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1. General introduction 
 

In the last twenty years, demand for various diets and food resources is gradually increasing due to the 

accelerated growth of world population (Garnett et al. 2013). Recently, people have been paid more 

attention to their daily diet and health. Thus, the importance of an adequate amount of fruits and 

vegetables in the daily diet to mitigate the risks of chronic diseases has been demonstrated (Liu 2013; 

Slavin and Lloyd 2012). Tomato fruits are one of the most important vegetables in the daily diet in 

developing countries (FAOSTAT 2020), due to their high contents of vitamins, minerals, sugars, and 

antioxidants (Gharezi et al. 2012). Recently, the world production of tomato recorded 181 million tons 

in 2019, where the leading countries are China, India, USA, Turkey, and Egypt (FAOSTAT 2020). 

Likewise, the consumption of tomato products is gradually increasing worldwide, ranking the second 

place after potato, with about 56 g per capita daily (FAOSTAT 2020). 

Botanical Traits and Cultivation Requirements of Tomato 
 

Tomato (Solanum lycopersicon L.) is an vegetable of the Solanaceae family and originally cultivated in 

the sub-tropical regions (Paran and van der Knaap 2007). It is an annual plant and commonly grown in 

both open field and in controlled conditions e.g. greenhouses (van Dam et al. 2005). The plants can 

reach a height of over two meters and the stem ranges between erect and prostrate. There are various 

types of leaf shapes, which altered between the genotypes. The flowers are bisexual self-fertile, but 

the pollen is only released by vibration (da Silva et al. 2008). 

Growth of tomato requires a relatively cool and dry climate to achieve high yield and good fruit quality. 

The optimum temperature ranges between 19 °C and 30 °C as below 10 °C and above 38 °C the plants 

are damaged (Roberts et al. 2002). Fruit set and color development require temperatures between 20 

°C to 24 °C. Daylight between 12 – 18 hours is optimal for fruit set and the color development of leaves 

and fruits. The annual precipitation between 60 – 150 cm is optimum for tomato to achieve well growth 

(Nicola et al. 2009; Saadi et al. 2015). Water stress and long dry periods can cause dropping the buds 

and flowers off. However, heavy rain and air humidity are not favorable for tomato plants due to 
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increasing the incidence of fungus infection (da Silva et al. 2008). The preferred soil type is well drained 

sandy loam soil, with a pH range of 5.5 and 6.8, minimum depth of 15 cm to 20 cm and adequate 

nutrient sources (van Dam et al. 2005).    

Potassium and Boron Nutrition of Plants 
 

The most demanded nutrient by tomato plants is potassium (K), and thus K concentrations in plant 

tissues and fruits are the highest among other nutrients (Almeida et al. 2015). Plants take up K only in 

its ionic form K+ and remains in the plant as K+ as it does not involve in the structure of biomolecules. 

This makes it highly mobile in the plant system (Marschner 2012). A profound function of K is to load 

the photosynthesis assimilates into the phloem and transport them from source to sink organs (Koch 

et al. 2019). In tomato, the major sink organs are the fruits and higher accumulation of the 

photosynthesis products leads to high yields. Moreover, K stimulates the formation of large numbers 

of flowers and early mature fruits (Varis and George 1985), which finally increases the fruits yield. 

Transport of assimilates, namely sugars, into tomato fruits results in increasing the total soluble solids 

(TSS) content (Tavallali et al. 2017), hence increasing the sweetness flavor as that was stated by many 

researches (e.g. Amjad et al. 2014; Javaria et al. 2012). The concentration of K in the cytosol contributes 

to the maintenance of the pH in an optimal range for enzyme activation (Marschner 2012). Ripening 

of tomato fruits depends mainly on enzyme functions to reach the full maturity by decreasing starch 

content and increasing total reducing and non-reducing sugars (Singh et al. 2000). Furthermore, a high 

concentration of K catalyzes the production of organic acids to balance the cation-anion ratio (Etienne 

et al. 2013), which increases the acidity flavor. Deficient K plants display necrotic spots on the margins 

of the leaves while the fruits have disorders in coloring and the shape (Figure 1). That decreases the 

quality of tomato fruits for two reasons: first, impairment of the photosynthesis due to a lack of leaf 

chlorophyll (Ozores-Hampton et al. 2012) and second, the color formation of the fruits is not uniform 

(Zhang et al. 2015). Another essential role of K is adjusting stomatal conductance which is important 

to minimize water loss by evapotranspiration in tomato, hence it has the potential to a better water 
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use (Kanai et al. 2011). Moreover, K has been reported to have a significant role in mitigating the 

effects of biotic and abiotic stresses such as cold and drought stress (Cakmak 2005; Wang et al. 2013). 

 

 

 

 

 

 

Figure 1. Leaves and fruits of Primavera. A and C leaf and fruits of sufficient K supply. B and D leaf and fruits of 

deficient K supply (Photos: Daoud, 26.07. 2016). 

Among micronutrients, born (B) is an essential nutrient for the plants, because it has significant 

functions in cell wall synthesis, carbohydrate metabolism, sugar transport and phenol metabolism 

(Broadley et al. 2012). Moreover, it is involved in sugar transport by producing sugar-borate complex, 

hence enhances the sugar content with high B dose (Woods 1994). B has also an enhanced effect on 

the yield, K uptake and shelf life of tomato fruits (Davis et al. 2003). Nonetheless, under B deficiency, 

the permeability of membranes increased which led to higher loss of phenolics, amino acids and 

sucrose (Cakmak et al. 1995). 

However, growers try to fertilize beyond the needs of the plant to avoid the risk of yield reduction due 

to under-fertilization (Hartz et al. 2005). Therefore, better knowledge of the optimal nutrition 

requirements can reduce the excessive application of these nutrients, which results in saving costs and 

resources. Many studies reported no further increment on total yield with excessive K supply (e.g. Liu 

et al. 2011; Ozores-Hampton et al. 2012).       

            

       

A B C D 
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Marketable Yield and External Quality Attributes 
 

Tomato is a multipurpose vegetable and can be consumed as fresh, cooked, and processed into various 

products e.g. ketchup and juice (Gharezi et al. 2012). With these versatile potentials, the production 

of tomato alters according to the final purpose of consumption. Regarding the fresh consumption, the 

production should consider external characteristics such as color and firmness, as well as odor intensity 

and ultimately favorable flavor (Oltman et al. 2014). The previous breeding programs of tomato 

production have focused on increasing yield and diseases resistance as the main goals (Bai and 

Lindhout 2007). Several studies focused on increasing tomato yield either by breeding (Gur and Zamir 

2004), or by specific cultivation managements (Hogendoorn et al. 2006; Krieger et al. 2010) as well as 

by optimizing plant nutrition (Heeb et al. 2006; Mazed et al. 2015). However, these goals have been 

changed in the last decades in order to meet the consumer’s demands for a better taste and aroma of 

fresh tomato fruits (Bai and Lindhout 2007). In this context, the term “marketable yield” was 

introduced in tomato production and it refer to the fruits that have a better visual appearance from 

the consumer’s point of view (Kleinhenz et al. 2003). The European Commission regulated specific 

standards for the marketing of ten products including tomatoes, whereby the fruits must meet these 

standards to be classified as marketable fruits (EU 2018). The standards considered the consumers’ 

preferences of tomato fruits such as the color, freshness, and shape.      

With respect to the fruits’ color, several studies attempted to improve the skin color intensity of 

tomatoes (e.g. Chapagain and Wiesman 2004; Kabelka et al. 2004). The color of tomato fruit surface is 

the first external quality attribute evaluated by consumers (Pathare et al. 2013). The color of full ripe 

fruits varies greatly depending on the genotype. While the most common color of tomato fruits is red, 

other genotyps show green, yellow, and even black color (Klein et al. 2005). Red color of ripening 

tomato is largely due to the presence of lycopene and the degradation of the chlorophyll from the fruit 

tissues (Tadesse et al. 2015). In non-red tomato genotypes, other pigments such as ß-carotene and 

lutein (Hart and Scott 1995) and flavonoids (Ballester et al. 2010) are involved in color formation. 
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Generally, the formation of the fruits’ color during the ripening stages is highly influenced by several 

factors e.g. temperature, sunlight, biotic and abiotic stress, and soil nutrients availability (Kays 1999).  

During the ripening of tomato fruits, the changes in surface color are associated with degradation of  

the fruits’ texture and as a result the fruits become more mellowed (Kader et al. 1978). The softening 

in the fruits texture is related to cell wall modifications (Sozzi et al. 1998). The fruits firmness is often 

used to estimate organoleptic quality and it is strongly associated with fruit ripening after maturity and 

during storage (Lesage and Destain 1996).           

Nutritional Composition of the Fruits 
 

Fruit flavor can have an important nutritional effects, as a most preferred flavor stimulates a higher 

intake (Mathieu et al. 2009). Tomato fruits contain important nutrients such as antioxidants and 

minerals and beside sugars, acids, and volatile compounds are the main contributors to tomato flavor 

(Beckles 2012). Total soluble solids (TSS) indicate the quantity of dissolved solids in a solution (Beckles 

2012; Thakur et al. 1996). Many studies documented a high correlation of TSS value with tomato sugars 

content (e.g. Kader 2008; Malundo et al. 1995). The TSS in tomato fruits consists of 65% sugars (sucrose 

and hexoses), 13 % acids (citrate and malate) and other minor compounds e.g. minerals, phenols, 

amino acids (Balibrea et al. 2006; Kader 2008). The values of TSS differ according to fruits size: large 

beefsteak tomatoes (3 % to 5 %) contain less TSS than cocktail tomatoes (9 % to 15 %) (Gautier et al. 

2010; Luengwilai et al. 2010). Fruit TSS content is also influenced by the pre-harvest environment such 

as temperature, water availability, soil mineral content, and sunlight radiation (Dorais et al. 2008). 

Similarly, postharvest practices have a high impact on TSS content e.g. storage conditions, timing of 

harvest, and handling techniques (Kader 1986). 

The content of titratable acids (TA) defines the acidity taste and include malic and citric acids as main 

acids  in tomatoes (Beckles 2012). Content of TA is important for the taste of tomato as the consumers 

desire fruits that have sweet and sour taste, juicy, flavorful, and typical tomato odor (Oltman et al. 

2014; Piombino et al. 2013). It has been stated, that a minimum TSS of 5% with a minimum TA of 0.4% 
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is the preferable ratio to produce a good tasting tomato (Kader 1986; Kader et al. 1977). The TA 

proportion varies with the fruit ripening stage, which is higher in unripe fruits than in full ripe ones. 

Moreover, TA content is highly influenced by the growth conditions e.g. temperature, sunlight, and 

soil mineral composition (Bertin et al. 2001). Tomato fruits are rich of minerals: 100 g of fresh edible 

portion contains around 0.5 mg of Fe, 244 mg of K, and 13 mg of Ca (Erba et al. 2013; Nonnecke 1989). 

Accordingly, including tomato in the daily diet can support the recommended daily intake of minerals. 

The tomato flavor is a complex combination of non-volatile and volatile compounds. Beyond the 

adequate TSS and TA, a fruit should also contain a sufficient amount of volatile components (Mathieu 

et al. 2009). Over 400 volatile compounds have been detected in tomato, however, only about 15 – 20 

were found to have an impact on human perception (Baldwin et al. 2008). Most of the volatile 

compounds are derived from some essential compounds; such as amino acids, carotenoids, fatty acids, 

and others in tomato (Klee 2010), which could act as sensory cues for nutritional and health value (Goff 

and Klee 2006). The majority of commercial produced tomatoes have generally green, earthy, and 

musty aroma, while the typical, as good defined aroma is characterized as fruity and floral (Baldwin et 

al. 2008). Since the volatile compounds derived from some secondary compounds, the changes in 

these components due to environmental conditions could possibly influence the volatile composition 

in tomato fruit (Rambla et al. 2014). 

Postharvest Handling and Storage 
 

Postharvest handling and storage of tomato has a remarkable effect on quality of tomato. Generally, 

most of the qualitative losses in tomato fruits happen between harvest and consumption stages (Kader 

2005). Postharvest practices goals are to maintain the quality and diminish losses of tomato fruits 

between production and consumption (Kader 2003). Presently, tomato is produced in different regions 

over the world where suitable growth conditions or developed cultivation systems such as hydroponic 

cultures exist. Therefore, transporting tomatoes from the production to non-production locations is 

necessary to balance the distribution of tomato products (Valenciano and Mesa 2004). Tomato is a 
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perishable vegetable due to its relatively high moisture content (90 – 95%), which results in a short 

shelf life of the fruits (Arah et al. 2016). Storage temperature has a major influence on tomato shelf 

life. In short-term storage (up to a week), ripe fruits can be stored in ambient conditions with suitable 

ventilation, while in long-term storage the ripe fruits can be stored at temperatures of about 10 – 15 

°C (Žnidarčič and Požrl 2006). Nevertheless, tomatoes are sensitive to low temperature (below 10°C) 

storage, whereby the fruits can rapidly develop chilling injury (CI) symptoms (Raison and Lyons 1986). 

Household refrigerated storage is a very common practice to store tomato fruits by consumers, 

however, CI symptoms occur alongside with decrease in fruits quality under typical refrigerator 

temperature (4 to 8 °C) (de León-Sánchez et al. 2009). Overall, tomato fruit quality in the postharvest 

period cannot be enhanced but only be maintained (Tigist et al. 2013). In this context, some techniques 

can be applied to reduce the incidence of CI in stored tomato fruits and diminish the loss of fruit quality; 

such as optimized plant nutrition in pre-harvest cultivation (Cantliffe 1993). For instance, an 

application of K fertilization can enhances the performance of tomato fruits during the postharvest 

period (Tavallali et al. 2017).   

Sensory Evaluation of Tomato Fruits 
 

Consumers prefer tomatoes that are red, firm, and medium to small in size, they should be as well 

flavorful, juicy, sweet, and of sour taste (Oltman et al. 2014; Piombino et al. 2013). They complain 

about the tomato flavor, which has among others rapidly increased the number of research with the 

objective to enhance tomato flavor (Causse et al. 2002). Consequently, the sensory evaluation became 

more important to characterize fresh consumed fruits and vegetables (Meiselman 2013). In fresh 

tomato consumption, a set of external, like color and firmness and internal like taste and aroma 

determine fruits’ quality (Causse et al. 2002). In this context, sensory evaluation is an suitable method 

to describe all of these different attributes and to identify consumer favorites (Heeb et al., 2006). 

Recently, the most common methods in estimating tomato flavor include both sensory evaluation by 

a trained panel and instrumental analyses (Kanski et al., 2020a).                         
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Objectives of the Thesis 
 

Since the focus on improving tomato quality started, many studies were performed to contribute to 

this goal. One possibility  is to optimize the plant nutrition and to  test the effect of different nutrients 

on tomato quality (Roosta and Hamidpour 2011). Potassium was one of the most studied nutrients 

beside N and P in relation to tomato quality. A positive effect of K on tomato fruits quality has been 

demonstrated by many studies (e.g. Amjad et al. 2014; Besford and Maw 1975; Chapagain and 

Wiesman 2004; Lester et al. 2010). Based on the present knowledge, three novel aspects regarding the 

effect of K nutrition on tomato were studied as follows: 

1- The impact of K on yield, agronomic water-use efficiency (WUE) and fruit quality was evaluated 

with different K supply from deficient to excessive. The effect of excessive K on WUE and fruits 

quality in tomato has been so far not studied. Hence, the following objectives of this study 

were: 

1a).   Evaluate WUE, yield, and fruits quality attributes under different levels of K fertilization. 

1b). Examine the effect of excessive K on the mineral composition in the fruits and  

        understand the relationship between WUE and fruit quality under K fertilization. 

2- Several techniques have been applied to maintain tomato fruits quality in postharvest stage. 

One of these techniques is optimized plant nutrition in pre-harvest stage. Therefore, an 

application of various K and B fertilization on tomato was done, and the fruits behavior 

afterward in postharvest stage was evaluated to illustrate the following objectives:  

2a). Evaluate the effect of K and B fertilization on the quality of fruits stored in ambient 

        storage (20 °C) and refrigerated + ambient storage (4 + 20 °C). 

2b). Understand the role of K and B fertilization enhancing the cold tolerance of stored 

         fruits in refrigerated conditions + ambient storage. 

3- The influence of K supply on sensory attributes of tomato fruits was evaluated. Moreover, the 

relationship between sensory traits and instrumental determined data under K fertilization is 

still not well studied, thus the central objectives of this work are: 
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3a).  Investigate the effect of K on sensory characters and instrumental determined traits.  

3b). Explore the correlation between instrumental determined traits and sensory evaluation 

of tomato fruits under K fertilization. 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 



Different potassium fertilization levels influence water-use efficiency, yield, and fruit quality attributes 

10 
 

2. Different potassium fertilization levels influence water-use efficiency, 

yield, and fruit quality attributes of cocktail tomato—A comparative study 

of deficient-to-excessive supply 
 

Published in: Journal Scientia Horticulturae June 2020; 272 
By: Bashar Daoud, Elke Pawelzik, and Marcel Naumann 
DOI: 10.1016/j.scienta.2020.109562 

Abstract 

Tomato is the foremost vegetable in the world in terms of production and consumption and has 

considerable nutritional benefits in addition to its economic importance. High yield, water-use-

efficiency (WUE), and desirable fruit quality are strongly influenced by potassium (K). So far, the effect 

of excessive supply of K on those parameters has not been studied in cocktail cultivars. Thus, and for 

a comprehensive view, we evaluated the effect of six different K fertilization regimes; from deficient 

K1, moderate K2, optimal K3 and K4, to excessive K5 and K6 on two cocktail tomato cultivars. With 

increasing K supply, the fruit’s content of K, Magnesium (Mg), and Iron (Fe) increased while that of 

Calcium (Ca), Sodium (Na), and Zink (Zn) decreased. WUE, marketable yield, and total soluble solids 

(TSS) increased until K4, color and dry matter (DM) until K3, while Titratable acid (TA) reached its 

highest value at K5 in cultivar (cv.) Primavera. In cv. Yellow Submarine, marketable yield, color, TSS, 

and TA were the highest at K4, while WUE and DM increased following the highest K supply at K6. 

Optimal K application—3.66 – 4.00 g plant-1—enhanced WUE, marketable yield, and fruit quality 

attributes such as color attributes a* and b*, TSS, TA, DM of cocktail tomatoes, whereas excessive K 

fertilization increased the surplus of K and the studied attributes remained unaffected. The results of 

this study, therefore, indicate that K fertilization should be implemented at the lowest possible 

efficient concentrations. 

Keywords: Solanum lycopersicom L; potassium; water-use efficiency; yield; quality traits; minerals
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Introduction 

Being one of the most consumed vegetables worldwide, tomatoes have been recommended alongside 

other foodstuffs as a balanced healthy diet (FAOSTAT, 2018). What makes it favored is not only its 

versatility as being consumed fresh or processed (Adegbola et al., 2019), but also its richness of 

beneficial phytochemicals such as phenols (Dumas et al., 2003). To oppose the negative effects of 

biotic and abiotic stresses, the plants endeavor to increase the antioxidants production e.g. 

carotenoids and phenols (Akula & Ravishankar, 2011), in which K involves actively in catalyzing 

production-related stresses such as drought (M. Wang et al., 2013). In order to supply the world’s 

growing population with tomatoes stable and rising yields of the fruits are required. This in turn needs 

an adaptive supply system for nutrients and water. The availability of fresh water is decreasing in the 

world alongside recent detrimental climate changes and global warming (FAOSTAT, 2018). This makes 

it crucial to practice comprehensive water management, especially in the agricultural sector. 

Improving the WUE of crop plants is a necessary approach to tackling the present challenges of climate 

changes (Pinstrup-Andersen et al., 1999). Several studies have investigated the WUE of crop plants 

(e.g. Juarez-Maldonado et al., 2014; Medrano et al., 2015). A high WUE can be achieved by adopting 

management practices such as optimized plant nutrition (Blum, 2009). In this context, previous studies 

have demonstrated that K has a positive effect on WUE enhancement in crop plants (e.g. Jákli et al., 

2018; Kanai et al., 2011). Due to its essential role in adjusting stomatal conductance, K can minimize 

water loss by transpiration. Increasing concentration of K in guard cells leads to increased turgor 

thereby opening the stomata, but with the exclusion of K from guard cells stomatal closure occurs (Jákli 

et al., 2018). Additionally, the flow of K into the guard cells in dark reactions opens the stomata; this 

stimulates the uptake of CO2 into the leaf resulting in higher carbon assimilation, hence higher yield 

(Engels et al., 2012). As a complex attribute, yield is influenced, among others, by environment 

conditions, cultivation system, and nutritional fertilization. One of the essential functions of K is loading 

the assimilates into the phloem and transporting them from source to sink organs, as has been 

confirmed in potato plants by Koch et al. (2019). In this regard, K has a 
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remarkable effect on the yield as was stated on wheat (Maurya et al., 2014), strawberry (Ebrahimi et 

al., 2012), and cocktail tomato (Amjad et al., 2014). In this matter, growers instinctively use fertilizers 

in surplus of plant demands rather than bear the risk of low yield owing to under-fertilization (Hartz et 

al., 2005). However, it was pointed out that excessive K supply led to a decrease in the yield hence to 

low economic returns due to increased input costs (Römheld & Kirkby, 2010). 

