pE1 lies on the right border and pE2 lies above department 2) with
objective value 24.

Figure 1: We are given an instance with n = 5 departments with lengths `2 = 1, `1 = `3 = `4 =
2, `5 = 3 and non-zero weights w15 = w24 = w31 = 1, w21 = w23 = w52 = 2, w42 = 3.
The inter-cell distances are set to zero. Illustration of optimal layouts and the associated
distance calculations for the SRFLP, the DCFLP, the TRFLP, the XRFLP, the CCLP (0, 2)
and the CCLP (1, 1). Detailed calculations of the objective values are given in Example 1.
Dotted lines are neglected in the distance calculations.

1.1 Literature review
There are several facility layout problems studied in the literature, see, e. g., [12, 30] for two
recent surveys. In the following we give an overview of existing solution approaches for facility
layout problems considered in this work as well as related ones:

• The SRFLP is one of a few layout types for which strong lower and upper bounds for
even large-sized instances exist which are based on Semidefinite Programming (SDP) and
Integer Linear Programming (ILP) formulations. The strongest SDP approach [35, 36] is
able to solve one instance with 42 departments to optimality while the current best ILP
approach [5], based on betweenness variables, is able to solve instances with up to 35
departments. Several heuristic approaches were presented, see, e. g., [25, 43, 49], (see [24]
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(b) Optimal 4-Bay layout with objective value
42.5.
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(c) Optimal 3-Pier-Type layout with objective
value 44.5.
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(d) Optimal 4-Pier-Type layout with objective
value 40.5.

Figure 2: We are given an instance with n = 5 departments with lengths `1 = `5 = 6, `3 = `4 = 5,
`2 = 2 and non-zero weights w12 = 2, w13 = w14 = w15 = w34 = w35 = 1, wpath = 1.
We illustrate optimal layouts and the associated distance calculations for the 3-BFLP,
the 4-BFLP, the 3-PMFP and the 4-PMFP. Dotted lines are neglected in these calculations.
For details on the distances we refer to Example 2.
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for a correction of the proof for the main result the heuristic of [49] is based on). A recent
survey is given in [40].

• The Checkpoint Ordering Problem (COP) asks for a space-free non-overlapping arrangement
of the departments in one cell such that the sum of the weighted distances of the centers of
the departments to a checkpoint whose position is given in advance is minimized. In [31]
a dynamic programming algorithm and an ILP approach is suggested for solving the COP.
Further, [34] proposed the Multiple Checkpoint Ordering Problem, which generalizes the
COP to an arbitrary but fixed number of checkpoints.

• Let a set of nodes V with |V | = n and weights wij and wji, i, j ∈ V, i < j, be given.
The Linear Ordering Problem (LOP) looks for a bijective mapping σ : [n]→ [n] such that∑

i,j∈V
σ−1(i)<σ−1(j)

wij is maximized, see, e. g., [27, 28]. The DCFLP can be modeled as an LOP,

and hence the DCFLP can be solved faster in practice than the SRFLP, see [37, 38], which
was so far considered as the simplest available layout type. An SDP and an ILP approach
are given in [38] as well as heuristic approaches such that tight lower and upper bounds for
instances with up to 100 departments are provided. We refer to [38] for an overview of
further circular layout problems.

• For the FC-CCLP where additionally in each cell one department is fixed as the loading
station, the ILP model of [15] outperformed the SDP approach of [32]. To the best of our
knowledge, our paper is the first that considers the CCLP without fixing one department as
loading station and without pre-assigning departments to given cells.

• There are several two-stage procedure heuristics for the MBFLP, see, e. g., [19, 20, 47], where
at first, the departments are assigned to the cells and second, the order of the departments
within each cell is determined. In [26] an ILP model for the MBFLP with fixed cell assignment
was proposed and optimal solutions for instances with up to 25 departments and up to 5
rows are obtained within one second. Further, a Mixed-Integer Linear Programming (MILP)
model for solving the PMFP can be found in [21]. The current best approach for the 3-BFLP
as well as for the TRFLP is given in [23] where instances with up to 18 departments are
solved to optimality and tight lower bounds for the 3-BFLP with up to 24 departments are
provided.

• The Multi-Row Facility Layout Problem (MRFLP) consists of a set of m non-overlapping
parallel cells of type SRFLP where free-space between neighboring departments in the same
cell may arise and where the distance between the departments equals their horizontal
distance. The special case with two cells is denoted by Double-Row Facility Layout Problem
(DRFLP). There are several MILP approaches for the DRFLP, see, [6, 9, 22, 51, 55], and an
SDP approach for the MRFLP [33]. The current best approach is an enumerative approach by
[26], which is able to solve double-row instances with up to 16 departments and multi-row
instances with up to 5 cells and 13 departments in reasonable time. Recently a two-stage
approach for the MRFLP was presented in [11] which allows to derive good solutions quickly
for m ≥ 3.

1.2 Our contribution
The main contributions of this paper are the following:

• We present a new exact approach for the CCLP where we enumerate over all cell assignments
of the departments and then solve several FC-CCLP. We show how to reduce the number of
cell assignments that have to be considered significantly. Indeed, given a CCLP instance
where all cells of type SRFLP have the same inter-cell distances and let an assignment of
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the departments to the cells be given, then we can merge two cells of type SRFLP. If the
number of cells of type SRFLP is even, this result allows us to halve the number of cells of
type SRFLP.

• We extend the previous mentioned results to the 3-BFLP and to the 4-BFLP with positive
inter-cell distances. We introduce the XRFLP, which is a realistic extension of the 4-BFLP
with a more complex path structure, and we show that we can use our main result for this
problem as well even with positive inter-cell distances.

• In [15, 32] a fixed department deals as (un-) loading station. We omit this assumption by
adding a dummy department with appropriate length and weights to each cell which deals
as (un-) loading station. Considering cells of type DCFLP, one department may overlap with
the dummy department and for the arising optimization problem we present a new MILP
model which outperforms an associated enumerative approach.

• At first, we present a theoretical study between the relationship of the optimal values
of several facility layout problems, see Section 3. Then, in a computational study, see
Section 6, we compare the optimal values of these layout problems on instances from the
literature in order to support the decision maker to choose the layout of a factory which is
built from the ground up. We also display the running time for solving these problems as
this might influence the decision.

• Our approach outperforms the current best approach for the 3-BFLP as well as the 3-PMFP
and 4-PMFP, and hence we partially answer a research question of [21] to derive a more
efficient exact solution approach for the PMFP.

2 Summary of exact approaches for the SRFLP and the DCFLP

In this section we summarize MILP models for the SRFLP and the DCFLP. Let D denote a set of
departments. For single-row instances with up to 20 departments the MILP model of [5] based on
betweenness variables allows to calculate optimal layouts faster than other approaches from the
literature, see, e. g. [35, 36]. For solving the DCFLP, we choose the MILP formulation suggested in
[15, 37, 38].

2.1 The Single-Row Facility Layout Problem
In the following we recall the respective MILP formulation of [5]. First, we make use of betweenness
variables xikj , i, j, k ∈ D, |{i, j, k}| = 3, i < j, where D represents a set of departments (a subset
of [n] plus partially some added dummy departments in the following where we assume that w, `
are known), with the interpretation

xikj =
{

1, if k lies between i and j,
0, otherwise.

Then the MILP model reads as follows, where we neglect the constant weights
WS = ∑

i,j∈D
i<j

(wij + wji) `i+`j2 .

min
∑

i,j∈D
i<j

(wij + wji)
∑

k∈D\{i,j}
`kxikj (1)

s. t. xikj + xjik + xijk = 1, i, j, k ∈ D, i < j < k, (2)
− xihj + xihk + xjhk ≥ 0, i, j, k, h ∈ D, i < j < k, |{i, j, k, h}| = 4, (3)
xihj − xihk + xjhk ≥ 0, i, j, k, h ∈ D, i < j < k, |{i, j, k, h}| = 4, (4)
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xihj + xihk − xjhk ≥ 0, i, j, k, h ∈ D, i < j < k, |{i, j, k, h}| = 4, (5)
xihj + xihk + xjhk ≤ 2, i, j, k, h ∈ D, i < j < k, |{i, j, k, h}| = 4, (6)
xikj ∈ {0, 1}, i, j, k ∈ D, i < j, |{i, j, k}| = 3. (7)

Note that for the SRFLP there always exists an optimal layout without free-spaces between
neighboring departments, hence, neglecting WS the distance between two departments equals
the lengths of the departments between them, see (1). Equations (2) ensure that for three
departments i, j, k ∈ D, i < j < k, exactly one of the departments lies between the other two.
In a feasible arrangement of the departments D for each subset {i, j, k, h} ⊆ D, |{i, j, k, h}| = 4,
the following holds: if department h lies between departments i and j, then department h
additionally lies between a) departments i and k or b) departments j and k, see Inequalities (3),
but not both a) and b), see Inequalities (6). Hence, Inequalities (3)–(6) ensure transitivity and
according to [5, 50] together with the binarity of the x-variables (7) we obtain a feasible ordering
of the departments.

2.2 The Directed Circular Facility Layout Problem
The approach of [15, 37, 38] makes use of distance variables dij , i, j ∈ D, i 6= j, measuring the
center-to-center distances between i and j in clockwise direction. Given a directed-circular layout,
we interpret this layout as a single-row layout with a different distance calculation by splitting
the circle at one department and unwinding it. Indeed, in order to obtain an ordering of the
departments with respect to the splitting department, we choose an arbitrary department f ∈ D
to be the leftmost department and then we say that i ∈ D\{f} is to the left of j ∈ D\{f}, i < j,
if dfi < dfj . Therefore we use ordering variables

zij =
{

1, if i lies to the left of j,
0, otherwise,

i, j ∈ D \ {f}, i < j. Note that f is the leftmost department, and hence we neglect ordering
variables containing f . Further, we can exclude some constants, let L := ∑

k∈D `k. If both
wij and wji, i, j ∈ D, i < j, are greater than zero, then we set w̃ij = wij −min{wij , wji} and
w̃ji = wji −min{wij , wji} and add the constant W := ∑

i,j∈D
i<j

min{wij , wji}L to the objective

value, see [37]. In total, we neglect the constant weights WD = ∑
i,j∈D
i 6=j

w̃ij
`i+`j

2 + W . Let

Dij , i, j ∈ D \ {f}, i < j, denote the sum of the lengths of the departments k ∈ D \ {f, i} which
are left of j minus the sum of the lengths of the departments k ∈ D \ {f, j} which are left of
i. Note that Dij , i, j ∈ D, i < j, is negative if j is left to i. Then the MILP can be written as
follows where we set Lij = Lji = L− `i − `j , i, j ∈ D, i < j.

min
∑

i,j∈D
i 6=j

w̃ijdij

s. t. 0 ≤ zij + zjk − zik ≤ 1, i, j, k ∈ D \ {f}, i < j < k, (8)
dfi −

∑

k∈D\{f}
k<i

`kzki +
∑

k∈D\{f}
k>i

`kzik =
∑

k∈D\{f}
k>i

`k, i ∈ D \ {f}, (9)

dif + dfi = Lfi, i ∈ D \ {f}, (10)
Dij −

∑

k∈D\{f,i}
k<j

`kzkj +
∑

k∈D\{f,i}
k>j

`kzjk

+
∑

k∈D\{f,j}
k<i

`kzki −
∑

k∈D\{f,j}
k>i

`kzik = −
∑

k∈D\{f}
i<k<j

`k, i, j ∈ D \ {f}, i < j, (11)
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dij + Lijzij −Dij = Lij , i, j ∈ D \ {f}, i < j, (12)
dji − Lijzij +Dij = 0, i, j ∈ D \ {f}, i < j, (13)
dij ≥ 0, i, j ∈ D, i 6= j,

zij ∈ {0, 1}, i, j ∈ D \ {f}, i < j.

Inequalities (8) are the well-known three-cycle-inequalities, which ensure transitivity and suffice
to induce a feasible ordering of the departments, see, e. g., [15, 37, 38]. Via Equations (9)–(10)
we determine for each department i ∈ D \ {f} the sum of the lengths of the departments
which lie between f and i and between i and f , respectively (calculated in clockwise direction).
Equations (11) compute for each pair of departments i and j with i, j ∈ D \ {f}, the sum of the
lengths of the departments k ∈ D \ {f, i} which are left of j minus the sum of the lengths of the
departments k ∈ D \ {f, j} which are left of i. By Equations (12) and (13) we obtain the correct
distance between i and j with i, j ∈ D \ {f}, i < j, i. e., if i lies left to j we get dij = Dij and
dji = Lij −Dij and otherwise dij = Lij +Dij and dji = −Dij with negative values of Dij in the
latter case.

3 Relation between the optimal values of several facility layout
problems

After repeating and introducing several facility layout problems we want to study in this
section the relation of the optimal objective values of the considered layout problems. We
start with a comparison of the SRFLP and the DCFLP. Let dDCFLPij , i, j ∈ [n], i 6= j, denote the
center-to-center distances between i and j measured in clockwise direction in the DCFLP and
let dSRFLPij = dSRFLPji , i, j ∈ [n], i < j, denote the horizontal center-to-center distance between
i and j in the SRFLP. It holds that dSRFLPij <

∑
k∈[n] `k, i, j ∈ [n], i < j, in the SRFLP and

dDCFLPij + dDCFLPji = ∑
k∈[n] `k in the DCFLP. Hence, for an instance with symmetric weights, i. e., if

wij = wji for all i, j ∈ [n], i < j, the optimal value of the SRFLP is less than the optimal value of
the DCFLP if n ≥ 3 (if not all weights are equal to zero). In contrast to this, consider an instance
with lengths `i = 1, i ∈ [n], and non-zero (asymmetric) weights wi(i+1) = 1, i ∈ [n − 1], and
wn1 = 1. Then, the optimal value of the DCFLP equals C := ∑

i,j∈[n],i 6=j wij
`i+`j

2 = n and for the
SRFLP one obtains C + n− 2. We illustrate two optimal single-row layouts for n = 7 in Figure 3.
This shows that it is not possible to provide a general statement comparing the optimal values of
the SRFLP and the DCFLP.
Next we extend our study to layout problems with more than one cell. In the following

consideration let wpath = w1
path = w2

path and for the CCLP (2,0), the CCLP (1,1) and the CCLP
(0,2) let u12 = wpath. The digraph D = (O,A(O)) illustrated in Figure 4 shows the relations
of the optimal objective values of the considered layout problems. An arc (i, j) ∈ A(O) from
i ∈ O := {SRFLP, DCFLP, CCLP (2,0), CCLP (1,1), CCLP (0,2), TRFLP, 3-BFLP, 4-BFLP, 3-PMFP,
4-PMFP, XRFLP} to j ∈ O, i 6= j, is added if the optimal value of the layout problem i is at least
as high as the optimal value of layout problem j. Note that transitive arcs are not illustrated.
The displayed digraph is correct. This can be shown by considering the associated optimal
layouts. Let (i, j) ∈ A(O), then usually the optimal layout for problem i ∈ O is a feasible layout
for problem j ∈ O and comparing bay and pier-type layouts just the distance calculation varies.
It was mentioned in [23] that the optimal value of the TRFLP is not higher than the one for
the 3-BFLP under the described conditions. One can construct instances such that each of the
problems TRFLP, XRFLP and 4-PMFP has the smallest optimal value of these three layout problems.
Additionally, one can construct instances such that the optimal value of the 4-BFLP is less than
or equal to the optimal value of the XRFLP and vice versa. In Section 6 we will compare the
objective values of the various layout problems for instances from the literature.
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1 2 3 4 5 6 7

(a) Optimal single-row layout with objective value
12 and distances, e. g., d71 = 6 and di(i+1) =
1, i ∈ [6].

5 4 6 7 1 3 2

(b) Optimal single-row layout with objective value
12 and distances, e. g., d12 = d56 = 2, d71 =
1, d34 = 4, and di(i+1) = 1, i ∈ {2, 4, 6}.

Figure 3: We are given an SRFLP instance with n = 7, lengths `i = 1, i ∈ [7], and non-zero
weights wi(i+1) = 1, i ∈ [6], w71 = 1. We illustrated two optimal singe-row layouts.

SRFLP

DCFLP

CCLP (0, 2)

CCLP (1, 1)

CCLP (2, 0)

3-BFLP

4-BFLP

3-PMFP

4-PMFP

TRFLP

XRFLP

Figure 4: A comparison of the optimal values of several facility layout problems where an arc
between i ∈ O = {SRFLP, DCFLP, CCLP (0, 2), CCLP (1, 1), CCLP (2, 0), TRFLP, 3-BFLP,
4-BFLP, 3-PMFP, 4-PMFP, XRFLP} and j ∈ O indicates that the optimal value of the
layout problem i is at least as high as the optimal value of the layout problem j.
Transitive arcs are not illustrated.

4 The Combined Cell Layout Problem
Our goal is to solve the CCLP exactly by enumerating over all (distinguishable) cell assignments
and then solving several FC-CCLP. In [47] it is stated that if the cell assignment is given, one
can solve the cells in the MBFLP independently by adding appropriate dummy departments. We
extend this result to the CCLP. In Section 4.1 we provide a significant reduction on the number of
cell assignments of type SRFLP that have to be considered if the inter-cell distances uko are the
same for all k, o ∈ C, k < o, with {t(k), t(o)} ∩ {SRFLP} 6= ∅, by merging two cells of type SRFLP,
and hence solving larger single-row instances including an additional dummy department.
In Section 4.2 we show how to solve the problems associated with circular cells. Indeed, in

the DCFLP one department may overlap with the dummy department and we prove that there
always exists an optimal directed-circular layout where one department lies opposite the dummy
department. Based on this result we present an MILP model for determining an optimal layout for
the departments contained in a cell of type DCFLP including the additional dummy department.
Alternatively one can use an enumerative approach instead of the MILP model. The running
times of both variants are compared in Section 6.

4.1 Our Algorithm
Our goal is to solve the optimization problems in each cell of the FC-CCLP independently as done
in [47]. Therefore we define the following problems where the weights of exactly one department
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are adjusted appropriately.
Definition 3. Given an FC-CCLP instance and let D ⊆ [n+m′], m′ ∈ N≥0, be a set of departments
where n+ 1, n+ 2, . . . , n+m′ are dummy departments with lengths `n+1, `n+2, . . . , `n+m′ ∈ R≥0
and weights wiz = wzi = 0, i ∈ [n + m′], z ∈ {n + 1, . . . , n + m′}, i 6= z. For the department
sM ∈ D we set

wisM ← wisM +
∑

j∈[n]\D
wij , i ∈ D \ {sM}, (14)

wsM i ← wsM i +
∑

j∈[n]\D
wji, i ∈ D \ {sM}, (15)

all other weights remain the same. Then the aim of the optimization problem WA
(sM ,pz)(D) for

the updated weights is to find an optimal layout of the departments D respective the structure
of the cell A ∈ {SRFLP, DCFLP}. Additionally, pz, z ∈ {a, b}, specifies the position of sM , where
pa denotes that the position of sM can be chosen arbitrarily and pb expresses that sM has to lie
at the leftmost position of the layout. Let A = DCFLP and sM ∈ {n+ 1, . . . , n+m′}, then one
department of the set D \ {sM} may overlap with sM .

Given an FC-CCLP instance, we add a dummy department to each cell with length zero and
weights as described above, and hence we obtain the following result.
Lemma 4. Given a fixed-cell combined cell layout instance where Ck, k ∈ C, denotes the set
of departments assigned to cell k and let the dummy department n+ k be added to cell k with
length `n+k = 0 and adapted weights for dummy department n+ k as described in (14)–(15) for
D = Ck ∪ {n+ k} and sM = n+ k. Then, the FC-CCLP is equivalent to solving the problems

WS
(n+k,pb)(Ck ∪ {n+ k}), k ∈ C with t(k) = SRFLP,

WD
(n+k,pa)(Ck ∪ {n+ k}), k ∈ C with t(k) = DCFLP,

and the sum of the optimal values (plus constant inter-cell weights) is equal to the optimal value
of the FC-CCLP.

The result of Lemma 4 is stated in [47] for the MBFLP without a proof and this result was
implicitly used in [15, 32]. For the convenience of the reader we present a proof.

Proof. Remark that inter-cell distances lead to constant weights C := ∑
k,o∈C
k<o

∑
i∈Ck
j∈Co

uko(wij+wji)

in the FC-CCLP, and thus we may exclude them. As we interpret the dummy departments as
the (un-) loading stations of the cells, we can express the inter-cell distances by summing up
inner-cell distances, i. e., dij = di(n+k) + d(n+o)j , k, o ∈ C, k 6= o, i ∈ Ck, j ∈ Co. This proves
the desired result.

Hence, the FC-CCLP can be divided into m sub-problems. In this paper we concentrate on cells
of type SRFLP and DCFLP, but note that the result of Lemma 4 is independent of the layout type
of the cells, and thus our approach can be extended to cells of other types such as the DRFLP.

We provide the following result which breaks some symmetries and which allows us to reduce
the number of cell assignments of type SRFLP that have to be considered significantly if uko = c
for some constant c ∈ R≥0 for all k, o ∈ C, k < o, with {t(k), t(o)} ∩ {SRFLP} 6= ∅.
Theorem 5. The CCLP (m1,m2) with uko = c ∈ R≥0 for all k, o ∈ C, k < o, with {t(k), t(o)} ∩
{SRFLP} 6= ∅ is equivalent to enumerate over (dm1

2 e+m2)n
bm1

2 c! m2! cell assignments and solve the following
optimization problems for a fixed cell assignment exactly

WS
(n+k,pa)(Ck ∪ Ck+1 ∪ {n+ k}), k = 1, 3, . . . , h,

WS
(n+m1,pb)(Cm1 ∪ {n+m1}), if m1 is odd,

WD
(n+k,pa)(Ck ∪ {n+ k}), k = m1 + 1, . . . ,m,

12



with h = m1 − 1 if m1 is even and h = m1 − 2 if m1 is odd and the departments Ck are assigned
to cell k ∈ [m]. Apart from this the dummy department n+k is added to cell k for k = 1, 3, . . . , h,
k = m1 if m1 odd and k = m1 + 1, . . . ,m. Additionally, we have to compute some constants such
that inter-cell distances are calculated correctly.
Further, the SRFLP is equivalent to the CCLP (2,0).

In [23] it is shown that the TRFLP is a generalization of the 3-BFLP. Therefore, an additional
dummy department n+ 1 with lengths `n+1 = 2wpath and weights wi(n+1) = 0, i ∈ [n], is added
to the TRFLP and its center position is fixed on position pE1 in row 1. In such an optimal T-row
layout, the departments left (right) to n + 1 are assigned to cell 3 (cell 1) in the 3-BFLP and
the departments in cell 2 are assigned to cell 2 in the 3-BFLP without changing the order of the
departments in the same row. We use this idea in the following proof.

Proof. Let Ck denote the set of departments assigned to cell k ∈ [m] in the FC-CCLP. By Lemma 4
the CCLP is equivalent to enumerate over (m1+m2)n

m1! distinguishable cell assignments and solve the
problems

WS
(n+k,pb)(Ck ∪ {n+ k}), k = 1, 2, . . . ,m1,

WD
(n+k,pa)(Ck ∪ {n+ k}), k = m1 + 1, . . . ,m,

where the dummy department n+ k is assigned to cell k. Note that by our assumptions on uko
with k, o ∈ C, k < o, such that {t(k), t(o)} ∩ {SRFLP} 6= ∅ it is sufficient to determine which
departments lie in a common cell of type SRFLP. Hence, we can divide (m1 +m2)n by m1!.

For the improved formula, let us first consider cells of type DCFLP. If we know which departments
should be together in one cell of type DCFLP, it remains to determine the exact cell of each of the
departments. For this note that the associated inter-cell weights do not have to be the same. So,
given Cm1+1, . . . , Cm, we calculate m2! constants and determine a best bijection π : [m] \ [m1]→
[m] \ [m1] minimizing the associated inter-cell distances ∑k,o∈[m]\[m1],k<o uko

∑
i∈Cπ(k),j∈Cπ(o) wij .

Thus, we can break the symmetries with respect to the cells of type DCFLP and divide the number
of cell assignments that have to be checked by m2!.

It remains to consider cells of type SRFLP. If m1 = 1, we are done. So, let m1 ≥ 2. We exclude
the constant (wij + wji) c2 if i ∈ [n] lies in a cell of type SRFLP and j ∈ [n] lies in a cell of type
DCFLP. Let k, k + 1 ∈ [2

⌊m1
2
⌋
] and we consider the departments Ck ∪ Ck+1 without changing the

cell assignments of the remaining departments. We merge the cells k and k + 1 and the resulting
cell is called merged cell in the following. We add a dummy department n+ k to the merged cell
with length `n+k = c and weights wi(n+k) = ∑

j∈[n]\(Ck∪Ck+1)wij , w(n+k)i = ∑
j∈[n]\(Ck∪Ck+1)wji

(see (14)–(15)). Then, enumerating over all possible cell assignments of the departments Ck∪Ck+1
to two cells of type SRFLP is equivalent to solve the WS

(n+k,pa)(Ck ∪Ck+1 ∪{n+ k}) because in an
optimal layout of theWS

(n+k,pa)(Ck∪Ck+1∪{n+k}) one can assign all departments left (right) to
n+ k to cell k (cell k+ 1) and vice versa. Therefore, we solve the WS

(n+k,pa)(Ck ∪Ck+1 ∪{n+ k})
and we obtain a new cell assignment C̃k (C̃k+1), which contains all departments to the left (right)
of n+ k. Note that the inter-cell distances are taken into account by the length of the dummy
department n+ k as well as the excluded constant.

So, if m1 is even, it is sufficient to consider m1
2 cells of type SRFLP. If m1 is odd, we have to take

one additional cell into account and solve theWS
(n+m1,pb)(Cm1∪{n+m1}) with dummy department

(n+m1) with `n+m1 = 0 and weights wi(n+m1) = ∑
j∈[n]\Cm1

wij , w(n+m1)i = ∑
j∈[n]\Cm1

wji (see
(14)–(15)) and we additionally exclude the constant

∑

i∈Cm1
j∈[n]\Cm1

(wij + wji)
c

2 .
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Breaking again the symmetries concerning the merged SRFLP cells we have to consider
(dm1

2 e+m2)n
bm1

2 c! m2! cell assignments.
One immediate consequence of these considerations is that the SRFLP is equivalent to the CCLP

(2,0) with u12 = 0. If u12 > 0, then there exists an optimal solution for the CCLP (2,0) where all
departments are arranged in one cell, and hence the SRFLP is equivalent to the CCLP (2,0).

The last result leads to the following definition which allows us to specify the (generalized)
cell assignments which have to be considered more precisely.

Definition 6. Let a CCLP (m1,m2) instance with uko = c ∈ R≥0 for all k, o ∈ C, k < o, with
{t(k), t(o)} ∩ {SRFLP} 6= ∅ be given. We denote by m̃ := dm1

2 e+m2 the number of generalized
cells. Then, a generalized cell assignment c̃ : [n]→ [m̃] is called proper if the following conditions
are satisfied where C̃k = {i ∈ [n] : c̃(i) = k}, k ∈ [m̃].

inf{i ∈ C̃k} ≤ inf{i ∈ C̃l}, k, l ∈ [bm1
2 c], k < l,

inf{i ∈ C̃k} ≤ inf{i ∈ C̃l}, k, l ∈ [m̃] \ [dm1
2 e], k < l.

Indeed, it suffices to consider proper generalized cell assignments where the concrete cell of
departments in cells of type DCFLP might has to be determined in our algorithm.
Our approach for solving the CCLP is summarized in Algorithm 1. If the upper bound v∗ is

exceeded, we neglect the current generalized cell assignment and go to the next one. We solve
cells of type DCFLP first since the DCFLP is in practice easier to solve than the SRFLP, see [37, 38],
and the results of [15, 32] indicate that in general the optimal values of cells of type DCFLP are
higher than the optimal values of cells of type SRFLP, and hence we hope to exceed the upper
bound u earlier such that we can neglect the current cell assignment.
We describe in Section 5 how to include inter-cell distances for the 3-BFLP and the 4-BFLP.

Considering cells of type SRFLP, it remains to present our approach for solving WS
(n+m̃1,pb)(C̃m̃1 ∪

{n+ m̃1}) if m1 is odd with m̃1 = dm1
2 e. We can simply fix the dummy department n+ m̃1 at

the border, i. e.,

xi(n+m̃1)j = 0, i, j ∈ Cm̃1 , i < j,

and then solve a single-row instance with departments Cm̃1 ∪ {n + m̃1} and these additional
equations.

4.2 Circular Cells in the Fixed-Cell Combined Cell Layout Problem
In this section we focus on the subproblems of the FC-CCLP concerning circular cells. Let Ck
denote the set of departments assigned to some cell k with t(k) = DCFLP. By the following
proposition we can use techniques from the directed-circular literature, see Section 2.2, for solving
the WD

(n+k,pa)(Ck ∪ {n+ k}) to optimality.

Proposition 7. Let an FC-CCLP instance be given where Ck, k ∈ C, denotes the set of departments
assigned to the cell k with t(k) = DCFLP. Let dummy department n + k be assigned to cell k
with `n+k = 0 and wi(n+k) = ∑

j∈[n]\Ck wij, w(n+k)i = ∑
j∈[n]\Ck wji (see (14), (15)) and let

Vk := {i ∈ Ck : wi(n+k) + w(n+k)i > 0} 6= ∅. Further, let v∗n+k denote the optimal value of the
WD

(n+k,pa)(Ck ∪ {n + k}) and let v∗sM denote the optimal value of the WD
(sM ,pa)(Ck), sM ∈ Vk,

where in WD
(sM ,pa)(Ck) the weights of sM are adjusted according to (14), (15). Then

v∗n+k = min{v∗sM : sM ∈ Vk} (16)

The proof is related to a proof in [24]. Given a DRFLP instance with objective function
min∑j∈S wijdij , i ∈ [n], S ⊆ [n] \ {i}, there exists an optimal layout where some j ∈ S lies
directly opposite i.
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Algorithm 1: Exact approach for the CCLP (m1,m2)
Input : instance of the CCLP (m1,m2) with departments [n], weights w, lengths ` and

inter-cell distances uko = c ∈ R≥0 for k, o ∈ C, k < o, with
{t(k), t(o)} ∩ {SRFLP} 6= ∅ and arbitrary uko ∈ R≥0 otherwise.

Output :Optimal value v∗ of the CCLP (m1,m2).
v∗ ←∞ or v∗ set to some known upper bound.
z ← 0, Ĉ∗ ← 0.
m̃← dm1

2 e+m2, m̃1 ← dm1
2 e.

1 for c̃ = (c̃1, . . . , c̃n) ∈ [m̃]n with c̃ proper do
C̃k ← {i ∈ [n] : c̃i = k}, k ∈ [m̃].
Compute constant C ←∑

i∈[m̃1]
∑
j∈[m̃]\[m̃1]

∑
k∈C̃i

∑
l∈C̃j (wkl + wlk) c2 .

2 if m1 is odd then
C ← C + ∑

i∈C̃m̃1

∑
j∈[n]\C̃m̃1

(wij + wji) c2 .

3 if m2 ≥ 2 then
Determine an assignment ĉ∗ : ⋃m̃i=m̃1+1 C̃i → [m] \ [m1] such that ĉ∗(i) = ĉ∗(j) if
and only if i, j ∈ C̃k for some k ∈ [m] \ [m̃1] and such that ĉ∗ is a minimizer of

min
ĉ





∑
k,o∈[m]\[m1]

k<o

∑
i∈Ĉk

∑
j∈Ĉo

(wij + wji)uko





where

Ĉk = {j ∈ ⋃m̃i=m̃1+1 C̃i : ĉ(j) = k}, k ∈ [m] \ [m1] with optimal value Ĉ∗.
u← v∗ − C − Ĉ∗, v ← C + Ĉ∗.
for k = m̃1 + 1, . . . , m̃ do

Compute optimal value z of the WD
(n+k,pa)(C̃k ∪ {n+ k}) (dummy department n+ k

with `n+k = 0 and weights wi(n+k) = ∑
j∈[n]\C̃k wij , w(n+k)i = ∑

j∈[n]\C̃k wji) with
the additional constraint that the optimal value is at most u (othw. z ←∞).
v ← v + z, u← u− z.

4 if m1 is odd then
Compute optimal value z of the WS

(n+m̃1,pb)(C̃m̃1 ∪ {n+ m̃1}) (dummy department
n+ m̃1 with `n+m̃1 = 0 and weights wi(n+m̃1) = ∑

j∈[n]\C̃m̃1
wij ,

w(n+m̃1)i = ∑
j∈[n]\C̃m̃1

wji) with the additional constraint that the optimal value
is at most u (othw. z ←∞).
v ← v + z, u← u− z.

for k = 1, . . . , bm1
2 c do

Compute optimal value z of the WS
(n+k,pa)(C̃k ∪ {n+ k}) (dummy department n+ k

with `n+k = c and weights wi(n+k) = ∑
j∈[n]\C̃k wij , w(n+k)i = ∑

j∈[n]\C̃k wji) with
the additional constraint that the optimal value is at most u (othw. z ←∞).
v ← v + z, u← u− z.

5 if v < v∗ then
v∗ ← v.

6 return v∗.
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Proof. Let Vk 6= ∅, k ∈ C, with t(k) = DCFLP, and assume that an optimal layout of the
WD

(n+k,pa)(Ck ∪ {n+ k}) is given where no department of the set Vk lies directly opposite n+ k.
Then, shifting all departments to the, w. l. o. g., right by some small ε does not change the
distances between departments i, j ∈ Ck, i 6= j, and hence influences the objective value by

∑

j∈Vk
ε
(
w(n+k)j − wj(n+k)

)
. (17)

By the optimality of the layout we do not change the objective value by shifting all departments,
w. l. o. g., to the right until the first department contained in Vk lies directly opposite n+k. Thus,
there always exists an optimal solution of WD

(n+k,pa)(Ck ∪ {n+ k}) where an sM ∈ Vk has the
same position as n+ k and (16) follows for the described weight adjustment.

If Vk = ∅ for some k ∈ C with t(k) = DCFLP (hence, the departments in this cell do not have
relations to departments in other cells), we simply neglect the dummy department n+ k and
then the WD

(n+k,pa)(Ck ∪ {n+ k}) is equivalent to the DCFLP with departments Ck. If Vk 6= ∅, one
can fix one department i ∈ Vk opposite n+ k and enumerate over each department fixed opposite
n+k, see Proposition 7. In summary, we obtain an optimal layout of the WD

(n+k,pa)(Ck ∪{n+k})
by solving max{1, |Vk|} directed-circular instances.
However, our goal is to reduce the number of directed-circular instances that have to be

solved, and therefore we set up an MILP model for the WD
(n+k,pa)(Ck ∪ {n+ k}), Ck ⊆ [n], k ∈ C,

with dummy department n+ k with `n+k = 0, wi(n+k) = ∑
j∈[n]\Ck wij , w(n+k)i = ∑

j∈[n]\Ck wji.
An advantage of an MILP model is to obtain good lower bounds quickly, and hence to exclude
unbalanced cell assignments earlier in Algorithm 1. Therefore, we use the following binary
variables

yi =
{

1, if i lies opposite n+ k,

0, otherwise,

for i ∈ Ck. Let L = ∑
i∈Ck `i and ŵij = wij − min{wij , wji}, i, j ∈ Ck, i 6= j, ŵi(n+k) =

wi(n+k), ŵ(n+k)i = w(n+k)i, i ∈ Ck. We exclude the constant

WD
k =

∑

i,j∈Ck∪{n+k}
i 6=j

ŵij
`i + `j

2 +
∑

i,j∈Ck
i<j

min{wij , wji}L.

