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Abstract 

Crude oil and fuel spillages are the most persistent environmental menace resulting from oil 

and gas exploration, production and utilisation. The United States Environmental Protection 

Agency (US EPA) estimated that rehabilitation can cost over $US1 million per hectare. 

Traditional solutions for remediation are expensive and environmentally unfriendly. 

Consequently, more cost-effective and eco-friendly remediation technologies are needed. 

The use of plants to clean up contaminated sites is a cost-effective and an environmentally-

friendly approach. However, the toxicity of petroleum hydrocarbons to most plants, coupled 

with the slow rate of natural attenuation limits the effectiveness of this approach. Therefore, the 

identification of hydrocarbon tolerant plants and the isolation of microbial consortium and 

isolates capable of plant growth promotion and hydrocarbon degradation is crucial to the 

success of plant-based remediation techniques. This is the crux of this research. 

In the first part, I examine how ethanol addition to diesel fuel affects the leaching potentials of 

diesel fuel hydrocarbons. Since rhizoremediation of hydrocarbons depends largely on 

rhizodegradation of contaminants by the root-associated microbiome, the leaching of petroleum 

hydrocarbons beyond the rooting zones of plants may limit the effectiveness of this process as 

a reclamation strategy. The results revealed that while 5% (by volume) ethanol addition had a 

limited effect on aromatic hydrocarbons, 10% ethanol addition resulted in the elution of all 

classes of aromatic hydrocarbons studied beyond a 90 cm column. This revealed the need for 

choosing plants with adequate rooting system for an effective rhizoremediation of organic 

contaminants. 

Secondly, through phytotoxicity bioassays, I selected Medicago sativa as the most suitable 

species for rhizoremediation of diesel fuel. Dose-response analysis revealed that increasing 

diesel fuel concentrations in the soil generally led to a monotonically-decreasing biomass in all 

other studied plant species (P < 0.001), with EC10 values (±SE) ranging from 0.36 ± 0.18 g/kg 

to 12.67 ± 2.13 g/kg. On the other hand, hydrocarbons had a statistically significant hormetic 

influence on M. sativa (f = 3.90 ± 1.08; P < 0.01). Interestingly, exposure to diesel fuel 

contaminated soil up to 10 g/kg did not affect the viability of M. sativa seeds, although time to 

seed emergence was delayed. These factors position M. sativa as the most-promising plant 

species for microbially-enhanced rhizoremediation of diesel fuel. 

In the third part of the research, I successfully isolated a bacterial consortium and single isolates 

that can metabolize diesel fuel hydrocarbons as their sole carbon and energy source, while 

promoting the growth of host plants. In addition, I elucidated the genes and metabolic pathways 

involved in these reactions. I also reconstructed a number of metagenome-assembled genomes, 
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many of which contained genes putatively involved in hydrocarbon degradation, with potentials 

for bioremediation application. 

Finally, I examined the rhizoremediation effectiveness of M. sativa inoculated with either the 

consortium or M. sativa inoculated with Paraburkholderia tropica single isolate. The results 

indicated that M. sativa–P. tropica symbionts successfully enhanced the rhizodegradation of 

diesel fuel hydrocarbons. The geochemical analysis of residual hydrocarbons revealed that the 

combined action of M. sativa and P. tropica resulted in 96% degradation of the total diesel fuel 

hydrocarbons within 60 days. Biodegradation was further confirmed using parameters such as 

nC17/pristane, nC18/phytane, nC16/nor-pristane and total petroleum hydrocarbons/unresolved 

complex mixture ratios. Molecular analysis of biodegradation revealed that the polycyclic 

aromatic hydrocarbon components of the diesel fuel were almost completely degraded by the 

plant-microbe symbionts.  

I am confident that the results of this research will revolutionize the way diesel spills and other 

organic contaminants are cleaned up, and facilitate the reclamation of petroleum contaminated 

sites. 
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Chapter 1 

Introduction 

1.1 Background 

The negative impact of oil pollution on the environment has precipitated legitimate concerns in 

the last decade. Globally, oil spillage is the most significant environmental threat resulting from 

oil and gas operations. Spills have occurred due to corrosion, human error and equipment 

failure, with negative impacts to humans, animals and the environment. Although large-scale 

aquatic spills easily attract public attention, the majority of spills have occurred on land, with 

long-lasting ecological impacts on terrestrial biota (Duffy et al., 1980). 

The international community has realized the potential impact of hydrocarbon contamination 

on the environment and seriously seeks to address it through various conventions such as the 

United Nations Conference on Environment and Development (UNCED). Consequently, the 

reclamation of contaminated sites is on the agenda of many countries. For example, on 2nd June 

2016, the Federal Government of Nigeria launched $1 Billion Ogoniland clean-up and 

restoration programme in harmony with the recommendations made by the United Nations 

Environment Programme (UNEP). 

Diesel fuel-polluted sites are difficult to remediate because diesel is less volatile and has less 

biodegradable characteristics compared to petrol (gasoline) spills (ATSDR, 1995). Traditional 

methods of remediation, such as excavation and relocation of contaminants to landfills, are 

expensive and usually impractical because of the amount of soil involved. In addition, these 

methods are environmentally unfriendly as they impact on soil matrix and associated 

microbiomes. As a result, more cost-effective and eco-friendly remediation techniques are 

being explored. One of the emerging strategies is the use of plants to extract, mitigate, and 

stabilise contaminants, which is categorised as “phytoremediation”, and which can also assist 

in reforestation (Cunningham et al., 1995; Macek et al., 2000; Mench et al., 2009; Al-Baldawi 

et al., 2015). 

In most cases, plants growing in polluted sites exhibit a measure of tolerance to existing 

contaminants. However, some researchers have observed that even plants that are tolerant to 

the prevailing environmental contaminants often remain stunted in the presence of 

contaminants, and remove only small quantities of contaminants per plant (Glick, 2003; Pilon-

Smits and Freeman, 2006). To obtain more efficient degradation of organic compounds, plants 

depend on their associated microorganisms (Pilon-Smits and Freeman, 2006). Sadly, native 
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microbes exhibit slow growth rate and low metabolic activities, thereby limiting the 

effectiveness of natural attenuation (Abdulsalam et al., 2011; Jiang et al., 2016). Therefore, the 

success of bioremediation primarily depends on optimising biodegradation through the 

inoculation of plant growth-promoting rhizobacteria (PGPR) capable of utilizing hydrocarbons 

as their major carbon and energy source. 

Rhizoremediation involves the degradation of contaminants in the rhizosphere by root-

associated microorganisms (Allamin et al., 2020). This approach involves some plant-microbe 

beneficial interactions in which root exudates (amino and fatty acids, sugars, vitamins, 

nucleotides) provide hydrocarbon-degrading rhizobacteria with the needed nutrients for their 

metabolic activities (Kuiper et al., 2004). On the other hand, these bacteria stimulate the growth 

of host plants through plant growth-promoting processes, including, but not limited to, nitrogen 

fixation, phosphate solubilization, siderophore transport, indoleacetic acid and pyrroloquinoline 

quinone syntheses (Lobo et al., 2019). This synergistic relationship that enhances biomass 

production, tolerance of plants to unfavourable soil conditions, regular nutrient flow and 

continuous biodegradation of contaminants, has been described as the ecological driver of 

rhizoremediation (Rohrbacher and St-Arnaud, 2016). 

In view of the foregoing, there is a growing interest in enhancing rhizoremediation through the 

inoculation of microbial consortia or isolates with the right metabolic abilities (Garrido-Sanz et 

al., 2018; Garrido-Sanz et al., 2019). Unfortunately, the majority of research work has focussed 

only on hydrocarbon-degrading microbes (Di Martino et al., 2012; Abed et al., 2014; Ali et al., 

2020), with very few studies targeted at organisms capable of both plant growth promotion and 

hydrocarbon degradation (Dias et al., 2019). In addition, there is a scarcity of literature on single 

bacterial isolates with both capabilities. By combining microbial metagenomics, culture 

techniques and organic geochemical approaches, this study examines the potential of isolated 

consortia and single bacterial isolates to enhance plant growth promotion and petroleum 

hydrocarbon degradation. Specifically, this study is the first attempt to examine the synergistic 

interactions of Medicago sativa L. and Paraburkholderia tropica for enhanced 

rhizoremediation of diesel fuel-contaminated soils. 

I am confident that the results from this study will form a basis for state-of-the-art 

biotechnological innovation in soil reclamation, and will hopefully revolutionize the way oil 

spills and other environmental contaminants are cleaned up. 
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1.2 Aim and Objectives 

The central aim of this research is to harness the synergistic interactions between plants and 

microbes and develop the right plant-microbe pairs (systems) for a more efficient clean-up of 

diesel fuel spills, and by extension other petroleum hydrocarbon contaminants. 

Specific objectives include: 

• Screening of selected plant species for hydrocarbon tolerance. 

• Isolation of hydrocarbon-degrading bacterial consortium and single species from crude 

oil-contaminated sites. 

• Functional (meta)genome analyses of bacterial consortium and single species for their 

potentials for plant growth promotion and hydrocarbon degradation. 

• Greenhouse-based study of the effectiveness of Medicago sativa L. and/or isolated 

consortium and single species for enhanced rhizoremediation. 

1.3 Significance of Study 

The motivation for this study stems from many diverse but complementary observations, which 

highlights the significance of the expected research outcome. 

• Traditional solutions for remediation of petroleum contaminated soils such as 

excavation are very expensive and environmentally unfriendly. The United States 

Environmental Protection Agency (US EPA) estimated that rehabilitation can cost over 

$US1 million per hectare using excavation and landfill incineration (USEPA, 2000). By 

comparison, adopting plant-based remediation techniques can result in a cost saving of 

50 to 80% over traditional alternatives (USEPA, 2001). 

• Native plants that are relatively tolerant to environmental contaminants often remain 

stunted and exhibit low metabolic activities, thereby removing only small quantities of 

contaminants (Pilon-Smits and Freeman, 2006). By identifying effective plant growth-

promoting and hydrocarbon-degrading bacteria, I hope to overcome this challenge. 

• With more stringent regulations to mitigate oil-related environmental damage, and more 

penalties (fines) imposed on defaulting organisations, it makes environmental and 

economic sense to innovate and adopt the most efficient remediation technologies. 

• This study presents a well-augmented remediation technique that will drive any policy 

measure by Federal Governments to combat environmental pollution. 
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1.4 Research Outline 

The PhD research consists of four separate but interconnected projects (Figure 1.1), with each 

contributing to the achievement of my central aim. 

 

Figure 1.1. The conceptual research diagram showing precedence of activities for this study. 

The first part of the research was a leaching experiment designed to understand the effect of 

ethanol addition on the leaching potentials of petroleum hydrocarbons. Since rhizoremediation 

of hydrocarbons depends largely on rhizodegradation of contaminants by the root-associated 

microbiome, the leaching of petroleum hydrocarbons beyond the rooting zones of plants may 

limit the effectiveness of this process as a reclamation strategy. The second project is a 

phytotoxicity experiment through which I examined the tolerance of selected plant species to 

hydrocarbon toxicity. This enabled the identification of the most suitable plant species for 

rhizoremediation of diesel fuel. The first two projects were conducted at Macquarie University, 

Sydney, Australia. 

The third project involved the isolation of bacterial consortia and single species followed by 

comparative (meta)genome analysis of their plant growth-promoting and hydrocarbon-

degrading potentials. Finally, a greenhouse-based rhizodegradation experiment was carried out 

to assess the capability of the isolated consortium and single bacterial species for effective 

reclamation of diesel fuel-contaminated soils. Geochemical analysis of residual soils provided 

a confirmatory test for the degradation of diesel fuel hydrocarbons. These experiments were 

performed at Georg-August University of Goettingen, Germany. 
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1.5 Thesis Structure 

The thesis is divided into nine chapters. 

Chapter 1 introduces the main aim, objectives, and significance of this research. It also outlines 

the nature of the different part of the research that were carried out at each of the two institutions 

that are part of the cotutelle agreement. 

Chapters 2-8 constitute the results of the seven different but interconnected projects that make 

up the overall thesis. These findings are organised into seven independent research papers, the 

majority of which are already published in Q1 peer-reviewed journals. Specifically: 

Chapter 2 shows how ethanol addition to diesel fuel affects the leaching potentials of diesel fuel 

hydrocarbons. Since phytoremediation of hydrocarbons depends largely on rhizodegradation of 

contaminants by the root-associated microbiome, the leaching of petroleum hydrocarbons 

beyond the rooting zones of plants may limit the effectiveness of this process as a reclamation 

strategy for ethanol-blended fuel spills. Hence, these results are vital in selecting suitable 

phytoremediating plant(s). The preliminary results were given as an oral presentation at the 20th 

Australian Organic Geochemistry Conference in Canberra, Australia in December 2018. 

Another part of the results was presented as a poster at the SETAC Europe 29th Annual Meeting 

in Helsinki, Finland in May 2019. The complete results were published in RSC Advances. 

Happily, the article was selected for and featured in 2020 RSC Advances HOT Articles. 

Eze, M.O. and George, S.C. (2020) Ethanol-blended petroleum fuels: implications of co-

solvency for phytotechnologies. RSC Advances 10, 6473-6481. 

https://doi.org/10.1039/C9RA10919F  

Chapter 3 presents the results of a phytotoxicity bioassay experiment through which I examined 

the hydrocarbon tolerance of various plant species. Based on these results, I selected Medicago 

sativa as the most suitable species for rhizoremediation of diesel fuel since it exhibited the 

highest tolerance to hydrocarbon toxicity among all the studied plants. Part of these results was 

presented at the American Association of Petroleum Geologists’ 2019 International Conference 

and Exhibition (AAPG 2019 ICE) for which I was awarded the Carlos Walter M. Campos 

Memorial Award for Best International Student Paper. My presentation was also published in 

AAPG Search and Discovery (Article #80708). The entire results were published in the journal 

Chemosphere. 

Eze, M.O., George, S.C., Hose, G. (2021) Dose-response analysis of diesel fuel phytotoxicity 

on selected plant species. Chemosphere 263, 128382. 

https://doi.org/10.1016/j.chemosphere.2020.128382 

https://blogs.rsc.org/ra/2020/03/25/rsc-advances-hot-articles-a-feature-interview-with-michael-eze/
https://doi.org/10.1039/C9RA10919F
https://www.aapg.org/about/aapg/overview/honors-and-awards/association/student-international-awards/campos
https://www.aapg.org/about/aapg/overview/honors-and-awards/association/student-international-awards/campos
https://doi.org/10.1016/j.chemosphere.2020.128382
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Chapter 4 adds more details about the effect of diesel fuel on seed viability and the germination 

rate of Medicago sativa. The results from this study together with those presented in chapter 3 

indicate that M. sativa is the most-promising plant species for microbially-enhanced 

rhizoremediation of diesel fuel. The results were published in Plants. 

Eze, M.O., Hose, G.C., George, S.C. (2020) Assessing the effect of diesel fuel on the seed 

viability and germination of Medicago sativa using the event-time model. Plants 9, 1062. 

https://doi.org/10.3390/plants9091062 

Chapter 5 is an omics data set of metagenomes and metagenome-assembled genomes from a 

former crude oil borehole in Wietze, Germany. Wietze is the site of the first commercial crude 

oil exploration in Germany (Craig et al., 2018). The results provided preliminary understanding 

of the potential microbes for hydrocarbon degradation. This was published in Microbiology 

Resource Announcements. 

Eze M.O., Lütgert S.A., Neubauer H., Balouri A., Kraft A.A., Sieven A., Daniel R., Wemheuer 

B. (2020). Metagenome assembly and metagenome-assembled genome sequences from a 

historical oil field located in Wietze, Germany. Microbiology Resource Announcements 9, 

e00333-20. https://doi.org/10.1128/MRA.00333-20 

Chapter 6 is a detailed study of the diversity and metagenome analysis of hydrocarbon-

degrading consortia isolated from three different sites in the historic oil-contaminated field in 

Wietze, Germany. This detailed analysis provided insight into the genes and coding DNA 

sequences involved in the degradation of petroleum hydrocarbons. These results were published 

in bioRxiv. 

