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Abstract

Extended object tracking is an emerging research topic that is motivated by the rapid development
of modern sensors. The traditional object tracking assumes a tracked object is far away from the
sensor. Therefore, an object takes only one resolution cell and can be simplified as a point. However,
due to the employment of near-field and high-resolution sensors, it is common for an object to
occupy several resolution cells, and its extent is not negligible in many modern applications
such as autonomous driving, robotics, and surveillance. Extended object tracking estimates both
the kinematic state and spatial extension of an object based on a varying and unknown number
of measurements. In this thesis, the object extensions are described as elliptical shapes. This
thesis is devoted to three problems in the context of extended object tracking and has made three
contributions respectively:

Evaluation metric

Between two ellipses that describe the same object, which one is better? Many elliptical extended
object trackers have been developed, but no consensus exists on the measures for performance
comparison. The Euclidean distance, which evaluates the location error for point object trackers,
incorporates no shape error. Finding a simple and intuitive measure that combines both location
and shape errors is not straightforward. Through the discussion and evaluation of the possible
performance measures, the first contribution of this thesis is the proposal of using the Gaussian
Wasserstein distance for evaluating elliptical extended object trackers.

Shape estimation

Given a set of measurements originated from one extended object, how to derive the kinematics
and the shape of the underlying object? The estimation of object extension is challenging as it
is a high-dimensional and non-linear estimation problem. The state-of-the-art elliptical trackers
approximate the object shape as a symmetric positive definite random matrix, which couples the
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orientation and axes lengths. However, modeling the dynamics of orientation and axes lengths
individually is useful for many applications. Therefore, the second contribution of this thesis is a
single elliptical extended object tracker that explicitly estimates object kinematic state, orientation
and semi-axes lengths. A closed-form solution is derived in the framework of recursive Kalman
filter. Using the Gaussian Wasserstein distance as a metric, simulation results have shown that
the proposed tracker facilitates the dynamic modeling of extended objects and outperforms the
previous work on this topic.

Multiple extended object tracking

Knowing a set of measurements from multiple objects, what are the location and the shape of
each object? The key to solve this problem is data association, i.e., determining the origin of each
measurement. Many multiple extended object trackers rely on clustering techniques to obtain
measurement partitions so that measurements generated from the same object are in one cell.
Then, the measurement cells are assigned to potential objects using data association methods
in traditional object tracking. However, the clustering process normally incorporates predicted
object density heuristically and has high complexity. The third contribution of this thesis is a
new multiple extended object tracker that employs an efficient measurement-object assignment
method and using the single extended object tracker for shape estimation in contribution two. The
new data association method calculates the marginal association probabilities by considering all
measurement-object mappings, yet requires no clustering or explicit enumeration of assignments.
The proposed tracker is tested using simulation and real lidar data. Results showed that the
proposed tracker is more efficient and performs better than clustering-based trackers.
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1
Introduction

Contents
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Extended Object Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Considered Problems and Challenges . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Structure of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Object tracking is ubiquitous in our daily life and humans track various kinds of objects uncon-
sciously. This makes object tracking one crucial task in many computer-aided applications such
as robotics, surveillance and autonomous driving. Object tracking is a broad area and has many
different settings. This thesis is constrained to the classic non-cooperative object tracking. To
be more specific, it focuses on the process of recursively estimating and predicting the states of
dynamic objects based on a series of measurements that is originated from a remote sensor. A
typical example is aircraft surveillance (see Figure 1.3(a)).

1.1 Motivation

The traditional object tracking assumes the tracked object is far away from the sensor and has the
so-called small object assumption. Under the small object assumption, the extent of the object is
neglected and the object is treated as a point. In addition, it assumes one object generates at most
one measurement.

With the rapid advances of sensor technology, the small object assumption is not valid for many
applications. Figure 1.1 gives an example of the measurements received from an automotive radar,
which are mounted on a vehicle [1].1 Figure 1.2 shows the image and reflection points that are

1https://www.nuscenes.org/

1



2 CHAPTER 1. Introduction

Figure 1.1: This figure shows the radar measurements from nuScenes dataset [1]. The left image
is the bird view of the scene. The ego vehicle is indicated using a patched blue rectangle, radar
measurements are plotted by red points, and the annotated vehicles are orange rectangles. The
right figure overlays the radar measurements on the camera image with colors indicating depth.

Figure 1.2: Example image and lidar data from KITTI dataset [2]. The top row is the images data
and the bottom row are the corresponding lidar data with two different views. As the field-of-view
of camera and lidar are different, not all objects and pedestrians in the lidar data can be found on
the image.
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(a) Point object tracking (b) Extended object tracking

Figure 1.3: Examples of point and extended object tracking. As shown in (a), the object in
point object tracking is far away from the sensor and assumes one object generates at most one
measurements. Hence, the object extent can be treated as a point. (b) depicts a typical scenario
of extended object tracking. For extended object trakcing, the tracked object generates a varying
number of measurements, most likely more than one. Besides the location of the object, the
extension of the object is one of the key estimation tasks for extended object trackers.

obtained from an RGB camera and a lidar [2].2 From both figures, we can see that the pedestrians
and vehicles occupy more than one resolution cell of the corresponding sensor. The extension of
the object cannot be neglected in applications such as advanced driving assistance systems for
safety considerations.

The so-called research topic Extended Object Tracking (EOT) is becoming increasingly important. In
contrast to traditional point object tracking, the small object assumption is not valid. In addition to
kinematics of the object, estimating the extension of an object is one crucial task of EOT. 3 Besides,
EOT assumes that one object can generate a varying number of measurements. Figure 1.3 gives an
example showing the differences between traditional object tracking and EOT.

This thesis differentiates the concepts of EOT, group object tracking, and object tracking with
multi-path propagation. All of these three tracking tasks assume one tracking entity has the
possibility of generating multiple measurements. However, a group object tracking method tracks
a set of objects that share some common motion properties while the dynamics of an individual
object can still deviate from others. For example, a group object tracker is commonly required to
have the mechanism to deal with group splitting and merging, which is not necessary for EOT.
The multi-path propagation tracking mainly addresses the multi-detection effects as in over-the-
horizon radars. The signals from an over-the-horizon radar can be scattered and arrive at the

2http://www.cvlibs.net/datasets/kitti/
3The extended object in this thesis is considered as a combination of the kinematics of center and its spatial extent. The

words shape, extent, and extension all refer to the spatial extension confined by orientation and size, with respect to the
center. Therefore, shape, extent, and extension are used interchangeably.
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(a) (b) (c)

Figure 1.4: An example of three levels of description complexity of the shape of an object, i.e.,
a pedestrian in this case, in two-dimensional space. The shape of the pedestrian is neglected in
(a), approximated using an ellipse in (b), and described by an arbitrary shape in (c). In general, a
higher level of description is more computational complex and requires more information from
the measurements, i.e., more measurements and less sensor noise.

receiver due to the transmission in the ionospheric layers. Normally, there is a maximum number
of possible propagation paths and hence a maximum number of measurements for one object.
Besides, the multi-path propagation tracking normally does not estimate the object extension and
assumes no spatial model for measurements.

1.2 Extended Object Modeling

Extended object tracking is a broad research topic and has different assumptions depending on
the application domains. This section explains the scope of the extended object tracking that is
considered in this thesis.

1.2.1 Shape Representation

In [3, 4], the shapes of objects are categorized according to the dimension and the description
complexity of the shapes. For example, in a two-dimensional space, a point object is considered as
zero-dimensional, a line or curve is one dimensional, and an ellipse is two-dimensional. Depending
on the levels of description complexity, the shape of an object can be neglected, simplified as basic
geometric shapes such as sticks, rectangles, and ellipses, or represented as arbitrary shapes. An
example of difference description complexity in the two-dimensional space is given in Figure 1.4. In
addition to computational cost, the description level of shape depends on the measurements. With a
higher level of description, the measurements are expected to be denser and less noisy. A geometric
shape provides some shape information yet can be defined using a number of parameters.

Remark 1.1. Considering the characteristics of the measurements provided by automotive radar
and lidar, this thesis focuses on approximating the object extensions as elliptical shapes (see
Figure 1.4(b)). A two-dimensional elliptical shape can be represented using a fixed number of
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(a) (b)

Figure 1.5: Two measurement source models of an extended object. The measurements are plotted
using red crosses and the measurement sources are green dots. The measurement model in (a)
assumes the measurement sources on the boundary while the model in (b) describes measurement
sources lying on the surface. The arrows indicate sensor noise in both sub-figures.

parameters, which balances the level of shape description and computational complexity. Elliptical
shape approximation is one of the most common extension representations in the state-of-the-art
studies [5, 6, 7, 8, 9].

1.2.2 Measurement Modeling

In EOT tasks, a measurement has two layers of uncertainty. First, same as in the traditional
point object tracking, measurements are corrupted with sensor noises. In addition, the origin of a
measurement, which is called a measurement source, is distributed differently depending on many
factors, such as the type of the sensor, perspective of the sensor, the distance between the sensor
and the tracked object, and the shape of the object. A measurement model should incorporate
both types of uncertainty. Same as in the classic object tracking, we assume the sensor noises are
additive white Gaussian noises. Depending on what types of sensors are used, the measurement
sources can be approximated as reflection points that lie on the surface [10, 11] or the boundary
[12, 13]. Examples are given in Figure 1.5.

Furthermore, a measurement model of EOT should interpret the number of measurements gen-
erated from an object. As the EOT problem originates from point object tracking, many of the
early studies model an extended object as a set of fixed reflection points on a rigid body [14, 15,
16]. Like a point object, each reflection point generates at most one measurement and are detected
independently. Therefore, the number of measurements from an extended object cannot exceed the
number of reflection points. This measurement model simplifies an EOT problem as a traditional
multi-object tracking problem. This kind of measurement model is categorized as a set of points on
a rigid body in [4] and exact/approximate rigid-body in [17].

Another kind of measurement model assumes that the number of measurements from one object
follows a probabilistic distribution. One of the most popular measurement models falling in this
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category is the spatial Poisson Point Process (PPP) model proposed in [18, 19]. It models the
measurements from an object as an inhomogeneous PPP. Each measurement from the extended
object is spatially distributed with a probability density proportional to the intensity of the PPP.
Therefore, this model is called the PPP spatial model in [4], or the approximate Poisson-body in [17].
The spatial PPP model has been one of the most popular measurement models in EOT and widely
used in different literuature [11, 20, 5, 21]. Other probabilistic models exist. For example, studies in
[22, 23] assume the number of measurements is Binomial distributed.

Remark 1.2. The measurement model employed in this thesis follows the spatial PPP model in [18,
19]. To be more specific, this thesis considers the EOT problem by assuming

• the number of measurements is Poisson distributed,

• the measurement noises are additive white Gaussian noises, and

• the measurement sources are distributed on the surface of the object, which is approximated
by an ellipse.

1.2.3 Dynamics Modeling

In this thesis, the dynamic model of an extended object is the same as in the point object tracking
and is described as a Markov process, i.e., the current object state depends only on the state from
the previous time step. Section 3.2, 3.4.3, and 4.4 give more detailed explanation on dynamic
models that are considered in this thesis.

1.3 Considered Problems and Challenges

EOT is an emerging research topic that is investigated in recently decades. It has various promising
problems to be investigated. This thesis focuses on three sub-problems in EOT.

1.3.1 Metrics for Evaluation

Given an extended object tracker, one of the crucial questions is: how good is it? Given several
extended object trackers, we want to know which one is the best. The performance evaluation
becomes increasingly important as the development of various EOT methods. For evaluation, we
aim at a score that measures the distance between an estimate and a ground truth. As EOT estimates
the kinematic and shape information of an object, the estimation error on both aspects should be
considered in the evaluation. The classic object tracking methods use the Euclidean distance as a
standard metric for evaluation. However, the Euclidean distance has many shortcomings when it
comes to the evaluation of EOT algorithms. Many state-of-the-art studies decouple the estimation
error as location error, kinematics error, shape error, and other criteria. Decoupled distances give
more intuition of the performance, but a single score is favored in many cases. Therefore, the first
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question investigated in this thesis is: what distance is most suitable for comparing ellipses in the context
of EOT? We aim at a measure that tells us the precision of a tracker, follows the intuition of humans,
and is consistent. In addition, we also expect it to be a true metric, to have fewer parameters, and
be efficient to compute.

1.3.2 Shape Estimation

As it is mentioned above, one of the most important aspects that make EOT different from classic
object tracking is that the extension needs to be estimated given a varying number of measurements.
The second question considered in this thesis is: what is the kinematics and shape of an object given
a set of measurements that originate from the underlying object? Estimating the kinematic and shape
of an object is challenging as it is a high-dimensional estimation problem and non-linearity lies
in the measurement modeling. The standard filtering approach for point objects cannot directly
be applied without the adoption of tailored approximations and assumptions. Since multiple
measurements are received in one scan, information on the object extension can be extracted from
the spatial distribution of the measurements. Normally, the entire shape is not observed in one
scan as the measurements are often noisy and sparse. However, information from previous scans
can be incorporated using filtering techniques.

1.3.3 Multiple Extended Object Tracking

For most tracking applications, multiple objects are present in the tracking area and the measure-
ment origins are unknown. This problem is called Multiple Object Tracking (MOT). The goal of MOT
is to estimate the time-varying states of a number of objects in the presence of noisy measurements,
clutter, and miss-detections. The third problem explored in this thesis is multiple extended object
tracking with unknown object-measurement associations. MOT is a challenging task even for point
objects. One intuitive approach for MOT is to decompose it as a multiple single object tracking
tasks. To achieve this, one needs to find the origins of the measurements and update the object
state using the corresponding measurement(s). The process of determining the origins of the
measurements, i.e., associating measurements and objects, is called data association in MOT. In
general, regardless of the object types, data association faces the intractable complexity due to a
large number of association hypotheses. In contrast to point objects, the data association problem
for Multiple Extended Object Tracking (MEOT) requires more computation effort. This is because
MEOT requires to grouping measurements into several measurement cells, so that one cell contains
all measurements of the same object.

1.4 Contributions

The published journal and conference papers are numbered with prefix Yang, such as [Yang1] and
[Yang2]. In conclusion, three contributions are made corresponding to the three sub-problems of



8 CHAPTER 1. Introduction

EOT explained in Section 1.3:

• proposal on using the Gaussian Wasserstein distance for comparing elliptical objects. There is
no consistently used metric for comparing elliptical objects in existing EOT studies yet.
Based on the discussion and comparison of possible measures, this thesis suggests the
Gaussian Wasserstein distance for evaluating the performance of single elliptical extended
object trackers. The Gaussian Wasserstein distance evaluates error on location and shape
estimation, is a true metric, and has a closed-form solution for ellipses comparison.

• a single extended object tracker which explicitly tracks orientation and axes lengths. Shape estimation
is one of the vital tasks of EOT. Many state-of-the-art elliptical extended object trackers
represent the object shape as a Symmetric Positive Definite (SPD) matrix, which couples the
orientation and size. The second contribution of this thesis is an extended object tracker
that estimates orientation and axes lengths based on the extended Kalman filter. Explicitly
tracking orientation and axes lengths facilitates the dynamic modeling of the individual
parameter, which is highly relevant to many practical applications.

• a MEOT tracker which requires no clustering or measurement enumeration. Due to the charac-
teristics of the data association problem for extended objects, existing multiple extended
object trackers perform measurement-clustering as a pre-process to reduce the computa-
tional complexity. The third contribution of this thesis is an efficient multiple extended
object tracker, which avoids clustering or measurement enumeration by the computation of
marginal association probabilities.

1.5 Structure of this Thesis

This thesis consists of five chapters. This chapter outlines the background of the research topic,
considered problems and contributions. Chapter 2 discusses the metrics and similarity scores
that can be used for extended object tracker evaluation and suggests the Gaussian Wasserstein
distance for elliptical objects comparison. Chapter 3 focuses on measurement modeling of one
extended object and estimating the kinematics and shape of a single extended object given a
set of measurements that is originated from the underlying object. An extended object tracker
based on a multiplicative noise model and a tailored extended Kalman Filter (KF) is proposed.
Chapter 4 investigates the MEOT problem without knowing the origins of the measurements. A
new data association method that requires no clustering or exhaustion of measurement partitions
is presented. Combining with the single EOT tracker in Chapter 3, an efficient MEOT tracker is
proposed. In the end, Chapter 5 concludes this thesis and discusses future work.
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Many extended object trackers approximate the object shape using rigid shapes, such as rectan-
gles[12, 24], ellipses [25], star-convex shapes [26, 27]. Due to the convenience of modeling, ellipses
have been one of the most popular shape approximations for extended object tracking algorithms.
Many elliptical extended object trackers are proposed, such as random matrices approaches [10, 5,
28], Random Hypersurface Model (RHM) [11][Yang4], independent axes estimation [29].

There are no consistently used metrics or measures for evaluating extended object trackers yet. The
Euclidean distance between an estimate and ground truth is used as an evaluation metric for point
objects [30, 31, 32]. An extended object tracker simultaneously tracks the object location and shape.
Correspondingly, besides the location error, the object shape error also needs to be incorporated
in the performance evaluation. Unfortunately, finding a score that combines both location and
shape errors is not straightforward. Some computer vision tasks, such as image segmentation and
object detection, are related to extended object tracking to some extent as both aim to find spatial
occupancies of particular objects or classes. However, computer vision tasks work with discrete
pixels while extended objects deal with parameterized shapes.

This chapter first formulates the problem of evaluating EOT trackers. Then, the Optimal Sub-
Pattern Assignment (OSPA) distance, which is the de-facto standard metric for evaluating multiple

9



10 CHAPTER 2. Metrics for Extended Object Trackers Comparison

point object trackers, is explained. To adapt the OSPA distance for extended object trackers, one
requires a distance for comparing ellipses. The possible measures and similarity scores for elliptical
shape comparison are overviewed. The advantages and disadvantages of existing measures that
are used in the EOT literature are discussed. As the elliptical shapes can be represented using
Gaussian distributions, the closed-form probabilistic measures, such as the Kullback-Leibler diver-
gence, the Wasserstein distance, and the Hellinger distance, are introduced. Hypothetical scenarios
are constructed and show the counter-intuitive results of the Kullback-Leibler divergence and the
Hellinger distance for elliptical EOT evaluation. In the end, uniform Wasserstein distances are
explored due to the restriction of the Gaussian representation of ellipses. Based on the discus-
sion and designed simulations, the Gaussian Wasserstein distance is suggested for assessing the
performance of elliptical extended object trackers.

Remark 2.1. This chapter is based on the conference publication [Yang9], which discussed the
evaluation scores for extended object tracking. Afterward, the Gaussian Wasserstein distance has
been used as a metric for elliptical shapes comparison [33, 34, 35, 36, 37]. This chapter mainly
focused on the measure discussion for elliptical EOT trackers. The discussion extends [Yang9]
by analysing Hellinger distance (Section 2.4.2). Counter-intuitive examples of Kullback-Leibler
divergence and Hellinger distance are given in Section 2.4.4. In the end, the combination of
Gaussian Wasserstein distance and OSPA for MEOT tracker comparison is explained.

2.1 Problem Description

Elliptical extended object trackers recursively estimate the kinematic state and shape variable of
objects based on a set of measurements. The evaluation of extended objects consists of evaluation
single extended object trackers and multiple extended object trackers, see Figure 2.1 and Fig-
ure 2.2 respectively. This section first presents the formulation of single-extended-object trackers
comparison. Then, the problem of evaluating multiple extended object trackers is explained.

For the comparison of single-extended-object trackers, the error between the ground truth object
and an estimate is computed. We focus on one scan and consider only the position and shape
variable, i.e., high order and other kinematics such as velocity and acceleration are not included in
the comparison. At time instant k, the true state of an object is denoted as xk ∈ S, where S is the
set of possible shapes. The estimates of the unknown object is differentiated using a hat sign, i.e.,
x̂

(1)
k and x̂(2)

k are the two estimates from tracker 1 and tracker 2 (see Figure 2.1). The goal is to find
a function

d : S × S → R+ (2.1)

such that d(xk, x̂k) gives us the similarity or distance between the ground truth object xk and an
estimate x̂k. Then, the distances d

(
xk, x̂

(1)
k

)
and d

(
xk, x̂

(2)
k

)
give the quantitative evaluation of

two estimates.
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x̂
(1)
k

x̂
(2)
k

xk

Figure 2.1: This figure shows an example task of evaluating single extended object trackers. The
ground truth object is plotted by a filled ellipse. The estimates from single extended object trackers
are plotted using orange and cyan ellipses. The orange estimate overlaps more with the ground
truth object. But both size and orientation of the cyan estimate are similar to the ground truth
object. Which ellipse is a better estimate of the filled ellipse?

Except for capturing the difference between an estimate and ground truth object, the function d
is expected to have some other properties. First, it should be expressive. The "distance" function
should incorporate the evaluation of the most important aspects of a tracker. Besides, the mea-
sure should be simple and fast to compute. Furthermore, the measure should be clear, easy to
understand, and reflect human intuition. Ideally, d is a metric and has physical meaning. For all
xk, x̂

(1)
k , x̂

(2)
k ∈ S, a function d is a metric if it satisfies the following axioms:

• identity of indiscernibles: d(xk, x̂k) = 0 if and only if xk = x̂k ,

• symmetry: d(xk, x̂k) = d(x̂k,xk) ,

• triangle inequality: d
(
xk, x̂

(1)
k

)
≤ d

(
xk, x̂

(2)
k

)
+ d

(
x̂

(2)
k , x̂

(1)
k

)
.

A multiple extended object tracker estimates not only the states of the object but also the number
of objects presented in the surveillance area. As the number of tracked objects varies over time, the
metric for MEOT evaluation needs to incorporate center error, shape error, and cardinality error.
Figure 2.2 illustrates an example of evaluating multiple extended object trackers. A cardinality
error can be caused by miss detected existing objects or falsely estimated non-existent objects (see
Figure 2.2). Many studies have proposed measures that can be used for multiple (point) object
tracking, such as OSPA, generalized OSPA. The measures that are used for traditional object
tracking can be easily adapted for multiple extended object tracking given a distance function d,
which is used for single EOT evaluation. Section 2.2 gives more details on the metrics of multiple
extended object tracking.
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Tracker 1 Tracker 2 Tracker 3

Figure 2.2: This figure illustrates an evaluation example of the multiple extended object trackers.
Two objects, which are depicted by filled orange and cyan shapes, need to be tracked at a certain
time instant. Three exemplar tracking results are depicted. The tracker 1 tracks both objects well
but gives a false positive. The second tracker fails in tracking the orange object. The third tracker
tracks both objects but the location and shape estimates are worse than tracker 1 and 2. Which
tracker is the best?

2.2 Metrics for Multiple Object Tracking

The traditional object tracking algorithms treat the tracked object as a point. The Root Mean
Squared Error (RMSE) between the state vectors of ground truth object and estimates is the
standard metric for evaluating the single object trackers.

As the multiple object tracking involves cardinality error, various studies investigated many
measures for evaluating multiple point object trackers. The CLEAR MOT measures are the de-
facto standard for MOT evaluation in computer vision [38]. The CLEAR MOT measures are a
set of measures that cover the accuracy, precision, and completeness of a tracker. The accuracy
is indicated using MOT Accuracy, which considers the number of false positives, false negatives,
and identity switches. The precision of a tracker is described by MOT Precision while the number
of most tracked, partially tracked, and most lost trajectories reflect the completeness quality of
a tracker. CLEAR MOT counts the cardinality errors heuristically. The Hausdorff metric and
Wasserstein distance were first introduced to evaluate MOT filters in [39]. However, the Hausdorff
metric is insensitive to cardinality errors. The Wasserstein distance, which is also known as the
optimal mass transfer metric, is inconsistent and counter-intuitive for some scenarios with different
cardinality errors. A so-called OSPA metric combines the accuracy and precision for evaluating
MOT filters [30]. The OSPA distance is a true metric. It solves the problems of using Hausdorff
and optimal mass transfer distance for evaluating MOT filters.

The OSPA distance is proposed in [30] and is currently the de-facto metric for evaluating multiple
point object trackers. Given two sets of objects, the OSPA distance permutes the assignments from
the objects in the smaller set to the other set and calculates the respective cost based on a given
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Figure 2.3: An example showing the calculation of OSPA distance for point objects. The ground
truth objects are indicated using cyan dots, while the estimates are orange dots. The optimal
assignment, which gives the least OSPA distance, is plotted using dashed lines.

distance function. The not-assigned objects are penalized by a so-called cut-off value to account
for the cardinality error. Then, OSPA returns the smallest cost among all permutations.

At a certain time instant, given the set of ground truth Xk =
{
x

(1)
k , · · · ,x(m)

k

}
and the set of

estimated states is X̂k =
{
x̂

(1)
k , · · · , x̂(n)

k

}
. Let Πn be the sets of all permutations on {1, · · · , n},

dc
(
x

(i)
k , x̂

(πi)
k

)
= min

(
c, d
(
x

(i)
k , x̂

(πi)
k

))
with d being a distance measure. Let the cut-off value c

penalize the cardinality error between ground truth states and estimates. The OSPA distance with
cut-off value c and p-th order is defined as

d̄cp(Xk, X̂k) =

(
1

n

(
min
π∈Πn

m∑

i=1

dc
(
x

(i)
k , x̂

(πi)
k

)p
+ cp(n−m)

)) 1
p

, (2.2)

if n > m, and d̄cp(Xk, X̂k) = d̄cp(X̂k,Xk) if n < m.

