
Data-driven modelling of non-linear
systems by means of artificial neural

network hybrids

Dissertation
for the award of the degree
Doctor rerum naturalium

of the Georg-August-Universität Göttingen

within the doctoral program Physics of Biological and Complex
Systems (PBCS) of the Georg-August University School of Science

(GAUSS)

submitted by

Sebastian Herzog
from Bromberg

Göttingen 2021

Thesis committee
Prof. Dr. Florentin Wörgötter,
Third Institute of Physics and Bernstein Center for Computational Neuroscience,
Georg-August-Universität Göttingen

apl. Prof. Dr. Ulrich Parlitz,
Max Planck Institute for Dynamics and Self-Organization and Institute for the
Dynamics of Complex Systems, Georg-August-Universität Göttingen

Prof. Dr. Stefan Klumpp,
Institute for the Dynamics of Complex Systems, Georg-August-Universität Göttin-
gen

Members of the examination board
First Reviewer: Prof. Dr. Florentin Wörgötter,
Third Institute of Physics and Bernstein Center for Computational Neuroscience,
Georg-August-Universität Göttingen

Second Reviewer: apl. Prof. Dr. Ulrich Parlitz,
Max Planck Institute for Dynamics and Self-Organization and Institute for the
Dynamics of Complex Systems, Georg-August-Universität Göttingen

Other members of the examination board:
Prof. Dr. Stefan Klumpp,
Institute for the Dynamics of Complex Systems, Georg-August-Universität Göttin-
gen

Prof. Dr. Timo Betz,
Third Institute of Physics, Georg-August-Universität Göttingen

Prof. Dr. Carsten Damm,
Institute for Informatics - Theoretical Computer Science Group, Georg-August-
Universität Göttingen

Prof. Dr. Alexander Ecker,
Institute for Informatics - Neural Data Science Group, Georg-August-Universität
Göttingen

Date of the oral examination: 15.03.2021

Acknowledgements

First, I have to thank my supervisors Prof. Dr. Florentin Wörgötter and apl.
Prof. Dr. Ulrich Parlitz, for the personal support, countless discussions and the
opportunity to realise my scientific ideas. I would also like to thank Prof. Dr.
Stefan Luther and Prof. Dr. Claus Wagner to be part of their work groups. Special
thanks to my colleagues Dr. Tomas Kulvicius, Dr. Christian Tetzlaff, Dr. Michael
Fauth, Dr. Alejandro Agostini, Axel Dannhauer, Tobias Feilke, Dr. Daniel Schiepel,
Dr. Thomas Lilienkamp and Dr. Isabella Guido. I would also like to thank the
secretaries Ursula Hahn-Wörgötter, Regina Wunderlich, Doris Henze and Annika
Köhne from the different work groups. As well as Thomas Geiling for the great
information technology support. Last but not least i would like to thank Frauke
Bergmann and Antje Erdmann from the GGNB for administrative support.

Thank you all!

Abstract

In the natural sciences, theory and experiment are in permanent interaction with
each other. Experimental data provide impulses for new theories and theories
suggest new experimental set-ups. Earlier, these two areas had been fairly balanced.
However, the rapid increase in performance in semiconductor technology makes
modern measurement methods possible. This leads currently to the accumulation
of gigantic amounts of data that no human being can process by sight and thought
alone. Thus, at the moment, the question of how such floods of data can ever be
condensed into models, refined theories, and finally into knowledge is sometimes
pushed into the background.

The work presented in this thesis addresses this issue with a focus on data from
non-linear systems. This study can be classified as belonging to the field of data-
driven modelling with a methodological focus on hybrid artificial neural networks.

The hybrid models presented here are combinations of artificial neural networks,
stochastic graphical models and numerical solvers for ordinary differential equations
with two goals: The first one is to predict the spatial–temporal dynamics, of the
non-linear system, from which the data are coming, over a long time as accurately
as possible. While the second one is to find more explicit representations for the
data, which are easier to interpret.

With respect to the prediction of the spatial–temporal dynamics of non-linear
systems, the idea was to employ a well-known artificial neural network architecture
that can encode the data in such a way that it can be well predicted by a stochastic
graphical model. A specific advantage of this approach is that the artificial neural
network has processing properties that can be used for tasks like state reconstruction.

This artificial neural network+stochastic graphical model hybrid was evaluated
on different non-linear systems and was able to achieve prediction horizons that
exceeded the former state of the art, sometimes substantially, in all cases.

The second hybrid, is a demonstration how an artificial neural network can be
combined with with an numerical equation solver for ordinary differential equations.
The goal was to characterise the underlying dynamics of a system as a vector field
based on a predefined system of equations given by the user. This approach was
applied (under the assumption of Hamilton equations), to the case of a multi agent
system and was able to predict a vector field describing the motions of the agents.

Therefore this hybrid approach is not trained to make a spatial-temporal prediction
as accurately as possible, but to parameterize the derivative of the hidden states
from the assumed equations (e.g. Hamilton equations) so that the predicted vector
field represents the data with the smallest possible error. In particular, this approach
can be used to validate whether assumptions about the physics (here we assumed
that the data can be represented by the Hamilton equations) are applicable.

Finally, a demonstration is given how to apply these two hybrids methods to
real experimental data from a Rayleigh–Bénard convection cell and the motion of
Dictyostelium discoideum (a soil-dwelling amoeba) responding to electric fields of
continuous current. For this purpose, the measured raw data must be transferred
into a format that is suitable for training the hybrid system. This has been achieved
with a newly-developed particle tracking method that is able to reconstruct even
high particle densities and assemble them into two or three dimensional trajectories.
These trajectories then serve as input for the here-introduced approaches.

In both experimental cases, the two hybrid approaches were able to reproduce
the date and make predictions that are easier to interpret than the reconstructed
data, for example due to the fact that they are essentially noise free.

In summary this thesis quantifies how different novel combinations of artificial
neural networks with stochastic graphical models and numerical equation solvers
for ordinary differential equations perform in predicting and explaining data from
a variety of complex non-linear systems.

Contents

List of Figures xi

List of Abbreviations xiii

1 Introduction 1
1.1 Introductory words . 1
1.2 Motivation . 2

1.2.1 History of simulation technologies 4
1.2.2 Challenges in the field of numerical simulations 6

1.3 Machine learning . 8
1.3.1 Learning . 8
1.3.2 Data-driven modelling as an application of machine learning 10

1.4 Dynamical systems . 11
1.5 Contribution . 11

2 Data processing 15
2.1 Introduction to artificial neural networks and data processing 15

2.1.1 Learning as function approximation 17
2.2 Artificial neural networks . 18

2.2.1 Convolutional neural networks 19
2.2.2 Autoencoder . 20

2.3 Publication: (Herzog et al. 2021c) 21
2.3.1 Conclusions from (Herzog et al. 2021c) 46

2.4 Publication: (Herzog et al. 2020a) 46
2.4.1 Conclusions from (Herzog et al. 2020a) 57

3 Spatio-temporal data prediction 61
3.1 Introduction to spatio-temporal prediction 61
3.2 Stochastic modelling . 62

3.2.1 Stochastic process . 62
3.2.2 Graphical models . 64

3.3 Spatio-temporal prediction of non-linear dynamics 67
3.3.1 Publication: (Herzog et al. 2019) 67

vii

viii Contents

3.3.1.1 Conclusions from (Herzog et al. 2019) 79
3.3.2 Publication: (Herzog et al. 2018) 79

3.3.2.1 Conclusions from (Herzog et al. 2018) 90
3.3.3 Publication: (Herzog et al. 2020b) 90

3.3.3.1 Conclusions from (Herzog et al. 2020b) 100
3.4 Summary and outlook . 100

4 From data to symbols 103
4.1 Introduction data to symbols . 103

4.1.1 Learning as a search . 104
4.2 Learning symbolic representations 105

4.2.1 Publication: (Herzog et al. 2021a) 106
4.2.1.1 Conclusion from (Herzog et al. 2021a) 115

5 Application to experimental data 117
5.1 Introduction to experimental data application 117
5.2 Publication: (Herzog et al. 2021b) 118
5.3 Conclusions from (Herzog et al. 2021b) 137

5.3.1 Application of the presented methods 137
5.4 Summary . 142

6 Conclusion and outlook 145
6.1 Conclusion . 145
6.2 Outlook . 147

Appendices

A Formal definitions for artificial neural networks 155
A.1 Artificial neural networks . 155

A.1.1 Network structures . 156
A.1.2 Multilayer feed-forward network 157
A.1.3 Recursive definition . 157
A.1.4 Network state . 158
A.1.5 Topological network dynamics 158

B Theoretical background for graphical models 161
B.1 Random vector . 161

B.1.1 Joint distribution . 162
B.1.2 Density . 162
B.1.3 Multivariate random variable 162

B.2 Stochastic independence . 164

Contents ix

B.3 Graph . 164
B.3.1 (Un)directed graph . 165

B.4 Gaussian process . 165

References 169

C Statement of individual contributions 173

x

List of Figures

1.1 Structure overview: Introduction chapter 1 2

2.1 Structure overview: Data processing chapter 2 16
2.2 Example autoencoder architecture 20
2.3 Comparison CAE vs CAE+FB for noisy data 57
2.4 Comparison CAE vs CAE+FB for blurred data 58
2.5 Comparison CAE vs CAE+FB for under-sampled data 58

3.1 Structure overview: Spatio-temporal data prediction chapter 3 . . . 62
3.2 Example of a factor graph . 65
3.3 Example for a CRF with three variables 66

4.1 Structure overview: From data to symbols chapter 4 104

5.1 Structure overview: Application to experimental data chapter 5 . . 118
5.2 Dictyostelium discoideum tracks . 138
5.3 Dictyostelium discoideum vector fields 138
5.4 RBC prediction starting from a sphere 140
5.5 RBC prediction over the entire volume 140
5.6 Predicted LSC slices . 141

6.1 Structure overview: Conclusion and outlook chapter 6 146

B.1 (Un)directed graph . 165

xi

xii

List of Abbreviations

ANN Artificial neural network

AE Autoencoder

CFD Computational fluid dynamics

CRF Conditional random field

CAE Convolutional autoencoder

CNN Convolutional neural network

ESN Echo state network

ENIAC Electronical Numerical Integrator and Computer

ERM Empirical risk minimisation

FB Feedback

FEM Finite element method

GM Graphical model

GPU Graphics processing unit

IQR Interquartile range

LSC Large-scale circulation

MCM Monte Carlo method

nODE Neural ordinary differential equations

PDE Partial differential equations

RBC Rayleigh-Bénard convection

s.i. Stochastically independent

SID System identification

xiii

xiv

The complexity for minimum component costs has
increased at a rate of roughly a factor of two per
year. Certainly over the short term this rate can
be expected to continue, if not to increase. Over
the longer term, the rate of increase is a bit more
uncertain, although there is no reason to believe it
will not remain nearly constant for at least 10 years

— Gordon Moore 1965, reprinted in (Feynman 1965)

1
Introduction

Contents
1.1 Introductory words . 1
1.2 Motivation . 2

1.2.1 History of simulation technologies 4
1.2.2 Challenges in the field of numerical simulations 6

1.3 Machine learning . 8
1.3.1 Learning . 8
1.3.2 Data-driven modelling as an application of machine learning 10

1.4 Dynamical systems . 11
1.5 Contribution . 11

1.1 Introductory words

This dissertation consists of several parts with the intention to present the manuscripts

that were written during my studies as well as some unpublished results. The first

chapter deals with the introduction and general motivation, especially the interplay

between theory, experiment and simulation. This is followed by the second part, in

which problems of numerical simulations are motivated. Then data-driven modelling

will be addressed, which in this work is achieved through machine learning, more

specifically the use of artificial neural networks and hybrid forms of them, to deal

with some of the problems in the cross-section of experiments, simulations and theory.

1

2 1.2. Motivation

Theory Experiment

Simulation

Problems

Data-driven modelling

Spa.-tem.
pred.

Dataprocess. Symbolicrepres.

Real data

Conclusions

Outlook

Figure 1.1: Structure overview: Intro-
duction chapter 1

The following chapters 2, 3 and 4 represent

the core of the work and address three

specific problems, namely processing data

*(Herzog et al. 2021c; Herzog et al. 2020a),

learning non-linear dynamics for spatial

and temporal prediction *(Herzog et al.

2019; Herzog et al. 2018; Herzog et al.

2020b), and finding symbolic representa-

tions from data *(Herzog et al. 2021a).

Chapter 5 shows the application of my

methods to real experimental data. For

this purpose, a particle tracking method

has been developed in order to obtain a

ground truth that is as accurate as possible

*(Herzog et al. 2021b). The last chapter 6

deals with the conclusion and an outlook.

The structure of the work is illustrated in the diagram in figure 1.1.

1.2 Motivation

In the last centuries, science has been based on two components: experiment and

theory. Starting with the observation of phenomena, science is supposed to deduce

the underlying principles and finally the general theory behind them. Observation

began with simple means, e.g. with magnifying glasses and telescopes. These tools

then developed over time into more complex tools such as stimulated emission

depletion microscopy, magnetic resonance imaging, space telescopes or particle

accelerators (just to name a few). All these tools have in common that they are

used to search for laws and rules behind the processes in nature in order to describe

and ultimately understand them. Science that observes, counts, measures, registers

and classifies falls within the realm of empiricism. Empiricists strive to obtain

the most accurate information possible about how processes in nature take place.

1. Introduction 3

However, this is not the only form of science. Experimental observations with tools

are under some circumstances not even enough, to describe nature in a generally

valid way. The reverse process is at least as important and has a long tradition:

laws and formulas that determine our current view of the world often have their

origin in theory. Recognising regularities and formulating them is the task of

theoreticians, who often choose the language of mathematics to describe things as

precisely as possible. This should be done in such a way that these mathematical

descriptions do not only agree with existing observations but can also predict the

outcome of experiments that have not yet been carried out. Be it Schrödinger, Euler,

Maxwell or Einstein; their equations and systems of equations were not developed

in laboratories with the help of measuring tools, but with logical considerations and

symbolic descriptions. The validity of Einstein’s general relativity theory was proven

only years later by observations and experiments. The case of Johannes Kepler

shows that it also works the other way round. He used Tycho Brahe’s extensive

observation material to formulate his planetary laws, and thus measurement results

led to new insights through theory building. The subdivision of science into groups

of experimentalists and theoreticians is common, although this classification is not

to be understood as an absolute binary classification. However, it is important

to recognise that these two groups complement each other in an enormous way.

With the advancing knowledge of science, the still unknown areas of nature are

becoming more complex and harder to describe. Systems that are present in the

everyday life, such as the human brain or the weather, are beyond direct theorising

through first principles. Many of the hypotheses and theories in this two fields

are therefore difficult or impossible to prove experimentally on the object. This

requires an even more pronounced interplay between theorists and experimentalists

in order to advance science in these fields.

If experiment and theory are considered the two pillars of science, a third

pillar is becoming increasingly important and has been indispensable in many

fields: numerical simulation. Computer models and simulations create virtual

representations of nature by applying the effects of the known laws of nature to

4 1.2. Motivation

almost any type and number of observation data and parameters. These models

have the advantage of being fully observable, parameters and boundary conditions

can be changed at will, and one has a control that is not there in reality. With

enough computing power and time one could observe every eventuality. At the same

time, these results can be matched with observations from the real world, allowing

the model to be adjusted, extended and improved again and again. The extension of

scientific methodology to include simulation allows a form of experimentation that

cannot be done or one that should not be done in reality. This types of numerical

experiments bring the field of theory and experiment closer together.

For such simulations to work, numerical models are needed that can be calculated

by computers. These numerical models are intended to reproduce real processes or

systems in a simplified manner, which often represents an abstraction or idealisation,

in order to be able to describe, explain or even predict the dynamics of the system

under investigation. Due to the need for numerical models new questions arise

that are at the core of many simulation technologies. The use of simulations

and the technologies based on them provides new challenges. Unfortunately most

simulation technologies are technically rather complex, being almost always computer

simulations consisting of increasingly detailed models, powerful algorithms and

powerful computing and storage architectures. This complexity keeps increasing

and will increase further and in order to understand this I would like to start with

a brief outline concerning simulation technologies.

1.2.1 History of simulation technologies

The mathematical beginnings of modelling, i.e. the basis for simulation, can

already be found in the so-called Buffon’s needle problem by Buffon and Laplace

in the 18th century (Aigner et al. 2004). In the needle problem, the probability

is to be calculated with which a needle lands on the line of a pre-drawn grid. A

solution to Buffon’s needle problem can be found by many repetitions of a random

experiment: describe the position in which the needle falls by a random variable

and count how many times it falls on one of the grid lines. This idea led to a

1. Introduction 5

basic simulation method: the so-called Monte Carlo method (MCM). Defined by

John von Neumann and Stanislaw Ulam in 1946 (Eckhardt 1987) this is a method

for calculating the probability or uncertainty of results based on a large number

of independent random experiments. This method is still essential for numerical

modelling and simulation today. For example, MCMs can even be used for the

solution of partial differential equations (PDE) (Barth et al. 2011). A PDE is

a differential equation that contains partial derivatives, i.e. equations involving

processes with more than one independent variable. Such equations are used for

the mathematical modelling of many physical processes. The solution theory of

partial differential equations has been largely researched for linear equations, but

still contains many gaps for non-linear equations. Therefore, these are solved

numerically by approaches such as MCMs.

The spatial and temporal discretisation of PDEs quickly became a new field

of interest for many researchers. As a consequence, only a few years later in the

1960s (Argyris et al. 1969) a methodological scheme had been developed that still

has great relevance today. Again, the goal was to solve PDEs, but without the

stochastic character of MCMs and computationally more efficient and in a scalable

manner. The method developed was the so-called finite element method (FEM),

initially developed for the simulation of solids, but today also used in many other

physical problems, such as weather forecasting or medical simulations.

However, it were not only the mathematical methods that improved rapidly. In

addition to this, also the ground-breaking technical developments in semiconductor

technology boosted computer technology. The complexity of integrated circuits

doubled after regular intervals (Moore 2006), which often also implied a doubling

of computing power, this growth was crucial for the rise of simulation methods,

allowing to run simulations at a speed and with a complexity that today makes

models possible of dynamical systems from the nanoscale to supernovae.

The technical basis for this was provided by Konrad Zuse in the 1940s with the

Z3 (Alex 2000). The Z3 was the first functioning computer. Electromagnetic relays

had been used to perform the arithmetic operations, which were rather slow and

6 1.2. Motivation

resulted in a correspondingly low computing power. However, only a few years later

the first fully electronic digital universal computer ENIAC (Electronical Numerical

Integrator and Computer) (Haigh et al. 2016), had been presented in 1947at the

University of Pennsylvania with a tremendously increased computational power. The

first simulations on ENIAC were stochastic simulations of nuclear fusion, which were

the basis for the hydrogen bomb. Even though this was military research, a general

advantage is already apparent here: experiments that would be too dangerous or

ethically questionable can be tested in a simulation. Virtual test runs make it

possible to selectively tweak individual parameters and check effects without risk.

This made simulations attractive not only for military purposes, but also in all those

areas where costly or risky experiments could be minimised or even avoided this way.

Up to this point, simulations served less to describe already existing systems but

more to specifically design individual material functions or to forecast (un-)desired

behaviour. With the increasing power of computers since the 1970s, it became

possible to simulate increasingly complex scenarios and models - the most prominent

areas of application here are weather forecasting (Shuman 1989), election predictions

or the development of high-risk technologies. Another advantage of the increasing

computing power was the possibility to visualise the results of the simulations.

Often only the essential components of a simulation can be visualised, but this

can be crucial to lead to new insights, for example, as in the case of the recently

presented and so far most precise simulation of the formation of our universe

(Pillepich et al. 2019).

The hopes and partial promises of simulation as a scientific methodology are

thus very high, but none of this "comes for free". There are still many challenges

that need to be addressed to allow for effective use of simulations.

1.2.2 Challenges in the field of numerical simulations

As already explained above, simulations need numerical models. Only with those

it is possible to use simulations in cases where theory and experiment fall short.

Sometimes with this it is even possible to arrive at ethically safe verification of

1. Introduction 7

certain assumptions and scenarios, for example in the development of new drugs.

On the other hand, lack of a good model makes simulation mostly useless. In

some simple cases where the theory is already very well understood it is possible to

derived numerical models from first principles. Models consider only sub-aspects of

reality and are, as already mentioned, always an abstraction or idealisation. They

never describe reality with absolute accuracy, but capture certain relevant aspects

"sufficiently well", neglecting other details irrelevant to the question at hand. Seen

in this light, "all models are wrong", as the statistician George Box (1976) from

the University of Wisconsin in Madison provocatively put it.

To take up this provocation, one can consider weather forecasts. These forecasts

allow the approximate calculation of effects for which measurements are not yet

available. However, they are based on many simplifications and are, while in general

useful, not always correct. Weather modelling is one of the oldest application

fields for simulations, where countless experts have invested an immense amount

of time to come up with different models.

To further complicate matters, the balance between experiment and theory has

shifted over the last 20 years to an extent that in some cases rises the fears of

decoupling. The main reason for this is in my opinion that considerably more funding

has gone into experimental facilities such as accelerators, telescopes, sequencers

or computers than into theory building. In conjunction with the rapid increase

in performance in semiconductor technology, this has led to the accumulation of

gigantic amounts of data that no human being can process by sight and thought

alone. The question of how such floods of data can ever be condensed into theories,

refined models, and finally into knowledge, was often pushed into the background.

The work presented in this thesis addresses this issue with a focus on data

coming from non-linear systems. It can be classified as belonging to the field of

data-driven modelling and has a methodological focus on hybrid artificial neural

networks. This is summarised by the title "Data-driven modelling of non-linear

systems by means of artificial neural network hybrids".

8 1.3. Machine learning

1.3 Machine learning

From the first successful use of ENIAC, it was clear that the need for programmers

has been a bottleneck. In order to relieve programmers of routine work, the use of

machine learning was formulated as a goal. Alan Turing considered the learning

ability of a computer to be the most important achievement. His recommendation

was to "educate" a computer, so that it improves its performance, since it is impossi-

ble to program everything (Turing et al. 1997). In 1957, Alonzo Church defined the

task to synthesise a circuit from mathematical requirements (Friedman 1963). This

later became known as Church’s problem. It was one of the earliest descriptions of

program synthesis and this led to the concept of machine learning being narrowed

down to the automatic acquisition of rules or the improvement of rule sets.

1.3.1 Learning

When talking about machine learning, the question of what one defines as learning

arises quite quickly. As simple as this question sounds, problems became visible

immediately after the first attempts at a definition.

A well-known definition by Simon (1983) is:

Definition 1.3.1 (Simons definition of learning (Simon 1983)). Learning denotes

changes in the system that are adaptive in the sense that they enable the system

to do the same task or tasks drawn from the same population more efficiently and

more effectively the next time.

This has led to two points of criticism. It covers phenomena that are not

usually called learning while at the same time it does not cover all phenomena

attributed to learning. An example of how learning is not the only reason for

improved performance comes from Michalski (2002). If the task is to cut something,

performance is improved by taking a sharper knife, this could also happen for

coincidental reasons. Based on Simons definition, this would be a learning process.

On the other hand, the realisation that cutting is more efficient with a sharper knife

would indeed be a learning process. According to Simon’s definition, the ability of

1. Introduction 9

programmes to learn could be demonstrated by running the same programme on a

faster computer. The system, computer and programme, would then solve the same

task faster. But it is obvious that this is not learning. Learning as such is a more

complex process, Michalski gives a drastic example that performance reduction can

be a learning outcome (Michalski 2002). One could learn how to do less and still

look equally busy. Michalski, thus, wants to raise awareness of the goal-dependency

of the concept of performance. Depending on how one defines the task, this may or

may not fall under Simon’s definition. Scott in 1983 argues against performance

measurements in the definition of learning (Shalin et al. 1988). He gives the example

of a walker in a city that is still unknown to him, who passes by the public library.

While he perceives it, he learns something about the city without having any task

for which he would have to know whether and where there is a library. Only when

someone else asks the walker for direction to the library than the walker uses what

he has learned. But even without the question of direction by someone else, the

walker has learned. The walker learns regardless of whether it is tested. Based on

this, Scott defines in 1983 learning without a given performance measure:

Definition 1.3.2 (Scotts definition of learning (Shalin et al. 1988)). Learning is a

process by which a system builds a retrievable representation of past interactions

with its environment.

Thus, performance is potentially observable, because the new representation is

retrievable. However, the learning itself is independent of whether its result is ever

needed. Nor is a reduction in performance through learning ruled out. For example,

someone who knows only one statement about something when asked about it might

be able to answer more quickly than someone who has to search for the right one

from a wealth of information. Later in 1986, Michalskis definition is similar:

Definition 1.3.3 (Michalski definition of learning (Michalski 2002)). Learning is

the construction or modification of representations of experience.

10 1.3. Machine learning

Both definitions presuppose a process that uses representations. The extent to

which this is built up or changed through learning remains open. Even from this

brief discussion of the definition of learning, it is clear that learning is similarly

difficult to grasp as intelligence. We are left with our colloquial understanding of

what learning is for us as a suggestion and a guide.

Machine learning, like all other sub-fields of artificial intelligence, has three

different motivations: a cognitive-scientific, a theoretical-technical, and a practical,

application-oriented one. The work here focuses in particular on the last two points,

where inductive conclusions are particularly important.

1.3.2 Data-driven modelling as an application of machine
learning

For us humans (and for scientific work), the formation of concepts can be divided,

very crudely and naive, into two phenomena: aggregation and characterisation

(or definition). Aggregation groups objects, events and facts of the world into

classes or categories. A category is the extension of a concept. Characterisation

describes a category so that it can be decided for new objects in which category

they belong. The intentional description of the category thus serves to determine

the class membership. An object is recognised as an example of a concept if the

characterisation of the concept covers the object. A concept is a mental, cognitive

unit that refers to a category. Leading to the chain of aggregation, characterisation

and classification which is a kind of recognition, finally leading to theory building.

The extraction of this kind of knowledge from observable data with the intention

of modelling is called data-driven modelling.

Machine learning is predominantly used to extract a set of rules from data or to

improve a given set of rules. The rules are then either used directly by humans or

embedded in a system and thus made available to its users, making it possible to

inspect the data and get an overview (description). On the other hand, the rules can

be used to solve new cases (prediction). Both description and prediction with the

1. Introduction 11

application to dynamical systems are components of the investigations carried out

here. For this purpose, the concept of a dynamical system should also be discussed.

1.4 Dynamical systems

A dynamical system can be defined as a deterministic mathematical concept,

consisting of a state space, a set of times and a family of evolution functions, to

describe the evolution of system states through time. Time is either continuous or

discrete. If the time t is continuous then a dynamical system typically consist of a

set of N first-order, autonomous, ordinary differential equations given by

dx(t)
dt

= F(x(t)),

where x ∈ RN denotes the state vector. For the case that t is discrete a

dynamical system is given by a map

xt+1 = M(xt).

In both cases F,M are the so-called evolution functions. A dynamical systems is

called non-linear if the evaluation functions F or M are non-linear. The evolution

of x over time t results in a trajectory. In this thesis dynamical systems with

dissipative structures are considered. The asymptotic dynamics of this dissipative

systems is governed by attracting bounded subsets of the state space, like stable

fixed points, stable period orbits, attracting tori (quasi-periodic dynamics), and

chaotic (strange) attractors (characterized by aperiodic oscillations and sensitive

dependence on initial conditions).

1.5 Contribution

In order to support the process of theory and model building, algorithms that are

purely data-driven have been developed in this work. All these approaches are

based on artificial neural networks or are hybrid forms of them. The previous part

of this cumulative dissertation dealt with the introduction as well as the motivation

of the subject matter. These are the first two parts of figure 1.1.

12 1.5. Contribution

The following parts will now present several papers which form the core of this the-

sis:

1. Herzog, S., Zimmermann, R. S., Abele, J., and Parlitz, U. (2021c). “Recon-

structing Complex Cardiac Excitation Waves From Incomplete Data Using

Echo State Networks and Convolutional Autoencoders”. In: Frontiers in

Applied Mathematics and Statistics. accepted version 2020/12/07 - shown

in this work, published version 2021/03/18 - available online: https://www.

frontiersin.org/articles/10.3389/fams.2020.616584/full

2. Herzog, S., Tetzlaff, C., and Wörgötter, F. (2020a). “Evolving artificial neural

networks with feedback”. In: Neural Networks : the official journal of the

International Neural Network Society 123, pp. 153–162

3. Herzog, S., Wörgötter, F., and Parlitz, U. (2019). “Convolutional autoencoder

and conditional random fields hybrid for predicting spatial-temporal chaos”.

In: Chaos (Woodbury, N.Y.) 29.12

4. Herzog, S., Wörgötter, F., and Parlitz, U. (2018). “Data-Driven Modeling

and Prediction of Complex Spatio-Temporal Dynamics in Excitable Media”.

In: Frontiers in Applied Mathematics and Statistics 4

5. Herzog, S. and Wagner, C. (2020b). “Development of Artificial Neural

Networks with Integrated Conditional Random Fields Capable of Predicting

Non-linear Dynamics of the Flow Around Cylinders”. In: New Results in Nu-

merical and Experimental Fluid Mechanics XII. Cham: Springer International

Publishing, pp. 71–79

6. Herzog, S., Schiepel, D., Guido, I., and Wagner, C. (2021b). “A probabilistic

particle tracking framework for guided and Brownian motion systems with

high particle densities”. submitted to Int J Comput Vis

7. Herzog, S. and Wörgötter, F. (2021a). “Application of neural ordinary

differential equations to the prediction of multi-agent systems”. accepted

https://www.frontiersin.org/articles/10.3389/fams.2020.616584/full
https://www.frontiersin.org/articles/10.3389/fams.2020.616584/full

1. Introduction 13

for SWARM 2021 (to be considered for full publication in Artificial Life and

Robotics)

These works will be cited in my thesis marked with an "*" to point their specific

contribution out as required.

14

My greatest concern was what to call it. I thought of
calling it information, but the word was overly used,
so I decided to call it uncertainty.
When I discussed it with John von Neumann, he had
a better idea. Von Neumann told me, ’You should
call it entropy, for two reasons. In the first place
your uncertainty function has been used in statistical
mechanics under that name, so it already has a name.
In the second place, and more important, no one
really knows what entropy really is, so in a debate
you will always have the advantage.’

—Claude E. Shannon, reprinted in (Tribus et al.
1971a) 2

Data processing

Contents
2.1 Introduction to artificial neural networks and data

processing . 15
2.1.1 Learning as function approximation 17

2.2 Artificial neural networks 18
2.2.1 Convolutional neural networks 19
2.2.2 Autoencoder . 20

2.3 Publication: (Herzog et al. 2021c) 21
2.3.1 Conclusions from (Herzog et al. 2021c) 46

2.4 Publication: (Herzog et al. 2020a) 46
2.4.1 Conclusions from (Herzog et al. 2020a) 57

2.1 Introduction to artificial neural networks and
data processing

If no information about a system is available, model and theory building is not

possible, in which case data acquisition is necessary in the hope of obtaining

information about the system under study. However, collecting data does not mean

obtaining compelling information (more specific new knowledge). The process

of collecting data is exposed to many sources of interference, such that many

factors can play a role that ultimately determine whether it is possible to obtain

15

16 2.1. Introduction to artificial neural networks and data processing

information about the studied system, information that is necessary to form models,

Theory Experiment

Simulation

Problems

Data-driven modelling

Spa.-tem.
pred.

Dataprocess. Symbolicrepres.

Real data

Conclusions

Outlook

Figure 2.1: Structure overview: Data
processing chapter 2

models from which theories follow. One

of these cases is that during the collection

of data, effects are also measured that

have nothing to do with the system under

observation and come from a different

source. In such a case, one often speaks of

noise. In addition to noise, there are also

other problems, for example the resolution

(both spatially and temporally) may not

be sufficient to observe the system at a

level to obtain enough information to form

theories. Likewise, the system under obser-

vation may have characteristics that can

only be partially observed. In the worst

case, there may even be a combination

of all of these problems, which - alas -

happens often. The first publication in this thesis Herzog, S., Zimmermann, R. S.,

Abele, J., and Parlitz, U. (2021c). “Reconstructing Complex Cardiac Excitation

Waves From Incomplete Data Using Echo State Networks and Convolutional

Autoencoders”. In: Frontiers in Applied Mathematics and Statistics. accepted

version 2020/12/07 - shown in this work, published version 2021/03/18 - available

online: https://www.frontiersin.org/articles/10.3389/fams.2020.616584/

full deals with this question. In this paper, two artificial neuronal networks are

examined for their ability to reconstruct noisy, blurred, under-sampled data and

later on even to recover patterns from impaired observations.

Before the paper is presented, I would like to put it in relation to the introduction

and also the concept of learning should be more specified.

https://www.frontiersin.org/articles/10.3389/fams.2020.616584/full
https://www.frontiersin.org/articles/10.3389/fams.2020.616584/full

2. Data processing 17

2.1.1 Learning as function approximation

Many learning problems can be understood as function approximation. The goal is

to find a hypothesis that can be used to transfer one set of states to another set

of states. The first case presented in this chapter will be the case of predicting

a set of impalpable properties based on a set of observable ones. This can be

considered as state-space reconstruction. In chapter 3, the second case will be

discussed, where the goal will be to predict spatial–temporal dynamics. For both

cases pairs of examples of the function to be learned are needed. The hypothesis

that best approximates this function is sought. A hypothesis approximates the

objective function well if its predictions are fulfilled as often as possible. This

model can be formally written down as follows:

Definition 2.1.1. Assuming a generator G, that generates sample descriptions

xi ∈ K, where K is some arbitrary space, based on a probability distribution

p (xi). An oracle O, that assigns a value yi = t (xi) to each example description xi
generated by G, in a hypothesis language LH. The goal is to find the hypothesis

h ∈ LH, which minimises the following expression:

R(h) =
|K|∑
i=1

L (xi, h) · p (xi) .

p (xi) is the probability that the example xi is drawn from the example description

language. It is therefore important to make fewer errors on likely examples xi than

on unlikely examples. L (xi, h) is an error function (so-called loss function). It

describes the quality of the prediction of hypothesis h, for example xi. Based on

the form of L, one distinguishes between the following two tasks, among others:

Classification of examples into a fixed and given number of classes (e.g. classification

between cats and dogs). The following error function is normally used here, which

returns the value 1, if the prediction h (xi) is false (unequal to the true class of xi
denoted by t(xi).

L(xi, h) =
0 h(xi) = t(xi)

1 h(xi) 6= t(xi)
.

18 2.2. Artificial neural networks

The second task is the regression task, here O is supposed to approximate real-valued

function (e.g. prediction of stock prices). Often L here is the squared deviation of

the predicted value h(x) ∈ R from the target value t(x) ∈ R.

L (xi, h) = (t (xi)− h (xi))2

Direct minimisation of the expected error R(h) is not possible, because neither

p (xi) nor t (xi) for all i is known. However, examples drawn by the generator exist

using p (xi) for which we know t (xi). These examples are used to approximate the

expected error R(h) with the observed error Ro(h). The observed error for a set of

examples (x1, t (x1)) , . . . , (xn, t (xn)) and a hypothesis h is calculated as:

Ro(h) = 1
n

n∑
i=1

L (xi, h) .

Definition 2.1.2 (Empirical risk minimisation (ERM) learning). From this, the

following learning problem can be formulated. Given a set of examples

(x1, t (x1)) , . . . , (xn, t (xn))

and the hypothesis language LH. The objective is to find the hypothesis h ∈ LH,

for which the observed error Ro(h) is minimal.

These definitions, which are based on information theory, do not lose their

meaning for artificial neural networks.

2.2 Artificial neural networks

Learning often, but in artificial neural networks particularly, corresponds to empirical

risk minimisation. In the following, neural networks are treated from the point of

view of machine learning and no attempt is made to model biological processes in

the brain. In the field of machine learning an artificial neural network (ANN) is a

tuple of nodes, some given network structure, a set of weights, biases and activation

functions which process an input to an output, a more formal definition is given

in the appendix A.1.1. Based on the network structure (as defined in A.1.2) and

2. Data processing 19

the weights, one gets the architecture of the ANN. Depending on the topological

network dynamics defined in A.1.5 ANNs are often divided into recurrent and

feed-forward networks.

2.2.1 Convolutional neural networks

With the presentation of the AlexNet by Krizhevsky et al. (2012) ANNs gained

great attention. AlexNet is a variant of a feed-forward convolutional neural network

(CNN) design introduced by LeCun et al. (1989) and further improved in (LeCun

et al. 1998). In many reports that appear in the media, CNNs are often mentioned

when talking about artificial neural networks. They are used in many areas like

in the field of radiology (Yamashita et al. 2018), epidemiological imaging for

image analysis (Ivanovska et al. 2019) but also speech recognition (Grefenstette

et al. 2014) and many more. As the name suggests, CNNs use convolutional

operations to process the input.

Definition 2.2.1 (Convolution). Let f, g : Rp → R be two functions with
∫
|f |2dP <

∞ and
∫
|g|2dP <∞. Then, the function

(f ∗ g)(t) :=
∫
Rp
f(y)g(t− y)dy

is called convolution of f and g. For the discrete case, i.e. t ∈ Z, the discrete

convolution is defined by

(f ∗ g)(t) :=
k∑

y=−k
f(y)g(t− y),

where k ∈ N is the size of the convolution kernel used (k = ±∞ is in theory also

possible).

These feed-forward networks were primarily developed to process static images,

like for image classification or labelling. As will be shown later, however, they

are also very useful for cases where fields or similar data can be displayed as

images. CNNs also have an architecture and this is decisive for which functions

the network can approximate and how.

20 2.2. Artificial neural networks

2.2.2 Autoencoder

For this and the next chapter, the feed-forward neural network has the architecture

of an autoencoder (AE) (Kramer 1991). AEs are structured in 3 parts:

1. The encoder part: This is the first part of the neural network and aims to

compress the input to a more compact representation.

2. The compact representation is the bottleneck of the AE and often called latent

space.

3. The third part of the network is the decoder part, it is the inverse function

of the encoder part and should transform the data back into the original

representation.

Bottleneck /
Latent space

Figure 2.2: Exemplary representation of a autoencoder neural network with convolutional
layers. This illustration was generated with software library of Iqbal (2018). The rectangles
in the light yellow are the convolutional-, the rectangles in orange are the pooling-layers.
These are simply layers that reduce the dimension, e.g. by always outputting only the
pixel with the largest intensity of the neighbouring pixels. The arrows in blue, which skip
over neighbouring layers are the so called residual connections.

The objective of these architectures is to learn an efficient encoding and other

useful properties (Goodfellow et al. 2016). This type of function approximation

(section 2.1), is very powerful and an elementary building block for the following

methods. A visualisation of this architecture is presented in figure 2.2. However,

it only serves as an illustration. Connections that go beyond neighbouring layers

should also be noted, they are called residual connection (He et al. 2016). The

2. Data processing 21

hourglass-shaped structure of the autoencoder is characteristic for this architecture

and there are still some variations like stacked autoencoders (Vincent et al. 2010),

variational autoencoders (Kingma et al. 2019), transforming auto-encoders (Hinton

et al. 2011), just to name of few of them.

2.3 Publication: (Herzog et al. 2021c)

The first publication that is now presented is Herzog, S., Zimmermann, R. S., Abele,

J., and Parlitz, U. (2021c). “Reconstructing Complex Cardiac Excitation Waves

From Incomplete Data Using Echo State Networks and Convolutional Autoencoders”.

In: Frontiers in Applied Mathematics and Statistics. accepted version 2020/12/07

- shown in this work, published version 2021/03/18 - available online: https:

//www.frontiersin.org/articles/10.3389/fams.2020.616584/full. This

work had two intentions. The first was to see how well ANNs could be used to

represent data of non-linear systems. The second question was whether a feed-

forward network in the form of a convolutional autoencoder (CAE) or a recurrent

network in the form of an recurrent echo state network (ESN) is a better function

approximator to reconstruct noisy, blurred, under-sampled data and later on even

to recover patterns from impaired observation. For the synthetic data sets used to

evaluate both methods in *(Herzog et al. 2021c) both networks generated satisfying

solutions clearly indicating that such data reconstruction tasks can be solved by

means of ANNs.

https://www.frontiersin.org/articles/10.3389/fams.2020.616584/full
https://www.frontiersin.org/articles/10.3389/fams.2020.616584/full

1

Reconstructing complex cardiac excitation
waves from incomplete data using echo state
networks and convolutional autoencoders
Sebastian Herzog 1,2, Roland S. Zimmermann 3,4, Johannes Abele 1,4, Stefan
Luther 1,5,6 and Ulrich Parlitz 1,4,6∗

1 Max Planck Institute for Dynamics and Self-Organization, Germany
2 Third Institute of Physics and Bernstein Center for Computational Neuroscience,
University of Göttingen, Germany
3 Tübingen AI Center, University of Tübingen Germany
4 Institute for the Dynamics of Complex Systems, University of Göttingen, Germany
5 Institute of Pharmacology and Toxicology, University Medical Center Göttingen,
Germany
6 DZHK (German Center for Cardiovascular Research), partner site Göttingen,
Germany
Correspondence*:
Corresponding Author
ulrich.parlitz@ds.mpg.de

ABSTRACT2

The mechanical contraction of the pumping heart is driven by electrical excitation waves running3
across the heart muscle due to the excitable electrophysiology of heart cells. With cardiac4
arrhythmias these waves turn into stable or chaotic spiral waves (also called rotors) whose5
observation in the heart is very challenging. While mechanical motion can be measured in6
3D using ultrasound, electrical activity can (so far) not be measured directly within the muscle7
and with limited resolution on the heart surface, only. To bridge the gap between measurable8
and not measurable quantities we use two approaches from machine learning, echo state9
networks (ESNs) and convolutional autoencoders (CAEs), to solve two relevant data modelling10
tasks in cardiac dynamics: Recovering excitation patterns from noisy, blurred or undersampled11
observations and reconstructing complex electrical excitation waves from mechanical deformation.12
For the synthetic data sets used to evaluate both methods we obtained satisfying solutions with13
ESNs and good results with CAEs, both clearly indicating that the data reconstruction tasks can14
in principle be solved by means of machine learning.15

Keywords: reservoir computing, echo state networks, convolutional autoencoder, image enhancement, cross-prediction, cardiac16
arrhythmias, excitable media, electro-mechanical coupling, cardiac imaging17

1 INTRODUCTION
Cardiac arrhythmias, such as ventricular or atrial fibrillation, are electro-mechanical dysfunctions of the18
heart that are associated with complex, chaotic spatio-temporal excitation waves within the heart muscle19
resulting in incoherent mechanical contraction and a significant loss of pump function [1, 2, 3]. Ventricular20
fibrillation (VF) is the most common deadly manifestation of a cardiac arrhythmia and requires immediate21
defibrillation using high-energy electric shocks. Atrial fibrillation (AF) is the most common form of a22

1

Herzog et al. Reconstructing cardiac excitation waves

cardiac arrhythmia, affecting 30 million patients worldwide. While not immediately life-threatening, AF is23
considered to be responsible for 15% of strokes if left untreated. The structural substrate and functional24
mechanisms that underlie the onset and perpetuation of VF and AF are not fully understood. It is generally25
agreed that imaging of the cardiac electrical and mechanical function is key to an improved mechanistic26
understanding of cardiac disease and the development of novel diagnosis and therapy. This has motivated27
the development of non-invasive and invasive electrophysiological measurement and imaging modalities.28
Electrical activity of the heart can (so far) be measured on its surface, only. Direct measurements can be29
made in-vivo inside the heart using so-called basket catheters with typically 64 electrodes or in ex-vivo30
experiments, where an extracted heart in a Langendorff perfusion set-up is kept beating and the cell31
membrane voltage on the epicardial surface is made visible using fluorescent dyes (a method also known32
as optical mapping) [4]. A method for indirect observation of electrical excitation waves is ECG imaging33
where an array of EEG-electrodes is placed on the body surface and an (ill-posed) inverse problem is solved34
to estimate the potential on the surface of the heart. Mechanical contraction and deformation of the heart35
tissue can be studied in full 3D using ultrasound, in 2D using real-time MRT [5] or (on the surface only) by36
motion tracking in Langendorff experiments.37
The reconstruction of patterns of action potential wave propagation in cardiac tissue from ultrasound has38
been introduced by Otani et al. in 2010 [6, 7]. They proposed to use ultrasound to visualise the patterns of39
propagation of these waves through the mechanical deformations they induce and to reconstruct action40
potential-induced active stress from the deformation. Provost et al. [8] introduced electromechanical wave41
imaging to map the mechanical deformation of cardiac tissue at high temporal and spatial resolutions.42
The observed deformations resulting from the electrical activation were found to be closely correlated43
with electrical activation sequences. The cardiac excitation-contraction-coupling (ECC) [9] has also44
been studied in optical mapping experiments in Langendorff-perfused isolated hearts [10, 11, 12]. Using45
electromechanical optical mapping [12], it was shown that during ventricular tachyarrhythmias electrical46
rotors introduce corresponding rotating mechanical waves. These co-existing electro-mechanical rotors47
were observed on the epicardial surface of isolated Langendorff-perfused intact pig and rabbit using optical48
mapping [13]. Using high-resolution ultrasound, these mechanical rotors were also observed inside the49
ventricular wall during ventricular tachycardia and fibrillation [13].50
All these measurement modalities are limited, in particular those suitable for in vivo applications.51
Measurements with basket catheters are effectively undersampling the spatio-temporal wave pattern. Inverse52
ECGs suffer from ill-posedness and required regularisation that may lead to loss of spatial resolution and53
blurring. Limited spatial resolution is also an issue with ultrasound measurements, but they are currently54
the only way to “look inside” the heart, albeit measuring only mechanical motion. Electrical excitation55
waves inside the heart muscle are so far not accessible by any measurement modality available.56
These limitations motivated the search for algorithms to reconstruct electro-mechanical wave dynamics57
in cardiac tissue from measurable quantities. Berg et al. [14] devised synchronization-based system58
identification of extended excitable media, in which model parameters are estimated by minimizing59
the synchronization error. Using this approach, Lebert and Christoph [15] demonstrated that electro-60
mechanic wave dynamics of excitable-deformable media can be recovered from a limited set of observables61
using a synchronization-based data assimilation approach. Hoffman et al. reconstructed electrical wave62
dynamics using ensemble Kalman filters [16, 17]. In an another approach, it was shown that echo state63
networks [18] and deep convolutional neural networks [19, 20] provide excellent cross estimation results64
for different variables of a mathematical model describing complex electrical excitation waves during65
cardiac arrhythmias. Following this approach, Christoph and Lebert [21] demonstrated the reconstruction of66
electrical excitation and active stress from deformation using a simulated deformable excitable medium. To67

This is a provisional file, not the final typeset article 2

Herzog et al. Reconstructing cardiac excitation waves

continue this research and to address the general challenge of missing or impaired observations we consider68
in this article two tasks: (i) recovering electrical excitation patterns from noisy, blurred or undersampled69
observations and (ii) reconstructing electrical excitation waves from mechanical deformation. To solve the70
corresponding data processing and cross-prediction tasks two machine learning methods are employed and71
evaluated: echo state networks and convolutional autoencoders. Both algorithms are applied to synthetical72
data generated by prototypical models for electrophysiology and electromechanical coupling.73

2 METHODS
In this section we will first introduce in section 2.1 and section 2.2 the mathematical models describing74
cardiac dynamics which were used to generate the example data for the two tasks to be solved: (i) recovering75
electrical wave pattern from impaired observations and (ii) cross-predicting electrical excitation from76
mechanical deformation. Then in section 2.3 both machine learning methods used for solving these77
tasks, echo state networks (section 2.3.1) and convolutional autoencoders (section 2.3.2), will be briefly78
introduced.79

80

2.1 Recovering complex spatio-temporal wave patterns from impaired observations81

For motivating, illustrating, and evaluating the employed methods for dealing with incomplete or distorted82
observations we shall use spatio-temporal time series generated with the Bueno-Orovio-Cherry-Fenton83
(BOCF) model [22] describing complex electrical excitation patterns in the heart during cardiac arrhythmias.84
The BOCF model is a set of partial differential equations (PDEs) with four variables and will be introduced85
in section 2.1.1. In section 2.1.2 a formal description of the data recovery tasks will be given.86

87

2.1.1 Bueno-Orovio-Cherry-Fenton Model88

Cardiac dynamics is controlled by electrical excitation waves triggering mechanical contractions of the89
heart. In the case of cardiac arrhythmias like lethal ventricular fibrillation, wave break-up and complex90
chaotic wave patterns occur resulting in significantly reduced pump performance of the heart. From the91
broad range of mathematical models describing this spatio-temporal dynamics [23] we chose the Bueno-92
Orovio-Cherry-Fenton (BOCF) model [22] to generated spatio-temporal time series that are used as a93
benchmark to validate our approaches for reconstructing complex wave patterns in excitable media from94
incomplete data. The BOCF model consists of four system variables whose evolution is given by four95
(partial) differential equations96

∂u

∂t
= D · ∇2u− (Jsi + Jfi + Jso)

∂v

∂t
=

1

τ−v
(1−H(u− θv)) (v∞ − v)− 1

τ+
v
H(u− θv)v

∂w

∂t
=

1

τ−w
(1−H(u− θw))(w∞ − w)− 1

τ+
w
H(u− θw)w

∂s

∂t
=

1

2τs
((1 + tanh(ks(u− us)))− 2s).

(1)

The variable u represents the continuum limit representation of the membrane voltage of cardiac cells97
and the variables v, w, and s are gating variables controlling ionic transmembrane currents Jsi, Jfi and Jso98
given by the equations99

Frontiers 3

Herzog et al. Reconstructing cardiac excitation waves

Jsi = − 1

τsi
H(u− θw)ws

Jfi = − 1

τfi
vH(u− θv)(u− θv)(uu − u)

Jso =
1

τo
(u− uo)(1−H(u− θw)) +

1

τso
H(u− θw).

(2)

Here H(·) denotes the Heaviside function and the currents depend on the following seven voltage100
controlled variables101

τ−v = (1−H(u− θ−v))τ−v1 +H(u− θ−v)τ−v2

τ−w = τ−w1 +
1

2
(τ−w2 − τ−w1)(1 + tanh(k−w (u− u−w)))

τ−so = τso1 +
1

2
(τso2 − τso1)(1 + tanh(kso(u− uso)))

τs = (1−H(u− θw))τs1 +H(u− θw)τs2

τo = (1−H(u− θo))τo1 +H(u− θo)τo2

v∞ =

{
1, if u ≤ θ−v
0, if u ≥ θ−v

w∞ = (1−H(u− θo))(1−
u

τw∞
) +H(u− θo)w∗∞.

(3)

For simulating the dynamics we used the set of parameters given in Table 1 for which the BOCF model102
was found [22] to exhibit excitation wave dynamics similar to the Ten Tusscher-Noble-Noble-Panfilov103
(TNNP) model [24] describing human heart tissue.104

uo 0 τ−v2 1150 τfi 0.11 τs1 2.7342 τs2 3 τo1 6 τo2 6
uu 1.58 τ+

v 1.4506 τ−w1 70 τ−w2 20 τso1 43 τso2 0.2 τsi 2.8723
θv 0.3 τw∞ 0.07 τ−v1 60 τ+

w 280 ks 2.0994 w∗∞ 0.94 θw 0.015
us 0.9087 θ−v 0.015 k−w 65 θo 0.006 u−w 0.03 kso 2 uso 0.65

Table 1. TNNP model parameter values for the BOCF model [22].

Typical snapshots of the four variables during a chaotic evolution are shown in Figure 1. The spatio-105
temporal chaotic dynamics of this system is actually transient chaos whose lifetime grows exponentially106
with system size [25, 26]. To obtain chaotic dynamics with a sufficiently long lifetime the system has107
been simulated on a domain of 512 × 512 grid points with a grid constant of ∆x = 1.0 space units and108
a diffusion constant D = 0.2. Furthermore, an explicit Euler stepping in time with ∆t = 0.1, a 5 point109
approximation of the Laplace operator, and no-flux boundary conditions were used for solving the PDEs.110

111

This is a provisional file, not the final typeset article 4

Herzog et al. Reconstructing cardiac excitation waves

Figure 1. Snapshots of the four fields u, v, w, s of the BOCF model Eq. (1) (from left to right).

2.1.2 Reconstruction tasks112

Experimental measurements of the dynamics of a system of interest often allow only the observation of113
some state variables (e.g., the membrane voltage) and may provide only incomplete or distorted information114
about the measured observable. Typical limitations are (additive) measurement noise and low-spatial115
resolution (due to the experimental conditions and/or the available hardware). Formally, measurements116
impaired due to noise, blurring or undersampling can be described as follows: Let Xn ∈ Rr×c be the117
measured data (here: snapshots of the field u) where r and c specify the two spatial dimensions. Each sample118
Xn with n = 1, . . . , N corresponds to a true system output X′n ∈ Rr

′×c′ that is assumed to be known only119
during the training phase in terms of a training set D = {Z1 = (X1,X

′
1), . . . ,ZN = (XN ,X

′
N)}. Note120

that with coarse graining r ≤ r′ and c ≤ c′. The task is to predict the true system output X′ from impaired121
observations X which belong to one of the following three cases:122

1. Noisy data: To add noise each element of X′ is replaced with probability p by 0 or 1 drawn from123
a Bernoulli distribution B(0.5) (note that in our case X′ is given by the variable u of the BOCF124
model which has a range of [0, 1]). To simulate different levels of noise different probabilities p =125
0.1, 0.2, ..., 0.9 are used to generate noisy data sets {Xn}. In the following p is called the noise level.126

2. Blurred data: Date with reduced spatial resolution are obtained as Fourier low-pass filtered data127
X = F−1(Pm(F(X′))) where F and F−1 denote the Fourier transform and its inverse, respectively,128
and Pm is a projection where frequencies outside a radius m ∈ [2, 4, 8, . . . , 18] (Manhattan distance)129
centered at frequency zero are set to zero.130

3. Undersampled data: To generate undersampled date X′ is down-sampled Rr
′×c′ → Rr×c with r < r′131

and c < c′ by accessing every 2i-th value of X′, where i ∈ [1, 7].132

Figure 2 shows examples of the three types of impaired observations.