Eze, M.O., Hose, G.C., George, S.C., Daniel, R. (2021). Diversity and metagenome analysis of 

hydrocarbon-degrading bacterial consortium from asphalt lakes located in Wietze, Germany. 

bioRxiv. https://doi.org/10.1101/2021.03.25.436929  

Chapter 7 is a metagenome study of plant growth-promoting potentials of the isolated 

hydrocarbon-degrading consortium. This is crucial since the goal is to identify microorganisms 

with both hydrocarbon-degrading (Chapter 6) and plant growth-promoting (Chapter 7) 

potentials. Thus Chapter 7 perfectly complements the results of Chapter 6. Additionally, 

through a greenhouse-based study, I examined the rhizoremediation efficiency of Medicago 

sativa inoculated with one of the isolated consortia. These results have been published in 

bioRxiv. 

https://doi.org/10.3390/plants9091062
https://doi.org/10.1128/MRA.00333-20
https://doi.org/10.1101/2021.03.25.436929
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Eze, M.O., Thiel, V., Hose, G.C., George, S.C., Daniel, R. (2021). Metagenomic insight into 

the plant growth-promoting potential of a diesel-degrading bacterial consortium for enhanced 

rhizoremediation application. bioRxiv. https://doi.org/10.1101/2021.03.26.437261  

Chapter 8 shows the results of a study of the full genomes of selected bacterial species to 

identify the most effective bacterial isolates for microbially-enhanced rhizoremediation. Since 

consortia are often difficult to reproduce, the identification of specific single bacterial isolates 

capable of enhancing both plant growth promotion and hydrocarbon degradation will expand 

the range of bacteria available for biotechnological applications. This chapter further presents 

a pot-based study of rhizoremediation through the inoculation of Medicago sativa with the most 

promising single bacterial isolate (Paraburkholderia tropica). The results were published in 

bioRxiv. 

Eze, M.O., Thiel, V., Hose, G.C., George, S.C., Daniel, R. (2021). Exploiting synergistic 

interactions of Medicago sativa L. and Paraburkholderia tropica for enhanced biodegradation 

of diesel fuel hydrocarbons. bioRxiv. doi: https://doi.org/10.1101/2021.03.30.437699  

Chapter 9 concludes with a summary of the main findings of this PhD thesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://doi.org/10.1101/2021.03.26.437261
https://doi.org/10.1101/2021.03.30.437699
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Relationship to the Overall Thesis 

Phytoremediation of hydrocarbons depends largely on the rhizodegradation of contaminants by 

the root-associated microbiome. Since oxygenates such as ethanol can impact on the solubility 

of petroleum hydrocarbons by serving as co-solvents, it is vital that the effect of this process on 

the leaching ability of petroleum fuels be understood. To this end, this chapter examines the 

effect of ethanol on the leaching potentials of diesel fuel hydrocarbons. This understanding is 

helpful not only for selecting suitable plants for rhizoremediation of diesel fuel, but also for 

other plant-based remediation approaches where oxygenated organics are the target pollutants. 
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petroleum fuels: implications of
co-solvency for phytotechnologies

Michael O. Eze * and Simon C. George

In recent decades, there has been increasing interest in the use of ethanol-blended fuels as alternatives to

unblended fossil fuels. These initiatives are targeted at combating CO2 and particulate matter emissions, as

these oxygenates leave behind a lesser carbon footprint. Noble as it may appear, this innovation is not

without attendant ugly consequences. One major implication is the effect of co-solvency on the

applicability of various forms of phytotechnologies for contaminant removal. By means of gas

chromatography-mass spectrometry, this research investigated the effect of diesel fuel ethanol addition

on the leaching potentials of petroleum hydrocarbons. Since phytoremediation of hydrocarbons

depends largely on rhizodegradation of contaminants by the root-associated microbiome, the leaching

of petroleum hydrocarbons beyond the rooting zones of plants may limit the effectiveness of this

process as a reclamation strategy for ethanol-blended fuel spills. The analyses presented in this paper

highlight the need for energy scientists to carefully consider the environmental impacts of ethanol-

blended innovations holistically.
Introduction

Crude oil and fuel spillages are the most persistent environ-
mental menace resulting from oil and gas exploration,
production and utilisation. Their increasing negative impact on
the environment has precipitated legitimate concerns in the last
decade. The United States Environmental Protection Agency (US
EPA) estimated that rehabilitation can cost over $US1 million
per hectare.1,2 Spills have occurred due to corrosion, human
error and equipment failure.3–5

Traditional solutions for remediation (such as excavation and
relocation of contaminants to landlls) are expensive and usually
impractical because of the amount of soil involved, whereas those
that remediate contaminants in situ are generally less expen-
sive.6,7 Additionally, the number of new contaminated sites that
are extensive in size continues to increase. Consequently, more
cost-effective remediation technologies are being investigated.8,9

One of the emerging strategies, categorised as phytotechnology
(also called phytoremediation), is the use of plants to extract,
mitigate, and stabilise both organic and inorganic contami-
nants.10–12 This approach can also assist in reforestation.13

Since the birth of phytoremediation, various techniques
have been trialled and developed.14–16 These techniques,
primarily driven by costs and environmental impacts, rely on
the use of plant interactions (physical, biochemical, biological,
chemical and microbiological) in polluted sites to mitigate the
Sciences, MQ Marine Research Centre,
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f Chemistry 2020 11
toxic effects of pollutants. Depending on the pollutant type
(elemental or organic), there are several mechanisms (accu-
mulation or extraction, degradation, ltration, stabilisation and
volatilisation) involved in phytoremediation. Elemental pollut-
ants (toxic heavy metals and radionuclides) are mostly removed
by extraction, transformation and sequestration. On the other
hand, organic pollutants (hydrocarbons and chlorinated
compounds) are predominantly removed by degradation, rhi-
zoremediation, stabilisation and volatilisation, with minerali-
sation being possible when some plants such as willow and
alfalfa are used.17,18

As a strategy, and especially in comparison to removal and
relocation of contaminants, phytoremediation is inexpensive.
The US EPA has indicated that implementing this technologymay
result in cost savings of 50 to 80% over traditional methods.1,2

Benets from successful approaches of phytoremediation include
healthier soil, promoting and sustaining indigenous microbial
communities that are essential for long-term bioremediation of
the soil, and creation of a more pleasing landscape, compared
with ugly contaminated areas.19 Other advantages of phytor-
emediation include low cost, environmental friendliness, the
possibility of large-scale operations, low installation and main-
tenance costs, conservation of soil structure, prevention of
erosion, and control of the leaching of pollutants.20,21 Moreover,
following phytoremediation, there might be improved soil
fertility due to the input of organic matter.22

Despite the numerous advantages of phytoremediation, it
has its own limitations. One major limitation is root depth. For
this technique to achieve its desired objective, the contami-
nants of interest must be within the rooting zones of plants.
RSC Adv., 2020, 10, 6473–6481 | 6473
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Nonetheless, many contaminants migrate vertically within the
soil matrix, thereby making them inaccessible to plant roots.
Compounding this problem is the addition of oxygenates such
as ethanol and methyl-tertiary-butyl ether (MTBE) to fuels, so as
to reduce vehicular emissions to the atmosphere. These addi-
tives, although benecial in reducing atmospheric pollution,
may increase the leaching potentials of organic contaminants
due to the co-solvency of petroleum hydrocarbons and by the
provision of a preferential substrate for microbial utilisation.23

Ethanol–fuel mixtures have an “E” and a number, which
describe the percentage of ethanol by volume in the mixture.
For example, “E10” refers to a 10% by volume ethanol and 90%
by volume diesel mixture. Ethanol–diesel mixtures range from
E5 to E85, with E10 being the most common. Alternative blends
in many countries, especially Brazil and the United States of
America, include ethanol–biodiesel mixtures. This increasing
shi from unblended petroleum-derived diesel to ethanol-
blended diesel may pose signicant challenges to the success
of phytoremediation and the rehabilitation of diesel fuel
contaminated sites, owing to the co-solvency caused by the
ethanol. Therefore, the environmental implications of ethanol
additives to diesel fuel must be thoroughly investigated. This is
the motivation for this research.
Experimental
Stability of ethanol blends

Diesel was obtained from a Shell service station in Sydney,
Australia. To determine the categories of ethanol–diesel fuel
blends to be used for this study, the stability of ethanol-blended
diesel fuels at 20 �C were examined without the use of stabil-
ising additives. To do this, three different blends (E5, E10 and
E20) were prepared in addition to the unblended diesel (E0),
and their miscibility was observed. The E5 and E10 blends gave
stable (homogenous) mixtures (Fig. 1), indicating that ethanol
is soluble in diesel fuel up to 10% by volume. On the other
hand, E20 gave a heterogeneous (two-phase) mixture, as shown
by phase separation and a boundary layer (red pointer). This
indicates that at 20% by volume, ethanol is not completely
miscible with diesel. Thus, the preparation of E20 diesel and
other higher blends requires the use of stabilisers. This obser-
vation agrees with other research work on the stability of
Fig. 1 Stability of four ethanol blends at 20 �C.
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ethanol-blended diesels.24,25 In view of this, even though all four
blends were examined, this study focused primarily on the E0,
E5 and E10 blends, which are both the most stable and most
common ethanol–diesel fuel blends.

Leaching column set-up

The movement of diesel fuel was followed in a lab-based study
of a 90 cm sand column packed in a polyethylene column of
15 cm diameter, with the effect of ethanol addition on this
movement investigated. Four columns representing E0, E5, E10
and E20 were set up and eluted with deionised water (Fig. 2). To
prepare the column, the method used by Adam et al.23 was
adopted with some modications.

Polyethylene drain pipes were cut into sections (L 10 cm x ID
13 mm). The sections were sealed together using waterproof
tape to provide an airtight seal at the joins. Nine sections were
tted together to create a column 90 cm in length. Each column
was lled with the same mass of extracted and baked river sand
(200 g) to ensure that the same packing density was maintained.
The choice of river sand was necessary to provide low organic
matter content. Aer sieving to remove >2 mm gravel, the soil
textural class was determined using laser diffractometer at the
sediment analysis laboratory, Macquarie University. The
textural class is sand (97.5% sand, 2.5% silt and 0.02% clay),
with a mode of medium sand (450 mm), and 1.18% organic
matter content by loss on ignition (Fig. 2). To ensure accurate
results, two major factors that affect soil total petroleum
hydrocarbon content, namely biodegradation and volatilisa-
tion, were controlled. First, the sand was twice extracted using
an accelerated solvent extractor (ASE300) and dichloromethane
(DCM) : methanol (9 : 1). It was then baked at 500 �C for 24
hours. This was necessary in order to remove all naturally
occurring organic compounds and extraneous matter in the
sand, as well as to prevent any possible biodegradation of the
diesel fuel by microbial enzymes within the leaching column.
The bottom section of the column was tted with a ne nylon
mesh to cover the lower end to prevent the sand from escaping,
but allowing the leachate to freely drain away. An extra section
was placed on the top of the column to provide a collar for the
water reservoir. The column was run at a temperature of about
20 �C to prevent volatilisation.

5 mL of each blend was added by pipette to the respective
columns. The diesel fuel was allowed to penetrate into the sand
for approximately 30 minutes. Aer this time, 20 mL of water
was poured in to wet the column. Then 200 mL of water was
added through a 250 mL funnel. This acted as a reservoir,
allowing a constant supply of water to leach through the column
for ten days. The ow rate was a factor of gravity and the density
of the sand packed column.

Extraction of diesel from the medium (sand and leachates)

Aer ten days, the four columns were dismantled one section at
a time, and a sand subsample was taken from each section of
each column. Total extractable diesel fuel in each subsample
was obtained through solvent extraction (DCM : methanol
(9 : 1)) using the ASE300. Since the sand used for the column
This journal is © The Royal Society of Chemistry 2020



Fig. 2 Leaching column set-up (A), and soil textural class determination using laser diffractometer (B).
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experiment was initially extracted and baked, it was possible to
determine the diesel component of each section of the column
gravimetrically.

The leachate from each column was collected in beakers.
Since the aqueous leachates contained diesel fuel hydrocar-
bons, three with ethanol as a co-solvent, it was necessary to rst
compare various standard extraction ISO and USEPA
methods26–28 to determine the appropriate solvent for most
effective diesel fuel recovery. This was achieved by carrying out
several back-ltration experiments on ethanol–diesel–water
mixtures of known volumes using different solvents and solvent
mixtures (such as DCM, n-hexane : DCM mixtures, etc.). From
the results obtained, only the 4 : 1 n-hexane : DCM mixture (a
modication of ISO 9377-1 method26) gave almost 100% diesel
fuel recovery for a single extraction. This may be attributed to
the chemistry of the diesel fuel, as diesel fuel contains a high
percentage of n-alkanes which are highly soluble in n-hexane.29

The molecular composition of diesel fuel may make possible
the use of an appropriate n-hexane : DCM mixture without the
possible loss of C8 to C13 hydrocarbons during the solvent
removal process30 – a common problem with n-hexane alone.26,29

These methods will be examined further with the goal of
determining the most effective (more extracts) and most effi-
cient (lower frequency) method for liquid–liquid extraction of
diesel–water mixtures. However, repeated extractions using
DCM alone gave very similar results to single extraction using
the 4 : 1 n-hexane : DCM mixture. Since this method is already
documented in literature, repeated liquid–liquid extraction
using DCM was used to isolate diesel fuel hydrocarbons from
the aqueous leachates.31,32 This method followed the Environ-
mental Protection Agency (EPA) Method 3510C.28

Molecular analysis of the leachates using GC-MS

Molecular analysis of both the pure diesel and the leachates was
carried out using gas chromatography-mass spectrometry (GC-
MS), following EPA Method 8270D.33 This was carried out
This journal is © The Royal Society of Chemistry 2020 1
using the Pegasus 4D instrument in the Organic Geochemistry
laboratory, Macquarie University, Sydney according to the
procedure by Flannery and George.34 Samples from each
leachate were analysed using a two dimensional gas chro-
matograph (Agilent 7890A) operating in one dimension,
coupled to a Pegasus time-of-ight-mass spectrometer (GCxGC-
ToFMS). Fractions (1 mL) were injected through a split/splitless
injector operating at 310 �C in splitless mode onto a J&W
DB5MS column (60 m � 0.25 mm i.d., 0.25 mm lm thickness)
coated with modied 5% phenyl 95% methyl silicone, with He
as the carrier gas. The temperature programme was: 40 �C (2
min) to 310 �C at 4 �C min�1, then held for 45 min. Peak areas
were integrated using LECO Chromatof soware.
Results and discussion
Leaching of diesel fuel through the column

The results from the 90 cm leaching columns indicate that
ethanol addition inuenced the vertical movement of diesel
fuel. Fig. 3A shows the percentage distribution of extractable
diesel fuel along the column for the four blends of diesel fuels.
The topmost 10 cm sections of each column had higher
percentages of diesel fuel than the sections immediately below.
This can be explained by the fact that this section is the rst
point of contact onto which the diesel hydrocarbons would be
easily adsorbed. Little migration of diesel fuel was observed in
the E0 blend, with the extractable amount decreasing down the
column from 15% in the top section to 8.4% at a depth of 90 cm.
Aer the top section, the percentage diesel fuel in the E5
column gradually increased from a low of 9.3% at 20 cm to
a maximum of 12.3% at 70 cm depth, aer which it gradually
decreased again. On the other hand, aer the rst 10 cm top
section, the E10 column experienced a continuous increase in
percentage extractable diesel fuel beyond 10 cm, with the peak
percentage occurring at 90 cm depth (Fig. 3A). This is a strong
indication of the effect of co-solvency on hydrocarbon
RSC Adv., 2020, 10, 6473–6481 | 64753



Fig. 3 Percentage distribution of diesel fuel in 90 cm sand columns (A) and in leachates (B).
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migration. The E20 blend exhibited an irregular pattern. This
can be attributed to the lack of homogeneity in the E20 mixture,
which consequently limits co-solvency and thereby reduces the
amount of diesel fuel hydrocarbons in the aqueous layer.

The effect of ethanol addition on the leaching potential of
diesel fuel was more evident when the amount of extractable
diesel fuel in each leachate was examined (Fig. 3B). Of the four
column leachates, the E10 leachate recorded the highest
amount of diesel fuel fraction (10.02%), and the E0 the least
(0.02%).

