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Summary 

With the beginning of Central European agriculture in the Neolithic, man-made landscapes have 

been created, which are characterized by arable land cultivated with crops and grasslands needed 

for livestock farming. In these traditionally non-intensively farmed areas, a variety of animal and 

plant species have found a habitat. However, the industrialization of agriculture since the middle 

of the 19th century has been accompanied by an intensification of the management regime (in 

particular through the use of synthetic fertilizers and pesticides). This, in turn, has led to a strong 

decline in biodiversity in European agricultural landscapes within the last 50 to 60 years. The 

arable flora, which consists mainly of competitively weak plant species, has been particularly 

negatively affected by agricultural intensification. However, the maintenance of a rich arable flora 

is essential, as it is the basis of the food chain in agroecosystems (e.g. as a food source for many 

insects and farmland birds) and is therefore also crucial for the preservation of important 

ecosystem functions. Various conservation approaches, such as the introduction of agri-

environment measures by the European Union, have not yet been able to stop the ongoing loss 

of the arable flora in large parts of Europe's primarily conventionally managed farmland. Thus, 

further research is needed with respect to the current drivers of the plant diversity in 

conventionally managed fields (especially considering the effect of crop type and the landscape 

context) and which specific measures can effectively counteract the continuing impoverishment 

of the arable flora. In addition, currently conducted arable plant surveys strongly vary in their 

methodologies, making it difficult to reliably assess the conservation status of the arable flora and 

possible effects of conservation measures on a supra-regional scale. Here, the definition of a 

suitable standard arable plant monitoring approach is needed. 

Based on the above-mentioned research needs, the present thesis is dedicated to the following 

research topics: Studying 200 conventionally managed arable fields, Chapter 2 shows the current 

state of the arable flora (species richness, abundance and composition) and investigates which 

factors (location in the field, cultivated crop, management regime, edaphic and landscape context) 

have a significant influence on the arable plant diversity. Chapter 3 compares four agri-

environment measures with regard to their effect on the arable plant vegetation within a two- to 

three-year study period. The measures were implemented in 67 arable fields and included i) 

conservation field margins, ii) annual fallows, iii) alternately managed biennial flower strips and 

iv) perennial flower strips. Before implementation, all measures were adapted with the 

participation of farmers and other relevant regional stakeholders (e.g. agricultural advisors, 

hunters, beekeepers, scientists, conservation authorities and organizations) to increase their 

effectiveness and acceptance. Based on 45 conventionally managed fields, Chapter 4 finally 

compares the efficiency (number of species recorded in a field and time required) of six 

established or newly developed survey methods for the assessment of the arable plant diversity. 

The research was conducted in the predominantly conventionally managed agricultural region of 

the districts of Nienburg and Diepholz (Lower Saxony, Northwest Germany) from 2016 to 2019. 

This thesis shows that the current arable plant diversity of conventionally managed fields has 

reached a historical minimum. Today, the field interior is of almost no relevance as a habitat for 

arable plants (median species number and cover: 2 species and 0.5 %) and significant occurrences 

are only found in the field edge (median species number and cover: 11 species and 4 %; 
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Chapter 2). The most important factors determining contemporary arable plant diversity in the 

field edge were the crop type and the presence of adjacent habitats (i.e. grass strips, hedges and 

ditch margins). Today's arable flora is severely impoverished and dominated by few widespread 

plant species, which are able to cope with the intensive management. Characteristic arable plant 

communities formerly associated with the specific management of crop types or soil factors are 

no longer detectable. The findings about the impoverishment of the arable flora presented here 

are transferable to a large part of Western and Central European farmland. Thus, there is an 

urgent need for action within the Common Agricultural Policy to counteract a further 

impoverishment of arable flora, related negative effects on dependent organism groups and the 

endangerment of important ecosystem services in agricultural landscapes. This requires the 

implementation of ecologically efficient measures on a large scale. The four agri-environment 

measures investigated in this thesis showed a similar positive effect on the arable plant diversity 

and abundance within the two- to three-year study period (median number of species and cover 

across all measures and years compared to conventionally managed field edges: 21 vs. 9 species 

and 68.5 vs. 9.5 %; Chapter 3). However, in order to preserve the arable plant diversity in the 

longer term, the establishment of conservation field margins and annual fallows are more 

suitable. Due to their adaptation for practicability on a modern conventional farm, all agri-

environmental measures tested here are expected to have a high acceptance among farmers. 

Thus, all measures tested are recommended for consideration in national or international agri-

environment schemes. Nevertheless, since many once widespread arable plant species are 

nowadays restricted to few arable fields, the introduction of such plant species via seed mixtures 

of local provenance should be considered in order to promote arable plant diversity at field level 

and to prevent the (local) extinction of rare species.  

In addition, during the implementation of the agri-environment measures, it was found that 

different weather conditions in the study years can lead to significant changes in the observed 

arable plant species richness and cover. This supports the assumption that multi-year monitoring 

is absolutely necessary for a reliable evaluation of agri-environment measures. In this context, the 

choice of survey methodology can have a considerable influence on the monitoring results. This 

thesis demonstrated that the different currently applied arable plant survey methods lead to 

significantly different results regarding the recorded arable plant species pool of a conventionally 

managed field (Chapter 4). To analyze the future development of the arable flora and the 

effectiveness of implemented agri-environment measures in a larger spatial and temporal context, 

a standard national or international monitoring system is required, which should ideally be 

implemented within the framework of the Common Agricultural Policy. By capturing a large part 

of the arable plant species pool of a conventionally managed field (median: 75.6 %) in a 

reasonable time (median: 20 minutes), this thesis presented an elongated plot of 500 × 1 m at the 

field edge as a promising survey method, which is recommended as future standard for arable 

plant monitoring. 
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Zusammenfassung 

Mit Beginn der mitteleuropäischen Landwirtschaft im Neolithikum entstanden durch den 

Menschen geformte Agrarlandschaften, welche bis heute durch den Anbau von Kulturfrüchten 

und Grünlandwirtschaft zur Viehhaltung geprägt sind. In diesen traditionell extensiv 

bewirtschafteten Nutzflächen hat eine Vielzahl von Tier- und Pflanzenarten einen Lebensraum 

gefunden. Mit der Industrialisierung der Landwirtschaft seit der Mitte des 19. Jahrhunderts ging 

jedoch eine intensivierte Nutzung von Agrarflächen einher (insbesondere durch den Einsatz von 

synthetischen Dünge- und Pflanzenschutzmitteln). Dies wiederum führte zu einem Rückgang der 

Artenvielfalt in europäischen Agrarlandschaften innerhalb der letzten 50 bis 60 Jahre. Die 

Ackerbegleitflora, welche überwiegend aus konkurrenzschwachen Pflanzenarten besteht, wurde 

besonders negativ von den intensivierten ackerbaulichen Nutzungspraktiken beeinflusst. Der 

Erhalt einer reichhaltigen Ackerbegleitflora ist jedoch essenziell, da diese ein wichtiges 

Fundament der Nahrungskette in Agrarökosystemen darstellt (u.a. als Nahrungsquelle für viele 

Insekten und Agrarvögel) und somit auch wichtig für den Erhalt bedeutender 

Ökosystemfunktionen ist. Unterschiedliche Schutzbestrebungen, wie etwa die Einführung von 

Agrarumweltmaßnahmen durch die Europäische Union, konnten den fortschreitenden Verlust 

der Ackerbegleitflora in weiten Teilen der hauptsächlich konventionell bewirtschafteten 

Agrarflächen Europas bislang nicht aufhalten. Es besteht daher noch weiterer Forschungsbedarf 

hinsichtlich der Faktoren, welche die Ackerwildkrautdiversität in konventionell bewirtschafteten 

Feldern derzeit bestimmen (insbesondere unter Berücksichtigung verschiedener Kulturfrüchte 

und des Landschaftskontextes) und der spezifischen Maßnahmen, die der fortschreitenden 

Verarmung der Ackerbegleitflora effektiv entgegenwirken können. Darüber hinaus unterscheiden 

sich derzeit durchgeführte Erhebungen der Ackervegetation zum Teil erheblich in der 

zugrundeliegenden Methodik, was eine verlässliche, überregionale Bewertung des 

Erhaltungszustandes der Ackerbegleitflora und möglicher Effekte von Schutzmaßnahmen 

schwierig macht. Hierfür ist die Definition eines geeigneten Standard-Ackerwildkraut-

Monitoring-Ansatzes notwendig. 

Basierend auf dem oben genannten Forschungsbedarf widmet sich die vorliegende 

Abschlussarbeit den nachfolgenden Forschungsthemen: Durch die Untersuchung von insgesamt 

200 konventionell bewirtschafteten Ackerschlägen stellt Kapitel 2 den aktuellen Zustand der 

Ackerbegleitflora dar (Artenreichtum, Abundanz und Zusammensetzung) und überprüft, welche 

Faktoren (Position im Ackerschlag, angebaute Kulturfrucht, Bewirtschaftungsregime, edaphische 

und landschaftsbezogene Standortbedingungen) heutzutage einen wesentlichen Einfluss auf die 

Ackerwildkrautdiversität haben. Kapitel 3 vergleicht die Effekte von vier 

Agrarumweltmaßnahmen auf die Ackerbegleitflora innerhalb eines zwei- bis dreijährigen 

Untersuchungszeitraums. Die Maßnahmen wurden auf insgesamt 67 Ackerschlägen umgesetzt 

und umfassten i) extensiv bewirtschaftete Ackerflächen, ii) einjährige Bracheflächen, iii) 

alternierend bewirtschaftete, zweijährige Blühstreifen und iv) mehrjährige Blühstreifen. Vor der 

Umsetzung wurden alle Maßnahmen in Kooperation mit Landwirten und anderen relevanten 

regionalen Akteuren (z.B. Landwirtschaftsberatern, Jägern, Imkern, Wissenschaftlern, 

Naturschutzbehörden und -organisationen) angepasst, um ihre Wirksamkeit und Akzeptanz zu 

erhöhen. Basierend auf insgesamt 45 konventionell bewirtschafteten Ackerschlägen, werden in 

Kapitel 4 schließlich sechs etablierte oder neu entwickelte Erhebungsmethoden zur Erfassung 

der Ackerwildkrautdiversität hinsichtlich ihrer Effizienz (erfasste Artenzahl eines Ackerschlages 
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und Zeitaufwand) miteinander verglichen. Die Forschungsarbeiten wurden in der überwiegend 

konventionell bewirtschafteten Agrarregion der Landkreise Nienburg und Diepholz 

(Niedersachsen, Nordwestdeutschland) von 2016 bis 2019 durchgeführt. 

Diese Arbeit konnte zeigen, dass die heutige Ackerwildkrautdiversität konventionell 

bewirtschafteter Äcker ein historisches Minimum erreicht hat. Das Feldinnere hat dabei fast keine 

Relevanz mehr als Lebensraum für Ackerwildkräuter (Median-Artenzahl und -Deckung: 2 Arten 

und 0,5 %) und nennenswerte Vorkommen sind nur am Ackerrand vorzufinden (Median-

Artenzahl und -Deckung: 11 Arten und 4 %; Kapitel 2). Die bedeutendsten Faktoren, welche die 

heutige pflanzliche Diversität im Ackerrandbereich bestimmen, waren die Art der angebauten 

Kulturfrucht und das Vorhandensein angrenzender Habitate (Feldraine, Gehölzstreifen und 

Grabenränder). Die heutige Ackerbegleitflora ist stark verarmt und wird von wenigen weit 

verbreiteten Ackerwildkräutern dominiert, welche fähig sind, das intensive Management zu 

überdauern. Charakteristische, ehemals mit dem typischen Management der Kulturpflanzenarten 

oder Bodenfaktoren verbundene Ackerwildkrautgesellschaften sind nicht mehr identifizierbar. 

Die hier dargestellten Erkenntnisse zur Verarmung der Ackerbegleitflora sind auf einen Großteil 

des West- und Zentraleuropäischen Ackerlandes übertragbar. Dies zeigt den dringenden 

Handlungsbedarf seitens der Gemeinsamen Europäischen Agrarpolitik auf, um einer weiteren 

Verarmung der Ackerbegleitflora, negative Auswirkungen auf abhängige Organismengruppen 

und der Gefährdung bedeutender Ökosystemleistungen in Agrarlandschaften entgegenzuwirken. 

Dazu bedarf es der großräumigen Umsetzung von ökologisch effizienten Maßnahmen. Alle vier 

der im Rahmen dieser Arbeit untersuchten Agrarumweltmaßnahmen zeigten eine vergleichbar 

positive Wirkung auf die Ackerwildkrautartenvielfalt und -abundanz innerhalb des zwei- bis 

dreijährigen Untersuchungszeitraumes (Vergleich der Median-Artenzahl und -Deckung aller 

Maßnahmenflächen mit konventionell bewirtschafteten Ackerrändern bezogen auf den gesamten 

Untersuchungszeitraum: 21 vs. 9 Arten und 68,5 vs. 9,5 %; Kapitel 3). Um jedoch die 

Ackerwildkrautdiversität auf längere Sicht zu erhalten, ist die Anlage von extensiv 

bewirtschafteten Ackerflächen und einjährigen Bracheflächen geeigneter. Alle hier untersuchten 

Maßnahmen dürften aufgrund ihrer Anpassung an die landwirtschaftliche Praxis in modernen 

konventionellen Betrieben eine hohe Akzeptanz unter Landwirten aufweisen. Daher werden alle 

in dieser Arbeit untersuchten Maßnahmen zur Berücksichtigung in nationalen oder 

internationalen Agrarumweltprogrammen empfohlen. Da heute das Vorkommen vieler typischer, 

einst weit verbreiteter Ackerwildkräuter auf wenige Ackerflächen beschränkt ist, sollte weiterhin 

die Einbringung solcher Pflanzenarten über Regio-Saatgut bedacht werden, um die 

Ackerwildkrautdiversität auf Feldebene zu fördern und das (lokales) Aussterben seltener Arten zu 

verhindern.   

Zudem wurde während der Umsetzung der Agrarumweltmaßnahmen festgestellt, dass 

unterschiedliche Witterungsbedingungen in den Untersuchungsjahren zu signifikant veränderten 

Artenzahlen und -deckungen der Ackerbegleitflora führen können. Dies verdeutlicht, dass zur 

verlässlichen Evaluierung von Agrarumweltmaßnahmen ein mehrjähriges Monitoring zwingend 

notwendig ist. Die Wahl der angewandten Erhebungsmethodik kann hierbei einen 

entscheidenden Einfluss auf die Monitoring-Ergebnisse haben. So konnte diese Arbeit zeigen, 

dass die unterschiedlichen derzeit angewandten Erhebungsmethoden zur Erfassung der 

Ackerwildkrautdiversität zu signifikant unterschiedlichen Ergebnissen hinsichtlich des erfassten 

Ackerwildkraut-Artenpools in konventionell bewirtschafteten Äckern führen (Kapitel 4). Um die 

zukünftige Entwicklung der Ackerbegleitflora und die Effektivität von Agrarumweltmaßnahmen 
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im größeren räumlichen und zeitlichen Kontext analysieren zu können, bedarf es daher eines 

einheitlichen nationalen bzw. internationalen Monitoringsystems, welches idealerweise im 

Rahmen der Gemeinsamen Europäischen Agrarpolitik implementiert werden sollte. Die 

vorliegende Arbeit konnte diesbezüglich zeigen, dass ein langgestreckter Plot von 500 × 1 m am 

Ackerrand eine vielversprechende Methode darstellt, um einen Großteil des Ackerwildkraut-

Artenpools in konventionell bewirtschafteten Äckern (Median: 75,6 %) in einer vertretbaren Zeit 

erfassen zu können (Median: 20 Minuten). Diese Methode wird daher als zukünftiger Standard 

für das Ackerwildkraut-Monitoring auf konventionellen Ackerschlägen empfohlen. 
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1.1 The importance of agricultural landscapes as habitat 

Central European agriculture originated in the Neolithic (7500-6000 years before present) when 

humans began to settle, manage grassland for livestock farming and cultivate crops (Leuschner 

and Ellenberg, 2017a, 2017b). With the beginning of the agricultural practices, the historical 

landscape was likely a mixture of small-scale agricultural areas embedded in primeval habitat 

types such as marshes, bogs and forests (Hampicke, 2018). Today, nearly the half of the EU 

territory is under agricultural production with roughly two thirds of the area used as farmland 

cultivated with crops and one third as permanent grasslands (European Commission, 2015). The 

same ratio of farmland to grassland also applies to Germany (Bundesministerium für Ernährung 

und Landwirtschaft, 2017). 

Non-intensively managed, small-scale and structurally diverse agricultural landscapes, as typical 

for historical traditional agriculture, created suitable habitat conditions for many species of 

different organism groups, e.g. farmland birds, arthropods, mammals or plants (Albrecht et al., 

2016; Billeter et al., 2007; Hampicke, 2018; Poschlod and WallisDeVries, 2002; Šálek et al., 2018; 

Tscharntke et al., 2005; Zellweger-Fischer et al., 2018). For instance, Donald et al. (2006) 

classified 74 bird species as primary taxa of farm- and grassland in Europe. In addition, 1293 of 

6185 vascular plant taxa known to be endemic to Europe occur in grassland habitats and 187 of 

in total 436 European butterfly species with known habitat preferences are considered as 

grassland specialists (Hobohm and Bruchmann, 2009; WallisDeVries and Van Swaay, 2009). 

Moreover, about 300-350 plant species are associated with arable habitats in Central Europe 

(Leuschner and Ellenberg, 2017a). Given the considerable proportion of agricultural area in the 

EU as well as in Germany and the large number of associated species puts the importance of 

agricultural landscapes for biodiversity beyond question. Moreover, maintaining this biodiversity 

is also important for agricultural production through providing ecosystem services, such as 

pollination or pest control (Dainese et al., 2019). 

 

1.2 The arable plant vegetation 

One species group that particularly depends on frequently disturbed man-made habitat 

conditions are arable plants (also called segetal plants). Since the beginning of arable land 

cultivation many plants have adapted to this special kind of anthropogenic habitat (see Chapter 

1.1). For Central Europe, most of them are archeophytes originating from West Asia and 

Mediterranean countries (Albrecht et al., 2016; Meyer and Leuschner, 2015), i.e. species, which 

immigrated by human activities (e.g. transport via agricultural commodities such as cereal seeds) 

before the year 1492, but then could reproduce and establish themselves without further human 

intervention (Frey and Lösch, 2010). As the majority of arable plants are therophytes, their 

persistence relies on a continuous maintenance of the soil seed bank (Storkey et al., 2012), e.g. by 

natural spread or the use of regional crop seeds, which traditionally contained locally adapted 

weed seeds (Bergmeier and Strid, 2014). Driven by edaphic factors (acidic vs. base-rich), climatic 

conditions, crop type and related cultivation techniques (root crops or cereals; summer or winter 

crops), arable plant species formed different characteristic plant communities, which have been 

defined by the presence and frequency of specific plant taxa in a phytosociological hierarchical 

system (Hüppe and Hofmeister, 1990; Meyer et al., 2015). In addition, arable plant assemblages 
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have also been classified into ecological groups related to specific site conditions (Hilbig et al., 

1962; Hofmeister and Garve, 2006; Kaussmann and Kudocke, 1973). For Germany, Hofmeister 

and Garve (2006) list 287 species associated with typical arable plant communities with most of 

them being competitively weak and only few (about 30 species) may have negative effects on 

crop yield. However, European plant surveys of arable habitats normally consider all recorded 

herbaceous species as belonging to the arable plant vegetation, including plant species which 

mainly occur in ruderalized grasslands or hedges but occasionally spill over into arable fields. In 

this thesis, the analyses of species richness and cover in conventionally managed farmland are 

based on both all observed herbaceous species and typical arable plant taxa associated with 

specific arable plant communities according to Hofmeister and Garve (2006). If the latter group 

is meant, hereafter the terms 'arable plants sensu stricto' or ‘typical arable plants’ are used.  

The arable plant vegetation is of great importance in agroecosystems not only for different 

species groups of the upper food web but also by contributing to ecosystem services. The plants 

provide food for rodents, the soil macrofauna (through the soil seed bank), seed-eating birds as 

well as phytophagous and pollinating insects (Fischer and Türke, 2016; Franke et al., 2009; 

Gabriel and Tscharntke, 2007; Heydemann and Meyer, 1983; Hyvönen and Huusela-Veistola, 

2008; Marshall et al., 2003). Several insect species even rely on the occurrence of specific arable 

plant taxa in their life cycle (Marshall et al., 2003). Increased insect biomass through a species-rich 

and abundant arable plant vegetation, in turn, can serve as food source for insectivorous bird 

species (Marshall et al., 2003). In addition, a sufficiently dense arable plant vegetation can serve as 

erosion control and reduce nutrient leaching in periods when crop vegetation is missing (e.g. after 

harvest; Fagúndez, 2014; Gholamhoseini et al., 2013). By providing habitats and food sources for 

pollinating insects and natural enemies, the segetal flora can also contribute to pollination success 

and pest control in crops (Franke et al., 2009; Gabriel and Tscharntke, 2007; Hawes et al., 2003; 

Hyvönen and Huusela-Veistola, 2008; Médiène et al., 2011). Besides, arable plants have also an 

aesthetic value in cultural landscapes and contribute to people's well-being (Albrecht et al., 2016).  

 

1.3 The impact of agricultural intensification on the arable flora 

With the agricultural industrialization and related rapid advances in agricultural production 

techniques since the middle of the 20th century, crop yields in conventionally intensively used 

farmland have greatly increased, and today are on average three times higher than 50 years ago 

(Hampicke, 2018). On the one hand, raised yields made it possible to reduce food shortages with 

respect to the exponentially growing world population (Firbank, 2005). On the other hand, 

intensified agricultural land use has caused serious environmental problems, such as chemical 

pollution of soil and water (e.g. due to residues of pesticides and nitrogen leaching) and the 

strong decline in farmland biodiversity (Garibaldi et al., 2017; Sánchez-Bayo and Wyckhuys, 2019; 

Stoate et al., 2001).  

One species group that has been particularly affected by the agricultural intensification is the 

arable plant vegetation, for which a sharp decline in species richness and abundance has been 

reported in Europe (Richner et al., 2015; Storkey et al., 2012). For instance, comparing the arable 

plant vegetation of the 1950s/60s with resurveyed plots in 2009 in Central Germany, Meyer et al. 

(2013b) found a decline in the plot-level species richness by about 70 % and a reduction of the 
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plant cover from 30 to 3 %. The plot-level decline of the arable plant species richness was 

accompanied by an overall impoverishment of the regional arable plant species pool by 23 % 

(Meyer et al., 2013b). Several studies showed that the impoverishment is most pronounced in the 

field interior, whereas field edges exhibited slightly higher arable plant diversity and abundances, 

probably due to less intensive management and plant spillover from neighboring habitats (Aavik 

et al., 2008; Batáry et al., 2017; Fried et al., 2009; Meyer et al., 2013b; Nagy et al., 2018). Today, 

the arable plant vegetation belongs to one of the most threatened species groups in Central 

Europe with many red-listed species (Albrecht et al., 2016; Korneck et al., 1996; Leuschner and 

Ellenberg, 2017a; Richner et al., 2015; Still and Byfield, 2007; Storkey et al., 2012; Van Calster et 

al., 2008). A study of Meyer et al. (2015) in Central Germany revealed that floristic differences 

related to specific crop management and site conditions can hardly be detected today and typical 

arable plant communities are replaced by an impoverished and homogenized vegetation 

dominated by wide-spread, agro-tolerant species.  

The reasons for the impoverishment of the arable flora are clearly related to changes introduced 

by intensified agriculture practices. Main changes include i) enhanced weed control (especially the 

use of highly efficient herbicides and seed cleaning techniques), ii) more competitive crop 

varieties and denser, strongly shading crop stands (enabled through increased sowing density and 

high fertilizer application), iii) a strongly impoverished diversity of cultivated crops (with 

especially strong reduction in summer crop cultivation), iv) deeper ploughing and early stubble 

breaking, v) drainage of arable habitats, and vi) increasing field sizes due to land consolidation 

and thus smaller less intensively managed field edge zones (Albrecht et al., 2016; Meyer et al., 

2013b; Richner et al., 2015). These changes led to strong declines in the generally light-

demanding arable plant vegetation (Batlla and Benech-Arnold, 2014; Seifert et al., 2014) adapted 

to less-intensive management. For instance, deeper ploughing has created unsuitable habitat 

conditions for arable geophytes, such as Gagea villosa (Meyer et al., 2013a). The strong decline of 

arable land cultivated with summer crops and the immediate stubble breaking after harvest have 

increased the risk of incomplete reproduction of late germinating weeds, e.g. Stachys annua 

(Albrecht et al., 2016). Increasing drainage of arable fields has disadvantaged arable plant species 

adapted to temporarily waterlogged soils, e.g. Myosurus minimus (Albrecht et al., 2016). In addition, 

the strong reduction or abandonment of historically common cultivated crops, such as flax, has 

led to the strong decrease of specialized associated taxa, like Camelina alyssum (Meyer et al., 2013).  

 

1.4 Measures to stop biodiversity loss in agricultural landscapes 

In 1992, the Convention on Biological Diversity raised the conservation and sustainable use of 

biodiversity and related ecosystem functions to a global task (United Nations, 1992). As a 

consequence, during the last decades different international and national strategies were created 

in order to stop and reverse biodiversity loss, e.g. the United Nations’ Strategic Plan for 

Biodiversity 2011-2020 (SCBD, 2010) or the EU biodiversity strategy to 2020 (EU, 2011). 

However, the increasing loss of biodiversity and related ecosystem functions is still one of the 

main challenges for humankind. One main driver of species loss is land use change, including 

significant changes in intensively used agricultural landscapes (Green, 2005; Pimm et al., 2014; 

Pimm and Raven, 2000; Sánchez-Bayo and Wyckhuys, 2019; Vié et al., 2009). Due to the high 

importance of agricultural landscapes for biodiversity and related ecosystem functioning, such as 
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pest control or pollination (Dainese et al., 2019), the ongoing loss in species richness and 

abundance of various species groups has caused great political and public concern. In the 

European Union, environmental objectives were integrated into the Common Agricultural Policy, 

not only to counteract the biodiversity loss in agricultural landscapes, but also to address other 

environmental concerns such as water pollution, soil erosion or climate change (Matthews, 2013). 

Ecological focus areas and agri-environment and climate measures (hereafter both terms are 

combined under ‘agri-environment measures’) were introduced to increase the proportion of 

environmentally friendly managed agricultural land by providing financial support to farmers 

(European Union, 2013; Kleijn and Sutherland, 2003; Matthews, 2013).  

Based on literature reviews and meta-analyses, a general positive effect of these measures on the 

overall farmland diversity could be demonstrated (Barral et al., 2015; Batáry et al., 2015, 2011). 

However, the effects of agri-environment measures on total farmland biodiversity have been 

shown to depend on the location, the overall landscape structure, the kind of implemented 

measure and the observed species group (Batáry et al., 2015, 2011; Gonthier et al., 2014; Scheper 

et al., 2013). In addition, measures implemented outside of managed areas (e.g. field margins, 

hedges or fallows) turned out to increase biodiversity of agricultural landscapes more than in-

production schemes (e.g. reduced herbicide and fertilizer input or organic farming; Batáry et al., 

2015). With respect to arable plants, agri-environment measures also have been shown to 

generally increase species richness and abundance (Fischer and Milberg, 1997; Geiger et al., 2010; 

Kleijn et al., 2006; Walker et al., 2007). Such measures included organic farming, conservation 

fields (or field margins) and fallows (Albrecht et al., 2016; Fischer and Milberg, 1997).  

However, from an agricultural point of view, there are still reservations about agri-environment 

measures funded through the Common Agricultural Policy. These reservations are based in 

particular on doubts about their effectiveness and on the inflexibility of the funding guidelines 

with regard to the implementation requirements (Stupak et al., 2019). In general, farmers prefer 

to implement conservation measures that are in accordance with their understanding of nature 

and 'good agricultural practice', thus, such measures are not necessarily congruent with those 

prioritized by conservationists (Stupak et al., 2019). As a result, farmers often implement 

measures that are not very effective from an ecological point of view (e.g. cover crops), but can 

be easily integrated into the agricultural practice and do not entail the risk of supporting ‘weed 

infestation’ of sites (Stupak et al., 2019; Zinngrebe et al., 2017). However, counteracting the 

ongoing loss of farmland biodiversity requires ecologically efficient measures that are widely 

implemented. It is therefore crucial to promote farmers' understanding of the ecological 

importance of such agri-environment measures and to take account of possible concerns from 

the agricultural practice when designing them (e.g. in terms of bureaucratic obstacles and 

implementation guidelines). 
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In recent years, various initiatives and research projects have been launched to support the arable 

flora and other organism groups of agricultural landscapes, especially focusing on the 

improvement of the effectiveness of agri-environment measures and pointing out ways to 

increase their acceptance and thus the implementation area (e.g. by reducing bureaucratic 

obstacles). The present thesis is also based on such a participatory research project (see Chapter 

1.6.1). Further examples for Germany include: 

• the project ‘100 Äcker für die Vielfalt’ (2008-2014; Meyer and Leuschner, 2015), which 

has created a long-term network of arable conservation fields in Germany in order to 

preserve threatened arable plant species;  

• the project ‘F.R.A.N.Z. – Für Ressourcen, Agrarwirtschaft & Naturschutz mit Zukunft’ 

(started in 2016 and still ongoing; https://www.franz-projekt.de/), which was launched 

to develop and test ecologically efficient and economically viable measures to support 

different organism groups in intensively used agricultural landscapes (e.g. amphibians, 

birds, hares, insects, and plants) based on the cooperation with ten demonstration farms 

distributed throughout Germany;  

• or the initiative ‘Landwirtschaft für Artenvielfalt’ (started in 2012 and still ongoing; 

Gottwald and Stein-Bachinger, 2018), which also aims to counteract the overall 

biodiversity loss in agricultural landscapes with the focus on organic farming. Based on a 

whole-farm assessment, organic farms can receive credit and marketing advantages for 

supporting the biodiversity of agricultural landscapes through appropriate measures via 

the label ‘Farming for Biodiversity’.  

 

1.5 Research objectives  

This thesis is dedicated to three overall research questions that were examined in an intensively 

managed farmland region in Northwest Germany (see Chapter 1.7 for more details about the 

study region). These research foci are briefly developed below and discussed in detail in the 

Chapters 2, 3 and 4. A synopsis of the key findings and the overall conclusions of this thesis is 

presented in Chapter 5. 

Even though there are a number of studies observing the impact of intensified conventional 

agriculture on the arable plant vegetation in Europe (e.g. Fried et al. 2009; Gaba et al. 2010; 

Hanzlik and Gerowitt 2016; Albrecht et al. 2016; Hatcher and Froud-Williams 2017), most have 

addressed a single or very few crop species or carried out a non-differentiated analysis (all crops 

pooled). Thus, there is still missing information, how crop type and related conventional 

management practices, edaphic factors and the landscape context influence the arable plant 

vegetation. In addition, most studies have observed the impact of single agri-environment 

measures on the arable plant vegetation (Albrecht et al., 2016; Tscharntke et al., 2011; Wagner et 

al., 2017), but only very few compared the effects of different measure types with each other and 

observed their performance beyond one year (but see Eggenschwiler et al., 2009; Venclova et al., 

2006; Walker et al., 2007). Especially the effect of flower strips on the arable plant vegetation has 

been rarely investigated (but see Rode et al., 2018), since this measure type was primarily 

introduced to support other organism groups, such as pollinating insects or farmland birds. 

Finally, many different methods are currently used for surveying the arable plant diversity, which 

https://www.franz-projekt.de/
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differ considerably with respect to plot location in the field (edge and interior), surveyed area 

(ranging from 0.1 m² up to 5,000 m²) and shape (e.g. rectangular or transects with dispersed 

plots) (Batáry et al., 2012; Chytrý and Otýpková, 2003; Fahrig et al., 2015; Hanzlik and Gerowitt, 

2016; Meyer et al., 2015; Richner et al., 2015). The results of these survey methods are therefore 

difficult to compare. However, to evaluate the current state and development of the arable plant 

diversity in different regions and in course of time, standardized arable plant data are urgently 

needed. In order to recommend a suitable arable plant survey method and to establish a 

standardized monitoring approach − the basis for targeted nature conservation actions − a 

systematic comparison of the effectiveness of applied survey methods is required. However, such 

a comparative study is still missing.  

Due to the knowledge gaps described above, the present thesis is devoted to the following three 

overarching questions: 

i. Are there differences in the arable plant richness, cover and composition of seven 

conventionally intensively managed crop species (winter wheat, winter barley, winter rye, 

winter triticale, winter rapeseed, maize, and potato) and how is the arable plant richness 

influenced by crop cover, location in the field (field edge vs. field interior), management 

regime (herbicide and fertilizer application, tillage regime), edaphic conditions (soil pH 

and soil yield potential) and landscape context (type of adjacent habitat) (Chapter 2)? 

 

ii. What is the impact of four agri-environment measures (annual fallow strips, conservation 

field margins, alternately managed biennial flower strips, and perennial flower strips) on 

the arable plant richness, cover and composition and are there spillover effects of the 

measures into the neighboring conventionally managed arable fields (Chapter 3)? 

 

iii. How efficient are six traditional or novel arable plant survey methods, differing in plot 

size (20 to 500 m²) and location in the field (interior vs. edge, corner vs. middle edge), 

with respect to recorded species diversity and time required in conventionally managed 

crops (winter rapeseed, winter wheat and maize) (Chapter 4)?  

 

1.6 The participative research project MEDIATE 

This thesis originated within the research project ‘Development of targeted and efficient schemes 

to increase biodiversity in agricultural landscapes (MEDIATE)’, which was conducted from 2016 

to 2019 in the two districts Nienburg and Diepholz in Lower Saxony (Northwest Germany). 

MEDIATE was funded by the German Federal Environmental Foundation and involved the 

cooperation of the Lower Saxony chamber of agriculture, the Thünen Institute for biodiversity 

research, the Thünen Institute for farm economics and the Department of Plant Ecology and 

Ecosystems Research of the University of Göttingen. A key component of the project was a 

participative process, in which farmers, scientists and other relevant regional stakeholders (e.g. 

hunters, beekeepers, the chamber of agriculture, nature conservation authorities and 

organizations) were involved to develop and adapt agri-environment measures to be, on the one 

hand, ecologically and economically efficient and, on the other hand, also consider practical 

concerns of the farmers.   
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The participative process included: 

• Cooperation in the design of measures, e.g.:  

o the selection of suitable seed mixtures for flower strips (from an agricultural and 

ecological perspective)  

o increasing the flexibility of measures: for instance, sowing of flower strips was feasible 

until the begin of May (latest 15.05.) to avoid possible damage by late frost events 

(agri-environment measure rules of the state allow this only until 15.04.) 

• Meetings, workshops and field trips to promote the understanding of farmers and other 

relevant stakeholders with respect to the importance of farmland biodiversity in general, to 

demonstrate successful management of measures and to show the ecological effects of the 

implemented measures (monitoring results)  

• Farmers had at any time the opportunity to clarify possible problems and questions about the 

implemented measures with the project team in personal contact  

Due to the strong decline in the arable flora, the management of the chosen measure types was 

adapted to especially promote this species group. For instance, the management of three measure 

types included a regular soil disturbance to which the predominantly annual arable flora is 

adapted to. In addition, reduced sowing densities of cultivated crops and flower strips were 

considered to create less dense vegetation which allow the germination of arable plants still 

present in the soil seed bank. However, when planning and adapting the measures, creating 

suitable habitat conditions for other organism groups, such as farmland birds or insects, was also 

taken into account (e.g. through providing rich nectar and pollen sources by additionally sowing 

flowering plants). As a result of the participative process, the following four measure types were 

implemented in the study region from autumn 2016 or spring 2017 onwards (see also Fig. 1) and 

were financially compensated by project funds:  

a) Conservation field margins (‘CFM’): annual soil disturbance; 30 % to 50 % reduced 

sowing density of the cultivated crop (in autumn 2016/spring 2017; harvest possible 

b) Annual fallows (‘fallows’): annual soil disturbance; no seeding  

c) Alternately managed biennial flower strips (‘AFS’): sown with a seed mixture of crops, 

ornamental and native plant species (including typical arable plants;  

sowing density: 1 g m-2); alternate re-establishment of half of the flower strip area each 

year (including soil disturbance)  

d) Perennial flower strips (‘PFS’): sown with a seed mixture of perennial native plants 

(sowing density: 1 g m-2); annual mulching 

Fertilizer and pesticide applications were excluded from all measure types (for more details on the 

measures see Chapter 3). From 2017 onwards, the arable flora of measure and control sites was 

surveyed each year. Beside the ecological focus, measures were also economically evaluated (not 

part of this thesis), since farmers have to consider the profitability of their farms.  
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1.7 Study region 

The research project was conducted in the two neighboring districts Diepholz and Nienburg in 

Lower Saxony (Northwest Germany; see Fig. 2). The total district areas are 198,759 ha 

(Diepholz) and 139,893 ha (Nienburg; Niedersächsisches Landesamt für Statistik, 2007) with a 

high share of agriculturally used land: 65.2 % (Diepholz) and 59.2 % (Nienburg), thereof 80.8 % 

(Diepholz) and 82.8 % (Nienburg) for arable production (Landwirtschaftskammer 

Niedersachsen, 2018). The study region is characterized by intensive agriculture with 98 % 

(Diepholz) and 97 % (Nienburg) of the cropland managed conventionally in 2019 

(Landwirtschaftskammer Niedersachsen, 2019). With respect to the cultivated area, the most 

important crop species are barley, rapeseed, maize, potato, rye, triticale and wheat 

(Landwirtschaftskammer Niedersachsen, 2018). The study area is part of the atlantic 

biogeographic region located in the North German Plain and includes two natural subregions: 

‘Ems-Hunte-Geest and Dümmer-Geestniederung’ and ‘Weser-Aller-Flachland’ (von Drachenfels, 

2010). The climate is cool-temperate and suboceanic with average annual precipitation and 

temperature (2016 to 2019) of 639.6 mm / 10.5 °C for Diepholz and 655.5 mm / 10.5 °C for 

Nienburg (due to missing measure values of the meteorological station in July and August 2018, 

the year 2018 was excluded from calculation for the district Nienburg; German Meteorological 

Service, 2019). The soils of the observed arable fields were sandy to loamy Cambisols, Podzols, 

Fig. 1 Exemplary photographs of the four implemented measure types: a) conservation field margin, b) annual fallow, c) 

alternately managed biennial flower strip, and d) perennial flower strip. 
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Luvisols and Gleysols originating from Pleistocene and Holocene sediments (Federal Institute for 

Geosciences and Natural Resources, 2013).  

 

1.8 Study design 

In 2016, 200 conventionally managed arable fields cultivated with seven different crops were 

chosen to survey the current state of the arable vegetation in the study region (30 plots each in 

winter barley, maize, winter rapeseed, winter rye and winter wheat fields, 28 in potato and 22 in 

winter triticale; Chapter 2). Site selection was limited by the availability of fields of participating 

farmers (in total 15 farms) but aimed to ensure a wide dispersion of the chosen fields in the study 

region. Non-crop plant species richness and cover (Londo-scale; Londo, 1976) were recorded in 

plots (also called relevés) of 50 × 2 m in the field edge (200 replicates) and field interior (at least 

20 m apart from the field edge, 70 replicates) from end of May to the beginning of August. In 

addition, the total cover (%) of the cultivated crops, the non-crop vegetation and the tree and 

shrub layer were noted. Furthermore, the vegetation of 63 neighboring habitats to arable fields 

were surveyed: 22 hedges (25 × 2 m plots); 21 ditch margins (8 × 2 m), and 20 grass strips (16 × 

1 m). Moreover, abiotic and management data of the observed arable fields were compiled to 

analyze their effects on the arable plant richness and composition. These data included fertilizer 

(N, P, K) and herbicide input, soil cultivation techniques (tillage or no tillage), soil pH as well as 

soil type and quality. Information of the herbicide application (frequency and dose) was used to 

calculate the Standardized Treatment Index (STI after Roßberg et al., 2002; Sattler et al., 2007).  

Fig. 2 Map of the study region with the districts of Nienburg and Diepholz in Lower Saxony (Northwest Germany). 
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From 2017 to 2019, the effects of agri-environment measures on the arable plant richness and 

abundance were observed (Chapter 3). For this, the implementation of four different agri-

environment measures was coordinated in the study region, namely conservation field margins 

(CFM), annual fallows (fallows), alternately managed biennial flower strips (AFS) and perennial 

flower strips (PFS). Measures were implemented in arable fields of 19 participating farms that 

were previously surveyed (to allow for the before-after-control-impact (BACI) approach). In 

total, 67 measure areas were implemented in arable fields, starting with 47 sites in autumn 2016 

or spring 2017, supplemented by 20 measures in autumn 2017 or spring 2018. To evaluate the 

effects of the measures on the arable flora, the plant species richness and cover of measure areas 

and conventionally managed field edges (controls) and interiors were surveyed in 50 × 2 m plots 

each year (except for 2017, when no interior plots could be observed due to time restriction). To 

examine possible effects of the implemented measures on the neighboring conventionally 

managed fields, spillover plots (50 × 2 m) were implemented. The observed arable fields adjacent 

to the implemented measures were conventionally cultivated according to the crop rotation 

scheme of the participating farmer.  

In addition, in 2017, six different relevé types for surveying the plant species richness in 

conventionally managed farmland were compared with respect to their detection success and 

time effort (Chapter 4). The different relevé types included field interior plots (50 × 2 m) and 

five different types of field edge plots (30 × 2 m, 50 × 2 m, 500 × 1 m, four dispersed subplots 

of 5 × 1 m, and corner plots of 50 × 2 m). The surveys were conducted in 45 arable fields (15 

each of winter wheat, winter rapeseed and maize; 17 participating farms).  

Beside the arable plant vegetation, also other organism groups were monitored within the 

research project (e.g. farmland birds and insects). For instance, the development of farmland bird 

populations was investigated in two 400 ha areas in the study region from 2016-2019 (including 

implemented measure areas). This thesis, however, will focus on the vegetation of arable fields.  

For more detailed descriptions of the study design and the vegetation surveys see 

Chapters 2 to 4.  

 

1.9 Data analyses 

In the following, a short overview of the used statistical approaches is presented. Detailed 

statistical descriptions can be found in the ‘Material and Methods’ sections of the 

Chapters 2 to 4.  

In general, statistical analyses were performed using the software R (R Core Team, 2019). 

Depending on the specific research questions (Chapters 2 to 4), analyses were done for a) all 

observed herbaceous species (grasses included, but woody seedlings, crops and ornamental plants 

from seed mixtures excluded), b) arable plant species sensu stricto (according to Hofmeister and 

Garve 2006), c) indicators of High Nature Value arable land (as defined for Germany by Hünig 

and Benzler 2017), d) threatened arable plants (according to the Red List of Lower Saxony; 

Garve, 2004), e) proportions of forbs and graminoids, and f) proportions of annuals and 

perennials (according to Klotz et al. 2002).  
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To characterize the observed study region, the proportions of the different landscape elements 

were analyzed (ArcGIS, ESRI, 2018) based on habitat mapping data (von Drachenfels, 2016; 

Chapter 2). Moreover, beta diversity was calculated (based on Sørensen and Jaccard’s Index) to 

observe floristic similarity of the observed arable fields or plot types (Chapters 2 to 4). In 

addition, cluster analyses and non-metric multidimensional scaling (NMDS) were conducted to 

detect possible species formations with respect to the surveyed arable flora of seven crop species 

(Chapter 2) or to examine floristic differences between conventionally managed field edge plots 

and measure plots (Chapter 3). Furthermore, median numbers of diagnostic arable plant species 

for classes, orders, alliances or associations were calculated in order to verify if species 

assemblages found in the surveyed crops could be assigned to syntaxa in the phytosociological 

hierarchical system (Hüppe and Hofmeister, 1990; Preising et al., 1995, Chapter 2). In addition, 

Venn diagrams were used to display the number of species shared between a) field edge plots and 

neighboring habitats, b) different crop species, and c) measure sites and plots in conventionally 

managed fields, and to show how many species were found in only one of these habitats 

(Chapters 2 and 3). To account for weather effects on the total plant species number in a four-

year comparison (Chapter 3), interpolated high-resolution gridded climate data were used 

(German Meteorological Service, 2019). To evaluate the species detection success of six survey 

methods for arable plants, Spearman's rank correlation coefficients of observed species number 

per survey method and estimated total plant species richness per site were calculated (Chapter 4). 

In addition, species accumulation curves were used to show the effect of the survey method on 

the increase in species richness with increasing plot number (i.e. observed area).  

In order to statistically examine the research questions of this thesis (see Chapter 1.5 and 

Chapters 2 to 4) linear or generalized linear mixed-effects models were used. To test for the 

significance of the response variables, likelihood-ratio tests (Type II sums of squares) and post 

hoc pairwise comparisons were performed. In some cases, e.g. when the replicate number was 

low, the Mann-Whitney-U test was applied to verify significant differences. 
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Abstract 

Agricultural intensification has led to dramatic diversity losses and homogenization of the arable 

vegetation in much of Europe. We analyzed the status of farmland phytodiversity and its 

determinants in 2016 in Northwest Germany by surveying 200 conventionally managed fields 

cultivated with seven crops (wheat, barley, rye, triticale, maize, rapeseed, potato). The study was 

combined with an analysis of edaphic (soil yield potential), agronomic (fertilizer and herbicide 

use) and landscape factors (adjacent habitats). In total, we recorded 150 non-crop plant species, 

many of them nitrophilous generalist species, while species of conservation value were almost 

completely absent. According to a mixed model, the cultivation of rapeseed and potato had a 

positive, that of maize a negative influence on non-crop plant richness as compared to cereals. 

The presence of grassy strips, ditch margins and hedges adjacent to fields increased field edge 

plant richness through putative spillover effects. Median values of non-crop plant richness and 

cover across all crops were only 2 species and 0.5 % cover in the field interior, and 11 and 4 % at 

the field edge. Agricultural intensification has wiped out non-crop plant life nearly completely 

from conventionally managed farmland, except for a narrow, floristically impoverished field edge 

strip. 

 

Keywords: adjacent habitats; biodiversity loss; cereals; herbicides; maize; rapeseed. 

