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Summary 

Soil-derived ecosystem functions such as decomposition and element cycling are crucial for 

ecosystem services such as production of food, fodder and biofuels; in short, they are essential 

prerequisites for human and animal life. They dependent on biodiversity, soil microbial functioning 

and the soil-inhabiting fauna. Since about 30 years, ecological research focuses on biodiversity-

ecosystem function (BEF) relationships, and by now it is general consensus among ecologists that 

biodiversity is essential for maintaining ecosystem functioning. Although many studies on BEF 

relationships have been done, further knowledge on the mechanisms underlying the positive BEF 

relationships is still needed. Especially the role of (plant) biodiversity for belowground processes and 

soil organisms has been neglected in earlier studies on BEF relationships. Also, studies investigating 

the stability of soil microbial functioning and its relation to plant diversity are scarce, although 

stability of ecosystem functions is essential for the sustainable provisioning of ecosystem services. 

Additionally, the influence of mineral N fertilization on soil organisms and its interaction with plant 

community properties is of major importance for ecosystem functioning and needs further 

investigation, as the application of N fertilizer increases worldwide, but is known to has controversial 

effects on ecosystem functions, such as increasing crop productivity, but decreasing plant diversity.  

Within the framework of the present thesis I conducted three studies investigating the impact of 

plant diversity and plant community composition (identity of plant functional groups) on soil 

microbial properties and their stability in bulk-soil, combined with the investigation of mineral N 

incorporation into soil microorganisms and its channelling from microorganisms into soil fauna 

(mesofauna). The studies were conducted on the field site of the Jena Experiment, comprising plant 

communities with up to 60 plant species and 1-4 plant functional groups (legumes, grasses, small 

herbs, tall herbs; all species belong to Molinio-Arrhenateretea meadows typical for hay meadows in 

Central Europe).  

In study 1 (Chapter 2, Stability Experiment), we tracked soil microbial properties (basal respiration 

and biomass C) over a time period of 12 years. We found that plant species richness consistently 

increased both soil microbial basal respiration and biomass after a time-lag of four years after the 

establishment of the experiment, and that the positive relationship between plant species richness 

and soil microbial properties lasted until the end of the study. The delayed response of the soil 

microbial community to changes in land-use (from former arable field monocultures to semi-natural 

experimental grassland) points to the long time, plant effects need to materialize in the belowground 

system. After the time-lag, increasing amounts and variety of plant-derived inputs into the soil with 

increasing plant diversity presumably fostered soil microbial respiration and biomass.  
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We expected plant diversity to show specific dynamic effects over the three time phases of our long-

term study (each phase spanning four years) on the temporal stability of soil microbial properties. 

Due to the disturbance (=land-use change) at the beginning of the experiment and the following 

maturation of the plant communities, we expected plant diversity to exert destabilizing effects 

during phase 1, neutral effects in phase 2, and positive effects in phase 3 on the temporal stability of 

soil microbial properties. Indeed, we found the effect of plant diversity on the temporal stability of 

soil microbial properties to turn from being negative to neutral, but this neutral relationship lasted 

until the end of the study, suggesting that the recovery of soil microbial communities from former 

arable land-use takes more than a decade. For the spatial stability of soil microbial properties, the 

presence of plant functional groups was of major importance, with legumes and tall herbs reducing 

the spatial stability of microbial respiration, and grasses increasing the spatial stability of the latter. 

Presumably, plant-trait-based mechanisms such as rhizodeposition of N-rich compounds by legumes, 

patchy C provisioning to the soil by tap-roots of tall herbs, and evenly distributed C provisioning by 

grass roots provoked the observed effects of plant functional groups on soil microorganisms.  

The results of study 2 (Chapter 3, Fertilization Experiment) revealed that mineral N fertilizer and 

plant diversity acted independent of each other on soil microorganisms. Unexpectedly, fertilization 

did not increase soil microbial biomass. As the soil system has been shown to react with a time-lag of 

several years to environmental changes such as management practice or plant diversity (see above), 

we assume that the duration of our Fertilization Experiment (two years) may have been too short to 

unravel the full response of soil microorganisms to fertilization. Instead, fertilization superimposed 

the negative legume effect on soil microbial respiration, although the underlying mechanisms are 

likely to be different. Legumes are known to fuel the soil system with organic N, thereby increasing 

soil microbial C use efficiency. In contrast, mineral N fertilizer probably decreases rhizosphere 

priming effects by delivering inorganic N, and probably also increased microbial C use efficiency in 

the present study, as suggested by decreased microbial C-to-N-ratios in fertilized experimental plots.  

Although mineral N fertilizer neither affected soil microbial biomass nor interacted with plant 

diversity on soil microbial properties within the investigated time frame of two years, the interactive 

effect between fertilization and legumes on the soil microbial C-to-N-ratio indicates that mineral N 

was incorporated into the soil microbial biomass.  

To investigate the role of plant community properties for the microbial uptake of mineral N, and 

whether mineral-derived N is channelled from microorganisms to higher trophic levels, we labelled 

soil with mineral 15N and analysed its incorporation into soil microbial biomass and most abundant 

mesofauna taxa over three months (Chapter 4, Tracer Experiment). Mineral-derived 15N 

incorporation decreased over time in all investigated organisms (except in the primary decomposer 

Tectocepheus velatus sarekensis), reflecting the fast incorporation of mineral 15N into 
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microorganisms and its dominant channeling into mesofauna species. Plant species richness reduced 

the uptake of mineral 15N in microorganisms, presumably because competition for N in soil is 

aggravated in more diverse plant communities. The effects of plant diversity on the incorporation of 

mineral-derived 15N into mesofauna species were species-specific, and reflected different nutritional 

strategies among animal species.  For example, plant species richness decreased 15N incorporation 

into the secondary decomposer Ceratophysella sp., likely because Ceratophysella sp. fed on 

microorganisms that were also reduced in 15N due to limited N supply in plant communities of high 

diversity. Interestingly, plant species richness exerted time-dependent effects in other mesofauna 

species, e.g. in the primary decomposer Tectocepheus velatus sarekensis. Potentially, the increase in 

15N in T. velatus sarekensis with plant species richness later in the experiment was due to increased 

availability of dead plant roots containing 15N from the mineral 15N added. Also plant community 

composition (plant functional group identity) played a major role for the 15N incorporation into soil 

organisms. For example, presence of legumes decreased 15N in soil microorganisms, presumably due 

the release of unlabelled organic N via rhizodeposition. Grasses increased the incorporation of 15N in 

Ceratophysella sp., suggesting that the diet of Ceratophysella sp. is not restricted to microorganisms 

but also includes plant roots highly labelled with 15N. The results of study 3 highlight that mineral N is 

quickly channeled into soil animal food webs via microorganisms. Our results highlight that plant 

diversity and community composition alter the competition for N in soil and change the nutrient 

transfer across trophic levels in soil food webs, potentially leading to changes in soil animal 

population dynamics and community composition.  

In short, the present thesis indicates that 

1| plant diversity and community composition drive soil microbial properties (respiration, biomass), 

as well as the temporal and spatial stability of these properties. 

2| the soil system reacts with a time-lag of several years to land-use change, and soil microbial 

communities need more than a decade to recover from former agricultural land-use.  

3| plant functional groups exert trait-specific effects on soil microbial properties, and these effects 

complement each other. 

4| mineral N fertilization acts independent of plant diversity on soil microbial properties, but exerts 

interacting effects with certain plant functional groups (legumes), 

5| soil microorganisms largely and quickly incorporate mineral N, and channel this N to higher 

trophic levels of the soil food web. 

6| plant diversity and community composition shape the incorporation of mineral N into soil 

microorganisms and soil fauna. 

Taken together, the present thesis reinforces and complements the findings of earlier BEF studies, 

and emphasizes the importance of maintaining grasslands with high plant diversity including all 
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investigated plant functional groups (legumes, grasses, small and tall herbs) with their trait-specific 

effects for essential soil ecosystem functions and services. Especially in a changing world with 

increasing anthropogenic impacts such as increasing mineral N fertilizer application, plant diversity 

may also buffer detrimental effects of mineral N on ecosystems.  
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1 General Introduction 
 

1.1 Biodiversity 

Biodiversity is essential for the functioning of the earth´s ecosystems and thus for humankind 

(Cardinale et al., 2012; Chapin et al., 2000; Hooper et al., 2005; Wilson, 1988). Virtually all ecosystem 

functions rely directly or indirectly on biodiversity (Chapin et al., 2000), including primary 

productivity, decomposition and nutrient cycling, production of oxygen, water cycling and 

purification, pollination, disease regulation, and climate regulation. Thereby, biodiversity ensures 

ecosystem services such as the provision of food, fibre and fuel, fresh water, biochemicals, and 

medicine. Also, biodiversity is an important source of recreation and spiritual anchorage (Millenium 

Ecosystem Assesment, 2005). In brief, biodiversity touches everything we rely on. 

Currently, about 1.2 million eukaryotic species are systematically catalogued in a central database 

(Mora et al., 2011), about 0.55-0.8 million species more are described but not catalogued (Streit, 

2006). No one knows how many life forms actually live on this planet as conducting representative 

samplings of organisms in all types of ecosystems is very difficult and experts who can identify the 

organisms are scarce. Estimations on how many species live in the Earth´s ecosystems assume 6.5 

million eukaryotic species on land and 2.2 million species in oceans, meaning that 86% of existing 

species on land and 91% marine species are still unknown (Mora et al., 2011).  

In soil, there exist about 52,000 known species of soil animals, including ants, termites, earthworms, 

mites, collembolans, protozoans, and nematodes (Wall et al. 2001; Table 1). Additionally, there are 

about 26,500 species (or lineages) of microorganisms such as bacteria and fungi. It is striking, that 

the majority of the existing soil fauna is still unknown. Especially the biodiversity of soil 

microorganisms (and their functioning), but also that of soil meso- and macrofauna still is viewed as 

an “enigma” (Anderson, 1975; Nielsen et al., 2010).  

Table 1.  Estimated number of species of vascular plants and soil organisms ordered according to body size (Barrios 2007, 
modified from Wall et al. 2001).  
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Since humans began to colonize the world, hundreds of species got extinct. Extinction rates still 

increase due to the accelerated technical development and exploitation of ecosystems (Millenium 

Ecosystem Assesment, 2005). The current extinction rates of species are estimated to be 100-1000 

times higher than the expected natural extinction rate (Pimm et al., 1995) and to be higher than the 

former “Big Five” extinctions in geological time (Barnosky et al., 2011). Scientists presume that this is 

the beginning of the 6th mass extinction since 540 million years (Barnosky et al., 2011; Ceballos et al., 

2015; Ripple et al., 2017). Already in 1992, the Union of Concerned Scientists published the first 

“World Scientists´ Warning to Humanity” pointing to the threatening of biodiversity and whole 

ecosystems due to human activities (Ripple et al., 2017; World Scientists’ Warning to Humanity, 

1992). Worldwide, the marine catch has been going down since the mid-1990ies, while at the same 

time fishing effort has been going up, demonstrating the over-exploitation of oceans (Fig. 1). Dead 

zones increased from about 40 to over 650 since the 1960ies. Between 1970 and 2012, vertebrates 

abundance declined by 58%, with fresh water, marine and terrestrial populations declined by 81, 36, 

and 35 %, respectively.  

 

 

Figure 1. Trends over time for environmental issues identified in the 1992 scientists´ warning to humanity. The years before 
and after the 1992 scientists´ warning are shown as grey and black lines, respectively; (a) fresh water resources (b) marine 
catch, (c) dead zones, (d) total forest, (e), the vertebrate species abundance index, (f) CO2 emissions, (g) five- year means of 
global temperature, (h) population development of humans and ruminant livestock (domestic cattle, sheep, goats, and 
buffaloes). Note that y-axes do not start at zero. Percentage change, since 1992, for the variables in each panel are as 
follows: (a) – 26.1%; (b) -6.4%; (c) +75.3%; (d) -2.8%; (e) -28.9%; (f) +62.1%; (g) 167.6%; (h) humans: +35.5%, ruminant 
livestock: +20.5%. (Modified after Ripple et al. 2017). 
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In Germany, about 48% percent of the 

organisms, including animals, plants, and 

fungi, are either endangered or extinct 

(Fig. 2); the status of about 5% of the 

organisms is unknown and only 37% of 

the organisms are at low risk to go extinct. 

Reasons for the rapid decline in 

biodiversity are worldwide expansion of 

industrialization and human settlement 

areas, over-exploitation of resources, high 

emissions of greenhouse gases, and high depositions of nitrogen and pollutants. These factors lead 

to habitat destruction, climate changes such as warming, shifts of climate zones, desertification, 

flooding events, over-fertilization, as well as acidification of terrestrial and marine ecosystems 

(Wilson, 1988). Further, freshwater resources decline and dead zones increase.  

 

As a consequence, ecologists focused on investigating the role of biodiversity for ecosystem 

functioning and on how biodiversity acts on different ecosystem functions (Bengtsson 1998, Loreau 

2000, Scherber et al. 2010, Lefcheck et al. 2015). In particular, the interactions between plant 

diversity (plant species richness) and human-induced environmental changes have been investigated. 

A number of large biodiversity experiments have been established and are still running worldwide, 

most located in Europe and Northern America. These large-scale experiments include  

- the Cedar Creek Ecosystem Science Reserve existing since the 1940ies in Minnesota,  

- the BioCON Experiment within Cedar Creek, investigating the role of elevated CO2 and 

nitrogen deposition on ecosystem functioning, since 1997 (Reich et al. 2006),  

- the Ecotron Experiment at Silwood Park in the UK (Naeem et al., 1994),  

- the BIODEPTH Experiment across different biomes in Europe (Hector et al., 1999),  

- the Biodiversity Exploratories ranging across different land-use types in Germany (Fischer et 

al., 2010), and  

- the Jena Experiment in semi-natural temperate grassland in Germany (Roscher et al., 2004).  

Although the idea of a positive relationship between biodiversity and ecosystem properties already 

originated in the late 1950ies (Elton, 1958), it was put aside by other ideas until the 1980ies. First 

studies that reconfirmed Elton’s observations were conducted in the early 1990ies (Tilman et al., 

2014). These studies investigated effects of biodiversity in different ecosystems and found increasing 

biodiversity to increase primary productivity and resistance against drought in grasslands (Naeem et 

Figure 2. Risk situation for animals, plants, and fungi in 
Germany (FONA, Federal Agency for Nature 
Conservation, 2015). 
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al., 1994; Tilman and Downing, 1994) as well as resistance against biological invasions in marine 

ecosystems (Stachowicz et al., 1999). By now, the positive relationship between biodiversity and 

ecosystem functioning is proven by hundreds of experimental and theoretical studies (Tilman et al., 

2014). Therefore, today research focuses on the mechanisms how biodiversity contributes to 

ecosystem functioning (Eisenhauer et al., 2017; Weisser et al., 2017) and what happens in detail to 

ecosystems if biodiversity declines.  

The fact that biodiversity is vital for ecosystems and the persistence of humankind by now also 

dropped into the awareness of international and national politics. The United Nations General 

Assembly declared the year 2010 to the “International Year of Biodiversity” with the aim to make the 

protection of biodiversity more popular. In 2018, a consortium of about 20 scientists published the 

“Frankfurt Declaration for the conservation of biodiversity” in which they recommended how to 

protect biodiversity in Germany in the long-term 

(http://www.senckenberg.de/root/index.php?page_id=5206&year=2018&kid=2&id=4879). If these efforts 

will lead to success is questionable as human short-term technical progress and consumption of 

resources seem to override the long-term needs for sustainability (Leggewie and Welzer, 2009).  

 

What is biodiversity?  

The term biodiversity comprises a wide spectrum of biotic scales, from genetic variation within 

species, genetic variation between species, over species richness within a habitat or ecosystem, to 

habitat number and diversity within an ecosystem, and distribution of ecosystems and biomes across 

the planet. Biodiversity can be described as entities (how many genotypes, species, ecosystems), as 

the evenness of their distribution, differences in their functional traits, and interactions. Different 

components of biodiversity (e.g., numbers, relative abundance, presence/ absence of key species) 

can have different effects on ecosystem properties and processes (Hooper et al., 2005).  

 

What are functional traits? 

To mechanistically understand the interrelationships between the different components of 

ecosystems, i.e. how ecosystem processes function, we need to know functional traits of organisms. 

Functional traits are those that either affect ecosystem properties (functional effect traits) or species´ 

responses to environmental conditions (functional response traits) (Hooper et al., 2005). Like most of 

the recent studies, in the present doctoral work I refer to functional effect traits. According to the 

spectrum of different functional traits present in a community, i.e. with higher functional trait 

diversity, ecosystem properties such as decomposition, nutrient cycling or primary productivity 

increase (Heemsbergen et al., 2004; Roscher et al., 2013). Species can be assigned to functional 

groups according to the functional traits they are sharing. For example, plants from temperate 

http://www.senckenberg.de/root/index.php?page_id=5206&year=2018&kid=2&id=4879
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grasslands can be grouped into legumes, grasses and herbs according to their morphological and 

phenological traits, e.g. flowering time, ability to fix molecular nitrogen, as well as plant height and 

rooting depth (Roscher et al., 2004). Often, functional groups are equivalent to taxonomic groups as 

these have similar ecological properties.  

 

Why investigating effects of plant diversity?  

Plants are the primary producers in ecosystems, providing the nutritional basis for the whole 

consumer food web. Plant diversity enhances plant biomass production (Weigelt et al., 2009) as well 

as soil microbial biomass carbon (Eisenhauer et al., 2010) and, to a certain degree, can buffer against 

disturbances such as drought (Tilman and Downing, 1994).  

Plants form the bridge between the aboveground and belowground system as they fix atmospheric 

carbon and translocate resources into their roots. Roots release carbon and nutrients in the form of 

sugars and amino acids into the soil, thereby delivering resources for soil animals and heterotrophic 

microorganisms. In addition, dead plant material enters the soil system and serves as resource for 

decomposers. As described above, plants with different functional traits occupy different ecological 

niches and deliver resources of different qualities, at different locations (e.g., via different rooting 

depths and densities) or at different times over the year (seasonality). By this means, plant species 

also foster soil microbial communities (Eisenhauer et al., 2010; Sechi et al., 2014). As a result of these 

plant functional trait effects, plant diversity promotes small-scale heterogeneity in soil and facilitates 

soil animals to occupy distinct trophic niches (Ferlian et al., 2015; Schneider et al., 2004). Of course, 

plants not only deliver resources, but they also demand resources such as water, nutrients and 

space. Thus, they simultaneously act as competitors with soil animals, soil microorganisms and other 

plants (Kuzyakov and Xu, 2013). The kind and strength of interactions between plants and other 

organisms depend on their specific functional traits. High diversity plant communities contain a wider 

spectrum of functional traits than communities with low plant diversity. The outcome of the 

interactions between functional traits of these plant communities is difficult to predict as long as the 

underlying mechanisms are unknown. By performing plant diversity experiments employing a 

gradient of plant and functional diversity, we intended to uncover how plant diversity influences 

particular ecosystem properties and processes. In particular, we investigated effects of plant diversity 

on soil microbial biomass and soil microbial respiration, two important indicators for intact soils 

(Anderson and Domsch, 1985; Bardgett and Shine, 1999). We also investigated effects of plant 

diversity on soil animals (mesofauna, in combination with fertilizer N) as plant species shape the 

microhabitats of soil animals and interact intimately with them (Bonkowski et al., 2009; Eisenhauer 

et al., 2013; Sechi et al., 2014).  
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1.2 Stability and its role for ecosystem functioning and services 

Provisioning of ecosystem goods and services are only guaranteed if ecosystem processes are stable 

in the long-term (McCann, 2000; Tilman et al., 2014). Already in 1958, C. S. Elton observed insect 

calamities in forest and agricultural monocultures and concluded that in natural ecosystems plant 

diversity stabilizes animal population dynamics (Elton, 1958). MacArthur (1955) argued that multiple 

energy pathways stabilize consumer populations, as the loss of any one pathway would be less 

severe. During the 1970ies, other ideas occurred based on computational models that used randomly 

constructed communities with randomly constructed interactions strengths between organisms 

(McCann, 2000; Pimm, 1984). These models suggested that biodiversity destabilizes community 

dynamics (May, 1973) and this questioned the diversity begets stability hypothesis. It lasted about 

ten years, until Yodzis (1981) used real world population data in his model and showed that indeed 

biodiversity (i.e., species richness with species responding differentially to environmental changes) 

are needed to stabilize ecosystem properties.  

Table 2. Definitions of different types of stability (McCann 2000).  

Although few studies found contrasting 

results (McCann, 2000), recent 

ecological experiments reconfirmed 

Elton´s diversity begets stability 

hypothesis (Haddad et al., 2011; Ives 

and Carpenter, 2007; McCann, 2000; 

Weigelt et al., 2008). In fact, ecologists 

increasingly focus on the role of bio-

diversity for the stability of ecosystem 

functioning as humans affect both (see 

above).  

Depending on the scientific question, 

different types of stability are 

addressed. Generally, two categories of 

stability types exist based either upon the system´s dynamic stability or on the system´s ability to 

defy change (McCann 2000; Table 2). Community stability is not equal to population stability, 

because densities of distinct species can fluctuate in response to environmental factors, while the 

summed densities of individuals (or the biomass) within the whole community may remain stable. 

General stability increases if population densities move further away from extremely low or high 

densities, and implies decreased variability (McCann, 2000). This measure is appropriate as stability 

indicator in experimental studies and was used in the present dissertation (Chapter 3, Stability 

study).  
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1.3 Soil 

Soil is one of the most complex biomaterial on earth (Adhikari and Hartemink, 2016) and comprises a 

dynamic system where pedosphere, lithosphere, hydrosphere, atmosphere and biosphere are close 

together. Soil develops when parent rock material is weathering due to UV radiation or chemical 

influences. Its development lasts thousands of years, and acquires the interrelated activities of soil-

inhabiting organisms (Blume et al., 2016; Buscot and Varma, 2005). Soils are irreplaceable for the 

provision of many ecosystem functions and services. These include provisioning services (substrates 

for plant growth, food for humans, fresh water, wood, fibre, fuel), regulating services (gas and water 

storage and purification, climate, floods, erosion, biological processes such as pollination and 

diseases), cultural services and supporting services (nutrient cycling, production, habitat, 

biodiversity) (Adhikari and Hartemink, 2016; Millenium Ecosystem Assesment, 2005).  

In terrestrial ecosystems, soil is the most species-rich habitat at local scales. Life in soils is 

temperature- and pH-dependent; thus, organisms in soils are adapted to different chemical 

properties as well as to different climates and seasonal changes in temperature. Soils in temperate 

grasslands typically are exposed to temperature cycles with frost in winter, high temperatures in 

summer, and drought in late summer. At the end of the growing season, grasses become dormant 

and most of the aboveground (and partly belowground) plant biomass dies off, thereby adding dead 

organic matter into the soil and building up the humus-rich A-horizon.  

Soil is stratified into different layers, with mineral soil in deeper layers and organic soil in the upper 

layers. Life concentrates in the upper soil layers, as these are rich in organic matter serving as diet for 

soil biota. Soil is not only structured in horizontal layers, but also contains vertical structures in the 

form of soil pores of different sizes (Blume et al., 2016), typically from micrometres to centimetres. 

These pores enable gases, water (and solutions) as well as animals to move through the soil system.  

 

1.4 The soil food web 

Soil animals interact in different ways with their environment. Feeding interactions are among the 

most important interactions between organisms as diet is one of the most essential resources and its 

quality and distribution shapes the structure of soil food webs. Feeding relationships include those 

between predator and prey, between competitors using the same resource, or between mutualists 

where two organisms benefit from each other, e.g. between plants and associated mycorrhizal fungi. 

According to what they feed on, animals are assigned to trophic groups either mainly feeding on 

plants (herbivores), on other animals (predators) or dead organic matter (decomposers). Most soil 

animals form part of the decomposer food web (Bardgett, 2005). According to their trophic group, 

soil organisms function as primary decomposers feeding predominantly on dead organic matter 
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(detritus), secondary decomposers feeding on microorganisms such as bacteria and fungi, or 

predators feeding on animals (Scheu, 2002).  

This classification implies that several animal species feed on equal or similar resources, thereby 

being functionally equivalent, i.e. they exert similar top-down forces on their prey (Scheu, 2002). The 

concept of trophic groups simplifies the structure of food webs and enables identifying main 

relationships within a food web. In soil ecology, using the concept of trophic groups is helpful 

because of the high diversity of soil animal species. The fact that soil animals of the same taxonomic 

group often feed on similar resources facilitates the investigation of soil food webs (Scheu, 2002). 

Nevertheless, feeding relationships between soil animals and their resources are highly flexible. 

Many species cannot be assigned explicitly to one trophic group, because they switch their diet 

depending on food availability (Endlweber et al., 2009; Lemanski and Scheu, 2014; Scheu and Folger, 

2004). Additionally, species within animal groups such as Collembola often form a continuum from 

primary to secondary decomposers (Scheu and Falca, 2000). Another important criterion for 

classifying soil animals is body size. Several studies demonstrated that body size is a master trait in 

structuring food webs (Brose et al., 2006; Schneider et al., 2012). Global environmental change may 

affect body-sizes of animals in ecosystems, and hence, alter top-down and bottom-up control in food 

webs (Brose et al., 2012). In soil typically three size classes are differentiated, microfauna (< 100 µm, 

e.g., nematodes and protists), mesofauna (100 µm - 2 mm, e.g., Collembola and Oribatida) and 

macrofauna (> 2mm, e.g., earthworms, spiders and many insects) (Fig. 3).  

In terrestrial ecosystems most of the primary production ultimately enters the decomposer food web 

relying on dead organic matter (DOM), only a minor part typically is processed by the grazer food 

web relying on living plants (Moore et al., 2004; Odum and Biever, 1984). This points to the essential 

role of decomposers for the functioning of ecosystems.  
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1.5 Mineral fertilizer N – two sides of the coin  

All living creatures rely on nitrogen (N) because it is an essential element of proteins and nucleic 

acids. Since the Haber-Bosch process was implemented industrially for the first time in 1913, the 

production of mineral fertilizer N began to flourish. Subsequently, the production of food and fodder 

grew exponentially and with them human global population (Fig. 4). The agricultural use of mineral 

fertilizer N was a revolution of farming techniques, enabled higher crop yields worldwide and re-

leased millions of people from hunger. Nevertheless, N plays a very controversial role for the func-

tioning of ecosystems and human well-being. This originates from the fact that biota on the one hand 

rely on N, but also suffer from too high N dosage (Ruttan et al., 1975). N deposition increased strong-

ly due to intense application of mineral fertilizer N in agro-ecosystems (Galloway et al., 2008), exten-

sion of cattle breeding and fossil fuel combustion that release large amounts of nitrous oxide into the 

atmosphere. Moreover, the production of mineral fertilizer N itself is based on the use of fossil fuel 

and thereby contributes to global warming (Schröder, 2014). The difficulty of using mineral fertilizer 

N (and also organic fertilizer N) in agro-ecosystems is that N is very reactive and mobile, thus not only 

plants take up fertilizer N, but also a large amount of N is lost to the air or groundwater, e.g. by lea-

ching. Due to the mobile nature of reactive N (NO3, NH3, N2O) and its worldwide emission, not only 

agro-ecosystems are affected, but also natural and semi-natural ecosystems (Stevens et al., 2010; 

Vitousek and Aber, 1997). Although N still is a limiting factor for plant growth (and partly also soil 

microbial growth) in most terrestrial ecosystems, many ecosystem processes and biodiversity suffer 

from too high N inputs (Butchart et al., 2010; Dickson and Foster, 2011; Isbell et al., 2013). Reactive N 

contributes to the formation of tropospheric ozone and smog, global warming effects, the depletion 

of stratospheric ozone, deteriorates the quality of groundwater and surface water (Erisman et al., 

2011). Thus, too high amounts of N reduce the vitality of plants, animals and humans (Schröder, 

2014). Therefore, the input of (mineral) N into and its fate within terrestrial ecosystems has become 

an important topic of current ecological 

research (Erisman et al., 2011; Galloway 

et al., 2008, 2004; Reich et al., 2001; 

Scheunemann et al., 2016; van Diepen et 

al., 2010). In the present thesis, we 

combined testing the effects of both, 

fertilizer N and loss of plant diversity, on 

soil microbial properties.  