The current study is a continuation of a project initiated by Sonntag et al. (2019). They studied the 

effect of K on cocktail tomato yield and fruit quality traits, and they found a positive amelioration in 

the yield formation with increasing K until optimal supply. Also, a positive effect of increasing K supply 

on fruit color (Hartz et al., 2005) and fruit content of TSS, TA, and DM (Sonntag et al., 2019; Tavallali et 

al., 2017) was found.  

Here, two questions could be raised: 1) Is there an effect of K application on WUE in cocktail tomato 

cultivars? 2) Will a further supply above optimal K increase the fruit yield and influence the fruit’s 

quality? 

Taking a more holistic view, knowledge of the effect of excessive K on WUE and the attributes of fruit 

quality in tomato is limited and needs further investigation. No studies with emphasis on the excessive 

supply of K on WUE and fruit quality in tomato have been published to date. Very few studies, however, 

demonstrated the effect of only excessive K on tomato yield (e.g. Hartz et al., 2005; Liu et al., 2011). 

Thus, we performed an outdoor-pot trial with two cocktail tomato cultivars—Primavera and Yellow 

Submarine—under different levels of K fertilization, ranging from deficiency to excessive, to evaluate 

the WUE, yield, and fruit quality traits. Since the minerals are known to have either antagonistic or 

synergistic effects on each other (Hawkesford et al., 2012; Koch et al., 2019), we also examined the 

effect of different K levels on the mineral accumulation in tomato fruit. 
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Material and Method 

Experimental Setup 

In 2017, an outdoor experiment was carried out with two cocktail tomato cultivars (Figure A1), 

Primavera and Yellow Submarine (Kiepenkerl, Everswinkel, Germany). These cultivars showed a good 

response to K fertilization as previously found (Sonntag et al., 2019). 

The seeds were sown on 5 April into seedling starter trays with capacities of 0.1 L. After three weeks, 

they were transplanted to nursery pots each with a diameter of 11 cm and a capacity of 1 L in the 

greenhouse. Greenhouse conditions comprised 16 hours of daylight with a mean temperature of 22˚C 

during the day and 18˚C at night. The soil in the starter trays and nursery pots was a pure peat (“A 

400”, Stender, Schermbeck, Germany). The final transplantation to an outdoor location took place 

seven weeks after sowing, on 30 May. The seedlings were planted into Mitscherlich vessels each with 

a diameter of 20 cm and a capacity of 6.2 L filled with peat as soil (Gartentorf, Naturana, Vechta, 

Germany). The peat was treated in advance with lime (CaCO3) to adjust the pH between 5 and 5.5 and 

mixed with phosphorus (Ca(H2PO4)2) in a solid form. The plants were pruned weekly to maintain one 

major stem and arranged in a randomized block design with six replicates per cultivar and K level. The 

weekly harvest took place from 13 July to 25 September.  

Application of Fertilization 

Based on the fertilization setup in the previous project (Sonntag et al., 2019), six levels of K in the form 

of liquid K2SO4, were applied weekly during the growing season. The K treatments consisted of the 

following—low K1: 0.5 g plant-1; moderate K2: 2.0 g plant-1; optimal K3: 3.66 g plant-1 and K4: 4.0 g 

plant-1; excessive K5: 4.5 g plant-1 and K6: 5 g plant-1. Nitrogen (N) was applied weekly alongside K and 

the other macro- and micronutrients were applied at the final transplantation, and two more times 

during the season (Table A1).
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Fruit Minerals 

Fruits were analyzed for their minerals content according to the method of Koch et al. (2019). An 

amount of 100 mg fine powder of lyophilized fruits was put in Teflon tubes and then digested in the 

microwave (Ethos terminal 660, Milestone, Sorisole, Italy) for minerals estimation.  

Agronomic Water-Use Efficiency   

Agronomic WUE was calculated at the aboveground biomass level (Jákli et al., 2018). To estimate WUE, 

aboveground plant compartments, biomass (stems + leaves) and fruit yield as well as water 

consumption (WC) were summed up for each plant. The WC of each plant was calculated as follows:  

WC (per L) = (IR + FS + PR) – LW 

Then the following equation, according to Jákli et al. (2018), was applied:  

WUE [g FM L-1] = 
𝐵𝑖𝑜𝑚𝑎𝑠𝑠+𝑓𝑟𝑢𝑖𝑡 𝑦𝑖𝑒𝑙𝑑

𝑊𝐶
 

FM: fresh matter, IR: daily irrigation; FS: applied fertilization solutions; PR: precipitation during the 

growing season; LW: leached water.  

Irrigation was carried out daily with the same amount of distilled water for all the plants. The 

application of fertilization was calculated at the end of the season and applied weekly in a liquid form. 

Precipitation was estimated by distributing 15 rain gauges (1 L per m2; Lux GmbH, Wermelskirchen, 

Germany) between and beneath the plants (Figure S2). Through this distribution, differences in 

precipitation in areas beneath plant cover and in exposed areas could be evaluated. This data was also 

compared with data from the German Weather Service (DWD – Deutscher Wetterdienst). Apparently, 

the precipitation data showed no significant differences between places, beneath plant cover and in 

exposed areas; or between DWD data and our data (Table A2). The plants were placed on transport 

wagons for Mitscherlich vessels. The plates beneath collected the leached water from the plants for 

weekly estimations.
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In order to reduce evaporation from the soil to the lowest level, the soil was covered with a layer of 

equal amounts of quartz sand. It was assumed that the evaporation was alike for all plants; therefore, 

evaporation from the soil could be neglected and was excluded from the calculation of WC. 

Estimation of Yield 

Fruits were weighted for each plant on a weekly basis, starting from the first harvest date (July 13) 

until the end of growing season (September 25), to estimate the yield. The fruits were sorted into two 

types—marketable yield and unmarketable yield (Figure A3). According to the EU Law, (2011) of 

marketing standards for fresh tomatoes, the fruits must be intact, clean, free of any visible matter, 

fresh, and free from damage or any abnormal external existence. Based on these standards, the fruits 

were immediately categorized into marketable and unmarketable groups during the harvest (Figure 

A3). 

Attributes of Fruit Quality 

 

Color, DM, TSS, TA, and total phenols were estimated at the fully ripe stage of fruits (Table A3). Fruit 

color was determined by Chroma Meter (CR-400, Konica Minolta Optics, Japan). The two equatorial 

sides of each fruit were measured, and the readings reported in the L*, a*, b* system. Subsequently 

the fruits were mixed for two minutes in a food blender (MQ 5000 Soup, Braun, Neu-Isenburg, 

Germany) to achieve a homogenized puree. Thereafter, DM, TSS, and TA were determined according 

to Sonntag et al. (2019).  

Total phenols were extracted from 0.25 g of freeze-dried sample (EPSILON 2–40, Christ, Epsilon 2–40, 

Osterode, Germany) by adding 5 ml of 80 % ethanol in a falcon tube, according to the method of 

Keutgen and Pawelzik (2007).  

Statistical Analysis 

Statistical analyses were performed using SPSS software, version 22 (IBM Corporation, New York, 

United States). Data were normally distributed, according to Shapiro-Wilk test (p<0.05), and the
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variance was homogenized according to the Welch test. Differences between K treatments were 

determined by performing one-way ANOVA at p<0.05, followed by Tukey’s post-hoc test for each 

parameter within the cultivar. The correlation analyses were performed using the Pearson model in 

SPSS. 

Results 

 

Fruit Mineral Contents 

The highest application of K resulted in the highest content of K which significantly varied from K 

deficient plants at K1 as they recorded the lowest K content (Table 1). However, rising application of K 

above K2 did not result in any significant increase in the K content of the fruits. 

Being independent of K treatment, the content of Mg did not significantly alter in Primavera fruits, 

whereas in Yellow Submarine fruit it showed a significant increase with rising levels of K from low to 

moderate (K1: 7.25 mg 100 g-1 DM to K2: 8.81 mg 100 g-1 DM). Though, the rising supply of K above K2 

in the case of Yellow Submarine did not show any significant increase in the Mg content. Low K 

treatment resulted in the maximum content of Ca in Primavera (K1:6.19 mg 100 g-1 DM) and Yellow 

Submarine (K1: 5.15 mg 100 g-1 DM). The Ca content decreased with increasing supply of K (Table 1). 

The reduction was significant with increasing K supply in Primavera but not in Yellow Submarine. Fruits 

with K1 treatment had the highest Na content in Yellow Submarine (2.01 mg 100 g-1 DM); in Primavera, 

it was 2.56 mg 100 g-1 DM. Generally, increasing K fertilization significantly reduced Na content in the 

fruits of both cultivars.  

Of all other analyzed minerals, only Fe content increased with the rising levels of K supply in both 

cultivars (Table 1). The maximum content of Fe was recorded at K4 (6.24 µg 100 g-1 DM) in Yellow 

Submarine—a significant increase from the lowest content of 4.50 µg 100 g-1 DM at K1. On the other 

hand, the Zn content showed a reduction with rising K fertilization (Table 1). It decreased significantly 

in Yellow Submarine but not in Primavera
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Table 1. Fruit mineral composition at different K fertilization levels. Values are means (n = 6) and the significance level 5 % was adopted for identifying significant K treatment 

effects according to Tukey’s test. Lower case letters determine significant differences in Primavera. Capital letters identify significant differences in Yellow Submarine. Linear 

correlation with Pearson test between K and the other minerals. The asterisks ** refer to the correlation significance at 0.01 level. 

 

 Macronutrients (mg 100 g-1 DM) Micronutrients (µg 100 g-1 DM) Na  
(mg 100 g-1 DM)  K Mg Ca P S   Fe B Mn Zn 

P
ri

m
av

e
ra

 

K1 154.10b 7.08a 6.19a 27.00a 14.86a  3.22a 0.93a 1.52a 2.31a 2.56a 

K2 201.02a 8.43a 4.78ab 28.58a 15.26a  4.58a 1.02a 1.48a 1.90a 0.83b 

K3 208.72a 7.69a 4.79ab 24.01a 13.82a  3.97a 0.79a 1.43a 2.10a 1.58ab 

K4 219.28a 7.45a 4.55ab 24-39a 14.47a  4.89a 0.82a 1.34a 2.22a 0.78b 

K5 233.33a 8.30a 3.36b 29.5a 15.69a  5.13a 0.87a 1.13a 2.16a 0.79b 

K6 247.28a 9.01a 4.39b 28.33a 14.89a  5.71a 1.05a 1.32a 1.99a 0.72b 

Y
e

llo
w

 S
u

b
m

ar
in

e 

K1 144.73B 7.25B 5.15A 34.42A 14.56A  4.50B 0.95A 1.27A 2.12A 2.01A 

K2 213.63A 8.81A 3.82A 33.14A 17.12A  4.85AB 0.94A 1.18A 2.21AB 0.78B 

K3 234.06A 9.75A 4.67A 30.80A 15.24A  5.56A 0.99A 1.36A 1.95B 0.62B 

K4 256.76A 9.91A 4.86A 31.99A 15.36A  6.02A 1.06A 1.32A 1.84B 0.61B 

K5 262.03A 8.98A 4.39A 29.90A 15.43A  5.44A 0.97A 1.37A 1.92B 0.85B 

K6 265.86A 9.57A 4.45A 31.01A 14.99A  6.24A 0.95A 1.19A 1.87B 0.86B 

Linear correlation (r)  0.964** 0.597** 0.840** 0.871**  0.938** 0.887** 0.768** 0.776** 0.050 
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Agronomic Water-Use Efficiency 

Agronomic WUE ameliorated with increased K supply. While, K-deficient plants recorded the lowest WUE; 

it was 39.38 and 21.11 g FM L-1 in Primavera and Yellow Submarine, respectively (Figure 2). WUE improved 

significantly by 52% with increasing K supply in Primavera; the highest WUE at K4 being 60 g FM L-1 followed 

by K3. In Yellow Submarine, the maximum WUE of K treatments was 35.35 g FM L-1 at K6; it was 

significantly higher (67%) than at K1. The cultivar effect was notable whereby the lowest K level in 

Primavera had higher WUE than achieved at the highest K regime in Yellow Submarine. 

 

 

 

 

 

Figure 2. Agronomic water-use efficiency (WUE) influenced by different K fertilizations in the cultivars Primavera and 

Yellow Submarine. Values are means (n = 6) with standard deviation on each bar. The significance level 5 % was 

chosen for identifying significant K treatment effects according to Tukey’s test. Lower case letters determine 

significant differences within the individual cultivar. Greek letters identify significant differences between cultivars. 

 

Marketable and Unmarketable Yield 

The highest marketable yield was recorded at K4 in both cultivars with Primavera at 1.11 kg plant-1 and 

Yellow Submarine at 0.63 kg plant-1 (Figure 3). Interestingly, the highest percentage shares of marketable 

yield in total yield were 73% at K1 in Primavera and 72% at K4 in Yellow Submarine. The maximum 

unmarketable yields scored 46% in Primavera and 34% in Yellow Submarine, both at K5. The maximum
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total yield was recorded at K4 in both cultivars—significantly in Primavera with 1.77 kg plant-1 and 

insignificantly in Yellow Submarine with 0.87 kg plant-1 (Figure 3).  

 

 

 

 

 

Figure 3. Marketable and unmarketable yield under different K fertilizations in the cultivars Primavera and Yellow 

Submarine. Values are means (n = 6) with standard deviation on each bar. The significance level 5 % was selected for 

identifying significant K treatment effects according to Tukey’s test. Lower case letters determine significant 

differences within the individual cultivar. Greek letters identify significant differences between cultivars. 

 

Fruit Quality Attributes 

The maximum red color value of a* in Primavera was at K3 and it was 41% significantly higher than the 

lowest value of level K1 (Figure 4A). With regard to the Yellow Submarine fruit color, the highest yellow 

color value of b* was at K4 with a significant 23.5 % increase from the lowest of K1 (Figure 4B). Actually, K 

fertilization concentrations rising to excessive amounts did not result in any significant development of 

the color values in both cultivars.  

The application of K increased the °Brix values significantly in Yellow Submarine but not in Primavera 

(Figure 5A). The fruits of Yellow Submarine had a significantly higher TSS content in relation to Primavera 

fruits. The lowest TSS value in Yellow Submarine at K1 (7.7 °Brix) was almost equal to the highest TSS value 

in Primavera at K6 (7.8 °Brix). 
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Similar to TSS, the DM content of Yellow Submarine increased with rising K application only from K1 to K2 

significantly (Figure 5B), while the TA content in fruits displayed differences between K fertilization levels 

in both cultivars (Figure 5C). The increase in TA occurred with rising K levels and ranged from 0.35% to 

0.69% with about 97% amelioration. TA increased significantly up to K3 in Primavera and up to K2 in Yellow 

Submarine. Further application of K did not significantly influence TA content. The fruits of Primavera had 

significantly less DM and TA content than Yellow Submarine fruits did.  

By contrast, total phenolic compounds decreased in the fruits of K3 and K4 levels in Yellow Submarine and 

Primavera alternately (Figure 5D). This observation was not significant among K treatments in Yellow 

Submarine though. Nonetheless, the content of total phenolics at K4 in Primavera reduced significantly 

compared to K1 only (Figure 5D). Excessive supply at K5 and K6 surprisingly revealed an increase in total 

phenolic compounds, which was matching the effect of K-deficiency at level K1. 

The correlation between WUE and all the abovementioned fruit quality attributes was negative and not 

significant; TSS (r = - 0.178), TA (r = - 0.126), DM (r = - 0.216), color (r = - 0.212), and total phenols (r = 

0.065). 

 

 

 

 

 

Figure 4. Fruits color values at different K levels. (A) Color index for fruits of Primavera and (B) Color index for fruits 

of Yellow Submarine. Values are means (n=6) with standard deviation on each marker. The significance level (5%) 

was determined for classifying significant effects of K treatment according to Tukey’s test. Lower case letters 
determine significant differences within the individual cultivar.
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Figure 5. Fruit quality attributes. (A) TSS, (B) DM, (C) TA, and (D) Total phenols. Values are means (n=6) with standard 

deviation on each bar. The significance level (5%) was adopted for identifying significant effects of K treatment 

according to Tukey’s test. Lower case letters determine significant differences within the individual cultivar. Greek 

letters identify significant differences between cultivars. 

 

Discussion 

 

Effect of K Supply on Fruit’s Mineral Composition 

In this study, K concentration in fruits increased with its rising supply by 44% in Primavera and 88% in 

Yellow Submarine. Generally, K concentrations in the cytosol are maintained at a specific range (100‒200 

mM) even under K deficiency but with further K fall, K contents in the cytosol decrease (Zörb et al., 2014). 

In this study, deficient application of K was constant throughout the growing season, hence K content in 

the fruits and biomass altered significantly between K1: deficient and K2: moderate. Further increase of K 

supply above K2 did not significantly influence K content in fruits though a positive increment was 

recorded. These findings are comparable to the study of Hartz et al. (2005) as they found
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no significant increase in K content in tomato fruits after excessive K supply. This is presumably due to the 

preservation of K in the cytosol (Zörb et al., 2014), which restricts the accumulation of K in the fruits at a 

specific range. This contradiction between increasing K supply and no significant increase in K content in 

fruits is supposedly due to the accumulation of K in the fruits reaching the maximum threshold at the 

optimal K supply, while excessive supply has no further effect. In contrast, the concentrations of K in the 

biomass (stem + leaves) increased significantly with rising K to the highest level in both cultivars (Figure 

A5). 

As anticipated, the content of Na and Ca in fruits decreased with rising K supply. Higher plants have 

developed a selectivity strategy in the uptake of K as compared to Na and Ca (Zörb et al., 2014). K has 

antagonistic effects on the uptake of Ca at higher K concentrations (Fageria, 2001). In the present study 

this antagonism was not assumed, since the higher K contents resulted from a stronger K supply. However, 

the uptake of Ca and Na was not varied (Table A1). Rising K supply increased Mg content significantly in 

fruits of Yellow Submarine but not in Primavera. The uptake of Mg can be highly suppressed by other 

cations such as K (Senbayram et al., 2016). However, a contradiction was shown in the present results as 

Mg content in fruits increased with rising K supply. This happened presumably due to the higher 

application of K compared to Mg. In this matter, the plants developed specific K-transport systems to 

ensure sufficient K uptake and these transporters could not be exploited by any other nutrients (Horie et 

al., 2011). But the Mg transporters are not specific and can be utilized also by K (Senbayram et al., 2016). 

Consequently, the high application of K stimulated K transporters to carry K, and the Mg transporters were 

used to take up mostly Mg. 

Micronutrients in the fruits had varying responses to rising K supply. The Fe content in fruits increased, Zn 

content decreased. Availability of Fe in the soil depends on the pH value; and the availability is very low in 

alkaline soils (Broadley et al., 2012). Application of K2SO4 can influence the root zone pH-stat
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rapidly (Chang & Roberts, 1992). Conceivably, here the increasing application of K has changed the value 

of pH to acidic value, thus enhancing the uptake of Fe by the plants (Neumann & Römheld, 2012). 

Interestingly, this could create a new approach to human nutrition especially in case of Fe deficiency 

(Johansson et al., 2014), as the fertilized tomato with sufficient K could contain higher concentrations of 

Fe. Conversely, Zn concentrations in tomato fruits decreased with rising application of K. K impairs the 

uptake of Zn from fertilization solutions by the plants (Hafeez et al., 2013). 

Effect of K Supply on Agronomic Water-Use Efficiency 

As a major parameter indicating plant performance under stress conditions, WUE is considered to be 

positively influenced by K fertilization (Malvi, 2011). In this study, K fertilization enhanced WUE by 52% in 

Primavera and by 67% in Yellow Submarine compared to K-deficient supply, namely K1. K plays a major 

role in osmoregulation by adjusting stomata movements that results in the reduction of evaporation 

(Grzebisz et al., 2013) which, consequently, decreases plant water consumption and ameliorates the final 

yield (S. Kanai et al., 2007). Here, WUE increased in Primavera with K fertilization until K4 followed by a 

decrease due to excessive application of K. This occurs possibly due to luxury K supply which, in some 

cases, causes K deficiency (Hawkesford et al., 2012) leading eventually to a decrease in plant growth 

(Figure A5). The other essential function of K can be attributed to the maintenance of osmotic potential in 

the rhizosphere that considers K as the most desired nutrient to sustain the osmotic concentrations (Malvi, 

2011). That means, applying excessive K into the rhizosphere can increase its osmotic concentration 

compared to the ones in root cells, which reduces the water uptake leading to lower WUE. Although, the 

K concentration in the rhizosphere was not evaluated but the determination of K concentration in the 

leached water exposed a linear increase in it with rising K application (data not shown). However, such an 

observation with regard to WUE could not be made in the case of Yellow Submarine due to the continuous 

increment in the biomass weight with rising K fertilization (Figure A5). In this context, it has been shown 

that not only K has an impact on WUE, but many other factors, such as
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weather conditions, cultivation systems, and crop variety, have also been taken into account to influence 

WUE performance, e.g. in wheat plants (Abbate et al., 2004). Our studied tomato cultivars had different 

morphological characteristics (Figure A1) that might account for these alterations with regard to WUE. 