Table 1 gives a brief summary of the percentage distribution
of extractable diesel fuel with four depth divisions (x) corre-
sponding to (0–30 cm), (30–60 cm), (60–90 cm) and the leach-
ates. The deeper two divisions (>60 cm) accounted for almost
half (44%) of the diesel fraction in the E10 column, 36% in the
E5 column, but only 27% and 28% in the E0 and E20 columns,
respectively. This is a clear indication of the effect of co-solvency
on the leaching potentials of ethanol-blended fuels.

Effect of ethanol on vertical migration of petroleum
hydrocarbons

To better understand the effect of ethanol-based co-solvency on
the movement of petroleum hydrocarbons, the leachate from
Table 1 Percentage extractable diesel fuel with increasing depth for
the unblended diesel (E0) and the three ethanol blends with diesel (E5,
E10, E20)

Column depth (cm)

Percentage distribution

E0 E5 E10 E20

0 # x # 30 40.1 31.2 27.1 33.2
30 < x # 60 32.9 32.6 29.0 38.6
60 < x # 90 27.1 34.6 33.9 28.2
Leachates (90 < x) 0.02 1.61 10.02 0.04
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each column was examined for the presence of both aliphatic
and aromatic hydrocarbons using GC-MS. Fig. 4–8 give an
overview of this effect as shown by mass chromatograms
selective for n-alkanes (m/z 57) and some aromatic hydrocar-
bons (C2 alkylnaphthalenes, m/z 156; methylphenanthrenes, m/
z 192; biphenyl, m/z 154; C2 alkylbiphenyls, m/z 182) detected in
the leachates from each column. These data show that ethanol
addition strongly affected the vertical migration of diesel fuel
hydrocarbons.

The amount of n-alkanes detected in the E0 leachate is very
low, but a considerable quantity is present in the E5 leachate,
with a maxima at C16 (Fig. 4). More signicant was the E10
leachate, in which virtually all the n-alkanes in the diesel fuel
were leached by 10% by volume ethanol.

The GC-MS chromatograms of the aromatic hydrocarbons
reveal that the effects of ethanol on these were more
pronounced in the E10 leachate. For example, no alkylnaph-
thalene was detected in the E0 leachate (Fig. 5). In the E5
leachate, low concentrations of only 2,7-dimethylnaphalene, co-
eluting 1,3- and 1,7-dimethylnaphthalene, and 1,6-dime-
thylnaphthalene were detected. On the other hand, several
alkylnaphthalenes ranging from 2-ethylnaphthalene to 1,2-
dimethylnaphthalene were detected in the E10 leachate (Fig. 5).
Similarly, whereas methylphenanthrenes were not detected in
the E0 leachate (Fig. 6), very limited amounts of all four isomers
were detected in the E5 leachate. Conversely, 10% ethanol in
diesel (E10) caused considerable leaching of all alkylphenan-
threnes including the methylphenanthrenes from beyond the
90 cm column into the leachate (Fig. 6).

An increase in the ethanol content of the diesel fuel led to an
increase in the leaching potential of substituted biphenyls
(Fig. 7). Ethanol content of the diesel fuel had a differential
effect on the amount of ethylbiphenyls and dimethylbiphenyls
eluted, with the largest amount of these hydrocarbons present
in the E10 leachate (Fig. 7).
This journal is © The Royal Society of Chemistry 20204



Fig. 4 Partial m/z 57 mass chromatograms of the E0, E5 and E10 leachates, showing identification of a homologous series of n-alkanes [E0:
unblended diesel fuel; E5: diesel fuel containing 5% ethanol (v/v); E10: diesel fuel containing 10% ethanol (v/v); Cx: n-alkanes containing x number
of carbon atoms].
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Interestingly, a prior study examined the effect of ethanol on
the leaching ability of individual hydrocarbons independently, and
not in their form as amixture.23 The current study is the rst to use
GC-MS to examine the effect of ethanol content on the leaching
potentials of diesel fuel hydrocarbons as a complete mixture.

From the results obtained, it is evident that the addition of
ethanol to diesel fuel has a direct impact on the leaching potential
of diesel fuel hydrocarbons. While 5% by volume of ethanol had
a very limited effect on the vertical movement of aromatic
hydrocarbons, its effect on aliphatic hydrocarbons are conse-
quential, as shown by the presence of signicant amounts of n-
alkanes in the E5 leachate (Fig. 4). Therefore, ethanol content had
more impact on aliphatic hydrocarbons than it did on aromatic
hydrocarbons. This is not unexpected since the solubility of
petroleum hydrocarbons under room temperature decreases with
Fig. 5 Partial m/z 156 mass chromatograms of the E0, E5 and E10 l
naphthalene; DMN: dimethylnaphthalene; E0: unblended diesel fuel; E5:
ethanol (v/v)].

This journal is © The Royal Society of Chemistry 2020 1
increasing molecular weight and aromaticity (high stability).35,36

This also explains why for polycyclic aromatic hydrocarbons
(PAHs), the lighter aromatic hydrocarbons such as alkylnaph-
thalenes (Fig. 5) elutedmore efficiently from the column than the
heavier ones such as alkylphenanthrenes (Fig. 6). In addition, an
increase in diesel fuel ethanol content from 5% to 10% by volume
considerably increased the amount of aromatic hydrocarbons
that eluted from the columns. This can be seen from the differ-
ence between the amounts of the aromatic hydrocarbons eluted
from the E5 column and those eluted from the E10 column. This
can be explained by the fact that ethanol breaks the surface
tension of repellent soil, allowing increasing penetration.23,37

Thus, with increasing ethanol content the co-solvency of these
hydrocarbons increases, making them more available in the
aqueous phase, and consequently more susceptible to leaching.
eachates showing identification of C2 alkylnaphthalenes [EN: ethyl-
diesel fuel containing 5% ethanol (v/v); E10: diesel fuel containing 10%

RSC Adv., 2020, 10, 6473–6481 | 64775



Fig. 6 Partialm/z 192mass chromatograms of the E0, E5 and E10 leachates showing identification of methylphenanthrenes (MP) [E0: unblended
diesel fuel; E5: diesel fuel containing 5% ethanol (v/v); E10: diesel fuel containing 10% ethanol (v/v)].
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In the absence of stabilisers, co-solvency drops when ethanol
content exceeds 10% by volume.24,25 This agrees with the results
of this study, as shown by the mass chromatograms of the
leachate from the E20 column (Fig. 8). This leachate contains
some n-alkanes with a higher molecular maxima (C20) than raw
diesel, and no aromatic hydrocarbons. This is because solubility
of ethanol in petroleum hydrocarbons signicantly drops at
20% by volume, thereby creating a biphasic solution with an
ethanol phase containing small amounts of hydrocarbons.
Since ethanol is the co-solvent for water and hydrocarbons, this
immiscibility at 20% ethanol volume is responsible for the
observed drop in the hydrocarbon content of the E20 leachates.

Implications for phytotechnologies

Phytotechnology is the direct use of living plants for in situ
bioremediation of contaminated environments, such as
soils.2,38 As a “green” technology, phytotechnology is one of the
Fig. 7 Partial m/z 182 mass chromatograms of the E0, E5 and E10 leac
phenyl; EBp: ethylbiphenyl; E0: unblended diesel fuel; E5: diesel fuel con
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important prospects for sustainable development.39 Phytor-
emediation does not require transportation of contaminated
soils and requires less labour, is less expensive and has a lower
carbon footprint (based on the amount of CO2 emitted) than
traditional techniques of remediation.40 Current rehabilitation
costs can total over $1 million per hectare, and some studies
have indicated that implementing phytoremediation may result
in a cost savings of 50 to 80% over traditional technologies.1

However, phytoremediation of hydrocarbons depends
primarily on rhizoremediation, which involves the breakdown
of contaminants in soil as a result of microbial activity at the
roots.41–43 This involves a series of plant–microbe interactions
which can have potential negative implications for ethanol-
based co-solvency, when petroleum hydrocarbons are leached
beyond the rooting zones of plants.

Rhizosphere microorganisms generally live under condi-
tions of “nutrient starvation” and are thus constantly looking
hates showing identification of C2 alkylbiphenyls [DMBp: dimethylbi-
taining 5% ethanol (v/v); E10: diesel fuel containing 10% ethanol (v/v)].

This journal is © The Royal Society of Chemistry 2020



Fig. 8 Partial mass chromatograms (m/z 57, 156, 192 and 154) of the E20 leachates, showing limited (n-alkanes) or no elution of diesel fuel
hydrocarbons (C2 alkylnaphthalenes, methylphenanthrenes, biphenyl). E20: diesel fuel containing 20% ethanol (v/v).
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for nutrients. The most important nutrient sources excreted by
roots are organic acids (citric, malic, succinic, oxalic and pyruvic
acid), carbohydrates (glucose, xylose, fructose, maltose, sucrose,
ribose), amino acids, fatty acids, proteins, enzymes, nucleotides
and vitamins.44–48 Microorganisms have developed sensory
systems (chemotaxis) that guide them to these roots-secreted
components in order to provide the necessary nutrition and
energy for their survival and reproduction.49 As a result, the
rhizosphere is up to 100 times richer in microbial density than
bulk soil.50–53 This phenomenon is called “the rhizosphere
effect”.54–56 Previous studies have shown that the quantity and
quality of root exudates are determined by the cultivar, plant
species, developmental stage, various environmental factors
(soil type, pH, temperature, nutrient availability), and the
presence of microorganisms.45,57–61 Thus, root exudates affect
not only the microbial population but also its diversity.

Plants and microorganisms have co-evolved so that each can
take advantage of their association. In contaminated soil, the
contaminant distribution gradient is negatively correlated with
the gradient of root exudates, with the lowest hydrocarbon
concentration, and the highest root exudate and microbial
concentration, mostly at the root tips and at sites of lateral
branching.53,60,62–64 Corgié et al.42 reported that phenanthrene
biodegradation reached 86% in the rst 3 mm from the roots,
48% between 3 and 6 mm, and 36% between 6 and 9 mm. They
observed a parallel bacterial gradient, where high numbers of
heterotrophs and PAH-degrading bacteria were close to the
roots. Similarly, in the rhizosphere of perennial ryegrass (Lolium
perenne) growing in a petroleum hydrocarbon contaminated
soil, the highest rates of hydrocarbon degradation and the
microbial degraders were mainly found within 3 mm of the root
surface.65

Plants may directly improve degradation via the root
exudation of enzymes, such as laccases, phenol oxidases and
peroxidases, which catalyse the oxidation of various
This journal is © The Royal Society of Chemistry 2020 17
hydrocarbons and degrade them into intermediate prod-
ucts.53,62 However, microbial-derived enzymatic breakdown is
considered to be the primary pathway for petroleum hydro-
carbon degradation.53

Furthermore, many secondary plant metabolites exuded by
roots such as avonoids, are structurally similar to aromatic
hydrocarbons.66,67 This structural analogy may improve hydro-
carbon degradation by stimulating co-metabolic processes,
which involves the oxidation/mineralisation of petroleum
hydrocarbons molecules that do not support plant growth, such
as benzo-a-pyrene,68 in the presence of other growth supporting
root exudates.69,70 Co-metabolism seems to be the primary
process underlying degradation of recalcitrant
hydrocarbons.18,71

Since most plants employed in phytotechnologies (such as
legumes and grasses) possess limited rooting depths with root
density decreasing with increasing depth, these results reveal
that ethanol addition to diesel fuel will signicantly limit the
effectiveness of phytoremediation as a reclamation strategy for
soils contaminated with ethanol-blended diesel spills. In addi-
tion, since soil microbial diversity and population depend on
root exudation, the efficiency of rhizodegradation of petroleum
hydrocarbons will be negatively affected by enhanced leaching
of the hydrocarbons owing to ethanol addition. This will also be
the case with other innovative variants of phytotechnologies
such as genetically-modied phytoremediation.

In view of the foregoing, it is evident that it is not enough to
limit environmental concerns to atmospheric and particulate
matter emissions. Energy and environmental policy experts
must take a holistic view of energy-related innovations, taking
into consideration other potential implications as they relate to
other aspects of the environment, in this case, soil and under-
ground water. More so, the effect of such innovations on other
sustainable initiatives such as soil contaminant clean-up and
restoration should be carefully considered.
RSC Adv., 2020, 10, 6473–6481 | 6479
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Conclusions

Ethanol-blended petroleum fuels are becoming increasingly
common and utilised. These fuels are targeted at combating
atmospheric pollution, as their oxygenates leave behind lesser
carbon footprints. Noble as this may appear, this innovation is
not without attendant consequences. This research has
demonstrated that the addition of ethanol to diesel fuels can
signicantly affect the leaching potentials of petroleum hydro-
carbons. This effect was seen in both aliphatic and aromatic
hydrocarbons. While 5% (by volume) ethanol addition had
a limited effect on aromatic hydrocarbons, 10% ethanol addi-
tion resulted in the elution of all class of aromatic hydrocarbons
studied beyond the 90 cm column. Even the more stable poly-
cyclic aromatic hydrocarbons such as alkylnaphthalenes and
alkylphenanthrenes, which are otherwise highly insoluble in
water, were eluted through the E10 column. This shows the
ability of ethanol to enhance co-solvency of hydrocarbons as
well as break the surface tension of repellent soil, allowing
increasing penetration. This observation is signicant consid-
ering the persistence of these classes of hydrocarbons in the
environment and their toxicity to humans when these
contaminants make their way into the underground water table.

The analyses presented in this paper highlight potential
implications for the successes of phytotechnologies. Since
phytoremediation of hydrocarbons depends largely on rhizo-
degradation of contaminants by the root-associated micro-
biome, the leaching of petroleum hydrocarbons beyond the
rooting zones of plant will denitely limit the effectiveness of
this approach as a reclamation strategy for ethanol-blended
diesel spills. Thus, it is imperative that energy scientists and
policy makers carefully consider the resultant environmental
impacts of ethanol-blended innovations holistically.
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g r a p h i c a l a b s t r a c t
� Hormesis cannot be ignored in plant
ecotoxicology research.

� Diesel fuel had a concentration-
dependent monotonic impact on
most species, but had a hormetic ef-
fect on Medicago sativa.

� An appropriate dose-response model
is crucial for the accurate assessment
of hormesis in plants.

� A wrong statistical model leads to a
wrong interpretation of the potential
of species for environmental
remediation.
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As an ecotoxicological tool, bioassays are an effective screening tool to eliminate plants sensitive to the
contaminant of interest, and thereby reduce the number of plant species requiring further study. We
conducted a bioassay analysis of fifteen plant species to determine their tolerance to diesel fuel toxicity.
Dose-response analysis revealed that increasing diesel fuel concentrations in the soil generally led to a
monotonically decreasing biomass in 13 species (P < 0.001), with EC10 values (±SE) ranging from
0.36 ± 0.18 g/kg to 12.67 ± 2.13 g/kg. On the other hand, hydrocarbons had a statistically significant
hormetic influence on Medicago sativa (f ¼ 3.90 ± 1.08; P < 0.01). The EC10 and EC50 values (±SE) from
the fitted hormetic model were 15.33 ± 1.47 g/kg and 26.89 ± 2.00 g/kg, respectively. While previous
studies have shown M. sativa’s tolerance of hydrocarbon toxicity, this is the first attempt to describe
diesel fuel-induced hormesis in M. sativa using the Cedergreen-Ritz-Streibig model. This study thus
shows that hormesis cannot be ignored in plant toxicology research, and that when present, an
appropriate statistical model is necessary to avoid drawing wrong conclusions.

© 2020 Elsevier Ltd. All rights reserved.
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1. Introduction

Globally, oil spillage is themost significant environmental threat
resulting from oil and gas operations. For example, in 1989 the
Exxon Valdez oil spill released 42 million litres of crude oil,
resulting in the contamination of approximately 2000 km of
shorelines in the Gulf of Alaska (Bragg et al., 1994). Although large-
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scale aquatic spills readily attract public attention, the majority of
oil and fuel spills have occurred on land, with long-lasting
ecological impacts (Duffy et al., 1980; Errington et al., 2018). The
toxicity of petroleum hydrocarbons to human and animal life,
coupled with the slow rate of natural attenuation has led to
increasing interest in the discovery of effective remediation tech-
niques (Dean, 1985; McKee and White, 2013).