We define Li = ∑
j∈Ck\{i} `j and then our MILP with Vk 6= ∅ reads as follows

min
∑

i,j∈Ck∪{n+k}
i 6=j

ŵijdij

s. t. (8), (11)–(13), D := Ck ∪ {n+ k}, f := n+ k,
∑

i∈Ck
yi = 1, (18)

zij − yi ≥ 0, i, j ∈ Ck, i < j, (19)
zij + yj ≤ 1, i, j ∈ Ck, i < j, (20)
yi = 0, i ∈ Ck \ Vk, (21)

d(n+k)i −
∑

j∈Ck
j<i

`jzji +
∑

j∈Ck
j>i

`jzij +
∑

j∈Ck

`j
2 yj =

∑

j∈Ck
j>i

`j , i ∈ Ck, (22)

di(n+k) + d(n+k)i + (Li + `i)yi = Li, i ∈ Ck, (23)
dij ≥ 0, i, j ∈ Ck, i 6= j, (24)
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dij ≥ −
`i
2 , i, j ∈ Ck ∪ {n+ k}, i 6= j, (25)

|{i, j} ∩ {n+ k}| = 1,
zij ∈ {0, 1}, i, j ∈ Ck, i < j, (26)
yi ∈ {0, 1}, i ∈ Ck. (27)

Let k ∈ C. Equations (18) ensure that exactly one department lies opposite n + k, see
Proposition 7. According to the z-variables we obtain an ordering of the departments, see
Section 2.2, and we ensure via Inequalities (19)–(20) that the department i′ ∈ Ck with yi′ = 1 is
the leftmost department. By Proposition 7 and our assumption Vk 6= ∅, we set yi, i ∈ Ck \ Vk,
equal to zero, see Equations (21). The distance calculation in Equations (22) is similar to the
distance calculation in Equations (9) where we additionally subtract half the length of the
department that is fixed opposite n+k because we excluded the constantWD

k . By Equations (23)
and Inequalities (25) we obtain di(n+k) = d(n+k)i = − `i

2 , i ∈ Ck, if i lies opposite n + k. In
this case the distances di(n+k) as well as d(n+k)i, i ∈ Ck, are negative since we excluded the
constant ∑i∈Ck(wi(n+k) + w(n+k)i) `i2 . If i ∈ Ck does not lie opposite n + k, then we obtain
di(n+k) + d(n+k)i = Li, see Equations (23).
Proposition 8. Let Ck denote the set of departments assigned to cell k ∈ C with t(k) = DCFLP.
Then

min
∑

i,j∈Ck∪{n+k}
i<j

ŵijdij

s. t. (8), (11)–(13), (18)–(27)

is a MILP model for the WD
(n+k,pa)(Ck ∪ {n+ k}).

Proof. Let i′ ∈ Ck such that yi′ = 1, see Equation (18). By Inequalities (8) together with
the binary constraints we obtain a feasible ordering of the departments and the distances
dij , i, j ∈ Ck \ {i′}, are calculated correctly by Equations (11)–(13), see [15, 37, 38]. According
to the z-variables we obtain an ordering of the departments and by Inequalities (19)–(20)
i′ is the leftmost department. We neglect the constant ∑i∈Ck(ŵi(n+k) + ŵ(n+k)i) `i2 and by
Equations (22) and Inequalities (25) we obtain di′(n+k) = d(n+k)i′ = − `′i

2 if y′i = 1, i′ ∈ Ck, and
di(n+k) + d(n+k)i = Li in the case yi = 0, i ∈ Ck. Hence, the distance calculation between i ∈ Ck
and n+ k is correct as well, see Equations (22)–(23).

We conclude this section by pointing out how further realistic extensions can be included in
our approach.
Remark 9. 1) Our approach presented above can be combined with further aspects relevant

in practice. Let the size of the cells be equal to F ∈ R≥0 (restriction on the sum of the
lengths of all departments in one cell). We can neglect all cell assignments where the
sum of the lengths of the departments in one cell exceeds F , see [17, 26]. However, a
solution of the WD

(n+k,pa)(Ck ∪ {n + k}) contains free-spaces if the sum of the lengths of
the departments assigned to cell k is smaller than F . By the same shifting argument as
used in the proof of Proposition 7 there exists an optimal layout where the free-space is
interruption-free, i. e., it is sufficient to add one additional dummy department n+ k′ with
`n+k′ = F −∑i∈Ck `i, wi(n+k′) = w(n+k′)i = 0, i ∈ Ck ∪ {n + k}, as done in [14] for the
MREFLP and solve the WD

(n+k,pa)(Ck ∪ {n+ k, n+ k′}) without spaces. Thus, one can use
the methods presented above. In cells of type SRFLP, there always exists an optimal layout
where the possible free-space arises only at the borders of the layout. Hence, it suffices to
restrict the horizontal center-to-center distances of all departments to the loading stations,
i. e., di(n+k) ≤ F − `i

2 , i ∈ Ck, k ∈ [m], t(k) = SRFLP. Clearly, the length of the dummy
department n+ k can be neglected.
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2) In the facility layout planning literature it is a standard assumption that the (un-) loading
points of the departments are fixed at their centers, see, e. g., [5, 7, 12]. However, if the
input and output positions are fixed on the left (or right) border of the departments, one
can treat n+ k as an ordinary department, i. e., no department may overlap with n+ k,
and we just need to solve one directed-circular instance with departments Ck ∪ {n+ k} in
order to solve the WD

(n+k,pa)(Ck ∪ {n+ k}).

5 Extensions of the Multi-Bay Facility Layout Problem
In this section we describe the adaption of our approach presented in Section 4 to the 3-BFLP,
the XRFLP and the 4-BFLP. Adding appropriate dummy departments we are able to use the main
ideas of Algorithm 1. Even for the problems with four cells we have to consider at most 2n
distinguishable generalized cell assignments of the departments. Considering the 3-BFLP and the
4-BFLP, we are able to further reduce the number of cell assignments that have to be considered.

5.1 The 3-Bay Facility Layout Problem
In [23] it is shown that the 3-BFLP is equivalent to the TRFLP where a dummy department
n + 1 is fixed on the (un-) loading station with length `n+1 = 2wpath and weights wi(n+1) =
w(n+1)i = 0, i ∈ [n]. In order to reduce the number of distinguishable cell assignments
that have to be considered, we present a different approach. We merge cell 1 and cell 2 as
a new cell and interpret cell 3 as new cell 2. Let C1, C2 ⊆ [n], C1 ∩ C2 = ∅, such that
C1 ∪̇ C2 = [n] and let C1 (C2) denote the set of departments assigned to the merged cell 1 (cell
2). The dummy department n+ 1 (n+ 2) is added to the merged cell 1 (cell 2) with `n+1 = 0
(`n+2 = 0) and weights wi(n+1) = ∑

j∈[n]\C1 wij , w(n+1)i = ∑
j∈[n]\C1 wji (wi(n+2) = ∑

j∈[n]\C2 wij ,
w(n+2)i = ∑

j∈[n]\C2 wji) (see (14)–(15)). We exclude the constant ∑i∈C1,j∈C2 (wij + wji) · wpath
and we fix an additional dummy department n + 3 to the merged cell 1 neighboring n + 1
with lengths `n+3 = wpath and weights wi(n+3) = w(n+3)i = 0, i ∈ C1 ∪ {n + 1}. Then, we
obtain an optimal solution for the 3-BFLP by solving the WS

(n+1,pa)(C1 ∪ {n+ 1, n+ 3}) and the
WS

(n+2,pb)(C2 ∪ {n+ 2}). Hence, we can solve the 3-BFLP similar to the approach summarized in
Algorithm 1.

As done in [23] one can use symmetry breaking for the 3-BFLP. If wpath = 0, we can fix two
departments to C1 and one has to consider 2n−2 generalized cell assignments. If wpath > 0, one
department can be fixed to C1, and hence we have to consider 2n−1 generalized cell assignments.
In the 3-PMFP and the 4-PMFP one can fix two departments to the merged cell C1, and hence it
is sufficient to consider 2n−2 generalized cell assignments for wpath ≥ 0.
In contrast to the previous presented approaches, the computation time of our approach for

the TRFLP is slightly higher than the approach of [23]. Thus, we summarize our approach for the
TRFLP in the appendix.

5.2 The X-Row and the 4-Bay Facility Layout Problem
Next we consider layout problems with four original cells in more detail. Recall that we assume
that the height of each department equals one. The following proposition is essential to solve the
cells independently, and thus we derive a result similar to Theorem 5

Proposition 10. Given an XRFLP instance. There always exists an optimal X-row layout where
some i ∈ [n] is contained in cell 3 and dipE3

= `i
2 .

Proof. Let an optimal X-row layout be given. We denote by Ca the set of departments assigned
to cell a ∈ [4] and we assume that dipE3

> `i
2 for all i ∈ C3. If all departments are contained in

Ca ∪ Cb, a, b ∈ [4], a < b, then we arrange all departments space-free in cell 3 respecting the
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order of the departments in cell a and cell b such that the department in cell a which is closest
to pEa is neighboring the department in cell b which is closest to pEb . Then we can shift the
departments such that afterwards one department i ∈ [n] satisfies dipE3

= `i
2 and clearly, we do

not increase the objective value by this method.
Next, let |Ca|, |Cb|, |Cc| ≥ 1, a, b, c ∈ [4], |{a, b, c}| = 3. If there exists i ∈ C3 with dipE3

<
`i
2 +1, i ∈ C3, then we shift all departments in cell 3 to the left until the left border of the leftmost
department reaches the position pE3 and the resulting layout is feasible since the previous layout
was feasible. The objective value of the layout is not increased by this method. Further, we
assume there exists i ∈ C2 with dipE2

< `i
2 + 1 or dipE2

≥ `i
2 + 1 for all i ∈ C2 and C3 = ∅. Then,

we shift all departments in cell 2 to the left in the direction to pE2 until the leftmost department
j ∈ C2 satisfies djpE2

= `j
2 . Then we arrange the departments in cell 3 (cell 2) to cell 2 (cell 3)

space-free respecting the order of the departments. We do not increase the objective value by this
method since u12 = u13 and u24 = u34. It remains to consider the case dipE3

≥ `i
2 +1, i ∈ C3 6= ∅,

and dipE2
≥ `i

2 + 1, i ∈ C2. Then we shift all departments in cell 3 to the left until the first
department has its left border on position pE3 . Clearly, we do not increase the objective value by
this method.

Given an X-row instance, we want to ensure that departments in cell 2 and cell 3 do not overlap.
Therefore, we fix an additional dummy department n+ 3 at the border of cell 2 with lengths
`n+3 = 1 and weights wi(n+3) = w(n+3)i = 0, i ∈ [n+ 2], see Proposition 10. If w1

path = w2
path = 0,

then one can solve the cells independently, see Lemma 4, and hence we can apply Theorem 5
with uko = 0, k, o ∈ [4], k < o, and interpret cell 1 and cell 3 as well as cell 2 and cell 4 as a new
(larger) cell. The dummy department n+ 1 (n+ 2) is added to the merged cell 1 (cell 2) with
`n+1 = 0 (`n+2 = 0) and weights as described in (14)–(15) and the merged cell 2 additionally
contains the dummy department n+ 3 which is neighboring n+ 2.
It remains to include inter-cell distances in our approach for the XRFLP. Let C1, C2 ⊆ [n], C1 ∩
C2 = ∅, such that C1 ∪̇ C2 = [n] and let C1 (C2) denote the set of departments assigned to the
merged cell 1 (cell 2). We add the additional dummy department n + 4 to the merged cell 1
with lengths `(n+4) = w1

path and weights wi(n+4) = w(n+4)i = 0, i ∈ [n + 3], and then we solve
the WS

(n+1,pa)(C1 ∪ {n + 1, n + 4}) where n + 4 is neighboring n + 1. In the merged cell 2 we
avoid adding another dummy department by adapting the lengths of the dummy departments
n + 2 and n + 3 such that `n+2 = 2 ·min{1, w2

path} and `n+3 = |w2
path − 1|. In both cases, the

distance of n+ 2 and the departments to the, w. l. o. g., left of n+ 2 is at least w2
path and to the

departments to the right of n+ 2 is at least 1, and thus the distances are calculated correctly.
We refer to Figure 5 for an illustration. This leads to the following result.

Corollary 11. Given an X-row instance with w1
path, w

2
path ≥ 1, and we set `n+1 = 0, `n+2 =

2 ·min{w2
path, 1}, `n+3 = |w2

path−1|, `n+4 = w1
path, and n+ 1 (n+ 2) is neighboring n+ 4 (n+ 3).

We obtain an optimal X-row layout by enumerating over all assignments of the departments to the
cells C = {1, 2} and solving the WS

(n+1,pa)(C1∪{n+1, n+4}) and the WS
(n+2,pa)(C2∪{n+2, n+3})

where Ck, k ∈ [2], denotes the set of departments assigned to (merged) cell k and the weights of the
additional dummy departments are set to wi(n+3) = w(n+3)i = wi(n+4) = w(n+4)i = 0, i ∈ [n+ 2].

Proof. By adding dummy departments n+3 and n+4 with length `n+4 = w1
path, `n+3 = |w2

path−1|
as well as `n+2 = 2 ·min{w2

path, 1}, we obtain the correct distance calculation. Thus, similar to
Theorem 5 it is sufficient to consider two cells.

In Algorithm 1 one has to consider 2n cell assignments to obtain an optimal X-row layout
since we use symmetry breaking in the proof of Proposition 10. In our algorithm we solve the
WS

(n+2,pa)(C2 ∪ {n+ 2, n+ 3}) first if |C2| ≤ |C1|+ 1 and otherwise we solve the WS
(n+1,pa)(C1 ∪

{n+ 1, n+ 4}) first with the idea to exclude unbalanced cell assignments earlier. For the whole
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(a) Feasible layouts for the WS
(8,pa)({1, 2, 3, 4} ∪

{8, 11}) and the WS
(9,pa)({5, 6, 7} ∪ {9, 10}) with

`10 = `11 = wpath = 3.
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5

(b) 4-Bay layout with `10 = `11 = wpath deduced
from the single-row layouts illustrated in Fig-
ure 5a.
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(c) Feasible layouts for the WS
(8,pa)({1, 2, 3, 4} ∪

{8, 11}) and the WS
(9,pa)({5, 6, 7} ∪ {9, 10}) with

w1
path = w2

path = 3 and `9 = `10 = 2, `11 = 3.

6

7

5

3 41 2C1

C2

C3

C4

(d) X-row layout with `9 = `10 = 2, `11 = 3, de-
duced from the single-row layouts illustrated in
Figure 5c.

Figure 5: Visualization of obtained 4-Bay and X-row layouts with positive inter-cell distances by
solving appropriate single-row instances. In order to construct, e. g., a 4-Bay layout,
with n = 7 departments, the departments left (right) to the dummy department 8 are
assigned to cell 1 (cell 2) in reversed (the same) order and the departments left (right)
to the dummy department 9 are assigned to cell 4 (cell 3) in reversed (the same) order.
The distances between each pair of departments in the layouts illustrated in Figure 5a
and in Figure 5b as well as in Figure 5c and in Figure 5d are the same.

problem we exclude the constant

W :=
∑

i,j∈[n]
i<j

(wij + wji)
`i + `j

2 +
∑

i∈C2

(
wi(n+2) + w(n+2)i

) `n+2
2 .

We neglect the dummy department n+4 if w1
path = 0. However, we additionally add the following

constraints

xji(n+2) − xji(n+3) = 0, i, j ∈ [n], i 6= j,

xji(n+1) − xji(n+4) = 0, i, j ∈ [n], i 6= j, (28)

where inequalities (28) are only added if w1
path, w

2
path > 0.

Next we describe how to include inter-cell distances to the 4-BFLP in Algorithm 1. At first, we
merge cell 1 and cell 2 as well as cell 3 and cell 4. Hence, let C1 (C2) denote the set of departments
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assigned to the merged cell 1 (cell 2). We exclude the constant ∑i∈C1,j∈C2 (wij + wji) ·wpath and
solve the WS

(n+k,pa)(Ck ∪ {n+ k, n+ k + 2}), k ∈ {1, 2}, with an additional dummy department
n+ k + 2 with length `n+k+2 = wpath and weights wi(n+k+2) = w(n+k+2)i = 0, i ∈ Ck ∪ {n+ k},
where n+ k + 2 is a neighboring department of n+ k. By Corollary 11 we obtain an optimal
solution for the 4-BFLP by this method. For an illustration we refer to Figure 5. In our
algorithm we solve the WS

(n+2,pa)(C2 ∪ {n+ 2, n+ 3}) first if |C2| ≤ |C1| and otherwise we solve
the WS

(n+1,pa)(C1 ∪ {n + 1, n + 4})) first. Considering the 4-BFLP with wpath = 0, we can fix
two departments (randomly chosen) to cell 1, and hence it is sufficient to consider 2n−2 cell
assignments. If wpath > 0, one can fix one department to cell 1, and hence it is sufficient to
consider 2n−1 cell assignments.

6 Computational results
In this section we present our computational results. The computational experiments are
implemented in C++ and we use Cplex 12.10 as an MILP Solver [39]. All results were conducted
on a 2.10GHz quad-core using Virtual Box 6 and running on Debian GNU/Linux 8 in single
processor mode.

6.1 Computational experiments
In our computational results we focus on optimization problems which consist of at most 2
merged cells in view of our results derived in Theorem 5. The instances from the literature are
symmetric, see e. g., [10, 13]. Hence, let wij , i, j ∈ [n], i < j, be given, we choose uniformly
at random w̃ij ∈ {0, 1, . . . , wij}, i, j ∈ [n], i < j, and set w̃ji = wij − w̃ij , i, j ∈ [n], j < i, to
obtain asymmetric instances. All instances can be downloaded from https://tinyurl.com/
instances-DaFiHuMa20. At first, we present results for the FC-CCLP, see Table 1. We assign the
departments 1, . . . ,

⌊
n
2
⌋
to the first cell and the remaining departments to the second cell. For the

FC-CCLP (1,1) we assume that the cell of type SRFLP is the first cell. The inter-cell distance is
constant, and hence set to zero. In the first column in Table 1 the instance names are given, and
the first number in the names indicates the number of the departments. Instances with second
number equal to 1 are equidistant instances, and hence we omit them here. In the next three
columns we display the optimal values and in the last five columns the corresponding running
times are given where “enu” describes the enumerative approach and “MILP” describes our MILP
model for cells of type DCFLP. We write < 1 if the running time is less than one second. For all
instances tested here the optimal value of the FC-CCLP (2,0) is smaller than the optimal value of
the FC-CCLP (1,1) which is smaller than the optimal value of the FC-CCLP (0,2). Hence, it follows
that in our tests a cell of type SRFLP has a smaller optimal value than a cell of type DCFLP with
the same departments. One can observe that even large-sized instances were solved quickly and
it seems that a cell of type SRFLP is easier to solve than a single-row instance with the same
number of departments. The reason is the additionally dummy department which has usually
high weights to all departments. However, cells of type DCFLP could be solved to optimality in a
few seconds while cells of type SRFLP partially need a few minutes.

In order to compare our approach for the TRFLP, the 3-BFLP and the 3-PMFP with the approach
of [23], we make use of the heuristically determined upper bounds in [23]. In Table 2 we compare
the optimal values of several facility layout problems where the inter-cell distances are set to
zero and in Table 3 the inter-cell distances are set to three. In the column “Source” we display
the source of the symmetric instances. We observe that the optimal value of the TRFLP is smaller
than the optimal value of the 3-BFLP and the 3-PMFP. The optimal value of the 4-BFLP is slightly
smaller than the optimal value of the XRFLP if the inter-cell distances are set to zero, and if
wpath = w1

path = w2
path = 3, then the optimal value of XRFLP is smaller than the optimal value of

the 4-BFLP and greater than the optimal value of the 4-PMFP, see Table 3. For all instances the
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Instance Source FC-CCLP (2,0) FC-CCLP (1,1) FC-CCLP (0,2) FC-CCLP (2,0) FC-CCLP (1,1) FC-CCLP (0,2)
opt value opt value opt value time enu MILP enu MILP

AV25-2 [10] 42745.5 47933.5 51169.5 <1 <1 <1 <1 <1
AV25-3 [10] 27602.0 29890.0 31001.0 <1 <1 <1 <1 <1
AV25-4 [10] 55549.5 62776.5 67306.5 <1 <1 <1 <1 <1
AV25-5 [10] 18044.0 19692.0 20937.0 <1 <1 <1 <1 <1
AV30-2 [10] 24397.5 25505.5 27447.5 <1 <1 <1 <1 <1
AV30-3 [10] 52018.0 56298.0 61122.0 1 <1 <1 <1 <1
AV30-4 [10] 65516.5 71443.5 78201.5 1 <1 <1 <1 <1
AV30-5 [10] 134026.0 141672.0 162364.0 1 1 <1 <1 <1
ste36-2 [13] 181508.0 223338.0 307066.0 5 4 4 1 <1
ste36-3 [13] 101644.0 128985.0 206897.0 8 7 7 1 <1
ste36-4 [13] 95805.5 111559.0 186153.0 7 6 5 1 <1
ste36-5 [13] 91651.5 114715.0 175358.0 4 4 3 1 <1
sko42-2 [13] 249986.0 278212.0 308533.0 43 32 23 4 <1
sko42-3 [13] 198270.0 220596.0 242858.0 5 4 2 3 <1
sko42-4 [13] 154057.0 172482.0 190150.0 22 5 4 2 <1
sko42-5 [13] 287194.0 318344.0 351982.0 20 12 10 3 <1
sko49-2 [13] 459140.0 519684.0 558166.0 3:32 2:26 2:51 7 <1
sko49-3 [13] 357705.0 410297.0 441037.0 2:25 1:29 1:54 13 <1
sko49-4 [13] 262364.0 292652.0 315012.0 2:51 45 52 9 <1
sko49-5 [13] 737087.0 785207.0 860911.0 15:00 59 56 14 4

Table 1: Optimal values (“opt value”) and running times (in sec or min:sec) for different variants
of the FC-CCLP, where

⌊
n
2
⌋
departments are assigned to the first cell and the remaining

departments to the second cell.

optimal value of the XRFLP is smaller than the optimal value of the TRFLP and for all instances
the 4-PMFP (the 4-BFLP if wpath = 0) has the smallest optimal value. Recall that the SRFLP is
equivalent to the CCLP (2,0), see Theorem 5. The optimal value of the SRFLP is smaller than the
optimal value of the CCLP (0,2) here but the CCLP (1,1) has the smallest optimal value of these
three problems in our tests. The optimal values of the CCLP are greater than the ones of the
3-BFLP. The CCLP (0,2) with up to 18 departments could be solved in less than 30 minutes, see
Table 4, by using our MILP approach. Our MILP approach clearly outperforms the enumerative
approach on the instances considered. Therefore, our approach outperforms the approach of
[15, 32] as well because their models do not contain dummy departments, and hence one would
have to use the enumerative approach.
The approach of [23] can easily be extended to the 3-PMFP. The optimal values derived by

the approach of [23] are optimal neglecting computational accuracy, we refer to [23] for details.
Considering the 3-BFLP with positive inter-cell distance as well as with inter-cell distance of zero
we outperform the approach of [23], see Table 4 and Table 5. With our approach the TRFLP and
the 4-BFLP could be solved with up to 17 departments within a time limit of 8 hours and the
XRFLP with up to 16 departments. Our MILP model for the optimization problem in cell 1 in the
TRFLP leads to a smaller running time than the corresponding enumerative approach, see Table 4
and Table 5. However, the approach of [23] can even solve one instance with 18 departments
and is for most instances faster than our approach. The 3-PMFP (4-PMFP) is solved faster than
the 3-BFLP and the TRFLP (the 4-BFLP and the XRFLP) since the number of distinguishable cell
assignments is significantly smaller, see Table 5.

7 Conclusion and Future work
In this paper we presented a new exact approach for the Combined Cell Layout Problem (CCLP)
and we focus on the special cases of the CCLP, i. e., the Multi-Bay Facility Layout Problem
(MBFLP) and the Pier-Type Material Flow Pattern (PMFP) with m = 3 and m = 4 denoted
by (3-BFLP), (3-PMFP), (4-BFLP), (4-PMFP). Further, we considered the T-Row Facility Layout
Problem (TRFLP) and we introduced a new layout problem, the so called X-Row Facility Layout
Problem (XRFLP), which is a generalization of the 4-BFLP with a more complex path structure.
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Instances Source SRFLP CCLP (1,1) CCLP (0,2) 3-BFLP TRFLP 4-BFLP XRFLP
Am11a [9] 10630.5 9840.0 11178.5 8466.5 8407.0 6899.5 7038.5
Am11b [9] 7375.5 6802.5 7262.0 5694.5 5665.0 4864.5 4990.5
Am12a [6, 7] 2901.0 2702.5 3266.5 2382.0 2354.5 1994.0 2047.0
Am12b [6, 7] 3280.5 3042.5 3389.5 2557.5 2539.5 2172.5 2234.5
Am13a [6] 4902.5 4404.5 5283.5 3863.5 3836.0 3258.5 3327.5
Am13b [6] 5698.0 5046.0 6029.0 4376.0 4362.5 3642.0 3702.0
Am14_1 [26] 5481.5 5132.0 5766.5 4370.5 4350.5 3557.5 3634.5
Am14a [51] 5673.0 5263.0 6619.0 4475.0 4446.5 3773.0 3872.0
Am14b [51] 5595.0 5166.0 5725.0 4451.0 4430.5 3749.0 3838.0
Am15 [3] 6305.0 5961.5 6899.0 5093.0 5071.0 4237.0 4319.0
HK15 [29] 33220.0 30880.0 37440.0 26290.0 26125.0 21810.0 21891.0
P16a [8] 14829.0 14087.0 15125.0 11999.0 11943.0 10076.0 10194.0
P16b [8] 11878.5 11360.0 12768.5 9499.5 9469.5 7805.5 7921.5
P17a [23] 14436.5 14066.0 15930.0 11551.5 11524.5 9574.5 -
P17b [23] 15682.0 14870.5 16034.0 12389.0 12317.0 10174.0 -
Am17 [4] 9254.0 8604.0 10896.0 7345.0 7315.0 6044.0 -
P18a [23] 16118.5 15043.5 17904.0 12528.5 - 10266.5 -
P18b [23] 17716.5 16733.0 18022.5 14138.5 - - -
Am18 [23] 10650.5 10050.5 12274.5 8446.5 8413.5 6914.5 -

Table 2: We illustrated the optimal values of several facility layout problems for instances from
the literature where the inter-cell distances are set to zero. Instances marked with “-”
could not be solved to optimality within the time limit of 8 hours.

Instances SRFLP CCLP (1,1) CCLP (0,2) 3-BFLP 3-PMFP TRFLP 4-BFLP 4-PMFP XRFLP
Am11a 10630.5 10075.5 11727.5 9453.5 9237.5 8902.0 8261.5 7763.5 7882.5
Am11b 7375.5 7240.5 7739.0 6619.5 6444.5 6118.5 6152.5 5723.5 5793.5
Am12a 2901.0 2782.0 3468.0 2748.0 2672.0 2552.0 2519.0 2333.0 2374.0
Am12b 3280.5 3213.0 3584.5 2959.5 2872.5 2740.5 2733.5 2565.5 2593.5
Am13a 4902.5 4573.5 5532.5 4337.5 4232.5 4077.0 3926.5 3706.5 3741.5
Am13b 5698.0 5262.0 6260.0 4820.0 4727.0 4581.5 4293.0 4065.0 4102.0
Am14_1 5481.5 5278.5 6117.5 4940.5 4802.5 4642.0 4313.5 4049.5 4106.5
Am14a 5673.0 5386.0 6964.0 5093.0 4967.0 4751.0 4641.0 4365.0 4408.0
Am14b 5595.0 5400.0 6094.0 5059.0 4939.0 4739.5 4623.0 4325.0 4379.0
Am15 6305.0 6102.0 7298.0 5687.0 5546.0 5378.0 5047.0 4768.0 4822.0
HK15 33220.0 31174.0 37773.0 26905.0 26755.0 26446.0 22680.0 22368.0 22429.0
P 16a 14829.0 14447.0 15551.0 12866.0 12668.0 12381.0 11276.0 10844.0 10940.0
P 16b 11878.5 11638.5 13194.5 10324.5 10147.5 9882.5 8974.5 8561.5 8645.5
P 17a 14436.5 14237.0 16443.0 12429.5 12232.5 11956.5 10811.5 10361.5 -
P 17b 15682.0 15341.5 16526.0 13298.0 13094.0 12779.0 11446.0 10969.0 -
Am17 9254.0 8814.0 11328.0 8245.0 8046.0 7767.5 7292.0 6836.0 -
P 18a 16118.5 15529.5 18480.0 13506.5 13272.5 - - 11155.5 -
P 18b 17716.5 17300.0 18544.5 15110.5 14885.5 - - 12531.5 -
Am18 10650.5 10272.5 12823.5 9430.5 9202.5 8911.5 - 7791.5 -

Table 3: Optimal values of facility layout problems for instances from the literature with inter-cell
distances wpath = w1

path = w2
path = 3 and for the CCLP (1,1) and CCLP (0,2) we set

u12 = 3. Instances marked with “-” could not be solved to optimality within the time
limit of 8 hours.
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The CCLP, the TRFLP and the XRFLP have several applications such as in heavy manufacturing
and semiconductor fabrication.

We extend the approaches known from the literature in various ways. Given a CCLP instance
where all cells of type SRFLP have the same inter-cell distances, we proved that by enumerating
over all cell assignments and solving the CCLP with fixed-cell assignment, one can merge two cells
of type SRFLP and therefore reduce the number of cell assignments that have to be considered
significantly. Further, we omit fixing one department on the loading station by adding a dummy
department with appropriate lengths and weights to each cell dealing as loading and unloading
station. Considering cells of type DCFLP, one department overlaps with the dummy department
and for the arising optimization problem a Mixed-Integer Linear Programming (MILP) model
is presented. The main result is adapted to the 3-BFLP, 4-BFLP, TRFLP and the XRFLP with
positive inter-cell distances which are leveled by dummy departments of appropriate lengths.
The optimal values of the optimization problems are studied from a theoretical point of view
and compared in our computational study to support the decision maker to choose the layout of
a factory which is built from the ground up. The CCLP consisting of two cells can be solved fast
and our MILP model for cells of type DCFLP works well and clearly outperforms the enumerative
approach. Hence, we can solve instances with up to 18 departments in at most 30 minutes if
both cells are of type DCFLP. For the 3-BFLP as well as the 3-PMFP we outperform the current
best approach from the literature.
It remains for future work to apply our approach on facility layout problems consisting of a

higher amount of cells as well as to consider cells of other types, e. g., cells of type Double-Row
Facility Layout Problem. A further realistic extension is to consider two-dimensional departments
with varying widths. Then it might be harder to ensure in the XRFLP that departments in cell 2
and cell 3 do not overlap.
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Appendix
In the appendix we summarize our approach for the TRFLP. We denote by C1 (C2) the set of
departments assigned to cell 1 (cell 2) and if the cell assignment of the departments is known,
we denote the resulting problem as Fixed-Row T-Row Facility Layout Problem (FR-TRFLP).
Given an FR-TRFLP instance, by Lemma 4 we obtain the problems WS

(n+2,pb)(C2 ∪ {n+ 2}) and
the WS

(n+1,pa)(C1 ∪ {n + 1}) with the dummy department n + 2 or n + 1, respectively, where
additionally one department in cell 1 may overlap with the dummy department n+ 1. We denote
the obtained problem by WS

(n+1,pa,o)(C1 ∪ {n+ 1}). For solving the WS
(n+2,pb)(C2 ∪ {n+ 2}) we

refer to Section 4.2. Thus, it remains to study the WS
(n+1,pa,o)(C1 ∪ {n+ 1}).

We study new exact methods for solving the WS
(n+1,pa,o)(C1 ∪ {n+ 1}). In [23] the following

result is proven for the TRFLP and this result is valid for the FR-TRFLP as well.

Proposition 12. Given an FR-TRFLP instance where C1 6= ∅ (C2) denotes the set of departments
assigned to cell 1 (cell 2) and let V1 := {i ∈ C1 : ∑j∈C2(wij + wji) > 0} 6= ∅. Let the
dummy department n + 1 be assigned to cell 1 with `n+1 = 0 and wi(n+1) = ∑

j∈[n]\C1 wij,
w(n+1)i = ∑

j∈[n]\C1 wji (see (14), (15)) and let the optimal value of the WS
(n+1,pa,o)(C1 ∪{n+ 1})

29



be denoted by v∗n+1. Further, we denote by v∗sM the optimal value of the WS
(sM ,pa)(C1) where the

weights of sM ∈ C1 are adjusted according to (14), (15). Then,

v∗n+1 = min{v∗sM : sM ∈ V1}.

Further, there always exists an optimal T-row layout with C1 6= ∅. If V1 = ∅, we neglect the
dummy department n+ 1 and then the WS

(n+1,pa,o)(C1 ∪ {n+ 1} is equivalent to the SRFLP with
the set of departments C1. Given an FR-TRFLP instance, we fix sM ∈ C1 directly opposite the
(un-) loading station, and hence we have to solve the WS

(sM ,pa)(C1 ∪ {n+ 1}). By this method
one has to consider 2n − 1 cell assignments for the TRFLP and solve the WS

(n+2,pb)(C2 ∪ {n+ 2})
once and the WS

(sM ,pa)(C1 ∪ {n + 1}), sM ∈ C1, has to be solved max{1, |V1|} times for every
cell assignment.
Hence, we present an MILP model for solving the WS

(n+1,pa,o)(C1) with V1 6= ∅ in order to
solve this problem faster as well as to obtain good lower bounds and neglect unbalanced
cell assignments early in our algorithm. The idea is to split the dummy department n + 1
into two dummy departments n + 3 and n + 4 with lengths `n+3 = `n+4 = 0 and weights
wi(n+3) = wi(n+4) = wi(n+1)

2 , w(n+3)i = w(n+4)i = w(n+1)i
2 , i ∈ C1. We ensure that exactly one

department lies between n+ 3 and n+ 4 and this department lies on position pE1 . Neglecting
the constant weights W = ∑

i,j∈[n]
i<j

(wij + wji) `i+`j2 for the whole problem our MILP model for

the subproblem in cell 1 reads as follows

min
∑

i,j∈C1
i<j

(wij + wji)
∑

k∈C1\{i,j}
`kxikj (29)

+
∑

i∈C1
j∈{n+3,n+4}

(wij + wji)


 ∑

k∈C1\{i}
`kxikj −

`i
2 x(n+3)i(n+4)




(2)–(6), D = C1 ∪ {n+ 3, n+ 4},
∑

i∈C1

x(n+3)i(n+4) = 1, (30)

x(n+3)i(n+4) = 0, i /∈ V1, (31)
xikj ∈ {0, 1}, i, j, k ∈ C1 ∪ {n+ 3, n+ 4},

|{i, j, k}| = 3, i < j.

