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Summary 

 
Soil organisms influence organic matter turnover and nutrient cycling via processing of 

organic matter entering the soil as litter and root-derived resources. Plant species differ 

enormously in the quality and quantity of litter and roots that they produce, and this 

diversity strongly modifies decomposition of litter by decomposer organisms. Higher plant 

diversity is generally assumed to improve habitat conditions and availability of resources, 

thereby improving the abundance and activity of decomposer organisms. Tropical Andean 

montane rainforest ecosystems harbor an exceptional diversity of plant and animal species. 

However, little is known on how the huge diversity of plants and root resources affect the 

activity of soil communities and the overall decomposition rates, particularly during early 

stages of decomposition. This thesis aims to contribute to our understanding of the effects 

of leaf litter diversity and root resources on microorganisms and decomposer 

microarthropods during the early stages of litter decomposition in Andean tropical montane 

rainforest ecosystems. The studies were performed as field experiments at 2000 m (Chapter 

2 and 4) and along an altitudinal gradient from 1000 to 2000 to 3000 m (Chapter 3) in a 

tropical montane rainforest in Southern Ecuador. 

Chapter 2 investigates the effect of leaf litter diversity and identity on microbial functions 

and microarthropod abundance. The results suggest that decomposition and microbial 

parameters in litter vary with litter diversity as well as litter identity, while microarthropods 

respond only to litter identity. The results show that higher levels of diversity detrimentally 

affect soil microbial biomass and result in a decline in litter decomposition. Further, the 

results indicate that the differential response of soil biota was mostly due to differences in 

the initial chemical composition of litter species. However, the results also highlight the 

importance of leaf litter physical traits, particularly on the abundance of decomposer 

invertebrates. Overall, the results indicate that litter species identity functions as major 

driver of the abundance and activity of soil organisms and thereby exerts distinct effects on 

ecosystem processes such as decomposition and nutrient mobilization. 

Chapter 3 investigates the contribution of soil microbes and decomposer microarthropods 

to the decomposition of leaf and root litter along an altitudinal gradient of the studied 
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tropical rainforests. The results suggest that the decomposition of both leaf and root litter 

in montane rainforests is mainly due to microorganisms, whereas the effect of 

microarthropods is minor along the altitudinal gradient. However, at higher altitudes soil 

microarthropods accelerate the decomposition of low-quality litter, such as root litter. 

Further, the study suggests that the abundance of microorganisms as food is of minor 

importance in structuring decomposer microarthropod communities, underscoring the role 

of litter quality. Overall, our findings highlight that resource quality or local interspecific 

variation in litter quality has stronger effects on decomposer organisms regardless climatic 

variations associated to altitude, at least during early stages of decomposition. 

Chapter 4 investigates the response of arbuscular mycorrhizal (AM) fungi, microorganisms 

and microarthropods to the rotation of hyphal-ingrowth cores, defaunation and nitrogen 

addition. The results suggest that in the study site AM fungi are closely associated with 

living roots and do not form extensive extraradical hyphae that can be cut by rotation of the 

cores. Nonetheless, the results suggest that on top of the litter layer, AM fungi likely 

compete with saprotrophic microorganisms for litter-derived resources, with mycorrhizal 

fungi suppressing the activity of saprotrophic microorganisms. While in the soil layer 

interactions of mycorrhizal fungi with other soil biota are restricted to the close vicinity of 

roots. Nitrogen addition increased the quality of litter material produced by plants and 

beneficially affected microbial activity, highlighting that decomposition processes in the 

studied montane rainforests are strongly limited by nutrient availability and 

microorganisms in these forests even respond to moderate increase in nitrogen. The results 

also document a restricted recovery of microorganisms and microarthropods after 

defaunation of the rotated cores, highlighting the importance of root-derived resources for 

fueling soil food webs. 

Chapter 5 presents a discussion and conclusions on the contribution of the research chapters 

to the overall state of knowledge. Generally, the results of this thesis suggest that during 

early stages of decomposition the abundance, diversity and activity of soil organisms are 

strongly associated with the quality and availability of the litter resources. Overall, the 

results suggest that decomposition processes in montane rainforests at early stages are 

mainly driven by microorganisms, whereas the contribution of microarthropods is of minor 
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importance. Further, the results also highlight the importance of root-derived resources for 

fueling soil microarthropod abundance during early stages of decomposition. In addition, 

the results point to AM fungi as an important player for determining the abundance and 

activity of microbial communities during early stages of decomposition in tropical montane 

rainforests. 
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Plant litter decomposition 

Plant litter decomposition is an essential carbon-transforming process that drives nutrient 

cycling in terrestrial ecosystems (Swift et al. 1979; Bardgett 2005). The breakdown of plant 

litter material by soil organisms releases nutrients to the soil that are important for plant 

growth. Simultaneously, this process emits greenhouse gases such as carbon dioxide (CO2) 

to the atmosphere fueling net primary production (Swift et al. 1979; Aerts 1997; Berg and 

McClaugherty 2008; Krishna and Mohan 2017). Decomposition of plant-litter substrates 

can be divided into two main stages: (1) the early stage characterized by the loss of ca. 40% 

of the litter mass, mostly by the decomposition of labile C compounds and leaching of 

water-soluble nutrients, and (2) the late stage in which the remaining mass, mostly 

recalcitrant material, like lignin, is degraded (Coûteaux et al. 1995; Berg and McClaugherty 

2008; Djukic et al. 2018). Changes in the litter substrates during both stages supply 

different sets of intermediate degradation products that serve as energy and nutrient sources 

for different populations of soil organisms (Berg and McClaugherty 2008). 

Climate, plant-litter quality and decomposer organisms are generally recognized as the 

main drivers of decomposition rates (Swift et al. 1979; Coûteaux et al. 1995; Aerts 1997). 

Climate is commonly considered the primary driver of decomposition rates at global scales 

because factors such as temperature or precipitation can directly alter the sensitivity of soil 

biological processes and consequently plant-litter quality and soil biota (Wardle et al. 2004; 

Kutsch et al. 2010; García-Palacios et al. 2013). Plant-litter quality is considered the main 

controlling factor of litter decomposition rates at the ecosystem level, even though recent 

studies suggest that litter quality can have stronger effects on decomposition than climate 

parameters at local to regional scales (Cornwell et al. 2008; Zhang et al. 2008; Fujii et al. 

2017). However, the role of decomposer fauna in relation to climate and litter traits is still 

poorly understood. Therefore, elucidating the role of soil fauna in litter decomposition is 

necessary for a better understanding of decomposition process in terrestrial ecosystems and 

is of great importance for predicting carbon dynamics under the future climate-change 

scenarios. 
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Litter diversity and decomposition 

Most of the above-ground plant material produced returns to the soil in form of leaves and 

woody tissue, representing the major resource of energy and matter for soil organisms 

(Berg et al. 1993; Berg & McClaugherty 2008). On the forest floor, a variety of leaf litter 

species accumulate and decompose as mixture of leaf species. The diversity of leaf litter in 

mixtures affects decomposer organisms and thereby litter decomposition rates by 

modifying the physical and chemical characteristics of the litter layer (Gartner and Cardon 

2004; Hättenschwiler et al. 2005; Gessner et al. 2010; Handa et al. 2014). Differences in 

the chemical composition of litter species offer a variety of food resources to detritivores 

and microorganisms fulfilling their nutritional demands, but also impacting litter 

decomposition, e.g. by affecting the transfer of nutrients via fungal hyphae (Hättenschwiler 

et al. 2005; Gessner et al. 2010). Additionally, physical leaf litter characteristics (e.g., 

toughness, surface structures and shape) that do not necessarily correlate with higher 

nutrient concentrations, can modify microenvironmental conditions and increase 

microhabitat diversity for soil animals and, therefore, indirectly affect litter decomposition 

(Hättenschwiler et al. 2005; Makkonen et al. 2012; Bani et al. 2018). 

Considering that more diverse leaf litter mixtures increase habitat variability and thereby 

may enhance nutrient acquisition by soil organisms, higher diversity of litter is likely to 

result in faster decomposition rates by maintaining a more abundant and diverse fauna 

community (Handa et al. 2014; Trogisch et al. 2016). Nonetheless, the current literature 

shows inconsistent effects of higher leaf litter diversity on soil decomposer communities in 

different ecosystems (Gartner and Cardon 2004; Nadrowski et al. 2010; Handa et al. 2014). 

In fact, recent studies have shown that leaf species identity, which encompasses all specific 

litter chemical and physical characteristics of a single species, has a higher explanatory 

power for litter decomposition rates and appears to be a better predictor of the interaction 

effects among litter types and decomposer-driven processes than leaf litter species diversity 

(Hoorens et al. 2010; Makkonen et al. 2012; Cesarz et al. 2013; Korboulewsky et al. 2016). 

Thus, it remains controversial whether the positive effect of leaf litter mixtures on 

decomposition is due to the increase in species diversity or whether it is driven by the 

identity of the species present in mixtures. 
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Traditionally, most litter decomposition studies linking plant species diversity to 

decomposition have focused on leaf litter traits (Freschet et al. 2012). However, plant-

specific litter traits that influence decomposition also vary between the resources provided, 

i.e. plant organs such as leaves, stems and roots (McLaren and Turkington 2010; Freschet 

et al. 2013). In fact, the input of root resources may be almost as high as that of leaf litter 

(Norby et al. 2004; Hobbie et al. 2010) and the different physical and biochemical traits 

modify not only the characteristics of the resulting soil organic matter, but could also 

change the structure of soil decomposer communities, and thereby decomposition rates. 

 

Rhizodeposits and mycorrhizal fungi 

Plant roots modify the physical and chemical characteristics of soil organic matter through 

rhizodeposition, i.e. the release of carbon compounds into the surrounding soil (Hütsch et 

al. 2002; Dennis et al. 2010). Rhizodeposits, which include root exudates (e.g., sugars, 

amino acids and organic acids), mucilage, border cells, dead fine roots and gases, modify 

nutrient availability in soil, thereby affecting the interaction between roots and soil 

organisms in the rhizosphere (Jones et al. 2004; Bais et al. 2006; Dennis et al. 2010). 

Particularly, root exudates and fine root litter sustain soil microbial communities at the root 

surface, where microbial biomass is significantly higher compared to the bulk soil (Bais et 

al. 2006; Jones et al. 2009; Dennis et al. 2010) providing ample resources for 

microarthropod communities (Pollierer et al. 2007; Zieger et al. 2017). 

A large proportion of carbon released by plant roots is translocated into the soil by 

mycorrhizal fungi (Brundrett 1991; Hobbie 1992). Mycorrhizal fungi are ubiquitous soil 

organisms that form symbiotic associations in which the host plant receives mineral 

nutrients and the fungus obtains photosynthetically fixed carbon compounds (van der 

Heijden and Sanders 2002; Smith and Read 2008). Seven different categories of 

mycorrhizal symbiosis have been distinguished on the basis of morphological 

characteristics, and the fungal and plant species involved (Finlay 2008; Smith and Read 

2008). However, the most abundant types of mycorrhizae are arbuscular mycorrhizal (AM), 

ectomycorrhizal (EM) and ericoid mycorrhizal fungi (ERM) (Brundrett 1991; Johnson and 

Gehring 2007). 
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AM symbiosis is the most widespread type of mycorrhizal association involving fungi from 

the Glomeromycota phylum associated with a wide range of plant species including 

grasses, herbs, crops and trees (Johnson and Gehring 2007; Finlay 2008). The symbiosis is 

characterized by the development of highly branched fungal structures within the cortical 

cell of the roots forming arbuscules or coils (Bever et al. 2001; Smith and Read 2008). EM 

is most abundant plant – fungal symbiosis in temperate and boreal forest ecosystems where 

fungi predominantly from the Basidiomycota and Ascomycota phylum form associations 

with shrubs and trees, especially conifers. In contrast to AM fungi, EM fungi do not 

penetrate their hosts cells but rather form a fungal mantle or a network of intercellular 

hyphae known as Hartig net that is connected to the epidermal and cortical cells and covers 

the entire host root (Brundrett 2002; Smith and Read 2008). ERM only form associations 

between various fungi from the Ascomycota phylum and plants belonging to the Ericales 

order. ERM typically grow in dwarf shrubs in acid and nutrient poor areas, mainly of the 

tundra regions (Brundrett 1991; Johnson and Gehring 2007) and are characterized by the 

formation of extensive hyphal coils within root cells during establishment (Perotto et al. 

1995; Smith and Read 2008). 

EM and ERM fungi are biotrophs with saprotrophic abilities able to take up simple carbon 

compounds and produce extracellular enzymes that decompose complex organic substrates 

(Read and Perez-Moreno 2003). By contrast, AM fungi are obligate biotrophs without 

saprotrophic capabilities (Smith and Read 2008). However, recent studies suggest that AM 

fungi contribute indirectly to decomposition of complex compounds by influencing the 

saprotrophic microbial community that decompose complex organic sources and release 

simple substances for AM hyphal capture (Hodge et al. 2001; Talbot et al. 2008; Nuccio et 

al. 2013; Leifheit et al. 2015). AM fungi also interact with a wide array of organisms, 

including bacteria, other fungi, protozoa, nematodes, arthropods and even large animals. 

These complex interactions among communities of mycorrhizal fungi and other soil 

organisms can mediate rhizosphere processes and thereby nutrient dynamics and 

decomposition processes (Fitter and Garbaye 1994; Gryndler 2000). 



Chapter 1 
_________________________________________________________________________________________________	

	
 

 9 
 

Decomposer microarthropods 

Bacteria and fungi are considered the main drivers of soil organic matter breakdown. 

Nonetheless, feeding activities of the diverse community of soil-dwelling invertebrates also 

influence decomposition processes (Seastedt 1984; Bardgett 2005; Scheu et al. 2005). Soil 

microarthropods are a highly diverse and abundant component of invertebrates in soil of 

virtually any ecosystem (Bardgett 2005). Among soil microarthropods, mites (Acari) and 

springtails (Collembola) are the most abundant and diverse organisms (Seastedt 1984; 

Ruess and Lussenhop 2005). Acari and Collembola regulate organic matter turnover and 

nutrient cycling directly by litter fragmentation or indirectly via trophic interactions with 

fungal and bacterial communities (Swift et al. 1979; Seastedt 1984; Ruess and Lussenhop 

2005). Although the two groups of decomposer microarthropods are considered to occupy 

similar niches and affect litter decomposition in similar ways, they comprise different 

trophic levels and differ in a variety of ecological traits (Siepel 1994; Scheu 2002; 

Schneider et al. 2004; Illig et al. 2005). Differences in the diversity and abundance of Acari 

and Collembola between ecosystems and their variation even within few centimeters of soil 

are still little understood, but are likely related to variations in biotic and abiotic factors, 

such as local climatic conditions and litter quality (Hättenschwiler et al. 2005; Wardle et 

al. 2006; Gergócs and Hufnagel 2016). 

Oribatid mites (Oribatida) are the most species rich Acari subgroup with more than 11,000 

described species in 163 families (Subías 2018). Oribatid mites are very common in soils 

rich in organic matter, reaching densities >100,000 individuals per square meter (Maraun 

and Scheu 2000; Dhooria 2016). Feeding behavior of oribatid mites is diverse and they can 

be divided into three different trophic groups: microphytophages (species that feed on plant 

litter material), macrophytophages (species that feed on fungi, pollen, algae, mosses and 

lichens) and panphytophages (non-specialized species) (Maraun et al. 2003; Dhooria 2016). 

However, oribatid mites are also known to switch feeding habits when the preferred food 

is scarce (Maraun et al. 2003; Schneider and Maraun 2005). Oribatid mites typically are 

characterized by low fecundity and long immature and adult life span (Norton 1994), and 

have developed strong defense mechanisms, such as protective structures, strong 
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sclerotization and defensive glands to be protected themselves from predators (Peschel et 

al. 2006). 

 

Tropical Andean montane rainforest: the study sites 

Tropical Andean montane rainforest ecosystems are considered one of the hotspots of 

biodiversity on earth and harbor a particularly high number of endemic vascular plant and 

animal species (Myers et al. 2000; Beck and Ritcher 2008; Homeier et al. 2008). The vast 

diversity of plants and animals in these ecosystems is favored by changes in abiotic 

conditions along the altitudinal gradient (Myers et al. 2000; Beck and Ritcher 2008). In 

spite of the huge diversity of plants and animals in these ecosystems, few studies 

investigated the effect of plant litter diversity and root resources on the composition and 

activity of soil communities and thereby their impacts on litter decomposition processes 

(Butenschoen et al. 2014; Krashevska et al. 2017; Marian et al. 2017). Previous work on 

decomposer microarthropods documented that the decomposer fauna in Andean rainforest 

ecosystems is dominated by small soil invertebrates, such as oribatid mites, collembolans 

and testate amoebae (Illig et al. 2005; Krashevska et al. 2007; Maraun et al. 2008), and 

consequently, these groups may play an important role in litter decomposition processes. 

Litter decomposition rates in tropical montane rainforests are reported to be slower than in 

lowland tropical rainforests (Heneghan et al. 1998) with the early phase lasting for about 

12 months (Marian et al. 2017). One of the reasons for slow decomposition rates may be 

the general low quality of the litter material. The food quality may limit the abundance and 

activity of soil decomposer, particularly at higher elevations (Illig et al. 2008; Scheu et al. 

2008; Marian et al. 2017). 

In Andean topical montane ecosystems roots of plants are in intimate association with litter 

and may grow towards and throughout litter (Aristizábal et al. 2004). The great majority of 

tree roots are colonized by AM fungi (Kottke et al. 2004; Camenzind and Rillig 2013) and 

form pronounced extra-radical mycelia growing even into decomposing litter material 

(Camenzind and Rillig 2013) stimulating plant nutrients uptake (Delavaux et al. 2017) and 

likely affecting decomposition by interacting with the microbial community. However, 

interactions between AM fungi and other organisms have been little studied in Andean 
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tropical ecosystems, but may be of significant importance for understanding the role of AM 

fungi in decomposition processes and nutrient cycling. 

Studies presented in this thesis were conducted on the eastern slope of the tropical Andes 

in southern Ecuador within the northern fringes of the Podocarpus National Park. In this 

area, three study sites were located at 1000, 2000, and 3000 m a.s.l. representing an 

altitudinal gradient with moderately steep slopes of typically 26–31° (Moser et al. 2007). 

The lower site at 1000 m a.s.l. (S04°06′54´´, W78°58′02´´) is located in the Río 

Bombuscaro valley and is classified as evergreen submontane rainforest dominated by 

Arecaceae, Combretaceae, Moraceae, Monimiaceae, Rubiaceae and Sapotaceae (Homeier 

et al. 2008). The intermediate site at 2000 m a.s.l. (S3°58′18´´, W79°4′45´´) is part of the 

Reserva Biológica San Francisco located between the cities of Loja and Zamora on the 

north facing flank of the Río San Francisco valley, and consists of an evergreen lower 

montane rainforest, with Arecaceae, Clusiaceae, Ericaceae, Lauraceae, Melastomataceae 

and Rubiaceae being the most widespread tree families (Homeier et al. 2008). The highest 

site at 3000 m a.s.l. (S04°06′711´´, W79°10′58´´) is located in the south of the city of Loja 

close to the Cajanuma mountain at the northwest gate of the Podocarpus National Park. The 

site is characterized by evergreen elfin-forest with the vegetation largely dominated by 

shrubs and trees of the families Aquifoliaceae, Bromeliaceae, Chloranthaceae, Clusiaceae, 

Ericaceae and Melastomataceae (Homeier et al. 2008). 

The study area has a semi-humid climate with an average annual temperature of 14.9 °C, 

12.3 °C and 8.9 °C, and annual precipitation of approximately 2200, 3500 and 4500 mm at 

1000, 2000 and 3000 m a.s.l., respectively (Bendix et al. 2006; Homeier et al. 2010). Soil 

types of the study sites are alumic Acrisol (1000 m), Gley Cambisol (2000 m) and Podzol 

(3000 m) (Soethe et al. 2006; Moser et al. 2007). The organic soil layer increases with 

elevation from 4.8 cm at 1000 m to 30.5 cm at 2000 m to 43.5 cm at 3000 m (Leuschner et 

al. 2007; Graefe et al. 2008). Fine roots are concentrated in organic layers (Wilcke et al. 

2002) and its biomass increase in parallel with the soil organic layer from 2.7 t ha−1 at 1000 

m to 6.2 t ha−1 at 2000 m to 10.8 t ha−1 at 3000 m (Soethe et al. 2006). 
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Objectives and hypotheses 

This thesis aims to deepen our understanding of the role of leaf litter diversity and root 

resources on microorganisms and decomposer microarthropods during early stages of litter 

decomposition in tropical montane rainforest ecosystems. 

 

The main hypotheses of this thesis are the following: 

 

1. Higher leaf litter diversity results in faster decomposition rates, and an increase in 

the abundance and diversity of decomposer communities. 

 

2. The abundance and diversity of the soil decomposer organisms is regulated by litter 

quality and differ between plant organs (leaf and fine root litter). 

 

3. Decomposer microarthropods are similarly involved in the decomposition of leaf 

and root litter during early stages of decomposition in tropical montane rainforests. 

 

4. Root-derived resources and carbon inputs via AM fungi increase the abundance, 

activity and diversity of soil microorganisms and microarthropods within the 

organic layer, indirectly altering litter decomposition rates. These effects vary with 

the nutrient status of the ecosystem being lower at higher nutrient availability. 

 

The study presented in Chapter 2 aims at quantifying the impact of leaf litter identity and 

diversity on the abundance and activity of microorganisms and decomposer 

microarthropods. I hypothesized microbial growth and activity to increase with litter 

diversity, but the abundance of decomposer microarthropods to rely more on litter identity 

than litter diversity. Further, I hypothesized that nutrient availability increases with time 

reducing microbial stress conditions. I also hypothesized that the abundance of decomposer 

microarthropods increases as decomposition proceeds. Lastly, I hypothesized that the 

presence of high-quality litter benefits microorganisms, as well as the abundance of 

decomposer microarthropods. 
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The study presented in Chapter 3 investigates how microorganisms and soil decomposer 

microarthropods affect leaf and root decomposition along an altitudinal gradient of the 

tropical montane rainforests studied. The access of soil fauna to the litter was controlled by 

using litterbags of different mesh size. Due to less favorable abiotic conditions with 

increasing altitude. I hypothesized that the decomposition of litter, regardless of litter tissue, 

decreases with increasing altitude. I further hypothesized that limiting the access of litter 

by microarthropods accelerates decomposition by increasing microbial biomass and 

activity in both leaf and root litter, with the effect being stronger at higher altitudes where 

nutrients are more limited. Further, I hypothesized that the abundance of decomposer 

microarthropods and the diversity of oribatid mites is higher in leaf than in root litter 

irrespective of altitude, and increase with increasing microbial biomass. Lastly, I 

hypothesized that the role of litter quality in structuring oribatid mite communities declines 

with time, with the effect being less pronounced in root than in leaf litter. 

The study presented in Chapter 4 investigates the response of AM fungi, microorganisms 

and microarthropods to the rotation of hyphal-ingrowth cores, defaunation and nitrogen 

addition. I hypothesized that the colonization of the cores by AM fungi is reduced by 

regular rotation of the cores and that the reduction of mycorrhizal hyphae results in an 

increased activity of saprotrophic microorganisms, thereby accelerating decomposition 

processes. I further hypothesized that the increase in saprotrophic organisms, particularly 

fungi, in rotated cores benefit oribatid mites. In addition, I hypothesized that the addition 

of N reduces the concentration of AM fungi, but fosters the activity of saprotrophic 

microorganisms and thereby increases litter decomposition. 
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Abstract 

In tropical forest ecosystems leaf litter from a large variety of species enters the decomposer 

system, however, the impact of leaf litter diversity on the abundance and activity of soil 

organisms during decomposition is little known. We investigated the effect of leaf litter 

diversity and identity on microbial functions and the abundance of microarthropods in 

Ecuadorian tropical montane rainforests. We used litterbags filled with leaves of six native 

tree species (Cecropia andina, Dictyocaryum lamarckianum, Myrcia pubescens, 

Cavendishia zamorensis, Graffenrieda emarginata and Clusia spp.) and incubated 

monocultures and all possible two and four species combinations in the field for 6 and 12 

months. Mass loss, microbial biomass, basal respiration, metabolic quotient and the slope 

of microbial growth after glucose addition, as well as the abundance of microarthropods 

(Acari and Collembola) were measured at both sampling dates. Leaf litter diversity 

significantly increased mass loss after 6 months of exposure, but reduced microbial biomass 

after 12 months of exposure. Leaf litter species identity significantly changed both 

microbial activity and microarthropod abundance with species of high quality (low C-to-N 

ratio), such as C. andina, improving resource quality as indicated by lower metabolic 

quotient and higher abundance of microarthropods. Nonetheless, species of low quality, 

such as Clusia spp., also increased the abundance of Oribatida suggesting that leaf litter 

chemical composition alone is insufficient to explain variation in the abundances of soil 

microarthropods. Overall, the results provide evidence that decomposition and microbial 

biomass in litter respond to leaf litter diversity as well as litter identity (chemical and 

physical characteristics), while microarthropods respond only to litter identity but not litter 

diversity. 