In the implementation, an optimal assignment method, such as the Hungarian method [40], can be
used to decide the permutation with minimum cost. Many variations of OSPA have been proposed,
such as OSPA-T for including track identities [41], and Generalized OSPA for incorporating the
cost of identity switches [42].
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Example 2.1. Given a set of two-dimensional ground truth objects Xk =
{
x

(1)
k ,x

(2)
k ,x

(3)
k

}

and the set of estimated objects X̂k =
{
x̂

(1)
k , x̂

(2)
k

}
, where x(1)

k =
[
0, 4

]T
, x

(2)
k =

[
1, 6

]
, x

(3)
k =

[
3, 3

]T
, x̂

(1)
k =

[
2, 4

]T
, and x̂(2)

k =
[
5, 3

]
. The ground truth

objects and estimates are shown in Figure 2.3. There are six permutations on {1, 2, 3}. The
permutation that returns the minimum distance with order of two and cut-off value of 10

is π = {1, 3, 2} and d10
(
x̂

(1)
k ,x

(1)
k

)2

+ d10
(
x̂

(2)
k ,x

(3)
k

)2

= 8. Adding up the penalization of

cardinality errors, the OSPA distance is
(

1
3

(
8 + 102

)) 1
2 = 6.

2.3 Measures for Elliptical Shapes Comparison

In this section, the possible measures for elliptical extended object tracker assessment are presented.
The possible metrics are categorized as (i) Lp distance, (ii) decoupled measures, (iii) Intersection
over Union, and (iv) probabilistic measures. In this section, we discuss the advantages and
disadvantages of employing Lp distance, decoupled measures, and Intersection over Union for
comparing extended object trackers. The probabilistic measures will be explained in next section.

2.3.1 Lp Distance

Given extended objects that are presented using rigid shapes, i.e., a set of parameters, the Lp
distance of state variable is one of the most natural metrics for comparing shapes. For example, if

an elliptical object is parameterized using centermk =
[
mk,1, mk,2

]T
∈ R2, orientation αk, and

semi-axes lengths lk,1, lk,2 ∈ R+, i.e.,

Pxk =
[
mk,1 ,mk,2, αk, lk,1, lk,2

]T
∈ R5 . (2.3)

The estimate x̂k has the same parameterization. The Lp distance between xk and x̂k is calculated
element-wise for each parameter in (2.3), i.e.,

dLp(xk, x̂k) =
( 5∑

i=1

‖ Pxk,i − Px̂k,i ‖p
) 1
p

, (2.4)

where the subscript i is the i-th element in vector Pxk and Px̂k , respectively. The Lp distance is
easy and a straightforward adaption of metrics from traditional object tracking. It gives us a single
score, and other kinematics variables such as velocity, turn rate can be incorporated.

However, using the Lp distance for elliptical EOT evaluation has many shortcomings. In general,
parametrization is not unique. Many parameter vectors can define the same shape. For example,
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Figure 2.4: A counter-intuitive example of using Lp distance for ellipses comparison. Intuitively,
the cyan ellipse is a better approximation of the filled ellipse. Using the parameterization in (2.4)
and confine the orientation in the range of

[
0, π

2

)
, the Lp distance suggests the oranges estimate

has smaller error than cyan ellipse.

using the parameterization in (2.3), the filled ellipse in Figure 2.4 can be represented by many

vectors, such as
[
0, 0, 0, 10, 20

]T
and

[
0, 0, π

2 , 20, 10
]T

. However, the Lp distance
between these two vectors is not zero. The identity property in shape space is lost by directly
comparingLp distance between shape vectors. Even though identity can be assured by constraining
the range of the parameters, the units of parameters are often not the same. For example, the
orientation unit could be rad while the unit of semi-axes length and center could be km or m. It not
only raises the problem of deciding the Lp distance unit but also makes the comparison arguable.

A counter-intuitive example is given in Figure 2.4. The ground truth object is Pxk =[
0, 0, 0, 10, 20

]T
. The orange estimate is P

x̂
(1)
k

=
[
0, 0, π

2 , 10, 20
]T

and the cyan

estimate is P
x̂

(2)
k

=
[
2, 2, π

2 , 10, 20
]T

. As shown in the figure, typically, the cyan estimate
is expected to be a better estimate for the ground truth object. However, we have L2 distances,
i.e., the Euclidean distances, as dL2

(
xk, x̂

(1)
k

)
= 40.4233 and dL2

(
xk, x̂

(2)
k

)
= 41.0935, which is

counter-intuitive. The L2 distance suggests that the orange ellipse is better than the cyan ellipse.

2.3.2 Decoupled Measures

To tackle the problems arisen by directly comparing Lp distance, many studies employed the
decoupled errors [43, 5, 12, 10, 44]. The estimation error is decoupled as a set of errors on specific
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properties, such as center error, velocity error, length and width errors, orientation error, shape
error. Most of the decoupled errors are calculated using the Lp distance between the respective
parameters except the shape error, which is indicated using the matrix norm and combines
orientation, width, and length errors.

The shape of an ellipse can be represented as a SPD matrix. As the orientation and axes lengths are
coupled in the SPD matrix representation, many studies use matrix norms to indicate the shape
error, which counts for size and orientation error. Frobenius norm is used for evaluating elliptical
objects in [45, 5, 46, 44].

Given a ground truth object with orientation αk, semi-axes lengths lk,1 and lk,2, its shape can be
represented using matrix

Σxk =

[
cosαk − sinαk

sinαk cosαk

][
l2k,1 0

0 l2k,2

][
cosαk − sinαk

sinαk cosαk

]T

. (2.5)

Assume an estimate x̂k having shape matrix Σx̂k , the shape error using Frobenius norm, also
known as the Euclidean distance or squared root distance [47], is

||Σxk −Σx̂k | |F =

√
tr
(

(Σxk −Σx̂k) (Σxk −Σx̂k)
T
)
. (2.6)

The usage of decoupled distances for elliptical tracker evaluation is depicted in Figure 2.5.

The ground truth object is Pxk =
[
0, 0, π

4 , 2, 1
]T

. The orange estimate is P
x̂

(1)
k

=
[
1, 0, π

4 , 2, 1
]T

and the cyan estimate is P
x̂

(2)
k

=
[
0, 0, 3π

4 , 3, 1
]T

. The center errors
of the orange and cyan estimate are 1 m and 0 m, respectively. The Frobenius norm between
ground truth and two estimates, which combines size and orientation, are ||Σxk −Σ

x̂
(1)
k

||F = 0 and
||Σxk −Σ

x̂
(2)
k

||F = 8.5440. Based on the decoupled measures, the orange estimate is better at shape
but worse at location estimation. Quantitatively, it is not easy to decide which estimate is better
overall. Decoupled distances give more information on a specific aspect of the evaluated trackers.
However, it is not intuitive to find a fair weighting schema to give a single score for the overall
comparison.

2.3.3 Intersection over Union

A score that counts for shape dissimilarity and center error is the Intersection over Union (IoU),
which is also known as the Jaccard similarity coefficient and Jaccard index. The IoU score is widely
used for measuring similarity in many computer vision tasks, such as object detection, images
segmentation, and tracking[48, 49, 50, 51, 52][Yang12]. In the context of extended object tracking,
it was also employed in evaluation in [12]. As the name suggests, IoU is calculated using the



CHAPTER 2. Metrics for Extended Object Trackers Comparison 17

−2 −1 0 1 2 3 4

−2

−1

0

1

2

3

4

dm = 0, da = π

dm = 1, da = 0

x→

y
→

xk

x̂
(1)
k

x̂
(2)
k

Figure 2.5: This figure gives an example that decoupled measures is used for evaluation. Using the
Lp distance between centers, the cyan estimate is better. However, the orange ellipse has a smaller
error on the shape estimation.

intersected area divided by the union area, i.e.,

IoU(xk, x̂k) =
Area(xk ∩ x̂k)

Area(xk ∪ x̂k)
. (2.7)

where Area(·) is a function that returns the area of a shape.

Even though IoU gives a single score and combines the orientation, size, and center error of two
shapes, it has two main limitations in evaluating extended object trackers. Firstly, the intersection
and union areas are generally irregular shapes for two elliptical shapes. For elliptical extended
object trackers that parameterize elliptical shapes, there is no analytic formula to calculate the area
of both intersection and union shapes (see Figure 2.6(a)). It is not critical for computer vision tasks
because shapes are typically axes-aligned, and objects are presented using pixels. The intersection
and union areas can be easily calculated for axes-aligned rectangles (see Figure 2.6(b)) or tackled
by counting pixels in case of irregular areas. Even though the areas can be approximated using
sampling, which requires more computation, IoU cannot distinguish two objects when both of
them are not overlapping with the ground truth object (see Figure 2.7). This scenario is not typical
for computer vision problems but very common for extended object tracking when the objects are
manoeuvering.
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intersection

union

Figure 2.6: (a) shows an example of the irregular shapes of the intersection and union area of
two ellipses. (b) gives an example of tracking-by-detection algorithm [53] that uses IoU scores
in the evaluation of accuracy. One miss-detected pedestrian is plotted using a red bounding
box. The tracked pedestrians and ground truth annotations are green and black bounding boxes,
respectively. The overlapping area is patched, and the IoU scores are provided on the image. The
green number are the IDs assigned by the tracker, and the ground truth IDs are given using black.
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Figure 2.7: A counter-intuitive example of using IoU for extended objects comparison. As neither
of the estimates (orange and cyan ellipses) is overlapped with the ground truth (black ellipse), the
IoU score of both estimates is 0. However, it is apparent the orange estimate is better as it has less
location and shape error.
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2.4 Closed-Form Measures for Gaussian Representation

Some geometric shapes can be interpreted as continuous probabilistic distributions. Then, the
comparison between shapes can be converted to the distance between distributions. For example,
rectangles and ellipses can be described as uniform distributions and Gaussian distributions,
respectively.

Representing the shape of an ellipse using a SPD matrix (see (2.5)), an ellipse can be expressed as a
Gaussian distribution by representing the center as mean and shape matrix as covariance. Given
an extended object state xk located at mk with shape matrix Σxk and an estimate x̂k located at
m̂k with shape matrix Σx̂k , they can be interpreted as Gaussian distributions

Nxk = N (mk,Σxk) , and Nx̂k = N (m̂k,Σx̂k) . (2.8)

Using the Gaussian representation, probabilistic measures can be used to compare ellipses. Among
these measures, the Kullback-Leibler divergence, the Hellinger distance, and the Wasserstein
distance have closed-form solutions for Gaussian distributions.

2.4.1 Kullback-Leibler Divergence

The Kullback-Leibler divergence was introduced by Solomon Kullback and Richard Leibler in
[54] and is also known as relative entropy. Given two continuous distributions p1 : Rd → R

and p2 : Rd → R, Kullback-Leibler divergence is defined as the expectation of the logarithmic
difference between these two distributions:

dKL (p1||p2) =

∫
p1(µ) log

(
p1(µ)

p2(µ)

)
dµ . (2.9)

The Kullback-Leibler divergence can be interpreted as the information lost if distribution p2 is
used to approximate p1. The Kullback-Leibler divergence between two Gaussians has closed-form
solution and is defined as

dKL(Nxk ||Nx̂k) =
1

2

(
tr
(
Σ−1
x̂k

Σxk

)
+ (m̂k −mk)TΣ−1

x̂k
(m̂k −mk)− d+ ln

(
det Σx̂k
det Σxk

))
,

(2.10)
where d is the dimension of Gaussian distribution, Nxk and Nx̂k are defined in (2.8). As two-
dimensional shapes are considered in this thesis, we have d = 2.

The Kullback-Leibler divergence is non-negative and satisfies the identity property. Nevertheless, it
is non-symmetric and does not fulfill triangle inequality. A symmetric measure can be constructed
easily as

dKL(Nxk ||Nx̂k) + dKL(Nx̂k ||Nxk) . (2.11)

The unit of the Kullback-Leibler divergence is natural unit of information, i.e., nats.
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2.4.2 Hellinger Distance

The Hellinger distance is a bounded metric that is defined on two distributions. Given two
continuous probability distributions p1 : Rd → R and p2 : Rd → R, the Hellinger distance between
them is

dHel (p1, p2) =

(
1

2

∫ (√
p1(µ)−

√
p2(µ)

)2

dµ

) 1
2

. (2.12)

Expanding (2.12) and applying the fact that the integral of a distribution over its domain is one,
we have

dHel (p1, p2) =

(
1−

∫ √
p1(µ)p2(µ)dµ

) 1
2

. (2.13)

According to (2.13), it is obvious that Hellinger distance is bounded from zero to one. Having
ground truth object and an estimate expressed in (2.8), the squared Hellinger distance is

d2
Hel (Nxk ,Nx̂k) = 1− |Σxk |

1
4 |Σx̂k |

1
4

∣∣∣Σxk
+Σx̂k

2

∣∣∣
1
2

exp

(
−1

8
(mk − m̂k)T

(
Σxk + Σx̂k

2

)−1

(mk − m̂k)

)
,

(2.14)
where |Σxk | is the determinate of Σxk . The Hellinger distance is a true metric and measures
distributional divergence. The Hellinger distance has been incorporated with OSPA and used for
elliptical extended objects comparison in [55].

2.4.3 Gaussian Wasserstein Distance

The Wasserstein distance arises from the optimal transport problem and is also known as Monge-
Kontorovich distance and earth mover’s distance in computer vision tasks. The OSPA distance [30]
introduced in Section 2.2 is constructed based on Wasserstein distance. The Wasserstein distance is
defined on two probability densities or probability measures. Let d(·, ·) be a metric on Rd, the p-th
Wasserstein distance [56, 57] between probability densities p1 : Rd → R and p2 : Rd → R is

Wp(p1, p2) :=

(
inf

h∈H(p1,p2)

∫
d(µ,ν)p · h(µ,ν) dµ dν

)1/p

, (2.15)

where H(p1, p2) denotes the collection of all joint densities h : Rd×Rd → R that have marginals p1

and p2. In general, there are no closed-form solutions for two arbitrary distributions. However, for
Gaussian distributions, Wasserstein distance can be calculated analytically. Representing ground
truth object and an estimate as (2.8), we have the squared L2 Gaussian Wasserstein distance as [58]

d2
GW(Nxk ,Nx̂k) =‖mk − m̂k ‖2 +tr

(
Σx + Σx̂k − 2

√√
ΣxkΣx̂k

√
Σxk

)
. (2.16)

Intuitively, Wasserstein distance measures the minimum probability mass that needs to be trans-
ferred from one probability density in order to match the other. The Wasserstein distance is a
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Figure 2.8: A counter-intuitive example of using the Kullback-Leibler divergence and the Hellinger
distance to compare ellipses. The filled ellipse depicts ground truth object. Both cyan and orange
ellipses have the same center error. The orange ellipse has the same orientation and axes length as
the ground truth ellipse. The orange ellipse is expected to have fewer errors.

true metric, i.e., it is symmetric, has the non-negativity, the identity of indiscernible, and the
triangle inequality property. By representing elliptical objects as Gaussians, the unit of Gaussian
Wasserstein distance in (2.16) is the same as the center, e.g., m, or km.

If two shape matrix Σxk and Σx̂k are commutative, i.e., ΣxkΣx̂k = Σx̂kΣxk , the squared Gaussian
Wasserstein distance boils down to

d2
GW(Nxk ,Nx̂k) =‖mk − m̂k ‖2 + ‖ Σ

1
2
xk −Σ

1
2

x̂k
‖2F , (2.17)

which is called extended square root distance in [59].

2.4.4 Comparison on Closded-Form Probabilistic Measures

In this sub-section, scenarios are constructed to show the arguable comparison results if the
Kullback-Leibler divergence and the Hellinger distance are used for evaluating extended objects.

Consider using the Kullback-Leibler divergence, the Hellinger distance, and the Gaussian Wasser-
stein distance to compare elliptical shapes that are shown in Figure 2.8. Using the parameterization
(2.3), the ground truth and two estimates are

xk =
[
0, 0, 0, 1, 2

]T
, x̂

(1)
k =

[
3, 2, 0, 1, 2

]T
, and x̂

(2)
k =

[
3, 2, 0, 2, 2.5

]T
.
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Estimates x̂(1)
k and x̂(2)

k have the same center error but x̂(2)
k has more errors on axes lengths. There-

fore, we expect x̂(1)
k has less error than x̂(2)

k . The error calculated using the Gaussian Wasserstein
distance, the Kullback-Leibler divergence, and the Hellinger distance are

dGW

(
xk, x̂

(1)
k

)
= 5.0990 , dKL

(
xk, x̂

(1)
k

)
= 5 , dHel

(
xk, x̂

(1)
k

)
= 0.8447 ,

dGW

(
xk, x̂

(2)
k

)
= 5.2202 , dKL

(
xk, x̂

(2)
k

)
= 1.8063 , dHel

(
xk, x̂

(2)
k

)
= 0.6993 .

The Kullback-Leibler divergence and the Hellinger distance evaluate x̂(2)
k having less error than

x̂
(1)
k . This ordering is counter-intuitive because x̂(1)

k only has center error while x̂(2)
k has the

same center error but shape error additionally. A symmetric conversion of the Kullback-Leibler
divergence is also calculated for both estimates. It gives a similar error ordering to the Kullback-
Leibler divergence and the Hellinger distance. For the seek of compactness, the ordering of the
converted symmetric Kull-Leibler divergence is not repeated. The reason is that the Kullback-
Leibler divergence and the Hellinger distance weigh the difference between centers by the inverse
of the covariance matrix, or matrices in the Hellinger distance, according to their definition (2.10)
and (2.14). In this example, the center difference between x̂(2)

k and xk is weighted less.

Furthermore, an artificial scenario is constructed to illustrate the disadvantage of the Kullback-
Leibler divergence and the Hellinger distance in Figure 2.9. In Figure 2.9, 100 hypothetical estimates
are simulated. All simulated estimates have the same center error. The first estimate has exactly
the same shape as the ground truth. The rest of the estimates are constructed by gradually enlarge
both axes lengths to the four times of the respective ground truth axes lengths (see Figure 2.9(a)).
The Gaussian Wasserstein distance, the Kullback-Leibler divergence, and the Hellinger distance
are plotted in Figure 2.9(b), Figure 2.9(c), and Figure 2.9(d) As the center error is fixed, and the
shape error increases, the error should increase monotonically by intuition. However, the error
curves calculated by the Kullback-Leibler divergence and the Hellinger distance are U-shaped. It
means the errors given by these two measures are reducing as the estimated shapes deviate more
from the ground truth in the first phase, which is against the intuition.

Note that many other similarity scores and measures, such as Haussdorf-distance [60], are not
discussed in this chapter, due to the fact that either they are not suitable for assessing elliptical
EOT performance or lack of closed-form solutions.

2.5 Uniform Wasserstein Distance by Sampling

One disadvantage of using Gaussian distributions to represent elliptical shapes is that the Gaussian
distributions concentrate more probability mass around the mean. Instead of Gaussian distribution,
associating a uniform distribution with an elliptical shape is worth to be investigated.

Compared with a Gaussian distribution, a uniform distribution on the surface of an ellipse is
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Figure 2.9: The counter-intuitive example of the Kullback-Leibler divergence and the Hellinger
distance. The ground truth object xk is depicted using a filled ellipse. The orange and cyan ellipses
in (a) indicate the first estimate x̂(1)

k and the last estimate x̂(100)
k , respectively. As the semi-axes

lengths of the orange estimate in (a) is becoming larger, the errors evaluated using the Gaussian
Wasserstein distance, the Kullback-Leibler divergence, and the Hellinger distance are given in (b),
(c), and (d).
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a more natural choice for comparing two ellipses. However, there is no analytical solution to
solve the Wasserstein distance in this case. Uniformly sampling on the areas of both ground truth
object and an estimate can be used as an approximation. Thus, each sample is weighted equally.
The OSPA distance between two sets of samples is used to indicate the distance between the
ground truth object and the estimate. However, this requires many samples and leads to high
computational complexity. Another choice of associating a uniform distribution to an ellipse is a
set of uniformly distributed points on the boundary.

Assume n points are selected on the ground truth object xk and an estimate x̂k, i.e, Pxk ={
µ

(1)
xk , · · · ,µ(n)

xk

}
and Px̂k =

{
µ

(1)
x̂k

, · · · , µ(n)
x̂k

}
. The OSPA distance between these two sets

of points is the same as their Wasserstein distance and can be calculated as

dOSPAn(Pxk ,Px̂k) = min
π∈Π

√√√√ 1

n

n∑

i=1

‖ µ(i)
xk − µ(πi)

x̂ ‖2 , (2.18)

where Π is the set of permutations of {1, · · · , n}. The Gaussian Wasserstein distance and uniform
Wasserstein distances might differ in the ordering of two estimates. Figure 2.10 depicts an example
of the different orderings of the Gaussian Wasserstein distance and a uniform Wasserstein/OSPA
distance. Different numbers of samples on the boundary will result in different distances between
the same objects. The different assignments resulted by choosing four and 50 samples on the
boundary are shown in Figure 2.11.

Because the density of the samples varies with the size of the object, it is open for discussion of
whether the same number of points should be chosen on both the ground truth object and an
estimate. In case of the different number of samples are chosen from two objects, the Wasserstein
distance does not coincide with a OSPA distance.

Three scenarios are constructed to discuss and compare the Gaussian Wasserstein distance and
uniform OSPA distances on the boundary with different numbers of samples. The setting of the
constructed scenarios are shown in the first column of Figure 2.12. The corresponding errors
evaluated using the Gaussian Wasserstein distance, OSPA distances with four and 100 samples are
plotted in the second column of Figure 2.12. Using the parameterization in (2.3), the ground truth
object is

Pxk =
[
0, 0, 0, 1, 2

]
. (2.19)

For each scenario, 100 estimates with different types of error are simulated.

• Scenario 1:
In the first scenario, the shape variables are assumed to be estimated perfectly. But the error
of estimated centers are linearly increasing from 0 to 5

√
2, i.e., with

P
x̂

(1)
k

=
[
0, 0, 0, 1, 2

]
, · · · , P

x̂
(100)
k

=
[
5, 5, 0, 1, 2

]
. (2.20)
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Figure 2.10: Example that shows different ordering for Gaussian Wasserstein distance dGW and a
uniform Wasserstein distance dOSPA4 , i.e., four equidistant samples are chosen on the boundary of
estimates and ground truth object. The Gaussian Wasserstein distances between the ground truth
object xk and the respective estimate x̂(1)

k , x̂(2)
k are 0.98 and 1.4. This means dGW suggests x̂(1)

k has
less error than x̂(2)

k . The OSPA distances between xk and x̂(1)
k and x̂(2)

k are 1.2 and 1. Thus, dOSPA4

implies x̂(2)
k is a better estimate than x̂(1)

k .
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The setting of the first scenario is plotted in Figure 2.12(a). As it is shown in the error plot in
Figure 2.12(b), all Wasserstein distances coincide with each other and grows linearly with the
center error. This is consistent with the Euclidean distance that is for evaluating point object
trackers.

• Scenario 2:
Given no estimation error on center and a fixed orientation error, the second scenario
considers the length of one semi-axes is scaled from 0.1 to 2 times the true length, see
Figure 2.12(c). The error plot is given in Figure 2.12(d). Three Wasserstein distances behave
similarly, but the Gaussian Wasserstein distance is more sensitive to the errors of lengths
compare to the discretized OSPA distances.

• Scenario 3:
In the third scenario, both the location and axes lengths coincide with the ground truth
location and lengths, but the orientation error of the estimates range from 0 to π. The
setup and error plot are depicted in Figure 2.12(e) and Figure 2.12(f). As the OSPA distance
with four samples differs from the Gaussian Wasserstein distance and the discretized OSPA
distance with 100 samples, it implies the number of samples that are chosen on the elliptical
boundary affects the result of the comparison.

From the constructed scenarios, we can see that the uniformed OSPA distances do not significantly
differ from the Gaussian Wasserstein distance. However, it is still open if there exist scenarios
such that the Gaussian Wasserstein distance is significantly different from uniform Wasserstein
distances. Considering the Gaussian Wasserstein distance is a true metric, has a closed-form
solution and intuitive unit, the Gaussian Wasserstein distance is the most suitable metric for
comparing elliptical shapes. However, the uniform Wasserstein distance is more general as it can
be applied for irregular shapes [61].

Combining the Gaussian Wasserstein distance into the OSPA distance, the metric for multiple
elliptical extended object tracking is defined as (2.2) with

dc(xk, x̂k) := min (c, dGW (Nxk ,Nx̂k)) , (2.21)

where c is a user-defined cut-off value, Nxk and Nx̂k are the Gaussian representations of the
ground truth object and an estimate at time step k, respectively.

