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1 Abstract 
Myelination of axons accelerates nerve impulse propagation 20-100-fold, theoretically 

allowing rapid nerve conduction with reduced axonal diameters. However, to our 

knowledge no myelin dependent signal has been described to restrict axonal 

diameters. Indeed, the only myelin-to-axon signal known to affect axonal size, myelin 

associated glycoprotein (MAG), actually increases radial axonal growth of myelinated 

axons in the peripheral nervous system. We hypothesized that many signaling 

molecules mediating cross-talk between axons and myelinating Schwann cells remain 

unknown. Thus, we used label-free proteomics of a biochemically fraction enriched for 

axon/myelin interface to identify novel signaling candidates. By STED-microscopy, 

immunoblotting and cryo-immuno electron microscopy we confirmed the localization of 

a novel Schwann cell protein CMTM6 (chemokine-like factor-like MARVEL-

transmembrane domain-containing protein 6) at the adaxonal Schwann cell membrane 

and thus identified a novel myelin constituent in the peripheral nervous system. Genetic 

disruption of Cmtm6 expression in Schwann cells causes a substantial increase of 

axonal diameters in various peripheral nerves without impairing myelin biogenesis or 

axonal integrity. Diameters of non-myelinated axons are also increased when CMTM6 

is lacking from Schwann cells. Importantly, radial sorting of axons and myelin 

biogenesis are not compromised. Notably, increased axonal diameters correlate with 

accelerated sensory nerve conduction velocity, enhanced sensory responses and 

perturbed motor performance. It was previously suggested that expression of CMTM6 

in cancer cells and interaction with PD-L1 (programmed death ligand 1) limits anti-

tumor immunity. Our data however do not support interactions of CMTM6 with PD-L1 

in the peripheral nervous system. We could demonstrate that CMTM6-loss of function 

leading to larger axonal diameters overrides MAG-loss of function, which by itself 

causes a shift towards reduced axonal diameters. Together we find that Schwann cells 

utilize adaxonal proteins such as MAG and CMTM6 to regulate radial axonal growth 

and optimize nervous system function. 
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2 Introduction 
2.1 Myelin and the axon/myelin unit 

The complexity of the nervous system comprised of the central nervous system 

(CNS, brain and spinal cord) and peripheral nervous system (PNS, peripheral nerves) 

requires rapid impulse propagation along axons to fully perform sensory and motor 

capabilities as well as cognitive functions (Nave and Werner 2014). Two strategies 

evolved to provide faster conduction and more rapid information processing being 

either increase in axonal fiber size or the insulation of axons with myelin (Hartline and 

Colman 2007, Nave and Werner 2014).The ensheathment of axons by a multilayered 

myelin membrane in vertebrates (and some invertebrates) increases the transverse 

resistance and reduces the transverse capacitance of the axonal plasma membrane. 

The action potential is restricted to short unmyelinated segments, termed nodes of 

Ranvier, by insulating internodes (axonal segments between two nodes of Ranvier) 

and thus provides the structural basis for saltatory nerve impulse propagation. 

Consequently, the nerve conduction velocity is accelerated 20-100-fold compared to 

non-myelinated axons of the same diameter (also see Fig.4) (Tasaki 1939, Huxley and 

Stämpfli 1949, Huxley and Stämpfli 1951, Moore, Joyner et al. 1978, Hartline and 

Colman 2007, Nave and Werner 2014). Myelin is formed by so called myelinating glial 

cells: oligodendrocytes in the CNS and Schwann cells (SCs) in the PNS. Both cells 

wrap their membrane around the axon and thus form myelin sheaths. Nevertheless, 

oligodendrocytes and SCs differ not only in the number of axonal segments 

(internodes) one cell can myelinate (1:60 for oligodendrocytes, 1:1 for SCs), but also 

in their origin (Hildebrand, Bowe et al. 1994, Arroyo and Scherer 2000, Nave and 

Werner 2014). Even though myelin is known to contain up to 70% lipids, being mainly 

cholesterol, phospholipids and glycosphingolipids (Norton and Autilio 1965, Norton and 

Poduslo 1973) the protein composition between CNS and PNS myelin differs resulting 

in distinctive molecules that regulate the structure of the axon/myelin unit and control 

myelination (Patzig, Jahn et al. 2011, De Monasterio-Schrader, Jahn et al. 2012, Nave 

and Werner 2014). 
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Figure 1 Structure of a myelinated axon of the peripheral nervous system (PNS). The myelinating glial cells 
of the PNS, namely Schwann cells (SCs), wrap their membrane around an axon and thus form the multilayered 
myelin sheath. Non-myelinated segments between myelinated internodes are called nodes of Ranvier, contain Na+ 

channels and thus are the areas to which the action potentials are restricted to. The longitudinal cut (right) illustrates 
one heminode and the different axonal domains. Segments divide into the node of Ranvier to which SC microvilli 
attach, paranodes with septate-like junctions (SpJ), juxtaparanode (JXP) and the internode. Noteworthy, in the PNS 
the myelin/axon unit is covered by a basal lamina. (Fig.1 adapted from Poliak & Peles, 2003)  

Figure 1 displays the distinct functional domains of myelinated axons illustrating 

the aforementioned node of Ranvier, the paranode as well as juxtaparanode (JXP) and 

the myelinated internodal segments which are organized and maintained via different 

mechanism involving numerous proteins (Poliak and Peles 2003). Briefly, in the 

peripheral nervous system microvilli extent from SCs and contact the node of Ranvier 

which contain a high density of voltage-gated Na+ channels mediating saltatory 

conduction as well as transmembrane and cytoskeleton proteins such as cell-adhesion 

molecules (CAMs), ankyrin G and spectrin bIV (Kordeli, Davis et al. 1990, Davis, 

Lambert et al. 1996, Berghs, Aggujaro et al. 2000, Poliak and Peles 2003). The nodes 

are flanked by two paranodes forming a close association between myelin lamellae 

and the axon septate-like junctions, attaching the myelin to the axons. Here, mainly 

but not exclusively, contactin and contactin-associated protein (CASPR) and protein 

4.1B in the axolemma as well as neurofascin 155 (Nf155) and ankyrin B in the SC 

membrane are essential molecular components of the paranodal junction (Peles, Nativ 

et al. 1997, Charles, Tait et al. 2002, Poliak and Peles 2003, Zollinger, Baalman et al. 

2015). The juxtaparanodal segment, followed by the internode, are both laying beneath 

compact myelin layers. A high density of voltage-gated K+ channels is the most 

prominent feature of juxtaparanodal domains which most likely play a role in 

maintaining the internodal resting potential (Chiu and Ritchie 1984, Poliak and Peles 

2003). Mainly CASPR2 and transient-axonal glycoprotein1 (TAG1), as well as protein 

4.1B and postsynaptic density protein 95 (PSD95) stabilize the juxtaparanodal 

complex and regulate clustering of K+ channels (Poliak and Peles 2003, Poliak, 

Salomon et al. 2003, Traka, Goutebroze et al. 2003). The internode extends next to 
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the juxtaparanodes and also lies beneath compact myelin. The outermost layer is 

referred to as the abaxonal myelin membrane while the innermost layer is referred to 

as the adaxonal membrane. Both are comprised of non-compact myelin. The abaxonal 

membrane is opposing the basal lamina which is covering the axon/myelin unit in the 

PNS (Arroyo and Scherer 2000). Another distinct feature of the organization of 

myelinated axons in the PNS is the presence of Schmidt-Lantermann incisures (SLI) 

which are thought to provide cytosolic channels through the compact myelin and are 

also part of non-compact myelin (Arroyo and Scherer 2000). Besides SLI also the 

innermost adaxonal SC membrane connecting to the underlying axon is part of the 

non-compact myelin (Arroyo and Scherer 2000, Nave and Werner 2014). Interestingly, 

optimized biochemical purification methods and mass spectrometric analysis allow 

investigations of the protein content of myelin as well as of the contact zone between 

axon and myelin/myelinating glia cells, also referred to as axon/myelin unit, in more 

detail (see chapter 1.4) (Jahn, Tenzer et al. 2009, Patzig, Jahn et al. 2011, Erwig, 

Hesse et al. 2019). Note that aforementioned molecules involved in structural domain 

organization can differ between CNS and PNS or change during development. Further, 

deletion of some of these proteins can disrupt the described domain organization 

leading to various changes and functional impairment. However, the molecular basis 

for this structural organization is not yet fully understood. Refer to the following reviews 

for more information: (Arroyo and Scherer 2000, Poliak and Peles 2003, Salzer 2003, 

Zollinger, Baalman et al. 2015). 

 

Besides insulating axons with myelin, it was shown that oligodendrocytes and 

SCs provide additional trophic support to axons and thus maintain axonal integrity 

(Nave and Werner 2014). Particularly, mouse models with specific mutations in 

myelinating glial genes as well as human patients suffering from either peripheral 

neuropathies caused by SC-specific gene mutations or neurological diseases e.g. 

Multiple sclerosis or leukodystrophies affecting oligodendrocytes, suggest that 

myelinating glial cells support axon function and survival (Pellerin, Pellegri et al. , 

Riethmacher, Sonnenberg-Riethmacher et al. 1997, Nave and Trapp 2008, Nave 

2010, Nave 2010, Fünfschilling, Supplie et al. 2012, Lee, Morrison et al. 2012, 

Domènech-Estévez, Baloui et al. 2015, Stassart, Möbius et al. 2018). The following 

chapters will focus in more detail on the interaction of Schwann cells and axons and 

beyond to ensure proper nervous system development and maintenance. For more 
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information about the communication between oligodendrocytes and axons in the CNS 

one can refer to the following reviews: (Nave and Trapp 2008, Nave and Werner 2014, 

Stassart, Möbius et al. 2018).  

 

2.2 Schwann cells and axo-glial interactions 

2.2.1 Schwann cell development 
During development of the nervous system the Schwann cell lineage 

progression follows well-defined steps displaying crucial interdependence of axons 

and SCs (Jessen and Mirsky 2005). The following chapter will outline the major steps 

of the SC lineage as illustrated schematically in Figure 2 and highlight the most 

important but not all, key players.  

 

During early embryonic development multipotent neural crest cells give rise to 

Schwann cell precursors (SCPs) at around embryonic day 12/13 (Douarin, Dulac et al. 

1991). These have the ability to further differentiate into immature Schwann cells 

(iSCs) but also to endoneurial fibroblasts, melanocytes and parasympathetic neurons 

in embryonic peripheral nerves (Jessen, Mirsky et al. 2015, Jessen and Mirsky 2019). 

This feature is similar to radial glia in the CNS which give rise to neurons, astrocytes, 

oligodendrocytes and ependymal cells (Merkle et al., 2004). In addition, SCP are 

crucial for nerve fasciculation and survival of sensory DRG neurons as well as spinal 

cord motoneurons (Woldeyesus, Britsch et al. 1999, Birchmeier 2009, Jessen, Mirsky 

et al. 2015). Interestingly, it was shown in vivo that SCPs die without axonal contact 

and further depend on axonal survival signal Neuregulin 1 type III (Nrg1 type III) and 

its interaction with epidermal growth factor receptors (Erb2B2/ErbB3) on the SC side 

(Dong, Brennan et al. 1995, Meyer and Birchmeier 1995, Riethmacher, Sonnenberg-

Riethmacher et al. 1997). One of the main roles of neuregulin 1 type III is the 

suppression of neurogenesis and promotion of gliogenesis which supports the switch 

from SCP towards immature Schwann cells (iSCs) and illustrates nicely the 

interdependence of SC and axons (Shah, Marchionni et al. 1994, Birchmeier and Nave 

2008, Jessen, Mirsky et al. 2015). Note, that the Nrg1/ErbB axis plays a pivotal role 

during SC development and differentiation, but also peripheral myelination and repair 

and the following reviews cover the diverse role of Neuregulin in more depth: 

(Birchmeier and Nave 2008, Mei and Nave 2014, Fledrich, Kungl et al. 2019). Further, 

also the SC lineage specific transcription factor Sox 10 is crucial as it maintains ErbB3 
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receptors on SCs, demonstrating that SC lineage is also reliant on each other (Britsch, 

Goerich et al. 2001). Noteworthy, also negative signals are involved at this step of SC 

lineage progression. Two examples are endothelin and the transcription factor AP2a 

which both delay the differentiation of SCPs into immature SCs (Brennan, Dean et al. 

2000, Stewart, Brennan et al. 2001, Jessen, Mirsky et al. 2015). 

 

At E15/E16 all SCP differentiated into iSCs, a step which is irreversible. At this 

point iSCs engulf axons and form defined axon/SC bundles covered by a basal lamina 

(Jessen and Mirsky 1999, Jessen, Mirsky et al. 2015, Jessen and Mirsky 2019). 

Importantly, from this step onwards SC survival, but not fate, is independent of axons 

because they establish an autocrine survival loop. This survival loop involves the 

expression of various growth factors, e.g. platelet-derived growth factor beta (PDGFb), 

leukemia inhibitory factor (LIF), neurotrophin 3 (NT3) and insulin-like growth factor 2 

(IGF2) (Jessen and Mirsky 1999, Meier, Parmantier et al. 1999, Jessen and Mirsky 

2005). Nonetheless, survival of SCs can still be impaired upon injury in neonatal and 

adult nerves when SCs loose axonal contact over a prolonged period of time 

(Grinspan, Marchionni et al. 1996, Syroid, Maycox et al. 1996, Höke 2006, Jessen, 

Mirsky et al. 2015). Further, signals from iSCs also promote organization and 

differentiation of perineurial (e.g via secreting Desert hedgehog; Dhh) and endoneurial 

connective tissue (via SC secreted VEGF) as well as blood vessels (Webster, Martin 

et al. 1973, Parmantier, Lynn et al. 1999, Mukouyama, Gerber et al. 2005, Fledrich, 

Kungl et al. 2019). Most importantly, the process of radial sorting, a prerequisite for 

myelination, starts during this phase. Thus, a 1:1 ratio of axon/SC is established via 

sorting out of axons being larger than 1 µm in diameter. This crucial step is important 

for building up the mature nerve architecture for a functional peripheral nervous system 

and can lead to neuropathies when impaired (Feltri, Poitelon et al. 2016). Axonal 

signals, which trigger radial sorting and are involved in initiating myelination are for 

example brain-derived neurotrophic factor (BDNF), Nrg1 and IGF1 (Cheng, Reinhardt 

et al. 2000, Meintanis, Thomaidou et al. 2001, Taveggia, Zanazzi et al. 2005, Nave 

and Salzer 2006). Notably, also signals between iSCs and ECM/basal lamina 

molecules, including collagen, laminins and G protein-coupled receptor 126 

(Gpr126/Adgrg6) affect radial sorting which is reviewed in more detail in (Monk, Feltri 

et al. 2015, Feltri, Poitelon et al. 2016, Mogha, D'Rozario et al. 2016). 
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After establishing a 1:1 ratio with axons larger than 1 µm SC reach the stage of 

a promyelinating Schwann cell. While promyelinating SCs still react to the 

aforementioned axonal signals and trophic factors they also change their own 

expression profiles of several transcription factors such as Krox-20/Egr2, Oct6, Sox10 

and NfkB which is described in more detail in reviews by (Taveggia, Zanazzi et al. 

2005, Monk, Feltri et al. 2015). Amongst those, Krox20/Egr2 is considered to be an 

important key player to initiate differentiation from promyelinating to myelinating SCs 

by inducing for example the expression of P0/MPZ, the most abundant peripheral 

myelin protein 

(Parkinson, Bhaskaran et al. 2004, Mager, Ward et al. 2008, Monk, Feltri et al. 2015).  

 

 
Figure 2 The Schwann cell lineage. This drawing illustrates the main transitions of the SC lineage from migrating 
neural crest cells into Schwann cell precursors (SCP) which group with several unsorted axons at embryonic day 
E12/E13. SCP differentiate into immature SCs (iSCs) but also give rise to melanocytes, endoneurial fibroblasts and 
parasympathetic neurons. iSC engulf several axons within Remak bundles and sort axons larger than 1µm out of 
bundles (radial sorting). When SC are in 1:1 contact with an axon which is large enough they transition from 
promyelinating SC to myelinating SC. Black uninterrupted arrows display normal development. Upon injury, both 
myelinating SCs and non-myelinating Remak-SCs can transdifferentiate into Repair (Bungner) SC (red arrow) and 
re-differentiate back to myelinating or Remak SC after repair (dashed arrow). Image taken from Jessen and Mirsky 
2015.  

 

2.2.2 Non-myelinating and repair SC 
In the peripheral nervous system not all axons are myelinated post 

development. Thus, another class of SCs, referred to as non-myelinating SCs is 

present in peripheral nerves associating either with bundles of small caliber axons 
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(Remak SCs engulfing so called Remak-bundles); with neuromuscular junctions 

(terminal SCs) or Pacini and Meissner corpuscles (Griffin and Thompson 2008, Monk, 

Feltri et al. 2015). Non-myelinating Remak-associated Schwann cells (RSCs) are less 

investigated and it is not fully understood how their fate is exactly determined. 

Nevertheless, Figure 2 already indicates that SC differentiation is rather plastic and 

conversion between myelinating-, non-myelinating RSC and Repair SC is possible. 

This was especially demonstrated in nerve grafting studies by Aguayo. He could show 

that nerve segments with myelinating SC do not myelinate when grafted into 

unmyelinated nerve segments and vice versa transplantation of RSCs in myelinated 

nerve segment resulted in dedifferentiation and generation of myelin (Aguayo, 

Peyronnard et al. 1973, Aguayo, Attiwell et al. 1977, Murinson and Griffin 2004). On 

morphological level it was shown that RSC engulf several axons in a single bundle but 

that the number of axons surrounded by RSC processes differs between and along 

peripheral nerves (Aguayo, Peyronnard et al. 1973, Murinson and Griffin 2004). 

Nevertheless, defects in SCs and RSCs can lead either to impairment of radial sorting 

(axons larger than 1µm are not sorted out of Remak-bundles) or “naked axons” which 

are not ensheathed by RSCs (Feltri, Poitelon et al. 2016). Notably, many molecules 

and signaling pathways between myelinating SCs and RSCs overlap, such as Nrg1-

type II/ErbB2/3, PI3K/Akt as well as Gpr126/Adgrg6, which is further reviewed in (Harty 

and Monk 2017).  

 

Upon injury, SCs and RSCs have the ability to transdifferentiate to so-called 

Repair Schwann cells, which is until now thought to be mainly controlled by the 

transcription factor c-Jun (Arthur-Farraj, Latouche et al. 2012, Fontana, Hristova et al. 

2012, Jessen and Mirsky 2016). Further, SCs in the distal stump respond to the injury 

even before axons degenerate suggesting a yet unknown SC/axon signal triggering 

the phenotypical changes that SCs undergo rapidly (Jessen, Mirsky et al. 2015). These 

prompt changes include for example upregulation of molecules from the iSCs stage 

(e.g. NCAM, P75NTR, GFAP, L1) and down-regulation of myelin genes such as Mpz, 

Mbp and Mag. Further, they upregulate neurotrophic factors (such as GDNF, artemin, 

BDNF, VEGF) to support neuronal survival and cytokines including TNFa, LIF and 

interleukins for macrophage recruitment (Jessen and Mirsky 2008, Jessen, Mirsky et 

al. 2015). Interestingly, it was also reported that SCs degrade their own myelin after 

injury via a process recently termed myelinophagy and further change their length and 
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morphology during repair (Gomez-Sanchez, Carty et al. 2015, Gomez-Sanchez, Pilch 

et al. 2017). The SC reprogramming in regenerating nerves is highly diverse involving 

several molecules and transcription factors which is reviewed in more detail in: (Jessen 

and Mirsky 2016). Even though the regenerative capacity of the PNS is comparably 

high full functional recovery in humans is rarely the case (Höke 2006). It will be 

interesting how future research focusing on the role and regulation of Repair SCs and 

their interactions might have a beneficial effect on recovery after nerve injury.  

 

 
Figure 3 Ultrastructure of myelinated axons and non-myelinating Remak Schwann cell. Electron microscopic 
image of a cross-sectioned sciatic nerve illustrates a myelinated axon being surrounded by one myelinating SC 
which ensheathed the axon with a multilayered compacted myelin membrane. On the lower half a non-myelinating 
Remak SC engulfs several non-myelinated axons being smaller than 1 µm. The adaxonal SC membrane, axolemma 
and a non-myelinated axon are indicated by arrows. Scale bar = 1µm. Image taken from Nave & Werner, 2014.  

 

2.2.3 Myelinating SCs: axo-glial interactions in peripheral nerves post 
development 
As mentioned above axons with a threshold diameter of above 1µm are sorted 

out of Remak bundles and associate with promyelinating SC indicating that axonal 

signals steer myelination. Thus, it was shown that Nrg1 type III expressed on the 

axonal surface is sensed by ErbB2/B3 receptors on SCs controlling the amount of 

myelin in dependence on the axonal size (Michailov, Sereda et al. 2004, Taveggia, 

Zanazzi et al. 2005, Nave and Salzer 2006). This leads to activation of several 

pathways mainly involving PI3/Akt and MAPK signaling (Pertusa, Morenilla-Palao et 

al. 2007, Pereira, Lebrun-Julien et al. 2012, Glenn and Talbot 2013). Further, it was 

revealed that deletion of either axonal Disintegrin and metalloproteinase domain-
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containing protein 22 (ADAM22) or SC expressed leucine rich repeat LG family 

member 4 (LGI4) lead to myelin formation defects underlining its importance for 

peripheral myelination (Kegel, Jaegle et al. 2014, Monk, Feltri et al. 2015). Several 

other molecules such as Notch1 interaction with axonal Jagged1, neurotrophins like 

BDNF, NGF and NT3 or cell adhesion molecules of the Nectin-like family (mainly 

NECL-1/CADM3 and NECL4/CADM4) are involved in steering peripheral myelination 

(reviewed in (Monk, Feltri et al. 2015). Even though axon to SC signaling plays a major 

role in myelination of peripheral nerves the interaction between SCs and the ECM is 

also crucial for radial sorting and subsequent myelination. Thus, studies have shown 

that G-protein coupled receptor GPR126/ADGRG6 controls radial sorting and similar 

to Nrg1 type III also initiates myelination. This occurs mainly by incorporating signals 

from laminins and collagens of the ECM and the abaxonal membrane leading to an 

elevation of second messenger cAMP (Paavola, Sidik et al. 2014, Petersen, Luo et al. 

2015, Feltri, Poitelon et al. 2016, Mogha, D'Rozario et al. 2016). Particularly for the 

axonal prion protein (PrPc), which interacts with Gpr126/ADGRG6 in SCs, it was 

demonstrated that ablation leads to impaired myelin maintenance resulting in a late-

onset neuropathy (Bremer, Baumann et al. 2010, Küffer, Lakkaraju et al. 2016).  

 

Concluding, several axonal and other extrinsic factors besides the above-

mentioned signaling molecules regulate the SC lineage and their ability to myelinate. 

Notably, only little is known about vice versa signaling from SCs towards the axon. 

How myelination is maintained throughout life and which factors and signaling 

cascades are involved is still not fully understood making axo-glial investigations a 

promising field of research.  

 

2.2.4 Additional function of SCs 
Schwann cells not only myelinate axons of the peripheral nervous system but 

also metabolically support the axons and preserve axonal integrity. This concept was 

already shown for the CNS with oligodendrocytes and astrocytes (Pellerin, Pellegri et 

al. , Fünfschilling, Supplie et al. 2012, Lee, Morrison et al. 2012). Fünfschilling et al. 

also showed that impairing mitochondrial complex IV in SCs by deleting Cox10 leads 

to a severe peripheral neuropathy underlining that SCs are important for the support 

axons (Fünfschilling, Supplie et al. 2012). Beyond this, recent studies could 

demonstrate the presence of glycogen in Schwann cell cytoplasm and could show that 
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it supports the excitability of myelinated but not unmyelinated axons. Their data 

indicates that SCs break down glycogen into lactate upon metabolically challenging 

situations such as aglycemia and can even keep up this metabolic support for large 

myelinated axons 6-fold longer than what was seen in CNS white matter (Brown, Evans 

et al. 2012). Latest studies could even show a conversion of fructose to lactate and 

subsequent shuttling to myelinated fibers both mediated by SCs, whereas 

unmyelinated fibers seem to directly take up fructose. This additionally suggests 

specific metabolic differences and function depending on the variety of axonal 

subtypes (Rich and Brown 2018). Apart from this SCs are also involved in sodium and 

potassium channel clustering at the node of Ranvier and in shaping axonal architecture 

during development (see chapter 1.1) (reviewed by (Poliak and Peles 2003, Salzer, 

Brophy et al. 2008)). Their role in nerve injuries is partially described in chapter 1.2.2 

and reviewed in much more detail in (Jessen and Mirsky 2016). Apart from this, a 

recent study provides indications for cutaneous Schwann cells expressing nociceptive 

capabilities and forming a glia-neural complex mediating pain sensation (Abdo, Calvo-

Enrique et al. 2019). 

