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ABSTRACT

In many clinical experiments, particularly in randomized clinical trials, the sample size
required needs to be assessed and justified. For calculating a clinical trial’s sample size,
assumptions have to be made regarding the clinical trial’s outcome data. These assumptions

are based on prior clinical trials or merely on expert knowledge and always subject to some degree
of uncertainty. To cope with this uncertainty in sample size estimation, adaptive designs were
developed to re-estimate the sample size within a running trial. Especially adaptive designs for
blinded sample size re-estimation, also referred to as non-comparative adaptive designs, have
gained popularity, as these generally do not require an adjustment of the significance level to
maintain type I error rates.
In the first part of this thesis, we will consider developing sample size re-estimation methods
for longitudinal overdispersed count data. As a first step, such data is modeled by a negative
binomial counting process, and techniques for inference, sample size estimation and sample size
re-estimation are provided. In a second step, presented methods are extended to handle time
trends, which may occur during the course of a clinical trial. These trends are modeled by a
gamma frailty model, for which inference, sample size estimation and sample size re-estimation
techniques are also described in detail. As an application, we consider lesion counts measured by
magnetic resonance imaging (MRI), which play an important role in phase II multiple sclerosis
(MS) trials for measuring disease progression. These lesion counts are generally overdispersed
and often measured multiple times per patient during a running trial, therefore resembling the
statistical model. Methods are kept general to allow for applications outside of MS, whenever
similar data arise, and shown to preserve type I error rates while correcting the sample size, such
that a desired power level is reached, in extensive simulation runs.
The second part of this thesis will consider univariate negative binomial data with baseline
covariates. For example, such data arise in MS when the total number of lesions at the end of a
clinical trial, corrected for the number of lesions at baseline or other baseline variables, is taken
as an endpoint. Developed sample size re-estimation techniques are also shown to preserve type
I error rates while correcting the sample size such that a desired power level is reached. The
summarized results are made available as R-functions and extend current methodology in the
field of non-comparative adaptive designs.
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1
INTRODUCTION

1.1 Adaptive Designs for Sample Size Re-estimation

When planning clinical trials, the sample size has to be justified for ethical and economical

reasons. On the one hand, if a sample size is too low, the power for rejecting the null hypothesis is

too low and the planned clinical trial may fail to empirically prove the clinical objective, requiring

further clinical trials in the follow-up. On the other hand, a too high sample size will burden

unnecessarily many patients with undergoing the clinical trial, potentially putting them at risk

for adverse events. Furthermore, a larger trial will likely take more time to complete, delaying the

introduction of a potentially safe and efficacious treatment into the market, and requiring more

resources in the process. Therefore, attaining a proper sample size for a clinical trial is a necessary

task. Formulas for calculating the sample size depend on many different aspects, such as trial

design, intended power, significance level for hypothesis testing, but also the minimal clinically

relevant effect size and nuisance parameters, which includes the event rate in the control arm

and shape parameter, when considering negative binomial count data, or the variability in groups,

when considering continuous outcomes [40].

While some of these influencing aspects, such as intended power and significance level, can be

determined when planning a clinical trial, nuisance parameters can only be assessed from other

sources, such as previous clinical trials. However, assessing nuisance parameters from previous

clinical trials can be a difficult task. Previous clinical trials may not report required nuisance

parameters or are insufficiently comparable to the planned trial, as they do not consider the same

patient population or differ in trial design. In some cases, for example when the endpoint is being

studied for the first time, previous trials may not even exist in the first place [13]. Therefore,

the nuisance parameters assumed from results of previous clinical trials are always subject

to some degree of uncertainty. Consequently, the sample size calculated with these nuisance
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CHAPTER 1. INTRODUCTION

parameters is uncertain as well. To overcome this uncertainty in sample size estimation, sample

size re-estimation procedures have been proposed, which re-estimate the sample size based

on estimates for nuisance parameters within a running trial, ensuring adequate power while

maintaining statistical rigor of trial results [39, 51, 53].

Following the introduction above, sample size re-estimation aims to change the planned sample

size within a running trial, making it a type of adaptive design. In the guideline Adaptive Designs

for Clinical Trials of Drugs and Biologics [21], the United States Food & Drug Administration

(FDA) distinguishes between adaptive designs based on comparative data and adaptive designs

based on non-comparative data. Sample size re-estimation can be done both on comparative

data, i.e. using the group assignment for estimation, and on non-comparative data, i.e. without

knowledge of the group assignment. Sample size re-estimation based on comparative data

includes designs which adapt the sample size based on an interim result of the effect size, also

called unblinded sample size re-estimation. Such designs are employed when there is considerable

uncertainty about the true treatment effect size, but require proper adjustment of the significance

level, following one of many different methods [9, 12, 17, 18, 20, 48] as they can inflate the type I

error probability. For example, Proschan and Hunsberger [54] have shown that the type I error

probability can be more than double the significance level if no proper adjustment is employed.

This stands in contrast to blinded sample size re-estimation, which, as a non-comparative adaptive

design, generally has no effect or a limited effect on the type I error probability and therefore does

not require an adjustment of the significance level [21]. Another type of re-estimation method

lies in between these two categories, in that they re-estimate the sample size based on nuisance

parameters attained from comparative data, but without an interim estimated treatment effect.

These methods are also referred to as partially blinded or partially unblinded [51].

Blinded sample size re-estimation procedures, which we will focus on, estimate nuisance para-

meters required for calculating the sample size based on non-comparative data from a running

trial, assuming a relevant effect size used in the planning phase to be present. Estimates for

nuisance parameters are then used to calculate the sample size anew and the sample size is

adjusted for incorrect assumptions met at the initial sample size calculation. Procedures for

blinded sample size re-estimation have been developed for numerous outcome types, including

normally distributed data [29], normally distributed data with covariates [23, 65], dichotomous

outcomes [24], Poisson distributed count data and overdispersed count data [15, 25, 26, 56, 57].

1.2 Clinical Trials in Multiple Sclerosis

As an application of blinded sample size re-estimation for longitudinal count data, we will consider

clinical trials in multiple sclerosis (MS). MS is an autoimmune disorder affecting the brain and

spinal cord by damaging the insulating covers of nerve cells. It is the most common inflammatory

neurological disorder in young adults with approximately 2.2 million affected people worldwide in
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1.2. CLINICAL TRIALS IN MULTIPLE SCLEROSIS

2016 [63]. To this day, no known cure for MS exists, making it an intense field of medical research.