 

2.1 Introduction 

During the last decades, agricultural production has been greatly intensified in the industrialized 

countries with the consequence of dramatic biodiversity losses [1–5]. Increases in crop yield tend 

to correlate with decreases in farmland species richness, both in plants and various animal groups 

[1,6–8]. Plot-level plant species richness in arable fields has decreased by about 70 % since the 

1950s/60s in Central Germany with accompanying reductions in arable plant cover and regional 

species pool size [9]. A collapse of farmland phytodiversity has also been documented in many 

other Central and Western Europe regions [e.g., 10–13]. Since arable plants fulfil important 

functions such as nutrient retention and erosion reduction in fallow periods, the hosting of insect 

communities, and the provisioning of food for herbivorous animals, the drastic decline of plant 

cover and diversity in contemporary arable fields is alarming [14–18]. The large decrease in insect 

biomass [19] and farmland bird abundance that has been observed in the agricultural landscapes 

of Europe in recent time [6,20,21], is clearly related to reduced plant resources such as pollen, 

nectar and seed [17,22]. Continued systematic vegetation monitoring in the farmland is thus a 

prerequisite for measures to halt biodiversity erosion and to maintain at least basic ecosystem 

functions in intensively used agricultural landscapes for the benefit of farmers and the society as a 

whole [23–25].  

Main determinants of arable plant diversity are environmental factors (precipitation, temperature, 

soil pH, soil moisture and soil fertility), the type of cultivated crop (notably summer vs. winter 

crop) and crop rotation, and the associated type of management (application of herbicides and 

fertilizers and the tillage regime) [9,26–30]. Habitats neighboring the field can also influence 

farmland phytodiversity [31–33].  

Today, the conventionally (intensively) managed field interior is colonized by only very few plant 

species of low cover, while slightly more plants typically persist at the field edges with somewhat 
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lower management intensity [e.g., 12,29,34]. The pan-European reviews of Storkey et al. 2012 [4] 

and Richner et al. 2015 [2] revealed that the plant diversity losses concerned chiefly arable plant 

species and communities associated with traditional farming practices and from stony calcareous 

or acidic soils that are less suitable for intensive agriculture. In contrast, increases in absolute or 

relative terms have been observed in a few arable grasses, neophytes and plants with traits 

combining high nutrient demand, herbicide resistance and anemochory [2]. While some 

successful species are herbicide tolerant (e.g. Alopecurus myosuroides; [35]), others are able to 

escape herbicide treatment through a broad range of germination temperatures and high 

phenotypic plasticity [30,36]. As a consequence, the once existing variation in arable vegetation 

reflecting different crop types and along gradients in climate and soil fertility has largely 

disappeared [13,37]. Existing synopses of the arable vegetation of Central Europe consider 

farmland plant diversity up to the 1970/80s [e.g., 38–40]. This information may serve as a 

reference to analyze vegetation change since then. As about 95 % of the arable land in Central 

Europe is managed conventionally [41], modern farmland vegetation surveys have to refer to all 

kinds of fields and especially the conventionally managed ones, if they are to represent the 

majority of the cropland. Several recent studies have investigated the vegetation of intensively 

managed fields [12,30,42–44], but mostly focused on a single crop or a few crops, or different 

crop species were pooled. Several studies addressed wheat fields in Central Europe, less often 

maize, triticale and/or rapeseed [34,43,45–47], or compared conventional and organic fields for a 

given crop, whereas studies on the species richness, composition and vegetation cover of a wider 

range of conventionally managed crop species in a landscape context are surprisingly scarce [but 

see 29,48]. Hence, the status quo of arable plant diversity in Central Europe in its dependence on 

agronomic and environmental factors is insufficiently known to date.  

Here, we conduct a survey of arable plant diversity and species composition in fields of seven 

abundant cereal and root crop fields (wheat, barley, rye, triticale and rapeseed, maize, and potato) 

across an intensively managed farmland region in Northwest Germany and combine it with an 

analysis of edaphic (soil yield potential), agronomic (herbicide and fertilizer use) and landscape 

factors (type of adjacent habitat), which might influence species richness and composition. We 

tested the following hypotheses: (i) Decades of intensive agriculture have resulted in greatly 

impoverished and floristically homogenized arable plant communities that do not differ much 

across crop types and related management regimes (e.g., autumn-sown vs. spring-sown), (ii) the 

field edges are richer than the field interior, partly due to enrichment by plants from neighboring 

habitats, while the interior is nearly free of weeds, and (iii) the most important factors influencing 

the diversity and species composition of the arable vegetation are crop cover (plant density), 

herbicide treatment intensity, fertilizer amount, soil chemistry, and the type of adjacent habitat. 

 

2.2 Material and Methods 

2.2.1 Study region 

The study was carried out in the north of the districts of Nienburg (centroid: N 52°36'32.5334", 

E 9°6'49.7118") and Diepholz (N 52°43'41.4940", E 8°42'4.1629"), Lower Saxony, Northwest 

Germany (Figure 1). The study region is part of the landscapes ‘Ems-Hunte-Geest and Dümmer-

Geestniederung’ and ‘Weser-Aller-Flachland’ [49].  

Situated in the Pleistocene lowlands (Saalian), the current land cover is predominantly arable land 

(56.2 %), followed by forest (14.5 %) and permanent agricultural grassland (12.4 %). About 97 % 

of the arable land is managed conventionally. Habitats directly adjacent to arable fields include 
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grass strips, ditches and hedges, which together cover about 2.4 % of the area (Figure S1 and File 

S1). Annual average precipitation (2013-2017) ranges between 662 mm (Nienburg) and 684 mm 

(Diepholz) and the annual mean temperature (2013-2017) is 10.3°C (Nienburg) and 10.1°C 

(Diepholz) respectively [50]. The soils in the studied fields developed mostly from sandy to loamy 

Cambisols or Luvisols, in a few cases also from Podsols or Gleysols [51,52], depending on the 

sand content and groundwater level. Soil pH is acidic to neutral (4.1 to 6.7). Summer water 

deficits may develop more regularly in arable soils with higher sand content, while they are rare in 

the more loamy soils. According to the assessment by the Chamber of Agriculture, the soils in 

the study region mostly have a medium yield potential, a few sites are characterized by lower or 

higher potentials. The agricultural yield score (German Ackerwertzahl index) ranging from 1 

(extremely poor) to 120 (extremely rich) varies for our fields by 20 to 69. 

Fifteen farmers from the two districts willing to grant access to their fields were included in the 

study. Thus, field selection was not fully random, but determined in the first instance by the 

location of the selected farms and the need to identify a sufficient number of replicate fields of a 

crop type. As far as possible, the fields were evenly distributed over the study region, which 

covered an area of c. 1300 km² (Figure 1). 

 

 

 

2.2.2 Vegetation survey 

Herbaceous plant diversity of conventionally managed arable fields was studied in relevés of 100 

m² (50 m × 2 m) and vegetation cover estimated with the Londo scale [53] between end of May 

and August 2016. The relevés were placed either at the field edge (edge plots) or in the interior at 

Fig. 1 Map of the study region with the districts of Nienburg and Diepholz in Lower Saxony, Northwest Germany. The location 

of the studied fields is indicated by black dots. 
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least 20 m distant from the edge. Plot coordinates were determined by GPS (Garmin GPSMAP 

64s). The type of habitat adjacent to edge plots was recorded in the categories hedge, grass strip 

(usually found along agricultural access tracks and between arable and non-arable habitats), ditch 

margin, or arable field (no other habitat between two fields), in order to analyze possible 

neighborhood effects on the field vegetation. We chose seven important crop species that 

together covered almost 90 % of the arable land in the study region in 2016: winter wheat (24 % 

of 73,790 ha of arable land in the study region), maize (23 %), winter rapeseed (12 %), winter 

barley (11 %), winter rye (9 %), winter triticale (5 %), and potato (5 %; Figure S2). In total, 270 

plots were investigated in the 200 studied fields: 200 edge plots (30 plots each in barley, maize, 

rapeseed, rye and wheat fields, 28 in potato and 22 in triticale fields), and 70 interior plots (10 per 

crop type). Pre-studies had shown that a smaller number of replicates of interior plots was 

sufficient to cover the greatly reduced number of occurring species. In addition, 63 plots in 

habitats directly adjacent to the fields were sampled to provide information on the local non-

arable species pool, which would allow assessing spillover effects into the fields (22 hedges – plot 

size 2 m × 25 m; 21 ditch margins – plot size 2 m × 8 m; 20 grass strips – plot size 1 m × 16 m). 

The studied hedge plots commonly included a narrow herbaceous fringe of about 0.5 m width. 

As the habitats border directly to the fields, some are irregularly disturbed by agricultural 

machinery or through tillage. Plant species names follow Buttler 2018 [54]. Raw vegetation data 

are presented in Table S5 in the Electronic Supplementary Materials (crop species, woody plant 

seedlings and a few plants not identified to the species level were excluded and omitted from the 

further analysis). 

 

2.2.3 Abiotic and management data 

The following management-related data were obtained through inquiry of 14 farmers (no data 

available of the 15th) for the agricultural business year 2015/16 (post-harvest 2015 – harvest 

2016): cultivated crops, amount of fertilizers (N, P, K) and herbicides used and soil pH. 

Information on the soil yield potential (Ackerwertzahl) and soil type were retrieved by 

intersecting soil (scale 1:1,000,000) and agronomic maps (scale 1:5,000; [51,52]) using ArcMap 

[55]. Information on the frequency of application and dose of herbicides (‘Herbicide Intensity 

Index’) were used to calculate the Standardized Treatment Index (STI after [56,57]). STI values 

were calculated for every field in relative terms (herbicide amount applied relative to the amount 

permitted). The maximum permitted amount of herbicides was obtained from the Crop 

Protection Manager [58]. If the farmer used different herbicides per field within the agricultural 

business year 2015/16, the index was calculated by summing up the STI values of the different 

herbicides. 

 

2.2.4 Statistical analyses 

Statistical analyses and data visualization were conducted with R 3.5.1 Software [59] using the 

packages magrittr [60], tidyverse [61], goeveg [62], vegan [63] and reshape2 [64]. The Londo-scale 

cover values of plants were expressed as percentage values for the analysis [65]. Since the soil 

types of the studied arable fields were similar and pre-analysis revealed no significant soil effect 

on plant diversity, this factor was excluded from the analysis.  

Plant species richness data were categorized into the groups (a) all herbaceous plants recorded 

(but without tree/shrub seedlings and crops), (b) plant species with close affinity to arable fields 

(according to Hofmeister and Garve 2006 [38]; hereafter termed 'arable plants sensu stricto' ), (c) 
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arable plant species endangered in Lower Saxony [66], and (d) high-nature-value (HNV) species 

according to German Federal Agency for Nature Conservation 2018 [67] (Table S1). Arable 

plants sensu stricto [38] are taxa regularly found in arable fields and accompanying Central 

European agriculture. Part of these species are not restricted to arable habitats but may colonize 

other, e.g. ruderal, habitats too. HNV species are defined as taxa that are frequently associated 

with, and thus functioning as indicators of, habitats of increased plant diversity and nature value. 

For example, the presence of 4-5 HNV species stands for farmland of a moderate nature value, 

6-7 species for high, and 8 or more species for very high-nature-value. Fields with three or fewer 

HNV species are not considered as high-nature-value farmland.  

In an attempt to assign the species assemblages of the different studied crop types and field 

locations (edge vs. interior) to syntaxa in the phytosociological hierarchical system [39,68], we 

calculated the median numbers of diagnostic arable plant species for classes, orders, alliances or 

associations that were present in the assemblages. We expanded the vegetation analysis from the 

arable fields to the directly adjacent habitats (grass strips, ditch margins, hedges) and plotted 

Venn diagrams [69] to express the percent overlap in species pools. The floristic similarity 

between fields was determined with the Sørensen Dissimilarity Index (package vegan [63]) for 

edge and interior plots. Significant differences between field edge and interior plots for a given 

crop species were tested with the Mann-Whitney U test for pairwise comparisons. In order to 

unravel biotic, environmental and management-related factors in their influence on plot-level 

species richness, we calculated a negative binomial generalized mixed effects model [70] with 

crop species (Crop), adjacent habitat (adj_habitat), soil yield potential (soil_y_p), Herbicide 

Intensity Index (STI), crop cover (cover), and total nitrogen input (N_tot) as fixed factors and 

farm as random factor. Due to multicollinearity, we introduced total nitrogen input instead of 

potassium and phosphorus input, and soil yield potential instead of soil pH in the analysis. The 

possible influence of shading through adjacent hedges or groves was introduced through the 

variable ‘adjacent hedge’. Since the autumn-sown cereals wheat, barley, rye and triticale are 

managed in a similar way and have rather similar stand structures, these four winter cereals were 

pooled (variable ‘cereals’) in order to save degrees of freedom in the analysis. Nevertheless, due 

to the complexity of the analysis, no degrees of freedom were left for calculating factor 

interactions. The resulting mixed model had the form 

glmmTMB(species.number~Crop+adj_habitat+soil_p_v+STI+cover+N_tot+(1/farm),family=

nbinom1). Finally, we tested the significance of response variables by likelihood-ratio tests and a 

post hoc-pairwise comparison of categorial variables (Tukey [71]). Model structure and statistical 

results can be found in the Table S6 in the Electronic Supplementary Materials. 

 

2.3 Results 

2.3.1 Patterns of plant species richness and cover 

In total, we observed 150 herbaceous non-crop plant species in the 270 plots examined in 200 

arable fields. We take this number as a minimum estimate of the present species pool in the 

arable fields of the study region of c. 1300 km². All 150 species were found at the field edges, 

while only 41 of them occurred also in the field interior (Table S2 and Table S3). Between-field 

variation, i.e. β diversity, was very high (mean Sørensen Dissimilarity Index: 0.86 for interior plots 

[14 plots without species omitted]) and only slightly lower for edge plots (0.76). Fifty-nine of the 

150 species (39 %) observed in the edge plots, and 25 of the 41 species (61 %) in the interior 

plots, were found in less than three of the 200 fields (Table S2). Median species number across all 
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crop types in the edge plots was 11, and only 2 in the field interior plots. Among the seven crop 

types, the highest number of plant species was found in rapeseed field edge plots (median = 17), 

followed by rye (13.5), whereas maize showed the lowest diversity (8; Figure 2). In field interior 

plots, median diversity varied between 0 and 3 in the seven crops. The same pattern across crop 

types was found for the diversity of arable plants sensu stricto (Figure 2). The number of HNV 

species of arable land was in general very low (median values between 0 and 3), but showed a 

tendency for higher values in the edge plots, especially in rapeseed and rye (Figure 2). We found 

only one plant species red-listed as Vulnerable in Lower Saxony (Odontites vernus) in a single 

edge plot (rye).  

Crop cover was very high throughout the 270 plots (median of edge plots: 90 %; interior: 95 %), 

with lowest cover recorded for rye and triticale field edges (median: 85 %, Figure S4). Non-crop 

plant cover was in most fields < 1 % in the interior (median: 0.5 %, all crops pooled; Figure 2) 

and reached at the field edge a median value of 4 %. An exception was rapeseed with medians of 

11 % (edge) and 10 % (interior). 

 

 

2.3.2 Variation in community composition 

Despite a greatly impoverished arable species pool and low α diversity, species assemblages 

differed considerably between different crops. Only one species (Elymus repens) occurred in 

more than half of the plots (52 %; edge and interior plots pooled), another seven in more than 30 

% (in decreasing order Galium aparine, Dactylis glomerata, Matricaria chamomilla, Fallopia 

convolvulus, Viola arvensis, Polygonum aviculare, Bromus sterilis; Table S3). While 34 

herbaceous species were found in all seven crops, 23 were exclusively observed in winter cereals 

(wheat, barley, rye, triticale), and 16 only in rapeseed (Figure S3). A few species showed a 

preference for a certain crop, notably Echinochloa crus-galli for the interior of maize fields, and 

Fig. 2 Species richness (a, c, d) or plant cover (b) in 100 m²-plots in the field interior and at the edge in the seven crop types for 
all herbaceous species (a and b; total species number without woody plant seedlings and crop species), arable plant species sensu 
stricto (c; after Hofmeister and Garve [38]), and high-nature-value species of arable land (d; HNV species after German Federal 
Agency for Nature Conservation [67]). n = 30 fields for edge plots of wheat, barley, rye, maize, and rapeseed, n = 28 for potato, n 
= 22 for triticale, n = 10 for interior plots. Significant differences between crop types and plot locations (field edge vs. interior) 
are indicated by different small letters (Mann-Whitney U-Test). 
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Viola arvensis for rapeseed fields (edge and interior), where they occurred with a particularly high 

frequency (Table S3). Yet, an assignment of the surveyed assemblages in the seven different crop 

types to defined plant associations was impossible due to the generally very low number of 

diagnostic species found (0 to 2; Table 1); diagnostic species of alliances and orders were also 

commonly underrepresented. 

Table 1 Number of arable plant species sensu stricto (defined by Hofmeister and Garve [38]) and number of species 
diagnostic for classes, orders, alliances or associations of arable plant communities (defined by Hüppe and 
Hofmeister, 1990). Given are median values; n = 30 for edge plots of barley, maize, rapeseed, rye and wheat, potato 
= 28, triticale = 22; n = 10 for interior plots per crop. 

Plot type Crop 
Arable 

plants 
Class Order Alliance Association 

Total number of diagnostic 

species 

Field edge Wheat 6.5 0 0 0 1 1 

Field interior Wheat 2 0 0 0 0 1 

Field edge Barley 9 1 0 1 1 2.5 

Field interior Barley 2 0 0 0 0 1 

Field edge Rye 9.5 1 0 2 1 4 

Field interior Rye 2.5 1 0 0 0 1 

Field edge Triticale 7 0 0 0.5 1 2 

Field interior Triticale 2 0 0 0 0 0 

Field edge Maize 6.5 1 0 0 1 2 

Field interior Maize 2.5 0 0 0 1 1.5 

Field edge Rapeseed 13 2 0 1 2 5 

Field interior Rapeseed 3 1 0 0 1 2 

Field edge Potato 10 2 0 0.5 1 4 

Field interior Potato 0.5 0 0 0 0 0 

 

Of the 150 herbaceous plant species found in the fields 112 (i.e. 74.7 %) occurred also in the 

directly adjacent habitats; 69 of these overlapping species (61.6 %) are arable plant species sensu 

stricto (Table S4). The largest fraction of overlapping species (50.7 %) was shared with the grass 

strips bordering the fields, another 42.7 % each with neighboring ditch margins and hedges 

(Figure 3). These three main neighboring habitats contained 51 species that were not found in the 

fields. Thus, the adjacent habitats were about as species-rich as the field edges (163 and 150 

species, respectively), with roughly two thirds of the species overlapping. 
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2.3.3 Factors determining arable species richness 

The generalized mixed effects model with crop type, plot location in the field, management 

regime and adjacent habitat as fixed effects and farm as random factor showed that plot location 

in the field (edge vs. interior) was the main factor determining plant diversity across all crop 

species (Figure 4; Table S6). Other significant, but somewhat smaller, effect sizes were found for 

the type of adjacent habitat, and crop type, while soil and management factors had only a small 

(in the case of Herbicide Intensity Index: insignificant) influence. Measured against winter cereals 

(wheat, barley, rye, triticale) field edge plots directly bordering other fields as a reference, species 

richness increased when grass strips, ditch margins and hedges were neighboring and rapeseed or 

potato were planted, while the cultivation of maize reduced diversity. Also, high management 

intensity as indicated by high soil yield potential, high total N input, greater herbicide use 

(Herbicide Intensity Index), and high crop cover decreased plot-level diversity at the field edge 

(Figure 5). The random factor farm (which introduces site and specific management effects) also 

had a significant effect on plot-level species richness (Table S6). 

 

 

Fig. 3 Number of species exclusively occurring at field edges or in three types of adjacent habitats, or that are shared with other 
habitats in the study region. Indicated are the species number and the proportion of the total species pool (in %) for herbaceous 
plant species richness (in total 201 species, woody plant seedlings and crops excluded); n: edge plots = 200, ditch margins = 21, 
grass strips = 20, hedges = 22. 
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Fig. 4 Effect size (plotted estimates of the covariates and 95 % confidence intervals) of the influence of plot location in the field 
(interior vs. edge), crop type (maize, potato, rapeseed), adjacent habitat type (grass strip, ditch margin, hedge), management-related 
factors (Herbicide Intensity Index, crop cover), and edaphic properties (soil yield potential, total nitrogen input) on total 
herbaceous plant species richness of the surveyed arable fields according to the generalized mixed effects model (n = 255 plots on 
14 farms). The effects were calculated relative to species diversity in edge plots of cereal fields (wheat, barley, rye and triticale 
pooled) that bordered to another field, i.e. when no adjacent habitat (grass strip, ditch margin or hedge) between neighboring 

fields was present. 

Fig. 5 Number of herbaceous plant species (without woody plant seedlings and crops) at the field level for different crop types 
(all four cereals pooled; field edge and interior pooled) (a), or for field edge plots bordering to different adjacent habitats (ditch 
margin, grass strip, hedge or no adjacent habitat: directly bordering to another arable field) (b), number of plant species (field edge 
and interior plots pooled) in relation to soil yield potential (Ackerwertzahl) (c), Herbicide Intensity Index (d), crop cover (e), or total 
nitrogen fertilizer added (f) according to the generalized mixed effects model (n = 255 plots on 14 farms). Given are predicted 

means and 95 % confidence intervals in (a) and (b), predicted values (black line) and 95 % confidence intervals (grey, c to f). 
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2.4 Discussion 

2.4.1 Quantifying phytodiversity loss in conventionally managed farmland 

With a median α diversity of 2 species per 100 m² in the field interior, richness was even lower 

than in the extensive survey of Meyer et al. 2013 [9] conducted in 2009 in 392 arable fields in 

Central Germany (median: 7 species). Other studies in intensively managed arable land in Central 

and Western Europe used variable plot sizes but found mean richness at plot level in the field 

interior of 6 to 10 species [12,72–74]. The phytodiversity of field edges in our study area (median: 

11 species per plot) is also lower than in the large-scale survey of Meyer et al. 2014 [75] in Central 

and North Germany (median: 18 species per plot). In fact, our richness values are among the 

lowest recorded so far for Central Europe. One likely reason is that the study region with its 

humid climate and relatively fertile soils enables high yields under intensive management. The 

once richer arable plant diversity in the region has vanished already 50 or more years ago due to 

the increasingly intensive management regime resulting in dense, shading crop stands [68,76]. In 

the 1950/60s, a median plot-level arable plant diversity of 24 species in the field interior was 

recorded in Central and North Germany [9], which underpins the strong decline in species 

diversity within the last 60-70 years. An increase in agricultural intensification and chemical weed 

control in the past years since the above-mentioned vegetation surveys in Central Germany and 

other regions may have caused further phytodiversity erosion.  

With only 150 species found in the 200 fields in 2016 (Table S1), the regional species pool (γ 

diversity) in the c. 1300 km² large study region is certainly much impoverished compared to the 

situation decades ago, which supports our hypothesis (i). Hofmeister and Garve 2006 [38] list 287 

species as typical associated with arable plant communities in Germany. Correspondingly, Meyer 

et al. 2013 [9] give a regional species pool of 301 taxa that were found in the 1950/60s in 392 

fields in Central and North Germany; this number had decreased by 23 % to 233 in 2009, which 

still exceeds by far the 150 species found in 2016 in our Northwest German study region. While 

low environmental variation in the study region explains part of the relatively small current 

species pool and our survey may have missed a few species persist in the diaspore bank of the 

arable fields, diversity losses in the recent past are indisputable, as is also indicated by the 

dominance of disturbance- and herbicide-tolerant generalist species in the current flora. 

2.4.2 The importance of the field edge 

In support of hypothesis (ii), we found that the location in the field, i.e. edge vs. interior, is more 

important for plant diversity than crop type. This reflects the steep diversity gradient across the 

first 1 or 2 m in the field margin, where herbicide and fertilizer amounts are often lower and crop 

densities reduced (Figure 4 and Figure S4). In our fields, the diversity decrease from the edge to 

the interior was even greater (from 11 to 2 species; median values) than in the study of Meyer et 

al. 2014 [75] in Central and North Germany (18 to 7 species). In a systematic comparison of field 

edge and interior plots, Wietzke & Leuschner 2020 [77] could show that in conventionally 

managed fields of Northwest Germany, the entire remaining phytodiversity of arable plants is 

restricted to the small field edge strip, which occupies about 5 % of the field area [78]. Thus, in 

terms of arable plant diversity and abundance, the field interior, i.e. 95 % or more of the field, is 

of no relevance, a finding that is likely to be transferable to most of the conventionally managed 

arable land in Central Europe. Rapeseed fields differed from the other six crops in that the edge-

interior gradient existed for species richness but not for plant cover (Figure 2). This was caused 

by a remarkably high cover of Viola arvensis throughout the field edge and interior in rapeseed; 



CHAPTER 2   

34 

this species seems to tolerate the shading of the closed stand and may profit from the less 

effective herbicide treatment against dicots in rapeseed. 

 

2.4.3 Composition of the recent arable vegetation and the role of field neighborhood  

Only 96 of the 150 species present in the studied arable fields can be considered as arable plants 

sensu stricto (according to [38]; Table S1) occurring mainly in arable land. A large fraction of 

these are widespread generalist arable plants, consisting of nitrophilous and herbicide-tolerant 

non-crop grasses and herbs. Similarly, the 54 additionally found plant species not characterized as 

arable plants sensu stricto include many nitrophilous and disturbance-tolerant taxa most 

frequently occurring in field-adjacent habitats in the farmland, notably eutrophic, irregularly 

mown grass strips and ditch margins, and fringes of hedges, from where they tend to spill over 

into the field edge. In general, arable plant assemblages of modern fields are not only much 

impoverished, but they contain a much larger proportion of ubiquitous grasses (such as Elymus 

repens, Bromus sterilis and Dactylis glomerata) and nitrophilous herbs (such as Galium aparine, 

Urtica dioica and Rumex obtusifolius) than in vegetation records of Northwest German arable 

fields decades ago [68,79]. As noted earlier, species with close dependence on edaphic factors 

(acidic vs. base-rich) and different types of field management (e.g. summer vs. winter crops, and 

root crops vs. cereals), and with them the characteristic habitat-specific arable plant communities 

have largely disappeared [2,30,37]. In correspondence, we found only a very small number of 

diagnostic species for arable plant associations (see Table 1), insufficient to identify the related 

communities, similarly as reported by Meyer et al. (2015) for Central and North Germany in 

2009. The occasional occurrence of Matricaria chamomilla, Centaurea cyanus, Apera spica-venti 

and Vicia hirsuta in field edge plots reflects what is left of the Aphano-Matricarietum 

chamomillae, formerly the most common association in arable fields in the study area and wider 

northwest Germany [79]. 

Our mixed model analysis is among the few attempts to disentangle the influences of crop type, 

edaphic properties, agronomic and landscape factors on arable plant richness. In contradiction to 

our hypothesis (i), we found that crop is still a major determinant of plant diversity in modern 

arable fields. As compared to cereals, fields of rapeseed and potato positively influenced non-

crop plant richness, whereas maize fields were less diverse (Figure 4 and 5). In a comparison of 

four crop species, Seifert et al. 2014 [29] also found a (non-significant) tendency toward higher 

species numbers in rapeseed. A likely explanation is that dicot weeds are more difficult to control 

in dicot crops (as rapeseed or potato) than in cereals. The lowest species numbers in maize may 

partly result from light deficiency which is more pronounced under the canopy of maize than 

under cereals (6 vs. 10-13 % relative light intensity; [29]), and perhaps from specific herbicide 

combinations.  

Besides crop type and location in the field, the adjacent habitat was the third factor with a 

pronounced influence on plant diversity in the fields, which supports hypothesis (iii). Of the 150 

species found in the fields, three quarters also occurred in the adjacent grassy habitats or hedges, 

and 69 of them were arable plants sensu stricto (Figure 3 and Table S4). In agreement with 

hypothesis (ii), this indicates that some arable taxa have refugia in adjacent habitats, and spill over 

from grass strips, ditch margins or hedges. This may buffer such species against population 

decreases or local extinctions in fields with adverse growing conditions. Correspondingly, six 

plant species listed as arable plants sensu stricto by Hofmeister and Garve 2006 [38] were solely 

found in adjacent habitats, including Vicia villosa, an obligatory arable plant. Population genetic 

studies will have to show whether adjacent habitats usually out of reach of herbicides harbor 
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today source populations of certain arable plants decimated in the fields, or whether they profit 

from spillover from the field edge, but in turn do not benefit the field edge populations. The 

other 43 species found in both field edges and adjacent habitats are stress-tolerant and 

nitrophilous species with main occurrence in fertile and ruderalized grasslands and hedges. They 

occasionally spill over into the field edge, sometimes only shortly and then disappear again, but 

they increase the total number of field edge species [31–33]. They are of little conservation value 

with respect to the arable flora. 

In many intensively used Central European farmland landscapes, the habitats between two 

neighboring fields occupy about 1-2(-5) % of the area. If the grass strips and ditch margins not 

directly treated with fertilizers and pesticides are enlarged and mown once a year to reduce the 

nutrients stored in biomass and the competitiveness of some vigorous plants, and optionally 

supplied with seed mixtures of local origin arable and grassland plants, then these habitats may be 

revaluated to function as local refugium of a fraction of the farmland phytodiversity, benefitting 

at the same time farmland birds and insects [80,81]. Occasional tillage may increase the 

germination success. Such measures will be especially valuable when appropriate infield measures 

(such as ecological focus areas of non-intensively managed crop fields, arable fallow and 

indigenous flower strips) are not implemented. We hardly expect that the diversity of 

conventionally managed field edges, treated with fertilizers and herbicides, will profit much from 

revaluated grass strips and ditch margins, but landscape-level diversity will to some extent. To 

effectively increase both arable and non-arable diversity of farmland landscapes the improvement 

and enlargement of adjacent habitats should be combined with infield measures such as non-

intensively managed cereal strips at the field edge.  

 

2.5 Conclusions 

This analysis of plant diversity in an intensively managed arable landscape, which is considered 

representative for much of Central and Western Europe’s farmland, clearly demonstrates the 

dramatically low level of contemporary farmland phytodiversity. With a median non-crop plant 

cover of 0.5 % in the field interior and 4 % at its edge, weed control proves to be highly effective 

with arable plant cover reduced far below the level, where significant competition with the crop 

plants might occur. Overly weed control of such intensity leads to the collapse of arable plant 

diversity, and moreover has the potential to wreck important ecosystem functions provided by 

arable plants, notably the protection from soil erosion and the reduction of nitrate leaching 

during non-growth time of crops. Across all crops, species richness has reached historical minima 

with median values of eleven taxa at the edge and only two in the interior. Higher cover of arable 

non-crop species has only been found in fields of rapeseed, indicating possible gaps in chemical 

weed control rather than higher plant diversity associated with this crop species. The remaining 

arable plant species pool has lost nearly all taxa of conservation value. It nowadays consists 

mainly of widespread generalist arable plants, that are herbicide-tolerant or -avoiding, 

nitrophilous, non-crop grasses and herbs that are able to persist in the fields’ seed bank or spill 

over from adjacent habitats. In arable landscapes, where infield measures to increase biodiversity 

(such as non-intensively managed field edge cereal strips) are not feasible under current 

agronomic conditions, we recommend to improve the habitat quality of field-adjacent grassy 

strips through mowing and, if helpful, tillage and sowing of local arable plant mixtures. Such 

management of these refugial habitats might result in an increase of the local farmland landscape 

species pool but will not compensate for the overall loss of farmland biodiversity. Agricultural 

policy at national and EU levels must take notice of the fact that agrochemical weed control has 
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nearly wiped out non-crop plant life in at least 95 % of the conventionally managed cropland of 

Central Europe, i.e. the field interior except for a narrow field edge strip, thereby jeopardizing 

important ecosystem services at the cost of future generations of farmers and the society as a 

whole. 
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Electronic supplementary material 

Supplementary methods: 
 
File S1: Supplementary methods 
 

Landscape composition 

Proportions of landscape elements, crops and environmental measures were calculated with 

respect to the study region (see Figure 1 in the main text and Figures S1 and S2). The landscape 

analysis was based on habitat mapping data [1] of the two districts Nienburg and Diepholz [2,3] 

and with regard to crop composition on data of the Land Parcel Identification System (LPIS) 

within the Integrated Administration and Control System (IACS) which is supplied by the 

Ministry of Food, Agriculture and Consumer Protection, Lower Saxony [4–6]. Habitat mapping 

of the district Diepholz was based on aerial photograph interpretation from 2014 (ministerial 

map 1 : 5,000 with respect to legally protected habitats, ministerial map 1 : 10,000 for remaining 

habitats) and for the district of Nienburg regarding aerial photograph interpretation from 2011 

with re-mapping of 20 % of the area in 2013 (ministerial map 1 : 10,000) [2,3]. Habitat types were 

categorized into the following groups: ‘arable land’, ‘settlements and infrastructure’ (sealed area 

and related semi-natural habitats such as cemeteries, gardens or roadside greenery), ‘grass strips’ 

(usually found between arable and non-arable habitats, e.g. along agricultural access tracks), ‘forb 

and ruderal stands’, ‘forests’, ‘marshlands (incl. degeneration stages)’, ‘permanent grasslands’, 

‘standing waters’, ‘streams’ and ‘woody elements of the open landscape’ mainly include hedges 

and scrub (85 %) and a small percentage of single trees, tree rows and orchards (15 %); not 

clearly assignable habitats were categorized as “others” (including headwater areas, dwarf shrub 

heathlands, inland dunes, bare soil areas). Since grass strips (usually found between arable and 

non-arable habitats, e.g. along agricultural access tracks) were not included in aerial habitat 

mapping, we extrapolated striped areas by buffering borderlines of “arable fields - adjacent 

habitat combinations” where usually grass strips occur (e.g. adjacent agricultural access tracks, 

meadows, heathlands, ruderal sites or forb stands) with 0.75 m (scaled by own experiences in the 

study region). Thus, grass strip areas have to be considered as an estimate. Buffered grass strip 

areas were intersected with the original habitat mapping data to calculate habitat proportions of 

the above-mentioned habitat types. 
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Supplementary tables 

Table S1: Categorization of surveyed plant species in the 200 observed arable fields (crops or woody seedlings excluded): all 
herbaceous species, arable plants (sensu stricto; Hofmeister and Garve 2006), indicator species for High Nature Value arable land 
(HNV species; German Federal Agency for Nature Conservation, 2018) and red-listed arable plant species in Lower Saxony 
(Garve 2004); sorted by species names; full references see main manuscript. 

Species name 
All herbaceous 

species (x) 
Arable plants 

(A) 
HNV 

Red-listed arable 
plants (x) 

Achillea millefolium x A   

Aegopodium podagraria x    

Agrostis capillaris x A   

Agrostis stolonifera x A   

Alliaria petiolata x    

Allium vineale x A   

Alopecurus myosuroides x A   

Alopecurus pratense x    

Anchusa arvensis x A   

Anthoxanthum aristatum x A   

Anthriscus sylvestris x    

Apera spica-venti x A   

Aphanes arvensis x A HNV  

Arabidopsis thaliana x A   

Arrhenatherum elatius   x    

Artemisia vulgaris x A   

Avena fatua x A   

Bromus commutatus subsp. decipiens  x A   

Bromus hordeaceus x A   

Bromus inermis x    

Bromus sterilis x A   

Calystegia sepium x    

Capsella bursa-pastoris x A   

Carduus crispus x    

Carex acuta x    

Carex acutiformis x    

Carex hirta x A   

Centaurea cyanus x A HNV  

Cerastium arvense x    

Cerastium glomeratum x A   

Cerastium holosteoides x A   

Ceratocapnos claviculata x    

Chaerophyllum temulum x    

Chenopodium album x A   

Chenopodium polyspermum x A   

Cirsium arvense x A   

Cirsium vulgare x    

Convolvulus arvensis x A   

Crepis biennis x    

Dactylis glomerata   x    

Daucus carota x    

Deschampsia cespitosa x    

Descurainia sophia x A   

Digitaria ischaemum x A   

Echinochloa crus-galli x A   

Elymus repens x A   
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Species name 
All herbaceous 

species (x) 
Arable plants 

(A) 
HNV 

Red-listed arable 
plants (x) 

Epilobium montanum x    

Epilobium tetragonum x A   

Equisetum arvense x A   

Erigeron canadensis x A   

Erodium cicutarium x A HNV  

Eupatorium canabium x    

Fallopia convolvulus x A   

Festuca arundinacea x    

Festuca pratensis x    

Festuca rubra x    

Ficaria verna x    

Galeopsis tetrahit x A   

Galinsoga parviflora x A   

Galium aparine x A   

Galium mollugo agg. x    

Geranium columbinum x A HNV  

Geranium dissectum x A HNV  

Geranium molle x A HNV  

Geranium pusillum x A HNV  

Geum urbanum x    

Glechoma hederacea x A   

Gnaphalium uliginosum x A   

Heracleum sphondylium x    

Holcus lanatus x    

Holcus mollis x A   

Hylotelephium telephium  x A   

Hypericum perforatum x    

Juncus bufonius x A   

Lactuca serriola x A   

Lamium album x A   

Lamium amplexicaule x A HNV  

Lamium purpureum x A HNV  

Lapsana communis x A HNV  

Lolium multiflorum x A   

Lolium perenne x A   

Lotus corniculatus x    

Lysimachia vulgaris x    

Matricaria chamomilla x A HNV  

Matricaria discoidea x A   

Moehringia trinervia x    

Molinia caerulea x    

Myosotis arvensis x A HNV  

Odontites vernus x A  x 
Papaver argemone x A HNV  

Papaver dubium agg. x A HNV  

Papaver rhoeas x A HNV  

Persicaria amphibia x A   

Persicaria hydropiper x A   

Persicaria maculosa x A   

Phalaris arundinacea x    

Phleum pratense x    

Phragmites australis x A   

Plantago lanceolata x A   

Plantago major x A   

Poa annua x A   

Poa compressa x    

Poa nemoralis x    

Poa pratensis x    

Poa trivialis x A   

Polygonum aviculare x A   

Potentilla anserina x A   

Potentilla erecta x    

Ranunculus repens x A   

Raphanus sativus x    

Rorippa palustris x A   

Rubus fruticosus agg. x    

Rubus idaeus agg. x    

Rumex acetosa x    
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Species name 
All herbaceous 

species (x) 
Arable plants 

(A) 
HNV 

Red-listed arable 
plants (x) 

Rumex acetosella x A HNV  

Rumex crispus x A   

Rumex hydrolapathum x    

Rumex obtusifolius x A   

Scleranthus annuus x A   

Senecio inaequidens x    

Senecio jacobaea x    

Senecio vulgaris x A   

Setaria viridis x A   

Silene latifolia x A   

Sisymbrium officinale x A   

Solanum nigrum x A   

Sonchus asper x A   

Sonchus oleraceus x A   

Stellaria graminea x A   

Stellaria media x A   

Tanacetum vulgare x    

Taraxacum sect. Ruderalia x A   

Thlaspi arvense x A HNV  

Trifolium dubium x    

Trifolium pratense x    

Trifolium repens x    

Tripleurospermum perforatum x A   

Urtica dioica x    

Urtica urens x A   

Veronica arvensis x A   

Veronica hederifolia x A   

Veronica persica x A   

Vicia angustifolia x A   

Vicia cracca x A HNV  

Vicia hirsuta x A HNV  

Vicia sativa x  HNV  

Vicia sepium x  HNV  

Vicia tetrasperma x A HNV  

Viola arvensis x A   

Vulpia myuros x    
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Table S2: Total herbaceous species numbers per crop type in field edge and field interior plots and edge and interior pooled; only 
herbaceous non-crop species (woody seedlings excluded); infrequent species numbers (occurred in less than 3 plots, all crops 
pooled) are given in brackets; n = 30 for edge plots of barley, maize, rapeseed, rye and wheat, potato = 28, triticale = 22; interior 

plots = 10 per crop type. 