 

2.3 About rapid nerve conduction and axon diameter regulation 
For both, invertebrates and vertebrates, fast signal propagation is a prerequisite 

for proper nervous system function. Positive effects on the conduction speed along 

axons within the nervous system are achieved by decreasing the interior resistance 

and/or by decreasing trans-fiber capacitance. Thus, two solutions emerged in evolution 

being axonal gigantism and myelination (Hartline and Colman 2007). The following 

chapter will focus on the concept of rapid conduction and axon diameter regulation 

while some of the involved molecules for myelination are described in chapter 2.1. and 

2.2.3.  

 

Over the last decades it was continuously shown that conduction speed 

increases rather proportionally to the square root of the interior diameter of an axon, 

which decreases the interior resistance of the fiber (Hodgkin 1954). Thus, so called 

`Axonal Gigantism` evolved preferably in species which need rapid impulses for 

example the squid escape mechanisms or the tail flip of lobster or crayfish. 

Nonetheless, also Drosophila species and some crustaceans developed giant axons 

(Eaton 1984, Allen, Drummond et al. 1998, Lenz, Hartline et al. 2000, Hartline and 
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Colman 2007). However, it has been calculated by Hartline and Colman that axons 

would need to be 100 times larger to achieve an only 10-fold faster signal propagation 

which would result in immense space problems within the nervous system and body 

(Hartline and Colman 2007). Strikingly, myelin evolved in vertebrates and allowed for 

rapid nerve conduction velocities with smaller axonal diameters (Nave and Werner 

2014). Upon wrapping of a multilamellar membrane around axons the trans-fiber 

capacitance is decreased. The flowing currents reach the next unmyelinated and Na+ 

channel dense node of Ranvier without delay and thus the adjacent internodal 

membrane is excited more rapidly, which speeds up signal propagation (Hartline and 

Colman 2007). This led to the concept of action potentials “jumping” across internodal 

segments. Further, the number of myelin layers increases proportionally to the 

respective axon diameter. In consequence, the internodal capacitance reduces with 

axon diameter in myelinated axons, which results in a first power dependence of 

conduction velocity on axonal diameter (Rushton 1951, Moore, Joyner et al. 1978, 

Hartline and Colman 2007, Perge, Niven et al. 2012). Notably, Kole and colleagues 

could recently show that the periaxonal space between the axolemma and myelin 

sheath as well as the paranodal space is also conductive and important for 

spatiotemporal action potential propagation at least in myelinated pyramidal axons of 

the CNS (Cohen, Popovic et al. 2019). The theoretical relation between nerve 

conduction velocity and diameters of myelinated and non-myelinated axons is 

schematically depicted in Figure 4. Besides myelination and radial axonal size, several 

studies could show that the conduction velocity is additionally influenced by internodal 

length and nodal parameters in both CNS and PNS, though to a more moderate extend 

(Wu, Williams et al. 2012, Ford, Alexandrova et al. 2015, Arancibia-Cárcamo, Ford et 

al. 2017). 
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Figure 4 Theoretical relation between nerve conduction velocity and axon diameter for myelinated vs. non-
myelinated axons. Stippled green line represents the relation between axonal diameter and nerve conduction 
velocity of myelinated axons larger than 1µm. Blue line represents relation between axonal diameter and nerve 
conduction velocity for non-myelinated axons. Representation and graph adapted from Rushton et al. 1951. 
Scheme created with Biorender.com.  

 

But how is radial axonal growth actually regulated? It has been recently reported 

that loss of axonal a-adducin leads to enlarged axonal diameters preceding axonal 

degeneration in both CNS and PNS (Leite, Sampaio et al. 2016). They suggest that a-

adducin controls the diameter growth of actin rings within axons to maintain axonal 

diameters and axonal integrity (Leite, Sampaio et al. 2016). However, one of the first 

detailed studies tackling the question of how axonal diameters are regulated was 

already published in 1970 by Friede & Samorajski. They demonstrated a positive 

correlation between axonal diameter and neurofilament (NF) numbers predominantly 

in large myelinated fibers and a mild effect of microtubule number before the onset of 

myelination (Friede and Samorajski 1970). Noteworthy, other studies suggest that 

organization of the axonal cytoskeleton is also locally regulated since some studies 

observed a varying density of NF depending on the investigated axon type (Price, 

Paggi et al. 1988, Szaro, Whitnall et al. 1990). In addition, not only the number and 

density of NF but also NF phosphorylation is crucial for radial axonal growth and is 

mainly regulated by myelinating SCs (de Waegh, Lee et al. 1992, Barry, Stevenson et 
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al. 2012). The proposed “outside-in” signaling is thought to be regulated by the 

interaction of myelin-associated-glycoprotein (MAG) with the p75NTR receptor on the 

axonal side (Yin, Crawford et al. 1998, Garcia, Lobsiger et al. 2003). Since deletion of 

MAG results in reduced axonal diameters and moderate axonal degeneration in the 

PNS a role in promoting radial axonal growth is implied (Li, Tropak et al. 1994, Yin, 

Crawford et al. 1998). Thus, MAG is one of a few examples for signaling from Schwann 

cells to axons. Nonetheless, first proof of the concept that SCs also directly affect radial 

axonal growth comes from experiments by Aguayo and colleagues in 1977. They 

investigated Trembler mice, which have a point mutation in the peripheral myelin 

protein 22 (PMP22) resulting in dys- and demyelination, increased number of Schwann 

cells, decreased axonal diameters and slower nerve conduction velocity. Interestingly, 

they demonstrated that by grafting wildtype sciatic nerve segments into Trembler mice 

axons became myelinated and larger in size. Vice versa, normal wild-type axons 

regrowing through a Trembler sciatic nerve graft showed reduced axonal diameters 

(Aguayo, Attiwell et al. 1977). Defects involving PMP22 account for diseases such as 

hereditary neuropathy with liability to pressure palsy (HNPP) as well as CMT1A, the 

most common form of Charcot-Marie-Tooth (CMT) disease (De Waegh and Brady 

1990, Suter, Moskow et al. 1992, Suter, Welcher et al. 1993, Adlkofer, Frei et al. 1997, 

Pareyson and Marchesi 2009). Another relevant Schwann cell protein is myelin protein 

zero (P0/MPZ), which is the most abundant peripheral myelin protein maintaining 

proper myelin compaction in the PNS (Giese, Martini et al. 1992, Martini, Zielasek et 

al. 1995, Shapiro, Doyle et al. 1996, Martini and Schachner 1997, Patzig, Kusch et al. 

2016). Consequently, total loss of MPZ results in a dysmyelinating phenotype and 

reduced axonal diameters and serves as a model for Dejerine-Sottas syndrome 

(Giese, Martini et al. 1992, Warner, Hilz et al. 1996, Frei, Mötzing et al. 1999). In 

contrast, mice heterozygous for MPZ display myelin decompaction and demyelination 

only after 4 months of age modelling human CMT1B (Martini, Zielasek et al. 1995). 

Unlike for MAG, studies about the role of MPZ suggest a more complex and diverse 

role in maintaining healthy myelin rather than axon diameter regulation. However, 

these models suggest that understanding of signaling events from Schwann cells to 

axons are of great importance since impairment of SC genes or proteins can lead to 

peripheral nerve disorders such as neuropathies. The lack or impairment of the 

aforementioned proteins leads to a decrease in axonal diameter although exact 



29 
 

mechanisms of how Schwann cells regulate axonal diameters and if there are SC-

dependent mechanisms that restrict radial axonal growth remains poorly understood.  

 

2.4 How to study axo-glia interaction in more detail? 
Bidirectional interactions between Schwann cells and axons are crucial for 

establishing and maintaining nervous system function (Nave and Werner 2014). The 

close association of peripheral axons and Schwann cells (described in previous 

chapters) suggest that the axon/myelin interface is prone to be the major site of 

communication. Since many mechanisms are still not fully understood we hypothesize 

that functionally relevant but yet unknown proteins are localized at either the axolemma 

or innermost adaxonal SC membrane. Myelin is biochemically purified to investigate 

functionally relevant proteins, neglecting that proteins of the axolemma and partially of 

the non-compact myelin compartment are often not detected using the existing 

purification methods (Norton and Poduslo 1973, Patzig, Jahn et al. 2011, Erwig, Hesse 

et al. 2019). Nonetheless, two labs established protocols for enriching specifically the 

axon/myelin interface for the CNS and termed the respective membrane fraction either 

`myelin-axolemmal complex` or `axogliasome` (Menon, Rasband et al. 2003, 

Dhaunchak, Huang et al. 2010). The protocols were adapted from common myelin 

purification procedures and are also based on a sucrose density gradient centrifugation 

approach. Within the department of Neurogenetics, MPI-EM, the purification protocol 

was modified for application to peripheral nerves, illustrated in Figure 5 and described 

in more detail in Methods Section 3.2.5.2.  
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Figure 5 Biochemical purification of the axon/myelin interface. Scheme illustrates the biochemical purification 
of the light-weight membrane fraction of the axolemma and adaxonal myelin previously termed `axogliasome. The 
protocol was adapted from CNS protocols by Menon and Dhaunchak. Sciatic nerve lysates from 10 mice were 
pooled and overlaid with a sucrose gradient of three different molarities. Floating up ultra-gradient centrifugation 
was performed overnight and subsequent washing steps and osmotic shock were performed resulting in purified 
myelin and axogliosome-enriched fractions. For further detail on the method see chapter 3.2.5.2. Scheme created 
with Biorender.com 

  



31 
 

2.5 Aim of this study 
For the establishment of functional axon/myelin units and the maintenance of long-

term integrity of axons, glial cells and axons need to interact. This cellular association 

involves complex and not yet fully understood signaling processes. We hypothesize 

that relevant, but yet unknown proteins mediating interactions between axons and 

myelinating Schwann cells remain to be identified. To this aim we will biochemically 

purify a light-weight membrane fraction enriched for the axon/myelin interface from 

pools of wild-type murine sciatic nerves using a sucrose gradient centrifugation 

approach, as previously established for the central nervous system. Subsequently, the 

purified fraction, previously referred to as axogliasome, will be subjected to gel-free, 

quantitative mass spectrometric analysis. Besides known markers of non-compact 

myelin compartment we expect to identify known proteins of the axonal membrane and 

those yet unknown to be present at the axon/myelin interface. From this dataset we 

will select proteins for functional characterization applying the following criteria: I) 

Robust proteomic identification in all samples, II) novel protein with yet unknown role 

in the peripheral nervous system, III) predicted function as ligand, receptor, transporter 

or ion channel IV) preferably expressed in Schwann cells (SCs) rather than neurons 

and V) availability of embryonic stem cells or mice harboring a floxed allele at a mouse 

genome consortium for SC specific deletion. Upon selecting an appropriate candidate, 

we will analyze its abundance and expression in peripheral nerves applying mainly 

biochemical approaches e.g. immunoblots. Using imaging techniques such as confocal 

microscopy on sciatic nerve teased fibers, cryo-immuno-electron microscopy and 

Stimulated-emission-depletion microscopy (STED), we will determine the selected 

candidate’s localization preferably to the adaxonal SC membrane or axolemma. 

Further, we intend to understand the functional relevance of the selected candidate in 

vivo. Thus we will delete its expression specifically in SC by expressing Cre 

recombinase under control of Dhh promoter and confirm efficient deletion of the floxed 

allele of the candidate gene by using biochemical approaches. Hypothesizing a 

possible role in mediating SC-axon interaction we will analyze morphological changes 

affecting the axon/myelin unit by electron- and light microscopy of various peripheral 

nerves at selected time-points. If relevant abnormalities of mutant mice occur we will 

also characterize behavioral as well as functional capabilities using appropriate 

behavioral tests and nerve conduction velocity measurements.  
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3 Material and Methods 

3.1 Material 

3.1.1 General Material 
General laboratory materials were purchased from BD Falcon (Heidelberg, Germany), 

Bio-Rad (München, Germany), Gilson (Limburg-Offheim, Germany), Brand (Radebeul, 

Germany), Sarstedt (Nümbrecht, Germany) and Eppendorf (Hamburg, Germany). All 

chemicals used, were from Sigma-Aldrich GmbH (Munich, Germany), Merck KGaA 

(Darmstadt, Germany) and SERVA (Heidelberg, Germany). 

3.1.2 Commercial Assays & Kits 
 
Description Manufacturer 
RNA purification ‘RNeasy mini prep’ Qiagen (Portland, USA); Cat#74104 

DC Protein Assay (Lowry) Bio-Rad (Munich, Germany); Car#5000111 

Agilent RNA6000 Nano kit Agilent Technologies Cat#5067-1511 

Western Lightning® Plus-ECL PerkinElmer (xxx), Cat#NEL105001EA 

SuperSignal™ West Femto Maximum 

Sensitive Subrate 

Thermo Fischer Scientific (xxx);Cat#34095 

 

3.1.3 Primary antibodies 
 
Antibody Application Dilution Species Source 
Actin IB 1:2000 Monoclonal 

mouse 

Chemicon; Cat#MAB1501 

Alpha-

Tubulin 

IB  

IHC 

1:5000 Polyclonal 

rabbit 

Sigma; Cat#SAB2102603 

ATPaseα1 IB 1:2000 Monoclonal 

mouse 

Abcam; Cat#ab7671 

betaII-

spectrin 

STED 1:200  BD Biosciences, 

Cat#612563 

CASPR IHC 1:500  Neuromabs; Cat#clone 

K65/35 

CD274/PDL1 IB 1:1000  Abcam; Cat#ab213480 
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IHC 1:500 

CNP IB 1:1000 Monoclonal 

mouse 

Sigma; Cat#C5922 

CMTM6 IB 

IHC 

IEM 

1:500 

1:200 

1:100 

Polyclonal 

rabbit 

Origene; Cat#TA322304 

MAG (clone 

513) 

IB 

IHC 

1:1000  

1:50 

Monoclonal 

mouse 

Chemicon 

MPZ IB 

IHC 

1:2000 Monoclonal 

mouse 

J. Archelos-Garcia 

Nav1.6 IHC 1:500  Almonelabs; Cat#ASC-

009 

NFASC155 IB 1:1000  Prof. Peter Brophy 

PMP2 IB 1:1000  PTG; Cat#12717-1-AP 

SMI31 IB 1:500  Covance; Cat#SMI31P 

SMI32 IB 1:500  Covance; Cat#SMI32-P 

 

3.1.4 Secondary antibodies 
 
Antibody Application Dilution Species Source 
HRP-goat-α-
rabbit-IgG  

IB 1:10000 Goat Dianova; 

Cat#111035-003 

HRP-goat-α-
mouse-IgG 

IB 1:10000 Goat Dianova; 

Cat#11503-003 

Donkey α-

mouse-Alexa 

488 

IHC 1:1000 Donkey Invitrogen; 

Cat#A21202 

Donkey α-rabbit-

Alexa 488 

IHC 1:1000 Donkey Invitrogen; 

Cat#A21206 

Donkey α-

mouse-Alexa 

555 

IHC 1:1000 Donkey Invitrogen; 

Cat#A31570 
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Donkey α-rabbit-

Alexa 555 

IHC 1:1000 Donkey Invitrogen; 

Cat#A31572 

STAR580 STED 1:100  Abberior; 

Cat#ST580-0002 

STAR 635P STED 1:100  Abberior, 

Cat#ST635P-002 

Sheep- α-mouse STED 1:100  Dianova; Cat#515-

005-003 

Goat-α-rabbit STED 1:100  Dianova; Cat#111-

005-003 

 

3.1.5 Materials for genotyping 
 
Description Content  
Digestion buffers 5 M NaOH 

Tris/HCl pH 8.0 

67 mM 

 

Tris-borat-EDTA (TBE) buffer  Tris Base 

Boric acid  

EDTA 

40 mM  

20 mM 

1 mM 

10 mM dNTP (50x stock)  
 

dATP 

dCTP 

cGTP 

cTTP 

2.5 mM 

2.5 mM 

2.5 mM 

2.5 mM 

 200 μM final concentration in a PCR 

reaction (50 μM each nucleotide) 

 

 

Description Manufacturer 
GoTaq DNA polymerase Promega (Mannheim, Germany) 

GoTaq buffer 5x Promega (Mannheim, Germany) 

Superscript III-reverse transcriptase Invitrogen (Karlsruhe, Germany) 

dNTPs Boehringer GmbH (Mannheim, Germany) 

GeneRuler 100 bp DNA ladder Thermo Fisher Scientific (St. Leon-Rot, 

Germany) 
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3.1.6 Genotyping primer 
 
Description Number Sequence 
Cmtm6  genotyping 33516         

33517 

5'-GCTGCTGTTT CTCATTGCTG-3' 

5'-TGTGTCAAAC GCTAAGACTCAG-3' 

Recombined Cmtm6  

genotyping 

33516 

32202 

5'-GCTGCTGTTT CTCATTGCTG-3' 

5'-GAGCTCAGAC CATAACTTCG-3' 

Mag recombinase  

genotyping 

1864 

7649 

7650 

5'-TTGGCGGCGA ATGGGCTGAC-3'  

5'-ACGGCAGGGA ATGGAGACAC-3'  

5'-ACCCTGCCGC TGTTTTGGAT-3'  

Cd274 genotyping 37526 

37527 

12370 

5'-AGAACGGGAGCTGGACCTGCTTGCGTTAG-3' 

5'-GCCTTCTTGA CGAGTTCTTC-3' 

5'-ATTGACTTTC AGCGTGATTCGCTTGTAG-3' 

PlpCreERT genotyping 10099 

7963 

5'-TGGACAGCTG GGACAAAGTAAGC-3'  

5'-CGTTGCATCG ACCGGTAATGCAGGC-3'  

Dhh Cre recombinase 

genotyping 

10967 

15793 

5'- CCTGCGGAGATGCCCAATTG-3' 

5'- CAGCCCGGACCGACGATGAA-3' 

Flp recombinase 

genotyping 

15300 

15301 

5'- CACTGATATTGTAAGTAGTTTGC-3' 

5'- CTAGTGCGAAGTAGTGATCAGG-3' 

LacZ/neo genotyping 15048 5'-CAACGGGTTCTTCTGTTAGTCC-3' 

 

3.1.7 Genotyping PCRs 
 
PCR reaction Content Amount Bandsize 
Cmtm6fl/fl  Go-Taq buffer (5x) 

dNTP (2nM) 

Primer 33516          

Primer 33517 

GoTaq DNA polymerase 

ddH2O 

4.2 µl 

2.1 µl 

0.5 µl 

0.5 µl 

0.07 µl 

12.63 µl 

Wt ~ 292 bp 

Flox ~ 450 bp 

Recombined Cmtm6   Go-Taq buffer (5x) 

dNTP (2nM) 

Primer 33516 

Primer 32202 

GoTaq DNA polymerase 

ddH2O 

4.2 µl 

2.1 µl 

0.5 µl 

0.5 µl 

0.07 µl 

12.63 µl 

~ 350 bp 
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Magnull 

 

Go-Taq buffer (5x) 

dNTP (2nM) 

Primer 1864 

Primer 7649 

Primer 7650 

GoTaq DNA polymerase 

ddH2O 

4.2 µl 

2.1 µl 

0.5 µl 

0.6 µl 

0.25 µl 

0.08 µl 

12.35 µl 

Wt ~ 300 bp 

Magnull ~ 600 bp 

Cd274null Go-Taq buffer (5x) 

dNTP (2nM) 

Primer 37526 

Primer 37527 

Primer 12370 

GoTaq DNA polymerase 

ddH2O  

4.2 µl 

2.1 µl 

0.5 µl 

0.5 µl 

0.5 µl 

0.07 µl 

12.13 µl 

Wt ~ 250 bp 

Cd274null ~ 450 bp 

PlpCreERT  Go-Taq buffer (5x) 

dNTP (2nM) 

Primer 10099 

Primer 7963 

GoTaq DNA polymerase 

ddH2O  

4.2 µl 

2.1 µl 

0.2 µl 

0.2 µl 

0.07 µl 

13.23 µl 

~ 250 bp 

DhhCre  

 

Go-Taq buffer (5x) 

dNTP (2nM) 

Primer 10967 

Primer 15793 

GoTaq DNA polymerase 

ddH2O  

4.2 µl 

2.1 µl 

0.5 µl 

0.5 µl 

0.06 µl 

12.64 µl 

~ 400 bp 

Cmtm6LacZ/neo Go-Taq buffer (5x) 

dNTP (2nM) 

Primer 33516 

Primer 33517 

Primer 15048 

GoTaq DNA polymerase 

ddH2O 

4.2 µl 

2.1 µl 

0.5 µl 

0.5 µl 

0.5 µl 

0.07 µl 

12.13 µl 

Wt ~ 292 bp 

LacZ ~ 366 bp 

Flox ~ 450 bp 

Flp  Go-Taq buffer (5x) 

dNTP (2nM) 

Primer 15300 

Primer 15301 

4.2 µl 

2.1 µl 

1 µl 

1 µl 
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GoTaq DNA polymerase 

ddH2O 

0.07 µl 

11.63 µl 

 

3.1.8 Quantitative real-time PCR primer 
 
Gene Direction Sequence 
Cmtm3 Forward 

Reverse 
5`-GAGGACACCA CGTAGCAGATG -3' 

5`-GAGGACACCA CGTAGCAGATG -3' 

Cmtm4 Forward 

Reverse 
5`-GAGGATCCCC CAGATCAACT -3' 

5`-GGCGATAAAG AAAAAGAAAGTGC -3' 

Cmtm5 Forward 

Reverse 
5`-TTCCTGTCTT CCCTCAAAGG -3' 

5`-GCCGTGAAGC AAATGAAGAT -3' 

Cmtm6 Forward 

Reverse 
5`-GATACTGGAA AAGTCAAGTCATCG -3' 

5`-AATGGGTGGA GACAAAAATGA -3' 

Cmtm7 Forward 

Reverse 
5`-TCGCCTCCAT AGTGATAGCC -3' 

5`-CTCGCTAGGC AGAGGAAGC -3' 

Cmtm8 Forward 

Reverse 
5`-CAGAGAAGGA AGGGCACAAC -3' 

5`-TGACCAGGAA GGCAAAGAAC -3' 

Rps13 Forward 

Reverse 
5`-CGAAAGCACCTTGAGAGGAA -3' 

5`-TTCCAATTAGGTGGGAGCAC -3' 

Ube2l3 Forward 

Reverse 
5`-AGCAGCACCAGATCCAAGAT -3' 

5`-CACATTTGCGGATCTCTTCA -3' 

 

3.1.9 Protein Biochemistry, SDS PAGE and immunoblot 
 
Description Content  
10x Phosphate-buffered saline 

(PBS) 

NaCl 

KCl 

Na2HPO4 x 2H2O 

K2HPO4 

1.7 M 

34 mM 

40 mM 

18 mM 

 pH 7.2 with 1N NaOH 

10x Tris-buffered saline (TBS) Tris/HCl, pH 7.5 

NaCl 

500 mM 

1.5 M 

Modified RIPA buffer TBS 

EDTA 

1x 

1 mM 
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Sodium deoxycholate 

Triton X-100 

Protease inhibitor 

0.5% [w/v] 

1.0% [v/v] 

1 tablet/10 ml 

SDS separating gel Acrylamid/Bisacrylamid 29:1 

Tris/HCl pH 8.8 

SDS 

APS 

TEMED 

15%, 12% or 10% [v/v] 

0.4 M 

0.1% [w/v] 

0.03% [w/v] 

0.08% [v/v] 

SDS stacking gel Acrylamid/Bisacrylamid 29:1 

Tris/HCl pH 8.8 

APS 

TEMED 

4% [v/v] 

 

125 mM 

0.05% [w/v] 

0.1% [v/v] 

4x SDS sample buffer Glycerol 

Tris/HCl pH 6.8 

SDS 

Bromphenol blue 

40% [v/v] 

240 mM 

8% [w/v] 

0.04% [w/v] 

10x SDS running buffer 

(Laemmli buffer) 

Tris base 

Glycine 

SDS 

250 mM 

1.92 mM 

1% [w/v] 

Transfer buffer 

(semi-dry blot) 

Tris base 

Glycine 

Methanol 

SDS 

96 mM 

78 mM 

10% [v/v] 

0.03% [w/v] 

20x Tris buffered saline (TBS) Tris/HCl, pH 7.4 

NaCl 

1 M 

3 M 

1x TBS with Tween-20 (TBST) Tris/HCl, pH 7.5 

NaCl 

Tween-20 

50 mM 

150 mM 

0.05% [v/v] 

Immunoblot blocking buffer Non-fat dry milk powder 5% [w/v] 

in TBST 

 

 
Description 

 
Manufacturer 

Complete Mini protease inhibitor (Roche Diagnostics GmbH, 

Mannheim, Germany) 
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PageRulerTM Plus Prestained Protein Ladder  Thermo Fisher Scientific 

(St. Leon-Rot, Germany) 

PVDF Membrane Amersham Hybond P0.45 µm GE Healthcare Life Science 

(Chicago, USA) 
PVDF Membrane Imobilon®-FL P0.45 µm Merck Millipore Ltd. 