Figure 2. Snapshots of the three cases of impaired data based on u (from left to right: A: reference data u,
B: noisy data, C: blurred data, and D: undersampled data.)

Frontiers 5

Herzog et al. Reconstructing cardiac excitation waves

2.2 Predicting electrical excitation from mechanical contraction133

To learn the relation between mechanical deformation and electrical excitation inverse modelling data134
were generated by a conceptual electro-mechanical model consisting of an Aliev-Panfilov model describing135
the electrical activity and a driven mass-spring-system [15].136

137

2.2.1 Aliev-Panfilov Model138

Specifically developed to mimic cardiac action potential in the myocardium, the Aliev-Panfilov model
is a modification of the FitzHugh-Nagumo model, which reproduces the characteristic shape of electric
pulses occurring in the heart [27]. It is given by a set of two differential equations,

∂u

∂t
= ∇(D · ∇u)− ku(u− a)(u− 1)− uv (4)

∂v

∂t
= ε(u, v) · (−v − ku(u− b− 1)) (5)

ε(u, v) = ε0 +
µ1v

µ2 + u

in which u and v are the normalised membrane voltage and the recovery variable, respectively, and a, b and
k are model parameters. The term ∇(D · ∇u) accounts for the diffusion, in which the tensor D can be
used to model anisotropies in the myocardial tissue. In addition, the term ε(u, v) is introduced to adjust
the shape of the restitution curve by modulating the parameters µ1 and µ2. The computational advantage
of the Aliev-Panfilov model lies in its simplicity over other ion-flow-based models which allows shorter
runtimes and combined with the elastomechanical model, keeps computational costs fairly reasonable.
For this reason, the Aliev-Panfilov model was chosen for generating synthetic data from complex chaotic
electromechnical wave dynamics.
Within the heart muscle, the myocardium, cells contract upon electrical excitation through a passing action
potential. At this point it is important to note that muscle fibre contracts along its principal orientation
which has to be considered during the implementation of the mechanical part of the simulation. To couple
the mechanical contraction of the muscle fibre to electrical excitation of a cell, as an extension to the Aliev-
Panfilov model the active stress Ta was introduced by Nash and Panfilov [28] which leads to contraction in
the principal orientation of the muscle fibre. The change of the active stress is described by

∂Ta
∂t

= εT (u) · (kTu− Ta) , (6)

where kT controls the strength of the build-up of active stress. The term ε(u) regulates the influence of u on
Ta for large u. In our simulations we use a smooth function introduced by Göktepe and Kuhl [29] given by

εT (u) = εT,0 + (ε∞ − εT,0) · exp (− exp (−ξT · (u− u0)) . (7)

Here, ξT controls the steepness of the transition between ε∞ and εT,0 and u0 denotes the potential threshold139
for the activation of the active stress, with ε∞ < εT,0 to achieve a physiological time course [30].140

2.2.2 Mass-Spring Damper System141

The elasto-mechanical properties of the cardiac muscle fibre were implemented using a modified142
two-dimensional mass-spring damper system [31]. For the current study the mass-spring system was143

This is a provisional file, not the final typeset article 6

Herzog et al. Reconstructing cardiac excitation waves

implemented in two dimensions because this allows shorter runtimes and primarily serves as a proof-of-144
principle for the evaluated reconstruction approach. In its two-dimensional form this mechanical model145
might correspond best to a cut-out of the atrium’s wall, since there the muscle tissue is less than 4 mm146
thick. However, this mass-spring system can easily be expanded to three dimensions (see [15]).147
Placed on a regular lattice, one mechanical cell is made up of four particles xi at the corners connected by148
structural springs and two sets of orthogonal springs connecting the centre of mass ~xcm to each side of the149
cell (see Figure 3). The springs in the middle of the cell are called axial springs, of which one is made to150
be active (red). Here it is important to point out that one cell in the electrical model corresponds to one cell151
in the mechanical mass-spring system. For setting the fibre orientation through the active axial spring, the152
orientation parameter η ∈ [0, 1] has been introduced, with which the four points of attachment qi can be153
computed easily. This parameter can be set individually for each cell, so that various fibre orientations can154
be modelled.

Figure 3. Two dimensional mass-
spring damper system with one
active spring modelling fibre
orientation (red) and one passive
spring (grey), the centre of mass
xcm, the four points of attachment
qi to the structural springs and the
orientation parameter η.

155

Using ~xcm = 1
4

∑4
i=0 ~xi the forces from the passive spring ~fj and the active spring ~fa are obtained as

~fj = −kj(‖~qj − ~xcm‖ − lj,0) · ~ej , (8)

~fa = −ka
(
‖~qa − ~xcm‖ −

la,0
1 + ca · Ta

)
· ~ea . (9)

Here lj,0, kj and la,0, ka denote the resting lengths and spring constants of the passive and active spring,
respectively. From Equation (9) it can be seen that, upon a rise in active stress Ta from Equation (6), the
active spring contracts and an inward force is generated. The parameter ca represents a scaling factor to
modulate the influence of the active stress. Through the orientation parameter the forces from the active
and passive spring can be redistributed to the corresponding particles at the corners. For example for ~q1,
the force on x0 would be ~f0 = η ~fq1 and on x1 it would amount to ~f1 = (1− η)~fq1 .
In addition, the mechanical grid is held together by structural forces between the corner particles, which
can be computed using

~fij = −kij(‖~xi − ~xj‖ − lij) · ~eij , (10)

~fji = −~fij , (11)

Frontiers 7

Herzog et al. Reconstructing cardiac excitation waves

with lij being the resting length between particle xi and xj .
Finally, with all the above forces acting on particle xi with mass mi, its motion is determined according to

mi
d2~xi
dt2

=
∑

{a}{j}{ij}

~fk − ν
d~xi
dt

, (12)

with the sum
∑
{a}{j}{ij} ~fk of all relevant springs pulling or pushing the particle. The damping constant ν

sets the strength of the damping to increase the stability of the mechanical system as a whole.
The area of each cell was calculated with a simple formula for a general quadrilateral using the positions of
its four corners. As a measure of contraction, the relative change of area

∆A(t) =
A(t)

Aundeformed
− 1 (13)

has been used. The numerical algorithm for solving the full set of electro-mechanical ODEs is summarized156
in the appendix.157

2.2.3 Reconstruction task158

The inverse modelling data are generated by forward modelling M : u 7→ ∆A using the output of159
Equations (4) and (13). The task is to train an ESN or CAE to approximate M−1 : ∆A 7→ u. To fulfill160
this task we use the membrane voltages and the local deformations at all r × c grid points sampled at161
times tn. The training data set D = {Z1 = (X1,X

′
1), . . . ,ZN = (XN ,X

′
N)} thus consists of snapshots162

Xn ∈ Rr×c and X′n ∈ Rr×c of the relative mechanical deformation ∆A(tn) and the membrane voltage163
u(tn), respectively, and we aim at approximating M−1 : Xn 7→ X′n with r, c = 100.164

2.3 Machine Learning Methods165

In this section we will introduce the two machine learning approaches, echo state networks (ESN) [32]166
and convolutional autoencoders (CAE) [33], that will be applied to solve the reconstruction tasks defined167
in section 2.1.2 and section 2.1.2.168

2.3.1 Echo State Network169

Echo state networks have been introduced in 2001 by H. Jaeger [32] as a simplified type of recurrent170
neural network, in which the weights describing the strength of the connections within the network are171
fixed. In its general composition an ESN subdivides into three sections [32], as illustrated in Figure 4.172
First of all, there is the input layer into which the input signal ~un ∈ RNu and a constant bias bin are173
fed. Secondly, the intermediate reservoir consists of N nonlinear units and its state is given by ~sn ∈ RN .174
And lastly, the output layer provides the output signal ~yn ∈ RNy . Here, n denotes the discrete time steps175
n = 1, ..., T .176

177

Figure 4. Schematic representation of an ESN. On the
left side (colored in blue) is the input layer where the
input signal ~un and a constant bias bin are fed in. The
reservoir is represented as the large circle in the middle,
where the small circles are the nodes. The output layer
on the right (colored in orange) provides the reservoir
signals ~sn that are part of the vector ~xn = [bout;~sn; ~un]
used for computing the output ~yn = Wout~xn.

This is a provisional file, not the final typeset article 8

Herzog et al. Reconstructing cardiac excitation waves

The concatenated bias-input vector [bin; ~un] is fed into to the reservoir through the input matrix Win ∈
RN×(1+Nu). Inside the reservoir connections are given by the weight matrix W ∈ RN×N , where N is the
reservoir size. Together with the input matrix it is possible to determine the state of the reservoir at time n
through the update rule

~sn = (1− α)~sn−1 + αfin(Win[bin; ~un] + W~sn) , (14)

in which [·; ·] denotes a concatenated vector. The input bias bin, as well as the later introduced output bias
bout were both set to 1 in the following. The parameter α ∈ (0, 1] in Equation (14) represents the leaking
rate which controls how much of a neuron’s activation is carried over to the next time step and can be used
as a parameter to enhance predictions. As for the transfer function fin(·) we use tanh(·) and the network
dynamics has no feedback loop. Only the weights Wout providing the output signal

~yn = Wout~xn with ~xn = [bout;~sn; ~un] (15)

are adapted during the training process by minimizing the cost function [34]

C(Wout) =
∑

n

‖~y truen −Wout~xn‖2 + λTr(WoutW
T
out) (16)

where λ controls the impact of the regularization term that prevents overfitting [35]. The final output matrix178
is given by the minimum of the cost function at Wout = YXT(XXT +λ1)−1 where X and Y are matrices179
whose columns are given by the vectors ~xn and ~y truen , respectively.180
Both matrices Win and W, are initialised with random values from the interval [−0.5, 0.5]. Since in181
experiments it turned out that more diverse dynamics could be modelled using networks in which only a182
small percentage ε of weights inside the reservoir remained non-zero [32], the weight matrix W is made183
sparse with only a portion ε of its values remaining non-zero. Furthermore, it is scaled by a factor ρ

|µmax|184

where |µmax| denotes here the largest eigenvalue of W and ρ is a hyperparameter for optimizing the185
performance (by ensuring the so-called echo state property [36]). To reduce the probability of drawing an186
dysfunctional set of matrix entries the randomly generated matrices Win and W were selected from four187
different realisations. To optimize the performance of the ESN five hyperparameters (N, ε, ρ, α and λ) are188
tuned.189
Reservoir computing using ESNs for predicting chaotic dynamics has already been demonstrated in 2004190
by Jaeger and Haas [37]. Since then many studies appeared analyzing and optimizing this approach (see,191
for example, [38, 39, 40, 41, 42, 43, 44] and references cited therein). In particular, it has been pointed192
out how reservoir computing exploits generalized synchronization of uni-directionally coupled systems193
[45, 46].194
Recently, applications of ESNs to spatio-temporal time series have been presented [47, 18] employing195
many networks operating in parallel at different spatial locations based on the concept of (reconstructed)196
local states [48]. In particular, using this mode of reservoir computing it was possible to perform a cross-197
prediction between the four different variables of the BOCF model [18]. Therefore, for the current task198
of reconstructing data from impaired observations we build on the previous ESN design and modelling199
procedure. For each pixel an ESN is trained receiving input from neighbouring pixels, only, representing200
the local state at the location of the reference pixel as illustrated in Figure 5. This design introduces two201
new hyperparameters σ and ∆σ to the default ESN, where σ is the size of the stencil to define the local202

Frontiers 9

Herzog et al. Reconstructing cardiac excitation waves

state and ∆σ specifies the spatial distance of adjacent pixels included in the local state. Optimal values for203
all hyperparameters are determined by a grid search.204

Figure 5. Stencil for locally sampling data used as
input of the ESN operating at the location of the dark
blue pixel in the center. The stencil is characterized by
its width σ and the spatial separation ∆σ of sampling
points.

2.3.2 Convolutional autoencoder205

A convolutional autoencoder [33] is a special architecture of a feed forward network (FFN) with206
convolutional layers similar to convolutional neural networks (CNNs) [49]. Generally a CAE learns a207
representation of the training set D with the purpose of dimensionality reduction. For each pair Zi =208
(Xi,Xi

′) ∈ D the CAE is trained to perform a nonlinear transformation from the input representation of209
Xi to the output representation of X′i. Like CNNs a CAE is a partially locally connected feed forward210
network, which is typically composed of the following layers:211

• Convolutional layers: Convolution of the input by a kernel sliding over the input. The number of rows212
and columns of the kernel are hyper-parameters, in this work they are set to be 3× 3.213

• Batch normalization layer: Normalization of the activations of the previous layer during training and214
for each batch. Batch normalization allows the use of higher learning rates, being computationally215
more efficient, and also acts as a regularizer [50].216

• Leaky ReLU [51] layer: Leaky version of a rectified linear unit (ReLU) [52], such that:

ν(x) =

{
αx for x < 0

x for x ≥ 0.

• Max pooling layer: Sample-based operation for discretization based on a kernel that slides over the217
input like the convolutional operator but only the maximum value of the kernel is passed to the next218
layer. Width and height of the kernel are hyper-parameters (in this work 2 × 2). In contrast to the219
convolutional layer a pooling layer is not trainable.220

• Dropout layer: Regularization method to prevent overfitting where during training some weights are221
set randomly to zero [53]. In this work the probability of setting the weights to zero is 0.05.222

The eponymous part of the CAEs are the convolutional layers, a convolution of A = (aij) ∈ Kn×n with a223
kernel F = (fij) ∈ Kk×k, where k < n, is given by:224

(A ∗ F)xy =

dk/2e∑

i=b−k/2c

dk/2e∑

j=b−k/2c
axyf(i−x)(j−y), (17)

with x, y ∈ 1, . . . , n. If i− x− or j − y exceeds the range of A zero-padding is applied [54].225
In this work two architectures are used. The first one employed to reconstruct the data from noisy, blurred226
and inverse modelling data is illustrated in Figure 6. The architecture is the same for the tasks in section 2.1.2227

This is a provisional file, not the final typeset article 10

Herzog et al. Reconstructing cardiac excitation waves

and section 2.2.3 but the sizes of X and X′ are different, with X,X′ ∈ R512×512 and X,X′ ∈ R100×100,228
respectively. Due to the smaller input size, the data for the inverse modelling reconstruction is transformed229
into a latent space with the size of 25× 25. The second architecture is sketched in Figure 7 and deals with230
the undersampled data reconstruction.231

Figure 6. Proposed autoencoder architecture for reconstruction of data from noisy or blurred input.
Each block is a set of layers. The values written vertically describe the dimension of the input for
each layer, e.g.: for noisy and blurred data r = 512, c = 512 and for the inverse modelling data r =
100, c = 100. The horizontally written values at the layers are the number of channels or number of filters.
Group 1 is an combination of layers, consisting of: Conv2D, BatchNormlization, LeakyReLU, Conv2D,
BatchNormlization and LeakyReLU layers. Group 2 is an extension of Group 1 where a MaxPooling2D
and Dropout layer are placed before Group 1. Similar applies to Group 3, it consists of a Dropout layer
followed by the layers from Group 1 and finalized by a Conv2DTranspose layer follows. The architecture
was visualized with Net2Vis [55].

Figure 7. Autoencoder architecture used for reconstruction from undersampled observations. Each block
is a set of layers. The layer labeling is the same as in Figure 6. Visualized with Net2Vis [55].

3 RESULTS
In the following both machine learning methods will be applied to two tasks: (i) Reconstructing electrical232
excitation waves from noisy blurred and under sampled data (section 3.1) and (ii) Predicting electrical233
excitation from mechanical contraction (section 3.2).234

235

Frontiers 11

Herzog et al. Reconstructing cardiac excitation waves

3.1 Recovering complex spatio-temporal wave patterns from impaired observations236

To benchmark both reconstruction methods, using ESNs and CAEs, we use time series generated by237
the BOCF model introduced in section 2.1.1. The same data were used for both methods, consisting of238
5002 samples in the training data set, 2501 samples in the validation data set, and 2497 samples in the239
test data set. The sampling time of all time series equalled 10∆t = 1. We considered nine cases of noisy240
data (with different noise levels), ten cases of (differently) blurred data and seven examples of (spatially)241
undersampled time series.242
To determine the optimal ESN hyperparameters a grid search is performed as described in [18] using the243
training and validation subsets of the data. This search consists of two stages: first, for each combination244
of the local states’ hyperparameters σ and ∆σ as listed in Table 2 a grid search is performed to find the245
optimal five hyperparameters of the ESN resulting in 37 sets of optimal hyperparameters. To make these246
grid searches more feasible, they were performed just for a single input patch (area covered by the stencil,247
see Fig. 5) in the spatial center of the training set and thus not use the full spatial data.248

σ ∆σ σ ∆σ σ ∆σ σ ∆σ σ ∆σ σ ∆σ σ ∆σ σ ∆σ
25 2 29 2 33 2 37 2 41 2 45 2 49 4 101 10
25 4 29 7 33 8 37 4 41 4 45 4 49 8 101 20
25 8 29 14 33 16 37 9 41 8 45 11 49 16 101 25
25 24 29 28 33 32 37 12 41 20 45 22 49 24 101 50

37 18 41 40 45 44 49 48
37 36

Table 2. The examined set of hyperparameters σ and ∆σ for the local states.

In the second stage, for each of the 37 sets of optimal hyperparameters determined before (for each249
combination of σ and ∆σ), an ESN is trained on a larger subset of the training data and not just on a single250
patch. Ideally, this step should be performed on the entire spatial domain of the training set, however, as we251
did not notice significant differences in the results when the ESNs were trained on a spatial subset of size252
250 × 250 to speed up the training process. Following the same methodology as in [18], for each pixel253
from this spatial subset a single ESN is trained and then the obtained output matrices Wout of these ESNs254
are averaged over all pixels. Compared to the procedure used in [18], the handling of boundary values has255
been changed. As for boundary pixels fewer adjacent pixels exist than for those inside, the creation of local256
states is obstructed, and boundary pixels require special treatment. In our previous work [18] individual257
ESNs have been trained for the boundary pixels using local states of lower dimensionality. In the following258
we use an alternative approach based on padding the boundary pixels by mirroring their values (motivated259
by the no-flux boundary conditions used). In this way, local states can be formally defined for boundary260
pixels in the same way as for inner pixels.261
Next, the different optimal ESNs obtained for different stencils (σ,∆σ) were evaluated by comparing their262
performance on the validation subset. In this way optimal values for σ and ∆σ were selected by choosing263
the combination (σ,∆σ) with the lowest `2 difference between the prediction and ground truth on the264
validation set. This process yields an ESN whose hyperparameters and weights are optimized to yield265
minimal `2 error. Finally, without training the network again on the entire training set, the optimal ESN266
found before is used to perform the prediction on the entire test set. As a pre-processing step, both the input267
and target data of the training, validation and test set are rescaled with min-max scaling, where the minimal268
and maximal value are determined over all pixels of the training set.269
The CAE was trained using the ADAM optimizer [56], implemented with TensorFlow [57] in version 2.3,270
with early stopping when the validation loss has not improved at least by 10−6 for 20 epochs. The learning271

This is a provisional file, not the final typeset article 12

Herzog et al. Reconstructing cardiac excitation waves

rate was reduced by a factor of 0.2 when the loss metric stopped improving at least by 10−5 for ten epochs.272
Dropout was set to be 0.05 in all cases. As loss function the mean absolute error (MAE) was chosen:273

MAE =
1

N

N∑

i=1

∣∣∣X̂i −X′i
∣∣∣ , (18)

where N is the number of elements in the data set, X̂i the network output, X′i desired ground-truth and |.|274
stands for the absolute values.275

276
3.1.1 Noisy data277

Figure 8 shows snapshots of the noisy input data, the corresponding ground truth, the outputs provided278
by the CAE and the ESN, respectively, and the absolute values of their prediction errors with respect to279
the ground truth. The evolution of the loss function during the training epochs is shown in Figure 9. In

Figure 8. Exemplary visualization of the input and output for both networks for data with different noise
levels p: A-F p = 0.1, G-L p = 0.5, and M-R p = 0.9. Comparing the absolute differences between the
prediction and the ground truth (D,J,P for the CAE and F,L,R for the ESN) one can see that the CAE is
less sensitive to noise. Note that the errors develop primarily on the fronts of the waves.

280
all cases the error decreases and the training converges, but the duration of the training depends on the281
complexity of the case.282

Figures 10 shows a comparison of the performance of the CAE and the ESN for noisy data with nine283
different noise levels p = 0.1, . . . , 0.9. While the mean absolute error of the CAE remains below 0.02, the284
reconstruction error of the ESN increases from 0.06 for p = 0.1 to 0.18 for p = 0.9, the associated ESN285
hyperparameter can be found in the appendix (Table 5).286

Frontiers 13

Herzog et al. Reconstructing cardiac excitation waves

Figure 9. Evolution of the loss
function values over the epochs for
noisy input data generated with noise
levels p = 0.1, p = 0.5, and p = 0.9
(compare Fig. 8). It can be seen that
the training always ran up to the point
where early stopping, as defined in
section 3.1, terminated it. The solid
lines are the values of the loss function
during training on the training data,
while the dotted lines are the values
of the loss function obtained when
the trained model is applied to the
validation data. One epoch trained
approximately 110 seconds on a GTX
1080 Ti.

Figure 10. Comparison between CAE
and ESN performance with noisy
input data showing boxplots of mean
absolute errors (18) for different noise
levels p ∈ [0.1, 0.2, . . . , 0.9]. Each
discrete value on the x- axis is assigned
to the boxes of the CAE and ESN,
where the ESN boxplots are coloured
in orange and the CNN boxplots are
coloured in blue. Note that for better
visibility the CAE boxes and the ESN
boxes a slightly shifted to the left and
to the right, respectively. A tabular
overview of the values can be found
in the appendix (Table 4).

3.1.2 Blurred data287

To evaluate the performance of CAE and ESN for recovering full resolution (ground truth) data from288
blurred observations we consider nine cases where the radius m of Fourier low-pass filtering ranges from289
m = 2 to m = 18 (in steps of 2). Figure 11 shows snapshots of reconstructions of the u-variable of the290
BOCF model using CAE and ESN with filter parameters m = 20 (A-F), m = 14 (G-L), and m = 8 (M-R).291
Similar to Figure 8 the errors are largest at fronts of the excitation waves, but in contrast to noisy images292
the performances of CAE and ESN differ not much for blurred data. This observation is also confirmed by293
a systematic comparison of the mean absolute errors of both methods for different manhatten distances m294
given in Figure 12. The errors decrease with m because the larger m the less blurred are the input data of295
the CAE or ESN (for hyperparameter see appendix (Table 6)). Figure 13 shows the evolution of the loss296
function during training of the CAE.297

298
3.1.3 Undersampled data299

Figure 14 shows examples of data reconstructed from undersampled data. In total we considered seven300
cases of undersampling by 2i pixels, where i ranges from i = 1 to i = 7. For i = 1 input images have a301
resolution of X ∈ R256×256 and for i = 7, X ∈ R4×4. In all cases the desired output (ground truth) X′302
has a size of 512×512 pixels. The used hyperparameter for the ESN can be found in the appendix (Table 7).303

304

This is a provisional file, not the final typeset article 14

Herzog et al. Reconstructing cardiac excitation waves

Figure 11. Exemplary visualization of the input and output for both networks, CAE and ESN, when
recovering the original data from blurred measurements. A-F corresponds to case one, where m = 20,
G-L to case six with m = 14 and M-R to seven, m = 8. Comparing the absolute differences between the
prediction and the ground truth (D,J,P for the CNN and F,L,R for the ESN) one recognizes that the CAE
and ESN exhibit different patterns. The errors of the CAE are rather pointwise distributed at some locations
(see D,J) on the front while they are more evenly distributed when using ESNs (F,L). This pattern is even
more pronounced in P vs R.

Figure 12. Mean absolute errors of
reconstructions using CAE or ESN
from data blurred with different values
of the low-pass filter parameterm. Like
in Figure 10 boxes are horizontally
shifted for better visibility. A tabular
overview of the values can be found in
the appendix (Table 4)

3.2 Predicting electrical excitation from mechanical contraction305

Echo state networks as well as convolutional autoencoders have been trained with time series generated by306
the electromechanical model introduced in section 2.2 to predict the membrane voltage u(x, t) Equation (4)307
from the local contraction ∆A(x, t) given in Equation (13). The sampling time of all time series equalled308
6∆t = 0.48. Since for periodically rotating spiral waves this cross-prediction task is quite straightforward309
we focus here on the much more demanding case of an example exhibiting spatio-temporal chaos310
(corresponding to atrial or ventricular fibrillation). Figure 17 shows at three instants of time snapshots311
of the observed contraction ∆A (first column), the ground truth of the voltage u (second column), the312
prediction of the CAE uCAE and its absolute error |u− uCAE| (third and fourth column) and the prediction313

Frontiers 15

Herzog et al. Reconstructing cardiac excitation waves

Figure 13. Evolution of the loss
function values over the training
epochs for blurred data. Training
was always terminated by reaching
the early stopping criterion, defined
in section 3.1. One epoch trained
approximately 108 seconds on a GTX
1080 Ti.

Figure 14. Exemplary visualization of the reconstruction of the u-field of the BOCF model from
undersampled data. A-F corresponds to a sampling parameter i = 1 resulting in X ∈ R256×256, G-
L to case i = 3, X ∈ R64×64 and M-R to i = 5, X ∈ R16×16. With downsampling by a factor of 21

reconstructions by both networks, CAEs and ESNs, are both very successful and the absolute differences
shown in D and F are nearly zero. Similar to reconstructions from noisy or blurred data errors occur mainly
at the fronts of the waves, and reconstruction errors of the CAE appear to be more localized compared to
ESN results.

of the ESN uESN and the corresponding absolute error |u − uESN| (columns five and six, respectively).314
Both, the ESN and the CAE were trained and tested with the same spatio-temporal time series (lengths315
of training, validation and test sets are 15000, 2000 and 2000 samples). Hyperparameters of the ESN are316
N = 600, α = 0.5, ρ = 1.1, ε = 0.05, λ = 5 · 10−3, σ = 7 and ∆σ = 1. To make the ESN more robust317
normally distributed noise with zero mean and a variance of 10−4 was added to the arguments of the318
activation function. As illustrated in Figure 17 both networks can solve the inverse problem and reconstruct319
the electrical potential field u from Equation (4). However, the reconstruction of the CAE is more precise,320
which is particularly noticeable at the edges of the reconstructed electrical potential field. Considering the321

This is a provisional file, not the final typeset article 16

Herzog et al. Reconstructing cardiac excitation waves

Figure 15. Same as Figure 10 but for
the case of the undersampled data. A
tabular overview of the values can be
found in the appendix (Table 4).

Figure 16. Evolution of the loss
function values over the epochs for
undersampled input data.

Figure 17. Exemplary visualization of the input and output for both networks for the inverse reconstruction
of the membrane voltage u (Equation (4)) based on the mechanical deformation ∆A (Equation (13)). A-F
corresponds to t = 1000, G-L to t = 1500 and M-R to t = 2000 of the test data set. The input is the
mechanical deformation given by Equation (13) caused by the electrical potential u from Equation (4).

median of the MAE over the entire test data the ESN approach achieves an error of 0.1963± 0.0260 while322
the median error of the CAE equals 0.0164± 0.0028.323

Frontiers 17

Herzog et al. Reconstructing cardiac excitation waves

4 CONCLUSION
Using synthetic data generated with conceptual models describing complex cardiac dynamics we have324
demonstrated possible applications of machine learning methods to complete and enhance experimental325
observations. It was shown that echo state networks as well as convolution autoencoders provide promising326
results, where the latter turned out to be the method of choice in terms of more faithful reconstructions.327
At this point, however, we would like to stress, that we didn’t try to fully optimize the algorithms328
employed. One could, for example, increase the size of the ESNs used or extend and refine the grid329
search of hyperparameters. Also with the CAE several options exist to improve the performance even330
more. Instead of the MAE in the loss function one could use an adaptive robust loss function [58] or the331
Jensen-Shannon divergence [19]. The weights of the CAE could be optimized with a stochastic gradient332
descend approach instead of the ADAM algorithm [56]. But we expect such modifications would show333
only minor improvements (if at all). In future work, using more realistic numerical simulations (and334
experimental data) such an optimization should be performed to achieve the best possible result for the335
intended medical application. Since here we used only data from conceptual models we refrained from336
fully optimizing the machine learning methods applied. The fact that already a straight-forward application337
of known algorithms and architectures provided very good results for the considered reconstruction tasks is338
very promising and encourages to address in future work extended tasks (including other variables, like339
calcium concentration, mechanical stress and strain, etc.) and reconstruction tasks with more realistic340
synthetic data (from 3D models, for example) combined with experimental measurements.341

CONFLICT OF INTEREST STATEMENT
The authors declare that the research was conducted in the absence of any commercial or financial342
relationships that could be construed as a potential conflict of interest.343

AUTHOR CONTRIBUTIONS
SH performed the CAE simulations and RSZ and JA did the ESN modelling. All authors designed the344
study, analyzed the results, and wrote the manuscript.345

FUNDING
SH acknowledges funding by the International Max Planck Research Schools of Physics of Biological and346
Complex Systems. UP and SL acknowledge funding by the Max Planck Society, the German Center for347
Cardiovascular Research (DZHK) partner site Goettingen, and the SFB 1002 Modulatory Units in Heart348
Failure (project C03).349

ACKNOWLEDGMENTS
SH and UP thank Florentin Wörgötter and Thomas Lilienkamp for continuous support and inspiring350
scientifc discussions.351

DATA AVAILABILITY STATEMENT
The datasets generated for this study are available on request to the corresponding author. The352
source code will be available after publication at https://gitlab.gwdg.de/sherzog3/353
reconstructing-cardiac-excitation-waves.git354

This is a provisional file, not the final typeset article 18

Herzog et al. Reconstructing cardiac excitation waves

APPENDIX 1: NUMERICAL SOLUTION OF THE ELECTRO-MECHANICAL
DYNAMICS
The differential equations from the extended Aliev-Panfilov model in Equations (4), (5) and (6) have been355
integrated using the forward Euler method356

yt+∆t
i = yti + ∆t · f(y) +O(∆t2) , (19)

in which y is a place holder for the model variables u, v and Ta; f(y) represents the right-hand side of the
respective equation. Even though the Euler method shows low accuracy compared to other integration
methods, it was chosen because it allows short runtimes, while high accuracy is not extremely important
for this simulation. The diffusion tensor D in Equation (4) was set to a scalar constant D and the diffusion
term was approximated with a nine-point stencil [59]

∇(D · ∇uij) = D · ∇2uij =
D

6h2
(4ui+1,j + 4ui−1,j + 4ui,j+1 + 4ui,j−1 + ui+1,j+1

+ ui+1,j−1 + ui−1,j+1 + ui−1,j−1 − 20uij) +O(h4) (20)

where i, j are the indices of the grid points and h denotes the spacing constant h between the cells.357
For the excitation variable u in the electrical part of the simulation, no-flux boundary conditions have358
been used which were imposed by setting the two outermost cells to the same value, i.e. u0,j = u1,j . In359
the mechanical part of the simulation, numerical calculations were carried out according to the following360
scheme for each time step:361

1. update of the position of the centre of mass xcm362
2. calculation of all four points of attachment qi for each cell363
3. computing of forces from structural and axial springs for each particle xi364
4. update of the positions of all particles using the Verlet method365
5. determine change of area for each cell366

Here the Verlet method refers to the standard Verlet algorithm which is given as [60]

~x t+∆t
i = 2~x ti − ~x t−∆t

i +
1

mi

~F t
i ∆t2 +O(∆t4) , (21)

with the total force ~F t
i acting on the particle. Because the total force includes the damping term, it is367

convenient to rewrite Eq. (21) with ~Fi = ~fi − ν d~xi
dt to368

~x t+∆t
i =

2~x ti − ~x t−∆t
i (1− ν

2mi
∆t) + 1

mi

~f t
i ∆t2

1 + ν
2mi

∆t
+O(∆t4) . (22)

A padding layer of ten electrically inactive cells was implemented outside the electrical grid to account369
for boundary effects in the mechanical network. In addition, the active stress variable Ta from Eq. (6) of370
the last row of cells just at the edge of the simulation grid was mirrored to the two padding layers just371
outside the simulation grid which proved to dramatically reduce mechanical boundary effects. This is likely372
due to the fact that a proper contraction of an electrically active cell is not guaranteed if one of its sides is373
connected to an inactive cell. Lastly, the outermost padding cell’s positions were fixed to prevent the grid374
as a whole from moving away from its original position.375
To improve numerical accuracy for each time step ∆t of the electrical equations (19) five time steps of size376

Frontiers 19

Herzog et al. Reconstructing cardiac excitation waves

∆t/5 were computed for the mechanical system (22). All computations have been performed on a spatial377
grid of 100 × 100 elements. The parameter values of the dynamical equations used are given in Table 3.

u0 0.1 a 0.05 b 0.05 µ1 0.2 µ2 0.3 k 8 ε0 0.002

D 0.22 ∆t 0.08 kT 3 kij 13 kpadij 23 kj 2 ka 9

kpada 23 ca 10 mi 0.2 ν 6.86 εT,0 1 ε∞ 0.1 ξT 30

Table 3. Parameters of the electro-mechanical model.

378

APPENDIX 2: COMPARISON OF RECONSTRUCTION ERRORS FROM IMPAIRED
DATA.
Table 4 shows the mean absolute errors of reconstructions obtained with ESNs and CAES for blurred,379
noisy, and undersampled data.

CAE (MAE ± STD)
Case Blurred data Noisy data Undersampled data

1 0.01644± 0.00136 0.00794± 0.00096 0.00432± 0.00020
2 0.02076± 0.00170 0.00835± 0.00097 0.00782± 0.00053
3 0.02667± 0.00227 0.00856± 0.00104 0.01613± 0.00119
4 0.03450± 0.00318 0.00900± 0.00096 0.04727± 0.00393
5 0.04532± 0.00407 0.00919± 0.00099 0.12190± 0.01061
6 0.06137± 0.00585 0.00961± 0.00110 0.27821± 0.02823
7 0.08913± 0.00864 0.01210± 0.00103 0.42401± 0.02800
8 0.14018± 0.01261 0.01156± 0.00120
9 0.24689± 0.01898 0.01873± 0.00136
10 0.37214± 0.02408

ESN (MAE ± STD)
Case Blurred data Noisy data Undersampled data

1 0.05220± 0.00347 0.06193± 0.00264 0.00362± 0.00031
2 0.05910± 0.00365 0.07193± 0.00288 0.01682± 0.00110
3 0.06245± 0.00394 0.08070± 0.00299 0.03516± 0.00242
4 0.07318± 0.00469 0.09052± 0.00312 0.08491± 0.00561
5 0.08476± 0.00536 0.09344± 0.00341 0.20439± 0.01105
6 0.09959± 0.00644 0.11136± 0.00370 n.A.
7 0.12325± 0.00813 0.11889± 0.00391 n.A.
8 0.18129± 0.01323 0.14548± 0.00596
9 0.27925± 0.01628 0.18259± 0.00720
10 0.39927± 0.01717

Table 4. Comparison of the MAE obtained when applying the CAE method and the ESN method to the
test data set.

380

This is a provisional file, not the final typeset article 20

Herzog et al. Reconstructing cardiac excitation waves

ESN hyperparameters for the case of noisy data
Case N ρ α ε L2 regularisation

1 500 1.25 0.5 0.05 10
2 500 0.50 0.2 0.05 10
3 250 1.00 0.2 0.2 10
4 250 0.05 0.2 0.2 10
5 250 3.00 0.2 0.1 10
6 250 1.25 0.2 0.1 10
7 250 3.00 0.2 0.05 10
8 500 1.25 0.05 0.2 10
9 500 3.00 0.05 0.05 10

Table 5. Selected ESN hyperparameters for the case of noisy data

ESN hyperparameters for the case of blurred data
Case N ρ α ε L2 regularisation

1 250 0.30 0.01 0.1 10
2 250 1.25 0.05 0.05 10
3 500 2.00 0.05 0.1 10
4 500 0.75 0.2 0.2 5
5 250 1.50 0.2 0.2 10
6 250 1.50 0.2 0.2 10
7 250 1.25 0.2 0.2 10
8 500 0.90 0.2 0.2 5
9 250 1.50 0.5 0.2 10

10 500 0.75 0.7 0.2 10

Table 6. Selected ESN hyperparameters for the case of blurred data

ESN hyperparameters for the case of undersampled data
Case N ρ α ε L2 regularisation

1 250 0.30 0.01 0.1 5
2 500 0.05 0.05 0.2 0.5
3 250 1.50 0.05 0.2 10
4 250 2.00 0.5 0.2 10
5 500 0.30 0.05 0.1 5
6 500 0.75 0.2 0.05 10
7 250 1.50 0.05 0.1 10

Table 7. Selected ESN hyperparameters for the case of undersampled data

REFERENCES

[1] Gray RA, Pertsov AM, Jalife J. Spatial and temporal organization during cardiac fibrillation. Nature381
392 (1998) 75–78. doi:10.1038/32164.382

[2] Davidenko JM, Pertsov AV, Salomonsz R, Baxter W, Jalife J. Stationary and drifting spiral waves of383
excitation in isolated cardiac muscle. Nature 355 (1992) 349–51. doi:10.1038/355349a0.384

[3] Witkowski FX, Leon LJ, Penkoske PA, Giles WR, Spano ML, Ditto WL, et al. Spatiotemporal385
evolution of ventricular fibrillation. Nature (1998). doi:10.1038/32170.386

[4] Efimov IR, Nikolski VP, Salama G. Optical imaging of the heart 95 (2004) 21–33. doi:10.1161/01.387
RES.0000130529.18016.35.388

Frontiers 21

Herzog et al. Reconstructing cardiac excitation waves

[5] Rosenzweig S, Scholand N, Holme HCM, Uecker M. Cardiac and respiratory self-gating in radial mri389
using an adapted singular spectrum analysis (ssa-fary). IEEE Transactions on Medical Imaging 39390
(2020) 3029–3041.391

[6] Otani N, Luther S, Singh R, Gilmour R. Transmural ultrasound-based visualization of patterns of392
action potential wave propagation in cardiac tissue. Ann Biomed Eng. 38 (2010) 3112—-3123.393

[7] Otani N, Luther S, Singh R, Gilmour R. Methods and systems for functional imaging of cardiac tissue.394
World Intellectual Property Organization (2010). International Patent: WO 2011/028973 A3.395

[8] Provost J, Lee WN, Fujikura K, Konofagou EE. Imaging the electromechanical activity of the heart in396
vivo. Proceedings of the National Academy of Sciences of the United States of America 108 (2011)397
8565–8570. doi:10.1073/pnas.1011688108.398

[9] Bers DM. Cardiac excitation-contraction coupling. Nature 415 (2002) 198–205. doi:10.1038/415198a.399
[10] Bourgeois EB, Bachtel AD, Huang J, Walcott GP, Rogers JM. Simultaneous optical mapping of400

transmembrane potential and wall motion in isolated, perfused whole hearts. Journal of Biomedical401
Optics 16 (2011) 096020. doi:10.1117/1.3630115.402

[11] Zhang H, Iijima K, Huang J, Walcott GP, Rogers JM. Optical Mapping of Membrane Potential and403
Epicardial Deformation in Beating Hearts. Biophysical Journal 111 (2016) 438–451. doi:10.1016/j.404
bpj.2016.03.043.405

[12] Christoph J, Schröder-Schetelig J, Luther S. Electromechanical optical mapping. Progress in406
Biophysics and Molecular Biology 130 (2017) 150–169. doi:10.1016/j.pbiomolbio.2017.09.015.407

[13] Christoph J, Chebbok M, Richter C, Schroeder-Schetelig J, Stein S, Uzelac I, et al. Electromechanical408
vortex filaments during cardiac fibrillation. Nature 555 (2018) 667–672. doi:10.1038/nature26001.409

[14] Berg S, Luther S, Parlitz U. Synchronization based system identification of an extended excitable410
system. Chaos: An Interdisciplinary Journal of Nonlinear Science 21 (2011) 033104. doi:10.1063/1.411
3613921.412

[15] Lebert J, Christoph J. Synchronization-based reconstruction of electromechanical wave dynamics in413
elastic excitable media. Chaos: An Interdisciplinary Journal of Nonlinear Science 29 (2019) 093117.414
doi:10.1063/1.5101041.415

[16] Hoffman MJ, LaVigne NS, Scorse ST, Fenton FH, Cherry EM. Reconstructing three-dimensional416
reentrant cardiac electrical wave dynamics using data assimilation. Chaos: An Interdisciplinary417
Journal of Nonlinear Science 26 (2016) 013107. doi:10.1063/1.4940238.418

[17] Hoffman MJ, Cherry EM. Sensitivity of a data-assimilation system for reconstructing three-419
dimensional cardiac electrical dynamics. Philosophical Transactions of the Royal Society A:420
Mathematical, Physical and Engineering Sciences 378 (2020) 20190388. doi:10.1098/rsta.2019.0388.421

[18] Zimmermann RS, Parlitz U. Observing spatio-temporal dynamics of excitable media using reservoir422
computing. Chaos: An Interdisciplinary Journal of Nonlinear Science 28 (2018) 043118. doi:10.423
1063/1.5022276.424

[19] Herzog S, Wörgötter F, Parlitz U. Data-driven modeling and prediction of complex spatio-temporal425
dynamics in excitable media. Frontiers in Applied Mathematics and Statistics 4 (2018) 60. doi:10.426
3389/fams.2018.00060.427

[20] Herzog S, Wörgötter F, Parlitz U. Convolutional autoencoder and conditional random fields hybrid for428
predicting spatial-temporal chaos. Chaos 29 (2019) 123116. doi:10.1063/1.5124926.429

[21] Christoph J, Lebert J. Inverse mechano-electrical reconstruction of cardiac excitation wave patterns430
from mechanical deformation using deep learning (2020).431

[22] Bueno-Orovio A, Cherry EM, Fenton FH. Minimal model for human ventricular action potentials in432
tissue. Journal of Theoretical Biology 253 (2008) 544–560. doi:10.1016/j.jtbi.2008.03.029.433

This is a provisional file, not the final typeset article 22

Herzog et al. Reconstructing cardiac excitation waves

[23] Clayton R, Bernus O, Cherry E, Dierckx H, Fenton F, Mirabella L, et al. Models of cardiac tissue434
electrophysiology: Progress, challenges and open questions. Progress in Biophysics and Molecular435
Biology 104 (2011) 22 – 48. doi:https://doi.org/10.1016/j.pbiomolbio.2010.05.008. Cardiac Physiome436
project: Mathematical and Modelling Foundations.437

[24] Ten Tusscher K, Noble D, Noble P, Panfilov AV. A model for human ventricular tissue. American438
Journal of Physiology-Heart and Circulatory Physiology 286 (2004) H1573–H1589.439

[25] Strain MC, Greenside HS. Size-dependent transition to high-dimensional chaotic dynamics in a440
two-dimensional excitable medium. Phys. Rev. Lett. 80 (1998) 2306–2309. doi:10.1103/PhysRevLett.441
80.2306.442

[26] Lilienkamp T, Christoph J, Parlitz U. Features of chaotic transients in excitable media governed by443
spiral and scroll waves. Phys. Rev. Lett. 119 (2017) 054101.444

[27] Aliev RR, Panfilov AV. A simple two-variable model of cardiac excitation. Chaos, Solitons & Fractals445
7 (1996) 293–301. doi:10.1016/0960-0779(95)00089-5.446

[28] Nash MP, Panfilov AV. Electromechanical model of excitable tissue to study reentrant cardiac447
arrhythmias. Progress in Biophysics and Molecular Biology 85 (2004) 501–522. doi:10.1016/j.448
pbiomolbio.2004.01.016.449

[29] Göktepe S, Kuhl E. Electromechanics of the heart: a unified approach to the strongly coupled450
excitation–contraction problem. Computational Mechanics 45 (2009) 227–243. doi:10.1007/451
s00466-009-0434-z.452

[30] Eriksson TSE, Prassl A, Plank G, Holzapfel G. Influence of myocardial fiber/sheet orientations on453
left ventricular mechanical contraction. Mathematics and Mechanics of Solids 18 (2013) 592–606.454
doi:10.1177/1081286513485779.455

[31] Bourguignon D, Cani MP. Controlling anisotropy in mass-spring systems. Eurographics (Springer456
Vienna) (2000), 113–123. doi:10.1007/978-3-7091-6344-3 9.457

[32] Jaeger H. The ‘echo state’ approach to analysing and training recurrent neural networks – with an458
erratum note. GMD Report (German National Research Institute for Computer Science) (2001), vol.459
148, 43 pp.460

[33] Cheng Z, Sun H, Takeuchi M, Katto J. Deep convolutional autoencoder-based lossy image compression.461
2018 Picture Coding Symposium, PCS 2018 - Proceedings (Institute of Electrical and Electronics462
Engineers Inc.) (2018), 253–257. doi:10.1109/PCS.2018.8456308.463

[34] Lukoševičius M. A practical guide to applying echo state networks. Lecture Notes in Computer464
Science (Springer Berlin Heidelberg) (2012), 659–686. doi:10.1007/978-3-642-35289-8 36.465

[35] Lukoševičius M, Jaeger H. Reservoir computing approaches to recurrent neural network training.466
Computer Science Review 3 (2009) 127–149. doi:10.1016/j.cosrev.2009.03.005.467

[36] Yildiz IB, Jaeger H, Kiebel SJ. Re-visiting the echo state property. Neural Networks 35 (2012) 1–9.468
doi:10.1016/j.neunet.2012.07.005.469

[37] Jaeger H, Haas H. Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless470
communication. Science 304 (2004) 78–80. doi:10.1126/science.1091277.471

[38] Lu Z, Pathak J, Hunt B, Girvan M, Brockett R, Ott E. Reservoir observers: Model-free inference of472
unmeasured variables in chaotic systems. Chaos: An Interdisciplinary Journal of Nonlinear Science473
27 (2017) 041102. doi:10.1063/1.4979665.474

[39] Carroll TL, Pecora LM. Network structure effects in reservoir computers. Chaos: An Interdisciplinary475
Journal of Nonlinear Science 29 (2019) 083130. doi:10.1063/1.5097686.476

[40] Griffith A, Pomerance A, Gauthier DJ. Forecasting chaotic systems with very low connectivity477
reservoir computers. Chaos: An Interdisciplinary Journal of Nonlinear Science 29 (2019) 123108.478

Frontiers 23

Herzog et al. Reconstructing cardiac excitation waves

doi:10.1063/1.5120710.479
[41] Thiede LA, Parlitz U. Gradient based hyperparameter optimization in echo state networks. Neural480

Networks 115 (2019) 23 – 29. doi:https://doi.org/10.1016/j.neunet.2019.02.001.481
[42] Haluszczynski A, Aumeier J, Herteux J, Räth C. Reducing network size and improving prediction482

stability of reservoir computing. Chaos: An Interdisciplinary Journal of Nonlinear Science 30 (2020)483
063136. doi:10.1063/5.0006869.484

[43] Carroll TL. Dimension of reservoir computers. Chaos: An Interdisciplinary Journal of Nonlinear485
Science 30 (2020) 013102. doi:10.1063/1.5128898.486

[44] Fan H, Jiang J, Zhang C, Wang X, Lai YC. Long-term prediction of chaotic systems with machine487
learning. Phys. Rev. Research 2 (2020) 012080. doi:10.1103/PhysRevResearch.2.012080.488

[45] Parlitz U, Hornstein A. Dynamical prediction of chaotic time series. Chaos and Complexity Letters 1489
(2005) 135–144.490

[46] Lu Z, Hunt BR, Ott E. Attractor reconstruction by machine learning. Chaos: An Interdisciplinary491
Journal of Nonlinear Science 28 (2018) 061104. doi:10.1063/1.5039508.492

[47] Pathak J, Hunt B, Girvan M, Lu Z, Ott E. Model-free prediction of large spatiotemporally chaotic493
systems from data: A reservoir computing approach. Physical Review Letters 120 (2018). doi:10.494
1103/physrevlett.120.024102.495

[48] Parlitz U, Merkwirth C. Prediction of spatiotemporal time series based on reconstructed local states.496
Physical Review Letters 84 (2000) 1890–1893. doi:10.1103/physrevlett.84.1890.497

[49] LeCun Y, Boser BE, Denker JS, Henderson D, Howard RE, Hubbard WE, et al. Handwritten digit498
recognition with a back-propagation network. Touretzky DS, editor, Advances in Neural Information499
Processing Systems 2 (Morgan-Kaufmann) (1990), 396–404.500

[50] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal501
covariate shift. Proceedings of the 32nd International Conference on International Conference on502
Machine Learning - Volume 37 (JMLR.org) (2015), ICML’15, 448–456.503

[51] Maas AL, Hannun AY, Ng AY. Rectifier nonlinearities improve neural network acoustic models. in504
ICML Workshop on Deep Learning for Audio, Speech and Language Processing (2013), 3.505

[52] Hahnloser RH, Sarpeshkar R, Mahowald MA, Douglas RJ, Seung HS. Digital selection and analogue506
amplification coexist in a cortex-inspired silicon circuit. Nature 405 (2000) 947.507

[53] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: A simple way508
to prevent neural networks from overfitting. Journal of Machine Learning Research 15 (2014)509
1929–1958.510

[54] Dumoulin V, Visin F. A guide to convolution arithmetic for deep learning. arXiv e-prints (2016)511
arXiv:1603.07285.512

[55] Bäuerle A, Ropinski T. Net2vis: Transforming deep convolutional networks into publication-ready513
visualizations. arXiv preprint arXiv:1902.04394 (2019).514

[56] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv e-prints (2014)515
arXiv:1412.6980.516

[57] [Dataset] Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, et al. TensorFlow: Large-scale517
machine learning on heterogeneous systems (2015). Software available from tensorflow.org.518

[58] [Dataset] Barron JT. A general and adaptive robust loss function (2019).519
[59] Rosser JB. Nine-point difference solutions for poisson's equation. Computers & Mathematics with520

Applications 1 (1975) 351–360. doi:10.1016/0898-1221(75)90035-8.521
[60] Scherer POJ. Computational physics : simulation of classical and quantum systems (Berlin Heidelberg:522

Springer) (2010), 147 .523

This is a provisional file, not the final typeset article 24

46 2.4. Publication: (Herzog et al. 2020a)

2.3.1 Conclusions from (Herzog et al. 2021c)

The results from the paper above are promising for both approaches, but the CAE

gives better results than the ESN on the data studied. Apart from this point, there

is another technical point that is an advantage for CAE, namely the possibility

of using highly optimised and customised libraries like Tensorflow (Abadi et al.

2015) and PyTorch (Paszke et al. 2019), which can run completely on the graphics

processing unit (GPU). In the following chapters, the CAE is used as an elementary

building block. However, before the hybrid model is presented, a possibility of

further increasing the performance of the CAE should be introduced next.

2.4 Publication: (Herzog et al. 2020a)

As *(Herzog et al. 2021c) has demonstrated, a CAE can be used to approximate

various functions from data from non-linear systems. A closer look at *(Herzog et al.

2021c, figures 8, 11 and 14, panals D, J, P) shows that the biggest errors occur at

the wave fronts. Already in an earlier work, the question arose whether one could

increase the discriminatory power of neural networks by using recurrent connections.

The naive motivation behind this was connected with the question whether recurrent

connections (in particular whether the feedback from a higher layer in the network)

could be useful to better distinguish objects that are very similar to each other.

The following work *Herzog, S., Tetzlaff, C., and Wörgötter, F. (2020a). “Evolving

artificial neural networks with feedback”. In: Neural Networks : the official journal

of the International Neural Network Society 123, pp. 153–162 does not directly

address this question. It does, however, present an approach with which it is possible

to add recurrent connections to the network via non-adjacent network layers to

thereby drastically reduce the number of necessary network layers.

