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Abstract 

Lipid-derived hydrocarbons have many important tasks in land plants. They prevent uncontrolled 

water loss as constituents of the hydrophobic properties of the cuticula. Another important task of 

lipid-derived hydrocarbons is the storage of energy. A common, lipid-derived plant storage compound 

is triacylglycerol (TAG). In woody plants, TAGs are localized in the stem in ray cells and utilized to power 

cambial reactivation in spring. The storage pools in the stem of woody plants are used not only to cope 

with seasonal changes but also to encounter sudden stress events such as wounding, extreme cold and 

drought periods. Regarding climate change, especially drought events are expected more frequently 

and may require enhanced protection against water loss. In woody perennial plants, TAG and wax 

synthesis and their physiological consequences for wood properties and stress resistance are poorly 

understood.   

The main goal of this thesis was to generate transgenic P. x canescens trees with enhanced amounts 

of wax esters and TAGs in vegetative tissues and to investigate the impact of these modifications on 

growth, biomass production, wood properties and physiological performance. Two main hypotheses 

were tested: (a) enhanced amounts of wax esters or TAGs increase the hydrophobicity of wood evident 

from reduced wood swelling, thereby, affecting an important technological feature of wood, and (b) 

the accumulation of wax esters in the cuticula enhances the drought resistance of transgenic trees. 

Therefore, two key genes involved in wax ester and TAG synthesis were expressed in poplar: (i) a wax 

ester synthase derived from the desert shrub Simmondsia chinensis (ScWS) and (ii) the Arabidopsis 

diacylglycerol O-acyltransferase 1 (AtDGAT1), the key enzyme in TAG production via the Kennedy 

pathway. Efforts were undertaken to co-express two further genes to increase the yield of lipids: the 

Marinobacter aquaolei fatty alcohol reductase (MaFAR) in combination with the ScWS and the 

transcription factor WRINKLED1 of Arabidopsis (AtWRI1) in combination with AtDGAT. The genes were 

expressed in poplar under the 35S promoter or the DX15 promoter, the latter being cloned and 

characterized in this study. While the commonly used 35S promoter was expected to lead to 

constitutive overexpression of the target gene, the DX15 promoter was demonstrated to express the 

target gene strongly in wood. Although a co-expression of two genes could not be achieved, 

presumably due to the size of the resulting constructs, several viable transgenic lines of 

Populus x canescens were produced overexpressing ScWS or AtDGAT1. The constitutive 

overexpression of the ScWS under the 35S promoter led to significant physiological changes of the 

transgenic plants. Compared to the wildtype, transgenic plants showed a lower stomatal conductance 

caused by smaller stomata, but similar photosynthesis rates. In long term experiments, the 35S::ScWS 

expressing plants showed slightly decreased water consumption, and enhanced water use efficiency. 

The biomass production was significantly influenced negatively by overexpression of ScWS in young 

plants under only during long term growth under greenhouse conditions. Gas chromatography–mass 
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spectrometry analyses revealed a significant decrease in wax ester precursor molecules on the surface 

of leaves and – to a lower extent – also on the surface of stems. To test the drought responses of the 

ScWS-overexpressing poplar lines, the plants were exposed to mild and severe drought stress 

conditions. Under sudden, severe drought conditions, the transgenic plants showed an enhanced 

vitality compared to WT plants. Under mild drought conditions, the pre-dawn leaf water potential of 

the transgenic plants was slightly lower than that of the wildtype plants. Anatomical studies of wood 

that had been produced during long term mild drought revealed no differences between the transgenic 

lines and the wildtype. Taken together, we speculate that overexpression of the wax ester synthase 

might deplete the precursor molecule pool due to higher wax biosynthesis. The synthesis of other 

compounds being part in the cuticular wax layer (e.g. alkanes) might thus be limited. Since the cuticular 

composition has been demonstrated to be controlled by drought stress in many annual plants, feed-

back mechanisms of an altered cuticular composition might have induced a mild drought stress in the 

transgenic polar plants. This might have resulted in “pre-acclimation” and subsequently in plants with 

higher resistance under severe stress.  

Transformation of poplars with AtDGAT1 yielded only viable plants under the tissue-specific DX15 

promoter but not under the 35S promoter. Previous studies in annual plants suggested that 

overexpression of DGAT1 resulted only in an enhanced accumulation of TAGs when the production of 

the precursor molecules for TAGs were enhanced by co-expression of a second gene, such as the 

transcription factor WRI1 or the enzyme FAR. Therefore, we speculate that a constitutive 

overexpression of AtDGAT1 without enhancing the precursor pool might unbalance the lipid 

metabolism too harshly, thereby, precluding the production of viable lines of 35S::AtDGAT1. However, 

when expressed tissue-specific with the DX15 promoter, the impact might be sufficiently limited to 

prevent effects on the poplar’s physiology. This idea was supported by the observation that the 

presence of lipid droplets in ray cells and other xylem regions of the DX15::AtDGAT1 transgenic poplar 

was not different from that in the wildtype. No significant differences were found in growth rates, 

biomass production and wood formation, but the water uptake of dry wood was significantly 

decreased. 

In conclusion, the overexpression of ScWS led to improved drought performance in poplar and the 

overexpression of AtDGAT1 in developing xylem improved a technological wood feature since the 

swelling of dry wood was diminished compared to the wildtype. In future studies, the impact of these 

transgenic modifications on the composition of the lipid profiles and the wax load on the plant´s 

surfaces have to be further characterized. It will also be important to clarify the links between drought 

signals, stomatal size and wax production. This thesis, thereby, opens new perspectives not only for 

the development of trees with improved wood properties but also for the selection of trees for future, 

drier climatic conditions. 
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Zusammenfassung 

Fette, Wachse und andere lipidartige, langkettige Kohlenwasserstoffe erfüllen in Landpflanzen 

wichtige Aufgaben, z.B. in Form der Kutikula als Schutz vor unkontrolliertem Wasserverlust oder in 

Form von Speicherverbindungen, die Energie und organische Moleküle für den Stoffwechsel liefern. 

Dabei nehmen Triacylglyceride (TAGs) eine Schlüsselstellung ein. Sie finden sich als Energiespeicher in 

Samen, ebenso wie in vegetativen Geweben. Im Holz von Bäumen werden TAGs in den Strahlzellen 

bevorratet, wo sie zur Kohlenstoff- und Energieversorgung für die Reaktivierung des Kambiums im 

Frühjahr essentiell sind. Neben saisonalen Veränderungen werden diese Speicherpools auch 

verwendet, um plötzlichen Stressereignissen wie Verletzungen, extremer Kälte und Dürreperioden zu 

begegnen. Insbesondere Dürreereignisse werden im Zuge des Klimawandels immer häufiger erwartet 

und machen einen verbesserten Schutz vor Wasserverlust unabdingbar. In mehrjährigen Holzpflanzen 

sind die Biosyntheseprozesse für TAGs und Wachse, sowie ihre physiologischen Auswirkungen für die 

Holzeigenschaften und die Stressresistenz jedoch kaum bekannt. 

Das Hauptziel dieser Arbeit war es, transgene P. x canescens mit erhöhten Mengen an Wachsestern 

und TAGs in vegetativen Geweben zu erzeugen und die Auswirkungen dieser Modifikationen auf 

Wachstum, Biomasseproduktion, Holzeigenschaften und Physiologie zu untersuchen. Dabei wurden 

zwei Hypothesen verfolgt: (a) Erhöhte Mengen an Wachsestern oder TAGs erhöhen die 

Hydrophobizität von Holz. (b) In transgenen Pappeln reichern sich Wachsester auf der Cuticula an und 

erhöhen die Trockenstressresistenz.  

Um diese Hypothesen zu testen, sollten folgende zwei Schlüsselgene, die an der Wachsester- und TAG-

Synthese beteiligt sind, in Pappeln überexprimiert werden: (i) eine Wachsestersynthase von 

Simmondsia chinensis, einer Wüstenstaude (ScWS), sowie (ii) die Arabidopsis-Diacylglycerol-O-

Acyltransferase 1 (AtDGAT1), das Schlüsselenzym in der TAG-Synthese. Durch Ko-transformation 

weiterer Gene des Lipidstoffwechsels wurde weiterhin versucht, einer Limitierung der nötigen 

Vorstufen für diese Stoffwechselpfade entgegenzuwirken und somit die Lipidsynthese zu erhöhen. 

Hierzu wurde die Fettalkohol-Reduktase aus Marinobacter aquaolei (MaFAR) in Kombination mit der 

ScWS, sowie der Transkriptionsfaktor WRINKLED1 aus Arabidopsis (AtWRI1) in Kombination mit der 

AtDGAT1 verwendet.  

Die Zielgene (ScWS, AtDGAT1) wurden in Pappeln unter dem 35S-Promotor oder dem in dieser Studie 

klonierten sowie charakterisierten DX15-Promotor exprimiert. Diese Ansätze dienten dazu, neben der 

konstitutiven Expression des Gens unter dem 35S-Promoter in allen Geweben, auch eine spezifische 

Expression im Xylem mittels des DX15-Promoters zu ermöglichen. Die Ko-Expression von zwei Genen 

konnte vermutlich aufgrund der Größe der resultierenden Konstrukte nicht erreicht werden. Jedoch 

wurden zahlreiche, lebensfähige transgene Linien von Populus x canescens hergestellt, die ScWS oder 
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AtDGAT1 überexprimierten. Die konstitutive Überexpression der ScWS unter dem 35S-Promotor 

führte zu signifikanten physiologischen Veränderungen der transgenen Pflanzen. Im Vergleich zum 

Wildtyp wurde eine geringere stomatäre Leitfähigkeit bedingt durch eine kleinere Größe der Stomata 

festgestellt. Die Photosyntheserate der überexprimierenden ScWS-Linien war im Vergleich zum 

Wildtyp nicht beeinflusst. In Langzeitversuchen zeigten die ScWS-überexprimierenden Pappeln einen 

leicht verringerten Wasserverbrauch und eine verbesserte Wassernutzungseffizienz. Hierbei wurde 

auch die Biomasseproduktion durch die Überexpression von ScWS in jungen Pflanzen unter 

Gewächshausbedingungen signifikant negativ beeinflusst. Analysen mittels Gaschromatographie mit 

Massenspektrometrie-Kopplung zeigten eine signifikante Abnahme von Vorstufen für Wachsester auf 

der Oberfläche von Blättern und - in geringerem Maße - auch auf der Oberfläche des Stamms.  

Um die Reaktionen der ScWS-überexprimierenden Pappellinien auf Trockenstress zu testen, wurden 

die Pflanzen mildem, langanhaltendem sowie schwerem, akutem Trockenstress ausgesetzt. Unter 

schwerem, akutem Trockenstress zeigten die transgenen Pflanzen im Vergleich zum Wildtyp eine 

erhöhte Vitalität. Unter langanhaltendem, mildem Trockenstress war das nach Erholung in der 

Dunkelphase vor Tagesbeginn gemessene Wasserpotential („pre-dawn“) der Blätter der transgenen 

Pflanzen geringfügig niedriger als das vom Wildtyp. Die Untersuchung der Holzanatomie ergab keine 

Unterschiede zwischen den transgenen Linien und dem Wildtyp.  

Diese Ergebnisse lassen sich folgendermaßen interpretieren: Eine Überexpression der 

Wachsestersynthase könnte den Pool an Vorläufermolekülen minimieren haben und daher die 

Synthese anderer Verbindungen, die Teil der kutikulären Wachsschicht sind (z. B. Alkane), limitieren. 

Da gezeigt wurde, dass die kutikuläre Zusammensetzung in vielen einjährigen Pflanzen durch 

Trockenstress kontrolliert wird, könnten Rückkopplungsmechanismen einer veränderten kutikulären 

Zusammensetzung ein mildes Trockenstress-Signal in den transgenen Pflanzen induziert haben und 

damit zu einer „Vorakklimatisierung“ der transgenen Pflanzen führen. Diese könnten deshalb zu einer 

höheren Resistenz unter akutem Trockenstress zeigen, hätten aber keinen Vorteil, wenn eine 

Akklimatisierung unter moderatem Stress möglich ist.  

Die Transformation von Pappeln mit AtDGAT1 ergab nur unter dem gewebespezifischen DX15-

Promotor lebensfähige Pflanzen, nicht jedoch unter dem 35S-Promotor. Frühere Studien an 

einjährigen Pflanzen zeigten, dass eine Überexpression von DGAT1 nur zu einer verstärkten 

Akkumulation von TAGs führt, wenn die Produktion der Vorläufermoleküle für TAG durch Ko-

expression eines zweiten Gens wie des Transkriptionsfaktors WRI1 oder des Enzyms FAR gesteigert 

wurde. Daher vermuten wir, dass eine konstitutive Überexpression von AtDGAT1 mittels des 

35S-Promoters ohne Erhöhung des Pools an Vorstufen den Lipidstoffwechsel stark aus dem 

Gleichgewicht bringt und deshalb keine lebensfähigen Linien erzeugt werden konnten. Wenn AtDGAT1 
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jedoch gewebespezifisch mittels des DX15-Promotors exprimiert wird, ist die Wirkung offenbar 

ausreichend begrenzt, um eine zu starke Auswirkung auf die Physiologie der Pflanze zu erzeugen. 

Gestützt wird diese These dadurch, dass sich die Menge der Lipidakkumulation in Strahlzellen und 

anderen Xylemregionen von AtDGAT1-überexprimierenden Pappeln ebenfalls nicht signifikant zur 

Lipidakkumulation von Wildtyp Pappeln unterschied. Weiterhin wurden zwischen DX15::ATDGAT1 

Linien und dem Wildtyp keine signifikanten Unterschiede in Bezug auf Wachstumsraten, 

Biomasseproduktion und Holzbildung gefunden. Die Wasseraufnahme von trockenem Holz zeigte sich 

jedoch signifikant verringert. 

Zusammenfassend lässt sich festhalten, dass die Überexpression von ScWS unter dem 35S-Promoter 

zu einer verbesserten Trockenstressresistenz von Pappeln und die Xylem-spezifische Überexpression 

von AtDGAT1 zu einer verringerten Holzquellung führt. Eine weitergehende Charakterisierung der 

Lipidakkumulation sowie der Wachszusammensetzung und -menge der Kutikula durch die veränderte 

Lipid- und Wachsbiosynthese sollte Gegenstand weitergehender Studien sein. Hierzu ist eine Klärung 

der Zusammenhänge von Trockenstress-Signalen, Größe der Stomata und Wachssynthese notwendig. 

 Die vorliegende Arbeit eröffnet damit nicht nur neue Perspektiven hinsichtlich der Entwicklung von 

verbesserten Holzeigenschaften, sondern auch für Bäume mit verbessertem Trockenstressverhalten 

unter zukünftigen, trockeneren klimatischen Bedingungen. 
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1. Introduction

1.1. The Role of lipids in woody plants

 Waxes and wax-like hydrocarbons: essential for land plants 

Lipids are forming a diverse and essential group of natural compounds involved in many functions in 

the cell, as structural components of the cell membrane, as signalling agents, as precursors for carbon 

skeletons and as an important storage form for energy. A very important role in preventing water loss 

is played by wax esters, neutral and highly hydrophobic lipids accumulated on the plant’s surface in 

the cuticula. The cuticula is formed of cutin, impregnated with waxes and covered with a mixture of 

epicuticular hydrophobic aliphatic wax-like hydrocarbons (Figure 1 B, C) of varying chain length from 

C16 to C36 (Stark and Tian, 2018). 

Figure 1: Schematic overview plant cuticula. A.: Cross section of a leaf of P. x canescens, stained with Fuchsin-
Chryosidine-Astra blue. B.: Schematic overview of the cuticula’s structure. C.: Selection of lipid-derived 
compounds found in the cuticula. Figure derived from Stark and Tian (2018).  

Alongside the transpiration regulation, waxes also contribute to  abiotic and biotic stress defences such 

as UV radiation (Jiang et al., 2009) or drought (Bourdenx et al., 2011). Drought has been demonstrated 

to increase the cuticular wax load (Shepherd and Griffiths, 2006) and alter its composition. For 

example,  in Arabidopsis (Kosma et al., 2009) and in tobacco (Cameron et al., 2006) drought caused an 

increased wax load. In Arabidopsis, the amount of cuticular waxes was found to be increased up to 



Introduction 

2 

80 %, whereas primarily wax alkanes were affected. Interestingly, abscisic acid treatment 

demonstrated only little effects on wax load and cutin composition, compared to a water deficit 

treatment (Kosma et al., 2009).  

In woody species, several studies have been executed regarding the wax quantity and composition of 

different tree species. Maiti et al. (2016) have found a broad variability of total epicuticular wax load 

in several woody species and shrubs; a classification could be drawn in high- (Diospyros texana; 

607.65 μg/cm2), medium- (Quercus polymorph; 199.40 μg/cm2), and low- (Ehretia anacua; 17.58 μg/cm2) wax 

load tree species (Maiti and Rodriguez, 2016). Although the cuticular composition has been screened 

and described in Pinus radiata (Franich et al., 1985) and linked to seasonal variations in temperate 

deciduous tree species such as Fagus sylvatica and Acer pseudoplatanus (Sachse et al., 2009), in tree 

species a comprehensive knowledge is not yet achieved.  

In Populus species, GC-MS studies revealed the most abundant compounds to be odd chain alkanes 

and alcohols; wax esters, however, were not investigated (Dost 2014). More detailed studies regarding 

the cuticula wax composition or overexpression of wax ester synthesis genes in Populus species have 

not been accomplished so far (December 2019). 

 Lipids as energy and carbon storage in perennial plants 

Lipids, predominately triacylglycerols (TAG), are well suited molecules to store energy and carbon due 

to their high density, hydrophobicity and easy dissimilation (Cagliari et al., 2011). Storage TAGs can be 

found in all plant phyla. TAGs consist of three fatty acid residues of varying length and composition 

(Figure 2) and are mostly stored in seeds. Lipids are utilized in seed tissues of many plant species to 

power germination and as a time-limited energy and carbon source.  Recent research focussed mainly 

on the possibility to increase TAG content of seed tissues, as TAGs are a valulable biological resource 

for the production of biofuels, lubricants and food oil production in conventional crop production 

(Durrett et al., 2008). However, the natural production of TAGs is often limited, despite the ability of 

plants for assimilation, accumulation, and dissimilation of TAGs in vegetative tissues. Instead, 

predominately starch is utilized for carbon and energy storage.  

In addition to storage functions of lipids in seed tissues, perennial woody plants must further ensure a 

certain amount of carbon and energy in vital tissues to straddle time periods of no or low 

photosynthetic activity, for examples when coping with seasonal changes between winter and 

summer. In deciduous tree species, the most important vegetative tissue to be maintained by carbon 

supply is the cambium, whose reactivation in spring consumes a lot of energy. According to the main 

storage compounds  found in stems, some tree genera have been classified as “starch -” and others as 

“fat -“ trees already a long time ago (Sinnott, 1918). However, cambial reactivation has been 
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demonstrated to be powered by starch (Giovannelli et al., 2011) and lipids as well (Sauter and Cleve, 

1994), indicating that both compounds play vital roles in the tree´s life.  

Lipids in vegetative stem tissues are accumulated in oleosomes in parenchyma cells but have also been 

found in meristems such as the cambium. In Cryptomeria japonica, the oleosome size in cambial tissue 

during cambial reactivation was demonstrated to be decreased by 75%; the size of lipid droplets 

decreased in ray and fusiform cambium from cambial reactivation to the start of xylem differentiation 

(Begum et al., 2010). In Populus x canadensis (Moench 'robusta'), oleosomes present in ray 

parenchyma cells increased in summer, persisted  during winter and decreased during cambial 

reactivation in spring (Sauter and Cleve, 1994). Microarray analyses of ray cells of Populus x canescens 

revealed 20 genes involved in fatty acid metabolism that were upregulated in early spring, indicating 

an increased glyoxylate cycle activity (Larisch et al., 2012). Therefore, Larisch et al. (2012) speculated 

that carbon derived from dissimilated TAGs might participate in gluconeogenesis underlining the 

carbon and energy storage function of glycerolipids. Also, it has been hypothesized by Paux et al. 

(2004) that precursors or intermediate compounds of lipid dissimilation could take part indirectly in 

cellulose synthesis of Eucalyptus xylem secondary cell walls, forming a possible link to channel carbon 

from lipids towards wood production (Eckert et al., 2019). Similar as to wax esters, the biosynthesis, 

regulation and dissimilation of TAGs in tree species has rarely been studied.  

1.2. Biosynthetic pathways for plant lipids 

 Wax ester accumulation in seeds: Wax ester synthase (WS) 

Wax esters do not only play a role in cuticula formation but have also been discovered as storage 

compounds (Miwa, 1971) in the desert shrub Jojoba (Simmondsia chinensis). In Jojoba, 

monounsaturated wax esters with chain length of C16-C26 (Sham and Aly, 2012) account for about 

50 % of the seed dry weight (Miwa, 1971). Jojoba oil is known for its oxidation stability; Jojoba-derived 

wax esters are utilized in cosmetic industry, as lubricant and have been discussed for replacing 

triacylglycerols for biofuel production (Jetter and Kunst, 2008). Therefore, the jojoba wax ester 

synthase (ScWS) has been used in biotechnological studies (Kalscheuer et al., 2006). 

Wax esters are produced by condensing fatty alcohols with acyl-CoA (Figure 2). The availability of fatty 

acids in planta is limiting the production yield (Iven et al., 2016). Fatty alcohols are synthesized by a 

fatty acyl-CoA reductase (FAR) via reduction of an acyl-CoA (Figure 2). Several different FARs have been 

tested for their productivity to channel fatty alcohols towards the ScWS to improve the overall yield 

(Iven et al., 2016). The ScWS is localized in the ER membrane and FAR is situated in cytosol. Expression 

of fusion constructs containing a WS and a FAR as well as a simple co-expression of WS and FAR both 

led to higher wax ester content (Yu et al., 2018). A FAR from Marinobacter aquaolei (MaFAR) has been 
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found to be a suitable protein with specificity to monounsaturated substrates (Iven et al., 2013), 

providing a suitable two-step gene setup for enhanced wax ester synthesis. 

Figure 2: Production of both wax ester (WE) and triacylglycerols (TAG) require acyl-CoA. The amount of free 
fatty alcohols limits the yield of wax ester. Forming TAG, the diacylglycerol (DAG) pool is mostly believed to 
limit TAG synthesis. Picture derived from Kawelke and Feussner (2015). 