The remediation of contaminated soils is a multibillion dollar a
year global industry (Cunningham and Berti, 1993). Most often,
remediation is based on either ex situ (excavation and offsite)
treatment or in situ (on site) remediation approaches. Due to the
prohibitive cost and environmental impacts of traditional strate-
gies, a high proportion of contaminated sites are either left as is or
their rehabilitation is delayed. Thus, other cheaper and eco-friendly
alternatives are required. Plant-based remediation techniques are
considered to be an effective and affordable “green technology” for
reclaiming soils contaminated with petroleum hydrocarbons
(McLntyre and Lewis, 1997; Rohrbacher and St-Arnaud, 2016).

Rhizoremediation relies on the tolerance of plants to contami-
nant toxicity and the degradation of contaminants in the rhizo-
sphere. Under a variety of environmental conditions, vegetation has
been shown to particularly enhance microbial degradation rates of
organic chemical residues in soils (Anderson et al., 1993; Reilley
et al., 1996; Corgi�e et al., 2003, 2004). This is due to plant’s ability
to exude nutrients such as sugars and amino acids from its roots
that support specific, beneficial bacterial assemblages (Berendsen
et al., 2012, 2018). In addition, root exudates can stimulate bacte-
rial behaviours vital for the synthesis of degradative enzymes, as
well as regulate plant-microbe interactions by recruiting plant
growth promoting rhizobacteria such as nitrogen-fixers or phos-
phate solubilizers (Benizri et al., 2002; Baudoin et al., 2003; Butler
et al., 2003; Broeckling et al., 2008). These are processes vital for
tolerance and rhizoremediation of environmental contaminants.
Several studies have thus identified root exudation as the most
important driver responsible for rhizodegradation of organic con-
taminants (Yoshitomi and Shann, 2001; Joner et al., 2002; Da Silva
et al., 2006; Phillips et al., 2012; Martin et al., 2014).

There is strong evidence that the quantity and quality of root
exudates are determined by the cultivar, plant species, develop-
mental stage, and various environmental factors (Viebahn et al.,
2005; Badri and Vivanco, 2009; Xue et al., 2013). Similarly, the
microbial assemblages that root exudates foster, can be specific to
the plant species, and even the strain (Lioussanne et al., 2008;
Micallef et al., 2009). It appears that, from the reservoir of microbial
diversity that the bulk soil comprises, plant roots select specific
microorganisms to prosper in the rhizosphere (Miethling et al.,
2000; Siciliano et al., 2003; Berg et al., 2006; Berendsen et al.,
2012). This consequently enhances the ability of host plants to
withstand contaminant toxicity. Since different plant species
exhibit different responses to environmental toxicants, it is highly
beneficial to screen plants for their ability to withstand contami-
nant toxicity. Bioassays as screening tools helps to eliminate plants
sensitive to the target contaminant, thereby reducing the number
of plant species requiring large-scale studies (Kirk et al., 2002;
Chouychai et al., 2007). Equally important is the accurate analysis of
phytotoxicity through the use of appropriate dose-responsemodels
(Ritz, 2010). These are all important parameters when selecting
plants suitable for phytoremediation.

There is increasing evidence that plants can exhibit biphasic
dose-response (hormetic) behaviours, characterized by contrasting
responses to low and high concentrations of contaminants, with
often stimulatory effects of contaminants at low doses
(Agathokleous et al., 2018). Unfortunately, species-specific horm-
esis in plant research remains underexplored. Therefore, the aim of
this research is to explore the response (including hormetic
2
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response) of selected plant species to diesel fuel phytotoxicity and
to analyse plants’ responses through the use of appropriate dose-
response models. This research is vital to enhance our under-
standing of the response of plants to chemical stress, especially
those caused by toxic hydrocarbons.

2. Materials and methods

2.1. Soil preparation for bioassay

The soil used for this experiment was “turf underlay” obtained
from Australian Native Landscapes Pty, Sydney. Turf underlay is
made from a mixture of screened sand, soil, and composted or-
ganics. It is blended with a natural fertiliser additive to help roots
properly grow and stay long during all times of year, including the
winter months. The soil was sieved using a 2-mm sieve to remove
unwanted large particles. The soil textural class is dominantly sand
(86.2% sand, 5.1% silt and 8.7% clay), with 9.3% organic matter
content by loss on ignition and 0.18% total nitrogen content. The soil
was then air-dried until a constant weight is achieved. Different
concentrations of diesel fuel contaminated soils (0 g/kg, 5 g/kg,
10 g/kg, 20 g/kg, 30 g/kg, 40 g/kg, 50 g/kg and 100 g/kg of soil) were
prepared by spiking 2 kg of soil samples with appropriate amounts
of diesel fuel. The diesel fuel used was petroleum diesel (also called
petrodiesel), as opposed to synthetic diesel or biodiesel, and was
obtained from a Shell service station in Sydney. The chemical
composition is predominantly saturated hydrocarbons (C10 to C25

n-alkanes, iso- and cyclo-alkanes) and some aromatic hydrocar-
bons (e.g. alkylnaphthalenes and alkylbenzenes). The spiked soils
were first mixed manually by hand (using gloves), followed by a
thorough mixing using a Sanfine portable electric 1800W soil
mixing machine (Model No. SF-HM1401/1401 S). The mixing was
performed for 15 min per pot (2 kg soil) with a break and manual
shaking after every 5 min to achieve complete homogeneity.

2.2. Determination of seed viability

The triphenyltetrazolium chloride (TTC) test has been devel-
oped to provide a rapid estimate of seed viability (Van Waes and
Debergh, 1986; Adam and Duncan, 2002). TTC is a clear, water
soluble compound (a salt) which is reduced by respiring tissues to
yield triphenylformazan (TPF), a water-insoluble red pigment.
Thirty seeds of each species were subjected to the TTC test as fol-
lows. Each batch of seeds was placed in a beaker containing 50 mL
of 1% TTC, prepared by dissolving 1 g of TTC in 100 mL distilled
water. The beakers were covered and placed in an incubator at
30 �C for 1 h. Following incubation, the liquid was decanted and the
seeds were rinsed with distilled water until the water was clear.
The seeds were blotted with dry towel and the colour was
observed. The seeds were classified into two categories according
to their colour development, namely: “red/pink” and “no colour”,
corresponding to “viable” and “not viable”, respectively.

2.3. Plant growth experiment

Following the results of the TTC test, phytotoxicity assays were
carried out using a series of pot experiments in a greenhouse using
seeds from viable seed bags. The plant species studied included 12
legumes (Glycine max, Vigna unguiculata, Trifolium incarnatum,
Trifolium repens, Trifolium pratense, Medicago truncatula, Medicago
sativa, Fagopyrum esculentum, Vicia faba, Vicia sativa, Brassica napus,
Cassia rotundifolia) and three grasses (Cynodon dactylon, Dactylis
glomerata, Festuca rubra).

For each plant species, 10 viable seeds were placed in pots each
containing 2 kg of control soil or contaminated soils of different
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concentrations (0, 5, 10, 20, 30, 40, 50 and 100 g diesel/kg soil). Pots
were watered twice a week for a period of 90 days. During this
period, measurements such as shoot heights (in mean values of
plants per pot) were taken every two weeks to determine species
relative growth rate. Height growth was measured from the shoot
tip to the base of stem following the methods of Chen et al. (2002).
In addition, visual assessments of the plant leaves were made per
plant per pot every twoweeks to assess for the presence or absence
of chlorosis. After three months, each plant was harvested, the
shoots and roots were washed under tap water, oven-dried at 70 �C
until a constant weight was achieved, and then their dry biomass
weight was obtained.

2.4. Statistical analysis and modelling

2.4.1. Log-logistic model
All statistical analyses were carried out using the “dose-

response curve” package in R (R Core Team, 2018). A large number
of dose-response model functions are built-in to drc (Ritz et al.,
2015). These models are parameterized using a unified structure,
with a coefficient b denoting the steepness of the dose-response
curve, c and d the lower and upper asymptotes or limits of the
response respectively, and e, which reflects the point of inflection
and equates to the effective dose ED50 or EC50 in some models
(Ritz, 2010). The present study used the drm() function in the
package drc to model the effect of diesel fuel exposure on plant
biomass. As in the methods of Hose et al. (2016), a series of 3-
parameter response curves including log-logistic, Weibull, log-
normal and hormetic curves were fit to the data, and the best
fitting model based on Akaike information criterion were chosen.
Log-logistic models are the most used dose-response models (Ritz
et al., 2015). The four-parameter log-logistic model corresponds to
the model function:

f ðx; ðb; c;d; eÞÞ¼ c þ d� c
1þ exp½bflogðxÞ � logðeÞg�

However, in most biological experiments, all test organisms die
at high contaminant concentrations. This was also true in this
study. Hence, it is desirable to fix the lower asymptote c at 0. This
results in a three-parameter log-logistic model as follows:

f ðx; ðb;d; eÞÞ¼ d
1þ exp½bflogðxÞ � logðeÞg�

One benefit of fixing c at 0 on biological or toxicological grounds
is improved precision of the remaining parameter estimates, as the
information content of the model has been enhanced (Ritz, 2010).
The concentrations causing 10% and 50% reductions in biomass of
the test population (the EC10 and EC50 values) were extrapolated
from the fitted curves. Analyses were based on nominal soil hy-
drocarbon concentrations.

2.4.2. Modelling hormesis: Cedergreen-Ritz-Streibig model
Traditionally, dose-response models are based on strictly

monotonic functions, which are either strictly decreasing from a
maximum control response at zero dose to a lower limit at infinite
dose, or are strictly increasing from no effect at zero dose to
maximum effect at infinite dose, depending on whether it is the
response or the effect that is being assessed. These functions
therefore cannot be used to model dose responses that exhibit
initial response stimulation, known as hormesis (Cedergreen et al.,
2005), a phenomenon that has gained increased recognition
(Calabrese and Baldwin, 2003; Agathokleous, 2018).

To overcome these limitations, Cedergreen et al. (2005) devel-
oped a new empirical model that can describe and test for hormetic
3
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responses in all types of dose-response data, irrespective of their
slope. This model is known as the Cedergreen-Ritz-Streibig model
and is described by the equation:

f ðxÞ¼ c þ d� c þ f expð � 1=ðxaÞÞ
1þ exp½bflogðxÞ � logðeÞg�

This model allows the calculation of the concentration of the
maximum hormetic response, the size and significance of this
response, as well as effective doses (EDx). The ability of the
Cedergreen-Ritz-Streibig model to enable the determination of
effective doses is its major advantage over earlier models
(Cedergreen et al., 2005). A statistical test for the presence of
hormesis is equal to the test of f ¼ 0, where f is the rate of hormetic
effect or growth stimulation at doses close to zero (Brain and
Cousens, 1989; Cedergreen et al., 2005).

2.4.3. Relative growth rate
Relative growth rate was calculated for the three most tolerant

taxa identified from the concentration response experiments. We
chose plants in the 5 g/kg diesel fuel contaminated soils, since this
reflected the lowest tolerable concentrations in our study. The
classical approach to relative growth rate measurements makes use
of dry mass, which requires destructive harvesting (Hunt, 1990;
Alameda and Villar, 2012). However, this method is often associated
with certain biases, owing to some variations in plant weight
among individuals (Hoffmann and Poorter, 2002). Since dry weight
biomass often correlates well with plant height, we assessed rela-
tive growth rate in terms of the mean values of shoot heights per
pot. This approach is similar to that adopted by Chen et al. (2002).
For statistical analysis, we employed the generalized logistic model
with lower asymptote c ¼ 0, since height at t0 ¼ 0 (Fresco, 1973;
Gregorczyk, 1991; Szparaga and Kocira, 2018).

3. Results

3.1. Biomass response

Of the 12 legumes (Glycine max, Vigna unguiculata, Trifolium
incarnatum, Trifolium repens, Trifolium pratense, Medicago trunca-
tula, Medicago sativa, Fagopyrum esculentum, Vicia faba, Vicia sativa,
Brassica napus, Cassia rotundifolia) and three grasses (Cynodon
dactylon, Dactylis glomerata, Festuca rubra) tested, only
C. rotundifolia failed to germinate even at low concentrations of
diesel fuel. This was not unexpected since the initial viability test
performed on seed bags gave percentage viability of 32% for
C. rotundifolia and >90% for other seed species. Therefore,
C. rotundifolia was excluded from further analysis.

With the exception of M. sativa, growth of all plant species
showed monotonic behaviour in the presence of diesel fuel
contamination, with decreasing biomass at increasing diesel fuel
concentrations, as exemplified in Fig. 1 for D. glomerata and
T. pratense.

3.2. Relative growth rate

When grown in 5 g/kg diesel fuel contaminated soils, M. sativa
had the highest relative growth rate (±standard error) of the three
species (0.08 ± 0.01 cm/day), followed by V. faba (0.07 ± 0.01 cm/
day) and G. max (0.06 ± 0.01 cm/day) (Fig. 2).

Chlorosis is a condition in which leaves produce insufficient
chlorophyll, leading to pale or yellow colouration of the leaves and
eventual death unless chlorophyll production is restored (Pallardy,
2008). Visual assessments of the plant leaves were performed to
assess the presence of chlorosis in selected plants (Fig. 3). With the



Fig. 1. Performance of Dactylis glomerata and Trifolium pratense in soils contaminated with different concentrations of diesel fuel (a: 0 g/kg; b: 5 g/kg; c: 10 g/kg; d: 20 g/kg; e: 30 g/
kg; f: 40 g/kg; g: 50 g/kg; h: 100 g/kg).

Fig. 2. Generalized logistic model showing the growth rate of three plants grown in
5 g/kg diesel fuel contaminated soils. The growth rate was measured in terms of shoot
height (cm) attained with time (days).
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exception of M. sativa, all the plants grown in diesel fuel contami-
nated soils showed the presence of chlorosis at different stages of
their growth. For example, by week 3, V. unguiculata and B. napus in
20e50 g/kg diesel fuel contaminated soils began to show signs of
chlorosis, and byweek 6, they began to die. This indicates their high
sensitivity to diesel fuel. In contrast, the appearance of chlorosis in
V. faba correspondedwith increasing soil diesel fuel concentrations,
with first occurrence in V. faba plants growing in 50 g/kg in week 6.
By week 8 chlorosis had occurred in all V. faba plants growing in
10e50 g/kg contaminated soils.

3.3. Dose-response analysis

A 3-parameter log-logistic model provided the best fit for the
responses of all taxa (Table 1, Fig. 4), except for M. sativa for which
the concentration response was best described by the Cedergreen-
Ritz-Streibig model (Table 1, Fig. 5). The Cedergreen-Ritz-Streibig
model suggests a hormetic response for M. sativa, in which
4

24
biomass increased relative to the control at low hydrocarbon con-
centrations (Fig. 5). The statistical test for the presence of hormesis
was significant (f ¼ 3.90 ± 1.08, P < 0.01) for M. sativa indicating
hormesis. As shown in Table 1, tolerance to diesel fuel varied from
one species to another. For example, while some species (such as
B. napus and T. repens) could not survive beyond 20 g/kg concen-
trations, others such as G. max and V. faba continued to produce
biomass at diesel fuel concentrations in the range of 5e50 g/kg.
None of the plants survived in soils containing 100 g/kg diesel fuel.

As shown in Table 1, the effect of diesel fuel on plant species was
species-specific. For example, there was a marked difference in ECx
values between M. sativa and M. truncatula, and between
T. incarnatum and T. pratense. Among the species studied, M. sativa
had the highest EC10 (±SE) value of 15.33 ± 1.47 g/kg, while
T. incarnatum had the lowest EC10 (±SE) value of 0.36 ± 0.18 g/kg.
The three plants with the highest EC50 (±SE) values were G. max
(36.94 ± 1.97 g/kg), V. faba (31.25 ± 2.86 g/kg) and M. sativa
(26.89 ± 2.00) (Table 1). On this basis, these three species were
further assessed for their relative growth rates.
4. Discussion

In this study, grasses and legumes were selected as they are
often the best candidates for phytoremediation (USEPA, 2001).
Grasses are potentially useful for phytoremediation because of
their extensive and fibrous root system (Binet et al., 2000), while
legumes are suitable because of their intrinsic ability to obtain ni-
trogen through their symbiotic relationships with Rhizobia (USEPA,
2000). The results of our study show that diesel fuel in soil impacts
biomass production of potential phytoremediating plants, and that
the nature and extent of this impact is plant species-specific. The
findings of this research also highlight the need to employ appro-
priate statistical models in the analysis of phytotoxicity assay re-
sults, so as to reduce the chances of drawing wrong conclusions.

