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Chapter 1

Introduction

Estimating moments of families of L-functions over number fields is a central problem in number
theory.
On the one hand, such estimates serve as tools: An upper bound for the second power moment of
Rankin-Selberg L-functions combined with a lower bound of the first moment can be used to show
non-vanishing of Rankin-Selberg L-functions at the central point.
In addition, an upper bound for the fourth power moment of Hecke L-functions is used in [D89] to
estimate the number of zeros of Hecke L-functions with a certain distance to the critical line.
On the other hand, these moments are also seen as natural objects that have to be studied indepen-
dently because they illuminate the structure of the family and expose beautiful symmetries.

In Chapter 3 of this thesis we will establish an asymptotic formula for the fourth moment of Hecke
L-functions and in Chapter 4 an upper bound for the second moment of Rankin-Selberg L-functions.

Several results on moments of L-functions are well known. A classical approach to compute moments
of L-functions is to start with the application of an approximate functional equation. Then, one can
for example apply the Montgomery-Vaughan identity or a trace formula and other estimates. This
works very well for the second and the fourth power moment. For higher moments, the error terms of
the approximate functional equation and of other methods become too large.

A special L-function that received a lot of attention is the Riemann ζ-function. Ingham proved 1928
in [I28] the asymptotic formula

T∫
0

|ζ(1
2 + it)|4 dt = a4T (log T )4 +O

(
T (log T )3

)
.

In 1979 Heath-Brown ( [HB79] ) improved this by showing

T∫
0

|ζ(1
2 + it)|4 dt = Tp4(log T ) +O

(
T

7
8

+ε
)
.

The coefficients of the fourth degree polynomial p4 can be explicitly computed.
Motohashi proved an exact formula for the smoothed version of the fourth moment. In his paper [M97]
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he considered the integral

∞∫
−∞

∣∣ζ(1
2 + it)

∣∣4g(t) dt

where g is a smooth function, of rapid decay outside an interval [0, T ]. To deduce an asymptotic
formula he considered the integral

∞∫
−∞

ζ(z1 + it)ζ(z2 + it)ζ(z3 − it)ζ(z4 − it)g(t) dt.

He rewrote this as sums over Kloosterman sums and used a spectral decomposition to get a sum
containing a residual contribution, a cuspidal contribution and a contribution of Eisenstein series.
The obtained sum has a continuation to a neighborhood of the point (z1, z2, z3, z4) = (1

2 ,
1
2 ,

1
2 ,

1
2). To

obtain the asymptotic formula for the fourth moment, he estimated the cuspidal and the Eisenstein
contribution and computed asymptotics for the contribution of the residues. This improves Heath-
Brown’s error term to

T∫
0

∣∣ζ(1
2 + it)

∣∣4 dt = Tp4(log T ) +O
(
T

2
3 (log T )8

)
.

These asymptotic formulas improve the standard estimate

T∫
0

∣∣ζ(1
2 + it)

∣∣4 dt� T (log T )4, (1.0.1)

see for example [T51, Theorem 7.16].
There are further results on moments of the Riemann ζ-function, for example those given by Motohashi,
Beineke and Bump. In his paper [M07] Motohashi considers integrals of the form

∞∫
1

|ζ(1
2 + it)|4

∣∣∣ ∑
n≤N

ann
− 1

2
−it
∣∣∣2g(t) dt.

Furthermore, Beineke and Bump considered the second moment of the Riemann ζ-function in parts of
the critical strip in their paper [BB04].
Moreover there are some investigations on moments of Dirichlet L-functions and modular forms. For
example, in [Y06] Young considered the fourth moment of Dirichlet L-functions. Blomer, Milićević,
Fouvry, Kowalski and Michel give asymptotic formulas for moments of twisted L-functions and modular
forms in the papers [BM15] and [BFKMM17].

The Rankin-Selberg L-functions were for example considered by Blomer [B11]. He proved the upper
bound ∑

g∈Bk(1)

|L(f ⊗ g, 1
2)|2 � k1+ε

for the second power moment of Hecke eigenforms of level one, by introducing an unfolding method.
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In my masters thesis I generalized this result for f and g newforms of weight k and level N . The
estimate is given by

∑
f∈B]k(N)

|L(f ⊗ g, 1
2)|2

L(sym2f, 1)
� (Nk)1+ε,

simultaneously in N and k. Since the space of cusp forms has dimension (Nk)1+o(1) this is the best
possible result.
Kowalski, Michel and Vanderkam proved an upper bound for the Rankin-Selberg L-functions and all
their derivatives in [KMV00].

There are also some results for general number fields K.
The Hecke L-series of a number field K with class number one attached to a Größencharacter λν is,
for Re s > 1, defined by

ζK(s, ν) =
∑
a=(a)

λν(a)(Na)−s;

for the notation see Section 3.1. The Dedekind ζ-function is the Hecke L-function attached to the
trivial character, i.e. λν ≡ 1.

An analogue to the classical estimate (1.0.1) for the Riemann ζ-function was proven by Duke in [D89],
namely he proved the estimate

∑
|m|≤T

T∫
−T

∣∣ζK(1
2 + it, χλm)

∣∣4 dt� Tn(log T )A (1.0.2)

for a general number field K with degree n. The exponent A depends only on K. Here χ is a character
of the class group and the character λm = λm1

1 · · ·λmnn where {λj} is a basis for the torsion-free Hecke
characters.

For some number fields, Bruggeman and Motohashi proved a decomposition of the fourth moment of
the Dedekind ζ-function into third moments analogous to that of Motohashi in [M97]. They considered
the integral

∞∫
−∞

∣∣ζK(1
2 + it)

∣∣4g(t) dt

where g is an entire function, of rapid decay in each fixed horizontal strip.
In [BM01] they compute the spectral decomposition of the smoothed fourth moment of Dedekind
ζ-functions for a real quadratic number field K of class number one. For the Gaussian number field
this is done in their paper [BM02].

A more general result was proved by Nelson. In his paper [N20] he spectrally decomposes a third
moment of L-series in an abstract way into a fourth moment for general number fields, reversing the
decomposition of [BM01] and [BM02].

Similarly, moments for the Dedekind ζ-function and Hecke L-functions are for example investigated by
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Heap in [H12] and [H19]. He considered the 2k-th moment of the Dedekind ζ-function and the twisted
second moment of the Dedekind ζ-function and an L-function for quadratic fields. Watt, in [W13], gave
an estimate analogous to Motohashi’s result in [M07]. Topacogullari computed an asymptotic formula
for Hecke L-functions in [To19]. Thorner also considered the fourth moment of Hecke L-functions and
computed an upper bound in [Th19]. Diaconu, Garrett and Goldfeld considered moments of twisted
L-functions in their papers [DG09] and [DGG11].
Coleman in [C92] used the result of Duke [D89] to examine the local distribution of prime ideals in
narrow ideal classes within any number field.

The Rankin-Selberg L-functions over number fields were considered by Liu and Masri and by Hamieh
and Tanabe. Liu and Masri proved in their paper [LM14] an asymptotic formula for the first moment
and an upper bound for the second power moment for Hilbert modular forms of parallel weight 2k and
level one attached to a totally real number field of degree n with class number one. They get the result∑

g∈B2k

|L(f ⊗ g, 1
2)|2 � kn+ε.

They adapted the unfolding method of [B11] and use this estimate in combination with an asymptotic
formula for the first moment to show non-vanishing of the Rankin-Selberg L-function at the central
point.
Hamieh and Tanabe generalized this result in their paper [HT20]. They fix a Hilbert modular form f

of parallel weight k and level n, sum over a basis of primitive forms of parallel weight k and level one
and prove the bounds∑

g∈Bk

|L(f ⊗ g, 1
2)| � k,

∑
g∈Bk

|L(f ⊗ g, 1
2)|2 � k(log k)c.

Hamieh and Tanabe also use their results to prove non-vanishing of Rankin-Selberg L-functions.

1.1 Fourth Power Moment of Hecke L-functions

1.1.1 Results

In Chapter 3 we deduce a result similar to that of Motohashi [M97] for a totally real number field K of
degree d with class number one. We compute an explicit spectral decomposition for the fourth power
moment of Hecke L-functions over a totally real number field with class number one and deduce from
this an asymptotic formula.
In such a number field, the Größencharacters are given by

λν(n) =
∣∣n1
nd

∣∣iν1 · · · ∣∣nd−1

nd

∣∣iνd−1 ,

where ν is a (d − 1)-dimensional vector in Rd−1 that satisfies certain conditions. We write Λd−1 for
the lattice consisting of these vectors. Then a Hecke L-series is defined as

ζK(s, ν) =
∑
a=(a)

λν(a)(Na)−s.

Using the spectral decomposition of sums over Kloosterman sums given in [BMP01], we follow the
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steps of [BM01] to get a spectral decomposition for the average value of Hecke L-functions, namely

(1.1.1) Theorem
Let K be a totally real number field of degree d and class number one, and let K be such that every
ideal has a totally positive generator. Let g(t) and ω(ν1, . . . , νd−1) be entire, and of rapid decay in every
fixed horizontal strip for every variable.
Then, we have

∑
ν∈Λd−1

ω(ν)

∞∫
−∞

|ζK(1
2 + it, ν)|4g(t) dt = MK(g, ω)

+
∑
V

aV ηV (1)HV

(
1
2

)3
ΛV (g, ω) + 2d

√
|DK |

∑
ν∈Λd−1

∞∫
−∞

|ζK(1
2 + it, ν)|6

|ζK(1 + 2it, 2ν)|2
Ξν(t; g, ω) dt

where DK is the discriminant of K, and V runs over the cuspidal subspaces of the Hilbert space of
all Γ-automorphic functions on G, see (3.1.28), where G = PSL2(R)d and Γ = PSL2(o) is the Hilbert
modular group. The functions ΛV (g, ω) and Ξν(t; g, ω) are integral transforms of g and ω. The term
MK(g, ω) comes from the residual contributions, it is defined in Theorem 3.2.5. The functions aV , ηV
and the Hecke series HV are defined in Section 3.1.2.

We use this decomposition to obtain an asymptotic formula for the fourth moment of Hecke L-series:

(1.1.2) Theorem
Let K be a totally real number field of degree d and class number one, and let K have fundamental
units jε such that every ideal has a totally positive generator. Let G and Ω be two entire functions that
are of rapid decay and satisfy the estimates

G(j)(x)�A,j

(
1 + |x|

)−A
,

∂j1

∂yj11

· · · ∂
jd−1

∂y
jd−1

d−1

Ω(y)�A,j

(
1 + |y1|+ · · ·+ |yd−1|

)−A
with A > 2 for all j, j1, . . . , jd−1 ∈ N0.
In addition, we define g(t) = G( tT ) and ω(ν) = Ω(ν1T , . . . ,

νd−1

T ) = Ω(ν/T ).
Then, we have

∑
ν∈Λd−1

ω(ν)

∫
R

|ζK(1
2 + it, ν)|4g(t) dt = T dP3+d(log T ) +O

(
T d−1+ε + T

d
2

+dθ
)
,

where P3+d is a polynomial of degree 3 + d, and θ is an admissible exponent for the Ramanujan
conjecture.

By [BB11], one may take θ = 7
64 .

1.1.2 Method of Proof

We give a brief sketch of the proof of Theorem 1.1.1 and Theorem 1.1.2. The proof of Theorem 1.1.1
follows the paper [BM01] of Bruggeman and Motohashi.
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We consider the more general expression

∑
ν∈Λd−1

ω(ν)

∞∫
−∞

ζK(z1 + it, ν)ζK(z2 + it, ν)ζK(z3 − it,−ν)ζK(z4 − it,−ν)g(t) dt

which is absolutely convergent for Re zj > 1, and has a meromorphic continuation to C4. In particu-
lar, it is regular at the central point (z1, z2, z3, z4) = (1

2 ,
1
2 ,

1
2 ,

1
2) for which we want to compute the

asymptotic formula.
We have to rewrite this expression as sums over Kloosterman sums. To this end we use a relation,
namely (3.1.10), between the product of Hecke L-series and divisor functions, and several reformulations
as well as the Ramanujan expansion in Section 3.2.1. Then, the functional equation of a resulting factor
leads to an expression in terms of Kloosterman sums in Section 3.2.2. In Section 3.1.2 we state the
spectral decomposition that we apply in Section 3.2.3 to our expression of Kloosterman sums. Finally
we expand this decomposition to a region around the central point (z1, z2, z3, z4) = (1

2 ,
1
2 ,

1
2 ,

1
2).

To prove Theorem 1.1.2 we use the decomposition stated in Theorem 1.1.1 and compute the terms
separately.
The summand MK(g, ω) is regular but consists of summands that individually have poles. In Lemma
3.3.3 we rewrite it into an expression that can be handled more easily. Then Stirling’s formula and
trivial operations give an asymptotic formula.
To estimate the two remaining summands, we estimate the integral transformations ΛV (g, ω) and
Ξν(t; g, ω) of g and ω. Further we use estimates on HV and the sum over aV and ηV stated in Section
3.1.2 for the cuspidal contribution. Estimates for the Hecke L-functions appearing in the Eisenstein
contribution are stated in Section 3.1. Combining these bounds, we find that the cuspidal and the
Eisenstein contribution enter the error term.

1.2 Second Power Moment of Rankin-Selberg L-functions

1.2.1 Result

In Chapter 4 we prove an upper bound for the second power moment of Rankin-Selberg L-functions
of Hecke eigenforms attached to a totally real number field K of degree d and class number one.
In K, we fix a prime ideal q and an integral ideal c that is either coprime to q or equal to q. Next, we
pick some primitive Hilbert modular form g ∈ Sk(q), and sum over a basis of primitve Hilbert modular
forms of level c.

(1.2.1) Theorem
Let K be a totally real number field of degree d and class number one. Let q be a prime ideal and c be
a squarefree integral ideal either coprime or equal to q, let k = (k, . . . , k) ∈ Nd, with k large relatively
to Nc, more precisely k > (Nqc)ε. Further let g ∈ S]k(q) be a newform with Cg(q) 6= 0 and B]k(c) be a
basis of primitive Hilbert modular forms of weight k and level c. Then for ε > 0 the following estimate
holds:

Γ(k − 1)d

(4π)d(k−1)|DK |
1
2

∑
f∈B]k(c)

|L(f ⊗ g, 1
2)|2

〈f, f〉
� (Nc)εkdε.
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The implicit constant depends on K and if (q, c) = 1 on Nq. The inner product 〈f, f〉 is defined in
(4.1.2).

1.2.2 Method of Proof

We give a brief sketch of the proof.
To begin with, we apply an approximate functional equation, as in the classical approach. Extending
the sum to a basis of the whole space and writing out the square allows us to apply the Petersson trace
formula [L03, (8)] to the sum over f ∈ Bk(c).
This yields a diagonal term and an off-diagonal term. The second one contains a sum over a product
of Kloosterman sums and a product of Bessel J-functions.
The diagonal term can be estimated trivially. By the decay properties of the Bessel J-function and the
the approximate functional equation, we can also estimate large parts of the off-diagonal term trivially.
The remaining sum is over ideals m1, m2 and c ∈ c with small norm. We apply a Voronoi summation
formula to the sum over m1 and estimate the resulting expression carefully to prove Theorem 1.2.1.

1.3 Outlook

Naturally, the question arises, whether one can expect similar results for more general fields.
This is the case, albeit with a lot more technical work.

For the computation of the asymptotic formula of the fourth power moment, the arguments used to
deduce the representation in terms of Kloosterman sums are based on the class number one assumption.
Thus for a real number field with arbitrary class number this step must be modified.
For number fields that are not totally real, the explicit spectral decomposition is not in the literature.
For the Gaussian number field this is done by Bruggeman and Motohashi in their paper [BM02]. One
expects that an explicit spectral decomposition formula can be proven in general. But until now there
is no asymptotic formula. One expects that this could also be done as in the present work, but the
combinatorics are more complicated.

To estimate the second moment of Rankin-Selberg L-functions, the Voronoi summation formula is
based on the class number one assumption. Thus, for a real number field with arbitrary class number
a new version of this has to be proven, a Kloosterman sum for totally real number fields of arbitrary
class number is given in [HT16].
The restriction on the level should be possible to remove. For newforms of squarefree level and trivial
character, this should follow by the same steps. For more general level and character following the
steps of [L79] should give a functional equation.
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Chapter 2

Definitions

Before we prove our results, we specify the number field we work in and define some notation.

Let K be a totally real number field over Q with degree d, of narrow class number one. Further let
DK denote the discriminant of K. We denote by o the ring of integers of K and by o× the group of
units. For an ideal n let n∗ = n\{0}, in particular o∗ = o\{0}.
Let σj be the embeddings K → R. We identify n ∈ K with the corresponding vector (n1, . . . , nd) ∈ Rd

where nj = σj(n).

We denote by jε, j = 1, . . . , d−1 a system of fundamental units of K. For sake of simplicity we assume
that every ideal has a totally positive generator. We write a � 0 for an element a ∈ K that is totally
positive, i.e. aj > 0 for all j = 1, . . . , d.
We denote by P (ε) the product 1ε · · · d−1ε, and by RK the regulator |det(log(jε)i)i,j=1,...,d−1| of K.
There is a natural bijection between o/o× and the set I = {a = (a) | a ∈ o} of integral ideals.
Let F be a fundamental domain of o with respect to the multiplication by units. We may choose F
such that every element a ∈ F satisfies a � 0 and aj � ai in R for all j, i = 1, . . . , d. Here a � b means
a� b and b� a.
In other words, every ideal a has a representation a = (a) where aj � (Na)

1
d by choosing a ∈ F ,

see [HT16, Lemma 1.1].
As usual N(·) and Tr(·) denote the norm and the trace of K.

In the following computations several vectors of dimension d or (d − 1) appear. To have a short and
readable notation we introduce the following conventions. Let d′ = d or (d − 1). Then let x, y ∈ Rd′ ,
z ∈ C and ◦ = +, ·,−. We define the operations component wise:

dx = dx1 . . . dxd′ ,

|x| = (|x1|, . . . , |xd′ |)

x ◦ y = (x1 ◦ y1, . . . , xd′ ◦ yd′),

x ◦ z = (x1 ◦ z, . . . , xd′ ◦ z),

xy = xy11 · · ·x
yd′
d′ ,

zy = zTr(y),

Γ(x) =
d′∏
j=1

Γ(xj),

8



and generalize the norm and the trace

N(x) = x1 · · ·xd′ ,

Tr(x) = x1 + · · ·+ xd′ .

For x ∈ K, we define

e[x] = exp
(

2πiTr(x)
)
. (2.0.1)

Let c, a ∈ o∗ with (a, c) = 1, and denote by a∗ the inverse of a modulo c, in other words aa∗ ≡ 1

(mod c). Then the Kloosterman sum SK(m,n; c) over K is given by

SK(m,n; c) =
∑

a mod c
(a,c)=1

e
[am+ a∗n

c

]
. (2.0.2)

The Kloosterman sum satisfies the bound

|SK(m,n; c)| � N((m,n, c))
1
2N(c)

1
2

+ε (2.0.3)

where (m,n, c) is the greatest common divisor and ε > 0, see [HT20, (5.4)].

We denote by
∫

(a) the integral over the vertical line Re s = a, and by f̂(y) the Fourier transformation
of f given by the integral

f̂(y) =

∫
· · ·
∫

Rd

f(x)eiTr(xy) dx.
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Chapter 3

Fourth Power Moment of Hecke
L-functions over Totally Real Number
Fields

3.1 Preliminaries

Before proving Theorems 1.1.1 and 1.1.2, we need some further definitions and results.

Let a ∈ I be an integral ideal, with a = (a) where a ∈ F . Then the Größencharacters λ are given by

λν(a) = |a1|iν1 · · · |ad|iνd ,

with

d∑
j=1

νj = 0, (3.1.1)

d∑
j=1

νj log(|kεj |) ∈ 2πZ, (3.1.2)

for k = 1, . . . , d − 1, c.f. [L90, 3.2]. The conditions (3.1.2) make sure that λ really is a character on
ideals.
Using the normalization condition (3.1.1) we identify the d-dimensional vector (ν1, . . . , νd) with the
(d− 1)-dimensional vector ν = (ν1, . . . , νd−1) and write the character as

λν(a) =
∣∣∣a1

ad

∣∣∣iν1 · · · ∣∣∣ad−1

ad

∣∣∣iνd−1

;

the condition (3.1.2) changes to

d−1∑
j=1

(
2νj +

d−1∑
l=1
l 6=j

νl

)
log(|kεj |) ∈ 2πZ (3.1.3)

for k = 1, . . . , d − 1. We denote by Λd−1 the lattice consisting of the (d − 1)-dimensional vectors
satisfying (3.1.3).
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In the special case d = 2 the lattice is given by π
log εZ where ε is the fundamental unit.

We denote by ν̄ = (ν̄1, . . . , ν̄d−1) the unique basis element with

d−1∑
j=1

(
2ν̄j +

d−1∑
l=1
l 6=j

ν̄l

)
log(|kεj |) = 2π for all k. (3.1.4)

In the following we identify a Größencharacter λν with its exponent ν.
At several points we interpret ν ∈ Λd−1 as a d-dimensional vector with νd = −Tr(ν).

We denote by ζK(s, ν) the Hecke L-function given by

ζK(s, ν) =
∑
n 6=0
n=(n)
n∈o∗

λν(n)(Nn)−s (3.1.5)

for ν ∈ Λd−1 and Re s > 1. For ν = 0, the Hecke L-function reduces to the Dedekind ζ-function.
The Hecke L-function ζK(s, ν) has an analytic continuation to the whole plane, cf. [S97, page 228]
and [C90, page 1, equation (2)], with a simple pole at s = 1 if ν = 0, it is an entire function if ν 6= 0.

We collect some estimates for Hecke L-functions which will be needed for the computation of the
asymptotic formula.
On the central line the Hecke L-functions have the subconvexity bound∣∣ζK(1

2 + it, ν
)∣∣� (

2 + |t|+ Tr(|ν|)
) 1

6
+ε
, (3.1.6)

see [S97, page 227].
Furthermore the inverse of the Hecke L-function satisfies the following estimate on Re s = 1:

(3.1.1) Lemma
Let ν ∈ Λd−1 and s = σ + it with |t| � 1.
Then the inverse of the Hecke L-function is bounded from above by∣∣∣ 1

ζK(1 + it, ν)

∣∣∣� (
1 + |t|+ Tr(|ν|)

)ε
for all ε > 0.

Proof.
We follow the arguments in the classical case of the Riemann ζ-function, cf. [T51, §3.6].
For σ > 1 we consider the expression

ζK(σ, 0)3|ζK(σ + it, ν)|4|ζK(σ + 2it, 2ν)|

= exp
{ ∞∑
m=1

∑
p=(p)

3 + 4 cos
(
m log |λν(p)| −mt log(Np)

)
+ cos

(
2(m log |λν(p)| −mt log(Np))

)
m(Np)mσ

}
.

The inequality 3 + 4 cos(φ) + cos(2φ) = 2(1 + cos(φ))2 ≥ 0 shows that every term in the above sum is
non-negative. Hence ζK(σ, 0)3|ζK(σ + it, ν)|4|ζK(σ + 2it, 2ν)| ≥ 1.
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Rearranging the inequality we get∣∣∣ 1

ζK(σ + it, ν)

∣∣∣ ≤ ζK(σ, 0)
3
4 |ζK(σ + 2it, 2ν)|

1
4 .

We bound the factors on the right hand side separately.
Duke [D89, equation (1.2.8)] gives a bound for the second term ζK(s, ν), namely

|ζK(s, λ)| �
[
Aq

1
d (1 + |s|+ ‖λ‖)

]d 1−σ−δ0
2

for δ0 ≤ σ ≤ 1− δ0, 0 > δ0 ≥ −1
2 . Here λ is a Größencharacter modulo q and q = Nq, the constant A

depends on the discriminant and the degree n.
The first factor, ζK(s, 0), has a pole at s = 1, hence it grows like c

σ−1 for σ → 1, with a constant c.
Combining these estimates we obtain∣∣∣ 1

ζK(σ + it, ν)

∣∣∣� (
1 + |t|+ Tr(|ν|)

) ε
4 (σ − 1)−

3
4 . (3.1.7)

On the other hand, we consider

ζK(1 + it, ν)− ζK(σ + it, ν) = −
σ∫

1

ζ ′K(x+ it, ν) dx.

To estimate the derivative ζ ′K(s, ν) we again use [D89, equation (1.2.8)] and then apply Cauchy’s
formula for a circle with radius (1 + |t|+ Tr(|ν|))−ε to obtain

|ζ ′K(s, ν)| �
(
1 + |t|+ Tr(|ν|)

)2ε
.

Inserting this into the above equation we get the bound

ζK(1 + it, ν)− ζK(σ + it, ν)� (σ − 1)
(
1 + |t|+ Tr(|ν|)

)2ε
. (3.1.8)

Combining the estimates (3.1.7) and (3.1.8) leads to the lower bound

|ζK(1 + it, ν)| > A1(1 + |t|+ Tr(|ν|))−
ε
4 (σ − 1)

3
4 −A2(σ − 1)

(
1 + Tr(|ν|) + |t|

)2ε
.

The two terms on the right have the same order of magnitude for σ − 1 � (1 + |t|+ Tr(|ν|))−9ε, e. g.
choose σ − 1 =

(
A1
2A2

)4
(1 + |t|+ Tr(|ν|))−9ε. Hence, with some A3 > 0 small enough, we obtain

|ζK(1 + it, ν)| > A3

(
1 + |t|+ Tr(|ν|)

)−ε
,

and the statement follows.

Let ξ ∈ C, ν ∈ Λd−1, µ ∈ N0 and n = (n) with n � 0. We define

σξ(n, ν) =
∑
d|n

d=(d)

λν(d)(Nd)ξ, (3.1.9)

where the sums run over d � 0, c.f. [BM01, (3.15)]. For ν = 0 we write σξ(n, 0) = σξ(n).
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For Re s, t > 1 the Hecke L-functions and the divisor functions σξ(n, ν) are related via the equality∑
m∈F

λν(m)N(m)−sσs−t(m,µ− ν) = ζK(s, ν)ζK(t, µ). (3.1.10)

In our case of a totally real number field there are infinitely many generators for each ideal, namely
(x) = (

∏d−1
j=1 jε

νjx) for every ν ∈ Zd−1. To overcome this difficulty we introduce a partition of unity,
see [BM01, Lemma 2.1, (2.3)ff].