 Biosynthesis of wax esters 

Wax esters are synthesized by acyl-CoA:wax alcohol acyltransferases (WSD), utilizing fatty alcohols and 

acyl-CoA as precursor molecules (Figure 3). Several different WSDs with different metabolic tasks have 

been discovered so far. In Arabidopsis, a complex network of 11 WSDs regulates wax synthesis and 

wax deposition of different tissues such as the surface of flowers, siliques and leaves (WSD1), whereas 

in roots no wax ester increase was found after overexpression of WSD 10 (Patwari et al., 2019). WSDs 

have been shown to affect petal development (WSD11), (Takeda et al., 2014) and several WSDs were 

demonstrated to be affected by ABA and drought stress, with partly opposite effects. For example, 

ABA increased wax deposition on leaves through WSD1 (Cui et al., 2016) but decreased expression of 

WSD10 in roots (Patwari et al., 2019). Some WSDs (WSD 6, 7) were demonstrated not to take part in 

surface wax ester synthesis at all (Patwari et al., 2019). However, WSDs strongly contribute to the outer 

wax layer of plants through synthesis of wax esters (Figure 3).  
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Figure 3: The synthesis pathway of surface wax esters in Arabidopsis. Wax ester synthase (WSD) converts 
primary alcohols (1° alcohols) and acyl-CoA to wax esters. Very long chain fatty acids (VLCFA) are precursors of 
two wax synthesis pathways: the decarbonylation pathway, forming predominately alkanes and the acyl 
reduction pathway, forming primary alcohols and wax esters. Several regulatory transcription factors are 
involved in regulation of surface waxes in Arabidopsis and are mainly linked to osmotic stress (MYB41, Hoang et 
al., 2012), ABA response (MYB30, Zheng et al., 2012) and directly to wax biosynthesis (MYB96, Seo and Park, 
2011). Abbr.: ABCG: ATP-binding cassette transporter G subfamily; ACC: acetyl-CoA carboxylase; ADC: aldehyde 
decarbonylase; AlcFAR: alcohol-forming fatty acyl-CoA reductase; AldFAR: aldehyde-forming fatty acyl-CoA 
reductase; ATP-CL-α(β): ATP citrate lyase α(β) subunit; CER5: ECERIFERUM 5; ECR: enoyl-CoA reductase; HACD: 
hydroxyacyl-CoA dehydrase; KCS: ketoacyl-CoA synthase; KCR: ketoacyl-CoA reductase; LACS: long-chain acyl-
CoA synthetase; LTP: lipid transfer protein; LTPG: GPI-anchored lipid transfer protein; MAH: midchain alkane 
hydroxylase; MAO: midchain alkanol oxidase; MCD: malonyl-CoA decarboxylase; THS: acyl-CoA thiOEsterase; 
VLCFA: very long-chain fatty acid; WS: wax synthase; WSD: bifunctional wax ester synthase/diacylglycerol 
acyltransferase. Picture derived from Li-Beisson et al. (2010). 

 DGAT1 as the major player in TAG synthesis 

The production of both lipidic compounds, wax esters and TAGs, use acetyl-CoA as a precursor (Fig. 2). 

The key step in TAG production (Figure 4) via the Kennedy pathway (Kennedy, 1961) is performed by 

the diacylglycerol O-acyltransferase (DGAT1), which converts diacylglycerol and acetyl-CoA to 

triacylglycerol (TAG, Hobbs et al., 1999). DGAT1 is a ubiquitous enzyme in major eukaryotes and 

specifically in higher plants (Turchetto-Zolet et al., 2011); homologs of the DGAT1 gene family have 

been described in many annual land plants (Bouvier-Navé et al., 2000) and in woody species Vernicia 

fordii (Shockey et al., 2006). In Populus trichocarpa, DGAT1 homologs have been found as well (Wang 

et al., 2013). 
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In Arabidopsis and tobacco, DGAT1 has been discovered to alter oil composition and quantity in seed 

tissues (Katavic et al., 1995, Zhang et al., 2005). Overexpression of DGAT1 under a seed-specific 

promoter led to an increased quantity of TAG in seeds of Arabidopsis (Jako et al., 2001) and 

Brassicaceae species (Savadi et al., 2015; Weselake et al., 2008). As limiting step in TAG synthesis, 

DGAT1 has been demonstrated to be affected by environmental stress. In Arabidopsis seedlings, 

stress-induced DGAT1 expression was increased in response to treatments with either ABA, JA, SA, or 

NaCl as well as under nitrogen deprivation (Kong et al., 2013). The regulation of DGAT1 was identified 

to consist of a synergistic effect of the two transcription factors ABI4 and ABI5, forming a direct link to 

ABA as a regulating “supervisor” (Kong et al., 2013).  

Figure 4: Schematic overview of triacylglycerol (TAG) synthesis in plants. Two different pathways are known to 
interact in order to produce TAG: The Kennedy pathway synthesizes TAG from de novo synthesized diacylglycerol 
(DAG) via the diacylglycerol acyltransferase (DGAT, highlighted in red). In the Lands cycle, a phosphatidylcholine: 
diacylglycerol acyltransferase (PDAT) converts phosphatidylcholine (PC) to synthesize TAG. Both pathways are 
interacting in order to adjust metabolic limitations of precursor molecules. PC: Phosphatidylcholine; LPC: 
Lysophosphatidic acid; LPCAT: Acyl-CoA:lysophosphatidylcholine acyltransferase; FFA: free fatty acids; G3P:; 
Glyceraldehyde 3-phosphate; GPAT: Glycerolphosphate-O-acyltransferase; LPA: Lysophosphatidic acid; LPAAT: 
Lysophosphatidic acid acyltransferase; PA: Phosphatidic acid; PAP: Phosphatidic Acid Phosphatase; AAPT: 
Aminoalcoholphosphotransferase; PDCT: PC:diacylglycerol cholinephosphotransferase; PLD: Phospholipase D. 
Figure derived from Wang et al. (2012).  

In vegetative tissues of Arabidopsis, an increased DGAT1 transcript level was found during leaf 

senescence, presumably to recycle sequestered fatty acids from galactolipid origin (Kaup et al., 2002). 

An enhanced accumulation of TAG in vegetative tissues such as leaves and stem parts was achieved by 

ectopic expression of DGAT1 in Jatropha curcas (Maravi et al., 2016) and tobacco (Nookaraju et al., 
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2014). However, the co-expression of transcription factors (e.g. WRI1, see 1.2.4, or LEC2) was 

mandatory to boost lipid biosynthesis and achieve significant TAG accumulation (Nookaraju et al., 

2014). Therefore, DGAT1 may be a good candidate to stimulate TAG synthesis in vegetative tissues of 

poplar. 

 Transcription factor WRI1: Co-transformation boosts lipid synthesis 

The transcription factor WRINKLED1 (WRI1), an APETALA2/ethylene-responsive element binding 

protein (AP2/EREBP), was demonstrated to be a highly conserved ubiquitous regulator in oil 

accumulating tissues of various plant species (Grimberg et al., 2015, Ma et al., 2013). Firstly described 

in Arabidopsis, malfunctioning WRI1 led to a reduction of up to 80% in seed lipid content (Focks and 

Benning, 1998), indicating its importance in the regulation of genes involved in carbon partitioning to 

TAG synthesis (Cernac and Benning, 2004). Further transcriptomic analyses of overexpressed WRI1 in 

tobacco revealed an upregulation of genes connected to fatty acid synthesis, -degradation and 

phosphoenolpyruvate metabolism (Figure 5), while genes involved in starch degradation were down -

regulated (Grimberg et al., 2015). 

Figure 5: Schematic overview of WRI1 involvement in TAG production. WRI1 is a transcription factor that 
positively regulates genes of fatty acid synthesis and thus increases the pool of free FA-CoA, precursor of TAG 
(indicated in red). Synergistic effects through co-expression with DGAT1 have been observed (1.2.4). E.R.: 
endoplasmic reticulum; FA-CoA: fatty acyl-CoA; FAS: fatty acid synthase; PEP: phosphoenolpyruvate; G6P: 
Glucose-6-phosphate; PC: phosphatidylcholine; DAG: diacylglycerol; DGAT: diacylglycerol acyltransferase; SDP1: 
sugar-dependent 1. Figure derived from Van Erp et al. (2014). 

Since the synthesis of TAG requires acyl-CoA and DAG (Figure 2), these precursor molecules are limiting 

the overall yield of TAG production in various TAG-accumulating species, such as the algae 

Chromera velia (Huerlimann et al., 2014), Arabidopsis (Bates et al., 2009) and traditional crops such as 

soybean (Bates et al., 2009). Because DAG can be formed de novo via the Kennedy pathway or by 
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utilizing PC in the Lands cycle (Figure 4), the preference for the utilized pathways varies in different 

species; in crops like soybean (Bates et al., 2009) or linseed (Dyer et al., 2008), PC-derived TAG is 

preferred. In the woody species Cocoa, de novo produced DAG is preferred (Griffiths and Harwood, 

1991). In Populus species, the preference of the utilized DAG pathway is unknown. Although WRI1 is 

positively affecting the synthesis of FA-CoA and FA upstream (Figure 5) and thus is contributing to both 

TAG-pathways (Kennedy and Lands cycle), this transcription factor also positively regulated LPAAT 

WRI1 of Elais guineensis (Figure 4) (Yeap et al., 2017). When co-transformed with DGAT1, WRI1 had 

synergistic effects on TAG production in seeds of Lepidium campestre (Ivarson et al., 2017a) and in 

leaves of Arabidopsis (Vanhercke et al., 2013), sugarcane (Zale et al., 2016) and tobacco (Nookaraju et 

al., 2014). Therefore, WRI1 is apparently essential to persistently enhance TAG levels in vegetative 

tissues. 

1.3. The role of abscisic acid and cuticular changes in drought stress 

Abscisic acid (ABA) is a phytohormone well known for its extensive functions in plants. Additionally to 

its involvement in developmental procedures in non-stress conditions, e.g. seed and bud dormancy 

and germination (Hilhorst and Karssen, 1992), leaf senescence (Zhao et al., 2016) and seasonality in 

perennial plants (Tylewicz et al., 2018), various abiotic stresses such as soil salinity (Cramer, 2002), cold 

tolerance (Ishitani et al., 1997) and freezing resistance (Chen and Gusta, 1983) are managed by ABA. 

In short-term drought events, ABA was demonstrated to play a major role in maintaining the water 

balance: Increasing ABA levels were linked to the reduction of stomatal conductance and 

photosynthesis yield (Jones and Mansfield, 1970; Negin and Moshelion, 2016) by the regulation of 

AREB (ABA‐Responsive Element Binding protein) transcription factors (Hubbard et al., 2010). In long-

term drought stress conditions, ABA was found to contribute to stress adaptation by affecting the 

morphology of stomata, leading to a reduced size of stomata without affecting the photosynthesis 

capacity (Franks and Farquhar, 2001). Adjustment of the water balance also occurs in other tissues, 

e.g. by the short-term regulation of root water uptake (Kumar et al., 2018) or long-term regulation of 

the root growth (Sharp and LeNoble, 2002). Besides maintaining the water balance in short- and 

long-term conditions by adjustment of transpiration, ABA is also involved in reducing evaporation in 

long-term drought conditions: several studies with different plant species showed increased cuticula 

thickness in response to ABA to decrease water loss in drought stress situations, e.g. tree tobacco 

(Cameron et al., 2006), tomato (Martin et al., 2017) and Arabidopsis (Macková et al., 2013; Patwari et 

al., 2019). The transcription factor MYB96 is demonstrated to connect ABA to changes in cuticular 

composition in long-term drought stress conditions (Seo and Park, 2011). Although the regulation of 

the cuticular composition can be affected by drought stress via ABA, little is known about feed-back 

effects of an altered cuticula towards ABA signalling. Since this study predominately focusses on the 
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effects of an altered cuticular composition by putatively boosting the wax ester synthesis downstream 

of the ABA signalling network, addressing a feed-back mechanism might be of interest. 

1.4. Objectives 

The main goal of this study was to increase lipid-derived compounds, namely wax esters and 

triacylglycerols, in vegetative tissues in the woody species P. x canescens. The phenotypes of the 

different transgenic poplar plants produced in this study were investigated with a focus on (I) drought 

tolerance and (II) lipid accumulation in wood. Therefore, two different promoters have been utilized: 

the ubiquitous 35S promoter to increase lipid-derived compounds in all tissues and the xylem specific 

promoter DX15, to enhance hydrophobic compounds specifically in wood. 

P. x canescens was selected for this study because it is a suitable model organism for wood 

characteristics (Eckert et al., 2019). As a perennial deciduous tree species, poplar requires strong 

regulation of its carbon flux and energy turnover in vegetative tissues, for instance, during seasonal 

changes (Larisch et al., 2012). Since poplar is storing energy in lipid droplets (Sauter and Cleve, 1994), 

it is the model-of-choice to investigate lipid synthesis and accumulation in wood. Populus species are 

further useful as woody model plant because of their fast growth, ease of handling tissue cultures,  

transformation capability and fully sequenced genome, e.g. P. trichocarpa (Tuskan et al., 2006) and 

P. x canescens (Mader et al., 2016). In this study, P. x canescens (P. alba x tremula, clone INRA 717-

1B4) was utilized to produce transgenic plants.  

Two major genes of interest have been chosen for expression in poplar trees: Firstly, a DIACYLGLYCEROL 

O-ACYLTRANSFERASE (1.2.3) of Arabidopsis origin (further referred to as AtDGAT1) to push accumulation 

of TAGs, a common storage compound in wood of poplar trees. Secondly, a WAX ESTER SYNTHASE from 

jojoba (1.2.1, further referred to as ScWS) was used as an alternative transformation target to enhance 

wax accumulation.  

In Populus, wax esters are usually channelled to the cuticula, where they are deposited. Thus, no active 

breakdown in vegetative tissues of poplar plants is expected to take place. To avoid limitation of wax 

ester biosynthesis by lacking precursors, several attempts were done to co-express genes with impact 

on the pool of precursor molecules: the transcription factor WRI1 was used with the intention to boost 

lipid synthesis and channel carbon towards the DGAT1 and FAR to increase free fatty alcohols utilized 

by the WS. As a possible outcome of overexpression of wax ester biosynthetic pathways, an 

accumulation of wax esters in the cuticula was expected. Since the cuticula is a major barrier to avoid 

water loss, the thesis focused on studying on the characterization of growth, biomass and physiological 

performance of P. x canescens under drought conditions.   
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2. Material and Methods 

2.1. Schematic overview on the preparation of binary vectors 

1.) Insertion of 35S promoter into pEntry-A, -B and –C (2.1.13) 

Plasmid preparation, agarose gel electrophoresis and gel extraction (2.1.4) 
Overlap PCR (2.1.13) 
Ligation (2.1.5) 
Transformation in E. coli (2.1.7.2) 
Colony PCR (2.1.8) 
Sequencing (2.1.11) 

 

2.) Insertion of gene of interest (g.o.i.) into entry vector… 

…pEntry-A-35S, -B-35S, -C-35S and E-35S (2.1.13)   …pDONR201 (2.1.14) 

       Add attl1 and attl2 sites to the g.o.i. 
Restriction with BamHI and SalI,   Gel extraction (2.1.4) 
Ligation (2.1.5)     BP reaction (2.1.12) 

 
 

Transformation in E. coli (2.1.7.2) 
Colony PCR (2.1.8) 
Plasmid preparation (2.1.4) 
Sequencing (2.1.11) 

 
 
3.) Insertion of pEntryA, -B, -C, -E and pDONR201 including g.o.i. into binary vector (2.1.16) 

LR reaction (2.1.12) 
Transformation in E. coli (2.1.7.2) 

Colony PCR (2.1.8), testing via PCR 
Plasmid preparation (2.1.4) 

 
 
 
pEntry-A-35S, -B-35S and -C-35S         pEntry-E-35S   pDONR201 

pCAMBIA      pK7WG    pK7WG2 
       pCAMBIA   DX15-pK7WG 

 

Multiple gene constructs     Single gene constructs 

Figure 6: Schematic overview of steps performed for preparation of the different binary vectors. Every single 
step is described in detail in the later chapters, as indicated in brackets (). Main steps are shown in bold and refer 
to the preparation of entry vectors (1), the insertion of genes to the entry vectors (2) and the insertion of entry 
vectors with inserted genes of interest into binary vectors (3). For an overview, a complete list of each binary 
construct produced within this work, see Table 13.  
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 Origin of genetic material 

All genes utilized for the preparation of transgenic plants (Table 1) were a kind gift by Prof. Dr. I. 

Feussner (Department for Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, 

University of Goettingen). 

Gateway entry vectors pEntryA, -B, -C and -E and the binary vector pCAMBIA32.0G were a kind gift by 

Prof. Dr. I. Feussner (Department for Plant Biochemistry, Albrecht-von-Haller-Institute for Plant 

Sciences, University of Goettingen). Gateway entry vector pDONR201 and the pK7WG binary vector 

system were purchased from the manufacturer (VIB, Gent, Belgium). 

The 35S promoters were either obtained from Prof. Dr. I. Feussner (Department for Plant Biochemistry, 

Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen) or from VIB (Gent, Belgium) 

as part of the pK7WG binary vector system (Table 13). The DX15 promoter was prepared within this 

work (2.1.15) from P. trichocarpa plants (stock, Department of Forest Botany and Tree Physiology, 

Goettingen, Germany). 

Table 1: Genes utilized for poplar transformation.  

Genes Organism, origin Referred to Purpose 

WRINKLED1 A. thaliana AtWRI1 transcription factor 

DIACYLGLYCEROL O-
ACYLTRANSFERASE A. thaliana AtDGAT1 enzyme 

FATTY ACYL REDUCTASE Marinobacter aquaeolei MaFAR enzyme 

WAX ESTER SYNTHASE Simmondsia chinensis ScWS enzyme 
 

 Chemicals 

Chemicals were obtained from Roth (Karlsruhe, Germany), if not stated otherwise. 
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 Antibiotics 

To select positively transformed E. coli, Agrobacteria and poplar plants and to neutralize Agrobacteria 

during the transformation (2.2.4), several different antibiotics were utilized as stated in Table 2. 

Antibiotics were obtained from Duchefa (Haarlem, Netherlands). 

Table 2: Antibiotics utilized within this work. Antibiotics are used for selection for vectors or neutralisation of 
agrobacteria. *Ticarcillin and clavulanic acid in a ratio of 15:1 will be further referred to as Timentin® (Duchefa, 
Haarlem, Netherlands).  

Antibiotic 
Concentration 

[µg/ml] Organism Purpose for / of  Vector 

Spectinomycin 50 E. coli selection entry vector pEntry A, -B, -C, -E 
Rifampicin 20 

A. tumefasciens selection 
agrobacteria 

Cromosomal 
Gentamicin 25 Ti plasmid 
Streptomycin 50 binary vector pK7WG2 / pCAMBIA 

Kanamycin 50 
P. x canescens 

selection binary vector pK7WG2 / pCAMBIA 
*Timentin® 200 

neutralisation agrobacteria - 
Cefotaxime 250 

 Plasmid preparation, agarose gel electrophoresis and gel extraction 

Plasmid extraction was done from 2 ml overnight culture of E. coli (37°C, LB-media) with a MiniPrep kit 

(Quiagen, Hilden, Germany).  

Agarose gel electrophoresis of PCR products was done with 1.2 % agarose in TRIS-Acetate-EDTA-buffer 

(TAE) buffer. Ethidium bromide (approximately 3 µl) was added directly to the gel before the agarose 

settled in a gel chamber. DNA samples were loaded with 10 x loading buffer. DNA ladder (GeneRuler™, 

Thermo Scientific, Braunschweig, Germany) was used in a 10x loading dye solution. Electrophoresis 

was performed at 100 – 120 V for 15 to 30 min (Bio-Rad Laboratories, Inc., Hercules, U.S.A). 

 Gel extraction of PCR products was done with the gel extraction kit of Macherey & Nagel (Düren, 

Germany) according to the manufacturer’s protocol. 

 Restriction digests, ligation 

Restriction digests of PCR products and vectors were done in accordance to the manufacturer’s 

protocol of the restriction enzymes (Thermo Scientific, Braunschweig, Germany) up to 16 h at 37°C. 

Table 3: Ingredients of a typical double digestion with HindIII and SalI. 

Ingredients Amount 
Tango Buffer (2X) 8 µl 
Template DNA 10-150 ng 
HindIII 75 U 
SalI 15 U 
H2O up to 40 µl 
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Ligation of restricted PCR products and vectors occurred with a T4 Ligase (Thermo Scientific, 

Braunschweig, Germany) at 16°C for a minimum of 2h or overnight according to the protocol of the 

manufacturer. 

Table 4: Ingredients of a typical T4-mediated ligation (blunt end). 

Ingredients  Amount 
Linear vector DNA 100 ng 
Insert DNA 100-500 ng 
T4 Ligase Buffer (2X) 5 µl 
T4 DNA Ligase 1 U 

 Polymerase chain reaction (PCR) 

A standard PCR for cloning purposes was done with the Pfu® proofreading polymerase (Thermo 

Scientific, Braunschweig, Germany), while Taq® polymerase (Thermo Scientific, Braunschweig, 

Germany) was used for colony PCR and for proof-of-concept (Table 5a). PCR (Table b) occurred in a 

Thermocyler® (Eppendorf, Hamburg, Germany). Annealing temperature was adjusted to the primer 

melting temperature (tm). Extension occurred typically at 60 s/kb of expected amplicon at 72°C.  

Table 5a: Ingredients for PCR with Pfu® and Taq® polymerase. 

Ingredients 
Pfu® polymerase Taq® polymerase 

H20, nuclease free up to 50 µl up to 50 µl 
10 X Pfu® Buffer including MgSO4 5 µl - 
10 X Taq® Buffer - 5µl 
dNTP Mix 0.2 mM each 0.2 mM each 
Forward primer 10 mM 10 mM 
Reverse primer 10 mM 10 mM 
Template DNA 10 - 1000 ng 10 - 1000 ng 
Pfu DNA polymerase 2.5 U 1.25 U 

 

Table 5b: Standard PCR scheme with typical values. 

  Temperature [°C] T [sec] Cycles 
Initial denaturation 95 - 98 240   

Denaturation 95 - 98 60  
Annealing primer dependent 120 25 - 45 X 
Extension 72 60 s/kb   

 72 600  
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 Escherichia coli (E. coli) 

In this work, E. coli strain DH5α (stock, Department of Forest Botany and Tree Physiology, Goettingen, 

Germany) was utilized for cloning procedures. For Gateway-cloning, ccdB–resistant E. coli strains DB3.1 

(stock, department of Forest Botany and Tree Physiology, Goettingen, Germany) and One Shot® ccdB 

Survival™ 2 T1R (Thermo Fisher, USA) were used (Table 6). 

Table 6: Chromosomal genotypes of E. coli-strains used in this work. 

Strain Genotype             

DH5α fhuA2 lac(del)U169 phoA glnV44 Φ80' lacZ(del)M15 gyrA96 recA1 relA1 endA1 thi-1 hsdR17 

DB3.1 gyrA462 endA1 ∆(sr1-recA) mcrB mrr hsdS20 glnV44 (=supE44) ara14 galK2 lacY1 proA2 rpsL20 xyl5 
leuB6 mtl1 

One Shot 2T1r F-mcrA Δ(mrr-hsdRMS-mcrBC) Φ80lacZΔM15 ΔlacX74 recA1 araΔ139 Δ(ara-leu)7697 galU galK rpsL 
(StrR) endA1 nupG fhuA::IS2 

 

Lysogeny broth medium (LB) or 2X yeast-extract tryptone medium (2X YT) was used for E. coli 

cultivation (Table 7). Petri dishes contained LB or 2X YT media including 20 g/L micro agar (Beckton, 

Dickinson and company, Sparks, MD, U.S.A). 

Table 7: Ingredients for 1 L LB – and 2X YT media. 

 amount [g] 
Ingredients LB 2X YT 

Tryptone 10 16 
Yeast extract 5 10 

NaCl 10 5 
Agar 20 20 

 

 Generation of chemically competent E. coli 

E. coli cells from stock culture were cultured in 2 ml LB at 37°C overnight. This starter culture was 

transferred into 200 mL LB, which was then incubated at 37°C for 3 hours on a shaker. The OD600 was 

measured with a spectrophotometer (Eppendorf, Hamburg, Germany). When the OD600 reached 0.3 

to 0.5, the incubation was stopped and the suspension was chilled on ice for 20 min, swirling 

occasionally. Cells were centrifuged at 3000 rpm in a table top centrifuge (Eppendorf, Hamburg, 

Germany) for 10 min at 4°C and afterwards gently re-suspended in 20 ml of precooled 0.05 M CaCl2. 

After an incubation period of 20 min on ice, the suspension was centrifuged at 3000 g for 10 min at 
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4°C. Precipitated cells were re-suspended gently in 8 ml 15 % (v/v) glycerol with 0.05 M CaCL2. The cell 

suspension was aliquoted (200 µl) in reaction tubes, frozen in liquid N2 and stored at -80°C. 