 

  

Figure 2. Historical development of mineral fertilizer N 
production and human population (sources: 
International Fertilizer Industry Association – IFA; 
FAOSTAT, 2014.).  
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1.6 Using stable isotopes to track the flux of nitrogen  

Observing feeding habits of soil animals directly is difficult, if not impossible, because of the 

opaqueness of soil. Therefore, soil ecologists use methods that allow investigating the nutrition and 

feeding relationships of soil animals indirectly. One of these methods is measuring the ratios of 

stable isotopes (Dawson and Siegwolf, 2007; Potapov et al., 2019; Scheu, 2002).  

When animals consume and digest food they incorporate N into their tissues. N consists of two 

stable isotopes, 14N and 15N, whereof 15N is the very minor component. Because enzymes 

discriminate molecules containing 15N, animal excrements are depleted in 15N, while animal tissue 

becomes enriched in 15N. The natural isotope N signature (i.e., the 15N-to-14N ratio) of animals 

increases by about 3.4 ‰ (SD = ±1) per trophic level, thus allowing to use stable nitrogen isotope 

ratios as a trophic level-indicator (Eggers and Hefin Jones, 2000; Post, 2002). Marine and freshwater 

food web ecologists heavily use stable isotopes for investigating food webs since about 30 years 

(Layman et al., 2012; Minagawa and Wada, 1984; Pasquaud et al., 2007). Not only trophic positions 

of species are investigated with the stable isotope method, but also changes in the trophic position 

of species with age (Haubert et al., 2005; Minagawa and Wada, 1984) and habitat (Abend and Smith, 

1995; Ferlian and Scheu, 2013; Potapov et al., 2018). Soil ecologists only started to use stable isotope 

methods in the 1990ies because techniques allowing to measure small amounts of animal tissues 

were lacking before (Hyodo, 2015). By measuring natural stable isotope N signatures of forest soil 

macro-invertebrates, Ponsard and Arditi (2000) found the studied species to belong either to 

detritivores or predators. Scheu and Falca (2000) identified different trophic groups in forest soil 

macro- and mesofauna and found that many decomposer species rather form a continuum between 

primary and secondary decomposers than distinct trophic groups. As the concept of trophic groups 

can be questioned, Popatov et al. (2018) tested the trophic consistency of supra specific taxa across 

major lineages of temperate soil invertebrates, and reasoned that using this concept is appropriate 

provided that taxonomic resolution and research question are matching. Today, measuring natural 

stable N isotopes is widespread and proved to be a useful tool in soil food web ecology (Hobbie et al., 

2001; Maraun et al., 2011; Popatov et al., 2018; Schmidt et al., 2004; Tiunov et al., 2015). 

Furthermore, also labelling approaches using 15N compounds are employed to trace the flux of 

nitrogen through food webs (Maraun et al., 2011; Zieger et al., 2017). Continuous addition of stable 

isotopes into ecosystems allows measuring pool sizes in different compartments of the ecosystems, 

while pulse labeling enables tracing pathways of N through ecosystem compartments over time, i.e. 

along the food chain. (Coleman et al., 1983) distinguished between slow and fast nutrient pathways 

in soil which (Moore et al., 2005) identified as the fungal and bacterial food channels. In the review 

of Crotty et al. (2012) about using stable isotopes in soil food web ecology, they point to the 

importance of soil protists for trophic fluxes and the channelling of C and N to higher trophic levels. 
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Zieger et al. (2017) identified root-derived N as N source for temperate forest soil animals. Crotty et 

al. (2011) investigated the flow of labelled C and N through soil food webs in grassland and woodland 

and found bacteria being an important nutrient source for secondary decomposers. Jesch et al. 

(2018) used 15N pulse labeling to test for belowground-resource partitioning in plants, potentially 

explaining positive biodiversity effects on ecosystem functioning, and found that other mechanisms 

than previously assumed must drive the positive biodiversity-ecosystem function relationship. 

Hence, while the investigation of natural stable isotope signatures in soil animals provide a snapshot 

of food web structures, labeling experiments allow investigating element fluxes, mechanisms and 

dynamics within soil food webs.  

 

1.7 Objectives and structure of the thesis 

In this thesis, we investigated the effects of plant community diversity (species richness, functional 

group richness and functional community composition) and fertilizer nitrogen on soil microorganisms 

and mesofauna. The first study (Chapter 2, Stability Study) focused on long-term effects of plant 

diversity and community composition on the spatial and temporal stability of soil microbial 

properties. In the second study (Chapter 3, Fertilization Study) we investigated the combined effects 

of changing plant diversity and nitrogen fertilization on soil microbial properties such as microbial 

biomass C, microbial respiration and the microbial respiratory quotient (qO2), a measure of microbial 

C use efficiency. In the third study (Chapter 4, 15N Tracer Study), we analyzed the incorporation of 

isotopically labelled 15NH4
15NO3 into soil microbial biomass and soil mesofauna species to investigate 

the role of microorganisms as N source for soil animals and how this N incorporation is influenced by 

plant diversity and plant functional groups. We tested the following main hypothesis: 

(1) Plant diversity increases the stability of soil microbial properties over the long-term, but plant 

functional groups exert contrasting effects on soil microorganisms due to their specific plant 

functional traits (Chapter2, Stability study).  

(2) Fertilization of grassland with N amplifies the positive effects of high plant diversity (species 

richness and functional group richness) on soil microbial properties, such as soil microbial 

biomass and respiration (Chapter 3, Fertilization study).  

(3) Adding labelled mineral N to the soil allows tracing the incorporation of microbial N into soil 

animal consumers and thereby identifying which mesofauna species rely on soil microorganisms 

as diet (Chapter 4, 15N Tracer study).  

(4) Certain plant community properties decrease the incorporation of mineral N into mesofauna 

species due to higher competition at high plant diversity, additional provisioning of N in 

presence of legumes (dilution effect), and higher competition in presence of grasses (Chapter 4). 

   



Chapter 1  General Introduction 

 22 

1.8 References 

Abend, A.G., Smith, T.D., 1995. Differences in ratios of stable isotopes of nitrogen in long-finned pilot whales 
(Globicephala melas) in the western and eastern North Atlantic. ICES Journal of Marine Science 52, 837–
841. 

Adhikari, K., Hartemink, A.E., 2016. Linking soils to ecosystem services — A global review. Geoderma 262, 101–
111. doi:10.1016/j.geoderma.2015.08.009 

Anderson, J.M., 1975. The enigma of soil animal species diversity, in: Vanek, J. (Ed.), Progress in Soil Ecology. 
Academia, Publishing House of the Czechoslovak Academy of Science, Prague, pp. 51–58. 

Anderson, T.-H., Domsch, K.H., 1985. Determination of ecophysiological maintenance carbon requirements of 
soil microorganisms in a dormant state. Biology and Fertility of Soils 1, 81–89. doi:10.1007/BF00255134 

Bardgett, R.D., 2005. The Biology of Soil - A Community and Ecosystem Approach, 1st ed. Oxford University 
Press, Oxford. DOI:10.1093/acprof:oso/9780198525035.001.0001 

Bardgett, R.D., Shine, A., 1999. Linkages between plant litter diversity, soil microbial biomass and ecosystem 
function in temperate grasslands. Soil Biology and Biochemistry 31, 317–321. doi:10.1016/S0038-
0717(98)00121-7 

Barnosky, A.D., Matzke, N., Tomiya, S., Wogan, G.O.U., Swartz, B., Quental, T.B., Marshall, C., McGuire, J.L., 
Lindsey, E.L., Maguire, K.C., Mersey, B., Ferrer, E.A., 2011. Has the Earth’s sixth mass extinction already 
arrived? Nature 471, 51–57. doi:10.1038/nature09678 

Barrios, E., 2007. Soil biota, ecosystem services and land productivity. Ecological Economics 64, 269–285. 
doi:10.1016/j.ecolecon.2007.03.004 

Bengtsson, J., 1998. Which species? What kind of diversity? Which ecosystem function? Some problems in 
studies of relations between biodiversity and ecosystem function. Applied Soil Ecology 10, 191–199. 
doi:10.1016/S0929-1393(98)00120-6 

Blume, H.-P., Brümmer, G.W., Horn, R., Kandeler, E., Kögel-Knabner, I., Kretzschmar, R., Stahr, K., Wilke, B.-M., 
Thiele-Bruhn, S., Welp, G., 2016. Scheffer/Schachtschnabel: Lehrbuch der Bodenkunde, 15th ed. Spektrum 
Akademischer Verlag Heidelberg Berlin, Heidelberg Berlin. doi:10.1007/978-3-662-499603 

Bonkowski, M., Villenave, C., Griffiths, B., 2009. Rhizosphere fauna: The functional and structural diversity of 
intimate interactions of soil fauna with plant roots. Plant and Soil 321, 213–233. doi:10.1007/s11104-009-
0013-2 

Brose, U., Dunne, J.A., Montoya, J.M., Petchey, O.L., Schneider, F.D., Jacob, U., 2012. Climate change in size-
structured ecosystems. Philosophical Transactions of The Royal Society B 367, 2903–2912. 
doi:10.1098/rstb.2012.0232 

Brose, U., Jonsson, T., Berlow, E.L., Warren, P., Banasek-Richter, C., Bersier, L.-F., Blanchard, J.L., Brey, T., 
Carpenter, S.R., Cattin Blandenier, M.-F., Cushing, L., Ali Dawah, H., Dell, T., Edwards, F., Harper-Smith, S., 
Jacob, U., Ledger, M.E., Martinez, N.D., Memmott, J., Mintenbeck, K., Pinnegar, J.K., Rall, B.C., Rayner, T.S., 
Reumann, D.C., Ruess, L., Ulrich, W., Williams, R.J., Woodward, G., Coehn, J.E., 2006. Consumer-Resource 
Body-Size Relationships in Natural Food Webs. Ecology 87, 2411–2417. 

Buscot, F., Varma, A., 2005. Microorganisms in Soils - Roles in Genesis and Functions, 1st ed. Springer-Verlag 
Berlin Heidelberg New York, Berlin Heidelberg. 

Butchart, S.H.M., Walpole, M., Collen, B., van Strien, A., Scharlemann, J.P.W., Almond, R.E. a, Baillie, J.E.M., 
Bomhard, B., Brown, C., Bruno, J., Carpenter, K.E., Carr, G.M., Chanson, J., Chenery, A.M., Csirke, J., 
Davidson, N.C., Dentener, F., Foster, M., Galli, A., Galloway, J.N., Genovesi, P., Gregory, R.D., Hockings, M., 
Kapos, V., Lamarque, J.-F., Leverington, F., Loh, J., McGeoch, M. a, McRae, L., Minasyan, A., Hernández 
Morcillo, M., Oldfield, T.E.E., Pauly, D., Quader, S., Revenga, C., Sauer, J.R., Skolnik, B., Spear, D., Stanwell-
Smith, D., Stuart, S.N., Symes, A., Tierney, M., Tyrrell, T.D., Vié, J.-C., Watson, R., 2010. Global biodiversity: 
indicators of recent declines. Science (New York, N.Y.) 328, 1164–1168. doi:10.1126/science.1187512 

Cardinale, B.J., Duffy, J.E., Gonzalez, A., Hooper, D.U., Perrings, C., Venail, P., Narwani, A., Mace, G.M., Tilman, 
D., Wardle, D. a, Kinzig, A.P., Daily, G.C., Loreau, M., Grace, J.B., Larigauderie, A., Srivastava, D.S., Naeem, S., 
2012. Biodiversity loss and its impact on humanity. Nature 486, 59–67. doi:10.1038/nature11148 

Ceballos, G., Ehrlich, P.R., Barnosky, A.D., Garcia, A., Pringle, R.M., Palmer, T.M., 2015. Accelerated Modern 
Human-Induced Species Losses: Entering the Sixth Mass Extinction. Science Advances 1, e1400253–
e1400253. doi:\\url{10.1126/sciadv.1400253} 

Chapin, F.S., Zavaleta, E.S., Eviner, V.T., Naylor, R.L., Vitousek, P.M., Reynolds, H.L., Hooper, D.U., Lavorel, S., 
Sala, O.E., Hobbie, S.E., Mack, M.C., Díaz, S., 2000. Consequences of changing biodiversity. Nature 405, 234–
42. doi:10.1038/35012241 

Coleman, D.C., Reid, C.P.P., Cole, C. V, 1983. Biological Strategies of Nutrient Cycling in Soil Systems. Advances 
in Ecological Research 13, 1–55. 



Chapter 1  General Introduction 

 23 

Crotty, F. V., Adl, S.M., Blackshaw, R.P., Murray, P.J., 2012. Using stable isotopes to differentiate trophic feeding 
channels within soil food webs. Journal of Eukaryotic Microbiology 59, 520–526. doi:10.1111/j.1550-
7408.2011.00608.x. 

Crotty, F. V, Blackshaw, R.P., Murray, P.J., 2011. Tracking the flow of bacterially derived 13C and 15N through 
soil faunal feeding channels. Rapid Communications in Mass Spectrometry : RCM 25, 1503–13. 
doi:10.1002/rcm.4945 

Dawson, T.E., Siegwolf, R.T.W. (Eds.), 2007. Stable Isotopes as Indicators of Ecological Change, 1st ed. Elsevier 
Science AP Academic Press. 

Dickson, T.L., Foster, B.L., 2011. Fertilization decreases plant biodiversity even when light is not limiting. 
Ecology Letters 14, 380–8. doi:10.1111/j.1461-0248.2011.01599.x 

Eggers, T., Hefin Jones, T., 2000. You are what you eat…or are you? Trends in Ecology & Evolution 15, 265–266. 
doi:10.1016/S0169-5347(00)01877-2 

Eisenhauer, N., Bessler, H., Engels, C., Gleixner, G., Habekost, M., Milcu, A., Partsch, S., Sabais, C.W., Scherber, 
C., Steinbeiss, S., Weigelt, A., Weisser, W.W., Scheu, S., 2010. Plant diversity effects on soil microorganisms 
support the singular hypothesis. Ecology 91, 485–96. 

Eisenhauer, N., Dobies, T., Cesarz, S., Hobbie, S.E., Meyer, R.J., Worm, K., Reich, P.B., 2013. Plant diversity 
effects on soil food webs are stronger than those of elevated CO2 and N deposition in a long-term grassland 
experiment. Proceedings of the National Academy of Sciences of the United States of America 110, 6889–
94. doi:10.1073/pnas.1217382110 

Eisenhauer, N., Lanoue, A., Strecker, T., Scheu, S., Steinauer, K., Thakur, M.P., Mommer, L., 2017. Root biomass 
and exudates link plant diversity with soil bacterial and fungal biomass. Scientific Reports 7. 
doi:10.1038/srep44641 

Elton, C.S., 1958. The Ecology of Invasions by Animals and Plants. doi:10.1007/978-1-4899-7214-9 
Endlweber, K., Ruess, L., Scheu, S., 2009. Collembola switch diet in presence of plant roots thereby functioning 

as herbivores. Soil Biology and Biochemistry 41, 1151–1154. doi:10.1016/j.soilbio.2009.02.022 
Erisman, J.W., van Grinsven, H., Grizzetti, B., Bouraoui, F., Powlson, D., Sutton, M.A., Bleeker, A., Reis, S., 2011. 

The European nitrogen problem in a global perspective, in: The European Nitrogen Assessment. pp. 9–31. 
doi:10.1017/CBO9780511976988.005 

Ferlian, O., Klarner, B., Langeneckert, A.E., Scheu, S., 2015. Trophic niche differentiation and utilisation of food 
resources in collembolans based on complementary analyses of fatty acids and stable isotopes. Soil Biology 
and Biochemistry 82, 28–35. doi:10.1016/j.soilbio.2014.12.012 

Ferlian, O., Scheu, S., 2013. Shifts in trophic interactions with forest type in soil generalist predators as 
indicated by complementary analyses of fatty acids and stable isotopes. Oikos 1–10. doi:10.1111/j.1600-
0706.2013.00848.x. 

Fischer, M., Bossdorf, O., Gockel, S., Hänsel, F., Hemp, A., Hessenmöller, D., Korte, G., Nieschulze, J., Pfeiffer, S., 
Prati, D., Renner, S., Schöning, I., Schumacher, U., Wells, K., Buscot, F., Kalko, E.K.V., Linsenmair, K.E., 
Schulze, E.D., Weisser, W.W., 2010. Implementing large-scale and long-term functional biodiversity 
research: The Biodiversity Exploratories. Basic and Applied Ecology 11, 473–485. 
doi:10.1016/j.baae.2010.07.009 

Galloway, J.N., Dentener, F.J., Capone, D.G., Boyer, E.W., Howarth, R.W., Seitzinger, S.P., Asner, G.P., Cleveland, 
C.C., Green, P.A., Holland, E.A., Karl, D.M., Michaels, A.F., Porter, J.H., Townsend, A.R., Vo, C.J., 2004. 
Nitrogen cycles: past, present, and future. Biogeochemistry 70, 153–226. 

Galloway, J.N., Townsend, A.R., Erisman, J.W., Bekunda, M., Cai, Z., Freney, J.R., Martinelli, L. a, Seitzinger, S.P., 
Sutton, M. a, 2008. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. 
Science (New York, N.Y.) 320, 889–92. doi:10.1126/science.1136674 

Haddad, N.M., Crutsinger, G.M., Gross, K., Haarstad, J., Tilman, D., 2011. Plant diversity and the stability of 
foodwebs. Ecology Letters 14, 42–46. doi:10.1111/j.1461-0248.2010.01548.x 

Haubert, D., Langel, R., Scheu, S., Ruess, L., 2005. Effects of food quality, starvation and life stage on stable 
isotope fractionation in Collembola. Pedobiologia 49, 229–237. doi:10.1016/j.pedobi.2004.11.001 

Hector, A., Schmid, B., Beierkuhnlein, C., Caldeira, M.C., Diemer, M., Dimitrakopoulos, P.G., Finn, J.A., Freitas, 
H., Giller, P.S., Good, J., Harris, R., Högberg, P., Huss-Danell, K., Joshi, J., Jumpponen, A., Körner, C., Leadley, 
P.W., Loreau, M., Minns, A., Mulder, C.P.H., O`Donovan, G., Otway, S.J., Pereira, J.S., Prinz, A., Read, D.J., 
Scherer-Lorenzen, M., Schulze, E.-D., Siamantziouras, A.-S.D., Spehn, E.M., Terry, A.C., Troumbis, A.Y., 
Woodward, F.I., Yachi, S., Lawton, J.H., 1999. Plant Diversity and Productivity Experiments in European 
Grasslands. Science 286, 1123–1127. doi:10.1126/science.286.5442.1123 

Heemsbergen, D. a, Berg, M.P., Loreau, M., van Hal, J.R., Faber, J.H., Verhoef, H. a, 2004. Biodiversity effects on 
soil processes explained by interspecific functional dissimilarity. Science (New York, N.Y.) 306, 1019–20. 
doi:10.1126/science.1101865 



Chapter 1  General Introduction 

 24 

Hobbie, E., Weber, N., Trappe, J., 2001. Mycorrhizal vs saprotrophic status of fungi: the isotopic evidence. New 
Phytologist 601–610. 

Hooper, D.U., Chapin, F.S., Ewel, J.J., Hector, A., Inchausti, P., Lavorel, S., Lawton, J.H., Lodge, D.M., Loreau, M., 
Naeem, S., Schmid, B., Setälä, H., Symstad, A.J., Vandermeer, J., Wardle, D.A., 2005. Effects Of Biodiversity 
On Ecosystem Functioning: A Consensus Of Current Knowledge. Ecological Monographs 75, 3–35. 

Hyodo, F., 2015. Use of stable carbon and nitrogen isotopes in insect trophic ecology. Entomological Science 
n/a-n/a. doi:10.1111/ens.12128 

Isbell, F., Reich, P.B., Tilman, D., Hobbie, S.E., Polasky, S., Binder, S., 2013. Nutrient enrichment, biodiversity 
loss, and consequent declines in ecosystem productivity. Proceedings of the National Academy of Sciences 
of the United States of America 110, 11911–6. doi:10.1073/pnas.1310880110 

Ives, A.R., Carpenter, S.R., 2007. Stability and diversity of ecosystems. Science (New York, N.Y.) 317, 58–62. 
doi:10.1126/science.1133258 

Jesch, A., Barry, K.E., Ravenek, J.M., Bachmann, D., Strecker, T., Weigelt, A., Buchmann, N., de Kroon, H., 
Gessler, A., Mommer, L., Roscher, C., Scherer-Lorenzen, M., 2018. Below-ground resource partitioning alone 
cannot explain the biodiversity-ecosystem function relationship: A field test using multiple tracers. Journal 
of Ecology. doi:10.1111/1365-2745.12947 

Kuzyakov, Y., Xu, X., 2013. Competition between roots and microorganisms for nitrogen: Mechanisms and 
ecological relevance. New Phytologist. doi:10.1111/nph.12235 

Layman, C.A., Araujo, M.S., Boucek, R., Hammerschlag-peyer, C.M., Harrison, E., Jud, Z.R., Matich, P., 
Rosenblatt, A.E., Vaudo, J.J., Yeager, L.A., Post, D.M., Bearhop, S., 2012. Applying stable isotopes to examine 
food-web structure : an overview of analytical tools 87, 545–562. doi:10.1111/j.1469-185X.2011.00208.x 

Lefcheck, J.S., Byrnes, J.E.K., Isbell, F., Gamfeldt, L., Griffin, J.N., Eisenhauer, N., Hensel, M.J.S., Hector, A., 
Cardinale, B.J., Duffy, J.E., 2015. Biodiversity enhances ecosystem multifunctionality across trophic levels 
and habitats. Nature Communications 6, 1–7. doi:10.1038/ncomms7936 

Leggewie, C., Welzer, H., 2009. Das Ende der Welt, wie wir sie kannten: Klima, Zukunft und die Chancen der 
Demokratie. S. Fischer Verlag. 

Lemanski, K., Scheu, S., 2014. Fertilizer addition lessens the flux of microbial carbon to higher trophic levels in 
soil food webs of grassland. Oecologia 176, 487–496. doi:10.1007/s00442-014-3037-0 

Loreau, M., 2000. Biodiversity and ecosystem functioning: recent theoretical advances. Oikos 91, 3–17. 
doi:10.1034/j.1600-0706.2000.910101.x 

MacArthur, R., 1955. Fluctuations of Animal Populations and a Measure of Community Stability. Ecology 36, 
533. doi:10.2307/1929601 

Maraun, M., Erdmann, G., Fischer, B.M., Pollierer, M.M., Norton, R. a., Schneider, K., Scheu, S., 2011. Stable 
isotopes revisited: Their use and limits for oribatid mite trophic ecology. Soil Biology and Biochemistry 43, 
877–882. doi:10.1016/j.soilbio.2011.01.003 

May, R.M., 1973. Stability and complexity in model ecosystems. Princeton University Press. 
McCann, K.S., 2000. The diversity-stability debate. Nature 405, 228–33. doi:10.1038/35012234 
Millenium Ecosystem Assesment, 2005. Ecosystems and human well-being: Synthesis. Island Press, 

Washington, DC. 
Minagawa, M., Wada, E., 1984. Stepwise enrichment of 15N along food chains Further evidence and the 

relation between δ15N and animal age. Geochimica et Cosmochimica Acta 48, 1135–1140. 
Moore, J.C., Berlow, E.L., Coleman, D.C., Ruiter, P.C., Dong, Q., Hastings, A., Johnson, N.C., McCann, K.S., 

Melville, K., Morin, P.J., Nadelhoffer, K., Rosemond, A.D., Post, D.M., Sabo, J.L., Scow, K.M., Vanni, M.J., 
Wall, D.H., 2004. Detritus, trophic dynamics and biodiversity. Ecology Letters 7, 584–600. 
doi:10.1111/j.1461-0248.2004.00606.x 

Moore, J.C., McCann, K., De Ruiter, P.C., 2005. Modeling trophic pathways, nutrient cycling, and dynamic 
stability in soils. Pedobiologia 49, 499–510. doi:10.1016/j.pedobi.2005.05.008 

Mora, C., Tittensor, D.P., Adl, S., Simpson, A.G.B., Worm, B., 2011. How many species are there on earth and in 
the ocean? PLoS Biology 9, 1–8. doi:10.1371/journal.pbio.1001127 

Naeem, S., Thompson, L.J., Lawler, S.P., Lawton, J.H., Woodflin, R.M., 1994. Declining biodiversity can alter the 
performance of ecosystems. Letters to Nature 368, 734–737. 

Nielsen, U.N., Osler, G.H.R., Campbell, C.D., Neilson, R., Burslem, D.F.R.P., van der Wal, R., 2010. The Enigma of 
Soil Animal Species Diversity Revisited: The Role of Small-Scale Heterogeneity. PLoS ONE 5, e11567. 
doi:10.1371/journal.pone.0011567 

Odum, E.P., Biever, L.J., 1984. The University of Chicago Resource Quality , Mutualism , and Energy Partitioning 
in Food Chains. The American Naturalist 124, 360–376. doi:10.1086/284279 

Pasquaud, S., Lobry, J., Elie, P., 2007. Facing the necessity of describing estuarine ecosystems : a review of food 
web ecology study techniques. Hydrobiologia 588, 159–172. doi:10.1007/s10750-007-0660-3 



Chapter 1  General Introduction 

 25 

Pimm, S.L., 1984. The complexity and stability of ecosystems. Nature. doi:10.1038/315635c0 
Pimm, S.L., Russell, G.J., Gittleman, J.L., Brooks, T.M., Pimm, S.L., Russell, G.J., Gittleman, J.L., Brooks, T.M., 

1995. The Future of Biodiversity. Science 269, 347–350. 
Ponsard, S., Arditi, R., 2000. WHAT CAN STABLE ISOTOPES ( 15N AND  13C) TELL ABOUT THE FOOD WEB OF 

SOIL MACRO-INVERTEBRATES? Ecology 81, 852–864. doi:DOI: 10.1890/0012-
9658(2000)081[0852:WCSINA]2.0.CO;2 

Post, D., 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 
83, 703–718. 

Potapov, A.M., Tiunov, A. V, Scheu, S., 2019. Uncovering trophic positions and food resources of soil animals 
using bulk natural stable isotope composition. Biological Reviews 94, 37-54. 

Reich, P.B., Hobbie, S.E., Lee, T., Ellsworth, D.S., West, J.B., Tilman, D., Knops, J.M.H., Naeem, S., Trost, J., 2006. 
Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature 440, 922–5. 
doi:10.1038/nature04486 

Reich, P.B., Knops, J., Tilman, D., Craine, J., Ellsworth, D., Tjoelker, M., Lee, T., Wedin, D., Naeem, S., Bahauddin, 
D., Hendrey, G., Jose, S., Wrage, K., Goth, J., Bengston, W., 2001. Plant diversity enhances ecosystem 
responses to elevated CO2 and nitrogen deposition. Nature 410, 809–812. doi:10.1038/35081122 

Ripple, W.J., Wolf, C., Newsome, T.M., Galetti, M., Alamgir, M., Crist, E., Mahmoud, M.I., Laurance, W.F., 2017. 
World Scientists’ Warning to Humanity: A Second Notice. BioScience 67, 1026–1028. 
doi:10.1093/biosci/bix125 

Roscher, C., Schumacher, J., Baade, J., 2004. The role of biodiversity for element cycling and trophic 
interactions: an experimental approach in a grassland community. Basic and Applied Ecology 5, 107–121. 

Roscher, C., Schumacher, J., Lipowsky, A., Gubsch, M., Weigelt, A., Pompe, S., Kolle, O., Buchmann, N., Schmid, 
B., Schulze, E.D., 2013. A functional trait-based approach to understand community assembly and diversity-
productivity relationships over 7 years in experimental grasslands. Perspectives in Plant Ecology, Evolution 
and Systematics 15, 139–149. doi:10.1016/j.ppees.2013.02.004 

Ruttan, V.W., Pimentel, D., Url, S., 1975. Food Production and the Energy Crisis: A Comment. Science 187, 560–
561. 