Let p be such that its Fourier transform p̂(y) is even, real-valued, smooth, supported in (−π
2 ,

π
2 ) in

each variable yj , j = 1, . . . , d− 1, and with p̂(0) = 1. Then the function p is even, real-valued, smooth
and of rapid decay on Rd−1, and for x, y ∈ Rd−1 we have∑

n∈Zd−1

p(x+ n) = 1, (3.1.11)

∑
n∈Zd−1

p(x+ n)p(y + n) =
1

(2π)d−1

∫
· · ·
∫

Rd−1

p̂(ξ)2eiTr((y−x)ξ) dξ. (3.1.12)

This follows by Poisson’s summation formula and by Parseval’s formula.
We define

Ψ(x) =
1

2d−1
p
(

log
∣∣x1
xd

∣∣ν̄1, . . . , log
∣∣xd−1

xd

∣∣ν̄d−1

)
for an element x ∈ K\{0}, with x = (x1, . . . , xd) as a vector in Rd, and ν̄ the basis element of Λd−1

chosen in (3.1.4). Further let

Ψ+(x) =

2d−1Ψ(x), x � 0,

0, else.
(3.1.13)

Then for x ∈ K\{0} the identities (3.1.11) and (3.1.12) imply∑
ε

Ψ(εx) = 1,

∑
ε

Ψ(εx)2 =
1

(4π)d−1

∫
· · ·
∫

Rd−1

p̂2(ξ) dξ =: cΨ.

For Ψ+, with x � 0 we have the similar results∑
ε�0

Ψ+(εx) = 1, (3.1.14)∑
ε�0

Ψ+(εx)2 = 21−dcΨ. (3.1.15)

Thus for any function f defined over the positive reals, we have

f(Na) =
∑
a∈o∗
(a)=a

f(|N(a)|)Ψ+(a).
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3.1.1 Special Functions

For the spectral decomposition we shall need the Eisenstein series and Casimir elements of the Lie
group G = PSL2(R)d, see [BM01, Section 3].
The Hilbert modular group Γ = PSl2(o) of K is a discrete subgroup of the Lie group G, via the
embedding g 7→ (g1, . . . , gd) of PSL2(o) into G where the conjugation is applied elementwise. The
group G has the Iwasawa decomposition G = NAK where

N =
{

n[x] | x ∈ Rd
}
, n[x] =

([ 1 xj

1

])
j=1,...,d

,

A =
{

a[y] | y ∈ (0,∞)d
}
, a[y] =

([ √yj
1/
√
yj

])
j=1,...,d

,

K =
{

k[θ] | θ ∈ (R/πZ)d
}
, k[θ] =

([ cos(θj) sin(θj)

− sin(θj) cos(θj)

])
j=1,...,d

.

Every g ∈ G equals a product n[x]a[y]k[θ]. In the following we use this decomposition of G without
mention. If a factor of the product contains expressions of K, this should be understood as resulting
from the embedding.

A matrix that will come up several times is w, defined as

w = k
[
π
2

]
=
([

1
−1

])
j=1,...,d

. (3.1.16)

The Lie algebra g of G has the basis

wj = 1
2∂θj ,

e+
j = e2iθj

(
iyj∂xj + yj∂yj − 1

2 i∂θj
)
,

e−j = e+
j , j = 1, . . . , d.

The basis elements satisfy the relations

[wj , e±j ] = ±ie±j , (3.1.17)

[e+
j , e

−
j ] = −2iwj , j = 1, . . . , d, (3.1.18)

and [xj1 ,xj2 ] = 0 for j1 6= j2 and xji ∈ {wji , e
+
ji
, e−ji}. Thus the center of the universal enveloping

algebra U of g is the polynomial ring in the d Casimir elements

Ωj = −e+
j e
−
j + w2

j − iwj = −y2
j (∂

2
xj + ∂2

yj ) + yj∂xj∂θj (3.1.19)

with j = 1, . . . , d.
We say that a function f on G is left Γ-automorphic of weight 2q = 2(q1, . . . , qd) with q ∈ Zd if for any
g ∈ G it holds true that

f(γg) = f(g), for γ ∈ Γ; f(gk[θ]) = e2iTr(qθ)f(g).

The second one is equivalent to

wjf = iqjf, j = 1, . . . , d.
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Further

e±j f are Γ-automorphic of weight 2(q ± 1j) (3.1.20)

where 1j is the vector with zeros everywhere except a one on the j-th place. Such an f trivially satisfies
f(n[n]g) = f(g) for all n ∈ o. Thus, under a suitable smoothness condition, f has a Fourier expansion
in terms of the additive characters given by

ψn(g) = exp
(

2πiTr(nx)
)
, n ∈ o (3.1.21)

where x comes from the Iwasawa decomposition of g.

Eisenstein Series

Now we introduce the Eisenstein series. Let Γ∞ = Γ∩N be the stabilizer in Γ of the point at infinity,
and let q = (q1, . . . , qd) ∈ Zd, ν ∈ Λd−1 and g ∈ G. Then for Re s > 1

2 we define the Eisenstein series

Eq(g; s, ν) :=
∑

γ∈Γ∞\Γ

φq(γg; s+ iν1, . . . , s+ iνd−1, s− iTr(ν)), (3.1.22)

where φq(g; s) =
d∏
j=1

y
sj+

1
2

j e2iTr(qθ)

where y and θ come from the Iwasawa decomposition of g.
As a function of s the Eisenstein series has a meromorphic continuation to C and satisfies a functional
equation:

(3.1.2) Lemma
Let q = (q1, . . . , qd) ∈ Zd, ν ∈ Λd−1 and νd = −Tr(ν) = −

∑d−1
j=1 νj. Then, as a function of s, the

Eisenstein series Eq(g; s, ν) continues meromorphically to C, and satisfies the functional equation

Eq(g;−s,−ν) = π−2ds
d∏
j=1

[
Γ(1

2 + s+ iνj + |qj |)
Γ(1

2 − s− iνj + |qj |)

]
ζK(1 + 2s,−2ν)

ζK(1− 2s, 2ν)
Eq(g; s, ν).

If Eq(g; s, ν) is holomorphic, it is a Γ-automorphic function of weight 2q.
If Re s > 0, a singularity occurs only for ν = 0 and q = 0 and E0(g; s, 0) has a simple pole at s = 1

2 .
Furthermore Eq(g; s, ν) has the Fourier expansion

e−2iTr(qθ)Eq(g; s, ν) = (Ny)
1
2

+sλν(y)

+ π
d
2 (−1)Tr(q)(Ny)

1
2
−sλ−ν(y)

d∏
j=1

[
Γ(s+ iνj)

Γ(1
2 + s+ iνj)

|qj |−1∏
k=1

(s+ iνj − k − 1
2

1
2 + s+ iνj + k

)] ζK(2s,−2ν)

ζK(1 + 2s,−2ν)

+ π
d
2 (−1)Tr(q) πds

ζK(1 + 2s,−2ν)

∑
n∈o∗

λν(n)

|Nn|s+
1
2

σ2s(n, 2ν)ψn(n[x])
d∏
j=1

Wqjsgn(nj),s+iνj (4π|nj |yj)
Γ(1

2 + s+ iνj + qjsgn(nj))

(3.1.23)
where g = n[x]a[y]k[θ], and Wa,b is the Whittaker function, see Section 5.1. The sum over n ∈ o∗

converges absolutely and uniformly for all parameters involved. For Ny → ∞ it is of exponential
decay.
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Proof.
We follow the proof of [BM01, Lemma 3.1].
The functional equation follows from the Fourier expansion. Thus it is enough to prove the Fourier
expansion. The Bruhat decomposition implies

Eq(g; s, ν) = φq(g; s) +
∑
c=(c)
c�0

∑
a mod (c)

a=(a),(a,c)=1

∑
n∈o

φq(a[ 1
c2

]wn[ac + n]g; s) (3.1.24)

where the vector s = (s+ iν1, . . . , s+ iνd−1, s− iTr(ν)), and the matrix w = k[π2 ] is defined in (3.1.16).
Now, applying Poisson’s formula to the sum over n yields

∑
n∈o

φq(a[ 1
c2

]wn[ac + n]g; s) =
∑
n∈o∗

e
[
an
c

] ∫
N
ψ−1
n (n)φq(a[ 1

c2
]wng; s) dn.

Then, using the equality a[ 1
c2

]wn[x]a[y] = wn[c2x]a[c2y] and the coordinates of the Iwasawa decompo-
sition of g, the right hand side changes to

e2iTr(qθ)

(Nc)2

∑
n∈o∗

e
[
an
c

]
ψn(n[x])A n

c2
φq(a[c2y]; s) (3.1.25)

where An is the Jacquet operator given by

Anf(g) =

∫
N
ψ−1
n (n)f(wng) dn.

An easy computation shows

wn[x]a[y] =

(
1 −x
|x+iy|2

0 1

)( √
y

|x+iy| 0

0 |x+iy|√
y

)(
−x
|x+iy|

y
|x+iy|

−y
|x+iy|

−x
|x+iy|

)
= n

[ −x
|x+iy|2

]
a
[ y
|x+iy|2

]
k
[
i log

( x+iy
|x+iy|

)]
.

Thus, using the definition of φq and inserting these coordinates, the Jacquet operator in (3.1.25) can
be written as

Anφq(a[y]; s) =
d∏
j=1

∫
R

exp(−2πixjnj)
( yj
|xj + iyj |2

) 1
2

+s+iνj( xj + iyj
|xj + iyj |

)−2qj
dxj

= (Ny)
1
2
−sλν(y)

d∏
j=1

∫
R

exp(2πinjyjξj)

(1 + ξ2
j )

1
2

+s−iνj

( i+ ξj
|i+ ξj |

)2qj
dξj .

The last integral is known, see [BM01, (3.22)], and for Re s > 0 and u ∈ R satisfies the equality

∞∫
−∞

e
1
2
iuξ

(ξ2 + 1)s+
1
2

( i+ ξ

|i+ ξ|

)2q
dξ = π(−1)q


( |u|

4

)s− 1
2
Wqsgn(u),s(|u|)

Γ(s+ 1
2

+qsgn(u))
, if u 6= 0,

21−2s Γ(2s)

Γ(s+ 1
2

+q)Γ(s+ 1
2
−q) , if u = 0.
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Inserting this into (3.1.24), for the second term of the right hand side we obtain

e2iTr(qθ)(−1)Tr(q)πd
∑
c=(c)
c�0

λ−2ν(c)

(Nc)1+2s

∑
a mod c

a=(a),(a,c)=1

e
[
an
c

]
×

×

{
2d(1−2s)(Ny)

1
2
−sλν(y)

d∏
j=1

Γ(2s+ 2iνj)

Γ(s+ iνj + 1
2 + qj)Γ(s+ iνj + 1

2 − qj)

+ πds−
d
2

∑
n∈o∗

λν(n)

(Nn)−s+
1
2

ψn(n[x])
d∏
j=1

Wqjsgn(nj),s+iνj(4π|nj |yj)

Γ(s+ iνj + 1
2 + qjsgn(nj))

}
.

Finally we need the Ramanujan expansion with a twist of Größencharacters, namely

∑
c=(c)

λ2ν(c)

(Nc)s

∑
a mod c

a=(a),(a,c)=1

e
[
an
c

]
=

1

ζK(s, 2ν)

ζK(s− 1, 2ν), if n = 0,

σ1−s(n, 2ν), if n 6= 0,
(3.1.26)

to reformulate the sum over c and a. Then an application of the duplication formula for the Γ-functions
if n = 0, leads to the Fourier expansion.

To see the convergence, we shift the contours of the Jacquet operator appropriately, and see that

A n
c2
φq(a[c2y]; s)�K

(
Nc
√
Ny
)1−2 Re s

exp
(
− aTr(|ny|)

)
,

for Re s > 0, and a > 0. Then, for Re s > 0 the sum over n is bounded by

�
(
(Nc)2Ny

) 1
2
−Re s

∑
n∈F

K0

(
a(N(ny))

1
2
)
,

where K0 is the K-Bessel function of order 0, see Section 5.2.
Hence, (3.1.24) converges absolutely for Re s > 1

2 , and the last assertion of the lemma follows.

3.1.2 Eigenvalues and Hecke Operators

In this section we follow the steps of [BM01, Section 4] to obtain a geometric sum formula for the
Hilbert modular group Γ.

Recall that G = PSL2(R)d. Let L2(Γ\G) be the Hilbert space consisting of all left Γ-automorphic
functions on G which are square integrable against the measure dg. Let 0L2(Γ\G) be its cuspidal
subspace. Then we have the decomposition

L2(Γ\G) = C⊕ 0L2 ⊕ E, (3.1.27)

0L2(Γ\G) =
⊕

V =
⊕⊕

q∈Zd
Vq, (3.1.28)

E =
⊕

ν∈Λd−1

⊕
q∈Zd

Eν,q (3.1.29)

where V runs over an orthogonal system of right irreducible cuspidal subspaces and decomposes into⊕
Vq. In every subspace Vq the matrices k[θ], defined in Section 3.1.1, act as the multiplication by

e2iTr(qθ), and dimVq ≤ 1.
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The subspace Eν,q is generated by the Eisenstein series Eq(g; s, ν), defined in (3.1.22), via

Eν,q =
{ ∞∫
−∞

u(t)Eq(g; 1
2 + it, ν) dt

∣∣∣ ∞∫
−∞

|u(t)|2 dt <∞
}
. (3.1.30)

The Casimir operator Ωj defined in (3.1.19) acts on V as multiplication by a constant, namely

Ωj |V =
(

1
4 + κ2

j

)
· 1 (3.1.31)

with κj ∈ C. Further we note that

wj |Vq = iqj · 1, wj |Eν,q = iqj · 1, j = 1, . . . , d.

Now we restrict our attention to the cuspidal subspaces V and deduce the possible values of κj .
We observe that the basis elements e±j of g act on V and (3.1.20) implies

e±j : Vq → Vq±1j (3.1.32)

where 1j is as in (3.1.20).
We choose a generator ϕ of Vq. Then ϕ is a cusp form over Γ\G, i.e. it is an element of 0L2(Γ\G),
and it is an eigenfunction of the Casimir operator Ωj and the basis element wj . By the definition of
the Casimir operator e∓j e

±
j = −Ωj + w2

j ± iwj , we have

e∓j e
±
j ϕ = −

(
(±qj + 1

2)2 + κ2
j

)
ϕ.

Then integration by parts yields

‖e±j ϕ‖
2 = −〈e∓j e

±
j ϕ,ϕ〉 =

(
(±qj + 1

2)2 + κ2
j

)
‖ϕ‖2.

In particular the term (±qj + 1
2)2 + κ2

j is non-negative and we can choose κj to be

either κj ≥ 0 or 0 ≤ iκj ≤
∣∣|qj | − 1

2

∣∣. (3.1.33)

Thus, the mappings (3.1.32) are bijective in many cases. Exceptions can occur only if iκj = lj − 1
2

with some lj ∈ N. More precisely

Vq 6= {0} and e±j Vq = {0} ⇔ qj = ∓lj or lj = 1, qj = 0.

Thus the only possible values that iκj can attain if iκj ≥ 1
2 are lj − 1

2 with lj ∈ N.

We summarize the possible cases:

(I) qj ∈ Z, κj ≥ 0 (unitary principal series)

(II) qj ∈ Z, 0 ≤ iκj < 1
2 (complementary series)

(III) qj ≥ lj , iκj = lj − 1
2 (holomorphic discrete series)

(IV) qj ≤ −lj , iκj = lj − 1
2 (anti-holomorphic discrete series)

(V) qj = 0, iκj = 1
2 (trivial representation).
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The last case (V) cannot occur, as the elements of V are cusp forms.
Thus, we have the following lemma.

(3.1.3) Lemma
Let V =

⊕
q∈Zd

Vq be an irreducible cuspidal subspace of 0L2(Γ\G), and let κj be given by (3.1.31) and

(3.1.33). Then for j = 1, . . . , d either

1. κj ≥ 0 or 0 ≤ iκj < 1
2 ,

or 2. iκj = lj − 1
2 , with ηjqj ≥ lj and lj ∈ N.

Here ηj = ±1, and qj ∈ Z.
We may choose a cusp form ϕV ∈ V of weight 2qV with qV = (q1, . . . , qd) where

qj =

0, if 1. holds,

ηjlj , if 2. holds,

such that V = U · ϕV , with the universal enveloping algebra U of g.

The exceptional eigenvalues, i.e. the numbers 1
4 +κ2

j with 0 ≤ iκj < 1
2 , satisfy non-trivial lower bounds.

The best known result is

iκj ≤
7

64
,

see [BB11].

As a next step we consider the Fourier expansion of a cusp form and obtain a relation between the
Fourier coefficients and the Hecke eigenvalues.

Let ϕV ∈ V be a cusp form of weight 2qV . Its Fourier expansion is given by

ϕV (g) = (−1)Tr(qV )e2iTr(qV θ)
∑
n∈o∗

%V (n)√
|Nn|

ψn(g)
d∏
j=1

Wqjsgn(nj),iκj (4π|nj |yj)
Γ(1

2 + iκj + qjsgn(nj))

where Wa,b is the Whittaker function given in Section 5.1. The additive character ψn(g) is defined in
(3.1.21); the %V (n) are certain complex numbers. This is a specialisation ϕ = ϕV where ϕ is a solution
of the differential equation Ωjϕ = (1

4 + κ2
j )ϕ with ϕ ∈ Vq.

The Γ-factors do not produce zeros with the possible combinations of qV and κV . From now on
we assume {ϕV | V } to be an orthonormal system in L2(Γ\G). The %V (n) are called the Fourier
coefficients of V . We note that the vector (%V (n))n∈o∗ is well-defined and stable under multiplication
of n with ε = 1ε

2ν1 · · · d−1ε
2νd−1 , i. e. %V (εn) = %V (n) – a consequence of ϕV (a[ε]g) = ϕV (g).

Now we consider the Hecke operators on the space L2(Γ\G) given by

Tnf(g) =
1√
Nn

∑
d|n

d=(d),d�0

∑
b mod d

f
(
n[ bd ]a[ n

d2
]g
)

for n = (n) with n � 0. (3.1.34)

The Hecke operators preserve the orthogonal decomposition (3.1.28) and it can be shown that the
equality TnTm = TmTn holds for any m, n, and each Tn is symmetric over L2(Γ\G). Therefore, we may
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assume that V is such that

Tn|V = tV ((n)) · 1, tV ((n)) ∈ R. (3.1.35)

Computing the Fourier coefficients of TnϕV we have for n = (n) and any m ∈ o∗

%V (m)tV (n) =
∑

(d)|(m,n)

%V
(
mn
d2

)
. (3.1.36)

Hence, for m = ε ∈ o× a unit and n � 0 we have

%V (εn) = %V (ε)tV ((n)).

In other words, for any n ∈ o∗

%V (n) = tV ((n)) ·



%V (1), n � 0,
...

%V (εn), εnn � 0,
...

%V (−1), −n � 0

(3.1.37)

where εn is a product of the fundamental units jε, j = 1, . . . , d− 1, such that εnn � 0, this exists by
our assumptions.
For the special case d = 2 the fundamental unit ε > 1 and has Nε = −1. Thus we can give εn explicitly,
if n1 < 0 and n2 > 0 the product n1ε

′ is totally positive where ε′ is the conjugate of ε, and if n1 > 0

and n2 < 0 we choose εn = ε.

Thus, there is at least one unit ε such that %V (ε) 6= 0, otherwise we would have ϕV ≡ 0.
For m,n ∈ o∗, we have by (3.1.36)

tV ((m))tV ((n)) =
∑

(d)|(m,n)

tV
(
(mn
d2

)
)
. (3.1.38)

As in the modular case, Hecke operators Tn are to be supplemented with involutions with which one
can distinguish the parities for the cases in (3.1.37). To this end we define for any unit ε,

ε =

([
sgn(ε1)

1

]
, . . . ,

[
sgn(εd)

1

])
∈ PGL2(R)d

where εj is the j-th embedding of ε. An easy computation shows that

εGε = G, (a[|ε|]ε)Γ(a[|ε|]ε)−1 = Γ. (3.1.39)

Then, for any Γ-automorphic function f ∈ G, we define

iεf(g) = f
(
a[|ε|]εgε

)
= f

(
n[(εjxj)j ]a[(|εj |yj)j ]k[(sgn(εj)θj)j ]

)
.
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By (3.1.39) we see that the left Γ-automorphy is preserved by iε and that

i2ε = 1, iε1 iε2 = iε1ε2 , Ωj iε = iεΩj , Tniε = iεTn,

for ε, ε1, ε2 ∈ o×.
But the weight of f is in general not preserved: if f is of weight 2q, the function iεf has weight
2(sgn(ε1)q1, . . . , sgn(εd)qd). To get an involution we must either restrict the weights, or choose ε
appropriately.
We can write

%V (εV ε) = %V (εV )λV (ε),

where λV (ε) ∈ {±1}∪{0} lives on the units modulo P (ε)2 =
∏d−1
j=1 jε

2. The unit εV depends on sgn(q).
For example, if q = 0 we have εV = 1 and λV is a real character of the unit group modulo P (ε)2.

In the case d = 2 Bruggeman and Motohashi give explicit values for εV , namely εV = 1 if qV = (0, 0),
and εV = (−1)j−1sgn(qj) if qV = (qj , 0) or (0, qj) and εV = ε

1+sgn(q2)
2 ε′

1−sgn(q1)
2 if qV = (q1, q2)

Thus, we may put for n ∈ o∗ and any unit ε such that εn � 0

%V (n) = %V ηV (n)tV ((n)), ηV (n) = λV
(
ε
εV

)
(3.1.40)

where

%V = %V (εV ). (3.1.41)

This definition of λ∗ via iε is not limited to cuspidal subspaces. It can be extended to Eisenstein series
as by the Fourier expansion given in (3.1.23) it holds that

iεE0(g; s, ν) =
∣∣∣ε1

εd

∣∣∣iν1 · · · ∣∣∣εd−1

εd

∣∣∣iνd−1

E0(g; s, ν).

This, and the definition of E given in (3.1.29) and (3.1.30) lead to the extension of λ∗ and η∗ given by

λEν (ε) = ηEν (ε) =
∣∣∣ε1

εd

∣∣∣iν1 · · · ∣∣∣εd−1

εd

∣∣∣iνd−1

= ±1.

Geometric Sum Formula

Now we are ready to state the spectral results that are essential for our purpose.

(3.1.4) Lemma
Let κV = (κ1, . . . , κd) with κj as in (3.1.31) and Lemma 3.1.3; qV = (q1, . . . , qd) as defined in Lemma
3.1.3; tV ((n)) as defined by (3.1.35); ηV (n) as defined by (3.1.40) and %V as in (3.1.41). Let

aV :=
(

2
π

)d√|DK ||%V |2
d∏
j=1

Γ(1
2 + |qj |+ iκj)

Γ(1
2 + |qj |+ iκj)

.

Further, let w be a function defined for all κV and satisfying w(κV ) �
(
(1 + |κ1|) · · · (1 + |κd|)

)−2−µ

with an arbitrary small constant µ > 0.

21



Then we have for any n ∈ o∗, ∑
V

aV |ηV (n)|tV ((n))2w(κV )� |Nn|
1
2

+µ

where V runs over all cuspidal subspaces, and the implicit constant depends only on µ.
This implies, in particular, that

tV ((n))� (Nn)
1
4

+µ

with the same dependency on µ.

Proof.
This follows from [BMP01, equation 15, page 112].

(3.1.5) Lemma
Let f be smooth over (0,∞)d, and f and all its derivatives are of rapid decay if at least one variable
tends to 0+ or +∞. Let

Bef(r1, . . . , rd) = id
∫
· · ·
∫

(0,∞)d

d∏
j=1

J
(ej)
2irj

(uj)− J
(ej)
−2irj

(uj)

sinh(πrj)
f(u)

du

Nu
(3.1.42)

where e = (e1, . . . , ed) with ej = ±1, (r1, . . . , rd) ∈ Cd, and J+
ν = Jν , J−ν = Iν are the Bessel functions

defined in Section 5.2.
Then we have for any m,n ∈ o∗

∑
c∈o∗

SK(m,n; c)

Nc
f
((4π

√
|mjnj |
|cj |

)
j

)
=
∑
V

aV ηV (m)tV ((m))ηV (n)tV ((n))B[mn]f(κV )

+ Ce
∑

ν∈Λd−1

λ−ν(mn)

∞∫
−∞

σ2it(m, 2ν)σ2it(n, 2ν)

|N(mn)|it|ζK(1 + 2it, 2ν)|2
B[mn]f(t+ ν) dt

(3.1.43)

where t + ν = (t + ν1, . . . , t + νd−1, t − Tr(ν)), [mn] = (sgn(m1n1), . . . , sgn(mdnd)), Ce = 2d
√
|DK |

and the other symbols are as in the previous lemma. The functions ζK(s, ν) and σξ(n, ν) are defined
in (3.1.5) and (3.1.9), and SK is defined in (2.0.2).

Proof.
For a proof see [BMP01] Theorem 2.7.1 combined with Proposition 2.5.6 and 2.6.3 and [B81, Propo-
sition 14.2.8- 14.2.9].

We state an upper bound for Bef for later use. The right hand side of (3.1.43) converges rapidly, as
follows from the estimates of Lemma 3.1.4 and the estimate

Bef(r)� (1 + |r1|+ · · ·+ |rd|)−
Cf
2 (3.1.44)

for | Im rj | < 1
4Cf , j = 1, . . . , d, and Cf a large constant we specify in a moment.