A major objective of this study was to establish how various
concentrations of diesel fuel in soil affect the survival and biomass



Fig. 3. Presence of chlorosis in Vicia faba is evident in the colour of the leaves, which varied from (A) a green colour during the first 4 weeks, to (B) a yellow colour after 8 weeks. (C)
The absence of chlorosis in Medicago sativa after 8 weeks is evident, and is attributed to enhanced nodule development (see insets) in contaminated soil. (For interpretation of the
references to colour in this figure legend, the reader is referred to the Web version of this article.)

Table 1
Toxicity of diesel fuel to different plant species.

Species EC10 EC50 Model

Legumes Glycine max 12.67 (2.13) 36.94 (1.97)*** LL.3
Vicia faba 5.05 (1.44) 31.25 (2.86)*** LL.3
Vicia sativa 5.07 (1.15) 21.28 (1.96)*** LL.3
Vigna unguiculata 2.24 (0.85) 14.50 (2.41)*** LL.3
Medicago sativa 15.33 (1.47) 26.89 (2.00)*** CRS.4a
Medicago truncatula 0.87 (0.20) 4.19 (0.41)*** LL.3
Trifolium incarnatum 0.36 (0.18) 3.02 (0.65)*** LL.3
Trifolium pratense 2.35 (0.50) 7.73 (0.80)*** LL.3
Trifolium repens 2.86 (0.38) 7.06 (0.43)*** LL.3
Brassica napus 1.89 (0.57) 5.00 (0.59)*** LL.3
Fagopyrum esculentum 0.59 (0.32) 6.53 (1.49)*** LL.3

Grasses Cynodon dactylon 3.10 (0.46) 9.35 (0.71)*** LL.3
Dactylis glomerata 3.00 (0.49) 10.26 (0.83)*** LL.3
Festuca rubra 4.40 (1.70) 11.58 (2.04)*** LL.3

EC10 and EC50 values indicate the concentrations of diesel fuel (g/kg) that caused a
10% and 50% reduction in biomass production of each species, respectively. Values in
parentheses indicate standard errors. LL.3¼ 3-parameter Log-logistic model; CRS.4a¼
Cedergreen-Ritz-Streibig model; Significant code: ‘***’ P < 0.001.
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production of the studied plants. Regression analysis (Fig. 4) shows
that the effect of diesel fuel on plant biomass production is species-
specific. For example, while the three species of Trifolium were
sensitive to diesel fuel, the impact of diesel fuel on the species
varied (Fig. 4, Table 1). Similar observations were made for Medi-
cago and Vicia species. In general, increases in diesel fuel concen-
trations in the soil led to a highly statistically significant (P < 0.001)
monotonic decrease in the biomass of 13 species, as shown by the
sigmoidal curves (Fig. 4). This observation is consistent with pre-
vious research on other plant species (Adam and Duncan, 2003;
Chouychai et al., 2007). On the other hand, diesel fuel in the soil at
5 g/kg concentrations enhanced nodule development and conse-
quently biomass production in M. sativa, resulting in a hormetic
response (Fig. 5). The statistical test for the presence of hormesis is
equal to the test of f ¼ 0, where f is the rate of hormetic effect.
Interestingly, our resulting hormetic model gave f ¼ 3.90 ± 1.08,
denoting an inverted U-shaped hormetic curve which is statisti-
cally significant at P < 0.01. On this basis, we calculated effective
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concentrations of diesel fuel in terms of EC10 and EC50.
For log-logistic curves for the other species, EC10 values ranged

from 0.36 ± 0.18 g/kg for T. incarnatum to 12.67 ± 2.13 g/kg for
G. max, while EC50 values ranged from 3.02 ± 0.65 g/kg for
T. incarnatum to 36.94 ± 1.97 g/kg for G. max. For the hormetic
curves, care is required since the value of e provides a lower bound
of the EC50 value. The EC10 and EC50 values from our fitted hor-
metic model were 15.33 ± 1.47 g/kg and 26.89 ± 2.00 g/kg
respectively. Hence, M. sativa and G. max had the highest EC10 and
EC50 values, respectively. Our goal was to identify species with high
EC values and high biomass. As G. max, V. faba and M. sativa had
high EC values (high tolerance) and high biomass, this suggests that
they are suitable species for rhizoremediation.

Our study also reveals that errors in fitting statistical models can
lead to wrong conclusions. For example, describing the effect of
diesel fuel onM. sativa using log-logistic model produces EC10 and
EC50 values of 11.83 ± 2.67 g/kg and 25.13 ± 2.51 g/kg. These are
lower than the actual EC10 and EC50 values extrapolated from the
hormetic curves. Hydrocarbon-induced hormesis was first
observed in plants about a century ago (Agathokleous et al., 2020a),
and more recent studies have shown that M. sativa is tolerant to
hydrocarbon toxicity (Chekol and Vough, 2001; Sun et al., 2011;
Hamdi et al., 2012; Marchand et al., 2016, 2018; Panchenko et al.,
2017). However, this paper is the first attempt to describe diesel
fuel-induced hormesis in M. sativa using the Cedergreen-Ritz-
Streibig model. This is important since traditionally, dose-
response models, such as the log-logistic model or the log-
normal and Weibull models, are based on strictly monotonic
functions and therefore cannot be used to model dose responses
that exhibit initial response stimulation (Brain and Cousens, 1989;
Cedergreen et al., 2005), a phenomenon that has gained increased
recognition (Calabrese and Baldwin, 2003; Calabrese and Blain,
2005; Wiegant et al., 2012). An adequate understanding of
species-specific hormesis in plant biology is vital for establishing
toxicological thresholds, and for determining the suitability of plant
species for hydrocarbon remediation purposes.

Examination of the existing literature suggests that in many
biological studies, hormesis is the norm rather than the exception.



Fig. 4. Concentration response curves for thirteen plant species exposed to diesel fuel contaminated soil. Plots show changes in plant biomass in response to diesel fuel con-
centration, with curves modelled using a 3-parameter log-logistic model.

Fig. 5. A plot of the hormetic influence of diesel fuel in the soil on the biomass of
Medicago sativa in glasshouse bioassays using the Cedergreen-Ritz-Streibig model.
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Various substances generally classified as toxicants have been
found to be beneficial to living organisms at low doses, indicating
that dosage is an important determinant of toxicity. Although
organic and inorganic substances such as petroleum hydrocarbons
and heavy metals are considered phytotoxic, increasing evidence
suggests that they impact positively on plant growth at low doses
(Muszy�nska and Labudda, 2019; Carvalho et al., 2020; Shahid et al.,
2020). An evaluation of thirty-three plant species and over twenty
stress-inducing agents revealed this stimulatory effect is related to
the influence of stressors on chlorophyll production at low con-
centrations (Agathokleous et al., 2020b). The results of our study
revealed that the stimulatory (or inhibitory) effect of diesel fuel is
species-specific, as shown in the case of Medicago, Vicia and Trifo-
lium species (Table 1). For example, while M. truncatula gave a
decreasing monotonic response to diesel fuel, M. sativa exhibited a
highly significant hormetic response in the order of 165% of control
(maximal mean value), a value that is in agreement (although
slightly higher) with the maximum median values of 150e160%
reported in many hormetic studies (Agathokleous et al., 2020b). It
should be noted, however, that it was not possible to investigate all
varieties within the genera studied, as this would require numerous
genotypes of each species. Additionally, different doses of diesel
fuel (especially concentrations lower than 5 g/kg) might induce
hormesis in species that did not show hormesis in this study.

To obtain a more accurate picture of survival and tolerance in
6
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phytotoxicity assays, relative growth rates of plants in the presence
of contaminants should also be determined. From EC50 values
alone, one may conclude that G. max offers the best potential for
rhizoremediation. However, an examination of relative growth rate
(RGR; cm/day) reveals that G. max has the lowest RGR (0.06 ± 0.01)
when compared to those ofM. sativa (RGR¼ 0.08± 0.01) and V. faba
(RGR ¼ 0.07 ± 0.01). In addition, M. sativa had the highest value of
the upper asymptote (d¼ 73.84± 2.98; P< 0.001), while G. max had
the lowest value (d ¼ 30.02 ± 4.19; P < 0.001) among the three
species. Considering the fact that M. sativa, G. max and V. faba can
generally grow to heights of 1 m, 1.2 m and 1.8 m respectively, our
results indicate that G. max and V. faba were highly sensitive to
petroleum hydrocarbons. This observation thus places M. sativa as
the best species in terms of toxicity tolerance and consequently
rhizoremediation potential.

Finally, our examination highlights the need for extended test
duration for bioassays to enable the observation of such indicators
of phytotoxicity as chlorosis. In ecotoxicology research, chlorosis in
plants is a strong indication of toxicity of contaminants, be it
organic or inorganic, to plant tissues (Sanderson et al., 1997;
Edward, 1998; Sa�glam et al., 2016). The determination of chlorosis
through visual observations is crucial in our choice of plants with
tolerance to phytotoxicity. The presence of chlorosis in most of the
studied plants was evident from morphological observations
(Fig. 3). Our results revealed that by the fourthweek, themajority of
the species had already shown signs of chlorosis. Additionally, a few
species such as V. faba did not show any sign of chlorosis within the
first four weeks, but these signs began to appear from the sixth
week onward (Fig. 3b). In contrast, plants in the controls did not
show any signs of chlorosis, implicating the diesel fuel contami-
nation as being responsible. Medicago sativa on the other hand did
not manifest any sign of chlorosis in any treatment (Fig. 3c).
Microscopic examination of the roots of the studied plants revealed
enhanced nodule development and microbial colonisation of the
M. sativa roots (Fig. 3c insets). Nitrogen fixation by associated rhi-
zobacteria may therefore be responsible for enhanced biomass
production and for the absence of chlorosis (Kozlowski and
Pallardy, 1997; Kirkby, 2005; Scherer, 2005).

Traditional methods of assessing chlorosis are by spectropho-
tometric or colorimetric analyses, following extraction of pigments
from leaves (Wickliff and Aronoff, 1962). However, in view of the
destructive nature of this method, we recommend the more recent
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non-destructive vision-based approaches using reflectance and
transmittance as base parameters (Liang et al., 2017; P�erez-Patricio
et al., 2018). Finally, our results underscore the need to extend plant
bioassay research beyond the first couple of weeks to enable suf-
ficient time to assess chlorosis, either through visual observation or
other non-destructive techniques.

5. Conclusions

Bioassays are an effective ecotoxicological tool to screen the
sensitivity of plants to contaminants, and to reduce the number of
plant species required for further studies. Our screening of 15 plant
species reveals that diesel fuel in soil is toxic to most plants, and the
magnitude of this effect increases with diesel fuel concentrations in
the soil. While all other studied plants gave a monotonically
decreasing biomass with increasing diesel fuel concentrations,
M. sativa had a hormetic curve, indicating that diesel fuel at low
concentrations stimulated growth. A combination of parameters
points toM. sativa as possessing the highest phytotoxicity tolerance
and potential for the rhizoremediation of diesel fuel contaminated
sites. Finally, this study demonstrated the importance of choosing
the appropriate statistical model for the analysis of phytotoxicity.
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Abstract: The remediation of contaminated sites using plant-based techniques has gained increasing
attention in recent decades. However, information on the effects of contaminant imbibition on
seed viability and germination rates are often lacking in the literature. To this end, our research
investigated, by means of an event-time model, the effect of diesel fuel imbibition on the seed viability
and germination rate of Medicago sativa, a plant species with great potential for remediation of organic
contaminants. The event-time model provided an accurate and biologically relevant method for
analysing germination data. Our results reveal that the direct imbibition of diesel fuel by M. sativa
seeds for ≤48 h, or their exposure to soil diesel fuel concentrations of 0–10 g/kg diesel fuel, affects
their germination rates, as shown by increasing t50 values from 90.6 (±2.78) to 114.2 (±2.67) hours,
without significantly affecting seed viability. On the other hand, diesel fuel imbibition of longer
duration, or the exposure of M. sativa seeds to ≥20 g/kg diesel fuel-contaminated soils, leads to
no further effect on time to seed emergence. Instead, these conditions compromise seed viability,
resulting in a decrease in the proportion of germinated seeds from 0.91 (±0.03) in 10 g/kg diesel
fuel contaminated soil to 0.84 (±0.04) and 0.70 (±0.05) in 20 and 30 g/kg diesel fuel-contaminated
soils, respectively. The fact that low concentrations of diesel fuel and 0–48 h of direct imbibition
delayed seed emergence without adversely affecting the percentage of viable seeds suggests that this
inhibitory effect on germination at low diesel fuel exposure could be attributed more to physical
constraints rather than biological damage on the seeds. The models used in this study provide an
accurate and biologically relevant method for the analyses of germination data. This is vital since
expensive germination experiments, be it in the field of toxicology or agriculture, deserve to be
accurately analysed.

Keywords: phytoremediation; diesel fuel; Medicago sativa; germination; seed viability; event-time
model

1. Introduction

There is a growing body of evidence that plant roots, in conjunction with their associated microbial
communities, offer an effective treatment strategy for in situ remediation of contaminated soils [1,2].
Under a variety of environmental conditions, vegetation has been shown to enhance microbial
degradation rates of organic chemical residues in soils [3]. Plant-based remediation (phytoremediation)
is not a new concept. Constructed wetlands, reed beds and floating-plant systems have been widely
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used for the treatment of some types of wastewater. Current research now focuses on expanding
phytoremediation to address contaminated soils and atmospheric pollutants [4]. These techniques
provide environmentally friendly and cost-efficient advantages over excavation and off-site treatments
of contaminated soils.

The focus of recent advances in bioremediation techniques has been to effectively restore polluted
environments in an eco-friendly manner, and at a low cost [5]. To achieve this goal, various laboratory
and greenhouse-based studies have been performed to assess the suitability of plant species for
phytoremediation [6–8]. In many of these experiments, plants are first grown in uncontaminated soils
for a week or two and then transplanted to contaminated soils. Hence, there is a dearth of literature on
the effects of contaminant imbibition on seed viability and germination rates—something necessary to
complement microcosm studies on phytoremediation of organic contaminants. The aim of the present
study is to bridge this gap by examining the effect of exposure to diesel fuel on the seed viability and
germination rate of Medicago sativa, a plant with great reclamation potential for soils contaminated
with petroleum hydrocarbons [9–14].

Diesel fuel is hydrophobic [15], and in low permeability matrices such as soil will tend to not
migrate into deeper sediments. Therefore, the majority of the hydrocarbon contaminants from diesel
spills will be held within the surface and subsurface layers of soils, and within the rhizospheric zones
of plants. As a result, seeds planted in such soils either for agricultural purposes or for the purpose of
remediation and land reclamation will come into direct contact with diesel fuel and become coated
by it. Thus, it is imperative that the effect of such hydrocarbon contaminants on seed viability and
germination be properly understood.

Germination experiments can be divided into two groups: those in which new batches of seeds are
used for each test, and those in which the same batch of seeds is followed over time. In the latter case,
the same seeds are repeatedly observed over a pre-specified duration of the experiment until the event
of interest occurs; the resulting data are often referred to as time-to-event data [16]. Time-to-event data
have two inherent features. Firstly, the event of interest need not occur at all during the experiment.
This phenomenon, known as right-censoring [17], is applicable to germination experiments since some
seeds may not germinate for the entire duration of the experiment. Consequently, a plausible statistical
model must allow for the event of interest (in this case, seed germination) occurring after termination
of the experiment, or not occurring at all. Secondly, the event of interest may not be observed exactly
at the time point when the event took place [17]. For instance, seeds in pots or petri dishes may only be
inspected once a day and not on a continuous 24-h per day basis. These types of time-to-event data are
often referred to as grouped data or interval-censored data [16,18].