 Transformation of E. coli 

Aliquoted chemically competent E. coli were thawed at 37°C for 3-5 min before approximately 100 ng 

plasmid DNA was added. After incubation for 30 min on ice while swirling occasionally, cells were heat–

shocked at 42°C for 90 sec. After chilling on ice for additional 2 to 3 min, 800 µl YT – media was added 

and the suspension was incubated for 1 h at 37°C on a thermoshaker. After incubation, an aliquot of 

200 µl of the suspension was plated on Petri dishes containing LB media and the required antibiotics 

(Table 2). The remaining suspension was centrifuged in a table top centrifuge (Eppendorf, Hamburg, 

Germany) at 3000 rpm for 2 min, 750 µl of the supernatant was discarded and the rest was re - 

suspended and plated on a second Petri dish. The Petri dishes were then incubated at 37°C overnight. 

 Colony PCR 

E. coli and Agrobacteria were tested for a positive transformation of the desired vectors by colony PCR. 

A colony of previously grown E. coli or Agrobacteria was picked with a sterile toothpick and transferred 

into the PCR mixture, consisting of 12 µl REDTaq® ReadyMix™ PCR Reaction Mix (Merck KGaA, 

Darmstadt, Germany), 1 µl forward primer, 1 µl reverse primer and 10 µl H2O. The primers are listed 

in Table 8. The same toothpick was then used to spread the bacteria onto a new Petri dish with the 

referring selection antibiotics for further incubation. To run the PCR, the initial denaturation of the PCR 

was set to 240 s at 98°C, denaturation was adjusted to 60 s at 98° C. 

 Genomic DNA isolation 

Approximately 100 mg of frozen leaf material was ground in a reaction vessel with a ball mill (MM 200, 

Retsch GmbH, Haan, Germany) utilizing steel beads. Milling occurred two times for 30 s at maximum 

speed. The container holding the reaction tubes was cooled down in liquid N2 to keep the samples 

frozen during milling.  

DNA isolation was done according to the protocol of the DNA isolation kit (Quiagen GmbH, Hilden, 

Germany). Purity and concentration of DNA was measured with a spectrophotometer (NanoDrop 

2000, Thermo Fisher Scientific, Braunschweig, Germany) at A260 and A280. 

 Screening 

Each line was tested by PCR for positive insertion of the gene of interest, before Sanger sequencing 

was performed to test the correct sequence. Plants transformed with the pEntry Gateway system were 

screened only for the gene (e.g. 35S::ScWS K60, Figure 25), whereas plants transformed with the DX15 

promoter were screened for the gene of interest and the promoter DX15 (e.g. DX15::AtDGAT1 K76, 

Figure 7). Primers used for screening purposes are shown in Table 8. To screen for a correct insertion 
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of the AtDGAT1 and promoter, each line was tested for the insertion of the gene (primer 1, 2), the 

sequence from the right border to the 5’-end of promoter (primer 27, 22) and the entire sequence 

from right to left border of the pK7WG construct (primer 27, 56). Plants transformed with DX15::ScWS  

were screened for the insertion of the gene (primer 7, 8) and the sequence from the right border to 

the 5’-end of the promoter (primer 27, 22). 

 

Figure 7: Example for PCR screening for correct insertion of gene (red box), promoter (green box) and insertion 
of pK7WG construct (blue box). A.: PCR screening of plant line K76I. B.: Positive control of plasmid DNA. M: 
Marker, 1: AtDGAT1, 2: promoter DX15, 3: sequence from right border to left border of pK7WG construct. 
Primers are listed in Table 8. 

Table 8: Primers used for screening PCR. 

Designation Number Destination Sequence 
AtDGAT-fwd 1 AtDGAT1 TTTTTGTCGACATGGCGATTTTGG 

AtDGAT-Sal1-rev 2 AtDGAT1 TTTTTGTCGACTCATGACATCGATCCTTTTCGG 

ScWS-fwd 7 ScWS TTTTTGTCGACATGGAGGTGGAG 

ScWS-Sal1-rev 8 ScWS TTTTTGTCGACTCACCACCCCAACAAACC 

22-DX15 Promoter SacI rev 22 DX15 TTTTTGAGCTCAAGATGAAAGATTGTGGCCTC 

pK7WG_F (RB) 27 Vector GCGGGAAACGACAATCTG 

56_p7wg2 56 Vector TTGCGGACTCTAGCATGG  
 

 DNA Verification 

The verification of positive insertion of promoter and genes of interest into entry and binary vectors 

as well as positively transformed plants was done via Sanger sequencing (Microsynth AG, Balgach, 

Switzerland). 

 

  

A B 
         M        1         2         3 1         2         3  M 
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 LR and BP reactions 

LR and BP reactions were conducted with the Gateway® LR Clonase II™ or Gateway® BP Clonase II™ kit 

(Fisher Scientific, Braunschweig, Germany) following the manufacturer’s protocol. 

For LR reaction, 100 ng destination vector and 100 ng of entry vector were combined. Tris-EDTA buffer 

(pH 8.0) was added to an end volume of 8 µl. After adding 2 µl of LR Clonase® II, the reaction mixture 

was incubated for one hour or overnight at 25°C. One µl proteinase K solution (Fisher Scientific, 

Braunschweig, Germany) was added for termination of the reaction at 37°C for 10 min. One µl of the 

reaction was then used for transformation into E. coli. 

For BP reaction, 100 ng donor and 100 ng of the purified PCR product containing the attB-sites was 

used. The reaction was adjusted to 8 µl volume with TE buffer (pH 8.0). Two µl of BP Clonase II™ was 

added and the reaction mixture was incubated at 25°C for 1 hour. The reaction was terminated by 

adding one µl Proteinase K solution (Fisher Scientific, Braunschweig, Germany) followed by incubation 

at 37°C for 10 min. One µl of the reaction was then used for transformation into liquid cultures of E. 

coli. 

 Preparation of pEntry donor vectors 

To introduce the 35S promoter into the pEntry vectors A, B and C, several overlap PCRs were 

conducted. Because the pEntry B-and C donor vectors were intended to be inserted in the mid-section 

of multiple gene constructs (Figure 9), the attachment sites are critical for correct insertion. Therefore, 

a DNA-overhang of 5-10 bp compatible to the 35S promoter as well as a HindIII restriction site were 

amplified fitting to the respective attachment site (attR4 for B, attL3 for C) via PCR. The HindIII 

restriction site was located upstream to the attachment site.  

The 35S promoter was amplified from a pEntryE-35S donor vector. A SalI restriction site was inserted 

downstream of the 35S promoter via PCR as well as a fitting overhang to the attachment sites (attR4 

for B, attL3 for C). Both products were fused by PCR afterwards. 

The final products contained the 35S promoter with the respective Att-site and HindIII recognition site 

at the 5´ end and a SalI recognition site at the 3´- end. Both sites were ligated blunt-end into the pJET 

1.2 vector and were transformed introduced into E. coli (2.1.7.2). Colonies were determined by colony 

PCR (2.1.8) and positively transformed colonies were used for plasmid preparation and sequencing 

(2.1.11). Positive and sequence-verified plasmids were then restricted with HindIII and SalI (Thermo 

Scientific, Germany). The target vectors pEntryB and pEntryC were also restricted with HindIII and SalI. 

Inserts and the respective pEntry vectors were ligated afterwards at 16°C for 16 h on a Thermocyler® 

(Eppendorf, Hamburg, Germany), following the manufacturer´s protocol.  
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The 35S promoter could be directly inserted into the pEntryA-vector, since the attL1 site is present in 

the pEntryE-35S as well. Therefore, the pEntryE-35S was digested with HindIII and SalI and the product 

was ligated (2.1.5) into a prepared pEntryA vector.  

Since the pEntryE vector had already a 35S promoter and the matching restriction sites, this vector 

could be used directly for insertion of the genes of interest.  

The genes of interest were ligated into the multiple cloning site of the finished pEntry vectors. For this 

purpose, the genes of interest as well as the pEntry vectors were restricted with the restriction 

enzymes BamHI and SalI (Thermo Scientific, Braunschweig, Germany) and ligated afterwards as 

described in (2.1.5). Entry vectors were sequenced (2.1.11) before insertion into the binary vector. 

Table 9: Primer used for overlap PCR. 

Designation Purpose PCR on… Sequence 
attR4-HindIII.for HindIII insertion 

pEntryB GGCCATGCAAGCTTCATAGTGACTGGATATGTTGTGTTTTACAG 

attR4-35Sov-rev Overhang CTCTAGCCAATACGCCAACTTTGTATAGAAAAGTTG 

attR4-35S-ov-for Overhang pEntryE-
35S 

TTCTATACAAAGTTGGCGTATTGGCTAGAGCAGCTTG 

35S-SalI-rev SalI insertion ACGGTCGACAGAGATAGATTTGTAGAGAGAGAC 

attL3-HindIII.for  HindIII insertion 
pEntryC 

GGCCATGCAAGCTTAAATAATGATTTTATTTTGACTG 

attL3-35Sov-rev Overhang CTCTAGCCAATACGCCAACTTTATTATACAAAGTTGG 

attL3-35S-ov-for Overhang pEntryE-
35S 

TGTATAATAAAGTTGGCGTATTGGCTAGAGCAGCTTG 

35S-SalI-rev SalI insertion ACGGTCGACAGAGATAGATTTGTAGAGAGAGAC 
 

 Preparation of pDONR201 donor vectors 

To insert the genes of interest into the pDONR201 entry vector, attl1 and attl2 sites were added via 

PCR to the gene of interest. Amplicons of the gene including the attachment sites were then inserted 

to the pDONR201 entry vector via BP reaction, as described in (2.1.12). Entry vectors were sequenced 

before insertion into the binary vector (2.1.11). 

Table 10: Primers used for BP reaction of the genes of interest into the pDONR201 entry vector. The BP 
attachment sites are highlighted in bold type font. 

Purpose Designation Amplicon Sequence 

Cloning 

AtDGAT-fwd 
attL1/attL2 

GGGGACAAGTTTGTACAAAAAAGCAGGCTTAGTCGACATGGCGATTTTGG 
AtDGAT-rev GGGGACCACTTTGTACAAGAAAGCTGGGTTCTCATGACATCGATCCTTTTCGG 
AtWRI1-fwd 

attL1/attL2 
GGGGACAAGTTTGTACAAAAAAGCAGGCTTAGTCGACATGAAGAAGCGC 

AtWRI1-rev GGGGACCACTTTGTACAAGAAAGCTGGGTTCTCAGACCAAATAGTTACAAGAAACC 
MaFAR-fwd 

attL1/attL2 
GGGGACAAGTTTGTACAAAAAAGCAGGCTTAGTCGACATGGCAATCCAGC 

MaFAR-rev GGGGACCACTTTGTACAAGAAAGCTGGGTTCTCATGCCGCTTTTTTACGTTG 
ScWS-fwd 

attL1/attL2 
GGGGACAAGTTTGTACAAAAAAGCAGGCTTAGTCGACATGGAGGTGGAG 

ScWS-rev GGGGACCACTTTGTACAAGAAAGCTGGGTTCTCACCACCCCAACAAACC 

Sequencing SeqL-A pDONR201 TCGCGTTAACGCTAGCATGGATCTC 
SeqL-B GTAACATCAGAGATTTTGAGACAC  
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 Preparation of vector pK7WG-DX15 

DNA extracts (2.1.9) of three individual P. trichocarpa plants were used to amplify the promoter region. 

To insert the promoter into the pK7WG binary vector, the restriction sites HindIII (3’) and SacI (5’) were 

added directly via PCR. Amplification of the DX15 promoter region from genomic DNA was done with 

a hot start PCR including BSA and Taq®-polymerase (Table 11 and Table 12). PCR was conducted with 

100 ng DNA. The amplicon was restricted and ligated upstream of the attR1 attachment site of the 

pK7WG binary vector. The genes of interest were then added to the finished vector via LR reaction () 

of pDONR201-entry vectors. 

 

Figure 8: Cloning scheme for DX15-pK7WG. A.: The binary vector pK7WG was restricted with SacI and BamHI 
upstream of the attachment site. B.: DX15 promoter region was amplified from genomic DNA of P. trichocarpa, 
including the restriction sites Sac I and Bam HI C.: DX15 promoter region was ligated into binary vector pK7WG. 

Table 11: Ingredients for the PCR of the promoter region DX15. 

Ingredients Volume (µl) Conc. of stock solution 
H2O* (nuclease free) 27 - 
Genomic DNA 2 10 – 1000 ng 
Primer fwd. 1 10 nM 
Primer rev. 1 10 nM 
BSA 2.5 10% (100 mg/mL) 
Taq ® buffer (10X) 5 10 x  
MgCL2 6 25 mM 
dNTPs 5 2 mM 
Taq® polymerase 0.5 1 U 
   

*Nuclease free water was purchased from AppliChem, Darmstadt, Germany. 
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Table 12: Hot start PCR setup for promoter amplification. 

Step Temp [°C] T [min] Remarks Cycles 
Hot start 99 5 Pre-denaturation  

Cooling 72 pause loading Taq® polymerase  

Initial 94 5     
Denaturation 94 0.5   

Annealing 60 1  35 X 
Extension 72 2     

Final 72 5   

Cool 4 ∞   

 Preparation of binary vectors 

Binary vectors used for plant transformation were cloned by utilizing the Gateway® system. Entry 

vectors pEntryA,-B,-C and -E, as well as pDONR201, were used as donor vectors (Figure 11).  

 

Figure 9: Gateway cloning scheme of binary vectors used in this work. A.: Multiple gene constructs were cloned 
by utilizing pEntry vectors containing a 35S promoter and the gene of interest into a pCAMBIA binary vector. B.: 
Single gene constructs were made by utilizing pEntry-E entry vector containing a 35S promoter and the gene of 
interest, inserted into the pK7WG or pCAMBIA binary vector. C.: Single gene constructs with the DX15 promoter 
were exclusively made with the pDONR201 entry vector containing the gene of interest. 

The pEntry donor vector system was used to insert the 35S promoter and gene of interest collectively. 

This system was used predominantly to produce multiple gene constructs in the pCAMBIA vector 

(Figure 9A), but as well for single gene constructs in the pK7WG vector (Figure 9B) by using the pEntry-E 

entry vector. The pDONR201 vector system was exclusively used to introduce genes into binary vectors 

that contained already a promoter, such as the pK7WG2 or the DX15-pK7WG (Figure 9 C). For a 

complete overview about all produced binary vectors, see Table 13.  
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Table 13: Composition of all binary constructs prepared for agrobacteria mediated transformation. 15 
constructs have been produced with different compositions of promoters, gene setups, entry and binary vectors. 
Two different 35S promoter were used (Figure 11). The 35S promoter in constructs K 30 to K 60 was inserted to 
the pEntry entry vector system and was obtained from Prof. Dr. Feussner (Department for Plant Biochemistry, 
Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen). The second 35S promoter was 
obtained from the pK7WG2 vector system from VIB (Gent, Belgium), as indicated with an asterisk. The DX15 
promoter was prepared in this work (2.1.15). 

Promoter Gene setup Binary vector Entry vector Construct No. 

35S 

AtWRI1, AtDGAT1 pCAMBIA 23.0G pENTRY K 30 
AtWRI1, MaFAR, ScWS pCAMBIA 23.0G pENTRY K 32 

MaFAR, ScWS pCAMBIA 23.0G pENTRY K 31 
AtWRI1 pCAMBIA 23.0G pENTRY K 61 

AtDGAT1 pCAMBIA 23.0G pENTRY K 62 
ScWS pCAMBIA 23.0G pENTRY K 64 

AtWRI1 pK7WG pENTRY K 57 
AtDGAT1 pK7WG pENTRY K 58 

ScWS pK7WG pENTRY K 60 

35S* 
AtDGAT1 pK7WG2 pDONR201 K 70 
MaFAR pK7WG2 pDONR201 K 71 
ScWS pK7WG2 pDONR201 K 72 

DX15 
AtDGAT1 pK7WG-DX15 pDONR201 K 76 
MaFAR pK7WG-DX15 pDONR201 K 77 
ScWS pK7WG-DX15 pDONR201 K 78 
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Figure 10: Binary vectors used for single (A.: pK7WG, B.: pK7WG2, C.: pK7WG-DX15) and multiple gene 
transformation (D.: pCAMBIA 23.0G).  

 

 

A B 

C D 
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Figure 11: Exemplary ScWS binary expression vector pK7WG. A.: pK7WG with promoter 35S from pENTRYE, B.: 
pK7WG2 with internally promoter p35S, C.: pK7WG with promoter DX15.  

 

 

 

A B 

C 
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2.2. Schematic Overview on the Production of transgenic P. x canescens lines 

pEntry-A-35S, -B-35S and -C-35S         pEntry-E-35S   pDONR201 

 

pCAMBIA      pK7WG    pK7WG2 
       pCAMBIA   DX15-pK7WG 
 

Multiple gene constructs (Figure 9 A)   Single gene constructs (Figure 9 B) 

 

 

4.) Transformation of binary vectors in Agrobacteria (2.2.1.2)  

 Testing via Colony PCR (2.1.8) 

5.) Agrobacteria mediated transformation of Populus x canescens (2.2.4) 

 Cultivation of transgenic lines (2.2.2) 
 Genomic DNA isolation (2.1.9)  
 Sequencing, testing (2.1.11) 
  
6.) Cultivation of viable lines of transgenic Populus x canescens on soil (2.3.1) 

Figure 12: Schematic overview on the production of transgenic poplar lines. Each single step is described in 
detail in the later chapters, as indicated in brackets (). Main steps are shown in bold and refer to the 
transformation of binary vectors in Agrobacteria (4), the Agrobacteria mediated transformation of poplar plants 
(5) and cultivation of viable lines of transgenic poplar plants (6). 

 Agrobacterium tumefaciens (Agrobacteria) 

Agrobacteria strain GV3101 pMP90 was utilized for transformation of poplar plants. This strain 

contains a chromosomal rifampicin resistance and a gentamycin resistance on its Ti-plasmid and can 

thus, be selected by adding gentamycin (25 mg/L) and rifampicin (20 mg/L) to the cultivation medium. 

YEB–medium adjusted to a pH of 7.2 was used for Agrobacteria cultivation (Table 14). Petri dishes 

contained additionally 20 g/L micro agar (Beckton, Dickinson and company, Sparks, MD, U.S.A.). 
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Table 14: Ingredients for 1 L YEB-media. 

Ingredients Amount [g/l] 
Beef extract 5 

Yeast extract 1 
Peptone 5 
Sucrose 5 
MgSO4 0.3 

Agar 20 

 Generation of chemically competent Agrobacteria 

Two ml of Agrobacteria overnight cultures including antibiotics were incubated at 28°C on a shaker 

and used as the starter culture. The starter culture was used to inoculate a 50 ml vial containing YEB 

media (Table 14), without antibiotics. After inoculation, the culture was incubated up to 4 h at 28°C in 

a shaker at 100 rpm (Sanyo Gallenkamp PLC, Loughborough, UK) until the solution reached an OD600 of 

approximately 0.5. Cells were then precipitated by centrifugation at 4000 rpm and at 4°C (J2-HS, 

Beckman Coulter, Brea, USA) for 5 min. The supernatant was discarded; precipitated cells were re - 

suspended in 10 ml of precooled 0.15 M NaCl solution and centrifuged again at 4000 rpm, at 4°C for 5 

min. After being re-suspended in 1 ml precooled 75 mM CaCl2, competent cells were aliquoted (200 

µl) in reaction tubes and stored at -80°C. 

 Transformation of chemically competent Agrobacteria 

Aliquots of competent Agrobacteria (200 µl) were thawed in an ice bath. One µl containing 

approximately 100 to 1000 ng binary vector DNA was added and the cells were then kept on ice for 5 

min while being stirred occasionally. Aliquots were then transferred to liquid N2 for 3 min and were 

then thawed in a water bath at 37°C. Further incubation occurred at 37°C for 5 min. 800 µl of YEB 

medium without antibiotics was added to the cell suspension. The cells were then incubated at 28°C 

on a shaker (Eppendorf, Köln, Germany) for 2 hours. After centrifugation for 2 min at 5000 rpm at RT, 

the cells were re-suspended and plated on two Petri dishes containing YEB agar with the required 

antibiotic (Table 2). 
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 Sterile plant cultures 

P. x canescens (P. alba x tremula, clone INRA 717-1B4) microcuttings were cultivated in sterile 

conditions in long day (16 h photoperiod) conditions (fluorescent lamps L18W/840, Osram, Munich, 

Germany) at 22°C in an air-conditioned breeding room utilizing glass jars (Weck® GmbH & Co. KG, 

Germany) on different cultivation media (Table 15). Jars were sealed with gas permeable fleece rings 

(Paramoll N260/200, Mank® GmbH, Germany). Cover and sealing were fixed with gas permeable tape 

(Leucopor®, BSN Medical, Germany). Plantlets were grown for approximately 4 to 6 weeks before 

propagation or transformation. 

Plants from sterile cultures were cut and leaves were discarded. The remaining stem was cut into 6 to 

7 segments, each about one to two cm length with one or two internodes. Up to six segments were 

transferred into one new cultivation jar. 

 Media for plant cultivation and transformation 

Half strength Murashige & Skoog (Murashige and Skoog, 1962) (½ MS including Vitamins, Duchefa, 

Haarlem, Netherlands) with 2% sucrose (Roth, Karlsruhe, Germany) was used as basic medium for 

cultivation and transformation of the plants. For stock cultures, Kobe agar was used (Roth, Karlsruhe, 

Germany). 

For the transformation process, plant agar (Duchefa, Haarlem, Netherlands) was used. The pH was 

adjusted to 5.8 prior autoclaving. Thermo-sensitive agents, such as the cell membrane stabilizer 

Pluronic® F-68 (AppliChem, Darmstadt, Germany), the growth regulator Thidiazuron and antibiotics 

(Table 2) were sterile filtered with syringe sterile filter (Sarstedt, Nürnbrecht, Germany) and added 

after autoclaving. 

Table 15: Media used for poplar cultivation and transformation. 

Media /  
Ingredients 

Culture  
(CM) 

Co-incubation 
(K) 

Regeneration 
(Reg) 

Selection  
(Sel) 

Selection  
(Sel-M) 

MS mixture ½ [g/L] 2.2 2.2 2.2 2.2 2.2 

Sucrose [%] 2 2 2 2 2 

pH 5.8 5.8 5.8 5.8 5.8 

Kobe agar [g/L] 7 -   -  -  - 

Plant agar [g/L] -  7 7 7 7 

Pluronic F-68 [%] -   - 0.01 0.01 - 

Thidiazuron [mg/L] -   - 0.022 0.022  - 

Cefotaxim [mg/L]  - -  150 150 - 

Timentin [mg/L] -   - 200 200 - 

Kanamycin [mg/L] -  -   - 50 50 
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 Agrobacteria mediated transformation of Populus x canescens 

Agrobacteria mediated transformation of poplar plants was done according to the protocol by 

(Bruegmann et al., 2019) and optimized by (Muhr et al., 2016). Further optimization is described below. 

A schematic overview of the transformation process is shown in Figure 13.  

Agrobacteria transformed with the binary vector of choice were grown in 4 ml YEB medium containing 

the appropriate antibiotics (Table 2), at 28°C in darkness and were shaken at 90 rpm. Two ml of this 

starter culture were used to inoculate 100 ml YEB medium, pre-warmed to 28°C and without 

antibiotics. Incubation of the bacteria occurred in darkness at 28°C on a shaker at 90 rpm for about 3 

to 5 hours. When an OD600 of 0.3 to 0.5 was reached, 20 µM of 3´,5´-dimethoxy-4´-

hydroxyacetophenone (Sigma Aldrich, Darmstadt, Germany) was added to the cell suspension and the 

incubation was continued for another 30 min.  