 

Keywords: Acari; Collembola; decomposition; litterbags; litter quality; microorganisms; 

metabolic quotient. 
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Introduction 

The great majority of plant material enters the soil as litter, in the form of leaves, stems and 

roots. Decomposition of these materials is an essential process for nutrient cycling and 

provides the basal resources of the soil food web (Berg et al. 1993; Berg and McClaugherty 

2008). In addition to providing food resources, leaf litter accumulating on the soil surface 

forms a variety of microhabitats for soil organisms, with more diverse litter materials 

increasing habitat variability, but also providing the opportunity for enhanced nutrient 

acquisition (Bardgett 2005; Gessner et al. 2010). Therefore, high diversity of leaf litter in 

mixtures is expected to be an important determinant of the diversity and structure of 

decomposer communities and, consequently, litter decomposition (Hättenschwiler et al. 

2005; Gessner et al. 2010; Trogisch et al. 2016). 

Tropical montane rainforest ecosystems harbor an exceptional diversity of plant species 

(Myers et al. 2000; Beck and Ritcher 2008; Homeier et al. 2008) and are associated with 

high numbers of animal species above- and belowground (Brehm et al. 2008; Maraun et al. 

2008; Paulsch and Müller-Hohenstein 2008). However, the effect of plant litter diversity 

on decomposer communities and decomposition of litter in this ecosystems is little studied 

(Illig et al. 2008; Krashevska et al. 2017). Controlled experiments are needed to assess the 

effect of diversity and composition of litter species in mixtures on litter decomposition and 

microarthropod abundance. 

Differences in leaf-litter chemical composition are recognized as the main drivers of 

decomposition rates at the ecosystem level (Coûteaux et al. 1995; Hättenschwiler et al. 

2005). Studies have reported positive, negative, but also no effects of litter mixtures on 

decomposition, with mixture effects typically related to variations in litter nutrient 

concentrations (Gartner and Cardon 2004; Makkonen et al. 2012; Handa et al. 2014). 

However, differences in litter chemistry are not the only factors contributing to variations 

in litter decomposition in mixtures (Hoorens et al. 2003; Hättenschwiler 2005). Physical 

leaf litter traits, such as toughness, surface structure and shape, also contribute to 

microhabitat diversity and modify micro-environmental conditions of decomposer 

organisms, resulting either in accelerated or decelerated litter decomposition (Hansen and 

Coleman 1998; Kaneko and Salamanca 1999). Therefore, species identity, which 
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encompasses chemical and physical characteristics, may well explain diversity effects on 

decomposition. Indeed, the effect of litter species identity has been found to be more 

powerful in explaining colonization of litter by invertebrates than litter diversity (Schädler 

and Brandl 2005; Wardle et al. 2006; Vos et al. 2011; Eissfeller et al. 2013; Korboulewsky 

et al. 2016). 

Commonly, studies investigating effects of litter diversity on litter decomposition focused 

on microorganisms and detritivore invertebrates (Gessner et al. 2010). Microorganisms are 

assumed to respond more sensitively to litter diversity than invertebrates as they directly 

depend on the variety of litter chemical compounds needed for metabolism and growth 

(Bardgett and Shine 1999; Chapman et al. 2013). By contrast, the response of invertebrate 

detritivores, particularly the key decomposer groups Acari and Collembola, more strongly 

depends on the identity rather than diversity of leaf litter species and varies with the stage 

of litter decomposition (Kaneko and Salamanca 1999; González and Seastedt 2001; Wardle 

et al. 2006; Illig et al. 2008; Korboulewsky et al. 2016). Indeed, many decomposer 

microarthropods have the ability to select among co-occurring leaf litter species according 

to litter palatability and/or the microorganisms colonizing the litter (Klironomos et al. 1992; 

Schneider and Maraun 2005; Korboulewsky et al. 2016). Studies linking microbial-

dominated litter decomposition processes and colonization of litter by detritivore 

invertebrates are needed to uncover the mechanisms responsible for litter diversity effects 

on the structure and functioning of the decomposer system, particularly in tropical 

ecosystems characterized by high diversity of plant (tree) species. 

In the present study, we investigated the effect of leaf litter diversity and identity on the 

colonization of litter by microorganisms and microarthropods including Acari and 

Collembola after 6 and 12 months of incubation in Ecuadorian montane rainforests. We 

hypothesized that (1) microbial growth and activity increase with litter diversity, but that 

the abundance of both Acari and Collembola relies more on litter identity. Additionally, 

assuming that microorganisms are limited by multiple nutrients (Demoling et al. 2007; 

Krashevska et al. 2010), we hypothesized that (2) nutrient availability increases and 

microbial stress conditions decrease with time, and that (3) the presence of high-quality 

litter benefits microorganisms. Further, assuming that Acari and Collembola prefer similar 

food resources and consume both leaf litter tissue and microorganisms (Seastedt 1984; 
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Ruess and Lussenhop 2005; Dhooria 2016), we hypothesized that (4) the abundance of 

Acari and Collembola increases as decomposition proceeds, particularly in presence of 

high-quality litter. 

 

Materials and methods 

Study site 

The study area is located in southern Ecuador on the eastern slopes of the Andean 

Cordillera. The site forms part of the Reserva Biológia San Francisco located on the 

northern borders of the Podocarpus National Park at 2000 m a.s.l. (3°58′S, 79°04′W). The 

region is characterized by a semi-humid climate with annual precipitation of about 2200 

mm and average annual temperature of 15.2°C (Bendix et al. 2006; Wullaert et al. 2009). 

The soil is Gley Cambisol with a soil pH of ~3.5 and a thick organic layer up to 35 cm 

comprised of mainly fermentation/humus material overlaid by litter material (Moser et al. 

2007). The tropical rainforest is mostly undisturbed and holds an exceptionally high 

diversity of fauna and flora with Rubiaceae, Melastomataceae and Piperaceae as dominant 

plant families (Brehm and Fiedler 2005; Beck and Ritcher 2008; Maraun et al. 2008; 

Homeier et al. 2010) 

 

Experimental design 

In September 2008, freshly fallen leaves of six common plant species at the study sites 

[Cecropia andina (Cuatrec.) (CA), Dictyocaryum lamarckianum (H. Wendl.) (DL), Myrcia 

pubescens (Humb. & Bonpl. ex Willd.) (MP), Cavendishia zamorensis (A. C. Sm.) (CZ), 

Graffenrieda emarginata (Ruiz & Pav.) (GE) and Clusia spp. (L.) (Cs); ordered by 

increasing C-to-N ratio, see Appendix 1], were collected, dried (60°C for 72 h) and used to 

fill 20 × 20 cm and 4 mm nylon mesh litterbags. Initial chemical composition of the litter 

species is given in Appendix 1. The leaves used had no signs of herbivory, fungal infection 

or atypical texture or color. Large leaves exceeding the size of the litter bags, were cut into 

~5 x 5 cm pieces. Single-species litterbags (12 g each) and mixtures with all possible two- 

(6 g per species) and four-species combinations (3 g per species) were prepared, resulting 

in a total of 36 litterbag types with three levels of species diversity (1, 2, and 4 leaf litter 
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species). Litterbags were randomly placed in the field on top of the undisturbed litter layer 

and fixed with nails in four blocks. Minimum distance between the blocks was 20 m. One 

replicate of each treatment was harvested after 6 and 12 months. 

 

Analytical procedures 

After harvest, material in each litterbag was separated into two subsamples of equal weight, 

disturbing the fauna as little as possible but ensuring that all litter types were present in 

both halves. One half was used for microarthropod extraction and the other for analysis of 

microbial parameters. Microarthropods were extracted by heat over one week using a 

modified high gradient extractor and then stored in 70% ethanol (Macfadyen 1961; 

Kempson et al. 1963). Microarthropods were determined to group level [Collembola 

(Insecta), Oribatida, Mesostigmata and Prostigmata (Acari)] using Schaefer (2018). The 

dry litter was sorted to species, weighed and used to measure litter chemical composition.  

Microbial basal respiration (BR) and microbial biomass (Cmic) were determined using an 

automated respirometer system (Scheu 1992). BR (μl O2 g-1 dry weight h-1) was measured 

at 22 ⁰C and calculated as mean of O2 consumption rates 10 to 20 h after attachment of the 

samples to the respirometer system. Cmic was measured by the substrate-induced respiration 

method (SIR; Anderson and Domsch, 1978; Beck et al., 1997). The maximum initial 

respiratory response (MIRR; µl O2 g−1 dry weight h−1) was measured at 22 ⁰C after the 

addition of glucose to saturate the catabolic activity of microorganisms. MIRR was 

calculated as the average of the lowest three readings within the first 10 h and Cmic was 

calculated as Cmic = 38 × MIRR (mg g-1 dry weight). Respiration rates between the lowest 

(usually 3–6 h after glucose addition) and highest reading were taken to calculate the slope 

of microbial growth (+CSlope). Data were ln-transformed and the slope determined by linear 

regression. The microbial metabolic quotient (qO2; μl O2 mg−1 Cmic h−1) was calculated by 

dividing BR by Cmic.  

Leaf litter mass loss (Mloss) was calculated as	#!"##	(%) = ((($ −(% ($)) × 100⁄ , 
where m0 is the initial dry weight and m1 the dry weight of leaf litter at harvest. To measure 

chemical composition, leaves from each of the six species were dried (65 °C for 72 h) and 

milled to particles <1 mm. Carbon (C) and nitrogen (N) were measured using a CN 
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elemental analyzer (Vario EL ІІІ, Elementar, Hanau, Germany). Total element analysis was 

measured by an ICP-OES system (ICP-OES, Optima 5300 DV, Perkin Elmer, USA). 

Lignin and cellulose concentration were measured based on the methanol-chloroform-

water (2:2:1) extraction method detailed in Allen et al. (1974). For litter mixtures, the 

proportion of elements per litterbag was calculated by proportionally summing the amount 

of the respective elements in the individual litter species. The chemical concentrations of 

elements, lignin and cellulose was expressed as milligram per gram litter dry weight (dw). 

 

Statistical analyses 

Analyses were performed using R version 3.6.0 (R Core Team 2014). Data was checked 

for normality and homoscedasticity using Shapiro–Wilk test and Bartlett’s test (package 

“stats”). To improve normality and homoscedasticity, data were transformed using the 

“bestNormalize” function (package “CRAN”). Changes in Mloss, Cmic, BR, qO2, +CSlope and 

the abundance of microarthropod taxa (Collembola, Oribatida, Mesostigmata and 

Prostigmata) were analyzed using individual linear mixed-effects models (package 

“nlme”). In each model the fixed factors litter diversity (LD; 1, 2 and 4 litter species), time 

of exposure (6 and 12 months) and the presence/absence all leaf litter species (litter identity; 

1,0; CA, DL, MP, CZ, GE and Cs), as well as the interactions (time × LD and time × litter 

identity) were fitted in a hierarchical design. Block was fitted first as random factor 

followed by the fixed factors litter diversity, time, interaction between litter diversity and 

time, and litter identity. To assess the relative importance of the six leaf litter species, 

analyses were repeated changing the order of fitting individual litter species and their 

interactions. F- and P-values for individual litter species in the text and tables refer to those 

when fitted first (Schmid et al. 2002, 2017). Differences between means were inspected 

using Tukey’s honestly significant difference test (package “emmeans”). Values presented 

in text are means ± SD of non-transformed data. Pearson correlation coefficients were 

calculated to investigate relationships between C-to-N ratio, Cmic, qO2 and Mloss, and the 

abundance of Collembola and Acari (package “stats”).  
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Results 

Initial litter chemistry 

Initial N concentrations were highest in C. andina, followed by D. lamarckianum, M. 

pubescens, C. zamorensis, G. emarginata and Clusia spp. (1.08%, 0.73%, 0.60%, 0.50%, 

0.40% and 0.40%, respectively), resulting in C-to-N ratios between 36.3 in C. andina and 

107.2 in Clusia spp. (see Appendix 1 for details on litter chemistry). Lignin concentrations 

were generally high and varied between 63.9% in Clusia spp. to 42.6% in G. emarginata. 

By contrast, concentrations of cellulose were lowest in Clusia spp. (13.0%), low in C. 

andina (29.6%), but similar in the other four litter species varying between 35.8% and 

40.7%. Concentrations of P and other litter elements also varied markedly between leaf 

litter species with P, Ca, Mg, K and Fe being highest in C. andina, and P and Ca being 

lowest in G. emarginata. 

 

Mass loss 

Generally, Mloss was higher after 12 than after 6 months of incubation with averages of 

52.6% ± 7.1% and 41.8% ± 6.9% of initial, respectively (Table 1). Mloss varied significantly 

with species diversity but the effect depended on time (Figure 1A; Table 1); after 6 months 

Mloss was lower in single species (average of 29.6% ± 6.9%) compared to the two and four 

litter species treatments (43.1% ± 3.8 and 44.9% ± 3.6%, respectively), while after 12 

months decomposition was similar in each of the litter diversity treatments. Further, Mloss 

varied significantly with litter species identity, however, this depended on time, with the 

effect generally being restricted to the first sampling date and to four of the six litter species 

(Table 1). At the first sampling date, Mloss increased in presence of C. andina from 39.7% 

± 7.4% to 44.4% ± 5.1%, in presence of C. zamorensis from 40.5% ± 7.9% to 43.2% ± 

5.3%, in presence of G. emarginata from 39.4% ± 7.6% to 44.8% ± 4.2% and in presence 

of Clusia spp. from 39.6% ± 7.3% to 44.6% ± 5.1%. Mloss positively correlated with Cmic, 

BR, qO2, +CSlope and the abundance of Collembola and Oribatida, but negatively with the 

litter C-to-N ratio (Pearson correlation coefficients; Table 2). 
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df Mloss Cmic BR qO2 +CSlope 

LD 2, 239 26.32*** 3.01* 1.12 2.01 2.03 
Time 1, 239 244.03*** 31.48*** 78.10*** 21.15*** 24.61*** 
CA 1, 239 0.51 1.63 1.04 7.76** 1.21 
DL 1, 239 1.09 <0.01 1.78 1.93 4.59* 
MP 1, 239 2.09 <0.01 3.91* 0.46 0.70 
CZ 1, 239 0.02 0.53 <0.01 4.49* 4.33* 
GE 1, 239 0.43 0.11 0.04 <0.01 0.05 
Cs 1, 239 0.97 0.05 0.02 <0.01 0.01 
Time × LD 2, 239 43.44*** 4.37** 1.43 1.27 1.73 
Time × CA 1, 239 23.01*** 0.12 0.01 <0.01 2.30 
Time × DL 1, 239 0.91 0.47 0.11 0.66 3.89* 
Time × MP 1, 239 1.76 0.60 3.13 0.60 0.59 
Time × CZ 1, 239 7.25** 0.71 0.80 3.76* 2.48 
Time × GE 1, 239 35.12*** 6.76** 2.29 0.60 <0.01 
Time × Cs 1, 239 21.73*** 1.77 0.07 0.02 2.72 

Table 1. F-values of linear mixed effects models on the effect of litter species diversity (LD), time 
of exposure (Time) and leaf litter species identity [Cecropia andina (CA), Dictyocaryum 
lamarckianum (DL), Myrcia pubescens (MP), Cavendishia zamorensis (CZ), Graffenrieda 
emarginata (GE) and Clusia spp. (Cs)] on mass loss (Mloss), microbial biomass (Cmic), basal 
respiration (BR), microbial metabolic quotient (qO2) and the slopes of microbial growth after C 
addition (+CSlope). F-values represent those where the respective factor was fitted first. Significant 
effects are given in bold (*P< 0.05; **P< 0.01; ***P< 0.001); df, degrees of freedom. 
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Figure 1. Effect of litter species diversity (LD; 1, 2 and 4 species) on (A) litter mass loss (Mloss) 
and (B) litter microbial biomass (Cmic) after 6 and 12 months of incubation in the field. Boxplots 
show medians and quantiles for each LD level. Violin plot illustrate kernel probability density. 
Different letters indicate significant differences (Tukey’s HSD test, P < 0.05 
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 Mloss Cmic BR qCO2 +CSlope Collembola Oribatida Mesostigmata Prostigmata 

Mloss 1 - - - - - - - - 

Cmic 0.30*** 1 - - - - - - - 

BR 0.42*** 0.53*** 1 - - - - - - 

qO2 0.20** -0.16 *** 0.50*** 1 - - - - - 

+Cslope 0.20** 0.23*** 0.38*** 0.07 1 - - - - 

Collembola 0.16** 0.09 0.04 -0.10 0.12 1 - - - 

Oribatida 0.25*** 0.08 0.13* 0.04 0.12 0.50*** 1 - - 

Mesostigmata -0.05 -0.07 -0.15* -0.16* -0.05 0.40*** 0.40*** 1 - 

Prostigmata 0.05 0.02 <0.01 -0.11 0.07 0.37*** 0.39*** 0.48*** 1 

C-to-N -0.24*** -0.16* -0.19** 0.05 -0.15* -0.15* -0.01 -0.07 -0.19*** 

Table 2. Pearson correlation coefficients between mass loss (Mloss), microbial biomass (Cmic), basal respiration (BR), microbial growth 
after C addition (+Cslope), metabolic quotient (qO2), the abundance of Collembola, Oribatida, Mesostigmata and Prostigmata and litter 
C-to-N ratio. Significant correlations are given in bold (*P< 0.05; **P< 0.01; ***P< 0.001). 
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Microbial parameters 

Parallel to Mloss, the microbial parameters Cmic, BR, qO2 and +CSlope significantly increased 

from 6 to 12 months (Table 1; for means see Appendix 2). Among microbial parameters, 

only Cmic varied with litter diversity. Unlike Mloss, the effect of litter diversity was restricted 

to the second sampling date, decreasing in the order one > two > four litter species (Figure 

1B). Further, Cmic also varied with litter species identity, but the effect was restricted to 

treatments with G. emarginata and depended on time. At the second sampling date Cmic 

decreased from 15.23 ± 11.74 to 11.58 ± 7.37 mg Cmic g-1 dw in litterbags without and with 

G. emarginata, respectively. The other microbial parameters only were significantly 

affected by litter species identity, with the effects in part varying with time (Table 1). BR 

decreased significantly in presence of M. pubescens from an average of 157.3 ± 107.7 to 

133.1 ± 69.40 μl O2 mg-1 Cmic h-1 in litterbags without and with M. pubescens, respectively. 

qO2 decreased from 14.90 ± 5.65 to 13.50 ± 4.18 μl O2 mg-1 Cmic h-1 in presence of C. 

andina, irrespective of sampling date, but it increased from 14.44 ± 5.37 to 16.91 ± 7.45 45 

μl O2 mg-1 Cmic h-1 in presence of C. zamorensis at the second sampling date. +CSlope 

decreased significantly from 0.0097 ± 0.0149 to 0.0061 ± 0.0131 in presence of C. 

zamorensis irrespective of sampling date, but in presence of D. lamarckianum it increased 

from 0.0086 ± 0.0195 to 0.0151 ± 0.0180 after the second sampling. 

Pearson correlation coefficients indicated that Cmic positively correlated with Mloss, BR and 

+CSlope, but negatively with qO2 and the litter C-to-N ratio. BR positively correlated with 

Mloss, Cmic, qO2, +CSlope and the abundance of Oribatida, but negatively with the abundance 

of Mesostigmata and the litter C-to-N ratio. qO2 positively correlated with Mloss and BR, 

but negatively with Cmic and the abundance of Mesostigmata. +CSlope positively correlated 

with Mloss, Cmic, BR, but negatively with the litter C-to-N ratio (Table 2). 

 

Microarthropods 

The number of Collembola, Oribatida and Prostigmata significantly increased from 6 to 12 

months, but the abundance of Mesostigmata decreased (Figure 2; Table 3; for means see 

Appendix 3). None of the soil microarthropod taxa investigated varied with litter diversity, 
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although they did vary significantly with litter species identity (Table 3). Collembola 

abundance (25.3% of total microarthropods; overall mean of 70 ± 80 ind. 10 g−1 litter dw) 

increased significantly in presence of C. andina by 43.4% and in presence of G. emarginata 

by 29.2%, but decreased in presence of D. lamarckianum and C. zamorensis by 39.1% and 

38.1%, respectively (Appendix 3 and 4). However, the effect varied with time for D. 

lamarckianum and C. zamorensis (Table 3); in the presence of these species the reduction 

was most pronounced after 12 months (from 60 ± 42 to 123 ± 132 and from 62 ± 38 to 124 

± 135 ind. 10 g−1 litter dw, respectively). The abundance of Oribatida (53.7% of total 

microarthropods; overall mean 146 ± 119 ind. 10 g−1 litter dw) increased significantly in 

litterbags containing G. emarginata or Clusia spp. from 133 ± 119 to 162 ± 118 and from 

131 ± 99 to 163 ± 138 ind. 10 g−1 litter dw, respectively. Further, Mesostigmata abundance 

(11.1% of total microarthropods; overall mean of 30 ± 27 ind. 10 g−1 litter dw) decreased 

significantly by 24.5% from 34 ± 31 to 26 ± 21 ind. 10 g−1 litter dw in the presence of C. 

zamorensis. Prostigmata abundance (9.5% of total microarthropods; overall mean of 26 ± 

22 ind. 10 g−1 litter dw) increased significantly in litterbags where C. andina or Clusia spp. 

were present. With the former, it increased by 28.1% from 23 ± 22 to 29 ± 22 ind. 10 g−1 

litter dw, while in the presence of the latter the effect was restricted to the second sampling 

date, increasing by 23.1% from 27 ± 25 to 33 ± 26 ind. 10 g−1 litter dw. 

Pearson correlation coefficients indicated that Collembola abundance positively correlated 

with Mloss and the abundance of Oribatida, Mesostigmata and Prostigmata, but negatively 

with the litter C-to-N ratio. Oribatida abundance positively correlated with Mloss, BR and 

the abundance of Collembola, Mesostigmata and Prostigmata. Mesostigmata abundance 

positively correlated with the abundance of Collembola, Oribatida and Prostigmata, but 

negatively with BR and qO2. Prostigmata abundance positively correlated with the 

abundance of Collembola, Oribatida and Mesostigmata, but negatively with litter C-to-N 

ratio (Table 2). 
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 df Collembola Oribatida  Mesostigmata  Prostigmata 

LD 2, 239 0.15 1.41 0.75 0.74 
Time  1, 239 28.08*** 78.95*** 4.93* 4.22* 
CA 1, 239 15.83*** 1.50 2.86 7.92** 
DL 1, 239 13.34*** 0.34 0.05 0.66 
MP 1, 239 <0.01 0.85 0.37 2.74 
CZ 1, 239 8.80** 2.73 4.61* 2.06 
GE 1, 239 7.59** 5.98** 2.43 1.56 
Cs 1, 239 <0.01 4.24* 0.07 0.02 
Time × LD 2, 239 2.80 0.61 0.71 0.39 
Time × CA 1, 239 0.14 0.59 2.26 3.08 
Time × DL 1, 239 8.04** 0.02 1.01 0.42 
Time × MP 1, 239 0.85 0.30 0.23 0.03 
Time × CZ 1, 239 4.52* 0.01 0.01 <0.01 
Time × GE 1, 239 0.22 0.03 0.14 0.33 
Time × Cs 1, 239 0.44 0.02 0.04 4.25* 

Table 3. F-values of linear mixed effects models on the effect of litter species diversity (LD), time 
of exposure (Time) and leaf litter species identity [Cecropia andina (CA), Dictyocaryum 

lamarckianum (DL), Myrcia pubescens (MP), Cavendishia zamorensis (CZ), Graffenrieda 

emarginata (GE) and Clusia spp. (Cs)] on the abundance of Collembola, Oribatida, Mesostigmata 
and Prostigmata. F-values represent those where the respective factor was fitted first. Significant 
effects are given in bold (*P< 0.05; **P< 0.01; ***P< 0.001); df, degrees of freedom. 
 

 

Figure 2. Abundance of Collembola, Oribatida, Mesostigmata and Prostigmata in litterbags after 6 
and 12 months of incubation in the field. Boxplots show medians and quantiles for each date of 
exposure. Violin plots illustrate kernel probability density. ***P < 0.001; *P < 0.05. 
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Discussion 

Litter diversity 

Contrary to our first hypothesis, Cmic decreased rather than increased with increasing litter 

diversity after one year of exposure in the field (Figure 1). Leaves of tropical forest trees 

are of low nutritional quality and contain high concentrations of structural compounds and 

secondary metabolites, typically higher than those in trees of temperate forests (Coley and 

Barone 1996; Hallam and Read 2006; Cárdenas et al. 2015). Secondary metabolites, 

particularly polyphenols known to suppress microorganisms by inhibiting enzyme activity 

(Hättenschwiler and Vitousek 2000; Hoorens et al. 2003), are important drivers of 

decomposition processes particularly in tropical rainforests (Coq et al. 2010). Potentially, 

secondary compounds, such as polyphenols, detrimentally affected litter microorganisms 

in a systemic way resulting in a decrease in Cmic, thereby resulting in a negative 

complementarity effect in leaf litter mixtures (Chomel et al. 2016; Ristok et al. 2019). The 

fact that BR, qO2 and +CSlope were not significantly affected by litter diversity suggests that 

higher leaf litter diversity does not necessarily result in an increase in the availability of 

nutrient and carbon resources in this tropical rainforest. Rather, the results suggest that litter 

diversity increases the exposure of microorganisms to secondary leaf litter compounds, 

detrimentally affecting their activity. Due to the preferential decay of labile litter 

compounds, the concentration of secondary compounds as well as recalcitrant structural 

compounds, such as lignin, may increase during litter decomposition, thereby reducing 

litter decomposition at later stages of litter decay, as has previously been suggested for litter 

at our study sites (Butenschoen et al. 2014; Marian et al. 2017). 