Neural Networks 123 (2020) 153–162

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Evolving artificial neural networkswith feedback
Sebastian Herzog1, Christian Tetzlaff1, Florentin Wörgötter ∗
Third Institute of Physics, Universität Göttingen, Friedrich-Hund Platz 1, 37077 Göttingen, Germany
Bernstein Center for Computational Neuroscience, Friedrich-Hund Platz 1, 37077 Göttingen, Germany

a r t i c l e i n f o

Article history:
Received 15 November 2018
Received in revised form 27November 2019
Accepted 2 December 2019
Available online 14 December 2019

Keywords:
Deep learning
Feedback
Transfer entropy
Convolutional neural network

a b s t r a c t

Neural networks in the brain are dominated by sometimes more than 60% feedback connections,
which most often have small synaptic weights. Different from this, little is known how to introduce
feedback into artificial neural networks. Here we use transfer entropy in the feed-forward paths
of deep networks to identify feedback candidates between the convolutional layers and determine
their final synaptic weights using genetic programming. This adds about 70% more connections to
these layers all with very small weights. Nonetheless performance improves substantially on different
standard benchmark tasks and in different networks. To verify that this effect is generic we use 36000
configurations of small (2–10 hidden layer) conventional neural networks in a non-linear classification
task and select the best performing feed-forward nets. Then we show that feedback reduces total
entropy in these networks always leading to performance increase. This method may, thus, supplement
standard techniques (e.g. error backprop) adding a new quality to network learning.

© 2019 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Modern deep neural networks employ sometimes more than
100 hierarchical layers between input and output (He, Zhang, Ren,
& Sun, 2015), whereas vertebrate brains achieve high levels of
performance using a much shallower hierarchy. This may well be
largely due to massive recurrent and feedback connections, which
are dominant constituents of cortical connectivity (Markov et al.,
2014). Their role remains puzzling in artificial neural networks.

Intra-layer recurrent connections, more commonly known as
lateral connections, have indeed become an important aspect
in several deep learning architectures, notably deep recurrent
neural nets (DRNN) (Hermans & Schrauwen, 2013; Liao & Poggio,
2016) and especially also in long–short-term memory networks
(LSTM) (Hochreiter & Schmidhuber, 1997), which show superior
performance as compared to conventional DRNNs. Different from
this, inter-layer feedback is less common and mostly employed
in rather specific ways. For example, feedback connections have
been introduced into deep Boltzmann Machines, which are an
unsupervised method (Salakhutdinov & Hinton, 2009). Alterna-
tively, feedback has been used in deep architectures to create
the equivalent of selective attention (Stollenga, Masci, Gomez, &
Schmidhuber, 2014) or to implement some aspects of long-term
memory for object recognition (Tang et al., 2018; Varadarajan

∗ Corresponding author at: Third Institute of Physics, Universität
Göttingen, Friedrich-Hund Platz 1, 37077 Göttingen, Germany.

E-mail address: worgott@gwdg.de (F. Wörgötter).
1 These authors contributed equally.

& Vincze, 2013). Furthermore, a pioneering study using a small
network and a set of rather simple tasks (Kietzmann et al., 2019;
Spoerer, McClure, & Kriegeskorte, 2017) indicates the benefit
of using recurrent convolutional architectures on the system’s
performance. A recent study (Spoerer, Kietzmann, & Kriegesko-
rte, 0000) shows that including recurrent connections that let
information flow in cycles can improve performance of deep
neural networks for vision tasks. Another study (Ernst, Triesch,
& Burwick, 2019) shows that recurrent connections move the
network’s representation of an occluded object towards its un-
occluded representation. Several other approaches exist that em-
ploy feedback in deep learning architectures in different ways
and for different applications including connections that only
influence learning (Lillicrap, Cownden, Tweed, & Akerman, 2016),
for a general review see LeCun, Bengio, and Hinton (2015). It
seems, however, fair to conclude that currently little is known
about when and how to introduce feedback in deep network
architectures.

In the vertebrate brain, feedback connectivity had been inves-
tigated in great detail for the visual system, where it can influence
spatial- as well as object- and feature-oriented attention. It can
affect perceptual tasks and object expectation, and it can also
help to create efference copies, influence perceptual learning,
and guide different aspects of memory function (reviewed in,
e.g., Gilbert & Li, 2013 and Spillmann, Dresp-Langley, & Tseng,
2015).

The architectural differences between real and deep neural
networks, which concern feed-forward and in particular also
feedback connectivity, make it, however, difficult to compare

https://doi.org/10.1016/j.neunet.2019.12.004
0893-6080/© 2019 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

154 S. Herzog, C. Tetzlaff and F. Wörgötter / Neural Networks 123 (2020) 153–162

deep neural networks and their performance to brain structure
and function. Several relations between both substrates have
been reported (Cichy, Khosla, Pantazis, Torralba, & Oliva, 2016;
Güçlü & van Gerven, 2015; Khaligh-Razavi & Kriegeskorte, 2014;
Yamins & DiCarlo, 2016) but processing architectures differ too
much to allow for direct links. Differences and potential relations,
however, are currently vividly discussed (Bengio, Lee, Bornschein,
Mesnard, & Lin, 2015; Kietzmann, McClure, & Kriegeskorte, 0000;
Liao & Poggio, 2016; Marblestone, Wayne, & Körding, 2016).

One dominant aspect of feedback connectivity in the brain
is that it amplifies feed-forward processing pathways and in-
creases their signal throughput. Thus, we asked whether we could
positively influence the performance of a deep neural network
using a similar mechanism? However, one central problem, which
has so far hindered the implementation of a potentially more
realistic feedback connectivity in artificial nets, is how to actually
structure such connections, especially between non-neighboring
layers. For example in the small AlexNet, when considering only
the convolutional layers, there would be about 108 feedback con-
nections possible. Therefore, clear guiding principles are needed
to find an appropriate set of feedback connections, which would
lead to performance improvement.

To achieve this, we use transfer entropy (Schreiber, 2000) be-
tween convolutional network units. Previously, this measure has
been used to estimate the functional connectivity between neu-
rons (Lizier, Heinzle, Horstmann, Haynes, & Prokopenko, 2011;
Vicente, Wibral, Lindner, & Pipa, 2011). Transfer entropy between
neurons is a measure of the mutual dependence between neu-
rons, indicating relevant sub-paths in the network. Thus, initially,
we use transfer entropy to identify such pathways and connect
them by feedback with random weights similar to those in the
feed-forward connections. For the AlexNet, this way we arrive
only at about 3.5% of all possible feedback connections. Then we
use a genetic algorithm to modify their connection strengths and
obtain in the end a set of very small weights, similar to many
feedback paths in the brain, which amplify already connected
feed-forward paths only very mildly. Remarkably, this type of
feedback substantially improves classification performance for
different networks and data sets.

2. Methods

First we describe the core aspects on the here-used networks
and data as well as how we introduce feedback by ways of an
overview. Details about this are then provided directly after-
wards.

2.1. Overview

2.1.1. Data and network architectures
We have first tested our algorithm on CIFAR-10 and ImageNet

data using AlexNet (Krizhevsky, Sutskever, & Hinton, 2012) and
ResNet (He et al., 2015) architectures. In total, CIFAR-10 contains
60,000 color images (Krizhevsky, Nair, & Hinton, 0000), while
ImageNet-Challenge has more than one million images (Deng
et al., 2009). Both are standard benchmarks. The AlexNet has eight
layers. The here-used ResNet has 32, where we also use a 56-layer
version for comparison.

The following description focuses on the CIFAR-10 set and
the AlexNet. But all notations apply in a similar way to the
other cases, too. Feedback connections have in both cases been
implemented in the same way between the convolution layers.

The core of the AlexNet consists of five layers, which perform
convolutions (Fig. 1). Note that only between those layers (Lay-
ers 1–5) feedback connections will be formed; the three dense
layers (Layers 6–8) are excluded from the formation of feedback

connections. Layers 1–5 consist of 19072 units and 1376 kernels.
Every unit in layer l receive inputs from a set of units located
in the previous layer l − 1. This input set is defined by a kernel
with each element of the kernel matrix defining the strength of
the connection between its corresponding input unit from this
set and the target unit in layer l. As usual, we call the value
of a kernel-element connection weight. Accordingly, each unit
calculates the sum of all its inputs multiplied by the connection
weights resulting in o (called raw output). This scalar is clipped at
zero defining the final activation by: ψ(o) = max{0, o}; this non-
linearity is often called rectified linear unit (ReLU) (Nair & Hinton,
2010). Different from the feed-forward connections, which can
only connect adjacent layers, we consider feedback also for non-
adjacent convolutional layers. Theoretically, in the AlexNet there
are 140,820,480 such connections possible. For ResNet32 this
number is far bigger and this shows that it is impossible to arrive
at structured feedback without clear criteria of where to make a
connection.

2.1.2. Algorithm
Algorithmic steps are:

1. Train the kernels for feed-forward net using a subset (the
training-data) of the data set, employing standard error
back-propagation training (Rumelhart, Hinton, & Williams,
1986; Schmidhuber, 2015). Store the resulting feed-forward
connection weights (i.e. kernel elements).

2. Run the feed-forward net on the complete training-data set
and calculate for each image the resulting raw output o of
each unit. From this, also calculate the units’ activations
ψ = max{0, o} and store all this.

3. For all units i and j, where i is in a layer below that of
j, use their activations to calculate the transfer entropy
Ti→j between them. Use the highest transfer entropy to
normalize Ti→j such that the normalized values are in the
interval [0, 1]. Create and store a list of all pairs of units i
and j, for which Ti→j > Φ , where Φ is the upper quantile
of all Ti→j.

4. Apply the genetic algorithm. Make the first population Ω
by creating 100 population members consisting of net-
works with identical feed-forward weights (from step 1
above) and randomly assigned feedback weights with val-
ues between the minimum and maximum feed-forward
weights. Assign feedback connections only for units i and j
for which their transfer entropy was in the desired quantile
(see step 3).

• Calculate the fitness, on the training-data of all mem-
bers of Ω defined as their performance on the image
recognition task.
• Perform cross-over to create new feedback weight

combinations and
• subject these new combinations also to mutations.

This way create the members of a new populationΩ∗.
• Calculate the fitness of all members in Ω∗.
• Combine the 100 fittest members from Ω and Ω∗ in

a new population and call this again Ω .
• Continue with the first step until 200 generations

have been processed.

5. Take the best performing network after 200 generations as
the final result.

2.2. Detailed methods

First, we introduce the formal definition of Artificial Neural
Networks (ANNs) and their convolutional layers to allow using
the there-introduced notation for transfer entropy and genetic
algorithm, which are then defined in following sub-sections.

S. Herzog, C. Tetzlaff and F. Wörgötter / Neural Networks 123 (2020) 153–162 155

Fig. 1. Structure of and computations performed by the AlexNet. Red are convolutional layers, black dense layers; with number of units given. Pyramids show filter
sizes. Feed-forward connections exist only between adjacent layers (e.g., blue arrows). Transfer entropy is calculated for all units i and j in different layers l where
li < lj (green) and feedback connections (pink) will be made following a threshold criterion (see text). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

2.2.1. Artificial neural network
Artificial neural network (ANNs) are parameterizable models

to approximate a function F∗. The actual function of an ANN:

f : RO
↦→ RP , (1)

where O ∈ N is the dimension of the input and P ∈ N the
dimension of the output, is supposed to be f ≃ F∗. One of the
first common ANNs were feed-forward neural networks (FNN). A
one-layer network f depends non-linearly on the input X ∈ RO

such that:

f (X) = ψ(WX + b), (2)

with nonlinear function ψ , weight matrix W ∈ RP×O, and bias
b ∈ R. By recursively applying the output of one layer as input to
the next layer, a multi-layer FNN can be constructed:

f (X) = f L(. . . f 2(f 1(X;W 1, b1);W 2, b2) . . . ;W L, bL). (3)

Eq. (3) is the model for a multi-layer FNN with L ∈ N layers.
We denote W ff as the set of feed-forward weights of the

multi-layer FNN:

W ff
= {W 1,W 2, . . . ,W L

}. (4)

W.l.o.g., Eqs. (1)–(3) can be extended to higher dimensional sys-
tems, i.e.: images where the input X becomes Xα ∈ Rh(0)X ×w

(0)
X with

h(0)
X ∈ N rows, w(0)

X ∈ N columns, and dX channels (see below). To
improve the approximation properties of the network (Eq. (3)),
FNNs can consist of convolutional layers leading to state-of-the-
art models for data classification, so-called convolutional neural
networks.

2.3. Convolution layer

Convolutional neural networks for image classification receive
the trainings data-set
X = {X1,X2, . . . ,Xm}, where Xα ∈ Rh(0)X ×w

(0)
X is an image with

h(0)
X ∈ N rows, w(0)

X ∈ N columns, and dX channels (in the case of
R, G, B color channels dX = 3). Each channel of Xα is denoted by
X (k)
α , such that Xα = {X (1)

α , X
(2)
α , . . . , X

(dX)
α }.

The data processing through the network is described layer-
wise, i.e. in the lth convolutional layer the input X(l) will be
transformed to the raw output o(l), which is in turn the input to
the next layer l+ 1, where the dimension changes depending on
the number and size of convolutions, padding and stride of the

layers. The padding parameter P (l)
∈ N, for layer l, describes the

number of zeros at the edges of an image with which the image is
extended. This is necessary since every convolution being larger
than 1 × 1 will decrease the output size. The stride parameter
S(l) ∈ N is the parameter determining how much the kernel is
shifted in each step to compute the next spatial position x, y. This
specifies the overlap between individual output pixels, and it is
here set to 1.

Each layer l is specified by its number of kernels K(l)
=

{K (l,1), K (l,2), . . . K (l,dK)}, where dK ∈ N is the number of kernels
in layer l, and its additive bias terms b(l)

= {b(l,1), b(l,2), . . . b(l,dk)}
with b(l,d) ∈ R. Consider that the input X(l)

∈ Rh(l)X ×w
(l)
X in the lth

layer with size h(l)
X ×w

(l)
X and depth d(l)X is processed by a set of ker-

nels K(l). For each kernel K (l,d)
∈ Rh(l)K ×w

(l)
K with size h(l)

K ×w
(l)
K and

d ∈ {1, . . . , dK }, the raw output o(l) ∈ R
h(l)X −h

(l)
K −1+P

(l)

S(l)
×
w
(l)
X −w

(l)
K −1+P

(l)

S(l)

is computed elementwise by:

o(l,d)x,y = (X(l)
∗ K (l,d))x,y = (5)⎛⎜⎝b(l,d) +

d(l)X∑
k=1

h(l)K∑
i=1

w
(l)
K∑

j=1

K (l,d)
i,j · X

(l,k)
x+i−1,y+j−1

⎞⎟⎠ .
The result is modulated by an activation function to obtain the

activation ψ(o(l,d)x,y) of a unit:

ψ
(
o(l,d)x,y

)
= max

{
0, o(l,d)x,y

}
. (6)

To obtain o(l)
= {o(l,1), . . . , o(l,dK)}, Eq. (6) needs to be calcu-

lated ∀d = 1, . . . , dK and ∀x, y. Each spatial calculation of o(l,d)x,y is
considered as a unit and ψ(o(l,d)x,y) as the feed-forward activation
of the unit. The value of an element of a kernel (K (l,d)

i,j) between
two units is the weight of the feed-forward connection.

2.4. Transfer entropy

Before calculating the transfer entropy (Schreiber, 2000), the
activation for all images Xγ ∈ Xβ , where Xβ is the set of images
from one class, with γ = {1, . . . , q} elements, is calculated by the
network. The series of activations for each unit across all images

ψ
(
o(l,d)x,y

)
=

{
ψ
(
o(l,d)x,y

)
1
, ψ

(
o(l,d)x,y

)
2
, . . . ψ

(
o(l,d)x,y

)
q

}
, (7)

156 S. Herzog, C. Tetzlaff and F. Wörgötter / Neural Networks 123 (2020) 153–162

is stored for each class. Thus, for every unit, Eq. (7) calculates the
activation-set across all images, which captures the occurrence
frequencies of all possible activation-events and will be used to
calculate the probabilities needed in the following equations. For
better readability, in the following, we will drop the function
argument of the activation such that ψ1 := ψ(o(l,d)x,y)1, ψ :=
ψ(o(l,d)x,y), ψ′ := ψ(o(l

′,d′)
x′,y′), and so forth. In addition, we assume

w.l.o.g. that layer l′ > l.
A section [t,m] of the series ψ is denoted by

ψ[t,m] = {ψt , ψt+1, . . . , ψt+m} .

Thus, the transfer entropy Tψ→ψ′ between two units is calculated
by

Tψ→ψ′ =
m′∑

t,n,m=1

p
[
ψt+1,ψ[t,n],ψ

′

[t,m]

]
(8)

log

(
p
[
ψt+1

⏐⏐ψ[t,n],ψ′[t,m]]
p
[
ψt+1

⏐⏐ψ[t,n]]
)
,

where ‘‘→’’ refers to a feed-forward connection.
To calculate the transfer entropy between units in non-

adjacent layers, we have to generalize Eq. (8) by conditioning on
the activations of the units being in the in-between layers (here
denoted by ψ′′). For one in-between layer this reads:

Tψ→ψ′ =
m′∑

t,n,m,o=1

p
[
ψt+1,ψ[t,n],ψ

′′

[t,o],ψ
′

[t,m]

]
(9)

log

(
p
[
ψt+1

⏐⏐ψ[t,n],ψ′′[t,o],ψ′[t,m]]
p
[
ψt+1

⏐⏐ψ[t,n]]
)
.

An efficient implementation to estimate the transfer entropy
can be found in Wollstadt et al. (2019). To estimate the condi-
tional mutual information the OpenCL-implementation flag was
used.

2.5. Shannon entropy

We use the Shannon Entropy to quantify the behavior of a
network. To calculate it, we run the network on the complete data
set and calculate and store for each input the resulting raw output
o of each unit, as well as the units’ activations ψ = max{0, o}.

Then we use the stored activations to calculate the conditional
probabilities p[ψt |ψ

′
t] for all pairs of units ψt , ψ

′
t . Finally we

obtain Shannon Entropy in the usual way as

H = −
∑

p[ψt |ψ
′

t] log2 p[ψt |ψ
′

t]. (10)

2.6. Genetic algorithm

To add specific feedback to a trained feed-forward network,
a genetic algorithm (GA) (Barker, 1958; Holland & Goldberg,
0000; Koza, 1994) is utilized to find the local, optimal weights
of the corresponding feedback connections. In the following, we
name the network performance on the training set fitness to use
the same common terminology as in the field of GAs. For the
training data set X = {X1,X2, . . . ,Xm} with desired labels Z =
{Z∗1 , Z

∗

2 , . . . , Z
∗
m}, the fitness is calculated by

fitness(f (∗),X ,Z) =

(
m∑
α=1

δ(f (Xα), Z∗α)

)
/m, (11)

where f is the network and δ(.) : R ↦→ {0, 1} is the Kronecker
delta function being 1, if the variables are equal, and 0 otherwise.

For all of the following steps, we leave the feed-forward connec-
tivity in the network constant, the genetic algorithm adapts only
the feedback weights, the connectivity of the nodes is encoded in
a way described in Stanley and Miikkulainen (2002).

For the GA, we define first a population by its members. A
member of a population is a set of feedback weights W (i), which
are initially randomly assigned between any two units in the
network under the only condition that the transfer entropy be-
tween these units is above some control parameter Φ . The initial
random weights are chosen between the maximal and minimal
value of the feed-forward network. If the transfer entropy is
below Φ those two units will not be linked by a feedback connec-
tion. Hence, a population is a set of p such realizations given by:
Ω = {W (1),W (2), . . . ,W (p)

}. We always use p = 100. For every
realization there is a corresponding network f (·;W (i)), which
is the network which consists of the unchanged feed-forward
connections together with the feedback weights W (i).

Then, the GA works as follows (Fig. 2):

1. Calculate the fitness of every network f (X;W (i)), where
W (i) is a member of the population Ω . For this define
the activation of the feed-forward-feedback network ψ ff+fb,
which enters in the calculation of f , by:

ψ ff+fb
= max

⎧⎨⎩0, o(l,d)x,y +

l̸=l′∑
l′,d′,x′,y′

wl′←l ψ
′

⎫⎬⎭ . (12)

where o is the raw network output and ψ ′ = max{
0, o(l

′,d′)
x′,y′

}
is the feed-forward activation. The symbol wl′←l

defines a feedback weight.
2. Select with equal probability two networks with different

feedback configurations (parents) W (a) and W (b)(a ̸= b)
from Ω .

3. Cross over both parents to combine the information of the
parents to generate new offspring, by selecting a random
index r1 for each element in W (a), such that:

a = {w(a)
l′←l1

, w
(a)
l′←l2

, . . . , w
(a)
l′←lr1
} (13)

and a random index r2 for each element in W (b), such that:

b = {w(b)
l′←lr2

, . . . , w
(b)
l′←lB
}, (14)

where l′ annotates a target unit (abbreviated from (l′, d′, x′,
y′)), li are source units for the feedback and ‘‘←’’ refers to
the feedback connection. Now we generate the offspring
∀w

(c)
l′←l ∈ W (c):

w
(c)
l′←l = a ∪ b. (15)

If the sub-sets of a and b are overlapping the overlapped
values of b are dismissed and those from a are kept. Hence,
after this step we have recombined the feedback weights
from W (a) and W (b) for every target unit.

4. Next, we mutate all individual weights w(c)
l′←lj

of W (c) with

probability pm = 0.3. For this, we convert all w(c)
l′←lj

into their binary representation, mutating every entry (bit)
therein with probability pm. The resulting mutated weight
is then called w∗l′←lj

and is transformed back to its floating
point representation. The mutated

W (c)∗
∋ w

(c)∗

l′←l = {w
(c)∗

l′←l1
, w

(c)∗

l′←l2
, . . . , w

(c)∗

l′←lB
} (16)

is the placed in Ω∗
5. Repeat steps 2–4 until the new population Ω∗ has p mem-

bers.

S. Herzog, C. Tetzlaff and F. Wörgötter / Neural Networks 123 (2020) 153–162 157

Fig. 2. Abstract representation of the genetic algorithm, starting in the left corner with a starting population Ω . From Ω always two parents are chosen randomly,
on each parent a crossover point (black lines in the second column) is chosen randomly. The part on the left side of the crossover point is used for the crossover
from the first parent and the right side from the second parent (third column). In the next step some values of the child are mutated by chance (red boxes) and
added to the temporal population Ω∗ . The new population of the next generation is then defined by the best p values from Ω and Ω∗ , based on the fitness function.

Fig. 3. Schematic representation of the unrolling of the recurrent network. (A)
shows the network with feedback connections. (B) shows the unrolled network.

6. Calculate the fitness of all networks created from the mem-
bers in Ω∗.

7. From the parent Ω and child Ω∗ population, choose p
corresponding networks with the highest fitness values to
create a final new population Ω∗∗.

8. Set Ω = Ω∗∗ and go to step and repeat steps 1–7 until the
maximal number of generations is reached, where we have
always used 200 generations.

After those 200 generations, select the best performing network
as the final result.

The network output is computed by ‘‘unrolling’’ the recurrent
network back to a feed forward network where the layers are
cloned, see (Fig. 3).

3. Results

After the genetic algorithm has determined the weights, the
network can be used for classification.

3.1. General observations

The AlexNet has eight layers, but only layers 1–5 perform
convolutions and form feedback connections. Fig. 4A shows the
number of feedback connections made for different values of Φ
with a resolution interval of ∆Φ = 0.005 for this curve. At about
0.9 there is a very sharp kink in the curve and down to about
0.05 the number of connections varies by less than one order of
magnitude. When analyzing the connections that are made for
Ti→j > Φ = 0.9, we found that those would consist almost
exclusively of feedback between units in adjacent layers, which
do not have a feed-forward connection. This aspect shows up also
in Fig. 6 and will be discussed there again.

Fig. 4. Performance quantification of the FB-AlexNet. (A) Number of feedback
connections made between units for which Ti→j > Φ . The yellow inset
shows the classification performance of the FB-AlexNet in percent for different
thresholds Φ on the test data. (B) Development of the classification rate over
200 generations during the genetic algorithm, based on a population of p = 100
networks, with mutation rate pm = 0.3.

This quasi-discontinuous behavior of the transfer entropy
lends itself to defining Φ = 0.9 as threshold for making feedback
connections. This assumption is also backed-up by a control
experiment (yellow inset in Fig. 4A). Here we have calculated
the classification rate of the FB-AlexNet on the CIFAR-10 data for
several values of Φ near the kink and find a sharp performance
decline above Φ = 0.9 (drop from 94% to 81%). Exhaustive
analysis of this behavior is not possible because of the exploding
run-time and memory requirements for treating the huge number
of connections that are formed for Φ ≪ 0.9.

The network has 2,332,704 connections without feedback and
with Φ = 0.9 we get now an additional 1,796,182 connection
candidates (77% more). Those can be processed efficiently with
200 generations by the genetic algorithm (Fig. 4B). Note that the
randomly initialized feedback weights of the first generation in
the genetic algorithm lead on average to a performance decrease
by several percent relative to the pure feed-forward AlexNet (data
not shown). The genetic algorithm starts with this and leads
finally to a performance increase of more than 7% for the CIFAR-
10 data set (50,000 training images, 10,000 test images). The final
FB-weight distribution contains rather small weights (Fig. 5C).

This way the FB-AlexNet reaches the top-performing group of
network architectures (Graham, 2014; Mishkin & Matas, 2015;
Springenberg et al., 2014) on the CIFAR-10 data (see Fig. 5A),
based on the weights provided by Krizhevsky et al. (2012). This
is remarkable, because the existing top-performing networks are
far more complex (especially consisting of far more layers) than
the AlexNet and current performance improvements are often in
the range of less than 1% when a new architecture is proposed.

Will the here observed performance improvement be limited
to this specific data set and/or to the network used so far? To
address this question, we tested the influence of feedback on

158 S. Herzog, C. Tetzlaff and F. Wörgötter / Neural Networks 123 (2020) 153–162

Fig. 5. Performance of FF- and FB-AlexNet (A) Comparison to other methods (Graham, 2014; Mishkin & Matas, 2015; Springenberg, Dosovitskiy, Brox, & Riedmiller,
2014) on the CIFAR-10 dataset. (B) Comparison of the performance for FB- and FF-ResNet architecture on the CIFAR-10 data (left) and for FB- and FF-AlexNet on
ImageNet data (right). (C) Weight distribution (in percent) of the FB-AlexNet plotting the values of the feed-forward (orange) and feedback weights (blue). The range
of the x-axis was limited to [−0.2, 0.3]. A few more connections exist outside this range (in [−0.4, 0.6]).

Fig. 6. Detailed analysis of two example convergence trees with different layer-5 target units in the AlexNet. Panels (A–D) Target unit 8. (A) Feed-forward weights
w(i)→(j) . Small numbers refer to the consecutive numbering of units in diagrams C-F. (B) Feedback weights w(j)→(i) . Feed-forward paths are the same as in panel A.
(C) Transfer entropies for Φ = 0.9. (D) Difference of transfer entropies without and with feedback. Panels (E,F) Target unit 17. (E) Feed-forward weights as in (A).
(F) Transfer entropies as in (C). (G–J) Distributions of the absolute FB-weight values for ∆-layers distance. Hence, ∆ = 1 refers to FB connections between units in
layers, where there is one layer in between.

network architectures with a more complex layout and also used
a much richer data set.

First, we compared the performance of ResNet on the CIFAR-
10 data set with and without feedback connections. The feed-
forward structure of the network was trained as described in He
et al. (2015). As known, ResNet performs much better than
AlexNet and the 32-layer version reaches 92.49% (Fig. 5B, left).
Including feedback connections, the network performance in-
creases by 3.43% to 95.92%, which is again to a degree remark-
able, because – close to ceiling – usually performance gains are

around 1% only, as also shown here when using a feed-forward
ResNet with 56 layers, that has only a performance of 93.03%.

In addition to this, we also used a pre-trained AlexNet
(Imagnet, 2017) on the much larger ImageNet data set. The 8-
layer AlexNet is quite challenged by this benchmark and achieves
57.06%. Modern, far more complex networks reach here maxi-
mally 82.3% (Zoph, Yuret, May, & Knight, 2016). With feedback
connections the AlexNet attains 69.32% (Fig. 5B, right), which is
an 12.26% increase and quite remarkable for this small network.

S. Herzog, C. Tetzlaff and F. Wörgötter / Neural Networks 123 (2020) 153–162 159

3.2. Detailed quantification

It is difficult to understand how feedback changes the complex
deep convolutional neural networks, but analyzing subsets of
the network – as shown next – can provide some insights why
performance has improved. In addition to this we will below
provide a statistical analysis using a large set of small (and less
complex) traditional networks.

Feed-forward connectivity of individual convergence trees in
the AlexNet (incorporating all paths from the input layer to a
specific target unit in the output layer) can vary widely, and two
characteristic examples are shown in Fig. 6A, E for layer 5 target
units named ‘‘8’’ and ‘‘17’’. The matrix diagrams in panels C and F
display the transfer entropies between units along all connected
pathways for Φ = 0.9. Gray regions are those where transfer en-
tropy is below Φ and feedback connections are formed between
units that have a transfer entropy above than this threshold. Black
regions represent intra-layer relations, which are not considered,
as there are no lateral connections. Interestingly, gray ‘‘pixels’’,
where Ti→j < 0.9, only occur between adjacent layers. As claimed
above (see discussion of Fig. 4A), those are unit pairs, for which
there are no feed-forward connections and transfer entropy is,
quite intuitively, small between those.

Fig. 6B shows the feedback connections for the convergence
tree of target unit 8 (feed-forward connections as in panel A).
Note that the maximum feedback weight is about a factor of
100 smaller than the maximum feed-forward weight. The largest
feedback weights are assigned for connections between units
with biggest layer distances (panel J).

Of specific interest is the development of the transfer entropy
comparing the pure feed-forward situation (T FF

i→j) with the one
that also contains feedback (T FF+FB

i→j). This is shown in Fig. 6D, plot-
ting the difference in transfer entropy: T FF+FB

i→j − T FF
i→j. In general,

feedback connections in the network yield a drop in the transfer
entropy by a quite small amount and in a rather dispersed way.
This demonstrates that transfer entropy does not just show some
overall decrease, instead some paths are specifically improved
by feedback, which are – presumably – those that carry most
information for classification.

Fig. 6B suggests that the strongest feedback connections are
formed between distant layers, while those between adjacent
ones are the weakest. This is quantified in Fig. 6G–J, which con-
firms this observation. Interestingly, fewer feedback connections
exist between adjacent layers (Fig. 6G), because – as discussed
– very often Ti→i+1 < Φ and, if feedback exists, then it is very
weak. This is not unexpected. Feedback between adjacent layers
is equivalent to an upregulation of the feed-forward connectivity.
The genetic algorithm introduces a few small, adjacent-layer FB-
connections but essentially it ‘‘is satisfied’’ with the connections
that had been found by the error back-propagation that had
initially set up the forward connectivity.

3.3. Control experiments

To raise confidence in the above results, several additional
control experiments have been performed.

At first we are considering again the Cifar 10 data set for
which we trained the AlexNet for each realization from scratch
using (Chollet et al., 2015). All layers were initialized with the
keras default parameters. We used the default categorical cross-
entropy as the loss function, the Adam optimizer (Kingma & Ba,
2014) with default values (learning rate = 0.001, β1 = 0.9,
β2 = 0.999 and the amsgrad flag set to false). In addition, we
changed the learning rate by a factor of 0.5, if in 10 epochs the
accuracy did not improve further and used early stopping after
50 epochs of no improvement was found any longer. If in the first

three epochs the accuracy does not increase by at least 13%, the
realization had been re-started with a new initialization. Please
note that, different from Krizhevsky et al. (2012), we did not use
data augmentation to save massive on training time.

Controls are as follows: (1) First, we kept all target nodes but
randomly shuffled the feedback connections that came from the
above algorithm, such that the feedback connection between i→
j changes to i→ j′, where j ̸= j′, with a certain probability. Fig. 7A
shows how the accuracy on the validation data changes when the
shuffling probability increases. The continuous drop of this curve
shows that the originally introduced feedback connections, which
came from the transfer entropy assessment, were always the best.

(2) Second, as another control we wanted to validate whether
actually specifying feedback connections by using transfer en-
tropy is central for achieving the here presented results. To do
this we created random feedback connections in the FF-AlexNet
and optimized their weights with the genetic algorithm. The total
number of feedback connections was kept the same as when
using transfer entropy. It can be seen (Fig. 7B) that the genetic
algorithm under these conditions only yields an improvement of
1.01% (Rnd. GA FB-AlexNet), compared to the FF-AlexNet.

(3) The third control asks whether a similar performance gain
could be achieved when keeping the basic network architec-
ture unchanged but increasing the number of intrinsic network
parameters to the same level as those found in the FF + FB
configuration. Feedback had added about 77% more connections
to the convolutional layers and this number needs to be roughly
matched. Brute force trial and error was used to find out where
in the AlexNet an increase in the number of filters would lead
to the greatest advantage. Every network created by this search
procedure was trained on the training data from the Cifar 10
data set. Kernels were initialized with the kernel initialization
from Saxe, McClelland, and Ganguli (2013) to improve conver-
gence and Adam Kingma and Ba (2014) was used as optimizer
with early stopping if accuracy did not improve after 10 epochs.
Through this extended search we found that the best-performing
extension of the FF-AlexNet took the following shape: The num-
ber of filters in the second layer was increased by 30%, to 332
filters, in the third and fourth convolution layers by 50%, to 576
filters each and in the last layer by 35% to 345 filters having
86% more parameters. The whole network then had 11,943,317
trainable parameters. We call this extended network ext-AlexNet
in comparison to the regular FF-AlexNet, which has 6,390,040
trainable parameters. In Fig. 7B (FF-AlexNet vs ext-AlexNet) the
results of this experiment are shown. It is easy to see that the
increase parameters do not lead to any significant increase of
the accuracy on the validation data and all other versions of the
ext-AlexNet performed worse than this one.

(4) The fourth set of controls uses a different network ar-
chitecture and different inputs. Several parameters influence the
performance of a deep CNN, for example how pre-training is
performed, which initial conditions and which learning rates
have been used and more. Due to long run-times most if not all
studies in deep learning remain shy of statistical evaluations of
these parameters. Similar to this, also the results obtained above
carry no statistical significance and the question arises whether
performance increase due to feedback is generic. To address this
issue we performed a statistical evaluation of 36,000 different
network configurations using conventional networks with 2 up to
10 hidden layers in a binary classification task. Each layer consists
of 50 units and feed-forward as well as feedback connectivity
has been determined as before. Input data are 2D-point clouds
(Fig. 8A1, B1) separated by a continuous function and the network
was trained on 50% of them to find the separator. Tolerance for
optimization was 10−4 and was reached in all cases. We used
Adam as solver with all intrinsic parameters as in the original

160 S. Herzog, C. Tetzlaff and F. Wörgötter / Neural Networks 123 (2020) 153–162

Fig. 7. Control experiments: (A) Shuffling the optimized feedback connections randomly influences the accuracy. The green line (starting at 73%) shows the mean
value of the accuracy over 100,000 trials each where the green shade is the variance. (B) Comparison of the accuracy on the validation data of the AlexNet
(in blue), extended AlexNet (ext-AlexNet in orange) with 86% more parameters, an AlexNet with random feedback connections where the weighs of the random
feedback connections were optimized by the genetic algorithm (Rnd. GA FB-AlexNet in green) and the AlexNet with transfer entropy guided feedback connections (TF
FB-AlexNet). The results for 100 initializations are shown as a boxplot (median: FF-AlexNet: 64.4%, ext-AlexNet: 64.6%, Rnd. GA FB-AlexNet: 65.4% and TE FB-AlexNet:
67.8%). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Performance evaluation of 9 different conventional networks with 8 different learning rates. (Rows A and B) Performance under less (A) and more (B)
complex inputs. (Panels 1) 2-D input data. Classification rates of the FF (2) and the FF+FB (3) networks and their differences (4). (Panels 5) Entropy is reduced and
performance increases for all networks with feedback. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

paper (Kingma & Ba, 2014). Eight different learning rates and nine
different numbers of hidden layers have been used and for every
one of these 72 cases we assessed 500 different initial conditions
and always selected the best performing case for further analysis.
Panels 2 and 3 show the classification success for the FF- and the
FF+FB networks. Too high learning rates lead to the characteristic
mal-convergence (top rows) known from such networks. Case
B is more complex than A and the classification rate shown in
panels B2,3 is lower than in A2,3. Networks with more layers
generally perform better but sometimes there is a drop. This
results from the network beginning to fit the complex, steeper
parts of the curves better but loosing performance at the less
steep parts. Such effects are also know from classification with
networks. Interestingly, this effect is almost completely removed
by feedback. Very consistently feedback improves performance
and larger networks now perform (with few exceptions) better
than smaller ones. Percent improvement is visible from panels

4. In panels 5 we show FF- (orange) and their corresponding
FF+FB (blue) networks as pairs and one can see that performance
improvement goes along with a reduction of the Shannon entropy
in the network. Taken together, these results confirm that this
type of feedback consistently improves network performance and
creates ‘‘more orderly’’ nets.

4. Conclusion

Here we have shown that specific feedback between units in
different networks substantially improves performance. This ef-
fect has first been found with different deep convolutional archi-
tectures and then we have confirmed its robustness with smaller
conventional nets. Hence, this framework is neither limited to
specific architectures nor to image recognition problems.

Why should one consider using transfer entropy for searching
for feedback candidates in such networks? Two general obser-
vations can be made from the results of this study, which will

S. Herzog, C. Tetzlaff and F. Wörgötter / Neural Networks 123 (2020) 153–162 161

hold also for other architectures. First, there is a decreasing feed-
forward convergence towards higher layers, common to most if
not all deep convolutional networks. Second, transfer entropy is
in general higher between units with larger layer-distances than
between neighboring layers (see Fig. 6). This is natural due to the
fact that long-range transfer entropy is calculated by conditioning
on the intermediate layers. Thus, when using transfer entropy to
define feedback, there is a higher probability to form long-range
as compared to short-range feedback connections in the network.

If transfer entropy between distant units is small, then this
is indicative of a (long) path segment, which is ‘‘meaningful’’
and which ought to be more strongly amplified. Thus, long-
range feedback connections should be the strongest and this is
in general found. While, on the other hand, pairs of units with
high transfer entropy in neighboring layers are anyhow directly
connected (by their feed-forward link). Their amplification should
be small in order to prevent run-away activity. The genetic algo-
rithm finds this solution as shown in Fig. 6G–I, but all connections
are very small (Fig. 5C).

This is reminiscent of many feedback pathways in the verte-
brate brain (Gilbert & Li, 2013; Spillmann et al., 2015). Particularly
the interleaving of feed-forward with feedback connectivity dis-
cussed by several authors (Markov et al., 2014; Yamins & DiCarlo,
2016) suggests that there is also an interleaved information flow
happening. It is, thus, tempting to speculate that a similar princi-
ple – an evaluation of the relevance of the different feed-forward
pathways – might have been a phylo- or ontogenetic driving
force for the design of different feedback structures in real neural
systems. Transfer entropy can be used to measure how signifi-
cantly neurons interact (Lizier et al., 2011; Vicente et al., 2011).
It is, thus, an interesting question to what degree neural systems
might have used this or a similar type of information to distin-
guish and amplify important relative to less important processing
pathways.

Acknowledgments

We thank Dr. D. Miner and Dr. M. Tamosiunaite for valuable
comments on the manuscript. Many thanks also go to Dr. D.
Yamins who provided valuable inputs to an earlier version of this
paper. The research leading to these results has received funding
from the European Community’s Horizon 2020 Programme under
grant agreement no. 732266, Plan4Act.

References

Barker, J. (1958). Simulation of genetic systems by automatic digital computers.
Australian Journal of Biological Sciences, 11(4), 603–612.

Bengio, Y., Lee, D.-H., Bornschein, J., Mesnard, T., & Lin, Z. (2015). Towards
biologically plausible deep learning. arXiv:1502.04156.

Chollet, F., et al. (2015). Keras. https://keras.io.
Cichy, R. M., Khosla, A., Pantazis, D., Torralba, A., & Oliva, A. (2016). Deep neural

networks predict hierarchical spatio-temporal cortical dynamics of human
visual object recognition. arXiv:1601.02970.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). Imagenet:
A large-scale hierarchical image database. In Computer vision and pattern
recognition, 2009. CVPR 2009. IEEE conference on (pp. 248–255).

Ernst, M. R., Triesch, J., & Burwick, T. (2019). Recurrent connections aid occluded
object recognition by discounting occluders. In Artificial neural networks
and machine learning – ICANN 2019: Image processing (pp. 294–305). http:
//dx.doi.org/10.1007/978-3-030-30508-6_24.

Gilbert, C. D., & Li, W. (2013). Top-down influences on visual processing. Nature
Reviews Neuroscience, 14(5), 350–363.

Graham, B. (2014). Fractional max-pooling. arXiv:1412.6071.
Güçlü, U., & van Gerven, M. A. J. (2015). Deep neural networks reveal a gradient

in the complexity of neural representations across the ventral stream. Journal
of Neuroscience, 35(27), 10005–10014.

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep residual learning for image
recognition. arXiv:1512.03385.

Hermans, M., & Schrauwen, B. (2013). Training and analysing deep recurrent
neural networks. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, &
K. Q. Weinberger (Eds.), Advances in neural information processing systems 26
(pp. 190–198). Curran Associates, Inc..

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural
Computation, 9(8), 1735–1780.

Holland, J., & Goldberg, D. Genetic algorithms in search, optimization and
machine learning, Massachusetts: Addison-Wesley.

dataset (2017). Imagnet weights for alexnet. Accessed: 18 June 2018. URL
http://files.heuritech.com/weights/alexnet_weights.h5.

Khaligh-Razavi, S. M., & Kriegeskorte, N. (2014). Deep supervised, but not unsu-
pervised models may explain IT cortical representation. PLoS Computational
Biology, 10(11), e1003915.

Kietzmann, T. C., McClure, P., & Kriegeskorte, N. Deep neural networks in com-
putational neuroscience, In Oxford Research Encyclopedia of Neuroscience,
http://dx.doi.org/10.1093/acrefore/9780190264086.013.46.

Kietzmann, T. C., Spoerer, C. J., Sörensen, L. K. A., Cichy, R. M., Hauk, O.,
& Kriegeskorte, N. (2019). Recurrence is required to capture the rep-
resentational dynamics of the human visual system. Proceedings of the
National Academy of Sciences, 116(43), 21854–21863, URL https://www.pnas.
org/content/116/43/21854.

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization.
arXiv:1412.6980.

Koza, J. (1994). Genetic programming: On the programming of computers by means
of natural selection. Cambridge: Bradford Book.

Krizhevsky, A., Nair, V., & Hinton, G. Cifar-10 (Canadian institute for advanced
research) Technical Report. URL http://www.cs.toronto.edu/kriz/cifar.html.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with
deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou,
& K. Q. Weinberger (Eds.), Advances in neural information processing systems
25 (pp. 1097–1105). Curran Associates, Inc..

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553),
436–444.

Liao, Q., & Poggio, T. (2016). Bridging the gaps between residual learning,
recurrent neural networks and visual cortex. arXiv:1604.03640.

Lillicrap, T. P., Cownden, D., Tweed, D. B., & Akerman, C. J. (2016). Random
synaptic feedback weights support error backpropagation for deep learning.
Nature Communications, 7, 13276.

Lizier, J. T., Heinzle, J., Horstmann, A., Haynes, J. D., & Prokopenko, M.
(2011). Multivariate information-theoretic measures reveal directed infor-
mation structure and task relevant changes in fMRI connectivity. Journal of
Computational Neuroscience, 30(1), 85–107.

Marblestone, A. H., Wayne, G., & Körding, K. P. (2016). Toward an integration of
deep learning and neuroscience. Frontiers in Computational Neuroscience, 10,
94.

Markov, N. T., Vezoli, J., Chameau, P., Falchier, A., Quilodran, R., Huissoud, C.,
et al. (2014). Anatomy of hierarchy: feedforward and feedback pathways in
macaque visual cortex. Journal of Comparative Neurology, 522(1), 225–259.

Mishkin, D., & Matas, J. (2015). All you need is a good init. arXiv:1511.06422.
Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted

boltzmann machines. In Proceedings of the 27th international conference on
machine learning (ICML-10) (pp. 807–814).

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations
by back-propagating errors. Nature, 323, 533–536.

Salakhutdinov, R., & Hinton, G. E. (2009). Deep Boltzmann Machines. In Pro-
ceedings of the twelfth international conference on artificial intelligence and
statistics, AISTATS 2009 (pp. 448–455). Florida, USA: Clearwater Beach.

Saxe, A. M., McClelland, J. L., & Ganguli, S. (2013). Exact solutions to the nonlinear
dynamics of learning in deep linear neural networks. arXiv:1312.6120.

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural
Networks, 61, 85–117. http://dx.doi.org/10.1016/j.neunet.2014.09.003.

Schreiber, T. (2000). Measuring information transfer. Physical Review Letters,
85(2), 461.

Spillmann, L., Dresp-Langley, B., & Tseng, C. H. (2015). Beyond the classical
receptive field: The effect of contextual stimuli. Journal of Vision, 15(9), 7.

Spoerer, C. J., Kietzmann, T. C., & Kriegeskorte, N. Recurrent networks can recycle
neural resources to flexibly trade speed for accuracy in visual recognition,
bioRxiv. URL https://www.biorxiv.org/content/early/2019/06/22/677237.

Spoerer, C. J., McClure, P., & Kriegeskorte, N. (2017). Recurrent convolutional
neural networks: a better model of biological object recognition. Frontiers in
Psychology, 8, 1551.

Springenberg, J. T., Dosovitskiy, A., Brox, T., & Riedmiller, M. (2014). Striving for
simplicity: The all convolutional net. arXiv:1412.6806.

Stanley, K. O., & Miikkulainen, R. (2002). Evolving neural networks through
augmenting topologies. Evolutionary Computation, 10(2), 99–127.

Stollenga, M. F., Masci, J., Gomez, F., & Schmidhuber, J. (2014). Deep networks
with internal selective attention through feedback connections. In Z. Ghahra-
mani, M. Welling, C. Cortes, N. Lawrence, & K. Weinberger (Eds.), Advances in
neural information processing systems 27 (pp. 3545–3553). Curran Associates,
Inc..

162 S. Herzog, C. Tetzlaff and F. Wörgötter / Neural Networks 123 (2020) 153–162

Tang, H., Schrimpf, M., Lotter, W., Moerman, C., Paredes, A., Ortega Caro, J., et
al. (2018). Recurrent computations for visual pattern completion. Proceedings
of the National Academy of Sciences, 115(35), 8835–8840, URL https://www.
pnas.org/content/115/35/8835.

Varadarajan, K. M., & Vincze, M. (2013). Parallel deep learning with suggestive
activation for object category recognition. In M. Chen, B. Leibe, & B. Neumann
(Eds.), Lecture Notes in Computer Science: vol. 7963, Computer vision systems
(pp. 354–363). Springer.

Vicente, R., Wibral, M., Lindner, M., & Pipa, G. (2011). Transfer entropy–a
model-free measure of effective connectivity for the neurosciences. Journal
of Computational Neuroscience, 30(1), 45–67.

Wollstadt, P., Lizier, J., Vicente, R., Finn, C., Martinez-Zarzuela, M., Mediano, P.,
et al. (2019). Idtxl: The information dynamics toolkit xl: a python package
for the efficient analysis of multivariate information dynamics in networks.
Journal of Open Source Software, 4(34), 1081. http://dx.doi.org/10.21105/joss.
01081.

Yamins, D. L., & DiCarlo, J. J. (2016). Using goal-driven deep learn-
ing models to understand sensory cortex. Nature Neuroscience, 19(3),
356–365.

Zoph, B., Yuret, D., May, J., & Knight, K. (2016). Transfer learning for low-resource
neural machine translation. arXiv:1604.02201.

2. Data processing 57

2.4.1 Conclusions from (Herzog et al. 2020a)

In *(Herzog et al. 2020a) it could be shown how that adding specific feedback

connections between individual units improves performance of the CNN substantially.

The following experiment demonstrates how the application of the algorithm from

*(Herzog et al. 2020a) can improve the performance of the CAE from *(Herzog et al.

2021c). For this purpose, the data from *(Herzog et al. 2021c) was used and the

feedback approach from *(Herzog et al. 2020a) was applied to exactly the same

architecture and already trained weights as used in *(Herzog et al. 2021c). Then

the three evaluations for the noisy, blurred and under-sampled data cases were

re-evaluated. In the following evaluations the comparison with the ESN has been

omitted in order to provide a better overview. Starting with the re-evaluation of the

noisy data case. It is easy to see that the addition of feedback has further reduced

1 2 3 4 5 6 7 8 9
0.5

1

1.5

2

·10−2

Case

M
ea
n
ab

so
lu
te

er
ro
r

CNN
CNN+FB

Figure 2.3: Comparison between CAE and CAE with feedback connections (CAE+FB)
performance with noisy input data showing boxplots of mean absolute errors for different
noise levels p ∈ [0.1, 0.2, . . . , 0.9]. Each discrete value on the x- axis is assigned to the
boxes of the CAE and CAE+FB, where the CNN boxplots are coloured in blue and
CAE+FB boxplots are coloured in orange. The line in the middle of the box is the median
value, the box it self is the interquartile range (IQR), defined as the difference between the
difference between 75th (Q3) and 25th (Q1) percentiles. The outgoing whiskers from the
box are defined as Q1− 1.5IQR and Q3 + 1.5IQR. The points outside of the whiskers are
considered as outliers. This illustration corresponds to *(Herzog et al. 2021c, figure 10).

the mean absolute error. The mean absolute error across all cases was reduced by

5.56% in the mean with a standard deviation of 0.22%. The same experiments were

also carried out for the blurred data case. Here, too, the mean absolute error across

58 2.4. Publication: (Herzog et al. 2020a)

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

Case

M
ea
n
ab

so
lu
te

er
ro
r

CNN
CNN+FB

Figure 2.4: Mean absolute errors of reconstructions using CAE and CAE+FB for the
blurred data case of the low-pass filter parameter m. Same representation as in figure 2.3
and corresponding to *(Herzog et al. 2021c, figure 12).

all cases was reduced by 9.13% in the mean with a standard deviation of 0.37%.

Which has even led to a larger improvement than in the first case.

Finally, the approach from *(Herzog et al. 2020a) was also applied to the case

of the under-sampled data. Interestingly, adding feedback to this architecture

lead to no noticeable improvement. This may be because the architecture is only

one part of the CAE and not a whole CAE, or because the existing information

in the input data is not sufficient for better reconstructions, even when feedback

is added. The mean absolute error across all cases was reduced by 0.5% in the

1 2 3 4 5 6 7
0

0.2

0.4

Case

M
ea
n
ab

so
lu
te

er
ro
r

CNN
CNN+FB

Figure 2.5: Mean absolute errors of reconstructions using CAE and CAE+FB for the
case of under-sampled data. Same representation like in figure 2.3 and corresponds to
*(Herzog et al. 2021c, figure 15).

mean with a standard deviation of 0.09%. All in all, these are only preliminary

2. Data processing 59

studies and one must generally ask whether the improvements through feedback

justify the additional computing effort. For the cases shown here, it took longer

to calculate the feedback than to train the entire network. This is partly due to

the fact that the necessary calculation is not carried out using optimised code.

Furthermore, very large amounts of data accumulate that do not easily fit into

the random-access memory of a workstation. The last point of criticism is that,

the way the feedback is calculated also causes the problem that the network has

to be evaluated twice. In the next chapter the feedback approach was not used,

but further studies will follow in the future.

In summary, it is possible to say that the CAE architecture is a very powerful tool

that allows many pre- and post-processing steps and is comparatively easy to use.

On the other hand, a sufficient amount of data has to be available. Unfortunately

it is not possible to say how much data is really sufficient. Since only the evaluation

on the test data can provide a comparably reliable statement about the quality

of the approximated function by the ANN.

60

A man provided with paper, pencil, and rubber, and
subject to strict discipline, is in effect a universal
machine.

—Alan Turing, reprinted in (Tribus et al. 1971b)

3
Spatio-temporal data prediction

Contents
3.1 Introduction to spatio-temporal prediction 61
3.2 Stochastic modelling . 62

3.2.1 Stochastic process . 62
3.2.2 Graphical models . 64

3.3 Spatio-temporal prediction of non-linear dynamics . . 67
3.3.1 Publication: (Herzog et al. 2019) 67
3.3.2 Publication: (Herzog et al. 2018) 79
3.3.3 Publication: (Herzog et al. 2020b) 90

3.4 Summary and outlook 100

3.1 Introduction to spatio-temporal prediction

In the previous chapter, the convolutional autoencoder (CAE) architecture has been

introduced. In this chapter, this architecture will be extended by a probabilistic

component. This extension should enable the CAE to make long-term predictions

from the data on which it has been trained. The chapter starts with some basics

definitions in section 3.2 about stochastic modelling, introduces the concept of a

stochastic process up to random fields to provide the basic concepts to understand

the method of graphical models presented in subsection 3.2.2. This should provide

the necessary basis to better understand the approach presented in section 3.3.

61

62 3.2. Stochastic modelling

3.2 Stochastic modelling

Theory Experiment

Simulation

Problems

Data-driven modelling

Spa.-tem.
pred.

Dataprocess. Symbolicrepres.

Real data

Conclusions

Outlook

Figure 3.1: Structure overview: Spatio-
temporal data prediction chapter 3

For exact mathematical modelling it is

necessary that all relevant aspects of the

system to be described are known. If infor-

mation about the system is missing, exact

modelling is not possible and one often

resorts to approximations or probabilities

in order to describe the system, neverthe-

less. In the second case in particular, one

speaks of stochastic modelling. Based on a

set of statistical assumptions a probability

of an event can be calculated. In this

section, the basic concepts of stochastic

modelling will be discussed, to provide a

better intuition for the ansatz presented

later. The mathematical principles and

terminology are defined in the appendix B.