Disease progression is often experienced as an increased occurrence of related symptoms, such as

fatigue, spasticity, resulting in walking difficulties, and vision problems. These symptoms can

occur either in isolated attacks (relapsing and remitting) or steadily increase in severity over

time (progressive) [43]. Depending on the pattern of progression experienced by affected patients,

the National Multiple Sclerosis Society defined four distinct disease-courses in 1996 and updated

these in 2013 [42, 43]:

• Clinically Isolated Syndrome (CIS)

• Relapsing-Remitting Multiple Sclerosis (RRMS)

• Primary Progressive Multiple Sclerosis (PPMS)

• Secondary Progressive Multiple Sclerosis (SPMS)

CIS is the occurrence of symptoms that could be MS, but have yet to fulfill dissemination

criteria in time [47]. Once current MS diagnostic criteria are fulfilled, a patient with CIS is

categorized to RRMS. Patients with RRMS experience active phases with increased MRI activity

and occurrences of relapses, as well as inactive phases with less signs of symptoms. PPMS and

SPMS are two distinct progressive forms of MS, in which symptom severity increases gradually

in time. While it is important to distinguish different types of MS for treatment, and therefore

also when designing clinical trials for specific patient types, the underlying type of MS can not be

determined with full certainty and is often assessed in retrospect by considering the patient’s

medical history [43].

In phase III confirmatory trials, the occurrence of relapses, as a temporary worsening of neuro-

logical symptoms, e.g. summarized as annualized relapse rates, are clinical endpoints in RRMS,

whereas endpoints in PPMS or SPMS include measures of disability worsening, e.g. based on

assessments of the expanded disability status scale (EDSS) [62]. For phase II trials, however,

these endpoints are not feasible as they require a high number of subjects and long observation

period to discover significant treatment effects. Therefore, numerous surrogate parameters, such

as T2-hyperintense lesions, Gadolinium-enhancing T1 lesions and whole brain atrophy, have

been established to monitor disease progression in smaller and shorter phase II trials [62] and

used in numerous clinical trials [8, 11, 28, 37, 38]. We will focus on the count measures, i.e.

Gadolinium-enhancing T1 lesion, also referred to as ‘black holes’, and T2-hyperintense lesions,

also referred to as ‘white spots’. These measures are inter-related but different from a medical

perspective. Gadolinium-enhancing T1 lesion counts may arise from severe chronic demyelination,

inflammation, permanent axonal damage and gliosis through MS. T2-hyperintense lesions can

show the total number of lesions as they are a marker of past injury, which only rarely disappear

completely [14]. Lesion counts can be measured at several time points during a running trial. For

example, Chataway et al. [11], who conducted a phase II clinical trial to examine the efficacy of
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CHAPTER 1. INTRODUCTION

simvastatin in progressive MS, examined T2-hyperintense lesion counts at baseline, 12 months

after admission and 24 months after admission, resulting in longitudinal count data.

1.3 Considerations for Statistical Modeling

Different possibilities for modeling longitudinal count data exist. The choice of the statistical

model we consider is based on two characteristics observed in real data. The first characteristic

we observe, is that counts at each time point are overdispersed, i.e. the variance of marginal

observations is substantially higher than their mean. For example, Tubridy et al. [61] measure

an overdispersion of 3.37 when considering lesions of RRMS patients at month one (mean lesion

rate of 1.61 and variance of 5.44). Therefore, a model which allows for overdispersed marginal

observations is required. The second characteristic is that observations between different time

points are correlated, e.g. Tubridy et al. [61] measure a correlation of 0.48 between month one

and month two lesion counts of RRMS patients. Therefore, any statistical model considered

should account for dependencies observed between different time points. Figure 1.1 displays the

complete data from Tubridy et al. [61] which show the need for a statistical model to handle these

two characteristics.
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Figure 1.1: Number of enhancing lesions attained from serial brain MRI in relapsing-remitting
multiple sclerosis (RRMS) and secondary progressive multiple sclerosis (SPMS). [61]

Although modeling correlation between continuous observations is well explored, this task is

incomparably more difficult for count data, as no natural multivariate extension of the Poisson or

negative binomial distribution exists. Many different approaches for modeling longitudinal count
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data have been developed, including inter time series as Markov Chains [16, 34, 35] parametric

models [2, 3, 31], general classes of estimating equations [27, 36], random effects and latent

process approaches [10, 19, 32, 33]. Here, we present two different models, which both allow

for modeling dependencies between overdispersed count data. Each of these models has their

strengths and weaknesses, which we will acknowledge and discuss. The first statistical model

used to model lesion counts is a negative binomial integer valued autoregressive process of

first order, also NB-INAR(1) model, introduced by McKenzie [46] and re-parametrized for our

purposes. The second model we present, is a gamma frailty model, introduced by Henderson and

Shimakura [33] and extended by Fiocco et al. [19].

1.4 Outline of the Presented Research

The main purpose of the presented research is to extend the methodology developed for blinded

sample size re-estimation of univariate overdispersed count data developed by Friede and

Schmidli [25, 26] and Schneider et al. [56, 57] to a multivariate setting. Friede and Schmidli

developed blinded sample size re-estimation procedures for comparing two groups with univariate

Poisson or negative binomial distributed outcomes. Schneider et al. extended these procedures

to cope with incomplete observations at the time point of the interim analysis, as well as time

trends within response rates. Extending these methods will allow for sample size re-estimation

in clinical trials with longitudinal count end points, observed multiple times at fixed time points.

The developed methods are each presented in a similar structure. We begin by introducing and

adapting the underlying statistical model. The step of statistical modeling is followed by deriving

procedures for statistical inference, from which sample size formulas can be calculated. These

sample size formulas are then studied to develop blinded sample size re-estimation techniques.

Finally, the performance of the developed sample size re-estimation techniques is examined in

simulations. The procedures are shown to properly adjust the sample size of clinical trials while

not inflating the type I error probability and therefore fulfilling regulatory requirements. The

developed methods are further demonstrated on real data examples and an implementation in R

[55] is given.

The outlined research is presented in three different papers and has been published in peer-

reviewed journals:

• Asendorf, T, Henderson, R, Schmidli, H, Friede, T. (2019). Modelling and sample size

reestimation for longitudinal count data with incomplete follow up. Statistical Methods in

Medical Research, 28(1), 117-133. https://doi.org/10.1177/0962280217715664

• Asendorf, T, Henderson, R, Schmidli, H, Friede, T. (2019) Sample size re-estimation for

clinical trials with longitudinal negative binomial counts including time trends. Statistics

in Medicine, 38, 1503-1528. https://doi.org/10.1002/sim.8061
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• Zapf, A, Asendorf, T (shared first authorship), Anten, C, Mütze, T, Friede, T. (2020). Blinded

sample size reestimation for negative binomial regression with baseline adjustment. Statis-

tics in Medicine, 39, 1980-1998. https://doi.org/10.1002/sim.8525.

