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Abstract

This thesis aims to develop and deploy a visually intelligent disassembly
scheme to automate the recycling routines for end-of-life products. The
recent developments in artificial intelligence and computer vision are yet
to be utilized in the E-Waste recycling industry, a shortcoming this thesis
addresses. We ask to what extent and in what ways state-of-the-art deep
learning methods could constitute an intelligent and generalizing scheme
that can be used to disassemble commonly found computer parts such
as hard drives and graphical processing units, that are known to contain
valuable metals.

Using relevant metrics to evaluate the accuracy and performance of
individual components and the entire system altogether, we empirically
show that methods based on deep learning and computer vision are well
suited for estimating the state of disassembly and inferring the required
visual parameters for possible action executions.

The significance of this study is that it introduces an industry-oriented
scheme that only requires off-the-shelf sensors to operate, and can be
repurposed to work with new products. The work has also been part of
Horizon 2020 project "IMAGINE", aimed to develop a fully automated
disassembly robot to be used in recycling plants. Therefore, the results
obtained and presented in this thesis have also been used in the IMAGINE
project.
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Introduction

1.1 Thesis Scope

In the century we are living in, a few concepts such as sustainability,
circular economy and re-usability have become increasingly important. In
fact, these concepts sometime play a determining role in politics of many
states in the world. A very clear example to this can be given as the
Millennium Development Goals Report 2015 [Mot-+15] accepted in the
UN Summit in New York. Items such as "Popularization of sustainable
production and consumption models" and "Revival of global efforts and
partnerships to ensure sustainable development" are listed and discussed
under environmental sustainability. A lot of states today already report that
they have been working towards integrating these concepts into national
development policies, while some others are just starting to do so. It
appears the world we are living in is slowly heading towards adopting these
policies all around. In short, our planet - the common ground for all the
states - will breathe easier due to us acknowledging we humans are an
integral part of it, rather than the absolute owner of it.

Resource
! Extraction

Figure 1.1: Major operational blocks and their relations under linear economy.

Sustainability and circular economy are tightly coupled concepts. Al-
though many may not know the difference between a linear economy and a
circular one, the differences are easy to grasp. As we know, in 1698 Thomas
Savery invented the steam engine and it changed everything. This inven-
tion triggered the industrial revolution, which transformed our ability to
manufacture things. Back then, raw materials and energy seemed infinite,
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and labour was readily available. For the first time in history, we mass
produced goods. Since then, the rapid pace of technological advancement
has continued. The resulting innovations led to the fact that now many
have access to products from all over the world at affordable prices. These
products have brought many of us the material comfort previous genera-
tions could not have imagined. However, the current system is recently
acknowledged to be not an advantageous one. The primary reason for that
is the way we run our economy. Basically, we extract resources from the
ground to manufacture products, which we use, and, when we no longer
need them, throw them away. In other words, we have been following the
take-make-waste routine. This is called linear economy, as illustrated in Fig.
1.1. Acknowledged by the aforementioned UN report, eventually, we must
transform all the elements of the take-make-waste routine. This includes
how we administer resources, how we manufacture and use products, and
what we do with the materials subsequently. Only then can humans create
a flourishing economy that benefits everyone and respects the limits of our
planet. Shifting this routine involves everyone and everything: businesses,
governments, and individuals; our cities, our products, our jobs and our
consumption. By designing out waste and pollution, keeping products
and materials in use, and regenerating natural systems we can reinvent
everything. This is called a circular economy (illustrated in Fig. 1.2).

This model of economy revolves around the very concept of recycling.
Many developed countries today are incorporating some of the aspects of
circular economy (e.g., glass waste is used to reproduce glass, paper waste
is used to reproduce paper). Ideally, the same is expected to apply to other
waste categories, such as electronic waste or e-waste. Before going any
further, one must define the term of e-waste. Encyclopedia Britannica'®
defines the term as follows:

"E-Waste is various forms of electric and electronic equipment that have
ceased to be of value to their users or no longer satisfy their original
purpose. Electronic waste (e-waste) products have exhausted their utility
value through either redundancy, replacement, or breakage and include
both ’white goods’ such as refrigerators, washing machines, and microwaves
and ’brown goods’ such as televisions, radios, computers, and cell phones.

15 Electronic waste, Encyclopedia Britannica, 26 May 2016. Accessed 23 February 2021
https://www.britannica.com/technology/electronic-waste
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Figure 1.2: Major operational blocks and their relations under circular economy.

Given that the information and technology revolution has exponentially
increased the use of new electronic equipment, it has also produced growing
volumes of obsolete products; e-waste is one of the fastest-growing waste
streams. Although e-waste contains complex combinations of highly toxic
substances that pose a danger to health and the environment, many of the
products also contain recoverable precious materials, making it a different
kind of waste compared with traditional municipal waste" (Encyclopedia
Britannica, 2016, "Electronic waste").

Electronic products of the last decades (e.g., mobile phones, computers
and televisions) contain heavy metals such as Mercury or Beryllium. These
elements, if exposed directly to humans, have the potential to cause cancer
[Yan+20]. One of the places on Earth where this potential is clearly
noticeable is the city of Agbogloshie, Ghana. The city is referred to as a
"digital dumping ground". Currently, up to 80 tons of e-waste per month
16 from places like the USA, UK, EU and Australia, is legally and illegally

16 Morgan, T. (2014, September 18). Agbogbloshie: Welcome to the
world’s digital dumping ground (part 1). Retrieved February 23,
2021, from  https://www.earthtouchnews.com/conservation/human-impact/

agbogbloshie-welcome-to-the-worlds-digital-dumping-ground-part-1/

Section 1.1
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transported and dumped there. The hazardous impact is amplified by the
fact that there are little-to-no skilled recycling personnel working in the
city’s dumpsites, and even more so with child labor in the picture. The
cancerous elements leaking into the soil and afterwards into the drinking
water makes everything terribly worse for the locals. In other words,
e-waste dumping is causing an environmental and health crisis in Africa.

Total E-Waste generated (million metric tons) kg per capita
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Figure 1.3: Top 10 countries by the amount of e-waste generated in the year of
2016, according to the Global E-Waste Monitor 2017 [Bla+17].

Given the critical conditions in certain locations on Earth, it is necessary
to underline significant statistics regarding e-waste generation. It is not
always possible to reach the data of every year at every time, therefore,
we may demonstrate the data from an acceptable year that is not too far
from the year we are in, since the figures usually do not drastically differ
between a couple of years. As an example, as it’s illustrated in Fig. 1.3,
the 2016 data '”. regarding the generation of e-waste around the world
can be looked into. The statistics may not surprise us, after all, major
economies with increased populations are expected to use and discard

17 Richter, F. (2017, December 14). Infographic: These countries generate the most
electronic waste. Retrieved February 23, 2021, from https://www.statista.com/chart/
2283 /electronic-waste/
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more electronics than others. However, when looked at the individual
e-waste generation, the statistics '® differ. As Fig. 1.4 illustrates, countries
with relatively higher GDP per capita, seem to appear on top considering
individual e-waste generation as well.
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Figure 1.4: Top 15 countries by the amount of e-waste generated per inhabitant,
according to the OECD report published in 2019'7.

Environmental and health issues are not the only reasons to take e-waste

generation seriously. There is also the financial aspect to be considered.

An electronic device is composed of certain parts. The most valuable parts
are the ones to include precious metals such as gold (Au), silver (Ag),
platinium (Pt), palladium (Pd), followed by less precious tin (Tn) and
copper (Cu). Table 1.1 illustrates the kilogram value of these elements (as
of early November, 2020). Palladium, gold and platinum seem to have high
value in the market compared to the rest of the metals. The worth of these
metals should also be observed over the span of the past decade to get a

18 McCarthy, N., Richter, F. (2019, February 28). Infographic: The world’s worst

electronic waste offenders. Retrieved February 23, 2021, from https://www.statista.

com/chart/17175/e-waste-generated-per-inhabitant-in-selected-countries/
19 Siegerink, V. (n.d.). How’s life in the digital age? Retrieved February 23, 2021, from

http://www.oecd.org/publications/how-s-life-in-the-digital-age-9789264311800-en.

htm
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clearer picture on the value. Fig. 7.2 and Fig. 7.1 in Appendix 7.1 shed
some light into the matter by illustrating the price per Kilogram for these
metals over the decade. One could conclude that gold and palladium have
been experiencing a clear rise in the last half decade, whereas platinum
has been dropping, even though retaining a still high value in the market.

Figure 1.5: Gold ore to be processed in order to acquire pure gold, found in Larder
Lake, Ontario, Canada 2.

It must be noted that the extracted metal elements from the e-waste
parts are mostly pure, unlike the ones mined in metal mines. Taking gold
as an example, once mined as ore, the gold inside is still to be processed.
However, if it is extracted from a circuit board of an e-waste device, it
can be directly smelted into a gold bar and delivered to the market or
industry. Fig. 1.5 illustrates gold ore that is still to be processed. When it
comes to gold extraction from e-waste parts, the WEF (World Economic
Forum) report [UIU19] states that there is 100 times more gold in a tonne
of discarded mobile phones than in a tonne of gold ore. Mobile phones are
clearly not the only e-waste devices with rich gold content. Computers,
especially their microprocessors, contain a fair amount of gold, as illustrated

20 John, J. (2014, July 23). Hydrothermal GOLD-QUARTZ vein IN Fuchsitic Metamor-
phite (LARDER Lake Gold Ore, Ontario, Canada). Retrieved February 23, 2021,
from https://www.flickr.com/photos/jsjgeology/14722527472/
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in Fig. 1.6. Followed by RAM (Random Access Memory) and motherboard,
computers are clearly valuable e-waste devices.

On the other hand, it is definitely not a trivial process to extract these
precious metals from e-waste devices. First of all, any e-waste device has to
be disassembled into parts. The disassembled parts should be categorized
further and those with high precious metal content (e.g., circuit boards)
are fed into a chemical pipeline involving various blocks (depending on
the industrial application), such as cyanide solutions, acid treatments,
electrolysis and even bio-leeching [Mad+15]. These techniques, however,
won’t be explained further, since extracting metals from circuit boards
through chemical routines is beyond the scope of this thesis. This thesis
focuses on the first stage in the aforementioned process: the disassembly
of the device.

Figure 1.6: Underside of an Intel 486 Processor with golden plate in the middle,
and golden pins around of it’'.

Disassembly of e-waste devices is usually carried out by human operators
working on various e-waste devices in recycling plants. Operators usually
wear protective clothing and face masks in order to be isolated from
hazardous gases that could be released during the disassembly. As human
life gains value in developed countries, there are efforts to automate the
disassembly processes of e-waste devices. This is in perfect parallel with the

21 How much gold is in a Computer? (n.d.). Retrieved February 23, 2021, from
http://therefiningcompany.com/How-Much-Gold-Is-In- A-PC.aspx.

22 Daily metal spot Prices copper Price. (n.d.). Retrieved November 02, 2020, from
https://www.dailymetalprice.com/metalprices.php.
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Metal | Price($) per Kilogram(kg)
Palladium 72532.08
Gold 60308.37
Platinum 27553.19
Silver 759.56
Tin 17.650
Copper 6.6945

Table 1.1: Kilogram value of the precious metals found in e-waste devices, by
02.11.2020%2.

aforementioned environmental and financial aspects of e-waste recycling.
As a matter of fact, using automated systems and/or robots instead of
human labor could even be more efficient in the long run, since human
labor brings aspects such as taxation, insurance and healthcare into the
picture. It is therefore a worthwhile research subject to assess the capability
of automated systems in e-waste recycling domain.

There has been an attempt to address the desired assessment. The Euro-
pean Union has been funding the "IMAGINE" project®® under the Horizon
2020 research framework®!. The project aims to develop a robotic system
-guided by means of artificial intelligence- to automatically disassemble a
given e-waste device, such as a computer hard drive. The project is an
international effort, thus the consortium is formed by multiple partner
universities from countries such as Germany, France, Spain, Turkey and
Austria. Along with the universities involved, a recycling company called
FElectrocycling GmbH *° is also a part of the consortium. The developed
system is to be tested with an actual computer hard drive taken from the
respective e-waste heap at Electrocycling.

23 https://www.imagine-h2020.eu/
24 https://ec.europa.eu/programmes/horizon2020/en
25 http://www.electrocycling.de/en
26 https://www.imagine-h2020.eu/
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Figure 1.8: IMAGINE project has received funding from the European Union’s
Horizon 2020 Research and Innovation programme (H2020-ICT-2016-1, grant
agreement number 731761).

1.2 Thesis Structure

This thesis is organized into seven chapters divided into three main parts.

First, the introduction and the literature review are found in Chapter 1 and
Chapter 2. The second part describes an overview of the proposed scheme,
background and implementation of the methods used in the proposed
scheme in Chapter Chapter 3, Chapter Chapter 4 and Chapter Chapter 5
Finally, a quantitative evaluation of the proposed visual scheme, as well as
the conclusion, are presented in Chapter 6 and Chapter 7. Additionally,
large images, tables and relevant side-information are found in Appendices
7.1 and 7.1. An illustration to address this thesis organization is presented
in Fig. 1.9.

Chapter 1: Introduction, presents an overall introduction of this research,
including the research motivation, scope and structure of this thesis.
Chapter 2: Related Work provides an overview of the existing research

Section 1.2
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Figure 1.9: Organized thesis structure. Recommended to follow throughout for a
complete and better understanding.

in the relevant areas, namely disassembly automation and vision-aided
disassembly.

Chapter 3: System Overview introduces the IMAGINE framework on
which the proposed visual scheme is built. This high-level description of
the entire system is necessary in order to understand the asynchronous
interaction and low-level information exchange between the processing
blocks in the system.

Chapter 4: Background provides significant knowledge with respect to
the development of the visual disassembly scheme. This in-depth look in-
cludes a theoretical introduction to the deep convolutional neural networks
(DCNNSs), classical computer vision methods (such as Hough Transform),
as well as stereo imagery and point cloud technology.

Chapter 5: Approach explains the design and functionality of the indi-
vidual components the proposed visual scheme has. It also underlines how
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these individual components interact with each other and where they stand
in the proposed pipeline, as well as the entire IMAGINE framework.
Chapter 6: Evaluation quantitatively evaluates each individual compo-
nent mentioned in the previous chapter using relevant metrics specified for
each individual vision task. It also assesses the feasibility of generalization,
i.e., which other devices the proposal visual scheme could be used in order
to achieve automated disassembly.

Chapter 7: Conclusion, summarizes the entire work, underlines the pros
and cons of employing such a system in a potential recycling plant. It
discusses the possible implications and improvements the proposed system
could have, and what more could be done in order to optimize it in the
future.

Section 1.2
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Related Work

This chapter presents a review of related literature required to develop
a visual intelligence scheme for a robotic disassembly automation. The
content is divided into four sections describing related subjects: overview
of disassembly, types of disassembly in terms of automation, the role of
vision in the disassembly domain, and the case-study product (LCD screen
disassembly). Conclusions and problem statement are shared at the end.

2.1 An Overview of Product Disassembly

2.1.1 End-of-Life Product Treatment

. Maintenance

. Repair

. Product Reuse

. Upgrading
Downgrading
Remanufacturing

. Material recycling

. Incineration

. Landfill

BN =

=l o o,

A. Disassembly
B. Shredding

Other processes:
sorting, cleaning, inspection

Figure 2.1: Scenario of End-of-Life products [Duf+08].

The scenario for the End-of-Life products is illustrated in Figure 2.1.
Life Cycle Assessment (LCA) investigates the environmental impacts of
the investigated objects, systems or products from exploration and supply
of materials and fuels, through production and operation, to their dis-
posal/recycling [Peh06]. This investigation is carried out on EOL (End

13
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Refurbishing | Re-manufacture | Reuse | Recycle | Incinerate/Landfill

Unprocessed products X X X
Modules X X X X
Components X X X
Damaged components X X

X

Waste
Table 2.1: Destination of output of a disassembly facility [LG04].

Of Life) products in order to identify proper treatment options in regard
to environmental and economic perspectives. To continue on with the
aforementioned EOL options, the products first must be disintegrated into
individual components, parts, or material according to the requirement of
each treatment process. The disintegration process is typically performed
in two ways: shredding and disassembly. Shredding is a destructive process
that roughly breaks the products into small pieces or particles that will be
supplied to the recycling process [VC15]. The outcome of the shredding
process is low-quality blends of material and requires further sorting to
separate the valuable materials from the waste. The outcome shredded
pieces or particles are physically sorted by density and magnetic property
using a number of techniques, i.e. magnetic, electrostatic, etc. Shredding
is commonly implemented in industry practice due to the low operating
cost [VC15]. However, a major disadvantage is the loss of value of the
parts and components that turned out as shredded pieces. In addition,
hazardous components that potentially contaminate the workplace are
problematic [LG04]. Disassembly systematically separates the product
into its constituent parts, sub-assemblies, or other groupings [KRKO07].
The detached components can be supplied to a wide range of treatment
processes according to the desired purpose and downstream conditions as
shown in Table 2.1. It serves not only the treatment of EOL products
treatment but also repair-maintenance purposes if the proper techniques
are applied. A major problem is the usually high operating cost, which can
exceed the value recovered from EOL products. Therefore, if it becomes
economically infeasible, it is usually avoided in industry practice. The
possible solutions to make the disassembly process economically feasible
are discussed in the following sections.



An Overview of Product Disassembly

Generated E-Waste (Mt) | Recycled E-Waste (Mt) | Generated/Recycled (%)
Asia 24.9 2.9 11.7
Americas 13.1 1.2 9.4
Europe 12 5.1 42.5
Africa 2.9 0.03 0.9
Oceania 0.7 0.06 8.8

Table 2.2: E-Waste generation and recycling per continent, 2019 [For+20].

2.1.2 Disassembly of Products

The EOL treatment process has become more concerning due to a large
number of the products disposed. In the field of life cycle engineering,
much research focuses on the products having high material-return rate,
short life-cycle, and high volume of waste, such as electronic and electrical
waste and EOL vehicles. According to the European Directive 2002/96/EC
[Ele03], Waste Electrical and Electronic Equipment (WEEE) covers a wide
range of electrical and electronic products categorised into 10 groups (e.g.,
household appliances, IT & telecommunication, consumer equipment, and
electrical and electronic tools, etc.).

In 2005, the amount of e-waste in Europe was around 8.3 - 9.1 million
tonnes per year consisting of 40% for large-household appliances and
25% for medium-household appliances [Ore+01]. This figure was then
expected to grow 2.5 - 2.7% every year [Hui08]. In 2019, the number
of WEEE in Europe was around 12 million tons per year as shown in
Table 2.2. According to the latest report [For+20], Asia is the continent
that generates the most e-waste, whereas Europe is the one that recycles
the most. It is worth to mention that, globally, only 17.4% of e-waste
is documented to be formally collected and recycled [For+20]. It is also
significant to state that the number of e-waste is 8% of the whole municipal
solid waste (MSW) worldwide [BPB07]. These numbers should be kept
in mind with the bitter fact that every year the life cycles of electronic
products are slightly decreasing [SSP00]. More than 800.000 tonnes of
electrical and electronic waste were collected in Germany in 2017, 90% of it
came from households. This is the equivalent of 9.13 kilograms per capita
and year [Bal+15]. The remaining 10% came from businesses. Regarding
vehicles waste; in 2006, around 230 million cars were in use in Europe, and
10.5 million tonnes are disposed of every year. According to the European
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Directive 2000/53/EC, at least 80% (by mass) of EOL vehicles must be
reused and recovered; meanwhile, 85% of them must be recycled [Vig+10].

A

- Recycling
PR TN costs/benefit
7 Optimal
Benefits L
Strategy
/ Total Costs
< | » Di bly
| »
| . Range
Disassembly
Costs Costs

Figure 2.2: Determination of optimal disassembly strategy [DMO03].

Since the disassembly of products is one of the key steps of the efficient
EOL treatments, a number of investigations have been conducted in regard
to the environmental and economical aspects [Che01; GG99; SW95]. The
disassembly approach is also compared with the conventional waste treat-
ment, i.e. disposal and landfill [Ore+01]. These investigations concluded
that a disassembly approach greatly benefits the environment but it is not
economically feasible due to the expense resulting from both direct costs
(e.g., labour and machine) and costs (e.g., stock and logistics). However,
the disassembly process can be economically feasible if the optimal disas-
sembly strategy with respect to the cost and benefit is implemented as
illustrated in Figure 2.2. Therefore, the research direction currently focuses
on developing the strategy for the economically feasible disassembly.

One of the works [Duf+08] states that the factors influencing profitability
of the disassembly process are analysed by applying Principal Component
Analysis method (PCA) on the case study of disassembly activities. Accord-
ing to the findings, profitability is related to three factors: completeness of
disassembly, EOL facility, and usage of automation. In short, the depth
of disassembly is increased if the process is performed by relevant manu-
facturers. A high degree of automation positively affects profitability, and
the slightly high investment of an end-of-life facility is not in conflict with
profitability.
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2.2 Automated Disassembly

As human labor costs increase in developed countries, the manual work of
disassembly is slowly giving way to automated systems. It is important to
understand what degree of autonomy is feasible nowadays, and what is the
most efficient process. To this end, two types of automation approaches
are considered.

2.2.1 Semi-Automated Disassembly

A number of research works regarding the semi-automatic disassembly
have been conducted. Semi-automatic disassembly (or Hybrid system)
integrates human operators and an automatic disassembly workstation
(e.g., robots with disassembly tools) in order to improve the efficiency
of the disassembly process. The majority of the process is carried out
by machines that can operate automatically. The machines are used to
improve efficiency and conduct hazardous tasks, e.g. heavy duty destructive
operation. Consequently, human operators can focus on more sophisticated
tasks rather than performing the operational work [Kno+02]. Another
work [KHS07] states that the hybrid system is necessary in the flexible
system in order to support various product families. Manual operation is
involved when the automatic operations fail. A work [FKS06] from 2006
also states that the hybrid system allows achievement of the disassembly
process economically but manual operation must be involved. The major
drawback of automated systems is their instability due to a non-determined
disassembly sequence and various product conditions.

In the aforementioned work [KHS07] a hybrid, flexible system was devel-
oped to disassemble a wide range of product families. The study focuses
on the automatic generation of plans and the control sequence of a sys-
tem consisting of three robot arms and conveyor belts. The robots are
responsible for heavy duty tasks, such as plasma cutting of the sidewall
of washing machines. "'Before the process starts, the system evaluates
the degree of autonomy of the overall task from the product information
and availability of the system. Consequently, the tasks can be properly
distributed to the manual or automatic workstations" (Vongbunyong, 2015,
pp. 43). Two years later, the authors extended [KKIKS09] this concept to
develop a disassembly line for LCD screens, as illustrated in Figure 2.3.
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Screw removal and object handling operations are performed by Selective
Compliant Articulated Robot Arms (SCARA) while manual operations
perform the rest of the process.

Figure 2.3: Hybrid system for LCD screen disassembly, where humans and au-
tomation systems or robots cooperate to achieve the goal of disassembly [KIKS09].

Another work [ZDKO01] extends the semi-automatic disassembly cell
with a modular concept by configuring the cell controller using hierarchical
control and information distribution of the disassembly process. The system
is designed for extracting embedded components from printed circuit boards
(PCB). Regarding modular systems, the working components (e.g., robot
arms, fixtures, and quality control system) are grouped as a subsystem. To
supervise the communication and co-ordination tasks in and between each
subsystem, the cell controller is used [VC15].

In conclusion, a major advantage of semi-automatic disassembly cells
is the flexibility to deal with uncertainties and variation in the products.
Economic feasibility can be achieved since the automatic workstation can
perform the tasks more efficiently. Meanwhile, humans will get involved
in the top-level control or when the automatic operations fail. However,
the operation cost due to the human labour still exists in this concept.
Economic feasibility may not be able to achieve especially in developed
countries where the labour cost is very high. Therefore, this concept should
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be developed to a human-free disassembly environment where a higher
degree of autonomy is needed. The fully-automatic disassembly is explained
in the following section.

2.2.2 Fully-Automated Disassembly

In comparison with the semi-automatic disassembly, a degree of autonomy
is increased by incorporating sensor modules, prior knowledge of products,
and a high-level task planner. The configuration of the system is similar in
a number of studies, typically consisting of four components such as robot
arms, vision system, disassembly and handling tools, and other optional
sensors. A number of selected research works using complete disassembly
cells are presented in this subsection. Moreover, since the vision system
is typically used in fully-automatic disassembly, much research has been
focused on this component, which is explained in the next subsection.
One of the most complicated and advanced disassembly cells for disas-
sembling computers was developed in 2004 [Tor+04]. "The cell consists of
two industrial articulated robots equipped with force/torque sensors and
selected interchangeable disassembly tools. Both robots work co-operatively
through a task planner automatically generating paths and trajectories
based on a graph model proposed by the same main author" (Vonbunyong,
2015, pp.44). Another research [Gil+-07] implemented the multi-sensorial
system that combines information between a tactile sensor and the vision
system in order to perform visual-servoing of the robot. The conceptual
test was conducted by removing a bolt from a straight slot. Later research
[Gil+06] focused on the vision system that detects partial occlusions of the
components to simplify the disassembly task. The conceptual test was done
in the detection of circuit boards. In conclusion, this system exhibited an
ability to solve the uncertainty problem at the operational level by using
an integrated sensor system. However, according to the high-level planning
part, the disassembly sequence plan is based on precedence relations among
assemblies [TPA03b]. This method can generate the plan automatically,
but the user still needs to indicate the precedence relation and specific
information of the product structure a priori. The input from the vision
system is only to indicate the detailed geometry used for the operation level.
There is no feedback information sent back to the higher level planner
to acknowledge the current situation of the process. Therefore, it can be
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concluded that the system is able to disassemble only a product for which
the structure is known.

One study [Biik+01] developed a disassembly system for wrecked cars.
This project targets the disassembly of wheels with variation in the size
of the wheels, the number of bolts, and the position of the wheel [VC15].
Active stereo cameras are used to reconstruct the 3D structure of the
product. "Principle Component Analysis (PCA) is used to determine the
component that is potentially difficult to recognise due to the uncertainties
in EOL condition (e.g., rusty)" (Vongbunyong, 2015, pp.46). In their
related work [BH96], the authors suggested a knowledge-based approach
with a neural network to solve the problem of occlusion in complicated
scenes. In short, this research focused on increasing the flexibility of the
vision system to deal with uncertainties in EOL condition.

Another notable effort [F1S+12] developed the disassembly system for
EOL computers for reusing and recycling purposes. The system consists of
an articulated industrial robot and a camera system [VC15]. The system
deals with uncertainties by utilizing two components: the visual sensor
and the online genetic algorithm. First, the visual sensor provides a 2.5D
map of the detected component by integration between a 2D-camera with
a laser range sensor. Template matching is used to recognise and locate
the components according to the 2D template supplied in a BOM (Bill
of Materials). Second, the operation sequence for removing the detected
component is generated by an online GA as the process goes. As a result,
the optimal and/or near-optimal sequence is generated by minimising travel
distance and the number of disassembly method changes. In conclusion,
the key feature of this system is the ability to adapt the plan according to
the current situation obtained by the vision system [VC15]. However, a
precise BOM that represents the product structure is needed to be supplied
a priori. The online visual input is only used to identify the operation
options, e.g. accessibility, for the components expected. The BOM cannot
be modified even if the actual product structure is found inconsistent with
the predefined one. This will limit the flexibility to deal with unknown
model samples. In addition, the uncertainties at the operational level were
not clearly explained in this article.

A comprehensive survey of existing approaches in 2006 [Wei+06] showed
numerous limitations also found in later work. First, the focus on detecting
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a specific class of component to detect — e.g. screws ([Bai02; BRP16; Uki07],
bolts [Weg+15] — reduces the generality of the method and its applicability
in the context of recycling where several types of components must be
gathered. The use of fully model-based methods [ElS+12; Pom+04b;
TNO00; TPAO3a; Uki07; Xie+08] implies the availability of models (e.g.,
Computer Aided Design), as explained in the above works. This particular
assumption is a strong one, as these models are rarely available for every
brand and every type of device. Moreover, the recycling domain does not
guarantee that devices are in an intact state. Finally, another important
limitation is the use of non-adaptive feature detection techniques [Bai02;
BRP16; KJ00; Weg+15; Wei+06]. As mentioned previously, the high
intra-class and inter-brand variances of components reduces the relevance
of a human-engineered descriptor of a component class. This limitation is
only partially explained by the date of publication of some works [Bai02;
KJ00; Wei+06].

Furthermore, there have been some efforts that are worth mentioning
briefly (as there were no significant achievements, yet they are indeed in the
literature of automated disassembly). First, a work from 2006 [Mer-+10)]
proposed an ontology-based architecture with a multi-agent system (MAS)
for disassembly of digital cameras. The ontology is used to describe the
benefit of each operating module on the current task. Hence, the optimised
tool-path can be generated. Secondly, there is also a work [Bai06] that
presented a strategy of real-time tool path generation and error recovery.

On one hand, it seems that there is still a substantial lack in general-
izable, device- and environment-independent methods that can be used
in disassembly processes. On the other hand, Deep Convolutional Neural
Networks (DCNN) offer a powerful solution to analyze the inner structure
of devices in the context of disassembly. These methods have the potential
to solve the problems highlighted before: the specificity of a detector can
be tackled by training on a dataset that includes samples of multiple parts
of the targeted device (and extended by retraining later on) and thus being
able to recognize these parts in all the devices that use them. The lack
of adaptability is addressed by the nature of deep networks: as machine
learning methods, they are problem and feature agnostic before training.
Finally most of these methods are CAD model-free, meaning that they
do not require device-specific description sheets. They learn the relevant
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features of a part class by themselves, abstracting from the details of a
specific brand and model. In E-Waste recycling context, devices found in
the same family of devices often include similar parts such as PCBs, screws,
wires, etc. Extracting features from these using visual paradigms usually
leads to reproducible results that can be used and further developed for
other devices as well. In the next subsections, such methods are looked
into.