Similar to Cmic, Mloss significantly increased in single litter species treatments after one year 

of exposure underscoring the correlation between (Table 2). Changes in the chemical 

composition of litter material throughout the decomposition process alter the structure and 

functioning of microbial communities and thus affect the rate at which litter material is 

decomposed (Berg and McClaugherty 2008). Notably, Mloss increased with litter diversity 

after 6 months of exposure, however, the effect was no longer present after 12 months. 

Presumably, this reflects reliance of the early microbial community on labile litter 
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compounds, which were more abundant in leaf litter mixtures (Pérez Harguindeguy et al. 

2008; Rinkes et al. 2014). However, as decomposition proceeded, the remaining more 

recalcitrant compounds accumulated and their decomposition was independent of litter 

diversity. 

In contrast to Cmic and Mloss, the abundance of microarthropods was not affected by litter 

diversity (Table 3). Some previous studies found mixtures to promote the abundance of 

microarthropods (Migge et al. 1998; Hansen 2000; Hättenschwiler and Gasser 2005; 

Schädler and Brandl 2005), while others did not find evidence that litter diversity 

beneficially affects microarthropods (Scheu et al. 2003; Ilieva-Makulec et al. 2006; 

Korboulewsky et al. 2016; Bluhm et al. 2019; Patoine et al. 2020). Our results agree with 

the latter findings and support the results of Marian et al. (2018) suggesting that litter 

diversity in this tropical rainforest neither improves habitat conditions nor the availability 

of resources for microarthropods, at least during early stages of decomposition. Indeed, 

detritivore microarthropods are considered to comprise predominantly generalist feeders 

colonizing a range of forest types and therefore are rather insensitive to changes caused by 

litter mixing (Wardle et al. 2006; Ball et al. 2014; Gergócs and Hufnagel 2016; Patoine et 

al. 2020). However, even though litter diversity did not affect microarthropod abundance, 

it may still have fostered the diversity of microarthropods, as has been shown for other soil 

organisms, such as testate amoebae at our study site (Krashevska et al. 2017). 

 

Exposure time 

Generally, Mloss increased with time parallel to microbial parameters. Litter decomposition 

at our study site can be divided into three phases, with the early phase lasting for about 12 

months (Marian et al. 2017). This early phase of decomposition is characterized by the loss 

of labile C compounds via leaching and by the growth of opportunistic microorganisms 

that form new soluble compounds (Berg and McClaugherty 2008), and this likely explains 

the close link between Mloss and microbial activity and growth (Table 2). However, contrary 

to our second hypothesis, the increase in qO2 values between 6 and 12 months of exposure 

indicates that microorganisms increasingly suffered from stress conditions later during 
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exposure. Stress conditions result in less efficient use of C compounds and increased 

investment into maintenance metabolism (Yan et al. 2003; Ndaw et al. 2009). Presumably, 

toward the end of the early litter decomposition stage microorganisms increasingly 

competed for resources as easily decomposable leaf litter compounds vanished (Fontaine 

et al. 2003; Poll et al. 2008; Rinkes et al. 2011). The parallel increase in the +CSlope with 

time suggests that this was associated with less efficient nutrient capture by 

microorganisms pointing towards a switch from predominant limitation by nutrients early 

during exposure to the limitation by easily available carbon resources later (Sall et al. 2003; 

Laganière et al. 2010). Early stages of litter decay in the studied tropical montane rainforest 

might be associated with high abundance of mycorrhizal fungi (Marian et al. 2017). The C 

input that mycorrhizal fungi obtain from plants may allow them to efficiently compete with 

saprotrophic fungi for nutrients, even though their enzymatic capability is typically inferior 

to that of saprotrophic fungi (Hodge et al. 2001; Camenzind and Rillig 2013). Indeed, the 

assumption that mycorrhizal and saprotrophic fungi interact antagonistically early during 

litter decomposition at our study site is supported by earlier studies (Marian et al. 2019; 

Sánchez-Galindo et al. 2019).  

Parallel to microbial parameters, the abundance of all microarthropod taxa studied 

increased with time, with the exception of Mesostigmata. Mesostigmata commonly hunt in 

the litter for other microarthropods, particularly Collembola, Astigmata and weakly 

sclerotized Oribatida (Koehler 1997; Schneider and Maraun 2009). Although variations in 

the abundance of Mesostigmata were closely linked to the abundance of Collembola and 

Oribatida (Table 2), the fact that their abundance decreased with time likely reflect that 

Mesostigmata in the litterbags were not only feeding on microarthropods, but also on other 

organisms, presumably Nematoda, insect larvae and eggs. Indeed, some species of 

Mesostigmata may preferentially colonize certain microhabitats to hunt for prey such as 

Nematoda (Klarner et al. 2013; Heidemann et al. 2014). 

The increase in the abundance of the microarthropod decomposers Collembola and 

Oribatida with time indicates that changes during the initial stages of decomposition 

influence both groups in a similar way. Surprisingly, Collembola and Oribatida abundance 
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was not closely associated with microbial biomass (Table 2) even though microorganisms 

are their major food resource (Maraun et al. 2003; Scheu et al. 2005; Dhooria 2016). Rather, 

the stage of litter decomposition within the early decomposition phase (i.e., 6 vs 12 

months), appears to be the more important driver of the abundance of microarthropod 

decomposers. Indeed, litter material that is highly colonized by microorganisms becomes 

more palatable for microarthropods (Bardgett 2005; Das and Joy 2009), which at least in 

part is due to the reduction in plant secondary compounds such as phenols (Coulis et al. 

2009; Asplund et al. 2013). Overall, our results support earlier findings at this study site in 

that the role of litter resources for the nutrition of decomposer microarthropods increases 

with litter decomposition (Marian et al. 2018). Moreover, the parallel increase in the 

abundance of Prostigmata suggests that the increase in the abundance of decomposer 

microarthropod prey benefitted higher trophic levels. 

 

Leaf litter identity 

The presence of specific plant  leaf litter species in mixtures might increase or decrease the 

rate at which the litter decomposes (Hector et al. 2000; Hoorens et al. 2003, 2010). 

Variation can be attributed predominantly to differences in litter quality among the 

component species in mixtures (Gartner and Cardon 2004; Hättenschwiler et al. 2005). 

Indeed, litter decomposition and colonization of the litter by microarthropods in our study 

were related to the initial chemical composition of the litter species. Our third hypothesis 

was supported by the beneficial effects of high-quality C. andina litter. Presence of this 

litter species significantly decreased qO2 values and increased the abundance of Collembola 

and Prostigmata. C. andina had high initial N and P concentrations, and low lignin content 

(see Appendix 1), providing readily available nutrients, reducing nutrient stress for 

microorganisms and thereby contributing to an increase in Cmic. Increased microbial C use 

efficiency may also have resulted from a shift in microbial community composition toward 

high-energy-efficient species (Dilly and Munch 1996), e.g. from opportunistic bacteria to 

fungi able to break down complex litter compounds (Chapman et al. 2013). Changes in 

microbial community composition probably were driven by increasing concentrations of 

recalcitrant litter compounds favoring saprotrophic fungi able to degrade these compounds, 
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which in turn beneficially affected decomposers, such as Collembola and Oribatida, feeding 

on these fungi and the litter materials degraded by them. 

The high qO2 and the +CSlope values after 12 months of exposure reflected the low quality 

of D. lamarckianum, C. zamorensis and G. emarginata litter, and presumable scarcity of 

easily accessible C resources to microorganisms. All these litter species were characterized 

by low initial N and P concentrations, and high concentrations of lignin and cellulose 

(Appendix 1). The concentrations of lignin and cellulose serve as indicator of litter quality 

and as predictor of litter decomposition (Fioretto et al. 2005; Berg 2014). Cellulose not 

entrapped in lignin degrades rapidly during early stages of decomposition and this 

contributes to the release of N and P, typical elements limiting microbial growth (Berg and 

McClaugherty 2008; Hobbie et al. 2012; Berg 2014). However, during this stage, labile 

compounds are commonly used by opportunistic microorganisms (Cornelissen et al. 1999; 

Fioretto et al. 2005), impeding the growth of microorganism able to degrade recalcitrant 

litter compounds (Ilieva-Makulec et al. 2006). Therefore, by the end of the early stage of 

litter decomposition, structural compounds become relatively more abundant and reduce 

resource quality, which differentially affects microorganisms and microarthropods, as 

indicated by the lower abundance of Collembola in litter of C. zamorensis and D. 

lamarckianum. Interestingly, the decrease in Cmic after 12 months in litterbags containing 

G. emarginata was associated with high abundance of decomposer microarthropods, 

suggesting that there is no close relationship between decomposer microarthropods and 

bulk microbial biomass in litter. This conclusion is also supported by the lack of significant 

correlations between Cmic and decomposer microarthropod abundances (Table 2). 

The correlation between the abundance of Collembola and Oribatida and litter Mloss 

presumably reflects that these microarthropods benefited from both higher quality litter and 

by microorganisms colonizing the litter at later stages of decay. The significant negative 

correlation between Collembola abundance and litter C-to-N ratio (Table 2) indicates that 

Collembola heavily rely on litter quality. However, contrary to our fourth hypothesis, the 

differential responses of microarthropods to litter species suggests that leaf litter chemical 

composition alone is insufficient to explain variations in the abundance of soil 
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microarthropods, as has been suggested in earlier studies (Kaneko and Salamanca 1999; 

González and Seastedt 2001; Hoorens et al. 2010). This is most strongly supported by the 

greater abundance of Oribatida in litterbags containing Clusia spp. litter, which was of 

particular low quality. This indicates that physical litter characteristics such as toughness 

and structure, might play a more important role in driving soil microarthropod abundance 

than litter chemistry and the degree of microbial colonization. 

 

Conclusions 

The results of our study showed that higher levels of litter diversity may negatively affect 

soil microbial biomass and mass loss in the studied tropical montane rainforest, presumably 

due to the accumulation of recalcitrant compounds and the generally low quality of the leaf 

litter material. Notably, the response of microbial parameters and microarthropod 

abundance to litter identity was more pronounced than to litter diversity, with the 

differential responses of soil biota to litter identity in part being due to differences in the 

initial chemical composition of litter species. Generally, the results indicate that both 

microarthropods and microorganisms benefit from larger amounts of easily available litter 

resources during early stages of decomposition, highlighting the importance of litter quality 

as driver of the abundance and activity of decomposer organisms. However, the results also 

indicate that litter traits, related to the physical structure of litter may be more important to 

decomposer invertebrates than litter chemistry and gross microbial characteristics of litter 

such as microbial biomass. Overall, our findings indicate that litter species identity 

functions as major driver of the abundance and activity of soil organisms, and thereby exert 

distinct effects on ecosystem processes such as decomposition and nutrient mobilization. 
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Appendix 

Appendix 1. Initial chemical composition of the litter species used in the experiment. The 

analyses were performed in triplicate using bulk samples. Data are given in percentages of 

dry mass; nd = not detected. 
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Appendix 2. Means of microbial parameters (Cmic, microbial biomass carbon; BR, basal 

respiration, qO2, microbial specific respiration; +CSlope, the slopes of microbial growth after 

C addition). LD, litter diversity (LD1, one species; LD2, two species; LD4, four species); 

CA, Cecropia andina; DL, Dictyocaryum lamarckianum; MP, Myrcia pubescens; CZ, 

Cavendishia zamorensis; GE, Graffenrieda emarginata; Cs, Clusia spp. Values are means 

± SD. 

 Cmic 
[mg Cmic g-1 dw] 

BR 
[μl O2 mg-1 Cmic h-1] 

qO2 
[μl O2 mg-1 Cmic h-1] +CSlope 

LD 
1 13.30 ± 8.99 154.57 ± 97.62 12.97 ± 5.55 0.0113 ± 0.0208 
2 11.01 ± 9.74 152.42 ± 105.28 14.78 ± 5.71 0.0066 ± 0.0111 
4 10.10 ± 6.12 138.35 ± 79.27 14.27 ± 4.22 0.0084 ± 0.0121 

Time 6 months 8.28 ± 4.19 101.7± 19.5 12.90 ± 2.21 0.0042 ± 0.0035 
12 months 13.62 ± 10.18 191.1 ± 114.0 15.65 ± 6.56 0.0117 ± 0.0190 

CA Presence 11.12 ± 6.22 148.50 ± 94.82 13.50 ± 4.18 0.0089 ± 0.0157 
Absence 10.81 ± 9.56 144.73 ± 91.97 14.90 ± 5.65 0.0075 ± 0.0114 

DL Presence 10.58 ± 6.98 150.09 ± 89.94 14.74 ± 4.06 0.0097 ± 0.0140 
Absence 11.28 ± 9.20 143.14 ± 96.06 13.85 ± 5.82 0.0067 ± 0.0130  

MP Presence 10.53 ± 9.53 133.07 ± 69.40 14.15 ± 4.14 0.0074 ± 0.0104 
Absence 11.29 ± 6.97 157.33 ± 107.72 14.37 ± 5.75 0.0088 ± 0.0156 

CZ Presence 10.33 ± 8.53 143.71 ± 89.58 14.94 ± 5.75 0.0065 ± 0.0117 
Absence 11.54 ± 7.89 149.02 ± 96.61 13.63 ± 4.27 0.0097 ± 0.0149 

GE Presence 10.31 ± 6.80 141.93 ± 94.72 14.34 ± 5.10 0.0079 ± 0.0121 
Absence 11.46 ± 9.17 149.98 ± 91.98 14.21 ± 5.08 0.0084 ± 0.0146 

Cs Presence 10.36 ± 6.53 142.19 ± 90.71 14.32 ± 5.05 0.0080 ± 0.0101 
Absence 11.42 ± 9.33 149.78 ± 95.13 14.24 ± 5.12 0.0083 ± 0.0157 

Time × LD     

LD1 6 months 7.79 ± 1.85 96.07 ± 18.97 12.65 ± 2.50 0.0045 ± 0.0031 
12 months 18.81 ± 9.92 213.06 ± 109.53 13.29 ± 7.53 0.0182 ± 0.0280 

LD 2 6 months 8.03 ± 1.71 103.05 ± 19.08 13.03 ± 1.91 0.0041 ± 0.0036 
12 months 13.97 ± 13.06 201.79 ± 130.59 16.53 ± 7.48 0.0091 ± 0.0149 

LD 4 6 months 8.67 ± 5.94  102.47 ± 20.01 12.86 ± 2.38  0.0043 ± 
0.0036 

12 months 11.52 ± 6.01 174.23 ± 98.28 15.69 ± 5.11 0.0126 ± 0.0158 
Time × Litter identity     

CA 

Presence 6 months 8.64 ± 1.66 103.19 ± 19.44 12.12 ± 2.00 0.0037 ± 0.0044 
Absence 6 months 7.99 ± 5.44 100.50 ± 19.58 13.53 ± 2.20 0.0047 ± 0.0026 
Presence 12 months 13.61 ± 7.91 193.81 ± 116.56 14.89 ± 5.23 0.0142 ± 0.0206 
Absence 12 months 13.63 ± 11.76 188.97 ± 112.63 16.27 ± 7.46 0.0104 ± 0.0155 

DL 

Presence 6 months 8.25 ± 5.81 103.55 ± 19.70 13.62 ± 2.31 0.0044 ± 0.0034 
Absence 6 months 8.31 ± 1.79 100.05 ± 19.29 12.24 ± 1.92 0.0041 ± 0.0037 
Presence 12 months 12.90 ± 7.31 196.63 ± 107.35 15.86 ± 5.04 0.0151 ± 0.0180 
Absence 12 months 14.29 ± 12.21 186.23 ± 120.22 15.45 ± 7.71 0.0094 ± 0.017 

MP Presence 6 months 8.27± 5.94  98.27 ± 16.49 13.03 ± 2.36 0.0041 ± 0.0033 
Absence 6 months 8.29 ± 1.74 104.52 ± 21.33 12.79 ± 2.10 0.0043 ± 0.0038 
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Presence 12 months 12.80 ± 11.71 167.88 ± 83.56 15.27 ± 5.14 0.0106 ± 0.0136 
Absence 12 months 14.30 ± 8.76 210.15 ± 131.38 15.96 ± 7.56 0.0133 ± 0.0209 

CZ 

Presence 6 months 8.07 ± 1.52 103.63 ± 18.99 12.98 ± 1.81 0.0039 ± 0.0028 
Absence 6 months 8.48 ± 5.68 99.88 ± 19.92 12.82 ± 2.56 0.0046 ± 0.0041 
Presence 12 months 12.59 ± 11.57 183.80 ± 112.03 16.91 ± 7.45 0.0092 ± 0.0160 
Absence 12 months 14.60 ± 8.61 198.16 ± 116.24 14.44 ± 5.38 0.0149 ± 0.0194 

GE 

Presence 6 months 9.03 ± 5.98 105.82 ± 20.97 12.71 ± 2.31 0.0039 ± 0.0031 
Absence 6 months 7.69 ± 1.62 98.45 ± 17.71 13.04 ± 2.14 0.0045 ± 0.0038 
Presence 12 months 11.58 ± 7.37 178.04 ± 122.51 15.98 ± 6.45 0.0119 ± 0.0159 
Absence 12 months 15.23 ± 11.74 201.52 ± 106.48 15.39 ± 6.68 0.0122 ± 0.0196 

Cs 

Presence 6 months 8.40 ± 6.07 99.02 ± 21.32 12.88 ± 2.48 0.0056 ± 0.0042 
Absence 12 months 8.18 ± 1.60 103.83 ± 17.76 12.91 ± 1.99 0.0032 ± 0.0026 
Presence 6 months 12.32 ± 6.44 185.36 ± 111.16 15.75 ± 6.41 0.0105 ± 0.0133 
Absence 12 months 14.65 ± 12.31 195.73 ± 116.75 15.57 ± 6.72 0.0133 ± 0.0210 
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Appendix 3. Means of microarthropod abundance. Values are means ± SD. For legend see 

Appendix 2. 

 

  Collembola 
 [ind. 10 g−1] 

Oribatida  
 [ind. 10 g−1] 

Mesostigmata  
 [ind. 10 g−1] 

Prostigmata  
 [ind. 10 g−1] 

LD 
1 73 ± 79 132 ± 116 26 ± 24 22 ± 18 
2 71 ± 67 150 ± 128 32 ± 29 26 ± 23 
4 67 ± 91 147 ± 113 30 ± 26 27 ± 23 

Time 6 months 46 ± 31 90 ± 55 32 ± 23 22 ± 17 
12 months 93 ± 104 201 ± 137 29 ± 30 29 ± 26 

CA Presence 83 ± 99 141 ± 117 33 ± 27 29 ± 22 
Absence 58 ± 59 150 ± 121 28 ± 27 23 ± 22 

DL Presence 52 ± 37  141 ± 106 30 ± 27 25 ± 23 
Absence 85 ± 103 150 ± 130 30 ± 27 27 ± 22 

MP Presence 71 ± 98 144 ± 125 30 ± 28 24 ± 22 
Absence 69 ± 63 147 ± 114 30 ± 26 27 ± 22 

CZ Presence 53 ± 35 132 ± 95  26 ± 21 25 ± 23 
Absence 85 ± 105 159 ± 137 34 ± 31 27 ± 22 

GE Presence 80 ± 99 162 ± 118 34 ± 29 28 ± 24 
Absence 62 ± 61 133 ± 119 27 ± 25 24 ± 20 

Cs Presence 75 ± 104 163 ± 138 30 ± 28 27 ± 23 
Absence 65 ± 56 131 ± 99 30 ± 26 25 ± 22 

Time × LD     

LD1 6 months 35 ± 24 76 ± 59 27 ± 23 18 ± 13 
12 months 111 ± 96 189 ± 132 25 ± 25 26 ± 22 

LD 2 6 months 47 ± 35 93 ± 53 32 ± 26 21 ± 14 
12 months 94 ± 82 207 ± 154 32 ± 32 32 ± 28 

LD 4 6 months 48 ± 29 93 ± 57 33 ± 21  25 ± 21 
12 months 87 ± 123 200 ± 128 27 ± 31 28 ± 25 

Time × Litter identity     

CA 

Presence 6 months 56 ± 34 88 ± 54 37 ± 26 28 ± 20 
Absence 6 months 37 ± 26 92 ± 57 27 ± 20 17 ± 15 
Presence 12 months 111 ± 131 193 ± 137 28 ± 28 30 ± 24 
Absence 12 months 78 ± 74 208 ± 140 29 ± 32 28 ± 27 

DL 

Presence 6 months 44 ± 30 90 ± 56 33 ± 25 23 ± 20 
Absence 6 months 47 ± 32 91 ± 55 30 ± 21 21 ± 15 
Presence 12 months 60 ± 42 192 ± 119 27 ± 28 26 ± 25 
Absence 12 months 123 ± 132 209 ± 154 30 ± 33 32 ± 27 

MP 

Presence 6 months 43 ± 27 87 ± 48 30 ± 20 22 ± 20 
Absence 6 months 48 ± 34 93 ± 61 33 ± 25 22 ± 15 
Presence 12 months 98 ± 131 201 ± 151 31 ± 35 26 ± 24 
Absence 12 months 89 ± 77 201 ± 129 27 ± 27 32 ± 27 

CZ 

Presence 6 months 44 ± 30 85 ± 54 28 ± 20 21 ± 16 
Absence 6 months 47 ± 32 96 ± 57 34 ± 26 23 ± 19 
Presence 12 months 62 ± 38 179 ± 103 23 ± 22 28 ± 27 
Absence 12 months 124 ± 135 222 ±163 34 ± 37 30 ± 24 

GE Presence 6 months 50 ± 34 102 ± 61 35 ± 22 25 ± 20 
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Absence 6 months 42 ± 29 81 ± 49 29 ± 23 20 ± 15 
Presence 12 months 109 ± 131 221 ± 130 33 ±35 32 ± 28 
Absence 12 months 81 ± 76 185 ± 144 25 ± 26 27 ± 24 

Cs 

Presence 6 months 45 ± 27 100 ± 57 30 ± 19 21 ± 17 
Absence 6 months 46 ± 34 82 ± 53 33 ± 26 23 ± 18  
Presence 12 months 106 ± 138 226 ± 165 31 ± 33 33 ± 26 
Absence 12 months 84 ± 66 181 ± 111 27 ± 27 27 ± 25 
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Appendix 4. Abundance of Collembola as affected by the presence of leaf litter species 

[Cecropia andina (CA), Dictyocaryum lamarckianum (DL), Myrcia pubescens (MP), 
Graffenrieda emarginata (GE), Cavendishia zamorensis (CZ) and Clusia spp. (Cs)]. 

Boxplots show medians and quantiles of Collembola abundance for presence and absence 

of each leaf litter species. Violin plots illustrate kernel probability density. ***P < 0.001; 

**P < 0.01. 
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Differences in leaf and root litter decomposition are 
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Abstract 

Plant litter decomposition is a key process in carbon and nutrient cycling. Among the 

factors determining litter decomposition rates, the role of soil biota for the decomposition 

of different plant litter types and its modification by variations in climatic conditions is not 

well understood. In this study we used litterbags with different mesh size (45 µm, 1 mm 

and 4 mm) to investigate the effect of microorganisms and decomposer microarthropods 

on leaf and root litter decomposition along an altitudinal gradient of a tropical montane 

rainforest in Ecuador. We examined decomposition rates, litter C and N concentrations, 

microbial biomass and activity, as well as decomposer microarthropod abundance, with a 

focus on oribatid mites (Oribatida, Acari) over one year of exposure at three different 

altitudes (1000, 2000 and 3000 m). Leaf litter mass loss did not differ between the 1000 

and 2000 m sites, while root litter mass loss decreased with increasing altitude. These 

changes in litter decomposition rates were paralleled by changes in microbial biomass and 

activity. Access of the litterbags by microarthropods (1 and 4 mm mesh size) did not affect 

leaf litter mass loss, whereas in root litter mass loss increased significantly at 3000 m with 

the access of soil microarthropods (4 mm mesh size). In both leaf and root litter Oribatida 

community composition varied with altitude and litter C-to-N ratio. The result suggest that 

the impacts of climatic conditions differentially affect the decomposition of leaf and root 

litter and these modifications are modulated by the quality of the local litter material. These 

findings also highlight the dominance of litter quality as dominant force structuring 

Oribatida communities. Overall, the results support the view that decomposition processes 

in montane rainforests are mostly driven by microorganisms with soil microarthropods 

playing a more important role for the decomposition of litter material of low-quality. 

 

Keywords: Acari; Collembola; Litterbags; Mesh size; Microbial biomass. 
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Introduction 

Dead leaves and roots comprise the major plant litter material that enters the belowground 

system and represent the main energy resource for soil organisms (Berg and McClaugherty 

2008). Although the annual input of leaf and root litter in forests are typically equivalent in 

mass (Norby et al. 2004; Freschet et al. 2013), most studies investigating effects of soil 

organisms on plant litter decay focus on leaves, overlooking the potential of roots as a food 

resource and regulator of carbon and nutrient cycling (García-Palacios et al. 2016; Fujii 

and Takeda 2017). Therefore, integration of both root litter and leaf litter is needed for a 

comprehensive understanding of the role of soil animals in element cycling and ecosystem 

functioning. 

Leaf and root litter material differ in structure and chemical composition (Berg and 

McClaugherty 2008). Generally, roots contain higher concentrations of recalcitrant 

compounds compared to leaves, which inhibits degradation by soil organisms and this is 

assumed to be the reason for the slower decay rates of roots compared to leaves (Hobbie et 

al. 2010; Freschet et al. 2012; García-Palacios et al. 2016; Jo et al. 2016). Additionally, leaf 

and root litter are located at different positions in the forest floor. Leaf litter is deposited on 

top of the soil, while root litter enters the decomposer system directly within the soil. These 

different locations generate different input pathways of nutrients and are associated with 

different microenvironments for soil organisms (Ostertag and Hobbie 1999; Fujii and 

Takeda 2010, 2017). Differences in quality and input pathways of litter type are likely to 

affect the abundance, composition and activity of soil organisms, with knock-on effects for 

decomposition rates and soil nutrient dynamics. 