As a first attempt of modeling longitudinal count data, the first paper considers the NB-INAR(1)

model for blinded sample size re-estimation, which easily allows for incorporating incomplete

follow up data. The second paper uses a gamma frailty model to allow for trend formulations

within clinical trials and further evaluates the methodology for non-inferiority trials. The third

paper explores the utilization of covariates in blinded sample size re-estimation, but in the

simpler context of univariate overdispersed negative binomial counts.
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2
PROPOSED ADAPTIVE DESIGNS

2.1 NB-INAR(1) Model

The negative binomial integer valued autoregressive process of first order (NB-INAR(1) model)

presented here, and used in deriving the proposed adaptive designs, is a variation of the binomial

thinning model from McKenzie [46] and Al-Osh and Alzaid [1]. The NB-INAR(1) model allows for

generating observations which marginally follow a negative binomial distribution, while at the

same time allowing for autoregressive dependencies of first order between different observations.

This is achieved using an operation called binomial thinning, formally introduced by Steutel

and van Harn [60]. Let X be some positive random integer and Bk(p) i.i.d. Bernoulli distributed

random variables with parameter p, i.e. P(Bk(p)= 1)= p, independent of X for all k ∈N. Then,

the binomial thinning operator is defined as

(2.1) X ◦ p :=
X∑

k=1
Bk(p).

From the definition it becomes clear that the random variables X and X ◦ p are positively

correlated for p ∈ (0,1]. Furthermore, both X and X ◦ p are integers. Therefore binomial thinning

is a viable operation for generating dependent count data, which we will make use of. Let X (t)
i j

denote the observation of patient j in group i at time point t, where i = E,C (experiment and

control group), j = 1, . . . ,ni and t = 1, . . . ,T. Then the statistical model is given by

(2.2) X (t)
i j = X (t−1)

i j ◦U (t)
i j +W (t)

i j for t = 2, . . . ,T, j = 1, . . . ,ni, i = E,C,

where the random variables observed at the first time point are defined to be negative binomial dis-

tributed with mean λi and shape parameter η, i.e. X (1)
i j

i.i.d.∼ NB(λi,η). The parameter used for bi-

7



CHAPTER 2. PROPOSED ADAPTIVE DESIGNS

nomial thinning is now a random variable U (t)
i j

i.i.d.∼ Beta
(
aη, (1−a)η

)
and the resulting term from

binomial thinning is added to an independent random variable W (t)
i j

i.i.d.∼ NB
(
(1−a)λi, (1−a)η

)
.

In Appendix A of Asendorf et al. [6], it was proven that observations X (t)
i j then follow a negative

binomial distribution with mean λi and shape parameter η for t = 1, . . . ,T. Further, two observa-

tions from the same patient were shown to be correlated with Cov(X (t)
i j , X (s)

i j )= a|s−t| · (λi +λ2
i /η)

(Appendix B, Asendorf et al. [6]). Therefore, we could model a marginal negative binomial distri-

bution and at the same time have an autoregressive dependency structure of first order between

time points, a typical assumption in time series analysis. In the following calculations we will

further denote the dependency parameter ρ, defined as

(2.3) ρ = 1
T2

T∑
t=1

T∑
s=1

a|t−s|.

The parameter ρ is essentially a geometric sum of the correlation parameter a and will ease the

notation in following calculations.

2.1.1 Statistical Inference

Within the NB-INAR(1) model, the main interest lies in testing differences of means between

groups. More specifically, we will be testing for differences between groups by using the rate ratio

θ =λE/λC, where the hypothesis of interest is given by

(2.4) H0 : θ ≥ 1 vs. H1 : θ < 1.

For testing the null hypothesis H0, we derive a Wald-type test statistic Z using moment estimators

λ̂i, ρ̂ and �1
λi

+ 1
η

for λi, ρ and 1
λi

+ 1
η
, respectively. Using the delta method in conjunction with the

central limit theorem, it was proven that

(2.5) Z = log(λ̂E/λ̂C)√
ρ̂ ·

(
1

nE
(à1
λE

+ 1
η
)+ 1

nC
(à1
λC

+ 1
η
)
) approx∼ N(0,1) under H0.

It is worthwhile to point out, that for the derivation of the test statistic moment estimators were

used. This approach is similar to an approach taken by Friede and Schmidli [25] for the case of

univariate overdispersed Poisson counts, and chosen because the resulting Wald-type statistic

is of a closed form and therefore allows for an explicit sample size formula. An approach with

maximum likelihood estimates would have required an explicit formula of the inverse Fisher

information, which could not be attained due to the complex likelihood structure, especially

for multiple time points. Therefore, using a maximum likelihood approach would only have

been feasible with numeric calculations, giving less insight on the influence of specific nuisance

8



2.1. NB-INAR(1) MODEL

parameters on the sample size. Furthermore, we estimate the full term 1
λi

+ 1
η

instead of plugging

in estimates for η and λi. The reason is, that the moment estimator for η can be negative in the

case of underdispersed data. While underdispersed lesion counts are not probable in MS, these

can occur occasionally during simulation runs and halt calculations. The employed estimators

themselves are described in more detail within Asendorf et al. [7].

Using the derived test statistic Z and its approximate normal distribution, the required sample

size to reject the null hypothesis with a power of 1−β at significance level α can be calculated by

(2.6) nC = (zβ+ zα)2 ·ρ
log(θ∗)2

(
(1+kθ∗)2

(1+k)kθ∗λ
+ 1
η

(
1+ 1

k

))
,

where nC denotes the required sample size of the control group, k = nE/nC denotes the allocation

ratio, θ∗ the assumed effect under alternative or clinically relevant effect size, and λ= (kλE +
λC)/(k+1) the overall rate. The closed form sample size formula allows us to study the influence

of certain parameters on the sample size. For example, if the correlation parameter a is equal to

1, then ρ is equal to 1 and increasing the number of time points T has no effect on the required

sample size. In that case, the sample size formula reduces to the simpler case of a two group

comparison and one time point, as considered by Friede and Schmidli [26]. On the other end, if

a = 0, the parameter ρ is equal to 1/T and increasing the number of time points is equivalent

to increasing the sample size. The sample size formula was shown to be accurate and hold the

desired power in a number of different settings, described in Table 2 of Asendorf et al. [6].

2.1.2 Blinded Sample Size Re-estimation

To perform a blinded sample size re-estimation, it is necessary to estimate all nuisance parameters

influencing the sample size in a blinded manner. To accomplish this task, we will estimate the

nuisance parameters using a likelihood approach assuming that the blinded observations follow

a mixture distribution of both groups with known weights. This approach is an alternative to

the so called lumping approach, which assumes data to be from a common distribution, for

example employed in Friede and Schmidli [25, 26] and discussed by Proschan [52]. The likelihood

necessary to achieve a blinded estimation of nuisance parameters λ, a and η is given by

(2.7) L(λ,η,a|x(1)
1 , . . . , x(T)

nE+nC
)=

nE+nC∏
j=1

(
fX (1)

j
(λ,η,a|x(1)

j ) ·
T−1∏
t=1

fX (t+1)
j |X (t)

j
(λ,η,a|x(t+1)

j )

)

where fX (1)
j

(·) is the marginal probability function of the first observation and fX (t+1)
j |X (t)

j
(·) describes

the conditional probabilities of subsequent observations, exploiting the Markov structure of the