2.3 Vision Systems in Disassembly

This section focuses on the role and application of the vision system in
automatic disassembly systems. In general, machine vision serves a large
number of applications in robotics and autonomous machine research,
such as the assembly process of electronic products, process control, and
quality control [Low10]. From a case study of disassembly of used cars
investigated by Tonko et al. (1999) [Ton-+99], the authors summarise the
vision-based constraints that are frequently encountered in the disassembly
process. The constraints mentioned are the objects located in front of a
complex background, partial occlusion, detection of rigid objects, 6-DOF
(Six Degrees Of Freedom) estimation of objects, and low contrast image due
to some covering mixture (e.g., oil and dirt conditions) [VC15]. The vision
system must be able to handle these conditions under controlled conditions
(e.g., uniform lighting) in this research. However, these constraints might
be slightly changed in the disassembly of other products. In summary, the
research conducted in the context of vision and disassembly falls into the
following disciplines:

1. Object recognition and localisation.

2. Optical problem (e.g., distortion, shading, contrast, etc.)

3. Object and image quality (e.g., clutter, occlusion, etc.)

4. Camera configurations, frames mapping, and coordinate system.

5. Modelling and representation of objects.
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With these disciplines taken into consideration, the literature could be
classified in categories such as recognition and segmentation, detection
and classification, configuration of camera and coordinate system, model
representation. In addition, the computer vision library that is expected to
be used for programming is also reviewed. As there are many libraries and
frameworks available, this thesis only considers the libraries and frameworks
used developing the proposed pipeline.

2.3.1 Camera Configuration

Cameras are one of the widely used sensors in the context of automated
disassembly schemes. This is mainly due to the fact that visual input carries
a fine level of detail about the objects present in the scene. An automated
disassembly scheme may utilize a monocular or a stereo camera in order to
capture the disassembly scene containing the object and, optionally, the
surface plane as well as the manipulation tool. This subsection aims to
introduce the early works regarding camera configurations.

In a related work mentioned before [Tor+04], two technical problems
are pointed out. The optical problem (intrinsic) and the difference in
coordinate systems (extrinsic). First, the optical problems involve the
internal characteristics of cameras, e.g. focal length, distortion, and centre
point. This problem is resolved by calibration of the internal parameters of
the camera, e.g. model of the lenses. Second, the ambiguity from different
coordinate systems can be resolved by transformations of the telescopic
system (translation and rotation). The extrinsic parameters can be derived
from the absolute positions of the working elements, e.g. robot base, robot
configuration, camera, and worktable. Subsequently, the homogeneous
matrix can be derived, representing the mapping between each coordinate
system. With respect to the position control of the robot, visual-servoing
is broadly used to locate the position and orientation of the robot arm in
3D. The information can be presented in the image-based (pixel) and the
position-based (mm degree) approach. One study [Ton+99] suggests using
a position-based approach because it represents more explicit knowledge
for position control. Furthermore, the authors discuss and suggest camera-
robot configurations (eye-hand-configurations) that allow multiple objects
tracking.

More about the camera calibration is discussed in the Chapter 5, where
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the proposed pipeline’s camera configuration is justified, and the calibration
procedure is explained in detail.

2.3.2 Recognition, Segmentation, Detection, Classification

The problem of disassembly scene analysis can be formulated as a problem
where machine learning paradigms (e.g., segmentation, classification) and
traditional data (e.g., pointcloud) analysis methods are used in order to
recognize the present parts of the target device. In contrast to other
application domains, the context of recycling E-Waste adds the following
constraints:

e The position estimation of parts must be precise enough to allow
manipulation of small parts in the device.

e There is a strong degree of occlusion because parts are intertwined
(e.g., the platters and R/W head of a hard drive)

o There is substantial intra-class variance for specific parts depending
on the device brand or model or the potential damage of the part.

Recognition vs. Segmentation

Object recognition serves purposes such as classifying between a product
and a component, or detecting the desired component to be disassembled
[Tor+-04]. Given this definition and the above constraints, it is important
to realize the fact that the mere recognition of a part without its physical
boundary information is insufficient in the context of disassembly. Since
any manipulation action is parameterized with the coordinate information,
position estimation of parts is essential. There are many other domains
where recognition alone does not suffice, and thus, there is another problem
called Semantic Segmentation problem that needs to be addressed.

The Semantic Segmentation problem (also known as pizel-wise classifi-
cation problem) has been addressed in domains ranging from robotics and
autonomous driving, to medical research, agriculture and human-computer
interaction [DHS16; Dvo+17; FSB19; Li+17; Lin+19; Liu+18]. In these

27 SemTorch, David Lacalle Castillo, Retrieved February 23, 2021, from https://pypi.
org/project/SemTorch.
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domains, the state-of-the-art performance is achieved using deep learning
methods, especially Convolutional networks (CNNs or ConvNets) [KKSH12].
Fully Convolutional Networks (FCN) have been the standard algorithm to
achieve pixel-wise segmentation of images [BKC17; LSD15; RFB15b] in var-
ious domains such as medicine, autonomous driving, and domestic robotics.
They extend CNN by replacing fully-connected layers by convolutional
layers, allowing for arbitrary-sized input with no need for region-proposal.
The trade-off however, due to the nature of the layers, is that the predic-
tion of boundaries lacks precision. This problem is addressed by a set of
improvement to the networks (e.g., multi-resolution architecture with skip
connections [GF16; Lin+17a], mask refinement [Pin+16]). Additionally,
pixel-wise segmentation requires labeled data which has a higher cost of
production [Lin+14]. Weakly-supervised methods have been developed to
tackle this issue [Zha-+19]: these methods iterate between learning using
coarse bounding boxes as labels then refining them into more precise masks
[DHS15; Kho+17]. They achieve similar performance as fully supervised
methods at a lower labelling cost. Another main approach is called Region-
Based Semantic Segmentation. This method relies on a pre-processing
of the input image into candidate objects (region proposals) for which
features are extracted. These features are then used for the classification.
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There is an entire family of R-CNN (Region Based Convolutional Neural
Networks) [Gir+14; Girl5; Ren+15] that have been evolving. The current
state-of-the-art of this family is called Mask-RCNN [He+17] which is based
on Feature Pyramid Network (FPN) [Lin+17b]. Mask-RCNN has been
used by Facebook AI Research [Jou+16] as well as by medicine studies
[Che+19; Cou+19; Joh18].

There are situations where semantic segmentation may also not suffice.
Tasks that require the awareness of object instances fall under a specific
problem called the Instance Segmentation problem. Instance segmentation
is similar to semantic segmentation. However it goes a bit deeper. It
identifies the object instance each pixel belongs to. This way, even if there
are objects of the same class, their instances could be distinguished, as
illustrated in Fig. 2.4. Mask-RCNN and its ensembled models are currently
the state of the art for object detection and instance segmentation. The
reason for this is the region-based detection mechanism mentioned earlier.
The core idea behind Mask-RCNN is to scan over the predefined regions
called anchors. RPN (Region Proposal Network) does two different types
of predictions for each anchor. First is the score of the anchor being
foreground, and the bounding box regression. The fixed number of anchors
with the highest score are then chosen, and the regression adjustment is
applied to get the final proposal for object prediction at the network head.
There are other architectures that could be used for this task, such as the
ensembled model Cascade-RCNN [CV18]. There is also the recent work of
Mobile-RCNN [How+17] that could be considered.

The most notable achievement in the context of segmentation of a dis-
assembly scene came in 2019 with the work of Jahanian et al. [Jah-+19].
The work claims to tackle the multi-faceted dense circuit problem by build-
ing upon state-of-the-art CNNs and end-to-end (no pre/post-processing)
optimizing for multi-task learning of detection, localization, and instance
semantic segmentation, while accounting for crisp boundaries of small
components. Specifically, the method extends the Mask R-CNN [He+17]
by addressing the inherent problems of CNNs: the trade-off between se-
mantic top levels and detailed bottom levels. First, the authors explore the
proposal feature by pooling feature maps from all levels (top and bottom)
of the backbone while benefiting from lateral skip-connections between
all levels. The key idea here apparently is to regain the higher spatial
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Figure 2.5: Results of the method proposed by Jahanian et al. [Jah+19]. From
top, rows are: Input image, ground truth, Mask R-CNN + FPN, Mask R-CNN
+ FPN + Adaptive Pooling, and Mask R-CNN + FPN + Adaptive Pooling +
Edge Detection. Note that the last two rows qualitatively have more accurate
(respect to the baseline) boundaries detection for each object, and the last row
has even better boundaries detection. Authors note that they intentionally picked
images where they had several objects in the dense board, otherwise doing the
multi-tasks on an image of a single component is much easier and less interesting.

resolution information of the objects’ boundaries from the feature maps at
lower-levels of the CNN hierarchy. Second, they add an auxiliary branch
for predicting objects’ boundaries on each Region of Interest (Rol), in
parallel with the existing branch for classification, bounding box regression,
and masks segmentation. Thereby, this recent work achieved increased
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accuracy for the segmentation of the phone dataset by over 3% of the
standard metric. More importantly, it retained the crisp boundaries for the
robotic tasks (as compared to Mask-RCNN) while maintaining the same
level of computing speed. Fig. 2.5 illustrates a series of images from the
work.

There are, however, a few points to mention. The first point is the
fact that the proposed work was only evaluated on a limited dataset of
smart mobile phones, with hand-picked brands and models (e.g., Apple
iPhone 3GS, iPhone 4, iPhone 4S, iPhone 6, Samsung GT-i8268 Galaxy,
Samsung S4 Active, Samsung Galaxy S6 and S6 Edge, Samsung S8 Plus,
Pixel 2 XL, Xiomi Note, HTC One, Huawei Mate 8, 9, 10, and P8 Lite).
As the training dataset consists of images for a limited variety of brands
and models, the method cannot be used in an actual recycling plant where
a phone disassembly line is in action. Moreover, all of the images found
in the dataset were of smart mobile phones, leaving out a big chunk of
the regular mobile phones accumulated in the recycling plants, waiting to
be recycled. Therefore, the suggested method does not completely solve
the smart phone disassembly problem, let alone solve the mobile phone
disassembly problem. There is also the fact that granularity is an issue
when it comes to objects such as mobile phones. Indeed, the reported
average precision in this work for the small objects (AP_S) is only 35.3,
making it an unusable product at the end of the day.

Detection vs. Classification

There are plenty of tasks involved in an automated disassembly scheme
that impose Image Classification, which helps the scheme to classify what
is contained in an image, whereas Object Detection specifies the location of
multiple objects in an image. Location information here, however, should
not be confused with what segmentation yields, which is a pixel-wise mask
of each object in the image.

In most of the EOL devices, components are tightly attached to each
other via entities such as screws and bolts. For any intelligent scheme
to conduct disassembly of an EOL device, location and type information
of such entities have to be found out. Consider a computer hard drive
(3.5") such as the one illustrated in Fig. 2.6, where four screws are seen
to be holding the lid. Weather a human operator or an intelligent visual
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Figure 2.6: A 3.5" computer hard drive with four Phillips-1 screws on its lid.

scheme, one of the primary tasks here is to detect the screws (finding
their locations) and to classify them based on their head types. In context
of a visual scheme, this vital piece of information could then be used
in various further blocks such as manipulation, where the location and
type information is necessary to conduct visual servoing over the detected
screw’s location, as well as to pick up the suitable tool for unscrewing
action. Accurate detection and classification methods are pivotal to an
intelligent disassembly scheme, as trying to unscrew on a wrong location
(misdetection) or picking up a wrong tool (misclassification) could lead to
damaging the robotic tool tip, as well as the screws on the EOL device,
hindering the entire disassembly effort.

Under the light of aforementioned facts, the literature on detection and
classification tasks in the context of disassembly has been reviewed. As
automated disassembly has been investigated for a while now [Dro+14;
Weg+15; Wei+06], there are some schemes [BRP16; Biik+01; Els+12;

29



Chapter 2

30

Related Work

Pom+04a; Xie+08] for automating certain processes. While reviewing the
literature on detection and classification methods, it has been noticed that
none of the proposed schemes (up to 2019) have offered a generalizable,
extendable, and universal solution of the detection problems of vital en-
tities (e.g., screws, bolts). Numerous algorithms have been suggested for
screw detection as a part of automated disassembly procedures, which are
extensively discussed in Chapter 5.

As for the classification task, the research is quite narrow. Similar
to the detection, there is no universal, generalized method that actually
handles multiple types of an entity. This is due to the fact that many of
the industrial plants are using fixed-templates and/or various hard-coded
information in order to carry out the classification tasks [DHP04; NF15].
Since these plants mostly have an assembly line robot that is specifically
tailored to assemble a certain part on another, it is not necessary for the
scheme to be universal and generalising. Therefore, it is safe to state that
one of the goals of this thesis is to bring a universal, template-independent
and generalized solution to detection and classification problems of screws.

2.3.3 Model Representation

A model is used to describe the information for an object prior to per-
forming in the disassembly process (e.g., prior knowledge in a database).
Torres et al. [Tor+04] explains two approaches, namely, relational model
and geometric model. First, a relational model represents the relation-
ship among components via their connections. They are represented by
hierarchical graphs which remain simple, despite the increased number of
components. Second, a geometric model represents the product in multi-
dimension. It presents the physical information for each component (shape
and size) and relation between each component (location and contact sur-
face). Tonko and Nagel [TN00O] found that most geometrical models of rigid
and valuable components can be depicted by polyhedra, non-polyhedra,
quasi-polyhedra,and other primitive geometries.

Hohm et al. [HHT00] suggest modelling of the environment by grouping
objects into two types. First type is what they call active objects (the main
part of the product), whereas the second type is called passive objects
(the connective components, e.g. screws, cables, and snaps). Moreover,
Jorgensen et al. [JAC96] suggest organising a number of product models as
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a hierarchical tree to facilitate the object recognition process. Each node
represents attributes of each sub-assembly or component. Furthermore,
Buker et al. [Biik+01] present the approach to reconstruct the 3D model
by active-stereo vision. This method benefits the operation in terms of
representing a clear scene of position and orientation of the object, especially
in visual-servoing (e.g., to prevent collision between the product and robot
arm).

There are a couple of problems using model representations in intelligent
disassembly schemes, however. First, an intelligent disassembly scheme
would have to account for differences in EOL devices (i.e. brands, models,
sizes). While this could be overcome by introducing models of each model,
brand and size, it either forces the scheme to retrieve these models from
their official sources or it forces an active-stereo vision pipeline to create
3D models in prior. If the entire EOL device category is considered, neither
of these approaches are feasible, as there are countless devices and models
in the picture. On top of that, electronic manufacturers are usually not
willing to share the schematics of devices they manufacture. Thus, the
idea of using model representations in an intelligent scheme is only realistic
within an extremely narrow set of devices and models.

2.3.4 Computer Vision Libraries/Frameworks

Computer vision libraries are available in various language platforms (e.g.,
C/C++, Python, Java, Matlab, etc.). The libraries commonly used in
research and development are Open Source Computer Vision (OpenCV)
[BKO0O], in C/C++ and Python, ImageJ for Java [Ras+97; Ras12], and
Image Processing Toolbox for Matlab [MAT10]. OpenCV is selected to be
used in this research since it provides most of the algorithms used in the

aforementioned literature, e.g. template matching, camera calibration, etc.

Moreover, it is compatible with C/C++ which is typically used in robotic
research due to the fast processing and accessibility at the machine level,
and with Python which is typically used in deep learning research due
to its ease of use and compatibility with ROS (Robot Operating System)
[Qui+09].
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2.4 Product Case-Study: LCD Screens

This section gives information of the case-study device, Liquid Crystal
Display (LCD), in the perspectives such as overview of the impact, EOL
treatment and disassembly process. The effort can be called a spin-off
project of the IMAGINE effort, which is the main motivation of this thesis.
Together with the partners from the Electrocycling GmbH ® in Goslar,
Germany, an LCD frame separator has been developed. The subsections
following will state the problem and explain the implemented method.

2.4.1 End-of-Life Treatment of LCD Screen Monitors
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Figure 2.7: Predicted sales of types of monitors[ROL11].

Cathode Ray Tube (CRT') monitors have been replaced with LCD screens
over the past 10 years. Kernbaum et al. [KFS09] state that more than 120
million units of LCD screens were sold worldwide in 2008 and they predicted
LCD screens to be used in approximately 90% of desktop computers in
2010. As of 2020, there are no computers manufactured or sold with CRT.
With the cutting edge technologies such as LED (Light Emitting Diode),
OLED (Organic Light-Emitting Diode) and QLED (Quantum Dot Light
Emitting Diode), the age of CRTs is basically over. In addition, Ryan et al.
[ROL11] predicted the sales of LCD screens to be US$80 Billion which was

28 http://www.electrocycling.de/
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approximately four times higher than the sales of other types of monitor
in 2012, as illustrated in Figure 2.7. Therefore, the number of disposals is

continuously increasing. For instance, in Germany alone, Kernbaum et al.

[KFS09] predicted that more than 4,000 tons of LCD screen monitor would
be disposed of by 2012. The report [Buc+12] in 2012 by the Oko Institut
%) states the sales numbers in quantities, by which, we could approximate
the disposed LCDs by 2020. According to the report, in 2010, 2,576,000
of LCD computer monitors and 8,258,000 LCD televisions were sold in
Germany alone. Although these are not disposed LCD monitors, rather the
number sold, these televisions inevitably become EOL products, as every
electronic product has a limited life cycle. If we take the average weight of
an LCD monitor to be 5 kilograms, we get approximately 12,880 tonnes of
only computer monitors, which is way higher than the predicted numbers
by Kernbaum et al. It should also be underlined that the calculation
considered only the computer monitors, not the televisions, as it is not
simple to calculate how much would 8,258,000 televisions weigh, due to
various screen sizes of televisions. However, it is critical enough to see that
the predictions of the research community in 2009 does not even come
close to the realities of today. Therefore, it must be acknowledged that the
impact from these products has increased significantly, and EOL treatment
needs to be considered.

2.4.2 Disassembly of LCD Screens

There have been two works [KIXS09; ROL11] published on LCD disassembly
previously. Each of these works examines the LCD device in terms of

layers/components, as well as the disassembly sequence to be considered.

Figures 7.3 and 7.4 in Appendix 7.1 illustrate modules and components
of LCDs. This case study, however, will only consider the LCD TV frame
removal process of the disassembly sequence, as the goal of the spin-off
project is only to automate this particular stage where the human labor
could be replaced with high level automation.

At the designated recycling plant, the frame removal is done by a milling
machine operated by a human. The TV is laid over and locked tight
by the two side-holders of the milling machine. Afterward, the human

29 https://www.oeko.de/
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operator conducts his manual measurements using a ruler, and finds out
where the frame starts, where it ends. He also uses a sheet of paper where
aspect ratios/dimensions for the LCD TVs are given. According to the
measurements conducted at the recycling plant, a human operator spends
approximately 1.5 minutes while removing the frame. Time was measured
from the moment when the human operator lays the LCD TV over the
milling machine and locks the holders from both sides. Since this very
initial step has to be repeated regardless of who or what handles the frame
removal, it is excluded from the time measured. It must be also said that
the milling machine is controlled by a computer with its specific software
installed on it, as shown in Figure 2.8. Fortunately, there is a C++4+ API
(Application Programming Interface) released that is utilized to automate
certain tasks to a degree.
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Figure 2.8: A GUI snapshot from the SKYCNC software from Pfeifer Technologies
30

Given the above scenario, one could conclude that a high level automation

30 SkyCNC WM Serie Friasmaschinen. (2021, January 12). Re-
trieved  February 23, 2021, from  https://www.pfeifer-technology.de/
skycne-wm-serie-pfiffige- grossformat-bearbeitung/.
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scheme has to conduct the same operations either in less or equal time,
as otherwise it may not be preferable by the engineers at the plant. It
should also be added that the proposed pipeline should not involve cutting-
edge/military-grade sensors that could exceed the recycling plant’s budget
spared for the task. All in all, the goal is to come up with an affordable
pipeline that uses the same computer running the milling machine (i.e.
no extreme computational load) and the regular sensor(s) available in
the market. The motivation behind mentioning this spin-off project in
this thesis is to provide an actual automatization of a human-operated
disassembly line. Since this spin-off project is not directly linked to the
proposed scheme in this thesis, the following subsections only cover it on
the surface level.

2.4.3 Semi-Automated Disassembly System for LCD TVs

The aforementioned criteria for the project reduce the options for sensors
to a few, including camera, ultrasonic sensor and a line-laser. It also
eliminates the possibility of using computationally demanding algorithms
or frameworks, as the computer running the milling machine does not have
an external GPU or a high performance CPU, or RAM. All these conditions
further restrict the choices of sensors and algorithms to be considered. It
is then proposed to use the current setup with some minor modifications.
The existing setup consists of a milling track (see Figure 7.7 in Appendix
7.1) on which a TV is placed and fixed by a movable bar, and a milling
machine with an ultrasonic sensor to detect/set height.

By measuring the frame height (from the TV surface) as well as the TV
height, the manual operation conducted by the human operator could be
automated. Two sensors (see Figures 7.5 and 7.6 in Appendix 7.1) are
decided to be employed for the designed algorithm.

The proposed cutting procedure starts with placing a TV manually on
the milling track at the fixation edge, as shown in Figure 2.9. There is
a warning shown on the control panel of the CNC milling machine (or
by ways of LED color) in case it was not placed correctly, and, the TV
is then re-placed. A default initial position of the milling machine is as
shown in Figure 2.10A, and the machine inspects the top-right corner of
the TV in order to generate a milling path, thus, one has to make sure that
this corner is NOT damaged. If both the upper-right and the bottom-left
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Figure 2.9: A schematic diagram of the LCD cutting setup.

corners of the TV are damaged, then the human operator can change initial
position of the milling machine (as shown in Figure 2.10B) by choosing an
alternative initial position on the control panel of the CNC machine.

]

Figure 2.10: Initial positions of the milling machine: A) a default initial position;
B) an alternative initial position in case both the upper-right and the bottom-left
corners of the TV are damaged and cannot be detected. Green and red circles
denote non-damaged and damaged corners, respectively.

After making sure the promising corner is selected, the fixation bar is
moved towards the TV to fixate it. The human operator initiates the
process, where corner detection runs. The height of the TV (H, see Figure
2.9) is estimated by using data of the range finder sensor 1. Following, the
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Figure 2.11: Steps of the cutting procedure: A) drive until inner vertical edge
(IVE) of the TV is detected; B) drive until inner horizontal edge (HE) of the TV
is detected; C) go to the milling start-point; D) cut the screen; E) return to the
initial position (F).

milling machine drives towards the TV (see Figure 2.11A) until the inner
vertical edge of the TV (IVE, see Figure 2.9) is detected. Note that on the
way the outer vertical edge (OVE) is detected, which is used to estimate
the width of the TV (W, see Figure 2.9). Here, data of the range finder
sensor 2 is used to detect edges of the TV. Afterward, the milling machine
drives up (see Figure 2.11B) until the inner horizontal edge (HE, see Figure
2.9) is detected. The milling start-position is computed and the milling
path is generated based on the previously estimated measures: TV height
(H), TV width (W), the width of the horizontal edge and the width of the
vertical edge. Note that the height of the milling path is also computed
based on data of the range finding sensor 2. Following this, the milling
machine drives to the milling start-point (see Figure 2.11C) and waits for
the initialization of the cutting process. At this point, it is crucial that
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the human operator inspects the milling start-position. This is done to
check the start-position and to make sure that the corners were detected
correctly. In case of a significant error, the human operator is to adjust
the starting-position manually. If there are no errors, then the cutting
procedure starts with the human operator’s approval. The milling machine
then cuts the screen in anticlockwise direction along the precomputed
path in an open-loop mode (see Figure 2.11D). After the path is driven
completely, the milling machine drives towards its initial position (see
Figure 2.11E, and Figure 2.11F), where the process ends.

Figure 2.12 depicts the scanning results from a sample LCD TV, where
the spikes correspond to height changes along the scanning path. One
could make a few observations here. First, the readings show a significant
drop after the point 1, where the frame starts. The reason for the drop is
due to the fact that the distance between the range sensor and the frame
reads less in comparison to the previous steps in the path. Point 2 in the
plot corresponds to the frame’s end, where the screen surface begins. As
a result, a small increase in readings is noticeable. As the path is taken,
point 3 and 4 are reached, where screen height is found. There is also
the fact that not all LCD TVs have rectangular shapes, and thus, some
of the frames have circular plastic addition as observed in Figure 2.12.
Such features cause additional spikes in readings, however, as the frame
boundaries are determined by taking only the first 4 spikes, the rest is
ignored, and thus, they do not cause a problem. There are more scanning
results (see Figure 7.8 that can be found in Appendix 7.1.

Throughout the investigations, it was noticed that some TVs that are
highly damaged on the corners are causing problems. Naturally so, since
our approach imposes a scanning procedure on a path including the sides
of the TV. If both sides of a TV are damaged, then the human operator
switches to the manual mode, and continues to process the TV. It must
be also noted that the human operator has to be present all the time
where the automation takes place. There is always confirmation before
the scanning and cutting procedures start, as well as an emergency stop,
which is essential in any milling machine. It should also be underlined that
the ultrasonic sensor RPS-412A has a golden plate surface (see Figure 7.5
that is not supposed to make physical contact with any object or particle.
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Figure 2.12: Scanning results obtained from the range sensor 2, including a bump
in the frame which makes the pointed spike in readings. Y-axis in the plot is the
distance in millimeters, whereas X-axis is time (steps).
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Understandably so, since contact with the golden plate surface may cause
misreadings, leading to path errors.

After the system is set up, the time elapsed for the automated scanning
and cutting procedures are calculated. It appears that the designed au-
tomation system takes 1 minutes 30 seconds on average, which is less than
the human operator.

2.5 Conclusion & Problem Statement

After reviewing the literature, it is acknowledged that automation in
disassembly routines is inevitable, as many disassembly routines consist
of repetitive actions that can be parameterized. These parameters are
approximated by using various sensors such as cameras, ultrasonic sensors,
etc., that are, along with the necessary vision and/or data processing
algorithms, forming the perception block of an automation scheme.

However, there is still a great lack of intelligence in automation of
disassembly routines, preventing them from processing various devices,
or different models of the same devices. This is due to the fact that
most of the employed methods are either relying on predefined model
representations (e.g., 3D models) or classical computer vision methods
where the generalization aspect largely ignored. Model representations
are difficult to obtain due to company polices of manufacturing plants,
and creating 3D models of each and every EOL device/model in the
recycling world seems unlikely. On the other hand, classical computer
vision methods are usually hindered by varying light conditions and they
are not generalising enough to handle different situations in the disassembly
scenarios.

It could be then stated that the current literature lacks a generalising,
template-independent, universal visual intelligence scheme that could be
extended to various EOL devices with little or no effort.



System Overview

This chapter presents an overview of the planned automated disassembly

system which includes the perception block that is the subject of the thesis.

Therefore, it is essential to mention the underlying pipeline that enables
the entire system to function. The content is divided into three sections
describing the blocks -and their interactions- in the pipeline, perception
block in slightly more detail, finally the planned tasks and responsibilities
of the perception block. Most of the information found in this chapter is
taken from the project documentation that was written before the project
started. Therefore, the found information aims to inform the reader to
give an understanding on the abstract level. Technical details are naturally
omitted as they have been subjected to change throughout the project.

3.1 IMAGINE as an Automated Disassembly System

As mentioned in the first chapter, IMAGINE *! is a project funded by the
Furopean Union’s Horizon 2020 research and innovation programme under
grant agreement no. 731761. Its consortium consists of six universities
from various countries and a private recycling company in Germany. Each
partner in the consortium has been given its responsibilities and tasks they
are supposed to address during the project lifetime.

It is therefore required to describe the planned high-level architecture
of the automated disassembly system and to point out the specifics of the
perception block that is going to be described in this thesis.

3.1.1 Objectives

It is necessary to mention IMAGINE’s objectives in this thesis, since the
proposed scheme was developed to address these objectives. The scientific
objective of IMAGINE is specified as enabling robots to understand how

31 https://www.imagine-h2020.eu/
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their environment behaves and how to interact with it, resulting in sub-
stantial advances in autonomy, flexibility and robustness of interaction in
the presence of unforeseen changes in the environment. Specifically, in the
context of IMAGINE understanding means the ability of the robot to:

« infer which actions possibly apply in a given state of the environment,
and how to parameterize the actions to achieve a desired effect;

o discern to what extent its actions succeed, and if the action effect
differs from the expected outcome, to infer possible reasons and
recover from failures.

Action Descriptors/ADES

| (WP2) " Simulation/PHY S (WP5) |

Association . .
| Engine/ASC (WP4) l(——l State Estimation (WP3) |
|

l vl;
Planner (WP6) |—>| Robot Action (WP7) |

IMAGINE Framework

-

Figure 3.1: Principal relations between work packages.

On the other hand, the industrial objective of IMAGINE is to drastically
augment the level of structural understanding of devices and functional
understanding of actions available to robots, enabling them to infer how to
disassemble entire categories of electromechanical devices and appliances,
to monitor the success of their own disassembly actions, and to synthesize
effective recovery strategies for problems they encounter during disassembly.
(IMAGINE Consortium, 2016, p.3) To address this vision, IMAGINE
focuses on the important industrial and environmental use case of large-
scale recycling of electromechanical devices and appliances [Conl6).
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3.2 Core Components of IMAGINE

After stating the industrial and scientific objects of IMAGINE, activities
of it must be mentioned as well. The activities of the IMAGINE project
are organized into 7 technical work packages (WP). Each of these work
packages contains work that requires rich collaboration internally, while
work packages interface with each other in well-defined ways. A graphical
overview of the work packages and the principal flow of information between
them is shown in Figure 3.1, where important connections involving the
focused package in this thesis are shown with bold arrows. The WP
titles do not require further explanation at this point, and match the
structure of the IMAGINE system as outlined in further subsections in this
chapter. Each WP is explained in sufficient detail later, with the main focus
being on the WP called State Estimation, which is the perception bloc
mentioned previously. The core functional element is a generative model

based on an association engine (ASC) and a physics simulator (Simulation).

