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Chapter 1

Introduction

Estimating moments of families of L-functions over number fields is a central problem in number
theory.

On the one hand, such estimates serve as tools: An upper bound for the second power moment of
Rankin-Selberg L-functions combined with a lower bound of the first moment can be used to show
non-vanishing of Rankin-Selberg L-functions at the central point.

In addition, an upper bound for the fourth power moment of Hecke L-functions is used in |[D89] to
estimate the number of zeros of Hecke L-functions with a certain distance to the critical line.

On the other hand, these moments are also seen as natural objects that have to be studied indepen-

dently because they illuminate the structure of the family and expose beautiful symmetries.

In Chapter [3| of this thesis we will establish an asymptotic formula for the fourth moment of Hecke
L-functions and in Chapter 4] an upper bound for the second moment of Rankin-Selberg L-functions.

Several results on moments of L-functions are well known. A classical approach to compute moments
of L-functions is to start with the application of an approximate functional equation. Then, one can
for example apply the Montgomery-Vaughan identity or a trace formula and other estimates. This
works very well for the second and the fourth power moment. For higher moments, the error terms of

the approximate functional equation and of other methods become too large.

A special L-function that received a lot of attention is the Riemann (-function. Ingham proved 1928

in |I28] the asymptotic formula

T
/ ¢(3 +it)[* dt = asT(log T)* + O(T(log T)?).
0

In 1979 Heath-Brown ( [HB79] ) improved this by showing

T
1t +inltdt = TpifogT) + O(17+).
0

The coefficients of the fourth degree polynomial ps can be explicitly computed.

Motohashi proved an exact formula for the smoothed version of the fourth moment. In his paper [M97|



he considered the integral
INT!
/ €5 +it)|"g(t) dt

where ¢ is a smooth function, of rapid decay outside an interval [0,7]. To deduce an asymptotic

formula he considered the integral

/ C(on + it)C (20 + it)C (25 — i)C (24 — it)g(t) dt.

— 00

He rewrote this as sums over Kloosterman sums and used a spectral decomposition to get a sum
containing a residual contribution, a cuspidal contribution and a contribution of Eisenstein series.
The obtained sum has a continuation to a neighborhood of the point (z1, 29, 23, 24) = (%, %, %, %) To
obtain the asymptotic formula for the fourth moment, he estimated the cuspidal and the Eisenstein
contribution and computed asymptotics for the contribution of the residues. This improves Heath-

Brown'’s error term to

T

/\g@ +it)[* dt = Tpy(log T) + O(T'5 (log T)?).
0

These asymptotic formulas improve the standard estimate

T
e+ ]! at < T(og)" (10.)
0

see for example |T51, Theorem 7.16].
There are further results on moments of the Riemann (-function, for example those given by Motohashi,

Beineke and Bump. In his paper [M07] Motohashi considers integrals of the form

2
g(t) dt.

n<N

oo
/yg(; Fin)l*] 3 a3
1

Furthermore, Beineke and Bump considered the second moment of the Riemann (-function in parts of
the critical strip in their paper |[BB04].

Moreover there are some investigations on moments of Dirichlet L-functions and modular forms. For
example, in [Y06] Young considered the fourth moment of Dirichlet L-functions. Blomer, Milic¢evié,
Fouvry, Kowalski and Michel give asymptotic formulas for moments of twisted L-functions and modular
forms in the papers [BM15] and [BFKMM17].

The Rankin-Selberg L-functions were for example considered by Blomer |[B11]. He proved the upper
bound

Y IL(f g )P < ke
gEB(1)

for the second power moment of Hecke eigenforms of level one, by introducing an unfolding method.



In my masters thesis I generalized this result for f and g newforms of weight k£ and level N. The

estimate is given by

3 IL(f ®g.35)

Nk? 1+e
Lisym2f, 1) < VO

feBL(N)

simultaneously in N and k. Since the space of cusp forms has dimension (Nk)'+°() this is the best
possible result.

Kowalski, Michel and Vanderkam proved an upper bound for the Rankin-Selberg L-functions and all
their derivatives in [KMV00].

There are also some results for general number fields K.
The Hecke L-series of a number field K with class number one attached to a Grofencharacter A, is,
for Res > 1, defined by

(s = 3 Mf@)(Na) ™
a=(a)

for the notation see Section [3.11 The Dedekind (-function is the Hecke L-function attached to the

trivial character, i.e. A\, = 1.

An analogue to the classical estimate ((1.0.1)) for the Riemann (-function was proven by Duke in [D89],

namely he proved the estimate

T
> / |Cre (4 + it xA™)| ! dt < T™(log T) (1.0.2)
|m|<T

for a general number field K with degree n. The exponent A depends only on K. Here Y is a character
of the class group and the character ™ = A" - -- A" where {\;} is a basis for the torsion-free Hecke

characters.

For some number fields, Bruggeman and Motohashi proved a decomposition of the fourth moment of
the Dedekind ¢-function into third moments analogous to that of Motohashi in [M97|. They considered
the integral

/ (L 4+ it)[*g(t) di

where ¢ is an entire function, of rapid decay in each fixed horizontal strip.

In [BMO1] they compute the spectral decomposition of the smoothed fourth moment of Dedekind
(-functions for a real quadratic number field K of class number one. For the Gaussian number field
this is done in their paper [BM02|.

A more general result was proved by Nelson. In his paper |[N20| he spectrally decomposes a third
moment of L-series in an abstract way into a fourth moment for general number fields, reversing the
decomposition of [BMO01] and [BMO02].

Similarly, moments for the Dedekind (-function and Hecke L-functions are for example investigated by



Heap in [H12]| and [H19]. He considered the 2k-th moment of the Dedekind (-function and the twisted
second moment of the Dedekind ¢(-function and an L-function for quadratic fields. Watt, in [W13]|, gave
an estimate analogous to Motohashi’s result in [M07]. Topacogullari computed an asymptotic formula
for Hecke L-functions in [To19]. Thorner also considered the fourth moment of Hecke L-functions and
computed an upper bound in [Th19]. Diaconu, Garrett and Goldfeld considered moments of twisted
L-functions in their papers [DG09] and [DGG11].

Coleman in |[C92| used the result of Duke [D89] to examine the local distribution of prime ideals in

narrow ideal classes within any number field.

The Rankin-Selberg L-functions over number fields were considered by Liu and Masri and by Hamieh
and Tanabe. Liu and Masri proved in their paper [LM14] an asymptotic formula for the first moment
and an upper bound for the second power moment for Hilbert modular forms of parallel weight 2k and

level one attached to a totally real number field of degree n with class number one. They get the result

Y IL(f®g. DI < k.
g€ Bag,

They adapted the unfolding method of [B11] and use this estimate in combination with an asymptotic
formula for the first moment to show non-vanishing of the Rankin-Selberg L-function at the central
point.

Hamieh and Tanabe generalized this result in their paper [HT20|. They fix a Hilbert modular form f
of parallel weight k& and level n, sum over a basis of primitive forms of parallel weight k£ and level one

and prove the bounds

S IL(fog >k D IL(f@g. )P < k(logk)*.
gEBy gEBy)

Hamieh and Tanabe also use their results to prove non-vanishing of Rankin-Selberg L-functions.

1.1 Fourth Power Moment of Hecke L-functions

1.1.1 Results

In Chapter [3| we deduce a result similar to that of Motohashi [M97] for a totally real number field K of
degree d with class number one. We compute an explicit spectral decomposition for the fourth power
moment of Hecke L-functions over a totally real number field with class number one and deduce from
this an asymptotic formula.

In such a number field, the Gréfsencharacters are given by

A (n) = m|“’1... "dfl}"”dfl
L4 ng ng ’

where v is a (d — 1)-dimensional vector in R?~! that satisfies certain conditions. We write A?~! for

the lattice consisting of these vectors. Then a Hecke L-series is defined as

Ck(s,v) = Y Al(a)(Na)~™".
)

a=(a

Using the spectral decomposition of sums over Kloosterman sums given in [BMPO1|, we follow the



steps of |[BMO1| to get a spectral decomposition for the average value of Hecke L-functions, namely

(1.1.1) Theorem

Let K be a totally real number field of degree d and class number one, and let K be such that every
ideal has a totally positive generator. Let g(t) and w(va,...,vq—1) be entire, and of rapid decay in every
fized horizontal strip for every variable.

Then, we have

> w) [ o +inwl'ole) dt = Miclg.)

ZEAd_ 1

; 6
+ 3 avy (D) Hy (3)°Av(g,w) +29V/[Dx| Y / "CK Lyt y)!|2_y(t;g,w) o

v veni ) Cr (14 2it, 2v)

where Dy is the discriminant of K, and V' runs over the cuspidal subspaces of the Hilbert space of
all T-automorphic functions on G, see (3.1.28)), where G = PSLy(R)? and T' = PSLy(o) is the Hilbert
modular group. The functions Ay (g,w) and Z,(t; g,w) are integral transforms of g and w. The term
Mg (g,w) comes from the residual contributions, it is defined in Theorem . The functions ay, ny
and the Hecke series Hy are defined in Section[3.1.3

We use this decomposition to obtain an asymptotic formula for the fourth moment of Hecke L-series:

(1.1.2) Theorem
Let K be a totally real number field of degree d and class number one, and let K have fundamental
units je such that every ideal has a totally positive generator. Let G and € be two entire functions that

are of rapid decay and satisfy the estimates
() . -4
GV (z) <a,; (1+z]) 7,

o HJd—1
8y{1 . 8yjd 1

—A

Qy) <a; (T4l + -+ [ya-l)

with A > 2 for all 7, j1,...,j4-1 € Np.
In addition, we define g(t) = G(%) and w(v) = Q% ..., ") = Qv/T).

Then, we have

> w) / ICie (L + it )| g(t) dt = TPy, 4(log T) + O (T4 1+ 4 T2+,

EEAd71

where P3yq is a polynomial of degree 3 + d, and 0 is an admissible exponent for the Ramanujan

conjecture.

By |[BB11], one may take 6 = ;.

1.1.2 Method of Proof

We give a brief sketch of the proof of Theorem [I.1.1] and Theorem [I.1.2] The proof of Theorem
follows the paper [BMO1] of Bruggeman and Motohashi.



We consider the more general expression

Z w(v) / Cr (21 +it, v)Cx (22 + it, 1) (23 — it, —v)Cr (24 — it, —v)g(t) dt

veAd—1

which is absolutely convergent for Re z; > 1, and has a meromorphic continuation to C*. In particu-

lar, it is regular at the central point (21, 22, 23, 24) = (%, %, %, %) for which we want to compute the
asymptotic formula.

We have to rewrite this expression as sums over Kloosterman sums. To this end we use a relation,
namely , between the product of Hecke L-series and divisor functions, and several reformulations
as well as the Ramanujan expansion in Section[3.2.1] Then, the functional equation of a resulting factor
leads to an expression in terms of Kloosterman sums in Section [3:2:2] In Section [3.1.2] we state the

spectral decomposition that we apply in Section to our expression of Kloosterman sums. Finally

111 l)
202122/

we expand this decomposition to a region around the central point (21, 22, 23, 24) = (
To prove Theorem [1.1.2] we use the decomposition stated in Theorem and compute the terms
separately.

The summand Mg (g,w) is regular but consists of summands that individually have poles. In Lemma
3.3.3] we rewrite it into an expression that can be handled more easily. Then Stirling’s formula and
trivial operations give an asymptotic formula.

To estimate the two remaining summands, we estimate the integral transformations Ay (g,w) and
=, (t; g,w) of g and w. Further we use estimates on Hy and the sum over ay and ny stated in Section
for the cuspidal contribution. Estimates for the Hecke L-functions appearing in the Eisenstein
contribution are stated in Section Combining these bounds, we find that the cuspidal and the

Eisenstein contribution enter the error term.

1.2 Second Power Moment of Rankin-Selberg L-functions

1.2.1 Result

In Chapter [ we prove an upper bound for the second power moment of Rankin-Selberg L-functions
of Hecke eigenforms attached to a totally real number field K of degree d and class number one.

In K, we fix a prime ideal q and an integral ideal ¢ that is either coprime to q or equal to q. Next, we
pick some primitive Hilbert modular form g € Sk(q), and sum over a basis of primitve Hilbert modular

forms of level c¢.

(1.2.1) Theorem

Let K be a totally real number field of degree d and class number one. Let q be a prime ideal and ¢ be
a squarefree integral ideal either coprime or equal to q, let k = (k,... k) € Ne, with k large relatively
to Nc¢, more precisely k > (Nqc)¢. Further let g € S,E(q) be a newform with Cy(q) # 0 and B,ﬁc(c) be a
basis of primitive Hilbert modular forms of weight k and level c. Then fore >0 the following;stimate
holds:

T(k — 1) 3 IL(f®g,3)

: (£, 1)

€1.de
(am) DDy < (Ne)k*.

feBl(c)



The implicit constant depends on K and if (q,¢) = 1 on Nq. The inner product (f, f) is defined in
@13).

1.2.2 Method of Proof

We give a brief sketch of the proof.

To begin with, we apply an approximate functional equation, as in the classical approach. Extending
the sum to a basis of the whole space and writing out the square allows us to apply the Petersson trace
formula [L03, (8)] to the sum over f € Bi(c).

This yields a diagonal term and an off-diagonal term. The second one contains a sum over a product
of Kloosterman sums and a product of Bessel J-functions.

The diagonal term can be estimated trivially. By the decay properties of the Bessel J-function and the
the approximate functional equation, we can also estimate large parts of the off-diagonal term trivially.
The remaining sum is over ideals m;, my and ¢ € ¢ with small norm. We apply a Voronoi summation

formula to the sum over m; and estimate the resulting expression carefully to prove Theorem [T.2.1]

1.3 Outlook

Naturally, the question arises, whether one can expect similar results for more general fields.

This is the case, albeit with a lot more technical work.

For the computation of the asymptotic formula of the fourth power moment, the arguments used to
deduce the representation in terms of Kloosterman sums are based on the class number one assumption.
Thus for a real number field with arbitrary class number this step must be modified.

For number fields that are not totally real, the explicit spectral decomposition is not in the literature.
For the Gaussian number field this is done by Bruggeman and Motohashi in their paper [BM02]|. One
expects that an explicit spectral decomposition formula can be proven in general. But until now there
is no asymptotic formula. One expects that this could also be done as in the present work, but the

combinatorics are more complicated.

To estimate the second moment of Rankin-Selberg L-functions, the Voronoi summation formula is
based on the class number one assumption. Thus, for a real number field with arbitrary class number
a new version of this has to be proven, a Kloosterman sum for totally real number fields of arbitrary
class number is given in [HT16].

The restriction on the level should be possible to remove. For newforms of squarefree level and trivial
character, this should follow by the same steps. For more general level and character following the

steps of |L79| should give a functional equation.



Chapter 2

Definitions

Before we prove our results, we specify the number field we work in and define some notation.

Let K be a totally real number field over Q with degree d, of narrow class number one. Further let
Dy denote the discriminant of K. We denote by o the ring of integers of K and by 0> the group of
units. For an ideal n let n* = n\{0}, in particular o* = 0\{0}.

Let o be the embeddings K — R. We identify n € K with the corresponding vector (n1,...,nq) € R4

where n; = o;(n).

We denote by je, 7 =1,...,d—1 a system of fundamental units of K. For sake of simplicity we assume
that every ideal has a totally positive generator. We write a > 0 for an element a € K that is totally
positive, i.e. a;j >0 forall 7 =1,...,d.

We denote by P(e) the product je---4_1€, and by Rk the regulator | det(log(j€)i)i j=1,..d—1| of K.
There is a natural bijection between 0/0* and the set I = {a = (a) | a € 0} of integral ideals.

Let F be a fundamental domain of o with respect to the multiplication by units. We may choose F
such that every element a € F satisfies a = 0 and a; < a; in R for all j,7 =1,...,d. Here a < b means
a < band b < a.

In other words, every ideal a has a representation a = (a) where a; < (N a)% by choosing a € F,
see [HT16, Lemma 1.1].

As usual N(-) and Tr(:) denote the norm and the trace of K.

In the following computations several vectors of dimension d or (d — 1) appear. To have a short and
readable notation we introduce the following conventions. Let d’ = d or (d —1). Then let z,y € RY

z € C and o = +, -, —. We define the operations component wise:

d@: dl‘l ...d:L‘d/,
z| = (lzal, - - [za])
zoy=(T10Y1,...,Ta OYa),

zoz=(x102,...,24 02),



and generalize the norm and the trace

N(z) =21 za,
Tr(z) =21 + - + 2a.
For x € K, we define
elz] = exp (27riTr(1:)>. (2.0.1)

Let ¢,a € o* with (a,c) = 1, and denote by a* the inverse of a modulo ¢, in other words aa* = 1

(mod ¢). Then the Kloosterman sum Sk (m,n;c) over K is given by

Sk(m,n;c) = Z e[M] (2.0.2)
a mod ¢ ¢
(a,0)=1
The Kloosterman sum satisfies the bound
Sk (m, )| < N((m,n,c))2N(c)* (2.0.3)

where (m,n,c) is the greatest common divisor and ¢ > 0, see [HT20, (5.4)].

~

We denote by f(a) the integral over the vertical line Re s = a, and by f(y) the Fourier transformation
of f given by the integral

fly) = /'-'/f(:c)eiTr(zy) dz.
Rd



Chapter 3

Fourth Power Moment of Hecke

L-functions over Totally Real Number

Fields

3.1 Preliminaries

Before proving Theorems and we need some further definitions and results.

Let a € I be an integral ideal, with a = (a) where a € F. Then the Grofencharacters A\ are given by

Ay(a) = lar["" -+ lag|™,

with

d
> vi=0,
=1

d
> vjlog(|ke)|) € 2Z,
=1

(3.1.1)

(3.1.2)

for k =1,...,d — 1, c.f. [L90, 3.2]. The conditions (3.1.2)) make sure that A really is a character on

ideals.

Using the normalization condition (3.1.1) we identify the d-dimensional vector (vy,...

(d — 1)-dimensional vector v = (vy,...,v4—1) and write the character as
a | Ag—1 |Wd-1
ad ad

the condition (3.1.2) changes to

U

—1 d-1
(2yj + Z I/l> log(|x€;]) € 2nZ

1 =1
I#]

<.
Il

,Vq) with the

(3.1.3)

for kK = 1,...,d — 1. We denote by A?! the lattice consisting of the (d — 1)-dimensional vectors

satisfying (3.1.3).

10



™

In the special case d = 2 the lattice is given by Z where € is the fundamental unit.

loge
We denote by v = (71, ...,74-1) the unique basis element with
d-1 d—1
(217]' + Z 171) log(|x€ej]) =2m  for all k. (3.1.4)

1

<.
Il

=1
I#]
In the following we identify a Grofencharacter A, with its exponent v.

At several points we interpret v € A%"! as a d-dimensional vector with vy = —Tr(v).

We denote by (x(s,v) the Hecke L-function given by

Ck(s,v) = Y Ay(n)(Nn)~® (3.1.5)
n#£0

n=(n)
neo*

for v € A1 and Res > 1. For v = 0, the Hecke L-function reduces to the Dedekind (-function.
The Hecke L-function (x(s,r) has an analytic continuation to the whole plane, cf. [S97, page 228|
and |C90| page 1, equation (2)], with a simple pole at s = 1 if v = 0, it is an entire function if v # 0.

We collect some estimates for Hecke L-functions which will be needed for the computation of the
asymptotic formula.

On the central line the Hecke L-functions have the subconvexity bound
1
[Cre (3 + ity )| < (24 |t + Tr(u)) ™, (3.1.6)

see |S97, page 227|.

Furthermore the inverse of the Hecke L-function satisfies the following estimate on Res = 1:

(3.1.1) Lemma
Let v € A1 and s = o + it with [t| > 1.

Then the inverse of the Hecke L-function is bounded from above by

CK(1+”V)’ < (1 [t + Te ()
for all e > 0.
Proof.

We follow the arguments in the classical case of the Riemann (-function, cf. [T51, §3.6].

For ¢ > 1 we consider the expression

(i (0,0)%Ck (0 + it, v)[*|Ck (o + 2it, 20))]

_ > 3+ 4cos (mlog| Ay (p)| — mtlog(Np)) + cos (2(mlog | A, (p)| — mtlog(Np)))
_eXp{ > 2. m(Np)mo }

m=1p=(p)

The inequality 3 + 4 cos(¢) + cos(2¢) = 2(1 + cos(¢))? > 0 shows that every term in the above sum is
non-negative. Hence (x (0, 0)3|Cx (o + it, v)|*|Cx (o + 2it, 2v)| > 1.