Scherber, C., Eisenhauer, N., Weisser, W.W., Schmid, B., Voigt, W., Fischer, M., Schulze, E.-D., Roscher, C., 
Weigelt, A., Allan, E., Bessler, H., Bonkowski, M., Buchmann, N., Buscot, F., Clement, L.W., Ebeling, A., 
Engels, C., Halle, S., Kertscher, I., Klein, A.-M., Koller, R., König, S., Kowalski, E., Kummer, V., Kuu, A., Lange, 
M., Lauterbach, D., Middelhoff, C., Migunova, V.D., Milcu, A., Müller, R., Partsch, S., Petermann, J.S., 
Renker, C., Rottstock, T., Sabais, A., Scheu, S., Schumacher, J., Temperton, V.M., Tscharntke, T., 2010. 
Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature 468, 
553–6. doi:10.1038/nature09492 

Scheu, S., 2002. The soil food web: Structure and perspectives. European Journal of Soil Biology 38, 11–20. 
doi:10.1016/S1164-5563(01)01117-7 

Scheu, S., Falca, M., 2000. The soil food web of two beech forests ( Fagus sylvatica ) of contrasting humus type: 
stable isotope analysis of a macro- and a mesofauna-dominated community. Oecologia 123, 285–296. 
doi:10.1007/s004420051015 

Scheu, S., Folger, M., 2004. Single and mixed diets in Collembola: Effects on reproduction and stable isotope 
fractionation. Functional Ecology 18, 94–102. doi:10.1046/j.0269-8463.2004.00807.x 

Scheunemann, N., Pausch, J., Digel, C., Kramer, S., Scharroba, A., Kuzyakov, Y., Kandeler, E., Ruess, L., 
Butenschoen, O., Scheu, S., 2016. Incorporation of root C and fertilizer N into the food web of an arable 
field: Variations with functional group and energy channel. Food Webs 9, 39–45. 
doi:10.1016/j.fooweb.2016.02.006 

Schmidt, O., Curry, J.P., Dyckmans, J., Rota, E., Scrimgeour, C.M., 2004. Dual stable isotope analysis (δ13C and 
δ15N) of soil invertebrates and their food sources. Pedobiologia 48, 171–180. 
doi:10.1016/j.pedobi.2003.12.003 

Schneider, F.D., Scheu, S., Brose, U., 2012. Body mass constraints on feeding rates determine the consequences 
of predator loss. Ecology Letters 15, 436–443. doi:10.1111/j.1461-0248.2012.01750.x 

Schneider, K., Migge, S., Norton, R. a., Scheu, S., Langel, R., Reineking, A., Maraun, M., 2004. Trophic niche 
differentiation in soil microarthropods (Oribatida, Acari): Evidence from stable isotope ratios (15N/14N). 
Soil Biology and Biochemistry 36, 1769–1774. doi:10.1016/j.soilbio.2004.04.033 

Schröder, J.J., 2014. The Position of Mineral Nitrogen Fertilizer in Efficient Use of Nitrogen and Land : A Review. 
Natural Resources 5, 936–948. doi:10.4236/nr.2014.515080 

Sechi, V., D’Annibale, A., Ambus, P., S??rossy, Z., Krogh, P.H., Eriksen, J., Holmstrup, M., 2014. Collembola 
feeding habits and niche specialization in agricultural grasslands of different composition. Soil Biology and 
Biochemistry 74, 31–38. doi:10.1016/j.soilbio.2014.02.019 



Chapter 1  General Introduction 

 26 

Stachowicz, J.J., Whitlatch, R.B., Osman, R.W., 1999. Species Diversity and Invasion Resistance in a Marine 
Ecosystem. Science 286, 1577–1579. 

Stevens, C.J., Duprè, C., Dorland, E., Gaudnik, C., Gowing, D.J.G., Bleeker, A., Diekmann, M., Alard, D., Bobbink, 
R., Fowler, D., Corcket, E., Mountford, J.O., Vandvik, V., Aarrestad, P.A., Muller, S., Dise, N.B., 2010. 
Nitrogen deposition threatens species richness of grasslands across Europe. Environmental Pollution 
(Barking, Essex : 1987) 158, 2940–5. doi:10.1016/j.envpol.2010.06.006 

Streit, B., 2006. Biozahl 2006 – 2 Millionen-Grenze erreicht. Natur Und Museum, Senckenbergische 
Naturforschende Gesellschaft 136, 131–134. 

Tilman, D., Downing, J., 1994. Biodiversity and stability in grasslands. Nature 367, 363–365. 
Tilman, D., Isbell, F., Cowles, J.M., 2014. Biodiversity and Ecosystem Functioning. The Annual Review of Ecology, 

Evolution, and Systematics 45, 471–493. doi:10.1126/science.1064088 
Tiunov, A. V., Semenina, E.E., Aleksandrova, A. V., Tsurikov, S.M., Anichkin, A.E., Novozhilov, Y.K., 2015. Stable 

isotope composition (δ 13 C and δ 15 N values) of slime molds: placing bacterivorous soil protozoans in the 
food web context. Rapid Communications in Mass Spectrometry 29, 1465–1472. doi:10.1002/rcm.7238 

van Diepen, L.T. a., Lilleskov, E. a., Pregitzer, K.S., Miller, R.M., 2010. Simulated Nitrogen Deposition Causes a 
Decline of Intra- and Extraradical Abundance of Arbuscular Mycorrhizal Fungi and Changes in Microbial 
Community Structure in Northern Hardwood Forests. Ecosystems 13, 683–695. doi:10.1007/s10021-010-
9347-0 

Vitousek, P., Aber, J., 1997. Human alteration of the global nitrogen cycle: sources and consequences. 
Ecological Applications 7, 737–750. 

Wall, D.H., Adams, G., Parsons, A.N., 2001. Soil Biodiversity, in: Chapin III, S.F., Sala, O.E., Huber-Sannwald, E. 
(Eds.), Biodiversity in a Changing Environment - Scenarios for the 21 Century. Springer-Verlag New York, 
New York, pp. 47–82. 

Weigelt, A., Schumacher, J., Roscher, C., Schmid, B., 2008. Does biodiversity increase spatial stability in plant 
community biomass? Ecology Letters 11, 338–47. doi:10.1111/j.1461-0248.2007.01145.x 

Weigelt, A., Weisser, W.W., Buchmann, N., Scherer-Lorenzen, M., 2009. Biodiversity for multifunctional 
grasslands: equal productivity in high-diversity low-input and low-diversity high-input systems. 
Biogeosciences 6, 1695–1706. doi:10.5194/bg-6-1695-2009 

Weisser, W.W., Roscher, C., Meyer, S.T., Ebeling, A., Luo, G., Allan, E., Beßler, H., Barnard, R.L., Buchmann, N., 
Buscot, F., Engels, C., Fischer, C., Fischer, M., Gessler, A., Gleixner, G., Halle, S., Hildebrandt, A., Hillebrand, 
H., de Kroon, H., Lange, M., Leimer, S., Le Roux, X., Milcu, A., Mommer, L., Niklaus, P.A., Oelmann, Y., Proulx, 
R., Roy, J., Scherber, C., Scherer-Lorenzen, M., Scheu, S., Tscharntke, T., Wachendorf, M., Wagg, C., Weigelt, 
A., Wilcke, W., Wirth, C., Schulze, E.D., Schmid, B., Eisenhauer, N., 2017. Biodiversity effects on ecosystem 
functioning in a 15-year grassland experiment: Patterns, mechanisms, and open questions. Basic and 
Applied Ecology 23, 1–73. doi:10.1016/j.baae.2017.06.002 

Wilson, E.O., 1988. Biodiversity. National Academy Press Washington D.C., Washington, D.C. doi:10.17226/989 
World Scientists’ Warning to Humanity, 1992. Union of Concerned Scientists, Cambridge, MA. www.ucsusa.org 
Yodzis, P., 1981. The stability of real ecosystems. Nature 289, 674–676. 
Zieger, S.L., Holczinger, A., Sommer, J., Rath, M., Kuzyakov, Y., Polle, A., Maraun, M., Scheu, S., 2017. Beech 

trees fuel soil animal food webs via root-derived nitrogen. Basic and Applied Ecology 22, 28–35. 
doi:10.1016/j.baae.2017.06.006. 

 

 



Chapter 2  Study 1: Stability Experiment 

 27 

2 Functional composition of plant communities determines the 

spatial and temporal stability of soil microbial properties in a long-

term plant diversity experiment 
 

Tanja Strecker, Odette González Macé, Stefan Scheu and Nico Eisenhauer 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Published in: 

Strecker T, Gonzalez Mace O, Scheu S, Eisenhauer E (2016) Functional composition of plant 

communities determine the spatial and temporal stability of soil microbial properties in a long-

term plant diversity experiment, Oikos 125: 1743-1754, DOI: 10.1111/oik.03181.  

  

Photograph by Alexandra Weigelt 



Chapter 2  Study 1: Stability Experiment 

 28 

2.1 Abstract 

Stable provisioning of ecosystem functions and services is crucial for human well-being in a changing 

world. Two essential ecological components driving vital ecosystem functions in terrestrial 

ecosystems are plant diversity and soil microorganisms. In this study, we tracked soil microbial basal 

respiration and biomass over a time period of 12 years in a grassland biodiversity experiment (the 

Jena Experiment) and examined the role of plant diversity and plant functional group composition for 

the spatial and temporal stability of soil microbial properties (basal respiration and biomass) in bulk-

soil. Spatial and temporal stability were calculated as the inverse coefficient of variation (CV–1) of soil 

microbial respiration and biomass measured from soil samples taken over space and time, 

respectively. We found that 1) plant species richness consistently increased soil microbial properties 

after a time lag of four years since the establishment of the experimental plots, 2) plant species 

richness had minor effects on the spatial stability of soil microbial properties, whereas 3) the 

functional composition of plant communities significantly affected spatial stability of soil microbial 

properties, with legumes and tall herbs reducing both the spatial stability of microbial respiration 

and biomass, while grasses increased the latter, and 4) the effect of plant diversity on temporal 

stability of soil microbial properties turned from being negative to neutral, suggesting that the 

recovery of soil microbial communities from former arable land-use takes more than a decade. Our 

results highlight the importance of plant functional group composition for the spatial and temporal 

stability of soil microbial properties, and hence for microbially-driven ecosystem processes, such as 

decomposition and element cycling, in temperate semi-natural grassland.  
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2.2 Introduction 

The provisioning of ecosystem functions and services is a prerequisite for human well-being. In the 

face of unprecedented environmental changes caused by anthropogenic activities, debates among 

ecologists arose regarding the biotic and abiotic factors driving ecosystem functioning and stability 

(McCann 2000). Especially global changes in land-use and climate trigger complex shifts within 

ecosystems, resulting in declines of global biodiversity and threatening the provisioning of ecosystem 

services (Chapin et al. 2000). Biodiversity is a crucial determinant of ecosystem functioning (Chapin 

et al. 2000, Hooper et al. 2005) as it enhances ecosystem functions and services like primary 

productivity, element cycling and food production (Chapin et al. 2000, Isbell et al. 2011), and insures 

ecosystems against loss of functioning in case of species extinctions (Yachi and Loreau 1999). Spatial 

and temporal stability of ecosystem processes (Weigelt et al. 2008, Isbell et al. 2015) are essential 

ingredients for reliable ecosystem functioning (McCann 2000). Different types of stability have been 

investigated, including resistance, resilience (Pimm 1984), and reliability (Milcu et al. 2 

010). Stability of community properties can be caused by multiple mechanisms: complementarity 

(Marquard et al. 2009), overyielding (Lehman and Tilman 2000), negative covariance (Roscher et al. 

2011b), competitive interactions among species (Lehman and Tilman 2000), and statistical averaging 

(Roscher et al. 2011b). Thus, current theory and results of recent experiments suggest that 

biodiversity and stability of ecosystem functions and services are closely related (Tilman et al. 2014). 

Most studies on plant diversity and ecosystem stability focused on the stability of plant productivity. 

Here, we explore the effects of plant diversity and plant community composition on the stability of 

soil microbial properties, as plant (diversity) effects have been reported to cascade not only to higher 

trophic levels (Scherber et al. 2010) but also into the belowground system (Milcu et al. 2010). The 

majority of processes in soil are mediated by microorganisms, i.e. bacteria and fungi, pointing to the 

central role of these organisms for ecosystem functioning (van der Heijden et al. 2008). For example, 

microbial mineralization of organic materials and provisioning of nutrients to plants are essential 

ecosystem processes that provide the basis for other ecosystem functions, such as primary 

productivity. Recent studies found plant species richness and community composition to be 

important drivers of soil microbial properties, such as microbial biomass, activity, community 

structure (Eisenhauer et al. 2013, Lange et al. 2015), and also stability of soil microbial denitrification 

(McGill et al. 2010). Effects of plant species diversity on belowground processes have been assumed 

to be due to more constant and higher plant-derived resource inputs (Milcu et al. 2010), and more 

constant soil moisture levels (Wardle 1992), as well as higher probability of synergistic interactions 

among plant species at higher plant diversity (Massaccesi et al. 2015). Plant species richness as well 

as functional group richness have been shown to increase the spatial stability of plant biomass 

production due to several mechanisms, such as plant density (Eisenhauer et al. 2011c), resulting in 
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more complete niche occupation (Milcu et al. 2010). These stabilizing effects of plant diversity on 

plant productivity may cascade to belowground detritivore food webs as they also benefit from more 

constant and more homogenous inputs of plant-derived resources (Milcu et al. 2010, Kuzyakov and 

Blagodatskaya 2015). Further, temporal stability of ecosystem properties, such as plant productivity 

and soil microbial activity, has been shown to change with plant species richness due to temporally 

increasing complementarity effects (Marquard et al. 2009, Eisenhauer et al. 2010, Reich et al. 2012). 

These studies also suggest that plant diversity effects strengthen over time, thus likely stabilizing 

processes driven by soil microorganisms and soil fauna (Eisenhauer et al. 2011a). In addition to 

species diversity, plant functional groups impact the spatial and temporal stability of primary 

productivity (Weigelt et al. 2008). In particular grasses have been shown to increase both spatial and 

temporal stability of plant productivity, probably due to their dense, evenly distributed root system, 

clonal growth (Weigelt et al. 2008), and long persistence of genets of some grass species (De Witte 

and Stöcklin 2010). Uniform root distribution and plant-derived inputs to the belowground system 

likely also increase temporal and spatial stability of microbial communities. Moreover, the ability of 

grasses to stimulate microbial activity through enhanced root exudation after mowing (Hamilton and 

Frank 2001) in combination with the management practice typical in European grasslands (mowing 

several times per year) likely fuel soil microorganisms resulting in increased spatial stability of 

microbial communities and microbially-driven soil processes. Small herbs may also increase the 

spatial and temporal stability of microbial communities due to even soil surface coverage and 

shallow roots. Moreover, temporal asynchrony (negative covariance) between small herb species 

(Roscher et al. 2011b) likely increases the stability of microbial communities. In contrast to grasses 

and small herbs, the presence of legumes was reported to decrease the spatial and temporal stability 

of plant productivity (Eisenhauer et al. 2011c) due to the improvement of soil N availability within 

the legume rhizosphere, leading to patchy N provisioning (Spehn et al. 2002, Weigelt et al. 2008). As 

processes in the rhizosphere are highly dynamic in time due to continuous root growth and root 

exudation (Kuzyakov and Blagodatskaya 2015), variations in legume-derived N resources are likely to 

result in spatially and temporally more variable microbial communities and processes. Similarly, tall 

herbs are associated with patchy nutrient distribution, e.g. due to the formation of tap-roots and 

high local resource input (Sydes and Grime 1984). Also, in herbs fine root turnover is higher than in 

grasses, enhancing the dynamics of C and N inputs in the soil (Fornara et al. 2009). 

In this study, we measured the spatial and temporal stability of soil microbial biomass and respiration 

in a long-term plant diversity experiment in temperate semi-natural grassland (Jena Experiment; 

Roscher et al. 2004). We used a unique long-term dataset on annually measured soil microbial 

properties from 2003 to 2014. To account for the establishment phase of the experiment (Eisenhauer 

et al. 2012), we grouped the time series into three phases, each spanning four years. We expected 
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temporal stability of soil microbial biomass and respiration to decrease with increasing plant diversity 

in phase 1 of the experiment due to the consolidation of the establishment of a semi-natural 

grassland (Habekost et al. 2008, Eisenhauer et al. 2010) (phase 1: short-term; Fig. 1). As effects of 

plant diversity strengthen over time (Eisenhauer et al. 2011b, 2012, Reich et al. 2012), we expected 

temporal stability of soil microorganisms to vary little with plant diversity after five to eight years 

(phase 2: intermediate-term). After fading of history effects of former land use, we expected the 

relationship between plant diversity and soil microbial biomass and activity to turn positive (Reich et 

al. 2012, Tilman et al. 2014; phase 3: long-term). We tested the hypotheses that:  

1) the relationships between soil microbial properties (respiration and biomass C) and plant 

diversity are positive and strengthen over time;  

2) plant diversity increases the spatial stability of soil microbial properties;  

3) plant diversity decreases the temporal stability of soil microbial properties during phase 1, 

does not significantly affect it in phase 2, and increases it in phase 3 of the experiment;  

4) plant functional groups differentially affect the stability of soil microbial properties with 

legumes and tall herbs decreasing spatial and temporal stability of microbial biomass and 

respiration, and grasses and small herbs increasing them.  

 

These hypotheses were tested by analysing soil microbial properties over time as well as the (change 

of) spatial and temporal stability of soil microbial biomass and respiration in grassland plots of 

different levels of plant species richness, plant functional group richness, and in the 

presence/absence of the four above-mentioned plant functional groups. 

 

  

Figure 1. Conceptual depiction of the hypothesized relationships between plant species diversity and stability 

of soil microbial properties (i.e. microbial biomass and respiration in the present study) and time. 

  



Chapter 2  Study 1: Stability Experiment 

 32 

2.3 Material and methods 

Study site 

The experiment was performed on the field site of the Jena Experiment, a long-term biodiversity 

experiment focusing on the role of plant diversity for ecosystem functioning in semi-natural 

grassland (Roscher et al. 2004). The study site is situated in the floodplain of the Saale River near the 

city of Jena (Thuringia, Germany, 5055′N, 1135′E, 130 m a.s.l.). The soil is an Eutric Fluvisol (FAO-

Unesco 1997) developed from fluvial sediments. Mean annual temperature is 9.3C, and mean 

annual precipitation is 587 mm (Supplementay material Appendix 1). Prior to the establishment of 

the Jena Experiment in May 2002, the site had been used as arable field for about 40 years. The plant 

communities established in the Jena Experiment were assembled from local plant species (belonging 

to Molinio–enateretea meadows, Arrhenaterion community, Ellenberg 1996) typical for hay 

meadows in central Europe (for complete species list see Roscher et al. 2004). 

 

Experimental design 

A plant species richness gradient comprising communities with 1, 2, 4, 8, 16 and 60 plant species and 

a plant functional group richness gradient with 1, 2, 3 and 4 different plant functional groups were 

established from a pool of 60 plant species (for details see Roscher et al. 2004). Plant species were 

ascribed to functional groups using cluster analysis based on above- and belowground morphological 

traits, phenological traits, and N2 fixation (Roscher et al. 2004).The 60 species were grouped into 

grasses (16 species), small herbs (12 species), tall herbs (20 species), and legumes (12 species).The 

experiment consisted of 82 plots of 20 × 20 m. Plots were mown twice a year in June and September 

and weeded in April, July and September to maintain the target plant species composition. Plots 

were grouped into four blocks accounting for soil heterogeneity at the field site (Fig. 2). Each block 

contained an equal number of plots of plant species and plant functional group richness levels 

(Roscher et al. 2004). 

 

 

 

 

 

 

 

  

Figure 2. Schematic design of the 

experimental field site of the Jena 

Experiment. Each square represents one 

plot (20 × 20 m) with different number 

of plant species (number in the plots) 

and functional groups (colour of the 

plot). The dotted line indicates the 

border of the experimental field. Bare 

ground and succession plots were not 

included in the present study. 
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Soil sampling 

Two different samplings were carried out. For measuring spatial stability, five soil cores were taken 

on each plot with a soil corer (1.5 cm diameter, 10 cm deep) in September 2010, i.e. eight years after 

establishment of the experiment (resulting in 82 plots × 5 samples = 410 samples). The samples were 

taken using a fixed spatial pattern with distances of 1–2 m among samples. For temporal stability, 

eleven sampling campaigns were carried out in May or early June from 2003 to 2014, with five sub-

samples per plot that were pooled plot-wise, resulting in one soil sample per plot (except for 2005; 

resulting in 82 plots × 11 years = 902 samples). In each year, five randomly located soil samples were 

taken per plot with a soil corer (5 cm diameter, 5 cm deep) and pooled plot-wise. Before measuring, 

all samples were homogenized, sieved (2 mm), larger roots and soil animals were picked by hand, 

and samples were stored in plastic bags at 5C. In June 2013, the Jena Experiment experienced a 

summer flood (Wagner et al. 2015, Wright et al. 2015), which occurred before the soil sampling in 

2013 and did not affect soil microbial properties in May 2014, which is why we do not consider flood 

effects in the present study. 

 

Soil microbial basal respiration and biomass C 

Microbial respiration was measured using an electrolytic O2-microcompensation apparatus (Scheu 

1992). O2-consumption of soil microorganisms in ∼5 g of fresh soil (equivalent to ca 3.5 g soil dry 

weight) was measured at 22C over a period of 24 h. Basal respiration [l O2 g–1 dry soil h–1] was 

calculated as mean of the O2-consumption rates of hours 14 to 24 after the start of the 

measurements. Substrate-induced respiration (SIR) was determined by adding D-glucose to saturate 

catabolic enzymes of the microorganisms according to preliminary studies (4 mg D-glucose g–1 dry 

soil solved in 400 l deionized water; Anderson and Domsch 1978). The maximum initial respiratory 

response (MIRR; [l O2 g–1 dry soil h–1]) was calculated as mean of the lowest three O2-consumption 

values within the first 10 h after glucose addition. Microbial biomass carbon [g C g–1 dry soil] was 

calculated as 38 × MIRR (Beck al. 1997). Beck et al. (1997) found that, except for acidic soils, the SIR 

method is comparable to other methods estimating soil microbial biomass C like the fumigation 

extraction method introduced by Vance et al. (1987). 

 

Calculations 

Stability of microbial parameters was calculated as the inverse coefficient of variation (CV-1 = 

mean/standard deviation), i.e. the ratio of mean biomass or respiration to its standard deviation 

(Haddad et al. 2011). Hence, the spatial stability was calculated by dividing the mean value of the five 

measurements of each plot taken in 2010 by the standard deviation of these five measurements 

(Eisenhauer et al. 2011c). For temporal stability, we grouped the measurements of three or four 
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consecutive years and calculated the temporal stability for every phase (phase 1: 2003–2006; phase 

2: 2007–2010; phase 3: 2011–2014). 

 

Statistical analyses 

Data were tested for normality (Shapiro–Wilk-test) and homoscedasticity (Levene’s test) and log-

transformed if necessary to achieve requirements for general linear models (GLM) and repeated 

measures GLM. For testing the effects of plant community properties on spatial stability of microbial 

parameters, we used sequential GLMs (type I sum of squares). For effects on temporal stability of 

microbial parameters, we used repeated measures GLMs. Plant species richness was log-transformed 

to linearize the saturating relationship between plant diversity and microbial properties (Hooper et 

al. 2005). Block and presence of grasses (GR), tall herbs (TH), small herbs (SH) and legumes (LEG) 

were used as categorical predictor variables, while log-transformed plant species richness (SR) and 

plant functional group richness (FGR) were tested as linear variables. Stability of microbial basal 

respiration and stability of microbial biomass carbon served as response variables for temporal and 

spatial stability. F-values given in the results refer to those where the respective factor was fitted first 

in the sequential model (Schmid et al. 2002). Calculation of temporal stability was based on the three 

phases. As measures from year 2005 were lacking, phase 1 (2003–2006) consisted of three years, 

while phase 2 (2007–2010) and phase 3 (2011–2014) consisted of four years each. To test whether 

the different numbers of years within the three phases affected the results of the temporal stability 

analysis, we systemically excluded step-by-step one year after the other from phases 2 and 3, and 

tested our model with different combinations of years within the respective phases. Reducing the 

numbers of years from four to three measurements in phases 2 and 3, and altering the combination 

of year identity within these phases did not change the main conclusions of our work. Therefore, we 

included the results of the full dataset in the main text and give the results of the additional models 

in the supplementary material (SM A2). We additionally tested the effects of plant species richness 

on microbial respiration and biomass from 2003 to 2014 (time series) with repeated measures GLM 

to trace the change of the plant species richness effect over time (Eisenhauer et al. 2010). 

 

Data deposition 

Data are available from the open access library PANGAEA 

(http://doi.pangaea.de/10.1594/PANGAEA.854694). 

  

http://doi.pangaea.de/10.1594/PANGAEA.854694
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2.4 Results 

Soil microbial respiration and biomass C over time 

Soil microbial respiration and biomass increased significantly with plant species richness four years 

after establishment of the experiment (Fig. 3A–B), and this positive relationship persisted until the 

last measurement of the present time series in 2014. Furthermore, the slope of the relationship 

between microbial respiration and plant species richness was highest seven years after the 

establishment of the experiment, while the slope of the relationship between microbial biomass C 

and plant species richness peaked only after 11 years (Fig. 4). 

 

 
Figure 3. Soil microbial respiration (A) and biomass C (B) as affected by plant species richness from 2003 to 

2014 (except 2005). Regression lines (black) with 95% confidence intervals (grey). Asterisks indicate significant 

effects of plant species richness within years (*, p ≤ 0.05;**, p ≤ 0.01; ***, p ≤ 0.001; n.s., not significant). 

 

 
Figure 4. Slopes of the relationships between microbial basal respiration (BR) and plant species richness (SR), 

and between microbial biomass C (Cmic) and plant species richness from 2003 to 2014. Dotted lines are used 

where measurements (in 2005) were missing. 

 

Spatial stability of soil microbial properties 

Plant species richness and functional group richness did not significantly affect spatial stability of soil 

microbial parameters, but increased the means of both soil microbial respiration and biomass (Table 

1). In contrast, plant functional group richness significantly increased the standard deviation of soil 
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microbial biomass. Among plant functional groups, legumes significantly reduced the spatial stability 

of both microbial respiration and biomass (Fig. 5A, G). Legumes significantly increased the mean of 

microbial biomass, but even more they increased the standard deviations of both microbial 

respiration and biomass, indicating destabilization of microbial communities in space (Fig. 5H, C, I). In 

addition, tall herbs significantly reduced the spatial stability of microbial respiration (Fig. 5D) and in 

trend microbial biomass. Further, tall herbs significantly increased the mean of soil microbial 

biomass. In the presence of grasses, the spatial stability of soil microbial biomass increased 

significantly but mean microbial biomass remained unaffected (Fig. 5K, L). Spatial stability of mi-

crobial respiration did not significantly respond to the presence of grasses, while the mean increased 

significantly. The presence of small herbs did not significantly affect the spatial stability of microbial 

properties, but significantly increased the means of both microbial respiration and biomass. 

Figure 5. Spatial stability (A), mean value (B), and standard deviation (C) of microbial respiration (BR) in the 
absence (0) and in the presence (1) of legumes. (D–F) Same parameters in the absence and presence of tall 
herbs. (G–I) Spatial stability, mean value, and standard deviation of microbial biomass C (Cmic) in absence and 

presence of legumes, and (K–M) same parameters in the absence and presence of grasses. Means with  

standard error bars. Asterisks indicate significant differences (*, p  0.05; **, p  0.01; ***, p  0.001; n.s. , not 
significant).  
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Table 1. GLM (type I sum of squares) table of F-values for effects of block, log-transformed plant species 

richness (SR), plant functional group richness (FGR), presence of legumes (LEG), grasses (GR), small herbs (SH), 

and tall herbs (TH) on the spatial stability, mean and standard deviation of soil microbial basal respiration (BR, 

log-transformed) and microbial biomass C (Cmic).  

F-values refer to those where the respective factor was fitted first. DF = degrees of freedom; F = F-value; p = p-

value. ↓/↑ = increase/decrease with increasing diversity level or in the presence of the respective plant 

functional group. Significant effects (p  0.05) and marginally significant effects (p  0.1) are given in bold.  

 

 

Temporal stability of soil microbial properties 

Plant diversity (plant species richness and functional group richness) did not significantly affect the 

temporal stability of microbial respiration in any of the three time phases (Table 2, Fig. 6A for plant 

species richness), while the means and the standard deviations of microbial respiration significantly 

increased with plant species richness in most phases (Fig. 6B–C).  