Primavera has tomato-typical leaves while Yellow Submarine leaves look like potato leaves, which are 

flatter and expose a larger area to sunlight, and hence greater evaporation can be witnessed vis-á-vis the 

typical tomato leaves. 

Effect of K Supply on Marketable and Unmarketable Yield 

The marketable fruit yield increased with rising K fertilization in both cultivars. This is presumably due to 

the function of K in translocating and accumulating the assimilates from sources to sinks, which increases 

the yield as was stated in the case of potato tuber yield (Koch et al., 2019). Under deficient K levels, the 

accumulation of soluble carbohydrates diminishes, which leads to inferior crop product (Malvi, 2011). This 

was confirmed in the present study as with the increase of K up to K4 the quality of the fruits improved; 

and it resulted in an increase in the marketable yield. However, further increasing of K application did not 

achieve any increase in the marketable yield, but a decrease. In this context, it was found that an excessive 

application of K decreased the yield of tomatoes because it ultimately increased the unmarketable yield 

(K. Liu et al., 2011; Ozores-Hampton et al., 2012). Supposedly, there was a luxury uptake of K with its 

excessive application without any improvement in the marketable yield but an increase of unmarketable 

yield. As per EU Law (2011), unmarketable fruits are not intact or have abnormal external defects. With 

excessive application of K, rates of Ca uptake decrease as an outcome of the antagonism between K and 

Ca (Malvi, 2011) (Table 1). This leads to Ca deficiency in tomato plants which, in turn, leads to blossom-

end-rot (BER). The BER can be defined as a local deficiency of Ca in the bottom of tomato fruits (Adams & 

Ho, 1993). It starts with the softening of tissues to a dark green color that gradually turns brown and 

eventually black (Saure, 2001), hence the fruit lose their marketing value. This observation was highly 

perceived in both studied cultivars under excessive K regime. On the other
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hand, K provokes heavy blossoms and early maturity of fruits (Varis & George, 1985); accordingly, the size 

of the fruit could be smaller even under the required marketable limit and, therefore, classified as 

unmarketable yield. Due to the higher accumulation of K in the cytosol the osmotic potential increases 

(Zörb et al., 2014) thus causing skin tension and consequently fruits cracking (Lichter et al., 2002). Hence, 

the cracking in the skin of the fruits is highly anticipated with an excessive of K fertilization (Figure A3). 

Effect of K Supply on Fruit Quality Attributes 

Rising K supply improved fruit color of both studied cultivars. Being a major external attribute, the color 

of tomato fruit is considered to be positively influenced by K fertilization as demonstrated by previous 

studies (e.g. Brandt et al., 2006; Taber et al., 2008). The color red values (a*) of Primavera fruits varied 

significantly ranging between 10 and 14 (Figure 4A). Rodriguez-Amaya (2001) stated that K might catalyze 

some enzymes in the synthesis of carotenoids such as phytoene synthase, which produces phytoene, the 

first component in the carotenoids’ pathway. Therefore, K can increase the synthesis of carotenoids which 

contribute to the color intensity of tomato fruits (Arias et al., 2000). The yellow color results from ß-

carotene and lutein synthesis alongside decreasing content of lycopene (Hart & Scott, 1995). The color 

data of Yellow Submarine revealed a significant increase with rising K fertilization until optimal supply—

K3. These results were different from the findings of Taber et al. (2008) in which no significant effect of K 

on ß-carotene content was found, but it indicated a significant positive correlation between ß-carotene 

content and color value b* (Arias et al., 2000). In our study, increasing the application of K to excessive 

levels did not reveal any significant color changes in both cultivars. This was probably due to the fact that 

the synthesis of the carotenoids reached the maximum level with optimal K supply while the additional 

accumulation of K in the cytosol exposed no further effect on the formation of carotenoids.
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Besides the visual color evaluation of tomato fruits, consumers estimate the taste and especially the 

sweetness. In this research, TSS was taken as an expression of sweetness. Significant variations with K 

fertilization in Yellow Submarine were perceived; however, a further increase in K fertilization to an 

excessive level did not show any significant amelioration in TSS content. Sugars constitute about 65% of 

TSS in fresh tomato fruit (Adel A Kader, 2008). In their research, Kanai et al. (2007) described K as having 

a reinforcement role in carbon assimilation and photosynthesis translocation from leaves to fruit, which 

leads to higher concentrations of sugars in the cytosol. Accordingly, the enhancement of TSS with K supply 

can be projected to our results. Remarkably, the cultivar effect was observed for TSS content, with Yellow 

Submarine fruit having significantly higher TSS content than that of Primavera fruit. In this context, it has 

been mentioned that TSS content altered between different genotypes (Beckles, 2012).  

Generally, a minimum TSS of 5 °Brix and a minimum TA of 0.4% are the desired combination for a good 

tasting of fresh tomato (Adel A Kader, 2008). TA content in this study ranged from 0.38% to 0.69% and 

increased positively with rising K fertilization. Etienne et al. (2013) proposed that higher K concentrations 

in the cytosol provoked the production of organic acids in order to balance the cation-anion ratio. Hence, 

our results can confirm these findings as TA increased with K supply. Nonetheless, additional supply of K 

above the optimal level did not enhance TA significantly. Once again, the cultivar effect was noted as TA 

content was significantly higher in Yellow Submarine than in Primavera fruit. 

Dry matter (DM) content, a very important attribute of fruit quality increased with rising K supply in both 

cultivars. It ranged from 8.81% to 12.29%, which was higher than the findings of Molyneux et al. (2004) in 

six cocktail tomato cultivars (7–9%). Previous researches pointed out a significant increase in DM in salad 

and cocktail tomatoes with raising K application (e.g. Amjad et al., 2014; Javaria et al., 2012); consequently, 

we could confirm these outcomes in the current study. Nevertheless, further application of K to an 

excessive level did not reveal any significant changes in DM content in fruits. It was stated that
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K ameliorated DM content in tomato fruit due to the increase in photosynthesis accumulation in the 

cytosol (Hawkesford et al., 2012). Notably, DM results match TSS results in this study, which was also 

proposed in a previous work (Beckles, 2012). Moreover, the cultivar effect on DM content was revealed 

as being similar to TSS and TA results; Yellow Submarine fruit had higher DM content than what Primavera 

showed.  

In the previous project by Sonntag et al. (2019), an increment in TSS, DM, and TA with rising K fertilization 

was demonstrated, whereas the color values increased in Primavera only. We could confirm these findings 

for TA in both cultivars, for TSS and DM in Yellow Submarine, and for the color values in Primavera. While 

the color values of Yellow Submarine decreased significantly in the results of Sonntag et al. (2019), they 

increased in our research. Obviously, that was due to the alteration in the environment conditions, as both 

experiments were conducted in different years (see chapter M&M). In this context, it was pointed out that 

the carotenoids—hence the color of tomato fruits—TSS and DM were highly influenced by the cultivation 

conditions e.g. temperature, solar radiation (Beckles, 2012), and foliage surface (Brandt et al., 2006). 

Furthermore, the remarkable effect of the cultivar on TSS, TA, and DM response to K application was 

observed and in agreement with the outcomes obtained by Sonntag et al. (2019). 

Total phenols are influenced by many factors and an important one is soil nutrient status (Caldwell et al., 

2005). The plants typically strive to synthesize more secondary metabolites, e.g. phenols, to confer 

protection under abiotic stress conditions (Akula & Ravishankar, 2011). Normally, K catalyzes the 

production of phenols under stress conditions to assist the immune system in confronting the undesirable 

circumstances e.g. drought, cold, saltiness (M. Wang et al., 2013; Zörb et al., 2014). In our study, the plants 

were grown under the same conditions, with the exception of deficient and excessive K applications. 

Therefore, they did not attempt to produce more phenols under optimum K supply.
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Nevertheless, total phenols production increased in both deficient and excessive K supply conditions. The 

reason behind this increment with excessive K could be justified by the findings of Hawkesford et al., 

(2012), where they pointed out that the luxury supply could behave likely as deficient conditions. When 

the plants were fed with excessive K, presumably, the high concentration of K in the plants (Table 1, Figure 

A5) provided the enzymes with an incorrect signal that led them to catalyze more phenols compounds. 

Currently, there is no report on the relationship between WUE and quality of tomato fruits under K 

fertilization. WUE correlated negatively with fruit quality attributes though not significantly. The plant 

attempts to reduce water uptake as a water preservation strategy under sufficient K supply. It can be 

assumed that diminishing availability of water in the cells can negatively influence fruit quality as a reason 

of dilution effect. Notably, K has a positive effect on WUE, which can be achieved by adjusting stomatal 

conductance (Jákli et al., 2018). Moreover, K has a major role in translocating the assimilates (Kanai et al., 

2007). In this context, it can be supposed that the plants tend to direct K rather into stomatal conductance 

and translocation activities in leaves and stems than into the metabolism of the fruits as sink organs. 

Conclusion 

This study aimed to demonstrate the effects of excessive K on WUE, yield components, fruit mineral 

contents and quality of tomatoes; and to clarify the relation between WUE and fruit quality attributes. The 

following conclusions are drawn: (i) Excessive K supply did not have a positive influence on WUE and 

marketable yield, whereby the enhancement of K reached a threshold at level K4. Further supply of K had 

no effect. (ii) Fruit color also ameliorated with the supply of K to a specific threshold (level K3 in Primavera 

and level K4 in Yellow Submarine), while TSS, DM, and TA showed enhancement with increasing K to the 

maximum level, though not significantly. (iii) In fruits, K, Mg, and Fe content increased
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gradually with K increasing to an excessive level, while Ca, Na, and Zn contents decreased due to the 

antagonism between K and these ions; and (iv) fruit quality attributes had poor and negative correlations 

with WUE as supposed. 

In general, our findings, combined with those of Sonntag et al. (2019), demonstrate that optimal K supply 

(levels K3 and K4) significantly increase WUE, marketable yield, and fruit color. While excessive K supply 

does not predict a significant amelioration, it leads to a surplus of K fertilization resources with regard to 

the studied cultivars Primavera and Yellow Submarine. Consequently, our results show that optimal 

nutrient use for yield and quality formation as well as WUE is cultivar-specific. Using tomatoes as an 

example, the results also indicate that K supply above the optimum cannot be optimally used by the plants 

and should, therefore, be avoided for reasons of sustainable use of resources. 
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3. Effect of Potassium and Boron Fertilization on the Quality of Ripening 

Tomatoes (Solanum lycopersicon L.) at Different Storage Conditions 
 

Abstract 
 

Storing tomatoes either in a household fridge or during transportation is a common practice, especially in 

developed countries. However, this can result in deterioration of the fruit quality because the tomato is a 

perishable vegetable. Optimized plant nutrition in pre-harvest conditions can maintain the quality of the 

fruit’s quality during storage. Potassium (K) is considered to have a positive influence on the quality of 

tomatoes during the period of postharvest handling. Boron (B) on the other hand is stated to have a 

positive effect on the shelf life of tomatoes. 

In this study, the effects of various K and B levels on the quality of the stored fruits in two different storage 

conditions have been evaluated. Two levels of K—K1 and K2—combined with two levels of B—-B and +B—

were applied to two cocktail tomato cultivars—Primavera and Yellow Submarine. The fruits in the breaker 

stage were stored either at ambient conditions (AC) or in refrigerated + ambient conditions (R+AC). At the 

end of the storage period, the K and B content, fruit color intensity, loss of fresh matter (LFM), chilling 

injuries (CI), and contents of dry matter (DM), total soluble solids (TSS), titratable acid (TA), polyamine 

(PA), and fatty acid (FA) were estimated. Application of K did not reveal a significant effect on the fruit 

color. Moreover, neither K nor B mitigated LFM, and CI incidence. The fruit contents of TSS, TA, and DM 

increased with rising supply of K at both storage conditions. Among the PA components, only putrescine 

(PUT), was significantly decreased with the increasing supply of K. More profound elucidation of the 

combined effect of K and B supply on tomato fruits postharvest behavior is a matter of further 

investigation in a cultivar-specific manner. 

Keywords: tomato, potassium, boron, ambient storage, refrigerated storage, fruits chemical composition. 



Effect of potassium and boron fertilization on quality formation of tomato fruits during storage 

31 
 

Introduction 
 

Generally, most consumers store tomatoes in household fridges after purchase; however, this procedure 

might reduce the fruit quality. Several studies reported a decreasing quality in terms of soluble solids and 

acids of ripe tomato fruits during storage in household fridges (e.g. de León-Sánchez et al. 2009; Maul et 

al. 2000). Monitoring ripening and extending the shelf life of tomatoes are important aspects during the 

storage of the fruits under low temperatures (Constan-Aguilar et al. 2016), which is the most common 

method for tomatoes during transportation  or storage e.g. in household fridge. 

Optimized plant nutrition during plant growth could have a significant effect on the postharvest behavior 

of the fruits in the storage facilities (Cantliffe 1993). In this matter, potassium (K), being an essential 

macronutrient for the plant, is involved in many physiological and chemical processes, such as enzyme 

activation, photosynthesis assimilates translocation, and fruit development during the postharvest period 

(Constán-Aguilar et al. 2014; Hawkesford et al. 2012). Boron (B), on the other hand, is an important 

micronutrient for plants with significant roles in cell wall synthesis, carbohydrate metabolism, and sugar 

transport (Broadley et al. 2012). 

As a climacteric and perishable vegetable, tomato has a short shelf life usually about 2–3 weeks due to its 

relatively high moisture content from 90‒95% (Gharezi et al. 2012). The shelf life of stored tomatoes is 

affected by many factors such as the storage temperature, the maturity stage of the fruit, the cultivar 

background, and the fertilization supply during growth (Dorais et al. 2008). In this context, Lester et al. 

(2010) summarized a positive effect of K on extending the shelf life of many horticultural crops including 

tomatoes; Davis et al. (2003) concluded that B enhanced the shelf life of tomato fruits by reducing the 

occurrence of cracking point and concentric cracks.  

In terms of maturity stage of fruits, it is more common to store tomato in full ripe stage. However, in other 

regions tomatoes are mainly harvested at breaker stage (Le Strange et al. 2000; Roberts et al. 2002). The 
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breaker stage can be determined when a noticeable break in color, less than 10 %, of other green color is 

shown (Camelo et al. 2004). However, breaker fruits are more susceptible to produce chilling injuries (CI) 

symptoms under refrigerated conditions compared to the full ripe fruits (Gómez et al. 2009). 

The storage temperature has a major influence on the shelf life of tomatoes. At short-term storage (up to 

a week), ripe fruits can be stored at ambient conditions with suitable ventilation; at long-term storage the 

ripe fruits can be stored at temperatures of about 10–15°C (Žnidarčič and Požrl 2006). Tomato fruits are 

susceptible to temperatures below 10°C, which is reflected in the expression of CI (Roberts et al. 2002). In 

household fridges, the common temperature is between 4–8°C, which is below the crucial temperature 

threshold of tomatoes to develop CI. In this context, a few recent studies have demonstrated the 

fertilization effect on diminishing CI symptoms, specifically the effect of K (e.g. Constán-Aguilar et al. 2014; 

Tavallali et al. 2017). This could be due to the role of K enhancing the resistance of plants against abiotic 

stress by mitigating the damage of the reactive oxygen species as suggested by Cakmak (2005). Wang et 

al. (2013)described that adequate K supply catalyzes the production of antioxidants such as polyamines 

(PA) under cold-stress conditions, which is important in mitigating CI occurrence (Sharma et al. 2017). 

Good overall tomato flavor is stated as having high sweetness and a fruity flavor with low sourness and 

less green-tomato flavor (Tandon et al. 2003). However, consumers have not been satisfied with the flavor 

of tomatoes (Causse et al. 2010). Several studies demonstrated that K has a positive effect on the quality 

of tomatoes such as total soluble solids (TSS), titratable acids (TA) (Sonntag et al., 2019), and dry matter 

(DM) content (Tavallali et al., 2017). The combination of K and B fertilization on tomato decreased the 

incidence of the shoulder-check defect and increased fruit quality (Huang and Snapp 2009). However, the 

quality of the  fruit quality at postharvest cannot be enhanced but only be maintained (Tigist et al. 2013).  

Postharvest conditions influence the quality of tomatoes (e.g., color, TSS, TA, and DM) as has been 

reported in many studies (e.g. Beckles 2012; Kanai et al. 2007). Some studies have investigated the effect 

of K on the fruits under postharvest practice (e.g. Constán-Aguilar et al. 2014; Tavallali et al. 2017), as they 
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stated a significant increase in fruits’ K-content and bioactive compounds of the fruits with rising K 

application in cherry tomatoes. However, the role of K enhancing these attributes under refrigerated 

conditions is still not clear and the impact of a combined K and B fertilization on the performance of 

tomatoes under postharvest conditions has not yet been studied. Therefore, the objectives of this work 

are (i) to investigate the effect of K and B fertilization on the quality of tomatoes stored at ambient 

conditions (20°C) and at refrigerated + ambient conditions (4°C + 20°C) and (ii) to evaluate the effect of K 

and B on cold tolerance of the tomatoes stored at refrigerated + ambient conditions. We hypothesize that 

(1) the combination of K and B application will positively influence the quality of the fruit’s, and (2) the 

cold tolerance of the fruits under refrigerated + ambient conditions will be increased with rising K and B 

fertilization levels.  

Materials and Methods 
 

Plant Material and Experimental Set-up 
 

In summer of 2017, an outdoor pot experiment was conducted with two cocktail tomato cultivars 

Primavera and Yellow Submarine (Kiepenkerl, Everswinkel, Germany). The seeds were sown on April 5 in 

planting seeds trays with capacities of 0.1 L. Then, the seedlings were transplanted into 11-cm nursery 

pots after three weeks with capacities of 1 L in the greenhouse. The greenhouse conditions included 16 

hours of daylight, 22˚C during the day and 18˚C at night. The soil in the trays and pots contained a mixed 

peat (A 400, Stender, Schermbeck, Germany). The final transplanting took place outdoor after 7 weeks of 

sowing on May 29th, when the seedlings were planted in 20-cm Mitscherlich vessels with capacities of 6.2 

L filled with substrate peat as the soil (Gartentorf, Naturana, Vechta, Germany).  

Two different concentrations of K in combination with two various levels of B were applied weekly during 

the growing season. The application of K was in the liquid form of weekly application of K2SO4, while the B 

supply was in the weekly application as liquid form of H3BO3 to the soil directly (Table 2). Nitrogen (N) was 

applied weekly in parallel with K as a mixture of (NH4NO3 + Ca(NO3)2 •3H2O) for weekly treatments with 
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K2-B and K2+B and every second week for K1-B and K1+B. To balance the sulfate S for K1-B and K1+B, 

another N solution as (NH4)2SO4 was applied every alternate week with the previous mixture (NH4NO3 + 

Ca(NO3)2 •3H2O) (Annex, Table A4). The other macro and micronutrients were applied during final 

transplanting and one more time during the season at the eighth week after the final transplanting (Annex, 

Table A1). Irrigation was performed with distilled water whenever necessary and the plants were pruned 

weekly to maintain one major stem. The plants were arranged in four replicates with a randomized block 

design. 

Table 2. K and B fertilization application on tomato plants during the growing season (May – September 2017). 

 

 K2SO4  (g plant-1), weekly  H3BO3 (g plant-1), weekly 

K1 -B 0.5 (K low)  0.018 (B low) 

K1 +B 0.5 (K low)  0.063 (B high) 

K2 -B 3.66 (K high)  0.018 (B low) 

K2 +B 3.66 (K high)  0.063 (B high) 

   

Fruits Sampling and Storing 
 

From each treatment, 10 fruits in the breaker stage (Annex, figure A6) were sampled to be stored at two 

different conditions:  

Storage at Ambient Conditions  

The fruits were collected on August 3rd to be stored at 20°C with a relative humidity of 90% for 15 days. 

The fruit color, LFM, DM, K and B content, TSS, and TA were analyzed at the end of the storage period for 

the stored fruits (Table 3). 

Storage at Refrigerated + Ambient Conditions 

The fruits were sampled on August 9th and stored at 4°C with a relative humidity of 60% for three weeks. 

Afterwards, the fruits were transferred to a 20°C storage facility with a relative humidity of 90% for 7 days. 
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At the end of the experiment, fruit color, CI, LFM, DM, K and B content, TSS, TA, PA, and FA were estimated 

(Table 3). 

Table 3. Overview of storage experiments and analysis during and after the storage period. 