11



Rearranging the inequality we get

1

(o tity)l = Cr(0,0)%|Ck (o + 2it, 2v) 1.

We bound the factors on the right hand side separately.
Duke |D89, equation (1.2.8)] gives a bound for the second term (x(s,v), namely

1-0—4g

ICie (5, )] < [Aga (1 + |s| + [AN] Y

for 0g <o <1—20g, 0> g > —%. Here X is a Grokencharacter modulo q and ¢ = Ngq, the constant A

depends on the discriminant and the degree n.

C

The first factor, (x(s,0), has a pole at s = 1, hence it grows like for o0 — 1, with a constant c.

o—1
Combining these estimates we obtain
: | < (11 + Te(l)) F (o - 1)~ (3.1.7)
-_— r(|v o— . 1.
Ck (o +it,v) B

On the other hand, we consider

g

Ck(1+it,v) — Cx (o +it,v) = —/C}((az +it,v) dx.
1

To estimate the derivative () (s,v) we again use [D89, equation (1.2.8)] and then apply Cauchy’s
formula for a circle with radius (1 + [¢| + Tr(|v|)) "¢ to obtain

2
i (s, )] < (1 [t + Te(|u)) ™
Inserting this into the above equation we get the bound

k(1 +it,v) — Cx(o +it,y) < (o —1)(1+ [t + Tr(]g\))%. (3.1.8)

Combining the estimates (3.1.7) and (3.1.8) leads to the lower bound

ICx (1 +it,v)| > A (1 + [t| + Tr(|v]) "5 (o — 1)3 — Ao(o —1)(1+ Tr(Jv]) + |t|)2€.

The two terms on the right have the same order of magnitude for o — 1 =< (1 + |t| + Tr(|v|)) =%, e. g.
choose 0 — 1 = (2‘4712)4(1 + || + Tr(|v]))~%. Hence, with some A3 > 0 small enough, we obtain

(e (1 + it v)| > As(1+ [t + Tx(|v)) ",

and the statement follows. O

Let £ € C,ve A%, e Nyand n= (n) with n = 0. We define

oe(nw) = 3 A(d)(NO)E, (3.1.9)
S

where the sums run over d > 0, c.f. [BMO1, (3.15)]. For v = 0 we write o¢(n,0) = o¢(n).
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For Res,t > 1 the Hecke L-functions and the divisor functions o¢(n, v) are related via the equality

S MmN (m)~0y(m. p — v) = Cie(5,2)Cc (8 ). (3.1.10)

meF

In our case of a totally real number field there are infinitely many generators for each ideal, namely
(x) = (H;l;% j€%iz) for every v € Z471. To overcome this difficulty we introduce a partition of unity,

see |BMO1}, Lemma 2.1, (2.3)ff].

Let p be such that its Fourier transform p(y) is even, real-valued, smooth, supported in (-3, 5) in

each variable y;, j = 1,...,d — 1, and with p(0) = 1. Then the function p is even, real-valued, smooth
and of rapid decay on R4!, and for z, AS R we have

> plz+n) =1, (3.1.11)

HEZd_l
> plz+nply+n) = T 1/ / e T u=2)8) ge. (3.1.12)
nezd-1 Rd—1

This follows by Poisson’s summation formula and by Parseval’s formula.

We define
)

for an element z € K\{0}, with = (21,...,24) as a vector in R? and 7 the basis element of A9~!

chosen in (3.1.4]). Further let

1
\IJ(‘T) 9d— 1p<10g| |V17 )

29-1(z), x>0,
U, (z) = (@) (3.1.13)
0, else.

Then for z € K\{0} the identities (3.1.11]) and (3.1.12)) imply

For W, with x > 0 we have the similar results

> T (ex) =1, (3.1.14)
e-0

D T (ex)® =20y (3.1.15)
e-0

Thus for any function f defined over the positive reals, we have

= 3" F(IN(@)) ¥+ (a).

aco*
(a)=a

13



3.1.1 Special Functions

For the spectral decomposition we shall need the Eisenstein series and Casimir elements of the Lie
group G = PSLy(R)%, see [BMO1} Section 3.

The Hilbert modular group I' = PSly(0) of K is a discrete subgroup of the Lie group G, via the
embedding g — (g1,...,94) of PSLa(0) into G where the conjugation is applied elementwise. The
group G has the Iwasawa decomposition G = NAK where

N = {n[z] | z € R?}, n[@:([l :Eijzl d

A={aly]|y € (0,00}, aly] = ([ v /75 Djzl,---vd’

T A (e il N
J J U

Every g € G equals a product n[z]a[y]k[f]. In the following we use this decomposition of G' without

mention. If a factor of the product contains expressions of K, this should be understood as resulting

from the embedding.

A matrix that will come up several times is w, defined as

w=k[3) = (1) (3.1.16)

30y

The Lie algebra g of G has the basis

wj = 30p,,
e;r = 62i9j (iyjaxj + yjﬁyj - %Z'a@j),
- _ .+ _
e; =ej, j=1,...,d
The basis elements satisfy the relations
+ +
(wj,e;] = Lie;, (3.1.17)
], ej] = —2iw;, j=1,....d, (3.1.18)
and [x;,,%;,] = 0 for j1 # jo and x;, € {ije;vej;}' Thus the center of the universal enveloping

algebra U of g is the polynomial ring in the d Casimir elements
Q= —e;re; + W? —iwj = —y?(@ij + 8;7_) + Y0z, 09, (3.1.19)

with j=1,...,d.
We say that a function f on G is left I-automorphic of weight 2¢g = 2(q1, . . ., qq) with ¢ € Z% if for any
g € G it holds true that

f(vg) = f(g), for y € T;  f(gkl[]) = e* ™D f(g).
The second one is equivalent to

ij:inf, jZl,...,d.
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Further
e;-tf are I'-automorphic of weight 2(q + 1) (3.1.20)

where 1; is the vector with zeros everywhere except a one on the j-th place. Such an f trivially satisfies
f(n[n]g) = f(g) for all n € 0. Thus, under a suitable smoothness condition, f has a Fourier expansion

in terms of the additive characters given by

¥n(g) = exp (QM'Tr(nz)), neo (3.1.21)

where x comes from the Iwasawa decomposition of g.

Eisenstein Series

Now we introduce the Eisenstein series. Let I'o o = I' M N be the stabilizer in I' of the point at infinity,
and let ¢ = (q1,...,qq) € Z% v € A% and g € G. Then for Res > % we define the Eisenstein series

EQ(g;Saz) = Z ¢q(7g;8+iV1,...,S+in_1,8—Z"I‘I'(E)), (3122)
YEL s \I'

d 1
where bqlg;s) = H yjj+5621Tr(qQ)
j=1

where y and @ come from the Iwasawa decomposition of g.

As a function of s the Eisenstein series has a meromorphic continuation to C and satisfies a functional

equation:

(3.1.2) Lemma
Let g = (q1,...,qq9) € Z% v € A% and vy = —Tr(v) = —Z;l;% vj. Then, as a function of s, the

FEisenstein series Eq(g;s,v) continues meromorphically to C, and satisfies the functional equation

d

Eq(g —s,—v)=n "]

j=1

T(3+s+iv; + |qj])
L(5 —s—ivj +|g)

CK(l + 28, —22)
Cr (1 —2s,2v)

Eq(g;s,v).

If E4(g; s,v) is holomorphic, it is a I'-automorphic function of weight 2q.
If Res > 0, a singularity occurs only for v =0 and ¢ =0 and Ey(g; s,0) has a simple pole at s = %

Furthermore E4(g; s,v) has the Fourier expansion

e AT (g1 5, p) = (Ny) 2+, (y)

d . |qj|_1 . 1
d T 1 I'(s+iv; s+iv, —k— 5 23’_22
2 (1)@ (Ny)2 A (y) # (1 e 2) Gk ( )
S PG Hs+iv) o \ststivit+k Cr (14 2s,—2v)
ds j : A Hd sgn(n;),s+iv 4r|n
+7T%(_1)T\r(q) 4 ) Z(n)l UZs(n 21/ wn QJ g ] +1 J( | ]‘y])

Cr (1428, —2v) = |Np|**3 2+ s+ iv; + gjsgn(ny))

(3.1.23)
where g = nlz]alylklf], and Wy, is the Whittaker function, see Section . The sum over n € o*
converges absolutely and uniformly for all parameters involved. For Ny — oo it is of exponential

decay.
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Proof.
We follow the proof of [BM01, Lemma 3.1].
The functional equation follows from the Fourier expansion. Thus it is enough to prove the Fourier

expansion. The Bruhat decomposition implies

By(gisiv)=dg(gis)+ > >, > oq(alZ]wn[2 + nlg;s) (3.1.24)

¢=(c) amod(c) nEO
C>'0 a=(a),(a,c)=1

where the vector s = (s+ivy,...,s+ivg_1,5 —iTr(r)), and the matrix w = k[F] is defined in (3.1.16).

Now, applying Poisson’s formula to the sum over n yields

Z¢q (¢ +nlgs) = e[4] /d)n n)¢q(al5]wng; s) dn.

neo neo*
Then, using the equality a[-5]wn[z]a[y] = wn[c?z]alc?y] and the coordinates of the Iwasawa decompo-

sition of g, the right hand side changes to

eQiﬂ(qg)

TwaE 2 el lvnle) Az du(alcyl:s) (3.1.25)

neo*

where A,, is the Jacquet operator given by

/ ¥y, ' (n) f(wng) dn

An easy computation shows

—z VY —

VY lz+iy] \Hiyl

Thus, using the definition of ¢, and inserting these coordinates, the Jacquet operator in (3.1.25)) can

be written as

: ; 1is i . s\ —24;
Andq(alyl; s) = H/exp(—Qm'xjnjmij-"Q) g s+ (M) 2% i,
R

|z + iyl

B 7_5 exp 27rm]yj§j) i+& 0\,
= (NP7 H/ Lt en)ite wj<\i+§j\) dej-

The last integral is known, see [BMO1, (3.22)], and for Res > 0 and u € R satisfies the equality

y Liu : lulys—3 Wasen(w,s(ul)
/ = ( e >2qd€ =m(-1)4 (%) [ (s+3+gsgn(u))’ ifu 0,
(62 + 1)S+% i + €] 91-2s I'(2s) Fu=o0.

T(s+1+q)l(s+3—q)’
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Inserting this into (3.1.24)), for the second term of the right hand side we obtain

s 3O 5 g,
C

a mod ¢
o5 a=(a)(a,c)=1
d .
2d(1 25)(N )—fsA y H F(23+27’V]'). -
I D(s +ivj + 5 +¢;)0(s + vy + 5 — q5)

d
+ ﬂ_ds—% Z )‘Z( H QJbgH("J) 5+WJ (4m|ngly;) }

neoe (Nn)™5F S T(s+iv+ 5 5 + gjsgn(n;))

1\3\»—‘

Finally we need the Ramanujan expansion with a twist of Grofencharacters, namely

> Aaw () S em] = 1 Joxls=1L2), ifn=0, (3.1.26)
! (Nc)s amod ¢ ¢ Cx(s,2v) o1-s(n,2v), if n#£0, o
a=(a),(a,c)=1

to reformulate the sum over ¢ and a. Then an application of the duplication formula for the I'-functions

if n =0, leads to the Fourier expansion.

To see the convergence, we shift the contours of the Jacquet operator appropriately, and see that

Ac%¢q(a[c2g]; s) Lk (Nc, /Ng)lszeS exp ( — aTr(]ng])),

for Res > 0, and a > 0. Then, for Res > 0 the sum over n is bounded by

)?),

N\»—t

< ((Ne) QNy N Ko(a
neF

where K is the K-Bessel function of order 0, see Section [5.2]
Hence, (3.1.24)) converges absolutely for Re s > %, and the last assertion of the lemma follows. O

3.1.2 Eigenvalues and Hecke Operators

In this section we follow the steps of |[BMO1, Section 4| to obtain a geometric sum formula for the

Hilbert modular group T'.

Recall that G = PSLy(R)?. Let L2(I'\G) be the Hilbert space consisting of all left I'-automorphic
functions on G which are square integrable against the measure dg. Let °L?(T'\G) be its cuspidal

subspace. Then we have the decomposition

L*M\G)=Ca’L*ae¢, (3.1.27)
‘MG =pv=p PV, (3.1.28)
qE€Z4
= P Peo, (3.1.29)
veANd—1 qe7Zd

where V' runs over an orthogonal system of right irreducible cuspidal subspaces and decomposes into
@ V,. In every subspace V; the matrices k[¢], defined in Section [3.1.1} act as the multiplication by
e2Tr(a9) and dimV, < 1.
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The subspace €, 4 is generated by the Eisenstein series E,(g; s, v), defined in (3.1.22)), via

€= {_7 u(t)Ey(g; L + it,v) dt ‘_7 u(t)]? dt < oo}. (3.1.30)

The Casimir operator §2; defined in (3.1.19)) acts on V' as multiplication by a constant, namely
Qlv = (3 +r5) -1 (3.1.31)
with x; € C. Further we note that
Wj|vq =1gq; - 1, Wj|g£’q =ig;-1, j=1,...,d.

Now we restrict our attention to the cuspidal subspaces V' and deduce the possible values of &;.
We observe that the basis elements ef of g act on V and (3.1.20) implies

e : Vy— Vor, (3.1.32)

where 1; is as in (3.1.20).

We choose a generator ¢ of V. Then ¢ is a cusp form over I'\G, i.e. it is an element of °L*(I'\G),

and it is an eigenfunction of the Casimir operator €); and the basis element w;. By the definition of
+

the Casimir operator e e;

=0+ W? +iw;, we have
ef e =—((£q +3)* + ).
Then integration by parts yields
+ 112 + 2 2
lefell? = —(efe; o, ) = ((£q; + 5)° + £7) el
In particular the term (£q; + %)2 + /1]2 is non-negative and we can choose x; to be

either k; >0 or 0<ir; <|lgj| — 3| (3.1.33)

Thus, the mappings (3.1.32)) are bijective in many cases. Exceptions can occur only if ix; = [; — %

with some [; € N. More precisely
Vy # {0} and e;-th ={0} < qg=Fljorlj=1,¢=0.

Thus the only possible values that ix; can attain if ix; > % are [; — % with /; € N.
We summarize the possible cases:

(I) ¢ € Z, kj > 0 (unitary principal series)

(II) ¢; € Z, 0 < ikj < 1 (complementary series)

(III) g; > 1;, ir; = l; — & (holomorphic discrete series)

(IV) ¢ < —lj, irj =1; — 3 (anti-holomorphic discrete series)

(V) g; =0, ir; = & (trivial representation).

18



The last case (V) cannot occur, as the elements of V' are cusp forms.

Thus, we have the following lemma.

(3.1.3) Lemma
Let V.= @ V, be an irreducible cuspidal subspace of °L*(T\G), and let k; be given by ([3.1.31]) and

qezZ4
(3.1.33). Then for j =1,...,d either
1. k; >0 0r0§i/§j<%,

or 2. ikj =l , with njq; > 1 and l; € N.

Here n; = £1, and q; € Z.
We may choose a cusp form oy € V' of weight 2qy with qv = (q1, .. .,qq) where

0, if 1. holds,
n;l;, if 2. holds,

q; =

such that V- =U - @y, with the universal enveloping algebra U of g.

The exceptional eigenvalues, i.e. the numbers %—l—/ﬁ}? with 0 <ik; < %, satisfy non-trivial lower bounds.

The best known result is

il/v'j S 6747
see [BB11].

As a next step we consider the Fourier expansion of a cusp form and obtain a relation between the

Fourier coefficients and the Hecke eigenvalues.

Let ¢y € V be a cusp form of weight 2¢qy. Its Fourier expansion is given by

d
Hqv) 20Tk ov(n) Wosen(ny)in, (47105 ;)
pv(g) = (—1)Trav) 2 Trlave) ¥n(g) ;

n%:a* VINn| H L'(3 +ikj + g;jsgn(n;))

where W, ; is the Whittaker function given in Section . The additive character ¢,(g) is defined in
; the gy (n) are certain complex numbers. This is a specialisation ¢ = ¢y where ¢ is a solution
of the differential equation Q¢ = (1 + /@?)gp with ¢ € V.

The I'-factors do not produce zeros with the possible combinations of ¢y and xy. From now on
we assume {@y | V} to be an orthonormal system in L?(T'\G). The gy (n) are called the Fourier
coefficients of V. We note that the vector (gy(n))neo+ is well-defined and stable under multiplication
of n with & = 121 ... 3 _1€?4-1_i. e. gy(en) = oy (n) — a consequence of ¢y (ale]g) = vy (g).

Now we consider the Hecke operators on the space L?(I'\G) given by

Tuf(g) Z S° f(n[¥lallg)  for n = (n) with n = 0. (3.1.34)
on b mod d
9=(d),d>=0

The Hecke operators preserve the orthogonal decomposition (3.1.28) and it can be shown that the
equality T, Ty = Ty holds for any m,n, and each Ty is symmetric over L?(I'\G). Therefore, we may
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assume that V is such that
Taly =ty ((n)) -1, ty((n)) € R. (3.1.35)
Computing the Fourier coefficients of Ty we have for n = (n) and any m € o*

ov(imity(m)= > ov (%) (3.1.36)
(d)|(m,n)

Hence, for m = ¢ € 0™ a unit and n > 0 we have

ov(en) = ov(e)tv((n)).

In other words, for any n € o*

QV(l)v n - 07

ov(n) =tv((n) - ov(en), enn =0, (3.1.37)

Qv(—l), —n =0

\

where €, is a product of the fundamental units je, j = 1,...,d — 1, such that e,n > 0, this exists by
our assumptions.

For the special case d = 2 the fundamental unit € > 1 and has Ne = —1. Thus we can give &, explicitly,
if n1 < 0 and ny > 0 the product ny€’ is totally positive where € is the conjugate of €, and if n; > 0

and ny < 0 we choose ¢, = e.

Thus, there is at least one unit € such that gy (e) # 0, otherwise we would have ¢y = 0.

For m,n € o*, we have by (3.1.36)

)t () = St (). (3.1.38)
(d)|(m,n)

As in the modular case, Hecke operators T, are to be supplemented with involutions with which one
can distinguish the parities for the cases in (3.1.37)). To this end we define for any unit &,

. ({sgn@l) J [sgn@d) J) € PGLy(R)!

where ¢; is the j-th embedding of . An easy computation shows that

9eGre =G, (allellze)T(allel]ge)

T. (3.1.39)

Then, for any I'-automorphic function f € G, we define

i f(g) = f(allellsegse) = f(nl(ejzy) ]al(e;ly;) ]k (sen(e;)0;);])-
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By (3.1.39) we see that the left I'-automorphy is preserved by i; and that

ig = 17 151162 = islsza jSs = iera Tnis = isTna

for e,e1,e9 € 0%.

But the weight of f is in general not preserved: if f is of weight 2¢, the function i.f has weight
2(sgn(e1)qi, - - -,sgn(eq)qq). To get an involution we must either restrict the weights, or choose &
appropriately.

We can write

ov(eve) = ov(ev)Av(e),

where Ay (¢) € {£1}U{0} lives on the units modulo P(e)? = H;l;% ;€2. The unit ey depends on sgn(q).

For example, if ¢ = 0 we have ey = 1 and Ay is a real character of the unit group modulo P(e)?.

In the case d = 2 Bruggeman and Motohashi give explicit values for ey, namely ey = 1 if gy = (0,0),

1+sgn(ge) ,1—sgn(qy)
ré 2 ifgy = (q1, )

and ey = (—1)7"sgn(q;) if g = (g;,0) or (0,¢;) and ey = ¢

Thus, we may put for n € 0* and any unit € such that en > 0

ov(n) = ovnv(n)tv((n)),  nv(n)=v(5) (3.1.40)

where

oy = Qv(z’fv). (3.1.41)

This definition of A\, via i. is not limited to cuspidal subspaces. It can be extended to Eisenstein series

as by the Fourier expansion given in (3.1.23)) it holds that

W4—1

&1
Eo(g; s, v).

1EEQ(ga 872) == |

i ‘Edfl
€d

€d
This, and the definition of € given in (3.1.29) and (3.1.30|) lead to the extension of A\, and n,. given by

W4—1

£l — 41,

Aey(2) = e, (€) = |

(121 ‘ Ed—1

&d
Geometric Sum Formula

Now we are ready to state the spectral results that are essential for our purpose.