(Darmstadt, Germany) 

 

3.1.10 Fixation solutions 
 
Description Content  
16% Paraformaldehyde (PFA) PFA 

NaOH 

16% [w/v] 

5N 

 PFA cooked at 65 °C for 20min while stirring, NaOH 

droplets until solution was cleared and then filtered 

0.2 M Phosphate buffer Sodiumdihydrogenphosphate 

(NaH2PO4 x H2O) 

di-Sodiumhydrogenphosphate 

(Na2HPO4 x 2H2O) 

NaCl 

 

0.36% [w/v] 

 

3.1% [w/v] 

1% [w/v] 

4% Paraformaldehyde (PFA) PFA 

Phosphate buffer 

4% [w/v] 

0.1 M 

Karlsson-Schultz fixative (K&S) PFA 

Glutaraldehyde 

Phosphate buffer 

4% [w/v] 

2.5% [v/v] 

0.1 M 

Immuno Karlsson-Schultz fixative PFA 

Glutaraldehyde 

Phosphate buffer 

4% [w/v] 

0.25% [v/v] 

0.1 M 

 

3.1.11 Immunohistochemistry and staining solutions 
 
Description Content  
Phosphate buffer (0.2 M, pH 

7.4) 

Sodiumdihydrogenphosphate 

(NaH2PO4 x H2O) 

di-Sodiumhydrogenphosphate 

(Na2HPO4 x 2H2O) 

 

0.04 M 

 

0.16 M 
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PBS/BSA Sodiumdihydrogenphosphate 

(NaH2PO4 x H2O) 

di-Sodiumhydrogenphosphate 

(Na2HPO4 x 2H2O) 

NaCl 

Bovines serum albumin (BSA) 

 

0.04 M 

 

0.16 M 

1.8% [w/v] 

1.0% [w/v] 

Blocking buffer (cryosections) Goat serum or horse serum 

Triton X-100 

10% [v/v] 

0.5% [v/v] 

 Dissolved in BSA/PBS 

Blocking buffer (teased fibers) Horse serum 

Tween-20 

Dissolved in 1x PBS 

10% [v/v] 

0.1% [v/v] 

X-Gal staining buffer Potassium ferrycyanid 

Potassium ferrocyanid 

MgCl2 

5-bromo-4-chloro-indolyl-β-D-

galactopyranoside (X-gal) 

Adjusted in 1 x PBS 

5 mM 

5 mM 

2 mM 

1.2 mg/ml 

 

 

 

Description Manufacturer 
Eukitt Kindler (Freiburg, Germany) 
Aqua-Poly/Mount Polysciences (Eppelheim, Germany) 
Mowiol Mounting Media Sigma Aldrich (Darmstadt, Germany) 

DABCO Sigma Aldrich (Darmstadt, Germany) 

 

3.1.12 Electron Microscopy 
 
Description Content  
Epon Glycidether 100 

Dodecenyl succinic anhydride (DDSA) 

Methyl nadic anhydride (MNA) 

171.3 g 

115 g 

89 g 

 Mixed using magnet stirrer for 10 min 

 DMP-30 6.5 ml 

 Mixed using magnet stirrer for 20 min 
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Methylene blue Na-tetraborat (Borax) 

Methylenblau 

1% [w/v] 

1% [w/v] 

Azure II Azure II 1% [w/v] 

Methylene blue - Azure II 

staining solution 

Methylene blue 

Azure II 

50% [v/v] 

50% [v/v] 

 Freshly mixed before use 

Contrasting solution UranyLess (Science Services, Munich, Germany). 

 

3.1.13 Mouse lines 
 
Genotype Description Reference/Origin 

Cmtm6fl/fl Mice carrying 

Cmtm6tm1c(EUCOMM)Wtsi allele 
Cmtm6tm1c(EUCOMM)Wtsi 

(EUCOMM) 

DhhCre Mice expressing Cre 

recombinase under Dhh 

promotor 

Jaegle et al. 2003 

Cmtm6LacZ Mice harboring Cmtm6LacZ/neo 

allele 

This study 

Cmtm6fl/fl;DhhCre Mice lacking Cmtm6 in SCs 

(termed Cmtm6 cKo) 

This study 

Cd274null CD274/PDL1 null mice 

(termed Cd274 Ko) 

Dong et al 2004 

Magnull MAG null mice (termed Mag 

Ko) 

Montag et al. 1994 

PlpCreERT2 Mice expressing Cre 

recombinase under Plp 

promotor 

Leone et al 2003 

Cmtm6fl/fl;PlpCrERT2 Inducible deletion of CMTM6 

in SCs after Tamoxifen 

administration 

This study 
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Cmtm6fl/fl;DhhCre;Magnull Mice lacking CMTM6 from 

SCs and MAG constitutively 

(termed Cmtm6 cKo;Mag Ko) 

This study 

   

 

3.1.14 Software and RStudio script 
 

Description Manufacturer Link 

GraphPad Prism 6 GraphPad Software, Inc. https://www.graphpad.com/ 

ImageJ Schindelin et al.,2012 https://imagej.nih.gov/ij/ 

RStudio RStudio, Inc. https://www.rstudio.com/ 

LAS AF lite Leica http://leica-las-af-

lite.software.com 

Adobe Photoshop Adobe http://www.adobe.com 

bioRENDER bioRENDER http://biorender.com 

ZEN2011 Zeiss https://www.zeiss.de 
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3.2 Methods 

3.2.1 Animals  
All animal experiments were performed in accordance with the animal policies 

of the Max Planck Institute of Experimental Medicine and were approved by the 

German animal protection law of the federal state of Lower Saxons (License numbers: 

16/2168 and 15/1833). All animals used in experiments were bred and kept in the 

mouse facility of the Max Planck Institute of Experimental Medicine. Animals were 

group-housed 3-5 mice per cage in a 12-hour dark/light cycle with ad libitum access to 

food and water. Experimental mice were male unless indicated otherwise and were 

analyzed together with littermate controls as far as possible. All mice were sacrificed 

by cervical dislocation or by perfusion using anesthetics.  

 

3.2.2 Generation of Cmtm6 conditional knockout mice 
To generate CMTM6 conditional knockout mice (Cmtm6 cKo) frozen mouse 

sperm comprising the Cmtm6tm1a(EUCOMM)Wtsi allele (also termed Cmtm6lacZ/neo) was 

obtained from the European Mouse Mutant Archive (EMMA, Neuherberg/Munich, 

Germany). The sperm was used for in vitro-fertilization, yielding mice which harbor the 

Cmtm6lacZ/neo allele. Cmtm6-lacZ mice were identified via genotyping PCR, used for 

experiments or further interbred with mice expressing FLIP recombinase 

(129S4/SvJaeSor-Gt(ROSA)26Sortm1(FLP1)Dym/J; backcrossed into C57BL/6N). Hence, 

the lacZ/neo cassette was excised in vivo, yielding mice carrying the 

Cmtm6tm1c(EUCOMM)Wtsi allele (also termed Cmtm6flox). Upon appropriate interbreeding 

of homozygous Cmtm6 floxed mice (Cmtm6fl/fl) and mice expressing Cre under the 

control of the Dhh promotor (DhhCre), exon 2 and 3 of Cmtm6 were excised in vivo and 

Cmtm6 expression was inactivated in Schwann cells. For simplicity, 

Cmtm6flox/flox;DhhCre mice are also termed Cmtm6 conditional knockout (Cmtm6 cKo) 

throughout this thesis. Routine genotyping of Cmtm6 cKo mice was performed by 

genotyping PCR (see Fig 9). 

 

3.2.2.1 Tamoxifen induced recombination 
To conditionally inactivate the expression of Cmtm6 in adult Schwann cells 

Cmtm6fl/fl;PlpCrERT2 (termed Cmtm6 iKo) were generated. Therefore, Cmtm6fl/fl mice 
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were interbred with mice expressing tamoxifen inducible Cre recombinase under 

control of the Plp promotor (PlpCreERT2 mice). Tamoxifen was always freshly prepared 

for 5 days of injection. Thus, Tamoxifen was diluted in corn oil (both Sigma Aldrich) 

and mixed on a vortexer in the dark for at least 30 min RT. A concentration of 1mg 

tamoxifen dissolved in 100µl corn oil per mouse per day and was injected 

intraperitoneally (i.p.) in both, Cmtm6fl/fl (termed control) and Cmtm6 iKo, at the age of 

8 weeks for 10 days with a break of two days after the first 5 consecutive days of 

injection (scheme in Fig. 21; protocol adapted from (Leone, Genoud et al. 2003)).   

 

3.2.3 Genotyping PCR 
For genotyping of mice, small ear punches of P21 old mice were taken and 

digested. Thus, 300 µl 5M NaOH were added and biopsies were incubated at 90°C for 

1-2h. After samples cooled down, 300µl of Tris/HCl pH 8.0 were added, tubes were 

inverted once and stored at 4°C until further processing. To amplify genotype specific 

DNA fragments, polymerase chain reaction (PCR) was performed (Saiki, Gelfand et 

al. 1988, Mullis, Faloona et al. 1992). Respective primers were selected and 

synthesized by the service facility of the MPI-EM. 20µl of the respective PCR reaction 

mix was added to 1 µl DNA and PCRs were run in a T3 or Gradient Thermocycler 

(Biometra GmbH, Göttingen,Germany). PCR products were separated using 

respective gels (2% [w/v] agarose in TBE buffer). Before loading, 5µl Gel Red Nucleic 

Acid Stain (BioTrend, Cologne, Germany) was added to each sample for DNA 

visualization and 25µl were loaded onto the gel along with the marker GeneRuler 100 

bp ladder (Thermo Fischer Scientific). Samples were separated at a maximum of 120V 

for 60-90 minutes in TBE buffer. For documentation pictures were obtained using an 

Intas UV system (Intas Science Imaging, Göttingen, Germany).   

 

3.2.4 RNA isolation and analysis 
For RNA isolation and analysis, sciatic nerves of n=4-5 male mice per genotype 

at the age of 8 weeks were collected, snap frozen on dry ice and stored at -80°C until 

further processing. All consecutive steps (RNA isolation, cDNA synthesis and qRT-

PCR) were done by Ursula Kutzke and is briefly described below.  
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3.2.4.1 RNA extraction 
Small scale RNA isolation and purification was performed using Qiagen`s 

“RNeasy Mini Prep” kit following the manufacturer`s instructions. Beforehand, the 

tissue was homogenized in Trizol (Life Technologies™, Thermo Fischer Scientific, St. 

Leon-Rot, Germany) followed by chloroform extraction. RNA quality and 

concentrations were tested using Agilent RNA 6000 Nano Kit, the Agilent 2100 

Bioanalyzer (Agilent Technologies, Santa Clara, California, United States) and the 

NanoDrop 2000 spectrophotometer (Thermo Fischer Scientific, St. Leon-Rot, 

Germany) following manufacturer’s instructions. Thereafter, concentration of all 

samples was adjusted to 100ng/µl.  

 

3.2.4.2 cDNA synthesis 
For quantitative comparisons of mRNA equal amounts of the isolated RNA was 

transcribed to complementary single stranded DNA (cDNA) using the SuperScript III 

reverse transcriptase (Invitrogen, Karlsruhe, Germany) and below mentioned protocol 

for cDNA synthesis. 

 

cDNA synthesis 

8 µl RNA (800 ng in total) 

2 µl dT mic Primer (0.6pmol/µl) 

2 µl N9 (random nonamers 120 pmol/µl) 

Mixture was incubated for 10 min at 70°C and 1 min on ice to denature RNA and primers 

The following premix was added to the reaction: 

4 µl 5x first strand buffer 

1 µl dNTP (10mM) 

2 µl DDT (100mM) 

1 µl SuperScript III reverse transcriptase (200 U/µl) 

Mix was incubated in thermocycler using the following setting: 

25°C 10 min 

50°C 45 min 
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55°C 45 min 
 

Synthesized cDNA was diluted 1:30 with ddH2O and stored at -20°C until further 

processing via q-RT PCR.  

 

3.2.4.3 q-RT PCR 
Quantitative real-time PCR was performed using a pipetting robot epMotion 

5075 (Eppendorf, Hamburg Germany) for pipetting, the Power SYBR Green PCR 

Master Mix (Promega, Fitchburg, Wisconsin, United States) and the Light Cycler 480II 

(Roche Diagnostics GmbH, Mannheim, Germany). Primer sequences for respective 

genes can be found under Materials. For every reaction 4 technical replicates were 

used and pipetted as follows:  

 

Mix for gene expression analysis 

2 µl cDNA (2 ng/µl) 

5 µl SYBR Green PCR Master Mix 

0.1 µl forward primer 

0.1 µl reverse primer 

2.8 µl ddH2O 

PCR program for 50 cycles: 

15 sec 95°C 

1 min 60°C 
 

Data analysis was carried out using Microsoft Excel 2013. mRNA abundances 

were normalized in relation to the mean of standard genes (Rps13 and Ube2l3) which 

did not differ between genotypes. The average of all biological replicates was 

calculated and related to wild-type levels which were set to 1. Graphical illustration of 

statistical testing was performed by using GraphPad Prism 6. 
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3.2.5 Biochemical protein analyses 

3.2.5.1 Sample collection 
Male mice of indicated genotypes and ages were sacrificed by cervical 

dislocation and sciatic nerves were carefully dissected. Dorsal and ventral root 

preparations for immunoblotting were performed by Theresa Kungl. Sciatic nerves of 

wild-type mice for proteomic analysis of the AEF fraction were dissected from Katja 

Lüders. Freshly dissected nerves were immediately frozen on dry ice and stored at -

80°C until further processing.  

 

3.2.5.2 Biochemical purification of the axogliosome-enriched fraction (AEF) 
To purify a light-weight membrane fraction enriched for the plasma membrane 

of peripheral axons and the adaxonal Schwann cell membrane (also termed 

axogliosome-enriched fraction; AEF), protocols from Dhaunchak et al. 2010 and 

Menon et al. 2003 were adapted (Menon, Rasband et al. 2003, Dhaunchak, Huang et 

al. 2010). For each biological replicate sciatic nerves dissected from 10 mice of 

indicated age and gender were pooled and collected in a centrifugation tube containing 

1.25M sucrose supplemented with complete protease inhibitor tablets (Roche 

Diagnostics GmbH, Mannheim, Germany). Nerves were homogenized using Polytron 

PT3000 (Kinemetica, Eschbach, Germany) and 100µl lysate was directly frozen on dry 

ice for later comparison. The remaining nerve lysate was carefully overlaid with first 

1M and then 0.29M sucrose (see scheme in Fig. 5). Further, floating-up centrifugation 

was carried out using an XL-70 ultracentrifuge with OptimaTM TLX rotor (Beckman 

Coulter, Krefeld, Germany) at 100.000g for 16 h at 4°C with slowest possible 

acceleration/deceleration settings.  

Using a Pasteur pipette, the myelin-enriched fraction at the 0.29M/1M 

interphase and subsequently the axogliasome-enriched fraction (AEF) at the 

1M/1.25M interphase was collected (see Fig. 5) and transferred into a fresh 

centrifugation tube. While the myelin fraction was stored on ice, the AEF was further 

processed and two subsequent washing steps and osmotic shocks were performed as 

previously described in detail for the myelin-enriched fraction (Erwig et al., 2019). 

Briefly, ice-cold ddH2O was added to the AEF and tubes were centrifuged at 100.000g 

for 15 min at 4°C. The supernatants were carefully poured off and each pellet was 

resuspended in ice-cold ddH2O and centrifuged at 12000 g for 15 min at 4 °C. Again, 
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the supernatants were poured off, remaining fluid was taken up using tissue paper and 

the AEF-pellet was taken up in 50µl 10X TBS with protease inhibitor (Roche), snap-

frozen and stored at -80°C. The myelin-enriched fraction was processed the same way 

and the pellet was taken up in 100µl 10X TBS including protease inhibitor (Roche), 

snap-frozen and stored at -80°C. Purification of the AEF of wild-type mice was 

performed by Katja Lüders.  

 

3.2.5.3 Proteome Analysis 
For wild-type proteome analyses the AEF was purified from nine pools of sciatic 

nerves from 10 mice, considered as nine biological replicates. For comparing control 

and Cmtm6 cKo mice the AEF was purified from three pools per genotype of sciatic 

nerves from 10 mice per pool, considered as three biological replicates per genotype. 

All samples were analyzed with silver staining beforehand, to ensure equal qualities 

and quantitative mass spectrometry (MS) was performed by Dr. Stefan Tenzer, 

Institute for Immunology, University Mainz as previously described in (Distler, Kuharev 

et al. 2014, Distler, Kuharev et al. 2016). Briefly, respective AEF samples with a protein 

concentration of at least 100µg each were sent to Stefan Tenzer and were analyzed 

using ultraperformance Liquid Chromatography –Mass Spectrometry (LC-MS). 

Proteolytic digestion of isolated AEF fractions was performed beforehand, using filter-

aided sample preparation (FASP) as described in (Wiśniewski, Zougman et al. 2009, 

Distler, Kuharev et al. 2016). LC-separation was performed using the nanoAquity 

UPLC system (Waters Corporation) and MS analysis was done using a nano-ESI-Q-

TOF mass spectrometer (Waters Corporation Synapt G2-S HDMS) equipped with an 

ion-mobility separation (IMS) device. Data was collected in data-independent 

acquisition mode using MSE combined with UDMSE and raw data was processed and 

searched with ProteinLynx Global SERVER (PLGS, Version 3.02. Waters Corporation) 

against UniProtKB/SwissProt Mouse Reference Proteome and known contaminants. 

Post-processing and quantification were performed using ISOQuant and absolute 

sample amounts were estimated using the TOP3 quantification method as described 

in (Silva, Gorenstein et al. 2006). In general, peptides had to be identified in at least 

three biological replicates with at least 2 peptides per protein and only peptides with a 

PLGS identification score equal or above 5.5 were considered. For depicted data, 

further statistical analysis and data representation in graphs was prepared using 

Microsoft Excel 2013 and GraphPad Prism 6.  
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3.2.5.4 Sample preparation  
Snap frozen peripheral nerve tissue (sciatic nerves, dorsal or ventral roots) were 

taken from -80°C, cut in small pieces on dry ice and added to Precellys tubes on ice. 

Further, tissue was homogenized in 400µl (sciatic nerves) or 200µl (dorsal and ventral 

roots) RIPA buffer containing protease inhibitor using Precellys 24 (Peglab, Erlangen, 

Germany) two times at 6500rpm for 3x 10sec + 10 sec break. Lysates were kept on 

ice for 15 min and foam was removed by short centrifugation (Heraus Biofuge Pico 

table centrifuge, 13000 rpm). If samples were not fully homogenized a third 

homogenization step using the Precellys was performed. Afterwards the lysate was 

transferred into a 1.5 ml tube and centrifuged at 13000 rpm 10 min at 4°C. The 

supernatant was transferred into a new tube and stored at -80°C until further 

processing.  

To determine protein concentrations of respective samples the Lowry assay 

(Lowry 1951 Peterson 1979) was performed using the Bio-Rad DC Protein Assay kit 

and following manufacturer`s instruction. The optical density was measured at 650 nm 

using the Eon™ High Performance Microplate Spectrophotometer (BioTek, Vermont, 

USA). Samples were further diluted to 0.1µg/µl and 1µg/µl in 1x SDS sample buffer 

and 5%β-mercaptoethanol [v/v] to denature proteins. For detecting MAG non-reduced 

conditions without 5%β-mercaptoethanol were used. Samples were kept at -20°C. 

 

3.2.5.5 SDS PAGE 
Protein separation was performed by SDS-PAGE. Thus, Acrylamid gels (10-

15%) were freshly prepared using the Mini-PROTEAN Handcast system (Bio-Rad, 

Munich, Germany). Before usage samples were always heated for 10 min at 40°C. 

Depending on respective protein and antibody, between 2-25µg per sample, as well 

as 5µl pre-stained protein ladder (PageRuler™, Thermo Fischer Scientific) were 

carefully loaded onto the gel. Protein separation was carried out using the BioRad 

Protein Electrophoresis device with a constant current of 200V for 1 h. Afterwards gels 

were removed and incubated in transfer buffer for 15 min before performing the 

immunoblot.  
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3.2.5.6 Immunoblot 
For immunodetection, proteins were transferred to a PVDF membrane (GE 

Healthcare, Buckinghamshire, UK; Cat#10600023) using the Novex® Semi-Dry Blotter 

(Invitrogen, Karlsruhe, Germany). Beforehand, the PVDF membranes were activated 

with 100% ethanol for 1 min, washed 2 times in ddH2O and kept in transfer buffer for 

up to 10 minutes until further processing. Additionally, eight Whatman™ papers (GE 

Healthcare Life Sciences, Buckinghamshire, UK) were soaked in ice cold transfer 

buffer for about 20 min. On the anode plate four Whatman™ papers were stacked and 

air bubbles were carefully removed with a blotting roller. Next, the activated PVDF 

membrane was placed on top of the stack, followed by the gel and four additional 

Whatman™ papers. Proteins were transferred at 20V for 30-45 min (depending on 

protein size) using Bio-Rad power supply. After blotting, membranes were incubated 

in blocking buffer (5% non-fat dry milk in 1 x TBS containing 0.05% Tween-20 

(Promega, Fitchburg, USA)) for 30 min-1 h at RT. Primary antibodies were diluted in 5 

ml blocking buffer and the membrane was incubated overnight at 4°C on a rotor. For 

CD274/PDL1 better results were achieved with additional 1-2h incubation at RT the 

following day. Afterwards the membranes were washed 3 x 5 min with 1xTBS-T and 

then incubated with appropriate horseradish peroxidase (HRP)-coupled secondary 

antibodies (diluted in blocking buffer) for 1 h at RT. Afterwards, membranes were again 

washed 3 x 5 min in 1xTBS-T.  

 

Bands were visualized using enhanced chemiluminescent detection (ECL) 

according to the manufacturer’s instructions and depending on the intensity of the 

signal (Western Lightning® Plus-ECL or SuperSignalä West Femto Maximum 

Sensitive Subrate for CD274/PDL1; Thermo Fischer Scientific, St. Leon-Rot, 

Germany). Immunoblots were scanned using ECL Chemostar (Intas Science Imaging, 

Göttingen, Germany). Membranes were incubated with internal standards like actin or 

alpha-tubulin to control for equal loading. 

 

Quantifications for NEFH- and phosphorylated NEFH abundances were 

performed by measuring band intensity using ImageJ software 

(https://imagej.nih.gov/ij/) and normalizing to band intensities of actin detected on the 

same membrane (n=3). In general, immunoblots were replicated 3 times with an n=3 

per genotype whenever possible.  
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3.2.6 Immunohistochemistry 

3.2.6.1 Teased fiber preparation 
For immunolabeling of teased fiber preparations, sciatic nerves dissected from 

mice of the indicated genotypes at 8-10 weeks were transferred into ice-cold PBS. 

Using two fine forceps (Dumont No.5) the epineurium was carefully removed, nerves 

were split longitudinally and smaller nerve pieces were transferred onto a new 

coverslip. Thereafter, fiber bundles were carefully pulled apart with both forceps 

resulting in axons being completely separated from each other. Afterwards, slides were 

dried and stored at -20°C for up to a maximum of 12 month. 

 

3.2.6.2 Cryosections 
Mice were sacrificed by cervical dislocation and the sciatic nerves of 8-weeks-

old mice were carefully dissected and post-fixed with 4% PFA [w/v] for 1 h and 1 % 

PFA [w/v] o/n at 4°C. The following days the tissue was transferred to 10% [w/v] 

sucrose, 20% [w/v] sucrose and 30% [w/v] sucrose in 0.1 phosphate buffer, each o/n 

at 4°C. Afterwards, the tissue was embedded in small plastic chamber on dry ice using 

Tissue-Tek® O.C.T.™ Compound (Sakura, Staufen, Germany) and stored at -20°C. 

Using a cryostat (Reichert Jung® Cryocut 18000, Leica, Wetzlar, Germany) 10µm thick 

transverse sections were cut and collected on Superfrost® Plus microscope slides 

(Thermo Fischer Scientific, t. Leon-Rot, Germany), dried at RT and stored at -20°C 

until further processing.   

 

3.2.6.3 Fluorescent Staining 
For immunolabeling, teased fiber preparations or sciatic nerve cross-sections 

were incubated for 5 min in 4%PFA followed by 5 min 100% Methanol and 3 x 5 min 

washing in PBS. Samples were blocked for 1 h in blocking buffer (PBS, 10% horse 

serum and 0.1% Tween-20) at RT consecutively. Next, primary antibodies were diluted 

in blocking buffer and slides were incubated overnight at 4°C. Samples were washed 

3 x 5 min in PBS and appropriate secondary antibodies diluted in blocking buffer were 

applied for 1 h at RT. After washing with PBS 3 x 5 min and 2 x 30 sec in ddH2O slides 

were mounted using Aqua-Poly/Mount (Polysciences, Eppelheim, Germany). 
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3.2.6.4 Imaging and analysis 
Fluorescent images of sciatic nerve teased fiber preparations were obtained 

randomly at 10x or 40x magnification using Axio Observer Z2 (Zeiss) and, if required, 

stitched using Zeiss Zen2011. Obtained images were used for quantifications. For 

representative images, slides were imaged using the confocal microscope Leica SP5. 