For f a smooth function with compact support, we can conclude this from [BMP01, Proposition 2.5.6].
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But for a later use, we will deduce it by hand. Note that Bef(r) is regular for | Im rj | < Cf for all j
and Cf a large constant, see [BMP01, Proposition 2.5.6, Definition 2.5.1]. We use the Mellin inversion
theorem for suitable aj , j = 1, . . . , d and get

f(u) =
1

(2πi)d

∫
· · ·
∫

(a1)...(ad)

f̃(s)
(u1

2

)−2s1
· · ·
(ud

2

)−2sd
ds (3.1.45)

where

f̃(s) =

∫
· · ·
∫

(0,∞)d

f(u)
(u1

2

)2s1−1
· · ·
(ud

2

)2sd−1
du

is the Mellin transform of f ; it is holomorphic if |Re sj | < Cf for all j, and is, in this region, of rapid
decay.
Inserting the Mellin inversion in (3.1.42), we get

Bef(r) =
id2−d

(2πi)d

∫
· · ·
∫

(a1)...(ad)

f̃(s)
d∏
j=1

J (ej)(sj , rj) ds (3.1.46)

where ej = ± and

J (e)(s, r) =

∞∫
0

J
(e)
2ir(u)− J (e)

−2ir(u)

sinh(πr)

(u
2

)−2s−1
du.

If | Im rj | < 1
4 for all j = 1, . . . , d and aj satisfies −1

4 < aj < −| Im rj |, the right hand side of (3.1.46)
converges absolutely, and the equality holds. Then for −1

4 < Re s < −| Im rj | the function J (e)(s, r)

equals

J±(s, r) =
1

πi

{
(1± 1) cos(πs) + (1∓ 1) cosh(πr)

}
Γ(ir − s)Γ(−ir − s). (3.1.47)

In the case e = + and ir = l − 1
2 , l ∈ N, this changes to

J+
(
s, i(1

2 − l)
)

= 2i(−1)l−1 Γ(l − 1
2 − s)

Γ(l + 1
2 + s)

. (3.1.48)

Inserting this in (3.1.46) and shifting the contours to the left, we see that (3.1.46) holds for | Im rj | < Cf .
Now shifting the contour to the right yields the estimate (3.1.44). Note that the poles we pass are of
rapid decay in r as f̃ is of rapid decay.

Hecke Series

We now introduce the Hecke series HV associated to the cuspidal irreducible subspaces V .
Let tV (n) be as defined in (3.1.35), and put

HV (s) =
∑
n

tV (n)(Nn)−s. (3.1.49)
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The Hecke series converges absolutely at least for Re s > 5
4 , in this region it is bounded uniformly in V

as follows from Lemma 3.1.4. Using the Rankin ζ-function attached to V one can see that it converges
for Re s > 1.
The multiplication formula (3.1.38) implies an Euler product for HV and in the region of absolute
convergence we have the relation

HV (s1)HV (s2) = ζK(s1 + s2)
∑
n

σs1−s2(n)tV (n)

(Nn)s1
.

Further, we have a functional equation:

(3.1.6) Lemma
The Hecke series associated with a cuspidal irreducible subspace V is an entire function satisfying the
functional equation

HV (s) = HV (1− s)(2π)d(2s−1)

πd

d∏
j=1

[(
λV (εj) cosh(πκj)− cos(πs)

)
Γ(1− s+ iκj)Γ(1− s− iκj)

]
,

where κV = (κ1, . . . , κd) as above, and εj is such that nεj � 0 if nj < 0 and ni > 0 for i 6= j.
In particular, we have the estimate

HV (s)� (1 + |s|+ |κ1|+ · · ·+ |κd|)c

where c = C(Re s) depends only on Re s, and the implicit constant depends on K and Re s.
Specifically, if Re s = 1

2 the convexity bound gives c = 1
2 + ε.

Proof.
The functional equation is given in [JL70, Theorem 11.1], in the form L(s, π) = ε(s, π)L(1− s, π̃). To
get the exact term that is named by ε(s, π) in [JL70], we compute it directly.
We consider the case qV = 0. The other cases are simpler, c.f. [BM01, Proof of Lemma 4.4]. Let
λj = 1

2(1 − λV (εj)) for all j = 1, . . . , d, with εj such that if nj < 0 and ni > 0 for all i 6= j, then
(nεj) � 0. Let λ = (λ1, . . . , λd). Further define the function ϕ∗V = (1

2(e+
1 −e

−
j ))λ1 . . . (1

2(e+
d −e

−
j ))λdϕV

and

AV (s) =

∫
· · ·
∫

1≤
yj
yd
≤jε4

j=1,...,d

ϕ∗V (a[y])(Ny)s−
3
2dy

for Re s sufficiently large.
Using the Fourier expansion and the relation (3.1.40) with the special case q = 0, we have

ϕ∗V (a[y]) = 2d(−2π)λyλ
(
Ny
) 1

2
∑
n∈o∗

%∗V (n)
d∏
j=1

Kiκj (2π|nj |yj)
Γ(1

2 + iκj)

where Kν is the Bessel K-function of order ν, see Section 5.2, and

%∗V (n) = %V (n)nλ = %V |n1|λ1 · · · |nd|λdtV ((n)).
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In fact, λV (ε) is a non-trivial character of the unit group, provided λ1 + · · ·+ λd 6= 0.
Inserting this in the definition of AV (s) we have

AV (s) = 2d%V (−2π)λ
d∏
j=1

1

Γ(1
2 + iκj)

×

×
∑

n mod P (ε)2

tV ((n))|n1|λ1 · · · |nd|λd
∫
· · ·
∫

(0,∞)d

d∏
j=1

Kiκj (2π|nj |yj)y
λj+s−1
j dy

where P (ε) = 1ε · · · d−1ε. This integral converges absolutely at least for Re s > 5
4 .

Evaluating the integral, we find that

AV (s) = %V (−1)λ2λ−dπ−ds
d∏
j=1

Γ(1
2(λj + s+ iκj)Γ(1

2(λj + s− iκj)
Γ(1

2 + iκj)
HV (s). (3.1.50)

On the other hand, with the same argument as in the proof of Lemma 3.2.1 we have

ϕ∗V (a[y]) = (−1)λϕ∗V (a[y]−1).

Then dividing the integral into two pieces, namely Ny ≤ 1 and Ny ≥ 1, we see that AV (s) is an entire
function, and satisfies the functional equation AV (s) = (−1)λAV (1− s).
Using (3.1.50) we get the functional equation as claimed.

The second statement follows from the functional equation and the estimate on tV ((n)) given in Lemma
3.1.4 by using the Phragmén-Lindelöf convexity principle.
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3.2 Spectral Decomposition of The Fourth Moment of ζK

The goal of this section is to find a spectral decomposition for

Z2(g, ω;K) :=
∑

ν∈Λd−1

ω(ν)

∞∫
−∞

|ζK(1
2 + it, ν)|4g(t) dt

where g and ω are assumed to be entire, real valued on R, and of rapid decay in any fixed horizontal
strip in every variable t, νj . The number field K is as in Chapter 2.
Bruggeman and Motohashi have done this in their paper [BM01] for the special case d = 2, this chapter
follows closely their arguments.

3.2.1 Initial Reduction

To begin we set for Re zj > 1, j = 1, . . . , 4:

I(z1, z2, z3, z4; g, ω)

=
∑

ν∈Λd−1

ω(ν)

∞∫
−∞

ζK(z1 + it, ν)ζK(z2 + it, ν)ζK(z3 − it,−ν)ζK(z4 − it,−ν)g(t) dt.
(3.2.1)

The function I(z1, z2, z3, z4) has a meromorphic continuation to C4. In particular, using the estimate
(3.1.6) we see that it is regular at p 1

2
= (1

2 ,
1
2 ,

1
2 ,

1
2).

To obtain the continuation, let Re zj > 1 for all j. Moving the path of integration upwards, we collect
two residues coming from the poles at t = (z1 − 1)i and t = (z2 − 1)i if ν = 0 and we see that I is
a meromorphic function in a region |zj | < B for some B depending on g and ω. Now let Re zj < 1

for all j and move the path back to the original, collecting again two residues at t = (1 − z3)i and
t = (1− z4)i if ν = 0. Then we get for Re zj < 1, j = 1, . . . , 4,

I(z1, z2, z3, z4; g, ω) =
∑

ν∈Λd−1

ω(ν)

∞∫
−∞

ζK(z1 + it, ν)ζK(z2 + it, ν)ζK(z3 − it,−ν)ζK(z4 − it,−ν)g(t) dt

+ 2πω(0)ζK(z2 − z1 + 1, 0)ζK(z1 + z3 − 1, 0)ζK(z1 + z4 − 1, 0)g((z1 − 1)i)

+ 2πω(0)ζK(z1 − z2 + 1, 0)ζK(z2 + z3 − 1, 0)ζK(z2 + z4 − 1, 0)g((z2 − 1)i)

+ 2πω(0)ζK(z4 − z3 + 1, 0)ζK(z1 + z3 − 1, 0)ζK(z2 + z3 − 1, 0)g((1− z3)i)

+ 2πω(0)ζK(z3 − z4 + 1, 0)ζK(z1 + z4 − 1, 0)ζK(z2 + z4 − 1, 0)g((1− z4)i).

Now we insert the point p 1
2
and get

Z2(g, ω;K) = I(p 1
2
; g, ω) + CK(g, ω),

where the constant CK(g, ω) comes from the terms g(±(zj − 1)i) by considering the Laurent series of
ζK(±((zj′ − zj) + 1)i). We have

CK(g, ω) = ω(0)
(
a0g(1

2 i) + b0g(−1
2 i) + a1g

′(1
2 i) + b1g

′(−1
2 i)
)

(3.2.2)

with constants a0, b0, a1, b1 depending on K that can be made explicit.
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Now we consider I(z1, z2, z3, z4; g, ω) in the domain Re zj > 1 for all j, so that the integral converges
absolutely.
In this region of absolute convergence, we use the definitions in (3.2.1) and insert the partition of unity
Ψ+ defined in (3.1.13). Further we use the identity (3.1.10) to obtain

I(z1, z2, z3, z4; g, ω) =
∑

ν∈Λd−1

ω(ν)

∞∫
−∞

∑
a,b∈o∗

σz1−z2(a)σz3−z4(b)

(Na)z1+it(Nb)z3−it
Ψ+(a)Ψ+(b)λν

(a
b

)
g(t) dt

=
∑
a,b∈o∗

σz1−z2(a)σz3−z4(b)

(Na)z1(Nb)z3
Ψ+(a)Ψ+(b)W

( b
a

)
where the function W is given by

W (x) = ĝ
(

log(Nx)
) 1

vol(Λd−1)

∑
h∈Λ̂d−1

ω̂
((
hj + log

(
xd
xj

))d−1

j=1

)
(3.2.3)

for x � 0. If x 6� 0 the function W (x) vanishes. The lattice Λ̂d−1 is the dual lattice of Λd−1.
The sum

∑
a,b∈o∗ splits into two parts, namely

∑
a=b and

∑
a6=b. We denote them by I0 and I+

respectively, and have I(z1, z2, z3, z4; g, ω) = {I0 + I+}(z1, z2, z3, z4; g, ω).

Due to (3.1.15) the sum I0 equals

I0(z1, z2, z3, z4; g, ω) = 21−dcΨW (1)
ζK(z1 + z3)ζK(z1 + z4)ζK(z2 + z3)ζK(z2 + z4)

ζK(z1 + z2 + z3 + z4)
. (3.2.4)

Now we consider the term I+. Let a = n and b = n + m. As a, b � 0 we have n, n + m � 0, and I+

becomes

I+(z1, z2, z3, z4; g, ω) =
∑
m∈o∗

(Nm)−z1−z3
∑
n∈o∗
n+m6=0

σz1−z2(n)σz3−z4(n+m)

|N( nm)|z1 |N(1 + n
m)|z3

W
(
1 + m

n

)
Ψ+(n)Ψ+(n+m).

We rewrite m ∈ o∗ as εm, with ε ∈ o× and m ∈ F , and also split off a factor ε from n. Thus the sum
over the units can be separated from the innermost sum, and formula (3.1.12) gives∑

ε∈o×
Ψ+(εn)Ψ+(ε(n+m)) = cΨ(1 + m

n )

where

cΨ(x) =
1

(8π)d−1

∫
· · ·
∫

Rd−1

p̂(ξ)2 exp
(
i
d−1∑
j=1

ξj log
∣∣xj
xd

∣∣ν̄j) dξ, (3.2.5)

thus 1
2d−1 cΨ = cΨ(1).

For sufficiently nice h that are specified later, let

Bm(α, β;h) :=
∑
n∈o∗
n+m 6=0

σα(n)σβ(n+m)h
(
n
m

)
, m � 0. (3.2.6)
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Then in the region of absolute convergence, i.e. Re zj > 1 for all j, the function I+ can be written as

I+(z1, z2, z3, z4; g, ω) =
∑
m∈F

(Nm)−z1−z3Bm

(
z1 − z2, z3 − z4;W+(·; z1, z3)

)
(3.2.7)

where the function W+ is given by

W+(y; γ, δ) =
W (1 + 1

y )cΨ(1 + 1
y )

|N(y)|γ |N(1 + y)|δ
. (3.2.8)

Its support is contained in the region 1 + 1
y � 0, as W (x) is supported on x � 0.

Our aim is to transform Bm(α, β;h), in the region of absolute convergence, into a sum over Kloosterman
sums over K. Afterwards we decompose it spectrally with the geometric sum formula given in Section
3.1.2, provided that h satisfies the condition (3.2.17). Then we continue it to a neighborhood of p 1

2
.

Finally we check that W satisfies this condition and use the decomposition of Bm(α, β;h) to spectrally
decompose Z2(g, ω;K).

To begin we use the Ramanujan expansion (3.1.26) with the character ν = 0 to separate the parameters
n and m in σβ(n+m) in Bm(α, β;h). Recall the definition of e[x] for x ∈ K, given in (2.0.1). Thus,
for Reβ < −1,

Bm(α, β;h) = ζK(1− β)
∑
c∈o∗

Ψ(c)|Nc|β−1
∑

amod c
(a,c)=1

e
[am
c

]
Dm(α, ac ;h) (3.2.9)

where

Dm(α, ac ;h) :=
∑

n∈o∗/Uc

σα(n)e
[an
c

]
h
(
n
m ; c

)
(3.2.10)

with

h(x; c) =
∑
ε∈Uc

h(εx) (3.2.11)

and Uc = {ε | totally positive unit congruent to 1 mod c }. Let 1εc, . . . , d−1εc be a system of generators
of Uc with jεc > 1, and jεc � 0. Then every element ε ∈ Uc is of the form

ε =
d−1∏
j=1

jε
νj
c

where νj ∈ Z.
We assume h to be continuous and such that (3.2.11) converges absolutely. For x ∈ K let the function
h(x; c) be regular and for Nx large, be bounded by

h(x; c)� |Nx|−1−max{0,Reα}−µ (3.2.12)

uniformly in c, for some µ > 0. Further let h(x; c) be of rapid decay if at least one variable tends to 0

or −1. Under these conditions the expansion (3.2.9) of Bm holds for Reβ < −1.
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After separation of the parameters n andm in σβ(n+m), we need the analogous separation for h( nm ; c),
too. To this end we extend h to (R\{0})d via x 7→ (x1, . . . , xd), following [BM01], such that

h(x; c) = h(x1, . . . , xd; c) =
∑

ν∈Zd−1

h
((

1ε
ν1
c · · · d−1ε

νd−1
c x

)d
j=1

)
.

Note that
(

1ε
ν1
c · · · d−1ε

νd−1
c

)
d

=
∏d−1
j=1

(
1ε
ν1
c · · · d−1ε

νd−1
c

)−1

j
.

As the sum in (3.2.11) converges absolutely, the sum over ν converges absolutely, too. Thus the
function h

((
1ε
ν1
c · · · d−1ε

νd−1
c x

)d
j=1

)
is of rapid decay at infinity and we can apply Poisson’s summation

formula. If we substitute
(

1ε
t1
c · · · d−1ε

td−1
c

)
j
7→ ξj for j = 1, . . . , d − 1, then the variables tj and ξi

satisfy some linear equation and one can express tj = R−1
K

∑d−1
i=1 cj,i log ξi, where the constant cj,i is a

sum of the minors
(

log(kεc)l
)
ji
, with l 6= i and k 6= j. Then the exponential function eitν changes to

ξ
R−1
K

∑d−1
i=1 ci,jνi

j , and we view the new exponents ν̃ as elements of a (d − 1)-dimensional lattice Λd−1
c .

We have

h(x; c) = vol(Λd−1
c )

∑
ν̃∈Λd−1

c

∫
· · ·
∫

(0,∞)d−1

h(ξ1x1, . . . , ξd−1xd−1, ξ
−1
1 · · · ξ

−1
d−1xd)ξ

−iν̃j
j

dξ

Nξ
.

Let xj = ej |xj | with ej = ±1. Then changing variables ξj 7→ ξj |Nx|
1
d /|xj | gives

h(e|x|; c) = vol(Λd−1
c )

∑
ν̃∈Λd−1

c

λν̃(x)

∫
· · ·
∫

(0,∞)d−1

h
(
ejξj |N(x)|

1
d )d−1
j=1 , ed

d−1∏
j=1

ξ−1
j |N(x)|

1
d
)
ξ
−iν̃j
j

dξ

Nξ
.

Now the integral is a function of |Nx|
1
d .

Using the Mellin inversion theorem in each orthant separately, we have

h(e|x|; c) =
vol(Λd−1

c )

2πi

∑
ν̃∈Λd−1

c

λν̃(x)

∫
(υ)

h̃(s− iν̃1, . . . , s− iν̃d−1, s+ iTr(ν̃); e)|N(x)|−s ds

where e = (e1, . . . , ed) and h̃ is the Mellin transform of h, given by

h̃(s; e) =

∫
· · ·
∫

(0,∞)d

h
(
eu)

d∏
j=1

u
sj−1
j du. (3.2.13)

The requirements to do so are satisfied for 1 + max{0,Reα} < υ by the bound of h given in (3.2.12).

For 1 + max{0,Reα} < υ a rearrangement yields

Dm(α, ac ;h) (3.2.14)

=
vol(Λd−1

c )

2πi

∑
`

∑
ν̃∈Λd−1

c

λ−ν̃(m)

∫
(υ)

|N(m)|sh̃`(s− iν̃1, . . . , s− iν̃d−1, s+ iTr(ν̃))D`(s, α; ν̃; ac ) ds

where the sum over ` runs over the vectors (l1, . . . , ld) with lj = 0, 1.
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The functions h̃` and D` are defined by

h̃`(s) =
1

2d

∑
e=(e1,...,ed)

e`h̃(s; e), (3.2.15)

D`(s, α; ν̃; ac ) =
∑

n∈o∗/Uc

σα(n)

|Nn|s
λν̃(n)sgn`[n]e

[an
c

]
. (3.2.16)

with sgn`[x] = sgn`[x1, . . . , xd] =
∏d
j=1(

xj
|xj |)

lj .
We assume that h is continuous and of rapid decay if at least one variable tends to infinity, zero or −1

and that

h̃ is regular and

h̃(s; e)� (1 + |s1|+ · · ·+ |sd|)−C0 in |Re sj | < C0, for all j = 1, . . . , d (3.2.17)

for a sufficiently large C0 > 0. Then condition (3.2.12) holds for |Reα| < 1
2C0. In particular (3.2.14)

holds for an appropriate contour (υ).

3.2.2 Kloosterman Sums

In this section we deduce a functional equation for the function D`(s, α; ν; ac ) defined in (3.2.16) and
use it to represent Bm as a sum over Kloosterman sums over K.

(3.2.1) Lemma
The function D` has a meromorphic continuation to C. If α 6= 0 it has at worst simple poles at
s = 1, 1 + α with residues

2dδν,0δ`,0

vol(Λd−1
c )
|DK |−

α
2

+ 1
4 |Nc|α−1ζK(1− α),

2dδν,0δ`,0

vol(Λd−1
c )
|DK |

α
2
− 1

4 |Nc|−α−1ζK(1 + α).

In particular D` is entire unless ν = 0. Furthermore we have

D`(s, α; ν; ac ) =
1

πd

((2π)d

|Nc|

)2s−α−1
λ2ν(c)Γ`

(
s− iν;α

)
D`(1− s,−α;−ν; a

∗

c )

where aa∗ ≡ 1 (mod c), s− iν = (s− iν1, . . . , s− iνd−1, s+ iTr(ν)), and

Γ`(s;α) =

d∏
j=1

[
cos(π2α)− (−1)lj cos

(
π(sj − 1

2α)
)]

Γ(1− sj)Γ(1 + α− sj).

Proof.
Fix ` and define

fα(g; ac ) = π−d
α
2 |DK |

α
2
− 1

4 Γ
(

1
2(1 + α)

)d
ζK(1 + α)

d∏
j=1

(e+
j − e−j )ljE0

(
n[ac ]g; 1

2α, 0
)
.

Recall that E0(g; s, ν) is defined in (3.1.22)
Choose g = a[y]−1. An easy computation shows

n
[
a
c

]
a[y]−1 ∈ Γn

[−a∗
c

]
a
[
y/c2

]
w
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where w is defined in (3.1.16). Thus, as the Eisenstein series E0 is a Γ-automorphic form as are e±j E,
we have

fα(a[y]−1; ac ) = (−1)Tr(`)fα(a[y/c2]; ac ). (3.2.18)

On the other hand, we use the Fourier expansion of the Eisenstein series, stated in Lemma 3.1.2.
This gives the expression

fα(a[y]; ac ) = δ`,0

(
π−d

α
2 |DK |

α
2
− 1

4 Γ
(

1
2(1 + α)

)d
ζK(1 + α)(Ny)

1
2

(1+α)

+ πd
α
2 |DK |−

α
2

+ 1
4 Γ
(

1
2(1− α)

)d
ζK(1− α)(Ny)

1
2

(1−α)
)

+ (−1)`(4π)`+
d
2 y`(Ny)

1
2

∑
n∈o∗

σα(n)

(Nn)
1
2
α
n`e
[
an
c

] d∏
j=1

Kα
2
(2π|nj |yj)

= :
{
f (0)
α + f (1)

α

}
(a[y]; ac )

(3.2.19)

where Kµ is the K-Bessel function of order µ.
Then we consider the integral over f (1)

α given by

I(s, α; ν; ac ) =

∫
· · ·
∫

1≤
y1···yd−1

yd
≤P (εc)2

f (1)
α

(
a[y|c|−1]; ac

)
(Ny)s−

1
2

(α+3)λν(y) dy (3.2.20)

where P (εc) :=
∏d−1
j,k=1(jεc)k. We shall see that up to some factors this integral is equal to the function

D`. Thus, computing a functional equation for it gives the functional equation for D`. The details are
presented in the following steps.
We insert the definition of f (1)

α and change the summation over n ∈ o∗ into the two sums n ∈ o∗/Uc

and p ∈ Zd−1. Then we have

I(s, α; ν; ac ) = (−1)`(4π)`+
d
2 |DK |

α
2
− 1

4 |c|−`|Nc|−
1
2

∑
n∈o∗/Uc

σα(n)

|Nn|
α
2

n`e
[an
c

] ∫
· · ·
∫

1≤
y1···yd−1

yd
≤P (εc)2

×

×
∑

p∈Zd−1

d∏
j=1

Kα
2

(
2π(1ε

p1
c · · · d−1ε

pd−1
c )jyj

∣∣nj
cj

∣∣)((1ε
p1
c · · · d−1ε

pd−1
c )jyj

)s+lj−1−α
2
−iνjdy.

As usual νd = −Tr(ν).
By the exponential decay of the Bessel K-function for large arguments and its behaviour for small
arguments, these integrals converge absolutely. Hence, we can unfold the integral with the sum.
Using [GR07, 6.561.16] to compute the resulting integral, we see that I is essentially D`, more precisely

I(s, α; ν; ac ) = (−1)`22`−dπ
d
2

+dα
2
−ds|Nc|−

1
2

+s−α
2 λ−ν(c)×

×
d∏
j=1

Γ
(

1
2(s+ lj − iνj)

)
Γ
(

1
2(s+ lj − α− iνj)

)
D`(s, α; ν; ac ).

(3.2.21)

We split the integral I in (3.2.20) into two parts, the one with Ny ≥ 1 is called I+ and the other with
Ny ≤ 1 is denoted by I−. The part I+ is entire in s which follows from the decay properties of Kµ.
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Assume Re s sufficiently large. Then we may use (3.2.18) and (3.2.19) to obtain

I−(s, α; ν; ac ) = (−1)`I+(1− s,−α;−ν; −a
∗

c )

+
δ`,0δν,0

vol(Λd−1
c )

(
π−d

α
2 |DK |

α
2
− 1

4 |Nc|
1
2

(α−1)Γ
(

1
2(1 + α)

)d
ζK(1 + α)

( 1

s− α− 1
− 1

s

)
+ πd

α
2 |DK |−

α
2

+ 1
4 |Nc|

1
2

(α+1)Γ
(

1
2(1− α)

)d
ζK(1− α)

( 1

s− 1
− 1

s− α

))
.

Thus we have

I(s, α; ν; ac ) = (−1)`I(1− s,−α;−ν; −a
∗

c ).

Hence (3.2.21) shows that D` is meromorphic on C and satisfies the functional equation claimed in the
lemma.

Now, we return to Dm given in (3.2.14), assuming that (3.2.17) holds. Let υ be as in (3.2.14). We
define Y`(m;α, ac ;h) as

vol(Λd−1
c )

2πi

∑
ν̃∈Λd−1

c

λ−ν̃(m)

∫
(υ)

|N(m)|sh̃`(s− iν̃1, . . . , s− iν̃d−1, s+ iTr(ν̃))D`(s, α; ν̃; ac ) ds,

assuming 0 < υ − 1−max{0,Reα} < C0. Thus we have

Dm(α, ac ;h) =
∑
`

Y`(m;α, ac ;h). (3.2.22)

Moving the contour in
∫

(υ) to the left, by Lemma 3.2.1 we have

Y`(m;α,
a

c
;h) = 2dδ`,0|DK |−

α
2

+ 1
4 |Nc|α−1|Nm|h̃`(1)ζK(1− α) (3.2.23)

+ 2dδ`,0|DK |
α
2
− 1

4 |Nc|−α−1|Nm|1+αh̃`(1 + α)ζK(1 + α)

+
|Nc|α+1vol(Λd−1

c )

2πi

(2π)−d(α+1)

πd

∑
n∈o∗/Uc

σ−α(n)

|Nn|
sgn`[n]e

[
a∗n
c

] ∑
ν̃∈Λd−1

c

λ−ν̃
(
mn
c2

)
×

×
∫
(b)

Γ`(s− iν̃;α)
(

(2π)d
√
|N(mn)|
|Nc|

)2s
h̃`(s− iν̃) ds

with

b < min{0,−Reα}.