 

Figure 13: Schematic representation of poplar transformation. A.: Plant stems from sterile culture are cut into 
parts of 3-5 mm and transferred into Agrobacteria solution. B.: Stem sections are placed on Petri dishes 
containing co-incubation medium and Agrobaceria overgrow stem parts. C.: Agrobacteria are removed by 
several washing steps and positively transformed plantlets start to shoot from calli. D.: Plant lines are 
distinguished depending on the origin of the callus and transferred onto culture media in cultivation jars. 

Poplar plantlets were sterile-cultivated for a maximum of four to five weeks prior transformation. 

Leaves were removed and stem sections without petioles were cut into parts of 4 – 6 mm length. Stem 

sections were temporarily stored in sterile tap water before transferred into the Agrobacteria 

suspension. Incubation occurred under dark conditions at 120 rpm and 28°C for 30 min. The stem 

sections were then drained with sterile filter paper and transferred on Petri dishes containing co-

incubation medium (K, Table 15). Co-incubation occurred in dark conditions at 25°C for four to five 

days until stem sections were overgrown with Agrobacteria. 
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The overgrown stem sections were washed with 150 ml sterile tap water in an Erlenmeyer flask for 3 

to 4 min by manually shaking the flask. Stem sections were drained on sterile filter paper. These 

washing steps were repeated three times, 2 to 3 min each, with 400 µg/ml ticarcillin clavulanate 

(Duchefa, Haarlem, Netherlands) in 150 ml sterile tap water. Sterile tap water without ticarcillin 

clavulanate was used for the last washing step.  

Stem sections were then transferred to Petri dishes containing selection medium. One reference dish 

with regeneration medium (Reg) was used as regeneration control (Table 15). Further cultivation 

occurred for four to six weeks at 22°C in long day conditions with 16 h of light, but at a low light 

intensity of approximately 10 µE m-2 s-1 (fluorescent lamps L18W/840, Osram, Munich, Germany) and 

approximately 20 to 40 % air humidity.  

When shoots were observed, stem sections were placed in 370ml Weck jars with selection medium 

(Sel, Table 15) and cultivated at a low light intensity of approximately 20 µE m-2 s-1. Rooting plants could 

be observed after five to eight weeks, indicating a successful transformation. These plants were 

grouped in lines, cut, and transferred to Weck jars (580 ml) with selection media (Sel-M). When stable 

growth and rooting of the plantlets was observed after four to eight weeks, positive transformation 

was tested via Sanger sequencing (Microsynth Seqlab, Göttingen, Germany) by utilizing DNA extracted 

from one leaf per line. Further cultivation was done on culture medium (CM) without antibiotics.  
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2.3. Overview on the phenotyping of transgenic plants 

6.) Cultivation of viable lines of transgenic Populus x canescens on soil (2.3.1) 

 RNA isolation, cDNA synthesis (2.3.2) 
 Expression analysis by quantitative Real Time PCR (2.3.3) 
 
7.) Phenotyping of transgenic plants 

Physiological measurements: 
Predawn leaf water potential, Photosynthesis and  
Stomatal conductance (2.3.4) 

 
Growth and Biomass (2.3.5) 
 
 
 

8.) Drought response of 35S-ScWS plants 
 

 
35S::ScWS-OE plants (K 60)      DX15::ScWS  (K 78)  

DX15::AtDGAT (K 76) 
 
 
Exp. 1 (2.3.9)  Exp. 2 (2.3.10)  Exp. 3 (2.3.11)  Exp. 4 (2.3.12) 
 

Drought response of ScWS-OE plants 
    

Microscopy of  Anatomy of   Expression analysis (2.3.3); 
   Stomata (2.3.6.3)  wood (2.3.6.2)  wood tissue specificity 
    
   Wood anatomy (2.3.6.2)    Wood anatomy (2.3.6.2) 
 
   Water uptake wood (2.3.7)   Wood swelling (2.3.7) 

 
 
 

  Figure 14: Schematic overview on the phenotyping of transgenic poplar lines. Every single step is described in detail in 
the later chapters, as indicated in brackets (). Main steps are shown in bold and refer to the cultivation of viable lines 
(6), the general phenotyping of all transgenic plants (7) and drought stress experiments of 35S::ScWS-OE plants in the 
different experiments 1 - 3 (8). 

Figure 15: Schematic overview on the phenotyping of transgenic poplar lines. Every single step is described 

in detail in the later chapters, as indicated in brackets (). Main steps are shown in bold and refer to the 

cultivation of viable lines (6), the general phenotyping of all transgenic plants (7) and drought stress 

experiments of 35S::ScWS-OE plants in the different experiments 1 - 3 (8). 
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 Plant cultivation on soil 

Six to eight weeks old plants from sterile culture were potted in peat containing soil (Frühstorfer Erde 

Type N, HAWITA® Gruppe GmbH, Vechta, Germany). Plants were adapted to greenhouse conditions 

by a small transparent beaker or plastic bag slipped over each plant. After two weeks, the beaker or 

plastic bag was gradually uncovered (Figure 19) for one additional week until the plants were exposed 

without cover. No additional artificial light was applied during the acclimation process. After 

acclimation, plants were grown at temperatures from 18 °C to 27 °C (summer period) at an air humidity 

of 50 to 80 % with additional light (PAR of 150 μmol photons m-2 s-1) of either fluorescent lamps 

(3071/400 HI-I, Schuch GmbH, Worms) or LED lights (Schuch GmbH, Worms) at a 16 h photoperiod. 

 RNA isolation and cDNA synthesis 

Frozen samples of leaf (L), developmental xylem (DX) and bark (B) were ground with a steel ball mill 

(MM 200, Retsch GmbH, Haan, Germany). A maximum of 150 mg material per sample was used. Milling 

occurred two times for 30 s for L material and three times for B and DX materials at maximum speed. 

The container holding the samples and the steel ball were cooled down in liquid N2 to keep the samples 

frozen during milling. 

RNA isolation was done according to the method of Chang et al. (1993). The concentration and purity 

of isolated RNA was determined with a spectrophotometer (NanoDrop 2000, Thermo Fisher Scientific, 

Braunschweig, Germany) at A260 and A280. An A260/A280 ratio of ≥ 2.0 was considered as a sufficiently 

pure sample. 

For cDNA synthesis, RNA samples were aliquoted (2 μg) and treated with the Ambion® Turbo 

DNAfree™ kit (Life Technologies, Carlsbad, CA, USA) according to the manufacturer’s instructions. 

Aliquots were then transcribed to cDNA with the RevertAid First Strand cDNA Synthesis Kit (Thermo 

Fisher Scientific, Braunschweig, Germany), using oligo(dT)-primers, following the instructions of the 

manufacturer. 

 Quantitative Real Time PCR (qRT PCR) 

Gene-specific primers (Table 17) were designed using PerlPrimer version 1.1.21 

(http://perlprimer.sourceforge.net/) and Geneious®, version 11.0.3 (https://www.geneious.com/, 

Auckland, New Zealand) and were checked in silico with the BLAST–tool of the URGI database 

(https://urgi.versailles.inra.fr/blast/) on the P. x canescens genome. Several primer pairs were tested 

at different concentrations by RT-PCR to ensure primer specificity and the primer efficiency. One 

appropriate primer pair per gene was chosen for the analyses. 
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QRT PCRs were performed with three technical replicates per sample. Plate setup, primer efficiency 

and Ct–values were designed and calculated with “qPCRsoft”, version 3.4.6 (Analytik Jena, Jena, 

Germany). 

QRT PCR was conducted in a Real-time Thermal Cycler (qTOWER3 G touch, Analytik Jena, Jena, 

Germany) in a reaction volume of 20 µl. One reaction contained 10 μl SYBR Green (Roche Diagnostics, 

Mannheim, Germany), 2 μl of forward and reverse primer (Table 17) at a concentration of 10 μM each, 

1 μl nucleic free water and 5 μl cDNA-solution in a dilution of 1:30 or 1:40. After each PCR, a melting 

curve was measured with an increment of ∆T = 1°C from 65 °C to 95°C (Table 16). 

Table 16: qRT PCR conditions. 

Temp [°C] T [sec] Remarks Cycles 
95 120 Initial incubation   
95 10   
55 10  45 X 
72 20 Scan   

60 - 95 15 s, ∆ T 1°C Melting curve  
 

Table 17: Primers used for qRT PCR. 

Purpose Designation Gene Sequence 

Reference A_Ref2_FW Potri.012G141400 / PtrPPR_2 ATCGTTCCAAGTCAAGTATGTG 

A_Ref2_RW TCAAGGGAGCAACTTTACAG 

Reference C_Ref1_FW Potri.015G001600 / PtrRpp14 GCAATGTGAGGAGTTTAGGG 

C_Ref1_RV TATTAAATGTCTGTGCTGTAGTGTG 

Expression 68_WS_860F ScWS TGAAGAAGGCGGTTTCAGGC 

69_WS_942R TCCAGTCACCATCACGAACC 

Expression 76_DGAT_249F AtDGAT1 TGGTGGCGATAATAACGGTGG 

77_DGAT_344R CGATGAGCTGGAACCGACG 
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 Predawn leaf water potential, photosynthesis and soil moisture measurements 

Prior predawn leaf water potential and photosynthesis measurements, leaves were numbered starting 

from the top of the plant. On each plant, the same leaf position was taken for the measurements to 

ensure a consistent position and age. Furthermore, plants were clustered in a series of four to five 

plants in total, consisting of one or two wildtype plants and three to four different lines of transgenic 

plants. This pattern was repeated with different plants to minimize positional effects. Up to five groups 

and therefore up to five biological replicates per measurement were included. Daytime measurements 

were conducted from 08:30 am to 01:00 pm, measurements at night from 03:00 am to approximately 

30 min before sunrise. 

The predawn leaf water potential was measured according to the method of Scholander et al. (1964) 

with the SKPM 1400/40 pressure chamber (UP GmbH, Ibbenbüren, Germany). For this purpose, the 

leaf was inserted in the pressure chamber with the petiole outside. Pressure was applied with 

compressed air until liquid appeared at the surface of petiole. The applied pressure was recorded with 

a manometer.  

Photosynthesis (Figure 16) and stomatal conductance were measured with a multiphase Flash™ 

Fluorometer (LI-6800, LI-COR, Lincoln, U.S.A.). After attachment of the chamber to the leaf, a short 

acclimation phase of about 30 to 40 sec was conducted. Afterwards, three replicate measurements 

were taken within three minutes. The light intensity was set to 800 µE m-2 s-1 for day measurements 

and for night measurements (respiratory measurements, stomatal conductance) the light source was 

switched off. 

The water use efficiency (WUEinstantaneous) was calculated according to equation ( 2 )( 1 ): 

 𝑊𝑊𝑊𝑊𝑊𝑊(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) =
𝐴𝐴𝑁𝑁𝑁𝑁𝑁𝑁 𝑝𝑝ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠

𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
 ( 1 ) 

 

Soil moisture (m³/m³) was measured by determining the soil resistivity with the HH2 device quipped 

with the ML2x sensor (Delta-T Devices Ltd., Cambridge, U.K.). 
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Figure 16: Photosynthesis measurement with the LI-6800 (LI-COR) system of a defined leaf from the top. 

 Growth and Biomass 

 The stem diameter was measured in intervals of five to eight days at approximately 1 cm above the 

soil surface with a digital calliper (Tchibo GmbH, Hamburg, Germany). The stem height from the 

bottom to the apex was measured with a folding ruler in intervals of two to three days.  

At the harvest, the fresh weight of each plant tissue (leaves, stem, roots) was measured with a balance 

(Sartorius AG, Göttingen, Germany). Aliquots of plant tissues were frozen directly in liquid N2 and other 

aliquots were dried at 60°C in a drying oven (Memmert GmbH + Co. KG, Schwabach, Germany) to 

determine dry weight. 

The total leaf area was calculated on the basis of three leaves per plant collected at upper, middle and 

bottom position. Leaves were scanned and the area measured with ImageJ (https://imagej.nih.gov/ij/, 

National Institute of Health, U.S.A.). The leaf area per plant was calculated according to equation ( 2 ). 

 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (𝑐𝑐𝑚𝑚2)  

=
𝑑𝑑𝑑𝑑𝑑𝑑 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 (𝑔𝑔)𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∗

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 (𝑐𝑐𝑚𝑚2)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑑𝑑𝑑𝑑𝑑𝑑 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 (𝑔𝑔)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 

( 2 ) 

 Microscopy 

Microscopy was conducted with a Zeiss axio observer z1 inverted microscope (Carl Zeiss Jena GmbH, 

Jena, Germany) connected with a Zeiss AxioCam MRc camera (Carl Zeiss Jena GmbH, Jena, Germany). 
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For picture processing, the manufacturer’s program was used (AxioVision 40, version 4.8.2.0, Carl Zeiss 

MicroImaging GmbH, Jena, Germany). 

 Staining solutions 

Staining was done with Sudan III, Fuchsin-Chryosidine-Astra blue (FCA) or Nile red staining solution. 

For an overview of different staining on poplar stem cross sections, see Figure 17.  

Sudan III 

6 g Sudan III was dissolved in 100 ml of 96% EtOH and exposed in an ultrasonic bath for 10 min. After 

filtration through filter paper, 50 ml of 100 % glycerol was added. Staining occurred for 45 to 90 sec 

directly on the slide. Then the samples were washed with a solution of 50% glycerol in EtOH 6 times 

for approximately 5 s. 

Fuchsin-Chryosidine-Astra blue (FCA) 

Ingredients (Table 18) were added to 100 ml of H2O (bidest). After the ingredients were solved, 2 ml 

acetic acid was added to the solution. Staining occurred for 45 to 90 sec directly on the slide. Samples 

were washed afterwards 3 to 5 times for approximately 5 s with tap water. 

Table 18: Ingredients of Fuchsin-Chryosidine-Astra blue (FCA) staining solution. 

Ingredients 
amount 

[g] 
New fuchsin (C.I. 42520) 0.01 
Chryosidine (C.I. 11270) 0.015 
Astra blue (C.I. 48048) 0.125 
H2O (bidest) 100 ml 
Acetic acid 2 ml 
  

Nile red 

25 mg Nile red was solved in 50 ml of 2 % sulfuric acid solution and boiled for 5 min while being stirred. 

The solution was cooled before being filtered through filter paper. Staining occurred for 45 to 90 sec 

directly on the slide. The samples were washed with a solution of 70% glycerol in H2O 1-2 times for 

approximately 5 s. 

 Wood preparation 

Wood from a defined stem height (5 cm above root collar) was either fixed in FAE fixative (2% 

formaldehyde, 5% acetic acid, 60% EtOH solution) or frozen in liquid N2 and stored at -20°C. Cuttings 

of fresh material (25 µm thickness) were made in a freezing microtome (2800 FrigoCut N, Reichert-

Jung, Schalksmühle, Germany) and the sections were directly transferred on a microscopic slide. 

Staining was done immediately afterwards on the slide. 
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Figure 17: Exemples of cross sections of a poplar stem with different stainings. A.: FCA. B.: Sudan III. C.: Nile 
red. D.: Wood anatomy of poplar plants. C: cortex, P: phloem, Pf: phloem fibers, vC: vascular cambium, Dx: 
developing xylem, Mx: mature xylem, Rp: ray parenchyma, Pi: pith. 

 Leaf preparation, stomata 

Leaves were sampled and processed freshly. Leaf hairs at the bottom side were removed carefully with 

a sticky tape (tesakrepp®, tesa SE, Norderstedt, Germany) and leaf disks were punched out. Leaf disks 

were transferred onto a slide and covered with tap water and immediately examined microscopically. 

 Wood swelling 

Defined stem parts of 4 cm length were debarked and freeze-dried (Piatkowski Forschungsgeräte-

Vertrieb, München, Germany) for 5 days. The weight of dry stems was measured. Water uptake 

occurred in a sealed reaction vessel (Falcon™, Fisher Scientific GmbH, Schwerte, Germany), filled with 
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3 ml of tap water. After 24 h at 22°C in darkness in a cultivator (Memmert GmbH + Co. KG, Schwabach, 

Germany), the weight of the stems was measured. Water uptake was calculated according to equation 

( 3 ). 

 
𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈∆24ℎ = �

�𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤  (𝑔𝑔) − 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑  (𝑔𝑔)�
𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑 (𝑔𝑔) � ( 3 ) 

 Plant surface lipid analysis 

Lipids of the surface of fresh leaves and bark were extracted by chloroform (Roth, Karlsruhe, Germany). 

Three defined leaves of each plant were selected (leaf no. 7 representative for the top, leaf no. 15 for 

the middle and leaf no. 25 for the lower leaves). From each leaf, two disks of defined area (Ø 14 mm, 

1.54 cm²) were punched out (Figure 18). All six disks per plant were transferred for 30 sec into the 

same glass vessel (Kimble®, Rockwood, TN, U.S.A.) containing 5 ml chloroform. 

Bark was collected at the stem bottom using the first 5 cm above the root collar. The bark was cut into 

strips of approximately 50 x 5 mm and exposed to chloroform in a reaction vessel for 30 sec. Prior 

extraction, a photo of the bark and a standard (Figure 18) was taken to determine the area of the bark.   

Processing of the chloroform extracts and lipid analysis was done with a GC/MS (Agilent, Santa Clara, 

CA, U.S.A.) by Milena Lewandowska (Department for Plant Biochemistry, Albrecht-von-Haller-Institute 

for Plant Sciences, University of Goettingen).  Data were normalized to leaf or bark area. 

 

Figure 18: Lipid extraction of leaf and stem surface. Three defined leaves of each plant were taken for sampling. 
Two disks were taken per leaf and used for lipid extraction. The removed bark section and a standard (upper 
right, one black square equals 1 cm²) was photographed to determine the area from which the compounds were 
extracted.  
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 Experiment 1: Severe drought stress 

In Exp.1, five lines of 35S-ScWS overexpressing plants (K 60) were examined. Two lines could not be 

investigated further due to a loss of plants. Plants were potted on 17th, January 2018 into soil, adapted 

to greenhouse conditions (2.3.1) and grown at long day conditions at 22°C and an air humidity of 

approximately 60% in a greenhouse (Department of Forest Botany and Tree Physiology, University of 

Goettingen, Germany). 2.5 l pots were utilized. 

 

Figure 19: Plants of Exp.1 are adapted to greenhouse conditions by removing transparent beaker or plastic 
bags gradually as described (2.3.1). 

Plants were grown for 12 weeks in soil in the greenhouse. Photosynthesis and stomatal conductance 

were examined (2.3.4) before the drought treatments started. The lines G1L5 II, G1L4 and G1L3 II were 

investigated in detail and therefore clustered into three different groups of plants with similar height 

and appearance (Table 19). Drought treated plants (d) were not watered anymore at T=0 and 

underwent a decrease in soil moisture over time (Figure 20). Control plants (w) were held at a soil 

moisture level of approx. 0.65 m³ m-³. Soil moisture was measured every 24 h, the pre-dawn leaf water 

potential and photosynthesis (2.3.4) were measured after 4 d of stress treatment (12.04.). The 

experiment was completed after six days of drought treatment and the plants were harvested.  

Table 19: Plant numbers in three different groups in Experiment 1. Groups of plants with similar height and 
appearance were chosen to undergo drought treatment (d). Watered control plants are indicated as (w).  

 Group 1 Group 2 Group 3 
Treatment 
Line (d) (w) (d) (w) (d) (w) 

WT WT 2 WT 7 WT 8 WT 6 WT 3 WT 1 
G1l5II  TG 28 TG 25 TG 27 TG 23 TG 21 TG 24 
G1l4 TG 17 TG 16 TG 14 TG 13 TG 12 TG 11 
G1l3II TG 31 TG 32 TG 34 TG 35 TG 38 TG 36 
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Figure 20: Schematic overview on the decline in soil moisture in Exp.1. Watered plants growing on soil with soil 
moisture of approx. 0.65 were no longer watered at TP=0. Over time, soil moisture decreased (red line). Control 
plants were grown at a soil moisture level of 0.65 m³/m³ (blue line). 

 Experiment 2: Mild stress adaptation, followed by severe stress 

In experiment 2, 11 lines of 35S-ScWS overexpressing plants (K 60) with 118 plants in total were 

examined. Three lines were not investigated further due to a loss of all plants (Table 20). Plants were 

potted on 26th, March 2018, adapted to greenhouse conditions (2.3.1) and grown under long day 

conditions at 22°C to 27°C and air humidity of approximately 50% to 80% in a greenhouse. After 7 

weeks, the plants were transferred to another greenhouse with active climate control by air 

conditioning (Department of Forest Botany and Tree Physiology, University of Goettingen, Germany) 

and grown at 21°C to 23°C and air humidity levels of 55% to 65%. 
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Table 20: Plants and lines grown for Exp.2. 11 different lines of 35S::ScWS-OE plants were used. Three lines 
indicated with an asterisk (*) were lost. All plants in total (ntotal) were utilized for general phenotyping and mild 
drought stress examination (Exp.2.1.) in watered (w) and drought (d) conditions. Plants were divided then into 
two groups; plants harvested after mild stress (Nharvest(2.1.)) and plants harvested after severe stress conditions 
(nharvest (2.2.)).   

 Ntotal = Nharvest (2.1.) = Nharvest (2.2.) = 
Line (w) (d) (w) (d) (w) (d) 
WT 16 15 8 9 8 6 
K 60 G1L3 5 6 4 4 1 2 
K 60 G1L3 II 8 9 4 6 4 3 
K 60 G1L4 8 4 5 4 3 - 
K 60 G1L5 I 3 3 3 3 - - 
*K 60 G1L5 II 2 2 - - 2 2 
K 60 G1L6 I 3 4 1 2 2 2 
*K 60 G1L6 II 3 2 - - 3 2 
K 60 G1L6 III 3 4 3 3 - 1 
K 60 G4L1 3 7 2 2 1 5 
K 60 G4L7 4 4 2 3 2 1 
*K 60 G4L9 2 - - - 2 - 

 

Photosynthesis, stomatal conductance, and the pre-dawn leaf water potential of watered, non-

stressed plants were determined (2.3.4). Additionally, the stomatal size and frequency (2.3.6.3) and 

the stomatal conductance in darkness were analysed. Before a drought treatment was applied, plants 

were separated into groups of similar height and appearance.  

During the treatment, two different levels of drought stress was applied (Figure 21). Control plants 

were kept in soil with a moisture of approximately 0.5 m³/m³. After one week, drought treated plants 

reached a soil moisture level of 0.17 m³/m³ and were kept at this level. The plants were watered every 

12 h manually and the amount of water given to each plant was listed to determine the long-term 

water usage. During this mild-stress period, further referred to as Exp. 2.1, the pre-dawn leaf water 

potential was measured when all plants in the mild-stress treatment acquired a similar, low soil 

moisture content. Dead leaves, fallen down as a result of drought stress application, were collected 

and weighed (Sartorius AG, Göttingen, Germany). After 23 d, plants were divided into two groups: 

Plants of the first group (Exp. 2.1) were harvested and the surface lipid composition of watered plants 

was analysed (2.3.8). Plants of the second group (Exp. 2.2) were not watered anymore to achieve 

severe stress conditions. After 12 d of withholding water, the pre-dawn leaf potential of plants of Exp. 

2.2 was determined, before harvest occurred.  

Biomass parameters (2.3.5), wood anatomy of frozen stems of both groups (Exp.2.1 and 2.2) and the 

water uptake of dried wood (2.3.7) were examined after the harvests. 
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Figure 21: Schematic overview on drought exposure and measurements in Exp 2. Plants growing on soil with a 
soil moisture level of approx. 0.5 m³/m³ were no longer watered (blue line) at TP=0. Soil moisture was adjusted 
to approx. 0.17 m³/m³ for 14 d (green brackets) to apply a mild drought stress (yellow brackets, further referred 
to as Exp2.1), before a severe drought stress was applied (red brackets, further referred to as Exp.2.2). Plants 
were then left to dry until harvest. Control plants were grown on a soil moisture level of 0.5 m³/m³ (blue line). 