This study used the event-time model to analyse the effect of exposure to diesel fuel on the
viability and germination rate of M. sativa seeds. The event-time model appropriately reflects the
experimental design of right-censored germination experiments while allowing the meaningful
biological interpretation of germination data.

2. Results

2.1. Effect of Diesel Fuel on Germination

The germination curves for M. sativa seeds sown in 0 (control), 5, 10, 20 and 30 g/kg diesel
fuel contaminated soils are shown in Figure 1. When compared to nonlinear regression models,
the event-time model provided the best fit for the germination data. As expected, the proportions of
germinated seeds varied with time, being largest at intermediate monitoring intervals (48–120 h for
0 g/kg; 72–144 h for both 5 and 10 g/kg; 96–168 h for both 20 and 30 g/kg diesel fuel-contaminated soils)
and smallest at the initial and final intervals when germination activity was low.
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Figure 1. Germination curves for Medicago sativa seeds in 0 (control), 5, 10, 20 and 30 g/kg diesel fuel
contaminated soils.

Table 1 provides a summary of important germination parameters from Figure 1. These parameters
provide insight into the effect that diesel fuel imbibition had on the viability and germination rates of
M. sativa seeds.

Table 1. Parameter estimates of the log-logistic model obtained by fitting the event-time model.
(Values in parentheses indicate standard errors).

Concentration of Diesel Fuel in Soils (g/kg) b (Slope at t50) d (Upper Limit) t50 (h)

0 (control) −6.16 (0.61) 0.92 (0.03) 90.6 (2.78)
5 −7.41 (0.74) 0.91 (0.03) 106.6 (2.74)
10 −8.26 (0.82) 0.91 (0.03) 114.2 (2.67)
20 −11.12 (1.18) 0.84 (0.04) 135.9 (2.47)
30 −11.87 (1.38) 0.70 (0.05) 136.0 (2.54)

The t50 values for seeds planted in 0 (control), 5 and 10 g/kg diesel fuel contaminated soils were
90.6 ± 2.78, 106.6 ± 2.74 and 114.2 ± 2.67 h, respectively (Table 1). As shown in Table 1, the proportions
of seeds in 5 and 10 g/kg diesel fuel-contaminated soils that germinated during the experimental period
(indicated by the parameter d) were similar to that of the control samples. However, their germination
slowed down, as indicated by the higher t50 values. On the other hand, while the t50 values for seeds in
the 20 g/kg diesel fuel-contaminated soil remained the same as those for the 30 g/kg soil, the d value of
the 20 g/kg diesel fuel-contaminated soil was greater than that of the 30 g/kg diesel fuel-contaminated
soil. This indicates a possible significant effect of diesel fuel on M. sativa seed viability when sown
in soils with diesel fuel concentrations of 20 g/kg or more. In addition, the value “1-d” indicates
the proportion of the seeds that did not germinate during the experimental period owing to either
non-viability or insufficient experimental duration. These seeds were considered to be right-censored.

2.2. Effect of Diesel Fuel Exposure on Seed Viability Using Triphenyltetrazolium Chloride

The effect of in vitro diesel fuel exposure on M. sativa seed viability can be seen in Figure 2.
Diesel fuel imbibition reduced seeds viability, as shown by the number of seeds that were stained
red or pink during the triphenyltetrazolium chloride test (Figure 2). These results are summarized
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in Figure 3. The graph indicates that the imbibition of diesel fuel for between 0 and about 48 h had
little effect on seed viability. The percentage viability of seeds exposed to 0, 24 and 48 h of diesel
fuel imbibition were all greater than 90%. However, exposure of M. sativa seeds to 72 and 96 h of
diesel fuel imbibition resulted in a decline in percentage seed viability to approximately 84 and 70%,
respectively. This indicates that longer duration of direct exposure to diesel fuel affects the viability of
M. sativa seeds.

Plants 2020, 9, x FOR PEER REVIEW  4 of 10 

or pink during  the  triphenyltetrazolium chloride  test  (Figure 2). These results are summarized  in 

Figure 3. The graph indicates that the imbibition of diesel fuel for between 0 and about 48 h had little 

effect on seed viability. The percentage viability of seeds exposed  to 0, 24 and 48 h of diesel  fuel 

imbibition were all greater than 90%. However, exposure of M. sativa seeds to 72 and 96 h of diesel 

fuel  imbibition  resulted  in  a  decline  in  percentage  seed  viability  to  approximately  84  and  70%, 

respectively. This indicates that longer duration of direct exposure to diesel fuel affects the viability 

of M. sativa seeds. 

 

Figure 2. Number of viable Medicago sativa seeds, as shown by the red/pink colour of seeds following 

(a) 0 and (b) 96 h of diesel fuel imbibition. 

 

Figure 3. Percentage viability of Medicago sativa seeds following in vitro diesel fuel imbibition based 

on the triphenyltetrazolium chloride test. Error bars indicate standard errors. 

3. Discussion 

This study demonstrates that diesel fuel exposure impacts on the seed viability and germination 

rate of M. sativa, and that these effects are dependent on contaminant concentration and/or duration 

of  exposure. The  study  also  reveals  interesting  agreement  between  the  grouped‐data  event‐time 

model and triphenyltetrazolium chloride‐dependent viability tests. 

To assess the ability of M. sativa plants to resist high levels of diesel fuel toxicity, the diesel fuel 

concentrations used  in  the germination  study were  comparable  to, or higher  than,  those used  in 

previous studies involving organic contaminants [19–22]. Similarly, diesel fuel imbibition was also 

Figure 2. Number of viable Medicago sativa seeds, as shown by the red/pink colour of seeds following
(a) 0 and (b) 96 h of diesel fuel imbibition.

Plants 2020, 9, x FOR PEER REVIEW  4 of 10 

or pink during  the  triphenyltetrazolium chloride  test  (Figure 2). These results are summarized  in 

Figure 3. The graph indicates that the imbibition of diesel fuel for between 0 and about 48 h had little 

effect on seed viability. The percentage viability of seeds exposed  to 0, 24 and 48 h of diesel  fuel 

imbibition were all greater than 90%. However, exposure of M. sativa seeds to 72 and 96 h of diesel 

fuel  imbibition  resulted  in  a  decline  in  percentage  seed  viability  to  approximately  84  and  70%, 

respectively. This indicates that longer duration of direct exposure to diesel fuel affects the viability 

of M. sativa seeds. 

 

Figure 2. Number of viable Medicago sativa seeds, as shown by the red/pink colour of seeds following 

(a) 0 and (b) 96 h of diesel fuel imbibition. 

 

Figure 3. Percentage viability of Medicago sativa seeds following in vitro diesel fuel imbibition based 

on the triphenyltetrazolium chloride test. Error bars indicate standard errors. 

3. Discussion 

This study demonstrates that diesel fuel exposure impacts on the seed viability and germination 

rate of M. sativa, and that these effects are dependent on contaminant concentration and/or duration 

of  exposure. The  study  also  reveals  interesting  agreement  between  the  grouped‐data  event‐time 

model and triphenyltetrazolium chloride‐dependent viability tests. 

To assess the ability of M. sativa plants to resist high levels of diesel fuel toxicity, the diesel fuel 

concentrations used  in  the germination  study were  comparable  to, or higher  than,  those used  in 

previous studies involving organic contaminants [19–22]. Similarly, diesel fuel imbibition was also 

Figure 3. Percentage viability of Medicago sativa seeds following in vitro diesel fuel imbibition based on
the triphenyltetrazolium chloride test. Error bars indicate standard errors.

3. Discussion

This study demonstrates that diesel fuel exposure impacts on the seed viability and germination
rate of M. sativa, and that these effects are dependent on contaminant concentration and/or duration of
exposure. The study also reveals interesting agreement between the grouped-data event-time model
and triphenyltetrazolium chloride-dependent viability tests.

To assess the ability of M. sativa plants to resist high levels of diesel fuel toxicity, the diesel fuel
concentrations used in the germination study were comparable to, or higher than, those used in
previous studies involving organic contaminants [19–22]. Similarly, diesel fuel imbibition was also
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used to mimic extreme conditions of diesel fuel exposure [23], which enabled us to determine to what
extent does extreme exposure to diesel fuel affect M. sativa seed viability.

Non-linear regression models are often used to model germination. However, in real life
germination experiments, the underlying assumptions governing non-linear models (independence
between proportions and variance homogeneity) are not satisfied. In contrast, the event-time
model reflects the experimental design of germination experiments and allows meaningful biological
interpretation of the germination data. Of course, the restriction F (0) = 0 in the event-time model
indicates that the experiment is right-skewed [24]. Thus, it permits log-logistic, log-normal as well
as Weibull-type models, which are all models with logarithm transformation [25]. It does, however,
rule out models such as the Gompertz, logistic and normal models.

The right-skewness of this model reflects real-life situations in which some seeds do not germinate
owing to non-viability or insufficient experimental duration. In these experiments, the seeds viability
test using triphenyltetrazolium chloride revealed that M. sativa seeds exposed to 24 and 48 h of diesel
fuel imbibition have similar percentage viability (92% and 91%, respectively) to that of the control
samples. This indicates that the viability of M. sativa seeds was unaffected by up to 48 h of diesel
fuel absorption. The ability of M. sativa to withstand diesel fuel-related biological damage for 48 h is
an indication of its potential for biotechnological application in the phytoremediation of diesel fuel
contaminated sites. On the other hand, diesel fuel imbibition for 72 h or more impacted seed viability,
leading to a decline in the percentage of viable seeds (Figure 3).

The relative resistance of M. sativa to diesel fuel toxicity shows its suitability for the
rhizoremediation of diesel fuel contaminated sites. It is worth noting that in actual field remediation
approaches, seeds are not soaked in diesel fuel. Therefore, we expect that field lethal values (in hours)
would be higher than the experimental values from this study. Similarly, actual percentage viability
in the field would be expected to be higher than our experimental values. The implication of this is
that M. sativa is potentially able to survive in diesel fuel contaminated sites. This ability of a plant to
withstand contaminant toxicity or similar abiotic stress in the environment is an important factor in
designing and establishing successful remediation and reclamation approaches [19].

The results of the germination experiment (Figure 1 and Table 1) provide further biological details.
Since the average germination time for M. sativa seeds is between two and four days at a temperature
range of 18 to 30 ◦C, the experimental duration was set at nine days to enable the possible germination
of all viable seeds. From the results, more than 90% of M. sativa seeds exposed to 0 to 10 g/kg diesel
fuel contaminated soils germinated during the experimental period, indicating that up to 10 g/kg soil
diesel fuel concentration did not affect viability. However, as revealed by the t50 values, soil diesel fuel
concentrations impacted significantly on time to germination (Table 1). This indicates increasing time
to radicle emergence with increasing concentrations of diesel fuel.

Moreover, seeds exposed to 20 and 30 g/kg of soil diesel fuel concentrations gave lower d values
(Figure 1 and Table 1) than those in 0 to 10 g/kg soils. While the proportion of seeds in 20 g/kg and
30 g/kg diesel fuel contaminated soils that germinated during the experimental period varied, their t50
values remained the same (approximately 136 h). This shows that higher concentrations of diesel fuel
in soils affects seed viability rather than the time to germination. It can thus be concluded that up to
10 g/kg diesel fuel concentration affects the time to germination of M. sativa seeds without significantly
affecting their viability. On the other hand, higher concentrations of diesel fuel result in a significant
reduction in the viability of these seeds, without further affecting the time required for the seeds
to emerge.

The mechanisms by which diesel fuel impacts on seed viability and germination rate can be
classified into two: biological damage (toxicity), and physical constraints (oxygen and water repellence).
Diesel fuel contains both volatile and non-volatile components [23,26,27]. Previous studies have shown
that it is the volatile fraction, rather than the non-volatile components, that is primarily responsible
for the inhibition of seed germination and plant growth [23,27], and that at temperatures of <20 ◦C,
this effect is minimal, owing to reduced hydrocarbon volatility [28,29]. Medicago sativa seeds in diesel
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fuel tend to have a lag phase preceding germination (Figure 1), and this lag in germination increases with
exposure to increasing diesel fuel concentrations. This can be attributed to the ability of the hydrophobic
diesel fuel to create a water-repellent coating around the seeds. This consequently limits both oxygen
and water absorption by M. sativa seeds, resulting in delayed germination. The fact that diesel fuel at low
concentrations and 0–48 h of imbibition was delaying seed emergence without adversely affecting seed
viability (as shown by the reduction of triphenyltetrazolium chloride to triphenylformazan) suggests
that this inhibitory effect on germination could be attributed more to physical constraints rather than
biological damage of the seeds. This is an important quality for biotechnological application since seeds
used for phytoremediation purposes must be able to withstand biological damage.

4. Materials and Methods

4.1. Soil Preparation

The soil used for this experiment was a mixture of screened sand, soil, and composted organics,
sold as “turf underlay” and obtained from Australian Native Landscapes Pty, Sydney, Australia.
The soil was sieved using a 2 mm sieve to remove large particles. The soil textural class is dominantly
sand (86.2% sand, 5.1% silt and 8.7% clay), with 9.3% organic matter content by loss on ignition
and 0.18% total nitrogen content. The soil was then air-dried until a constant weight was achieved.
Different concentrations of diesel fuel contaminated soils (0, 5, 10, 20 and 30 g/kg) were prepared by
spiking the soil samples with appropriate amounts of diesel fuel. The diesel fuel used was petroleum
diesel (also called petrodiesel), as opposed to synthetic diesel or biodiesel, and was obtained from
a Shell service station along Epping Road, Macquarie Park, Sydney. The chemical composition is
predominantly saturated hydrocarbons (C10 to C25 n-alkanes, iso- and cyclo-alkanes) and some
aromatic hydrocarbons (e.g., alkylnaphthalenes and alkylbenzenes). The spiked soils were first mixed
manually by hand, followed by a thorough mixing using a Sanfine portable electric 1800 W soil mixing
machine (Model No. SF-HM1401/1401S, Taizhou, China). The mixing was performed for 15 min per
pot (2 kg soil) with a break and manual shaking after every 5 min to achieve complete homogeneity.

4.2. Germination as Grouped Time-to-Event Data

One hundred seeds of M. sativa were placed in different 100 mm petri dishes containing 20 g of
0 (control), 5, 10, 20 and 30 g/kg diesel fuel-contaminated soils. The petri dishes were incubated at
20 ◦C in the Organic Geochemistry laboratory and monitored at 24 h intervals for a period of nine days.
The initial emergence of radicle from the seed testa was used as evidence of germination. The seeds
that did not germinate during the nine days were considered to be right-censored [17].