NB-INAR(1) model. More explicitly, the probability functions are

fX (1)
j

(
λ,η,a|x(1)

j

)
= 1

1+k
·
[

k ·PNB

(
x(t)

j ,
λ(1+k)
k+1/θ

,η

)
+PNB

(
x(1)

j ,
λ(1+k)
1+kθ

,η

)]

9
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and

fX (t+1)
j |X (t)

j

(
λ,η,a|x(t+1)

j

)
= 1

1+k

min(x(t+1)
j , x(t)

j )∑
y=0

(
x(t)

j

y

)
B(aη+ y, (1−a)η+ x(t)

j − y)

B(aη, (1−a)η)
·[

kPNB

(
x(t+1)

j − y,
λ(1+k)
k+1/θ

, (1−a)η

)
+PNB

(
x(t+1)

j − y,
λ(1+k)
1+kθ

, (1−a)η

)]

where B(x, y)=Γ(x)Γ(y)/Γ(x+ y) denotes the beta function, Γ(x)= ∫ ∞
0 tx−ye−tdt the gamma func-

tion and PNB(x,λ,η) the probability function of the negative binomial distribution with mean λ

and variance λ+λ2/η. Note, that the shape parameter is assumed to be equal in both groups. To

perform a sample size re-estimation within a running trial, the nuisance parameters are esti-

mated from the likelihood (2.8), assuming that the effect size is equal to the assumed effect size,

and plugged into the sample size formula from (2.6) to attain a blinded sample size re-estimate.

From a practical perspective, however, another issue appears. Because recruitment capacity

of centers is limited and patient numbers are therefore accumulated over time, it is common

for recruitment in prospective longitudinal trials to follow a certain scheme. This results in

observations of patients not being complete at interim time points, e.g. as displayed in Figure 2.1.
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Figure 2.1: Possible recruitment scheme of a clinical trial with 6 month follow-up per patient.
Each line represents the observation time of an individual patient with interim analysis planned
12 months after trial onset.
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Consequently, some data from patients are available although their follow-up has not been

completed. This data can be incorporated into the analysis by replacing the fixed final time point

T by a subject-specific final time points T j for j = 1, . . . ,nE +nC in Equation (2.7). Depending on

the proportion of incomplete data at interim, incorporating incomplete data can substantially

reduce the variability of the sample size estimate as shown in Asendorf et al. [6], see in particular

Table 4.

2.1.3 Numerical Evaluation of Type I Error Rate and Power

The performance of the proposed BSSR procedure, especially in comparison to the fixed design,

was thoroughly investigated for settings realistic for lesion counts in multiple sclerosis. First, the

type I error of an experiment with the re-estimated sample size and that of a fixed design was

compared. The fixed sample size was calculated assuming an overall rate of λ= 2, correlation

parameter of a = 0.5 and shape parameter of η = 1 (equivalent to a variance of 6), resulting

in a required sample size of 165 patients per group to prove an alternative of θ∗ = 0.8 with a

power of 80% at one-sided significance level α= 2.5%. The data, however, was generated with

different nuisance parameters and no effect present. A comparison between the fixed design and

an experiment with the re-estimated sample size in terms of type I error is given in Asendorf

et al. [6] Table 3. The BSSR does not show any form of type I error inflation in the regarded

settings. Although this result is somewhat expected, as sample size re-estimation methods for

non-comparative designs generally have no or a limited effect on the type I error rate [21], in

certain situations an inflation of the type I error rate can be observed, e.g. in Friede and Kieser

[22]. For this reason, the type I error rate always needs to be examined when introducing such

designs.

To investigate the effect of the BSSR procedure on the power of a trial, a simulation study was

performed for complete observations in which data was simulated with nuisance parameters

different to those at the initial planning phase, altering each nuisance parameter one by one.

Then, half of the data was taken for a blinded sample size re-estimation and the power was

compared between recruiting the re-estimated sample size and continuing with the initially

planned sample size. Simulation results are displayed in Figure 2.2.

11
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Overall Rate Correlation Parameter Shape Parameter
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Figure 2.2: Simulated power of BSSR and fixed design with true nuisance parameters (x-axis)
altered one by one. Underlying Model: NB-INAR(1). Each parameter combination was simulated
10,000 times.

While the fixed design assumed nuisance parameters λ= 2, a = 0.5 and η= 1, true parameters

were simulated to be different one by one, with the overall rate varying between 1.5 and 2.5,

the correlation parameter between 0.3 and 0.7 and the shape parameter between 0.5 and 1.5.

Simulation results revealed, that the re-estimated sample size achieved the intended power, while

the fixed design (with the initially planned sample size) was either over- or underpowered, apart

from the situation in which the true parameters and assumed nuisance parameters coincide.

2.1.4 Software Implementation and Availability of Methods

The presented methods have been implemented within the R-package spass (study planning and

adaptation of sample size [5]) and made available on CRAN. The package contains functions for

sample size estimation and blinded sample size re-estimation, as well as a function for generating

observations from the NB-INAR(1) model, which may be useful for custom simulations. An

overview of the implemented functions is given in Table 2.1.
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Table 2.1: Functions implemented in the R-package spass for sample size estimation and blinded
re-estimation within the NB-INAR(1) model.

Function Description
rnbinom.inar1 Generate time series with marginal negative binomial distribution

and autoregressive correlation structure of order one
fit.nb.inar1 Fitting the NB-INAR(1) model on a given data set
n.nb.inar1 Calculate required initial sample size in planning phase
bssr.nb.inar1 Blinded sample size re-estimation on a given data set
test.nb.inar1 Statistical inference for testing treatment effects

All methods are presented with examples of their usage and explanations of parameters, as

required for R-packages, to allow for a simple implementation.

2.2 Gamma Frailty Model

After having explored and used the NB-INAR(1) model for deriving an adaptive design, the

aim was to extend the methods for time trends in the group means. The NB-INAR(1) model

could not have trends in the rates while at the same time maintaining the property of marginal

negative binomial counts, which is why a different model was chosen for this purpose. The

gamma frailty model introduced by Henderson and Shimakura [33] and extended by Fiocco et

al. [19], to account for arbitrary shape parameters, maintains a marginally negative binomial

distributed random variables, while at the same time allowing for arbitrary choices of the

marginal means. This advantage over the NB-INAR(1) model, however, comes at the cost of

less control over the correlation between time points. Observations within the gamma frailty

model are best defined in two steps. First, we assume that for each patient there exists an

unobservable multivariate gamma random variable Zi j = (Z(1)
i j , . . . , Z(T)

i j ). In this multivariate

random variable, each Z(t)
i j follows a gamma distribution with mean one and variance η, i.e.