During phase 1, plant functional group richness tended to enhance the temporal stability of microbial 

respiration. Simultaneously, plant functional group richness significantly increased mean microbial 

respiration. The presence of grasses significantly enhanced the temporal stability of microbial 

respiration. Additionally, the mean microbial respiration tended to increase in the presence of  
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Table 2. GLM (type I sum of squares) table of F-values for effects of block, log-transformed plant species 

richness (SR), plant functional group richness (FGR), presence of legumes (LEG), grasses (GR), small herbs (SH), 

and tall herbs (TH) on the temporal stability, mean, and standard deviation of soil microbial basal respiration 

(BR) and microbial biomass C (Cmic) for three subsequent time phases.  

F-values refer to those where the respective factor was fitted first. DF = degrees of freedom; F = F-value; p = p-

value. ↑/↓ = increase/decrease with increasing diversity level or in the presence of the respective plant 

functional group. Significant effects (p0.05) and marginally significant effects (p  0.1) are given in bold.   
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grasses. None of the other plant functional groups significantly influenced the stability of soil 

microbial respiration.  

In general, the temporal stability of microbial biomass responded more strongly to plant community 

properties than that of microbial respiration. During phase 1, the temporal stability of microbial 

biomass significantly decreased with increasing plant species richness (Fig. 6D) and functional group 

richness. Although the mean of soil microbial biomass significantly increased with increasing plant 

diversity (Fig. 6E), the concurrent increase in standard deviation with increasing plant diversity (Fig. 

6F) was much more pronounced and caused the destabilizing effect of plant diversity during the 

phase 1. Also, the presence of legumes and small herbs reduced the temporal stability of microbial 

biomass during the phase 1.  

During phase 2, plant community properties did not significantly influence the temporal stability of 

microbial respiration, while associated means significantly increased with plant diversity as well as in 

the presence of grasses, small herbs, and tall herbs. In contrast, the temporal stability of microbial 

biomass significantly decreased with increasing plant species richness during phase 2, while plant 

functional groups did not significantly affect the temporal stability of microbial biomass. The means 

of microbial biomass increased in response to the presence of all plant functional groups (only by 

trend for grasses).  

During phase 3, plant community properties did not significantly affect the temporal stability of 

microbial respiration, but means of microbial respiration significantly increased with plant species 

richness and functional group richness. Also, the means of microbial respiration increased in 

presence of each of the four plant functional groups, with plant functional group effects getting 

stronger in later phases. As for mean soil microbial biomass in phases 2 and 3, these results have to 

be treated with caution as testing the presence of plant functional groups before plant diversity may 

have captured some of the plant diversity effects.  

Temporal stability of microbial biomass did not significantly vary with plant community properties 

during phase 3, i.e. the initial destabilizing effect of plant diversity vanished with time. The mean of 

microbial biomass significantly increased in response to increasing plant diversity and in the presence 

of the different plant functional groups. The effects of plant community properties on the mean 

microbial biomass got stronger from phase to phase and were strongest for plant diversity. 

Importantly, the temporal stability of microbial biomass increased with time (as the number of plant 

community properties that reduced stability decreased with time).  

Testing for potential relationships between spatial and temporal stability (Eisenhauer et al. 2011c) of 

microbial basal respiration and biomass revealed no significant correlations (all p > 0.1). 
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Figure 6. Temporal stability, mean value, and standard deviation of (A–C) microbial respiration (BR) and (D–F) 
microbial biomass C (Cmic) as affected by plant species richness in phases 1, 2 and 3. Regression lines (black) 

with 95% confidence intervals (grey). Asterisks indicate significant differences (*, p  0.05; **, p  0.01; ***, p  

0.001; n.s. = not significant).  

 

2.5 Discussion 

If biodiversity stabilizes ecosystem properties has attracted increasing scientific attention in the last 

decades and still is 

debated (Isbell et al. 2015, Wright et al. 2015). We investigated the roles of plant diversity and plant 

functional group composition for the spatial and temporal stability of microbial properties in bulk soil 

in a long-term grassland biodiversity experiment. The relationship between plant species richness 

and soil microbial properties (respiration and biomass C) became more significant over time and 

positive relationships persisted until the last measurement of the time series in 2014. In contrast to 

our hypotheses, plant diversity had minor effects on the spatial and temporal stability of soil 

microbial properties. As predicted, plant diversity reduced temporal stability shortly after the 

establishment of the experiment though due to plant community-specific shifts in soil communities. 

The functional composition of plant communities was a significant determinant of the spatial stability 

of soil microbial properties: the presence of legumes and tall herbs reduced the spatial stability of 

both soil microbial respiration and biomass, while grasses increased the spatial stability of the latter.   
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Plant diversity effects on soil microbial properties over time 

In line with our hypothesis 1, soil microbial respiration and biomass increased significantly with plant 

species richness four years after establishment of the experiment. Although the positive 

relationships persisted until the last measurement of the time series in 2014, the relationships did 

not strengthen homogeneously over time, thus confirming hypothesis 1 in part.  

We found the relationship between microbial respiration and plant species richness to be strongest 

seven years after establishment of the experiment, while that between microbial biomass C and 

plant species richness was strongest only four years later, i.e. after 11 years. We suggest that the 

microbial respiration strengthened over the first seven years of the experiment with increasing plant 

species richness due to increasing plant inputs (Marquard et al. 2009, Reich et al. 2012, Ravenek et 

al. 2014). This mechanism was most probably dampened in the following years because the soil 

microbial community adapted to the soil conditions in maturing semi-natural grassland. Adaptation 

can include a shift in physiological properties as well as in microbial com- munity structure, both 

leading to more efficient resource use by microbial communities (Wardle and Ghani 1995). We 

furthermore suggest that adaptation to semi-natural grassland is a prerequisite for increasing 

microbial bio- mass C that took place with a time lag after the microbial community had been 

adapted. Reinforcing the findings of Eisenhauer et al. (2010), who found plant species richness to 

increase soil microbial respiration and biomass four years after the establishment of the 

experimental grassland, we for the first time show that the positive effects of plant species richness 

on soil microbial properties remain significant within a time frame of more than 10 years. Future 

long-term studies should explore the abiotic and biotic drivers of inter- annual variability in the slope 

of plant diversity–ecosystem function relationships.  

 

Plant diversity effects on the spatial stability of soil microbial properties  

Contrary to hypothesis 2, the spatial stability of soil microbial respiration and biomass did not 

significantly correlate with plant diversity (plant species richness and functional group richness). In 

contrast to our results, Wardle and Bonner (1999) found that spatial variability of soil microbial 

respiration decreased with plant diversity (i.e. spatial stability of microbial respiration increased). We 

expected to find a positive plant diversity–spatial stability relationship due to higher spatial stability 

of plant productivity (Eisenhauer et al. 2011c), higher root biomass (Ravenek et al. 2014), and more 

uniform organic inputs into the soil (Milcu et al. 2010). In our study, counteracting processes might 

have determined soil microbial communities and prevented a clear trend in spatial stability with 

increasing plant diversity. For example, in the rhizosphere where labile C substrates are secreted by 

plant roots, microbial r-strategists with low C use efficiency may dominate over highly efficient K-

strategists, which dominate in bulk soil. Thus, we might have sampled rhizosphere-patches with high 

respiration rates and high microbial biomass, and bulk soil-patches where microbial respiration and 
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biomass are lower (Kuzyakov and Blagodatskaya 2015) at high plant diversity. As highlighted by 

Weigelt et al. (2008), the spatial scale of plant diversity–spatial stability relationship needs further 

attention.  

 

Plant diversity effects on the temporal stability of soil microbial properties  

We hypothesized effects of plant diversity on the temporal stability of microbial properties to change 

over time with destabilizing effects during phase 1 (Habekost et al. 2008, Eisenhauer et al. 2010), 

neutral effects during phase 2 (consolidation of soil microbial communities), and stabilizing effects in 

phase 3 (higher stability and amount of plant inputs to soil; Milcu et al. 2010). In line with our 

hypothesis 3, temporal stability of soil microbial biomass decreased significantly with plant diversity 

in phase 1. During this phase (four years after the establishment of the Jena Experiment), the soil 

microbial community experienced a major land-use change from arable field monocultures to newly 

established semi-natural grassland with up to 60 plant species. As a consequence, soil microbial 

communities (Habekost et al. 2008) and properties (respiration and biomass; Eisenhauer et al. 2010) 

changed according to the newly established plant communities. These changes likely were most 

pronounced in plots most different to the former land-use. Supporting this assumption, Eisenhauer 

et al. (2010) found microbial respiration and biomass to increase most at high plant diversity.  

During phases 2 and 3, none of the plant community properties significantly influenced the temporal 

stability of microbial respiration. Contrary to these findings, McGill et al. (2010) found temporal 

stability of microbial processes, such as denitrification, to increase with plant diversity and suggested 

this to be due to complementarity between functional traits of different plant species buffering 

microbial denitrification against variability in environmental factors.  

In our study, we found the variability (standard deviation) of microbial respiration to decrease with 

increasing functional group richness during phase 1, while it increased with functional group richness 

during phase 2. This suggests that during phase 2 plant inputs into the soil (and as a consequence soil 

conditions) were more different in high-diversity plots than in low-diversity plots. These changes in 

soil conditions from phase 1 to 2 probably occurred due to declining evenness of the plant functional 

groups within and /or between high-diversity plots, while the evenness of plant functional groups in 

low-diversity plots remained more similar. Indeed, Roscher et al. (2013) found the proportion of 

plant functional groups to shift over time with increasing abundance of grasses and decreasing 

abundance of legumes, and reduced plant species evenness most pronounced in high-diversity plant 

communities during phase 2 of our experiment (C. Roscher pers. comm.).  

Confirming hypothesis 3, the temporal stability of soil microbial biomass decreased with plant 

species richness and plant functional group richness during phase 1. However, the negative 

relationship between stability of microbial biomass and plant diversity decreased during phases 2 

and 3, while means of soil microbial biomass progressively increased with plant diversity with time. 
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We suggest that during phase 1, low-diversity plant communities changed little in comparison to the 

former land-use, and, as a consequence, soil microbial biomass and functioning stayed constant at 

low plant diversity (Fig. 4e; Eisenhauer et al. 2010). By contrast, soil microbial biomass increased in 

high-diversity plant communities in the initial years of the experiment, and soil microbial 

communities changed from a disturbed (zymogenous) to a more established (autochthonous) 

microbial community (Eisenhauer et al. 2010). This successional shift of soil microbial communities 

and properties at high plant diversity caused the observed negative plant diversity–stability 

relationship. Presumably, high-diversity plant communities provided a higher quantity and quality of 

plant-derived organic inputs to the soil (Lange et al. 2015) compared to agricultural and plant 

monoculture soils.  

On the basis of the constant increase of the microbial biomass and respiration with plant diversity 

since the establishment of the Jena Experiment (Fig. 3; Eisenhauer et al. 2010), we assume that these 

changes are likely to continue in the future. This suggests that the time required by the microbial 

community to adapt to diverse plant communities in semi-natural grassland and to achieve stable 

community properties is taking longer than the duration of our experiment. This is supported by 

Buckley and Schmidt (2001) who found soil microbial communities in abandoned arable fields to be 

more similar to those of active arable fields than to those of uncultivated fields even seven years 

after abandonment. They concluded that current plant effects on the microbial community were 

superimposed by the influence of past agricultural use.  

 

Effects of plant functional groups on spatial and temporal stability of soil microbial properties  

Conform to hypothesis 4, legumes decreased the spatial stability of microbial respiration and 

biomass. Further, temporal stability of microbial biomass was also decreased by legumes, but only 

during phase 1 of the experiment. Presumably, the destabilizing effects of legumes on the soil 

microbial community in space and time resulted from increased N availability in the rhizosphere of 

legumes (Spehn et al. 2002), leading to hotspots of microbial biomass and activity compared to the 

bulk soil (Kuzyakov and Blagodatskaya 2015). Due to the patchiness of hotspots, the spatial and 

temporal stability of microbial communities on the experimental plot-level was reduced. This is 

supported by results of the study of Chen et al. (2008) who found higher soil microbial biomass in the 

presence of legumes compared to that of grasses in a greenhouse experiment and concluded this to 

be due to higher root exudation by legumes. Further supporting our assumption of patchy hotspots 

of N provision and microbial biomass and activity in the presence of legumes, Ravenek et al. (2014) 

found reduced root biomass in the presence of legumes at our experimental field site. Unexpectedly, 

how- ever, the effect of legumes on the temporal stability of microbial biomass disappeared after 

phase 1. Especially in more mature grasslands, legumes are inferior to grasses regarding light 
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acquisition as well as uptake of water and nutrients from the soil (Haynes 1980). Thus, their relative 

abundance and performance decreased during the experiment (Roscher et al. 2011a), and their 

effects on microbial communities (i.e. negative effects on the stability) may have faded away.  

In the present study, grasses increased the spatial stability of microbial biomass as well as the 

temporal stability of microbial respiration during phase 1. Presumably this was due to dense root 

mats persisting over long periods of time (De Witte and Stöcklin 2010). Again, however, we did not 

expect these effects to disappear after phase 1 of the experiment, especially as the coverage of 

grasses is known to be very stable because grasses are strong competitors for soil nutrients 

compared to other plant functional groups (Kiær et al. 2013) and have been reported to be tempo- 

rally stable on the field site of the Jena Experiment (Roscher et al. 2011b). Therefore, in future 

studies rhizodeposition, including measurements of root exudation, on the scale of individual plants 

should be added to the analyses of soil microbial communities.  

Small herbs did not influence the spatial stability of soil microbial communities, but in contrast to 

hypothesis 4, their presence decreased the temporal stability of microbial biomass. Roscher et al. 

(2011b) reported lower plant species synchrony on the same field site in communities with small 

herbs. This suggests that the soil microbial biomass was destabilized over time because of 

spatiotemporal changes in the rhizosphere (changing distribution of roots and rhizodeposition) of 

small herb species. Supporting this assumption, Bezemer et al. (2010) found the soil decomposer 

community to vary at the scale of individual plants and with plant species identity.  

Tall herbs decreased the spatial stability of microbial respiration, confirming hypothesis 4. Tall herbs 

are characterized by deep rooting systems that allocate C to deep soil layers (Roscher et al. 2004). 

Thereby tall herbs may increase patchy provisioning of resources to soil microorganisms. In addition, 

tall herbs were shown to increase small-scale heterogeneity of aboveground plant biomass 

production (Weigelt et al. 2008), and this may also have contributed to heterogeneous spatial 

distribution of tap roots and resource inputs to the soil.  

 

2.6 Conclusions  

Our results emphasize the essential role of plant species rich- ness for high abundance and activity of 

soil microorganisms in the long-term. Only such long-term studies will allow to explore the abiotic 

and biotic drivers of varying slopes of relationships between plant diversity and soil microbial 

properties as found in the present study. Further, our results highlight the importance of functional 

group composition of plant communities for the spatial stability of soil micro- bial properties, 

whereby legumes and tall herbs reduced the spatial stability (increased the spatial heterogeneity) of 

both microbial respiration and biomass, while the presence of grasses increased the latter. 

Furthermore, the temporal stabil- ity of soil microbial properties was reduced by plant diversity as 
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well as by legumes and tall herbs during the first years of the experiment (phase 1). As the 

relationship between sta- bility of soil microbial properties and plant diversity turned from being 

negative to neutral for the rest of this long-term study, we suggest that recovery of the soil microbial 

com- munity from former arable land-use in highly diverse plant communities can take decades.  

To understand the mechanisms governing spatial and temporal stability of soil microbial 

communities and to dis- entangle differences in the stability of microbial communi- ties between the 

rhizosphere and bulk soil, information on root species identity and root functional traits, such as 

mor- phology, turnover, and exudates is needed. Further, future studies should address if increased 

spatial heterogeneity (i.e. decreased spatial stability) of soil microbial properties contributes to plant 

community effects on the diversity of animal species of higher trophic levels below but also above 

the ground.  
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2.9 Supplementary material  

Appendix 1  

 
Figure A1. Temperature (A) and precipitation (B) at the field site of the Jena Experiment from 2003 to 2014 

(measured by the weather station at the field site).  

 

Appendix 2 

Test of the effect of different combinations of years on the outcome of the temporal stability 

analyses in phases 2 and 3.  

In detail, the original dataset comprises microbial measurements of all years, with phase 1 containing 

measures from 2003, 2004 and 2006, phase 2 containing measurements from 2007–2010 and phase 

3 from 2011–2014. Dataset ‘A’ comprises measurements with phase 1 with measurements from 

2003, 2004 and 2006 (data are shown in the main text of the research article), phase 2 with 

measurements from 2007–2009, and phase 3 with measurements from 2010–2012 , i.e. we 

discarded measurements of the last year from phase 2 and 3, respectively, thus obtaining three 

phases with three measurements each; for dataset ‘A’ we additionally shifted the beginning of phase 

3 from 2011 to 2010 to test whether results significantly change, if the years of phase 2 and 3 would 

follow each other directly; but this was not the case. Datasets ‘B’–‘E’ also contained only three years 
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per phase by systemically discarding one specific year from each original combination in phases 2 

and 3. Altogether, we tested five additional combinations of the three phases, with each phase 

spanning over four years, but containing only measurements from three years. As a result, reducing 

the numbers of years from four to three measurements in phases 2 and 3, and altering the 

combination of year identity within these phases, only slightly changed the effects of plant species 

richness and plant community composition on the stability of microbial properties and did not 

change the main conclusions of our work.  

Table A2. GLM (type I sum of squares) table of F-values for effects of block, log-transformed plant species 

richness (SR), plant functional group richness (FGR), presence of legumes (LEG), grasses (GR), sma*ll herbs (SH), 

and tall herbs (TH) on the temporal stability of soil microbial basal respiration (BR) and microbial biomass C 

(Cmic) for time phases 2 and 3, according to different combinations of years within the time phases (datasets 

A–E).  

 

 

 

 

       
Dataset "A" Phase 2 (2007–2009)   Phase 3 (2010–2012)   

BR stability  DF F-value p-value DF F-value p-value 

BLOCK 3 1.1 0.3558 3 0.45 0.716 

SR 1 1.06 0.3072 1 0.61 0.4365 

FG 1 0.03 0.8663 1 0.22 0.6408 

LEG 1 0.84 0.363 1 2.37 0.1288 

GR 1 0.84 0.3626 1 1.47 0.2294 

SH 1 0.55 0.4629 1 0.47 0.4944 

TH 1 0.11 0.7397 1 1.63 0.2064 

DF model 9 0.83 0.5923 9 0.82 0.601 

DF error 66 
  

66 
  

Cmic stability DF F-value p-value DF F-value p-value 

BLOCK 3 2.82 0.0453 3 1.33 0.2718 

SR 1 0.38 0.539 1 0.15 0.6999 

FG 1 0.06 0.8005 1 3.33 0.0725 

LEG 1 0.06 0.8045 1 1.3 0.2581 

GR 1 0.72 0.3992 1 0.93 0.3388 

SH 1 2.25 0.1386 1 0.31 0.5796 

TH 1 1.42 0.238 1 1.99 0.1633 

Modell 9 1.64 0.1207 9 0.96 0.4802 

Error 67 
  

67 
  

       
Dataset "B" Phase 2 (2007–2009)   Phase 3 (2011–2013)   

BR stability DF F-value p-value DF F-value p-value 

BLOCK 3 1.12 0.3464 3 1.37 0.2597 

SR 1 1.16 0.2859 1 0.45 0.5067 

FG 1 0.03 0.8675 1 0 0.9825 

LEG 1 0.91 0.3447 1 0.8 0.3744 

GR 1 0.95 0.3336 1 2.29 0.1347 

SH 1 0.61 0.4392 1 0.73 0.3971 

TH 1 0.13 0.7205 1 2.01 0.1615 

DF model 9 0.94 0.4998 9 1.19 0.3189 

DF error 65 
  

65 
  

Cmic stability DF F-value p-value DF F-value p-value 

BLOCK 3 3.62 0.0175 3 1.27 0.2927 

SR 1 0 0.9868 1 3.03 0.0866 

FG 1 0.06 0.8096 1 3.04 0.086 

LEG 1 0.83 0.3662 1 3.19 0.0787 

GR 1 0 0.9731 1 0.48 0.4889 

SH 1 1.2 0.2776 1 0.1 0.7516 

TH 1 0.84 0.3621 1 1.73 0.193 

DF model 9 1.56 0.1454 9 0.99 0.4574 

DF error 66 
  

66 
  

       
Dataset "C" Phase 2 (2007, 2008, 2010) Phase 3 (2011, 2012, 2014) 

BR stability DF F-value p-value DF F-value p-value 

BLOCK 3 0.47 0.701 3 2.9 0.0415 

SR 1 0.93 0.3378 1 0.3 0.5875 

FG 1 0.63 0.4304 1 0.01 0.9136 

LEG 1 1.84 0.1794 1 0.26 0.6133 

GR 1 0.01 0.9238 1 0.12 0.7289 

SH 1 0.23 0.6309 1 0.14 0.7082 

TH 1 0.03 0.8628 1 0.72 0.3978 

DF model 9 0.46 0.8979 9 1.29 0.258 

DF error 67 
  

67 
  

Cmic stability DF F-value p-value DF F-value p-value 

BLOCK 3 1.91 0.137 3 0.6 0.6178 

SR 1 0.05 0.8266 1 0.16 0.6882 

FG 1 0.56 0.4562 1 0.29 0.5939 

LEG 1 2.52 0.1173 1 1.31 0.2559 

GR 1 0.22 0.6425 1 0.01 0.9222 

SH 1 0.39 0.537 1 0 0.9571 

TH 1 0.81 0.3702 1 0.01 0.9156 

DF model 9 1.19 0.3137 9 0.45 0.904 

DF error 66 
  

66 
  

       
Dataset "D" Phase 2 (2007, 2009, 2010) Phase 3 (2011, 2013, 2014) 

Appendix 2 

Test of the effect of different combinations of years on the outcome of the temporal 

stability analyses in phases 2 and 3 

In detail, the original dataset comprises microbial measurements of all years, with phase 1 

containing measures from 2003, 2004 and 2006, phase 2 containing measurements from 2007–2010 

and phase 3 from 2011–2014. Dataset ‘A’ comprises measurements with phase 1 with 

measurements from 2003, 2004 and 2006 (data are shown in the main text of the research article), 

phase 2 with measurements from 2007–2009, and phase 3 with measurements from 2010–2012 , i.e. 

we discarded measurements of the last year from phase 2 and 3, respectively, thus obtaining three 

phases with three measurements each; for dataset ‘A’ we additionally shifted the beginning of phase 

3 from 2011 to 2010 to test whether results significantly change, if the years of phase 2 and 3 would 

follow each other directly; but this was not the case. Datasets ‘B’–‘E’ also contained only three 

years per phase by systemically discarding one specific year from each original combination in 

phases 2 and 3. Altogether, we tested five additional combinations of the three phases, with each 

phase spanning over four years, but containing only measurements from three years. As a result, 

reducing the numbers of years from four to three measurements in phases 2 and 3, and altering the 

combination of year identity within these phases, only slightly changed the effects of plant species 

richness and plant community composition on the stability of microbial properties and did not 

change the main conclusions of our work. 

 

Table A2. GLM (type I sum of squares) table of F-values for effects of block, log-transformed plant species 

richness (SR), plant functional group richness (FGR), presence of legumes (LEG), grasses (GR), small herbs 

(SH), and tall herbs (TH) on the temporal stability of soil microbial basal respiration (BR) and microbial 

biomass C (Cmic) for time phases 2 and 3, according to different combinations of years within the time 

phases (datasets A–E). 

Original dataset Phase 2 (2007-2010)   Phase 3 (2011-2014)   

BR stability  DF F-value p-value DF F-value p-value 

BLOCK 3 3.96 0.0117 3 2.24 0.0915 

SR 1 1.27 0.2638 1 0 0.9672 

FG 1 2.63 0.1094 1 0.09 0.7698 

LEG 1 2.69 0.1057 1 1.56 0.2162 

GR 1 0.06 0.8044 1 0.18 0.6758 

SH 1 0.81 0.3712 1 0.08 0.7828 

TH 1 1.22 0.2743 1 1.84 0.18 

DF model 9 1.84 0.0767 9 1.33 0.2366 

DF error 67 
  

67 
  

Cmic stability DF F-value p-value DF F-value p-value 

BLOCK 3 3.55 0.0194 3 0.2 0.8961 

SR 1 5.35 0.0241 1 0.03 0.8596 

FG 1 1.06 0.3084 1 0.33 0.5672 

LEG 1 0.48 0.4906 1 0.86 0.3585 

GR 1 0.59 0.4469 1 0.14 0.7067 

SH 1 2.39 0.127 1 0 0.9861 

TH 1 0.06 0.8004 1 0.25 0.6213 

DF model 9 2.01 0.0538 9 0.25 0.9841 

DF error 61 
  

61 
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Dataset "A" Phase 2 (2007–2009)   Phase 3 (2010–2012)   

BR stability  DF F-value p-value DF F-value p-value 

BLOCK 3 1.1 0.3558 3 0.45 0.716 

SR 1 1.06 0.3072 1 0.61 0.4365 

FG 1 0.03 0.8663 1 0.22 0.6408 

LEG 1 0.84 0.363 1 2.37 0.1288 

GR 1 0.84 0.3626 1 1.47 0.2294 

SH 1 0.55 0.4629 1 0.47 0.4944 

TH 1 0.11 0.7397 1 1.63 0.2064 

DF model 9 0.83 0.5923 9 0.82 0.601 

DF error 66 
  

66 
  

Cmic stability DF F-value p-value DF F-value p-value 

BLOCK 3 2.82 0.0453 3 1.33 0.2718 

SR 1 0.38 0.539 1 0.15 0.6999 

FG 1 0.06 0.8005 1 3.33 0.0725 

LEG 1 0.06 0.8045 1 1.3 0.2581 

GR 1 0.72 0.3992 1 0.93 0.3388 

SH 1 2.25 0.1386 1 0.31 0.5796 

TH 1 1.42 0.238 1 1.99 0.1633 

Modell 9 1.64 0.1207 9 0.96 0.4802 

Error 67 
  

67 
  

       
Dataset "B" Phase 2 (2007–2009)   Phase 3 (2011–2013)   

BR stability DF F-value p-value DF F-value p-value 

BLOCK 3 1.12 0.3464 3 1.37 0.2597 

SR 1 1.16 0.2859 1 0.45 0.5067 

FG 1 0.03 0.8675 1 0 0.9825 

LEG 1 0.91 0.3447 1 0.8 0.3744 

GR 1 0.95 0.3336 1 2.29 0.1347 

SH 1 0.61 0.4392 1 0.73 0.3971 

TH 1 0.13 0.7205 1 2.01 0.1615 

DF model 9 0.94 0.4998 9 1.19 0.3189 

DF error 65 
  

65 
  

Cmic stability DF F-value p-value DF F-value p-value 

BLOCK 3 3.62 0.0175 3 1.27 0.2927 

SR 1 0 0.9868 1 3.03 0.0866 

FG 1 0.06 0.8096 1 3.04 0.086 

LEG 1 0.83 0.3662 1 3.19 0.0787 

GR 1 0 0.9731 1 0.48 0.4889 

SH 1 1.2 0.2776 1 0.1 0.7516 

TH 1 0.84 0.3621 1 1.73 0.193 

DF model 9 1.56 0.1454 9 0.99 0.4574 

DF error 66 
  

66 
  

       
Dataset "C" Phase 2 (2007, 2008, 2010) Phase 3 (2011, 2012, 2014) 

BR stability DF F-value p-value DF F-value p-value 

BLOCK 3 0.47 0.701 3 2.9 0.0415 

SR 1 0.93 0.3378 1 0.3 0.5875 

FG 1 0.63 0.4304 1 0.01 0.9136 

LEG 1 1.84 0.1794 1 0.26 0.6133 

GR 1 0.01 0.9238 1 0.12 0.7289 

SH 1 0.23 0.6309 1 0.14 0.7082 

TH 1 0.03 0.8628 1 0.72 0.3978 

DF model 9 0.46 0.8979 9 1.29 0.258 

DF error 67 
  

67 
  

Cmic stability DF F-value p-value DF F-value p-value 

BLOCK 3 1.91 0.137 3 0.6 0.6178 

SR 1 0.05 0.8266 1 0.16 0.6882 

FG 1 0.56 0.4562 1 0.29 0.5939 

LEG 1 2.52 0.1173 1 1.31 0.2559 

GR 1 0.22 0.6425 1 0.01 0.9222 

SH 1 0.39 0.537 1 0 0.9571 

TH 1 0.81 0.3702 1 0.01 0.9156 

DF model 9 1.19 0.3137 9 0.45 0.904 

DF error 66 
  

66 
  

       
Dataset "D" Phase 2 (2007, 2009, 2010) Phase 3 (2011, 2013, 2014) 