(3.1.4) Lemma

Let ky = (K1, ...,Kq) with k; as in (3.1.31)) and Lemma|3.1.5; qv = (q1, ..., qq) as defined in Lemma
' ty((n)) as defined by (3.1.35)); nv(n) as defined by (3.1.40) and oy as in (3.1.41). Let

d
av = (2)VIDxllev I T]
I

L(3 + lgj| + %)
it (

U(5 + lgj| +iry)

Further, let w be a function defined for all ky and satisfying w(ky) < ((1+ |k1]) - (1 + \ﬁd\))_Q_“

with an arbitrary small constant p > 0.
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Then we have for any n € o*,

Zavwv Yty () ?w(sy) < [Nnj2 s

where V' runs over all cuspidal subspaces, and the implicit constant depends only on L.

This implies, in particular, that

ty((n)) < (Nn)its
with the same dependency on p.

Proof.
This follows from [BMPO1} equation 15, page 112]. O

(3.1.5) Lemma
Let f be smooth over (0,00)¢, and f and all its derivatives are of rapid decay if at least one variable
tends to O+ or +oo. Let

d J (e5) J(ej) ( ) d
2ir; 2ir; U
B f(r1, - u) 2 3.1.42
G / / Il Smh ) (3.1.42)
d
where e = (eq,...,eq) with ej = £1, (r1,...,rq) € C¢, and Jf = J,, J; =1, are the Bessel functions
defined in Section [5.3.

Then we have for any m,n € o*

EREAC)

cCo* =1

— Zavnv (m))av (n)ty (7)) B f (1) (3.1.43)

o9it(m, 2v) o2t (n, 2v)
]N (mn)|[*|Cr (1 + 2it, 2v)|?

+ C. Z/\ mn)

veAd-1

B[mn]f(t + E) dt

where t +v = (t +vi,...,t +v4_1,t — Tr(v)), [mn] = (sgn(miny),...,sgn(mgng)), Ce = 24\/|Dx]
and the other symbols are as in the previous lemma. The functions (i (s,v) and o¢(n,v) are defined

in (3.1.5) and (3.1.9), and Sk is defined in (2.0.2)).

Proof.
For a proof see [BMPO1| Theorem 2.7.1 combined with Proposition 2.5.6 and 2.6.3 and [B81} Propo-
sition 14.2.8- 14.2.9]. O

We state an upper bound for B f for later use. The right hand side of (3.1.43) converges rapidly, as

follows from the estimates of Lemma [B.1.4] and the estimate
Cr
Bef() € (Lt ra| - + ral)~ 7 (3.1.44)

for | Imr;| < in, j=1,...,d, and C a large constant we specify in a moment.

For f a smooth function with compact support, we can conclude this from [BMPO1}, Proposition 2.5.6].
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But for a later use, we will deduce it by hand. Note that Bef(r) is regular for |Imr;| < Cf for all j
and Cy a large constant, see [BMPO1, Proposition 2.5.6, Definition 2.5.1]. We use the Mellin inversion
theorem for suitable a;, j = 1,...,d and get

-2 -2
- (%) s (3.1.45)

a1)

/ /f U1 2s1—1 --<%>2Sd_1dg

(0,00)d

where

is the Mellin transform of f; it is holomorphic if | Re sj| < Cf for all j, and is, in this region, of rapid
decay.

Inserting the Mellin inversion in (3.1.42)), we get
d2 d
Bef(r / /f HJ(GJ) s5,75)ds (3.1.46)
-(aq)

where e; = + and

< 1(e) (e)
T ) = I () uy-2em1
(e) _ 2ir 2ir w
T s,r) / sinh(7r) (2) du.
0

If [Imr;| < § for all j = 1,...,d and a; satisfies —1 < a; < —|Imr;|, the right hand side of (3.1.46)
converges absolutely, and the equality holds. Then for —% < Res < —|Imr;| the function J ©(s,7)

equals
JE(s,r) = %{(1 + 1) cos(ws) + (1 F 1) cosh(rr) } T (ir — s)T'(—ir — s). (3.1.47)

In the case e = + and ir =1 — %, [ € N, this changes to

1 D= % —5)

Jt(s,i(3 = 1)) = 2i(-1) S (3.1.48)

Inserting this in (3.1.46)) and shifting the contours to the left, we see that (3.1.46]) holds for | Imr;| < Cj.
Now shifting the contour to the right yields the estimate (3.1.44)). Note that the poles we pass are of
rapid decay in r as fis of rapid decay.

Hecke Series

We now introduce the Hecke series Hy associated to the cuspidal irreducible subspaces V.

Let ty(n) be as defined in (3.1.35)), and put
= ty(n)(Nn)~*. (3.1.49)
n
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The Hecke series converges absolutely at least for Re s > 2, in this region it is bounded uniformly in V'
as follows from Lemma[3.1.4] Using the Rankin (-function attached to V one can see that it converges
for Res > 1.

The multiplication formula implies an Euler product for Hy and in the region of absolute

convergence we have the relation

Os1—s2 (n)tV (n)

Hy (s1)Hy (s2) = (i (s1+ s2) Z (Nn)st

n

Further, we have a functional equation:

(3.1.6) Lemma
The Hecke series associated with a cuspidal irreducible subspace V' is an entire function satisfying the

functional equation

7)d(2s—1) d
M H [()\V(gj) cosh(mkj) — COS(ﬂ'S))F(l —s+ik)I'(1 — s —ikj)|,

Jj=1

Hv(S)ZHv(l—:?) ﬂ-d

where ky = (K1,...,kKq) as above, and €; is such that ne; = 0 if nj <0 and n; > 0 for i # j.

In particular, we have the estimate
Hy(s) < (1 + |s[ + |w1| + -+ + [ral)°

where ¢ = C(Re s) depends only on Re s, and the implicit constant depends on K and Re s.
Specifically, if Res = % the convezity bound gives ¢ = % +e.

Proof.

The functional equation is given in |JL70, Theorem 11.1], in the form L(s,7) = (s, m)L(1 — s,7). To
get the exact term that is named by e(s,7) in |[JL70|, we compute it directly.

We consider the case gy = 0. The other cases are simpler, c.f. [BMO1, Proof of Lemma 4.4]. Let
Aj = 2(1 = Av(ey)) for all j = 1,...,d, with ¢; such that if n; < 0 and n; > 0 for all i # j, then
(nej) = 0. Let A = (A1,..., Aq). Further define the function ¢}, = (3 (e} —ej_)))‘1 o (3(ef —ej_)))‘dgov
and

Ay (s) = / / o} (aly]) (Ny)* 2 dy
1<2 < et
Ya
j=1,...,d

for Re s sufficiently large.
Using the Fourier expansion and the relation (3.1.40) with the special case ¢ = 0, we have

d
1
o1 (aly)) = 29(=2m)* > (Ny)? Y oir(n) []
where K, is the Bessel K-function of order v, see Section [5.2] and

ov(n) = ov(n)n® = ov|na|™ - [na ity ((n)).
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In fact, Ay (€) is a non-trivial character of the unit group, provided A\; + - -+ + Ay # 0.
Inserting this in the definition of Ay (s) we have

d
Ay (s) = —27) A1_‘[ T )

d
Aj+s—1
X Z tv((n))|n1|/\1 e |nd|>\d / e / H ij (QW\nj!yj)ij+s dy
(0,00)4 Jj=1

n mod P(e)?

where P(€) = 1e---4_1e. This integral converges absolutely at least for Re s > %.

Evaluating the integral, we find that

4 s+iK L\ + s —ik;
Av(s) = ov (1t T L2 E(Jifj?ﬁ D b (s). (3.1.50)
2 J

Jj=1

On the other hand, with the same argument as in the proof of Lemma we have

Then dividing the integral into two pieces, namely Ny < 1 and Ny > 1, we see that Ay (s) is an entire
function, and satisfies the functional equation Ay (s) = (—1)2Ay (1 — s).
Using (3.1.50) we get the functional equation as claimed.

The second statement follows from the functional equation and the estimate on ¢ty ((n)) given in Lemma

[B:1-4] by using the Phragmén-Lindel6f convexity principle. O
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3.2 Spectral Decomposition of The Fourth Moment of (i

The goal of this section is to find a spectral decomposition for

Zy(g,w K) = / Cre(h+ it )l () dt

VEAd 1

where g and w are assumed to be entire, real valued on R, and of rapid decay in any fixed horizontal
strip in every variable ¢, ;. The number field K is as in Chapter
Bruggeman and Motohashi have done this in their paper [BMO01] for the special case d = 2, this chapter

follows closely their arguments.

3.2.1 Initial Reduction

To begin we set for Rez; > 1, 5 =1,...,4:

J(21, 22, 23, 24; g, W)

= Z w(y)/CK(Zl+it’y)gK(22+it’V)CK(Z3_it7_V)CK(Z4—it,—y)g(t) it (3.2.1)

veAd—1

The function J(z1, 29, 23, z4) has a meromorphic continuation to C*. In particular, using the estimate
we see that it is regular at pL = (%, %, %, %)

To obtain the continuation, let Re z; > 1 for all j. Moving the path of integration upwards, we collect
two residues coming from the poles at t = (21 — 1)i and ¢ = (22 — 1)i if v = 0 and we see that J is
a meromorphic function in a region |z;| < B for some B depending on g and w. Now let Rez; < 1
for all j and move the path back to the original, collecting again two residues at t = (1 — 23)i and
t = (1—2)iif v =0. Then we get for Rez; <1, j=1,...,4,

I(z1,22, 23,2059, w) = Y w(v) / C (21 +it,v)Ck (22 +it, v)Cx (23 — it, —v)Ck (24 — it, —v)g(t) di

KGAd71

+ 27w(0)Cx (22 — 21 + 1,0)Cx (21 + 23 — 1,0)Cr (21 + 24 — 1,0)g((21 — 1)i)

+ 271w (0)Cx (21 — 22 + 1,0)Cx (22 + 23 — 1,0)Cr (22 + 24 — 1,0)g((z2 — 1)7)

+27w(0)Cx (24 — 23 + 1,0)Cx (21 + 23 — 1,0)Cx (22 + 23 — 1,0)g((1 — 23)1)

+ 27rw( )CK(Zg —z1+1 O)CK(ZI +24—1 O)CK(ZQ +24—1 O)Q(( Z4)’L).
Now we insert the point p 1 and get

Z5(9,w; ) = I(p139,w) + Cr (9, w),
where the constant Cx (g, w) comes from the terms g(+(z; — 1)i) by considering the Laurent series of
Cr(E£((z5 — zj) + 1)i). We have
Ci(g,w) = w(0)(aog(5%) + bog(—5i) + a19'(34) + big' (—31)) (32.2)

with constants ag, bg, a1, b1 depending on K that can be made explicit.
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Now we consider J(z1, 22, 23, 24; g,w) in the domain Rez; > 1 for all j, so that the integral converges
absolutely.
In this region of absolute convergence, we use the definitions in and insert the partition of unity

U defined in (3.1.13). Further we use the identity (3.1.10) to obtain

e, 2. 23, 221 0,0) = / S P Oaall) g ww on (Lot

NCL 21—|—zt Nb)zg, —it
l/EAd 1 0 abeo*

- ¥ et ly o (7)

a,beo*
where the function W is given by

W(w) = 5(10a(N0) sy 3 @((hy +1os (34));) (323)

heAdfl

for 2 = 0. If 2 3 0 the function W (z) vanishes. The lattice A%~! is the dual lattice of A4,
The sum ) ;.- splits into two parts, namely > _, and Za;ﬁb' We denote them by Jy and Jy
respectively, and have J(z1, 22, 23, 245 g, w) = {Jo + I+ } (21, 22, 23, 24; g, W).

Due to (3.1.15)) the sum Jg equals

Cr (21 + 23)Cr (21 + 24)Cr (22 + 23)Crc (22 + 24) .

Jo(21, 22, 23, 225 g, w) = 2 ey W (1
( ) (L Cr(z1+ 22+ 23 + 24)

(3.2.4)

Now we consider the term J;. Let a =n and b =n+m. As a,b > 0 we have n,n +m > 0, and I

becomes

P o (n)o'z z(n+m)
I (21, 29,23, 24; g, w) = Nm) 7177 2 8- W(l+2)¥ U, (n+m).
+(1 2, 23,24, 9 ) T;*( ) 7;0* ’N( )|21|N(1+ )’23 ( ) +() +( )
n+m=£0

We rewrite m € 0* as em, with € € 0 and m € F, and also split off a factor € from n. Thus the sum
over the units can be separated from the innermost sum, and formula (3.1.12]) gives

D Wi(en)Ui(e(n+m)) = co(l+ %)
ecoX
where
1 d—1
cu(z) = gy / . /5(5)2@@ (iZ@- log \%\aj) de, (3.2.5)
Rd—1 J=1
thus 2(1%10\1, = cy(1).
For sufficiently nice h that are specified later, let
m(a, B h) == Z oa(n)og(n+m)h(Z), m = 0. (3.2.6)
n:fno;o
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Then in the region of absolute convergence, i.e. Rez; > 1 for all j, the function J; can be written as

Iy (21, 22, 23, 24 g, W) = Z (Nm)™ 7% B, (21 — 2, 23 — 24; Wi (- 21, 23)) (3.2.7)
meF

where the function W, is given by

W(l+D)ea(1+ 1)

Wi (y;7,6) = INPINI+y))°

(3.2.8)

Its support is contained in the region 1 + % >~ 0, as W (z) is supported on z > 0.

Our aim is to transform B, (a, B; h), in the region of absolute convergence, into a sum over Kloosterman
sums over K. Afterwards we decompose it spectrally with the geometric sum formula given in Section
provided that h satisfies the condition . Then we continue it to a neighborhood of p 1.
Finally we check that W satisfies this condition and use the decomposition of B,,(«, 5; h) to spectrally
decompose Z5(g,w; K).

To begin we use the Ramanujan expansion (3.1.26)) with the character v = 0 to separate the parameters
n and m in og(n 4+ m) in By, («, B; h). Recall the definition of e[z] for z € K, given in (2.0.1). Thus,
for Re 8 < —1,

B . — _ B-1 [@} a. 2.
m(a, Bih) = Ce(1=8) 3 W(OINel”™ 3 e|== | Du(a, &) (3:2.9)
ceo* amod ¢
(a,c)=1
where
an
D a. = - n.
e, &k = Y aa(n)e[ - }h(m,c) (3.2.10)
neo*/Ue
with
h(zic) = ) h(ex) (3.2.11)
EGUC
and U, = {e | totally positive unit congruent to 1 mod ¢ }. Let 1€.,...,4-1€. be a system of generators

of U, with je. > 1, and je. = 0. Then every element ¢ € U, is of the form

d—1
y
=]
i=1

where v; € Z.
We assume h to be continuous and such that (3.2.11]) converges absolutely. For « € K let the function
h(z;c) be regular and for Nz large, be bounded by

h(z;c) < |Ng|1mmax{0Reat—n (3.2.12)

uniformly in ¢, for some g > 0. Further let h(z;c) be of rapid decay if at least one variable tends to 0
or —1. Under these conditions the expansion (3.2.9) of B,, holds for Re § < —1.
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After separation of the parameters n and m in og(n+m), we need the analogous separation for h(.-;c),
too. To this end we extend h to (R\{0})? via  — (z1,...,24), following [BMO01], such that

h(z;c) = h(x1,...,zq;¢) = Z h((legl . -d_lezdflaj)q_ )

7j=1
vezd—1

_ _1y—1

Note that (1 Cd— 1EC 1)d = H?:% (1651 .. 'd_lelcld l)j .

As the sum in |D converges absolutely, the sum over v converges absolutely, too. Thus the
function h((1 g€ 1x)j:1) is of rapid decay at infinity and we can apply Poisson’s summation
formula. If we substitute (yef!---4_ 16?’1)]. +— & for j = 1,...,d — 1, then the variables ¢; and &
satisfy some linear equation and one can express t; = R EZ 1 ¢j,ilog&;, where the constant ¢;; is a
sum of the minors (log(kec) )ji, with [ # i and k # j. Then the exponential function e changes to
531?1 S cigvi

J

We have

, and we view the new exponents  as elements of a (d — 1)-dimensional lattice A9~

dg

h(z;c) = vol(AZ™Y) Z /--'/h(§1$1,...,§d11’d1751 et za)€; s Ne

ZEAET (0,000

Let z; = ej|x;| with e; = £1. Then changing variables &; — £J|N§|%/‘1L'j| gives

1 1 —w d
( ’.’IT| )_VOI Ad 1 Z )\ / / e]f]‘N E j l’edH§ 1|N E ] 7 Ni’

pend!

Now the integral is a function of [Nz ]5

Using the Mellin inversion theorem in each orthant separately, we have

plelaf:e) = 0D 3y (@) [ s = itr, 5= a5+ @) ()| d

Ly 27TZ 1yeeey d—1,S ? v)e xz S
peAd™! (v)

where e = (eg,...,eq) and h is the Mellin transform of h, given by

d
ﬁ(g; e) = /~--/h(eu) Hujrl du. (3.2.13)
(0,001 =1

The requirements to do so are satisfied for 1 + max{0, Rea} < v by the bound of h given in (3.2.12).
For 1 + max{0,Rea} < v a rearrangement yields
Dy (v, %5 1) (3.2.14)
)

A_p(m) / |N(m)|*hy(s —iin, ..., s —ibg_1,s +iTe(D))Dy(s, a; ; %) ds
1
(v)

where the sum over ¢ runs over the vectors (ly,...,lg) with [; =0, 1.
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The functions 714 and Dy are defined by

~ 1 ~
h(s) = 55 > eh(sie), (3.2.15)
e=(e1,...,eq)
C oa(n an
Dy(s, ;05 ¢) = Z Ngﬂz)\,;(n)sgng[n]e[c] (3.2.16)
neo* /U,
with sgn’[z] = sgn’[z1,...,zq4] = H?:l(%)lj'

We assume that h is continuous and of rapid decay if at least one variable tends to infinity, zero or —1
and that

his regular and

h(s;e) < (1+ |s1| 4+ -4 |sq))¢° in |Resj| < Cp, forall j=1,...,d (3.2.17)

for a sufficiently large Cp > 0. Then condition (3.2.12]) holds for | Rea| < %CO. In particular (3.2.14))

holds for an appropriate contour (v).

3.2.2 Kloosterman Sums

In this section we deduce a functional equation for the function Dy(s,a;v; %) defined in (3.2.16) and

use it to represent B,, as a sum over Kloosterman sums over K.

(3.2.1) Lemma
The function Dy has a meromorphic continuation to C. If a # 0 it has at worst simple poles at

s = 1,1+ a with residues

2d(53,9<5,g,9
vol(Ad™1)

Qdéz,Qdf,Q

a_ 1
=B Dk |2 74| Ne| 2k (1 + a).
D Dl N (1)

D |55 Ne[* e (1 — @),

In particular Dy is entire unless v = 0. Furthermore we have

1 /(27)%\ 2s—a—1 .
Dy(s,a;v;%) = 7Td<(|]\7fr2’ ) Aoy ()Te(s — iv;a)De(1 — s, —a; —v; %)
where aa®* =1 (mod ¢), s —iv = (s —ivy,..., s —ivg_1,s + iTr(v)), and

d
Ty(s;a) = H [cos(Za) — (=1)Y cos (m(s; — 1)) |T(1 — s;,)T(1 + a — s;).
j=1
Proof.
Fix ¢ and define

d
fales ) =7 D [ET (31 + @) "Gt + @) [ (ef = &) Bu(nl2les s 0).

Jj=1

Recall that Ey(g; s,v) is defined in (3.1.22)

Choose g = a[y]~!. An easy computation shows

n[¢laly ™" € Tn[=Jaly/c*]w
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where w is defined in (3.1.16[). Thus, as the Eisenstein series Fy is a I'-automorphic form as are ejiE,

we have

falaly ™ 2) = (-1)™O fo(aly/c*); 9). (3.2.18)

On the other hand, we use the Fourier expansion of the Eisenstein series, stated in Lemma [3.1.2]

This gives the expression

falalil £) = beo (w41 DKL (1 + ) “Gae(1 4 ) (N 2

8 Dxl TEHT (0 - ) i1 - a)(Nyﬁ“*a))

Dk rolr) (3.2.19)
+ (=D (am) ey (Ny)2 Y —=—nle[ %] H = (27|n ly;)
neo* (Nn) 2 7j=1
= {f + 1P} alyl: ¢)
where K, is the K-Bessel function of order .
Then we consider the integral over ( ) given by
I = [ [ Dl )Ny A ) dy (3:2.20)

g
1= <P(ee)?

where P(e.) := H;{;il(jec) - We shall see that up to some factors this integral is equal to the function
Dy. Thus, computing a functional equation for it gives the functional equation for D,. The details are
presented in the following steps.