Effects of soil organisms on litter decomposition not only change with litter traits, but also 

with climatic conditions (Coûteaux et al. 1995; Aerts 1997; Hättenschwiler et al. 2005). In 

tropical Andean montane ecosystems, considered a biodiversity hotspot, climatic 

conditions change strongly with altitude (Myers et al. 2000; Beck and Ritcher 2008). 

Increasing altitude is associated with a decline in litter nutrient concentrations and increase 

in the thickness of organic layers and fine root biomass (diameter < 2 mm) (Tanner et al. 

1998; Soethe et al. 2007; Graefe et al. 2008). Notably, at higher altitudes, more organic 

material originates from fine root litter than from fallen leaves (Röderstein et al. 2005). 
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Such changes in litter traits with environmental conditions affect the nutrient supply for 

decomposer organisms and thereby likely control the abundance and diversity of soil 

decomposer species (Wang et al. 2010; García-Palacios et al. 2016). However, few studies 

have investigated the impacts of litter traits and altitudinal changes in climate on soil animal 

communities and their role in leaf and root litter decomposition in tropical montane 

rainforest ecosystems (Marian et al. 2017, 2018). 

Decomposer communities in tropical montane rainforests are dominated by 

microorganisms and soil microarthropods (Illig et al. 2008; Maraun et al. 2008; Scheu et 

al. 2008). Among soil microarthropods, oribatid mites (Oribatida, Acari) and springtails 

(Collembola, Insecta) are the most abundant and diverse organisms (Seastedt 1984; Ruess 

and Lussenhop 2005). These microarthropods increase rates of litter decomposition and 

nutrient cycling in forest ecosystems either via the consumption of litter or through 

stimulation of microbial activity and transport of microbial propagules (Swift et al. 1979; 

Seastedt 1984; Ruess and Lussenhop 2005). However, interactions between 

microorganisms, microarthropods and litter type are not well understood. Nonetheless, the 

exclusion of specific faunal size classes from litter has demonstrated the importance of 

particular groups of soil organisms on litter decomposition rates (Bradford et al. 2002; Joo 

et al. 2006; Kampichler and Bruckner 2009). Such experiments are crucial for identifying 

the role of different animal communities for litter decomposition. 

The present study investigates how the effects of microorganisms and decomposer 

microarthropods on leaf and root litter decomposition vary along an altitudinal gradient of 

tropical montane rainforests in Ecuador. Decomposition rates, microbial biomass and 

respiration, as well as decomposer microarthropod abundance, with focus on Oribatida, 

were studied over one year using litterbags with different mesh sizes to control access by 

soil fauna to the litter. We hypothesized that (1) the decomposition of litter, regardless of 

litter type, decreases with increasing altitude due to less favourable abiotic conditions with 

increasing altitude. Since litter decomposition in the study area is mainly due to the action 

of microorganisms (Illig et al. 2008; Marian et al. 2017), we hypothesized that (2) limiting 

the access of litter by microarthropods accelerates decomposition by increasing microbial 

biomass and activity in both leaf and root litter, with the effect being stronger at higher 
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altitudes where nutrients are more limited. Further, we hypothesized that (3) the abundance 

of decomposer microarthropods and the diversity of Oribatida is higher in leaf than in root 

litter irrespective of altitude and increase with increasing microbial biomass. Lastly, we 

hypothesized that (4) the role of litter quality in structuring Oribatida communities declines 

with time, with the effect being less pronounced in root than in leaf litter. 

 

Materials and methods 

Study area 

The study area is located in the northern fringes of the Podocarpus National Park in the 

eastern slopes of the Andean Cordillera, Southeast Ecuador. Three study sites at 1000, 

2000, and 3000 m a.s.l. represent an altitudinal gradient with moderately steep slopes of 

26–31° (Moser et al. 2007). The lower site at 1000 m a.s.l. (S04°06′54´´, W78°58′02´´) is 

located in the Río Bombuscaro valley and classified as evergreen submontane rainforest 

dominated by tree species of the families Arecaceae, Combretaceae, Moraceae, 

Monimiaceae, Rubiaceae, and Sapotaceae (Homeier et al. 2008). The intermediate site at 

2000 m a.s.l. (S3°58′18´´, W79°4′45´´) is located in the Reserva Biológica San Francisco 

on the north-facing flank of the Río San Francisco valley and consists of an evergreen lower 

montane rainforest dominated by trees of the families Arecaceae, Clusiaceae, Ericaceae, 

Lauraceae, Melastomataceae and Rubiaceae (Homeier et al. 2008). The highest site at 

3000 m a.s.l. (S04°06′711´´, W79°10′58´´) is located near the upper Cajanuma mountain at 

the northwest gate of Podocarpus National Park. The forest has been classified as evergreen 

elfin forest dominated by trees / shrubs of the families Aquifoliaceae, Bromeliaceae, 

Chloranthaceae, Clusiaceae, Ericaceae and Melastomataceae (Homeier et al. 2008). The 

climate is semi-humid with an average annual temperature of 14.9 °C, 12.3 °C and 8.9 °C 

and annual precipitation of approximately 2200, 3500 and 4500 mm at 1000, 2000 and 

3000 m a.s.l., respectively (Bendix et al. 2006; Homeier et al. 2010). Soil types of the study 

sites are alumic Acrisol (1000 m), Gley Cambisol (2000 m) and Podzol (3000 m) (Soethe 

et al. 2006; Moser et al. 2007). The thickness of organic soil layers increases with altitude 

from 4.8 cm at 1000 m to 30.5 cm at 2000 m to 43.5 cm at 3000 m (Leuschner et al. 2007; 



Chapter 3 
_________________________________________________________________________________________________	

	
 

 62 

Graefe et al. 2008). In parallel, fine root biomass increases from 2.7 to 6.2 to 10.8 t ha−1 at 

the respective sites (Soethe et al. 2006). 

 

Experimental design 

Nylon litterbags (17 x 17 cm) of mesh sizes of 45 µm, 1 mm and 4 mm were filled with 10 

g of leaf or root litter. Leaf litterbags consisted of a mixture of freshly fallen leaves of three 

local abundant tree species of each study site: Pouteria sp., Cecropia andina and 

Mollinedia sp. at 1000 m, Graffenrieda emarginata, Clusia sp. and Cavendishia 

zamorensis at 2000 m, Clusia sp. Graffenrieda emarginata and Hedyosmum sp. at 3000 m. 

For root litterbags, the roots were collected by hand from the upper 20 - 30 cm of the 

soil/organic layer of respective sites and consisted of a mixture of three size classes: Small 

(< 1 mm diameter), medium (1-2 mm diameter) and large (> 3 mm diameter). The amount 

of individual leaf species and root size classes placed in the litterbags was chosen to 

resemble their amount in the litter layer and soil, respectively (see Appendix 1). The 

collected leaves and roots were gently rinsed with tap water to clear them from adhering 

soil and dried at 60°C.  

Litterbags were placed in the field in October 2008 (end of the rainy season). Bags 

containing leaf litter were randomly placed on top of the litter layer and fixed with nails, 

while those containing root litter were placed approximately 5 cm below the litter layer. 

Three blocks were established at each of the three altitudes with a minimum distance 

between blocks of 20 m. Two replicates of each treatment were placed in each block, with 

one replicate retrieved after 6 months and the other after 12 months.  

After retrieval, the litter material in each litterbag was divided into two parts of equal mass. 

The first half was analysed for dry mass, microbial biomass, basal respiration, and C and 

N concentrations. From the second half, Oribatida and Collembola were extracted using a 

modified high-gradient heat extractor (Macfadyen 1961; Kempson et al. 1963) and counted. 

Adult Oribatida were identified to species level or sorted into morphospecies (Balogh and 

Balogh 1990, 2002), following the nomenclature of Subías (2018). All identified species 

are recorded in Ecotaxonomy database (Potapov et al. 2019). 
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Analytical procedures 

Mass loss (Mloss) for both leaves and roots was calculated as !!"## =
(($$ −$% $$)) × 100⁄ , with m0 the dry weight of the initial litter placed in the litterbags 

and m1 the dry weight of litter at harvest. To measure carbon (C) and nitrogen (N) 

concentrations, dried (60°C, 72 h) leaves and roots were milled to powder (<1 mm) and 

analysed using a CN elemental analyser (Vario EL ІІІ, Elementar, Hanau, Germany).  

Microbial basal respiration (BR) and microbial biomass (Cmic) were measured using a 

computer-controlled O2 micro-compensation apparatus (Scheu 1992). BR (μl O2 g-1 dry 

weight h-1) was determined as mean O2 consumption rates 10 to 20 h after attachment of 

the samples to the respirometer. Cmic was calculated from the maximum initial respiratory 

response (MIRR; µl O2 g−1 h−1) measured after glucose saturation following the SIR method 

of Anderson and Domsch (1978). MIRR was calculated as the average of the lowest three 

readings within the first 10 h and Cmic was calculated as Cmic = 38 × MIRR (mg g-1 dry 

weight) (Beck et al. 1997; Joergensen and Scheu 1999). 

 

Statistical analyses 

Analyses were performed using R version 3.6.0 (R Core Team 2019). Each data set was 

checked for normality and homoscedasticity using Shapiro–Wilk test and Bartlett’s test 

(package “stats”). Data was log-transformed if necessary. Changes in Mloss, Cmic, BR and 

abundance of Oribatida and Collembola, as well as Oribatida richness were analyzed 

separately for leaf and root litter using linear mixed-effects models (package “nlme”) with 

sampling date (6 and 12 months), mesh size (45 µm, 1 mm and 4 mm), altitude (1000, 2000 

and 3000 m a.s.l.) and all possible interactions fitted as fixed factors, and block fitted as 

random factor. Differences between means were inspected using Tukey’s honestly 

significant difference test (package “emmeans”). Means presented in text and figures are 

based on non-transformed data. 

Oribatida species with more than three individuals across all samples were used for non-

metric multidimensional scaling (stress = 0.04, k = 6; package “vegan”). Multivariate 

analysis of variance (MANOVA; package “stats”) and linear discriminant analyses (LDA; 
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package “MASS”) were used to assess differences on Oribatida community composition 

among altitudes and mesh sizes in both leaf and root litter. Significant differences between 

group centroids were identified using Squared Mahalanobis Distances (MD2). 

Canonical correspondence analysis (CCA) performed in CANOCO (Ter Braak and 

Smilauer 2012) was used to explore the relationship between Oribatida community 

composition and litter characteristics (Mloss, C-to-N ratio) as well as microbial indicators 

(BR, Cmic). Monte Carlo randomization tests using 999 simulations were used to determine 

the significance of the axes. Sampling date (6 and 12 months), mesh sizes (45 µm, 1 mm 

and 4 mm) and altitude (1000, 2000 and 3000 m a.s.l.) were coded as supplementary 

variables not affecting the ordination. Since the global test with all litter and microbial 

indicators was significant, we used forward selection to identify the most important 

variables structuring Oribatida communities. This was done to reduce the number of 

explanatory variables entering the analysis while keeping the variation explained caused 

by them at a maximum. The forward selection procedure was stopped if a variable reached 

a level of significance > 0.05. 

 

Results 

Decomposition of leaves and roots 

Generally, Mloss significantly increased during the time of exposure reaching averages of 

46.6% ± 10.1% and 46.6% ± 10.7% for leaf and root litter after 12 months, respectively. 

Mloss of leaf litter was not significantly affected by any interaction between the three factors 

studied, but at both sampling dates it was higher at 1000 and 2000 m compared to 3000 m 

(Figure 1, Table 1). By contrast, in root litter the interactions between altitude and date, as 

well as between altitude and mesh size significantly affected Mloss. After 6 months root 

litter Mloss was at a maximum at 1000 m and similar in 2000 and 3000 m, whereas after 12 

months it decreased in a linear way with increasing altitude. Further, at 3000 m root litter 

Mloss in litterbags of 4 mm mesh size (37.6% ± 5.9%) was higher than in litterbags of 45 

µm and 1 mm mesh size (averages of 29.7% ± 8.7% and 26.2% ± 9.5%, respectively), 
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whereas at 1000 and 2000 m Mloss was not affected by mesh size (averages of 46.6% ± 

12.7% and 35.8% ± 13.7).  

 

Table 1. F- and P-values of linear mixed-effects models on the effect of time of exposure (6 and 
12 months), mesh size (45 µm, 1 mm, 4 mm) and altitude (1,000, 2,000 and 3,000 m a.s.l.) on mass 
loss (Mloss), litter C-to-N ratio, microbial biomass (Cmic) and basal respiration (BR) in leaf and root 
litter. Significant effects are given in bold, p £ 0.05. 



Chapter 3 
_________________________________________________________________________________________________	

	
 

 66 

 
Figure 1. Effect of altitude on mass loss (Mloss) after 6 and 12 months. Variations in Mloss of leaf 
and root litter exposed in litterbags at three different altitudes (1000 m, 2000 m, 3000 m) for 6 and 
12 months. Values are means ± SE. For each litter type, bars marked with different letters within 
each time of exposure differ significantly (Tukey’s HSD tests, p < 0.05). 
  

The C-to-N ratio of both leaf and root litter significantly increased with altitude from 1000 

m (23.7 ± 2.9 and 39.6 ± 4.2, respectively) to similar values at 2000 m (59.5 ± 11.7 and 

65.1 ± 9.0, respectively) and 3000 m (63.7 ± 7.0 and 69.0 ± 9.6, respectively) (Table 1). In 

leaf litter the C-to-N ratio decreased from 53.9 ± 22.3 after 6 months to 44.9 ± 17.5 after 

12 months, whereas the C-to-N ratio in root litter did not change with the time (overall 

mean 57.4 ± 14.9). In leaf litter mesh size did not affect the C-to-N ratio, whereas the C-

to-N ratio in root litter was lower in litterbags with 45 µm mesh size (53.7 ± 13.1) compared 

to litterbags with 1 and 4 mm mesh size (59.0 ± 16.0 and 59.5 ± 15.3, respectively). 

 

Microorganisms 

Generally, Cmic and BR significantly increased from 6 to 12 months of exposure with 

averages after 12 months of 7.50 ± 1.41 mg Cmic g-1 dw and 94.31 ± 18.08 μl O2 g-1 dw h-1 

for leaf litter, respectively, and 8.40 ± 2.66 mg Cmic g-1 dw and 104.32 ± 23.16 μl O2 g-1 dw 
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h-1 for root litter, respectively. Cmic and BR also varied with altitude in both litter types. In 

leaf litter, Cmic was higher at 1000 and 2000 m compared to 3000 m, whereas BR 

significantly increased in the order 1000 m < 3000 m < 2000 m. In root litter, Cmic was 

higher at 1000 m compared to 2000 and 3000 m, whereas BR was higher at 1000 m 

compared to 2000 and 3000 m (for means of treatments see Appendix 2). 

In leaf litter, variations in Cmic and BR with time depended on altitude; both generally were 

higher at 2000 m compared to 1000 and 3000 m after 6 months of exposure, while after 12 

months Cmic was higher at 1000 and 2000 m compared to 3000 m and BR did not vary 

between altitudes (Figure 2, Table 1; for means pooled for mesh size see Appendix 3). 

However, the effect of altitude also varied with mesh size (significant three factor 

interaction). In leaf litter at 1000 m Cmic and BR were lowest in bags with 1 mm mesh size 

after 6 months, whereas after 12 months Cmic was highest and BR was lowest in 4 mm mesh 

bags. At 2000 m, Cmic and BR were highest in 4 mm mesh bags, whereas after 12 months 

Cmic did not vary with mesh size and BR was highest in 4 mm mesh bags. At 3000 m, Cmic 

and BR were not affected by mesh size after 6 months, whereas after 12 months Cmic and 

BR were lowest in 1 mm mesh bags.  

Similar to leaf litter, in root litter variations in Cmic with time depended on altitude and 

mesh size (Figure 2, Table 1; for means of treatments see Appendix 2). At 1000 m, Cmic 

was highest in 45 µm mesh bags after both 6 and 12 months, whereas at 2000 m it was 

highest in 4 mm mesh bags and did not vary with mesh size after 12 months. At 3000 m, 

Cmic was not affected by mesh size after 6 months, whereas after 12 months it was highest 

in 1 and 4 mm mesh bags. Also, variations in BR in root litter with altitude depended on 

mesh size, but the effect was restricted to 1000 and 2000 m where BR was highest in 

litterbags with 45 µm and 4 mm mesh size (Table 1, Figure 2; for means of treatments see 

Appendix 2). 
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Figure 2. Effect of mesh size and altitude on Cmic and BR after 6 and 12 months of incubation. 
Variation in (A) microbial biomass (Cmic) and (B) basal respiration (BR) in leaf litter (left panel) 
and root litter (right panel) at three altitudes (1000, 2000 3000 m a.s.l.) after 6 and 12 months of 
incubation. Values are means ± SE. For each litter type, altitude and sampling date, bars marked 
with different letters differ significantly among mesh sizes (Tukey’s HSD tests, p < 0.05). 

 

Abundance of Collembola and Oribatida 

Contrasting Cmic and BR, time of exposure as main effect neither affected the abundance 

of Collembola nor that of Oribatida (Table 2). Rather, the abundance of Collembola and 

Oribatida in both litter types varied strongly with altitude and mesh size. The most 
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important factor affecting the abundance of Collembola in both litter types was altitude, 

whereas the most important factor affecting the abundance of Oribatida was mesh size. 

Table 2. F- and P-values of linear mixed-effects models on the effect of time of exposure (6 and 
12 months), mesh size (45 µm, 1 mm, 4 mm) and altitude (1,000, 2,000 and 3,000 m a.s.l.) on the 
abundance of Collembola, and the abundance and richness of Oribatida in leaf and root litter. 
Significant effects are given in bold, p £ 0.05. 

 

 

Overall, the abundance of Collembola in root litter (60 ± 58 ind. 10 g−1 litter dw) exceeded 

that in leaf litter (31 ± 38 ind. 10 g−1 litter dw). Generally, in both litter types the abundance 

decreased strongly with increasing altitude (Figure 3A, Table 2; for means of treatments 

see Appendix 4). However, in leaf litter the decrease varied with sampling date and was 

 Collembola  Oribatida 
 Abundance  Abundance   Richness 
 F-value p-value  F-value p-value  F-value p-value 
Leaf litter         

Time 0.09 0.756  0.07   0.783  0.04 0.841 

Mesh size 5.77 0.007  29.41 < 0.001  32.13 < 0.001 

Altitude 26.22 < 0.001  11.80 < 0.001  21.21 < 0.001 

Time ´ mesh size 0.15 0.857  2.64  0.085  4.63 0.016 

Time ´ altitude 3.25 0.051  0.07  0.933  0.48 0.61 
Mesh size ´ 
altitude  0.34 0.849  0.519  0.722  0.79  0.541 

Time ´ mesh size  ́
Altitude  2.14 0.097  2.41   0.068  2.82 0.039 

Root litter         

Time 0.01 0.895  0.25  0.618  0.01  0.921 

Mesh size 2.61   0.088  33.47 < 0.001  37.86   < 0.001 

Altitude 53.07 < 0.001  64.88 < 0.001  70.23   < 0.001 

Time ´ mesh size 0.14 0.870  0.34 0.71  0.75 0.481 

Time ´ altitude 1.59 0.217  1.78 0.18  2.25 0.121 
Mesh size ´ 
altitude  3.81 0.011  6.01 < 0.001  3.57 0.015 

Time ´ mesh size  ́
Altitude  1.92 0.129  0.73 0.57  0.77 0.553 
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restricted to the second sampling where Collembola abundance was higher at 1000 m (41 

± 26 ind. 10 g−1 litter dw) compared to 2000 and 3000 m (18 ± 19 and 13 ± 11 ind. 10 g−1 

litter dw). Further, in leaf litter Collembola abundance was significantly higher in 1 and 4 

mm mesh bags compared to 45 µm mesh bags, however, the differences were not 

pronounced (averages of 32 ± 27, 33 ± 43 and 28 ± 44 ind. 10 g−1 litter dw, respectively). 

In root litter, the abundance of Collembola did not vary significantly with mesh size as 

main factor but the effect of mesh size depended on altitude; Collembola abundance did 

not vary with mesh size at 1000 and 2000 m, but at 3000 m it was higher in 1 and 4 mm 

mesh bags than in 45 µm mesh bags. Generally, high abundance of Collembola in 45 µm 

mesh bags reflects that Collembola also effectively colonized leaf and root litterbags of this 

small mesh size.  

 

 

Figure 3. Effect of mesh size and altitude on Collembola and Oribatida abundance in leaf and 
root litter. Variations in (A) Collembola and (B) Oribatida abundance in leaf and root litter in 
litterbags of different mesh size (45 µm, 1 mm and 4 mm) at three altitudes (1000, 2000 and 3000 
m). Values are means ± SE. Bars marked with different letters within each altitude differ 
significantly (Tukey’s HSD tests, p < 0.05). 
 

Generally, across altitude, sampling time and mesh size the abundance of Oribatida (37 ± 

45 ind. 10 g−1 litter dw) was similar to that of Collembola (45 ± 51 ind. 10 g−1 litter dw). 
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However, in contrast to Collembola, the overall abundance of Oribatida in leaf and root 

litter was similar (32 ± 35 and 45 ± 54 ind. 10 g−1 litter dw, respectively). Further, 

contrasting the pattern in Collembola, the abundance of Oribatida in leaf litter was similar 

at 1000 and 2000 m and significantly lower at 3000 m, whereas in root litter the abundance 

at 1000 m strongly exceeded that at 2000 and 3000 m (Figure 3B, Table 2; for means of 

treatments see Appendix 4). Further, in contrast to Collembola, in both litter types the 

abundance of Oribatida was generally low in litterbags of 45 µm mesh size and similar in 

litterbags of 1 and 4 mm mesh size. However, in root litter the effect varied with altitude 

with the abundance of Oribatida in litterbags of 45 µm mesh size being considerably higher 

at 1000 m than at 2000 and 3000 m. 

 

Species richness of Oribatida 

In both leaf and root litter the average Oribatida species richness per litterbag was 

significantly affected by mesh size and altitude (Table 2). In leaf litter the number of species 

significantly declined with altitude from 11 ± 8 to 5 ± 1 to 3 ± 2 species 10 g−1 at 1000, 

2000 and 3000 m, respectively. By contrast, in root litter Oribatida species richness was 

highest at 1000 m (19 ± 9 species 10 g−1 litter) and similarly low at 2000 and 3000 m (6 ± 

3 and 5 ± 4 species 10 g−1 litter, respectively). In leaf litter, Oribatida species richness was 

generally higher in litterbags with 1 and 4 mm than in those with 45 µm mesh size at all 

three altitudes, but at 1000 and 3000 m after 12 months it did not vary between litterbags 

of different mesh size (significant interaction between time, altitude and mesh size; for 

means of treatments see Appendix 4). Similar to leaf litter, in root litter Oribatida species 

richness was higher in litterbags with 1 and 4 mm compared to those with 45 µm mesh size, 

but the variation depended on altitude with the effect being restricted to 1000 m where 

mesh size did not affect Oribatida richness. 

 

Community structure of Oribatida 

In total, 176 species of Oribatida were identified (see Appendix 5 for full list of species). 

MANOVA performed with NMDS axis scores indicated that altitude was the most 
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important factor affecting Oribatida community composition in both leaf and root litter 

(F2,24 = 18.96, P < 0.001 and F2,24 = 22.14, P < 0.001, respectively). Sampling date also 

affected Oribatida community composition in leaf litter (F1,24 = 3.62, P = 0.014) but not in 

root litter. In in both litter types the effect of altitude varied with time (F2,24 = 2.72, P = 

0.008 for leaf litter and F2,24 = 6.20, P < 0.001 for root litter). Mesh size did not affect 

Oribatida community composition neither in leaf nor in root litter. LDA separated Oribatida 

communities of the three altitudes in both leaf (Wilks’ lambda = 0.08, approx. F = 44.89, p 

< 0.001; Figure 4A) and root litter (Wilks’ lambda = 0.11, approx. F = 47.59, p < 0.001; 

Figure 4B). In both litter types Oribatida communities at 1000 m were separated from those 

at 2000 and at 3000 m along the first axis, and Oribatida communities at 2000 m and 3000 

m along the second axis (for Mahalanobis distances see Appendix 6). 

 

 

Figure 4. Linear discriminant function analyses (LDA) of Oribatida community composition in 
litterbags with (A) leaf litter and (B) root litter exposed at three altitudes (1000, 2000 and 3000 m) 
(pooled for 6 and 12 months of exposure). Ellipses represent 75% confidence ranges. 
 

CCA of Oribatida species in leaf litter with C-to-N ratio, Mloss, BR and Cmic included as 

environmental variables explained 12.7% of the variation of Oribatida community 

composition (Figure 5A); C-to-N ratio accounted for 4.4% (pseudo F = 1.9, P = 0.002), 
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Mloss for 4.3 % (pseudo F = 1.8, P = 0.002) and BR for 3.9% (pseudo F = 1.6, P = 0.007). 

Similar to LDA, the 1000 m site was separated from the 2000 and 3000 m sites along the 

first axis, and the second axis separated the 2000 and 3000 m sites as well as the sampling 

dates. The community composition of Oribatida at 2000 and 3000 m correlated positively 

with increasing C-to-N ratio and BR; Mloss correlated positively with the first sampling date 

and was associated with lower species abundance.  