The function D` is bounded for Re s > 1 + max{0,Reα}. Thus, by the functional equation we get

D`(s, α; ν; ac )� (1 + |s|)−2 Re s+Reα
( 2π√

DK |Nc|

)4 Re s−2 Reα−2
for Re s < min{0,−Reα}.

Hence, if C0 is sufficiently large in terms of |Reα| and |β|, the resulting integral is absolutely convergent.
We denote the integral

∫
(b) by L(ν̃) and observe by Stirling’s formula and (3.2.17) that it is bounded

by
(
1 + | Im s|+ Tr(|ν̃|)

)−C0 .
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Using Poisson’s summation formula we have

∑
n∈o∗/Uc

σ−α(n)

|Nn|
sgn`[n]e

[
a∗n
c

] ∑
ν̃∈Λd−1

c

λ−ν̃
(
mn
c2

)
L(ν̃)

= vol(Λd−1
c )−1

∑
n∈o∗/Uc

σ−α(n)

|Nn|
sgn`[n]e

[
a∗n
c

] ∑
ε∈Uc

∫
· · ·
∫

Rd−1

L(τ)λ−τ
(
εmn
c2

)
dτ

= vol(Λd−1
c )−1

∑
n∈o∗

σ−α(n)

|Nn|
sgn`[n]e

[
a∗n
c

] ∫
· · ·
∫

Rd−1

L(τ)λ−τ
(
mn
c2

)
dτ.

(3.2.24)

We reinsert the definition of L(τ) and have (d − 1) integrals over R and one integral over (b). Then
we substitute s− iτj 7→ sj for j = 1, . . . , d− 1 and s+ iTr(τ) 7→ sd, and put

x(m,n; c) =
(4π

√
|mjnj |
|cj |

)d
j=1

.

We get

∫
· · ·
∫

Rd−1

L(τ)λ−τ
(
mn
c2

)
dτ =

1

did−1

∫
· · ·
∫

(b) ··· (b)

Γ`(s;α)h̃`(s)

d∏
j=1

∣∣∣x(m,n; c)j
2

∣∣∣2sjds.
We define

[h]`(x;α) :=
1

did−1

∫
· · ·
∫

(b) ··· (b)

Γ`(s;α)h̃`(s)
d∏
j=1

∣∣∣xj
2

∣∣∣2sjds. (3.2.25)

By the same arguments as above for L(τ), we obtain convergence in a region which will be given in
(3.2.27) and (3.2.28). Inserting (3.2.24) and (3.2.25) in (3.2.23) and (3.2.22) we have

Dm(α, ac ;h) =
∑
`

[
2dδ`,0|DK |−

α
2

+ 1
4 |Nc|α−1|Nm|h̃`(1)ζK(1− α)

+ 2dδ`,0|DK |
α
2
− 1

4 |Nc|−α−1|Nm|1+αh̃`(1 + α)ζK(1 + α)

+
|Nc|α+1

2πi

(2π)−d(α+1)

πd

∑
n∈o∗

σ−α(n)

|Nn|
sgn`[n]e

[
a∗n
c

]
[h]`(x(m,n; c);α)

]
Together with (3.2.9), we get

Bm(α, β;h) =
∑
`

[
2dδ`,0|DK |−

α
2

+ 1
4 |Nm|h̃`(1)

ζK(1− α)ζK(1− β)

ζK(2− α− β)
σα+β−1(m)

+ 2dδ`,0|DK |
α
2
− 1

4 |Nm|1+αh̃`(1 + α)
ζK(1 + α)ζK(1− β)

ζK(2 + α− β)
σ−α+β−1(m)

+
ζK(1− β)

2πi

(2π)−d(α+1)

πd

∑
n∈o∗

σ−α(n)

|Nn|
sgn`[n]×

×
∑
c∈o∗

Ψ(c)|Nc|α+βSK(m,n; c)[h]`(x(m,n; c);α)
]

(3.2.26)

where the Kloosterman sum SK(m,n; c) over K is given in (2.0.2).
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We assume

|α|, |β| < C1 (3.2.27)

for a suitable C1, and we also assume that C0 in (3.2.17) is sufficiently large in terms of C1. Then,
with this and (3.2.17), the right hand side of (3.2.26) converges absolutely for

Reα+ Reβ − 2b < −2. (3.2.28)

In particular, by a shift of the contour we have the bound

[h]`(x;α)� |Nx|2b
(
Tr(1 + |x|)

)−µ
, (3.2.29)

for a µ > 0 and b the integral contour from above. Furthermore alle the derivatives of [h]` are of rapid
decay.

Later on, we shall spectrally decompose the sum over c in (3.2.26). To this end we rearrange the sum
over c using the definition of Ψ. We have∑

c∈o∗
Ψ(c)|Nc|α+βSK(m,n; c)[h]`(x(m,n; c);α)

=
1

(2π)d−1

∫
· · ·
∫

Rd−1

p̂(ξ)
∑
c∈o∗
|Nc|α+βλξ(c)SK(m,n; c)[h]`(x(m,n; c);α) dξ

=
1

(2π)d−1

(
(2π)d

√
|N(mn)|

)α+β+1
∫
· · ·
∫

Rd−1

p̂(ξ)λξ(mn)Sm,n(α, β, ξ; [h]`) dξ

(3.2.30)

where

Sm,n(α, β, ξ; [h]`) =
∑
c∈o∗
|Nc|−1SK(m,n; c)[[h]]`(x(m,n; c);α, β; ξ) (3.2.31)

with

[[h]]`(x;α, β; ξ) =
∣∣∣Nx

2d

∣∣∣−(α+β)−1
λ−ξ(x)[h]`(x;α). (3.2.32)

For α and β satisfying the conditions (3.2.17) and (3.2.27), by shifting the contour we obtain the
estimate

[[h]]`(x;α, β; ξ)�
(
Tr(1 + |x|)

)−µ ·
|Nx|−

1
2
C0 if |Nx| ≥ 1,

|Nx| if |Nx| < 1
(3.2.33)

with µ > 0 as in the bound of [h]`. Furthermore the derivatives of [[h]]` are of rapid decay if at least
one variable tends to 0+ or +∞.

3.2.3 Spectral Decomposition of Bm

The sum Sm,n(α, β, ξ; [h]`) as defined in (3.2.31) has the right form to apply the geometric sum formula
given in Lemma 3.1.5. Recall that m � 0 and thus ηV (m) = ηV (1).
The definitions of [h]` and [[h]]` imply that [[h]]`(x;α, β, ξ) and its derivatives are smooth and by
(3.2.33) of rapid decay if at least one variable tends to 0+ or +∞. Therefore Lemma 3.1.5 can safely
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be applied to Sm,n(α, β, ξ; [h]`), provided

|Reα|+ Reβ < −1
2C1. (3.2.34)

For instance choose Reβ negative and large, and |Reα| relatively small.
Lemma 3.1.5 yields the decomposition

Sm,n(α, β, ξ; [h]`) =
∑
V

aV ηV (1)tV ((m))ηV (n)tV ((n))B[n][[h]]`(κV ;α, β, ξ)

+ Ce
∑

ν∈Λd−1

λ−ν(mn)

∞∫
−∞

σ2it(m, 2ν)σ2it(n, 2ν)

|N(mn)|it|ζK(1 + 2it, 2ν)|2
B[n][[h]]`(t+ ν;α, β, ξ) dt

= : {Scm,n + Sem,n}(α, β, ξ; [h]`)

where t+ ν = (t+ ν1, . . . , t+ νd−1, t− Tr(ν)).
The uniformity of the convergence follows by inserting the bounds for all involved parameters stated
in the previous sections. More precisely, we use the estimate (3.1.44) to bound the functions B[n][[h]]`.
Then Lemma 3.1.4 gives the convergence for the first term, and Lemma 3.1.1 combined with trivial
estimates for the divisor functions does it for the second term.
We insert the decomposition into (3.2.30) and (3.2.26), and factorize n ∈ o∗ into n · ε where ε runs
over the units, and n ∈ o∗ mod P (ε)2.
Then the contribution of Scm,n equals

(2π)dβ

i(2π2)d
ζK(1− β)(Nm)

1
2

(α+β+1)×

×
∑

n∈o∗ mod P (ε)2

σ−α(n)

(Nn)
1
2

(1−α−β)
sgn`[n]

∑
V

aV ηV (1)tV ((m))ηV (n)tV ((n))×

×
∑

ν∈Zd−1

∫
· · ·
∫

Rd−1

eiTr(νξ)p̂(ξ)λξ(mn)B[n][[h]]`(κV ;α, β; ξ) dξ.

The function B[n][[h]]` is smooth in ξ and is bounded by (3.1.44) with f = [[h]]` and Cf = C1. Thus the
integral decays sufficiently fast in ν and κV , and the triple sum converges absolutely. Using Poisson’s
summation formula, we see that only the term with ξ = ν = 0 survives. Hence the expression changes
to

(2π)dβ

i(2π2)d
ζK(1− β)(Nm)

1
2

(α+β+1)
∑

n∈o∗ mod P (ε)2

σ−α(n)

(Nn)
1
2

(1−α−β)
sgn`[n]×

×
∑
V

aV ηV (1)tV ((m))ηV (n)tV ((n)) 1
2d−1 B[n][[h]]`(κV ;α, β; 0).

The factors sgn[n] and ηV (n) depend only on the sign of n, in other words they depend on the unit ε
such that n = n′ε with n′ � 0. Thus we can rewrite the sum over n as

2(2π)dβ

i(2π)2d
ζK(1− β)(Nm)

1
2

(α+β+1)
∑
V

aV ηV (1)tV ((m))×

×
∑

ε mod P (ε)2

sgn`[ε]ηV (ε)B[ε][[h]]`(κV ;α, β; 0) ·
∑
n

tV (n)
σ−α(n)

(Nn)
1
2

(1−α−β)
.
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Then the sum over n equals HV (1
2(1− α− β))HV (1

2(1 + α− β)). We denote the sum over ε by BV,`.
Hence we have

Scm,n =
2(2π)dβ

i(2π)2d
(Nm)

1
2

(α+β+1)
∑
V

aV ηV (1)tV ((m))HV (1
2(1− α− β))HV (1

2(1 + α− β))BV,`.

This sum converges absolutely by Lemma 3.1.6 and (3.1.44).

The contribution coming from Sem,n can be treated in a similar way. We get

2(2π)dβ

i(2π)2d
Ce(Nm)

1
2

(α+β+1)
∑

ν∈Λd−1

λ−ν(m)

∞∫
−∞

σ2it(m, 2ν)

(Nm)it|ζK(1 + 2it, 2ν)|2
×

×ζK
(

1
2(1 + α− β)− it, ν

)
ζK
(

1
2(1 + α− β) + it,−ν

)
ζK
(

1
2(1− α− β)− it, ν

)
×

×ζK
(

1
2(1− α− β) + it,−ν

)
BEν ,`[[h]]`(t+ ν;α, β, 0) dt

where t + ν = (t + ν1, . . . , t + νd−1, t − Tr(ν)). Lemma 3.1.1, (3.1.44) and trivial estimates for the
factors ζK(σ + it,±ν), as σ > 1, show the convergence.
Thus we have a spectral decomposition for Bm, as long as α and β satisfy our assumptions (3.2.17),
(3.2.27) and (3.2.34). We have

Bm(α, β;h) = 2d|DK |−
α
2

+ 1
4 |Nm|h̃0(1)

ζK(1− α)ζK(1− β)

ζK(2− α− β)
σα+β−1(m) (3.2.35)

+ 2d|DK |
α
2
− 1

4 |Nm|1+αh̃0(1 + α)
ζK(1 + α)ζK(1− β)

ζK(2 + α− β)
σ−α+β−1(m)

+
∑
`

[2(2π)dβ

i(2π)2d
(Nm)

1
2

(α+β+1)
∑
V

aV ηV (1)tV ((m))HV (1
2(1− α− β))HV (1

2(1 + α− β))BV,`

+
2(2π)dβ

i(2π)2d
Ce(Nm)

1
2

(α+β+1)
∑

ν∈Λd−1

λ−ν(m)

∞∫
−∞

σ2it(m, 2ν)

(Nm)it|ζK(1 + 2it, 2ν)|2
×

× ζK
(

1
2(1 + α− β)− it, ν

)
ζK
(

1
2(1 + α− β) + it,−ν

)
ζK
(

1
2(1− α− β)− it, ν

)
×

× ζK
(

1
2(1− α− β) + it,−ν

)
BEν ,`[[h]]`(t+ ν;α, β, 0) dt

]
.

But the domain coming from these assumptions does not contain the point (α, β) = (0, 0) we need
for the application to Z2(g, ω;K). Thus, we have to continue the decomposition to a neighborhood of
(α, β) = (0, 0). To this end we consider the transform of h given by

Φ∗(r;α, β;h) =
1

i

∑
`

∑
ε mod P (ε)2

sgn`[ε]η∗(ε)B[ε][[h]]`(r;α, β, 0)

where ∗ = V or Eν and r = κV or t+ ν = (t+ ν1, . . . , t+ νd−1, t− Tr(ν)) respectively.
We use the definitions of [[h]]` in (3.2.32), [h]` in (3.2.25), h̃` in (3.2.15) and Γ` in Lemma 3.2.1.
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We obtain∑
`

sgn`[ε][[h]]`(x;α, β, 0) =
1

2ddid−1

∣∣∣Nx
2d

∣∣∣1−α−β×
×

∑
e∈{±1}d

∫
· · ·
∫

(b) ··· (b)

d∏
j=1

[[
(1 + ejsgn(εj)) cos(π2α)− (1− ejsgn(εj)) cos(π(sj − 1

2α))
]
×

× Γ(1− sj)Γ(1 + α− sj)
]
h̃(s; e)

∣∣∣x1

2

∣∣∣2s1 · · · ∣∣∣xd
2

∣∣∣2sd ds
where b is the contour from above, and ε is a unit. Stirling’s formula and (3.2.17) imply that the
integral converges absolutely.
Now we apply Be with respect to x to this expression, and use the equations (3.1.45) – (3.1.47) to get
a new expression for Φ∗, namely

Φ∗(r;α, β;h) =
1

(2i)dd

∑
e∈{±1}d

∑
ε mod P (ε)2

η∗(ε)

∫
· · ·
∫

(−i∞,i∞)d

h̃(s; e)
d∏
j=1

[
∆

sgn(εj)
ej (sj , rj ;α, β)× (3.2.36)

×Γ(sj − 1
2(1 + α+ β)− irj)Γ(sj − 1

2(1 + α+ β) + irj)Γ(1− sj)Γ(1 + α− sj)
]
ds

where
∆±ej =

{
(1± ej) cos(π2α)− (1∓ ej) cos(π(sj − 1

2α))
}
×

×
{

(1∓ 1) cosh(πrj) + (1± 1) sin(π(sj − 1
2(α+ β)))

}
.

(3.2.37)

The sj-contour separates the poles of ∆
sgn(εj)
ej (sj , rj ;α, β)Γ(sj− 1

2(α+β+1)−irj)Γ(sj− 1
2(α+β+1)+irj)

and those of Γ(1− sj)Γ(1 +α− sj), and it is assumed that the contour can be drawn, i.e. if we would
pass through a pole, we choose a small semicircle around it. Under the assumption (3.2.34) one may
use the contour Re sj = b, with the bounds 1

2(Reα + Reβ + 1) < b < min{0,−Reα}. Then we
move the contour appropriately to get (3.2.36). As the right hand side exists on a larger domain, the
representation (3.2.36) gives an analytic continuation of Φ∗.

In the next steps, we reformulate a factor of Φ∗ and state some estimates for it.

Consider the expression

∑
ε mod P (ε)2

η∗(ε)
d∏
j=1

∆
sgn(εj)
ej .

As in [BM01, (5.12)-(5.13)] one has to consider the possible values of ∗ = V and qV and for ∗ = Eν

separately, and reformulate the expression in every case. Combining these results we obtain for any
space ∗ = V and Eν with η∗(1) 6= 0 the equality

∑
ε mod P (ε)2

η∗(ε)

d∏
j=1

∆
sgn(εj)
ej = η∗(1)

d∏
j=1

(
∆+
ej + λ∗(εj)∆

−
ej

)
where εj on the right hand side is as in Lemma 3.1.6.
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(3.2.2) Lemma
Assume that (3.2.17) and (3.2.27) hold for α, β and h, and let V , the eigenvalue κV = (κ1, . . . , κd),
and qV = (q1, . . . , qd) be as in (3.1.28) and Lemma 3.1.3. Then ΦV (κV ;α, β;h) is regular in κV and
bounded by

ΦV (κV ;α, β;h)�
(
1 + |κ1|+ · · ·+ |κd|

)−C0
2

uniformly in V and α, β, provided

|Reα|+ Reβ < 2 min
j

{
| Imκj + 1

2 |+ δj
}

(3.2.38)

with

δj =

0, if qj = 0,

1, if qj 6= 0.

Likewise ΦEν is regular in t and ν. Let t+ ν = (t+ ν1, . . . , t+ νd−1, t−Tr(ν)). Then ΦEν (t+ ν;α, β;h)

is bounded by

ΦEν (t+ ν;α, β;h)�
(
1 + |t|+ |ν1|+ · · ·+ |νd−1|

)−C0
2 , (3.2.39)

provided

|Reα|+ Reβ < 1− 2| Im t|. (3.2.40)

Proof.
First we consider the case qj 6= 0 for all j. Then iκj = lj − 1

2 , and we modify the Γ-factors of (3.2.36)
using (3.1.48). We have

ΦV (κV ;α, β;h) =
(−1)l1+···+ld−d

d

∑
e

∑
ε

ηV (ε)×

×
∫
· · ·
∫

(−i∞,i∞)d

h̃(s; e)
d∏
j=1

[[
(1 + ejsgn(εj)) cos(π2α)− (1− ejsgn(εj)) cos(π(sj − 1

2α))
]
×

×Γ(1− sj)Γ(1 + α− sj)
Γ(lj − 1 + sj − 1

2(α+ β))

Γ(lj + 1− sj + 1
2(α+ β))

]
ds

where the contours can be drawn under the assumption (3.2.38). Thus, the regularity of ΦV follows.
To obtain the decay of ΦV we shift the contours appropriately to the left, and use Stirling’s formula
and (3.2.17), as well as trivial estimates for the trigonometric functions.

If qj = 0 for some j, we do not need to rewrite the integral, and the shift of contour is not needed for
the j-th integral. After reformulating the integrals with qj 6= 0 the regularity follows and one proceeds
as above with Stirling’s formula to get the estimates on Φ∗, under the assumption (3.2.38). For the
spaces Eν the proof is analogously to qj = 0, under the assumption (3.2.40).

Now we can state a first explicit formula for Bm in a neighborhood of (α, β) = (0, 0):
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(3.2.3) Theorem
Let Bm(α, β;h) be defined by (3.2.6), and assume (3.2.17). Let α, β be such that

−1 < Re(±α+ β) < 3
5 . (3.2.41)

Then we have the spectral decomposition

Bm(α, β;h) =
{
B(r)
m + B(c)

m + B(e)
m

}
(α, β;h)

where

B(r)
m (α, β;h) = |DK |−

α
2

+ 1
4
ζK(1− α)ζK(1− β)

ζK(2− α− β)
(Nm)σα+β−1(m)ḧ(0, 0)

+ |DK |
α
2
− 1

4
ζK(1 + α)ζK(1− β)

ζK(2 + α− β)
(Nm)1+ασ−α+β−1(m)ḧ(α, 0)

+
22d

dπd
RK |DK |β+ 1

2
ζK(1− α)ζK(1 + β)

ζK(2− α+ β)
(Nm)1+βσα−β−1(m)ḧ(0, β)

+
22d

dπd
RK |DK |β+ 1

2
ζK(1 + α)ζK(1 + β)

ζK(2 + α+ β)
(Nm)1+α+βσ−α−β−1(m)ḧ(α, β),

B(c)
m (α, β;h) =

2(2π)dβ

(2π)2d
(Nm)

1
2

(α+β+1)
∑
V

aV ηV (1)tV ((m))HV (1
2(1− α− β))

×HV (1
2(1 + α− β))ΦV (κV ;α, β;h),

B(e)
m (α, β;h) =

2(2π)dβ

(2π)2d
Ce

∑
ν∈Λd−1

λ−ν(m)

∞∫
−∞

σ2it(m, 2ν)

(Nm)it|ζK(1 + 2it, 2ν)|2
×

×ζK
(

1
2(1 + α− β)− it, ν

)
ζK
(

1
2(1 + α− β) + it,−ν

)
ζK
(

1
2(1− α− β)− it, ν

)
×

×ζK
(

1
2(1− α− β) + it,−ν

)
ΦEν (t+ ν;α, β;h) dt.

Here V, κV , tV , ηV , aV , HV are as defined in Section 3.1.2, Φ∗ is given by (3.2.36) and as before the
vector t+ ν = (t+ ν1, . . . , t+ νd−1, t− Tr(ν)). The function ḧ is defined by

ḧ(η1, η2) =

∫
· · ·
∫

Rd

h(u)|Nu|η1
(
|1 + u1| · · · |1 + ud|

)η2 du.
Remark that h(u) is of rapid decay if uj tends to infinity, 0 or −1 for at least one j. The expressions
for B

(r)
m ,B

(c)
m and B

(e)
m are regular in the domain (3.2.41).

Proof.
The spectral decomposition holds in the domain (3.2.34). Thus we have to prove that all terms can be
continued to the domain (3.2.41).
Consider the cuspidal contribution. The sum is absolutely and uniformly convergent in the domain

|Reα|+ Reβ < 2 min
V

min
j

{
| Imκj + 1

2

∣∣+ δj
}
, by Lemma 3.1.6 and Lemma 3.2.2, (3.2.42)

and it is regular there. By the possible values of κj this domain contains the domain (3.2.41). Thus
B

(c)
m is of the form stated in the Theorem.
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Now we consider the contribution of the Eisenstein series. In the domain (3.2.34) this is of the form
stated in the Theorem, but the domain (3.2.41) is not contained in (3.2.34). Hence we have to extend
the domain for the contribution of the Eisenstein series and pay attention to possible singularities.
However, for the terms with ν 6= 0 the integrand is regular in (3.2.41), and the sum

∑
ν∈Λd−1 converges

absolutely by Lemma 3.2.2.
Thus, we exclude this part from our consideration and restrict our attention to the term ν = 0, namely

2(2π)dβ

(2π)2d
Ce

∞∫
−∞

σ2it(m)

(Nm)it|ζK(1 + 2it)|2
ζK
(

1
2(1 + α− β)− it

)
ζK
(

1
2(1 + α− β) + it

)
×

×ζK
(

1
2(1− α− β)− it

)
ζK
(

1
2(1− α− β) + it

)
Ψt(α, β;h) dt.

(3.2.43)

Here (α, β) is in the domain (3.2.34), and

Ψt(α, β;h) = ΦE0(t, . . . , t︸ ︷︷ ︸
d−times

;α, β;h). (3.2.44)

The integral is regular when |Reα| + Reβ < −1, as in this domain Re(1
2(1 ± α − β)) > 1. We

consider the subdomain −5
4 < Re(±α+ β) < −1. We move the contour to Im t = 1

8 by noting (3.2.39)
and (3.2.40). To avoid poles on the contour, we can choose an appropriate broken line instead of a
horizontal line.
The resulting integral is regular for −5

4 < Re(±α+ β) < −3
4 . Now we restrict this domain to

−1 < Re(±α+ β) < −3

4
, (3.2.45)

and shift the t-contour back to Im t = 0.
As the new integral is regular in (3.2.41), B(e)

m continues to (3.2.41).
The first shift of the contour gives us poles at t = −1

2(1±α+β)i, and those from the factor ζ−1
K (1+2it).

By the second one we encounter poles from ζ−1
K (1 + 2it) and at the points t = +1

2(1± α+ β)i.
The residual terms coming from ζ−1

K cancel, and we are left with the terms coming from the residues
at t = ±1

2(1± α+ β)i, given by

(2π)dβ

(2π2)d
RK√
|DK |

Ce·(Nm)1+βσα−β−1(m)
ζK(−β)ζK(1− α)

ζK(2− α+ β)
Ψ 1

2
(1−α+β)i(α, β;h)

+
(2π)dβ

(2π2)d
RK√
|DK |

Ce·(Nm)1+α+βσ−α−β−1(m)
ζK(−β)ζK(1 + α)

ζK(2 + α+ β)
Ψ 1

2
(1+α+β)i(α, β;h).

(3.2.46)

We used that Ψt is an even function in t, and that the residue of ζK(s) at s = 1 is equal to 2d−1RK√
|DK |

.

Hence, we are left with computing the factors Ψ 1
2

(1∓α+β)i.

Let rj = 1
2(1− α+ β)i. Then

∑
ε mod P (ε)2

η∗(ε)

d∏
j=1

∆
sgn(εj)
ej (sj , r;α, β) = 22d

d∏
j=1

ej
[

sin(π(sj − α)) cos
(

1
2π((1− ej)sj + ejβ)

)]
as λE0 = 1.
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We get

Ψ 1
2

(1−α+β)i(α, β;h) =
2d

idd

∑
e∈{±1}d

e1 · · · ed
∫
· · ·
∫

(−i∞,i∞)d
h̃(s; e)×

×
d∏
j=1

[
cos
(

1
2π((1− ej)sj + ejβ)

)
Γ(sj − 1− β)Γ(1− sj)

]
ds.

The sj-contour separates the poles of Γ(sj−1−β) and Γ(1− sj) to the left and the right, respectively,
and by the restriction to the domain (3.2.45) can be drawn.