We insert the definition of fo(él) and change the summation over n € 0* into the two sums n € 0*/U,
and p € 741, Then we have

I(s,0505 %) = (~1) (4m) 2 Dy |5 3| “INe[ 2 Y 7o) | / /

Nnls
neo* /U, ’ ‘ 1<y1 yd L<P(e

d
_ . _ Hl—1— Sy
Z H o (2m(1ef’ - aree” )y | ) (el - amnee)ymy) T2 dy.
Z :

As usual vy = —Tr(v).

By the exponential decay of the Bessel K-function for large arguments and its behaviour for small

arguments, these integrals converge absolutely. Hence, we can unfold the integral with the sum.

Using [GRO7}, 6.561.16] to compute the resulting integral, we see that I is essentially D,, more precisely
I(s,a;v; %) = (—1)82%_6[77%'“[%_‘13|Nc|_%+s_%)\_,,(c)><

d (3.2.21)
X H L(3(s+1 —ivy))L(3(s +1j — a —iv;)) De(s, a; 5 2).
j=1

We split the integral I in (3.2.20)) into two parts, the one with Ny > 1 is called It and the other with
Ny < 1is denoted by I™. The part I't is entire in s which follows from the decay properties of K.
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Assume Re s sufficiently large. Then we may use (3.2.18) and (3.2.19) to obtain

I"(s,a;v5%) = (—1)ZI+(1 — 8, —q;—V; _“*)

[

96,001,0 _qe a1 (a1 d 1 1
D D Ne[zle=Dr(la 1 — =
+vol(Ag_1> ™ D] N (2( +a)) G ( +a)<s—oz—1 s)

a Q : :
+ﬂdi|DK|_5+%|NC|%(OC+1)F(%(1 - a))dgK(l B a)(s -1 s- 04)>‘

Thus we have

I(s,a;v;2) = (—1)£I(1 — 5, —o; —u; =20,

[

Hence ([3.2.21)) shows that D, is meromorphic on C and satisfies the functional equation claimed in the

lemma. O

Now, we return to D,,, given in (3.2.14]), assuming that (3.2.17) holds. Let v be as in (3.2.14]). We
define Y;(m; o, 2;h) as

’ e

vol(Ad—1) ~
—c 7 g )\_,;(m)/]N(m)|8hg(s—iﬁl,...,s—iﬂd_l,s+iTr(I?))Dg(s,a;ﬁ;‘;) ds,
2mi Ny -
PEAd (v)

assuming 0 < v — 1 — max{0, Rea} < Cp. Thus we have
)

Dn(e, 45h) =Y Ye(m;a, 45 h). (3.2.22)
l

Moving the contour in f(v) to the left, by Lemma we have

Yy(m; a, %; h) = 2%,0| D |~ 5 7| Ne|* Y Nm e (1) ¢k (1 — ) (3.2.23)
+ 2%/ Dic| 25 [Ne| TN m|he(1 4 0)Cre (1 + @)
[ Ne|*Hvol(Ag1) (2m)~HetD o) g1 rem mn
+ 211 wd |Nn| sgn [n]e[ c ] Z A_Q(CT)X
neo*/Ue QeAﬁfl
. n 2m)4\/|N (mn)|\ 25+ . n
X /Fg(s —iv; Q) (%d()‘) he(s —iv) ds

(®)

with
b < min{0, — Re a}.

The function Dy is bounded for Re s > 1 4+ max{0, Rea}. Thus, by the functional equation we get
2 )4Re s—2Rea—2

\/DK|NC’

Hence, if Cy is sufficiently large in terms of | Re a| and | 3], the resulting integral is absolutely convergent.
We denote the integral | ®) by L(7) and observe by Stirling’s formula and (3.2.17)) that it is bounded

by (14 |Ims| + Tr(|z])) .

Dy(s,o5v; %) < (1+ |5|)_2R63+Rea( for Res < min{0, — Rea}.
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Using Poisson’s summation formula we have

Z G@g%gng[n]e[azn] Z )\_Q(TZ{L)Lﬁ

neo*/Ue ~€Ad—1
_ d—1\—1 U—a(n) smn
= vol(AdH™t 3 N sgn’| Z/ / ) dr (3.2.24)
neo*/Ue eeU, Rd—1
— vol(Ad—1)~1 0—a(n) / / ‘
vol(AZ™) Z* Nn| sgn’| ) dr
neo Rd-1

We reinsert the definition of L(7) and have (d — 1) integrals over R and one integral over (b). Then

we substitute s — i1 — s for j =1,...,d — 1 and s + iTr(z) — sq, and put
x(m,n;c) = <W)j=l
We get
o 1 ~ d x(m,n;c);|2si
[ [ Loy = o [ [ e TT [  a

Ra-1 (®) - ()

We define

25]

\b

[h)e(a; (3.2.25)

d
sahg H‘Z

(b)

By the same arguments as above for L(7), we obtain convergence in a region which will be given in

(3.2.27) and (3.2.28])). Inserting (3.2.24) and (3.2.25)) in (3.2.23) and (3.2.22)) we have

Dy, :0) = 3 [2600l D53 Nl INmf (1) Gae (1 — o)

’C’
L

+ 260 0| Dic|[ £ 75| Ne| =7 N[+ hy(1+ a)Cie (1 + @)

N |Nc’a+1 (27r)7 d(a+1) Z U_a(n)
271 md |Nn

*

sgnﬁ[n]e[a "] [h]e(x(m,n;c); a)

Together with (3.2.9), we get

Cr(1—a)lkx(l—p) (m)
CK(2 - /8) Oa+p—1

k(1 +a)Ck(1—5) (m)
k@+a—p) T

Bl 1) = 3 [2%000| Dic| 78 H | Nl (1)

L

+ 296, 0| Dic| 5 74 [Nm| " hy(1 + )

Cre (1= B) (2m) etV $ g—a(n)

2mi md |Nn|

(3.2.26)

+ sgn’[n]x

neo*

X Z U(c)|Ne|**B Sk (m,n; ¢)[h)e(z(m, n; c); oz)}

cE€o*

where the Kloosterman sum Sk (m,n;c) over K is given in ([2.0.2)).
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We assume
lal, 18] < €y (3.2.27)

for a suitable C, and we also assume that Cp in (3.2.17)) is sufficiently large in terms of Cy. Then,
with this and (3.2.17)), the right hand side of (3.2.26) converges absolutely for

Rea+ Ref —2b < —2. (3.2.28)
In particular, by a shift of the contour we have the bound
[Re(z; o) < [Nz (Te(1 + |z])) ", (3.2:29)

for a g > 0 and b the integral contour from above. Furthermore alle the derivatives of [h], are of rapid

decay.

Later on, we shall spectrally decompose the sum over ¢ in (3.2.26[). To this end we rearrange the sum

over c¢ using the definition of ¥. We have

Z U(e)|Ne|*P Sk (m, n; ¢)[h]e(z(m, n; ¢); @)

1 a : -
= Gt / / %: INe|* P x¢ (€) Sk (m,m; 0) [Ble(w(m, n; ¢); ) dE (3.2.30)
Rd-1
(273(1 1(( )d |N(mn)|)a+5+1/.-./ﬁ(g))\g(mn)sm,n(a,ﬁ,f; [h]e) d§
Rd-1
where
mon(a, B, [Ble) = Y [Ne| ™ S (m, n; o) [A]]e(z(m, s 0); a, B €) (32:31)
with
(a+B8)—
Bl 8:6) = o | A Ao ). (3:2:32)

For a and g satisfying the conditions (3.2.17) and (3.2.27)), by shifting the contour we obtain the
estimate
L | INa[E% i N > 1,
[[1])e(as v, B3 €) < (Te(1+ Jz))) " - (3.2.33)
|Nx| if [Nz| <1
with g > 0 as in the bound of [h]y. Furthermore the derivatives of [[h]]; are of rapid decay if at least

one variable tends to 0+ or +o00.

3.2.3 Spectral Decomposition of B,,

The sum Sy, »(a, 8,&; [h]¢) as defined in has the right form to apply the geometric sum formula
given in Lemma Recall that m > 0 and thus ny(m) = ny(1).

The definitions of [h], and [[h]]¢ imply that [[h]]¢(x; @, 5,€) and its derivatives are smooth and by
(3.2.33) of rapid decay if at least one variable tends to 0+ or +0o0. Therefore Lemma can safely
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be applied to Sy, n(a, B,&; [h]e), provided
|Rea| +Re 8 < —1C1. (3.2.34)

For instance choose Re /3 negative and large, and | Re a| relatively small.

Lemma [3:1.5] yields the decomposition
Sl B,&; [hle) = Zav??v(1)tv((m))ﬁv(n)tv((n))B[n][[h]]e(/fv;0475,5)

o2it(m, 2v)o2t(n, 21)

B .
+C 6%1)\ mn ‘N mn ’ZtKK( +2zt,2g)]2 [n][[h“f(t"’_ﬂaayﬁaf)dt

= {85, + 5% . Ha, B, ;[h]e)

where t +v = (t +v1,...,t +vg_1,t — Tr(v)).

The uniformity of the convergence follows by inserting the bounds for all involved parameters stated
in the previous sections. More precisely, we use the estimate to bound the functions By, [[A]]e.
Then Lemma gives the convergence for the first term, and Lemma [3.1.1] combined with trivial
estimates for the divisor functions does it for the second term.

We insert the decomposition into (3.2.30) and (3.2.26]), and factorize n € 0* into n - £ where € runs

over the units, and n € 0* mod P(e)2.
Then the contribution of SY, ,, equals
(2m)%

WCK( — B)(Nm)2 (@Bt

<Y f’)((ﬁ) n) > v (D () ()t ()

n€o* mod P(e)? ( 1%

- / / B (€)Ag (mn) By [[h]]e (s @, B; €) de.

vezZd—1

The function By, [[h]]¢ is smooth in § and is bounded by (3.1.44) with f = [[A]]; and Cy = C1. Thus the
integral decays sufficiently fast in v and sy, and the triple sum converges absolutely. Using Poisson’s
summation formula, we see that only the term with § = v = 0 survives. Hence the expression changes
to

)48 1 o_qa(n
(1= ML S ) s«

n€o* mod P(e)?

<~ avny (Dty ((m))nv (n)ty (1) ga=t Bp [[W)]e(kv; @, 85 0).
v

The factors sgn[n| and 7y (n) depend only on the sign of n, in other words they depend on the unit e

such that n = n’e with n’ = 0. Thus we can rewrite the sum over n as

ﬂ'dﬁ 1
e (1= BN Yy (1)t (m)
14
<3 sl @Bt 50 T v f)ﬁ)
€ mod P(e)?
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Then the sum over n equals Hy (3(1 — o — 8))Hy (3(1 + a — 8)). We denote the sum over € by BV,
Hence we have
2(27)8

Shn = W(Nm)%<a+5+1> > avny Dty ((m)Hy (3(1 — a = 8))Hy (3(1+ o — 8))BV.
|4

This sum converges absolutely by Lemma [3.1.6| and (3.1.44]).

The contribution coming from S7, ,, can be treated in a similar way. We get

[e.9]

2(2r)8 1 o2it(m, 2v)
2T o () (et B+D) » / 020t (m,
(22t CeNm)? ng:_f M) | Nyl (£ 20t 22

xCr (31 +a—B) —it,v)(x (3(1+ a— B) +it, —v)(k (3(1 — a — B) — it,v) X
*Cre (31— a = B) + it, —u) B ([h]le(t + v; 0, 5, 0) dt

where t +v = (t +v1,...,t + vg-1,t — Tr(v)). Lemma (3.1.44) and trivial estimates for the
factors (x (o + it, tv), as o > 1, show the convergence.

Thus we have a spectral decomposition for B,,, as long as a and [ satisfy our assumptions (|3.2.17)),
(13.2.27)) and (3.2.34]). We have

B ) = 2D |44 Vo) ST g (3.2.35)

+ 29 Dy|5 1 INm|*ho(1 4 ) CK(CLJ(FQ?Q;(EIB_) b) O—a+tp-1(m)

)8 1
+ Z [jgﬂ;zd (Nm)z(@ti+D) Z aviyv (Dtv ((m)Hy (3(1 — a — B)Hy (3(1 + o — 8))BY*
¢ 1%

o

1 o2it(m, 2v)
(N'm)z(@th+1) . / : 2it (1, 21
Ce(Nm) > Au(m) (Nm)[Ce (1 + 2it, 20)2

2(2m)8
i(2m)2d

veAd—1 N
X Cr(3(1+a = 8) =it )G (5(1+a = B) +it, —v)Cx (3(1 — a = B) — it,v) x
x k(A1 — a— B) +it, —v) B []]o(t + v; a, B,0) dt]

But the domain coming from these assumptions does not contain the point (a, 5) = (0,0) we need
for the application to Z(g,w; K). Thus, we have to continue the decomposition to a neighborhood of

(a, ) = (0,0). To this end we consider the transform of h given by

. (r;0, B3 h) = %Z > seu'lelm(&)Byg[Alle(rs o, 8,0)

£ £ mod P(e)2

where x =V or &, andr=ry ort +v = (t +vi,...,t +vg_1,t — Tr(v)) respectively.

We use the definitions of [[h]]; in (3.2.32), [k]¢ in (3.2.25), h¢ in (3.2.15) and 'y in Lemma
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We obtain

1 |Nz|l-o-p
S el .0 = ] |

d
X Z / H { [(1+ ejsgn(e;)) cos(5a) — (1 — ejsgn(e;)) cos(m(s; — 3))] x
eE{il}d(b) o (b) Jj=1
T 284

2

257 ’«Td
2

xT'(1—s;)I'(14+a— sj)} h(s;e)|—=

where b is the contour from above, and ¢ is a unit. Stirling’s formula and (3.2.17)) imply that the

integral converges absolutely.

Now we apply B, with respect to x to this expression, and use the equations (3.1.45) — (3.1.47)) to get

a new expression for ®,, namely

d
Q. (r;0, B5h) = Z Z M ( / /h s;e H Sgn(aj) (85,755 00, B) X (3.2.36)
7=1

eE{:I:l}d € mod P(e)? Zico,ioe)d

XN%—%O+a+@—wﬂﬂg—§ﬂ+a+5%ﬂmﬁﬂ—%ﬁﬂ+a—%)@

where

AL = {(1+ej)cos(Za) — (1 Fej)cos(m(s; — La))}x
= (e cx(Ge) — 17 ntels = o)) .
2

x{(1F 1)cosh(mr;) + (1 £ 1) sin(ﬂ(sj (a+PB)}.
The sj-contour separates the poles of Agn(ej)(sj, iy, B)T(sj— 5 (a+B+1)—irj)T(s;— 5 (a+B+1)+ir;)
and those of I'(1 — s;)I'(1 + o — s5), and it is assumed that the contour can be drawn, i.e. if we would
pass through a pole, we choose a small semicircle around it. Under the assumption ([3.2.34)) one may
use the contour Res; = b, with the bounds 2(Rea + ReB + 1) < b < min{0, —Rea}. Then we

move the contour appropriately to get (3.2.36)). As the right hand side exists on a larger domain, the
representation (|3.2.36)) gives an analytic continuation of ®,.

In the next steps, we reformulate a factor of ®, and state some estimates for it.
Consider the expression
> we][ar
€ mod P(e)

As in [BMO1} (5.12)-(5.13)] one has to consider the possible values of * = V and ¢y and for x = &,
separately, and reformulate the expression in every case. Combining these results we obtain for any
space * = V and &€, with 7,(1) # 0 the equality

d
Z HAsgnsg =n.(1 H A —i—)\ Aej)
7=1

€ mod P(e)

where €; on the right hand side is as in Lemma [3.1.6]
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(3.2.2) Lemma
Assume that (3.2.17) and (3.2.27) hold for a, 5 and h, and let V', the eigenvalue ky = (K1,...,Kq),

and qv = (q1,...,qq) be as in (3.1.28) and Lemma[3.1.3 Then ®y (kv;a, B;h) is regular in ky and
bounded by

(K“Va 767 ) ( +’H1‘+ +‘Hd‘)77

uniformly in V and o, B, provided

|Rea| +Re B < 2min {|Imr; + 5|+ 6;} (3.2.38)
j
with
0, ifq =0,
5; = /4
1, ifq; #0.

Likewise ®g, is reqular int andv. Lett+v = (t+uv1,...,t+v4_1,t—Tr(v)). Then ®¢, (t+v;,B;h)
1s bounded by

_%
Pe, (t+v;a,B;h) < (L+ [t + ] + -+ [vaa])” 2, (3.2.39)
provided

|Rea|+Ref < 1—2[Imt|. (3.2.40)

Proof.
First we consider the case gq; # 0 for all j. Then ix; = [; — %, and we modify the I'-factors of (3.2.36]

using ((3.1.48[). We have

( l1+ Hlg—d
Oy (kv;a, Bih) =

2.2 )

/ / selj[ [(1+ ejsgn(e;)) cos(Za) — (1 — ejsgn(e;)) cos(m(s; — La))]x

—100 ZOO

T(l; —1+4s; — L(a+8)) ds

xIP(1—s)I'(1+a— ) T +1-s,+ish)l™

where the contours can be drawn under the assumption (3.2.38). Thus, the regularity of ®y follows.
To obtain the decay of ®y we shift the contours appropriately to the left, and use Stirling’s formula
and (3.2.17)), as well as trivial estimates for the trigonometric functions.

If g; = 0 for some j, we do not need to rewrite the integral, and the shift of contour is not needed for
the j-th integral. After reformulating the integrals with g; # 0 the regularity follows and one proceeds
as above with Stirling’s formula to get the estimates on ®,, under the assumption . For the
spaces €, the proof is analogously to ¢; = 0, under the assumption . O

Now we can state a first explicit formula for B,, in a neighborhood of (¢, ) = (0, 0):
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(3.2.3) Theorem
Let B, (e, B; h) be defined by (3.2.6), and assume (3.2.17). Let o, B be such that

—1 < Re(ta + B) < 2. (3.2.41)
Then we have the spectral decomposition
B (e, B;h) = {BE) + B + BE Y a, B; h)
where

oy 1¢r(1—a)Cr(1—f)

B (a, B;h) = |Dg| ™2 (Nm)oais-1(m)h(0,0)

(k(2—a—f)
i dwRK\D |5+1 CK(@( _)Cff;) O )+ sy ()0, )
2(2m)%

(Nm)2 @D N a1ty ((m)) Hy (3(1 — a — B))
1%

x Hy (3(1+ a — B))®v(kv; o, B; h),

B (a, B; ) =

(271-)2d

o0

27T 02t (m, 2v)
© . _ 214t )
3777, (aa B’ h) 2d C Z )\ / (Nm)”\CK(l + 22t> 2£)|2 .

Ad 1 s
(e (3(1+a = B) —it,v) (ke (5(1+a = B) +it, )k (3(1 — a = B) —it,v) x
xCi (3(1— o — B) +it, —v) @e, (t + v, By ) dt

Here V., ky,ty,nv,ayv, Hy are as defined in Section D, is given by (3.2.36) and as before the
vectort +v = (t +vi,...,t + vg_1,t — Tr(v)). The function h is defined by

?71,772 / / ]Nu]m 1+ uy|-- ]1+ud|)"2 du.

Remark that h(w) is of rapid decay if u; tends to infinity, 0 or —1 for at least one j. The expressions
for B%),ﬁgﬁ) and Bq(f;) are reqular in the domain (3.2.41)).

Proof.
The spectral decomposition holds in the domain (3.2.34)). Thus we have to prove that all terms can be

continued to the domain (|3.2.41)).

Consider the cuspidal contribution. The sum is absolutely and uniformly convergent in the domain

|Real+Ref < 2rr%/in mjln {IImx; + %‘ +6;}, by Lemma and Lemma [3.2.2 (3.2.42)

and it is regular there. By the possible values of x; this domain contains the domain (3.2.41f). Thus
B,(fb) is of the form stated in the Theorem.
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Now we consider the contribution of the Eisenstein series. In the domain this is of the form
stated in the Theorem, but the domain (3.2.41]) is not contained in . Hence we have to extend
the domain for the contribution of the Eisenstein series and pay attention to possible singularities.
However, for the terms with v # 0 the integrand is regular in , and the sum ) _\a-1 converges
absolutely by Lemma [3.2.2] )

Thus, we exclude this part from our consideration and restrict our attention to the term v = 0, namely

7Td5 i 02t . .
2(27) Ce/ ) 21t (1) : PCK(%(l—i—a—ﬂ)—zt)(;d%(l%—a—ﬂ)—i—zt)x

(2m)2 ) e (1 + 2it) (3.2.43)
xCr (3(1—a—B) —it)(x (3(1 — a — B) + it) Uy(a, B; h) dt
Here (o, ) is in the domain ([3.2.34), and
Uy(ar, Bsh) = Pe, (¢, ... 6, By h). (3.2.44)

d—times

The integral is regular when |Rea| + Re8 < —1, as in this domain Re(3(1 +a — 8)) > 1. We
consider the subdomain —1 < Re(xa+ f) < —1. We move the contour to Imt = g by noting (3.2.39)
and (3.2.40). To avoid poles on the contour, we can choose an appropriate broken line instead of a
horizontal line.