Stochastic models often consist of a set of random vectors (see appendix B.1.1),

describing a stochastic process. A stochastic process is a mathematical model for

a real process that is random and depends on a parameter (usually time). The

concept of the stochastic process shall be presented in more detail next.

3.2.1 Stochastic process

One way of looking at time ordered data, which are used for training the presented

approach, is to interpret them as a stochastic process. The model assumption is that

given probability space (Ω,A, P), in which each ω ∈ Ω is assigned a random function

x(t, ω), t ∈ T, where T ⊆ R is the time. Then a stochastic process can be defined as:

3. Spatio-temporal data prediction 63

Definition 3.2.1 (Stochastic process). Let T ⊆ R. A family of real-valued random

variables {X(t) | t ∈ T} on a joint probability space (Ω,A, P) is called a stochastic

process.

So X(t, ω) : T × Ω → R is a random variable for a fixed t ∈ T and a

function of t for a fixed ω ∈ Ω. For each n time points t1, . . . , tn ∈ T one

obtains the joint distribution of (X (t1) , . . . , X (tn))T by the joint distribution

function F(X(t1),...,X(tn))(x1, . . . , xn) (see appendix B.1.2). Considering real cases to

be stochastic processes it is mandatory to calculate probabilities, to do so underlying

distributions are needed to be assumed. For the distributions in this work, it should

always be assumed that the underlying distributions belong to the exponential

family, which is defined as follows

Definition 3.2.2 (Exponential family). For density (see appendix B.1.3) p(x | θ),

with x = (x1, . . . , xm)T ∈ Rm and θ = (θ1, . . . , θd)T ∈ Rd, is said to be in the

exponential family if it is of the form

p(x | θ) = 1
Z(θ)h(x) exp

[
θTφ(x)

]
= h(x) exp

[
θTφ(x)− A(θ)

]
where

Z(θ) =
m∑
i=1

h(xi) exp
[
θTφ(xi)

]
A(θ) = logZ(θ).

h(x) is the a scaling constant, Z(θ) is the partition function, φ(x) ∈ Rd is a

vector of sufficient statistics, A(θ) the log partition function and θ are the so called

natural parameters.

This assumption is realised in the following as a specific form of a graphical

model. Based on the brief introduction to the stochastic concepts introduced in this

section and the appendix B, graphical models shall be introduced next.

64 3.2. Stochastic modelling

3.2.2 Graphical models

The CAE presented in chapter 2 is to be extended by a graphical model to enable

the long term prediction of spatial-temporal dynamics. Generally speaking graphical

models are graphs (see appendix B.3.1) whose nodes are random variables and in

which the absence of edges between these nodes indicates their independence (see

appendix B.2.1). The use of graphical models allows setting up models which can

deal with complex inputs and also handle some uncertainty. In particular, the

structure as a graph can be used very well to combine with ANNs, as will be shown in

later in the presented publications. Starting with the definition of a graphical model.

Definition 3.2.3 (Graphical model (GM)). A graphical model represents a joint

distribution (see appendix B.1.2) by a graph G = (V , E), the nodes V represent

random variables. The edges E represent conditional dependence assumptions.

Definition 3.2.4 (Clique). For an undirected graph (see B.3.2), a clique is a set of

nodes that are all neighbours of each other. A clique is called maximal if its size

cannot be increased without losing the clique property

Definition 3.2.5. A distribution p(x) from X = {X1, . . . , XA}T factorizes accord-

ing to a factor graph F if there exists a set of local functions/factors Ψa such that

p can be written as

p(x) = Z−1(x)
A∏
a=1

Ψa (xa) .

The following is the extension to the factor graph.

Definition 3.2.6 (Factor graph, based on (Koller et al. 2009)). A factor graph F

is an undirected graph (see B.3.2) F = {Vn,VΨ, E} consisting of two types of nodes:

the variable nodes Vn and factor nodes VΨ. Edges E are only present between Vn

and VΨ. F is parameterized by a set of factors, where each factor node Ψ ∈ VΨ is

associated with one factor representing a set of neighbouring variables of Ψ in the

graph. A distribution p factorizes over F if it can be represented as a set of factors.

3. Spatio-temporal data prediction 65

ψ1

a b c

ψ1 ψ2

ψ3a

b

c

a) b)

Figure 3.2: Example of a factor graph with three variables a, b, c, denoted by circles
and factor nodes denoted by squares. In the factor graph a) only one factor Ψ1 is used.
In the factor graph b) three factors Ψ1, Ψ2, Ψ3 are used. The induced network for both is
a clique over a, b, c according to figure B.1 a). The shaded boxes Ψ1, . . . , Ψ3 are factor
nodes. The set of all distributions p(a, b, c) over the three variables a, b, c can be factorized
as p(a, b, c) = Ψ1(a, b, c) for graph a) and p(a, b, c) = Ψ1(a, b)Ψ2(b, c)Ψ3(a, c) for graph b).

The following definitions are based on (Sutton et al. 2012). X is a set of

observable input variables and Y set of output variables, which shall be predicted.

An arbitrary assignment to X is denoted by a vector x

Definition 3.2.7 (Conditional random field (CRF), based on (Sutton et al. 2012)).

Let F be a factor graph over X and Y . (X, Y) is a conditional random field if for

any value x of X, the distribution p(y | x) factorizes according to F .

If VΨ = {Ψa} is the set of factors in F , then the conditional distribution for a CRF

is

p(y | x) = 1
Z(x)

|VΨ|∏
a=1

Ψa(ya,xa) with (3.1)

Ψa(ya,xa) = exp
(∑

k

θakfak(ya,xa)
)
. (3.2)

fak are the feature functions, which allow transformation between the variables

and k is the index that enumerates the number of feature functions per factor

Ψa. The choice of these feature functions is discussed later in the next publication

included in this thesis, which is an important component that makes good prediction

possible. An example of what a graph for such a CRF would look like can be

found in figure 3.3. It is easy to see that the graph is much more accessible

than the equations 3.1 and 3.2.

66 3.2. Stochastic modelling

Ψ1 Ψ2

Ψ3 Ψ4 Ψ5

xt−2 xt−1 xt

yt−2 yt−1 yt

Figure 3.3: A CRF with three variables xt−2, . . . , xt which can emit three variables
yt−2, . . . yt. The same symbols are used as in figure 3.2. The circles in green symbolise
the desired output of the prediction.

To reduce the number of possible parameters during training, the factor graph F

is further partitioned into C = {C1, C2, . . . , CP}, where each Cp is a so called

clique template.

Definition 3.2.8 (Clique template, based on (Sutton et al. 2012)). A clique

template is a set of factors sharing a set of feature functions {fpk (xc, yc)}∀k∈Ψa
with

a set of corresponding parameters θp ∈ <K(p).

A CRF consisting of clique templates is given by:

p(y | x) = 1
Z(x)

∏
Cp∈C

∏
Ψc∈Cp

Ψc (xc,yc; θp) , (3.3)

where each clique templated factor is parameterized as

Ψc (xc, yc; θp) = exp

K(p)∑
k=1

θpkfpk (xc, yc)
 . (3.4)

The normalisation function is

Z(x) =
∑

y

∏
Cp∈C

∏
Ψc∈Cp

Ψc (xc, yc; θp) . (3.5)

This concludes the definition of the CRF. As may be evident from the defi-

nitions 3.2.7 and 3.2.8 including figure 3.3, CRFs can be structured in arbitrary

architectures similar to ANNs. The CRFs used in the following publications were

built with the intention that each variable Y is described by a Gaussian process

(for a definition and some mathematical properties see appendix B.4.1).

3. Spatio-temporal data prediction 67

3.3 Spatio-temporal prediction of non-linear dy-
namics

Together with the definitions from chapter 2, all parts are now introduced to

understand the method in Herzog, S., Wörgötter, F., and Parlitz, U. (2019).

“Convolutional autoencoder and conditional random fields hybrid for predicting

spatial-temporal chaos”. In: Chaos (Woodbury, N.Y.) 29.12. ANNs and CRFs

are both discriminatively trained probabilistic models. The idea of combining

ANNs and CRFs was based on the hope of being able to use the strengths of both

approaches with the intention that the combination would behave better than the

individual components. The ANN, more precisely the CAE, should encode the

data into a form that can then be predicted particularly well by the CRF. In the

past, different architectures and types of ANNs have been investigated to predict

complex systems. For example ANNs were used to approximate the steady flow

(Guo et al. 2016; Ribeiro et al. 2020) or more general computational fluid dynamics

(CFD) tasks like in (Musil et al. 2019), but usually these were processes that were

little (or not at all) chaotic. By using Gaussian process regressions (Wan et al.

2017) was more successful to forecast data from a chaotic dynamical system. The

most successful prediction on this type of data, until our contribution *(Herzog

et al. 2019), was achieved by Pathak et al. (2018).

3.3.1 Publication: (Herzog et al. 2019)

In the following paper, we presented our modified CRF and the integration into

the latent space of the CAE. The performance of the approach is compared with

the results from (Pathak et al. 2018).

Chaos 29, 123116 (2019); https://doi.org/10.1063/1.5124926 29, 123116

© 2019 Author(s).

Convolutional autoencoder and conditional
random fields hybrid for predicting spatial-
temporal chaos
Cite as: Chaos 29, 123116 (2019); https://doi.org/10.1063/1.5124926
Submitted: 18 August 2019 . Accepted: 14 November 2019 . Published Online: 12 December 2019

S. Herzog, F. Wörgötter, and U. Parlitz

COLLECTIONS

Paper published as part of the special topic on When Machine Learning Meets Complex Systems: Networks, Chaos

and Nonlinear Dynamics MACL2020

ARTICLES YOU MAY BE INTERESTED IN

Bayesian framework for simulation of dynamical systems from multidimensional data using
recurrent neural network
Chaos: An Interdisciplinary Journal of Nonlinear Science 29, 123115 (2019); https://
doi.org/10.1063/1.5128372

Forecasting chaotic systems with very low connectivity reservoir computers
Chaos: An Interdisciplinary Journal of Nonlinear Science 29, 123108 (2019); https://
doi.org/10.1063/1.5120710

Using machine learning to predict extreme events in the Hénon map
Chaos: An Interdisciplinary Journal of Nonlinear Science 30, 013113 (2020); https://
doi.org/10.1063/1.5121844

Chaos ARTICLE scitation.org/journal/cha

Convolutional autoencoder and conditional
random fields hybrid for predicting
spatial-temporal chaos

Cite as: Chaos 29, 123116 (2019); doi: 10.1063/1.5124926
Submitted: 18 August 2019 · Accepted: 14 November 2019 ·

Published Online: 12 December 2019 View Online Export Citation CrossMark

S. Herzog,1,2,3 F. Wörgötter,2 and U. Parlitz1,3,4,a)

AFFILIATIONS
1Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, 37077 Göttingen, Germany
2Third Institute of Physics and Bernstein Center for Computational Neuroscience, University of Göttingen, Friedrich-Hund-Platz 1,
37077 Göttingen, Germany
3DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Robert-Koch-Str. 42a, 37075 Göttingen, Germany
4Institute for the Dynamics of Complex Systems, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany

Note: This paper is part of the Focus Issue, “When Machine Learning Meets Complex Systems: Networks, Chaos and Nonlinear
Dynamics.”
a)Electronic mail: ulrich.parlitz@ds.mpg.de

ABSTRACT

We present an approach for data-driven prediction of high-dimensional chaotic time series generated by spatially-extended systems. The
algorithm employs a convolutional autoencoder for dimension reduction and feature extraction combined with a probabilistic prediction
scheme operating in the feature space, which consists of a conditional random �eld. The future evolution of the spatially-extended system is
predicted using a feedback loop and iterated predictions. The excellent performance of this method is illustrated and evaluated using Lorenz-96
systems and Kuramoto-Sivashinsky equations of di�erent size generating time series of di�erent dimensionality and complexity.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5124926

With the advent of novel measurement devices like dense sensor

networks or high speed high resolution cameras, large datasets

are available to describe complex dynamics in spatially-extended

systems. Using such spatiotemporal time series to forecast high-

dimensional chaotic processes remains a challenge because meth-

ods from nonlinear time series analysis for reconstructing the

dynamics using delay coordinates cannot be applied straightfor-

wardly due to the extremely high dimension of the required delay

embedding space. This di�culty can be overcome by nonlinear

dimension reduction and a suitable factorization of the remain-

ing multivariable conditional probability distributions providing

forecasts based on historic data. This hybrid concept has been

implemented using a convolutional autoencoder combined with

an extended conditional random �eld modeling the time evolu-

tion. When applied to di�erent very hyperchaotic spatiotemporal

benchmark time series from the literature, this predictionmethod

turns out to be very e�ective.

I. INTRODUCTION
Development of explicit mathematical models for complex

physical phenomena, while desirable, often remains di�cult or
unfeasible. This is, in particular, true for high-dimensional, nonlin-
ear dynamical systems for which many times adequate models based
on �rst principles do not exist. As a result, it remains hard or impos-
sible to predict the temporal development of such systems in any
reliable way. This has led to attempts that use implicit data-driven
descriptions of such systems, for example, employing arti�cial neu-
ral networks. For example, in the �eld of �uid dynamics, arti�cial
neural networks46 were used early on to introduce reduced-order
models.48Over time, more andmore approaches have been proposed
for generating models from (training) data including autoregressive
models3 or adaptive fuzzy rule-based models.2 The authors in Ref. 28
introduced a tree-structured, recurrent switching linear dynamical
system. This probabilistically models the multiscale property of the
observed data through a hierarchy of locally linear dynamic elements

Chaos 29, 123116 (2019); doi: 10.1063/1.5124926 29, 123116-1

Published under license by AIP Publishing.

Chaos ARTICLE scitation.org/journal/cha

that jointly approximate the global nonlinear dynamics of the sys-
tem. Another current approach introduced in Ref. 15 treats time
series prediction by using local state reconstructions,30 dimension
reduction, and nearest neighbor methods for local modeling. Fur-
thermore, there are approaches that use echo state networks (ESNs)
with very good results.31 In Ref. 33, possible advantages of deep
learning approaches over reservoir computing are shown, where a
time-delay reservoir is outperformed by a deep learning network by
at least an order of magnitude. Also, investigations were made with
long short-term memory (LSTM) networks, which are prominent
recurrent neural networks in the �eld of deep learning, where the
LSTM uses the short-term history of the reduced-order variable to
predict the state derivative and uses it for one-step prediction.47 The
approach presented below employs a convolutional autoencoder4 for
dimension reduction and feature extraction combined with a prob-
abilistic prediction scheme to learn the dynamics of the considered
systems only using recorded data.11 Our goal is to show that, after
learning, this model will describe data in di�erent systems precisely
and with a high level of predictability. This will be demonstrated
using the Lorenz-96 system25 as well as the Kuramoto-Sivashinsky
equations,21,40,41 where we can show that our approach substantially
increases the prediction horizon compared to the state of the art.31

II. METHODS
In data-drivenmodeling,mathematicalmodels are not based on

�rst principles (e.g., Newton’s laws, Maxwell’s equations, etc.) but are
directly derived from experimental data. In the following, we present
a method11 which combines a convolutional autoencoder (AE)4

for feature extraction and dimension reduction with an extended
version of conditional random �elds (CRFs)22 in order to model
the properties of temporal sequences.

A. Artificial neural networks
The structure of arti�cial neural networks is divided into three

parts. First, the input data are recorded in an input layer. Then, the
recorded data are processed by an arbitrary number of hidden layers
and in the third step this processed data is passed to an output layer,
which maps the data to a descriptive space (e.g., classi�cation10,20) or
a generative space (e.g., super resolution7). Hereby, the hidden layers
can have very di�erent functions; for the algorithm presented in the
following, the relevant parts are

1. Convolutional layers: Convolution of the input by a kernel slid-
ing over the input. The numbers of rows and columns of the
kernel are hyperparameters; in this work, they are set to be
(3 × 3).

2. Batch normalization layer: Normalization of the activations of
the previous layer during training and for each batch. Batch
normalization allows the use of higher learning rates, being
computationally more e�cient, and also acts as a regularizer.14

3. Leaky ReLU26 layer: Leaky version of a recti�ed linear unit
(ReLU),9 such that

ν(x) =

{

αx for x < 0,

x for x ≥ 0.

4. Max pooling layer: Sample-based operation for discretization
based on a kernel that slides over the input like the convolutional
operator but only the maximum value of the kernel is passed to
the next layer. Width and height of the kernel are hyperparame-
ters (in this work 2 × 2). In contrast to the convolutional layer, a
pooling layer is not trainable.

5. Dropout layer: Regularization method to prevent over�tting
where during training some weights are set randomly to zero.43

In this work, the probability of setting the weights to zero is 0.4.

A network is called feed forward network (FFN) if only the inputs
from previous layers are used in a present layer. A FFN with con-
volutional layers is called a convolutional neural network (CNN)
introduced in Ref. 23.

Let X ∈ X ⊂ Rd and Y ∈ Y ⊂ R be two random variables
and Y = f (X) for some unknown function f . Given samples
{(x(r), y(r))}r=1,...,R drawn from the joint distribution of X and Y , the

goal is to �nd themapping f̂ : X 7→ Ywhichminimizes the expected
loss by a given loss function L : X × Y 7→ R, leading to:

f̂ = argmin
f∈F

E[L(Y , f (X))], (1)

where F is a restricted function space and E the expected value.
CNNs are supposed to �nd solutions for Eq. (1).

A CNN with depth L consists of convolutional layers given by

x(l) = h(l)(x) = ν
(

W(l) ∗ h(l−1)(x)− b(l)
)

, l = 1, . . . , L, (2)

where x(l) is the output of the hidden layer, at layer l, W(l) is a con-
volutional tensor, ν an activation functions (in this work the leaky
ReLU26) which acts componentwise, and b(l) is a vector of bias val-
ues for layer l. For h(0)(x) = x holds. W(l) ∗ h(l−1)(x) is the discrete
convolution between W, a tensor of weights, and h(l−1)(x), a tensor
of outputs from the l − 1 layer.

A classical autoencoder13 (AE) is a FFN, a convolutional
autoencoder4 a CNN, both try to replicate the input data as good
as possible, while processing the data through a hourglass similar
architecture, where in the middle of the network the data space is
reduced drastically. This reduced space is called feature space. The
compressing part of the network, often called encoding part, tries to
reduce the complexity of the data as representatively as possible in
the feature space. The second part, often called the decoding part,
tries to reconstruct the data from the features such that the di�er-
ence between input and output is minimal. AEs are self-supervised
learning methods such that no annotated data are needed, changing
Eq. (1) to

f̂ = argmin
f∈F

E[L(X, f (X))]. (3)

The loss function L : R|θ | 7→ R,

L(θ) =
1

R

R
∑

r=1

|x(r) − x(r)(L)(θ)|, (4)

quanti�es the di�erence between input x(r) and output x(r)L of the AE
by means of a suitable metric (in this case, the mean absolute error),
where L denotes the output layer and x(r) are the di�erent inputs.
The loss function L(θ) can also be used to train the weights θ of

Chaos 29, 123116 (2019); doi: 10.1063/1.5124926 29, 123116-2

Published under license by AIP Publishing.

Chaos ARTICLE scitation.org/journal/cha

the encoder and the decoder by a gradient descent method18 to mini-
mizeL(θ). In our prediction algorithm, the features generated in the
bottleneck of the AE architecture will be the input of the CRF, which
predicts their temporal development.

B. Extended conditional random fields
Before introducing the extended conditional random �eld

(eCRF) used for prediction, we shall revisit the general concept of
CRFs. For this purpose, we follow the introduction to CRFs by Sutton
andMcCallum44 and adopt their notation, as far as possible. The task
of time series prediction for a temporal sequence of frames (�elds,
images) can be formulated in a probabilistic framework referring to
a set of random variables X ∪ Y , where X is a set of (known) input
variables (here: features of the current and previous frames) and Y is
a set of (unknown) output variables to be predicted (here: the feature
representation of the next future frame). The relation between input
and output variables x ∈ X and y ∈ Y , respectively, can be expressed
in terms of a conditional probability distribution p(y|x). Maxi-
mizing this conditional probability provides the desired predicted
value

yp = argmax
y

(p(y|x)). (5)

Despite the dimension reduction provided by the AE, the feature
representation of spatiotemporal time series still consists of many
variables (in the following examples 32 × 64, see Fig. 2). To copewith
this kind of high-dimensional (conditional) probability distributions,
we use here conditional random �elds (CRFs)22 which belong to the
class of graphical models (GMs).19 GMs are a framework for deal-
ing with multivariate probability distributions. They exploit the fact
that a distribution over many variables can often be expressed as a
product of so-called factors (also called local functions or compat-
ibility functions) that each depend on a (small) subset of variables
exploiting statistical independence between (sets of) variables. With
CRFs, this decomposition is applied to the conditional probability
distribution,

p(y|x) =
1

Z(x)

A
∏

a=1

ψa(ya, xa), (6)

where F = {ψa} is the set of factors ψa ≥ 0 with a total number of A
elements, such thatXa ⊂ X, Ya ⊂ Y, with xa ∈ Xa and ya ∈ Ya. Z(x)
is a normalization term, de�ned later. Such factorizations of probabil-
ity distributions are calledGMs because their structure can e�ciently
be represented by means of an undirected bipartite graph G(V , F,E)
where the �rst set of nodes V consists of the random variables, F
stands for the set of nodes representing the factors (or local func-
tions), and E is the set of edges de�ning which variables enter which
factor ψa, see Fig. 1.

(X,Y) is a conditional random �eld if for any x ∈ X the con-
ditional probability distribution p(y|x) factorizes according to the
graph G. Up to this point, it was assumed that the x, y are a pair of
variables occurring at the same time or a temporal state. Assuming a
stationary input, the factorization of the probability distribution and
the structure of the graphGwill not change in time. As will be shown
inmore detail below, the factorsψa are composed of a linear superpo-
sition of feature functions with corresponding weights (representing

FIG. 1. Example of a graph G describing the distribution p(y1|x), with local func-
tionsψ1(x1, y1),ψ2(x2, y1),. . . ,ψn(xn, y1). The circles are variable nodes, where
the blue ones are the input and the green one the output, and the shaded boxes
are factor nodes.

parameters to be learned). Another step for reducing the complex-
ity of the factorization is the common use of feature functions and
weights by several factors. This results in a partitioning of the graph
G into a set C = {C1,C2, . . . ,Cq} of cliques Cp such that the CRF can
be written as44

p(y|x) =
1

Z(x)

∏

Cp∈C

∏

9c∈Cp

ψc(xc, yc; θp), (7)

where xc and yc are the parts of x, y with shared weights in a clique
and where each factor,

9c(xc, yc; θp) = exp

K(p)
∑

k=1

θpkfpk(xc, yc), (8)

is given by the weights θpk and the feature functions F =

{fpk(xc, yc)}
K(p)

k=1 . The normalization function reads

Z(x) =
∑

y

∏

Cp∈C

∏

9c∈Cp

ψc(xc, yc; θp). (9)

Tomodel more than one temporal state, Eq. (7) can be extended
by latent variables to a hidden conditional random �eld (HCRF),36

where h = (h1, . . . , hm) is a vector of latent variables, with hj ∈ H,
where H is a �nite set of possible hidden states. Practically, this
means that the encoded elapsed time steps from the AE are stored
in h,

p(y, h|x) =
1

Z(x)

∏

Cp∈C

∏

9c∈Cp

9c(xc, hc, yc; θp), (10)

with parameterized factors

9c(xc, hc, yc; θp) = exp

K(p)
∑

k=1

θpkfpk(xc, hc, yc), (11)

and the normalization function

Z(x) =
∑

y

∏

Cp∈C

∏

9c∈Cp

ψc(xc, hc, yc; θp). (12)

Chaos 29, 123116 (2019); doi: 10.1063/1.5124926 29, 123116-3

Published under license by AIP Publishing.

Chaos ARTICLE scitation.org/journal/cha

Extended conditinal random �elds (eCRFs) are de�ned by
extending the parameterized factors to

9c(xc, hc, yc; θp)

= exp





m
∑

j=1

θ
(hj)
p fp(xc, yc, hc, j, τ)+ θ

(y,hj)
p

+
∑

∀(j,k)s.t.:j6=k

θ
(y)
p fp(xc, yc, hc, j, k, τ)

k
+ θ

(y,hj ,hk)
p



 , (13)

i.e., an eCRF is given by Eqs. (10), (12), and (13). The extended
parameterized factors in Eq. (13) describe (measure) the conditional
probability between a possible forecast y, a set of observations x
and a con�guration of past states h, where m is the total number
of past states. fp(xc, yc, hc, j, τ) is a feature function with cliques that
can include any subsequence of τ past states to describe the prob-
ability between some subsequence of past states and the observed
current state. While fp(xc, yc, hc, j, k, τ) describes the probability of
the current state and a possible future state, it is divided by k to
avoid that this term is added multiple times. The parameter vec-

tor θp =
{

θ
(hj)
p , θ

(y,hj)
p , θ

(y,hj ,hk)
p , θ

(y)
p

}

consists of the parameter vectors

θ
(hj)
p for the parameters corresponding to the state hj ∈ H, the param-

eters θ
(y,hj)
p describing how well a forecasted feature y corresponds to

a state hj, the weights θ
(y,hj ,hk)
p between two edges of the past states hj

and hk, and some parameters θ
(y)
p for any element y of y depending

on the features over the past. Parameter τ = 10 speci�es the number
of inputs from the AE taken into account for the forecast.

1. eCRF features
To get feature functions fp for Eq. (13), a set of base features func-

tions is used for the introduced eCRF model. These base features are
used during the training to induce the desired features. The method
of feature induction is described in Ref. 27. Four base functions are
used, where y is considered to be part of x, for the feature induction:

• Weighted neighbor feature

fWNF(x, y, h, j, τ) =

{

θ
(1)
WNF

∑τ+j
i=j ‖xj − xi‖2 if τ > 1,

θ
(2)
WNF if τ = 0.

(14)

• Mean feature

fDF(x, y, h, j, τ) =
xj +

∑j+τ
i=j hi

τ + 1
. (15)

• Distance feature

fMF(x, y, h, j, τ) = xj − xj+τ . (16)

• For fPM(x, h, j, k, τ), a probabilistic movement feature based on
Ref. 29 is calculated,

pmt =

[

xj(t)

ẋj(t)

]

= φT
t w + εpmt

, (17)

p(w|τ) =

τ
∏

t=0

N(pmt|φ
T
t w,6pmt

), (18)

where a weight vector w is used to compactly represent a single
trajectory (changes of xj over the time window τ) given as a linear
basis functionmodelφt and εpmt

∼ N(0,6pmt
) is a zero-mean i.i.d

Gaussian noise. Thismodel is used to predict the value of xj at time
point t + 1,

fPM(x, h, j, k, τ) = xj + ẋj, (19)

where xj + ẋj is the predicted value of xj at time t + 1 based on the
subsequence {hj, . . . , hk} ⊆ {h1, . . . , hm}.

C. Training
The parameter determination of the presented approach con-

sists of two phases: First the AE, consisting of the encoding and

decoding part, is trained such that
∑

r |f (x
(r); θAE)− x(r)|

!
= 0. Then,

the parameters θAE of the AE are �xed and the eCRF is deployed.
The combined AEwith the eCRF is then used to train the parameters
θeCRF of the eCRF. For this, the likelihood function,

L(θeCRF) =

R
∑

i=1

P(yi | xi, θeCRF)−
1

2σ 2
‖θeCRF‖

2, (20)

is used, where R is the number of training examples and σ 2 the L2
regularizer (in this work, σ 2 = 11). Bymaximizing the likelihood for
the true prediction on the training data, the optimal parameter set
θ∗
eCRF is determined. To �nd θ∗

eCRF , Eq. (20) can be maximized by the
gradient descent method which is used for optimizing/training the
θAE. The AE part of the method was implemented with Keras5 and
Tensor�ow1 version 1.10, the eCRF was implemented with C++ and
Python38 version 3.6 from scratch.

D. Prediction
To predict the input sequence with the eCRF for one time step,

it is necessary to �nd

ŷ = argmax
y

p(y, h | x; θ∗
eCRF), (21)

where ŷ is calculated elementwise for every element in y and for each
element x in the feature space. The �eld of ŷ is then used by the AE
decoding part tomap the features back to generate the desired output
at t +1t. The future evolution of the spatiotemporal time series is
predicted by using a feedback loop from the output of the AE back to
the input.

III. RESULTS
In order to benchmark our method, spatiotemporal time series

from two systems were examined. The �rst system is the Lorenz-96
model,24 a system with an adjustable number of ordinary di�eren-
tial equations exhibiting high-dimensional chaotic behavior. This
system is often used as a benchmark in data assimilation.35,37The sec-
ond set of time series was generated by the Kuramoto-Sivashinsky
equation,21,40,41 a nonlinear PDE which was also used as benchmark

Chaos 29, 123116 (2019); doi: 10.1063/1.5124926 29, 123116-4

Published under license by AIP Publishing.

Chaos ARTICLE scitation.org/journal/cha

FIG. 2. Proposed architecture for prediction, consisting of a split autoencoder and the eCRF. Each rectangular block is a set of layers. The first dimension in the input and
output boxes is the batch size which is None meaning that this dimension is variable. The second variable 512 is the size of state vector, and the 128 the number of time
steps taken into account for performing one input for the eCRF, the last size is the number of channels or filters used in the layer.

system in Ref. 31. In both cases, we investigate how long the mean
absolute error between the ground truth data and the predicted data
is smaller than some given εerror. This prediction horizon is then com-
pared to the Lyapunov time, a characteristic time scale given by the
inverse of the largest Lyapunov exponent 3max. As input, we always
use τ = 10 �elds where the �rst dimension of each �eld is the sys-
tem size and the second dimension is the number of time steps (here:
128).

A. Lorenz-96 model
The Lorenz-96 model is a dynamical system

dxi

dt
= (xi+1 − xi−2)xi−1 − xi + F, (22)

introduced by Lorenz24, where xi (i = 1, . . . ,N) is a component of
the system state x = [x1, . . . , xN] and F ∈ R is a forcing constant.

Chaos 29, 123116 (2019); doi: 10.1063/1.5124926 29, 123116-5

Published under license by AIP Publishing.

Chaos ARTICLE scitation.org/journal/cha

The components of x are arranged in a ring with periodic boundary
conditions x−1 = xN−1, x0 = xN , and xN+1 = x1.

In the context of this manuscript, F = 8 and N ∈ {32, 64, 128,
256}. For eachN, 100 cases were generated where the initial state was
set to F and 10% of the components were perturbed with some ran-
dom values from a uniform distribution between [−0.01, 0.01]. To
integrate the system, we used 1t = 0.01 and tmax = 45.6 rendering
in total 4560 time steps. For integration, the python implementation
of lsoda34 was used. However, only the last 2560 time steps were con-
sidered and the �rst 2000 time steps of the transient to the attractor
were discarded to avoid initialization artifacts. The data were then
divided into sequences of 128 time steps, such that X ∈ RN×128, and
randomly divided in 50% training, 25% validation and 25% test data.
The following results are all from the test data. In Figs. 3 and 4, cases
N = 32 and N = 128 are shown as examples. By setting the thresh-
old εerror = 0.35 for themean absolute error, we de�ne the prediction
horizon, i.e., the point in time until successful forecasts are achieved.
It should be noted that the choice of this value was subjective, it was
the pointwhere a deviation from the ground truth can be seen by bare
eyes. With this threshold, the Lorenz-96 model is successfully pre-
dicted for N = 32 over a period of time 9.55t corresponding to 955
time steps. Bymultiplying t with the largest Lyapunov exponent3max

(see Table I), this corresponds to over 15 Lyapunov times. A similar
behavior can be seen for the caseN = 128 (Fig. 4). Although the pre-
diction time-interval decreases, it is found that in terms of Lyapunov
time a similar prediction duration exists, since 3max has increased.
However, Figs. 3 and 4 only provide a general intuition. The duration
of how long the forecast remains correct depends also on the initial
state on the attractor. Therefore, in Fig. 5a, the prediction statistics for
all 500 test sequences for N ∈ {32, 64, 128, 256} is shown with di�er-
ent initial conditions in the test data. The median for the prediction
horizon (in units of the Lyapunov time) is 15.48 for N = 32, 15.03
for N = 64, 15.00 for N = 128 and 14.86 for N = 256.

(a)

(b)

(c)

FIG. 3. Comparison between real (ground truth) data (a) with the predicted data
(b) for the Lorenz-96 model with N = 32. (c) shows the absolute error between
real data and the forecast. The red line indicates the time when the mean absolute
error is larger than εerror = 0.35 corresponding to an error of about 1.2 %. Using
this conservative criterion for this example, a prediction horizon of 15.663maxt is
achieved.

(a)

(b)

(c)

FIG. 4. Same as Fig. 3 for N = 128, where we achieve a prediction horizon of
14.123maxt under the same constraints as in Fig. 3.

B. Kuramoto-Sivashinsky equation
The Kuramoto-Sivashinsky equation (KSE),

ut + ν∇4u + ∇2u +
1

2
|∇u|2 = 0,

(x, t) ∈ R × R+,

u(x, 0) = u0(x), u(x + L, t) = u(x, t), (23)

is a fourth-order nonlinear partial di�erential equation introduced
for modeling di�usive instabilities in a laminar �ame front,41 where
∇2 is the Laplacian, ∇4 is the biharmonic operator, ∇ is the gradi-
ent, ν is a positive constant and u0 is L-periodic, where L is the size
of a pattern cell.41 In the speci�c limit of large nondimensional sur-
face tension, it was proved42 that for y(x, t) = ∇u(x, t) and ν = 1 the
KSE can be written as

yt + ∇4y + ∇2y + y∇y = 0. (24)

In order to achieve a comparison with recent results by Pathak
et al.31 representing the current the state of the art of data-driven
time series prediction, we also extended Eq. (24) with a spatial
inhomogeneity term, as in Ref. 31,

yt + ∇4y + ∇2y + y∇y − µ cos

(

2πx

λ

)

= 0. (25)

Like in Ref. 31, Eq. (24) is integrated on a grid of Q equally
spaced points with1t = 0.25 and tmax = 2500 rendering 10 000 time

TABLE I. Largest Lyapunov exponent 3max and Kaplan-Yorke attractor dimension

(DKY)
17 for Lorenz-96 systems with different dimensions N.

N 3max DKY

32 1.64 21.7
64 1.72 43.0
128 1.77 86.6
256 1.79 173.3

Chaos 29, 123116 (2019); doi: 10.1063/1.5124926 29, 123116-6

Published under license by AIP Publishing.

Chaos ARTICLE scitation.org/journal/cha

(a) (b)

FIG. 5. Lyapunov time statistics for
(a) Lorenz-96 systems of dimensions
N ∈ {32, 64, 128, 256} and b) KSEs
with L = 22,Q = 64,µ = 0, L =
100,Q = 256,µ = 0.01, λ = 100, and
L = 200,Q = 512,µ = 0.01, λ = 100.

t̂ is the time when the mean abso-
lute error for the prediction exceeds
εerror = 0.35 for the Lorenz-96 system
and εerror = 0.07 for the KSE.

steps. For integration, the exponential time di�erencing fourth-order
Runge-Kutta algorithm (ETDRK4)6was used. To compare our results
with Pathak et al.,31 we considered the cases L ∈ {22, 100, 200}.

Similar to the analysis of the Lorenz-96 model, for each L, 100
di�erent cases were generated with random initialization and the
last 7936 time steps, such that subsequences X ∈ RL×128 represent-
ing 128 time steps for later training, validation, and test purposes.
Figure 6 shows the prediction results for the KSE with L = 22,Q =
64, and µ = 0. In this speci�c case a prediction horizon of 22.97
Lyapunov times was achieved with an error threshold of εerror = 0.07.
For the case of L = 200,Q = 512,µ = 0.01, and λ = 100 (Fig. 7), a
comparable result of 22.183maxt was found.

As with the Lorenz-96 model, the prediction duration of the
KSE is also dependent on the initial state on the attractor. The
corresponding statistics are shown in Fig. 5(b). According to our

(a)

(b)

(c)

FIG. 6. Comparison between real data (a) with predicted data (b) of the KSE with
L = 22,Q = 64, and µ = 0. (c) shows the absolute error between ground truth
and prediction. The red line indicates the point at which the mean absolute error
is greater than εerror = 0.07 corresponding to an error of about 1.2%, using this
criterion a prediction horizon of 22.973maxt is achieved.

knowledge, the current best prediction results for the KSE were
reported in Ref. 31 for an echo state network which achieved ≈ 3
Lyapunov times (read from Fig. 2 in Ref. 31) for L = 22 and ≈ 8
Lyapunov times for L = 200 (reported in text of Ref. 31). Unfor-
tunately, there it was not reported at which error threshold for the
prediction horizon these values were taken. We exceed the predic-
tion horizon obtained with the echo state network, even when only
considering median values, substantially with 19.92 Lyapunov times
for L = 22 and 16.83 for L = 220. Of course, training of our hybrid
approach is muchmore time consuming than the learning procedure
with reservoir computing.

IV. DISCUSSION
The presented algorithm delivers promising results, but one can

ask, why this is so? Alas, this hybridmethod does not easily lend itself
to intuition.While the systemnecessarily uses the temporal history of

(a)

(b)

(c)

FIG. 7. Same as in Fig. 6 with L = 200,Q = 512, µ = 0.01, and λ = 100,
where we get a prediction horizon of 22.183maxt under the same constraints as
in Fig. 6.

Chaos 29, 123116 (2019); doi: 10.1063/1.5124926 29, 123116-7

Published under license by AIP Publishing.

Chaos ARTICLE scitation.org/journal/cha

FIG. 8. Attention map for the Lorenz-96 system with N = 32. The left side is the
input image and the right side is the corresponding attention map. The panels at
the bottom show the same for a different moment in time along the time series.

the time series, this does not happen in any straightforward manner.
For example, the simple assumption that there is a continuous decay
of the importance of data that is longer in the past is not true.

The autoencoder (AE) compresses the data at its bottleneck
layers, leading to a much reduced and importance-weighted repre-
sentation of the input. To make this visible, we need to backproject
the importance-weighting into the input space. For this, one can use
so-called gradient-based attention maps, which are maps where the
value of the positive gradients from theAE, after training, is weighted
by the loss of Eq. (4) and projected back to the input space. Hence,
they allow us to inspect which parts of the input are most strongly
represented in the bottleneck of the AE. Themethod to generate such
attention maps was presented in Ref. 39. Figure 8 shows the input
situation (left) for a certain moment in time of the Lorenz-96 sys-
tem for a period of time and the corresponding attentionmap (right)
for N = 32. Hence, only those parts of the input, where the atten-
tion map has high values, are considered by the encoder-pathway of
the AE. A similar diagram for N = 128 is shown in Fig. 9. There is
no simple temporal structure visible in either of these attentionmaps
and the resulting structures are complex. Furthermore, it is impor-
tant to note that these attention maps will look di�erent for di�erent
time points along the time series. On more theoretical grounds, a
certain commonality, however, exists for the importance-weighing
performed by the AE across all cases. Autoencoders have been inves-
tigated in depth in the recent past.8,12,45 These works show that AEs
are capable of learning disentangled representations of the data to
construct a latent representation that reconstructs existing (or gen-
erates new) samples from complex, high-dimensional distributions.

FIG. 9. As Fig. 8 but here with system size N = 128.

We suggest that exactly this behavior is a key component for the
performance of our approach.

The disentanglement property creates features in the bottleneck
layer of the AE that can e�ectively be understood as independent
random variables. Under such conditions, conditional random �elds
(CRF) are known to operate with high performance due to optimal
factorization and representation. We suggest that these aspects may
underlie the high prediction performance observed with our hybrid
prediction method.

The here-presented method delivers quite a large prediction
horizon on complex time series. As a consequence, di�erent appli-
cations for such a system are conceivable. It can be used to perform
data-driven modeling for systems where no mathematical models,
based on �rst principles, exist, or which are very expensive to solve. A
second, potentially interesting application would be the acceleration
of complex model calculations, where a hybrid approach is used that
iterates conventional numerical simulations with predictions by our
method. This way, costly and potentially slow numerical simulations
do not have to be performed for every timestep. Instead, missing data
would be �lled in by the predictions made by our approach.

The work we have done so far is intended to be a proof of con-
cept; there are still many components that can probably be improved
to some degree. In this work, we have not tried to tune hyperparam-
eters, including the architecture of the AE or of the eCRF. The way
in which we have trained the parameters meets the state of the art
in machine learning, but also, here, possibilities exist for optimiza-
tion. One option would be to use a bias-variance balancing objective
function.32 Another possibility, which could even be considered in
addition, would be population-based training.16

Chaos 29, 123116 (2019); doi: 10.1063/1.5124926 29, 123116-8

Published under license by AIP Publishing.

Chaos ARTICLE scitation.org/journal/cha

ACKNOWLEDGMENTS
We thank Stefan Luther for continuous support and inspiring

discussions on applications of nonlinear time series analysis in car-
diac dynamics and beyond, and Jonas Isensee for support with the
implementation of the Kuramoto-Sivashinsky equation and interest-
ing exchanges about state reconstructions of nonlinear systems. S.H.
acknowledges funding by the International Max Planck Research
Schools of Physics of Biological and Complex Systems. This work
was supported by the European Commission’s H2020-Framework
FET-Proactive Grant Plan4Act (No. 732266).

REFERENCES
1M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,
M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R.
Monga, S.Moore, D.Murray, C. Olah,M. Schuster, J. Shlens, B. Steiner, I. Sutskever,
K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden,
M.Wattenberg, M.Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine
learning on heterogeneous systems” (2015), see tensor�ow.org.
2A. J. Abebe, D. P. Solomatine, and R. G. W. Venneker, “Application of adap-
tive fuzzy rule-based models for reconstruction of missing precipitation events,”
Hydrolog. Sci. J. 45, 425–436 (2000).
3G. E. P. Box andG. Jenkins,Time Series Analysis, Forecasting andControl (Holden-
Day Inc., San Francisco, CA, 1990).
4Z. Cheng, H. Sun, M. Takeuchi, and J. Katto, “Deep convolutional autoencoder-
based lossy image compression,” in 2018 Picture Coding Symposium, PCS
2018—Proceedings (Institute of Electrical and Electronics Engineers Inc., 2018),
pp. 253–257.
5F. Chollet et al., see https://keras.io for “Keras” (2015).
6S. Cox and P. Matthews, “Exponential time di�erencing for sti� systems,”
J. Comput. Phys. 176, 430–455 (2002).
7C. Dong, C. C. Loy, K. He, and X. Tang, “Learning a deep convolutional network
for image super-resolution,” in Computer Vision—ECCV 2014, edited by D. Fleet,
T. Pajdla, B. Schiele, and T. Tuytelaars (Springer International Publishing, Cham,
2014), pp. 184–199.
8S. Gao, R. Brekelmans, G. V. Steeg, and A. Galstyan, “Auto-encoding total corre-
lation explanation,” e-print arXiv:1802.05822[cs.LG] (2018).
9R. H. Hahnloser, R. Sarpeshkar, M. A. Mahowald, R. J. Douglas, and H. S. Seung,
“Digital selection and analogue ampli�cation coexist in a cortex-inspired silicon
circuit,” Nature 405, 947 (2000).
10K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recogni-
tion,” in 2016 IEEEConference onComputerVision andPatternRecognition (CVPR)
(IEEE, 2016), pp. 770–778; see https://ieeexplore.ieee.org/document/7780459.
11S. Herzog, F. Wörgötter, and U. Parlitz, “Data-driven modeling and prediction
of complex spatio-temporal dynamics in excitable media,” Front. Appl. Math. Stat.
4, 60 (2018).
12I. Higgins, L. Matthey, X. Glorot, A. Pal, B. Uria, C. Blundell, S. Mohamed, and
A. Lerchner, “Early visual concept learning with unsupervised deep learning,” e-
print arXiv:1606.05579 (2016).
13G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with
neural networks,” Science 313, 504–507 (2006).
14S. Io�e and C. Szegedy, “Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift,” e-print arXiv:1502.03167[cs.LG] (2015).
15J. Isensee, G. Datseris, and U. Parlitz, “Predicting spatio-temporal time series
using dimension reduced local states,” J. Nonlinear Sci. (published online).
16M. Jaderberg, V. Dalibard, S. Osindero, W. M. Czarnecki, J. Donahue, A. Razavi,
O. Vinyals, T. Green, I. Dunning, K. Simonyan, C. Fernando, and K. Kavukcuoglu,
“Population based training of neural networks,” e-print arXiv:1711.09846[cs.LG]
(2017).
17J. L. Kaplan and J. A. Yorke, “Chaotic behavior of multidimensional di�erence
equations,” in Functional Di�erential Equations and Approximation of Fixed Points,
edited by H.-O. Peitgen and H.-O. Walther (Springer, Berlin, 1979), pp. 204–227.

18D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” e-print
arXiv:1412.6980 (2014).
19D. Koller and N. Friedman, Probabilistic Graphical Models: Principles and Tech-
niques (Adaptive Computation and Machine Learning Series) (The MIT Press,
2009).
20A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classi�cation with deep
convolutional neural networks,” in Proceedings of the 25th International Conference
on Neural Information Processing Systems—Volume 1, series and number NIPS’12
(Curran Associates Inc., 2012), pp. 1097–1105.
21Y. Kuramoto, “Di�usion-induced chaos in reaction systems,” Prog. Theor. Phys.
Suppl. 64, 346–367 (1978).
22J. La�erty, A. McCallum, and F. Pereira, “Conditional random �elds: Proba-
bilistic models for segmenting and labeling sequence data,” in Proceedings of the
18th International Conference onMachine Learning (Morgan Kaufmann Publishers
Inc., 2001), pp. 282–289.
23Y. LeCun, B. E. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. E. Hubbard,
and L.D. Jackel, “Handwritten digit recognitionwith a back-propagation network,”
in Advances in Neural Information Processing Systems 2, edited by D. S. Touretzky
(Morgan-Kaufmann, 1990), pp. 396–404.
24E. Lorenz, “Predictability: a problem partly solved,” in Seminar on Predictability,
4–8 September 1995, ECMWF (ECMWF, Shin�eld Park, Reading, 1995), Vol. 1,
pp. 1–18.
25E. N. Lorenz, “Deterministic nonperiodic �ow,” J. Atmos. Sci. 20, 130–141
(1963).
26A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Recti�er nonlinearities improve neu-
ral network acoustic models,” in Proceedings of the 30th International Conference
on Machine Learning (Atlanta, Georgia, 2013); see also: https://ai.stanford.edu/∼
amaas/papers/relu_hybrid_icml2013_�nal.pdf.
27A. McCallum, “E�ciently inducing features of conditional random �elds,” in
Proceedings of the Nineteenth Conference on Uncertainty in Arti�cial Intelligence,
series and number UAI’03 (Morgan Kaufmann Publishers Inc., San Francisco, CA,
2003), pp. 403–410.
28J. Nassar, S. Linderman, M. Bugallo, and I. M. Park, “Tree-structured recur-
rent switching linear dynamical systems formulti-scalemodeling,” in International
Conference on Learning Representations (International Conference on Learning
Representations (ICLR), 2019).
29A. Paraschos, C. Daniel, J. R. Peters, and G. Neumann, “Probabilistic movement
primitives,” in Advances in Neural Information Processing Systems 26, edited by
C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger
(Curran Associates, Inc., 2013), pp. 2616–2624.
30U. Parlitz and C. Merkwirth, “Prediction of spatiotemporal time series based on
reconstructed local states,” Phys. Rev. Lett. 84, 1890–1893 (2000).
31J. Pathak, B. Hunt, M. Girvan, Z. Lu, and E. Ott, “Model-free prediction of large
spatiotemporally chaotic systems from data: A reservoir computing approach,”
Phys. Rev. Lett. 120, 024102 (2018).
32M. Pavlovski, F. Zhou, N. Arsov, L. Kocarev, and Z. Obradovic, “Generalization-
aware structured regression towards balancing bias and variance,” in Proceedings of
the Twenty-Seventh International Joint Conference on Arti�cial Intelligence, IJCAI-
18 (International Joint Conferences on Arti�cial Intelligence Organization, 2018),
pp. 2616–2622.
33B. Penkovsky, X. Porte, M. Jacquot, L. Larger, and D. Brunner, “Coupled non-
linear delay systems as deep convolutional neural networks,” Phys. Rev. Lett. 123,
054101 (2019).
34L. Petzold, “Automatic selection of methods for solving sti� and nonsti� sys-
tems of ordinary di�erential equations,” SIAM J. Sci. Stat. Comput. 4, 136–148
(1983).
35F. R. Pinheiro, P. J. van Leeuwen, and U. Parlitz, “An ensemble framework for
time delay synchronization,” Q. J. R. Meteorolog. Soc. 144, 305–316 (2018).
36A. Quattoni, S. Wang, L. Morency, M. Collins, and T. Darrell, “Hidden con-
ditional random �elds,” IEEE Trans. Pattern Anal. Mach. Intell. 29, 1848–1852
(2007).
37D. Rey, M. Eldridge, M. Kostuk, H. D. Abarbanel, J. Schumann-Bischo�, and
U. Parlitz, “Accurate state and parameter estimation in nonlinear systems with
sparse observations,” Phys. Lett. A 378, 869–873 (2014).
38G. van Rossum and F. L. Drake, The Python Language Reference Manual
(Network Theory Ltd., 2011).

Chaos 29, 123116 (2019); doi: 10.1063/1.5124926 29, 123116-9

Published under license by AIP Publishing.

Chaos ARTICLE scitation.org/journal/cha

39R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra,
“Grad-cam: Visual explanations from deep networks via gradient-based localiza-
tion,” e-print arXiv:1610.02391[cs.CV] (2016).
40G. Sivashinsky, “Nonlinear analysis of hydrodynamic instability in laminar
�ames–i. derivation of basic equations,” Acta. Astronaut. 4, 1177–1206 (1977).
41G. I. Sivashinsky, “On �ame propagation under conditions of stoichiometry,”
SIAM J. Appl. Math. 39, 67–82 (1980).
42G. I. Sivashinsky and D. M. Michelson, “On irregular wavy �ow of a liquid �lm
down a vertical plane,” Progr. Theor. Phys. 63, 2112–2114 (1980).
43N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: A simple way to prevent neural networks from over�tting,” J. Mach.
Learn. Res. 15, 1929–1958 (2014); available at http://dl.acm.org/citation.cfm?id=
2627435.2670313.

44C. Sutton and A. McCallum, “An introduction to conditional random �elds,”
Found. Trends Mach. Learn. 4, 267–373 (2012).
45M. Tschannen, O. Bachem, and M. Lucic, “Recent advances in autoencoder-
based representation learning,” e-print arXiv:1812.05069 (2018).
46V. Vemuri, Arti�cial Neural Networks: Theoretical Concepts, Computer Society
Press Technology Series: Neural networks (Computer Society Press of the IEEE,
1988).
47P. Vlachas,W. Byeon, Z. YiWan, T. P. Sapsis, and P Koumoutsakos, “Data-driven
forecasting of high-dimensional chaotic systems with long-short term memory
networks,” Proc. R. Soc. A Math. Phys. Eng. Sci. 474, 1 (2018).
48W. Zhang, B. Wang, Z. Ye, and J. Quan, “E�cient method for limit cycle �ut-
ter analysis based on nonlinear aerodynamic reduced-order models,” AIAA J. 50,
1019–1028 (2012).

Chaos 29, 123116 (2019); doi: 10.1063/1.5124926 29, 123116-10

Published under license by AIP Publishing.

3. Spatio-temporal data prediction 79

3.3.1.1 Conclusions from (Herzog et al. 2019)

As the previous publication shows, the combination of the CAE and CRF turned

out to be very powerful, allowing prediction horizons clearly larger than those in

the former state of the art presented by Pathak et al. (2018). The systems used

here were fully observable, i.e. all variables were seen at all times. But what

happens if a system is only partially observable? This is precisely the question

addressed in the next publication. Herzog, S., Wörgötter, F., and Parlitz, U. (2018).

“Data-Driven Modeling and Prediction of Complex Spatio-Temporal Dynamics in

Excitable Media”. In: Frontiers in Applied Mathematics and Statistics 4.

3.3.2 Publication: (Herzog et al. 2018)

The previous publication demonstrated the performance of the hybrid approach on

data from non-linear systems often used as benchmarks for the prediction horizon. In

the next publication, the hybrid model is applied on data from a system consisting of

several variables that provides a compact description of excitable cardiac dynamics.

Besides the investigation of the prediction horizon, it was also investigated whether

a state reconstruction of the model is possible if only a subset of the state variables

can be used. This question extends the publication from the previous chapter and

demonstrates that the hybrid model preserves the reconstruction properties of the

CAE. Furthermore, it is shown that even a prediction is possible if not all variables

are used as an input for the prediction.