Z(t)
i j ∼ γ(1,η−1). These within-patient frailties are generated such that they are dependent and it

holds that Cor(Z(t)
i j , Z(s)

i j )= a|s−t|. In the second step, we generate the observations X (t)
i j by using

the gamma frailty terms as arguments within a Poisson distribution. Conditional on the gamma

frailty, we assume

(2.8) X (t)
i j |Z(t)

i j ∼ Poisson(λ(t)
i Z(t)

i j ),

from which it follows that unconditionally on the gamma frailty observations X (t)
i j ∼ NB(λ(t)

i ,η).

Similarly to the NB-INAR(1) model we now have a marginal negative binomial distribution, with

the difference that the mean of the distribution, i.e. λ(t)
i , can also depend on the time point t

and not only the group affiliation i. However, the covariance of two observations from the same

13
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patients given by

(2.9) Cov(X (t)
i j , X (s)

i j )= a|t−s| · λ
(t)
i λ(s)

i

η

is not autoregressive anymore, but merely has an autoregressive appearance inherited from the

autoregressive within-patient gamma frailty. This property also limits the maximum possible

correlation which can be modeled between observations. For example, assume that λ(t)
i = 2 and

η= 0.5 for all t ∈N. Then, the maximum possible correlation between observations, which can be

modeled by setting a = 1, is 0.8.

The main advantage of the gamma frailty model is that, because the means can be chosen

arbitrarily, we can model time trends occurring within a clinical trial while maintaining the

property of marginal negative binomial observations. This allows for different and much more

diverse hypotheses to be tested. By defining a set of regression parameters β= (β1, . . . ,βd) we can

view the means λ(t)
i as functions of these regression parameters, i.e. λ(t)

i = f (t)
i (β). For example, if

we assume changing rates over time, we could define exponential trends as

(2.10) f (t)
E (β)= exp

(
β1 + (β2 +β3) · t) and f (t)

C (β)= exp
(
β1 +β2 · t

)
.

This is just one possibility of many thinkable trends, some of which are outlined in more detail

within Asendorf et al. [7]. While this specific trend is motivated by observations in MS clinical

trials, see e.g. Nicholas et al. [49], a general notation for different trends was maintained

throughout the calculations to potentially broaden the application of the presented method.

2.2.1 Statistical Inference

Inference through maximum likelihood is not straightforward within the gamma frailty model. In-

stead of using standard maximum likelihood theory, we estimate parameters using a pseudo likeli-

hood approach with independent working assumption. Estimates for parameters λ= (λ(1)
E , . . . ,λ(T)

C )

and η are attained by maximizing

(2.11) L(λ,η|x)= 1
nE +nC

∑
i=E,C

ni∑
j=1

L i j(λ,η|xi j),

where

(2.12) L i j(λ,η|xi j)=
T∑

t=1
log

(
PNB

(
x(t)

i j , f (t)
i (β),η

))
with respect to β and η. Hereby x= (x(1)

E1, . . . , x(T)
E1 , . . . , x(T)

EnE
, . . . , x(T)

CnC
) and xi j = (x(1)

i j , . . . , x(T)
i j ) denote

the observed values. The function PNB(x,µ,η) denotes the probability function of a negative

binomial random variable with mean µ and variance µ+µ2/η. The correlation parameter a can

be estimated at a second step by maximizing the pairwise composite likelihood defined as
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(2.13) cl(a|η̂, β̂, x)= 1
nC +nE

∑
i=E,C

ni∑
j=1

T−1∑
t=1

T∑
s=t+1

log
(
P

pair
NB

(
x(t)

i j , x(s)
i j ;a, f (t)

i (β̂), f (s)
i (β̂)

))
where Ppair

NB (·) denotes the bivariate probability function for counts at different times but on the

same patient. More details on the pairwise probability function are given in Fiocco et al. [19].

Main interest within the gamma frailty model lies in the regression parameters β1, . . . ,βd. For

example, in the presented trend from Equation (2.10) the main interest lies in testing H0 :β3 = 0

vs. H0 : β3 6= 0, because β3 corresponds to the treatment effect. Generally, however, we will be

testing the hypothesis

(2.14) H0 : h(η,β)≥ h0 vs. H1 : h(η,β)< h0,

where h :Rd+1 →R is a twice differentiable and monotone function in all dimensions. Standard

asymptotic theory on likelihood estimators (see Asendorf et al. [7] Appendix E for a rigorous

derivation) then yields

(2.15)
p

nC +nE · (h(η̂, β̂)−h(η,β)
) approx∼ N

(
0,∇(η,β)h(η,β)>H−1JH−1∇(η,β)h(η,β)

)
for nE,nC →∞ and k = nE/nC constant. The introduced Hessian matrix H and outer gradient

matrix J are defined as

(2.16) H = 1
nC +nE

∑
i=E,C

ni∑
j=1

E
[∇(η,β)(η,β)L i j(λ,η|xi j)

]
and

(2.17) J = 1
nC +nE

∑
i=E,C

ni∑
j=1

E
[∇(η,λ)L i j(λ,η|xi j) ·∇(η,λ)L i j(λ,η|xi j)>

]
.

In standard maximum likelihood theory, using the Fisher information, the Hessian and outer

gradient matrix would coincide, and the term H−1JH−1 would reduce to H−1, i.e. the Fisher

information matrix. However, because the pseudo likelihood does not fully describe the data,

as observations are not independent, the matrices J and H differ and need to be estimated

separately. Estimation of H and J is possible through

(2.18) Ĥ = 1
nC +nE

∑
i=E,C

ni∑
j=1

∇(η,λ)(η,λ)L i j(η̂, λ̂|xi j)

and

(2.19) Ĵ = 1
nC +nE

∑
i=E,C

ni∑
j=1

∇(η,λ)L i j(η̂, λ̂|xi j) ·∇(η,λ)L i j(η̂, λ̂|xi j)>.
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With these estimators we can define the test statistic Z, which asymptotically follows a standard

normal distribution

(2.20) Z =p
nE +nC · h(η̂, λ̂)−h0√

∇(η,λ)h(η̂, λ̂)>(Ĥ−1 ĴĤ−1)∇(η,λ)h(η̂, λ̂)

approx∼ N(0,1).

It is noteworthy that the asymptotics hold for nE,nC →∞ and constant ratio of sample sizes

k = nE/nC. In case of large sample sizes (ni ≥ 100), a simulation study showed that the approx-

imation controls the type I error rate for a set of realistic settings in MS. However, for small

sample sizes, the test statistic showed a simulated type I error rate of 0.03 to 0.04, while the

nominal type I error rate was 0.025. To improve the testing procedure, a method was imple-

mented which estimates the variance σ̂2 =∇(η,λ)h(η̂, λ̂)>(H−1JH−1)∇(η,λ)h(η̂, λ̂) restricted to the

parameter space of the null hypothesis, resulting in an estimate σ̂2
r . A simulation study to com-

pare the type I error rates of both procedures was conducted and results are depicted in Figure 2.3.
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Figure 2.3: Comparison of type I error rates of the test statistic Z (2.20) using restricted and
unrestricted variance estimates. Each dot represents one simulation setting. Solid lines represent
95% random intervals of simulated type I error rate.