Here, the signal was collected with the objective HCX PL APO lambda blue 63.0.x1.20. 

DAPI staining was excited with 405 nm and collected between 417 nm - 480 nm. 

Alexa488 fluorophore was excited with an Argon laser for which the excitation was set 

to 488 nm and the emission to 500 nm - 560 nm. Alexa555 was excited by using the 

DPSS561 at an excitation of 561 nm and the emission was set to 573 nm - 630 nm. 

For obtaining, exporting and processing the images LAS AF lite and Adobe Photoshop 

were used. Node and paranode length and diameter were quantified on 40x magnified 

images using ImageJ. For node assessment the diameter and length of each Nav1.6 

positive node was measured (as displayed in Fig.18) and the overall mean per animal 

was calculated. For paranodes, the diameter and length of both CASPR positive 

paranodes besides a Nav1.6 positive node was measured (as displayed in Fig.18), the 

mean of both paranodes beside one node and the overall mean per animal was 

calculated. For internodal length the distance between one Nav 1.6 positive node and 

the next was measured using Image J software on stitched images obtained at 10x 

magnification.  

 

3.2.6.5 STED nanoscopy 
STED nanoscopy on free-floating partially teased fibers of wild-type mice was 

performed by Elisa D`Este (Max Planck Institute for Medical Research, Heidelberg) as 

described in (D'Este, Kamin et al. 2017). Primary antibodies were specific for CMTM6 

(OriGene, Cat# TA322304, 1:100) and betaII spectrin (BD Biosciences, San Jose, 

United States, Cat# 612563, 1:200). Secondary antibodies (sheep anti-mouse, 

Dianova, Hamburg, Germany, Cat# 515-005-003; goat-anti-rabbit, Dianova, Cat# 111-

005-003) were labeled with STAR580 (Abberior, Göttingen, Germany, Cat# ST580-

0002) or STAR635P (Abberior, Cat# ST635P-002) and used at 1:100 dilution. 
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3.2.6.6 LacZ staining and imaging 
To visualize cells with Cmtm6 gene activity, teased fibers of heterozygous 

Cmtm6LacZ/neo mice were obtained and lacZ immunohistochemistry was performed. 

Thus, slides were incubated with X-gal staining buffer at 37°C for 2-3.5 h in the dark. 

To stop the reaction, samples were rinsed with PBS 1-2 times and mounted using 

Aqua-Poly/Mount (Polysciences, Eppelheim, Germany). Images were captured at 40x 

magnification using the Zeiss AxioImager Z1 (Zeiss, Oberkochern, Germany).  

 

3.2.7 Electron microscopy 

3.2.7.1 Sample collection 
Animals of indicated age and genotype were sacrificed by cervical dislocation. 

Subsequently, sciatic nerves and phrenic nerves as well as dorsal and ventral roots 

were carefully dissected and postfixed in Karlsson-Schultz fixative (4% PFA, 2.5% 

glutaraldehyde in 0.1M phosphate buffer) solution at 4°C until further processing. 

 

3.2.7.2 Epon embedding 
For electron microscopic imaging, the fixed nerves were embedded in Epon 

using an automated system (EMPT, Leica, Wetzlar, Germany). Beforehand, nerves 

were rinsed with 0.1M phosphate buffer and placed into small plastic chambers. 

Thereafter, the tissue was processed according to the following protocol: 

 

Solution Incubation time Temperature 

Phosphate buffer 3x10 min 4°C 

2% [w/v] OsO4 4 h 4°C 

ddH2O 3x10 min 4°C 

30% [v/v] Ethanol 20 min 4°C 

50% [v/v] Ethanol 20 min 4°C 

70% [v/v] Ethanol 20 min 4°C 



54 
 

90% [v/v] Ethanol 20 min 4°C 

100% [v/v] Ethanol 4x10 min 4°C 

Propylenoxid 3x10 min RT 

Propylenoxid/Epon 2:1 2 h RT 

Propylenoxid/Epon 1:1 2 h RT 

Propylenoxid/Epon 1:2 4 h RT 

Epon 4 h RT 

 

Afterwards the tissue was carefully placed into molds filled with Epon, labelled 

accordingly and left o/n at 60°C for polymerization of Epon. 

 

3.2.7.3 Sectioning, staining and imaging of semi- and ultra-thin sections 
Semithin (500nm) cross sections of epon embedded samples were obtained 

using a PTPC Powertome Ultramicrotom (RMC, Tuscon Arizona, USA) and a diamond 

knife (Diatome Ultra 45°). The sections were transferred to a glass slide, dried on a 

warm plate (60°C) and stained with methylene blue/azur II (1:1) for approximately 1 

min followed by rinsing with ddH2O for 1 min (Richardson et al., 1960). Thereafter, the 

samples were mounted using Eukitt and images were acquired with a 100x oil objective 

of the Zeiss AxioImager Z1 (Zeiss, Oberkochern, Germany) and stitched by Zeiss Zen 

1.0 software.  

For transmission electron microscopy ultrathin section (50nm) were cut using 

the same equipment and collected on formvar polyvinyl coated double sized slot grids 

(AGAR scientific, Essex, UK). Grids carrying ultrathin sections were contrasted with 

UranyLess (Electron Mircoscopy Science, Hatfield, Panama) for 15-30 min and 

washed 6 x with ddH2O. For quantitative analyses 8-20 random, non-overlapping 

images were taken at a magnification of 3000x (sciatic nerves, dorsal roots), 4000x 

(phrenic nerves) or 7000x (Remak bundles) using a Zeiss EM900 electron microscope 

(Zeiss, Oberkochen, Germany). To analyze neurofilament density, at least 30 images 

of cross-sectioned, non-angled sciatic nerve axons were obtained at a magnification 

of 6300x using the EM912AB-Omega (Zeiss, Oberkochen, Germany). 
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3.2.7.4 Analysis 
To investigate axonal diameters a semi-automatically method using the ROI 

based analyze particle function of ImageJ (Fiji) was applied followed by careful visual 

inspection. Thus, myelinated axons that escaped automated quantification were 

manually encircled. Further, tilted axons which were not cross sectioned accordingly 

were not included in analysis of axonal diameters. All myelinated axons were included 

in the number of myelinated axons irrespective if the axonal diameter was measured 

or not, resulting in 3000-5000 axons per sciatic nerve, 1800-2600 per dorsal root and 

between 200-300 per phrenic nerve. Schwann cell (SC) nuclei were quantified as 

described in (Patzig, Kusch et al. 2016) by only counting those SC nuclei which are in 

close contact to an axon in a 1:1 ratio. All other nuclei in close proximity to other cells 

(mainly macrophages or fibroblasts) or nuclei away from axons where not counted.  All 

quantifications on semi-thin levels were performed blinded to the genotype and 

between n=3-5 animals per genotype at respective time points were analyzed (exact 

values indicated in figure or figure legends). 

 

On electron microscopic level g-ratio, axonal degeneration, number of non-

myelinated axons and Remak bundles were assessed as previously described in 

(Fledrich, Stassart et al. 2014, Patzig, Kusch et al. 2016) using ImageJ (Fiji) and 

Microsoft Excel 2013 for calculations of g-ratio. The g-ratio was measured by encircling 

the circumference of an axon without myelin divided by the encircled circumference of 

the same axon including the myelin sheath. Only normal appearing myelinated axons 

were measured. At least 58 axons per phrenic nerve and 180 axons per sciatic nerve 

per animal with n=3-5 per genotype were analyzed on 8-20 non-overlapping images. 

To evaluate axonal degeneration, every myelin/axon unit in which the axon was either 

gone (just myelin sheath) or appeared degenerating was counted. For assessing 

axons in Remak bundles at least 200 axons per animal were analyzed using images 

with 7000x magnification. Thus, the circumference of each unmyelinated axon within 

a bundle was measured. Additionally, the number of axons per bundle was counted. It 

should be taken into account that axons smaller than 0.2µm could not be assessed 

using the obtained images. Further, for the number of pro-myelinated axons only axons 

which are larger than 1µm were measured, counted and set in relation to the overall 

number of axons within the total quantified area. For measuring neurofilament density 

30 cross-sectioned, non-angled sciatic nerve axons of n=3 per genotype were 
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analyzed by overlaying a 0.2µm2 grid and counting the number of neurofilaments within 

a minimum of 3 grids/axon using ImageJ (Fiji). Afterwards, the mean of the 

neurofilament number per axon was calculated. All quantifications were performed 

blinded to the genotype.  

 

3.2.7.5 Immunogold-labeling 
Immunogold labeling of cryosections was performed by Ramona Jung as 

described in (Tait, Gunn-Moore et al. 2000, Werner, Kuhlmann et al. 2007). Cross-

sectioned sciatic nerves from 2-month-old WT mice were used and antibodies were 

specific for CMTM6 (OriGene, Cat# TA322304; 1:100). Images of respective samples 

were obtained using the EM912AB-Omega (Zeiss, Oberkochen, Germany) coupled to 

a wide-angled dual speed 2k CCD-camera (TRS, Moorenweis, Germany).  

 

3.2.8 Behavioral Analysis and Plethysmography 
All behavioral experiments as well as Plethysmography and subsequent 

analyses were performed by the same investigator, blinded to the genotype and with 

standardized methods generally used in the department. All experiments were 

performed one mouse at a time, only once per mouse and without any prior habituation 

to the test itself (except for open-field assay and Plethysmography, further information 

see below). Mice were generally placed in the experimental room at least 30 minutes 

before the testing. Number of animals per genotype and ages are indicated in the 

respective graphs and legends. Calculations and illustration of data was done using 

Microsoft Excel 2013 and GraphPad Prism 6. 

 

3.2.8.1 Grid walking test 
For assessing motor coordination, mice were placed on a metal grid (1 cm grid 

size) and allowed to run a distance of 2m while being videotaped. The number of 

complete fore-and hind limb slips through the grid was assessed on a slow-motion 

video.  
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3.2.8.2 Hot plate assay 
For sensory assessment (Fledrich, Schlotter-Weigel et al. 2012) animals were 

placed on a hot plate (Leica HI 1220; Nussloch, Germany) which was heated to 

constant 52°C and surrounded by a clear acrylic cage (open top). A timer was started 

once the mouse was placed on the hot plate and the time until it responded with either 

licking or retracting one of their hind limbs was stopped and measured as retraction 

latency. Afterwards, mice were always immediately removed from the hot plate and 

placed back in the home cage.  

 

3.2.8.3 Rotarod test 
For motor assessment animal were tested on the Rotarod system 3375.5 (TSE 

systems). Therefore, mice were placed on a rotating rod that was accelerated from 5 

to 40 rpm in 300 sec. Mice were tested for 2 consecutive days following 1 day of 

training. Mice had to perform 3 consecutive runs per trial with 3 trials each day and a 

10 min break between trials and the holding time (sec) per run was recorded. 

Afterwards, the mean holding time (sec)/Latency to fall (sec) per trial as well as the 

mean of the maximum value per trial was calculated using Microsoft Excel 2013. 

 

3.2.8.4 Open-field assay 
For assessing motor capabilities and exploratory behavior mice were tested in 

the open-field assay as previously described in (Dere, Dahm et al. 2014, Dere, Winkler 

et al. 2015, Netrakanti, Cooper et al. 2015). Prior testing mice were placed in the front 

room of the testing room for 1-2 hours for habituation. The open-field set-up is an 

apparatus with a gray circular Perspex area (120 cm diameter, 25 cm height) and 

contains a light intensity of 140 lux in the center of the box. One mouse at a time was 

placed in the center of the box and allowed to explore the box for 10 min freely. An 

automated tracking software (Viewer2, Biobserve, Bonn, Germany) tracked the 

following parameters: latency (s) to cross from center to periphery, time spent (s) in 

the peripheral, intermediate and center zones of the box as well as the total distance 

(m) and mean running velocity (mm/s) mice travelled in the box. After each mouse, the 

box was cleaned with ethanol, wiped with ddH2O and after 3 min the next mouse was 

placed inside the open-field box. Mice were only tested once.  
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3.2.8.5 Plethysmography 
Breathing was analyzed by unrestrained whole-body-plethysmography 

essentially as originally established (Drorbaugh and Fenn 1955). Experiments and 

analyses were performed by Swen Hülsmann (UMG Göttingen). Briefly, mice were 

placed in a plexiglass chamber and could habituate for at least 12 minutes and 

breathing cycles from a subsequent period of 3 min were analyzed. Overall, intervals 

longer than 750 ms were considered as breathing pauses, and the number per minute 

was calculated. Plethysmography and analyses were done blinded to the genotype.  
 

3.2.9 Electrophysiology 
Standard electroneurography was performed by Robert Fledrich on mice of 

indicated genotypes at P75 using a Toennies Neuroscreenâ (Jaeger, Joechsberg, 

Germany) (Fledrich, Akkermann et al. 2019). Briefly, mice were anesthetized with 

intraperitoneal (i.p.) injection of Ketaminehydrochloride/Xylazinhydrochloride (100mg 

kg-1 BW / 8 mg kg-1 BW) to perform recordings under deep anesthesia. Sensory nerve 

conduction velocity (sNCV) measurements were performed on the tail of the mice. 

Therefore, a pair of fine steel needle recording electrodes (Schuler Medizintechnik, 

Freiburg, Germany) was placed upright at the tail base on either side of the tail followed 

by 2 proximal stimulation electrodes exactly 50 mm distally. Additionally, the ground 

electrode was placed subcutaneously between the two needle pairs. Thereafter, 

increasing current pulses were delivered until supramaximal stimulation was achieved 

and the compound nerve action potential (SNAP) reached a plateau. SNAP 

measurements were averaged over 20 stimuli and the sensory nerve conduction 

velocities (sNCV) were calculated from sensory action potential latency measurements 

over the 50 mm distance. For motor recordings the first pair of needle electrodes 

(proximal) was placed close to the sciatic notch, the other pair (distal) in vicinity to the 

ankle next to the tibial nerve and motor recording electrodes in the small foot muscle 

of the plantar surface. The distance of the stimulation electrodes was measured. Again, 

proximal and distal supramaximal stimulation of the sciatic and tibial nerve was applied 

and the compound muscle action potentials (CMAPs) were recorded. Together with 

the distance of the stimulation electrodes and the difference of the responses the motor 

nerve conduction velocity (mNCV) was calculated.  
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3.2.10 Quantification and statistical analysis 
Quantifications, statistical analyses and data visualization were mainly performed 

with Microsoft Excel 2013, GraphPad Prism (GraphPad Software, Inc., San Diego, 

United States) and RStudio (https://www.rstudio.com/, Version 3.4.1). Data in this 

thesis is mainly shown as bar graphs or dot plots as mean ±  SD (error bars). The 

overall data distribution was always assumed to be normal but was not formally tested, 

except for Plethysmography data performed by Swen Hülsmann. Sample sizes were 

not predetermined but are similar to those commonly used in the field. Exact sample 

size as well as the number of mice used for the different experiments is shown in the 

figures and/or indicated in the figure legends. In addition, outlier tests were performed 

on all data except axonal diameter values using GraphPad 

(https://www.graphpad.com/quickcalcs/Grubbs1.cfm). Only for nerve conduction 

velocity measurements one outlier in the control group was detected but no further 

outliers were identified. For comparing two groups, unpaired two-tailed Student`s t test 

was applied. For qRT-PCR two-way analysis of variance (ANOVA) with Sidak`s 

multiple comparisons test was performed. For rotarod data two-way ANOVA with 

Bonferroni multiple comparison test was used. Since data of the breathing pauses are 

not normally distributed, the nonparametric Mann-Whitney Rank Sum Test was 

applied. For statistically assessing the relative frequency distribution of axonal 

diameters RStudio was used. The script has been generated by Drini Morina and is 

deposited at https://github.com/MariaEichel/FrequencyDistributions.R or can be found 

in the addendum. For this statistical analysis, data was used in data frames and a 

simple linear model was applied. The two-tailed Kolmogorow-Smirnow test was used 

to judge the change in distribution between two groups but was only applied if the 

previously applied two-tailed Student`s t test gave a significant result. The visualization 

of axonal diameter frequency distributions was performed in GraphPad Prism. 

Therefore, all measured axonal diameter values per animal were grouped respective 

to their genotype and the built-in analysis of frequency distribution in % was performed 

applying a bin width of 0.5 µm or 0.1 µm and binning each replicate. Overall, a p-value 

of <0.05 was considered significant in all tests. Significance levels are represented as 

n.s. =non-significant, *P<0.05, **P<0.01, ***P<0.001 with exact p-values mentioned in 

the respective figure legends.  
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4 Results 

4.1 Identifying CMTM6 as a novel adaxonal Schwann cell protein  
To closer investigate the association between myelinating Schwann cells and 

peripheral axons and to reveal yet unknown but functionally relevant novel molecules 

at the axon/myelin interface, we biochemically purified a light-weight membrane 

fraction from pools of sciatic nerves of wild-type mice. The method itself was originally 

established by Menon and Dhaunchak for purifying the so called “axogliasome” 

(Dhaunchak, Huang et al. 2010) or “axolemmal complex” (Menon, Rasband et al. 2003) 

in the CNS but was adapted in this study as depicted in Figure 5. The purified fractions 

were subjected to quantitative mass spectrometry (performed by Stefan Tenzer, Univ. 

Mainz) and resulted in 755 identified proteins. Amongst those were markers of the 

axolemma and adaxonal myelin membranes depicted in Figure 6A. Further, proteins 

of the extracellular matrix and basal lamina, compact myelin as well as axonal 

cytoskeleton were detected (Fig. 27 and Table 2 Addendum). Since proteins known to 

be located in other compartments than the axon/myelin interface were detected in the 

purified fractions, we will further refer to the fraction as the “axogliasome-enriched 

fraction” (AEF).  

 

Amongst the identified proteins we tried to select candidates for future in vivo 

investigations by applying the following selection criteria: I) robust abundance in all 

purified AEF samples, II) possible function as ligand or receptor III) novel protein or 

protein family with a yet unknown role for the nervous system, IV) preferably expressed 

on SCs rather than neurons and V) availability of embryonic stem cells or mice 

harboring a floxed allele at a mouse genome consortium for SC specific deletion. 

Based on these criteria, we selected CMTM6 (chemokine-like factor-like MARVEL 

transmembrane-domain-containing family member 6), a tetra span protein from the 

under investigated CMTM protein family, for further analysis. Cmtm6 was previously 

also detected in microarray analysis of murine sciatic nerves displaying higher mRNA 

abundance compared to other CMTM-family members in adult mice (unpublished data 

by Chris Hummel, MPI-EM Neurogenetics). By applying immunoblot analysis we 

validated the increased abundance of CMTM6 in the AEF compared to biochemical 

purified myelin and lysate, respectively. Also, other axolemma and adaxonal 

membrane proteins like MAG, NFASC and ATP1A1 showed an increased abundance 
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in the AEF, whereas myelin markers (MPZ and PMP2) were clearly enriched in the 

myelin fraction. Axonal cytoskeleton protein NEFH could only be reliably detected in 

the lysate fraction (Fig. 6B).  

 
Figure 6 Identification of CMTM6 as a novel adaxonal Schwann cell protein. A) Pie chart showing protein 
composition of axolemma and adaxonal myelin enriched fraction (AEF) from pools of sciatic nerves of adult WT 
mice. Proteins of the axolemma and adaxonal myelin compartment are depicted on the right side. CMTM6 was 
discovered as novel constituent. Protein composition of the other compartments and exact ppm values can be found 
in the addendum (Fig. 27 and Table 2) B) Immunoblot-analysis identifies CMTM6 enrichment in AEF compared to 
myelin and nerve lysate. Marker for axolemma & adaxonal myelin (MAG, NFASC, ATP1A1), compact myelin (MPZ, 
PMP2) and axonal cytoskeleton (NEFH) serve as controls.  
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To further investigate if CMTM6 could indeed play a role in Schwann cell to axon 

signaling we used STED microscopy on sciatic nerve teased fiber preparations to 

determine the exact localization of CMTM6. Indeed, we showed that CMTM6 (red) can 

be found at the adaxonal SC membrane adjacent to the axolemma labeled with betaII-

spectrin (green) as well as in Schmidt-Lantermann incisures (SLI) (Fig. 7A, B indicated 

by white arrowheads). Further, it was shown that CMTM6 displays a periodic 

distribution along the internode with an autocorrelation peak at 200 nm (Fig. 7C, black 

arrow). Additionally, cryo-immuno electron microscopy on cross-sectioned sciatic 

nerves of 2-month-old WT mice confirmed the adaxonal localization of CMTM6 (Fig. 

7D, indicated by black arrowheads).  

 

 
Figure 7 CMTM6 is localized to the adaxonal membrane. A) STED-micrographs of teased sciatic nerve 
preparations immunolabeled for CMTM6 (red) and betaII-spectrin (green). Arrowheads indicate adaxonal myelin 
membrane, Schmidt-Lantermann incisures (SLI) and axolemma. Boxes on merged image indicate areas enlarged 
for line-profile of intensities (B) and autocorrelation analysis (C). Scale bar, 5 µm. B) Line profile shows that CMTM6 
immunolabeling (red) is detected adjacent to the axolemma, identified by betaII-spectrin immunolabeling (green). 
Scale bar, 500 nm.  C) Autocorrelation-analysis reveals a peak of periodic distribution of CMTM6-immunolabeling 
(red) longitudinal along the axon/myelin unit, similar to betaII-spectrin, indicated by black arrows. Scale bar, 500 
nm.  D) Immunogold-labeling of cross-sectioned sciatic nerves (WT, 2 mo) shows CMTM6-labeling (arrowheads) 
at the adaxonal myelin. Scale bar, 100 nm.  

 

To further elucidate if Cmtm6 is expressed in Schwann cells we performed X-

Gal histochemistry on sciatic nerve teased fibers of adult Cmtm6lacZ/neo mice and indeed 

demonstrated a labeling pattern in the soma of Schwann cell nuclei (Fig. 8A). To 

discover the appearance of CMTM6 developmentally, its abundance was analyzed by 

immunoblotting of WT sciatic nerve lysates at different time-points ranging from P1 to 
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P30. Here, we showed a developmentally increasing abundance of CMTM6 from P5 

onwards which is similar to common myelin proteins such as MPZ, MAG and CNP (Fig. 

8B).  

 

 
Figure 8 Cmtm6 is expressed by SC and protein abundance increases with nerve development. A) X-gal-
histochemistry on sciatic nerve teased fiber preparations of Cmtm6lacZ/neo mice shows LacZ activity in the Schwann 
cell soma. Scale bar, 25µm. B) Immunoblot analysis of sciatic nerve lysate of 1, 5, 10, 15- and 30-days old WT 
mice shows developmentally increasing CMTM6 abundance similar to known myelin markers (MPZ, MAG, CNP). 
a-tubulin serves as control. 

 

Taken together, these results demonstrate that the newly identified protein 

CMTM6 is indeed a Schwann cell protein which is localized adjacent to the axolemma 

suggesting it is an interesting candidate for mediating Schwann cell to axon interaction.  

 

4.2 Characterization of mice lacking CMTM6 from Schwann cells 
To investigate possible relevant function of the newly identified adaxonal 

Schwann cell protein CMTM6 for the axon/myelin unit of the PNS we generated mice 

lacking CMTM6 from Schwann cells. The following chapters will show the results of 

the characterization of these conditional mutant mice ranging from morphological and 

biochemical analysis to functional and behavioral readouts.  

4.2.1 Generation and validation of Cmtm6 cKo mice 
To identify a potential role of CMTM6 in vivo, conditional mutant mice lacking 

CMTM6 specifically from Schwann cells (Cmtm6fl/fl*DhhCre, further referred to as 

Cmtm6 cKo) were generated as described under Material & methods, chapter 3.2.2. 

Figure 9A illustrates the scheme for conditional inactivation of the engineered Cmtm6 
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gene and respective primer binding sites which were used for genotyping (depicted in 

Fig. 9B). The upper image in Figure 9B depicts a 292 bp band for the WT and a 450 

bp band for the Cmtm6flox allele whereas the lower image in 9B depicts that only in 

presence of Dhh-Cre recombinase (Fig. 9B, middle image, 400 bp) a product of 350 

bp is generated identifying the recombined Cmtm6 allele.  