2.6 Conclusion

This chapter investigates the metrics that can be used for evaluating elliptical EOT performance.
The OSPA distance for evaluating multiple point object trackers is first explained. To adapt OSPA
for elliptical extended objects, a distance that can compare elliptical shapes is required. Motivated
by this, the possible metrics that can be used for comparing elliptical shapes are overviewed. The
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existing measures that are used for comparing elliptical shapes in the literature, such as Lp distance,
decoupled measures, and IoU are discussed. After investigating of the shortcomings of using
these traditional measures, the closed-form probabilistic measures for Gaussian representation are
introduced and compared. By constructing counter-intuitive examples, the Gaussian Wasserstein
distance is recommended for assessing elliptical EOT performance. The Gaussian Wasserstein
distance is well-known in literature but had not been employed for evaluating extended object
trackers before our work [Yang9].

A uniform distribution on the boundary or even the surface is more reasonable and better suited
for arbitrarily shaped objects. This chapter further investigates the uniform Wasserstein distances
for evaluation by sampling on the elliptical boundary. Three artificial scenarios are constructed,
but no significant difference is found between the Gaussian Wasserstein distance and uniform
Wasserstein distance approximations for comparing elliptical shapes. The Gaussian Wasserstein
distance, in the end, is suggested to be the most suitable measure for comparing elliptical EOT
trackers. Since the Gaussian Wasserstein distance was first proposed for elliptical EOT evaluation
in [Yang9], it has been used in many EOT literature [33, 34, 35, 36, 37]. Note that the choice of
measures for evaluating algorithm performance highly depends on the domain of the tracker and
the requirements of the application, hence it is an open topic.



3
Shape Tracking with Explicit Parameterization

Contents
3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Recursive Bayesian Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Modeling an Elliptical Extended Object . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5 Estimation based on a Tailored Extended Kalman Filter . . . . . . . . . . . . . . . 39

3.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

This chapter is about a tracker that estimates the kinematics and shape of an extended object given
a set of measurements. In this chapter, no clutter is involved, and the set of measurements available
is assumed to be generated by the unknown object. Single extended object tracking is a crucial
building block of multiple extended objects tracking in many real-world tracking applications.

The tracker presented in this chapter is Multiplicative Error Model-Extended Kalman Filter-
ing* (MEM-EKF*), which provides a closed-form solution for a recursive extended Kalman filter
that explicitly estimates the orientation and semi-axes lengths. MEM is the abbreviation for the
multiplicative error model, which is the key to make the explicit estimation of orientation and
axes lengths possible. EKF stands for the extended Kalman filter. Due to the high non-linearities,
problem tailored approximations are employed in addition to extended Kalman update. Therefore,
a “*” is added to denote the specific approximation techniques. As the MEM-EKF* filter directly es-
timates orientation, axes lengths, and their respective covariance matrices, it is possible to explicitly
model the temporal evolution of individual shape parameters and their interdependencies, which
is highly relevant to many practical applications. The shape estimation quality of the MEM-EKF*
filter is demonstrated using a simulated static ellipse. The strength of modeling the temporal

29
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evolution of shape variables is shown using a constant velocity model and a constant turn model
with respect to other state-of-the-art single extended object trackers.

Remark 3.1. This chapter is based on the journal publication [Yang1]. Using a multiplicative error
model to relate shape variables and measurement sources for elliptical/rectangular extended
objects is first investigated in [Yang10]. The estimation in [Yang10] is achieved by the second-order
extended Kalman filter (SOEKF), which requires the calculation of Hessian matrices. An extended
Kalman filter tailored to solve this problem is proposed in [Yang7]. The effort of Hessian matrices
calculation is saved, but the resulting estimate is sensitive to the prior due to the approximation.
In [Yang1], we improved the actual and pseudo-measurement covariance calculation in [Yang7]
and included the uncertainty of shape variables in kinematic estimation. The resulting moments
approximation in [Yang1] achieved similar performance to second-order extended Kalman filter in
[Yang10]. Based on [Yang1], this chapter

• presents a step-wise derivation of the measurement equation,

• adds a more elaborate explanation of the measurement update formulas,

• discusses the connections and differences with random matrix approaches, and

• investigates the pitfalls encountered when selecting parameters.

3.1 Related Work

In this section, a brief discussion on the related work concerning object extent estimation is
presented. For more topics on extended object tracking, an overview is given in [4].

Compared to classic point object tracking, the word extended in extended object tracking has a two-
fold meaning: on the one hand, multiple measurements, which are measurement sources corrupted
with sensor noise, are observed for one object; on the other hand, the extent of the object is not
negligible and needs to be estimated. Since the EOT originates from classic point object tracking,
early studies assume that the measurement sources are located at specific positions of a rigid body
shape [15, 62]. Trackers based on this assumption require explicit data association between received
measurement and measurement sources. Another model for measurement sources is the spatial
distribution model [18, 19]. Without an explicitly specified assignment between measurement
source and measurement, the spatial distribution model assumes that each measurement source
is an independent random draw from a spatial distribution on the surface, such as a uniform
distribution. Furthermore, the number of measurements received at each time step is modeled as a
Poisson distribution. The spatial distribution model is widely used in state-of-the-art extended
object tracking literature [10, 5, 12, 63].

The object extent can be described with different levels of complexity. Many works in EOT model
the extension of the object using geometrical shapes, which are defined by a set of parameters.
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The shape of the extended object is modeled as a stick in [43, 19, 64, 65]. There are some other
shapes, such as rectangles [12, 66, 67], circles [68, 69, 70], and arbitrary closed contours such as
star-convex shapes [11, 71, 61, 27]. One of the seminal works that use an ellipse to approximate
the extension is proposed in [72]. The object’s extent is defined by a random SPD matrix and is
referred to as a random matrix approach. Feldmann et al. improved the noise modeling in [5] based
on the spatial distribution model of measurement sources. Many works based on [10] and [5] are
further developed to adjust to different applications, such as [28] and [46] for extension dynamics,
[73, 33] for non-linear measurements, and [74, 75] for a more accurate measurement update. The
RHM [11, 71] allows estimating elliptical shapes based on Kalman filters. The shape vector used
in RHM is the Cholesky decomposition of the extension matrix. Elliptical object tracking using
convolution particle filters is presented in [7]. Other extended object trackers which are based on
particle filters, can be found in the overview work [76].

3.2 Recursive Bayesian Tracking

In the framework of Bayesian filtering, the task of object tracking is to estimate the posterior
probability of an object state vector given a sequence of noisy detections, i.e., p(xk|y1:k), where xk
denotes the object state and y1:k is the measurements up to time k. Recursive Bayesian tracking
consists of two alternating steps: prediction or time update and correction or measurement update.
The correction step, which is also known as measurement update, estimates the posterior based on
an observed measurement. The measurement at time k is assumed to depend only on the current
object state,

p(yk|x1:k) = p(yk|xk) . (3.1a)

The relationship between measurement and state is reflected in the so-called measurement equa-
tion:

yk = fk(xx) + vk , (3.1b)

where vk is additive measurement noise. With the incoming measurement, the posterior of the
object state is updated as

p(xk|y1:k) =
p (yk|xk) p

(
xk|y1:k−1

)

p
(
yk|y1:k−1

) ∝ p(yk|xk)p (xk|y1:k) . (3.1c)

The prediction step, which is also referred to as time update, focuses on estimating the state based
on the transition or dynamic model. The state probability density is modeled as a first-order
Markov chain

p(xk|x1:k−1) = p(xk|xk−1) . (3.2a)
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The transition between two successive states is described by a time-dependent function ak:

xk = ak(xk−1) +wk , (3.2b)

wherewk is additive process noise. According to the Champman-Kolmogorov equation, the time
update formula is

p(xk|y1:k−1) =

∫
p (xk|xk−1) p(xk−1|y1:k−1)dxk−1 . (3.2c)

The prior distribution p(x0) is assumed to be available.

Solving (3.2c) and (3.1c) is challenging in general as a closed-form solution for the integral and
full knowledge of likelihood are needed. However, the Kalman filter gives the minimum mean
squared error estimate when the noises and initial states are Gaussian distributed and both motion
and measurement models are linear.

3.2.1 Kalman Filter

The Kalman filter maintains the first two moments, i.e., mean and covariance, of the densities and
assumes linear measurement and transition models

yk = Hkxk + vk , (3.3)

xk = Akxk−1 +wk , (3.4)

where Hk and Ak are measurement matrix and transition matrix, vk and wk are white Gaussian
noises with vk ∼ N (0,Cvk) and wk ∼ N (0,Cwk ). Given a prior with mean x̂0 and covariance Cx0 ,
the Kalman filter performs measurement and time update recursively. Denoting the updated mean
and covariance with a plus sign as superscript, the measurement update is performed as follows:

x̂+
k = x̂k + Cxyk (Cyk )

−1
(yk −Hx̂k) , (3.5)

Cx+
k = Cxk −Cxyk (Cyk )

−1
(Cxyk )

T
, (3.6)

where

• yk is the observed noisy measurement,

• x̂k is the mean of the predicted state from time k − 1 to k,

• Cxk is the predicted covariance of the object’s state and indicates the uncertainty of the
prediction,
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• the covariance for measurement is calculated as

Cyk = HkC
x
kHT

k + Cvk , (3.7)

• the cross covariance between state and measurement is

Cxyk = CxkHT
k . (3.8)

Note that Cxyk (Cyk )
−1 is also referred to as Kalman gain.

The updated mean and covariance are predicted to the next time step as follows:

x̂k = Akx̂
+
k−1 , (3.9)

and
Cxk = AkC

x+
k−1A

T
k + Cwk . (3.10)

3.2.2 Extended Kalman Filter

Most practical tracking systems deal with non-linear models. The extended Kalman filter is one of
the most widely used techniques to solve non-linear estimation problems. The extended Kalman
filter linearizes the non-linear measurement or/and dynamic equation(s) using first-order Taylor
series expansion and substitutes Jacobian matrices for the corresponding linear matrices in the
Kalman filter. Only the non-linear measurement model is considered, as the same contents apply
to the non-linear transition model.

Assume the non-linear measurement equation is

yk = fk(xk) + vk , (3.11)

the Jacobian matrix of fk is

Jfk =
∂fk
∂xk

∣∣∣∣
xk=x̂k

. (3.12)

The measurement update follows

x̂+
k = x̂k + Cxyk (Cyk )

−1
(yk − fk(x̂k)) , (3.13)

Cx+
k = Cxk −Cxyk (Cyk )

−1
(Cxyk )

T
, (3.14)
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with

Cyk = JfkC
x
kJT

fk
+ Cvk , (3.15)

Cxyk = CxkJT
fk

. (3.16)

3.3 Problem Description

For extended object tracking, we focus on estimating the shape and kinematics of one moving
object based on a varying number of measurements. The background clutter is not considered. The
state of the object is specified by a state vector xk with time index k. The paradigm of recursive
Bayesian tracking in Section 3.2 is employed except that Mk measurements are observed instead
of at most one in the traditional tracking setting. The set of received positional measurements is

denoted as Yk =
{
y

(i)
k

}Mk

i=1
with Mk ≥ 0. The assignment between measurements and object is

known, i.e., all the measurements from set Yk are generated from the object. Each measurement
y

(i)
k arises from a measurement source z(i)

k and is perturbed by an additive sensor noise v(i)
k . Each

measurement source z(i)
k lies on the object surface according to a spatial distribution [18, 19], for

example, a uniform distribution.

Estimating the shape of the underlying object based on multiple measurements is significantly
more challenging than traditional point object tracking. The difficulties are:

• The measurement of a point object is assumed to be a reflection point of its center, and the
main uncertainty is the measurement noise. However, for extended object tracking, besides
the measurement noise, each measurement from the extended object can be a reflection of
any point on the unknown surface. The measurement sources are distributed differently
depending on many factors, such as the types of sensor, the shape of the object, and sensor-
object geometry.

• The number of the measurements varies over time and is most often sparse for sensors such
as radar.

• The description of object shape requires different levels of complexity. A widely used simpli-
fication is to approximate the shape using simple geometric shapes, such as sticks, rectangles,
and ellipses. Even for such approximations, the formulation of the shape estimation results
in a high dimensional non-linear problem.

3.4 Modeling an Elliptical Extended Object

The Kalman filter requires an explicit measurement equation that relates measurements and the
state vector for measurement update. In this section, an elliptical shape parameterization with
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orientation and axes lengths is employed. By the introduction of a so-called multiplicative error,
each observed measurement is related to shape variables, such as orientation and axes lengths.

3.4.1 Parameterization

The kinematic state of the extended object is defined in the same manner as traditional object
tracking, i.e.,

rk =
[
mT
k , ṁT

k , . . .
]T

, (3.17)

where k is time index, mk ∈ R2 is the location of center, ṁk is velocity and possible further
kinematic quantities, such as turn rate, acceleration. The extent of the object is approximated using
an ellipse and parametrized as

pk =
[
αk, lk,1, lk,2

]T
∈ R3, (3.18)

where αk indicates the orientation, which is defined using the anti-clockwise rotation angle from
the x-axis; lk,1 and lk,2 specify the semi-axes lengths.

Even though parameterization (3.18) is intuitive and widely used in many tracking scenarios
[12], the correspondence between elliptical shape and variable representation (3.18) is not one-to-
one. To be more specific, one elliptical shape can be represented using multiple shape variable

vectors. For example, shape variable vectors p(1)
k =

[
π
3 , 2, 1

]T
, p(2)

k =
[
π
3 + π

2 , 1, 2
]T

,

and p(3)
k =

[
π
3 + 2π, 2, 1

]T
indicate the same elliptical shape. It is important to note that

parameterization (3.18) is not limited to elliptical shapes. The rectangular shapes can also use this
parameterization, see [Yang10].

3.4.2 Measurement Equation

A measurement equation relates the observed measurement to the unknown object state. In this
section, an explicit measurement equation is derived (see Figure 3.1).

First, an axis-aligned ellipse that lies at the origin is considered. The ellipse has semi-axes lengths
of lk,1 and lk,2. For any measurement source z(i)

k that lies on the object surface, there exists h(i)
k,1 ∈

[−1, 1] and h(i)
k,2 ∈ [−1, 1] such that z(i)

k =
[
h

(i)
k,1lk,1, h

(i)
k,2lk,2

]T
. Let h(i)

k =
[
h

(i)
k,1, h

(i)
k,2

]T
, we

have

z
(i)
k =

[
lk,1 0

0 lk,2

]
h

(i)
k . (3.19a)

As the measurement sources are assumed to be uniformly distributed on the object extent, the
random variable h(i)

k is uniformly distributed on the surface of a unit circle at the origin. Note that
if h(i)

k is uniformly distributed in the range [−1, 1]2, a rectangular shape, instead of an elliptical
shape, with length 2 · lk,1 and width 2 · lk,2, is modeled.
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x

y

z
(i)
k

lk,1

lk,2

rotate by αk

z
(i)
k =

[
lk,1 0
0 lk,2

] [h(i)
k,1

h
(i)
k,2

]

x

y

lk,1lk,2

z
(i)
k

translate bymk and add v(i)
k

z
(i)
k =

[
cosαk − sinαk
sinαk cosαk

] [
lk,1 0
0 lk,2

]
h

(i)
k

y
(i)
k = mk +

[
cosαk − sinαk
sinαk cosαk

] [
lk,1 0
0 lk,2

]
h

(i)
k + v

(i)
k

y
(i)
k

x

y

lk,1lk,2

z
(i)
k

mk

Figure 3.1: This figure shows the derivation of the measurement equation. The key insight is that
each measurement y(i)

k is related to shape variable pk using multiplicative noise h(i)
k .
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An ellipse with orientation αk is treated as an axis-aligned ellipse rotated by an angle of αk.
Correspondingly, the measurement source on the extent is also rotated as

z
(i)
k =

[
cosαk − sinαk

sinαk cosαk

][
lk,1 0

0 lk,2

]
h

(i)
k . (3.19b)

Let matrix Sk denote

[
cosαk − sinαk

sinαk cosαk

][
lk,1 0

0 lk,2

]
. Note that matrix Sk is defined by shape

variable pk. Incorporating the coordinates of the centermk and sensor noise v(i)
k , we get

y
(i)
k = mk + Skh

(i)
k + v

(i)
k . (3.19c)

The formal measurement equation is obtained by relating kinematic state and adding the time
index back, which gives us

y
(i)
k = Hkrk + Skh

(i)
k + v

(i)
k , (3.19)

where Hk picks the object location out of the kinematic state.

The random variable h(i)
k is the key to form the explicit measurement equation (3.19). It is treated

as a multiplicative error in the estimation process, and this modeling is named Multiplicative Error
Model (MEM). The distribution of the multiplicative error is assumed to be Gaussian to facilitate
the usage of Kalman filters, i.e., h(i)

k ∼ N (0,Ch) with

Ch =
1

4
I2 (3.20)

to match the covariance of the circle uniform distribution. Note that Ch plays the similar role as
the constant z = 1

4 in [5].

3.4.3 Dynamic Model

In general, there are no restrictions on the dynamic models for the temporal evolution of the
kinematic and shape parameters. As the shape variables of MEM-EKF* are modeled explicitly in a
vector, one requires an extra dynamic matrix for shape variables.

Nearly Constant Velocity Model

As the shape estimation in the measurement update is the focus of this chapter, a linear dynamic
model is considered. The nearly constant velocity model assumes the dynamics of an extended
object is

rk+1 = Arrk +wrk , (3.21a)

pk+1 = Appk +wpk , (3.21b)
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where

• the kinematic state contains location and velocity: rk =
[
mk, ṁk

]
,

• Ar is the dynamic matrix of kinematic state and is defined as

Ar =




1 0 T 0

0 1 0 T

0 0 1 0

0 0 0 1




, (3.21c)

with the sampling period T ,

• Ap describes the dynamics of shape variable (if the shape of the extended objects is assumed
to be fixed over time, Ap is the three dimensional identity matrix and can be omitted),

• wrk ∼ N
(
0,Cw

r

k

)
is the process noise of the kinematic state,

• wpk ∼ N
(
0,Cw

p

k

)
indicates the process noise of the shape variables.

Coordinated Turn Model

In this parameterization, the kinematic and shape variables are decoupled. There are some motion
patterns in which the kinematic state and shape variables are correlated. For example, the object
orientation is typically coupled with the turn rate [46] for a maneuvering object. Including the turn
rate α̇k into the kinematic state, the dynamics of the coordinated turn model are

rk+1 = A1 (rk) rk +wrk , (3.22a)

pk+1 = A2rk + pk +wpk , (3.22b)

where

• rk defines the kinematic state with turn rate α̇k appended to (3.17), i.e.,

rk =
[
mk, ṁk, α̇k

]T
, (3.22c)

• the dynamic matrix A1 (rk) takes rk as parameter:

A1 (rk) =




1 0 sin (Tα̇k)
α̇k

− 1−cos (Tα̇k)
α̇k

0

0 1 1−cos (Tα̇k)
α̇k

sin (Tα̇k)
α̇k

0

0 0 cos (T α̇k) − sin (T α̇k) 0

0 0 sin (T α̇k) cos (T α̇k) 0

0 0 0 0 1




, (3.22d)
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• the matrix

A2 =

[
01×4 T

02×4 02×1

]
(3.22e)

picks out the turn rate α̇k from the kinematic state and then adds it to the shape vector in
(3.22b).

3.5 Estimation based on a Tailored Extended Kalman Filter

A Kalman filter based on the measurement model (3.19) and dynamic models (3.21a)–(3.22b) is
difficult. The main challenges are the following:

a) The estimation is a high-dimensional problem. Compared to point object tracking, the state
vector in extended object tracking contains more variables. Apart from the kinematic state,
the orientation and two semi-axes lengths need to be estimated.

b) The rotation matrix and introduction of multiplicative noise add more non-linearities to the
measurement equation.

c) The mean of the multiplicative noise is zero. If the standard extended Kalman filter is applied,
and the Jacobian matrix is evaluated at the estimated value of multiplicative noise (i.e., 0),
the shape variables are not observable.

d) The kinematic and shape variables are updated separately similar to the random matrix
approaches in [5, 28, 46]. By this means, the interdependencies between kinematic and shape
variables could not be maintained in the covariance and cross-covariance matrices.

The following solutions are proposed

• Because the shape variables are not observed due to the zero mean multiplicative noise,
a pseudo-measurement is used to update shape variables. The deliberately constructed
pseudo-measurement facilitates estimation in two aspects. Firstly, the pseudo-measurement
is a quadratic conversion of the actual measurement and is uncorrelated to it. Therefore,
more information is exploited from the measurement and the shape variables are observable.
Secondly, the pseudo-measurement is constructed in a way that its moments can be extracted
from the second central moments of the actual measurement.

• To bypass the non-linearities in the measurement equation, linearization is performed on
both the actual measurement equation and the pseudo-measurement equation. The extended
Kalman filter is performed to calculate the cross-covariance between pseudo-measurement
and shape variables. Analytical moment approximations are employed to get the first and
second moments of the pseudo-measurement.

• In the process of linearizing the actual measurement equation, the multiplicative noise is
treated as as random variable instead of evaluated at its expected value. Therefore, the



40 CHAPTER 3. Shape Tracking with Explicit Parameterization

spread of the multiplicative noise combined with the uncertainty of shape estimates are kept
in the update of the kinematic state.

3.5.1 Sequential Measurement Update

The measurement update in the MEM-EKF* is done sequentially. At each time step k, the predicted
prior for kinematic and shape variables are denoted as

r̂
(0)
k , p̂

(0)
k and C

r(0)
k , C

p(0)
k .

They are updated using each measurement in the set {y(i)
k }Mk

i=1. In the end of the measurement
update, the estimates are updated as

r̂
(Mk)
k , p̂

(Mk)
k and C

r(Mk)
k , C

p(Mk)
k .

For i = 1, · · · ,Mk, we denote the estimates that have incorporated the (i− 1)-th measurement as

r̂
(i−1)
k , p̂

(i−1)
k and C

r(i−1)
k , C

p(i−1)
k . (3.23)

In the following subsections, only one sequential measurement update is explained, i.e., updating
(3.23) using the i-th measurement.