ORIGINAL RESEARCH
published: 11 December 2018
doi: 10.3389/fams.2018.00060

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 1 December 2018 | Volume 4 | Article 60

Edited by:

Axel Hutt,

German Weather Service, Germany

Reviewed by:

Christian Andreas Welzbacher,

German Weather Service, Germany

Xin Tong,

National University of Singapore,

Singapore

*Correspondence:

Ulrich Parlitz

ulrich.parlitz@ds.mpg.de

Specialty section:

This article was submitted to

Dynamical Systems,

a section of the journal

Frontiers in Applied Mathematics and

Statistics

Received: 04 September 2018

Accepted: 26 November 2018

Published: 11 December 2018

Citation:

Herzog S, Wörgötter F and Parlitz U

(2018) Data-Driven Modeling and

Prediction of Complex

Spatio-Temporal Dynamics in

Excitable Media.

Front. Appl. Math. Stat. 4:60.

doi: 10.3389/fams.2018.00060

Data-Driven Modeling and Prediction
of Complex Spatio-Temporal
Dynamics in Excitable Media
Sebastian Herzog 1,2, Florentin Wörgötter 2 and Ulrich Parlitz 1,3,4*

1Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany, 2 Third Institute of Physics and Bernstein

Center for Computational Neuroscience, University of Göttingen, Göttingen, Germany, 3 Institute for Nonlinear Dynamics,

University of Göttingen, Göttingen, Germany, 4DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen,

Göttingen, Germany

Spatio-temporal chaotic dynamics in a two-dimensional excitable medium is (cross-)

estimated using a machine learning method based on a convolutional neural network

combined with a conditional random field. The performance of this approach is

demonstrated using the four variables of the Bueno-Orovio-Fenton-Cherry model

describing electrical excitation waves in cardiac tissue. Using temporal sequences of

two-dimensional fields representing the values of one or more of the model variables

as input the network successfully cross-estimates all variables and provides excellent

forecasts when applied iteratively.

Keywords: deep learning, conditional random fields, artificial neural network, cross-estimation, spatio-temporal

chaos, excitable media, cardiac arrhythmias, non-linear observer

1. INTRODUCTION

In life sciences mathematical models based on first principles are scarce and often a variety
of approximate models of different complexity exists for describing the given (experimental)
dynamical process. For example, electrical excitation waves in cardiac tissue can be described using
partial differential equations (PDEs) with 2 to more than 60 variables, covering the range from
simple qualitative models [1, 2] to detailed ionic cell models including not only cell membrane
voltage but also different ionic currents and gating variables [3, 4]. While there are several
modalities for measuring membrane voltage (electrical sensors, fluorescent dyes [5]) it is in general
much more difficult and expensive (if not impossible) to directly measure the other variables of
the mathematical model, such as ionic currents or gating variables. In such cases it is desirable to
(cross) estimate variables, which are difficult to assess from those that can be easily measured. In
control theory this task is addressed by constructing an observer based on a given mathematical
model describing the process of interest. Once all state variables of the model have been estimated,
the model (e.g., a PDE) can be used to simulate and forecast the future evolution of the dynamical
process. This combination of cross estimation and prediction of dynamical variables is the core of
all data assimilation methods [6–10] where again the model equations are involved and have to be
known. In this contribution, we present amachine learningmethod for estimating all state variables
and forecasting their evolution from limited observations. This “black-box model" consists of a
convolutional neural network (CNN) combined with a conditional random field (CRF) and will be
introduced in section 2. For training and evaluating the network two dimensional spatio-temporal
time series are used, which were generated by the Bueno-Orovio-Fenton-Cherry (BOCF) model
[11] describing complex electrical excitation waves in cardiac tissue. This model is introduced in

Herzog et al. Data-Driven Modeling and Prediction of Excitable Media

section 3. As modeling tasks we consider cross estimation
of variables, forecasting dynamics using an iterative feedback
scheme, and a combination of forecasting and cross estimation
providing future values of not measured variables. These results
are presented in section 4. A summary and a brief discussion of
potential future developments are given in section 5.

2. DATA DRIVEN MODELING

In data driven modeling mathematical models are not based
on first principles (e.g., Newton’s laws, Maxwell’s equations, ...)
but are directly derived from experimental measurement data
or other physical observations. The model should describe the
experiment as precisely as possible but it also should possess a
high level of generalizability, i.e., the ability to provide a suitable
and good description for data from a very similar experiment.
Therefore, overfitting has to be avoided and all irrelevant aspects
that are not necessary to describe the desired effect should
be discarded when generating the model (without employing
human expert knowledge). Many approaches for generating
(dynamical) models from (training) data have been devised
including autoregressive models [12], evolutionary algorithms in
particular genetic algorithms [13], local modeling [14], reservoir
computing [15–19], symbolic regression [20], or adaptive fuzzy
rule-based models [21]. Furthermore, Monte Carlo techniques
may be used for assessing uncertainty in model parameters [22].
In this work we present a modeling ansatz which combines deep
convolutional neural networks [23] for feature extraction and
dimension reduction with conditional random fields (CRFs) [24]
for modeling the properties of temporal sequences.

2.1. Artificial Neural Network
Artificial neural networks (ANNs) [25–27] are parameterizable
models for approximating a (unknown) function F implicitly
given by the data. The actual function provided by the ANN:

f : RO 7→ RP, (1)

should be a good approximation of F, i.e., f ≃ F. Here O ∈ N
and P ∈ N denote the dimension of the input and the output of f ,
respectively. A widely used type of ANN are feed-forward neural
networks (FNN) where, in general, f is given by

f (X) = ψ(WX + b), (2)

with a non-linear function ψ applied component-wise, an input
vector X ∈ RO, a weight matrix W ∈ RP×O, and a bias b ∈ RP.
Equation (2) is called a one-layer FNN. By recursively applying
the output of one layer as input to the next layer, a multi-layer
FNN can be constructed:

f (X) = f L(. . . f 2(f 1(X;W1, b1);W2, b2) . . . ;WL, bL). (3)

Equation (3) describes a multi-layer FNN with L ∈ N layers.
In the following an input with several variables is considered
and the input is given by X ∈ Rh×w×d, with h ∈ N rows and
w ∈ N columns of the input field, and the number of variables

d. To improve the approximation properties of the network
Equation (3), FNNs may contain additional convolutional layers
leading to state-of-the-art models for data classification, so-called
convolutional neural networks (CNNs) [23].

2.2. Network Architecture
The network used in the following for prediction of multivariate
time series is built based on the architecture of a convolutional
autoencoder [28], with residual connections [29] consisting of an
encoding path (left half of the network, from 512×512 to 64×64)
to retrieve the features of interest and a symmetric decoding path
(right half of the network, from 64 × 64 back to 512 × 512). As
illustrated in Figure 1 each encoding/decoding path consists of
multiple levels, i.e., resolutions, for feature extraction on different
scales and noise reduction. The conditional random field block
has a special role: Based on the selected feature, the CRF should
map a sequence of features of a previous time step t to the next
time step t +1t. The other four components of the network are
basic building blocks, like regular convolutional layers followed
by rectified linear unit activation and batch normalization (these
blocks are omitted in Figure 1 for simplicity). Each residual
layer consists of three convolutional blocks and a residual
skip connection. A maxpooling layer is located between levels
in the encoding path to perform downsampling for feature
compression. The deconvolutional layer [30] is located between
levels in the decoding path to up-sample the input data using
learnable interpolations. The input for the network are all four
system variables of the BOCF model which will be introduced
in section 3.1 or a sequence of the four system variables as
introduced in section 4.1. The output of the network always
consists of four system variables.

2.3. Convolution Layer
Convolutional neural networks [23, 26, 27] receive a training
data set X = {X1,X2, . . . ,Xm}, where Xα ∈ Rh×w×d. The data
processing through the network is described layer-wise i.e., in
the l-th convolutional layer the input X(l) will be transformed to
the raw output o(l), which is in turn the input to the next layer
l + 1, where the dimension changes depending on the number
and size of convolutions, padding and stride of the layers as
illustrated in Figure 1. The padding parameter P(l) ∈ N, for layer
l, describes the number of zeros at the edges of a field by which
the field is extended. This is necessary since every convolution
being larger than 1 × 1 will decrease the output size. The stride
parameter S(l) ∈ N is the parameter determining how much the
kernel is shifted in each step to compute the next spatial position
(x, y). This specifies the overlap between individual output pixels,
and it is here set to 1. Each layer l is specified by its number

of kernels K(l) = {K(l,1),K(l,2), . . .K(l,d(l))}, where d(l) ∈ N is
the number of kernels in layer l, and its additive bias terms

b(l) = {b(l,1), b(l,2), . . . , b(l,d
(l))} with b(l,d) ∈ R. Note that the input

X(l,d) ∈ Rh(l)×w(l)
in the l-th layer with size h(l) × w(l), kernel k,

and depth d(l) is processed by a set of kernels {K(l,d)}. For each

kernel K(l,d) ∈ Rh
(l)
K ×w

(l)
K with size h

(l)
K × w

(l)
K and d ∈ {1, . . . , d(l)},

the raw output o(l) ∈ R
h(l)−h

(l)
K −1+P(l)

S(l)
×

w(l)−w
(l)
K −1+P(l)

S(l) is computed

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 2 December 2018 | Volume 4 | Article 60

Herzog et al. Data-Driven Modeling and Prediction of Excitable Media

FIGURE 1 | The proposed architecture for forecasting and cross-estimation consisting of a splitted autoencoder and a conditional random field (CRF, orange block) in

the middle, with residual blocks (cyan blocks), convolutional layers (turquoise blocks), maxpooling and downsampling layers (yellow blocks), and deconvolutional

layers (pink blocks).

element by element as:

o(l,d)x,y = b(l,d) +
(

K(l,d) ∗ X(l,d)
)

x,y

= b(l,d) +

d(l)
∑

k=1

h
(l)
K

∑

i=1

w
(l)
K

∑

j=1

K
(l,d)
i,j · X

(l,k)
x+i−1,y+j−1. (4)

The result is clipped by an activation function ψ to obtain the

activation ψ(o
(l,d)
x,y) of each unit in layer l:

ψ

(

o(l,d)x,y

)

= max
{

0, o(l,d)x,y

}

. (5)

To obtain o(l) = {o(l,1), . . . , o(l,d
(l))}, Equation (5) needs to be

calculated ∀d = 1, . . . , d(l) and ∀(x, y). Each spatial calculation

of o
(l,d)
x,y is considered as a unit and ψ(o

(l,d)
x,y) as the feedforward

activation of the unit. The value of an element of a kernel
(K

(l,d)
i,j) between two units is the weight of the feedforward

connection. Such systems are well-suited for feature extraction
[28], but their linear structure does not allow a direct modeling
of temporal changes or the possibility to process a sequence
of data. To enable temporal modeling, we employ linear-chain
conditional random fields [31] that will be introduced in the next
section.

2.4. Linear-Chain Conditional Random
Fields
To implement a probabilistic forecasting block we consider
the output of the convolutional layer o and the corresponding
forecast q as random variables O and Q, respectively. Both
random variables O and Q are jointly distributed and in a
predictive framework we aim at constructing a conditional model
P(Q|O) from paired observation and forecast sequences. Let G =

(V ,E) be a undirected graph such that Q = (Qv)v∈V , where
Q is indexed by the vertices of G. Each vertex in G represents
a state, a history or a forecast. Then (O,Q) is a conditional
random field (CRF), if conditioned on O the random variables
Qv obey the Markov property [24]. A linear-chain conditional
random field, where o is a sequence of historical extracted
features and q a corresponding forecasted feature in the future, is
given by:

P(q | o, θ) =
∑

h∈H
P(q, h | o, θ)

=

∑

h∈H exp(9(q, h, o; θ))
∑

q′∈Q
∑

h∈H exp(9(q′, h, o; θ))
, (6)

where q ∈ Q, Q is a set of future events, h ∈ H, H is the set
of layers of the CRF where each element hi of h represents a
historical state of an event at time t. θ is the set of parameters.
9(q, h, o; θ) is a so called potential function (also called local or
compatibility function) which measures the compatibility (i.e.,
high probability) between a forecast, a set of observed features,
and a configuration of historical states, such that:

9(q, h, o; θ) =

n
∑

j=1

φj(o,ω) · θh[hj]

+

n
∑

j=1

θy[y, hj]+
∑

(i,j)∈ǫ

θǫ[q, hj, hk]+
φ(o,ω) · θp[q]

k
, (7)

Here n is the number of historical states and φj(o,ω) is a
vector that can include any feature of the observation specific
for a specific time window ω, and θ = [θh, θq, θǫ , θp] are
model parameters. To restrict the search space for possible
parametrizations only sine, cosine, and a linear interpolation

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 3 December 2018 | Volume 4 | Article 60

Herzog et al. Data-Driven Modeling and Prediction of Excitable Media

function are allowed to be used as feature functions. θh[hj] is the
parameter that corresponds to the state hj. The function θq[q, hj]
indicates the parameters that corresponds to the forecast q and
the state hj. θǫ[q, hi, hk] refers to parameters that describe the
dependency relation between the nodes hi and hk. θp[q] defines
the parameters for q given the features over the past, while the
dot product φj(o,ω) · θn[hj] measures the compatibility between
the observed features and the state at time j. In contrast to this
φ(o,ω) · θp[q] measures the compatibility between observation
and the forecast. h consists of k = 1, 024 elements and the last
term in Equation (7) captures the influence of the past features
on the forecast. For training the following likelihood function
is defined:

L(θ) =

n
∑

i=1

P(qi | oi, θ)−
1

2σ 2
‖θ‖2, (8)

where n is the number of training examples. By maximizing
the likelihood for the forecasted training data the optimal
parameter set θ∗ is determined. To find θ∗ Equation (8) can be
evaluated by the same gradient descent method which is used
for optimizing/training the autoencoder. To forecast the input
sequence with a linear-chain CRF it is necessary to compute the
q sequence that maximizes the following equation:

q̂ = argmax
q

P(q | o; θ∗) (9)

The sequence maximizing this is then used by the
deconvolutional part of the network to map the features
back to the desired system variables at t +1t.

3. MODELING EXCITABLE MEDIA

Excitable systems are non-linear dynamical systems with a stable
fixed point. Small perturbations of the stable equilibrium decay,
but stronger perturbations above some characteristic threshold
lead to a high amplitude excursion in state space until the
trajectory returns to the stable fixed point. In neural or cardiac
cells this response leads to a so-called action potential. After such
a strong response a so-called refractory period has to pass until the
next excitation can be initialized by perturbing the system again.
An excitable medium consists of excitable systems (e.g., cells),
which are spatially coupled. Electric coupling of neighboring
cardiac cells, for example, can be modeled by means of a
diffusion term for local currents. The resulting partial differential
equations (PDEs) describe the propagation of undamped solitary
excitation waves. Due to the refractory time of local excitations
spiral or scroll waves are very common and typical hallmarks
of excitable media, which can lead to stable periodically rotating
wave patterns or may break-up forming complex chaotic wave
dynamics. From the large selection of different PDE models
describing excitable media we have chosen the Bueno-Orovio-
Cherry-Fenton (BOCF) model which was devised as an efficient
model for cardiac tissue [11].

3.1. Bueno-Orovio-Cherry-Fenton Model
The Bueno-Orovio-Cherry-Fenton (BOCF) model [11] provides
a compact description of excitable cardiac dynamics. We use this
model as a benchmark to validate our approach for forecasting
and cross-estimation of complex wave patterns in excitable
media. The evolution of the four system variables of the BOCF
model is given by four PDEs

∂u

∂t
= D · ∇2u− (Jsi + Jfi + Jso)

∂v

∂t
=

1

τ−v

(

1−H(u− θv)
)

(v∞ − v)−
1

τ+v
H(u− θv)v

∂w

∂t
=

1

τ−w
(1−H(u− θw))(w∞ − w)−

1

τ+w
H(u− θw)w

∂s

∂t
=

1

2τs
((1+ tanh(ks(u− us)))− 2s),

(10)

where u represents the membrane voltage and H(·) denotes the
Heaviside function. The three currents Jsi, Jfi and Jso are given by
the equations

Jsi = −
1

τsi
H(u− θw)ws

Jfi = −
1

τfi
vH(u− θv)(u− θv)(uu − u)

Jso =
1

τo
(u− uo)(1−H(u− θw))+

1

τso
H(u− θw).

(11)

Furthermore, seven voltage dependent variables

τ−v = (1−H(u− θ−v))τ−v1 +H(u− θ−v)τ−v2

τ−w = τ−w1 +
1

2
(τ−w2 − τ

−
w1)(1+ tanh(k−w (u− u−w)))

τ−so = τso1 +
1

2
(τso2 − τso1)(1+ tanh(kso(u− uso)))

τs = (1−H(u− θw))τs1 +H(u− θw)τs2

τo = (1−H(u− θo))τo1 +H(u− θo)τo2

v∞ =

{

1, if u ≤ θ−v

0, if u ≥ θ−v

w∞ = (1−H(u− θo))(1−
u

τw∞
)+H(u− θo)w

∗
∞

(12)

are required. The characteristic model dynamics is determined
through 28 parameters. In our simulations we used a
set of parameters [11] given in Table 1 for which the
BOCF model exhibits chaotic excitation wave dynamics
similar to the Ten Tusscher-Noble-Noble-Panfilov (TNNP)
model [32].

The spatio-temporal chaotic dynamics of this system is
actually transient chaos whose lifetime grows exponentially
with system size [33, 34]. To obtain chaotic dynamics
with a sufficiently long lifetime the system has been
simulated on a domain of 512 × 512 grid points with a
grid constant of 1x = 1.0 space units and a diffusion

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 4 December 2018 | Volume 4 | Article 60

Herzog et al. Data-Driven Modeling and Prediction of Excitable Media

TABLE 1 | TNNP model parameter values for the BOCF model [11].

uo 0 τ−
v2 1150 τfi 0.11 τs1 2.7342

uu 1.58 τ+v 1.4506 τo1 6 τs2 3

θv 0.3 τ−
w1 70 τo2 6 ks 2.0994

θw 0.015 τ−
w2 20 τso1 43 us 0.9087

θ−v 0.015 k−w 65 τso2 0.2 τsi 2.8723

θo 0.006 u−w 0.03 kso 2 τw∞ 0.07

τ−
v1 60 τ+w 280 uso 0.65 w∗

∞ 0.94

FIGURE 2 | Snapshots from the BOCF model at t = 100 of (A) the u variable, (B) the v variable, (C) the w variable, and (D) the s variable.

constant D = 0.2. Furthermore, an explicit Euler stepping
in time with 1t = 0.1 time units1, a 5 point approximation
of the Laplace operator, and no-flux boundary conditions
were used. Figure 2 shows typical snapshots of the
dynamics.

4. RESULTS

The proposed network model was trained with simulated data
generated by the BOCF model with parameter values given
in Table 1. Ten trajectories with different initial conditions for
the variables u, v,w, and s were generated by simulating the
BOCF model for a time series of 50,000 samples spanning a
period of time of 5 s. Five of these data sets randomly chosen,
were used to train the network, while the other solutions were
used for validation. For training the Adam optimizer [35] was
used, with a learning rate lr = 0.0001 and β1 = 0.9,
β2 = 0.999.

In order to quantify the performance of the estimation and
predictionmethods the similarity of target fields and output fields
of the network has to be quantified. For this purpose we use
the Jensen-Shannon divergence (JSD) [36] applied to normalized
fields of the variables of the BOCFmodel. The JSD of two discrete
probability distributions A and B is defined as

JSD(A‖B) =
1

2
DKL(A‖M)+

1

2
DKL(B‖M), (13)

1We consider all variables and parameters of the BOCF model as dimensionless.

The parameter values given in Table 1 are, however, consistent with the choice

of a time unit equalling 1ms. In this case all t-values given in this article would

correspond to milli seconds.

where M = 1
2 (A + B) and DKL(A‖M) is the Kullback-Leibler

divergence [37]:

DKL(A‖M) = −
∑

i

P(i) log

(

A(i)

M(i)

)

. (14)

During training the JSD was used as objective function to be
minimized (for a GPU implementation of the JSD see [38]).
The JSD is bounded by 0 and 1 and a value below 0.02 was
considered to indicate no discernible differences between the two
distributions (fields). An alternative for quantifying the deviation
would be the Fractions Brier Score [39]. For training the network,
for each trajectory at each time step, sequences of lengths up to
m = 10 were used as input.

The input of the network consisted of fields of variables that
were assumed to be measured and random fields representing
variables that were considered to be not available.

4.1. Forecast
For forecasting the input of the network consisted of sequences
of length m = 10 of u, v,w, and s given by {ut−m+1, . . . , ut},
{vt−m+1, . . . , vt}, {wt−m+1, . . . ,wt}, and {st−m+1, . . . , st}. The
desired output of the network is then ut+1t , vt+1t ,wt+1t and
st+1t . By using the output of the network as a new input the
system can be run iteratively in a closed loop for long term
prediction. The development of the JSDs of u, v,w, s through
time are shown in Figure 3A. Since the u and the s fields look
quite similar (see Figures 2A,D) their JSD-values are almost the
same. Thew-field (Figure 2C) exhibits relatively high values at all
spatial locations and therefore the JSD of two such fields is rather
low. On the other hand, the v field (Figure 2B) possesses only
very localized structures with high values and this leads to rather
high values of the JSD for (slightly) different fields. Figure 3B

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 5 December 2018 | Volume 4 | Article 60

Herzog et al. Data-Driven Modeling and Prediction of Excitable Media

FIGURE 3 | Temporal development of (A) the Jensen-Shannon divergence (JSD) and (B) the root normalized mean squared error (RNMSE) for all variables u, v,w, s

showing the deviation of the iterative network prediction (in a feedback mode) from the reference orbit obtained with the BOCF model. During the period [0− 1000] the

predicted and the true fields agree very well as indicated by very small values of the JSD. In the time interval (1000− 3000] the JSD values increase until they saturate

and the forecasts become very poor and useless. The RNMSE values show a similar increase in time but turn out to be more sensitive to minor deviations during the

initial phase [0− 1000] of the forecast. The solid curves show median values of JSD and RNMSE obtained from ten different initial values of u, v,w, s. The transparent

areas visualize the 0.25/0.75 percentile.

FIGURE 4 | Temporal development of the sum of the root normalized mean squared errors (RNMSE) of all variables u, v,w, s. (A) shows the NMSE for t ∈ [1, 100] and

(B) shows the NMSE for t ∈ [1, 1000]. The orange curve describes the deviation of the trajectory generated by the network from the reference orbit simulated with the

BOCF model. For comparison the blue curve shows the distance between the reference orbit and a second solution of the BOCF model obtained by perturbing the

initial conditions where each variable was perturbed at every spatial location using Gaussian random noise (µ = 0, σ2 = 10−11). The error dynamics of ten perturbed

trajectories was analyzed. These orbits were obtained by perturbing the reference orbit at different times [0, 1000), [1000, 2000), . . . [9000, 10000). The blue curve

shows the median and the 0.25/0.75 percentile is visualized by the transparent areas. The dotted black line (A) denotes the slope the linear part of the log(NMSE) vs. t

curve which provides an estimate of the largest Lyapunov exponent [40] λ1 ≈ 0.25 (with respect to the natural logarithm).

shows for comparison the root normalized mean squared errors
(RNMSE) of all variables u, v,w, s which is given by

RNMSE(v) =

√

MSE(v)

MSE(v̄)
(15)

where

MSE(v) =
1

M2

M
∑

i=1

M
∑

j=1

(

vBOCFij (t)− vij(t)
)2

. (16)

Here v̄ denotes the temporal and spatial mean values of the BOCF
sequence of length TF, M

2 = 512 · 512 is the number of grid
points of the domain and vBOCFij denotes the value of variable v at

grid point (i, j) for the reference solution generated by the BOCF
model. As can be seen in Figure 3A all four curves possess very
similar values and indicate an increase of the error already during
the initial period for t ∈ [0, 1000].

Figure 4 shows a comparison of the error dynamics of
the forecast obtained with the iterated network with feedback
(orange curve) and the dynamics of a BOCF model starting from
slightly perturbed initial conditions (blue curve). Both curves
give the root normalized mean squared error (RNMSE) with
respect to the same reference orbit generated by the BOCFmodel.
The perturbation of the initial condition of the second BOCF
solution with respect to the initial condition of the reference
orbits was chosen to be very small. Therefore, during the initial
phase the deviation still remains so small that (with semi-
logarithmic axes) a linear segment of the error curve occurs that

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 6 December 2018 | Volume 4 | Article 60

Herzog et al. Data-Driven Modeling and Prediction of Excitable Media

FIGURE 5 | Snapshots of u at different time steps. (A–D) Show the (reference) values from the BOCF simulation, while (E–H) display the values forcasted by the

network. The diagrams (I–L) show the absolute deviation of the forecasted values from the reference values. At t = 500 the patterns (A,E) are still (almost)

indistinguishable, and for t = 1, 500 still only minor differences between (B,F) are noticeable.

FIGURE 6 | Jensen-Shannon-Divergence (JSD) of true and estimated fields for different cross estimation tasks. In cases where more than one variable is estimated

the mean value of the JSDs of the estimated variables is given. (A) Cross estimation for the cases (vt,wt, st → ut), (wt, st → ut, vt), (ut, vt → wt, st), (ut → vt,wt, st),

and (wt → ut, vt, st), based on the input from the BOCF simulation. (B) Cross estimation of future values of not measured variables for the cases

(vt∗ ,wt∗ , st∗ → uτ), (wt∗ , st∗ → uτ , vτ), (ut∗ , vt∗ → wτ , sτ), (ut∗ → vτ ,wτ , sτ), and (wt∗ → uτ , vτ , sτ) based on the forecast of the data driven model for a period of

τ = 1, 000, where t∗ denotes 10 successive snapshots at times 0, 0.1, . . . , 0.9 constituting the input . In both diagrams the orange line is the median value for each

case, the box extends from the lower to upper quartile values. The whiskers extend from the box to show the range of the data. Flier points are those past the end of

the whiskers.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 7 December 2018 | Volume 4 | Article 60

Herzog et al. Data-Driven Modeling and Prediction of Excitable Media

FIGURE 7 | (A–H): Cross estimation of u, v, s at t = 100 based on the input w at t = 0 where (A,B,D) is the random noise input for the system variables u, v and s, (C)

is the snapshot input of w at t = 0 (estimation). (E–H) show the output of the data-driven model for the system variables u, v,w, s at time t = 100. (I–P): Cross

estimation of v,w, s at t = 100 based on the input u at t = 0 where (I) shows the snapshot input of u at t = 0. (J,K,L) show the random noise input for the system

variables v,w and s, (M–P) is the output of the data-driven model for the system variables u, v,w, s at time t = 100 (prediction). (Q–U): Reference data from the BOCF

model for time t = 100, where (Q–U) are the snapshots for the system variables u, v,w, and s.

can be used to estimate the largest Lyapunov exponent [40]. Once
the error of the perturbed BOCF orbit (blue curve) reaches the
level of the network prediction error (orange curve) both error
curves continue to increase in the same way indicating that the
network almost perfectly learned the true dynamics of the BOCF
model.

To illustrate the deviation between the u field forecasted by
the network and the (true) u field provided by the simulation
of the BOCF PDE Figure 5 shows snapshots at times t = 500,
t = 1, 500, t = 3, 000, and t = 5, 000. While at t = 500 original
(A) and forecast (E) are almost indistinguishable the snapshots
at t = 1, 500 exhibit minor differences (Figures 5B,F). At time

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 8 December 2018 | Volume 4 | Article 60

Herzog et al. Data-Driven Modeling and Prediction of Excitable Media

t = 3, 000 only rough structures agree (Figures 5C,G) until at t =
5, 000 forecast and simulation appear completely decorrelated
(Figures 5D,H). The full evolution of the forecast compared
to the original dynamics generated with the BOCF model is
also available as a movie (Supplemental Data). Compared to
a typical spiral rotation period of approximately Tsp = 350
good forecasting results can be obtained for about five spiral
rotations corresponding to 5*350 / 4 = 437 Lyapunov times TL =

1/λ1 ≈ 4 given by the largest Lyapunov exponent λ1 ≈ 0.25 (see
Figure 4).

4.2. Cross-Estimation
For cross-estimation only a part of the system variables are
considered as being directly observable or measurable. Based
on these available variables the other not measurable variables
have to be estimated (a task also called cross prediction). In
the context of the BOCF model we shall, for example, estimate
vt ,wt , st from observations of ut , only. Since the network expects
all system variables as input the not observed variables were
replaced by uniform noise in the range of 0 − 0.3. For this
purpose for every t ∈ [0, 1000] the data of the BOCF model
were used as single time step input for the network and the
cases (vt ,wt , st → ut), (wt , st → ut , vt), (ut , vt → wt , st), (ut →
vt ,wt , st), and (wt → ut , vt , st) were considered as estimation
tasks. Figure 6 shows the JSD statistics for all these cases. The
low JSD values for (vt ,wt , st → ut) indicated that the variable
u can be very well estimated by the variables v,w, s, which
could be expected because the variable u is part of the PDEs
of the other variables. Similarly good estimation results are
obtained for (ut → vt ,wt , st) which is remarkable, because the
membrane potential u is the variable, which can be measured
most easily in experiments and the result shows that this
information is sufficient to recover the other variables v, w,
and s of the BOCF model. The worst performance is achieved
if only w is used to cross estimate all other system variables.
These cross estimation results are in very good agreement with
the performance of an Echo State Network applied to similar
data [19].

4.3. Forecast and Cross-Estimation
This investigation represents a combination of the two previous
ones. In this case, however, not for every time step the data
from the BOCF model were used, but only ten time steps

from the BOCF model were used to initialize the forecast of
the network. Depending on the case which variable should be

estimated the BOCF variables for initialization were replaced

by uniform noise, as before. Figure 6B shows the JSD statistics
for the four estimation cases considered and in Figure 7

snapshots of the input and the true and estimated fields are
presented illustrating the very good performance at time t =

100.

5. DISCUSSION

Spatio-temporal non-linear dynamical systems like extended
systems (described by PDEs) or networks of interacting

oscillators may exhibit very high dimensional chaotic dynamics.
A typical example are complex wave pattern occurring in some
excitable media. As a representative of this class of systems
we used the BOCF model describing electrical excitation waves
in cardiac tissue where chaotic dynamics is associated with
cardiac arrhythmias. For future applications like monitoring and
predicting the dynamical state of the heart or the impact of
interventions, mathematical models are required describing the
temporal evolution or the relation between different (physical)
variables. As an alternative to the large number of simple
qualitative or detailed (ionic) models (incorporating many
biophysical details and corresponding variables) we presented
a machine learning approach for data driven modeling of
the spatio-temporal dynamics. A convolutional neural network
combined with a linear-chain of conditional random fields was
trained and validated with data generated by a simulation of
the BOCF model. To mimic experimental limitations when
measuring cardiac dynamics we considered different cases where
only some of the variables of the BOCF model were assumed
to be available as input of the generated model and the not
measurable variables were replace by random numbers. Running
the trained network in a closed loop (feedback) configuration
iterated prediction provided forecasts of the complex dynamics
that turned out to follow the true (chaotic!) evolution of the
BOCF simulation for about five periods of the intrinsic spiral
rotations. These results clearly show that machine learning
methods like those employed here provide faithful models of
the underlying complex dynamics of excitable media that, when
suitably trained can provide powerful tools for predicting the
spatio-temporal evolution and for cross-estimating not directly
observed variables.

AUTHOR CONTRIBUTIONS

SH performed numerical simulations. UP and SH identified the
scientific topic. UP, FW, and SH devised the strategy for solving
it, and wrote the manuscript.

FUNDING

SH acknowledges funding by the International Max Planck
Research Schools of Physics of Biological and Complex Systems.

ACKNOWLEDGMENTS

We thank T. Lilienkamp and S. Luther for support with the
BOCFmodel and for inspiring discussions about spatio-temporal
dynamics in excitable media.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fams.
2018.00060/full#supplementary-material

Supplemental Data | Movie showing the temporal evolution of the u field from

the simulation, the forecast and the absolute difference of both.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 9 December 2018 | Volume 4 | Article 60

Herzog et al. Data-Driven Modeling and Prediction of Excitable Media

REFERENCES

1. Barkley D. A model for fast computer simulation of waves in excitable media.

Physica D Nonlinear Phenomena (1991) 49:61–70.

2. BärM, EiswirthM. Turbulence due to spiral breakup in a continuous excitable

medium. Phys Rev E (1993) 48:R1635–7.

3. Cherry EM, Fenton F, Krogh-Madsen T, Luther S, Parlitz U. Introduction

to focus issue: complex cardiac dynamics. Chaos (2017) 27:093701.

doi: 10.1063/1.5003940

4. Clayton RH, Bernus O, Cherry EM, Dierckx H, Fenton FH, Mirabella

L, et al. Models of cardiac tissue electrophysiology: progress, challenges

and open questions. Prog Biophys Mol Biol. (2011) 104:22–48.

doi: 10.1016/j.pbiomolbio.2010.05.008

5. Uzelac I, Ji YC, Hornung D, Schrder-Scheteling J, Luther S, Gray RA, et al.

Simultaneous quantification of spatially discordant alternans in voltage and

intracellular calcium in langendorff-perfused rabbit hearts and inconsistencies

with models of cardiac action potentials and Ca transients. Front Physiol.

(2017) 8:819. doi: 10.3389/fphys.2017.00819

6. Evensen G, van Leeuwen P. An ensemble Kalman smoother

for nonlinear dynamics. Mon Weather Rev. (2000) 128:1852–67.

doi: 10.1175/1520-0493(2000)128<1852:AEKSFN>2.0.CO;2

7. Abarbanel HDI. Predicting the Future - Completing Models of Observed

Complex Systems. New York, NY: Springer-Verlag (2013).

8. Law K, Stuart A, Zygalakis K. Data Assimilation - A Mathematical

Introduction. Cham: Springer International Publishers (2015).

9. Hoffman MJ, LaVigne NS, Scorse ST, Fenton FH, Cherry EM. Reconstructing

three-dimensional reentrant cardiac electrical wave dynamics using data

assimilation. Chaos (2016) 26:013107. doi: 10.1063/1.4940238

10. Berg S, Luther S, Parlitz U. Synchronization based system identification of an

extended excitable system. Chaos (2011) 21:033104. doi: 10.1063/1.3613921

11. Bueno-Orovio A, Cherry EM, Fenton FH. Minimal model for human

ventricular action potentials in tissue. J Theor Biol. (2008) 253:544–60.

doi: 10.1016/j.jtbi.2008.03.029

12. Box GE, Jenkins GM, Reinsel GC, LjungGM. Time Series Analysis: Forecasting

and Control. San Francisco, CA: John Wiley & Sons (2015).

13. Solomatine DP, Ostfeld A. Data-driven modelling: some past

experiences and new approaches. J Hydroinformatics (2008) 10:3–22.

doi: 10.2166/hydro.2008.015

14. Parlitz U, Merkwirth C. Prediction of spatiotemporal time series

based on reconstructed local states. Phys Rev Lett. (2000) 84:1890.

doi: 10.1103/PhysRevLett.84.1890

15. Jaeger H. The ‘Echo State‘ Approach to Analysing and Training Recurrent

Neural Networks - With an Erratum Note. GMD Report (2001).

16. Jäger H, Haas H. Harnessing nonlinearity: predicting chaotic systems

and saving energy in wireless communication. Science (2004) 304:78–80.

doi: 10.1126/science.1091277

17. Verstraeten D, Schrauwen B, D’Haene M, Stroobandt D. An experimental

unification of reservoir computingmethods. Neural Netw. (2007) 20:391–403.

doi: 10.1016/j.neunet.2007.04.003

18. Pathak J, Hunt B, Girvan M, Lu Z, Ott E. Model-free prediction of large

spatiotemporally chaotic systems from data: a reservoir computing approach.

Phys Rev Lett. (2018) 120:024102. doi: 10.1103/PhysRevLett.120.024102

19. Zimmermann RS, Parlitz U. Observing spatio-temporal dynamics of

excitable media using reservoir computing. Chaos (2018) 28:043118.

doi: 10.1063/1.5022276

20. Quade M, Abel M, Nathan Kutz J, Brunton SL. Sparse identification of

nonlinear dynamics for rapid model recovery. Chaos (2018) 28:063116.

doi: 10.1063/1.5027470

21. Abebe A, Solomatine D, Venneker R. Application of adaptive fuzzy rule-based

models for reconstruction of missing precipitation events.Hydrol Sci J. (2000)

45:425–36. doi: 10.1080/02626660009492339

22. Abebe AJ, Guinot V, Solomatine DP. Fuzzy alpha-cut vs. Monte Carlo

techniques in assessing uncertainty in model parameters. In: Proc. 4-th

International Conference on Hydroinformatics. Iowa City, IA (2000).

p. 1–8.

23. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep

convolutional neural networks. In: Advances in Neural Information Processing

Systems. Curran Associates Inc. (2012). p. 1097–105.

24. Lafferty JD, McCallum A, Pereira FCN. Conditional Random Fields:

Probabilistic Models for Segmenting and Labeling Sequence Data. In:

Proceedings of the Eighteenth International Conference on Machine Learning.

ICML ’01. San Francisco, CA: Morgan Kaufmann Publishers Inc. (2001). p.

282–9.

25. Vemuri V.Artificial Neural Networks. Rockville, MD: Computer Science Press

Inc. (1988).

26. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature (2015) 521:436–44.

doi: 10.1038/nature14539

27. Schmidhuber J. Deep learning in neural networks: an overview. Neural Netw.

(2015) 61:85–117. doi: 10.1016/j.neunet.2014.09.003

28. Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with

neural networks. Science (2006) 313:504–7. doi: 10.1126/science.1129198

29. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition.

arXiv:1512.03385 (2015).

30. Noh H, Hong S, Han B. Learning deconvolution network for semantic

segmentation. arXiv:1505.04366 (2015).

31. Chatzis SP, Demiris Y. The infinite-order conditional random field model

for sequential data modeling. IEEE Trans Pattern Anal Mach Intell. (2013)

35:1523–34. doi: 10.1109/TPAMI.2012.208

32. Ten Tusscher K, Noble D, Noble P, Panfilov AV. A model for human

ventricular tissue. Am J Physiol Heart Circ Physiol. (2004) 286:H1573–89.

doi: 10.1152/ajpheart.00794.2003

33. Strain MC, Greenside HS. Size-dependent transition to high-dimensional

chaotic dynamics in a two-dimensional excitable medium. Phys Rev Lett.

(1998) 80:2306–9. doi: 10.1103/PhysRevLett.80.2306

34. Lilienkamp T, Christoph J, Parlitz U. Features of chaotic transients in excitable

media governed by spiral and scroll waves. Phys Rev Lett. (2017) 119:054101.

doi: 10.1103/PhysRevLett.119.054101

35. Kingma DP, Ba J. Adam: a method for stochastic optimization. arXiv preprint

arXiv:14126980 (2014).

36. Lin J. Divergence measures based on the Shannon entropy. IEEE Trans Inform

Theor. (1991) 37:145–51.

37. Kullback S, Leibler RA. On information and sufficiency. Ann Math Stat.

(1951) 22:79–86.

38. Gültas M, Düzgün G, Herzog S, Jäger SJ, Meckbach C, Wingender

E, et al. Quantum coupled mutation finder: predicting functionally or

structurally important sites in proteins using quantum Jensen-Shannon

divergence and CUDA programming. BMC Bioinformatics (2014) 15:96.

doi: 10.1186/1471-2105-15-96

39. Roberts N. Assessing the spatial and temporal variation in the skill of

precipitation forecasts from an NWP model.Meteorol Appl. (2008) 15:163–9.

doi: 10.1002/met.57

40. Parlitz U. Estimating Lyapunov Exponents from Time Series. In: Skokos C,

Gottwald G, Laskar J, editors.Chaos Detection and Predictability. Lecture Notes

in Physics. Vol 915. Berlin; Heidelberg: Springer (2016). p. 1–34.

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Herzog, Wörgötter and Parlitz. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 10 December 2018 | Volume 4 | Article 60

90 3.3. Spatio-temporal prediction of non-linear dynamics

3.3.2.1 Conclusions from (Herzog et al. 2018)

The last work somewhat completes to the studies performed in *(Herzog et al.

2021c). It can be seen that even if the system is only partially observed, the full

state can be reconstructed and predicted. As *(Herzog et al. 2021c) had already

shown, the CAE alone has very good reconstructive properties and these properties

are not interfered by the integration of the CRF in the latent space, the opposite

is the case, the combination of the CAE and CRF can even deal with the case of

where a incomplete set of observations is used as an input for prediction, although

the prediction with all variables allows a longer prediction horizon.

3.3.3 Publication: (Herzog et al. 2020b)

The last publication to be presented in this chapter is Herzog, S. and Wagner, C.

(2020b). “Development of Artificial Neural Networks with Integrated Conditional

Random Fields Capable of Predicting Non-linear Dynamics of the Flow Around

Cylinders”. In: New Results in Numerical and Experimental Fluid Mechanics XII.

Cham: Springer International Publishing, pp. 71–79. It demonstrates the use of

the approach from *(Herzog et al. 2019) on a computational fluid dynamics (CFD)

case, but also shows some generalising properties of the approach. To study the

generalising properties one network was trained with data containing different

parameters, more specifically the initial velocity was 0.02 and 0.05 uLB, where uLB

is the velocity in lattice units per time step, as well different Reynolds numbers

(Re) of 100, 500, 1000, leading to six different cases. However, the validation of the

network was done on cases where the Re = 250 and Re = 750 and uLB = 0.04.

Furthermore, it was investigated what happens when the position and number of

cylinders are changed without retraining the network.

Development of Artificial Neural
Networks with Integrated Conditional
Random Fields Capable of Predicting

Non-linear Dynamics of the Flow
Around Cylinders

Sebastian Herzog1,2,3(B) and Claus Wagner1,4

1 German Aerospace Center (DLR), Institute of Aerodynamics and Flow Technology,
Bunsenstr. 10, 37073 Göttingen, Germany

sebastian.herzog@dlr.de
2 Max Planck Institute for Dynamics and Self-Organization,

Am Faßberg 17, 37077 Göttingen, Germany
3 Third Institute of Physics, University of Göttingen,
Friedrich-Hund-Platz 1, 37077 Göttingen, Germany

4 Institute of Thermodynamics and Fluid Mechanics,
Technische Universität Ilmenau, Helmholtzring 1, 98693 Ilmenau, Germany

Abstract. This paper presents a new approach intended to predict flow
dynamics based on observed data. The approach uses artificial neural
networks extended by an adapted conditional random field. This artifi-
cial neural network is trained end-to-end and the embedded conditional
random field memorizes previous events and uses this memory for flow
predictions. The prediction capability of the proposed method is demon-
strated for flows around cylinders which are computed with a Lattice
Boltzmann method in order to train the artificial neural network.

Keywords: System modeling · Machine learning · ANNs

1 Introduction

To reliably and unambigously describe physical phenomena, the use of mathe-
matical models is almost inevitable. However, the development of these models
relies on new data obtained from difficult experiments or simulations. This new
data can be either fitted by adapting parameters of existing mathematical mod-
els or new mathematical models are required to describe the physical phenomena
of interest as precisely as possible. Either way, a high level of expert knowledge
is mandatory and even then, it is still challenging. In the field of fluid dynamics,
artificial neural networks (ANN) [15] were used early on. [17] introduced a non-
linear unsteady reduced-order model (ROM), which was developed using radial
basis function neural networks to analyze the limit cycle oscillation for two linear

c© Springer Nature Switzerland AG 2020
A. Dillmann et al. (Eds.): DGLR 2018, NNFM 142, pp. 71–79, 2020.
https://doi.org/10.1007/978-3-030-25253-3_7

72 S. Herzog and C. Wagner

structural models with large shock motions in transonic flow. [12] introduced a
different approach where the ROM is structured as a continuous time recurrent
neural network and verified on a typical section of the “benchmark active con-
trol technology” wing. This approach is useful when the investigated dynamic
system cannot be reconstructed from a sequence of state observations (Takens’s
theorem [13]). Further, [16] presented a similar approach. It is, however, based on
recurrent local linear neurofuzzy models for the prediction of generalized aerody-
namic forces in the time domain. In [4] several recommendations are formulated
on how and where ANNs can be used in the field of fluid dynamics. Besides
these approaches, there are also solutions for generating models from (training)
data including autoregressive models [2] or adaptive fuzzy rule-based models [1].
Furthermore, Monte Carlo techniques may be used for assessing uncertainty in
model parameters [1]. In the presented approach the dynamics of the considered
dynamic system learned using only the recorded data. After learning the model
should describe the experiment precisely and with a high level of generalizability.

2 Methods

In data-driven modeling, mathematical models are not based on first principles
(e.g., Newton’s laws, Maxwell’s equations, ...) but directly derived from experi-
mental data. In this work, we present a modeling ansatz combining deep convo-
lutional neural networks (CNNs) [8] for feature extraction and dimension reduc-
tion with an adapted version of conditional random fields (CRFs) [9] in order to
model the properties of temporal sequences. We start by recapping basic ANNs:
ANNs are parameterizable models for approximating an (unknown) function F
implicitly given by the data. The actual function provided by the ANN,

f : RO �→ RP , (1)

should be an approximation of F , i.e. f � F . Here, O ∈ N and P ∈ N denote the
dimension of the input and the output of f , respectively. A widely used type of
ANN are feed-forward neural networks (FNN) where, in general, f is given by

f(X) = ψ(WX + b) (2)

with a nonlinear function ψ (a possible choice would be: Eq. (5)), a weight matrix
W ∈ RP×O, some input X ∈ RP×R, and a bias b ∈ RR. Equation (2) is called a
one-layer FNN. By recursively applying the output of one layer as input to the
next layer, a multi-layer FNN can be constructed:

f(X) = f (L)(. . . f (2)(f (1)(X;W (1), b(1));W (2), b(2)) . . . ;W (L), b(L)), (3)

describing a multi-layer FNN with L ∈ N layers. In the following, an input with

several variables is taken into account. The input is denoted as Xα ∈ Rh(0)×w(0)

,
with h(0) ∈ N rows, w(0) ∈ N columns, and α = 1, . . . , d as the number
of variables. To improve the approximation properties of the network Eq. (3),

Artificial Neural Networks for Flow Dynamics Around Cylinders 73

FNNs may contain additional convolutional layers leading to state-of-the-art
models for data classification, so-called CNNs [8]. CNNs receive a training data
set X = {X1,X2, . . . ,Xm}, where Xα ∈ Rh×w is a field with h ∈ N rows,
w ∈ N columns, and α = 1, . . . , d number of variables/fields. In this case, the
input for the network has the dimensions h × w × d. Data processing through
the network is described layer-wise: In the l-th convolutional layer the input
X(l) is transformed into the raw output o(l), which is in turn the input into the
next layer l + 1, where the dimensions change depending on the number and
size of convolutions, padding and stride of the layers as illustrated in Fig. 1. Our
proposed network consists of four main components: 1. convolutional layers:
[11] to extract relevant features from the input, 2. downsampling with max-
pooling layers: [11] to further reduce the data dimensions, 3. adapted CRF:
Eq. (6) is used as a kind of “working memory”, it remembers the past features
and predicts them. 4. upsampling with deconvolutional layers: [6] inverse
functions of the downsampling and convolutional layers. They transform the fea-
tures back into the original mathematical space. This entire system is trained
end-to-end. To prevent gradient vanishing during training, residual blocks [5]
are used as helper components. The convolutional layers are always followed by
rectified linear unit activation (Eq. (5)) and batch normalization [7] (these blocks
are omitted in Fig. 1 for reasons of simplicity). Each residual layer consists of
three convolutional blocks and a residual skip connection. A maxpooling layer
is located between the levels in the encoding path to perform downsampling for
feature compression. The dimensions of the layers are based on the architecture
of an Autoencoder [6] consisting of an encoding path (from 512×512 to 64×64)
and a symmetric decoding path (from 64 × 64 back to 512 × 512), as illustrated
in Fig. 1. For the cases presented in this work two channels were used: one for

51
2

x
51

2

25
6

x
25

6

12
8

x
12

8

64
 x

 6
4

64
 x

 6
4

12
8

x
12

8

25
6

x
25

6

51
2

x
51

2

C
R

F

forcasted
image/filed

temporal sequence
of m images/fields

binary image/field
of the flow domain

convolutional layer downsampling with
maxpooling layer

upsampling with
deconvolutional layer

residual block conditional
random field

Input: (t-(m-1), ..., t) Output: t+Δt

Fig. 1. Proposed architecture for the prediction consisting of a splitted autoencoder
and the adapted CRF (orange block) with residual layers (cyan blocks), convolutional
layers (turquoise blocks), maxpooling and downsampling layers (yellow blocks), and
deconvolutional layers (pink blocks). As input, m = 10 images/fields are used.

74 S. Herzog and C. Wagner

the velocity field u and another one for the size and shape of the flow domain.
The padding parameter P (l) ∈ N for layer l describes the number of zeros at
the edges of a field by which the field is extended. This is necessary since every
convolution larger than 1×1 will decrease the output size. The stride parameter
S(l) ∈ N determines how much the kernel is shifted in each step to compute
the next spatial position x, y. This specifies the overlap between the individual
output pixels, and is set to 1 in this case. Each layer l is specified by its num-

ber of kernels K(l) = {K(l,1),K(l,2), . . . K(l,d(l))}, where d(l) ∈ N is the number

of kernels in layer l, and its additive bias terms b(l) = {b(l,1), b(l,2), . . . b(l,d(l))}
with b(l,d) ∈ R. Note that the input X(l) ∈ Rh(l)×w(l)

in the l-th layer with size
h(l) × w(l) and depth d(l) is processed by a set of kernels K(l). For each kernel

K(l,d) ∈ Rh
(l)
K ×w

(l)
K with size h

(l)
K × w

(l)
K and d ∈ {1, . . . , dK}, the raw output

o(l) ∈ R
h(l)−h

(l)
K

−1+P (l)

S(l)
× w(l)−w

(l)
K

−1+P (l)

S(l) is computed element by element as:

o(l,d)
x,y = (X(l) ∗ K(l,d))x,y = b(l,d) +

d(l)∑

k=1

h
(l)
K∑

i=1

w
(l)
K∑

j=1

K
(l,d)
i,j · X

(l,k)
x+i−1,y+j−1. (4)

Applying a kernel to an input is called a convolution operation. In every con-
volutional layer different kernels are applied. Kernel parameters are determined
during the training by a gradient descent method. The result is modulated by

an activation function ψ to obtain the activation ψ(o
(l,d)
x,y) of each unit:

ψ
(
o(l,d)

x,y

)
= max

{
0, o(l,d)

x,y

}
. (5)

To obtain o(l) = {o(l,1), . . . , o(l,dK)}, Eq. (5) needs to be solved ∀d = 1, . . . , dK

and ∀x, y. Each spatial element of o
(l,d)
x,y is considered as a unit and ψ(o

(l,d)
x,y) as

the feedforward activation of the unit. The value of a kernel element (K
(l,d)
i,j)

between two units is the weight of the feedforward connection. Such systems are
well-suited for feature extraction [6], but their linear structure does not allow
direct modeling of temporal changes or the possibility to process a sequence
of data. To enable temporal modeling, we employ adapted CRF which will be
introduced in the following: We assumed the output of the convolutional layer
to be o and the corresponding prediction q to be the random variables O and
Q, respectively. O and Q are jointly distributed. In a predictive framework,
we aim at developing a conditional model P (Q|O) based on paired observation
and predicted sequences. Let G = (V,E) to be an undirected graph such that
Q = (Qv)v∈V , where Q is indexed by the vertices of G. Each vertex in G
represents a state, a history or a prediction. Consequently, (O,Q) is a CRF [9].
An adapted CRF, where o is a sequence of historical extracted features up to
time t and q represents a corresponding predicted feature at t + Δt, with Δt
being the time step between two consecutive training dates, is given by:

P (q | o, θ) =
∑

h∈H
P (q,h | o, θ) =

∑
h∈H exp(Ψ(q,h,o; θ))∑

q′∈Q
∑

h∈H exp(Ψ(q′,h,o; θ))
. (6)

Artificial Neural Networks for Flow Dynamics Around Cylinders 75

In Eq. (6) q ∈ Q, Q is a set of future events,
∑

q′∈Q describes the sum of all
possible future events based on the trained data, h ∈ H, H is the set of layers
of the CRF and each hi ∈ h is a historical state of an event at time t. θ is the
set of parameters. Ψ(q,h,o; θ) is a so-called potential function (also called local
or compatibility function):

Ψ(q,h,o; θ) =

n∑

j=1

φj(o, ω) · θh [hj] +

n∑

j=1

θy[y, hj]

+
∑

(j,k)∈ε

θε[q, hj , hk] +
φ(o, ω) · θp[q]

k
, (7)

which measures the probability between a prediction, observed features, and
a configuration of historical states. Here, n is the number of historical states
and φj(o, ω) is a vector that can include any feature of the observation specific
to a certain time window ω, and θ = [θh, θq, θε, θp] are model parameters. To
restrict the search space for possible parametrizations, only sine, cosine and
linear interpolation functions are allowed to be used as feature functions. θh [hj]
is the parameter that corresponds to the state hj ∈ h. The function θq[q, hj]
indicates the parameters which correspond to the prediction q and the state hj .
θε[q, hj , hk] refers to parameters describing the dependency relation between the
nodes hi and hk. θp[q] defines the parameters for q. The dot product φ(o, j, ω) ·
θn[hj] measures the compatibility between the observed features and the state at
time j. In contrast to this, φ(o, ω) ·θp[q] measures the compatibility between the
observation and the prediction. h consists of k elements (in this work k = 1024)
and the last term in Eq. (7) captures the influence of the past features on the
prediction. For training, the likelihood function is defined:

L(θ) =
n∑

i=1

P (qi | oi, θ) − 1

2σ2
‖θ‖2, (8)

where n is the number of training examples. By maximizing the likelihood for
the true prediction based on the training data, the optimal parameter set θ∗ is
determined. To determine θ∗, Eq. (8) can be evaluated by means of the same gra-
dient descent method as used for the autoencoder. To predict the input sequence
with the introduced CRF, the q sequence maximizing q̂ = arg max

q
P (q | o; θ∗)

must be computed. The maximizing sequence is then used by the deconvolutional
part of the network to map the features back to the desired system variables at
t + Δt. The CNN part of the network was implemented with Keras/Tensorflow
1.10 [3]. The CRF was implemented with Python 3.6 [14], from scratch.