 

 
Figure 9 Conditional inactivation of Cmtm6 in Schwann cells. A) Scheme of the engineered Cmtm6 allele. 
Exon 2 and 3 of the Cmtm6flox allele are flanked by loxP-sites for Cre-mediated recombination. Primers for 
genotyping (B) are indicated within the scheme. B) Genotyping PCR of DNA isolated from mouse ear tags at P21. 
Upper image shows Cmtm6flox allele and WT PCR product. Middle image shows DhhCre specific PCR product and 
lower image shows PCR product identifying recombined Cmtm6 allele in Cmtm6 cKo. Gel shows n=2 mice per 
genotype. 

 

Further, we applied immunoblot analysis and confocal microscopy to validate if 

deletion of CMTM6 from Schwann cells was functional. Indeed, immunoblot analysis 

on sciatic nerves lysates of 2 month (2 mo) old control and Cmtm6 cKo mice confirmed 

absence of CMTM6 in mice lacking CMTM6 from Schwann cells. (Fig. 10A). 

Additionally, the immunoblot showed that the abundance of classical myelin markers 

MPZ and MAG are unaltered upon the deletion of CMTM6. Immunolabeled sciatic 

nerve teased fiber preparations and cross-sections displayed a preferentially co-

localization of CMTM6 and MAG at the adaxonal membrane and SLI but absence of 

CMTM6 from the abaxonal membrane (Fig. 10B, white arrowheads). Notably, the 

abaxonal localization of MAG appears diminished in Cmtm6 cKo even though the 
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overall abundance is unchanged. Nonetheless, when comparing MAG labeling 

between adult control and Cmtm6 cKo sciatic nerve cross-sections the abundance of 

MAG appeared unchanged similar to MBP which is labeling the compact myelin (Fig. 

10C). Both, Figure 5B and C confirm the absence of CMTM6 in Cmtm6 cKo nerves.  

 

 
Figure 10 CMTM6 is absent in Cmtm6 cKo. A) Immunoblot analysis of sciatic nerve lysates from control and 
Cmtm6 cKo mice (2 mo) reveals absence of CMTM6. MPZ, MAG and actin serve as controls. B) Immunolabeling 
of teased sciatic nerve preparations immunolabeled for CMTM6 (red) and MAG (green) validates adaxonal myelin 
localization of CMTM6 and absence in Cmtm6 cKo mice. SLI, adaxonal and abaxonal myelin membrane are 
indicated by white arrowheads. Scale bar, 5µm. C) Immunolabeling of cross-sectioned sciatic nerves reveals 
partially co-labeling of CMTM6 (red) and MAG (green) at the adaxonal myelin membrane and SLI in control mice 
and absence of CMTM6 in Cmtm6 cKo. Scale bar, 5µm D) Immunolabeling of MBP (red) and MAG (green) of adult 
control and Cmtm6 cKo cross-sectioned sciatic nerves indicates normal appearing MBP and MAG localization. 
Scale bar, 5µm.  

 

To investigate if the expression of classical myelin and SC markers as well as 

other CMTM family members is changed upon CMTM6 deletion, mRNA abundances 

on sciatic nerve tissue of respective mice were quantified using qRT-PCR (Fig. 11). 

The quantification showed, that only Cmtm6 is virtually undetectable, whereas mRNAs 

encoding other CMTM family members are unchanged (Fig. 11A). Further, the 

expression of typical myelin marker genes (Fig. 11B) and transcription factors of the 

Schwann cell lineage (Fig. 11C) are not altered when CMTM6 is lacking from SCs.  
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Concluding, these experiments validate that the genotype dependent depletion 

of CMTM6 from Schwann cells is functional on both, mRNA and protein level, whereas 

the abundance of typical myelin and SC lineage markers is unaltered in Cmtm6 cKo.  

 

 
Figure 11 Conditional inactivation of Cmtm6 in Schwann cells does not result in abundance changes of 
mRNAs encoding typical myelin genes, SC transcription factors or other CMTM family member genes. A) 
Quantitative PCR analysis assessing the abundance of mRNAs encoding CMTM family members in sciatic nerves 
dissected from control and Cmtm6 cKo mice at 2 mo indicates no changes except for Cmtm6 which is virtually 
undetectable in Cmtm6 cKo. B) The abundance of typical myelin marker transcripts is unchanged between control 
and Cmtm6 cKo sciatic nerves. C) Assessing the abundance of mRNAs encoding typical transcription markers of 
the SC lineage indicates no changes between control and Cmtm6 cKo nerves. All data are n=4-5; Mean +/-SD 
(error bars); ***P<0.001 by two-way analysis of variance (ANOVA) with Sidak`s multiple comparisons test. 

 

4.2.2 Cmtm6 cKo mice display abnormally increased diameters of 
myelinated axons 
Hypothesizing a functional impact of CMTM6 deletion on the Schwann cell-axon 

unit we assessed consequences of its deletion on several cross-sectioned peripheral 

nerves dissected from 2-month-old control and Cmtm6 cKo mice using light- and 

electron microscopy. First, we measured the diameters of all cross-sectioned 

myelinated axons within the phrenic nerve of five animals per genotype on light-

microscopic level (for further details on quantification and statistics see Material and 

Methods, chapter 3.2.7.4 and 3.2.10). Strikingly, we detected significantly increased 

axonal diameters in Cmtm6 cKo mice compared to control mice as displayed in 

representative electron microscopic images in Figure 12A and in frequency 

distributions of axonal diameters in Figure 12C. Notably, the number of myelinated 

axons within the phrenic nerve is unchanged between control and Cmtm6 cKo mice 

(Fig. 12E). Further, the g-ratio (diameter of the axon divided by the respective 

myelinated fiber diameter) was calculated on electron microscopic images to assess 

myelin sheath thickness. g-ratio analysis shows unchanged values of around 0.6 for 
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both control as well as Cmtm6 cKo mice (Fig. 12G) suggesting that larger axons within 

Cmtm6 cKo also have appropriately thicker myelin sheaths.  

 

The phrenic nerve is a mixed nerve containing smaller sensory and larger motor 

axons. Hence, we next quantified the axonal diameters of myelinated, sensory axons 

in the dorsal root of control and Cmtm6 cKo mice since it is easy to identify and contains 

various sensory fibers ranging from small unmyelinated, Remak-associated C-fibers to 

larger A-alpha, beta and delta afferent fibers (FitzGerald, Gruener et al. 2012). Indeed, 

we showed a similar significant increase in diameters of myelinated axons (Fig. 12B 

and D) without a loss of the number of myelinated axons in Cmtm6 cKo compared to 

control dorsal roots (Fig. 12F). These results imply a novel role for CMTM6 in restricting 

axonal diameter growth.  

 

 
Figure 12 Diameters of myelinated axons are abnormally increased in phrenic nerves and dorsal roots when 
CMTM6 is lacking from Schwann cells. A and B) Electron micrographs of cross-sectioned phrenic nerves (A) 
and dorsal roots (B) of 2-month-old (2 mo) reveal increased axonal diameters in Cmtm6 cKo compared to control 
mice. Scale bar, 5 µm. C and D) Genotype-dependent quantification of the diameters of myelinated axons on semi-
thin sections reveal shift towards larger axonal diameters in Cmtm6 mutant mice in both phrenic nerve (B) and 
dorsal root (F). Data are presented as frequency distribution with 0.5 µm bin width. C) n=1293 axons from n=5 
control mice and n=1172 axons from n=5 Cmtm6 cKo mice; Mean axonal diameter (control+/-Cmtm6-cKo) = 2.87 µm+0.84 
µm; P=2.2e-16 by two-sided Kolmogorow-Smirnow test; D) n=10387 axons from n=5 control mice and n=9298 axons 
from n=5 Cmtm6 cKo mice; Mean axonal diameter (control+/-Cmtm6-cKo) = 2.47 µm+0.27 µm; P=2.2e-16 by two-sided 
Kolmogorow-Smirnow test. E and F) Quantification of the number of myelinated axons on semi-thin sections shows 
no change between control and mutant mice in both phrenic nerves (C) and dorsal roots (G). Data are presented 
as mean +/- SD; n=5 mice per genotype. E P=0.1929; F P=0.3894; by Two-tailed Student`s t-test. G) g-ratio analysis 
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of electron micrographs from phrenic nerves at 2 mo reveals appropriate myelin sheath thickness in Cmtm6 cKo 
mice. Data are presented as mean +/- SD; n=505 axons from n=3 control mice; n=459 axons from n=3 Cmtm6 cKo 
mice; P=0.0637 by Two-tailed Student`s t-test. n.s. = non-significant P>0.05, **P<0.01, ***P<0.001. 

 

Next, we assessed axonal diameters in the sciatic nerves of both genotypes 

since the sciatic nerve is commonly used in the field, has a higher number of 

myelinated (sensory and motor) axons (roughly around 3000-4000), is comparably 

easy to dissect and used in the majority of biochemical investigations throughout this 

study. Indeed, genotype-dependent quantification of sciatic nerves confirmed previous 

findings by showing that Cmtm6 cKo display a higher frequency of large diameter 

axons compared to control mice (Fig. 13A, B) without a loss of the number of 

myelinated axons (Fig. 13C). By analyzing the g-ratio of 180 axons per nerve in five 

animals per genotype on electron microscopic level, we demonstrated that the ratio 

between myelin sheath thickness and axonal diameter is maintained in conditional 

knockout mice as depicted in Figure 13D. Further, we showed on light microscopic 

level that the number of Schwann cell nuclei within sciatic nerves is unchanged 

between control and Cmtm6 cKo (Fig. 13E). Since we have not seen any changes in 

the number of myelinated axons so far, we additionally quantified the percentage of 

degenerating axons on electron microscopic images of both genotypes. We detected 

no change in the number of degenerated/degenerating axonal profiles in sciatic nerves 

of Cmtm6 cKo suggesting that axonal loss is not a feature in these mice (Fig. 13F). 

 

Taken together, these results show a novel role for the SC protein CMTM6 in 

restricting radial growth of myelinated axonal diameters and thereby maintaining the 

myelin sheath thickness to axon diameter ratio. Notably, the axonal survival and 

integrity is not impaired upon loss of CMTM6 from SCs.  
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Figure 13 Axonal diameters are increased in sciatic nerves of adult Cmtm6 cKo mice without affecting 
myelin thickness or axonal survival. A) Representative electron micrographs of cross-sectioned sciatic nerves 
of 2-month-old control and Cmtm6 cKo mice show increased axonal diameters. Scale bar. 5µm. B) Quantification 
of the diameters of myelinated axons on semi-thin sections shows a shift towards larger axonal diameters in sciatic 
nerves of Cmtm6 cKo compared to control mice. Data are presented as frequency distribution with 0.5 µm bin width, 
n=19250 axons from n=5 control mice and n=18966 axons from n=5 Cmtm6 cKo mice; Mean axonal diameter 
(control+/-Cmtm6-cKo) = 3.16 µm+0.09 µm; P=1.216e-5 by two-sided Kolmogorow-Smirnow test. C) Quantification of the 
number of myelinated axons within the sciatic nerve on semi-thin section reveals no change between control and 
Cmtm6 cKo mice. Data are presented as mean +/- SD, n=5 mice per genotype; P=0.7781 by Two-tailed Student`s 
t-test. D) g-ratio analysis of electron micrographs from sciatic nerves identifies appropriate g-ratio in Cmtm6 cKo 
mice. Data are presented as mean +/- SD, n=180 axons per mouse with n=3 mice per genotype; P=0.9785 by Two-
tailed Student`s t-test. E) Quantitative assessment of the number of SC nuclei on sciatic nerve semi-thin sections 
shows normal numbers between control and Cmtm6 cKo mice. Data are presented as mean +/- SD, n=5 mice per 
genotype; P=0.8557 by Two-tailed Student`s t-test. F) Genotype-dependent assessment of degenerating axonal 
profiles on electron micrographs of sciatic nerves reveals no significant differences in the number of degenerating-
appearing axonal profiles between control and Cmtm6 cKo mice. Data are presented as mean +/- SD in percent, 
n=4 mice per genotype; P=0.4132 by Two-tailed Student`s t-test. n.s. = non-significant P>0.05, ***P<0.001. 

 



70 
 

4.2.3 CMTM6 deletion leads to increase of non-myelinated axonal 
diameters but does not affect radial sorting of axons  
In the peripheral nervous system, the myelination threshold for an axon to get 

radially sorted out of Remak bundles to be myelinated by SCs is mainly dictated by the 

axonal diameter and lies precisely at 1 µm (Feltri, Poitelon et al. 2016). Many of the 

known SC mutations and neuropathy models, but also molecules of the ECM and basal 

lamina, display a shift in this myelination threshold and/or affect the sorting of axons 

(Feltri et al., 2016; Monk et al., 2015). Thus, we analyzed the axonal diameters of non-

myelinated, Remak-associated axons as well as the number of axons per bundle within 

sciatic nerves at P9 and of 2-month-old control and Cmtm6 cKo mice (Fig. 14). Note 

that CMTM6 abundance is readily detectable in WT sciatic nerve lysates at around P10 

(Fig 8B). To our surprise the axonal diameters of non-myelinated, Remak-associated 

axons are already increased in Cmtm6 cKo compared to control mice at P9 (Fig. 14A, 

B) which becomes even more prominent at 2 mo (Fig. 14E, F). Further, we did not 

detect a difference in the number of axons per bundle at both time points suggesting 

normal sorting (Fig. 14C, G). In addition, when focusing at the axonal diameter of each 

quantified, unsorted axon we detected no Remak-associated axon larger than 1 µm 

(Fig. 14D, H). This implies that CMTM6 is additionally restricting diameters of non-

myelinated axons already during development without impairing the proceeding sorting 

and myelination process. 
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Figure 14 Non-myelinated axons are abnormally increased but radial sorting is normal when CMTM6 is 
lacking from Schwann cells. A and E) Electron micrographs show Remak bundles in sciatic nerves at P9 (A) and 
2 mo (E) old control and Cmtm6 cKo mice. Scale bar, 1 µm. B and F) Frequency distributions of genotype-
dependent quantification reveals increased diameters of non-myelinated, Remak-associated axons in Cmtm6 cKo 
compared to control mice at P9 (B) and 2 mo (F). Data are presented as frequency distribution with 0.1 µm bin 
width; B) n=690 axons from n=3 control mice and n=709 axons from n=3 Cmtm6 cKo mice; Mean axonal diameter 
(control+/-Cmtm6-cKo) = 0.46 µm+0.02 µm; P=0.002 by two-sided Kolmogorow-Smirnow test; F) n=2522 axons from n=3 
control mice and n=2377 axons from n=3 Cmtm6 cKo mice; Mean axonal diameter (control+/-Cmtm6-cKo) = 0.19µm+0.08 
µm; P=2.2e-16 by two-sided Kolmogorow-Smirnow test. C and G) Genotype-dependent quantification reveals 
unchanged number of non-myelinated, Remak-associated axons per bundle between P9 (C) and 2 mo (G) old 
Cmtm6 cKo and control mice, implying normal radial sorting during development. Data are presented as mean+/- 
SD; n=3 mice per genotype; e P= 0.4057 f P= 0.683; by Two-tailed Student`s t-test. D and H) Quantification of 
diameters of non-myelinated, Remak-associated axons shows normal threshold diameter (1 µm) in Cmtm6 cKo 
mice also implying normal radial sorting. Data are presented as data clouds; D) n=690 axons from 3 control mice 
and n=709 axons from 3 Cmtm6 cKo mice H) n=2522 axons from 3 control mice and n=2377 axons from 3 Cmtm6 
cKo mice. n.s. = non-significant P>0.05, **P<0.01, ***P<0.001. 

 

4.2.4 Development and aging in Cmtm6 cKo mice 
Since previous results of this study imply an involvement of CMTM6 in regulating 

diameters of non-myelinated, Remak-associated axons early during postnatal 

development (P9) we further investigated at which time-point larger diameters arise in 

myelinated axons of Cmtm6 mutant mice. Therefore, we measured the diameters of 

myelinated axons within sciatic nerves at P9 and in 1-month-old control and Cmtm6 

cKo mice. Interestingly, the diameters of myelinated axons did not differ between 

control and Cmtm6 cKo mice at P9 (Fig. 15A, B) and the change towards larger 

diameter axons in Cmtm6 cKo becomes significant only at 1 mo of age (Fig. 15E, F). 
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Notably, genotype-dependent assessment of the number of myelinated axons 

indicates no change between genotypes at both time points (Fig. 15C, G). Since 

previous results revealed no impairment of sorting of axons we next quantified the 

number of sorted and non-myelinated axons larger than 1µm, which are termed 

promyelinated axons (Fig. 15D). However, we did not detect significant differences 

between control and Cmtm6 cKo mice. 

 

Results imply that CMTM6 restricts axonal diameters of non-myelinated, but not 

myelinated axons, early in development and that the phenotype of accelerated radial 

growth emerges in myelinated axons by 1 mo of age.  

 

 
Figure 15 Increased diameters of myelinated axons in Cmtm6 cKo mice arise later in development. A and 
E) Representative electron micrographs illustrate cross-sectioned sciatic nerves at P9 (A) and 1 mo (E) of control 
and Cmtm6 cKo mice. Scale bar, 2.5 µm. B) Genotype-dependent quantification of the diameters of myelinated 
axons in sciatic nerves at P9 reveals no significant difference between control and Cmtm6 cKo mice. Data are 
presented as frequency distribution with 0.5 µm bin width; n=16350 axons from n=5 control mice and n=15775 
axons from n=5 Cmtm6 cKo mice; Mean axonal diameter (control+/-Cmtm6-cKo) = 1.77 µm+0.005 µm; P=0.3648 by Two-
tailed Student`s t-test. C and D) Quantification of the number of myelinated axons (B) and pro-myelinated axons 
(C) on semi-thin sections of sciatic nerves indicates no change between control and Cmtm6 cKo mice. Data are 
presented as mean +/- SD, C n=5 mice per genotype, P=0.6579; D n=3 mice per genotype, P=0.6424; by Two-
tailed Student`s t-test. F) Genotype-dependent assessment of the diameters of myelinated axons in sciatic nerves 
at 1mo reveals shift towards larger axonal diameters in Cmtm6 cKo compared to control mice. Data are presented 
as frequency distribution with 0.5 µm bin width; n=17578 axons from n=5 control mice and n=16966 axons from 
n=5 Cmtm6 cKo mice; Mean axonal diameter (control+/-Cmtm6-cKo) = 2.68 µm+0.12 µm; P=2.2e-16 by two-sided 
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Kolmogorow-Smirnow test. G) The number of myelinated axons in sciatic nerves of 1 mo old control and Cmtm6 
cKo mice is unchanged. Data are presented as mean +/- SD, n=5 mice per genotype, P=0.4036 by Two-tailed 
Student`s t-test. n.s.=non-significant P>0.05, ***P<0.001. 

 

Next, we wanted to assess the role of CMTM6 in aged nerves. For the PNS it 

was shown, that axonal diameters increase up to 12 months of age and slightly 

decrease afterwards (Chase, Engelhardt et al. 1992, Verdú, Butí et al. 1996, Ceballos, 

Cuadras et al. 1999, Verdú, Ceballos et al. 2000). When analyzing the diameters of 

myelinated axons in sciatic nerves of control mice from 1 month up to 20 months we 

confirmed these findings (Fig. 16A). The frequency distribution clearly showed a higher 

frequency for smaller diameter axons (1-3µm) for 1- to 2-month-old mice whereas the 

frequency of axons larger than 6µm is higher in mice older than 6 months. Note that 

no statistical tests were performed since data was generated only to confirm previously 

published results with our more intense way of assessing axonal diameters. We further 

measured the axonal diameters in sciatic nerves of 6-month-old (Fig. 16B) and 1-year-

old (Fig. 16D) control and Cmtm6 cKo mice. Whereas Cmtm6 cKo mice exhibit larger 

axons at 6 months of age the significant genotype-dependent difference was 

surprisingly absent at the 1-year time-point, suggesting that control axons catch up to 

the accelerated radial axonal growth seen in Cmtm6 cKo. Again, no significant 

difference in the number of myelinated axons was detected at both time-points 

irrespective of the genotype (Fig. 16C, E). Surprisingly, when immunoblotting sciatic 

nerve lysates of 1-, 2-, 4-, 6- and 12-month-old WT mice we saw a decreasing 

abundance of CMTM6 from 6-month of age on, while MAG was readily detectable 

independent of age (Fig. 16F).  

 

These results imply that I) CMTM6 restricts the diameters of non-myelinated 

axons early in development, II) this precedes the establishment of larger diameters in 

myelinated axons which only arise at 1 month-of age and III) the abundance of CMTM6 

decreases with aging resulting in no genotype-dependent difference in axonal 

diameters at 1 year of age. 
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Figure 16 Diameters of myelinated axons in Cmtm6 cKo mice upon aging. A) Assessment of diameters of 
myelinated axons in sciatic nerves of wild-type mice at different time-points (1 mo, 2 mo, 4 mo, 6 mo, 12 mo and 
20 mo) illustrate a persistent growth in axonal diameter over time. n=5 for 1-12 mo; n=4 for 20 mo) B) Genotype-
dependent quantification of diameters of myelinated axons in sciatic nerves dissected from control and Cmtm6 cKo 
mice at 6 mo display increased axonal diameters in mice lacking CMTM6 from Schwann cells. Data are presented 
as frequency distribution with 0.5 µm bin width; n=17665 axons from n=5 control mice and n=19196 axons from 
n=5 Cmtm6 cKo mice; Mean axonal diameter (control+/-Cmtm6-cKo) = 3.84 µm+0.2 µm; P=2.7e-12 by two-sided 
Kolmogorow-Smirnow test. C) The number of myelinated axons is unchanged in sciatic nerves of Cmtm6 cKo 
compared to control mice at 6 mo. Data are presented as mean +/- SD, n=5 mice per genotype, P=0.3661 by Two-
tailed Student`s t-test. D) Genotype-dependent assessment of myelinated axon diameters in sciatic nerves of 1-
year old control and Cmtm6 cKo mice shows no significant differences between genotypes. Data are presented as 
frequency distribution with 0.5 µm bin width; n=17646 axons from n=5 control mice and n=17321 axons from n=5 
Cmtm6 cKo mice; Mean axonal diameter (control+/-Cmtm6-cKo) = 4.02 µm-0.01 µm; P=0.596 by two-sided Two-tailed 
Student`s t-test. E) Quantification of the number of myelinated axons within the sciatic nerve on semi-thin section 
of 1-year old control and Cmtm6 cKo mice reveals no significant differences. Data are presented as mean +/- SD, 
n=5 mice per genotype; P=0.7563 by Two-tailed Student`s t-test. F) Immunoblot-analysis in sciatic nerve lysates 
shows decreasing abundance of CMTM6 upon aging, whereas MAG abundance is unchanged. Actin serves as 
loading control. Blot shows n=2 mice per time-point. n.s.=non-significant P>0.05, ***P<0.001.  

 

4.2.5 Accelerated sensory nerve conduction velocity in Cmtm6 cKo mice 
Rushton proposed in the 1950`s that nerve conduction velocity (NCV) is roughly 

linear proportional to axonal diameter and myelin sheath thickness which was validated 

in experimental studies more previously (Rushton 1951, Hartline and Colman 2007, Li 

2015). Considering that deletion of CMTM6 leads to increased axonal diameters 

without impairing myelin or axonal integrity, we asked if nerve conduction velocity in 

our mouse model is changed. Thus, we measured NCV in the tails of adult control and 

Cmtm6 cKo mice. As hypothesized, we detected a significant increase in sensory 

nerve action potentials (SNAP) and an accelerated sensory nerve conduction velocity 

(SNCV) in Cmtm6 cKo mice (Fig. 17A, B). Notably, the compound muscle action 

potential (CMAP) and resulting motor nerve conduction velocity (NCV) is unchanged 

between genotypes (Fig. 17C, D). 

 

 
Figure 17 Sensory, but not motor nerve conduction velocity is increased in mice lacking CMTM6 from 
Schwann cells. A and B) Electrophysiological measurement reveals a higher sensory nerve action potential 
(SNAP) and accelerated sensory nerve conduction velocity (SNCV) in the tails of adult Cmtm6 cKo mice compared 
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to controls. C and D) Electrophysiological measurements of the compound motor action potential (CMAP) and 
nerve conduction velocity (NCV) at the tails of control and Cmtm6 cKo mice shows no significant differences 
between genotypes. Data are presented as mean +/- SD, n=15 control and n=12 Cmtm6 cKo mice; A P=0.0061 B 
P=0.0386 C P=0.9089 D P=1819; by Two-tailed Student`s t test. n.s.=non-significant P>0.05, ** P<0.01. 

 

Since alterations in nerve conduction velocity can also be influenced by nodal 

and paranodal parameter changes we assessed nodal and paranodal dimensions (Fig. 

18) (Arancibia-Cárcamo, Ford et al. 2017). Therefore, immunohistochemistry on sciatic 

nerve teased fibers of adult control and Cmtm6 cKo mice was performed visualizing 

paranodes by labeling CASPR (red) and nodes on Ranvier by labeling Nav1.6 (green). 