CCA of Oribatida species in root litter with C-to-N ratio, BR, Mloss and Cmic included as 

environmental variables explained 10.2% of the variation of Oribatida community 

composition (Figure 5B); C-to-N ratio accounted for 7.0% of the variation (pseudo F = 3.7, 

P < 0.001) and BR for 3.2 % (pseudo F = 1.6, P = 0.004). As in leaf litter, the 1000 m site 

was separated from the 2000 and 3000 m sites along the first axis, and the second axis 

separated the 2000 and 3000 m sites as well as the sampling dates. As in leaf litter, Oribatida 

species at 2000 and 3000 m correlated positively with increasing C-to-N ratio, but BR 

correlated positively with the sampling date after 12 months. In both the CCA of leaf and 

root litter, the centroids of mesh size were close to the center of the ordination reflecting 

that Oribatida communities in litterbags of different mesh size were similar. 

Rostrozetes ovulum ovulum was the only species occurring in leaf and root litter across the 

three altitudes (Figure 5). From the species occurring in both litter types Cosmozetes 

reticulatus, Neoamerioppia longiclava, Rostrozetes carinatus and Hemileius hemileiformis 

were most abundant, with the Cosmozetes reticulatus and Hemileius hemileiformis 

occurring predominately at 1000 m and 3000 m, respectively. Neoamerioppia longiclava 

and Rostrozetes carinatus were especially abundant in leaf litter at 2000 m (in total >100 

and > 40 individuals sampled, respectively). Most other species were rare and only occurred 

at certain altitudes; for the abundance of species at each of the study sites see Appendix 5. 

Of the species present only in leaf litter, Neoamerioppia rotunda, Microtegeus borhidii, 

Sellnickochthonius elsosneadensis, Epieremulus sp.1 and Neoamerioppia longicoma were 

most abundant (in total 24, 12, 11, 10 and 8 individuals sampled, respectively) (Figure 5A). 

Sellnickochthonius elsosneadensis only occurred at 1000 m and Neoamerioppia rotunda 

and Epieremulus sp.1 only occurred at 2000 m. Microtegeus borhidii occurred at 1000 and 

3000 m, whereas Neoamerioppia longicoma only occurred at 2000 and 3000 m, but both 
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were especially abundant at 3000 m. Rostrozetes sp.6 and Lanceoppia sp.1 were associated 

with the second sampling date and were only present at 2000 m.  

 

 

Figure 5. Canonical correspondence analysis (CCA) of Oribatida species in litterbags with 
(A) leaf and (B) root litter and their relationship with environmental variables (forward 
selection). Arrows in red represent significant environmental variables. Species present only 
at one of the three altitudes are marked in color (orange = 1000 m, green = 2000 m, blue = 
3000 m); others are given in black. Species present in only one litter type are underlined and 
of them the most abundant species (>10 individual across the samples) are framed; for full 
species names see Appendix 5. 
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In root litter, Solenozetes sp.1, Brachioppiella sp.2, Schalleria pectinata, Sternoppia 

fissurata and Nanhermannia nana form.1 were most abundant (in total 52, 46, 22, 14 and 

13 individuals sampled, respectively) with the first two being especially abundant at 1000 

m (Figure 5B). Nanhermannia nana form.1 was only present at 2000 and 3000 m. 

 

Discussion 

Variations of leaf and root litter decomposition with altitude 

In contrast to our first hypothesis, Mloss of both leaf and root litter showed different patterns 

of decomposition along the altitudinal gradient. In leaf litter, Mloss did not follow the 

expected linear decrease with altitude, rather, decomposition rates at 1000 and 2000 m were 

similar after the 12 months of exposure. This contrasts previous studies at our study sites 

(Illig et al. 2008; Marian et al. 2017, 2019) and indicates that leaf litter decomposition 

cannot be explained only by the linear decrease of temperature along the altitudinal gradient 

studied. Potentially, the decline in leaf litter decomposition with temperature was 

compensated by higher precipitation at 2000 m compared to 1000 m (see Methods). High 

rainfall facilitates decomposition especially at early stages by increasing leaching of soluble 

compounds (Cusack et al. 2009). However, although climate is considered the primary 

driver of litter decomposition at large scales (Coûteaux et al. 1995; Aerts 1997), the role of 

climatic factors might be overridden by the variability of litter traits at local scales 

(Scowcroft et al. 2000; Richardson et al. 2005; Fujii et al. 2017). In our study, litter 

characteristics such as C-to-N ratio differed strongly between the leaf litter materials 

exposed at the three altitudes. However, as indicated by the C-to-N ratio, leaf litter materials 

from the 1000 m site were of considerably higher quality than those from the 2000 m site 

(as well as the 3000 m site), suggesting that the high decomposition rates of leaf litter at 

2000 m also cannot be explained by litter quality. Potentially, leaf litter Mloss was modified 

by physicochemical interactions among the three leaf litter species placed in the litterbags 

and biotic factors such as microbial community composition. The fact that Cmic and BR 

were higher in leaf litter at 2000 m than at 1000 m after 6 months of exposure supports this 

conclusion and suggests that the leaf litter mixtures favoured the activity and abundance of 
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microbial communities early after exposure. The generally high values of Cmic and BR in 

leaf litter at 2000 and 3000 m, despite the very high litter C-to-N ratio, also suggests that 

microbial communities at these sites are well adapted to decompose litter of low quality 

(Gholz et al. 2000; Strickland et al. 2009; Milcu and Manning 2011; Marian et al. 2017). 

In contrast to leaf litter, root litter showed the expected linear decrease in litter 

decomposition with increasing altitude after 12 months. Less favorable abiotic conditions, 

such as those at higher altitude, might affect root litter decomposition by reducing the 

quality of the litter material and thereby nutrient availability as reported for tropical 

rainforests (Vitousek et al. 1994; Tanner et al. 1998; Kitayama et al. 2004). This is 

supported by the high C-to-N ratios and low Cmic and BR, as well as abundance of 

decomposer microarthropods at 2000 and 3000 m (compared to 1000 m). This contrasting 

results between leaf and root litter decomposition rates suggest that in the studied tropical 

montane rainforest ecosystems, differences in the availability of nutrients and associated 

nutrient limitations among the altitudinal sites appear to be more important factors for the 

decomposition of root litter than for leaf litter. Moreover, leaf litter might be more 

susceptible than roots to effects of climatic variations as leaf litter is located on top of the 

soil and thereby exposed to more variable microclimatic conditions than root litter in soil 

(Ostertag and Hobbie 1999; Silver and Miya 2001). However, as root litter generally 

decomposed slower than leaf litter at 2000 and 3000 m, more buffered conditions in soil do 

not implicate an override of the primacy of nutrient limitations as driving factor of litter 

decomposition. Nonetheless, at 1000 m the more buffered climatic condition together with 

the close proximity of the mineral soil layer at 1000 m might have favoured the faster 

decomposition rates of roots than leaf litter. 

 

Faunal contribution to leaf and root litter decomposition along the altitudinal 

gradient 

The abundance of both Collembola and Oribatida were higher in 1 and 4 mm mesh bags 

irrespective of the plant litter type indicating that, as intended, 45 µm mesh size restricted 

the access of the litterbags by mesofauna. Thus, the different mesh sizes are a useful tool 

to evaluate the effects of microarthropods on decomposition processes. However, 
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restricting the access of the litterbags by 45 µm mesh size was more effective in Oribatida 

than in Collembola indicating that the mesh size approach is limited for evaluating the role 

of mesofauna for decomposition processes and suggesting that it likely underestimates their 

effects on litter decomposition as discussed earlier (Bradford et al. 2002; Kampichler and 

Bruckner 2009). Further, contrasting our second hypothesis, access of microarthropods to 

litterbags containing leaf litter did not result in different decomposition rates at any of the 

three altitudes, however, arthropod access to root litter increased root litter mass loss at 

3000 m (4 mm mesh bags). Despite the widely assumed beneficial effects of soil 

microarthropods on litter decomposition, experimental evidence supporting this 

assumption is mixed; some studies indeed found positive effects on litter mass loss 

(Bradford et al. 2002; Carrillo et al. 2011; Bokhorst and Wardle 2013), while others suggest 

their contribution to be minor or lacking entirely (Schinner 1982; Joo et al. 2003; 

Kampichler and Bruckner 2009; Marian et al. 2019). Overall, our results support the latter 

and previous findings at our study sites also indicating that the decomposition of leaf litter 

predominantly is due to microorganisms, with the contribution of microarthropods being 

minor, in particular at early stages of litter decomposition (Illig et al. 2008; Marian et al. 

2017, 2019). Both decomposer groups, Oribatida and Collembola, might play a more 

important role at more advanced stages of decomposition when the litter has been colonized 

by microorganisms thereby making it more palatable for arthropod consumers (Bardgett 

2005; Coulis et al. 2009; Das and Joy 2009). However, the fact that the abundance of both 

decomposer microarthropods did not vary significantly with sampling date indicates that 

the nutritional value of the litter material for decomposer microarthropods changed little 

during the 12 months of exposure. 

Notably, contrasting Mloss, Cmic and BR varied with mesh size in both leaf and root litter 

with the effect in root but not in leaf litter varying with altitude. Generally, Cmic was higher 

in 1 and 4 mm mesh bags, while BR was higher in 45 µm mesh bags. Overall, this contrasts 

our expectation that decomposer microarthropods are grazing on microorganisms thereby 

reducing their biomass. However, as suggested earlier this view might be oversimplistic as 

grazing on microorganisms may also result in increased mobilization of nutrients, thereby 

facilitating microbial growth (Seastedt 1984; Hättenschwiler et al. 2005). Further, grazing 

may result in changes in microbial community composition resulting in more effective use 
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of resources by microorganisms and this may explain the reduced BR in litterbags with 

coarse mesh size. Indeed, it has been stressed earlier that the structure of microbial 

communities is an important determinant of litter decomposition rates in particular in forest 

ecosystems (Strickland et al. 2009). 

Increased Mloss of root litter at 3000 m in 4 mm compared to 1 mm and 45 µm mesh bags 

suggests that under unfavourable environmental conditions the decomposition of low-

quality litter is stimulated by soil arthropods. A number of processes may have accelerated 

litter decomposition including stimulation of microbial growth via nutrient mobilization, 

litter fragmentation and dispersal of microbial propagules (Verhoef and Brussaard 1990; 

Ruess and Lussenhop 2005; Scheu et al. 2005). The fact that at 3000 m Cmic and BR in 

roots increased in 1 and 4 mm mesh bags supports this conclusion and suggests that the 

contribution of arthropods to decomposition of recalcitrant substrates is more pronounced 

than in readily decomposable materials (Joo et al. 2006; Milcu and Manning 2011; Gergócs 

and Hufnagel 2016). Additionally, at our study sites, the role of root exudates and 

mycorrhizal fungi are increasingly recognized as drivers of litter decomposition, 

mineralization processes and determinants of soil food webs (Marian et al. 2019; Sánchez-

Galindo et al. 2019). Therefore, at 3000 m, where the concentration of root biomass is at a 

maximum (Röderstein et al. 2005; Soethe et al. 2007), soil arthropods may benefit more 

from root-derived resources than at 1000 and 2000 m either by grazing on microorganisms 

or directly by feeding on roots.  

 

Oribatida diversity and community structure in leaf and root litter 

Similar to Oribatida abundance, the higher number of Oribatida species in litterbags of 1 

and 4 mm mesh size in both litter types might be attributed to restricted access of 

microarthropods to the 45 µm mesh litterbags. However, Oribatida species richness mostly 

varied with altitude in both leaf and root litter. The significant decrease in Oribatida species 

richness with increasing altitude in leaf litter supports results of previous studies at our 

study sites in that species richness of Oribatida in leaf litter is driven predominantly by 

factors linked to altitude (Illig et al. 2008; Marian et al. 2018). By contrast, in root litter the 

high number of Oribatida species at 1000 m and the similarly low numbers at 2000 and 
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3000 m suggests that apart from abiotic conditions changing with altitude other factors 

modify Oribatid species richness. The fact that C-to-N ratios of root litter were similar at 

2000 and 3000 m support this conclusion and suggests that root litter quality may function 

as regulator of Oribatida richness; potentially, high amounts of slightly decomposed low 

quality root litter material detrimentally affect Oribatida richness at 2000 and 3000 m 

(Röderstein et al. 2005; Maraun et al. 2013). Contrasting our third hypothesis, higher 

Oribatida species richness at 1000 m in roots compared to leaves might be related to the 

placement of the litterbags with more stable environmental conditions in roots favouring 

Oribatida richness (Fujii and Takeda 2010). Moreover, the close vicinity of the mineral soil 

layer to root litter at 1000 m might have favoured nutrient availability and decomposition 

of roots, and thereby improved food resources of Oribatida (Marian et al. 2019). Indeed, 

Illig et al. (2010) also concluded that Oribatida species richness at the studied montane 

rainforests is related to litter quality as important driving factor.  

Contrasting Oribatida abundance and richness, Oribatida community structure did not 

differ between litterbags of different mesh size. Rather, Oribatida community assemblages 

varied mostly with altitude in both leaf and root litter. Most of the 176 species identified 

were associated with the 1000 m site, only few species were only present at 2000 and 3000 

m, presumably reflecting less favorable climatic conditions and poor resource quality at the 

high altitude sites (Marian et al. 2018). Interestingly, in leaf litter certain Oribatida species 

including Sternoppia mirbilis, Lanceoppia sp.1 and Rostrozetes sp.6 preferentially 

colonized litter at later stages of decomposition (12 months) with the latter two species 

exclusively recorded at 2000 m. This contrast our fourth hypothesis indicating that certain 

Oribatida species rely on food resources associated with litter at later stages of 

decomposition particularly at higher elevations, suggesting that Oribatida species diversity 

at least in part is due to resource partitioning (Marian et al. 2018). This is supported by our 

finding that litter C-to-N ratio functions as important factor structuring Oribatida 

communities in both leaf and root litter. Contrasting leaf litter, changes in root litter with 

time did not affect Oribatida community structure, despite changes in Cmic and BR with 

time were more pronounced in root than in leaf litter. This suggests that Oribatida 

community structure is not closely linked with gross characteristics of microbial 

communities such as Cmic and BR, which is also supported by the fact that both Cmic and 
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BR varied strongly with time of exposure of the litter, whereas Oribatida community 

characteristics did not or only little (and the same was true for Collembola abundance). 

Overall, this indicates that the community structure of Oribatida is driven mainly by food 

quality, i.e. litter C-to-N ratio, as well as microbial community composition, rather than the 

amount of microorganisms as food resource (Fujii and Takeda 2017; Marian et al. 2018).  

 

Conclusion 

The results of our study suggest that the decomposition of both leaf and root litter in 

montane rainforests is mainly due to microorganisms, whereas the effect of 

microarthropods is minor across a wide altitudinal gradient. However, at high altitude soil 

microarthropods may accelerate the decomposition of low-quality litter such as root litter. 

Generally, abundance of both Collembola and Oribatida, and community composition of 

Oribatida varied not or little with time of exposure of leaf and root litter, contrasting the 

patterns of microbial biomass and highlighting that the abundance of microorganisms as 

food is of minor importance as structuring force of decomposer microarthropod 

communities. Rather, the results point to the dominance of litter quality, i.e. litter C-to-N 

ratio, as dominant force structuring Oribatida communities. Overall, our findings highlight 

that the role of climatic factors for decomposition of leaf and root litter might be overridden 

at the local scale by litter traits suggesting that differences in litter quality and the nutritional 

requirements of decomposer communities are important drivers of litter decomposition and 

nutrient cycling in tropical montane rainforest ecosystem. 
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Appendix 

Appendix 1. Leaf and root litter mixtures per litterbags at the three altitudes (1000, 2000 

and 3000 m). 

Site Litter type Species Mass (g) Total (g) 

1000 m 

Leaves 
Pouteria sp. 5.0 

10 Cecropia sp. 3.0 
Mollinedia sp. 2.0 

Roots 
Small 2.7 

10 Medium 4.8 
Large 2.5 

2000 m 

Leaves 
Graffenrieda emarginata 5.0 

10 Clusia sp. 4.0 
Cavendishia zamorensis 1.0 

Roots 
Small 4.4 

10 Medium 2.1 
Large 3.5 

3000 m 

Leaves 
Clusia sp. 5.0 

10 Graffenrieda emarginata 4.0 
Hedyosmum sp. 1.0 

Roots 
Small 3.4 

10 Medium 2.5 
Large 4.1 
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Appendix 2. Microbial biomass (Cmic) and basal respiration (BR) in leaf and root litter in 

litterbags of 45 µm, 1 mm and 4 mm mesh exposed at 1000, 2000 and 3000 m for 6 and 12 

months. Values are means ± SD.  

 Leaf litter Root litter 

Cmic 
[mg Cmic g-1 dw] 

BR 
[μl O2 g-1 dw h-1] 

Cmic 
[mg Cmic g-1 dw] 

BR 
[μl O2 g-1 dw h-1] 

Time 
6 months 6.48 ± 1.29 74.46 ± 18.28 5.63 ± 1.43 52.18 ± 18.26 
12 months 7.50 ± 1.41 94.31 ± 18.08 8.40 ± 2.66 104.33 ± 23.16 

Mesh size 
45 µm 6.89 ± 1.03 92.71 ± 18.55 7.23 ± 3.07 77.21 ± 34.54 
1 mm 6.22 ± 1.40 79.53 ± 20.68 6.76 ± 2.27 75.97 ± 31.12 
4 mm 7.90 ± 1.36 80.91 ± 21.01 7.05 ± 2.31 81.58 ± 36.20 

Altitude 
1000 m 7.01 ± 1.61 74.77 ± 18.99 9.36 ± 2.65 97.39 ± 33.65 
2000 m 7.76 ± 1.06 94.39 ± 20.90 6.36 ± 1.37 73.18 ± 28.48 
3000 m 6.22 ± 1.18 83.99 ± 17.96  5.31 ± 1.35 64.20 ± 30.37 

Time ´ mesh size 

6 months 
45 µm 6.37 ± 0.87 78.43 ± 9.49 6.03 ± 1.62 54.89 ± 22.10 
1 mm 5.81 ± 1.25 66.60 ± 16.37 5.34 ± 1.57 51.04 ± 18.26 
4 mm 7.28 ± 1.37 78.34 ± 24.96 5.50 ± 1.12 50.63 ± 15.81 

12 months 
45 µm 7.36 ± 0.97 106.98 ± 13.51 8.43 ± 3.76 99.54 ± 30.40 
1 mm 6.63 ± 1.50 92.47 ± 16.25 8.18 ± 2.01 100.89 ± 18.05 
4 mm 8.52 ± 1.09 83.48 ± 17.31 8.59 ± 2.18 112.54 ± 19.45 

Time ´ altitude 

6 months 
1000 m 5.90 ± 1.13 61.45 ± 13.44 7.07 ± 1.21 68.15 ± 17.25 
2000 m 7.68 ± 1.11 89.29 ± 18.02 5.33 ± 0.97 50.35 ± 15.24 
3000 m 5.88 ± 0.73 72.62 ± 11.77 4.49 ± 0.59 38.05 ± 6.22 

12 months 
1000 m 8.13 ± 1.21 88.10 ± 13.65 11.65 ± 1.26 126.62 ± 13.60 
2000 m 7.84 ± 1.08 99.48 ± 23.35 7.40 ± 0.81 96.01 ± 17.87 
3000 m 6. 55 ± 1.48 95.35 ± 16.01 6.14 ± 1.41 90.35 ± 19.55 

Mesh size ´ altitude 

45 µm 
1000 m 7.18 ± 0.89 88.15 ± 18.09 10.50 ± 2.96 109.46 ± 30.77 
2000 m 7.34 ± 1.03 98.62 ± 20.28 6.42 ± 1.44 66.68 ± 27.52 
3000 m 6.07 ± 0.77 91.35 ± 19.04 4.77 ± 0.54 55.50 ± 20.10 

1 mm 
1000 m 5.83 ± 1.51 67.66 ± 20.88 9.02 ± 1.90 95.16 ± 28.32 
2000 m 7.49 ± 0.97 92.33 ± 23.60 5.77 ± 1.59 64.23 ± 23.55 
3000 m 5.35 ± 0.68 78.62 ± 9.70 5.49 ± 1.47 68.51 ± 35.51 

4 mm 
1000 m 8.04 ± 1.67 68.51 ± 11.83 8.56 ± 3.00 87.54 ± 42.46 
2000 m 8.45 ± 0.99 92.21 ± 22.02 6.89 ± 1.04 88.63 ± 31.83 
3000 m 7.22 ± 1.26 82.01 ± 23.15 5.69 ± 1.77 68.58 ± 36.52 

Time ´ mesh size ´ Altitude 

6 months 45 µm 
1000 m 6.62 ± 0.55 73.23 ± 9.53 7.93 ± 1.28 82.97 ± 3.69 
2000 m 6.98 ± 0.78 87.46 ± 6.52 5.26 ± 0.69 43.13 ± 10.54 
3000 m 5.52 ± 0.60 74.60 ± 6.51 4.90 ± 0.40 38.55 ± 6.15 

1 mm 1000 m 4.47 ± 0.29 48.82 ± 2.23 7.37 ± 0.16 71.59 ± 15.91 
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2000 m 7.21 ± 0.25 72.29 ± 9.90 4.36 ± 0.18 43.37 ± 4.33 
3000 m 5.74 ± 0.71 78.69 ± 15.08 4.30 ± 0.70 38.15 ± 9.50 

4 mm 
1000 m 6.61 ± 0.42 62.30 ± 13.34 5.89 ± 0.92 49.89 ± 8.71 
2000 m 8.85 ± 1.06 108.13 ± 13.68 6.35 ± 0.49 64.55 ± 18.58 
3000 m 6.39 ± 0.82 64.58 ± 11.24 4.26 ± 0.57 37.44 ± 5.05 

12 months 

45 µm 
1000 m 7.75 ± 0.86 103.08 ± 7.71 13.06 ± 0.76 135.95 ± 15.77 
2000 m 7.71 ± 1.29 109.78 ± 24.73 7.59 ± 0.80 90.23 ± 10.89 
3000 m 6.63 ± 1.45 108.09 ± 4.75 4.64 ± 0.72 72.45 ± 10.52 

1 mm 
1000 m 7.18 ± 0.40 86.49 ± 4.51 10.68 ± 0.93 118.72 ± 9.24 
2000 m 7.76 ± 1.44 112.37 ± 9.46 7.18 ± 0.55 85.09 ± 7.89 
3000 m 4.96 ± 0.44 78.54 ± 2.82 6.67 ± 0.84 98.87 ± 17.27 

4 mm 
1000 m 9.46 ± 0.85 74.71 ± 7.50 11.23 ± 0.51 125.19 ± 13.35 
2000 m 8.04 ± 0.92 76.29 ± 16.28 7.43 ± 1.26 112.70 ± 21.19 
3000 m 8.06 ± 1.09 99.43 ± 17.40 7.11 ± 1.20 99.73 ± 19.98 
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Appendix 3. Effect of altitude on (A) microbial biomass (Cmic) and (B) basal respiration 

(BR) after 6 and 12 months. Values are means ± SE. For each litter type, bars marked with 

different letters within each harvesting time differ significantly (Tukey’s HSD tests, p < 

0.05). 
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Appendix 4. Collembola and Oribatida abundance and Oribatida species richness in leaf 

and root litter in litterbags of 45 µm, 1 mm and 4 mm mesh exposed at 1000, 2000 and 

3000 m for 6 and 12 months. Values are means ± SD. 