BR stability DF F-value p-value DF F-value p-value 

BLOCK 3 0.72 0.543 3 4.93 0.0038 

SR 1 3.02 0.0868 1 0.62 0.4322 

FG 1 1.9 0.1731 1 0.05 0.8193 

LEG 1 2.24 0.1391 1 1.89 0.1741 

GR 1 1.56 0.2168 1 1.31 0.2568 

SH 1 1.43 0.2362 1 0.15 0.7044 

TH 1 0.29 0.59 1 0.34 0.5639 

DF model 9 1 0.4462 9 2.11 0.0411 

DF error 64 
  

64 
  

Cmic stability DF F-value p-value DF F-value p-value 

BLOCK 3 1.88 0.1411 3 0.71 0.55 

SR 1 0.91 0.3448 1 0.02 0.9008 

FG 1 0.05 0.8192 1 0.01 0.9224 

LEG 1 0.1 0.7483 1 1.13 0.2926 

GR 1 0.43 0.5125 1 0.68 0.4133 

SH 1 0 0.988 1 0.9 0.3458 

TH 1 0.17 0.6847 1 0.59 0.4452 

DF model 9 0.95 0.4878 9 0.59 0.8044 

DF error 64 
  

64 
  

       
Dataset "E" Phase 2 (2008–2010)   Phase 3 (2012–2014)   

BR stability DF F-value p-value DF F-value p-value 

BLOCK 3 1.23 0.3054 3 0.6 0.6145 

SR 1 0.05 0.8312 1 1.79 0.1857 

FG 1 1.27 0.264 1 0.31 0.5827 

LEG 1 1.08 0.303 1 0.44 0.5087 

GR 1 0.09 0.7667 1 0.37 0.5474 

SH 1 0.29 0.5949 1 0.16 0.691 

TH 1 2.39 0.1277 1 3.68 0.0598 

DF model 9 0.83 0.5884 9 1.34 0.2355 

DF error 61 
  

61 
  

Cmic stability DF F-value p-value DF F-value p-value 

BLOCK 3 2.5 0.0676 3 2.18 0.0997 

SR 1 2.13 0.15 1 0.13 0.7172 

FG 1 0.24 0.6239 1 0.11 0.7382 

LEG 1 0.12 0.7294 1 4.49 0.0381 

GR 1 0.24 0.6256 1 2.11 0.1514 

SH 1 3.07 0.0849 1 0.03 0.8724 

TH 1 0.37 0.5437 1 0.5 0.4804 

DF model 9 1.49 0.172 9 1.55 0.1517 

DF error 61 
  

61 
  

	

 

       
Dataset "A" Phase 2 (2007–2009)   Phase 3 (2010–2012)   

BR stability  DF F-value p-value DF F-value p-value 

BLOCK 3 1.1 0.3558 3 0.45 0.716 

SR 1 1.06 0.3072 1 0.61 0.4365 

FG 1 0.03 0.8663 1 0.22 0.6408 

LEG 1 0.84 0.363 1 2.37 0.1288 

GR 1 0.84 0.3626 1 1.47 0.2294 

SH 1 0.55 0.4629 1 0.47 0.4944 

TH 1 0.11 0.7397 1 1.63 0.2064 

DF model 9 0.83 0.5923 9 0.82 0.601 

DF error 66 
  

66 
  

Cmic stability DF F-value p-value DF F-value p-value 

BLOCK 3 2.82 0.0453 3 1.33 0.2718 

SR 1 0.38 0.539 1 0.15 0.6999 

FG 1 0.06 0.8005 1 3.33 0.0725 

LEG 1 0.06 0.8045 1 1.3 0.2581 

GR 1 0.72 0.3992 1 0.93 0.3388 

SH 1 2.25 0.1386 1 0.31 0.5796 

TH 1 1.42 0.238 1 1.99 0.1633 

Modell 9 1.64 0.1207 9 0.96 0.4802 

Error 67 
  

67 
  

       
Dataset "B" Phase 2 (2007–2009)   Phase 3 (2011–2013)   

BR stability DF F-value p-value DF F-value p-value 

BLOCK 3 1.12 0.3464 3 1.37 0.2597 

SR 1 1.16 0.2859 1 0.45 0.5067 

FG 1 0.03 0.8675 1 0 0.9825 

LEG 1 0.91 0.3447 1 0.8 0.3744 

GR 1 0.95 0.3336 1 2.29 0.1347 

SH 1 0.61 0.4392 1 0.73 0.3971 

TH 1 0.13 0.7205 1 2.01 0.1615 

DF model 9 0.94 0.4998 9 1.19 0.3189 

DF error 65 
  

65 
  

Cmic stability DF F-value p-value DF F-value p-value 

BLOCK 3 3.62 0.0175 3 1.27 0.2927 

SR 1 0 0.9868 1 3.03 0.0866 

FG 1 0.06 0.8096 1 3.04 0.086 

LEG 1 0.83 0.3662 1 3.19 0.0787 

GR 1 0 0.9731 1 0.48 0.4889 

SH 1 1.2 0.2776 1 0.1 0.7516 

TH 1 0.84 0.3621 1 1.73 0.193 

DF model 9 1.56 0.1454 9 0.99 0.4574 

DF error 66 
  

66 
  

       
Dataset "C" Phase 2 (2007, 2008, 2010) Phase 3 (2011, 2012, 2014) 

BR stability DF F-value p-value DF F-value p-value 

BLOCK 3 0.47 0.701 3 2.9 0.0415 

SR 1 0.93 0.3378 1 0.3 0.5875 

FG 1 0.63 0.4304 1 0.01 0.9136 

LEG 1 1.84 0.1794 1 0.26 0.6133 

GR 1 0.01 0.9238 1 0.12 0.7289 

SH 1 0.23 0.6309 1 0.14 0.7082 

TH 1 0.03 0.8628 1 0.72 0.3978 

DF model 9 0.46 0.8979 9 1.29 0.258 

DF error 67 
  

67 
  

Cmic stability DF F-value p-value DF F-value p-value 

BLOCK 3 1.91 0.137 3 0.6 0.6178 

SR 1 0.05 0.8266 1 0.16 0.6882 

FG 1 0.56 0.4562 1 0.29 0.5939 

LEG 1 2.52 0.1173 1 1.31 0.2559 

GR 1 0.22 0.6425 1 0.01 0.9222 

SH 1 0.39 0.537 1 0 0.9571 

TH 1 0.81 0.3702 1 0.01 0.9156 

DF model 9 1.19 0.3137 9 0.45 0.904 

DF error 66 
  

66 
  

       
Dataset "D" Phase 2 (2007, 2009, 2010) Phase 3 (2011, 2013, 2014) 
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3.1 Abstract 

Background: Loss of biodiversity and increased nutrient inputs are two of the most crucial 

anthropogenic factors driving ecosystem change. Although both received considerable attention in 

previous studies, information on their interactive effects on ecosystem functioning is scarce. In 

particular, little is known on how soil biota and their functions are affected by combined changes in 

plant diversity and fertilization.  

Methodology/Principal Findings: We investigated the effects of plant diversity, functional 

community composition, and fertilization on the biomass and respiration of soil microbial 

communities in a long-term biodiversity experiment in semi-natural grassland (Jena Experiment). 

Plant species richness enhanced microbial basal respiration and microbial biomass, but did not 

significantly affect microbial specific respiration. In contrast, the presence of legumes and 

fertilization significantly decreased microbial specific respiration, without altering microbial biomass. 

The effect of legumes was superimposed by fertilization as indicated by a significant interaction 

between the presence of legumes and fertilization. Further, changes in microbial stoichiometry (C-to-

N ratio) and specific respiration suggest the presence of legumes to reduce N limitation of soil 

microorganisms and to modify microbial C use efficiency.  

Conclusions/Significance: Our study highlights the role of plant species and functional group 

diversity as well as interactions between plant community composition and fertilizer application for 

soil microbial functions. Our results suggest soil microbial stoichiometry to be a powerful indicator of 

microbial functioning under N limited conditions. Although our results support the notion that plant 

diversity and fertilizer application independently affect microbial functioning, legume effects on 

microbial N limitation were superimposed by fertilization, indicating significant interactions between 

the functional composition of plant communities and nutrient inputs for soil processes.  

 

3.2 Introduction 

Loss of biodiversity and increased nutrient inputs are two of the most crucial anthropogenic impacts 

on Earth´s biosphere (Galloway et al. 2008, Butchart et al. 2010). Many studies have investigated the 

effects of species loss and eutrophication on ecosystem functioning; however, usually these factors 

have been considered in isolation. Knowledge of how these factors interactively influence ecosystem 

functions, such as decomposition and element cycling, is incomplete (but see e.g. (Chung et al. 2007, 

Isbell et al. 2013)).  

Plant diversity plays an important role for ecosystem functions, such as primary productivity (Roscher 

et al. 2005, Cardinale et al. 2011) and its temporal and spatial stability (Tilman and Downing 1994, 

McCann 2000, Eisenhauer et al. 2011). Diverse grassland plant communities are more productive 
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than plant communities with low diversity (Cardinale et al. 2011, Reich et al. 2012). Positive effects of 

species diversity on plant productivity in turn increase the input of organic carbon (C) to the soil, e.g., 

by producing more root exudates and shoot and root litter, thereby enhancing resource supply to 

decomposers (Zak et al. 2003, Leggewie and Welzer 2009). In particular, grasses may lead to high 

rates of soil microbial respiration and biomass due to their dense root system and high root 

exudation rates compared to other plant functional groups (Eisenhauer et al. 2010, Roscher et al. 

2012). 

Microbial communities are known to respond to the identity and diversity of C substrates secreted by 

plant roots (Grayston et al. 1996, Johnson et al. 2008, Leggewie and Welzer 2009). As different plant 

species provide different biochemical compounds (Grayston et al. 1998), higher plant diversity is 

likely to improve the nutrition of microorganisms. Thus, microorganisms may not only profit from 

higher quantity, but also from higher variety of plant-derived resources in species-rich plant 

communities (Leggewie and Welzer 2009) and from lower temporal variability of C supply (Milcu et 

al. 2010). Consequently, microbially-driven processes, such as decomposition and element cycling, 

are affected by plant diversity (Hooper et al. 2005). Previous studies found microbial biomass to 

increase with increasing plant diversity (Zak et al. 2003, Eisenhauer et al. 2010, De Deyn et al. 2010), 

thereby also modifying biogeochemical cycles (Zak et al. 2003, Chung et al. 2007). However, previous 

studies also stressed the importance of certain plant functional groups for the composition and 

functioning of soil organisms (Spehn et al. 2000, Milcu et al. 2008). For instance, N fixation by 

rhizobia associated with legumes and high root biomass of grasses have been identified as major 

drivers of soil communities (Spehn et al. 2000, Eisenhauer et al. 2009b).  

Given the significant role of N in shaping the composition of terrestrial ecosystems (Vitousek and 

Aber 1997), anthropogenic N inputs may alter the relationship between plant diversity and 

ecosystem functioning (Reich et al. 2001) as well as interactions between plants and soil organisms 

(Chung et al. 2007, Eisenhauer et al. 2012). Soil microorganisms are generally C-limited (Wardle 1992, 

Hobbie and Hobbie 2013, Farrell et al. 2014) and drive soil N transformations that, for a large part, 

require easily accessible C [28]. On the other hand, plants are typically N- and/or P limited (LeBauer 

and Treseder 2008). N addition therefore generally increases primary productivity and organic 

matter input to the soil (Gough et al. 2000, Dijkstra et al. 2005), and can directly contribute to 

microbial growth and activity (Treseder 2008), thereby leading to enhanced competition between 

plants and microorganisms for N (Kaye and Hart 1997).However, N addition can also adversely affect 

soil microbial biomass and activity (Treseder 2008). A number of mechanisms have been proposed to 

explain effects of increased N input on soil microbial growth, including soil acidification (Johnson et 

al. 1991, Fenn et al. 2006) as well as leaching of nutrients such as magnesium and calcium (Vitousek 
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and Aber 1997, Treseder 2008). This leads to uncertainty on the overall outcome for soil microbial 

properties, especially when considering N addition in interaction with other environmental changes. 

We investigated effects of plant diversity and community composition, fertilizer addition, and their 

interactions on the activity (respiration) and biomass of soil microorganisms in temperate grassland. 

At the Jena Experiment field site, where we conducted this study, the positive effect of fertilizer on 

primary productivity was slightly strengthened by plant species richness (Weigelt et al. 2009). 

However, effects of fertilization mainly occurred in plots without legumes (Weigelt et al. 

2009),suggesting significant interactive effects of plant community composition and fertilization on 

soil microorganisms. Specifically, we tested the following hypotheses: 

(1) Plant species and functional group richness increase soil microbial respiration and biomass 

due to increased resource supply by plants. 

(2) Plant functional groups (grasses, small herbs, tall herbs, legumes) differently affect soil 

microorganisms due to group-specific functional traits. 

(3) Fertilization increases soil microbial biomass and respiration by enhancing plant productivity.  

(4) Effects of plant diversity and community composition on soil microbial respiration and 

biomass are strengthened by fertilization.  

 

3.3 Material and Methods 

Ethic statement 

Soil and plant biomass sampling were conducted with the permission of the city council of Jena, 

Germany. 

 

Study site  

The experiment was performed on the field site of the Jena Experiment, a long-term biodiversity 

study focusing on the role of biodiversity for ecosystem functioning in semi-natural temperate 

grassland (Roscher et al. 2004). The study site is situated in the floodplain of the Saale River near the 

city of Jena (Thuringia, Germany, 50° 55` N, 11° 35` E, 130 m a. s. l.). Mean annual temperature is 

9.3°C and mean annual precipitation is 587 mm. Prior to establishment of the Jena Experiment in 

May 2002 the site had been used as arable field for about 40 years. The plant communities 

established in the Jena Experiment were assembled from plant species typical for hay meadows in 

Central Europe.  

 

Experimental design 

We established model grassland communities from a pool of 60 plant species differing in two aspects 

of plant diversity. The experiment included a gradient of plant species richness of 1, 2, 4, 8, 16 and 60 
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plant species and a gradient of plant functional group richness of 1, 2, 3 and 4 different plant 

functional groups (for details see (Roscher et al. 2004)).Plant species were ascribed to functional 

groups using cluster analysis based on above- and belowground morphological traits, phenological 

traits, and N2 fixation (Roscher et al. 2004). The 60 species were grouped into grasses (16 species), 

small herbs (12 species), tall herbs (20 species), and legumes (12 species).  

The experiment consists of 82 plots of 20 × 20 m. Plots are mown twice a year in June and September 

and weeded in April and July to maintain the target plant species composition. Plots were grouped 

into four blocks with two blocks sampled in the present study. Each block contains an equal number 

of plots of plant species and plant functional group richness levels. For more detailed information on 

the experimental design see (Roscher et al. 2004).  

 

Fertilizer treatment and aboveground plant biomass sampling 

Within each plot of 20×20 m, two subplots of 1.6 × 4.0 m each were established; fertilizer was added 

to one of the subplots as mineral NPK pellets (100 kg N ha-1, 44 kg P ha-1, 83 kg K ha-1) in early spring 

(April 2006 and March 2007) and after the first mowing (June 2006 and June 2007); control subplots 

were kept unfertilized. Plots were mown twice a year during the growing season (June and 

September) at approximately 3 cm above soil surface. The cut material was removed from the plots. 

Mowing, fertilizing, and weeding were carried out block-wise, and the block effect was included in 

the statistical model. For more details see (Weigelt et al. 2009).  

 

Soil and aboveground plant biomass sampling 

Soil samples were taken in June 2008 in control and fertilized subplots in each of the plots of blocks 1 

and 2. Eight samples were taken per subplot with a soil corer (1.5 cm diameter, 15 cm deep), pooled 

and transferred to the laboratory. Roots and soil animals were picked by hand and the samples 

sieved through 2 mm mesh. Aboveground plant biomass was harvested subplot-wise in one 

randomly placed 0.2 × 0.5 m area, dried (70°C, 48h) and weighed (Weigelt et al. 2009). 

 

Soil microbial biomass, C-to-N ratio, and respiration 

Microbial biomass C (MBC) was measured by substrate-induced respiration (SIR; see below) and 

chloroform fumigation extraction (CFE); soil microbial biomass determined by the two methods 

correlated significantly (R2=0.55, P < 0.001). Combined with measurements of microbial biomass N 

(MBN), the latter was used for calculating microbial C-to-N ratio, whereas the former was used to 

calculate microbial specific respiration as both basal respiration and substrate-induced respiration 

were measured from the same soil sample (see below).  
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For measurement of microbial biomass by chloroform fumigation extraction (MBCCFE) two 

subsamples of 7 g were taken from each soil sample, one was fumigated with chloroform vapour for 

24 h, while the other remained unfumigated. Fumigated and unfumigated samples were extracted 

with 40 ml 0.5 M K2SO4 with agitation for 30 min, the extracts were filtered and frozen. Total C and N 

in the extracts was measured by dry combustion in a DIMA-TOC 100 Analyzer (Dimatec, Essen, 

Germany). MBCCFE was calculated as [(total C in fumigated soil) - (total C in non-fumigated soil)] / 

0.45 (Wu et al. 1990). MBN was calculated as [(total N in fumigated soil) – (total N in non-fumigated 

soil)]/0.54 (Brookes et al. 1985).Gravimetric soil water content was measured by drying subsamples 

at 105°C for 48 h. Microbial biomass C-to-N ratio was determined from data on soil microbial 

biomass C and N (Jenkinson and Powlson 1976, Brookes et al. 1985, Joergensen and Mueller 1996). 

Microbial basal respiration was measured using an O2 microcompensation apparatus (Scheu 1992). 

O2 consumption of soil microorganisms in fresh soil equivalent to 3.5 g dry weight was measured at 

22°C over a period of 24 h. Basal respiration [µL O2 g-1 dry soil h-1] was calculated as mean of the O2 

consumption rates of hours 14 to 24 after the start of measurements. Substrate-induced respiration 

(Anderson and Domsch 1978) was determined by adding D-glucose to saturate catabolic enzymes of 

microorganisms according to preliminary studies (4 mg g-1 dry soil solved in 400 µL deionized water). 

Maximum initial respiratory response (MIRR; [µL O2 g-1 dry soil h-1]) was calculated as mean of the 

lowest three O2 consumption values within the first 10 h after glucose addition. MBCSIR [µg C g-1 dry 

soil] was calculated as 38 × MIRR (Beck et al. 1997). Data on microbial basal respiration and MBCSIR 

were used to calculate microbial specific respiration (metabolic oxygen quotient; [µL O2 mg-1MBC h-

1]) as a measure of microbial C use efficiency by dividing basal respiration by MBCSIR (Anderson and 

Domsch 1985). MBCSIR was used to analyze the response of microbial biomass C to experimental 

treatments, as done in previous studies of the Jena Experiment (Eisenhauer et al. 2010).  

 

Statistical analyses 

Data (except microbial C-to-N ratio) were log-transformed to meet the requirements of parametric 

statistical tests. Plant species richness was log-transformed to linearize the saturating relationship 

between plant diversity and soil microbial properties (Hooper et al. 2005). Effects of block, plot, (log-

transformed) plant species richness, plant functional group richness, fertilization, and presence of 

grasses, tall herbs, small herbs, and legumes as well as interactions between plant community factors 

and fertilization were analyzed by sequential split-plot general linear models (GLM, type I sum of 

squares). The effects of block and plant community factors were tested against plot in order to avoid 

pseudo-replication, whereas fertilization and interactions were tested against the total error. 

Multiple comparisons of means were conducted using Tukey’s honest significant difference test. 

Statistical analyses were performed using SAS 9.3 (SAS Institute, Cary, USA). Regressions between 
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microbial C-to-N ratio as well as aboveground plant biomass and microbial properties were carried 

out using Sigmaplot 10.0 (Systat Software Inc., San Jose, USA).  

 

3.4 Results 

Soil water content and aboveground plant biomass were significantly increased by plant species 

richness (F=13.12, P<0.001, R²=0.16, and F=58.45, P< 0.001, R2=0.43, respectively). Moreover, plant 

species richness significantly increased basal respiration and MBCSIR (Fig. 1a, b; Table1). Aboveground 

plant biomass and soil water content correlated positively with MBN (plant biomass: F=8.31, P<0.01, 

R2=0.09,Fig. 1c; soil water: F=89.35, P<0.001, R²=0.53) and MBCSIR (plant biomass: F=10.88, P<0.01, 

R2=0.12, Fig. 1d; soil water: F=47.18, P<0.001, R²=0.37).Nevertheless, plant diversity effects on soil 

microbial respiration and MBCSIR remained (marginally) significant even if accounting for the effect of 

aboveground plant biomass (respiration: F=17.77, P<0.001; microbial biomass: F=7.40, P<0.01) or 

soil water content (respiration: F=5.53, P<0.05; microbial biomass: F=3.23, P<0.1), indicating that 

plant diversity effects on soil microbial properties cannot be fully explained by aboveground plant 

biomass production and soil water content. Plant functional group richness significantly enhanced 

basal respiration, but only when fitted before plant species richness (Fig. 1e). 

 

Table 1. Fertilization and plant community effects on soil microbial properties. 

 
GLM table of F-values for effects of block, plot, fertilization (FERT), log-transformed plant species richness(logSR), 

plant functional group richness (FR), presence of grasses (GR), legumes (LEG), small herbs (SH) or tall herbs (TH) 

and the respective interactions between fertilization and plant community properties on log-transformed data 

of microbial basal respiration (logBR), microbial biomass C (logMBCSIR), microbial specific respiration (logqO2), 

and microbial biomass N (log MBN) and un-transformed microbial C-to-N-ratio. d.f. = degrees of freedom; F = F-

value; P = p-value. ↑ / ↓ = increase/decrease with increasing diversity level or in presence of the respective 

plant functional group or treatment. Significant effects (P≤0.05) are given in bold. 
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The interaction between the presence of legumes and fertilization significantly affected basal 

respiration and specific respiration: legumes reduced basal and specific respiration in non-fertilized 

plots, but increased both of these variables in fertilized plots (Fig. 2a, b). As indicated by regression 

analyses specific respiration increased significantly with increasing microbial C-to-N ratio in non-

fertilized but not in fertilized plots (Fig. 2c).The presence of legumes significantly decreased microbial 

C-to-N ratio (-12%; Fig. 3a), while the presence of grasses significantly enhanced it (+9%; Fig. 

3b).Further, the presence of small herbs significantly increased basal respiration (+18%; Fig. 3c) and 

soil MBCSIR (+18%; Fig. 3d). Neither MBN nor microbial C-to-N ratio were significantly affected by 

plant diversity measures or by fertilization. 

Figure 1. Effects of 

plant diversity and 

shoot biomass on 

microbial basal 

respiration and soil 

microbial biomass C 

and N. Effects of plant 

species richness on (A) 

basal respiration and 

(B) soil microbial 

biomass C. (C) 

Relationships between 

aboveground plant 

biomass (dry weight) 

and soil microbial 

biomass C, and (D) 

between aboveground 

plant biomass and soil 

microbial biomass N. (E) 

Effects of plant 

functional group 

richness on basal 

respiration. Note log 

scale of y-axes. Black 

dots are measures from 

unfertilized plots, white 

dots from fertilized 

plots. Regression lines 

with 95% confidence 

bands. Asterisks 

indicate significant 

differences (**p≤0.01, 

***p≤0.001). 

 



Chapter 3  Study 2: Fertilization Experiment 

 59 

 

 

 

Figure 2. Interactive effects of the presence of legumes and fertilization on microbial basal respiration 

and specific respiration, and correlation between microbial C-to-N ratio and microbial specific 

respiration in fertilized and unfertilized plots. (A) Interactive effects of the presence of legumes and 

fertilization on soil microbial basal respiration and (B) specific respiration. Means with standard error 

bars. Different letters indicate significant differences (*p≤0.05; **p≤0.01).(C) Regressions between soil 

microbial C-to-N (C:N) ratio and specific respiration in unfertilized plots (black line, black dots) and 

fertilized plots (dashed line, white dots) with coefficients of determination and p-values of slopes. 
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Figure 3. Effects of plant functional groups on microbial properties. Effects of (A) legumes and (B) grasses on 

microbial C-to-N (C:N) ratio. Effects of small herbs on (C) basal respiration and (D) soil microbial biomass C. 

Asterisks indicate significant differences (*p ≤ 0.05, **p ≤ 0.01). Means with standard error bars.  

 

3.5 Discussion 

We investigated effects of plant community properties and fertilization on soil microbial biomass, 

respiration and C use efficiency. Plant community properties significantly affected soil microbial 

activity (respiration) and biomass, while fertilization affected microbial activity and C use efficiency 

(specific respiration). In contrast to our hypothesis, effects of plant diversity (species and functional 

group richness) were independent of fertilization. Our results highlight the importance of plant 

diversity for increased basal respiration and soil microbial biomass and are in line with previous 

studies (Spehn et al. 2000, Zak et al. 2003, Chung et al. 2007). Plant functional groups, legumes, 

grasses, and small herbs contrastingly affected soil microbial properties. The significant correlation 

between soil water content and plant species richness as well as the weaker plant species richness 

effect when fitted after soil water content suggests that effects of plant diversity on soil microbial 

respiration and biomass are mediated, at least in part, by changes in soil water content (Joffre et al. 

2003, Lange et al. 2014). Our microbial stoichiometry results (C-to-N ratio) suggest that legumes 

reduced N limitation of soil microorganisms, and that under N limitation microbial stoichiometry 

determines the functioning of soil microbial communities (as indicated by changes in microbial 

specific respiration). Additionally, the ratio between fungal and bacterial biomass may have shifted 
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towards bacteria in the presence of legumes as fungal biomass is known to decrease in presence of 

legumes and with increased N input (de Vries et al. 2006).  

In accordance with our hypothesis 1, plant species richness significantly increased soil microbial 

biomass and basal respiration. Plant diversity effects on soil microbial properties remained significant 

even after accounting for the effect of aboveground plant biomass. This suggests that plant diversity 

impacted soil microbial functioning via mechanisms not directly related to aboveground plant 

productivity. Plant functional group richness increased microbial basal respiration, but did not 

significantly affect the other soil microbial parameters measured. The lack of effects of plant diversity 

on microbial specific respiration was unexpected, as Wardle and Ghani (Wardle and Ghani 1995) 

showed microbial specific respiration to decrease in more stable ecosystems such as those with high 

plant diversity (Eisenhauer et al. 2013). High diversity plant communities are likely to provide high 

amounts of resources to decomposer communities (Tilman and Downing 1994). Aboveground plant 

biomass correlated positively with MBCSIR and MBN despite plants were cut and residues were 

removed from the plots after mowing, suggesting that enhanced C and N availability to soil 

microorganisms in high diversity communities was due to increased amounts of root-derived 

resources (Ravenek et al. 2014). Microbial communities in the rhizosphere are known to heavily rely 

on root exudates (Baudoin et al. 2003) and other rhizodeposits (Dennis et al. 2010). Further, more 

constant C and N inputs into the soil and high plant coverage in high diverse plant communities 

(Tilman et al. 1997, Eisenhauer et al. 2009a) as well as more constant and favourable soil moisture 

(Wardle 1992) may have contributed to higher soil microbial respiration and biomass at high plant 

diversity (Eisenhauer et al. 2010).  

Hypothesis 2 suggested plant functional groups to differently affect soil microbial properties, due to 

group-specific plant functional traits (Dıáz and Cabido 2001, Roscher et al. 2004, Eisenhauer et al. 

2010). Supporting this hypothesis, the presence of legumes significantly reduced basal respiration, 

specific respiration, and microbial C-to-N ratio, while small herbs significantly enhanced soil microbial 

basal respiration and biomass. The fact that legumes did not alter soil microbial biomass is in line 

with findings of Zak et al. (Zak et al. 2003), but contrasts with other plant diversity studies in 

experimental grasslands (e.g., (Biederbeck et al. 2005, Milcu et al. 2008)). Eisenhauer et al. 