By Equation (30) exactly one department is arranged between the dummy departments n+3 and
n+ 4 and if i ∈ C1 \ V1, then i does not lie between the dummy departments, see Equations (31).
In the objective function (29) the distances between i ∈ C1 and j ∈ C1 ∪ {n+ 3, n+ 4}, i < j,
are measured similar as in the SRFLP if x(n+3)i(n+4) = 0. Otherwise, if x(n+3)i(n+4) = 1, then the
distance between i and j ∈ {n+ 3, n+ 4} equals − `i

2 because we excluded the value (wij +wji) `i2
in the calculation of the constant W . Measuring the distance between j ∈ C1 \ {i} and the
dummy departments we subtract `i

2 , and thus we do not take the length `i into account, as
desired by the calculation of the constant W . Hence, our distance calculation and the MILP
model are correct. In our algorithm we solve the WS

(n+2,pb)(C2 ∪ {n+ 2}) first and then we solve
the WS

(n+1,pa)(C1 ∪ {n+ 1}) because the WS
(n+2,pb)(C2 ∪ {n+ 2}) can often be solved faster, see

Table 1 and the corresponding conclusions. Note that in the FR-TRFLP the inter-cell distance u12
leads only to constant weights, and thus we can exclude them.
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Abstract. We investigate the so called Double Row Facility Layout
Problem (DRFLP). Given a set of departments with given lengths and
pairwise transport weights between them, the aim is to assign the depart-
ments to two rows such that the weighted sum of the distances between
them is minimized and such that the departments do not overlap. The
DRFLP is known to be rather challenging. Even with the best approach
known in literature, which is based on an enumeration over all row assign-
ments of the departments and where only the center-to-center distances
are measured, the largest instance solved to optimality contains only
16 departments. In this paper we show how the existing models can be
extended in various directions in order to handle more aspects that are
important in real-world applications such as vertical distances between
the departments and restricting the size of the layout area. We also show
how the structure of real-world instances, which often contain several
departments of the same type, can be exploited in mathematical opti-
mization. This allows us to solve a realistic instance with 21 departments
in reasonable time. Furthermore, we propose a new approach which com-
bines optimization and simulation. Here simulation allows the evaluation
of the optimized solutions with respect to several performance indicators
which play an important role for a smooth production apart from the
weighted transport distances. If problems are detected, this information
is included in the mathematical models by extending these.

Keywords: Facility layout problem · Exact solution · Simulation

1 Introduction

Globalization, the growing dynamics of the markets, the increase in customized
products, decreasing product life cycles and technological innovations are only
some of the challenges manufacturing enterprises have to cope with. As a result,
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manufacturing enterprises are forced to implement a cost efficient production
in order to remain competitive. The layout of the production areas and operat-
ing equipments (assets and departments) is one of the main influencing factors
and provides a basis to uphold the long-term productivity and competitiveness
[19]. In this work we present a combined optimization-simulation approach for
determining a good start solution for the layout of the departments along both
sides of a single path. For this we extend the mathematical optimization app-
roach in [7]. The start solution obtained via mathematical optimization is then
the basis for the following steps of the factory planners on a much finer level
of detail. In order to handle many of the requirements posed on the layout in
real-world production, the existing mathematical optimization models have to
be extended.

From a mathematical point of view, the described factory planning problem
leads to so called facility layout problems, which are widely studied [4]. Sev-
eral methods have been developed in this area ranging from graphical methods,
heuristics, which allow deriving solutions rather fast but without some knowl-
edge of the quality of the solutions, and exact optimization methods. Unfor-
tunately, solving even small instances exactly without additional restrictions on
the path structure is extremely challenging. So deriving an exact solution or even
a good solution with appropriate solution guarantees for small to medium-sized
instances is often rather time-consuming. For this reason, one often concentrates
on special cases where one restricts the structure of the layout and the paths. We
investigate the so called Double Row Facility Layout Problem (DRFLP). Given n

departments with positive lengths ℓi, i ∈ {1, . . . , n} =: [n], and symmetric pair-
wise transport weights cij , i, j ∈ [n], i < j, between them, the classic DRFLP

asks for an assignment of n departments to two rows (the two sides of a path)
and horizontal positions of the departments such that the weighted sum of the
center-to-center distances, measured in horizontal direction, is minimized. More-
over, two departments in the same row may not overlap. So we look for a vector
p ∈ R

n of positions and a vector r ∈ {1, 2}n of the assignment of the departments
to the two rows such that

min
�

i,j∈[n]
i<j

cij |pi − pj |

subject to |pi − pj | ≥
ℓi + ℓj

2
, i, j ∈ [n], i < j, if ri = rj .

In [9], Chung and Tanchoco present a model for the DRFLP (see also [24]) which
can solve instances with up to 8 departments in about 10 min. Amaral suggests
a mixed–integer program that can solve instances with up to 12 departments in
less than one hour [3]. The current best known approach for solving the DRFLP is
presented in [12], where Fischer et al. solve instances with up to 16 departments
in less than 12 h. Beside the exact methods, there are several heuristic approaches
for solving the DRFLP and extensions of it, see, e. g., [17,25]. Highly related to
the DRFLP is the Single Row Facility Layout Problem (SRFLP), introduced in [22].
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In contrast to the DRFLP, in the SRFLP the departments are arranged in only one
row. With the best known approach, presented in [13,14], Hungerländer and
Rendl are able to solve instances with up to 42 departments to optimality and
they receive very small gaps for instances with up to 110 departments. For an
overview of layout problems in general we refer to [4,11].

Our paper is structured as follows. In Sect. 2, we summarize the current
best approach for the DRFLP [12]. There, one combines a strong model for the
DRFLP with fixed row assignment, i. e., the row assignment of each department
is known in advance, with a branching scheme enumerating over all possible row
assignments.

In Sect. 3, we extend this approach in various directions. We consider depart-
ments as 2-dimensional objects which have a length and a width. In real-world
applications the size of a factory is limited, so in Sect. 3.1 we show how to restrict
the area used for the DRFLP layout. In Sect. 3.2, we allow the consideration of
vertical distances between the departments. Afterwards, in Sect. 3.3 we consider
instances that contain departments of the same type, i. e., these departments
have the same length and the same transport weights to all other departments.
We exploit this structural property of departments of the same type by reducing
the number of relevant row assignments significantly.

Unfortunately, in the classic mathematical DRFLP models only the transport
weights and so the weighted transport loads are taken into account. But there are
several further indicators that are important for guaranteeing a smooth produc-
tion, e. g., the throughput of the factory, the cycle times of the products or the
used storage and buffer capacities. Therefore, we combine in Sect. 4 the mathe-
matical DRFLP model with a simulation of the production that allows determining
various key performance indicators. Thus, we can detect potential problems and
conflicts.

In Sect. 5, we solve a realistic instance with 21 departments in less than 14 h
by exploiting that there are several departments of the same type. We compare
our solutions obtained via mathematical optimization to solutions derived by
applying classic methods used in factory planning. The results obtained via sim-
ulation are then the starting point in Sect. 5.2 for extending the mathematical
models such that the transport distances are considered not only in an aggre-
gated form, but for each single product. We summarize our results and give
suggestions for future work in Sect. 6.

2 Basic Model for the DRFLP

In the classic models for the DRFLP, see, e. g., [3,9,12], the following three assump-
tions are made

1. the total size of the area needed for the arrangement is not limited,
2. vertical distances between the departments are neglected,
3. each department can be assigned to any of the two rows.
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In contrast to the SRFLP, there might occur free spaces between departments in
the same row in optimal DRFLP solutions.

The current best solution approach for the DRFLP is described in [12]. The
main idea is to enumerate over all possible row assignments and solve the DRFLP

with fixed row assignment (FR-DRFLP). In the following, we summarize the model
of [12] for solving the FR-DRFLP. First we add two dummy departments n + 1
and n + 2 representing the left and right border of the layout. The lengths and
transport weights of the dummy departments are set to zero, i. e., ℓn+1 = ℓn+2 =
0, ci(n+1) = ci(n+2) = 0 for i ∈ [n] and c(n+1)(n+2) = 0.

In order to consider a fixed row assignment, let R = {1, 2} be the set of rows
and ri ∈ R, i ∈ [n], be an assignment of the departments to the two rows. For
h ∈ R we will write: j ∈ Rh ⇔ rj = h. The dummy departments n + 1 and

n + 2 are assigned to both rows and we define R̃h = Rh ∪ {n + 1, n + 2}. We use
betweenness variables

xikj = xjki =

�

1, k lies between i and j in the same row,

0, otherwise,

for l ∈ R, i, j, k ∈ R̃l, i �= k �= j, i < j. The betweenness variables induce an
order of the departments in each row, because x(n+1)ij is equal to 1 if and only
if department i is left to department j in the same row. We consider the following
integer linear programming model

xijk + xikj + xjik = 1, l ∈ R, i, j, k ∈ R̃l, i < j < k, (1)

x(n+1)i(n+2) = 1, i ∈ [n], (2)

xikj = 0, l ∈ R, i, j ∈ Rl, i < j, k ∈ {n + 1, n + 2}, (3)

x(n+1)ij = xij(n+2), l ∈ R, i, j ∈ Rl, i �= j, (4)

xihj + xihk + xjhk ≤ 2, l ∈ R, i, j, k, h ∈ R̃l, |{i, j, k, h}| = 4, i < j < k, (5)

− xihj + xihk + xjhk ≥ 0, l ∈ R, i, j, k, h ∈ R̃l, |{i, j, k, h}| = 4, (6)

xijk ∈ {0, 1}, l ∈ R, i, j, k ∈ R̃l, |{i, j, k}| = 3, i < k. (7)

If three departments lie in the same row, by (1) exactly one of them lies in the
middle. The constraints (2)–(4) ensure that every department lies between the
dummy departments n + 1 and n + 2, i. e., the dummy departments are the left
and right border of the layout. Inequalities (5)–(6) imply that the departments
satisfy certain transitivity properties. According to [2], (1) and (5)–(7) induce a
correct ordering of the departments in each row.

Next we need to calculate the distance between two distinct departments.
The horizontal position pi of the center of department i, i ∈ [n], is given by
di(n+1) = pi. The value di(n+2) is defined as the distance between the right
border of the layout, i. e., department n + 2, and department i for i ∈ [n]. The
distance between the left and the right border of a layout is given by d(n+1)(n+2).
The distance is calculated according to (see [12])

dji = dij ≥ |pi − pj | = |d(n+1)i − d(n+1)j |,
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for i, j ∈ [n]∪{n+2}, i < j. We set M :=
�n

i=1 ℓi and we obtain in the following
a model for the FR-DRFLP, which we call IPFR-DRFLP. This model is given in its
basic form in [12] and we add the inequalities (9) and (10), because we later
want to extend this model.

min
�

i,j∈[n]
i<j

cijdij

s. t. (1)–(7),

dj(n+1) − di(n+1) ≥ M(x(n+1)ij − 1) +
ℓi + ℓj

2
, l ∈ R, i, j ∈ Rl, i �= j, (8)

dj(n+2) − di(n+2) ≥ M(xji(n+2) − 1) +
ℓi + ℓj

2
, l ∈ R, i, j ∈ Rl, i �= j, (9)

di(n+1) + di(n+2) = d(n+1)(n+2), i ∈ [n], (10)

di(n+1) ≥
ℓi

2
, di(n+2) ≥

ℓi

2
, i ∈ [n], (11)

dik + dkj ≥ dij ,
i, j, k ∈ [n + 2], i < j,

|{i, j, k}| = 3,
(12)

dij ≥ 0, i, j ∈ [n + 2], i < j. (13)

By inequalities (8), (9) and (11) there is a minimal distance of
ℓi+ℓj

2 between
the centers of the departments i and j if they lie in the same row and with
respect to the dummy departments. Inequalities (12) are triangle inequalities
that also connect departments lying in different rows. We argued above that
the betweenness inequalities (1) and (5)–(7) induce a correct ordering of the
departments in each row. Combining this with (8)–(13) we get the following
theorem:

Theorem 1. The model (1)–(13) is correct for the FR-DRFLP.

This result follows immediately from [12] which we adapted only slightly such
that also the distance between some department i, i ∈ [n], and department n+2
is calculated correctly.

Furthermore, we can add a lower bound on the distance between the centers
of two departments i and j in the same row by summing up the lengths of all
departments between i and j

dij ≥
ℓi + ℓj

2
+

�

k∈Rl\{i,j}

ℓkxikj , l ∈ R, i, j ∈ R̃l, i < j.

We want to point out that the distance between two departments might be
greater than this bound, because in an optimal solution of the FR-DRFLP there
might occur free space between two neighboring departments.

In order to solve the DRFLP using the model above, we have to test exponen-
tially many row assignments. We can reduce the number of distinguishable row
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assignments by reducing M , the big-M -value in inequalities (8) and (9), which
is also an upper bound on the sum of the lengths of the departments in each
single row. Certainly we can assume that in an optimal solution the sum of the
lengths of the departments in row one is the same as or larger than the sum in
row two. Let the leftmost department i of the considered layout start at position
pn+1 = 0 with its center pi = ℓi

2 and let the rightmost department j ∈ [n] apart

from n + 2 of this layout finish at t with its center pj = t −
ℓj

2 .

Lemma 1 ([12]). Given a DRFLP instance that satisfies, w. l. o. g., ℓi ≤ ℓi+1 for

i ∈ [n−1], there always exists an optimal DRFLP layout on the interval [0, t] with

t ≤

n
�

i=⌊ n+1

3
⌋+1

ℓi. (14)

Moreover, this bound is tight.

Due to [12], we can neglect all row assignments where the sum of the lengths
of the departments in one of the rows exceeds t.

Usually, in factory planning the incoming warehouse and the shipping ware-
house of a factory are arranged at the left and at the right border, respectively.
If this is the case, the dummy departments (n + 1, n + 2) can be interpreted
as these warehouses. For an illustration we refer to Fig. 1. Of course, we might
obtain a better overall solution value if we drop the restriction on the position of
both warehouses. In this case they are treated as ordinary departments that have
transport connections to other departments and need a certain space. Later in
Sect. 5 we compare the quality of the solutions with and without this restriction
on the positions.

in
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Fig. 1. Visualization of an extended DRFLP layout where we fixed the incoming and the
shipping warehouse to the border of the layout. One motivation for this arrangement
is that one hopes to receive rather linear transport flows between the departments.
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3 Extensions of the Basic DRFLP Model

In this section we show how the DRFLP and the FR-DRFLP can be extended
such that further aspects, which are relevant in practice, can be handled in
optimization.

3.1 Restricted Area of the Whole Layout and Blocked Areas

We consider the case that the departments not only have a length but also
a width, i. e., they are given as 2-dimensional objects. Our aim is to place the
departments in a restricted area. In [21], a restricted area is taken into account by
a penalty function. However, we will restrict the area by additional constraints.
In factory planning the layout area is usually defined as follows:

Definition 1. The area of a given layout is defined as the area of the minimum

boundary rectangle containing all departments.

Fig. 2. Minimum boundary rectangle of a layout (marked black) enclosing five 2-
dimensional departments. The area of the layout corresponds to the size of this rect-
angle.

By definition the area of a layout is equal to d(n+1)(n+2) · w, where w is
the width of the layout (in our FR-DRFLP model). An example is illustrated in
Fig. 2. Let wi denote the width of department i ∈ [n]. In the FR-DRFLP the row
assignment is fixed, so we compute the width of the layout by summing up the
width of the department with the largest width in each row plus the width of the
path wpath between the two rows, i. e., w = maxi∈R1

wi + maxi∈R2
wi + wpath. In

particular, for a fixed row assignment the width of a layout is constant. Thus, we
only need to restrict the distance d(n+1)(n+2) in an appropriate way to restrict
the used area. Assume the area of the layout may be at most F ∈ R≥0. Then the
linear inequality d(n+1)(n+2) ≤ F

w
ensures that the area of the layout is bounded

by F .
So, given a row assignment, all departments lie in the interval [0, F

w
]. Thus, we

can neglect all row assignments where the sum of the lengths of the departments
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in the same row exceeds F
w

. Moreover, we can improve the big-M -value used in
inequalities (8) and (9) to

M = min

�

F

w
,

n
�

i=1

ℓi

�

.

Hence, for every row assignment we have to compute a new big-M -value. Note
that the upper bound t, as computed in (14), is not valid anymore.

Apart from a restriction of the used area, there might appear so called blocked
areas in real-world factory planning problems. It is not allowed to place depart-
ments in these areas. This might be due to already existing departments or due
to safety restrictions. Let B1 = {[b1, b1 + g1], . . . , [bu, bu + gu]} be the blocked
areas in row 1 and B2 = {[bu+1, bu+1 + gu+1], . . . , [bv, bv + gv]} be the blocked
areas in row 2 for given bk, gk ≥ 0, k ∈ [v], bk + gk ≤ bk+1, k ∈ [v] \ {u}. For
each blocked area we introduce a new dummy department, which we will call
blocked department, with length equal to the length of the blocked area. We
place the center of the blocked department in the middle of the blocked area.
So we get the blocked departments n + 3, n + 4, . . . , (n + 2 + |B1| + |B2|) with
length ℓn+2+k = gk for k ∈ [v]. The row assignment of the blocked departments
is fixed, namely R1 = {(n + 3), . . . , (n + 2 + |B1|)} are assigned to row 1 and
R2 = {(n + 2 + |B1| + 1), . . . , (n + 2 + |B1| + |B2|)} to row 2. To ensure that the
blocked department n+2+ k lies exactly on the interval [bk, bk + gk], we set the
distance variable to

d(n+1)(n+2+k) = bk +
gk

2
, k ∈ [v].

Additionally, we extend the inequalities (8) such that they are satisfied for
all departments i, j ∈ Rl ∪ Rl for l ∈ {1, 2}. Apart from this we can fix
the betweenness variables that belong to each three departments with index
at least n + 1. For correctness of the model an update of the big-M -value to
M̃ = max{bu + gu, bv + gv} + t, where t is defined as in (14), is needed, since
it might happen that in an optimal solution the n departments are all arranged
right to the blocked departments (possible if the area of the layout is not addi-
tionally bounded; this is possible by restricting d(n+1)(n+2)). Note that M has
to be further enlarged if the blocked areas have non-zero transport weights to
departments in [n]. This can happen if we extend an existing factory and do not
want to move some of the old departments.

3.2 Vertical and Inter-row Distances

We want to overcome the second assumption of the basic model as stated in
Sect. 2—vertical distances between the departments are neglected—by adding
inter-row distances between departments in distinct rows as well as vertical dis-
tances between departments in the same row. For this, note again that we assume
that the departments are 2-dimensional objects. The center-to-center distance
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between two departments i and j is computed as follows: First we add the dis-
tance between the center of i to the path, then, as in the 1-dimensional case,
we compute the distance |pi − pj | and afterwards we add the distance from the
path to the center of j. Furthermore, if i and j are in distinct rows, we add the
width of the path wpath. An example is illustrated in Fig. 3.

In order to solve this extended DRFLP, we use again our fixed-assignment
model IPFR−DRFLP . For the FR-DRFLP, the inter-row distances and associated
transport weights are constant. The inter-row weights are calculated by

�

j∈R1

k∈R2

�

wj + wk

2
+ wpath

�

cjk

and for departments in the same row we get

�

j,k∈R1

j<k

wj + wk

2
cjk +

�

j,k∈R2

j<k

wj + wk

2
cjk.

All in all, in our setting we only need to add a constant to the objective value of
some FR-DRFLP to include inter-row distances and compare the total objective
values in the enumeration scheme. We want to note again, that the reduction of
M according to (14) is not possible because of this constant.

Fig. 3. Calculation of the vertical and horizontal distances between three departments

Naturally, the third assumption mentioned at the beginning of Sect. 2—each
department can be assigned to any of the two rows—can easily be dropped. If
the row assignment of some departments is fixed in advance, this only helps us
because the number of possible row assignments decreases.

3.3 Departments of the Same Type

In order to compute an optimal DRFLP layout we enumerate over all row assign-
ments of the departments and solve some IPFR-DRFLP in each step. In principle,
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we have to solve the IPFR-DRFLP for all distinguishable row assignments (some
layouts might be neglected due to further considerations). So restricting the
number of distinguishable row assignments is essential. Let n denote the num-
ber of departments. In general, there are 1

2 · 2n distinguishable row assignments
because by assumption we can place every department in row 1 or in row 2 and
we can fix the row assignment of exactly one department. In realistic instances
there appear departments of the same type, see also our test case in Sect. 5.1,
i. e., the departments have the same length and the same transport weight c to
all other departments. We use this additional information to reduce the number
of distinguishable row assignments significantly.

Theorem 2. Let m denote the number of different department types and let ai

be the number of departments of type i ∈ [m]. Then there are at most









1

2




i∈[m]

(ai + 1)









distinguishable row assignments.

Proof. We will prove this result by induction on m. Let m = 1. We only take
row assignments into account that contain at least as many departments in row
1 as in row 2. By symmetry, these are all distinguishable row assignments. So we
assign a1, . . . , ⌈

a1

2 ⌉ departments to row 1 and we obtain a1 − ⌈a1

2 ⌉ + 1 = ⌈a1+1
2 ⌉

distinguishable row assignments. Let us now assume that the result is true for
m and we consider m + 1 department types.

Case 1: am+1 is odd. The idea of the proof is to assign more departments of type
m+1 to row 1 than to row 2. By this method, we take all distinguishable row
assignments into account. For am+1, . . . , ⌈

am+1

2 ⌉ departments of type m+1 in
row 1 we obtain

m

i=1(ai+1) distinguishable row assignments in each subcase.
Altogether we obtain

�

am+1 −
�am+1

2

�

+ 1
�

m



i=1

(ai + 1) =

�

am+1 + 1

2

� m



i=1

(ai + 1)

=

�

1

2

m+1



i=1

(ai + 1)

�

distinguishable row assignments.
Case 2: am+1 is even. We assume that ai is even for all i ∈ [m], otherwise the

proof is analogous to Case 1. Similar to Case 1 we assign am+1, . . . ,
am+1

2 +1
departments of type m + 1 to row 1 and obtain

am+1

2

m



i=1

(ai + 1)
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distinguishable row assignments. It remains to consider the case with am+1

2
departments of type m + 1 in row 1. Then, there are also am+1

2 departments
of type m + 1 in row 2. Now we use our induction hypothesis to create dis-
tinguishable row assignments. Altogether we get

am+1

2

m



i=1

(ai + 1) +

�

1

2

m



i=1

(ai + 1)

�

= (am+1 + 1)
1

2

m



i=1

(ai + 1) +
1

2

=

�

1

2

m+1



i=1

(ai + 1)

�

distinguishable row assignments. ⊓⊔

This formula is also correct if all departments have a different type, because
then ai = 1 for all i ∈ [m] and m = n. We illustrate the advantages of Theorem 2
by a realistic example, see [18] and Sect. 5.

Example 1. We are given n = 21 departments, where two departments appear
four times, three departments twice and seven departments just once. Without
reduction, we have to test 220 = 1048576 row assignments. By Theorem 2 we
obtain at most 1

2 · 5 · 5 · 3 · 3 · 3 · 27 = 43200 distinguishable row assignments.

Apart from reducing the number of row assignments if there are several depart-
ments of the same type, we additionally can strengthen our model. Indeed, we
can break some symmetries of the arrangement by fixing the order of depart-
ments of the same type in the same row. This symmetry breaking is done in such
a way that at least one optimal solution is preserved. Let ai1 departments of the
same type i, i ∈ [m], be in row 1. We denote these departments, w. l. o. g., by
1, . . . , ai1 . Then, we fix the order of these departments by additional constraints,
w. l. o. g., we use an ascending order. Since these departments are of the same
type, they have the same length and we can add

d(n+1)1 ≤ d(n+1)2 + ℓ1 ≤ . . . ≤ d(n+1)(ai1
) + (ai1 − 1) · ℓ1

to our model. It follows immediately that we can set the ordering variables to

x(n+1)kl =

�

1, k, l ∈ [ai1 ], k < l,

0, k, l ∈ [ai1 ], k > l.

Similar equations can be added for department n + 2. Furthermore, we fix the
associated betweenness variables

xkuv =

�

1, k, u, v ∈ [ai1 ], k < u < v,

0, k, u, v ∈ [ai1 ], k < v and (u < k or u > v).
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4 Iterative Combination of Optimization and Simulation

Using an extended version of the algorithm of [12] we are now able to solve the
DRFLP. For further details on the software we used as well as on our test envi-
ronment we refer to Sect. 5. As already mentioned in the introduction, in the
mathematical models usually only the transport loads are taken into account.
But for a successful production system, which highly depends on the decisions
made during the factory planning process, several further key performance indi-
cators play a significant role. To determine these we use simulation. If problems
are detected, the optimization model is extended.

To verify the quality of the extended DRFLP model we apply discrete event
simulation, see also [7]. As a software tool we use Tecnomatix Plant Simula-
tion [23]. Starting point is the development of a basic simulation model that
includes different controls and import functions. These controls are necessary
for

– the management of processing sequences and times,
– the implementation of imported processing parameters or production pro-

grams and
– an automated generation of the layout specific simulation model after the

import of the DRFLP solution.

In addition, the controls allow

– the consideration of different distribution strategies for the material flow,
– adding different products,
– adjusting the processing sequences, i. e., in which order the products have to

be processed, and
– adjusting a production program which includes a production schedule and

the number of products.

By running the simulation of the processes on and between the departments or
machines, which are arranged according to some layout, we generate dynamic
and realistic information about the transport processes.

Additionally, we implemented some statistical tools for the evaluation of
the respective layouts. Related to the input data for the DRFLP we analyze
the total product distances [1], specific product distances and the transport
momentum. Furthermore, a first benefit of the simulation is that we can con-
sider additional key performance indicators of the production systems, among
them output, throughput times, inventory, capacities, utilization of resources.
Apart from this a second benefit is the visualization of processes that simplifies
the understanding of complex relations [8].

An analysis of the results including the key performance indicators is then
the basis to see needs for improvement. So, if the current layout has to be
improved, the DRFLP models are customized by extending or adapting the math-
ematical models and the interplay between optimization and simulation contin-
ues as illustrated in Fig. 4. One big advantage of our iterative layout creation
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Fig. 4. Extended and evaluated DRFLP-method: The quality of a layout determined via
mathematical optimization for some layout planning issue is measured using simulation.
If improvements are needed, the mathematical models are extended.

is that afterwards we can nicely compare the found solutions with respect to
several indicators. So, the effect of certain decisions becomes clear.

The simulation might show that the distances between certain departments
are too large for a smooth production. Then, we can restrict these distances in
the model. Furthermore, the simulation gives some information about the size
of the storage and buffer areas needed during production. If more or less space
is needed, the sizes of the departments have to be adapted in the next step.
Additionally, in the mathematical model we always assume that the transport
weights between each pair of departments is known in advance. If there are
several departments of the same type we assume that the intermediate products
are evenly distributed among the departments of the same type. With the help
of simulation we can check whether this is a good distribution strategy by testing
several ones and if necessary we can adapt our model.

Many simulation models are generated in 2D. This kind of department repre-
sentation is quite abstract and impedes the intuitive understanding of the layout
and the production process. Especially for layouts with an increased number of
departments, the transparency of a DRFLP solution with the 2D simulation model
is limited. The integration of 3D models provides a better overview for the plan-
ner as illustrated in Fig. 5. Especially the product flow can be demonstrated
very quickly. Using a 3D simulation model on basis of the optimized layout can
simplify the virtual validation of the planned production area and the detection
of bottlenecks. All in all, simulation allows to control whether it will be possi-
ble to achieve the desired output of the production system afterwards in real
production.
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Fig. 5. Illustration of a 3-dimensional simulation including the workers where the
departments are arranged on both sides of a common path

5 Computational Experiments

In this section, we present our computational results. All experiments were
conducted on an INTEL-Core-I7-4770 (4× 3400 MHz, 8 MB Cache) with
32 GB RAM in single processor mode using openSUSE Linux 42.1. We used
CPLEX 12.7.0 [15]. As mentioned above all simulations were done with Tecno-
matrix Plant Simulation [23].

5.1 Test Case and Computational Results

For testing our new solutions of the extended DRFLP models in the simulation
we use a well-known application example [18]. It represents a real gearbox pro-
duction and includes 21 departments (with 12 types) and eight different prod-
ucts which are combined in an assembly department to an end product. This
example provides a solid data basis for the layout planning problem and the sim-
ulation model. All necessary information like the transport matrix, processing
sequences, processing times, set up times and production rates are given in [18].
For the convenience of the reader we present them here, where we only specify
the transport amount between the single types. We have m = 12 types with
multiplicities a1 = a2 = a4 = a8 = a10 = a11 = a12 = 1, a5 = a6 = a9 = 2,
a3 = a7 = 4 and so n = 21 departments. The lengths (given in meter) are
ℓa1

= 4, ℓa2
= 3.4, ℓa3

= 4.6, ℓa4
= 4, ℓa5

= 4.7, ℓa6
= 3.3, ℓa7

= 4.5, ℓa8
=

2.3, ℓa9
= 3.8, ℓa10

= 5.2, ℓa11
= 4, ℓa12

= 4 and the transport weights cij = cji

between types i, j are given via
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0 240 204 0 0 570 0 0 120 0 0 0
240 0 240 0 0 0 0 0 0 0 0 0
204 240 0 60 60 144 0 0 180 0 0 0
0 0 60 0 60 0 0 0 0 0 0 0
0 0 60 60 0 0 0 120 0 0 0 0

570 0 144 0 0 0 570 0 0 0 144 0
0 0 0 0 0 570 0 570 0 0 0 0
0 0 0 0 120 0 570 0 0 0 690 0

120 0 180 0 0 0 0 0 0 60 240 0
0 0 0 0 0 0 0 0 60 0 60 0
0 0 0 0 0 144 0 690 240 60 0 720
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In optimization, we assume that the transports are equally divided among the
departments of the same type. In simulation also other strategies can be tested,
but we only implemented a division of the transports according to a discrete
uniform distribution. A 3D illustration of some layout for this instance, where
the incoming and the shipping warehouse are arranged at the borders, is given
in Fig. 6.

Fig. 6. 3D illustration of a DRFLP layout with 21 departments [18]. This simulation was
derived using mathematical optimization. The incoming and the shipping warehouse
are arranged at the left and the right border, respectively.

This example has already been taken into account in Example 1. Indeed, it
contains several departments of the same type. In our computational tests we
used Theorem 2 and the additional symmetry breaking constraints for depart-
ments of the same type in the same row. In Fig. 7 we show the development of
the running times of our optimization approach if we enlarge the number of the
departments. The instance of [18] contains departments of 12 different types. In
the tests we start with 12 departments and successively add one department in
each step. So, department type 3 appears twice when we consider 13 depart-
ments and three times when we consider 14 departments and so on. Figure 7
shows that the original instance with all departments could be solved in less
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than 14 h, although it contains 21 departments and so five departments more
than the largest DRFLP instance solved to optimality in the literature before.

In the simulation we tested the following five different solutions:

1. A solution determined according to criteria usually used in factory planning
where apart from the transport weights one had a special look at the linearity
of the flows. The heuristic of Schmigalla [16,20] was applied and afterwards
the solution was improved by hand. Incoming and shipping warehouse were
arranged at the border.

2. A solution determined according to criteria usually used in factory planning
where all departments of a type were interpreted as one big block and then
these blocks were arranged. The number of blocks that had to be arranged
is smaller than the total number of departments. So it was easier to build
this layout by hand. Incoming and shipping warehouse were arranged at the
border.

3. We used our mathematical DRFLP model for deriving a solution but as it is
often done in practice incoming and shipping warehouse were arranged at
the border (see end of Sect. 2). A 3D visualization of this warehouse can be
found in Fig. 6.

4. We used our mathematical DRFLP model for deriving a solution and the
incoming and shipping warehouse were arranged at the border. Addition-
ally, all departments of the same type were interpreted as one big block and
then these 12 blocks were arranged.

5. Solution derived using our mathematical DRFLP model with arbitrary position
of all departments as well as of the incoming and the shipping warehouse (in
our model these are departments, too). This approach was also used for
deriving the results in Fig. 7.

In all five simulations we manufactured 36000 end products and determined
afterwards the average distance of each single product and the total distance
traveled. The results can be found in Table 1. The end product, which is obtained
by combining all eight products in an assembly department, is denoted as prod-
uct 9. The second column in Table 1 shows the number of transports (“Trans”)
needed for each product 1, . . . , 9, and the next ten columns show the distances
for the five simulation variants where the left column (“Single”) for each type
contains the information on the average transport distance of each single prod-
uct and the right column the total distance (“Total”) traveled for all products
of the same type.

The results show that the use of our optimization model allows to improve
the solution significantly in comparison to the solution determined by hand,
especially if we do not restrict the position of the warehouses (Layout 5). Com-
paring Layout 1 and Layout 3, where the two warehouses have been fixed to
the border, the solution obtained by optimization is better than the solution
obtained by applying the heuristic of Schmigalla followed by some improvement
steps by the factory planners. But even the optimized solution with blocks and
fixed border, illustrated in Layout 4, is better than the solutions determined
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Fig. 7. Running times in seconds for variations of some realistic instance from [18]. We
start with 12 different department types and 12 departments and we add departments
successively according to the following order of the number of departments of each of
the 12 types: 1 1 4 1 2 2 4 1 2 1 1 1. The largest instance contains 21 departments.

Table 1. Visualization of the results of the five simulations for our test case. In this
production all eight products are combined to an end product, denoted as product
9, see column “P”. The entry “Total” in the first column refers to the total distance
traveled in each of the five layouts. Note that using our approach from mathematical
optimization with arbitrary department positions reduces the total distances signifi-
cantly in comparison with the other four variants.

P Trans Layout 1 Layout 2 Layout 3 Layout 4 Layout 5

Single Total Single Total Single Total Single Total Single Total

1 480 37.90 18192.0 38.70 18576.0 28.70 13776.00 29.15 13992.00 16.31 7828.8

2 90 37.90 3411.0 38.70 3483.0 28.70 2583.00 29.15 2623.50 16.31 1467.9

3 144 38.50 5544.0 44.85 6458.4 29.32 4222.08 35.91 5171.04 30.75 4428.0

4 60 37.90 2274.0 37.60 2256.0 28.70 1722.00 29.15 1749.00 39.60 2376.0

5 30 65.60 1968.0 71.90 2157.0 69.20 2076.00 70.40 2112.00 66.51 1995.3

6 60 55.96 3357.6 49.03 2941.8 55.66 3339.60 54.18 3250.80 54.27 3256.2

7 30 66.12 1983.6 71.89 2156.7 66.42 1992.60 70.90 2127.00 66.51 1995.3

8 120 37.90 4548.0 37.60 4512.0 28.70 3444.00 29.15 3498.00 39.00 4680.0

9 720 2.00 1440.0 2.00 1440.0 10.80 7776.00 11.20 8064.00 0.00 0.0

Total 42718.2 43980.9 40931.28 42587.34 28027.5

by hand, illustrated in Layout 2. A visualization of all layouts can be found in
Fig. 8, where blocks consisting of departments of the same type are highlighted
with lines in bold type.
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Fig. 8. Visualization of the five layouts tested in the simulations. These five layouts
were constructed by the five variants stated above, i. e., Layout 1 and Layout 2 were
derived according to general approaches used in factory planning and Layout 3, Layout
4 and Layout 5 were derived using the optimization model. The last layout shows an
optimal solution if the position of none of the departments is restricted.

In the simulation the different products that are produced are considered
separate, but in the mathematical models the transport weights are based on
aggregated information for the transports of all products. Studying the results
and indicators provided by the simulation of the five layout variants we realized
that the time needed for the transport processes of different products can vary
significantly. Next we show how to overcome this situation by adapting our
optimization model.

5.2 Manufacturing Different Products

Let us assume that we manufacture an amount of different products. Let P

denote the set of products and hp be the desired number of product p ∈ P .
Every product has its own transport matrix Cp. The ij-th entry of the matrix
Cp denotes the transport weights between department i and j for producing
product p. The transport weight matrix C that we used before is built on the
sum of the transport matrices times the associated desired number of products,
i. e., C =

�

p∈P hp · Cp. Our aim is now to investigate the influence of single
products to the whole production.