In Figure 2.3 we can see that the unrestricted variance estimates shows higher type I error rates

than the intended significance level of 2.5%, while using the restricted variance estimate controls

the type I error rate even for small sample sizes (ni = 27).
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2.2.2 Blinded Sample Size Re-estimation

Using the normal approximation of Z, a sample size formula was derived which requires infor-

mation on the nuisance parameters and effect size under the alternative. Denoting the shape

parameter, further nuisance parameters and the effect size under alternative as η∗, β∗ and

θ∗ = h(η∗,β∗)− h0, respectively, the sample size required to reject the null hypothesis under

alternative to a predefined power 1−β and significance level α is approximated by

(2.21) nC = (zβ+ zα)2 ·σ2

(1+k) ·θ∗2 .

This sample size formula can be used at the planning phase of a clinical trial and also when

re-estimating the sample size. Estimating the nuisance parameters from blinded data was

achieved by assuming the blinded data to be from a mixture distribution of two negative binomial

distributions. Similar to the inference procedure, estimation of the nuisance parameters is done

in two steps. First, nuisance parameters β1, . . . ,βd are estimated by maximizing the mixture

likelihood

(2.22) Lblind(η,β|x)= 1
nE +nC

nE+nC∑
j=1

T∑
t=1

ln
(

k
1+k

·PNB

(
x(t)

j , f (t)
E (β),η

)
+ 1

1+k
·PNB

(
x(t)

j , f (t)
C (β),η

))
assuming the effect θ∗ from the alternative hypothesis being present. In a second step, the

correlation parameter a is estimated through a mixture distribution of the pairwise likelihood

function, i.e. by maximizing

clblind(a|η̂, β̂,x)= 1
nC +nE

nC+nE∑
j=1

T−1∑
t=1

T∑
s=t+1

ln
(

k
k+1

·Ppair
NB

(
x(t)

j , x(s)
j ;a, f (t)

E (β̂), f (s)
E (β̂), η̂

)
+(2.23)

1
1+k

·Ppair
NB

(
x(t)

j , x(s)
j ;a, f (t)

C (β̂), f (s)
C (β̂), η̂

))
where estimates β̂ and η̂ are plugged in from the estimation in the first step. The resulting

nuisance parameter estimates are then plugged into the sample size formula from Equation

(2.21) to attain a re-estimated sample size.

2.2.3 Numerical Evaluation of Type I Error Rate and Power

Operational characteristics were investigated for numerous settings realistic for lesion counts in

MS, assuming constant means (i.e. the same setting as investigated by the NB-INAR(1) model)

and the exponential trend described in Equation (2.10). An extensive type I error simulation

(Figure 3 and Figure 4 from Asendorf et al. [7]) over numerous parameters (Table 3 from Asendorf

et al. [7]) revealed no type I error inflation induced by the blinded sample size re-estimation
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procedure. For the constant trend, additionally to investigating the type I error for superiority

tests, the type I error for non-inferiority tests was also examined and equally revealed no type I

error inflation attributable to the BSSR.

Power Evaluation of the BSSR procedure revealed, that the BSSR is able to correct the power

in the case of misspecified nuisance parameters. For better readability we first summarize the

results for constant rates and then the results for an underlying exponential trend.

2.2.3.1 Constant Rates

For the sample size of the fixed design, parameters were assumed to be β1 = 0, η= 1 and ρ = 0.5

with an effect size of β2 =−0.3, resulting in a sample size at planning stage of nE = nC = 102 to

attain a power of 80% when testing one-sided at 2.5% significance level. Similar to prior power

simulations, the data was simulated with different nuisance parameters to those assumed, with

nuisance parameters altered sequentially as displayed in Figure 2.4. The intercept rate was

altered between −1.0 and 1.0, the correlation parameter between 0.0 and 1.0, and the shape

parameter between 0.5 and 1.5.

Correlation Parameter Intercept Rate Shape Parameter
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Figure 2.4: Simulated power of BSSR and fixed design with true nuisance parameters (x-axis)
altered one by one. Underyling Model: Gamma Frailty, assuming constant rates. Every setting
was simulated 10,000 times.

From Figure 2.4 we can conclude that the blinded sample size re-estimation procedure is able

to correct the sample size under misspecified nuisance parameters accordingly, to reach the

pre-specified power of 80%.
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2.2.3.2 Exponential Trends in Event Rates

In the simulation inspecting the blinded sample size re-estimation procedure with an underlying

exponential trend, parameters for the fixed sample size were assumed to be β1 = 0, β2 = 0, η= 1

and ρ = 0.5, resulting in a required sample size of nC = nE = 229 for rejecting the null hypothesis

with 80% power at 2.5% one-sided significance level, assuming an effect of β3 = 0.05. Data were

simulated with the true treatment effect being present, but nuisance parameters were altered

sequentially. The power comparison between keeping to the initial sample size and switching to

the re-estimated sample size are given in Figure 2.5.
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Figure 2.5: Simulated power of BSSR and fixed design with true nuisance parameters altered
one by one. Underlying Model: Gamma Frailty, assuming exponential trend. Every setting was
simulated 10,000 times.

In Figure 2.5 we see that the blinded sample size re-estimation procedure is able to correct the

sample size such that the targeted power is reached. Thus, we conclude, that the blinded sample

size re-estimation is capable of correcting the sample size even in the presence of time trends. The

general notation allows for the implementation of flexible time trends as required, broadening

the potential applications.

2.2.4 Software Implementation and Availability of Methods

The presented methods for constant and exponential trends have been implemented within

the R-package spass and made available on CRAN. The package contains functions for sample

size estimation and blinded sample size re-estimation, as well as a function for generating
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observations from the gamma frailty model. An overview of the implemented functions is given

in Table 2.2.

Table 2.2: Functions implemented in the R-package spass for sample size estimation and blinded
re-estimation within the gamma frailty model.

Function Description
rnbinom.gf Generate time series with marginal negative binomial distribution

and unobservable multivariate gamma frailty
fit.nb.gf Fitting the gamma frailty model on a given data set
n.nb.gf Calculate required initial sample size in planning phase
bssr.nb.gf Blinded sample size re-estimation on a given data set during trial
test.nb.gf Statistical inference for testing treatment effects

All methods are presented with examples of their usage and explanations of parameters. Further-

more, input and output of these functions is kept similar to the functions written for the INAR(1)

to allow for model comparisons.

2.3 Negative Binomial Outcomes with Covariates

So far, the presented methods modeled a treatment and possible time effect on the outcomes.