Paranode and nodal dimension (length and diameter) were measured using ImageJ 

as displayed in Figure 18A, right image. The quantification showed no difference 

between control and Cmtm6 cKo for neither paranode length nor diameter (Fig. 18C, 

D) nor node length and diameter (Fig. 18E, F). Further, the ratio between paranode 

length to diameter (Fig. 18G) and the ratio between node length to diameter (Fig. 18H) 

is not altered between genotypes. Notably, when assessing nodal ultrastructure on 

electron microscopic levels of longitudinal sciatic nerve sections of both genotypes, we 

did not observe differences in the ultrastructure of node of Ranvier organization (Fig. 

18B). In addition, we performed immunohistochemistry on sciatic nerve teased fiber 

preparations of both genotypes visualizing nodes with Nav1.6 and the internodes with 

MAG to judge if the longitudinal dimensions are affected by CMTM6 deletion. By 

quantifying the entire length of individual internodes we did not find genotype-

dependent differences (Fig. 18I). 

 

Thus, CMTM6 deletion does not affect nodal or paranodal dimensions as well 

as internodal length, implying that the accelerated sensory nerve conduction velocity 

is indeed owing to increased axonal diameters and thicker myelin sheaths. 
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Figure 18 Loss of CMTM6 from Schwann cells does not affect nodal and paranodal dimensions or internodal 
length. A) Immunolabeling of markers for the nodes of Ranvier (Nav1.6; sodium channels, green) and paranodes 
(CASPR, red) on sciatic nerve teased fiber preparations from 2 mo old control and Cmtm6 cKo mice. Merged image 
of Cmtm6 cKo shows the parameters measured in C to H. p1=paranode length 1; p2=paranode length 2; 
d=diameter; nd=node diameter; nl=node length. Scale bar, 5µm. B) Representative electron micrographs illustrate 
longitudinal-sectioned nodes of Ranvier within sciatic nerves of 2 mo-old control and Cmtm6 cKo mice. Scale bar, 
2.0 µm C and D) Genotype dependent assessment of paranode diameter (C) and length (D) on sciatic nerve teased 
fiber preparations shows normal paranode structure when comparing control and Cmtm6 cKo mice. Data are 
presented as mean +/- SD, n>130 paranodes per mouse with n=3 mice per genotype; C P=0.3173 D P=0.9809; by 
Two-tailed Student`s t-test. E and F) Genotype dependent quantification of node diameter (E) and length (F) on 
sciatic nerve teased fiber preparations display normal nodal dimensions in Cmtm6 cKo. Data are presented as 
mean +/- SD, n>130 nodes per mouse with n=3 mice per genotype; E P=0.5089 F P=0.4868; by Two-tailed 
Student`s t-test. G and H) Assessment of the Ratio of paranode length and diameter (G) or node length and 
diameter (H) on sciatic nerve teased fiber preparations reveals no difference between control and Cmtm6 cKo mice. 
Data are presented as mean +/- SD, n>130 paranodes/nodes per mouse with n=3 mice per genotype; G P=0.1251 
H P=0.1999; by Two-tailed Student`s t-test. I) Genotype dependent quantification of internodal length on sciatic 
nerve teased fiber preparations display no differences in internodal length between control and Cmtm6 cKo. Data 
are presented as mean +/- SD; n=490 internodes from n=3 control mice and n=437 internodes from n=3 Cmtm6 
cKo mice; P=0.1393 by Two-tailed Student`s t-test.  n.s. = non-significant P>0.05 

 

4.2.6 Altered behavioral performance of Cmtm6 cKo mice 
To investigate if the observed alterations in axonal diameter, myelin sheath 

thickness and sensory nerve conduction velocity influence Cmtm6 cKo mice 

functionally, we examined motor and sensory capabilities using different behavioral 

assays. Within the hotplate assay (Fig. 19A) Cmtm6 cKo displayed a significantly 
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smaller retraction latency indicating faster sensory responses upon a heat-stimulus. 

When assessing mice on a grid test we detected an increased number of fore and hind 

limb slips in Cmtm6 cKo compared to control mice indicating slight difficulties in motor 

coordination. Nonetheless, when evaluating the motor capabilities of both genotypes 

on a rotating rod or with the open field assay, no differences between control and 

Cmtm6 cKo mice were observed. Mice of both genotypes showed similar results in the 

latency to fall of the rod (Fig. 19C) or in speed (Fig. 19D) and distance (Fig. 19E) mice 

covered within the open field set-up. Additionally, control mice and Cmtm6 cKo mice 

did neither differ in the time they spent in the center of the open-field box nor in the 

number of visits to the center. When considering increased axonal diameters within 

the phrenic nerve of Cmtm6 cKo mice, one of the vital nerves of the PNS controlling 

respiration, we hypothesized that differences in the breathing behavior of control and 

Cmtm6 cKo mice may occur. Thus, we decided to assess the breathing behavior of 

adult control and Cmtm6 cKo mice using plethysmography (performed by Swen 

Hülsmann). It is known from literature, that wild-type C57BL/6N-mice display prolonged 

and more frequent breathing pauses which are also termed spontaneous apnea 

(Stettner, Zanella et al. 2008). Surprisingly, the presence of these spontaneous apnea 

was completely absent in Cmtm6 cKo mice (Fig. 19H) which might indicate a more 

precise coordination.  

 

Together, deletion of CMTM6 from SCs and the resulting increase in axonal 

diameters does not only lead to increased sensory nerve conduction velocity but also 

alters the behavioral phenotype of Cmtm6 cKo mice to some extent.  
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Figure 19 Behavioral performance of mice lacking CMTM6 from Schwann cells. A) The latency of retracting a 
hindlimb upon a heat stimulus is significantly reduced in Cmtm6 cKo mice compared to control mice when using a 
Hotplate assay for sensory evaluation. Data are presented as mean +/- SD; n=16 control mice and n=19 Cmtm6 
cKo mice; P=0.0089 by Two-tailed Student`s t-test. B) Grid-test analysis of adult control and Cmtm6 cKo mice 
reveals that Cmtm6 cKo display an increased number of fore- and hindlimb slips while traveling a distance of 2 m 
on a regular grid. Data are presented as mean +/- SD; n=12 mice per genotype; P=0.0111 by Two-tailed Student`s 
t-test. C) Genotype-dependent assessment of the latency of control and Cmtm6 cKo mice to fall from a rotating rod 
using the Rotarod assay shows no significant difference over 2 days of testing. Data are presented as mean +/- 
SD; n=12 mice per genotype; P=0.6737 by 2way ANOVA. D to G) Analyzing Speed (D), Distance (E), Time spent 
in center (F) and visits to the center (G) of adult control and Cmtm6 cKo mice in the open field assay reveals no 
significant differences between both genotypes. H) Genotype-dependent assessment of breathing pauses during 
the plethysmography assay shows that Cmtm6 cKo have fewer (virtually none) breathing pauses longer than 750 
ms compared to control mice. Data are presented as mean +/- SD; n=6 mice per genotype; P=0.0152 by Mann 
Whitney Rank Sum test. n.s.=non-significant P>0.05, * P<0.05, ** P<0.01 

 

4.2.7 Neurofilament density and phosphorylation are unaffected by 
CMTM6 loss 
Radial axonal growth is thus far associated with changes in neurofilament (NF) 

density and phosphorylation (de Waegh, Lee et al. 1992, Hsieh, Kidd et al. 1994). 

Therefore, we evaluated if the observed increase in axonal diameters results from NF 

changes (Fig. 20). Quantification of NF profiles on electron micrographs of cross-

sectioned sciatic nerves showed unchanged numbers of NF profiles/0.2µm2 between 

control and Cmtm6 cKo mice (Fig. 20A, B) (for more details on quantification see 

Material and Methods, chapter 2.2.7.4). Further, investigating the phosphorylation 

status of Neurofilament-heavy chain (NEFH) via immunoblotting of sciatic nerve lysate 

of respective genotypes (Fig. 20C) and quantification of the abundances and ratio of 
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phosphorylated NEFH to NEFH (Fig. 20D-F) revealed no change in abundance for 

neither NEFH nor phosphorylated NEFH.  

 

Concluding, Cmtm6 cKo mice show unaltered neurofilament density and 

phosphorylation which implies that the increased axonal diameter growth upon 

CMTM6 loss is independent of NF status and may underlie different mechanisms.   

 

 
Figure 20 Sciatic nerves of Cmtm6 cKo display normal neurofilament density and phosphorylation. A) 
Representative electron micrographs of axonal neurofilament profiles (white arrowhead) in cross-sectioned sciatic 
nerves of control and Cmtm6 cKo mice. Scale bar, 200 nm. B) Genotype dependent quantification of the number 
of neurofilament profiles per 0.2µm2 on cross-sectioned sciatic nerves implies normal neurofilament density in 2 mo 
old Cmtm6 cKo compared to control mice. Data are presented as mean +/- SD; Mean neurofilament number was 
assessed in n=30 axons per mouse with n=3 mice per genotype; P=0.8408 by Two-tailed Student`s t-test. C) 
Immunoblot-analysis of sciatic nerves lysates of 2 mo old control and Cmtm6 cKo mice detecting phosphorylated 
NEFH and non-phosphorylated NEFH. Actin serves as control. Blot shows n=3 mice per genotype. D-E) Genotype-
dependent quantification of immunoblots in C display unchanged abundances for phosphorylated NEFH (D) and 
non-phosphorylated NEFH (E) between control and Cmtm6 cKo mice. Phosphorylated NEFH and non-
phosphorylated NEFH were normalized to actin. Data are presented as mean +/- SD; n=3 mice per genotype; D 
P=0.1693 E P=0.2212 by Two-tailed Student`s t-test. F) Genotype dependent quantification of the ratio of 
phosphorylated NEFH and NEFH shows no difference between control and Cmtm6 cKo mice. Data are presented 
as mean +/- SD; n=3 mice per genotype; F P= 0.1142, by Two-tailed Student`s t-test. n.s.=non-significant P>0.05. 

 

4.2.8 CMTM6 restricts axonal diameters after developmental myelination 
Results thus far presented in this study, were obtained with mice in which 

CMTM6 was conditionally ablated early during SC development by using the DhhCre 

recombinase. To investigate if CMTM6 deletion in adult mice recapitulates previous 

findings, we generated mice using PlpCreERT2 for tamoxifen induced recombination in 

myelinating glia cells of adult mice. Both control (Cmtm6flox/flox) and 
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Cmtm6flox/flox;PlpCreERT2 (further referred to as Cmtm6 iKo) were administered with 

tamoxifen at P56 for 10 consecutive days with 2 days break in between (scheme see 

Fig. 21A). After 2- and 6-month post-tamoxifen injection sciatic nerves of respective 

mice were dissected and axonal diameters were quantified. Indeed, Cmtm6 iKo also 

display increased axonal diameters at both time-points compared to control mice (Fig. 

21B, C). Notably, the number of myelinated axons within sciatic nerves of both 

genotypes did not differ at 2 and 6 months after tamoxifen injection (Fig. 21D, E).  

 

Thus, CMTM6 continues to restrict growth of axonal diameters also after 

developmental myelination.  

 

 
Figure 21 Adult deletion of CMTM6 from Schwann cells increases axonal diameters. A) Scheme for tamoxifen 
injection and analysis time points post-tamoxifen injection (PTI) for control mice (genotype Cmtm6flox/flox) and Cmtm6 
iKo mice (genotype Cmtm6flox/flox;PlpCreERT2). B and C) Genotype-dependent quantification of diameters of 
myelinated axons on semi-thin section of sciatic nerves dissected from control and Cmtm6 iKo at both 2 mo PTI (B) 
and 6 mo PTI (C). Data indicates increased axonal diameters in Cmtm6 iKo mice at both time-point PTI. Data are 
presented as frequency distribution with 0.5 µm bin width; B n=14814 axons from n=4 control mice and n=20067 
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axons from n=5 Cmtm6 iKo mice; Mean axonal diameter (control+/-Cmtm6-iKo) =3.57 µm+0.03 µm; P=0.002 by two-sided 
Kolmogorow-Smirnow test; C n=19025 axons from n=5 control mice and n=15047 axons from n=4 Cmtm6 iKo mice; 
Mean axonal diameter (control+/-Cmtm6-iKo) =4.05µm+0.17 µm; P=2.98e-10 by two-sided Kolmogorow-Smirnow test. D 
and E) Quantifications of the number of myelinated axons on semi-thin sections shows no change between control 
and Cmtm6 iKo mice at 2 mo PTI (D) and 6 mo PTI (E). Data are presented as mean +/- SD, D n=4 control and 
n=5 Cmtm6 iKo mice, P=0.2771 E n=5 control and n=4 Cmtm6 iKo mice, P=0.5394; by Two-tailed Student`s t-test. 
n.s.=non-significant P>0.05, **P<0.01, ***P<0.001. 

 

4.3 Investigation of possible interaction partners of CMTM6 
How does the novel, adaxonal Schwann cell protein CMTM6 mediate its function 

towards the axon and what are possible interaction partners of CMTM6? Little is known 

about the signaling cascade of CMTM family members. To shed some light on this 

issue, the following two chapters will describe two chosen lines of research to further 

investigate possible CMTM6 interaction partners.  

4.3.1 Axogliasome-enriched fraction of Cmtm6 cKo mice 
To closer investigate quantitative changes of protein abundances in mice 

lacking CMTM6 from SCs and detect relevant molecules that might mediate Schwann 

cell to axon signaling dependent on the presence or absence of CMTM6, we 

biochemically enriched and assessed the axogliasome-enriched fraction purified from 

P75 old control and Cmtm6 cKo sciatic nerves. The procedure was performed as 

previously described under Methods chapter 3.2.5.2 and AEF fractions purified from 

pools of sciatic nerves of both genotypes were subjected to quantitative mass 

spectrometry, performed by Stefan Tenzer from the University of Mainz. In total 2869 

proteins were identified in the unfiltered dataset. Heatmaps in Figure 22A illustrate 

log2fold change (log2FC) of markers from various compartments, which are unchanged 

in abundance between control and Cmtm6 cKo mice. Amongst those are myelin 

proteins, markers of the adaxonal and axonal membrane but also protein family 

members of the integrin-, ankyrin-, 4.1 protein-, spectrin family and marker proteins of 

the ECM. Cytoskeleton proteins such as septins and neurofilaments as well as known 

cell adhesion molecules are also unchanged between genotypes. This implies that 

deletion of CMTM6 in Schwann cells and the resulting increase in axonal diameters 

does not result in major changes in the protein composition of the aforementioned 

subcompartments.  

 

Interestingly, MS based quantitative proteome analyses of the purified AEF 

fractions also displayed differentially regulated proteins between genotypes. Notably, 
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only proteins with a threshold of over 100 ppm per sample were included. Figure 22B 

depicts the seven proteins which are at least 0.5-fold reduced in abundance in AEF 

purified from Cmtm6 cKo sciatic nerves compared to control sciatic nerves amongst 

which CAGE1 shows the highest difference between the two genotypes. When 

focusing on proteins, which are at least 2.0-fold increased in abundance (Fig. 22C) a 

total of four proteins are differentially regulated with KIF20B showing the strongest 

increase in AEF purified from Cmtm6 cKo compared to AEF from control mice. For 

further information about differentially changed proteins refer to discussion chapter 5.4. 

Note, that CMTM6 itself was detected in control but not Cmtm6 cKo samples at low 

levels. However, it was excluded from the present analysis since the detection of 

CMTM6 using the applied filters was at a low level and including it would have affected 

the current dataset.  

 

Concluding, the results of the quantitative mass spectrometric analyses of AEF 

purified from sciatic nerves of control and Cmtm6 cKo mice imply that a deletion of 

CMTM6 from SCs does not impair the abundances of marker proteins of the axonal 

membrane, adaxonal membrane and myelin proteins, constituents of the ECM and cell 

adhesion proteins. The detected normality implies that increased axonal diameters 

observed in Cmtm6 cKo mice are an effect of CMTM6 itself instead of resulting from 

compositional changes of the axon/myelin unit. Nevertheless, by scanning existing 

literature and databases, the differentially up- and downregulated proteins did not 

prompt us to further investigate a possible interaction with CMTM6 (as discussed in 

chapter 5.4).  
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Figure 22 Mass spectrometric analysis of the axogliasome-enriched fraction (AEF) purified from sciatic 
nerves of Cmtm6 cKo. Quantitative mass spectrometric analysis was performed on purified AEF from sciatic 
nerves of adult control and Cmtm6 cKo mice. Heatmap displays the log2-transformed fold-change (log2FC) of 
proteins in Cmtm6 cKo AEF compared to control AEF. Each line corresponds to the average fold change and the 
different samples (n=3 per genotype) are illustrated in corresponding columns. Note that FC values were plotted on 
a log2 color scale with blue representing diminishment and red enrichment. A) Selected subsets of proteins which 
are unchanged in abundance between genotypes are displayed. Proteins were chosen regarding the compartment 
or protein family they belong to. B) Differential proteome analysis reveals 7 proteins being reduced in abundance 
below 0.5-fold in Cmtm6 cKo compared to control mice. C) Heatmap displays the 4 proteins that are increased 
above 2-fold in abundance in the AEF purified from Cmtm6 cKo compared to control sciatic nerves. 

 

4.3.2 CD274 as a possible interaction partner of CMTM6 
It was previously reported by in vitro studies that expression of CMTM6 affects 

the cell surface maintenance of programmed death-ligand 1 (PDL1/CD274) in a tumor 

environment as a possible mechanism of regulating anti-tumor immunity (Burr, 

Sparbier et al. 2017, Mezzadra, Sun et al. 2017). To assess if CMTM6 regulates 

CD274 in non-tumorigenic SCs in vivo we investigated changes of CD274 abundance 

in lysates of sciatic nerves, ventral and dorsal roots of 2-month old control and Cmtm6 

cKo mice. However, by immunoblotting we did not detect any changes of CD274 

abundance upon deletion of CMTM6 within various peripheral nerve lysates (Fig. 23A-

C). In addition, immunolabeled cross-sectioned sciatic nerves of control and Cmtm6 

cKo mice revealed unaltered, preferentially abaxonal, localization of CD274 (red) in 
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both control and Cmtm6 cKo nerves (Fig. 23D). Vice versa, we did not detect changes 

of CMTM6 abundance in Cd274 Ko sciatic nerve lysates assessed via immunoblotting 

(Fig. 23E). Note, that MAG abundance is unchanged in both Cmtm6 cKo and Cd274 

Ko nerve lysates. 

 

From our in vivo data we conclude that CD274 most likely does not interact with 

CMTM6 in the peripheral nervous system and that CMTM6 does not maintain the cell 

surface expression of CD274 at the SC surface. To investigate how the function of 

CMTM6 is mediated further studies using different methodology need to be conducted. 

 

 
Figure 23 Abundance and localization of CD274 in the PNS is independent of CMTM6. A to C) Immunoblot- 
analysis of sciatic nerve lysate (A), dorsal root lysate (B) and ventral root lysate (C) from 2 mo old control and 
Cmtm6 cKo mice reveals no change in CD274 and MAG abundance. CMTM6 was detected as genotype control; 
Actin serves as loading control. Blots show n=3 mice per genotype. D) Immunolabeling of cross-sectioned sciatic 
nerves from control and Cmtm6 cKo mice at 2 mo indicated no changes in preferably abaxonal localization of 
CD274 (red, arrowheads). MAG (green, arrows) serves as marker for non-compact myelin preferentially labeling 
adaxonal myelin. Scale bars, 5 µm. E) Immunoblot-analysis of sciatic nerves lysates from adult control and Cd274 
Ko mice shows no change in CMTM6 and MAG abundance upon loss of CD274. Beta-tubulin serves as loading 
control. Blot shows n=2 mice per genotype in alternating order. 

  



86 
 

4.4 Mediating radial axon growth: CMTM6 and MAG 
With our study we have demonstrated that CMTM6 is the first Schwann cell 

molecule known to restrict axonal diameters. In the past it was reported that mice 

lacking another SC protein, namely MAG, have smaller axonal diameters proposing a 

role for MAG in supporting the radial growth of axons in the PNS (Yin, Crawford et al. 

1998). The following chapters will focus on the possible interaction of the two adaxonal 

SC molecules that either increase (MAG) or restrict (CMTM6) radial growth of axons. 

4.4.1 Confirmation of MAG phenotype 
To confirm the previously reported phenotype of Mag Ko mice we re-assessed 

axonal diameters in adult control and Mag Ko mice based on our way of quantifying 

nearly all myelinated axons on semi-thin section of sciatic nerves of respective mice. 

Indeed, we observed a significant shift towards a higher frequency of smaller diameter 

axons in Mag Ko compared to control mice (Fig. 24A) without any loss of myelinated 

axons (Fig. 24B).  

 

 
Figure 24 Axonal diameters are reduced in the absence of MAG. A) Genotype-dependent quantification of the 
diameter of myelinated axons in sciatic nerves confirms reduced axonal diameters in Mag Ko mice compared to 
control mice. Data are presented as frequency distribution with 0.5 µm bin width; n=12793 axons from n=4 control 
mice and n=16790 axons from n=5 Mag Ko mice; Mean axonal diameter (control+/-Mag-Ko) = 3.26µm-0.17µm; P<2.2e-

16 by two-sided Kolmogorow-Smirnow test. B) Quantification of the number of myelinated axons on semi-thin 
sections shows no change between control and Mag Ko sciatic nerves. Data are presented as mean +/- SD, n=4 
control and n=5 Mag Ko mice; n.s.=non-significant (P=0.7413) by Two-tailed Student`s t test. n.s.=non-significant 
P>0.05, ***P<0.001. 
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4.4.2 CMTM6-loss is overriding MAG-loss regarding axonal diameters 
Considering that CMTM6 and MAG may functionally interact we investigated 

the abundance and localization of both in the respective absence of the other. By 

immunoblotting and immunohistochemistry (Fig. 10) as well as in the proteomic 

analyses of AEF fractions of control and Cmtm6 cKo mice (Fig. 22) it was shown that 

abundance and localization of MAG is independent of CMTM6. However, 

immunolabeling of CMTM6 (red) and MAG (green) on adult control and Mag Ko sciatic 

nerve teased fiber preparation showed a preferentially perinuclear localization of 

CMTM6 in Schwann cells upon deletion of MAG (Fig. 25A). By quantifying this we 

indeed detected a higher percentage of perinuclear CMTM6 accumulation in Mag Ko 

compared to control mice (Fig. 25B). In addition, the abundance of CMTM6 is strongly 

reduced in Mag Ko mice as shown by immunoblotting of sciatic nerve lysates of 

respective mice. This may indicate a transport problem of CMTM6 upon MAG loss and 

implies a possible function for MAG in facilitating normal CMTM6 abundance and 

localization in Schwann cells. 
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Figure 25 Axonal diameters are increased in the absence of both CMTM6 and MAG. A) Immunolabeling of 
teased fiber preparations from adult control and Mag Ko sciatic nerves depicts accumulation of CMTM6 (red) when 
MAG (green) is lacking. Nuclei were labeled with DAPI (blue). Scale bar, 10 µm. B) Genotype-dependent 
quantification on sciatic nerve teased fiber preparations from control and Mag Ko reveals increased CMTM6 
accumulation in Mag Ko nerves. Data are presented as mean +/- SD; n=3 mice per genotype; P=0.0005 by Two-
tailed Student`s t-test. C) Immunoblot-analysis of sciatic nerve lysates from control and Mag Ko mice at P75 shows 
decreased CMTM6 abundance upon loss of MAG. Actin serves as loading control. Blots shows n=3 mice per 
genotype. D) Genotype-dependent quantification of the diameters of myelinated axons from sciatic nerves reveals 
abnormally increased axonal diameters in adult Cmtm6 cKo;Mag Ko double mutant mice compared to control mice 
at 2 mo. Data are presented as frequency distribution with 0.5 µm bin width; n=19108 axons from n=5 control mice 
and n=18003 axons from n=5 Cmtm6 cKo;Mag Ko double-knockout mice; Mean axonal diameter (control+/- Cmtm6-

cKo;Mag-Ko double-knockout) = 3.13µm+0.09µm; P=0.0001 by two-sided Kolmogorow-Smirnow test. E) Quantification of the 
number of myelinated axons on semi-thin sections of dissected sciatic nerves shows no difference between Cmtm6 
cKo;Mag Ko double mutant compared to control mice. Data are presented as mean +/- SD, n=5 per genotype; 
P=0.0761 by Two-tailed Student`s t-test. n.s.=non-significant P>0.05, ***P<0.001.  

 

Considering the proposed interaction of CMTM6 and MAG and to further assess 

the opposing function of both SC proteins in regulating axon diameter growth we 

generated Cmtm6 cKo;Mag Ko double-knockout mice (termed Cmtm6 cKo;Mag Ko) 

and quantified genotype-dependent differences of axonal diameters in sciatic nerves. 

Strikingly, frequency distributions displayed higher number of large axonal diameters 

in Cmtm6 cKo;Mag Ko sciatic nerves compared to control mice similar to Cmtm6 

single-knockout mice (Fig. 25D). Note, that the number of myelinated axons is 

unchanged between genotypes. This interesting result implies that loss-of CMTM6 

function overrides loss-of MAG function on regulating axonal diameters.  