 Experiment 3: Mild stress 

In experiment 3, four lines of 35S-ScWS overexpressing plants (K 60) with 56 plants in total were 

examined. Plants were potted on 23rd, August 2018, adapted to greenhouse conditions (2.3.1) and 

grown at long day conditions at 22°C and air humidity of approximately 60% in a greenhouse 

(Department of Forest Botany and Tree Physiology, University of Goettingen, Germany). Plants were 

transferred into bigger pots (3L) after 11 weeks. Photosynthesis and the stomatal conductance (2.3.4) 

were measured after 13 weeks. 

After 14 weeks, plants were divided into groups of same height and appearance and a stress treatment 

was applied to half of the plants in each group (Figure 22). Treated plants were not watered anymore 

at T = 0. Soil moisture was measured every 24 h. 
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Figure 22: Schematic presentation of Exp. 3. Watered plants were growing in soil with a moisture of 
approximately 0.6 m3 m-3. Half of the plants were no longer watered at TP = 0. Over time, soil moisture decreased 
(red line). Control plants were kept at a soil moisture of 0.6 m³/m³ (blue line). 

 Experiment 4: Effects of the DX15 - promoter 

In experiment 4, five lines of DX15::AtDGAT1  and one line of DX15::ScWS expressing plants were 

examined (Table 21). Due to loss in sterile culture, only one DX15::ScWS was available for the  

greenhouse experiment. Plants were potted on 23rd, August 2018, adapted to greenhouse conditions 

(2.3.1) and grown at long day conditions at 22°C and an air humidity of approximately 60% in a 

greenhouse (Department of Forest Botany and Tree Physiology, University of Goettingen, Germany). 

Plants were transferred into bigger pots (3L) after 11 weeks. Photosynthesis and the stomatal 

conductance (2.3.4) were measured after 13 weeks. The plants were used to determine growth and 

biomass (2.3.5), the anatomy of wood (2.3.6.2) and the water uptake of dried wood (2.3.7). To examine 

wood specificity of the DX15 promoter, expression analysis was conducted with leaf, bark and DX tissue 

(2.3.3) on AtDGAT1 and ScWS. 

Table 21: Overview of plants grown for experiment 4. Plant lines with two different gene setups under the DX15 
promoter, DX15::AtDGAT1 (5 lines) and DX15::ScWS (1 line) were grown.   

Gene / Construct n (gene/construct) = Line n (line) = 

DX15::AtDGAT1 (K 76) 37 

K 76 I 12 

K 76 II 11 
K 76 V 6 

K 76 VII 6 
K 76 X 2 

DX15::ScWS (K 78) 12 K 78 III 12 
WT 17   17 
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2.4. Statistical analyses and data processing 

For statistical analyses, R (Version 3.5.3, © 2019, The R foundation for Statistical Computing, www.r-

project.org) was used. Normal distribution and homogeneity of variance were checked by visual 

inspection of the residuals and data was transformed logarithmically if necessary. A One-Way-ANOVA 

and Tukey’s HSD test were performed to check for significance. If the p-value was < 0.05, the 

differences between groups were considered to be significant. 

Data were processed with Excel 2013 (Microsoft, Redmond, WA, U.S.A.). Bar charts were drawn with 

Origin® (OriginLab®, Northampton, MA, U.S.A.). Vector maps and in silico cloning were prepared with 

Geneious®, version 11.0.3 (https://www.geneious.com/, Auckland, New Zealand). Picture processing 

was performed using ImageJ 1.52a (https://imagej.nih.gov/ij/, National Institute of Health, U.S.A.). 
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3. Results 

3.1. Production of transgenic P. x canescens lines 

Several different multiple gene-promoter and gene-binary vector combinations were produced and 

employed for the transformation of P. x canescens. Vectors using the pCAMBIA backbone could not be 

transformed successfully into poplar plants, whereas single gene vectors composed with the pK7WG 

backbone were positively transformed in several cases. Transformation with multiple gene vectors was 

not achieved in this study. Poplar could not be transformed with the genes AtWRI1 and AtDGAT1 under 

a 35S promoter, whereas transgenic plants were obtained with AtDGAT1 using the DX15 promoter in 

a pK7WG construct. Transgenic plants including the MaFAR gene were only obtained using the 

construct K 71, which was inserted by the pDONR201-entry vector system. The transformation of this 

construct was intended as the first stage for a two – step transformation protocol to obtain transgenic 

plants with the MaFAR and the ScWS genes. Since the ScWS gene constructs could be transformed, 

the MaFAR transformation pipeline was not investigated further in vivo. The ScWS was transformed 

successfully under both the 35S (K 60, K 72) and the DX15 promoter (K 78). However, all viable lines of 

K 72 were lost in cultivation stage due to a failure in the plant breeding room electrical system and 

thus not available for further studies. 
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Table 22: Binary vectors transform
ed into P. x canescens. Five constructs of the binary vector w

ere positively transform
ed as indicated and viable plant lines w

ere 
cultivated separately. *: This 35S prom

oter is part of the pK7W
G2 system

. 1: K 71 w
as not used in further experim

ents. 2: K 72 w
as transform

ed successfully but all lines 
w

ere lost during further cultivation due to a failure in the plant breeding room
 electrical system

. Transform
ation experim

ents are listed in the colum
n “N

um
ber of 

transform
ation experim

ents”. Since each transform
ation experim

ent included a high am
ount of individual stem

 m
aterial, positive transform

ation lead to several 
different lines as indicated by a pound key (#). A list of all individual lines used in different experim

ents is show
n in Table 23. 

Prom
oter 

Genes 
Binary vector 

Entry vector 
Construct N

o. 
Viability 

Lines 

N
um

ber of 
transform

ation 
experim

ents 
Rem

arks 

35-S 

AtW
RI1, AtDG

AT1 
pCAM

BIA 23.0G
 

pEN
TRY 

K 30 
- 

- 
2 

 
AtW

RI1, M
aFAR,ScW

S 
pCAM

BIA 23.0G
 

pEN
TRY 

K 32 
- 

- 
2 

 
M

aFAR,ScW
S 

pCAM
BIA 23.0G

 
pEN

TRY 
K 31 

- 
- 

2 
  

AtW
RI1 

pCAM
BIA 23.0G

 
pEN

TRY 
K 61 

- 
- 

2 
 

AtDGAT1 
pCAM

BIA 23.0G
 

pEN
TRY 

K 62 
- 

- 
2 

 
ScW

S 
pCAM

BIA 23.0G
 

pEN
TRY 

K 64 
- 

- 
3 

  
AtW

RI1 
pK7W

G
 

pEN
TRY 

K 57 
- 

- 
2 

N
o stable lines; m

arginal rooting  
AtDGAT1 

pK7W
G

 
pEN

TRY 
K 58 

- 
- 

4 
 

ScW
S 

pK7W
G

 
pEN

TRY 
K 60

# 
+ 

11 
4 

  

35-S* 

AtDGAT1 
pK7W

G2 
pDO

N
R201 

K 70 
- 

- 
2 

 
M

aFAR 
pK7W

G2 
pDO

N
R201 

K 71 
+

1 
5 

1 
intendent for double transform

ation 

ScW
S 

pK7W
G2 

pDO
N

R201 
K 72 

+
2 

7
2 

2 
lost in culturing process 

DX15 
AtDGAT1 

pK7W
G

-DX15 
pDO

N
R201 

K 76
# 

+ 
14 

2 
 

M
aFAR 

pK7W
G

-DX15 
pDO

N
R201 

K 77 
- 

- 
1 

 
ScW

S 
pK7W

G
-DX15 

pDO
N

R201 
K 78

# 
+ 

3 
2 
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Table 23: Overview of all viable lines cultured and examined in greenhouse experiments. Three constructs 
transformed into polar plants led to various viable lines. A subset of these lines was grown and examined in 
greenhouse conditions. Expression analysis was done either with leaf material (1) or more detailed with bark, leaf 
and developmental xylem material (2) as indicated. 

Promoter Gene Construct Line Experiment 

35S ScWS K 60 

G1L3 2 

G1L3I 3 

G1L3II1,2 2,1 
G1L41,2 3,2,1 
G1L5I2 3,2 
G1L5II1 1 
G1L6I1 2,1 
G1L6II 2,1 

G1L6III1 2 
G4L1 2 
G4L7 2 
G4L9 3,2 

DX15 AtDGAT1 K 76 

K76I 4 
K76II2 4 
K76III - 
K76IV - 
K76V2 4 
K76VI - 
K76VII 4 
K76VIII - 
K76IX - 
K76X 4 
K76XI - 
K76XII - 

DX15 ScWS K 78 
78I - 
78II - 

78III2 4 
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 Verification of constructs 

Entry vectors containing the gene of interest were tested by Sanger sequencing for the correct 

sequence of the gene and promoter before being inserted into the binary vector system. Since multiple 

constructs contained multiple copies of the same promoter (2.1.16), Sanger sequencing of the binary 

vectors was not useful and the correct insertion of previously sequenced genes was tested via PCR 

(Figure 23). Transformed Agrobacteria were screened prior poplar transformation by colony PCR 

(Figure 24). Positive colonies were used for transformation of poplar plants as described in 2.2.4. 

 

Figure 23: Representative agarose gel electrophoresis of a PCR of multiple gene constructs K 30, 31 and 32.  
K 30 contained AtWRI1 and AtDGAT1 (red boxes), K 31 contained MaFAR and ScWS (green boxes) and K 32 
contained AtWRI1, MaFAR and ScWS. Two different primer pairs were tested (P I: Cloning primers, Table 9; P II: 
Sequencing primers, Table 10). 
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Figure 24: Representative colony PCR of multiple gene constructs K 30, 31 and 32. Single colonies of 
transformed Agrobacteria (I, II, 3, 4) were screened for positive insertion of the indicate gene in the binary vector. 
(-): negative control; (+): positive control. Colonies with a positive insertion are highlighted. 

 Verification of positively transformed plants 

After transformation of stem pieces (2.2), regenerated plantlets from each stem piece were considered 

to form an individual line, which then was cultured further. Plants were screened as described in 

2.1.10. Sanger sequencing was performed afterwards. Each line screened positively was further tested 

for correct insertion of the gene by Sanger sequencing (Figure 28). All lines showed correct insertion 

of the gene of interest.   

 

Figure 25: PCR screening of 35S::ScWS transformed plants with construct 60 (K60). M: Marker; 1: G4L1, 2: G4L7 
(tested positive in further test, not shown here), 3: G4L9, 4: G1L3, 5: G1L3I; 6: G1L3II; 7: G1L4; 8: G1L5I; 9: G1L5II; 
10: G1L6I; 11: G1L6II; 12: G1L6III; +: positive control. 

3000 
2000 
1500 
1200 
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Figure 26: PCR screening of DX15::AtDGAT1 transformed plants with construct 76 (K76). Each line was tested 
as described in 2.1.10. Each triplet of lanes shows screening for AtDGAT1 (1st lane), promoter DX15 (2nd lane) and 
sequence from right border to left border of pK7WG construct (3rd lane) of the different lines. 

  

Figure 27: PCR screening of DX15::ScWS transformed plants with construct 78 (K78). Plants were screened 
(2.1.10) for ScWS (lanes 1-4) and for DX15 promoter (5-8). M: Marker, 1: K78I; 2: tested negative, line was 
expelled from further experiments, 3: K78II; 4: K78III.; +*1: positive control ScWS; 5: K78I; 6: expelled line, 7: K78II; 
8: K78III.; +*2: positive control DX15.  
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Figure 28: Representative alignment of sequence data of plant line K60 G1L5 I. Sequence data, derived from 
sequenced plant genomic DNA, was aligned to the sequence of the ScWS (top line). To get sufficient data of genes 
longer than 750 kB, two sequences were amplified, one in 5’-3’ direction (middle line) and one in 3’-5’ direction 
(bottom line). For a magnification of this graph, please see the attached CD.  
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3.2. Characterisation of transgenic P. x canescens 

 Characterisation of 35S::ScWS transgenic plants 

The effects of the overexpression of ScWS on the plant’s performance were tested in three different 

greenhouse experiments. General parameters (e.g. growth rates, biomass accumulation, etc.) are 

shown in this chapter. To further evaluate the effect of overexpressed ScWS in drought conditions, 

different levels of drought stress were applied: Severe drought stress, further referred to as 

Experiment 1 (2.3.9), mild + severe drought stress, further referred to as Experiment 2 (2.3.10) and 

mild stress, further referred to as Experiment 3 (2.3.11). To summarize and to compare the effects of 

drought stress applied in the different experiments, drought - specific parameters (e.g. photosynthesis, 

predawn leaf water potential, etc.) and their impact on the performance are shown in chapter Fehler! 

Verweisquelle konnte nicht gefunden werden..  

The effects of the DX15 - promoter were tested in one greenhouse experiment, further referred to as 

Experiment 4 (2.3.12).  

 Expression of ScWS under the 35S promoter 

Expression of ScWS under the 35S promoter was tested with qRT PCR (2.3.3). Expression was confirmed 

in leaf tissue (Exp.1, Figure 29, A), in roots and DX (Exp.2, Figure 29, B). A basal expression of a wax 

ester synthase was observed in WT leaf and DX. 

 

Figure 29: Expression analysis of 35S::ScWS plant lines. A.: Expression of ScWS in leaves from Exp.1. NWT = 3, NTG 

=13, N lines = 3, except line G1L6I (n =1, no mean ± SE). Basal expression was found in WT leaf (mean = 1.01 ± 0.01). 
Expression was normalized to WT – expression level. B.: Expression of ScWS in leaves (L), root (R) and developing 
xylem (DX). NWT = 1, NTG = 3. The sample of WT contained basal expression of WS in root (3.3*103 ± 0.2*103) and 
DX (10.2*10-3 ± 1.3*10-3), but no expression was detected in leaf. Different letters indicate significant differences 
among lines at P ≤ 0.05 (ANOVA). Values are means ± SD. 

  

A B 
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 Growth rates and biomass of ScWS-OE plants 

Growth rates and biomass of ScWS-OE plants and the WT were examined. For a schematic overview 

of the experimental parameters, see 2.3.9 (Exp.1), 2.3.10 (Exp.2) and 2.3.11 (Exp.3). 

Growth rates of ScWS-OE plants were not affected compared to the WT under the short -term drought 

treatment of Exp.1 (Figure 30 A) and Exp.3 (Figure 30 B). Under long term mild drought conditions after 

a growing period of 100 d in Exp.2 (Figure 30 C), transgenic plants were shorter in height than the WT 

and had a thinner stem diameter (Figure 31 B).  

 

 

Figure 30: Height growth of ScWS–OE poplar plants. Plant groups are indicated as following: Transgenic: grey, 
wildtype: white. Treatment: triangle, control: circle. Harvests are indicated with an asterisk. Start of treatments 
are indicated with a dotted line. Data shows mean ± SE. A.: Growth of plants of Exp.1. NWT(w) = 5, NWT(d) = 3, NTG(w) 

= 14, NTG(d) = 9. B.: Growth of plants of Exp.3. NWT(w) = 9, NWT(d) = 11, NTG(w) = 15, NTG(d) = 22. C.: Growth of plants of 
Exp.2. NWT(w) = 15, NWT(d) =13, NTG(w) = 50, NTG(d) = 40. Different letters indicate significant differences among the 
WT and the transgenic plants at P ≤ 0.05 (ANOVA). Values are means ± SD. 

A B 

C 
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Figure 31: Height g (A) and diameter growth (B) of stems of ScWS–OE and WT plants in Exp.2. Significant 
differences are indicated with an asterisk. NWT(w) = 15, NWT(d) =13, NTG(w) = 50, NTG(d) = 40. Different letters 
indicate significant differences at P ≤ 0.05 (ANOVA). Values are means ± SD. 

  

Figure 32: Height (A, B) and stem diameter (C, D) of ScWS-OE lines and the WT in Exp.2 (2.3.10) at the harvest. 
Drought treated groups are indicated by hatched bars. The TG group, indicated in grey, is the mean of all 
transgenic lines tested. Several representative lines are shown, for a complete list of tested lines and plants see 
Table 20. Data show height (A) and stem diameter (B) of plants after 23 d of mild drought stress and of controls. 
NWT(w) = 7, NWT(d) =7, NTG(w) = 23, NTG(d) = 26. After 12 d of further severe stress, height (C) and stem diameter (D) 
were measured. NWT(w) = 8, NWT(d) = 6, NTG(w) = 25, NTG(d) = 14. Different letters indicate significant differences 
among lines at P ≤ 0.05 (ANOVA). Values are means ± SD. 

A B 

A B 

C D 
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The total plant leaf area of the transgenic lines tended to be lower than that of the WT, but the effect 

was only significant in Exp. 2 (Fig. 32 B). Under drought stress, plant leaf area of drought treated TG 

plants decreased significantly compared to the WT (Figure 33 B). In short term experiments, no 

significant differences were found (Figure 33 A, C). 

 

Figure 33: Total leaf area (plant) of ScWS-OE and WT poplar plants. Comparison of the leaf area of experiment 
1 (A), 2 (B) and 3 (C). Drought treated plants are indicated by hatched bars. A.: Leaf area of plants from Exp.1. 
NWT(w) = 5, NWT(d) = 3, NTG(w) = 16, NTG(d) = 10. B.: Leaf area of plants from Exp.2. NWT(w) = 15, NWT(d) = 13, NTG(w) = 48, 
NTG(d) = 40. C.: Leaf area of plants from Exp.3. NWT(w) = 9, NWT(d) = 8, NTG(w) = 15, NTG(d) = 16. Different letters indicate 
significant differences among lines at P ≤ 0.05 (ANOVA, Tukey). Values are means ± SD. 

A B C 
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Figure 34: Leaf area (per plant) of ScWS-OE lines and the WT. Representative lines are shown if N ≥ 2. The TG 
group indicated in grey is the mean of all transgenic plants tested, including representative lines. Drought treated 
plants are indicated by hatched bars. A.: Leaf area of lines from Exp.1. NWT(w) = 5, NWT(d) = 3, NTG(w) = 16, NTG(d) = 
10, NG1L3II (W) = 5, NG1L3II (d) = 3, NG1L4 (W) = 4, NG1L4 (D) = 3, NG1L5II (W) = 5, NG1L5II (D) = 3. B.: Leaf area of plants from Exp.3. 
NWT(w) = 9, NWT(d) = 8, NTG(w) = 15, NTG(d) = 16, NG1L3I (W) = 3, NG1L3I (d) = 4, NG1L4 (W) = 3, NG1L4 (D) = 4, NG4L9 (W) = 3, NG4L9 (D) 

= 5. C.: Leaf area of plants from Exp.2. Line G1L5II control (n = 1) is shown for completion. NWT(w) = 15, NWT(d) = 13, 
NTG(w) = 48, NTG(d) = 40, NG1L3 (W) = 4, NG1L3 (d) = 5, NG1L3II (W) = 4, NG1L3II (d) = 7, NG1L4 (W) = 8, NG1L4 (D) = 4, NG1L5I (W) = 3, NG1L5I 

(D) = 3, NG1L5II (W) = 1, NG1L5II (D) = 2, NG1L6I (W) = 3, NG1L6I (d) = 4, NG1L6II (W) = 3, NG1L6II (d) = 2, NG1L6III (W) = 3, NG1L6III (d) = 4, NG4L1 

(W) = 7, N G4L1 (d) = 3. Different letters indicate significant differences among lines at P ≤ 0.05 (ANOVA, Tukey). 
Values are means ± SD. 
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The root-to-shoot ratio was not affected by overexpression of ScWS either in severe stress conditions 

of experiment 1 (Figure 35 A) or in long mild stress conditions of experiment 2 (Figure 35 B). In 

experiment 3 (Figure 35 C), significant differences were observed due to the treatment. No differences 

were found among the lines tested (Figure 36 A, B, C). 

 

Figure 35: Root-to-shoot ratio of ScWS-OE and WT poplar plants. Comparison of the root-to-shoot ratio of 
experiment 1 (A), 2 (B) and 3 (C). Drought treated plants are indicated by hatched bars. A.: Root-to-shoot ratio 
of plants from Exp.1. NWT(w) = 5, NWT(d) = 3, NTG(w) = 16, NTG(d) = 10. B.: Root-to-shoot ratio of plants from Exp.2. 
NWT(w) = 13, NWT(d) =19, NTG(w) = 38, NTG(d) = 33. C.: Root-to-shoot ratio of plants from Exp.3. NWT(w) = 9, NWT(d) =8, 
NTG(w) = 12, NTG(d) = 16. Different letters indicate significant differences among lines at P ≤ 0.05 (ANOVA, Tukey). 
Values are means ± SD. 

  

A B C 
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Figure 36: Root-to-Shoot ratio of ScWS-OE lines and the WT. Representative lines are shown if N ≥ 2. The TG 
group indicated in grey is the mean of all transgenic plants tested, including representative lines. Drought treated 
plants are indicated with hatched bars. A.: Root-to-shoot ratio of lines from Exp.1. NWT(w) = 5, NWT(d) = 3, NTG(w) = 
16, NTG(d) = 10, NG1L3II (W) = 5, NG1L3II (d) = 3, NG1L4 (W) = 4, NG1L4 (D) = 3, NG1L5II (W) = 5, NG1L5II (D) = 3. B.: Root-to-shoot ratio 
of plants from Exp.3. NWT(w) = 9, NWT(d) = 8, NTG(w) = 11, NTG(d) = 14, NG1L3I (W) = 3, NG1L3I (d) = 4, NG1L4 (W) = 4, NG1L4 (D) = 
5, NG4L9 (W) = 4, NG4L9 (D) = 4. C.: Root-to-shoot ratio of plants from Exp.2. Line G1L5II control (n = 1) is shown for 
completion. NWT(w) = 15, NWT(d) =13, NTG(w) = 48, NTG(d) = 40, NG1L3 (W) = 5, NG1L3 (d) = 6, NG1L3II (W) = 7, NG1L3II (d) = 8, NG1L4 

(W) = 8, NG1L4 (D) = 4, NG1L5I (W) = 4, NG1L5I (D) = 3, NG1L5II (W) = 2, NG1L5II (D) = 2, NG1L6I (W) = 3, NG1L6I (d) = 4, NG1L6II (W) = 3, NG1L6II 

(d) = 2, NG1L6III (W) = 3, NG1L6III (d) = 4, NG4L1 (W) = 7, N G4L1 (d) = 3. Different letters indicate significant differences among 
lines at P ≤ 0.05 (ANOVA, Tukey). Values are given as means ± SD. 
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In short-time experiments (Figure 37 A, C), no significant differences were found in the dry biomass of 

leaves, stems and roots. Exclusively in Exp.1 (Figure 37 A), drought treated WT and TG plants both 

demonstrated significant lower stem biomass. In long-time Exp.2 (Figure 37 B), significant differences 

between watered WT and TG plants were found in the biomass of leaves and roots, but not in stem. 

Consequently, the total biomass of watered ScWS-OE plants was significantly reduced compared to 

watered WT plants. No significant differences were observed among the lines in all three experiments 

(Figure 37 A, B, C). 

 

Figure 37: Dry mass of ScWS-OE and WT poplar plants. Comparison of the dry mass of experiments 1 (A), 2 (B) 
and 3 (C), stacking the results of leaves (green), stem (light brown) and roots (brown). Drought treated plants are 
indicated by hatched bars. Each tissue was compared with each other, significant differences are indicated with 
different letters at P ≤ 0.05 (ANOVA, Tukey). Significance of the compete dry mass is shown above. A.: Dry mass 
of plants in Exp.1. NWT(w) = 5, NWT(d) = 3, NTG(w) = 16, NTG(d) = 10. B.: Dry mass of plants in Exp.2. NWT(w) = 13, NWT(d) 

=19, NTG(w) = 38, NTG(d) = 33. C.: Dry mass of plants in Exp.3. NWT(w) = 9, NWT(d) = 8, NTG(w) = 12, NTG(d) = 16. Values are 
means ± SD.  