(Eisenhauer et al. 2010) found increased soil microbial biomass in the presence of legumes at the 

same field site four years before the present study, but this effect disappeared two years later, 

indicating a change in the effects of certain plant functional groups on microbial properties over 

time. N2 fixation by legumes requires high amounts of phosphorus (Chaudhary et al. 2008), 

potentially leading to stronger P limitation of soil microorganisms as compared to plant communities 

without legumes. Indeed, Oelmann et al. (Oelmann et al. 2007) found legumes to reduce labile 

inorganic P compounds at our study site. Thus, competition for P between soil microorganisms and 
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legumes may explain the missing legume effect on soil microbial biomass in this study (Kuzyakov and 

Xu 2013). Lower microbial C-to-N ratio in the presence of legumes indicates improved nitrogen 

supply of soil microorganisms due to N2 fixation by legumes. Therefore, the reduced microbial 

specific respiration in the presence of legumes likely was due to improved C use efficiency induced by 

increased N supply.  

In contrast to legumes, the presence of grasses increased microbial C-to-N ratio and specific 

respiration, indicating reduced microbial C use efficiency. Grasses are characterized by higher tissue 

C-to-N ratios than other plant functional groups and by building dense fibrous root systems with high 

specific root length (Jackson et al. 1997, Weigelt et al. 2008). Thus, grasses likely enhance microbial 

activity and biomass by providing large amounts of rhizodeposits (Krift et al. 2001). However, we 

suggest grasses to force soil microorganisms to invest more energy into metabolic activity to alleviate 

N limitation, resulting in competition for N between soil microorganisms and plants (Kaye and Hart 

1997). Reduced soil water content in the presence of grasses likely aggravated the competition 

between plants and microorganisms for capturing N (Kaye and Hart 1997, Schimel et al. 1997). Small 

herbs are generally shallow-rooting, with most roots in the soil layer sampled in the present study. 

Presumably, increased soil microbial activity and biomass in the presence of small herbs in our study 

were due to increased rhizodeposition in the topsoil (Martens 1990, Paterson 2003, Paterson et al. 

2006).  

In contrast to hypothesis 3, fertilization did not affect soil microbial biomass. In earlier studies effects 

of fertilization on soil microbial biomass have been found to be positive (Zhong and Cai 2007, Chu et 

al. 2007), negative (Treseder 2008, Ramirez et al. 2012) or neutral (Donnison et al. 2000), suggesting 

that higher plant productivity due to fertilization does not uniformly translate into increased soil 

microbial biomass. A number of mechanisms may explain the lack of fertilizer effects on soil 

microbial biomass. First, the removal of the aboveground biomass after mowing prevented 

aboveground litter from entering the soil. Second, fertilization generally reduces plant resource 

allocation to belowground structures, resulting in reduced root biomass (Bardgett et al. 1999, Phillips 

and Fahey 2007, Wang et al. 2012), and hence, reduced root deposits serving as resources for 

microorganisms. Third, as the response of soil microbial communities to changes in plant community 

composition has been shown to lag behind by several years (Eisenhauer et al. 2010), our two-year 

study may have been too short to uncover the full effects of fertilization on soil microorganisms 

(Treseder 2008). Soil microbial activity may have responded earlier to fertilization than microbial 

biomass, due to fertilizer-mediated changes in rhizodeposition (Chung et al. 2007) or reduced root 

exudation (Dijkstra et al. 2005).  

Fertilization superimposed the negative legume effect on basal and specific respiration. Legumes are 

known to negatively respond to N fertilization as they may be outcompeted by grasses starting to 
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grow earlier in the season and having a more efficient root system for nutrient uptake (Wilman and 

Fisher 1996, Brum et al. 2009). Notably, both legumes and fertilizer addition decreased microbial 

respiration, but the underlying mechanisms are likely to be different: legumes decreased microbial 

activity probably by improving organic N supply, while fertilization presumably acted through 

decreasing rhizosphere priming effects (Kuzyakov 2002) and simultaneously through provision of 

inorganic N used by microorganisms (Harrison et al. 2008). Indeed, earlier studies in forest soils also 

found N amendment to decrease soil microbial activity (Bowden et al. 2004, Phillips and Fahey 2007). 

Although it remains elusive whether decreased specific respiration was induced by inhibition of 

microbial metabolism [33] or by increased microbial C use efficiency (Wardle and Ghani 1995), we 

assume the latter to be more likely as fertilization alleviates N limitation of microorganisms with high 

C-to-N ratio. In non-fertilized plots, microbial C-to-N ratio was positively correlated with specific 

respiration, while this was not the case in fertilized plots, indicating that soil microorganisms at the 

field site of the Jena Experiment are N limited as indicated in earlier studies (Eisenhauer et al. 2010). 

Hence, our results demonstrate microbial stoichiometry to be a powerful indicator of soil microbial 

functioning in N limited systems (Hartman and Richardson 2013). In addition, microbial C-to-N ratios 

at our study site are close to that of bacteria (i.e., 5:1 (Cleveland and Liptzin 2007)), suggesting that 

bacteria rather than fungi were responsible for the observed responses (Lange et al. 2014). 

Contrary to hypothesis 4, fertilization did not strengthen the effects of plant diversity (species 

richness and functional group richness) on soil microbial respiration or biomass. Except for the 

interaction between legumes and fertilizer addition discussed above, fertilization and plant diversity 

did not in an interactive way affect any soil microbial parameters measured. This contrasts earlier 

studies reporting the addition of N to increase effects of plant diversity on ecosystem functioning 

(Reich et al. 2001, 2004), or to induce positive biodiversity-ecosystem functioning relationships (He 

et al. 2002). At the Jena Experiment field site Weigelt et al. (Weigelt et al. 2009) found N fertilization 

to slightly increase effects of plant diversity on primary production. Overall, this suggests that plant 

diversity and fertilization act through decoupled mechanisms on microbial properties with the effects 

being independent of N fertilizer-induced increase in plant productivity in more diverse plant 

communities. Alternatively, the weak interactive effect of plant diversity and fertilization on plant 

biomass production may not be strong enough to cascade to changes in soil microbial respiration and 

biomass. 

 

3.6 Conclusions 

Overall, plant diversity beneficially affected soil microorganisms, likely due to changes in 

rhizodeposition, plant productivity, and soil moisture. Our results underline the importance of plant 

functional groups, in particular legumes, for soil microbial functioning and stoichiometry. Thus, 

promoting high plant diversity in managed grasslands, by including certain plant functional groups, is 
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likely to beneficially affect microbially-driven ecosystem functions such as decomposition and 

element cycling. Generally, effects of plant diversity and fertilization were independent, while the 

effect of legumes on microbial C use efficiency was modified by fertilization. Both legumes and 

fertilization alleviated N limitation of soil microorganisms, but this likely was due to different 

mechanisms with legumes acting via provisioning of organic N, and fertilization acting via 

provisioning of inorganic N and decreasing rhizosphere priming effects. Our results suggest that both 

fertilizer application and the presence of legumes reduce soil microbial N limitation, and thereby 

modulate soil microbial stoichiometry and functioning. To mechanistically understand the observed 

response of microorganisms root-derived resources need closer investigation.  

 

3.7 Supporting Information 
 

 
S1 Fig. Realized species richness in fertilized and unfertilized subplots. Number of realized species in 
unfertilized vs. fertilized subplots for (A) all species, (B) grasses, (C) small herbs, (D) tall herbs and (E) legumes. 
Given are means (+/- standard error) recorded in 2008 on plots with sown diversity levels of 1, 2, 4, 8 and 16 
plant species. Species richness was derived from species specific frequency measurements in 30 quadrats of 10 
x 10 cm in size within the core area of 1 m2 of treated subplots.  
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4.1 Abstract 

Background: Although nitrogen (N) deposition is increasing globally, N availability is still a limiting 

nutrient for many organisms, such as microorganisms (bacteria and fungi) and mesofauna. 

Nevertheless, little is known to which extent soil organisms rely on mineral-derived nitrogen and 

whether plant community diversity and composition modifies the uptake of this N source.  

Methodology/Principal Findings: We set up a field experiment in experimental grasslands with 

different levels of plant species richness (2, 4, 8, and 16 plant species), and plant functional group 

richness (1, 2, 3, and 4 plant functional groups; legumes, grasses, small herbs, tall herbs). We labelled 

soil with 15NH4
15NO3 and analyzed the incorporation of mineral-derived 15N into soil microorganisms 

and most abundant mesofauna taxa (Tectocepheus velatus sarekensis – oribatid mite, primary 

decomposer; Lepidocyrtus cyaneus, Isotoma viridis, Parisotoma notabilis, Ceratophysella sp. and 

Stenaphorura denisi - all springtails, secondary decomposers; as well as Lasioseius berlesei – gamasid 

mite, predator) over three months (5, 15, 30, 60, and 120 days after labeling). Incorporation of 

mineral-derived N peaked at the first sampling date into all studied soil organisms (i.e., two days 

after labelling in microorganisms, 5 days after labelling in mesofauna). The incorporation of mineral-

derived N into the predatory gamasid mite L. berlesei was only affected by time. Increasing plant 

species richness and presence of legumes decreased the incorporation of mineral N into soil 

microorganisms. Increasing plant species richness also decreased the incorporation of mineral-

derived N into the secondary decomposer springtail Ceratophysella sp. Effects of both, plant species 

richness and functional group richness on other studied mesofauna species varied with time. 

Presence of grasses increased the incorporation of mineral-derived N into Ceratophysella sp., 

however decreased it in the primary decomposer oribatid mite T. velatus sarekensis.  

Conclusions/Significance: The results highlight that soil microorganisms heavily incorporate mineral 

N, and that this N is quickly channelled into higher trophic levels of the soil food web. The amount of 

mineral-derived N incorporated into soil animals, as well as the plant community properties affecting 

this incorporation, differed markedly between soil animal taxa, reflecting species-specific nutritional 

strategies. Our results further emphasize that plant diversity and community composition alter the 

competition for N in soil and change the nutrient transfer across trophic levels in soil food webs, 

potentially leading to changes in soil animal population dynamics and community composition. In the 

face of elevated N deposition worldwide, sustaining high plant diversity in semi-natural grassland 

may buffer detrimental effects of elevated N deposition on soil biota.  
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4.2 Introduction  

Soil microorganisms and soil fauna are key players for ecosystem functions such as decomposition 

and element cycling. The nitrogen (N) cycle is an almost entirely microbially-driven process 

(Veresoglou et al., 2012), but soil animals also contribute directly or indirectly to N cycling (Carrillo et 

al., 2011; Seastedt, 1984; Verhoef and Brussaard, 1990). Soil animal species can be classified into 

primary decomposers, secondary decomposers and predators (Scheu, 2002). Primary decomposers 

contribute to decomposition and mineralization of nutrients by feeding on dead plant material, while 

secondary decomposers mainly feed on microorganisms living in soil or being associated with plant 

roots. Both, primary and secondary decomposers, such as Oribatida and Collembola, significantly 

contribute to carbon (C) and N cycling (Filser, 2002; Lemanski and Scheu, 2015; Osler and 

Sommerkorn, 2007; Pollierer et al., 2012; Verhoef and Brussaard, 1990). The beneficial effects of 

these animal groups on C and N cycling are mostly indirect either via modifying microbial activity 

(Buscot and Varma, 2005) or via distributing microbial propagules (Filser, 2002; Renker et al., 2005). 

However, the sources from which soil animals acquire N for their own nutrition and the factors 

affecting N acquisition by soil animals are little understood. 

Nitrogen is an essential, but limiting resource for plants and soil animals (Vitousek and Howarth, 

1991; Wilder and Eubanks, 2010). Despite the central role of N for soil animal nutrition, most of the 

studies that investigated element fluxes in soil food webs focused on the flux of C (Albers et al., 2006; 

Müller et al., 2016; Pollierer et al., 2007), and little is known about the resources soil animals use to 

meet their N requirements. Generally, soil animals, such as primary and secondary decomposers, 

meet their demand for N based either on microbial N or on plant litter N. However, the relative 

contribution of these sources for soil animal N nutrition is little understood. Soil animals may acquire 

both C and N from the same or from different sources, with recent studies pointing rather to the 

former (Farrell et al., 2014; Zieger et al., 2017b). Pollierer et al. (2012) demonstrated that soil animals 

in beech forest use both the microbial energy channel (bacteria and fungi) as well as plants as C 

sources. Thus, soil animals may satisfy their demand for N also by both channels. Zieger et al. (2017a) 

and Scheunemann et al. (2016) showed that decomposer mesofauna species in beech forests and 

arable fields gain C as well as N by feeding on microorganisms, especially fungi.  

The acquisition of N by soil animals for building up their body tissue likely also varies with 

environmental factors influencing soil animal nutrition. In particular, plants may modify the 

incorporation of N by soil animals as they compete with microorganisms for N in soil and thereby 

alter the availability of microbial N for soil animals (Kuzyakov and Xu, 2013; Strecker et al., 2015). 

Simultaneously, plants may provide soil microorganisms and animals with C and N via 

rhizodeposition (Schenck zu Schweinsberg-Mickan et al., 2012; Zieger et al., 2017b). Recent studies 

showed that plant diversity increases soil N storage (Oelmann et al., 2011), soil microbial activity and 
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C storage (Lange et al., 2015) as well as soil microbial biomass (Eisenhauer et al., 2017, 2010; Strecker 

et al., 2015). Scherber et al. (2010) demonstrated cascading effects of plant diversity on the whole 

animal food web in temperate experimental grasslands which might be due to plant-mediated 

changes in animal N nutrition. Plant diversity and the ecosystem functions related to it are 

increasingly threatened by human activities worldwide (Cardinale et al., 2012; Chapin et al., 2000; 

Isbell et al., 2011). For understanding the impact of plant diversity loss on the soil animal food web, 

the role of plants for the nutrition of soil animals needs closer consideration (Chahartaghi et al., 

2005; Crotty et al., 2011; Sechi et al., 2014).  

Plants compete with soil microorganisms for mineral N as both typically are limited by N (Hodge et 

al., 2000; Kuzyakov and Xu, 2013), and this likely is more severe in species-rich plant communities as 

plants take up nutrients more efficiently in more diverse communities (Bessler et al., 2012; Jesch et 

al., 2018; Roscher et al., 2008). This holds especially in the long term as soil microorganisms can take 

up nutrients quickly but have shorter live cycles than plants. Scheunemann et al. (2016) studied the 

incorporation of mineral N into soil microorganisms and mesofauna of an arable field, but did not 

consider plants and plant diversity as potential driving factor for the incorporation of N into soil 

animals. Eisenhauer et al. (2013) investigated the effects of plant diversity and N deposition on the 

abundance and diversity of soil fauna, but did not consider the incorporation of N into soil animals. 

With the present study, we addressed these gaps by investigating the incorporation of mineral N into 

soil microorganisms and subsequently into soil mesofauna species as modified by plant diversity.  

Besides plant diversity, plant functional groups, such as grasses and legumes, may affect nutrient 

incorporation into soil mesofauna as they have different root C-to-N-ratios (Chen et al., 2008), and 

differ in their annual N uptake (Bessler et al., 2012). Grasses are highly competitive for soil N due to 

their dense root system and clonal growth (de Witte and Stöcklin, 2010). Accordingly, they strongly 

exploit N resources in soil and reduce N availability (Bessler et al., 2012; Hodge et al., 1999; Roscher 

et al., 2008; Wedin and Tilman, 1990). Strecker et al. (2015) observed that the microbial C-to-N ratio 

to increase in presence of grasses at the field site of the present study, indicating competition for N 

between microorganisms and grasses. This finding is supported by results of Oelmann et al. (2007a) 

who found reduced soil mineral N concentration in the presence of grasses at the same field site. 

Consequently, soil animal species relying on microbial N likely also experience increased N limitation 

in the presence of grasses. Legumes can fix molecular N via rhizobia and fuel the soil system with 

organic nitrogen via rhizodeposition and input of litter material. Thereby, legumes mitigate 

competition for N and influence the N nutrition of soil organisms (Marschner et al., 2011; Oelmann et 

al., 2007a; Spehn et al., 2002).  

Ayres et al. (2007) observed that legumes substantially increase the release of N into the soil after 

defoliation with subsequent increase in soil microbial biomass. Milcu et al. (2006) demonstrated that 



Chapter 4  Study 3: Tracer Experiment 

 73 

tissue N concentration in earthworms decreased in presence of Collembola, and that legumes 

diminished the competition for N between these decomposer animals. The positive effect of legumes 

on the N availability for these animals likely also holds for other decomposer species.  

In the present study, we aimed at tracking the incorporation of labeled mineral N into soil 

microorganisms and the channeling of the incorporated mineral N to higher trophic levels of the soil 

food web as affected by plant diversity and plant community composition in experimental temperate 

grassland. 15N stable isotope labeling was used for tracing N fluxes into different compartments of 

the belowground system (Crotty et al., 2012; Zieger et al., 2015). As the channeling of N from lower 

to higher trophic levels likely occurs with a time lag, we expected the 15N signal to be incorporated 

first into soil microorganisms, then into secondary decomposers and finally into predatory species, 

but not into primary decomposers (using only plant litter resources). To test these expectations, we 

followed the incorporation of 15N into soil microorganisms and mesofauna 2, 15, 30, 60, and 120 days 

after labeling. 

In detail, we investigated the following hypotheses: 

(1) Due to delayed channeling of N from lower to higher trophic levels, the flux of mineral N 

from soil microorganisms into higher trophic levels occurs with a time lag. 

(2) Incorporation of mineral N into soil microorganisms and mesofauna decreases with 

increasing plant diversity (plant species richness and functional group richness), as high plant 

diversity communities more efficiently exploit nutrient resources in soil.   

(3) Presence of legumes decreases the incorporation of mineral N into microorganisms and 

mesofauna, as legumes fuel the soil system with biologically fixed N. 

(4) Presence of grasses decreases the incorporation of mineral N into microorganisms and 

mesofauna, as grasses effectively compete for soil N with other soil organisms. 

 

4.3 Material and Methods 

Study site 

The experiment was conducted within the framework of the Jena Experiment, a large grassland 

biodiversity experiment, which investigates in an integrative way the role of plant diversity for 

ecosystem functioning (Roscher et al., 2004). The experiment was established in 2002 on a former 

arable field in the floodplain of the Saale River near to the city of Jena (Thuringia, Germany, 50°55` N, 

11° 35`E, 130 m a.s.l.). The soil is Eutric Fluvisol, mean precipitation is 610 mm per year, and mean 

temperature is 9.9°C (Hoffmann et al., 2014). The plant species used in the experiment are typical for 

Central European mesophilic grasslands (Arrhenatherion community; Ellenberg and Leuschner, 2010). 

The experimental plots did not receive any fertilizer, were mown twice a year, and aboveground 

plant biomass was removed from the field site to imitate typical management of extensive hay 
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meadows in the study region, and weeded by hand two to three times a year to maintain the target 

plant community composition.  

The 80 plant communities were selected out of a pool of 60 plant species, and comprised a plant 

species richness gradient including monocultures as well as 2, 4, 8, 16, and 60 plant species 

combinations. The plant species were chosen from four plant functional groups, which were created 

according to cluster analyses based on above- and below-ground morphological traits, phenological 

traits and N2-fixation, resulting in 16 grasses, 12 small herbs, 20 tall herbs, and 12 legumes. Thus, the 

plant communities also comprised a plant functional group richness gradient (1, 2, 3, and 4 plant 

functional groups). The plots were grouped into four blocks with an equal number of plots per 

diversity level to account for changes in soil texture with increasing distance from the Saale River. For 

detailed information on the design of the Jena Experiment see Roscher et al. (2004).  

 

Experimental design  

In this study, a subset of 40 plots varying in plant species richness (2, 4, 8, and 16 plant species) was 

used, with ten replicates per plant species richness level. The number of plant functional group 

richness levels (1, 2, 3, and 4 plant functional groups) was balanced within each species richness level 

and the plots with different diversity levels were equally distributed across the four blocks.  

On each of the 40 experimental plots, a subplot (56 x 69 cm) was established from which samples 

were taken in five sequential sampling campaigns. To prevent horizontal flow of the tracer solution 

out of the subplots and to reduce lateral migration of soil animals between labeled and unlabeled 

areas, PVC boards were installed as barriers along the subplot border to a height and depth of 15 cm, 

respectively.  

 

Experimental procedure 

The experimental subplots were labeled with 15N at the beginning of the growing season in 2011 (18-

19th April). The 15N tracer solution (0.01 mol 15NH4
15NO3/L deionized water; 98 atom %; Cambridge 

Isotope Laboratories, Tewksbury, MA, USA) was injected into pre-drilled holes of a depth of 7 cm in 

the soil arranged along gridlines (distance within grid lines  8.7 cm, distance between  grid lines 10 

cm, resulting in 49 holes per subplot). The tracer solution was injected using a 3 mm thick four-side 

port needle (2 mL per injection point) connected with a silicon tube to a bottle top dispenser 

(Socorex Isba SA, Switzerland) on a 1 L glass bottle. A funnel was used to prevent contamination of 

the vegetation with tracer solution.  

For measuring the time-integrated incorporation of 15N into soil microorganisms and mesofauna, five 

samples were taken 2 (5 for mesofauna), 15, 30, 60, and 120 days after labeling. At each sampling 

campaign, three soil cores were taken per subplot for microbial biomass (Ø 5 cm, 0-5 cm depth) and 
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one soil core for mesofauna (Ø 20 cm, 0-10 cm depth). The three samples per subplot for measuring 

microbial biomass were pooled, placed into plastic bags and stored at 4°C until further analyses. Soil 

cores for analyzing mesofauna were stored for a maximum of 4 days at 4°C to prevent soil animals 

from deceasing. Soil animals were extracted with a high gradient heat extractor, collected in glycerol, 

transferred into 70% ethanol and identified to species or genus level. For the analysis of the natural 

abundance of 15N, reference soil cores for microorganisms and mesofauna were taken 10 cm 

adjacent to the sampling area within each plot five days before labeling as described above.  

Based on biomass estimates, the following mesofauna species were used for stable isotope analyses: 

Tectocepheus velatus sarekensis (Oribatida, primary decomposer), Lepidocyrtus cyaneus, Isotoma 

viridis, Parisotoma notabilis, Ceratophysella sp. and Stenaphorura denisi (all Collembola, secondary 

decomposers), as well as Lasioseius berlesei (Gamasina, predator). Tectocepheus velatus sarekensis 

(Oribatida, primary decomposer), Lepidocyrtus cyaneus, Isotoma viridis, Parisotoma notabilis, 

Ceratophysella sp. and Stenaphorura denisi (all Collembola, secondary decomposers), as well as 

Lasioseius berlesei (Gamasina, predator). In the results section, we present the analyzed animals 

beginning with the animal species being significantly affected by the variable time and then follow 

the order of variables in the statistical model with their respective interactions with time. Thus, the 

order of the animals follows the animal species being significantly affected by plant species richness 

(SR), SR x Time, plant functional group richness (FGR), FGR x Time, presence of legumes (LEG), LEG x 

Time, presence of grasses (GR), and GR x Time.  

Microbial biomass N was extracted from soil by chloroform fumigation-extraction (CFE) (Brookes et 

al., 1985). Prior to the extraction, roots were removed by hand. To remove other background N, 50 g 

fresh soil of each sample were taken, and N was removed via pre-extraction with 100 mL 0.05 M 

K2SO4 with agitation for 30 min (200 rpm) and centrifugation for 10 min (200 U/min) at 4000 g. Two 

subsamples (10 g soil fresh weight each) were taken from each pre-extracted soil sample. One 

subsample was fumigated with chloroform vapor for 24 h, the other remained unfumigated. Both 

subsamples were extracted with 60 ml 0.05 M K2SO4 as described above, the extracts were filtered 

and frozen at -18°C until further analysis. At each fumigation campaign, two blank samples were 

processed together with fumigated and unfumigated subsamples to account for contamination of 

the subsamples during the procedure. Before analyzing stable isotope ratios of the subsamples and 

blank samples, a fraction of the samples (15 mL) was freeze-dried (VaCo2, Zirbus Technology, Bad 

Grund, Germany) at -30°C for 3 d and stored in plastic vessels in a desiccator. For referring results of 

15N measurements to one gram dry soil, gravimetric soil water content was measured by drying 10 g 

of fresh soil subsamples of each sample at 105°C for 48 h.  
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Stable isotope analysis 

For analyses of 15N/14N ratios in microbial biomass N and in soil mesofauna, appropriate amounts of 

the freeze-dried microbial N extract (60-65 µg) and appropriate numbers of animals (10-120 

individuals weighing 10-200 µg and containing 1-20 µg N) were transferred into tin capsules. In few 

cases individuals from the same sampling campaign but different plots with similar plant community 

composition were pooled. Stable isotope ratios were measured with a coupled system of an 

elemental analyzer (NA 1500, Carlo Erba, Milan, Italy) and a mass spectrometer (MAT 251, Finnigan, 

Bremen, Germany) (Reineking et al., 1993). Mesofauna samples were measured on a micro-

elemental analyzer system (Euro-EA 300, Eurovector, Milano, Italy) allowing the analysis of small 

amounts of animal tissue (Langel and Dyckmans, 2014). Isotope signatures are expressed using the δ 

notation with δ15N (‰) = (Rsample/Rstandard -1) x 1000, where R is the molar ratio of heavy to the light 

isotope (15N/14N). Acetanilide (C8H9NO, Merck, Darmstadt, Germany) was used for internal 

calibration. As standard for δ15N, atmospheric nitrogen was used. Shifts in 15N/14N ratios in 

mesofauna species due to labeling with 15NH4
15NO3 were inspected by calculating the difference 

between δ15N values of specimens inside and outside the subplots, i.e. Δ values.  

For calculating microbial biomass N, the amounts of N in the two blind samples of the different CFE 

campaigns were averaged and subtracted from the measured N mass of each subsample. Microbial 

biomass N was calculated as Nmic = EN/kEN, with EN being the difference between total N extracted 

from fumigated soil and total N extracted from unfumigated soil, and kEN the extractable fraction of 

microbial biomass N after fumigation (Joergensen and Mueller, 1996). Soil microbial biomass 15N (µg 

15N/ g dry soil) was calculated as 15Nmic (µg/ g dry soil) = 15N (µg / g dry soil) of fumigated subsample – 

15N (µg /g dry soil) of unfumigated subsample (Brookes et al., 1985). Atom percent excess (APE, 

isotopic enrichment) of 15N in microbial biomass N was calculated as the difference in atom% 

between labelled and natural abundance level of 15N in soil microbial biomass (Buresh et al., 1982; 

Dyckmans et al., 2005) as 

APE N15 = ((
N15

mic

total Nmic
)

labeled
−  (

N15
mic

total Nmic
)

natural
) ∗ 100. 

 

Microbial biomass C was calculated as Cmic = EC/kEC, with EC being the difference between total C 

extracted from fumigated soil and total C extracted from unfumigated soil. 

 

Statistical analyses 

All statistical analyses were performed in R vers. 3.6.1 using the graphical user interface RSTUDIO vers. 

1.1.383 (R Core Team, 2019). Data were inspected for normality (Shapiro–Wilk-test, Q-Q-Plot) and 

homoscedasticity (Levene’s test). To achieve normality and homoscedasticity, we log-transformed 

microbial APE 15N and Δ15N for the total dataset and for all animal species separately. For testing the 
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effects of plant community properties on microbial APE 15N and Δ15N values of mesofauna species.  

Plant species richness (SR) was log-transformed to linearize the relationship between plant diversity 

and microbial properties (Hooper et al., 2005). Regarding the multiple linear regression model (LM) of 

the total data set between 15N data and the fixed factors block (factor with four levels), animal species 

(factor with seven levels), plant species richness (SR, log-linear term), plant functional group richness 

(FGR, linear term), legumes presence-absence (LEG, factor with two levels), grasses presence-absence 

(GR, factor with two levels) and time (days since labeling), no experimental treatment significantly 

influenced the response variable except of block, animal species and time (see supporting Information, 

Table 1). Therefore, we chose multiple linear mixed effect models (LMEs), used block as random factor, 

and calculated LMEs between 15N data and treatments for each animal species and microbial biomass 

separately. Presence-absence of grasses (GR, two factor levels) and presence-absence of legumes (LEG, 

two factor levels) as well as days after labeling (Time, five factor levels) were used as categorical 

predictors, while log-transformed plant species richness (SR) and plant functional group richness (FGR) 

were used as linear variables (using SR and FGR as categorical factors was not possible because the 

dataset was too small and unbalanced).  We used the function lmer() implemented in the R package 

‘lme4’ vers. 1.1-21 (Bates et al., 2019, 2015) and the R package ‘lmerTest‘ vers. 3.1-0 (Kuznetsova et 

al., 2019) for calculating p values. We performed backward model-selection by step-wise removing the 

least significant variable until the final model was reached (Crawley, 2015). Additionally, we proved 

each model simplification step with Akaike information criterion (AIC).  