3 Results

The showcase of the flow around a cylinder provided by the Palabos LBM library
[10] is used for demonstration. To generate training data for the ANN, six cases

76 S. Herzog and C. Wagner

are initially computed with the LBM for an initial velocity of uLB = 0.02 and
uLB = 0.05, where uLB is the velocity given in lattice units per time step. Vary-
ing the Reynolds number (based on uLB and the radius of the cylinder in lattice
units) between three different values (100, 500 and 1000) results in six cases.
The lattice dimensions are nx = 520 and ny = 180, and the cylinder position
is cx = nx/4 cy = ny/2 with the radius r = ny/9, all indicated in lattice units.
The three snapshots of the velocity fields obtained for the three Reynolds num-
bers and uLB = 0.05 shown in Fig. 2 reflect vortex streets whose nonlinearity
increases with the Reynolds number. The network is trained with the veloc-
ity fields computed for these three Reynolds numbers and uLB = 0.05. Two
additional simulations are performed for the Reynolds numbers Re = 250 and
Re = 750 for uLB = 0.04 which are not used for the training process. Their solu-
tions are compared to the prediction of the network and are used to determine
the accuracy of the latter. For all cases, the input sequence of the network is
m = 10. In this respect, the prediction of the network for Re = 750 is compared
to the LBM solution, see Fig. 3. Starting the m = 10 initial field in the first iter-
ation, the prediction of the network is used for the second iteration in an open
loop until the maximal number of iterations is reached. Using one Nvidia GTX
1080 Ti, 997 GPU min. are required for training the network and 3 GPU min. for
the prediction of one case on average. For comparison, processing 200000 time
steps with the LBM on an AMD Ryzen 1800X takes 491 CPU min. Additionally,
the network trained with the flow around one cylinder is used to predict the flow
around three cylinders in a flow domain twice as long and wide. The position and
the size of the two additional cylinders illustrated in Fig. 4 are chosen arbitrar-
ily; in this case 3 GPU min. and 23 GPU sec. The network prediction must be
compared to the 1325 CPU min. of the LBM simulation for this case. To analyze
the deviation of the network prediction from the LBM solutions in more detail,

Fig. 2. Color-coded contours of the velocity distribution obtained from the LBM
for three different Re values with uLB = 0.05. (A)−(C) correspond to Re = 100,
(D)−(F) correspond to Re = 500 and (G)−(I) correspond to Re = 1000. The individ-
ual columns (from left to right) correspond to the time steps t ∈ [10000, 100000, 200000]
and the velocity is given in lattice units.

Artificial Neural Networks for Flow Dynamics Around Cylinders 77

Fig. 3. Color-coded contours of the velocity distribution obtained from the LBM
(A)−(C) and the network (D)−(F) for Re = 750, uLB = 0.04. (G)−(I) present
the absolute error between the LBM simulation and the network prediction.

Fig. 4. Comparison of the LBM (A)−(C) and the network prediction (D)−(F), with
a doubled domain size and two additional cylinders with randomly chosen positions, for
Re = 750, uLB = 0.04 and t ∈ [10000, 100000, 200000]. The network was not retrained.
(G)−(I) show the absolute error between the LBM simulation and their reconstruction
by the network. The velocity is given in lattice units.

the root-mean-square deviation RMSD = 1
nxny

√∑nx

i=1

∑ny

j=1(u
LBM
i,j − uNet

i,j)2 is

determined, where uLBM denotes the LBM solution and uNet the output of the
network. Figure 5 illustrates the temporal development of the RMSD obtained
for the single cylinder cases (Re = 250;uLB = 0.04), (Re = 750;uLB = 0.04) and
(Re = 750;uLB = 0.04) and the case with three cylinders which is similar for all
four cases. With increasing Re the predicted vortex streets become more chaotic
and thus, more susceptible to perturbations. This results in a higher RMSD
over time for the case of Re = 750 in comparison to the case of Re = 250.
The exponentially increasing RMSD and progression, however, are comparable
in both cases. On the other hand, it must be noted that the RMSD of Re = 750
is smaller compared to the RMSD for the case Re = 250 in the beginning,

78 S. Herzog and C. Wagner

Fig. 5. Temporal development of the RMSD between the LBM and the network pre-
diction, with different Re values. The blue and orange line are based on the two cases
where only the parameters of the flow have been changed, so that Re = 250 or Re = 750
was reached. The green line shows the case with three cylinders and doubled domain
size from Fig. 4. (A) is the development for t ∈ [0, 10000] and (B) for t ∈ [0, 200000]

t ∈ [0, 20000], while for t > 20000 the RMSD of Re = 750 exceeds the RMSD of
Re = 250. Although the errors of the network prediction increase as expected, it
is remarkable that the RMSD is still lower than 0.1 for t ∈ [0, 10000] in spite of
the fact that the network was not trained on data with more than one cylinder.

4 Conclusion

Spatio-temporal nonlinear dynamical systems like the Kármán vortex street may
exhibit dynamics which are hard to learn for a data-driven modeling system.
The presented modeling approach is based on the extension of ANNs with an
adapted CDR, introducing a “working memory”, to remember past features and
use this information for prediction. We used this approach to develop a data-
driven model of nonlinear dynamical systems from data, which is able to predict
the repeating pattern of swirling vortices downstream of cylinders. The latter are
caused by vortex shedding, occuring due to the unsteady separation of the flow
around blunt bodies. Running the trained network in a closed-loop (feedback)
configuration resulted in a long-term prediction of the dynamics which follow
the solution in a complete LBM simulation, when suitably trained.

Acknowledgment. We thank Annika Köhne for the valuable corrections of this
manuscript and Axel Dannhauer for fruitful discussions and continuous support.

Artificial Neural Networks for Flow Dynamics Around Cylinders 79

References

1. Abebe, A.J., Solomatine, D.P., Venneker, R.G.W.: Application of adaptive fuzzy
rule-based models for reconstruction of missing precipitation events. Hydrol. Sci.
J. 45(3), 425–436 (2000)

2. Box, G.E.P., Jenkins, G.: Time Series Analysis, Forecasting and Control. Holden-
Day Inc., San Francisco (1990)

3. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous sys-
tems. Software available from tensorflow.org (2015)

4. Faller, W.E., Schreck, S.J.: Neural networks: applications and opportunities in
aeronautics. Prog. Aerosp. Sci. 32(5), 433–456 (1996)

5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

6. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neu-
ral networks. Science 313(5786), 504–507 (2006)

7. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

8. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sytems,
vol. 25, pp. 1097–1105. Curran Associates, Inc. (2012)

9. Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: probabilistic
models for segmenting and labeling sequence data. In: Proceedings of 18th Inter-
national Conference on Machine Learning, pp. 282–289 (2001)

10. Latt, J.: Palabos, parallel Lattice Boltzmann solver (2009)
11. Lee, H., Grosse, R., Ranganath, R., Ng, A.Y.: Convolutional deep belief networks

for scalable unsupervised learning of hierarchical representations. In: Proceedings
of the 26th Annual International Conference on Machine Learning, pp. 609–616.
ACM (2009)

12. Mannarino, A., Mantegazza, P.: Nonlinear aeroelastic reduced order modeling by
recurrent neural networks. J. Fluid Struct. 48, 103–121 (2014)

13. Takens, F.: Detecting strange attractors in turbulence. In: Dynamical Systems and
Turbulence, Warwick 1980, pp. 366–381. Springer (1981)

14. van Rossum, G., Drake, F.L.: The Python Language Reference Manual. Network
Theory Ltd., Bristol (2011)

15. Vemuri, V.: Artificial neural networks: theoretical concepts. In: Computer Society
Press Technology, Neural Networks. Computer Society Press of the IEEE (1988)

16. Winter, M., Breitsamter, C.: Neurofuzzy-model-based unsteady aerodynamic com-
putations across varying freestream conditions. AIAA J. 54, 2705–2720 (2016)

17. Zhang, W., Wang, B., Ye, Z., Quan, J.: Efficient method for limit cycle flutter
analysis based on nonlinear aerodynamic reduced-order models. AIAA J. 50(5),
1019–1028 (2012)

100 3.4. Summary and outlook

3.3.3.1 Conclusions from (Herzog et al. 2020b)

As can be seen in *(Herzog et al. 2020b, figure 3), the hybrid approach predicts

dynamics that fit well to the ground truth data, even for the case where the initial

velocity and Reynolds number was not part of the training data, which is quite an

interesting result. Adding more cylinders has led to predictions that are consistent,

although the error has increased more than in the other cases, as one can recognise

from *(Herzog et al. 2020b, figure 5). This can be seen as an indication that

the presented approach is able to generalise across different boundary values and

geometries to some degree. However, further investigations need to be carried out

in this context. My hypothesis based on the findings from this work would be that

the network can interpolate between the training data. If, instead, parameters

were used that were not within the range of the training data, e.g. cases where

the Reynolds number was set to Re = 2000 resulted in artefacts or sometimes to

cases where the dynamics slowly converge to that of Re = 1000. Anyhow, it was

all very sensitive and strongly parameter dependent.

3.4 Summary and outlook

In general, publications *(Herzog et al. 2019; Herzog et al. 2018; Herzog et al.

2020b), which presented the hybrid model, show that the combination approach

CAE+CRF has interesting properties and seems to be very powerful. Unfortunately,

the generalisation behaviour is difficult to assess, *(Herzog et al. 2020b) shows that

generalisation between the cases from the training data is indeed possible. However,

extrapolation does not work well. Another question that remains and needs further

investigation is why the combination of CAE and CRF works so well. The current

hypothesis is that the CAE transforms the data into a coordinate system that is

particularly easy for the CRF to predict. Which could mean that a finite Koopmann

operator (Koopman 1931) is approximated by the CAE in the latent space. In

general, the Koopmann operator is an infinite-dimensional linear operator defining a

infinite-dimensional linear dynamical system which transfers the state vector xt from

3. Spatio-temporal data prediction 101

the original dynamical system to the next state xt+∆t, where ∆t is a suitable step

size. Since the latent space in CAE cannot be infinite the finite Koopmann operator

is assumed, which can be considered as an approximation of the infinite Koopmann

operator. A first simple examination of this suggestion can be made as follows.

If one considers the CAE simplified as

φ−1(φ(xt)) = xt

for any input x at some time t then φ(xt) would be the encoder part of the CAE and

x∗t the latent space representation x∗t = φ(xt). And φ−1(·) shall then be the decoder

part of the CAE. Then the framework from *(Herzog et al. 2019) can be considered as

φ−1(CRF(φ(xt)) = xt+∆t,

where ∆T is the time step between tow data points. Without loss of generality,

∆t ∈ N+, it is possible to write

φ−1(CRF(φ(xt)) = xt+1.

Assuming that a transfer to a simpler linear coordinate space takes place in the latent

space, then there must exist a K ∈ Rn×n, where n is the size of the input, such that

φ−1(Kφ(xt)) = xt+1.

In the best of all cases even a K would exit, such that

φ−1(Kmφ(xt)) = xt+m+1, (3.6)

where m ∈ N and m � 0.

To investigate this, the network from *(Herzog et al. 2019) was applied to data

from Lorenz’s model from 1996 with N = 32. In the first step, the already trained

network was taken to obtain x∗t and x∗t+1 = CRF(x∗t) over all training data.

Remark. The approach of *(Herzog et al. 2019) does not work with x ∈ Rn but

with x ∈ Rm×n so the input is a chunk that looks at the spatial positions (m) and

their temporal evolution (n). In the following consideration, x is therefore broken

down into its columns.

102 3.4. Summary and outlook

With this data, a K should then be found that satisfies equation 3.6. To

determine K, the same gradient procedure was used as in *(Herzog et al. 2019).

If one tries to find a Km that is valid over the entire prediction horizon that the

CAE+CRF approach could reach, the optimisation fails and a K is not found.

But if we take an m corresponding to the latent dimension, a set of K can be

found witch reaches an error according to the used float precision. Using K to

set up the CAE without CRF allows a predictive horizon of Λmaxt = 13.03 or

7.945t (For comparison, the CAE+CRF approach achieves Λmaxt = 15.66 or 9.55t.

Which is significantly worse but can certainly be seen as an indication that a linear

system K exists which transfers x∗t to x∗t+1.

Furthermore, an attempt was made to integrate the K directly into the training

process in order to prevent the approximation of K, i.e. the error of ‖Kx∗t − x∗t+1‖

was added reciprocally into the loss function of the CAE+CRF training. In short,

however, this has not led to any convergence of training. But this approach

was probably not a good idea either since for each input during the training a

second gradient procedure has to be started that optimises K, which resulted in

an extremely long computation time.

These two attempts should by no means be understood as rigorous results.

Much more, they should form the motivation for further investigations. With this

thought, I would like to conclude this chapter. In summary, one can say that

hybrids of neural networks are able to predict even complex non-linear systems over

a certain time horizon, and their application to systems that are not describable

by first principals could prove a very useful tool.

Philosophy is written in that great book which ever
lies before our eyes — I mean the universe — but
we cannot understand it if we do not first learn
the language and grasp the symbols, in which it is
written. This book is written in the mathematical
language, and the symbols are triangles, circles and
other geometrical figures, without whose help it is
impossible to comprehend a single word of it; without
which one wanders in vain through a dark labyrinth.

— Galileo Galilee (Galilei 1623), translation by
Thomas Salusbury (1661) found in (Burtt 2003) 4

From data to symbols

Contents
4.1 Introduction data to symbols 103

4.1.1 Learning as a search . 104
4.2 Learning symbolic representations 105

4.2.1 Publication: (Herzog et al. 2021a) 106

4.1 Introduction data to symbols

In the last two chapters, approaches were shown that can support the modelling of

non-linear systems. In particular, we were able to demonstrate that the combination

of an CAE with a CRF makes it possible to very well approximate even rather

complex non-linear dynamics. Such a hybrid network allows predicting the evolution

of systems that are otherwise difficult or impossible to model. However, there is

also a serious drawback because these systems are black-box systems, they process

input in a way that is difficult for us humans to comprehend and thus do not

allow any physical insight into the system under investigation. Furthermore, it

does also not give us symbolic representations with which we, humans, could then

formulate - for example by ways of an explicit mathematical model - the underlying

103

104 4.1. Introduction data to symbols

mechanisms behind these systems. This, however, would be very desirable, especially

with regard to theory building of systems that are not covered by first principles.

Theory Experiment

Simulation

Problems

Data-driven modelling

Spa.-tem.
pred.

Dataprocess. Symbolicrepres.

Real data

Conclusions

Outlook

Figure 4.1: Structure overview: From
data to symbols chapter 4

Previously ANNs were considered approx-

imators of functions, and strictly speaking

they will remain so, but these approxi-

mator methods can now be used to also

engage in a search for symbolic represen-

tations.

4.1.1 Learning as a search

Tom Mitchell in 1982 had described learn-

ing from examples as search (Mitchell

1982). Examples are statements assigned

to a category (classified) in the learning

literature. By contrast, observations are

not classified. Thus, in learning from ex-

amples, the assignment (aggregation) has

already been done by the user or another

system. In learning from observations,

aggregation is part of the learning task. The task of learning from examples,

according to (Mitchell 1982) can be considered as:

1. Description language LE for examples.

2. Definition language LH for the expression.

3. Set P of positive examples (examples for the expression).

4. Set N of negative examples (non-examples for the expression).

5. Matching predicate that classifies examples (covers).

4. From data to symbols 105

The goal is to find c ∈ LH with ∀p ∈ P , covers(c, p) is true and ∀n ∈ N, covers(n, p)

is false. The search or hypothesis space for expressions is the set of all expressions

that can be formed with the help of LH. These are all possible characterisations

for which it must then be determined whether they cover all positive examples and

none of the negative ones. The matching predicate can be realised, for example,

by the logical conclusion: covers(c; e) exactly when c � e. The simplest learning

algorithm is, thus, the enumeration algorithm: it enumerates all expressions that

can be formed in LH (hypothesis generation) and checks for each which examples

(and non-examples) are covered (hypothesis test). Once the target condition

holds, the algorithm stops.

4.2 Learning symbolic representations

Finding system equations from data is an old problem, perhaps the simplest

case being linear regression. Where a linear equation is adjusted by optimising

some parameter variables until the error to the data is minimal. The concept of

system identification (SID) goes further than the simple case of linear regression,

since for linear regression the general structure of the function is already given

as f(x) = mx + b. Such approaches only make sense if one already has a good

understanding of the system to be modelled (as a straight line in this case). In the

case of SID, however, the goal is more ambitious since one wants to provide as little

information as possible about the structure of the equations to find the symbolic

representation of the underlying dynamics. A very interesting and modern approach

has been demonstrated by AlMomani et al. (2020), where the Shannon entropy

was utilised for a sparse regression to find equations for several non-linear systems.

The approach of (AlMomani et al. 2020) tries to find a linear representation of

non-linear basis functions, which reproduce the data with a minimum error and

where as many coefficients as possible are zero. A similar parameterisation approach

is also attempted by so-called neural ordinary differential equations (Chen et al.

2018). These authors describe a neural network as a sequence of complicated

transformations that are achieved by a composition of transformations into a hidden

106 4.2. Learning symbolic representations

state. In analogy to equation A.3, the authors of (Chen et al. 2018) define the

sequence of transformations as

ht+1 = f (ht, θt)

with t ∈ {0 . . . T} and some ht ∈ RD. These iterative updates are seen as Euler

discretization of a continuous transformation by Chen et al. (2018). If the ANN

has residual connections, equation 4.2 becomes

ht+1 = ht + f (ht, θt) .

Based on equation 4.2, the authors motivate the following formulation

Definition 4.2.1 (Neural ordinary differential equations from (Chen et al. 2018)).

dh(t)
dt

= f(h(t), t, θt), (4.1)

where the input layer is given by h(0) and the output layer by h(T). Starting from

the input layer, the output can be calculated by solving the initial value problem.

Considering Eulers method as a discretisation of the continuous relationship

between the input and output domains of the data. ANNs can be considered

in a similar fashion, since ANNs also discretise the continuous relationship using

their hidden states in their latent space.

4.2.1 Publication: (Herzog et al. 2021a)

Motivated by the work in (Chen et al. 2018), the idea behind the next publication was

to see if exactly this approach is suitable to train an ANN according to equation 4.1

in such a way that it describes the data by a Hamiltonian system. For this, the

approach of Chen et al. (2018) was slightly modified as described in Herzog, S. and

Wörgötter, F. (2021a). “Application of neural ordinary differential equations to the

prediction of multi-agent systems”. accepted for SWARM 2021 (to be considered

for full publication in Artificial Life and Robotics). With the goal to model a vector

field that describes the swarm motion of interacting agents.

Application of neural ordinary differential
equations to the prediction of multi-agent

systems

Sebastian Herzog1 and Florentin Wörgötter1

Third Institute of Physics - Biophysics, Department for Computational Neuroscience,
University of Göttingen, Göttingen, Germany

sherzog3@gwdg.de

Abstract. Dynamic systems are usually described by differential equa-
tions, but formulating these equations requires a high level of expertise
and a detailed understanding of the observed system to be modelled.
In this work we present a data driven approach, which tries to find a
parameterization of neural differential equations system to describe the
underlying dynamic of the observed data. The presented method is ap-
plied to a multi-agent system with thousand agents.

Keywords: Artificial neural networks, neural ordinary differential equa-
tions, data-driven modelling, hamiltonian

1 Introduction

We present an approach to learn the dynamics of hundreds to thousands of
agents in a system, where the underlying assumption is that the agents follow a
collective dynamic, which is not obviously recognisable, but present. Examples
for such dynamics systems are flocks of birds or the movement of cell compo-
nents. The underlying dynamics allow many conclusions, e.g. about the energy
distribution in the system or whether there are symmetries or not.

To visualise the motion of many particles or of a swarm with many agents
several approaches exists, like the group of optical flow methods [8, 9, 12], cross
correlation [1] and Kalman filters [19], these methods can be translated into more
complex approaches like particle tracking velocimetry (PTV) [5, 14, 15, 20]. If a
sufficient amount of data is available and agent/particle density is high enough,
a vector field can be obtained by mapping the trajectories on a Cartesian grid.
Thus, it is possible to visualise the dynamics of the underlying system. However,
these approaches often result in an algorithmic frameworks of high complexity.
The approach presented here is based on neural ordinary differential equations
(nODEs) [3]. An artificial neural network (ANN) is used to approximate the
Hamiltonian of canonical classical mechanic equations. This allows describing
the underlying particle- or agent-swarm directly as a dynamic system without
detours. To train the here-presented approach only a list of positions with their
momentum is necessary. In this study we derive the method for this and apply
it to simulated data based on the boids [18] algorithm.

2 Herzog et al.

2 Methods

Considering a set of N coordinates (q,p), where q,∈ RN represents the positions
and p ∈ RN their momentum. A scalar functionH(q,p) is called the Hamiltonian
if:

q̇ =
dq

dt
=
∂H
∂p

and ṗ =
dp

dt
= −∂H

∂q
. (1)

this system can be rephrased without restricting generality to

q̇ = ∇pH(q,p) and ṗ = −∇qH(q,p), (2)

where ∇ is the gradient operator. For nODEs it is common to approximate the
right-hand side of (Eq. 2) by ANNs, denoted by Hθ(q,p), where θ is a vector
with all parameters of the ANN. A (feedforward) artificial neural network, also
known as a multi-layer perceptron (MLP), is a series of logistic regression models
stacked on top of each other. MLPs can be used for classification problems as
well as for regression problems, depending on the final layer. In this work we are
solving regression problems defined by:

p(y|x,θ) = N (y|wTz(x), σ2) (3)

z(x) = q(V x) = [g(vT1 x], . . . , g(vTHx)], (4)

where y is the desired regression output, x the input vector,w the weight matrix,
vj = Vj,: is the jth row of V , hidden layers z(x) = φ(x,V) of size H, where
g is the so called activation function. N (·, σ2) is the symbol for the normal
distribution with variance σ2. The hyperbolic tangent (tanh) is used as the
activation function. To use (Eq. 3) for Hθ(q,p) the framework of nODEs is used,
which are a family of ANNs where the hidden layers parameterize the derivative
of the hidden state using a neural network and the output of the network is
computed using a black-box differential equation solver, where backpropagation
[2, 4, 10] through the ODE solver is applied [3]. A special feature of nODEs
is that the gradient is calculated using the adjoined sensitivity method [17],
allowing a linear relation between problem size and computational complexity
and a low memory consumption. After obtaining the gradient the parameters of
Hθ(q,p) are trained by a gradient method with adaptive moment estimation,
called ADAM [11]. The input data are all pairs of (q,p) in the training-set. And
the loss function which is supposed to be optimised is

lθ = ‖q̇ −∇pHθ(q,p)‖22 + ‖ṗ−∇qHθ(q,p)‖22 + α‖Hθ(q,p)‖1, (5)

where the first two terms simply describe the quadratic deviation, ‖.‖22 denotes
the l2-norm and the third term α‖Hθ(q,p)‖1, with ‖.‖1 denotes the l1-norm
and forces H to be sparse with α ∈ R a weighting parameter (in this work
α = 0.3). The implementation of Hθ(q,p) was done with pytorch [16] and is
based on [3]. The network architecture consists of four dense layers, each layer
has an activation layer with tanh. The first layer expects 2 inputs and has 128
nodes, followed by two more layers with 128 nodes and finally a layer with 128

Learning hamiltonian swarm dynamics 3

nodes and one output node. In this work we have deliberately avoided dividing
the data into a training, validation and test set because we are interested in the
vector field in the end, which is not directly evident from the data anyhow. In
the following results part two points are examined. Firstly, the learned vector
field is validated if it can reproduce the ground truth trajectories from the boid
algorithm, when using the initial conditions from the boid algorithm. Secondly,
the trained system is used on new data, but with the same parameters for the
random sources.

3 Results

To investigate the presented approach empirically a simulation of the flocking
behaviour of birds is used. For this simulation 1000 agents with separation,
alignment and cohesion rules were modelled by the boids algorithm [18]. The
boids algorithm with reflecting boundaries was implemented using python [21]
and the numpy package [7]. The 1000 agents were placed randomly centred
around (0, 0) (Fig. 1) but without overlap and with random initial velocities
from U [0.2, 5] and random accelerations of U [0, 0.03], where U [a, b] is the uniform
distribution between a and b. The system was simulated tmax = 5000 time
steps. These data were then used to train the presented approach with early

−103 0 103

−103

0

103

t = 0 t = 500

−103 0 103

t = 1000

Fig. 1. Snapshots of 1000 agent system simulated with the boids algorithm [18] at
different times (from left to right: t = 0, t = 500, t = 1000). Each dot represents an
agent and the borders are reflective.

stopping [6] and a patience of 15. In (Fig 2) the values of the loss function over
the epochs are plotted. Early stopping ends the training if the loss function does
not improve over the last 15 epochs. The system was trained on a Nvidia GTX
1080, an epoch calculates on average 61 ± 3 seconds. In total 54 minutes 54
seconds, but probably half of the time would also be sufficient. After training
the vector field of the nODE can be visualised, by generating an equidistant

4 Herzog et al.

0 20 40

1

1.05

1.1

1.15

·10−2

epoch

tr
a
in

lo
ss

Fig. 2. Development of the train loss. Early stopping, with a patience of 15 stopped
the training after 57 epochs. It can be seen that the training started to oscillate from
around epoch 30.

grid with n = 50 points and applying the learned Hθ(·,0) to each point. The
resulting vector field is illustrated in (Fig. 3). Based on the learned vector field

−103 0 103

−103

0

103

Learned vector field

Fig. 3. Visualisation of the learned vector field. The colours (blue to red) are an indi-
cation of the energy in the system.

it’s possible to predict trajectories, by using some values for q and p as initial
conditions and applying this to the field. To check if the presented approach
learned the underlying dynamic from the boid algorithm, all q and p from the
training data were selected. A few exemplary trajectories are shown in (Fig 4).
The corresponding statistics are available in blue in (Fig 5). It can be seen
(Fig. 5) that the trajectories deviate about 7 units of length in the median, but
there are also cases where the deviate exceeds 80 units, with a domain size of

Learning hamiltonian swarm dynamics 5

−1000

−500

0

500

1000

track id: 1 track id: 125 track id: 250

ground truth

prediction

−1000

−500

0

500

1000

track id: 375 track id: 500 track id: 625

−1000 −500 0 500 1000

−1000

−500

0

500

1000

track id: 750

−1000 −500 0 500 1000

track id: 875

−1000 −500 0 500 1000

track id: 1000

Fig. 4. Selection of trajectories for visualization purposes. The ground truth trajecto-
ries are coloured in blue, while the trajectories generate from the nODE are coloured
in orange.

103× 103 this is a comparably small error. To validate our approach further, we
took the predicted nODE and randomly initialised 1000 agents with the same
scheme as above and calculated the trajectories based on nODE over 5000 time
steps. For each trajectory the nearest neighbour of the original trajectories was
searched and the l2-deviation was calculated. This deviations can be seen in
Fig. 5 in orange. The expectation of the distribution is about 80 length units,
which in relation to the total domain size again is not much.

6 Herzog et al.

0 20 40 60 80 100

0

0.02

0.04

0.06

0.08

0.1

l2-norm deviation

median ≈ 6.98

median ≈ 79.74

Fig. 5. In blue: Statistical error distribution of the trained nODE, based on the l2-
deviation to the original trajectories from the boid algorithm. In orange: Statistical
error distribution of the trained nODE with 1000 newly initiated agents. The deviation
was calculated to the nearest neighbour to the original trajectories from the training
data.

4 Discussion

The approach presented here is an extension of the classic nODE approach.
By adding a sparse regularisation term to (Eq. 5), it was possible to train the
nODE network to learn the underlying dynamic of the agent motions from the
boids algorithm. Surprisingly, even the resulting trajectories from the learned
system only have a maximum deviation of 7 length units (divided by the domain
width this equals 0.7%) compared to the ground truth data, which means that
the underlying dynamic of the training data can be reconstructed. Considering
randomly initialised agents, from the same source distribution, the deviation
increases in the median to up to 80 length units (or 8%) which is an increase of
a factor of 10, but given the large domain this is still quite a good result. It also
should be noted that no hyperparameter optimisation was considered for the
approach presented at this stage. It is therefore to be expected that, if the loss
function or the architecture of the network is further adapted, even better results
could be achieved. It is also worth mentioning that we have chosen ADAM [11]
because of its fast convergence, other algorithms such as SGD [13] may achieve
better results, too. Methods like these need further investigation to understand
in detail in which cases they generalise and in which not. However, we hope
that approaches like the presented one can be helpful to gain new insights into
systems where models based on first principles are hard to obtain.

References

1. Ronald Newbold Bracewell and Ronald N Bracewell. The Fourier transform and
its applications, volume 31999. McGraw-Hill New York, 1986.

Learning hamiltonian swarm dynamics 7

2. A. E. Bryson. A gradient method for optimizing multi-stage allocation processes.
In Proc. Harvard Univ. Symposium on digital computers and their applications,
1961.

3. Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neu-
ral ordinary differential equations. In Proceedings of the 32nd International Con-
ference on Neural Information Processing Systems, NIPS’18, page 6572–6583, Red
Hook, NY, USA, 2018. Curran Associates Inc.

4. S.E. Dreyfus. The numerical solution of variational problems. Journal of Mathe-
matical Analysis and Applications, 5:30–45, 08 1962.

5. T. Fuchs, R. Hain, and C. J. Kähler. Non-iterative double-frame 2D/3D particle
tracking velocimetry. Exp. Fluids, 58:119, 2017.

6. Ian J. Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, Cambridge, MA, USA, 2016. http://www.deeplearningbook.org.

7. Charles R. Harris, K. Jarrod Millman, St’efan J. van der Walt, Ralf Gommers,
Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg,
Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van
Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fern’andez del R’ıo, Mark Wiebe,
Pearu Peterson, Pierre G’erard-Marchant, Kevin Sheppard, Tyler Reddy, Warren
Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array
programming with NumPy. Nature, 585(7825):357–362, September 2020.

8. Berthold K.P. Horn and Brian G. Schunck. Determining optical flow. Artificial
Intelligence, 17(1):185 – 203, 1981.

9. J Yu Jason, Adam W Harley, and Konstantinos G Derpanis. Back to basics: Unsu-
pervised learning of optical flow via brightness constancy and motion smoothness.
In European Conference on Computer Vision, pages 3–10. Springer, 2016.

10. Henry J. Kelley. Gradient theory of optimal flight paths. ARS Journal, 30(10):947–
954, 1960.

11. Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization,
2017.

12. Till Kroeger, Radu Timofte, Dengxin Dai, and Luc Van Gool. Fast optical flow
using dense inverse search. In European Conference on Computer Vision, pages
471–488. Springer, 2016.

13. Yann A. LeCun, Léon Bottou, Genevieve B. Orr, and Klaus-Robert Müller. Effi-
cient BackProp, pages 9–48. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

14. Gruen A. Maas H.G. and Papantoniou D. Particle tracking velocimetry in three-
dimensional flows. Exp. Fluids, 15(2):133–146, 1993.

15. Koichi Nishino, Nobuhide Kasagi, and Masaru Hirata. Three-dimensional particle
tracking velocimetry based on automated digital image processing. 1989.

16. Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. Pytorch: An imperative style, high-performance deep learning library. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d Alché-Buc, E. Fox, and R. Garnett,
editors, Advances in Neural Information Processing Systems 32, pages 8024–8035.
Curran Associates, Inc., 2019.

17. Lev Semenovich Pontryagin. Mathematical theory of optimal processes. Routledge,
2018.

18. Craig W. Reynolds. Flocks, herds and schools: A distributed behavioral model. In
Proceedings of the 14th Annual Conference on Computer Graphics and Interactive

8 Herzog et al.

Techniques, SIGGRAPH ’87, page 25–34, New York, NY, USA, 1987. Association
for Computing Machinery.

19. Jinya Su, Baibing Li, and Wen-Hua Chen. On existence, optimality and asymptotic
stability of the kalman filter with partially observed inputs. Automatica, 53:149 –
154, 2015.

20. Y. Tanida and H. Miyashiro. Flow Visualization VI, Chapter: 3D Particle Tracking
Velocimetry-Its Possibilities and Limitations. Springer-Verlag, 1992.

21. Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. CreateSpace,
Scotts Valley, CA, 2009.

4. From data to symbols 115

4.2.1.1 Conclusion from (Herzog et al. 2021a)

Considering *(Herzog et al. 2021a, figure 4), one can see that the predicted vector

field itself reflects the individual movement of the agents well, which is interesting

since the data for the training is not from a system of equations but from an

algorithm describing a set of rules. This can be taken as an indication of how

descriptive ODEs can be if they are parameterised appropriately. However, this was

only a toy example with now physical meaning, but with the purpose to show that

even for a case where the best description of the agent dynamics is an algorithm

a simpler symbolic representation can approximate the dynamics as well. More

important, as the two works (AlMomani et al. 2020; Chen et al. 2018) and our

own work *(Herzog et al. 2021a) exemplify, there are several approaches to find a

symbolic representation for the data and, depending on what kind of symbols to

use, both approaches have their advantages. These methods differ from each other

around their core, but they have a similar idea. Based on some user specifications, a

rough structure which symbols should be used to represent the data is given. In the

case of (Champion et al. 2019) it can be e.g. trigonometric functions, polynomials,

or monomials, in the case described by us arbitrary ODEs. The process of learning

is then supposed to find possible parameters so that the data is represented as

accurately as possible by the user defined structure.

In the next chapter, the approach from *(Herzog et al. 2021a) will be applied to

real data, in contrast to the data used in *(Herzog et al. 2021a), the experimental

data have a more stochastic nature and do not follow smooth trajectories.

116

Insofern sich die Sätze der Mathematik auf die
Wirklichkeit beziehen, sind sie nicht sicher, und
insofern sie sicher sind, beziehen sie sich nicht auf die
Wirklichkeit.

— Albert Einstein, found (Einstein 1921)

5
Application to experimental data

Contents
5.1 Introduction to experimental data application 117
5.2 Publication: (Herzog et al. 2021b) 118
5.3 Conclusions from (Herzog et al. 2021b) 137

5.3.1 Application of the presented methods 137
5.4 Summary . 142

5.1 Introduction to experimental data applica-
tion

In the last three chapters, methods were presented that support the modelling

of systems. We had covered the aspect of data processing (chapter 2), demon-

strating the potential of CAEs to complete and enhance data. Followed by

the first hybrid model (chapter 3), a combination of CAE and CRF resulting

in a method capable of learning the spatio-temporal non-linear dynamics from

observed data and had ended so far with partially addressing the problem of

finding of symbolic representations (chapter 4). Up to this point, these methods

had been used on simulated data, which has the advantage that a ground truth

exists, which is good for validation purposes, but on the other hand the data

117

118 5.2. Publication: (Herzog et al. 2021b)

are of a quality that is often not matched by real experimental data. In this

penultimate chapter, the application of the presented methods from chapters 3 and 4

Theory Experiment

Simulation

Problems

Data-driven modelling

Spa.-tem.
pred.

Dataprocess. Symbolicrepres.

Real data

Conclusions

Outlook

Figure 5.1: Structure overview: Applica-
tion to experimental data chapter 5

on real experimental data will be discussed

and illustrated. The presented methods

are supposed to be used in the field of par-

ticle tracking, which is of great relevance in

many areas of physics but also in biology.

The goal of particle tracking is that, based

on data mostly in the form of images (e.g.

from cameras), particles are extracted per

time step and these particles are then

assembled into trajectories in order to

record the movement of the particles.

5.2 Publication: (Her-
zog et al. 2021b)

The framework from the following publi-

cation is a prerequisite to allow training

of the methods (CAE+CRF and nODE)

presented in *(Herzog et al. 2021a; Herzog et al. 2019) and later for comparing

the results. In this sense this paper is a bit "outside" the core of this thesis

but - clearly - it is needed. In the next publication, which will be presented in

Herzog, S., Schiepel, D., Guido, I., and Wagner, C. (2021b). “A probabilistic

particle tracking framework for guided and Brownian motion systems with high

particle densities”. submitted to Int J Comput Vis, a particle tracking method

will be presented that will be able to reconstruct two-dimensional trajectories as

well as three-dimensional trajectories from particle images. One of the main goals

in the development of the method was that it should be able to handle even very

high particle densities.

Noname manuscript No.
(will be inserted by the editor)

A probabilistic particle tracking framework for guided and Brownian
motion systems with high particle densities

Sebastian Herzog1,2,3 · Daniel Schiepel1 · Isabella Guido2 · Claus Wagner1,4

Received: date / Accepted: date

Abstract This paper presents new framework for particle
tracking based on a Gaussian Mixture Model (GMM). It is
an extension of the state of the art iterative reconstruction of
individual particles by a continuous modeling of the particle
trajectories considering the position and velocity as coupled
quantities. The proposed approach includes with an initial-
ization and a processing step. In the first step, the veloci-
ties at the initial points are determined after iterative recon-
struction of individual particles of the first four images in
order to be able to generate the tracks between these initial
points. From there on, the tracks are extended in the process-
ing step by searching for and including new points obtained
from consecutive images based on continuous modeling of
the particle trajectories with a Gaussian mixture model.

The presented tracking procedure allows to extend exist-
ing trajectories interactively with low computing effort and
to store them in a compact representation using little mem-
ory space. To demonstrate the performance and the function-
ality of this new particle tracking approach, it is successfully
applied to a synthetic turbulent pipe flow, to the problem of
observing particles correspond to a Brownian motion (e.g.:
motion of cells), as well as to problems where the motion is
guided by boundary forces, e.g., in the case of particle track-
ing velocimetry of turbulent Rayleigh-Bénard convection.

Keywords Brownian motion · Turbulent flow · Particle
tracking · Gaussian mixture model

1German Aerospace Center, Institute for Aerodynamics and Flow
Technology, Bunsenstr. 10, 37073 Göttingen · 2Max Planck Institute
for Dynamics and Self-Organization, Am Fassberg 17, 37077 Göttin-
gen · 3University of Göttingen, Third Institute of Physics - Biophysics,
Department for Computational Neuroscience, Friedrich-Hund-Platz 1,
37077 Göttingen · 4Technische Universität Ilmenau, Institute for Ther-
modynamics and Fluid Mechanics, Helmholtzring 1, 98693 Ilmenau

1 Introduction

In many areas of science, theories and experiments are in
constant interaction. Theories are based on experimental de-
signs and the insights gained with experiments can change
theories or create new ones. However, quantitative key in-
dicators cannot be directly derived from any experiment.
For the quantitative analysis of different dynamic processes
from sequential image data particle tracking is important.
To detect and follow large numbers of individual particles,
many automated computational methods have been devel-
oped [23,9,13,17,19,24,30,26]. Generally speaking, these
methods rely on two steps: particle detection where spatial
information is extracted based on spots that protrude from
the background, using certain criteria to identify the particle
and its position in every frame of the image sequence. The
second step is so-called particle linking by where the tempo-
ral relation between the particles from frame to frame is de-
termined using another set of criteria to form tracks. These
two components result in different approaches to visualise
the movements, like optical flow methods [4], Particle Im-
age Velocimetry[3] (PIV) and Particle Tracking Velocime-
try (PTV) [24,30]. While particle detection is highly task
specific - the linking procedure has a more general char-
acter.. This work presents an approach that can be applied
to many different cases, as it describes the movement of
a particle using a probabilistic model based on a modified
Gaussian Mixture Model (GMM) [27]. The main focus of
this method is: (i) to model trajectories with coupled di-
mensions (i.e.: position and velocity) where changing one
dimension leads to changes in the other dimensions, result-
ing in a high prediction accuracy, (ii) the ability to change
the start/end point without a total recalculation of the whole
track allowing high computational efficiency, (iii) creating
a compact representation of the determined tracks requir-
ing less memory space and (iv) to be able to model periodic

2 Sebastian Herzog1,2,3 et al.

trends in the particle motion. After validating the approach
in a synthetic case providing a ground truth for the quanti-
taive comparsion, the functionality is demonstrated dealing
by means of two different applications. The first application
is the tracking of cell migration. The capacity of cells to mi-
grate can be considered as a fundamental mechanism that
is physiologically essential for biological processes, which
include embryonic development, immune response, wound
healing and spread of pathological conditions like cancer
[34]. More general cells are able to sense external stimuli
of different nature, such as chemical gradients [36], elec-
tric fields [20,10], substrate stiffness [14] and to respond
with a directed movement toward or away from the stimu-
lus source depending on the reaction transduced by the cells.
Analyzing the dynamics of cells during migration by follow-
ing them over time provides information about trajectories
and velocities that allow the characterization of fundamental
cellular mechanisms. Cell-imaging is the most appropriate
approach to get access to cell behaviour and the automation
of microscopes has enabled the acquisition of time-lapse
images with fluorescence or bright-field microscopy of big
samples of cells at single-cell resolution [7]. However, im-
age analysis is a bottleneck for biological advances as there
is a gap between the advanced techniques to collect data and
the ability to analyze it. Manual analysis of big data sets is
time-consuming. Additionally, it introduces bias of the op-
erator and results that cannot be reproduced. This applies es-
pecially to the linking of single cells to tracks. Therefore, au-
tomated methods for cell tracking represent a vivid field of
research as there is considerable interest in an efficient and
accurate cell-tracking method that can overcome problems
such as low signal-to noise ratio, poor staining, variable flu-
orescence in cells, low contrast, stain-free cell images, high
cell density, deformable cell shapes[26], sudden changes in
motion direction and speed and temporary drop out of focal
plane [35]. The second application belongs to the domain of
experimental fluid mechanics, where methods like PIV and
PTV are the most prominent flow field measurement tech-
niques yielding velocity vectors within observation planes
or volumes. They have in common that the velocity vectors
in a moving fluid are determined from the displacement of
seeding particles transported by the flow during a prescribed
time interval. For many years the main difference was that
PIV [1] yielded two-dimensional (2D) velocity vectors in
planes at particle image densities of ≈ 0.03−0.05 particles
per pixel (ppp), whereas PTV provided three-dimensional
(3D) velocity vector fields in volumes based on particle tri-
angulation and nearest-neighbor searches [17] for one mag-
nitude lower tracer particles densities. The game changer for
PIV was the introduction of tomographic reconstruction of
particle distributions followed by three-dimensional cross-
correlation [8] which were prerequisite for the time-resolved
3D tomographic PIV technique. In the latter, the particle po-

sitions are iteratively reconstructed as intensity peaks in a
3D Eulerian voxel space using algorithms like the multi-
plicative algebraic reconstruction technique (MART) or si-
multaneous MART (SMART) [12,3]. This made tomographic
PIV a reliable and robust 3D flow field measurement tech-
nique. Additionally, negative effects introduced by ghost par-
ticles are less significant than in PTV since the 3D correla-
tion is performed after the reconstruction process. However,
both reconstruction and cross-correlation are computation-
ally expensive and the latter reduces the spatial resolution
by relying on the mean displacement of particles within in-
terrogation volumes. This is especially significant for mea-
surements of turbulent flows since the cross-correlation fil-
ters out small-scale structures and high velocity gradients
due to the inherent spatial averaging over interrogation vol-
umes. Unlike in tomographic PIV, in 3D PTV the particle
positions are first identified in a number (more than two) of
2D camera images and subsequently matched - typically by
triangulation [11] - to obtain the 3D positions in the mea-
surement volume for each time step in a Lagrangian refer-
ence systems. Subsequently, trajectories of individual par-
ticles are determined by matching particle positions of the
successive time step [17,23,18]. Based on these trajectories
the velocity and acceleration fields can be determined more
precisely than in PIV since spatial averaging is not involved.

The presented tracking method shall be considered as an
extension to existing frameworks. For the cell tracking case
the input for the presented approach are segmented images
from microscope images, where the segmentation can be
achieved with the open source software ImageJ [32]. In the
domain of Particle Tracking Velocimetry (PTV) the input
images are achieved by the particle displacement per time
interval typically prescribed by the pulse illumination fre-
quency .This frequency can be increased using high-speed
lasers and high-speed cameras for measurements of high-
speed flows. However, until a few years ago the downside of
the PTV approach used to be the limitation of the triangu-
lation and matching process restricting the technique to low
particle image densities, i.e. in the order 0.005 particles per
pixel (ppp). To match particles to tracks, nearest-neighbor
methods were used which could not cope with such dense
(and possibly false) particle distributions in volumes. In or-
der to relax the density limitations, approaches for tracking
single particles like Enhanced Particle Tracking Velocime-
try (EPTV) [21,6] are multi-parametric as they consider the
particle size or local particle concentration. [21] propose to
improve the tracking procedure by proper pre-conditioning
of the particle displacement which is realized in the time-
resolved 3D tracking method of the commercially distributed
"Shake-The-Box" (STB) software. With the latter, particle
positions in subsequent images are predicted by extrapolat-
ing trajectories generated using former images with a third-
order polynomial [30]. A prerequisite for the latter is the

Probabilistic particle tracking 3

combination of calibration methods like volume self-calibration
[37] developed for tomographic PIV with iterative particle
reconstruction (IPR) and image matching by shaking pro-
posed in [38]. In contrast to the STB software, the here pre-
sented probabilistic particle tracking approach does not rely
on a tomographic PIV evaluation for initialization or a Particle-
Space Correlation as used for multi-pulse applications. [24].

2 Methods

The approach proposed below includes a triangulation step
and a modeling step with a new method for tracking and
predicting the motion of 3D particles. The triangulation is
based on an iterative approach inspired by [38] to triangulate
points in a three-dimensional volume, based on a number
of two-dimensional images. The modeling step tracks and
predicts the motion of a reconstructed 3D particle. With the
proposed model any particle trajectory can be approximated
by a GMM [27]. The outstanding feature of this method is
that no initial 3D particle distribution is required. The pre-
sented method uses the Soloff model [33] as an optical trans-
fer function (OTF), whose parameters are determined during
a volume self-calibration [37]. In contrast to [38], the parti-
cle trajectories of any reconstructed particle are predicted
using a probabilistic model based on GMMs [27] allowing
to determine the local velocity and acceleration vectors as
derivatives of basis functions. The procedure of the resulting
framework is summarized below together with references to
sections and equations which provide more details of the re-
spective steps.

Algorithm 1: procedure of the framework
Data: Images
Result: Tracks
initialization;
for t = 1,2 do

Image processing (sec. 2.1);
Initial points← Triangulate 3D points for t (sec. 2.2)

end
Calculate initial velocities based on initial points (sec. 2.3);
All tracks← Link initial points based on initial velocities ;
Predict all tracks to update all velocities (sec. 2.4);
for i = 3, . . . ,Tmax do

Image processing (sec. 2.1);
Extend all tracks (Eq. 2.5);
Remaining points← Back projection of all extended

Tracks and remove 2D points when back projection
matches;

New 3D points← Triangulate 3D points for t (sec. 2.2);
Calculate new velocities based on new 3D points and non

extend 3D points (sec. 2.3);
All tracks← Link new points based on the new

velocities;
end

2.1 Image processing

To reconstruct the three-dimensional particle distribution Pt ,
where t ∈ N is the time, from the individual perspectives
c ∈N, it is necessary to remove possible noise sources from
the camera images. A camera image is considered as a set of
pixels with intensities It,c ∈ Rr×c, where r ∈ N is the num-
ber of rows and c ∈ N the number of columns of the image.
After processing the image It,c the subpixel localization of
imaged particles is calculated. By doing so, the individual
pictures are reduced to a set of coordinates Ct,c and a set of
intensities It,c in the following four steps:
1. Masking: For the masking step a predefined mask Mc

is placed over the image It,c, such that I′t,c = Mc ∩ It,c
removing all irrelevant or physically meaningless parts
of the images.

2. Richardson–Lucy deconvolution: To reverse blurring from
the input images and to amplify the noise, the Richard-
son–Lucy deconvolution [28,15] is used.

3. Background subtraction: In order to remove all parts of
I′t,c which do not change in time a the minimum image
min{I′t,c, I′t+1,c, I

′
t+2,c} is calculated and subtracted pixel-

wise such that: I′′t,c = I′t,c−min{I′t,c, I′t+1,c, I
′
t+2,c}.

4. Thresholding: In the next step, all remaining intensities
in the image below a certain threshold are removed. This
is done by simply checking whether the intensity of a
pixel on an image is above a threshold εthres, such that
I′′′t,c = thres(I′′t,c,εthres).

5. Calculating sub-pixel particle localization: In the last step,
the clustered pixels which belong to one real particle on
the camera images are reduced to coordinates by ap-
plying the analytic, non-iterative radial symmetry cen-
ter method RSC(.) presented in [25], such that Ct,c =
RSC(I′′′′t,c). The RSC method tries to fit a radial symme-
try function on a cluster of pixels. The radial symmetry
center is then the sub-pixel particle localization for the
clustered pixels, where the corresponding intensity val-
ues It,c are integrated over the radial symmetry.

2.2 Triangulation

To reconstruct 3D points from Ct,c and It,c a camera cali-
bration is required to provide intrinsic and extrinsic param-
eters in order to set up mapping function Fc : R3 → R2,
Fc(X) = xc, where X ∈ R3 is the position in the 3D space
and x ∈ R2 the position on some camera images with index
c. The general case of triangulation deals with the problem
of reconstructing 3D objects from a series of perspectively
shifted images in the real world. To compensate for differ-
ent distortions occuring in experiments, we make use of the
Soloff model [33] for volume self-calibration [37] to obtain
the parameters for the mapping function Fc. Figure 1 illus-
trates the relations of a 3D point X ∈ R3 and its projection

4 Sebastian Herzog1,2,3 et al.

on to the images from R3 → R2, such that L1 : F1(X) = x1
and L2 : F2(X) = x2.

C1

C2

x1

x2

X

L1

L1

(a) Relation for two perspectives, c = 1,2

C1

C2

x1

x2

X

C3

x3

L1

L2

L3

(b) Relation from three perspectives, c = 1,2,3

Fig. 1 Visualization of the projection lines for two different cases. The
first one with two perspectives and the second one with three perspec-
tives. The point X in 3D projected onto xc lying in two and three im-
ages.

For the triangulation of each x ∈ Ct,c two points Y,Y ′ ∈
R3 are required, such that Fc(Y) = Fc(Y ′) = xc. The straight
line through Y and Y ′ defines the line Lc. However, to tri-
angulate the desired point X , at least two projection lines
Lc,Lc′ where c 6= c′ are needed. To construct these lines the
correspondence between at least two xc ∈ Ct,c is necessary.
In order to determine this correspondence, the two points Y
and Y ′ are projected onto another image, such that Fc′(Y) =
xc′ and Fc′(Y ′) = x′c′ . The line through xc′ and x′c′ on It,c′ is
called the epipolar line, Ec→c′ . By calculating the Euclidean
distance for all possible coordinate x∈Ct,c′ to the line Ec→c′ ,
given by d(E,x), all coordinates, where d(E,x) < εE , are
considered as possible candidates and εE is a control param-
eter. If the number of candidates is higher than 1, new epipo-
lar lines are calculated for all possible candidates and are
then projected onto the next image. In the next image, only
the intersections of epipolar lines define as possible areas for
corresponding coordinates. If more lines intersect in an area,
the correspondence for a point is considered higher. Finally,
the points with the minimal distance and highest number of

intersections are used for triangulation, as illustrated in fig-
ure 2. Remark: If several points have the same number of
intersections and the same distance, all points are triangu-
lated.

After the corresponding points on different images are
found, it is possible to use these points for triangulation of
the 3D point. Considering the associated projection lines Lc
the analytical solution of this triangulation problem is the
point of intersection of all Lc’s. If the lines are not intersect-
ing Xest ∼ X is used where Xest is the point which minimizes
the the sum of the distances ∑∀c d(Lc,X) to approximate X .

With the above discussed approach, it is possible to tri-
angulate any number of points Xestt for any time step t. Fur-
ther, the intensities I of Xest is obtained by using Fc(Xest) =
xestc for back projection into the images It,c. The nearest
point in a εE space on It,c is then considered as the inten-
sity value for Xest , denoted by I(Xest).