4.3. Seed Viability Test

In addition to the germination experiment, a triphenyltetrazolium chloride (TTC) test was
conducted in petri dishes to estimate seed viability [23,30]. Triphenyltetrazolium chloride is a clear,
water soluble compound (a salt) which is reduced by respiring tissues to yield triphenylformazan,
a water-insoluble red pigment. Thirty M. sativa seeds were pre-soaked in petri dishes containing diesel
fuel for 24, 48, 72 and 96 h in order to imbibe seeds prior to the test. At the end of the four respective
periods, the imbibed seeds and the control samples were subjected to the triphenyltetrazolium
chloride test as follows. A 1% triphenyltetrazolium chloride solution was prepared by dissolving
triphenyltetrazolium chloride in distilled water. Each batch of seeds was placed in a beaker containing
50 mL of 1% triphenyltetrazolium chloride, and the beaker was covered. The beakers were placed
in an incubator at 30 ◦C for 1 h. Following incubation, the liquid was decanted and the seeds were
rinsed with distilled water until the wash water was clear. The seeds were blotted with a dry paper
towel and the colour was observed. The seeds were classified into two categories according to their
colour development, namely “red/pink” and “no colour”, corresponding to “viable” and “not viable”,
respectively. This test was repeated to give five replicates per treatment concentration.
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4.4. Statistical Analysis: Event-Time Model

Statistical analyses were performed using R [31]. Non-linear regression models are often used
to model germination [32,33]. However, these models are problematic as they ignore the fact that
successive observations on the germination curve are highly correlated. In other words, the total
number of seeds that have germinated at a particular time is highly dependent on the number of seeds
that germinated previously [34]. Moreover, variation in the proportions of germinated seeds will vary
with time, being largest at intermediate monitoring intervals and smallest at the initial and final intervals
when germination activity is low. This means that the fundamental assumptions underlying nonlinear
regression, namely independence between proportions and variance homogeneity, are not satisfied [17].
Consequently, this results in overly precise parameter estimates of, for example, time to reach 50%
germination (t50), due to too small standard errors. Therefore, Ritz and Pipper [17] suggested a more
appropriate approach where germination data were modelled as event times, that is, waiting times
until germination no longer became possible due to termination of the experiment or non-viability of
seeds. This approach provided a more adequate statistical description of the type of response that
resulted from germination experiments [35] The present study used the drm package in library(drc) [31]
to model the effect of diesel fuel exposure on seed viability as event-time data. This model is described
using the following equation proposed by Ritz and Pipper [17]:

F (t) =
d

1 + exp[b
{
log(t) − log(t50)

}
]
=

d

1 +
(

t
t50

)b (1)

The upper limit parameter d denotes the proportion of seeds that germinated during the duration
of the experiment out of the total number of seeds present at the beginning of the experiment.
The parameter b (excluding its sign) is proportional to the slope of F at time t equal to t50, while t50 has
the same interpretation as effective or lethal doses EC50 or LC50 but relative to d (the upper limit). Thus,
t50 refers to the time when 50% of the seeds that germinated during the experiment have germinated.
This model reflects the experimental design of right-censored germination experiments while allowing
meaningful biological interpretation of germination data. It also links the analysis of germination data
with related dose-response analyses used in ecotoxicology where interest lies in obtaining a parametric
model fit for an S-shaped curve.

4.5. Statistical Analysis: Viability Data

Viability data were analysed as binomial data using the 2-parameter log-logistic model in R [31].
As in the methods of Hose and Symington [36], a series of 2-parameter response curves including
log-logistic, Weibull, log-normal and hormetic curves were fitted to the data, and the best fitting model
based on Akaike information criterion was chosen. The e value from the model, also referred to as LC50,
gives the duration of exposure (in hours) causing 50% reductions in viability of the test seed population.
The 3-parameter log-logistic event-time model was fitted to the germination data. The event time
considered is the time (hours) from sowing to germination, evidenced by the initial emergence of the
radicle from the seed testa.

5. Conclusions

The examination of the effects of diesel fuel exposure on the viability and germination rate reveals
that either the direct absorption of diesel fuel for up to two days or their exposure to soils contaminated
with up to 10 g/kg diesel fuel affect germination rate, leading to delayed emergence of M. sativa radicle.
However, these short durations and low concentrations of exposure to diesel fuel does not affect the
viability of M. sativa seeds. This is an important quality for biotechnological application since seeds
used for phytoremediation purposes must be able to withstand biological damage. Longer duration of
diesel fuel imbibition and/or exposure to higher concentrations of soil diesel fuel results in a significant
reduction in viable seeds. The event-time model used here provided an accurate and biologically

36



Plants 2020, 9, 1062 8 of 9

relevant method for analysing germination data. These models incorporate the experimental design of
right-skewness and non-continuous observation of germination process. We are confident that the
results of this study will prove helpful in the design of plant-based remediation techniques.
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ABSTRACT Crude oil-polluted sites are a global threat, raising the demand for re-
mediation worldwide. Here, we investigated a crude oil metagenome from a former
borehole in Wietze, Germany, and reconstructed 42 metagenome-assembled ge-
nomes, many of which contained genes involved in crude oil degradation with a
high potential for bioremediation purposes.

Bioremediation of crude oil-contaminated sites is highly investigated due to severe
pollution levels in various ecosystems worldwide. It can be enhanced by the

application of microorganisms, and thus it is important to discover novel microbes
capable of crude oil degradation (1).

Three crude oil-contaminated samples were taken on 11 October 2016 from a
former borehole (52.6592N, 9.8323E) located at a historical oil field in Wietze, Germany
(https://www.erdoelmuseum.de). Approximately 5 g of contaminated soil was taken
per sample, transported to the laboratory on ice, and stored at �20°C. Environmental
DNA was extracted from 100 mg of soil using the PowerSoil DNA extraction kit as
recommended by the manufacturer (Qiagen, Hilden, Germany). Paired-end sequencing
libraries were constructed using the Nextera DNA sample preparation kit (Illumina, San
Diego, CA, USA) and the following Nextera DNA indices: N708/N508 (sample 1),
N709/N508 (sample 2), and N710/N508 (sample 3). Paired-end sequencing was per-
formed using a HiSeq 2500 instrument (rapid run mode, 500 cycles), as recommended
by the manufacturer (Illumina), and resulted in 46,673,322 paired-end reads (sample 1,
16,094,584 reads; sample 2, 17,883,658 reads; sample 3, 12,695,080 reads). Reads were
processed with Trimmomatic version 0.36 (2). Processing included the removal of
adapter sequences and low-quality regions. Default parameters were used for all
software unless otherwise specified. The quality of the processing was confirmed using
FastQC version 0.91. A total of 42,049,950 paired-end reads and 1,147,707 unpaired
reads were retained and assembled using metaSPAdes version 3.13.2 (3). Assembly
resulted in 1,544,944 scaffolds; of these, 22,257 were larger than 2,500 bp. Coverage
information for each scaffold was determined using Bowtie 2 version 2.3.2 (4) and
SAMtools version 1.7 (5). The average sequencing depth was approximately 7�.
Metagenome-assembled genomes (MAGs) were reconstructed with MetaBAT version
2.12.1 (6). MAG quality was determined using CheckM version 1.0.13 (7). Only MAGs
with a completeness minus contamination of more than 50% and a contamination rate
of less than 7% were considered for further analysis. MAGs were classified taxonomi-
cally using GTDB-Tk version 1.0.2 and the Genome Taxonomy Database (GTDB) (release
86) (8, 9), resulting in 6 archaeal MAGs and 36 bacterial MAGs. Archaeal MAGs were
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classified as members of the Euryarchaeota (1 MAG), Halobacterota (3 MAGs), and
Thermoplasmatota (2 MAGs). Bacterial MAGs belonged to Actinobacteriota (4 MAGs),
Bacteroidota (5 MAGs), Chloroflexota (5 MAGs), Desulfobacterota (4 MAGs), Firmicutes (2
MAGs), Omnitrophota (1 MAG), Patescibacteria (1 MAG), Proteobacteria (10 MAGs),
Spirochaetota (1 MAG), Synergistota (1 MAG), and Thermotogota (1 MAG). One bacterial
MAG was assigned to an unclassified taxon associated with Nitrospirae. After annotation
with Prodigal version 2.6.3 (10), functional annotation was performed with DIAMOND
version 0.9.29 (11) and the KEGG database (October 2018 release) (12). Functional
analysis revealed that all MAGs obtained possess genes involved in xenobiotic degra-
dation. One MAG assigned to Rugosibacter, a genus of known xenobiotic degraders
(13), showed the highest abundance of pathways associated with xenobiotic degrada-
tion (11.8%).

Data availability. Raw sequencing data are available at the NCBI Sequence Read

Archive (SRA) under accession numbers SRR10568503, SRR10568510, and SRR10568511.
The metagenome assembly and the MAGs are available at GenBank under accession
numbers WOYI00000000 and WOYJ00000000 to WOZY00000000, respectively. Further
genome characteristics and the functional annotation are publicly available at the
Göttingen Research Online Database (https://doi.org/10.25625/VX8836).
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Relationship to the Overall Thesis 

This chapter is a detailed study of the diversity and metagenome analysis of hydrocarbon-

degrading consortia isolated from three different oil-contaminated sites in the historic oilfield 

in Wietze, Germany. This detailed analysis provided insight into the microbial species, genes 

and coding DNA sequences involved in the degradation of petroleum hydrocarbons. 
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Abstract 

The pollution of terrestrial and aquatic environments by petroleum contaminants, especially 

diesel fuel, is a persistent environmental threat requiring cost-effective and environmentally 

sensitive remediation approaches. Bioremediation is one such approach, but is dependent on 

the availability of microorganisms with the necessary metabolic abilities and environmental 

adaptability. The aim of this study was to examine the microbial community in a petroleum 

contaminated site, and isolate organisms potentially able to degrade hydrocarbons. Through 

successive enrichment of soil microorganisms from samples of an historic petroleum 

contaminated site in Wietze, Germany, we isolated a bacterial consortium using diesel fuel 

hydrocarbons as sole carbon and energy source. The 16S rRNA gene analysis revealed the 

dominance of Alphaproteobacteria. We further reconstructed a total of 18 genomes from both 

the original soil sample and the isolated consortium. The analysis of both the metagenome of 

the consortium and the reconstructed metagenome-assembled genomes show that the most 

abundant bacterial genus in the consortium, Acidocella, possess many of the genes required for 

the degradation of diesel fuel aromatic hydrocarbons, which are often the most toxic 

component. This can explain why this genus proliferated in all the enrichment cultures. 

Therefore, this study reveals that the microbial consortium isolated in this study and its 

dominant genus, Acidocella, could potentially serve as an effective inoculum for the 

bioremediation of sites polluted with diesel fuel or other organic contaminants. 

Keywords: Bacterial diversity, diesel fuel, consortium, metagenome, bioremediation. 
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INTRODUCTION 

Petroleum pollution is a recurring environmental threat resulting from oil and gas exploration, 

production, transport and storage (Eze and George 2020). Spills have occurred in terrestrial as 

well as aquatic environments, and they are often caused by human error, corrosion and 

equipment failure (Dalton and Jin 2010; Errington et al. 2018; Hassler 2016; Hong et al. 2010). 

This is a major threat to both the environment and human health, due to the phytotoxicity and 

carcinogenicity of petroleum hydrocarbons. 

In view of the diversity of pollutants, a range of ex situ and in situ bioremediation 

techniques have been developed (Azubuike et al. 2016). Ex situ techniques involve the 

excavation and off-site treatment of contaminated soils or water, while in situ strategies involve 

on-site treatment of contaminants. As a result, ex situ techniques are often more expensive than 

in situ techniques owing to the additional costs associated with contaminant excavation and 

relocation (USEPA 2000). The United States Environmental Protection Agency indicated that 

implementing in situ degradation will result in cost savings of 50 to 80% over traditional 

methods such as excavation and landfill incineration (USEPA 2001). Moreover, ex situ 

methods are environmentally problematic as they alter the soil matrix and associated 

microbiomes. 

The success of any oil spill remediation approach depends on environmental conditions 

such as temperature, pH and nutritional constraints in contaminated sites (Joner et al. 2002; 

Kleinsteuber et al. 2006; Leahy and Colwell 1990; Rohrbacher and St-Arnaud 2016). The 

hydrophobic nature of petroleum hydrocarbons limits their availability to biodegradation. 

Hence, the presence of microorganisms with the metabolic capability to degrade petroleum and 

the ability to adapt to a range of environmental conditions is a crucial factor (Das and Chandran 

2011). Organisms capable of degrading diesel fuel and other organic contaminants are diverse 

and present in many natural habitats, including extreme ones (Gemmell and Knowles 2000; 

Hara and Uchiyama 2013; Lohi et al. 2008; Nie et al. 2014; Stapleton et al. 1998). 

Microorganisms from polluted environments hold the key to unlocking most of the challenges 

associated with bioremediation (Eze et al. 2020; Liang et al. 2019; Liang et al. 2016). One such 

environment is the heavily polluted oil field in Wietze, Germany. 

Wietze is an important historical site of crude-oil production. In Germany, pre-

industrial oil production started in the 17th century, followed by industrial oil extraction 
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beginning in 1859 (Craig et al. 2018). Between 1900 and 1920, Wietze was the most productive 

oil field in Germany, with almost 80% of German oil produced there. Oil production in Wietze 

was discontinued in 1963, but the former oil field continues to witness considerable amounts 

of oil seepage, with several heavily polluted sites, contaminated ponds, and organic debris from 

surrounding plants (Figure 1). Therefore, it is an ideal site for obtaining microorganisms with 

the potential for bioremediation of petroleum hydrocarbons. Samples investigated in this study 

were taken from three sites around a small asphalt pond (Figure 1). 

Due to the so-called uncultivability of many environmental microorganisms (Steen et 

al. 2019), several studies have concentrated on remediation by indigenous microorganisms 

(Kumar and Gopal 2015; Sarkar et al. 2016). More recent studies have shown that the 

inoculation of carefully cultivated hydrocarbon-degrading bacterial consortia or isolates 

enhances the effectiveness of various remediation techniques (Atashgahi et al. 2018; Garrido-

Sanz et al. 2019). Therefore, it is important to discover novel microbes capable of degrading 

petroleum hydrocarbons either as single isolates, consortia, or synergistically with plants. The 

aim of this study was to investigate the diversity and genomic potential of bacterial consortia 

derived from a hydrocarbon contaminated asphalt lake in Wietze, Germany. We also aimed to 

reconstruct metagenome-assembled genomes, and to examine the potential of the reconstructed 

genomes for bioremediation of diesel fuel contaminated sites. 
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Figure 1. Sampling site in Wietze, Germany (52°39’0’’N, 09°50’0’’E). 

 

MATERIALS AND METHODS 

Soil sampling 

Topsoil samples (10 g each) and water samples (approximately 50 mL each) were taken in 

November 2019 from three heavily polluted sites located at the historical oil field in Wietze 

(52°39’0’’N, 09°50’0’’E), Germany. In addition, two reference samples were taken from 

nearby unpolluted soils. Samples were placed into 50 mL Eppendorf conical tubes. The 

samples were transported to the laboratory on ice. 

Enrichment cultures and growth conditions 

Approximately 1 g of each of the crude oil-polluted soil samples was added to Erlenmeyer 

flasks (300 mL) containing 100 mL of a liquid mineral medium (MM) composed of KH2PO4 

(0.5 g/L), NaCl (0.5 g/L), and NH4Cl (0.5 g/L). Sterile-filtered trace elements (1 mL/L) (Atlas 

2010), vitamin solution (1 mL/L) (Atlas 2010) and MgSO4.7H2O (5 mL/L of a 100 mg/mL 

solution) were added to the MM, post MM-autoclaving. One mL of sterile-filtered diesel fuel 

(C10-C25) was added to each flask as the sole carbon and energy source. The cultures were 

grown at 30°C with shaking at 110 rpm (INFORS HT shaker, model CH-4103, Infors AG, 
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Bottmingen, Switzerland) and subcultured every five days. After three successive subculturing 

steps, 30 mL aliquots (OD600, 0.635) were centrifuged for 10 min at 4,000 × g. 

DNA Extraction 

Microbial cells from approximately 30 mL of the enrichment cultures and water samples were 

harvested by centrifugation at 4,000 x g for 10 min. The supernatant was subsequently 

discarded. DNA from the cell pellets and 100 mg of each of the original samples were extracted 

using the PowerSoil® DNA Extraction kit as recommended by the manufacturer (Qiagen, 

Hilden, Germany). DNA from one of the original soil samples and one of the three final 

enrichments (S3S and S3E3 respectively, Supplementary Figure S1) were used for 

metagenome studies. 