Kinematic State Update

Given the measurement y(i)
k , the kinematic variable is updated according to the Kalman filter

equations:

ȳ
(i)
k = Hkr̂

(i−1)
k , (3.24)

r̂
(i)
k = r̂

(i−1)
k + C

ry(i)
k

(
C
y(i)
k

)−1 (
y

(i)
k − ȳ

(i)
k

)
, (3.25)

C
r(i)
k = C

r(i−1)
k −C

ry(i)
k

(
C
y(i)
k

)−1 (
C
ry(i)
k

)T

. (3.26)

As the measurement equation is linear in the kinematic state, the cross-correlation C
ry(i)
k between

the measurement and the kinematic state is

C
ry(i)
k = C

r(i−1)
k HT

k . (3.27)

Because of the shape matrix Sk and multiplicative noise h(i)
k , the measurement equation (3.19) is

nonlinear in the shape parameters. The challenge is to calculate the covariance of the measurement
C
y(i)
k .
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Algorithm 3.1 Measurement update of the MEM-EKF* filter

Input: Measurements {y(i)
k }Mk

i=1, predicted estimates r̂(0)
k , p̂(0)

k , C
r(0)
k , C

p(0)
k , measurement noise

covariance Cvk , Hk as defined in (3.19c), multiplicative noise covariance Ch, matrices F and F̃

Output: updated estimates r̂(Mk)
k , p̂

(Mk)
k and C

r(Mk)
k , C

p(Mk)
k

For i = 1, · · · ,Mk [
α̂ l̂1 l̂2

]T
= p̂

(i−1)
k

Ŝ =

[
Ŝ1

Ŝ2

]
=

[
cos α̂ − sin α̂
sin α̂ cos α̂

] [
l̂1 0

0 l̂2

]

ĴS1 =

[
−l̂1 sin α̂ cos α̂ 0

−l̂2 cos α̂ 0 − sin α̂

]

ĴS2 =

[
l̂1 cos α̂ sin α̂ 0

−l̂2 sin α̂ 0 cos α̂

]
CI = ŜChŜT

CII = [εmn] = tr
(
Cp

(i−1)

k ĴT
SnC

hĴSm

)
for m,n = 1, 2

M̂ =

 2Ŝ1C
hĴS1

2Ŝ2C
hĴS2

Ŝ1C
hĴS2 + Ŝ2C

hĴS1



ȳ
(i)
k = Hkr̂

i−1
k

C
ry(i)
k = C

r(i−1)
k HT

k

C
y(i)
k = HkC

r(i−1)
k HT

k + CI + CII + Cvk

ξ
(i)
k = F

(
(y

(i)
k − ȳ(i)

k ) ⊗ (y
(i)
k − ȳ(i)

k )
)

ξ̄
(i)
k = Fvect

{
C
y(i)
k

}
C
pξ(i)
k = C

p(i−1)
k M̂T

C
ξ(i)
k = F(C

y(i)
k ⊗C

y(i)
k )(F + F̃)T

r̂
(i)
k = r̂

(i−1)
k + C

ry(i)
k

(
C
y(i)
k

)−1 (
y
(i)
k − ȳ(i)

k

)
C
r(i)
k = C

r(i−1)
k −C

ry(i)
k

(
C
y(i)
k

)−1 (
C
ry(i)
k

)T
p̂
(i)
k = p̂

(i−1)
k + C

pξ(i)
k

(
C
ξ(i)
k

)−1 (
ξ
(i)
k − ξ̄(i)k

)
C
p(i)
k = C

p(i−1)
k −C

pξ(i)
k

(
C
ξ(i)
k

)−1 (
C
pξ(i)
k

)T
End

The time indices k and (i− 1) are omitted for the intermediate realizations of variables and matrices, such as α̂(i−1)
k ,

l̂
(i−1)
k,1 , l̂(i−1)

k,2 , Ŝ(i−1)
k , Ĵ(i−1)

Sk,1
, Ĵ(i−1)

Sk,2
, and M̂

(i−1)
k . Source code: https://github.com/Fusion-Goettingen/

https://github.com/Fusion-Goettingen/
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The first and second row of shape matrix Sk are

Sk,1 =
[
lk,1 cosαk −l2 sinαk

]
and Sk,2 =

[
lk,1 sinαk lk,2 cosαk

]
. (3.28a)

The Jacobian matrices for Sk,1 and Sk,2 are

JSk,1 =
∂Sk,1
∂pk

=

[
−lk,1 sinαk cosαk 0

−lk,2 cosαk 0 − sinαk

]
, (3.28b)

JSk,2 =
∂Sk,2
∂pk

=

[
lk,1 cosαk sinαk 0

−lk,2 sinαk 0 cosαk

]
, (3.28c)

Linearizing Skh
(i)
k around p̂(i−1)

k and keeping h(i)
k as a random variable, gives us

Skh
(i)
k ≈ Ŝ

(i−1)
k h

(i)
k︸ ︷︷ ︸

I

+




(
h

(i)
k

)T

Ĵ
(i−1)
Sk,1(

h
(i)
k

)T

Ĵ
(i−1)
Sk,2



(
pk − p̂(i−1)

k

)

︸ ︷︷ ︸
II

, (3.28d)

where •̂(i−1) denotes random matrix • realized at the (i− 1)-th shape estimate p̂(i−1)
k . As h(i)

k is
zero mean and independent from the shape variables, the first part I and second part II in (3.28d)
are uncorrelated. The covariance of Skh

(i)
k is approximated as the sum of CI and CII, where

CI = Ŝ
(i−1)
k Ch(Ŝ

(i−1)
k )T , (3.28e)

[εmn]︸ ︷︷ ︸
CII

= tr
(

Cp
(i−1)

k

(
Ĵ

(i−1)
Sk,n

)T

ChĴ
(i−1)
Sk,m

)
, for m,n ∈ {1, 2} . (3.28f)

The derivation of (3.28f) is shown in Section 3.5.3. The covariance of the actual measurement is

C
y(i)
k = HkC

r(i−1)
k HT

k + CI + CII + Cvk . (3.28)

Shape Update

As the expected value of the multiplicative error is zero, the shape variables are not observed with
a linear estimator [43]. A pseudo-measurement is constructed as follows:

Step 1: Shift the actual measurement by its expected measurement,

y
(i)
k − ȳ

(i)
k . (3.29a)



CHAPTER 3. Shape Tracking with Explicit Parameterization 43

Step 2: Take the 2-fold Kronecker product ⊗ of the shifted actual measurement,1

(y
(i)
k − ȳ

(i)
k )⊗ (y

(i)
k − ȳ

(i)
k ) . (3.29b)

Step 3: Remove the duplicate element in the resulting Kronecker product

ξ
(i)
k = F

(
(y

(i)
k − ȳ

(i)
k )⊗ (y

(i)
k − ȳ

(i)
k )
)
, (3.29)

where

F =




1 0 0 0

0 0 0 1

0 1 0 0


 .

The construction of the pseudo-measurement (3.29) is an uncorrelated conversion (c.f. Theorem 3
in [77]). That means the actual measurement and pseudo-measurement are uncorrelated.

Together with the pseudo-measurement ξ(i)
k , the shape variables are updated as follows

p
(i)
k = p̂

(i−1)
k + C

pξ(i)
k

(
C
ξ(i)
k

)−1 (
ξ

(i)
k − ξ̄

(i)
k

)
, (3.30)

C
p(i)
k = C

p(i−1)
k −C

pξ(i)
k

(
C
ξ(i)
k

)−1 (
C
pξ(i)
k

)T

, (3.31)

where ξ̄(i) , C
ξ(i)
k , and C

pξ(i)
k are the expected pseudo-measurement, the covariance of the pseudo-

measurement, the cross-covariance between the pseudo-measurement and the shape parameters,
respectively. The task is to calculate these first and second moments of the pseudo-measurement.

Expected i-th pseudo-measurement:

Suppose the covariance matrix of measurement (3.28) is C
y(i)
k =

[
c11 c12

c12 c22

]
, converting it into a

column vector, we have

vect
{

C
y(i)
k

}
=
[
c11 c12 c12 c22

]T
, (3.32a)

where the vect-operator converts a matrix into a column vector by stacking its column vectors. By
definition, the vectorized covariance matrix (3.32a) is

E
(

(y
(i)
k − ȳ

(i)
k )⊗ (y

(i)
k − ȳ

(i)
k )
)
, (3.32b)

1The 2-fold Kronecker product ⊗ on a two dimensional vector y =
[
y1 y2

]T is

y ⊗ y =
[
y21 y1y2 y2y1 y22

]T
.
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which leads to the expected value of the pseudo-measurement. Removing the duplicated element
gives us the expected i-th pseudo-measurement

ξ̄
(i)
k = Fvect

{
C
y(i)
k

}
. (3.32)

Expected covariance of i-th pseudo-measurement:

The predicted pseudo-measurement covariance is

C
ξ(i)
k =




2c211 2c212 2c11c12

2c212 2c222 2c22c12

2c11c12 2c22c12 c11c22 + c212


 , (3.33a)

=F(C
y(i)
k ⊗C

y(i)
k )(F + F̃)T . (3.33)

where

F̃ =




1 0 0 0

0 0 0 1

0 0 1 0


 .

The detailed derivation of (3.33a) is shown in Section 3.5.3.

Expected cross-covariance between the i-th pseudo-measurement and shape variables:

The linearization of (3.29) gives us the cross-covariance between the i-th pseudo-measurement and
shape variables

C
pξ(i)
k = C

p(i−1)
k

(
M̂

(i−1)
k

)T

, (3.34)

with the Jacobian matrix of pseudo-measurement equation (3.29) being

Mk =




2Sk,1C
hJSk,1

2Sk,2C
hJSk,2

Sk,1C
hJSk,2 + Sk,2C

hJSk,1


 . (3.34a)

The derivation of (3.34a) is shown in Section 3.5.3.

The pseudo-measurement is constructed in a way such that the expected moments of the pseudo-
measurement can be built using the centralized second moments of the actual measurements. The
pseudo-code of measurement update is given in Algorithm 3.1.

3.5.2 Time Update

With the last step of measurement update, we have estimated r̂(Mk)
k , p̂(Mk)

k and their covariance
matrices C

r(Mk)
k and C

p(Mk)
k , respectively. In the time update step, the updated estimates are

predicted into the next time step and indicated with superscript (0) with time index k + 1.
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Constant Velocity Model

As the motion equation is linear in the constant velocity model, the time update is performed in
the standard Kalman filter fashion:

r̂
(0)
k+1 = Arr̂

(Mk)
k , (3.35)

C
r(0)
k+1 = ArC

r(Mk)
k AT

r + Cw
r

k (3.36)

p̂
(0)
k+1 = App̂

(Mk)
k , (3.37)

C
p(0)
k+1 = ApC

p(Mk)
k AT

p + Cw
p

k . (3.38)

Coordinated Turn Model

Since the dynamic equation of the kinematic state in the coordinated turn model is non-linear, the
kinematic state is predicted using the extended Kalman filter:

r̂
(0)
k+1 = A1

(
r̂

(Mk)
k

)
r̂

(Mk)
k + p̂

(Mk)
k , (3.39)

C
p(0)
k+1 = JA1

C
r(Mk)
k (JA1

)
T

+ Cw
p

k , (3.40)

where the Jacobian matrix of (3.22d) evaluated at the estimate of the last measurement update is

JA1
=
∂A(rk)

∂rk

∣∣∣∣
rk=r̂k

. (3.41)

The motion equation of shape variables (3.22b) is linear, and updated as

p̂
(0)
k+1 = A2r̂

(Mk)
k + p̂

(Mk)
k , (3.42)

C
p(0)
k+1 = A2C

r(Mk)
k AT

2 + C
p(Mk)
k + Cw

p

k . (3.43)

3.5.3 Derivations

This subsection states the derivations of (3.28f), the covariance of pseudo-measurement (3.33a),
and the Jacobian matrix of the pseudo-measurement (3.34a). For the sake of compactness, we omit
the measurement index (i) and time index k as all the derivations are focused on the i-th sequential
measurement update at a time instant k.

The Covariance CII

Following the definition of covariance, we have

CII = cov

{[
hTĴS1

hTĴS2

]
(p− p̂) ,

[
hTĴS1

hTĴS2

]
(p− p̂)

}
= [εmn] . (3.44a)
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We denote p̃ = p− p̂. Both p̃ and h are zero-mean. For each entry εmn, m,n = 1, 2, in CII, we have

εmn = E
(
hTĴSm p̃p̃

TĴT
Snh

)
. (3.44b)

As hTĴSm p̃p̃
TĴT

Sn
h is a scalar, we write εmn as

εmn = E
(

tr
(
hTĴSm p̃p̃

TĴT
Snh

))
. (3.44c)

Trace operation is invariant under cyclical permutations, (3.44c) becomes

εmn = E
(

tr
(
p̃p̃TĴT

Snhh
TĴSm

))
. (3.44d)

Since trace is a linear operator and can be commuted with expectation, we have

εmn = tr
(

E
(
p̃p̃TĴT

Snhh
TĴSm

))
. (3.44e)

The independence between h and p yields

εmn = tr
(
CpĴT

SnChĴSm

)
. (3.44)

Covariance of Pseudo-measurement

Given a measurement y =
[
y1, y2

]T
and its expected mean ȳ =

[
ȳ1, ȳ2

]T
, the pseudo-

measurement is 

ξ1

ξ2

ξ3


 =




(y1 − ȳ1)2

(y2 − ȳ2)2

(y1 − ȳ1)(y2 − ȳ2)


 . (3.45a)

The Isserlis’s theorem [78] or Wick’s theorem [79] calculates higher-order centralized moments
of multivariate Gaussian random variables. As the pseudo-measurement is a quadratic form of
the actual measurement, the fourth central moments of the actual measurements are required
to calculate the covariance of the pseudo-measurement. According to the Isserlis’s theorem, we
obtain

E
(
(ξ1)2

)
= 3c211 , (3.45b)

E
(
(ξ2)2

)
= 3c222 , (3.45c)

E (ξ3ξ1) = 3c11c12 , (3.45d)

E (ξ3ξ2) = 3c22c12 , (3.45e)

E
(
(ξ3)2

)
= E (ξ1ξ2) = c11c22 + 2c212 , (3.45f)

where cmn denotes E ((ym − ȳm)(yn − ȳn)) for m,n ∈ {1, 2}.
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The mn-th entry of the pseudo-measurement covariance matrix is

cov {ξm, ξn} = E (ξmξn)− E (ξm) E (ξn) , for m,n ∈ {1, 2, 3} . (3.45)

In the end, the covariance of the pseudo-measurement is obtained as in (3.33a).

Jacobian Matrix of Pseudo-measurement Equation

Denote S1, S2, H1, and H2 as the first and second row of matrix S and H, respectively. Expand the
pseudo-measurement equation (3.29) as

g(r,p) =




(H1r + S1h+ v1 − ȳ1)
2

(H2r + S2h+ v2 − ȳ2)
2

(H1r + S1h+ v1 − ȳ1) (H2r + S2h+ v2 − ȳ2)


 . (3.46a)

Linearizing (3.46a) around p̂ and applying the chain rule give us

∂g

∂p
=




2 (H1r + S1h+ v1 − ȳ1)hTJS1

2 (H2r + S2h+ v2 − ȳ2)hTJS2

(H1r + S1h+ v1 − ȳ1)hTJS2
+ (H2r + S2h+ v2 − ȳ2)hTJS1


 (3.46b)

with J1 and J2 given in (3.28b) and (3.28c). The cross-covariance between the pseudo-measurement
and the shape parameters is approximated as

Cpξ = cov

{
∂g

∂p

∣∣∣∣
p=p̂

(p− p̂), p

}
, (3.46c)

= Cp




E

(
∂g

∂p

∣∣∣∣
p=p̂

)

︸ ︷︷ ︸
M̂




T

. (3.46d)

Evaluating the first row of (3.46b) at p̂ gives

2(H1r − ȳ1)hTĴS1
+ 2Ŝ1hh

TĴS1
+ 2v1h

TĴS1
. (3.46e)

Taking the expectation of (3.46e) gives us

2Ŝ1C
hĴS1

. (3.46f)

A similar derivation applies to the second and third row of (3.46b). The Jacobian matrix of the
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Table 3.1: The ground truth and prior for evaluating moment approximation

center shape

Ground Truth r1 =
[
0, 0

]T
p1 =

[
π
3 , 2, 9

]T

r̂
(0)
1 = [1, 1]T p̂

(0)
1 = [0, 2, 12]T

Prior
C
r(0)
1 = diag [1, 1] C

p(0)
1 = diag [1, 4, 9]

pseudo-measurement equation is

M̂ =




2Ŝ1C
hĴS1

2Ŝ2C
hĴS2

Ŝ1C
hĴS2

+ Ŝ2C
hĴS1


 . (3.46)

3.6 Evaluation

In this section, the effectiveness of the extended object tracker MEM-EKF* is demonstrated using
simulations. The first simulation considers a static extended object and evaluates the accuracy
of the analytic moment approximations proposed in Section 3.5. In the second simulation, a
constant velocity model is employed to compare the shape estimation quality of the MEM-EKF*
with two other random matrix approaches [5, 44]. The estimation of the turn rate is integrated in
the last simulation. The performance of the MEM-EKF* and a random matrix approach [46] that is
designed for the coordinated turn model is investigated.

3.6.1 Moment Approximation

In this simulation, the quality of the proposed moment approximations in (3.25), (3.26), (3.30) and
(3.31) is compared to the Monte Carlo moment approximation (MEM-MC) and a second-order
extended Kalman filter [Yang10] (MEM-SOEKF). Both Monte Carlo and second-order approxi-
mations require more computations than MEM-EKF*. Since we want to exclude the effect of the
motion model, the extended object is assumed to be static. All three methods use the same prior.
Two versions of measurement noise are considered. The ground truth and prior are listed in Table
3.1

The simulation result is shown in Fig. 3.2. As expected, the Monte Carlo moments approximation
outperforms the other two methods, whether there is measurement noise or not. In the case of
high measurement noise, the MEM-EKF* has a similar approximation quality as the Monte Carlo
method. The simulation result in Figure 3.2 shows no significant differences among all these three
methods if the number of measurements is sufficient. Thus, one can conclude that the proposed
moment approximations have similar quality as Monte Carlo particles even in high noise scenarios.
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Figure 3.2: Simulation with a static ellipse to evaluate the moments approximation. The left column
shows the simulation without measurement noise. The right column describes the simulation with
high measurement noise. The first row shows exemplar estimates after 100 measurement updates.
The bottom row plots the root mean squared Gaussian Wasserstein distance averaged over 100
runs.
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Table 3.2: The prior and parameters for shape variables in the constant velocity simulation. Note
that the same notation for the parameters is used as in the original paper.

Parameters Feldmann et al. [5] Lan et al. [28] MEM-EKF*[
16075 −13813
−13813 32025

][ [
16075 −13813
−13813 32025

][
p
(0)
1 =

[
−π

3
, 200, 90

]T
Prior of shape

α = 50 v = 56 C
p(0)
1 = diag [1, 490, 490]

Dynamics τ = 50 δk = 40 Cwp = diag
[
0.1, 1, 1

]

3.6.2 Constant Velocity Model

In this simulation, MEM-EKF* is compared with the random matrix approaches by Feldmann et
al. [5] and Lan et al. [28] to assess the performance of shape estimation.

The size of the tracked object is assumed to be fixed, and only the orientation changes over
time. The trajectory is similar to the simulation in [5] and [28] (see Figure 3.3). The extended
object has diameters of 340 m and 80 m . It moves with a velocity of 50 km/h. The number of
measurements per time step is Possion distributed with mean 20 as in [28]. The measurement
sources are uniformly distributed on the object surface. The covariance of measurement noise
is Cvk = diag

[
10000, 400

]
. As the tracker from Feldmann et al. does not model the extension

evolution, for a fair comparison, the shape transition matrix is set as A = 1
δk

I2 in Lan et al. and
Ap
k = I3 in MEM-EKF*.

For a linear motion model, all three trackers estimate the kinematics similarly. The

prior of the kinematic state for all tracker is
[
100, 100, 5, −8

]T
with covariance of

diag
[
1600, 1600, 16, 16

]
. The covariance of the process noise is diag

[
100, 100, 1, 1

]
. The

prior and parameters for shape/extension are different and are given in Table 3.2.

One example simulation is described in Figure 3.3. As the MEM-EKF* can constrain a low process
noise on axes length and allows for comparatively large process noise on orientation, MEM-EKF*
outperforms around coordinate turns. The random matrix approach from Feldmann et al. detects
the changes of the measurement distribution but fails to configure the cause is from orientation
or size. The tracker from Lan et al. will have better results if more modes of δk are incorporated.
The estimation error, which combines location and the extent, is plotted as Gaussian Wasserstein
distance in Figure 3.4. With single-mode tracker from [28] and using the same linear motion model,
both random matrix approaches from Feldmann et al. and Lan et al. perform similarly.

3.6.3 Coordinated Turn Model

A similar trajectory to [46] is simulated in this section. The true trajectory consists of a constant
velocity phase in the first 25 time steps, then a coordinated turn phase in the last 40 time steps
(see Figure 3.5). The semi-axes lengths of the simulated object are 170 m and 40 m. The number
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Figure 3.3: The measurements, trajectory, and estimation results of a single example run.
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Figure 3.4: Extension and location error based on the root mean squared Gaussian Wasserstein
distance. [Yang1] ©2019IEEE

of measurements is Poisson distributed with mean 20 and the measurement noise covariance is
Cvk = diag

[
10000, 400

]
.

Two versions of MEM-EKF* are compared with the M4 approach in [46]. The method M4 improved
the prediction step based on the random matrix approach in [5]. It allows for dependencies between
the kinematic state and extension matrix. The random matrix approach from [5] is also included as
a baseline as it does not incorporate any temporal evolution of the object extent.

A coordinated turn model is used for the object kinematics. The prior for the kinematic state

is
[
100, 100, 100, 20, 0.001

]T
with a covariance of diag

[
1600I2, 16I2, 0.001

]
. The pa-

rameters for the random matrix approaches are v = 56, τ = 5, and T = 1s. The prior

for the MEM-EKF* shape parameter is p̂(0)
1 =

[
π
3 , 200, 90

]T
with a covariance of C

p(0)
1 =

diag
[
0.2, 360I2

]
. The process noise covariance matrices for the location, velocity, and turn rate

are Cw
r

k = diag
[
1000I2, 100I2, 0.001

]
.

The evolution of extent can be constrained in the MEM-EKF* using a suitable system noise covari-
ance. Similar to the simulation in Section 3.6.2, the covariance of system noise is tuned in a way
such that the axes length are almost fixed over time. To demonstrate the effect of system noise, we
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choose two different covariance matrices for process noise:

MEM-EKF* (1) with Cw
p

k = diag
[
0.01, I2

]
, (3.47)

MEM-EKF* (2) with Cw
p

k = diag
[
0.1, 40I2

]
. (3.48)

Compared to MEM-EKF* (2), MEM-EKF* (1) has low system noise and has more constraint on
lengths changes over time. One example estimation result with MEM-EKF*(1), M4 from [46], and
Feldmann et al. [5] is shown in Figure 3.5.

Figure 3.6 depicts the root mean squared Gaussian Wasserstein distance for this simulation. The
performance improves significantly with the turn rate estimation. From Figure 3.6, MEM-EKF*
(1) has better performance compared to the other trackers because the axes length changes are
restricted similarly as in Section 3.6.2. However, MEM-EKF* (2) gives more estimation error than
M4 and MEM-EKF* (1). This means MEM-EKF* is sensitive to the selected parameters and might
have worse results (see Figure 3.6).

3.7 Discussion

The random matrix approaches [10, 5] are widely used for tracking elliptical extended objects.
Random matrix approaches and MEM-EKF* share many common aspects in modeling the dis-
tribution of the measurements, but also have many differences. This section first investigates
the relationship between random matrix based elliptical extended object tracking methods and
MEM-EKF*. Furthermore, the parameter selection for MEM-EKF* is discussed.

3.7.1 Relationship with Random Matrix Approaches

The measurement likelihoods of the random matrix approach in [5] and the MEM-EKF* are
essentially the same. However, these two kinds of shape representation introduce differences in
measurement update, time update, and uncertainty representation, etc.

Measurement Likelihood

The random matrix approach in [5] and MEM-EKF* share the same measurement likelihood
function. They assume the measurement sources are uniformly distributed on the surface of the
extended object, and use a Gaussian distribution to approximate the moments of the elliptical
uniform distribution. Denoting the extension matrix as Σk, the measurement likelihood function
in [5] is

p(y
(i)
k |rk,Σk) = N (y

(i)
k ; Hkrk, zΣk + Cvk) , (3.49)

where the constant z = 1
4 is used to approximate the second order moments of the elliptical uniform

distribution. Considering the measurement equation (3.19) and the assumption of Gaussian
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Figure 3.5: The trajectory and estimates of the coordinated turn simulation. For the seek of
clear representation, the estimates of MEM-EKF* (2) are omitted as they are worse than M4 from
Granström et al. and better than Feldmann et al. .
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Figure 3.6: Root mean squared Gaussian Wasserstein distance for 100 runs. [Yang1] ©2019IEEE

additive measurement noise together, the measurement likelihood of MEM-EKF* is

p(y
(i)
k |rk,pk) = N (y

(i)
k ; Hkrk,SkC

hST
k + Cvk) , (3.50)

where SkS
T
k is extension matrix Σk. Two measurement likelihoods (3.50) and (3.49) are equal as

Ch = 1
4I2.

Shape Representation

The physical object extent is represented using a SPD matrix in random matrix approaches while
the MEM-EKF* utilizes a three-dimensional shape vector consisting of orientation and semi-axes
lengths. These two kinds of shape representations bring the following differences

• Random matrix approaches have a scalar value to indicate the confidence level of the
extension estimate. MEM-EKF* maintains a 3× 3 covariance matrix. The scalar value used
to indicate the confidence level in the random matrix approach is related to (the trace of) the
variance of the shape estimate. On one side, the representation of shape estimate uncertainty
in MEM-EKF* is more straightforward. The scalar parameter for the uncertainty in random
matrix approaches does not allow for a distinction between the uncertainty of size and
orientation. On the other side, the confidence indicator in random matrix methods has a
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simpler form. A conversion from the covariance matrix to scalar uncertainty introduces a
loss of information.

• The time update of MEM-EKF* is more flexible as it can explicitly incorporate the dynamics
of shape variables in the motion model. As shown in Section 3.6.2, the fact that the shape
changes around coordinate turns are caused by orientation can be expressed by adjusting
the process noise of shape variables. This is achieved by adding more orientation process
noise and restrict the process noise on axes lengths in the time update. Section 3.6.3 gives a
more straightforward example to incorporate the dependency between orientation and turn
rate. Depending on the application, other shape dynamics, such as axes lengths changes,
can easily be employed into the motion model. The random matrix approach in [5] assumes
both orientation and size do not change over time but increase the variance of the extension
matrix in the time update. Lan et al. expressed the dynamic model of object extension using
a transition matrix in [77]. With a multiple mode implementation, the algorithm in [77]
allows some degrees of rotation of the extension in the time update. However, the angle of
rotation depends on a given parameter not the turn rate. The kinematic state and extension
are still assumed to be independent. Granström et al. proposed a prediction algorithm, which
incorporates the correlation between kinematics and extension [46]. An iterative root-finding
algorithm is required in [46].

• The parameters are different (see Table 3.2). For setting the prior of the extension matrix,
the random matrix approach in [5] requires an SPD matrix and a scalar, while MEM-EKF*
needs a three dimensional mean and a corresponding 3 × 3 covariance matrix for shape
variables. Besides the shape prior, the 3 × 3 process noise covariance for shape variables
needs to be given in MEM-EKF* . Therefore, the MEM-EKF* requires more parameters and
is more sensitive to the parameters. More detailed discussion on setting the parameters of
MEM-EKF* can be found in Section 3.7.2.