Now we let rj = 1
2(1 + α+ β)i. Using the same arguments as above, we get

Ψ 1
2

(1+α+β)i =
2d

idd

∑
e∈{±1}d

e1 · · · ed
∫
· · ·
∫

(−i∞,i∞)d

h̃(s+ α; e)×

×
d∏
j=1

[
cos
(

1
2π((1− ej)sj + ejβ)

)
Γ(sj − 1− β)Γ(1− sj)

]
ds

where s+ α = (s1 + α, . . . , sd + α).

We have to compute the multiple integrals over s. We consider the second one in detail, as it is a bit
more complicated than the first. The first can be done following these steps.
We use the definition of h̃ given in (3.2.13) and apply partial integration in each variable.
Thus, the integral equals

e1 · · · ed
∫
· · ·
∫

(0,∞)d

hd(eu)

d∏
j=1

R(uj , ej) du (3.2.47)

where hd(u) = (∂u1 . . . ∂udh)(u),

R(uj , ej) =

i∞∫
−i∞

cos
(

1
2π((1− ej)sj + ejβ)

)
Γ(sj − 1− β)Γ(1− sj)u

sj+α
j

dsj
sj + α

. (3.2.48)

By (3.2.45) we may take for instance Re s = 1
2 as contour. In particular, we can assume that the pole

s = −α is on the left of the contour.
We shift the contour in (3.2.48) to Re s = +∞ or to Re s = −∞, depending on whether uj < 1 or
uj > 1.
For uj < 1 the shift of contour to Re s = +∞ collects poles of Γ(1 − s), and the resulting integral
vanishes. We get

R(uj , ej) = 2πiej cos(1
2πβ)Γ(−β)

uj∫
0

uα(1 + eju)β du.
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If uj > 1 we collect the poles of Γ(s− 1− β) and the pole s = −α. We get

R(uj , ej) =− 2πiej cos(1
2πβ)Γ(−β)

∞∫
uj

uα(|1 + eju|β − uβ) du

+ 2πiej cos(1
2πβ)Γ(−β)

u1+α+β
j

1 + α+ β

+ 2πi cos
(

1
2π((ej − 1)α+ ejβ)

)
Γ(1 + α)Γ(−1− α− β).

Hence, for uj > 0, uj 6= 1, we have

∂ujR(uj , ej) = 2πiej cos(1
2πβ)Γ(−β)uαj |1 + ejuj |β.

Applying partial integration to (3.2.47) and inserting this expression for ∂ujR we obtain

Ψ 1
2

(1+α+β)i(α, β;h) = (2πi)d
(

cos(1
2πβ)Γ(−β)

)d
ḧ(α, β)

with ḧ as defined in the Theorem.

Analogously, we have

Ψ 1
2

(1−α+β)i(α, β;h) =
(23π)d

d

(
cos(1

2πβ)Γ(−β)
)d
ḧ(0, β).

We insert this into (3.2.46) and use the functional equation for the Dedekind ζ-function to see that
(3.2.46) changes to

Ce2
d

dπd
RK |DK |β

ζK(1− α)ζK(1 + β)

ζK(2− α+ β)
(Nm)1+βσα−β−1(m)ḧ(0, β)

+
Ce2

d

dπd
RK |DK |β

ζK(1 + α)ζK(1 + β)

ζK(2 + α+ β)
(Nm)1+α+βσ−α−β−1(m)ḧ(α, β).

(3.2.49)

Finally we consider the residual contribution. Taking the first two summands of the decomposition of
Bm given in (3.2.35) and the terms (3.2.49) coming from B

(e)
m we see that they coincides with B

(r)
m .

3.2.4 The Fourth Moment of ζK

Using the spectral decomposition of Bm(α, β;h) with (α, β) in a neighborhood of (0, 0) we can de-
compose Z2(g, ω;K) via the relation (3.2.7). To this end, we have to verify that h = W+ satisfies the
condition (3.2.17).

(3.2.4) Lemma
Let W+(y; γ, δ) be as defined in (3.2.8) and (3.2.3) and let

W̃+(s; e; γ, δ) =

∫
· · ·
∫

(0,∞)d

W+(eu; γ, δ)us1−1
1 · · ·usd−1

d du

be the Mellin transform of W+, with e = (e1, . . . , ed), ej = ±1 and eu = (e1u1, . . . , edud).
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Then the function W̃+(s; e; γ, δ) is regular in the domain

Re(sj − γ − δ) < 0, j = 1, . . . , d.

It has an analytic continuation given by

W̃+(s; e; γ, δ) = RK2d
d∏
j=1

[
Γ(γ + δ − sj)

] ∑
ν∈Λd−1

ω(ν)

∫
· · ·
∫

Rd−1

p̂2
(
ξ/ν̄
) ∞∫
−∞

g(t)×

×
d∏
j=1

2

π

[
sin
(

1
2π(δ − i(t+ ξj − νj)

)
cos
(

1
2π((1− ej)(γ − sj) + δ − eji(t+ ξj − νj))

)
×

×Γ
(
sj − γ − i(t+ ξj − νj))

)
Γ
(
1− δ + i(t+ ξj − νj)

)]
dt dξ

where ξd = −Tr(ξ) and νd = −Tr(ν) and ν̄ is defined in (3.1.4). The t-contour separates the poles of
the factors Γ(sj − γ − i(t + ξj − νj)) and those of the factors Γ(1 − δ + i(t + ξj − νj)) upwards and
downwards, respectively; and s1, . . . , sd, γ, δ are assumed to be such that the contour can be drawn, so
γ − Re sj and δ − 1 are bounded away from the integers.
Moreover, for all γ, δ bounded away from sj, j = 1, . . . , d we have

W̃+(s; e; γ, δ)� (1 + |s1|+ · · ·+ |sd|)−C (3.2.50)

for every fixed C > 0.

Proof.
We recall the definitions of W+ and of cΨ given in (3.2.8) and (3.2.5), respectively. Then we write out
the Fourier transform of g and of ω to obtain

W+(eu; γ, δ) =
W (1 + 1

eu)cΨ(1 + 1
eu)

|Nu|γ |N(1 + u)|δ

= RK
∑

ν∈Λd−1

ω(ν)

∫
· · ·
∫

Rd−1

p̂2
(
ξ/ν̄
) ∞∫
−∞

g(t)
d∏
j=1

∣∣∣1 +
1

ejuj

∣∣∣−iνj+iξj+itu−γj |1 + ejuj |−δ dt dξ

= RK
∑

ν∈Λd−1

ω(ν)

∫
· · ·
∫

Rd−1

p̂2
(
ξ/ν̄
) ∞∫
−∞

g(t)
d∏
j=1

u
−γ−i(t+ξj−νj)
j

|1 + ejuj |δ−i(t+ξj−νj)
dt dξ

with uj > 0 for all j = 1, . . . , d, and again ξd = −Tr(ξ) and νd = −Tr(ν).
Then by the rapid decay of g in every fixed horizontal strip and the rapid decay of ω in each variable
in every fixed horizontal strip we have the estimate

W+(eu; γ, δ)� (Nu)−γ−δ (3.2.51)

for uj ↑ ∞ for all j = 1, . . . , d. Shifting the contour of the inner integral appropriately, we obtain that
W+ is of rapid decay for uj ↓ 0 as well as for uj → 1 if ej = −1, for some j = 1, . . . , d.
Assume for the moment that

Re γ < Re s < Re(γ + δ) < Re γ + 1 (3.2.52)
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to get via Mellin transform

W̃+(s; e; γ, δ) = RK2d
∑

ν∈Λd−1

ω(ν)

∫
· · ·
∫

Rd−1

p̂2
(
ξ/ν̄
) ∞∫
−∞

g(t)
d∏
j=1

bej (sj , ηj ; γ, δ) dt dξ

where ηj = t+ ξj − νj for j = 1, . . . , d− 1 and ηd = t− Tr(ξ) + Tr(ν). The factor b± is given by

b±(s, η; γ, δ) =

∞∫
0

us−γ−iη−1

|1± u|δ−iη
du.

By the connection between the Beta- and the Γ-function, see [GR07, 3.191, 3.194.3, 8.384.1], we have,
for any η ∈ R, the identities

∞∫
0

us−γ−iη−1

(1 + u)δ−iη
du =

Γ(s− γ − iη)Γ(γ + δ − s)
Γ(δ − iη)

and

∞∫
0

us−γ−iη−1

|1− u|δ−iη
du =

Γ(s− γ − iη)Γ(1− δ + iη)

Γ(s− γ − δ + 1)
+

Γ(γ + δ − s)Γ(1− δ + iη)

Γ(γ − s+ 1 + iη)
.

Using the functional equation of the Γ-function in the denominator of each term, we get

b±(s, η; γ, δ) = 2
π sin

(
1
2π(δ − iη)

)
cos
(

1
2π((1∓ 1)(γ − s) + δ ∓ iη)

)
×

× Γ(s− γ − iη)Γ(γ + δ − s)Γ(1− δ + iη).

Inserting this above, under the condition (3.2.52) we obtain the second representation of W̃+ stated in
the Lemma, with integration along the real axis. Deforming the contour appropriately we may drop
(3.2.52), to get the analytic continuation. Using Stirling’s formula we get

W̃+(s; e; γ, δ)� (1 + |s1|+ · · ·+ |sd|)−1+Re δ.

To obtain the bound (3.2.50) we move the contour appropriately regarding the poles of the Γ-functions,
and again use Stirling’s formula.

We recall that γ = z1 and δ = z3 and α = z1 − z2, β = z3 − z4. We assume initially that

|Re(z1 − z2)| < c0, |Re(z3 − z4)| < c0; (3.2.53)

Re z1, Re z3 > C0, (3.2.54)

where C0 and c0 are sufficiently large, respectively sufficiently small positive constants.
The estimates (3.2.51), the rapid decay of W+ if at least one variable tends to 0 or −1 and (3.2.50)
implies that Theorem 3.2.3 can be applied with h = W+ as (3.2.17) is satisfied. Applying Theorem
3.2.3 to decompose Bm

(
z1−z2, z3−z4;W+(·; z1, z3)

)
we get a spectral decomposition of I+. Recall the

expression of I+ in terms of Bm given in (3.2.7). Further we use the equality (3.1.10) to reformulate
the contribution coming from B

(r)
m .
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We obtain

I+(z1, z2, z3, z4; g, ω) = {I(r)
+ + I

(c)
+ + I

(e)
+ }(z1, z2, z3, z4; g, ω)

with

I
(r)
+ (z1, z2, z3, z4; g, ω) (3.2.55)

= |DK |−
2(z1−z2)−1

4
ζK(1− z1 + z2)ζK(1− z3 + z4)

ζK(2− z1 + z2 − z3 + z4)
ζK(z1 + z3 − 1)ζK(z2 + z4)Ẅ+(0, 0; z1, z3)

+ |DK |
2(z1−z2)−1

4
ζK(1 + z1 − z2)ζK(1− z3 + z4)

ζK(2 + z1 − z2 − z3 + z4)
ζK(z2 + z3 − 1)ζK(z1 + z4)Ẅ+(z1 − z2, 0; z1, z3)

+
22dRK |DK |z3−z4+ 1

2

dπd
ζK(1− z1 + z2)ζK(1 + z3 − z4)

ζK(2− z1 + z2 + z3 − z4)
ζK(z1 + z4 − 1)ζK(z2 + z3)Ẅ+(0, z3 − z4; z1, z3)

+
22dRK |DK |z3−z4+ 1

2

dπd
ζK(1 + z1 − z2)ζK(1 + z3 − z4)

ζK(2 + z1 − z2 + z3 − z4)
ζK(z2 + z4 − 1)ζK(z1 + z3)×

× Ẅ+(z1 − z2, z3 − z4; z1, z3),

I
(c)
+ (z1, z2, z3, z4; g, ω) (3.2.56)

=
2(2π)d(z3−z4)

(2π)2d

∑
V

aV ηV (1)HV

(
1
2(z1 + z2 + z3 + z4 − 1)

)
HV

(
1
2(1 + z1 − z2 − z3 + z4)

)
×

×HV

(
1
2(1− z1 + z2 − z3 + z4)

)
ΦV (κV ; z1 − z2, z3 − z4;W+(·; z1, z3)),

I
(e)
+ (z1, z2, z3, z4; g, ω) =

2(2π)d(z3−z4)

(2π)2d
Ce

∑
ν∈Λd−1

∞∫
−∞

ZK(z1, z2, z3, z4; t, ν)

|ζK(1 + 2it, 2ν)|2
× (3.2.57)

× ΦEν (t+ ν; z1 − z2, z3 − z4;W+(·; z1, z3)) dt

with t+ ν = (t+ ν1, . . . , t+ νd−1, t− Tr(ν)) and

ZK(z1, z2, z3, z4; t, ν) = ζK
(

1
2(z1 + z2 + z3 + z4 − 1) + it,−ν

)
ζK
(

1
2(z1 + z2 + z3 + z4 − 1)− it, ν

)
×

×ζK
(

1
2(1 + z1 − z2 − z3 + z4) + it,−ν

)
ζK
(

1
2(1 + z1 − z2 − z3 + z4)− it, ν

)
×

×ζK
(

1
2(1− z1 + z2 − z3 + z4) + it,−ν

)
ζK
(

1
2(1− z1 + z2 − z3 + z4)− it, ν

)
,

Ẅ+(s1, s2; z1, z3) =

∫
· · ·
∫

Rd

W+(u; z1, z3)|Nu|s1
(
|1 + u1| · · · |1 + ud|

)s2 du,
and Φ∗(r; z1 − z2, z3 − z4;W+(·; z1, z3)) as defined in (3.2.36).
To get the expressions for I(c)

+ and I
(e)
+ we need the absolute convergence implied by the Lemmas 3.1.4,

3.1.6 and 3.2.2.
Now we are left with the continuation of this decomposition to a neighborhood of the central point
p 1

2
= (1

2 ,
1
2 ,

1
2 ,

1
2). The arguments are the same as for the case d = 2 in [BM01, Section 6].

First we consider the cuspidal contribution I
(c)
+ . To obtain well-definedness of ΦV in the domain

(3.2.53)-(3.2.54) we shift the sj-contour in (3.2.36) to Re sj = 3
4 for all j = 1, . . . , d. Then, by rewriting
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the domain Re(sj − γ − δ) of Lemma 3.2.4 we see that ΦV is regular in

{
Re(z1 + z3) > 3

4 and (3.2.53) hold
}
. (3.2.58)

For the eigenvalues of the form iκj = lj − 1
2 a modification of ΦV via (3.1.48) is needed before shifting

the sj-contours sufficiently far to the left. Then using the estimate (3.2.50) we see that I(c)
+ continues

to the domain (3.2.58). In particular it is regular at p 1
2
; and the right hand side of (3.2.56) converges

and represents I(c)
+ (p 1

2
; g, ω).

Now we consider the Eisenstein contribution I
(e)
+ . The terms corresponding to ν 6= 0 are analogous to

the cuspidal contribution, and this part is regular in (3.2.58). Thus we are left with the term ν = 0,
given by

2(2π)d(z3−z4)

(2π)2d
Ce

∞∫
−∞

ZK(z1, z2, z3, z4; t)

|ζK(1 + 2it)|2
Ψt(z1 − z2, z3 − z4;W+(·; z1, z3)) dt (3.2.59)

where Ψt is as in (3.2.44) and (z1, z2, z3, z4) satisfies (3.2.53)-(3.2.54). This continues to the domain
where Re(z1 +z2 +z3 +z4) > 3 and (3.2.53) hold. Then we follow the argument of (3.2.43). We restrict
our domain to {3 < Re(z1 + z2 + z3 + z4) < 13

4 and (3.2.53) hold}, and move the contour to Im t = 1
8 .

We collect poles from the factor ζ−1
K (1 + 2it) and at t = −1

2(z1 + z2 + z3 + z4 − 3)i. The resulting
integral is regular in {11

4 < Re(z1 + z2 + z3 + z4) < 13
4 with (3.2.53)}. After reducing the upper bound

from 13
4 to 3 we shift the contour back to R, and encounter poles at t = 1

2(z1 + z2 + z3 + z4 − 3)i and
those from ζ−1

K (1 + 2it).
The poles at t = ±1

2(z1 + z2 + z3 + z4 − 3)i contribute the residual term

2(2π)d(z3−z4)

(2π)2d
Ce
ζK(2− z2 − z3)ζK(z1 + z4 − 1)ζK(2− z1 − z3)ζK(z2 + z4 − 1)

ζK(4− z1 − z2 − z3 − z4)
×

×Ψ 1
2

(z1+z2+z3+z4−3)i(z1 − z2, z3 − z4; g, ω) =: I
(e,r)
+ .

(3.2.60)

The residual terms coming from ζ−1
K cancel.

Then the new integral is regular in the domain

{
Re(z1 + z2 + z3 + z4) < 3 and (3.2.58) hold

}
which contains p 1

2
. Thus we obtain the continuation of (3.2.59), which is given by the same expression

as (3.2.59) with the additional term (3.2.60) coming from the residues.
Let

I(r) = I0 + I
(r)
+ + I

(e,r)
+ (3.2.61)

be the sum of I0 given in (3.2.4), the residual contribution I
(r)
+ given in (3.2.55) and the residual part

of the continued Eisenstein contribution I
(e,r)
+ given in (3.2.60). Then I(r) has to be regular at p 1

2
as

in a neighborhood of p 1
2
we have

I = I(r) + I
(c)
+ + I

(e)
+ ,

and I, I(c)
+ and I

(e)
+ are all regular at p 1

2
.
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Thus, we get an explicit formula for the average values of the fourth power moment of Hecke L-functions
of a totally real number field K with class number one.

(3.2.5) Theorem
Let K be a totally real number field of class number one, and let K have fundamental units jε such
that every ideal has a totally positive generator. Let Λd−1 be the (d − 1)-dimensional lattice of the
Größencharacters defined by (3.1.3). Let g(t) and ω(ν1, . . . , νd−1) be entire of rapid decay in every
fixed horizontal strip for every variable.
Further let

MK(g, ω) = I(r)(p 1
2
) + CK(g, ω)

be the term coming from the residual contributions where I(r) is defined in (3.2.61) and CK(g, ω) is
defined in (3.2.2).
Let W+ be as in (3.2.8) and W̃+ its Mellin transform. Choose the functions λ∗ and η∗ as in Section
3.1.2, let ε = (ε1, . . . , εd) be as in Lemma 3.1.6, and let κV = (κ1, . . . , κd) and t+ν = (t+ν1, . . . , t+νd)

where νd = −Tr(ν). The integral transformations of g and ω are given by

ΛV (g, ω) =
2

(2π)d
ΦV

(
κV ; 0, 0;W+(·; 1

2 ,
1
2)
)
,

Ξν(t; g, ω) =
2

(2π)d
ΦEν

(
t+ ν; 0, 0;W+(·; 1

2 ,
1
2)
)

where

Φ∗
(
r; 0, 0;W+(·; 1

2 ,
1
2)
)

=
η∗(1)

(2i)dd

∑
e∈{±1}d

∫
· · ·
∫

( 3
4

)...( 3
4

)

W̃+(s; e; 1
2 ,

1
2)×

×
d∏
j=1

[
Γ(1− sj)2Γ

(
sj − 1

2 − irj
)
Γ
(
sj − 1

2 + irj
)
∆∗(εj , ej ; sj , rj)

]
ds,

with

∆∗(εj , ej ; s, r) =
[
(1 + ej)− (1− ej) cos(πs)

]
2 sin(πs)

+ λ∗(εj)
[
(1− ej)− (1 + ej) cos(πs)

]
2 cosh(πr).

Then we have

∑
ν∈Λd−1

ω(ν)

∞∫
−∞

|ζK(1
2 + it, ν)|4g(t) dt = MK(g, ω)

+
∑
V

aV ηV (1)HV

(
1
2

)3
ΛV (g, ω) + 2d

√
|DK |

∑
ν∈Λd−1

∞∫
−∞

|ζK(1
2 + it, ν)|6

|ζK(1 + 2it, 2ν)|2
Ξν(t; g, ω) dt

where tV , ηV , aV , HV are defined in Section 3.1.2. The sum V runs over an orthonormal system of
Hecke invariant cuspidal irreducible subspaces of L2(Γ\PSL2(R)d) with Γ the Hilbert modular group
over K.
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3.3 A Bound for The Fourth Moment

In this section we prove an asymptotic formula for the average value for the fourth moment of Hecke
L-functions for a totally real number field K of degree d with class number one, given by

∑
ν∈Λd−1

ω(ν)

∞∫
−∞

|ζK(1
2 + it, ν)|4g(t) dt,

using the decomposition we proved in the previous section (Theorem 3.2.5).

We choose the functions g(t) and ω(ν1, . . . , νd−1) as before to be entire functions, of rapid decay in
every horizontal strip. More precisely, we fix two entire functions G and Ω that are of rapid decay and
satisfy the estimates

G(j)(x)�A,j

(
1 + |x|

)−A
,

∂j1

∂yj11

· · · ∂
jd−1

∂y
jd−1

d−1

Ω(y)�A,j

(
1 + |y1|+ · · ·+ |yd−1|

)−A (3.3.1)

with A > 2 for all j, j1, . . . , jd−1 ∈ N0.
Then let g(t) = G( tT ) and ω(ν) = Ω(ν1T , . . . ,

νd−1

T ) = Ω(ν/T ).

According to Theorem 3.2.5 we have to estimate the expression

MK(g, ω)

+
∑
V

aV ηV (1)HV

(
1
2

)3
ΛV (g, ω) + 2d

√
|DK |

∑
ν∈Λd−1

∞∫
−∞

|ζK(1
2 + it, ν)|6

|ζK(1 + 2it, 2ν)|2
Ξν(t; g, ω) dt.

(3.3.2)

The functions ΛV and Ξν are integral transforms of the functions g and ω, see Theorem 3.2.5. The
term MK(g, ω) contributes the main term.

3.3.1 Error Term

First, we consider the second and the third term of (3.3.2) which enter into the error term.
There exist bounds for all HV and the sum over aV , ηV combined with some sufficiently nice function,
see Lemma 3.1.4 and 3.1.6. Also the ζ-functions coming up in the third term can be bounded. Thus
we are left with finding bounds for the integral transforms ΛV and Ξν , that are given by

Φ∗
(
r; 0, 0;W+(·; 1

2 ,
1
2)
)

=
η∗(1)

(2i)dd

∑
e∈{±1}d

∫
· · ·
∫

( 3
4

)...( 3
4

)

W̃+(s; e; 1
2 ,

1
2)×

×
d∏
j=1

[
Γ(1− sj)2Γ

(
sj − 1

2 − irj
)
Γ
(
sj − 1

2 + irj
)
∆∗(εj , ej ; sj , rj)

]
ds,

(3.3.3)

with r = κV or t+ ν and

∆∗(εj , ej ; s, r) =
[
(1 + ej)− (1− ej) cos(πs)

]
2 sin(πs) + λ∗(εj)

[
(1− ej)− (1 + ej) cos(πs)

]
2 cosh(πr).

The function W+ is defined in (3.2.8) and its Mellin transform W̃+ is given in Lemma 3.2.4. We need
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the following estimate on W̃+ to bound Φ∗.

(3.3.1) Lemma
Let W̃+ be defined as in Lemma 3.2.4 with W+ defined in (3.2.8). The function W̃+(s; e; 1

2 ,
1
2) is

holomorphic in Re sj < 1 for j = 1, . . . , d. In this region, for every α ∈ N we have the bound

W̃+(s; e; 1
2 ,

1
2)� TRe s1+···+Re sd(1 + |s1|+ · · ·+ |sd|)−α.

Proof.
Fix sj for j = 1, . . . , d with Re sj < 1. For wj ∈ R we define the function

W
(
1 + 1

w

)
:= W+(w; 1

2 ,
1
2) =

W
(
1 + 1

w

)
cΨ

(
1 + 1

w

)
(
|1 + w1| · · · |1 + wd| ·Nw

) 1
2

where 1 + 1
w =

(
1 + 1

w1
, . . . , 1 + 1

wd

)
.

We recall that W (x) vanishes if xj ≤ 0 for at least one j = 1, . . . , d. Recall that the function W is a
combination of the Fourier transformations of g and ω, see (3.2.3). The assumptions (3.3.1) and the
properties of the Fourier transformation combined with the decay behavior of cΨ imply that W(x) is
rapidly decaying if |xj − 1| > 1

T for at least one j. Thus we obtain that W(1 + 1
w ) is of rapid decay if

|wj | < T for at least one j = 1, . . . , d.
Moreover we obtain the bounds

W(x) =
W
(
x
)
cΨ(x)|N(x− 1)|

(Nx)
1
2

�
T d 1

T d

1
� 1,

∂A1

∂xA1
1

· · · ∂
Ad

∂xAdd
W(x)�B,Aj T

−A1−···−Ad
d∏
j=1

(
1 + T

|xj |
)−B

.

The first bound follows by the decay properties of g and ω, and the second is implied by the first and
the properties of the Fourier transform.
Next we apply integration by parts in the wj-variable Aj-times. More precisely, we choose

Aj =

0, if Im sj near 0

large, otherwise.

We get

W̃+(s; e; 1
2 ,

1
2) =

∫
· · ·
∫

(0,∞)d

∂A1

∂xA1
1

· · · ∂
Ad

∂xAdd

(
W(1 + 1

w )
) d∏
j=1

w
sj−1+Aj
j

sj · · · (sj − 1 +Aj)
dw

� TRe s1+···+Re sd(1 + |s1|)−A1 · · · (1 + |sd|)−Ad .

Now if Im sj is near zero the expression (1 + |sj |)−α is of size one. Thus choosing the large Aj to be α
ends the proof.
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We also need a bound for the Γ-functions. Stirling’s formula gives

d∏
j=1

[
Γ(1− sj)2Γ

(
sj − 1

2 − irj
)
Γ
(
sj − 1

2 + irj
)
∆∗(εj , ej ; sj , rj)

]

� (1 + |s1|+ · · ·+ |sd|)O(1)
d∏
j=1

(1 + |rj |)2σj−2

(3.3.4)

where σj = Re sj .

Now we are ready to estimate the functions Φ∗
(
r; 0, 0;W+(·; 1

2 ,
1
2)
)
, with the possible values κV and

t+ ν for r.