Definition 2. For a product p ∈ P we define the transport distance as

�

i,j∈[n]
i<j

c
p
ijdij ,

where c
p
ij is the ij-th entry of the matrix Cp.
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The simulation showed that these transport distances might be rather high in
an optimal layout if the number of products of this type is small in comparison
to the others. But high transport distances can increase the cycle time. So, for
a smooth production we want to bound the transport distances associated to
single products. Therefore, we present two possibilities: At first we can restrict
this by an upper bound on the transport distance.

A second way is to set up a desired distance dp ∈ R+ for the transport
distance for each single product p ∈ P . Of course, the desired transport distance
depends on the amount of products hp for p ∈ P . If this value is exceeded, we

want to penalize this with a quadratic function f̃ which is later approximated
by some piecewise linear function. Let a ≥ dp be the highest possible transport

distance of product p ∈ P . Then we set f̃ : [0, a] → [0, f̃(a)] such that

f̃(x) =











dp − x, x < dp,

0, x = dp,

(x − dp)
2, x > dp.

To avoid a non-linear objective function, we approximate f̃ on the interval [dp, a]
with a piecewise linear, continuous, convex function f . Therefore, we use linear
interpolation [6]. Let a product p ∈ P and points h1, . . . , hm be given with m ≥ 1
and hi ≥ dp sorted in ascending order for i ∈ [m]. Then we compute a linear

approximation of f̃ between the points (hi, (hi − dp)
2) and (hi+1, (hi+1 − dp)

2)
for i = 1, . . . , m − 1. The resulting function f is piecewise linear and can be
written as f(x) = maxi=1,...,m(ai)

T x + bi for ai, bi ∈ R and i ∈ [m]. We add the
following term to the objective function of our model (1)–(13)

hp · f





�

i,j∈[n],i<j

c
p
ijdij



 . (15)

This term can be linearized by replacing (15) with

hp · t

in the objective function and adding the constraints

aT
i x + bi ≤ t, i ∈ [m].

We may set up such a penalty function for every product p ∈ P .

6 Conclusion and Future Work

In this paper we presented a new approach that allows combining mathematical
optimization and simulation in facility layout planning. We concentrated on the
Double Row Facility Layout Problem. In contrast to the literature we showed
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how the existing models can be extended in order to cover several aspects impor-
tant in practice. To evaluate the facility layout we used simulation to determine
further key performance indicators. If problems occur, the mathematical models
have to be adapted appropriately. For the first time we were able to solve an
instance with 21 departments to optimality in reasonable time. We compared our
mathematical model with classic methods from factory planning and we could
reduce the total transport distance significantly, especially by using arbitrary
positions for the warehouses.

It remains for future work to include more aspects in the mathematical mod-
els. One important topic is the treatment of asymmetric transport weights in
combination with input and output positions of the departments that might not
lie in the center of the department. Furthermore, due to safety restrictions or
quality requirements certain clearance conditions between departments have to
be satisfied. From the mathematical point of view it is interesting to further
study the polyhedral structure of the associated models as well as to develop
new (mixed-) integer programming models that combine the assignment of the
department to the rows as well as the positioning of the departments in each
row. The hope would be that intelligent branching orders can reduce the overall
running time. Apart from the Double Row Facility Layout Problem it seems
worth to consider more complex path structures in the shape of a T or an X or
along some closed path.

A further important goal is the inclusion of robustness aspects because the
facility layout decision has an impact for several years, but the production pro-
gram, which is the basis for the transport weights, might change. Apart from an
extension of the mathematical models, simulation allows testing different scenar-
ios for future production programs [5] easily. Using simulation, different layout
variants can be evaluated with regard to changing production requirements [10].
So, a flexible and adaptable production layout can be identified.
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a b s t r a c t 

In this paper we consider the Double-Row Facility Layout Problem (DRFLP). Given a set of departments 

and pairwise transport weights between them the DRFLP asks for a non-overlapping arrangement of the 

departments along both sides of a common path such that the weighted sum of the center-to-center 

distances between the departments is minimized. Despite its broad applicability in factory planning, only 

small instances can be solved to optimality in reasonable time. Apart from this even deriving good lower 

bounds using existing integer programming formulations and branch-and-cut methods is a challenging 

problem. We focus here on deriving combinatorial lower bounds which can be computed very fast. These 

bounds generalize the star inequalities of the Minimum Linear Arrangement Problem. Furthermore we 

exploit a connection of the DRFLP to some parallel identical machine scheduling problem. Our lower 

bounds can be further improved by combining them with a new distance-based mixed-integer linear 

programming model, which is not a formulation for the DRFLP, but can be solved close to optimality 

quickly. We compare the new lower bounds to some heuristically determined upper bounds on medium- 

sized and large DRFLP instances. Special consideration is given to the case when all departments have 

the same length. Furthermore we show that the lower bounds that we derive using adapted variants of 

our approaches for the Parallel Row Ordering Problem, a DRFLP variant where the row assignment of the 

departments is given in advance and spaces between neighboring departments are not allowed, are even 

better with respect to the gaps. 

© 2020 Elsevier B.V. All rights reserved. 

1. Introduction 

In this paper we consider special facility layout problems which 

have several applications, in particular in factory planning. For 

recent surveys on facility layout problems in general we refer, 

e. g., to Anjos and Vieira (2017) , Drira, Pierrval, and Hajri-Gabouj 

(2007) , Ahmadi, Pishvaee, and Jokar (2017) , Hosseini-Nasab, Fer- 

eidouni, Fatemi Ghomi, and Fakhrzad (2018) , Keller and Buscher 

(2015) , Anjos and Liers (2012) . An instance of the Multi-Row Facil- 

ity Layout Problem ( MRFLP ) consists of n one-dimensional depart- 

ments [ n ] := { 1 , . . . , n } with given positive lengths � i , i ∈ [ n ], pair- 

wise non-negative weights w i j = w ji ∈ R + , i, j ∈ [ n ] , i < j, which 

usually correspond to the amount of transport between the de- 

partments, and a set R := [ m ] , m ∈ N , of rows. The objective is to 

find an assignment r : [ n ] → R of departments to rows and hori- 

zontal positions for the centers of the departments such that de- 

partments in the same row do not overlap and such that the total 

∗ Corresponding author. 

E-mail addresses: m.dahlbeck@math.uni-goettingen.de (M. Dahlbeck), 

anja2.fischer@tu-dortmund.de (A. Fischer), frank.fischer@uni-mainz.de (F. Fischer). 

weighted sum of the center-to-center distances, measured in hori- 

zontal direction, between all pairs of departments is minimized. So 

we look for a vector q ∈ R 

n of positions and a vector r ∈ R 

n of the 

assignment of the departments to the m rows solving the following 

optimization problem 

min 

r∈R 

n ,q ∈ R n 
∑ 

i, j∈ [ n ] 
i< j 

w i j | q i − q j | 

s. t. | q i − q j | ≥ � i + � j 

2 

, i, j ∈ [ n ] , i < j, if r i = r j . 

The special case of the MRFLP with m = 2 is called Double-Row Fa- 

cility Layout Problem ( DRFLP ), see, e. g., Amaral (2019) , Fischer, Fis- 

cher, and Hungerländer (2019) . The DRFLP is in particular relevant 

for real-world applications because material handling and thus real 

factory layouts most often reduce to double-row layouts and vari- 

ants thereof. Indeed, it was noted by several authors that in fac- 

tory planning the costs of the production are highly influenced 

by the layout of the departments, see, e. g., Tompkins, White, 

Bozer, and Tanchoco (2010) , Hassan (1994) , Bracht, Dahlbeck, Fis- 

cher, and Krüger (2018) . Besides its applications in factory plan- 

ning, the DRFLP can be used to find an arrangement of rooms in 

https://doi.org/10.1016/j.ejor.2020.04.010 

0377-2217/© 2020 Elsevier B.V. All rights reserved. 
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Fig. 1. An optimal double-row layout for an instance with � i = i, i = 1 , 2 , 3 , � 4 = 1 , 

and non-zero weights w 13 = w 23 = 1 , w 24 = 2 . Note that there is some free space 

between the neighboring departments 1 and 2 in row 1. 

hospitals ( Butler, Karwan, Sweigart, & Reeves, 1992; Elshafei, 1977; 

Hahn & Krarup, 2001 ), office centers or schools ( Amaral, 2012 ). Fur- 

ther applications include setting books on a shelf ( Amaral, 2013a ), 

balancing hydraulic turbine runners and optimal data memory lay- 

out generation for digital signal processors ( Anjos & Vieira, 2017 ). 

We refer to Hungerländer and Anjos (2015) for further applications. 

In the following, we denote the center-to-center distance be- 

tween two departments i , j ∈ [ n ], i < j , by d i j = d ji . To illustrate the 

structure of double-row layouts and the corresponding distance 

calculation we give an example. Note that in an optimal double- 

row layout there might be free space between two neighboring 

departments in the same row. 

Example 1. We consider four departments with lengths � i = i, i = 

1 , 2 , 3 , � 4 = 1 and pairwise non-zero weights w 13 = w 23 = 1 , w 24 = 

2 . Fig 1 illustrates an optimal double-row layout with solution 

value 1 · 2 = 2 . 

1.1. Literature Review 

A well-studied special case of the MRFLP is the Single-Row Fa- 

cility Layout Problem ( SRFLP ) with m = 1 , i. e., all departments 

are assigned to the same row. Exact optimization approaches for 

the SRFLP are based on relaxations of integer linear programming 

( ILP ) and semidefinite programming ( SDP ) formulations, see, e. g., 

Amaral (2006) , Amaral (2008) , Amaral (2009) , Amaral and Letch- 

ford (2013) as well as Anjos, Kennings, and Vannelli (2005) , Anjos 

and Vannelli (2008) , Anjos and Yen (2009) , Hungerländer and 

Rendl (2013b) , Hungerländer and Rendl (2013a) . The strongest ILP 
approach is a linear programming based cutting plane algorithm 

using betweenness variables that can solve instances with up to 

35 departments within a few hours ( Amaral, 2009 ). The strongest 

SDP approach to date, using products of ordering variables, is 

even stronger and allows to solve instances with up to 40 depart- 

ments in less than 140 minutes, to solve one instance with 42 

departments in about one hour and to obtain small gaps for in- 

stances with up to 81 departments within 60 hours ( Hungerländer 

& Rendl, 2013a; 2013b ). Additionally, several heuristic algorithms 

have been suggested that are able to obtain good layouts ( Cravo 

& Amaral, 2019; Datta, Amaral, & Figueira, 2011; Kothari & Ghosh, 

2013; 2014; Palubeckis, 2015a; 2017 ). One of the leading heuristics 

was presented in Palubeckis (2017) , where a multi-start simulated 

annealing heuristic obtains the best known solutions or small gaps 

for instances from the literature with 60 to 80 departments. Fur- 

thermore this heuristic is tested on instances with up to 10 0 0 de- 

partments. A recent heuristic in Cravo and Amaral (2019) could im- 

prove results of Palubeckis (2017) for instances with 200 ≤ n ≤ 500 

departments and obtained solutions with objective value close to 

the best known values presented in Palubeckis (2017) for instances 

with up to 10 0 0 departments. A recent survey on the SRFLP is 

given in Keller and Buscher (2015) . 

In contrast to the SRFLP , the DRFLP has received much less at- 

tention in the literature. From a practical point of view the DRFLP 
seems much harder than the SRFLP . The ILP -based approach in 

Chung and Tanchoco (2010) (see also the corresponding corrections 

by Zhang & Murray, 2012 ) can handle instances with up to 10 de- 

partments whereas the exact ILP approach of Amaral (2013a) can 

solve instances with up to 12 departments to optimality. The latter 

model was improved in Secchin and Amaral (2019) such that one is 

able to solve a DRFLP instance with 15 departments in at most 11 

hours. Recently, Fischer et al. (2019) presented an algorithm which 

can solve DRFLP instances with up to 16 departments in less than 

12 hours. 

To the best of our knowledge there has not been research on 

computing non-trivial lower bounds for the DRFLP . The enumera- 

tion scheme of Fischer et al. (2019) cannot be used to obtain lower 

bounds for larger instances because one would have to calculate 

a lower bound for each of the exponentially many row assign- 

ments, which is out of scope for n large. The mixed-integer pro- 

gramming models, see, e. g., Amaral (2013a) , Secchin and Amaral 

(2019) , are based on big- M -type constraints to couple continuous 

position variables with binary ordering variables. Thus, their lin- 

ear relaxations are rather weak. So using them in a branch-and- 

cut approach leads to weak lower bounds and so to large gaps for 

medium-sized and large DRFLP instances, even after a longer time 

limit because the root node gaps are hardly improved. For detailed 

computational results we refer to Section 4 . 

For the DRFLP only a limited number of problem-specific 

heuristics were presented in the literature ( Chung & Tanchoco, 

2010; Guan, Lin, Feng, & Ruan, 2020; Gül ̧s en, Murray, & Smith, 

2019; Murray, Smith, & Zhang, 2013; Wang, Zuo, Liu, Zhao, & Li, 

2015; Zuo, Gao, Zhou, Yang, & Zhao, 2019; Zuo, Murray, & Smith, 

2014; 2016 ), partially handling some extended versions that in- 

clude, e. g., certain clearance conditions between departments in 

the same row or dynamic aspects. But without the knowledge 

of good lower bounds it is hard to evaluate the quality of these 

heuristics. 

Because the MRFLP and the DRFLP are very challenging prob- 

lems in practice, several special cases have been studied in the lit- 

erature. There are two main classes of simplifications. First one 

reduces the freedom in the arrangement of the departments. In 

the Space-Free MRFLP and DRFLP ( SF-MRFLP and SF-DRFLP ) 
one restricts to a common left border of the rows and spaces 

between neighboring departments in the same row are not al- 

lowed. For the SF-DRFLP , which is also known as Corridor Al- 

location Problem , heuristics and exact approaches were presented 

in Kothari and Ghosh (2012) , Ahonen, de Alvarenga, and Amaral 

(2014) and Amaral (2012) , Hungerländer and Anjos (2012) , Fischer 

et al. (2019) , Fischer, Fischer, and Hungerländer (2015) . Similar to 

the general DRFLP the enumeration approach of Fischer et al. 

(2019) can solve space-free double-row instances with up to 16 

departments in less than 12 hours. If one additionally fixes the 

row assignment of each of the departments we derive the k-Parallel 

Row Ordering Problem ( kPROP ) (in our notation k equals the num- 

ber of rows m ) and the Parallel Row Ordering Problem ( PROP ) for 

m = 2 ( Amaral, 2013b; Hungerländer, 2014a; Maadi, Javidnia, & 

Jamshidi, 2017; Yang, Cheng, Smith, & Amaral, 2020 ). The best ap- 

proach for these problems in Fischer et al. (2019) is the basis for 

the enumerative approach for the DRFLP . Instances with up to 25 

departments are solved to optimality. For larger n one can derive 

lower bounds via the SDP approach in Hungerländer (2014a) . 

The second area of simplifications for the DRFLP considers the 

departments and not their arrangement. The Multi-Row Equidistant 

Facility Layout Problem ( MREFLP ) is a special case of the MRFLP 
with all departments equal in shape Amaral (2011) and the DRFLP 
with departments of equal length is called ( DREFLP ). Recently, in 

Anjos, Fischer, and Hungerländer (2018) , see also Anjos, Fischer, 

and Hungerländer (2016) , it is shown that in the MREFLP the de- 

partments can be arranged on an integer grid and an ILP and an 

SDP model are presented. As a result, equidistant double-row and 

equidistant multi-row instances with up to 25 departments were 

solved to optimality for 2 ≤ m ≤ 5 and gaps with less than 4 % were 

obtained for instances with up to 50 departments and 2 ≤ m ≤ 5. 
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Due to the grid structure of optimal solutions the MREFLP can be 

seen as a special case of the Quadratic Assignment Problem ( QAP ), 
see, e. g., Loiola, de Abreu, Boaventura-Netto, Hahn, and Querido 

(2007) . In Hungerländer (2014b) it is shown that the best method 

for the SRFLP is better than methods especially tailored to the 

equidistant SRFLP , see, e. g., Palubeckis (2012, 2015b) . 

If we restrict the SRFLP with departments of equal length 

to binary weights w i j ∈ { 0 , 1 } , i, j ∈ [ n ] , i < j, we obtain the well- 

studied Minimum Linear Arrangement Problem ( LA ), see, e. g., 

Harper (1964, 1966) . Given a graph G = (V, E) with, w. l. o. g., 

V = { 1 , . . . , n } , the LA looks for a bijection q : V → V such that ∑ 

i j∈ E 
| q i − q j | 

is minimized. The LA is already an N P -hard problem ( Garey, John- 

son, & Stockmeyer, 1974 ) and hence all other row layout prob- 

lems mentioned above are also N P -hard. Several authors deter- 

mined lower bounds for the LA , see, e. g., Liu and Vannelli (1995) , 

Caprara, Letchford, and Salazar-González (2011) , Amaral, Caprara, 

Letchford, and Salazar-Gonzalez (2008) . The combinatorial lower 

bounds for the LA presented in Caprara et al. (2011) were the 

starting point for our investigations together with a research ques- 

tion in Hungerländer (2017) . In Hungerländer (2017) the so called 

Checkpoint Ordering Problem ( CPOP ) was introduced. Given a set of 

n departments with lengths � i and weights w i , i ∈ [ n ] , the CPOP 
asks for a space-free non-overlapping arrangement of the depart- 

ments in one row such that the sum of the weighted distances 

of the centers of the departments to a checkpoint whose position 

is given in advance is minimized. The CPOP is closely related to 

the SRFLP and it was asked in Hungerländer (2017) whether some 

partial relation of the SRFLP and certain scheduling problems can 

be exploited further in the row layout setting. 

1.2. Our Contribution 

The main contributions of this paper are the following: 

• We indicate a relation between some special DRFLP , where 

we only explicitly measure the (weighted) distance of some 

specific department to the others, to the parallel identi- 

cal machine scheduling problem with minimum (weighted) 

completion time. 
• We develop the first non-trivial combinatorial lower bounds 

for the DRFLP , the DREFLP and the PROP . These bounds 

can also be extended to the multi-row case, i. e., to the 

MRFLP , the MREFLP and the kPROP . 
• We show how to combine these lower bounds with a new 

mixed-integer linear programming model to compute even 

stronger lower bounds for the DRFLP , the DREFLP and the 

PROP via some branch-and-cut algorithm within a given 

time limit of a few minutes. 
• We present a corrected and short proof of a result of 

Samarghandi and Eshghi (2010) which states that the SRFLP 
with weights w i j = 1 , i, j ∈ [ n ] , i < j, can be solved to opti- 

mality in polynomial time by using some specific order of 

the departments. We use this result to further strengthen 

our lower bounding model for the PROP . 
• In a computational study we compare our lower bounds for 

DRFLP instances from the literature as well as for medium- 

sized and large randomly generated instances with lower 

bounds received via some branch-and-cut algorithm within 

a time limit of one hour for a well-known DRFLP formu- 

lation ( Amaral, 2013a ). Furthermore we compare them to 

some heuristically determined upper bounds. Apart from 

this we investigate the strength of our DREFLP and PROP 
lower bounds. 

This paper is structured as follows. In Section 2 we present 

combinatorial lower bounds for the DRFLP and prove their cor- 

rectness. In Section 3 we introduce a distance-based ILP model 

to further improve these bounds. Furthermore we shortly explain 

in both sections which adaptations are needed for deriving lower 

bounds for the PROP (and partially the kPROP ). In Section 4 we 

computationally investigate the strength of our newly derived 

lower bounds for medium-sized and large DRFLP , DREFLP as well 

as PROP instances by comparing them to some bounds from the 

literature and heuristically determined upper bounds. We conclude 

this paper in Section 5 and present directions for future work. 

2. Combinatorial lower bounds 

To the best of our knowledge combinatorial lower bounds spe- 

cialized to the DRFLP are not known in the literature and lower 

bounds received via some branch-and-cut algorithm within a given 

time limit of one hour for some DRFLP formulation from the liter- 

ature ( Amaral, 2013a ) are rather weak as we will see in Section 4 . 

In this section we present three possibilities to compute combina- 

torial lower bounds for the DRFLP . To simplify the presentation we 

concentrate on lower bounds for the DRFLP and show at the end 

of this section how to extend these lower bounds to the MRFLP 
and to the kPROP and the PROP as well. Apart from this we will 

have a closer look at the equidistant case of the DRFLP . 
In the following we generalize the so called star inequalities of 

the LA , see, e. g., Caprara et al. (2011) , and we indicate a connec- 

tion of a special DRFLP to the parallel identical machine schedul- 

ing problem with minimum weighted completion time with four 

machines (an exact definition is given below). With these re- 

sults we partially answer a research question in Hungerländer 

(2017) whether one can use ideas from the scheduling literature 

for row layout problems. 

2.1. Weighted Star Lower Bound 

We start with a description of the star inequalities, which are 

used for determining lower bounds for the optimal solution value 

of the LA in Caprara et al. (2011) given some graph G = (V, E) . Let 

q be a solution of the LA . Then the star inequalities for a fixed 

node i ∈ V and a set S ⊆V �{ i } read as follows ∑ 

j∈ S 
| q i − q j | ≥

⌊ 
(| S| +1) 2 

4 

⌋ 
, (1) 

see, e. g., Caprara et al. (2011) and Amaral et al. (2008) . One can 

derive this formula by arranging all nodes in S as close as possible 

to node i . With S i = { j ∈ V : i j ∈ E} a lower bound for the optimal 

solution value of the LA is given by 

1 
2 

∑ 

i ∈ V 

⌊ 
(| S i | +1) 2 

4 

⌋ 
, 

because we count the minimal contribution of each node (each 

pairwise absolute difference is counted twice and so we have to 

divide the sum by two). 

In the following we present three different ways to measure 

the contribution of each department to the sum of the weighted 

distances in the DRFLP . These three approaches are related to 

the Parallel Identical Machine Scheduling Problem with minimum 

weighted completion time , see, e. g., Kawaguchi and Kyan (1986) , 

Smith (1956) , Hall, Schulz, Shmoys, and Wein (1997) , Lenstra, Kan, 

and Brucker (1977) , often called P || ∑ 

w k C k where C k denotes the 

completion time of some job k . 

Definition 2. Given a set of jobs J with processing times p k ∈ R + 
and weights w k ∈ R + , k ∈ J, one looks for an assignment of start 

times t k ∈ R + of the jobs J to u ∈ N parallel identical machines such 
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that no two jobs overlap on one machine and such that the sum 

of the weighted completion times 
∑ 

k ∈ J w k C k with C k = t k + p k is 

minimized. For constant u we denote this problem by P u || ∑ 

w k C k 
and for u part of the input by P || ∑ 

w k C k . 

The scheduling problem P u || ∑ 

w k C k is weakly N P -hard, see, 

e. g., Lee and Uzsoy (1992) , and P || ∑ 

w k C k is N P -hard in the 

strong sense ( Lee & Uzsoy, 1992 ). For u = 1 , this problem is a 

single machine scheduling problem and can be solved in polyno- 

mial time by the so called Smith rule ( Smith, 1956 ). The Smith 

rule states that in an optimal solution the jobs are ordered non- 

increasingly by their relative weights 
w k 
p k 

for k ∈ J . In the literature 

the Smith rule has also been extended to the parallel machine 

case, i. e., the jobs are ordered non-increasingly by their relative 

weights 
w k 
p k 

for k ∈ J and we assign each of the jobs using this order 

to the next machine that gets idle. As we will see below, in gen- 

eral optimality might be lost for a schedule determined like this. 

Further, it is well known that the unweighted case, i. e., P || �C k 
with w k = 1 for k ∈ J , can be solved to optimality in polynomial 

time by the Shortest Processing Time rule ( SPT ), where one pro- 

cesses the jobs in increasing order of their processing time. We 

will show next how to use these rules for deriving combinatorial 

lower bounds for the optimal value of some DRFLP instance. For 

this we will frequently use the following notation. 

Definition 3. Let (n, w, � ) be a DRFLP instance. We denote by 

Q (n, w, � ) = { (r, q ) : r, q is a feasible solution for 

the DRFLP instance (n, w, � ) } 
the set of feasible solutions. For a fixed department i ∈ [ n ], a set 

S ⊆[ n ] �{ i } and some (r, q ) ∈ Q (n, w, � ) we denote the sum of the 

weighted distances from all departments in S to i by 

W i (q, S) := 

∑ 

j∈ S 
w i j 

∣∣q i − q j 
∣∣. 

The best possible value of W i ( · , S ) for some fixed set S over all 

feasible solutions is denoted by ̂ W i (S) := min 

(r,q ) ∈Q (n,w,� ) 
W i (q, S) , 

and the optimal value of the DRFLP is then ̂ W := 

1 
2 

min 

(r,q ) ∈Q (n,w,� ) 

∑ 

i ∈ [ n ] 
W i (q, [ n ] \ { i } ) . 

Note that in the calculation of ̂ W we have to divide the sum 

of the W i (., .) by two because each pairwise distance is counted 

twice. 

The common idea for our combinatorial bounding procedure 

is to find lower bounds for ̂ W i ([ n ] \ { i } ) , which will give rise to 

lower bounds for ̂ W : for each feasible solution (r, q ) ∈ Q (n, w, � ) 

we have 

1 
2 

∑ 

i ∈ [ n ] ̂

 W i ([ n ] \ { i } ) = 

1 
2 

∑ 

i ∈ [ n ] 
min 

(r,q ) ∈Q (n,w,� ) 
W i (q, [ n ] \ { i } ) 

≤ 1 
2 

min 

(r,q ) ∈Q (n,w,� ) 

∑ 

i ∈ [ n ] 
W i (q, [ n ] \ { i } ) = 

̂ W . 

The following proposition is essential for our considerations. It 

reduces the set of possibly optimal solutions. 

Proposition 4. Let (n, w, � ) be a DRFLP instance and let i ∈ [ n ], 

S ⊆[ n ] �{ i } . Then there exists a solution (r, q ) ∈ Q (n, w, � ) for which ̂ W i (S) is attained such that there is some j ∈ S with q i = q j , i. e., j 

lies directly opposite i. 

Proof. Let i ∈ [ n ], S ⊆[ n ] �{ i } and let (r, q ) ∈ Q (n, w, � ) be a solu- 

tion minimizing W i ( · , S ). Assume, w. l. o. g., that r i = 1 and that 

{ j ∈ S : r j = 2 } � = ∅ , otherwise we can easily place one department 

ˆ j opposite to i and reduce the distance of i and 

ˆ j . We get 

W i (q, S) = 

∑ 

j∈ S 
r j =1 

w i j 

∣∣q i − q j 
∣∣+ 

∑ 

j∈ S 
q j <q i 
r j =2 

w i j (q i − q j ) 

+ 

∑ 

j∈ S 
q i <q j 
r j =2 

w i j (q j − q i ) + 

∑ 

j∈ S 
q i = q j 

w i j (q j − q i ) 

︸ ︷︷ ︸ 
=0 

. 

If there does not exist a j ∈ S with q i = q j , then by the optimality of 

( r , q ) shifting all departments j ∈ S with r j = 2 to the left or to the 

right by some small ε > 0 does not change the objective value. So 

we can shift all departments in row 2, w. l. o. g., to the left until 

one department lies opposite i . �

This result shows that in order to determine a lower bound for ̂ W i (S) for i ∈ [ n ], S ⊆[ n ] �{ i } it suffices to determine a lower bound 

for varying j ∈ S opposite i . This motivates the following definition. 

Definition 5. Let (n, w, � ) be a DRFLP instance, and let i ∈ [ n ], 

S ⊆[ n ] �{ i } and j ∈ S . Denote ̂ W (i, j) (S) := min 

{
W i (q, S) : (r, q ) ∈ Q (n, w, � ) , q i = q j 

}
. (2) 

An immediate consequence of Proposition 4 is the following 

corollary. 

Corollary 6. Let (n, w, � ) be a DRFLP instance and let i ∈ [ n ], 

S ⊆[ n ] �{ i } . Then ̂ W i (S) = min j∈ S ̂ W (i, j) (S) . 

Thus, in order to compute lower bounds for ̂ W , it suffices to 

determine lower bounds for ̂ W (i, j) (S) for all valid choices of i , j 

and S . In the following we determine three different lower bounds 

for ̂ W (i, j) (S) given some DRFLP instance. In all three variants 

we interpret the optimization problem (2) for computing ̂ W (i, j) (S) 

as a scheduling problem P 4 || ∑ 

w k C k with weights w k = w ik . The 

departments correspond to the jobs in the P 4 || ∑ 

w k C k and the 

lengths of the departments to the processing times, i. e., p k = 

� k , k ∈ S \ { j} . Given a feasible solution of the optimization prob- 

lem (2) , then, as illustrated in Fig. 2 , machine 1 and machine 2 of 

the scheduling problem correspond to row 1 in this solution and 

machine 3 and machine 4 to row 2. 

Thus we are able to use methods from the scheduling literature 

to compute lower bounds for the DRFLP . All lower bound calcula- 

tions have in common that we sort the jobs in S �{ j } by some given 

order. Respecting some machine-dependent non-availability times 

from zero to a = (a 1 , . . . , a 4 ) ∈ R 

4 + ∪ {∞} (i. e., no job on machine k 

may start before a k , k = 1 , . . . , 4 ), the jobs are assigned in a greedy 

manner. Whenever a machine becomes idle and is available one 

assigns the next unscheduled job in the list non-preemptively. Our 

basic algorithm is summarized in Algorithm 1 . 

Algorithm 1: Basic (S = (s 1 , . . . , s | S| ) , � S , a ) . 
Input : parallel machine scheduling problem with ordered 

jobs S = (s 1 , . . . , s | S| ) , processing times � S ∈ R 

| S| 
+ , 

non-availability times from zero to a = (a 1 , . . . , a 4 ) 

on the 4 machines 

Output : completion times C s k , s k ∈ S, as C basic (S, � S , a ) . 

1 Initialize ( ̄� 1 , �̄ 2 , �̄ 3 , �̄ 4 ) ← (a 1 , . . . , a 4 ) . 

2 for k = 1 , . . . , | S| do 

Choose m̄ ∈ arg min { ̄� o : o ∈ { 1 , 2 , 3 , 4 }} . 
�̄ m̄ 

← �̄ m̄ 

+ � S s k 
. 

C s k ← �̄ m̄ 

. 

3 return C s k , s k ∈ S. 
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Fig. 2. Visualization of the connection of the DRFLP and parallel machine scheduling on four machines. Here departments i and j lie opposite and we have to arrange 

departments { s 1 , . . . , s 6 } . In the lower bound calculations we will partially adjust the start of the jobs (departments) at a machine by half the length of i (see gray area) or 

half the length of j . Furthermore we have to keep in mind that in scheduling one considers the completion times of the jobs but in the DRFLP we measure the distances 

between the centers of the departments. 

Definition 7. Let S = (s 1 , . . . , s | S| ) be an ordered sequence of jobs 

(departments) with processing times (lengths) � S ∈ R 

| S| 
+ and let a ∈ 

R 

4 + denote four non-availability times. Then we denote by C basic ( S , 

� S , a ) the greedy solution returned by Algorithm 1 when schedul- 

ing the jobs in this order. 

For the first lower bound we use the SPT rule, i. e., we or- 

der the jobs (departments) by increasing length. Furthermore, ma- 

chine 1 and machine 2 are non-available from 0 to 
� i 
2 and ma- 

chine 3 and machine 4 from 0 to 
� j 
2 . 

Definition 8. Let (n, w, � ) be a DRFLP instance. Let i ∈ [ n ], 

S ⊆[ n ] �{ i }, j ∈ S with S 
spt 
j 

= (s 1 , . . . , s | S|−1 ) a sequence of depart- 

ments in S �{ j } with length � 
S 

spt 
j = (� s 1 , . . . , � s | S|−1 

) ordered by in- 

creasing lengths and let 

C spt , (i, j) (S, � ) := C basic (S spt 
j 

, � 
S spt 

j , ( � i 
2 
, 

� i 
2 
, 

� j 
2 
, 

� j 
2 
)) . 

Furthermore, let w 

′ 
i • = (w 

′ 
i 1 

, . . . , w 

′ 
i ( | S | −1) 

) be the weights w ik of 

k ∈ S �{ j }, ordered decreasingly . Then the SPT -lower-bound is 

W 

spt 

(i, j) 
(S) := 

| S | −1 ∑ 

k =1 

w 

′ 
ik 

(
C spt , (i, j) 

s k 
(S, � ) − � s k 

2 

)
. 

In the special case of all weights being equal to one the SPT - 
distance-bound is 

W 

dst 
(i, j) (S) := 

| S | −1 ∑ 

k =1 

(
C spt , (i, j) 

s k 
(S, � ) − � s k 

2 

)
. 

The SPT -distance-bound cannot be used to derive bounds for 

the optimal value of the DRFLP . However, it can be used to derive 

lower bounds for the (geometric) distances between the depart- 

ments themselves without regarding the amount of transports. We 

will make use of them later in the lower bound ILP model pre- 

sented in Section 3 . In W 

spt 
(i, j) 

(S) we assign the highest weights to 

the earliest jobs (the departments closest to department i ) in or- 

der to get a lower bound for ̂ W (i, j) (S) . For an illustration we refer 

to Fig. 3 . 

Proposition 9. Let (n, w, � ) be a DRFLP instance, and let i ∈ [ n ], 

S ⊆[ n ] �{ i }, j ∈ S and W 

dst 
(i, j) 

(S) and W 

spt 
(i, j) 

(S) as defined above. Then 

W 

dst 
(i, j) (S) = min 

{ | S | −1 ∑ 

k =1 

| q i − q s k | : (r, q ) ∈ Q (n, w, � ) , q i = q j 

} 

, (3) 

W 

spt 

(i, j) 
(S) ≤ ̂ W (i, j) (S) . (4) 

Proof. Let i ∈ [ n ], S ⊆[ n ] �{ i }, j ∈ S . The correctness of (3) follows di- 

rectly by the correctness of the SPT rule for the problem P 4 || �C k . 

Note that in comparison to the scheduling problem in the DRFLP 

the distances are measured between the centers of the depart- 

ments, i. e., we obtain d ik = C k − � k 
2 , k ∈ S �{ j }, and d i j = 0 . 

The only difference in (4) is that we additionally assign the 

highest weights to the departments closest to i which maintains 

correctness. �

Example 10. Consider a double-row instance with n = 8 , � k = k, 

k ∈ [6], � 7 = 4 , � 8 = 1 , and non-zero weights w 18 = 

1 
2 , w 28 = 1 , 

w 38 = 3 , w 48 = 3 , w 58 = 1 , w 68 = 7 , w 78 = 5 . Our aim is to com- 

pute W 

dst 
(8 , 7) 

([7]) and W 

spt 
(8 , 7) 

([7]) . Therefore we consider the prob- 

lem P 4 || ∑ 

k ∈ [6] w k 8 C k where the non-availability times range from 

zero to � 8 / 2 = 0 . 5 on machines 1 and 2 and to � 7 / 2 = 2 on ma- 

chines 3 and 4. We apply the SPT rule for the jobs (departments) 

[6] and obtain the schedule illustrated in Fig. 3 (a). Then we ar- 

range the departments on machine 1 and machine 2 space-free to 

row 1 in the double-row layout by respecting their order and the 

departments in machine 3 and machine 4 space-free to row 2 such 

that department 8 lies directly opposite 7 as illustrated in Fig. 3 (b). 

So we get W 

dst 
(8 , 7) 

([7]) = 1 + 1 . 5 + 3 + 4 + 4 . 5 + 5 . 5 = 19 . 5 . Next, we 

assign the highest weights to departments closest to department 8. 