A B C 
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Figure 38: Dry mass of ScWS-OE lines and WT poplars. Dry mass of lines of experiment 1 (A), Exp.2 (B) and Exp.3 
(C), stacking the masses of leaves (green), stem (light brown) and roots (brown). Each tissue was compared with 
each other, significant differences are indicated with different letters at P ≤ 0.05 (ANOVA, Tukey). Representative 
lines are shown if N ≥ 2. The TG group is the mean of all transgenic plants tested including representative lines. 
Drought treated plants are indicated with hatched bars. A.: Dry mass of lines from Exp.1. NWT(w) = 5, NWT(d) = 3, 
NTG(w) = 16, NTG(d) = 10, NG1L3II (W) = 5, NG1L3II (d) = 3, NG1L4 (W) = 4, NG1L4 (D) = 3, NG1L5II (W) = 5, NG1L5II (D) = 3. B.: Dry mass of 
lines from Exp.3. NWT(w) = 9, NWT(d) = 8, NTG(w) = 11, NTG(d) = 14, NG1L3I (W) = 3, NG1L3I (d) = 4, NG1L4 (W) = 4, NG1L4 (D) = 5, 
NG4L9 (W) = 4, NG4L9 (D) = 4. C.: Dry mass of lines from Exp.2. Line G1L5II control (n = 1) is shown for completion. 
NWT(w) = 15, NWT(d) =13, NTG(w) = 48, NTG(d) = 40, NG1L3 (W) = 5, NG1L3 (d) = 6, NG1L3II (W) = 7, NG1L3II (d) = 8, NG1L4 (W) = 8, NG1L4 

(D) = 4, NG1L5I (W) = 4, NG1L5I (D) = 3, NG1L5II (W) = 2, NG1L5II (D) = 2, NG1L6I (W) = 3, NG1L6I (d) = 4, NG1L6II (W) = 3, NG1L6II (d) = 2, NG1L6III 

(W) = 3, NG1L6III (d) = 4, NG4L1 (W) = 7, N G4L1 (d) = 3. Values are means ± SD. 

A B 

C 



  Results 

 
  59 

 

Figure 39: ScWS-OE and WT plants of Exp.2. A: Plants of Exp.2.1 (2.3.10) before harvest, after 23 d of mild 
drought stress. F.l.t.r.: WT, G1L5II, G1L3II, G1L6II, WT. B: Plants of Exp.2.2 before harvest. Plants of this group 
underwent 23 d of mild drought stress and additionally severe drought treatment of 12 d. F.l.t.r.: WT, G1L3II, 
G1L6II, WT. 

 

Figure 40: ScWS-OE plants and WT in Exp.3 during drought treatment. F.l.t.r.: WT, G4L9, G1L4, G1L5I, G1L6II, 
G1L5II, WT. A.: Start drought treatment. B.: Drought treatment, d 4. C.: Drought treatment, d 8. D.: Drought 
treatment, d 12. 
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 Stomatal conductance is affected in ScWS-OE lines in the light, but not in darkness 

Photosynthesis and stomatal conductance were measured (2.3.4) on watered plants. To maintain 

comparability, the seventh or eighth leaf counted from the top was taken for measurements. 

Photosynthesis measurements in all experiments were conducted with a light intensity of 800 µmol 

m⁻² s⁻¹.  

 

Figure 41: Comparison of photosynthesis (A, B) and stomatal conductance (C, D) of ScWS-OE plants and the 
WT in Exp.1 (A, C) and Exp.2 (B, D).  Well-watered plants were measured. The photosynthesis rate (A, B) was not 
affected significantly compared to the WT (white bar). No standard deviation is shown for line G1L6I due to lack 
of plants. The stomatal conductance (C, D) was significantly decreased in all lines compared to the WT. Measuring 
conditions: Tair = 26.1 – 27.2 °C, RHair = 62-59%, CO2air = 301.5 – 311.8 µmol mol⁻¹. A, C: Plants of Exp.1, NWT = 4, 
NG1L4, G1L5 II, G1L3II = 4, NG1L6I = 2, NG1L6II = 1. B, D: Plants of Exp.2, NWT = 16, NG1L3II = 10, NG1L4, G1L5 I = 6, NG1L6I = 4, NG1L6II 

= 2, NG1L6III = 3. Measuring conditions: Tair = 25.1-27.8°C, RHair = 62-60%, CO2air = 383 – 393 µmol mol⁻¹. Plants were 
divided into two groups and grown in two different greenhouses. Different letters indicate significant differences 
among lines at P ≤ 0.05 (ANOVA). Values are means ± SD. 

Photosynthesis measurements revealed no differences of ScWS-OE plants compared to the WT in short 

term Exp.1 (Figure 41 A) and long-term Exp.2 (Figure 41 B). The stomatal conductance of ScWS-OE 

plants were significantly decreased in all lines and experiments when compared to the WT (Figure 41 

C, D), but differences among the lines were observed: the lines G1L5II and G1L6II demonstrated 

significant lower stomatal conductance compared to the WT but significant higher stomatal 

conductance than the lines G1L3II and G1L4 in Exp.1 (Figure 41 C). In long-term experiment 2, the lines 

B 

C 

A 

D 
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G1L5II and G1L6II were not significantly different to the other lines, but a similar pattern tendency for 

higher stomatal conductance levels was observed (Figure 42).  

 The water use efficiency (instantaneous) of watered plants of Exp.1 was not affected significantly 

(Figure 42 D), but demonstrated a tendency for higher levels of TG plants. In darkness, the stomatal 

conductance was not different compared to the WT (Figure 43 B). The respiratory quotient of 

transgenic plants (Figure 43 A) did not differ significantly from the WT, but small differences among 

the lines were observed (Figure 43 A).  

 

Figure 42: Photosynthesis measurement of watered ScWS-OE and WT plants in Exp.1. The TG group indicated 
in grey is the mean of all transgenic plants tested, including the represented lines. A.: Net photosynthesis, B.: 
stomatal conductance, C.: transpiration and D.: water use efficiency (instantaneous). NWT = 4, NG1L4, G1L5 II, G1L3II = 
4, NG1L6I = 2. Measuring conditions: Tair = 26.1 – 27.2 °C, RHair = 62-59%, CO2air = 301.5 – 311.8 µmol mol⁻¹. Different 
letters indicate significant differences among lines at P ≤ 0.05 (ANOVA). Values are means ± SD. 
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Figure 43: Gas exchange of watered ScWS-OE and WT plants of Exp.2 in darkness. The TG group indicated in 
grey is the mean of all transgenic plants tested. A.: Respiration, B.: stomatal conductance, C.: transpiration and 
D.: water use efficiency (instantaneous). NWT = 13, NTG = 24, NG1L3II = 5, NG1L4 = 6, NG1L5I = 6, NG1L6I = 2, NG1L6II = 3, 
NG1L6III = 2. Measurement parameters: Tair = 25.4 – 26.7 °C, RHair = 61-58%, CO2air = 400.05 – 421.5 µmol mol⁻¹. 
Different letters indicate significant differences among lines at P ≤ 0.05 (ANOVA). Values are means ± SD. 
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 Smaller stomata in ScWS-OE plants 

To examine the reason for decreased stomatal conductance, stomata were inspected under a light 

microscope (2.3.6.3). In transgenic plants, the stomatal length was significantly smaller than that of 

the WT (Figure 44 A). The frequency of the stomata was not affected (Figure 44 B). Stomata of ScWS-OE 

plants seemed to accumulate more lipid-like compounds as determined by Sudan III staining (Figure 

45 F). Scanning electron microscopy did not reveal significant differences in the morphology of the 

stomata of TG (Figure 46 D, E, F) and WT (Figure 46 A, B, C) plants. However, the surface of transgenic 

plants appears more smoothly (Figure 46 H) compared to the WT (Figure 46 G).  

 

Figure 44: Size of stomata (A) and frequency (B) of ScWS-OE and WT poplar plants. The TG group indicated in 
grey is the mean of all transgenic lines tested. NWT = 4, NTG = 13, NG1L3 = 3, NG1L4 = 3, NG1L5I = 4, NG1L6I = 2, NG1L6III = 
2. Different letters indicate significant differences among lines at P ≤ 0.05 (ANOVA). Values are means ± SD. 
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Figure 45: Representative figure of stomata size, frequency and lipid distribution of WT and 35S::ScWS poplar 
leaves observed under a light microscope.  Stomata were stained with Sudan III. A, B.: WT poplar, 400X. C, D.: 
Transgenic poplar overexpressing ScWS (line G1L4), 400X. E.: WT poplar, 630X. F.: Transgenic poplar 
overexpressing ScWS, 630X.    
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Figure 46: Representative figures of stomatal morphology of WT and 35S::ScWS plants. REM microscopy of 
stomata. A, B, C.: WT plants, 8000X. D, E, F.: Transgenic plants overexpressing ScWS, 8000X. G.: Leaf surface of 
a WT plant, 2000X. H.: Leaf surface of a TG plant (G1L3), 2000X. Figures courtesy of Dr. U. Lipka and F. Häffner. 

  



Results  

66 

 Composition of leaf and stem surface of ScWS-OE plants are affected 

The impact of overexpressed ScWS on the composition of lipid-derived hydrocarbons on the plant’s 

surface was investigated. Therefore, surface extractions of non-stressed plants were examined by GC-

MS. 

Alkanes with a carbon chain length of 25 to 29 were significantly lower on leaves and on stems of TG 

plants compared to the WT. Alkanes with a chain length of 27 significantly decreased by approximately 

40 % on leaves. Alkanes with a chain longer than 31 carbons were neither affected on leaf nor on the 

stem surface by overexpression of the ScWS. Fatty acids with a carbon chain length of 24 and 26 were 

found on leaf surface to be significantly decreased but not on the stem surface.  

 

Figure 47: Amount of wax ester precursors on leaf and stem cuticula (µg cm-2). Alkanes, alcohols and fatty acids 
of different carbon chain length of leaf and stem surfaces (dotted bars) were quantified via GC-MS. Significant 
differences (p<0.05) compared to WT are highlighted with an asterisk. Plants of the lines G1L3, G1L4, G1L6II and 
G1L6III were pooled in the transgenic group. NWT = 4, NTG = 10. Values are means ± SD. 
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 Characterisation of DX15::ScWS and DX15::AtDGAT1: Wood specific expression 

Since ScWS and AtDGAT1 could be transformed successfully under the DX15 promoter, plants were 

multiplied and grown in a greenhouse to investigate the phenotypes under non-stress conditions (Exp. 

4, Table 23).  

 Preparation of pK7WG-DX15 

For wood-specific expression, the promoter of the Fasciclin-like AGP8 was chosen. This promoter, 

further referred to as DX15 (Figure 69), was demonstrated to have high levels of expression in mature 

and developing xylem (Ko et al. 2012). A nucleotide BLAST of the published DX15 sequence (Ko et al. 

2012) showed 99.1% similarity to Potri.009G012200 of P. trichocarpa (www.Popgenie.org). 

Three individual P. trichocarpa plants were used to amplify the region identified as DX15 promoter. 

After ligation into the pK7WG binary construct, the three constructs were sequenced to test the 

correct insertion. 

 Missing repetitive element 

A missing motive compared to the published sequence of Ko et al. (2012) and the sequence of 

Potri.009G012200 was found in all constructs cloned. Three individual poplar plants were utilized for 

promoter cloning. At position 733, the motive (3’-TTGATAG-5’) was found repeated four times up to 

position 762 in the published sequence. The sequenced constructs revealed one missing motive, 

resulting in three repeats instead of four (Figure 48). Construct 74 II was poorly sequenced and thus 

not further investigated, but the missing motive was confirmed as well. Construct 74 III was used for 

all further cloning and transformation steps into poplar plants (Figure 70). 

 

Figure 48: Missing motive "TTGATAG" in the DX15 promoter cloned in this study. Sequencing results of K74 I 
and in K74 III. The promoter was inserted in the pK7WG binary vector system. Three constructs are showing a 
missing repetitive element compared to the published sequence and Potri.009G012200 as indicated. Due to poor 
sequencing results, construct 74 II (not shown in figure) was not used for further steps. 
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 Gene expression by the DX15 promoter 

Since AtDGAT1 and ScWS were positively transformed utilizing the DX15 promoter, the expression and 

the tissue–specificity were tested by qRT PCR for both genes with the plants from Exp. 4 (2.3.12). When 

expressed under the DX15 promoter, high expression levels of AtDGAT1 (Figure 49 A) and ScWS (Figure 

49 B) were found in DX. No expression of AtDGAT1 was found in the WT (Figure 49 A, C), but a basal 

expression of WS was found in all tissues of WT plants, measured with the ScWS primer (Figure 49 B, 

D), despite a high primer specificity of the primers that have been used (Table 17). Both genes, 

AtDGAT1 (Figure 49 C) and ScWS (Figure 49 D) were drastically overexpressed in DX, but basal 

expression was observed in leaf (L) and bark (B) tissue (Figure 49 C, D). 

   

Figure 49: Gene expression of transformed plants with DX15 promoter. A.: Expression of AtDGAT1 in developing 
xylem. No expression of AtDGAT1 was found in WT. Expression was normalized to expression level of 
Potri.015G001600 (Cref1). NWT = 3, NTG = 5, NK76I = 1, NK76II = 2, NK76III = 2. B.: Normalized expression of ScWS in 
developing xylem. Expression of ScWS was normalized to WT expression levels (0.53 ± 0.36), indicated with an 
asterisk. NWT = 3, NK78III = 3. C.: Normalized expression of AtDGAT1 in leaf, bark and developing xylem. No 
expression of AtDGAT1 was found in all tissues of WT as indicated with an asterisk. Expression was normalized 
to leaf expression level (Mean 0.16 ± 0.08) of transgenic plants. NWT = 3, NDX15::AtDGAT1 = 3, pooled from line K76I, 
K76II and K76V. D.: Normalized expression of ScWS in leaf, bark and developing xylem. Expression was 
normalized to leaf expression level (Mean 0.037 ± 0.005) of wildtype plants. NWT = 2, NDX15::ScWS  = 2, line K78III. 
Different letters indicate significant differences among lines at P ≤ 0.05 (ANOVA). Values are means ± SD. 

D C 
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 Wood anatomy of DX15::AtDGAT1 

Since the DX15 promoter caused enhanced expression of the AtDGAT1 in developing xylem, but not in 

bark and leaf tissue, the wood anatomy of poplar plants (2.3.12) was examined. For a schematic picture 

of cross sections of poplar wood, see Figure 17. To identify changes in wood anatomy, FCA-staining 

was used on cross-sections to subdivide lignified- (reddish appearance) and non-lignified (blue) 

sections. No significant differences in the size of lignified area close to the DX (Figure 50) was found.  

 

Figure 50: Cross sections in the DX area and mature wood of WT and DX15::AtDGAT1 poplar plants, stained 
with FCA. A.: WT, plant 38. B.: WT, plant 47. C.: Line K76II, plant 33. D.: Line K76V, plant 39. 

To investigate whether lipids were detected in wood of DX15::AtDGAT1 plants, Nile red staining was 

used on cross sections (Figure 51). In the xylem, lipid droplets were exclusively found in the ray cells, 

but not in vessels and DX area of both WT and transgenic plants (Figure 51). Because of poor 

heterogeneity of the stained samples, no conclusion about the size and quantity of lipid droplets in ray 

cells could be drawn. 
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Figure 51: Cross sections of in wood of WT and DX15::AtDGAT1 poplar plants, stained with Nile red. Lipids were 
found in ray cells (reddish colour). A.: WT, plant 38. B.: WT, plant 47. C.: Line K76II, plant 33. D.: Line K76V, plant 
39. 
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 Swelling of wood of DX15::AtDGAT1 poplar plants 

Lipids in wood influence the water balance under drought (Schneider et al., 1999) by covering the inner 

walls of xylem vessels. Since Nile red staining did not permit conclusions on lipid distribution, the water 

uptake of dried wood was tested as described in material and methods (2.3.7). The transgenic lines 

showed a trend towards lower swelling but only line K76I was significantly different from the WT Figure 

51. 

 

Figure 52: Relative water uptake of poplar wood of WT and DX15::AtDGAT1 plants in 24 h. The TG group 
indicated in grey is the mean of all transgenic lines tested. NWT = 9, NTG = 9, NK76I = 3, NK76II = 3, NK76V = 3. Different 
letters indicate significant differences among lines at P ≤ 0.05 (ANOVA). Values are means ± SD. 
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 Wood anatomy of DX15::ScWS  

To identify changes in wood anatomy, FCA-staining was used on cross-sections to subdivide lignified- 

(reddish appearance) and non-lignified (blue) sections. No significant differences in the size of lignified 

area close to the DX (Figure 53) was found. 

 

Figure 53: Cross sections of poplar stems with the DX area in wood of WT and DX15::ScWS plants, stained with 
FCA. A.: WT, plant 38. B.: WT, plant 47. C.: Line K78III, plant 33. D.: Line K78III, plant 39. 

To identify lipids in wood of DX15::ScWS and the WT plants, Nile red was used on cross sections (Figure 

54). In the xylem, lipid droplets were exclusively found in the ray cells of the stem, but not in vessels 

and DX area of WT and transgenic plants. The bark also showed staining. No differences between size 

or quantity of lipid droplets in ray cells of the transgenic compared with the WT plants were found. 
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Figure 54: Cross sections of stems of WT and DX15::ScWS poplar plants, stained with Nile red. Lipid 
accumulation was found in ray cells (reddish colour). A.: WT, plant 35. B.: Line K78III, plant 33. C.: Complete cross 
section from pith to bark of WT, plant 35. D.: Cross section from pith (left) to DX (right) of line K78III, plant 33. 
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 Swelling of wood: DX15::ScWS  

Since Nile red staining did not permit conclusions on lipid distribution in DX15::ScWS plants, the water 

uptake of dried wood was tested as described in material and methods (2.3.7). The water uptake of 

DX15::ScWS plants (line K78III) were significantly lower than that of  the WT (Figure 55). 

 

Figure 55: Relative water uptake of poplar wood of DX15::ScWS  and WT plants in 24 h. The TG group indicated 
in grey shows the line K78III. NWT = 9, NTG = 7. Different letters indicate significant differences among lines at P ≤ 
0.05 (ANOVA). Values are means ± SD. 
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3.3. Drought performance of ScWS–OE P. x canescens 

Since the ScWS was transformed successfully under 35S promoter into poplar, yield in several different 

lines and since we demonstrated a significant reduction in stomatal conductance, the plants were 

investigated in three drought experiments with different experimental designs as explained in material 

and methods 2.3.9 (Exp.1), 2.3.10 (Exp.2) and 2.3.11 (Exp.3).  

 Viability under severe drought stress is improved in ScWS-OE lines 

Since the stomatal conductance was affected in ScWS-OE lines, a drought stress experiment (Exp.1) 

was conducted to examine the plant responses undergoing water shortage. In this experiment, plants 

did not receive any water at T0. Soil moisture was controlled daily. WT plants were demonstrated to 

show symptoms of drought stress (leaves going limp) up to 24 h earlier than the ScWS-OE lines (Figure 

56 A, B). The soil moisture of WT plants decreased faster in comparison to the ScWS-OE plants (Figure 

56 C). 

 

Figure 56: Response of 35S::ScWS and WT poplar plants to severe drought stress. A. and B.: In two different 
plant groups of same height and appearance, the WT control demonstrated drought stress at TP = 3. C.: Soil 
moisture during the drought treatment. White: WT, grey: TG. Treatment is marked with a triangle, controls with 
a circle. At Tp = 3, a significant difference between drought treated WT and TG plants was observed, as indicated 
with an asterisk. NWT = 3, NTG = 9. Different letters indicate significant differences among lines at P ≤ 0.05 (ANOVA). 
Values are means ± SD. 
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 ScWS-OE plants: better adaption to stress 

Under severe stress (Figure 57 A), ScWS-OE plants showed significantly higher predawn leaf water 

potentials (ΨPLWP) levels compared to WT plants. In contrast, mild drought stress did not result in 

differences between WT and TG plants (Figure 57 B). In Exp.2 (2.3.10), the change from mild drought 

stress (Figure 57 C) to severe stress (Figure 57 D) led to significant decreased ΨPLWP levels of WT drought 

treated plants after 24 h. 

 

Figure 57: Predawn leaf water potential of drought treated ScWS-OE and WT poplar plants. The TG group 
indicated in grey represents the mean of all transgenic plants tested. Drought treatment is indicated by hatched 
bars. A.: ΨPLWP after 4 d of severe stress treatment (Exp.1). NWT(w) = 3, NWT(d) = 3, NTG(w) = 9, NTG(d) = 9, NLine(w) = 3, 
NLine(d) = 3. B.: ΨPLWP after 5 d of mild stress treatment (Exp.3). NWT(w) = 6, NWT(d) = 7, NTG(w) = 3, NTG(d) = 8, NLine(w) = 
3, NLine(d) = 3. C.: ΨPLWP after 21 d of mild stress treatment (Exp.2). NWT(w) = 4, NWT(d) = 4, NTG(w) = 8, NTG(d) = 5. D.: 
ΨPLWP of the same plants shown in fig. C after 29 d of severe drought treatment. All measurements were 
performed with following parameters: Tair = 24.4 to 27.2 °C, RHair = 62 to 56 %. Different letters indicate significant 
differences among lines at P ≤ 0.05 (ANOVA). Values are means ± SD. 

  

A B 

C D 



  Results 

 
  77 

Under severe stress conditions (Exp.1), the net photosynthesis of drought stressed WT and TG plants 

declined but did not differ significantly (Figure 58 A). The stomatal conductance was significantly lower 

in watered TG plants compared to watered WT plants, but no significant effect was observed in the 

drought-stressed group (Figure 58 B). The transpiration was significantly lower in the watered TG 

plants compared to the WT control (Figure 58 C), but not in the drought group. The instantaneous 

water use efficiency (WUE) was significantly increased in watered TG plants when compared to the 

WT. Both watered and drought stressed TG plants showed significantly higher WUE than watered WT 

plants (Figure 58 D). 

 

Figure 58:  Photosynthesis of drought stressed ScWS-OE and WT poplar plants in Exp.1. The TG group indicated 
in grey is the mean of all transgenic plants tested, including the represented lines. A.: Net photosynthesis, B.: 
stomatal conductance, C.: transpiration and D.: water use efficiency (instantaneous). NWT(w) = 3, NWT(d) = 3, NTG(w) 

= 9, NTG(d) = 9, NLine(w) = 3, NLine(d) = 3. Measurement parameters: Tair = 26.1 to 27.2 °C, RHair = 62-59%, CO2air = 
301.5 to 311.8 µmol mol⁻¹. Different letters indicate significant differences among lines at P ≤ 0.05 (ANOVA). 
Values are given as means ± SD. 
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 Improved long term water usage of ScWS-OE lines 

The water use of TG and WT plants was investigated in short term measurements (Figure 59 A) by 

weight differences and in long term conditions (Figure 59 B) through measurements of the amount of 

water given to each plant (Exp.2) in a time period of 7 d. No significant difference in short term water 

usage was detected. The long-term water usage neither showed a significant difference between the 

WT and the TG plants but a tendency of less water consumption by the ScWS-OE plants was observed. 

 

Figure 59: Water usage of ScWS-OE and WT plants in Exp.2. A.: Short-term water usage, 24 h. NWT = 5, NTG = 11. 
Plants of same height and appearance were taken for measurement. B.: Long term water use over 7 d. Only 
plants > 95 cm height were taken for measurement. Data were normalized to height. NWT = 10, NTG = 11, NG1L3II = 
5, NG1L5II = 3, NG1L6III = 3. The TG group indicated in grey is the mean of all transgenic plants tested. Different letters 
indicate significant differences among lines at P ≤ 0.05 (ANOVA). Values are means ± SD. 