3.7.2 Parameter Selection

Compared to random matrix approaches, the MEM-EKF* requires more parameters for the shape
variables (see Table 3.2) and is more sensitive to the selection of parameters.

Two types of shape parameters need to be given for the MEM-EKF*: prior of the first estimate and
covariance of the process noise. If an inappropriate set of parameters is chosen, MEM-EKF* might
return unreasonable results, such as nearly zero or negative axes lengths. To avoid this, one needs
to ensure a comparatively smaller covariance in terms of the mean for shape variables. Either the
covariance of the shape variable in the prior or the covariance of the process noise needs to be
reasonable. To some extent, the MEM-EKF* is more suitable for applications where most of the
object’s lengths changes are expressed in the motion model, not in the process noise.
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Prior for Shape Variables

For recursive tracking, the prior at the initial time step is usually given and referred to as first guess.
The prior of the shape variables consists of a three dimensional vector p̂0

1 and a covariance matrix
C
p(0)
1 . As the axes lengths are assumed to be Gaussian distributed, one needs to pay attention

that the covariance matrix of the shape variables should not be too large compared to the mean.
Otherwise, the lengths might stretch to the negative part of the Gaussian distribution. Note that
a high variance of orientation could also raise this problem, as it implies more uncertainties in
the shape variables, and these uncertainties will be distributed to lengths of semi-axes in the
measurement update. Figure 3.7 depicts examples showing how the estimates are affected by
parameters. The ground truth and prior are located at the origin. The shape variables for the
ground truth and the mean of prior are

p =
[√

3
2 , 4, 10

]T
and p̂(0)

1 =
[
0.1, 2, 12

]T
.

Five shape covariance matrices for the prior are investigated. All estimates result from the
measurement update based on the same 20 measurements and the prior with the same mean
but different covariance matrices. The shape covariance C

p(0)
1 = diag

[
0.1, 4, 4

]
serves as a

benchmark. Its corresponding estimate after 20 times sequential measurement update is indicated
by the cyan ellipses in Figure 3.7. The other four estimates and respective prior covariances
are described in Figure 3.7(a), 3.7(b), 3.7(c) and 3.7(d). These examples demonstrate that an
unreasonably large variance for either orientation or axes lengths gives very small or even negative
length estimates.

Process noise

As shown in Section 3.6.2, the process noise can be used to restrict the object’s size changes and
allow more change in the orientation, and vice versa. However, as the covariance of the process
noise is added up to the covariance of the shape variables (see (3.38) and (3.43)) and serves as a
prior for the next measurement update step, the covariance of the shape process noise needs to
assure the lengths are positive in a similar way explained in the previous paragraph.

3.8 Conclusion

In this chapter, an elliptical extended object tracker named MEM-EKF* has been proposed. The
main characteristics of the MEM-EKF* are as follows:

• The MEM-EKF* explicitly estimates the orientation and axes lengths of an elliptical object. A
3× 3 covariance matrix is employed to indicate the quality.

• The intuitive parameterization using orientation and axes lengths makes it possible to model
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1 = diag [0.1, 50, 50] (b) C
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Figure 3.7: The effect of different shape covariance matrices in the prior is depicted in this figure.
The ground truth is described as a filled grey ellipse. The mean of the prior is depicted using red
dashed ellipses. The cyan estimate serves as a benchmark. The prior covariance matrices used to
update the other four orange estimates are indicated in the caption of corresponding sub-figures.
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the dynamics of each individual shape variable and their interdependencies. It facilitates
many tracking tasks in practical applications, such as maneuvering objects with a fixed size.

• A multiplicative noise is employed to relate each measurement and object state vector.
The multiplicative noise introduces more nonlinearities in the measurement equation. The
standard linearization of the measurement equation either yields worse results or high
complexity. For this reason, problem-tailored techniques such as moment approximation
combined with linearization are used to derive the closed-form measurement update in the
fashion of the Kalman filter.

• The kinematic state estimate is updated using the actual measurement. However, the
shape parameters are updated with a pseudo-measurement constructed from the actual
measurement.

• The MEM-EKF* utilizes a sequential measurement update.

The MEM-EKF* deals with single extended object tracking, and focuses on shape estimation using
straightforward extension dynamics modeling. A multiple extended object tracking method, which
incorporates MEM-EKF* and measurement-to-target data association, is presented in Chapter 4.





4
Multiple Extended Object Tracking without Measurement

Partitioning
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Chapter 3 presents a single extended object tracker under the assumption that a set of measure-
ments is generated by one object. However, the tracking tasks in many applications deal with
multiple extended objects, and the origins of measurements are unknown. One intuitive approach
for multiple object tracking is to employ a data association method that decomposes the tracking
of multiple objects into a bank of independent single object tracking problems. Hence, the data
association method, which aims to figure out the origins of measurements, is a key task in multiple
object tracking.

The measurement-to-object assignment in point object tracking is one-to-one. However, the one-
to-one constraint is not valid for extended objects as one extended object can generate more than
one measurements. Hence, the data association problem for extended object tracking becomes
more computational challenging. Most of the state-of-art data association techniques for multiple
extended object tracking are decomposed into two steps: i) the measurements partitioning: the
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Figure 4.1: An example illustrates the two-step data association method for multiple extended
objects. Assume there are four measurements and four measurement sources: background (labeled
as 0), object one, object two, and object three. In the first step, the set of measurements is partitioned
into measurement cells. Measurements in one measurement cell are indicated using the same color.
To reduce the risk of using an erroneous measurement partition, multiple measurement partitions
with significant weights are considered. In this example, three measurement partitions are plotted
with respective weights w1, w2, and w3. In the second step, the assignment between measurement
cells and measurement sources can be achieved using a data association method for point objects.

measurements originating from the same object are grouped into one cell, which is normally
achieved by distance-based clustering or the evaluation of all possible measurement-combinations;
ii) data association for point objects: associating the measurement cells obtained from the first step
to the predicted objects, which is a one-to-one mapping. An example of solving data association
for extended objects using two-step approach is shown in Figure 4.1.

An MEOT tracker, which does not require clustering or the enumeration of measurement partitions,
is presented in this chapter. The tracker is referred to as MEM-JIPDA. As the name suggests, two
key components leads to the proposed multiple extended object tracker. First, the MEM-EKF* filter,
which is proposed in Chapter 3, is used to estimate the kinematics and extent of each extended
object. The zero-inflated PPP [19, 19] is employed to model the measurements. Second, the data
association method is inspired by the Joint Integrated Probabilistic Data Association (JIPDA)
[80] and adapted for extended objects. The data association result is represented using marginal
association probabilities (see Figure 4.2). The exact formulas for marginal association probabilities
are achieved by evaluating the likelihoods of all possible assignments.

The efficient data association method is illustrated in an example by assuming Gaussian distributed
measurements. Then, the proposed tracker is compared with a state-of-the-art MEOT tracker in a
simulation. In the third experiment, the performance of the proposed tracker is illustrated using
lidar data to track pedestrians.

Remark 4.1. This chapter is motivated by the journal publication [Yang2], where a multiple ex-
tended object tracker that combines the Probability Hypothesis Density (PHD) filter and network
flow minimization for labeling and occlusion is proposed. However, the track quality and complex-
ity in [Yang2] highly depend on the clustering method, which is employed in the data association
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Figure 4.2: An illustrative example of the proposed data association method. The measurement-
object assignment is represented using the marginal association probabilities. The β10, β11, β12, β13

are the probability of measurement one associated with background, object one, object two, and
object three given the existence probability of each measurement source, respectively.

phase. Therefore, a clustering free method is proposed in [Yang5] based on Joint Probabilistic Data
Association (JPDA). By assuming all objects are detected, the data association method in [Yang5] is
linear in the number of measurements and number of objects. Inspired by JIPDA and combined
with the zero-inflated PPP, a likelihood-based data association method for multiple extended
object tracking without clustering and enumeration of measurement partitions is proposed in
[Yang3]. The data association method in [Yang3] extends [Yang5] by incorporating the detection
probability and existence probability for each track. This chapter elaborates an MEOT method,
which incorporates the data association method proposed in [Yang3] and the single extended
object tracker explained in Chapter 3.

4.1 Related Work

A detailed overview of extended object tracking is given in [4]. The spatial extent estimation for
extended object tracking is discussed in Chapter 3. This chapter focuses on multiple object trackers
that are decoupled as a set of independent single object trackers by employing data association
methods. In this section, we review the state-of-the-art data association methods that are used in
multiple point and extended object tracking.

4.1.1 Multiple Point Object Tracking

Data association is one of the most critical and challenging tasks for multiple object trackers. The
data association between measurements and objects is often ambiguous because of the presence
of clutter, miss-detections, occlusions, and the spatial uncertainty of objects. In general, data
association methods can be categorized according to different criteria. A data association method
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can be hard or soft. A hard data association method picks the best measurement-object assignment
based on an objective function. Then, this assignment is assumed to be correct. A soft data
association method associates a measurement to an object with a probability. Correspondingly, the
state of an object performs a weighted update using all possible measurements. Data association
methods can also be grouped as single-scan and multi-scan methods. As the name suggests, a
single-scan method considers the mappings between measurements and objects on the current time
step. A multi-scan method associates measurements and objects over a time span. The associations
on previous scans can be corrected when a new scan is processed.

Various methods have been developed to solve data association uncertainties. The Nearest Neigh-
bour (NN) and Global Nearest Neighbour (GNN) [81] association methods, which choose the
best measurement-object assignment based on a distance measure, are the most intuitive data
association approaches. Optimal assignment algorithms, such as the Hungarian method [40],
auction algorithm [82], and Murty algorithm [83] are combined with GNN to obtain the optimal
association. Instead of choosing only the best association, Probabilistic Data Association (PDA)
evaluates the probability of each measurement in the validation region being a correct measure-
ment and performs a weighted update using the corresponding association probabilities. For
closely-spaced multiple objects, a measurement might be in the overlapping validation regions
of multiple objects. The JPDA filter [84, 31] extends the PDA filter for tracking a fixed number
of objects by reasoning all valid joint associations. Both PDA and JPDA assume that the objects
exist. The Integrated Probabilistic Data Association (IPDA)[85] and JIPDA [80] are proposed by
integrating existence probabilities.

The PDA and JPDA are single-scan data association methods. The Multi-Hypothesis Tracking
(MHT) [86] is a batch or multi-scan data association method as it maintains and propagates a
subset of association hypotheses over multiple time steps. The MHT method delays the decision
for data association and hopes that association ambiguity will be decreased by incorporating data
from the future. One of the major disadvantages of MHT is computational complexity. Many MHT
variations exist to reduce the computational burden [81, 87]. By relaxing the one-measurement-
one-target constraint and assuming the independence across the measurements in the assignment
process, a variant of MHT named Probabilistic Multi-Hypothesis Tracking (PMHT) is proposed to
reduce the combinatorial complexity. The PMHT converts the combinatorial assignment problem
into a continuous optimization problem and makes iterative solutions possible.

Many Random Finite sets (RFS) approaches, which address multiple object tracking, exist. RFS
based methods has been very popular in multiple object tracking [88, 17]. RFS theory models
objects and measurements as random finite sets, hence allows the generalization of standard
Bayesian filter for single object tracking to multiple object tracking. Filters, such as PHD filter [89],
Cardinalized Probability Hypothesis Density (CPHD)[90], Labeled Multi-Bernoulli (LMB)[32], and
Poisson multi-Bernoulli mixture (PMBM) [35] filter, have been developed.
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4.1.2 Multiple Extended Object Tracking

As multiple and unknown number of measurements can be generated by the one extended object,
the data association problem for multiple extended object tracking becomes even more challenging
compared with point objects as the one-to-one constraint is relaxed. Most multiple extended object
trackers bypass many-measurements-to-one-object assignments with set-to-track mappings, which
are one-to-one. A subset of measurements that is associated with one predicted object as a whole
is called a measurement cell. The data association is performed between measurement cells and
objects. The measurement cells can be obtained by clustering [91, 92, 21], enumeration of possible
combinations [93], loopy brief propagation [94], etc. The likelihoods are heuristically incorporated
in the clustering process. The approaches that employ clustering techniques are referred to as
Clustering and Assignment (C&A) methods. C&A methods are widely used in RFS based multiple
extended object trackers, such as PHD [95, 91, 92], LMB[21], and PMBM [35]. The JiFi filter was
proposed in [96] in the framework of RFS. It models the measurements generated by each extended
object as PPP and assumes the number of tracked objects is known.

A likelihood-based data association method is proposed in [97] and further developed in [98].
Compared with the methods using clustering as a pre-process, likelihood-based data associa-
tion approaches exploit the spatial measurement model and predicted densities of objects. The
likelihood-based data association method in [97] and [98] is solved by stochastic optimization
using samples.

Motivated by the many-measurement-to-one-target association problem that is caused by the
multi-path propagation in the over-the-horizon radar tracking, Multiple-Detection Probabilistic
Data Association (MD-PDA) is presented in [99] and further developed as Multiple-Detection Joint
Probabilistic Data Association (MD-JPDA) in [93]. MD-PDA and MD-JPDA assume that there is
a maximum number of generated measurements for each object. As there is a maximum of four
possible propagation paths for over-the-horizon radars, this number usually is four. MD-JPDA
evaluates the Kalman gain by collectively exhausting all possible joint association events in the
validation area. Based on IPDA, the many-to-one association is adopted and the Generalized
Probabilistic Data Association (GPDA) is proposed in [100]. The Generalized Joint Probabilistic
Data Association (GJPDA) is an extension of the GPDA, which adapts the PPP model to interpret
the number of measurements generated by extended objects [101]. Both MD-JPDA and GJPDA,
which update the states of objects using the posterior probability of joint associations, have high
computational complexity due to the enumeration of joint associations. In [102], the number
of measurements generated by an extended object is modeled as a truncated probability mass
function, and a sum-product algorithm is developed to approximate the posterior of the objects
iteratively.

The PMHT is investigated for extended object tracking in [61, 103]. In [104], a MEOT tracker based
on PMHT for data assoication and random matrices [10] for extension estimation is proposed. The
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Figure 4.3: A PDA example. The predicted measurement mean ȳk is the orange dot. In this
example, three measurements (red crosses) fall into the validation area (dashed ellipse).

PMHT is a batch method and normally is solved using iterative algorithms, such as the Expectation
Maximization (EM) method.

4.2 Preliminaries

The multiple extended object tracker proposed in this chapter is based on the JIPDA filter, which is
a single-scan and soft data association method. The background on JIPDA is introduced in this
section. First, we start with the PDA measurement update for a single point object. Then, the JPDA
filter, which deals with the problem that measurements having more than one possible origins
caused by overlapping validation regions, is explained. The main idea of JIPDA is provided at the
end of this section. The updated state and covariance after incorporating new measurements are
differentiated by + signs in the following sections.

4.2.1 Probabilistic Data Association Filter

The PDA deals with the association ambiguities for the measurements which are located close to a
predicted object (see Figure 4.3). To solve the association ambiguity, PDA evaluates the probability
of each observation being a correct measurement for the object and performs a weighted update.
In the meantime, the PDA filter increases the estimated error covariance to alleviate the effect of
the possible erroneous assignment. The PDA filter is based on KF and assumes sufficient statistics
have been obtained by incorporating measurements from previous time steps.

We restrict ourselves to parametric PDA, which assumes the number of false alarms is Poisson
distributed with spatial density ρ. Based on the motion model, the predicted mean and covariance
of the object are x̂k and Cxk at time step k. Using the measurement model in (3.3), the predicted
measurement mean and covariance are obtained as ȳk and Cyk , respectively. To reduce the
complexity of data association, measurement validation or gating is often performed to restrict the
number of valid association candidates. The region that satisfies

V(γ) = {y : (y − ȳk)
T

Cyk (y − ȳk) 6 γ} (4.1)

is called gating or validation region of the object with threshold γ. The probability that the true
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measurement of the object falls in the region (4.1) is called gating probability PG. It is often the
case that multiple measurements fall in the validation region of one object (see Figure 4.3).

Denote the set of measurements in the validation region as Yk = {y(1)
k ,y

(2)
k , · · · ,y(Mk)

k }, whereMk

is the number of measurements fall in the validation area at time step k. The PDA first calculates the
predicted measurement likelihood for each validated measurement, i.e., lm = N

(
y

(m)
k ; ȳk,C

y
k

)
.

The probability of y(m)
k being the correct measurement of the object is

βm =





lmPD

(1−PDPG)ρ+PD
∑Mk
j=1 lj

, m = 1, · · · ,Mk ,

1−PDPG
(1−PDPG)ρ+PD

∑Mk
j=1 lj

, m = 0 ,
(4.2)

where PD is the detection probability.

Then, PDA performs a weighted measurement update by incorporating all associations. Denoting
ỹ

(m)
k = y

(m)
k − ȳk as the innovation of y(m)

k , the object state is updated as

x̂+
k = x̂k + Kk

Mk∑

m=1

βmỹ
(m)
k , (4.3a)

where Kk = CxkHT
k (Cyk )

−1 is the Kalman gain as explained in Section 3.2. The updated covariance
consists of three parts:

• β0C
x
k , if none of the validated measurements is the true measurement;

• (1 − β0) (Cxk −KkC
y
kKk), with probability (1 − β0), there is a correct measurement in Yk,

then, the covariance is updated in the KF fashion but weighted with (1− β0);

• spread of innovations

Kk




Mk∑

m=1

βmỹ
(m)
k

(
ỹ

(m)
k

)T

−
Mk∑

m=1

βmỹ
(m)
k

(
Mk∑

m=1

βmỹ
(m)
k

)T

KT

k , (4.3b)

the covariance is increased as it is not known which measurement is correct in Yk.

Combining these three parts, we have the updated covariance as

Cx+
k = β0C

x
k + (1− β0)

(
Cxk −KkC

y
kKT

k

)

+ Kk




Mk∑

m=1

βmỹ
(m)
k

(
ỹ

(m)
k

)T

−
Mk∑

m=1

βmỹ
(m)
k

(
Mk∑

m=1

βmỹ
(m)
k

)T

KT

k . (4.3c)

If only one measurement y(1)
k falls into the validation area, the probability of y(1)

k originating from
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the object is β1. Then, the mean of the object is updated as

x̂+
k = x̂k + β1Kkỹ

(1)
k . (4.4a)

Applying (4.3c), the covariance is updated as [81]

Cx+
k = (1− β1)Cxk + β1

(
Cxk −KkC

y
kKT

k

)
+ Kk

(
β1ỹ

(1)
k

(
ỹ

(1)
k

)T

− β2
1 ỹ

(1)
k

(
ỹ

(1)
k

)T
)

KT
k ,

= Cxk − β1KkC
y
kKT

k + β1(1− β1)Kkỹ
(1)
k

(
Kkỹ

(1)
k

)T

. (4.4b)

4.2.2 Joint Probabilistic Data Association

In the case of overlapping gating regions caused by close objects, one observation can contribute
to multiple trajectories (see Figure 4.4). The shared observations introduce a coupling into the
measurement-object assignment because one measurement can be assigned to at most one object.
The JPDA filter extends the PDA filter to a known number of targets and evaluates possible
measurement-object assignments. After the removal of conflicting assignments and normalization
for each track, a PDA update is performed independently on each track.

The JPDA filter assumes the number of objects is Nk at time k. Let θm be the object index to which
measurement y(m)

k is associated and row vector θk = [θ1, · · · , θMk
] be the joint association variable

for the new coming measurements set Yk. A valid joint association θk satisfies the following
constraints:

• each object can be assigned to at most one measurement which is located in its validation
area,

• each measurement can be associated to at most one existing track.

Using the same clutter model as in Section 4.2.1, the probability of a joint association event is

P (θk | Y1:k) ∝
Mk∏

m=1

ρ−1lmθm

N∏

τ=1

(PD)
δτ (1− PD)

1−δτ , (4.5)

where Y1:k is the set of measurements upto the k-th time step; lmτ is the predicted likelihood, i.e.,
N
(
y

(m)
k ; ȳ

(τ)
k ,C

y(τ)
k

)
; and δτ is binary and indicates the target detection status. Assuming the

objects conditioned on the previous measurements are mutually independent, the state estimation
is decoupled into Nk independent PDA updates. The marginal association probability βmτ is
obtained by summing up all the joint association events having measurement y(m)

k assigned with
object x(τ)

k :
βmτ =

∑

θk:θm=τ

P (θk | Y1:k) . (4.6)

After normalization, the state of each object are updated according to (4.3a) and (4.3c).
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(2)
k

x[m]

y
[m

]

Figure 4.4: A JPDA example for point object tracking. This example gives two predicted objects
with overlapping validation areas. Two predicted measurements are indicated as blue and or-
ange dots. The validation areas (3σ contours) are dashed ellipses with respective colors. The
measurements are crosses.

Similarly to the PDA filter, the JPDA filter uses a Gaussian distribution to represent the statistics
from the past measurements. Weighted by the association probabilities, the exact statistic is a
Gaussian mixture. Therefore, replacing the Gaussian mixture by a single Gaussian in (4.3a) and
(4.3c) is an approximation. As we can see from Example 4.1, the calculation of βmτ requires
enumeration over all possible joint association events. The number of possible joint association
events is combinatorial and yields an exponential complexity for JPDA.

4.2.3 Joint Integrated Probabilistic Data Association

As existing tracks might terminate and new tracks might enter the observation area, the JIPDA
[80] extends JPDA by integrating an existence probability for each track. The evolvement of the
existence probability of an object is modeled as a Markov chain. Two kinds of Markov chains are
investigated in [85]. The Markov chain one [105, 85] assumes each track has two statuses: existent
and non-existent. The Markov chain one is depicted in Figure 4.5. Assume the probability of an
object τ being existent at times step k is P (τ)

∃,k and the probability of this object being non-existent is
P

(τ)
@,k = 1− P (τ)

∃,k . The transition of the existence status can be described as

P
(τ)
∃,k = P11P

(τ)
∃,k−1 + P21(1− P (τ)

∃,k−1) , (4.7a)

P
(τ)
@,k = P12P

(τ)
∃,k−1 + P22(1− P (τ)

∃,k−1) , (4.7b)
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Example 4.1. This example explains the calculation of marginal association probabilities
for two point objects and two measurements as depicted in Figure 4.4 using JPDA. The
predicted measurements are

ȳ
(1)
k =

[
−3, 0

]T
, C

y(1)
k =

[
3 1
1 3

]
, ȳ

(2)
k =

[
3, 0

]T
, C

y(2)
k =

[
3 0
0 2

]
.

Two measurements are y(1)
k =

[
−1, −1

]T and y(2)
k =

[
1, 1

]T. Assume we have the
predicted measurement likelihoods as l11 = 0.0172, l12 = 0.0035, l21 = 0.0038, and l22 =
0.0260. In addition, detection probability is PD = 0.9 and the density of clutter is ρ = 0.001.
Each measurement has three possible origins: background (0), object 1, and object 2. With
two measurements, there are up to 32 joint association possibilities. Among these nine joint
associations, association θk = [1, 1] and θk = [2, 2] are invalid as one object is assigned with
two measurements.
If y(1)

k is clutter, the possible assignments and their probabilities (without normalization)
are

θ2 = 0 θk,1 : (1− PD)2ρ2 =1× 10−8 ,

θ1 = 0 θ2 = 1 θk,2 : (1− PD)ρPDl21 =3.4463× 10−7 ,

θ2 = 2 θk,3 : (1− PD)ρPDl22 =2.3382× 10−6 .

If y(1)
k is associated with object 1, similarly, we have

θ2 = 0 θk,4 : PDl11(1− PD)ρ =1.5445× 10−6 ,

θ1 = 1 θ2 = 1 − − − ,

θ2 = 2 θk,5 : P 2
Dl11l22 =3.6114× 10−4 .

The joint associations where y(1)
k is assigned with object 2 are:

θ2 = 0 θk,6 : PDl12(1− PD)ρ =3.1644× 10−7 ,

θ1 = 2 θ2 = 1 θk,7 : P 2
Dl12l21 =1.091× 10−5 ,

θ2 = 2 − − − .

The Unnormalized marginal association probabilities for updating object 1 are

β01 = P (θk,1 | Y1:k) + P (θk,3 | Y1:k) + P (θk,6 | Y1:k) ∝ 2.6645× 10−6 ,

β11 = P (θk,4 | Y1:k) + P (θk,5 | Y1:k) ∝ 3.6269× 10−4 ,

β21 = P (θk,2 | Y1:k) + P (θk,7 | Y1:k) ∝ 1.1250× 10−5 .

After normalization, we have β01 = 0.0071, β11 = 0.9630, and β21 = 0.0299. The state and
covariance of object 1 are updated by applying (4.3a) and (4.3c). The same process applies
to object 2.
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1 2P11 P22
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Figure 4.5: Markov chain one model for object existence. State 1 denotes the track exists while state
2 means the track is terminated. Transition probability from state i to state j is indicated using Pij .

where Pij for i, j = 1, 2 indicates the transition probability from state i to state j as described in
Figure 4.5 The other Markov chain includes an extra status that an object exists but is not detected
by the sensor, which will not be explained in detail in this section. The Markov chain one model
is widely accepted in the tracking community. The transition probability P11 is also referred to
as survival probability [32]. In addition, P21 most often is modeled as zero as a terminated track is
assumed to be terminated forever. The existence probability for each track is updated on receiving
the set of measurements and predicted to the next time step using (4.7a) in JIPDA.