 

Storage experiment 
Fruit maturity 
stage (a) 

Temperature, 
duration 

Analyses after storage 

Ambient conditions 
(AC) 

Breaker 20°C, 15d Fruit color, LFM, DM, K and B contents, TSS, TA 

    
1. Refrigerated +  
2. ambient conditions 
(R+AC)  

Breaker 
1. 4°C, 21d +  
2. 20°C, 7d 

Fruit color, LFM, CI, DM, K and B contents, TSS, TA, PA, 
FA 

 

(a). In each experiment 10 fruits were stored and analyzed. 
 

Determination of Skin Color Intensity 
 

The color measurement was performed with a Chroma Meter (Konica Minolta; CR-400 Ver. 1.13; Tokyo; 

Japan) at two symmetrical locations around the equator of all the fruits of each sample. The evaluation of 

the color of Primavera was chosen to be expressed as a*/b* ratio and the color of Yellow Submarine as 

hue angle (°H). The unit a*/b* represents -0.5 = green and 0.8 = red, respectively. The unit °H is 

represented in the following degree measurements: 0°H = red, 90°H = yellow, and 180°H = green.  

Loss of Fresh Matter and Occurrence of Chilling Injury 
 

The LFM was determined on the stored fruits at both storage conditions. Thereafter, the CI symptoms 

were estimated on the stored fruits of R+AC only. It was done after transferring the fruits from refrigerated 

(4°C) to ambient storage (20°C). The calculation of CI was as a percentage of the infected fruits out of the 

total number of stored fruits per sample.    

Quality traits and Mineral Composition of the Fruits  
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Determination of Dry Matter, Total Soluble Solids, and Titratable Acidity 

The samples for the assay of DM, TSS, and TA were blended for two minutes with a kitchen blender (Braun; 

MR500; Kronenberg; Germany) to achieve a homogenized puree. Thereafter, about 10 g of the puree was 

dried according to the method of Naumann and Bassler (1976) for estimating the DM. The rest of the puree 

was centrifuged for 20 minutes at room temperature and 5000 g (Centrifuge 5804 R, Eppendorf, Hamburg, 

Germany). The supernatant was filtered (filter papers: MN 615 1\4 Ø 90 mm, Düren, Germany) and 

collected. To determine the TSS, three drops of the supernatant were added to the refractometer’s prism 

assembly (Hand Refractometer, Krüss Optronic, Hamburg, Germany). The readings of the °Brix values were 

recorded to estimate the TSS content in the fruits. According to the method LMBG (1983), 3 ml of the same 

supernatant were added to 20 ml of distilled water to determine TA and were automatically titrated by 

the device (TitroLine 96, Schott, Mainz, Germany) until a stable pH value of 8.1 was reached. The acid 

content percentage was calculated with the following equation:  

𝐴𝑐𝑖𝑑 % =
𝑚𝑙 0.1 𝑁 𝑁𝑎𝑂𝐻 𝑥 𝑁 𝑥 𝑚𝑙 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑓𝑎𝑐𝑡𝑜𝑟𝑜𝑓 𝑝𝑟𝑒𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑡 𝑎𝑐𝑖𝑑

𝑚𝑙 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒
 𝑋 100 

 
The PA, putrescine (PUT), spermidine (SPD), and spermine (SPN) were extracted according to the method 

of Niether et al. (2017) by using 100 mg of freeze-dried material (EPSILON 2-40, Christ, Epsilon 2 – 40, 

Osterode, Germany). After extraction, the PA were estimated by High-Performance Liquid 

Chromatography (LC-2000 Series; Jasco; Pfungstadt; Germany).  

Total FA extraction followed the experimental protocol of Thies (1971). The total FA composition was 

analyzed by gas chromatography GC-FID (Thermo Electron Corporation, Trace GC Ultra; Autosampler: 

A.L.S. 104). The samples were injected into the column (Permabond FFAP-0.25 μm, 25 m x 0.25 mm) with 

a volume of 0.2 µl. The column temperature was 205°C, the injector temperature was 250°C, and the 

detector temperature was 250°C. The carrier gas was hydrogen at a pressure of 100 kPa. The quantity of 

each FA was expressed as a relative percentage of the total FA content (Annex, Table A5). The displayed 

results have been provided as a ratio between the sums of unsaturated/saturated FA concentrations. 
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Determination of K and B Contents 
 

To determine the K and B contents of the fruits, an amount of 100 mg of fine powder of lyophilized tomato 

fruits were put in Teflon tubes and then digested in a microwave (Ethos terminal 660, Milestone, Sorisole, 

Italy) for mineral extraction according to the method of Koch et al. (2018). Subsequently, the samples were 

analyzed using inductively coupled plasma-optical emission spectrometry (ICP-OES) method (Vista-RL ICP-

OES, Varian, Palo Alto, USA). 

Statistical Analyses  
 

Statistical analyses were performed by the SPSS software (Version 22) (IBM Corporation, New York, United 

States). Data were normally distributed according to the Shapiro-Wilk test (p<0.05) and the variance was 

homogenized according to the Welch test. The differences between the K treatments were determined by 

performing one-way ANOVA at p<0.05, followed by Tukey’s post-hoc test for each parameter within the 

cultivar. 

Results  
 

Effect of K and B Supply on the Quality of Fruit Stored under Ambient Conditions 
 

K and B Contents, Fruits Color Intensity, Loss of Fresh Matter, and Dry Matter  
 

The fruit content of K and B displayed a corresponding response to the fertilization application on the 

plants (Table 4). The highest values of K content were found at the highest K application treatments at K2-

B and K2+B. The maximum fruit B content was at the highest level of B supply treatments at K1+B and 

K2+B.  

In Primavera, the highest a*/b* value was at K2+B (1.32) and the lowest value at K1-B (1.01). No significant 

differences between the treatments were detected (Figure 6A). The maximum °H value in Yellow 
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Submarine fruits was recorded at K1-B (104.05) while the lowest value was recorded at K2+B (107.38) with 

no significant differences between the treatments (Figure 6B). 

 

 

 

 

 

Figure 6. Fertilization effects on the fruits color intensity of two cultivars: (A) Primavera and (B) Yellow Submarine.  
 

The results of LFM showed no effect of fertilization application (Figure 7A). Maximum loss occurred at the 

highest fertilization application level K2+B in both cultivars. Level K2-B showed the lowest LFM, though 

was not significant. The DM content elevated with the fertilization supply in both cultivars (Figure 7B). The 

DM content ranged from 7.29% (K1+B) to 10.58% (K2-B).  

  

 

  

 

 

 

Figure 7. Fertilization effect on fruits quality attributes of two cultivars: Primavera and Yellow Submarine. (A) Loss of 

fresh matter. (B) Ddry matter content. The small letters refer to the significant variances at p = 0.05 between the 

mean values within the cultivar. 
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Total Soluble Solids and Titratable Acids 

With respect to TSS content, there was a significant increment with the fertilization application in both 

cultivars (Figure 8A). Level K2-B revealed the maximum TSS content in both cultivars 8.55°brix in the Yellow 

Submarine fruit and 7.10 °brix in the Primavera fruit. The lowest TSS was at level K1+B in both cultivars 

with a significant difference from the other fertilization levels. The TA content enhanced with fertilization 

supply (Figure 8B). The maximum TA was reached at level K2-B (0.74%) while the lowest was at level K1-B 

(0.35%). A significant increase of TA was revealed at K2-B and K2+B in both cultivars. 

  

 

  

 

 

 

 

Figure 8. Fertilization effect on fruits quality attributes of two cultivars: Primavera and Yellow Submarine. (A) Content 

of total soluble solids and (B) Content of titratable acids. The small letters refer to the significant variances at p = 0.05 

between the mean values within the cultivar.  

 

The Effects of K and B Supply on the Quality of Fruit Stored under Refrigerated + Ambient Conditions 
 

K and B Contents, Fruit Color Intensity, Chilling Injuries, Loss of Fresh Matter, and Dry Matter  
 

K and B concentrations of the fruits altered significantly and exhibited compatible anticipated results with 

the level of fertilization (Table 4). The highest K application at K2-B and K2+B significantly increased K 

concentrations in the fruits of both cultivars. Likewise, maximum B content of the fruits was at the highest 

level of B supply treatments at K1+B and K2+B (Table 4).       
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Table 4. Concentrations of K and B in the fruits of two cultivars: Primavera and Yellow Submarine. The fertilization 

levels (Table 1). Mean values ± STD. The small letters refer to the significant differences at p = 0.05 between the 

fertilization treatments. AC = ambient conditions, and R + AC = refrigerated + ambient conditions (Table 3). 

 

K (mg DM g-1)  B (µg DM g-1) 

Fertilization 
levels 

 AC R + AC  AC R + AC 

Primavera 

K1 -B 14.91b ± 1.04 17.30b ± 2.59  14.56b ± 5.17 19.12b ± 5.51 

K1 +B 14.79b ± 0.34 16.85b ± 0.53  27.81a ± 3.39 33.95a ± 3.87 

K2 -B 26.64a ± 2.01 30.40a ± 1.44  12.41b ± 1.18 16.10b ± 1.43 

K2 +B 27.48a ± 1.42 29.25a ± 3.59  26.21a ± 3.98 29.85a ± 3.55 

Yellow 

Submarine 

K1 -B 16.52b ± 0.96 18.74b ± 0.95  11.42b ± 1.53 15.30b ± 0.98 

K1 +B 16.62b ± 1.08 18.49b ± 1.76  22.65a ± 3.95 27.86a ± 4.81 

K2 -B 28.90a ± 1.70 33.66a ± 2.91  12.10b ± 1.21 16.10b ± 1.53 

K2 +B 28.84a ± 1.94 34.63a ± 1.36  23.55a ± 2.87 29.04a ± 2.07 

 

 No significant differences among the treatments regarding color intensity were detected in Primavera 

fruits but the lowest a*/b* value was found at level K1-B (Figure 9A). The fruits of Yellow Submarine also 

did not significantly vary with the fertilization supply and the lowest °H value was reached at level K2-B 

(Figure 9B). 

 

 

 

 

 

Figure 9. Fertilization effects on the fruits color intensity of two cultivars Primavera and Yellow Submarine. (A) 

Primavera (B) f Yellow Submarine. 

The results of CI are expressed as the final evaluation at the end of the storage period (Figure 10). The 

fruits of both the cultivars did not vary significantly with the fertilization supply with respect to CI. The 
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susceptibility to possess CI was higher in the Primavera fruits in comparison to the Yellow Submarine fruits. 

The lowest value was 12.5% at level K2-B in Yellow Submarine and the highest value was 57.5% at level 

K1+B in Primavera.    

 

 

Figure 10. Chilling injury symptoms on the fruits of 

two cultivars: Primavera and Yellow Submarine 

stored in R+AS conditions. 

 

 

There was no significant effect of the fertilization on the LFM of the studied cultivars (Figure 11A). The LFM 

ranged from 1.53% (K2-B) to 4.15% (K1+B). The DM content was increased with K application in both 

cultivars (Figure 6B). Maximum DM achieved at level K2-B (10.3%) in Yellow Submarine and (8.37%) in 

Primavera. Only in Yellow Submarine the level K2-B significantly increased compared to the other 

fertilization levels. 

  

 

 

 

 

 

 

Figure 11. The effect of fertilization on the quality attributes of the tomato fruits of two cultivars: Primavera and 

Yellow Submarine. (A) Loss of fresh matter and (B) Dry matter content. The small letters refer to the significant 

variances at p = 0.05 between the mean values within the cultivar.      
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Total Soluble Solids, Titratable Acids, Polyamines, and Fatty Acids 
 

The fertilization supply enhanced the fruit TSS content in both cultivars (Figure 12A). The highest TSS value 

was reached at level K2-B in both cultivars; 8.25°brix in the Yellow Submarine and 6.45°brix in the 

Primavera fruits. Level K2-B significantly increased TSS only in the Yellow Submarine fruits. An increase 

with the fertilization supply in both studied cultivars was recorded regarding the content of TA (Figure 

12B). Maximum TA was at level K2-B (0.78%) in Yellow Submarine while the lowest TA was at level K1-B 

(0.36%) in Primavera. A significant increase of TA was revealed with high K levels K2-B and K2+B in both 

cultivars.  

  

 

 

 

 

 

Figure 12. The fertilization effect on the quality attributes of the tomato fruits of two cultivars: Primavera and Yellow 

Submarine. (A) Content of total soluble solids and (B) Content of titratable acids. The small letters refer to the 

significant variances at p = 0.05 between the mean values within the cultivar. 

 

Among the PA, only the content of PUT decreased significantly with the rising supply of K in both cultivars 

(Figure 13A). The maximum SPD was achieved at level K2+B in both cultivars, although this increment was 

not significant. The SPN ameliorated with the fertilization application, though it was slight and not 

significant.  

The FA results are presented as the unsaturated (US)/ saturated (S) ratio between the sums of the US/S 

FA concentrations in the fruits (Figure 13B, Table A5). The fertilization supply had a significant influence 
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on the US/S ratio in the Yellow Submarine fruits but not in Primavera fruit. Level K1+B significantly 

increased the US/S ratio from K1-B only in the Yellow Submarine fruit.  

 

 

 

 

 

Figure 13. The fertilization effect on the quality attributes of tomato fruits of two cultivars: Primavera and Yellow 

Submarine stored in R+AS= refrigerated + ambient conditions. (A) Polyamines content and (B) the ratio unsaturated 

/ saturated fatty acids content. The small letters refer to the significant variances at p = 0.05 between the mean 

values. 
 

Discussion 
 

Effect of Potassium and Boron Supply on Fruit Quality during Ambient Storage 
 

Color Intensity of Fruits 
 

In this study, the fruits stored in ambient conditions and supplied with low K developed less color intensity 

compared to the fruits that were fed with high K, though not significant (Figure 6). This was probably due 

to the positive effect of K on color ripening development of the stored fruits as was stated by Constán-

Aguilar et al. (2014). Rising K fertilization was reported to increase lycopene content in tomato fruits 

(Fanasca et al., 2006; Javaria et al., 2012). The red color of a tomato results from chlorophyll breakdown 

and the subsequent synthesis of lycopene (Fraser et al. 1994). In terms of the influence of K on the 

lycopene content we argue similar to Arias et al. (2000) that a*/b* qualifies as the best prediction of 

lycopene content in tomatoes. The fruit color intensity of Yellow Submarine was also enhanced with rising 

K-fertilization in stored fruits under ambient conditions (Figure 6B). The formation of yellow color is a 

consequence of the reduction of lycopene content in parallel with rising ß-carotene and lutein content 
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(Hart and Scott 1995). Hartz et al. (2005) found the highest °H value in tomato fruits which were ripened 

under low K fertilization, while Taber et al. (2008) reported a decreasing in ß-carotene with high K supply. 

The results from the present study are in contrast to those of Hartz et al. (2005) and Taber et al. (2008) as 

rising K fertilization increased though not significantly °H value in the Yellow Submarine fruits.  

With respect to B fertilization, there was no clear effect on the color intensity in both cultivars (Figure 6). 

Singh et al. (2012) reported a significant decrease in carotenoids accumulation in carrots with increasing 

B application. Considering using different crops, this could probably interpret the non-effect of B on the 

fruits’ color intensity in both studied cultivars. 

Loss of Fresh Matter and Dry Matter  
 

The LFM is one of the most important factors under postharvest conditions. During storage, the fruits lose 

weight and if this weight loss reaches 3 – 10 % they become unmarketable products (Ben-Yehoshua and 

Rodov 2003). Many studies confirmed that high K application reduces LFM in tomato fruits during the 

postharvest period (e.g. Almeselmani et al. 2009; Constán-Aguilar et al. 2014). The microelement B was 

demonstrated to have a major role in cell wall structure conservation, which results in reduced skin crack 

incidence (Broadley et al. 2012; Davis et al. 2003). Moreover, B has a positive impact on the reduction of 

LFM by alleviating the membrane’s permeability, as reported by Cakmak et al. (1995) in sunflower plants. 

In this study, neither K nor B had a significant effect on LFM as the maximum LFM was 3.24% at K2+B and 

the lowest value was detected with 2.70% at K2-B. However, LFM is still lower than that was suggested by 

Chomchalow (1991) who described that mature-green tomatoes stored under 20°C lost about 5% weight, 

which might be due to the function of K and B in mitigating LFM and this could also be an elucidation for 

our observations. Under a constant temperature of 20°C and a dark environment, respiration is high in 

coincidence with the high metabolic rate to achieve the maturity of the fruits. Another reason could be 

fruits cracking under high K fertilization, as proposed by Huang and Snapp (2009), which maximizes the 

electrolyte leakage from the fruits, resulting in high LFM. In addition, the combination of high K and high 
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B fertilization had highest LFM in both cultivars that is likely because of the higher accumulation of K and 

B in the cytosol, which increases the osmotic pressure and causes fruit skin tension.  

The results of DM showed a significant increase with K supply in both cultivars stored at ambient 

conditions. Hawkesford et al. (2012) reported that K elevates the DM in tomatoes due to the increment of 

assimilates accumulation in the cytosol. Furthermore, Davis et al. (2003) concluded a positive influence of 

B on the DM in tomatoes but  such an effect was not revealed in our study.  

Total Soluble Solids and Titratable Acids  
 

The sugar content is influenced by pre- and postharvest conditions such as temperature, fertilization, and 

light (Dorais et al. 2008). A positive impact of K on the TSS content in tomatoes was stated in earlier studies 

(e.g. Auerswald et al. 1999; Javaria et al. 2012). This effect is most likely due to the reinforcement role of 

K in carbon assimilation and photosynthesis translocation from the leaves to the fruits (Kanai et al. 2007). 

It has been reported that B involves in sugar-borate complex and, hence, can relocate the sugars more 

easily compared to non-borate sugars (Woods 1994). Consequently, the effect of K fertilization revealed a 

significant increase in the TSS content with a high K dose, which is in line with findings of Constán-Aguilar 

et al. (2014). In contrast, the impact of the high B led to a diminution in TSS content in both cultivars which  

confirms the results of Naz et al. (2012), as they found a significant decrease in TSS in tomato fruits with 

rising B supply. 

The other factor influencing the TSS content is the cultivar background (Beckles 2012). Cultivar differences 

with regard to TSS were observed as Yellow Submarine had higher TSS content compared to Primavera, 

which was stated by Kanski et al., (2020) as they found significant differences in TSS content among the 

studied cultivars.   

TA in fresh tomatoes contributes around 15% to the TSS, along  with the sugar content and aroma 

compounds that constitute the flavor of tomatoes (Beckles 2012). The results showed a significant 
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influence of K and B on the TA content in both cultivars. This was presumably due to the high K 

concentration in the cytosol, which elevated the production of organic acids to balance the cation-anion 

ratio as well as the pH value (Etienne et al. 2013; Hawkesford et al. 2012). Boron as a boric acid in the 

cytosol comprises the esters mono-, di- and polyhydroxy compounds (Broadley et al. 2012). The esters are 

derived from acids. With increasing B, the acids content enhances the achievement of ester formation. 

Consequently, the increasing B supply elevates the acid content, which is congruent with our findings. The 

decrease in the TA content during ripening is a consequence of the metabolic activity, which results in 

decreased organic acids and an increased in sugar content (Pila et al. 2010). In our stored fruits, the 

metabolic activity was probably lower as it was interrupted after the harvest. Similar to the TSS results, 

the cultivar effect was noted with higher TA values in Yellow Submarine compared to Primavera as was 

also found by Sonntag et al. (2019).   

Effect of Potassium and Boron Supply on Fruit Quality Stored in Refrigerated + Ambient Conditions 
 

Color Intensity of Fruits 
 

The effect of K supply did not display any significant variations in the color intensity of stored fruits in both 

cultivars, which disagreed with the results of Constán-Aguilar et al. (2014). It has been demonstrated that 

K mitigates the stress susceptibility in plants by producing more antioxidants, such as carotenoids (Wang 

et al. 2013). A range of optimal temperatures between 16 – 26 °C was suggested for lycopene synthesis by 

Brandt et al. (2006), whereby they found that the lycopene production in  tomato fruits at breaker stage 

were suppressed outer the suggested range. Primavera fruits were stored for three weeks under 4°C which 

could be the reason of diminishing the color intensity a*/b* as Brandt et al. (2006) pointed out a linear 

relationship between a*/b* and lycopene concentrations. The values of °H of Yellow Submarine fruits 

exhibited no significant alterations with the fertilization levels. The concentrations of ß-carotene are highly 

affected by the temperature and the length of storage as Kumkong et al. (2018) stated in their study on 

baby-jack fruit powder which was stored under 4°C for 30 day. They found that after 15 days the values of 
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°H were decreased indicating a diminution in ß-carotene contents as it corresponded to °H values (Arias 

et al., 2000). The fruits of Yellow Submarine were stored for three weeks at 4°C, in which the synthesis of 

ß-carotene was not catalyzed by neither K nor B due to the inadequate temperature conditions. All in all, 

increasing the production of carotenoids with rising K supply (Taber et al., 2008) or higher B application 

(Singh et al., 2012) was suppressed by the insufficient storage temperatures of 4°C for carotenoids 

production in both cultivars.  