For instance, w 68 is assigned to department 1 and w 38 to depart- 

ment 2. In total, we obtain 

W 

spt 

(8 , 7) 
([7]) = 7 · 1 + 3 · 1 . 5 + 3 · 3 + 1 · 4 + 1 · 4 . 5 + 0 . 5 · 5 . 5 = 31 . 75 . 

Note that in general the value min j∈ S W 

dst 
(i, j) 

(S) (and thus the 

value min j∈ S W 

spt 
(i, j) 

(S) ) is not obtained by arranging i ∈ [ n ] directly 

opposite a shortest department of S ⊆[ n ] �{ i }. 

Example 11. Consider a DRFLP instance with � 1 = . . . = � 4 = 

1 , � 5 = 5 and non-zero weights w i j = 1 , i , j ∈ [5], i < j . Then 

W 

dst 
(1 , j) 

(S) = 5 for j = 2 , 3 , 4 and S = { 2 , . . . , 5 } , but W 

dst 
(1 , 5) 

(S) = 

W 

spt 
(1 , 5) 

(S) = 1 + 2 + 1 = 4 . So it is the best to assign the largest de- 

partment directly opposite department i in this example. The cor- 

responding layout is illustrated in Fig. 4 . 

2.2. Scheduling Lower Bound 

In this section we suggest two further possibilities to bound ̂ W (i, j) (S) with i ∈ [ n ], S ⊆[ n ] �{ i }, j ∈ S from below. Our main tool is 

the approximation algorithm in Kawaguchi and Kyan (1986) for the 

P || ∑ 

w k C k . The associated algorithm determines a schedule by ap- 

plying the Smith rule in the parallel machine case. The jobs are 

ordered non-increasingly by 
w k 
p k 

and the corresponding schedule is 

determined by Algorithm 1 . 

Theorem 12. ( Kawaguchi & Kyan (1986) ) We consider the problem 

P || ∑ 

w k C k with jobs J. Then using the Smith rule for sorting the jobs 

leads to a 1+ √ 

2 
2 -approximation algorithm for the P || ∑ 

w k C k with the 

running time O(| J| · log (| J| )) . Moreover, in the case with at least two 

machines, the bound 1+ √ 

2 
2 is tight. 
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Fig. 3. Consider an instance with n = 8 , � k = k, k ∈ [6], � 7 = 4 , � 8 = 1 , and non-zero weights w 18 = 

1 
2 
, w 28 = 1 , w 38 = 3 , w 48 = 3 , w 58 = 1 , w 68 = 7 , w 78 = 5 . Then we obtain 

W 

dst 
(8 , 7) 

([7]) = 19 . 5 and W 

spt 

(8 , 7) 
([7]) = 31 . 75 . 

Fig. 4. Consider a double-row instance with � 1 = . . . = � 4 = 1 , � 5 = 5 and weights 

w i j = 1 , i , j ∈ [5], i < j . The sum of the (weighted) distances of department 1 to the 

remaining departments is minimized by arranging it directly opposite department 

5, which is the largest department in this instance. 

We will write αKK := 

1+ 
√ 

2 
2 ≈ 1 . 207 . In order to determine a 

lower bound for ̂ W (i, j) (S) for i ∈ [ n ], S ⊆[ n ] �{ i }, j ∈ S , we again inter- 

pret the departments S �{ j } as jobs of P 4 || ∑ 

k ∈ S\{ j} w ik C k and apply 

the approximation algorithm of Kawaguchi and Kyan (1986) . How- 

ever, in the lower bound calculation we have to take care of two 

facts. First, the distance calculations for the DRFLP are center-to- 

center whereas the algorithm by Kawaguchi and Kyan is based on 

completion times. Second, because the P 4 || ∑ 

w k C k solution is not 

exact but only approximate, we must respect the approximation 

factor αKK . 

Definition 13. Let (n, w, � ) be a DRFLP instance, and let i ∈ [ n ], 

S ⊆[ n ] �{ i } and j ∈ S . We denote by S sc 
j 

= (s 1 , . . . , s | S | −1 ) a sequence 

of departments S �{ j } with length vector � 
S sc 

j ordered according to 

the Smith rule, i. e., non-increasingly by 
w ik 
� k 

. Denote by 

C sc , (i, j) (S, � ) := C basic (S sc 
j , � 

S sc 
j , (0 , 0 , 0 , 0)) 

the completion times returned by Algorithm 1 for this ordering. 

Then the SCHED1 -lower-bound is 

W 

sc 
(i, j) (S) := 

1 
αKK 

| S|−1 ∑ 

k =1 

w is k 
· C sc , (i, j) 

s k 
(S, � ) 

+ 

| S|−1 ∑ 

k =1 

w is k 
·
(

1 
2 

min { � i , � j } − � s k 
2 

)
. (5) 

Proposition 14. Let (n, w, � ) be a DRFLP instance and i ∈ [ n ], 

j ∈ S ⊆[ n ] �{ i } . Then W 

sc 
(i, j) 

(S) ≤ ̂ W (i, j) (S) . 

Proof. Let i ∈ [ n ], j ∈ S ⊆[ n ] �{ i } be given. Here i lies opposite j and 

we want to bound the sum of the weighted distances of i to 

all other departments. We want to interpret this as a variant of 

P 4 || ∑ 

k ∈ S\{ j} w ik C k . Let (r, q ) ∈ Q (n, w, � ) be an optimal solution of 

(2) . A corresponding solution of P 4 || ∑ 

k ∈ S\{ j} w ik C k is then C k = 

| q k − q i | + 

� k 
2 − � h k 

2 , k ∈ S �{ j }, where h k = i if k is in the same row 

as i and h k = j otherwise. The completion times of the scheduling 

problem are formed by taking into account that the DRFLP mea- 

sures center-to-center distances. Let v ∗ denote the optimal value of 

the scheduling problem P 4 || ∑ 

k ∈ S\{ j} w ik C k , then 

̂ W (i, j) (S) = 

∑ 

k ∈ S\{ j} 
w ik | q k − q i | ≥

∑ 

k ∈ S\{ j} 
w ik C k 

+ 

1 
2 

∑ 

k ∈ S\{ j} 
w ik ( min { � i , � j } − � k ) 

≥ v ∗ + 

1 
2 

∑ 

k ∈ S\{ j} 
w ik ( min { � i , � j } − � k ) 

≥ 1 
αKK 

| S|−1 ∑ 

k =1 

w is k 
C sc , (i, j) 

s k 
(S, � ) 

+ 

1 
2 

| S | −1 ∑ 

k =1 

w i s k 
( min { � i , � j } − � s k ) = W 

sc 
(i, j) (S) , 

where the last inequality follows by Theorem 12 . �

The following Example 15 illustrates the differences to the cal- 

culation of the star lower bounds. 

Example 15. We consider again Example 10 and our aim is to 

compute W 

sc 
(8 , 7) 

([7]) . We sort the departments by decreasing rel- 

ative weights, i. e., S sc 
j 

= (6 , 3 , 4 , 2 , 1 , 5) , and compute C sc,( i , j ) ( S , � ). 

The obtained schedule is illustrated in Fig. 5 (a) and the corre- 

sponding double-row layout is illustrated in Fig. 5 (b), where we 

do not show department 7 because it overlaps with departments 2 

and 4 while the distance calculation is done as illustrated here. 

Then we obtain 

W 

sc 
(8 , 7) ([7]) = 

1 

αKK 
( w 18 (� 1 + � 2 ) + w 28 � 2 + w 38 � 3 + w 48 � 4 

+ w 58 (� 5 + � 3 ) + w 68 � 6 ) 

+ 

∑ 

k ∈ [6] 

w ik 

2 ( min { � 7 , � 8 } −� k ) ≈34 . 2 > 31 . 75 = W 

spt 

(8 , 7) 
([7]) . 

By Proposition 14 we obtain a lower bound for ̂ W (i, j) (S) , i ∈ 

[ n ] , S ⊆ [ n ] \ { i } , j ∈ S. But, as shown in Example 15 and Fig. 5 (b), 

we do not receive a valid double-row layout. The reason for 

this is that we only use 
min { � i ,� j } 

2 and neglect that one of the 

two departments might be longer. For calculating the next bound 

we introduce two artificial jobs (departments) with length 

1 
2 ·
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Fig. 5. Consider an instance with n = 8 , � k = k, k ∈ [6], � 7 = 4 , � 8 = 1 , and non-zero weights w 18 = 

1 
2 
, w 28 = 1 , w 38 = 3 , w 48 = 3 , w 58 = 1 , w 68 = 7 , w 78 = 5 . We get 

W 

sc 
(8 , 7) 

([7]) ≈ 34 . 2 . 

( max { � i , � j } − min { � i , � j } ) = 

| � i −� j | 
2 and weights such that they are 

chosen first by the Smith rule. In order to get a best possible lower 

bound afterwards the weight is chosen minimal with respect to 

the desired property. 

Definition 16. Let (n, w, � ) be a DRFLP instance, and let i ∈ [ n ], 

S ⊆[ n ] �{ i } and j ∈ S . Define β := max { w ik 
� k 

: k ∈ S \ { j}} . We add 

two dummy departments n + 1 and n + 2 with lengths � n +1 = 

� n +2 = 

| � i −� j | 
2 and weights w i (n +1) = w i (n +2) = β

| � i −� j | 
2 . Let S sc2 

j 
= 

(s 1 , . . . , s | S | +1 ) be a sequence of departments S ∪ { n + 1 , n + 2 } \ { j} 
ordered according to the Smith rule with s 1 = n + 1 , s 2 = n + 2 and 

with length vector � 
S sc2 

j and denote by 

C sc2 , (i, j) (S, � ) := C basic (S sc2 
j , � 

S sc2 
j , (0 , 0 , 0 , 0)) 

the completion times returned by Algorithm 1 for this ordering. 

Then the SCHED2 -lower-bound is 

W 

sc2 
(i, j) (S) := 

1 
αKK 

| S | +1 ∑ 

k =1 

w i s k 
· C sc2 , (i, j) 

s k 
(S, � ) 

+ 

| S | +1 ∑ 

k =3 

w i s k 
· ( 1 

2 
min { � i , � j } − � s k 

2 
) − β

(� i −� j ) 
2 

2 
. (6) 

Proposition 17. Let (n, w, � ) be a DRFLP instance and i ∈ [ n ], 

j ∈ S ⊆[ n ] �{ i } . Then W 

sc2 
(i, j) 

(S) ≤ ̂ W (i, j) (S) . 

Proof. Let i ∈ [ n ], j ∈ S ⊆[ n ] �{ i } be given. The proof of this result is 

similar to the proof of Proposition 14 . In contrast to this proof 

we introduce two dummy departments n + 1 , n + 2 here to level 

different lengths of i and j . In the associated scheduling problem 

we then also count the completion times of the dummy depart- 

ments. So we have to subtract this value afterwards. Let all ob- 

jects be as defined in Definition 16 and let (r, q ) ∈ Q (n, w, � ) be an 

optimal solution of (2) . The corresponding scheduling solution is 

C s k = 

∣∣q s k − q i 
∣∣+ 

1 
2 (� s k − min { � i , � j } ) for k = 3 , . . . , | S sc2 

j 
| . Let v ∗ be 

the optimal solution value of P 4 || ∑ 

k ∈ S sc2 
j 

w ik C k , then 

̂ W (i, j) (S) = 

∑ 

k ∈ S\{ j} 
w ik | q k − q i | 

≥
| S | +1 ∑ 

k =1 

w i s k 
C s k + 

1 
2 

| S | +1 ∑ 

k =3 

w i s k 
( min { � i , � j } − � s k ) 

− w i (n +1) � n +1 − w i (n +2) � (n +2) 

≥ v ∗ + 

1 
2 

| S | +1 ∑ 

k =3 

w i s k 
( min { � i , � j } − � s k ) − β

(� i −� j ) 
2 

2 

≥ 1 
αKK 

| S | +1 ∑ 

k =1 

w i s k 
C sc2 , (i, j) 

s k 
(S, � ) 

+ 

1 
2 

| S | +1 ∑ 

k =3 

w i s k 
( min { � i , � j } − � s k ) − β

(� i −� j ) 
2 

2 

= W 

sc2 
(i, j) (S) , 

where the last inequality follows by Theorem 12 . Furthermore note 

that by the choice of β, � n +1 = � n +2 , w i (n +1) = w i (n +2) using the 

Smith rule it is possible to set s 1 = n + 1 , s 2 = n + 2 . �

The combination of the previous results leads to one of our 

main results – a first combinatorial lower bound for the optimal 

value of the DRFLP . 
Theorem 18. Let (n, w, � ) be a DRFLP instance. Let V i := { k ∈ [ n ] \ 
{ i } : w ik > 0 } for i ∈ [ n ] . Then 

1 
2 

∑ 

i ∈ [ n ] 
min 

j∈ V i 
max { W 

spt 

(i, j) 
(V i ) , W 

sc 
(i, j) (V i ) , W 

sc2 
(i, j) (V i ) } (7) 

is a lower bound for the optimal value ̂ W of the DRFLP . The 

bound (7) can be computed in O 

(
n 3 · log (n ) 

)
. 

Proof. The correctness follows from Propositions 9 , 14 , 17 and 

the definition of ̂ W . The running time for fixed i ∈ [ n ], j ∈ V i , is 

O ( n · log (n ) ) because one has to sort the jobs (departments) in or- 

der to apply Algorithm 1 . Since there are O 

(
n 2 
)

such summands 

the total running time is O 

(
n 3 · log (n ) 

)
. �

So we mainly need Algorithm 1 and a sorting algorithm to cal- 

culate our combinatorial lower bound (7) . The different sorting cri- 

teria for the three lower bounds W 

spt 
(i, j) 

(V i ) , W 

sc 
(i, j) 

(V i ) , W 

sc2 
(i, j) 

(V i ) for 

fixed i , j ∈ [ n ], j ∈ V i , (see Propositions 9 , 14 , 17 ) are described in 

Definitions 8 , 13 , 16 . 

2.3. Extensions 

In this section we discuss extensions of the combinatorial lower 

bounds to the general MRFLP , the DREFLP and the PROP . 

2.3.1. MRFLP 
In general, all the lower bounds presented above for the DRFLP 

can be extended to lower bounds for the MRFLP . Indeed, for the 
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bounds in Proposition 9 we can use the same approach but we 

have to check all 
( | S| 

m −1 

)
(with S ⊆[ n ] �{ i }) choices for departments 

directly opposite the fixed department i ∈ [ n ]. The same is true for 

the scheduling bounds SCHED1 and SCHED2 . For the MRFLP we 

have to slightly extend Algorithm 1 to handle scheduling problems 

on 2 m parallel machines. However, the running time for the calcu- 

lation of (7) is increased significantly in comparison to the double- 

row case, but remains polynomial if m is fixed. 

2.3.2. DREFLP 
In the calculation of the SPT -lower-bound we assign high 

weights to small departments. So the question arises if we can 

simplify the calculation of the combinatorial lower bounds in the 

equidistant case, because there we do not need Algorithm 1 to de- 

termine an optimal arrangement of the departments depending on 

their lengths. We start with the special case of all weights being 

equal to one. Note that we assume as done in the literature, see, 

e. g., Anjos et al. (2018) and Amaral (2011) , that the department 

lengths are equal to one. 

Proposition 19. Let (n, w, 1 ) be a DREFLP instance. Let i ∈ [ n ] and 

S ⊆[ n ] �{ i }, then for all j ∈ S �{ i } and all solutions (r, q ) ∈ Q (n, w, 1 ) we 

get 

W 

dst 
(i, j) (S) = 

⌊ (⌈ | S | −1 
2 

⌉
+ 1 

)2 

4 

⌋ 

+ 

⌊ (⌊ | S | −1 
2 

⌋
+ 1 

)2 

4 

⌋ 

≤
∑ 

k ∈ S 
| q i − q k | . 

Proof. For i ∈ [ n ] we arrange one department of S ⊆[ n ] �{ i } directly 

opposite i and we assign the remaining 

⌈ | S | −1 
2 

⌉ 
departments to 

row 1 and 

⌊ | S | −1 
2 

⌋ 
departments to row 2. The result follows from 

the star inequalities (1) for the LA . �

Consequently, we can also simplify the calculation of the SPT - 
lower-bound. For i ∈ [ n ] we sort the departments in S ⊆[ n ] �{ i } by 

decreasing weights w ik , k ∈ S, and assign the departments in that 

order as close as possible to i , i. e., a department with highest 

weight w ik , k ∈ S, lies directly opposite i . We denote this lower 

bound by W 

sort 
i 

(S) . 

If we know that two departments i , j ∈ [ n ], i < j , overlap and so 

lie exactly opposite due to the grid structure ( Anjos et al., 2018 ), 

we can determine a lower bound for the weighted distances of i 

and j to the departments S ⊆[ n ] �{ i , j }. For this we order the de- 

partments in S by decreasing weight w ik + w jk , k ∈ S , and get a se- 

quence S 
E-spt 
i, j 

= (s 1 , . . . , s | S | ) . With 

C E-spt , (i, j) (S) = C basic (S E-spt 
i, j 

, (1 , . . . , 1) , (0 , 0 , 0 , 0)) 

we get 

W 

E-spt 

(i, j) 
(S) := 

| S | ∑ 

k =1 

(w is k 
+ w js k 

)(C E-spt , (i, j) 
s k 

(S)) . (8) 

Proposition 20. Let (n, w, 1 ) be a DREFLP instance. Let i , j ∈ [ n ], 

i < j , and S ⊆[ n ] �{ i , j }, then for all DREFLP solutions (r, q ) ∈ 

Q (n, w, 1 ) with q i = q j we have 

W 

E-spt 

(i, j) 
(S) ≤

∑ 

k ∈ S 
(w ik + w jk ) | q i − q k | . 

Proof. The result follows directly by Proposition 9 and its 

proof. �

2.3.3. PROP 
Finally we have a look at row layout problems where the as- 

signment of the departments to the rows is already known like the 

SRFLP , the PROP and the kPROP . We concentrate on the PROP in 

the description, but the other cases follow analogously. 

For the PROP the lower bound calculation of W 

dst 
(i, j) 

and W 

spt 
(i, j) 

, i , 

j ∈ [ n ], i � = j , can be adapted as follows. Because the row assignment 

is fixed, we can split the calculation of the distances in inner-row 

and inter-row distances. Let i ∈ [ n ] and S ⊆[ n ] �{ i }. We first order the 

departments S 1 := { j ∈ S : r i = r j } ⊆ S which are in the same row 

as i increasingly by their lengths and get S inn = (s 1 , . . . , s | S 1 | ) with 

length vector � S 
inn 

. Applying Algorithm 1 we get the completion 

times 

C inn ,i (S, � ) = C basic 
(

S inn , � S 
inn 

, 
(

� i 
2 
, 

� i 
2 
, ∞ , ∞ 

))
and with (w 

′ 
i 1 

, . . . , w 

′ 
i | S 1 | ) being a decreasingly sorted list of the 

weights w ik , k ∈ S 1 , the bounds 

W 

dst-inn 
i (S) := 

| S 1 | ∑ 

k =1 

(
C inn ,i 

s k 
(S, � ) − � s k 

2 

)
, 

W 

spt-inn 
i 

(S) := 

| S 1 | ∑ 

k =1 

w 

′ 
ik 

(
C inn ,i 

s k 
(S, � ) − � s k 

2 

)
, 

For the inter-row distances we have to consider all possible de- 

partments lying opposite i . So let j ∈ S with r j � = r i be fixed. Now or- 

der the remaining departments in the other row, i. e. S 2, j := { k ∈ S : 

j � = k , r i � = r k } ⊆S , by increasing length and get S int 
j 

= (s ′ 
1 
, . . . , s ′ | S 2 , j | ) 

with length vector � 
S int 

j . Applying Algorithm 1 we get the comple- 

tion times 

C int , (i, j) (S, � ) = C basic 
(

S int 
j , � 

S int 
j , 
(
∞ , ∞ , 

� j 
2 
, 

� j 
2 

))
. 

As before, with (w 

′′ 
i 1 

, . . . , w 

′′ 
i | S 2 | ) being a decreasingly sorted list of 

the weights w ik , k ∈ S 2, j , we get the bounds 

W 

dst-int 
(i, j) (S) := 

| S 2 , j | ∑ 

k =1 

(
C int , (i, j) 

s ′ 
k 

(S, � ) −
� s ′ 

k 

2 

)
, 

W 

spt-int 

(i, j) 
(S) := 

| S 2 , j | ∑ 

k =1 

w 

′′ 
ik 

(
C int , (i, j) 

s ′ 
k 

(S, � ) −
� s ′ 

k 

2 

)
. 

Combining the inner-row and inter-row bounds leads to W 

P-dst 
(i, j) 

(S) 

and W 

P-spt 
(i, j) 

(S) . Similar adaptions are possible for improving 

W 

sc 
(i, j) 

(S) ( W 

sc2 
(i, j) 

(S) for the PROP is then the same as W 

sc 
(i, j) 

(S) ) in 

the case of fixed row assignments. We denote the improved PROP 
bounds by prepending “P-” to the name. 

In order to compute a lower bound for the PROP we can sum 

up the lower bounds for inner-row distances of each of the depart- 

ments to the others and divide this sum by two. To obtain a global 

lower bound for the inter-row distances in the PROP we sum up 

the weighted distances of each department in row 1 to row 2, 

i. e., for each i ∈ [ n ] with r i = 1 we compute min j∈ [ n ] ,r j =2 W 

spt-int 
(i, j) 

(S) 

and vice versa and we take the maximum value of these. By this 

method we do not have to divide the obtained value by two. 

3. A distance-based lower bounding ILP model 

For the SRFLP a distance-based model was introduced in 

Amaral and Letchford (2013) to compute a lower bound for the 

optimal solution value. The lower bound calculation was combined 

with some branch-and-cut algorithm. These results were based on 

investigations of the LA in Caprara et al. (2011) where the au- 

thors combined a distance model with combinatorial bounds. In 

Section 3.1 we introduce an ILP model consisting of distance vari- 

ables and so called overlap variables, which is not a formulation 

for the DRFLP . The optimal solution value of that model is a lower 

bound for the optimal value of the DRFLP . Our model is based on 
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our combinatorial lower bounds presented in the previous section. 

In the equidistant case of the DRFLP the model can be strength- 

ened and we will also mention which adaptions are possible in 

the case of PROP or kPROP . We want to use the newly derived 

cutting planes in a branch-and-cut algorithm. So we describe in 

Section 3.2 appropriate separators. 

3.1. The Lower Bounding Model 

In the description of our ILP model we start with the variables. 

We use distance variables d i j = d ji ≥ 0 , i, j ∈ [ n ] , i < j. In contrast to 

the literature, see, e. g., Fischer et al. (2019) , Secchin and Amaral 

(2019) , where left-right ordering variables were used, we use bi- 

nary overlap variables x i j = x ji ∈ { 0 , 1 } , i, j ∈ [ n ] , i < j. Two depart- 

ments i and j overlap if their positions satisfy | q i − q j | < 

� i + � j 
2 . The 

associated variables have the following interpretation 

x i j = 

{
1 , departments i and j lie in different rows and overlap , 

0 , otherwise . 

We want to note that the model does not contain position vari- 

ables for the departments. 

It was proven in Fischer et al. (2019) that there always exists an 

optimal double-row layout where the distance from the left border 

of the leftmost department to the right border of the rightmost 

department is at most M := 

∑ n 

i = � n +1 
3 � +1 

� i where the departments 

are sorted in ascending order according to their length. Apart from 

this we define a parameter κ ∈ {0, 1} which is one if and only if 

all department lengths are integral. This is the case in almost all 

test instances in the literature. Our lower bounding model for the 

DRFLP reads as follows. 

min 

∑ 

i, j∈ [ n ] 
i< j 

w i j d i j 

∑ 

i, j∈ S 
i< j 

x i j ≤ | S | − 1 , S ⊆ [ n ] , | S| ≥ 2 , (9) 

∑ 

j∈ S∪ T 
x i j ≤ | S | + 1 , i ∈ [ n ] , S ⊂ [ n ] \ { i } with 

∑ 

j∈ S 
� j ≥ � i , 

T := { j ∈ [ n ] \ (S ∪ { i } ) : � j ≥ max 
k ∈ S 

� k } , (10) 

d i j + 

(
� i + � j 

2 

)
x i j ≥ � i + � j 

2 
, i, j ∈ [ n ] , i < j, (11) 

d i j + 

(
M − � i − � j + 

1 
2 
κ
)
x i j ≤ M − � i + � j 

2 
, i, j ∈ [ n ] , i < j, (12) 

d i j + d jk − d ik ≥ 0 , i, j, k ∈ [ n ] , | { i, j, k } | = 3 , i < k, (13) 

∑ 

j∈ S 
d i j ≥ min 

j∈ S 
W 

dst 
(i, j) (S) , i ∈ [ n ] , S ⊆ [ n ] \ { i } , (14) 

∑ 

j∈ S 
w i j d i j ≥ min 

j∈ S 
max 

⎧ ⎨ ⎩ 

W 

spt 

(i, j) 
(S) , 

W 

sc 
(i, j) 

(S) , 

W 

sc2 
(i, j) 

(S) 

⎫ ⎬ ⎭ 

, i ∈ [ n ] , S ⊆ V i , (15) 

∑ 

i, j∈ S 
i< j 

d i j + o S, 3 
∑ 

i, j∈ S 
i< j 

x i j ≥ o S, 3 , S ⊂ [ n ] , | S | = 3 , o S, 3 = 

∑ 

i ∈ S 
� i + min 

i ∈ S 
� i , 

(16) 

Fig. 6. Visualization of the forest associated to the overlap variables of a double- 

row layout. Each node represents a department and there exists an edge between 

two different departments if and only if both overlap. 

∑ 

i, j∈ S 
i< j 

d i j + o S, 4 
∑ 

i, j∈ S 
i< j 

x i j ≥ o S, 4 , S ⊂ [ n ] , | S | = 4 , (17) 

o S, 4 = 

3 
2 

∑ 

i ∈ S 
� i + 2 · min 

i 1 ,i 2 ∈ S 
i 1 � = i 2 

(� i 1 + � i 2 ) , 

∑ 

i, j∈ S 
i< j 

� i � j d i j + o S 
∑ 

i, j∈ S 
i< j 

x i j ≥ o S , S ⊆ [ n ] , | S | ≥ 3 , (18) 

o S = 

1 
6 

⎛ ⎝ 

( ∑ 

i ∈ S 
� i 

) 3 

−
∑ 

i ∈ S 
� 3 i 

⎞ ⎠ , 

x i j = x ji ∈ { 0 , 1 } , i, j ∈ [ n ] , i < j, (19) 

d i j = d ji ≥ 0 , i, j ∈ [ n ] , i < j. 

The overlap variables in a double-row layout have to build a 

forest if we interpret them as edges in a graph where each de- 

partment represents a single node of the associated graph and two 

nodes (departments) are connected by an edge if both overlap in 

the layout, see Fig. 6 . We ensure this by the well-known subtour 

elimination constraints (9) , see, e. g., Dantzig, Fulkerson, and John- 

son (1954) , Edmonds (1971) , for the complete description of the 

forest polytope. But the forest also has to satisfy further properties 

concerning the degree of certain nodes. Let i ∈ [ n ] be fixed and let 

S ⊂ [ n ] �{ i } with �j ∈ S � j ≥ � i , i. e., the departments in S are in total at 

least as long as department i , then at most | S | + 1 departments of 

the set S ∪ { k ∈ [ n ] �( S ∪ { i }): � k ≥ max j ∈ S � j } can overlap with i . This 

results in (10) . So, for instance, a department i can overlap with at 

most two departments that are at least as long as i itself. 

The distance and the overlap variables are coupled via (11) and 

(12) . On the one hand, if two departments do not overlap, then the 

distance between the centers of both is at least the sum of half 

the lengths of the departments. On the other hand the distance 

of two departments that overlap cannot be larger than the sum 

of half the lengths of both departments. Assuming integral depart- 

ment length we can even enforce that this value is 1 
2 less because 

the overlap is then at least one half (the departments are arranged 

on the half grid according to Hungerländer & Anjos, 2015 ). As used 

in previous layout models, see, e. g., Amaral and Letchford (2013) , 

the distance variables have to satisfy the triangle inequalities (13) . 

Furthermore, we use our combinatorial bounds to bound the sum 

of the (weighted) distances between all departments of some set 

S ⊂ [ n ], see (14) –(15) . 

If we know that certain departments do not overlap pairwise, 

then we can treat them as departments in an SRFLP instance and 

use constraints known to be valid for the SRFLP , see (16) and (17) . 

For the validity of these inequalities and especially for the calcula- 

tion of the right-hand side o one compares all different orderings 

of the associated departments and counts how often the length of 

each single department appears. Inequalities (18) are an adapted 

version of the so called clique inequalities presented in Amaral and 

Letchford (2013) for the SRFLP . Note, inequalities (16) –(18) are 
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trivially satisfied if one of the associated x -variables equals one. 

Finally, we have the integrality of the overlap variables (19) . 

3.1.1. Adaptations of Our Lower Bounding Model for the DREFLP 
For the DREFLP there always exists an optimal solution on 

the grid ( Anjos et al., 2018 ). Therefore we can restrict to solutions 

where two departments overlap if and only if they lie directly op- 

posite each other. So the interpretation of our overlap variables 

changes to 

x e i j = x e ji = 

{
1 , if i and j lie directly opposite each other , 
0 , otherwise , 

i , j ∈ [ n ], i < j . Our model specialized to the DREFLP reads as fol- 

lows. 

min 

∑ 

i, j∈ [ n ] 
i< j 

w i j d i j 

(13) , ∑ 

j∈ [ n ] 
j � = i 

x e i j ≤ 1 , i ∈ [ n ] , (20) 

∑ 

i, j∈ [ n ] 
i< j 

x e i j ≤
⌊ 

n 

2 

⌋ 
, (21) 

∑ 

i, j∈ [ n ] 
i< j 

x e i j ≥ n −
⌈ 

2 n 

3 

⌉ 
+ 1 , n ≥ 9 , (22) 

d i j + x e i j ≥ 1 , i, j ∈ [ n ] , i < j, (23) 

d i j + Mx e i j ≤ M, i, j ∈ [ n ] , i < j, (24) 

∑ 

i, j∈ [ n ] 
i< j 

d i j ≥
{

(n +1) n (n −1) 
12 

, n odd , 
(n +2) n (n −2) 

12 
, n even , 

(25) 

∑ 

j∈ [ n ] \{ i } 
d i j ≥

⌊ (⌈
n −2 

2 

⌉
+ 1 

)2 

4 

⌋ 

+ 

⌊ (⌊
n −2 

2 

⌋
+ 1 

)2 

4 

⌋ 

, i ∈ [ n ] , 

(26) 

∑ 

j∈ S 
w i j d i j ≥ W 

sort 
i (S) , i ∈ [ n ] , S ⊆ V i , (27) 

∑ 

k ∈ S 
(w ik d ik + w jk d jk ) − x e i j (W 

E-spt 

(i, j) 
(S)) ≥ 0 , 

i, j ∈ [ n ] , i < j, S ⊆ [ n ] \ { i, j} , (28) 

∑ 

i, j∈ S 
i< j 

d i j + o S 
∑ 

i, j∈ S 
i< j 

x e i j ≥ o S , S ⊆ [ n ] , | S | ≥ 3 , o S = 

1 
6 

(| S | 3 − | S | ), 
(29) 

x e i j = x e ji ∈ { 0 , 1 } , i, j ∈ [ n ] , i < j. (30) 

There always exists an optimal solution to the DREFLP on the grid 

( Anjos et al., 2018 ). So each department may overlap with at most 

one department, see (20) . Additionally, we can bound the total sum 

of the overlap variables by � n 2 � . We can also generalize (21) to 

∑ 

i, j∈ S,i< j x 
e 
i j 

≤
⌊ | S | 

2 

⌋ 
for sets S ⊆[ n ]. Constraints (20) and (21) can 

be seen as a strengthened version of inequalities (9) and (10) . For 

n ≥ 9 there always exists an optimal equidistant double-row lay- 

out which uses at most 
⌈

2 n 
3 

⌉
− 1 columns of the grid ( Anjos et al., 

2018 ). It follows that at least n −
⌈

2 n 
3 

⌉
+ 1 columns contain two 

departments, see (22) . If two departments overlap, then their dis- 

tance is zero, see (24) , and at least one otherwise, see (23) . In the 

unweighted case of the DREFLP , i. e., if all weights are equal to 

one, an optimal solution for this problem can be derived by arrang- 

ing � n +1 
2 � departments in row 1 and � n −1 

2 � departments in row 

2. So the sum of the weighted distances can be calculated. This 

value is a lower bound for the sum of the distances in the DREFLP , 
see (25) (for details we refer to the upcoming paper Dahlbeck, Fis- 

cher, & Hungerländer, 2020 ). Note that we are not aware of a sim- 

ilar result for the DRFLP . So we take advantage of the DREFLP 
structure here. Apart from this we can bound the sum of the dis- 

tances of some i ∈ [ n ] to all departments S ⊆V i from below using 

our combinatorial bounds, see (27) . If two departments i , j ∈ [ n ], 

i < j , overlap, we can use W 

E-spt 
(i, j) 

(S) defined in (8) as a lower bound 

for the weighted distances of i and j to the departments S ⊆[ n ] �{ i , 

j }, see (28) . If i and j do not overlap, inequality (28) is redundant. 

Inequalities (29) are the clique inequalities (18) used before with 

� i = 1 , i ∈ [ n ] . 

3.1.2. Adaptations of Our Model for the PROP 
For the PROP further improvements of our lower bounding 

model (9) –(18) are possible because the row assignment of the de- 

partments is given. So one can hope to achieve smaller gaps for 

the PROP in comparison to the DRFLP , especially if the rows are 

balanced, i. e., the sum of the lengths of the departments in row 

1 is close to the corresponding sum in row 2. Balanced layouts are 

of special interest in practice because in factory planning the size 

of the factory influences the production costs ( Langevin, Montreuil, 

& Riopel, 1994 ). 

For the departments in some row r ∈ R we can use results from 

the SRFLP literature because the departments are arranged with- 

out spaces. For bounding the sum of the distances of the depart- 

ments we use the fact that the SRFLP with w i j = 1 , i, j ∈ [ n ] , i < j, 

can easily be solved in polynomial time. 

Theorem 21 ( Samarghandi & Eshghi (2010) ) . Let (n, w, � ) with 

w i j = 1 , i , j ∈ [ n ], i < j , be an SRFLP instance. Let a single-row lay- 

out with associated permutation π ∗ be derived by sorting the de- 

partments in an ascending order according to their lengths and plac- 

ing the first department in the middle and the remaining ones right 

and left in an alternating manner to the ones already assigned, see 

Fig. 7 . Then this layout is optimal with objective value n −1 
2 

∑ n 
i =1 � i + ∑ n −1 

k =2 
(k − 1)(n − k ) � π∗(k ) . 

This result was stated in Samarghandi and Eshghi (2010) but 

not proven correctly. So we present a new proof here. 