However, treatment effects can also be influenced by further sources, such as baseline observations

or center effects. These effects are usually incorporated by modeling observations conditional on

the covariates. In Zapf et al. [64] two approaches were developed which allow for sample size

estimation and blinded sample size re-estimation of univariate negative binomial counts with

baseline covariates. The statistical model is as follows. Assume we have only one time point, e.g.

the last observation of the trial, and observations of two groups, denoted by X i j, with i = E,C

and j = 1, . . . ,ni. Further we observe a covariate Yi j (or a set of covariates) for each observation

X i j. Then, the conditional model is given by

(2.24) X i j|Yi j ∼ NB(λi j,η)

where λi j and η are fixed parameters. Similarily to the gamma frailty model, the mean λi j can be

defined as a function of regression parameters, usually expressed through a log-link, e.g. for the

case of one covariate λi j = exp
(
β1 +β2 · 1{i=E} +β3 · yi j

)
, where 1{·} denotes the indicator function.

2.3.1 Statistical Inference

For two groups, main interest lies in testing the null hypothesis H0 : c>β = δ vs H1 : c>β 6= δ,

where c is usually chosen to reflect the treatment effect, i.e. c>β=β2 referring to the example
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above. To test this null hypothesis, two different methods were used, namely the likelihood

ratio test statistic and a Wald-type test based on maximum likelihood estimators. Denoting the

observed Fisher information conditional on the covariates as Iβ(β̂, η̂|y), where y= (yE1, . . . ,yCnC )

denotes the collection of all covariates and yi j = (y1, . . . , yp) the covariates of an individual, the

Wald-type test statistic is given by

(2.25) TW = n
(c>β−δ)2

c>Iβ(β̂, η̂|y)−1c
.

Furthermore, the employed likelihood ratio test statistic is given by

(2.26) TLR =−2log

 sup
Ω0 L(β,η|xE1, xE2, . . . , xCnC ,yE1, . . . ,yCnC )
sup
Ω L(β,η|xE1, xE2, . . . , xCnC ,yE1, . . . ,yCnC )

 .

Hereby, L(·, ·|xE1, xE2, . . . , xCnC ,yE1, . . . ,yCnC ) denotes the likelihood function of the negative bi-

nomial regression model. It can be shown that under the null hypothesis, TW
approx∼ N(0,1) and

TLR
approx∼ χ2

1,1−α as nE →∞ and nC →∞, assuming the ratio nE/nC to be constant. Both test

statistics are commonly used in practice with the Wald-Test being computationally simpler and

the likelihood ratio test having some advantages when computing confidence intervals, as these

are scale invariant and only contain valid values.

2.3.2 Sample Size Estimation

The difficulty when deriving a sample size formula for these test statistics lies in incorporating the

baseline observations. Inference is performed conditional on the baseline observations, however,

as these are not known at the beginning of a trial, the initial sample size calculation needs to be

performed unconditionally of the observed covariates. To achieve this, Lyles et al. [44] proposed

a method which creates an artificial data set, also referred to as expanded data set, which

depends on the distribution of the covariates and outcomes, imitating the unknown covariates.

The observed Fisher Information of the expanded data set can be used for attaining an estimate

of the variance of the effect size, denoted by V̂arED , which in turn is required to calculate the

power for specific total sample size n = nE +nC using the formula

(2.27) P
(
χ2

1
(
λ̂ED

)≥ χ2
1,1−α

)
,

where λ̂ED = n(δ−θ1)2/V̂arED(θ̂) and χ2
1(λ̂ED) denotes a chi-squared distributed random variable

with one degree of freedom and non-centrality parameter λ̂ED . By using an iterative method,

such as interval halving, a total sample size n (at fixed allocation ratio k = nE/nC) is calculated

which fulfills the power requirement. Although this method of sample size estimation was shown
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to be adequate, the iterative approach was computationally expensive, consequently limiting

simulation runs. Therefore, a second approach for calculating the sample size was considered,

which is based on the Wald-test. When testing with the Wald-test, the required total sample size

for attaining a specific conditional power under a given alternative θ∗ = c>β∗−δ and significance

level α can be approximated by

(2.28) n = (q1−α/2 + q1−β)2

θ∗2 c>Iβ(β∗,η∗|y)−1c.

In Equation (2.28), the Fisher information is calculated conditional on the covariates. As these

are not known at the planning stage of a clinical trial, the conditional Fisher information is

replaced by the expected Fisher information, defined as EY
(
Iβ(β∗,η∗|Y)

)
. This approach gives an

approximation of the sample size required for attaining the unconditional power. More details as

to why this is not an exact approach are given in Section 3.3.2 in Zapf et al. [64]. However, the

presented heuristic was shown to adequately calculate the required sample size in numerical

evaluations.

2.3.3 Blinded Sample Size Re-estimation

Extending the methodology for blinded sample size re-estimation is possible by estimating

nuisance parameters from the blinded data using a mixture approach. The likelihood of a mixture

of to negative binomial distribution, now incorporating covariates, is given by

n∑
j=1

ln
(

k
k+1

·PNB

(
x j,exp

(
(yi1,1, yi3, . . . , yip)β(θ∗)

) · ti

T
,η

ti

T

)
+(2.29)

1
k+1

·PNB

(
x j,exp

(
(yi1,0, yi3, . . . , yip)β(θ∗)

) · ti

T
,η

ti

T

))
.

Within Equation (2.29), the parameter β(θ∗) denotes the regression parameters β with the effect

size under alternative θ∗ fixed. For example, if the null hypothesis is H0 : β2 = 0 and λi j =
exp(β1 +β2 · 1{i=E} +β3 · yi j) then β(θ∗)= (β1,β∗

2 ,β3)>. Blinded estimates for parameters β and η

resulting from estimation with the likelihood in Equation (2.29) are then plugged into the sample

size formulas from Equation (2.28) to attain a re-estimated sample size. Under circumstances, it

is also necessary to estimate parameters specific to the distribution of the covariates. Because we

assume that patients were randomized to one of the two groups, parameters corresponding to the

covariate distribution can be estimated by pooling together all observations, regardless of their

group assignment.

2.3.4 Numerical Evaluation of Type I Error Rate and Power

Both methods for blinded sample size re-estimation were evaluated in an extensive simulation.

Furthermore, for the expanded data set approach, the likelihood ratio approach and the Wald-
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type test statistic were compared. The type I error was evaluated for one normally distributed

covariate, assuming an intercept log rate of β1 = 0 a log rate ratio of θ∗ =β2 =−0.2, a covariate

effect of β3 = 2.5 and shape parameter of η= 3. Under these assumptions, the required sample

size for rejecting the null hypothesis H0 :β2 = 0 at 80% power and 5% two-sided significance level

is equal to approximately 380 patient per group. The chosen parameters were comparable to

those observed in a clinical trial in epilepsy by Leppik et al. [41]. For the simulation, true values

of parameters were chosen differently to those of the assumed as displayed in Table 2.3.

Table 2.3: Simulation settings for the comparison of type I error rates between the fixed design
and the blinded sample size re-estimation procedures for univariate negative binomial counts
with covariates.