The resulting integral is regular for —% < Re(xa+p) < —%. Now we restrict this domain to

3
—1 <Re(ta+p) < 7 (3.2.45)

and shift the ¢-contour back to Imt = 0.

As the new integral is regular in (3.2.41)), 'B,(ﬁ) continues to (3.2.41]).

The first shift of the contour gives us poles at t = —3(1£a+ B)i, and those from the factor (5" (1+2it).
By the second one we encounter poles from (j'(1 + 2it) and at the points t = +3(1 £ a + B)i.

The residual terms coming from CI_(I cancel, and we are left with the terms coming from the residues
at t = :I:%(l + a + B)i, given by

(2m)?® Rk Ck(=B)Ck(1 —a)

Cor(Nm) *P0 51 (m)

\I,%(l a+ﬁ ( B? )

(27%)? \/IDk| (k2—a+p) 5016
(2m)® R Lhats Gk (=B)Gk (1 + a) >
Ce' N o —a—B— \:[17 h
+ (27T2)d \/@ ( m) o Jé] 1(m) CK(Q Ta+t 5) ;(l—i-a—i-ﬁ ( , B )
We used that W, is an even function in ¢, and that the residue of (i (s) at s = 1 is equal to 2 7|1RI|(
K

Hence, we are left with computing the factors \Il%(liFOH-ﬂ)i'
Let 7j = (1 — a+ B3)i. Then
d
Z H Asgn(sj) (sj,ma,B) = 924 H e; [sin(ﬂ(sj — a)) cos ( (1 —ej)s; + e],B))]
€ mod P(e) j=1

as Ag, = 1.
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We get

2d
\I/%(lfoﬂrﬁ)i(a’ﬁ;h) - itd Gd/ / ico zoo)d (s5€)x

eG{:I:l}d

X H [cos (3m((1 —ej)s; + €;8))[(s; — 1 — B)I(1 — s;)]ds.

=1

The sj-contour separates the poles of I'(s; —1 — ) and I'(1 — s;) to the left and the right, respectively,
and by the restriction to the domain (3.2.45)) can be drawn.

Now we let r; %(1 + a + (B)i. Using the same arguments as above, we get

‘1“(1+a+/3)z:1dd > e ed/ / 5+ a5e)x

ee{il}d ( P00 ’LOO

d
X H [cos (37((1 —e;)s; +€;8))I(s; — 1 — B)T(1 — s;)]ds

where s + o = (s1 + ..., 84 + @).

We have to compute the multiple integrals over s. We consider the second one in detail, as it is a bit
more complicated than the first. The first can be done following these steps.

We use the definition of A given in and apply partial integration in each variable.

Thus, the integral equals

d
1 --ed/---/hd(eu) HR(uj,ej) du (3.2.47)
(0.00) =

where hg(u) = (Oy, ... Ou h)(w),

100

R(uj,ej) = / cos (%ﬂ'((l —e;)s;+¢€;B8))(s; —1—B)I(1 - sj)ujﬁa s;ij—ja' (3.2.48)

—100

By we may take for instance Re s = % as contour. In particular, we can assume that the pole
s = —« is on the left of the contour.
We shift the contour in to Res = +o0 or to Res = —o00, depending on whether u; < 1 or
u; > 1.
For u; < 1 the shift of contour to Res = +o0 collects poles of I'(1 — s), and the resulting integral
vanishes. We get
uj
R(uj,e;) = 2miej cos(3mB)T(—B) /ua(l + eju)? du.

0
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If u; > 1 we collect the poles of I'(s — 1 — 3) and the pole s = —a.. We get

(e o]

R(uj,ej) = — 2mie; cos(3m3)[(—3) /uo‘(|1 + ejul’ —uP) du
u;
1+a+p
us
+ 2mie; cos(3mB)L(—B)—2

l+a+p
+2micos (3m((ej — D+ ¢;8))T(1 + a)I'(—1 — o — B).
Hence, for u; > 0, u; # 1, we have
Ou; R(uj, €j) = 2mie; cos(%wﬁ)F(—ﬁ)u?]l + ejuylP.
Applying partial integration to (3.2.47) and inserting this expression for d,; R we obtain
. dy
Wy (1ol B5 ) = (2mi) (cos(3mB)D(=8)) (e, )

with / as defined in the Theorem.

Analogously, we have

31 —apyi(00 B 1) = = (cos(5mB)T(=5)) (0, B).

We insert this into (3.2.46)) and use the functional equation for the Dedekind {-function to see that
(3.2.46|) changes to

Ce2¢ sCr (1 — )k (14 B) 148

dmd Rk |Dx| (k(2—a+P) (Nm) ™ oa—p-1(m)A(0, 5) (3.2.49)

C.2¢ sC(L+0)Ck(1+B) o iiars -
Tl Ri|Dkl| 2+ a+thB) (Nm)"*** Po__5_1(m)h(c, B)

Finally we consider the residual contribution. Taking the first two summands of the decomposition of
B, given in (3.2.35) and the terms (3.2.49) coming from BSE) we see that they coincides with B%).

O
3.2.4 The Fourth Moment of (x

Using the spectral decomposition of B,,(«a, 8;h) with («, 3) in a neighborhood of (0,0) we can de-
compose Z2(g,w; K) via the relation (3.2.7). To this end, we have to verify that h = W, satisfies the
condition (|3.2.17)).

(3.2.4) Lemma
Let Wi (y;7,0) be as defined in (3.2.8) and (3.2.3)) and let

ﬁ/v-l-(ﬁ;e;% ) = / : ‘/W_;_(eu;fy,é)uil_l .. .ufld—l du
(0,00)7

be the Mellin transform of W, with e = (e1,...,eq), ej = £1 and eu = (e1u1, ..., equq).
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Then the function 171/:(§;e;'y,5) is regular in the domain
Re(sj —y—10) <0, j=1,...,d.

It has an analytic continuation given by

Wi (s50;7,0) = Ric2* (v +0—s5)] §/v) | gt)x
‘ H X oew - [rer) |
d
H%[sm (6 —i(t+& —vj)) cos (3m((1—ej) (v — s5) + 8 — eji(t + & — v5))) X
j=1
X (85— = ilt+& — )T (1= 8+ i(t + & — )] dedg

where §g = —=Tr(§) and vg = —Tr(v) and v is defined in . The t-contour separates the poles of
the factors I'(s; — v —i(t + & — v;)) and those of the factors I'(1 — § + i(t + & — v;)) upwards and
downwards, respectively; and s1,...,84,7,0 are assumed to be such that the contour can be drawn, so
v —Res;j and § — 1 are bounded away from the integers.

Moreover, for all vy, 6 bounded away from s;, j =1,...,d we have
Wi(sie;y,0) < (1+[sa + -+ [sal) ™€ (3.2.50)

for every fized C > 0.

Proof.
We recall the definitions of W, and of cg given in (3.2.8]) and (3.2.5)), respectively. Then we write out

the Fourier transform of g and of w to obtain

W(l + i)c\y(l + L)

eu

NuFINCLF )l

= Rk Z W(V)/"'/ﬁZ(g/y)/ H‘1+63“J

il/j+i£j+it - _5
uy 1+ ejug| 70 dt d

VEAd71 Rd—l
00 d ufv—%(t+§j—Vj)
=Rk Y w(V)/'”/P <§/V> /g(t)H 1+ eju; |-+ —v) dt dg
reAd—1 Rd—1 —00 J=1 I

with u; > 0 for all j =1,...,d, and again {; = —Tr({) and vy = —Tr(v).
Then by the rapid decay of g in every fixed horizontal strip and the rapid decay of w in each variable

in every fixed horizontal strip we have the estimate

W, (ew; v, 0) < (Nu)™77° (3.2.51)

for u; 1 oo for all j = 1,...,d. Shifting the contour of the inner integral appropriately, we obtain that
W is of rapid decay for u; | 0 as well as for u; — 1 if e; = —1, for some j =1,...,d.

Assume for the moment that

Revy <Res < Re(y+9J) <Rey+1 (3.2.52)
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to get via Mellin transform

Weseind) = izt - wiw) [ [02(e7) | o0 T 557, vt

veAd—1 Rd—1 0o Jj=1

where n; =t 4§ —v; for j=1,...,d =1 and ng =t — Tr(§) + Tr(r). The factor b+ is given by

00 1
uS~y—in—

bi(s,m;7,6) = TR du
0

By the connection between the Beta- and the I'-function, see |GR07, 3.191, 3.194.3, 8.384.1], we have,
for any n € R, the identities

[e.e]

/ wormt D=y =iy 46 —5)

(14 w)o=in L6 —in)

and
uS——in—1 . I'(s—y—in)[(1—6+in) T(y+6—s)I(1—3d+in)
|1 — u|0— (s—y—d+1) I(y—s+1+in)

Using the functional equation of the I'-function in the denominator of each term, we get

bi(s,m;7,6) = 2sin (37(6 — in)) cos (37((L F 1) (v — s) + 6 F in)) x

XxT(s—~v—im(y+0d—s)T(1—0+1in).

Inserting this above, under the condition (|3.2.52]) we obtain the second representation of WI stated in
the Lemma, with integration along the real axis. Deforming the contour appropriately we may drop
(13.2.52)), to get the analytic continuation. Using Stirling’s formula we get

To obtain the bound (|3.2.50)) we move the contour appropriately regarding the poles of the I'-functions,

and again use Stirling’s formula. O

We recall that v = z; and § = 23 and « = 21 — 29, 8 = 23 — z4. We assume initially that

|Re(z1 — 22)| < co, |Re(zg— z4)| < co; (3.2.53)
Rez1, Rezz > (), (3.2.54)

where Cy and cq are sufficiently large, respectively sufficiently small positive constants.

The estimates , the rapid decay of W, if at least one variable tends to 0 or —1 and
implies that Theorem can be applied with h = W, as is satisfied. Applying Theorem
to decompose B, (zl — 29,23 — z4; Wi (4 21, 23)) we get a spectral decomposition of J. Recall the
expression of J1 in terms of B,, given in . Further we use the equality to reformulate

the contribution coming from 37(77;).
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We obtain

) 4 q(e)

J+(z1,z2,23,z4;g,W) = {jg:) +J(+c +j+ }(21722723724;9700)

with

35:) (21,22, 23, 24; g, W) (3.2.55)
= IDal (a1 = e 2074 0,051, 2)

+ \Dm% Cre(1+ 21 = 22)Cre (1 — 23 + Z4)CK(22 + 23— 1)Cr (21 + z4)W+(21 — 29,0; 21, 23)

Cr(2+4 21 — 22 — 23+ 24)
22dRK|DK|Z3724+% Cr(1— 21+ 22)Cr (1 + 23 — 24)

+ 21+ 24—1 29 + 23)W. 0,23 — 245 21, 2
dnd (2 — 21 % 20+ 75 — 21) Cr(z1 + 24 — 1)Cr (22 + 23) Wi (0, 23 — 245 21, 23)

220 Ryc| D[+ Cpe(1+ 21 — 2)Cic(1 + 23 — 2a)

+ 2o+ 24 —1 21 + 23) %
drd (2t 21— 22+ 25 — 21) Cr (22 + 24 — 1)Cr (21 + 23)
X Wiy (21 — 20,23 — 24, 21, 23),
09 (21, 22, 23, 243 9, w) (3.2.56)
2(2m)d(zs=24)

— Wzavnv(l)Hv(%(zl + 20+ 23 +20— 1)) Hy (5(1+ 21 — 22 — 23 + 24) ) X
\%

x Hy (3(1— 21+ 20 — 23 4 24)) @v (kv 21 — 22, 23 — 243 Wi (5 21, 23)),

[e. 9]

(e) 2(27)dzs=24) / Zx (21, 22, 23, 2451, 1)
) = .Y : 2.
Ty (21,22, 23, 243 9,) (2m)2d c Sy | (1 + 2it,2v) |2 * (3:257)

X @¢, (t+v;21 — 22,23 — 23 W4 (5 21, 23)) dt

witht+v=(t+uv,....,t +v4-1,t —Tr(r)) and

Zi (21,22, 23,2436, ) = (i (3(21 + 22 + 23 + 24 — 1) + it, —v) (ke (5 (21 + 22 + 23 + 24 — 1) —it,v) ¥
XCre(3(1+ 21 — 20 — 23+ 24) + it, —v) (i (3(1 + 21 — 20 — 23 + 24) — it,v) X
xCro(5(1— 21+ 22 — 23+ 24) + it, —v) i (5(1 — 21 + 22 — 23 + 24) — it, 1),

W (o1, 21,20) = [+ [ W (a1, 20) Nl (14 ] 1)

R4

and D, (r; 21 — 22,23 — 24; W4 (+; 21, 23)) as defined in (3.2.36)).
To get the expressions for JSS) and JSf) we need the absolute convergence implied by the Lemmas|3.1.4

3.1.6l and 3.2.2]
Now we are left with the continuation of this decomposition to a neighborhood of the central point

p1 = (3,11 1) The arguments are the same as for the case d = 2 in [BMO1}, Section 6].

1 2127272

First we consider the cuspidal contribution JSf) . To obtain well-definedness of ®y in the domain

(3.2.53)-(3.2.54) we shift the s;-contour in (3.2.36)) to Res; = % forall j =1,...,d. Then, by rewriting
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the domain Re(s; — v — 6) of Lemma we see that ®y is regular in

{Re(z1 + z3) > 2 and (3:2.53) hold}. (3.2.58)

For the eigenvalues of the form ir; = I; — } a modification of ®y via (3.1.48) is needed before shifting
the sj-contours sufficiently far to the left. Then using the estimate (3.2.50|) we see that CJSF) continues
to the domain ?;?.58. In particular it is regular at p 13 and the right hand side of (3.2.56) converges
C

(

and represents I}’ (p1;g,w).
2

Now we consider the Eisenstein contribution Jgf)

the cuspidal contribution, and this part is regular in (3.2.58)). Thus we are left with the term v = 0,
given by

. The terms corresponding to v # 0 are analogous to

o0
2(2mr)d(=s—=1) Z it
L . / K (21,22, 28, 24; )\Ilt(zl — 29,23 — 24; Wi (521, 23)) dt (3.2.59)

(27)>¢ [Cre (1 + 2it)[?

—0o0

where W, is as in (3.2.44) and (z1, 29, 23, 24) satisfies (3.2.53)-(3.2.54]). This continues to the domain
where Re(z1 + 22+ 23+ 24) > 3 and (3.2.53)) hold. Then we follow the argument of (3.2.43|). We restrict

our domain to {3 < Re(z1 + 22 + 23 + 24) < 14—3 and hold}, and move the contour to Im¢ = é.
We collect poles from the factor (i (1 + 2it) and at t = —2(21 + 22 + 23 + 214 — 3)i. The resulting
integral is regular in {11 < Re(z1+22+23+21) < 13 with ( m} After reducing the upper bound
from 3 to 3 we shift the contour back to R, and encounter poles at t = (z1 + 29 + 23 + 24 — 3)i and
those from Gt (1 + 2it).

The poles at t = :I:%(zl + 29 + 23 + 24 — 3)i contribute the residual term

2(27)Uza—24) o k(2 =2 —z)C(on + 20 = 1)CK(2 =21 = 2)Ck (22 + 20 = 1)
(2m)2d ¢ Cr(4—21— 22— 23 — 24) (3.2.60)

) _. qler)
X\111(21+22+Z3+Z4 3)i (21 — 22,23 — 2459, w) = I,

The residual terms coming from Cl_(l cancel.

Then the new integral is regular in the domain
{Re(z1 + 22 + 23 + 24) < 3 and (3.2.58) hold }

which contains py- Thus we obtain the continuation of (3.2.59 m, which is given by the same expression
as (3.2.59)) with the additional term ([3.2.60) coming from the residues.
Let

70 = g5 4 94 4 ) (3.2.61)

be the sum of Jy given in (3.2.4]), the residual contribution 35:) given in (3.2.55)) and the residual part
of the continued Eisenstein contribution JSf’T) given in (3.2.60). Then 9 has to be regular at p1 as
2

in a neighborhood of p1 we have
2

7 =90 499 499,

and J, f](f) and Jgf) are all regular at p1.
2
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Thus, we get an explicit formula for the average values of the fourth power moment of Hecke L-functions

of a totally real number field K with class number one.

(3.2.5) Theorem

Let K be a totally real number field of class number one, and let K have fundamental units je such
that every ideal has a totally positive generator. Let A% be the (d — 1)-dimensional lattice of the
Gréfiencharacters defined by . Let g(t) and w(vy,...,vq—1) be entire of rapid decay in every

fixed horizontal strip for every variable.
Further let

Mic(g,w) =37 (p1) + Cie(9, )

be the term coming from the residual contributions where 37 is defined in (3.2.61) and Ck(g,w) is

defined in (3.2.2)).
Let W4 be as in (3.2.8) and Wi its Mellin transform. Choose the functions A\« and 1. as in Section

lete = (e1,...,e4) be as in Lemmal[3.1.6, and let ky = (k1,...,kq) and t+v = (t+v1, ... t+1vy)

where vy = —=Tr(v). The integral transformations of g and w are given by
2 11
Ay (g,w) = W (HV70 0; W (5 12 5))=
- 2
E(tg,w) = W@g (t+ 30,0, Wil 35, 3))
where
(I)*(noaan—O—(a%,% = dd Z / /W—l-seagag
ee{E1}? (3) (3)
4 4
d
X H [F(l - s])QF(s] % irj)I‘(sJ 5 +er)A (€5, €j585,75)| ds
j=1
with

Ai(gj,ej58,1) =[(1+¢€j) — (1 — e;) cos(ms)] 2 sin(ms)
+ Aie(g5)[(1 = €5) — (1 + e;) cos(ms)| 2 cosh(mr).

Then we have

3 ) / (Ce(d + it )| g(t) dt = M (g,w)

zEAd’ 1

+it,v)|®
DHy (1)2A 24 /|Dk| / <5 =, (t dt
+§V:avnv() v(1)’Av(g,w) + 24/ Dk gd:l ‘CKlJFM W) (t; g,w) dt

where ty,ny,ay, Hy are defined in Section |3.1.2. The sum V runs over an orthonormal system of
Hecke invariant cuspidal irreducible subspaces of L?(T\PSLg(R)%) with T' the Hilbert modular group
over K.
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3.3 A Bound for The Fourth Moment

In this section we prove an asymptotic formula for the average value for the fourth moment of Hecke

L-functions for a totally real number field K of degree d with class number one, given by
/ (Creh + it )| g(t) di
VGAd 1

using the decomposition we proved in the previous section (Theorem [3.2.5]).

We choose the functions ¢(t) and w(vy,...,v4—1) as before to be entire functions, of rapid decay in
every horizontal strip. More precisely, we fix two entire functions G and §2 that are of rapid decay and

satisfy the estimates

G(j)(x) <A (1 + \x|)7A,

;;; - ;; 11 Qy) <ay (1+ ]+ + [yaa )" 331
with A > 2 for all 7, j1,...,j4-1 € Np.
Then let g(t) = G(%) and w(v) = Q(%,..., %=) = Q(u/T).
According to Theorem [3:2.5 we have to estimate the expression
Mg (g,w)
+ Y avnv(DHy (3)°Av(g,w) +2°V/[Di] Y / IKKl :2;: 12/3|)|2HV(t 9r00) dit 0
4 veAd=1 "

The functions Ay and =, are integral transforms of the functions ¢ and w, see Theorem @ The

term Mg (g,w) contributes the main term.

3.3.1 Error Term

First, we consider the second and the third term of (3.3.2)) which enter into the error term.
There exist bounds for all Hy and the sum over ay, 7y combined with some sufficiently nice function,
see Lemma [3.1.4] and Also the ¢-functions coming up in the third term can be bounded. Thus

we are left with finding bounds for the integral transforms Ay and =,, that are given by

. (30,0, W55, 3)) = (772*2()21 Z /"'/W:(S;@%a%)x
(3.3.3)

d
) T [0 = )20 (s5 = 5 = iny)D(sy = 3 + i) Ao e55,75) | ds,
j=1

with r = ky or t + v and
Ai(gj,e5:8,1) = [(1+¢5) — (1 — ¢;) cos(ms) | 2sin(ms) + Au(e;) [(1 — €5) — (1 + ¢;) cos(mws)] 2 cosh(7r).
The function W4 is defined in (3.2.8)) and its Mellin transform 17[/: is given in Lemma . We need
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the following estimate on 171\/; to bound ...