Crop type Edge plots Interior plots Edge & interior plots 

Barley 79 17 80 
Maize 56 15 58 
Potato 67 14 67 
Rapeseed 103 12 104 
Rye 86 14 86 
Triticale 66 14 69 
Wheat 68 12 69 

All crops (infrequent species) 150 (59) 41 (25) 150 (56) 

 

Table S3: Species occurrences in field edge and field interior plots (and edge and interior pooled) for observed crop types; sorted 
by species names; n =  30 for edge plots of barley, maize, rapeseed, rye and wheat, potato = 28, triticale = 22; interior plots = 10 

per crop. 
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Achillea millefolium 2 0 0 4 10 1 3 20 0 0 0 0 0 0 0 0 20 
Aegopodium podagraria 3 0 0 2 3 1 2 11 0 0 0 0 0 0 0 0 11 
Agrostis capillaris 1 4 0 0 1 3 3 12 0 0 0 0 0 0 0 0 12 
Agrostis stolonifera 0 7 1 1 5 0 0 14 0 0 0 0 0 0 1 1 15 
Alliaria petiolata 0 0 0 2 0 0 2 4 0 0 0 0 0 0 0 0 4 
Allium vineale 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 
Alopecurus myosuroides 4 2 1 6 2 0 11 26 1 0 0 0 0 0 0 1 27 
Alopecurus pratensis 7 1 1 10 3 2 3 27 0 0 0 0 0 0 0 0 27 
Anchusa arvensis 0 0 0 2 0 1 1 4 0 0 0 0 0 0 0 0 4 
Anthoxanthum aristatum 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 
Anthriscus sylvestris 3 4 0 7 6 2 5 27 0 0 0 0 0 0 0 0 27 
Apera spica-venti 8 5 0 0 6 7 8 34 0 0 0 0 0 0 2 2 36 
Aphanes arvensis 0 0 0 1 2 1 1 5 0 0 0 0 0 0 0 0 5 
Arabidopsis thaliana 0 1 0 2 2 2 0 7 0 0 0 1 0 0 0 1 8 
Arrhenatherum elatius 6 2 3 11 5 4 6 37 0 0 0 0 0 0 0 0 37 
Artemisia vulgaris 2 1 1 4 4 0 1 13 0 0 0 0 0 0 0 0 13 
Avena fatua 0 8 3 0 0 1 1 13 0 0 0 0 0 0 0 0 13 
Bromus commutatus subsp. decipiens 2 0 0 8 5 7 10 32 0 0 0 0 0 1 0 1 33 
Bromus hordeaceus 11 10 2 5 9 7 4 48 0 0 0 0 0 0 0 0 48 
Bromus inermis 1 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 2 
Bromus sterilis 16 7 2 15 16 11 20 87 0 0 0 0 0 0 0 0 87 
Calystegia sepium 0 0 2 0 1 0 0 3 1 0 1 1 0 0 0 3 6 
Capsella bursa-pastoris 4 4 0 17 2 2 2 31 0 1 0 3 0 0 1 5 36 
Carduus crispus 0 1 0 3 0 0 1 5 0 0 0 0 0 0 0 0 5 
Carex acuta 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 
Carex acutiformis 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 
Carex hirta 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 
Centaurea cyanus 3 5 0 5 9 3 3 28 1 0 0 0 2 0 0 3 31 
Cerastium arvense 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 
Cerastium glomeratum 0 0 0 2 0 0 0 2 0 0 0 0 0 0 0 0 2 
Cerastium holosteoides 2 1 0 3 1 1 0 8 0 0 0 0 0 0 0 0 8 
Ceratocapnos claviculata 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 
Chaerophyllum temulum 2 0 0 1 1 0 1 5 0 0 0 0 0 0 0 0 5 
Chenopodium album 6 15 13 8 3 2 4 51 0 2 4 0 2 0 0 8 59 
Chenopodium polyspermum 0 0 2 1 0 0 0 3 0 0 0 0 0 0 0 0 3 
Cirsium arvense 8 8 2 10 3 4 7 42 0 0 0 0 1 0 0 1 43 
Cirsium vulgare 0 0 1 0 1 0 0 2 0 0 0 0 0 0 0 0 2 
Convolvulus arvensis 1 1 0 0 0 1 0 3 0 0 0 0 0 0 0 0 3 
Erigeron canadensis 0 1 0 1 1 0 0 3 0 0 0 0 0 0 0 0 3 
Crepis biennis 0 0 0 2 0 0 0 2 0 0 0 0 0 0 0 0 2 
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Dactylis glomerata 13 16 11 19 15 13 16 103 0 1 0 0 0 0 0 1 104 
Daucus carota 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 
Deschampsia cespitosa 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 
Descurainia sophia 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 
Digitaria ischaemum 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 
Echinochloa crus-galli 0 9 12 0 1 0 1 23 0 2 6 0 0 1 0 9 32 
Elymus repens 23 26 22 20 15 13 10 129 3 1 3 0 1 2 1 11 140 
Epilobium montanum 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 
Epilobium tetragonum 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 
Equisetum arvense 2 3 6 4 1 4 4 24 0 0 0 0 0 0 0 0 24 
Erodium cicutarium 1 1 2 1 2 2 0 9 0 0 0 0 0 0 0 0 9 
Eupatorium cannabinum 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 
Fallopia convolvulus 8 14 16 11 19 9 3 80 1 1 3 0 6 2 2 15 95 
Festuca arundinacea 1 0 0 2 0 0 1 4 0 0 0 0 0 0 0 0 4 
Festuca pratensis 5 0 0 4 2 2 0 13 0 0 0 0 0 0 0 0 13 
Festuca rubra 2 0 2 3 12 4 2 25 0 0 0 0 0 0 0 0 25 
Galeopsis tetrahit 2 0 2 6 4 2 2 18 1 0 0 0 0 0 0 1 19 
Galinsoga parviflora 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 
Galium aparine 20 11 7 18 19 15 19 109 2 1 0 1 2 4 1 11 120 
Galium mollugo agg. 0 0 1 1 0 0 0 2 0 0 0 0 0 0 0 0 2 
Geranium columbinum 3 0 0 0 0 0 0 3 1 0 0 0 0 0 0 1 4 
Geranium dissectum 1 0 0 2 0 0 2 5 0 0 0 0 0 0 0 0 5 
Geranium molle 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 
Geranium pusillum 3 8 10 9 11 5 2 48 0 0 1 0 0 0 0 1 49 
Geum urbanum 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 
Glechoma hederacea 0 1 0 5 3 0 1 10 0 0 0 0 0 0 0 0 10 
Gnaphalium uliginosum 1 0 0 5 0 0 0 6 0 0 0 1 0 0 0 1 7 
Heracleum sphondylium 3 0 0 3 2 0 3 11 0 0 0 0 0 0 0 0 11 
Holcus lanatus 7 4 6 10 10 8 6 51 0 0 0 0 0 0 0 0 51 
Holcus mollis 13 7 0 11 12 11 5 59 2 0 0 0 0 0 0 2 61 
Hypericum perforatum 1 0 0 1 2 0 0 4 0 0 0 0 0 0 0 0 4 
Juncus bufonius 1 1 0 3 0 1 1 7 0 0 0 2 0 0 0 2 9 
Lactuca serriola 0 1 0 1 0 0 0 2 0 0 0 0 0 0 0 0 2 
Lamium album 2 0 0 4 2 0 0 8 0 0 0 0 0 0 0 0 8 
Lamium amplexicaule 0 0 0 1 1 0 0 2 0 0 0 0 0 0 0 0 2 
Lamium purpureum 4 1 0 4 2 1 2 14 0 0 0 0 0 0 0 0 14 
Lapsana communis 2 2 1 2 3 1 3 14 0 0 0 0 0 0 0 0 14 
Lolium multiflorum 2 2 2 2 4 2 4 18 0 0 0 0 0 0 0 0 18 
Lolium perenne 8 4 12 7 7 2 4 44 0 0 0 0 1 0 0 1 45 
Lotus corniculatus 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 
Lysimachia vulgaris 0 1 0 0 1 1 0 3 0 0 0 0 0 0 0 0 3 
Matricaria chamomilla 7 13 7 25 12 8 11 83 2 1 2 6 2 0 3 16 99 
Matricaria discoidea 0 1 1 0 0 0 0 2 0 0 0 0 0 0 0 0 2 
Moehringia trinervia 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 
Molinia caerulea 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 
Myosotis arvensis 3 8 3 15 9 3 4 45 1 0 0 2 1 2 1 7 52 
Odontites vernus 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 
Papaver argemone 0 0 0 1 1 0 0 2 0 0 0 0 0 0 0 0 2 
Papaver dubium agg. 1 0 0 2 2 1 0 6 0 0 0 0 0 0 0 0 6 
Papaver rhoeas 0 0 1 2 2 0 0 5 0 0 0 0 0 0 0 0 5 
Persicaria amphibia 1 0 0 1 0 0 0 2 0 0 0 0 0 1 0 1 3 
Persicaria maculosa 1 3 4 2 0 0 1 11 0 0 0 0 0 0 0 0 11 
Phalaris arundinacea 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 
Phleum pratense 0 0 1 0 1 1 0 3 0 0 0 0 0 0 0 0 3 
Phragmites australis 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 
Plantago lanceolata 1 1 0 2 0 0 2 6 0 0 0 0 0 0 0 0 6 
Plantago major 1 1 0 1 0 1 0 4 0 0 0 0 0 0 0 0 4 
Poa annua 7 6 1 3 4 1 5 27 0 1 1 1 1 1 1 6 33 
Poa compressa 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 
Poa nemoralis 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 
Poa pratensis 10 1 0 6 4 7 1 29 0 0 0 0 0 0 0 0 29 
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Poa trivialis 18 6 2 14 12 7 17 76 0 0 0 0 0 1 0 1 77 
Polygonum aviculare 8 13 14 17 12 9 8 81 0 1 0 2 2 2 3 10 91 
Persicaria hydropiper 0 0 0 1 1 0 0 2 0 0 0 0 0 1 0 1 3 
Potentilla anserina 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 
Potentilla erecta 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 
Ficaria verna 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 
Ranunculus repens 1 0 0 2 0 0 2 5 0 0 0 0 0 0 0 0 5 
Raphanus sativus 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 2 
Rorippa palustris 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 
Rubus fruticosus agg. 0 0 2 0 1 1 2 6 0 0 0 0 0 0 0 0 6 
Rubus idaeus agg. 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 
Rumex acetosa 3 0 1 3 2 0 2 11 0 0 0 0 0 0 0 0 11 
Rumex acetosella 0 0 0 0 2 0 0 2 0 0 1 0 0 0 0 1 3 
Rumex crispus 0 0 0 0 2 3 3 8 0 0 0 0 0 0 0 0 8 
Rumex hydrolapathum 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 
Rumex obtusifolius 5 6 8 8 1 1 4 33 0 0 1 0 0 0 1 2 35 
Scleranthus annuus 0 0 0 1 1 0 0 2 0 0 0 0 0 0 0 0 2 
Hylotelephium telephium 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 
Senecio inaequidens 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 
Senecio jacobaea 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 
Senecio vulgaris 3 1 1 1 0 0 1 7 1 1 0 0 0 0 0 2 9 
Setaria viridis 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 
Silene latifolia 0 0 0 0 1 1 0 2 0 0 0 0 0 0 0 0 2 
Sisymbrium officinale 2 5 3 13 1 1 3 28 1 0 0 2 0 0 0 3 31 
Solanum nigrum 0 1 2 0 0 0 0 3 0 1 1 0 0 0 0 2 5 
Sonchus asper 0 1 0 1 0 0 0 2 0 0 0 0 0 0 0 0 2 
Sonchus oleraceus 0 0 0 2 0 0 0 2 0 0 0 0 0 0 0 0 2 
Stellaria graminea 0 1 0 4 5 1 0 11 0 0 0 0 0 0 0 0 11 
Stellaria media 3 8 7 14 3 4 2 41 1 2 2 4 5 2 0 16 57 
Tanacetum vulgare 1 2 0 2 6 0 0 11 0 0 0 0 0 0 0 0 11 
Taraxacum sect. Ruderalia 1 1 0 2 3 3 5 15 0 0 0 0 0 0 0 0 15 
Thlaspi arvense 0 0 0 2 0 0 0 2 0 0 0 0 0 0 0 0 2 
Trifolium dubium 1 0 0 1 1 0 0 3 0 0 0 0 0 0 0 0 3 
Trifolium pratense 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 
Trifolium repens 1 0 3 3 0 0 0 7 0 0 0 0 0 0 0 0 7 
Tripleurospermum perforatum 0 5 0 1 0 1 0 7 0 0 1 0 0 0 0 1 8 
Urtica dioica 5 7 8 8 4 5 8 45 0 0 1 0 0 0 0 1 46 
Urtica urens 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 
Veronica arvensis 1 1 0 4 1 2 2 11 0 0 0 0 0 0 0 0 11 
Veronica hederifolia 9 0 0 5 4 3 2 23 1 0 0 0 0 0 0 1 24 
Veronica persica 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 
Vicia angustifolia 1 3 0 2 5 0 2 13 0 0 0 0 0 0 0 0 13 
Vicia cracca 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 
Vicia hirsuta 5 6 3 13 11 5 5 48 1 0 0 0 2 1 0 4 52 
Vicia sativa 2 0 1 7 12 4 0 26 0 0 0 0 0 0 0 0 26 
Vicia sepium 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 
Vicia tetrasperma 2 0 0 2 0 1 0 5 0 0 0 0 0 0 0 0 5 
Viola arvensis 10 15 10 29 5 4 2 75 1 1 1 10 1 1 2 17 92 
Vulpia myuros 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 
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Table S4: Species occurrences in field edge (n = 200) and adjacent habitat plots (hedges n = 22; ditch margins n = 21; grass strips 
n = 20); sorted by species name; only herbaceous species (without crops and woody seedlings); A = arable plants (sensu stricto; 
Hofmeister and Garve, 2006), arable plants species occurring in both adjacent habitats and field edges (Shared arable plant 

species); full references see main manuscript. 

Species 
Hedges 

Ditch 
margins 

Grass 
strips 

Field 
edges 

Arable plants 
(A) 

Shared arable 
plant species (x) 

Achillea millefolium 3 0 6 20 A x 
Achillea ptarmica 0 1 0 0   

Aegopodium podagraria 0 0 1 11   

Agrostis capillaris 2 7 9 12 A x 
Agrostis gigantea 0 1 0 0 A  

Agrostis stolonifera 0 2 2 14 A x 
Alliaria petiolata 2 1 1 4   

Allium vineale 0 0 0 1 A  

Alopecurus myosuroides 2 1 1 26 A x 
Alopecurus pratensis 4 7 5 27   

Anchusa arvensis 0 0 0 4 A  

Angelica sylvestris 0 1 0 0   

Anthoxanthum aristatum 0 0 0 1 A  

Anthoxanthum odoratum 0 1 0 0   

Anthriscus sylvestris 9 1 5 27   

Apera spica-venti 2 1 4 34 A x 
Aphanes arvensis 1 0 0 5 A x 
Arabidopsis thaliana 0 1 1 7 A x 
Arenaria serpyllifolia 0 0 1 0 A  

Arrhenatherum elatius 5 7 8 37   

Artemisia vulgaris 3 0 0 13 A x 
Avena fatua 1 0 0 13 A x 
Bromus commutatus subsp. decipiens  0 3 5 32 A x 
Bromus hordeaceus 3 0 11 48 A x 
Bromus inermis 0 0 0 2   

Bromus sterilis 16 2 9 87 A x 
Calystegia sepium 0 1 0 3   

Capsella bursa-pastoris 0 0 3 31 A x 
Carduus crispus 0 0 0 5   

Carex acuta 0 1 0 1   

Carex acutiformis 0 3 0 1   

Carex hirta 0 1 0 1 A x 
Centaurea cyanus 0 0 5 28 A x 
Cerastium arvense 0 0 0 1   

Cerastium glomeratum 0 0 1 2 A x 
Cerastium holosteoides 0 0 2 8 A x 
Ceratocapnos claviculata 1 1 0 1   

Chaerophyllum temulum 2 0 0 5   

Chenopodium album 3 0 0 51 A x 
Chenopodium polyspermum 0 0 1 3 A x 
Cirsium arvense 4 3 2 42 A x 
Cirsium vulgare 1 0 0 2   

Convolvulus arvensis 0 0 0 3 A  

Crepis biennis 0 0 1 2   

Dactylis glomerata 16 13 20 103   

Daucus carota 0 0 0 1   

Deschampsia cespitosa 0 5 0 1   

Descurainia sophia 0 0 0 1 A  

Digitaria ischaemum 0 0 0 1 A  

Dryopteris carthusiana 1 0 0 0   

Dryopteris dilatata 1 3 0 0   

Echinochloa crus-galli 1 0 0 23 A x 
Elymus caninus 1 1 0 0   

Elymus repens 15 10 14 129 A x 
Epilobium angustifolium 0 1 0 0   

Epilobium montanum 0 3 0 1   

Epilobium tetragonum 0 3 1 1 A x 
Equisetum arvense 0 3 2 24 A x 
Erigeron canadensis 1 0 1 3 A x 
Erodium cicutarium 0 0 0 9 A  

Eupatorium cannabinum 0 0 0 1   

Fallopia convolvulus 4 2 3 80 A x 
Festuca arundinacea 0 0 0 4   
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Species 
Hedges 

Ditch 
margins 

Grass 
strips 

Field 
edges 

Arable plants 
(A) 

Shared arable 
plant species (x) 

Festuca pratensis 0 1 3 13   

Festuca rubra 4 6 8 25   

Ficaria verna 0 1 0 1   

Filipendula ulmaria 0 2 0 0   

Galeobdolon luteum 1 0 0 0   

Galeopsis tetrahit 4 2 0 18 A x 
Galinsoga parviflora 0 0 0 1 A  

Galium aparine 18 9 8 109 A x 
Galium mollugo agg. 1 2 0 2   

Galium palustre 0 1 0 0   

Galium saxatile 0 2 0 0   

Geranium columbinum 0 0 0 3 A  

Geranium dissectum 1 0 2 5 A x 
Geranium molle 0 0 2 1 A x 
Geranium pusillum 1 1 5 48 A x 
Geum urbanum 0 1 0 1   

Glechoma hederacea 3 1 1 10 A x 
Glyceria fluitans 0 2 0 0   

Glyceria maxima 0 2 0 0   

Gnaphalium uliginosum 0 0 0 6 A  

Hedera helix 1 0 0 0   

Heracleum sphondylium 2 0 3 11   

Holcus lanatus 6 15 11 51   

Holcus mollis 5 7 5 59 A x 
Humulus lupulus 1 0 0 0   

Hylotelephium telephium  0 0 0 1 A  

Hypericum maculatum 1 0 2 0   

Hypericum perforatum 2 0 0 4   

Hypochaeris radicata 0 0 2 0   

Iris pseudacorus 0 5 0 0   

Juncus acutiflorus 0 1 0 0   

Juncus bufonius 0 0 1 7 A x 
Juncus effusus 1 14 0 0   

Lactuca serriola 0 0 0 2 A  

Lamium album 0 0 3 8 A x 
Lamium amplexicaule 0 0 0 2 A  

Lamium purpureum 0 0 1 14 A x 
Lapsana communis 1 1 2 14 A x 
Lathyrus pratensis 0 1 0 0   

Lolium multiflorum 1 0 1 18 A x 
Lolium perenne 1 0 8 44 A x 
Lotus corniculatus 1 4 0 1   

Luronium natans 0 1 0 0   

Luzula multiflora 0 1 0 0   

Lychnis flos-cuculi  0 2 0 0   

Lycopus europaeus 0 1 0 0   

Lysimachia nummularia 0 1 0 0   

Lysimachia vulgaris 1 10 1 3   

Lythrum salicaria 0 1 0 0   

Matricaria chamomilla 1 0 4 83 A x 
Matricaria discoidea 0 0 0 2 A  

Moehringia trinervia 0 1 0 1   

Molinia caerulea 0 2 0 1   

Myosotis arvensis 5 2 4 45 A x 
Myosotis scorpioides 0 1 0 0   

Odontites vernus 0 0 0 1 A  

Papaver argemone 0 0 0 2 A  

Papaver dubium agg. 0 0 1 6 A x 
Papaver rhoeas 0 0 1 5 A x 
Persicaria amphibia 0 1 0 2 A x 
Persicaria hydropiper 0 0 0 2 A  

Persicaria maculosa 1 0 0 11 A x 
Peucedanum palustre 0 1 0 0   

Phalaris arundinacea 0 11 0 1   

Phleum pratense 1 2 0 3   

Phragmites australis 0 3 1 1 A x 
Plantago lanceolata 1 1 8 6 A x 
Plantago major 0 0 1 4 A x 
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Species 
Hedges 

Ditch 
margins 

Grass 
strips 

Field 
edges 

Arable plants 
(A) 

Shared arable 
plant species (x) 

Poa annua 2 0 0 27 A x 
Poa compressa 0 0 1 1   

Poa nemoralis 3 0 0 1   

Poa pratensis 1 3 8 29   

Poa trivialis 6 5 10 76 A x 
Polygonum aviculare 0 0 0 81 A  

Potentilla anserina 1 0 0 1 A x 
Potentilla erecta 0 2 0 1   

Potentilla reptans 1 1 1 0 A  

Pteridium aquilinum 1 0 0 0   

Ranunculus acris 0 1 0 0   

Ranunculus repens 0 0 2 5 A x 
Raphanus sativus 0 0 0 1   

Rorippa palustris 0 0 0 1 A  

Rubus caesius 0 1 0 0 A  

Rubus fruticosus agg. 7 9 0 6   

Rubus idaeus agg. 1 1 0 1   

Rumex acetosa 0 4 4 11   

Rumex acetosella 0 0 2 2 A x 
Rumex crispus 0 3 3 8 A x 
Rumex hydrolapathum 0 2 0 1   

Rumex obtusifolius 3 2 2 33 A x 
Scirpus sylvaticus 0 1 0 0   

Scleranthus annuus 0 0 0 2 A  

Scrophularia nodosa 1 0 0 0   

Scutellaria galericulata 0 2 0 0   

Senecio inaequidens 0 0 0 1   

Senecio jacobaea 0 0 0 1   

Senecio vulgaris 1 0 0 7 A x 
Setaria viridis 0 0 0 1 A  

Silene dioica 1 1 0 0   

Silene latifolia 0 1 1 2 A x 
Sisymbrium officinale 2 0 0 28 A x 
Solanum nigrum 0 0 0 3 A  

Solidago canadensis 1 0 0 0   

Solidago gigantea 1 0 0 0   

Sonchus asper 0 0 0 2 A  

Sonchus oleraceus 0 0 1 2 A x 
Sparganium erectum 0 5 0 0   

Stachys palustris 0 1 0 0   

Stellaria graminea 0 1 5 11 A x 
Stellaria holostea 0 0 1 0   

Stellaria media 1 0 2 41 A x 
Tanacetum vulgare 3 0 5 11   

Taraxacum sect. Ruderalia 0 0 6 15 A x 
Thalictrum flavum 0 1 0 0   

Thlaspi arvense 0 0 0 2 A  

Trifolium arvense 0 0 1 0 A  

Trifolium campestre 0 0 1 0   

Trifolium dubium 0 0 0 3   

Trifolium pratense 0 0 2 1   

Trifolium repens 1 0 2 7   

Tripleurospermum perforatum 0 0 0 7 A  

Typha latifolia 0 2 0 0   

Urtica dioica 18 10 7 45   

Urtica urens 0 0 0 1 A  

Valeriana officinalis 0 2 0 0   

Veronica arvensis 0 1 4 11 A x 
Veronica chamaedrys 0 0 1 0   

Veronica hederifolia 1 0 2 23 A x 
Veronica persica 0 0 0 1 A  

Vicia angustifolia 1 1 5 13 A x 
Vicia cracca 0 1 0 1 A x 
Vicia hirsuta 5 1 6 48 A x 
Vicia sativa 3 1 4 26   

Vicia sepium 0 0 1 1   

Vicia tetrasperma 1 3 1 5 A x 
Vicia villosa  0 1 1 0 A  
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Species 
Hedges 

Ditch 
margins 

Grass 
strips 

Field 
edges 

Arable plants 
(A) 

Shared arable 
plant species (x) 

Viola arvensis 2 0 3 75 A x 
Vulpia myuros 0 0 0 1   

 

Table S5: Raw data of the vegetation survey (2016) including management data (agricultural business year 2015/2016) and 

environmental data. 

Can be downloaded from http://ediss.uni-goettingen.de/ (Niedersächsische Staats- und Universitätsbibliothek Göttingen). 

http://ediss.uni-goettingen.de/
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Table S6: Summary of model structure and statistical results. 

Anova results (significance codes: ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1; n.s. = not significant) 

Measured value Model n 
R²_m  

(fixed effects 
only) 

R²_c  
(fixed & 
random 
effects) 

Explanatory  
variables 

Z-value  
(chi-square tests. 

Type II Wald) 

Degrees of 
freedom 

P-value  
(Pr(chi-square)) 

Significance 

Total 
herbaceous 
species number 

glmmTMB(spec.num ~ poolCrop + Adj_habitat + 
Soil_yield_potential + Herbicide_Intensity +   
Cover_Crop +N_tot + (1 | Hof). family= 
nbinom1. data = field) 

255 (14 
farms) 

0.94 0.94 

Pooled crop species 76.9 3 < 2.2e-16 *** 

Adjacent habitat 244.0 4 < 2.2e-16 *** 

Soil yield potential  11.4 1 0,0007198 *** 

Herbicide Intensity 
Index 

2.3 1 0.1261987 n.s. 

Crop cover 8.3 1 0.0039252 ** 

Total nitrogen input 4.2 1 0.039758 * 
          

Detailed overview for each level of categorial variables. Reference level for crop = Cereals, reference level for adjacent habitats = adjacent arable field (n=255).      

Measured value Model 
Explanatory  
variables 

Estimate 
Standard 

error 
z value Pr(>|z|)   Significance 

Total herbaceous species number 
glmmTMB(spec.num ~ poolCrop + Adj_habitat + Soil_yield_potential 
+ Herbicide_Intensity +   Cover_Crop + N_tot + (1 | Hof). family= 
nbinom1. data = field) 

Adjacent Field interior -0.9006976 0.1593276 -5.653 1.58E-08 *** 

Adjacent Grass strip 0.6763108 0.1299435 5.205 0.000000194 *** 

Adjacent Ditch margin 0.5642157 0.1598911 3.529 0.000418 *** 

Adjacent Hedge 0.4111101 0.174575 2.355 0.018527 * 

Maize -0.2257731 0.0925184 -2.44 0.014675 * 

Rapeseed 0.5421335 0.0738001 7.346 2.04E-13 *** 

Potato 0.2592128 0.0898156 2.886 0.003901 ** 

Soil yield potential  -0.0096231 0.0028455 -3.382 0.00072 *** 

Crop cover -0.0086064 0.0029841 -2.884 0.003925 ** 

Total nitrogen input -0.0014952 0.0007271 -2.056 0.039758 * 

Herbicide Intensity Index -0.0564337 0.0369025 -1.529 0.126199 n.s. 

Random effect (farm) 3.261846 0.3181355 10.253 < 2e-16 *** 
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Multiple comparisons of means: Tukey Contrasts 
Legend: significance codes: ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1; n.s.= not significant; n = 255 (14 farms); df = degrees of freedom 

Total herbaceous species number 

Crop species differences Estimate Std. Error z value Pr(>|z|)  Significance df 

Maize - Cereal -0.226 0.093 -2.440 0.068 . 241 

Potato - Cereal   0.259 0.090 2.886 0.019 * 241 

Rapeseed - Cereal   0.542 0.074 7.346 <0.001 *** 241 

Potato - Maize     0.485 0.113 4.274 <0.001 *** 241 

Rapeseed - Maize   0.768 0.102 7.536 <0.001 *** 241 

Rapeseed - Potato   0.283 0.098 2.892 0.020 * 241 

Adjacent habitat differences Estimate Std. Error z value Pr(>|z|)  Significance df  

Adjacent Arable field - Adjacent Field interior  0.901 0.159 5.653 <0.001 *** 241 

Adjacent Grass strip - Adjacent Field interior   1.577 0.104 15.107 <0.001 *** 241 

Adjacent Ditch margin - Adjacent Field interior  1.465 0.140 10.437 <0.001 *** 241 

Adjacent Hedge - Adjacent Field interior      1.312 0.155 8.471 <0.001 *** 241 

Adjacent Grass strip - Adjacent Arable field    0.676 0.130 5.205 <0.001 *** 241 

Adjacent Ditch margin - Adjacent Arable field      0.564 0.160 3.529 0.004 ** 241 

Adjacent Hedge - Adjacent Arable field        0.411 0.175 2.355 0.118 n.s. 241 

Adjacent Ditch margin - Adjacent Grass strip   -0.112 0.102 -1.100 0.791 n.s. 241 

Adjacent Hedge - Adjacent Grass strip      -0.265 0.123 -2.154 0.184 n.s. 241 

Adjacent Hedge - Adjacent Ditch margin      -0.153 0.154 -0.994 0.846 n.s. 241 
 

Mann-Whitney U test for pairwise comparisons of species numbers in the field interior and edge of different crop types (pairwise p-value are given (p value adjustment method: holm). 

Total herbaceous species number 

  
Barley  

(Field edge) 
Barley  

(Field interior) 
Potato  

(Field edge) 
Potato  

(Field interior) 
Maize 

 (Field edge) 

Barley (Field edge) 1.00000 0.00098 1.00000 0.00112 0.27023 

Barley (Field interior) 0.00098 1.00000 0.00141 1.00000 0.00218 

Potato (Field edge) 1.00000 0.00141 1.00000 0.00128 0.11628 

Potato (Field interior) 0.00112 1.00000 0.00128 1.00000 0.00294 

Maize (Field edge) 0.27023 0.00218 0.11628 0.00294 1.00000 

Maize (Field interior) 0.00181 1.00000 0.00246 1.00000 0.00601 

Rapeseed (Field edge) 0.04239 0.00040 0.04466 0.00044 0.00002 

Rapeseed (Field interior) 0.00393 1.00000 0.00481 0.81420 0.02276 

Rye (Field edge) 1.00000 0.00065 1.00000 0.00072 0.01448 

Rye (Field interior) 0.00110 1.00000 0.00178 1.00000 0.00262 

Triticale (Field edge) 1.00000 0.00527 1.00000 0.00269 1.00000 

Triticale (Field interior) 0.00065 1.00000 0.00113 1.00000 0.00142 

Wheat (Field edge) 1.00000 0.00140 1.00000 0.00140 1.00000 

Wheat (Field interior) 0.00044 1.00000 0.00085 1.00000 0.00081 

  
Maize (Field 

interior) 
Rapeseed  

(Field edge) 

Rapeseed 
(Field 

interior) 

Rye (Field 
edge) 

Rye (Field 
interior) 

Barley (Field edge) 0.00181 0.04239 0.00393 1.00000 0.00110 

Barley (Field interior) 1.00000 0.00040 1.00000 0.00065 1.00000 

Potato (Field edge) 0.00246 0.04466 0.00481 1.00000 0.00178 

Potato (Field interior) 1.00000 0.00044 0.81420 0.00072 1.00000 

Maize (Field edge) 0.00601 0.00002 0.02276 0.01448 0.00262 

Maize (Field interior) 1.00000 0.00051 1.00000 0.00110 1.00000 

Rapeseed (Field edge) 0.00051 1.00000 0.00068 0.45046 0.00043 

Rapeseed (Field interior) 1.00000 0.00068 1.00000 0.00164 1.00000 

Rye (Field edge) 0.00110 0.45046 0.00164 1.00000 0.00086 

Rye (Field interior) 1.00000 0.00043 1.00000 0.00086 1.00000 

Triticale (Field edge) 0.00685 0.04531 0.01867 1.00000 0.00527 

Triticale (Field interior) 1.00000 0.00035 1.00000 0.00054 1.00000 

Wheat (Field edge) 0.00246 0.00107 0.00685 0.37228 0.00128 

Wheat (Field interior) 1.00000 0.00030 1.00000 0.00043 1.00000 

  
Triticale 

(Field edge) 
Triticale  

(Field interior) 
Wheat  

(Field edge) 
Wheat  

(Field interior) 
  

Barley (Field edge) 1.00000 0.00065 1.00000 0.00044   

Barley (Field interior) 0.00527 1.00000 0.00140 1.00000   

Potato (Field edge) 1.00000 0.00113 1.00000 0.00085   

Potato (Field interior) 0.00269 1.00000 0.00140 1.00000   

Maize (Field edge) 1.00000 0.00142 1.00000 0.00081   

Maize (Field interior) 0.00685 1.00000 0.00246 1.00000   

Rapeseed (Field edge) 0.04531 0.00035 0.00107 0.00030   

Rapeseed (Field interior) 0.01867 1.00000 0.00685 1.00000   

Rye (Field edge) 1.00000 0.00054 0.37228 0.00043   

Rye (Field interior) 0.00527 1.00000 0.00128 1.00000   

Triticale (Field edge) 1.00000 0.00393 1.00000 0.00320   

Triticale (Field interior) 0.00393 1.00000 0.00083 1.00000   

Wheat (Field edge) 1.00000 0.00083 1.00000 0.00059   

Wheat (Field interior) 0.00320 1.00000 0.00059 1.00000   
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Arable plants sensu stricto 

  
Barley  

(Field edge) 
Barley  

(Field interior) 
Potato  

(Field edge) 
Potato  

(Field interior) 
Maize  

(Field edge) 

Barley (Field edge) 1.00000 0.00191 1.00000 0.00283 0.48640 

Barley (Field interior) 0.00191 1.00000 0.00257 1.00000 0.01136 

Potato (Field edge) 1.00000 0.00257 1.00000 0.00284 0.23745 

Potato (Field interior) 0.00283 1.00000 0.00284 1.00000 0.00814 

Maize (Field edge) 0.48640 0.01136 0.23745 0.00814 1.00000 

Maize (Field interior) 0.00571 1.00000 0.00590 1.00000 0.03077 

Rapeseed (Field edge) 0.02370 0.00043 0.69994 0.00049 0.00003 

Rapeseed (Field interior) 0.01830 1.00000 0.01606 0.92889 0.15962 

Rye (Field edge) 1.00000 0.00135 1.00000 0.00257 0.33494 

Rye (Field interior) 0.00683 1.00000 0.00778 1.00000 0.03136 

Triticale (Field edge) 1.00000 0.01785 1.00000 0.01092 1.00000 

Triticale (Field interior) 0.00199 1.00000 0.00242 1.00000 0.01023 

Wheat (Field edge) 1.00000 0.00479 1.00000 0.00571 1.00000 

Wheat (Field interior) 0.00108 1.00000 0.00143 1.00000 0.00462 

  
Maize  

(Field interior) 
Rapeseed  

(Field edge) 
Rapeseed  

(Field interior) 
Rye  

(Field edge) 
Rye  

(Field interior) 

Barley (Field edge) 0.00571 0.02370 0.01830 1.00000 0.00683 

Barley (Field interior) 1.00000 0.00043 1.00000 0.00135 1.00000 

Potato (Field edge) 0.00590 0.69994 0.01606 1.00000 0.00778 

Potato (Field interior) 1.00000 0.00049 0.92889 0.00257 1.00000 

Maize (Field edge) 0.03077 0.00003 0.15962 0.33494 0.03136 

Maize (Field interior) 1.00000 0.00049 1.00000 0.00444 1.00000 

Rapeseed (Field edge) 0.00049 1.00000 0.00068 0.26542 0.00043 

Rapeseed (Field interior) 1.00000 0.00068 1.00000 0.01355 1.00000 

Rye (Field edge) 0.00444 0.26542 0.01355 1.00000 0.00571 

Rye (Field interior) 1.00000 0.00043 1.00000 0.00571 1.00000 

Triticale (Field edge) 0.02571 0.01519 0.08309 1.00000 0.02359 

Triticale (Field interior) 1.00000 0.00038 1.00000 0.00141 1.00000 

Wheat (Field edge) 0.01462 0.00135 0.06073 1.00000 0.01204 

Wheat (Field interior) 1.00000 0.00031 1.00000 0.00078 1.00000 

  
Triticale  

(Field edge) 
Triticale  

(Field interior) 
Wheat  

(Field edge) 
Wheat  

(Field interior) 
  

Barley (Field edge) 1.00000 0.00199 1.00000 0.00108   

Barley (Field interior) 0.01785 1.00000 0.00479 1.00000   

Potato (Field edge) 1.00000 0.00242 1.00000 0.00143   

Potato (Field interior) 0.01092 1.00000 0.00571 1.00000   

Maize (Field edge) 1.00000 0.01023 1.00000 0.00462   

Maize (Field interior) 0.02571 1.00000 0.01462 1.00000   

Rapeseed (Field edge) 0.01519 0.00038 0.00135 0.00031   

Rapeseed (Field interior) 0.08309 1.00000 0.06073 1.00000   

Rye (Field edge) 1.00000 0.00141 1.00000 0.00078   

Rye (Field interior) 0.02359 1.00000 0.01204 1.00000   

Triticale (Field edge) 1.00000 0.01226 1.00000 0.00683   

Triticale (Field interior) 0.01226 1.00000 0.00380 1.00000   

Wheat (Field edge) 1.00000 0.00380 1.00000 0.00153   

Wheat (Field interior) 0.00683 1.00000 0.00153 1.00000   
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High nature value species 

  
Barley  

(Field edge) 
Barley  

(Field interior) 
Potato  

(Field edge) 
Potato  

(Field interior) 
Maize  

(Field edge) 

Barley (Field edge) 1.00000 1.00000 1.00000 0.20603 1.00000 

Barley (Field interior) 1.00000 1.00000 1.00000 1.00000 1.00000 

Potato (Field edge) 1.00000 1.00000 1.00000 0.10416 1.00000 

Potato (Field interior) 0.20603 1.00000 0.10416 1.00000 0.20603 

Maize (Field edge) 1.00000 1.00000 1.00000 0.20603 1.00000 

Maize (Field interior) 1.00000 1.00000 1.00000 1.00000 1.00000 

Rapeseed (Field edge) 0.00550 0.02939 0.13464 0.00232 0.00022 

Rapeseed (Field interior) 1.00000 1.00000 1.00000 0.56160 1.00000 

Rye (Field edge) 0.22509 0.22861 1.00000 0.00951 0.03221 

Rye (Field interior) 1.00000 1.00000 1.00000 1.00000 1.00000 

Triticale (Field edge) 1.00000 1.00000 1.00000 0.64701 1.00000 

Triticale (Field interior) 1.00000 1.00000 0.64513 1.00000 1.00000 

Wheat (Field edge) 1.00000 1.00000 1.00000 1.00000 1.00000 

Wheat (Field interior) 1.00000 1.00000 1.00000 1.00000 1.00000 

  
Maize  

(Field interior) 
Rapeseed  

(Field edge) 
Rapeseed  

(Field interior) 
Rye  

(Field edge) 
Rye  

(Field interior) 

Barley (Field edge) 1.00000 0.00550 1.00000 0.22509 1.00000 

Barley (Field interior) 1.00000 0.02939 1.00000 0.22861 1.00000 

Potato (Field edge) 1.00000 0.13464 1.00000 1.00000 1.00000 

Potato (Field interior) 1.00000 0.00232 0.56160 0.00951 1.00000 

Maize (Field edge) 1.00000 0.00022 1.00000 0.03221 1.00000 

Maize (Field interior) 1.00000 0.00911 1.00000 0.06369 1.00000 

Rapeseed (Field edge) 0.00911 1.00000 0.03152 1.00000 0.03137 

Rapeseed (Field interior) 1.00000 0.03152 1.00000 0.38980 1.00000 

Rye (Field edge) 0.06369 1.00000 0.38980 1.00000 0.30550 

Rye (Field interior) 1.00000 0.03137 1.00000 0.30550 1.00000 

Triticale (Field edge) 1.00000 0.28148 1.00000 1.00000 1.00000 

Triticale (Field interior) 1.00000 0.00496 1.00000 0.03152 1.00000 

Wheat (Field edge) 1.00000 0.00320 1.00000 0.08615 1.00000 

Wheat (Field interior) 1.00000 0.00693 1.00000 0.05310 1.00000 

  
Triticale  

(Field edge) 
Triticale  

(Field interior) 
Wheat  

(Field edge) 
Wheat  

(Field interior) 
  

Barley (Field edge) 1.00000 1.00000 1.00000 1.00000   

Barley (Field interior) 1.00000 1.00000 1.00000 1.00000   

Potato (Field edge) 1.00000 0.64513 1.00000 1.00000   

Potato (Field interior) 0.64701 1.00000 1.00000 1.00000   

Maize (Field edge) 1.00000 1.00000 1.00000 1.00000   

Maize (Field interior) 1.00000 1.00000 1.00000 1.00000   

Rapeseed (Field edge) 0.28148 0.00496 0.00320 0.00693   

Rapeseed (Field interior) 1.00000 1.00000 1.00000 1.00000   

Rye (Field edge) 1.00000 0.03152 0.08615 0.05310   

Rye (Field interior) 1.00000 1.00000 1.00000 1.00000   

Triticale (Field edge) 1.00000 1.00000 1.00000 1.00000   

Triticale (Field interior) 1.00000 1.00000 1.00000 1.00000   

Wheat (Field edge) 1.00000 1.00000 1.00000 1.00000   

Wheat (Field interior) 1.00000 1.00000 1.00000 1.00000   

  



CHAPTER 2   

56 

Cover of herbaceous plants (%) 

  
Barley  

(Field edge) 
Barley  

(Field interior) 
Potato  

(Field edge) 
Potato  

(Field interior) 
Maize  

(Field edge) 

Barley (Field edge) 1.00000 0.75554 1.00000 0.00965 0.75554 

Barley (Field interior) 0.75554 1.00000 0.29645 1.00000 0.17266 

Potato (Field edge) 1.00000 0.29645 1.00000 0.00283 0.65606 

Potato (Field interior) 0.00965 1.00000 0.00283 1.00000 0.00236 

Maize (Field edge) 0.75554 0.17266 0.65606 0.00236 1.00000 

Maize (Field interior) 1.00000 1.00000 1.00000 1.00000 0.68022 

Rapeseed (Field edge) 0.00003 0.00662 0.00000 0.00024 0.06550 

Rapeseed (Field interior) 0.18879 0.19913 0.10709 0.01332 1.00000 

Rye (Field edge) 0.38980 0.05080 0.65606 0.00088 1.00000 

Rye (Field interior) 1.00000 1.00000 1.00000 0.19644 1.00000 

Triticale (Field edge) 0.74980 0.15348 0.65754 0.00391 1.00000 

Triticale (Field interior) 1.00000 1.00000 1.00000 1.00000 0.42768 

Wheat (Field edge) 1.00000 0.10725 1.00000 0.00102 1.00000 

Wheat (Field interior) 0.75554 1.00000 0.11376 1.00000 0.04556 

  
Maize  

(Field interior) 
Rapeseed  

(Field edge) 
Rapeseed  

(Field interior) 
Rye  

(Field edge) 
Rye  

(Field interior) 

Barley (Field edge) 1.00000 0.00003 0.18879 0.38980 1.00000 

Barley (Field interior) 1.00000 0.00662 0.19913 0.05080 1.00000 

Potato (Field edge) 1.00000 0.00000 0.10709 0.65606 1.00000 

Potato (Field interior) 1.00000 0.00024 0.01332 0.00088 0.19644 

Maize (Field edge) 0.68022 0.06550 1.00000 1.00000 1.00000 

Maize (Field interior) 1.00000 0.01388 0.35419 0.35188 1.00000 

Rapeseed (Field edge) 0.01388 1.00000 1.00000 0.04556 0.00780 

Rapeseed (Field interior) 0.35419 1.00000 1.00000 1.00000 0.65606 

Rye (Field edge) 0.35188 0.04556 1.00000 1.00000 1.00000 

Rye (Field interior) 1.00000 0.00780 0.65606 1.00000 1.00000 

Triticale (Field edge) 0.68022 0.29645 1.00000 1.00000 1.00000 

Triticale (Field interior) 1.00000 0.00741 0.33759 0.15713 1.00000 

Wheat (Field edge) 0.68022 0.00092 1.00000 1.00000 1.00000 

Wheat (Field interior) 1.00000 0.00028 0.03824 0.00961 1.00000 

  
Triticale  

(Field edge) 
Triticale  

(Field interior) 
Wheat  

(Field edge) 
Wheat  

(Field interior) 
  

Barley (Field edge) 0.74980 1.00000 1.00000 0.75554   

Barley (Field interior) 0.15348 1.00000 0.10725 1.00000   

Potato (Field edge) 0.65754 1.00000 1.00000 0.11376   

Potato (Field interior) 0.00391 1.00000 0.00102 1.00000   

Maize (Field edge) 1.00000 0.42768 1.00000 0.04556   

Maize (Field interior) 0.68022 1.00000 0.68022 1.00000   

Rapeseed (Field edge) 0.29645 0.00741 0.00092 0.00028   

Rapeseed (Field interior) 1.00000 0.33759 1.00000 0.03824   

Rye (Field edge) 1.00000 0.15713 1.00000 0.00961   

Rye (Field interior) 1.00000 1.00000 1.00000 1.00000   

Triticale (Field edge) 1.00000 0.35157 1.00000 0.04960   

Triticale (Field interior) 0.35157 1.00000 0.35652 1.00000   

Wheat (Field edge) 1.00000 0.35652 1.00000 0.01962   

Wheat (Field interior) 0.04960 1.00000 0.01962 1.00000   
 

General linear hypotheses & multiple comparisons for parametric models (results are given on the log, not the response scale; confidence level used: 0.95). 
 

 
    

Crop = Cereal:      
Adj_habitat lsmean Std. Error df lower.CL upper.CL 

Adjacent Field interior 0.8536029 0.10180134 241 0.6530688 1.054137 

Adjacent Arable field 1.7543007 0.12933089 241 1.4995374 2.009064 

Adjacent Grass strip 2.4306114 0.04248508 241 2.3469219 2.514301 

Adjacent Ditch margin 2.3185162 0.10239739 241 2.116808 2.520224 

Adjacent Hedge 2.1654107 0.11872812 241 1.9315333 2.399288 
 

     

poolCrop = Maize:      
Adj_habitat lsmean Std. Error df lower.CL upper.CL 

Adjacent Field interior 0.6278297 0.12902022 241 0.3736785 0.881981 

Adjacent Arable field 1.5285276 0.14665129 241 1.2396456 1.81741 

Adjacent Grass strip 2.2048383 0.08390407 241 2.0395593 2.370117 

Adjacent Ditch margin 2.0927431 0.12108391 241 1.8542252 2.331261 

Adjacent Hedge 1.9396376 0.14837284 241 1.6473644 2.231911 
 

     

poolCrop = Potato:      
Adj_habitat lsmean Std. Error df lower.CL upper.CL 

Adjacent Field interior 1.1128158 0.12410358 241 0.8683496 1.357282 

Adjacent Arable field 2.0135137 0.14987294 241 1.7182855 2.308742 

Adjacent Grass strip 2.6898243 0.07982952 241 2.5325717 2.847077 

Adjacent Ditch margin 2.5777291 0.12215186 241 2.3371075 2.818351 

Adjacent Hedge 2.4246236 0.14183595 241 2.1452272 2.70402 
 

     

poolCrop = Rapeseed:      
Adj_habitat lsmean Std. Error df lower.CL upper.CL 

Adjacent Field interior 1.3957364 0.113675 241 1.171813 1.61966 

Adjacent Arable field 2.2964342 0.13448715 241 2.0315139 2.561355 

Adjacent Grass strip 2.9727449 0.06124566 241 2.8520997 3.09339 

Adjacent Ditch margin 2.8606497 0.11114617 241 2.6417077 3.079592 

Adjacent Hedge 2.7075442 0.13488665 241 2.4418369 2.973251 
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Figure S1: Relative frequency of habitat types in the study region in 2016 (% of total area = 132,275 ha), based on 
habitat mapping according to the key of Drachenfels (2016) using data of the two district administrations Nienburg 
(2016) and Diepholz (2016). Habitat types were categorized into the following groups: ‘arable land’, ‘settlements and 
infrastructure’ (sealed area and related semi-natural habitats such as cemeteries, gardens or roadside greenery), ‘grass 
strips’ (usually found between arable and non-arable habitats, e.g. along agricultural access tracks), ‘forb and ruderal 
stands’, ‘forests’, ‘marshlands (incl. degeneration stages)’, ‘permanent grasslands’, ‘standing waters’, ‘streams’ and 
‘woody elements of the open landscape’ mainly include hedges and scrub (85 %) and a small percentage of single 
trees, tree rows and orchards (15 %); not clearly assignable habitats were categorized as ‘others’ (including headwater 
areas, dwarf shrub heathlands, inland dunes, bare soil areas); full references see main manuscript & File S1 
Supplementary methods. 

Figure S2: Proportion of crops in the farmland of the study region in 2016 [% of total farmland area = 73,790 ha]. 
Data from the Land Parcel Identification System (LPIS) as part of the Integrated Administration and Control System 
(IACS); provided by the Ministry of Food, Agriculture and Consumer Protection, Lower Saxony (EU, 2009a, 2009b; 
ML, 2016; full references see main manuscript & File S1 Supplementary methods). 
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Figure S3: Plant species occurring only in one crop or with wider distribution across crop types (total species number: 150; crops 
and woody seedlings excluded); triticale, rye, wheat and barley were combined to the group (winter) cereals; n = 30 for edge plots 
of barley, maize, rapeseed, rye and wheat, potato = 28, triticale = 22, n for interior plots = 10 per crop type. 

Figure S4: Crop cover (%) in field edge and field interior plots; n = 30 for edge plots of barley, maize, rapeseed, rye and wheat, 
potato = 28, triticale = 22; interior plots = 10 per crop. 
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Abstract 

Agri-environment measures to support biodiversity in intensively used agricultural landscapes 

have been implemented in many European countries, but the large-scale downward trend in 

many species groups continues. The arable flora is one of the species groups that suffered the 

steepest declines in European cultural landscapes. Despite their fundamental importance in 

agroecosystems as the basis of the food web, few studies have tested the effectiveness of 

different agri-environment measures on the arable flora in replicated field trials over several 

consecutive years. In a four-year participative project with the farmers, we recorded the effects of 

four agri-environment measures, namely conservation field margins (CFM), annual fallow strips 

(fallows), alternately managed biennial flower strips (AFS), and perennial flower strips (PFS), on 

the species richness, plant cover and composition of the non-crop vegetation in 67 intensively 

managed arable fields in Northwest Germany.  

Compared to conventionally managed field edges, all measures led to a large increase in total 

plant cover (median values across measures and years: 68.5 vs. 9.5 %) and doubling of species 

richness (21 vs. 9 species per plot), promoting not only generalist species but also the typical 

arable flora (17 vs. 7 species, 56.5 vs. 8 % cover). Of the 207 plant species recorded during 

sampling, 43 (including 16 typical arable species) were solely found in measures. All measures 

promoted forbs more than graminoids, while annual species benefited especially from CFM and 

fallows. The overall effects on diversity and cover remained stable over the 3-yr implementation 

period but were significantly influenced by interannual weather fluctuation. Spillover effects of 

the measures into adjacent conventionally managed crops were not detectable.  

We conclude that, if well-managed, all tested measures can have a positive effect on the native 

arable flora even in long-term intensively farmed landscapes. However, especially CFM and the 

annual fallows are particularly effective in naturally restoring and maintaining arable plant 

diversity. The limited occurrence of 1/4 of typical arable plant species on less than four fields 

indicates severely impoverished soil seed banks in intensive farmland. Therefore, the re-

introduction of native, rare arable plant species through seed mixtures should be considered in 

order to promote local diversity and save local populations of these species.  

 

Keywords: Arable weeds; Common Agricultural Policy; Biodiversity conservation; Agri-

environment measure; Segetal flora 

 

3.1 Introduction 

The ongoing loss of global biodiversity is particularly acute in intensively used agricultural 

landscapes (Butchart et al., 2010; Flohre et al., 2011; Sánchez-Bayo and Wyckhuys, 2019; Storkey 

et al., 2012). The conventionally managed intensive farmland of Central and Western Europe has 

experienced a dramatic impoverishment of the arable flora and population collapses in many 

formerly common weed species. Most of the 287 plant species typically associated with arable 

communities in Germany are annuals, whose reproductive cycle is adapted to agricultural 

management, in particular regular soil disturbance (Hofmeister and Garve, 2006). Much of the 
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typical arable flora of Germany consists of competitively weak species, and only about 30 species 

are able to compete more strongly with crops and may have harmful effects on crop yield 

(Hofmeister and Garve, 2006). However, in the last 60 to 70 years, a strong decline in the arable 

flora has made it one of the most endangered plant groups in Germany and elsewhere in Europe 

(Leuschner and Ellenberg, 2017; Richner et al., 2015; Storkey et al., 2012; Van Calster et al., 2008) 

with a high proportion of red-listed taxa (for Germany 35 %; Korneck et al., 1996; Lang et al., 

2016). This decline has strongly affected the field interior, whilst field edges (up to ca. 2 m into 

the crop) usually support somewhat higher arable plant diversity and abundance, reflecting less 

intensive management and possible spillover effects from adjacent habitats (Aavik et al., 2008; 

Batáry et al., 2017; Fried et al., 2009; Meyer et al., 2013; Nagy et al., 2018). Such strong losses in 

diversity and abundance of primary producers negatively impact the trophic web and ecosystem 

functioning of agricultural landscapes (Hyvönen and Huusela-Veistola, 2008; Marshall et al., 

2003; Médiène et al., 2011). For instance, arable plants function as food sources for soil 

macrofauna, phytophagous insects (and, thus, insectivorous bird species), granivorous birds and 

pollinating insects (Hyvönen and Huusela-Veistola, 2008; Marshall et al., 2003, Franke et al., 

2009). Thus, maintaining at least basic levels of non-crop vegetation richness and abundance in 

arable landscapes is crucial for both sustaining ecosystem functions and conserving overall 

farmland biodiversity.  