Loss of Fresh Matter and Dry Matter  
 

The fruits were stored for three weeks in refrigerated conditions (4°C) and then transferred to ambient 

conditions (20°C) for one week in which they lost weight as their metabolic rate increased to reach the 

maturity stage. Mutari and Debbie (2011) reported that the metabolic rate increases with rising 

surrounding temperature of tomato fruits and results in the loss of water with an associated decrease in 

weight. Neither K nor B supply had a significant influence on reducing the LFM of both cultivars in this 

research. Nevertheless, the highest LFM in this experiment was 4.15% at low K level, where Chomchalow 

(1991) suggested that mature-green and round tomatoes typically lose about 5% weight during ripening 

at 20°C. In the present study the LFM was lower than the results of Mutari and Debbie (2011) (about 7%) 

and Roberts et al. (2002) (4.9%). This is likely due to the function of K and B in diminishing LFM, as 

suggested by Almeselmani et al. (2009) and Davis et al. (2003).   

The DM content of the fruits revealed differences among the various K and B fertilizations. Fruits from 

plants with deficient K and high B showed the lowest DM content while sufficient K supply combined with 

low B showed the maximum DM content in the stored fruits. The positive effect of K was stated to increase 

DM in stored tomato fruits at 4°C (e.g. Constán-Aguilar et al. 2014; Javaria et al. 2012) which was probably 

due to the function of K in translocating and accumulating the photosynthesis assimilates in the cytosol 

(Hawkesford et al. 2012). With respect to the B and its effect on DM, Davis et al. (2003) reported a positive 

increase with rising B fertilization in fresh tomato fruits, however, this effect was not revealed in our 
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results. This was presumably due to the role of B in cell wall maintenance under cold stress conditions, 

which requests the transportation of some substrates into the cell wall as a defense mechanism in plants 

(Brown et al.,2002).   

Total Soluble Solids and Titratable Acids  
 

The results of TSS altered with K and B fertilization and the highest TSS was at K2-B in both cultivars.  Under 

the cold storage conditions, restrained sugar development in the harvested tomato fruits was pointed out 

by Díaz de León-Sánchez et al. (2009) and Gómez et al. (2009). With respect to the K effect on TSS, we 

observed rising K application yielding the highest TSS content. This was due to the higher sugar 

accumulation as one of the major functions of K in the plants (Zörb et al. 2014) which was confirmed by 

many studies on tomatoes (e.g. Amjad et al. 2014; Javaria et al. 2012). In the present study, the application 

of B revealed no clear effect on TSS, which was possibly due to the stronger effect of K on photosynthesis 

translocation in comparison to B. 

The content of TA showed a significant increase of K2 in the stored fruits of both cultivars.  The effect of B 

was revealed as a decrease in TA content. K has a positive increasing effect on the TA content in tomatoes 

as it was shown in several studies (Afzal et al. 2015; Tavallali et al. 2017). However, Gómez et al. (2009) 

reported that cold temperatures decreased the TA content in stored cherry tomatoes under 4°C  for  15 

days . This is in contrast to our research and might be due to a positive influence of K and B to maintain 

the TA content under cold conditions by increasing the pH value of the cytosol. 

Effect of Potassium and Boron Supply on Fruits Cold Tolerance Attributes during Refrigerated Conditions  
 

Polyamines and Chilling Injuries 
 

PA are antioxidants and they help plants adapt to  and resist abiotic stress conditions, e.g., cold stress 

(Alcázar et al. 2010). In the present study, the PA results showed a significant decrease in PUT, increase in 

SPD, and no significant changes in SPN in both cultivars (Figure 8A); this might indicate an increase of SPD 



Effect of potassium and boron fertilization on quality formation of tomato fruits during storage 

49 
 

and SPN oxidation into PUT, resulting in an accumulation of PUT. Wang (1994) stated in his study on 

zucchini squash without rising K supply that PUT increased while SPD and SPN decreased under cold 

storage conditions (5 °C). This could be not comparable to our research because of different used crops 

and the fertilization applications, however, it could give an indication regarding the positive effect of K on 

mitigating cold stress effects. The application of K catalyzes the antioxidant system and elevates some 

secondary metabolite transcripts that are associated with cold tolerance such as PUT (Zörb et al. 2014). B, 

on the other hand, has a significant role in the maintenance of membranes and the cell wall (Broadley et 

al. 2012); likewise, B deficiency impairs the development of primary cell walls; hence, decreases the cold 

tolerance of trees (Lehto et al. 2010). It has been suggested that the plants tend to produce more PUT 

under abiotic stress, e.g. the deficient of minerals such as K and B (Bouchereau et al. 1999; Camacho-

Cristóbal et al. 2005). 

Although, the PUT content lowered under the low K as an indicator for abiotic stress, as was anticipated, 

CI symptoms did not reveal any significant differences between fertilization applications in both studied 

cultivars. High K application could not prevent electrolyte leakage by lowering the osmotic potential of 

cells as proposed by Wang et al. (2013) and elevated the PUT levels but could not mitigate CI as was 

suggested by Sharma et al. (2017). Moreover, B did not play a role in maintaining the cell wall as 

anticipated by Broadley et al. (2012).  

Fatty Acids 
 

FA are very important components in the plant for the mechanical barriers against the environment, such 

as cellular membranes and suberin (Beisson et al. 2007). They have an essential role in remodeling 

membrane plasticity under stress conditions (Iba 2002).  Changing levels of unsaturated fatty acids by the 

regulated activity of fatty acid desaturases is a feature of stress acclimating plants (Upchurch, 

2008).McKersie and Lesheim (2013) stated that the ratio of unsaturated/saturated FA is an useful indicator 

of plant cold tolerance and a high ratio leads to more cold stress-tolerant tissue. In the present study, the 
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unsaturated/saturated FA ratio increased at low K fertilization supply combined with +B significantly in 

Yellow Submarine fruits while in Primavera fruits, high K combined with +B had the highest ratio, though 

it was not significant.  Moreover, a study by Hakerlerler et al. (1997) demonstrated that K supply enhanced 

plant cold resistance by increasing the membrane permeability and phospholipids, which was not clearly 

shown in this study.  Kanski et al. (2020) suggested in their study on five tomato cultivars stored under 4 

°C and 7 °C unremarkable changes in FA composition during the cold storage.  

Conclusion 
 

Regarding to the main objectives of this study, the following conclusions can be drawn: (i) The application 

of both high K and B did not mitigate the LFM under both storage conditions. The color, TSS, TA, and DM 

of non-stored fruits increased with rising K application in both cultivars. The fruits stored under ambient 

as well as under refrigerated + ambient conditions displayed increments in DM, TSS, and TA with high K 

supply. The first hypothesis can be partly confirmed as the effect of B was not perceptible on these 

parameters. (ii) Fruits stored under ambient conditions were able to develop higher skin color intensity, 

and higher contents of DM, TSS, and TA than the fruits stored under refrigerated + ambient conditions, 

which confirms the second hypothesis. (iii) The effect of K with regard to cold tolerance was mainly notable 

on the PUT content as increased K supply resulted in a reduction of the PUT content. The incidence of CI 

was not influenced by either K or by B supply. Additionally, the ratio of saturated/unsaturated FA was not 

affected by increasing K fertilization. Our outcomes emphasize that the fruits performance under different 

storage conditions is cultivar depended, with Yellow Submarine having higher DM and TSS with lower LFM 

and CI compared to Primavera.            
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Abstract 
 

BACKGROUND  

Sensory properties are an essential quality aspect when the consumption of fresh tomato is under 

consideration. The flavor of tomato is defined as a combination of taste sensations (sweetness, sourness), 

aroma (volatile compounds), and texture (firmness, mealiness), some of which are proven to be affected 

by insufficient nutrient supply—especially of the element potassium (K). This study intends to undertake 

a holistic assessment of the K fertilization effect on the flavor of tomato by connecting the use of sensorial 

and instrumental methods.  

RESULTS 

An optimal K supply significantly increased the sensory descriptors sweetness, sourness, tomato-typical 

aroma, and spiciness as well as the instrumental estimated color, firmness, total soluble solids (TSS), 

titratable acids (TA), and dry matter (DM) in a cultivar-specific manner. No significant increment of rising 

K fertilization was found on the composition of the pattern of volatile organic compounds (VOCs). 

CONCLUSION 

The evaluation by the panelists confirmed the results of the instrumental analyses, by which an increment 

in the fruit quality with the rising K supply could be detected. An optimal K supply of 3.66 g/plant could be 

suggested to increase tomato flavor in the cocktail cultivars studied: Primavera and Yellow Submarine. 

Cultivar effects should, therefore, be considered for defining the optimal K fertilizer dose that favors high 

tomato fruit quality and, hence, better flavor.
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Introduction 
 

The tomato is one of the most important vegetables in the world. In 2019, around 181 million tons of 

tomatoes were produced (1). The increasing annual demand for tomato can be attributed to its versatility 

and suitability for several dishes (2), as well as its fruitfulness in nutrients like minerals and antioxidants 

(3). In the European Union, 40% of tomatoes are consumed fresh and 60% are processed for different 

products (4). As regards the consumption of fresh fruits, the extrinsic characteristics (e.g. color, shape, and 

firmness) as well as the intrinsic ones (e.g. taste and aroma) are very important (5). The flavor is a complex 

attribute and derived from the interaction between the volatile compounds, such as hexanal and 2-

isobutylthiazole, and nonvolatile components like sugar, acids, and minerals (6). The flavor of tomato is 

frequently described as a sweet‒sour taste accompanying special aromatic aspects like ‘fruity’ and ‘floral’ 

(7). However, consumers have often complained about the flavor of fresh tomato (8). Therefore, the flavor 

of the tomato needs to be comprehensively considered, and not only for the consumers, but also for the 

producers (9). Moreover, the extrinsic and intrinsic characteristics of the flavor are remarkably influenced 

by many factors like weather conditions and the nutrient status of the plant and soil (10). 

This study focused on the effect of K nutrition on the flavor of tomato. Being an essential macronutrient, 

K is involved in many physiological and biochemical processes in plants (11). Cellular K plays a role in 

catalyzing many enzymes, apart from having major functions in osmotic pressure adjustment (12). 

Furthermore, sufficient K nutrition reinforces the resistance of the plants against biotic stresses like 

diseases and insects (13). K is also involved in the relocation of photosynthetic assimilates to sink organs, 

resulting in an increment in the sugar content in the cytosol (14). Consequently, a positive enhancement 

on total soluble solids (TSS), titratable acids (TA) (15), dry matter (DM) (16), and firmness (17) by the K 

fertilizer dose has been demonstrated. Serio et al. (2007) (18) and Taber et al. (2008) (19) could state a
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significant influence of K supply on the lycopene content and, hence, on skin color. The positive effect of 

K fertilization for increasing yields and fruit quality has been pointed out by many studies (e.g. 3,20). 

Volatile organic compounds (VOCs) have been considered sensory indications for flavor preferences (21). 

Though around 400 volatile compounds have been detected in tomatoes, only 15–20 compounds, such as 

hexanal, 2-isobutylthiazole, and 6-methyl-5-hepten-2-one, have been found to characterize the flavor of 

the tomato (22). Most volatile compounds are derived from essential nutrient precursors like amino acids, 

carotenoids, and fatty acids (23). Apart from instrumental analyses, e.g. to measure TSS, TA, and color, the 

sensory evaluation has been used to characterize the flavor of tomatoes. On these lines, several studies 

investigated the interaction between sensory evaluation and instrumental analyses in tomatoes (24,26). 

Nevertheless, these correlations between sensory attributes and instrumental analyses influenced by the 

K application are the topic of actual investigations. Despite several reports (3,27) dealing with the influence 

of K nutrition on the instrumental analyzed attributes of the tomato, knowledge of the impact of K on the 

sensory quality is limited. Our work attempts to investigate the effect of K fertilization on sensory and 

physicochemical traits. It also aims to verify whether the results obtained by instrumental methods can be 

confirmed by the human senses. Finally, it intends to combine the instrumental analyzed and sensory 

descriptors. We hypothesize that: (i) increasing the K supply modifies the values of instrumental analyzed 

traits and the intensity of sensory quality; (ii) the effect of K fertilization on the sensory quality can be 

recognized by human senses; (iii) instrumental analyzed traits will distinctly correlate with sensory quality; 

and (iv) the effect of K fertilization will be cultivar-dependent. 

Materials and Methods 
 

Experimental Set-up 
 

In summer 2016, an outdoor experiment was conducted with three tomato cultivars. Two cocktail tomato 

cultivars—Primavera and Yellow Submarine (Kiepenkerl, Everswinkel, Germany)—and one salad tomato 

cultivar—Lyterno F1 (Rijk Zwaan, De Lier, Netherlands)—were chosen. The cocktail cultivars were used in
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previous experiments and showed a good response to K fertilization (15). The salad cultivar was chosen 

based on the breeders’ description highlighting this cultivar as being high in lycopene. Therefore, it was 

expected that Lyterno F1 would respond well to varying K supply as regards its color, which has been 

shown for high lycopene cultivars by Taber et al. (2008) (19) and Serio et al. (2007) (18). All the cultivars 

were sown on March 30 in planting trays with capacities of 0.1L. After three weeks, the seedlings were 

transplanted into 11 cm pots with capacities of 1 L in a greenhouse. Greenhouse conditions comprised 16 

hours of daylight, with a mean temperature of 22 ˚C during the day and 18 ˚C at night. The soil in the trays 

and pots was a mixed peat (‘A 400’, Stender, Schermbeck, Germany). The final transplantation to the 

outdoor location took place after seven weeks of sowing on May 25. The seedlings were planted into 20 

cm Mitscherlich vessels with capacities of 6.2 L filled with peat substrate (Gartentorf, Naturana, Vechta, 

Germany). Three different concentrations of K—K1 low with 0.5g K/plant; K2 medium with 2.19 g K/plant; 

and K3 optimal with 3.66g K/plant—in the form of liquid K2SO4 were applied weekly during the growing 

season. Nitrogen (N) was applied on a weekly basis along with K—as a mixture of NH4NO3 and 

Ca(NO3)2•3H2O—for K3 treatment and every two weeks for K1 and K2 treatments. Another N solution—

(NH4)2SO4—was applied for K1 and K2 treatments, alternating with the previous mixture every two weeks 

to balance the sulfate supply. Other plant macro- and micronutrients were applied at the final 

transplantation and two more times during the season (Table A6). The plants were irrigated with distilled 

water when required and were pruned to one shoot weekly. They were arranged in a randomized design, 

with four blocks representing four replicates per cultivar and K level. During harvest, the fruits of each 

sample were split into three subsamples. One sample set was used for the sensory evaluation by the 

panelists; the second subsample was used for extraction of VOCs; and the third for instrumental analyses. 

The number of fruits used for each type of quality analysis is given in the Table A7
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Instrumental Analyses 
 

The K concentration, color, firmness, TA, TSS, DM, and volatile compounds were estimated at fruit 

maturity. Based on the method of Koch et al. (2019) (26), the K concentration was determined by digesting 

100 mg fine powder of lyophilized tomato fruits in 4 mL of 65 % nitric acid and 2 mL of 30 % 

hydrogenperoxide for 75 min at 200 °C and 40 bar in a microwave (Ethos terminal 660, Milestone, Sorisole, 

Italy). Subsequently, the samples were analyzed using inductively coupled plasma-optical emission 

spectrometry (ICP-OES; Vista-RL ICP-OES, Varian, Palo Alto, USA). 

Fruit color was determined by Minolta Chroma Meter CR-400 (Konica Minolta Optics, Japan) at the two 

equatorial sides of each fruit in the Lab modus, where the a value represents the red color intensity of 

Lyterno and Primavera fruits, while the b value represents the yellow color intensity of Yellow Submarine 

fruits. Afterwards, the firmness was estimated by a penetration test (5 mm staple micro cylinder, speed: 

6 mm/s, distance: 6 mm) on the equatorial side of these fruits with a texture analyzer (TA.XT2, Stable 

Micro System, Surrey, UK). 

TSS, TA, and DM were estimated for the same fruits. The fruits were mixed for two minutes with a kitchen 

blender (MQ 5000 Soup, Braun, Neu-Isenburg, Germany) to achieve a homogenized puree. An amount of 

10 g of this puree was dried for estimating DM, and the rest of the puree was centrifuged for 20 minutes 

at room temperature and at 5000 g (Centrifuge 5804 R, Eppendorf, Hamburg, Germany) to estimate TSS 

and TA based on Sonntag et al. (2019) (15). 

Immediately after harvest, VOCs were extracted from fresh fruits, as described by Ulrich and Olbricht 

(2013) (27). The fruits were rinsed with distilled water, cut into quarters, and homogenized in a solution 

with 20 % (m/v) NaCl by a kitchen blender (MQ 5000 Soup, Braun, Neu-Isenburg, Germany). The 

homogenate was centrifuged for 30 minutes at 4 ˚C and 3000 g (Centrifuge 5804 R, Eppendorf, Hamburg, 

Germany). To 8 mL of the supernatant and 4 g of NaCl, 16 μL of the internal standard (5 μL octanol + 10
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mL ethanol) were added. The samples were vortexed and stored at -20 ˚C until analysis by gas 

chromatography–FID, as previously described by Ulrich and Olbricht (2013) (27). 

Sensory Evaluation 
 

A group of 12 panelists had been trained weekly over two months, resulting in eight training sessions in 

accordance with the ISO 13299 sensory analysis guidance (28), by focusing especially on the quantitative 

descriptive analysis of the type of tomato fruits used in this study. The sensory descriptors color and odor 

intensity, juiciness, sweetness, sourness, bitterness, spiciness, skin strength, tomato‒typical aroma, and 

aftertaste were elaborated with the sensory panel (Table A3). The scale from 0 % (minimum intensity) to 

100 % (maximum intensity) was used to determine the intensity of all the descriptors that were studied. 

The final sensory evaluation was performed during the second week of August on fully ripe fruits for three 

consecutive days, with a single cultivar being evaluated each day. The evaluation was accomplished in a 

sensory laboratory that provided separated cabins, in accordance with ISO 8589 (2007). The fruits of 

cocktail cultivars were cut into halves, while those of the salad cultivar were cut into quarters immediately 

before being served in transparent plates that were coded with three-digit numbers. Between the served 

samples, the panelists were directed to consume a piece of bread and tap water to naturalize the basic 

tastes. 

Statistical Analyses 

 

Statistical analyses were performed mainly by using the SPSS Software, Version 22 (IBM Corporation, New 

York, United States). Data were proven to be normally distributed with the Shapiro–Wilk test (p<0.05), and 

the variance homogeneity was verified with Welch’s test. General fertilizer effects were tested at the 

significance level of p<0.05 with one-way ANOVA before separating the means of each fertilization 

treatment within the cultivars by using Tukey’s post-hoc test. In order to connect sensory and 

physicochemical traits, Pearson’s correlation analysis was calculated with SPSS and a principal component
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analysis (PCA) was calculated with the Statistica Software, Version 13.3 (TIBCO Statistica, Tulsa, United 

States). The panel performance was calculated by a 2-way ANOVA with assessor and sample as main 

effects with the Software PanelCheck V1.4.0. 

Results 
 

Fruits K-concentration 
 

The fruits’ K concentration was significantly influenced by the fertilization level (Table 5). As anticipated, 

the level K1 significantly displayed the lowest values. Compared with the medium fertilization K2, the 

supply of the fertilizer level K3 could only raise the K concentration in the two cocktail tomatoes. 

Instrumental and Sensory determined Color 
 

Instrumental analyzed color values increased significantly with rising K fertilization only in the cocktail 

cultivars, where the color – b value (yellow) of Yellow Submarine fruits and the color – a value (red) of 

Primavera fruits were more intense in K3 (Table 5). Based on the panelists’ evaluation, color intensity was 

increased significantly only in Primavera (Table 7). Consequently, the cultivar had a remarkable effect on 

the evaluation of color by instruments and human senses. The principal component analysis (PCA) in three 

cultivars confirmed the ANOVA results. In the PCA, color intensity and instrumental determined color were 

located closely to each other in Primavera (Figure 15) but distanced from each other in Lyterno F1 (Figure 

14) and Yellow Submarine (Figure 16). Additionally, the correlations of color intensity with the 

instrumental determined color were low and nonsignificant: color – a (r = 0.23) and color – b (r = 0.45) 

(Table A10). 