(3.3.1) Lemma

Let W, be defined as in Lemma with W4 defined in (3.2.8)). The function W;(g; €5, %) is
holomorphic in Res; <1 for j =1,...,d. In this region, for every o € N we have the bound

Wi (55054, 1)  TRes1FFResa (] 4[] 4 |sq]) 70

Proof.
Fix sj for j = 1,...,d with Res; < 1. For w; € R we define the function

W(l+ i)C\p(l +1)

w

W+ ) = Wi (w; 5,5) =

o[

)

N[ =

(11 +wi|- |1+ wg| - Nuw)?

where 1—|—i: (1+wi1,...,1+wid).

We recall that W (z) vanishes if 2; < 0 for at least one j = 1,...,d. Recall that the function W is a
combination of the Fourier transformations of ¢ and w, see . The assumptions and the
properties of the Fourier transformation combined with the decay behavior of ¢y imply that W(z) is
rapidly decaying if |z; — 1| > % for at least one j. Thus we obtain that W(1 + %) is of rapid decay if
|lwj| < T for at least one j =1,...,d. -

Moreover we obtain the bounds

Wi(z)ey(x)|N(z—1 T
W(z) = = wIU(i\fﬂ)%( = Lot
T
oA 9Ad —Aj——A - T8
P @W(@ <pa; T d H (1+ |TJ|) .

j=1

The first bound follows by the decay properties of g and w, and the second is implied by the first and
the properties of the Fourier transform.

Next we apply integration by parts in the wj-variable A;-times. More precisely, we choose

0, if Im s; near 0
Aj =
large, otherwise.
We get
sj—14+Aj
o o941 HAd d w’?
W(s;e;l,l):/w/--- W(1+L) J dw
- 272 8x‘141 83}9d< w>j1_[13j"'(5j_1+Aj)

(0,00)¢

< TResl+..,+Resd(1 + ‘81|)_A1 . (1 + lsdD_Ad-

Now if Im s; is near zero the expression (14 |s;|)~ is of size one. Thus choosing the large A; to be «

ends the proof. O
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We also need a bound for the I'-functions. Stirling’s formula gives

H [I‘(l — Sj)2F(5j — % — iT‘j)F(Sj — % + iTj)A*(6j,6j; Sj,’l“j)]
(3.3.4)

where o; = Re s;.

Now we are ready to estimate the functions @, (z; 0,0; Wi (+ %, %)), with the possible values xy and
t+ v for r.

(3.3.2) Lemma
Let r = (r1,...,rq) where each r; is either real or 0 < ir; < 64 orirj =1; 5 with l[; € N. Then the

function @, ([,0,0,W+( ,%, 5)), given in , is bounded by

D (r;0,0: Wi (53, 3)) < Td9+%(1—|— Iry| + -+ ‘Td’)*%*d’

where 0 = é s an upper bound for the exceptional eigenvalues.

If all rj are real, we can choose 6 = 0.

Proof.
We move the contour of the sj-integrals left to the vertical line Re s; = —(20 +d), for all j. We collect
residues at s; = —uj + & Firj, with y; € No and Re(—p; + § Fir;) > —(20+d). If ir; = I; — § with

l; > 22 + d we do not pass through poles. Now we have at most 2¢ terms namely
d
H ( Z residue + / dsj> .
g=Lm (—20—d)

We estimate the term coming from the residues and the shifted integral using Stirling’s formula for the
factor of I'-functions. For the integral term, this estimate is given in (3.3.4]). To estimate the function
Wy we use Lemma . Combining the estimates of the terms we obtain

D (r:0,0; Wi (5 3,3))

)
T3(1+[rj) 2074+ T-2074(1 4 |ry )24, 7, €R,
7T DT (DT iy =l g and <224
<
| T ), iy =l =g and ;> 2+
T\TjH% +T7197d(1 + ‘rj’)73872d7 0<ir; < Gj.

Comparing the factors, we see that this can be estimated by

Te(l+l) 0 eR,
d |1, irj=1;—1and l; <22+4d,
T7207d(1 + ‘T'j‘)73872d7 ZT] = lj — % al’ld lj > 22 + d7

1 .
T”E, 0<2Tj<6—74.

50



Combining these bounds, by noting that 1 < T%(l + |rj) 72T if ir; = 1; — 3 and [; < 22, we get

P, (’I" 0 0; W+( % %)) <<Td6+g(1+|7‘1|+"'+|’I‘d|)_20_d

where 6 = 6 1
In particular if all ; are real, we get

. (10,0, Wy (51, 1)) < T (14 1| 4+ + |ra) 07

Now we are ready to estimate the second and the third term of (3.3.2]).

First we consider the cuspidal contribution
3
> avny () Hy (3) " Av (g, w).
v

We use Lemma to estimate the Hecke function Hy, and Lemma for the integral transform

Ay . Inserting these estimates we get

S v (D Hy (1) Av(g,0) < TE S ay | (1+ o] + -+ al) 0

\%4 |4

Then Lemma [3.1.4] shows that the resulting sum is of constant size, and we get in total

3 d

Zavnv(l)H\/(%) Av(g,w) < T2

%
For the Eisenstein contribution, i.e. the third term of (3.3.2]), we need some further results to get rid
of the (-functions that we considered in Section
The factor (C (14 2it 21/))_1 is discussed in Lemma and an estimate for the (-function on the
central line is stated in . Now let r =t+ v with v € Ad L. Denote by v4 = —Tr(v). Then every
r; is real and from Lemma we get the estimate

d —20—
E (g, w) <T2(1+|t+wm| 4+ [t +va]) 07"

Inserting these estimates we obtain

Ce Z /|KK gL nul Ey(t; g, w) di

1+ 2it, 2v)|?

<<Z/ Pt vr| 4 |t ) 20T g < TS

veAd—1 "

Inserting the estimates for the cuspidal and the Eisenstein contribution into (3.3.2) we get, with 8 = 614,

the intermediate result

> w / (b +it, )19 (1) dt = M (g,w) + O(T2+%). (3.3.5)

ZGAd71
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It remains to estimate the summand Mg (g,w), this will be done in the following subsection.

3.3.2 Main Term

The term Mg (g,w) will give the main contribution. It is defined in Theorem as the sum
Mg (g,w) =3 (p1;9,w) + Ok (9,w)-

The term ) and the constant C(g,w) are defined in (3.2.61) and (3.2.2) respectively. The former
consists of three term that are given in (3.2.4)), (3.2.55) and (3.2.60). As mentioned above, 7 is

regular at p1. We prove
2

(3.3.3) Lemma

Let () (p%;g,w) be as defined in (3.2.61), define the variables nj by n; =t+&—v; forj=1,...,d—1
and ng =t —Tr(&) + Tr(v). Then, the following equality holds:

o

1 psig.0)= > Q(y/T)/--./§2<§/;7> /G(;,)x (3.3.6)

veAd-t Rd-1 —00

d 3N\ kj AN L
rai)\ % )\ Y .
S d(a,k;b,nH( FJ) (F) (3 —inj) dtdg

aj;bj;kj,lj 20 J=1

Jj=1,....d
Tr(ak+bl)<3+d

+O(T5+)

where Tr(ak + bl) is the sum Z?:l(ajkj + b;l;), and d(a, k;b,1) are real constants that can be made

explicit.

Proof.

The proof follows the corresponding steps of the case K = Q in [M97, pages 174 — 178].

The function 3 (p 1 g,w) is regular, but its summands Jy, JS:) and J(f” each have a singularity at
p1. Thus the singular parts cancel under addition.

M20re precisely, we put (21, 22, 23, 24) = p1 + (01,02, 03, d4), where (01, d2,03,04) = (a1, a2, as,as)d with
a; € R and 0 € C small, and we expand the terms into a Laurent series in 6. Then ) (p%;g,w) is
equal to the sum of the constant terms, which does not depend on the choice of the a;.

We compute the constant terms of Jg, CJS:) and :Jﬁf”") separately.

The term Jgy:
The function Jo(z1, 29, 23, 24; g, w) is given in (3.2.4)), it is

Cr (21 + 23)Cr (21 + 24)Cr (22 + 23)Cr (22 + 24)
Cr(z1+ 22+ 23+ 24) ‘

jO(Zla 22,23,%245 9, W) = 2d171 C\I/W(l)
We use the definition of W (1), write out the Fourier transform g and apply the Poisson summation

formula to ), w(h). Further, we recall the definition of c¢g. Then, the constant term of Jo(p1;g,w) is
2

of the form stated in the lemma, with a; = b; = 0.
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The term JS:):
The function JSI) (p%;g, w) is given in (3.2.55)), it is a sum of four terms, each of which is a product of
(r-functions and the function W (s1, s2; 21, 23). One easily sees by the definition that W, has a pole of

order d at p1. Hence, it is essential to understand W+(31, S9; 21, z2) in order to compute JS:) (p1;9,w).
2 2

We imitate the steps of the reformulation of the function 17[/: in the proof of Lemma This leads

to

W+(81,82;21,23) (3.3.7)
= RgD(—s1 —so+ 21 + 23 —1)4 Z ww) [ - [ (&7 g(t)x
veAd-1 /Rd—l / ( )4

" ﬁ FI(‘SI —z1—in; + 1) [1 n sin(m(s1 + s2 — 21 — 23 + 2)) +sin(w(—s1 + 21 + in;)) dt d.
j=1

(—s2 + 23 —in;) sin(m(—s2 + 23 — i)

As g and w are rapidly decaying and by the usual estimates, we see that integral and sum converge
absolutely.

In the pair (s1, s2) takes the values (0,0), (21 — 22,0), (0,23 — 24) and (21 — 22, 23 — 24). Now,
we insert z; = % +0; and note that J(I) has a singularity of order 3+ d. Indeed, each of the summands
can be expressed as a product over three Dedekind (x-functions, that each have pole of order one at
p1 and the functions W+ with a pole of order d. Hence, its constant term is a linear combination of
tﬁe first 4 + d coefficients of the power series in § that is given in the second line of the right hand side
of . Recalling the definitions of g and w we get

o0

3 Q(I//T)/"'//IS2(§/’7) /G(%)X

veAd—1 Rd—1 —o0

d 3\ Ky N Ly
@)\ ki /)b ‘
x> d(a,k;b,l)H( T ) ( T ) (3 — inj) dt d

a;,bjk;,l;>0 J=1

ji kA b
Tr(ak+bl)<3+d

for some constants d(a, k; b,1) € R that are not necessarily the same as in the Lemma.

The terms of higher order in ¢ contribute to the error term.

The term J(f’”:
The function f](f’T)(zl, 29,23, 24; g,w) i given by

2(27T)d(237z4) c Cr(2—20— 23)Cr (21 + 24 — )Cr(2—21 — 23)Cr (22 + 24 — 1) y
(2m)2d ‘ Ck(4—21— 22— 23 — 24) (3.3.8)

X Ogo(5(21 + 22 + 23+ 24 — 3)i, 3(21 + 22 + 23 + 24 — 3)is 21 — 22,23 — 245 G, W),

see (3.2.60)).

The function ®¢, is regular at 6 = 0, which follows by a slight shift of the s; contour to the left or to

the right, depending on the value of 0. In addition, it can be bounded by <« 7500 a5 in the previous
Section [3.3.1} By Cauchy’s integral formula, this bound holds true also for the derivatives of ®¢,,.

Then, using the Laurent series of (i (14 ¢) we see that this term contributes to the error term. O
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Now we return to Mg (g,w). As we said above, Mg (g, w) consists of two summands, namely ) and

CK (gv w)'
The latter one is a constant and given by

Cr(g,w) = w(0)(aog(57) + bog(—5i) + a19'(3i) + brg'(—5i))

3.3.9
_oq) (3.3.9)

—

To get an asymptotic formula for () (p1;9,w) we use the representation we proved in Lemma [3.3.3]
2

We start by computing the single terms appearing in the integral. To this end, we rewrite the sum

T\ k% /)N b ‘
<1—‘> <1‘\> (%_“7])

into a sum over Polygamma functions ¢(") that are defined by

over

4O () = Llog(T(2)),
ddz (3.3.10)
P (z) = £¢<n—1>(z), forn > 1,

for example, see |GRO7|, 8.360]. Thus, the sum of ([3.3.6) equals

d N N
F(C"J) J F(b]) J )
2. d(a,k;b,l)H< T ) ( T ) (3 — i)
aj,?)i,kj,ljzo 7j=1
Tr(ah-+00) £3-+d
k; L
- ) d(a, kb, ) TT ()7 ()7 (4 = iny).
aj.bj k7 10 j=1
Te((at 1)k-+ (b1 1)) <3+d

Using the asymptotic formulas of the Polygamma functions

(3.3.11)

we obtain the asymptotic

@)\ ki /) \ L 4
a;,b; k; L5 >0 j=1

Tr(ak-+bl)<3+d
= p3+a(log (N(3 —in))) + O((1 + min ;1))

where N (3 —in) = (5 —im1) -+ (3 — ina) and p, is a polynomial of degree n whose coefficients are real

constants that can be made explicit.
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Inserting this asymptotic in (3.3.6]), we obtain

1 (p s g,w) = O(T2+) (3.3.12)
+ Y Q(V/T)/.../§2(g/y) /G(}) [pssa(log(N (% = in)) + O (k)| dtde.
veAd—1 Rd—1 —0 !

Note that n € R? so that the argument of the logarithm is bounded away from zero.

We remark that in every hypercube that is a fundamental domain of the lattice A%~! there are 79!
elements such that Tv € A1, Let v € A1, then the points v+vk/T where 0 < k; <T —1and 7 is
the basis element of A defined in are contained in a fundamental domain of A4~'. Moreover, by
(3:31) we get Qv+ vk/T) = Qv) + O(5(1 + Tr|y|)~4). Thus, substituting ~ — z and v;/T — y;,
the second line of changes to

Y [0+ 0+ )] [ G [ [8(e)x

yeAd—t “oo Rd-1 (3.3.13)
< [paa(log(N (§ — i) + O((1+min ;) ™)) d da

where n; = T'(z + %J —y;) for j=1,...,d—=1and ng =T(t - Tr(§)/T + Tr(y)).

The function p(§) is compactly supported in (-3, g)dil

small in comparison to z and y and the integral over § is of constant size.

. It follows that the summand &; /T is relatively

The polynomial p3q(log(N (3 — in))) can be considered as a sum of a polynomial Ps4(logT) whose
coefficients are polynomials in log(N (z — y)) of degree at most 3 4+ d that are independent of 7" and an
error term O((log N(z — y))>*?/T). This can be seen by applying the equation log(N(T'(z — y))* =
(dlog(T) +log N (z —y))k. More precisely the k-th coefficient of P54 is a polynomial in log(N(z —y))
of degree at most 34+ d — k.

Thus, (3.3.13) equals

3+d o
T¢Y Clp.d) Y Q) / G(2)P(log N(z — y)) da - (log T) + O(T41+%)
k=0 %

yeAd—l

where P is a polynomial of degree at most 3 + d and C(p,d) are the constants coming from the
coefficients d(-,-;-,-) and the integral over §.
Using the estimates for G and  given in (3.3.1)), we see that the sum over y and the integral over x

are absolutely convergent, and we obtain

10 (p1:9,w) = T*Pyra(log T) + O(T41°). (3.3.14)

Thus, combining the asymptotic formula for ") (p1; g,w) with the estimate of C in (8:3.9) we get
2
Mg (g,w) = T* Py a(log T) + O(T79).

Combining the result (3.3.5)) of the Section and (3.3.14) of Section we obtain the proof of
Theorem [1.1.2)
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Chapter 4

Second Moment of Rankin-Selberg

L-functions over Totally Real Number
Fields

In this chapter, we prove Theorem [1.2.1] To this end, we need some further results and definitions.

4.1 Preliminaries

Recall that K is a totally real number field of degree d and class number one.

4.1.1 Hilbert Modular Forms

Let ¢ be an integral ideal of K. Define

To() = {(272) € PGL2(0) | aydy = byey = 0, ¢, Ec},

Fi() = {(2 1) € PGLa(0) |y, = byey = 0, ay =dy = Tmod ¢,y € c .

We identify a matrix v € GLy(0) with its corresponding vector (vi,...,7q4) € GL2(R)?, where the
a; b;
c; de

components are given by v; = < ) and aj, b;, c;,d; are the j-th embeddings of a,,by,cy,d, € 0.

Then, a matrix v € GLy(0) with dety > 0 acts on the d-fold product H¢ via the Mébius transform
— (%izitb;
V2= (Cij‘Fdj )j:l,...,d'

A Hilbert modular form f of weight k € Ng and level ¢ is a holomorphic function f : H? — C satisfying

d AN
@ =TT (9222) 162 = s (4.1.1)

=1 cjzj +d;

for all v € T'g(c).
If f vanishes at all cusps, it is called a cusp form. We denote the space of cusp forms of weight k
and level ¢ by Si(c) and a basis of it by Bi(c). We may assume that all elements of By(c) are Hecke

eigenfunctions, since these functions generate the space of cusp forms.
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We define the inner product for two modular forms fi, fo of weight k and level ¢ by

d

5 dxjd
(f1, f2) = / f1(2) fa(z H —L5 y] (4.1.2)
To(c)\H? 7=
Asusual z = (21,...,2q4) = (x1 + Y1, ..., Tq + 1Yq).

It is well known that dim Sk (c) is finite, see [L03, page 130], more precisely, it is of size N (k¢)'*o(1).

Any f € Si(c) has a Fourier expansion

= Z Cf(n)(Nn)%e[né’lg]

neo
n>=0
n=(n)

where 0 = (§) with ¢ > 0 is the different of K.
We denote by Bj(c) an orthogonal basis of Si(c) consisting of Hecke eigenfunctions. The Fourier
coefficients of f € Bj(c), normalized by C¢(1) =1 are real and bounded by

Ct(n) < (Nn)®, (4.1.3)

see [HT'16, equation (2.2), Section 6.3] and |[LM14, equation (2.1)].

We will consider a subspace of the cusp forms, the so called newforms Sﬁ(c). This space is defined
as the orthogonal complement with respect to the inner product of the oldforms where the oldforms
Sz(c) are the cusp forms coming from lower level, see [HT16, page 4].

A basis of newforms can be given by primitive forms, i.e. Hecke eigenfunctions that are moreover
newforms. We denote a basis of newforms consisting of primitive forms by Blﬁc(c).

Let f be a primitive form, then it follows by the work of Shimura [S78], (2.26)] that its Fourier coefficient
Cy(n) is equal to the Hecke eigenvalue of the Hecke operator T, as defined in (3.1.34).

4.1.2 Atkin-Lehner Theory
We give a short overview of the Atkin-Lehner theory, following |[AL78| and [KMV00, A3].

Let q = (¢) be an ideal and let g € Sg(q) with the Fourier coefficients Cy(-).
Then we write ¢ = ¢q1q2 with (q1,¢2) = 1. Define for z,y, z,w € o withz =1 (mod ¢2), y =1 (mod ¢1)

and ¢}rw — quz = q1 the matrix

2q wqi

W, = (‘W Y ) € GLy(o).

A short computation shows that W, normalizes I'g(q) and I'i(q). Furthermore one easily sees that
Wqu is the identity, as Wqu € I'o(q). Thus Wy, defines an endomorphism of S}i(q), which is independent

of the choice of x,y, z and w. This endomorphism is given by
9lwy, () =ng(q1)g(")

with some constant 74(q1) that satisfies |14(q1)| = 1 as follows from W7 € T'o(q).
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The eigenvalue 7, can be given explicitly in terms of Cy:

(4.1.1) Lemma
Let g € 0, q = (q), take a newform g as above and assume Cy(q) # 0. Then the eigenvalue n4(q) of
Wy is given by

Proof.

The proof follows the paper of Atkin and Li [AL78| Theorem 2.1].

We may assume W, to be such that + =0 (mod ¢). Further, for each u mod ¢ with (u,q) = 1 there
exists a unique v mod ¢ with (v, q) = 1 such that uzv =y (mod q).