(3.3.2) Lemma
Let r = (r1, . . . , rd) where each rj is either real or 0 < irj <

7
64 or irj = lj − 1

2 with lj ∈ N. Then the
function Φ∗

(
r; 0, 0;W+(·; 1

2 ,
1
2)
)
, given in (3.3.3), is bounded by

Φ∗
(
r; 0, 0;W+(·; 1

2 ,
1
2)
)
� T dθ+

d
2
(
1 + |r1|+ · · ·+ |rd|

)−20−d
,

where θ = 7
64 is an upper bound for the exceptional eigenvalues.

If all rj are real, we can choose θ = 0.

Proof.
We move the contour of the sj-integrals left to the vertical line Re sj = −(20 + d), for all j. We collect
residues at sj = −µj + 1

2 ∓ irj , with µj ∈ N0 and Re(−µj + 1
2 ∓ irj) > −(20 + d). If irj = lj − 1

2 with
lj > 22 + d we do not pass through poles. Now we have at most 2d terms namely

d∏
j=1

(∑
µj

residue +

∫
(−20−d)

dsj

)
.

We estimate the term coming from the residues and the shifted integral using Stirling’s formula for the
factor of Γ-functions. For the integral term, this estimate is given in (3.3.4). To estimate the function
W̃+ we use Lemma 3.3.1. Combining the estimates of the terms we obtain

Φ∗
(
r; 0, 0;W+(·; 1

2 ,
1
2)
)

�
d∏
j=1



T
1
2 (1 + |rj |)−20−d + T−20−d(1 + |rj |)−38−2d, rj ∈ R,

T−lj+1 + T−19−d(1 + |rj |)−38−2d + (1 + |rj |)−1, irj = lj − 1
2 , and lj ≤ 22 + d,

T−20−d(1 + |rj |)−38−2d, irj = lj − 1
2 , and lj > 22 + d,

T |rj |+
1
2 + T−19−d(1 + |rj |)−38−2d, 0 < irj <

7
64 .

Comparing the factors, we see that this can be estimated by

d∏
j=1



T
1
2 (1 + |rj |)−20−d, rj ∈ R,

1, irj = lj − 1
2 and lj ≤ 22 + d,

T−20−d(1 + |rj |)−38−2d, irj = lj − 1
2 and lj > 22 + d,

T θ+
1
2 , 0 < irj <

7
64 .
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Combining these bounds, by noting that 1� T
1
2 (1 + |rj |)−20−d if irj = lj − 1

2 and lj ≤ 22, we get

Φ∗
(
r; 0, 0;W+(·; 1

2 ,
1
2)
)
� T dθ+

d
2
(
1 + |r1|+ · · ·+ |rd|

)−20−d

where θ = 7
64 .

In particular if all rj are real, we get

Φ∗
(
r; 0, 0;W+(·; 1

2 ,
1
2)
)
� T

d
2
(
1 + |r1|+ · · ·+ |rd|

)−20−d
.

Now we are ready to estimate the second and the third term of (3.3.2).

First we consider the cuspidal contribution∑
V

aV ηV (1)HV

(
1
2

)3
ΛV (g, ω).

We use Lemma 3.1.6 to estimate the Hecke function HV , and Lemma 3.2.2 for the integral transform
ΛV . Inserting these estimates we get∑

V

aV ηV (1)HV

(
1
2

)3
ΛV (g, ω)� T

d
2

+dθ
∑
V

aV |ηV |
(
1 + |κ1|+ · · ·+ |κd|

)−10−d
.

Then Lemma 3.1.4 shows that the resulting sum is of constant size, and we get in total∑
V

aV ηV (1)HV

(
1
2

)3
ΛV (g, ω)� T

d
2

+dθ.

For the Eisenstein contribution, i.e. the third term of (3.3.2), we need some further results to get rid
of the ζ-functions that we considered in Section 3.1.
The factor

(
ζK(1 + 2it, 2ν)

)−1 is discussed in Lemma 3.1.1 and an estimate for the ζ-function on the
central line is stated in (3.1.6). Now let r = t+ ν with ν ∈ Λd−1. Denote by νd = −Tr(ν). Then every
rj is real and from Lemma 3.2.2 we get the estimate

Ξν(t; g, ω)� T
d
2
(
1 + |t+ ν1|+ · · ·+ |t+ νd|

)−20−d
.

Inserting these estimates we obtain

Ce
∑

ν∈Λd−1

∞∫
−∞

|ζK(1
2 + it, ν)|6

|ζK(1 + 2it, 2ν)|2
Ξν(t; g, ω) dt

�
∑

ν∈Λd−1

∞∫
−∞

(1 + |t+ ν1|+ · · ·+ |t+ νd|)1+2ε−20−dT
d
2 dt� T

d
2 .

Inserting the estimates for the cuspidal and the Eisenstein contribution into (3.3.2) we get, with θ = 7
64 ,

the intermediate result

∑
ν∈Λd−1

ω(ν)

∞∫
−∞

|ζK(1
2 + it, ν)|4g(t) dt = MK(g, ω) +O

(
T
d
2

+dθ
)
. (3.3.5)
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It remains to estimate the summand MK(g, ω), this will be done in the following subsection.

3.3.2 Main Term

The term MK(g, ω) will give the main contribution. It is defined in Theorem 3.2.5 as the sum

MK(g, ω) = I(r)(p 1
2
; g, ω) + CK(g, ω).

The term I(r) and the constant CK(g, ω) are defined in (3.2.61) and (3.2.2) respectively. The former
consists of three term that are given in (3.2.4), (3.2.55) and (3.2.60). As mentioned above, I(r) is
regular at p 1

2
. We prove

(3.3.3) Lemma
Let I(r)(p 1

2
; g, ω) be as defined in (3.2.61), define the variables ηj by ηj = t+ ξj−νj for j = 1, . . . , d−1

and ηd = t− Tr(ξ) + Tr(ν). Then, the following equality holds:

I(r)(p 1
2
; g, ω) =

∑
ν∈Λd−1

Ω
(
ν/T

) ∫
· · ·
∫

Rd−1

p̂2
(
ξ/ν̄
) ∞∫
−∞

G
(
t
T

)
× (3.3.6)

×
∑

aj ,bj ,kj ,lj≥0
j=1,...,d

Tr(ak+bl)≤3+d

d(a, k; b, l)

d∏
j=1

(
Γ(aj)

Γ

)kj(Γ(bj)

Γ

)lj(
1
2 − iηj

)
dt dξ

+O
(
T
d
2

+ε
)

where Tr(ak + bl) is the sum
∑d

j=1(ajkj + bjlj), and d(a, k; b, l) are real constants that can be made
explicit.

Proof.
The proof follows the corresponding steps of the case K = Q in [M97, pages 174 – 178].
The function I(r)(p 1

2
; g, ω) is regular, but its summands I0, I

(r)
+ and I

(e,r)
+ each have a singularity at

p 1
2
. Thus the singular parts cancel under addition.

More precisely, we put (z1, z2, z3, z4) = p 1
2

+ (δ1, δ2, δ3, δ4), where (δ1, δ2, δ3, δ4) = (a1, a2, a3, a4)δ with

aj ∈ R and δ ∈ C small, and we expand the terms into a Laurent series in δ. Then I(r)(p 1
2
; g, ω) is

equal to the sum of the constant terms, which does not depend on the choice of the aj .
We compute the constant terms of I0, I

(r)
+ and I

(e,r)
+ separately.

The term I0:
The function I0(z1, z2, z3, z4; g, ω) is given in (3.2.4), it is

I0(z1, z2, z3, z4; g, ω) = 1
2d−1 cΨW (1)

ζK(z1 + z3)ζK(z1 + z4)ζK(z2 + z3)ζK(z2 + z4)

ζK(z1 + z2 + z3 + z4)
.

We use the definition of W (1), write out the Fourier transform ĝ and apply the Poisson summation
formula to

∑
h ŵ(h). Further, we recall the definition of cΨ. Then, the constant term of I0(p 1

2
; g, ω) is

of the form stated in the lemma, with aj = bj = 0.
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The term I
(r)
+ :

The function I
(r)
+ (p 1

2
; g, ω) is given in (3.2.55), it is a sum of four terms, each of which is a product of

ζK-functions and the function Ẅ+(s1, s2; z1, z3). One easily sees by the definition that Ẅ+ has a pole of
order d at p 1

2
. Hence, it is essential to understand Ẅ+(s1, s2; z1, z2) in order to compute I

(r)
+ (p 1

2
; g, ω).

We imitate the steps of the reformulation of the function W̃+ in the proof of Lemma 3.2.4. This leads
to

Ẅ+(s1, s2; z1, z3) (3.3.7)

= RKΓ(−s1 − s2 + z1 + z3 − 1)d
∑

ν∈Λd−1

ω
(
ν
) ∫
· · ·
∫

Rd−1

p̂2
(
ξ/ν̄
) ∞∫
−∞

g(t)×

×
d∏
j=1

Γ(s1 − z1 − iηj + 1)

Γ(−s2 + z3 − iηj)

[
1 +

sin(π(s1 + s2 − z1 − z3 + 2)) + sin(π(−s1 + z1 + iηj))

sin(π(−s2 + z3 − iηj)

]
dt dξ.

As g and ω are rapidly decaying and by the usual estimates, we see that integral and sum converge
absolutely.
In (3.2.55) the pair (s1, s2) takes the values (0, 0), (z1 − z2, 0), (0, z3 − z4) and (z1 − z2, z3 − z4). Now,
we insert zj = 1

2 + δj and note that I(r)
+ has a singularity of order 3 + d. Indeed, each of the summands

can be expressed as a product over three Dedekind ζK-functions, that each have pole of order one at
p 1

2
and the functions Ẅ+ with a pole of order d. Hence, its constant term is a linear combination of

the first 4 + d coefficients of the power series in δ that is given in the second line of the right hand side
of (3.3.7). Recalling the definitions of g and ω we get

∑
ν∈Λd−1

Ω
(
ν/T

) ∫
· · ·
∫

Rd−1

p̂2
(
ξ/ν̄
) ∞∫
−∞

G
(
t
T

)
×

×
∑

aj ,bj ,kj ,lj≥0
j=1,...,d

Tr(ak+bl)≤3+d

d(a, k; b, l)
d∏
j=1

(
Γ(aj)

Γ

)kj(Γ(bj)

Γ

)lj(
1
2 − iηj

)
dt dξ

for some constants d(a, k; b, l) ∈ R that are not necessarily the same as in the Lemma.
The terms of higher order in δ contribute to the error term.

The term I
(e,r)
+ :

The function I
(e,r)
+ (z1, z2, z3, z4; g, ω) is given by

2(2π)d(z3−z4)

(2π)2d
Ce
ζK(2− z2 − z3)ζK(z1 + z4 − 1)ζK(2− z1 − z3)ζK(z2 + z4 − 1)

ζK(4− z1 − z2 − z3 − z4)
×

× ΦE0(1
2(z1 + z2 + z3 + z4 − 3)i, 1

2(z1 + z2 + z3 + z4 − 3)i; z1 − z2, z3 − z4; g, ω),

(3.3.8)

see (3.2.60).
The function ΦE0 is regular at δ = 0, which follows by a slight shift of the sj contour to the left or to
the right, depending on the value of δ. In addition, it can be bounded by � T

d
2

+|δ| as in the previous
Section 3.3.1. By Cauchy’s integral formula, this bound holds true also for the derivatives of ΦE0 .
Then, using the Laurent series of ζK(1 + δ) we see that this term contributes to the error term.
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Now we return to MK(g, ω). As we said above, MK(g, ω) consists of two summands, namely I(r) and
CK(g, ω).
The latter one is a constant and given by

CK(g, ω) = ω(0)
(
a0g(1

2 i) + b0g(−1
2 i) + a1g

′(1
2 i) + b1g

′(−1
2 i)
)

= O(1).
(3.3.9)

To get an asymptotic formula for I(r)(p 1
2
; g, ω) we use the representation we proved in Lemma 3.3.3.

We start by computing the single terms appearing in the integral. To this end, we rewrite the sum
over (

Γ(aj)

Γ

)kj(Γ(bj)

Γ

)lj(
1
2 − iηj

)
into a sum over Polygamma functions ψ(n) that are defined by

ψ(0)(z) =
d

dz
log(Γ(z)),

ψ(n)(z) =
d

dz
ψ(n−1)(z), for n ≥ 1,

(3.3.10)

for example, see [GR07, 8.360]. Thus, the sum of (3.3.6) equals

∑
aj ,bj ,kj ,lj≥0
j=1,...,d

Tr(ak+bl)≤3+d

d(a, k; b, l)
d∏
j=1

(
Γ(aj)

Γ

)kj(Γ(bj)

Γ

)lj(
1
2 − iηj

)

=
∑

aj ,bj ,kj ,lj≥0
j=1,...,d

Tr((a+1)k+(b+1)l)≤3+d

d(a, k; b, l)
d∏
j=1

(
ψ(aj)

)kj(
ψ(bj)

)lj(1
2 − iηj

)
.

Using the asymptotic formulas of the Polygamma functions

ψ(0)(z) = log(z) +O
(

1
z

)
,

ψ(n)(z) = 1
z +O

(
1
z2

)
,

(3.3.11)

we obtain the asymptotic

∑
aj ,bj ,kj ,lj≥0
j=1,...,d

Tr(ak+bl)≤3+d

d(a, k; b, l)

d∏
j=1

(
Γ(aj)

Γ

)kj(Γ(bj)

Γ

)lj(
1
2 − iηj

)

= p3+d

(
log
(
N(1

2 − iη)
))

+O
(
(1 + min

j
|ηj |)−1

)
where N(1

2 − iη) = (1
2 − iη1) · · · (1

2 − iηd) and pn is a polynomial of degree n whose coefficients are real
constants that can be made explicit.
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Inserting this asymptotic in (3.3.6), we obtain

I(r)(p 1
2
; g, ω) = O

(
T
d
2

+ε
)

(3.3.12)

+
∑

ν∈Λd−1

Ω
(
ν/T

) ∫
· · ·
∫

Rd−1

p̂2
(
ξ/ν̄
) ∞∫
−∞

G
(
t
T

)[
p3+d

(
log(N(1

2 − iη))
)

+O
(

1
1+min

j
|ηj |
)]
dt dξ.

Note that η ∈ Rd so that the argument of the logarithm is bounded away from zero.
We remark that in every hypercube that is a fundamental domain of the lattice Λd−1 there are T d−1

elements such that Tν ∈ Λd−1. Let ν ∈ Λd−1, then the points ν+ νk/T where 0 ≤ kj ≤ T − 1 and ν is
the basis element of Λ defined in (3.1.4) are contained in a fundamental domain of Λd−1. Moreover, by
(3.3.1) we get Ω(ν + νk/T ) = Ω(ν) +O( 1

T (1 + Tr|ν|)−A). Thus, substituting t
T → x and νj/T → yj ,

the second line of (3.3.12) changes to

T d
∑

y∈Λd−1

[
Ω(y) +O

(
1
T (1 + Tr|y|)−A

)] ∞∫
−∞

G(x)

∫
· · ·
∫

Rd−1

p̂2
(
ξ/ν̄
)
×

×
[
p3+d

(
log(N(1

2 − iη))
)

+O
(
(1 + min

j
|ηj |)−1

)]
dξ dx

(3.3.13)

where ηj = T (x+
ξj
T − yj) for j = 1, . . . , d− 1 and ηd = T (t− Tr(ξ)/T + Tr(y)).

The function p̂(ξ) is compactly supported in (−π
2 ,

π
2 )d−1. It follows that the summand ξj/T is relatively

small in comparison to x and y and the integral over ξ is of constant size.
The polynomial p3+d

(
log(N(1

2 − iη))
)
can be considered as a sum of a polynomial P3+d(log T ) whose

coefficients are polynomials in log(N(x− y)) of degree at most 3 + d that are independent of T and an
error term O

(
(logN(x − y))3+d/T

)
. This can be seen by applying the equation log(N(T (x − y))k =(

d log(T )+ logN(x−y)
)k. More precisely the k-th coefficient of P3+d is a polynomial in log(N(x−y))

of degree at most 3 + d− k.
Thus, (3.3.13) equals

T d
3+d∑
k=0

C(p, d)
∑

y∈Λd−1

Ω(y)

∞∫
−∞

G(x)P (logN(x− y)) dx · (log T )k +O
(
T d−1+ε

)
where P is a polynomial of degree at most 3 + d and C(p, d) are the constants coming from the
coefficients d(·, ·; ·, ·) and the integral over ξ.
Using the estimates for G and Ω given in (3.3.1), we see that the sum over y and the integral over x
are absolutely convergent, and we obtain

I(r)(p 1
2
; g, ω) = T dP3+d(log T ) +O

(
T d−1+ε

)
. (3.3.14)

Thus, combining the asymptotic formula for I(r)(p 1
2
; g, ω) with the estimate of CK in (3.3.9) we get

MK(g, ω) = T dP3+d(log T ) +O
(
T d−1+ε

)
.

Combining the result (3.3.5) of the Section 3.3.1 and (3.3.14) of Section 3.3.2 we obtain the proof of
Theorem 1.1.2.
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Chapter 4

Second Moment of Rankin-Selberg
L-functions over Totally Real Number
Fields

In this chapter, we prove Theorem 1.2.1. To this end, we need some further results and definitions.

4.1 Preliminaries

Recall that K is a totally real number field of degree d and class number one.

4.1.1 Hilbert Modular Forms

Let c be an integral ideal of K. Define

Γ0(c) =
{( aγ bγ

cγ dγ

)
∈ PGL2(o) | aγdγ − bγcγ � 0, cγ ∈ c

}
,

Γ1(c) =
{( aγ bγ

cγ dγ

)
∈ PGL2(o) | aγdγ − bγcγ � 0, aγ ≡ dγ ≡ 1 mod c, cγ ∈ c

}
.

We identify a matrix γ ∈ GL2(o) with its corresponding vector (γ1, . . . , γd) ∈ GL2(R)d, where the
components are given by γj =

(
aj bj
cj dj

)
and aj , bj , cj , dj are the j-th embeddings of aγ , bγ , cγ , dγ ∈ o.

Then, a matrix γ ∈ GL2(o) with det γ � 0 acts on the d-fold product Hd via the Möbius transform
γz =

(ajzj+bj
cjzj+dj

)
j=1,...,d

.

A Hilbert modular form f of weight k ∈ Nd0 and level c is a holomorphic function f : Hd → C satisfying

f |γ(z) :=
d∏
j=1

(
(det γj)

1
2

cjzj + dj

)kj
f(γz) = f(z) (4.1.1)

for all γ ∈ Γ0(c).
If f vanishes at all cusps, it is called a cusp form. We denote the space of cusp forms of weight k
and level c by Sk(c) and a basis of it by Bk(c). We may assume that all elements of Bk(c) are Hecke
eigenfunctions, since these functions generate the space of cusp forms.
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We define the inner product for two modular forms f1, f2 of weight k and level c by

〈f1, f2〉 =

∫
Γ0(c)\Hd

f1(z)f̄2(z)
d∏
j=1

y
kj
j

dxjdyj
y2
j

. (4.1.2)

As usual z = (z1, . . . , zd) = (x1 + iy1, . . . , xd + iyd).

It is well known that dimSk(c) is finite, see [L03, page 130], more precisely, it is of size N(kc)1+o(1).

Any f ∈ Sk(c) has a Fourier expansion

f(z) =
∑
n∈o
n�0
n=(n)

Cf (n)(Nn)
k−1
2 e
[
nδ−1z

]

where d = (δ) with δ � 0 is the different of K.
We denote by Bk(c) an orthogonal basis of Sk(c) consisting of Hecke eigenfunctions. The Fourier
coefficients of f ∈ Bk(c), normalized by Cf (1) = 1 are real and bounded by

Cf (n)�ε (Nn)ε, (4.1.3)

see [HT16, equation (2.2), Section 6.3] and [LM14, equation (2.1)].

We will consider a subspace of the cusp forms, the so called newforms S]k(c). This space is defined
as the orthogonal complement with respect to the inner product of the oldforms where the oldforms
S[k(c) are the cusp forms coming from lower level, see [HT16, page 4].
A basis of newforms can be given by primitive forms, i.e. Hecke eigenfunctions that are moreover
newforms. We denote a basis of newforms consisting of primitive forms by B]k(c).
Let f be a primitive form, then it follows by the work of Shimura [S78, (2.26)] that its Fourier coefficient
Cf (n) is equal to the Hecke eigenvalue of the Hecke operator Tn as defined in (3.1.34).

4.1.2 Atkin-Lehner Theory

We give a short overview of the Atkin-Lehner theory, following [AL78] and [KMV00, A3].

Let q = (q) be an ideal and let g ∈ S]k(q) with the Fourier coefficients Cg(·).
Then we write q = q1q2 with (q1, q2) = 1. Define for x, y, z, w ∈ o with x ≡ 1 (mod q2), y ≡ 1 (mod q1)

and q2
1xw − qyz = q1 the matrix

Wq1 =

(
xq1 y

zq wq1

)
∈ GL2(o).

A short computation shows that Wq1 normalizes Γ0(q) and Γ1(q). Furthermore one easily sees that
W 2
q1 is the identity, asW 2

q1 ∈ Γ0(q). ThusWq1 defines an endomorphism of S]k(q), which is independent
of the choice of x, y, z and w. This endomorphism is given by

g|Wq1
(·) = ηg(q1)g(·)

with some constant ηg(q1) that satisfies |ηg(q1)| = 1 as follows from W 2
q1 ∈ Γ0(q).
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The eigenvalue ηg can be given explicitly in terms of Cg:

(4.1.1) Lemma
Let q ∈ o, q = (q), take a newform g as above and assume Cg(q) 6= 0. Then the eigenvalue ηg(q) of
Wq is given by

ηg(q) =
−1

Cg(q)
√
Nq

.

Proof.
The proof follows the paper of Atkin and Li [AL78, Theorem 2.1].
We may assume Wq to be such that x ≡ 0 (mod q). Further, for each u mod q with (u, q) = 1 there
exists a unique v mod q with (v, q) = 1 such that uzv ≡ y (mod q).
For such pairs (u, v), we obtain by a simple multiplication that(

1 u

0 q

)
·Wq ·

(
1 −v/q
0 1

)
∈ Γ0(q)

Thus, we get

g
∣∣ ∑
u mod q
(u,q)=1

(
1 u
0 q

)
Wq

=
∑

v mod q
(v,q)=1

g
∣∣(

1 v/q
0 1

) =
∑

n∈o,n�0
n=(n)

Cg(n)e
[
nδ−1z

] ∑
v mod q
(v,q)=1

e
[
nδ−1v
q

]
.

Rewriting this sum over v, the right hand side becomes

N(q − 1)g
∣∣
Uq

∣∣
Bq
−

∑
n∈o,n�0
n=(n)

Cg(n)e
[
nδ−1z

]
(4.1.4)

where

g
∣∣
Uq

(z) =
∑

n∈o,n�0
n=(n)

Cg(qn)e
[
nδ−1z

]
= (Nq)−

1
2

∑
u mod q

g
∣∣(

1 u
0 q

)(z)

and g|Bq(z) =
∑

n∈o,n�0
n=(n)

Cg(n)e
[
qnδ−1z

]
= g(qz).

Now we view g
∣∣
Uq

∣∣
Wq

in two ways. First, we insert the definitions and reformulate the sums, to get

g
∣∣
Uq

∣∣
Wq

= (Nq)−
1
2

∑
u mod q

g
∣∣(

1 u
0 q

) = (Nq)−
1
2 g
∣∣
U1

∣∣( x y
qz q2w

)
( q u0 1 )

+ (Nq)−
1
2

∑
u mod q
(u,q)=1

g
∣∣(

1 u
0 q

)
Wq
.

Now, we insert (4.1.4) for the second summand, to obtain

g
∣∣
Uq

∣∣
Wq

= (Nq)−
1
2 g
∣∣
U1

∣∣( x y
qz q2w

)
( q u0 1 )

+N(q − 1)(Nq)−
1
2 g
∣∣
Uq

∣∣
Bq
− (Nq)−

1
2

∑
n∈o,n�0
n=(n)

Cg(n)e
[
nδ−1z

]
.
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On the other hand we have

g
∣∣
Uq

∣∣
Wq

= Cg(q)ηg(q) · g.

Thus, comparing the first Fourier coefficients ends the proof.

We need the following result in the proof of a Voronoi summation formula in Section 4.1.4

(4.1.2) Lemma
Let q ∈ F , q = (q), a, c ∈ o with (a, c) = 1. Let D1 = (c, q), D2 = q

D1
= q

(c,q) ∈ F and suppose that D1

and D2 are coprime.
Then, there exists a matrix γ =

(
a b
c d

)
∈ SL2(o), such that the following identity holds (as operators

acting on weight k modular forms)

γ =

(
a b

c d

)
=

(
a′ b′

c′q d′

)
◦WD2 ◦

(
1 0

0 D2

)

for some γ1 =
(
a′ b′

c′q d′

)
∈ Γ0(q). Moreover d′ satisfies the congruences

d′ ≡ a∗ (mod D1), d′ ≡ −c (mod D2) (4.1.5)

where a∗ is the multiplicative inverse of a modulo D1.

Proof.
The proof is analogous to [KMV00, Lemma A.3].
Since (a, c) = 1 and (c, q,D2) = 1, we may choose the lower right entry d of γ such thatD2|d. Then pick
any matrix WD2 =

(
xD2 y
zq wD2

)
representing the Atkin-Lehner operator. Recall that y ≡ 1 (mod D2)

and x ≡ 1 (mod D1), as well as detWD2 = D2.
Then we get

γ1 := D2I · γ · diag(1, D−1
2 ) ·W−1

D2
=

(
awD2 − zbD1 −ay + bx

cwD2 − zdD1 −cy + dx

)
∈ Γ0(q)

by our choice of d. The congruences (4.1.5) follow from the congruences of x and y.