Understanding is given by the robot’s ability to predict and simulate the
effects of its actions, before and during their execution. This allows the
robot to choose actions and their parameters based on their simulated
performance, and to monitor their progress during execution by matching
observed to simulated behavior. (IMAGINE Consortium, 2016, p.2)

Moreover, a short summary of core components (each implemented in its
respective work package) should be described. Due to their administrative
and exploitative roles, the work packages 1, 8 and 9 are skipped. Rest of
the work packages and their descriptions are as follows.

o ADES: Action descriptors incorporate human expert knowledge and
are validated and refined in simulation and real execution (work
package 2).

e State Estimation: This component analyzes the scene using vision

and depth sensors (work package 3), and is the subject of this thesis.

o ASC: The association engine (work package 4) learns mappings
from scene descriptions to actions, from scene descriptions to action
parameters, and from scene descriptions, actions and their parameters
to expected action outcomes.
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o« PHYS: The physics simulator (work package 5) plays a core role in
the robot’s understanding of the scene context and its own actions,
by simulating actions to reproduce or predict their actual effects
under various parameter settings.

o Planner: This component (work package 6) plans the next action to
be performed, given a scene description and a set of possible actions.
Taking into account output variances and success probabilities, a
short-horizon planning process determines the most favorable safe
action by anticipating possible failures and dead-ends, e.g., those
caused by irreversible/damaging actions.

¢ Execution Engine: This component is responsible for executing
the actions chosen and parameterized by the interplay of the above
components (work package 7).

¢ Multi-Functional Gripper: Robot execution relies on this inno-
vative end effector with advanced control strategies (work package
7) for flexible, rapid, robust, and cost-effective manipulation using
affordable, off-the-shelf robot arms.

Since this thesis focuses on a specific work package (WP3), the following
sections and subsections are explaining the expected tasks from this package,
and its possible interactions with other packages.

3.3 State Estimation Package of IMAGINE

The objective of this package could be summarized as estimation of the
state of the scene containing the object being disassembled, its relevant
parts, and tools using computer vision methods. The following subsection
specifies the foreseen tasks that are likely to be solved. It should be kept
in mind that the planned methods in the State Estimation Package of
IMAGINE do not necessarily have to one-to-one match with the methods
employed in the end-product.
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3.3.1 Description of Work

e Task 1: Objects and Poses entails performing visual object recog-
nition and pose estimation of parts and components. This task
inevitably imposes the usage of different 2D or 3D (Kinect or stereo)
vision setups to record the scene.

e« Task 2: Relations is interested in estimation of geometry and
relations, including physical contact. This task is strongly linked
to the pose estimation aspect of the previous task. Recognizing
decisive structures such as gaps (for grasping or levering), grasp-
affording locations, hammer-hit-affording locations and free-direction-
for-removal of a part (this is strongly related to hit-affordance) are
core functionalities in this frame. Following the previous task, one
can model parts and their poses with some degree of accuracy. As a
consequence, gaps could be found where there are no parts.

o Task 3: Visualization/User Interface is planned to provide a Ul
(user interface) to visualize the results from the previous two tasks
(e.g parts, all relations and affordances). This is rather a technical
task. It is needed in the development process for result verification,
and for the training procedures of the DCNNs (Deep Convolutional
Neural Networks). The UI would also allow the developers (and even
the end user, if needed) to label device parts.

3.3.2 Perception of the Scene

State Estimation is inevitably set to use certain sensors to perceive the
scene. As stated in the task descriptions before, the information to be
extracted requires perception of 2D and 3D structures alike, such as parts
and gaps, respectively. In order to satisfy this requirement, the IMAGINE
project is planned to employ certain sensors. While the exact roles of these
sensors are specified in Chapter 5, it is helpful to mention their types and
the information they acquire to have an accurate overview of the State
Estimation component. In Figure 3.2, a simplified graphical illustration of
scene perception is depicted.

Any visual perception pipeline deploys relevant sensors to achieve its
tasks. The State Estimation component is set to use various computer vision
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Figure 3.2: Graphical representation of scene perception involving State Estima-
tion (WP3) and possible sensor types.

-

algorithms involving RGB and RGB-D processing. Thus, it is essential
that the chosen sensors providing the necessary information are operating
within the desired ROS Framework, and, are in interaction with the State
Estimation component through a ROS interface in place. It is sufficient
to underline this interaction in this chapter. Further technical details on
sensors and visual information acquisition are provided in Chapter 5.

3.3.3 Inter-Component Relations

The State Estimation package inevitably interacts with other core com-
ponents of the IMAGINE project. This subsection aims to shed light on
these interactions and to inform the reader on the workflow, again, on an
abstract level. Before mentioning these interactions, however, it must be
stated that the IMAGINE project uses Robot Operating System (ROS)
[Qui-+09] as its underlying framework. ROS is an open-source framework
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for the development of robot applications. It offers a suite of tools to
build and distribute software, client libraries to support C++, Python and
Lisp access, and a library of software packages that can be imported into
projects. One of the main design decisions of ROS is modularity. ROS
offers a flexible way to arrange different software solutions into modules
that can be arranged and switched out to make the robot system flexible.
A ROS application is represented as a computational graph with single
processes called nodes that are connected by topics. A node can get input
information from several other nodes that are connected to the node by
a topic. This means that any IMAGINE component sends and receives
information encapsulated by the available and suitable means of ROS. The
choice of underlying framework is not a core requirement, rather merely a
decision made considering the convenience.

The ROS core also has several tools that allow visualization and recording
of the data flowing through the computational graph. To visualize the out-
puts of the vision algortihms, the RVIZ tool*? is used, a three-dimensional
visualization tool that can display the processed point clouds in every
stage. Another important ROS module is dynamic reconfigure®, which
allows to reconfigure parameters of individual nodes from a GUI(Graphical
User Interface) at any time without recompiling the module. This is not
only helpful for debugging reasons but in combination with RVIZ helps to
visualize the impact of changes to the different algorithm parameters.

State Estimation is planned to be in interaction with two other com-
ponents, namely the Association Engine (WP4) and the Planner (WP6),
as illustrated in Figure 3.3. Each interaction entails passing of certain
information essential to the workflow. In case of the interaction with the
Association Engine, this information is the part information, whereas in
other case it is the predicates. The term part information here refers
to information relevant to all parts that are detected and/or recognized
in the scene, whereas the term predicates refers to the physical relations
between these parts (e.g., next_to(), contains(), etc.). At this point,
it is important to give a couple of definitions to empower the presented
workflow.

As stated previously, the main objective of State Estimation is to estimate

32 http://wiki.ros.org/rviz
33 http://wiki.ros.org/dynamic_ reconfigure
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Figure 3.3: Graphical representation of inter-component interactions involving
State Estimation (WP3).

the state of the scene containing the object being disassembled, and, its
relevant parts. This estimation is expected to result with the acquired scene
information, most of which is part information (e.g., boundaries, centers,
etc.). Association Engine retrieves the part information to further evaluate
the affordances, whereas Planner processes the predicates to come up with
a set of instructions to disassemble the device. Further specifications and
technical details of these interactions are explained in Chapter 5, where
the developed pipeline is described in depth. For this chapter, it is found
sufficient to specify the inter-component relations on high-level.

3.3.4 Summary

In conclusion, one could summarize the overview of the State Estimation
component that is planned to perceive the scene using appropriate sensors
operating under ROS framework. It is planned to address three main tasks
as mentioned before, each satisfying a requirement in the project. While
doing so, it is in interaction with two other components of IMAGINE,
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passing relevant information regarding the state of disassembly. Figure 3.4
depicts a graphical illustration of this summary.
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Figure 3.4: Graphical representation of State Estimation package, its tasks and
interactions with other components in IMAGINE.
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This chapter aims to provide the fundamentals that are required to un-
derstand the approach presented in the thesis. Since there are various
subjects to take into account such as image acquisition, stereo geometry,
deep learning, point cloud clustering, the chapter is organized in sections
and subsections addressing each. The chapter starts with the basics of
computer vision such as image acquisition, and goes on with stereo imagery,
and depth acquisition. It then explains how depth acquisition could be
utilized to form very strong data structures called point clouds, and elabo-
rates the required operations in point cloud domain. Finally, it introduces
the basics of machine learning, and goes further into deep learning, which
is one of the most essential concepts playing a major role in this thesis®*.

4.1 Image Acquisition

It is essential to provide the definitions of several terms that are pivotal
to the processes further explained in this work. The most basic structure,
an image, could be denoted as two-dimensional functions of the form fx,y
[MP13]. The value of f at spatial coordinates z,y is a scalar quantity
whose physical meaning is determined by the source of the image, and
whose values are proportional to energy radiated by a physical source (e.g.,
electromagnetic waves). As a consequence, fz,y must be non-negative
and finite; that is, function fz,y is characterized by two components: (1)
the amount of source illumination incident on the scene being viewed,
and (2) the amount of illumination reflected by the objects in the scene.
(Mohapatra, 2013, p.1047-1054.) Most of the images this work studies
generated by the combination of an light source and the reflection or
absorption of energy from that source.

34 The chapter contains materials that are supplied by the Bachelor’s thesis projects
[Bri20; Tro20] of the undergraduate students in the neuroscience group of University
of Gottingen. Their contributions are acknowledged.
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There are numerous ways to acquire images, but the objective in all
remains the same: to generate digital images from sensed data. The output
of most sensors is a continuous voltage waveform whose amplitude and
spatial behavior are related to the physical phenomenon being sensed. To
create a digital image, one needs to convert the continuous sensed data into
a digital format. This requires two processes: sampling and quantization.
An image may be continuous with respect to the x and y coordinates,
and also in amplitude. To digitize it, one has to sample the function in
both coordinates and also in amplitude. (Gonzalez, 2007, p.52) Indeed, it
is stated as "Digitizing the coordinate values is called sampling, whereas
digitizing the amplitude values is called quantization" (Shandilya, 2019, p.
66).
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Figure 4.1: Image displayed as a visual intensity array, along with its 2D numerical
array representation. The numbers 0, .5, and 1 represent black, gray, and white,
respectively. [GW02]

Let fs,t represent a continuous image function of two continuous vari-
ables, s and f. One first converts this function into a digital image by
sampling and quantization [GWE04], as explained above. Suppose that the
continuous image is sampled into a digital image, fx,y, containing M rows
and N columns, where x,y are discrete coordinates. For notational clarity
and convenience, the computer vision community uses integer values for
these discrete coordinates: z =0,1,2,.... M — 1 and y =0,1,2,..., N — 1.
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Thus, for instance, the value of the digital image at the origin is f0,0, and
its value at the next coordinates along the first row is f0,1. As Figure 4.1
shows, one defines the origin of an image at the top left corner. This is a
convention based on the fact that many image displays (e.g., TV monitors)
sweep an image starting at the top left and moving to the right, one row at
a time. More important is the fact that the first element of a matrix is by
convention at the top left of the array. (Shandilya, 2019, p. 66) Choosing
the origin of fx,y at that point makes sense mathematically because digital
images in reality are matrices. In fact, in many occasions, the community
uses x and y interchangeably in equations with the rows (r) and columns
(c) of a matrix. Each co-ordinate position is called as pizel. Pixel is the
smallest unit of the image it is also called as picture element. Therefore,
digital images are composed of pixels, each pixel represents the color (gray
level for black and white images) at a single point in the image. A digital
image is a rectangular array of pixels also called as Bitmap. From the point
of view of photography the digital images are of two types [Cof05; Sac96]:
Black and White images, and color images.

Black and white images are made of different shades of gray. These
different shades lies between 0 to 255, where 0 refers to black, 255 refers to

white and intermediate values refer to different shades of black and white.

Grayscale refers to the range of neutral tonal values (shades) from black
to white. Color images, on the other hand, are made up of colored pixels,
and color can capture a much broader range of values than grayscale. The
spectrum — the band of colors produced when sunlight passes through a
prism — includes billions of colors, of which the human eye can perceive
seven to ten million [MKS17]. The electronic capture and display of color is
complicated. RGB (Red, Green, and Blue) is the most commonly adopted
color system. [Pet05] A colored image is usually called RBG Image.

After defining what a digital image is, its types and representations, one
could continue with how an image is acquired. This requires understanding
the image acquisition process. "The general aim of image acquisition is to
transform an optical image (real world data) into an array of numerical
data which could be later manipulated on a computer, before any video or
image processing can commence an image must be captured by camera and
converted into a manageable entity" (Sigmura, 2015, p. 24). The image
acquisition process consists of two steps. First, the optical system focuses
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the energy that is reflected from the object of interest [Sug+15]. Second, a
sensor that measures the amount of energy reflected.

Image acquisition is achieved by various suitable cameras, different
cameras for different applications, depending on the objective. For instance,
if an X-Ray image is needed, a camera (film) that is sensitive to X-Ray is
used, a camera that is sensitive to infrared radiation is to be used if infrared
images are desired. For the regular images one mostly encounters in daily
life (pictures) cameras that are sensitive to visual spectrum are used. Note
that the image acquisition is the first step in any image processing system.

4.2 Monocular and Stereo Imagery

There are two major visual perception techniques considered in the com-
puter vision domain: monocular vision and stereo vision. Depending on
the application and resources, developers are inclined to use one of them,
or even both.

Monocular vision refers to type of vision in which either a camera is
used alone, or multiple cameras used separately (i.e. with no correlation
with each other). By using the cameras in this way, the field of view is
increased, while depth perception remains limited. A monocular camera is
a very common type of vision sensor used in computer vision applications.
At this point, however, before one goes deeper into further details, the
camera model has to be defined. We use the description of the pinhole
camera as the model for most of our imaging devices today. The pinhole
camera models the standard photo camera, video camera, which also model
the eye. The graphical illustration of the model can be seen in Figure 4.2.
"Light from a point travels along a single straight path through a pinhole
onto the view plane. The object is imaged upside-down on the image plane"
(Fleet, 2006, p.33) *°.

Figure 4.2 presents a camera with center of projection O and the principal
axis parallel to Z axis. Image plane is at focus and, thus, focal length f
away from O. A 3D point P = X, Y, Z is imaged on the camera’s image
plane at coordinate P. = u,v.

When we look around as humans, the 3D world is optically projected
onto the retina (photo sensitive layer) in our eye. The luminance (visual

35 https://www.dgp.toronto.edu/ hertzman/418notes.pdf



Monocular and Stereo Imagery

Y
/ ;Y
Fe (w7 /
“Lonter of v Principal Axis 7z

o Projection Image Plane
s
X

Figure 4.2: Graphical representation of pinhole camera model.

energy) is measured in millions of photo sensitive cells (the rods and cones)
in the retina. The collection of all these measurements makes up an image
of what we see, in much the same way as a collection of pixels on the screen
forms an image. Similarly, the pinhole camera projects a 3D scene onto
a 2D retina. In such a projection, the 3D information is lost. All points
on a straight line from the optical center of the camera are projected on
the same point on the retina. We cannot recover depth from one image (at
least not from one point (pixel) in the image). The human visual brain
also uses our knowledge of the 3D world around us to infer depth. Two
eyes/cameras (at minimum) are required to measure depth. It is necessary
to take a look at the setup with two cameras (stereo vision), and model
the way the two images are related to recover depth.

Stereo vision is the second paradigm in computer vision that can recover
the aforementioned lost third dimension by taking at least two images
of the scene from different vantage points and using the correspondences
between the images to calculate a depth estimation. This approach is
closely related to the way our eyes allow us to perceive depth. Human
eyes are placed in lateral different positions to perceive the world from two
slightly different views. The difference between these two views is called
binocular disparity and is a key factor for depth perception in the visual
cortex. Computer stereo vision uses two or more cameras as sensors to
create images of the scene. Similar to the eyes, the cameras are also placed
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in different positions to create images from different vantage points. Given
the two images, a stereo vision algorithm solves the problem of estimating
depth. This is explained in the camera calibration section.

4.3 Camera Calibration Theory

Camera Calibration is the process of determining the camera parameters.
In the calibration process, two different sets of parameters are estimated:
the extrinsic and intrinsic parameters. The extrinsic parameters are used
to transform the three-dimensional world coordinate system to the three-
dimensional camera coordinate system; while the intrinsic parameters
are used for a projective transformation of the three-dimensional camera
coordinate system into the two-dimensional image coordinates. (Keep in
mind that the camera model that is being considered here is the pinhole
camera model, where it is assumed that a camera is essentially a pinhole
lying at the front of an image plane.) Since the image formed inside
the camera is on a 2D plane of pixels, and the object in front of the
camera is in 3D continuous space, there must be a projection from 3D
continuous-valued vector space to 2D discrete-valued vector space. The
camera image loses raw 3D information, and quantization noise is also
introduced. Nonetheless, a 3D ’sense’ from the 2D plane image can be
acquired. The pinhole model simplifies camera calibration calculation since
it involves only linear systems based calculation. However, there is no
lens involved in the model. Therefore, the model does not account for
lens-based distortions.

4.3.1 Coordinate Systems

As there are changes of spaces throughout the process, there are three
coordinate systems involved in the process as shown in Figure 4.3.

e World coordinate system refers to the coordinate system where
the actual physical object resides and is pointed with reference to. The
3D object in the real world gets its coordinates from this coordinate
System.
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Figure 4.3: Coordinate Systems involved in Pinhole Camera Calibration System

e« Camera coordinate system refers to the 3D coordinate system
the camera refers to, while getting the information of the object
within its cone of vision. However, in the 3D coordinate system the Z
plane is withdrawn, as it always refers to the image plane. Therefore,
transformation is considered for only z — y plane.

e Pixel Coordinate System refers to the 2D coordinates system to
locate each pixel on the image plane inside the camera. Since it refers
to only pixel location, it is quantized.

Basically, during image formation, the world coordinate gets transformed
to the camera coordinates by the camera matrix and camera matrix gets
transformed to image coordinates by perspective projection [ZZ14].

Camera Matrix Transformation

As mentioned above, the world coordinate system is at first transformed to
camera coordinates by the help of camera matrix. If a point in 3D World
Coordinate System is denoted as Xy, Yy, Zy (point X,Y, Z in figure 2)
and projected inside the camera plane as X, Y. (point C' in Figure 4.4)
and camera matrix is denoted as P, then the relationship can be denoted
by Equation 4.1.

[Xe Yo 1]=[Xy Yo Z, 1]P (4.1)

The dimensionality augmentation in Equation 4.1 is because of the
inherent suppression of the Z. and because of the nature of the camera
matrix P, which is explained later.
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Scene Coordinate (X, Y, Z)

Pixel Coordinate

Camera Coordinate

Figure 4.4: Graphical presentation of camera matrix transformation.

Perspective Projection

After the transformation to camera coordinate system, the camera coordi-
nates are transformed to pixel coordinates by perspective projection. It
follows the principal of similar triangle illustrated in Figure 4.5, thus, if
x,y are pixel coordinates, then, from Equation 4.2 one can get the pixel
values of the image inside the camera.

Xe

= (4.2)

Y.
.Z'Zf 7y:f7

Since x,y are discrete, Equation 4.2 becomes:

G

4.3.2 Camera Parameters

Camera parameters are of two kinds, extrinsic and intrinsic. Extrinsic
parameters are the ones related to the orientation of the camera and subject
to change due to any rotation and translation of the camera. Intrinsic
parameters are the ones that are related to internal parameters of the
camera. Together they form the camera matrix P.
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Figure 4.5: Graphical representation of perspective projection [HZ03].

Extrinsic Parameters

Extrinsic parameters (sometimes called external parameters): orientation
(rotation) and location (translation) of the camera. If Rotation matrix
is denoted as R and Translation matrix is denoted as t, then Extrinsic
parameter matrix is denoted as, R|t. If R has the parameters R;, Ry, Rz
denoting rotation around X,Y and Z axis and ¢ has the parameters, t,,,,tz7
denoting, translation through XY and Z axis, then R|t can be expanded
as,

R, 0 0 ¢t
0 R, 0 ¢t (4.3)
0 0 Ry t.

Intrinsic Parameters

The camera intrinsic parameters are the following.

o f focal length is basic description of photographic lens, sometimes
referred as camera constant.
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e v aspect ratio models the non-quadratic light-sensitive elements of
the camera.

¢ s skew models the non-rectangular light-sensitive elements.

e X0, %o principal point, which is essentially the orthogonal projection
of the focal point onto the image plane.

Together they form the intrinsic camera matrix:

vfosf xo
0 f wo (4.4)
0 0o 1

Thus, the camera matrix P can be expressed as Equation 4.5:

R, O 0 s vfosf o
P=|0 R, 0 t||0 f w (4.5)
0 0 R, t.|\0 0 1

By recursive substitution from Equation 4.5 to 4.3.1 and then to Equation
4.1, we get the complete camera equation.

4.4 Practical Camera Calibration Processes

In practice, the camera parameters are calibrated with the help of known
pattern objects. Chessboard is an object where each square is in equal
distance. Therefore, referencing to each coordinate in the system would be
simple calculation to put into the camera equation.

For ideal condition, «v is set to 1 and s is set to 0, thus the camera
intrinsic matrix simplifies to

J 0 xo
0 f % (4.6)
0 0 1

However, since practical cameras are not ideal pinhole camera, there are
distortions involved in camera image for which calibration is required as
well. These distortions can be classified as radial and tangential.
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Figure 4.6: Chessboard based calibration [BK00].

Radial distortion occurs when light rays bend more near the edges of
a lens than they do at its optical center [MAT10]. The smaller the lens,
the greater the distortion.

If , y represents distorted camera coordinates and r is the radial distance
of the camera lens, then the correctional coordinates xcor, Ycor is denoted
by Equation 4.7:

Teor = X1 + k17"2 + k27"4 + k37"6 (4.7)
Yeor = yl + k17‘2 + k‘QT‘4 + k‘37‘6 .

Tangential distortion occurs when the lens and the image plane are
not parallel. The distortion coefficients model this type of distortion
[MAT10], as shown in Equation 4.8:

Teor = X + 2p12Yy + p2r2 + 222 (4.8)
Yeor = T + 217233?/ +P17"2 + 2y2 '

where p1, po are tangential distortion coefficients.

Therefore, the parameters ki, ko, k3, p1, p2 are first determined in order
to compensate for the apparent and actual pixel value. After that, Zcor, Yeor
are used for later steps in the process.

P is calculated by considering multiplication resultant equivalency of

Section 4.4

61



Chapter 4

62

Background

each entry. By considering p;; to be the element for each entry Equation
4.5 becomes:

P11 P12 P13 Di4 R, 0 0 tg|(~vf sf =
P21 P22 P23 pau | =10 R, O t,|[ 0 f wo
P31 P32 P33 P4 0 0 Ry t:]\O0O 0 1

Substituting the value from Equation 4.8 with Equation 4.1, the final
camera calibration equation becomes Equation 4.9:

P11 P12 P13 DPi4
X, Ye,1=Xy, Y, Zw, 1| P21 D22 D23 D24 (4.9)
P31 P32 P33 P4

which can be solved by 12 linearly independent equations acquired from
different experimental values of X, Yy, Zy.

4.5 Stereo Camera Calibration

Equation 4.9 is the baseline to calibrate camera with only one lens. Stereo
camera, on the contrary, refers to a system of camera where multiple lenses
are included or two cameras are mounted together by a small distance
[Nev76]. One intuitive way to calibrate stereo camera is by calibrating each
lens individually using the pinhole model. However, this has some certain
limitations of disparity [Lan+10] and reconstruction [AA90]. Additionally,
while constructing the camera system, it may be possible that the system
consisting of multiple cameras fused as a single lens [GG93; LK00]. A
better approach is the use of epipolar geometry [JKS95].

In epipolar geometric model, each pinhole camera model derived and
calibrated from the above mentioned single camera calibration technique
is called a fundamental matriz. If there are two lenses, then there will
be two fundamental matrices. Later, these two fundamental matrices are
joined by two symmetric matrices, and they form another matrix called
the essential matriz [JIKS95].

Let two pinhole cameras (left and right) be defined by their fundamental
matrix K; and K, where K; = P,I5,0 and K,, = PR, t are in a homogeneous
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Iy
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Right Camera Center

Figure 4.7: Graphical representation of epipolar geometry.

frame of reference. Camera coordinates of the left camera is coincident
with the frame of reference of the homogeneous frame of reference. The
skew symmetric transform matrix is defined as in Equation 4.10

0 —t3 to
Qi=|ts 0 -t (4.10)
—ty t 0

where t = ti,ts,t3 € R3, If we defined Q;z = Q; X z as the cross
product of two vectors, then, Equation 4.11 and 4.12 are the definitions of
fundamental matrix F' and essential matrix F.

t
F=(P') QR e RYS (4.11)

E=QR (4.12)

Because of the cross product and the multi matrix multiplication in-
volved, it is almost impossible to solve Equation 4.11 and 4.12 analytically.
Therefore, the numerical techniques are the best approaches to solve them.

#
/" Epipolar Line to ip
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Some of the key points that are kept in mind regarding the fundamentals
of epipolar geometry while designing these numerical techniques are the
following such as,

¢ When two cameras are involved in general position and orientation,
the image points lie along the intersection line of the epipolar plane.

e Every point in the left image, has a correspondence with each point
in the right image. This is referred to as correspondence problem

[OA05].

Correspondence Problem

Correspondence Problem is the most fundamental concern in stereo camera
calibration. The old school approach follows the principal of correlation-
based mutual information minimization. If I; and I, are image templates
obtained from right and left images, then sum of squares difference between
the image pairs can be defined in Equation 4.13

C= [Ii(ziy;) — Lo(zi,y5)] (4.13)

27]

And the mutual information of the image point random variables X and
Y are defined in Equation 4.14

PXPY (4.14)

The objective is to minimize the mutual information by iterative obtain-
ing of the parameter C|, so that each C in every iteration gives the minimum
IX,Y. However, with the advancement of image processing techniques,
researchers have looked into ways to solve the correspondence problem
more in frequency domain, such as wavelet domain [SB07]. Pixel domain
researchers are also finding newer parameters to optimize the stereo camera
parameters, such as Sum of Absolute Differences [HAN10]. In recent years,
handcrafted feature based computation [WCH+92] are giving way to neural
network based models. Therefore, several neural network based approach
has also been developed to solve the single lens as well as stereo camera
calibration problem [AHF99; Do99].

PX)Y
IX,YZEX,y[10g< a )]
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Disparity Estimation and Semi Global Matching

Despite the robust neural network-based model to estimate camera param-
eters, there are other imperfection measurements to implement when it
comes to FPGA and other embedded camera systems, because of space
and performance constraints. One such measurement is camera disparity,
which refers to the distance between two points in the left and right image
template [Qia97].

Measurement of disparity plays an important role in various applications
such as automated driving and robotics [Mat89]. Two approaches are
intuitive in measuring disparity: the local method and global method.
The local method refers to the normalized cross correlation-based method
[HLL10] of pixel matching. However, the method suffers from several
drawbacks such as false assumption of perfect similarity distance between
image templates and epipolar plane and correlation error due to depth
discontinuity [Hirll].

A more robust and manageable approach is the Semi-Global Matching
approach, which works by matching the neighborhood pixels of each image
templates containing the best similarity. The algorithm [Hirll] takes
two images from the left and right camera and performs matching cost
calculation, directional cost calculation, and post-processing. For matching
cost calculation, Hamming Distance between the Center-Symmetric Census
Transform (CSCT) is one of the most robust metrics in the literature
[SLR13].

4.6 Point Clouds

Point clouds are one of the frequently used datasets to represent objects or
space. A single point on a sampled surface in the cloud can be represented
by its geometric coordinates X, Y, and Z. Point clouds are a convenient
way of containing a large number of spatial records into a dataset that can
then represent a whole. If colour information is provided, the point cloud
becomes 4D.

Point clouds are usually generated using 3D laser scanners, LiDARs, or
stereo cameras. The 3D scans are then put together, forming a full capture
of a scene, using a procedure called registration, whereas in case of stereo
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cameras, 3D point coordinates are retrieved by stereo imagery. As this
thesis implements methods that are only manipulating the point clouds, a
complete description of point cloud generation won’t be described. Instead,
the manipulation operations will be explained.

4.6.1 Thresholding

Thresholding is one of the most basic point operations in computer vision
and is used to segment points based on the specified dimensional intervals.
Since thresholding presents a simple way to segment images, it is often used
in computer vision applications as a preprocessing step for reducing noise
or finding foreground objects. It is also relatively cheap in computational
terms since it only needs one comparison per pixel. In a simple form,
thresholding is applied to an image given by the intensity fz,y at pixel
position z,y. It groups intensity values into a background class and a
foreground class based on a threshold T using the following equation
[GWEO04]:

gr,y = {1 %f fry>T (4.15)

0 if fe,y<T

The result of this operation is a binary image, where all pixel intensities
above the threshold are set to 1 and all below to 0. A simple application
for thresholding is to convert grayscale images to binary images. For a
well-chosen threshold 7" the grayscale image with intensities {0, 1,...,255}
is mapped into a binary image of intensities {0,1}. There are several
algorithms in the literature that are used to apply thresholding. This
section briefly informs the reader about these.

According to an extensive survey on thresholding algorithms conducted
by Sezgin et al. [SS04], there are 6 categories in thresholding methods. The
histogram shape-based method analyzes the peaks, valleys and curvatures
of the smoothed histogram. The pixels’ intensity is used, and certain
assumptions are made on the properties of the histogram (e.g., bimodal)
[Kaw+18]. As an example, the minimum algorithm takes a histogram
of the image and smooths it many times until there are only two peaks
in the histogram, as shown in Figure 4.8" [Van+14]. Next, there are
clustering-based methods, where the gray-level samples are clustered in
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Figure 4.8: Histogram shape-based thresholding applied using minimum algorithm
on a bimodel image[Van+-14].

two parts as background and foreground (object), or are modeled as a
mixture of two Gaussians [Kwo04]. Entropy-based methods [ZW11] result in
algorithms that use the entropy of the foreground and background regions,
the cross-entropy between the original and binarized image, etc. Object
Attribute-based methods [Rai20] search a measure of similarity between
the gray-level and the binarized images, such as fuzzy shape similarity,
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edge coincidence, etc. Spatial methods [CYV00], on the other hand, are
reported as "Spatial methods use higher-order probability distribution
and/or correlation between pixels. Last of all the classical local methods
adapt the threshold value on each pixel to the local image characteristics.
In these methods, a different T is selected for each pixel in the image"
(Sezgin, 2014, p.2).

In many cases, instead of finding a threshold by hand, the threshold
can also be calculated automatically based on the information given in the
image in an unsupervised manner. This makes the thresholding process
more computationally expensive nevertheless automates the binarization
into fore- and background. For automatic thresholding there exist global
methods that apply a single threshold to the whole image as well as
local methods that threshold different image parts on locally computed
thresholds. Global methods are often histogram-based, these methods
calculate a histogram of the intensity values of the image. Based on this
histogram a threshold value is chosen either through statistical analysis
or the shape of the histogram. These methods work well when there is a
bimodal distribution such that most intensity values are spread narrow
around two unique peaks that are most distant from each other.