For such pairs (u,v), we obtain by a simple multiplication that

1 u 1 —v/q
- Wy - el
(O q> q (0 1 ) 0(q)
Thus, we get

o oy, = 2 dlguy= 2 Colwe[ns™s] e["5].

u mod g v mod ¢ 01 neo,n>0 v mod ¢
(u,q)=1 (v,9)=1 n=(n) (v.9)=1
Rewriting this sum over v, the right hand side becomes
N(q—l)g’Uq‘Bq— Z Cy(n)e[nd~ z] (4.1.4)
neco,n>0
n:(n)

where

olo,@ = > Colame[nd™'s] = (Na) 2 3 o]

nco,n>0 u mod ¢
n=(n)

and g|p,(2) = Y Cyln)e[qnd~'z] = g(qz).

neo,n>0
n=(n)

Now we view g‘U in two ways. First, we insert the definitions and reformulate the sums, to get

q‘Wq

gl = @078 3 ol = @0 el gy YO 3 ol

u mod ¢q 9z ¢w u mod q
(u,q)=1
Now, we insert (4.1.4]) for the second summand, to obtain
_1
g|Uq’Wq (Nq 29’U‘( é/ )(qU)+N(Q*1)(Nq Qg‘U |B Nq 2 Z C ]
9z ¢ w/i0 1 n€o,n=0
n:(n)
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On the other hand we have

9lu,lw, = Coa)ngla) - g-

Thus, comparing the first Fourier coefficients ends the proof. O

We need the following result in the proof of a Voronoi summation formula in Section [4.1.4

(4.1.2) Lemma

Let g€ F, q=(q), a,c € o with (a,c) = 1. Let D1 = (¢,q), D2 = D% = ﬁ € F and suppose that Dy
and Do are coprime.

Then, there exists a matriz v = (‘; fl) € SLs(0), such that the following identity holds (as operators

acting on weight k modular forms)

a b a b 1 0
e = (0] W (e)
7 (c d> (c/ qg d ) b <0 Dg)

for some v = (3; gi) € To(q). Moreover d' satisfies the congruences
d =a* (mod Dy), d =-c (mod Dy) (4.1.5)

where a* is the multiplicative inverse of a modulo D1.

Proof.
The proof is analogous to [KMV00, Lemma A.3|.
Since (a,c) = 1 and (¢, ¢, D2) = 1, we may choose the lower right entry d of v such that Dy|d. Then pick

any matrix Wp, = “cgf w%2> representing the Atkin-Lehner operator. Recall that y = 1 (mod Ds)
and z =1 (mod D), as well as det Wp, = Ds.

Then we get

] _ _ awDg — zbDy  —ay + bx
1 := Dol -y - diag(1, D) - WD; = ( 2 ! Y ) € To(q)

cwDy — 2zdDy  —cy + dx

by our choice of d. The congruences (|4.1.5)) follow from the congruences of x and y. O

4.1.3 Rankin-Selberg L-functions

Now we are able to define the Rankin-Selberg L-function and state some results. We follow the
terminology used in [HT16| and |L79].

Let q = (¢) be prime and ¢ a squarefree integral ideal either coprime to q or equal to g. Further, let
fe Si(c), g€ S,E(q) be two primitive forms of weight & € N%. Denote by Cf(n), Cy(n) their Fourier
coefficients. -

Then, the Rankin-Selberg L-function is, for Res > 1, defined by

Cr(m)Cy(n)

L(f ® g,5) = L(25,Xqc) Y (Vo)

n

(4.1.6)
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where xqc is the trivial character modulo qc given by

Xqe(n) = Lo(mag =1, (4.1.7)
0, (n,qc)>1
and L(QS,qu> = Z 553721(;12)5 - H (1 — (Np)iQs)CK(QS). (4.1.8)
n plac
pprime

The Rankin-Selberg L functions satisfies a functional equation:

(4.1.3) Lemma

Let k € N and f,g be two primitive forms with f € S’}i(c), g € Sﬁ(q) where q is a prime ideal and
either (¢,q) =1 or ¢ = q. Furthermore, let Cy(q) # 0 and Ct((q, c))}é 0.

Then, the Rankin-Selberg L-function satisfies

A(f@g,s):= 2m) N5 I Dk Loo(f @ g,5) [] 06(s)'L(f @ g, 9)

pl(a,c)
where
d
(f®g,s H (s+k; — 1),
1—Cp(p)Cy(p)(Np)' =%, ifp=c=aq,
9;:(5) =
1, else.
Proof.

The case that ¢ and q are coprime is treated in [HT16]. Thus, we assume ¢ = q = (¢), ¢ € F and follow
the paper of Li |[L79].
Let
h(z,s,a) = Z y*(N|me + n|) 2
(me,n)=1

n=(n),neF

n=a mod ¢
Writing out the Fourier expansions of f and g and using orthogonality of characters as well as an
unfolding argument to obtain

/ / US Xe(@)h(z,5,a) dp(z) = (4m) > EDD(s 4k~ 1) Y w

a mod c n
a€F

The product of the sum over a with (N¢)® and L(2s, x.) equals a sum over the Eisenstein function.

More precisely

(N¢)°L(2s, x¢) Z Xc(a) Z Yy (N|me +n|)” Z,u )" °E(cz/a,s)
a mod ¢ (me,n)=1 alc
acF n=(n),neF acF

n=a mod ¢
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where p(a) is the Mébius function.
Recall that T'(s + k£ — 1) = H;.lzl I'(s+kj —1). We get

Brg(s) 1 = (Ne)'m @ (4m) @~ ED0(s + k- DI(s)'L(f @ g, 5)

—ol0) ()Y pa) V) [ [ f@)g) Blez/a,) ducz).

a|c Dl(t)

Since c is prime, the sum over a contains only two summands, a = 1 and a = ¢. Our aim is to reduce

the term a = ¢ to a = 1 with an additional constant in front of the integral.

Let p = (p)|c. Now recall that the Atkin-Lehner operator W), normalizes I'; (c).
Furthermore E(cz/ap, s) o W, = E(cz/a,s), and we have

/ / F(2)9(2)Blez/ap,5) dyu(z) = ng(p)7iy(» / [ f@9) /0. dutz)

D1 (c)
§)Np / / [(2)9(2)Blcz/a,5) d(2).

The second equality follows from Lemma and the fact that C'y and C, are real and non-zero by

our assumption.

Now we get

S (@) (N / /f Elcz/a,s) du(z) = Oy(s / /f Elcz,s) du(z)

ale
aceF

where

Op(s) = 1= Cy(p)Cy(p)(Np)'~*

Thus the functional equation of ®,(s) is induced by the functional equation of the Eisenstein series

which can be stated as
B0 () E(cz/a, s) = 7 ID(1 — 5)4E(cz/a,1 — s).

This follows from Lemma by replacing s with s — %

Finally the functional equation of ®44(s) yields the result for A(f ® g, s). O]

We define the multiplicative coefficients v74(b) by

Z Vrg(b)(Nb)™* = H MO (4.1.9)

b|(g,c)>° pl(a,¢)

Note, for p|(q,c), that [6,(s)| > (1 — (Np)~7) as [Cr(p)| = VNp ' which follows from Lemma
and |ns(p)] = 1. Thus, multiplying out the product [] (1 — (Np)~?)~! we obtain in the case

Res = o > ¢ absolute convergence for any € > 0. Comparing the left hand side of (4.1.9) with the
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bound of the right hand side of (4.1.9) we obtain for any € > 0:

77g(0)] < (NB)*. (4.1.10)

Using the functional equation of the Rankin-Selberg L-function, we obtain the approximate functional

equation

(4.1.4) Lemma
Let q be a prime ideal and ¢ an integral ideal either coprime or equal to q. Let f € Sg(c), g€ Sg(q),
with Cy(q) # 0 and C¢(q) # 0. Further define

Vs(y) :=

G(u) —

f[ s+qu+u+k-—1) du
14 (5)T(s + k; — 1) u

2mi
(%)

where G(u) is a holomorphic function on an open set containing the strip |Re(u)| < 5 and bounded

therein, satisfying G(u) = G(—u) and G(0) =

Then we have

3
2

L(f®g 3)=2 Z 7£9(0) § Xac(@) Z C(m)Cy(m) Vi <(27r)2dN(ba2m)>'

T I i 2
b|(q,c)>° (Nb)z =5 (Na) (Nm)2 A D N((q C))
Moreover, the derivatives of V% (y) satisfy
vV (y) <oa (1 + i)fA (4.1.11)

2 ’ Nk
for all v € Ng.
Proof.
See |LM14, Proposition 3.2] and |[HT16, Proposition 4.1]. O

4.1.4 Voronoi’s Formula

Later on we want to apply a Voronoi summation formula. To this end, we prove:

(4.1.5) Theorem

Let a,c € o, with (a,c) = 1. Further let k € N, q = (q) be a prime ideal and g € Si(q) with Fourier
coefficients Cy(n). Let F : [0,00)% — R be a smooth function rapidly decaying if at least one variable
tends to infinity and vanishing if at least one variable is zero.

Then we have

> Cylne[ne] F(n)

neF
1 779 ) (a C? )* ) 47, /nx
- NCN l Z o [ %} /”'/F(w)(%)%k‘]k—«ql) dz
(T 2": (0004 coll
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where (a (cqq))* is the multiplicative inverse modulo ¢ and Jy,_1 s a product of Bessel functions, namely

d
=[] 7,-1(z))-
j=1

Proof.

The proof follows [KMV00, Appendix A.3]. We will use the Atkin-Lehner operator and the Mellin
inversion formula to deduce the Voronoi summation formula.

Let Dy = (¢,q) € 0 and Dy = (C o €0, and take vy = ((ZW b”) € SLy(o) with a, = a and ¢, = c as in
Lemma in particular choose d, such that Ds|d,. Let z € H¢. Using the factorization of v, we

have

9(12) = (er2 + d))ED, 2y (Da)g(£)- (4.1.12)

Now we define zt = ( — =L + %)j:L...d for te (R>0) Thus Cy2t + d,y = % and Y&t = o + % Then

by (@13) we get

6[—71

Cjzb] :e[_ndwj; _ndgj] :e[—n@] 26[—nM].

Using this and writing out the definition, we obtain

g(vz) = Z C’g(n)e[n%]n%(k Dexp ( Tr(QZ:E)) (4.1.13)
n=(n)
_ (iyk ok =y _ (D) (a1 D2) Y1) (2 )k
= (1)"Da ny(D2)g(5;) = T ) Cglnje[ —n =20 ] (57)2 5 exp (= Tr(Z75;))t
B (ND2)2 n:(n) -
(4.1.14)

The map t — g(yz:) has exponential decay if at least one variable tends to zero or infinity. Thus, the
Mellin transform of g(vyz¢) is analytic on C?. For Re s; sufficiently large for all j, by (4.1.13) we obtain

dt s+=(k— a —
/ / gyz)tt b5 = (2) 2P (s + Lk - 1) Y Cylme[n®]ne
n=(n)

(0,00)4

We denote the sum over n by L(g, Z—:,Q. Thus I'(s+ £ (k — 1)) L(g, %’@ has an analytic continuation
to C.
Multiplying (4.1.13)) and (4.1.14]) with §§+%(E_1)_1 and integrating over ¢ we have the functional equa-

tion

4V Dy + Lk &y g
( 2T ) ( 2( )) (g’c ,7) ) (4115)
= ify(D2) (252) T (1= 5 + 3k — 1)) L(g, — 22251 - 5).

Note that the left hand side is holomorphic for Res > 3(k+1), and the poles of the I'-function on the

right hand side are canceled by the zeros of the L-function.

Now take F' as stated in the Theorem, and denote its Mellin transform by F. Multiplying the functional
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equation (4.1.15)) with F and integrating over s we obtain

1 s a
W/"‘/F(S)L(Q,Cz,s) ds
(1)-(1)

4.1.16)
51 (D ~ Ml—s+3k-1 . (
_ 1 779(. d2) / .'/F(S)(CWXD*Q)I‘FZS ( §"’1‘ 2(7 ))L(g, __(ayD2) 1 _§) ds.
(27i) 7 P(s+5(k—1)) .
(1)-(1)
Then using Mellin inversion the left hand side of (4.1.16f) equals
Z Cg(n)e[n%]F(n).
n=(n)
To compute the right hand side, we move the contour to Res; = —1 for all j, and change variables

2(1 — s) + s. In addition we write out the definition of L(g, —%, 1 — s). Then the sum over n is

absolutely convergent and the right hand side changes to

E(2r)d i%(2m)ng(D2) ay Da)*
Cy( plaal2))
R

| [ 7O

~(4)

[\')H‘:n

((s—i—k—l)) (271'\/»)
I'l+s35 ( s+k—1)) Cv\/i

Finally we write out the Mellin transform F. There is a slight problem of absolute convergence if some
k; = 1, we avoid this by deforming the contour. Now we shift the contours back to Re s = %, such that

the integral equals

/ /F 4m /3 3/ %S+3k+_klz)1))<ij\/\/g>_sdex-

(0,00)d

Using |GRO7, 8.412.4], the inner integrals are a product of Bessel functions and we obtain that the
right hand side of (4.1.16) equals

DQ)l Z C, { a7D2 / /F )(2m) 4T, 1<47r\/%> dz.

Nc
’YN )2 ooo)d C,YDQ

Replacing D by its definition ﬁ and remark that ¢, = ¢ and a, = a completes the proof. O

4.1.5 Further Results

A further result we need is the Petersson trace formula. We use the version of Luo [L03, (8)]:

(4.1.6) Lemma (Petersson’s trace formula)
Let ¢ C K be an integral ideal, and k € N%. Let Bi(c) be an orthogonal basis of the cusp forms of
weight k and level ¢. Further let m,n > 0.
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Then we have

I(k—1) 3 Cr((m))Cs((n))

(47r)k— 1|DK]2 rén (c) (f: 1)
Sk (m, €*n; c) 47ty/mnle|
Z(Sm: 2, —l— kal( )
‘ |DK|2 ego:>< CEC*Z/UX ’NC’ |C‘
1, if m = en, for some e € 0%, ‘ ‘
where §,,—c2, = , and Jy_1 s a product of Bessel functions, namely

0, else

JE_1(47T\/7‘ ‘) H'] __1(47\/ n]|€]|>

@1

The Kloosterman sum S (m,n;c) and the inner product are defined in (2.0.2)) and (4.1.2).

Proof.
See [L03, Section 2]. 0O

Further we use the equality from [ILO07, equation A.9|
2 Jg—1(4dmy/ary) Jp—1(dm+/By) = IC/e (a+ Bz —I—’y/x)Jk 147/ apx) (4.1.17)
0

where o, 3,y > 0, and the operator K(f) is given by K(f) :=i % f +i*f = 2Re(i " f).

By |L03, page 136] we get for k = (k, ..., k) the estimate

4 16em)3/ N k—1
Jk_l(@) < min{l,(@g—mn) Wver TT lel (4.1.18)
- c] kI Nl s

where 0 < n < %
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4.2 Proof of Theorem [1.2.1]

As before, let q be a prime ideal and ¢ a squarefree integer ideal in K either coprime or equal to q
and let k = (k,...,k) € N Then for a primitive form g of level q and weight k, with Cy(q) # 0, the

second moment is given by

Mig) = L E=D LIRS )l 4.2.1
) (4w)k1|DK\zfe§k(c) (£, 1) “2.1)

We will establish an upper bound of this quantity given by M*(g) < (N %)5 k.

4.2.1 Initial Reduction

To begin we apply the approximate functional equation given in Lemma We get

a4 TE=D 5~ 1
(g) (47’[‘)@*1|DK|§ f€%i:(c)< )f>><

Z 7fg Xqe(a) Z C(m)Cy(m) Vi ((2ﬂ)2dN(ba2m)> ‘2.

] (q,)° )2 (Na) (Nm)2 Dj #N ()

We use the estimate (4.1.10) to bound the coefficients 7, to obtain

Mi(g) < (4.2.2)

I'(k—-1) 1 1 N Xae(®) = Cp(m)Cy(m) - (2m)IN (bam) \ | 2
4= Nb|*~> Vi :
(47)k= 1\DK|fe%(c) <f,f)<b|%;)m| | (Na) 2. ( DEN(5) )D

(Nm)z

To apply a spectral summation formula, we need to extend the basis B,ﬁ(c) of primitive newforms
to an orthogonal basis Bj(c) of the complete space Si(c). This is possible, since the terms are all
non-negative. We will denote the right hand side of (4.2.2)) over the extended basis by M (g). Thus,

Mi(g) < M(g) im— 21 !

(47)E=1| Dy 3 e (£, 1)

X (4.2.3)

1 N Xae(®) 5= Cp(m)Cy(m) 0 (2m)IN (bam) \ | 2
X(bl(qz,c;w'Nb' (N“)Z (Nm)> M DiN(@y) >D

Next, we write out the square to get an expression to which we can apply Petersson’s trace formula.
Note that the Fourier coefficients C'r(m) and Cy(m) as well as the function V% are real-valued and we

may assume that the Vb is non-negative, as every ideal has a totally positive generator. We obtain

2d 2
M(g) =4 Z N(bibo)|* qu a102) Z Cg(ml)Cg(mf) Vi ((2#1))2 ]]\\ff(blalml)> X
bel(q,0)*° ai,a2 Cl1Cl2 my,ma (N(mlmQ))2 : ((q C))

((277)2dN(52a§m2)> I'(k—1) C(m1)Cr(my)
(

A )k=1| Dy |2 Pt AL
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Applying Petersson’s trace formula, i.e. Lemma to the innermost sum we get

M(g) =4 Z N(byb2)|*~ 3 qu 0102) Z Mx

1

bl (020> e NO102) T (N (mimg)3

1=1,2 =12
TV ((277)2dN(bla%m1)>V <(27r)2dN(b2a§m2)>

2\ DiN(gg) /2N DicN(g)

k
(2m)4(—1)%2 Sk (ma, €2ma;c) 4\ /mimale]

R )

€€oX cec* /o

=: Ms(g) + Ms(g)-

In the following we estimate M (g).

To begin we consider the diagonal term, i.e.

aia
Ms(g) =4 Z N(b1b2)) qualaQ
bu|(a,0) iray Vlme2)
1=1,2
C2 m 2 2dN 2 92 2dN 2
« 3 g )Vl(( 7)2 (bqlcalm))vi(( 7T)2 (bi%m))-
M N(m) 2 D7 N( q7c)) 2 DKN(@)

We use the decay property of Vi given in (4.1.11)) to see that the multiple sum is absolutely convergent
2
and bounded by

aa
Myg) < > (N(b1b2))* zzmx
bu/(,0)> apay 2
1=1,2
" Cy(m) (1+d]\7(2mﬁm)>—14< m>—A (4.2.4)
Sy N(m) K DN () KDEN (%)
< (KNS

Thus we have the intermediate result M*(g) < M(g) = Mg(g) + O(kzgda(N%)?’E).

We are left with the off-diagonal term Mg(g). We shall split this sum into several pieces, then we
bound some of them using trivial estimates. For the remaining terms, where N(m;) and N(c) are
relatively small, we find bounds in Section

In the interest of readability, we fix a, and b,, ¢ = 1,2 and restrict our attention to the sums over m;
and c.

Let {¢;}jen, be a family of smooth functions such that

14

myw(bj(x) < 1, Z ¢j(%) =1, forallzeR>,ve N

Jj€No

supp ¢; C [5,4],

Define M;; = 2%, Msy; = 29 and Q; = 2!. Then, we consider for the triples (4, 7,1) the cuboids

(Nmi, Nma, Ne) € [Mis angy;) x [M22 40y;] x [9,4Q)). (4.2.5)
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For (i,j,1) € N§ we define

c m mo Cg(mp)Cy(m
=X X N aldE) D e () (42:)
€€oX cec* /o m;=(m;) ( (mlmQ))z
j=1,2
(27r)2dN(b1a%m1) (27r)2dN(b azmo) 47t /mima|e|
Vl( D3N () )V%( D3N (&) )SK(ml’sz’c)J’“—l( ] )

Thus, we have

d(_1)d%
MS(Q):4M Z ( (5152 5_, Z qu;l:@ Z szl

2
b]l(qvc)oo . ) 1,7,l€Ng
j=1,2 J=172

We consider the terms M;;; separately. Recall the bounds of the Kloosterman sum Sk given in (2.0.3)),
the bound for the product of Bessel J-functions Jj_; given in (4.1.18)) and the bound (4.1.11) for V%.

Inserting these estimates, we obtain

1
o (Nm1, Nma, Nc)2
Mg <Y S S (o (Mo () e e O

€€oX cEc* /oX my=(m;) N(mlmﬂc‘)g_a

j=1,2
(blalml) —A N(anng) —A . (1667T)d Nm1m2 k-1
X (14 et 17 T4+ 27272) ) " in X
(1 i) )y Mo ) () T
x INe” T le;I™
lej|>1

Note that 0 <7 < % The sum over the units is of constant size, i.e.
30| (R
ecoX |ej|>1

see |LO3, page 136].
Inserting this bound and using coming from the support of the ¢’s, we get the estimate

149
1 7 My; (b1a2) -4 MQ'N(b2a2)
M;; My; My )2 e = 1+ : 3 kD2 N () l)]2
]l<<( 1 2])2 Nc ( deQ N((q ))) ( k/’d %(N((c?cc))) X

( (166W)ZdQ]§41iM2j ) k-1 }Q?