The joint association variable θk is defined as in JPDA. Let ∃x(τ)
k denote the event that object τ

exists at time step k and P (τ)+
∃,k be the posterior existence probability of object τ given observation

set Yk. The JIPDA filter first calculates the posterior probabilities of all possible association events,
i.e., P (θk | Y1:k),∀θk. The calculation of P (θk | Y1:k) is similar to (4.5). Then, the posterior
probability of a marginal association event jointly with the existence of an object is obtained by
summing the set of compatible association events, i.e.,

P
(
θm = τ,∃x(τ)

k | Y1:k

)
=

∑

θk:θm=τ

P (θk | Y1:k) . (4.8a)

In addition, the existence probability of an object is updated by summing up the posterior proba-
bilities of two sets of events: i) the object is existent, but no measurement is assigned and ii) the
object is existent and is associated with one measurement:

P
(τ)+
∃,k =

∑

θk:∀m,θm 6=τ
P (θk,∃ x(τ)

k | Y1:k) +
∑

θk:∃m,θm=τ

P (θk,∃x(τ)
k |Y1:k) , (4.8b)

where the posterior probability of object τ being existent but associated with no measurement is

∑

θk:∀m,θm 6=τ
P (θk,∃ x(τ)

k | Y1:k) = P
(τ)
∃,k

∑

θk:∀m,θm 6=τ
P (θk | Y1:k) . (4.8c)

In the last step, the conditional marginal association probability βmτ is obtained as in [80]:

βmτ =
P (θm = τ,∃x(τ)

k |Y1:k)

P
(τ)+
∃,k

. (4.8d)



72 CHAPTER 4. Multiple Extended Object Tracking without Measurement Partitioning

The probability of object τ be associated with no measurements is

β0τ =

∑
θk:∀m,θm 6=τ P (θk,∃ x(τ)

k | Y1:k)

P
(τ)+
∃,k

. (4.8e)

The measurement update is conducted the same as in the JPDA and PDA filters.

4.3 Problem Description

At time step k, a set of measurements Yk =
{
y

(1)
k , · · · ,y(Mk)

k

}
is available. Each measurement

y
(m)
k ∈ Yk originates from either an extended object or background. The false alarms, which are

uniformly distributed on the observation area, are considered to be a Poisson point process with
mean λ(0)

k and probability density l0. The origins of the measurements are unknown.

Following the paradigm discussed in Chapter 3, an extended object gives rise to a varying number
of error corrupted measurements. The object state is denoted as x(τ)

k . The proposed tracker is
based on the JIPDA filter and assumes the previous information up to time step k− 1 is sufficiently
summarized/approximated by state predictions, which are presented by mean and covariance
of a Gaussian for each object. Let X̂

(0)
k =

{
x̂

(τ,0)
k

}
denote the set of objects that incorporates no

measurements at time step k. The predicted set of objects X̂
(0)
k consists of survived objects from

the previous time step, possible birth components, and background. Without loss of generality,
we assume the index of an extended object to be a positive natural number τ ∈ N. Index 0 is
reserved for clutter. Let Nk be the set consisting of the labels in X̂

(0)
k . Similarly, Mk denotes the set

of measurements’ indices. The cardinalities of Nk and Mk are Nk and Mk, respectively.

The motion model of each object is assumed to be independent and follows the Markov chain
process, which is described in Section 3.2. The number of tracked objects is varying over time.
Existing objects might terminate, and new objects might appear. The set of extended objects Xk

eliminates terminated tracks from time step k − 1 and includes newborn objects at time step k.

On receiving the new measurements set Yk, the proposed multiple extended object tracker first
incorporates a birth model and then conducts the measurement-object assignment. Based on the
data association result, the MEOT is decoupled into several independent single EOT problems. As
the single extended object tracker MEM-EKF* from Chapter 3 is used for each object, a sequential
PDA algorithm is used to update the posterior probability of each object. After eliminating tracks
with low existence probability, the persistent tracks are predicted to the next time step. The flow of
the proposed tracker is shown in Algorithm 4.2 and Figure 4.6.
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Algorithm 4.2 Structure of the proposed multiple extended object tracker MEM−JIPDA

1: for k = 1, · · · do
2: Calculate predicted likelihood (see Algorithm 4.4)
3: Perform data association
4: Track management (see Algorithm 4.5)
5: Multiple single-EOT using weighted MEM-EKF* (see Algorithm 4.6)
6: end for

time step k − 1

time step k

time step k + 1

measurements predicted objects

birth
components

potential birth components

calculation of predicted likelihoods

data associaiton motivated by JIPDA

updated existence
probability

marginal association
probability

track management

weighted MEM-EKF*weighted MEM-EKF*weighted MEM-EKF*

multiple single-EOT

predicted objects

Figure 4.6: The structure of the MEM-JIPDA filter for multiple extended object tracking. The birth
components are fixed for all time steps, but the potential birth components vary depending on
the measurements and predicted objects. The track management process requires two thresholds:
δterminate and δinitiate, which determines the termination and initiation of tracks. Only the objects
with significant existence probabilities are updated in the measurement update.
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4.3.1 Assumptions and Approximations

The proposed MEOT tracker inherits all assumptions and approximations from the JPDA, JIPDA
and PPP models. In addition, the state-dependent Poisson rates is approximated using the pre-
dicted states. This approximation is in accordance with the GIW-PHD filter [46]. All approxima-
tions and assumptions will be explained individually in the derivation steps.

4.3.2 Joint Association Hypothesis for Extended Objects

The definition of the joint association hypothesis is critical for JPDA based methods. As one object
can be associated with multiple measurements, a measurement-oriented association hypothesis is
employed. A joint association event that maps Mk to Nk is defined as:

θk = [θ1, · · · , θMk
] , (4.9)

where ∀m ∈Mk, θm ∈ Nk is the object label that y(m)
k is associated with. 1 The space of associations

from Mk to Nk is denoted as ΘMk

Nk
. The structure of a joint association hypothesis defined in (4.9)

ensures that a measurement can only be associated with at most one extended object. Furthermore,
repetition is allowed for a single mapping in (4.9). This ensures the possibility that one object can
get multiple measurements in a joint association event. A realization of θk indicates a possible joint
association event. Therefore, ΘMk

Nk
corresponds to |Nk|Mk mutually exclusive and exhaustive joint

association events. Let Y(τ)
k be the set of measurements and n(τ)

k be the number of measurements
that assigned to object τ . A joint association event is a partition on the set of measurements, which
explicitly determines the number and the set of measurements that are assigned to each object, i.e.,
Tθk =

{
n

(τ)
k

}
τ∈Nk

and
{
Y(τ)
k

}
τ∈Nk

.

Example 4.2. Given three measurements Yk = {y(1)
k ,y

(2)
k ,y

(3)
k } and predicted set of object:

X̂
(0)
k = {x̂0, x̂

(1,0)
k , x̂

(2,0)
k }, where x̂0 indicates background. We have Nk = {0, 1, 2}, Nk = 3,

Mk = {1, 2, 3} and Mk = 3. Because each measurement has three possible origins, there
are 27 joint associations. For example, θk = [1, 0, 1] is one joint association hypothesis,
which yields Tθk =

{
n

(0)
k = 1, n

(1)
k = 2, n

(2)
k = 0

}
and Y(0)

k =
{
y

(2)
k

}
, Y(1)

k =
{
y

(1)
k ,y

(3)
k

}
,

Y(2)
k = ∅.

4.3.3 Zero-Inflated Poisson Point Process

The Inhomogeneous PPP model proposed in [18, 19] is used to model the observations produced by
extended objects and background. The number of measurements n(τ)

k generated by the extended

1Note that a joint association variable is bold while a single mapping is non-bold.
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object τ is Poisson distributed with state-dependent rate parameter λ(τ)
k := λ

(
x

(τ)
k

)
, i.e.,

Pois
(
n

(τ)
k | λ(τ)

k

)
= e−λ

(τ)
k

(
λ

(τ)
k

)n(τ)
k

n
(τ)
k !

. (4.10)

The Poisson rate λ(τ)
k can be designed as a function of the object area or a function of the distance

between the object and the sensor. In addition, each measurement y(m)
k generated by object τ is an

independent random draw from the spatial distribution p(y(m)
k | x(τ)

k ).

As a higher Poisson rate implies that an object is likely to generate more measurements, the state-
dependent Poisson rate can be seen as a built-in detection probability [18]. As described in [17], it
cannot model complete occlusions. Therefore, the detection probability P (τ)

D,k from traditional point
object tracking is introduced additionally. This model is called zero-inflated Poisson Point Process.
Due to this two-layer “detection probabilities”, different from point object tracking, an extended
object still has the possibility of generating no measurements when it is visible to the sensor. A
so-called effective probability of detection is introduced to describe the probability that an extended
object generates at least one measurement [17, 91] and is defined as (1 − e−λ(τ)

k )P
(τ)
D,k. Given an

object is detected, the counterpart of effectively detected is the case that an object is detected but
generates no measurements (P (τ)

D,ke
−λ(τ)

k ), i.e., ineffectively detected.

4.3.4 Existence Probability

The existence of each track is described by a so-called existence probability P
(τ)
∃,k . Combining

detection and existence probability, Figure 4.7 describes the possible statuses of each object. Each
track survives from time step k to time step k + 1 with survival probability PS . If the existence
probability of a track is below a threshold δterminate, the track is assumed to be terminated. A
terminated track cannot be recovered to existence. Meanwhile, if the existence probability of a
newborn component exceeds a threshold δinitiate, a new track is considered to be born.

Remark 4.2. As the clutter takes part in the data association process as a background object, the
clutter process is treated as an extended object and is included in Nk as object 0. The detection
probability and existence probability are set as P (0)

D,k = 1 and P
(0)
∃,k = 1 for the seek of compact

notation.

4.3.5 Predicted Measurement Likelihood

Each measurement in Yk originates from an extended object or background. The clutter process is
treated as a special object with index 0, the predicted measurement likelihood, given its associated



76 CHAPTER 4. Multiple Extended Object Tracking without Measurement Partitioning

non-existent existent

undetected detected

 ineffectively detected

object ⌧

<latexit sha1_base64="mI0xtlr3IbAUjWO4s41A2yD0v50="></latexit>

effectively detected

1� P
(⌧)
9,k

<latexit sha1_base64="QmUQ1nHzITOyr4oK2jOvZteL0jQ="> fklESkRzj5Sr6Tn+SXc+DEDndgVeo01pon5Eo48h9TDtlx</latexit>

⌧ 2 Uk

<latexit sha1_base64="4K88uvDjLiwqm8nNs/v/3K+TIag="> IhJ+Sc9MiAcPKN/CA/yS8ncIbOZ+fLdalT22peklvhiD8MzdRT</latexit>

e��
(⌧)
k P

(⌧)
D,kP

(⌧)
9,k

<latexit sha1_base64="rY+QiUQqpu1edspVPqndwhjjX50="></latexit>

n
(⌧)
k > 0

<latexit sha1_base64="qt8mQ+9X5YyQlGNs42LCv0Ylt5c=">AAAB9XicbVBNS8NAEJ3Ur1q/qh69BItQLyUpBfUiBS8eK9hWaNOy2W7apZtN2J0oJfR/ePGgiFf/izf/jds2B219MPB4b4aZeX4suEbH+bZya+sbm1v57cLO7t7+QfHwqKWjRFHWpJGI1INPNBNcsiZyFOwhVoyEvmBtf3wz89uPTGkeyXucxMwLyVDygFOCRurJ/riXlrtIkvPptdMvlpyKM4e9StyMlCBDo1/86g4imoRMIhVE647rxOilRCGngk0L3USzmNAxGbKOoZKETHvp/OqpfWaUgR1EypREe67+nkhJqPUk9E1nSHCkl72Z+J/XSTC49FIu4wSZpItFQSJsjOxZBPaAK0ZRTAwhVHFzq01HRBGKJqiCCcFdfnmVtKoVt1a5uquV6tUsjjycwCmUwYULqMMtNKAJFBQ8wyu8WU/Wi/VufSxac1Y2cwx/YH3+ALL2kfU=</latexit>

n
(⌧)
k = 0

<latexit sha1_base64="NeNfG4eNHlvtvi2N0hFdAYEMeao=">AAAB9XicbVBNS8NAEJ3Ur1q/qh69BItQLyUpBfUgFLx4rGBboU3LZrtpl242YXeilND/4cWDIl79L978N27bHLT1wcDjvRlm5vmx4Bod59vKra1vbG7ltws7u3v7B8XDo5aOEkVZk0YiUg8+0UxwyZrIUbCHWDES+oK1/fHNzG8/MqV5JO9xEjMvJEPJA04JGqkn++NeWu4iSc6n106/WHIqzhz2KnEzUoIMjX7xqzuIaBIyiVQQrTuuE6OXEoWcCjYtdBPNYkLHZMg6hkoSMu2l86un9plRBnYQKVMS7bn6eyIlodaT0DedIcGRXvZm4n9eJ8Hg0ku5jBNkki4WBYmwMbJnEdgDrhhFMTGEUMXNrTYdEUUomqAKJgR3+eVV0qpW3Frl6q5WqlezOPJwAqdQBhcuoA630IAmUFDwDK/wZj1ZL9a79bFozVnZzDH8gfX5A7FxkfQ=</latexit>

⇣
1� e��

(⌧)
k

⌘
P

(⌧)
D,kP

(⌧)
9,k

<latexit sha1_base64="cBZQs/I878an0fAjRdFZ7/Un1pw="></latexit>

⇣
1� P

(⌧)
D,k

⌘
P

(⌧)
9,k

<latexit sha1_base64="qOrYQJZBt1hoL2QVvWViBWez6Dc="></latexit>

Figure 4.7: The possible existence and detection statuses of object τ . The number of assigned
measurements n(τ)

k is zero if object τ is non-existent, undetected or ineffectively detected. If object
τ is either undetected or non-existent, we write τ ∈ Uk. [Yang3] ©2020IEEE

origin, is abbreviated as

p
(
y

(m)
k | θm,Y1:k−1

)
=




lmθm , if θm ∈ Nk ,

lm0, if θm = 0 ,
, (4.11)

where lm0 = l0 is the uniform probability density over the surveillance area. As the multiplicative
error model presented in Chapter 3 is employed, the predicted single measurement likelihood is

lmτ = N
(
y

(m)
k ; ȳ

(τ,0)
k ,C

y(τ,0)
k

)
, (4.12)

where ȳ(τ,0)
k and C

y(τ,0)
k are the mean and covariance of the predicted measurement for object τ at

time k according to (3.24) and (3.28). Given the predicted kinematic state r̂(τ,0)
k and shape variable

p̂
(τ,0)
k with covariance C

r(τ,0)
k and C

p(τ,0)
k , the pseudo-code of the likelihood calculation is given in

Algorithm 4.4.

4.4 State Prediction

The evolution of an existing object is modeled as a Markov process described in Section 3.2. In
addition, all objects are assumed to move independently. To focus on the measurement update, a
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unified linear motion model is used for all objects. If turning models are necessary, see Section
3.6.3 for modeling the correlation between orientation and turn rate. Based on the process model,
traditional Kalman prediction applies for each existent object (see Section 3.2).

In addition to transition density, the existence status of each object needs to be considered in the
prediction step. The existence probability for each track is assumed to be a Markov chain one
[85] illustrated in Figure 4.5. Each track survives to the next time step with probability PS . The
prediction of the existence probability for each track follows

P
(τ)
∃,k = PSP

(τ)+
∃,k−1 , (4.13)

where P (τ)+
∃,k−1 is the updated existence probability of object τ at time step k − 1.

4.5 Data Association

This section first derives the posterior probability of a joint association event. By summing up the
corresponding set of joint association events, the closed-form marginal association probabilities
and existence probabilities are obtained similarly.

4.5.1 The Posterior Probability of a Joint Association Hypothesis

The key of JPDA based methods is to calculate the posterior probability of a joint association event.
As measurements cannot be mapped to undetected and non-existent objects, the detection status
of the extended objects is also considered. Denote the index-set of undetected and non-existent
objects as Uk, the set of detected objects’ indices is Nk\Uk.

A joint association θk and a set of undetected and non-existent object indices Uk are compatible, if
θk does not map any measurements to objects in Uk, i.e., θk ∈ ΘMk

Nk\Uk
. Applying Bayes rule, the

joint posterior probability of an association hypothesis with the set of undetected objects is

P (θk,Uk | Y1:k) = P (θk,Uk | Yk,Y1:k−1)

∝ P (Yk | θk,Uk,Y1:k−1)P (θk | Uk,Y1:k−1)P (Uk | Y1:k−1) , (4.14)

if θk and Uk are compatible, otherwise 0.

Example 4.3. Using the setting from Example 4.2, joint association θk = [1, 0, 1] assigns no
measurement to object 2. Therefore, Uk that is non-conflicting with θk are {2}, which means
object 2 is either terminated or undetected, and ∅, which indicates object 2 is ineffectively
detected.

The three components in right hand side of (4.14) are derived. The JPDA assumes mutual indepen-
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dence between objects given the measurements from previous time steps. In addition, the PPP
model also assumes that measurements generated by each detected object are mutually indepen-
dent. Enumerating all predicted objects (including clutter process) and measurements assigned to
each object, we have the measurement likelihood conditioned on a joint association and a set of
undetected/non-existent objects as

p (Yk | θk,Uk,Y1:k−1) =
∏

τ∈Nk\Uk

∏

y
(m)
k ∈Y(τ)

k

p
(
y

(m)
k |θm,Y1:k−1

)

=
∏

τ∈Nk\Uk

∏

y
(m)
k ∈Y(τ)

k

lmτ . (4.15)

Note that the ineffectively detected object indices are also included in Nk\Uk. As no measurements
are assigned to ineffectively detected objects, the latter product in (4.15) takes the value of one if
the object is ineffectively detected.

In the second step, we derive the prior probability of a joint association variable given a set of
undetected and non-existent objects. As a joint association event implicitly specifies the number of
measurements assigned to each object, the prior of a joint association hypothesis conditioned on
the set of undetected objects is

P (θk | Uk,Y1:k−1) = P (θk,Tθk | Uk,Y1:k−1)

= P (θk | Tθk ,Uk,Y1:k−1)P (Tθk | Uk,Y1:k−1) . (4.16a)

Given the numbers of measurements that are assigned to the objects, i.e., Tθk , a joint association is
assumed to be independent to Uk and the measurements from previous time steps, hence

P (θk | Tθk ,Uk,Y1:k−1) = P (θk | Tθk) . (4.16b)

Joint association events θks are a priori equally likely [106][107] given Tθk . There are Mk!∏
τ∈Nk

n
(τ)
k

possible θks based on combinatorics for a given Tθk . We have

P (θk|Tθk) =
1

Mk!

∏

τ∈Nk

n
(τ)
k ! . (4.16c)

Assuming the numbers of observations generated by each object conditioned on all previous
measurements are mutually independent, we have

P (Tθk | Uk,Y1:k−1) =
∏

τ∈Uk

P
(
n

(τ)
k | Y1:k−1

) ∏

τ∈Nk\Uk

P
(
n

(τ)
k | Y1:k−1

)
. (4.16d)

For an undetected and non-existent object, the number of measurements is 0, i.e., P (0 | Y1:k−1) = 1

for τ ∈ Uk. For detected objects, the number of measurements is Poisson distributed. Therefore,
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the prior probability of Tθk in (4.16d) can be written as

P (Tθk | Uk,Y1:k−1) =
∏

τ∈Nk\Uk

Pois
(
n

(τ)
k | λ(τ)

k

)
. (4.16e)

As the real state of object τ is unknown, it is difficult to know the state-dependent true Poisson
rate λ(τ)

k . The state dependent Poisson rates are approximated using the predicted object states,
i.e., λ̂(τ)

k ≈ λ
(
x̂

(τ)
k

)
. Then, the prior probability of Tθk is approximated as

P (Tθk | Y1:k−1) ≈
∏

τ∈Nk\Uk

Pois
(
n

(τ)
k | λ̂(τ)

k

)
. (4.16f)

Substituting (4.10) into (4.16f) and multiplying (4.16c) cancels out
∏
τ∈Nk\Uk

n
(τ)
k ! and gives us

P (θk | Uk,Y1:k−1) =
∏

τ∈Nk\Uk

e−λ̂
(τ)
k

Mk!

(
λ̂

(τ)
k

)n(τ)
k

. (4.16)

In the third step, we derive the prior probability of a set of undetected and non-existent objects.
The prior probability of Uk is

P (Uk | Y1:k−1) =
∏

i∈Uk

(
1− P (i)

D,kP
(i)
∃,k

) ∏

τ∈Nk\Uk

P
(τ)
D,kP

(τ)
∃,k . (4.17)

Having (4.15), (4.16) and (4.17), (4.14) can be rewritten as

P (θk,Uk | Y1:k) ∝ 1

Mk!

∏

i∈Uk

(
1− P (i)

D,kP
(i)
∃,k

) ∏

τ∈Nk\Uk

P
(τ)
D,kP

(τ)
∃,k e

−λ̂(τ)
k

(
λ̂

(τ)
k

)n(τ)
k

∏

y
(m)
k ∈Y(τ)

k

lmτ .

(4.18a)

Let c = 1
Mk!

∏
τ∈Nk

P
(τ)
D,kP

(τ)
∃,k e

−λ̂(τ)
k and ui =

1−P (i)
D,kP

(i)
∃,k

P
(i)
D,kP

(i)
∃,ke

−λ̂(i)
k

, we have

P (θk,Uk | Y1:k) ∝ c
( ∏

i∈Uk

ui

) ∏

τ∈Nk\Uk

(
λ̂

(τ)
k

)n(τ)
k

∏

y
(m)
k ∈Y(τ)

k

lmτ . (4.18b)

As the cardinality of Y(τ)
k is n(τ)

k , λ̂(τ)
k can be moved into the last product in (4.18b):

P (θk,Uk | Y1:k) ∝
( ∏

i∈Uk

ui

) ∏

τ∈Nk\Uk

∏

y
(m)
k ∈Y(τ)

k

λ̂
(τ)
k lmτ . (4.18c)

As the nested products in (4.18c) exhaust the measurements in Yk, it can be rewritten as an
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enumeration of all measurements:

P (θk,Uk | Y1:k) ∝
( ∏

i∈Uk

ui

) ∏

m∈Mk

λ̂
(θm)
k lmθm . (4.18)

The posterior probability of an association jointly with a compatible Uk is given in (4.18). If θk and
Uk are conflicting, the probability is 0.

Remark 4.3. From (4.18), we can see that the mapping of a measurement is independent of the
mappings of other measurements given the indices of undetected and non-existent objects. The
probability of measurement m ∈Mk being mapped to object τ ∈ Nk\Uk is proportional to λ̂(τ)

k lmτ .
This is different from JPDA for point object tracking because a point object cannot be assigned
to two measurements. Both the PPP model and the measurement-oriented joint association
hypothesis are crucial for deriving this independence.

Remark 4.4. The posterior probability of an association hypothesis can be obtained by marginal-
ization over Uk, i.e.,

P (θk | Y1:k) ∝
∑

Uk∈P(Nk)

( ∏

i∈Uk

ui

) ∏

m∈Mk

λ̂
(θm)
k lmθm , (4.19)

where P(Nk) is the powerset of Nk.

4.5.2 The Marginal Association Probability

In addition to the posterior probability of a joint association event, the estimation of the marginal
association probability and existence probability relies on the following theorem.

Theorem 4.1. Consider M ordered independent draws from set D with repetition, we denote amd as a

value that resulting from the m-th draw taking d ∈ D. Denote θ =
[
θm

]M
m=1

be a 1×M vector indicating

a joint draw resulted by M draws, where θm ∈ D is the result of M -th draw. Let ΘM
D be the set of all

possible mappings from M = {1, 2, · · · ,M} to D, We have

∏

m∈M

(∑

d∈D

amd

)
=
∑

θ∈ΘM
D

M∏

m=1

amθm . (4.20)
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Example 4.4. We have a set D = {1, 2}, and want to draw M = 2 samples from set D such
that the ordering matters and repetition is allowed. Let amd be a value resulting from by
the m-th draw taking d ∈ N (e.g., the probability of the m-th draw getting element d). The
left hand side of (4.20) is

(a11 + a12)(a21 + a22) .

There are 22 possible joint draws θ, i.e., ΘM
D = {[1, 1], [1, 2], [2, 1], [2, 2]}. Substituting θs to

the right hand side of (4.20) gives us,

a11a21 + a11a22 + a12a21 + a12a22 ,

which is equal to the expanded left hand side of (4.20).