A simple global histogram-based algorithm for automatic thresholding
is Otsu’s Method [Ots79]. The basic idea of Otsu’s method is to split the
intensity values of the image into two classes. An optimal threshold should
separate these classes maximally such that a clear distinction between
fore- and background intensities is reached. Separation is quantified by
the between-class variance, which will be maximized by Otsu’s method.
This method is used in cases where simple bimodal distribution with two
homogeneous classes don’t exist. Thus, if there is no valley, one method of
determining 7" is to minimize the total variance within both classes, which
is the main idea behind Otsu’s method.

More details of Otsu’s method are found in the original paper [Ots79] and
[GWEO04], which also features a broader introduction to image segmentation
by thresholding.

4.6.2 Clustering

Clustering or cluster analysis classifies data points into groups called
clusters based on their properties. It can also be seen as unsupervised
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classification of data, as clustering works without prior knowledge about the
given data objects. This makes clustering a powerful tool for structuring
the unstructured data of stereo system (e.g., yielding point clouds). This is
particularly interesting for point cloud processing, since clustering offers a
robust way to group points, which may belong to the same entity. Imagine
a point cloud of the scene consisting of points that belong to objects,
and gaps between them. The point cloud could be segmented by using
appropriate clustering algorithms. The points belonging to different objects
and gaps have different features that could be utilized by these clustering
algorithms.

There are plenty of clustering algorithms available in the literature, an
extensive survey on the matter was conducted by Rokach et al. [Rok09].
However, this subsection is only interested in three commonly used algo-
rithms: K-Means [Mac+67], DBSCAN [Est+96a], HDBSCAN [MHA17a].

K-Means

The basic idea behind K-Means is to cluster points into groups based on
their distance to a mean point, the centroid [Mac+67]. The first step is to
choose K random centroid points, which will form the K clusters. Next,
the distance from every point to each centroid is computed, and the point
is assigned to the cluster of the closest centroid. Given the assigned data
points, the centroid is updated by taking the mean of the points in the
cluster. This moves the centroids in the direction of the center of a group
of points. Assignment and update steps are repeated until the centroids
have found their final position and don’t change anymore. In a best case
result, the centroids lie in each cluster center such that the data is split in
a reasonable way.

The K-Means algorithm is used to partition a given set of observations
into a predefined amount of k clusters. The algorithm as described in
Macqueen et al. [Mac+67] starts with a random set of k center-points ().
During each update step, all observations = are assigned to their nearest
center-point (see equation 4.16). "In the standard algorithm, only one
assignment to one center is possible. If multiple centers have the same
distance to the observation, a random one is chosen" (Rao, 2020, p. 21)
[Rao+20].
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2 2 . .
8= {ap oy — il < llwp — [ Vi1 <G <k} (4.16)

Afterwards, the center-points are re-positioned by calculating the mean
of the assigned observations to the respective center-points (see Equation
4.17).

t+1 _ 1 .

Wi = ST 2,5t z; (4.17)
The update process repeats until all observations remain at the assigned
center-points. Therefore, the center-points would not be updated anymore.
This means that the K-Means algorithm tries to optimize the objective
function shown in Equation 4.18. K-Means always ends in a local minimum,
since there is only a finite number of possible assignments for the number
of centroids and observations available, and each iteration has to result in

a better solution [MKS18].

J= " ;:1 Tkl [Tn — pi]]? (4.18)
1 es

with 7,z = n k
0 otherwise

The main issue with K-Means is its dependency on the initially chosen
centroids. It could be that the centroids are dragged by outliers, or outliers
might get their own cluster instead of being ignored.

The most prevalent way is to perform multiple clusterings with different
start positions [Sch15]. Afterwards, the clustering that occurred most is
treated as correct. Another, newer approach is the so-called K-Means++ by
Arthur and Vassilvitskii [AV06]. This extension to the K-Means algorithm
tries to distribute the initial centroids over the given data to minimize the
probability of bad outcomes. The initial points are set according to the
authors by the following steps:

1. Take a random data point from the data X and mark it as centroid
c1

Daz?

Dz where Dz
zE

2. Choose another centroid ¢; with the probability
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Figure 4.9: K-Means example in 2D space. (a) Initialized cluster centroids at
random positions (b) Each data point is mapped to the closest centroid. (c) The
centroids are moved to the mean of each cluster’s mapped points. (d, e, f) Until
convergence, the steps are repeated [BPP17].

denotes the shortest distance from the data point x to its closest,
already chosen centroid.

3. Repeat 2. until all k initial centroids are chosen.

Afterwards, the standard K-Means algorithm as described above is
performed. The authors also showed that with this initialization algorithm,
K-Means++ can be approximately computed in Ologn, compared to
On®™+11ogn for the standard algorithm. However, K-Means has a major
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disadvantage compared to other clustering algorithms. The hyperparameter
K has to be chosen before clustering. Applications where the number of
clusters is known in advance (e.g., where the number of entities in the
scene are fixed), K-Means can be a good fit. Otherwise, more advanced
algorithms such as DBSCAN and HDBSCAN can solve the problem by
finding the number of clusters based on the data structure.

DBSCAN

DBSCAN is a density-based clustering algorithm proposed by Martin Ester
et al. [Est+96b]. A density-based clustering algorithm views clusters as
regions of densely packed points in contrast to K-Means, a prototype-based
algorithm focusing on the distance between individual points and the
prototype, the centroid.

DBSCAN estimates the density of a point by counting the points in the
neighborhood with a radius of eps around this point. Choosing eps right
is important since a too-small eps only includes the point itself, while a
too-big eps could include all points. Using the density, DBSCAN classifies
points as Core, Border or Noise points. Core points are points in the
middle of the cluster that fulfil the requirement that they have at least
a minimum number of points MinPts in their neighborhood of eps. A
border point is a point which is in the radius of a core point but has less
than MinPts points in his neighborhood. Noise points are all other points
that are neither core or border points.

Given the point classification, DBSCAN builds clusters by grouping core
and border points. First, all noise points are eliminated. Then any two
core points, if they are within a distance of eps, are assigned the same
cluster. Finally, all border points that are in distance of a core point are
grouped into the same cluster as the core point.

One of the biggest strengths of DBSCAN is the ability to handle noise.
Noisy regions without many data points will have a low density and therefore
are filtered by density-based approaches. Besides the built-in denoising,
DBSCAN can handle clusters of variable sizes and shapes. In contrast to
K-Means, the number of clusters is not needed as a hyperparameter. An
average runtime of Onlogn [Tan+18] can be reached, with meaningful
values for eps and MinPts and the use of indexing structures.
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border point core point

noise point

Figure 4.10: The three point types used by DBSCAN: Core, Border and Noise
points [Tan+18].

HDBSCAN

DBSCAN relies heavily on finding a fitting value for the eps parameter. For
low-dimensional data this is done by adjusting eps until a satisfying result
is reached. For higher-dimensional data this is often not possible since
it is hard to visualize the data and unclear in which way data points are
similar. Hierarchical density-based spatial clustering of applications with
noise (HDBSCAN) [CMS13] extends DBSCAN to a hierarchical clustering
method, that finds the eps distance parameter automatically by building a
hierarchy of all possible distance values. An example of this hierarchy is
seen in Figure 4.11.

The dendrogram shows the size and arrangement of clusters for different
distance values. Clusters are color-coded in their number of points with
the biggest clusters in yellow to the smallest clusters in purple. A cluster
always contains all clusters below itself. For instance, at a distance of 0.0
all points are noise points since no point has a second point in its eps
distance. With increasing distance, points can be classified as core and
border points, and by doing so, clusters are built. Clusters are merged
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Figure 4.11: Dendrogram of clusters for different [VDO09].

with increasing distance until all points are grouped into a single cluster.
Additionally, the diagram in Figure 4.12 illustrates the labeled result of
hierarchical clustering.

In the case of DBSCAN, a threshold distance eps is given on which
clusters are chosen. This can be visualized by a horizontal line at that
distance in the dendrogram. All clusters hit by this line are the result
arrangement of DBSCAN. HDBSCAN takes a different approach, instead
of using a global threshold to choose the clusters, it selects clusters from
different distances, while fulfilling the constraint that it can’t choose a
cluster that is below an already selected cluster. Clusters are chosen based
on their persistence over different distances. A cluster that holds over
multiple distance values should contain points that are very similar, while
a cluster that merges quickly probably contains loosely related points. To
reflect the persistence, HDBSCAN computes a stability value for each
cluster based on their length of existence and their number of points.

Visual illustrations of input and output data regarding this example
can be viewed in Figures 7.9 and 7.10 respectively, and Appendix 7.1.
Additionally, more information on HDBSCAN is found in the paper by
Campello et al. [CMS13], where they also show optimizations of HDBSCAN
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Figure 4.12: Labeled clusters as a result of HDBSCAN [VD09].

to achieve a runtime of On?. A recent work [MHA17b] further optimized
the algorithm to a runtime of Onlogn.

4.7 Machine Learning

According to the definition of Tom Mitchell in 1997, machine learning is
the area of artificial intelligence with a focus on computer algorithms that
improve automatically through experience [Mit+97]. Arthur Samuel, who
is a pioneer in machine learning, conducted his research to find an answer
to a very fundamental question of that time. The effort was to figure
out how computers could learn to solve problems without being explicitly
programmed [Samb59]. Today, we define machine learning algorithms that
build models based on sample data, known as training data, in order to
make predictions or decisions without being explicitly programmed to
do so. Machine learning algorithms are used in a variety of domains and
applications today, ranging from online commercials to autonomous driving,
where it is challenging or unsuitable to develop conventional algorithms to
perform the required tasks.

There are three main categories of learning this thesis considers to
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investigate under machine learning. It is important to define them before
going any further. In case of the first category, supervised learning, one
has input data that has been labeled. This is similar to us writing a name
on the back of a photograph, so that others or even ourselves can identify
the person on that photograph after some time. In technical terms, the
algorithm is first presented with training data of examples including the
inputs and the desired outputs, thus allowing it to learn a function. One
has to keep in mind that in order to perform supervised learning, one
needs a labeled dataset. These conditions are not always met. One does
not always have a labeled dataset for the predictions he seeks to make.
This situation brings up the second category of learning, unsupervised
learning. This refers to learning without a ground truth such as labels to
correct the error the model makes when guessing. In technical terms, the
algorithm is given samples from the input space only, and a model is fit to
these observations. A very common example here would be a clustering
algorithm. The last category is reinforcement learning. In this paradigm,
an agent explores an environment and at the end receives a reward, which
may be either positive or negative. In effect, the agent is told whether he
was right or wrong, though not how. One could give examples from daily
lives of us humans to solidify this definition. Playing a game of chess could
be one of these examples, since we don’t know whether we have won or
lost until the very end. Another one could be a waiter in a restaurant,
where he has to wait until the end of the meal as only then he becomes
aware of whether or not a tip is involved. Much more could be written
about reinforcement learning. However, since this thesis only considered
supervised learning, it rather skips the details of reinforcement learning.

4.7.1 Neural Networks

Another algorithmic approach from the early machine-learning community,
namely artificial neural networks, came and mostly went over the decades.
"Neural networks are inspired by our understanding of the biology of our
brains - all those interconnections between the neurons. However, unlike a
biological brain where any neuron can connect to any other neuron within

36 Nicholson, C. (n.d.). A beginner’s guide to neural networks and deep learning.
Retrieved February 25, 2021, from https://wiki.pathmind.com/neural-network
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Figure 4.13: Graphical illustration of a neural network node *°.

a certain physical distance, artificial neural networks (ANNs) have discrete
layers, connections, and directions of data propagation" (Copeland, 2016,
p-2) *7. In short, ANNs try to simulate the connected networks of neurons

in the human brain and enable computers to behave as interconnected cells.

It’s crucial to state, however, that the neural networks are not learning the
information the way human brain does, they are rather only inspired by
the biological neural networks. Diverse elements of the human brain are
tasked with processing various pieces of information. These elements of the
brain are organized hierarchically, or as one can also say, in layers. This
way, as information flows through the brain, each level of neurons processes
it to provide intuition, and eventually passes it to the senior layer. It is this
described layered model of processing information and making decisions
that artificial neural networks try to simulate. This model presents three
layers of neurons: the input layer (where the data enters the system),
the hidden layer (where the information is handled) and the output layer
(where it is decided what to do based on the data), as illustrated in Figure
4.13. However, artificial neural networks can get more complex than this
described model, and include multiple hidden layers.

37 Copeland, M. (2019, July 29). The difference between AI, machine learning, and deep
learning. Retrieved February 25, 2021, from https://blogs.nvidia.com/blog/2016/07/
29 /whats-difference-artificial-intelligence-machine-learning-deep-learning-ai/
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The aforementioned term layers are made of nodes. "A node is just a
place where computation happens, loosely patterned on a neuron in the
human brain, which fires when it encounters sufficient stimuli. A node
combines the input from the data with a set of coefficients or weights.
These either amplify or dampen that input, thereby assigning significance
to inputs with regard to the task the algorithm is trying to learn (e.g.,
which input is most helpful is classifying data without error?). These
input-weight products are summed, and the sum is passed through a node’s
so-called activation function. This is done to determine whether and to
what extent that signal should progress further through the network to
affect the outcome (e.g., classification). If the signals pass through, the
neuron is ’activated’ (Nicholsan, 2021, p.2) **. Especially in the field
of learning neural networks, much progress has been made over the last
years [KP18; Lit+17; Wan+19; Zha+17]. However, this thesis does not go
deeper into the basics of neural networks, it rather investigates the topic
of deep learning. This forms the basis of a few employed blocks described
in Chapter 5.

output layer

hidden layer

input layer

Figure 4.14: Graphical illustration of a neural network with layers *”.

4.7.2 Deep Learning

Definition of deep learning is found in many sources. One of the prominent
authors in the field, Ian Goodfellow [Goo+16] (a researcher at OpenAl),
stated "Deep learning is a form of machine learning that enables computers
to learn from experience and understand the world in terms of a hierarchy

38 Nicholson, C. (n.d.). A beginner’s guide to neural networks and deep learning.
Retrieved February 25, 2021, from https://wiki.pathmind.com/neural-network

39 Nicholson, C. (n.d.). A beginner’s guide to neural networks and deep learning.
Retrieved February 25, 2021, from https://wiki.pathmind.com/neural-network
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of concepts. Since the computer gathers knowledge from experience, there
is no need for a human computer operator to formally specify all of the
knowledge needed by the computer. The hierarchy of concepts allows the
computer to learn complicated concepts by building them out of simpler
ones; a graph of these hierarchies would be many layers deep. Deep-learning
networks are distinguished from the more common place single-hidden-
layer neural networks by their depth; that is, the number of node layers
through which data must pass in a multi-step process of pattern recognition"
(Goodfellow, 2016, p.34).

Initial versions of neural networks (e.g., the first perceptrons) were quite
shallow. They were only composed of one input and one output layer, and
at most one hidden layer in between (see Figure 4.14). More than three
layers (including input and output) qualifies as ’deep’ learning. "In deep
learning networks, each layer of nodes trains on a distinct set of features
based on the previous layer’s output. The further one advances into the
neural network, the more complex features the nodes can recognize since
they aggregate and recombine features from the previous layer. This is
known as feature hierarchy, and it is a hierarchy of increasing complexity
and abstraction. It makes deep learning networks capable of handling
very large, high-dimensional datasets with billions of parameters that pass

through non-linear functions" (Nicholsan, 2021, p.4) “°.
------ "‘."Output
>

Convolutions Subsampling Convolutions Subsampling  Fully connected

Feature maps

Figure 4.15: Graphical illustration of a convolutional neural network [Aph].

A deep convolutional neural network (DCNN) is a feed-forward neural
network that is designed to process structured data such as images or audio.

40 Nicholson, C. (n.d.). A beginner’s guide to neural networks and deep learning.
Retrieved February 25, 2021, from https://wiki.pathmind.com/neural-network
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The effectiveness of a DCNN comes from convolutional layers which are
efficient in picking up patterns. In Figure 4.15 the structure of a DCNN
is shown. In the beginning, the DCNN receives an input, which is an
RGB image. On each part of the image, kernels are applied by performing
convolutions. In this process, every kernel produces a downsampled version
of the image, which is referred to as a feature map. The kernel output is
then often fed into an activation function before it is sub-sampled even
more by pooling operations. If this process is repeated, kernels are applied
on the feature maps (usually the number of kernels applied on the feature
maps increases over in each step), resulting in smaller feature maps. If the
feature maps are small enough, they finally get flattened and fed into a
fully connected neural network. In this sense, one can perform classification
operations on abstract data like RGB images.

A convolution between an image/feature map I and a kernel K is
described as

[« Kij="""r i —n.Kmn (4.19)

m=0 n=0
where k1 X ko is the dimension of the kernel. In the case of a convolutional
neural network, the image has a width W, a height H and a specific
number of channels C' (C' = 3 if RGB is considered). Therefore, the
image Iis € RTXWXC "and since there are D filters, K € RF1>k2xCxD 1y
addition, there is a bias b € RP for each filter. Hence, the convolution is
given by

S K@j _ki—1k2-1 C Iz'+m,j+n,c . Km,n + b. (420)

m=0 n=0 c=1

The process of such a convolution is shown in Figure 4.16. The learning
process of a DCNN with L layers follows the same basic principles as the
one of a fully connected network. Since neural network predictions ¥, will
differ from the corresponding ground truth value t,, the mean squared
error

1
E=g t- Yy (4.21)

needs to be backpropagated from the last layer [ = L to the first layer
I = 1. "While backpropagating the errors, one can then calculate the weight-
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Figure 4.16: Graphical illustration of a forward-passing in a convolutional neural
network [Kaf16].

related errors gradient g—g. In order to improve the networks accuracy,
during training the weights need to be updated in the negative direction of

the gradient. In this step, the gradient is weighted with a learning rate a.

In the following, we describe a convolution as

ot = w! (4.22)

where z! is the output of the convolution of layer 1 and z!~! is the output

of layer [ — 1. We denote w' to be the weight matrix between those layers.
In order to simplify the explanation of backpropagation, we assume ¢ = 1.
The process of backpropagation is shown in a simplified way in Figure 4.17.
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R -

Input Gradients Kernel Pool
Feature at Conv.
Map

Figure 4.17: Graphical illustration of backpropagation in a convolutional neural
network [Kafl6].

The kernel w' consists of weights w,ln,n which are colored in red, yellow,
blue and green (see Figure 4.16). In backpropagation, the gradient of a
single weight wfn, . of a convolutional kernel is referred to as

OF OE O}
—— =Wk ) (4.23)
8wm,’n, =0 ]:0 81:1,] 8wm/’n/

Here, H and W represent the height and width of the the of the 2-
dimensional image z! of layer I. This image gets convoluted by a kernel of
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the shape k1 x ko with m € k1 and n € k. The last expression of the two
sums deviates to

oxl .
- (4.24)

l i+m/ j+n’
awm/ '

which is the calculated output o of the activation function f in layer
[ — 1. However, the question of "How does a single pixel xé,7 o in the feature
map affect the error in layer [?7" is yet to be answered. The first expression
of the sums of Equation 4.23 denotes as

l
8E _k1—1ko—1 aE I+1 . af(xi’,j/)

= - w
l _ _ +1 m,n l
Ba:m m=0 n=0 6%/ mj—n 8%,7].,

(4.25)

The last expression of the previous equation equals the first deviation of
the activation function, therefore

(9f .Tlv ’
f,l‘i/,]’ = ( l’L o ) (426)
Oy
When back-propagating into layer [, the error matrix
OF I+1
ST Wmn (4.27)
,Lh]

from layer [ + 1 is already known. Therefore, one can finally calculate
the gradient, and update the weights" (Trommer, 2020, p. 6-10).

One last issue to clear is to understand how the error is backpropagated
through the sub-sampling/pooling layers. In the pooling layers (see Figures
4.16 and 4.17), pooling blocks (shown in purple color) are converted into
the so-called winning units (shown in brown color). When forward-passing
information, the indices of these units are noted. During the max-pooling,
a winning unit consists of the maximum of the pooling block. Thus, during
back-propagation, the error is assigned directly to the original maximum
value. When using average pooling, on the other hand, the error is weighted
by % and then contributed to the hole pooling block. N stands for the
number of units that are sub-sampled into the winning unit.

DCNNSs have made striking differences in many computer vision tasks
such as image segmentation, image classification, object detection, and etc.
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Although the background information on the mechanics of DCNNs have
been shared in this chapter, Chapter 5 goes through the state-of-the-art
DCNNSs used, and the way they work in detail.

4.7.3 Training Environment/Hardware

Most of the state-of-the-art machine learning algorithms require extraor-
dinary hardware to train or even infer. The memory requirements keep
expanding every day, since the DCNNs have become increasingly deep
in layers. It is safe to assume that behind every recent machine learn-
ing algorithm, there is either a CPU (Central Processing Unit), a GPU
(Graphical Processing Unit) or a TPU (Tensor Processing Unit) stressed
to train. Since this thesis employs a few DCNNs, it is required to mention
the training environments and how they differ in terms of performance.
In this subsection, the relative advantages and disadvantages of using
CPUs (Intel Xeon'!), GPUs (Nvidia Tesla P100*?), TPUs (Google TPU
v3"?) were compared for training machine learning models created using
Tensorflow and Keras (tf.keras). There are already studies [Jou+17;
Kum+19; WWB19] conducted on this matter. This subsection is going
over the concrete results acquired in these studies.

CPUs, GPUs and TPUs are processor units with a particular purpose
and architecture. A CPU is designed to solve computational problems in
general. Thus, its cache and memory design are assured to be optimal for
any programming problem. It executes the instructions for computer pro-
grams, handles the essential arithmetic, logic, controlling, and input/output
functions of these programs. A GPU is rather designed to accelerate the
rendering of graphics. Previously, often the GPU was embedded into
the CPU, however, as the machine demand on graphical computation
load expanded, it became difficult for the built-in GPUs to accomplish
the required tasks in tolerable time intervals. For the past two decades,
therefore, standalone GPUs (independent of CPU) are preferred by the
machine learning community due to their performance on the required

41 https://www.intel.com/content/www /us/en/products/processors/xeon.html
42 https://www.nvidia.com/en-us/data-center/tesla-p100/
43 https://cloud.google.com/tpu/
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tasks. ** Besides, computer hardware manufacturers such as NVIDIA*
and AMD*’ valued the demands of the machine learning community by
explicitly designing GPUs that are meant for machine learning tasks. In
2015, however, a new paradigm paved the way to an even better performing
unit called TPU by Google, which was made public recently in 2018. TPU
is an application-oriented integrated circuit used specifically to empower
the underlying Al calculations. Since TPU is designed to accelerate deep
learning tasks develop using TensorFlow programming framework (owned
by Google), compilers have not been developed for TPU which could be
used for general purpose programming. Therefore, it requires significant
effort to do general programming on TPU, making it a specifically deep
learning hardware. TPUs are now open for public use on Google Colab
[Bis19] environment, which is a cloud-based service to train DCNNs using
either CPU, GPU or TPU. While CPUs and GPUs are manufactured by
several companies, TPUs for now are only manufactured by Google, making
them unique in this regard.

It’s not within this thesis’ scope to explain how each of the processors
works in detail. However, it is required to underline the differences of each
in the context of machine learning. These processors can be compared
based on several aspects such memory subsystem architecture, compute
primitive, performance, purpose, usage and manufacturers. The most
relevant aspect here is the compute primitive, which refers to the smallest
unit used in the processors, as illustrated in Figure 4.18. CPU utilises
a 1 x 1 scalar data unit, wheras for a GPU, this is a 1 x N wvector data
unit. TPU, as the name suggests, utilises the data unit tensor which is
N x N. As the compute primitive allows more flexibility in calculations,
better performance is shown by the processor. This fact alone presents that
TPU is definitely the fastest in terms of computation. However, knowing
this alone is not sufficient in machine learning context. Therefore, the
aforementioned studies conducted experimental evaluations to find out how
much faster TPU would be, compared to GPU and CPU. These evaluations

44 Gaonkar, A. (2020, July 15). CPU / GPU/ Tpu - ML perspective. Retrieved February
23, 2021, from https://medium.com/analytics-vidhya/cpu-gpu-tpu-ml-perspective-
1f049cd4d43d

45 https://www.nvidia.com/en-us/training/

46 https://www.amd.com/en/graphics/servers-radeon-instinct-deep-learning
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are even made publicly available’” through Kaggle *® platform, which is the
world’s largest data science community with powerful tools and resources
to achieve data science goals. Kaggle provides users with a platform where
they can find and publish data sets, explore and build models in a web-
based data-science environment. Moreover, it allows users to collaborate
with other data scientists and machine learning engineers from all over
the world, and enter international competitions to solve challenging data
science problems.

In order to compare the performance of these different processors for
accomplishing common data science tasks, the data scientists preferred to
use the tf flowers dataset to train a convolutional neural network, and then
the exact same code was run three times using the three aforementioned
different backends (GPU: NVIDIA P100, CPU: Intel Xeon 2GHz (2 core),
TPU: TPUv3 (8 core)).

For the first experiment, one could use the same public code for all
three hardware types, which requires using a very small batch size of 16 in
order to avoid out-of-memory errors from the CPU and GPU. Under these
conditions, it can be observed that TPUs are responsible for an approximate
100 times speedup as compared to CPUs and an approximate 3.5 times
speedup as compared to GPUs when training an Xception [Chol7] model.
Since TPUs operate more efficiently with large batch sizes, increasing the
batch size to 128 is also an option, resulting in an additional 2 times
speedup for TPUs and expectedly out-of-memory errors for GPUs and
CPUs. Under these conditions, it can be said the TPU is able to train an
Xception model more than 7 times faster than the GPU. It must be noted,
however, that if the correct compiler is actually present, CPU, GPU and
TPU can achieve the same task or result, although by following a different
path and thus showing drastically different performance, naturally.

There are, however, a few more interesting findings to be mentioned.
First of all, the observed speedups for model training vary according to the
type of model, with Xception and Vggl6 [SZ15] performing better than
ResNet50 [He+16a]. Additionally, model training is the only type of task

47 Mooney, P. (2020, February 20). When to use CPUs vs GPUs Vs TPUs in a kaggle com-
petition? Retrieved February 23, 2021, from https://towardsdatascience.com/when-
to-use-cpus-vs-gpus-vs-tpus-in-a-kaggle-competition-9af708a8c3eb

48 www.kaggle.com
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Figure 4.18: Graphical illustration of the compute primitives of CPU, GPU and
TPU, from top to bottom, respectively.

where it could be observed that TPU outperforms GPU by such a large
margin. For instance, it can be observed that the TPUs are 3 times faster
than CPUs and 3 times slower than GPUs for performing a small number
of predictions. In exchange, however, TPUs perform exceptionally when
making predictions in some situations such as when making predictions on
very large batches. However, a typical real-time workload for inference is
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to process one image at a time, which cannot fully utilize the TPU power.
In short, TPUs are great if one needs to process a lot of images at once.

Another aspect is the cost of using cutting-edge processors as there is
a sizeable difference in pricing. TPUs are approximately 5 times more
expensive than GPUs. Currently, it costs $1.46 per hour for an Nvidia
Tesla P100 GPU, $8.00 per hour for a Google TPU v3 and $4.50 per
hour for the TPUv2 with "on-demand" access on Google. If one tries to
optimize for cost then it makes sense to use a TPU since it will train the
model at least 5 times as fast as if it trained the same model using a GPU.
There is also the possibility of using processors for free on Google Colab
environment, although the allowed training time is quite limited, causing
abrupt interruptions after the 8th hour in a day per account. A common
practice therefore is to store the data in a sharded format (i.e. tf records)
in a Google Cloud Service *’ bucket (i.e. name of the storage unit) then
to pass it to the TPU in large batch sizes using the Tensorflow API (i.e.
tf.data). This practice introduces speedups up to 5 times compared to the
regular procedures.

Last but not least, it must be mentioned that Wang et. al have developed
a rigorous benchmark called ParaDnn [WWB19] that can be used to
compare the performance of different hardware types for training machine
learning models. The authors were able to conclude that the performance
benefit for parameterized models ranged from 1 time to 10 times, and
the performance benefit for real models ranged from 3 times to 6.8 times
when a TPU was used instead of a GPU. It was concluded that the TPUs
perform best when combined with sharded datasets (tf records), large batch
sizes (e.g., 64), and large models (e.g., EfficientNets [TL19]).

In conclusion, for model training and exploration, using TPU with the
aforementioned practice should be preferred. It is the fastest way possible
to train a large network and to evaluate its performance on the test data.
This makes TPU-powered systems suitable for applications where new data
is acquired often, making training regular.

49 https://cloud.google.com/
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This section describes the proposed pipeline for the visual intelligence
scheme developed to address previously mentioned objectives in Chapter
3. First, the object of interest is introduced and necessary datasets and
taxonomy are shared. Next, the camera setup is introduced, along with
the calibration procedures required to enable pixel projection between the
cameras themselves, as well as those cameras and the end-effector. Then
methods, frameworks, intermediate procedures required for the pipeline are
explained in detail. Finally, the complete pipeline is elaborated, focusing
on the inter-component communications.

5.1 Object of Interest

As this thesis proposes a visually intelligent scheme, it prefers to choose the
object of interest as 3.5 inch computer hard drives to form a proof of concept.
At least one computer hard drive is found in every EOL computer, making
hard drives a common item among the e-waste category. On top of that, the
magnet of the hard drive is made of an element called Neodymium, which
is quite interesting for the recycling plants. Additionally, hard drives are
light and reasonably sized, making them suitable objects for manipulation
tasks.

There are several manufacturers of these devices. More than 100 com-
puter hard drives including various brands (e.g., Hitachi, IBM, Maxtor,
Seagate, WD, Samsung, Toshiba, etc.) were collected throughout the
investigation and development. Figure 5.1 illustrates a sample hard drive
without its lid. A standard hard drive contains around 12 parts that matter
to the disassembly process. The reason why hard drives without lids are
considered is due to the fact that the disassembly routines are bound to
remove the lid eventually to reach the parts underneath. Therefore, it is
crucial that the hard drive is viewed top-down with an appropriate angle
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so that the parts and gaps between them are visible enough for the vision
routines to make the necessary inferences.

Figure 5.1: Sample hard drive without its lid.