Parameters Assumed value True values
Intercept log rate β1 0 -1, -0.8, . . . , 1
Log rate ratio β2 -0.2 0
Covariate rate β3 2.5 0, 0.5, . . . , 5
Shape parameter η 3 2, 2.2, . . . , 4

The data was simulated in multiple steps, to best resemble realistic scenarios. First, 25% of the

initial sample size was simulated as complete observations. Second, another 25% of the initial

sample size was simulated, but with observation times uniformly distributed between 0 and

T, i.e. ti
i.i.d.∼ U(0,T), where T denotes the total follow-up time per patient. The combined data

set from the first and second step was taken to perform a sample size re-estimation. Inference

was then performed with sample sizes nWT-FI, nWT-ED and nLR-ED for the fixed design and with

re-estimated sample sizes n̂WT-FI, n̂WT-ED and n̂LR-ED for the blinded sample size re-estimation

design. Hereby, WT-FI refers to the method using the expected Fisher information plugged into

the sample size formula from Equation (2.28), LR-ED to the method using the expanded data set

from Lyles et al. [44] and performing inference with the likelihood ratio test, and WT-ED to the

method using the expanded data set and the Wald-type test statistic for inference. Type I error

rates of all three sample size estimation and re-estimation methods are displayed in Figure 2.6.
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Figure 2.6: Type I error rates of BSSR and fixed design for all possible combinations of parameters
as listed in Table 2.3 while under the null hypothesis. Dashed lines represent 95%-random
intervals for simulated type I error rates. Every setting was simulated 10,000 times.

The type I error simulation did not reveal any notable differences in type I error rates between

the fixed design and the blinded sample size re-estimation procedure for all three procedures.

Additionally to the type I error, the power was also examined in an extensive simulation. For this,

the same simulation settings as in Table 2.3 were considered, with the only difference being that

the true treatment effect was chosen to equal the assumed treatment effect. Figure 2.7 displays

the results from the power simulation for the WT-FI method.

Covariate Rate Intercept Rate Shape Parameter
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Figure 2.7: Power simulation of BSSR and fixed design for the WT-FI method, with true nuisance
parameters altered sequentially. Underyling Model: Univariate Negative Binomial Counts with
Covariates. Every setting was simulated 10,000 times.
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For the power simulation, true nuisance parameters were altered one by one and the influence of

the blinded sample size re-estimation procedure examined. In case of a misspecified nuisance

parameters, the blinded sample size re-estimation was capable of correcting the required sample

size to a level required for attaining the pre-specified power. Results of the WT-ED and LR-ED

methods were comparable and are reported in the Appendix of Zapf et al. [64].

2.3.5 Software Implementation and Availability of Methods

The presented methods for sample size estimation and blinded re-estimation with baseline

covariates have been implemented in R and made available as supplementary material to the

publication on figshare under https://doi.org/10.6084/m9.figshare.11973579. An overview

of the implemented functions is given in Table 2.4.

Table 2.4: Functions uploaded as supplementary material within an R-script for sample size
estimation and blinded re-estimation with baseline covariates.

Function Description
wt.fi Initial sample size calculation for the WT-FI method
wt.ed Initial sample size calculation for the WT-ED method
lr.ed Initial sample size calculation for the LR-ED method
sse Initial sample size calculation for all three presented methods
bssr Blinded sample size re-estimation for all three presented methods

Additionally to these R-functions, examples are given to demonstrate their usage and parameters

are explained in detail. Functions for inference are not provided as inference in this case is

possible using standard negative binomial regression.
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DISCUSSION

The summarized research extends the available methodology for blinded sample size re-estimation

for longitudinal negative binomial counts and univariate negative binomial counts with baseline

covariates. Methods have been shown to not inflate type I error rates, therefore fulfilling regula-

tory requirements. In the presence of the expected treatment effect, but misspecified nuisance

parameters, the methods were able to correct the required sample size to attain the necessary

power for the final analysis.

For longitudinal modeling of negative binomial counts two different models were used, the NB-

INAR(1) model and the gamma frailty model. It was pointed out, that the gamma frailty model

allows for arbitrary means at different time points, therefore allowing for trends within clinical

trials. However, this came at the cost of limiting the modeling correlation between observations.

Specifically, the correlation between observations within the NB-INAR(1) model can lie between

0 and 1, while the maximum correlation in the gamma frailty model depends on the mean

and shape parameter at a given time point. This may not pose a problem in the presence of

intermediate correlation, however, neither model can cope with trends and high correlation

between time points.

For statistical inference, the NB-INAR(1) model used method of moment estimators as an

analytical derivation of the Fisher information was not feasible for a likelihood approach. However,

a numerical approach may be possible and beneficial. Furthermore, from a practical point

of view, data following an NB-INAR(1) or gamma frailty model, can not be analysed using

standard negative binomial regression as implemented in common statistical software. To support

statisticians interested in applying these methods, R-functions were written and made available.

However, these are limited to the cases as described within the publications and extensions, for

example to further trends, are not as easily implemented.

27



CHAPTER 3. DISCUSSION

While missing data due to the recruitment scheme was addressed in all three methods, other

types of missing data were not fully addressed. The procedures as described here can still be

employed for situations where data are missing completely at random or missing at random

[58]. There exists literature on coping with such missingness [4, 45], however, the described

methods have not been implemented and need to be discussed in light of the ICH E9 Addendum

on Estimands and Sensitivity Analysis in Clinical Trials [30].

One crucial point, which is frequently discussed, is the timing of interim analyses at which a

blinded sample size re-estimation is to be performed. While the methods do not give an answer to

an optimal time point, it was shown within Asendorf et al. [6], that conducting the blinded sample

size re-estimation at later time points yields less variable sample size estimates. Therefore, it is

desirable to conduct a blinded sample size re-estimation at the latest possible time point which

allows for a continuation of the recruitment. However, this may bear the risk that the sample size

at interim may already be larger than required. There have been numerous proposals considering

this trade off between low variability of the sample size estimate and risking a too large clinical

trial, with a summary of these given in Section 6 of Friede and Schmidli [25].

Another difficulty when working with time trends in running clinical trials, is defining the type

of underlying trend. The presented methods allow for a very flexible trend definition. However,

assessing the correct underlying trend for a clinical trial is a difficult task, especially in the given

setting where little data is available before the clinical trial. Furthermore, trends with small

effects require a high number of observations to be detected. A possible solution would be to

also allow for switching the underlying trend depending on the goodness of a model fit during

a running trial. However, this would also require a switch of the null hypothesis, which might

influence type I error rates. This aspect has so far not been explored but may pose a substantial

improvement in practice.

Adaptive designs have generally received increased attention over the past decades in all phases of

drug development [59], with the pace of uptake in clinical trials, however, staying well behind that

of statistical literature [50]. Among others, contributing factors are speculated to be unfamiliarity

with advantages and limitations of these procedures within the scientific community, as well as

inadequate implementation of methods [50]. This supports the importance of not only thoroughly

explaining the used methods and their limits, but also to provide an implementation of these,

such that the proposed methods may find their way into clinical trials.
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