 Wood anatomy and wood water content 

The vessel frequency (Figure 60 A) was not affected by overexpression of the ScWS compared to the 

WT, neither in drought-stressed nor in well-watered plants (Figure 50 A). However, a significant 

difference was found between the TG control and TG drought, in contrast to the WT control and WT 

drought. The vessel lumen area was similar to that of the WT (Figure 60 B). 

The water uptake of dried wood of TG plants (Figure 61) demonstrated no significant differences 

compared to the WT after 24h. 

A B 
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Figure 60: Vessel frequency (A) and area (B) of ScWS-OE plants (Exp.2). Wood formed in drought stresses plants 
conditions was compared with wood formed in plants in non-stressed conditions. NWT = 3, NTG = 6. Different 
letters indicate significant differences among lines at P ≤ 0.05 (ANOVA). Values are means ± SD. 

  

Figure 61: Relative water uptake of poplar wood of 35S::ScWS and WT plants in Exp.2 in 24 h. The TG group 
indicated in grey is the mean of all transgenic lines tested. Drought treated groups are indicated by hatched bars. 
NWT(w) = 6, NWT(d) = 6, NTG(w) = 8, NTG(d) = 10, NG1L3(w) = 5, NG1L3(d) = 3, NG1L4(w) = 3, NG1L4(d) = 3, NG1L5I(w) = 2, NG1L5I(d) = 2. 
Different letters indicate significant differences among the lines at P ≤ 0.05 (ANOVA). Values are means ± SD.  
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 Stem cuticula 

To investigate the effects of drought treatment on stem surface and phelloderm, stem cross sections 

of 25 µm thickness were stained with Sudan III (2.3.6.1). Compared to the WT control (Figure 62 A1-3), 

drought stressed WT plants (Figure 62 B1-B3) show accumulation of lipids in the phelloderm as 

demonstrated by a brighter reddish colour. A similar observation was made when comparing TG 

control plants (Figure 62 C1-C3) with TG drought stressed plants (Figure 62 D1-D3). Comparing WT and 

TG plants did not reveal differences in the appearance of phelloderm and cuticula in watered 

conditions (Figure 62 A1-A3, C1-C3) or stress treatments (Figure 62 B1-B3, D1-D3). 

  

Figure 62: Comparison of stem cuticula and phelloderm of WT (A1-B3) and 35S::ScWS plants (C1 – D3), 
stained with Sudan III. A1 – A3: WT, control. B1 – B3: WT, drought treatment. C1 – C3: TG, control. D1 – D3: 
TG, drought treatment. Plants are originated from Exp. 2: line G1L6I (C1, D1), line G1L4 (C2, D2) and line G4L1 
(C3, D3).  
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4. Discussion 

4.1. Production of transgenic P. x canescens lines 

 Binary vector system pCAMBIA versus pK7WG 

For bio-engineering of ScWS, DGAT1, WR1 or FAR -overexpressing plants, several different vector 

systems have been produced and tested by transformation of P. x canescens plants (Figure 12). Here, 

two different binary vector systems, pCAMBIA and pK7WG, were tested with several different gene 

and promoter combinations. Binary vector systems based upon the pCAMBIA vector are often used 

for Agrobacteria-mediated plant transformation (Leclercq et al., 2015) and positive transformation 

results were achieved also in woody species such as P. angustifolia and P. balsamifera (Maheshwari 

and Kovalchuk, 2016). In P. x canescens, pCAMBIA was used successfully in a transformation protocol 

similar to the one used in this work, with BASTA (Lu et al., 2015) and kanamycin (Meyer et al., 2004) 

as selection components. However, no stable transformation of different multiple- and single gene 

setups containing the pCAMBIA binary vector system was achieved in this work (Table 13).  

In previous studies, stable poplar lines were produced by the use of the pK7WG vector system (Muhr 

et al. (2016), Allario et al. (2018)). In this work, contrary to the pCAMBIA system, the pk7WG system 

provided viable transgenic P. x canescens lines with different genes and promoter combinations (Table 

23). Two pk7WG binary vectors were used: the pK7WG2, including a 35S promoter and the pK7WG, 

excluding a promoter. In the latter case, the promoter was introduced in the pEntry entry vector 

system first, which was then used to introduce the promoter/gene setup for the pK7WG and for the 

pCAMBIA system as well. Although the same promoter/gene combinations were introduced into 

poplar by both binary vector systems, only the pK7WG provided positive transformation results, 

indicating that the pCAMBIA system used in this work is not suitable for transformation in 

P. x canescens in this constellation.  

In contrast to the rapid “floral dip” – method used for the transformation of the model organism 

A. thaliana (Clough and Bent, 1998), the transformation of Populus species requires plant tissue culture 

and regeneration and thus relies on highly optimized protocols regarding the incubation time of 

Agrobacteria (Han et al., 2013) or the addition of phytochemicals such as acetosyringon (Nilsson et al., 

1992). Consequently, the transformation efficiency of poplar species is generally low (Han et al., 2000) 

compared to A. thaliana; satisfying results can only be reached by a high quantity of transformable 

material, which often is problematic to acquire (Figure 13). Additionally, transformation efficiency 

decreases with increasing size of the binary vector. Since several transformation attempts utilizing the 

pCAMBIA vector system which included multiple gene constructs of sizes bigger than 12.000 kb (Table 

22; K30, K31 and K32), a positive transformation might have been prevented just by the size of the 
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construct. Additionally, multiple insertions of the 35S promoter might cause silencing effects.  Multiple 

gene constructs were thus not applied further in the pK7WG system. 

A low overall transformation rate, a demand for highly optimized protocols and binary vectors and low 

quantity of transformable material could be the reason for a negative outcome utilizing the pCambia 

system. Therefore, regarding the transformation protocol utilized in this work, the pCAMBIA system 

was not the system of choice for transformation of P. x canescens. 

 35S promoter 

Although the pK7WG system accomplished much better transformation results than the pCAMBIA 

system, not every promoter/gene combination was transformed successfully. Consistently failing 

transformation attempts were often linked to the use of the 35S promoter. In the case of the 

transcription factor AtWRI1 and the key enzyme in triacylglycerol production AtDGAT1, under the 35S 

promoter no viable plants after transformation were observed. On the contrary, a positive 

transformation was demonstrated with the MaFAR (K 71) and the ScWS under two different 35S 

promoters (K 60 and K 72) and additionally with the wood-specific promoter DX15 (K 78, Table 23). 

Utilizing the DX15 promoter, the transformation of AtDGAT1 was also successful and led to a high 

number of stable lines (Table 23). 

The 35S promoter is a widespread tool used in plant research for its lack of tissue specificity, its high 

expression levels and its applicability to different plant species. Nevertheless, several inconsistencies 

of the 35S promoter in scientific use have been discovered. For example, the impact of the 35S could 

be enhanced by duplication (Kay et al., 1987), different transcription levels were found in younger 

tissues of Nicotiana benthamiana compared to older tissues (Williamson et al., 1989) and evidence 

was found that the 35S promoter reacts sensitive to short photoperiods (Schnurr and Guerra, 2000). 

Also, a high diversity of different 35S promoter sequences exists; e.g., long variants of the promoter 

contain an open reading frame and might lead to unintended phenotypic changes (Podevin and Jardin, 

2012). Nevertheless, the 35S promoter used in this work demonstrated a consistent overexpression of 

ScWS (K 60) in different transgenic lines (Figure 29 A) as well as in different tissues: leaf, developing 

xylem and roots (Figure 29 B). Therefore, it is unlikely that the 35S promoter was responsible for the 

continuously failing transformation of AtDGAT1 and the inhibited growth of AtWRI1 in P. x canescens. 

The lack of viable transformants rather suggests that the harsh impact of a constitutive overexpression 

of the key gene AtDGAT1 or key transcription factor AtWRI1 is the main reason for failing 

transformation results. 
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 DX15 promoter 

In order to drive expression of genes in developing xylem tissue, Ko et al. (2012) identified a group of 

specific and highly expressed genes in the DX in silico by GeneChip Poplar Genome Array (Affymetrix) 

analysis; the specific expression of a chosen subgroup of genes found in silico was confirmed in planta 

by fusing promoter regions with the β-glucuronidase (GUS)-reporter gene from E. coli. The promoter 

region of PtrNAC073 (further referred to as DX5) has been found to be highly expressed in xylem tissue 

before (Grant et al., 2010) and the expression patterns of this gene were validated in the work of 

Ko et al. (2012). However, the promoter region of Fasciclin-like AGP8 (further referred to as DX15) was 

demonstrated to have higher expression rates in DX tissue compared to DX5 and was thus chosen to 

express the genes of interest in this work.  

In contrast to the findings of Ko et al. (2012), the sequence analysis of the promoter region revealed a 

missing repetitive element (Figure 48). This missing element was consistently found in three different 

P. trichocarpa individuals. Since Ko et al. (2012) used hybrid poplar ‘NM6’ 

(Populus maximowiczii x nigra) for promoter sequence analyses, the missing element in our study is 

most likely due to the use of different species, P. trichocarpa. 

In the developmental xylem of transformed plants, generally a high expression of the target gene 

under the DX15 promoter was found. In ScWS–transformed plants, a high variation of the expression 

level between different plants was observed (Figure 49 A). Additionally, in WT-plants, a basal 

expression was found, demonstrating that endogenous wax ester synthesis was taking place and that 

the primer was exclusively amplifying the transgene. On the contrary, no basal expression of 

diacylglycerol acyltransferases was found in plants transformed with the DX15::AtDGAT1-construct 

(Figure 49 B). The expression levels the AtDGAT1-OE lines were normalized against the reference genes 

PtrPPR_2 (Potri.012G141400, referred to as Aref2) and PtrRpp14 (Potri.015G001600, referred to as 

Cref1) and thus, appeared to be seemingly much lower than the expression levels of ScWS 

overexpression lines, in which stable basal expression of the endogenous wax ester synthase was used 

as the reference. Nevertheless, the AtDGAT1 expression levels were up to 100-fold higher than those 

of the reference genes, clearly showing strong expression of AtDGAT1 in DX tissue. 

An important point is whether the DX15 promoter is tight, i.e. expressed only in wood. Therefore, the 

expression of target genes in different tissues was analysed. AtDGAT1 was found to be expressed 

mainly in developing xylem tissue. In bark and leaf, AtDGAT1 was also detected, but at very minor 

levels. Bark tissue had higher ATDGAT1 expression levels than leaf tissue. However, these enhanced 

expression levels might be due to the RNA isolation from bark, which may comprise DX to a certain 

extent. This was observed specially in the ScWS-expressing line K78III (Figure 27), indicating a poor 

sample preparation. This has been addressed by Ko et al. (2012) as well to be the major problem to 
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identify tissue-specific promoters. Here, both genes, AtDGAT1 and ScWS under the DX15 promoter 

principally showed strong enrichment for DX but not perfect tissue specificity.  

 AtWRI1 

In this study, the A. thaliana gene AtWRI1 was chosen and transformed into P. x canescens, utilizing 

the pCAMBIA or the pK7WG binary vector system. No stable line was produced with any of the binary 

vector systems. However, plantlets transformed with 35S::AtWRI1 demonstrated a significantly longer 

rooting period compared to plantlets transformed with the AtDGAT1. To counteract a possible 

deficiency in growth, several plantlets were transferred to culture media containing 4 % sucrose to 

increase carbon availability, but plantlets on 2 % and on 4 % sucrose containing medium died 

consistently after a rooting period of 9 to 12 weeks.  

WRI1, a well-studied transcription factor closely linked to fatty acid synthesis (Focks and Benning, 

1998), plays a key role in oil accumulation, e.g. in potato (Hofvander et al., 2016). In vegetative tissue, 

transformed WRI1 led to increased TAG quantities in leaves of Nicotiana benthamiana (Vanhercke et 

al., 2013) or A. thaliana (Sanjaya et al., 2011). Woody plants were affected by overexpression of WRI1  

as well, e.g. Jatropha curcas, in which overexpression of JcWRI1 enhanced lipid contents and oleate 

levels in seeds (Ye et al., 2018). The poplar homolog of WRI1, derived from P. trichocarpa cambium, 

led to oil accumulation in leaves of DGAT1-co-transformed Nicotiana benthamiana (Grimberg et al., 

2015), indicating a highly conserved function across different species. Contrary, overexpression of 

PtWRI1 in Populus tremula × tremuloides (clone T89) under a 35S promoter did not lead to an 

additional TAG increase, indicating a more diverse and different role of WRI1 in poplar stem storage 

lipid production (Grimberg et al., 2018). Grimberg et al. (2018) discussed that limitation of starch and 

thus carbon due to short day growing periods might be a possible explanation for steady TAG levels. 

Furthermore, the poplar WRI1 orthologue is not expressed in long-day conditions. 

The plantlets in this study transformed with the AtWRI1 under a 35S promoter were grown in long-day 

conditions but with reduced light according to the protocol (2.2.4). This might have increased the 

endogenous WRI1 orthologue leading to a carbon limitation that could not be rescued by the light 

conditions or the increased sucrose content in the media. However, the long rooting process without 

growth and lack of viability remains unclear and should be addressed in further studies by adjusting 

light intensity and sugar content of the media. 
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 AtDGAT1 

In this work, the AtDGAT1 gene was transformed in several construct and promoter combinations 

(Table 23), but viable lines were only found by utilizing the DX15 promoter in the pK7WG binary vector 

system. Since the DGAT1 is the key step and bottleneck in TAG synthesis, recent studies focused on its 

usability in altering seed storage TAG in A. thaliana (Savadi et al., 2015) as well as the possibility to 

increase TAG levels in vegetative tissues, such as stem tissue of tobacco (Nookaraju et al., 2014) by 

utilizing a 35S promoter. Apart from the present thesis (December 2019), no other studies regarding 

overexpression of DGAT1 have been accomplished in woody, perennial plants.  

No viable poplar lines obtained utilizing the 35S promoter. In contrast, with the tissue-specific DX15 

promoter, viable lines were generated in which AtDGAT1 was expressed (Table 23). This indicates that 

the AtDGAT1 plays a crucial role for TAG synthesis and a massive overexpression caused by a 35S 

promoter might alter the balance in lipid synthesis too harshly and thus preventing the production of 

viable transgenic poplar plants. Here, due to time constraints a detailed phenotypic analyses of the 

DX15::ATDGAT1 poplars were not possible. A glimpse into its possible impact on wood properties were 

promising because we found a trend towards decreased swelling of the wood (Figure 52). This 

phenotype was expected, if the hydrophobicity of the wood was increased. It will be important to 

investigate this phenotype further, using more mature and field-grown transgenic plants. 

 ScWS 

The ScWS was transformed in several construct and promoter combinations (Table 23) and viable lines 

were achieved with both promoters (35S and DX15) utilizing the pk7WG and pk7WG2 binary vector 

system. Contrary to WSDs (1.2.2), the role of ScWS is dedicated to the production of wax esters used 

as seed storage compound, demonstrated by high expression rates of ScWS and the fatty alcohol 

reductase (ScFAR) in cotyledonary tissue in Simmondsia chinensis (Sturtevant et al., 2020). Because of 

its dedication to the storage function and exploitability of WE in technical applications (Jetter and 

Kunst, 2008), research mainly focussed on the possibility to increase WE in seed tissues in higher plants 

under seed specific promoters (Iven et al., 2016; Ivarson et al., 2017b; Yu et al., 2018). So far, studies 

regarding the expression of ScWS in other vegetative tissues such as leaf or xylem have not been 

executed yet (April 2020). 

In most cases, co-expression of a fatty alcohol reductase led to significant increases in seed oil yield 

(Iven et al., 2013), since fatty alcohols are the limiting compounds in synthesis of wax esters (Iven et 

al., 2016). A co-transformation with both genes (ScWS and MaFAR) was not achieved in this work most 

probably due to the size of the used binary vector system (4.1.1). However, in single-gene attempts, 

the ScWS were transformed successfully under both promoters. Although no intensive accumulation 

of lipids were observed under the 35S promoter (3.3.1.4), plants demonstrated changes in physiology 
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and leaf surface wax ester composition (3.2.1) similar to the results of overexpression studies with 

different WS, with special regard to drought performance (4.2). Thus, contrary to the results of 

AtDGAT1-transformed plants (4.1.1.4), the ScWS might affect the wax ester synthesis just enough to 

allow viable transformed plants and detectable changes in the leaf surface wax ester composition, but 

not enough to detect increased wax ester accumulation in the tissues. Since the AtDGAT1 was 

positively transformed under the DX15 promoter, a tissue specific expression of ScWS might decrease 

the impact of altered wax ester synthesis even more. Because of time constraints, detailed phenotypic 

analyses of DX15::ScWS plants were not possible, but expression of ScWS in DX tissue was observed 

(3.2.2). To accumulate wax esters in vegetative tissues in larger quantities, a co-expression of ScWS 

and MaFAR under the constitutive 35S and in particular the tissue-specific DX15 promoter should be 

the subject of further research. 

 

4.2. Impact of overexpressed ScWS on poplar drought performance 

Many studies with annual plants such as rice (Zhou et al., 2013), camelina (Lee et al., 2014) and maize 

(Li et al., 2019) have shown correspondence between increased cuticular waxes and enhanced drought 

resistance. In this study, overexpressing the ScWS gene in P. x canescens resulted in decreased 

stomatal conductance (Figure 41), smaller stomata (Figure 44) and reduced amounts of wax ester 

precursors (Figure 47, for a schematic overview see Figure 63). These phenotypic consequences of 

WS-expression in poplar led to increased water use efficiency (Figure 42), drought avoidance and 

better performance under severe stress (Figure 56). Additionally, the plants showed a trend towards 

lower long-term water use (Figure 52). These findings concur with the results of Ni et al. (2015), who 

observed that a larger amount of wax deposited on the cuticula negatively affected the stomatal 

conductance. Ni et al. (2015) studied the leaf total wax deposition of different cultivars of the woody 

species mulberry (Morus alba) with GC-MS. Additionally, they found a smaller stomata aperture, but 

contrary to our results, the net photosynthetic rate and the transpiration rate were reduced as well. 

Ni et al. (2015) concluded that the total wax deposition can have a direct influence to the stomata 

apertures by preventing additional loss of water by an enforced cuticula. 
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Figure 63: Schematic overview over cuticular wax synthesis in plants. C16 and C18 fatty acyl-CoA from plastidial 
origin are elongated in the ER (endoplasmatic reticulum) to very long chain fatty acids (VLCFAs), the precursor 
pool for aldehydes and primary alcohols. The cuticular wax mixture is transported through the cell wall (CW) 
onto the cuticula by ABC transporter (ATP binding cassette transporter) and LTP (lipid transfer protein). CW: cell 
wall, PM: plasma membrane, FAE: fatty acid elongase. Derived from Xue et al. (2017). 

While an enhanced cuticula barrier was found to be the long-term answer of several species to drought 

stress as mentioned before, e.g. in tree tobacco (Cameron et al., 2006), a fast response to drought 

stress is the reduction of the stomatal conductance, triggered by abscisic acid (ABA) (Negin and 

Moshelion, 2016). ABA forms a complex network of genes and transcription factors that contribute to 

drought stress, e.g. reduction of stomatal conductance, root water uptake and biosynthesis of 

osmoprotectants (Kumar et al., 2012, 2018). Also, several links of ABA to cuticular waxes and altered 

cuticular composition were found in Arabidopsis (Macková et al., 2013), by actively switching on the 

promoter region of 3-KETOACYL-COA SYNTHASE 6 (CER 6) gene (Hooker et al., 2002). Macková et al. 

(2013) discovered significant increases in long chain fatty acids (C28, C30) and alkanes (C25, C27) in 

Arabidopsis. In the same study, decreases in long-chain alcohols (C22, C24, C26, C30, C32) in ABA-

treated Lepidium sativum were discovered. This is at variance to our findings that the alkanes (C25, 

C27) were decreased and that fatty acids (C28) were unaffected. Although the cuticula composition 

responds to ABA signalling, a subset of genes contributing to wax biosynthesis was found to be affected 

by water deficit and NaCl treatment independently from ABA treatment, indicating the existence of 

another cuticula regulatory network induced by drought (Kosma et al., 2009). The link between ABA 

and wax production was found to be MYB96 (Figure 64), a transcription factor induced by ABA, 

influencing the stomatal aperture via RD22 (Seo et al., 2009) and also regulating the wax biosynthesis 

(Seo and Park, 2011). 
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Figure 64: Schematic regulatory pathway of wax biosynthesis involved in drought resistance. The transcription 
factor MYB96 is upregulated in response to ABA and directly interacts with the promoter region of 3-ketoacyl-
CoA reductases (KCR) and 3-ketoacyl-CoA synthetases (KCS). Putatively feed-back effects of wax biosynthesis to 
ABA is shown in orange. Derived from Seo et al. (2009, 2011). 

Smaller sized stomata and reduced stomatal conductance without decreased photosynthesis capacity, 

i.e. enhanced photosynthetic efficiencies, have often been found in plants undergoing long term 

drought stress or long-term exposure to high ABA concentrations, an effect firstly described by 

Bradford et al. (1983) and confirmed by the finding of (Franks and Farquhar, 2001). Our findings agree 

with these reports because we observed (i) smaller stomata, (ii) decreased stomatal conductance but 

unchanged net photosynthesis rates and (iii) no significant differences in biomass of transgenic 

compared to WT plants. Furthermore, the pre-dawn leaf water potential of mild-drought treated 

ScWS-OE plants and WT plants did not differ (Figure 57 B, C) but under severe stress conditions (Figure 

57 A, D), the transgenic plants had a higher pre-dawn leaf water potential, indicating lower stress levels 

compared to WT plants.  

Taken together, the results of this thesis indicate a “pre-adaptation” of ScWS-OE plants to drought 

stress conditions that might be linked to a long-term regulating function of ABA. No significant changes 

in the root-to-shoot ratio, another ABA–dependent response to drought (McAdam et al., 2016), were 

found between WT and TG plants (Figure 35). However, when grown for a longer period, the biomass 

of leaves and roots of untreated plants were smaller in TG plants compared to the WT (Figure 37). This 

is consistent to previous findings (Arend et al., 2009; Yu et al., 2019) in which ABA was discussed to act 

independently from drought stress as a positive regulator of growth in leaves and roots. 

The leaf area of TG plants did not significantly differ to the WT plants in drought and watered 

conditions in short time experiments (Figure 33 A, C), but a significant decreased leaf area in TG plants 

in long-term experiments was observed (Figure 33 B). Consistently to our findings, a linkage of ABA to 
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leaf area was elaborately described by Yu et al. (2019); several different TF and ABA receptors were 

found to regulate the leaf area and implicitly wood biomass production. Additionally, a strong 

dependency of ABA and stomatal conductance was observed. 

ABA regulates cuticula wax composition via transcription factor MYB96, but it is unknown whether 

changes in the wax composition, which were induced here by the overexpression of ScWS, can have a 

feed-back effect on ABA (Figure 64). The overexpression of the ScWS led to reduced precursor 

molecules for wax esters (Figure 47), which might have regulating effects. Because especially long 

chain alkanes were found to decrease drought resistance when reduced (Park et al., 2010) and an 

increase of long chain alkanes is contributing positively to drought resistance (Kosma and Jenks, 2007), 

alkane synthesis might be considered to be the key player in cuticular stress response. The contribution 

of the sheer thickness of the wax layer to drought stress response is, however, discussed 

controversially; several studies have demonstrated that water loss is not directly related to the 

thickness of the wax layer (Schreiber and Riederer, 1996), (Sánchez et al., 2001). Therefore, the 

composition of the cuticular waxes may be more important than changes in the thickness of this layer. 