5.1.1 Taxanomy & Datasets

It is important to form a taxonomy for the object of interest, as this
taxonomy could be used as a standard ground truth for any vision block
to be developed, and later evaluated. Additionally, for the entities such
as screws, wires and parts, relevant datasets have to be created to be
used in possible machine learning blocks to address the objectives given in
Chapter 3. Note that the datasets mentioned in this subsection are the
raw, unprocessed datasets with no data augmentation applied on them.
The numbers shared are the numbers of raw image samples to be collected.

A taxonomy including the illustrations, names and little descriptions of
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hard drive components are given on the IMAGINE Website °’. Another
purpose of this effort was to build a list of common wordings about these
different parts, in order to avoid uncertainties and irritations during the
communication within the course of the IMAGINE project. It must be
underlined that the shared taxonomy was agreed within the IMAGINE
Consortium, including the industrial partner Electrocycling GmbH, pro-
viding hardware samples and images. While this taxonomy does not claim
to be complete, it serves the interests of the project, and it stands as a
sufficient structure to carry out the necessary evaluation strategies.

5.1.2 Datasets for Entities of Interest

This thesis considers an EOL device to have four types of entities in
and/or on it. These entities are screws, components, wires and gaps. This
subsection elaborates the need of collecting specific dataset for each entity,
and explains the way these datasets were created. Note that the entity
wires may or may not be found in every hard drive, however, it is still
considered an entity.

Datasets are the core necessities of any machine learning block, as
supervised or unsupervised machine learning algorithms heavily depend
on the data available. This fact aside, even without machine learning
paradigm involved, it is required to keep ground truth data for the future
evaluation of any employed algorithm.

Screws

Screws are commonly found entities in any EOL device. They physically
hold parts together through their threads fitting the hubs available. This
makes screws primary entities to be removed before any part removal
could take place. An unsuccessfully handled screw may cause the entire
disassembly sequence to be cancelled, and the EOL device to be completely
abandoned by the disassembly system or the human operator. Screws must
be correctly detected, classified and physically interacted with.
Throughout the investigations, it was observed that most of the EOL
devices considered have a certain set of screws. Agreed with the industrial

50 Taxonomy of HDD-Parts and -Components. (n.d.). Retrieved February 23, 2021,
from https://imagine-h2020.eu/hdd-taxonomy.php
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partner of IMAGINE, 12 types of screws are considered: Torx 6, 7, 8,
9, Allen 2.5, 2.75, 4, Slotted 4, 6.5, 10 and Phillips 1, 2. Note that the
length of the thread is irrelevant for the perception block, as they are
always occluded. Therefore, any vision routine only considers the head
part of the screws. Figure 5.2 illustrates samples from every type and size
considered. In order to address detection and classification purposes, over
20000 positive images of screw heads are found to be sufficient.

Torx 9
Torx &
Torx 7
Torx 6
Allen 2.5
Allen 3
Allen 4
Slotted 4.5
Slotted 6.5
Slotted 10

Figure 5.2: Various screw types encountered during the disassembly of EOL
devices.

Collecting positive samples of screw heads alone, however, does not
suffice. One also has to collect negative samples since the employed machine
learning algorithm has to learn what does not look like a screw, despite
being very similar in shape and feature. To this end, 10000 artefacts were
found to be sufficient. Artefacts in this regard may be of any circular
looking feature on the EOL device, such as transistors, stickers, empty
screw hubs, and etc. Figure 5.3 shows samples of screws and artefacts.

Note that all of of the illustrated images were collected by using the setup
shown in Figure 5.7, however, in order to account for great variance in the
dataset, the images were collected under slightly different light conditions.
They were collected by a tool that is introduced in the section 5.4.
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Figure 5.3: Screw (bottom) and artefact (top) samples are the positive and
negative samples, respectively.

Components

The taxonomy previously mentioned has been used with a slight difference
while collecting images for the component dataset. According to the taxon-
omy, there are 12 different components. However, one of the components
(motor contacts) does not need visual recognition, as it is noticed to come
off with either the bay or the PCB (Printed Circuit Boards) attached.
Therefore, we decide to collect images for only 11 components. Over 600
images of different brands and models were collected under different light
conditions. These images include various stages of disassembly with parts
in arbitrary positions (e.g., after a failed action). 5% of all images corre-
spond to damaged devices to account realistically for the state of products
in recycling plants. Figure 5.4 illustrates a damaged hard drive from the
dataset. Note that the magnet is displaced, possibly due to failure during
the manipulation attempt.

Top-down views of the computer hard drives are annotated into 11 classes
according to the taxonomy, using the VIA annotation tool by Andrew
Zisserman and Abhishek Dutta [DZ19]. Figure 5.5 shows a hard drive with
annotated inner parts. The annotations are kept in a .JSON file, or a
JavaScript Object Notation file’'. This file format is commonly used for
image annotation and loading of these annotations by machine learning
framework routines.

51 A specific file format that uses human-readable text to store and transmit data objects
formed by attribute—value pairs and array data types [ECM].
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e

Figure 5.4: A hard drive with a damaged platter and a displaced magnet found
in the dataset.

Wires

Wires, unlike screws, do not have specific shapes (e.g., circular), making
them only suitable for pixel-wise segmentation schemes. They could be
found in segments due to occlusion in EOL devices, they also could be of
any color. It is safe to assume that wires are the most varying entity in
this domain. This makes it usually very difficult or even impossible to find
a dedicated dataset for specific visual tasks to detect wires. Hence, one is
forced to deal with limited number of annotated training data. To this end,
approximately 100 images of wires were collected manually. The strategy
was to use any type of wires (including connectors) and manually create
occlusions with arbitrary EOL components. As backgrounds, mostly PCBs
were used, as wires are mostly found on PCBs in EOL devices. Figure
5.6 shows a few samples from the wire dataset acquired. Wires were later
annotated with the VIA tool [DZ19].

Note that 100 images of wires are only the raw images. As it is explained
in further sections, the images are subjected to heavy augmentation process
before being used as training data.



Object of Interest

Figure 5.5: Ground truth annotations for a sample hard drive based on the
taxonomy.

Gaps

Gaps are unique structures as they are the only 3D entity among all.
Although this work does not employ any machine learning algorithm to
detect gaps, still, ground truth data must be obtained to evaluate the
proposed methods in Chapter 6. To this end, a free, online annotation
tool called Semantic Segmentation Editor’” from is used, allowing point
clouds (3D data) to be annotated. These ground truth annotations consist
of pointwise segmentations of each gap in a device. The human-annotated
data points are then compared to the gap detection’s findings to calculate
its accuracy.

52 Hitachi-Automotive-And-Industry-Lab. (n.d.). Hitachi-Automotive-And-Industry-
Lab/semantic-segmentation-editor. Retrieved February 23, 2021, from https://github.
com/Hitachi- Automotive- And-Industry-Lab/semantic-segmentation-editor
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Figure 5.6: Sample raw images found in the wire dataset.

5.2 The Setup

Our proposed visual intelligence scheme needs to process two kinds of
inputs. One of them is a high resolution RGB image, since only such high
resolution image could provide the subtle details of the cues we are looking
for. These cues could be edges, boundaries of parts, curves of circular
structures, and color information. A possible intelligent scheme to seek
these features has to do it with high quality images. Therefore, for the RGB
input, resolution is top-priority. The second type of input is a top-down
point cloud, where depth information could be perceived and processed
to address the objective regarding the gaps. Therefore, our setup has to
operate with sensors (cameras) that provide a high-resolution RGB image
and a point cloud with fairly acceptable resolution. The required camera(s)
could be chosen from any brand, however, this thesis is going to mention
two specific cameras that are used in the proposed setup. Note that the
proposed setup does not necessarily require these cameras by definition, it
only requires sensors providing aforementioned inputs. Any camera system
that provides them could be used within the proposed scheme.

We then propose a setup that uses a tilting table holding the device
either horizontal (its surface normal aligned with the RGB camera) or 45°
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(aligned with the stereo camera) on request (see Figure 5.7). We use a
Basler acA4600-7gc monocular camera which provides images with 4608 x
3288 resolution and 3.5 FPS and a Nerian Karmin2 stereo camera with a
depth error of 0.06cm from the minimum range of 35cm. The tilting table
is used to direct the device surface to either of the cameras with a precise
angle.

Monocular Camera Monocular Camera
Stereo
Camera
: Stereo
; Camera
70 cm
35 cm
v
% pxxxy Device fas: . Device

Figure 5.7: Setup used for the proposed scheme: a monocular RGB camera
is oriented downwards (0aonocular = 90°) and a stereo monochrome camera is
mounted at Ogiereo = 45°. This configuration is chosen due to the different focal
lengths of the cameras. Both cameras are pointing at the device to be analysed.
A tilting mechanism allows the system to obtain “top-down” views of the devices
with both cameras.

The stereo system consist of a Karmin2 3D stereo camera’®, connected
to the SceneScan FPGA. According to their publication [Sch18], SceneScan
provides real-time stereo vision processing up to 100 frames per second
using a modified version of the SGM algorithm [Hir05]. The camera has a
resolution of 800 x 600 and a 10 cm stereo baseline distance. Furthermore,
the camera was placed in a 90 degree angle above the device with a 35
cm distance to the device. More information about the stereo cameras is
shared in Figure 7.11 of Appendix 7.1, where the camera specifications are
listed, as well as in Figure 7.12 which lists the lens and sensor metrics.
Similarly, the monocular camera has the specifications shown in Figure
7.13 of Appendix 7.1. According to the official documentation on the

53 GmbH, Technologies, N. (n.d.). Karmin2 - Nerian’s 3d stereo camera. Retrieved
February 23, 2021, from https://nerian.com/products/karmin2-3d-stereo-camera/
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manufacturer website”®, Basler acA4600-7gc GigE camera with the ON
Semiconductor MTIF002 CMOS sensor delivers 7 frames per second at 14
MP resolution.

The final disassembly scene therefore refers to the scene perceived by
the cameras found in our setup. Basically, the scene has to contain the
object of interest without any irrelevant object or artefact nearby as shown
in Figure 5.1. Preferably, the scene has to be illuminated in a way that
there are no shadows or major reflections caused, as these are known to
hinder the vision algorithms used.

5.2.1 Pixel Projection

Having calibrated both of the cameras, the following transformations are
made available to the visual intelligence scheme: Monocular-To-World,
World-To-Monocular, Stereo-To- World, World-To-Stereo: , Stereo-To-Monocular,
Monocular-To-Stereo. These transformations are used to transform any
point in the host frame to the target frame. Note that the transformations
have been made ROS Services, and the ROS package TF has been used to
conduct the mathematical transformations.

These transformations are important to be able to project any finding
on the RGB image acquired by the monocular camera, on the point cloud
frame acquired by the stereo camera, and vice versa. Moreover, the pixel
projections are definitely required for manipulation purposes. Eventually
the frame where any cue is found has to be transformed into the frame
where end-effector has to operate. This is made possible by having both
cameras as well as the robot end-effector to recognize a common frame
of reference (as known as World), and use transformations between the
World frame and their own frames such as Monocular or Stereo for the
vision block, and possibly End-Effector for the manipulator.

A practical way to test the pixel projection as well as the calibration
procedures is to measure a known point using a physical ruler, and note its
coordinates with respect to the World frame. Note that this point has to be
visible from both of the cameras, since the next step is to find out the image
coordinates of that point in both camera images. Marking the point with

54 Basler AG. (2021, February 22). Basler ace Aca4600-7gc - Area Scan Camera.
Retrieved February 23, 2021, from https://www.baslerweb.com/en/products/cameras/
area-scan-cameras/ace/aca4600-7gc/
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a colored pen helps identifying the pixels in the images from the cameras.

After having the World coordinates and their corresponding Monocular
and Stereo coordinates, a transformation such as World-To-Monocular or
Stereo-To-Monocular reveals the correctness of the projection. It is not
possible to have 100% correctness since there is always a slight human error
while measuring or calibrating, however, the transformed points should not
be too far from the physically measured values.

5.3 Proposed Pipeline

The proposed pipeline presented in this thesis is composed of 8 vision
components (or blocks), each aiming to address one or more objectives of
the State Estimation package, as mentioned in Chapter 3. A graphical
illustration of the entire pipeline can be seen in Figure 7.17 of Appendix
7.17, whereas the main vision blocks in the pip line are shown in Figure
5.8. Fundamentally, the pipeline starts acquiring RGB and depth data,
and conducts its inferences to find every entity present in the disassembly
scene. These entities are components, screws, wires and gaps, as mentioned
previously. The main idea is to derive predicates by finding the geometric
relations between the entities in the EOL device.

Input
Sensor(s)

S8 I L
!
v

Screw
Detection

Component Wire .
Segmentation l Detection Gap Detection
Screw

Classification

Predicates
1

Figure 5.8: Main vision blocks in the pipeline are shown in green, where each
block aims to generate predicates regarding the found entities in the scene.

The State Estimation package is responsible for providing the required
visual data and the interpretation of it as predicates to two other packages

Section 5.3

99



Chapter 5

100

Approach

that are the association engine and the planner, as explained in Chapter
3, illustrated in Figure 3.3. It must be underlined at this point that
the provided visual data and computed predicates utilise the calibration
information allowing pixel projection and thus common frame of reference
for the other packages, as shown in Figure 5.9.

v l i
Calibration
Info R?B e
v
Screw
Detection
Component l Wire Gap Detection

Segmentation Detection
Screw

Classification

Predicates

!

Pixel Projection

Figure 5.9: An offline calibration procedure allows pixel projection and common
frame of reference for the predicates.

Last but not the least, the proposed pipeline employs a bookkeeping
mechanism as illustrated in Figure 5.10, which is explained in Section
5.9. Basically, the visual intelligence scheme accounts for scene awareness,
enabling the system to register the visual changes between consecutive
frames. This way, the planner is informed about an abnormal change (e.g.,
an accidentally dropped part, unintended move of a part) or an unchanged
scene (e.g., failed action).

After bookkeeping the consequent scene changes, providing them along
with the necessary visual data and predicates to further packages, the State
Estimation waits for a ROS signal for another analysis.

5.4 Screw Detection

As mentioned previously, screws are the most commonly encountered
entities in any EOL device, making them crucial to the course of disassembly.
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Figure 5.10: Predicates on a common frame are reported to the further packages
through ROS interface, their bookkeeping is done as well to assist the planner.

In order to have a continuous disassembly, the screw detection strategy
has to be robust enough to account for most of the screws found in or over
the device.

Although automated disassembly has been investigated for a while now
[Dro+14; Weg+15; Wei+06] and there are some schemes [BRP16; Biitk+01;
Els+12; Pom+04a; Xie+08] for automating certain processes, none of
the proposed schemes is actually offering a generalising, extensible, and
universal solution of the screw detection problem [YW19]. Numerous algo-
rithms have been proposed for the task as a part of automated disassembly
strategies. "Most of these were either too much model-dependent; meaning
screw-specific (i.e. only Torx6) or device-specific (i.e. only electric motor
screws) [BRP16; Cru+08] or they were extremely frail due to the fact
that the methods they used were quite dependent on classical computer
vision methods, which are easily affected by a slight change of illumination
[UkiO7]" (Yildiz, 2019, p.2). Also, some of the methods [BRP16] require a
depth sensor (i.e. RGB-D camera) to conduct the detection.

Another attempt was reported by Ukida et al. 2007 [Uki07]. "The
authors tried to perform screw detection using template matching on metal

ceiling structures for dismantling and successful reuse of light steel gauges.

In this scheme, a hierarchical vision system detects the light steel gauge
first and then uses multiple template matching to detect screws. This
method also has a very obvious shortcoming: the method depends on a
fixed template and therefore it cannot generalize. Also, back then, a light
steel gauge had only one type of screw, but there is no guarantee that
it will stay like this in the future. Changing the template is tedious and

Section 5.4

101



Chapter 5

102

Approach

non-desirable and, thus, this method is highly specific and it also cannot
address other metal structures or E-Waste devices" (Yildiz, 2019, p.2).

One study focuses on the disassembly of the electric vehicle batteries
using a robot system [Weg+15]. "Their main goal was to detect M5 bolts
on the battery joints. They used a Haar-type cascade classifier, which is
trained on cropped images of M5 bolts. Then, to improve the performance
of classification, false positives detected from the classifier were added to the
negative set. Although the approach sounds quite feasible, unfortunately
Haar cascades are not performing very good when it comes to classification.
They were able to achieve only 50% detection accuracy, which makes the
method impractical for industrial use" (Yildiz, 2019, p.2).

Another study worthy of mentioning focused on autonomous disassembly
of electric vehicle motors [BRP16]. "The authors tried to detect screws
found on electric vehicle motors using an RGB-D sensor (Kinect) [Zhal2].
Although the proposed algorithm is scale, rotation, and translation invari-
ant, it heavily relies on traditional computer vision methods such as Harris
corner detection and HSV image analysis, which are easily affected by the
lighting conditions. Another shortcoming is the fact that they require a
depth image from the RGB-D sensor to remove false positives such as holes,
which adds computational load" (Yildiz, 2019, p.2)

Therefore, it appears that there is a lack in generalizing, device and
screw-independent methods, which can be used in disassembly processes
[YW19].

The proposed screw detection scheme is derived from the recent work
Yildiz et al. [YW19], which has two modes: offline and online. In the
offline mode, the aim is to collect positive and negative samples for the
training of the deep neural networks that we use. Therefore, in the offline
mode, the scheme saves possible candidates, which could be screws or
artifacts cropped from the camera image. "These images are then to be
divided by a human into positive and negative samples (screw/non-screw)
for the training session" (Yildiz, 2019, p.2). Figure 5.11 illustrates the
offline mode on the right side.

After collecting the training data and training the network, the second
mode of the scheme is ready to use. When it comes to inferring of screw
locations, as shown in Figure 5.11, once more the same initial function
blocks are performed, however this time the system uses the trained model
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Figure 5.11: The proposed scheme is composed of offline and online stages, which
are used for training the network and then for inferring screw locations using the
trained model [YW19].

of the network to differentiate between positive and negative candidates
[YW19]. "The scheme then marks and returns the locations of the screws
seen in the image" (Yildiz, 2019, p.3).

5.4.1 Candidate Generation

As stated above, Hough circle finder is first used to crop the image to only
the region where the device is visible. Cropping is done in a parameter
dependent way [YW19]. Depending on the device, users can crop the
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incoming image as required. Following this, the RGB image is converted
into a Grayscale image. This is the preprocessing block seen in Figure 5.11.

"Different types of screws found in the domain of E-Waste have been
analyzed to make sure that the method covers all conventionally used
screws found in this domain. For this purpose, various electronic devices
were investigated, which can be found in myriad numbers nowadays in
E-Waste, such as computer hard drives, DVD players, gaming consoles
and many more. As expected, almost all screws in the domain were found
circular, which is the natural geometry of a screw and represents the central
feature to be used to detect a screw object. There are also non-circular
screws manufactured, however, those are few and no such screws were
encountered in the devices mentioned above. Therefore the method is
based on first finding circular structures in the images. Obviously, not
every circular structure is a screw, for example stickers, holes, transistors,
etc. exist, which are also circular, but not screws. Still, circular structures
provide us with priors for screws and the first step of our method is to
collect those screw candidates" (Yildiz, 2019, p.3).

As previously mentioned, in order to collect candidates, one runs the
program in the offline mode which utilises Hough Transform for candidate
detection [YW19]. This is a standard computer vision method for circle
detection [DH71] and shall not be explained here. Different from the
standard Hough Transform, here a version is used that relies on the so-
called Hough Gradient (of the OpenCV library [BK08]). That is, using the
gradient information of the edges that form the circle. For more information
on Hough transform, the reader is referred to the handbook published
by the creators of the aforementioned library for further implementation
details on the algorithm of the Hough Gradient.

5.4.2 Training the Classifiers

As mentioned before, the user manually separates screw types and artifacts
by which a classifier can be trained using these positive and negative
examples as training data [YW19]. In Figure 5.2 types of screw heads
and artifacts taken from various devices found in E-Waste are shown.
In general, these screws are found in other device-classes and, thus, the
resulting training set can be transferred also to other devices. In that case,
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however, one has to increase the number of samples to account for more
types of screws.

There are several classifiers in the literature, which one could inves-
tigate on the task, such as Xception [Chol7], InceptionV3 [Sze-+16b],
ResneXt101 [Xie+17], InceptionResnet V2 [Sze+17], Densenet201 [Hua+17],
Resnet101v2 [He+16b] models. "These networks achieve over 93% top-5
accuracy on the well-known Imagenet dataset [Den+09]. In order to fur-
ther improve learning and to reduce overfitting, a dropout layer is inserted
before the last fully connected layer of each network. To further reduce
overfitting and to come up with a model that can generalize, an additional
data augmentation step is applied. There are several data augmentation
operations applied to introduce more variety in the data. However, the
most important ones are normalizing the image data into a range of [0,1],
rotation [0,360], randomly setting the brightness in the range [0.5,1.5]"
(Yildiz, 2019, p.3). The experimental evaluation each of these networks on
the test data allowed authors to select two to be used in the processing
pipeline [YW19].

Evaluating the Models

Several experiments were conducted on the test data collected. Out of
the top six state-of-the-art classifiers, the best performing two ones were
chosen and combined as ensembles of models, as illustrated in Figure 5.12.
Ensembles of models refers to the practice of combining predictions from
multiple statistical models to form one final prediction [AWZ18]. This
creates opportunity for diversity in the representational capacity of the
model. The concept is analogous to anecdotes such as seeking the opinion of
multiple professionals, and it has been used in many recent works [ABD16;
LZP16; Nob+20; PAV19; SA20]. Below the details of the experimental
evaluation are provided, along with the presented justification for the
decision of using an ensemble.

For the evaluation of the classifiers, the collected dataset mentioned
in Section 5.1 is used, consisting of over 20000 samples and split into
training, validation and test sets in ratios of 70%, 20%, 10%, respectively.
"A computer with Intel Core i7-4770 CPU @ 3.40GHz, 16GB of RAM
with GeForce GTX Titan X graphic card was used to train the classifiers.
For evaluation of the performance of the screw detector, approximately
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Figure 5.12: The proposed ensembled model, which is a combination of the two
best performing networks given our data and classification task [YW19].

300 hard drive images containing over 1500 screws were collected. We
split those images into training and test sets with a ratio of 2:1. YOLOv3
[RE18] (a state-of-the-art object detector) was chosen to be re-trained on
the training set to demonstrate the efficiency of the screw detection pipeline.
YOLOv3 was then compared with the proposed ensemble" (Yildiz, 2019,

p.4).
Standard metrics [Eve+10] for classification evaluation were used. The

significant bit here is the accuracy of the networks picked for the pipeline.
The accuracy of each of them is calculated as follows:
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Acc=TP+TNTP+TN+FP+FN

where TP stands for True Positives, TN for True Negatives, F'P for
False Positives and F'N for False Negatives. To evaluate screw detection
performance, Average Precision (AP) was used, which is calculated based
on the precision-recall curve. Summary of the experimental results with

regards to performance of each classifier against the testing set is given in
Table 5.1.

Table 5.1: Experimental results for the chosen state-of-the-art models [YW19)].

Model TP | TN FP | FN | Acc
Xception 975 | 3244 | 25 | 41 | 98.5
InceptionV3 973 | 3262 | 27 | 23 | 98.8
ResneXt101 962 | 3260 | 38 | 25 | 98.5
InceptionResnetV2 | 965 | 3260 | 35 | 25 | 98.6
DenseNet201 897 | 3272 | 103 | 13 | 97.3
ResNetV2 943 | 3208 | 57 | 77 | 96.9
Integrated model | 988 | 3254 | 12 | 31 | 99.0

"From the collected results in Table 5.1, one can conclude the following;:
All of the investigated models achieve very high accuracy - over 96% on the
testing data, with the model InceptionV3 scoring the highest accuracy of
98.8% among single models. One also notices that the InceptionResnetV2
model scores a very high accuracy of 98.6%. However, it should be noted
that this model is much heavier than the Xception model, which scores
comparable accuracy of 98.5%. It was then decided to combine two best
performing models to boost the accuracy of the classifier. At this point
the models InceptionV3 and Xception were chosen to build an ensemble of
models for final prediction. Since InceptionV3 performs slightly better than
Xception, using slightly higher weights on the results of the InceptionV3
model is preferred. The final confidence score used to evaluate the ensemble
of models is presented below:

score = 1.2 x InceptionV3 + 0.8 x Xception

Since the scheme uses an ensemble, one has to adjust the value of the
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confidence level carefully. Experiments were conducted to find out the best
threshold value for the confidence level, and the threshold for the model
was chosen by sliding the threshold value over the range from 0.5 to 1.5
with steps of 0.01. Experiments showed that 0.8 is the best threshold and
thus is chosen for the ensemble of models" (Yildiz, 2019, p.4)

Figure 5.13: Sample detection output of the screw detection pipeline. Blue squares
represent the candidates generated by Hough circle finder, whereas green circles
represent the classified screws [YW19].

Afterward, the ensemble model is deployed in a screw detection pipeline
and evaluated on the test dataset. Figure 5.14 shows the precision-recall
curve for the screw detector, whereas Figure 5.13 illustrates a sample
detection output. "The pipeline achieves an AP of 80.23, which clearly
outperforms the well known detector YOLOv3 with an AP of 66.47" (Yildiz,
2019, p.4). Figure 5.15 illustrates some samples of the detection.

As it could be noticed, despite the fact that the ensemble model achieves
accuracy of 99.00, the detector’s AP remains at 80.23. The reason for this
is the Hough circle finder that generates the screw candidates to begin
with. Therefore, the trained classifier is limited with the Hough circle
finder’s accuracy, being the only limitation of the proposed screw detection
pipeline. There are possible solutions to this, such as employing another
DCNN to find the circular structures in the image. Although there is a
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Figure 5.14: Precision-Recall curve for screw detection [YW19].

possibility of such a DCNN working better than Hough circle finder, it
comes with the necessity of having a new dataset altogether, consisting
of samples from as many EOL devices as there could be. A requirement
such as this, however, makes a possible use of DCNN in this case slightly
impractical.

In conclusion, the proposed screw detection pipeline tackles the funda-
mental problem of screw detection in disassembly environments [YW19].
"The problem itself is a challenging one, since screws have variable shapes
and appearance, and not every electronic device has the same type of
screws. This is the reason why previously developed methods were not
useful as a general solution to this problem. Hence the proposed model,
which is based on the Hough transform and deep neural networks. The
scheme easily lets the user operate the system for any device of his/her
choice, as long as the user separates the collected data into screws and
artifacts. After doing this and training the network, it is demonstrated
that the system achieves real-time performance with quite high accuracy.
This has been quantified with hard drive devices of different models and
sizes, which have different sizes and types of screws, as documented by the
experimental evaluation results of the scheme. The data set, as well as the
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Figure 5.15: Sample outputs of the pipeline. Blue rectangles show the candidates
generated by Hough Transform and the green circles refer to the true positives
predicted by the ensemble model. The proposed scheme is robust to different
backgrounds and to different illumination. In all of the images above, the screws
were detected correctly [YW19].

ROS-based implementation, are published to facilitate further research °°"
(Yildiz, 2019, p.5).

55 Yildiz, E. (n.d.). Eyildiz-ugoe/screw_detection. Retrieved February 23, 2021, from
https://github.com/eyildiz-ugoe/screw__detection
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5.5 Screw Classification

Screws in or over the EOL devices can be of many types and sizes. Detecting
the screws themselves alone is not sufficient to complete the disassembly,
given that there is no priori information about the EOL device. Even if
the screw detector finds all of the screws correctly, without the type and
size information, it is quite a risky process to unscrew the detected screws.
A Torx-9 screw, once tried with an Allen 2.75 key, may result with either
damaging the Allen key, or the screw. In both cases the disassembly would
terminate entirely for that EOL device, which has to be avoided.

To this end, screw detection is extended to a screw classification [YW20].
Similar to the findings of the literature search conducted for screw detec-
tion, screw classification yields no significant work either. The existing
schemes do not generalize and pose as universal solutions for the problem
of classification of screw heads. Basically, the problem of screw head classi-
fication is not even addressed yet by the community. Thus, there is still
a substantial lack in generalizable, device- and environment-independent
methods to detect and classify screw heads, which can be used in automated
disassembly processes.

As it is stated that the classification effort is built on the existing screw
detection [YW19], the pipeline has been inherited and added a classification
block to it, as illustrated in Figure 5.16. Our previous work enables the
user to collect training data by cropping circular candidates from the scene.
The cropped circular candidates are then to be divided into their respective
classes (artifact, Torx8, Ph2, Slotted6.5, Allen2.75, etc.) by a human.

Afterward, first the detector model can be trained to classify screws
from artefacts (circular non-screws structures), as we explained in our
previous work [YW19]. Having deployed a model that can differentiate
screws from artefacts, it is possible to train and deploy the new classifier,
which can classify 12 different types of screw heads, returning the type/size
information and locations of the screws seen in the image. It must be
underlined that the preprocessing step is directly taken from the previous
work [YW19], where classical computer vision is first used to crop the
image to only the region where the device is visible, and grayscale it.

E-Waste is a vast category of devices with different structures and
materials. A possible screw head classifier should therefore account for
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Figure 5.16: Screw classification pipeline extends the previously described screw
detection pipeline, making it possible to classify 12 different screw types/sizes
[YW20].

most of the screws encountered in the disassembly domain. In order to
come up with a scheme that has reasonable levels of generalization ability,
different types of screws found in the domain of E-Waste were analyzed. To
make sure that the method covers the most encountered and conventionally
used screw types found in this domain, experts from the disassembly plant
were consulted in cooperation with our university and agreed on 12 types
of screw heads, such as different sizes of Torx, Philips, Slotted and Allen
heads, as described in Section 5.1. Figure 5.2 illustrates the commonly
encountered screw types, suggested by the consulted recycling plant.

The base candidate generator from the previous work [YW19] is directly
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used in order to collect candidates. It should be noted that after collecting
the candidates, we then switch back to RGB from grayscale, since the
classifiers operate far better in colored images than in grayscaled ones.

5.5.1 Training the Classifiers

The state-of-the-art classifiers found in the literature were investigated, and
the three top-performing ones were picked for comparison. These networks
were performing tolerably well, given a not-so-large dataset for a specific
device-class (hard drives of any size). Finally, we decided to evaluate
EfficientNets [TL19], ResNets [He+16a], DenseNets [Hua-+17], scoring top
accuracies on the ImageNet [Den+09]. Additionally, EfficientNets have
been used in the latest works [Xie+19] in pursuit of improving ImageNet
classification, by using a new self-traning method called Noisy Student
Training. Inspired by this effort, we chose EfficientNetB2.