Proof. Let an arbitrary permutation π : [ n ] → [ n ] of the depart- 

ments be given where π ( k ) denotes the k th department from the 

left border. The distance d π ( i ) π ( j ) of two departments π ( i ), π ( j ), i , 

j ∈ [ n ], π ( i ) < π ( j ), equals d π(i ) π( j) = 

� π(i ) + � π( j) 

2 + 

∑ j−1 

k = i +1 
� π(k ) . Then 

with C := 

∑ n 
i, j=1 ,i< j 

� i + � j 
2 = 

n −1 
2 

∑ n 
i =1 � i we get 

n ∑ 

i, j=1 
i< j 

w i j d i j = 

n ∑ 

i, j=1 
i< j 

d i j = 

n ∑ 

i, j=1 
i< j 

d π(i ) π( j) = C + 

n ∑ 

i, j=1 
i< j 

j−1 ∑ 

k = i +1 

� π(k ) = C 

+ 

n −1 ∑ 

k =2 

(k − 1)(n − k ) � π(k ) . (31) 
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Fig. 7. Visualization of optimal solutions (and permutations π ∗ of [ n ]) for SRFLP instances with weights w i j = 1 , i, j ∈ [ n ] , i < j, and � i ≤ � i +1 for i ∈ [ n − 1] for the different 

parities of n . 

For proving the optimality of π ∗ we consider the quadratic func- 

tion f : [2 , n − 1] → R with f (k ) = (k − 1)(n − k ) . The function f is 

strongly concave with its unique maximum point at k ∗ = 

n +1 
2 ∈ 

[2 , n − 1] and is symmetric to k ∗. Then (31) is minimized by π ∗

and the result follows. �

Let R k , k ∈ R , denote the indices of the departments which are 

assigned to row k . Then we can use the following constraints for 

PROP . 

∑ 

i, j∈ R k 
i< j 

� i � j d i j = 

1 

6 

⎛ ⎝ 

( ∑ 

i ∈ R k 
� i 

) 3 

−
∑ 

i ∈ R k 
� 3 i 

⎞ ⎠ , k ∈ R , (32) 

∑ 

i, j∈ R k 
i< j 

d i j ≥
∑ 

i, j∈ R k 
i< j 

� i + � j 

2 

+ 

| R k | −1 ∑ 

z=2 

(z − 1)( | R k | − z) � π ∗,k (z) , k ∈ R , 

(33) 

d i j ≥
� i + � j 

2 

, k ∈ R , i, j ∈ R k , i < j, (34) 

d i j ≤
( ∑ 

z∈ R k 
� z 

) 

− � i + � j 

2 

, k ∈ R , i, j ∈ R k , i < j, (35) 

d i j ≤ max 

{ ∑ 

z∈ R 1 
� z , 
∑ 

z∈ R 2 
� z 

} 

− � i + � j 

2 

, i ∈ R 1 , j ∈ R 2 . (36) 

Treating the departments in the same row as a SRFLP we can 

use the clique Eq. (32) as shown to be valid for the SRFLP in 

( Amaral & Letchford, 2013 ) (we can still use (18) ). As already men- 

tioned the sum of the distances between departments in the same 

row can be bounded using Theorem 21 where in (33) an optimal 

layout of departments R k of the unweighted SRFLP according to 

Theorem 21 is denoted by π ∗, k . 

Of course, two departments in the same row satisfy a minimal 

distance condition, see (34) . So we do not need (11) for depart- 

ments in the same row. Note that in the PROP one can bound dis- 

tances between two departments in the same row (35) and also in 

different rows (36) because the departments are arranged without 

spaces and with a fixed left border. So we do not need (12) for 

departments lying in the same row. Apart from this we can use 

the improved combinatorial lower bounds in (14) and (15) . For a 

summary of the complete PROP model we refer to the appendix. 

3.2. Separation 

In this section we describe a branch-and-cut algorithm which is 

based on the inequalities (9) –(18) and we explain for which sub- 

sets S ⊆[ n ] the constraints are indeed used in the calculation of the 

lower bounds. We include inequalities (11) from the beginning as 

well as inequalities (9) for S = [ n ] and (15) for S = V i . Inequalities 

(14) are included for S = V i and S = [ n ] . Furthermore, we add all 

triangle inequalities (13) . 

The remaining constraints are separated in the following way. 

We separate inequalities (12) by complete enumeration. It is well- 

known that the problem to decide whether the vector of the x - 

variables is contained in the forest polytope, i. e., the convex hull 

over all incidence vectors of forests of a complete undirected graph 

with n nodes, can be solved in polynomial time, see, e. g., Schrijver 

(2003) pp. 880–881. Indeed, assuming non-negativity of the x - 

variables, one can determine a maximally violated subtour elimi- 

nation constraint (9) solving special minimum cut problems on an 

associated directed graph. 

There are potentially exponentially many inequalities of type 

(10) , so we use the following heuristic approach. First we sort the 

departments according to their lengths in ascending order, i. e., 

� 1 ≤ � 2 ≤ . . . ≤ � i ≤ . . . ≤ � n . For each i ∈ [ n ] we determine the set 

S̄ i := { j ∈ [ n ] \ { i } : � j ≥ � i } and separate constraints ∑ 

j∈ ̄S i 

x i j ≤ 2 

explicitly. These inequalities imply all inequalities of (10) with 

| S | = 1 . For 2 ≤ | S | ≤ 3 we add an inequality if S satisfies �j ∈ S � k ≥ � i 
and �j ∈ S �{ k } � j < � i for all k ∈ S , because the inequality is redundant 

otherwise. 

We separate inequalities (16) and (17) by brute-force enumera- 

tion. In Amaral and Letchford (2013) it is conjectured that the sep- 

aration problem of the general clique inequalities of the SRFLP is 
N P -hard. For this reason we restrict to sets S of size three and four 

in (18) and check all these inequalities by complete enumeration. 

It remains the usage of our combinatorial lower bounds in 

(14) and (15) . Given a relaxation x̄ , d̄ , we construct two sets for 

fixed i ∈ [ n ]. At first, we consider all departments which are accord- 

ing to the distance variables d̄ close to i , i. e., S i 
1 

= { j ∈ [ n ] \ { i } : 
d̄ i j ≤

� i + � j 
2 } and previous tests, which are not included in this pa- 

per, show that it is worth to check S i 
2 

= { j ∈ [ n ] \ { i } : d̄ i j ≤ � i + � j } 
as well. 

For the PROP similar separation strategies were used. Testing 

our DREFLP model with a branch-and-cut algorithm we include 

inequalities (13), (20)–(23), (25) and (26) from the beginning as 

well as inequalities (27) for S = V i . We separate inequalities (24), 

(28) by brute force enumeration and as done in our DRFLP lower 

bounding model we restrict inequalities (29) to sets | S | = 3 and 

| S | = 4 and check all these inequalities by complete enumeration. 

4. Computational results 

In this section we present our computational experiments im- 

plemented in C++. We used Cplex 12.8 ( IBM, 2018 ) as an ILP 
solver. All results were conducted on a 2.30 gigahertz dual-core 

computer running on Debian GNU/Linux 8 in single processor 

mode. 

We compare our combinatorial lower bounds (7) as well as our 

branch-and-cut algorithm, described in Section 3.2 , interrupted af- 

ter a time limit of a few minutes on instances from the literature 

as well as on randomly generated medium-sized and large double- 

row instances. All instances are available from the authors. 

In this paper we present the first non-trivial lower bounds for 

the DRFLP . In order to show the strength of our lower bound 

approaches we want to compare to lower bounds derived using 
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Table 1 

Results for instances from the literature where the optimal solution values are known ( Fischer et al., 2019 ). The gaps are given in 

percent. 

Instance Source Amaral (7) ILP 3min optimal heuristic Gap Ama. Gap (7) Gap ILP 

s 9 Amaral (2012, 2013a) 1179.0 778.0 1093.0 1179.0 1183.5 0 34.01 7.29 

s9h Amaral (2012, 2013a) 2293.0 1636.5 1713.5 2293.0 2309.5 0 28.63 25.27 

s10 Amaral (2012, 2013a) 1351.0 822.0 1213.5 1351.0 1392.0 0 39.16 10.18 

s11 Amaral (2012, 2013a) 3424.5 1998.5 2658.5 3424.5 3427.5 0 41.64 22.37 

Am12a Amaral (2012, 2013a) 1493.0 795.0 1136.5 1493.0 1556.5 0 46.75 23.88 

Am12b Amaral (2012, 2013a) 1606.5 854.0 1223.0 1606.5 1610.5 0 46.84 23.87 

Am13a Amaral (2012) 2175.5 1213.0 1682.5 2456.5 2624.5 11.44 50.62 31.51 

Am13b Amaral (2012) 2486.0 1294.5 1980.0 2864.0 2886.5 13.20 54.80 30.87 

Am14a Secchin and Amaral (2019) 1757.0 1483.5 2082.0 2904.0 2920.0 39.50 48.92 28.31 

Am14b Secchin and Amaral (2019) 1451.5 1386.0 1893.5 2736.0 2736.0 46.95 49.34 30.79 

Am15_1 Amaral (2006) 1554.5 1543.0 2209.0 3195.0 3272.0 51.35 51.71 30.86 

HK15 Heragu and Kusiak (1991) 9059.0 7900.0 11777.0 16570.0 16740.0 45.33 52.32 28.93 

P16_a Amaral (2013b) 2247.5 3676.5 4937.0 7365.5 7466.5 69.49 50.08 32.97 

P16_b Amaral (2013b) 1598.5 2968.0 4053.0 5870.5 6306.0 72.77 49.44 30.96 

Table 2 

Results for randomly generated double-row instances with integral department lengths between 1 and 15. We display the average values over ten in- 

stances each. The average gaps are given in percent. Note that for six instances with n = 50 and density 10 % we had to enlarge the time limit to five 

minutes for ILP pure . 

Instance Amaral (7) ILP pure 

3 min 
ILP 3min ILP 10min heuristic Gap Ama . Gap (7) Gap ILP pure Gap ILP time heur. 

20 10 338.79 289.86 468.14 500.60 505.45 617.35 38.13 51.29 19.11 14.21 3.15 

20 50 1527.12 3202.19 3626.43 5469.71 5495.22 8506.05 81.89 62.45 57.23 35.39 5.21 

20 100 3310.24 10431.77 8529.66 13986.62 14058.16 20943.10 83.95 50.29 59.15 32.84 7.09 

30 10 331.84 802.17 1018.18 1514.81 1520.63 2544.90 86.45 68.37 58.93 39.48 15.30 

30 50 2101.71 9839.95 8233.34 17484.33 17498.97 30996.05 93.22 68.33 73.41 43.56 30.81 

30 100 4291.18 34059.95 18287.52 43916.72 43931.98 69736.45 93.85 51.20 73.75 37.03 58.69 

40 10 432.03 1796.76 1904.74 3801.49 3973.69 8007.10 94.42 77.08 75.90 49.43 55.09 

40 50 3043.79 22713.90 13841.45 42319.98 42332.02 76055.40 95.99 70.16 81.78 44.39 142.88 

40 100 6090.44 80325.81 29964.70 102936.41 102974.79 167635.30 96.36 52.06 82.11 38.56 280.10 

50 10 17.82 3184.06 3053.28 6667.47 8725.34 18006.80 99.89 82.23 82.89 51.39 159.35 

50 50 52.36 42486.84 22313.42 79545.26 79550.13 149788.90 99.97 71.61 85.08 46.84 427.47 

50 100 63.18 156449.80 48166.27 199949.20 199949.20 328566.70 99.98 52.37 85.32 39.13 1009.80 

Table 3 

Results for randomly generated double-row instances with integral department lengths between 5 and 10. We display the average values over ten in- 

stances each. The average gaps are given in percent. 

Instance Amaral (7) ILP pure 

3 min 
ILP 3min ILP 10min heuristic Gap Ama . Gap (7) Gap ILP pure Gap ILP time heur. 

20 10 251.69 334.18 402.79 502.13 502.13 674.85 54.01 47.03 33.92 21.12 2.80 

20 50 1276.73 4015.68 3428.96 6047.42 6054.10 8832.65 85.52 54.61 61.15 31.52 5.08 

20 100 2424.67 13225.15 8506.21 15833.20 15842.39 22573.75 89.24 41.45 62.31 29.85 7.20 

30 10 310.58 950.50 890.62 1723.57 1729.66 2905.65 88.49 65.80 67.78 39.01 15.73 

30 50 1838.96 12560.22 7744.96 21068.41 21070.50 32132.35 94.27 60.95 75.88 34.42 31.74 

30 100 3663.20 43408.32 18239.38 53278.66 53278.66 78339.90 95.32 44.57 76.71 31.98 50.78 

40 10 446.25 2072.82 1628.15 4171.48 4176.62 8168.50 94.32 74.07 79.66 50.86 54.25 

40 50 3039.25 28568.01 13403.33 50194.18 50194.18 79917.90 96.20 64.26 83.22 37.15 135.46 

40 100 5760.78 101189.12 29338.09 125597.20 125597.20 187431.80 96.93 46.00 84.35 32.98 242.43 

50 10 11.56 3652.35 2802.76 7695.32 7943.25 17620.70 99.94 79.24 84.04 54.58 176.94 

50 50 21.36 53907.31 21815.19 96871.04 96871.04 160570.10 99.99 66.42 86.41 39.64 383.10 

50 100 51.45 194844.10 47001.25 243675.60 243675.60 368747.80 99.99 47.15 87.25 33.90 886.15 

mixed-integer linear programming techniques. Because the use of 

the enumerative approach of Fischer et al. (2019) , the best ex- 

act DRFLP approach, for computing lower bounds is out of scope 

due to the exponential number of subproblems that have to be 

solved (approximately), we compare our lower bounds to the lower 

bounds that can be achieved via branch-and-cut on the model pre- 

sented in Amaral (2013a) within a given time limit of one hour on 

our computer. We decided to use the weaker model presented in 

Amaral (2013a) and not to use the model in Secchin and Amaral 

(2019) because this contains a huge number of variables and con- 

straints for larger n and so even the calculation of the root node 

value was rather time-consuming in our tests. Further note that we 

do not test instances from Chung and Tanchoco (2010) and Murray 

et al. (2013) because there only double-row instances with clear- 

ance conditions were considered. 

Since only smaller instances were solved to optimality in the 

literature (see Table 1 ), we generate random instances with n ∈ {20, 

30, 40, 50}. To obtain a wide set of random instances we set 

the transport density to 10%, 50% and 100% and we choose inte- 

ger transport weights randomly between 1 and 10. The integral 

lengths of the departments are chosen randomly between 1 and 

15 (see Table 2 ) as well as between 5 and 10 (see Table 3 ). For 

each type we created ten instances. We denote these instances by 

n k where n is the number of departments and k is the transport 

density. The first column “Instance” of the tables displays the in- 

stance name. For the instances from the literature the second col- 

umn contains its source. The lower bound value obtained by ap- 

plying Cplex with a given time limit of one hour for the DRFLP 
formulation in Amaral (2013a) is given in column “Amaral”. Apart 

from this the tables contain our combinatorial bound (7) as well 

as the lower bounds derived using branch-and-cut for our lower 

bounding model within a given time limit of three resp. ten min- 

utes, see columns “ILP 3 min ” and “ILP 10 min ”. In order to show that 

our combinatorial lower bounds significantly strengthen our lower 
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Table 4 

Results for equidistant instances from the literature ( Anjos et al., 2018; Yu & Sarker, 2003 ). The upper 

bounds “best ub” are taken from Anjos et al. (2018) . We compared our lower bounding model with 

the ILP and the SDP from Anjos et al. (2018) with a given time limit of three hours. The values of 

(7) and ILP 3 min are rounded to integers. 

Instances (7) for DREFLP ILP 3 min best ub Gap (7) Gap ILP Gap Anjos ILP 3 h Gap SDP 3 h 

Y 20 4301 5821 6046 28.86 3.72 0.00 0.00 

Y 25 7032 9887 10170 30.86 2.78 1.22 0.36 

Y 30 9237 13315 13790 33.02 3.44 2.78 0.14 

Y 35 12607 18595 19087 33.95 2.58 21.27 0.26 

Y 40 15332 22809 23739 35.41 3.92 23.88 0.37 

Y 45 19952 29639 31442 36.54 5.73 26.35 0.65 

Y 50 25839 39450 41517 37.76 4.98 28.35 0.62 

Table 5 

Results for equidistant instances from the literature ( Anjos & Yen, 2009 ). We compare 

to the best upper bounds, gaps and SDP lower bounds that are derived using the ap- 

proach presented in Anjos et al. (2018) with a time limit of three hours. 

Instances (7) for DREFLP ILP 15 min best ub Gap (7) Gap ILP Gap SDP 3 h 

sko42-1 5957 11717 12731 53.21 7.96 0.72 

sko49-1 9142 18736 20512 55.43 8.66 1.91 

sko56-1 13942 29201 31988 56.41 8.71 1.95 

sko64-1 20705 43408 48574 57.37 10.64 4.27 

Table 6 

Results for equidistant instances from the literature ( Anjos & Yen, 2009 ). We compare 

to the best upper bounds, gaps and SDP lower bounds that are derived using the ap- 

proach presented in Anjos et al. (2018) with a time limit of three hours. Because of 

the large n we use a time limit of one hour for our ILP lower bounding approach. 

Instances (7) for DREFLP ILP 1 h best ub Gap (7) Gap ILP Gap SDP 3 h 

sko72-1 29912 61905 69621 57.04 11.08 4.87 

sko81-1 43114 89288 102793 58.06 13.14 8.78 

bounding model we tested our ILP without using the combinato- 

rial results from Section 2 . These results can be found in column 

ILP 
pure 
3min 

. On order to obtain upper bounds we applied our heuris- 

tic to all instances. The value of the best solution determined via 

our heuristic is given in column “heuristic” and the time spent for 

the heuristic in seconds is given in column “time heur.”. The opti- 

mal solution values are known for the instances from the literature 

considered in Table 1 . They are given in column “optimal”. For the 

convenience of the reader we also calculate the average gaps. The 

gaps are calculated via 

Gap = 

upper bound − lower bound 

upper bound 

· 100 , 

and are given in percent. “Gap Ama . ” refers to the average gaps us- 

ing Cplex for the model in Amaral (2013a) after a time limit of one 

hour and “Gap (7) ”, “Gap ILP pure ” and “Gap ILP ” to the average gaps of 

our combinatorial lower bound and of our lower bounding model 

without and with the use of the combinatorial lower bounds, re- 

spectively. 

In order to obtain upper bounds we use a heuristic approach 

similar to the one in Chung and Tanchoco (2010) . Note that, given 

the row assignment and the order of the departments in each row, 

we only need to solve a small linear program to obtain the ex- 

act position of the departments and hence possible spaces between 

neighboring departments, see, e. g., Murray et al. (2013) . In Chung 

and Tanchoco (2010) five ways for determining a DRFLP start solu- 

tion were presented. For each instance we test all five variants and 

afterwards apply a 1-opt and a 2-opt heuristic to a best start lay- 

out, combined with determining the best positions via the associ- 

ated linear program. In the 1-opt improvement heuristic, consider- 

ing department i ∈ [ n ] we fix the row assignment and the ordering 

of all departments [ n ] �{ i } and determine a best position for i . For 

each possible position (usually there are n + 1 choices) we calcu- 

late the associated spaces with the mentioned linear program. In 

the 2-opt we exchange two departments and apply our linear pro- 

gram. We only accept changes if the objective value is improved. 

4.1. Results for the DRFLP 

In Table 1 we show results for some DRFLP instances from the 

literature, see, e. g., Fischer et al. (2019) , where optimal solutions 

are known. Since the instances are rather small, the heuristic needs 

less than 20 seconds for each instance. The gap of our combinato- 

rial lower bounds (7) are close to 50% and by our branch-and-cut 

algorithm we reduce the gap to between 28% and 33%. The heuris- 

tically determined solutions are rather good, but even for these 

small instances the heuristic could only determine an optimal so- 

lution in one case. 

Tables 2 and 3 show that our combinatorial lower bounds, 

which were computed in less than one second, clearly outperform 

the lower bounds obtained via using Cplex within a time limit of 

one hour for the DRFLP formulation in Amaral (2013a) on the ran- 

domly generated instances. These lower bounds are rather weak 

because of big-M type constraints and a quadratic number of bi- 

nary decision variables and so the gaps are close to 100% for large 

n . Using branch-and-cut to improve our bounds allows a signifi- 

cant strengthening to final gaps between 14% and 55%. For the ILP 

variant that does not use the combinatorial bounds the gaps are 

much higher and grow by increasing the number of departments. 

For instances with at least 40 departments the average gaps are 

higher than 70%. Regarding (7) and our ILP the gaps are smaller 

for dense instances. Enlarging the time limit for our ILP approach 

from 3 to 10 minutes usually has only a very small effect on the 

bound. So three minutes seem to be a good value (for the larger in- 

stances this is even faster than our heuristic). Comparing the gaps 

in Tables 2 and 3 the instance type does not seem to have a large 
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Table 7 

Results for PROP instances from the literature ( Amaral, 2013b; Fischer 

et al., 2019 ): The instance name includes the number of departments 

n . The first � n 
i 
� departments of an instance are assigned to row 1. The 

table shows the average values of our lower bounds using the variant 

of (7) adapted for the PROP and using our lower bounding approach 

( ILP 10sec ), average optimal solution values (“optimal”) and average gaps 

(“Gap ILP ”) over five instances each (and over two instances for n = 16 

and n = 20 ). The gaps are given in percent. 

Instance i (7) for PROP ILP 10sec optimal Gap ILP 

P16 2 3756.80 6554.99 6934.75 5.46 

P16 3 4598.28 7298.76 9452.25 22.99 

P16 4 5028.68 8103.06 10522.75 23.33 

P16 5 5350.14 8797.24 11767.75 25.44 

P20 2 6587.88 11322.10 12772.75 11.36 

P20 3 8455.90 12799.60 17520.75 26.69 

P20 4 9184.90 14052.45 20493.25 31.12 

P20 5 9815.33 15375.70 22558.75 31.76 

P21 2 5722.76 9870.59 11109.40 10.98 

P21 3 6792.91 11066.58 13297.20 16.64 

P21 4 7887.36 13195.82 17310.80 23.63 

P21 5 8203.20 13665.52 19159.40 28.33 

P22 2 7203.15 12479.41 14090.30 11.48 

P22 3 8729.44 14212.50 18295.50 22.24 

P22 4 9941.98 16823.44 22567.10 25.48 

P22 5 10232.11 17523.40 24132.10 27.25 

P23 2 7590.92 13483.86 15048.40 10.52 

P23 3 9604.89 15550.08 20248.40 23.19 

P23 4 10777.65 18001.96 25070.60 28.11 

P23 5 11171.86 19012.92 27313.80 30.13 

P24 2 8604.50 15281.90 17563.20 13.03 

P24 3 9808.99 16746.94 20632.00 18.59 

P24 4 11445.04 19266.70 25632.40 24.58 

P24 5 12543.23 21904.52 30316.80 27.45 

P25 2 9507.26 17015.60 19393.30 12.40 

P25 3 11746.93 19965.92 25477.90 21.32 

P25 4 13478.91 23248.80 31095.10 25.13 

P25 5 14043.55 24771.06 33228.50 25.34 

AV25 2 6227.73 11166.12 13394.00 15.44 

AV25 3 7635.86 13241.86 17278.20 22.94 

AV25 4 8223.55 14455.58 19577.80 25.60 

AV25 5 8868.04 15681.86 21808.00 27.26 

impact on the quality of our lower bounding approach, especially 

for the non-sparse instances. Furthermore the tables show that the 

quality of our lower bounds hardly deteriorates if one increases the 

number of departments. 

4.2. Results for the DREFLP 

We consider the results of our lower bounding model (13) and 

(20) –(30) specialized to the DREFLP . In Table 4 we compare our 

lower bounding model with a time limit of three minutes with 

an ILP model for the DREFLP (denoted by “Gap Anjos ILP 3 h ”) and 

an SDP approach for the DREFLP ( Anjos et al., 2018 ) (denoted by 

“Gap SDP 3 h ”) with a time limit of three hours. The upper bounds 

(“best ub”) in Table 4 are taken from Anjos et al. (2018) . For 

benchmark instances from the literature, see, e. g., Yu and Sarker 

(2003) and Hungerländer (2014b) , with 20 to 50 departments the 

gaps of our combinatorial bounds are around 35% and the gaps of 

our lower bounding model are between 2.58% and 5.73%. While 

our lower bounding model outperforms the ILP approach of Anjos 

et al. (2018) for n ≥ 35, the SDP approach provides the best lower 

bounds, but with a higher running time. One reason for the better 

behavior of the SDP approach is that in the equidistant case of the 

DRFLP the structure of optimal solutions is much simpler than for 

arbitrary department lengths. This property can nicely be exploited 

in appropriate SDP models. 

Additionally we test the equidistant so called “sko” benchmark 

instances of Anjos and Yen (2009) with up to 81 departments. As 

n is rather large we increase the time limit of our lower bound- 

ing model to 15 minutes and 60 minutes, respectively. In order 

to simplify a comparison with the results in Table 4 we used the 

program and the computer of Anjos et al. (2018) for the SDP and 

ILP lower bounds of Anjos et al. (2018) . The results are shown in 

Tables 5 and 6 . One can see that even for such large instances all 

gaps of our lower bounding model are less than 13.14% and usually 

smaller. Our combinatorial bounds (7) , which lie between 53.21% 

and 58.06%, are significantly improved by our ILP . Similarly to the 

Y-instances the SDP bounds are better. 

Comparing the results of the standard DRFLP and the DREFLP , 
one can see that the gaps of our lower bounding model are much 

better in the equidistant case. One reason for this behavior is that 

in the equidistant case we have a lower bound for the sum of the 

distances (25) . 

4.3. Results for the PROP 

For the PROP we test the same instances as in Fischer et al. 

(2019) . The optimal solution values of all the instances are given in 

Fischer et al. (2019) . Looking at the strength of our lower bounding 

approach adapted to the PROP one sees in Table 7 that the average 

gaps are even better than for the DRFLP . Most often they are less 

than 30% and for the balanced instances with (approximately) half 

of the departments in each row the average gaps are at most 16%. 

So the approach seems to work well for balanced instances. One 

reason for the worse performance on unbalanced instances is that 

the lower bound calculation cannot take into account that some of 

the departments in a longer row will not overlap with some of the 

departments in the other row at all. For this remember that the 

left border of the layout is fixed and free spaces are not allowed 

between departments in the same row. 

5. Conclusion 

The Double-Row Facility Layout Problem ( DRFLP ) is a very 

challenging problem with various application areas, including fac- 

tory planning. Despite its broad applicability it can only be 

solved to optimality in reasonable time for rather small instances. 

Apart from this, using the integer-programming based solution ap- 

proaches from the literature one derives even with high running 

times very large gaps for large instances. So heuristics are cur- 

rently the only way to determine solutions for larger instances. 

In order to evaluate the quality of heuristically determined so- 

lutions, we developed in this paper combinatorial lower bounds 

for the optimal solution value of the DRFLP . Indeed, interpret- 

ing some subproblem of the DRFLP as a parallel identical ma- 

chine scheduling problem we computed the first known non-trivial 

combinatorial lower bounds for the DRFLP . Furthermore we com- 

bined these bounds with a new mixed-integer linear programming 

model, which is indeed not a formulation for the DRFLP , to ob- 

tain even better lower bounds. Only few heuristics are present 

in the literature for the standard DRFLP . We compare our lower 

bounds to upper bounds derived by some construction heuristic 

presented in Chung and Tanchoco (2010) which is combined with 

a 1-opt and a 2-opt improvement heuristic. Our computational re- 

sults show that we were able to obtain non-trivial lower bounds 

for large double-row instances. We received average gaps of 32% 

to 46% for large dense instances and of about 50 to 55% for large 

sparse instances using our lower bounding approach. Note that the 

pure combinatorial bounds, which can be determined very fast, 

could usually be strengthened significantly, but with average gaps 

from 40% to 80% they are still much better than the model ( Amaral, 

2013a ) from the literature after a time limit of one hour for larger 

instances. Additionally, we showed how our bounds can be spe- 

cialized to the equidistant DRFLP and can be extended to the ( k -) 
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parallel row ordering problem. In both cases the gaps are better 

than for the DRFLP . 
As already mentioned, only few heuristic approaches are known 

for the DRFLP in the literature. Now, with this new possibility 

for evaluation, it remains for future work to construct new heuris- 

tic approaches. Another interesting research question is to exploit 

which is the best way to extend our lower bounding model to a 

DRFLP formulation. For good solution times the development of 

sophisticated branching strategies in a branch-and-cut algorithm 

might be important. 

From a practical point of view, it is important to extend the 

Single-Row Facility Layout Problem and the DRFLP in order to 

handle more characteristics important in practice. For instance, the 

standard models do not allow for individual input and output po- 

sitions of the departments and certain clearance conditions. Addi- 

tionally, it remains for future work to investigate more complex 

path structures in the shape of a U, a T or an X. Here the lower- 

bounding approaches developed in the current paper might help 

in determining non-trivial lower bounds as well. 
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Appendix A 

For the PROP with given row assignment r and sets R i = { j ∈ 

[ n ] : r j = i } , i = 1 , 2 , we use the following lower bounding model 

with M = max { ∑ 

z∈ R 1 � z , 
∑ 

z∈ R 2 � z } . 
min 

∑ 

i, j∈ [ n ] 
i< j 

w i j d i j 

∑ 

i ∈ S∩ R 1 
j∈ S∩ R 2 

x i j ≤ | S | − 1 , S ⊆ [ n ] , | S | ≥ 2 , 

∑ 

j∈ S∪ T 
x i j ≤ | S | + 1 , i ∈ [ n ] , S ⊂ { j ∈ [ n ] : r j � = r i } with 

∑ 

j∈ S 
� j ≥ � i , 

T := { j ∈ { k ∈ [ n ] : r k � = r i } : � j ≥ max 
k ∈ S 

� k } , 
d i j + 

(
� i + � j 

2 

)
x i j ≥ � i + � j 

2 
, i ∈ R 1 , j ∈ R 2 , 

d i j + 
(
M − � i − � j + 1 

2 
κ
)
x i j ≤ M − � i + � j 

2 
, i ∈ R 1 , j ∈ R 2 , 

d i j + d jk − d ik ≥ 0 , i, j, k ∈ [ n ] , | { i, j, k } | = 3 , i < k, ∑ 

j∈ S 
d i j ≥ min 

j∈{ k ∈ [ n ]: r k � = r i } 
W 

P-dst 
(i, j) (S) , i ∈ [ n ] , S ⊆ [ n ] \ { i } , 

∑ 

j∈ S 
w i j d i j ≥ min 

j∈{ k ∈ [ n ]: r k � = r i } 
max 

{
W 

P-spt 

(i, j) 
(S) , 

W 

P-sc 
(i, j) 

(S) 

}
, i ∈ [ n ] , S ⊆ V i , 

∑ 

i, j∈ S 
i< j 

d i j + o S, 3 
∑ 

i ∈ S∩ R 1 
j∈ S∩ R 2 

x i j ≥ o S, 3 , S ⊂ [ n ] , | S | = 3 , o S, 3 = 
∑ 

i ∈ S 
� i + min 

i ∈ S 
� i , 

∑ 

i, j∈ S 
i< j 

d i j + o S, 4 
∑ 

i ∈ S∩ R 1 
j∈ S∩ R 2 

x i j ≥ o S, 4 , S ⊂ [ n ] , | S | = 4 , 

o S, 4 = 3 
2 

∑ 

i ∈ S 
� i + 2 · min 

i 1 ,i 2 ∈ S 
i 1 � = i 2 

(� i 1 + � i 2 ) , 

∑ 

i, j∈ S 
i< j 

� i � j d i j + o S 
∑ 

i ∈ S∩ R 1 
j∈ S∩ R 2 

x i j ≥ o S , S ⊆ [ n ] , | S | ≥ 3 , 

o S = 1 
6 

⎛ ⎝ ( ∑ 

i ∈ S 
� i 

) 3 
−
∑ 

i ∈ S 
� 3 i 

⎞ ⎠ , 
∑ 

i, j∈ R k 
i< j 

� i � j d i j = 
1 

6 

( 
( 
∑ 

i ∈ R k 
� i ) 

3 −
∑ 

i ∈ R k 
� 3 i 

) 
, k ∈ R , 

∑ 

i, j∈ R k 
i< j 

d i j ≥
∑ 

i, j∈ R k 
i< j 

� i + � j 
2 

+ 
| R k | −1 ∑ 

z=2 

(z − 1)( | R k | − z) � π ∗,k (z) , k ∈ R , 

d i j ≥
� i + � j 

2 
, k ∈ R , i, j ∈ R k , i < j, 

d i j ≤
( ∑ 

z∈ R k 
� z 

) 
− � i + � j 

2 
, k ∈ R , i, j ∈ R k , i < j, 

d i j ≤ M − � i + � j 
2 

, i ∈ R 1 , j ∈ R 2 , 

x i j = x ji ∈ { 0 , 1 } , i ∈ R 1 , j ∈ R 2 , 
d i j = d ji ≥ 0 , i, j ∈ [ n ] , i < j. 
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A study of the relation between the single-row
and the double-row facility layout problem

Mirko Dahlbeck∗ Anja Fischer† Philipp Hungerländer‡
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The NP-hard Multi-Row Facility Layout Problem (MRFLP) consists of a set of
one-dimensional departments and pairwise transport weights between them. It asks
for a non-overlapping arrangement of the departments along a given number of rows
such that the weighted sum of the horizontal center-to-center distances between
the departments is minimized. We mainly focus on the MRFLP with exactly two
rows, the so called Double-Row Facility Layout Problem (DRFLP), and on the case
with exactly one row, the so called Single-Row Facility Layout Problem (SRFLP).
Although the MRFLP has wide applications in factory planning, only small instances
can be solved to optimality in reasonable time for the MRFLP with at least two rows
while provably good or optimal solutions for the SRFLP can be derived very fast. In
the equidistant case, where all departments have the same size, we prove that the
optimal value of the MRFLP is less than or equal to the optimal value of the SRFLP
divided by the number of rows of the MRFLP. We derive equidistant double-row
layouts satisfying this property in a very short time and we improve some of the best
known upper bounds for the equidistant DRFLP. Given a double-row instance with
arbitrary department lengths we provide a formula for the relation of the optimal
value of the DRFLP and the SRFLP and provide an example which shows that this
bound is tight. In addition, we present heuristic approaches for the DRFLP based
on good or optimal single-row layouts. For instances with up to 40 departments we
obtain small gaps to the best known upper bounds and for even larger instances we
improve the best known upper bounds. Our approaches are significantly faster than
the ones in the literature.

Key words. Facilities planning and design; Row Layout Problem; Heuristic

1 Introduction
Given a set of departments {1, . . . , n} =: [n], n ∈ N, with length `i, i ∈ [n], and pairwise non-
negative weights wij = wji, i, j ∈ [n], i < j, the Multi-Row Facility Layout Problem (MRFLP) asks
for an assignment of the departments to the rows R := [m] ∈ N,m ≥ 1, such that departments
in the same row do not overlap and such that the weighted sum of the horizontal center-to-center
distances between the departments is minimized. So we look for an assignment r : [n]→ R of the

∗TU Dortmund University, Faculty of Business and Economics; Georg-August-Universität Göttingen, Institute
for Numerical and Applied Mathematics, mirko.dahlbeck@tu-dortmund.de

†TU Dortmund University, anja2.fischer@tu-dortmund.de
‡Alpen-Adria Universität Klagenfurt, philipp.hungerlaender@aau.at
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departments to the m rows and for a vector p ∈ Rn of the center positions of the departments
such that

min
r∈Rn, p∈Rn

∑

i,j∈[n]
i<j

wij |pi − pj |

s. t. |pi − pj | ≥
`i + `j

2 , i, j ∈ [n], i < j, if ri = rj .