 Leaf litter Root litter 

Collembola 
[ind. 10 g−1] 

Oribatida 
[ind. 10 g−1] 

Oribatida 
richness 

Collembola 
[ind. 10 g−1] 

Oribatida 
[ind. 10 g−1] 

Oribatida 
richness 

Time 
6 months 38 ± 49 37 ± 40 7 ± 8 65 ± 66  53 ± 70 11 ± 11 
12 months 24 ± 23 27 ± 28 6 ± 5 55 ± 51 37 ± 33 9 ± 7 

Mesh size 
45 µm 28 ± 45 6 ± 9 2 ± 3 63 ± 61 24 ± 31 5 ± 5 
1 mm 34 ± 43 45 ± 38  9 ± 7 62 ± 65 50 ± 55 12 ± 8 
4 mm 32 ± 27  45 ± 34 7 ± 7 57 ± 52 61 ± 67 13 ± 10 

Altitude 
1000 m 61 ± 40  42 ± 37 11 ± 8 105 ± 55 98 ± 66 19 ± 9  
2000 m 24 ± 37 43 ± 38 7 ± 5 64 ± 53 20 ± 14 6 ± 3 
3000 m 8 ± 9 11 ± 13 2 ± 2 13 ± 14 17 ± 16 5 ± 4 

Time ´ mesh size 

6 months 
45 µm 41 ± 60 4 ± 6 1 ± 1 80 ± 76 24 ± 29 5 ± 5 
1 mm 41 ± 56 58 ±44  11 ± 8 67 ± 80 58 ± 74 12 ± 10 
4 mm 33 ± 30 49 ± 36 10 ± 8 48 ± 35 78 ± 88 15 ± 13 

12 months 
45 µm 14 ± 15 9 ± 10 3 ± 4 45 ± 39 24 ± 35 5 ± 5 
1 mm 26 ± 26 32 ± 27 8 ± 5 56 ± 49 42 ± 30 11 ± 7 
4 mm 32 ± 26 42 ± 33 8 ± 6 65 ± 66 44 ± 32 11 ± 7 

Time ´ altitude 

6 months 
1000 m 80 ± 44  58 ± 46 13 ± 11  122 ±67  124 ± 83  22 ± 11 
2000 m 30 ± 49 44 ± 40 6 ± 4 66 ± 47 21 ± 13  6 ± 3 
3000 m 4 ± 4 9 ± 7 2 ± 2 8 ± 11 15 ± 14 4 ± 3 

12 months 
1000 m 42 ± 26 26 ± 16  9 ± 5 89 ± 36 72 ± 28 16 ± 6  
2000 m 18 ± 20 43 ± 39 7 ± 6 62 ± 61 20 ± 16 6 ± 4 
3000 m 13 ± 11 13 ± 17 2 ± 2 15 ± 16 19 ± 18 5 ± 5 

Mesh size ´ altitude 

45 µm 
1000 m 47 ± 41 10 ± 12 4 ± 4 116 ± 57 63 ± 22  12 ± 3 
2000 m 29 ± 63 6 ± 7 2 ± 2 66 ± 47 8 ± 8 3 ± 1 
3000 m 7 ± 13 2 ± 5 1 ± 1 7 ± 18 2 ± 2 1 ± 1 

1 mm 
1000 m 76 ± 53 59 ± 35  15 ± 7  110 ± 72   100 ± 75  20 ± 10 
2000 m 16 ± 7 67 ± 38 9 ± 4 62 ± 56 21 ± 9 7 ± 1 
3000 m 8 ± 9 10 ± 6 3 ± 2 13 ± 12 29 ± 17 8 ± 4 

4 mm 
1000 m 60 ± 23 59 ± 39 15 ± 8 90 ± 37 132 ± 75 25 ± 8  
2000 m 27 ± 20 57 ± 31 9 ± 3 64 ± 64 31 ± 14 9 ± 4 
3000 m 10 ± 7 21 ± 18 3 ± 2 15 ± 11 20 ± 9 5 ± 2 

Time ´ mesh size ´ Altitude 

6 
months 

45 
µm 

1000 m 68 ± 50 1 ± 1 0 ± 1 149 ± 59 61 ± 5 11 ± 4 
2000 m 55 ± 89 9 ± 9 2 ± 2 92 ± 52 11 ± 12 3 ± 2 
3000 m 0 ± 0 1 ± 1 0 ± 1 0 ± 0 1 ± 1 0 ± 1 

1 mm 1000 m 101 ± 64  88 ± 19  20 ± 8 129 ± 103  128 ± 102  24 ± 11 
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2000 m 17 ± 6 75 ± 50 8 ± 3 68 ± 61 23 ± 10 7 ± 2 
3000 m 5 ± 3 11 ± 5 4 ± 1 5 ± 3 23 ± 17 5 ± 2 

4 mm 
1000 m 72 ± 8 86 ± 28 19 ± 6 87 ± 21 184 ± 74 32 ± 6 
2000 m 18 ± 9 47 ± 24 8 ± 1 37 ± 9 28 ± 14 8 ± 4 
3000 m 8 ± 4 14 ± 6 3 ± 1 20 ± 14 21 ± 7 5 ±  2 

12 
months 

45 
µm 

1000 m 25 ± 16 19 ± 11 7 ± 4 82 ± 37 65 ± 34 12 ± 3 
2000 m 3 ± 3 3 ± 3 2 ± 2 39 ± 26 5 ± 3 3 ± 2 
3000 m 15 ± 16 4 ± 7 1 ± 2 15 ± 25 3 ± 3 1 ± 2 

1 mm 
1000 m 51 ± 32 29 ± 8  11 ± 2 92 ± 38 71 ± 33   17 ± 8 
2000 m 15 ± 9 59 ± 31 10 ± 5 55 ± 65 19 ± 8 6 ± 2 
3000 m 11 ± 12 9 ± 8 2 ± 2 21 ± 14 34 ± 19 10 ± 4 

4 mm 
1000 m 48 ± 30 31 ± 27  10 ± 8 93 ± 48 80 ± 24 19 ± 2 
2000 m 37 ± 25 66 ± 40 10 ± 5 91 ± 90 34 ± 17 9 ± 4 
3000 m 12 ± 11 27 ± 25 3 ± 3 10 ± 6 19 ± 13 5 ± 3 
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Appendix 5. List of Oribatida species, abbreviations used in Figure 5 and their abundance 

in leaf and root litter. 

No. Species Abbreviation Leaves 
Included 
in CCA 
leaves 

Abundance 
in leaves Roots 

Included 
in CCA 

roots 

Abundance 
in roots 

1 Acrogalumna cubana  x - 2 - - 0 
2 Acrogalumna n sp 1 AcrogSp1 x x 6 x - 2 
3 Amazoppia tricuspidata  - - 0 x - 2 
4 Arceremaeus incaensis  x - 2 - - 0 

5 Arcoppia 
dechambrierorum ArcpDech - - 0 x x 3 

6 Arcoppia tripartita  - - 0 x - 1 
7 Beckiella elongata  x - 1 - - 0 
8 Brachioppia deliciosa BracDelc x x 6 x x 13 
9 Brachioppia n sp 2  - - 0 x - 1 
10 Brachioppia sp 3 BrachSp3 x - 2 x x 22 
11 Brachioppiella n sp 2 BrachSp2 - - 0 x x 46 

12 Campachipteria 
brevisetosa 

 x - 1 - - 0 

13 Caudamaeolus petalus CaudPetl - - 0 x x 3 
14 Ceratorchestes globosus  x - 2 - - 0 
15 Ceratorchestes sp 1  x - 1 - - 0 
16 Ceratozetes n sp 1  x - 1 - - 0 
17 Cosmozetes n sp 2  x - 1 - - 0 
18 Cosmozetes n sp 3  x - 1 - - 0 
19 Cosmozetes reticulatus CosmRetc x x 35 x x 37 
20 Crotonia reticulata  x - 1 - - 0 
21 Cultroribula zicsii CultZics x x 7 x x 6 
22 Cyrthermannia florence CyrtFlor - - 0 x x 12 
23 Damaeus flagellatus DamaFlag x x 5 x - 1 
24 Dynatozetes n sp 1  - - 0 x - 2 
25 Enarthronota n sp 1  x - 1 x - 2 
26 Eohypochthonius gracilis EohpGrac x x 5 x x 39 
27 Eohypochthonius n sp  1 EohypSp1 x x 3 x x 11 
28 Epidamaeus meridianus  - - 0 x - 1 
29 Epieremulus granulatus EpieGran x x 7 x - 1 
30 Epieremulus longiseta  x - 2 - - 0 
31 Epieremulus n sp 1 EpierSp1 x x 10 - - 0 
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No. Species Abbreviation Leaves 
Included 
in CCA 
leaves 

Abundance 
in leaves Roots 

Included 
in CCA 

roots 

Abundance 
in roots 

32 Epilohmannia minuta 
minuta EplMinMn - - 0 x x 6 

33 Eremobelba foliata EremFoli - - 0 x x 5 
34 Eremulus brasiliensis EremBras x - 3 - - 0 
35 Eremulus rigidisetosus EremRigd x x 7 x x 5 

36 Fenestrobelba 
subcomplexa FensSubc x x 8 x x 6 

37 Fosseremus laciniatus FossLacn x x 3 x x 8 
38 Galumna flabellifera GalmFlab x x 10 x x 5 
39 Galumna n sp 1  - - 0 x - 1 
40 Gehypochthonius n sp 1  x - 1 x - 2 
41 Gitella variabilis GitlVari - - 0 x x 6 
42 Gittella maxima  - - 0 x - 2 
43 Gittella minor GittMinr - - 0 x x 3 
44 Gittella n sp 1 GittlSp1 x - 1 x x 9 
45 Hammerella parasufflata HammPars - - 0 x x 5 
46 Haplobelba n sp 1  - - 0 x - 1 
47 Haplobelba simplex HaplSimp x x 4 x x 9 

48 Haplozetes 
paraminimicoma HaplParm x - 1 x x 10 

49 Hemileius hemileiformis HemlHeml x x 18 x x 6 
50 Hemileius n sp 1 HemilSp1 x x 28 x - 2 
51 Hemileius parvus  x - 1 x - 2 
52 Heminothrus castaneus  x - 1 - - 0 

53 Hermannobates 
bifurcatus 

 x - 1 x - 1 

54 Hermannobates 
monstruosus 

 - - 0 x - 1 

55 Hermannobates n sp 6 HermnSp6 - - 0 x x 3 
56 Kokoppia dudichi  x - 1 x - 2 
57 Kokoppia euramosa  - - 0 x - 2 
58 Lanceoppia n sp 1 LanceSp1 x x 3 - - 0 
59 Lanceoppia n sp 2 LanceSp2 x x 6 - - 0 
60 Lanceoppia zicsica LancZics x x 3 - - 0 
61 Lasiobelba chistyakovi LasiChis x - 1 x x 41 
62 Lichochthonius mollis  - - 0 x - 1 
63 Licnozetes granulatus LicnGran x x 10 x x 15 
64 Liebstadia n sp 1 LiebsSp1 x x 9 x x 3 
65 Liebstadia n sp 1.1 LiebSp.1a x x 5 - - 0 
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No. Species Abbreviation Leaves 
Included 
in CCA 
leaves 

Abundance 
in leaves Roots 

Included 
in CCA 

roots 

Abundance 
in roots 

66 Liebstadia n sp 2  x - 2 - - 0 
67 Machadobelba n sp 1 MachdSp1 - - 0 x x 5 
68 Malacoangelia remigera MalcRemg - - 0 x x 7 

69 Malaconothrus 
monodactylus MalcMond x x 5 x x 5 

70 Malaconothrus n sp 3  x - 1 x - 2 
71 Malaconothrus n sp 4  - - 0 x - 2 
72 Malaconothrus n sp 5 MalacSp5 x x 6 - - 0 
73 Microtegeus borhidii MicrBorh x x 12 - - 0 
74 Microtegeus similis MicrSiml x x 5 x - 1 

75 Nanhermannia 
elegantissima NanhEleg x - 2 x x 12 

76 Nanhermannia nana 
form 1 NanhNana - - 0 x x 13 

77 Neoamerioppia 
longiclava NeoaLong x x 132 x - 1 

78 Neoamerioppia 
longicoma NeoaLogc x x 8 - - 0 

79 Neoamerioppia rotunda NeoaRotn x x 24 - - 0 

80 Neoamrioppia 
espelatiarum NeoaEspl x x 3 - - 0 

81 Neoctenogalumna 
longiciliata 

 x - 1 - - 0 

82 Neosuctobelba 
transitoria 

 x - 2 - - 0 

83 Opiella nova OpieNova x x 27 x x 36 
84 Oribatella n sp 2 OribtSp2 x x 10 x x 4 
85 Oripoda n sp 1 OripdSp1 x x 3 - - 0 
86 Orthozetes bidentatus OrthBidn x - 2 x x 20 
87 Oxyoppia polynesia OxyoPoln x x 7 - - 0 
88 Parhypochthonius n sp 1  x - 1 - - 0 
89 Pergalumna australis  - - 0 x - 1 
90 Pergalumna sura PergSura x x 4 x x 5 

91 Perscheloribates 
luminosus 

 x - 2 x - 2 

92 Perscheloribates 
paratzitzikamaensis 

 - - 0 x - 2 

93 Plenotocepheus 
neotropicus PlenNeot x - 2 x x 8 

94 Protoribates 
ecuadoriensis ProtEcua x - 2 x x 13 

95 Protoribates n sp 3 ProtrSp3 x x 4 x x 25 
96 Protoribates n sp 4  - - 0 x - 1 
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No. Species Abbreviation Leaves 
Included 
in CCA 
leaves 

Abundance 
in leaves Roots 

Included 
in CCA 

roots 

Abundance 
in roots 

97 Protoribates 
paracapucinus ProtParc x x 8 x x 29 

98 Pulchroppia n sp 1  x - 1 - - 0 

99 Ramusella 
puertomonttensis RamsPuer - - 0 x x 3 

100 Rhynchoribates mirus RhynMirs x - 2 x x 7 
101 Rhynchoribates n sp 1  x - 1 x - 1 
102 Rioppia comteae RiopComt x - 2 x x 6 
103 Rostrozetes carinatus RostCarn x x 41 x - 1 
104 Rostrozetes glaber  x - 1 x - 1 

105 Rostrozetes ovulum 
ovulum RosOvlOv x x 11 x x 39 

106 Rostrozetes ovulum 
poensis RosOvlPo x x 7 x x 16 

107 Rostrozetes sp 1 RostrSp1 x - 2 x x 3 
108 Rostrozetes sp 3 RostrSp3 x - 1 x x 6 
109 Rostrozetes sp 4 RostrSp4 x x 5 x x 6 
110 Rostrozetes sp 5 RostrSp5 x - 2 x x 6 
111 Rostrozetes sp 6 RostrSp6 x x 21 x x 16 

112 Scapheremaeus 
bicornutus 

 - - 0 x - 1 

113 Scapheremaeus 
fungisetosus 

 x - 2 - - 0 

114 Schalleria brevisetosa SchlBrev - - 0 x x 5 
115 Schalleria pectinata SchlPect - - 0 x x 22 
116 Scheloribates laticlava SchlLatc x - 1 x x 3 
117 Scheloribates artigasi  - - 0 x - 1 

118 Scheloribates 
diversidactylus 

 x - 1 - - 0 

119 Scheloribates elegans  x - 1 - - 0 

120 Scheloribates 
huancayensis sp 

 - - 0 x - 1 

121 Scheloribates n sp 1  x - 1 x - 1 
122 Scheloribates n sp 1.1  - - 0 x - 1 

123 Sellnickochthonius 
elsosneadensis sp SellElso x x 11 - - 0 

124 Sellnickochthonius 
muara sp SellMuar - - 0 x x 5 

125 Sellnickochthonius tropic  x - 2 - - 0 
126 Solenozetes carinatus SolnCarn x x 6 x x 39 
127 Solenozetes flagellatus SolnFlag x x 4 x x 9 
128 Solenozetes n sp 1 SolenSp1 - - 0 x x 52 
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No. Species Abbreviation Leaves 
Included 
in CCA 
leaves 

Abundance 
in leaves Roots 

Included 
in CCA 

roots 

Abundance 
in roots 

129 Sternoppia brasiliensis SterBras x - 2 x x 3 
130 Sternoppia fissurata SterFiss - - 0 x x 14 
131 Sternoppia incisa SterIncs x - 1 x x 10 
132 Sternoppia mirabilis SterMirb x x 5 - - 0 
133 Sternoppia n sp 1  - - 0 x - 1 
134 Sternoppia n sp 3 SternSp3 - - 0 x x 5 
135 Sternoppia n sp 6 SternSp6 - - 0 x x 4 
136 Sternoppia n sp 8  - - 0 x - 1 
137 Sternoppia paraincisa SterPara x - 1 x x 22 
138 Sternoppia paramirabilis SterParm - - 0 x x 5 
139 Striatoppia opuntiseta  - - 0 x - 1 
140 Striatoppia silvicola  - - 0 x - 1 
141 Suctobelba compacta  x - 1 - - 0 
142 Suctobelbella andrassyi  - - 0 x - 1 
143 Suctobelbella baculifera  - - 0 x - 1 
144 Suctobelbella claviseta SuctClav x x 7 x x 19 
145 Suctobelbella complexa SuctComp x x 16 x x 4 

146 Suctobelbella complexa 
sp Form2 SucComF2 x x 14 x x 34 

147 Suctobelbella loksai SuctLoks x - 1 x x 4 

148 Suctobelbella 
macrodentata 

 x - 1 x - 2 

149 Suctobelbella n sp 1  - - 0 x - 1 
150 Suctobelbella n sp 3 SuctbSp3 - - 0 x x 3 
151 Suctobelbella peracuta SuctPerc x - 1 x x 4 
152 Suctobelbella perdentata  x - 2 x - 1 

153 Suctobelbella 
semiplumosa indica SucSemIn x x 5 x - 2 

154 Suctobelbella 
semiplumosa sp Form1 SucSemF1 x x 13 x x 15 

155 Suctobelbella 
variosetosa 

 x - 2 - - 0 

156 Suctobelbila n sp 1  - - 0 x - 1 
157 Suctobelbila n sp 2  x - 1 x - 1 
158 Suctobelbila n sp 3 SuctbSp3 - - 0 x - 2 
159 Suctobelbila n sp 5  - - 0 x - 1 
160 Suctobelbila peruensis SuctPeru x x 7 x - 2 
161 Suctoribates n sp 1 SuctrSp1 x x 4 x x 4 
162 Suctoribates Oxyamerus  x - 1 - - 0 
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No. Species Abbreviation Leaves 
Included 
in CCA 
leaves 

Abundance 
in leaves Roots 

Included 
in CCA 

roots 

Abundance 
in roots 

163 Tecteremaeus cornutus TectCorn x - 2 x x 23 

164 Tecteremaeus 
incompletus TectIncm x x 4 x x 13 

165 Tectocepheus minor TectMinr x x 5 x - 1 

166 Tectocepheus velatus 
sarekensis TecVelSr x x 3 - - 0 

167 Tectocepheus velatus 
velatus TecVelVl x x 3 - - 0 

168 Tegeocranellus 
bolivianus TegeBolv x x 14 x x 3 

169 Teratoppia n sp 1 TeratSp1 x x 3 x x 5 

170 Teratoppia 
pluripectinata TertPlur x x 17 x x 16 

171 Xenillus n sp 2  - - 0 x - 1 
172 Xenillus setiger  - - 0 x - 1 
173 Xenolohmannia comosa XenlComs x - 1 x x 3 
174 Yoshiobodes n sp 1  - - 0 x - 1 
175 Yoshiobodes n sp 2  - - 0 x - 1 
176 Zetomimus polpaicoensis  x - 1 - - 0 
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Appendix 6. Mahalanobis Distances (MD2) of discriminant function analysis (DFA) based 

on Oribatida community composition in leaf and root litter exposed at 1000, 2000 and 3000 

m for 12 months. 

Litter type From F-value df1 df2 p-value MD2 

Leaf 

1000 m – 2000 m 63.45 2 28 <0.001 3.76 

1000 m – 3000 m 45.10 2 23 <0.001 4.85 

2000 m – 3000 m 23.27 2 24 <0.001 3.80 

Root 

1000 m – 2000 m 74.21 2 32 <0.001 4.14 

1000 m – 3000 m 53.69 2 30 <0.001 3.99 

2000 m – 3000 m 23.62 2 29 <0.001 3.43 

 

 

 



Chapter 4 
_________________________________________________________________________________________________	

	
 

 100 

Chapter 4 

Impacts of core rotation, defaunation and nitrogen addition 

on arbuscular mycorrhizal fungi, microorganisms and 

microarthropods in a tropical montane rainforest 

Laura M. Sánchez Galindo, Tessa Camenzind, Mark Maraun & Stefan Scheu 

 

 

  



Chapter 4 
_________________________________________________________________________________________________	

	
 

 101 

Abstract 

In tropical ecosystems interactions between arbuscular mycorrhizal fungi (AMF) and other 

organisms have been little studied, but may be of significant importance for understanding 

the role of AMF in decomposition processes and nutrient cycling. In this study, we used 

ingrowth cores to investigate the impacts of regular rotation of the cores, defaunation and 

nitrogen addition on AMF, microbial biomass and microarthropods in the 

fermentation/humus (F/H) and litter (L) layers of an Ecuadorian montane tropical 

rainforest. AMF were substantially reduced in the F/H layer (to 34% of initial), while in 

the L layer they remained constant during the experiment. Overall, microorganisms and 

microarthropods were largely independent of AMF hyphae and their exudates, however, 

defaunation strongly affected the recovery of their communities. Nitrogen addition 

increased the quality of litter material and beneficially affected microbial communities 

thereby increasing decomposition rates, but did not impact AMF abundance and 

microarthropod communities. These findings suggest that the cutoff of the carbon supply 

from the plant to the fungal mycelium was not compensated by switching resources in the 

F/H layer, underlining strong association of AMF and living roots. While in the L layer, 

AMF likely competed with saprotrophic microorganisms for litter-derived resources at 

intermediate stages of decomposition pointing to indirect contributions of AMF to 

decomposition processes. Overall, the results support the view that root-derived resources 

are important in fueling soil food webs, but also indicate that in the studied montane 

rainforest these resources are only available close to roots and not channeled distant to roots 

via AMF. 

 

Keywords: Acari, Collembola, Organic layer, Oribatid mites, Root-derived resources, 

Saprotrophic fungi. 
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Introduction  

Mycorrhizal fungi are key components of microorganisms in soil influencing plant nutrient 

uptake and growth (Johansson et al. 2004; Brundrett and Tedersoo 2018). In tropical forest 

ecosystems, arbuscular mycorrhiza fungi (AMF; Glomeromycotina) represent the 

dominant mycorrhizal form (Kottke et al. 2004; Öpik et al. 2006). These obligate biotrophs 

facilitate the mobilization and uptake of mineral by plants released from decomposition of 

organic matter in exchange for photosynthetic carbon (Read and Perez-Moreno 2003; 

Smith and Read 2008; Johnson 2010; Bagyaraj 2014). Factors that affect the abundance 

and effectiveness of AMF include climatic changes, soil fertility, disturbances and changes 

in nutrient availability (Gryndler 2000; Cardoso and Kuyper 2006; Camenzind et al. 2014; 

Lehmann et al. 2017). Elevated nutrient availability – mainly P and N – decreases the 

formation of fine roots and mycorrhizal structures, reducing the benefit provided by these 

symbionts (Treseder and Allen 2002; Johnson 2010). Therefore, changes following nutrient 

additions might strongly affect tropical forests where P and N are limiting and plants rely 

on AMF symbionts (Cardoso and Kuyper 2006; Dalling et al. 2016; Sheldrake et al. 2018). 

In addition to roots, AMF interact with other organisms including bacteria, saprotrophic 

fungi, protozoa, nematodes, arthropods and even large animals (Ruess and Lussenhop 

2005; Miransari 2011; Lehmann et al. 2017). These interactions may be synergistic, 

competitive or antagonistic and may affect all stages of the mycorrhizal fungal life cycle 

(Finlay 2004; Johansson et al. 2004; Miransari 2011). Interacting mechanisms which are of 

particular importance for the functioning of the symbiosis include mycorrhiza associated 

bacteria promoting or inhibiting mycorrhiza formation (Toljander et al. 2007; Svenningsen 

et al. 2018), potential restriction of saprotrophic fungal activity due to competition for 

substrate (Bödeker et al. 2016; Marian et al. 2019), and grazing of external mycelium by 

soil microarthropods (Ruess and Lussenhop 2005; A’Bear et al. 2014). The most abundant 

and frequent groups of soil microarthropods are mites (Acari) and springtails (Collembola) 

(Maraun et al. 2003; Franklin et al. 2004). Particularly oribatid mites (Oribatida) are rich 

in species and colonize virtually any soil reaching maximum diversity and density in forest 

ecosystems, where they participate in the decomposition of organic matter (Franklin et al. 

2004). Oribatid mites feed on a variety of fungal species and contribute to the dispersion of 
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fungal structures (Renker et al. 2005; Vašutová et al. 2019). However, AMF presumably 

are not the preferred food resource of oribatid mites, but might be consumed to some extent 

(Gange and Brown 2002; Schneider et al. 2005). 

Typically, interactions between soil microarthropods and AMF are studied using sterilized 

soil re-inoculated with microorganisms and microarthropods (Toljander et al. 2007; Nuccio 

et al. 2013; Ngosong et al. 2014). For quantifying AMF biomass, as well as their 

contribution to nutrient translocation, plant growth and their interactions with microbial 

communities, ingrowth cores are increasingly used (Nottingham et al. 2013; Leifheit et al. 

2014). Ingrowth cores comprise compartments separated by mesh barriers for excluding 

roots, but allowing access of extraradical mycorrhizal hyphae, with soil physical and 

chemical conditions inside the cores resembling those outside the cores (Wallander et al. 

2013). Rotating these cores detaches fungal ingrowth and thereby, the comparison of 

rotated and non-rotated cores provides insight into the role of mycorrhizal fungi for element 

cycling and decomposition (Johnson et al. 2001). 

To explore the role of AMF in soil nutrient dynamics and their interactions with soil 

organisms in tropical montane rainforests, we evaluated the impact of rotation of ingrowth 

cores in combination with soil defaunation and N addition on AMF abundance, 

microorganisms and soil microarthropods, with focus on oribatid mites. We hypothesized 

that (1) the colonization of soil inside the cores by AMF is reduced by regular rotation. 

Assuming that mycorrhiza indirectly alter decomposition processes by restraining the 

activity of saprotrophic fungi we furthermore hypothesized that (2) the exclusion of 

mycorrhiza results in increased activity of saprotrophic microorganisms, accelerating 

decomposition processes. Further, we hypothesized that (3) oribatid mites benefit from the 

increased dominance of saprotrophic fungi in rotated cores. Also, we hypothesized that (4) 

the reduction of microarthropod abundance in defaunated cores promotes fast recovery of 

AMF mycelium and soil microorganisms. Finally, we hypothesized that (5) the addition of 

N reduces the concentration of AMF, but fosters the activity of saprotrophic 

microorganisms and thereby increases litter decomposition. 
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Material and methods 

Study site 

The study site is located in Southern Ecuador within the Podocarpus National Park near the 

research station San Francisco at 2000 m a.s.l. (3°58′S, 79°04′W) (for location details see 

Richter et al. 2009). The climate is warm humid with an average annual temperature of 

15.2°C and an annual precipitation of approximately 2000 mm. Precipitation is high from 

April to September, and lower between October and March, but there is no pronounced dry 

season (Bendix et al. 2006). The soil is stagnic cambisol with a thick organic layer ranging 

between 8 and 40 cm (Wilcke et al. 2002; Wullaert et al. 2010). The area is characterized 

by high diversity of organisms and a particular high number of endemic vascular plant 

species, with Melastomataceae, Lauraceae and Rubiaceae being the dominant plant 

families (Bendix et al. 2006; Beck and Ritcher 2008; Homeier et al. 2010). Roots of trees 

in the forests are colonized predominantly by AMF and are characterized by high rates of 

AMF colonization suggesting high contribution of AMF hyphae to soil fungal biomass 

(Kottke et al. 2004; Camenzind and Rillig 2013). 