4.4 Results 

Microorganisms 

Generally, the incorporation of 15N into microorganisms (15Nmic APE) declined with time (t = -12.78, p 

< 0.0001, Fig. 1; supporting information Table 2), reflecting the fast incorporation of the mineral 15N 

into microorganisms and its following turnover. Plant species richness significantly decreased 15Nmic 

APE (t = -2.52, p = 0.013, Fig. 2A). Presence of legumes affected microbial 15N, but this effect varied 

over time with microbial 15N being lower in the presence of legumes compared to plots without 

legumes at early sampling dates, but this effect disappeared at days 60 and 120 (t = 2.33, p = 0.21, 

Fig. 2B). 15Nmic (µg/g dry soil) was positively correlated with Nmic (R2 = 0.93; t = 43.69, p < 0.0001) and 

Cmic (R2 = 0.83; t = 26.24, p < 0.0001) irrespective of the sampling date, indicating that changes in 15N 

incorporation paralleled changes in Nmic and Cmic.  
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Fig. 1. Changes in the incorporation of 15N into soil mesofauna species (Δ15N values) and into soil microorganisms (APE 
15Nmic) over time (2-120 days for microorganisms and 5-120 days for mesofauna species).  

 

 

 
Fig. 2. Effects of (A) plant species richness, and (B) time and presence of legumes, on 15N atom percent excess in microbial 
biomass N (15Nmic APE); 0/1 = absence/presence of legumes; means ± 1 SE. Asterisks indicate significant differences 
(*p≤0.05, **p≤0.01, ***p≤0.001); for details see Table 1. 

 

Mesofauna  

Generally, the incorporation of 15N (Δ15N values) into the studied mesofauna species declined with 

time parallel to 15Nmic APE, except in T. velatus sarekensis (Fig. 1, Table 2), reflecting the dominant 

flux of mineral N into mesofauna species via microbial N. However, the factors affecting the 

incorporation of 15N into mesofauna varied among the species studied (Table 2). Time affected the 

mineral 15N incorporation into all studied mesofauna species, either as a main factor or in 

combination with plant community properties. As main factor, it was only significant in L. berlesei 

and marginally significant in L. cyaneus with Δ15N values decreasing over time (Fig. 3, Fig. 6C, Table 2).  

Δ15N values of Ceratophysella sp. significantly decreased with increasing plant species richness (Fig. 

4). In T. velatus sarekensis, Δ15N values also varied with plant species richness, but the effect 
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depended on time. Early in the experiment, the incorporation of 15N was lower at high species 

richness, whereas later it was higher (Fig. 5A). Similarly, Δ15N values in P. notabilis and S. denisi also 

varied significantly with plant species richness and time. In both species, Δ15N values increased with 

plant species richness at day 5, whereas they decreased at day 120 (Fig. 5 B, C).  

 

 

 

 

 

 

 

 

 

 

Fig. 5. Interactive effects of plant species richness and time on Δ15N values of (A) Tectocepheus velatus sarekensis, (B) 
Parisotoma notabilis, and (C) Stenaphorura denisi; means ± 1 SE. Asterisks indicate significant effects (*p≤0.05, **p≤0.01, 
***p≤0.001); for details see Table 2. 

Fig. 3. Effects of time on Δ15N values of 
Lasioseius berlesei; means ± 1 SE. Asterisks 
indicate significant differences (*p≤0.05, 

**p≤0.01, ***p≤0.001); for details see Table 2. 

Fig. 4. Effect of plant species richness on Δ15N 
values of Ceratophysella sp.; means ± 1 SE. 
Asterisks indicate significant differences (*p≤0.05, 
**p≤0.01, ***p≤0.001); for details see Table 2.  
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Functional richness as a main factor did not affect Δ15N values of any studied mesofauna species. 

However, in combination with time, functional group richness affected Δ15N values in T. velatus 

sarekensis, S. denisi, L. cyaneus, and I. viridis (Fig. 6 A-D). In T. velatus sarekensis, Δ15N values 

decreased with increasing plant functional group richness at day 5, but did not respond in a 

consistent way at the later sampling dates. In S. denisi and I. viridis, Δ15N values also decreased with 

plant functional group richness at day 15 and 30, respectively, but not at the other sampling dates. 

By contrast, in L. cyaneus Δ15N values decreased more consistently at days 30, 60 and 120. 

Presence of legumes generally did not affect Δ15N values of any of the studied mesofauna species. By 

contrast, presence of grasses significantly affected Δ15N values in Ceratophysella sp. and T. velatus 

sarekensis, but the effect varied with time (Fig. 7 A, B). In Ceratophysella sp., Δ15N values strongly 

increased in presence of grasses, but only at days 5 and 15. By contrast, in T. velatus sarekensis, Δ15N 

values decreased in presence of grasses, with the effect being most pronounced at days 15 and 30.  

 

 
Fig. 6. Interactive effects of plant functional group richness and time on Δ15N values of (A) Tectocepheus velatus 
sarekensis, (B) Stenaphorura denisi, (C) Lepidocyrtus cyaneus, and (D) Isotoma viridis; means ± 1 SE. Asterisks indicate 
significant differences (*p≤0.05, **p≤0.01, ***p≤0.001); for details see Table 2. Bars without SE represent single 
measurements.  
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Fig. 7. Interactive effects of grasses and time on Δ15N values of (A) Tectocepheus velatus sarekensis, and (B) 
Ceratophysella sp.; means ± 1 SE. Asterisks indicate significant differences (* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001); for 
details see Table 2.  
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Table 2. Effects of plant diversity (species richness, functional group richness), plant functional group identity, and time on the incorporation of mineral-derived N into studied mesofauna 

species. LME table of t- and p-values for the effects of the factors plant species richness (SR), plant functional group richness (FGR), presence of legumes (LEG), presence of grasses (GR), and 

time on the incorporation of mineral nitrogen into soil mesofauna species (Δ15N values). Intercept = intersection point with y-axis. df = estimated degrees of freedom. ↓/↑= decrease/ 

increase with increase of the respective factor. Significant effects (p ≤ 0.05) are given in bold. Asterisks indicate levels of significance (*p≤0.05, **p≤0.01, ***p≤0.001). df= theoretical degrees 

of freedom. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Lasioseius berlesei Ceratophysella sp.  Tectocepheus velatus sarekensis Parisotoma notabilis  Stenaphorura denisi 

  Estimate df t p Estimate df t p Estimate df t p Estimate df t p Estimate df t p 

(Intercept) 2.711 75.00 71.27 < 0.0001*** 2.620 10.68 24.12 <0,0001*** 1.792 52.00 20.69 < 0,0001*** 2.462 16.41 22.30 <0.0001*** 2.449 22.00 46.25 <0.0001*** 

SR       -0.262 64.82 -2.20 0.032↓* -0.261 52.00 -2.28 0.026↓* 0.219 24.76 1.92 0.07       

FGR                              

LEG                               

GR       0.460 10.65 3.72 0.004↑**                   

Time -0.005 75.00 -8.91 <0.0001↓***                         

SR x Time             0.007 52.00 2.25 0.028* -0.005 24.36 -6.67 <0.0001*** -0.007 22.00 -2.55 0.0182* 

FGR x  Time             0.003 52.00 2.63 0.011*       0.002 22.00 2.48 0.0214* 

LEG x Time                         -0.005 22.00 -1.99 0.060 

GR x Time         -0.004 68.99 -4.58 <0.0001*** -0.010 52.00 -3.80 0.0004***         0.003 22.00 1.42 0.171 

AIC full mod. -14.10       35.47     30.72       5.15       79.979       
AIC red. mod. -25.38       31.46       -1.03       -4.84       3.35       

                     

                     
  Lepidocyrtus cyaneus Isotoma viridis              
  Estimate df t p Estimate df t p             
(Intercept) 2.6724 8.72 61.56 <0.0001*** 2.36 12 11.25 <0.0001***             
SR       0.46 12 1.772 0.1018             
FGR                         
LEG       -0.39 12 -1.953 0.0746             
GR                         
Time -0.002 63.38 -1.80 0.077                   
SR x Time                         
FGR x Time -0.0009 63.51 -2.69 <0.009** 0.00 12 -2.915 0.013*             
LEG x Time       0.01 12 2.051 0.0628             
GR x Time                             
AIC full mod. -16.48       15.07                   
AIC red. mod. -26.57       13.20                   
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4.5 Discussion 

Soil microorganisms are one of the main food resources of soil animals thereby channelling microbial 

N to higher trophic levels of the soil food web. Nevertheless, until today it is unclear which soil 

animals rely predominantly on N derived from microorganisms and which predominantly rely on N 

from dead organic matter. Further, it is unknown if plants modify the uptake of N by soil animals via 

these channels. Simplified ecosystems with low plant diversity may hamper ecosystem functions 

(Landis, 2017), including the channelling of N to higher trophic levels. Plant N uptake is driven by 

plant traits, such as root density and the ability to fix molecular N, and therefore, both plant 

functional group identity and plant diversity needs to be considered for understanding mineral N 

uptake by microorganisms and its subsequent channelling to higher trophic levels of soil food webs. 

Despite the need to sustain functioning grassland ecosystems to ensure ecosystem services, detailed 

knowledge on the relationships between plant community properties and the channelling of N into 

higher trophic levels of the soil food web is still scarce. To address these gaps of knowledge we 

added mineral 15N to semi-natural grassland of different plant diversity and plant community 

compositions and tracked its incorporation into soil microorganisms and higher trophic levels of the 

soil food web.  

 

Temporal variation of mineral N incorporation  

Generally, the concentration of 15N in mesofauna species declined parallel to that in microorganisms 

with time, reflecting the dominant flux of N from microorganisms to higher trophic levels. The 

applied 15N presumably was increasingly taken up by microorganisms and plants with time. In the 

long-term, plants are superior to microorganisms in mineral N acquisition as they have longer life 

cycles and effectively capture N released by decaying microorganisms (Hodge et al., 2000; Kaye and 

Hart, 1997; Kuzyakov and Xu, 2013). In particular in N-limited ecosystems, such as the grassland site 

investigated in this study (Strecker et al., 2015), N is immobilized quickly by microorganisms and 

plants. Mowing and removal of plant aboveground biomass likely aggravates N limitation, even 

though the deposition of N is high and increasing on a global scale (Leimer et al., 2016, 2013; Reay et 

al., 2008).  

In contrast to our expectations (hypothesis 1), there was no time lag in the incorporation of mineral-

derived N into species of higher trophic levels, such as the predator L. berlesei, as compared to 

potential prey taxa such as Collembola. Rather, N incorporation uniformly peaked at the first 

sampling date after labeling for all studied mesofauna species, except in the primary decomposer T. 

velatus sarekensis. However, the amount of mineral-derived N incorporated into soil animal tissue 

differed markedly between animal taxa reflecting different nutritional strategies. Further, the 

incorporation of mineral-derived N into soil animal species changed with time suggesting that factors 
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driving the incorporation of mineral-derived N into soil animals, such as tissue turnover and feeding 

behaviour, show species-specific temporal dynamics.  

At the first sampling date, incorporation of mineral-derived N was highest in the springtail species 

Ceratophysella sp., followed by the Gamasina L. berlesei and the Collembola L. cyaneus, I. viridis, P. 

notabilis, S. denisi, and the primary decomposer oribatid mite T. velatus sarekensis. High Δ15N values 

in Ceratophysella sp. suggest that this species predominantly acquires its N by feeding on 

microorganisms, which were heavily labelled with 15N. This is supported by other studies reporting 

Ceratophysella sp. and other species of Poduromorpha to predominantly feed on fungi (Chahartaghi 

et al., 2005; Maraun et al., 2003). However, there is evidence that Poduromorpha species also feed 

on plants (Sechi et al., 2014), thus, combined feeding on fungi and plant roots may have been 

responsible for the high Δ15N values in Ceratophysella sp. Omnivory, i.e. feeding on prey from more 

than one trophic level, may alleviate N limitation by broadening the prey spectrum (Wilder and 

Eubanks, 2010). The Collembola L. cyaneus incorporated less 15N than Ceratophysella sp., but still 

incorporation was high 5 days after labeling, which also suggests that this species acquired much of 

its N from feeding on microorganisms. This is in line with other studies reporting L. cyaneus to 

preferentially feed on fungi and to a minor degree on bacteria (Berg et al., 2004; Ferlian et al., 2015). 

Unexpectedly, also the predatory Gamasina L. berlesei quickly incorporated high amounts of mineral-

derived N similar to the level in its potential prey species L. cyaneus. In addition to feeding on highly 

labelled Collembola prey species, the unexpected fast incorporation of mineral-derived N into 

predators may have resulted from feeding on nematodes as major grazers of soil microorganisms 

(Heidemann et al. 2014). In fact, L. berlesei has been shown to prey on nematodes and small 

arthropods such as Collembola (Christian and Karg, 2006; Walter and Ikonen, 1989), thereby quickly 

incorporating N from basal resources. Further, L. berlesei develops fast, reaching maturity after only 

9-19 days (Christian and Karg, 2006), suggesting that this species incorporates mineral-derived N 

from prey species within a few days.  

Intermediate levels of mineral-derived N incorporated into animals, such as the Collembola I. viridis, 

P. notabilis and S. denisi, suggest that these species only in part fed on microorganisms and that their 

diet includes a substantial amount of dead organic matter. However, as these species have been 

assumed to be predominantly microbivorous (Berg et al., 2004; Chahartaghi et al., 2005; Ngosong et 

al., 2011), slow tissue turnover rate may also have contributed to the lower 15N incorporation as 

compared to the microbivorous Ceratophysella sp. and L. cyaneus.  

Low incorporation of mineral-derived 15N in T. velatus sarekensis suggests that this species little relies 

on microbial N. Notably, only in this species the incorporation of mineral-derived N increased slowly 

with time. This suggests that the predominant feeding strategy of T. velatus sarekensis was 

detritivory, potentially including microbial residues, confirming earlier studies assuming this species 
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to live as primary decomposer virtually not relying on N from living microorganisms (Laumann et al., 

2007; Maraun et al., 2011; Siepel and Ruiter-Dijkman, 1993).  

 

Variation of mineral N incorporation with plant diversity  

In general, plant diversity played a major role for the incorporation of mineral-derived N into the 

studied mesofauna species, and this was true for both plant species richness and plant functional 

group richness.  

Confirming our hypothesis 2, plant species richness decreased the uptake of mineral-derived N by 

microorganisms. Competition between microorganisms and plants for mineral N in soil is likely to be 

aggravated in more diverse plant communities as they take up N more efficiently than communities 

of low diversity (Bessler et al., 2012; Jesch et al., 2018), e.g. due to different rooting depths of 

different plant species (Cardinale et al., 2007; Scherer-Lorenzen et al., 2003; Spehn et al., 2005). 

Despite stronger competition for soil N under high plant diversity, positive effects of plant diversity 

on microbial communities may surpass negative ones as soil microbial activity and biomass increases 

with plant diversity, probably due to increased rhizodeposition that mitigates carbon limitation of 

microorganisms (Cline et al. 2018; Lange et al. 2015; Strecker et al. 2016, 2015).  

Also in line with hypothesis 2, plant species richness as a main factor significantly decreased Δ15N 

values in Ceratophysella sp., likely because Ceratophysella sp. fed on microorganisms that were also 

reduced in 15N due to limited N supply in high diverse plant communities (see above). Interestingly, 

plant species richness exerted time-dependent effects on T. velatus sarekensis, P. notabilis, and S. 

denisi. In T. velatus sarekensis, Δ15N values decreased with plant species richness at the beginning of 

the experiment, but increased with increasing plant species richness later in the experiment. 

Potentially, the increase in Δ15N values in T. velatus sarekensis with plant species richness later in the 

experiment was due to increased availability of dead plant roots containing 15N from the mineral 15N 

added. In P. notabilis and S. denisi, Δ15N values increased with increasing plant species richness early 

in the experiment, but this effect disappeared later. Presumably, this reflects that certain species of 

microorganisms associated with roots incorporated more 15N in more diverse plant communities and 

were heavily grazed by microbivorous microarthropods such as P. notabilis and S. denisi.  

In addition to plant species richness, Δ15N values of microarthropods also varied significantly with 

plant functional group richness. In T. velatus sarekensis, S. denisi, I. viridis and L. cyaneus Δ15N values 

decreased with increasing plant functional group richness in particular early in the experiment. 

Presumably, this again reflects the more effective capture of nutrients by plants in more diverse 

plant communities resulting in lower incorporation of 15N into microorganisms.  
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Variations of mineral N incorporation with plant functional group identity 

Conform to hypothesis 3, the presence of legumes decreased mineral-derived N in soil 

microorganisms, with the effect being most pronounced at day 30 and declining later in the 

experiment. This is in line with results of Strecker et al. (2015) reporting that legumes reduce N 

limitation of soil microorganisms at the field site of the Jena Experiment, presumably via the release 

of N fixed by legumes into the soil via rhizodeposition diluting the added mineral 15N and thereby its 

uptake by microorganisms. However, we found no effect of legumes on the incorporation of mineral-

derived N into any of the studied mesofauna species. Obviously, the effect of legumes on soil 

microbial N did not propagate to higher trophic levels, contrasting our expectations. Potentially, the 

large number of other plant species in the Jena Experiment diluted the legume effect at our field site.  

In contrast to hypothesis 4, presence of grasses did not affect mineral-derived N in microorganisms. 

This contradicts earlier findings showing that the presence of grasses enhances the microbial C-to-N-

ratio, i.e. decreases the availability of N for soil microorganisms (Strecker et al., 2015). Although the 

presence of grasses did not change microbial 15N APE, they affected Δ15N values in Ceratophysella sp. 

and in T. velatus sarekensis. However, the effects differed between species and varied with time. In 

Ceratophysella sp., presence of grasses increased Δ15N values with the effect being strongest at days 

5 and 15. The positive effect of grasses on the Δ15N values of Ceratophysella sp. support the view 

that the diet of this species is not restricted to microorganisms but also includes plants (Sechi et al., 

2014) in particular roots highly labelled with 15N (Jesch et al., 2018). Conform to hypothesis 4, grasses 

decreased Δ15N values in T. velatus sarekensis, and this effect was strongest at days 30 and 60. This 

suggests that T. velatus sarekensis mainly fed on herbs and not on grasses. This is supported by the 

fact that, despite effective nutrient acquisition, grasses have a higher C-to-N ratio compared to many 

legume and non-legume herbs (Abbas et al., 2013; Bessler et al., 2012), resulting in low food quality. 

 

4.6 Conclusions 

Labeling temperate grassland soil with mineral 15N allowed tracking the incorporation of mineral N 

into soil microorganisms and its transfer into higher trophic levels of the soil food web as affected by 

plant diversity and community composition. Importantly, the method allowed differentiating 

between soil animals relying on microbial N and those relying on N from dead organic matter. All of 

the investigated mesofauna species at least in part incorporated microbial mineral-derived N. Our 

data thus underline the predominant role of microorganisms in channelling N to higher trophic levels 

of soil food webs and indicate that this resource contributes significantly to the nutrition of soil 

invertebrates. Notably, predatory species quickly incorporated mineral-derived N (within 5 days), 

suggesting that prey species with short life cycles, presumably mainly nematodes, speed up the 
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channelling of microbial N into predators, but also secondary decomposers such as Collembola which 

in part also feed on nematodes.  

Confirming our expectations, plant diversity (species richness as well as functional group richness) 

significantly modified the incorporation of mineral-derived N into the studied mesofauna species. 

The data suggest that high plant diversity reduces the incorporation of mineral-derived N into higher 

trophic levels of the soil food web due to their high competitiveness for N towards microorganisms. 

Thus, we conclude that high plant diversity may alter the competitive interactions between soil 

animal taxa and change the nutrient transfer across trophic levels in soil food webs via tightening the 

competition for N. Especially in N-limited grassland systems such as the field site of the Jena 

Experiment (Eisenhauer et al. 2010), this may also change the population dynamics and community 

composition of the soil food web as compared to those at low plant diversity. Presumably, high plant 

diversity may lead to soil food webs that are mainly based on fungi, as these are more efficient in 

exploiting soil resources as compared to bacteria. This is supported by de Vries et al. (2007, 2006), 

who found increased soil fungal biomass in grasslands with no or reduced N fertilizer input (hence, 

low mineral N availability). In the face of elevated N deposition worldwide, high plant diversity may 

also buffer detrimental effects of N deposition on soil biota (Eisenhauer et al., 2012), highlighting the 

importance of sustaining high plant diversity in grassland ecosystems. 
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4.9 Supporting Information 

Table 1. LM table of t- and p-values for the effects of species richness (SR), plant functional group richness (FGR), LEG 

(legumes), GR (grasses), Time, Block (1-4), mesofauna species (Isotoma viridis, Lasioseius berlesei, Lepidocyrtus cyaneus, 

Ceratophysella sp., Parisotoma notabilis, Stenaphorura denisi, Tectocepheus velatus sarekensis), and the respective 

interactions of plant community properties and time on the incorporation of mineral N (Δ 15N values) of the studied 

mesofauna species. Intercept = intersection point with y-axis.↓/↑= decrease / increase with increase of the respective 

factor. Significant effects (p ≤ 0.05) are given in bold. Asterisks indicate levels of significance (*p≤0.05, **p≤0.01, 

***p≤0.001).  

  Estimate Std. Error t value p 

(Intercept) 2.8070 0.07458 37.637 <0.0001*** 

SR -0.0351 0.07170 -0.489 0.6252 
FGR -0.0350 0.04000 -0.875 0.3821 
LEG 0.0178 0.08193 0.217 0.8281 
GR 0.0656 0.07346 0.893 0.3722 
Time -0.0031 0.00100 -3.069 0.0023↓** 
Block1 0.0464 0.08214 0.564 0.5730 
Block2 -0.0715 0.04891 -1.461 0.1448 
Block3 -0.0151 0.04730 -0.319 0.7501 
Block4 0.1309 0.04612 2.839 0.0048** 
Isotoma viridis -0.2912 0.07248 -4.017 0.0001*** 
Lasioseius berlesei -0.1475 0.04349 -3.392 0.0008*** 
Lepidocyrtus cyaneus -0.1593 0.04653 -3.425 0.0007*** 
Ceratophysella sp.  -0.8506 0.12190 -6.979 <0.0001*** 
Parisotoma notabilis -0.1456 0.05752 -2.531 0.0118* 
Stenaphorura denisi -0.1785 0.05960 -2.995 0.0003** 
Tectocepheus velatus sarekensis -0.9648 0.04739 -20.36 <0.0001*** 
SR x Time -0.0003 0.00124 -0.232 0.8163 
FGR x Time 0.0000 0.00059 0.009 0.9932 
LEG x Time 0.0003 0.00117 0.263 0.7925 
GR x Time -0.0002 0.00112 -0.194 0.8465 

 

Table 2. Effects of plant diversity (species richness, functional group richness), plant functional group identity, and time on 

the incorporation of mineral-derived N into soil microbial biomass. LME table of t- and p-values for the effects of the factors 

plant species richness (SR), plant functional group richness (FGR), presence of legumes (LEG), presence of grasses (GR) on 

the incorporation of mineral nitrogen (15N APE) into soil microbial biomass. Intercept = intersection point with y-axis. df = 

estimated degrees of freedom. ↓/↑= decrease / increase with increase of the respective factor. Significant effects (p ≤ 

0.05) are given in bold. Asterisks indicate levels of significance (*p≤0.05, **p≤0.01, ***p≤0.001).  

  Microorganisms 
  Estimate df t p 

(Intercept)   86.880 15.17  16.11 <0.0001*** 
SR -11.960 168.90 -2.52  0.013↓* 
FGR       
LEG -9.271 169.60 -1.99  0.048↓* 
GR       
Time -0.633 167.20 -12.78 <0.0001↓*** 
SR x Time       
FGR x  Time       
LEG x Time  0.169 167.20  2.33  0.021* 
GR x Time         

AIC full mod. -854.68     
AIC red. mod. -860.00       
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5 General Discussion 

The present thesis was conducted in the context of current global change and its consequences for 

ecosystem functioning. The experiments within this thesis were all conducted in the framework of 

the Jena Experiment, a large biodiversity experiment which investigates the role of plant diversity 

(plant species richness and functional group richness) and several environmental change factors for 

ecosystem functioning. We conducted three studies: in study 1 (CHAPTER 2, Stability Experiment), 

we investigated how plant diversity and community composition modulates spatial and temporal 

stability of soil microbial community properties over a time period of 12 years; study 2 (CHAPTER 3, 

Fertilizer Experiment) focused on how plant diversity and plant community composition interact 

with mineral nitrogen fertilizer (NPK) to influence soil microbial properties (basal respiration, 

biomass and specific respiration) in bulk soil by using an O2 micro-compensation apparatus and the 

chloroform-fumigation extraction method; and in study 3 (CHAPTER 4, Tracer Experiment), we 

examined how plant diversity and community composition modulate the incorporation of mineral 

nitrogen into soil microorganisms and its channeling to higher trophic levels of the soil food web 

(mesofauna) by labelling soil with mineral 15N.  

Taken together, these studies highlight the importance of both, plant diversity (plant species richness 

and functional group richness), as well as plant functional group identity (legumes, grasses, small 

herbs and tall herbs) for soil microbial properties, their stability as well as for the channeling of 

mineral N from microorganisms to higher trophic levels of the soil food web (mesofauna). In parallel, 

our results revealed that plant diversity as well as the identity of plant functional groups do not affect 

all investigated soil microbial properties (including their stability) and mesofauna species equally, but 

the effects are dependent on the respective microbial property, animal species identity, and rely on 

temporal shifts of environmental conditions, such as soil nutrient availability.  

 

5.1 Changes in soil microbial properties with time and plant community 

composition 

In study 1 and 2, soil microbial properties, i.e. basal respiration and biomass C, both increased with 

increasing plant species richness four years after the establishment of the experimental grassland 

until the last measurement 12 years after establishment. Our results reinforce the results of earlier 

studies that found plant diversity to positively affect soil microbial properties (Chung et al., 2007; 

Spehn et al., 2000; Zak et al., 2003). Also, the results point to the transitory period the soil system 

needs to react to environmental changes such as land-use change from agricultural fields to semi-

natural grasslands. We suggest four mechanisms to cause the positive plant diversity effect on soil 

microbial functions: first, higher plant species richness was associated with higher soil water content, 
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implying less evaporation due to higher plant coverage under high diverse plant communities. 

Constant and sufficient soil moisture is an essential factor for the activity of soil organisms (Joffre et 

al., 2003; Lange et al., 2014; Wardle, 1992). Further, higher plant diversity implicates higher primary 

productivity (Hector et al., 1999; Hooper et al., 2005; Weigelt et al., 2009). Thereby, these plant 

communities also translocate higher amounts of resources from shoots to roots, leading us to the 

second and third mechanism how plant species richness fosters soil microbial functions: through 

higher root litter deposition, and through higher root exudation (Baudoin et al., 2003; Dennis et al., 

2010; Nico Eisenhauer et al., 2017). Both, the input of dead root material as well as root exudation 

deliver important C and N resources for soil microbial communities (Nico Eisenhauer et al., 2017; 

Meyer et al., 2016; Mommer et al., 2016). Fourth, higher plant diversity implicates higher stability of 

favourable ecosystem properties (more constant C and N provision and soil moisture), thereby 

preventing a major part of the soil microbial community from switching into a dormant state and 

allowing for higher growth rates (Anderson and Domsch, 1985; Eisenhauer et al., 2010; Tilman and 

Downing, 1994):  

Interestingly and against our expectation, the positive relationships did not homogeneously 

strengthen over time. Instead, the relationship between plant species richness and microbial basal 

respiration was strongest already 7 years after the establishment of the experiment, while the 

relationship between plant species richness and soil microbial biomass C reached its steepest slope 

not before 11 years after the establishment of the experiment. Our results suggest that during the 

first 7 years of the experiment, microbial basal respiration increased with increasing plant species 

richness due to increasing resource inputs by plants (Marquard et al., 2009; Ravenek et al., 2014; 

Reich et al., 2012). This positive relationship attenuated after 7 years because the soil microbial 

community matured and adapted to the soil conditions in the established semi-natural grassland, 

leading to higher resource use efficiency of the microbial community (Wardle and Ghani, 1995). After 

this “optimization” period (i.e., shift in physiology and/or community structure), the soil microbial 

community started to increase in biomass, and this process materialized after another time lag of 4 

years. With this study, for the first time we showed that the positive effects of plant species richness 

on soil microbial properties remain significant within a time frame of more than 10 years. As in 

matured grassland systems with high plant species richness plant inputs into the soil system are 

generally high, we assume that the positive relationship between plant species richness and soil 

microbial properties will continue (Weigelt et al., 2009).  