To halt biodiversity loss in agricultural landscapes, the European Union introduced the 

requirement for Member States to implement agri-environment schemes in its Common 

Agricultural Policy (European Commission, 2013). Literature reviews and meta-analyses on the 

effectiveness of these measures revealed an overall positive influence on total farmland diversity 

and species abundance, although the effects varied considerably with landscape composition, 

management regime, location and organism group (Barral et al., 2015; Batáry et al., 2011, 2012, 

2015; Gonthier et al., 2014). Analyses on the country level similarly demonstrated positive effects 

of agri-environment measures on arable plant diversity in Europe (e.g. Fischer and Milberg, 1997; 

Geiger et al., 2010; Kleijn et al., 2006; Walker et al., 2007). Fewer studies investigated the effects 

of agri-environment measures on plant species cover and abundance, but they demonstrate in 

general positive impacts (e.g. Fischer and Milberg, 1997; Walker et al., 2007).  

Biodiversity conservation action in intensive farmland needs more clarity on which measure type 

is most effective in promoting arable plant diversity in a given landscape. Various studies have 

evaluated the effect of a particular measure type on the arable vegetation (e.g. Albrecht et al., 

2016; Tscharntke et al., 2011; Wagner et al., 2017), or compared organic and conventional 

farming (e.g. Batáry et al., 2012; Gabriel et al., 2013; Romero et al., 2008), but investigations 

comparing the effects of different types of measures over several years are still scarce (but see 

Eggenschwiler et al., 2009; Venclova et al., 2006; Walker et al., 2007). In addition, the impact of 

flower strips on arable plant species richness and abundance has also rarely been examined (e.g. 

Rode et al., 2018), as this measure targets primarily insects and birds.  

With this study in conventionally managed intensive farmland, we compare four different agri-

environment measures (annual fallow strips (hereafter termed fallows), conservation field margins 

(CFM), alternately managed biennial flower strips (AFS), and perennial flower strips (PFS)) with 

respect to their impact on the non-crop arable plant vegetation. These measures differ with 

respect to duration (annual vs. perennial), soil disturbance (with or without) and the mode of 

non-crop plant introduction (seeding vs. natural colonization). In contrast to agri-environment 
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measures funded through the European Common Agricultural Policy, the measures investigated 

here were defined by the farmers implementing them in collaboration with ecologists and 

representatives of the local agricultural administration. The participating farmers were 

compensated for their yield loss and management costs.  

We test the following hypotheses: i) The studied measures increase both total and arable plant 

species richness and abundance (cover) in comparison to conventionally farmed field edges; ii) 

the non-crop arable vegetation differs between the four measure types and from that of 

conventionally managed field edges in terms of species composition, plant life forms and trait 

spectra; and iii) species introduced through the agri-environment measures will not establish in 

the adjacent, conventionally managed crop field area, i.e. infield spillover is of low importance. 

 

3.2 Material and Methods 

3.2.1 Study region 

This study was conducted in the two districts Nienburg (centroid: N 52°36'32.5334'', E 

9°6'49.7118'') and Diepholz (N 52°43'41.4940'', E 8°42'4.1629'') in Lower Saxony, Northwest 

Germany (Appendix Fig. A.1). The study region is characterized by intensive conventional crop 

production on sandy to loamy Cambisols, Podzols, Luvisols and Gleysols (Federal Institute for 

Geosciences and Natural Resources, 2013). The climate is cool-temperate with suboceanic 

character with 662 mm mean annual precipitation and a mean annual temperature of 10.3 °C in 

Nienburg and 683.6 mm / 10.1 °C in Diepholz (climate data from 2013-2017; German 

Meteorological Service, 2019). In consultation with 19 participating farmers, sixty-seven arable 

fields were chosen for the implementation of agri-environment measures, aiming to ensure wide 

dispersion within the study region. 

 

3.2.2 Agri-environment measures 

The selection of measures was decided together with the participating farmers in order to balance 

the benefit for biodiversity and the burden for the farmer in terms of labor effort and yield 

reduction (which were financially compensated: 700 € ha-1). As far as possible, the measures were 

adapted to meet the farmers‘ preferences with respect to practicability. For instance, the sowing 

date of flower strips was postponed from April 15 (as it is required according to the agri-

environment measure rules of the state) to early May which is more practicable in the region to 

avoid late frost damage. Much effort was devoted to advice and information of the farmers in 

order to increase acceptance and improve the quality of the measures. 

In general, measures were implemented in the form of strips at the edge of the field with the 

width varying from 5 to 18 m (in one case 3 m). The strips were placed directly adjacent to the 

conventionally managed field, which was cultivated with winter crops (barley, rye, rapeseed, 

triticale or wheat) or summer crops (potato or maize) according to the normal crop rotation of 

the participating farmer (see Table A.1 in the Appendix for replicate numbers). In eight cases, 

measures were implemented on larger field sections or covered even the whole field and thus 

lacked a directly neighboring intensively cultivated field. In the latter case, we used a 

conventionally managed field close to the measure (c. 15 m) as control, but then no spillover 
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plots could be established. The separate control fields showed no conspicuous deviations in 

species diversity or cover, therefore we assumed they supported similar species pools. The area of 

the individual measures ranged between 400 and 6200 m². 

In autumn 2016 / spring 2017, 47 individual measures belonging to three measure types were 

implemented, namely annual fallow strips (fallows), conservation field margins (CFM) and 

alternately managed biennial flower strips (AFS). An additional 20 measure areas were established 

from autumn 2017 / spring 2018 onwards, including a fourth measure type, the perennial flower 

strips (PFS) (for replicate numbers in the different years see Table 1). In all measure types, the 

application of fertilizers or pesticides, mechanical weeding and access by machinery (except for 

harvest and mowing) was forbidden. Tillage was done with mouldboard plough (up to 30 cm) 

and the direction of tillage in the adjacent field could be either parallel or perpendicular to the 

measure (depending on the field position of the measure). 

Fallows were tilled once per year (autumn or spring, depending on the cultivation of summer or 

winter crops on the adjacent field). After tillage, the vegetation succession on the fallows 

proceeded without disturbance. Alternately managed biennial flower strips (AFS) were sown at 

the start of May using a seed mixture of 27 ornamental, crop and native plant species at a seed 

density of 1 g m-2 (12 annual and 15 perennial taxa, including five arable plants; see Table A.2 in 

the Appendix). From the second year onwards, half of the area of each strip was mown and the 

plant biomass left on the field, the area tilled and re-sown to generate structural diversity. In the 

following year, the other half of the strip was treated in the same manner. The regular soil 

disturbance on half of the area should support the establishment of arable plant species from the 

seed bank or from seed rain, which otherwise would have been suppressed by the dense cover of 

the sown flower strip. Perennial flower strips (PFS) were established by sowing a seed mixture of 

widespread perennial native herbaceous species (seed density 1 g m-2; in total 34 taxa, including 

nine native arable plants; Table A.3 in the Appendix). Sowing took place at the beginning of May 

2018. The strips were mown annually between August and September and the plant biomass left 

on the field. Conservation field margins (CFM) were implemented by sowing the crop at lower 

seed density to reduce crop cover and improve the growth conditions for arable plant species. In 

2016/2017, we applied 70 % of the usual sowing density, and 50 % from autumn 2017 onwards. 

This measure was applied in coordination with the regular crop rotation on the fields (see Table 

A.4 in the Appendix). Table A.5 in the Appendix summarizes the key management steps of the 

implemented measure types and show their average width, length and area. 

 

3.2.3 Vegetation survey 

Monitoring of arable vegetation and plants sown in flower strips took place from 2016 to 2019 

(end of May to the beginning of August) in plots of 50 x 2 m size (100 m²). We recorded the 

species richness and cover (Londo scale; Londo, 1976) of the chosen 67 conventionally managed 

arable fields (see Fig. A.1 in the Appendix; field size ranged between 0.4 and 20 ha) before the 

measures were implemented (pre-survey) and repeated the monitoring of the same plots after the 

implementation of the measures (before-after-control-impact approach). In addition, we recorded 

the arable vegetation of intensively managed fields in plots in the field interior (c. 20 m into the 

field), in so-called ‘spillover plots’ directly adjacent to the implemented measures in the field, and 

in field edge plots in the field opposite to the measure. The latter plots served as control to the 
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measures in each implementation year. The field edge plots included the outermost furrow of the 

field and extended 2 m into the field. The monitoring design is shown in Fig. A.2 in the 

Appendix. Immature plants not identified to the species level were noted as genus (e.g. Setaria 

spec.). Nomenclature follows Buttler (2018). The raw vegetation data are compiled in Table A.6 

in the Appendix. To account for the vegetation heterogeneity created by the alternate 

management of the AFS sites from the second year onwards, plots were located in equal shares in 

newly established and last-year measure strips, resulting in 7 and 6 plots in new and last-year 

measures, respectively, in the second implementation year, and 6 and 7 plots in the third year. In 

five cases, were the measure strip was relatively small, the plot was located in the strip center, 

covering both the newly established and last-year strip. Thus, the displayed results of plant 

species richness and cover from implementation year two onwards cover the structural 

heterogeneity in the AFS strips, which is created by the alternating management regime. 

 

3.2.4 Environmental data 

In order to analyze the influence of weather conditions on non-crop species richness and cover, 

we used interpolated high-resolution (1 x 1 km²) gridded climate data (monthly precipitation 

totals and monthly averaged daily air temperatures) for the period from April to July in the four 

years (2016–2019, Climate Data Center, version v1.0 (German Meteorological Service, 2019); 

data download and interpolation with the R packages ‘rdwd’ (Boessenkool, 2019), ‘raster’ 

(Hijmans, 2019) and ‘reshape’ (Wickham, 2007)). The interval from April to July was chosen, as it 

covers the period of germination and development of the vegetation surveyed by us in summer. 

Climate diagrams for Nienburg and Diepholz are depicted in Fig. A.3 in the Appendix.  

Soils in the study region developed from loamy to sandy glacial deposits with moderate to high 

fertility. Pre-analyses found no significant effect of soil type on plant diversity and species 

composition in the region (Wietzke et al., unpublished). Therefore, soil parameters were not 

included in the statistical analysis of the vegetation data of this study. 

 

3.2.5 Statistical analysis 

3.2.5.1. Data preparation 

We used the statistical software R 3.5.3 (R Core Team, 2019) for data analysis. Species cover data 

(Londo scale) were transformed into percentage cover values (following Leyer and Wesche, 

2008). In the analyses, species which are not part of the native herbaceous flora of the study 

region (seedlings of woody plants, crops and ornamental taxa) were excluded. Sown native plant 

species in the AFS and PFS measures were considered, as they cannot be distinguished with 

certainty from genuine plants originating from the diaspore bank or seed rain. Species numbers 

and total cover were calculated for a) all herbaceous species (grasses included), b) typical (non-

crop) plant species of arable habitats according to the list of Hofmeister and Garve (2006; 

hereafter referred to as typical arable plants), c) indicators of High Nature Value arable land as 

defined for Germany by Hünig and Benzler (2017; hereafter referred to as HNV species), d) 

threatened arable plants according to the Red List of Lower Saxony (Garve, 2004), e) the 

proportion of forbs and graminoids (i.e. taxa of the families Poaceae, Juncaceae, Cyperaceae and 

Typhaceae), and f) the proportion of annuals and perennials according to specifications made in 
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Klotz et al. (2002). The assignment of the species to these plant groups is shown in Table A.7 in 

the Appendix. In eight cases, plant identification was only possible to the genus level. Total cover 

is the sum of the cover of all species and thus can exceed 100 %. 

In the analyses, the surveyed plots were grouped according to the year of measure 

implementation (pre-survey, first, second and third year). The first year of implementation was 

2017 for most measure areas but some were established later, with 2018 as first implementation 

year: see Table 1 for an overview of the replicates per year. 

Table 1 Number of replicates per plot type in each calendar year and year of implementation. Plot types: alternately 
managed biennial flower strip (AFS), perennial flower strip (PFS), conservation field margin (CFM), annual fallow 
strip (Fallow), spillover plot next to the implemented measure, field edge (control) within the intensively managed 
field, field interior: plot in the intensively managed field interior; pre-survey plots in the implementation year ‘0’ are 
summed within the field edge plots (in 2017 no field interior plots were surveyed).  

Plot type  Calendar year Implementation year Total plots  
2016 2017 2018 2019 0 1 2 3   

AFS - 18 19 17 - 19 18 17 54 
PFS - - 14 13 - 14 13 - 27 
CFM - 14 17 16 - 18 16 13 47 
Fallow - 15 16 15 - 16 16 14 46 
Spillover - 47 61 58 - 63 59 44 166 
Field edge 45 62 66 61 60 67 63 44 234 
Field interior 20 - 66 61 20 20 63 44 147 

Total plots 65 156 259 241 80 217 248 176 721 
Total fields 45 62 66 61 60 67 63 44  

 

3.2.5.2. Analysis of the effects of agri-environment measures and weather conditions on species richness and 

abundance 

To analyze the effect of the four measure types on non-crop plant diversity and cover, we 

performed negative binomial generalized mixed effects models (R package ‘glmmTMB’; Brooks 

et al., 2017) using the corresponding field edge as control. In addition, field interior plots were 

included in our study to serve as a reference level for the influence of the most intensive 

management on the non-crop arable vegetation. To investigate possible spillover effects from the 

measure site into the field, the spillover plots were compared with the field edge plots of the 

corresponding year. We introduced the different plot types as fixed factor (plots in the four 

measure types, and field edge, interior and spillover plots of the years 0 to 3). To account for 

possible effects of the farm with its specific management practices, farm location and previous-

year effects in the fields, we introduced the farm and the studied arable field (field_ID) as 

random factors. Since ‘farm’ had only a marginal effect, this random factor was excluded in the 

final model. To test the significance of response variables, likelihood-ratio tests (Type II sums of 

squares; Fox et al., 2011) and post-hoc pairwise comparisons of estimated marginal means were 

conducted (Lenth, 2019). To test for the influence of precipitation and average temperature from 

April to July (regionalized grid data) in the different study years on herbaceous species richness 

and cover, we additionally performed negative binomial generalized mixed effects models with 

plot type and each one weather variable (temperature and precipitation were correlated to each 

other). 
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3.2.5.3. Analysis of the effect of agri-environment measures on species composition 

The floristic dissimilarity (beta diversity) of the plot types was calculated as distance to group 

spatial medians based on Jaccard’s dissimilarity index (function ‘betadisper’ in the R package 

‘vegan’; Oksanen et al., 2019). Differences in beta diversity between the studied plot types were 

tested by fitting a linear mixed effects model (R package ‘nlme’; Pinheiro et al., 2019) with the 

different fields (field_ID) as random factor. We performed non-metric multidimensional scaling 

(NMDS with two to three dimensions; Hellinger transformed abundance data; Legendre and 

Gallagher, 2001) for detecting differences in community composition between the measure types 

and controls. In this analysis, we only considered species which occurred more than two times in 

the dataset. The degree of overlap of species pools between the different plot types was analyzed 

with Venn diagrams (Chen, 2018).  

Table A.8 in the Appendix presents the different models and statistical results. 

 

3.3 Results 

3.3.1 Effects of agri-environment measures on species richness and abundance 

In total, we found 207 herbaceous plant species (crops, sown ornamentals, woody seedlings and 

eight species only determinable to genus level excluded) in the 67 studied arable fields over the 4-

yr study period (2016-2019, Table A.7 in the Appendix). 122 of these species are considered as 

typical arable plants in Germany (according to Hofmeister and Garve, 2006). The influence of 

plot type on species richness and cover was highly significant for all herbaceous species and the 

typical arable plants (p < 0.0001; Table A.8 in the Appendix). Compared to the field edge plots, 

the field interior showed significantly lower species numbers and, in most cases, cover values 

(Fig. 1 and Fig. A.4 in the Appendix). Even though interannual fluctuation was substantial, the 

richness and cover of all herbaceous species in the plots of the measures were higher (medians 

across all measures and years: 21 species and 68.5 % cover) than in the control field edge plots (9 

species and 9.5 % cover; Fig. A.4 in the Appendix). However, the species richness of the CFM 

and AFS plots differed in the second year not significantly from the pre-survey plots (for CFM 

and AFS) and in the third year from the field edge plots (for CFM). We found no clear 

differences between the four measure types with respect to the increase in total plant species 

richness and cover compared to the control.  

Similar patterns of species numbers and cover emerged when the typical arable plants are 

considered (medians across all years: 17 species and 56.5 % cover in the measures plots pooled 

over all four types vs. 7 species and 8 % cover in the field edge plots; Fig. 1). In contrast to the 

full species count (all herbaceous species), however, the number of typical arable plant species did 

not increase in the PFS plots (Fig. 1 and Fig. A.4 in the Appendix).  

Spillover effects were not significant in any of the three study years, i.e. a positive influence of the 

measures on the species richness and cover in the directly adjacent, conventionally managed 

arable field (spillover plots) was lacking. This is evident from the comparison of spillover plots to 

the corresponding field edge plots (Fig. 1 and Fig. A.4 in the Appendix).  
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Comparison of the study years reveals a marked weather influence on the species richness and 

cover of all herbaceous plants and the typical arable plants (p < 0.02; Table A.8 in the Appendix). 

Higher precipitation from April to July had a positive effect, higher temperatures in this period a 

negative effect. Weather effects and species numbers and cover of observed plots per calendar 

year are shown in the Appendix (Fig. A.5 and Fig. A.6). 

 

3.3.2 Effects of agri-environment measures on the species composition 

The total number of observed species (207) included 158 forbs and 49 graminoids, and 91 

annuals and 116 perennials (Table A.7 in the Appendix). We found three regionally threatened 

species, namely Chenopodium hybridum, Galeopsis speciosa and Odontites vernus which occurred in only 

very few fields (≤ 7) and with very low cover (Table A.6 and Table A.7 in the Appendix). Across 

all plot types and implementation years, the most frequent taxa (> 200 occurrences) were agro-

tolerant arable plants, notably Bromus sterilis, Chenopodium album, Elymus repens, Fallopia convolvulus, 

Galium aparine, Matricaria chamomilla, Polygonum aviculare and Viola arvensis (Table A.7 in the 

Appendix). In contrast, nearly a quarter of the typical arable plant species (27 of 122) were found 

in only three or even fewer fields, among them Erysimum cheiranthoides, Galeopsis speciosa, Scleranthus 

annuus and Urtica urens.  

The separate analysis of forbs and graminoids shows that forbs profited more from the measures 

than graminoids. The species numbers and cover of forbs were consistently higher in measure 

plots than in field edge plots in all four measure types (Fig. A.7 in the Appendix). In contrast, 

graminoid species numbers increased only slightly above the field edge control, and this 

difference was not significant in several cases (an exception was the significantly higher graminoid 

species richness in the 2nd-year PFS plots; Fig. A.8 in the Appendix). Graminoid cover was 

Fig. 1 Species richness (a) and cover (b) in 100 m²-plots of typical arable plants (according to the species list in Hofmeister and 
Garve, 2006) in the studied plot types (field interior, field edge as control, spillover, conservation field margin (CFM), fallow, 
alternately managed biennial flower strip (AFS) and perennial flower strip (PFS)) over the four years of the study (see legend). The 
total number of relevés was 721 (for details see Table 1). Significant differences between plot types and implementation years are 
indicated by different small letters (based on estimated marginal means and Tukey-adjusted comparisons); the models and 
statistical results are presented in Table A.8 in the Appendix. 
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significantly higher than in the control in most years for the fallow, AFS and PFS plots, while the 

CFM plots were similarly poor in graminoids as the field edge control in all study years.  

Despite considerable variation between years, the species numbers and cover of annual plants 

were generally higher in the measure plots than in the field edge control plots, and this was valid 

for all four measure types (Fig. A.9 in the Appendix). While the cover of annual species remained 

at a constant level from the 1st to the 3rd year in the CFM and fallow plots, it tended to decrease 

in the AFS and PFS plots. The species number and cover of perennials were in general also 

higher in the measure plots than in the field edge control plots (Fig. A.10 in the Appendix), and 

this trend was more pronounced for the PFS plots than in the other three measure types. Over 

the three implementation years, the cover of perennials increased in the PFS, AFS and fallow 

plots, but not in the CFM plots. The annual:perennial ratio in terms of plant cover was rather 

large in fallow plots (median cover values across all years: 61.75 : 11.75 %) and CFM plots (37 : 5 

%), and smaller in AFS plots (31.75 : 16.25 %), while it was close to 1 in PFS plots (27 : 26 %; 

Fig. A.9 and Fig. A.10 in the Appendix). 

Of the 207 herbaceous non-crop species identified, 27 were indicators of High Nature Value 

(HNV) arable land. Although the plot-level richness of HNV species was generally quite low 

(ranging between 0 and 5 species in the four years), we found a positive effect of the measures on 

HNV species richness, as evidenced by the comparison with the field edge control plots (medians 

across all years: 3 species in the measures plots pooled over all four types vs. 1 species in the field 

edge plots; Fig. 2). Exceptions were the CFM and AFS plots in the second year of 

implementation and the PFS plots in the first year. In comparison to the median cover values of 

HNV species in the field edge plots (0.5 - 1 %), the measures CFM and fallow increased the 

HNV cover considerably (up to 23.25 % in fallows of year three since establishment). In contrast, 

the measures AFS and PFS had only a very small effect on HNV species cover (median cover: 

0.75 - 3.5 %). 

Fig. 2 Species richness (a) and plant cover (b) in 100 m²-plots of High Nature Value species of arable land (HNV species; 
according to Hünig and Benzler, 2017) in the studied plot types (field interior, field edge as control, spillover, CFM, fallow, AFS 
and PFS) over the four years of the study (see legend). The total number of relevés was 721 (for details see Table 1). Significant 
differences between plot types and implementation years are indicated by different small letters (based on estimated marginal 
means and Tukey-adjusted comparisons); the models and statistical results are presented in Table A.8 in the Appendix. 
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Even though floristic dissimilarity tended to be higher in field interior, edge and spillover plots 

compared to the measure sites (distances to group spatial medians for a plot/year category 

ranging between 0.47 and 0.64; see Fig. A.11 in the Appendix), the pool of species overlapping 

between the seven observed plot types was large (Fig. 3). In accordance, non-metric 

multidimensional scaling showed no clearly distinguishable plant assemblages, when comparing 

the different measure types among each other and to the field edge plots (control; Fig. 4 and Fig. 

A.12 in the Appendix). Of the 207 recorded species, 130 (62.8 %) were found in both the 

measures and the intensively managed field (field edge plots), whereas 43 (20.8 %) of the species 

were only found in the measure plots (Fig. 3). Among the taxa exclusively found in the measures 

were 16 typical arable plants such as the native Aphanes arvensis, Spergula arvensis, Galeopsis speciosa 

and the neophyte Galinsoga quadriradiata (Fig. 3 and Table A.7 in the Appendix). Twenty-one 

species (including 12 typical arable plants) were only found in the conventionally managed fields 

(field edge, interior and spillover plots), but not in the measures (Table A.7 in the Appendix). 

Considering only the measure plots, 41.4 % of the taxa occurring here (77 of 186 species; Fig. 5) 

were found in all four measure types. Among the typical arable plants, even 56.4 % (62 of 110 

species) were present in all four measures, whereas only a small number of species were restricted 

to certain measures (Table A.7 in the Appendix). Nine species were exclusively found in CFM 

(including 3 typical arable plants such as Bromus secalinus and Torilis japonica), 11 in fallows (4 

typical arable plants including Galeopsis speciosa and Urtica urens), 10 in AFS (2 typical arable plants: 

Setaria verticillata and Sonchus arvensis) and 15 in PFS (2 typical arable plants: Amaranthus retroflexus 

and Mentha arvensis). 

 

 

 

 

Fig. 3 Unique and shared species numbers (all herbaceous species considered) of the different studied plot types (field interior, 
field edge as control, spillover plots, and all four measure types pooled: CFM, fallow, AFS and PFS). The proportion of the total 
species pool (in %) is given in brackets (in total 207 species; woody plant seedlings, ornamentals, crops and species only 
determinable to genus level excluded). The total number of relevés was 721 (for details see Table 1). 
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Fig. 5 Unique and shared species numbers (all herbaceous species considered) found in the four studied measure types (CFM, 
fallow, AFS and PFS). The proportion of the total species pool (in %) is given in brackets (in total 186 species; woody plant 
seedlings, ornamentals, crops and species only determinable to order level excluded); n = 174 relevés (for details see Table 1). 

Fig. 4 Non-metric multidimensional scaling of the vegetation relevés conducted in the four studied measure types (CFM, fallow, 
AFS and PFS; see legend) in comparison to the field edge over the three implementation years: a) first implementation year (n = 
132, k = 3, stress level = 0.201), b) second implementation year (n = 125, k = 3, stress level = 0.199) and c) third implementation 
year (n = 88, k = 3, stress level = 0.216). NMDS Axis 1 and 2 are shown. PFS existed only for two implementation years. 
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3.4 Discussion 

3.4.1 How were plant species richness and abundance affected by the measures? 

While a number of studies have evaluated the effectiveness of agri-environment measures for 

farmland biodiversity in a more general way (e.g. Batáry et al., 2011; Geiger et al., 2010; Kleijn et 

al., 2006), very few studies directly compare the effectiveness of different measures on arable 

plant vegetation over a period of several years (but see e.g. Walker et al., 2007). In a participative 

procedure with farmers, we established a multi-annual field trial investigating the effect of four 

widely used types of agri-environment measures on the arable vegetation of conventional crop 

fields under real-world conditions. This approach has the additional strength that the measures 

have been adjusted for practicability on a modern conventional farm and are thus expected to 

have a high acceptance among farmers. In support of our hypothesis i), all four measures led in 

general to a significant increase in overall plant species richness and cover, and in the diversity 

and cover of typical arable plant species compared to the adjacent intensively managed field as 

control. The total plant cover increase (on average by 720 %) was in all measures greater than the 

diversity increase (on average by 230 %).  

In general, these findings are in line with other studies which demonstrated overall positive 

effects of CFM, fallows and flower strips on plant species richness and abundance in arable 

habitats (Fischer and Milberg, 1997; Kovács-Hostyánszki et al., 2011; Rode et al., 2018; Van 

Buskirk and Willi, 2004). A comparison of the results of these studies reveals that soil type and 

fertility, landscape context, management history and seed bank composition have a large 

influence on the efficiency of agri-environment measures by affecting diaspore availability and 

the survival of arable plants (Aavik et al., 2008; Denys and Tscharntke, 2002; Richner et al., 2015; 

Tscharntke et al., 2011). As a major finding, our study demonstrated that the non-sown measure 

types fallows and CFM created suitable habitat conditions for the natural re-establishment of part 

of the native arable flora, even if there have been several decades of intensive management, as in 

our region. If only species numbers are considered, the plot-level diversity in our measures 

reached a similar level to that found in the 1950s/60s in the field interior of central and north 

German fields (medians: 21 species in fallows and 19 in CFMs vs. 24 in historical field interiors; 

Meyer et al., 2013). However, the species composition of historic surveys differs largely from that 

of recent intensive farmland in that the regional flora is greatly impoverished and homogenized, 

consisting predominantly of widely distributed agro-tolerant generalist species (Meyer et al., 

2015). It is to be taken into account, too, that the plots in the implemented measures of this study 

were located at the field margin and thus possibly influenced by surrounding habitats, whereas 

the historical surveys in Meyer et al. (2013) refer to the field interior, i.e. the bulk of the arable 

land.  

In support of hypothesis iii), we observed no spillover effects from the measure sites into the 

adjacent conventionally managed arable fields (Fig. 1 and Fig. A.4 in the Appendix). This finding 

can be explained by the intensive use of herbicides in the field which effectively excludes the 

invasion of non-herbicide-tolerant plants from outside the field and perhaps by low diaspore 

dispersal rates of many arable plants, found to be in the range of a few m per year (Albrecht et al., 

1999; Bischoff, 1999). This finding is relevant for a better acceptance of agri-environment 

measures by farmers, who often are concerned about a possible weed infestation of their fields. 

Negligible spillover of arable plants contrasts with the well documented influence of neighboring 
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natural habitats or agri-environment measures on the diversity and composition of various 

mobile animal groups in the farmland, e.g. Hymenoptera, Lepidoptera, Lycosidae, Coleoptera and 

Syrphidae (Blaauw and Isaacs, 2014; Holland et al., 2016; Loos et al., 2014; Tschumi et al., 2016). 

Spillover of plants may be slightly higher at the field edge, where the intensity of pesticide and 

fertilizer use and thus crop cover are somewhat lower than in the field interior, and some taxa of 

adjacent habitats may indeed colonize the field margin (Aavik et al., 2008; Cordeau et al., 2012; 

Nagy et al., 2018). 

Considerable interannual variation in total plant species richness, especially prominent in the 

second year in CFM, fallow and AFS plots, and in the first year in PFS plots (Fig. A.4 in the 

Appendix), can most likely be explained by differences in weather conditions. As total species 

numbers and cover values increased with rising precipitation, and increased temperature led to 

reduced species richness and cover (Fig. A.5 in the Appendix), we assume that topsoil desiccation 

during the very dry and warm weather from April to July 2018 increased plant mortality and led 

to reduced species numbers. At this time, 46 of the 52 surveyed plots in 2018 of the measure 

types CFM, fallows and AFS were in the second year after establishment and all PFS plots were 

in their first year. Weather effects on arable plant community composition have been reported by 

e.g. Fried et al. (2008), Lososová and Cimalová (2009) and Pinke et al. (2012). This variation 

underpins the need of evaluating the effectiveness of agri-environment measures over several 

years to draw reliable conclusions, since weather may affect species richness and abundance, 

depending on the observed species group. 

 

3.4.2 How was plant species composition affected by the measures? 

In contradiction to hypothesis ii), non-metric multidimensional scaling did not reveal clear 

differences in the species composition of the communities found in the four measure types and 

at the intensively managed field edge (Fig. 4 and Fig. A.12 in the Appendix), even though 

diversity differed. Obviously, the species pools of implemented measures and managed fields 

have large overlaps and very few species occur exclusively in the managed field (edge or interior), 

while lacking in the measure sites. This is demonstrated by the species pool found in the four 

measures (186 species), which contained 77 species that occurred in all measure types (Fig. 5). In 

addition, measures and conventionally managed field edges shared 130 of in total 207 species 

(Fig. 3), most of which were widely distributed agro-tolerant taxa. This is in line with 

observations of Meyer et al. (2015) who found contemporary arable plant communities in Central 

Europe to be strongly impoverished and homogenized. These assemblages differ from the once 

characteristic, and now exceptionally rare, arable plant associations which contained a number of 

specialist taxa adapted to certain management and soil conditions (Albrecht et al., 2016; Meyer et 

al., 2015).  

In support of hypothesis ii), the comparison of conventionally managed fields with the four 

measure types revealed differences in community structure, which relate to differences in 

vegetation continuity, fertilizer and pesticide use and soil disturbance regimes. Since three of the 

four measures were regularly ploughed (except for PFS), the median cover of annual taxa (pooled 

across all years) was much higher than that of perennials, as is characteristic for this kind of 

conservation management (Vickery et al., 2009; Westbury et al., 2008). However, after two or 

three years, the species richness and cover of perennials had significantly increased in the AFS 
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and PFS plots, while annual species cover tended to decline (Fig. A.9 and Fig. A.10 in the 

Appendix). This indicates that continuous soil disturbance once a year, as conducted in our CFM 

and fallow sites, is most effective in conserving annual plants. As demonstrated in other studies, 

lacking soil disturbance (as in our PFS sites) leads to succession processes towards perennial 

vegetation with annual arable plants only dominating in the first one or two years (Boatman et al., 

2011; Tscharntke et al., 2011). Leaving the vegetation without disturbance for two years, which 

was intended by the alternate management regime on half of the area in our AFS sites and which 

also happens in the second year in the PFS sites, appears to be a less effective measure of 

preserving annual plants over a longer time periods.  

The dominance of graminoid species over forbs can threaten the success of perennial measures, 

as they reduce the diversity and thus the habitat value of the vegetation (Critchley et al., 2006; 

Critchley and Fowbert, 2000). Our results demonstrate that the measures investigated here 

generally promote the richness and cover of forbs more than that of graminoids, which likely is a 

consequence of the management (Fig. A.7 and Fig. A.8 in the Appendix). In a comparative 

review of conventional and organic farming, Hole et al. (2005) found that organic farming 

promotes the species richness and abundance of forbs more than that of graminoids, probably 

due to the absence of herbicides targeting dicots and less shading by the crop. That graminoid 

species richness and cover showed a stronger increase over the years only in PFS plots, but not in 

the plots of CFM and fallows with annual soil disturbance or AFS with regularly alternating 

management in half of the area, suggests that regular soil disturbance is generally better tolerated 

by forbs than graminoids in Central European arable fields.  

The assessment of the four measures with respect to the goal of increasing plant diversity allows 

to conclude that the number of plant species indicating High Nature Value farmland tripled 

across all measures (median values across all years: 3 for measures and 1 for field edge plots; Fig. 

2), which was linked to the general increase in the diversity of typical arable plants (Fig. 1). 

However, nearly a quarter (27 of 122) of the still occurring typical arable plant species were 

confined to fewer than four of the 67 studied fields (Table A.7 in the Appendix). Moreover, we 

found only three regionally threatened, red-listed arable species, which were present with very 

low cover values in few fields. This poses the question whether the population is still large 

enough to be viable in the long term. The measures did not have a positive effect on these rare 

and red-listed arable species over the 3-yr period, suggesting that despite their overall positive 

effect on biodiversity, the measures alone cannot restore the rarest species to conventional 

intensive farmland.  

Kleijn et al. (2006) also found that agri-environment measures increased threatened red-listed 

species richness in only one of five studied countries. The potential effectiveness of biodiversity-

promoting measures strongly depends on the local species pool in the soil seed bank (Denys and 

Tscharntke, 2002; Fischer and Milberg, 1997; Tscharntke et al., 2011), which likely applies in 

particular to rare species or threatened arable plants (Richner et al., 2015). We thus assume that 

exhausted seed banks, habitat isolation and intensive competition on fertile soils may have 

reduced the establishment success of threatened arable plants in our study (Albrecht et al., 2016; 

Denys and Tscharntke, 2002; Richner et al., 2015). The patchy distribution of the arable 

vegetation is mirrored in the observed relatively low floristic similarity of the plots in a given plot 

type (Fig. A.11 in the Appendix). Very rare and threatened arable plant species will need more 

targeted conservation actions, such as reintroduction with seed mixtures of local provenance and 
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management regimes specifically adapted to the target species (Bischoff and Mahn, 2000; Kleijn 

et al., 2006; Lang et al., 2018, 2016). In this way, the (local) extinction of rare arable plant taxa 

could be prevented and the species pools at field level would be enriched. A network of 

conservation fields across the agricultural landscape could provide seeds of rare and threatened 

arable plants that might be added to the seed mix used in flower strips. 

 

3.4.3 Optimizing agri-environment measures targeted at arable plants 

Most agri-environment measures currently used in the EU to promote agrobiodiversity were 

designed primarily for birds and certain insect groups such as Hymenoptera and Lepidoptera, but 

less often targeted at arable plants. The recent awareness of the worldwide dramatic losses in 

insect abundance with intensive agriculture as a main driver (Sánchez-Bayo and Wyckhuys, 2019) 

has triggered growing interest in the implementation of flower strips in agricultural landscapes as 

food source and habitat primarily for insects. We have tested two types of flower strips (AFS and 

PFS) for their effect on arable plants. The comparison of the four measures tested in our study 

provides some general practical conclusions for the conservation of arable plants in intensive 

farmland: (i) the exclusion of fertilizers and herbicides strongly supports arable plant richness and 

abundance by particularly promoting non-graminoid species and reducing the nutrient-driven 

dominance of few competitive non-crop plants (Albrecht et al., 2016; Hole et al., 2005), (ii) 

continuous soil disturbance once a year benefits the predominantly annual arable flora and thus is 

preferable over measures which apply longer ploughing intervals, and (iii) crops or flower strips 

sown with reduced density are particularly effective, as dense vegetation is likely to suppress 

many light-demanding arable plants (Batlla and Benech-Arnold, 2014; Seifert et al., 2014). The 

exclusion of herbicides and fertilizer use in agri-environment measures is strongly recommended 

to support the arable flora. However, if CFM is widely implemented, the restricted application of 

fertilizers or selective herbicides (e.g. against graminoids) may also be considered, to support the 

acceptance of this measure by increasing the yield without strongly affecting arable plant species 

richness (Albrecht et al., 2016). By using a lower seed density (1 g m-2) than usually recommended 

for flower strips, we improved the establishment conditions for arable plants (Rode et al., 2018). 

In addition, PFS sites were mown annually to prevent the establishment of woody plants and 

dense stands of perennials and the succession toward communities dominated by ruderal and 

graminoid species (Hansson and Fogelfors, 1998; Hilbig, 1996). In our case, the cut plant mass 

was left on the field, but removing the cuttings is recommended in nutrient-rich sites to promote 

plant diversity by reducing the nutrient load (Kiehl et al., 2014). The patchy distribution of many 

arable plants in this study indicates strongly impoverished soil seed banks of the long-term 

intensively managed arable fields. In line with this, a reduction of the soil seed bank in arable 

habitats was also found in other European countries (Storkey et al., 2012). Thus, sowing arable 

plant species may represent the last option to promote arable plant diversity in impoverished 

intensively managed European farmland. For instance, flower strips could be adapted combining 

a mix of seeds of native arable plants of local origin with a small number of selected ornamental 

species known to be particularly attractive to insects (Albrecht et al., 2016). This approach was 

considered for our AFS and PFS sites and may be given preference over flower mixtures of 

mainly ornamental species such as phacelia and sunflower, as a large proportion of native arable 

plant species in the mixture helps to restore the once characteristic arable flora together with the 

species dependent on it (Albrecht et al., 2016). We suggest that future national and EU agri-
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environment schemes should adopt this more natural version of flower strips to halt plant 

diversity loss while also promoting insect and bird diversity.  

Comparison of the four measures tested in our study indicates that they promoted arable plant 

diversity and cover to a similar degree. Due to their adaptation for practicability on a modern 

conventional farm, all measures are expected to have a high acceptance among farmers and can 

be recommended for consideration in national and EU agri-environment schemes, best in 

combination. Since the species pool overlap between the four measures was large and only few 

species were restricted to certain measures, one might conclude that the measures are equivalent 

in their effectiveness and thus should be given equal priority. However, a closer look at the 

change in species composition over the 3-yr implementation period shows that CFM and annual 

fallow sites are better suited to promote the long-term establishment of more diverse arable plant 

communities than the two types of flower strips, as the cover of HNV species showed a much 

stronger increase and perennial plants did not expand as in AFS and especially PFS sites. As 

production-integrated measures, CFMs in cereal fields may offer the option to harvest the grain 

to use it as fodder, which might increase acceptance by farmers. As fallows and CFMs may bear a 

greater risk of the spread of harmful weeds on nutrient-rich sites (Denys and Tscharntke, 2002), 

these measures should preferentially be implemented on less fertile soil. AFS and PFS are an 

option on fertile soils as well, where no naturally occurring rare arable plants are suppressed. If 

well-managed, measures sown with seed mixtures can maintain plant diversity even over multiple 

years (Kiehl et al., 2014; Kirmer et al., 2018). When establishing such measures, the soil should be 

cultivated in a way that is appropriate for the germination of the sown species (seedbed 

preparation). To maintain plant diversity in perennial flower strips, a proper, site specific regular 

mowing regime should be considered, and biomass removal is particularly recommended on 

nutrient rich sites (Kiehl et al., 2014; Kirmer et al., 2018). In addition, creating more 

heterogeneous habitat conditions within a measure through ploughing and mowing only half the 

area at a time (as applied in AFS) can improve habitat conditions for different organism groups 

of agricultural landscapes, e.g. farmland birds (Gottschalk and Beeke, 2013). 

In agreement with many other previous initiatives to promote agrobiodiversity, our practical 

experience from this trial has shown that the success of agri-environment schemes can be greatly 

improved when (i) the measures are planned in direct consultation with the farmers, (ii) the sites 

for measure implementation are chosen based on a biological pre-survey, (iii) the farmers receive 

advice also during the implementation phase, and (iv) a quality assessment is made in order to be 

able to optimize the scheme in the consecutive years. This requires skilled personnel with 

background in both agronomy and ecology, and a secure financial and legal framework the 

farmers can trust in and which enables compensation of the yield losses and additional 

management costs. Future agri-environment schemes also require the balancing of competing 

biodiversity goals in intensive farmland, as different organism groups may have different habitat 

and management requirements. It may be necessary to implement in every landscape a well-

balanced mix of flower strips, conservation field margins, annual fallows and further measures in 

order to generate benefit for all major organism groups. How the different components are 

weighted will depend on many factors, notably the landscape mosaic and the degree of 

biodiversity impoverishment, soil fertility, the agronomic structure and related cropping regimes, 

and the availability and suitability of agri-environment schemes. 
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3.5 Conclusions 

Halting and reversing biodiversity loss in European intensive farmland can only be successful 

when farmer acceptance of agri-environment measures increases and incentives are given for 

achieving greater farmer participation. This requires sufficient funding for compensation and the 

development of effective measures in collaboration with farmers that are flexible enough to be 

adapted to the local environmental and agronomic settings. The local or regional agencies that 

administrate agri-environment schemes must support the implementation process with continued 

advice through skilled personnel, which will be costly but worth the investment. The four tested 

measures of this trial have been found to be effective for arable plants in an intensively farmed 

region of Northwest Germany, adapted in cooperation with farmers. For targeting rare and 

threatened arable plants, the additional implementation of permanently established conservation 

fields is recommended that can also function as seed sources and for demonstration and 

education. Other organism groups should be addressed through the inclusion of further measures 

that proved to be particularly effective for farmland birds, hares, amphibians, and various groups 

of insects. Transferring this scheme to other farmland regions usually requires adaptation to local 

conditions. Monitoring concepts are an important tool for improving agri-environment schemes. 

The dry and warm summer 2018 has demonstrated that fluctuating weather can have a profound 

effect on the success of the measures, suggesting that surveys have to run over at least three, 

better five years to give reliable results.  
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Table A.1 Number of replicates per crop in each calendar year and year of implementation. 

Crop Implementation year Calendar Year 
0 1 2 3 2016 2017 2018 2019 

Barley 11 7 7 6 9 6 9 7 
Maize 14 22 15 15 7 24 12 23 
Potato 2 4 0 0 1 3 2 0 
Rapeseed 11 11 8 2 8 14 7 3 
Rye 7 2 10 5 7 2 7 8 
Triticale 8 5 6 5 6 3 8 7 
Wheat 7 16 17 11 7 10 21 13 

 

Table A.2 Seed mixture of the alternately managed biennial flower strips (AFS). Borago officinalis was removed from seed mixture 
from 2018 onwards due to feedback from regional beekeepers referring to potential contamination of produced honey with 
pyrrolizidine alkaloids; seed weight proportion of Borago officinalis was redistributed to seed weight proportion of the native plant 
species. 

Native plant species Seed weight proportion 2016 and 2017 (%) Seed weight proportion 2018 (%) 

Galium mollugo agg. 0.44 0.67 
Hypericum perforatum 0.44 0.67 
Leucanthemum vulgare agg. 0.44 0.67 
Linaria vulgaris 0.16 0.67 
Lotus corniculatus  0.44 0.65 
Medicago lupulina  0.44 0.65 
Melilotus alba 2 2 
Melilotus officinalis 2 2 
Papaver dubium  0.44 0.67 
Prunella vulgaris 0.44 0.67 
Silene dioica  0.44 0.67 
Silene latifolia 0.44 0.67 
Verbascum nigrum 0.44 0.67 
Vicia cracca 0.44 0.67 
      

Crop and ornamental species     

Anethum graveolens  3 3 
Avena sativa 5 5 
Borago officinalis  3 / 
Calendula officinalis  5 5 
Coriandrum sativum 3 3 
Fagopyrum esculentum 14 14 
Helianthus annuus 15 15 
Linum usitatissimum 17 17 
Malva sylvestris ssp. mauritiana 5 5 
Medicago sativa 7 7 
Ornithopus sativus  4 4 
Raphanus sativus 2 2 

Secale cereale ‘multicaule’ 8 8 
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Table A.3 Seed mixture of the perennial flower strips (PFS). 

Native plant species Seed weight proportion (%) 

Achillea millefolium 8 
Achillea ptarmica 3 
Agrostis capillaris 1 
Anthoxanthum odoratum 2 
Anthriscus sylvestris 0.5 
Arrhenatherum elatius 0.5 
Campanula rotundifolia 0.1 
Daucus carota 8.4 
Galium mollugo agg. 7 
Heracleum sphondylium 0.5 
Hypericum perforatum 1.5 
Hypochaeris radicata 1 
Lathyrus pratensis 0.5 
Scorzoneroides autumnalis 4 
Leucanthemum vulgare agg. 9 
Linaria vulgaris 0.1 
Lolium perenne 2 
Lotus corniculatus 2.5 
Lotus pedunculatus 1.5 
Lychnis-flos-cuculi 3 
Medicago lupulina 1.5 
Phleum pratense 0.5 
Plantago lanceolata 9 
Poa palustris 1 
Poa pratensis 3 
Prunella vulgaris 8.8 
Rumex acetosa 2.5 
Scrophularia nodosa 2.5 
Silene latifolia ssp. alba 9 
Stellaria graminea 0.5 
Tanacetum vulgare 1.5 
Trifolium pratense 3.5 
Veronica chamaedrys 0.1 
Vicia cracca 0.5 

 

Table A.4 Number of replicates of cultivated crops in each implementation year in conservation field margins. 

Crop Implementation year 
1 2 3 

Barley 3 3 3 
Maize 7 3 3 
Rapeseed 3 1 1 
Rye 0 1 0 
Triticale 2 3 2 
Wheat 3 5 4 
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Table A.5 Key management steps and average width (m), length (m) and area (m²) of the implemented measure types (in total 67 
measure areas, for details see Table 1 in the main text): conservation field margin (CFM), annual fallow (fallow), alternately 
managed biennial flower strip (AFS) and perennial flower strip (PFS). 