In this study, alkanes were the most significant group found to be decreased by overexpression of 

ScWS. Because a trend for a reduction in alcohols and in fatty acids was demonstrated as well (Figure 

47), a possible explanation can be that carbon in the form of lipid-derived precursor molecules are 

channelled towards the ScWS and quickly turned over to produce higher amounts wax esters. If the 

reduction of the precursors indicates a depletion of the pool because of enhanced wax biosynthesis, 

the basal drought tolerance of transformed poplars might have been increased, thus, resulting in the 

“pre-adapted” phenotype. 
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5. Overall conclusion / outlook 
In conclusion, this study demonstrates that changes in the lipid metabolism, in particular boosting the 

wax ester synthesis, can result in benefits regarding the plant’s adaptation to dry environments. 

Overexpression of ScWS in poplar plants caused a decrease in the stomatal conductance because of 

morphological changes in the stomata size. Since the photosynthesis rates were unaffected, the water 

use efficiency was increased. This led to pre-adapted poplar plants with lower water use that can 

withstand short-term drought periods. Because the plant hormone ABA is the key player in drought 

stress responses and seems to have the potential to influence the composition of the cuticula, the role 

of ABA regarding the phenotype of ScWS-OE plants should be investigated in greater detail. Further 

experiments therefore should focus on the concentration of ABA in plants overexpressing ScWS in 

drought and watered conditions. Since the water balance is regulated through a widespread network 

of ABA - sensitive genes and transcription factors, the postulated feed - back effect of wax biosynthesis 

towards ABA could be clarified by RNA sequence analysis, concentrating on genes crucial for wax ester 

synthesis such as KCR or the transcription factor MYB96. 

How the composition of the cuticula on leaves and stems was altered could not be directly measured 

because methods to determine wax load were not available. The decrease in the amounts of precursor 

molecules needed for wax ester synthesis suggests that alterations may occur. Light microscopic 

studies did not show conclusive results regarding morphological changes in the surface. Further 

research on the composition of the cuticula is needed to understand its involvement in the plant’s 

water balance. 

The biomass accumulation was not affected significantly, however, a tendency for lower biomass yield 

was observed. This has to be examined further and should be tested in experiments in long-term 

growing periods. Nevertheless, a stable phenotype was reproduced in three different experiments 

under greenhouse conditions. However, since the measured effects might be diminished by other 

stress-related influences outdoors, field testing is necessary. 

To modify wood, the promoter DX15 was cloned into a binary vector system and was proven to express 

genes of interest in DX tissue. Genes that could not be transformed into poplar system using the highly 

overexpressing 35S promoter, were able to be transformed using the DX15 promoter. Therefore, this 

promoter might be a valuable step in wood biotechnology. 
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7. Supplemental information 

7.1. Sequences 

 Genes 

>AtDGAT1 
ATGGCGATTTTGGATTCTGCTGGCGTTACTACGGTGACGGAGAACGGTGGCGGAGAGTTCGTCGATCTTGATAGGCTTCGTCGACGGAA
ATCGAGATCGGATTCTTCTAACGGACTTCTTCTCTCTGGTTCCGATAATAATTCTCCTTCGGATGATGTTGGAGCTCCCGCCGACGTTAGG
GATCGGATTGATTCCGTTGTTAACGATGACGCTCAGGGAACAGCCAATTTGGCCGGAGATAATAACGGTGGTGGCGATAATAACGGTG
GTGGAAGAGGCGGCGGAGAAGGAAGAGGAAACGCCGATGCTACGTTTACGTATCGACCGTCGGTTCCAGCTCATCGGAGGGCGAGAG
AGAGTCCACTTAGCTCCGACGCAATCTTCAAACAGAGCCATGCCGGATTATTCAACCTCTGTGTAGTAGTTCTTATTGCTGTAAACAGTAG
ACTCATCATCGAAAATCTTATGAAGTATGGTTGGTTGATCAGAACGGATTTCTGGTTTAGTTCAAGATCGCTGCGAGATTGGCCGCTTTTC
ATGTGTTGTATATCCCTTTCGATCTTTCCTTTGGCTGCCTTTACGGTTGAGAAATTGGTACTTCAGAAATACATATCAGAACCTGTTGTCAT
CTTTCTTCATATTATTATCACCATGACAGAGGTTTTGTATCCAGTTTACGTCACCCTAAGGTGTGATTCTGCTTTTTTATCAGGTGTCACTTT
GATGCTCCTCACTTGCATTGTGTGGCTAAAGTTGGTTTCTTATGCTCATACTAGCTATGACATAAGATCCCTAGCCAATGCAGCTGATAAG
GCCAATCCTGAAGTCTCCTACTACGTTAGCTTGAAGAGCTTGGCATATTTCATGGTCGCTCCCACATTGTGTTATCAGCCAAGTTATCCAC
GTTCTGCATGTATACGGAAGGGTTGGGTGGCTCGTCAATTTGCAAAACTGGTCATATTCACCGGATTCATGGGATTTATAATAGAACAAT
ATATAAATCCTATTGTCAGGAACTCAAAGCATCCTTTGAAAGGCGATCTTCTATATGCTATTGAAAGAGTGTTGAAGCTTTCAGTTCCAAA
TTTATATGTGTGGCTCTGCATGTTCTACTGCTTCTTCCACCTTTGGTTAAACATATTGGCAGAGCTTCTCTGCTTCGGGGATCGTGAATTCT
ACAAAGATTGGTGGAATGCAAAAAGTGTGGGAGATTACTGGAGAATGTGGAATATGCCTGTTCATAAATGGATGGTTCGACATATATAC
TTCCCGTGCTTGCGCAGCAAGATACCAAAGACACTCGCCATTATCATTGCTTTCCTAGTCTCTGCAGTCTTTCATGAGCTATGCATCGCAGT
TCCTTGTCGTCTCTTCAAGCTATGGGCTTTTCTTGGGATTATGTTTCAGGTGCCTTTGGTCTTCATCACAAACTATCTACAGGAAAGGTTTG
GCTCAACGGTGGGGAACATGATCTTCTGGTTCATCTTCTGCATTTTCGGACAACCGATGTGTGTGCTTCTTTATTACCACGACCTGATGAA
CCGAAAAGGATCGATGTCATGA 

Figure 65: Sequence AtDGAT1. 

>AtWRI1 
ATGAAGAAGCGCTTAACCACTTCCACTTGTTCTTCTTCTCCATCTTCCTCTGTTTCTTCTTCTACTACTACTTCCTCTCCTATTCAGTCGGAGG
CTCCAAGGCCTAAACGAGCCAAAAGGGCTAAGAAATCTTCTCCTTCTGGTGATAAATCTCATAACCCGACAAGCCCTGCTTCTACCCGAC
GCAGCTCTATCTACAGAGGAGTCACTAGACATAGATGGACTGGGAGATTCGAGGCTCATCTTTGGGACAAAAGCTCTTGGAATTCGATT
CAGAACAAGAAAGGCAAACAAGTTTATCTGGGAGCATATGACAGTGAAGAAGCAGCAGCACATACGTACGATCTGGCTGCTCTCAAGTA
CTGGGGACCCGACACCATCTTGAATTTTCCGGCAGAGACGTACACAAAGGAATTGGAAGAAATGCAGAGAGTGACAAAGGAAGAATAT
TTGGCTTCTCTCCGCCGCCAGAGCAGTGGTTTCTCCAGAGGCGTCTCTAAATATCGCGGCGTCGCTAGGCATCACCACAACGGAAGATGG
GAGGCTCGGATCGGAAGAGTGTTTGGGAACAAGTACTTGTACCTCGGCACCTATAATACGCAGGAGGAAGCTGCTGCAGCATATGACAT
GGCTGCGATTGAGTATCGAGGCGCAAACGCGGTTACTAATTTCGACATTAGTAATTACATTGACCGGTTAAAGAAGAAAGGTGTTTTCCC
GTTCCCTGTGAACCAAGCTAACCATCAAGAGGGTATTCTTGTTGAAGCCAAACAAGAAGTTGAAACGAGAGAAGCGAAGGAAGAGCCT
AGAGAAGAAGTGAAACAACAGTACGTGGAAGAACCACCGCAAGAAGAAGAAGAGAAGGAAGAAGAGAAAGCAGAGCAACAAGAAGC
AGAGATTGTAGGATATTCAGAAGAAGCAGCAGTGGTCAATTGCTGCATAGACTCTTCAACCATAATGGAAATGGATCGTTGTGGGGACA
ACAATGAGCTGGCTTGGAACTTCTGTATGATGGATACAGGGTTTTCTCCGTTTTTGACTGATCAGAATCTCGCGAATGAGAATCCCATAG
AGTATCCGGAGCTATTCAATGAGTTAGCATTTGAGGACAACATCGACTTCATGTTCGATGATGGGAAGCACGAGTGCTTGAACTTGGAA
AATCTGGATTGTTGCGTGGTGGGAAGAGAGAGCCCACCCTCTTCTTCTTCACCATTGTCTTGCTTATCTACTGACTCTGCTTCATCAACAAC
AACAACAACAACCTCGGTTTCTTGTAACTATTTGGTCTGA 

Figure 66: Sequence AtWRI1. 

>ScWS 
ATGGAGGTGGAGAAGGAGCTAAAGACCTTCTCAGAGGTATGGATCTCCGCCATAGCCGCCGCCTGCTACTGCCGCTTCGTCCCCGCCGT
TGCCCCTCACGGCGGCGCTCTCCGCCTCCTCCTCCTCCTCCCCGTCGTCCTCCTCTTCATTTTCCTCCCCCTCCGCCTCTCCTCCTTCCACCTC
GGCGGGCCCACCGCCTTGTATCTCGTCTGGCTTGCCAACTTCAAGCTCCTTCTCTTCGCCTTTCATCTTGGCCCTTTATCTAACCCCTCTCTC
TCTCTCCTTCACTTCATCTCCACCACCCTCCTCCCCATCAAGTTCAGAGATGACCCATCTAATGATCATGAGAAAAACAAGAGAACTCTGAG
TTTTGAGTGGCGTAAAGTTGTTCTTTTTGTTGCTAAGTTGGTGTTTTTTGCGGGTATTTTAAAGATTTATGAGTTTAGAAAAGATTTGCCTC
ATTTTGTGATCTCGGTGCTTTACTGTTTTCACTTCTATCTCGGGACGGAGATCACCTTAGCAGCAAGCGCAGTCATAGCTCGAGCCACGCT
AGGGTTAGACCTATACCCCCAGTTCAACGAGCCATACTTAGCCACCTCGCTGCAAGACTTCTGGGGGCGCAGGTGGAACCTCATGGTGTC
AGACATCTTGGGGTTGACAACATACCAGCCTGTCCGGCGTGTCCTCTCGAGGTGGGTCAGGCTGCGGTGGGAGGTCGCCGGCGCAATG
TTGGTGGCGTTCACGGTGTCGGGGCTAATGCATGAAGTGTTTTTCTTCTACTTAACTCGCGCGAGGCCCTCGTGGGAGGTGACGGGGTT
CTTTGTGTTGCATGGGGTTTGCACAGCCGTGGAGATGGTGGTGAAGAAGGCGGTTTCAGGCAAGGTGCGGCTGCGCCGGGAGGTGTCA
GGGGCGCTGACGGTGGGGTTCGTGATGGTGACTGGAGGGTGGTTGTTTTTGCCGCAGCTGGTGAGGCATGGGGTAGATTTGAAGACCA
TTGATGAGTATCCTGTCATGTTTAATTATACTCAGAAGAAATTGATGGGTTTGTTGGGGTGGTGAGGATCC 

Figure 67: Sequence ScWS. 
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>MaFAR 
ATGGCAATCCAGCAGGTCCACCACGCGGATACATCCTCATCAAAAGTGCTTGGCCAGCTTCGTGGCAAGCGCGTCTTGATCACCGGCACT
ACTGGGTTCCTGGGCAAGGTCGTCCTAGAGCGTCTAATCCGTGCCGTGCCGGACATTGGTGCGATTTATTTGCTGATTCGCGGTAATAAA
CGACATCCTGATGCCCGCTCAAGATTCTTGGAAGAGATTGCCACCTCGTCCGTTTTTGATCGCCTTCGTGAAGCTGACTCTGAAGGGTTTG
ACGCCTTCTTAGAAGAGAGGATTCATTGCGTCACCGGAGAGGTGACGGAAGCGGGATTCGGTATCGGCCAAGAAGACTACCGAAAACT
CGCTACAGAGTTAGATGCTGTAATCAATTCAGCCGCATCCGTGAACTTTCGAGAAGAATTAGACAAGGCTCTGGCCATCAACACCTTGTG
CTTACGGAATATTGCCGGGATGGTTGATTTAAATCCCAAGTTGGCCGTGCTTCAAGTGTCCACTTGCTACGTGAATGGGATGAATAGCGG
ACAGGTTACCGAAAGCGTTATCAAGCCGGCAGGTGAAGCAGTGCCTCGCTCTCCTGACGGGTTTTATGAAATCGAGGAGCTTGTTCGGC
TCCTCCAGGATAAGATCGAAGATGTTCAGGCCCGGTACAGTGGTAAAGTGCTTGAACGTAAATTAGTAGATCTTGGCATTCGCGAAGCC
AATCGGTACGGGTGGAGCGACACGTATACCTTTACGAAATGGCTCGGTGAGCAATTGCTCATGAAAGCGCTGAATGGTCGCACATTGAC
CATTTTGCGCCCGTCTATTATCGAAAGTGCCTTAGAAGAACCGGCACCGGGTTGGATTGAAGGAGTAAAAGTGGCTGATGCAATTATTTT
AGCGTATGCCCGTGAAAAAGTCACCCTCTTTCCGGGCAAACGGTCGGGTATAATCGACGTGATCCCAGTTGACTTAGTCGCGAATAGTAT
TATCTTAAGCCTCGCCGAAGCGCTGGGTGAGCCGGGTCGTCGTAGAATATATCAGTGTTGTAGTGGTGGCGGCAACCCGATCAGCCTTG
GCGAATTTATCGATCATCTCATGGCAGAGTCGAAAGCGAACTACGCAGCATACGACCATCTCTTTTACCGCCAACCCAGCAAACCATTCCT
GGCTGTAAACCGCGCGCTGTTCGATCTGGTAATCAGCGGCGTGCGCCTGCCACTGAGCCTGACGGATCGTGTTCTGAAACTGCTGGGCA
ACAGCCGCGATCTGAAAATGCTGCGTAACCTGGATACCACGCAGTCGCTGGCTACCATTTTTGGTTTTTATACCGCGCCGGATTATATCTT
CCGCAACGATGAACTGATGGCGCTGGCGAACCGCATGGGCGAAGTTGATAAAGGCCTGTTCCCCGTGGATGCGCGCCTGATTGATTGG
GAACTGTATCTGCGTAAAATACACCTGGCCGGCCTGAACCGTTATGCGCTGAAAGAACGTAAAGTGTATTCGCTGAAAACGGCCCGTCA
ACGTAAAAAAGCGGCATGAGGATCC 

Figure 68: Sequence MaFAR. 

 Promoter 

>DX15_Ko_et_al 
TTCCCCCTTTTGGTTCAATGCCTTTTATTCTTCCAAAATTATTTCATATTTTGTATCCGGAGGACATATTTGTTTCAAAAGGTGTCAGAAAAT
CAAAGCCCATTGAAAATATATAAACATATATAGATATAAAAACTCAAGGGTTCATTCCAAAATATAAGAACAAACTGATTGAATTAATTTG
TTATTTTAAGAACACTGTCTATATGTTTATATAGTGGGAGGTAGTGTTTTTTAAATCATATACTAACTTATTATAAAAATAAATCATAAAAA
AGGAACCTCAAGCATCCCCTGGTAAGCTCGTATGTAGGAATACTCGGAGATCAAATGTCCGAATGTCAAATGTTAAGGCAAGTGAAATA
TCCCTGACTTTTTAGCAAGCAAATTGTTGAGTAGCTAAAATGAATTATTTTAATATTTTTAAATCATTTTAATATATTAATATTAAAAAAAAT
TAAATATTTTTTTTAATACATTTTCAATAACAAACACTTTAAAATATAATCTTTGTCACACTCTTAAACAGTAACAGCAGAAAGCATATGTG
AGTGATATAGCTATAGTTGCTGTTTGACACGGACAATCTCCATCTAAATTCATGAATAATAAAGTTTTGCCTACACACCCACTTGAAATCTC
CTCCTAGTTTTCCTGATTTGCCATGCTAACTACAAGAACAAGATGCTAGCTAGTATCTTGTTCTGTCTCTCGCTCTCTCTCTATCTCTCCAGT
TGATAGTTGATAGTTGATAGTTGATAGCTGATACCCTCCCACCTTTCCCAGAAAGATGATTGAGGAACTAGTCACTGTGTTCGTGTAACT
AATACTGTTCATGGCACCTAACTTGATCCTCTCTTCACCAGACCACTATAAAAACCCTATCTGTCCTCCTCATAATCATATCACTACACCCAA
CACTTCTGCAAGCACAACTCCATTCAAGAACATCAAGAGTATAGGCCGCCGCTGCAACAAAACAGCACTCCTAGCTACTTCAAGATGAGG
CCACAATCTTTCATCTT 

Figure 69: Sequence of DX15 promoter region, published by Ko et al. (2012). Repetitive TTGATAG element is 
highlighted with a grey box. The AC element (ACCTAAC) is highlighted in bold. 

>DX15_Sequence 
TTCCCCCTTTTGGTTCAATGCCTTTTATTCTTCCAAATTAATTTCAATATTTTGTATCCGGAGGAACATATTTGTTTCAAAAGGTGTCAGAAA
ATCAAAGCCCATTGAAAATATATAAACATATATAGATATAAAAACTCAAGGATTCATTCCAAAATATAAGAACAAACTGATTGAATTAATT
TGTTATTTTAAGAACACTGTCTATATGTTTATATAGTGGTAGGTAGTGTTTTTAAAATCATATACTAACTTATTATAAAAATAAATCATAAA
AAAGGAACCTCAAGCATCCCCTGGTAAGCTCGTATGTAGGAATACTCGGAGGTCAAATGTCCGAATGTCAAATGTTAAGGCAAGTGAAA
TATCCCTGACTTTTTAGCAAGCAAATTGTTGAGTAGCTAAAATGAATTATTTTAATATTTTCAAATCATTTTAATATATTAATATTAAAAAAA
ATTAAATATTTTTTTTAATACATTTTCAATAACAAACACTTTAAAATATAATCTTTGTCACACTCTTAAACAGTAACAGCAGAAAGCATATGT
GAGTGATATAGCTATAGTTGCTGTTTGACACGGACAATCTCCATCTAAATTCATGAATAATAAAGTTTTGCCTACACACCCACTTGAAATC
TCCTCCTAGTTTTCCTGATTTGCCATGCTAACTACAAGAACAAGATGCTAGCTAGTATCTTGTTCTGTCTCTCGCTCTCTCTCTACCTCTCCA
GTTGATAGTTGATAGTTGATAGCTGATACCCTCCCACCTTTCCCAGAAAGATGATTGAGGAACTAGTCACTGTGTTCGTGTAACTAATAC
TGTTCATGGCACCTAACTTGATCCTATCTTCACCAGACCACTATAAAAACCCTATCTGTCCTCCTCATAATCATATCACTACACCCAACACTT
CTGCAAGCACAACTCCATTCAAGAACATCAAGAGTATAGGCCGCCGCTGCAACAAAACAGCACTCCTAGCTACTTCAAGATGAGGCCACA
ATCTTTCATCTT 

Figure 70: Sequence of DX15 promoter cloned in this study. Repetitive TTGATAG element is highlighted with a 
grey box. The AC element (ACCTAAC) is highlighted in bold. 
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>35S_P-entry_gateway_system 
AGAGCAGCTTGCCAACATGGTGGAGCACGACACTCTCGTCTACTCCAAGAATATCAAAGATACAGTCTCAGAAGACCAAAGGGCTATTG
AGACTTTTCAACAAAGGGTAATATCGGGAAACCTCCTCGGATTCCATTGCCCAGCTATCTGTCACTTCATCAAAAGGACAGTAGAAAAGG
AAGGTGGCACCTACAAATGCCATCATTGCGATAAAGGAAAGGCTATCGTTCAAGATGCCTCTGCCGACAGTGGTCCCAAAGATGGACCC
CCACCCACGAGGAGCATCGTGGAAAAAGAAGACGTTCCAACCACGTCTTCAAAGCAAGTGGATTGATGTGATAACATGGTGGAGCACG
ACACTCTCGTCTACTCCAAGAATATCAAAGATACAGTCTCAGAAGACCAAAGGGCTATTGAGACTTTTCAACAAAGGGTAATATCGGGAA
ACCTCCTCGGATTCCATTGCCCAGCTATCTGTCACTTCATCAAAAGGACAGTAGAAAAGGAAGGTGGCACCTACAAATGCCATCATTGCG
ATAAAGGAAAGGCTATCGTTCAAGATGCCTCTGCCGACAGTGGTCCCAAAGATGGACCCCCACCCACGAGGAGCATCGTGGAAAAAGA
AGACGTTCCAACCACGTCTTCAAAGCAAGTGGATTGATGTGATATCTCCACTGACGTAAGGGATGACGCACAATCCCACTATCCTTCGCA
AGACCTTCCTCTATATAAGGAAGTTCATTTCATTTGGAGAGGACACGCTGAAATCACCAGTCTCTCTCTACAAATCTATCTCTG 

Figure 71: Sequence of the 35S promoter used in the pEntry vector system. 

>35S_pK7WG2 
GATCTCCTTTGCCCCGGAGATCACCATGGACGACTTTCTCTATCTCTACGATCTAGGAAGAAAGTTCGACGGAGAAGGTGACGATACCAT
GTTCACCACCGATAATGAGAAGATTAGCCTCTTCAATTTCAGAAAGAATGCTGACCCACAGATGGTTAGAGAGGCCTACGCGGCAGGTC
TCATCAAGACGATCTACCCGAGTAATAATCTCCAGGAGATCAAATACCTTCCCAAGAAGGTTAAAGATGCAGTCAAAAGATTCAGGACTA
ACTGCATCAAGAACACAGAGAAAGATATATTTCTCAAGATCAGAAGTACTATTCCAGTATGGACGATTCAAGGCTTGCTTCATAAACCAA
GGCAAGTAATAGAGATTGGAGTCTCTAAGAAAGTAGTTCCTACTGAATCAAAGGCCATGGAGTCAAAAATTCAGATCGAGGATCTAACA
GAACTCGCCGTGAAGACTGGCGAACAGTTCATACAGAGTCTTTTACGACTCAATGACAAGAAGAAAATCTTCGTCAACATGGTGGAGCA
CGACACTCTCGTCTACTCCAAGAATATCAAAGATACAGTCTCAGAAGACCAAAGGGCTATTGAGACTTTTCAACAAAGGGTAATATCGGG
AAACCTCCTCGGATTCCATTGCCCAGCTATCTGTCACTTCATCAAAAGGACAGTAGAAAAGGAAGGTGGCACCTACAAATGCCATCATTG
CGATAAAGGAAAGGCTATCGTTCAAGATGCCTCTGCCGACAGTGGTCCCAAAGATGGACCCCCACCCACGAGGAGCATCGTGGAAAAA
GAAGACGTTCCAACCACGTCTTCAAAGCAAGTGGATTGATGTGATATCTCCACTGACGTAAGGGATGACGCACAATCCCACTATCCTTCG
CAAGACCCTTCCTCTATATAAGGAAGTTCATTTCATTTGGAGAGGACTGCAGGACGATCCGTATTTTTACAACAATTACCACAACAAAACA
AACAACAAACAACATTACAATTTACTATTCTAG 

Figure 72: Sequence of the 35S promoter used in the pK7WG-pDONR vector system. 
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