2.2.1 Local optical transfer function

The local optical transfer function by Soloff [33] is a non-
linear function Fa : R3 7→ R:

Fa(X ,Y,Z) := a0+ (1)

X (X (a9X +a11Y +a14Z +a4)+a13Y Z +a6Y +a7Z +a1)+

Y (Y (a12X +a10Y +a15Z +a5)+a8Z +a2)+

Z (Z (a17X +a18Y +a16)+a3) , (2)

that maps a 3D point to one coordinate where (X ,Y,Z) is
the 3D position of the point, and a are the parameters of the
Soloff model. By using two different parameter sets, i.e. a,b
it is possible to match the 3D point to a 2D image position.
Further, this function is used to generate the lines Lc. Lc is
defined as the line by passing through two 3D points. To find
this two points, the partial derivatives of F , which are:

∂
∂X

Fa(X ,Y,Z) = 3a9x2 +2a11xy+2a14xz+2a4x (3)

+a12y2 +a13yz+a6y+a17z2 +a7z+a1,

∂
∂Y

Fa(X ,Y,Z) = a11x2 +2a12xy+a13xz+a6x+3a10y2

+2a15yz+2a5y+a18z2 +a8z+a2,

∂
∂Z

Fa(X ,Y,Z) = 2z(a17x+a18y+a16)

+ x(a14x+a13y+a7)+ y(a15y+a8)+a3

are used to solve the system:

(
∂Fa
∂X

∂Fa
∂Y

∂Fa
∂Z

∂Fb
∂X

∂Fb
∂Y

∂Fb
∂Z

)


X∗

Y ∗

Z∗


=

(
(Fa(X ,Y,Z)− x)
(Fb(X ,Y,Z)− y)

)
, (4)

Probabilistic particle tracking 5

E2→3

x2 x′2 x′′2
E1→2

E1→3

x1

x̂3

C1 C2

C3

Fig. 2 Starting from C1, a point x1 is selected for which the corresponding points must be found on other images. By calculating two 3D points
Y,Y ′, the epipolar line E1→2 in C2 is obtained. Based on E1→2, three possible candidates need to be considered: x2,x′2,x

′′
2 . For each of these points

new epipolar lines are calculated and projected onto the next image C3 together with the epipolar line from C1. This leads to three intersection
points in C3, where the nearest point to one of this intersections is x̂3. Going the way back the corresponding points for x1 from C1 are x′2 on C2
and x̂3 on C3.

C1

C2

x1
x2

X

L1
L2

εd

Fig. 3 Ilustration of a misalignment of the projection lines Lc, where
the distance εd is the maximum distance that is still accepted as the
intersection point

where (x,y) is a selected point on an image and (X ,Y,Z)
are arbitrary start values for the algorithm. To determine the
line Lc, the algorithm 2 must be executed twice for the same
2D point but with different intial values (X ,Y,Z). We sug-
gest selecting the values for (X ,Y,Z) so that they are on the
opposite side of the object to be examined. Lc is the line
between the two new 3D points.

2.3 Generation of initial tracks

The previously introduced triangulation is used to triangu-
late all possible points from the first two time steps t0, t1.
This serves as an initialization for the tracking approach

Algorithm 2: Determining two points on a line of
sight

Data: a,b,(x,y),(X ,Y,Z)
Result: (X +hx,Y +hy,Z)
(Xi,Yi,Zi) = (X ,Y,Z);
f = (f1, f2) = (max value, max value);
while ‖f‖2 > float precision do

A =

(∂
∂X Fa(Xi,Yi,Z) ∂

∂Y Fa(Xi,Yi,Z) ∂
∂Z Fa(Xi,Yi,Z)

∂
∂X Fb(Xi,Yi,Z) ∂

∂Y Fb(Xi,Yi,Z) ∂
∂Z Fb(Xi,Yi,Z)

)
;

b =

(
(x−Fa(Xi,Yi,Z))
(y−Fb(Xi,Yi,Z))

)
;

Solve Ah−b = f;
Update Xi = Xi +hx;
Update Yi = Yi +hy;

end

described in section 2.4. In order to form tracks from the
two point sets at t0 and t1, it is necessary to first estimate
velocities for the points at t0. To calculate the initial dis-
placement, first the sets ∀ωt0 ∈ Ωt0 and ∀ωt1 ∈ Ωt1 , where
Ωt0 = {pt0 ∈Pt0 : ‖Xestt0

− pt0‖2 < ε∆/2} and Ωt1 = {p ∈
Pt1 : ‖Xestt1

− pt1‖2 < ε∆/2}, are determined. Second, the
Cartesian product Ωt0 ×Ωt1 is used to calculate histograms
for each displacment direction. The most frequent values in
each histogram form ∆Xestt0

. Both steps are illustrated in
figure 4. Two points are forming a track if the ‖(Xestt0

+
∆Xestt0

)− Xestt1
‖2 ≤ εs, if there are several candidates for

6 Sebastian Herzog1,2,3 et al.

Xestt1
that fulfill this requirement, the Xestt1

with the smallest
deviation is taken. εS and ε∆ are user-defined parameters.

2.4 Probabilistic motion prediction

To track individual particles X in time t, three (one for each
dimension) Gaussian mixture models (GMMs) [27] are used
to approximate the trajectory of X . The aim of this approxi-
mation is to determine a function mapping based on the cur-
rently observed history for predicting the most likel parti-
cle motion. However, since the trajectories may perform a
chaotic movement in a turbulent flow, we suggest using a
probabilistic prediction based on the GMM instead of the
extrapolation used in [38]. More precisely, we consider a
GMM which can model both the position q0,q1, . . . ,qn−1
and velocity q̇0, q̇1, . . . , q̇n−1 of the particle. Considering the
density of a Gaussian mixture model [27] given by

p(x) =
K

∑
k=1

πkN (x|µk,Σk), (5)

where x is the d-dimensional random variable, N (x|µkm,Σk)
is a multivariate normal distribution, with mean µk and a co-
variance matrix Σk. The coefficients of Σk termed by πk are
the components of the density distribution p(x), which have
to satisfy 0≤ πk ≤ 1 and ∑K

k=1 πk = 1. To derive the param-
eters for Eq. (5), the Expectation-Maximization (EM) algo-
rithm [22] is used. It is a two-step iterative algorithm which
identifying the maximum likelihood solution by computing
the exception step (E-step) of the log-likelihood evaluated
with the current parameter estimation followed by the max-
imization step (M-step). This step estimates parameters that
maximize the expected log-likelihood obtained with the E-
step. Applying the above to the prediction leads to

p(x f ,xh) =
K

∑
k=1

πkN (xh,x f |µk,Σk), (6)

by inferring a joint Gaussian mixture distribution, where xh
is the history of the trajectory and x f the future. The predic-
tion is then performed by calculating the conditional mixture
density

p(x f ,xh) =
p(xh,x f)∫

p(xh,x f)dx f
=

k

∑
k=1

π̂kN (x f |xh, µ̂k, Σ̂k), (7)

which is again a GMM, with the parameters

π̂k =
πk p(xh|µk,xh ,Σk,xhxh)

∑K
j=1 π j p(xh|µ j,xh ,Σ j,xhxh)

(8)

µ̂k = µk,x f +Σk,x f ,xhΣ−1
k,xhxh

(xh−µk,xh) (9)

Σ̂k = Σk,x f x f −Σk,x f xhΣ−1
k,xhxh

Σk,xhx f , (10)

where

µk =

[
µk,xh

µkk,x f

]
(11)

Σk =

[
Σk,xhxh Σk,xhx f

Σk,x f xh Σk,x f x f

]
(12)

is the partitioning of the means and covariance matrices of
the GMM. Eq. (7) defines the future trajectories for which
expectations can be evaluated, where the mean and covari-
ance of a GMM is given by

µ =
K

∑
k=1

πkµk (13)

Σ =
K

∑
k=1

πk(Σk +(µk−µ)(µk−µ)T) (14)

and the probabilistic prediction can be applied. However,
to obtain a parametric representation of each trajectory a
compact representation of a single trajectory is desired. In
addition, the dimensions of the position and the velocity
should be coupled. By defining φt = [φt , φ̇t] ∈ RK×2 as the
time-dependent basis matrix for qt and q̇t and some noise
εNoise ∼N (0,Σk), a trajectory τ can be defined as

τ =

[
qt
q̇t

]
= φ T

t w+ εNoise, p(τ|w) = ∏
k

N (x|µk,Σk). (15)

Eq.(15) represents a linear basis function model with weights
w ∈ RK , where the basis functions for the position are de-
fined by the product of normal distributions and the basis
functions for the velocity are the time derivatives of the ba-
sis functions for the position. Using this representation only
the weights w need to be stored for each trajectory. This pro-
cess is illustrated in figure 5.

2.5 Extending trajectories and finding new trajectories

After the generation of the initial trajectories, these can be
used to predict the position of the traced particles at the next
time step t + 1, denoted by Xpred , by adding the velocity at
time t to the position at time t. The predicted position at t+1
is then projected back onto the images Ic,t+1 and evaluated in
such way that all points xIc,t+1 , but at least two points xIc,t+1

and xIc′,t+1
, where c 6= c′, are found such that:

(
∑
c
‖xIc,t+1 −Fc(Xpred)‖2 ∗

∣∣∣∣1−
I(xIc,t+1)

I(Fc(Xpred))

∣∣∣∣
)
< εback,

(16)

where εopti is a user-defined parameter. In the future, other
metrics shall also be investigated, like a higher order metric
for evaluating multi-object racking (HOTA)[16]. However,
if such a point is found, the trajectory is extended to this

Probabilistic particle tracking 7

a)

b)
y displacement

Bins

C
ou

nt

z displacement

Bins
C

ou
nt

x displacement

Bins

C
ou

nt

Ωt
Ωt+1

ε∆

ωt+1

ω ′t+1

ω ′′t+1
ω ′′′t+1

ωt

ω ′t

Xestt

Fig. 4 a) Visualization of the Cartesian product Ωt ×Ωt+1, where Ωt = {ωt ,Xestt ,ω ′t } and Ωt+1 = {ωt+1,ω ′t+1,ω
′′
t+1,ω

′′′
t+1}. The blue arrows

starting from ωt exemplify all possible displacments for ωt , the same applies to for the black arrow starting from Xestt and red arrow starting at ω ′t .
Based on all this displacements the histograms in b) are set up. The bins with the highest counts (colored in cyan blue) in each histogram are the
estimation for ∆Xestt .

point. If this is not the case, time step t + 1 is skipped for
the trajectories and the process is repeatead for time step
t +2, t +3, . . . , t +gap, where gap is a user-defined parame-
ter. If still no matching is found the trajectory is considered
to be terminated. To further minimize Eq. (16), Xpred , is
varied by componentwise moving Xpred such that the pro-
jection of Xpred only changes by one pixel on Ic,t+1. The
variation ends when Eq. (16) does not change anymore or
a maximum number of variation steps is reached. Remain-
ing points which are not part of any trajectory, are consid-
ered as positions of not yet identified or new trajectories
and the above-described steps are repeated, until no more
points remain or until a maximum number of iterations is
reached. Remark: In general, it would be possible to formu-
late Eq. (16) as a multi-objective optimization so that the
distance for the deviation in distance as well as the devia-
tion of intensities are optimized independently, building a
pareto front. This leads to the problem that the dimensions
for the deviation in distance and the deviation of intensities
need to be normalized. Instead of finding a meaningful and
generally valid normalization for these independent physical
deviations, we decided to use a formulation for a scalariza-

tion for the intensity deviation and to scale the deviation in
distance by this scalar resulting in to a single-objective opti-
mization problem Eq. (16).

3 Synthetic pipe flow

In order to validate and benchmark our framework, we set up
a synthetic case of a generalized pipe flow. The simulated
flow is used as a ground truth case so that we can directly
compare our reconstruction results. First, in subsection 3.1
the generation of the synthetic particles is described, wheras
in subsection 3.2 the validity of the results obtained from
our framework is proven.

3.1 Particle generation

A synthetic case is defined with the aim to provide data
sets describing the ground truth, based on which the num-
ber and accuracy of the generated trajectories can be evalu-
ated. The case is designed to evaluate the capability of the

8 Sebastian Herzog1,2,3 et al.

time time time

0 50 100
−1

−0.5

0

0.5

1

po
si
tio
n

0 50 100
−1

−0.5

0

0.5

1

0 20 40 60 80 100
0

2

4

6

8

10

20 40 60 80 100

0.1

0.2

0.3

0.4

0 20 40 60 80 100
−0.5

0

0.5

0 20 40 60 80 100
−0.5

0

0.5

0 20 40 60 80 100
−1

0

1

2

3

4

5

−1
0

1

−2

0

2
−20

0

20

Trajectory

X component Y component Z component

time time time

time

Basis functions

GMM for X GMM for Y GMM for Z

a)

b)

c)

d)

Fig. 5 Representation of a three-dimensinal trajectory with three
GMMs. The first line a) shows an example of a trajectory and the sec-
ond line b) the x,y and z components of the trajectory. Line c) repre-
sents the set of basis functions from Eq. (5). By using the basis func-
tions and the components from line b), w is calculated by Eq. (15). By
scaling the basis functions with the obtained w the basis functions pre-
serve the shape of the desired component. This is illustrated in line d).

new framework to fulfill five requirements related to: three-
dimensional particle movement, temporal resolution, parti-
cles leaving the domain, contradicting movement of the par-
ticle images between the time steps and varying ppp densi-
ties. The case represents a generalized pressure-driven tur-
bulent flow through a pipe.

For the synthetic case, Np particles are initially distributed
within a cubic volume with dimensions of W ×H ×D =
500×500×500 mm3. Each particle i has the attributes

Pi =

(
Xi
Ii

)
(17)

with the position Xi ∈ R3 in 3D space and the inten-
sity Ii ∈ Rnc for the individual intensities on the nc camera
images. All Ii are initialized with random uniform values
between Imin = 800 and Imax = 1200 to prescribe a cer-
tain signal-to-noise ratio. In the considered cases nc = 4

virtual cameras observe the particle distributions within the
3D cubic volume centered around (0, 0, 0) corresponding to
boundaries Xmin/max =±(250, 250, 250).

In a real experiment, the illuminated particles are im-
aged with cameras. Here, this is simulated using the transfer
functions defined in equation (2) to project the particles onto
the camera images. The particle positions are generally rep-
resented by floating point values and are accordingly blurred
on the projected image in a way that they cover 2× 2 pix-
els. Further, intensity fluctuations of the particle images are
taken into account. In addition, camera noise is simulated by
adding a random intensity amplitude for every pixel in or-
der to simulate different signal-to-noise ratios. For the cases
considered below, a moderately high signal-to-noise ratio of
SNR = 5 : 1 is prescribed, see e.g. [39].

The generated particles are positioned in clusters form-
ing superordinate structures AO and advected for a prescribed
number of time steps by solving analytical functions spe-
cific to AO. For a particle i belonging to AO at position X t

AO,i

at time step t, the position in the next time step X t+1
AO,i

is
calculated by determining the movement direction Di ∈ R3

defined later in equation 22. For two particle clusters, O ∈
{1,2}, the particle velocities are computed solving

Vi = δp · Si ◦ Di, (18)

where Si ∈ R3 is a random, uniformly distributed scaling
factor with the operator ◦ denoting component-wise mul-
tiplication. Si in Eq. (18) are distributed between 0.95 and
1.05. This distribution is required to generate non-uniform
particle motions with different particle velocities. The fac-
tor δp ∈ R is an input parameter and controls the step width
per time step of the particles in the artificial measurement
volume:

δp ∝
∣∣∣∣
∆X
∆ t

∣∣∣∣ (19)

Yet, a limiting factor for the framework is the step width per
time step δS ∈ R on the camera image:

δS =

∣∣∣∣
∆x
∆t

∣∣∣∣ (20)

with the traveled distance of a particle ∆x ∈ R2 measured
in pixels. For a particle moving parallel to the plane of the
camera sensor, both quantities are proportional w ∝ δS. A
large step width δS may reduce the accuracy of the predic-
tion, since a particle is more likely to deviate from the path
predicted by the framework. The position in the next time
step X t+1

O,i is then given by:

X t+1
AO,i

= X t
AO,i + Vi (21)

Probabilistic particle tracking 9

The synthetic case mimics a pipe flow by forming two
superordinate aligned annular structures with particle num-
bers NA1 and NA2 moving predominantly in X direction. They
are Gaussianly distributed with a spread of µA = 25 around
the center line of the respective structures to simulate a gen-
eralized turbulent pipe flow. The two structures are located
around the center line of the cube normal to the X axis with
different radii rA1 = 175 mm and rA2 = 105 mm. The direc-
tion of movement Di ∈R3 of a particle i is computed solving

Di = (2,cos(α),sin(α +π)) (22)

with

α = arctan((XAO, i)/rA,(XAO, i)/rA) (23)

with the angle α . By solving Eq. (18), (22) and (23)
with opposite signs for δp in Eq. (18), two particle clusters
AO with opposite mean flow directions and rotation senses
are generated. The subsequent particle position at time t +1
is obtained from Eq. 21 which depends on Vi defined in
Eq. (18) with the above-given Di. In order to keep the parti-
cle number and the resulting seeding density constant, par-
ticles leaving the domain in the outflow cross-sections are
reset to their starting position in the corresponding inflow
cross-section mimicking a periodic boundary condition.

An exemplary particle distribution is illustrated in figure
6. For the particle numbers NA1 = 18000 and NA2 = 10000
and a step width of δS = 7px, structure A1 is reflected by
the green particle distribution and A2 by the yellow one. The
front view in figure 6 a) shows the annular structures with
different radii and the rotational movement around the axis
by accordingly colored arrow. The particle motion in lon-
gitudinal direction is illustrated by the side view in figure
6 b) and the dominant movement direction is indicated by
arrows.

Additionally, in figure 7 the discussed flow structures are
shown and the position as well as the orientation of the cam-
eras are highlighted in blue. For this test case, three cam-
eras are installed half-height on the horizontal plane with
the same distance Rc to the cube’s center and an angular dis-
placement of 120◦. One of the cameras is positioned at the
front of the volume, normal to the X-Y -plane and the other
two cameras are arranged accordingly. The fourth camera
is located above the synthetic experiment with the central
line of sight in Y -direction, also with the distance Rc to the
cube’s center.

A representative value of the ppp density is determined
counting the number of particles in an area of 100× 100
pixels. Note that the ppp densities determined with the im-
ages of the other cameras lead to nearly the same ppp val-
ues. Starting from 0.01 ppp for the lowest number of parti-
cles (7500), a particle density of 0.106 ppp is reached for the
highest number of particles (45000).

In this synthetic experiment the mean velocity magni-
tude is V = 3.8 mm/time step. Considering, a typical PIV
experiment of a turbulent pipe flow relying on a PCO Di-
max.HS4 camera operating at 7000Hz in rolling shutter, the
above-mentioned mean velocity can be specified by V =
21 m/s. For a turbulent flow of air in a pipe with a diame-
ter of 0.35 m this leads to a bulk Reynolds number, see e.g.
[5], of Re = 440493, which is in the range of state of the art
turbulent pipe flow experiments.

3.2 Particle tracking

The proposed particle tracking approach is used to track the
particle motion in comparison to the ground truth of the par-
ticle trajectories generated in the above-defined synthetic
test case. To evaluate the performance of the method, the
percentage of matched particles (pmp) is introduced and an-
alyzed for particle densities between 0.015 ppp and 0.107 ppp.
Two pixel step widths per time step, δs = 7 and 14 px, which
represent the mean particle velocities and thus the temporal
resolution, are investigated. Each reconstructed and true par-
ticle is identified by a unique ID. The earlier is classified as
matched, if it is within 1.5 mm of a true particle and both
particle IDs persist over time. The pmp is then defined by
the number of matched particles compared to the true total
particle number.

The employed input parameters used for the framework
are summarized in table 1 including links to their definition
in section 2.

Parameter Definition Value
εd fig. 3 1
εS sec. 2.3 1
ε∆ sec. 2.3 3
εback Eq. 16 1.5
gap sec. 2.3 1

Table 1 Summary of the parameter settings for evaluation with the
framework.

A basic requirement for the method is the reconstruction
of large flow structures. Figure 8 shows the reconstructed
structures for the synthetic data set at time step 50, where
parts of the reconstructed particle trajectories extending over
10 time steps are depicted. They are color-coded with start-
ing time step of the particle trajectory. The comparison with
the synthetically generated structures shown in figure 6 re-
veals the qualitative agreement. Further, most of the trajec-
tories are colored in blue and started accordingly at a time
step close to t = 0. This proves the capability of the track
initialization and maintaining long trajectories. Only the two
regions for the newly entering particles in figure 6b) (left for

10 Sebastian Herzog1,2,3 et al.

a) b)

Particle ID

28000

25000

20000

15000

10000

5000

0

Fig. 6 Particle distribution organized in two counter-rotating aligned annular structures with opposite mean flow directions. Particles belonging to
structure A1 are colored in green and those forming A2 are highlighted in yellow. In a) the perspective is chosen along the X axis to illustrate the
rotational movement around the axis which is also indicated by accordingly colored arrows. In b) the view along the Z-axis reflects the movement
in X direction with the dominant movement direction indicated by arrows.

cam1

cam2

cam3

cam4

Fig. 7 Four cameras shown in blue located on planes indicated by large circles surrounding the artifical flow structures of the synthetic case.
Particles belonging to structures A1 and A2 are colored in green and yellow, respectively.

outer structure and right for the inner one) have higher start-
ing time steps up to t = 50 reflected by the white to red
colors.. This highlights the ability of adding new particles
and trajectories and at the same time maintaining long tra-
jectories. The quantitative differences are discussed in the
following.

It is well-known for PTV methods that a certain num-
ber of time steps is required to accumulate all particles for
the tracking system in the first processing step. Thus, an im-
portant quality criterion for those methods is the number of
required time steps to acquire the maximum possible pmp.

Figure 9a) shows the pmp and the number of matched par-
ticles obtained for 28000 true particles as a function of the
time step. A close-up view of the first 20 time steps in the
lower right corner is presented. After 9 time steps a plateau
of about 90% matched particles corresponding to a total
number of 25200 particles is reached. It should be noted that
the method does not reconstruct ghost particles.. Addition-
ally, a significant length of the reconstructed tracks is neces-
sary to obtain a sufficient amount of connected information
for the paths of the particles. Figure 9b) shows the frequency
distribution of the track length measured in time steps. For

Probabilistic particle tracking 11

Fig. 8 Reconstruction of the aligned annular structures from the synthetic data set at time step 50. Particle trajectories reflecting 20 time steps are
depicted and color-coded with the starting time step of the particle trajectory.

short track lengths of 0 to 70 time steps a low frequency
of 0.2 ·108 is reported with a large increase to 1.6 ·108 and
1.2 · 108 for longer tracks of 70 and 90 time steps respec-
tively. Considering an average velocity of 4.1mm/s and a
sample length of 500, a maximum of 120 time steps could be
reached before the particles leave the domain indicating that
some time steps are necessary to add the particles to stable
tracks and some tracks break while the particle is advected
through the volume. Figure 9c) shows a violin plot of the
three velocity components. The colored area is normalized
thus showing the relative distribution per component. The X
component exhibits two separated agglomerations between
±3.5 and 4mm/s. The contribution to the negative values is
larger compared to the positive values. This results from the
higher particle number in the outer structure with negative
movement direction in X . The distributions for the Y and Z
velocity components are similar with two agglomerations at
the higher velocities. This is due to the circular motion cou-
pling both components: When the velocity, is high in Y , it is
low in Z and vice versa. Both the qualitative behaviour and
quantitative distribution comply with the ground truth.

In order to demonstrate the performance of the frame-
work, the matched particles are evaluated in terms of the
ppp. In this respect, figure 10 reflects the matched particles
and pmp as a function of the true particle number. The curve
starts close to 100% pmp for the lowest particle number. For
an increasing ppp, a steady decrease of the pmp is observed.
For ppp = 0.05, the pmp is about 92.5%. For a high ppp of
0.09, a fluctuation from the otherwise steady decrease is re-
ported. Finally, for the highest ppp of 0.11, a pmp of 80%
is achieved. An increased particle velocity is investigated
represented by the step width per time step of δS = 14px
reflected by the orange line in figure 10. The general be-
havior of this reconstruction efficiency is similar to the pre-
vious case. For the lowest particle density of 0.005ppp an

efficiency of 97% pmp is reported with a steady decrease to
77% pmp for a high ppp of 0.1. While for the lowest particle
number, the difference between the two particle velocities
is about 1% pmp it increases to about 2.5% for the high-
est ppp. The general decrease of the pmp is not surprising,
since the association of particles with stable tracks becomes
more ambiguous for increasing ppp. Still, while pmp= 99%
for ppp= 0.007 corresponds to stable information from 7000
particle tracks, a significant increase in information density
is achieved with 34000 stable tracks for the highest ppp.

Considering the above-discussed, the proposed method
is applicable for the investigated parameter range of ppp ≤
0.100 and δS ≤ 14px. The following section presents the
applicability to experimental data.

4 Applications

In the following subsections the applicability of the frame-
work to experimental data is demonstrated and the respec-
tive results are presented. In subsection 4.1 the tracking of
the motion of Dictyostelium discoideum cells in a 2D micro-
scale application is investigated. In subsection 4.2 the results
of the flow measurement in 3D confined thermal convection
are discussed.

4.1 Dictyostelium discoideum motion

As one of the experimental cases we investigate the amoeba
cells Dictyostelium discoideum (Dd), a key model organism
for the study of eukaryotic migration. Besides chemical gra-
dients, Dd cells have the ability to detect electric fields of
continuous current and respond to them with a directed mi-
gratory movement toward the cathode.

12 Sebastian Herzog1,2,3 et al.

0 500 1000
0

50

100

Time Step

pm
p

[%
]

a) b) c)

0

1.5

3

M
at

ch
ed

Pa
rt

ic
le

s
[1

04]

0 10 20
0

50

100

0 50 100 150
0

2000

4000

6000

8000

Track Length [Time Steps]

Fr
eq

ue
nc

y

x y z

-30

-15

0

15

30

Component

V
el

oc
ity

[m
m

/s
]

Fig. 9 Statistics for the synthetic data set containing 28000 true particles. a) shows the number of matched tracks and pmp as a function of the
time step in blue. The true particles number is indicated as a red line. b) shows the frequency distribution of the track length. c) shows the violin
plot of the velocities of the tracked particles, where the estimated probability density is given by the colored shape, the interquartile range by the
thicker black line and the whole data range by the thinner line.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

80

85

90

95

100

Number of Particles
[
104
]

pm
p

[%
]

δS = 7px
δS = 14px

0 0.
01

0.
02

0.
04

0.
05

0.
06

0.
07

0.
08

0.
09

0.
11

ppp

Fig. 10 Number of matched particles and pmp as a function of the true particle number for two δS = 7 and 14px.

4.1.1 Experiment

In a previous study we applied the electric field to the cells
seeded into a microfluidic channel and reversed the polarity
of the electric field every 30 minutes. We observed a strong
cellular response to the electric stimulation [10]. Indeed, the
cells show a directed migration toward the cathode and in-
verted their trajectory when the polarity of the electric field
was reversed.

This experiment is an example to illustrate how our frame-
work deals with cells that promptly change their shape and
partly overlap. Especially challenging for a particle tracking
algorithm is the abrupt reversal of the movement direction
of the cells in addition to the stochastic component of the
directed walk. The movement of the Dd cells is observed in

a total field of view of 660× 660 µm2 using a bright field
inverted microscope with one mounted camera. The record-
ing frequency is 0.05 Hz, acquiring one image frame every
20 seconds.

4.1.2 Dictyostelium discoideum tracking

The movement of the cells is recorded by a single camera,
thus reducing the employed input parameters for the frame-
work as summarized in table 2 including links to their def-
inition in section 2. The current position of the cells for the
particle tracking is deduced from the particle images with
the open source software ImageJ [29], illustrated in figure
11. For the background subtraction the Trainable Weka Seg-
mentation [32] was used on the raw data, where the Dd cells

Probabilistic particle tracking 13

Parameter Definition Value
ε∆ sec. 2.3 1.5
np sec. 2.1 5
εback Eq. 16 1.5
gap sec. 2.5 3

Table 2 Summary of the parameter settings for evaluation with the
framework.

were segmented to one class and everything else (like the
background) to another. like this, frame was segmented in-
dividually. The segmentation was then applied as a mask to
the raw images followed by the RSC method to determine
the centers of the cell clusters.

The experimental applicability of the framework is demon-
strated by tracking the Dd movement presented in figure 12.
The results of the particle tracking for three time instants,
t = 2000 s, t = 6000 s and t = 10000 s, are shown.

In order to make quantitative statements on the Dd mo-
tion, the trajectories resulting from the tracking are further
analyzed. As cells are no solid particles they tend to aggre-
gate with neighbor cells when they come close to each other.
Subsequently, they are likely to split again and separately
continue migrating and they may move out of the field of
view. For this reason, the number of simultaneously tracked
cells is not constant over time, see figure 13 a). Starting at
about 90 cells for t = 0 min an increase in simultaneously
tracked cells is reported up to 113 cells at frame t = 65. Af-
terwards, the events described above yield fluctuations in the
number and on average a decrease in simultaneously tracked
cells down to 76 for frame t = 474 is reported. A total of
1059 tracks were generated and their distribution is shown
in figure 13 b). 566 tracks has a length of≤ 20 time steps, the
average track length is ≈ 48.3 with a standard deviation of
≈ 84. The median track length is 17. 160 tracks have a length
of more than 80 time steps.. As mentioned above, Dd cells
have the ability to detect continuous current electric fields.
Interestingly, this characteristic becomes evident in the ve-
locity distribution of the pursued amoebaes. The violin plot
in figure 13 c) shows that the density distributions exhibit
two extreme values. From this, it can be interpreted that the
cells do not have one expected value in terms of velocity,
but two. This is probably due to the reversed polarity of the
electric field during the experiment. At this point, however, it
should be noted that this work is not about generating insight
into Dd dynamics and that the interpretation and validation
of the two expected values is not part of the present study.
We only want to demonstrate that our approach is suitable
for evaluating this kind of data.

4.2 Turbulent Rayleigh-Bénard convection

The other experimental case investigates PTV data acquired
in a cubic Rayleigh-Bénard convection (RBC) sample with
side length of l = 500mm filled with water.

4.2.1 Experimental setup

A sketch of the sample is shown in figure 14. The top and
bottom of the experiment are embedded in an insulation man-
tle indicated by (a). The temperature difference ∆T is gener-
ated by the cooling and heating elements, (b) and (f), whose
temperatures, TC and TH , are controlled by two water cir-
cuits. The developing fluid flow is measured between two
anodised black aluminum plates, (c) and (e), enclosing the
sample. The side walls (d) are made of 10 mm thick glass
yielding high optical accessibility of the measurement vol-
ume. As light source, a high-power white-light LED array is
used to illuminate TiO2-coated latex particles as flow tracers
imaged by four cameras with a recording rate of 5Hz.

For the here considered case the experimental settings
are TC = 18 ◦C, TH = 24 ◦C, with an average sample tem-
perature of T = 21 ◦C and ∆T = 6K. The corresponding
characteristic numbers are a Prandtl number of 6.9 and a
Rayleigh number of 1.0 · 1010. A full description of the ex-
perimental apparatus and setup can be found in [31].

4.2.2 Particle tracking

The employed input parameters for the evaluation of this tur-
bulent 3D flow with the HD-PTV method are summarized in
table 3 including links to their definition in section 2. Statis-
tics are acquired by evaluating 250 time steps.

Parameter Definition Value
εd fig. 3 2
εS sec. 2.3 1.7
ε∆ sec. 2.3 3
εback Eq. 16 2.5
gap sec. 2.5 1

Table 3 Summary of the parameter settings for the evaluation with the
framework.

Here, the applicability of the framework is proven by
the obtained particle trajectories presented in figure 15. For
time step t = 100, the particles are presented as dots with
the particle path for the previous 50 time steps attached as a
tail. The latter is color-coded by the velocity magnitude. In
figure 15a) a view along the Z-axis is chosen to demonstrate
the reconstruction of particle tracks in the entire volume. In
addition, a large-scale flow structure filling the convection
sample is visible. This was also found for the same data set

14 Sebastian Herzog1,2,3 et al.

Raw images Weka segmented images Background removed images

200 µm

Fig. 11 Image preprocessing steps for the amoeba case. The raw data are shown on the right. To remove the background, the Weka segmentation
[2] was applied to the raw data with default parameters. The green segments in the image are the amoeba, while the red segment is considered as
the background or other irrelevant parts. The image on the right shows the background removed images, achieved by using the segmented images
as masks on the raw imnages.

t = 2000 [s] t = 6000 [s] t = 10000 [s]
7.5
100 µm/s

0 µm/s

Fig. 12 Snapshots of the reconstructed tracks. The dots are the centers of the segments used for tracking. The segments of the tracks are color-coded
in accordance with to mean velocity of the track.

0 200 400

80

90

100

110

Time Step

M
at

ch
ed

Pa
rt

ic
le

s

a) b) c)

0 20 40 60 80 100
0

50

100

150

Track Length [Time Steps]

Fr
eq

ue
nc

y

x y

-0.08

0

0.08

Component

V
el

oc
iti

es
[µ

m
/s

]

Fig. 13 a) shows the number of simultaneously tracked amoeba depending on the time step. b) reflects the frequency distribution of the track
length, whereas c) shows a violin plot of the velocities.

Probabilistic particle tracking 15

(a)

(b)

(c)

(d)

(e)

(f)XZ

Y

l

Fig. 14 Schematic of the cubic RBC sample along Z-direction. (a)
marks the insulation layer, (b) and (f) indicate the cooling and heating
elements and (c) and (e) mark the anodised aluminum plates enclosing
the sample. The glass cube (d) and the characteristic length l of the
sample are indicated.

by [31] using tomographic PIV. New insight is gained by
the reconstruction of a previously unresolved smaller cor-
ner flow reported at X and Y ≈ 50mm. In figure 15b) the
perspective is rotated to a diagonal plane of the sample in
order to reflect the orientation of the large-scale circulation
(LSC) more clearly. This perspective can also be seen in fig-
ure 16, where the velocity components are projected onto
a Cartesian grid. For this projection the mean velocities in
a radius of 50mm are projected onto an equidistantly dis-
tributed grid over the whole volume. The grid points are
illustrated as glyphs, where the orientation is given by the
velocity and the size corresponds to the magnitude. The in-
stantaneous velocity magnitudes range up to 20mm/s with
the majority being significantly slower as reflected by the
dominantly blue trajectories.

In order to make quantitative statements on the flow oc-
curring within RBC, the trajectories resulting from the track-
ing are further analyzed. Contrary to the amoeba example
from the previous case, the particle number for the enclosed
RBC case is expected to be constant. This is confirmed in
figure 17 a). After only six time steps the number of simul-
taneously tracked particles is 27472 with a stable plateau of
about 28500 particles reached at time step 10.

For PTV methods, typically long trajectories are desired.
Figure 17b) reflects the frequency distribution of the track
length. A distribution with a track length of up to 250 time
steps and with the strongest contribution to smaller track
length (≤ 50 time steps) is obtained. The evaluated data set
contained 250 time steps thus determining the limit which
indicates that the longest tracks reached the potential dis-
tance. While the synthetic case showed a clear indication at
a maximum track length determined by the system, the ex-
perimental case is expected to show less pronounced domi-
nant track length then found here. The mean track length is
10.04± 10.03 and the median length is 7. Turbulent RBC

is characterized by velocity distribution and can therefore
be used as a validation case for the presented PTV frame-
work. A violin plot of the velocities is presented in figure
17c). Each velocity component shows a symmetric distribu-
tion. This is in agreement with the expectations in terms of
a flow within an enclosed system driven by a dominant cir-
cular structure. The fact that the LSC is not exactly aligned
with the diagonal plane explains the different spread in the
frequency distribution of the velocity components.

The results justify the applicability of the developed frame-
work for turbulent flows as it allows to reliably measure par-
ticle position, velocities and their associated trajectories.

5 Conclusion

A new framework approach for particle tracking based on a
Gaussian Mixture Model (GMM) is presented. It is divided
into an initialization step und a processing step. In the first
step the velocities at the initial points are determined after it-
erative reconstruction of individual particles of the first four
images in order to generate the tracks between these initial
points without using tomographic particle image velocime-
try. Subsequently, the tracks are extended by searching and
including new points obtained from consecutive images us-
ing iterative reconstruction of individual particles in combi-
nantion with continuous modeling of the particle trajectories
with a Gaussian mixture model considering the position and
velocity as interdependent quantities.

The presented approach is validated and benchmarked
by tracking particles generated in a synthetic generalized
turbulent pipe flow which defines the ground truth. Consid-
ering this synthetic case, the approach returns about 90%
matched particles after 9 time steps without generating any
ghost particles. Further, starting with 100% of matched par-
ticles for the lowest particle density considered the percent-
age of matched particles (pmp) decrease from 92.5%. For a
particle density in terms of particle per pixels (ppp) of 0.05
to a pmp of 80% at the highest ppp of 0.11 for a step width
per time step of δS = 7px. Increasing the step width per time
step from δS = 7px to δS = 14px displacement results in a
similar declining curve and and pmp values that are gener-
ally 5% lower.

Finally, the approach is successfully applied to two well-
known tracking problems. The first one is tracking the eu-
karyotic migration of amoeba cells for which 1059 tracks
were generated with tracks lengths of up to 100 time steps.
The second one is turbulent Rayleigh-Bénard convection for
which the motion of about 28500 particle is visualized using
tracks of lengths up to 250 times steps.

Acknowledgements The authors like to thank Annika Köhne for proof-
reading this work.

16 Sebastian Herzog1,2,3 et al.

X [mm]

Y [mm] Y [mm]

Z [mm] X [mm]

a) b)

V [mm/s]

20

18

16

14

12

10

8

6

4

2

0

Fig. 15 Reconstruction of the RBC data at time step 100. Particle trajectories reflecting 50 time steps are depicted and color-coded with the
velocity magnitude.

Fig. 16 Projection of the velocity components and the velocity magnitude onto a Cartesian grid, where the volume is clipped along the LSC.

Conflict of interest

The authors declare that they have no conflict of interest.

References

1. Adrian, R.: Multi-point optical measurements of simultaneous
vectors in lnsteady flow" - a review. Int. J. Heat and Fluid Flow 7,
127–145 (1986)

2. Arganda-Carreras, I., Kaynig, V., Rueden, C., Eliceiri, K.W.,
Schindelin, J., Cardona, A., Seung, S.H.: Trainable weka segmen-

tation: a machine learning tool for microscopy pixel classification.
Bioinformatics 33(15), 2424–2426 (2017)

3. Atkinson, C., Soria, J.: An efficient simultaneous reconstruction
technique for tomographic particle image velocimetry. Exp. Fluids
47, 563–578 (2009)

4. Barron, J.L., Fleet, D.J., Beauchemin, S.S.: Performance of optical
flow techniques. International Journal of Computer Vision 12(1),
43–77 (1994). DOI 10.1007/BF01420984. URL https://doi.
org/10.1007/BF01420984

5. Bauer, C., Feldmann, D., Wagner, C.: On the convergence and
scaling of high-order statistical moments in turbulent pipe flow
using direct numerical simulations. Phys. Fluids 29(12), 125105
(2017). DOI 10.1063/1.4996882. URL https://doi.org/10.
1063/1.4996882

Probabilistic particle tracking 17

0 100 200
0

0.5

1

1.5

2

Time Step

A
ct

iv
e

Tr
ac

ks
[1

04]
a) b) c)

0 100 200
0

1

2

3

4
·105

Track Length [Time Steps]
Fr

eq
ue

nc
y

x y z−40

−20

0

20

40

Component

V
el

oc
ity

[m
m

/s
]

Fig. 17 Same figure structure as for figure 13 but for the RBC case. a) shows the number of simultaneously tracked tracer particles in each time
step. b) reflects the frequency distribution of the track length whereas c) shows a violin plot of the velocities.

6. Cardwell, N., Vlachos, P., Thole, K.: A multi-parametric particle-
pairing algorithm for particle tracking in single and multiphase
flows. Meas. Sci. Technol. 22, 105406 (2011)

7. Eliceiri, K.W., Berthold, M.R., Goldberg, I.G., Ibáñez, L., Manju-
nath, B.S., Martone, M.E., Murphy, R.F., Peng, H., Plant, A.L.,
Roysam, B., Stuurman, N., Swedlow, J.R., Tomancak, P., Car-
penter, A.E.: Biological imaging software tools. Nature Meth-
ods 9(7), 697–710 (2012). DOI 10.1038/nmeth.2084. URL
https://doi.org/10.1038/nmeth.2084

8. Elsinga, G., Scarano, F., Wieneke, B., van Oudheusden, B.: To-
mographic particle image velocimetry. Exp. Fluids 41, 933–947
(2006)

9. Fuchs, T., Hain, R., Kähler, C.J.: Non-iterative double-frame
2D/3D particle tracking velocimetry. Exp. Fluids 58, 119 (2017).
DOI 10.1007/s00348-017-2404-0

10. Guido, I., Diehl, D., Olszok, N.A., Bodenschatz, E.: Cellular ve-
locity, electrical persistence and sensing in developed and vegeta-
tive cells during electrotaxis. PLOS ONE 15, 1–16 (2020). DOI
10.1371/journal.pone.0239379

11. Hartley, R.I., Strum, P.: Triangulation. In: Computer Analysis of
Images and Patterns: Proc. of 6th International Conference CAIP
’95, pp. 190–197. Springer, Prague, Czech Republic (1995)

12. Herman, G., Lent, A.: Iterative reconstruction algorithms. Comput
Biol Med 6, 273–294 (1976)

13. Kreizer, M., Ratner, D., Liberzon, A.: Real-time image process-
ing for particle tracking velocimetry. Exp. Fluids 48(1), 105–
110 (2010). DOI 10.1007/s00348-009-0715-5. URL http:
//dx.doi.org/10.1007/s00348-009-0715-5

14. Lo, C.M., Wang, H.B., Dembo, M., Wang, Y.l.: Cell movement is
guided by the rigidity of the substrate. Biophysical Journal 79(1),
144 – 152 (2000). DOI https://doi.org/10.1016/S0006-3495(00)
76279-5. URL http://www.sciencedirect.com/science/
article/pii/S0006349500762795

15. Lucy, L.: An iterative technique for the rectification of observed
distributions. Astron. J. 79, 745–754 (1974). DOI 10.1086/111605

16. Luiten, J., Osep, A., Dendorfer, P., Torr, P., Geiger, A., Leal-Taixe,
L., B., L.: Hota: A higher order metric for evaluating multi-object
tracking. International Journal of Computer Vision (2020)

17. Maas, H., Gruen, A., Papantoniou, D.: Particle tracking velocime-
try in three-dimensional flows. Exp. Fluids 15(2), 133–146 (1993)

18. Malik, N., Dracos, T., Papantoniou, D.: Particle tracking in three
dimensional turbulent flows—part ii: particle tracking. Exp. Fluids
15, 279–294 (1993)

19. Malik, N.A., Dracos, T., Papantoniou, D.: Particle tracking ve-
locimetry in three-dimensional flows, Part II: Particle tracking.
Exp. Fluids (1993)

20. McCaig, C.D., Rajnicek, A.M., Song, B., Zhao, M.: Control-
ling cell behavior electrically: Current views and future poten-
tial. Physiological Reviews 85(3), 943–978 (2005). DOI 10.
1152/physrev.00020.2004. URL https://doi.org/10.1152/
physrev.00020.2004. PMID: 15987799

21. Mikheev, A., Zubtsov, V.: Enhanced particle-tracking velocimetry
(eptv) with a combined two-component pairmatching algorithm.
Meas. Sci. Technol. 19, 085401 (2008)

22. Moon, T.K.: The expectation-maximization algorithm. IEEE Sig-
nal processing magazine 13(6), 47–60 (1996)

23. Nishino, K., Kasagi, N., Hirata, M.: Three-dimensional particle
tracking velocimetry based on automated digital image process-
ing. Trans. ASME J. Fluid Eng. 111, 384–390 (1989)

24. Novara, M., Schanz, D., Gesemann, S., Lynch, K., Schröder, A.:
Lagrangian 3d particle tracking for multi-pulse systems: perfor-
mance assessment and application of shake-the-box. In: 18th In-
ternational Symposium on the Application of Laser and Imaging
Techniques to Fluid Mechanics, pp. 2638–2663 (2016)

25. Parthasarathy, R.: Rapid, accurate particle tracking by calculation
of radial symmetry centers. Nature Methods 9(7), 724–726 (2012)

26. Rathi, Y., Vaswani, N., Tannenbaum, H., Yezzi, A.: Tracking de-
forming objects using particle filtering for geometric active con-
tours. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 29(8), 1470–1475 (2007). DOI 10.1109/TPAMI.2007.1081

27. Reynolds, D.: Gaussian mixture models. Encyclopedia of biomet-
rics pp. 827–832 (2015)

28. Richardson, W.H.: Bayesian-based iterative method of image
restoration∗. J. Opt. Soc. Am. 62(1), 55–59 (1972). DOI 10.
1364/JOSA.62.000055. URL http://www.osapublishing.
org/abstract.cfm?URI=josa-62-1-55

29. Rueden, C.T., Schindelin, J., Hiner, M.C., DeZonia, B.E., Walter,
A.E., Arena, E.T., Eliceiri, K.W.: ImageJ2: ImageJ for the next
generation of scientific image data. BMC Bioinformatics 18(1),
529 (2017). DOI 10.1186/s12859-017-1934-z. URL https://
doi.org/10.1186/s12859-017-1934-z

30. Schanz, D., Gesemann, S., Schröder, A.: Shake-the-box: La-
grangian particle tracking at high particle image densities. Exp.
Fluids 57(5), 70 (2016)

31. Schiepel, D., Bosbach, J., Wagner, C.: Tomographic Particle Im-
age Velocimetry of Turbulent Rayleigh-Bénard Convection in a
Cubic Sample. Journal of Flow Visualization and Image Process-
ing 20(1-2), 3–23 (2013)

32. Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Lon-
gair, M., Pietzsch, T., et al.: Fiji: an open-source platform for
biological-image analysis. Nature methods 9(7), 676–682 (2012)

33. Soloff, S.M., Adrian, R.J., Liu, Z.C.: Distortion compensation for
generalized stereoscopic particle image velocimetry. Meas. Sci.
Technol. 8(12), 1441 (1997)

18 Sebastian Herzog1,2,3 et al.

34. Trepat, X., Chen, Z., Jacobson, K.: Cell Migration, pp. 2369–
2392. American Cancer Society (2012). DOI 10.1002/cphy.
c110012. URL https://onlinelibrary.wiley.com/doi/
abs/10.1002/cphy.c110012

35. Ulman, V., et al.: An objective comparison of cell-tracking algo-
rithms. Nature Methods 14(12), 1141–1152 (2017). DOI 10.1038/
nmeth.4473. URL https://doi.org/10.1038/nmeth.4473

36. Van Haastert, P.J.M., Devreotes, P.N.: Chemotaxis: signalling the
way forward. Nature Reviews Molecular Cell Biology 5(8), 626–
634 (2004). DOI 10.1038/nrm1435. URL https://doi.org/
10.1038/nrm1435

37. Wieneke, B.: Volume self-calibration for 3D particle image ve-
locimetry. Exp. Fluids 45(4), 549–556 (2008). DOI 10.1007/
s00348-008-0521-5. URL http://dx.doi.org/10.1007/
s00348-008-0521-5

38. Wieneke, B.: Iterative reconstruction of volumetric particle distri-
bution. Meas. Sci. Technol. 24, 024008 (2013)

39. Xue, Z., Charonko, J., Vlachos, P.: Particle image velocimetry cor-
relation signal-to-noise ratio metrics and measurement uncertainty
quantification. Measurement Science and Technology 25(11),
115301 (2014). URL http://stacks.iop.org/0957-0233/
25/i=11/a=115301

5. Application to experimental data 137

5.3 Conclusions from (Herzog et al. 2021b)

The presented publication shows the framework that was developed to extract

particles from images and assemble them into trajectories. The approach works

for two dimensional as well as for three dimensional trajectories, depending on the

images used as input. If the images are multi-perspective images, the individual

images, at every time-step, are used to triangulate the particles, in which case

the extracted particles are three dimensionally represented, resulting in three-

dimensional trajectories. The approach had first been validated on synthetic

cases, where a performance was achieved which is equally good to the state of

the art procedures, which, however, are only available commercially. Later two

experimental cases had also been evaluated as examples.

The generated trajectories will be used in the following to train the presented

two approaches from *(Herzog et al. 2021a) (nODE) and *(Herzog et al. 2019)

(CAE+CRF network). In the case of the method from *(Herzog et al. 2021a) the

goal is to investigate what the predicted vector field looks like and the goal of the

second case is to validate if it is possible to predict the reconstructed trajectories

from *(Herzog et al. 2021b) using the hybrid model from *(Herzog et al. 2019).

5.3.1 Application of the presented methods

We will start with the case of the motion of Dictyostelium discoideum introduced in

*(Herzog et al. 2021b, section 4.1). As described in *(Herzog et al. 2021b, section

4.1), these amoebae react to electric fields of continuous current and move towards

them. For this purpose, two sets of trajectories were generated, one for the case

where the amoebae move predominantly to the left (see figure 5.2) and one for

the case where they move to the right. Looking at figure 5.2, it is difficult to see

whether the generated trajectories really follow a trend, the trajectories are not

particularly smooth and the amoebae do not move in any straight pattern.

The hybrid network (CAE+CRF) from *(Herzog et al. 2019) was then applied

on these two data sets. The above extracted trajectories were used as training

138 5.3. Conclusions from (Herzog et al. 2021b)

a) b) c) d)

0 200 400 600
0

200

400

600

t=50

0 200 400 600

t=250

0 200 400 600

t=500

0 200 400 600

all

00

783

Tr
ac

k
ID

Figure 5.2: Trajectories generated based on the method *(Herzog et al. 2021b) for
dictyostelium discoideum motion. To avoid clutter in the graphics, only every fourth
trajectory is shown, with a maximum trajectory length of 250 time steps. In a) one
sees the trajectories at time t = 50, b) shows the trajectories at time t = 250 and c) for
t = 500. The trajectories can be identified unambiguously by their colour, the colour of
the trajectories is consistent over all time steps. Figure d) shows all generated trajectories
for all time steps.

components for position and velocity. Figure 5.3 shows the two vector fields

that were created for each data set. Each vector field was cropped to the size

of the image sections.

a)

00 330 660
00

330

660 b)

00 330 660
00

330

660

Figure 5.3: Reconstructed vector fields, where in a) one sees the case where the amoebae
were supposed to move to the left and in b) the reversed case. The size of the vector
fields was limited to the size of the reconstructed data.

As can be seen in figure 5.3 a), there is a dominant movement to the left, the

same applies to figure 5.3 b) where the dominant direction is to the right. This

observation is consistent with the intention behind the experimental setup. If, on

the other hand, one looks only at the reconstructed trajectories (figure 5.2), this

trend is much more difficult to recognise, if at all.

5. Application to experimental data 139

The second case to be considered is the turbulent Rayleigh-Bénard convection

(RBC) cell also from *(Herzog et al. 2021b, section 4.2). Classically, the liquid

starts rising at the heated bottom plate, cools down at the surface plate and sinks

to the bottom again. Depending on the physical conditions, different structures

are created as investigated in (Pallares et al. 2001). In the case presented in

*(Herzog et al. 2021b, section 4.2), a large-scale circulation (LSC) is formed across

the diagonal of the cell. The figures *(Herzog et al. 2021b, p. 15) and *(Herzog et al.

2021b, p. 16) attempt to illustrate this. As before, the reconstructed trajectories

from *(Herzog et al. 2021b) serve as training data for the *(Herzog et al. 2019)

(CAE+CRF) approach. The architecture of the network was adapted in such a

way that it takes input {((X(t), Xv(t)), (Y (t), Yv(t)), (Z(t), Zv(t))}t=9
t=0 ∈ R2×3×10,

where X(t), Y (t), Z(t) are the position components and Xv(t), Yv(t), Zv(t) the

velocity components of a reconstructed trajectory, at some time step t. To

generate the training data set each reconstructed trajectory from *(Herzog et al.

2021b) was extended to the left with 9 times the start position of the trajectory

but a velocity of 0 and 9 times the end position of the trajectory, but again 0

velocity. That is, if a trajectory consists of t∗, . . . , t∗N elements, it was extended

to t− 9, . . . , t∗, . . . , t∗N , . . . tN+9. A sliding window approach over t− 9 to t∗N then

divided the reconstructed trajectories into pieces of size R2×3×10. The desired output

from the network should be {((X(t), Xv(t)), (Y (t), Yv(t)), (Z(t), Zv(t))}t=20
t=10. Hence,

based on 10 consecutive time steps, the next 10 time steps are predicted.

After training, it should be seen whether the network predicts a dynamic that is

consistent in respect to the observed data. For this purpose, 50 starting points were

randomly initialised in a sphere at (100, 100, 50) having a radius of 50. The process

was then run for 1000 time steps. Based on these 50 points, the network should

predict 50 trajectories with a length of 1000. The result of this prediction can be

seen in figure 5.5. It is well visible how the trajectories start in the lower corner

and move into the large-scale circulation (LSC) and getting faster towards it. It is

also noticeable that not all trajectories immediately transfer into the LSC, which is

an indication that the network predicts more then only a transfer to the LSC. The

140 5.3. Conclusions from (Herzog et al. 2021b)

0

20

10

Ve
lo
ci
ty

m
ag

ni
tu
de

50

250

450

450
250

50 50
250

450

Figure 5.4: Prediction of the RBC data based on 50 starting points, randomly chosen
in a sphere at (100, 100, 50) and with a radius of 50 (the sphere is drawn in), the colour
of the trajectories corresponds to the velocity magnitude in a range of 0 in blue up to 20
mm/s.

next step was to see if the entire dynamics of the cell could be reconstructed. For

this purpose, 5000 equidistant points were initialised over the entire volume and

predicted for 2000 time steps. Furthermore, these results can be compared with

*(Herzog et al. 2021b, figure 15), for which the same viewpoints were chosen.