Measure type CFM Fallow AFS PFS 

Average width (m) 12,4 12,6 18,1 26,4 

Average length (m) 185,6 154,2 173,3 158,6 

Average area (m²) 2159,8 1918,1 2683,8 2969,1 

Management 

All measures: no application of fertilizers, pesticides, no mechanical weeding and no access by machinery  
(except for harvest and mowing)  

Annual soil disturbance 
(ploughing in autumn or 
spring, depending on the 
cultivation of summer or 

winter crops) and cultivation 
with crop; reduced sowing 

rate (70 % in autumn 
2016/spring 2017 and 50 % 
from autumn 2017 onwards) 

Annual soil 
disturbance 

(ploughing in autumn 
or spring, depending 
on the cultivation of 
summer or winter 

crops on the adjacent 
field); no seeding 

After establishment, alternating re-
creation of half of the area from 
the 2nd year onwards (including 
mowing with biomass left on the 
field, ploughing and re-sowing); 

seed mixture (see Table A.2): crop, 
ornamental and native plant species 
(annuals and perennials, including 

typical arable plant species) 

Establishment by using a 
seed mixture including 

widespread perennial native 
herbaceous species (see 

Table A.3); annually 
mowing between August 

and September (plant 
biomass left on the field) 

Sowing at the begin of May; use of native plant seeds of local 
provenance; reduced sowing rate (1 g m-2) to promote naturally 
present arable plant species in the soil seed bank (AFS and PFS) 
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Table A.6 Raw data of the vegetation survey (2016-2019). 

Can be downloaded from http://ediss.uni-goettingen.de/ (Niedersächsische Staats- und Universitätsbibliothek Göttingen). 

 

Table A.7. Species occurrences per plot type and categorization of surveyed plant species (all herbaceous species, except crop species, woody seedlings and ornamental plants); sorted by species name; 
observed plot types: field interior (In), field edge (Ed), spillover plots (Sp) adjacent to implemented measures, conservation field margin (CFM), fallows (Fa), alternately managed biennial flower strip (AFS), 
perennial flower strip (PFS), species occurrences in plot types are given for each implementation year (0 (pre-survey), 1 (first year of measure implementation), 2 (second year of measure implementation) 
and 3 (third year of measure implementation)) and in total (for each plot type, non-measure plots, all measures, all observed plots, and the number of arable fields in which the species were surveyed 
(occurrences in fields, 67 observed fields in total)). In addition, categorization of observed species are given: annuals or perennials (A = annual, P = perennial; Klotz et al., 2002), forbs or graminoids (F = 
forb, G = graminoid), typical arable plants (Arable plants, Hofmeister and Garve, 2006), indicator species for High Nature Value arable land (HNV species; Hünig und Benzler, 2017), threatened arable 
plant species (red-listed according to the Red List of Lower Saxony; Garve, 2004); species which were also sown in the flower strips are marked: AFS or/and PFS; n = 721 (for details see Table 1 in the 

main document; full references see main document). 
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Achillea millefolium 0 0 0 0 0 9 7 3 6 25 1 2 0 3 4 2 3 9 4 4 6 14 5 2 4 11 8 12 20 28 54 82 38 P F x   PFS 
Achillea ptarmica 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 3 3 6 1 6 7 6 P F    PFS 
Aegopodium podagraria 0 0 0 0 0 3 0 1 1 5 0 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 6 1 7 5 P F     

Aethusa cynapium 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 A F x    

Agrostis capillaris 0 0 0 0 0 6 2 1 1 10 0 0 0 0 1 2 1 4 2 0 3 5 0 0 3 3 0 5 5 10 17 27 23 P G x   PFS 
Agrostis gigantea 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 2 0 0 0 0 0 0 0 0 2 2 1 P G x    

Agrostis stolonifera 0 0 0 0 0 3 0 0 1 4 0 0 0 0 3 0 0 3 1 1 2 4 2 1 3 6 3 4 7 4 20 24 20 P G x    

Alliaria petiolata 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 2 2 P F     

Alopecurus geniculatus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 2 2 4 0 6 6 4 P G     

Alopecurus myosuroides 0 1 3 4 8 11 8 9 5 33 7 11 7 25 4 3 4 11 2 3 2 7 2 1 4 7 3 2 5 66 30 96 25 A G x    

Alopecurus pratensis 0 0 0 0 0 9 5 2 1 17 0 0 1 1 0 3 1 4 1 0 1 2 2 3 1 6 1 2 3 18 15 33 23 P G     

Amaranthus retroflexus 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 2 2 A F x    

Anchusa arvensis 0 0 0 0 0 3 3 3 2 11 0 1 0 1 2 3 2 7 2 1 3 6 2 1 2 5 0 0 0 12 18 30 10 A F x    

Anthoxanthum aristatum 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 2 A G x    

Anthoxanthum odoratum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 6 0 6 6 6 P G    PFS 
Anthriscus caucalis 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 A F x    

Anthriscus sylvestris 0 0 0 1 1 9 6 2 7 24 0 0 0 0 2 1 1 4 2 0 2 4 1 1 1 3 0 0 0 25 11 36 22 P F    PFS 
Apera spica-venti 1 0 0 2 3 11 8 1 9 29 4 7 11 22 7 2 8 17 11 9 14 34 7 2 11 20 1 7 8 54 79 133 53 A G x    

Aphanes arvensis 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 0 2 4 0 0 0 0 0 1 1 0 6 6 4 A F x x   

Arabidopsis thaliana 1 0 0 0 1 5 1 1 0 7 1 0 0 1 2 0 0 2 5 4 1 10 0 0 1 1 0 3 3 9 16 25 16 A F x    

Arctium lappa 0 0 0 0 0 0 0 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 1 P F     

Arenaria serpyllifolia 0 0 0 0 0 0 0 0 0 0 1 1 0 2 0 1 1 2 1 0 0 1 0 0 2 2 0 0 0 2 5 7 6 A F x    

Arrhenatherum elatius 0 0 0 0 0 16 7 5 6 34 0 1 1 2 1 3 5 9 2 1 4 7 0 4 2 6 0 9 9 36 31 67 37 P G    PFS 
Artemisia vulgaris 0 0 0 0 0 4 2 5 1 12 1 2 1 4 2 1 0 3 4 4 4 12 1 6 5 12 2 1 3 16 30 46 21 P F x    

Atriplex patula 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 3 3 0 0 3 2 0 0 2 3 0 3 0 11 11 11 A F x    

http://ediss.uni-goettingen.de/
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Avena fatua 0 1 0 2 3 0 4 1 1 6 3 0 3 6 1 0 0 1 2 0 1 3 1 0 0 1 0 0 0 15 5 20 14 A G x    

Barbarea vulgaris 0 0 0 0 0 1 1 1 0 3 0 1 0 1 0 1 0 1 0 0 0 0 1 1 1 3 1 2 3 4 7 11 7 P F     

Bellis perennis 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 P F     

Berteroa incana 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 P F     

Bromus commutatus subsp. decipiens 1 0 2 1 4 7 7 8 4 26 4 3 7 14 2 2 3 7 1 2 4 7 3 1 2 6 0 1 1 44 21 65 24 A G x    

Bromus hordeaceus 0 0 1 0 1 15 5 8 10 38 0 3 2 5 3 1 1 5 6 3 5 14 1 3 8 12 2 1 3 44 34 78 40 A G x    

Bromus inermis 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 P G     

Bromus secalinus 0 0 0 0 0 1 2 0 0 3 0 1 1 2 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 5 1 6 6 A G x    

Bromus sterilis 0 0 3 0 3 31 26 30 22 109 3 9 7 19 10 10 7 27 11 11 8 30 6 5 8 19 1 3 4 131 80 211 54 A G x    

Calystegia sepium 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 1 3 0 0 0 2 3 5 2 P F     

Capsella bursa-pastoris 3 0 6 1 10 16 9 8 3 36 10 15 7 32 13 5 7 25 9 9 8 26 11 8 6 25 6 5 11 78 87 165 55 A F x    

Carduus crispus 0 0 0 0 0 0 1 0 1 2 0 0 1 1 1 0 2 3 0 0 0 0 0 0 1 1 0 0 0 3 4 7 3 P F     

Carduus nutans 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 1 P F     

Carex acuta 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 2 2 2 P G     

Carex acutiformis 0 0 0 0 0 1 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 2 P G     

Carex hirta 0 0 0 0 0 2 0 0 0 2 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 1 2 2 3 5 3 P G x    

Carex spec. 1 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 2 NA G     

Centaurea cyanus 2 1 1 3 7 14 11 8 8 41 6 8 8 22 7 5 4 16 5 5 6 16 4 2 0 6 4 3 7 70 45 115 26 A F x x   

Cerastium arvense 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 2 1 P F     

Cerastium glomeratum 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 1 2 0 0 2 2 0 0 2 2 0 3 3 1 9 10 10 A F x    

Cerastium holosteoides 0 0 0 0 0 4 0 0 0 4 0 1 0 1 3 0 0 3 3 2 1 6 3 0 1 4 2 1 3 5 16 21 14 P F x    

Ceratocapnos claviculata 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 1 2 0 1 0 1 0 0 0 0 0 0 0 1 3 4 2 A F     

Chaerophyllum bulbosum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 1 4 0 0 0 0 0 0 0 0 0 0 0 0 4 4 2 P F     

Chaerophyllum temulum 0 0 0 0 0 2 0 0 0 2 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 2 1 3 3 P F     

Chenopodium album 3 11 18 8 40 19 27 21 14 81 33 31 21 85 11 5 5 21 11 12 8 31 16 13 14 43 14 6 20 206 115 321 66 A F x    

Chenopodium hybridum 0 1 1 0 2 0 0 1 0 1 1 1 0 2 0 1 0 1 0 0 0 0 2 0 0 2 1 0 1 5 4 9 7 A F x  x  

Chenopodium polyspermum 0 0 2 0 2 2 1 2 1 6 3 3 4 10 5 1 1 7 5 2 0 7 6 1 3 10 3 1 4 18 28 46 24 A F x    

Cirsium arvense 0 0 1 1 2 13 14 15 12 54 5 10 13 28 9 5 8 22 3 6 7 16 5 8 13 26 10 11 21 84 85 169 55 P F x    

Cirsium vulgare 0 0 1 0 1 1 0 1 0 2 1 3 1 5 2 2 0 4 1 3 0 4 1 3 1 5 3 5 8 8 21 29 18 P F     

Convolvulus arvensis 0 0 0 3 3 0 0 0 2 2 1 1 5 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 12 11 P F x    

Crepis biennis 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 2 2 2 P F     

Dactylis glomerata 0 0 0 0 0 27 14 17 11 69 3 3 2 8 5 6 4 15 7 4 7 18 3 7 7 17 4 9 13 77 63 140 54 P G     

Daucus carota 0 0 0 0 0 0 3 1 2 6 0 3 1 4 0 0 1 1 0 0 0 0 1 0 2 3 11 13 24 10 28 38 23 P F    PFS 
Digitaria ischaemum 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 2 A G x    

Digitaria sanguinalis 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 A G x    

Draba verna 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 1 1 A F x    

Echinochloa crus-galli 2 7 9 7 25 7 12 5 5 29 18 11 14 43 4 1 3 8 8 5 0 13 10 7 3 20 12 3 15 97 56 153 51 A G x    

Elymus repens 3 5 9 3 20 34 31 19 28 112 8 4 7 19 12 6 9 27 8 9 13 30 12 12 13 37 11 9 20 151 114 265 65 P G x    

Epilobium angustifolium 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 2 2 P F     

Epilobium tetragonum 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 1 1 1 3 0 0 1 1 0 2 2 2 6 8 7 P F x    

Equisetum arvense 0 0 0 0 0 9 7 5 4 25 5 3 2 10 3 2 3 8 0 0 0 0 3 2 2 7 4 0 4 35 19 54 23 P F x    

Equisetum palustre 0 0 0 0 0 0 1 0 0 1 1 1 0 2 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 3 2 5 4 P F     

Erigeron canadensis 0 0 0 0 0 0 1 2 0 3 1 3 5 9 3 1 1 5 5 4 5 14 1 2 9 12 1 3 4 12 35 47 25 A F x    

Erodium cicutarium 0 0 0 0 0 5 3 3 5 16 2 1 0 3 2 1 1 4 2 0 2 4 3 2 4 9 0 0 0 19 17 36 18 A F x x   

Erysimum cheiranthoides 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 1 0 1 0 3 3 3 A F x    

Fallopia convolvulus 5 6 15 9 35 21 30 26 23 100 35 25 20 80 13 6 7 26 12 10 9 31 16 9 14 39 9 7 16 215 112 327 63 A F x    
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Festuca arundinacea 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 P G     

Festuca pratensis 0 0 0 0 0 5 2 1 2 10 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 2 0 0 0 10 3 13 12 P G     

Festuca rubra 0 0 0 0 0 10 1 3 2 16 0 1 0 1 3 1 0 4 3 2 4 9 0 0 1 1 0 2 2 17 16 33 20 P G     

Fumaria officinalis 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 0 1 0 1 0 3 3 3 A F x x   

Galeopsis speciosa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 2 0 0 0 0 0 0 0 0 2 2 1 A F x  x  

Galeopsis tetrahit 0 0 0 2 2 8 6 6 10 30 3 1 2 6 5 2 5 12 6 4 4 14 8 4 5 17 7 5 12 38 55 93 43 A F x    

Galinsoga parviflora 0 0 0 0 0 1 0 1 1 3 0 2 0 2 2 0 0 2 0 0 0 0 3 0 1 4 3 0 3 5 9 14 11 A F x    

Galinsoga quadriradiata 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 2 2 2 A F x    

Galium aparine 5 2 4 6 17 34 18 21 18 91 15 13 17 45 11 9 9 29 6 8 6 20 8 5 7 20 3 4 7 153 76 229 50 A F x    

Galium mollugo agg. 0 0 0 0 0 1 1 0 1 3 0 3 2 5 0 0 0 0 1 0 2 3 1 8 4 13 1 12 13 8 29 37 27 P F    AFS/PFS 
Galium uliginosum 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 2 P F     

Galium verum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 P F     

Geranium dissectum 0 0 0 0 0 1 1 1 3 6 1 0 2 3 3 1 3 7 0 0 1 1 1 0 2 3 1 2 3 9 14 23 12 A F x x   

Geranium molle 0 0 0 1 1 1 1 0 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 4 4 A F x x   

Geranium pusillum 0 2 1 5 8 16 17 14 14 61 12 8 13 33 7 4 7 18 7 7 10 24 9 2 6 17 5 8 13 102 72 174 53 A F x x   

Geranium robertianum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 1 1 A F  x   

Geum urbanum 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 2 1 P F     

Glechoma hederacea 0 0 0 0 0 4 0 0 2 6 0 0 0 0 1 0 1 2 0 1 0 1 2 0 0 2 2 1 3 6 8 14 11 P F x    

Glyceria declinata 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 P G     

Gnaphalium uliginosum 0 0 1 0 1 0 1 1 1 3 2 3 0 5 0 0 0 0 1 2 0 3 1 1 1 3 1 0 1 9 7 16 12 A F x    

Heracleum sphondylium 0 0 0 0 0 3 2 0 1 6 0 0 0 0 0 1 2 3 0 1 0 1 0 0 0 0 1 0 1 6 5 11 8 P F    PFS 
Holcus lanatus 0 0 0 0 0 17 4 12 12 45 1 1 2 4 4 2 4 10 3 8 8 19 4 8 11 23 3 10 13 49 65 114 53 P G     

Holcus mollis 1 0 0 0 1 18 8 7 6 39 0 0 0 0 7 2 2 11 6 3 6 15 4 1 0 5 2 1 3 40 34 74 38 P G x    

Humulus lupulus 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 2 2 4 2 P F     

Hypericum maculatum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 3 0 0 0 0 0 0 0 0 3 3 2 P F     

Hypericum perforatum 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 2 0 5 7 12 0 4 4 1 18 19 14 P F    AFS/PFS 
Hypochaeris radicata 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 1 0 1 1 3 4 4 P F    PFS 
Iris pseudacorus 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 P F     

Juncus bufonius 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 1 2 1 0 3 1 0 1 2 0 0 0 1 6 7 7 A G x    

Juncus conglomeratus 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 2 P G     

Lactuca serriola 0 0 0 0 0 1 0 0 0 1 0 0 1 1 1 1 0 2 0 0 0 0 0 0 4 4 0 3 3 2 9 11 10 A F x    

Lamium album 0 1 0 0 1 3 0 3 0 6 0 0 0 0 1 3 0 4 1 1 0 2 2 1 0 3 0 0 0 7 9 16 13 P F x x   

Lamium amplexicaule 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 A F x x   

Lamium purpureum 0 0 0 0 0 4 2 3 0 9 1 1 1 3 1 0 1 2 2 2 0 4 4 1 3 8 1 0 1 12 15 27 17 A F x x   

Lapsana communis 0 0 0 0 0 3 0 2 2 7 0 0 2 2 2 1 1 4 2 1 1 4 4 0 3 7 1 1 2 9 17 26 13 P F x x   

Leucanthemum vulgare agg. 0 0 0 0 0 0 0 0 0 0 0 1 1 2 0 0 0 0 0 0 0 0 1 7 9 17 5 12 17 2 34 36 25 P F    AFS/PFS 
Linaria vulgaris 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 3 7 11 1 4 5 0 18 18 14 P F x   AFS/PFS 
Lolium multiflorum 0 0 1 3 4 4 3 5 3 15 1 3 3 7 3 1 1 5 1 2 0 3 1 1 2 4 0 1 1 26 13 39 21 A G x    

Lolium perenne 1 0 0 1 2 12 7 5 6 30 5 6 5 16 1 3 3 7 3 3 3 9 6 2 5 13 3 4 7 48 36 84 35 P G x   PFS 
Lotus corniculatus 0 0 0 0 0 0 0 0 0 0 1 1 0 2 0 0 0 0 0 0 0 0 4 6 3 13 6 3 9 2 22 24 20 P F    AFS/PFS 
Lychnis flos-cuculi 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 P F    PFS 
Lysimachia nummularia 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 P F     

Lysimachia vulgaris 0 0 0 0 0 1 0 1 0 2 0 0 0 0 0 1 1 2 0 0 0 0 0 0 0 0 0 0 0 2 2 4 4 P F     

Matricaria chamomilla 7 2 10 8 27 29 19 19 15 82 22 29 21 72 12 7 11 30 10 11 12 33 13 6 12 31 2 7 9 181 103 284 57 A F x x   

Matricaria discoidea 0 0 2 0 2 1 1 1 0 3 1 1 1 3 2 0 1 3 2 0 0 2 0 0 3 3 1 0 1 8 9 17 16 A F x    

Medicago lupulina 0 0 0 0 0 0 0 1 1 2 0 2 1 3 0 0 1 1 0 1 1 2 0 5 4 9 0 2 2 5 14 19 16 P F x   AFS/PFS 
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Melilotus alba 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 4 7 0 1 1 0 8 8 6 P F    AFS 
Melilotus officinalis 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 2 6 5 13 0 1 1 1 14 15 12 P F    AFS 
Melilotus spec. 0 0 0 1 1 0 0 0 0 0 0 2 3 5 0 0 0 0 0 0 0 0 15 3 6 24 1 0 1 6 25 31 19 NA F    AFS 
Mentha arvensis 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 P F x    

Moehringia trinervia 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 A F     

Myosotis arvensis 2 0 2 2 6 17 10 11 10 48 17 11 15 43 13 4 12 29 9 9 9 27 9 4 7 20 4 7 11 97 87 184 53 A F x x   

Odontites vernus 0 0 0 0 0 2 1 1 0 4 0 1 2 3 0 1 0 1 1 1 0 2 0 0 1 1 0 0 0 7 4 11 6 A F x  x  

Oxalis stricta 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 P F x    

Panicum miliaceum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 1 A G     

Papaver argemone 0 0 0 0 0 2 0 0 0 2 0 0 0 0 0 0 0 0 2 2 2 6 0 0 1 1 0 0 0 2 7 9 4 A F x x   

Papaver dubium agg. 0 0 0 0 0 3 1 0 0 4 0 0 1 1 2 1 1 4 5 3 4 12 3 0 4 7 0 1 1 5 24 29 17 A F x x  AFS 
Papaver rhoeas 0 0 0 0 0 3 2 1 0 6 2 3 2 7 0 0 0 0 3 1 3 7 2 2 10 14 0 2 2 13 23 36 21 A F x x   

Papaver spec. 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 2 NA F  x   

Persicaria amphibia 1 0 0 0 1 2 0 2 1 5 2 4 0 6 1 0 1 2 1 1 0 2 0 0 1 1 4 3 7 12 12 24 16 P F x    

Persicaria hydropiper 0 0 4 1 5 1 1 4 1 7 2 0 1 3 2 1 0 3 2 2 0 4 2 0 1 3 1 2 3 15 13 28 16 A F x    

Persicaria lapathifolia 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0 1 1 0 0 3 3 0 1 1 2 5 7 7 A F x    

Persicaria maculosa 0 2 5 2 9 3 6 5 5 19 10 5 5 20 5 1 3 9 3 5 1 9 13 6 5 24 11 2 13 48 55 103 47 A F x    

Phalaris arundinacea 0 0 0 0 0 1 1 0 0 2 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 2 1 3 3 P G     

Phleum pratense 0 0 0 0 0 0 1 0 0 1 1 1 0 2 0 0 0 0 0 0 0 0 2 3 2 7 0 6 6 3 13 16 13 P G    PFS 
Phragmites australis 0 0 0 0 0 1 0 2 2 5 0 0 1 1 2 1 0 3 0 0 0 0 0 1 1 2 0 1 1 6 6 12 5 P G x    

Plantago lanceolata 0 0 0 0 0 1 3 1 2 7 1 1 1 3 2 2 0 4 1 2 2 5 3 2 2 7 10 13 23 10 39 49 27 P F x   PFS 
Plantago major 0 1 0 0 1 0 1 1 0 2 0 2 1 3 0 0 0 0 1 0 1 2 1 2 3 6 2 2 4 6 12 18 14 P F x    

Poa annua 2 6 6 2 16 4 5 6 2 17 13 8 4 25 1 2 0 3 3 6 2 11 2 3 3 8 2 2 4 58 26 84 45 A G x    

Poa compressa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 1 1 P G     

Poa palustris 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 0 3 3 3 P G    PFS 
Poa pratensis 0 0 1 1 2 8 3 1 4 16 0 2 1 3 0 1 2 3 0 1 0 1 0 0 2 2 3 4 7 21 13 34 28 P G    PFS 
Poa trivialis 1 0 2 1 4 23 5 15 6 49 4 8 3 15 2 8 5 15 2 7 4 13 4 5 5 14 2 8 10 68 52 120 49 P G x    

Polygonum aviculare 3 4 18 6 31 27 28 26 22 103 26 26 26 78 15 7 8 30 14 10 10 34 15 7 10 32 10 4 14 212 110 322 64 A F x    

Potentilla reptans 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 2 0 0 0 0 0 1 0 1 0 0 0 0 3 3 2 P F x    

Prunella vulgaris 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 2 0 2 2 0 5 5 5 P F    AFS/PFS 
Ranunculus repens 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 1 1 1 1 3 0 1 3 4 2 2 4 1 12 13 9 P F x    

Rorippa palustris 0 1 0 0 1 0 5 0 0 5 0 4 0 4 0 1 0 1 1 0 0 1 1 2 3 6 1 0 1 10 9 19 15 A F x    

Rubus fruticosus agg. 0 0 0 0 0 3 1 2 3 9 1 0 0 1 1 1 1 3 2 2 2 6 1 2 1 4 0 1 1 10 14 24 13 P F     

Rubus idaeus agg. 0 0 0 0 0 1 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 2 1 3 3 P F     

Rumex acetosa 0 0 0 0 0 2 0 1 0 3 1 0 0 1 0 1 0 1 0 2 0 2 0 2 1 3 2 2 4 4 10 14 11 P F    PFS 
Rumex acetosella 0 0 0 0 0 4 1 1 0 6 0 0 0 0 1 2 0 3 4 4 4 12 1 1 1 3 0 0 0 6 18 24 13 P F x x   

Rumex crispus 0 0 0 0 0 2 2 2 1 7 1 2 1 4 0 2 1 3 2 3 5 10 3 4 10 17 1 6 7 11 37 48 26 P F x    

Rumex obtusifolius 1 0 1 0 2 7 3 4 1 15 4 6 3 13 5 3 4 12 5 4 3 12 6 6 2 14 4 4 8 30 46 76 30 P F x    

Scleranthus annuus 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 1 2 1 1 2 4 0 0 0 0 0 0 0 1 6 7 3 A F x    

Scorzoneroides autumnalis 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0 1 1 1 0 2 3 6 9 1 13 14 13 P F    PFS 
Scrophularia nodosa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 0 2 2 2 P F     

Scutellaria galericulata 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 P F     

Senecio inaequidens 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 2 2 0 0 0 0 3 3 3 P F     

Senecio jacobaea 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 1 0 2 0 0 0 0 0 1 1 1 4 5 3 P F     

Senecio vulgaris 2 0 1 0 3 2 1 0 0 3 3 5 1 9 1 0 0 1 3 2 1 6 2 0 3 5 0 0 0 15 12 27 15 A F x    

Setaria spec. 0 0 0 1 1 0 0 0 1 1 0 2 0 2 0 0 1 1 0 0 1 1 0 0 0 0 0 1 1 4 3 7 6 NA G     
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Setaria verticillata 0 0 0 0 0 0 0 0 1 1 1 0 1 2 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 3 1 4 3 A G x    

Setaria verticilliformis 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 A G x    

Setaria viridis 0 2 2 4 8 0 5 4 3 12 5 4 2 11 0 1 0 1 0 0 0 0 4 4 1 9 2 0 2 31 12 43 19 A G x    

Silene dioica 0 0 0 0 0 0 0 0 2 2 0 1 1 2 1 0 0 1 1 0 0 1 2 8 5 15 1 3 4 4 21 25 18 P F    AFS 
Silene latifolia 0 0 0 0 0 1 3 2 1 7 1 6 4 11 1 0 0 1 1 1 0 2 6 12 14 32 11 12 23 18 58 76 35 P F x   AFS/PFS 
Silene spec. 0 0 0 0 0 0 0 0 0 0 0 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 2 NA F     

Silene vulgaris 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 2 2 2 2 4 1 6 7 5 P F     

Sinapis arvensis 0 0 0 0 0 0 0 0 1 1 2 1 0 3 1 0 0 1 1 0 0 1 4 3 1 8 2 0 2 4 12 16 13 A F x    

Sisymbrium officinale 1 1 8 1 11 10 7 6 3 26 7 11 6 24 9 3 10 22 6 4 6 16 11 10 10 31 5 4 9 61 78 139 46 A F x    

Solanum nigrum 0 2 4 1 7 1 3 4 4 12 6 5 4 15 1 1 2 4 4 0 1 5 8 4 4 16 4 0 4 34 29 63 29 A F x    

Solidago canadensis 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 P F     

Solidago gigantea 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 P F     

Sonchus arvensis 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 2 0 0 0 1 2 3 2 P F x    

Sonchus asper 0 0 0 0 0 0 1 1 1 3 1 2 5 8 7 0 4 11 3 1 1 5 4 1 5 10 6 2 8 11 34 45 33 A F x    

Sonchus oleraceus 0 0 0 0 0 1 2 0 0 3 2 0 0 2 1 0 2 3 0 0 1 1 1 0 3 4 0 0 0 5 8 13 10 A F x    

Sonchus spec. 0 0 0 0 0 0 0 1 3 4 0 0 3 3 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 7 1 8 7 NA F     

Spergula arvensis 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 1 4 3 0 0 3 2 0 2 0 9 9 9 A F x x   

Stachys palustris 0 0 1 0 1 0 0 1 0 1 0 1 0 1 0 0 0 0 1 0 0 1 1 0 0 1 0 0 0 3 2 5 4 P F x    

Stellaria graminea 0 0 0 0 0 5 0 1 0 6 0 0 0 0 0 1 0 1 3 2 1 6 0 1 1 2 0 2 2 6 11 17 11 P F x   PFS 
Stellaria media 6 3 6 4 19 13 19 8 7 47 18 19 12 49 8 4 7 19 6 13 9 28 9 3 7 19 6 4 10 115 76 191 60 A F x    

Symphytum officinale 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 P F x    

Tanacetum vulgare 0 0 0 0 0 5 4 2 2 13 0 3 0 3 3 3 2 8 5 6 5 16 1 3 6 10 7 11 18 16 52 68 33 P F    PFS 
Taraxacum sect. Ruderalia 0 0 1 0 1 7 2 1 2 12 0 4 2 6 2 2 2 6 1 4 2 7 2 8 4 14 3 3 6 19 33 52 31 P F x    

Thlaspi arvense 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 1 1 0 1 1 3 4 4 A F x x   

Torilis japonica 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 P F x    

Trifolium arvense 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 1 2 0 0 0 0 4 4 3 A F x x   

Trifolium dubium 0 0 0 0 0 2 0 0 0 2 0 0 0 0 0 1 0 1 1 0 1 2 0 0 0 0 0 0 0 2 3 5 4 A F     

Trifolium pratense 0 0 0 0 0 0 0 0 0 0 1 4 0 5 0 1 0 1 0 0 0 0 1 0 1 2 7 8 15 5 18 23 16 P F    PFS 
Trifolium repens 0 0 0 0 0 1 1 2 2 6 1 3 5 9 1 0 1 2 1 4 1 6 3 2 3 8 1 3 4 15 20 35 28 P F     

Trifolium resupinatum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 A F     

Trifolium spec. 0 1 0 0 1 0 0 0 0 0 0 0 3 3 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 4 1 5 5 NA F     

Tripleurospermum perforatum 0 0 3 2 5 3 6 2 6 17 7 11 14 32 8 4 9 21 8 5 8 21 6 3 9 18 6 9 15 54 75 129 52 A F x    

Trisetum flavescens 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 P G     

Typha latifolia 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 2 3 3 P G     

Urtica dioica 0 0 0 0 0 16 12 8 6 42 3 2 1 6 5 5 4 14 3 5 5 13 3 4 4 11 3 5 8 48 46 94 40 P F     

Urtica urens 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0 0 1 1 0 2 0 0 0 0 0 0 0 2 2 4 1 A F x    

Verbascum lychnitis 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 P F     

Verbascum nigrum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 4 5 0 0 0 0 5 5 4 P F    AFS 
Veronica arvensis 0 0 0 0 0 6 2 0 1 9 0 1 0 1 2 1 1 4 5 1 4 10 2 1 1 4 1 2 3 10 21 31 20 A F x    

Veronica chamaedrys 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 4 4 P F    PFS 
Veronica hederifolia 0 0 1 0 1 7 2 3 2 14 0 1 0 1 1 1 2 4 0 0 0 0 0 0 1 1 0 0 0 16 5 21 17 A F x    

Veronica persica 0 0 0 0 0 0 2 0 2 4 1 1 0 2 1 0 0 1 1 2 2 5 0 0 1 1 0 0 0 6 7 13 10 A F x    

Veronica polita 0 0 0 0 0 0 1 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 2 A F x    

Vicia angustifolia 0 0 0 0 0 4 1 0 0 5 1 0 0 1 3 2 1 6 3 5 2 10 2 1 3 6 1 1 2 6 24 30 17 A F x x   

Vicia cracca 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 2 0 0 3 3 0 4 4 0 9 9 9 P F x x  AFS/PFS 
Vicia hirsuta 2 0 3 0 5 18 8 6 6 38 2 3 4 9 8 5 3 16 8 5 8 21 6 2 5 13 4 5 9 52 59 111 40 A F x x   
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Vicia sativa 0 0 0 0 0 7 2 3 6 18 1 1 2 4 3 1 2 6 3 2 3 8 1 0 1 2 0 2 2 22 18 40 20 A F  x   

Vicia spec. 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 NA F  x   

Vicia tetrasperma 0 0 0 0 0 2 0 0 1 3 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 2 2 4 3 6 9 7 A F x x   

Vicia villosa 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 A F x x   

Viola arvensis 3 6 22 17 48 23 25 22 19 89 33 20 30 83 15 11 10 36 13 8 12 33 12 3 7 22 5 6 11 220 102 322 58 A F x    

Vulpia myuros 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 2 2 5 0 0 0 1 6 7 4 A G     
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Table A.8 Summary of model structures and statistical results. 

Anova results (significance codes: ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1; n.s. = not significant) 

Measured value Model n R² conditional R² marginal Explanatory variables 
Z-value  
(chi-square tests. 
Type II Wald) 

Degrees of 
freedom 

P-value  
(Pr(chi-square)) 

Significance 

Total herbaceous species 
number 

glmmTMB(Num_spec ~ Implementation_Plot_type + 
(1|Field_ID), data=mediate, family=nbinom1) 

721 plots                                             
215 species 

0.726 0.693 Implementation Plot type 1330.500 21 < 2.2e-16 *** 

Total herbaceous species cover 
glmmTMB(Cover ~ Implementation_Plot_type + 
(1|Field_ID), data=mediate, family=nbinom1) 

721 plots                                                         
215 species 

0.698 0.690 Implementation Plot type 1528.900 21 < 2.2e-16 *** 

Total species number of arable 
plants 

glmmTMB (Num_spec ~   Implementation_Plot_type 
+(1|Field_ID), data=arable_plants, family=nbinom1) 

721 plots                                          
122 species 

0.689 0.649 Implementation Plot type 1120.300 21 < 2.2e-16 *** 

Total cover of arable plants 
glmmTMB (Cover ~ Implementation_Plot_type + 
(1|Field_ID), data=arable_plants, family=nbinom1) 

721 plots                                         
122 species 

0.656 0.641 Implementation Plot type 1266.400 21 < 2.2e-16 *** 

Total species number of high 
nature value species 

glmmTMB(Num_spec ~ Implementation_Plot_type + 
(1|Field_ID), data=HNV, family=nbinom1) 

721 plots                                           
29 species 

0.630 0.442 Implementation Plot type 458.18 21 < 2.2e-16 *** 

Total species cover of high 
nature value species 

glmmTMB(Cover ~ Implementation_Plot_type + 
(1|Field_ID), data=HNV, family=nbinom1) 

721 plots                                           
29 species 

0.549 0.404 Implementation Plot type 560.18 21 < 2.2e-16 *** 

Total species number of 
annual plants in measure plots 
and field edge 

glmmTMB(Num_spec ~ Implementation_Plot_type + 
(1|Field_ID), data=annuals, family=nbinom1) 

408 plots                                            
91 species 

0.551 0.450 Implementation Plot type 390.25 14 < 2.2e-16 *** 

Total species cover of annual 
plants in measure plots and 
field edge 

glmmTMB(Cover ~ Implementation_Plot_type + 
(1|Field_ID), data=annuals, family=nbinom1) 

408 plots                                            
91 species 

0.533 0.519 Implementation Plot type 410.44 14 < 2.2e-16 *** 

Total species number of 
perennial plants in measure 
plots and field edge 

glmmTMB(Num_spec ~ Implementation_Plot_type + 
(1|Field_ID), data=perennials, family=nbinom1) 

408 plots                                          
116 species 

0.574 0.509 Implementation Plot type 455.75 14 < 2.2e-16 *** 

Total species cover of 
perennial plants in measure 
plots and field edge 

glmmTMB(Cover ~ Implementation_Plot_type + 
(1|Field_ID), data=perennials, family=nbinom1) 

408 plots                                          
116 species 

0,616 0,531 Implementation Plot type 368,19 14 < 2.2e-16 *** 

Total species number of 
graminoids in measure plots 
and field edge 

glmmTMB(Num_spec ~ Implementation_Plot_type + 
(1|Field_ID), data=graminoids, family=nbinom1) 

408 plots                                           
51 species 

0.306 0.290 Implementation Plot type 152.03 14 < 2.2e-16 *** 

Total species cover of 
graminoids in measure plots 
and field edge 

glmmTMB(Cover ~ Implementation_Plot_type + 
(1|Field_ID), data=graminoids, family=nbinom1) 

408 plots                                           
51 species 

0,486 0,420 Implementation Plot type 207,76 14 < 2.2e-16 *** 

Total species number of forbs 
in measure plots and field 
edge 

glmmTMB(Num_spec ~ Implementation_Plot_type + 
(1|Field_ID), data=forbs, family=nbinom1) 

408 plots                                          
164 species 

0.618 0.552 Implementation Plot type 508.14 14 < 2.2e-16 *** 

Total species cover of forbs in 
measure plots and field edge 

glmmTMB(Cover ~ Implementation_Plot_type + 
(1|Field_ID), data=forbs, family=nbinom1) 

408 plots                                          
164 species 

0.605 0.584 Implementation Plot type 452.32 14 < 2.2e-16 *** 

Total herbaceous species 
number 

glmmTMB(Num_spec ~ Plot_type + Precip_4_7 + 
(1|Field_ID), data= mediate, family=nbinom1) 

721 plots                                          
215 species 

0.683 0.654 
Plot_type 1073.8395 6 < 2e-16 *** 

Precipitation_april_july 6.1699 1 0.01 * 

Total herbaceous species 
number 

glmmTMB(Num_spec ~ Plot_type + Temp_4_7 + 
(1|Field_ID), data=mediate, family=nbinom1) 

721 plots                                          
215 species 

0.704 0.673 
Plot_type 1138.486 6 < 2.2e-16 *** 

Temperature_april_july 39.869 1 2.72E-10 *** 

Total herbaceous species cover 
glmmTMB(Cover ~ Plot_type + Precip_4_7 + 
(1|Field_ID), data=mediate, family=nbinom1) 

721 plots                                          
215 species 

0.674 0.663 
Plot_type 1346.092 6 < 2e-16 *** 

Precipitation_april_july 5.717 1 0.0168 * 

Total herbaceous species cover 
glmmTMB(Cover ~ Plot_type + Temp_4_7 + 
(1|Field_ID), data=mediate, family=nbinom1) 

721 plots                                          
215 species 

0.685 0.675 
Plot_type 1405.614 6 < 2.2e-16 *** 

Temperature_april_july 27.094 1 1.94E-07 *** 

Total herbaceous plant beta-
diversity (without genera) 

lme(distances ~ Implementation_Plot_type, random = ~ 
1|Field_ID, data= mediate_model) 

693 plots                                            
207 species 

0.381 0.302 Implementation Plot type 332.67 21 < 2.2e-16 *** 

Total herbaceous species 
number per calendar year 

model_nbinom1_simpler_year <- glmmTMB(Num_spec 
~  Year_plot_type + (1|Field_ID), data=mediate,  
family=nbinom1) 

721 plots                                             
215 species 

0.734 0.700 Year_plot_type 1363.6 20 < 2.2e-16 *** 

Total herbaceous species cover 
per calendar year 

model_nbinom1_simpler_year_cover <- 
glmmTMB(Cover_all_plants ~  Year_plot_type + 
(1|Field_ID), data=mediate,  family=nbinom1) 

721 plots                                             
215 species 

0.722 0.714 Year_plot_type 1684.6 20 < 2.2e-16 *** 
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Multiple comparisons of the different plot types per implementation year (results are given on the log scale); legend: significance codes: different letters indicate significance (< 
0.05); Plot types: field edge and interior, spillover, conservation field margins (CFM), fallow, alternately managed biennial flower strip (AFS) and perennial flower strip 
(PFS)         
Total herbaceous 
species number  

Plot type differences Emmean Std. Error Degrees of freedom lower.CL upper.CL Significances 

AFS_1 3.07 0.0788 697 2.834 3.32 hij 

AFS_2 2.87 0.0893 697 2.593 3.14 fgh 

AFS_3 3.35 0.074 697 3.119 3.57 ij 

Field_edge_0 2.52 0.0571 697 2.342 2.69 ef 

Field_edge_1 2.08 0.0654 697 1.883 2.28 cd 

Field_edge_2 2.04 0.0689 697 1.826 2.25 cd 

Field_edge_3 2.32 0.0718 697 2.105 2.54 de 

CFM_1 2.98 0.0834 697 2.725 3.23 ghi 

CFM_2 2.58 0.1052 697 2.256 2.9 efg 

CFM_3 3.02 0.0963 697 2.723 3.31 ghij 

Fallow_1 3.1 0.0837 697 2.841 3.35 hij 

Fallow_2 2.98 0.088 697 2.707 3.25 ghi 

Fallow_3 3.12 0.0876 697 2.857 3.39 hij 

Field_interior_0 1.16 0.1751 697 0.624 1.69 a 

Field_interior_1 1.29 0.168 697 0.772 1.8 ab 

Field_interior_2 1.01 0.1107 697 0.667 1.34 a 

Field_interior_3 1.01 0.1292 697 0.62 1.41 a 

PFS_1 3.13 0.0891 697 2.859 3.4 hij 

PFS_2 3.45 0.0809 697 3.203 3.7 j 

Spillover_1 1.87 0.0742 697 1.643 2.1 bc 

Spillover_2 2 0.0726 697 1.774 2.22 cd 

Spillover_3 2.23 0.0747 697 2.003 2.46 cde         
Total herbaceous 
species cover  

Plot type differences Emmean Std. Error Degrees of freedom lower.CL upper.CL Significances 

AFS_1 3.800 0.108 697 3.466 4.130 de 

AFS_2 4.130 0.096 697 3.841 4.430 efgh 

AFS_3 4.230 0.094 697 3.944 4.520 efgh 

Field_edge_0 2.730 0.095 697 2.443 3.020 c 

Field_edge_1 2.700 0.092 697 2.418 2.980 c 

Field_edge_2 2.340 0.107 697 2.012 2.660 bc 

Field_edge_3 2.700 0.111 697 2.359 3.040 c 

CFM_1 3.960 0.103 697 3.646 4.280 def 

CFM_2 3.420 0.138 697 3.001 3.850 d 

CFM_3 4.030 0.117 697 3.678 4.390 defg 

Fallow_1 4.320 0.093 697 4.037 4.600 fgh 

Fallow_2 4.240 0.096 697 3.946 4.530 efgh 

Fallow_3 4.480 0.093 697 4.201 4.770 gh 

Field_interior_0 1.760 0.220 697 1.088 2.430 ab 

Field_interior_1 1.620 0.227 697 0.927 2.320 ab 

Field_interior_2 1.400 0.143 697 0.958 1.830 a 

Field_interior_3 1.530 0.163 697 1.030 2.020 a 

PFS_1 4.140 0.108 697 3.811 4.470 efgh 

PFS_2 4.580 0.092 697 4.297 4.860 h 

Spillover_1 2.330 0.108 697 1.997 2.660 bc 

Spillover_2 2.240 0.114 697 1.889 2.590 bc 

Spillover_3 2.450 0.121 697 2.081 2.820 bc         
Total arable plant 
number  

Plot type differences Emmean Std. Error Degrees of freedom lower.CL upper.CL Significances 

AFS_1 2.920 0.078 697 2.681 3.160 gh 

AFS_2 2.531 0.095 697 2.240 2.820 efg 

AFS_3 3.087 0.077 697 2.851 3.320 h 

Field_edge_0 2.289 0.059 697 2.109 2.470 e 

Field_edge_1 1.941 0.065 697 1.744 2.140 cd 

Field_edge_2 1.874 0.069 697 1.664 2.080 c 

Field_edge_3 2.132 0.073 697 1.910 2.350 cde 

CFM_1 2.850 0.082 697 2.600 3.100 gh 

CFM_2 2.357 0.107 697 2.029 2.690 def 

CFM_3 2.852 0.096 697 2.558 3.150 gh 

Fallow_1 2.969 0.082 697 2.718 3.220 gh 

Fallow_2 2.833 0.087 697 2.567 3.100 fgh 

Fallow_3 2.952 0.088 697 2.684 3.220 gh 

Field_interior_0 1.103 0.169 697 0.587 1.620 a 

Field_interior_1 1.228 0.160 697 0.738 1.720 ab 

Field_interior_2 0.979 0.105 697 0.658 1.300 a 

Field_interior_3 0.949 0.125 697 0.567 1.330 a 

PFS_1 2.854 0.093 697 2.571 3.140 fgh 

PFS_2 2.950 0.092 697 2.668 3.230 gh 

Spillover_1 1.820 0.071 697 1.605 2.040 bc 

Spillover_2 1.890 0.071 697 1.675 2.110 c 



CHAPTER 3   

92 

Spillover_3 2.136 0.073 697 1.914 2.360 cde         
Total arable plant 
cover 

Plot type differences Emmean Std. Error Degrees of freedom lower.CL upper.CL Significances 

AFS_1 3.740 0.112 697 3.398 4.080 fg 

AFS_2 3.870 0.109 697 3.541 4.200 fgh 

AFS_3 3.950 0.107 697 3.625 4.280 fgh 

Field_edge_0 2.600 0.100 697 2.290 2.900 de 

Field_edge_1 2.610 0.095 697 2.322 2.900 e 

Field_edge_2 2.240 0.110 697 1.904 2.580 cde 

Field_edge_3 2.610 0.116 697 2.259 2.970 de 

CFM_1 3.910 0.107 697 3.578 4.230 fgh 

CFM_2 3.310 0.146 697 2.863 3.760 f 

CFM_3 3.990 0.121 697 3.618 4.360 gh 

Fallow_1 4.280 0.097 697 3.981 4.570 h 

Fallow_2 4.140 0.102 697 3.829 4.450 gh 

Fallow_3 4.390 0.098 697 4.095 4.690 h 

Field_interior_0 1.740 0.221 697 1.067 2.420 abcd 

Field_interior_1 1.610 0.228 697 0.910 2.310 abc 

Field_interior_2 1.390 0.144 697 0.947 1.830 a 

Field_interior_3 1.500 0.164 697 1.001 2.000 ab 

PFS_1 4.060 0.115 697 3.707 4.410 gh 

PFS_2 4.030 0.120 697 3.658 4.390 gh 

Spillover_1 2.300 0.109 697 1.970 2.640 cde 

Spillover_2 2.200 0.116 697 1.843 2.550 bcde 

Spillover_3 2.400 0.124 697 2.018 2.770 cde         
Total plant number 
of high nature 
value species 

Plot type differences Emmean Std. Error Degrees of freedom lower.CL upper.CL Significances 