4.1.3 Rankin-Selberg L-functions

Now we are able to define the Rankin-Selberg L-function and state some results. We follow the
terminology used in [HT16] and [L79].
Let q = (q) be prime and c a squarefree integral ideal either coprime to q or equal to q. Further, let
f ∈ S]k(c), g ∈ S

]
k(q) be two primitive forms of weight k ∈ Nd. Denote by Cf (n), Cg(n) their Fourier

coefficients.
Then, the Rankin-Selberg L-function is, for Re s > 1, defined by

L(f ⊗ g, s) = L(2s, χqc)
∑
n

Cf (n)Cg(n)

(Nn)s
(4.1.6)
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where χqc is the trivial character modulo qc given by

χqc(n) =

1, (n, qc) = 1,

0, (n, qc) > 1
(4.1.7)

and L(2s, χqc) =
∑
n

χqc(n)

(Nn)2s
=
∏
p|qc

pprime

(
1− (Np)−2s

)
ζK(2s). (4.1.8)

The Rankin-Selberg L functions satisfies a functional equation:

(4.1.3) Lemma
Let k ∈ Nd and f, g be two primitive forms with f ∈ S]k(c), g ∈ S

]
k(q) where q is a prime ideal and

either (c, q) = 1 or c = q. Furthermore, let Cg(q) 6= 0 and Cf ((q, c)) 6= 0.
Then, the Rankin-Selberg L-function satisfies

Λ(f ⊗ g, s) : = (2π)−2sd(N qc
(q,c))s|DK |2sL∞(f ⊗ g, s)

∏
p|(q,c)

θp(s)
−1L(f ⊗ g, s)

= Λ(f ⊗ g, 1− s)

where

L∞(f ⊗ g, s) =
d∏
j=1

(2π)−kjΓ(s)Γ(s+ kj − 1),

θp(s) =

1− Cf (p)Cg(p)(Np)1−s, if p = c = q,

1, else.

Proof.
The case that c and q are coprime is treated in [HT16]. Thus, we assume c = q = (c), c ∈ F and follow
the paper of Li [L79].
Let

h(z, s, a) =
∑

(mc,n)=1
n=(n),n∈F
n≡a mod c

ys(N |mc+ n|)−2s.

Writing out the Fourier expansions of f and g and using orthogonality of characters as well as an
unfolding argument to obtain

1

ϕ(c)

∫
· · ·
∫

D1(c)

f(z)ḡ(z)
∑

a mod c
a∈F

χc(a)h(z, s, a) dµ(z) = (4π)−ds−(k−1)Γ(s+ k − 1)
∑
n

Cf (n)Cg(n)

(Nn)s
.

The product of the sum over a with (Nc)s and L(2s, χc) equals a sum over the Eisenstein function.
More precisely

(Nc)sL(2s, χc)
∑

a mod c
a∈F

χc(a)
∑

(mc,n)=1
n=(n),n∈F
n≡a mod c

ys(N |mc+ n|)−2s =
∑
a|c
a∈F

µ((a))(Na)−sE(cz/a, s)
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where µ(a) is the Möbius function.
Recall that Γ(s+ k − 1) =

∏d
j=1 Γ(s+ kj − 1). We get

Φfg(s) : = (Nc)sπ−ds(4π)−ds−(k−1)Γ(s+ k − 1)Γ(s)dL(f ⊗ g, s)

= ϕ(c)−1π−dsΓ(s)d
∑
a|c

µ(a)(Na)−s
∫
· · ·
∫

D1(c)

f(z)ḡ(z)E(cz/a, s) dµ(z).

Since c is prime, the sum over a contains only two summands, a = 1 and a = c. Our aim is to reduce
the term a = c to a = 1 with an additional constant in front of the integral.

Let p = (p)|c. Now recall that the Atkin-Lehner operator Wp normalizes Γ1(c).
Furthermore E(cz/ap, s) ◦Wp = E(cz/a, s), and we have∫

· · ·
∫

D1(c)

f(z)ḡ(z)E(cz/ap, s) dµ(z) = ηf (p)η̄g(p)

∫
· · ·
∫

D1(c)

f(z)ḡ(z)E(cz/a, s) dµ(z)

= Cf (p)Cg(p)Np

∫
· · ·
∫

D1(c)

f(z)ḡ(z)E(cz/a, s) dµ(z).

The second equality follows from Lemma 4.1.1 and the fact that Cf and Cg are real and non-zero by
our assumption.

Now we get

∑
a|c
a∈F

µ((a))(Na)−s
∫
· · ·
∫

D1(c)

f(z)ḡ(z)E(cz/a, s) dµ(z) = θp(s)

∫
· · ·
∫

D1(c)

f(z)ḡ(z)E(cz, s) dµ(z)

where

θp(s) = 1− Cf (p)Cg(p)(Np)1−s.

Thus the functional equation of Φfg(s) is induced by the functional equation of the Eisenstein series
which can be stated as

π−dsΓ(s)dE(cz/a, s) = π−d(1−s)Γ(1− s)dE(cz/a, 1− s).

This follows from Lemma 3.1.2 by replacing s with s− 1
2 .

Finally the functional equation of Φfg(s) yields the result for Λ(f ⊗ g, s).

We define the multiplicative coefficients γfg(b) by∑
b|(q,c)∞

γfg(b)(Nb)−s :=
∏

p|(q,c)

θp(s)
−1. (4.1.9)

Note, for p|(q, c), that |θp(s)| ≥ (1 − (Np)−σ) as |Cf (p)| =
√
Np
−1 which follows from Lemma 4.1.1

and |ηf (p)| = 1. Thus, multiplying out the product
∏

p|(q,c)(1 − (Np)−σ)−1 we obtain in the case
Re s = σ > ε absolute convergence for any ε > 0. Comparing the left hand side of (4.1.9) with the
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bound of the right hand side of (4.1.9) we obtain for any ε > 0:

|γfg(b)| � (Nb)ε. (4.1.10)

Using the functional equation of the Rankin-Selberg L-function, we obtain the approximate functional
equation

(4.1.4) Lemma
Let q be a prime ideal and c an integral ideal either coprime or equal to q. Let f ∈ S]k(c), g ∈ S

]
k(q),

with Cg(q) 6= 0 and Cf (q) 6= 0. Further define

Vs(y) :=
1

2πi

∫
( 3
2

)

y−u
d∏
j=1

Γ(s+ u)Γ(s+ u+ kj − 1)

Γ(s)Γ(s+ kj − 1)
G(u)

du

u

where G(u) is a holomorphic function on an open set containing the strip |Re(u)| ≤ 3
2 and bounded

therein, satisfying G(u) = G(−u) and G(0) = 1.
Then we have

L
(
f ⊗ g, 1

2

)
= 2

∑
b|(q,c)∞

γfg(b)

(Nb)
1
2

∑
a

χqc(a)

(Na)

∑
m

Cf (m)Cg(m)

(Nm)
1
2

V 1
2

((2π)2dN(ba2m)

D2
KN( qc

(q,c))

)
.

Moreover, the derivatives of V 1
2
(y) satisfy

yνV
(ν)
1
2

(y)�ν,A

(
1 +

y

Nk

)−A
(4.1.11)

for all ν ∈ N0.

Proof.
See [LM14, Proposition 3.2] and [HT16, Proposition 4.1].

4.1.4 Voronoi’s Formula

Later on we want to apply a Voronoi summation formula. To this end, we prove:

(4.1.5) Theorem
Let a, c ∈ o, with (a, c) = 1. Further let k ∈ Nd, q = (q) be a prime ideal and g ∈ Sk(q) with Fourier
coefficients Cg(n). Let F : [0,∞)d → R be a smooth function rapidly decaying if at least one variable
tends to infinity and vanishing if at least one variable is zero.
Then we have∑

n=(n)
n∈F

Cg(n)e
[
nac
]
F (n)

=
1

Nc

ηg(
q

(c,q))

N( q
(c,q))

1
2

∑
n=(n)
n∈F

Cg(n)e
[
− n

(a q
(c,q))∗

c

] ∫
· · ·
∫

(0,∞)d

F (x)(2π)dikJk−1

( 4π
√
nx

c( q
(c,q))

1
2

)
dx
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where (a q
(c,q))∗ is the multiplicative inverse modulo c and Jk−1 is a product of Bessel functions, namely

Jk−1(x) =
d∏
j=1

Jkj−1(xj).

Proof.
The proof follows [KMV00, Appendix A.3]. We will use the Atkin-Lehner operator and the Mellin
inversion formula to deduce the Voronoi summation formula.
Let D1 = (c, q) ∈ o and D2 = q

(c,q) ∈ o, and take γ =
( aγ bγ
cγ dγ

)
∈ SL2(o) with aγ = a and cγ = c as in

Lemma 4.1.2, in particular choose dγ such that D2|dγ . Let z ∈ Hd. Using the factorization of γ, we
have

g
(
γz
)

= (cγz + dγ)kD
−k 1

2
2 ηg(D2)g

( z
D2

)
. (4.1.12)

Now we define zt =
(
− dj

cj
+ i

cjtj

)
j=1,...d

for t ∈ (R>0)d. Thus cγzt + dγ = i
t , and γzt =

aγ
cγ

+ it
cγ
. Then

by (4.1.5) we get

e
[
− n dγ

cγD2

]
= e
[
− ndγD

∗
2

cγ
− ndγc

∗
γ

D2

]
= e
[
− ndγD

∗
2

cγ

]
= e
[
− n (aγD2)∗

cγ

]
.

Using this and writing out the definition, we obtain

g(γzt) =
∑
n=(n)

Cg(n)e
[
n
aγ
cγ

]
n

1
2

(k−1) exp
(
− Tr

(2πnt
cγ

))
(4.1.13)

=
(
i
t

)k
D
−k 1

2
2 ηg(D2)g

( z
D2

)
=
ikηg(D2)

(ND2)
1
2

∑
n=(n)

Cg(n)e
[
− n (aγD2)∗

cγ

](
n
D2

) 1
2

(k−1)
exp

(
− Tr

(
2πn
cγtD2

))
t−k.

(4.1.14)

The map t 7→ g(γzt) has exponential decay if at least one variable tends to zero or infinity. Thus, the
Mellin transform of g(γzt) is analytic on Cd. For Re sj sufficiently large for all j, by (4.1.13) we obtain∫

· · ·
∫

(0,∞)d

g(γzt)t
s+ 1

2
(k−1) dt

Nt
=
( cγ

2π

)s+ 1
2

(k−1)
Γ
(
s+ 1

2(k − 1)
) ∑
n=(n)

Cg(n)e
[
n
aγ
cγ

]
n−s.

We denote the sum over n by L(g,
aγ
cγ
, s). Thus Γ(s+ 1

2(k− 1))L(g,
aγ
cγ
, s) has an analytic continuation

to Cd.
Multiplying (4.1.13) and (4.1.14) with ts+

1
2

(k−1)−1 and integrating over t we have the functional equa-
tion ( cγ√D2

2π

)s
Γ
(
s+ 1

2(k − 1)
)
L(g,

aγ
cγ
, s)

= ikηg(D2)
( cγ√D2

2π

)1−s
Γ
(
1− s+ 1

2(k − 1)
)
L(g,− (aγD2)∗

cγ
, 1− s).

(4.1.15)

Note that the left hand side is holomorphic for Re s ≥ 1
2(k+ 1), and the poles of the Γ-function on the

right hand side are canceled by the zeros of the L-function.

Now take F as stated in the Theorem, and denote its Mellin transform by F̃ . Multiplying the functional
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equation (4.1.15) with F̃ and integrating over s we obtain

1

(2πi)d

∫
· · ·
∫

(1)···(1)

F̃ (s)L(g,
aγ
cγ
, s) ds

=
ikηg(D2)

(2πi)d

∫
· · ·
∫

(1)···(1)

F̃ (s)
( cγ√D2

2π

)1+2sΓ(1− s+ 1
2(k − 1))

Γ(s+ 1
2(k − 1))

L
(
g,− (aγD2)∗

cγ
, 1− s

)
ds.

(4.1.16)

Then using Mellin inversion the left hand side of (4.1.16) equals∑
n=(n)

Cg(n)e
[
n
aγ
cγ

]
F (n).

To compute the right hand side, we move the contour to Re sj = −1 for all j, and change variables
2(1− s) 7→ s. In addition we write out the definition of L(g,− (aγD2)∗

cγ
, 1− s). Then the sum over n is

absolutely convergent and the right hand side changes to

ik(2π)dηg(D2)

N(cγ
√
D2)

∑
n=(n)

Cg(n)e
[
− n (aγD2)∗

cγ

]
×

× 1

(4πi)d

∫
· · ·
∫

(4)···(4)

F̃
(
1− s

2

) Γ(1
2(s+ k − 1))

Γ(1 + 1
2(−s+ k − 1))

( 2π
√
n

cγ
√
D2

)−s
ds.

Finally we write out the Mellin transform F̃ . There is a slight problem of absolute convergence if some
kj = 1, we avoid this by deforming the contour. Now we shift the contours back to Re s = 3

4 , such that
the integral equals∫

· · ·
∫

(0,∞)d

F (x)
1

(4πi)d

∫
· · ·
∫

( 3
4

)···( 3
4

)

Γ(1
2(s+ k − 1))

Γ(1 + 1
2(−s+ k − 1))

(2π
√
nx

cγ
√
D2

)−s
ds dx.

Using [GR07, 8.412.4], the inner integrals are a product of Bessel functions and we obtain that the
right hand side of (4.1.16) equals

1

Ncγ

ηg(D2)

N(D2)
1
2

∑
n=(n)

Cg(n)e
[
− n(aγD2)∗

cγ

] ∫
· · ·
∫

(0,∞)d

F (x)(2π)dikJk−1

(4π
√
nx

cγD
1
2
2

)
dx.

Replacing D2 by its definition q
(c,q) and remark that cγ = c and aγ = a completes the proof.

4.1.5 Further Results

A further result we need is the Petersson trace formula. We use the version of Luo [L03, (8)]:

(4.1.6) Lemma (Petersson’s trace formula)
Let c ⊆ K be an integral ideal, and k ∈ Nd. Let Bk(c) be an orthogonal basis of the cusp forms of
weight k and level c. Further let m,n � 0.
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Then we have

Γ(k − 1)

(4π)k−1|DK |
1
2

∑
f∈Bk(c)

Cf ((m))Cf ((n))

〈f, f〉

=δm=ε2n +
(2π)d(−1)d

k
2

|DK |
1
2

∑
ε∈o×

∑
c∈c∗/o×

SK(m, ε2n; c)

|Nc|
Jk−1

(4π
√
mn|ε|
|c|

)

where δm=ε2n =

1, if m = ε2n, for some ε ∈ o×,

0, else
, and Jk−1 is a product of Bessel functions, namely

Jk−1

(4π
√
mn|ε|
|c|

)
=

d∏
j=1

Jkj−1

(4π
√
mjnj |εj |
|cj |

)
.

The Kloosterman sum SK(m,n; c) and the inner product are defined in (2.0.2) and (4.1.2).

Proof.
See [L03, Section 2].

Further we use the equality from [IL07, equation A.9]

2πJk−1(4π
√
αγ)Jk−1(4π

√
βγ) = K

∞∫
0

e
(
(α+ β)x+ γ/x

)
Jk−1(4π

√
αβx)

dx

x
(4.1.17)

where α, β, γ ≥ 0, and the operator K(f) is given by K(f) := i−kf + ikf̄ = 2 Re(i−kf).

By [L03, page 136] we get for k = (k, . . . , k) the estimate

Jk−1

(4π
√
mn|ε|
|c|

)
� min

{
1,
((16eπ)d

√
Nmn

kd|Nc|

)k−1}
|Nc|η

∏
|εj |>1

|εj |−η, (4.1.18)

where 0 < η < 1
2 .
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4.2 Proof of Theorem 1.2.1

As before, let q be a prime ideal and c a squarefree integer ideal in K either coprime or equal to q

and let k = (k, . . . , k) ∈ Nd. Then for a primitive form g of level q and weight k, with Cg(q) 6= 0, the
second moment is given by

M ](g) :=
Γ(k − 1)

(4π)k−1|DK |
1
2

∑
f∈B]k(c)

|L(f ⊗ g, 1
2)|2

〈f, f〉
. (4.2.1)

We will establish an upper bound of this quantity given by M ](g)� (N qc
(q,c))εkdε.

4.2.1 Initial Reduction

To begin we apply the approximate functional equation given in Lemma 4.1.4. We get

M ](g) = 4
Γ(k − 1)

(4π)k−1|DK |
1
2

∑
f∈B]k(c)

1

〈f, f〉
×

×
∣∣∣ ∑
b|(q,c)∞

γfg(b)

(Nb)
1
2

∑
a

χqc(a)

(Na)

∑
m

Cf (m)Cg(m)

(Nm)
1
2

V 1
2

((2π)2dN(ba2m)

D2
KN( qc

(q,c))

)∣∣∣2.
We use the estimate (4.1.10) to bound the coefficients γfg to obtain

M ](g)� (4.2.2)

4
Γ(k − 1)

(4π)k−1|DK |
1
2

∑
f∈B]k(c)

1

〈f, f〉

( ∑
b|(q,c)∞

|Nb|ε−
1
2

∣∣∣∑
a

χqc(a)

(Na)

∑
m

Cf (m)Cg(m)

(Nm)
1
2

V 1
2

((2π)2dN(ba2m)

D2
KN( qc

(q,c))

)∣∣∣)2
.

To apply a spectral summation formula, we need to extend the basis B]k(c) of primitive newforms
to an orthogonal basis Bk(c) of the complete space Sk(c). This is possible, since the terms are all
non-negative. We will denote the right hand side of (4.2.2) over the extended basis by M(g). Thus,

M ](g)�M(g) :=
Γ(k − 1)

(4π)k−1|DK |
1
2

∑
f∈B]k(c)

1

〈f, f〉
× (4.2.3)

×
( ∑

b|(q,c)∞
|Nb|ε−

1
2

∣∣∣∑
a

χqc(a)

(Na)

∑
m

Cf (m)Cg(m)

(Nm)
1
2

V 1
2

((2π)2dN(ba2m)

D2
KN( qc

(q,c))

)∣∣∣)2
.

Next, we write out the square to get an expression to which we can apply Petersson’s trace formula.
Note that the Fourier coefficients Cf (m) and Cg(m) as well as the function V 1

2
are real-valued and we

may assume that the Nb is non-negative, as every ideal has a totally positive generator. We obtain

M(g) = 4
∑

bι|(q,c)∞
ι=1,2

|N(b1b2)|ε−
1
2

∑
a1,a2

χqc(a1a2)

N(a1a2)

∑
m1,m2

Cg(m1)Cg(m2)

(N(m1m2))
1
2

V 1
2

((2π)2dN(b1a
2
1m1)

D2
KN( qc

(q,c))

)
×

× V 1
2

((2π)2dN(b2a
2
2m2)

D2
KN( qc

(q,c))

) Γ(k − 1)

(4π)k−1|DK |
1
2

∑
f∈Bk(c)

Cf (m1)Cf (m2)

〈f, f〉
.
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Applying Petersson’s trace formula, i.e. Lemma 4.1.6, to the innermost sum we get

M(g) = 4
∑

bι|(q,c)∞
ι=1,2

|N(b1b2)|ε−
1
2

∑
a1,a2

χqc(a1a2)

N(a1a2)

∑
mj=(mj)
j=1,2

Cg(m1)Cg(m2)

(N(m1m2))
1
2

×

× V 1
2

((2π)2dN(b1a
2
1m1)

D2
KN( qc

(q,c))

)
V 1

2

((2π)2dN(b2a
2
2m2)

D2
KN( qc

(q,c))

)
×

×
[
δm1=ε2m2

+
(2π)d(−1)d

k
2

|DK |
1
2

∑
ε∈o×

∑
c∈c∗/o×

SK(m1, ε
2m2; c)

|Nc|
Jk−1

(4π
√
m1m2|ε|
|c|

)]
=: Mδ(g) +MS(g).

In the following we estimate M(g).

To begin we consider the diagonal term, i.e.

Mδ(g) = 4
∑

bι|(q,c)∞
ι=1,2

(N(b1b2))ε−
1
2

∑
a1,a2

χqc(a1a2)

N(a1a2)
×

×
∑

m=(m)

C2
g (m)

N(m)
V 1

2

((2π)2dN(b1a
2
1m)

D2
KN( qc

(q,c))

)
V 1

2

((2π)2dN(b2a
2
2m)

D2
KN( qc

(q,c))

)
.

We use the decay property of V 1
2
given in (4.1.11) to see that the multiple sum is absolutely convergent

and bounded by

Mδ(g)�
∑

bι|(q,c)∞
ι=1,2

(N(b1b2))ε−
1
2

∑
a1,a2

χqc(a1a2)

N(a1a2)
×

×
∑

m=(m)

C2
g (m)

N(m)

(
1 +

N(b1a
2
1m)

kdD2
KN( qc

(q,c))

)−A(
1 +

N(b2a
2
2m)

kdD2
KN( qc

(q,c))

)−A
�
(
kdN qc

(q,c)

)3ε
.

(4.2.4)

Thus we have the intermediate result M ](g) ≤M(g) = MS(g) +O
(
k3dε(N qc

(q,c))3ε
)
.

We are left with the off-diagonal term MS(g). We shall split this sum into several pieces, then we
bound some of them using trivial estimates. For the remaining terms, where N(mj) and N(c) are
relatively small, we find bounds in Section 4.2.2.

In the interest of readability, we fix aι and bι, ι = 1, 2 and restrict our attention to the sums over mj

and c.
Let {φj}j∈N0 be a family of smooth functions such that

supp φj ⊆ [1
4 , 4], xν

dν

dxν
φj(x)�ν 1,

∑
j∈N0

φj
(
x
2j

)
≡ 1, for all x ∈ R≥1, ν ∈ N0.

Define M1i = 2i, M2j = 2j and Ql = 2l. Then, we consider for the triples (i, j, l) the cuboids

(Nm1, Nm2, Nc) ∈
[
M1i

4 , 4M1i

]
×
[M2j

4 , 4M2j

]
×
[Ql

4 , 4Ql
]
. (4.2.5)
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For (i, j, l) ∈ N3
0 we define

Mijl =
∑
ε∈o×

∑
c∈c∗/o×

|Nc|−1φl
( |Nc|

2l

) ∑
mj=(mj)
j=1,2

φi
(
Nm1

2i

)
φj
(
Nm2

2j

)Cg(m1)Cg(m2)

(N(m1m2))
1
2

× (4.2.6)

× V 1
2

((2π)2dN(b1a
2
1m1)

D2
KN( qc

(q,c))

)
V 1

2

((2π)2dN(b2a
2
2m2)

D2
KN( qc

(q,c))

)
SK(m1, ε

2m2; c)Jk−1

(4π
√
m1m2|ε|
|c|

)
.

Thus, we have

MS(g) = 4
(2π)d(−1)d

k
2

|DK |
1
2

∑
bj |(q,c)∞
j=1,2

(N(b1b2))ε−
1
2

∑
aj

j=1,2

χqc(a1a2)

N(a1a2)

∑
i,j,l∈N0

Mijl.

We consider the termsMijl separately. Recall the bounds of the Kloosterman sum SK given in (2.0.3),
the bound for the product of Bessel J-functions Jk−1 given in (4.1.18) and the bound (4.1.11) for V 1

2
.

Inserting these estimates, we obtain

Mijl �
∑
ε∈o×

∑
c∈c∗/o×

∑
mj=(mj)
j=1,2

φi
(
Nm1

2i

)
φj
(
Nm2

2j

)
φl
( |Nc|

2l

)(Nm1, Nm2, Nc)
1
2

N(m1m2|c|)
1
2
−ε
×

×
(

1 +
N(b1a

2
1m1)

kdD2
KN( qc

(q,c))

)−A(
1 +

N(b2a
2
2m2)

kdD2
KN( qc

(q,c))

)−A
min

{
1,
((16eπ)d

√
Nm1m2

kd|Nc|

)k−1}
×

× |Nc|η
∏
|εj |>1

|εj |−η.

Note that 0 < η < 1
2 . The sum over the units is of constant size, i.e.∑

ε∈o×

∏
|εj |>1

|εj |−η � 1,

see [L03, page 136].
Inserting this bound and using (4.2.5) coming from the support of the φ’s, we get the estimate

Mijl � (M1iM2j)
1
2

+εQ
1
2

+2ε

l

Nc

(
1 +

M1iN(b1a
2
1)

kdD2
KN( qc

(q,c))

)−A(
1 +

M2jN(b2a
2
2)

kdD2
KN( qc

(q,c))

)−A
×

×min
{

1,
((16eπ)d

√
M1iM2j

kdQl

)k−1}
Qηl .

Now, we consider separately the three cases when at least one of Ql, M1i and M2j is relatively large.
First let

Ql ≥
(64eπ)d

√
M1iM2j

kd
.

Thus

min
{

1,
((16eπ)d

√
M1iM2j

kdQl

)k−1}
Qηl ≤

((16eπ)d
√
M1iM2j

kdQl

)k−1
Qηl ,
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and the sum over l can be estimated by

(
(16eπ)d

√
M1iM2j

)k−1
k−d(k−1)

∑
Ql≥

(64eπ)d
√
M1iM2j

kd

Q
−k+ 3

2
+2ε+η

l

� 4−kdk−
3
2
d
(
M1iM2j

) 3
4

+ε+ η
2 .

Using standard estimates for the sum over i, j we obtain the bound

∑
i,j∈N0

(
M1iM2j

) 5
4

+2ε+ η
2

(
1 +

M1iN(b1a
2
1)

kdD2
KN( qc

(q,c))

)−A(
1 +

M2jN(b2a
2
2)

kdD2
KN( qc

(q,c))

)−A
� k

9
2
d+ε(4d+5)+dη

(
N qc

(q,c)

) 9
2

+2ε+η
(N(b1b2a

2
1a

2
2))−

9
4 .

Combining the estimates, we obtain∑
Ql≥

(64eπ)d
√
M1iM2j

kd

i,j∈N0

|Mijl| � 4−kdk3d+5dε+dη
(
N qc

(q,c)

) 7
2

+2ε+η
(N(b1b2a

2
1a

2
2))−

9
4

which is negligible as k is large relatively to Nqc.
Now we consider the case that at least one of M1i and M2j is large. The expression is symmetric in
m1 and m2. Therefore it is enough to assume M1i to be large, more precisely

M1i ≥
kd+εD2

KN( qc
(q,c))

N(b1a2
1)

(4.2.7)

such that
(

1 +
M1iN(b1a21)

kdD2
KN( qc

(q,c)
)

)−A
≤
(

M1iN(b1a21)

kdD2
KN( qc

(q,c)
)

)−A
hold.