Volatile Organic Compounds and Odor Intensity 
 

Around 16 known volatile organic compounds (VOCs) were distinguished in this study and they comprised 

around 80 % of all the detected VOCs (Table 6). Most of them were not influenced significantly by K 

fertilization, while the main variations were related to a cultivar effect. For instance, in Lyterno F1, hexanal, 

(E)-2-hexanal, octanal, and ß-ionone decreased significantly with rising K supply, while these compounds



Sensory profile and instrumental analyzed attributes influenced by different potassium fertilization levels 

58 
 

exhibited no alterations as regards K levels in Primavera and Yellow Submarine. In addition, some of the 

detected VOCs were only found in red-colored cultivars, e.g. ß-ionone, ß-cyclocitral, and (E)-

geranylacetone, or only in yellow-colored cultivars like methylsalicylate (Table 6). Odor intensity was not 

affected by K application along the cultivars that were studied. These observations could be visualized with 

the previously mentioned PCA plots (Figures 14, 15, and 16), in which the odor intensity and most of the 

VOCs were less related to K3. Interestingly, odor intensity correlated in a significantly positive manner with 

only a few compounds—in particular, ß-ionone (r = 0.57**), (E)-2-hexenal (r = 0.64**), and benzaldehyde (r 

= 0.40**) (Table A10). 

Texture Parameters 
 

Similar to the VOCs, the cultivar background influenced the textural parameters analyzed by instruments 

or evaluated by the panelists. The firmness determined by a texture analyzer increased significantly only 

in Lyterno F1 and Yellow Submarine with rising K levels (Table 5). In terms of the sensory descriptors, skin 

strength increased significantly in Yellow Submarine, while a significant reduction in Primavera was found 

(Table 7). On the other hand, juiciness did not exhibit any significant alterations with K fertilization (Table 

7). In Figures 1 and 3 of the PCA plot, the firmness and skin strength exhibited a significant increase with 

K application and were associated closely with K3. 

Overall, the firmness correlated in a positively significant manner with skin strength (r = 0.42**), while 

juiciness did not significantly correlate either with firmness or with skin strength (Table A10). 

Relationship between Instrumental Analyses and Taste Attributes 
 

TSS and TA positively increased with rising K fertilization in the three cultivars (Table 5). DM was 

significantly rising in the cocktail cultivars, while in Lyterno F1 only a positive trend was observed (Table 

5). From the panelists’ perspective, sweetness and sourness increased significantly with higher K levels, 

though only in the cocktail cultivars (Table 7). Apparently, the cultivar effect was evident in the 

instrumental and sensory determined taste attributes. For instance, in Lyterno F1, TSS, TA, sourness, and
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DM grouped with optimal K3, while sweetness was decreased with rising K dose; consequently, it 

dissociated from K3 and approached the low K1 (Figure 14). Sweetness correlated significantly positively 

with TSS (r = 0.81**); likewise, sourness with TA (r = 0.76**) and DM correlated in a significantly positive 

manner as well with TSS (r = 0.95**), TA (r = 0.63**), sweetness (r = 0.79**), and sourness (r = 0.63**) (Table 

A10). 

Retronasal Attributes (Aroma) 
 

The aroma of the fruits was finally estimated by the panelists at the end of the sensory evaluation 

represented by aftertaste, tomato-typical aroma for red fruited cultivars—Primavera and Lyterno F1—and 

spiciness for Yellow Submarine. Application of K increased aftertaste in the studied cultivars though not 

significantly (Table 7). Tomato-typical aroma increased with rising K supply; significantly in Primavera and 

not significantly in Lyterno F1. In contrast, spiciness significantly rose with K application in Yellow 

Submarine (Table 7). These observations were visually acknowledged by PCA plots (Figures 14, 15, and 16). 

Aftertaste was associated with K3 in all cultivars. In the same way, tomato-typical aroma (Figures 14 and 

15) and spiciness (Figure 16) were linked to K3, confirming the ANOVA results.  

Correlations among tomato-typical aroma, spiciness, and the instrumental attributes as well as the VOC’s 

were identified. Tomato-typical aroma associated in a significantly positive manner with TSS (r = 0.83**), 

TA (r = 0.51**), DM (r = 0.74**), sweetness (r = 0.82**), sourness (r = 0.67**), odor intensity (r = 0.76**), 

hexanal (r = 0.44*), and (E)-2-hexenal (r = 0.48**). Interestingly, spiciness correlates significantly neither 

with instrumental nor with sensory determined attributes (Table A10). 
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Table 5. Mean values and standard deviation of taste-related attributes calculated for each K level (n=4) within the three cultivars Lyterno F1, Primavera, and Yellow Submarine. 

TSS: total soluble solids, TA: titratable acids. Color–a: estimated for Lyterno F1 and Primavera. Color–b: determined for Yellow Submarine. n.d. not determined. Letters indicate 

significant differences at p<0.05 between the K treatments. K1 low 0.5; K2 medium 2.19; and K3 optimal 3.66 g/plant. 

 

Instrumental 

analyzed Attributes 

Lyterno F1 Primavera Yellow Submarine 

K1 K2 K3 K1 K2 K3 K1 K2 K3 

K-content (%) 1.42b ± 0.11 2.48a ± 0.12 2.44a ± 0.17 1.21c ± 0.07 2.34b ± 0.07 2.66a ± 0.15 1.60c ± 0.11 2.29b ± 0.07 2.54a ± 0.15 

Color – a 21.09a ± 0.92 20.32a ± 0.7 20.77a ± 0.71 12.16b ± 0.45 16.81a ± 1.72 17.67a ± 1.25 n.d. n.d. n.d. 

Color – b n.d. n.d. n.d. n.d. n.d. n.d. 44.82b ± 2.71 49.48a ± 1.33 50.24a ± 1.94 

Firmness (kg/cm) 1.21b ± 0.34 1.59ab ± 0.08 1.79a ± 0.32 0.69a ± 0.03 0.82a ± 0.09 0.70a ± 0.11 0.75b ± 0.01 0.95a ± 0.10 1.03a ± 0.14 

TSS (%) 5.80b ± 0.43 6.45ab ± 0.44 7.30a ± 0.62 6.75b ± 0.3 8.45a ± 0.44 8.52a ± 0.19 8.25b ± 0.01 9.05b ± 0.01 10.45a ± 0.00 

TA (%) 0.26c ± 0.03 0.48b ± 0.03 0.53a ± 0.01 0.25b ± 0.02 0.48a ± 0.04 0.51a ± 0.02 0.34c ± 0.02 0.51b ± 0.08 0.65a ± 0.08 

DM (%) 7.76a ± 1.18 7.94a ± 0.73 8.99a ± 0.64 8.35b ± 0.42 9.92a ± 0.3 9.95a ± 0.61 10.18b ± 0.66 10.93b ± 0.76 12.44a ± 0.26 
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Table 6. Mean values and standard deviation of identified and unknown VOCs calculated for each K level (n=4) within the three cultivars Lyterno F1, Primavera, and Yellow 

Submarine. Values below the limit of detection (LOD) were indicated. Letters indicate significant differences at p<0.05 between the K treatments. K1 low 0.5; K2 medium 2.19; 

and K3 optimal 3.66 g/plant. 

VOCs Lyterno F1 Primavera Yellow Submarine 

Identified (%) K1 K2 K3 K1 K2 K3 K1 K2 K3 

hexanal  32.82a± 4.93 19.86b ± 6.19 19.46b ± 2.47 40.29 a ± 7.47 40.47 a ± 1.55 39.24 a ± 1.72 27.27 a ± 2.64 26.72 a ± 2.45 27.38 a ± 1.28 

(E)-2-hexenal  4.22a ± 0.81 3.65ab ± 0.32 3.01b ± 0.39 8.08 a ± 3.73 6.67 a ± 1.85 7.01 a ± 1.47 9.12 a ± 2.73 10.76 a ± 3.01 9.89 a ± 3.08 

octanal 5.26a ± 0.82 4.04ab ± 0.68 3.96b ± 0.35 4.48 a ± 1.11 3.64 a ± 0.31 4.14 a ± 1.89 1.35 a ± 0.96 1.73 a ± 0.21 1.59 a ± 0.12 

β-ionone 1.06a ± 0.23 0.36b ± 0.42 0.16b ± 0.33 1.98 a ± 0.68 1.73 a ± 0.23 1.83 a ± 0.73 <LOD <LOD <LOD 

β-cyclocitral 0.67 a ± 0.45 0.15 a ± 0.3 0.20 a ± 0.4 1.91 a ± 0.59 1.52 a ± 0.27 1.05 a ± 0.7 <LOD <LOD <LOD 

(Z)-3-hexen-1-ol 0.42 a ± 0.51 0.18 a ± 0.36 0.61 a ± 0.43 3.04 a ± 0.28 2.41 a ± 0.39 2.63 a ± 0.57 0.38 a ± 0.47 0.57 a ± 0.66 0.81 a ± 0.71 

linalool 0.67 a ± 0.45 0.77 a ± 0.55 0.57 a ± 0.75 0.41 a ± 0.47 0.27 a ± 0.32 0.25 a ± 0.29 1.23 a ± 0.42 1.67 a ± 0.84 1.46 a ± 0.6 

2-isobutylthiazole 17.11 a ± 3.49 27.28 a ± 7.23 27.77 a ± 7.61 11.57 a ± 1.59 11.49 a ± 1.53 11.30 a ± 2.25 24.43 a ± 3.21 22.64 a ± 4.97 23.58 a ± 4.01 

eugenol 0.48 a ± 0.39 0.47 a ± 0.4 0.77 a ± 0.47 1.18 a ± 0.94 0.77 a ± 0.82 0.88 a ± 1.07 0.22 a ± 0.25 0.38 a ± 0.25 0.36 a ± 0.04 

1-hexanol <LOD <LOD <LOD 1.7 a ± 0.28 1.63 a ± 0.39 1.34 a ± 0.97 0.19 a ± 0.39 0.43 a ± 0.51 0.51 a ± 0.44 

β-damascenone 0.31 a ± 0.36 0.86 a ± 0.77 0.66 a ± 1.11 0.86 a ± 1.05 0.64 a ± 0.81 0.68 a ± 0.78 0.75 a ± 0.67 1.50 a ± 1.09 1.71 a ± 1.17 

(E)-geranylacetone 10.19 a ± 1.99 8.05 a ± 2.2 6.98 a ± 1.29 4.58 a ± 1.83 6.32 a ± 1.69 5.94 a ± 0.75 <LOD <LOD <LOD 

6-methyl-5-hepten-2-
one 

19.93 a ± 4.22 28.05 a ± 4.62 28.71 a ± 5.83 14.39 a ± 5.3 17.67 a ± 1.58 16.72 a ± 5.78 27.59 a ± 2.93 23.84 a ± 3.69 23.25 a ± 2.84 

benzaldehyde  2.84 a ± 0.79 1.82 a ± 0.59 2.51 a ± 1.01 3.07 a ± 0.85 1.99 a ± 0.64 4.29 a ± 5.21 6.62 a ± 6.52 7.37 a ± 5.54 7.00 a ± 2.18 

citral 3.81 a ± 1.39 3.20 a ± 1.17 3.09 a ± 1.29 2.25 a ± 1.14 2.83 a ± 0.61 2.29 a ± 0.93 <LOD <LOD <LOD 

methylsalicylate <LOD <LOD <LOD <LOD <LOD <LOD 0.54 a ± 0.36 0.80 a ± 0.62 1.07 a ± 0.34 

unknown (%) 18.98 a ± 1.88 17.45 a ± 3.05 15.55 a ± 3.22 22.91 a ± 3.73 20.38 a ± 4.71 22.26 a ± 12.27 23.29 a ± 7.55 22.44 a ± 7.46 17.85 a ± 1.66 
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Table 7. Mean values and standard deviation of the sensory evaluation calculated for each K level (n=4) within the three cultivars Lyterno F1, Primavera, and Yellow Submarine. 

0 % refers to minimum intensity and 100 % to maximum intensity. Tomato-typical taste was not determined (n.d.) for Yellow Submarine and spiciness was not determined for 

Lyterno F1 and Primavera. Letters indicate significant differences at p<0.05 between the K treatments. K1 low 0.5; K2 medium 2.19; and K3 optimal 3.66 g/plant. 

 

Sensory Descriptors (%) 
Lyterno F1 Primavera Yellow Submarine 

K1 K2 K3 K1 K2 K3 K1 K2 K3 

Color intensity  63.5a ± 12.1 64.2 a ± 12.2 64.8 a ± 12.7 55.9b ± 12.1 73.2a ± 12.9 73.3a ± 15.3 58.9a ± 11.7 60.5a ± 11.4 58.4a ± 8.4 

Odor intensity 39.0 a ± 15.5 43.1 a ± 17.5 42.6 a ± 18.3 49.2 a ± 14.6 53.3 a ± 13.5 52.5 a ± 10.9 52.0 a ± 18.9 53.7 a ± 16.4 53.8 a ± 14.8 

Juiciness 67.5 a ± 13.9 66.1 a ± 15.2 64.7 a ± 16.11 78.8 a ± 14.1 78.2 a ± 14.1 77.5 a ± 12.9 72.1 a ± 14.5 75.0 a ± 14.4 74.7 a ± 12.9 

Skin strength 56.8 a ± 15.7 59.3 a ± 14.7 62.4 a ± 18.5 58.9a ± 12.5 56.9ab ± 12.5 51.6b ± 10.4 56.7b ± 13.0 55.5b ± 13.1 65.1a ± 12.6 

Sweetness 15.1 a ± 12.9 13.6 a ± 11.7 12.5 a ± 8.1 33.9b ± 15.5 40.0ab ± 15.6 43.7a ± 16.9 50.7b ± 17.1 57.2ab ± 15.7 59.7a ± 13.4 

Sourness 17.6 a ± 12.5 20.4 a ± 14.4 21.9 a ± 13.1 16.3b ± 12.3 25.2a ± 11.8 28.4a ± 15.3 20.3b ± 13.0 29.3a ± 14.1 35.3a ± 13.8 

Bitterness 8.2 a ± 9.7 7.1 a ± 8.1 8.8 a ± 11.3 10.1 a ± 12.8 7.0 a ± 8.7 6.3 a ± 6.1 9.87 a ± 11.5 9.06 a ± 9.7 12.35 a ± 14.7 

Spiciness n.d. n.d. n.d. n.d. n.d. n.d. 46.01b ± 17.8 53.7ab ± 18.8 57.4a ± 17.2 

Tomato-typical aroma 32.7 a ± 18.3 32.0 a ± 17.5 37.6 a ± 17.3 36.6b ± 14.4 52.9a ± 14.6 56.2a ± 14.2 n.d. n.d. n.d. 

Aftertaste 31.7 a ± 14.0 35.7 a ± 15.1 36.4 a ± 15.5 39.0 a ± 16.8 42.8 a ± 14.0 44.3 a ± 13.5 43.2 a ± 14.4 46.7 a ± 13.1 49.3 a ± 14.4 
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Figure 14. Principal component analysis (PCA) of the sensory evaluation (green), metric data (red), and VOCs (blue) 

for mature fruits of cv. Lyterno F1 with K supply as an independent variable. K1: 0.5, K2: 2.19, and K3: 3.66 g/plant 

weekly K dose, TA: titratable acidity, TSS: total soluble solids. Color intensity: estimated by the panelists. Color – a: 

measured by Minolta Chroma-Meter.
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Figure 15. Principal component analysis (PCA) of the sensory evaluation (green), metric data (red), and VOCs (blue) 

for mature fruits of cv. Primavera with K fertilization as an independent variable. K1: 0.5, K2: 2.19, and K3: 3.66 g 

plant-1 weekly potassium fertilization dose, TA: titratable acidity, TSS: total soluble solids. Color intensity: estimated 

by the panelists. Color – a: measured by Minolta Chroma-Meter.
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Figure 16. Principal component analysis (PCA) of the sensory evaluation (green), metric data (red), and the VOCs 

(blue) for mature fruits of cv. Yellow Submarine with K fertilization as an independent variable. K1: 0.5, K2: 2.19, and 

K3: 3.66 g plant-1 weekly potassium fertilization dose, TA: titratable acidity, TSS: total soluble solids. Color intensity: 

estimated by the panelists. Color – b: measured by Minolta Chroma-Meter. 
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Discussion 
 

In the present study, the effects of different K applications on the instrumental as well as the sensory 

descriptors on three different cultivars were investigated. In all cultivars, increasing K fertilization to the 

optimal level significantly ameliorated the K concentrations in the fruits (Table 5). This confirmed our 

outcomes in the previous research (30), in which the fruit’s content of K and the yield of the cocktail 

tomatoes used in this study were significantly increased by K fertilization. As a major macronutrient, the 

plants manage to maintain K concentrations in a specific range even under deficient K conditions (12). A 

constant limitation of K nutrition, however, leads to a decrease in K concentrations; in contrast, sufficient 

K application increases K concentrations (15), which was confirmed by our results as well (Table 5).  

Effect of K Fertilization on Instrumental and Sensory determined Color 
 

The color is the most important external property for the evaluation of tomato fruits (31). In our study, a 

positive significant effect of K fertilization was exhibited (Table 5 and 7) and compatible results were found 

between the red color intensity and the instrumental analyzed red color measurement in Primavera. In 

Lyterno F1 as well, the panelists confirmed the instrumental analyzed color measurement, in which no 

significant effect of K supply was revealed. Fertilization of K has a positive effect on the color intensity, as 

has been demonstrated by several researches (e.g. 3,15). Arias et al. (2000) (32) demonstrated high 

significant correlations between carotenoids content in tomato and color – a and color – b, such that in 

this context, a positive increment of K fertilization on lycopene and phytoene in tomato was confirmed 

(19). 

In Yellow Submarine, the sensory analysis of color intensity showed no significant effect of K, which 

contradicted the instrumental analyzed color evaluation. Yellow tomatoes are not as widely common as 

the red ones, and one can presume that the panelists in this matter were not be able to differentiate 

between the yellow color intensity among K fertilization levels, because of their slight experience of yellow 

tomato consumption. In line with this, the assessor effect on results of sensory descriptor color
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was proven to be significant for all cultivars (Table A9), indicating a higher variation between the panelists’ 

evaluation compared to the samples derived of different K fertilizer levels.  

All in all, the instrumental and the sensory color attribute affected by K fertilization was cultivar-

dependent, as the K fertilization significantly increased the instrumental analyzed color in the cocktail 

cultivars, while in the salad cultivar, no significant effect was detected. Accordingly, several studies pointed 

out the remarkable cultivar effect on color values under K application (e.g. 15,17). 

The instrumental analyzed color did not correlate with the color intensity of sensory results and also 

Csambalik et al. (2014) (33) did not find that as well in their study on cherry tomatoes. 

Effect of K Fertilization on Volatile Organic Compounds and Sensory Determined Aroma 
 

The VOCs were analyzed by GC-FID to gain deeper insights into the possible changes in the aroma of 

tomato fruits by differing K supply. In combination with the instrumental analysis of VOCs, the odor 

intensity as a sensory descriptor was estimated by panelists. Of all the VOCs determined, only four were 

influenced significantly—although negatively—by K application in the salad cultivar ‘Lyterno F1’.  

The volatile compounds in tomatoes are derived from secondary metabolites such as fatty acids, phenolics, 

amino acids, and carotenoids (23). Hexanal and (E)-2-hexanal, which are being formed from the 

degradation of fatty acids, showed a significant decrease with increasing K fertilization in Lyterno F1. That 

could have been caused by the changes in the peroxidation of the fatty acids under stress conditions (K 

deficiency), as was observed by Wang et al. (2013) (34). In addition, these compounds are classified as 

green leafy volatiles as they have the fresh aroma of cut grass (35). Presumably, under sufficient K supply, 

the fruits developed to the full ripe stage better than under K-deficiency and lessened the green grass 

odor; as was stated, K provokes early maturity of fruits (36). 

Similarly, ß-ionone—derived from the apocarotenoids (23)—decreased significantly by K supply but only 

in Lyterno F1. Apocarotenoids are derived from carotenoids by oxidative cleavage. The cleavage of 

carotenoid induces rapidly under stress conditions when a non-enzymatic process catalyzed by reactive
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oxygen species (37). Taking this into account, the studied plants were exposed to stress conditions 

represented by K deficiency (K1), and, thus, the production of ß-ionone increased in Lyterno F1 at deficient 

K supply. The cultivar effect was evident for the VOCs, which was confirmed by Wang et al. (2018) (38) and 

Kanski et al. (2020) (22), as they found differences in aroma profile among different tomato cultivars. 

Odor intensity correlated in a significantly positive manner with ß-ionone, (E)-2-hexenal, and 

benzaldehyde. Vogel et al. (2010) (39) pointed out that ß-ionone has fruity and floral perceptions, which 

can be positively associated with the acceptability of tomato flavor. The significant correlation of (E)-2-

hexenal with odor intensity is in agreement with Baldwin et al. (1998) (40), as they found a high positive 

significant correlation (r = 0.62**) between (E)-2-hexenal and the overall aroma intensity in seven tomato 

salad cultivars. Benzaldehyde is described as having a peach-like/fruitiness perception (41,42), and it 

belongs to the group of phenolic volatiles in tomato fruits (23). In our study, benzaldehyde correlated in a 

significantly positive manner with odor intensity. Baldwin et al., (2015) (41) also found a positive significant 

correlation of benzaldehyde with tomato flavor along a seven-year study with 38 tomato cultivars. 