AFS_1 1,235 0,150 697 0,776 1,693 hi 

AFS_2 0,228 0,225 697 -0,459 0,916 cdefg 

AFS_3 1,283 0,154 697 0,814 1,753 hi 

Field_edge_0 0,699 0,111 697 0,361 1,036 fgh 

Field_edge_1 0,032 0,134 697 -0,378 0,442 cde 

Field_edge_2 0,062 0,135 697 -0,350 0,474 cde 

Field_edge_3 0,348 0,141 697 -0,083 0,779 cdef 

CFM_1 1,198 0,153 697 0,730 1,667 hi 

CFM_2 0,643 0,195 697 0,046 1,240 efghi 

CFM_3 1,308 0,172 697 0,783 1,833 hi 

Fallow_1 1,299 0,149 697 0,844 1,753 i 

Fallow_2 1,078 0,160 697 0,588 1,567 ghi 

Fallow_3 1,342 0,153 697 0,874 1,810 i 

Field_interior_0 -0,625 0,292 697 -1,518 0,267 abcd 

Field_interior_1 -1,108 0,393 697 -2,307 0,092 abc 

Field_interior_2 -1,446 0,257 697 -2,232 -0,659 a 

Field_interior_3 -0,955 0,244 697 -1,700 -0,211 ab 

PFS_1 0,657 0,217 697 -0,007 1,321 defghi 

PFS_2 1,218 0,184 697 0,656 1,779 ghi 

Spillover_1 -0,049 0,141 697 -0,479 0,381 bcde 

Spillover_2 -0,044 0,143 697 -0,482 0,394 bcde 

Spillover_3 0,365 0,140 697 -0,063 0,794 cdef         
Total plant cover of 
high nature value 
species 

Plot type differences Emmean Std. Error Degrees of freedom lower.CL upper.CL Significances 

AFS_1 1,538 0,224 697 0,855 2,222 def 

AFS_2 0,603 0,323 697 -0,384 1,590 abcde 

AFS_3 1,721 0,221 697 1,045 2,397 ef 

Field_edge_0 0,985 0,158 697 0,501 1,469 cde 

Field_edge_1 0,487 0,179 697 -0,060 1,034 bc 

Field_edge_2 0,432 0,182 697 -0,124 0,989 bc 

Field_edge_3 0,701 0,189 697 0,123 1,279 bcd 

CFM_1 2,428 0,176 697 1,891 2,964 fg 

CFM_2 1,133 0,275 697 0,292 1,973 cde 

CFM_3 2,770 0,175 697 2,235 3,305 g 

Fallow_1 2,474 0,173 697 1,947 3,001 fg 

Fallow_2 2,458 0,173 697 1,929 2,986 fg 

Fallow_3 2,754 0,166 697 2,245 3,263 g 

Field_interior_0 0,096 0,325 697 -0,897 1,089 abc 

Field_interior_1 -0,323 0,428 697 -1,631 0,986 abc 

Field_interior_2 -0,859 0,287 697 -1,736 0,017 a 

Field_interior_3 -0,274 0,268 697 -1,091 0,544 ab 

PFS_1 0,724 0,333 697 -0,294 1,743 bcde 

PFS_2 1,773 0,259 697 0,982 2,563 defg 

Spillover_1 0,365 0,187 697 -0,205 0,936 bc 

Spillover_2 0,277 0,189 697 -0,301 0,856 abc 

Spillover_3 0,654 0,192 697 0,069 1,240 bcd         
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Total number of 
annual plants 

Plot type differences Emmean Std. Error Degrees of freedom lower.CL upper.CL Significances 

AFS_1 2.66 0.0855 391 2.41 2.91 f 

AFS_2 2.05 0.1133 391 1.71 2.38 bcde 

AFS_3 2.71 0.0882 391 2.45 2.97 f 

Field_edge_0 1.95 0.0654 391 1.76 2.15 bc 

Field_edge_1 1.71 0.0687 391 1.51 1.91 ab 

Field_edge_2 1.59 0.0747 391 1.37 1.81 a 

Field_edge_3 1.86 0.0787 391 1.63 2.09 abc 

CFM_1 2.62 0.0886 391 2.36 2.88 f 

CFM_2 2.02 0.1196 391 1.67 2.37 abcd 

CFM_3 2.63 0.1036 391 2.32 2.93 f 

Fallow_1 2.75 0.0884 391 2.49 3.01 f 

Fallow_2 2.54 0.0959 391 2.26 2.83 ef 

Fallow_3 2.66 0.0971 391 2.37 2.94 f 

PFS_1 2.44 0.1084 391 2.12 2.76 def 

PFS_2 2.32 0.1181 391 1.97 2.66 cdef         
Total cover of 
annual plants 

Plot type differences Emmean Std. Error Degrees of freedom lower.CL upper.CL Significances 

AFS_1 3.62 0.13 391 3.24 4.01 def 

AFS_2 3.46 0.142 391 3.04 3.87 de 

AFS_3 3.5 0.143 391 3.08 3.92 de 

Field_edge_0 2.39 0.118 391 2.04 2.74 ab 

Field_edge_1 2.5 0.109 391 2.18 2.82 abc 

Field_edge_2 2.15 0.125 391 1.78 2.52 a 

Field_edge_3 2.44 0.134 391 2.05 2.84 abc 

CFM_1 3.81 0.123 391 3.44 4.17 ef 

CFM_2 3.02 0.18 391 2.49 3.55 bcd 

CFM_3 3.91 0.137 391 3.51 4.32 ef 

Fallow_1 4.16 0.112 391 3.83 4.49 f 

Fallow_2 3.84 0.128 391 3.46 4.22 ef 

Fallow_3 4.17 0.119 391 3.82 4.52 f 

PFS_1 3.76 0.143 391 3.34 4.18 def 

PFS_2 3.21 0.186 391 2.66 3.75 cde         
Total number of 
perennial plants 

Plot type differences Emmean Std. Error Degrees of freedom lower.CL upper.CL Significances 

AFS_1 1.828 0.1285 391 1.449 2.21 cd 

AFS_2 2.252 0.1114 391 1.924 2.58 def 

AFS_3 2.513 0.1016 391 2.214 2.81 f 

Field_edge_0 1.656 0.0791 391 1.423 1.89 bc 

Field_edge_1 0.905 0.1048 391 0.596 1.21 a 

Field_edge_2 0.963 0.1049 391 0.654 1.27 a 

Field_edge_3 1.256 0.1096 391 0.933 1.58 ab 

CFM_1 1.747 0.1363 391 1.346 2.15 bcd 

CFM_2 1.706 0.1474 391 1.272 2.14 bcd 

CFM_3 1.855 0.1519 391 1.408 2.3 bcde 

Fallow_1 1.82 0.1395 391 1.408 2.23 bcd 

Fallow_2 1.87 0.137 391 1.467 2.27 cde 

Fallow_3 2.089 0.1324 391 1.698 2.48 cdef 

PFS_1 2.477 0.1159 391 2.135 2.82 ef 

PFS_2 3.072 0.0955 391 2.79 3.35 g         
Total cover of 
perennial plants 

Plot type differences Emmean Std. Error Degrees of freedom lower.CL upper.CL Significances 

AFS_1 1,722 0,227 391 1,054 2,39 abc 

AFS_2 3,303 0,216 391 2,667 3,94 efg 

AFS_3 3,558 0,222 391 2,905 4,21 fg 

Field_edge_0 1,68 0,131 391 1,293 2,07 bc 

Field_edge_1 1,275 0,131 391 0,888 1,66 ab 

Field_edge_2 0,875 0,142 391 0,457 1,29 a 

Field_edge_3 1,342 0,161 391 0,867 1,82 abc 

CFM_1 2,229 0,228 391 1,557 2,9 cd 

CFM_2 2,173 0,242 391 1,459 2,89 bcd 

CFM_3 1,93 0,269 391 1,139 2,72 bcd 

Fallow_1 2,261 0,24 391 1,555 2,97 cde 

Fallow_2 2,922 0,232 391 2,239 3,61 def 

Fallow_3 3,132 0,246 391 2,408 3,86 defg 

PFS_1 2,906 0,25 391 2,169 3,64 def 

PFS_2 4,24 0,249 391 3,507 4,97 g         
Total number of 
graminoids 

Plot type differences Emmean Std. Error Degrees of freedom lower.CL upper.CL Significances 

AFS_1 1.45 0.1205 391 1.095 1.81 abc 

AFS_2 1.478 0.1222 391 1.118 1.84 bc 

AFS_3 1.785 0.1084 391 1.465 2.1 cd 

Field_edge_0 1.559 0.0646 391 1.369 1.75 bc 

Field_edge_1 0.971 0.0814 391 0.731 1.21 a 
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Field_edge_2 0.974 0.0837 391 0.727 1.22 a 

Field_edge_3 1.248 0.0881 391 0.989 1.51 ab 

CFM_1 1.48 0.1219 391 1.121 1.84 bc 

CFM_2 1.403 0.1342 391 1.008 1.8 abc 

CFM_3 1.61 0.1346 391 1.213 2.01 bcd 

Fallow_1 1.698 0.1167 391 1.354 2.04 bcd 

Fallow_2 1.632 0.1207 391 1.277 1.99 bcd 

Fallow_3 1.906 0.114 391 1.57 2.24 cd 

PFS_1 1.463 0.1397 391 1.052 1.87 abc 

PFS_2 2.116 0.1057 391 1.805 2.43 d         
Total cover of 
graminoids 

Plot type differences Emmean Std. Error Degrees of freedom lower.CL upper.CL Significances 

AFS_1 2,53 0,236 391 1,835 3,23 bcd 

AFS_2 2,96 0,238 391 2,259 3,66 cd 

AFS_3 3,2 0,244 391 2,485 3,92 cd 

Field_edge_0 1,77 0,139 391 1,365 2,18 b 

Field_edge_1 1,85 0,132 391 1,463 2,24 b 

Field_edge_2 1,05 0,145 391 0,626 1,48 a 

Field_edge_3 1,99 0,168 391 1,494 2,48 b 

CFM_1 2,56 0,242 391 1,849 3,27 bcd 

CFM_2 2,12 0,26 391 1,355 2,89 bc 

CFM_3 2,53 0,29 391 1,68 3,39 bcd 

Fallow_1 3,14 0,249 391 2,408 3,88 cd 

Fallow_2 3,1 0,25 391 2,36 3,83 cd 

Fallow_3 3,46 0,265 391 2,677 4,24 d 

PFS_1 2,81 0,273 391 2,004 3,61 bcd 

PFS_2 3,68 0,276 391 2,867 4,49 d         
Total number of 
forbs 

Plot type differences Emmean Std. Error Degrees of freedom lower.CL upper.CL Significances 

AFS_1 2.84 0.0911 391 2.57 3.1 ef 

AFS_2 2.58 0.1049 391 2.27 2.89 de 

AFS_3 3.09 0.0868 391 2.83 3.34 f 

Field_edge_0 2.02 0.0736 391 1.81 2.24 bc 

Field_edge_1 1.68 0.0809 391 1.44 1.92 ab 

Field_edge_2 1.59 0.0873 391 1.33 1.84 a 

Field_edge_3 1.9 0.0892 391 1.64 2.17 abc 

CFM_1 2.73 0.0975 391 2.45 3.02 ef 

CFM_2 2.21 0.1286 391 1.83 2.59 cd 

CFM_3 2.74 0.1146 391 2.4 3.08 def 

Fallow_1 2.82 0.0993 391 2.52 3.11 ef 

Fallow_2 2.68 0.1048 391 2.37 2.99 def 

Fallow_3 2.78 0.1067 391 2.47 3.09 ef 

PFS_1 2.93 0.1028 391 2.63 3.24 ef 

PFS_2 3.16 0.097 391 2.88 3.45 f         
Total cover of forbs Plot type differences Emmean Std. Error Degrees of freedom lower.CL upper.CL Significances 

AFS_1 3.49 0.133 391 3.1 3.88 bc 

AFS_2 3.72 0.124 391 3.35 4.09 bc 

AFS_3 3.77 0.125 391 3.4 4.14 c 

Field_edge_0 2.32 0.119 391 1.97 2.67 a 

Field_edge_1 2.23 0.117 391 1.89 2.58 a 

Field_edge_2 1.98 0.13 391 1.6 2.36 a 

Field_edge_3 2.23 0.14 391 1.82 2.64 a 

CFM_1 3.68 0.127 391 3.31 4.06 bc 

CFM_2 3.03 0.175 391 2.51 3.55 b 

CFM_3 3.76 0.143 391 3.34 4.19 bc 

Fallow_1 3.87 0.124 391 3.51 4.24 c 

Fallow_2 3.77 0.129 391 3.39 4.15 c 

Fallow_3 3.92 0.129 391 3.53 4.3 c 

PFS_1 3.84 0.134 391 3.45 4.24 c 

PFS_2 4.07 0.126 391 3.7 4.44 c         
Total herbaceous 
plant beta-diversity  

Plot type differences Emmean Std. Error Degrees of freedom lower.CL upper.CL Significances 

AFS_1 0.533 0.0139 66 0.489 0.577 abcd 

AFS_2 0.571 0.01427 66 0.526 0.616 bcdef 

AFS_3 0.527 0.01467 66 0.481 0.574 abc 

Field_edge_0 0.602 0.00796 66 0.577 0.628 efgh 

Field_edge_1 0.616 0.00767 66 0.592 0.64 fgh 

Field_edge_2 0.626 0.00784 66 0.601 0.651 fgh 

Field_edge_3 0.603 0.00925 66 0.574 0.632 efgh 

CFM_1 0.534 0.01428 66 0.489 0.579 abcd 

CFM_2 0.599 0.01511 66 0.551 0.646 cdefgh 

CFM_3 0.512 0.01673 66 0.459 0.565 ab 

Fallow_1 0.546 0.01512 66 0.498 0.594 abcde 
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Fallow_2 0.543 0.01512 66 0.495 0.591 abcde 

Fallow_3 0.501 0.01614 66 0.45 0.552 ab 

Field_interior_0 0.638 0.01386 66 0.594 0.681 fgh 

Field_interior_1 0.592 0.01432 66 0.546 0.637 cdefgh 

Field_interior_2 0.632 0.0086 66 0.605 0.659 gh 

Field_interior_3 0.645 0.00992 66 0.613 0.676 h 

PFS_1 0.511 0.01623 66 0.459 0.562 ab 

PFS_2 0.473 0.01683 66 0.42 0.526 a 

Spillover_1 0.595 0.0079 66 0.57 0.62 efg 

Spillover_2 0.619 0.00816 66 0.594 0.645 fgh 

Spillover_3 0.59 0.00925 66 0.561 0.619 defg 
 

Total herbaceous 
species number per 
calendar year  

Plot type differences Emmean Std. Error Degrees of freedom lower.CL upper.CL Significances 

AFS_2017 3.074 0.0802 698 2.83 3.32 ghi 

AFS_2018 2.883 0.0859 698 2.621 3.14 efg 

AFS_2019 3.349 0.0735 698 3.125 3.57 hi 

Field_edge_2016 2.521 0.0651 698 2.323 2.72 de 

Field_edge_2017 2.253 0.0626 698 2.063 2.44 cd 

Field_edge_2018 1.955 0.0693 698 1.745 2.17 bc 

Field_edge_2019 2.275 0.0621 698 2.086 2.46 d 

CFM_2017 3.027 0.0921 698 2.747 3.31 fghi 

CFM_2018 2.593 0.1003 698 2.288 2.9 def 

CFM_2019 2.981 0.0874 698 2.715 3.25 fgh 

Fallow_2017 3.112 0.0847 698 2.854 3.37 ghi 

Fallow_2018 2.946 0.0883 698 2.678 3.21 fgh 

Fallow_2019 3.137 0.0839 698 2.882 3.39 ghi 

Field_interior_2016 1.155 0.1741 698 0.626 1.68 a 

Field_interior_2018 1.189 0.0985 698 0.89 1.49 a 

Field_interior_2019 0.901 0.1146 698 0.552 1.25 a 

PFS_2018 3.129 0.0883 698 2.86 3.4 ghi 

PFS_2019 3.448 0.0803 698 3.204 3.69 i 

Spillover_2017 1.858 0.0856 698 1.598 2.12 b 

Spillover_2018 1.841 0.0758 698 1.611 2.07 b 

Spillover_2019 2.291 0.063 698 2.1 2.48 d         
Total herbaceous 
species cover per 
calendar year  

Plot type differences Emmean Std. Error Degrees of freedom lower.CL upper.CL Significances 

AFS_2017 3.74 0.1103 698 3.41 4.08 fg 

AFS_2018 4.16 0.0891 698 3.89 4.43 ghi 

AFS_2019 4.23 0.0909 698 3.95 4.5 ghi 

Field_edge_2016 2.69 0.1077 698 2.36 3.02 cde 

Field_edge_2017 2.88 0.0865 698 2.62 3.14 de 

Field_edge_2018 2.26 0.105 698 1.94 2.57 bc 

Field_edge_2019 2.59 0.0964 698 2.29 2.88 cde 

CFM_2017 4.19 0.1016 698 3.89 4.5 ghi 

CFM_2018 3.19 0.142 698 2.76 3.62 ef 

CFM_2019 4.08 0.1001 698 3.77 4.38 gh 

Fallow_2017 4.31 0.0935 698 4.02 4.59 hi 

Fallow_2018 4.24 0.0929 698 3.96 4.52 ghi 

Fallow_2019 4.47 0.087 698 4.21 4.73 hi 

Field_interior_2016 1.72 0.2192 698 1.05 2.39 ab 

Field_interior_2018 1.49 0.1342 698 1.08 1.9 a 

Field_interior_2019 1.37 0.1425 698 0.94 1.81 a 

PFS_2018 4.14 0.1051 698 3.82 4.46 ghi 

PFS_2019 4.57 0.0895 698 4.3 4.85 i 

Spillover_2017 2.31 0.1228 698 1.93 2.68 bc 

Spillover_2018 2.15 0.1135 698 1.8 2.49 bc 

Spillover_2019 2.46 0.1029 698 2.14 2.77 bcd 

 

Non-metric multidimensional scaling (NMDS) ordinations and their statistical results.     
 Dimensions Stress n 

Year 1 3 0.201 132 plots; 105 species 
    
 Dimensions Stress n 

Year 2 3 0.199 125 plots; 105 species 
    
 Dimensions Stress n 

Year 3 3 0.216 88 plots; 99 species 
    
 Dimensions Stress n 

Conservation field margin 3 0.161 47 plots; 72 species 
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 Dimensions Stress n 

Fallow 3 0.195 46 plots; 79 species 
    
 Dimensions Stress n 

Alternately managed flower strip 3 0.180 54 plots; 96 species 
    
 Dimensions Stress n 

Perennial flower strip 2 0.163 27 plots; 82 species 
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Figure A.2 Schematic map displaying the location of different types of relevé plots in the arable 
field. Each four plots of 50 × 2 m (100 m²) were placed in every field: one plot in the implemented 
measure and three plots in the intensively managed arable field directly adjacent to the measure 
(spillover plot), opposite to the measure at the field edge (field edge plot), and in the field interior 
20 m distant to the edge (interior plot). The field edge plot served as direct control to the measure 
plot. 

Figure A.1 Map of the study region in Lower Saxony, Northwest Germany with the districts of Nienburg and Diepholz. The 
location of the studied fields is indicated by black dots. 
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Figure A.3 Monthly precipitation totals (bars) and mean temperatures (line) during the study period (2016-2019) for the districts 
Nienburg and Diepholz (German Meteorological Service, 2019). No climate data are available for the district of Nienburg in July 
and August 2018 (full references see main text). 

Figure A.4 Species richness (a) and plant cover (b) in 100 m² plots of all herbaceous species (excluding woody plant seedlings, 
crop species and ornamentals) in the studied plot types (field edge, interior, spillover, conservation field margin (CFM), fallow, 
alternately managed biennial flower strip (AFS), perennial flower strip (PFS)) over the four years of the study (see legend). The 
total number of relevés was 721 (for details see Table 1 in the main document). Significant differences between plot types and 
implementation years are indicated by different small letters (based on estimated marginal means and Tukey-adjusted 

comparisons). The models and the model output are listed in Table A.8 in the Appendix. 
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Figure A.5 Species richness (a and b) and plant cover (c and d) in the study plots (all seven plot types pooled) in dependence on 
the sum of summer precipitation (April – July 2016-2019; a and c) and averaged summer temperature (b and d), considering all 
herbaceous species in the plots (excluding woody seedlings, crops and ornamentals). Predictions from negative binomial 
generalized mixed effects models (n = 721 relevés on 19 farms). Given are predicted values (black line) and 95 % confidence 
intervals (grey). The models and the model output are listed in Table A.8 in the Appendix (for more details about the data 
acquisition and analysis, see the main document). 

Figure A.6 Species richness (a) and plant cover (b) in 100 m² plots of all herbaceous species (excluding woody plant seedlings, 
crop species and ornamentals) in the years 2016, 2017, 2018 and 2019 (see legend) in the seven plot types (field edge, interior, 
spillover, conservation field margin (CFM), fallow, alternately managed biennial flower strip (AFS), perennial flower strip (PFS)). 
PFS were only implemented in 2018 and no interior plots were surveyed in 2017. The total number of relevés was 721 (for details 
see Table 1 in the main document). Significant differences between plot types and years are indicated by different small letters 
(based on estimated marginal means and Tukey-adjusted comparisons). The models and the model output are listed in Table A.8 
in the Appendix. 
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Figure A.7 Species richness (a) and plant cover (b) in 100 m² plots of forbs (excluding crop species and ornamentals) in the 
studied plot types (field edge, interior, spillover, conservation field margin (CFM), fallow, alternately managed biennial flower strip 
(AFS), perennial flower strip (PFS)) over the four years of the study (see legend). The total number of relevés was 408 (for more 
details see Table 1 in the main document). Significant differences between plot types and implementation years are indicated by 
different small letters (based on estimated marginal means and Tukey-adjusted comparisons). The models and the model output 
are listed in Table A.8 in the Appendix. 

Fig. A.8 Species richness (a) and plant cover (b) in 100 m² plots of graminoids (excluding crop species and ornamentals) in the 
studied plot types (field edge, interior, spillover, conservation field margin (CFM), fallow, alternately managed biennial flower strip 
(AFS), perennial flower strip (PFS)) over the four years of the study (see legend). The total number of relevés was 408 (for more 
details see Table 1 in the main document). Significant differences between plot types and implementation years are indicated by 
different small letters (based on estimated marginal means and Tukey-adjusted comparisons). The models and the model output 
are listed in Table A.8 in the Appendix. 



CHAPTER 3   

101 

 

  

Figure. A.9 Species richness (a) and plant cover (b) in 100 m² plots of annuals (excluding crop species and ornamentals) in the 
studied plot types (field edge, interior, spillover, conservation field margin (CFM), fallow, alternately managed biennial flower strip 
(AFS), perennial flower strip (PFS)) over the four years of the study (see legend). The total number of relevés was 408 (for more 
details see Table 1 in the main document). Significant differences between plot types and implementation years are indicated by 
different small letters (based on estimated marginal means and Tukey-adjusted comparisons). The models and the model output 
are listed in Table A.8 in the Appendix. 

Figure A.10 Species richness (a) and plant cover (b) in 100 m² plots of perennials (excluding crop species and ornamentals) in the 
studied plot types (field edge, interior, spillover, conservation field margin (CFM), fallow, alternately managed biennial flower strip 
(AFS), perennial flower strip (PFS)) over the four years of the study (see legend). The total number of relevés was 408 (for more 
details see Table 1 in the main document). Significant differences between plot types and implementation years are indicated by 
different small letters (based on estimated marginal means and Tukey-adjusted comparisons). The models and the model output 
are listed in Table A.8 in the Appendix. 
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Figure A.11 Beta diversity, measured as distance to group spatial medians based on Jaccard dissimilarity index, for plots of the 
seven studied plot types (field edge, field interior, spillover, conservation field margin (CFM), fallow, alternately managed biennial 
flower strip (AFS), perennial flower strip (PFS); based on all herbaceous species excluding woody seedling, crops and species only 
determinable to the order level) of the 67 arable fields over the three years with measure implementation (see legend). The pre-
survey was conducted in the plots in the year before measure implementation. The lower the value, the more similar are the 
species compositions among the plots in a given plot type (range of values between 0 and 1). n = 693 (28 plots with no observed 
species were excluded). Significant differences between plot types and implementation years are indicated by different small letters 
(based on estimated marginal means and Tukey-adjusted comparisons). The models and the model output are listed in Table A.8 
in the Appendix. 

Figure A.12 Non-metric multidimensional scaling of the vegetation relevés conducted in the 1st, 2nd and 3rd implementation 
year (black, dark grey and light grey lines) in the four different measure types: a) conservation field margin (n = 47, k = 3, stress 
level = 0.161), b) fallow (n = 46, k = 3, stress level = 0.195), c) alternately managed biennial flower strip (n = 54, k = 3, stress 
level = 0.180) and d) perennial flower strip (n = 27, k = 2, stress level = 0.163). Shown are the NMDS Axes 1 and 2. Perennial 

flower strips existed only for two implementation years. 
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Abstract 

Agricultural intensification has led to drastic population declines in Europe’s arable plant 

vegetation and continuous monitoring is a prerequisite for assessing measures to increase and 

conserve remnant populations of endangered arable plant species. Unfortunately, strong variation 

in plot sizes and in-field locations makes comparison of current arable plant monitoring 

approaches difficult. This study compares different relevé approaches in conventionally managed 

arable fields in Northwest German farmland with respect to plant species detection success and 

time expenditure.  

We compared species detection rate and expenditure of time of six different relevé types in 45 

conventionally managed arable fields (each 15 fields of wheat, maize and rapeseed): field ‘Interior’ 

plots (50 × 2 m); field edge plots: ‘Edge_30’ (30 × 2 m), ‘Edge_50’ (50 × 2 m), ‘Edge_500’ (500 

× 1 m), ‘Subplots’ (four dispersed plots of 5 × 1 m) and ‘Corner’ plots (50 × 2 m). To determine 

species detection rate, the species richness recorded with a survey method was related to the 

field’s total plant species number as estimated from a survey of the entire field edge zone.  

With a species detection rate of 8.3 % (median), interior plots were inadequate for characterizing 

the field’s arable plant vegetation. Edge_500 plots yielded the highest proportion of the field’s 

arable plant species pool (75.6 %, including taxa of conservation value), followed by ‘Corner’ 

plots (45.8 %) and ‘Sublots’ (32.6 %). Edge_50 and Edge_30 plots detected less than 25 % of the 

field’s species pool. The average time needed for a relevé was 20 min in Edge_500 plots, and 5-11 

min in the other plot types. 

We suggest implementing Edge_500 plots as a standard monitoring approach in conventionally 

managed farmland due to its favorable ratio of detection success to expenditure of time. Our 

findings should be compared to methodological studies conducted in other regions, in different 

farmland management systems, and in landscapes of variable complexities.  

 

Keywords: alpha diversity; arable weeds; field edge; field interior; plant detection rate; plot size. 

 

4.1 Introduction 

In former times, crop cultivation in the farmland was less intense and many plant species were 

able to coexist with the crop. In Central Europe, about 300-350 plant species have adapted to the 

frequently disturbed man-made habitat of arable fields. These weed species formed characteristic 

arable plant communities that have accompanied agriculture since centuries, if not millennia 

(Leuschner and Ellenberg 2017). Since the 1950s/1960s, advanced soil cultivation techniques, the 

widespread application of herbicides and increased fertilizer amounts that intensified competition 

with the crop have caused dramatic impoverishment of the arable plant vegetation in many 

regions of Central Europe and elsewhere, which manifested in large losses of arable plant cover 

and species richness and the collapse of once widespread arable plant (segetal) communities 

(Albrecht et al. 2016; Albrecht 1989; Májeková et al. 2010; Meisel and von Hübschmann 1976; 

Meyer et al. 2013). From a literature review, Leuschner & Ellenberg (2017) concluded that, in 

comparison to other habitats in Central Europe, the species richness and population size of 
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arable plants have experienced the most significant decrease within the past 50-60 years. For 

example, the study of Kläge (1999) in south-eastern Germany in the 1990s found that of 282 

formerly recorded segetal species in the region, 90 taxa have disappeared and 72 showed a 

frequency decline of different extent. Albrecht (1989) observed a decline in the arable plant 

species pool of 20 % between the intervals 1951-1968 and 1968-1988 in Bavaria, which was 

associated with a reduction in plot-level species richness from 23 to 16 species on average. In a 

large number of fields of Central and Northern Germany, the resampling study of Meyer et al. 

(2013) found a 23 % reduction in the regional species pool and a decrease in median plot-level 

species richness from 24 to 7 species in the field interior compared to the 1950s/1960s. The 

species loss was associated with a large decline in arable plant coverage. Meyer et al. (2013) found 

that the median cover of arable plants declined from 30 % in the 1959s/1960s to only 3 % in 

2009 in the interior of central and northern German fields.  

Arable plants (‘weeds’) have always been a bane of the farmers due to reduced crop yield, but 

they are also fulfilling important ecosystem functions in the farmland, the benefits of which have 

only been fully recognized in the recent past. The root system of a sufficiently dense cover of 

arable plants can reduce soil erosion and the plants may catch nutrients (in particular mobile 

nitrate) during the summer fallow, thereby reducing leaching loss (Gholamhoseini et al. 2013). 

Equally important are positive effects on pollinator communities and related pollination success 

of crops and pest control through food webs supported by arable plants (Hawes et al. 2003; 

Hyvönen and Huusela-Veistola 2008; Médiène et al. 2011; Wietzke et al. 2018). Arable plants also 

support herbivorous insects which are eaten by insectivorous birds and they provide food for 

granivorous birds (Marshall et al. 2003). In Northern Germany, Heydemann & Meyer (1983) 

counted 1200 insect species colonizing 102 arable plant species.  

Thus, arable plants are of particular interest for biodiversity conservation in agricultural 

landscapes, and various agri-environment schemes such as conservation headlands have been 

introduced to halt plant biodiversity loss and reverse the trend in Europe (European Union 

2013a, 2013b, 2014a, 2014b).  

To assess the status quo of the segetal flora, monitor long-term trends and evaluate the effects of 

environment measures in the farmland, a consistent monitoring concept is needed. Vegetation 

surveys in the farmland have used a variety of plot sizes and plot geometries in the past, with plot 

size varying between 0.1 and 5000 m² (Chytrý and Otýpková 2003; Hanzlik and Gerowitt 2016; 

Lososová et al. 2004; Meyer et al. 2013; Richner et al. 2015). Based on a comprehensive 

European dataset considering 2604 arable plant relevés between 1970 and 2000, Chytrý and 

Otýpková (2003) found a mean plot size of 74 m², whereas the most frequently used plot size 

was 10 m². For surveying arable plants, vegetation ecologists have traditionally made relevés in 

square or rectangular plots of 25 to 100 m² size (Dierschke 1994; Hanzlik and Gerowitt 2016). 

For the analysis of the rich arable plant vegetation of the 1950s to 1970s, plots of 25 m2 were 

generally sufficiently large; this is certainly no longer possible in the nowadays intensively 

managed, species-poor farmland. In recent time, authors have investigated plots of largely 

different size, form and location in the field, when investigating different aspects of the arable 

plant vegetation. Examples of single-plot approaches are 100 m² plots in the field interior (Fahrig 

et al. 2015; Lüscher et al. 2014), and 60 m² plots at least 3 m distant to the field edge (German 

Federal Agency for Nature Conservation 2018). Split-plot designs include two paired 100 m²-

plots at the field edge and in the interior (Meyer et al. 2015; Seifert et al. 2014, 2015); three 33 m²-



CHAPTER 4   

106 

plots placed randomly in the interior (Gabriel et al. 2005), two field edge and two field interior 

plots of each 30 m² (Roschewitz et al. 2005), three plots placed randomly in the interior and one 

edge plot of each 50 m² (Pinke et al. 2012), two 2000 m²-plots in the field interior (Fried et al. 

2008), and ten randomly placed 0.1 m²-plots (total area only 1 m2) (Hanzlik and Gerowitt 2011). 

Other authors used transects, e.g. one transect at the field edge and one in the interior consisting 

each of ten 5 m²-plots (Clough et al. 2007; Gabriel et al. 2006), one transect at the field edge and 

one in the interior consisting each of four or five 5 m²-plots (Batáry et al. 2012; Solé-Senan et al. 

2014), one transect at the field edge and one in the interior consisting each of five 2 m²-plots 

(Krauss et al. 2011), three to ten 10 m²-plots in the field interior (depending on field size; 

Rotchés-Ribalta et al. 2015), and one transect in the field interior of ten 4 m²-plots (Petit et al. 

2016). The above-mentioned studies used either square or rectangular plots, but oblong relevé 

plots placed at the field edge are increasingly plausible today, as the largest part of the remaining 

species pool is restricted to a narrow band along the field edge. In line with this, Bacaro et al. 

(2015) analyzed a large vegetation dataset consisting of 604 plots within different habitats (among 

others farmland, grassland or forests) and found elongated (rectangular) plots to record 

significantly more species than square plots. This can probably be traced back to an extended 

perimeter covered by oblong plots and, thus, the chance to include a wider range of 

environmental and habitat conditions with the associated plant species. The increasingly patchy 

distribution of arable plant vegetation in pesticide-treated, intensively managed fields may also 

suggest to use a larger number of small split plots to address vegetation heterogeneity. Such an 

approach may also account for the finding that the presence and type of adjacent habitats can 

influence field edge plant diversity by possible spillover effects (Aavik et al. 2008; Nagy et al. 

2018; von Arx et al. 2002). 

The large variation in available survey methods renders comparison of results difficult. As 

accurate data on the status and temporal change of the arable plant vegetation at regional, 

national and supra-national levels is urgently needed for agronomic and conservation purposes, 

this methodological diversity is highly unsatisfactory. Several authors have attempted to 

harmonize arable plant survey methods based on experiences gained in earlier studies. Examples 

are found in Hanzlik & Gerowitt (2016) and Hatcher & Froud-Williams (2017) who suggest to 

study several small square plots which can be placed randomly or within transects. It has also 

been proposed to place w-formed transects in the field interior. Species-area curve analysis may 

help to define a suitable plot size in the arable fields of interest (Pollnac et al. 2009). An example 

from an intensively farmed region is the study of Mulugeta et al. (2001) in corn and soybean 

fields of the US, which predicted that plot sizes between 32 and 185 m2, depending on the tillage 

regime, would be needed to find 75 % of the field’s arable plant species pool in the plot. To our 

knowledge, a systematic comparative study is missing which employs different arable plant survey 

methods in conventionally managed arable fields, and that could recommend methodological 

standardization and assess the effectivity of different methods in terms of time expenditure 

relative to plant detection success.  

In this study, we compare six traditional or novel approaches to survey the arable plant 

vegetation of conventionally managed arable fields with the aim to identify methods that are 

efficient, but also time-economic. We recognize that most of farmland phytodiversity has 

disappeared from the field interior (Batáry et al. 2017; Clough et al. 2007; Gabriel et al. 2006; 

Seifert et al. 2014) and that survey methods today have to focus on the narrow field edge strip, 

which is often less than 2 m wide. We also accounted for the unwillingness of most farmers to 
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allow vegetation relevés in the field interior, and thus focused on plots in the edge zone. We thus 

selected six different survey methods which use oblong plots of different size and placement in 

the field, (1) a 100 m2-plot (50 × 2 m) in the field interior (‘Interior’), which also was oblong and 

mostly served for comparison, (2) an equally-sized 100 m2-plot at the field edge (‘Edge_50’), (3) a 

60 m2-plot (30 × 2 m, ‘Edge_30’) at the field edge, (4) a 100 m2 oblong plot placed at the field 

corner (50 × 2 m, ‘Corner’), (5) a plot area of 20 m2 split into four dispersed subplots of 5 m2 

each (‘Subplots’), and (6) an oblong 500 m2-plot (500 × 1 m, ‘Edge_500’) along the field edge. 

The six approaches differ in plot size (20 to 500 m2), plot location in the field (interior vs. edge, 

corner vs. middle edge), and amount of time needed for survey.  

We tested the following hypotheses:  

(i) Due to the patchy occurrence of the impoverished arable vegetation of today’s intensively 

managed arable fields, the species detection rate will be highest in oblong 500 m²-plots at the 

field edge and lowest in 100 m²-plots in the field interior, where the most intensive management 

takes place,  

(ii) field corner plots are species-richer than field edge plots of similar size, 

(iii) beta diversity is lowest among Interior plots due to the universal occurrence of a small set of 

species well adapted to intensive field management, 

(iv) additional species, i.e. taxa not detected with other survey methods, are only found in edge 

plots and not in the field interior, and 

(v) splitting plots into subplots increases the number of species recorded per plot area, but also 

increases time expenditure.  

 

4.2 Material and Methods 

4.2.1 Study region 

The study was conducted in an intensively managed agricultural landscape in the districts of 

Nienburg (centroid: N 52°36'32.5334’’, E 9°6'49.7118’’) and Diepholz (N 52°43'41.4940’’, E 

8°42'4.1629’’) in the Pleistocene lowlands of western Lower Saxony (Northwest Germany; 

Online Resource 6). The districts are part of the natural regions ‘Ems-Hunte-Geest and 

Dümmer-Geestniederung’ and ‘Weser-Aller-Flachland’ south of the city of Bremen. Most of the 

farmland is conventionally managed arable land used to produce cereals, maize and rapeseed for 

the world market, or for use in local biogas plants. The climate of the two districts is temperate-

oceanic with mean annual precipitation (2013-2017) of 662.0 mm in Nienburg and 683.6 mm in 

Diepholz and mean annual temperatures of 10.3°C (Nienburg) and 10.1°C (Diepholz) (DWD 

2018). The soils (mainly Cambisols, Podzols, Luvisols and Gleysols) are moderately fertile to 

fertile and developed from sandy to loamy deposits of the penultimate glaciation (Saalian) or 

Holocene loess deposits (BGR 2013; LBEG 2015). The farms included in the study were selected 

by the Chamber of Agriculture of Lower Saxony according to the criteria (i) conventional 

farming with a relatively high share of cereals, maize and rapeseed (ii) more or less even 

distribution of the farms in the two districts to avoid clumping and spatial autocorrelation, and 

(iii) willingness of the farmers to participate in the survey.  
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4.2.2 Vegetation survey 

The vegetation survey with determination of species identity and species richness was carried out 

from May to July 2017 in 45 fields (ranging in size from 3 to 11 ha) owned by 17 farmers. Fifteen 

fields had been planted with winter wheat, 15 with maize, and another 15 with winter rapeseed, 

which are the three dominant crops of the region and are of paramount economic importance for 

Central European agronomy. In the arable fields, we employed six different approaches to 

analyze the species richness of the arable plant vegetation at different spatial scales from the level 

of small plots (5 m2) to the field level (see schematic in Fig. 1). Some of the approaches have 

been used for a long time in vegetation surveys of farmland, others were adopted from more 

recent vegetation surveys or were introduced by us in response to floristic impoverishment. Since 

most of the floristic diversity in conventionally managed arable fields is found today in the 

narrow field edge, we used oblong plots of only 1 to 2 m width to account for the highly 

heterogeneous distribution of arable plants. We recorded all herbaceous plant species (grasses 

included, bryophytes excluded) except for juvenile woody plants and crop species. Species names 

follow Buttler (2018).  

In all 45 fields, the following plot and transect types were studied: a) 100 m2-plots in the field 

interior (‘Interior’; size 50 × 2 m, placed at least 20 m from the edge into the field), b) 60 m2-plots 

at the field edge (‘Edge_30’; size 30 × 2 m, along the edge at least ten m from field corners), c) 

100 m2-plots at the field edge (‘Edge_50’; size 50 × 2 m, along the edge at least 10 m from field 

corners), d) 100 m2-plots at field corners (‘Corner’; plots of 50 × 2 m size, placed with two 

equally-sized legs in the field corner), e) four dispersed subplots of 20 m2 total size (‘Subplots’; 

each 5 × 1 m, at the field edge at least 10 m distant to each other and to the field corner), and f) 

linear edge plots of 500 m length and 1 m width (500 m2, ‘Edge_500’) along the field edge 

(consisting of twenty segments of 25 × 1 m each, including at least one field corner) covering 30-

70 % of the field’s total perimeter. For obtaining an estimate of the field’s overall species pool, 

we further inspected the 700 to 1500 m-long total perimeter of the field (depending on field size) 

and counted all herbaceous plant species present along the 1 m-wide margin (line plots of 700-

1500 m2; ‘total perimeter’). Based on our experience, we assumed that no additional species are 

occurring in the field Interior. This species count was used as a reference for the six approaches 

described above. However, if additional species were observed in a given field in other survey 

methods, they were added to the total species number.  

We used a general plot size of 100 m2. In two cases, we also studied smaller plots: approach (b) 

uses 60 m2 in accordance with the plot size and design of the national farmland vegetation 

monitoring program of Germany (German Federal Agency for Nature Conservation 2018), while 

approach (e) studies four small plots of 5 m2 each, following the sampling scheme of Solé-Senan 

et al. (2014) and Batary et al. (2012). The latter approach with several small plots addresses the 

assumed high within-field variability in arable plant vegetation composition. Field edge plots were 

either 1 (approaches e and f) or 2 m wide (approaches a to d) and were aligned with the 

outermost furrow as a plot border. The location of the plots at the field edge and the starting 

points of the transects were selected by random (see Fig. 1). In each plot, all herbaceous species 

were listed, and the expenditure of time was noted (all approaches except for b, where the time 

was not recorded). In approach e), the total species number was calculated by summing over the 

four subplots. The location of all plots was determined with GPS. The raw data of the vegetation 

surveys are compiled in the Online Resource 10 (exclusive crop species, woody seedlings and few 
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plant individuals which were non-determinable to species level; also excluded from further 

analysis). 

 

4.2.3 Statistical analysis 

Since most data sets were non-normally distributed, we present median values and use box-

whisker plots to visualize species richness data and the time consumed in the different survey 

methods. This was done for total species richness (all herbaceous non-crop species, including 

grasses, but without woody plant seedlings), the richness of arable plants sensu stricto according 

to the definition of Hofmeister & Garve (2006), and the richness of high-nature-value species of 

arable land (according to the classification of the German Federal Agency for Nature 

Conservation 2018). High-nature-value species are defined as taxa which characterize through 

their presence farmland with high conservation value. The conservation value increases with the 

number of occurring high-nature-value species. We also compared the survey methods for the 

number of recorded red-listed arable plant species (Red List of Lower Saxony; Garve 2004).  

All statistical analyses were conducted with R 3.5.2 software (R Core Team 2018) using the R 

packages ’magrittr’ and ‘tidyverse’, among others (Bache and Wickham 2014; Wickham 2017). To 

test for spatial autocorrelation among the data from different fields, we calculated Moran's I 

(Paradis and Schliep 2018). Since no autocorrelation was detected, all 45 fields were treated as 

Fig. 1 Schematic map displaying the six survey methods that were tested in the study and their location in an arable field (for 
details see Material and Methods); survey methods: a) 100 m²-plots in the field interior (‘Interior’; size 50 × 2 m, placed at least 20 
m from the edge into the field), b) 60 m²-plots at the field edge (‘Edge_30’; size 30 × 2 m, along the edge at least ten m from field 
corners), c) 100 m²-plots at the field edge (‘Edge_50’; size 50 × 2 m, along the edge at least 10 m from field corners), d) 100 m²-
plots at field corners (‘Corner’; plots of 50 × 2 m size, placed with two equally-sized legs in the field corner), e) four dispersed 
subplots of 20 m² total size (‘Subplots’ ; each 5 × 1 m, at the field edge at least 10 m distant to each other and to the field corner), 
and f) linear edge plots of 500 m length and 1 m width (500 m², ‘ Edge_500’). 
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independent data points. To explore the effects of survey methods (explanatory variable) on 

species richness per plot (response variable), we employed generalized linear mixed-effects 

models (both with and without negative binomial family; R package ‘lme4’; Bates et al. 2015) 

using farmer and crop type as random factors to consider possible individual management effects 

and crop-dependent diversity patterns. To assess the goodness of the model in terms of the 

normality and heteroscedasticity of residuals, we inspected the residuals vs. the fitted values and 

QQ-plots, checked for over-dispersion (Bolker 2019) and calculated the variance explained (R2) 

by fixed effects and by the entire model (Barton 2018; Fox et al. 2011). To test for significant 

effects of the explanatory variable (survey method) on species richness, we performed likelihood-

ratio tests using Type II sums of squares as criterion (R-package ‘car’; Fox et al. 2011). 

Subsequently, a post-hoc two-sided Tukey test was applied (R package ‘multcomp’; Hothorn et 

al. 2008) to test for significant differences between survey methods. We also tested for 

differences between survey methods with respect to crop type effects. Due to the rather small 

sample size per crop (n = 15 fields per crop type), we used the Mann-Whitney-U test for pairwise 

comparisons. Since crop type had a large effect on the time consumed in the different survey 

methods (as exemplified by hardly penetrable rapeseed vs. better accessible wheat fields), mixed 

effects models were not applied to explore the effect of survey method on the expenditure of 

time in the total data set (all crops pooled). As an alternative, we compared the expenditure of 

time in the different methods for the three crop types separately using the Mann-Whitney-U test. 

We also tested for differences between the survey methods in beta diversity among fields 

calculating the distances to group spatial medians based on Jaccard’s dissimilarity index (R 

package ‘vegan’, function ‘betadisper’; Oksanen et al. 2019). Significant differences in beta 

diversity between plots were also tested with the Mann-Whitney-U test. In addition, we plotted 

the species richness found by examining the six survey methods in the 45 fields against the 

estimated total species number in that field (‘total perimeter’) and calculated Spearman's rank 

correlation coefficient for the six relations to evaluate the accuracy of the different survey 

methods in terms of species detection. Finally, species accumulation curves were calculated with 

the R package ‘vegan’ (method = ‘random’; permutations = 100; Oksanen et al. 2019) to analyze 

the influence of the survey method on the increase in species number with plot number or 

surveyed plot area. Information about model structures and test statistics is presented in Online 

Resource 9a and 9b. 

 

4.3 Results 

4.3.1 Recorded species richness 

In the pooled sample of all 45 fields, we observed 197 herbaceous non-crop species (excluding 

seedlings of woody plants) and 125 arable plant species sensu stricto, when combining the results 

of all six survey methods (Online Resource 7; see Online Resource 8 for species richness per 

crop). The estimated total species pool of single wheat, maize and rapeseed fields in the study 

region consisted of 45, 40, and 52 herbaceous plant species, and 38, 32, and 40 arable plant 

species, respectively (median values), according to the total perimeter count. The highest total 

herbaceous species number in the plots was found in the 500 m2 Edge_500 plots (median of the 

three crops: 31 species), followed by the 100 m2-Corner plots (20) and the Subplots (14; Fig. 2). 

Edge_30 and Edge_50 plots (60 and 100 m2, respectively) reached very similar, but much lower, 
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species richness (median = 10 in both cases) than the aforementioned survey methods. The 

lowest median values were recorded in the 100 m2-plots in the field Interior (median = 4 species). 