Proof. Theorem 4.1 can be proved using combinatorics or induction. The combinatorial proof is
given here, and the induction proof is tedious and will not be given in this thesis. Without loss of
generality, the set D is assumed to be {1, 2, · · · , D}. The right hand side of (4.20) can be written as

(a11 + a12 + · · ·+ a1D)(a21 + a22 + · · ·+ a2D) · · · (aM1 + aM2 + · · ·+ aMD) . (4.21)

Expanding (4.21) gives the sum of the DM products of the form a1_a2_ · · · aM_. It is the sum of all
possible products obtained by taking one term from each factor. After (4.21) is expanded, each
monomial of the form a1_a2_ · · · aM_ corresponds to one joint draw, i.e., θ. The polynomial of
expanding (4.21) is the exhaustion of all possible partitions.

The right hand side of (4.20) has complexity O(|D|M ) while the left hand side is O(M |D|). An
exponential summation is reduced to a linear product by applying Theorem 4.1.

To derive the exact formula for the marginal association probability, we enumerate the compatible
Uks. According to Remark 4.3, given a set of undetected and non-existent objects, the mappings
from the set of measurements to the set of detected objects are mutually independent, and hence
Theorem 4.1 can be applied.

The marginalized probability of measurement m being associated with object τ is obtained by
marginalizing over all compatible θk and Uk. Let Nτ

k and Mm
k denote Nk\{τ} and Mk\{m},

respectively. Assigning object τ to measurement m implies that object τ is effectively detected. The
compatible set of undetected and non-existent objects is Uk ∈ P(Nτ

k). The θks that are compatible
with θm = τ and Uk are {θk ∈ ΘMk

Nk\Uk
: θm = τ}. Define θ′k as a 1×(Mk−1) row vector indicating

a joint mapping of Mk − 1 measurements. The set {θk ∈ ΘMk

Nk\Uk
: θm = τ} can be reformulated

as θ′k ∈ Θ
Mm
k

Nk\Uk
, which is a set of joint mappings from Mm

k to the detected object indices Nk\Uk.
According to the law of total probability, the marginal association probability of measurement m
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being associated with object τ is

P (θm = τ | Y1:k) = λ̂
(τ)
k lmτ

∑

Uk∈P(Nτ
k)

∑

θ′k∈Θ
Mm
k

Nk\Uk

P (θ′k,Uk | Y1:k) . (4.22a)

Substituting (4.18) into (4.22a) yields

P (θm = τ | Y1:k) ∝ λ̂(τ)
k lmτ

∑

Uk∈P(Nτ )

( ∏

i∈Uk

ui

) ∑

θ′k∈Θ
Mm
k

Nk\Uk

∏

j∈Mm
k

λ̂
(θ′j)

k lmθ′j . (4.22b)

Apply Theorem 4.1, we have the marginal association probability as

P (θm = τ | Y1:k) ∝ λ̂(τ)
k lmτ

∑

Uk∈P(Nτ
k)

( ∏

i∈Uk

ui

) ∏

g∈Mm
k

∑

j∈Nk\Uk

λ̂
(j)
k lgj . (4.22)

As a measurement must have an origin, either an extended object or background clutter, the
normalization is performed for each measurement. For each measurement m ∈Mk, we have

∑

τ∈Nk

P (θm = τ | Y1:k) = 1 . (4.23)

Example 4.5. Using the same setting as in Example 4.2, this example gives a marginal
association probability of measurement 1 being associated with object 1. Having N1

k =

{0, 2} and P(N1
k) = {∅, {0}, {2}, {0, 2}}, the posterior probability of θ1 = 1 is

P (θ1 = 1|Y1:k) ∝ λ̂(1)
k l11 (λ̂

(0)
k l20 + λ̂

(1)
k l21 + λ̂

(2)
k l22)︸ ︷︷ ︸

y
(2)
k has three possible mappings

(λ̂
(0)
k l30 + λ̂

(1)
k l31 + λ̂

(2)
k l32)︸ ︷︷ ︸

y
(3)
k has three possible mappings

+ λ̂
(1)
k l11u0 (λ̂

(1)
k l21 + λ̂

(2)
k l22)(λ̂

(1)
k l31 + λ̂

(2)
k l32)︸ ︷︷ ︸

y
(2)
k ,y

(3)
k have two possible mappings given there is no clutter

+ λ̂
(1)
k l11u2(λ̂

(0)
k l20 + λ̂

(1)
k l21)(λ̂

(0)
k l30 + λ̂

(1)
k l31) + λ̂

(1)
k l11u0u2λ̂

(1)
k l21λ̂

(1)
k l31

4.5.3 Existence Probability Update

The existence probability and non-existence probability are calculated in a similar way as the
marginalized association probability. In addition to the existence probability, the non-existence
probability is also calculated in order to get the normalization factor.



CHAPTER 4. Multiple Extended Object Tracking without Measurement Partitioning 83

Non-existence Probability

As object τ is specified as non-existent, we only consider the detection status of objects with indices
in Nτ

k. As measurements must have at least one origin, Uk can only be a proper subset of Nτ
k.

Denoting P(Nτ
k)− as the powerset of Nτ

k excluding the set Nτ
k itself. The index-set of undetected

and non-existent objects that is compatible with object τ being non-existent is Uk ∈ P(Nτ
k)−. The

set of joint associations that are compatible with Uk and object τ being non-existent is θk ∈ ΘMk

Nτ
k\Uk

.

Furthermore, uτ needs to be modified as u′τ =
1−P (τ)

∃,k

e−λ̂
(τ)
k P

(τ)
D,kP

(τ)
∃,k

so that only the non-existence statuses

are included. The posterior non-existence probability of object τ is

P
(τ)+
@,k = u′τ

∑

Uk∈P(Nτ
k)−

∑

θk∈Θ
Mk
Nτ
k
\Uk

P (θk,Uk | Y1:k) . (4.24a)

Substituting (4.18) gives us

P
(τ)+
@,k ∝ u′τ

∑

Uk∈P(Nτ
k)−

∏

i∈Uk

ui




∑

θk∈Θ
Mk
Nτ
k
\Uk

∏

m∈Mk

λ̂
(θm)
k lmθm


 . (4.24b)

Applying Theorem 4.1 gives us

P
(τ)+
@,k ∝ u′τ

∑

Uk∈P(Nτ
k)−

∏

i∈Uk

ui


 ∏

m∈Mk

∑

j∈Nτ
k\Uk

λ̂
(j)
k lmj


 . (4.24)

Existence probability

The existence probability of object τ consists of two cases: i) the probability that object τ exists but
is not detected, and ii) the probability that object τ is detected.

First, we consider object τ being undetected but existent. Since object τ is undetected, it should not
associate with any measurements. As Yk must have at least one origin, Uk can only be a proper
subset of Nτ

k. Therefore, the set of joint mappings that is compatible with the existence of object
τ and Uk ∈ P(Nτ

k)− is ΘMk

Nτ
k\Uk

i.e., all joint mappings from Mk to Nτ
k\Uk. Similarly, the status

that object τ is non-existent should be excluded from uτ , i.e., uτ − u′τ . According to the law of total
probability, the probability that τ exists but is undetected can be written as

(uτ − u′τ )
∑

Uk∈P(Nτ
k)−

∑

θk∈Θ
Mk
Nτ
k
\Uk

P (θk,Uk | Y1:k) . (4.25a)
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Substituting (4.18) yields the posterior probability of object τ being undetected is

(uτ − u′τ )
∑

Uk∈P(Nτ
k)−

∏

i∈Uk

ui




∑

θk∈Θ
Mk
Nτ
k
\Uk

∏

m∈Mk

λ̂
(θm)
k lmθm


 . (4.25b)

Apply Theorem 4.1, we rewrite (4.25b) as

(uτ − u′τ )
∑

Uk∈P(Nτ
k)−

∏

i∈Uk

ui


 ∏

m∈Mk

∑

j∈Nτ
k\Uk

λ̂
(j)
k lmj


 . (4.25c)

Let us consider the case that object τ is detected. The posterior probability that x(τ)
k is detected

is the summation over Uk and its compatible θks. If object τ is detected, the compatible Uk is a
subset of Nτ

k . In this case, all objects with indices Nτ
k can be undetected or non-existent. Because, if

all objects with indices in Nτ
k are undetected or non-existent, Yk can be associated with object τ .

The possible joint association events are θk ∈ ΘMk

Nk\Uk
. Hence, we have the posterior probability of

object τ being detected as

∑

Uk∈P(Nτ
k)

∑

θk∈Θ
Mk
Nk\Uk

P (θk,Uk | Y1:k) . (4.25d)

Similarly, substituting (4.18) and applying Theorem 4.1 gives us the posterior probability of τ being
detected as

∑

Uk∈P(Nτ
k)

∏

i∈Uk

ui


 ∏

m∈Mk

∑

j∈Nk\Uk

λ̂
(j)
k lmj


 . (4.25e)

Summing up (4.25c) and (4.25e) gives us the updated existence probability of object τ as

P
(τ)+
∃,k ∝ (uτ − u′τ )

∑

Uk∈P(Nτ
k)−

∏

i∈Uk

ui


 ∏

m∈Mk

∑

j∈Nτ
k\Uk

λ̂
(j)
k lmj




︸ ︷︷ ︸
object τ exists but is not detected

+
∑

Uk∈P(Nτ
k)

∏

i∈Uk

ui


 ∏

m∈Mk

∑

j∈Nk\Uk

λ̂
(j)
k lmj




︸ ︷︷ ︸
object τ is detected

. (4.25)

The normalization factor in (4.24) and (4.25) can be obtained by summing up (4.25) and (4.24) to
unity.
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4.5.4 Conditional Marginal Association Probability

As the existence of object τ is implied in the derivation of the marginal association probability in
(4.22). The marginal association probability of measurement m is associated with object τ given
the existence of object τ is

βmτ =
P (θm = τ |Y1:k)

P
(τ)+
∃,k

. (4.26)

Since βmτ is the marginal association probability conditioned on the existence of object τ , it is not
necessary that

∑
τ∈Nk

βmτ equals to one. One only needs to ensure that the constraint described in
(4.23) is fulfilled.

4.6 State Update

After the βmτ s have been determined, each target’s state is updated in a PDA fashion by incor-
porating the association probabilities. The kinematics and shape variable update is based on the
MEM-EKF* filter described in Chapter 3.

Since the measurement update of the MEM-EKF* filter is sequential, the measurements associated
to object τ will be sequentially incorporated in the measurement update. Note that this sequential
update is determined by the MEM-EKF* algorithm. If a measurement model updates the state of
the extended object in a batch mode, such as the Random matrix approach, the marginal association
probabilities should be incorporated correspondingly. At time step k, the predicted mean and
covariance of the kinematic and shape variables for object τ are

r̂
(τ,0)
k , C

r(τ,0)
k and p̂(τ,0)

k , C
p(τ,0)
k (4.27)

For each measurement m ∈ {1, · · · ,Mk}, if βmτ > 0, the cross-covariance C
ry(τ,m)
k and covariance

C
y(τ,m)
k can be obtained using (3.27) and (3.28). Then, the Kalman gain is

K
r(τ,m)
k = C

ry(τ,m)
k

(
C
y(τ,m)
k

)−1

. (4.28a)

The m-th mean of predicted measurement for object τ is

ȳ
(τ,m)
k = Hkr̂

(τ,m−1)
k . (4.28b)

The kinematic estimate of object τ is updated using measurement y(m)
k and βmτ as

r̂
(τ,m)
k = r̂

(τ,m−1)
k + βmτK

r(τ,m)
k

(
y

(m)
k − ȳ(τ,m)

k

)
, (4.28c)

which is an application of (4.4a).
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For the covariance update, one modification is required compare to (4.4b). The directly application
(4.4b) will introduce a biased estimation, especially for shape variables. This is because (4.4b) is a
batch update for a point object while we are updating an extended object in a sequential manner.
The coefficient for spread innovation is adjusted as the marginal association probability to the
power of three has the best performance in simulations among some other intuitive parameters,
such as 1

Mk
and

∑
m βmτ . More investigation or justification of this modification will be explored

in future work. The covariance is updated as

C
r(τ,m)
k = C

r(τ,m−1)
k − βmτKr(τ,m)

k

(
C
ry(τ,m)
k

)T

+ β3
mτ (1− βmτ )K

r(τ,m)
k

(
y

(m)
k − ȳ(τ,m)

k

)(
y

(m)
k − ȳ(τ,m)

k

)T (
K
r(τ,m)
k

)T

. (4.28d)

The update of the shape variable is similar to the kinematic state. First, the pseudo-measurement
ξ

(m)
k and the m-th expected pseudo-measurement ξ̄(τ,m)

k for object τ are obtained by applying
(3.29) and (3.32). The construction of the pseudo-measurement is followed by the calculation of
cross-covariance C

pξ(τ,m)
k and covariance C

ξ(τ,m)
k using (3.34) and (3.33). The resulting Kalman

gain of the shape variable p̂(τ,m−1)
k given ξmk is

K
p(τ,m)
k = C

pξ(τ,m)
k

(
C
ξ(τ,m)
k

)−1

. (4.29a)

Similar to the update of the kinematic state, the shape variable is updated as

p̂
(τ,m)
k = p̂

(τ,m−1)
k + βmτK

p(τ,m)
k

(
ξ

(m)
k − ξ̄(τ,m)

k

)
, (4.29b)

C
p(τ,m)
k = C

p(τ,m−1)
k − βmτKp(τ,m)

k

(
C
pξ(τ,m)
k

)

+ β3
mτ (1− βmτ )K

p(τ,m)
k

(
ξ

(m)
k − ξ̄(τ,m)

k

)(
ξ

(m)
k − ξ̄(τ,m)

k

)T (
K
p(τ,m)
k

)T

, (4.29c)

where β3
mτ is used to balance the bias introduced by the sequential update in (4.29c) for extended

objects. The sequential PDA update can be obtained by modifying the kinematic and shape update
in Algorithm 3.1 (last four lines) using (4.28c),(4.28d), (4.29b) and (4.29c).

4.7 Implementation

This section presents the details of implementing the proposed MEOT tracker and its pseudo-
code. The structure of the proposed tracker is described in Algorithm 4.2 and Figure 4.6. As the
calculation of the conditioned marginal association probability and existence probability are given
in (4.22) and (4.25), this section focuses on the birth model and track management. In addition,
two suggestions on reducing the complexity are given at the end of this section.
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4.7.1 Birth Model and Predicted Likelihoods

This section explains the calculation of the predicted likelihoods given the survived objects and
potential birth components. The pseudo-code is given in Algorithm 4.4. Note that ȳ(τ,1)

k and
C
y(τ,1)
B are the mean and covariance of predicted measurement of object τ at time k and can be

obtained using Algorithm 4.3.

The estimate of an object is treated as a data structure, which contains

x̂
(τ,m)
k =

{
r̂

(τ,m)
k , p̂

(τ,m)
k ,C

r(τ,m)
k ,C

p(τ,m)
k , λ̂

(τ,m)
k , P

(τ,m)
∃,k , P

(τ,m)
D,k

}
, (4.30)

where the superscript m indicates that the estimate is obtained by updating with the m-th mea-
surement. Correspondingly, the set of estimates is denoted as X̂

(m)
k =

{
x̂

(τ,m)
k

}
τ∈Nk

. The set Nk

consists of zero for the background, the indices of the survived tracks NS,k, and indices of potential
birth components NB,k, i.e., Nk = {0} ∪NS,k ∪NB,k. Note that the labeling algorithm is not the
focus of this thesis, and we assume NS,k and NB,k are disjoint. In this subsection, the procedure of
choosing potential birth components and predicted likelihoods are given.

Algorithm 4.3 Calculate the moments of predicted measurement for an extended object
Input:

• estimate of object τ : x(τ,m)
k

• measurement noise covariance matrix of object τ : C
v(τ)
k

• measurement matrix of object τ : Hk

Output:
• predicted measurement mean and covariance: ȳ(τ,m+1)

k ,C
y(τ,m+1)
k

1: ȳ
(τ,m+1)
k = Hkr̂

(τ,m)
k

2:
[
α l1 l2

]T
= p̂

(τ,m)
k

3: S =

[
S1

S2

]
=

[
cosα − sinα
sinα cosα

] [
l1 0
0 l2

]

4: J1 =

[
−l1 sinα cosα 0
−l2 cosα 0 − sinα

]

5: J2 =

[
l1 cosα sinα 0
−l2 sinα 0 cosα

]

6: CI = SChST

7: CII = [εmn] = tr
(
Cp

(τ,0)

k JT
nChJm

)
for m,n = 1, 2

8: C
y(τ,m+1)
k = HkC

r(τ)
k HT

k + CI + CII + C
v(τ)
k

The proposed tracker assumes fixed birth locations with respective uncertainties. These locations
are places that are likely to have new objects entering the scene. Let X̂B denote the set of pre-
defined birth components. Each birth components x̂(τ)

B ∈ X̂B contains the estimates of kinematic
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Algorithm 4.4 Calculate predicted likelihoods
Input:

• measurement set: Yk =
{
y

(m)
k

}Mk

m=1

• set of birth components: X̂B

• survived objects X̂
(0)
S,k with set of indices NS,k

• gating threshold γ
Output:

• the set of survived objects and possible birth components X̂
(0)
k with indices set Nk

• predicted likelihoods: lmτ ,m = 1, · · · ,Mk, τ ∈ Nk

1: Nk ← NS,k

2: X̂
(0)
k ← X̂

(0)
S,k

3: for x̂(τ,0)
k ∈ X̂

(0)
S,k do

4: ȳ
(τ,1)
k ,C

y(τ,1)
B ← calculate moments of predicted measurement for x̂(τ,0)

k (Algorithm 4.3)
5: end for
6: for m = 1, · · · ,Mk do . compute predicted likelihoods
7: for x̂(τ,0)

k ∈ X̂
(0)
S,k do

8: if
(
y

(m)
k − ȳ(τ,1)

k

)T

C
y(τ,1)
k

(
y

(m)
k − ȳ(τ,1)

k

)
6 γ then . gating

9: lmτ ← N
(
y

(m)
k ; ȳ

(τ,1)
k ,C

y(τ,1)
k

)

10: end if
11: end for
12: for x̂(τ)

B ∈ X̂B do

13: if
(
y

(m)
k − ȳ(τ)

B

)T

C
y(τ)
B

(
y

(m)
k − ȳ(τ)

B

)
6 γ then . gating

14: l′mτ ← N
(
y

(m)
k ; ȳ

(τ)
B ,C

y(τ)
B

)

15: end if
16: for x̂(n)

k ∈ X̂S,k do
17: if l′mτP

(τ)
∃,B > lmnP

(n)
∃,k then . avoid the measurement competition

18: lmn ← 0
19: else
20: l′mτ ← 0
21: end if
22: end for
23: end for
24: end for
25: for x̂(τ)

B ∈ X̂B do
26: if ∃m, l′mτ > 0 then
27: X̂

(0)
k ← X̂

(0)
k ∪ {x̂

(τ)
B } . append the potential birth components

28: Nk ← Nk ∪ {τ} . expand the predicted likelihood matrix
29: end if
30: end for
31: X̂

(0)
k ← X̂

(0)
k ∪ {x̂0} . append the background

32: Nk ← Nk ∪ {0}
33: l1:Mk,0 ← ρ
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state, shape variable, initial existence probability, estimated Poisson rate, and detection probability,
the expected mean and covariance, which can be obtained using Algorithm 4.4, i.e., x̂(τ)

B ={
r̂

(τ)
B , p̂

(τ)
B ,C

r(τ)
B ,C

p(τ)
B , P

(τ)
∃,B , λ̂

τ
k, P

(τ)
D,k, ȳ

(τ)
B ,C

y(τ)
B

}
. Note that x̂(τ)

B contains two more elements,
predicted measurement mean and covariance, compared to a survived object’s estimate (4.30). This
is because the predicted measurement means and covariances for predicted objects are updated
for each measurement while the birth components are fixed.

Before the data association step, a set of potential birth components is selected and then considered
in the data association step. At scan k, only the birth components with measurement likelihoods
greater than zero participate in the data association process (see line 13-15 in Algorithm 4.4). In
other words, given measurement set Yk, if no measurement is located in the validation area of a
birth component, this birth component will not be considered in the following data association
and measurement update.

Furthermore, one must pay attention to the measurement competition between a birth component
and a survived object. The measurement competition problem arises if a measurement lies in the
overlapping validation area of a birth component and an existing track (most likely just confirmed
its birth). To alleviate this problem, for each measurementm, its likelihood given a birth component
is compared to the likelihood of measurement m given the survived object. Suppose the ratio
is greater than the ratio of birth rate and corresponding existence probability. In this case, this
measurement is assigned to the corresponding birth component instead of the survived object (see
line 16-22 in Algorithm 4.4). This birth component with significant likelihoods is treated as an
object and participates in the following data association step.

In conclusion, the confirmation of the birth of a new object must satisfy two conditions: first, it
should have at least one measurement in its validation area with significant likelihoods; second,
its updated existence probability after the data association should be greater than the initiation
threshold.

Note that the likelihood of each measurement being clutter is appended in the last step. The clutter
measurements are assumed to be uniformly distributed on the observation area, i.e., lm0 = l0

with m = 1, · · · ,Mk. The background is denoted as x̂(0) =
{
λ̂

(0)
k , P

(0)
∃,k , P

(0)
D,k

}
which contains no

kinematic and shape estimate, P (0)
∃,k = 1 and P (0)

D,k = 1. 2

4.7.2 Data Association

The conditional marginal association probabilities are implemented according to (4.26) and then
normalized for each measurement because one measurement has only one origin. The existence
probabilities are implemented using (4.25) and normalized with (4.24) for each object. Since the
implementation of data association is straightforward, its pseudo-code is not repeated here. In

2Or some other values depending on the application. For example, P (0)
∃,k = 1 and P (0)

D,k < 1, which allows the joint
associations that assign no measurements as clutter.
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cases of dense clutter, numerical underflow caused by taking the product over Mk in (4.22),(4.25)
and (4.24) can be addressed using the log-sum-exp trick.

4.7.3 Track Management and Weighted MEM-EKF*

The guideline for track management is intuitive. If the updated existence probability of an existing
track is below the termination threshold δtermiante, the track is considered as terminated at this
scan. For a potential birth component, if its updated existence probability exceeds the initiation
threshold δinitiate, its birth is confirmed. Correspondingly, if the existence probability of a birth
components is below δinitiate, it is considered as a ghost track and removed from X̂

(0)
k and Nk. The

pseudo-code of the track management is given in Algorithm 4.5.

Algorithm 4.5 Track Management
Input:

• the set of survived objects and possible birth components: X̂
(0)
k

• updated existence probability P (τ)+
∃,k , τ ∈ Nk\{0}

Output:
• the set of confirmed objects: X̂

(0)
k

1: for x̂(τ,0)
k ∈ X̂

(0)
k do

2: if τ ∈ NS,k then
3: if P (τ)+

∃,k < δterminate then

4: τ is terminated, X̂
(0)
k \

{
x̂

(τ,0)
k

}

5: end if
6: else
7: if P (τ)+

∃,k < δinitiate then

8: τ is a ghost track, X̂
(0)
k \

{
x̂

(τ,0)
k

}

9: end if
10: end if
11: end for

For each confirmed object, it is tracked using weighted MEM-EKF*. The pseudo-code is given
in Algorithm 4.6. Note that the sequential PDA upate in Algorithm 4.6 (line 4) can be obtained by
modifying the kinematic and shape update in Algorithm 3.1 (last four lines) using (4.28c),(4.28d),
(4.29b) and (4.29c).

4.7.4 Discussion

The proposed data association step has complexity of O(M2
kN

2
k2Nk). Obtaining a marginal associ-

ation probability in (4.22) has a complexity of O(MkNk2Nk), where O(2Nk) is for the calculation
of the powerset of Nk. As Mk × Nk marginal association probabilities need to be obtained, the
overall complexity of the data association step is O(M2

kN
2
k2Nk). As Mk and Nk is the number of
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Algorithm 4.6 Measurement update and prediction using weighted MEM-EKF*
Input:

• confirmed objects: X̂
(0)
k

• measurement set: Yk =
{
y

(m)
k

}Mk

m=1
• conditioned marginal existence probability βmτ ,m = 1, · · · ,Mk, τ ∈ Nk\{0}

Output:
• the set of survived objects: X̂

(0)
k+1

1: X̂
(0)
k+1 = ∅

2: for x̂(τ,0)
k ∈ X̂

(0)
k do

3: for m = 1, · · · ,Mk do . sequential PDA measurement update
4:

{
r̂

(τ,m)
k , p̂

(τ,m)
k ,C

r(τ,m)
k ,C

p(τ,m)
k

}
← according to Algorithm 3.1, (4.28c), (4.28d), (4.29b),

and (4.29c)
5: end for
6: update x̂(τ,Mk)

k using
{
r̂

(τ,Mk)
k , p̂

(τ,Mk)
k ,C

r(τ,Mk)
k ,C

p(τ,Mk)
k

}
and P (τ)+

∃,k

7:
{
r̂

(τ,0)
k+1 , p̂

(τ,0)
k+1 ,C

r(τ,0)
k+1 ,C

p(τ,0)
k+1

}
← prediction using motion model . prediction

8: predict existence probability P (τ)
∃,k+1 using (4.13)

9: update x̂(τ,0)
k+1 using

{
r̂

(τ,0)
k+1 , p̂

(τ,0)
k ,C

r(τ,0)
k+1 ,C

p(τ,0)
k

}
and P (τ)

∃,k+1

10: X̂
(0)
k+1 = X̂

(0)
k+1 ∪ x̂

(τ,0)
k+1

11: end for

measurements and objects that is considered in the data association process, the following two
strategies can further reduce the complexity in the implementation:

1. only considering the potential birth components in the data association. That is to say, only
the birth components satisfying: 1) have at least one measurement in their validation area, 2)
the predicted likelihoods given birth components must be significant if birth components
have overlapping gating area with the survived objects. This strategy is implemented in the
birth model (see Algorithm 4.4).