Surprisingly, the results of our study 1 (Chapter 2, Stability Experiment) did not show strong evidence 

that plant diversity also increases the (spatial/temporal) stability of soil microbial properties, but 

indicated that plant diversity effects on soil microbial stability turned from being negative to neutral, 

and reinforced the results of study 2 (Fertilizer Experiment) that plant diversity enhances soil 
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microbial properties.  

Against our expectation and in contrast to other studies (Eisenhauer et al., 2013; Wardle and Ghani, 

1995), microbial C use efficiency did not increase with increasing plant diversity. As indicated by the 

results of our long-term study (Chapter 2, Stability Experiment), both soil microbial respiration as 

well as biomass increased beyond the time frame of study 2, but also showed an enhanced variance 

of soil microbial properties with higher plant diversity. 

To mechanistically understand why the slopes of the relationships between plant species richness 

and soil microbial properties peaked in certain years and why the slope between plant species 

richness and microbial respiration peaked several years before that of microbial biomass, more 

studies are needed. In particular, future studies should explore the abiotic and biotic drivers of inter-

annual differences in the slope of plant diversity-ecosystem function relationships. Drivers of these 

differences likely include abiotic factors such as pH and soil moisture/drought, and biotic factors such 

as rhizodeposition and shifts in microbial community structure (de Vries et al., 2012, 2007, 2006).  

The results of our studies 1 and 2 (Stability- and Fertilizer Experiment, Chapter 2 and 3, respectively) 

revealed that not only diversity of plant communities, but also their functional composition matters 

for soil microbial properties. Out of the four plant functional groups in the investigated plant 

communities (legumes, grasses, small herbs, tall herbs), especially legumes and grasses influenced 

the performance of soil microorganisms. Importantly, our results corroborate that different plant 

functional groups can exert either different or similar effects on soil microbial properties, but that 

the responsible mechanisms are always plant-trait-specific and differ among plant functional groups 

(Bardgett et al., 2014; Ebeling et al., 2014). For example, the presence of grasses increased the 

microbial C-to-N-ratio as well as specific respiration. Our results suggest that grasses exacerbate the 

limitation of nutrients and water for soil microorganisms (Kaye and Hart, 1997; Schimel et al., 1997) 

due to high competitiveness associated with their dense root system, high specific root length and 

low tissue C-to-N-ratio (Jackson et al., 1997; Weigelt et al., 2008). In contrast to grasses, legumes 

decreased the microbial C-to-N-ratio as well as the specific microbial respiration (discussed below). 

Further, environmental conditions such as soil nutrient availability have also to be considered, as 

these conditions may change the effects of plant functional groups. For example, Eisenhauer et al. 

(2010) found legumes to increase the soil microbial biomass, but this effect was no longer detectable 

in our ensuing Fertilizer Experiment (Chapter 3). We propose that legumes first facilitated soil 

microbial biomass by mitigating N limitation, but hampered further microbial growth when 

competition for P tightened (Chaudhary et al., 2008; Oelmann et al., 2007). This suggests that 

interactions between specific traits of plant functional groups and environmental factors can exert 

temporally dynamic effects on ecosystem functions, and consequently may alter the delivery of 

ecosystem services for humans (Bardgett et al., 2014).  
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Notably, the positive effect of legumes on soil N availability for microorganisms remained persistent 

also after their facilitating effect on microbial biomass had disappeared, as demonstrated by our 

result from study 2 that legumes reduced the microbial C-to-N-ratio. It is well known that legumes 

fuel the soil with organic N through N-rich plant litter and root exudation (Fustec et al., 2010; Spehn 

et al., 2002). The novelty of our results is that in N-limited soil systems, the microbial stoichiometry 

(C-to-N-ratio) can be used as a powerful indicator for soil microbial functioning (Hartman and 

Richardson, 2013). This is underpinned by the decrease in the C-to-N-ratio with decreasing microbial 

specific respiration in study 2. Combined with the improved N supply in presence of legumes 

(Oelmann et al., 2007), we conclude that the reduced specific respiration is the consequence of an 

increased soil microbial C use efficiency induced by legumes.  

To further unravel the underlying mechanisms that act via plant functional traits on soil microbial 

functioning, future studies are needed that enable the tracking of plant functional trait effects on soil 

microbial functioning in more detail. First studies in this direction have already been performed in 

the framework of the Jena Experiment and revealed weak relationships between plant functional 

traits and soil microbial functions within the first five years of the trait-based experiment (Steinauer 

et al., 2017). Due to the fact that plant effects on soil microbial communities have been shown to lag 

for several years (Eisenhauer et al., 2010; Capter 2, Stability Experiment), especially long-term studies 

are needed to uncover trait-based BEF mechanisms.  

Our long-term dataset from 2002-2014 highlights that positive plant diversity effects on soil microbial 

properties can last beyond that of many short-term studies. However, as important as the 

relationship between plant community properties and soil microbial properties itself, is whether 

plant diversity and plant functional groups influence the stability of ecosystem functions such soil 

microbial respiration and biomass (Haddad et al., 2011; Proulx et al., 2010; Tilman et al., 2006). 

Therefore, with the dataset from 2002-2014 I also analysed spatial and temporal stability of soil 

microbial respiration and biomass in response to plant community properties (plant diversity and 

functional group identity).  

 

5.2 Stability of soil microbial properties 

We expected plant diversity to show specific dynamic effects over the three time phases of our long-

term study (each phase spanning four years) on the temporal stability of soil microbial properties. 

Due to the disturbance (=land-use change) at the beginning of the experiment and the following 

maturation of the plant communities, we expected plant diversity to exert destabilizing effects 

during phase 1, neutral effects in phase 2, and positive effects in phase 3. These expectations were 

verified in part. In phase 1, the temporal stability of soil microbial biomass indeed decreased with 

increasing plant diversity. Because the soil system experienced a land-use change from arable field to 
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newly established semi-natural grassland with experimental plots comprising from one to 60 plant 

species, soil microbial communities were forced to change (adapt) according to the new conditions. 

Presumably, the disturbances induced by the newly establishing plant communities on soil microbial 

communities increased with increasing plant diversity, as the dissimilarity of organic plant inputs 

(amount, variety and quality) into the soil as compared to former land-use must have increased in 

parallel (Nico Eisenhauer et al., 2017; Lange et al., 2015; Milcu et al., 2010). Hence, the change from 

mineral fertilizer inputs typical for arable fields to those typical for semi-natural grassland were likely 

to be weakest in monocultures and low-diversity plots, and strongest in high-diversity plots, as in 

these more organic residues (litter and root exudates) entered the soil. The soil microbial 

communities in these plots therefore were confronted to greater changes (= greater disturbance) 

compared to those in plots of low plant diversity. Consequently, the beginning of the successional 

shift of the soil microbial community from disturbed (zymogenous) to more mature (autochthonous) 

microbial communities likely caused the observed negative relationship between plant diversity and 

temporal stability of microbial properties during phase 1 of the experiment.   

According to our expectations, during phase 2 none of the investigated microbial properties 

responded to any of the plant community properties, i.e. the soil microbial communities and their 

temporal stability responded neutral towards plant community properties. After the soil microbial 

community experienced destabilization during phase 1, the soil system now entered a phase of 

transition, as the positive effects of plant diversity strengthen over time (Meyer et al., 2016; Reich et 

al., 2012), but presumably were not yet strong enough to exert positive effects on the temporal 

stability of soil microbial properties. However, unexpectedly, neutral effects of plant diversity on the 

temporal stability of soil microbial properties persisted in phase 3. We assumed that after 8-12 years, 

higher amounts and stability of plant inputs of mature plant communities would stabilize soil 

microbial properties during the late phase of the experiment. Contrary to these expectations, the 

results rather suggest that the transition phase, in which soil microbial communities are still in the 

process of successional shift, lasts longer than the duration of our experiment (12 years). 

Nevertheless, the negative relationship between plant diversity and the temporal stability of soil 

microbial biomass progressively disappeared during phases 2 and 3, while the means of both soil 

microbial biomass and respiration constantly increased with plant diversity after the establishment of 

the experimental field site. These results suggest that these trends are likely to continue in the 

future. Moreover, they point to the long time period soil microbial communities of former arable 

monoculture land-use need to adapt to alterations in plant community composition and associated 

more internal element cycling. This is in line with earlier studies (Buckley and Schmidt, 2001) which 

reported soil microbial communities in abandoned arable fields to resemble those in active arable 

field more than those of uncultivated fields even seven years after abandonment.  
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In study 1 (Chapter 2, Stability Experiment), we expected a positive relationship between plant 

diversity and the spatial stability of soil microbial properties due to mechanisms such as higher 

stability of plant productivity, higher root biomass (Ravenek et al., 2014), and hence more spatially 

uniform organic inputs into the soil (Milcu et al., 2010). Instead, we found a neutral relationship 

between these two variables, which points to other mechanisms that might have outweighed the 

spatially stabilizing effects of plant diversity on microbial properties. A potential mechanism could be 

that we sampled rhizosphere soil and bulk soil, and that in these microhabitats, different soil 

microbial communities dominated, with energetically inefficient r-strategists (with low C use 

efficiency) dominating the rhizosphere rich in labile C substrates, and more nutrient efficient K-

strategists dominating the bulk soil. These different soil microbial communities might have led to 

high respiration rates and microbial biomass in rhizosphere-patches and lower respiration rates and 

microbial biomass in bulk soil-patches at high plant diversity (Kuzyakov and Blagodatskaya, 2015). 

Further studies are needed to unravel the mechanisms that govern the spatial stability of soil 

microbial community properties. Also, the scales at which spatial stability really matters for microbial 

functioning as well as for the provisioning of ecosystem services should be considered (Weigelt et al., 

2008).  

We expected different plant functional groups to affect spatial and temporal stability of soil microbial 

properties according to their specific plant functional traits. In line with our hypothesis, legumes 

decreased the spatial stability of both soil microbial respiration and biomass, and decreased the 

temporal stability of microbial biomass at least during phase 1. There is evidence that legumes 

increase the patchy distribution of N supply across grassland sites through deposition of organic 

nitrogen in their rhizosphere (Spehn et al., 2002), thereby provoking hotspots of microbial biomass 

and activity (Kuzyakov and Blagodatskaya, 2015). As a consequence of unevenly distributed microbial 

hotspots, their spatial and temporal stability were also expected to be reduced. Supporting this 

expectation, Chen et al. (2008) found higher soil microbial biomass when legumes were present in a 

greenhouse experiment and concluded this to be due to higher root exudation by legumes compared 

to grasses. The reason for the unexpected fading of the destabilizing legume effect on the temporal 

stability of soil microbial biomass after phase 1 is probably due to their inferior light acquisition and 

water uptake compared to grasses in mature grasslands (Haynes, 1980), resulting in reduced 

abundance and performance on the Jena Experiment field site (Roscher et al., 2013, 2011a). 

Additionally, the fading of the destabilizing legume effect on the temporal stability of soil microbial 

biomass fits to our finding, that legumes only during phase 1 increased soil microbial biomass (see 

above, Eisenhauer et al. 2010). 

Similar to legumes but via another mechanism, tall herbs decreased the spatial stability of soil 

microbial respiration, probably due to deep rooting systems and taproots that allocate carbon to 
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deeper soil layers (Roscher et al., 2011b; Sydes and Grime, 1984), thereby increasing the patchiness 

of C provisioning to soil microorganisms. Also, tall herbs reduce the small-scale spatial stability of 

aboveground biomass production (Weigelt et al., 2008), which could additionally have contributed to 

heterogeneous spatial distribution of resource allocations into the soil. In contrast to our 

expectation, small herbs did not increase the spatial and temporal stability of soil microbial 

properties. Instead, they decreased the temporal stability of soil microbial biomass. Presumably, 

temporal asynchrony between small herb species (Roscher et al., 2011b) accompanied by 

spatiotemporal changes in the rhizosphere destabilized soil microbial biomass over time. This is 

supported by a study reporting the soil decomposer community to vary at the scale of individual 

plants and with plant species identity (Bezemer et al., 2010). Contrary to legumes, grasses increased 

the spatial stability of soil microbial biomass, but the temporal stability of microbial respiration only 

during phase 1. We assign the stabilizing effects of grasses to their dense, evenly distributed root 

systems that are persistent over long periods of time (de Witte and Stöcklin, 2010). However, we did 

not expect the stabilizing grass effect to disappear after phase 1, as grasses are strong competitors 

for nutrients with rather stable high coverage in the Jena Experiment (Kiær et al., 2013; Roscher et 

al., 2011b).  

To discover the hidden mechanisms that cause either stabilization or destabilization of soil microbial 

properties, future studies should include the investigation of processes such as rhizodeposition 

including root exudation and shifts in microbial community structure (de Vries et al., 2012) , as these 

processes have been shown to interact with each other in affecting soil microbial properties (N. 

Eisenhauer et al., 2017; Haichar et al., 2014). and to change over time (de Vries et al., 2007).  

Overall, the results document that the mechanisms that cause either stabilizing or destabilizing 

effects of plant communities on soil microbial properties are complex. They dependent on a number 

of plant community properties, such as plant diversity, traits of plant functional groups (de Vries et 

al., 2012) and on how these plant community properties interact with environmental factors such as 

nutrient availability, that in turn change over time. One important environmental factor that has 

become prominent since the industrial revolution of agriculture and exerts strong effects on soil 

microbial functioning is the anthropogenic use of mineral N fertilizer (Schröder, 2014; Treseder, 

2008). Mineral fertilizer use is not restricted to agricultural crop monocultures, but also applied to 

meadows serving as silage for animal live stock, world-wide as well as across Europe. To examine the 

effects of fertilization on soil microbial properties and whether fertilization interacts with plant 

community properties on soil microorganisms, we conducted the Fertilizer Experiment (Chapter 3).  
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5.3 Changes in soil microbial properties with fertilization 

Unexpectedly, the results of our Fertilizer Experiment (Chapter 3, study 2) revealed that fertilization 

did not affect soil microbial biomass. Earlier studies found contrasting effects of fertilization on 

microbial biomass (Chu et al., 2007; Donnison et al., 2000; Ramirez et al., 2012), indicating that 

fertilizer-induced increase in plant productivity does not necessarily cascade to soil microorganisms. 

A number of factors might have contributed to the lack of fertilization effect on soil microbial 

biomass. First, our two-year study may have been too short to reveal the full effects of fertilizer 

addition. In contrast to microbial biomass, soil microbial respiration is more flexible to react to 

environmental changes (Anderson and Domsch, 1985) and may decrease after N fertilization through 

fertilizer-mediated changes in rhizodeposition (Chung et al., 2007) or root exudation (Dijkstra et al., 

2005). Second, fertilization was shown to reduce plant resource allocation into belowground 

structures, leading to reduced C resources for soil microorganisms (Bardgett et al., 1999; Phillips and 

Fahey, 2007; Wang et al., 2012). Third, the removal of plant aboveground biomass after mowing 

prevented aboveground litter from entering the soil, thereby interrupting the cascade of positive 

fertilizer effects from above- to below the ground.  

Interestingly, the Fertilizer Experiment revealed that plant diversity and fertilization acted 

independently of each other on soil microorganisms. Accordingly, fertilization did not strengthen the 

effects of plant diversity on soil microbial respiration or biomass. We conclude that the effect of 

fertilization on plant productivity may have been either too weak (Weigelt et al., 2009) to cascade to 

the soil microorganisms, or plant diversity and fertilization act through decoupled mechanisms. As 

other studies found both, independent (Craven et al., 2016) as well as interactive effects of these two 

environmental factors (Hautier et al., 2014; Reich et al., 2004, 2001), future studies should consider 

longer time frames than the duration of the present Fertilizer Experiment (two years), as the soil 

system has been shown to react with a time-lag of several years to environmental changes such as 

management practice or plant diversity (Eisenhauer et al., 2010; Treseder, 2008). Also, future studies 

should include the investigation of shifts in soil microbial community structure in response to mineral 

N fertilizer as these are not reflected in microbial properties such as microbial respiration and 

biomass.  

An example for interacting effects between plants and environmental factors that drive soil microbial 

functioning is the superimposition of the negative legume effect on specific respiration by fertilizer 

addition as shown in study 2. Notably, both legumes and fertilizer decreased microbial respiration, 

although the underlying mechanisms are likely to be different (see above). In contrast to legumes, 

fertilization is known to decrease rhizosphere priming effects (Kuzyakov, 2002) by delivering 

inorganic N (Harrison et al., 2008). The effect of inorganic N on soil microorganisms is controversially 

debated and further studies are needed to distinguish between the decrease in microbial specific 
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respiration due to mitigation of N limitation (=positive effect on C use efficiency; Wardle and Ghani, 

1995) or due to toxicity (Ramirez et al., 2010; Treseder, 2008; Waldrop and Zak, 2004). We assume 

that fertilization alleviates N limitation of microorganisms, thus increasing their C use efficiency. This 

is supported by the result that in plots without fertilization, microbial C-to-N ratio was positively 

correlated with specific respiration, while this was not the case in fertilized plots, indicating that N 

shortage lessened under fertilization.  

Although mineral N fertilizer neither affected soil microbial biomass nor interacted with plant 

diversity on soil microbial properties within the investigated time frame of two years, the interactive 

effect between fertilization and legumes on the soil microbial C-to-N-ratio indicates that mineral N 

was incorporated into the soil microbial biomass. To answer the questions to which extend soil 

microorganisms incorporate mineral N into their biomass, whether the microbial uptake of mineral N 

is influenced by plant community properties, and whether the mineral-derived N is channelled from 

soil microorganisms to higher trophic levels of the soil food web, we conducted the 15N Tracer 

Experiment (Chapter 4).  

 

5.4 Incorporation of mineral-derived N into the soil food web 

In study 3 (Chapter 4, Tracer Experiment), we used 15N to track the incorporation of mineral N into 

the soil food web. With this method we could differentiate between animals relying on microbial N 

and those relying on N from dead organic matter. All of the investigated mesofauna species at least 

in part incorporated microbial mineral-derived N, indicating the importance of microorganisms for 

the channeling of mineral N to higher trophic levels.  

Our results show that plant species richness considerably decreased the incorporation of mineral-

derived N into soil microbial biomass, demonstrating that high plant species richness aggravated the 

competition for N. Interestingly, as proven in studies 1 and 2 (Chapter 2 and 3, Stability- and Fertilizer 

Experiment), the positive effects of plant diversity on soil microbial communities via increased C 

translocation into the soil (Lange et al., 2015) must have surpassed the effect of N competition, as 

microbial respiration and biomass increased with increasing plant diversity.  

In contrast to the uniform effect on the 15N-uptake into microorganisms, plant species richness 

displayed different effects on the incorporation of mineral-derived N into mesofauna species, 

reflecting their different nutritional strategies with species-specific dependency on microbial N. 

These nutritional strategies ranged from detritivory (for the species Tectocepheus velatus sarekensis), 

over microbivory and omnivory (for springtail species) to predation (for the gamasid mite Lasioseius 

berlesei). Notably, the 15N uptake of the predator L. berlesei did not respond to plant diversity, but 

peaked already at the first sampling five days after labeling, and decreased with time similar to that 

in microorganisms, indicating an unexpectedly fast channeling of mineral-derived N from basal 

resources of the soil food web to higher trophic levels. This fast channeling of mineral-derived N 



Chapter 5  General Discussion 

 104 

presumably occurred due to combined predation on highly labelled springtails and nematodes that 

graze on microorganisms (Christian and Karg, 2006; Heidemann et al., 2014). Notably, for some 

springtail species (Parisotoma notabilis and Stenaphorura denisi), the effect of plant species richness 

on the incorporation of mineral-derived N changed over time from increasing to decreasing 15N 

incorporation, suggesting that these species fed on microorganisms associated with plant roots that 

were heavily enriched in 15N at high plant diversity shortly after labeling. This is underlined by the 

results of Jesch et al. (2018) proving that plant communities with high plant species richness took up 

more 15N than those of low plant species richness in the present study. Functional group richness 

decreased the incorporation of mineral-derived N in the majority of the investigated mesofauna 

species (T. velatus sarekensis, S. denisi, Isotoma viridis and Lepidocyrtus cyaneus), again reflecting 

high competitiveness for mineral N of plants in highly diverse plant communities against 

microorganisms. 

Legumes decreased the incorporation of mineral N into microorganisms, probably due to 

rhizodeposition of organic N into the soil, thereby diluting the applied mineral 15N (Fustec et al., 

2010). This matches with results of study 2, where we found legumes to reduce the microbial C-to-N 

ratio. Unexpectedly, however, this effect was not strong enough to propagate into the investigated 

mesofauna species. Although grasses enhanced the soil microbial C-to-N-ratio as demonstrated in 

our Fertilizer Experiment (study 2), we could not show a decrease in the microbial incorporation of 

mineral N in study 3. Instead, grasses increased the incorporation of mineral-derived N in secondary 

decomposers (the springtail Ceratophysella sp.) and decreased it in primary decomposers (the 

oribatid mite Tectocepheus velatus sarekensis). These results reinforce the conclusion that secondary 

decomposers such as Ceratophysella sp. broaden their dietary spectrum from microorganisms to 

plant roots, and prove that primary decomposers such as T. velatus sarekensis mainly feed on herbs, 

probably because grasses are of lower food quality compared to herbs with higher N content (Abbas 

et al., 2013; Bessler et al., 2012).  

 

5.5 Conclusions and Outlook 

At first glance, it seems intuitive that plant diversity plays an important role for the functioning of 

intact ecosystems. Even though this is certainly true, it is a challenge to reveal the underlying 

ecological mechanisms, how plant diversity acts on ecosystem functioning. Especially, organisms and 

processes that are located below the ground are difficult to investigate. Besides, plant diversity does 

not affect all ecosystem functions in the same way; for some ecosystem functions plant diversity is 

essential, for others it is of minor importance (Allan et al., 2013). Therefore, it is indispensable to 

investigate the relationships between plant diversity and different ecosystem functions such as soil 

microbial community properties or element cycling in detail, and to also consider interrelationships 
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between environmental factors that could change the effect of plant communities on the respective 

ecosystem function.  

In the present thesis, I showed that plant diversity (plant species richness, plant functional group 

richness) and plant functional group composition (legumes, grasses, small herbs, tall herbs) function 

as important drivers of soil microbial properties (microbial respiration, biomass, C use efficiency, C-

to-N-ratio) and their stability. Also, plant diversity and functional composition strongly influenced 

the microbial uptake and channeling of mineral-derived N into higher trophic levels of the soil food 

web. Further, functional plant traits crystallized to be important mechanisms driving the 

relationships between plant community composition and ecosystem functions. The results of this 

thesis also highlight that the transition phase in which soil microbial communities adapt from 

former arable monoculture land-use to semi-natural plant communities with high plant diversity and 

extensive management lasts more than a decade. Nevertheless, we could show that (temporal) 

stability of soil microbial properties increased over time, as the number of plant community 

properties that reduced the stability decreased constantly until the end of the experiment. 

Concerning the uptake of mineral-derived N into the soil food web, our results underline the fast and 

intensive incorporation of mineral N into soil microorganisms and its unexpectedly fast channeling 

to higher trophic levels. Our investigations further revealed that mineral N fertilization acts 

independently of plant diversity, but that the positive legume effect on soil microbial C use efficiency 

was superimposed by mineral N fertilizer. As the application of mineral N has been reported to also 

imply negative effects on biodiversity and ecosystem functioning sustainable management practices 

for the long-term should be used. Therefore, the cultivation of high-diversity meadows including 

specific plant functional groups such as legumes seems to be superior to the application of mineral 

N fertilizer in matching both, the conservation of intact ecosystems as well as the provisioning of 

ecosystem services for humans, such as the production of green fodder for animal stocks. 

To proceed in understanding the mechanisms that underlie effects of plant diversity, community 

composition and mineral N on soil organisms and their functioning, future long-term studies need to 

investigate plant functional traits such as rhizodeposition, root exudation and other plant traits 

known to impact the soil system. Further, investigating successional shifts in microbial- and soil fauna 

community structure as well as shifts in nutrient availability and abiotic soil conditions (pH, soil 

moisture) under fertilizer-application rates relevant for the management practice in European 

meadows could be promising.  

Taken together, the present thesis reinforces and complements the findings of earlier BEF studies, 

and emphasizes the importance of maintaining grasslands with high plant diversity including all 

investigated plant functional groups (legumes, grasses, small and tall herbs) with their trait-specific 
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effects for essential ecosystem functions and services such as decomposition, element cycling and 

production of food and fodder.  
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supported the data collection. All co-authors contributed to finalizing the manuscript.  

 

Chapter 3 – Study 2: Fertilization experiment (published in PLosOne 2015) 

I am the first author of the paper, analysed the dataset, wrote the manuscript, developed the main 

ideas, created tables, figures and appendices. Stefan Scheu, Romain L. Barnard, Pascal A. Niklaus, 

Michael Scherer-Lorenzen, Alexandra Weigelt and Nico Eisenhauer created the study design. Nico 

Eisenhauer, Romain L. Barnard, Pascal A. Niklaus, Michael Scherer-Lorenzen, Stefan Scheu and 

Alexandra Weigelt performed the experiment and collected the data. All co-authors contributed to 

finalizing the manuscript.  

 

Chapter 4 – Study 3: Tracer Experiment (submitted to Ecology and Evolution, end of April 2020) 

I am the first author of the manuscript, performed the experiment and collected data, analysed the 

dataset, wrote the manuscript, developed main ideas, created figures, tables and appendices. Stefan 

Scheu and Nico Eisenhauer created the study design. Kevin Karbstein supported the data analysis. 

Annette Jesch, Dörte Bachmann, Melissa Jüds, Janneke Ravenek, Christiane Roscher and Alexandra 

Weigelt supported the establishment of the experiment and data collection. All co-authors 

contributed to finalizing the manuscript.  

 

 

Plagiarism declaration 

I declare that I have written this doctoral thesis independently. All persons contributing to the 

manuscripts have been named so. All sentences or passages quoted from other people’s work have 

been specifically acknowledged by clear cross-referencing. I have not submitted this thesis in any 

form for another degree at any university or institution.  

 
 

 

 

Tanja Strecker 
Göttingen, im Mai 2020 


	Summary
	1 General Introduction
	1.1 Biodiversity
	1.2 Stability and its role for ecosystem functioning and services
	1.3 Soil
	1.4 The soil food web
	1.5 Mineral fertilizer N – two sides of the coin
	1.6 Using stable isotopes to track the flux of nitrogen
	1.7 Objectives and structure of the thesis
	1.8 References

	2 Functional composition of plant communities determines the spatial and temporal stability of soil microbial properties in a long-term plant diversity experiment
	2.1 Abstract
	2.2 Introduction
	2.3 Material and methods
	2.4 Results
	2.5 Discussion
	2.6 Conclusions
	2.7 Acknowledgements
	2.8 References
	2.9 Supplementary material

	3 Effects of plant diversity, functional group composition, and fertilization on soil microbial properties in experimental grassland
	3.1 Abstract
	3.2 Introduction
	3.3 Material and Methods
	3.4 Results
	3.5 Discussion
	3.6 Conclusions
	3.7 Supporting Information
	3.8 Acknowledgments
	3.9 References

	4 Incorporation of mineral nitrogen into the soil food web as affected by plant community composition
	4.1 Abstract
	4.2 Introduction
	4.3 Material and Methods
	4.4 Results
	4.5 Discussion
	4.6 Conclusions
	4.7 Acknowledgements
	4.8 References
	4.9 Supporting Information

	5 General Discussion
	5.1 Changes in soil microbial properties with time and plant community composition
	5.2 Stability of soil microbial properties
	5.3 Changes in soil microbial properties with fertilization
	5.4 Incorporation of mineral-derived N into the soil food web
	5.5 Conclusions and Outlook
	5.6 References

	Acknowledgement - Danksagung
	List of publications
	Short CV – kurzer Lebenslauf
	Thesis declarations