Concluding, these results indicate an interaction of CMTM6 and MAG in which 

I) MAG is facilitating normal CMTM6 abundance and localization and II) CMTM6 loss-

of-function is overriding MAG loss-of-function regarding axonal diameters. Taken 

together, we propose a model in which Schwann cells regulate radial growth of 

peripheral axons via adaxonal proteins with CMTM6 restricting and MAG increasing 

axonal diameters (see model in Figure 26). 
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5 Discussion 

5.1 Can we identify novel proteins at the axon-myelin interface? 
Saltatory signal propagation in the PNS as well as trophic support of axons by 

myelinating glia cells require the close cellular association between axons and 

myelinating Schwann cells (Feltri, Poitelon et al. 2016). In addition, complex molecular 

interactions between axons, Schwann cells and the ECM mediate the development of 

a functional axon/myelin unit and many have been identified (Feltri, Poitelon et al. 

2016, Mogha, D'Rozario et al. 2016) (see Introduction chapter 2.2 and 2.3). One such 

example is MAG, a SC protein known to increase the radial growth of axons (Yin, 

Crawford et al. 1998). However, a SC factor restricting axonal diameters is yet 

unknown. In this study we show that CMTM6 is a novel SC protein at the axon/myelin 

interface and restricts the radial growth of myelinated and non-myelinated axons in the 

PNS. 

 

For identifying novel myelin proteins in the PNS Patzig et al. established 

proteomic analysis of purified myelin from wild-type sciatic nerves (Patzig, Jahn et al. 

2011). They were the first to study the PNS myelin composition at proteome level and 

identified 36 known PNS myelin proteins and over 500 proteins which were previously 

not associated with PNS myelin (Patzig, Jahn et al. 2011). Nevertheless, due to its 

high lipid content, compact myelin membranes accumulate at lower sucrose densities 

with only few co-purifying axolemmal proteins. Aiming to study interactions between 

myelinating glial cells and axons in more detail, purification of the membrane interface, 

in particular the adaxonal membrane, axolemma and non-compact myelin is crucial. 

For the CNS this was previously achieved in two separate studies, which investigated 

either purified human myelin and “axogliasome” from white matter CNS regions 

(Dhaunchak, Huang et al. 2010) or murine “myelin-axolemmal complex” of 21-days old 

mouse brains (Menon, Rasband et al. 2003). Both studies demonstrated that the 

adaxonal membrane and axolemma of the axon/myelin interface can be sheared away 

from compact myelin membranes due to its higher protein-to-lipid ratio and can be 

used for systemic biochemical assessment. Dhaunchak et al. found a 28% overlap of 

the proteins identified in human axogliasome fraction and in purified axogliasome of 

rodent optic nerves, suggesting conservation of some proteins at the axon/myelin 

interface (Ogawa and Rasband 2009, Dhaunchak, Huang et al. 2010). 
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Yet, no study so far approached biochemical characterization of the axon/myelin 

interface of the peripheral nervous system. Thus, we adapted the preexisting CNS 

protocols to biochemically enrich the axogliasome from murine sciatic nerves and 

performed mass spectrometry to investigate if we can detect novel proteins mediating 

axon-to-SC or SC-to-axon signaling. Classical and known markers of the purified 

axogliasome, including carrier proteins, signaling and cell adhesion molecules as well 

as channel proteins were identified in our dataset (see addendum Fig. 27 and Table 

2). Enrichment of axolemma and adaxonal marker proteins (MAG, NFASC and 

ATP1A1) were validated by immunoblots. Unexpectedly, proteins of the ECM, the 

basal lamina, compact myelin and proteins of the axonal cytoskeleton were also 

identified in our dataset (Fig. 6 and Fig. 27). For CNS myelin a purity of >90% can be 

expected indicating only little contamination by proteins of other cell types and 

mitochondria (de Monasterio-Schrader et al., 2012; Erwig et al., 2019). Further, the 

aforementioned studies also show an overlap of the proteins identified in myelin and 

axogliasome proteome, suggesting both fractions have distinct but also common 

features (Menon, Rasband et al. 2003, Dhaunchak, Huang et al. 2010). Our proteomic 

approach now identifies marker proteins of various sub-compartments to be present in 

the purified fraction. This prompted us to rename the fraction to “axogliasome-enriched 

fraction” (AEF) instead of the previously used terms “axogliasome” or “myelin-

axolemmal complex”. Yet, with 755 identified proteins our dataset provides the first 

proteomic analysis of the axon/myelin contact zone of the peripheral nervous system 

and includes many proteins with yet unknown function for the PNS.  

 

By identifying CMTM6 as a novel SC protein and characterizing its role for the 

PNS we can thus demonstrate that investigating the AEF can be a relevant tool for 

discovering new molecules involved in the axon/myelin unit.  

 

5.2 CMTM6, a previously unknown Schwann cell protein  
Combining the purification of the axogliasome-enriched fraction with proteomic 

analysis we identified candidate proteins previously unknown at the axon-SC interface. 

Applying the aforementioned selection criteria, we chose CMTM6 as a novel candidate 

and indeed verified its localization at the adaxonal membrane and expression in 

Schwann cells by using biochemical and histochemical methods (Fig. 6-8). The CMTM 
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family is a generic protein family consisting of eight, under investigated, Chemokine-

like factor like MARVEL-domain containing proteins (Han, Ding et al. 2003). So far, no 

functional relevance for the nervous system for any of the eight protein family members 

was shown in vivo. The majority of studies propose a role in immune and male 

reproductive system as well as tumorigenesis and suggest a role for CMTM6 in 

mediating anti-tumor immunity (Shao, Cui et al. 2007, Wang, Li et al. 2009, Niu, Li et 

al. 2011, Liu, Su et al. 2015, Burr, Sparbier et al. 2017, Mezzadra, Sun et al. 2017), 

reviewed in (Lu, Wu et al. 2016). Noteworthy, the majority of these studies are based 

on in vitro or screening experiments. To this point the only CMTM family member 

known to be present in PNS myelin is CMTM5, which was previously identified as a 

novel compact myelin protein with yet unknown function (Patzig, Jahn et al. 2011). In 

an unpublished microarray dataset of murine sciatic nerves by Chris Hummels from 

the MPI-EM, CMTM6 was also detected with a higher mRNA abundance in adult mice 

compared to the other protein family members. Thus, investigating the role of our 

candidate CMTM6 appeared promising. We conditionally ablated its expression in 

Schwann cells by breeding Cmtm6flox/flox mice and DhhCre driver mice (referred to as 

Cmtm6 cKo), which could be verified by immunoblot and immunolabeling of teased 

fibers as well as on mRNA level (Fig. 9-11).  

 

5.3 CMTM6 restricts radial axonal growth 
Hypothesizing a role of CMTM6 in mediating SC and axon interactions we 

assessed consequences of its deletion first on light- and electron microscopic level. At 

first glance, it appeared that loss of CMTM6 had no influence on SC and axonal 

integrity. Strikingly though, we could reveal a shift towards larger axonal diameters in 

Cmtm6 cKo mice within several peripheral nerves without any loss of myelinated axons 

or difference in degenerating axons (Fig. 12 and 13). It is thought that SCs sense Nrg1-

type-III on the axonal surface as a readout of its diameter which subsequently affects 

the myelin sheath thickness in dependence on the axonal diameter (Michailov, Sereda 

et al. 2004, Taveggia, Zanazzi et al. 2005, Nave and Salzer 2006). When measuring 

the g-ratio in respective peripheral nerves we indeed found that Cmtm6 cko mice 

display an appropriately thicker myelin sheath surrounding larger axons. Thus, the 

newly identified SC protein CMTM6 is the first protein known to restrict radial axonal 

growth without impairing axonal integrity or myelin biogenesis.  
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Further, the effect of axonal diameter on myelination is especially crucial during 

radial sorting. In general, PNS axons of a diameter <1 µm are ensheathed by Remak-

type SCs and only axons upon radial growth to at least >1µm get sorted out and 

myelinated. However, mutations of genes encoding SC proteins, but also myelin-

related proteins or proteins of the ECM in peripheral nerves, may impair radial sorting 

resulting in failed sorting (i.e. axons larger 1µm still associated with Remak bundles, 

fewer or more axons within one bundle or aberrant wrapping of either axons within 

Remak bundles or even myelination of the Remak bundle itself) (Feltri, Poitelon et al. 

2016, Harty and Monk 2017). A broad list of mouse mutants associated with radial 

sorting defects is summarized in (Feltri, Poitelon et al. 2016).  

 

Interestingly, none of the abovementioned changes are present in Remak 

bundles of Cmtm6 cKo even though their axonal diameters are increased during early 

development (P9). This indicates that CMTM6 also restricts diameters of non-

myelinated axons but is not essential for mediating radial sorting. For myelinated axons 

this shift towards larger diameters arises only at 1 month of age (Fig. 14-15). So far, 

there is a lack of exclusive markers to create cell-type specific deletions only in RSCs 

but not immature or myelinating SCs to separate the function of CMTM6 in those cell 

types. Especially since SC are plastic and both, myelinating and RSCs, play a role in 

regeneration post injury it would be of interest to also distinguish the function of 

CMTM6 in the two different cell types.  

 

Surprisingly we demonstrated a considerable age dependent decrease of 

CMTM6 abundance in 1-year-old sciatic nerves (Fig. 16F). Interestingly, the diameters 

of myelinated axons of control and Cmtm6 cKo mice do not differ at 1 year of age (Fig. 

16). This is most likely explained by the decreased abundance of CMTM6 at 1 year, 

which does thus not restrict axonal diameters anymore. Previous studies investigated 

the morphometric changes on ultrastructural level during aging and examined nerve 

conduction velocity changes in different organisms such as cat, rat and mice (Chase, 

Engelhardt et al. 1992, Verdú, Butí et al. 1996, Painter 2017). Taken together, the 

majority of these studies suggest that murine peripheral nerves have a rather long 

postnatal maturation period up to 12 months-of age. This period is reflected by stable 

morphology with a steady increase in fiber size as well as nerve conduction velocity 

(Verdú, Butí et al. 1996, Ceballos, Cuadras et al. 1999). 
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With a more intensive analysis of approximately 3000 axons per sciatic nerve 

we could confirm the findings of increased axonal diameters up to 1 year in wild-type 

mice (Fig. 16 A). In mice age-related changes such as loss of myelinated and non-

myelinated fibers, myelin outfoldings and smaller axonal diameters slowly establish 

from 1 year up to 20-months of age and become more prominent afterwards (Verdú, 

Ceballos et al. 2000). Chase et al. combined electrophysiological and morphological 

analysis in the cat masseter nerve, which is mainly comprised of motorneurons, and 

was able to link the decrease in nerve conduction velocity with the age-dependent 

decrease of axonal diameters as well as myelin sheath disruptions (Chase, Engelhardt 

et al. 1992). In line with this, Verdu and colleagues could demonstrate the same for 

mice. Their data suggests that the decrease in axonal size and loss of especially large 

myelinated axons are partially responsible for the changes in nerve conduction velocity 

and non-linearly decline at around 18-months of age (Verdú, Butí et al. 1996, Ceballos, 

Cuadras et al. 1999, Verdú, Ceballos et al. 2000).  

 

Regarding axonal diameter changes in aged animals we also analyzed sciatic 

nerves in 20-months-old mice. Figure 16A illustrates a slightly higher number of smaller 

diameter axons in 20-month-old mice compared to 4-12-months old mice which is 

similar to previously published results. However, a more detailed comparison between 

large and small diameter axons as well as myelin sheath integrity was not part of our 

study. By the decreased abundance of CMTM6 in SCs by 1 year of age the restriction 

of radial axonal growth might be partially diminished. This implies that during aging 

other mechanisms might be involved in axonal diameter changes. This time-dependent 

regulation of CMTM6 suggests a role for CMTM6 in restricting radial axonal growth 

during development (up to 2 month) and maturation (up to 1 year) but most likely not 

during aging (older than 12-16 months). 

 

By generating Cmtm6flox/flox;PlpCreERT2 (Cmtm6 iKo) mice and injecting tamoxifen 

at 2-months of age we could study the role of CMTM6 post development. Interestingly, 

when analyzing axonal diameters at 2- and 6- months post tamoxifen injection we could 

show an increase in axonal diameters in Cmtm6 iKo compared to control mice (Fig. 

21). Thus, CMTM6 is utilized by Schwann cells to restrict radial axonal growth not only 

during developmental myelination but also in adult mice.  
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5.4 How do axonal diameters increase in the absence of CMTM6?  
Changes in the diameter of myelinated axons have thus far been associated with 

the density and phosphorylation of neurofilaments (NF) which are amongst the most 

prominent cytoskeletal constituents of larger caliber axons (Friede and Samorajski 

1970, Hsieh, Kidd et al. 1994, Perrot, Lonchampt et al. 2007). Accumulation and failed 

transport of NF is one hallmark of diseases such as Amyotrophic Lateral Sclerosis and 

some forms of CMT (Dale and Garcia 2012). However, various studies suggested that 

phosphorylation of NF may not be achieved without intact myelin. This indicates that 

myelinating glia cells play an essential role for phosphorylation of NF. For example, 

studies in Trembler mice, which have a point mutation in the myelin gene Pmp22 show 

demyelination, but also smaller axonal diameters correlated with impaired 

phosphorylation of neurofilaments (De Waegh and Brady 1990, de Waegh, Lee et al. 

1992).  

 

Further, it was shown that MAG-deficient mice have reduced axonal diameters 

accompanied by a hyperphosphorylation of NF-heavy (NF-H) and NF-medium (NF-M) 

underlining that neurofilament organization within axons is regulated by SC signals in 

an “outside-in” signaling cascade (Yin, Crawford et al. 1998, Garcia, Lobsiger et al. 

2003). Garcia et al. further provided evidence that NF-M is the target for MAG 

dependent phosphorylation and thus axonal diameter increase (Garcia, Lobsiger et al. 

2003) (also see Introduction chapter 2.3). Noteworthy, not all changes in neurofilament 

density or phosphorylation are dependent on MAG signaling. Schwann cells which lack 

the protein kinase mTOR display reduced axonal diameters and impaired myelin 

sheath postnatally. This is additionally accompanied by diminished NF phosphorylation 

without any changes of MAG abundance (Sherman, Krols et al. 2012).  

 

In CMTM6 cKo mice we could not observe changes in MAG abundance and 

localization (Fig. 10) as well as differences in neurofilament phosphorylation (Fig. 20 

C-F). Interestingly, also the neurofilament density was unchanged between Cmtm6 

cKo and control mice (Fig. 20 A-B). Thus, it seems that the more extensive radial 

growth of myelinated axons in maturing and adult Cmtm6 cKo mice is independent of 

changes in neurofilament density and phosphorylation. Further investigating axonal 

cytoskeleton changes in Cmtm6 cKo has the potential to provide novel insight in how 

SCs can influence the axonal cytoskeleton and axonal growth independent of 
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neurofilaments. With emerging super-resolution techniques, the axonal cytoskeleton 

can be observed in more detail. For example, Leite et al could demonstrate that the 

actin cytoskeleton is comprised of actin rings which are capped by a-Adducin. These 

actin rings have a dynamic periodic distribution along the axons and are linked by 

spectrin tetramers (Leite, Sampaio et al. 2016). Further, they show that axonal a-

Adducin is essential for controlling the actin ring diameters, and subsequently axonal-

diameters, without affecting the periodicity of actin rings. Notably, this does not only 

lead to increased axons within the optic nerve, spinal cord and sciatic nerve but also 

to progressive axonal degeneration (Leite, Sampaio et al. 2016). However, this study 

does not suggest an active involvement of SC in regulating changes of actin-ring 

diameter or adducin capping. Our own preliminary immunoblot experiments with a 

lower n number did not indicate a-Adducin but slight b-Adducin changes in Cmtm6 cKo 

nerves (data not shown).  

 

How the dynamic actin microfilament organization within axons changes upon 

tension and contractility is currently under investigation in other labs. Hopefully it will 

be unraveled in the near feature, how the actin cytoskeleton is involved in regulating 

axonal diameters as well as neuronal architecture (Leterrier, Dubey et al. 2017, Costa, 

Pinto-Costa et al. 2018). If the actin-ring diameter is changed in CMTM6 mutant mice 

or if other axonal cytoskeleton changes are affected by CMTM6 remains unknown 

within the timeframe of this thesis. Since the abundance of typical known cytoskeletal 

proteins is unchanged within the purified AEF from Cmtm6 cKo mice, differences in 

the axonal cytoskeleton of larger axons might originate from yet unknown or so far 

undetected molecules (Fig. 22). 

 

Taken together, the increased axonal diameters in Cmtm6 cKo mice do not result 

from changes in neurofilament density and/or phosphorylation. However, the axonal 

actin cytoskeleton may play a role in increasing the axonal diameters in Cmtm6 cKo 

mice. 

 

5.5 How can CMTM6 mediate its function towards the axon? 
CMTM6 belongs to the CKLF-like-MARVEL transmembrane domain-containing 

member family which was first reported in 2003 and renamed from CKLFSF1-8 to 
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CMTM1-8 later on (Han, Ding et al. 2003). All members contain the MARVEL domain 

which has been previously identified in proteins of the myelin and lymphocyte (MAL) 

protein superfamily. Since the family members contain four transmembrane domains 

they are maybe involved in cell-cell signaling. Still, a functional signaling domain within 

members of the CMTM family has not been described so far, and possible downstream 

pathways or signaling cascades are unknown. To identify how CMTM6 mediates its 

function remains to be elucidated.  

 

By purifying and assessing the AEF, we have shown that it is possible to identify 

novel interesting signaling molecules mediating glia to axon interaction (Fig. 6). This 

prompted us to purify the AEF from sciatic nerves of control and Cmtm6 cKo mice. We 

were able to successfully show similar abundance for axonal proteins, myelin proteins 

as well as ECM and cell adhesion proteins (Fig. 22A). In addition, we applied the 

following criteria to select interesting candidates: I) robust abundance in purified AEF 

samples (threshold >100ppm per sample), II) changed abundance in Cmtm6 cKo 

compared to wild-type AEF with at least less 0.5 fold decrease or more than 2.0 fold 

increase of abundance and a significance level of p<0.05 based on ppm values, III) 

transmembrane protein, secreted factors or proteins with a possible function as ligand 

or receptor, IV) a possible involvement in regulation of the nervous system, specifically 

to myelin, axon or the ECM. For none of the in Figure 22 B and C depicted proteins all 

of the criteria apply. By scanning literature and existing databases such as the RNA-

sequencing transcriptome and splicing database of cortical neurons, glia and vascular 

cells (Zhang, Chen et al. 2014, Zeisel, Munoz-Manchado et al. 2015) no candidate for 

mediating CMTM6 function was revealed. Nevertheless, two of the upregulated 

proteins are of potential interest especially when considering cytoskeletal changes and 

neuronal growth.  

 

Kinesin family member 20b (KIF20B) was shown to be involved in neuronal 

polarization and migration in the neocortex (McNeely, Cupp et al. 2017). Beyond this, 

it mediates the transport of Shootin 1 (SHTN1) and thus promotes migration of cortical 

neurons (Sapir, Levy et al. 2013). Interestingly, SHTN1 is known to interact with 

L1CAM, an important neuronal cell adhesion molecule, as well as influencing 

phosphatidylinositol 3,4,5-triphosphate (PIP3) accumulation in the growth of 

hippocampal neurons (Shimada, Toriyama et al. 2008, Sapir, Levy et al. 2013). PIP3 
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accumulation on the other side is crucial for the development of neurites into axons 

and elevated PIP3 levels in the PNS lead to hypermyelination of small caliber axons 

and impaired radial sorting (Ménager, Arimura et al. 2004, Goebbels, Oltrogge et al. 

2010). The second candidate, Centlein, is a microtubule associated protein and in vitro 

studies suggest a role in neurite outgrowth (Zeisel, Munoz-Manchado et al. 2015) by 

stabilizing microtubules (Jing, Yin et al. 2016). This might be of interest since 

microtubules are known to be involved in regulation of axonal diameters of small caliber 

axons which only show low levels of neurofilament expression (Friede and Samorajski 

1970). Still, both candidates are possibly contamination considering that published 

RNAseq databases of different murine CNS areas do not suggest expression by 

myelinating glia cells (Zhang, Chen et al. 2014, Zeisel, Munoz-Manchado et al. 2015). 

Thus, KIF20B and centlein did not seem promising for mediating CMTM6 function in 

restricting radial axonal growth and where thus not further investigated.  

 

Beyond our proteomic approach, we investigated CD274/PDL1 (programmed-

death ligand 1) as a promising candidate for CMTM6 interaction. Previous in vitro 

studies using cancer cell lines and a CRISPR-Cas9 screening approach identified 

CMTM6 as a regulator of CD274 (Burr, Sparbier et al. 2017, Mezzadra, Sun et al. 

2017). Further, they have shown that CMTM6 co-localizes with CD274 at the plasma 

membrane and is crucial for maintaining its cell surface expression on recycling 

endosomes, thus preventing CD274 degradation (Burr, Sparbier et al. 2017). 

Mezzadra et al. supported this by showing that CMTM6 regulates CD274 on protein 

but not mRNA level. Interestingly, they demonstrated that, in the absence of CMTM6, 

CMTM4 can take over this regulatory function. Apparently, none of the other tested 

CMTM family members share this function (Mezzadra, Sun et al. 2017). These two in 

vitro studies were the first to identify a role for CMTM6 in regulating T-cell mediated 

anti-tumor immunity via interacting and stabilizing CD274/PD-L1 on tumor cells 

recognizing a novel therapeutic target. In our study we show that CD274/PD-L1 is 

present in the PNS and preferably localizes to the abaxonal myelin sub-compartment. 

However, abundance and localization of CD274 upon CMTM6 deletion is not changed 

suggesting that SC expressed CMTM6 does not regulate CD274 protein levels in vivo 

in the PNS (Fig. 23). Notably also CMTM6 abundance is unchanged upon deletion of 

CD274. Throughout our study we did not test for CMTM4 compensation on any level 
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mainly because unpublished microarray mRNA data from the department does not 

indicate Cmtm4 gene expression in peripheral nerves.  

 

5.6 How do Schwann cells mediate radial axonal growth? 
It is still unclear how CMTM6 might mediate its function towards the axon. 

Notably, it was reported that another adaxonal SC protein, namely MAG, has a role in 

increasing radial axonal growth in the PNS (Yin, Crawford et al. 1998). This was 

confirmed with our analysis of axonal diameters within sciatic nerves of control and 

Mag Ko mice (Fig. 24). Since both, CMTM6 and MAG, are localized at the adaxonal 

SC membrane and are involved in axon diameter regulation we hypothesize that MAG 

and CMTM6 might functionally interact. Upon CMTM6 deletion we could not detect any 

changes in protein abundance, mRNA expression or localization of MAG (Fig. 10, 11 

and 22). Strikingly though, we could identify a decreased abundance of CMTM6 in Mag 

Ko sciatic nerve lysates as well as a perinuclear accumulation of CMTM6 on SC nuclei 

of MAG deficient mice (Fig. 25). This implies a possible intracellular transport 

impairment of CMTM6 when MAG is lacking and identifies a first hint towards a 

molecular interaction partner of CMTM6. It can be assumed that MAG is important to 

facilitate the correct localization or abundance of CMTM6 in Schwann cells.  

 

Thus far, known interaction partners of MAG are the major brain gangliosides 

GT1b and GD1a which together with MAG mediate the periaxonal diameter of 

myelinated axons (Trapp and Quarles 1982, Pan, Fromholt et al. 2007). Especially for 

the CNS it was proposed that MAG inhibits axonal regeneration mainly involving 

interactions with Nogo-receptors as well as p75NTR and RhoA/Rock downstream 

signaling pathways (Filbin 2003, Palandri, Salvador et al. 2015). However, it is still not 

fully understood which of the proposed interaction partners indeed mediate the effects 

of MAG for either CNS or PNS (Schnaar and Lopez 2009). We now identified CMTM6 

as a novel Schwann cell protein, which is likely stabilized by MAG.  

 

Since both SC proteins regulate axonal diameters in opposing manner we wanted 

to assess the consequences of deleting both, MAG (increasing axonal diameters) and 

CMTM6 (restricting axonal diameters). Thus, we generated double mutant mice 

(Cmtm6 cKo;Mag Ko). Surprisingly, we could detect a shift towards larger diameter 
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axons in Cmtm6 cKo;Mag Ko compared to control mice appearing similar to the 

observed differences in single Cmtm6 cKo mice (Fig. 25). This led us to conclude, that 

for the regulation of radial axonal growth in adult mice loss-of CMTM6 function is 

overriding the loss-of MAG function within peripheral nerves. With our study we 

propose a model in which proteins like MAG and CMTM6 localized at the adaxonal 

membrane directly influence the regulation of radial axonal growth of peripheral 

myelinated axons (Fig. 26A). Upon the deletion of MAG, we could validate what others 

previously showed: axonal diameters are smaller (Fig. 26B) (Yin, Crawford et al. 1998), 

whereas if SC lack CMTM6 axonal diameters are increased (Fig. 26C). If both 

adaxonal proteins are deleted the axonal diameters are similarly enlarged as in Cmtm6 

cKo, suggesting CMTM6 loss is overriding the loss of MAG on axonal diameter 

regulation (Fig. 26D).  