The special case of the MRFLP with m = 1 is called Single-Row Facility Layout Problem (SRFLP)
and is well-known to be NP-hard [3, 29, 47]. The SRFLP arises in factory planning, in the
arrangement of departments in office buildings, hospitals or supermarkets [50] as well as of books
on a shelf [4]. Further applications are the assignment of files to disk cylinders in computer
storage and the design of warehouse layouts [38, 47]. There always exists an optimal single-row
layout without spaces between neighboring departments, so the SRFLP is equivalent to finding
a permutation of the departments that minimizes the weighted sum of the horizontal center-
to-center distances. Most often exact approaches for the SRFLP are based on integer linear
programming (ILP) models, see, e. g., [1, 2, 3, 7], or semidefinite optimization (SDP) formulations,
see, e. g., [10, 11, 14, 34, 35]. The current fastest approach of [34, 35] is able to solve one instance
with 42 departments to optimality in less than 2 hours and obtains gaps of less than 2% for
instances with up to 110 departments in 400 hours. Additionally, several heuristic algorithms
have been suggested that are able to obtain high quality solutions [20, 24, 40, 41, 44, 46]. The
heuristic in [24] is applied on instances from the literature with 60 to 80 departments. Almost
half of their solutions were improved by [40, 41] and their heuristic is applied on instances with
up to 110 departments. Afterwards, [44] presented a heuristic which derived layouts of the same
quality but the running time was reduced and hence instances with up to 300 departments were
considered. One of the leading heuristics is given in [46], where a multi-start simulated annealing
heuristic obtains the best known solutions or small gaps for instances from the literature with 60
to 80 departments. This heuristic is applied on instances with up to 1000 departments. A recent
survey on the SRFLP is given in [37].
The SRFLP with departments of equal length is denoted by Single-Row Equidistant Facility

Layout Problem (SREFLP) and is a special case of the Quadratic Assignment Problem (QAP). In
[32] it is shown that the best method for the SRFLP is better than methods especially designed
for the SREFLP, see, e. g., [43], and methods for the QAP. For a heuristic approach we refer to [45].
For m = 2 the MRFLP is called Double-Row Facility Layout Problem (DRFLP). Problems in

factory layout planning can often be decomposed, see [23], and hence most often real factory
layout problems reduce to a combination of single-row and double-row layouts. Determining good
solutions is important since the costs of the production are highly influenced by the layout of the
departments, see, e. g., [16, 31, 51]. In contrast to the SRFLP, the DRFLP is very challenging even
for instances with a small number of departments. Several mixed-integer linear programming
(MILP) models have been developed for the DRFLP and the MRFLP, see, e. g. [4, 5, 13, 18, 19, 49]
(see [53] for a correction of [19]). However, the current fastest exact approach for the DRFLP and
the MRFLP in [27, 28] is able to solve double-row instances with up to 16 departments in less
than 12 hours and multi-row instances with up to 13 departments and 5 rows in at most 7 hours.
Heuristics for the MRFLP and the DRFLP, partially handling some extended versions, are given
in [6, 13, 15, 19, 30, 42, 48, 52, 54, 55]. A large disadvantage of the heuristic presented in [6],
which performs well with respect to the obtained solution values, is its large computational effort
and so the long running times. The question arises whether one can get good solutions quickly.
The quality of heuristically determined solution can be judged to some extend using a method
for calculating lower bounds on the optimal value of the DRFLP [22].

The special case of the MRFLP where all departments have the same length is called Multi-Row
Equidistant Facility Layout Problem (MREFLP) and Double-Row Equidistant Facility Layout
Problem (DREFLP) if m = 2, considered in [8, 9, 33]. In the current fastest approach [9] instances
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with up to 25 departments and up to 5 rows are solved to optimality within a time limit of 3
hours. For further papers on facility layout planning we refer to the recent surveys [12, 25].

In this paper we mainly focus on the SRFLP and the DRFLP, so we present an example in order
to compare the distance calculation. Note that in an optimal double-row layout one might obtain
free-spaces between neighboring departments.
Example 1. Given an instance with 5 departments and lengths `1 = `3 = `4 = 2, `2 = `5 = 1
and non-zero weights w12 = w45 = 3, w23 = w34 = 1.
• An optimal single-row layout is depicted in Figure 1a with objective value

3 · 1.5 + 1 · 1.5 + 1 · 2 + 3 · 1.5 = 12.5.

• An optimal double-row layout is illustrated in Figure 1b with objective value

3 · 0 + 1 · 1.5 + 1 · 1.5 + 3 · 0 = 3.

1 2 3 4 5

(a) Illustration of an optimal single-row layout.

1

2 3

4

5

(b) Illustration of an optimal double-row layout.

Figure 1: We consider an instance with 5 departments, lengths `1 = `3 = `4 = 2, `2 = `5 = 1 and
non-zero weights w12 = w45 = 3, w23 = w34 = 1.

1.1 Main contribution
Our main contribution in this paper is the following. We provide a theoretical study of the
relationship between optimal values of the MREFLP and the SREFLP as well as between the optimal
values of the DRFLP and the SRFLP. Therefore, we present the following results.

• Given an equidistant instance, we prove that v∗m ≤
v∗1
m where v∗m denotes the optimal value

of the MREFLP with m rows, see Section 2.1.

• Given a (general) double-row instance with n departments, we prove that v∗2 ≤ n−2
n−1v

∗
1 where

v∗1 (v∗2) denotes the optimal value of the SRFLP (DRFLP). Further we present an example
which shows that this bound is tight, see Section 3.1.

In addition, we present new heuristic approaches for the MREFLP and the DRFLP based on a good
or optimal single-row layout π with objective value v1, see Sections 2.2 and 3.2.
• Given an equidistant instance, we derive a multi-row layout with objective value less than or

equal to v1
m . The constructed layout contains free-spaces only at the left or right border of

the layout. We set up an MILP model which simplifies to a linear programming (LP) model
to include free-spaces, and thus to further improve the quality of the determined layouts.
We improve some of the best known upper bounds, in particular, for large-sized instances.
Additionally, given a good or optimal single-row layout and combining our approach with
some improvement heuristics, good double-row layouts can be derived in a few minutes
while the SDP lower bounding approach, which includes a construction heuristic, in [9] had
a time limit of three hours.

• We present two heuristics for the DRFLP which are extensions of the heuristic in the
equidistant case. For instances with more than 40 departments we outperform the approach
of [19] in combination with a shorter running time. Considering instances with 30 or 40
departments we obtain tight gaps, i. e., less than 1%, to the upper bounds derived in [6]
while our approaches are significantly faster.
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2 The multi-row equidistant facility layout problem
In Section 2.1 we study the relation of the optimal solution values of the MREFLP and the SREFLP.
Therefore, let v∗m denote the optimal value of the MREFLP with m rows. One of our main results in
this paper is that v∗m ≤

v∗1
m . Further, we show that this bound is tight. Several heuristics are able

to compute good or optimal single-row layouts for large-sized instances, see, e. g., [20, 34, 35, 46].
We show how to construct (at least) one equidistant multi-row layout with objective value vm
based on a single-row layout with objective value v1 such that vm ≤ v1

m . All constructed layouts
contain free space only at the border of the layout. We further can improve the layouts by
allowing free spaces. In Section 2.2 we present an ILP, which simplifies to some LP, to determine
the exact positions of the departments and include possible free space. Further improvement
heuristics from the literature can be applied.

2.1 Relation between equidistant single- and multi-row layouts
In this paper we study the relation between the optimal solution values of single-row and double-
row layouts, but in the equidistant case all result can be extended to the MREFLP, so we present
our results for the MREFLP in this part. First, we repeat a combinatorial property of the MREFLP
given in [33].

Theorem 2. Given an MREFLP instance, there always exists an optimal multi-row layout where
the departments are arranged on the grid.

We say that i ∈ [n] lies in column j ∈ [n] if the center of i is located at the jth grid point. In
order to study the relation of the equidistant single-row and double-row layouts, we consider
unweighted distances first. Let dij = dji, i, j ∈ [n], i < j, denote the horizontal center-to-center
distance between i and j.

Proposition 3. The following properties hold independent of the order of the departments:

1. The sum of the distances between all pairs of departments in (space-free) equidistant
single-row layouts satisfies ∑i,j∈[n]

i<j

dij = (n+1)n(n−1)
6 =: f(n).

2. The sum of the distances between all pairs of departments in a space-free equidistant
double-row layouts satisfies

∑

i,j∈[n]
i<j

dij =
{ (n+1)n(n−1)

12 , for n odd,
(n+2)n(n−2)

12 , for n even.

Proof. 1. For equidistant single-row layouts the result follows directly from the clique equations
in [7] using the fact that all department lengths are equal to one, i. e., 1

6
(
(∑n

i=1 1)3 −∑n
i=1 13) =

1
6(n3 − n) = (n+1)n(n−1)

6 = f(n).

2. For space-free equidistant double-row layouts with n even we have
∑

i,j∈[n]
i<j

dij =4f(n2 ) = (n+ 2)n(n− 2)
12

because each row contains n
2 departments and we count the inner- as well as the inter-row

horizontal distances. For space-free equidistant double-row layouts with n odd we have

∑

i,j∈[n]
i<j

dij =4f(n−1
2 ) + 2 ·

(
n−1

2

)(
n−1

2 +1
)

2 = (n+ 1)n(n− 1)
12 .
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In comparison to the even case we first arrange n− 1 departments without spaces in two
rows and then add the distance of the remaining department to all others.

Note that in the equidistant case we cannot hope to reduce the sum of the (unweighted)
distances by going from single- to double-row layouts by more than one half because for n odd
the sum of the pairwise distances is reduced exactly by one half.
Definition 4. We are given an equidistant multi-row instance and an equidistant single-row
layout π. Then, the equidistant multi-row layout Lk(π), k ∈ [m], is constructed by assigning the
first k departments in the order of π to the first column and totally filling up all other columns
with the remaining departments in the order of π. The objective value of layout Lk(π), k ∈ [m],
is denoted by vLk(π).

Let π be an equidistant single-row layout. Note that the layouts Lk(π), k ∈ [m], contain
possible spaces only in the first and last column. We refer to Figure 2 for an illustration of the
special case m = 2. In the following theorem we provide a relation between the objective value
of an equidistant single-row layout π and the objective value of the associated multi-row layouts
L1(π), . . . , Lm(π).

21 n− 2 n

3 n− 1

31 n− 3 n− 1

42 n− 2 n

Figure 2: Illustration of the equidistant double-row layouts L1(π) on the left-hand side and L2(π)
on the right-hand side deduced from the single-row layout π = (1, . . . , n). Note that in
this drawing we assume, w. l. o. g., that n is even.

Theorem 5. Given an equidistant multi-row instance and an equidistant single-row layout π
with objective value v1 and let vLk(π) denote the objective value of layout Lk(π), k ∈ [m]. Then

∑

k∈[m]
vLk(π) = v1.

Proof. Given an equidistant single-row layout π with, w. l. o. g., π = (1, . . . , n), and the layouts
L1(π), . . . , Lm(π). Let i, j ∈ [n], i < j, and let dkij and dπij denote the horizontal center-to-center
distance between i and j in layout Lk(π), k ∈ [m], and layout π, respectively. We get dπij = j − i
and our aim is to show that

∑

k∈[m]
dkij = dπij , i, j ∈ [n], i < j. (1)

So let i, j ∈ [n], i < j. For calculating the distances dkij , k ∈ [m], we start with the special case
j − i = 1 (= 2). Then, in m− 1 (m− 2) of the layouts L1(π), . . . , Lm(π) the departments i and
j lie in the same column and in one (two) layout (layouts) they lie in neighboring columns. So
we obtain:

a) Let j − i ≤ m. Then, i and j are in m− j + i of the layouts L1(π), . . . , Lm(π) in the same
column, and hence their distance is zero. In the remaining j − i layouts, i and j are in
neighboring columns and hence we obtain ∑k∈[m] d

k
ij = j − i.

b) Let j − i > m. Then, we choose j′ = j − zm, z ∈ N≥1, such that j′ > i and j′ − i ≤ m. By
the result in a) it follows that

∑

k∈[m]
dkij =

∑

k∈[m]

(
dkij′ + z

)
= zm+ j′ − i = j − i.
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This proves equations (1). The desired result follows immediately: Let vLk(π), k ∈ [m], and v1,
denote the objective value of layout Lk(π) and layout π, respectively. Then

∑

k∈[m]
vLk(π) =

∑

i,j∈[n]
i<j

wij
∑

k∈[m]
dkij =

∑

i,j∈[n]
i<j

wijd
π
ij = v1.

Note that the result derived by equations (1) is even stronger than the result stated in
Theorem 5. In view of Proposition 3 and Theorem 5 we present the relation between v∗1 and v∗m
in the equidistant case.

Corollary 6. Given an equidistant multi-row instance and let v∗m (v∗1) denote the optimal value
of the MREFLP (SREFLP). Then

v∗m ≤
v∗1
m
. (2)

Given an equidistant multi-row instance and a single-row layout π with objective value v1,
then Corollary 6 and Theorem 5 provide an easy way to construct an equidistant multi-row
layout with objective value vm based on π that satisfies vm ≤ v1

m by computing the layouts
L1(π), . . . , Lm(π) and choosing one layout with minimal objective value.

2.2 Heuristics for the MREFLP building on combinatorial properties
Let an equidistant single-row layout π be given with objective value v1 and we assume, w. l. o. g.,
π = (1, . . . , n). One can determine the layouts Li(π), i ∈ [m], easily, see Corollary 6, but the
question arises whether one can improve the layouts Li(π) by including free-space not only in
the first and last column. For determining such a layout, we use an ILP approach based on the
following variables

xi =
{

1, the i-th department in the single-row layout π opens a new column,
0, otherwise,

i ∈ [n]. Then, the ILP approach reads as follows

min
∑

i,j∈[n]
i<j

wij

j∑

k=i+1
xk (3)

i+m−1∑

j=i
xj ≥ 1, i ∈ [n−m+ 1], (4)

x1 = 1, (5)
xi ∈ {0, 1}, i ∈ [n]. (6)

The distance of i and j, i, j ∈ [n], i < j, equals the number of columns between i and j plus
one if i and j lie in distinct columns (3). Inequalities (4) ensure that at most m departments
are assigned to each column. Of course, the first department opens a new column, see (5). The
matrix corresponding to inequalities (4) satisfies the consecutive ones property, i. e., the ones
in each column appear consecutively, and so the integrality conditions (6) can be replaced by
xi ∈ [0, 1], i ∈ [n], see, e. g., [17], and our ILP simplifies to some LP. We illustrate the usage of
this LP by the following example.
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Example 7. Given an instance with `i = 1, i ∈ [8], with non-zero weights w12 = w34 = w56 =
w67 = 1 and w23 = w45 = w78 = 5. Then, an optimal single-row layout is π∗ = (1, 2, 3, 4, 5, 6, 7, 8)
with v∗1 = 19. The layouts L1(π∗) and L2(π∗) have objective value 8 and 11, respectively. Applying
the LP (3)–(5) with xi ∈ [0, 1], i ∈ [n], with m = 2, we obtain the double-row layout illustrated in
Figure 3 with objective value 4 and this layout has free-space in columns 1 and 4.

3

21 4 6

7

8

ss 5 4

31 5 7

82 6 3

21 4 6

s

7

8s 5

Figure 3: We consider an instance with `i = 1, i ∈ [8], non-zero weights w12 = w34 = w56 = w67 =
1 and w23 = w45 = w78 = 5 and an optimal single-row layout π∗ = (1, 2, 3, 4, 5, 6, 7, 8).
Then, layout L1(π∗) illustrated on the left-hand side has objective value 8, layout L2(π∗)
illustrated in the middle has objective value 11 and a double-row layout obtained by
solving the LP (3)–(5) with xi ∈ [0, 1], i ∈ [n], has objective value 4, where free space
between two neighboring departments in the same row is illustrated by some dashed
rectangle denoted by s.

A layout obtained by solving the LP (3)–(5) with xi ∈ [0, 1], i ∈ [n], is our initial start layout
for further heuristic approaches. At first, we insert n − 2 dummy departments with length
`k = 1, k = n + 1, . . . , 2n − 2, and weights wik = 0, i ∈ [2n − 2], k = n + 1, . . . , 2n − 2, i 6= k,
and we fix them on the free spaces in the initial layout. Remaining dummy departments, if
they exist at all, are assigned uniformly to the left and to the right border of the layout. It is
sufficient to add n− 2 dummy departments such that the resulting equidistant double-row layout
is space-free.
Then, we try to improve the layout by using exchange heuristics. The exchange heuristics

2-opt, 3-opt, 1-column-opt, 2-column-opt and 3-column-opt were used in a related version in [9].
Given a double-row layout with n − 1 columns, we say that i ∈ [2n − 2] which lies in column
k ∈ [n−1] is on position q = k if i is in row 1 and on position q = k+n−1 if i is in row 2. At first,
we apply a 1-opt heuristic, where we place i ∈ [n] on every possible position q = 1, . . . , 2n− 2 on
the grid. If there is a dummy department on position q, we place the dummy department on
the previous position of i. Otherwise, let j ∈ [n] be on position q. We shift j to the right or to
the left, depending on the case whether i was to the right of to the left of position q before. We
assume, w. l. o. g., we shift j to the right. If there is a dummy department on position q + 1, we
are done. Otherwise we shift the department which was previously on position q + 1 to the right.
We continue in this manner until we reach a dummy department or until every department to
the right of j (which is in the same row as j) was shifted.
We say that column i ∈ [n− 1] is on column position q′ = i. Similar to the 1-opt, we use a

1-column-opt, where we arrange the departments in column i, i = 1, . . . , n− 1, on every possible
position q′, q′ = 1, . . . , n− 1, and shift the departments in the column on position q′ to the right
or left, depending on the previous position of column i. Furthermore, we apply a 2-opt and a
3-opt algorithm, where we simply change the position of 2 or 3 departments respectively, and a
2-column-opt as well as a 3-column-opt, where we swap the position of 2 or 3 columns. In the
3-opt algorithm at most one of the considered three departments may be a dummy department
while we neglect dummy departments in the 2-opt algorithm. During our improvement algorithm,
we compute the objective value of the space-free layouts, since we added dummy departments.
Whenever we obtain a better solution, we swap the departments and we apply each opt-algorithm
until the solution is k-optimal for k = 1, 2, 3. The opt-algorithms are applied in increasing order
of k, k = 1, 2, 3, i. e., in the order 1-column-opt, 1-opt, 2-column-opt, 2-opt, 3-column-opt, 3-opt.
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3 The double-row facility layout problem
In Section 3.1 we study the relation between the optimal values of the SRFLP and the DRFLP. So
let v∗1 (v∗2) denote the optimal value of the SRFLP (DRFLP). At first, we prove that v∗2

v∗1
≤ n−2

n−1 . Let
n ≥ 3. One of our main results in this paper is that there exists a constant C > 0 such that
for every 0 < ε ≤ 1

10 there exists a δ with 0 < δ ≤ Cε such that there exists an instance with
v∗2
v∗1
> n−2

n−1 − δ. This shows that our bound is tight.
However, there are three reasons for constructing double-row layouts based on single-row layouts.

First, good or optimal single-row layouts can be obtained very fast, see, e. g., [20, 34, 44, 46].
Second, our computational results, see Section 4, indicate that by going from single-row layouts
to double-row layouts the objective value is approximately halved. A third reason is that these
double-row layouts can be calculated very fast, in particular, for heuristically determined single-
row layouts. So in Section 3.2.1 we present a generalization of the equidistant layouts L1(π) and
L2(π) with the aim to construct a balanced double-row layout, i. e., a layout where the sum of the
lengths of the departments in row 1 is almost equal to the sum of the lengths of the departments
in row 2. In Section 3.2.2 we present a new heuristic based on the idea that the ordering of
departments in the same row is given by the single-row layout and it remains to determine the
row assignment of the departments as well as their exact positions.

3.1 Relation between optimal single-row and double-row layouts
We construct double-row layouts based on given single-row layouts in the following way.

Definition 8. Let a single-row layout π be given, then we construct layouts L̃i(π), i ∈ [n− 1], in
the following way: We assign i to row 1 if `i > `i+1 and otherwise we assign i to row 2. Then,
we fix i + 1 directly opposite i. The remaining departments are assigned space-free to row 2
respecting the order of π.

We refer to Figure 4 for an illustration. The optimal value of the DRFLP is less than or equal
to the optimal value of the SRFLP since every single-row layout is also a valid double-row layout.
Using the layouts L̃i, i ∈ [n− 1], we provide the following result:

i+ 1
i

i+ 2 n1 2 i− 1

i

i+ 1
i+ 2 n1 2 i− 1

Figure 4: Let a single-row layout π = (1, . . . , n) be given. The layout L̃i(π), i ∈ [n − 1], is
illustrated in the two cases `i > `i+1 and `i ≤ `i+1.

Proposition 9. Let v∗1 (v∗2) denote the optimal value of the SRFLP (DRFLP). Then we get

(n− 1)v∗2 ≤ (n− 2)v∗1. (7)

Proof. This result is clear for n = 1, so let n ≥ 2. Let, w. l. o. g., π∗ = (1, . . . , n) be an optimal
single-row layout, and hence the distance between i ∈ [n] and j ∈ [n], i < j, with respect to π∗
simplifies to

dπ
∗
ij := `i + `j

2 +
∑

h∈[n]
i<h<j

`h. (8)
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Further, we define dkij , i, j ∈ [n], i < j, k ∈ [n − 1], as the distance between i and j in layout
L̃k(π∗). At first, we will show that

∑

k∈[n−1]
dkij ≤ (n− 2)dπ∗ij , i, j ∈ [n], i < j. (9)

Let two departments i, j ∈ [n], i < j, be fixed. If j = i + 1, then we obtain dii(i+1) = 0 as well
as dki(i+1) ≤ dπ

∗
i(i+1), k ∈ [n − 1], k 6= i, and hence inequalities (9) are satisfied in this case. So

let j > i+ 1. We distinguish between the following four cases to calculate an upper bound for
dkij , k ∈ [n− 1].

a) k < i or k ≥ j: k or k + 1 is assigned to row 1. For k < i− 1 and k > j we get dkij = dπ
∗
ij

and if k = i− 1 or k = j, we obtain dkij ≤ dπ
∗
ij .

b) k = i: i or i+ 1 is assigned to row 1 in layout L̃i(π∗). Then we get diij = dπ
∗
ij − `i+1 − `i

2 +
min{`i,`i+1}

2 . We refer to Figure 5a and Figure 5b for an illustration.

c) k = j − 1: Similar to b) we get dj−1
ij = dπ

∗
ij −

`j
2 − `j−1 + min{`j−1,`j}

2 .

d) i < k < j − 1: k or k + 1 is assigned to row 1. Then it follows dkij = dπ
∗
ij −max{`k, `k+1}.

An illustration is given in Figure 5c.

i+ 1

i

i+ 2 j

(a) Illustrated layout L̃i(π∗) with `i > `i+1 and
diij = dπ

∗
ij − `i+`i+1

2

i

i+ 1

i+ 2 j

(b) Illustrated layout L̃i(π∗) with `i+1 ≥ `i and
diij = dπ

∗
ij − `i+1

i i+ 1
. . .

arg max{`k, `k+1}
arg min{`k, `k+1} j − 1 j

(c) Layout L̃k(π∗) is illustrated and if i < k < j − 1, we obtain dkij = dπ
∗
ij −max{`k, `k+1}

Figure 5: Illustration of layouts L̃k(π∗), k ∈ [n− 1], with π∗ = (1, . . . , n) where we only illustrate
departments i, . . . , j, i, j ∈ [n], i+ 1 < j.

Since min{`i,`i+1}+min{`j−1,`j}
2 ≤ max{`i+1, `j−1} we obtain the desired inequalities (9) by

summing up the distances in all layouts L̃1(π∗), . . . , L̃n−1(π∗) and using (8)
∑

k∈[n−1]
dkij ≤

∑

k∈[n−1]
dπ
∗
ij − `i+1 − `j−1 −

`i + `j
2 + min{`i, `i+1}+ min{`j−1, `j}

2

−
j−2∑

k=i+1
max{`k, `k+1}

≤
∑

k∈[n−1]
dπ
∗
ij −




j−2∑

k=i+1
max{`k, `k+1}


−min{`i+1, `j−1} −

`i + `j
2

≤ (n− 1)dπ∗ij − dπ
∗
ij = (n− 2)dπ∗ij .

Let vL̃k(π∗), k ∈ [n− 1], denote the objective value of layout L̃k(π∗), and let v∗1 (v∗2) denote the
optimal value of the SRFLP (DRFLP). By inequalities (9) we obtain

(n− 1)v∗2 ≤
∑

k∈[n−1]
vL̃k(π∗) =

∑

i,j∈[n]
i<j

wij
∑

k∈[n−1]
dkij ≤

∑

i,j∈[n]
i<j

wij(n− 2)dπ∗ij = (n− 2)v∗1.

9



The optimality of the single-row layout π∗ is not used in the proof of Proposition 9. Therefore,
the result can be extended such that v2 ≤ n−2

n−1v1 where v1 denotes the objective value of a given
single-row layout π and v2 denotes the minimum value of the objective values of the layouts
L̃1(π), . . . , L̃n−1(π). This result can be used to derive a double-row layout with a slightly smaller
objective value than the corresponding single-row layout π.

However, we show that inequality (7) is tight. We start with instances consisting of n = 3, 4, 5
departments and afterwards we enlarge the instances recursively.

Example 10. a) We are given 3 departments with length `1 = `2 = `3 = ε > 0 and non-zero
weights w12 = w23 = 1. Then, we get v∗1 = 2ε and v∗2 = ε, and hence inequality v∗2

v∗1
> 1

2 − δ
is satisfied for δ > 0.

b) Now we add a fourth department with length `4 = 2 − ε and non-zero weight w34 = ε.
Clearly, v∗1 = 3ε and an optimal double-row layout for ε ≤ 1

10 is depicted in Figure 6 and
has objective value v∗2 = ε+ (1− ε) ε. Hence we have v∗2

v∗1
= ε(2−ε)

3ε = 2−ε
3 > 2

3 − δ if ε < 3δ.

c) Next we add a fifth department and we choose 0 < ε ≤ 1
10 such that `5 = 2

ε − `4 = 2
ε − 2 + ε

and non-zero weight w45 = ε2. Then v∗1 = 4ε. An optimal double-row layout can be obtained
by arranging the first 4 departments as good as possible as illustrated in Figure 6 and then
additionally arrange 5 such that the centers of departments 4 and 5 are as close as possible,
see Figure 6. Then d45w45 = (p5 − p4)w45 = ( `52 + `3 − `4

2 )ε2 = ε − 2ε2 + 2ε3 and thus
v∗2 = ε+ (1− ε) ε+ ε

(
1− 2ε+ 2ε2) and the desired inequality v∗2

v∗1
> 3

4 − δ is satisfied for
δ > 3ε−2ε2

4 .

2

1 3

4

5

Figure 6: We are given an instance with n = 4 departments with lengths `1 = `2 = `3 = ε >
0, `4 = 2− ε, and non-zero weights w12 = w23 = 1, w34 = ε. An optimal single-row
layout is π∗ = (1, 2, 3, 4) and has objective value v∗1 = 3ε. The structure of an optimal
double-row layout for ε ≤ 1

10 is depicted above and has objective value v∗2 = ε+(1− ε) ε.
One can add a fifth department with `5 = 2

ε − `4 and the non-zero weight w45 = ε2.
Then, we obtain v∗1 = 4ε and v∗2 = ε+ (1− ε) ε+ ε

(
1− 2ε+ 2ε2) and thus v∗2

v∗1
> 3

4 − δ
for δ > 3ε−2ε2

4 .

In the following we prove that the double-row layouts constructed in Example 10 are optimal
and we show how recursively enlarged double-row instances can be solved to optimality.

Lemma 11. Let an instance with n departments with lengths `1 = `2 = `3 = ε and `k =
2

εk−4 − `k−1, k ∈ [n], k ≥ 4, and non-zero weights w12 = 1 and w(k−1)k = εk−3, k ∈ [n], k ≥ 3
be given with 0 < ε ≤ 1

10 . Then an optimal double-row layout is obtained by arranging the
departments in the order 1, . . . , n in an alternating manner to the rows. In each step, one
department is assigned at the rightmost possible position such that the layout is space-free and
such that 1 lies directly opposite 2.

Proof. Let dij (d′ij , d′′ij and d̃ij), i, j ∈ [n], i < j, denote the horizontal center-to-center distance
between i and j in layout L which is constructed as described in the statement of Lemma 11
(in layout L′, layout L′′ and layout L̃ with its construction described below) and let pi, i ∈ [n],
(p′i, p′′i and p̃i) denote the center position of department i in layout L (layout L′, layout L′′ and

10



layout L̃). Further, let ri ∈ {1, 2} (r′i, r′′i , r̃i ∈ {1, 2}) denote the row assignment of i ∈ [n] in
layout L (L′, L′′ and L̃). We divide the proof into three parts. In the first two parts we assume
that 1 lies opposite 2 with p1 = p2 = 1

2 and then we show in part 1) that the departments to the,
w. l. o. g., right of 1 or 2 are assigned in an alternating manner with respect to the rows, at the
rightmost possible position such that the resulting layout is space-free in an increasing order. In
this step there might be departments right and left to 1 and 2. In part 2) we show that in an
optimal layout all the departments 3, . . . , n are to the, w. l. o. g., right of 1 or 2 and we complete
the proof by showing in part 3) that in an optimal layout 1 lies opposite 2.

1) Let a double-row layout be given where 1 lies directly opposite 2 and let S ⊆ {3, . . . , n}
denote the set of departments to the right of 1 or 2. We show that in an optimal layout the
departments in S are arranged in an alternating manner to the rows in increasing order.
In each step, one department is assigned at the rightmost possible position such that the
layout is space-free. The layout is denoted by L̃ and we assume, w. l. o. g., p̃1 = p̃2 = 1

2 .
An illustration is given in Figure 6 for n = 5 and S = {3, 4, 5}. Assume, on the contrary,
there exists an optimal layout L′ where 1 lies directly opposite 2 (with p′1 = p′2 = 1

2) where
exactly the departments in S lie right of 1 or 2 and the others lie left of 1 or 2 and at least
one department in S is not arranged as in L̃. Let k ∈ S be the department with its left
border closest to 1 in layout L′ with d̃1k 6= d′1k (if two departments satisfy this property,
we choose the department with the smaller index). Let k be to the right of h ∈ S ∪ {1, 2}
in the same row with possible free-space between h and k such that no department lies
between h and k.
At first, we show that in layout L′ the departments {z ∈ S : z ≤ h} have the same position
as in layout L̃. This in particular shows that in an optimal layout L′ it holds that h < k. Let
i := min{z ∈ S : p′z 6= p̃z} and we assume, on the contrary, i ≤ h. Then, by the definition of
k, h, i there is free-space around p̃i in L′ such that one can arrange i on position p̃i in layout
L′ without overlapping other departments (the positions of all other departments remain
the same). We denote the resulting layout by L′′. Note that either i− 1 ∈ S ∪ {1, 2} and
p′i−1 = p̃i−1 or i− 1 is to the left of 1 or 2 in layouts L′ and L′′. So it follows that p′′i > p′′i−1.
Let δ = p′i − p′′i > 0. Then, we obtain d′′(i−1)i + δ = d′(i−1)i and d′′i(i+1) − δ ≤ d′i(i+1). The
remaining weighted distances in layouts L′ and L′′ are equal. Since w(i−1)i > wi(i+1), the
objective value of layout L′′ is smaller than the objective value of layout L′, a contradiction.
Thus, we have p′z = p̃z, z ∈ S, z ≤ h.
We distinguish now between the following two cases where the first case has two subcases
in the description below depending on h. For the first case, let k = min{z ∈ S : z ≥ h+ 1}
if h ≥ 2, and k = min{z ∈ S : z ≥ 3} if h = 1. If h ≥ 2 (h = 1), we obtain either k − 1 = h
(k = 3) or k − 1 > h (k > 3) and k − 1 is to the left of 1 or 2. By the construction of
the layout and the definition of k, at most one department j ∈ S ∪ {1, 2} overlaps with
h. We obtain j < h if h 6= 1 and j = 2 if h = 1. Therefore, department j satisfies p̃j = p′j
and p′j + `j

2 < p′k − `k
2 . Note that if j ∈ {1, 2}, then there is free-space between h and k.

Therefore, we obtain a feasible layout by changing the row assignment of the departments
z ∈ S with p′z > p′h without changing their positions. Then, we shift k without spaces to
the right of j, if j exists, and to the right of 1 or 2 otherwise. We denote the resulting
layout by L′′ and we obtain p′′h < p′′k because we have p̃z = p′′z , z ∈ S, z ≤ h and `h < `k or
k = 3. Let δ := p′k − p′′k > 0. Therefore, we obtain d′′(k−1)k + δ = d′(k−1)k and, if k + 1 ∈ [n],
d′′k(k+1) − δ ≤ d′k(k+1). The remaining weighted distances in layout L′′ are the same as in
layout L′. Since w(k−1)k > wk(k+1) if k+ 1 ∈ [n], the objective value of layout L′′ is smaller
than the objective value of layout L′, a contradiction.
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Now we consider the case of k > min{z ∈ S : z ≥ h+ 1} and we set

j :=





2, h = 1,
1, h = 2,
min{z ∈ S : z ≥ h+ 1}, h ≥ 3.

We aim to show that p′j = p̃j . This result is clear if j ∈ {1, 2}, so let h ≥ 3. Then,
either j − 1 = h or j − 1 is left to 1 or 2. By the definition of k we can arrange j on
position p̃j either in row 1 or row 2 such that the resulting layout L′′ is feasible. Let
δ := |p′j − p̃j | > 0. If δ ≤ `j , then j is in layout L′ and L′′ in the same row (since `k > `j)
and layout L′′ is feasible since p′′z = p̃z for all z ∈ S, z ≤ h. We obtain d′′(j−1)j + δ = d′(j−1)j
and d′′j(j+1) − δ ≤ d′(j−1)j . By w(j−1)j > wj(j+1) it follows that the objective value of layout
L′′ is smaller than the objective value of layout L′, a contradiction. Now, let δ > `j . Then,
to avoid the overlapping of departments, we shift all departments which are in layout L′′
to the right of j in the same row to the right by the smallest possible value such that a
feasible layout is obtained. The departments are shifted at most by the value `j , so we
obtain d′′(j−1)j + δ = d′(j−1)j and d′′z(z+1) ≤ d′z(z+1) + δ, z ∈ [n − 1], z ≥ j. Note that for
0 < ε ≤ 1

10 and o ∈ [n− 1], o ≥ 3, we obtain

w(o−1)o > 2wo(o+1) +
n−1∑

z=o+1
wz(z+1). (10)

Hence, the objective value of layout L′′ is smaller than the objective value of layout L′, a
contradiction. Therefore, we have p′j = p̃j .
Now we consider o := min{q ∈ S : q ≥ max{h, j}+ 1}. We obtain either max{h, j} = o− 1
or max{h, j} < o− 1 and o− 1 is to the left of 1 or 2. Let k = o, then there is free-space
between h and k because of the choice of k. We simply shift k to the left such that k
is to the right of h without free-space and the resulting layout is denoted by L′′. By
construction of the layout we obtain p′′k > p′′k−1 and we set δ = p′k − p′′k > 0. We obtain
d′′(k−1)k + δ = d′(k−1)k and, if k + 1 ∈ [n], d′′k(k+1) − δ ≤ d′k(k+1). The remaining weighted
distances are equal in layout L′ and layout L′′. Since w(k−1)k > wk(k+1) if k + 1 ∈ [n], the
objective value of layout L′′ is smaller than the objective value of layout L′, a contradiction.
So let k > o and let δ > 0 denote the horizontal distance between the right border of h and
the left border of o. We distinguish between the following two cases.
a) Let δ ≥ `o, then we arrange o space-free to the right of h and, if necessary, we shift the

departments which are to the right of h or j to the right by the smallest possible value
such that o and k do not overlap. Note that these departments are shifted at most
by `o, we refer to Figure 7a and Figure 7b for an illustration. The resulting layout is
denoted by L′′ and we obtain p′′o > p′′o−1. Comparing the distances in layout L′ and
L′′, we obtain d′′(o−1)o + δ = d′(o−1)o and d′′o(o+1) ≤ d′o(o+1) + δ + `o. Additionally, we
obtain d′′z(z+1) ≤ d′z(z+1) + `o, z ∈ [n− 1], z ≥ o+ 1. The remaining weighted distances
in layout L′′ and L′ are equal. By (10) the following inequality is satisfied

δw(o−1)o > (δ + `o)wo(o+1) + `o

n−1∑

z=o+1
wz(z+1).