The same sequence in species richness was also found for the number of arable plant species 

(according to the classification of Hofmeister & Garve 2006) and for the high-nature-value 

species of arable land (with exception of the Subplots; Fig. 2). A similar sequence of methods was 

also detected, when the three crop types are analyzed separately (Online Resource 1). With a few 

exceptions, the species richness differences between the six tested methods were significant at p 

< 0.05.  

In relation to the estimated total species pool of a field (‘total perimeter’), the Edge_500 plots 

yielded the highest proportion of species recorded (median: 71.1 % of all herbaceous plants, and 

75.6 % of all arable plant species; all crops pooled) followed by the Corner plots (median: 44.7 

and 45.8 %) and the Subplots (31.3 and 32.6 %) (Fig. 2 and Online Resource 2). A much lower 

share of total species number was recorded in the Edge_50, Edge_30 and Interior plots (median: 

24.3, 23.3 and 6.3 % for all herbaceous plant species, and 25.0, 23.3 % and 8.3 % for the arable 

plant species). The proportion of high-nature-value species detected in the plots Edge_500, 

Corner, Subplots, Edge_50, Edge_30 and Interior was 75.0, 46.2, 30.8, 25.0, 22.2 and 6.7 %, 

respectively, of the number found in the total perimeter count (Online Resource 3). The 

occurrence of red-listed arable plant species (with respect to Lower Saxony; Garve 2004) was 

very low. In total, we found nine occurrences of five red-listed species (total perimeter count) in 

eight of the 45 study fields (five rapeseed and three maize fields). In general, only one red-listed 

species was found per field (except for one field with two red-listed species). Corner und 

Edge_500 plots showed a slightly higher detection success compared to the other applied field 

edge survey methods (detection of four red-listed species vs. two or three occurrences), whereas 

no red-listed species were found in Interior plots. When analyzing the crop types separately, we 

found 70.5 % of all herbaceous plants of the total perimeter count in the Edge_500 plots in 

wheat fields, 70.8 % in maize, and 76.8 % in rapeseed fields.  

The relationship between recorded arable plant species number in a plot and estimated total 

arable plant species number in the field was strongest for the Edge_500 plots (r = 0.83, p < 

0.0001), followed by the plot types Corner, Subplots, Edge_50 and Edge_30 (0.48 > r > 0.41; 

0.005 > p > 0.001, Fig. 3). No correlation was found between the arable plant species richness of 

Interior plots and total arable plant number per field (r = 0.03). The same pattern was observed 

for all herbaceous plants instead of arable plant species (Online Resource 4).  
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Fig. 2 Total number of herbaceous plant species (all plant species, woody seedlings and crops excluded) (a), number of arable 
plant species sensu stricto (as listed by Hofmeister and Garve 2006) (b), and number of high-nature-value species (HNV 
according to the German Federal Agency for Nature Conservation 2018) (c) in plots surveyed with six different methods. (d) 
Proportion (in %) of the number of arable plant species sensu stricto present in the field that is found in plots of the six survey 
methods. All data are averages over wheat, maize and rapeseed fields. Black lines in boxplots represent medians; n = 45 (3 crop 

types × 15 replicates per crop for each survey method), Tukey's test, α ≤ 0.05; different small letters indicate significant 

differences between survey methods. For model overview and statistical results see Online Resource 9. 

Fig. 3 Number of arable plant species found in plots of the six survey methods in relation to total arable plant species number in 
the respective field; R = Spearman's rank correlation coefficient with p-values; n = 45 (per survey method). 
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4.3.2 Expenditure of time 

Due to differences in plot size and vegetation density, the six methods differed considerably in 

the time needed for the survey. Surveying the Edge_500 plots consumed the largest amount of 

time (median over all crops: 20 min, maize: 16, wheat: 20 min, rapeseed: 23 min; Fig. 4). In maize 

and wheat, Corner plots and Subplots required only half the time (median: 9-11 min, no 

significant difference between crop types), followed by Edge_50 plots with even less time (maize: 

6.5 min, wheat: 7 min); the fastest surveys were possible in Interior plots (maize and wheat: 5 

min; all figures without access to the plot). With 9.5-10 min, the Subplots required more time 

than the much larger contiguous Edge_30 and Edge_50 plots. Surveying rapeseed plots was in 

general more time-consuming due to the high crop density; a median value of 15 min was 

recorded for Interior plots and 23 min for Edge_500 plots.  

 

4.3.3 Species composition and distribution 

Across the whole field sample, the most frequent species were Elymus repens, Chenopodium album, 

Polygonum aviculare, Fallopia convolvulus, Galium aparine and Matricaria chamomilla (Online Resource 7). 

Due to the location of the plots in different parts of the field, the six survey methods recorded 

somewhat different subsets of the total species pool. The species list in Online Resource 7 shows 

that certain characteristic arable plant species, high-nature-value species, and red-listed species 

were only recorded with the more labor-intensive methods, notably the Edge_500 plots and the 

Corner plots. These methods recorded a number of taxa that were not found with the other 

methods: 34 species were only found in the Edge_500 plots, of which 13 were typical arable 

plants: Aethusa cynapium, Allium vineale, Anchusa arvensis, Anthoxanthum aristatum, Buglossoides arvensis, 

Cardamine hirsuta, Galinsoga quadriradiata, Glebionis segetum, Matricaria discoidea, Ornithopus perpusillus, 

Fig. 4 Time required for surveying the plots of the six different survey methods. No expenditure of time measured for Edge_30 
plots; black lines in boxplots represent medians; Mann-Whitney U-Test (pairwise comparisons within crop types using the 
Wilcoxon rank sum test, α ≤ 0.05); n = 15 per crop and survey method (except for each one missing value in a maize Interior 
plot, maize subplot, maize Edge_50 plot and wheat Corner plot). 
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Phragmites australis, Rorippa palustris, Senecio vulgaris. Four species occurred only in the Corner plots, 

of which two were typical arable plants (Anthemis arvensis and Anthriscus caucalis); one typical arable 

plant species (Urtica urens) was recorded only in the Subplots. There were no species which were 

solely found in Interior plots, Edge_30 and Edge_50 plots. There were also some herbaceous 

species exclusively appearing in a certain crop, 20 species in maize, 14 in wheat and 25 in 

rapeseed (for details see Online Resource 8). High-nature-value species occurred only very 

occasionally in Interior plots and always in very small numbers (Online Resource 7). Only five 

red-listed species were detected with all methods, namely Agrostemma githago, Anthemis arvensis, 

Buglossoides arvensis, Chenopodium hybridum, and Odontites vernus. No threatened species were found in 

wheat fields and in the interior of rapeseed and maize fields. 

Beta diversity, related to the characteristic arable plant species, was higher for the Interior, 

Edge_30, and Edge_50 plot surveys (medians 0.57–0.58; Fig. 5) than for the Edge_500, Corner, 

and Subplots surveys (0.48–0.54). Calculated distances to the group spatial medians indicate 

lower floristic similarity among fields from the data retrieved with the former three methods. 

Thus, Edge_500 and Corner plots showed highest floristic similarity across the fields. Species 

accumulation curves for the arable plant species showed a strong increase in species richness for 

the first 10 plots and the highest initial slope for the Edge_500 plots (Fig. 6). In contrast, the 

Interior plot curve showed a more continuous increase in species, but with very low slope. The 

other survey methods range between these two extremes. With respect to the twenty 25 m-long 

subunits investigated in the Edge_500 plots, we found a relatively constant increase in arable 

plant species richness, until 500 m length was reached (Online Resource 5). Rapeseed showed the 

steepest, wheat an intermediate, and maize the lowest slope of the species-plot number curve. In 

none of the crop types, species richness saturated at 500 m plot length, as shown by comparison 

with the total perimeter count.  
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Fig. 5 Beta diversity, measured as distance to group spatial medians based on Jaccard dissimilarity index, for plots of the six 
survey methods in the 45 fields. Basis for the calculation were the number of arable plant species sensu stricto according to 
Hofmeister and Garve (2006). The lower the value, the more similar are species compositions for a given survey method (range of 

values between 0 and 1). n = 45 for each survey method, except Interior n = 40 (5 plots with no species were excluded); different 

small letters indicate significant differences between survey methods according to a Mann-Whitney U-Test (α ≤ 0.05). 

Fig. 6 Species accumulation curves for the number of arable plant species for the six survey methods with increasing plot 
number. Arable plant species sensu stricto according to Hofmeister & Garve (2006); method = ‘random’, permutations = 100) for 
different survey methods (see legend); n = 45 for each survey method. 
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4.4 Discussion 

Our systematic comparison of six vegetation survey methods demonstrates high within-field 

heterogeneity in the arable plant vegetation of conventionally managed farmland. About 90 % of 

arable plant species richness that has survived agricultural intensification was found in the 1 m-

wide marginal strip of the fields (Fig. 2d). This was similar in the three crop types despite 

contrasting stand structures, phenology and management regimes. This suggests that the main 

factors that drove the bulk of arable plant species out of the field interior is herbicide use and 

lower light penetration to the ground in the highly fertilized, dense crop stands, in conjunction 

with the tillage regime as the most influential environmental factors of conventional agriculture. 

This corroborates the findings of various studies that most of arable plant diversity today is 

restricted to the edge zone of arable fields (Albrecht et al. 2016; Batáry et al. 2017; Romero et al. 

2008; Seifert et al. 2014, 2015). Thus, future arable plant monitoring should focus on field edge 

areas of 1 to 2 m width.  

In line with hypothesis (iv), we did not find a single plant species in the Interior plots of the 45 

fields that would have been missed, when exclusively investigating the edge zone. Only a few 

generalist arable plant species were found more frequently in Interior plots, mainly Viola arvensis 

(in 23 of 45 Interior plots), Polygonum aviculare (17), Chenopodium album (13), Matricaria chamomilla 

(13), Stellaria media (13) and Fallopia convolvulus (12; Online Resource 7). In addition, there was no 

correlation between observed arable plant richness in the Interior plots and total arable plant 

diversity in the field (r = 0.03; Fig. 3). Only 37 herbaceous plant species in total were recorded in 

the Interior of the 45 fields, 34 of which were arable plants sensu stricto. Decades of intense 

management have not only impoverished the actual arable plant vegetation in the field but also 

the seed bank and forced a large proportion of formerly widespread arable plant taxa to seek 

refuge in the edge zone or face extinction (Aavik et al. 2008; Andreasen et al. 2018; Meyer et al. 

2013, 2015; von Arx et al. 2002). Directly neighboring, extensively managed habitats may 

nowadays function as source habitats for some plants, which spill over in the intensively managed 

field and increase plant diversity (Aavik et al. 2008; Nagy et al. 2018; von Arx et al. 2002). Before 

agricultural intensification, arable plant diversity was with 24 species per 100 m2 (median) six 

times higher in the field interior than it is today, explaining why earlier vegetation surveys focused 

on these areas (Meyer et al. 2013).  

Floristic impoverishment justifies the use of strip-like plots of 2 or better 1 m width along the 

field edge without losing relevant information. Which of the five tested oblong plots at the field 

edge is preferable, depends on the purpose of study and available time. Rapid surveys in over-

regional or national farmland biodiversity monitoring schemes may rely on the 60-m2 Edge_30 

plots, as used by the German Federal Agency for Nature Conservation (2018), which were 

surveyed by us in typically 6-7 min but we recorded with this survey method only 23.3 % of the 

total species number and also of the arable plant species pool (median; Fig. 2 and Online 

Resource 2). The detection success is only insignificantly higher in Edge_50 plots (100 m2), while 

the time needed is probably only slightly higher (median Edge_50 plots across all crops: 7 min). 

Therefore, it is mainly a question of standardization whether 60 or 100 m2 plots at the field edge 

are investigated. Given that further impoverishment in farmland biodiversity is likely to happen, 

we would recommend to prefer Edge_50 over Edge_30 plots. Our results further suggest that 

oblong plots located at field corners contain a larger fraction of the field’s species pool than plots 

in the central part of the margin zone (Fig. 2), irrespective of crop species, which supports 
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hypotheses (i) and (ii). This is certainly a consequence of typically less intensive herbicide use and 

fertilization at field corners, where tractors are turning, disturbance is higher and crop seed 

density is often reduced. Corner plots have the additional advantage that they may be more easily 

accessible than oblong plots along hedges or grass strips in the middle of the edge. The greatest 

advantage of oblong 100 m2-Corner plots is their reasonable detection success, which is nearly 

twice as high (45 vs. 25 %; Fig. 2) than that of similarly sized Edge_50 plots in the central part of 

the margin zone, while the expenditure of time is only ca. 64 % higher (median 11 vs. 7 min 

across all crops). As postulated in hypothesis (v), an interesting alternative can be the Subplots 

approach, which has a similar time requirement as a single Corner plot (12 min), but has the 

potential to detect a relatively large number of species (32.6 % of the field’s arable plant species 

pool) despite its small cumulated plot size (20 m2; Fig. 2 and Fig. 4). The effectiveness of this 

method is explained by the relatively low similarity in species composition in contemporary arable 

plant communities at the landscape scale, as is displayed by the quite high beta diversity and the 

relatively steep increase of the species-area curve at low plot numbers (Fig. 5 and Fig. 6). 

However, since the detection success is less than that of Corner plots, while the time needed is 

similar, the Corner plot approach seems to be more attractive. In addition, the Subplots method 

requires that the Subplots are placed either strictly by random or at fixed distances to guarantee 

comparability and to avoid cherry picking in terms of plant diversity along the field edge. If the 

Subplots approach is adopted, we would suggest placing at least two of the Subplots at the corner 

to increase the species richness recorded. 

Clearly the highest detection success is achieved by the Edge_500 method, which investigates a 

five times larger plot area (500 m2) than all other methods. In smaller fields, this area accounts for 

more than 50 % of the entire field edge area. With a median detection success of 75.6 % (arable 

plant species; Fig. 2), the vegetation of the field is sufficiently well represented in this type of 

relevé to serve the goals of phytodiversity assessments and long-term monitoring schemes. High-

nature-value species, if they occur, will mostly be detected, which is often not the case in the 

other approaches with less than 50 or even 25 % detection success (Online Resource 3). For the 

Edge_500 approach, we found in the 45-field sample a highly significant correlation between the 

number of arable plant species detected in these plots and the total number of arable plant 

species present in the field (r = 0.83, p <0.0001; Fig. 3). The method is clearly more time-

consuming than others (~ 20 min per plot across all crops) and perhaps not the choice for 

landscape-level surveys, where the focus is on a large number of plots. Yet, with only 9 min spent 

additionally (compared to Corner plots), about a quarter of the field’s species pool is additionally 

recorded (Fig. 2). Moreover, the time needed to access fields and plots (which is not included in 

our figures) is often much more relevant than the time used for taking the relevé itself. This may 

convince researchers to shift from smaller plots to the 500 m2-plot method, as the gain in 

additional information is considerable. For vegetation surveys in managed temperate grasslands, 

Ruff et al. (2013) similarly recommend large oblong plots as the most effective method. Bacaro et 

al. (2015) also found significantly higher species richness in rectangular (oblong) plots compared 

to square plots, but they state that plot alignment across possible environmental gradients may 

influence the species detection success. If the monitoring focus is on red-listed arable plant 

species, the total perimeter count should be considered. With respect to this species group, even 

the Edge_500 plots showed only a slightly higher detection success compared to the other field 

edge survey methods.  
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By focusing in arable plant surveys on the edge zone, greater mixing of arable plants with taxa 

from adjacent habitats is to be expected and is frequently reflected in the relevés. This is a clear 

disadvantage of linear plot surveys along field edges compared to the historical approach of 

square plots in the field interior. We therefore recommend considering characteristic arable plant 

species (as listed by Hofmeister & Garve 2006) in the relevé data in addition to the total 

herbaceous plant species list.  

How much time is needed for a vegetation survey depends on crop density and thus season and 

crop species (Fig. 4). This is clearly demonstrated by rapeseed which generally requires more 

survey time due to its dense stand shortly before harvest. Surveys earlier in the year, when crop 

height is lower, may not be a good alternative, because many species are more difficult to identify, 

and some may even be overlooked. 

Unexpected is our result that floristic similarity is higher at field edges than in the Interior across 

the sample of 45 fields (Fig. 5) which contradicts hypothesis (iii). Most vegetation surveys in 

intensively managed farmland noted a trend toward increasing homogenization of the arable 

plant vegetation in recent decades (Hanzlik and Gerowitt 2016; Meyer et al. 2013, 2015; Seifert et 

al. 2015), as phytodiversity has decreased greatly and many formerly rare, specialist taxa have 

disappeared entirely from the cultural landscape of large parts of Central Europe (Leuschner and 

Ellenberg 2017). Since the environment is most stressful to plants in the field interior, this 

suggests that a largely uniform basic set of highly stress- and herbicide-tolerant species should 

have survived, which is similar in all intensively used fields. We thus expected less between-field 

variation in community composition on a larger spatial scale (Hanzlik and Gerowitt 2016). In 

fact, there are very few widespread stress-tolerant species, such as Viola arvensis, Polygonum 

aviculare, Chenopodium album, Matricaria chamomilla, Stellaria media and Fallopia convolvulus, which were 

found in Interior plots more frequently. However, due to the impoverishment of the field interior 

community, the absence of two or three of the common species greatly increases floristic 

dissimilarity between fields. Thus, the lower beta diversity of the field edge communities as 

compared to the Interior plots can be explained by the much lower overall diversity of the latter. 

In addition, some of the common arable plant species such as Echinochloa crus-galli, Apera spica-

venti, Myosotis arvensis or Sisymbrium officinale seem to have preferences in terms of crop species 

(Online Resource 8), edaphic conditions, field management (pest control, tillage and fertilization 

regime) and field neighborhood (Albrecht et al. 2016; Fried et al. 2008; Hanzlik and Gerowitt 

2016; Lososová et al. 2004; Meyer et al. 2013; Pinke et al. 2012; Seifert et al. 2014).  

Beta diversity, i.e. within- and between-field variation, is a major component of phytodiversity in 

the studied arable field complex. This is shown by the large interior-edge gradient in plot-level 

diversity and is also displayed by the species richness increase by 25 % from the Edge_500 plot 

to the entire perimeter count (Fig. 2). Rising species numbers beyond a plot size of 500 m² were 

also found by Mulugeta et al. (2001) in maize and soybean fields. Inspection of the species-area 

(plot number) curves further shows that regional variation is also playing a significant role for the 

landscape-level diversity (gamma diversity) of the region’s arable plant vegetation (Fig. 6). All 

curves, in particular those of the field edge communities, tended to increase beyond 45 fields, 

probably reflecting differences in edaphic, climatic and agronomic conditions in the study region. 

The different components of phytodiversity need consideration in biodiversity assessment and 

monitoring schemes. 



CHAPTER 4   

119 

4.5 Conclusions 

This comparison of six approaches to survey arable plant vegetation showed large differences 

with respect to the proportion of detected species and the expenditure of time. The recent 

impoverishment of arable vegetation has the consequence that the former quadratic relevé plots 

should be replaced by oblong strip-like plots at the field edge, preferably across a field corner. 

Except for studies where large plot numbers have to be surveyed in short time, we recommend 

500 m-long and 1 m-wide linear plots at the edge, which include a field corner. An experienced 

botanist will need no more than about 20 min for the collection of presence/absence data in the 

500 m2 plot with a high chance to record 75 % or more of the field’s overall arable plant 

diversity. When this is not possible due to time constraints, oblong 100 m2-plots stretching over a 

corner are also a promising option. Such plots should be introduced in addition to a subset of 

older plots that are surveyed for continuity of methods. Our conclusions about the efficiency of 

the examined vegetation survey methods should be tested in future studies for additional crop 

species, in other management systems (e.g. organic farming), and in additional regions such as the 

Mediterranean, where more species-rich farmland is still present. In addition, the influence of 

landscape heterogeneity and composition and the role of adjacent habitats on the arable plant 

diversity should be studied in more detail. Finally, more attention should be paid to between-field 

differences in segetal community composition and their causes. In the light of the large within- 

and between-field variation in species richness and the resulting poor comparability of relevé 

data, monitoring agencies should take initiatives to harmonize arable plant vegetation survey 

methods at national and international levels. 
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Electronic supplementary material 

 
 

Online Resource 1 Total number of herbaceous species observed in the different crop types (winter wheat, winter rapeseed, 
maize); species number exclusive crop species and woody seedlings; survey methods in different colors (see legend): Interior 
(50 × 2 m), Edge_30 (30 × 2 m), Edge_50 (50 × 2 m), Subplots (four plots of 5 × 1 m), Corner (50 × 2 m) and Edge_500 
(500 ×x 1 m); black lines in boxplots represent medians; Mann-Whitney-U-Test (pairwise comparisons within crop types using 

Wilcoxon rank sum test, α ≤ 0.05); n = 15 per crop and survey method; different small letters indicate significant differences 
between survey methods within crop types; model overview and statistical results see Online Resource 9. 

Online Resource 2 Proportion of the species number found in the plots (%) of the different survey methods relative to the field’s 
total species pool (total perimeter count; all herbaceous species considered, crops and woody seedlings excluded; winter wheat, 
winter rapeseed and maize were pooled); Interior (50 × 2 m), Edge_30 (30 × 2 m), Edge_50 (50 × 2 m), Subplots (four plots of 5 
× 1 m), Corner (50 × 2 m) and Edge_500 (500 × 1 m); black lines in boxplots represent medians; n = 45 (per survey method), 

Tukey's test α ≤ 0.05; different small letters indicate significant differences between survey methods; model overview and statistical 
results see Online Resource 9. 
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Online Resource 3 Proportion of the number of high-nature-value species (%; HNV; according to German Federal Agency 
for Nature Conservation, 2018) found in the plots of the different survey methods relative to the field’s total high-nature-
value (HNV) species pool (total perimeter count; all herbaceous species considered, crops and woody seedlings excluded; 
winter wheat, winter rapeseed and maize were pooled); Interior (50 × 2 m), Edge_30 (30 × 2 m), Edge_50 (50 × 2 m), 
Subplots (four plots of 5 × 1 m), Corner (50 × 2 m) and Edge_500 (500 × 1 m); black lines in boxplots represent medians; n 

= 45 (per survey method), Tukey's test α ≤ 0.05; different small letters indicate significant differences between survey 
methods; model overview and statistical results see Online Resource 9. 

Online Resource 4 Number of all herbaceous plant species found in plots of the six survey methods in relation to the field’s 
total herbaceous species number (crops and woody seedlings excluded); survey method (see legend): Interior (50 × 2 m), 
Edge_30 (30 × 2 m), Edge_50 (50 × 2 m), Subplots (four plots of 5 × 1 m), Corner (50 × 2 m) and Edge_500 (500 × 1 m); R 
= Spearman's rank correlation coefficient with p-values; n = 45 (per survey method). 
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Online Resource 5 Cumulative number of arable plant species sensu stricto (Hofmeister & Garve, 2006) in the 20 sections 
(each of 25 m length) of the Edge_500 plots (size: 500 × 1 m) in wheat, rapeseed and maize fields (see legend); ‘x’ = additional 
species found subsequent to the 500 m plots (field perimeter ranged between 700 and 1500 m); n = 45; black lines in boxplots 
represent medians. 

Online Resource 6 Map of the study region (the two districts of Nienburg and Diepholz in Lower Saxony, 
Northwest Germany). 
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Online Resource 7 Frequency (absolute number) of all herbaceous species per survey method (crops and woody seedlings 
excluded; all crops pooled); Total = species occurrences summed up for all survey methods and total field perimeter count); table 
is sorted by decreasing total species occurrences; survey methods: Interior (50 × 2 m), Edge_30 (30 × 2 m), Edge_50 (50 × 2 m), 
Subplot (four plots of 5 × 1 m), Corner (50 × 2 m) and Edge_500 (500 × 1 m); arable plants (sensu stricto, Hofmeister and 
Garve, 2006), indicator species for High Nature Value arable land (HNV species; German Federal Agency for Nature 
Conservation, 2018) and red-listed species for Lower Saxony (lost, endangered and early warning stage; Garve, 2004) are marked 

with ‘x’ in specific columns; n = 45 (observed fields); full references see main manuscript. 
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Elymus repens 42 27 28 4 38 42 45 x   

Chenopodium album 24 17 18 13 21 35 44 x   

Polygonum aviculare 31 20 21 17 27 39 44 x   

Fallopia convolvulus 27 16 16 12 17 35 42 x   

Galium aparine 33 18 20 1 24 33 42 x   

Matricaria chamomilla 32 21 21 13 20 35 42 x x  

Bromus sterilis 33 25 27 0 29 39 41 x   

Viola arvensis 28 19 19 23 24 33 41 x   

Cirsium arvense 17 13 15 4 15 33 40 x   

Dactylis glomerata  29 14 15 0 15 29 40    

Geranium pusillum 27 20 24 8 26 31 39 x x  

Stellaria media 16 10 11 13 14 34 38 x   

Capsella bursa-pastoris 12 5 5 4 4 31 37 x   

Myosotis arvensis 22 10 12 4 14 27 35 x x  

Poa trivialis 29 9 9 2 21 25 35 x   

Urtica dioica 24 13 15 2 16 27 35    

Lolium perenne  26 4 4 1 11 22 33 x   

Holcus mollis 12 4 4 0 11 26 32 x   

Vicia hirsuta 14 6 7 3 13 30 32 x x  

Galeopsis tetrahit  11 6 6 2 6 22 30 x   

Sisymbrium officinale 16 7 8 6 12 24 30 x   

Bromus hordeaceus 9 4 5 0 7 20 28 x   

Poa annua 13 3 3 3 5 18 28 x   

Rumex obtusifolius 11 3 4 1 7 23 28 x   

Agrostis stolonifera 11 0 0 0 4 20 27 x   

Apera spica venti 14 7 9 2 9 19 26 x   

Echinochloa crus-galli 16 8 8 3 11 24 26 x   

Holcus lanatus 13 6 6 0 6 12 26    

Persicaria maculosa 7 1 2 3 3 20 26 x   

Vicia sativa 9 3 4 0 4 20 26  x  

Tripleurospermum perforatum 8 0 0 0 6 17 24 x   

Anthriscus sylvestris 12 8 8 0 10 16 23    

Bromus commutatus subsp. decipiens 13 5 5 1 10 13 22 x   

Equisetum arvense 5 4 4 1 5 13 22 x   

Festuca rubra 7 2 2 0 10 10 22    

Lapsana communis 8 0 1 0 3 13 21 x x  

Arrhenatherum elatius  13 10 10 0 9 8 20    

Avena fatua  6 3 3 1 5 13 19 x   

Sonchus asper 6 1 1 0 1 9 19 x   

Alopecurus pratensis 8 6 6 0 4 7 18    

Lolium multiflorum 8 7 7 1 4 12 18 x   

Rumex crispus  5 3 3 0 2 15 18 x   

Papaver dubium agg. 2 0 0 0 1 10 17 x x  

Erigeron canadensis 3 1 1 0 1 13 16 x   

Glechoma hederacea 3 4 5 1 5 8 16 x   

Tanacetum vulgare 7 4 4 0 4 10 16    

Achillea millefolium 8 4 4 0 8 7 15 x   

Centaurea cyanus 7 4 4 1 1 10 15 x x  

Solanum nigrum 4 1 1 0 3 8 15 x   
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Taraxacum sect. Ruderalia 7 1 1 0 2 7 15 x   

Artemisia vulgaris 3 1 1 0 2 9 14 x   

Chenopodium polyspermum 2 0 0 0 2 5 14 x   

Cirsium vulgare 1 0 1 0 3 8 14    

Veronica arvensis 3 2 2 0 2 3 14 x   

Alopecurus myosuroides 6 3 3 1 3 12 13 x   

Gnaphalium uliginosum  2 0 0 0 1 8 13 x   

Lamium purpureum 1 2 2 0 1 8 13 x x  

Sonchus oleraceus 3 2 3 1 1 5 13 x   

Trifolium repens 4 2 2 0 3 9 13    

Agrostis capillaris 5 3 3 0 4 6 12 x   

Heracleum sphondylium 4 5 6 0 6 4 12    

Persicaria amphibia 3 0 1 0 1 9 12 x   

Plantago major 2 0 0 0 2 10 12 x   

Cerastium holosteoides 3 1 1 0 0 5 11 x   

Vicia tetrasperma 2 1 1 0 1 9 11 x x  

Atriplex patula 2 1 1 2 2 8 10 x   

Juncus bufonius 1 1 1 1 0 5 10 x   

Plantago lanceolata 0 1 1 0 2 5 10 x   

Ranunculus repens 1 1 1 0 4 5 10 x   

Rubus fruticosus agg. 4 1 1 0 3 3 10    

Aegopodium podagraria 3 0 0 0 1 7 9    

Persicaria hydropiper 3 0 0 0 2 6 9 x   

Setaria viridis 4 1 1 3 3 7 9 x   

Veronica persica 3 0 0 0 5 5 9 x   

Vicia angustifolia 3 0 0 0 0 2 9 x x  

Carduus crispus 1 1 2 0 1 3 8    

Daucus carota 2 3 3 0 0 4 8    

Erodium cicutarium  4 0 0 0 1 6 8 x x  

Lamium album 2 1 1 0 3 4 8 x x  

Phleum pratense 1 1 2 0 0 5 8    

Poa pratensis 2 1 1 0 2 4 8    

Veronica hederifolia 2 4 3 0 4 8 8 x   

Epilobium tetragonum 0 1 1 0 1 5 7 x   

Geranium dissectum 4 3 4 0 3 5 7 x x  

Geranium molle 2 2 2 0 1 5 7 x x  

Papaver rhoeas 0 1 1 0 0 6 7 x x  

Raphanus sativus 2 0 0 0 0 3 7    

Stellaria graminea 1 2 2 1 1 3 7 x   

Alliaria petiolata 0 1 1 0 0 4 6    

Alopecurus geniculatus 0 0 0 0 0 5 6    

Aphanes arvensis 2 0 0 0 1 1 6 x x  

Arabidopsis thaliana 1 0 0 0 0 2 6 x   

Digitaria ischaemum 4 2 2 0 3 4 6 x   

Equisetum palustre 2 2 2 0 2 4 6    

Hypericum perforatum 2 0 0 0 2 5 6    

Lactuca serriola 2 0 0 0 0 4 6 x   

Phalaris arundinacea 1 0 0 0 0 4 6    

Phragmites australis 0 0 0 0 0 3 6 x   

Rumex acetosa 1 1 1 0 0 3 6    

Senecio vulgaris 0 0 0 0 0 4 6 x   

Sinapis arvensis 1 0 0 0 0 4 6 x   

Anchusa arvensis  0 0 0 0 0 4 5 x   

Bromus secalinus 1 1 1 0 1 3 5 x   

Cerastium glomeratum 1 2 2 0 1 2 5 x   

Chaerophyllum temulum 2 0 0 0 0 4 5    



CHAPTER 4   

129 

Species 

C
o

rn
e
r 

E
d

g
e
_

3
0
 

E
d

g
e
_

5
0
 

In
te

ri
o

r 

S
u

b
p

lo
t 

E
d

g
e
_

5
0
0
 

T
o

ta
l 

A
ra

b
le

 p
la

n
ts

 (
x
) 

H
N

V
 (

x
) 

R
e
d

-l
is

te
d

  

L
o

w
e
r 

S
a
x

o
n

y
 (

x
) 

Convolvulus arvensis 1 1 2 0 3 3 5 x   

Galinsoga parviflora 2 0 0 0 0 5 5 x   

Matricaria discoidea 0 0 0 0 0 4 5 x   

Rumex acetosella 1 0 0 0 0 4 5 x x  

Silene latifolia 0 0 2 0 0 2 5 x   

Vicia villosa  1 1 1 0 0 4 5 x x  

Aethusa cynapium 0 0 0 0 0 1 4 x   

Carex hirta 2 1 1 0 0 3 4 x   

Fumaria officinalis 0 3 3 0 3 3 4 x x  

Geum urbanum 3 0 0 0 0 1 4    

Linaria vulgaris 0 1 1 0 0 3 4 x   

Rorippa palustris 0 0 0 0 0 3 4 x   

Spergula arvensis 1 0 0 0 1 2 4 x x  

Stachys palustris 1 1 1 0 1 2 4 x   

Vicia cracca 1 1 1 0 0 2 4 x x  

Vulpia myuros 3 2 2 1 1 2 4    

Arctium lappa 0 0 0 0 0 2 3    

Chaerophyllum bulbosum 0 0 0 0 0 2 3    

Chelidonium majus 0 0 0 0 0 2 3    

Chenopodium hybridum 1 2 2 0 1 1 3 x  x 

Galium mollugo agg. 1 2 2 0 1 3 3    

Lysimachia vulgaris 0 0 0 0 0 0 3    

Odontites vernus 2 1 1 0 1 2 3 x  x 

Potentilla reptans 1 1 1 0 0 3 3 x   

Rubus idaeus agg.  1 0 0 0 0 2 3    

Stellaria holostea 0 0 0 0 1 1 3    

Thlaspi arvense 0 0 1 0 1 2 3 x x  

Trisetum flavescens 1 2 2 0 1 1 3    

Amaranthus retroflexus 1 0 0 0 0 1 2 x   

Arenaria serpyllifolia 0 1 1 0 0 2 2 x   

Calystegia sepium 0 1 1 1 0 2 2    

Elymus caninus 1 0 0 0 1 0 2    

Euphorbia peplus 1 0 0 0 0 2 2 x x  

Festuca pratensis 1 0 0 0 0 2 2    

Galinsoga quadriradiata 0 0 0 0 0 2 2 x   

Humulus lupulus 1 0 0 0 2 0 2    

Lotus corniculatus 0 0 0 0 0 0 2    

Papaver argemone 1 0 0 0 0 1 2 x x  

Poa compressa 0 0 0 0 0 1 2    

Potentilla anserina 1 1 1 0 1 2 2 x   

Pteridium aquilinum 0 0 0 0 0 2 2    

Scleranthus annuus 1 0 0 0 0 2 2 x   

Silene dioica 1 1 1 0 1 2 2    

Solidago canadensis 0 0 0 0 0 1 2    

Symphytum officinale 1 0 0 0 1 1 2 x   

Agrostemma githago 0 0 0 0 0 0 1 x  x 

Allium vineale 0 0 0 0 0 1 1 x   

Anthemis arvensis 1 0 0 0 0 0 1 x x x 

Anthoxanthum aristatum 0 0 0 0 0 1 1 x   

Anthriscus caucalis 1 0 0 0 0 0 1 x   

Bromus inermis 1 0 0 0 0 0 1    

Callitriche palustris agg. 0 0 0 0 0 0 1    

Cardamine hirsuta 0 0 0 0 0 1 1 x   

Carduus nutans 0 0 0 0 0 1 1    

Centaurea jacea 1 0 0 0 0 1 1    

Glebionis segetum 0 0 0 0 0 1 1 x x  
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Digitaria sanguinalis 1 1 1 0 1 1 1 x   

Epilobium angustifolium 0 0 0 0 0 1 1    

Epilobium hirsutum 0 0 0 0 0 1 1    

Epilobium montanum 0 0 0 0 0 0 1    

Epilobium parviflorum 0 0 0 0 0 1 1    

Equisetum sylvaticum 0 0 0 0 0 1 1    

Erigeron annuus 0 0 0 0 0 1 1    

Erysimum cheiranthoides 1 0 0 0 0 1 1 x   

Euphorbia esula 0 0 0 0 0 1 1  x  

Euphorbia helioscopia 1 0 0 0 0 1 1 x x  

Festuca arundinacea 0 0 0 0 0 1 1    

Filago arvensis 0 0 0 0 0 0 1 x   

Geranium robertianum 0 0 0 0 0 1 1  x  

Geranium rotundifolium 1 0 0 0 1 0 1 x x  

Hypericum maculatum 0 0 0 0 0 0 1    

Hypochaeris radicata 0 0 0 0 0 1 1    

Impatiens glandulifera 1 0 0 0 0 1 1    

Juncus effusus 0 0 0 0 0 0 1    

Lamium amplexicaule 1 0 0 0 0 1 1 x x  

Scorzoneroides autumnalis 0 0 0 0 0 1 1    

Buglossoides arvensis 0 0 0 0 0 1 1 x x x 

Lupinus polyphyllus 0 0 0 0 0 0 1    

Lythrum salicaria 0 0 0 0 0 1 1  x  

Medicago lupulina 0 0 0 0 0 0 1 x   

Mentha arvensis 0 0 0 0 0 0 1 x   

Ornithopus perpusillus 0 0 0 0 0 1 1 x x  

Oxalis stricta 0 0 0 0 0 1 1    

Persicaria mitis 1 0 0 0 1 0 1    

Ranunculus acris 0 0 0 0 0 1 1    

Rumex hydrolapathum 1 0 0 0 0 0 1    

Senecio vernalis 0 1 0 0 0 1 1 x   

Sonchus arvensis 0 0 0 0 0 0 1 x   

Trifolium hybridum 0 0 0 0 0 0 1    

Trifolium pratense 0 0 0 0 0 0 1    

Typha latifolia 0 1 1 0 0 0 1    

Urtica urens 0 0 0 0 1 0 1 x   
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Online Resource 8 Frequency (absolute number) of herbaceous species per crop (crops and woody seedlings excluded; all crops 
pooled); Total = species occurrences summed up for all survey methods and total perimeter count; table is sorted by decreasing 
total species occurrences; arable plants (sensu stricto, Hofmeister and Garve, 2006), indicator species for High Nature Value 
arable land (HNV species; German Federal Agency for Nature Conservation, 2018) and red-listed species for Lower Saxony (lost, 
endangered and early warning stage; Garve, 2004) are marked with ‘x’ in specific columns; n = 45 (observed fields); full references 
see main manuscript. 

Species Maize Rapeseed Wheat Total 
Arable plants  

(x) 
HNV  

(x) 

Red-listed  
Lower Saxony  

(x) 

Elymus repens 15 15 15 45 x   

Chenopodium album 15 14 15 44 x   

Polygonum aviculare 14 15 15 44 x   

Matricaria chamomilla 12 15 15 42 x x  

Fallopia convolvulus 14 14 14 42 x   

Galium aparine 14 13 15 42 x   

Bromus sterilis 12 14 15 41 x   

Viola arvensis 12 15 14 41 x   

Cirsium arvense 11 14 15 40 x   

Dactylis glomerata 13 14 13 40    

Geranium pusillum 15 15 9 39 x x  

Stellaria media 12 15 11 38 x   

Capsella bursa-pastoris 11 14 12 37 x   

Myosotis arvensis 6 15 14 35 x x  

Poa trivialis 10 10 15 35 x   

Urtica dioica 11 11 13 35    

Lolium perenne  11 12 10 33 x   

Vicia hirsuta 8 14 10 32 x x  

Holcus mollis 10 11 11 32 x   

Galeopsis tetrahit  10 10 10 30 x   

Sisymbrium officinale 6 14 10 30 x   

Bromus hordeaceus 7 9 12 28 x   

Poa annua 10 7 11 28 x   

Rumex obtusifolius 7 11 10 28 x   

Agrostis stolonifera 8 9 10 27 x   

Vicia sativa 4 13 9 26  x  

Apera spica venti 2 13 11 26 x   

Echinochloa crus-galli 15 5 6 26 x   

Holcus lanatus 6 10 10 26    

Persicaria maculosa 12 8 6 26 x   

Tripleurospermum perforatum 7 9 8 24 x   

Anthriscus sylvestris 3 9 11 23    

Bromus commutatus subsp. decipiens 3 8 11 22 x   

Equisetum arvense 6 10 6 22 x   

Festuca rubra 6 7 9 22    

Lapsana communis 4 8 9 21 x x  

Arrhenatherum elatius  5 8 7 20    

Avena fatua  6 6 7 19 x   

Sonchus asper 6 8 5 19 x   

Alopecurus pratensis 4 8 6 18    

Lolium multiflorum 5 8 5 18 x   

Rumex crispus  0 10 8 18 x   

Papaver dubium agg. 4 10 3 17 x x  

Erigeron canadensis 5 5 6 16 x   

Glechoma hederacea 5 6 5 16 x   

Tanacetum vulgare 4 6 6 16    

Centaurea cyanus 2 8 5 15 x x  

Achillea millefolium 7 4 4 15 x   

Solanum nigrum 11 2 2 15 x   

Taraxacum sect. Ruderalia 6 2 7 15 x   

Artemisia vulgaris 7 4 3 14 x   

Chenopodium polyspermum 7 5 2 14 x   

Cirsium vulgare 0 7 7 14    

Veronica arvensis 2 6 6 14 x   

Lamium purpureum 6 3 4 13 x x  

Alopecurus myosuroides 3 4 6 13 x   

Gnaphalium uliginosum  2 6 5 13 x   

Sonchus oleraceus 5 3 5 13 x   

Trifolium repens 5 5 3 13    

Agrostis capillaris 3 4 5 12 x   

Heracleum sphondylium 2 4 6 12    

Persicaria amphibia 2 5 5 12 x   

Plantago major 4 4 4 12 x   

Vicia tetrasperma 2 5 4 11 x x  

Cerastium holosteoides 2 4 5 11 x   

Atriplex patula 6 2 2 10 x   

Juncus bufonius 1 2 7 10 x   

Plantago lanceolata 3 3 4 10 x   
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Species Maize Rapeseed Wheat Total 
Arable plants  

(x) 
HNV  

(x) 

Red-listed  
Lower Saxony  

(x) 

Ranunculus repens 1 6 3 10 x   

Rubus fruticosus agg. 3 3 4 10    

Vicia angustifolia 1 6 2 9 x x  

Aegopodium podagraria 4 2 3 9    

Persicaria hydropiper 2 3 4 9 x   

Setaria viridis 9 0 0 9 x   

Veronica persica 3 3 3 9 x   

Erodium cicutarium  4 2 2 8 x x  

Lamium album 1 5 2 8 x x  

Carduus crispus 1 4 3 8    

Daucus carota 3 4 1 8    

Phleum pratense 1 2 5 8    

Poa pratensis 3 3 2 8    

Veronica hederifolia 1 3 4 8 x   

Geranium dissectum 1 4 2 7 x x  

Geranium molle 4 3 0 7 x x  

Papaver rhoeas 2 2 3 7 x x  

Epilobium tetragonum 0 5 2 7 x   

Raphanus sativus 0 6 1 7    

Stellaria graminea 1 3 3 7 x   

Aphanes arvensis 0 3 3 6 x x  

Alliaria petiolata 0 4 2 6    

Alopecurus geniculatus 2 1 3 6    

Arabidopsis thaliana 1 4 1 6 x   

Digitaria ischaemum 6 0 0 6 x   

Equisetum palustre 2 3 1 6    

Hypericum perforatum 3 1 2 6    

Lactuca serriola 0 4 2 6 x   

Phalaris arundinacea 0 4 2 6    

Phragmites australis 3 0 3 6 x   

Rumex acetosa 1 3 2 6    

Senecio vulgaris 2 3 1 6 x   

Sinapis arvensis 1 4 1 6 x   

Rumex acetosella 3 1 1 5 x x  

Vicia villosa  2 1 2 5 x x  

Anchusa arvensis  2 2 1 5 x   

Bromus secalinus 2 0 3 5 x   

Cerastium glomeratum 1 2 2 5 x   

Chaerophyllum temulum 0 3 2 5    

Convolvulus arvensis 1 1 3 5 x   

Galinsoga parviflora 5 0 0 5 x   

Matricaria discoidea 1 4 0 5 x   

Silene latifolia 3 1 1 5 x   

Fumaria officinalis 2 1 1 4 x x  

Spergula arvensis 3 0 1 4 x x  

Vicia cracca 1 3 0 4 x x  

Aethusa cynapium 0 2 2 4 x   

Carex hirta 2 0 2 4 x   

Geum urbanum 2 2 0 4    

Linaria vulgaris 1 2 1 4 x   

Rorippa palustris 1 3 0 4 x   

Stachys palustris 2 2 0 4 x   

Vulpia myuros 0 1 3 4    

Thlaspi arvense 0 2 1 3 x x  

Chenopodium hybridum 3 0 0 3 x  x 
Odontites vernus 0 3 0 3 x  x 
Arctium lappa 1 0 2 3    

Chaerophyllum bulbosum 0 2 1 3    

Chelidonium majus 0 1 2 3    

Galium mollugo agg. 0 3 0 3    

Lysimachia vulgaris 3 0 0 3    

Potentilla reptans 0 3 0 3 x   

Rubus idaeus agg. 2 0 1 3    

Stellaria holostea 0 2 1 3    

Trisetum flavescens 0 0 3 3    

Euphorbia peplus 0 1 1 2 x x  

Papaver argemone 0 0 2 2 x x  

Amaranthus retroflexus 1 0 1 2 x   

Arenaria serpyllifolia 1 1 0 2 x   

Calystegia sepium 2 0 0 2    

Elymus caninus 1 0 1 2    

Festuca pratensis 1 1 0 2    

Galinsoga quadriradiata 2 0 0 2 x   

Humulus lupulus 0 1 1 2    

Lotus corniculatus 0 1 1 2    

Poa compressa 0 1 1 2    
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Species Maize Rapeseed Wheat Total 
Arable plants  

(x) 
HNV  

(x) 

Red-listed  
Lower Saxony  

(x) 

Potentilla anserina 1 0 1 2 x   

Pteridium aquilinum 0 1 1 2    

Scleranthus annuus 1 1 0 2 x   

Silene dioica 1 1 0 2    

Solidago canadensis 1 1 0 2    

Symphytum officinale 0 1 1 2 x   

Anthemis arvensis 0 1 0 1 x x x 
Buglossoides arvensis 0 1 0 1 x x x 
Glebionis segetum 1 0 0 1 x x  

Euphorbia esula 1 0 0 1  x  

Euphorbia helioscopia 1 0 0 1 x x  

Geranium robertianum 0 1 0 1  x  

Geranium rotundifolium 0 1 0 1 x x  

Lamium amplexicaule 1 0 0 1 x x  

Lythrum salicaria 1 0 0 1  x  

Ornithopus perpusillus 1 0 0 1 x x  

Agrostemma githago 0 1 0 1 x  x 
Allium vineale 1 0 0 1 x   

Anthoxanthum aristatum 0 0 1 1 x   

Anthriscus caucalis 0 1 0 1 x   

Bromus inermis 0 0 1 1    

Callitriche palustris agg. 0 1 0 1    

Cardamine hirsuta 0 1 0 1 x   

Carduus nutans 0 1 0 1    

Centaurea jacea 0 1 0 1    

Digitaria sanguinalis 1 0 0 1 x   

Epilobium angustifolium 0 1 0 1    

Epilobium hirsutum 0 0 1 1    

Epilobium montanum 0 1 0 1    

Epilobium parviflorum 0 1 0 1    

Equisetum sylvaticum 0 0 1 1    

Erigeron annuus 0 1 0 1    

Erysimum cheiranthoides 0 1 0 1 x   

Festuca arundinacea 0 0 1 1    

Filago arvensis 1 0 0 1 x   

Hypericum maculatum 0 0 1 1    

Hypochaeris radicata 0 1 0 1    

Impatiens glandulifera 0 0 1 1    

Juncus effusus 1 0 0 1    

Scorzoneroides autumnalis 0 1 0 1    

Lupinus polyphyllus 0 1 0 1    

Medicago lupulina 1 0 0 1 x   

Mentha arvensis 1 0 0 1 x   

Oxalis stricta 0 1 0 1    

Persicaria mitis 0 0 1 1    

Ranunculus acris 0 0 1 1    

Rumex hydrolapathum 0 0 1 1    

Senecio vernalis 0 1 0 1 x   

Sonchus arvensis 0 1 0 1 x   

Trifolium hybridum 0 1 0 1    

Trifolium pratense 0 0 1 1    

Typha latifolia 0 0 1 1    

Urtica urens 1 0 0 1 x   
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Online resource 9a Overview of used models and statistical results. 