The strategy to evaluate the networks is described as follows. The
standard procedure for transfer learning mostly implies cutting the pre-
trained model on the last convolutional layer and adding a new sequence of
linear layers, called the head. This head architecture is used for all models
explored. In the first 10 epochs, only the added final layers of the model
are trained by freezing all convolutional layers, not allowing any updates to
their weights. Afterward, all layers are unfrozen and the entire network is
trained [YW20]. It is useful to use differential learning rates at this stage,
as it is not desired to change the early layers of the models as much as the
later ones. Therefore, lower learning rates are used in the first layers and
higher ones in the end (e.g., Adam optimizer [KB14] with the learning rate
of 1 x 107°). Figure 5.17 illustrates the model architecture used. Note
that the term "Block" here is a higher abstraction used for group of layers.

Similar to screw detection, to further reduce overfitting and to come up
with a model that can generalize, an additional data augmentation step
including operations such as rotation, brightness and contrast is utilized
here as well.

5.5.2 Evaluating the Models

Several experiments were conducted on the test data. Out of the top three
state-of-the-art classifiers, the best performing one, namely EfficientNetB2
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Figure 5.17: Head architecture of the model [YW20].

(one of the best performing models given Noisy Student weights) was used
in the pipeline seen in Figure 5.16.

For the evaluation of the screw classifiers, as mentioned previously in
Section 5.1, a dataset of over 20000 samples were collected and split into
training, validation and test sets using the same ratios in screw detection
module. Here, as well, a computer with Intel Core i7-4770 CPU @ 3.40GHz,
16GB of RAM with GeForce GTX Titan X graphics card was used to train
the classifiers. For evaluation of the performance of the entire pipeline
(detection and classification), an approximate number of 50 hard drive
images were collected, containing over 500 screw-like elements as a test set
the model has never seen before.

As the pipeline is composed of two main blocks, namely the Hough
circle detector and our classifier, EfficientNetB2, it is required to assess
the detection as well as the classification abilities of it. To this end, the
following strategy was pursued: First, the test images were annotated, each
having only one hard drive with top-down view. These images contain
drives with or without screws, by which the Hough circle finder could
be assessed. These scene images were annotated by marking screws with
squares, which would form the ground truth for assessing the Hough circle
finder’s accuracy. The standard VOC evaluation [Eve+10] was preferred
and it was found out that the Hough circle detector actually works with
0.783 mean IoU (Intersection over Union) with the optimal parameters
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Table 5.2: Accuracy of the state-of-the-art models with huge variation of hyper-
parameters. The top three performing ones are highlighted [YW20].

Model Grayscale | Size | Loss Acc. | Min. Acc. | F1 | Transfer Learning
EfficientNetB2A No 256 | 0.1187 | 0.968 0.79 0.97 Noisy Student

EfficientNetB2A No 64 0.2144 | 0.936 0.78 0.93 ImageNet
EfficientNetB2A No 128 | 0.1871 | 0.951 0.85 0.95 ImageNet
EfficientNetB2A Yes 128 | 0.2199 | 0.948 0.67 0.94 ImageNet
EfficientNetB3A Yes 64 0.2072 | 0.937 0.75 0.93 ImageNet
EfficientNetB3A No 64 0.2051 | 0.939 0.74 0.94 ImageNet
DenseNet121 No 128 | 0.1415 | 0.961 0.81 0.96 ImageNet
DenseNet121 Yes 128 | 0.1489 | 0.957 0.74 0.95 ImageNet
DenseNet121 No 64 0.1896 | 0.937 0.72 0.93 ImageNet
DenseNet121 No 64 0.2306 | 0.934 0.71 0.93 ImageNet
DenseNet201 No 256 | 0.1170 | 0.966 0.79 0.96 ImageNet
ResNet34 No 128 | 0.1538 | 0.955 0.80 0.95 ImageNet
ResNet34 Yes 128 | 0.2026 | 0.951 0.69 0.95 ImageNet
ResNet50v2 No 256 | 0.1732 | 0.942 0.73 0.94 ImageNet

found for the IMAGINE setup. IoU here refers to what amount of screw
region is correctly detected by the Hough circle finder. If the detected
region for a screw is below 70%, it is bound to result in bad prediction for
both detection and classification. It must be also noted that the pipeline
is limited by the accuracy of Hough Transform and the screw detection
previously introduced. Although the accuracy of Hough circle detection
can vary depending on the parameters of the function such as min/max
radius, min/max threshold, final accuracy of the pipeline is found 0.75,
and calculated as follows:

Acc P =Acc CD x Acc._SD x Acc._ SC

where Accp stands for the accuracy of pipeline, Accop stands for the
accuracy of the circle detector, Accgp stands for the accuracy of the screw
detector, and Accge stands for the accuracy of the screw classifier.

For the evaluation of the classifier, the standard metrics of loss, accuracy,
min_ accuracy and fl_ score are considered. Summary of the experimental
results with regards to performance of each classifier against the validation
set can be seen in Table 5.2.

From the results presented in Table 5.2, one can conclude the following:
All of the investigated models achieve very high accuracy - over 90% on the
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testing data, with the model EfficientNetB2 scoring the highest minimum
accuracy of 85% among single models. Additionally, it is emphasized that
the augmentation strategy plays a pivotal role in the classifier accuracy.
Especially for circular objects, rotation guarantees that the training data
accounts for screws that are rotated for each angle [YW20]. Using the Al-
bumentations [Bus+20] library applied a rotation of 360 degrees, horizontal
and vertical flips, as well as brightness and contrast changes.
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Figure 5.18: Confusion matrix acquired through the experiments [YW20].

The final model is then employed in the pipeline and evaluated on the
test dataset. Figure 5.19 shows the precision-recall curve of the classifier,
whereas Figure 5.18 illustrates the confusion matrix [YW20]. The screw
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classification pipeline achieves an AP of 0.757. The reason why the classifier
accuracy is higher than the AP is due to the Hough circle finder, as explained
earlier. Hough circle finder manages to score approximately 75% of the
time, limiting the pipeline’s overall AP. Figure 5.20 illustrates the detection
and classification of the screws found on a Hitachi Deskstar 3.5" hard drive
during the disassembly [Y'W20].

Precision-recall curve
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Figure 5.19: Precision-Recall curve for the final model for the classifier [YW20].

In conclusion, the screw classification proposal is the extension of the
previous work [YW19], where the scheme lets users to collect as much as
data they desire from a device. Given that the user creates the ground truth
classification (i.e., separates the collected screw data into their respective
type and size categories), the model is able to hit a very high F1 score of 97%,
whereas with Hough it was found out that with optimal parameters, circle
finder hits 78% IoU for screw regions. "The results were quantified with
hard drive devices of different models and sizes, which have different sizes
and types of screws as documented by the experimental evaluation results
of the scheme. Additionally, screws from other devices were acquired and
introduced into the scene to test the generalization ability of the pipeline,
achieving promising results as well" (Yildiz, 2020, p.6).

Note that all the misclassifications apart from the intra-class ones (e.g.,
Torx6/Torx8) are empirically found to be a direct result of how Hough cuts
regions [YW20]. In some cases the artefacts are found as Allen2.75, which,
however, is a strongly valid classification and detection by the classifiers
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Figure 5.20: Classifications of detected screws during the disassembly of a hard
drive. All screw types are found correctly [YW20].

since the candidate cropped by the Hough circle resembles an Allen screw,
and, thus the classifier claims so. The suggested approach could therefore
provide tangible results by improving the cropping of candidates. However,
it is a different research topic altogether, and mostly lies in the area of
algorithm building.
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5.6 Component Segmentation

An EOL device is assumed to be made of components, and other entities
such as screws, wires and gaps. Depending on the device, the number
of components inside varies. There are devices such as Ethernet routers,
having mostly a PCB inside, making the task of segmentation quite straight-
forward. However, there are also many EOL devices that contain numerous
components, having approximately 12 components inside, such as hard
drive. This inevitably implies that using a classical computer vision based
method isn’t suitable, since the EOL device has various components that
do not look like each other, or they cannot be simply detected by any kinds
of filtering. Nevertheless, a mechanism is needed to identify and segment
the components in the field of camera view.

Thus, the problem here could be formulated as a problem where machine
learning paradigms (e.g., segmentation, classification) can be used in order
to recognize the present parts of the target device. In contrast to other
application domains, however, the context of recycling E-Waste adds the
following constraints:

e The position estimation of parts must be precise enough to allow
manipulation of small parts in the device.

o There is a strong degree of occlusion because parts are intertwined,
e.g. the platters and R/W head of a hard drive.

e There is substantial intra-class variance for specific parts, depending
on the device brand, model or potential damage of the part.

The Semantic Segmentation problem (also known as pizelwise classifi-
cation problem) has been addressed in domains ranging from autonomous
driving, human-computer interaction, to robotics, medical research, agricul-
ture [DHS16; Dvo+17; FSB19; Li+17; Lin+19; Liu+18]. In these domains,
the state-of-the-art performance is achieved using deep learning methods,
especially Convolutional networks (CNNs or ConvNets) [KSH12]. Fully
Convolutional Networks (FCN) have been the standard algorithm to achieve
pixelwise segmentation of images [BKC17; LSD15; RFB15b] in various
domains such as medicine, autonomous driving, and domestic robotics.
They extend CNN by replacing fully-connected layers with convolutional

Section 5.6

119



Chapter 5

120

Approach

layers, allowing for arbitrary-sized input with no need for region-proposal.
The trade-off however, due to the nature of the layers, is that the predic-
tion of boundaries lacks precision. This problem is addressed by a set of
improvement to the networks (e.g., multi-resolution architecture with skip
connections [GF16; Lin+17a], mask refinement [Pin+16]). Additionally,
pixelwise segmentation requires labeled data which has a higher cost of
production [Lin+14]. Weakly-supervised methods have been developed to
tackle this issue [Zha-+19]. These methods iterate between learning using
coarse bounding boxes as labels then refining them into more precise masks
[DHS15; Kho+17]. They achieve similar performance as fully supervised
methods at a lower labelling cost. Another main approach is called Region-
Based Semantic Segmentation. This method relies on a pre-processing of
the input image into candidate objects (region proposals) for which features
are extracted. These features are then used for the classification. There is
an entire family of R-CNN networks [Gir+-14; Girl5; Ren+15] that have
been evolving. The current state-of-the-art networks of the family is called
Mask-RCNN [He+17] which is based on Feature Pyramid Network (FPN)
[Lin+17b]. Mask-RCNN has been used by Facebook AI Research [Jou+16]
as well as by medicine studies [Che+19; Cou+19; Joh18].

Mask-RCNN and its ensembled models are currently the state-of-the-art
for object detection and instance segmentation. The reason for this is
the region-based detection mechanism mentioned earlier. The core idea
behind Mask-RCNN is to scan over the predefined regions, called anchors.
RPN (Region Proposal Network), does two different types of predictions
for each anchor. First is the score of the anchor being foreground, and the
bounding box regression. The fixed number of anchors with the highest
score are then chosen, and the regression adjustment is applied to get the
final proposal for object prediction at the network head. There are other
architectures that could be used for this task, such as the ensembled model
Cascade-RCNN [CV18]. Through the experimental evaluation conducted it
was found out that Mobile-RCNN [How+17] works better for this domain.

The aforementioned semantic segmentation problem is therefore ad-
dressed with DCNNs to detect, recognize and localize the inner parts of
the device. Due to the high number of available state-of-the-art RCNN
networks, a set of selected methods were trained and evaluated for this
instance segmentation problem: MobileNetV1 [How+17], MobileNetV2
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[San+18], Cascade-RCNN [CV 18], native Mask-RCNN [He+17], and finally
the ensemble model of Cascade-MobileNetV1 . All networks were trained
with data augmentation turned on (as suggested by the native Mask-RCNN
authors), and the same augmentation procedures were applied as suggested
in the original publication [He+17]. The accuracy of a network is computed
using the similarity IoU metric as shown in Equation 5.1:

YNy o minY;Y/

IoUY,Y’ = - 5.1
T T YUY T, maxy;, Y] (5.1)

where A and B are respectively the sets of predicted and ground truth
bounding boxes. The results of this preliminary study are available in
Table 5.3. Cascade-RCNN obtains the best segmentation results, followed
closely by Mobile-RCNN. The latter was selected, since the model is lighter,
and thus, it is employed in the part detection module of the architecture.

DCNN Identifier | Cascading Backbone AP | APys | APyrs | AP, | AP,, | AP, | Mean-F
Mask-RCNN No ResNet-101-FPN 41.2 65.7 47.6 16.3 | 423 | 424 0.70
MobV1-RCNN No Mobilenetv1-224-FPN | 56.2 | 76.7 64.9 20.6 | 54.6 | 59.7 0.78
MobV2-RCNN No Mobilenetv2-FPN 34.6 | 60.5 35.5 3.8 154 | 43.6 0.63
Cas-Mob-RCNN Yes Mobilenetv1-224-FPN | 28.5 | 43.3 33.3 20.0 | 13.3 | 354 0.61
Cas-RCNN Yes ResNet-101-FPN 61.3 76.4 72.6 35.1 61.8 | 65.4 0.84

Table 5.3: IoU values of different networks evaluated on our test set. Cascade-
RCNN and MobV1-RCNN seem to be the best performing ones [Yil+20].

As mentioned earlier, the standard metrics for pixel to pixel segmentation
are mainly the COCO [Lin+14] average precision (AP) metrics: AP is
average precision of multiple IoU values. As reported in Table 5.3, MobV1-
RCNN and CAS-RCNN achieve the best segmentation performances (resp.
0.78 and 0.84). These results are achieved after 500 epochs of training on
Google Colaboratory [Bis19] environment using Tensorflow [Abal6] 1.15.2.
Figure 5.21 shows a sample output of the part segmentation process.

The following conclusions are made from the experiments. MobileNetV2
has stabilization issues, since the model is not able to predict on every scene
(after a certain amount of training). It was observed in the training history
that the loss becomes undetermined and the model remains unstable. It
could be argued that the reason is the dataset (i.e. the classes are not
uniformly distributed). On the other hand, cascading lighter backbones
such as MobileNetV1 does not ensure a better feature extraction property.
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Figure 5.21: Output of the part segmentation module powered by MobV1-RCNN.
Each color represents a different part predicted by the network whose names and
prediction values are given. In this case, all parts and boundaries are correctly
detected [Yil+20].

In fact, the modeling suggests that it actually decreases efficiency due
to usage of depthwise convolutions. However, this situation validates the
choice of backbone with residual nets that is clearly done in CBNet [Liu+-19],
Cascade-RCNN [CV18]. In short, it was determined that cascading should
only be done with models that have residual backbones, such as ResNet and
its variants. During our investigation we noticed that increasing cascading
(with more detection target and logits loss) destabilizes the model. The
use of DenseNet [Hua-+17] may increase accuracy. However, with non-
distributed class data as in our case, stabilization remains an issue. This is
due to the fact that the last layers in the network cannot handle class-logits
when the feature data is non-distributed. In the presence of multi-GPU
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systems, it is therefore recommended ResNext-152 [Xie+17] be investigated
for higher accuracy.

MobV1-RCNN was chosen due to the fact that it remains stable in the
presence of high resolutions, unlike Cascade-RCNN that is unstable despite
having high accuracy. Since the setup uses high-resolution images, MobV1-
RCNN is therefore employed as the component segmentation scheme in the
pipeline. However, it is noted that combining images of different resolutions
in a dataset creates problems, as the model is not stable during training.

5.7 Wire Segmentation

Wire detection problem is scientifically interesting since it is challenging
to address detection of wires due to their various physical properties and
occlusions found in devices. Some of these wires are barely visible (due to
the design of the device), posing a great challenge to finding features with
high accuracy, and to automate a possible wire cutting action, which must
be carried out by automated systems in high precision.

The design scheme of an automated disassembly routine may vary. Here,
we consider a top-down view of the device from a camera that is part of
the setup. While this view allows acquisition of images covering most of
the visible device, it limits the possibility of discovering the entire wire
(e.g., due to occlusions). Hence, in many cases, partial detection of wire
plays a pivotal role. As there is no fixed physical size for wires in a device,
the features to be caught in order to detect the wires vary greatly. A DVD
player will have wide connectors as well as thin wires where both have to be
detected. On top if that, sometimes the color of wires found in the device
may be too challenging for them to be detected over the parts that have the
same color (e.g., green wire over a green PCB). All in all, it becomes really
difficult to capture all the necessary information with effective precision
without using a several-thousand-dollar high-end sensor engineered for this
small specific task. Moreover, the amount of wire data available is making
it a less desirable domain for many to investigate. Eventually, users are
left with a limited amount of annotated data from their own domains,
while seeking a universal, generalizable and extensible wire detector that
segments the wires found with high precision as illustrated in Figure 5.22.

In this section, a visual wire detection scheme based on deep learning
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Figure 5.22: We present a DCNN-Based wire detector scheme that requires
limited annotated data from the user and delivers accurate predictions for robotic
manipulation tasks.

methods empowered with heavy augmentation is proposed, whose pipeline is
presented in Figure 5.22. Similar to the other sections, here a comprehensive
study is conducted to choose the top-scoring DCNN that yields the best
accuracy using the two metrics found most suitable for the evaluation
of wire detection. In order to account for the variety of wires as well as
the background, heavy augmentation is used, producing massive amounts
of training data generated out of a limited set of images collected. This
mitigates the problem of finding specific datasets for wires and/or devices,
and ensures high accuracy for the network.

The most significant contribution of this scheme is the augmentation
routine and the deep learning model chosen by the comparative evaluation
of state-of-the-art models. This thesis (at the time of writing), is the first
to propose a scheme to detect any kind of wire found in the disassembly
environment, given very limited image sets.

The first investigation found in the literature dates back to early 2000s
where the authors collected images of urban areas, and used traditional
image processing methods and Support Vector Machines (SVMs) [EP99] to
spot the wires [Kas(02] in aerial navigation tasks. The dataset was generated
synthetically, combining real backgrounds with computer generated wire
images. Although the work laid out the foundations and complexity
of the wire detection problem, it offers no real-time application for any
robotic disassembly today. This is due to the fact that the wires found
in disassembly environments could not be detected simply by combining
Gaussian derivatives and SVMs. Problems such as occlusion, changing
brightness and background are too difficult to tackle with the paradigm
suggested by this work.

An interesting attempt [Parl3] came in 2013 where tangled objects (e.g.,
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ropes, pipe/hose, threads) were detected using classical computer vision
methods such as blurring, thresholding and Gaussian derivatives. This

particular work used no learning paradigm, and achieved 74.9% accuracy.

However, one must underline the fact that the work did not detect any
wires, rather tangles. Therefore, it is unusable for autonomous disassembly
purposes, where the body of a wire has to found and not only the tangled
part of it.

One work [MMS17], which grabs attention, was the continuation of the
work presented [Kas02], aiming to find wires in aerial navigation. This
work is interesting because it is the first work to use convolutional neural
networks in order to address the problem. The authors render synthetic
wires using a ray tracing engine, and overlay them on 67000 images from
flight videos available on the internet. This synthetic dataset is used
for pre-training the models before fine-tuning on real data. The work
achieved 73% of precision, however, it suffers from the fact that the dataset
generation requires expert knowledge in ray tracing engines. Many times
these software are not straightforward to use, thus, making methods based
on them less desirable. Additionally, requiring a specific software endangers
the future of data generation as the software may not be free after a point
in the future, or stop providing support. The work nevertheless investigates
available network architectures that could be used to detect wires, and
plays a pivotal role in this research field. The authors report that dilated
convolutional layers [YK15] were chosen since they provide a simple and
effective way to gather context without reducing feature map size.

After looking into the literature, it is concluded that there is still a
substantial lack in generalizable, device and wire-independent detection
methods that can be used in disassembly processes without requiring
massive image datasets or expert knowledge of a specific third party
software.

The proposed scheme has the main blocks: data generation or datagen
and model training. The Datagen block aims to heavily augment the limited
number of user-annotated raw images and generate massive amounts of
augmented images along with their annotations, for the training of the
deep neural network model that is used.
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5.7.1 Data Generation

It is usually very difficult or even impossible to find a dedicated dataset
for specific visual tasks such as wire detection. This inevitably forces
one to deal with a limited number of annotated traning data. In order
to succeed under this condition, one has to enrich the amount of limited
annotated images. To this end, it was advisable to use heavy augmentation
routines and generate massive amounts of annotated training data from the
existing dataset which contains only 100 annotated wire images gathered
from online search engines. Figure 5.23 illustrates the scheme in which the
datagen block plays a pivotal role.

7 Limited Datagen K—\ Model
Annotated Data W

. atas
AugMix @ Feature Extraction

(DCNN Backbone)

\—l—/

CropMix
1 Up Sampling
] (UNET Arch)
— Recreation
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Figure 5.23: The scheme is composed of a data generation block which generates
a large number of augmented images using a limited number of annotated images.
An EfficientB7 [TL19] model trains on the massive number of generated augmented
images.

For the data augmentation block, a 3-step routine was chosen. The
augmentation library used and the functions applied are shared; the exact
parameters of the augmentation functions can be found in the published
source code.

Datagen flow begins with Augmiz [Hen+19], a popular augmentation
library with many options. In this step, however, only shift scale rotation,
blur, elastic transform, and optical distortion are applied. In the second
step, it continues with CropMiz [TMU19], which allows manually cropped
augmentations rather than automated ones to ensure variety and mask
precision based on regions. Here, a 4-segment crop (per image) is preferred
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to apply rotation, flipping along with generation ratio as 0.001 and dataset
occupancy ratio (training) as 0.488. In the final step, custom made aug-
mentation routine is applied, which creates a new image using 4 images
applying rotation, mirroring and flipping, along with dataset occupancy
ratio (training) as 0.416 and clustering as sample based. The end result is
that the datagen block creates approximately 20000 images for the training
data out of 100 collected raw images.

5.7.2 Model Investigation

Similar to the investigation of other schemes, it is found out that there are
several classifiers in the literature one could look into when considering
the task. These are InceptionV3 [Sze+15], InceptionResnetV2 [Sze+16a),
Densenet201 [Hua+16], and EfficientNetB7 [TL19], which all achieve over
93% top-5 accuracy on the well-known Imagenet dataset [Den+09]. One
can clearly see that the EfficientNet-B7 model stands out among the rest
as illustrated in Figure 5.24. The other models picked follow a similar
selection criteria. However, there is one more criterion that is taken into
account, which is the number of hyperparameters. Clearly, one does not
prefer to pick a good performing model that requires an enormous amount
of hyperparameters such as SENet [HSS18]. Hence, the aforementioned
models were finalized.

In order to conduct the investigation, a use case including digital enter-
tainment devices (e.g DVD players, gaming consoles, etc.) was chosen. To
this end, 100 top-down images of open DVD players from online search
engines were collected, the visible wires were annotated by hand. Following
this, approximately 20000 augmented and annotated images were generated,
which served as training data for the models we investigated.

Throughout the study, only two metrics to evaluate the scheme were
considered. The standard metrics for pixel-to-pixel segmentation are
mainly the COCO [Lin+14] average precision (AP) metrics: AP is average
precision of multiple IoU values seen. The definition of IoU between a known
segmentation of n pixels, Y, and a similar set of predicted segmentation,
Y’ (in the binary case, i.e. where Y;,Y/ € {0,1},Vi € 1,n is as illustrated
in the equation below:
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Figure 5.24: Model Size vs. ImageNet Accuracy [TL19].
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However, it was decided to not to only consider IoU alone, as it may

where

SSIMz,y = lz,y* - cx,y® - sz, y"

2 +C1
lr,y = 72‘%”@2
pzg +py +C1

be misleading in case of occluded or tangled wires. Therefore, the SSIM
(Structural Similarity Index) [Wan-+04] metric, known for measuring the
objective image quality was also considered. The metric is based on the
computation of three terms, namely the luminance term (1), the contrast
term (c) and the structural term (s). The overall index is a multiplicative
combination of the three terms as it is seen in Equation 5.3 as follows:

(5.3)

(5.4)
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20,04+ C2
= 5.5
i o2 +02+C2 (5:5)
Ozy +C3
= 5.6
5,y 020y +C3 (5.6)

where pi;, piy, 0z, 0y, and o,y are the local means, standard deviations,
and cross-covariance for images z,y. If « = § = v =1, and C35 = (32
(default selection of C3) the index simplifies to Equation 5.7 seen below.

2z phy + C120,, + C2
pz + pz + Clo2 + o2 + C2

SSIMz,y = (5.7)

All of the experiments conducted were evaluated based on these two
metrics.

Metric
SSIM IoU/F1
Model Max. | Mean | Min. | Max. | Mean | Min.
EfficientNetB7 0.956 | 0.877 | 0.761 | 0.988 | 0.952 | 0.897
InceptionV3 0.944 | 0.863 | 0.758 | 0.977 | 0.947 | 0.894
InceptionResNetV2 | 0.941 | 0.859 | 0.743 | 0.983 | 0.943 | 0.886
DenseNet201 0.940 | 0.862 | 0.747 | 0.978 | 0.945 0.891

Table 5.4: Evaluation of the state-of-the-art models. EfficientNetB7 is proven to
be the most suitable model with a high SSIM and IoU score.

Table 5.4 shows the evaluation of the state-of-the-art models based on
the aforementioned metrics. One can clearly notice that the model Effi-
cientNetB7 [TL19] scores slightly better in both metrics. The results clearly
indicate that EfficientNetB7 is doing a better job at feature extraction
from the given images (even with low resolution, low-feature conditions).

Having noticed the slightly better accuracy provided by the Efficient-
NetB7, inferences on the images of a different device were made, such
as a gaming console that is open for disassembly purposes, revealing the
wires it has inside. The model, although trained on DVD player wires, was
able to make good predictions on the gaming console wires, marking their
locations for a possible robotic manipulation action. Figure 5.25 illustrates
this use case.
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Figure 5.25: We investigated the state-of-the-art models’ capabilities on limited
amount of data. After training the models for wires of DVD players, we infer on
gaming console wires. Both devices belong to the same family of devices, despite
of having different inner layouts.

We used the state-of-the-art UNET [REB15a] model as our up-sampling
backbone for all our feature extractor models, which is illustrated with
Figure 5.26.

—_— concatenate —T

Figure 5.26: UNET architecture used for upsampling and generation of the
segmentation mask.
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5.7.3 Training the Model

After choosing the model, a new dataset of high (4K) resolution top-down
images of wires that could be found in disassembly environments were
collected. Various wires taken out of devices, including those that connect
devices to power supplies. As background, the most commonly encountered
ones such as PCBs, device lids and bays, as well as the work station surface
were chosen. Having collected 130 various wires images, 100 of them were
split for training, 10 for validation and 20 for testing. Below the details of

the experimental evaluation are provided and the final model is presented.

This work has been developed on the Google-provided TPU v2 for
training the model via Colaboratory [Bis19] environment which has 64
GB High Bandwidth Memory (HBM) and provides 180 TFlops computing
power. The validation set was taken to be 1/10 of the training dataset
and training was done with early stopping enabled callbacks so that the
model did not overfit. The model was trained with 4 generations of data
each time taking one fourth of the total data (i.e- the augmentations are
tuned in such a way that every time about 50 percent of training data is
completely new every time). No transfer learning was used and the model
was trained from scratch. For the final model, however, the best of these 4
weights were taken to train on the whole training dataset. As the MSE loss
graph shows in Figure 5.27, the model reaches stable losses very quickly
and converges to a final point where a plateau stage can be encountered
before stopping. Similarly, in Figure 7.18 of Appendix 7.1 the change of
SSMI through epochs is presented.

Summary of the experimental results, with regards to performance of
each classifier against the validation set, can be seen in Table 5.4.

Model Metric | Min. | Max. | Mean
EfficientNetB7 | SSIM 0.80 0.98 0.91
EfficientNetB7 | IoU/F1 | 0.89 0.99 0.97

Table 5.5: Evaluation of the trained EfficientNetB7 model on the test data, using
SSMI and IoU metrics.

From the collected results in Table 5.5, one can conclude the following:
EfficientNetB7 out performs any other state of the art models that are
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capable of semantic segmentation. The model outputs show high similarity
and attain a good IoU score as well.

It was observed that the resolution of the images inferred must also be
of the same resolution of training data, because lowering the resolution
creates completely different feature maps compared to what the model was
trained on. Figure 5.28 illustrates some of the detections on the test set
by our detector. The scheme can handle delicate cases such as wires with
tangles, and partial occlusions, which are frequently encountered cases
during the disassembly of an electronic device. The model proves to be
robust, handling such delicate situations while maintaining high accuracy.
Minimum SSIM and IoU of 0.80 and 0.89 are reported, respectively.

00250 —— Train loss

Walidation loss
0.0225
0.0200
0.0175
0.0150
0.0125

0.0100

0.0075

M

0 F 20 &0 &0 100

0.0050

Figure 5.27: Loss in MSE of our model with the pre-trained weights from the
K-Gen dataset.

Last but not least, the trained model was tested on devices that the
network has never seen before, such as heat cost allocators. Figure 5.28
illustrates the found wires in these devices, as well as other cases where
wires were laid out by a human over hard drives. The results prove that
the model can be used in disassembly environments where the target device
was not seen before, which is usually the case.

Wire detection is a fundamental problem in disassembly environments.
The problem itself is a challenging one, since wires have variable physical
properties such as geometry, color and thickness, and not every electronic



Wire Segmentation

Figure 5.28: The model has a clear generalization ability, since it is able to detect
wires found in devices that it has not seen before. It was tested on the back side
of heat cost allocators, as well as both sides of hard drives with arbitrarily added
wires on them.

device has the same type of wires. It is pointed out that these were the
challenging features, the reasons why the previously developed methods
were not useful as a general solution to this problem. A model was proposed,
which is based on the heavy augmentation and deep convolutional neural
networks. The scheme easily lets the users operate the system for any device
of their choice, as long as the user manages to collect a limited number
of hand-annotated images, which is determined to be approximately 100
for accurate detection. An investigation with the-state-of-the-art models
was conducted and EfficientNetB7 was picked based on the results of a
use case we selected for the evaluation of these models. After choosing the
model, a limited amount of dedicated data was collected using real wire
backgrounds that can be found in disassembly environments.