 

 
Figure 26. Model of the role of adaxonal Schwann cell proteins CMTM6 and MAG in regulation of axonal 
diameters in the PNS. Compared to wildtype mice (A) axonal diameters are reduced when MAG is lacking, as 
previously shown by Yin et al. 1998 (B) indicating that MAG mediates radial axonal growth. C) The diameters of 
Cmtm6 cKo mice are enlarged implying that CMTM6 restricts axonal diameters. D) Upon deletion of both, MAG 
and CMTM6, axonal diameters are enlarged suggesting loss of CMTM6 function overrides the loss of MAG function. 
We propose that Schwann cells regulate axonal diameters via adaxonal proteins including MAG and CMTM6. 
Scheme created with Biorender.com. 

 

5.7 Nerve conduction velocity; a matter of size and precision 
It is commonly accepted that upon myelination the internodal capacitance is 

reduced and upon radial axonal growth the interior resistance along internodes is 
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decreased, both achieving faster signal propagation along myelinated axons (Hartline 

and Colman 2007). Calculations in the 1950`s suggest a linear dependency of nerve 

conduction velocity on axonal diameters of myelinated fibers (Rushton 1951).  

 

In our mouse model the axonal diameters within sciatic nerves are increased 

when CMTM6 is lacking from SC but the g-ratio remains constant. Thus, the myelin 

sheath increases appropriately to the larger axonal diameter. The increase of axonal 

diameters in Cmtm6 cKo mice together with the appropriately increased myelin sheath 

thickness prompted us to analyze the nerve conduction velocity of control and Cmtm6 

cKo mice. The described morphological changes are especially prominent in the 

sensory dorsal roots and the phrenic nerve. As expected, both SNAP and SNCV are 

increased in mice lacking CMTM6 from SCs (Fig. 17). These alterations affect Cmtm6 

cKo mice functionally. Behavioral assays showed a significantly faster reaction towards 

a heat-stimulus and an elimination of breathing pauses, which are commonly seen in 

C57BL/6N mice (Fig. 19) (Stettner, Zanella et al. 2008). Notably, most behavioral 

experiments that were conducted in this study assessing motor capabilities showed no 

differences. One exception is the Grid test for which Cmtm6 cKo mice displayed a 

higher number of fore- and hind limb slips. This is consistent with the observed 

unchanged CMAP and mNCV (Fig. 17 and 19). Concluding, the changes observed in 

axonal diameter and myelin sheath thickness in Cmtm6 cKo affect preferably sensory 

function and alter motor function and coordination only to a minor extend. Nonetheless, 

we demonstrated that SC mediated alterations of axonal diameters influence the signal 

propagation within the PNS. 

 

SC signals including mTOR, MAG and PMP22 initiate and/or support the 

continued radial growth of axons mainly via modulating the axonal cytoskeleton (de 

Waegh, Lee et al. 1992, Yin, Crawford et al. 1998, Sherman, Krols et al. 2012). Beyond 

that, studies in shiverer mice, which lack myelin basic protein (MBP) and thus lack 

compact myelin in the CNS also exhibit reduced axonal diameters in the CNS 

(Readhead, Popko et al. 1987, Panagopoulos, King et al. 1989, Gould, Byrd et al. 

1995, Sadahiro, Yoshikawa et al. 2000, Kirkpatrick, Witt et al. 2001). The myelin 

compaction in the PNS in these mice is comparably normal but Panagopoulos and 

Gould et al. showed smaller axonal diameters in tibial and sciatic nerves of shiverer 

mice (Panagopoulos, King et al. 1989, Gould, Byrd et al. 1995). These studies together 
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imply that another role of myelin is to increase axonal diameters. However, the 

previously published assessments are not based on high numbers of both axons and 

mice. 

 

Vice versa, the axonal diameter regulates the initiation of myelination in the PNS 

(described in more detail in introduction chapter 2.2 and previous discussion chapters). 

Our study now provides the first evidence of a myelin signal which represses axonal 

diameter growth without impairing myelination. This suggests a more complex interplay 

between SCs and axons than previously assumed. Not only impaired myelin or 

disruption of glial genes can lead to smaller axonal diameters but intrinsic glial signals 

restrict radial axonal growth. This leads to the following question: Why do axons need 

to be restricted in size?  

 

In the CNS, Perge et al. quantified axonal diameters (myelinated and non-

myelinated axons) and mitochondrial volume in 16 different fiber tracts in five different 

species, combined with published information about firing rates of respective 

axons/fiber tracts (Perge, Niven et al. 2012). Interestingly, they showed that axons vary 

around 100-fold in diameter amongst the different CNS fiber tracts. From this study 

they propose, but not experimentally validate, an evolutionary pressure towards 

smaller axonal diameters since axonal diameters appear to be linear to firing rates. 

Further, they state that to double the information rate along specific fibers an axon 

would need to increase its volume by 4-fold which would require high amounts of 

energy. They conclude that information rate processing in different tracts defines 

axonal diameter to improve timing precision (Perge, Niven et al. 2012). Adding to this, 

Hartline & Colman discuss that non-myelinated axons would need to be 100-times 

larger for a ten-fold increase in NCV (Hartline and Colman 2007). The emergence of 

myelination possibly benefitted the development of smaller axonal diameters which 

might have paved the way for the development of sophisticated signaling systems. 

Even though the majority of these studies focus on the CNS it is likely that molecular 

signals that restrict radial axonal growth exist throughout the whole nervous system. 

Since there is a variety of axonal diameters also within the PNS (e.g. observed different 

diameters in the control nerves of this study) it seems plausible to assume that also 

axonal diameter regulating proteins such as MAG or CMTM6 might be differentially 
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expressed in various fiber tracts such as ventral or dorsal roots, or mixed nerves like 

the sciatic nerve.  

 

What else besides myelination and axonal diameter affects nerve conduction 

velocity? Studies by Rushton, Waxman as well as Huxley and Stämpfli already 

proposed that internodal length, the distance between two nodes of Ranvier, affect 

NCV and that a specific length or maximum value can be reached beyond which 

conduction velocity will not increase any further (Huxley and Stämpeli 1949, Rushton 

1951, Waxman 1980). This was experimentally supported in a mouse model in which 

internodes were shortened during development without impaired myelination or 

differences in axonal diameters (Wu, Williams et al. 2012). This resulted in a decreased 

nerve conduction velocity and functional motor impairment of respective mice. 

Strikingly though, internodal length, NCV and functional readout recovered during 

postnatal development (Wu, Williams et al. 2012). In Cmtm6 cKo mice, internodal 

distances are unchanged at least postnatally and thus do not contribute to the 

observed increase in nerve conduction velocity (Fig. 18). 

 

Beyond this, increasing nodal length can potentially alter the conduction speed 

either via increasing the capacitance of the nodal membrane or increasing the number 

of Na+ channels at the nodes. By investigating nodes of Ranvier in the rat optic nerve 

and cerebral cortical axons the lab of David Attwell has demonstrated that the length 

of nodes can vary between 4.4-8.7-fold whereas the variation is less along the same 

axon. By computational modelling they predict that altering nodal length can influence 

speed of conduction by 20 percent (depending on internodal length changes but not 

channel density changes) (Arancibia-Cárcamo et al., 2017). Consequently, nodal 

length is another parameter to affect nerve conduction velocity. This prompted us to 

also investigate nodal and paranodal ultrastructure as well as measuring length and 

diameter for which we did not detect changes in Cmtm6 cKo compared to control mice 

(Fig. 18). The observed increase in nerve conduction velocity in our model thus 

appears to originate solely from the increased axonal diameters as well as myelin 

sheath thickness but not from other parameters that influence the speed of signal 

propagation. This makes our model attractive to assess in vivo how axonal diameters 

affect nerve conduction velocity independent of other parameters of the myelinated 

axon unit. 
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The modulation of NCV by about 20 percent by nodal alterations in the study of 

Arancibia-Cárcamo et al. is roughly similar to what changes in adding further myelin 

sheaths or changes in internodal length may achieve. However, changing node length 

requires less addition/retraction of membrane than what would be needed for adding 

more myelin wraps. Thus, fine-tuning of nodes of Ranvier is perhaps a fast and more 

efficient way of adapting nerve conduction velocity on the specific requirements in the 

CNS (Arancibia-Cárcamo, Ford et al. 2017). In the PNS two independent 

computational modelling studies targeted the question if there is an optimum extent of 

constriction of axonal diameters at the nodes for proper NCV (Halter and Clark 1993, 

Johnson, Holmes et al. 2015). They confirm this idea and propose that mechanisms 

must exist which restrict axonal diameters so that optimal nodal constriction is achieved 

depending on the NCV required for optimal signal transmission in a particular circuit or 

nerve. Note that the majority of these computational models have not yet been 

confirmed in vivo. The interplay of the relevant parameters of the myelinated axon unit 

affecting NCV remain to be experimentally assessed for both CNS and PNS.  

 

Together, Cmtm6 cKo mice provide an experimental model with a specifically 

defined morphological change of axonal diameters but not nodal, paranodal or 

internodal parameters. We could experimentally assess that the increased axonal 

diameters in peripheral nerves and the appropriately thicker myelin sheath increase 

sensory nerve conduction velocity. Thus, Cmtm6 cKo mice contribute to understanding 

the effects of spatial dimensions of the axon/myelin unit and how it precisely regulates 

nerve conduction velocity and thus nervous system function.  

 

5.8 Conclusion 
In this thesis we aimed at identifying novel proteins mediating interactions between 

peripheral axons and myelinating Schwann cells (SCs). Using a proteomic screen of 

the axogliasome-enriched fraction (AEF) purified from murine sciatic nerves we 

identified CMTM6 as a novel SC protein and determined its localization at the adaxonal 

membrane. By deleting its expression in SCs, we investigated morphological, 

functional and behavioral changes in Cmtm6 cKo mice.  
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Strikingly, we found a considerable shift towards increased diameters of both 

myelinated and non-myelinated axons in various peripheral nerves when CMTM6 is 

lacking from SCs. Since myelination accelerates nerve conduction velocity more 

efficiently than increased axonal diameters, it is plausible that molecules restricting the 

radial expansion of axons exist. Notably, myelin biogenesis, axonal integrity and radial 

sorting are not impaired in CMTM6 deficient mice. In agreement with increased axonal 

diameters and appropriate myelin sheath thickness Cmtm6 cKo mice exhibit faster 

sensory nerve conduction velocity, accelerated sensory responses and mild motor 

coordination changes. Since internodal, nodal and paranodal dimensions are not 

impaired by deficiency of CMTM6, its function in restricting radial axonal growth is 

highly specific.  

 

While the adaxonal myelin protein MAG has long been known to be involved in 

increasing axonal size, CMTM6 is the first myelin protein to restrict radial axonal 

growth. By deleting both MAG and CMTM6 we demonstrate that CMTM6 loss-of 

function overrides MAG loss-of function. In addition, the abundance and localization of 

CMTM6 appears to be regulated by MAG. 

 

In many PNS diseases or upon nerve injury the myelinated axon unit is pathologically 

disrupted which is sometimes accompanied by altered/reduced axonal diameters (De 

Waegh and Brady 1990, Vaughan 1992, Frei, Mötzing et al. 1999). Thus, as a possible 

preclinical application I propose that the findings of this thesis are promising toward 

investigating the potential beneficial role of counteracting CMTM6, e.g. in the following 

two scenarios: 

 

I) Charcot-Marie-Tooth diseases (CMT) result from mutations in either axonal 

(CMT type 2) or SC (CMT type 1) proteins and are inherited neuropathies in 

which patients suffer from progressive muscle weakness caused by 

impaired nerve conduction owing to reduced axonal diameter, axonal loss 

and either hypo- or de/dysmyelination (Stassart, Möbius et al. 2018). For 

example, mutations affecting the major peripheral myelin protein P0/MPZ 

result in either CMT1B or the more severe Dejerine-Sottas syndrome 

(Pareyson and Marchesi 2009, Saporta and Shy 2013). Previous analyzes 

of established mouse models (P0null/null and P0+/-) have shown decreased 
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axonal diameters and hypomyelination (Giese, Martini et al. 1992, Martini, 

Zielasek et al. 1995, Shapiro, Doyle et al. 1996, Frei, Mötzing et al. 1999, 

Patzig, Kusch et al. 2016). Thus, it would be of interest to examine if 

experimentally increasing axonal diameters by deleting CMTM6 could 

rescue the axonal phenotype, increase myelin sheath thickness and improve 

behavioral performance in these mouse models. 

II) The PNS has higher regenerative capabilities compared to the CNS, mainly 

because Schwann cells are comparatively plastic and can dynamically act 

upon nerve injuries with defined steps of degeneration, myelin clearance and 

remyelination (Jessen and Mirsky 2016). However, full functional recovery 

is rarely achieved in human patients (Fu and Gordon 1997). Often times, 

myelin sheaths remain abnormally thin, resulting in slower nerve conduction 

velocity (Stassart, Fledrich et al. 2013). It would be of interest to investigate 

the regeneration capabilities in a nerve crush or transection model using 

control and Cmtm6 cko mice to assess if an increase in axonal diameters 

could either speed up recovery and/or restore functionality post injury by 

establishing the original myelin sheath thickness.  

  

Counteracting the function of CMTM6 in restricting axonal diameters may emerge as 

a promising therapeutic approach in disorders affecting the peripheral nervous system. 

Results of this thesis meanwhile have been published in Eichel, M. A., et al. (2020). 

"CMTM6 expressed on the adaxonal Schwann cell surface restricts axonal diameters 

in peripheral nerves." Nat Commun 11(1): 4514. 
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7 Addendum 

7.1 R Script for statistical assessment of axonal diameters 
 
setwd("~/") 
 
library("xlsx") 
library("lmtest") 
library("ggplot2") 
 
cn <- read.xlsx("Ctrl.xlsx", 1) 
ck <- read.xlsx("cko.xlsx", 1) 
View(McNeely, Cupp et al.)  
View(ck) 
 
cn <- data.frame(cn = cn) 
names(McNeely, Cupp et al.) <- c("1","2","3","4","5") 
cn1 <- c(na.omit(cn[,1]), na.omit(cn[,2]), na.omit(cn[,3]), 
         na.omit(cn[,4]), na.omit(cn[,5]))  
 
ck <- data.frame(ck = ck) 
names(ck) <- c("1","2","3","4","5") 
ck1 <- c(na.omit(ck[,1]), na.omit(ck[,2]), na.omit(ck[,3]), 
         na.omit(ck[,4]), na.omit(ck[,5])) 
 
a <- data.frame(y = cn1) 
a$x <- "control" 
b <- data.frame(y = ck1) 
b$x <- "cko" 
d <- rbind(a,b) 
 
d$x <- as.factor(d$x) 
levels(d$x) 
d$x <- relevel(d$x, ref = "control") 
 
View(d) 
 
head(cn1) 
length(cn1)  
mean(cn1)  
var(cn1)  
head(ck1) 
length(ck1)  
mean(ck1) 
var(ck1)  
 
t.test(d$y[d$x == "control"], d$y[d$x == "cko"]) 
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t.test(d$y[d$x == "control"], d$y[d$x == "cko"], alternative = 
"less") 
 
lm1 <- lm(d$y ~ d$x) 
summary(lm1) 
 
ks.test(d$y[d$x == "control"], d$y[d$x == "cko"]) 
 
ks.test(d$y[d$x == "control"], d$y[d$x == "cko"],  
        alternative = "less") 
ks.test(d$y[d$x == "control"], d$y[d$x == "cko"],  
        alternative = "greater") 
 
m <- as.matrix(summary(lm1)$coeff) 
m1 <- as.data.frame(m) 
write.xlsx(m1, "Name.xlsx") 

 

 

7.2 Statistical analysis of axonal diameters 
Table 1 Statistical analysis of axonal diameters throughout this study. Data depicts the statistical analysis 
performed with R including type of nerve, age, p-values for t-Test and Kolmogorow-Smirnow test, the Mean of 
axonal diameter in control group +/- mean of axonal diameter change in mutant mice (averaged for each axon) as 
well as the number of axons in total which were analyzed and statistically assessed in respect to axonal diameter 
distribution. Note that the total number of myelinated axons differs and is not included in this table but in respective 
graphs. Most of the data come from n=5 biological replicates unless indicated otherwise in respective figure legends. 

Ctrl vs.  
Cmtm6 cKo 

Age tTest Mean+/- K&S Test Axon# 
Ctrl 

Axon # 
cKo 

Sciatic nerve P9 0,3648 1,77+0.0005 0.0246 16350 15775 

 1 mo <2.2e-16 2,68+0.12 <2.2e-16 17578 16966 

 2 mo 9.56e-12 3.16+0.09 1.22e-5 19250 18966 

 6 mo <2.2e-16 3.84+0.2 2.76e-12 17665 19196 

 1 yr 0.5961 4.02-0.01 0.64 17646 17321 

Phrenic nerve 2 mo <2.2e-16 2.84+0.84 2.2e-16 1293 1172 

Dorsal root 2 mo <2.2e-16 2.47+0.27 <2.2e-16 10387 9298 

Non-myelinated 
axons 

P9 0.001048 0.46+0.02 0.002 690 709 

 2 mo <2.2e-16 0.19+0.08 <2.2e-16 2522 2377 

Ctrl vs.  
Cmtm6 iKo 

2 mo 

p.T.i. 

0.02616 3.57+0.03 0.0027 14814 20067 
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 6 mo 

p.T.i. 

4.74e-16 

 

4.05+0.17 2.98e-10 19025 15047 

Ctrl vs Mag Ko P75 2.2e-16 3.26-0.17 2.2e-16 12793 16790 

Ctrl vs.  
Cmtm6 cKo;Mag 
Ko 

2 mo 1.16e-11 3.13+0.09 0.000146 19108 18003 
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7.3 Supplementary data Fig. 6: Proteomic analysis of AEF purified 
from murine wild-type sciatic nerves 

 
Figure 27 Protein composition of ECM and basal lamina, axolemma and adaxonal myelin, axonal 
cytoskeleton and myelin in the axolemma and adaxonal myelin enriched fraction (AEF). Bar charts showing 
protein composition of selected extracellular matrix (ECM) and basal lamina proteins (A), axolemma and adaxonal 
myelin proteins (B), axonal cytoskeleton proteins (C) and myelin protein (D) of the axolemma and adaxonal myelin 
enriched fraction (AEF) purified from sciatic nerves of adult WT mice. 
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Table 2 Exact ppm and CT% values for selected proteins of ECM and basal lamina, axolemma and adaxonal 
myelin, axonal cytoskeleton and myelin in the AEF purified from wild-type sciatic nerves.  

ECM and basal lamina  Myelin Proteins  
 average ppm % CV bio   average ppm % CV bio 
Sgcb 135,89183 0,113962  Sirt2 50,16176289 0,152546463 
Ilk 182,667263 0,129023  Cd59a 58,01241045 0,246093416 
Itgav 189,402495 0,189051  Cd151 66,28546641 0,276992245 
Bgn 223,384794 0,240537  Jam3 94,76414084 0,161354875 
Lum 224,684682 0,212287  Gjc3 112,5116991 0,21362747 
Fgg 241,390119 0,232638  Ca2 119,2071063 0,512541552 
Sgce 321,057068 0,147409  Pllp 128,018304 0,165191284 
Fgb 427,839989 0,157002  Cfl1 134,2386432 0,424760258 
Ogn 590,217732 0,427397  Rdx 172,5524876 0,230556505 
Itga7 598,892953 0,393118  Bsg 199,7850582 0,114987668 
Sgcd 607,354287 0,170341  Ezr 203,961151 0,175454327 
Col6a6 764,753625 0,273905  Pmp2 228,8893647 0,37700527 
Col18a1 851,145503 0,142925  Sept8 253,60735 0,148565673 
Vcan 907,625518 0,14923  Cd81 333,9421426 0,221461301 
Col12a1 1049,54141 0,143786  Sept11 360,5763571 0,190257841 
Itgb1 1051,16667 0,142545  Sept9 410,6476359 0,132186274 
Col5a2 1157,26364 0,220454  Cav1 414,7150393 0,14209295 
Sbspon 1205,20023 0,209203  Gsn 480,5432284 0,12159615 
Lama5 2038,02194 0,153614  Ndrg1 482,2795149 0,204305188 
Col14a1 2069,06601 0,19157  Cadm4 502,5320723 0,14096139 
Dag1 2310,27251 0,128199  Msn 537,0560236 0,161170558 
Fn1 2993,43186 0,624693  Bcas1 596,2956786 0,138941965 
Fbn1 3329,23384 0,193414  Sept2 649,7104519 0,101041993 
Dcn 3375,67808 0,161078  Sept7 661,9538265 0,150244754 
Itga6 4627,34376 0,122106  Plp1 859,2663176 0,469931691 
Itgb4 4741,42849 0,110315  Fasn 911,5485422 0,128023366 
Lama4 5496,33498 0,119854  Epb41l3 1080,86852 0,181654002 
Col15a1 6185,51556 0,152919  Cryab 1277,359248 0,157435333 
Col28a1 6441,11594 0,278102  Mag 1468,248431 0,157039018 
Lamb1 11301,386 0,123273  Rtn4 1541,618539 0,229125323 
Lamb2 11325,7392 0,136897  Tf 1568,668341 0,247962743 
Col4a1 13282,0528 0,132358  Cd9 1945,205517 0,143380936 
Nid1 14943,9659 0,105614  Epb41l2 3012,414103 0,072333961 
Col6a2 16857,2731 0,123211  Drp2 3079,005705 0,120468577 
Col6a1 18965,5814 0,110399  Mbp 3363,328242 0,289778442 
Lamc1 19005,263 0,137865  Anxa2 4733,872151 0,151631308 
Col1a2 25406,7564 0,158392  Cnp 5548,888292 0,130625233 
Col4a2 26638,514 0,106823  Vim 10648,12063 0,297614705 
Lama2 27462,8959 0,129781  Mpz 12703,09565 0,134573383 
Hspg2 70740,5781 0,134567  Prx 25263,04526 0,039101204 
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Axonal Cytoskeleton   Axolemma & adaxonal myelin 
 average ppm % CV bio   average ppm % CV bio 
Tubb3 1847,72639 0,218839  CTNNB1 9026,027046 0,210466826 
Prph 8034,58039 0,204542  ATP1A1 6172,300681 0,127409442 
Sptan1 8137,92327 0,168215  CHL1 1719,233255 0,185765695 
Sptbn1 8238,80024 0,129321  ATP1A3 1666,224258 0,245775628 
Nefh 10440,0326 0,265167  ATP1A2 1603,237128 0,123111861 
Nefl 15757,4292 0,162812  CTNNA2 1586,58679 0,314305973 
Nefm 18286,3202 0,165102  MAG 1468,248431 0,157039018 

    CDH1 1144,14384 0,138853218 

    ATP1B1 1038,420249 0,221322929 

    SLC44A2 937,0069446 0,073277556 

    L1CAM 935,2063333 0,139780157 

    ATP1A4 780,2376304 0,3185284 

    NCAM1 772,6473398 0,105418984 

    BCAM 731,5198814 0,090812128 

    ATP1B3 557,0547265 0,111605009 

    CTNND1 516,9010873 0,10111346 

    CADM4 502,5320723 0,14096139 

    CADM3 366,9706671 0,161235036 

    ADAM10 365,5711336 0,141634801 

    CTNNA3 332,7907845 0,142217402 

    NFASC 291,5000563 0,201199343 

    GPM6B 260,9654156 0,290787792 

    CTNNA1 256,2057785 0,1384878 

    MCAM 208,6050642 0,072454452 

    SLC44A1 207,8883171 0,128536805 

    THY1 203,1638096 0,215022852 

    SLC2A1 202,0143289 0,209280292 

    SLC16A1 168,3203607 0,117570766 

    ATP1B2 150,2252331 0,160742297 

    CNTN1 146,3377667 0,210713043 

    GJC3 112,5116991 0,21362747 

    PRNP 111,4582746 0,264381373 

    JAM3 94,76414084 0,161354875 

    CADM1 90,55277051 0,101715066 

    KCNA1 86,56533465 0,221670794 

    GPM6A 85,64992542 0,089638203 

    KCNAB2 85,28320366 0,449012248 

    CD200 79,31774023 0,098833235 

    CNTF 69,18055765 0,160306479 

    PGRMC1 65,47020815 0,13486754 

    CD59A 58,01241045 0,246093416 

    CMTM6 49,52970659 0,10281971 

    FXYD2 9,538251399 0,172219527 
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8 Curriculum Vitae 
 

 

 

 

 

 