Effect of K Fertilization on Instrumental and Sensory Determined Texture 
 

With the sense of touch, either when the product is picked up by hand or gets bitten off in the mouth and 

is chewed, the textural parameters of vegetables and fruits can be perceived. Physiologically, the texture 

of fruits and vegetables is derived from their turgor pressure, and the combination of individual plant cell 

walls and the middle lamella, which holds the cells together (43). In this context, it has been stated that K 

supply can result in an enhancement of the tissue firmness (15,44) by increasing the osmotic potential as 

a result of the increment of cytosolic K and the accumulation of photosynthetic assimilates (14).
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Instrumental determined firmness increased with optimal K dose (K3) in Lyterno F1 and Yellow Submarine. 

Accordingly, the sensory descriptor skin strength rose significantly in Yellow Submarine and showed a 

similar—although not significant—trend in Lyterno F1. However, we observed the opposite effect in 

Primavera (Table 3). Consequently, the results of Javaria et al. (2012) (16) and Tavallali et al. (2017) (17) 

could be confirmed by our findings that the positive effect of K on the tissues firmness and skin strength 

was partly revealed. The instrumental determined firmness and the sensory parameter skin strength are 

highly positive correlated (0.42**). Hence, the effect of K fertilization on the texture in this study has been 

confirmed by instruments as well as by human senses. Thus, the second hypothesis—the effect of K 

fertilization on the sensory properties can be recognized by the human senses—can be demonstrated. 

Juiciness is one of the most important sensory characteristics and a favorable attribute in most food 

products (meat, fruits, and vegetables). It is highly correlated to the texture of the plant tissues, in which 

the juiciness is associated with the cell turgor (43). K has been pointed out to be essential to cell turgor 

and the accumulation of photosynthetic products into the plant cell (46). Nonetheless, our results 

exhibited no significant effect of K on juiciness. Chaïb et al., (2007) (47) stated that the firmest tomato 

fruits with a strengthened skin were less juicy. Accordingly, juiciness correlated in a significantly negative 

manner with firmness and skin strength in the salad tomato (Lyterno F1). It has to be considered that the 

descriptor juiciness was elaborated by the sensory panel to distinguish juicy fruits from other fruits with 

less juiciness and more granular dry tissues. It can be assumed—based on the evaluation of the panel—

that fruits of salad cultivars appeared to have a generally more granular tissue than those of cocktail 

cultivars. 

The cultivar effect was also noticeable for the instrumental determined firmness (Tables 5 and 7). Our 

results confirm that the texture is a complex attribute, which can be affected highly by the genetic 

background of the cultivars (47).
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Effect of K Fertilization on Instrumental and Sensory determined Taste 
 

The taste of tomatoes is mainly derived from reducing sugars, organic acids, and bitter compounds. 

However, as it is abundant in relatively high concentrations, the higher impact is related to sugar (2.6 g 

100 g/FM) (48,49). Many studies have demonstrated that rising K supply increases the contents of sugar 

and organic acids (e.g. 15,52). In line with this, K dose exhibited a positive significant impact on TSS and TA 

contents in the three cultivars (Table 1). Likewise, the sensorial sweetness and sourness increased 

significantly with high K fertilization, though only in Primavera and Yellow Submarine, but not in Lyterno 

F1 (Table 5). In this context, Kanski et al., (2020) (22) found in their study on three tomato cultivars and 

two breeding lines that TSS and TA as well sweetness and sourness were highly influenced by the genetic 

background of the cultivars.  

Taking into account the correlations between the instrumental and sensorial attributes, TSS and TA 

correlated highly positive with sweetness (0.81**) and sourness (0.76**) respectively. Therefore, the 

outcomes of Kanski et al. (2020) (22) could be confirmed by our findings, as they proved a high positive 

correlation between TSS and sweetness as well as between TA and sourness. 

Apart from TSS and TA, DM is considered to exert a strong influence on tomato taste as it is correlated 

positively with sugars like fructose and glucose (22,51). The positive effect of K was stated to increase DM 

in tomato fruits (16,52), which is because of the function of K in translocating and accumulating the 

assimilated ‘sugar’ in the cytosol (11). We were able to prove these previous findings, as we showed that 

increasing the supply of K increased the DM values in the cocktail cultivars but not in the salad one. Here, 

the water content in the cells and the type of the cultivar have a prominent effect on DM content (6). 

Interestingly, DM correlated in a significantly positive manner not just with TSS (r = 0.95**) and TA (r = 

0.63**) but also with sweetness (r = 0.79**) and sourness (r = 0.63**), which could lead to a new approach 

to enhance cocktail tomato taste under sufficient K fertilization.
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The bitter taste is desirable in some products like coffee and beer (21). However, the bitter taste in tomato 

is not much of a favorite as far as consumers are concerned (53). Interestingly, the sensory evaluation in 

the present study exhibited no significant increment of K supply on the bitterness. The sweet compounds 

have been reported to restrain the bitter taste (6), which is compatible with our findings in Primavera, in 

which K can increase sweet taste and reduce bitter taste. Moreover, bitterness had neither positive nor 

negative significant correlations with any instrumental analyzed or sensorial attributes.  

Effect of K Fertilization on Retronasal Attributes (Aroma) 
 

Tomato flavor is defined by several studies as a complex impression caused by sugar content, organic acids, 

bitter compounds, and volatile compounds precepted retronasally (22,41,54). In our study, the descriptors 

tomato-typical aroma and aftertaste correlated in a significantly positive manner with TSS (r = 0.76**), TA 

(r = 0.46**), sweetness (r = 0.71**), and sourness (r = 0.68**), which are in line with the previous studies of 

Baldwin et al. (2015) (41) and Kanski et al. (2020) (22). The positive correlations between TSS, sweetness 

and aroma intensity found in the present study are also in accordance with the findings made in the case 

of strawberries (55,56). However, tomato-typical aroma correlated positively with odor intensity but 

negatively with hexanal and (E)-2-hexenal. This was surprising; hexanal and (E)-2-hexenal together 

comprised a high percentage (in Lyterno F1: 22–37 %, in Primavera: 36–48 %) of the known detected VOCs, 

and were expected to be associated with tomato-typical aroma. Rambla et al. (2014) (23) reported that 

the VOCs—hexanal and (E)-2-hexenal—have the most abundant volatile compounds produced in tomato 

fruits. Nevertheless, the influence of these compounds on tomato flavor has been a matter of discussion. 

Some researchers observed a diminution in the effect of these compounds on tomato flavor and no effect 

on consumer liking (8,57). In our findings, these two compounds were decreased with rising K fertilization 

and seem not to contribute to the tomato-typical aroma (Table 5A). Instead, the sugar and acid content 

seemed to be more relevant for this descriptor.
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It was a consensus of the panel that the tomato-typical aroma could be attributed to Lyterno F1 and 

Primavera, while the flavor of Yellow Submarine was different. Tomato-typical aroma did not match the 

flavor of the yellow cultivar. Moreover, the panel described Yellow Submarine as having a spicy flavored 

fruit. 

Increasing K supply resulted in a significant increase in the descriptor spiciness in Yellow Submarine. Some 

VOCs mainly characterize the spiciness in tomato puree (58)—for instance, 4-methyl-1,5-heptadiene and 

6-methyl-3,5-heptadien-2-one. In our study, however, these substances were not detected. Among the 

determined VOCs, eugenol was stated to be associated with the smoky aroma in fresh tomato fruits (59). 

It was supposed that the attribute spiciness described by the panelists in this research is closely related to 

the attribute smoky. Nonetheless, eugenol did not significantly correlated to the spiciness as it was found 

by Tikunov et al. (2013) (59). The reason for this finding might be the effect of K on eugenol,because K 

fertilization was reported to increase eugenol concentrations (60), which was consistent with our results.  

Remarkably, the panelists were able to detect the positive increment of optimal K fertilization on tomato-

typical aroma and spiciness; this can enhance the possibilities of a new approach in increasing tomato 

flavor with rising K application. 

Conclusion 
 

In this study, the effect of K on instrumental determined and sensory traits could be demonstrated. In this 

context, the following conclusions are drawn: (i) Optimal K application—3.66 g/plant—increased the 

instrumental analyzed attributes and some of the sensory descriptors, such as sweetness, sourness, and 

tomato-typical aroma. Nevertheless, it did not significantly increase the identified VOCs. (ii) The panelists 

were able to distinguish between the three K fertilization levels with the human senses, as confirmed by 

the instrumental analyses. (iii) Sugars (sweetness and TSS), acids (sourness and TA), and aroma attributes 

(odor intensity, hexanal, and (E)-2-hexenal) were positively associated with tomato-typical aroma and
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aftertaste. The cultivar background had a fundamental influence on both instrumental analyzed and 

sensory attributes and, finally, on tomato flavor. In this study, cocktail cultivars—Primavera and Yellow 

Submarine—exhibited higher aftertaste and tomato-typical aroma compared to salad cultivar Lyterno F1.  

Consequently, optimal K supply—3.66 g/plant—could be suggested to increase tomato flavor in the 

studied cocktail cultivars. The flavor of the tomato is a complex perception and is affected by many factors 

from seed-sowing to the harvest, which needs further investigations to elucidate it comprehensively. 
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5. General discussion 
 

Among many factors influencing tomato plants, optimized plant nutrition is an essential factor that has a 

crucial impact on plant growth and fruits quality (Sainju et al. 2003). Knowledge regarding effect of 

excessive K fertilization on water use efficiency (WUE), fruits quality, and mineral composition is limited. 

The effect of K combined with B fertilization on fruits postharvest behavior is not so far studied. Moreover, 

sensory profile combined with instrumental analyses influenced by K fertilization was rarely pointed out. 

Therefore, effect of various K fertilizations on tomato was investigated in this study and the outcomes are 

discussed following.  

Effect of K on Yield and Water Use Efficiency  
 

Tomato yield being positively affected by different K fertilizations was markedly studied (e.g. Bidari and 

Hebsur 2011; Hartz et al. 2005; Mazed et al. 2015). However, the excessive effect of K on marketable yield 

is not clear, some investigations reported no significant effect on total yield (e.g. Ozores-Hampton et al. 

2012; Taber et al. 2008). Therefore, different K levels from deficient to excessive were applied to two 

cocktail cultivars – Primavera and Yellow Submarine. The marketable yield per plant increased in 

Primavera with rising K until the optimum supply of K4 (Figure 3). While, in Yellow Submarine the 

marketable yield was the highest at the excessive supply of K6 (Figure 3). This is likely due to the variations 

between the studied cultivars – Primavera produces more fruits per plant about 60 fruits per growing 

season, while Yellow Submarine produces only around 40 fruits per growing season. Both cultivars can 

grow to a maximum height of 180 cm; however, the fruit weights differ, that is, up to 25 and 20 g per fruit 

for Primavera and Yellow Submarine respectively (Bio Tomatenpflanze 2018). Additionally, Primavera 

produced higher biomass compared to Yellow Submarine (Annex, Figure A4), which can also be another 

reason for the differences in marketable yield with regard to K application. Higher biomass can result in 

increased yield as reported by Koch et al. (2018) in potato tubers yield. In this context, Afzal et al. (2015) 
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reported variations in fruit yield of two different medium sized tomato cultivars treated with excessive K 

fertilizations. 

The WUE increased with rising K fertilization levels. However, the response to K supply with regard to WUE 

varied between the cultivars. The maximum WUE was at optimal K supply (K4) in Primavera, while Yellow 

Submarine showed the highest WUE at the excessive supply of K (K6) (Figure 2). The WUE is strongly 

affected by weather conditions, cultivation systems, and crop diversity (Abbate et al. 2004). As both 

cultivars have different morphological characteristics, that might account for these alterations with 

regards to WUE.     

Effect of K on the Nutritional Composition of Fruits 
 

The content of TSS and TA is associated to the sweet and sour taste of tomatoes (Beckles 2012), which are 

major contributors to the overall flavor. Three cultivars - one salad; Lyterno and two cocktails; Yellow 

Submarine and Primavera were grown in 2016 for fruits nutritional analyses, while only the cocktail 

cultivars were analyzed in 2017. The fruits content of TSS, TA, and DM ameliorated with K application in 

the two experimental years (Chapter 2 and 4). In 2016, TSS, TA, and DM were higher in Yellow Submarine 

and Primavera compared to Lyterno (Table 5). That is likely due to the dilution effect in the salad cultivars 

as they have higher water content compared to cocktail cultivars (Pascual et al. 2013). Additionally, 

cocktail cultivars have higher TSS content compared to salad cultivars (Gautier et al. 2010; Luengwilai et 

al. 2010). Here, Yellow Submarine recorded the highest content of TSS, TA, and DM and a significant 

increase with K supply in both years 2016 and 2017. While Primavera responded positively with rising K 

only in 2016 regarding TSS, TA, and DM content. That is presumably, due to the different environmental 

conditions e.g. temperature and light between the two years, as TSS and TA content are highly influenced 

by those conditions (Beckles 2012). 
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Fruit mineral composition showed higher content of K, Mg, P, Fe, and Zn with increasing K supply in Yellow 

Submarine compared to Primavera (Table 1). In this case, the accumulation of these minerals in Yellow 

Submarine was noteworthy higher, and the application of K stimulates higher uptake of those minerals. It 

has been reported that K uptake varies amongst plant species as a result of differences in their root 

structures (Nieves-Cordones et al. 2014). In this study, root structures were not estimated, however, there 

were varied concentrations of K in the fruits of both cultivars. 

Effect of K and B Fertilization on Fruits Postharvest Behavior 
 

The interaction effect of K and B on tomato has been studied (Huang and Snapp 2009); however, in this 

study, the effect was evaluated on postharvest behavior. The fruits were evaluated under two different 

factor effects; K and B interaction and different storage temperatures. Antagonism between K and B rarely 

occurs during plants’ uptake, as K is needed in larger amounts compared to B, as well as K transporters in 

the plants are specific and cannot be blocked by any other nutrients (Horie et al. 2011; White 2012). 

However, in this study, optimal K combined with low B application exhibited the highest contents in the 

determined attributes in both cultivars and storage conditions. In refrigerated + ambient conditions, the 

function of K mitigating the negative effect of cold stress on the fruits was notable especially in putrescine. 

In this context, many studies have reported that sufficient K is considered to decrease reactive oxygen 

species load of chilling-stressed plants (e.g. Cakmak 2005; Zörb et al. 2014). The effect of storage 

temperature on the fruits was higher compared to the effect of K and B, that in ambient conditions (20 °C) 

the fruits developed higher color intensity, DM, and lower LFM. The content of TSS and TA did not vary 

between the two storage conditions, and that is probably due to the positive effect of K on TSS and TA 

content during cold storage (Constán-Aguilar et al. 2014). The stored fruits in refrigerated + ambient 

conditions lost less fresh matter compared to the fruits stored in ambient conditions. Here, the function 

of K diminishing these losses was not remarkable as was suggested by Constán-Aguilar et al. (2014). 

Additionally, metabolite processes are usually suppressed in lower temperatures (Mutari and Debbie 
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2011). The cultivar effect was noteworthy on the fruits’ behavior in postharvest storage. The content of K 

in Yellow Submarine fruits was slightly higher compared to Primavera, which led indirectly to a 

considerable development in fruit quality formation. Yellow Submarine fruits produced more TSS, TA, and 

DM, and less CI and LFM, which qualifies this cultivar for postharvest practice and handling compared to 

Primavera.  

Effect of K on Sensory Profile of Tomato 
 

Knowledge regarding sensory evaluation under conditions of K fertilization is incomplete. In this study, 

three different tomatoes were used; cocktail cultivars - Primavera and Yellow Submarine and salad cultivar 

- Lyterno that were fertilized by three levels of K nutrition. The sensory evaluation showed that the cocktail 

tomatoes recorded the maximum values from the panelists’ perspectives (Table 7). This is likely due to 

that consumers prefer small to medium sized tomato therefore consumption of cocktail tomatoes is higher 

compared to salad cultivars (Causse et al. 2010). Yellow Submarine was rated the highest in sweetness, 

sourness, odor intensity, and spiciness as well as showed highest TSS, TA, and DM content. In this context, 

a good flavor of tomato is defined as having balanced concentrations of sweetness, sourness and aroma 

(Beckles 2012; Kader 2008). The application of K fertilization was perceptible by the panelists as they could 

detect the increment in taste of fruits treated by optimal K supply. However, this was not exposed in 

Lyterno F1, the salad cultivar, which is likely due to the dilution effect as it has low DM compared to the 

cocktail tomatoes (Table 5). Due to recent consumer complaints and dissatisfaction of poor flavored 

tomatoes, offering them good flavored cultivars is a priority of producers (Piombino et al. 2013). 

Therefore, enhancing tomato flavor, in addition to ensuring higher yields and longer shelf life after harvest, 

are important aspects to consider in tomato (Kader 2008). 

Conclusion 
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Excessive K fertilization decreased marketable yield and conversely increased unmarketable yield. The 

excessive K supply negatively influenced fruits quality e.g. TSS, TA, DM, which are indirectly affecting the 

marketable yield. Likewise, deficient supply of K decreased marketable yield, WUE, and nutritional 

composition of the fruits e.g. TSS, TA, DM, and minerals e.g. K, Mg, Fe, Zn.  Consequently, using excessive 

K fertilization cannot generate acceptable marketable yield, less usage of water, or better fruits quality 

but it leads to a waste in K fertilization resources.   

Fruit quality formation during postharvest period decreased at K and B deficiency level, with stronger 

influence of K compared to B supply. The LFM, CI, and FA were not affected by the application of K and B, 

while TSS, TA, and DM increased with high K but not B supply. Only PUT content decreased with rising 

supply of K fertilization, this is indicative of the role of K inhibiting the negative effect of cold stress. The 

combination of B and K fertilization did not improve the behavior of the fruits during the postharvest 

period as hypothesized; rather, the dominant effect was shown by the K application. Nevertheless, it would 

be interesting to further investigate the effect of B on fruit quality during storage, including the type of B 

application. 

The application of K fertilization has been shown to influence the sensory and the instrumental analyzed 

attributes as well. Sweetness, sourness, tomato-typical taste alongside TSS, TA, DM, and firmness were 

ameliorated with increasing K supply. The fertilization of K can enhance tomato flavor in cocktail cultivars. 

Finally, the cultivar effect in this study was remarkable on the determined parameters. Yellow Submarine 

exhibited superiority in nutritional composition of the fruits, sensory evaluation, and considerable 

performance during postharvest period. However, it generated lower yield and was less efficient in water 

usage. Overall, in this research, the optimal application of K (3.66 – 4 g plant-1) can contribute positively to 

tomato yield, postharvest behavior, and sensory profile. The two cocktail cultivars, Yellow Submarine and 

Primavera, showed positive response to K fertilization. Therefore, with optimal K fertilization, Primavera 
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can be recommended for its high yield and water use efficiency, while Yellow Submarine can be suggested 

for its high fruit quality formation during postharvest period and acceptable flavor.
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Figure A1. The habitus of the studied cultivars, Primavera and Yellow Submarine, in this present research. 

 

 

 

 

 

 

 

 

Figure A2. The distribution of gauges (marked by arrows) between plants to estimate precipitation during the 

growing season. 

 

 

 

 

 

 

Figure A3. The fruits in this study. (1) Healthy and intact marketable fruits; (2) BER symptoms; (3) Cracked 

fruits; and (4) Abnormal and small-size fruits.  
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Figure A4. Biomass (stem + leaves) weight in the two cultivars. Values are means (n=6) with standard deviation 

on each bar. The significance level (5%) was chosen for identifying significant effects of K treatment according 

to Tukey’s test. Lower case letters determine significant differences in Primavera. Capital letters identify 

significant differences in Yellow Submarine.  

 

 

 

 

 

 

 

 

 

 

Figure A5. K concentrations in the biomass (stem + leaves) in the two cultivars. Values are means (n=6) with 

standard deviation on each bar. The significance level (5%) was chosen for identifying significant effects of K 

treatment according to Tukey’s test. Lower case letters determine significant differences in Primavera. Capital 

letters identify significant differences in Yellow Submarine.  

 

 

 

 

 

 

Figure A6. Maturity stage of used fruits -Primavera cultivar- in this study. (A) Fruit in breaker stage. (B) Fruit in 

full ripe stage. 
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Table A1. Application of fertilization during the growing season (May - September 2017) for the studied 

cultivars. 

Fertilization Chemical g per plant Application 

N 
Ca(NO3)2 + NH4NO3 9.22 + 1.56  

weekly for levels K3 to K6, each 

second week for levels K1 and K2  

(NH4)2SO4 2.32  Second week for levels K1 and K2 

   (to balance the Sulfate) 

Mg MgSO4•7H2O 19  Three times per growing season:  

- final transplanting 30.05.2017 

- second time 20.07.2017 

- third time 25.08.2017 

Fe Fe-EDTA 0.71 

Mixture of  

micronutrients 

MnCl2•4H2O + ZnSO4•7H2O + 

CuSO4•5H2O + Na2MoO4•2H2O 

+ H3BO3 

0.26 + 0.05 + 0.02 + 

0.0005 + 0.21  

P Ca(H2PO4)2 •xH2O 17.70  one time at final transplanting 

S K2SO4 and (NH4)2SO4                          Sufficient supply by K and N fertilization 

 

Table A2. Precipitation (mm) during growing season (May - September 2017). DWD: German Weather Service. 