After generating a massive amount of data via the datagen block and
training the model one more time, one could demonstrate that the system
achieves high accuracy on scenes with random wires as well as on a new
device (thermostat) that was not seen by the network before. The evalua-
tion was quantified with testing images of disassembly scenes, containing
different models and sizes of wires. Experimental evaluation results of the
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scheme was documented. The dataset, as well as the implementation are
published to facilitate further research.

5.8 Gap Detection

The approach for the proposed gap detection strategy was partially devel-
oped as a Bachelor’s thesis project [Bri20] in the neuroscience group of
University of Gottingen. Later on, with gradual contributions, it became
the proposed gap detection strategy. It consists of a computer vision
pipeline to process point cloud information constructed by stereo cameras.
There is no machine learning paradigm used, rather, a six-stage pipeline
with each stage processing the acquired point cloud to spot the gaps among
the data points. In the first step, a passthrough filter is applied to find the
ROI. Following this, the point cloud is denoised, a threshold is found and
used to find possible gap points. The possible gap points are then clustered
to find individual gaps. A convex hull is calculated for each gap to estimate
their volume and filter extremely small gaps. Figure 5.29 illustrates the
pipeline.

5.8.1 Passthrough filter

In the first processing step, the point cloud is filtered by a passthrough
filter to find the region of interest. The region of interest should only
contain the device to apply the detector to. Insignificant points (e.g the
surface the device is lying on or other objects close to the device) have to
be cut away. The filter works by setting lower and upper limits for each of
the three axes. Points below the lower limit and points above the upper
limit for the specified axis are discarded. Finding these limits or thresholds
is done manually in the implementation which shows the real-time result of
the passthrough filter. While the passthrough filter cuts away unimportant
points, noise created from the stereo cameras persist. To remove the noise,
denoising is applied in the next step.

5.8.2 Denoising

Gaps are usually defined by a cluster of points with points belonging to the
same gap having only points of this gap in its neighborhood. Far outliers
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Figure 5.29: Proposed gap detection pipeline [Yil+20].

from these clusters are often noise created by the stereo cameras. This
noise can conflict with the volume correction step later in the pipeline,
creating a convex hull that is greater than the real gap size. The noise can
also shift the threshold found by the automatic thresholding step. The
automatic thresholding is finding a midpoint between the distribution of
surface points and gap points. If there are enough outliers on one side, the
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Figure 5.30: Result (right) of the passthrough filter on the input (left) point cloud
[Bri20].

threshold can shift in this direction increasing the number of false positive
gap points. Therefore, it is important to denoise the point cloud before
further processing [Bri20].

The detector is using sparse outlier removal [RC11] (also called statistical
outlier removal) to remove the outlier noise. It detects noisy outlier points
based on their distance to other points. This is done by calculating the
mean distance for every point to the nearest k neighbors [Bri20]. The
resulting distribution is assumed to be Gaussian with a mean p and a
standard deviation o. Based on this distribution, a global distance mean
interval [ — a x o, u+ o * o] is computed, where o depends on the size of
the analyzed neighborhood. A point will be trimmed if its mean distance
is outside this interval [Bri20].

In figure 5.31 a comparison before and after denoising is given. In this
close up of a hard drive point cloud, we can see points with a bigger distance
to the camera colored in blue and violet, while green points indicate a
smaller distance. Sparse outlier removal deleted noise points in the upper
right, as well as points that are connecting lower parts of the hard disk
drive with higher elevated points [Bri20]. While these "bridges" between
low and high parts are not always noise, a clear separation between areas
makes clustering easier.
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Figure 5.31: Close up of a HDD point cloud before and after sparse outlier
denoising [Bri20].

5.8.3 Thresholding

With a denoised point cloud of the device, one can start to filter out points
that do not belong to a gap. An important property of each point is its
depth, given by the depth axis. Depth refers to the height on which a
point is, looking at the device from a side view (shown in figure 5.32).
The stereo setup is capturing the device from above, therefore the depth
axis is the axis going from the camera, through the surface of the device,
to the bottom of it [Bri20]. The depth of a point is important because
points belonging to a gap are at the bottom of the device. These points
will have a higher depth than points belonging to the surface. Using a
well-chosen threshold, one can split the point cloud based on the depth
of points into potential gap points and insignificant surface points. In
the sense of traditional thresholding, where an image is threshold by its
intensity values, we threshold the point cloud into a foreground of surface
points and a background of potential gap points [Bri20].

Setting this threshold is tedious and sometimes has to be done again
for a new device [Bri20]. If we order the points into a histogram based on
their depth, we can observe a bimodal distribution (shown in Figure 5.33)
with two modes, one for the surface points and one for the gap points.

On this distribution we can apply automatic thresholding methods such

as Otsu Thresholding to determine a threshold between the two modes.
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Figure 5.32: The depth axis of a device for a setup where the camera is above
the device [Bri20].
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Figure 5.33: Histogram for the depth of points from a hard disk drive [Bri20].

For each mode or class Otsu’s Binarization minimizes intra-class variance,
or equivalently, maximizes inter-class variance between them to find a
threshold [Bri20]. This threshold is then used to split the point cloud, such
that we get all points with a high depth that are candidates for a gap.
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A similar algorithm [Gla93; PMG66] achieved even better results. Instead
of maximizing the inter-class variance, the minimum algorithm takes the
minimum in the valley of the histogram between the two modes. The
corresponding value is then used as the threshold.

Figure 5.34: Point cloud after automatic thresholding [Bri20].

5.8.4 Clustering

Currently, our data only consists of single points without information about
how these points form gaps. Points belonging to a gap often lie in close
proximity to each other, opening an opportunity for a clustering approach
to label points. Since devices often have multiple gaps, this would allow us
to separate points belonging to individual gaps [Bri20].

There are a lot of algorithms that could be used for clustering. However,
for our problem an algorithm has to fulfil three main properties:

e Number of clusters: Since the gap detection is used on different
devices with different gap counts, the algorithm has to find the
number of clusters/gaps only by the data structure.

o Scalability: After the filtering and denoising steps, there are still
several thousand points. The clustering algorithm should be scalable
to the number of points, as well as the number of clusters.

e Robustness: Gaps can vary greatly in size. A clustering algorithm
should be able to find gaps with variable sizes.
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The first algorithm to try is often K-Means [MRS08]. It is simple and
it runs with a runtime of Oni (for constant number of dimension and
clusters), where n is the number of samples and 7 the number of iterations
until convergence. Additionally, it is fast and it scales well with the number
of samples. The problem with K-Means, however, is that it needs the
number of clusters K as a parameter. For the gap detector, this means the
number of gaps has to be known in advance. This is not possible, since
the number of gaps varies from device to device. Thus, K-Means would be
an appropriate choice for the problem, since for every device the number
of gaps has to be manually entered [Bri20].

Besides K-Means, two algorithms have been proven to be especially appli-
cable for the problem: DBSCAN and its extension HDBSCAN. DBSCAN
and HDBSCAN are density-based algorithms, viewing clusters as densely
packed regions of points. Instead of choosing a fixed number of clusters
such as K-Means, these algorithms estimate a number of clusters from the
data structure. Both algorithms scale well to the number of points with a
time complexity of Onlogn [MHA17b; Tan+18]. Due to their structure,
HDBSCAN and DBSCAN are classifying points into clusters as well as
noise. Points classified as noise are deleted from the result, which gives
these algorithms built-in denoising.

DBSCAN’s most important parameter is the eps radius. This radius is
used to determine which points are in a neighborhood of a point, by which,
DBSCAN classifies points into clusters [Bri20]. The eps radius is also the
main difference between DBSCAN and HDBSCAN. For DBSCAN, one
has to specify an eps radius before clustering, HDBSCAN estimates this
distance automatically.

HDBSCAN, on the other hand, does not only estimate eps, but it also
uses different radii for different clusters [Bri20]. It must be underlined that
DBSCAN does not do this, it rather only uses a single radius. This has
disadvantages for clusters with varying densities where in one cluster points
have a high density and lie close together, and in another cluster points
have a low density and lie farther away [Bri20]. For such data structures
DBSCAN often faces problems with the fixed eps radius. If the radius is
too small, clusters with a lower density are detected as noise. If the radius
is too big, clusters are fused together. HDBSCAN solves this problem
by using different eps radii for each cluster. Naturally, this increases the
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robustness of the algorithm on different data sets. Therefore, for the gap
detector, it could improve the detection results and improve its usability
by getting rid of an additional parameter [Bri20].

Although HDBSCAN looks to be the best choice for clustering, in

practice DBSCAN has advantages in certain situations over HDBSCAN.

Both algorithms can be used in the gap detector. An extensive review of

the results of these algorithms on multiple devices is given in Chapter 6.

More information about K-Means, DBSCAN and HDBSCAN is also found
in Chapter 4.

Algorithm | Scalability | Number of clusters | Denoising Robustness
K-Means Oni parameter none -
DBSCAN Onlogn automatic build-in -

HDBSCAN Onlogn automatic build-in variable cluster densities

Table 5.6: Comparison of the different clustering algorithms.

In Figure 5.35 one can see the three algorithms on the points found by

thresholding. The used hard drive has three gaps that have to be identified.

The cluster algorithms have to determine a label for each point, such
that points of the same gap are clustered together. Both DBSCAN and
HDBSCAN achieved the same desired result [Bri20]. K-Means, even with
a given number of clusters, is not able to separate the points belonging to
different gaps.

Figure 5.35: K-Means, DBSCAN and HDBSCAN cluster results.

5.8.5 Volume Correction and Convex Hull Calculation

As the clustering step identifies individual clusters as gaps, it finishes the
identification of gap points. It is then known where each gap lies, and one
could extract information from them.
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One type of information is the volume of the gap. Since the disassembly
system needs some space for the levering process, we can filter out gaps
that are too small based on their volume. To find a good estimate of
the volume we need to find the outline of the gap to then calculate the
volume inside [Bri20]. A convex hull algorithm can find the convex hull for
a set of points and also calculate the volume of the convex hull. Using the
identified gap points from clustering, we can find a convex hull for each
gap using a convex hull algorithm. The result of this operation is seen in
Figure 5.36. Since the gap points only cover the bottom of the gap, the
found convex hull also only covers the bottom of the gap. Generally, the
volume of the gap should stretch to the surface of the device. Therefore,
we need to correct the convex hull to reflect the full volume [Bri20].

Figure 5.36: Side view of the point cloud with and without volume correction
[Bri20].

Correction is done by adding artificial points to the set of gap points
[Bri20]. The convex hull algorithm will use them as the new outline points
to create a better estimate. In a first pass, the convex hull algorithm is
used on the identified gap points to get the boundary points, marking the
shape of the gap bottom part. The convex hull has to stretch until the
height of the surface to get the full volume space [Bri20]. The height of
the surface is estimated by taking a median of the surface points. Surface
points are all points cut away in the thresholding process. Given the height
of the surface, we can now duplicate the boundary points from the first
pass and set them to the surface height. In a second pass of the convex hull
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algorithm, a corrected convex hull is found that stretches to the surface of
the device [Bri20].

Figure 5.37: Result after the volume correction and convex hull calculation [Bri20)].

5.8.6 Volume filter

Given the convex hull and the volume of a gap, we can now filter based on
the volume. A simple threshold filter discards gaps with a volume below
the threshold, such that the threshold can be set individually for different
devices or levering operations.

The volume filter concludes the detection part of the pipeline. For each
detected gap we now have a volume and the boundaries from the convex

hull [Bri20]. Additionally, the detector also calculates a center for each gap.

A gap center is defined by using the vertices of the gap boundaries and
calculating the midpoint between the minimum and maximum coordinate
for each axis. Finally, these information are bundled and made available
for the robot.

5.8.7 Evaluation

Gap detection module has been evaluated by comparing the found gaps
with the user annotated point clouds. Twelve hard drives were used in the
experiments. Many parts of the hard drive have reflective surfaces which
disrupt the stereo imagery and create noise or holes in the point clouds
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Figure 5.38: Detected gaps after volume filtering [Bri20)].

[Bri20]. For this reason, these parts were sprayed with an anti-reflective
spray, improving the results of the point clouds taken. Furthermore, to
simulate different stages of the disassembly process, parts such as the platter,
the read /write arm, the spindle, and other small parts were removed in some
hard drives. In addition, some hard drives had the lid still on, resulting
in a situation with no gaps [Bri20]. Ideally, the detector should identify
these situations and output no gaps. The point clouds were then processed
by using the gap detector with manually set region of interest boundaries.
For the statistical outlier, denoising the number of neighbors to analyze for
each point was set to 150 and the standard deviation multiplier to 30. Both
DBSCAN and HDBSCAN were used on the hard drives. DBSCAN used a
eps distance of 0.006 and HDBSCAN’s minimum cluster size parameter
was set to 15 [Bri20]. The volume filter was set to filter gaps smaller than
a minimum volume of 0.1cm? and gaps bigger than 50.0cm?.

All point clouds taken by the stereo cameras were manually annotated
using a Semantic Segmentation Editor. These ground truth annotations
consist of pointwise segmentations of each gap in a device. To get com-
parable point numbers, statistical denoising was run on the cloud before
segmentation [Bri20]. Resulting point clouds had on average 51000 points,
with the smallest having only 37418 points and the biggest point cloud
having 63283 points. Based on the annotations, the volume correction
approach mentioned was used to estimate a volume. Given the estimated
volume and the number of points for the annotations, the gap detector
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was used to process the same point clouds. For all devices the same set
of parameters was used [Bri20]. Tuning these parameters on a device-
to-device basis could improve the results and correct misclassifications.
However, since the gap detector should have a degree of generalization,
the parameters are fixed for every device. Additionally, the detector was
used twice on each point cloud, once using DBSCAN in the clustering
step of the approach and once using HDBSCAN. For each identified gap,
the detector outputs the total number of points the gap has, as well as
the volume and the center. These identified gaps were then matched to
the annotation gaps by calculating the euclidean distance between their
centers and discarding gaps that had a bigger distance than 0.025. If
multiple gaps remained, the one with the highest volume was chosen. The
detector was then evaluated by the detection rate of gaps, as well as the
quality of correctly identified gaps [Bri20]. This is motivated by the fact
that the system should not merely find the gaps but also estimate their
boundaries and volume. Finding perfect center points for every gap does
not matter if the estimated boundaries are completely off. An automated
disassembly system has to have information about the location of gaps, as
well as whether there is enough space for levering.

DBSCAN vs. HDBScan

For the 12 hard drives (with a total of 21 gaps) used during evaluation,
the gap detector identified 18 gaps using DBSCAN and 22 gaps using
HDBSCAN. A closer look at the precision reveals how HDBSCAN produced
more gaps than DBSCAN. For DBSCAN;, out of 18 gap predictions, 15 were
true positives and 3 false positives, or a precision of 83%. In comparison,
out of the 22 gaps found by HDBSCAN, 16 were true positives and 6 false
positives resulting in a precision of 72.73% [Bri20]. An explanation for
the lower precision of HDBSCAN can be seen looking at the individual
results. HDBSCAN split up single gaps into smaller clusters. Table 5.7
demonstrates such a situation. The annotation has one gap with a volume
of 3.417 cm3. Using DBSCAN the detector correctly identified this gap with
a volume difference of 0.327cm?. Using HDBSCAN in contrast resulted in
three gaps. In this case, HDBSCAN split up the gap into three clusters
instead of producing one single cluster.

Figure 5.39 shows the volumes found using DBSCAN and HDBSCAN,
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94 0.558 cm?
46 0.156 cm3

Table 5.7: Example hard drive where HDBSCAN splits up the gap into three
smaller gaps [Bri20].

Gap | Points | Volume
Annotation | 1 456 | 3.417 cm?
DBSCAN 1 492 | 3.09 cm?
HDBSCAN | 1 289 | 2.132 cm?
2
3

as well as the annotated 13 gaps. It must be stated that considered
gaps consist only of gaps that were identified correctly by DBSCAN and
HDBSCAN. Thus, gaps that were only found by one method or by neither
were not considered. Volumes of these gaps range from the smallest gap
with 0.74 cm? up to the biggest one with 46.2cm?.

mmm Annotation
mm=m DBSCAN
40 4 === HDBSCAN

30 A

Volume
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1 2 3 4 5 6 7 8 9 10 11 12 13
Gap

Figure 5.39: Volume comparison of gaps between the detections of DBSCAN,
HDBSCAN and the user annotated gaps [Bri20].

A difference between the two algorithms is also noticeable in the quality
of the correctly identified gaps. Table 5.8 lists the difference in the total
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number of points and volume found using DBSCAN and HDBSCAN
against the annotated data. It was found that DBSCAN misses 11.18%
of points while HDBSCAN only misses 3.11%. Similarly, gaps identified
using DBSCAN had 9.77% less volume than the annotation. HDBSCAN
was slightly better with 5.09% [Bri20].

Points Volume
DBSCAN  Annotation 43378 174.27cm?
Difference  -11.18% -9.77%
HDBSCAN Annotation 42120 172.27cm3
Output 40754 163.37cm?
Difference -3.11% -5.09%

Table 5.8: Difference in total volume and total points against the annotated data.

The experiment is conducted only on the correctly found gaps [Bri20].

Table 5.9 shares the error rates found through the experiments conducted
with DBSCAN, while Table 5.10 shares the error rates for the experiments
conducted with HDBSCAN. An error was defined as

detector__output

|1

to compare the results. Since the gap detector should output good
estimates for any gap, the error per device is averaged to summarize the

- - \ (5.8)
annotation__output

detector error. Furthermore, the standard deviation o = % i]\ilxi — 2

and variance o2

are calculated. Not detected devices, marked in Table
5.9 and 5.10 with dashes below the average error, were not used in the
calculations towards accuracy.

On average, DBSCAN produced an error of 23.98% in the number
of points with a standard deviation of 26.70% and a variance of 712.7
[Bri20]. In terms of volume, an average error of 24.30% was produced
with a standard deviation of 28.14% and a variance of 791.8. Despite
the lower total differences shown before for HDBSCAN, the average error
of HDBSCAN is higher, with an error of 25.88%, standard deviation of

25.92%, and variance of 672.1 in the number of points. In terms of volume,
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the average error was 27.41% with a standard deviation of 23.14% and a
variance of 535.57.

Annotation Detector Error
3 3

Gap Points Volume in cm Points  Volume in cm Points  Volume

1 9464 46.243 7382 36.3 22.00% 21.50%
2 456 3.417 492 3.099 7.89% 9.31%
3 2568 16.984 2711 23.414 5.57%  37.86%
6 6414 22.712 6532 22.714 1.84% 0.01%
7 343 0.99 394 0.99 14.87%  0.00%
9 287 0.746 319 0.725 11.15% 2.82%
10 277 1.159 317 1.196 14.44%  3.19%
11 3322 8.032 3440 8.854 3.55%  10.23%
12 350 1.974 426 2.421 21.71%  22.64%
15 4967 15.99 5372 16.622 8.15% 3.95%
16 1399 2.797 103 0.136 92.64% 95.14%
17 9729 36.339 8446 26.874 13.19% 26.05%
18 1227 3.45 528 1.677 56.97% 51.39%
19 2237 12.663 1978 12.043 11.58%  4.90%
20 340 0.773 88 0.189 74.12%  75.55%
Average Error 23.98% 24.30%
4 347 1.443 - - - -
5 182 0.386 - - - -
8 110 0.111 - - - -
13 191 0.438 - - - -
14 266 0.453 - - - -
21 134 0.125 - - - -

Table 5.9: Comparison of the proposed detector using DBSCAN and the annotated
data [Bri20].

In conclusion, the detector has a slightly lower gap detection rate with 15
out of 21 using DBSCAN against the 16 out of 21 of HDBSCAN. However,
there is a trade-off. The higher detection rate of HDBSCAN also produces
a higher number of false positives [Bri20]. The detection pipeline produced
gaps with an accuracy of 72.73% using HDBSCAN against the 83.33%
using DBSCAN. Furthermore a detection pipeline using DBSCAN was able
to produce higher quality gaps, in terms of difference to annotations, with
an average error of 23.98% in the number of points and 24.30% in volume,
whereas the pipeline using HDBSCAN had a higher error of 25.88% in
the number of points and 27.41% in volume. Therefore, the evaluation



Gap Detection

Annotation Detector Error
3

3 Points  Volume

Gap Points Volume in cm Points  Volume in cm

1 9464 46.243 6904 33.668 27.05% 27.19%
2 456 3.417 289 2.132 36.62%  37.61%
3 2568 16.984 2191 14.895 14.68%  12.30%
4 347 1.443 363 1.249 4.61% 13.44%
6 6414 22.712 6467 22.449 0.83% 1.16%
7 343 0.99 422 1.045 23.03% 5.56%
9 287 0.746 356 0.87 24.04%  16.62%
10 277 1.159 324 1.204 16.97% 3.88%
11 3322 8.032 3450 12.854 3.85% 60.03%
12 350 1.974 196 0.951 44.00%  51.82%
13 191 0.438 54 0.124 71.73%  71.69%
15 4967 15.99 5283 16.952 6.36% 6.02%
17 9729 36.339 8494 29.151 12.69% 19.78%
18 1227 3.45 1413 4.793 15.16%  38.93%
19 2237 12.663 4484 21.029 100.45% 66.07%
21 134 0.125 118 0.133 11.94% 6.40%
Average Error 25.88%  27.41%
5 182 0.386 - - - -
8 110 0.111 - - - -
14 266 0.453 - - - -
16 1399 2.797 - - - -
20 340 0.773 - - - -

Table 5.10: Comparison of the proposed detector using HDBSCAN and the
annotated data [Bri20].

concluded that the detection module using DBSCAN is preferable over the
one using HDBSCAN. Thus, the accuracy of gap detector for hard drives
is taken as 0.83 [Bri20].

Last but not least, some delicate conditions have been observed. Out
of the twelve test drives in the annotation, three drives did not have
any notable spaces that could be called gaps. These drives are definitely
more challenging for the gap detector to operate with, because the depth
values acquired do not form a clear bimodal histogram. This disrupts the
automatic thresholding and results in misclassified points [Bri20]. These
situations can occur in the beginning, when the lid is not yet separated, as
well as when the backside of the hard drive is shown instead of the front
side(where the gaps are located). A similar situation occurs when the drive

Section 5.8

149



Chapter 5

150

Approach

is completely disassembled. Without the parts inside, the hard drive is
left with a single big gap. While one could specify this as a gap, it is not
important for the levering process anymore, since there are no parts left
for levering. This kind of big gaps are still picked up by the thresholding
process. However, they are filtered out by the volume filter. For the three
tested drives, the detector could deal with all of them, resulting in zero
identified gaps [Bri20].

5.9 Bookkeeping

In the context of disassembly, a bookkeeping mechanism aims to register the
status of every recognized component in the scene. This is carried out by
analysing the predicted pixel-level changes between component boundaries
found by the component segmentation block explained in Section 5.6. The
mechanism accounts for multiple situations that are explained below. It
also allows user to specify the sensitivity of the change it should consider
before registering. This is a required feature since, every change is detected
by conducting pixel-wise comparison of component boundaries and regions
in consecutive frames, meaning that a larger device (and components) may
require a less sensitive analysis of changes, as a few pixels of change in
large component’s boundaries may not exactly mean a misplacement or
failed action. If the EOL device is large, then a little touch on its part is
not worth registration. On the other hand, if the EOL device is a small
one (as in the case of hard drives), then a few pixels may mean more, given
some parts such as a spindle hub are relatively small, meaning that every
pixel should count towards the change threshold.

¢ Difference in List of Parts: When the lists of parts are different
between consecutive frames, introduction or removal of those parts
are registered.

¢ Difference in Locations of Parts: When the parts appear to be
in different locations (if their center points moved more than the
user-specified margin) between consecutive frames, this change is
registered.

The bookkeeping mechanism has a timer, additionally allowing the
system to not consider a frame that is acquired beyond the user-specified



Implementation

time interval. This is a needed feature as well, since the registration should
not occur between a frame from a previous system run. This user-specified
parameter is set to 5 minutes by default, considering a frame as consecutive
if and only if the frame is acquired within this time. If not, it registers the
frame as the primary frame, and starts the timer for another 5 minutes, as
explained in algorithm above.

5.10 Implementation

This section is a small overview of the implementations of the above
algorithms. It is divided into subsections explaining the significant technical
details regarding each vision block introduced in this chapter, illustrated
in Figure 5.8. First, however, the algorithm to collect predicates has to be
mentioned.

As the algorithm below illustrates, collection starts by ensuring that
the input point cloud and RGB image are acquired by tilting the mech-
anism to get the desired angle. The point cloud is analysed through the
detectGaps () function, followed by the functions segmentParts() and
detectScrews (), yielding the center points of the required entities. It must
be kept in mind that the detectScrews() function inherently handles the
classification task, and thus, is not illustrated in the algorithm. Finally, cal-
ibration information is utilised and a common frame of reference is agreed
while merging all entity information. Acquired predicates are then ready
for further use. As mentioned previously, the underlying communication is
carried out by ROS facility, with each functionality encapsulated as ROS
nodes or ROS services, depending on the computational load.

5.10.1 Gap Detection Node

The gap detection node consists of two modules: the preprocessing module
and the detection module. They interact with each other through the
ROS ecosystem. The preprocessing module is written in C++ and takes
care of defining a region of interest and denoising the incoming data. The
denoised data is then handled by a Python-based detection module which
performs the automatic thresholding, clustering and postprocessing work.
Usage of C++ and Python is due to the libraries used in each module.
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Algorithm 1 Proposed algorithm to collect predicates using vision blocks
in State Estimation.

1:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:

Cp, bp, My, = > part centers, boundaries, masks
Cs, bs, Mg 1= > screw centers, boundaries, masks
Cq,bg, vy = > gap centers, boundaries, volumes

I,P:=NULL > I: Input Monocular Image, P: Input Pointcloud
Cp,Cs:= NULL > C),: Monocular Calibration Info, Cy: Stereo
Calibration Info
predicates =
procedure COLLECT PREDICATES
if hddTable.State = 0 then
hddT able.changeStateangle = Ogiereo
P < getPointcloudP
if P+ NULL then
Cg, by, vy < detectGapsP
end if
hddTable.changeStateangle = 0 ponocular
I + getRGBImagel
if I # NULL & hddTable.State = 0 then
Cp, bp, my < segment Partsl
Cs, bs, Mg < detectScrewsl
end if
end if
Cin, Cs < getCalibrationInfo

predicates <— mergeAllInfol, P,Cy,, Cs, cp, by, mp, Cs, bs, M, Cg, by, Vg

return predicates
end procedure
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The preprocessing module is mainly using PCL written in C++, while the
detection method uses methods from the SciPy library stack, which are
only accessible by Python. The SciPy ecosystem [Vir+20] is a collection of
Python-based software packages for scientific computing. SciPy includes
many of the most popular Python software packages including NumPy,
matplotlib, pandas or Jupyter. NumPy [Har+20] is used especially in many
scientific applications because it offers fast n-dimensional array structures
and a multitude of functions on them. Additionally, SciPy features so-called
scikits(SciPy Toolkits) that are standalone libraries offering additional
functionality in a specific area. For instance, the scikit-learn [Ped+11] and
scikit-image [Van+14] libraries are used in the gap detector to perform
clustering and thresholding to the point cloud.

Preprocessing module

The preprocessing module implements the first two parts of the approach:
the passthrough filter and the denoising. Since the gap detector is running
in the ROS ecosystem, the preprocessing module first subscribes to the
topic of the Nerian stereo vision system. Subscribing is done by assigning a
callback method to the topic. This callback method will be called each time
a point cloud is sent through the topic. The callback method first applies
a passthrough filter from PCL to the cloud. It filters the point cloud on
each axis based on a lower and an upper limit that are given by the user
from the GUI. The filtered point cloud is then denoised by using Statistical
Outlier Removal, resulting in the desired preprocessed point cloud. The
intermediate filtered cloud and the result cloud are published as topics
filtered__cloud and denoised cloud. Publishing the output to topics allows
other ROS modules to subscribe to these clouds. In our application, this
is useful to visualize the results of the ROI (Region Of Interest) filtering
and denoising by using the RVIZ module, which can subscribe to a point
cloud and show them in a three-dimensional viewing tool. It also allows
the detection module to subscribe to the denoised_ cloud topic and find the
gaps of the device. Besides the main callback, the module implements the
dynamic reconfigure module with a separate callback. Dynamic reconfigure
allows to reconfigure parameters of the detector from a GUI without
recompilation, as illustrated in Figure 7.16 of Appendix 7.1. This makes
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the process of selecting the ROI easier because the user can adjust the
filter limits directly through the GUI with visual feedback from RVIZ.

Detection module

The main function of the detection module is to identify the gaps in a given
point cloud. It subscribes to the denoised point cloud topic and processes
the point cloud by means of automatic thresholding, clustering and convex
hull calculations. The SciPy libraries offer efficient implementations of
these methods. Thus, this node is written in Python. Similar to the
preprocessing module, the detection module has a callback method that is
called every time new data arrives from the preprocessing module through
the denoised_ cloud topic. The first step is to find an automatic threshold
using the scikit-image filter module [Ped+11]. Given the thresholded point
cloud, clustering is implemented by the methods in scikit-learn [Van+14]
and the HDBSCAN module. The results of both thresholding and clustering
are published as topics thresholded__cloud and clustered__cloud to RVIZ.

Following the volume correction approach, a convex hull is computed
by using the SciPy method wrapper of the Qhull library [BDH96]. The
callback method ends with applying the volume filter and finally creating
visualization markers of the identified gaps. These markers are used by
RVIZ to display the outlines in the three-dimensional viewer.

In addition to the main callback, the module implements a second
callback for a gap detection service, as well as a dynamic reconfigure
callback. The gap detection service can answer requests with information
about the found gaps such as the gap center coordinates, vertices of the
boundaries, or the volume of the gaps. This allows other applications to
query gap information, which can be used by a robot to manipulate the
device or fused with other information.

5.10.2 Component Segmentation

Segmentation of components is carried out by a standalone Python 3.x-
based module that is externally called by the main ROS loop using Python’s
os.system() function, which runs a console command in the background.
It facilitates the execution of a standalone Python program by starting
a new process, allowing parallel execution. While the ROS main loop
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awaits for the completion signal, the standalone Python program conducts
the segmentation by loading the trained weights onto GPU and finally
delivers the predictions. Acquired component information is then written
to a .JSON file to be read by the planner and the association engine, as
illustrated in Figure 3.3.