 

Ingrowth core 

Ingrowth cores were constructed using 15 cm (diameter) x 20 cm (length) plastic tubes. 

Two rectangular holes (10 x 15 cm) opposite to each other were cut into the tubes and 

covered with 45 µm nylon mesh. Two layers of 45 µm nylon mesh, separated by 5 cm, 

were glued inside the tubes to allow drainage of leaching water but block ingrowth of roots 

and mycorrhizal hyphae from the bottom. The ingrowth cores were closed with a lid of 4 

mm nylon mesh to allow mesofauna access (Figure 1A). 
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Figure 1. Scheme of the ingrowth cores and representation of experimental design. (A) Scheme 
of the ingrowth cores; see text for details. (B). Representation of the experimental design per subplot 
with the ingrowth cores inserted in the soil and litter material placed on top of the soil inside the 
cores separated from the soil by 4 mm mesh; four ingrowth cores were placed per subplot; R-ND= 
rotated and non-defaunated, R-D= rotated and defaunated, NR-ND= non-rotated and non-
defaunated, NR-D= non-rotated and defaunated; arrows indicate rotation by 45° every second day. 

 

Experimental design 

The experiment started in June 2015 and was conducted in the framework of the Nutrient 

Manipulation Experiment (NUMEX) (Homeier et al. 2012). Briefly, NUMEX is an 

altitudinal fertilization experiment that was set up in a complete randomized block design 

with four blocks, each containing one plot (20 x 20 m) of four different treatments: addition 

of N (+N), addition of P (+P), addition of N and P (+N+P) and unfertilized control plots 

(Ctr) (Wullaert et al. 2010; Homeier et al. 2012). For the present experiment soil samples 

(~15 cm deep) were taken from two subplots (2 x 2 m) marked randomly inside the +N and 

Ctr plots of NUMEX at 2000 m with a stainless-steel corer (14.5 cm inner diameter). The 

soil samples comprised the fermentation/humus (F/H) and litter (L) layers and were 

inserted intact into the ingrowth cores and placed into the same holes from which the soil 

sample were excavated. Prior to placement in the field, half of the prospective rotated and 

non-rotated cores were frozen at -20°C for one week to kill soil living animals. Once in the 

field, the soil sample was covered by 4 mm mesh on top of which 2 g of dry (60°C, 48 h) 

Graffenrieda emarginata leaves, the most abundant tree species in the study area, were 

placed as standard litter material allowing to investigate the decomposition of leaf litter 
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inside the cores (Figure 1B). Decomposition of the added Graffenrieda litter was calculated 

as $+,,	./,,	(%) = (($$ −$% $$)) × 100⁄ , with m0 as the initial dry weight of the 

leaves and m1 as the dry weight of the leaves at harvest.  

The cores were rotated every second day by 45º during 5 months. After removal of the 

cores by the end of the experiment, L and F/H layer materials were sampled separately. 

Half of each sample was used for the analysis of soil properties, the other half for extraction 

of microarthropods. Microarthropods were extracted by heat using a modified high gradient 

extractor (Macfadyen 1961; Kempson et al. 1963). Thereafter, they were determined to 

group level (Oribatida, Collembola, Prostigmata, Gamasina, Uropodina), with the 

exception of adult Oribatida which were identified to species level. For identification, the 

keys of Hammer (1958, 1961) and Balogh and Balogh (1990, 2002) were used and 

nomenclature followed Subías (2018). 

 

Microbial respiration and microbial biomass  

Microbial basal respiration (BR) and microbial biomass (Cmic) were determined by 

measuring O2 consumption using an automated respirometer system (Scheu 1992). The O2 

consumption was measured every hour during 24 h at 22°C. BR (μl O2 g-1 dry weight h-1) 

was calculated as mean of O2 consumption rates from 10 to 20 h after attachment of the 

samples to the respirometer system.  

Cmic (μg g-1 dry weight) was determined by measuring the maximum initial respiratory 

response (MIRR; µl O2 g−1 h−1). Moist samples equivalent to 0.2 g dry weight were 

supplemented with D-glucose (80 mg g−1 and 40 mg g−1 dry weight for L and F/H layers, 

respectively). The average of the lowest three readings within the first 10 h was used as 

MIRR. Microbial biomass was calculated as Cmic = 38 × MIRR (SIR-method;Anderson and 

Domsch 1978; Beck et al. 1997). 
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Fatty acid analysis 

Phospholipid fatty acids (PLFAs) and neutral lipid fatty acids (NFLAs) were extracted from 

L and F/H layer material, as well as from initial soil samples taken from each subplot 

following the protocol of Frostegård et al. (1993). Fatty acid methyl esters (FAMEs) were 

identified by chromatographic retention time based on a standard mixture composed of 37 

different FAMEs ranging from C11 to C24 (Sigma–Aldrich, St Louis, USA). The analysis 

was performed by gas chromatography using a GC-FID Clarus 500 (PerkinElmer 

Corporation, Norwalk, USA) equipped with HP-5 capillary column (30 m x 0.32 mm id, 

film thickness 0.25 µm).  

PLFAs and NLFAs were expressed in nmol g-1 dry weight. PLFAs were used as indicator 

of the microbial community structure. The sum of i15:0, a15:0, 15:0, i16:0, 16:1w7, i17:0, 

17:0, cy17:0, 18:1ω7 and cy19:0 was used as indicator of bacterial biomass (Frostegård et 

al. 1993; Frostegård and Bååth 1996). The sum of 16:1ω7, cy17:0, 18:1ω7 and cy19:0 as 

indicator of Gram-negative and the sum of i15:0, a15:0, i16:0, i17:0 and a17:0 as indicator 

of Gram-positive bacteria (Zelles 1997, 1999). The PLFAs 18:2ω6,9 and 18:1ω9 were used 

as markers for saprotrophic fungi (Frostegård and Bååth 1996; Ruess and Chamberlain 

2010). The NLFA 16:1ω5 was used as marker for AMF (Olsson et al. 1995; Olsson 1999). 

 

Carbon and nitrogen analyses 

Soil pH was determined based on a 1:5 (v:v) suspension of soil in deionized water. Total C 

and N contents in soil and litter were determined from milled samples using an elemental 

analyzer (EuroEA, HekaTech, Germany). The fraction of Bray-extractable inorganic 

phosphorus (P) in soil was determined based on protocols described by Bray and Kurtz 

(1945). Available P was extracted from 2 g dry soil adding a solution containing 

hydrochloric acid (HCl) and ammonium fluoride (NH4F). The resulting P content in the 

solution filtered through phosphorus-free filter paper was analyzed by ICP-OES analyses 

(Optima 2100 DV, Perkin Elmer, Germany). 
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Statistical analyses 

Prior to statistical analysis, the data were inspected for normality and homogeneity of 

variance using Shaphiro wilks and Breush-Pagan test, respectively. If necessary, data were 

log- or arcsine-transformed to improve homogeneity of variances. Soil characteristics 

(concentration of C, N, PO43-, P and pH), microbial activity (BR and Cmic), fatty acids 

(NLFAs and PLFAs) and microarthropod groups (Oribatida, Gamasina, Uropodina, 

Astigmata and Prostigmata (all Acari) and Collembola) were analyzed using separated 

three-way linear mixed-effects models (LMM) with rotation, N addition and defaunation 

fitted as fixed effects and block fitted as random effect. Oribatid mite community data were 

compressed using non-metric multidimensional scaling (NMDS). Only species with more 

than three individuals in the samples were included. The stress value obtained reduced the 

number of meaningful dimensions to six axes. Afterwards, multivariate analysis of variance 

(MANOVA) was used to inspect effects of treatments on oribatid mite community 

composition. Additionally, using the same data set principal components analysis (PCA) 

was used to analyze and present graphically the response of oribatid mite species to 

rotation, N addition and defaunation in the L and F/H layer. The soil layer (L and F/H layer) 

and the three treatments (Rotation, N addition and defaunation) were coded as 

supplementary variables not affecting the ordination. Only species that were present in 

more than three samples were included in the analysis. PCA was carried out using 

CANOCO 5 (Ter Braak and Smilauer 2012). LMM, MANOVA and NMDS were 

conducted in R version 3.2.1 (R Core Team 2014) using the functions lme() in the package 

“nlme”, manova() in the package “stats” and metaMDS() in the package “vegan”, 

respectively. 

 

Results  

Litter decomposition 

On average, 70% of the initial dry mass of the leaf litter placed in the upper part of the 

cores remained at the end of the experiment. Rotation and defaunation did not significantly 
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affect litter decomposition, however, the leaves decomposed faster in the cores of the +N 

than in those of the Ctr treatment (31.8% vs. 26.9%, F1,57 = 6.69, p = 0.01). 

In general, the C/N ratio was higher in the cores of the Ctr than in those of the +N treatment 

with averages of 38.33 ± 0.22 vs. 33.74 ± 0.23 (F1,57 = 8.22, p = 0.005) for the L layer and 

27.67 ± 0.26 vs. 25.39 ± 0.25 (F1,57 = 4.16, p = 0.04) for the F/H layer. Further, the C/N 

ratio of the L layer in defaunated cores exceeded that of the F/H layer with an average of 

38.38 ± 0.29 vs. 33.69 ± 0.18 (F1,57 = 7.22, p = 0.009). Rotation of the cores did not 

significantly affect the C/N ratio of the L and F/H layer. 

Concentrations of PO43- and available P (only measured in the F/H layer) did not differ 

significantly between treatments with averages of 0.21 ± 0.09 and 0.06 ± 0.02 mg g-1, 

respectively. However, the pH (only measured in F/H layer) in the +N treatment exceeded 

that in the Ctr treatment (3.94 vs. 3.79; F1, 57 = 7.62, p = 0.007). 

 

Arbuscular mycorrhizal fungi  

Generally, the concentration of NLFA 16:1ω5 in the F/H layer declined during the 

experiment from an overall mean of 33.38 ± 10.83 to 21.83 ± 5.11 nmol g-1 by the end of 

the experiment (F1,22 = 12.39, p = 0.001; Figure 2A). By contrast, it stayed at the same level 

in the L layer (overall mean 16.08 ± 6.10 nmol g-1). Defaunation significantly reduced the 

concentration of NLFA 16:1ω5 in the F/H layer (F1,56 = 10.44, p = 0.002; Figure 2B) but 

not in the L layer. Neither rotation nor N addition affected the concentrations of NLFA 

16:1ω5 in the L and F/H layer. 
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Figure 2. Concentration of the AMF marker fatty acid in the L and F/H layer. Variations in 
the concentration of the AMF marker fatty acid 16:1ω5 in the L and F/H layer. (A) During exposure 
for five months in the field (Initial = before exposure, Final = at the end of experiment). (B) In 
defaunated (-Fauna) and non-defaunated cores (+Fauna). Values are means ± SE. ** P < 0.01. 
 

Microbial biomass and respiration 

In general, Cmic and BR in the L layer (overall means of 9,308 ± 4,031 µg Cmic g-1 dry 

weight (dw) and 47.63 ± 20.62 μl O2 g-1 dw h-1, respectively) exceeded that in the F/H layer 

(respective values of 4,4394 ± 1,685 µg Cmic g-1 dw and 43.42 ± 17.80 μl O2 g-1 dw h-1). In 

defaunated cores Cmic in both the L and F/H layer was significantly reduced as compared 

to non-defaunated cores (F1,52 = 10.05, p = 0.002 and F1,52 = 20.81, p < 0.0001, respectively; 
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Figure 3A). BR also was significantly reduced in defaunated cores in the L layer (F1,52 = 

7.61, p = 0.008; Figure 3B), while in the F/H layer it was not significantly affected (overall 

mean of 39.92 ± 19.05 μl O2 g-1 dw h-1). Further, BR in the L layer in the +N treatment 

significantly exceeded that in the Ctr treatment (F1,52 = 6.52, p = 0.01), but this was not the 

case in the F/H layer (overall mean of 44.11 ± 15.70 μl O2 g-1 dw h-1). Also, Cmic was not 

significantly affected by N addition, neither in the L layer nor in the F/H layer (overall 

means of 9,937 ± 4,578 and 4,555 ± 1,607 µg Cmic g-1 dw, respectively). Further, rotation 

neither significantly affected Cmic (overall means of 9,096 ± 4,035 and 4,346 ± 1,699 µg 

Cmic g-1 dw in the L and F/H layer, respectively) nor BR (overall means of 47.48 ± 21.12 

and 43.52 ± 21.77 μl O2 g-1 dw h-1 in the L and F/H layer, respectively). 

 

 

Figure 3. Effect of defaunation on microbial biomass and basal respiration in the L and F/H 
layer. Variations in (A) microbial biomass (Cmic) and (B) basal respiration (BR) in the L and F/H 
layer of defaunated (-Fauna) and non-defaunated cores (+Fauna). Values are means ± SE. ***P < 
0.001; ** P < 0.01. 
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Microbial community structure 

The concentration of Gram-positive bacteria and saprotrophic fungi significantly changed 

during the experiment; Gram-positive bacteria significantly increased in the L layer from 

an overall mean of 80.80 ± 36.14 to 111.01 ± 32.13 nmol g-1 by the end of the experiment 

(F1,26 = 8.07, p = 0.008) and saprotrophic fungi significantly decreased in the F/H layer 

from an overall mean of 61.33 ± 12.23 to 52.31 ± 7.05 nmol g-1 by the end of the experiment 

(F1,26 = 6.42, p = 0.01). 

The concentration of Gram-positive, Gram-negative and saprotrophic fungi markers in the 

L layer (overall means of 111.01 ± 39.59, 158.47 ± 59.74 and 200.54 ± 77.79 nmol g-1, 

respectively) exceeded that in the F/H layer (respective values of 76.77 ± 14.36, 94.38 ± 

22.24 and 52.31 ± 13.93 nmol g-1). Gram-positive, Gram-negative and total bacterial PLFA 

markers were not significantly affected by any of the treatments, neither in the L nor in the 

F/H layer (Table 1). By contrast, in the L layer the concentration of the saprotrophic fungal 

markers 18:2ω6,9 and 18:1ω9 in non-rotated cores exceeded those in rotated cores 

(averages of 219.61 ± 78.33 and 181.48 ± 66.94 nmol g-1, respectively) while in the F/H 

layer the concentration did not differ significantly between rotated and non-rotated cores 

(overall mean of 54.21 ± 15.49 nmol g-1). Neither defaunation nor N addition affected the 

concentrations of the fungal markers in the L and F/H layer. 

 

Table 1. Nitrogen addition, rotation and defaunation effects on PLFA for Gram-positive, 
Gram-negative and total bacteria, and saprotrophic fungi. F- and p-values of linear mixed 
effects models on the effect of nitrogen addition (+N), rotation and defaunation on PLFA for Gram-
positive, Gram-negative and total bacteria, and saprotrophic fungi in the L and F/H layer of the 
ingrowth cores exposed in the field for five months. Significant effects are given in bold. 
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Microarthropods 

Generally, microarthropods were more abundant in the F/H than in the L layer (Oribatida 

17.85 ± 25.84 vs. 12.98 ± 12.62, Gamasina 3.32 ± 5.28 vs. 2.85 ± 3.21, Uropodina 4.07 ± 

11.65 vs. 1.60 ± 3.01, Prostigmata 2.17 ± 2.91 vs. 1.28 ± 1.82, Astigmata 3.90 ± 12.66 vs. 

0.98 ± 2.45, Collembola 6.70 ± 9.24 vs. 5.92 ± 7.01 ind. core-1). Overall, microarthropod 

numbers were lower in defaunated than in non-defaunated cores (Oribatida 3.82 ± 3.49 vs. 

27.01 ± 23.53, Gamasina 2.81 ± 4.58 vs. 3.38 ± 4.16, Uropodina 0.56 ± 1.35 vs. 5.17 ± 

11.72, Prostigmata 1.17 ± 1.86 vs. 2.30 ± 2.86, Astigmata 1.40 ± 3.17 vs. 3.52 ± 12.68, 

Collembola 4.48 ± 6.45 vs. 8.17 ± 9.32 ind. core-1). The number of Uropodina and 

Prostigmata were lower in both the L (averages of 0.65 ± 1.73 and 1.01 ± 1.79 ind. core-1, 

respectively) and the F/H layer of defaunated cores (averages of 0.46 ± 0.84 and 1.34 ± 

1.94 ind. core-1, respectively). Further, in the L layer of non-defaunated cores the number 

of Astigmata exceeded that in defaunated cores with 1.67 ± 3.28 and 0.31 ± 0.82 ind. core-

1, respectively. Also, in the F/H layer the number of Collembola in non-defaunated cores 

exceeded that in defaunated cores with 9.90 ± 11.17 and 3.50 ± 5.23 ind. core-1, 

respectively. Rotation generally little affected the number of microarthropods with the 

exception of Gamasina in the F/H layer of rotated cores which exceeded that in non-rotated 

cores with averages of 4.81 ± 6.86 and 1.84 ± 2.25 ind. core-1, respectively (Table 2). 

 

Table 2. Nitrogen addition, rotation and defaunation effects on the abundance of Collembola, 
Gamasina, Uropodina, Astigmata and Prostigmata. F- and p-values of linear mixed effects 
models on the effect of nitrogen addition (+N), rotation and defaunation on the abundance of 
Collembola, Gamasina, Uropodina, Astigmata and Prostigmata in the L and F/H layer of ingrowth 
cores exposed in the field for five months. Significant effects are given in bold. 
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In total, 60 species of Oribatida were identified (see S1 Table for full list of species). The 

three most common species of Oribatida associated with the L layer were Neoamerioppia 

rotunda, Cultroribula zicsii and Epieremulus granulatus, whereas in the F/H layer the three 

most common associated species were Rostrozetes faveolatus, Nanhermannia 

elegantissima and Scheloribates elegans. No Oribatida species exclusively occurred in any 

of the treatments. The PCA defined two main gradients of variation of the Oribatida 

communities, separating defaunated and non-defaunated cores and differentiating litter and 

soil layer, which together accounted for 57.8% of the total variation (Figure 4).  

 
Figure 4. Principal components analysis of oribatid mite species. Principal components analysis 
(PCA) of oribatid mite species in control (Ctr), nitrogen addition (N), rotated (R), non-rotated (NR) 
defaunated (-F) and non-defaunated cores (+F) in the L and F/H layer after five months of exposure 
in the field. The three most abundant species in the L layer are underlined and given in blue and the 
three most abundant species in the F/H layer are underlined and given in purple. Full species names 
are given in S1 Table. 
 

The first principal component axis (PC1) explained the majority of variability (48.7%) and 

was positively associated with non-defaunated soil cores, while the second principal 

component axis (PC2) explained only 9.1% and was associated with the soil layer. 

MANOVA performed with NMDS axes scores confirmed that defaunation strongly 
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affected the Oribatida community in both the L and F/H layer (F6,49 = 6,61, p = 0.02; F6,47 

=6.52, p< 0.0001, respectively). 

In general, both the richness and abundance of Oribatida were strongly affected by 

defaunation (Table 3), being lower in defaunated cores (2.90 ± 2.27 species core-1 and 4.50 

± 4.10 ind. core-1 in the L layer, and 2.21 ± 1.71 species core-1 and 3.15 ± 2.66 ind. core-1 

in the F/H layer) than in non-defaunated cores (7.765 ± 3.01 species core-1 and 21.46 ± 

12.58 ind. core-1 in the L layer, and 7.56 ± 4.03 species core-1 and 32.56 ± 30.06 ind. core-

1 in the F/H layer). Neither rotation nor N addition affected the abundance or richness of 

microarthropods. 

 

 Richness Abundance 
 F-value p-value F-value p-value 

Litter     
+N <0.01 0.97 0.53 0.47 
Rotation <0.01 0.95 <0.01 0.99 
Defaunation 45.80 <0.01 67.48 <0.01 

F/H     
+N 0.13 0.71 0.22 0.64 
Rotation 0.18 0.67 0.05 0.82 
Defaunation 86.10 <0.01 159.09 <0.01 

Table 3. Nitrogen addition, rotation and defaunation effects on the richness and abundance 
of Oribatida. F- and p-values of linear mixed effects models on the effect of nitrogen addition 
(+N), rotation and defaunation on the richness and abundance of Oribatida in the L and F/H layer 
of ingrowth cores exposed in the field for five months.  Significant effects are given in bold. 
 

 

Discussion 

Rotation of cores 

Our findings do not provide evidence that AMF mycelia were reduced by regular rotation 

of the ingrowth cores. However, the AMF fatty acid marker inside the cores decreased 

during the experiment in the F/H layer. Kottke et al. (2004) observed extensive root 

development in the organic layer of the study sites and this likely favors the exploitation of 

nutrients by root associated AMF. The soil inside ingrowth cores was separated from roots 
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and the reduction in AMF marker concentration in the F/H layer material likely reflects the 

cutoff from the carbon supply from the plant to the fungal mycelium (Rillig 2004). The fact 

that the AMF marker fatty acid was not reduced by rotation of the ingrowth cores indicates 

that the AMF hyphae are only functioning in close association with roots without forming 

extensive extraradical mycelium. Further studies at the study site based on both fatty acids 

and microscopic inspection of AMF mycelia support this conclusion (Camenzind and Rillig 

2013; Camenzind et al. 2014). Still, AMF may have affected the periphery of the non-

rotated cores which are closer to living roots, with subtle effects to be detected when 

analyzing mixed samples from the complete core. 

The reduced concentration of the AMF marker in the F/H layer neither was associated with 

a decline in Cmic nor in BR, indicating that microorganisms and microbial activity inside 

the cores were largely independent of AMF hyphae and their exudates based on plant 

carbon. Obviously, microorganisms in the F/H layer almost exclusively exploited dead 

organic matter resources comprising leaf litter and dead roots at later stages of decay. 

Notably, the reduction of AMF concentration also did not affect the abundance of soil 

microarthropods with the exception of Gamasina which significantly increased in the F/H 

layer of rotated cores. Gamasina typically live as predators hunting for other 

microarthropods, predominantly Collembola, as well as Nematoda (Koehler 1997; Dhooria 

2016). Since Collembola were not affected by rotation of the cores the increase in Gamasina 

due to rotation might have been due to increased nematode density in rotated cores. 

Interactions between nematodes and mycorrhiza have been assumed to be mutually 

inhibitory due to competition for space and food sources (Francl 1993; Pinochet et al. 1996; 

Borowicz 2001; Schouteden et al. 2015). However, the interactions are complex and as yet 

little understood in particular in tropical ecosystems (Hol and Cook 2005). 

Oribatida richness, abundance and community composition were not significantly affected 

by rotation of the ingrowth cores. This indicates that they exclusively exploited resources 

inside the cores and this was independent of interruptions of fungal hyphae colonizing the 

cores. By contrast, Oribatida richness and abundance varied between soil horizons with 

both being considerably higher in the F/H than the L layer. The L layer was colonized by 

species typically occurring in the litter layer of the study site such as Cultroribula zicsii 
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(Illig et al. 2005), whereas the F/H layer was colonized mostly by individuals of the genera 

Nanhermannia, Rostrozetes and Scheloribates typical inhabitants of F and H layers 

(Mitchell and Parkinson 1976; Illig et al. 2005). Unfortunately, little is known on food 

sources of tropical Oribatida species, but presumably they comprise predominantly 

secondary decomposers feeding on microorganisms and microbial residues, with only few 

primary decomposers feeding on litter (Illig et al. 2005); this may explain the dominance 

of Oribatida in F/H material in the present study. 

In contrast to the F/H layer, the concentration of AMF markers in the L layer did not 

significantly change during the experiment. In litter of an intermediate stage of 

decomposition, AMF are likely to compete for resources with saprotrophic fungi. Although 

the enzymatic capability of AMF typically is inferior to that of saprotrophic fungi, they 

effectively capture nutrients from decomposing litter material (Hodge et al. 2001; 

Camenzind and Rillig 2013), and this is most effective after saprotrophic microorganisms 

have started to decompose the litter (Posada et al. 2012). Previous work at our study site 

(Marian et al. 2019) also provided evidence that the presence of mycorrhiza suppresses the 

activity of saprotrophic microorganisms, thereby affecting the density of microarthropods 

such as Collembola. In our study, however, the abundance of microarthropods did not 

decline with the reduction of the AMF marker. Nevertheless, we assume that antagonistic 

interactions between AMF and saprotrophic fungi in the L layer persisted as colonization 

of litter by AMF did not decline during the experiment and this may have impacted other 

soil microorganisms (Krashevska et al. 2010). This conclusion is supported by the fact that 

saprotrophic fungi in the L layer in the non-rotated cores exceeded those in rotated cores 

pointing to stronger competition between saprotrophic fungi and AMF in non-rotated cores. 