So the objective value of layout L′′ is smaller than the objective value of layout L′, a
contradiction.

b) It remains to consider the case δ < `o. Since k > o and `k > `o it follows that o
and j are neighboring (with possible free-space), see Figure 7c. Let δ′ denote the
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horizontal distance of the left border of k and the right border of j if k and j overlap
and otherwise we set δ′ = 0. Then we change the row assignment of all departments
to the right of h or j (without changing the order of these departments), and we shift
these departments (without o) by δ′ > 0 to the right such that j and k do not overlap.
Then we shift o to the left by the value δ such that there is no free-space between h
and o, see Figure 7d. By construction of the layout, we obtain δ′ ≤ δ. The resulting
layout is denoted by L′′. We compare the weighted distances in layout L′′ and L′,
similar as done above, and it turns out that the objective value of layout L′′ is smaller
than the objective value of layout L′ if

δw(o−1)o > (δ + δ′)wo(o+1) + δ′
n−1∑

z=o+1
wz(z+1).

This inequality is satisfied for 0 < ε ≤ 1
10 , see inequalities (10), a contradiction.

2) Let 1 lie directly opposite 2. We prove that the departments 3, . . . , n are to the, w. l. o. g.,
right of 1 or 2. Assume, on the contrary, there exists an optimal double-row layout L′
where 1 lies directly opposite 2 with p′1 = p′2 = 1

2 and the departments S ⊂ [n], S 6= ∅, are
to the right of 1 or 2 and the departments T ⊂ [n], T 6= ∅, are to the left of 1 or 2 such that
S ∪̇ T = {3, . . . , n}, S ∩ T = ∅. Since L′ is an optimal double-row layout, the departments
in S and T are arranged as described in 1). Let i ∈ S, i+ 1, . . . , j ∈ T and j + 1 /∈ T . Note
that, if i ∈ T and i+ 1, . . . , j ∈ S, j + 1 /∈ S, we simply arrange the departments left (right)
to 1 or 2 to the right (left) of 1 or 2 without changing the row assignment and the order of
the departments in S (T ), and hence we obtain i ∈ S and i+ 1, . . . , j ∈ T, j + 1 /∈ T . Our
goal is to show that ∑j−1

z=i wz(z+1)dz(z+1) <
∑j−1
z=i wz(z+1)d

′
z(z+1). At first, we obtain

d′i(i+1) >
`i + `i+1

2 > di(i+1).

If j = i+ 1, the desired inequality is satisfied. Otherwise, we obtain

d′i(i+1) + d′(i+1)(i+2) > di(i+1) + d(i+1)(i+2) = `i + `i+2
2 (11)

where the last equation follows from pi < pi+1 < pi+2. We refer to Figure 8 for an
illustration. We continue in this manner and we obtain

d′z(z+1) + d′(z+1)(z+2) = dz(z+1) + d(z+1)(z+2), (12)

z, z + 1, z + 2 ∈ T, z ≥ i+ 1. For i even we obtain, d(i+1)(i+2) = ∑
z≥4
z even
z≤i

`z −
∑

z≥3
z odd
z≤i

`z +

`i+2−`i+1
2 . Note that, if i+ 1, i+ 2 ∈ T , then i+ 1 and i+ 2 lie in distinct rows. We obtain

d′(i+1)(i+2) − d(i+1)(i+2) =
∑

z∈T
z≤i−1
r′z=r′i+2

`z −
∑

z∈T
z≤i−1
r′z=r′i+1

`z +
∑

z≥3
z odd
z≤i

`z −
∑

z≥4
z even
z≤i

`z < 0 (13)

since for 0 < ε ≤ 1
10 we have `i > 2∑z∈[i−1] `z. Now, let i be odd. We get d(i+1)(i+2) =

∑
z≥3
z odd
z≤i

`z −
∑

z≥4
z even
z≤i

`z + `i+2−`i+1
2 , and thus we get

d′(i+1)(i+2) − d(i+1)(i+2) =
∑

z∈T
z≤i−1
r′z=r′i+2

`z −
∑

z∈T
z≤i−1
r′z=r′i+1

`z −
∑

z≥3
z odd
z≤i

`z +
∑

z≥4
z even
z≤i

`z < 0 (14)
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(a) Given a double-row layout L constructed as described in Lemma 11 we obtain di(i+1) +
d(i+1)(i+2) = `i+`i+2

2 .

2
1 3

4
i− 1

i

i+ 1
i+ 2

(b) Given a double-row layout L′ where 1 lies opposite 2 and the departments 1, . . . , i, i ∈
[n], i ≥ 3, are to the right of 1 or 2 and the departments i+ 1, . . . , j ∈ [n], are to the left of
1 or 2 (with i+ 1 6= j here) we obtain d′i(i+1) + d′(i+1)(i+2) > di(i+1) + d(i+1)(i+2).

Figure 8: We are given the instance described in Lemma 11 and we compare the distances in layout
L and L′. We obtain di(i+1) ≤ d′i(i+1) − δ, and d(i+1)(i+2) = d′(i+1)(i+2) + δ, for some
δ > 0. We continue in this manner and since wz(z+1) > w(z+1)(z+2), z ∈ [n− 2], z ≥ 2,
the objective value of layout L is smaller than the objective value of layout L′.

and for 0 < ε ≤ 1
10 this inequality is satisfied since `i > 2∑z∈[i−1] `z. So we obtain

d′(i+1)(i+2) = d(i+1)(i+2) − δ for some δ > 0 and by inequalities (11) we obtain d′i(i+1) >

di(i+1) + δ. Further, by equations (12) d(i+z)(i+z+1) = d′(i+z)(i+z+1) − δ, z2 ∈ Z, z ≥ 2, i +
z + 1 ≤ j, and d(i+z+1)(i+z+2) = d′(i+z+1)(i+z+2) + δ, z2 ∈ Z, z ≥ 2, i + z + 2 ≤ j. Recall
that wz(z+1) > w(z+1)(z+2), z + 2 ∈ [n], z ≥ 2, so the desired inequality is satisfied. One
can continue in this manner if further departments k and k + 1 are in distinct sets S and
T, k ∈ [n− 1], k ≥ j. So the objective value of layout L is smaller than the objective value
of layout L′, a contradiction.

3) It remains to show that 1 lies directly opposite 2 in an optimal double-row layout. Assume,
on the contrary, there exists an optimal double-row layout L′ where 1 does not lie directly
opposite 2. We divide this proof into three cases.
a) At first, let d′23 < ε, and we assume, w. l. o. g., p′2 ≤ p′3. We calculate a lower bound

for such a layout by allowing the departments 4, . . . , n to overlap with 1 in the same
row (correct sublayout with respect to 1, 2, 3). Then, the departments 4, . . . , n are
arranged in an alternating manner to the rows such that 4 is arranged in the same
row as 2 and space-free at the rightmost position (since p′2 ≤ p′3) in increasing order,
the proof of this result is similar to the proof of 1) and 2). We denote the resulting (in
general not feasible) layout with departments 1, . . . , n by L′′ and clearly, the objective
value of layout L′′ is less than or equal to the objective value of layout L′. We obtain
d12 + d23 ≤ d′′12 + d′′23. Further, let δ := ε− d′′23 > 0 be the length of the line segment at
which 2 and 3 overlap, then we get d(2+i)(2+i+1) = d′′(2+i)(2+i+1) − δ, i ∈ [n− 3], i odd,
and d(2+i+1)(2+i+2) = d′′(2+i+1)(2+i+2) + δ, i ∈ [n − 4], i odd. Similar to 2) it follows
that the objective value of layout L′′ is greater than the objective value of layout L, a
contradiction.

b) Let d′13 < ε and d′23 ≥ ε, then one can swap the positions of 1 and 2 and the objective
value of the layout is reduced, a contradiction.

c) It remains to consider an optimal double-row layout L′ with d′13 ≥ ε and d′23 ≥ ε.
At first, let 0 < d′12 < ε and we assume, w. l. o. g., p′1 < p′2. If p′3 < p′1, we shift all
departments in the same row as 1 to the right until 1 and 2 lie directly opposite. The
resulting layout is denoted by L′′ and we set d′12 := δ > 0. Then, we obtain d′′12 = 0,
d′′23 ≤ d′23 and d′′z(z+1) ≤ d′z(z+1) + δ, z ∈ [n − 1], z ≥ 3. Since w(z−1)z > wz(z+1), z ∈
[n− 1], z ≥ 3, w12 = w23, the objective value of layout L′′ is smaller than the objective
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value of layout L′, a contradiction. Now, let p′3 > p′2. Then we shift 3 to the right of 1
without free-space and, if necessary, we shift all departments now lying to the right of
3 or 2 in the same row to the right to avoid overlapping. The resulting layout has a
smaller objective value than layout L′, the proof is similar to 1a) and 1b) with o = 3,
a contradiction.
So, let d′12 ≥ ε. We calculate a lower bound on a layout containing the departments
3, . . . , n and then we add w12d′12 + w23d′23 ≥ 2ε to this lower bound. To calculate
a lower bound for the layout of the departments 3, . . . , n, we distinguish between
two cases. If 3 and 4 overlap in layout L′, then 3 and 4 lie directly opposite as
described above for 1 and 2. So let 3 and 4 lie directly opposite. Then the departments
5, . . . , n are arranged in an alternating manner space-free at the rightmost position
in increasing order to the rows (this result is similar to the proof of 1) and 2)). The
resulting layout is denoted by L′′ and the objective value of layout L′′ is less than or
equal to the objective value of layout L′. We obtain w12d12 + w23d23 + w34d34 < 2ε,
see Example 10. Furthermore, we obtain d′′z(z+1) = dz(z+1) +δ, z ∈ [n−1], z ≥ 4, z2 ∈ Z,
and d′′z(z+1) = dz(z+1) − δ, z ∈ [n− 1], z ≥ 5, z+1

2 ∈ Z, for some δ > 0. So the objective
value of layout L is smaller than the objective value of layout L′′.
Now we assume that 3 and 4 do not overlap in layout L′. Then, we calculate a lower
bound for the double-row instance consisting of the departments 4, . . . , n and add∑
i∈[3]wi(i+1)d

′
i(i+1) ≥ 3ε to this lower bound. We distinguish between the two cases

whether 4 and 5 overlap or not. We continue as described above and this lower bound
exceeds the objective value of layout L.

So for these instances we obtain an optimal double-row layout as described above. Therefore,
we obtain our desired result.

Theorem 12. Let n ≥ 3. Then, there exists a constant C > 0 such that for every 0 < ε ≤ 1
10

there exists a δ with 0 < δ ≤ Cε such that

v∗2
v∗1

>
n− 2
n− 1 − δ, (15)

where v∗1 (v∗2) denotes the optimal value of the SRFLP (DRFLP) with n departments and lengths
`1 = `2 = `3 = ε and `k = 2

εk−4 − `k−1, k ∈ [n], k ≥ 4, and non-zero weights w12 = w23 = 1 and
w(k−1)k = εk−3, k ∈ [n], k ≥ 3.

Proof. We prove this result by induction. For n = 3, 4 and n = 5 we refer to Example 10. So
let n ∈ N, n ≥ 6, and we consider instances as described in the statement of the theorem and
considered in Lemma 11. We obtain `k−1+`k

2 w(k−1)k = ε, k ∈ [n], k ≥ 2, and thus the single-row
layout π∗ = (1, . . . , n) has objective value v∗1,n := (n − 1)ε which proves that π∗ is optimal
because its objective value equals the constant C̃ := ∑

i,j∈[n]
i<j

wij
`i+`j

2 which is a lower bound on

the optimal value of the SRFLP.
An optimal double-row layout can be obtained as described in Lemma 11 and it remains to
compare the optimal value of the double-row instance with v∗1,n. Therefore, let pn and pn−1
denote the center position of n and n− 1 measured from the left border of the double-row layout.
We assume, w. l. o. g., that n is odd and hence n is in the same row as 1.

(pn − pn−1)w(n−1)n =
((

`n
2 + `n−2 + . . .+ `3 + `1

)
−
(
`n−1

2 + `n−3 + . . .+ `4 + `2

))
εn−3

=
( 1
εn−4 − `n−1 + `n−2 − `n−3 + `n−4 − . . .− `4 + `3

)
εn−3
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=
( 1
εn−4 −

2
εn−5 + 2`n−2 − `n−3 + `n−4 − . . .− `4 + `3

)
εn−3

=
(

1
εn−4 +

n−4∑

z=1

(
(−1)z 2z

εn−4−z

)
+ (n− 3)`3

)
· εn−3

= ε+
n−4∑

z=1

(
(−1)z2zε1+z

)
+ (n− 3)εn−2.

We set δ′′ = (−1)
∑n−4

z=1 ((−1)z2zε1+z)+(n−3)εn−2

(n−1)ε and for small ε > 0 we obtain 0 < δ′′ ≤ ε. Let
v∗2,n and v∗2,n−1 denote the optimal value of an optimal double-row layout with n and n − 1
departments, respectively. By assumption there exists a constant C ′ > 0 such that there exists a
δ′ with 0 < δ

′ ≤ C ′ε, such that v∗2,n−1
(n−2)ε >

n−3
n−2 − δ

′
. Then, we obtain

v∗2,n
v∗1,n

=
v∗2,(n−1) + (pn − pn−1)wn(n−1)

(n− 1)ε

>
n− 3
n− 1 − δ

′ n− 2
n− 1 + 1

n− 1 − δ
′′

= n− 2
n− 1 − δ

′ n− 2
n− 1 − δ

′′.

We set C = C ′ n−2
n−1 + 1, δ = δ

′ n−2
n−1 + δ′′ and we obtain δ ≤ Cε.

3.2 Heuristic approaches for the DRFLP

In Sections 3.2.1 and 3.2.2 we describe two heuristics for the DRFLP based on good or optimal
single-row layouts. Considering the instances described in Lemma 11, both heuristics determine
an optimal double-row layout given the optimal single-row layout π = (1, . . . , n). Further, both
heuristics are extensions of the heuristics presented in Section 2.2. Similar as before both variants
use a given single-row layout, especially the order of the departments, to construct a double-row
layout. Because of the arbitrary department lengths in the DRFLP adaptations are needed. In
Section 3.2.3 we describe exchange heuristics to further improve given double-row layouts. In
particular, we set up an MILP model for deriving a 1-optimal solution.

3.2.1 Balanced rows

Given a single-row layout π = (π1, . . . , πn), we first determine the row assignment of the
departments. In the order of π we assign the current department to a row where the sum of
the lengths of the departments already assigned to that row is minimal. The order in π is then
used as the order of the departments in each of the two rows. Given the assignments of the
departments to the rows and the order of the departments in each row, we determine the exact
positions of the departments by solving an LP, see, e. g., [4]. This approach is motivated by the
construction of L1(π), L2(π) in the equidistant case.

3.2.2 Mincut heuristic

Let a single-row layout π be given and we assume, w. l. o. g., π = (1, . . . , n). We present a new
heuristic based on the idea that the sorting of the departments in the same row is given via π, so
it remains to determine the row assignment of the departments as well as their exact positions.
We are given nmin, nmax ∈ N, nmin ≤ nmax, and in each step we add a set S of departments
which contains, if possible, at least nmin departments and at most nmax departments.

Let the set of departments [h], 0 ≤ h ≤ n, h ∈ N0, be already added to the double-row layout
(we start with h = 0 and we stop if h = n). If h+nmax ≥ n, all remaining departments are added
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and we set S = {h+ 1, . . . , n}. Otherwise, we interpret the departments H = {h+ 1, . . . , n} as
nodes in a complete graph with weights wij , i, j ∈ H, i < j. Our goal is to determine some k′
and an associated set S := {h+ 1, h+ 2, . . . , k′} such that the sum of the total transport weights
between S and [n] \ [k′] is small. So we detect which departments should be considered together
in the next step. We set

k′ :=





arg minh+nmin≤k≤h+nmax
k∈N

∑
i=h+1,...,k
j=k+1,...,n

wij , h+ nmax < n,

n, h+ nmax ≥ n.

So |S| ≤ nmax, and, if h + nmin ≤ n, then |S| ≥ nmin. The calculation of k′ is related to the
calculation of a constrained minimum cut in the graph described above.

Then, we add the dummy department n+1 (n+2) to row 1 (row 2) with length `n+1 = `n+2 = 0
and weights wi(n+1) = w(n+1)i = wi(n+2) = w(n+2)i = 1

2
∑

i=h+1,...,k′
j=k′+1,...,n

wij such that n+ 1 (n+ 2)

is the rightmost department in row 1 (row 2). Knowing k′ and so S, our goal is to determine
a row assignment of the departments S such that departments in the same row are sorted
according to π and such that ∑i,j∈[k′]∪{n+1,n+2}

i<j

wijdij is minimized, i. e., we have to solve a

(small) double-row instance where the order of the departments in the same row is known.
For solving this problem we apply the approach of [28] and enumerate over all distinguishable
assignments of the departments S to the rows. Knowing the order of the departments in the
rows, each subproblem reduces to some LP with k′ + 2 departments. We choose one of the row
assignments for S where the layout has minimal objective value. In the last step, when n ∈ S,
the solution of the LP corresponds to a double-row layout including possible free-spaces. The
algorithm stops after returning this layout. We denote this heuristic by mc(nmin, nmax).
Considering the DREFLP and choosing nmin = nmax = n in the approach here the resulting

objective value is less than or equal to the objective value obtained by solving the LP (3)–(5)
with xi ∈ [0, 1], i ∈ [n]. However, a huge number of row assignments would have to be checked.

3.2.3 Exchange algorithms

The layouts derived in Section 3.2.1 and Section 3.2.2 are our initial start solutions. We
denote a given double-row layout by σ = (σ1, . . . , σk, f, σk+1, . . . , σn), where f indicates that the
departments which arise in the order of σ before f are assigned to row 1 and the remaining
departments are assigned to row 2 (in the order of σ). In [22] a 1-opt algorithm is used where in
each step one department is arranged at every possible position in σ, and then an LP is solved
to determine the exact position of the departments. The department is arranged on a position
which leads to a minimal objective value.

Instead of using this enumerative approach, we set up an MILP model for the 1-opt algorithm.
Recall that dij = dji, i, j ∈ [n], i < j, denotes the horizontal center-to-center distance between i
and j and pi, i ∈ [n], denotes the position of the center of i. Given a double-row layout, we remove
t ∈ [n], so let, w. l. o. g., the departments 1, . . . , k, k ∈ [n− 1], be in row 1 and k+ 1, . . . , n− 1 be
in row 2 in this sorting and t = n. Then, we use the following variables

zi =
{

1, t is arranged on position i in σ,
0, otherwise,

i = 1, . . . , n+ 1, where z1 = 1 corresponds to t left to 1, zk+1 = 1 corresponds to t right to k,
zk+2 = 1 corresponds to t left to k+ 1. Then our MILP model reads as follows with M = ∑

i∈[n] `i

min
∑

i,j∈[n]
i<j

wijdij
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pi+1 − pi ≥
`i+1 + `i

2 , i ∈ [n− 2] \ {k}, (16)
∑

i∈[n+1]
zi = 1, (17)

pi − pt −Mzi ≥
`i + `t

2 −M, i ∈ [k], (18)

pt − pi −Mzi+1 ≥
`i + `t

2 −M, i ∈ [k], (19)

pi − pt −Mzi+1 ≥
`i + `t

2 −M, i ∈ [n− 1] \ [k], (20)

pt − pi −Mzi+2 ≥
`i + `t

2 −M, i ∈ [n− 1] \ [k], (21)

dij − pj + pi ≥ 0, i, j ∈ [k], i < j, (22)
dij − pj + pi ≥ 0, i, j ∈ [n− 1] \ [k], i < j, (23)
dij − pj + pi ≥ 0, i ∈ [k] ∪ {t}, j ∈ ([n− 1] \ [k]) ∪ {t}, i 6= j, (24)
dij − pi + pj ≥ 0, i ∈ [k] ∪ {t}, j ∈ ([n− 1] \ [k]) ∪ {t}, i 6= j, (25)

pi ≥
`i
2 , i ∈ [n], (26)

dij = dji ≥ 0, i, j ∈ [n], i < j, (27)
zi ∈ {0, 1}, i ∈ [n+ 1]. (28)

By inequalities (16) we ensure that departments in the same row do not overlap, recall that
the sorting of the departments is known. By equation (17) we ensure that t is assigned to
exactly one position in σ. If t is assigned to row 1, then we ensure by inequalities (18) that t
and the department to the right of t do not overlap and by inequalities (19) we ensure that t
does not overlap with the department to the left of t (if t is assigned to row 2, see inequalities
(20)–(21)). The distance between departments i, j ∈ [n− 1], i < j, in the same row is calculated
by inequalities (22)–(23) and distances between departments in different rows as well as distances
between i ∈ [n− 1] and t are calculated by inequalities (24)–(25).

Afterwards we use a 2-opt algorithm where we swap the position of two departments in σ. We
only accept changes if the objective value is reduced and the 1-opt (2-opt) algorithm is applied
until the double-row layout cannot be improved by a 1-opt (2-opt) step.

4 Computational results
In this section we present our computational results. The computational experiments are based
on a C++ implementation which uses Cplex 12.10 as an MILP solver [36]. All results were
conducted on a 2.10GHz quad-core using Virtual Box 6 and running on Debian GNU/Linux 8 in
single processor mode. As often done in the literature, in our computational experiments we
focus on the DREFLP and the DRFLP. We apply our heuristics based on optimal or best known
single-row layouts, see, e. g., [39, 40, 41], and we use a heuristic for the SRFLP with a short
running time and which is easy to implement, i. e., we start with a random single-row layout and
apply a 1-opt algorithm and a 2-opt algorithm until the single-row layout cannot be improved
by a 1-opt or 2-opt step, respectively. The single-row layouts and all considered instances are
available from the authors.

4.1 Results for the DREFLP

We start our computational study with the equidistant case. In Table 1 we display in column
two (column three) the objective value of an optimal or best known (heuristically determined)
single-row layout denoted by “Best known” (“Heuristic”). The objective value is marked with a
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SREFLP Start layout Exchange Time

Instance Best known Heuristic HBest HHeur HBest HHeur [9] HBest HHeur
Y20 12185∗ 12185∗ 6047 6047 6046∗ 6046∗ 6046∗ <1 <1
Y25 20357∗ 20434 10170 10206 10170 10206 10170 <1 <1
Y30 27673∗ 27704 13801 13801 13800 13801 13790 <1 <1
Y35 38194∗ 38290 19093 19141 19087 19141 19087 1 1
Y40 47561∗ 47604 23737 23762 23732 23759 23739 3 2
Y45 62904 63357 31447 31671 31442 31671 31442 4 4
Y50 83127 83179 41523 41538 41523 41538 41517 7 7
Y60 112126 112735 56017 56330 56010 56328 55986 32 17
sko42-1 25525 25525 12749 12749 12743 12743 12731 2 2
sko49-1 40967 42469 20477 21226 20470 21224 20512 6 6
sko56-1 64024 66083 31975 33011 31972 32932 31988 11 24
sko64-1 96883 98122 48418 49052 48409 49004 48574 23 45
sko72-1 139150 143317 69535 71607 69531 71603 69621 41 42
sko81-1 205106 208554 102549 104263 102549 104067 102793 1:10 4:36
sko100-1 378234 384049 189062 191982 189056 191964 - 3:31 3:56

Table 1: Heuristically determined upper bounds for equidistant double-row instances from the
literature [9]. Our heuristics are based on optimal or best known single-row layouts as
well as heuristically determined single-row layouts where known optimal solution values
are marked with a “*”. The running times of our heuristics are given in sec or min:sec.

“∗” if the associated single-row layout is known to be an optimal layout. The objective value of
the start layout and of the final layout after applying our exchange algorithm is denoted by HBest
(HHeur) which is based on the best known single-row layout (heuristically determined single-row
layout). The current best upper bounds for these instances are derived by the semidefinite
optimization approach of [9] and are given in column eight. This approach mainly focuses on
determining strong lower bounds and the time limit is set to 3 hours. In the last two columns
we summarize the running times of our heuristics, see Section 2.2, given in sec or min:sec. The
best known or optimal single-row layouts are available at https://www.philipphungerlaender.
com/benchmark-libraries/layout-lib/row-layout-instances/.
We observe that for all instances in Table 1 our heuristic based on optimal or best known

single-row layouts is better than the one based on heuristically determined single-row layouts.
Note that only for the instance Y20 our single-row heuristic derived an optimal solution, but
the obtained gaps for the remaining instances are rather small and the running time is at most
one minute, even for n = 100. For the instance Y20 our heuristic derives an optimal double-row
layout based on an optimal (heuristically determined) single-row layout. For larger instances the
optimal solutions are not known. Considering the Y-instances with 25 ≤ n ≤ 60 and given a best
known single-row layout, we obtain three times the same objective value as the approach of [9],
once we can even improve the best known upper bound and three times we obtain small gaps to
the best known upper bounds. For all large sko-instances with n ≥ 49 and given some best known
single-row layout, we improve the previously known best upper bounds in [9] with a significantly
smaller running time. Using our approach based on heuristically determined single-row layouts,
we obtain small gaps to the approach of [9], however, these layouts can be calculated in a few
minutes, including the calculation of the corresponding single-row layout. Comparing the best
solution values of the SREFLP and the DREFLP one can see that the value of the DREFLP is strictly
less than halve the value of the SREFLP, but rather close to this value in our tests.

4.2 Results for the DRFLP

In the following, we denote the balanced row heuristic by br. Given a single-row layout
π = (π1, . . . , πn), we calculate a start layout via our heuristics br and mc and afterwards we
calculate again a start layout based on the inverted order (πn, . . . , π1). In Tables 2–5 we display
the minimum value of these two layouts and we apply our improvement algorithm only on one
double-row layout with minimal objective value. In our test we used nmin = 8 and nmax = 14 in
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Start layout Exchange

Instance SRFLP br mc(8, 14) br mc(8, 14) DRFLP
Am14_1 5481.5∗ 2873.5 2743.5 2738.5 2738.5 2738.5∗
Am14a 5673.0∗ 2981.0 2907.0 2907.0 2907.0 2904.0∗
Am14b 5595.0∗ 2773.0 2736.0 2736.0 2736.0 2736.0∗
Am15_1 6305.0∗ 3236.0 3211.0 3223.0 3211.0 3195.0∗
HK15 33220.0∗ 17040.0 16895.0 16740.0 16600.0 16570.0∗
P16a 14829.0∗ 7427.0 7365.5 7416.0 7365.5 7365.5∗
P16b 11878.5∗ 5944.5 5870.5 5928.5 5870.5 5870.5∗

Table 2: Results for instances from the literature where optimal DRFLP solution values are known
[28]. Given an optimal single-row layout, the mc heuristic derived four times an optimal
double-row layout and the br heuristic two times. The start layouts were only slightly
improved by the exchange algorithm.

the mc heuristic.
In Table 2 we consider double-row instances with known optimal solution values. Optimal

single-row layouts can be derived very fast for these small instances via, e. g., the approach of
[3], so we apply our heuristics only on optimal single-row layouts in Table 2. The mc heuristic
determined four optimal double-row layouts and the br heuristic calculated two optimal double-
row layouts. If an optimal single-row layout was given, the running time of the br heuristic was
less than one second and the mc heuristic needed less than one minute (including the improvement
algorithm). Considering the values of the start layouts derived with the mc and the br heuristics,
the mc heuristic was always better. The start layouts were only slightly improved by the exchange
algorithm.

In Table 3–5 we display in column two (three) the objective value of an optimal or best known
(heuristically determined) single-row layout. The objective value is marked with a “∗” if the
single-row layout is optimal. The objective value of the start layout and the final layout is denoted
by bropt and mc(8, 14)opt or brBest and mc(8, 14)Best (brHeur and mc(8, 14)Heur) if the heuristics
are based on an optimal or best known (heuristically determined) single-row layout. The optimal
single-row layouts in Table 3–4 are obtained by the approach of [26] and are available from the
authors.
In [6] four heuristics are presented and each of them is applied ten times. The minimum

value is displayed in Table 3 in the twelfth column. Each single run for n = 40 needs about
an hour, which leads to a high total running time of this approach. The equidistant instance
N40-1 is neglected in Table 3. Let a single-row layout be given, then our heuristics run in a few
minutes. For all instances in Table 3, the mc heuristic based on an optimal single-row layout
obtains gaps of less than 0.5% to the results of [6] and for one instance our heuristic obtains a
layout with the same objective value. This shows that our approach is able to derive high-quality
double-row layouts even for larger instances and our approach is much faster than the methods
in the literature. For these instances the running time of the br and the mc heuristic hardly
depends of the start layout, so we only displayed the running times based on optimal single-row
layouts. Note that the start layouts are only slightly improved by the exchange algorithm and
considering the mc heuristic, the final layout often equals the start layout. The quality of our
start layouts depends on the quality of the single-row layouts. Given an optimal (heuristically
determined) single-row layout, then the mc heuristic is better than the br heuristic. However,
the br heuristic based on optimal single-row layouts is often better than the mc heuristic based
on heuristically determined single-row layouts.
In Table 4-5 we compare our approach with the heuristic presented in [19] where five start

layouts are computed and the minimal objective value is displayed. Then, our exchange algorithm
is applied on one layout with minimal objective value. We consider randomly generated instances
from the literature [22] with n ∈ {20, 30, 40, 50}. The transport density is set to 10%, 50% and
100% and integer transport weights are chosen randomly between 1 and 10. The integral lengths
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of the departments are chosen randomly between 1 and 15 as well as between 5 and 10. For each
type ten instances are tested and the average values are displayed in Table 4. We denote the
instances by nk,`min−`max where n is the number of departments, k is the transport density and
`min and `max describe the upper and the lower bound of the integral department lengths.

Considering sparse instances in Table 4, the heuristically determined layouts have large gaps to
optimal single-row layouts and the corresponding double-row layouts of the br and mc heuristic
have large gaps to the layouts based on optimal single-row layouts. So the quality of the start
layout and of the final layout of the br and mc heuristic depend highly on the quality of the
single-row layout. Note that it would be possible to improve the SRFLP solutions by using the
fact that the sparse instances with n = 20 and n = 30 could often be divided into two or
more independent smaller instances. Given an optimal single-row layout, then the objective
values of the start layout and of the final layout of the br and mc heuristic are smaller than the
corresponding objective values of the approach of [19]. The exchange algorithms only slightly
improve the start layouts of the br and mc heuristic, however, the start layout of [19] is improved
significantly by the exchange algorithms. Note again that the mc heuristic is better than the br
heuristic if both heuristics are based on optimal or heuristically determined single-row layouts.

In Table 5 we only consider sko-instances where good heuristically determined single-row layouts
are available at https://www.philipphungerlaender.com/benchmark-libraries/layout-lib/
row-layout-instances/. The instance sko56-5 marked with a “◦” is not the best known single-
row layout but the best known single-row layout with objective value 592294.5 is not available
online, so we decided to choose this single-row layout. Looking at the results for the sko-instances
in Table 5 all solutions derived using the br and the mc heuristic based on best known single-row
layouts are better than the results of [19]. If we use the two heuristics in combination with our
simple single-row heuristic, we could improve 5 out of 9 upper bounds in comparison to the
approach in [19]. As seen in Tables 3-4, for most instances the mc heuristic is slightly better than
the br heuristic based on best known (heuristically determined) single-row layouts. For the mc
heuristic based on best known single-row layouts, the exchange algorithm only slightly improves
the start layout.

In Table 6 we compare the running times of the heuristics applied on the sko-instances. The br
heuristic is the fastest heuristic for best known and heuristically determined single-row layouts.
In column three we display the running time of the br heuristic based on a best known single-row
layout, where the 1-opt algorithm is calculated by an enumerative approach instead of using our
MILP approach. For 8 out of 9 instances the running time is at least halved by using our MILP
approach. Altogether, the running times of the br and the mc heuristics are not highly influenced
by choosing a best known or heuristically determined single-row layout. The mc heuristic is for
both, best known and heuristically determined single-row layouts, a bit slower than the heuristic
approach of [19].

5 Conclusion and future work
In this paper we studied the relationship of the MREFLP and the SREFLP and we proved that
v∗m ≤

v∗1
m where v∗m denotes the optimal value of the MREFLP with m ∈ N rows. Given an

equidistant single-row layout with value v1, we presented an easy way to derive an equidistant
multi-row layout whose value vm is at most v1

m . We can further improve such a layout by the
inclusion of free spaces via a new ILP model which simplifies to some LP model. For the DREFLP
we improved some of the best known upper bounds and we significantly reduced the running
time for calculating these layouts.

We proved that the optimal solution value of the SRFLP and the DRFLP for the same instance
might be close. In particular, we showed that the following inequality holds (n−1)v∗2 ≤ (n−2)v∗1,
where v∗1, v∗2 denote the optimal solution values of the two problems. Additionally, we presented
an example where this bound is tight. Nonetheless, good or optimal single-row layouts can be a
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Instance brBest brenuBest brHeur mc(8, 14)Best mc(8, 14)Heur [19]
sko 56-3 2:13 7:49 2:20 19:02 26:38 9:44
sko 56-4 3:10 6:37 4:50 20:36 25:10 9:50
sko 56-5 3:16 7:07 1:33 21:02 23:52 9:02
sko 64-3 6:59 18:15 2:43 39:36 39:29 22:50
sko 64-4 2:35 9:51 4:35 39:28 36:17 24:24
sko 72-2 8:46 23:20 4:54 1:03:33 54:57 39:32
sko 72-3 10:36 20:13 11:38 1:06:41 1:22:41 53:26
sko 72-4 18:54 33:34 11:20 1:12:32 1:17:09 1:03:50
sko 72-5 8:44 23:17 9:03 56:28 1:02:30 40:46

Table 6: In this table we compare the running times of the heuristic approaches considered in
Table 5. The running times are given in sec, min:sec and h:min:sec, respectively. In the
third column the running time of the br heuristic is displayed with an enumerative 1-opt
algorithm as used in [22]. One can see that the running time is significantly reduced by
using our MILP approach for the 1-opt algorithm, displayed in the second column.

good starting point for deriving good double-row layouts. Indeed, we presented two heuristics
for the DRFLP, which rely on the ideas used for the MREFLP and which can be calculated very
fast. We obtained very small gaps to the best known upper bounds for instances with 30 and 40
departments, but derive these solutions much faster and for instances with more departments we
outperform the heuristic of [19].
It remains for future work to set up heuristics for layout problems with more complicated

path structures like the T-Row Facility Layout Problem [21]. Further it is interesting from a
practical point of view to extend the current exact models and heuristics for the Single-Row and
Double-Row Facility Layout Problem such that more aspects like individual input and output
positions of the departments or certain clearance conditions between the departments can be
taken into account.
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