Now, we consider separately the three cases when at least one of @Q;, Mi; and Mp; is relatively large.
First let

X min {1,

(64€7T)d MliMQj

Q> 1

Thus

((1667T)d MliM2j>k 1} " < ((16e7r)d MliMQj)kq .
;<

mln{l, del k’dQl
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and the sum over [ can be estimated by

k3
(16em)d /M by) T Rde-) ST g ke
@z G0 T

g 34 4m
< AR5 (M Moy ) 2
Using standard estimates for the sum over %, j we obtain the bound

549.41 MMN(bla%) —A szN(bgCl%) —-A
Z (MliMQj)4+ 1+ dn2 qc 1+ dn32 qc
et ( k DKN((W))) ( k DKN((q,c)))

9
< e rdn (4 ) SEE (N (b byadad))

Combining the estimates, we obtain

—kdy.3d+5de+d T4+2e+ 2 2\\—2
) [ Mig| < 47HRHPETDN ) 7 (N (brbaaiay))
i?jENO

which is negligible as k is large relatively to Nqc.
Now we consider the case that at least one of Mj; and My; is large. The expression is symmetric in
m1 and mso. Therefore it is enough to assume M7; to be large, more precisely

k;d-i-e D%{ N( qc¢ )

(9,¢)
My; >
o= N(bla%)

(4.2.7)

MliN(bla%) A MuN(bla%) —A
SUCh that (1 + W) S W((;;)) hOld

Summing over [, we obtain

1 16em)? /My Mo\ k-1 3 .41
Z Ql2+2s+n min{l, (( ) \ 1d 23) } < (Mlngj)4+€+gk7d(2+2€).
€N k Ql

Now, we sum over i, j, such that (4.2.7)) holds. We get

5 n s MN(bja?) \—A Mo:N(boa2) \-A
S (o) P () (1 )
D () NG N (@
Mlizw
Jj€No
< k—Aa+d(5+7a) (N(J(;%)5+4E(N(blb2a%a%))_%
Thus we obtain
— 544, _9
Z ‘Mijl‘ <k Aa+d(3+5£)(N((;177Cc)) + E(N(blbga%ag)) e
kd+5D%(N(<qycc))
Muzw
j7l€N0
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The sums over a, and b, are bounded:

S N <t (N(0182) < 1.
N(araz)? No, (g,
L= 12 =1,2
Choosing A = 100d
—97d 5+¢€
Ms(g) = O (k™75 (N 35)°") (4.2.8)
2m)d(—1 dg 1 aa
+4( ) ( l) Z (N(blbz))e 3 Z qualaQ Z Mijl
1Dk |2 bl (0,0)° No<\ RN ?) joeo
b< /B DN () =12
1=1,2
where
kiTeD2 N(25)
Mo <
. kdteDZ N
Ci=1 (i) ENG| ay < PENma) (42.9)
2
T d i .
Q< By

As k is large the error term is negligible. The triples (i, j,[) € C will be considered in the Section [4.2.2}

4.2.2 Application of Voronoi’s Summation Formula

To estimate the remaining M;j; with (i,7,1) € C, we apply the Voronoi summation formula stated in

Theorem Fix a triple (¢,7,1) € C.
We modify the sum over m; in (4.2.6) by Theorem and obtain

> Cylma)e[“24] F(my) (4.2.10)
m1=(m]__1)
m1€
1 (g ‘1) Ar /AT
SR IR ertytay (AT gy
2 (0,00)4 C(ﬁ)Q

where

F(z) = (N2)~361(32) Vs (M)Jk—l(mqu)

As ¢; is compactly supported, F' has compact support, in particular, F' satisfies the conditions of

Theorem Recall that (( )) (qu) modulo c.
The Kloosterman sum Sg(myq, e2ma; c) in the definition of M;j; in (4.2.6) changes into a Ramanujan

sum given by
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Thus, the multiple sum M;;; changes into

o iSen) (Nmay Cg(m2) N (bya3ms)
szl _GEOX T c2 ( q )% (b]( 27 )(NmQ)éV§(D2 N((C?’cc))>><
; dm JTE (4.2.11)
XZC rc / /F 27rz Jk1<( )):U

(0,00)¢

To estimate the multiple sum M;j;; we divide the sums over n into two parts depending on the size
of n, namely into Nn > (Nmg)'*® and Nn < (Nmsg)!*e. We denote their contributions by M

<
M’L]l

zgl

respectively Mi?l’ and hence M;; = MZ ol

Case I Nn > (Nmg)'*e

We denote the partial sum of the second line of extended over Nn > (Nmg)'™ by R;j.

To estimate R;;, we modify the z-integral via the substitution z z?. Let @ € N. Then, we
use integration by parts a-times in each variable. Therefore we add in the j-th step the factor
(Nz)~Y(Nz) 2174 (Nz)2™ and use |[GRO7, 5.52.1] to integrate (Nz)®™J; 1, ;(y/nz) and |GRO7,
5.52.2] to derive the factor (Nz) E+1=1J, 145 (y/maz) of F(z 2). We use the prZ)duct rule to derive
F(2?) and obtain a sum. By the properties of ¢; and V1 as well as the estimate ) for the Bessel

J-functions we obtain that the whole expression is bounded uniformly in & by:

/ / 2m dJk 1(04(722?2)6&

< INC|2" e (5)" [ [t W (Batia) 3 (Vma)f (v as

G1>1 (000) @)’ 055za

< ]I ’€j|7n|NC’2nVM”<$>% > (Nma)s /",

lej|>1 0<B<a

The second bound follows by the compact support of ¢;. Now we sum over n, to get

Rij < H le;| 7| Ne|*1y/ My; Z Cg(n)e[n(a(c:q))} (]\}n)g Z (NmQ)g\/M—ua—,B

lej|>1 Nn>(Nmg)lte ¢ 0<B<
< T lejl™" INeP" /My (Nmg)™ 55542540 5™ (Nmg) 7 /My
lej|>1 0<B<a

Inserting this estimate into (4.2.11)) and summing over ¢, ¢ and mg we obtain that M = is bounded by

M=

—142 5—5—€5+3 B a=p
ijl <<Ql +77M2 M22] PR AR Z \/ng v/ My;

0<p<a

Now we sum over 4, j and [, using the bounds ([#.2.9), i.e. M, < (N¢)k%e, (N¢) < Q; < (N¢)k® and

Msy; > _ ey We get
2j = (6den) My, - &

d(2 8 2—Ze+6e
( Z): |M35)| < RICT5H8) (N (85) 57250, (4.2.12)
i,7,0)eC

71



Finally we choose o = (g} to see that this part is negligible.

Case IT Nn < (Nmg)'*e
To get a bound for the sum containing small n, we have to estimate the integral more carefully.
We apply (4.1.17) to reformulate the product of the two Bessel J-functions. Let

V(z) = (Nz) 261 (5E) Vi (M) (4.2.13)
q,c

Then the integral in (4.2.10) changes to

2dRe/ /// I ey + g i (s (4

00)d  (0,00)4

dy
) )V(ﬁ) dx Nil

By the compact support of V and the rapid decay of J;_; this multi-integral is absolutely convergent.

d

Extending the region of integration of the integral over x to the region (—oo, 00)® we see that this is

([OOOO)[ V(x)e{ciy] dz = \7(6217)

As V is compactly supported in [A{f" ,4Mj;], we obtain the trivial bound

the Fourier transform of V:

71
V(52| < Vo 14214
()] < (1.2.14)
We have to consider the integral
d cq 2 l d'y
2 o lePma)y] 3 (4 mmale] (22 2 )N; (4.2.15)

Again we divide the integral. We introduce a smooth partition of unity given by the three smooth

functions {¥;, ¥, ¥, } satisfying the following properties:
supp¥; C [O,Mlli_E(Nc)_z], supp¥ C [%Mlli_a(Nc)_z, (Nc)2k4d], supp¥, C [%(Nc)zk‘ld,oo)

and
v

deiyy\I/* < 1lforveNy, Y(y)+¥(y)+Vyu(y)=1foralyecRT.

First we estimate the integral over ¥;. We consider V and note that N v < Mlli_‘s(N ¢)~%4 then we use

integration by parts S-times to obtain
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Thus, we get

d
2d/ /\Ijl ) [( (Cq) —|—| |2m2 JJk 1(477\/ ‘ ’( ) )]\[?;/
(0,00)¢ B
< T lel a2
lej|>1

For the integral over ¥, we estimate the Bessel J-function by |GR07, 8.451.1] and use the trivial
estimate for V given in (4.2.14). We obtain

2d/---/\vu<Nv>T7(C§) (052 e y] Ty (1 glel (S2) )Z‘?
< H l&;| 7T ME (N (nms)) ™ (N¢) " k24,
jej1>1

We now use the estimate (4.1.3)) and trivially estimate the Ramanujan sum by ¢(c). We sum over n,
msg and ¢ to obtain that M ijl with the integral restricted to the support of ¥,, ¥; is bounded by

STl Y e m e 2L e

€€o |ej|>1 Nn<(Nmg)lte
ma
cec* /oX

_Besd 1
X [MliﬁeJrz + Mfi(N(”mﬂ)i(NC)lkZd]

1 Be—i- 1, —2d 1 5492¢
<<E[Mh MR+ (N R MM |-

Then, summing over (i, j,1) € C by using the same estimates as for (4.2.12)) and choosing = [%1 we
see that this part is bounded by

O((Ne) 1k~ 1+¢). (4.2.16)

We are left with M < where the integral (4.2.15)) is restricted to the support of . We rewrite the
Bessel J-function Wlth [GRO7, 8.411.1] and define V(i) V(i) \I/(N'y) Thus the remaining part
is given by

)
Mg = Y o ‘Nd |NCI_2 i / / —Hk=DTH(O) (4.2.17)

1
cec* /0% 2

X Z Z ¢j(N27?2)7"c (627712 - n((c?q))*) Cg(n)Cg(m2) V% ( N(an%n?) ) X

2 q
ecoX Nn<(Nm2)1+5 DKN((‘M )

/ / €0 4 |ef2my + 2y/mmgle] (

(0,00)¢

) sin)7]V(y) dy dé.

To estimate the integral over fy, we divide the (n,ms,8)-hypercube into two parts, according as to
N(n Cq) + |€|?ma + 2, /nma|e |( c.q) )2 sinf) > N((qc))kdb or < N(( c))k‘db with a constant b € (—1,0)

to be chosen later.
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. AL
Case IL.i N(n% + |e|?mso + 2«/nm2]e|(@)2 sing) > N(%)kdb
In this case we apply integration by parts to the integral over 7. Therefore we consider the derivatives
of V(7). Let a € N¢, and denote by C[‘% and f(g)(l) the aj-fold derivative in the j-th variable,

j=1,...,d. Then

d% =0
e’ ()= > C(g,z,g)V(J(%)(NI)@\II@(NZ)
di ptr+o=a
< S ME(My)Hl @ Ew(N)
ptrt+o=a
Iij:(),...7uj

because the derivatives of V can be estimated via the chain rule.
Now we apply integration by parts to the v integral [a; + 7n;]-times in the j-th variable, j =1,...,d,
where 0 <n; =1 < 3 L if |¢;| > 1 and zero else. We choose a; = « for all j.

Thus, we obtain

[ [ el s tepms + 2y mlel (5
(0,00)¢

1 K
< Z Mf;r*c*% // (Nl)faflllf(Nl)lfﬁdlx

Kjtvjtoj=a+n
H:O,...,l/j
j=1,...d

x N(n Cq + le|*ma + 2/nm H( ; ) sing) "

) 1
< N (S o |ePmy + 2y/mmalel (S2) 2 sing) ™" ST Mg (Ml
uj+uj+o]—a+77

) 51110) }V(’y) dry

1— —
T M| (Ne)=2< Ny <k4d

[un

) SRk (Ne)2+n)

< T 1677 (N (5 o+ felme + 2y/mma (5

‘€j|>1

Next, we sum over n, ms, ¢ and €. The Ramanujan sum r, (62m2 —n( (qu))*) is trivially bounded by

Euler’s ¢-function ¢(c).

Then summing over n with Nn < (Nmgy)'*® and making use of the lower bound for the factor
1

N(n% + |elma + 2,/nm2(@) 2 sinf) we obtain

> Gm)(NmYs 2)sing)) "

Nn<(Nmg)lte

(V) (g

o (4

Thus, the sum over mo and n is dominated by

Nmz |C m2)| (52321112) N —a—n7 —(a+n)db N 142e
Zd}j . NmQ)é (D2N(( )))( wa) k (N'my)

—o—ng — dbq5t3e
< (NZ5) (ot A2

As above, the sum over the units € is O(1). The integral over 6 is trivially bounded by (27)¢, and
using trivial estimates for the sum over ¢, we obtain that the expression (4.2.17)), restricted to
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)2 sinf) > N (2%, is bounded by

N(neD + |e*mg + 2 /nimg]e| (22

(a,¢
: 2(a+n)
—a—1; —(atn)db 1 ro+3e ;2 —a(l—e)
< (V)™M My P (4.2.18)
1i S c 1
Case II.ii N(n% + |e[2ma + 2.,/nma| (( qq))2 sinf) < N((;?’cc )b
We use quadratic extension to rewrite
N(n@Jr lef*ma + 2y/mmale (%22 sin Q)
:N((\/‘(c@)% \/7‘6‘) +2\/7’ |( q)%(l—l-sing)).

Note that both summands are non-negative. Thus, we extend the sum if we replace the conditions on

n,ma, € and 6 by the conditions

N

N(vn(tl)s — yimale)® < (N 25)k®, (4.2.19)

IN(1 +sin )] < k%D,

The condition on 8 is equivalent to

56 <k (4.2.20)
as 6 € (—m, ) for all j.
We have to estimate
¢l(‘NC|) Mg ) . ) )
2 NP N ()b Yo D ¢i(Bg)re(Eme —n(Ey)") (4.2.21)

cEc* foX €€oX Nn<(Nmg)lte
n= (n ,Mo= ( 2)

4.2.19)

y Cg(ﬂ)c (m2)V < (bz%mz))X

1 / // /‘ —i(k—1)Tr(0) ( (C%;])+|€|2m2+2\/m‘6‘((0q‘1)

To begin with we estimate the two multiple-integrals.
Recall that V is a product of the three functions \7(%), NLV and W(Nvy). Using the trivial estimate

(4.2.14)) for V and the support property of ¥ we obtain that the y-integral is bounded by

< v/ Mli 10g(NC]{?d).

The @-integral over the domain (4.2.20) can trivially be bounded by

)2 sin0)y]V(y)| dy do.

< 24T

We are left with the summation over n, mg, ¢ and €. By the condition (4.2.19) and our choice of the
fundamental domain F we obtain that |e;| < (N%)ik% forall j=1,...,d.
Now, we write n e (’]q = |e|*mg+h with h € F as n,mg € F to change the summation condition (4.2.19)

. b
into Nh < (Nﬁﬁkdz./mg.
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We estimate the Fourier coefficients by (4.1.3).

Thus, the sum over A and mg is bounded by

3 |Cy((mael? + h))Cy(ma)| . ¢ N(b2a3ms) Lo CLo
;i ( re(|h]) Vi <L My T8 (N2 ) 2 k%,
m2:(m2)
1 db
Nhg(Nﬁ)?kT\/nfTQ

As a consequence, the sum over € is bounded by

Z 1< 1.

ecoX

1 b
|€j|<( (qc)) 2d k2

Finally we sum over ¢ € ¢*/0* to see that (4.2.21)) can be estimated by

1
< (]\6}25)3 (N &) 2RO 24e) /My My (4.2.22)

Combining the bounds (4.2.18]) and (4.2.22) we get

3 1 2(a+n)
—a—n; —(a+n)db y y3+3e 5 p3—a(l—2) & Qi e g1, 142
Mwl < (N(T?T)) —(etn) Mg, ™ My, e + o) (N%P Ed—3 E)JMhMQj 3

Thus, we are left with the summation over (i,j,1) € C. We recall that n < % Considering the

definition (4.2.9) of C, we have on @Q; the upper bound @Q; < \/My;Ma;k~% which implies that M;
—a 1 _1
is bounded by M, (1=ekta (M2;(k9Q;)=2)* 2. The sum over i contains log(k:dNﬁ) elements. If

the exponent is positive the upper bounds for M, are given in (4.2.9). Further we use Q; < (IV (qc) )kede

to obtain

—ae+3 o _1_a
D IME] < (N ) T R0 (N (by03)) 7S (4:2.23)
(i,5,1)eC
6 q _1 _
+ (V) RTINS (N (Baad)) 7 (N (b263)) ™!
lig., L. 6 3 e
< (NQ)2 3777 4 (N 5)% (N ) R (4.2.24)

The second estimate follows by choosing b = —1 + 3¢ and a = [1].

The sums over a, and b, are bounded by

XqC(a1a2) dnr_gc \€ e—1 dar_qc \2¢
2 N(aw) < FNag) > (N (b1b2))2 < (KN g) ™
Na,<, [kt D3 N(L5) b.[(q,c)>°
—t2 b, <, /kI+< DI N ((25)
1=1,2
Combining the results (4.2.8]) with (4.2.12), (4.2.16) and (4.2.23) we obtain
Mg (g) < k%% (N¢)* (N (L5)™. (4.2.25)
Then by (4.2.3)), (4.2.4) and (4.2.25) Theorem is follows. O
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Chapter 5

Appendix

5.1 Whittaker Functions
The Whittaker function is solution of a differential equation. More precisely, see |GR07, 9.220], the

equation
d>W 1 a -0
- I W =0
dz? * < * z * 22 )

4

has the two linearly independent solutions
M, p(z) = zb+%e_%<1>(b —a+3,2b+1;2),
M, _p(2) = z_b+%e_%<b(—b —a+3,-2b+1;2).

Then the Whittaker function is given by

5.2 Bessel Functions

The Bessel functions are solutions of the differential equation
&z, 1dz, V2
- 1—;)2 =0,
dz? * z dz + ( 22)7Y

for v € C, see |GRO7, 8.40]. For |arg z| < 7 the Bessel function of the first kind .J,,(z) is given by the

series
v X ZQk

—1)* .
k:O( )22kk:!F(V+k+1)

1\3‘1\2
N

Ju(z) =

The modified Bessel function I, is defined as

1 in
e 2™ (e2z), for —7m<argz<73,

I,(z) = _
e‘%””.],,(es%z), for § <argz <.

7



We write J;S to denote J, and J,, for the modified Bessel function I,,.
The modified Bessel K-function is defined as
%iegi” (Ju(iz) + 1Y, (iz)), for—m <argz <%,

eI (T (~iz) — Yy (~i2), for § <argz<m

where Y, (z) = ——[cos(mv)J,(z) — J_,(2)].
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List of Symbols

’ Symbol ‘ Page ’ Symbol ‘ Page
Au(n) 10 sgn’[n] 30
A1 10 Ly(s; ) 30
Ck(s,v) 11 -
Xae(n) 09 h(z) 2_7
L(s, Xqc) 59 h(s;e) 29
L(f®g,s) 59 By 30

h(n1,n2) 39
efa] %[ [H]e(: ) 33
Sk (m,n;c) 9 [[A])e(; @, 85 €) 34
U(z) 13 B
Uy (z) 13 Smn(a, B8,&[hle) |34
Cy g A:e'i_ i
nfz] 14 Q. (r;a, B3 h) 37
aly] 14 Uy (a, B: h) m
K[6] 14 Av(g,w) 47
W 14 =u(t g,w) 47
eji E Mk (g,w) §
Q; 14
Yn(g) E .
Ey(g;s,v) E fly @
Ky 18 (f1, f2) 57
ov z Wq E
nv(-) 21 ng(q) 57
ay 21 Cg(l‘l) 57
Bof 22 Ji(@) 64
Hy (s) 23 B
B M#(g) 66
Z(g,w; K) 26 M(g) 66
Cx(g,w) 26 M; 66
I(z; 9,w) 26 Mg 66
Jo(z; 9,w) 27 My; &
I4(z59,w) 27 My, 68
() (z;9,w) 6 Q 68
b 68
W (z) 27 M, 68
W (27,0) 23 M, 70
W, (s;e;,0) 2 M, 70
W+(31,32721,23) 45 Ml%.’l E
B (ar, B; ) X V() 72
Dp(a, % h) 28 V(1/7) 72
Dy(s, a;v; 9) 30 V(y) 73
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