 

Date In exposed area Under plants DWD 

03.06. 16.5 14.41 20.5 

06.06. 5.3 4.9 4.3 

16.06. 4 3.07 3.1 

23.06. 32 29.91 36 

29.06. 8.25 10.23 9.4 

10.07. 34.35 25.55 16.7 

12.07. 11.5 10.04 16.2 

17.07. 17 12.31 6.5 

19.07. 18 19.16 12.6 

01.08. 15.25 17.65 13.2 

16.08. 33.5 38.83 35.7 

26.08. 31.25 22.83 23 

12.09. 8 7.16 7.6 

28.09. 8.35 7.14 7 

Total 243.25 223.19 211.8 
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Table A3. Number of fruits used from each cultivar for the conducted analyses; TSS: total soluble solids; TA: 

titratable acids and DM: dry matter. 

 Analyses Primavera Yellow Submarine 

TSS, TA and DM 4 to 6 4 to 6 

Minerals extraction 15 to 20 15 to 20 

Color  35 to 40 35 to 40 

 

Table A4. Application of fertilization during the growing season (May - September 2017) for the studied 

cultivars. 

Fertilization Chemical g per plant Application 

N 

Ca(NO3)2 + NH4NO3 9.22 + 1.56  
weekly for levels K2-B and K2+B, 
each second week for levels K1-B 
and K1+B  

(NH4)2SO4 2.32  
Second week for levels K1-B and 
K1+B (to balance the Sulfate) 

Mg MgSO4•7H2O 19  Three times per growing season:  

- final transplanting 30.05.2017 

- second time 20.07.2017 

- third time 25.08.2017 

Fe Fe-EDTA 0.71 

Mixture of  

micronutrients 

MnCl2•4H2O + ZnSO4•7H2O + 
CuSO4•5H2O + Na2MoO4•2H2O 

0.26 + 0.05 + 0.02 + 
0.0005 

P Ca(H2PO4)2 •xH2O 17.70  one time at final transplanting 

S K2SO4 and (NH4)2SO4                          Sufficient supply by K and N fertilization 

 

Table A5. Mean of the individual fatty acids FA content in both cultivars.  

    Saturated FA (%)   Unsaturated FA (%) 

    C16-0 C18-0 C20-0 C22-0   C16-1 C18-1 C18-2 C18-3 C20-1 

Primavera 

K1-B 13.67 3.94 0.42 0.18   0.59 15.24 60.05 4.61 0.12 

K1+B 13.49 3.65 0.39 0.17   0.58 14.92 60.75 4.67 0.13 

K2-B 13.81 4.07 0.43 0.18   0.57 16.01 59.09 4.47 0.12 

K2+B 13.18 3.87 0.40 0.16   0.54 15.96 60.30 4.24 0.12 

                        

Yellow 
Submarine 

K1-B 14.85 4.15 0.44 0.17   0.74 15.43 57.06 5.37 0.13 

K1+B 14.02 3.87 0.38 0.16   0.60 15.28 59.61 4.72 0.12 

K2-B 14.05 4.52 0.42 0.14   0.57 16.52 57.31 4.65 0.12 

K2+B 14.05 4.32 0.38 0.11   0.53 16.34 58.10 4.59 0.09 
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Table A6. Application of Fertilization during the growing season (May - September 2016) for the studied 

cultivars. 

Fertilization Chemical g plant-1 Application 

K1 K2SO4 0.5  weekly 

K2 K2SO4 2.19  weekly 

K3 K2SO4 3.66  weekly 

N 
Ca(NO3)2 + NH4NO3 9.22 + 1.56  

weekly for level K3, second week 
for levels K1 and K2  

(NH4)2SO4 2.32  Second week for levels K1 and K2 

   (to balance the Sulfate) 

Mg MgSO4•7H2O 19  Three times per growing season:  

-final transplanting 24.05.2016 

-second time 16.07.2016 

-third time 26.08.2016 

Fe Fe-EDTA 0.71 

Mixture of  

micronutrients 

MnCl2•4H2O + ZnSO4•7H2O + 
CuSO4•5H2O + Na2MoO4•2H2O 

+ H3BO3 

0.26 + 0.05 + 0.02 + 
0.0005 + 0.21  

P Ca(H2PO4)2 •xH2O 17.70  one time at final transplanting 

S K2SO4 and (NH4)2SO4 Sufficient supply by K and N fertilization 

 

Table A7. Number of fruits used from each cultivar for the conducted analyses; TSS: total soluble solids; TA: 

titratable acids and DM: dry matter. 

 Conducted Analyses Lyterno F1 Primavera Yellow Submarine 

o Sensory evaluation 4 to 6 12 to 24 12 to 24 

o VOCs extraction 3 to 5  8 to 10 8 to 10 

o Instrumental Analyses:    

TSS, TA, and DM 2 to 3 4 to 6 4 to 6 

Firmness and minerals extraction 6 to 10 15 to 20 15 to 20 

Color 15 to 20 35 to 40 35 to 40 
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Table A8. classification of descriptors according to the kind of sensory impression. The evaluation order was 
established by the panel and is not equal to order of the classification. Detailed information is given on the 
evaluation instructions for the panel. 

 

Sensory 
impression 

Order  Descriptor Evaluation instructions  

Appearance 1 
color 
intensity 

A self-made reference template with a color standard 
representing 50% color intensity either for red or for yellow 
fruits was used by the panelists. The evaluation was carried 
out on the fruit skin and not on the cross-sectional view of 
the fruit. 

Smell (orthonasal 
olfactory 

impression) 
2 

odor 
intensity 

Odor intensity is defined as the smell of the freshly sliced 
fruit. 

Tactile or haptic 
impression 

3 juiciness 

The juiciness of the fruit is represented mainly by the 
mesocarp, placenta, and myxotesta (pulp and jelly) after 
biting in. These fruit parts had to be mixed by slight chewing. 
’Weak‘ is defined as a granular dry tissue. ’Strong‘ is defined 
either crispy and fresh but watery tissue or a very soft and 
watery / liquid tissue of a ripe to overripe tomato. 

8 
skin 
strength 

’Weak‘ means that the peel is easily broken during chewing. 
’Medium‘ (50 %) means that a peel residue is clearly 
recognizable. ’Strong‘ also means that a peel residue is 
clearly recognizable and moreover the peel appears to be 
very thick. 

Taste (gustatory 
impression) 

4 sweetness 

For evaluating the taste, it was not differentiated between 
jelly and pulp. The fruit parts had to be mixed by slight 
chewing. To compare with samples, the reference fruits 
were provided with a defined sweetness and sourness. 
Sweetness was calculated based on the total soluble solids 
that were measured with a refractometer in advance, while 
sourness was calculated based on the titratable acidity. 

5 sourness without instruction 

6 bitterness without instruction 

Retronasal smell 
(aroma) 

7a spiciness 

A spicy-like aroma was recognized only for yellow-fruited 
cultivars. The panel was trained with a yellow-fruited cultivar 
(cultivar Yellow Nugget) from a local supermarket set as a 
standard for this descriptor. The instruction was to taste the 
standard each day before starting the evaluation of samples. 

7b 
tomato-
typical 
aroma 

The tomato-typical aroma was recognized only for red-
fruited cultivars. The panel was trained with a red-fruited 
cocktail tomato cultivar (biologically produced date tomato, 
cultivar unknown) from a local supermarket set as a standard 
for this descriptor. The instruction was to taste the standard 
each day before starting the evaluation of samples. 

Aftertaste 9 aftertaste 
The intensity of aftertaste was evaluated half a minute after 
swallowing. 
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Table A9. 2-Way ANOVA of sensory data showing the main effects of assessor and sample deriving of K 

fertilization level and the interaction of factors assessor*sample. F-values are displayed, and the significance 

value is indicated by asterisks (*, **, *** significant at p ≤ 0.05, 0.01, 0.001; n.d. not determined).  

 

 Lyterno F1 Primavera Yellow Submarine 
 

Sensory 

descriptor Assessor 

Sampl

e 

Assessor* 

sample Assessor Sample 

Assessor

* 

sample Assessor Sample 

Assessor* 

sample 

Color intensity 12.81*** 0.24 1.36 5.41*** 26.41*** 1.76* 7.49*** 1.33 0.39 

Odor intensity 18.06*** 1.8 0.97 8.55*** 2.38 0.84 22.88*** 0.5 0.99 

Juiciness 10.71*** 0.7 1.12 28.37*** 0.37 1.26 84.73*** 5.79** 0.32 

Skin strength 5.73*** 2.02 0.85 5.86*** 6.26** 1.18 3.56** 7.23** 1.61 

Sweetness 6.87*** 0.62 2.82*** 8.37*** 6.33** 1.32 4.63** 3.77* 2.13** 

Sourness 12.15*** 2.22 1.17 4.44** 8.49** 2.6*** 7.36*** 17.97*** 1.56 

Bitterness 8.85*** 0.68 0.87 7.97*** 1.94 5.43*** 9.82*** 1.4 1.41 

Tomato-typical 

aroma 30.6*** 4.79* 0.97 8.29*** 28.37*** 2.53*** n.d. n.d. n.d. 

Spiciness n.d. n.d. n.d. n.d. n.d. n.d. 21.26*** 12.31*** 1.22 

Aftertaste 39.59*** 6.19** 0.62 11.31*** 2.15 2.51*** 28.24*** 8.68** 0.56 
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Table A10. Pearson correlations between the studied attributes. 

  color 
Intensity 

 odor 
intensity  

juiciness  
 skin 
strength  

 sweetness   sourness   bitterness   spiciness  
 tomato-
typical 
aroma 

 aftertaste  

 odor intensity  0.04 1.000                 

 juiciness  0.16 0.58** 1.000               

 skin strength  -0.28* -0.08 -0.327* 1.000             

 sweetness  -0.15 0.79** 0.496** -0.060 1.000           

 sourness  0.17 0.52** 0.197 0.140 0.564** 1.000         

 bitterness  -0.26 0.14 0.147 0.392** 0.234 0.198 1.000       

 spiciness  -0.51 0.17 0.046 0.366 0.298 0.409 0.395 1.000     

 tomato-typical 
aroma  

0.44* 0.76** 0.540** -0.109 0.824** 0.686** -0.045 n.d. 1.000   

 aftertaste  0,23 0.69** 0.453** -0.001 0.712** 0.682** 0.257 -0.210 0.529** 1.000 

 K_content  0.42** 0.23 -0.070 0.145 0.114 0.686** -0.047 0.487 0.501** 0.331* 

 color_a  0.23 -0.62** -0.691** 0.052 -0.640** 0.042 -0.250 n.d. -0.249 -0.436* 

 color_b  0.45 0.027 0.115 0.287 0.652* 0.811** 0.171 0.277 n.d. 0.736** 

 firmness  0.06 -0.522** -0.579** 0.422** -0.636** -0.040 0.015 0.376 -0.386* -0.335* 

 TSS  0.09 0.672** 0.268 0.133 0.808** 0.743** 0.102 0.321 0.828** 0.758** 

 TA  0.23 0.360* -0.044 0.302* 0.282 0.759** 0.038 0.484 0.512** 0.457** 

 DM  0.01 0.644** 0.230 0.172 0.785** 0.631** 0.117 0.293 0.740** 0.734** 

 hexanal  0.21 0.293* 0.620** -0.480** 0,259 -0.056 -0.223 -0.329 0.436* 0.224 

(E)-2-hexenal  -0.34 0.642** 0.436** -0,183 0.745** 0.374* 0.036 0.199 0.477** 0.433** 

 octanal  0.28 -0.481** -0.069 -0,082 -0.669** -0.468** -0.050 0.410 -0.431* -0.534** 

 6-methyl-5-hepten-
2-one  

-0,23 -0.181 -0.618** 0.425** -0.132 0.025 0.211 -0.231 -0,280 -0,057 

 (Z)-3-hexen-1-ol  0.28 0.297* 0.516** -0.180 0.173 -0.044 -0.067 -0.207 0.522** 0,238 

isobutylthiazole_2 -0.19 -0.285* -0.545** 0.435** -0.172 0.116 0.089 -0.337 -0.361* 0,004 

 benzaldehyde  -0.05 0.397** 0.382* -0.081 0.495** 0.312* 0.373 0.461 -0.116 0.422** 

 linalool  -0.44* 0.188 -0,131 0.058 0.349* 0.190 -0.007 0.370 -0.290 0,138 

 citral  -0.17 -0.316 -0.431* 0.044 -0,337 -0.255 0.228 n.d. -0.329 -0,311 

 ß-damascenone  -0.26 0.194 0.077 0.030 0.276 0.263 -0.189 0.364 0.093 0,134 

 (E)-geranylacetone  0.04 -0.575** -0.556** -0.219 -0.527** -0.324 -0.197 n.d. -0.49** -0.489** 

 ß-ionone  0.11 0.568** 0.589** -0.536** 0.701** -0.019 0.126 n.d. 0.31 0.356* 

 eugenol  0.21 0.179 0.238 0.040 -0.123 -0.044 0.197 0.333 0.13 0.088 

 ß-cyclocitral  -0.67 -0,192 -0.156 0.760** 0.072 -0.491 0.241 n.d. -0.08 -0.698** 

 1-hexanol  0.27 -0.393* 0.285 0.003 -0.531** -0.287 -0.239 -0.187 0.075 -0.297 

 methylsalicylate  0.03 -0.41 -0.577* 0.064 -0.313 0.361 -0.253 -0.272 n.d. 0.523* 
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Table A10. Continue 

 K_conte
nt 

color_a color_b Firmness TSS TA DM hexanal (E)-2-
hexenal 

octanal 6-methyl-5-
hepten-2-one 

(Z)-3-
hexen-1-ol 

color_a 0.407* 1.000           

color_b 0.666* n.d. 1.000          

Firmness 0.281 0.701** 0.616* 1.000         

TSS 0.489** -0.238 0.681* -0.304* 1.000        

TA 0.886** 0.372* 0.679* 0.285* 0.676** 1.000       

DM 0.392** -0.226 0.625* -0.267 0.955** 0.627** 1.000      

hexanal -0.285* -0.620** 0.163 -0.670** 0.023 -0.334* -0.047 1.000     

(E)-2-hexenal  -0.028 -0.635** -0.077 -0.544** 0.568** 0.150 0.566** 0.278 1.000    

octanal -0.204 0.004 0.011 0.139 -0.637** -0.364* -0.622** 0.131 -0.578** 1.000   

6-methyl-5-hepten-
2-one 

0.264 0.571** -0.477 0.478** -0.014 0.243 0.024 -0.821** -0.293* -0.326* 1.000  

(Z)-3-hexen-1-ol -0.102 -0.855** 0.154 -0.533** 0.099 -0.183 0.045 0.729** 0.086 0.296* -0.654** 1.000 

2-isobutylthiazole_2 0.196 0.601** 0.081 0.632** 0.079 0.302* 0.142 -0.837** -0.187 -0.349* 0.615** -0.676** 

benzaldehyde -0.022 -0.175 0.060 -0.216 0.416** 0.164 0.446** -0.053 0.347* -0.165 -0.149 -0.151 

linalool 0.086 0.235 -0.004 0.045 0.270 0.241 0.359* -0.273 0.602** -0.633** 0.252 -0.476** 

citral -0.021 0.342 n.d. 0.155 -0.377* -0.100 -0.333 -0.399* -0.615** 0.305 0.661** -0.467* 

ß_damascenone 0.223 -0.081 0.116 -0.037 0.272 0.336* 0.296* -0.002 0.622** -0.471** -0.060 -0.122 

(E)-geranylacetone -0.066 0.664** n.d. 0.296 -0.456* -0.162 -0.410* -0.419* -0.608** 0.462* 0.397* -0.645** 

ß-ionone -0.281 -0.699** n.d. -0.858** 0.327 -0.334 0.309 0.697** 0.601** 0.346* -0.634** 0.800** 

eugenol -0.131 -0.369* 0.379 -0.037 -0.103 -0.097 -0.095 0.257 -0.025 0.492** -0.482** 0.442** 

ß-cyclocitral -0.454 -0.472 n.d. 0.086 -0.443 -0.494 -0.421 -0.242 0.190 -0.192 0.359 0.153 

1-hexanol -0.044 -0.082 0.311 -0.267 -0.411* -0.284 -0.519** 0.691** -0.548** 0.431* -0.384* 0.772** 

methylsalicylate 0.438 n.d. 0.183 0.480 0.281 0.198 0.300 -0.150 -0.186 -0.286 0.198 0.786** 
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Table A10. Continue 

 2-isobutylthiazole benzaldehyde linalool citral ß_damascenone (E)-geranylacetone ß_ionone eugenol ß_cyclocitral 1-hexanol 

benzaldehyde -0.012 1.000         

linalool 0.316* 0.193 1.000        

citral 0.018 -0.225 -0.220 1.000       

ß_damascenone 0.076 -0.004 0.812** -0.546** 1.000      

(E)-geranylacetone 0.212 0.011 -0.130 0.658** -0.447* 1.000     

ß-ionone -0.830** 0.392* -0.356* -0.085 -0.160 -0.260 1.000    

eugenol -0.263 0.117 -0.431** -0.317 -0.353* -0.255 0.366* 1.000   

ß-cyclocitral 0.271 -0.715** 0.238 0.226 0.124 -0.272 -0.008 -0.454 1.000  

1-hexanol -0.620** -0.631** -0.648** 0.208 -0.234 -0.137 -0.630* -0.044 0.619* 1.000 

methylsalicylate 0.543* -0.667* -0.087 n.d. 0.071 n.d. n.d. 0.438 n.d. 0.752** 
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Summary 
 

Tomato (Solanum lycopersicon L.) is the most important vegetable in the world consumption and 

production. The fruits significantly contribute to human health, as they are rich in vitamins, minerals, 

sugars and antioxidants. Therefore, the high demand on tomato fruits consumption as fresh and processed 

products necessitates yield increase. However, the focus on yield increase does not consider the fruit’s 

flavor and might dissatisfy the consumers. Most of the consumers store tomatoes after purchasing in 

household fridge, which decreases the quality and the flavor of these fruits. Nevertheless, an application 

of particular cultivation management such as optimized plant nutrition could enhance fruit yield and 

quality. Potassium (K), as one of the essential mineral plant nutrients, is crucially involved in tomato 

production and fruits quality and has the potential to ameliorate them. It also has a major role in plant-

water-relations, e.g. on water-use efficiency WUE. The objectives of the present study were to evaluate 

the effect of K on the yield production, postharvest behavior, and sensory profile of different tomato 

cultivars. 

The effect of K on yield and water-use efficiency (WUE) was investigated in an outdoor pot experiment 

with two cocktail tomato cultivars Primavera and Yellow Submarine and six K levels from deficiency to 

overdose. To study the fruit postharvest behavior, another outdoor pot experiment was conducted with 

two K levels (K low and K high) and two boron (B) levels (B low and B high) on the same cultivars. The 

breaker fruits were stored at two different conditions:  ambient conditions (20 °C) and refrigerated + 

ambient conditions (4 °C + 20 °C).  In a third outdoor pot experiment, the effect of K on the sensory profile 

of the fruits was studied at three different K levels (named as K low, K moderate and K high) on three 

tomato cultivars as Lyterno, Primavera and Yellow Submarine. The sensory evaluation was performed by 

panelists and subsequently, the taste-related analyses were assessed. 

The yield and WUE increased significantly with rising K but they were declined with K overdose. Similarly, 

the fruit quality attributes as color, total soluble solids (TSS), titratable acids (TA) and dry matter (DM) 

increased significantly with K application but further supply to overdose did not reveal any enhancement. 

The effect of K on the fruit’s postharvest behavior exposed as a significant increase in TSS, TA and DM in 

both storage regimes. Boron did not show any significant increase on the studied parameters in this 

experiment. Potassium had a significant influence on the taste-related attributes and some of the sensory 

traits but not on fruit volatile compounds.  

Generally, optimal K application enhanced the yield, WUE and the fruit quality attributes, while excessive 

K application did not possess a significant increment effect. The combination of high K and low B 
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fertilization improved the fruit quality performance only under ambient storage conditions. The positive 

effect of K on the fruits sensory profile was confirmed to be detectable by the human senses as well as 

with the instrumental analyses.  

The conclusions drawn from this study are: that an optimal application of K fertilization on tomato ensures 

high yields with less water consumption moreover enhances the fruit quality attributes. The adequate 

application of K on tomato plants reinforces the development process during postharvest of the fruits, 

which influence positively on the fruit quality under storage conditions. Furthermore, K is important to 

enhance the flavor of tomato fruits and meet the consumer’s preferences. The present study indicates 

that potassium nutrition is one of many factors that can influence tomato growth and its potential to 

enhance yield, fruit quality and WUE essentially depends on all factors’ integration. 
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