ROS Kinetic Framework Python 3
(Python 2 Environment) Environment
State Estimation
. Component
J ST | Segmentation
v v
Screw Gap Detection Wire Detection
Detection Node Node Node
Screw
\\Classification j
—

Figure 5.40: Component segmentation is a standalone Python 3 module, unlike
other vision blocks that are nodes on ROS framework.

The reason segmentation capability was programmed as a standalone
Python module instead of a ROS node was due to the incompatibility®°
of Python 3.x with the ROS version Kinetic (the latest available by the

time this project started), and the technical decisions were already taken.

Given that a possible ROS version is compatible with Python 3.x, then
this module could also be wrapped as a ROS node. Figure 5.40 illustrates
a graphical representation of ROS nodes and the standalone segmentation
module.

56 Foote, T., Conley, K. (n.d.). Target Platforms. Retrieved February 23, 2021, from
https://www.ros.org/reps/rep-0003.html#kinetic-kame-may-2016-may-2021
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5.10.3 Screw Detection Node

A screw detection node is implemented in a way that it detects and classifies
the screws in the scene. More importantly, the node launches with the main
loop, and continuously outputs the predictions. That said, the trained
weights are loaded only once on the main loop execution, and sufficient GPU
memory is reserved until the main loop stops. Additionally, relevant ROS
services are available for other components to request specific information
regarding the screws.

The reason the screw detection node always reserves a specific amount
of GPU memory is because, unlike the component segmentation, screw
detection is conducted on small cropped images due to the inherent Hough
circle finder. Therefore, the features are never sought in a 4K image, rather
approximate sizes of 55 x 55.

The node also launches a relevant dynamic reconfiguration panel, allowing
the user to adjust the parameters of the screw detector and classifier. This
panel is convenient on the first run of the system, since the changes in
the environment (such as illumination) may require the user to adjust
the parameters of Hough circle finder (e.g., the lower and upper limits of
the inner thresholding function). Besides, depending on the disassembly
strategy, one could lower the confidence threshold to obtain more predictions
with the cost of increased false positives, or vice versa.

5.10.4 Wire Detection Node

A wire detection node segments the detected wire pixels, groups them
into structures called wire segments, and directs them further to predicate
creation. It is important to underline the fact the segmentation is not an
instance-aware one. It is not possible to obtain a specific instance of a
wire, since often there is great amount of discontinuity among the wire
pixels due to occlusions, tangles, and simply the wires entering and leaving
the region of interest. Similarly, different wires could be detected as one
segment, as shown in Figure 5.41. This situation, however, does not cause
any ambiguity to any module of the system. Since the relevant action on
wires is cutting, it does not matter if the wire belongs to a specific instance
or not, it could be cut nevertheless.
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Figure 5.41: Mask of a detected wire segment made of two intersecting wire
instances, yet perceived as a single wire segment due to continuity of neighboring
wire pixels.

5.10.5 Underlying Framework and Communication

As previously mentioned, ROS Kinetic is preferred to handle inter-component
communication through its services, publishers and subscribers. As soon as

the IMAGINE system boots, all nodes start according to an agreed priority.
State estimation loop starts with a service call from the IMAGINE system,
loading the necessary weights of its modules, occupying enough GPU mem-
ory and conducting its checks (i.e. HDD Table’s angle). Afterwards, the

algorithm described in Section 5.10 is followed through.
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6.1 Evaluation Strategy

Evaluation of the proposed visual intelligence scheme is done by assessing
the overall capabilities of the system on the estimation of the state. These
capabilities are mainly the detection, localization, and identification of
the visible entities and their types. Ideally, the scheme should also be
evaluated on a second EOL product, so that its capabilities are proven to
be robust and generalizing enough for an industrial use. For this purpose,
another computer piece -GPU- was chosen. In total, 8 GPUs from various
brands and models were collected. This chapter, therefore, documents the
results of the benchmarking conducted on the HDDs (which the visual
intelligence is trained for) and GPUs (which the visual intelligence has
never seen). Additionally, to understand how well the system performs
with its capabilities in the presence of limited training data, the system
was also evaluated with the user annotated data of entities of the collected
GPUs. Collected results are shared in Tables 6.3 , 6.4 and 6.5 below.

6.2 System Evaluation

Table 6.6 presents the results of the series of experiments E1, E2 and E3.

Experiment E1 denotes that the acquired accuracy involves no re-training,
meaning that the visual intelligence has no awareness of the second device
(GPU). In these experiments, there was no annotated training data (e.g.,
GPU screws, GPU components, GPU wires) provided to retrain the screw
detection, screw classification, component segmentation and wire detection

networks. They were optimally trained to perform their tasks by default.

However, they were trained with the default data that mostly consists
of HDDs. It must be mentioned that the biggest entity on a GPU is its
PCB. Additionally, entities such as bay, fan, sockets, screws and optionally
wires exist in various colors and types. For instance, PCBs found in GPUs
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Experiment Data Re-training | Test Device
El E.D. No HDD, GPU
E2 E.D. + 50% C.D. Yes HDD, GPU
E3 E.D. + 100% C.D. Yes HDD, GPU

Table 6.1: Evaluation scheme to be used through the experiments. "E.D" refers
to existing data, whereas "C.D." refers to collected data.

vary in colors of black, blue and green, whereas for HDDs they are green
by a very large margin. Nevertheless, by conducting E1, the ability of
generalization is evaluated, and, thus, the question of "To what extend
could the proposed scheme generalize, given absolutely no new training
data?" is answered. Experiment E2 and E3 on the other hand, evaluate
the scheme’s capabilities after retraining it with 50% and 100% training
data, respectively. By conducting E2 and E3, the question of "How does
retraining with limited data affect the performance of the scheme on the
second device?" is answered. Note that the gap detector was not evaluated
on GPUs in any experiment, since there are no gaps significant to the
disassembly of the device.

Tables shared in this chapter use acronyms for the names and accuracy
of the modules to save space in presentation. Therefore, acronyms S.D.A,
S.C.A, C.S.A, W.D.A, G.D.A correspond to Screw Detection Accuracy,
Screw Classification Accuracy, Component Segmentation Accuracy, Wire
Detection Accuracy and Gap Detection Accuracy, respectively.

Table 6.2 shows the experimental data in numbers. For every module,
the data was split into training, validation and test sets in ratios of 70%,
20% and 10%, respectively. Evaluation scheme is illustrated in Table 6.1.
None of the training strategies is subject to change (e.g., early stopping).
Weights were reset between E1, E2 and E3 experiments to prevent learning
of repetitive features and introducing bias.

6.2.1 Experiment E1

Experiment E1 is conducted on each module, testing each one’s capabilities
on performing visual tasks on raw HDD and GPU images without re-
training. Table 6.3 reports the accuracy per module. For screws, the
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Existing Data (E.D.) | Collected Data (C.D.

Module\Data ROD Imagsas : RGB Imag(gs :
Component Segmentation 600 100
Screw Detection 20000 2000
Screw Classification 20000 2000
Wire Detection 100 100

Table 6.2: Existing data consists of RGB images of HDD images, whereas collected
data consists of RGB images of GPU images. Since the modules were already
trained optimally with the existing data, the collected data used was intentionally
kept limited.

description of the entity is largely the same (e.g., circular shape, feature
in the center) therefore there is no drastic significant drop in accuracy of
screw detection network, scoring 0.91. There is an insignificant drop from
the original accuracy 0.99 [YW19] due to the fact that GPUs have black
and dark gray screws which the network misses from time to time.

As for the screw classifier, the weighted average was found to be 0.94.
Here as well, an insignificant drop was observed due to the aforementioned
reason. Nevertheless, it was able to find what it was trained on when the
learned color was present. Figure 6.1 illustrates such an example. The
image above contains screws that have the ordinary silver-metallic color.
Note that the screws in/on HDDs were of this color. Thus, the network has
the learned features from the images of these HDDs. On the image below,
however, it is noticeable that the detection network misses more. Since all
the screws found on that particular GPU were of dark gray or black color,
the accuracy is naturally lower. However, even in this case, the classifier
nevertheless correctly identified the found screws as "phl" and "torx6 as
illustrated. It must be remembered that the classifier only classifies once
the detector detects an instance. If there were only two classifications, it is
due to the fact that there were only two screws detected.

Component segmentation requires specific user annotation and identifi-
cation of the components of the device, which was only done for HDDs so
far. E1 evaluated the segmentation module therefore, on an unseen device
of GPU, and found out that the proposed scheme’s segmentation module
reports 0.71 Mean-F score, which a bit lower than 0.78 (the Mean-F score
calculated for the original network). Figure 6.2 illustrates a case where
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Figure 6.1: Correctly detected and classified screws when the learned color is
present (above), missed and incorrectly classified screws when the learned color is
different (below).

metallic bay partially occludes the PCB, thus the network is misidentifying
PCB as bay as well. This is due to fact that the PCBs that were in the
HDD image dataset had nothing on them, contrary to the GPU, where
it is very likely to be a metallic bay and/or cooling unit over the PCB,
and making PCB features less dominant. Similarly, in the same figure, the
lower image shows a correctly identified and segmented PCB. Since most
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of the PCB was visible. The network was able to associate it with the

learned PCB features.

Figure 6.2: Predicted mask by the component segmentation performed on a GPU.
Above image depicts an incorrectly identified component, whereas the below image
depicts a correctly identified one. Portion of PCB pixels play a pivotal role in

segmentation of the PCB.

57 Screw Detection Accuracy
58 Screw Classification Accuracy
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Experiment | S.D.A.?” | S.C.A.”® | C.S.A.”? | W.D.A.?° | G.D.A.%!

E1l 0.91 0.94 0.71 (0.89, 0.88) X
Table 6.3: Accuracy of the modules without any retraining. The networks only
knew the learned features from the HDD training data.

The wire detection network was found to be the critical one here. Al-
though it performs remarkably well on the GPU wires as illustrated in
Table 6.3, features that resemble wires are also detected as wires. Since
the context information is not there, the wire detector considers non-wire
pixels as wires, as illustrated in Figure 6.3, where cooling pipes of the GPU
are considered as wires.

ground truth prediction Overlay

I

Figure 6.3: Predicted mask by the wire detection, incorrectly marking wire-like
looking objects as wires. Metallic pipes are one example of such a situation.

6.2.2 Experiment E2

Experiment E2 is conducted on each module, testing each one’s capabilities
on performing visual tasks on raw HDD and GPU images with re-training.
The training data used is set to 50% of the entire GPU training data (in
addition to the existing HDD data). Table 6.4 reports the accuracy per
module.

For screws, 50 new cropped images of screw heads belonging to GPUs
were included in the dataset. The screw detector and screw classifier scores
peaked, ensuring an accurate detection and classification. Therefore, it is

59 Component Segmentation Accuracy
60 Wire Detection Accuracy
61 Gap Detection Accuracy
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concluded that 50 new images for screw detection and screw classification
networks are sufficient for the GPU. There is a different case for the
component segmentation network. This one started to predict meaningful
masks for the PCB, as it was trained with extra 50 images of annotated
GPU components (bay, PCB). Figure 6.4 shows a sample output where
correctly identified PCB borders are following the correct edges of the
PCB component. Note that the network is trying to avoid predicting on
the irrelevant or unexpected pixels that correspond to the white plastic
attachment found on the PCB. The module reports 0.78 Mean-F score,
which is equal to the original 0.78 but higher than the E1 score of it,

0.71. Note that the original network was trained on 600 HDD images.

Therefore, newly introduced 50 GPU images do make a difference in terms
of generalizing.

Experiment | S.D.A%? | S.C.A%® | C.S.A.%? | W.D.A.%° | G.D.A.%¢
E2 0.99 1.0 0.78 (0.91, 0.93) X
Table 6.4: Accuracy of the modules after training the networks with 50% of GPU

training data.

Additionally, it was observed that the wire detection network accuracy
changes positively on insignificant levels.

6.2.3 Experiment E3

Experiment E3 tests each module for its capabilities on performing visual
tasks on raw HDD and GPU images with re-training. The training data
used is set to 100% of the entire training data (in addition to the existing
HDD data): 100 new annotated GPU images, plus 1000 screw images
(cropped from these GPU images). Table 6.5 reports the accuracy per
module. After re-training the networks, it was noted that there is a
substantial improvement for the component segmentation module, where
the network was observably learning the features encountered in GPUs

62 Screw Detection Accuracy

63 Screw Classification Accuracy

64 Component Segmentation Accuracy
65 Wire Detection Accuracy

66 Gap Detection Accuracy
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pcb 0.828

Figure 6.4: Predicted mask by the component segmentation performed on a GPU.
The model has been trained with 50% of GPU training data.

and showing the ability to generalize. Figure 6.5 depicts an example where
the entire PCB was correctly identified (with a prediction score of 0.846)
and segmented accordingly.

Similarly to E2, highly accurate screw detection and classification abilities
were observed. Features that were learnt enough for the network to capture
the screws. It must be remembered that the mentioned data augmentation
functions in the screw classification module generates synthetic data out of
limited images and fills in the gaps in data. Therefore, it is observed that
re-training the screw detection and classification networks with a small
number of images is quite possible.

67 Screw Detection Accuracy

68 Screw Classification Accuracy
69 Component Segmentation Accuracy
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Figure 6.5: Predicted mask by the component segmentation performed on a GPU.

The model has been trained with 100% of GPU training data.

Experiment | S.D.A®”

S.C.A%®

C.S.A.%9

W.D.A.T0

G.D.A.™?

E3

0.99

1.0

0.84

(0.92, 0.93)

X

Table 6.5: Accuracy of the modules after training the networks with 100% of

GPU training data.

Wire detection network accuracy was almost the same with the previous
experiment’s, no change observed in behaviors either. This is due to the
fact that not all GPU models had wires and thus, the newly introduced
GPU images had either no wires, or wires that were very easy to detect as

illustrated in Figure 6.6.

70 Wire Detection Accuracy
71 Gap Detection Accuracy
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Module Dataset (RGB Images) | Baseline Accuracy
Component Segmentation 600 0.78
Screw Detection 20000 0.99
Screw Classification 20000 0.97
Wire Detection 130 0.91, 0.97

6.3 Generalization

After conducting series of experiments to assess the generalization capability
of the scheme, it can be concluded that the scheme generalises the learnt
knowledge to an unseen device by acceptable margins. It was found out
that visual commonalities (similar features) play a big role in generalization.
Experiment E1 proved that PCB components in both GPU and HDD were
mostly identified and segmented correctly, and drew the aforementioned
conclusion. Some of the incorrect identifications and segments were there
due to the fact that the PCBs were occluded by bays. Experiment E2
proved that introducing training data by 50% (on top of the existing data)
definitely increases the accuracy of segmentation on PCBs, as illustrated in
Figure 6.4. Screw related capabilities were remarkably improved even in E2,
with less data. Experiment E3 showed that the component segmentation is
the module that reacts to the training data most. This was associated with
the fact that other modules have plenty of training images, whereas the
original image dataset for the component segmentation consisted of around
600 annotated images. Therefore, introducing 100 new images does make
a difference for the retraining. The fine prediction of the edge features
were noted as shown in Figure 6.5, as well as more correct identification of
components.

image ground truth prediction

Figure 6.6: Wire Detection output during the experiment E3. All wires were
correctly identified.
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It is acknowledged that the improvement could only be observed for each
module as shown in Table 6.6. Wire detection proved itself to be extremely
robust, scoring high in E1, and obviously in E2 and E3. Gap detection had
to be skipped for the experiments involving GPUs as there is no gap entity
in this EOL device. It must be also noted that not all collected images
were able to contain the entire view of the GPU, since the camera lens and
the setup height were initially chosen for operating with HDDs. Therefore,
the acquired results are the reported predictions on images that partially
contain GPUs in their view, as illustrated in the referred figures. While this
is not an issue, the optimal scheme would have to operate with a view that
contains the chosen EOL device from a reasonable height, proportional to
the dimensions of the device.

Experiments | S.D.A."? | S.C.A.”? | C.S.A.™* | W.D.A."™®
E1l 0.91 0.94 0.71 (0.89, 0.88)
E2 0.99 1.0 0.78 (0.91, 0.93)
E3 0.99 1.0 0.84 (0.92, 0.93)

Table 6.6: Accuracy of each module through experiments E1, E2, and E3.

72 Screw Detection Accuracy

73 Screw Classification Accuracy

74 Component Segmentation Accuracy
75 Wire Detection Accuracy
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Conclusions & Outlook

This chapter summarizes the proposed system functionalities, discusses
significant details, limitations and addresses any future work. It must be
underlined that the conclusions made are specific to the state estimation
package of IMAGINE, on which this thesis is written. The rest of the
project modules and schemes are not taken into the account.

7.1 Discussion

This thesis proposed a visual intelligence scheme that could be used for
automating the disassembly routines. Proof of concept was done by evalu-
ating the proposed scheme on two EOL devices, namely hard drives and
graphical processing units of computers. The proposed scheme’s capabilities
were also demonstrated as a part of state estimation package in IMAGINE
project, which is a part of EU Horizon 2020 initiative. As of the time
this thesis is written, the code has not been publicized. However, there
have been published papers regarding a few modules (as mentioned in the
thesis). These publications provided the publicized code of the individual
components.

The proposed scheme was utilised in a setup with a monocular and
stereo camera system, although technically, the only input data required is
RGB-D data. In fact, the scheme was tested with an Intel Depth Camera
D435 " (which provides RGB-D data) instead of the default 2-camera
setup. It was noted that the quality of the point cloud acquired was found
more promising than the one provided by the stereo camera (see Figure
7.1. However, due to the insufficient resolution of RGB images acquired
(2400 x 2400), the component segmentation and screw detection modules
worked with less accuracy. Since in many cases the entities are small and
look similar to artefacts, having high resolution images to distinguish key

76 https://www.intelrealsense.com/depth-camera-d435/
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features is essential. Therefore, the 2-camera setup is decided to be the
default setup, where monocular camera provides 4K images.

Figure 7.1: A point cloud of the hard drive acquired by the Intel Depth Camera
D435. Due to a minor calibration error, the segmented masks are not precisely
projected on the point cloud.

Another effort worth to mention here is the 3D model generation out of
post-processed clouds. In the IMAGINE pipeline, the generated cloud of
the HDD is passed to a 3D model generator, which outputs the 3D model
constructed out of depth data (Figure 7.2). This model is later compared
with the 3D models in a model database. If the model is found, it can be
simulated. This has been tried using the Intel depth camera mentioned
above, and the hard drive cloud was obtained. Then, using a 3D mesh
generator, Voxblox [Ole+17], the 3D mesh was acquired. The complete



Discussion

Figure 7.2: A mesh obtained by using Voxblox [Ole+17] converting clouds into
3D meshes.

pipeline for this effort can be found in 7.19 in Appendix 7.1. Even the small
individual parts’ models were acquired out of segmented clouds (as shown
in Figure 7.3). However, the acquired point cloud only had the surface
points. Thus, the non-visible parts of the HDD (bottom) were registered
as void, as the cloud did not contain a surface point from there. This made
the generated model impossible to use in any post-processing, since the 3D
model comparison mechanism would not provide healthy results. It was
noted that a good heuristic algorithm is required to perform 3D filling of
the void parts. This is a separate topic studied under computer graphics.

Although this was a promising effort, having void data on the non-visible
parts of the device makes it unusable in the IMAGINE pipeline. Instead,
the collected point clouds are directly passed into an algorithm which is
based on ICP (Iterative Closest Point) [Che+02], and involves heuristic
filling. This effort was taken over by the partner university INSA (The
Institut National des Sciences Appliquées de Renne), where Associate
Professor Maud Marchal’” continues her work with her team.

77 http://people.rennes.inria.fr/Maud.Marchal /Research.htm
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Figure 7.3: A 3D mesh of a HDD magnet acquired from a point cloud. The
process starts with component segmentation module that segments the magnet on
a 2D plane. Later, the acquired point is used to project the found 2D pixels on
the 3D point cloud obtained by the stereo camera. Lastly, using Voxblox [Ole+17],
the point cloud is processed into the 3D mesh.

In conclusion, the proposed scheme is designed to complete the required
objectives. To our knowledge, it is the first visual intelligence scheme that
has the demonstrated capabilities for automated disassembly. Therefore,
the novel contribution of this work is promising for recycling plants that
are likely to use robotic systems. As of this writing, there is a prototype
developed and demonstrated "® as one of the milestones of the IMAGINE
project. The State estimation package of the demonstrated prototype is
engineered with the methods described in this thesis.

7.2 Limitations

It could be concluded that the proposed scheme’s limitations largely stem
from the absence of new annotated data. Since the initial proof of concept
is done by training the system for HDDs (and for GPUs to a certain degree),
the obvious limitation of the system is its inability to perform as expected
on an unseen device that has no common components with the devices
the system trained for. Another likely case is the confusion between two
different parts of two different devices. Consider a magnet of a hard drive
and a similar looking component in another device. If the system does not
have any labeled data from the second device, it won’t correctly identify
its components. However, it was also found in this thesis that different

78 https://www.youtube.com/watch?v=m8aEZnSdiCA



Limitations

devices with common components are definitely within the reach of a wide
generalization capability.

Having the optimal lighting conditions for the sensor setup a technical
limitation. Since a few major classical computer vision methods, such
as Hough Transform, require tuning of certain parameters due to their
threshold functions. For this reason, the proposed scheme should be

provided with fixed and optimal lighting with correctly tuned parameters.

If the setup changes (e.g., light source moves or changes) even slightly,
the system is no longer guaranteed to perform as expected. Additionally,
through evaluation, it was found that the accuracy of Hough Transform
is below 0.8 by nature, even with the optimal parameters. Therefore, the

screw detection and classification modules are limited to that accuracy.

This is due to the fact that the networks are predicting on the region of
interest provided by the Hough Transform method. While this task could
also be taken over by a separate DCNN which detects circles, it should be
kept in mind that Hough Transform requires no training data and works
in real-time, unlike the DCNNs, which require annotated data (marked
circles in the images) and are computationally more expansive than Hough
Transform.

Another limitation is the fact that devices with shiny and/or reflective
parts cause the employed gap detector to fail due to the noise in the
point cloud. Since reflecting points cannot be represented correctly, the
found gaps are either too large or too small. A practical way to deal with
this problem is to apply transparent anti-reflection spray over the devices
surface, which guarantees tolerably fine point clouds. A possible integration
of spraying action into the robotic system could be a promising solution.

One significant point to mention is the fact that the proposed scheme
demands high-end computers to fulfill its responsibilities. Since the chosen
DCNNSs were state-of-the-art at the time of this thesis, they could only be
trained using the cloud services providing cutting-edge TPUs and GPUs.
It could be agreed that the hardware required for the system makes it less
desirable in an economical context.

Finally, the ROS implementation of the proposed scheme requires more
than a minute to complete the scene analysis. This, could have been
different if the system was not overloaded by the intercommunication
between different packages of IMAGINE. Once allocated enough memory,
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DCNNSs are quite fast for static analysis processes such as this. The process
that is computationally expansive is the process of communication between
different modules of a complex system involving multiple regular computers
over ROS interface. If tested standalone, the functionalities presented in
the scheme work fast enough to be used in an industrial setup.

7.3 Future Work

In order to compensate the shortcoming of hardware, the proposed system
could utilize cloud storage and computing services such as Google Drive
and Google Colab. If a suitable GUI is developed to grant user the abilities
of scene visualization, data collection and preparation, re-training of the
system modules, then the system could indeed use cloud TPUs to train the
modules. At this time, the IMAGINE project is doing so. Since it is only
done as a proof of concept, the planned GUI (as illustrated in Figure 7.4)
is thought to allow the user to crop and label screw images, prepare the
training data and infer locally, whereas the user is assumed to be directed
to Google Colab service for training and eventually automatic downloading
of the new weights, through identification via a Google account.

Crop a sample J Torx 7

Torx 8

Torx 9

Live
Qutput
Feed

wwwww

l / Append to Datasets J

Collected Samples: sampleCount

Required Samples: requiredCount

7 Intervene 1 ( Hetfain b

Figure 7.4: Sketch-up of the planned GUI to enable local and cloud functionalities.

The planned GUI allows the user to intervene in the presence of wrong
detection or classification, when the user sees it on the visual display. It is
also designed to import the new weights downloaded to the local computer.
A preliminary flowchart of user’s involvement upon this via the planned
GUI for re-training is represented in Figure 7.5.
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Input Image
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activated?
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. Re-train the
Setrained Wodes

Figure 7.5: Flowchart of the planned re-training capability.

Classification

Apart from the learning ability, an interesting future work could be done
on expanding the capabilities of the existing modules in the system. This
research effort could also motivate the researchers to create image and
cloud datasets for the modules to train on different devices. Doing so,
an accumulated knowledge base could be used in development of newer
methods.

Another topic to look into is the 6D pose estimation using deep learn-
ing. Although initially considered, the existing state-of-the-art 6D pose
estimation networks are unable to provide a convenient replacement for
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2D imagery with deep learning methods. There have been several publica-
tions [BV20; Su+21; Tre+18; Xia+18; XLC21; Zha+21] and an NVIDIA
solution [Tre+18] to this problem. However, the proposed schemes were
too complicated to be used in recycling plants by non-experts. 6D pose
estimation networks demand a massive amount of annotated training data,
which is an effort that requires an expert knowledge of computer graphics.
The data generation process involves a manual synthetic data generation
step, where the end user has to operate with tools such as NVIDIA Data
Synthesizer ™.

This work also motivates the cooperation between the industry and
academy to develop visual intelligence schemes for recycling plants. Every
module described in this thesis could be conveniently re-factored to satisfy
the requirements of similar systems. In this thesis, the partner recycling
plant was Electrocycling GmbH *° from Goslar, Germany.

79 https://github.com/NVIDIA /Dataset_ Synthesizer
80 https://www.youtube.com/watch?v=23ZipmJq-n8



Appendix

7.1 Figures
The next set of figures are used in the chapters specified below.

e Figures 7.2, 7.1 are supplements to Chapter 1: Introduction.

e Figures 7.3, 7.4, 7.5, 7.6, 7.8 are supplements to Chapter 2: Related
Work.

e Figures 7.17 is a supplement to Chapter 3: Overview.
e Figures 7.9, 7.10, 7.11 are supplements to Chapter 4: Background.

e Figures 7.12, 7.13, 7.14, 7.15, 7.16, 7.18 are supplements to Chapter
5: Approach.

e Figure 7.19 is a supplement to Chapter 7: Conclusion.

81 https://www.dailymetalprice.com/metalprices.php

82 https://www.dailymetalprice.com/metalprices.php

83 https://www.migatron.com/wp-content /uploads/2018/04/RPS-
412A_ Analog_ Voltage Rev_ 3.pdf

84 https://www.migatron.com/wp-content/uploads/2017/01/RPS-409A-
IS_ Data_ Sheet_ Rev_ 4.pdf

85 https://www.pfeifer-technology.de/skycnc-wm-serie-pfiffige-grossformat-
bearbeitung/
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Figure 7.1: Price per Kilogram over the decade for platinum and palladium found

in e-waste devices®!.
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Figure 7.4: Components in LCD screens[KKS09].
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Figure 7.5: RPS-412A high accuracy analog ultrasonic sensor. %3

84

Figure 7.6: RPS-409A analog ultrasonic sensor.
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Figure 7.7: Sample CNC/milling machine *°
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Figure 7.8: Scanning results obtained from the range sensor. Different TVs are
considered, which are similar to the one shown in the figure.
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Figure 7.9: Input data points to be clustered.
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Figure 7.10: Data points clustered by HDBSCAN.
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Camera Specification

Camera modules:
Sensor resolution:
Sensor:

Sensor format:
Lens mount:
Chroma:

Shutter:

Interface:
Trigger-input:

Stereo baseline distance:

Mounting bottom side:

Mounting top side:
Weight without lenses:

Conformity:

Figure 7.11: Specifications of the

Image Sensor Metrics

Sensor width:  7.15 mm (800 pixels)
Sensor height: 5.36 mm (600 pixels)

Pixel pitch: 17.87 pym (after binning)
ROI width: 7.15 mm (400 pixels)
ROI height: 5.36 mm (300 pixels)

Lens Metrics

Focal length: 9.07 mm
Horizontal angle of view (ROI): 43.0°
Vertical angle of view (ROI): 32.9°
Diagonal angle of view (ROI):  52.5°

S

Basler daA1600-60um
1600 x 1200 pixels

e2v EV76C570

1/1.8"

C/CS-mount

mono / color

global shutter

USB 3.0

4-pin Binder M8 connector
10cm /25 cm

4x M3 threaded hole
1x 1/4" UNC threaded hole (tripod mount)

2x M3 threaded hole

280 g for 10 cm baseline
450 g for 25 cm baseline

CE, FCC, RoHS

stereo camera used.

Stereo Geometry Metrics
Baseline distance:
Minimum depth:
ROI with full disparity range:
ROI with half disparity range:

10.0 cm (3.94 in)
19.9cm (7.8 in)

Depth Depth Error Depth
0.2m 0.02 cm 0.65 ft
0.5m 0.12cm 11t

im 0.50 cm 21t
2m 1.99 cm 5 ft
5m 12.6 cm 10 ft
10m 51.8 cm 20 ft
20m 219cm 50 ft
50 m 1634 cm 100 ft
100 m 9709 cm

Figure 7.12: Lens and sensor metrics for the Karmin2.

145 x 300 pixels (30.1° x 32.9°)
273 x 300 pixels (36.7° x 32.9°)

Depth Error

0.01in
0.02in
0.07 in
0.45in
1.83in
7.43 in
48.7 in
212in



Sensor

Sensor Vendor
Sensor

Shutter

Max. Image Circle
Sensor Type
Sensor Size
Resolution [HxV]
Resolution

Pixal Size [Hx V]
Frame Rate

Meno/Caolor

ON Semiconductor
MTSF002

Rolling Shutter
1/2.3"

CMO3

4.3 mm x 4.6 mm
4608 px x 3288 px
14 MP

1.4 pmx 1.4 pum

7 fps

Color

Figure 7.13: Specifications of the monocular camera used.
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Figure 7.14: Required calibration pattern for the stereo camera calibration using
the Nerian software.
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Figure 7.16: The dynamic reconfigure GUI of the preprocessing module
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Figure 7.18: Change of SSIM through epochs with the pre-trained weights from

the K-Gen dataset.
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Figure 7.19: Pipeline used to create 3D meshes out of acquired point clouds.
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