Anova results (significance codes: ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1; n.s. = not significant). 

Measured value Model n 
R² 

(fixed 
effects) 

R²  
(fixed & 
random 
effects) 

Explanatory  
variables 

Z-value  
(chi-square) 

Degrees of 
freedom 

P-value  
(Pr(chi-square)) 

Significance F-value 

Total herbaceous species number 
glmer.nb(Spec_No ~ Plot + (1|Crop)+(1|Farmer), data = 
kopfspec_without_total) 

45 
(per survey method) 

0.80 0.85 Survey method 905.3 5 < 2.2e-16 *** 180.9 

Arable plant number sensu stricto 
glmer.nb(weed_no ~ Plot + (1 | Crop)+ (1|Farmer), data = 
kopfspec_without_total) 

45 
(per survey method) 

0.76 0.81 Survey method 798.05 5 < 2.2e-16 *** 159.5 

High-nature-value species number 
glmer(Spec_No ~ Plot+ (1|Crop)+(1|Farmer), family=poisson, 
data = kopfHNV) 

45 
(per survey method) 

0.47 0.61 Survey method 222.72 5 < 2.2e-16 *** 44.114 

Detection rate of total species 
number 

glmer(cbind(Spec_No, Total_spec_no) ~ Plot+ 
(1|Crop)+(1|Farmer), family=binomial, data = Prop_table) 

45 
(per survey method) 

0.08 0.08 Survey method 904.26 5 < 2.2e-16 *** 180.89 

Detection rate of total arable plant 
species number sensu stricto 

glmer(cbind(arten_ackerwp, total_arable_weeds_per_field) ~ 
Plot+ (1|Crop)+(1|Farmer), family=binomial,  
      data = Prop_table_weeds) 

45 
(per survey method) 

0.07 0.07 Survey method 718.51 5 < 2.2e-16 *** 143.78 

Detection rate of total high-nature-
value species number 

glmer(cbind(HNV_No, total_HNV_per_field) ~ Plot+ 
(1|Crop)+(1|Farmer), family=binomial, data = Prop_HNV) 

45 
(per survey method) 

0.12 0.12 Survey method 163.47 5 < 2.2e-16 *** 32.73 

                        
Test for spatial autocorrelation: Moran's I (according to Paradis and Schliep 2018; full references see main text; significant p-values (<0.05) indicate spatial autocorrelation)    

Measured value Observed Expected SD p-value        

Total herbaceous species number -0.03 -0.02 0.03 0.81        

 

 



CHAPTER 4   

135 

Online resource 9b Statistical results. 

Multiple Comparisons of Means: Tukey contrasts (based on model results: Online resource 9a) 
Significance codes: ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1; n = 45 (per survey method)    

Measured value Compared survey method Estimate Std. Error z value Pr(>|z|)  Significance 

Total herbaceous 
species number   

Edge_30 - Corner  -0.65662 0.06477 -10.139 <0.001 *** 

Edge_50 - Corner  -0.57842 0.06352 -9.106 <0.001 *** 

Interior - Corner  -1.72798 0.09099 -18.99 <0.001 *** 

Subplot - Corner  -0.35595 0.06036 -5.897 <0.001 *** 

Edge_500 - Corner  0.46908 0.05249 8.937 <0.001 *** 

Edge_50 - Edge_30  0.0782 0.07111 1.1 0.8766   

Interior - Edge_30  -1.07136 0.09644 -11.109 <0.001 *** 

Subplot - Edge_30  0.30067 0.06831 4.402 <0.001 *** 

Edge_500 - Edge_30  1.1257 0.06147 18.313 <0.001 *** 

Interior - Edge_50  -1.14957 0.09562 -12.023 <0.001 *** 

Subplot - Edge_50  0.22246 0.06713 3.314 0.0112 * 

Edge_500 - Edge_50  1.04749 0.06016 17.412 <0.001 *** 

Subplot - Interior  1.37203 0.09355 14.667 <0.001 *** 

Edge_500 - Interior  2.19706 0.08868 24.775 <0.001 *** 

Edge_500 - Subplot  0.82503 0.05681 14.524 <0.001 *** 

Arable plant species 
number sensu stricto  

Edge_30 - Corner  -0.66357 0.06879 -9.646 < 0.001 *** 

Edge_50 - Corner  -0.58665 0.06736 -8.71 < 0.001 *** 

Interior - Corner  -1.54037 0.09192 -16.757 < 0.001 *** 

Subplot - Corner  -0.33426 0.06315 -5.293 < 0.001 *** 

Edge_500 - Corner  0.48359 0.05406 8.946 < 0.001 *** 

Edge_50 - Edge_30  0.07691 0.07631 1.008 0.91166   

Interior - Edge_30  -0.87681 0.09867 -8.886 < 0.001 *** 

Subplot - Edge_30  0.3293 0.07263 4.534 < 0.001 *** 

Edge_500 - Edge_30  1.14716 0.06488 17.682 < 0.001 *** 

Interior - Edge_50  -0.95372 0.09768 -9.764 < 0.001 *** 

Subplot - Edge_50  0.25239 0.07127 3.541 0.00507 ** 

Edge_500 - Edge_50  1.07025 0.06335 16.893 < 0.001 *** 

Subplot - Interior  1.20611 0.09483 12.719 < 0.001 *** 

Edge_500 - Interior  2.02397 0.08904 22.732 < 0.001 *** 

Edge_500 - Subplot  0.81786 0.05886 13.894 < 0.001 *** 

High-nature-value 
species number  

Edge_30 - Corner  -0.66905 0.13362 -5.007 <0.001 *** 

Edge_50 - Corner  -0.54598 0.1284 -4.252 <0.001 *** 

Interior - Corner  -1.69867 0.19775 -8.59 <0.001 *** 

Subplot - Corner  -0.40851 0.12307 -3.319 0.0107 * 

Edge_500 - Corner  0.47229 0.09909 4.766 <0.001 *** 

Edge_50 - Edge_30  0.12307 0.14915 0.825 0.9603   

Interior - Edge_30  -1.02962 0.21182 -4.861 <0.001 *** 

Subplot - Edge_30  0.26054 0.14459 1.802 0.4479   

Edge_500 - Edge_30  1.14134 0.12481 9.145 <0.001 *** 

Interior - Edge_50  -1.15269 0.20856 -5.527 <0.001 *** 

Subplot - Edge_50  0.13747 0.13978 0.984 0.9182   

Edge_500 - Edge_50  1.01828 0.11921 8.542 <0.001 *** 

Subplot - Interior  1.29016 0.20532 6.284 <0.001 *** 

Edge_500 - Interior  2.17096 0.19191 11.312 <0.001 *** 

Edge_500 - Subplot  0.8808 0.11344 7.764 <0.001 *** 

Detection rate of 
herbaceous total species 
number 

Edge_30 - Corner  -0.65457 0.06483 -10.096 <0.001 *** 

Edge_50 - Corner  -0.57682 0.06359 -9.071 <0.001 *** 

Interior - Corner  -1.72725 0.09102 -18.976 <0.001 *** 

Subplot - Corner  -0.35572 0.06044 -5.886 <0.001 *** 

Edge_500 - Corner  0.47165 0.05259 8.968 <0.001 *** 

Edge_50 - Edge_30  0.07775 0.07117 1.092 0.8796   

Interior - Edge_30  -1.07269 0.09647 -11.12 <0.001 *** 

Subplot - Edge_30  0.29884 0.06837 4.371 <0.001 *** 

Edge_500 - Edge_30  1.12622 0.06155 18.298 <0.001 *** 

Interior - Edge_50  -1.15044 0.09564 -12.029 <0.001 *** 

Subplot - Edge_50  0.2211 0.06719 3.291 0.0122 * 

Edge_500 - Edge_50  1.04847 0.06024 17.405 <0.001 *** 

Subplot - Interior  1.37153 0.09357 14.658 <0.001 *** 

Edge_500 - Interior  2.19891 0.08872 24.785 <0.001 *** 

Edge_500 - Subplot  0.82738 0.0569 14.541 <0.001 *** 

Detection rate of total 
arable plant species 
number sensu stricto 

Edge_30 - Corner  -0.66493 0.07254 -9.166 < 1e-04 *** 

Edge_50 - Corner  -0.58787 0.07118 -8.259 < 1e-04 *** 

Interior - Corner  -1.54001 0.09472 -16.259 < 1e-04 *** 

Subplot - Corner  -0.33511 0.06719 -4.987 < 1e-04 *** 

Edge_500 - Corner  0.48517 0.05872 8.263 < 1e-04 *** 

Edge_50 - Edge_30  0.07706 0.07973 0.967 0.925701   

Interior - Edge_30  -0.87508 0.1013 -8.638 < 1e-04 *** 

Subplot - Edge_30  0.32982 0.0762 4.328 0.000195 *** 

Edge_500 - Edge_30  1.15009 0.06885 16.704 < 1e-04 *** 



CHAPTER 4   

136 

Interior - Edge_50  -0.95214 0.10033 -9.49 < 1e-04 *** 

Subplot - Edge_50  0.25275 0.0749 3.375 0.009159 ** 

Edge_500 - Edge_50  1.07303 0.06741 15.919 < 1e-04 *** 

Subplot - Interior  1.2049 0.09754 12.352 < 1e-04 *** 

Edge_500 - Interior  2.02518 0.09193 22.03 < 1e-04 *** 

Edge_500 - Subplot  0.82028 0.06319 12.982 < 1e-04 *** 

Detection rate of total 
high-nature-value 
species number 

Edge_30 - Interior  1.0295 0.2252 4.571 < 0.001 *** 

Edge_50 - Interior  1.1526 0.2222 5.188 < 0.001 *** 

Subplot - Interior  1.2905 0.2191 5.89 < 0.001 *** 

Corner - Interior  1.6991 0.212 8.016 < 0.001 *** 

Edge_500 - Interior  2.1725 0.2065 10.52 < 0.001 *** 

Edge_50 - Edge_30  0.1232 0.1671 0.737 0.97622   

Subplot - Edge_30  0.2611 0.163 1.601 0.58699   

Corner - Edge_30  0.6696 0.1533 4.368 < 0.001 *** 

Edge_500 - Edge_30  1.143 0.1457 7.846 < 0.001 *** 

Subplot - Edge_50  0.1379 0.1587 0.869 0.95173   

Corner - Edge_50  0.5465 0.1487 3.674 0.00297 ** 

Edge_500 - Edge_50  1.0199 0.1409 7.24 < 0.001 *** 

Corner - Subplot  0.4086 0.1441 2.835 0.04963 * 

Edge_500 - Subplot  0.882 0.1359 6.488 < 0.001 *** 

Edge_500 - Corner  0.4734 0.1241 3.814 0.0018 ** 
       

Pairwise comparisons using Wilcoxon rank sum test; pairwise p-value are given (p value adjustment method: holm ); n = 15 per crop and survey method (except 
required time: one missing value regarding maize interior plot, maize subplot, maize Edge_50 plot and wheat corner plot) 

Total herbaceous 
species number  
wheat 

Survey method Interior Edge_30 Edge_50 Subplot Corner 

Edge_30 0.00011 - - - - 

Edge_50 7.00E-05 0.69555 - - - 

Subplot 0.00011 0.5251 0.69555 - - 

Corner 4.90E-05 0.00915 0.02137 0.16298 - 

Edge_500 4.90E-05 4.90E-05 5.80E-05 9.70E-05 0.00165 

Total herbaceous 
species number  
maize 

Edge_30 0.00452 - - - - 

Edge_50 0.00116 0.31439 - - - 

Subplot 0.0001 0.00205 0.00607 - - 

Corner 4.80E-05 0.00012 0.00016 0.00614 - 

Edge_500 4.80E-05 4.80E-05 4.80E-05 0.00012 0.01227 

Total herbaceous 
species number  
rapeseed 

Edge_30 7.30E-05 - - - - 

Edge_50 5.10E-05 0.61722 - - - 

Subplot 4.70E-05 0.18208 0.33909 - - 

Corner 4.70E-05 9.00E-05 0.00011 0.0032 - 

Edge_500 4.70E-05 4.70E-05 4.70E-05 4.70E-05 0.00011 
       

Time expenditure 
wheat 

Survey method Interior Edge_50 Subplot Corner  

Edge_50 0.0036 - - -  

Subplot 4.70E-05 0.0018 - -  

Corner 3.00E-05 0.0011 0.4491 -  

Edge_500 2.60E-05 2.70E-05 2.80E-05 2.90E-05  

Time expenditure 
maize 

Edge_50 0.00044 - - -  

Subplot 4.30E-05 0.00022 - -  

Corner 4.30E-05 0.00188 0.35175 -  

Edge_500 3.40E-05 3.90E-05 5.10E-05 8.90E-05  

Time expenditure 
rapeseed 

Edge_50 0.00059 - - -  

Subplot 0.10808 0.00107 - -  

Corner 0.05375 0.00291 0.19469 -  

Edge_500 0.00148 2.80E-05 3.40E-05 4.00E-05  
       

Pairwise comparisons using Wilcoxon rank sum test; pairwise p-value are given (p value adjustment method: holm); n = 45 (per survey method), except Interior n = 
40 (5 plots with non-observed species were excluded).  

Beta diversity (based on 
total arable weed 
number sensu stricto) 

Survey method Interior Edge_30 Edge_50 Subplot Corner 

Edge_30 1 - - - - 

Edge_50 1 1 - - - 

Subplot 0.15723 0.07744 0.17369 - - 

Corner 0.00076 2.00E-05 0.00017 0.06623 - 

Edge_500 1.80E-06 1.20E-09 1.40E-08 0.00018 0.17649 

 

Online Resource 10 Raw data. 

Can be downloaded from http://ediss.uni-goettingen.de/ (Niedersächsische Staats- und Universitätsbibliothek Göttingen).

http://ediss.uni-goettingen.de/
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Chapter 5 
 

Synopsis 
Chapter 5  Synopsis  

 

This thesis has advanced the scientific understanding of the arable flora of conventionally 

managed fields with respect to three major research questions that have insufficiently been 

investigated so far. First, it was shown how decades of intensive conventional management have 

affected the segetal vegetation of fields of seven important crop species in Northwest Germany 

and which factors significantly influence today's arable plant richness (Chapter 2). To stop the 

ongoing loss of arable plant diversity, four agri-environment measures have been implemented in 

a participative approach and have been evaluated over time, aiming to demonstrate their 

effectiveness in promoting the arable plant vegetation (Chapter 3). Finally, this thesis compared 

six arable plant survey methods in terms of their effectiveness (detection success and time effort) 

in conventionally managed farmland in order to recommend a future monitoring standard 

(Chapter 4).  

In the following, four key findings related to the above-mentioned research priorities are 

presented and discussed, and conclusions are given about their significance for future nature 

conservation efforts, research and agricultural policy.  
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5.1 Key findings and conclusions 

i) Decades of intensive conventional management have led to a strongly impoverished farmland phytodiversity 

in the study region with the field interior today being of almost no relevance as habitat for arable plants. 

The observed non-crop plant species richness reached a historical minimum and notable occurrences of most 

arable plants were only found in the field edge. The cultivated crop species and adjacent habitats are the 

most important drivers of the field (edge) plant richness. As the finding of the strongly impoverished arable 

flora is likely to be transferrable to much of Western and Central European farmland, there is an urgent 

need for large-scale implementation of nature conservation measures, supported by European Common 

Agricultural Policy, to halt the ongoing loss of the arable plant diversity and associated ecosystem services. 

Chapters 2 to 4 demonstrated the strongly impoverished arable plant vegetation of the 

conventionally managed arable fields in the study region, with nearly no threatened, red-listed 

arable plant species present anymore. This reflects the impact of the long-term intensified 

agricultural management since the middle of the 20th century and underlines findings of other 

studies conducted in Western and Central Europe (e.g. Albrecht et al., 2016; Meyer et al., 2013; 

Richner et al., 2015; Storkey et al., 2012). The baseline survey of 200 conventionally managed 

arable fields in the study region in 2016 (Chapter 2) showed a very low plot-level median of the 

non-crop plant species richness across the observed seven crop species (11 and 2 species at the 

field edge and in the field interior, respectively). The corresponding plot-level species richness of 

typical arable plants (as listed by Hofmeister and Garve, 2006) was 8 species at the field edge and 

remained at 2 species in the field interior. Thus, the observed arable plant species richness has 

been among the lowest recorded so far for Central and Western Europe (Fried et al., 2009; 

Kolářová et al., 2013; Kovács-Hostyánszki et al., 2011a; Meyer et al., 2013). This may indicate an 

ongoing loss in the last years since the earlier studies have been conducted. Nowadays, the 

common arable plant taxa are agro-tolerant species, which are able to cope with intensive 

conventional management. Apart from some herbicide-resistant plant taxa (e.g. Alopecurus 

myosuroides; Maréchal et al., 2012), which can reach higher abundances and compete with the 

crops grown in some locations, the very low median cover value of the non-crop vegetation 

especially found in the field interior (median 0.5 % across all crops) but also at the field edge (4 

%) reflect the highly efficient weed control by the farmers. Today, notable occurrences of most 

arable plant species can only be found in the field edge, which can be explained by somewhat less 

intensive management and possible spillover from neighboring habitats (Chapters 2 and 4). In 

addition, there was a notable share of typical arable plant species whose occurrence was restricted 

to only few of the observed arable fields, which was also reflected by a relatively high beta 

diversity between the study fields (Chapters 2 to 4). This clearly demonstrates that many 

formerly typical arable plant species can hardly find a habitat in most modern conventionally 

intensively managed fields. Beside the location in the field, which influenced the observed non-

crop plant species richness in the study region most strongly, also the cultivated crop species 

affected the observed species number (Chapter 2). Here, especially rapeseed, but also potato, 

positively influenced total arable plant species richness. This can likely be explained by the fact 

that rapeseed and potato are dicots and therefore it is more difficult to control dicot arable plants 

during their cultivation period, e.g. no application of highly effective broad-spectrum herbicides 

against dicotyls commonly used in cereals. Maize negatively affected the surveyed total plant 

species richness, which is likely to be driven by a combination of the strong shading effect of this 

crop (Seifert et al., 2014) and intensive herbicide application. Taking into account the crop-
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specific effects on arable plant species richness, which are at least partly due to specific 

management regimes, the use of selective rather than highly effective broad-spectrum herbicides 

can be a tool to promote arable plant diversity in conventional farming systems (Storkey and 

Westbury, 2007). Broad-spectrum herbicides should be the last resort and attempts should first 

be made to control problematic ‘weed’ species occurrences either mechanically (e.g. harrowing or 

tillage) or, if this is not effective, by using selective herbicides. As in particular grass species can 

become a problem in certain arable fields (Moray, 2005; Moss, 2017; Rolston et al., 2003), the 

diversification of crop rotation with the integration of dicot crops, such as rapeseed, could be one 

way to address this problem because this allows the efficient control of graminoids with selective 

herbicides. The selective control of dominant plant species that reduce yields spares the still 

existing typical arable plant species with conservation value, which are weak competitors anyway. 

In addition, including mass flowering dicot crops in crop rotation, such as rapeseed, can also 

support pollinating insects by providing nectar and pollen sources (Westphal et al., 2003). 

However, even though cultivated crop species influenced total plant species richness, formerly 

found arable plant communities, typically associated with crop-specific cultivation (e.g. summer 

vs. winter crops), were no longer detectable. This demonstrates the through long-term intensive 

management nowadays strongly homogenized and impoverished arable plant vegetation also 

found by Meyer et al (2015) for Central and North Germany. Beside plot location and crop type, 

increasing soil yield potential, total N input, herbicide use and crop cover were found to 

negatively affect the total arable plant species richness (Chapter 2), but the influence of these 

factors was weaker. In contrast, the presence of adjacent habitats to arable fields (such as grass 

strips, ditch margins and hedges) was found to positively influence field edge plant diversity. 

These neighboring non-intensively managed habitats can be a plant refugium and spillover source 

also for plants typically associated with arable habitats. If grass strips adjacent to fields are 

revaluated through adequate management (i.e. mowing and, if appropriate, sowing of seed 

mixtures of local provenance including arable plants) they can contribute to increase field edge 

arable plant diversity and also benefit other farmland species, such as birds or insects (Haaland et 

al., 2011; Vickery et al., 2009). Taking this finding into account, increasing the ratio of adjacent 

habitat length to managed sites can be another possibility to promote farmland biodiversity 

(Batáry et al., 2017; von Arx et al., 2002), especially in highly productive and intensively used 

agricultural regions, where in-field measures are hardly to be implemented. However, such ‘out-

of-field’ measures cannot hold the overall decline of the arable plant diversity, which is mostly 

composed of competitively weak species dependent on less intensive arable habitat conditions.  

In general, the strong loss of arable plant richness and abundance and its impact on associated 

organism groups of the upper food chain is alarming since it threatens important ecosystem 

functions, such as pollination as well as erosion and pest control (Fagúndez, 2014; Hawes et al., 

2003; Hyvönen and Huusela-Veistola, 2008). The dramatic decline in insect biomass in the last 

decades in Europe and other parts of the world with agricultural intensification as one main 

driver (Sánchez-Bayo and Wyckhuys, 2019) can likely be related to the reduction of their food 

sources (i.e. pollen, nectar and seeds; Marshall et al., 2003; Still, 2007). In addition, both reduced 

insect biomass and seeds provided by arable plants can also be related to the overall decreasing 

populations of farmland birds (Donald et al., 2006, 2001; Marshall et al., 2003; Still, 2007; Voříšek 

et al., 2010).  
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National and European policies must take into account that the arable flora has almost 

completely vanished from a large part of conventionally intensive managed farmland, with the 

exception of a narrow field margin strip. The dramatic impoverishment of the arable plant 

vegetation and the related threat for important ecosystem functions highlights the urgent need 

for nature conservation action to be supported by agricultural policy. Sustainable forms of 

agricultural use are needed that ensure sufficient food production without depriving species living 

in agricultural landscapes of their habitat. One approach, which is already being implemented, is 

organic farming. Many studies demonstrated the positive effect of organic farming on different 

organism groups, such as insects, farmland birds and arable plants (Batáry et al., 2017; Rahmann, 

2011; Tuck et al., 2014). However, as about 95 % of the arable land in Central Europe is still 

managed conventionally (EUROSTAT 2018), it is necessary to implement ecologically effective 

measures on a large scale to counteract the dramatic loss of the arable flora and prevent the 

extinction of many formerly typical arable plants.  

 

ii) Well-managed conservation field margins (CFM), annual fallows (fallows), alternately managed biennial 

flower strips (AFS), and perennial flower strips (PFS) can be equally effective in promoting the arable 

plant vegetation in intensively farmed landscapes within a period of two to three years, but spillover effects 

into adjacent conventionally managed arable fields are not detectable. In a longer perspective, CFM and 

annual fallows are generally better suited to promote the establishment of more diverse arable plant 

communities. Despite the measures, the occurrence of many, formerly typical competitively weak arable 

plant species has been found to be restricted to very few arable fields. Thus, introducing native rare arable 

plant species through seed mixtures of local provenance should be considered to prevent their (local) 

extinction, thereby increasing overall farmland phytodiversity. 

Although it has been shown so far that fallows, CFM and flower strips can positively affect the 

arable flora (Fischer and Milberg, 1997; Kovács-Hostyánszki et al., 2011b; Rode et al., 2018; Van 

Buskirk and Willi, 2004), there has been little research on which specific measures have the 

greatest effect in direct comparison over time. This information, however, is crucial for nature 

conservation efforts. This thesis has presented four ecologically efficient measures to halt the 

continuing loss of arable plant diversity (Chapter 3). Overall, CFM, fallows, AFS and PFS 

showed a similar effectiveness within the 3 years of implementation in a total of 67 arable fields. 

Compared to conventionally managed field edges, the median total and typical plant species 

number across all measures was doubled (9 and 7 vs. 21 and 17 species per plot) with a huge 

increase in the median plant cover (9.5 and 8 % vs. 68.5 and 56.5 %). That graminoid species can 

become dominant over several years of implementation and thus threaten the success of agri-

environment measures is known from other studies (Critchley et al., 2006; Critchley and Fowbert, 

2000). This risk was prevented by an adequate management of the measures tested in this study 

(i.e. regular soil disturbance in CFM, fallows and AFS as well as mowing in PFS; Hansson and 

Fogelfors, 1998; Hilbig, 1996; Rode et al., 2018). As a result, forbs were much stronger supported 

by all tested measures than graminoids. Sustaining a high coverage of forbs is not only important 

with respect to arable plant conservation (since about 90 % of the typical arable plant species in 

Germany are forbs; Hofmeister and Garve, 2006), but can, in turn, also support the pollinating 

insect abundance by the provision of sufficient nectar and pollen sources (Hawes et al., 2003). 

Although all measures have shown similar effects on total herbaceous and typical arable plant 

species richness and cover, differences in their performance were detectable over time. The cover 
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of annual plants and indicator species of High Nature Value farmland was more strongly 

supported and preserved by CFM and fallows. In contrast, the annual plant cover tended to 

decline in AFS (with alternating management resulting in only biennial soil disturbance) and PFS 

(no soil disturbance), while perennial species richness and cover significantly increased over time 

in these two measures. This underlines findings of other studies that regular, yearly soil 

disturbance is important to sustainably promote the predominantly annual arable flora by 

preventing the vegetation succession with perennial plant taxa becoming dominant (Hansson and 

Fogelfors, 1998; Hilbig, 1996; Tscharntke et al., 2011; Vickery et al., 2009; Westbury et al., 2008). 

In addition, the cover of indicator species of High Nature Value farmland remained very low in 

AFS and PFS sites. Considering the above-mentioned, CFM and annual fallows should be given 

priority if arable plant conservation is the aim (especially if measures are to be implemented at the 

same location over a longer period of time). The success of those measures is based on the 

creation of historically typical non-intensive arable habitat conditions most arable plant species 

have been adapted to. In contrast, flower strips are known to be important for supporting other 

organism groups, such as insects and farmland birds (Gottschalk and Beeke, 2013; Haaland et al., 

2011). However, considering a low sowing density of 1 g m-2 (as used in this study in AFS and 

PFS) also allows the germination of arable plants still present in the soil seed bank, which can 

additionally support native insect communities (Marshall et al., 2003). Nevertheless, many typical 

arable plant species were found to be rare and threatened, with red-listed taxa are hardly to be 

found any more, not even in measure areas (Chapters 2 to 4). This finding can likely be traced 

back to impoverished soil seed banks due to decades of intensive management (Albrecht et al., 

2016; Denys and Tscharntke, 2002; Richner et al., 2015). Thus, including typical arable plants in 

seed mixtures can help to increase arable plant species richness at field level by refilling 

impoverished seed banks and preserve rare species from (local) extinction in conventionally 

intensively managed farmland. The effects of such adapted flower strips on the arable plant 

vegetation and the related soil seed bank should be further verified in future studies. However, 

the restricted occurrence of many typical arable plant species to few fields demonstrates the 

importance of more targeted conservation actions for rare arable plant species, such as the 

introduction through seed mixtures of local provenance and adapted management regimes 

(Albrecht et al., 2016; Lang et al., 2018). Seeds of local provenance could be provided by the 

establishment of conservation fields in the respective regions (Meyer and Leuschner, 2015). At 

the same time, such conservation fields can also be used for demonstration and education 

purposes.  

As also shown in this thesis, continuous and species-group adapted management of agri-

environment measure sites is essential to ensure and maintain their desired effects (Batáry et al., 

2011; Gonthier et al., 2014). In addition to the management adaptions already mentioned (regular 

soil disturbance and reduced sowing density of crops and flower strips), the exclusion of 

fertilizers and herbicides (as done for all tested measures in this thesis) is known to strongly 

positively affect the arable plant vegetation by particularly supporting non-graminoid species and 

reducing the risk of the nutrient-driven dominance of competitive non-crop plants (Albrecht et 

al., 2016; Hole et al., 2005). Furthermore, no or reduced nutrient addition likely improve habitat 

conditions for arable plants by creating less dense crop stands, which allow more light to pass 

through (Albrecht et al., 2016; Batlla and Benech-Arnold, 2014; Seifert et al., 2014). Both 

increased fertilizer and herbicide use are considered to have interactive effects, which cannot be 

completely disentangled from each other (Storkey et al., 2012). Herbicide use may have a more 
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negative impact on total plant species richness (Hyvönen and Salonen, 2002), whereas higher 

amounts of fertilizer inputs can have a more adverse effect on threatened, low-competitive arable 

plant species (Storkey et al., 2012). To further reduce nitrogen concentration and, thus, 

supporting species richness especially of rare arable plants (Kleijn et al., 2009; Storkey et al., 

2012), mowing and removing biomass should be considered in the management of agri-

environment measures in nutrient-rich sites. However, reductions of nutrient availability to levels 

before intensive fertilization can take decades, e.g. in the case of nitrogen and phosphorus 

(Horrocks et al., 2014). 

In general, the landscape context should also be considered when aiming to increase farmland 

biodiversity (Batáry et al., 2011; Tscharntke et al., 2011). In this context, the measure types should 

be placed carefully with respect to landscape composition, local species pools and practical 

concerns of farmers. Here, pre-surveys are essential to enable a targeted implementation of the 

measures. In a given agricultural landscape, several measure types supporting different organism 

groups should be implemented in combination on a sufficient area. The necessary proportion of 

agri-environment measures in a given landscape depends on the target species, the quality of the 

implemented measures and the proportion of still existing (semi-)natural habitats suitable for the 

respective taxa (Meichtry-Stier et al., 2014; Tscharntke et al., 2011). Furthermore, measures 

should be linked to each other or/and to existing (semi-)natural habitats to serve as stepping 

stones for the spread of species and enable their genetic exchange (Saura et al., 2014). A diversity 

of well-linked measure types on a sufficient area can increase habitat heterogeneity, which is 

known to positively impact overall farmland biodiversity, especially in simple agricultural 

landscapes with only a small proportion of (semi-)natural habitats (Benton et al., 2003; Kovács-

Hostyánszki et al., 2011a; Tscharntke et al., 2005). Habitat heterogeneity can also be increased 

within a given measure, e.g. by the regular renewal of part of the measure area. Such approaches 

can satisfy habitat requirements of different organism groups, e.g. annually managed areas for 

arable plants, perennial parts as overwintering possibility for insects (Haaland et al., 2011) and 

structurally diverse vegetation as breeding and food habitat for farmland birds (Gottschalk and 

Beeke, 2013). Besides, measures should be implemented for a sufficient time period, since the 

recovery of species populations may occur with a time lag (Watts et al., 2020). In addition, the 

revaluation of field-adjacent habitats should be considered, where necessary. For instance, the 

vegetation of grass strips next to arable fields in the study region was usually found to be species 

poor and dominated by few grass species, which is very likely the result of long-term 

inappropriate management practices (Chapter 2). With respect to such impoverished grass strips, 

perennial flower strips (such as the PFS presented in this thesis) are particularly suitable to 

improve habitat quality for farmland biodiversity (Vickery et al., 2009). In general, future research 

is still needed to evaluate the possible synergetic effects created by the linkage of different 

measure sites as well as of measures and (semi-)natural habitats. 

Based on the results of this thesis and research findings of other studies, Table 1 gives an 

overview of the four tested agri-environment measures (i.e. the impact on the arable plant 

vegetation and expected influence on other organism groups as well as information about 

recommended management, site choice and possible agricultural usability). Through the 

participatory involvement of farmers in the design of the measures and their adaptation for 

practicability on a modern conventional farm, it is to be expected that these measures will be met 

with broad acceptance among farmers. Even though CFM and fallows turned out to be the best 

choice in aiming to promote arable plant diversity in the long-term, studies found that the 
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implementation of all tested measure types is justified and important as they create diverse habitat 

conditions satisfying the requirements of different organism groups of agricultural landscapes 

(including farmland birds and insects; Gottschalk and Beeke, 2013; Haaland et al., 2011; 

Tscharntke et al., 2011; Vickery et al., 2009). Thus, all four measure types tested in this thesis can 

be recommended for consideration as part of national and European agri-environment schemes. 

However, future research should be carried out to evaluate more precisely the effectiveness of 

the four measures on different animal groups.  

Table 1 Summary table of the four tested agri-environment measure types with respect to their impact on the arable 

plant vegetation and the expected influence on other organism groups as well as information about recommended 

management, site choice and possible agricultural usability. These information are based on the findings of this thesis 

and the following other studies: Albrecht et al., 2016; Becker et al., 2019; Denys and Tscharntke, 2002; Gottschalk 

and Beeke, 2013; Haaland et al., 2011; Hansson and Fogelfors, 1998; Hilbig, 1996; Hofmeister and Garve, 2006; 

Kiehl et al., 2014; Rode et al., 2018; Tscharntke et al., 2011; Vickery et al., 2009. Measure types: conservation field 

margin (CFM), annual fallow (fallow), alternately managed biennial flower strip (AFS) and perennial flower strip 

(PFS).  

Measure type CFM Fallow AFS PFS 

Effects in the first 

years 
Very effective within the first two (PFS) to three years (CFM, fallow, AFS)  

Expected long-

term effects 

Very effective 

due to regular soil disturbance and related continuous 

habitat conditions favored by arable plants 

Moderately effective 

due to only biennial soil 

disturbance 

Not effective 

perennial plant species 

will become dominant 

due to missing soil 

disturbance 

Site choice 

Pre-surveys are strongly recommended for site selection! 

Especially at sites with a still more diverse arable flora 

(including rare arable plant species); less nutrient-rich sites 

should be preferred to avoid the dominance of few 

competitive strong arable plant species 

Species-poor and 

nutritious sites, with no 

rare arable plant species 

present 

Species-poor and 

nutritious sites; especially 

suitable for the 

restoration of 

impoverished grass strips 

next to arable fields 

Recommended 

management  

Continuous management to maintain measure effects is essential! 

No application of fertilizers or pesticides 

Annual soil disturbance and 

cultivation with crop; reduced 

sowing density (50 %) or double 

space in rows 

Annual soil disturbance; 

no seeding 

After establishment, 

alternating re-creation 

of half of the area from 

the 2nd year onwards 

(including soil 

disturbance); seed 

mixture: ornamental 

and native plant species 

(annuals and perennials, 

including typical arable 

plants) 

Establishment by using a 

seed mixture with native 

perennial plants; cutting 

once or twice per year 

(depending on growth) to 

maintain plant species 

richness and prevent 

predominance of 

graminoids 

Removal of cuttings from measure sites (if possible) 

to reduce soil nutrient content; use of native plant 

seeds of local provenance; reduced sowing density to 

promote naturally present arable plant species 

Agricultural 

usability 

Harvesting in cereals is possible; 

decreasing yield over time is 

expected (due to missing 

fertilizer application) 

- 
Possible use of cuttings 

for hay production 

Influence on other 

organism groups 

Based on other studies, all measure types are expected to create valuable habitats to support other organism groups of 

agricultural landscapes, such as farmland birds and insects 

Remarks 

Consideration of long-term implementation and seeding of 

(rare) arable plant species of local provenance (recovery of 

soil seed banks); alternately, biennial soil disturbance of half 

of the area of fallows can improve the effects on other 

organism groups (e.g. undisturbed areas for a certain time as 

feeding/breeding/wintering habitat) 

Long-term effects on 

the segetal flora can be 

improved by a high 

proportion of native 

arable plant species in 

the seed mixture 

- 
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Beside the findings described above, spillover effects of measures into the adjacent 

conventionally managed fields were not detectable. This can be attributed almost certainly to the 

intensive management of the cultivated crops in the neighboring fields (in particular the use of 

highly effective herbicides). This is an important finding from an agricultural point of view, as 

farmers are often concerned that implemented agri-environment measures could also affect the 

adjacent cultivated crop stands by weed infestation. The present results serve well to weaken this 

concern.  

 

iii) As weather conditions can strongly affect plant species richness and abundance in arable habitats, leading 
to significant variations between years, perennial field trials are essential to draw reliable conclusions about 
the effectiveness of agri-environment measures.  

Chapter 3 demonstrated that interannual changes in precipitation and temperature regimes can 

significantly affect the plant species richness and abundance in arable habitats, including sites 

where agri-environment measures are implemented. The influence of weather conditions on the 

arable plant community composition was also shown in other studies (Fried et al., 2008; 

Lososová and Cimalová, 2009; Pinke et al., 2012). This highlights the necessity of evaluating the 

effects of agri-environment measures over several years. Short-term studies (e.g. commonly used 

one-year observations) run the risk of drawing wrong conclusions about the effectiveness of agri-

environment measures because, depending on the observed organism group, interannual 

variations in weather conditions may strongly influence the overall species richness and 

abundance. Thus, long-term trends in the community structure can remain hidden (e.g. changes 

in the proportions of specific plant life forms and trait spectra). Furthermore, the positive effects 

on farmland biodiversity can also occur with a time lag to the initial establishment of 

conservation measures (Watts et al., 2020). Beside long-term observations, reviews and meta-

analyses are a more reliable assessment tool of the effectiveness of agri-environment measures 

since these include studies of various years and locations. But in order to be able to record time-

dependent effects of measures on farmland biodiversity, field studies over several years are 

essential.  

In addition, the identified influence of weather conditions on the effectiveness of measures 

should also be considered in the context of climate change. Global climate change is 

accompanied by rising temperatures and changing precipitation regimes leading to the 

fragmentation and loss of habitats for various organism groups (Diffenbaugh and Field, 2013; 

Mantyka-Pringle et al., 2012). As the impact of climate change is considered to become more 

severe in the future (depending on the geographic region; Diffenbaugh and Field, 2013), it will 

not only impact future crop yields (Supit et al., 2012; Trnka et al., 2014) but also likely influence 

the performance of agri-environment measures. For example, warmer and drier weather 

conditions in spring and early summer may result in topsoil desiccation, which negatively affects 

the germination and establishment of sown plant species in flower strips, as it has been observed 

in many places of the study region in 2018 (with very warm and dry weather conditions from 

April to July; Chapter 3). Thus, future management changes may become necessary to preserve 

the effectiveness of those measures (e.g. appropriate site selection, the time of management (soil 

cultivation, sowing) or chosen species of seed mixtures). Details about how climate change can 

alter the effectiveness of measures and which adjustments in management can be useful have to 

be investigated in future studies.  
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iv) The diversity of today's strongly impoverished arable flora can be examined most effectively by elongated 

field edge plots of 500 × 1 m. This arable plant survey method is recommended as standard monitoring 

approach in conventional farmland.  

Chapter 4 described the considerable variation in current arable plant survey methods with 

respect to plots sizes (ranging from 0.1 to 5000 m²), shape (square or rectangular plots either 

coherent or splitted) and in-field location (edge or interior). By comparing six different survey 

methods in 45 conventionally managed arable fields (field ‘Interior’ plots (50 × 2 m); field edge 

plots: ‘Edge_30’ (30 × 2 m), ‘Edge_50’ (50 × 2 m), ‘Edge_500’ (500 × 1 m), ‘Subplots’ (four 

dispersed plots of 5 × 1 m) and ‘Corner’ plots (50 × 2 m)), it was found that they vary 

considerably in their species detection rate. Therefore, it is difficult to compare the results of 

studies based on different survey methods. Interior plots were shown to be least effective in 

characterizing typical arable plant diversity at field level (median species detection rate of solely 

8.3 %). Edge_500 plots had by far the best detection rate of the field’s typical arable plant species 

pool (median 75.6 %) with a justifiable expenditure of time (median 16-23 min, dependent on the 

observed crop type) followed by Corner plots (45.8 %, 9-11 min). Thus, to be able to reliably 

characterize todays strongly impoverished arable plant diversity of a field, elongated plots at the 

field edge should be surveyed because this is where locally typical arable plant species can still 

exist. Field corners support significantly more arable plant species than the middle of the field 

edge, likely driven by less intensive management in these field areas, which are more difficult to 

reach for weed control measures (e.g. herbicide applications). Thus, the use of elongated field 

edge plots of 500 × 1 m including at least one field corner can be recommended as effective 

future standard survey method for arable plant monitoring in conventionally managed farmland. 

Corner plots of 50 × 2 m can be recommended if time constraints rule out the Edge_500 plots. 

In addition, for the monitoring of threatened, red-listed arable plant species, total field edge 

perimeter counts should be used. With only a few occurrences and a very patchy distribution in 

conventional farmland, these species are otherwise hardly detectable. Nevertheless, besides 

answering specific research and conservation questions, defining a general standard survey 

method for arable plants, as the proposed Edge_500 plots, is important to ensure the spatial and 

temporal comparability of the collected data. However, the effectiveness of the tested arable 

plant survey methods in this thesis should be validated in future studies with respect to other 

regions (e.g. farmland harboring a higher floristic diversity such as the Mediterranean), additional 

crop species, further management systems (e.g. organic farming) and different landscape 

complexities (i.e. simple vs. complex). 

In order to counteract the ongoing decline of farmland biodiversity and ecosystem services 

essential for agricultural production and human well-being (Macfadyen et al., 2012), a continuous 

and regular monitoring of species living in agricultural landscapes is crucial to document long-

term changes and to assess the vulnerability status of threatened taxa and assemblages. Based on 

these data and the knowledge of important drivers of biodiversity loss appropriate conservation 

measures can be taken. Several monitoring schemes considering farmland biodiversity have been 

implemented at national level (e.g. in Canada, Germany, Norway, Sweden, Switzerland or United 

Kingdom; Herzog and Franklin, 2016). But many of these approaches focus on some indicator 

species, a single or only a few organism groups (e.g. farmland birds or plants), and/or are based 

on different methodologies (Herzog and Franklin, 2016). As farmland species groups are linked 

with each other through the food web, it is important to monitor the status of all relevant taxa in 

agroecosystems, so that timely and targeted actions can be taken before the trophic web and 
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ecosystem functioning are negatively affected (Hyvönen and Huusela-Veistola, 2008; Marshall et 

al., 2003; Médiène et al., 2011). Thus, a harmonization of monitoring approaches should be 

aimed for in order to record the state and temporal changes of typical farmland species groups 

and the factors influencing them on a broader scale. This would allow the development of 

targeted, international nature conservation strategies. Some approaches at broader scale already 

exist, e.g. for Europe or North America, but they are also restricted to few species groups, i.e.: 

the Pan European Common Bird Monitoring Scheme (https://pecbms.info/), the European 

Butterfly Monitoring Scheme (https://butterfly-monitoring.net/) or the North American 

Breeding Bird Survey (https://www.usgs.gov/centers/pwrc/science/north-american-breeding-

bird-survey). In addition, these approaches rely on the input of volunteers, which may affect the 

quality and statistical representativeness of the individual records (Herzog and Franklin, 2016). 

Therefore, efforts should be made to further develop such programs, including the monitoring of 

other organism groups on the basis of appropriate standardized methods. Moreover, when 

introducing a new standardized national or international survey method, traditional sampling 

methods should be continued as a subset of the monitoring approach to maintain comparability 

with historical records.  

  

https://pecbms.info/
https://butterfly-monitoring.net/
https://www.usgs.gov/centers/pwrc/science/north-american-breeding-bird-survey
https://www.usgs.gov/centers/pwrc/science/north-american-breeding-bird-survey
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5.2 Final remarks and outlook 

This thesis demonstrated that the arable flora of conventionally intensive farmland in Northwest 

Germany is strongly impoverished. This finding is reflected by other studies investigating 

Western and Central European conventional farmland. The loss not only concerns arable plants 

but also other organism groups of the agricultural landscape (e.g. farmland birds and insects). 

Therefore, national and European policies must take urgent action to counteract the loss of 

biodiversity in European agricultural landscapes. It needs ecologically effective agri-environment 

measures with sufficient funding for compensation that are widely accepted among land users 

and implemented on a large scale. Thus, cooperative processes are needed that define measures 

by the consideration of agronomic and ecological perspectives as well as their suitability in the 

agricultural practice (e.g. taking into account concerns of farmers with regard to the requirements 

of the funding policy guidelines). Such approaches should include all relevant stakeholders (e.g. 

farmers, landlords, hunters, beekeepers, scientists, nature conservation authorities or agricultural 

consultations) to consider all important aspects resulting in highly effective and accepted 

measures based on a broad consensus. In doing so, cooperative approaches can be a successful 

instrument to increase farmers’ willingness to implement agri-environment measures by 

promoting their understanding of the significance of biodiversity conservation in agricultural 

landscapes and improving the practical feasibility of measures. Such a participative approach was 

successfully pursued in the research project MEDIATE underlying this thesis and enjoyed great 

popularity among the participants. In the implementation process of measures, regional nature 

conservation priorities and the suitable location of measures should be considered to make them 

effective at landscape level. Therefore, the measures should have flexible elements in terms of 

management so that they can be adapted to different regional circumstances and conservation 

focusses. Furthermore, the farmer should be accompanied by an expert advisor during the 

implementation process in order to clarify any problems that may arise and to preserve the 

effectiveness and acceptance of measures in the long term. These advisory services should be 

provided on a continuous basis, preferably integrated in agricultural authorities, and the advisors 

have to be trained in both agricultural and ecological matters and need advanced communication 

skills. 

To reliably assess the conservation status of farmland biodiversity and the effectiveness of 

implemented measures, there is an urgent need for an ongoing, comprehensive and 

methodologically standardized (taxa-dependent) European monitoring system of farmland 

biodiversity, whose continued existence should be secured by long-term financing within the 

framework of the European Common Agricultural Policy. Based on such monitoring data, 

appropriate conservation strategies can be (further) developed to halt the continuing loss of 

biodiversity and associated ecosystem services in agricultural landscapes.  
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