Summing over l, we obtain

∑
l∈N0

Q
1
2

+2ε+η

l min
{

1,
((16eπ)d

√
M1iM2j

kdQl

)k−1}
�
(
M1iM2j

) 3
4

+ε+ η
2 k−d(2+2ε).

Now, we sum over i, j, such that (4.2.7) holds. We get

∑
M1i≥

kd+εD2
KN(

qc
(q,c)

)

N(b1a
2
1)

j∈N0

(
M1iM2j

) 5
4

+2ε+ η
2

( M1iN(b1a
2
1)

kdD2
KN( qc

(q,c))

)−A(
1 +

M2jN(b2a
2
2)

kdD2
KN( qc

(q,c))

)−A

� k−Aε+d(5+7ε)
(
N qc

(q,c)

)5+4ε
(N(b1b2a

2
1a

2
2))−

9
4 .

Thus we obtain ∑
M1i≥

kd+εD2
KN(

qc
(q,c)

)

N(b1a
2
1)

j,l∈N0

|Mijl| � k−Aε+d(3+5ε)
(
N qc

(q,c)

)5+4ε
(N(b1b2a

2
1a

2
2))−

9
4 .
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The sums over aι and bι are bounded:

∑
aι

ι=1,2

χqc(a1a2)

N(a1a2)5
� 1,

∑
Nbι|(q,c)∞
ι=1,2

(N(b1b2))ε−2 � 1.

Choosing A = 100d
ε2

, we obtain the intermediate result

MS(g) = O
(
k−97d/ε

(
N qc

(q,c)

)5+ε) (4.2.8)

+ 4
(2π)d(−1)d

k
2

|DK |
1
2

∑
bι|(q,c)∞

bι≤
√
kd+εD2

KN( qc
(q,c)

)

ι=1,2

ι(N(b1b2))ε−
1
2

∑
Naι≤

√
kd+εD2

KN( qc
(q,c)

)

ι=1,2

χqc(a1a2)

N(a1a2)

∑
(i,j,l)∈C

Mijl

where

C :=


(i, j, l) ∈ N3

0

∣∣∣∣∣
M1i <

kd+εD2
KN( qc

(q,c)
)

N(b1a21)
,

M2j <
kd+εD2

KN( qc
(q,c)

)

N(b2a22)
,

Ql <
(64eπ)d

√
M1iM2j

kd


. (4.2.9)

As k is large the error term is negligible. The triples (i, j, l) ∈ C will be considered in the Section 4.2.2.

4.2.2 Application of Voronoi’s Summation Formula

To estimate the remaining Mijl with (i, j, l) ∈ C, we apply the Voronoi summation formula stated in
Theorem 4.1.5. Fix a triple (i, j, l) ∈ C.
We modify the sum over m1 in (4.2.6) by Theorem 4.1.5 and obtain∑

m1=(m1)
m1∈F

Cg(m1)e
[
am1
c

]
F (m1) (4.2.10)

=
1

Nc

ηg(
q

(c,q))

N( q
(c,q))

1
2

∑
n=(n)
n∈F

Cg(n)e
[
− n

(a q
(c,q))∗

c

] ∫
· · ·
∫

(0,∞)d

F (x)(2πik)dJk−1

( 4π
√
nx

c( q
(c,q))

1
2

)
dx

where

F (x) = (Nx)−
1
2φi
(Nx

2i

)
V 1

2

( N(b1a
2
1x)

D2
KN( qc

(q,c))

)
Jk−1

(4π
√
xm2|ε|
|c|

)
.

As φi is compactly supported, F has compact support, in particular, F satisfies the conditions of
Theorem 4.1.5. Recall that ( q

(c,q))∗ is the multiplicative inverse of q
(c,q) modulo c.

The Kloosterman sum SK(m1, ε
2m2; c) in the definition of Mijl in (4.2.6) changes into a Ramanujan

sum given by

∑
a mod c
(a,c)=1

e
[
a
(ε2m2 − n( q

(c,q))∗

c

)]
=: rc

(
ε2m2 − n( q

(c,q))∗
)
.
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Thus, the multiple sum Mijl changes into

Mijl =
∑
ε∈o×

∑
c∈c∗/o×

φl
( |Nc|

2l

) 1

Nc2

ηg(
q

(c,q))

N( q
(c,q))

1
2

∑
m2=(m2)

φj
(
Nm2

2j

) Cg(m2)

(Nm2)
1
2

V 1
2

(N(b2a
2
2m2)

D2
KN( qc

(q,c))

)
×

×
∑
n=(n)

Cg(n)rc
(
ε2m2 − n( q

(c,q))∗
) ∫
· · ·
∫

(0,∞)d

F (x)(2πik)dJk−1

( 4π
√
nx

c( q
(c,q))

1
2

)
dx.

(4.2.11)

To estimate the multiple sum Mijl we divide the sums over n into two parts depending on the size
of n, namely into Nn ≥ (Nm2)1+ε and Nn < (Nm2)1+ε. We denote their contributions by M≥ijl
respectively M<

ijl, and hence Mijl = M≥ijl +M<
ijl.

Case I Nn ≥ (Nm2)1+ε

We denote the partial sum of the second line of (4.2.11) extended over Nn ≥ (Nm2)1+ε by Rijl.
To estimate Rijl, we modify the x-integral via the substitution x 7→ x2. Let α ∈ N. Then, we
use integration by parts α-times in each variable. Therefore we add in the j-th step the factor
(Nx)−1(Nx)−k+1−j(Nx)k+j and use [GR07, 5.52.1] to integrate (Nx)k+jJk−1+j(

√
nx) and [GR07,

5.52.2] to derive the factor (Nx)−k+1−jJk−1+j(
√
m2x) of F (x2). We use the product rule to derive

F (x2) and obtain a sum. By the properties of φi and V 1
2
as well as the estimate (4.1.18) for the Bessel

J-functions we obtain that the whole expression is bounded uniformly in k by:∫
· · ·
∫

(0,∞)d

F (x)(2πik)dJk−1

( 4π
√
nx

c( q
(c,q))

1
2

)
dx

� |Nc|2η
∏
|εj |>1

|εj |−η
( 1

Nn

)α
2

∫
· · ·
∫

(0,∞)d

φi
(Nx2

2i

)
V 1

2

( N(b1a
2
1x

2)

D2
KN( qc

(q,c))

) ∑
0≤β≤α

(Nm2)
β
2 (Nx)α−β dx

�
∏
|εj |>1

|εj |−η|Nc|2η
√
M1i

( 1

Nn

)α
2
∑

0≤β≤α
(Nm2)

β
2

√
M1i

α−β
.

The second bound follows by the compact support of φi. Now we sum over n, to get

Rijl �
∏
|εj |>1

|εj |−η|Nc|2η
√
M1i

∑
Nn>(Nm2)1+ε

Cg(n)e
[
− n

(a q
(c,q))∗

c

]( 1

Nn

)α
2
∑

0≤β≤α
(Nm2)

β
2

√
M1i

α−β

�
∏
|εj |>1

|εj |−η |Nc|2η
√
M1i (Nm2)−

α
2
−α

2
ε+2ε+1

∑
0≤β≤α

(Nm2)
β
2

√
M1i

α−β
.

Inserting this estimate into (4.2.11) and summing over ε, c and m2 we obtain that M≥ijl is bounded by

M≥ijl � Q−1+2η
l M

1
2

1i M
3
2
−α

2
−εα

2
+3ε

2j

∑
0≤β≤α

√
M2j

β√
M1i

α−β
.

Now we sum over i, j and l, using the bounds (4.2.9), i.e. M∗ � (Nc)kd+ε, (Nc) ≤ Ql � (Nc)kdε and
M2j ≥

k2dQ2
l

(64eπ)dM1i
. We get

∑
(i,j,l)∈C

|M≥ijl| � kd(2−α
2
ε+8ε)

(
N qc

(q,c)

)2−α
2
ε+6ε

. (4.2.12)

71



Finally we choose α = d6
εe to see that this part is negligible.

Case II Nn < (Nm2)1+ε

To get a bound for the sum containing small n, we have to estimate the integral more carefully.
We apply (4.1.17) to reformulate the product of the two Bessel J-functions. Let

V(x) = (Nx)−
1
2φi
(Nx

2i

)
V 1

2

( N(b1a
2
1x)

D2
KN( qc

(q,c))

)
. (4.2.13)

Then the integral in (4.2.10) changes to

2d Re

∫
· · ·
∫

(0,∞)d

∫
· · ·
∫

(0,∞)d

e
[
(n (c,q)

q + |ε|2m2)γ +
x

c2γ

]
Jk−1

(
4π
√
nm2|ε|

( (c,q)
q

) 1
2γ
)
V(x) dx

dγ

Nγ
.

By the compact support of V and the rapid decay of Jk−1 this multi-integral is absolutely convergent.
Extending the region of integration of the integral over x to the region (−∞,∞)d we see that this is
the Fourier transform of V: ∫

· · ·
∫

(−∞,∞)d

V(x)e
[ x

c2γ

]
dx = V̂

( 1

c2γ

)
.

As V is compactly supported in [M1i
4 , 4M1i], we obtain the trivial bound∣∣∣V̂( 1

c2γ

)∣∣∣�√
M1i. (4.2.14)

We have to consider the integral

2d
∫
· · ·
∫

(0,∞)d

V̂
( 1

c2γ

)
e
[
(n (c,q)

q + |ε|2m2)γ
]
Jk−1

(
4π
√
nm2|ε|

( (c,q)
q

) 1
2γ
) dγ

Nγ
. (4.2.15)

Again we divide the integral. We introduce a smooth partition of unity given by the three smooth
functions {Ψl,Ψ,Ψu} satisfying the following properties:

suppΨl ⊆ [0,M1−ε
1i (Nc)−2], suppΨ ⊆ [1

4M
1−ε
1i (Nc)−2, (Nc)2k4d], suppΨu ⊆ [1

4(Nc)2k4d,∞)

and

yν
dν

dyν
Ψ∗ � 1 for ν ∈ N0, Ψl(y) + Ψ(y) + Ψu(y) = 1 for all y ∈ R+.

First we estimate the integral over Ψl. We consider V̂ and note that Nγ ≤M1−ε
1i (Nc)−2d, then we use

integration by parts β-times to obtain

V̂
( 1

c2γ

)
�M

−β+ 1
2

1i (Nc2γ)β.
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Thus, we get

2d
∫
· · ·
∫

(0,∞)d

Ψl(Nγ)V̂
( 1

c2γ

)
e
[
(n (c,q)

q + |ε|2m2)γ
]
Jk−1

(
4π
√
nm2|ε|

( (c,q)
q

) 1
2γ
) dγ

Nγ

�
∏
|εj |>1

|εj |−ηM
−βε+ 1

2
−η

1i .

For the integral over Ψu we estimate the Bessel J-function by [GR07, 8.451.1] and use the trivial
estimate for V̂ given in (4.2.14). We obtain

2d
∫
· · ·
∫

(0,∞)d

Ψu(Nγ)V̂
( 1

c2γ

)
e
[
(n (c,q)

q + |ε|2m2)γ
]
Jk−1

(
4π
√
nm2|ε|

( (c,q)
q

) 1
2γ
) dγ

Nγ

�
∏
|εj |>1

|εj |−ηM
1
2

1i(N(nm2))−
1
4 (Nc)−1k−2d.

We now use the estimate (4.1.3) and trivially estimate the Ramanujan sum by ϕ(c). We sum over n,
m2 and c to obtain that M<

ijl with the integral restricted to the support of Ψu, Ψl is bounded by

∑
ε∈o×

∏
|εj |>1

|εj |−η
∑

Nn<(Nm2)1+ε
m2

c∈c∗/o×

φj
(
Nm2

2j

)
φl
( |Nc|

2l

)
(Nm2)−

1
2

+ε ϕ(c)

(Nc)−2

ηg(
q

(c,q))

N( q
(c,q))

1
2

×

×

[
M
−βε+ 1

2
1i +M

1
2

1i(N(nm2))−
1
4 (Nc)−1k−2d

]
� 1

Nc

[
M
−βε+ 1

2
1i M

3
2

+ε

2j + (Nc)−1k−2dM
1
2

1iM
5
4

+2ε

2j

]
.

Then, summing over (i, j, l) ∈ C by using the same estimates as for (4.2.12) and choosing β = d3
εe we

see that this part is bounded by

O((Nc)−
1
4k−

d
4

+ε). (4.2.16)

We are left with M<
ijl where the integral (4.2.15) is restricted to the support of Ψ. We rewrite the

Bessel J-function with [GR07, 8.411.1] and define V(γ) = V̂( 1
c2γ

) 1
NγΨ(Nγ). Thus the remaining part

is given by

MΨ
ijl :=

∑
c∈c∗/o×

φl
( |Nc|

2l
)|Nc|−2

ηg(
q

(c,q))

N( q
(c,q))

1
2

∫
· · ·
∫

(−π,π)d

e−i(k−1)Tr(θ)× (4.2.17)

×
∑
ε∈o×

∑
Nn<(Nm2)1+ε

n=(n),m2=(m2)

φj
(
Nm2

2j

)
rc
(
ε2m2 − n( q

(c,q))∗
)Cg(n)Cg(m2)

(Nm2)
1
2

V 1
2

(N(b2a
2
2m2)

D2
KN( qc

(q,c))

)
×

× 1

πd

∫
· · ·
∫

(0,∞)d

e
[
(n (c,q)

q + |ε|2m2 + 2
√
nm2|ε|

( (c,q)
q

) 1
2 sin θ)γ

]
V(γ) dγ dθ.

To estimate the integral over γ, we divide the (n,m2, θ)-hypercube into two parts, according as to
N(n (c,q)

q + |ε|2m2 + 2
√
nm2|ε|( (c,q)

q )
1
2 sin θ) > N( qc

(q,c))kdb or ≤ N( qc
(q,c))kdb, with a constant b ∈ (−1, 0)

to be chosen later.
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Case II.i N(n (c,q)
q + |ε|2m2 + 2

√
nm2|ε|( (c,q)

q )
1
2 sin θ) > N( qc

(q,c))kdb

In this case we apply integration by parts to the integral over γ. Therefore we consider the derivatives
of V(γ). Let α ∈ Nd0, and denote by dα

dγα and f (α)(γ) the αj-fold derivative in the j-th variable,
j = 1, . . . , d. Then

dα

dγα
V(γ) =

∑
µ+ν+o=α

C(µ, ν, o)V̂(ν)
(

1
c2γ

)(
1
Nγ

)(µ)
Ψ(o)(Nγ)

�
∑

µ+ν+o=α
κj=0,...,νj

M
1
2

1i

(
c−2M1i

)κ|γ|−(α+κ+1)Ψ(Nγ)

because the derivatives of V̂ can be estimated via the chain rule.
Now we apply integration by parts to the γ integral dαj + ηje-times in the j-th variable, j = 1, . . . , d,
where 0 < ηj = η < 1

2 if |εj | > 1 and zero else. We choose αj = α for all j.
Thus, we obtain∫

· · ·
∫

(0,∞)d

e
[(
n (c,q)

q + |ε|2m2 + 2
√
nm2|ε|

( (c,q)
q

) 1
2 sin θ

)
γ
]
V(γ) dγ

�
∑

µj+νj+oj=α+η
κ=0,...,νj
j=1,...d

M
1
2

+κ

1i c−2κ

∫
· · ·
∫

1
4
M1−ε

1i (Nc)−2≤Nγ≤k4d

(Nγ)−α−1Ψ(Nγ)γ−κdγ×

×N
(
n (c,q)

q + |ε|2m2 + 2
√
nm2|ε|

( (c,q)
q

) 1
2 sin θ

)−α−ηj
� N

(
n (c,q)

q + |ε|2m2 + 2
√
nm2|ε|

( (c,q)
q

) 1
2 sin θ

)−α−ηj ∑
µj+νj+oj=α+η

κ=0,...,νj
j=1,...d

M
1
2

+κ

1i

(
M1−ε

1i
1
4

)−(α+η+κ)
(Nc)2(α+η)

�
∏
|εj |>1

|εj |−η
(
N
(
n (c,q)
q|ε| + |ε|m2 + 2

√
nm2

( (c,q)
q

) 1
2 sin θ

))−α−η
(Nc)2(α+η)M

1
2
−α(1−ε)

1i .

Next, we sum over n, m2, c and ε. The Ramanujan sum rc
(
ε2m2 − n( q

(c,q))∗
)
is trivially bounded by

Euler’s ϕ-function ϕ(c).
Then summing over n with Nn < (Nm2)1+ε and making use of the lower bound for the factor
N(n (c,q)

q|ε| + |ε|m2 + 2
√
nm2

( (c,q)
q

) 1
2 sin θ) we obtain

∑
Nn<(Nm2)1+ε

Cg((n))
(
N
(
n (c,q)
q|ε| + |ε|m2 + 2

√
nm2

( (c,q)
q

) 1
2 sin θ

))−α−η
�
(
N qc

(q,c)

)−α−η
k−(α+η)db(Nm2)1+2ε.

Thus, the sum over m2 and n is dominated by

∑
m2

φj
(
Nm2

2j

) |Cg(m2)|
(Nm2)

1
2

V 1
2

(N(b2a
2
2m2)

D2
KN( qc

(q,c))

)(
N qc

(q,c)

)−α−η
k−(α+η)db(Nm2)1+2ε

�
(
N qc

(q,c)

)−α−η
k−(α+η)dbM

3
2

+3ε

2j .

As above, the sum over the units ε is O(1). The integral over θ is trivially bounded by (2π)d, and
using trivial estimates for the sum over c, we obtain that the expression (4.2.17), restricted to
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N(n (c,q)
q + |ε|2m2 + 2

√
nm2|ε|( (c,q)

q )
1
2 sin θ) > N( qc

(q,c))kdb, is bounded by

�
(
N qc

(q,c)

)−α−η
k−(α+η)dbM

3
2

+3ε

2j M
1
2
−α(1−ε)

1i

Q
2(α+η)
l

Nc
. (4.2.18)

Case II.ii N(n (c,q)
q + |ε|2m2 + 2

√
nm2|ε|( (c,q)

q )
1
2 sin θ) ≤ N( qc

(q,c))kdb

We use quadratic extension to rewrite

N
(
n (c,q)

q + |ε|2m2 + 2
√
nm2|ε|( (c,q)

q )
1
2 sin θ

)
= N

((√
n( (c,q)

q )
1
2 −
√
m2|ε|

)2
+ 2
√
nm2|ε|( (c,q)

q )
1
2 (1 + sin θ)

)
.

Note that both summands are non-negative. Thus, we extend the sum if we replace the conditions on
n,m2, ε and θ by the conditions

N
(√
n( (c,q)

q )
1
2 −
√
m2|ε|

)2 ≤ (N qc
(q,c)

)
kdb, (4.2.19)

|N(1 + sin θ)| < kd(b−1).

The condition on θ is equivalent to

|π2 + θj | < k
b−1
2 (4.2.20)

as θj ∈ (−π, π) for all j.
We have to estimate

∑
c∈c∗/o×

φl
( |Nc|

2l
)

|Nc|2
ηg(

q
(c,q))

N( q
(c,q))

1
2

∑
ε∈o×

∑
Nn<(Nm2)1+ε

n=(n),m2=(m2)
(4.2.19)

φj
(
Nm2

2j

)
rc
(
ε2m2 − n( q

(c,q))∗
)
× (4.2.21)

× Cg(n)Cg(m2)

(Nm2)
1
2

V 1
2

(N(b2a
2
2m2)

D2
KN( qc

(q,c))

)
×

× 1

πd

∫
· · ·
∫

(4.2.20)

∫
· · ·
∫

(0,∞)d

∣∣∣e−i(k−1)Tr(θ)e
[
(n (c,q)

q + |ε|2m2 + 2
√
nm2|ε|

( (c,q)
q

) 1
2 sin θ)γ

]
V(γ)

∣∣∣ dγ dθ.
To begin with we estimate the two multiple-integrals.
Recall that V is a product of the three functions V̂( 1

c2γ
), 1

Nγ and Ψ(Nγ). Using the trivial estimate

(4.2.14) for V̂ and the support property of Ψ we obtain that the γ-integral is bounded by

�
√
M1i log(Nckd).

The θ-integral over the domain (4.2.20) can trivially be bounded by

� 2dkd
b−1
2 .

We are left with the summation over n, m2, c and ε. By the condition (4.2.19) and our choice of the
fundamental domain F we obtain that |εj | < (N qc

(q,c))
1
2dk

b
2 for all j = 1, . . . , d.

Now, we write n (c,q)
q = |ε|2m2 +h with h ∈ F as n,m2 ∈ F to change the summation condition (4.2.19)

into Nh ≤
(
N qc

(q,c)

) 1
2kd

b
2
√
m2.
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We estimate the Fourier coefficients by (4.1.3).
Thus, the sum over h and m2 is bounded by

∑
h,m2∈F
m2=(m2)

Nh≤(N qc
(q,c)

)
1
2 k

db
2
√
m2

φj
(
Nm2

2j

)
rc(|h|)

|Cg((m2|ε|2 + h))Cg(m2)|
(Nm2)

1
2

V 1
2

(N(b2a
2
2m2)

D2
KN( qc

(q,c))

)
�M1+2ε

2j

(
N qc

(q,c)

) 1
2kd

b
2 .

As a consequence, the sum over ε is bounded by∑
ε∈o×

|εj |<(N qc
(q,c)

)
1
2d k

b
2

1� 1.

Finally we sum over c ∈ c∗/o× to see that (4.2.21) can be estimated by

� Ql
(Nc)3

(
N qc

(q,c)

) 1
2

+ε
kd(b− 1

2
+ε)
√
M1iM

1+2ε
2j . (4.2.22)

Combining the bounds (4.2.18) and (4.2.22) we get

MΨ
ijl �

(
N qc

(q,c)

)−α−η
k−(α+η)dbM

3
2

+3ε

2j M
1
2
−α(1−ε)

1i

Q
2(α+η)
l

Nc
+

Ql
(Nc)3

(
N qc

(q,c)

) 1
2

+ε
kd(b− 1

2
+ε)
√
M1iM

1+2ε
2j .

Thus, we are left with the summation over (i, j, l) ∈ C. We recall that η < 1
2 . Considering the

definition (4.2.9) of C, we have on Ql the upper bound Ql �
√
M1iM2jk

−d which implies that M1i

is bounded by M−α(1−ε)+ 1
2

1i <
(
M2j(k

dQl)
−2
)α− 1

2 . The sum over i contains log(kdN qc
(q,c)) elements. If

the exponent is positive the upper bounds for M∗ are given in (4.2.9). Further we use Ql < (N qc
(q,c))kdε

to obtain ∑
(i,j,l)∈C

|MΨ
ijl| �

(
N qc

(q,c)

)−αε+ 3
2

+6ε
kd(−α(b+1)+2+9ε)(N(b2a

2
2))−1−α

2 (4.2.23)

+
(
N qc

(q,c)

)6ε
kd(b+1+9ε)N(

q

(q, c)
)(N(b1a

2
1))−

1
2 (N(b2a

2
2))−1

� (Nc)
1
2

+3εk−
1
2

+ε +
(
N qc

(q,c)

)6ε(
N q

(q,c)

)3ε
k9dε. (4.2.24)

The second estimate follows by choosing b = −1 + 3ε and α = d1
εe.

The sums over aι and bι are bounded by

∑
Naι≤

√
kd+εD2

KN( qc
(q,c)

)

ι=1,2

χqc(a1a2)

N(a1a2)
�
(
kdN qc

(q,c)

)ε
,

∑
bι|(q,c)∞

bι≤
√
kd+εD2

KN( qc
(q,c)

)

ι=1,2

(N(b1b2))ε−
1
2 �

(
kdN qc

(q,c)

)2ε
.

Combining the results (4.2.8) with (4.2.12), (4.2.16) and (4.2.23) we obtain

MS(g)� kd15ε(Nc)9ε
(
N q

(q,c)

)6ε
. (4.2.25)

Then by (4.2.3), (4.2.4) and (4.2.25) Theorem 1.2.1 is follows.
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Chapter 5

Appendix

5.1 Whittaker Functions

The Whittaker function is solution of a differential equation. More precisely, see [GR07, 9.220], the
equation

d2W

dz2
+
(
− 1

4
+
a

z
+

1
4 − b

2

z2

)
W = 0

has the two linearly independent solutions

Ma,b(z) = zb+
1
2 e−

z
2 Φ(b− a+ 1

2 , 2b+ 1; z),

Ma,−b(z) = z−b+
1
2 e−

z
2 Φ(−b− a+ 1

2 ,−2b+ 1; z).

Then the Whittaker function is given by

Wa,b(z) =
Γ(−2b)

Γ(1
2 − b− a)

Ma,b(z) +
Γ(2b)

Γ(1
2 + b− a)

Ma,−b(z).

5.2 Bessel Functions

The Bessel functions are solutions of the differential equation

d2Zν
dz2

+
1

z

dZν
dz

+
(

1− ν2

z2

)
Zν = 0,

for ν ∈ C, see [GR07, 8.40]. For | arg z| < π the Bessel function of the first kind Jν(z) is given by the
series

Jν(z) =
zν

2ν

∞∑
k=0

(−1)k
z2k

22kk!Γ(ν + k + 1)
.

The modified Bessel function Iν is defined as

Iν(z) =


e−

1
2
iπνJν(e

iπ
2 z), for − π < arg z ≤ π

2 ,

e−
3
2
iπνJν(e

3iπ
2 z), for π

2 < arg z ≤ π.
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We write J+
ν to denote Jν and J−ν for the modified Bessel function Iν .

The modified Bessel K-function is defined as

Kν(z) =


πi
2 e

π
2
iν
(
Jν(iz) + iYν(iz)

)
, for− π < arg z ≤ π

2 ,

−πi
2 e−

π
2
iν
(
J−ν(−iz)− iY−ν(−iz)

)
, for π

2 < arg z ≤ π

where Yν(z) = 1
sin(πν)

[
cos(πν)Jν(z)− J−ν(z)

]
.
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