50

250

450

45025050

50 250
450

45025050

50 250 450

0

20

10

Ve
lo
ci
ty

m
ag

ni
tu
de

50 250 450a) b)

50

250

450

50 250 450

Figure 5.5: Prediction of the RBC data based on 5000 equidistant starting points, same
colour bar as in figure 5.4. This plot represents the direct comparison to *(Herzog et al.
2021b, figure 15).

As can be seen, the LSC is easier to identify based on the predicted trajectories

than on the reconstructed data. Furthermore, the predicted trajectories are always

5. Application to experimental data 141

50
250

450

50

50

250

250
450

450a) b)

−20

20

0

Ve
lo
ci
ty

X

−20

20

0

Ve
lo
ci
ty

Y

0

20

10

Ve
lo
ci
ty

m
ag

ni
tu
de

−20

20

0
Ve

lo
ci
ty

Z

50
250

450

50 250 450

50
250

450

50

250

450

50
250

450

c) d)

Figure 5.6: The views shows a slice along the LSC in the cell. The frames a)-d) always
show the same trajectories but with different colouring. This plot represents the direct
comparison to *(Herzog et al. 2021b, figure 16). In a) it is easy to see that the X
component of the speed is to the right in the lower half and to the left in the upper half.
b) Shows the same for the movement upwards, i.e. in the y direction. The particles float
upwards on the right side of the cell and downwards on the left side of the cell. Since the
LSC lies along the diagonal of the cell, it is also easy to see in c) that the particles near
the bottom tend to move towards the camera and at the top they tend to move back. d)
shows again the magnitude of the velocities and illustrates the LSC.

of full length, unlike the reconstructed trajectories. Next, the last comparison to

be made corresponds to *(Herzog et al. 2021b, figure 16). For this purpose, the

number of initial points was ten times higher (50000) than before and a slice along

the diagonal of the LSC was made to see how the velocities are distributed inside

the LSC. If one compares the two figures, one finds that both approaches deliver

similar results, but the results shown here are clearer to recognise and contain less

disturbances. The transitions of the velocity distributions are easier to recognise

and interpret. It should also be pointed out that the prediction did not generate

any effects that are not present in the data. Rather, the noise in the reconstructed

trajectories seems to have been strongly reduced.

Looking at figure 5.6 and comparing it with *(Herzog et al. 2021b, figure 16),

142 5.4. Summary

one can qualitatively determine that the velocities in the X and Y directions are

consistent to the reconstructed trajectories. The same applies to the Z direction,

although the difference is greater. The results of the prediction can thus be

considered consistent with the results of the reconstruction. In detail, however,

there are major differences. The LSC is much clearer in the predicted trajectories

than in the reconstructed data, as are the transitions of the velocities. In particular,

when looking at the velocity magnitude, one sees in the predicted images the

classic textbook picture of the LSC, particularly fast in the inner ring, slower at

the edges towards the cell wall and comparatively slow in the very centre. Such

formations have also been seen in other experimental set-ups like presented by

Pallares et al. (2001), where, by contrast, a much smaller cell and silicon oil was

used as the fluid, which is generally characterised by other parameters (Pr = 130

and 5 · 103 ≤ Ra ≤ 8 · 104), i.e. the ones we have. More important, the work of

Pallares et al. (2001) shows that variation of the Rayleigh number results in different

LSCs. And the generated prediction of the hybrid approach produces exactly one

of the possible configurations, only using the reconstructed data.

5.4 Summary

This chapter showed what happens when data from real experiments are recon-

structed by the particle tracking framework from *(Herzog et al. 2021b) and this

reconstructed data is then used as a baseline for training the *(Herzog et al. 2021a)

(nODE) and *(Herzog et al. 2019) (CAE+CRF) approach. On the one hand, in

both cases, the presented methods provide predictions that are easier to interpret

than the interpretation of the raw reconstructed trajectories. On the other hand,

the predicted results from the networks do not reflect the underlying data by 100%.

This is easy to see when the predicted vector fields in figure 5.3 are compared

with real motions from figure 5.2. Nevertheless, the trend in the movement of

the amoebae can be recognised well, but their fine, random movements cannot

be seen, at all. One point that could be examined in the future is to use the

predicted vector fields in figure 5.3 and simulate the motion of the particles directly,

5. Application to experimental data 143

by simply allowing the vector field to act as an external force on the particle

and adding some stochastic disturbance for each time step to see if the resulting

trajectories are comparable to the real data.

In the case of the RBC data, a similar idealisation effect can be observed, but

to a much lesser extent. The predicted trajectories reflect the underlying dynamics

very well, which makes it very easy to recognise the LSC.

The presented approach shows great flexibility in terms of possible investigations.

One can start trajectories at arbitrary points or increase the density of the

trajectories at will and, thus, investigate the behaviour of the system more deeply.

It should also be noted that the prediction with the approach of *(Herzog et al.

2019) is very fast, even on my notebook with an Intel Xeon E3-1505M v5 at 2.8

GHz the prediction of the 50000 initial conditions for 2000 time steps took only

a few seconds. For these two applications, these hybrid approaches are a good

complement to investigate the data and get better ideas about the underlying

dynamics. However, in my opinion, the true potential of these methods lies in the

combination of the reconstruction method with the hybrid prediction networks.

In the last chapter, this idea is taken up again and a conclusion is also presented

regarding the use of ANNs and hybrid methods for modelling dynamical systems.

This is then followed by an outlook concerning further investigations. Some of these

aspects had been discussed in the specific chapters and the outlook provides then

an additional overview concerning potential future work.

144

The trick is the idealizations. [...] This system is quite
unlike the case of mathematics, in which everything
can be defined, and then we do not know what we are
talking about. In fact, the glory of mathematics is
that we do not have to say what we are talking about.
The glory is that the laws, the arguments, and the
logic are independent of what ’it’ is.

— Richard P. Feynman (1965)

6
Conclusion and outlook

Contents
6.1 Conclusion . 145
6.2 Outlook . 147

6.1 Conclusion

As described in the introduction, theory building can begin with the acquisition of

experimental data. However, in many cases the data collected do not have a sufficient

quality to draw conclusions in order to build a model or even a theory. In the second

chapter, the convolutional autoencoder (CAE) has been introduced and examined

to see how well it can represent data from dynamical systems. It was shown that

the CAE is a suitable architecture for different reconstruction tasks supporting

both pre- and post-processing of data. It can compensate measurement errors and

limitations and one can obtain this way data that is easier to analyse, with the

potential to complete and enhance experimental observations, providing a possible

solution to some data acquisition problems. Furthermore, a possibility to increase the

performance of the CAEs was presented by adding feedback connections to the CAE.

145

146 6.1. Conclusion

Theory Experiment

Simulation

Problems

Data-driven modelling

Spa.-tem.
pred.

Dataprocess. Symbolicrepres.

Real data

Conclusions

Outlook

Figure 6.1: Structure overview: Conclu-
sion and outlook chapter 6

Another problem that can arise during

theory building is the absence of first

principles, which makes it hard or impos-

sible to formulate (numerical) models to

investigate the spatio-temporal dynamics

of systems that cannot be observed exper-

imentally over sufficiently long times peri-

ods. In the third chapter, the investigation

provided in *(Herzog et al. 2019; Herzog

et al. 2018; Herzog et al. 2020b) showed

that the introduced hybrid model consist-

ing of a CAE and a CRF is very powerful

in learning spatio-temporal dynamics of

non-linear systems from data, which has

been demonstrated on several cases. It is

even so powerful that it outperformed the

echo state network (ESN) approach of Pathak et al. (2018), which, to the best

of my knowledge, had been the best performing approach given the current state

of the art. Thus, this here-introduced hybrid model provides a possible way to

predict the dynamics of systems which are difficult or impossible to be modelled

by first principles, the ability to predict such systems can allow users to identify

patterns and other correlations in their data.

As also described in the introduction, idealisations and abstractions are necessary

steps to formulate models leading to theories that are generally valid. But these

idealisations can require a high degree of expert knowledge, which can be a problem

especially when having very complex data that shell be represented symbolically.

In the fourth chapter, the so-called neural ordinary differential equations (nODE)

approach introduced by Chen et al. (2018), was slightly extended together with the

loss function including a sparse regularisation. This has then been finally applied

to predict vector fields of a multi-agent system. We could this way show that even

6. Conclusion and outlook 147

data coming from a system that is not described by ordinary differential equations

can be well represented by vector fields from the nODE approach. In other words,

this approach is suitable for reducing the complexity in data such that the data

can be expressed by mathematical symbols.

In short, the methods discussed in chapters 2-4 present methods that can be

used at different points in the interplay between theory, experiment and simulation.

For reasons of validation and data quality they all have been applied to simulated

data. As stated in the introduction, though, these methods are motivated to bring

the fields of theory, experiment and simulation closer together. And so, at least by

way of examples, it should be demonstrated how these methods can be used on real

experimental data. Therefore, Chapter 5 demonstrates how both, the combination

of CAE+CRF and the nODE, approaches can be applied to real experimental data.

In particular, chapter 5 shows that a synergy of classical with modern evaluation

and reconstruction methods works well and leads to results that simplify model

and theory building. The hybrid approach presented can itself take the role of

a simulation *(Herzog et al. 2019; Herzog et al. 2018; Herzog et al. 2020b) or,

alternatively, it can be used within a numerical solver to parameterize the derivative

of the hidden states from the assumed equations *(Herzog et al. 2021a). The second

case is particularly useful if assumptions are already made about the system under

investigation and one wants to check how well these assumptions can describe the

data. As shown, application of the presented methods arrive at enriched data, the

possibility of predicting non-linear dynamics for longer periods of time and also the

possibility of representing complex data using mathematical expressions.

6.2 Outlook

In the second chapter, the convolutional autoencoder (CAE) has been introduced and

examined on different reconstruction tasks. A necessity for successful reconstructions

is that the CAE is sufficiently well trained. For successful training, there needs to

be a sufficient amount of data. Unfortunately, the word sufficient is not quantifiable,

the only metric one currently has is given by the behaviour of the loss function

148 6.2. Outlook

during training, e.g.: *(Herzog et al. 2021c, Figures 9, 13, 16). When the loss

function on the training data and validation data converges to a small value and

further the evaluation on the test data shows also small errors, it can be assumed

that the training was successful. This justifies the assumption that the neural

network is a sufficiently good approximator for the function to be approximated.

If one of the points mentioned does not apply, this could be understood as an

indication that not enough data was available during the training. However, this

statement is very weak and only can be understood as a "could" and not a "must".

Even if this measure would be a unique indicator (which it is not), it is still a very

unsatisfactory measure, because it is not possible to estimate the amount of data

needed before training, which can lead to several data acquisition and training

phases until satisfactory performance is obtained.

But what if there is not enough data available? Would it be possible to use

a mixture of simulated and experimental data? And if so, how should these be

regularised? The field of "data augmentation" deals with such questions (Shorten

et al. 2019; Cubuk et al. 2019). However, how well this method can be transferred

to dynamical systems still needs to be investigated, as there is little or no experience

existing about this so far.

Looking next at chapter 3: Here a hybrid model, which is an extension of

the CAE with a CRF was introduced for predicting spatio-temporal dynamics of

non-linear systems from data. Exceeding the former state of the art echo state

network (ESN) approach from Pathak et al. (2018). However, the question why this

hybrid model is so powerful can only be answered by speculation at the moment.

As stated at the end of chapter 3, it could be that the combination of the CAE

with the CRF works so well because the encoding part of the CAE encodes the

input data into a coordinate system where the dynamic is more predictable by the

CRF then in the original coordinate system. Initial investigations support this

assumption. These investigations, however, must be greatly expanded and also

performed on more different cases and different parameterizations of the CAEs. In

particular, variation of parameters in the latent space layers could have a substantial

6. Conclusion and outlook 149

influence and should be investigated in the future. Provided that the transfer to

a coordinate system, where the dynamics can be described as a linear system, is

the decisive point, the question arises whether, for example, an ESN-based system,

as in the former state of the art (Pathak et al. 2018), would work better than a

CRF. To address this question, an ESN is currently being implemented as part of

a master’s thesis that can be integrated directly into the auto-encoder framework

to allow end-to-end optimisation of all parameters. Along the same lines it will be

important to compare CRF- (or ESN)-based performance with a simple regression

in the latent space, where the coordinate system is simplified, to contrast the

advanced approach with this kind of baseline. What can already be said with a

high degree of certainty is that the loss function for calculating the error during

training plays a major role. Smarter functions, which possibly represent parts of the

physics of the system that is to be modelled, could lead to improved performance.

An additional aspect to be considered is the uncertainty estimation of the hybrid

method during prediction. A promising method for this would be the approach

called deep evidential regression by Amini et al. (2020). The idea of deep evidential

regression is to train additional parameters for distributions expressing a measures

of uncertainty in the network. Depending on the complexity to integrate these

additional parameters, this could lead to an uncertainty estimation for each time

step during the prediction by the hybrid model. If the uncertainty was then found

to correlate with the prediction error, one could use this as an indicator of how

long one trusts the prediction by the hybrid model. A final point concerns studies

on generalisability, where more thought needs to be given on how to proceed here

in a structured way. Testing different parameters and trying out when they work

and when not is not a sensible way to proceed, as there is little insight to be gained

by such a process. My hypothesis based on the initial research in *(Herzog et al.

2020b) would be that the networks do well with initial conditions that are a linear

combination of the training data. I would like to investigate this question in a

further study and restructure the investigations from *(Herzog et al. 2020b) in

more detail, based on the case with multiple cylinders from *(Herzog et al. 2020b).

150 6.2. Outlook

One could then train the hybrid network with data where, for example, the initial

velocity comes from a Gaussian distribution, with expected value and variance set.

After successful training, one would generate test data, but then vary the variance

and examine the prediction errors as a function of variance. In the second step,

one would draw the training data from two Gaussian distributions, so that one

has two expected values and variances. The test data would be drawn from the

composite distribution of both distributions and the prediction quality would be

examined. In the third step, one would generate test data that can no longer be

regarded as a linear combination of both distributions and further investigate how

the prediction errors develop. In the last step, one would draw test data from a

distribution that no longer has any similarity with the distributions of the training

data and examine the prediction error as a function of a measure of the difference

between two (train and test) probability distributions. Through these four steps, it

would be possible to investigate how the prediction performance depends on the

distributions from which the training and test dates come, and to what point my

hypothesis that the prediction works well for initial conditions that are a linear

combination of the training data holds. The first two steps would cover the point of

linear combination, while the last two steps would represent the counterhypothesis.

In chapter 4 an extension of the so-called neural ordinary differential equations

(nODE) introduced by Chen et al. (2018), was introduced. For this approach to

work, it is necessary that the user specifies the structure of the ODEs, e.g., here to

represent Hamiltonian mechanics. At the moment, only one user defined structure

can be used to train nODEs. However, this severely limits the scope of possible

questions that could be addressed by this approach. Wouldn’t it also be possible

to use a set of ODEs and divide this set into subsets where each ODE receives

the data in a different coordinate system (e.g., Cartesian and polar coordinates)

and spaces (e.g., linear and polynomial vector spaces), in the hope that even more

complex systems can be described in this way? One could try to extend this

approach also with a genetic algorithm that searches for the coordinate system

that allows for the best approximation of the data. If this works, the next step

6. Conclusion and outlook 151

would be to combine two such structures and parameterise the combination. All

this is only a sketch of a possible extension of this approach, which needs to be

made more precise in the future.

The methods discussed in chapters 2-4 present approaches that can be used at

different points during the interplay between theory, experiment, and simulation.

Chapter 5 was supposed to further support this statement through demonstrations

with real data. As a necessary prerequisite, a reconstruction approach *(Herzog

et al. 2021b) was presented to reconstruct trajectories from image sequences. These

trajectories provide the data required to train both approaches *(Herzog et al.

2019) (CAE+CRF) and *(Herzog et al. 2021a) (nODE), which were then applied

to the two experimental cases presented in *(Herzog et al. 2021b). The use of

the modified neural ordinary differential equation approach *(Herzog et al. 2021a)

led to the prediction of a comparatively simple vector field describing the main

motion of some amoebae. In the second case, the hybrid of CAE and CRF, the

approach from *(Herzog et al. 2019), was used to predict the particle motion

in Rayleigh-Bénard convection. The use of the hybrid approach resulted in the

possibility to generate trajectories with much higher densities and lengths than

by reconstruction of experimental data. As written at the end of chapter 5: An

integration of the hybrid model with the reconstruction framework from *(Herzog

et al. 2021b) would be desirable to replace the regression with the Gaussian mixture

model in *(Herzog et al. 2021b, section 2.4), with the goal to get a better prediction

of the trajectories during reconstruction. This should, hopefully, lead to longer

reconstructed tracks and much shorter reconstruction times.

Due to the promising results obtained by applying the presented methods on

experimental data, it seems desirable to disseminate more widely these methods into

research fields and communities that have less experience with machine learning.

This means, on the one hand, that the application of the methods presented should

be simplified to be accessible also for researchers who have less experience with

the implementation of such methods. Which also means that more efforts and

demonstrations are probably needed on how to use these methods in fields such

152 6.2. Outlook

as biology or chemistry. On the other hand, one needs to think about possible

integrations into established frameworks. An example of one of these frameworks is

OpenFoam (see (Jasak et al. 2007)), an open source framework for computational

fluid dynamics, for which there are also preliminary works that can simplify the

integration of the methods presented, like (Maulik et al. 2021).

Súmma summárum: This thesis had focused on what we called hybrid

approaches and we tried to demonstrate that they can act as a link between theory

and experiment. One can - as shown - arrive at enriched simulations, improved

predictive power and also at model estimates by integrating assumptions about

the physics of the underlying system into these approaches. The potential of these

approaches, thus, appears high, but - as discussed above - much remains to be done.

Appendices

153

There must be a trick to the train of thought, a
recursive formula. A group of neurons starts working
automatically, sometimes without external impulse.
It is a kind of iterative process with a growing pattern.
It wanders about in the brain, and the way it happens
must depend on the memory of similar patterns.

— Stanisław M. Ulam (1991)

A
Formal definitions for artificial neural

networks

Contents
A.1 Artificial neural networks 155

A.1.1 Network structures . 156
A.1.2 Multilayer feed-forward network 157
A.1.3 Recursive definition . 157
A.1.4 Network state . 158
A.1.5 Topological network dynamics 158

This is the appendix for artificial neural networks, it contains formal definitions

of the terms, which for the sake of readability are not elaborated in the main text.

A.1 Artificial neural networks

Definition A.1.1 (Artificial neural network). A artificial neural network (ANN)

is a tuple N = (N,A,w, θ, σ, I, O) consisting of:

• N = {1, . . . , n} nodes

• A ⊂ N ×N the network structure

• w = (wij)i→j (wij ∈ R) weights

155

156 A.1. Artificial neural networks

• θ = (θi)i∈N (θi ∈ R) biases

• σ = (fi : R→ R)i∈N Activation functions. (There are a variety of activation

functions, they can be radial function, or a composition of a univariate function

with an affine transformation or even higher-order functions. Some examples

would be linear activation, identity, relu, sigmoid, tangenshyperbolicus and

many more. The choice of the activation function often has an influence on

the performance of the model Zaheer et al. 2018.)

• I ⊂ N Input nodes

• O ⊂ N Output nodes

A neuronal architecture is a tuple N ′ = (N,A,w′,θ′, σ, I, O) as above, but w′ is

only defined for some connections i→ j and θ′ only for some neurons.

A.1.1 Network structures

Definition A.1.2 (Network structures). Feed-forward neural networks (N,A) are

an acyclic graph, I are the neurons without predecessors and O are the neurons

without successors. Assuming I ∩O = ∅, then there always exists a decomposition

of the form N = N0 ∪ . . . ∪Nh with Ni ∩Nj = ∅ for i 6= j, I = N0, O = Nh

A ⊂
h−1⋃
i=0

h⋃
j=i+1

Ni ×Nj

Related to such a representation, Ni is called i-th hidden layer for 0 < i < h,N0

is called input layer, Nh is called output layer, h denotes the depth of the network.

Connections in Ni ×Nj with i < j − 1 are called shortcut connections or residual

connections He et al. 2016. A (fully connected) multilayer feed-forward network is

present if additionally

A =
h⋃
i=1

Ni−1 ×Ni

holds. The network structure is represented by the expression (n0, . . . , nh) with

ni = |Ni|.

A. Formal definitions for artificial neural networks 157

A.1.2 Multilayer feed-forward network

As an extension to this a (fully connected) multilayer feed-forward network with

shortcut connections or residual connections He et al. 2016 is a feed-forward network

with

A =
h−1⋃
i=0

h⋃
j=i+1

Ni ×Nj. (A.1)

The network structure is given by the expression (n0, . . . , nh) with ni = |Ni|. A

network is called (fully) recurrent network if

A = N ×N.

For recurrent networks often I = O = N or I = O. This can be attenuated to

partially recurrent networks where:

A ⊂ N ×N.

A.1.3 Recursive definition

For the sake of completeness, a recursive definition of a multilayer feed-forward

network with h hidden layers shall also be given, as it is often found in the literature.

If each layer has some input zm+1 ∈ Rp, the the network is defined by

y
(m+1)
k = σ

(m+1)
k

(
z(m+1)

)
, k = 1, . . . , km+1 (A.2)

z
(i)
k =

ki+1∑
j=1

w
(i)
jk y

(i+1)
j + b

(i)
k , i = 0, . . . ,m, k = 1, . . . , ki (A.3)

y
(i)
k = σ

(i)
k

(
z

(i)
k

)
, i = 0, . . . ,m, k = 1, . . . , ki, (A.4)

where w(i)
jk are the weights, b(i)

k biases and σ the activation functions, for i =

0, . . . ,m. Equation A.2 defines the transformation of the input vector per layer

z(m+1) to some real values y(m+1)
k . In equation A.3 the input values are calculated

as a weighted linear combination of the previous output values, where ultimately

the activation functions in equation A.4 map the input to the output values for

every layer and every neuron.

158 A.1. Artificial neural networks

A.1.4 Network state

Definition A.1.3 (Network state). The network state of a network N is a tupel

o = (oi)i∈N with oi ∈ R. An activation of N is a sequence of states o(t)t∈N. The

activation of node i at time t is

neti(t) =
∑
j→i

wjioj(t)− θi.

In general, the dynamics of a network can be divided into four classes. Starting

with the initial state o(0) and some inputs, it is possible to calculate an activation

which defines the functionality of the network.

A.1.5 Topological network dynamics

1. Topological dynamics in feed-forward networks: Let N = N0∪ . . .∪Nh

be a decomposition for o(0) ∈ R|N |, then set

oi(t+ 1) =
{
oi(t) if i ∈ Nj with j ≤ t
fi (net i(t)) else.

The network N calculates the function f : R|I| → R|O|, f(x) =
(
oij (h)

)
ij∈O

,

where oij (0) = xj for ij ∈ I and oij (0) = 0 else. The function f is independent

of the decomposition.

2. Synchronous dynamics in recurrent networks:

oi(t+ 1) = fi (neti(t))

∀i ∈ N, t ∈ N.

3. Asynchronous dynamics in recurrent networks:

oi(t+ 1) =
{
fi (net i(t)) i = i(t)
oi(t) else

where i(t) is an arbitrary node. In this and the previous case one starts with

a given vector o(0) ∈ R|N |.

A. Formal definitions for artificial neural networks 159

4. Recurrent switching dynamics in partially recurrent networks:
(
R|I|

)∗
is the set of finite sequences with elements in R|I|, denotated as

[
x0, . . . ,xT

]
(where T +1 is the sequence length). For some given y ∈ R|N |−|I|, the so-called

starting context and a sequence of length T define

oi(t) =


xtj i = ij ∈ I, t ≤ T − 1
yj i = ij /∈ I, t = 0
fi (net i(t− 1)) i /∈ I, 0 < t ≤ T
oi(t− 1) else.

One can define a function

fy :
(
R|I|

)∗
→ R|O| as fy

([
x0, . . . , xT

])
=
(
oij (T + 1)

)
ij∈O

.

160

The most important questions of life are, for the most
part, really only problems of probability.

— Pierre S. de Laplace, found in (Laplace 1820)

B
Theoretical background for graphical

models

Contents
B.1 Random vector . 161

B.1.1 Joint distribution . 162
B.1.2 Density . 162
B.1.3 Multivariate random variable 162

B.2 Stochastic independence 164
B.3 Graph . 164

B.3.1 (Un)directed graph . 165
B.4 Gaussian process . 165

This is the appendix to theoretical foundations for graphical models, the

definitions given here correspond to the classical foundations of stochastics, which

are not elaborated in the main text for the sake of readability.

B.1 Random vector

Definition B.1.1 (Random vector). Let (Ω,A, P) be a probability space. A

mapping X = (X1, . . . , Xn)T : Ω→ Rn is called a random vector if X1, . . . , Xn are

random variables.

A random vector is composed of n random variables on the same probability tree.

161

162 B.1. Random vector

For example, considering a random signal Reiφ, where R denotes the amplitude

and φ the phase. Then X = (R, φ)T is a two-dimensional random vector. A

assignment to X is denoted by x = (x1, . . . , xn). The next important definition

is the joint distribution.

B.1.1 Joint distribution

Definition B.1.2 (Joint distribution). Let X = (X1, . . . , Xn)T be a random vector.

The function

FX (x) = P (X1 ≤ x1, . . . , Xn ≤ xn)

is called joint distribution function of (X1, . . . , Xn)T or distribution function of X,

denoted as X ∼ Fx.

The joint distribution function uniquely describes the distribution of the random

vector X, i.e., the probabilities P (X ∈ A) for all measurable events A (Rn.

B.1.2 Density

Definition B.1.3 (Density). A (improperly Riemannian) integrable function fX :

Rn 7→ R+ is called the density of X (or FX, the distribution function of X) if

FX(x) =
∫

x
fX (t) dt

∀x1, . . . , xn ∈ R, where X (or FX) is then called absolutely-continuous with density

fX, in short: X ∼ fX.

This allows the individual probabilities to be combined into complex distributions

and multivariate random variables.

B.1.3 Multivariate random variable

Definition B.1.4 (Multivariate random variable). For a random vector X =

(X1, . . . , Xn)T means

(a) E(X) = (E(X1), . . . ,E(Xn))T ∈ Rn of X.

B. Theoretical background for graphical models 163

(b) The symmetric matrix C(X) = (Cov(Xi, Xj)1<i,j≤n ∈ Rn×n covariance matrix

of X (matrix of pairwise covariances of Xi and Xj).

Proposition B.1.1 (Expected value and covariance under linear transformations).

Let X = (X1, . . . , Xn)T be a random vector with E(X) = µ ∈ Rn,Cov(X) ∈ Rn×n

and A ∈ Rm×n,b ∈ Rm arbitrarily. Then

(a) E(AX + b) = AE(X) + b ∈ Rm

(b) Cov(AX + b) = A Cov(X)AT ∈ Rm×m

Proof. (a) Y = AX + b means component wise Yi = ∑n
k=1 aikXk + bi for i =

1, . . . ,m. Because of the linearity of the expected value

E (Yi) =
n∑
k=1

aikE (Xk) + bi, ∀i = 1, . . . ,m.

So

E(Y) = AE(X) + b.

(b)

Cov (Yi, Yj) = Cov
(

n∑
k=1

aikXk + bi,
n∑
l=1

ajlXl + bj

)

=
n∑
k=1

n∑
l=1

aikajl Cov (Xk, Xl)

=
(
A Cov(X)AT

)
i,j

∀1 ≤ i, j ≤ n. In total

Cov(AX + b) = A Cov(X)AT .

For many approaches from stochastic modelling, the assumption of stochastic

independence is made.

164 B.2. Stochastic independence

B.2 Stochastic independence

Definition B.2.1 (Stochastic independence). Let X = (X1, . . . , Xn)T be a random

vector. X1, . . . , Xn are called stochastically independent (s.i.) if

FX (x) = FX1 (x1) · . . . · FXn (xn) ∀x1, . . . , xn ∈ R.

This property is elementary, especially for the formation of the conditional

distributions. However, it should also be noted that the independence assumptions

are often very inaccurate, which does not necessarily go hand in hand with poor

performance of the methods.

In the following, transformations T (X) ∈ Rn of an absolutely continuous random

vector X = (X1, . . . , Xn)T with density fX (x) are considered. It is assumed that

M = {x ∈ Rn | fX(x) > 0} ⊆ Rn

is an open set and that T : M → Rn is an injective mapping with∣∣∣∣∣∣
(
∂Ti (x1, . . . , xn)

∂xj

)
1≤i,j≤n

∣∣∣∣∣∣ > 0, ∀ (x1, . . . , xn) ∈M

i.e. the absolute value of the determinant of the Jacobi matrix is positive.

B.3 Graph

Definition B.3.1 (Graph). A graph G = (V , E) is a tuple of a set of nodes or

vertices, V = {1, . . . , V }, and a set of edges, E = {(s, t) : s, t ∈ V}.

Graphs can be represented by adjacency matrices, in which G(s, t) = 1 denote

(s, t) ∈ E , that is, if s → t is an edge in the graph. Based on this a graphical

model can be defined as follows.

B. Theoretical background for graphical models 165

B.3.1 (Un)directed graph

GMs can be distinguished by nature of the underlying graph.

Definition B.3.2 ((Un)directed graph). A graph is called undirected if G(a, b) = 1

and G(b, a) = 1, where a, b are some nodes, otherwise it is called directed.

This transfers identically to the GMs, an illustration is provided in figure B.1.

a

b

c a

b

c

a) b)

Figure B.1: Example of: a) an undirected and b) directed graph, based on defini-
tion B.3.2.

B.4 Gaussian process

Gaussian process are, like ANNs, very powerful tools to represent temporal and

spatial functions. They are also very well suited for modelling functions that involve

uncertainties due to incomplete information.

Definition B.4.1 (Gaussian process). A stochastic process X(t) ∈ R, t ∈ I is

called a Gaussian process if all linear combinations in the form

Y
(t1,...,tk)

(α1,··· ,αk) =
k∑
i=1

αiX(ti),

k ∈ N, t1, . . . , tk ∈ I, α1, . . . , αk ∈ R, are normally distributed. In the case |I| <∞,

X(t), t ∈ I is also called a Gaussian vector.

Definition B.4.2 (Covariance function). Let X(t), t ∈ I be a stochastic process

with EX2(t) <∞ for all t ∈ I. Let µ(t) = EX(t). Then the function is called

r : I × I → R

166 B.4. Gaussian process

defined by

r(s, t) = E((X(s)− µ(s))(X(t)− µ(t))), s, t ∈ I

Covariance function of X(t), t ∈ I.

Theorem B.4.1. Let r be the covariance function of the process X(t), t ∈ I. Then

r is positive semidefinite, such that:

k∑
i,j=1

zir (ti, tj) zj

is real and non-negative for all k ∈ N, z = (z1, . . . , zk) ∈ Rk, t1, . . . , tk ∈ I.

Proof.

k∑
i,j=1

zir(ti, tj)zj =
k∑

i,j=1
ziE((X(ti)− µ(ti))(X(tj))− µ(tj)))zj

=E

(k∑
i=1

zi(X(ti)− µ(ti))
) k∑

j=1
zj(X(tj)− µ(tj))


=E

∣∣∣∣∣
k∑
i=1

zi(X(ti)− µ(ti))
∣∣∣∣∣
2 ≥ 0

Theorem B.4.2. (a) AGaussian process has finite second moments, i.e. EX2(t) <∞

for all t ∈ I

(b) If X(t), t ∈ I is a Gaussian process, t1, t2, . . . tk ∈ I,

µ(t) = EX(t), t ∈ I,X − µ = (X (t1)− µ (t1) , . . . , X (tk)− µ (tk))T

and

Γ = cov (X (t1) , . . . , X (tk)) = E
(
(X − µ)(X − µ)T

)
is invertible, then the distribution of (X (t1) , . . . , X (tk)) has a density given

by

ft1,...,tk(x) = (2π)−k/2(det Γ)−1/2 exp
(
−1

2(x− µ)TΓ−1(x− µ)
)

where x = (x1, . . . , xk)T , µ = (µ (t1) , . . . , µ (tk))T .

B. Theoretical background for graphical models 167

(c) The distribution of a Gaussian process is uniquely determined by its expected

value function EX(t) = µ(t) and covariance function.

Theorem B.4.3. Let m ∈ N, µ ∈ Rm and Σ ∈ Rm×m be positive semidefinite. Let

rg(Σ) = k and n ≥ max(k, 1). Then there exists an A ∈ Rm×n, such that Σ = AAT .

If Y1, . . . , Yn are independently N (0, 1) -distributed ZV n, then

X = AY + µ

N (µ,Σ) -distributed.

Proof. 1. X is a Gaussian vector, since all linear combinations of the components

of X are simultaneously linear combinations of the components of Y plus a

constant and thus normally distributed.

2.

EX = E(AY + µ) = AEY + µ = µ.

3.

covX = E
(
(X − µ)(X − µ)T

)
= E

((
AY (AY)T

)
= E

(
AY Y TAT

)
= AE

(
Y Y T

)
AT = AAT = Σ

Theorem B.4.4. Let I be a non-empty set, µ : I → R arbitrary and r : I × I → R

positive semidefinite. Then there exists (with respect to distribution) exactly one

Gaussian process with expected value function µ and covariance function r

Proof. Define the distributions

Pt1,...,tk = N



µ (t1)

...
µ (tk)

 , r (ti, tj)i,j=1,...,k


for k ∈ N, t1, . . . , tk ∈ I. Since the family of these measures Pt1,...,tk is consistent.

The unique distribution of a Gaussian process with the prescribed expected values

and covariances can be derived.

168 B.4. Gaussian process

Theorem B.4.5. Let X(t), t ∈ I be a Gaussian process. Then equivalently:

(a) X(t), t ∈ I are independent (i.e. {X (t1) , . . . , X (tk)} are independent for all

k ∈ N, t1, t2, . . . , tk ∈ I pairwise different).

(b) X(t), t ∈ I are pairwise orthogonal, i.e. E((X(t)− µ(t))(X(u)− µ(u))) = 0

for all t, u ∈ I, t 6= u

Proof. (a) to (b) Generally applies to processes with finite second moments.

(b) to (a) Let t1, . . . , tk ∈ I be pairwise different. If X(t1), . . . , X(tk) are pairwise

uncorrelated, holds
X (t1)

...
X (tk)

 ∼ N


µ (t1)

...
µ (tk)

 ,

σ2 (t1) 0

. . .
0 σ2 (tk)




where σ2 (ti) = var (X (ti)) . By theorem B.4.3, it holds that for independent

N (0, 1) -distributed Y1, . . . , Yk
X̃ (t1)

...
X̃ (tk)

 =


µ (t1)

...
µ (tk)

+


σ (t1) 0

. . .
0 σ (tk)



Y1
...
Yk


has the same distribution as (X (t1) , . . . , X (tk))T , so

(
X̃ (t1) , · · · , X̃ (tk)

)
are pairwise uncorrelated. But since X̃ (ti) = µ (ti) + σ (ti)Yi for i = 1, . . . , k

as functions of independent random variables are also independent, the same

is true for X (t1) , . . . , X (tk)

Da steh’ ich nun, ich armer Tor,
Und bin so klug als wie zuvor! . . .

— Johann Wolfgang von Goethe, found in
(von Goethe 1808)

References

Abadi, M. et al. (2015). TensorFlow: Large-Scale Machine Learning on Heterogeneous
Systems. Software available from tensorflow.org.

Aigner, M. and Ziegler, G. M. (2004). “Buffon’s needle problem”. In: Proofs from THE
BOOK. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 133–136.

Alex, J., ed. (2000). Konrad Zuse: der Vater des Computers. Fulda: Parzeller.
AlMomani, A. A. R., Sun, J., and Bollt, E. (2020). “How entropic regression beats the

outliers problem in nonlinear system identification”. In: Chaos: An Interdisciplinary
Journal of Nonlinear Science 30.1, p. 013107.

Amini, A. et al. (2020). “Deep evidential regression”. In: Advances in Neural Information
Processing Systems 33.

Argyris, J. and Scharpf, D. (1969). “Finite elements in time and space”. In: Nuclear
Engineering and Design 10.4, pp. 456–464.

Barth, A., Schwab, C., and Zollinger, N. (2011). “Multi-level Monte Carlo Finite Element
Method for Elliptic PDEs with Stochastic Coefficients.” In: Numerische Mathematik
119, pp. 123–161.

Box, G. E. P. (1976). “Science and Statistics”. In: Journal of the American Statistical
Association 71.356, pp. 791–799.

Burtt, E. (2003). The metaphysical foundations of modern science. Mineola, New York:
Dover Publications.

Champion, K. et al. (2019). “Data-driven discovery of coordinates and governing
equations”. In: Proceedings of the National Academy of Sciences 116.45,
pp. 22445–22451.

Chen, R. T. Q. et al. (2018). “Neural Ordinary Differential Equations”. In: Proceedings of
the 32nd International Conference on Neural Information Processing Systems.
NIPS’18. Montréal, Canada: Curran Associates Inc., pp. 6572–6583.

Cubuk, E. D. et al. (2019). “Autoaugment: Learning augmentation strategies from data”.
In: Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 113–123.

Eckhardt, R. (1987). “Stan ulam, john von neumann, and the monte carlo method”. In:
Los Alamos Science 15, pp. 131–136.

Einstein, A. (1921). Geometrie und Erfahrung Erweiterte Fassung des Festvortrages
Gehalten an der Preussischen Akademie der Wissenschaften zu Berlin am 27. Januar
1921. Berlin, Heidelberg: Springer Berlin Heidelberg.

Feynman, R. (1965). The Feynman lectures on physics. New York: Basic Books, a
member of the Perseus Books Group.

Friedman, J. (1963). “Alonzo Church. Application of recursive arithmetic to the problem
of circuit synthesisSummaries of talks presented at the Summer Institute for
Symbolic Logic Cornell University, 1957, 2nd edn., Communications Research
Division, Institute for Defense Analyses, Princeton, N. J., 1960, pp. 3–50. 3a-45a.” In:
Journal of Symbolic Logic 28.4, pp. 289–290.

169

170 References

Galilei, G. (1623). The Assayer (Italian: Il Saggiatore).
Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning.

http://www.deeplearningbook.org. MIT Press.
Grefenstette, E. et al. (June 2014). “A Deep Architecture for Semantic Parsing”. In:

Proceedings of the ACL 2014 Workshop on Semantic Parsing. Baltimore, MD:
Association for Computational Linguistics, pp. 22–27.

Guo, X., Li, W., and Iorio, F. (2016). “Convolutional Neural Networks for Steady Flow
Approximation”. In: Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. KDD ’16. San Francisco,
California, USA: Association for Computing Machinery, pp. 481–490.

Haigh, T., Priestley, M., and Rope, C. (2016). ENIAC in Action: Making and Remaking
the Modern Computer. The MIT Press.

He, K. et al. (2016). “Deep Residual Learning for Image Recognition”. In: 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778.

Herzog, S., Tetzlaff, C., and Wörgötter, F. (2020a). “Evolving artificial neural networks
with feedback”. In: Neural Networks : the official journal of the International Neural
Network Society 123, pp. 153–162.

Herzog, S. and Wagner, C. (2020b). “Development of Artificial Neural Networks with
Integrated Conditional Random Fields Capable of Predicting Non-linear Dynamics of
the Flow Around Cylinders”. In: New Results in Numerical and Experimental Fluid
Mechanics XII. Cham: Springer International Publishing, pp. 71–79.

Herzog, S. and Wörgötter, F. (2021a). “Application of neural ordinary differential
equations to the prediction of multi-agent systems”. accepted for SWARM 2021 (to
be considered for full publication in Artificial Life and Robotics).

Herzog, S., Wörgötter, F., and Parlitz, U. (2018). “Data-Driven Modeling and Prediction
of Complex Spatio-Temporal Dynamics in Excitable Media”. In: Frontiers in Applied
Mathematics and Statistics 4.

Herzog, S., Wörgötter, F., and Parlitz, U. (2019). “Convolutional autoencoder and
conditional random fields hybrid for predicting spatial-temporal chaos”. In: Chaos
(Woodbury, N.Y.) 29.12.

Herzog, S. et al. (2021b). “A probabilistic particle tracking framework for guided and
Brownian motion systems with high particle densities”. submitted to Int J Comput
Vis.

Herzog, S. et al. (2021c). “Reconstructing Complex Cardiac Excitation Waves From
Incomplete Data Using Echo State Networks and Convolutional Autoencoders”. In:
Frontiers in Applied Mathematics and Statistics. accepted version 2020/12/07 - shown
in this work, published version 2021/03/18 - available online:
https://www.frontiersin.org/articles/10.3389/fams.2020.616584/full.

Hinton, G. E., Krizhevsky, A., and Wang, S. D. (2011). “Transforming Auto-Encoders”.
In: Artificial Neural Networks and Machine Learning - ICANN 2011. Ed. by
T. Honkela et al. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 44–51.

Iqbal, H. (Dec. 2018). HarisIqbal88/PlotNeuralNet v1.0.0. Version v1.0.0.
Ivanovska, T. et al. (Oct. 2019). “A deep learning framework for efficient analysis of

breast volume and fibroglandular tissue using MR data with strong artifacts”. In:
International Journal of Computer Assisted Radiology and Surgery 14.10,
pp. 1627–1633.

http://www.deeplearningbook.org
https://www.frontiersin.org/articles/10.3389/fams.2020.616584/full

References 171

Jasak, H., Ar Jemcov, A., et al. (2007). “OpenFOAM: A C++ Library for Complex
Physics Simulations”. In: International Workshop on Coupled Methods in Numerical
Dynamics, IUC, pp. 1–20.

Kingma, D. P. and Welling, M. (2019). “An Introduction to Variational Autoencoders”.
In: Foundations and Trends in Machine Learning 12.4, pp. 307–392.

Koller, D. and Friedman, N. (2009). Probabilistic graphical models: Principles and
techniques. Adaptive computation and machine learning. Cambridge, Mass.: MIT
Press.

Koopman, B. O. (1931). “Hamiltonian Systems and Transformation in Hilbert Space”. In:
Proceedings of the National Academy of Sciences 17.5, pp. 315–318.

Kramer, M. A. (1991). “Nonlinear principal component analysis using autoassociative
neural networks”. In: AIChE Journal 37.2, pp. 233–243.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). “ImageNet Classification with
Deep Convolutional Neural Networks”. In: Advances in Neural Information Processing
Systems. Ed. by F. Pereira et al. Vol. 25. Curran Associates, Inc., pp. 1097–1105.

Laplace, P. S. (1820). Théorie analytique des probabilités. Courcier.
LeCun, Y. et al. (Dec. 1989). “Backpropagation Applied to Handwritten Zip Code

Recognition”. In: Neural Comput. 1.4, pp. 541–551.
LeCun, Y. et al. (1998). “Gradient-based learning applied to document recognition”. In:

Proceedings of the IEEE 86.11, pp. 2278–2324.
Maulik, R. et al. (2021). “Deploying deep learning in OpenFOAM with TensorFlow”. In:

AIAA Scitech 2021 Forum, p. 1485.
Michalski, R. (Aug. 2002). “Understanding The Nature Of Learning: Issues And Research

Directions”. In: Machine Learning: An Artificial Intelligence Approach Vol. II.
Mitchell, T. M. (1982). “Generalization as search”. In: Artificial intelligence 18.2,

pp. 203–226.
Moore, G. (2006). “Cramming more components onto integrated circuits, Reprinted from

Electronics, volume 38, number 8, April 19, 1965, pp.114 ff.” In: IEEE Solid-State
Circuits Society Newsletter 11.3, pp. 33–35.

Musil, J. et al. (2019). Towards Sustainable Architecture: 3D Convolutional Neural
Networks for Computational Fluid Dynamics Simulation and Reverse
DesignWorkflow.

Pallares, J. et al. (Aug. 2001). “Experimental laminar Rayleigh-Bénard convection in a
cubical cavity at moderate Rayleigh and Prandtl numbers”. In: Experiments in Fluids
31.2, pp. 208–218.

Paszke, A. et al. (2019). “PyTorch: An Imperative Style, High-Performance Deep
Learning Library”. In: Advances in Neural Information Processing Systems 32. Ed. by
H. Wallach et al. Curran Associates, Inc., pp. 8024–8035.

Pathak, J. et al. (Jan. 2018). “Model-Free Prediction of Large Spatiotemporally Chaotic
Systems from Data: A Reservoir Computing Approach”. In: Phys. Rev. Lett. 120 (2),
p. 024102.

Pillepich, A. et al. (2019). “First results from the TNG50 simulation: the evolution of
stellar and gaseous discs across cosmic time”. In: Monthly Notices of the Royal
Astronomical Society 490.3, pp. 3196–3233.

Ribeiro, M., Rehman A.and Ahmed, S., and Dengel, A. (2020). DeepCFD: Efficient
Steady-State Laminar Flow Approximation with Deep Convolutional Neural Networks.

Shalin, V. et al. (1988). “A formal analysis of machine learning systems for knowledge
acquisition”. In: International Journal of Man-Machine Studies 29.4, pp. 429–446.

172 References

Shorten, C. and Khoshgoftaar, T. M. (2019). “A survey on image data augmentation for
deep learning”. In: Journal of Big Data 6.1, p. 60.

Shuman, F. G. (1989). “History of numerical weather prediction at the National
Meteorological Center”. In: Weather and Forecasting 4.3, pp. 286–296.

Simon, H. A. (1983). “2 - Why Should Machines Learn?” In: Machine Learning. Ed. by
R. S. Michalski, J. G. Carbonell, and T. M. Mitchell. San Francisco (CA): Morgan
Kaufmann, pp. 25–37.

Sutton, C. and McCallum, A. (Apr. 2012). “An Introduction to Conditional Random
Fields”. In: Found. Trends Mach. Learn. 4.4, pp. 267–373.

Tribus, M. and McIrvine, E. (1971a). “Energy and Information”. In: Scientific American
225.3, pp. 179–190.

Tribus, M. and McIrvine, E. (1971b). “Energy and Information”. In: Scientific American
225.3, pp. 179–190.

Turing, A., Dotzler, B., and Kittler, F. (1997). Intelligence Service: Schriften. ger.
Nachdr. OCLC: 246060405. Berlin: Brinkmann & Bose.

Ulam, S. (1991). Adventures of a Mathematician. University of California Press.
Vincent, P. et al. (Dec. 2010). “Stacked Denoising Autoencoders: Learning Useful

Representations in a Deep Network with a Local Denoising Criterion”. In: J. Mach.
Learn. Res. 11, pp. 3371–3408.

Von Goethe, J. W. (1808). Johann Wolfgang Goethe ’Faust’, Der Tragödie Erster Teil.
Wan, Z. Y. and Sapsis, T. P. (Apr. 2017). “Reduced-space Gaussian Process Regression

for data-driven probabilistic forecast of chaotic dynamical systems”. In: Physica D:
Nonlinear Phenomena 345, pp. 40–55.

Yamashita, R. et al. (Aug. 2018). “Convolutional neural networks: an overview and
application in radiology”. In: Insights into Imaging 9.4, pp. 611–629.

Zaheer, R. and Shaziya, H. (2018). “GPU-based empirical evaluation of activation
functions in convolutional neural networks”. In: 2018 2nd International Conference
on Inventive Systems and Control (ICISC), pp. 769–773.

C
Statement of individual contributions

In the following, a list of my contributions according to each publication is given:

1. Herzog, S., Zimmermann, R. S., Abele, J., and Parlitz, U. (2021c). “Recon-
structing Complex Cardiac Excitation Waves From Incomplete Data Using
Echo State Networks and Convolutional Autoencoders”. In: Frontiers in
Applied Mathematics and Statistics. accepted version 2020/12/07 - shown
in this work, published version 2021/03/18 - available online: https://www.
frontiersin.org/articles/10.3389/fams.2020.616584/full

Ideas, implementation of the CAE, simulation of the BOCF model and
generation of the BOCF cases, analytic, part of figures, part of writing
and part of revision.

about 60% contribution

2. Herzog, S., Tetzlaff, C., and Wörgötter, F. (2020a). “Evolving artificial neural
networks with feedback”. In: Neural Networks : the official journal of the
International Neural Network Society 123, pp. 153–162

Ideas, implementations, analytic, part of figures, part of writing, part of
revision and part publication procedure

about 80% contribution

3. Herzog, S., Wörgötter, F., and Parlitz, U. (2019). “Convolutional autoencoder
and conditional random fields hybrid for predicting spatial-temporal chaos”.
In: Chaos (Woodbury, N.Y.) 29.12

Ideas, implementations, analytic, figures, part of writing and part of
revision

about 80% contribution

173

https://www.frontiersin.org/articles/10.3389/fams.2020.616584/full
https://www.frontiersin.org/articles/10.3389/fams.2020.616584/full

174 C. Statement of individual contributions

4. Herzog, S., Wörgötter, F., and Parlitz, U. (2018). “Data-Driven Modeling
and Prediction of Complex Spatio-Temporal Dynamics in Excitable Media”.
In: Frontiers in Applied Mathematics and Statistics 4

Ideas, implementations, analytic, figures, part of writing and part of
revision

about 85% contribution

5. Herzog, S. and Wagner, C. (2020b). “Development of Artificial Neural
Networks with Integrated Conditional Random Fields Capable of Predicting
Non-linear Dynamics of the Flow Around Cylinders”. In: New Results in Nu-
merical and Experimental Fluid Mechanics XII. Cham: Springer International
Publishing, pp. 71–79

Ideas, implementations, analytic, figures, part of writing, revision and
publication procedure

about 90% contribution

6. Herzog, S., Schiepel, D., Guido, I., and Wagner, C. (2021b). “A probabilistic
particle tracking framework for guided and Brownian motion systems with
high particle densities”. submitted to Int J Comput Vis

Ideas, implementations, analytic, part of figures, part of writing and
publication procedure

about 80% contribution

7. Herzog, S. and Wörgötter, F. (2021a). “Application of neural ordinary
differential equations to the prediction of multi-agent systems”. accepted
for SWARM 2021 (to be considered for full publication in Artificial Life and
Robotics)

Ideas, implementations, analytic, figures, part of writing and publication
procedure

about 90% contribution

C. Statement of individual contributions 175

The other parts of this thesis are subjected to the official doctoral student’s
declaration of the Georg-August University Göttingen (copy in the following):

”[...] I hereby declare that:

1. the opportunity to work on the aforementioned doctoral thesis project was
not arranged commercially. Especially, I did not engage any organization
which searches for doctoral thesis supervisors or which will entirely or partly
carry out my examination duties against payment;

2. I have only accepted and will only accept the assistance of third parties in so
far as it is scientifically justifiable and acceptable in regards to the examination
regulations. Especially, all parts of the dissertation will be written by myself;
I have not accepted and will not accept impermissible help from other parties
neither for money nor for free;

3. I will observe the Statue of the Georg-August-University Göttingen for ensuring
good scientific practice;

4. I have not applied for corresponding doctoral degree procedures at any other
university in Germany or abroad; the submitted doctoral thesis or parts
thereof were not used in another doctoral degree procedure.

I am aware that incorrect information precludes the admission to doctoral studies
or will later on lead to the discontinuation of the doctoral degree procedures or
to the revocation of the doctoral degree.”

Göttingen, 29.01.2021
Place, Date Sebastian Herzog

	List of Figures
	List of Abbreviations
	Introduction
	Introductory words
	Motivation
	History of simulation technologies
	Challenges in the field of numerical simulations

	Machine learning
	Learning
	Data-driven modelling as an application of machine learning

	Dynamical systems
	Contribution

	Data processing
	Introduction to artificial neural networks and data processing
	Learning as function approximation

	Artificial neural networks
	Convolutional neural networks
	Autoencoder

	Publication: herzogdp
	Conclusions from herzogdp

	Publication: herzogfb
	Conclusions from herzogfb

	Spatio-temporal data prediction
	Introduction to spatio-temporal prediction
	Stochastic modelling
	Stochastic process
	Graphical models

	Spatio-temporal prediction of non-linear dynamics
	Publication: herzogchaos
	Conclusions from herzogchaos

	Publication: herzogcross
	Conclusions from herzogcross

	Publication: herzogkv
	Conclusions from herzogkv

	Summary and outlook

	From data to symbols
	Introduction data to symbols
	Learning as a search

	Learning symbolic representations
	Publication: herzogswarm
	Conclusion from herzogswarm

	Application to experimental data
	Introduction to experimental data application
	Publication: herzogptv
	Conclusions from herzogptv
	Application of the presented methods

	Summary

	Conclusion and outlook
	Conclusion
	Outlook

	Formal definitions for artificial neural networks
	Artificial neural networks
	Network structures
	Multilayer feed-forward network
	Recursive definition
	Network state
	Topological network dynamics

	Theoretical background for graphical models
	Random vector
	Joint distribution
	Density
	Multivariate random variable

	Stochastic independence
	Graph
	(Un)directed graph

	Gaussian process

	References
	Statement of individual contributions