2. dividing the predicted likelihoods, respective measurements, and predicted objects into
small groups such that the objects across the different groups do not share measurements.
Marginal association probability (4.22) and existence probability (4.25) considers all possible
joint mappings between measurements and predicted objects. However, it is not necessary to
jointly consider mappings for all objects if objects do not have overlapping validation areas.
Therefore, the complexity of data association can be drastically reduced if the predicted like-
lihoods, respective measurements, and predicted objects are decomposed into groups such
that objects from different groups do not share measurements. Then, the background x̂(0) is
appended for each group. The data association and update are performed independently
for each group. As this decoupling is intuitive, it is not explained in the pseudo-code for the
seek of compactness.
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4.8 Evaluation

In this section, the performance of the data association and MEOT tracker are evaluated. First,
an example which gives an intuition on the proposed data association method is shown. Then,
the proposed MEOT tracker is compared with a clustering and assignment based MEOT tracker
called Gamma Gaussian Wishart Probability Hypothesis Density (GGIW-PHD)[92, 20] filter in a
simulation. In the last experiment, the proposed tracker is evaluated using Lidar data to track
pedestrians.

4.8.1 An Intuition on the Proposed Data Association Method

The first simulation gives an intuition on the proposed data association method. Two predicted
objects and ten measurements are simulated. The simulation is illustrated in Figure 4.8. Two
objects, object 1 (cyan) and object 2 (orange), with predicted existence probabilities of 0.9 are
simulated. The existence probability for clutter is 1. Note that the cyan and orange dots and
ellipses indicate the means and covariances (3σ contour) of the predicted measurements from
the two respective objects, not the centers and extensions of the extended objects. For simplicity,
the measurements are assumed to be Gaussian distributed. The detection probability for both
predicted objects and clutter is 0.9. The simulated measurements are

y
(1)
k =

[
−19

−19

]
, y

(2)
k =

[
15

−10

]
, y

(3)
k =

[
10

−15

]
, y

(4)
k =

[
−10

15

]
, y

(5)
k =

[
0

10

]
,

y
(6)
k =

[
−9

5

]
, y

(7)
k =

[
−5

7

]
, y

(8)
k =

[
−6

3

]
, y

(9)
k =

[
−1

6

]
, y

(10)
k =

[
0

−7

]
.

The predicted measurements are

ȳ
(1,0)
k =

[
−4, 5

]T
, C

y(1,0)
k = diag

[
5, 2
]
,

ȳ
(2,0)
k =

[
−4, −5

]T
, C

y(2,0)
k = diag

[
7, 4
]
.

In this simulation, the marginal association probabilities and existence probabilities of two objects
are explained. As the predicted measurement likelihoods and Poisson rates are crucial for the
proposed data association method, the sensitivity of the proposed data association method to the
Poisson rates is tested for different Poisson rates.

An Intuition on the Proposed Data Association Method

The Possion rates for clutter and both predicted objects are 5. The marginal association probabilities
and existence probabilities obtained using (4.22) and (4.25) are shown in Table 4.1. From Table 4.1,
we can see that with a probability 0.9696 measurement 5 is a clutter while measurement 8 is a
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Figure 4.8: The predicted measurement means and covariances (3σ contours) for both predicted
objects are plotted using dots and dashed ellipses, respectively. The red crosses are measurements,
and their indices are labeled aside. [Yang3] ©2020IEEE
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Table 4.1: The marginalized association probabilities obtained using the proposed data association
technique for the example depicted in Figure 4.8. Note that the marginal association probabilities
are not conditioned on the existence of the respective object. [Yang3] ©2020IEEE

m clutter object 1 object 2

P (θm = τ | Y1:k)

1 1 0 0
2 1 0 0
3 1 0 0
4 1 0 0
5 0.9696 0.0304 0
6 0.1317 0.8683 0
7 0.0362 0.9638 0
8 0.0482 0.9518 0
9 0.0380 0.9620 0

10 0.7937 0 0.2063

P
(τ)+
∃,k - - 0.9998 0.5939

measurement from object 1 with probability 0.9518. With a probability of 0.2063, measurement
10 originates from object 2 while it is clutter with probability 0.7937. Note that the association
probabilities shown in Table 4.1 are marginalized over the detection and existence status of object
2. Object 2 has only one measurement in its validation area, while it is expected to have five
measurements if object 2 exists and is detected. Therefore, it is more likely measurement 10 is
clutter, and object 2 is miss-detected or terminated.

As point object tracking assumes that at most one measurement is assigned to an object, the sum
of the marginal probabilities for each object is one for traditional JPDA and JIPDA. However, the
sum of the marginal probabilities for each object in the proposed data association is the expected
number of measurements assigned to this object. For example, instead of one, the sum of marginal
association possibilities of each object 1 is approximately 3.7763, which corresponds to the expected
number of measurements object 1 gets at this scan. As the expected number of measurements
assigned to object 1 is approximately 3.7763, and the Poisson rate of object 1 is five, the existence
probability of object 1 increases from 0.9 to 0.9998. On the contrary, the existence probability of
object 2 decreases to 0.5939 as only measurement 10 is assigned to object 2 with a probability of
0.2063.

Sensitivity to Poisson Rates

From (4.22) and (4.25), we know that the marginal association probability and existence probability
depend on predicted measurement likelihoods and Poisson rates. As the state-dependent Poisson
rates in (4.22) and (4.25) are approximated using the predicted states, using the same simulation
setting depicted in Figure 4.8, it is investigated how marginal association probabilities and existence
probabilities react to Poisson rates. The Poisson rates used in this evaluation for both objects are
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Figure 4.9: The estimated marginal probabilities using different Poisson rates, for example mea-
surements 5, 8, and 10 in Figure 4.8. [Yang3] ©2020IEEE
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Figure 4.10: Updated existence probabilities using different Poisson rates for objects in Figure 4.8.
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changed to values ranging from 1 to 20. Three example measurements, measurement 5, 8, and 10,
are chosen to illustrate the obtained marginal association probabilities versus Poisson rates. The
results are shown in Figure 4.9.

For a fixed set of measurements, an object tends to include more measurements as its Poisson rate
increases. Therefore, we can see a slight increase in the probability that measurement 5 originates
from object 1, which decreases the probability of measurement 5 being a clutter, correspondingly.
The marginal probability of measurement 8 being a measurement of object 1 is almost one because
its location is close to the predicted measurement mean of object 1. The probability of measurement
8 associated with object 1 is lower when the Poisson rate of object 1 is smaller than 3. This is
because measurement 6, 7, and 9, which are also near the mean of predicted measurement, receives
some probability. As the Poisson rate of object 1 becomes larger than 15, it is more likely that
object 1 is undetected or non-existent given it has only 4 measurements near the mean of its
predicted measurement. Correspondingly, the probability of measurement 6, 7, 8, and 9 being
clutter becomes higher. Measurement 10 is on the edge of 3σ contour of object 2. Similarly, the
probability of measurement 10 being a measurement of object 2 decreases as the estimated Poisson
rate of object 2 increases, which indicates object 2 is more likely undetected or non-existent. In
addition, Figure 4.10 depicts the change of existence probabilities of both objects against the
Poisson rates.

4.8.2 Simulation with Closely-Spaced Objects

In this section, a simulation is constructed to assess the calculation of marginal association proba-
bilities and existence probabilities. The MEM-JIPDA tracker is compared with GGIW-PHD filter
[92, 20].

The GGIW-PHD filter models the extended objects as a Gamma Gaussian-inverse Wishart compo-
nent. The Gamma distribution is the conjugate prior for the Poisson rate and the Gaussian-inverse
Wishart distribution, which describes the measurements. A distance-based clustering and assign-
ment method is employed to obtain the measurement partitions with significant weights. Then, a
PHD filter is used to update the states of the extended objects. In addition, merging and pruning
are required to manage the tracks.

We simulated two extended objects. The two objects move with a constant velocity of 13 m/s for
30 time steps. As two objects are approaching each other, they perform a coordinated turn with
constant turn rates for 10 time steps to avoid a collision. They are then moving in parallel for
20 more steps and object one is terminated until the end of the simulation. The ground truth
and simulated trajectories are shown in Figure 4.11. The goal of the first three motion phases of
the simulation is to evaluate the estimation quality of the marginal association probabilities, as
unsatisfactory marginal association probabilities will lead to poor state estimation in the first and
second phases and track coalescence in the third phase. Object one is designed to terminate at time
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Figure 4.11: The simulated tracks, measurements, and one example run of the GGIW-PHD filter
and the MEM-JIPDA filter. The grey arrows indicate the directions of two trajectories. As the
original GGIW-PHD filter returns no label, its estimates are plotted using black ellipses. The
two trajectories estimated using MEM-JIPDA are differentiated using orange and red. [Yang3]
©2020IEEE
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step 60 to assess the existence probability estimation.

The number of clutter is Poisson distributed with mean 30, and the clutter is uniformly distributed
across the observation area. The number of measurements that arise from each object is Poisson
distributed with mean 12 and 9. The state vectors of the simulated objects initially are

r
(1,0)
1 =

[
0, −300, 11, 7.7

]T
, p

(1,0)
1 =

[
−π3 , 40, 15

]T
,

r
(2,0)
1 =

[
0, −300, 11, −7.7

]T
, p

(2,0)
1 =

[
π
4 , 20, 10

]T
.

The priors for both objects are

r̂
(1,0)
1 =

[
−10, −280, 10, 10

]T
, C

r(1,0)
1 = diag

[
200, 200, 10, 10

]
,

r̂
(2,0)
1 =

[
−10, 280, 10, −10

]T
, C

r(2,0)
1 = diag

[
200, 200, 10, 10

]
,

p̂
(1,0)
1 =

[
0, 20, 20

]T
, C

p(1,0)
1 = diag

[
0.05, 40, 40

]
,

p̂
(2,0)
1 =

[
0, 20, 20

]T
, C

p(2,0)
1 = diag

[
0.05, 40, 40

]
.

The Poisson rates used in the estimation are the same as the true Poisson rates. The initial existence
probability for both objects is 0.9. The survival probability for both tracks is 0.8, and the detection
probability is 0.9. Two birth components are specified as

r̂
(1)
B =

[
−20, −250, 10, 10

]T
, C

r(1)
B = diag

[
900, 900, 10, 10

]
,

r̂
(2)
B =

[
−20, 250, 10, −10

]T
, C

r(2)
B = diag

[
900, 900, 10, 10

]
,

p̂
(1)
B =

[
0, 30, 30

]T
, C

p(1)
B = diag

[
0.1, 40, 40

]
,

p̂
(2)
B =

[
0, 15, 15

]T
, C

p(2)
B = diag

[
0.1, 40, 40

]
.

The initial existence probability for both components is 0.1, and their Poisson rates are 10. If the
existence probability of a new component exceeds 0.8, we confirm its birth. When the existence
probability of an exiting track falls below 0.2, the track is treated as terminated.

One comparison example run is illustrated in Figure 4.11. In addition, the OSPA distances [30]
combined with the Gaussian Wasserstein distance [Yang9] with a cut off value of 100 for 100 Monte
Carlo runs are calculated for comparison. Besides the mean OSPA distance, the one standard
deviation are also shown in Figure 4.12. From the figure, we can see that MEM-JIPDA has a smaller
error in terms of mean and variance overall, except that MEM-JIPDA spiked at the time step 61.
This is because object 1 terminates at time 61, but the MEM-JIPDA considers it as miss-detected.
MEM-JIPDA has better performance, in terms of mean and standard deviation, for the rest of scans.
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Figure 4.12: Mean OSPA distance ± one standard deviation for the simulation with two closely-
spaced objects. [Yang3] ©2020IEEE

Note that, compared to MEM-JIPDA, the GGIW-PHD filter uses a spontaneous birth model, which
is more flexible than MEM-JIPDA and requires less information about the observation area. On the
other hand, if multiple clutter measurements form a cluster, the GGIW-PHD filter could interpret
this clutter-cluster as a newborn object.

4.8.3 Tracking Pedestrians using Lidar Data

Furthermore, the proposed tracker is tested for tracking lidar data from pedestrians. The lidar
data is from the KITTI dataset [2]. The KITTI dataset is a well-known benchmark for performing
pedestrian and vehicle detection or tracking tasks. It consists of many scenarios, such as vehicles on
the street, people walking in residential areas, and students on the campus. Multiple sensors, such
as GPS/IMU, Laserscanner, Grayscale camera, and RGB camera, are mounted on a car. The scenes
are recorded while the car is driving or parking. The scene applied in this experiment is from
the dataset “2011_09_28_drive_0043".3 This scene is recorded on the campus of Karlsruhe
Institute of Technology. The scene, sensor setup and one example lidar data is shown in Figure 1.2
in Chapter 1.

A rectangular area, i.e., [250, 750]cm × [−500, 150]cm is trimmed to be the observation area.
The tracking algorithm is performed on the first 50 time steps. The lidar points, approximately

3http://www.cvlibs.net/datasets/kitti/raw_data.php?type=campus

http://www.cvlibs.net/datasets/kitti/raw_data.php?type=campus
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Figure 4.13: This figure depicts the KITTI pedestrian lidar measurements over time. Measurements
available at different time steps are shown in different colors. The color bar on the right indicates
the corresponding time steps. Note that two times of occlusions of one person can be seen in this
figure. [Yang3] ©2020IEEE



CHAPTER 4. Multiple Extended Object Tracking without Measurement Partitioning 101

the height of knees, at the height of 39-43 cm, are selected as measurements. Hence, the shapes
are approximated as ellipses. In the first 50 time steps, five people appeared in the tracking area.
Person 1 and 2 appear at the first time step. Person 2 is occluded by person 1 from the scan 45 until
the end. Person 3 enters the observation area at time step 6 and is completely occluded at time step
29, 30, 40 and 43. The overall data is shown in Figure 4.13, where the color indicates the time step.

Parameters

As a proper birth model is assumed to detect the appearance of objects, no prior is given in this
experiments. The four birth locations in this experiment are

r̂
(1)
B =

[
630, 150, −5, −5

]T
,

r̂
(2)
B =

[
700, 100, −5, −5

]T
,

r̂
(3)
B =

[
250, −350, 5, 5

]T
,

r̂
(4)
B =

[
250, −430, 5, 5

]T
,

with the same covariance CrB = diag
[
.2, .2, .2, .2

]
for all components. The birth components

are assumed to have the same shape variable p̂B =
[
0, 30, 20

]T
with CpB = diag

[
0.01, 1, 1

]
.

The measurement noise covariance is the same for all objects over the whole tracking interval:
Cvk = diag

[
4, 4

]
. The initial existence probability of each birth component is 0.1. Poisson rates

for birth components and existing objects are 15. The survival probability for an existing track is
0.99. The detection probability is 0.8. A constant velocity model is used for all objects. The process
noise covariance matrices for all objects are the same, i.e., Cw

r

k = diag
[
10, 10, 10, 10

]
, and

Cw
p

k = diag
[
0.01, 0.1, 0.1

]
.

Result

Figure 4.14 depicts the tracking result of every third scan. It can be seen that the tracked trajec-
tories are consistent with the ground truth and have no ID switches. The algorithm recognizes
the newborn objects as soon as they entered the observation area. Our previous work [Yang2]
gave similar results, but a distance-based clustering method was performed and had more time
complexity. Furthermore, the algorithm in [Yang2] requires an additional module to maintain
labels and handle occlusions.
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Figure 4.14: The pedestrian tracking result of MEM-JIPDA using the lidar data from the KITTI
dataset. The filled gray ellipses are birth components. [Yang3] ©2020IEEE
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4.9 Conclusion

In this chapter, we propose a MEOT tracker called MEM-JIPDA. MEM indicates the measurement
model MEM-EKF* from Chapter 3. In addition, the key leads to the MEM-JIPDA is the data
association method, which is inspired by the JIPDA filter proposed by Mus̆icki and Evas in [80].
This data association method calculates the marginal association probability for each measurement
and existence probability for each object. The other modules, such as birth model, measurement
update and track management, are designed to adapt this data association method for MEOT.

The proposed data association method

• requires no clustering or measurements enumeration,

• gives exact closed-form marginal association probabilities and existence probabilities by
summing up the posterior probabilities of all measurement oriented joint associations,

• labels trajectories, which is inherited from JPDA and JIPDA, and

• employs the zero-inflated PPP model for modeling measurements.

The following factors are crucial for developing the closed-form marginal association probabilities:

1. the incorporation of PPP into JPDA/JIPDA for extended objects. The employment of PPP for EOT
is widely accepted. The previous MEOT data association methods evaluate the likelihood of
a measurement-set by taking the product of the predicted measurement likelihoods and the
probability of generating the given numbers of measurements. The combination of JPDA
and PPP facilitates independence among single measurement mappings. In the end, the
likelihood of a measurement-set is proportional to the product of predicted measurement
likelihoods and the respective Poisson rates.

2. the design of the measurement-oriented joint association hypothesis. The constraints of the joint
association hypothesis of extended objects are: i) a measurement has one origin, ii) an object
can be associated with multiple measurements. Therefore, a measurement-oriented joint
association variable fulfills both constraints by the nature of its structure, and no additional
conditions need to be checked.

3. theorem 4.1, which avoids the enumeration of all joint assignments by converting the sum of a set of
joint associations into a product of respective summation. Using this theorem, the evaluation of
all compatible joint association events in (4.22) and (4.25) requires no explicitly exhaustive
enumeration of all joint association variables.

A sequential PDA update is adapted to combine the marginal association probabilities and the
MEM-EKF* measurement update. Note that this sequential PDA measurement update is inherited
from MEM-EKF*. Other measurement models, such as the random matrix [10, 5], are also possible.

Based on the data association method, a birth model is designed. The birth model assumes
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that birth components are given in fixed locations with certain uncertainties. Compared with
spontaneous birth modeling, this birth mechanism requires some background information on the
surveillance area. More sophisticated birth models, such as the adaptive birth model [108], will be
considered in the future.



5
Conclusion

Extended object tracking, which estimates the object extension in addition to kinematics based
on a varying number of measurements, is a challenging research topic with increasing interest
in many areas. This thesis is devoted to elliptical extended object tracking. The extension of an
extended object is represented using an ellipse, and the measurements generated from an object
are assumed to be randomly lying on the surface of the object. Based on these assumptions, three
aspects of extended object tracking are addressed in this thesis:

• Metric for EOT comparison.

For point object tracking, the Euclidean distance is the natural metric for evaluation. As the
extension estimation is one of the crucial tasks in EOT, there is no consistently used metric
for assessing extended object trackers yet. Chapter 2 explains the problem of evaluating EOT
and investigated the measures that can be used for assessing elliptical shapes. Based on the
discussion and insight that are gained from simulations, the Gaussian Wasserstein distance
is proposed for assessing the performance of elliptical extended object trackers.

• Extension estimation.

Chapter 3 formulates an explicit measurement model with orientation and semi-axes lengths
and presents a single extended object tracker that estimates the object extension using a
tailored Kalman filter. Compared with a matrix representation for the elliptical extension,
the parameterization with orientation and axes lengths facilitates the dynamic modeling of
individual shape parameters in many applications. For example, a coordinate turn model,
which elaborates the dependency between extension transformation and kinematic state
explicitly, can be easily constructed. Furthermore, a full joint covariance matrix for the
estimate of orientation and axes lengths is maintained. A tailored extended Kalman filter is
derived and results in compact update formulas.
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• Multiple extended object tracking.

One of the bottlenecks of MOT for point objects is the data association problem between
measurements and objects. As one extended object can generate a varying number of mea-
surements, the data association problem in EOT is even computational challenging. The
tracker proposed in Chapter 3 assumes the origins of the measurements are known. In
Chapter 4, this assumption is relaxed. Besides, the number of tracked objects is varying
and unknown. The state-of-the-art methods bypass the data association problem for ex-
tended objects using clustering or measurement enumeration, which has high computational
complexity. Chapter 4 proposes a new data association method without enumerating mea-
surement partitions or clustering measurements. Based on the proposed data association
method, an efficient MEOT is introduced by combining the shape tracker proposed in Chap-
ter 3. The effectiveness of the new MEOT tracker is demonstrated using simulation and real
lidar data.

One direction of the future work will be investigating the explicit measurement model with the non-
elliptical shapes, such as rectangles or arbitrary shapes. As the data association method proposed
in the multiple extended object tracker is presented using marginal association probability and
requires no explicit measurement partitioning, one possible direction of the future research is an
investigation on combining the data association method with a learned measurement model using
neural networks. Furthermore, exploring the fusion of the extended object estimates from multiple
and heterogeneous sensors, such as camera, radar, and lidar, has enormous practical and research
potential.
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Nomenclature

⊗ Kronecker product

A a matrix or a set

a a random vector

â an estimate of a

â(i) the i-th estimate of a

Ch covariance of multiplicative noise

cov {x,y} covariance between x and y

Cw
r

k process noise covariance of variable r at time step k

C
x(τ,m)
k m-th updated covariance of x for object τ at time step k

Cx+
k updated covariance of x at time step k

Cxk covariance of x at time step k

C
xy(i)
k i-th updated cross covariance of x and y at time step k

Cxyk cross covariance of x and y at time step k

d(x1,x2) distance between x1 and x2

diag [·] diagonal matrix
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E (x) expectation of x

Hk measurement matrix at time step k

h
(i)
k i-th multiplicative noise at time step k

In n dimensional identity matrix

Jf Jacobian matrix of f

lk,1, lk,2 semi-axes lengths of an elliptical object at time step k

lmτ predicted likelihood of m-th measurement given object τ

Mk set of measurements indices at time step k

Mk number of measurements at time step k

mk, ṁk location and velocity of an extended object

Nk set of object indices at times step k

NB,k set of birth component indices at times step k

NS,k set of survived object indices at times step k

Nk number of objects at times step k

N (µ,C) Gaussian distribution with mean µ and covariance matrix C

Pois (· | λ) Poisson probability mass function with rate λ

Px paraterization of an ellipse with center, orientation and semi-axes lengths

P(N) powerset of N

P(N)− powerset of N excluding the set N

PD detection probability

P
(τ)
D,k detection probability of object τ at time step k

PG gating probability

PS survival probability

P
(τ)
∃,k existence probability of object τ at time step k
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P
(τ)+
∃,k updated existence probability of object τ at time step k

P
(τ)
@,k non-existence probability of object τ at time step k

P
(τ)+
@,k updated non-existence probability of object τ at time step k

p(x) probability density function of x

P (x) probability of x

pk shape variable of an elliptical extended object at time step k

rk kinematic state of an extended object at time step k

r̂
(m)
k m-th update of kinematic state of an object at time step k

r̂
(m,τ)
k m-th update of kinematic state of object τ at time step k

p̂
(m)
k m-th update of shape variable of an object at time step k

p̂
(m,τ)
k m-th update of shape variable state of object τ at time step k

Sk Square root matrix of an elliptical shape matrix at time step k

Tθk numbers of measurements assigned to each object by θk

Uk set of undetected and non-existent object indices at time step k

vk measurement noise at time step k

vect {A} converts a matrix into a column vector

wrk process noise of variable r

wk process noise at time step k

Xk set of objects at time step k

X̂k set of estimated objects at time step k

xk object state at time step k

x1:k object states from time step 1 to k

x̂+
k mean of the updated state at times step k

x̂k mean of the predicted state at time step k
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Yk set of measurements at time step k

Y(τ)
k set of measurements assigned to object τ

yk measurement at time step k

y1:k measurements from time step 1 to k

y
(i)
k i-th measurement at time step k

ȳ
(τ,m)
k expected m-th measurement of object τ at time step k

ȳ
(i)
k expected i-th measurement at time step k

z
(i)
k the measurement source of y(i)

k

αk orientation of an ellipse at time step k

βmτ marginal association probability of m-th measurement being assigned to object τ given the
existence of object τ

δinitiate threshold for the initiation of a track

δtermiante threshold for the termination of a track

ΘM
N set of joint association variables from M to N

θk joint association variable

θm object index that m-th measurement is associated with

λ
(τ)
k Poisson rate of object τ at time step k

ξ
(i)
k i-th pseudo-measurement

ξ̄
(i)
k expected i-th pseudo-measurement

ξ̄
(τ,m)
k expected m-th pseudo-measurement of object τ

ρ spatial density of clutter

Σxk shape matrix of xk
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