However, part of the AMF marker might have originated from spores of AMF containing 

high amounts of AMF marker fatty acids (Olsson 1999), but this does not explain why 

AMF marker fatty acids declined in the F/H but not in the L layer during the experiment. 
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Defaunation 

Arbuscular mycorrhizal fungi did not recover from defaunation in the F/H layer and this 

likely is related to excluding colonization of the cores by roots (see above). Similarly, Cmic 

did not recover from defaunation in the L and F/H layer during the experiment. Potentially, 

grazing by microarthropods contributed to the slow recovery. However, the abundances of 

all soil faunal groups investigated were strongly reduced in both the L and F/H layer of 

defaunated cores, pointing to restricted colonization of microarthropods from outside the 

ingrowth cores. This also indicates that the role of microarthropods in fragmenting organic 

material was reduced and thereby their contribution to the formation of new surface area 

facilitating microbial colonization (Seastedt 1984; Moore et al. 1988; Lussenhop 1992; 

Ruess and Lussenhop 2005). The restricted colonization by microarthropods together with 

the reduced Cmic in defaunated cores also might have been related to a decline in food 

availability due to a reduced input of root derived resources in the cores. At our study sites 

roots are concentrated in organic layers (Wilcke et al. 2002) and root-derived resources are 

increasingly recognized as being of fundamental importance in fueling soil food webs 

(Pollierer et al. 2007, 2012; Scheunemann et al. 2016; Zieger et al. 2017; Marian et al. 

2019). 

The slow recovery of Cmic and BR in both the L and F/H layer might have been due to low 

quality of litter. Nitrogen concentration in litter and litter decomposition are very low at 

our study site and this likely is responsible for the pronounced accumulation of organic 

matter in organic layers (Butenschoen et al. 2014; Marian et al. 2017). Low litter quality is 

associated with low nutrient mobilization during decomposition and therefore, to low 

supply of nutrients from the L to the F/H layer, and this is reflected by the decline in Cmic 

from the L layer to the F/H layer. Microbial biomass typically follows the stratified 

distribution of organic matter in the soil profile of forest ecosystems (Yang and Insam 1991; 

Wardle 1993). Presumably, both poor mineralization of nutrients from decomposing litter, 

and exclusion of roots and root-derived resources contributed to the restricted recovery of 

Cmic in defaunated soil cores. This is supported by the fact that BR stayed constant in the L 

and F/H layer in defaunated cores suggesting that microorganisms did not recover from the 

disturbance caused by defaunation. 
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Defaunation also significantly affected the community composition of Oribatida in both the 

L and F/H layers. Domes et al. (2007) showed that the eggs present in soil are sufficient to 

ensure establishment of a diverse community of Oribatida in organic layers, although 

Oribatida species differ in the speed they recover from disturbance. Therefore, the reduced 

diversity and abundance of Oribatida in defaunated cores might have been due to both 

reduced availability of resources as well as limited recovery and colonization of the cores 

by Oribatida from the surrounding soil, suggesting that colonization by Oribatida did not 

reach equilibrium during the five months of the experiment. 

 

Nitrogen addition 

The concentration of the AMF marker fatty acid was not significantly affected by N 

addition, neither in the L nor in the F/H layer. This contrasts results of previous studies 

(Camenzind et al. 2014) that AMF root colonization decreased due to N fertilization. The 

different findings are difficult to explain, but varying effects of N fertilization on AMF 

have been reported previously (reviewed in Treseder and Allen 2000; Rillig et al. 2003; 

Treseder 2004). 

Earlier studies at our study site reported evidence that microorganisms benefited from N 

fertilization (Krashevska et al. 2010). Results of the present study support these findings, 

although the addition of N did not alter microbial biomass. However, the addition of N 

increased leaf litter decomposition rates and BR in the L layer suggesting that the 

availability of N limited microbial activity. This is supported by the lower C/N ratio in the 

L layer in the N addition treatment, reflecting that the addition of N improved litter quality 

for decomposer organisms. Overall, however, this suggests that nutrient dynamics inside 

the cores were largely independent of AMF hyphae and exudates. 

The addition of N increased the pH in the F/H layer. Increase in pH may stimulate nutrient 

mobilization and this may result in increased microbial activity and microbial biomass 

(Thirukkumaran and Parkinson 2000; Vance and Chapin 2001). However, in our study N 

fertilization did not affect the microbial biomass levels and only little affected microbial 

activity in the F/H layer. Presumably, microorganisms in the F/H layer are not only limited 

by N but also by other nutrients. In fact, although increased pH may stimulate the 
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mobilization of N, it may aggravate the limitation of P (Gallardo and Schlesinger 1994), 

and P supply is very low in the studied tropical montane rainforest (Krashevska et al. 2010; 

Homeier et al. 2012). 

 

Conclusions 

Results of this study suggest that in nutrient limited tropical montane rainforests AMF 

hyphae are in close association with roots and do not form extensive extraradical mycelia, 

indicating that interactions of AMF with other soil biota are restricted to the close vicinity 

of roots. In contrast to the F/H layer, AMF did not decline in the L layer during the 

experiment suggesting that interactions with other soil biota are concentrated in the L layer 

where AMF likely compete with saprotrophic microorganisms for litter-derived resources. 

The restricted recovery of microorganisms and microarthropods after defaunation inside 

the cores points to the importance of root-derived resources for fueling soil food webs. 

Unexpectedly, N addition did not affect AMF suggesting that N dynamics inside the cores 

were independent of mycorrhiza, despite litter N concentrations were increased and this 

likely was responsible for the increase in microbial respiration and decomposition due to 

N addition. Further research on interactions between AMF and other soil biota under field 

conditions is needed to improve our understanding of their role in structuring microbial and 

animal communities as well as their importance for decomposition processes in tropical 

forest ecosystems. The concentration of these interactions in the vicinity of roots and the 

litter layer, as suggested by results of the present study, pose particular challenges. 
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Supplementary Material   

S1 Table. List of Oribatida species, abbreviations used in Fig 4 and the soil layer in which 

where found. 

Family Species name Abbreviation Used in 
PCA L F/H 

Hermanniellidae Ampullobates ecuadoriensis 
(Ermilov, 2013) AmplEcua x x x 

Oppiidae Arcoppia dechambrierorum 
(Mahunka, 1983) 

   x 

Dampfiellidae Beckiella capitulum 

(Balogh & Mahunka, 1978) BeckCapt x x x 

Oppiidae Brachioppia cuscensis 
(Hammer, 1961) 

   x 

Oripodidae Calobates ornatus 

(Mahunka, 1986) CalbOrnt x x x 

Carabodidae Carabodes nigrosetosus 
(Mahunka, 1979) 

  x x 

Damaeolidae Caudamaeolus petalus 

(P. Balogh, 1988) 
   x 

Ceratoppiidae Ceratorchestes cornutus 
(Mahunka, 1982) 

   x 

Ceratoppiidae Ceratorchestes globosus 
(Balogh & Mahunka, 1969) 

  x  

Microzetidae Cosmozetes reticulatus 
(Balogh, 1962) CosmRetc x x x 

Astegistidae Cultroribula zicsii 

(Balogh & Mahunka, 1981) CultZics x x x 

Damaeidae Damaeus flagellatus 
(Wang, 1994) 

  x  

Caleremaeidae Epieremulus granulatus 

(Balogh & Mahunka, 1979) EpieGran x x x 

Eremulidae Eremulus brasiliensis 
(Pére-Íñigo & Baggio, 1985) EremBras x x x 

Eremulidae Eremulus rigidisetus 
(Balogh & Mahunka, 1969) 

   x 

Oppiidae Gittella flagellata 
(Mahunka, 1983) 

   x 

Oppiidae Globoppia maior 

(Hammer, 1962) GlobMaio x x x 

Granuloppiidae Hammerella parasufflata 
(Ermilov, 2013) 

   x 

Hemileiidae Hemileius suramericanus 

(Hammer, 1958) HemlSurm x x x 

Heterobelbidae Heterobelba oxapampensis 

(Beck, 1962) HetrOxap x x x 
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Family Species name Abbreviation 
Used in 

PCA L F/H 

Oppiidae Kokoppia euramosa 

(Balogh & Mahunka, 1969) KokpEurm x  x 

Oppiidae Lanceoppia zicsica 

(Mahunka, 1988) 
  x  

Microzetidae Licnozetes granulatus 
(Balogh & Mahunka, 1969) 

   x 

Liebstadiidae Liebstadia pannonica 
(Willmann, 1951) 

  x x 

Liebstadiidae Liebstadia similis 

(Michael, 1888) LiebSiml x x x 

Nanhermammiidae Nanhermannia elegantissima 
(Hammer, 1958) NanhEleg x x x 

Nanhermammiidae Nanhermannia nana 

(Nicolet, 1855) NanhNana x x x 

Oppiidae Neoamerioppia rotunda 
(Hammer, 1958) NeoaRotn x x x 

Galumnidae Neoctenogalumna longiciliata 

(Ermilov 2013) 
   x 

Oppiidae Oppiella nova 
(Oudemans, 1902) OppiNova x x x 

Microzetidae Orthozetes bidentatus 

(Ermilov, 2013) 
  x  

Oppiidae Oxyoppia polynesia 
(Hammer, 1972) 

   x 

Scheloribatidae Perscheloribates minutus 

(Pletzen, 1965) PersMint x x x 

Pheroliodidae Pheroliodes intermedius 
(Hammer, 1961) 

   x 

Plasmobatidae Plasmobates pagoda 
(Grandjean, 1929) 

   x 

Tetracondylidae Plenotocepheus neotropicus 
(Ermilov, 2013) PlenNeot x x x 

Protoribatidae Protoribates capucinus 
(Mihelcic, 1958) ProtCapc x x x 

Oripodidae Pteroripoda minutissima 
(Balogh & Mahunka, 1974)   x x 

Rhynchoribatidae Rhynchoribates grandis 
(Hammer, 1961) 

  x x 

Rhynchoribatidae Rhynchoribates mirus 
(Beck, 1961) RhynMirs x x x 

Haplozetidae Rostrozetes foveolatus 

(Sellnick, 1925) RostFove x x x 

Cymbaeremaeidae 
Scapheremaeus fungisetosus 

(Ríos & Palacios-Vargas, 
1998) 

ScapFung x x x 

Microzetidae Schalleria brevisetosa 

(Ermilov, 2013) 
   x 
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Family Species name Abbreviation 
Used in 

PCA L F/H 

Scheloribatidae Scheloribates elegans 
(Hammer, 1958) SchlEleg x x x 

Plasmobatidae Solenozetes carinatus 
(Hammer, 1961) SolnCarn x x x 

Plasmobatidae Solenozetes flagellifer 

(Mahunka, 1983) 
  x x 

Sternoppiidae Sternoppia brasiliensis 
(Franklin & Woas, 1992) SterBras x  x 

Sternoppiidae Sternoppia mirabilis 
(Balogh & Mahunka, 1968) 

   x 

Sternoppiidae Sternoppia paramirabilis 
(Balogh & Mahunka, 1968) SterParm x  x 

Suctobelbidae Suctobelbella complexa 
(Hammer, 1958) SuctComp x x x 

Suctobelbidae Suctobelbella loksai 
(Balogh & Mahunka, 1981) 

SuctLoks x x x 

Suctobelbidae Suctobelbella peracuta 
(Balogh & Mahunka, 1980) SuctPerc x x x 

Suctobelbidae Suctobelbila peruensis 
(Woas, 1986) SuctPeru x x x 

Suctobelbidae Suctobelbella semiplumosa 

(Balogh & Mahunka, 1967) 
   x 

Tectocepheidae Tectocepheus minor 
(Berlese, 1903) TectMinr x x x 

Tectocepheidae 
Tectocepheus velatus 

sarekensis 

(Trägårdh, 1910) 
TecVelSr x x x 

Tectocepheidae Tectocepheus velatus velatus 
(Michael, 1880) TecVelVl x x x 

Teratoppiidae Teratoppia pluripectinata 
(Balogh & Mahunka, 1978) 

  x  

Liebstadiidae Totobates discifer 
(Hammer, 1961) 

   x 

Lohmanniidae Xenolohmannia comosa 

(P. Balogh, 1984) XenlComs x x x 
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Chapter 5 

General discussion 

 

  

 

  



Chapter	5	
_________________________________________________________________________________________________	

	
 

 133 

Belowground communities are assumed to be fueled principally by plant litter- and root-

derived resources (Hättenschwiler et al. 2005). Diversity in quantity and quality of 

resources provided by plants strongly modifies decomposer organisms and thereby 

influence litter decomposition and nutrient mineralization processes. Higher plant diversity 

is generally assumed to improve habitat conditions and availability of resources, thereby 

improving the abundance and activity of decomposer organisms. Nonetheless, the debate 

on how plant species diversity influences decomposer organism is still open, and plant litter 

identity, which encompasses all specific litter chemical and physical characteristics of a 

single species, increasingly is considered as a major driver of decomposer abundance and 

diversity. In spite of the huge diversity of plant and animals in the Andean tropical montane 

rainforest ecosystems, little is known on the impact of plant litter diversity and root 

resources on the abundance, activity and diversity of soil communities and thereby litter 

decomposition processes, particularly during early stages of decomposition (Krashevska et 

al. 2017; Marian et al. 2017, 2019).  

In this thesis I investigated the impacts of leaf litter diversity and root resources on 

microorganisms and decomposer microarthropods during the early stages of litter 

decomposition in tropical montane rainforest ecosystems. Using leaf litter mixtures the 

study presented in Chapter 2 investigated whether higher leaf litter diversity favors the 

abundance and activity of soil decomposers during early stages of decomposition. Further, 

comparing leaf and root litter along an altitudinal gradient, the study reported in Chapter 3 

evaluated the effect of plant litter quality as structuring force of the abundance and activity 

of soil decomposer organisms. The study presented in Chapter 3 further evaluated the 

contribution of decomposer microarthropods to leaf and root litter decomposer during early 

stages of litter decomposition. In the studied tropical montane rainforests, the high 

concentration of roots in organic layers and the abundance of AM fungi (Wilcke et al. 2002; 

Kottke et al. 2004; Camenzind and Rillig 2013) might favor the abundance and activity of 

soil microorganisms and microarthropods. Using rotated ingrowth cores, the study 

presented in Chapter 4 assessed the impact of root-derived resources and AM fungi 

colonization on soil microorganisms and microarthropods within the organic layer and their 

responses with nutrient additions  
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Litter identity drives decomposer organisms and decomposition rates 

during early stages of decomposition 

The results presented in Chapter 2 showed that leaf litter diversity partially explained 

changes in the abundance and activity of soil microorganisms, but was a poor predictor of 

the abundance of soil microarthropods in the studied tropical montane rainforests. Notably, 

however, the decrease in the abundance of microorganisms with higher litter diversity by 

the end of early stages of decomposition indicates an accumulation of recalcitrant 

compounds. This reflects the preferential exploitation of labile carbon compounds by 

opportunistic microorganisms during early stages of decomposition (Berg and 

McClaugherty 2008; Berg 2014), and the general low quality of the leaf litter material (high 

C-to-N ratio) in this tropical rainforest ecosystem (Butenschoen et al. 2014). 

Contrasting leaf litter diversity, leaf litter identity explained the majority of variation in the 

abundance and activity of soil organisms during early stages of decomposition. The 

differential responses of soil biota to litter identity were closely associated with differences 

in the initial chemical composition of the litter species studied. However, the initial 

chemical composition of leaf litter was insufficient to explain variations in the abundance 

of soil microarthropods, suggesting that physical traits might play an important role driving 

their abundances as has been demonstrated in earlier studies in temperate forest ecosystems 

(Kaneko and Salamanca 1999; Hoorens et al. 2010). The results also suggest that traits 

associated with the identity of litter species determine the quality of litter resources and 

function as key driver of the response of soil biota during early stages of decomposition in 

the studied tropical montane rainforest. 

The results presented in Chapters 2 and 4 also indicate that changes in litter quality during 

decomposition are directly related to changes in microbial community functions, and are 

thereby reflected in decomposition rates. These findings support results of previous studies 

in the region (Illig et al. 2008, 2010; Marian et al. 2017) indicating that variations in 

decomposition rates during early stages of litter decomposition in montane rainforests 

strongly depend on the impact of litter quality on decomposer organisms. 
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Quality of plant litter resources has been shown to decrease with increasing altitude in the 

study region (Maraun et al. 2008; Rillig et al. 2013; Marian et al. 2017), and decomposition 

rates were previously found to follow this pattern during early stages of litter decomposition 

(Marian et al. 2017). However, the results presented in Chapter 3 indicate that this may 

only be the case in root litter material. Contrasting the findings of Marian et al. (2017), leaf 

litter decomposition rates presented in Chapter 3 were highest at 2000 m, and these changes 

were not linked to a higher litter quality (as compared to 1000 and 3000 m). The results 

suggest that in the studied tropical montane rainforests, differences in the availability of 

nutrients associated with local litter quality appear to be more important factors for the 

decomposition of root litter than leaf litter. Presumably, buffered environmental conditions 

in the soil favor litter quality as the primary driving factor for root litter decomposition. 

Notably, leaf litter decomposition patterns presented in Chapter 3 were similar to those 

reported by Marian et al. (2019). Interestingly, both studies took place during low-rainfall 

periods in the study area (Bendix et al. 2006), suggesting that seasonal variations, 

particularly drought, might override the primacy of litter quality as major driver of 

decomposer organisms during early stages of decomposition along the altitudinal gradient 

investigated here. However, virtually nothing is known about seasonal changes in the soil 

fauna community of tropical montane rainforests. 

 

Decomposer microarthropods play a minor role during early stages of 

litter decomposition 

The results presented in Chapters 2, 3 and 4 indicate that decomposer microarthropod 

abundance little affects decomposition processes at early stages of litter decomposition in 

the studied tropical montane rainforests. This supports previous findings in the study region 

(Illig et al. 2008; Marian et al. 2018) indicating that decomposition of litter material during 

early stages of decomposition is driven predominantly by microorganisms, while 

microarthropods are of little importance. However, both decomposer groups studied in 

more detail, Oribatida and Collembola, may play a more important role at more advanced 

stages of decomposition when the litter palatability has been improved by intensive 

microbial action (Bardgett 2005; Das and Joy 2009; Marian et al. 2018). Indeed, results of 
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the study presented in Chapter 2 indicated a stronger relationship between the abundance 

of decomposer microarthropods and the degree of litter decomposition, with the abundance 

of both Collembola and Oribatida increasing towards the end of the early decomposition 

stage. Nonetheless, as indicated by the results presented in Chapter 3, microarthropods 

facilitate litter decomposition at high altitude by grazing on microorganisms or 

fragmentation of the litter material. Presumably, this stimulation of litter decomposition by 

microarthropods is related to unfavorable climatic conditions and low quality of the litter 

material, hampering the attack of the litter by microorganisms. 

The studies presented in Chapters 2 and 3 showed that the abundance of Collembola and 

Oribatida, as well as Oribatida community structure, were not closely associated with 

microbial biomass, even though microorganisms are known to be their major food 

resources (Maraun et al. 2003; Scheu et al. 2005; Dhooria 2016). In the studied tropical 

montane rainforests roots grow into and throughout the organic layer (Wilcke et al. 2002; 

Kottke et al. 2004), and root-derived resources are increasingly recognized as being of 

fundamental importance in fueling soil food webs (Pollierer et al. 2007, 2012; Zieger et al. 

2017; Marian et al. 2019). The fact that the abundance of decomposer microarthropods was 

not closely related to bulk microbial biomass (Chapter 2), and microarthropod abundance 

did not recover after defaunation in cores that were detached from living roots (Chapter 3) 

indicates that decomposer microarthropod communities in tropical montane rainforests are 

fueled predominantly by root-derived resources and litter materials at later stages of decay. 

The results presented in Chapter 3 also demonstrate that the abundance of Oribatida and 

Collembola varies between leaf and root litter. The higher density of Oribatida and 

Collembola in root litter compared to leaf litter suggests that roots provide more resources 

for decomposer microarthropods during early stages of decay than litter does. However, 

the higher densities of Oribatida and Collembola may also be related to the position of the 

litter material in the soil, with root litter in the soil providing more stable microclimatic 

conditions than leaf litter exposed in the litter layer (Fujii and Takeda 2017). The results 

further suggest that, even though Oribatida and Collembola comprise different trophic 

levels and differ in various ecological traits (Siepel 1994; Scheu 2002; Schneider et al. 
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2004), they contribute in similar ways to early-stage litter decomposition in tropical 

montane rainforests. 

 

AM fungi: an important actor for determining the abundance and 

activity of microbial communities during early stages of decomposition 

The results presented in Chapter 4 indicate that the colonization of soil cores by AM fungi, 

and thereby also their impact on soil organisms differs with the depth of the soil organic 

layer. Vertical stratification of AM fungi colonization has been previously reported in 

tropical Andean montane rainforests (Aristizábal et al. 2004; Camenzind and Rillig 2013). 

In the litter layer of the studied tropical montane rainforest, the results suggest antagonistic 

interactions between AM fungi and saprotrophic microorganisms, presumably because 

both compete for the same nutrient resources. This result not only supports the view that 

AM fungi capture nutrients from decomposing litter material in spite of their lack of 

degradative capability (Hodge et al. 2001; Talbot et al. 2008; Camenzind and Rillig 2013; 

Nuccio et al. 2013), but also indicates that AM fungi exert an important role during the 

early stages of leaf-litter decomposition in the studied tropical montane rainforests. Indeed, 

the results presented in Chapter 4 indicated that nutrient exploitation by AM fungi likely 

suppresses the activity of saprotrophic fungi in the litter layer. Further, the dominance of 

AM fungi during early stages of decomposition may contribute to the low abundance of 

microarthropods in the litter layer, since AM fungi are little consumed by microarthropods 

(Potapov et al. 2019). This might contribute to the lack of relationship between 

microarthropod abundance and microorganisms discussed above. 

Unlike the litter layer, AM fungi significantly decreased during the experiment in the 

fermentation/humus (F/H) layer. This was unexpected since AM fungi were anticipated to 

favor the exploitation of nutrients in the heavily rooted organic layers of the study sites 

(Wilcke et al. 2002; Kottke et al. 2004), and thereby affect the abundance and activity of 

soil microorganisms and microarthropods. Presumably, contrasting previous findings in the 

studied rainforest (Camenzind and Rillig 2013), AM fungi do not form pronounced 

extraradical mycelia in organic layers that can be cut by rotation of ingrowth cores. Rather, 
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AM fungi only function in close association with living roots and the carbon supplied by 

plants to fungi is not or minimally translocated by extraradical hyphae outside the root. 

Potentially, low litter quality and strong nutrient limitation of decomposition processes 

enforce confinement of AM fungi near the root surface. This also suggests that in the F/H 

layer of the studied tropical montane rainforests, interactions between AM fungi and other 

soil biota are restricted to the close vicinity of roots and cannot be effectively manipulated 

by using rotation of hyphal ingrowth cores. 

The tropical montane rainforests investigated have been shown to be co-limited by both N 

and P (Homeier et al. 2012), and the addition of both nutrients has been documented to 

decrease AM fungi abundance and diversity (Camenzind et al. 2014) as well as microbial 

biomass (Krashevska et al. 2008). However, as presented in Chapter 4, the addition of N 

did not change the abundance of AM fungi nor the saprotrophic microbial communities. 

This suggests that increased N availability might aggravate the limitation of other nutrients 

such as P (Gallardo and Schlesinger 1994; Li et al. 2016), resulting in a lack of effect on 

the activity of saprotrophic communities or in a change in the dominant role of AM fungi. 

Overall, the results presented in Chapter 4 indicate that investigating interactions of 

arbuscular mycorrhiza with soil microarthropods in tropical montane rainforests is more 

complex than assumed previously and requires improvement of existing methodologies for 

excluding arbuscular mycorrhiza, as well as long-term experiments to investigate soil fauna 

– mycorrhiza interactions in these forests. 
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Conclusion 

The findings presented in this thesis indicate that soil biota communities in Andean tropical 

montane rainforests are structured by leaf-litter identity rather than leaf-litter diversity 

during early stages of litter decomposition. The results further suggest that litter 

decomposition processes during early stages of decomposition are mainly driven by 

microorganisms, with the contribution of microarthropods relevant only at high altitudes, 

where litter quality is particularly low and climatic conditions are unfavorable. Generally, 

microarthropod abundance and diversity were not closely associated with changes in 

microbial characteristics. Rather, the results suggest that the stage of litter decomposition 

and availability of root-derived resources function as major drivers of the structure of 

microarthropod communities. Further, the results suggest that colonization of litter 

materials by AM fungi and their impact on soil decomposer biota varies with soil depth. 

AM fungi in the litter layer likely compete with saprotrophic microorganisms for litter-

derived nutrients and capture nutrients predominantly from litter at early stages of 

decomposition, while in the F/H layer remain in immediate vicinity of living roots. This 

highlights that the role of AM fungi in affecting the abundance and activity of microbial 

communities in the studied tropical montane rainforests is likely to be restricted to the close 

vicinity of roots at least during early stages of litter decomposition.  

Overall, the studies presented in this thesis contributed to a better understanding of key 

drivers of decomposer communities in Andean tropical rainforest ecosystems. The results 

improved our understanding of the role of plant species diversity as a key driver of 

decomposer communities, and indicated that in tropical montane rainforest ecosystems 

litter identity outweighs litter diversity in determining decomposer community structure 

and functioning. More detailed studies are required to identify the plant litter traits 

responsible for litter identity effects on soil decomposer communities and to investigate the 

role of root-derived resources in structuring decomposer communities and thereby the 

functioning of tropical montane rainforest ecosystems. 
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