Sequencing of bacterial 16S rRNA genes 

Bacterial 16S rRNA genes were amplified using the forward primer S-D-Bact-0341-b-S-17 (5′-

CCT ACG GGN GGC WGC AG-3′) and the reverse primer S-D-Bact-0785-a-A-21 (5′-GAC 

TAC HVG GGT ATC TAA TCC-3′) (Klindworth et al. 2013) containing adapters for Illumina 

MiSeq sequencing. The PCR reaction (25 µL final volume) contained 5 µL of five-fold Phusion 

HF buffer, 200 µM of each of the four deoxynucleoside triphosphates, 4 µM of each primer, 1 

U of Phusion high fidelity DNA polymerase (Thermo Scientific, Waltham, MA, USA), and 

approximately 50 ng of the extracted DNA as the template. Negative controls were performed 

using the reaction mixture without a template. The following thermal cycling scheme was used: 

initial denaturation at 98 °C for 30 s, 30 cycles of denaturation at 98 °C for 15 s, annealing at 

53 °C for 30 s, followed by extension at 72 °C for 30 s. The final extension was carried out at 

72 °C for 2 min. The PCR products that were obtained were controlled for appropriate size, 

and then purified using the MagSi-NGS Plus kit according to the manufacturer’s protocol 

(Steinbrenner Laborsysteme GmbH, Germany). Quantification of the PCR products was 

performed using the Quant-iT dsDNA HS assay kit and a Qubit fluorometer, as recommended 

by the manufacturer (Thermo Scientific). The DNA samples were barcoded using the Nextera 

XT-Index kit (Illumina, San Diego, USA) and the Kapa HIFI Hot Start polymerase (Kapa 

Biosystems, USA). Sequencing was performed at the Göttingen Genomics Laboratory using 

an Illumina MiSeq Sequencing platform (paired-end 2 × 300 bp) and the MiSeq reagent kit v3, 

as recommended by the manufacturer (Illumina). 
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Processing of the 16S rRNA gene data 

Trimmomatic version 0.39 (Bolger et al. 2014) was initially used to truncate low-quality reads 

if quality dropped below 12 in a sliding window of 4 bp. Datasets were subsequently processed 

with Usearch version 11.0.667 (Edgar 2010) as described in Wemheuer et al. (2020). In brief, 

paired-end reads were merged and quality-filtered. Filtering included the removal of low-

quality reads and reads shorter than 200 bp. Processed sequences of all samples were joined, 

dereplicated and clustered in zero-radius operational taxonomic units (zOTUs) using the 

UNOISE algorithm implemented in Usearch. A de novo chimera removal was included in the 

clustering step. Afterwards, zOTU sequences were taxonomically classified using the SINTAX 

algorithm against the SILVA database (SILVA SSURef 138 NR99). All non-bacterial zOTUs 

were removed based on taxonomic classification. Subsequently, processed sequences were 

mapped on final zOTU sequences to calculate the distribution and abundance of each OTU in 

every sample. 

Metagenome sequencing, assembly and analysis 

Sequencing libraries were generated from environmental DNA. These were barcoded using the 

Nextera XT-Index kit (Illumina, San Diego, USA) and the Kapa HIFI Hot Start polymerase 

(Kapa Biosystems, Wilmington, USA). Sequencing was performed by employing an Illumina 

HiSeq 2500 system and the HiSeq Rapid SBS kit V2 (2x250 bp) as recommended by the 

manufacturer (Illumina). Metagenomic reads were further processed as described previously 

(Eze et al. 2020). In brief, reads were processed with the Trimmomatic tool version 0.39 

(Bolger et al. 2014) and assembled using metaSPAdes version 3.13.2 (Bankevich et al. 2012). 

Coverage information for each scaffold was determined using Bowtie2 version 2.3.2 

(Langmead and Salzberg 2012) and SAMtools version 1.7 (Li et al. 2009). Metagenome-

assembled genomes (MAGs) were reconstructed with MetaBAT version 2.12.1 (Kang et al. 

2015). MAG quality was determined using CheckM version 1.0.13 (Parks et al. 2015). Only 

MAGs with a completeness minus contamination of more than 50% and a contamination rate 

of less than 7% were considered for further analysis. MAGs were classified taxonomically 

using GTDB-Tk version 1.0.2 and the Genome Taxonomy Database (release 86) (Chaumeil et 

al. 2019; Parks et al. 2019). Coding DNA sequences (CDSs) were identified with prodigal 

version 2.6.3 (Hyatt et al. 2010). Functional annotation was performed with diamond version 

v0.9.29 (Buchfink et al. 2015) and the KEGG database (October release 2018) (Kanehisa and 

Goto 2000). 
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Data analysis 

Data analysis was performed in R (RCoreTeam 2018). Richness, diversity, evenness, and 

coverage based on the Chao1 richness estimator were estimated in R using the vegan package 

(RCoreTeam 2018). In addition, richness was estimated using the Michaelis-Menten equation 

in R with the drc package (RCoreTeam 2018). Prior to alpha diversity analysis, the zOTU table 

was rarefied to 12,924 per sample. Beta-diversity was calculated in R using the vegan package. 

Non-metric multidimensional scaling plots were generated based on Bray-Curtis 

dissimilarities. Dissimilarities were calculated based on the raw zOTU table. 

 

RESULTS 

Bacterial diversity of the sampling sites and the diesel-degrading cultures 

The 16S rRNA gene amplicon sequencing resulted in 242,025 16S rRNA gene sequences 

across all samples (36,441–10,309 reads per sample, average 22,002 per sample). Clustering 

resulted in a total of 6,453 zOTUs (average: 587) ranging from 225 to 813 zOTUs per sample. 

The highest bacterial richness and diversity were observed in the reference samples, the lowest 

in the enrichment samples. Calculated coverage values indicate that the majority of the 

bacterial diversity (>80.9%, see Supplementary Table S1) was recovered by the surveying 

effort. 

 Non-metric multidimensional scaling revealed clear differences between the microbial 

community composition of the polluted soil and water samples, enrichment cultures, and 

reference unpolluted soil samples (Figure 2). 
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Figure 2. Non-metric multidimensional scaling (NMDS) ordination plot showing differences in microbial 

community compositions of the water, soil, enrichment, and reference unpolluted soil samples based on 

community composition at the genus level. 

 

The relative abundances at the bacterial class level (Figure 3a) showed the dominance 

of Gammaproteobacteria in the polluted water sample (90.6%), followed by 

Alphaproteobacteria (3.2%). The polluted soil samples contain similar relative abundances for 

Gammaproteobacteria, Alphaproteobacteria and Acidobacteriae (26.4%, 21.4% and 19.1%, 

respectively). The enrichment cultures are dominated by members of the Alphaproteobacteria, 

with a relative abundance of 75.8%. Other bacterial classes present in the enrichment culture 

include Gammaproteobacteria and Acidobacteriae (15.4% and 8.6%, respectively). A higher 

diversity and richness (Supplementary Table S1) was recorded in the unpolluted reference 

sample in which Actinobacteria (17.0%), Alphaproteobacteria (14.6%), Acidobacteriae 

(13.5%), and Bacteroidia (10.1%) are dominant. Other less abundant classes include 

Phycisphaerae and Verrucomicrobiae. At genus level, Acidocella are dominant in all the 

enrichment cultures from the three sites (87.4% to 75.4%). Other genera present in the 

enrichment cultures include Acidobacterium and Paraburkholderia (Figure 3b). 
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Figure 3. (a) Bacterial community composition in selected water, soil, enrichment, and unpolluted reference 

samples. (b) relative abundance of the enrichment culture at the genus level. Only taxa with a relative abundance 

of >1% across all samples are presented. For details on relative abundances and 16S rRNA gene amplicon data, 

see Supplementary Figure S1. 

 

Identification of aliphatic and aromatic hydrocarbon-degrading coding DNA sequences 

Functional analysis of the metagenome derived from the microbial diesel enrichment revealed 

the presence of 42 potential enzymatic classes represented by 186 coding DNA sequences 

(CDSs) involved in the degradation of aliphatic and aromatic hydrocarbons (Figure 4).  
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Figure 4. The number of sequences associated with specific hydrocarbon-degrading enzymes in each taxonomic 

group. The analysis was based on the metagenome of the S3E3 enrichment culture. 

 

The enzymes considered as responsible for the degradation of aliphatic hydrocarbons 

included alkane 1-monooxygenase, long-chain alkane monooxygenase, cytochrome P450 

CYP153 alkane hydroxylase, cyclopentanol dehydrogenase, cyclohexanone monooxygenase, 

gluconolactonase, alcohol dehydrogenase, and 6-hydroxyhexanoate dehydrogenase. Forty-

three CDSs were detected that are considered to play a role in aliphatic hydrocarbon 

degradation. The majority of the genes that putatively code for aliphatic hydrocarbon 

degradation are involved in cycloalkane degradation. These include the cpnA, chnB, gnl, adh 

and chnD genes, which are involved in the Baeyer-Villiger oxidation reactions (Figure 5). 
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Figure 5. (a) Ring cleavage via the Baeyer-Villiger oxidation pathway for the degradation of cycloalkanes, and 

(b) genus assignment of the putative genes involved in the Baeyer-Villiger oxidation pathway identified in the 

diesel-degrading consortium. 

 

The degradation of aromatic hydrocarbons occurs through a series of reactions involving 

oxidation, hydroxylation, dehydrogenation and ring cleavage. Out of the 186 CDSs putatively 

linked to diesel degradation, 143 CDSs are potentially involved in aromatic hydrocarbon 

degradation. Among the 48 CDSs belonging to the aromatic ring dioxygenases, eleven were 

annotated as benzoate/toluate 1,2-dioxygenase, six as biphenyl 2,3-dioxygenase, six as 

benzene/toluene/chlorobenzene dioxygenase, five as ethylbenzene dioxygenase, and three as 

naphthalene 1,2-dioxygenase (Table 1). 
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Table 1. Key monooxygenases and dioxygenases involved in the activation and ring cleavage of aromatic 

hydrocarbons in the diesel-degrading consortium. 

Genes Enzyme Function No. of CDSs 

tmoCF Toluene monooxygenase Activation 3 

pobA p-Hydroxybenzoate 3-monooxygenase Activation 2 

todABC1C2 Benzene/toluene/chlorobenzene dioxygenase Activation 6 

etbAaAbAc Ethylbenzene dioxygenase Activation 5 

benABC Benzoate/toluate 1,2-dioxygenase Activation 11 

bphA Biphenyl 2,3-dioxygenase Activation 6 

nahAb Naphthalene 1,2-dioxygenase Activation (PAHs) 3 

nahC 1,2-Dihydroxynaphthalene dioxygenase Activation (PAHs) 1 

nidA PAH dioxygenase Activation (PAHs) 1 

catA Catechol 1,2-dioxygenase Ortho-cleavage 7 

dmpB Catechol 2,3-dioxygenase Meta-cleavage 5 

todE 3-Methylcatechol 2,3-dioxygenase Meta-cleavage 1 

etbC 2,3-Dihydroxyethylbenzene 1,2-dioxygenase Meta-cleavage 1 

bphC Biphenyl-2,3-diol 1,2-dioxygenase Meta-cleavage 1 

 

Reconstruction of metagenome-assembled genomes 

We were able to reconstruct fifteen nearly complete genomes from the whole-metagenome 

sequence of the original soil samples, and three nearly complete genomes from the enrichment 

culture (Supplementary Table S2). Quality analysis of the MAGs showed that the average 

completeness and contamination level for the MAGs were 85% and 2% respectively 

(Supplementary Table S3). The majority of the metagenome-assembled genomes (MAGs) 

were classified as belonging to the Gammaproteobacteria (8 MAGs), followed by 

Alphaproteobacteria (4 MAGs), Acidobacteriae (3 MAGs), Actinobacteria (2 MAGs) and 

Caldisericia (1 MAG). The three metagenome-assembled genomes from the enrichment 

culture were classified as Acidocella aminolytica, Acidobacterium capsulatum, and Acidocella 

sp., with a completeness of 72.4%, 99.8% and 100%, respectively. 

 A comparison of the three nearly complete genomes reconstructed from the 

metagenome of the enrichment culture shows that the genes encoding enzymes involved in the 

activation and degradation of petroleum hydrocarbons are more abundant in Acidocella than in 
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Acidobacterium (Supplementary Table S2). For example, while the two MAGs classified as 

Acidocella contain an average of 18 CDSs involved in aromatic ring activation, 

Acidobacterium had only 7 CDSs encoding for the activation of aromatic hydrocarbons. Key 

enzymes that are encoded by the reconstructed MAGs belonging to Acidocella but are missing 

in those belonging to Acidobacterium include long-chain alkane monooxygenase, 

cyclohexanone monooxygenase, ethylbenzene dioxygenase, and benzoate/toluate 1,2-

dioxygenase. 

 Further comparisons performed between the MAGs assembled from the metagenome 

data of the enrichment culture and those obtained from a previous study of a crude oil bore hole 

(Eze et al. 2020) revealed that the Acidocella MAGs obtained from this study exhibit a higher 

abundance of genes that putatively encode the degradation of cycloalkanes. For example, in 

the 36 MAGs from Eze et al. (2020), genes that encode for cyclopentanol dehydrogenase 

(cpnA) and cyclohexanone monooxygenase (chnB) were present in 16 and 11 MAGs, 

respectively. In this study, MAGs reconstructed from both the enrichment culture and the 

original soil samples were rich in genes that encode these enzymes with more than 6 CDSs per 

gene in some MAGs. The reconstructed MAGs were also found to be richer in CDSs that 

encode for aromatic degradation that those in the previous study. For example, aryl alcohol 

dehydrogenase, an enzyme vital for the degradation of aromatic hydrocarbons was missing in 

all of the 36 assembled MAGs from the crude oil bore hole study (Eze et al. 2020). Potential 

genes encoding the enzyme were present in two of the three MAGs from the enrichment culture 

of this study. 

 

DISCUSSION 

The successive enrichment of the different experimental samples using diesel fuel resulted in 

the dominance of Alphaproteobacteria. The dominance of Alphaproteobacteria in the bacterial 

communities, especially Acidocella and Paraburkholderia, indicates the tolerance of these 

genera to high concentrations of petroleum hydrocarbons and their potential degradative 

capacity for organic contaminants. The taxa that are abundant in the polluted water and soil, 

and in the enrichment cultures, were also associated with hydrocarbon pollution in other 

locations (Lee et al. 2019; Röling et al. 2006; Stapleton et al. 1998). The biodegradative ability 

of these taxa and their tolerance to heavy metals (Giovanella et al. 2020) indicate that they are 
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potentially suitable for the remediation of multiple contaminants such as hydrocarbon-polluted 

acidic mine sites. 

Diesel fuel contains aliphatic and aromatic hydrocarbons. The aliphatic hydrocarbon 

fraction is predominantly composed of normal-, iso- and cyclo-alkanes, while the aromatic 

hydrocarbon fraction is composed primarily of alkylbenzenes, naphthalene, alkylnaphthalenes, 

biphenyl and alkylbiphenyls (Woolfenden et al. 2011). The degradation of n-alkanes is 

primarily carried out by alkane 1-monooxygenase (alkB), cytochrome P450 CYP153 alkane 

hydroxylase (CYP153) and long-chain alkane monooxygenases (ladA) genes, and their roles in 

the degradation of n-alkanes and iso-alkanes have been extensively studied (Ji et al. 2013; Li 

et al. 2008; van Beilen et al. 2006). The degradation of n-alkanes and iso-alkanes by the 

consortium is indicated by the presence of potential alkB, CYP153 and ladA genes. The low 

number of the corresponding gene sequences (eight) can be explained by the taxonomic 

composition of the consortium. Previous studies have shown that n-alkane degrading genes are 

often associated with Betaproteobacteria and Gammaproteobacteria especially the 

Pseudomonas genus (Garrido-Sanz et al. 2019; Liu et al. 2014; Shao and Wang 2013; van 

Beilen et al. 2001; van Beilen et al. 1994). In our study, the diesel-degrading consortium in the 

enrichment cultures was dominated by Alphaproteobacteria (Figures 2 and 3). Thus, the 

majority of CDSs in our metagenome consortium belong to the Alphaproteobacteria, 

especially the Acidocella genus and not to Pseudomonas. 

Of the genes that putatively code for aliphatic hydrocarbon degradation, the majority 

are involved in cycloalkane degradation. These enzymes include cyclopentanol dehydrogenase 

(cpnA), cyclohexanone monooxygenase (chnB), gluconolactonase (gnl), alcohol 

dehydrogenase (adh), and 6-hydroxyhexanoate dehydrogenase (chnD) (Bohren et al. 1989; 

Iwaki et al. 1999; Iwaki et al. 2002; Kanagasundaram and Scopes 1992). This is interesting 

since cycloalkanes are moderately resistant to biodegradation (Connan 1984). The degradation 

of cycloalkanes involves ring cleavage via Baeyer-Villiger oxidation (Perkel et al. 2018; Sheng 

et al. 2001), which requires an initial oxidation of cyclohexane to cyclohexanol by cyclohexane 

monooxygenase, and then a dehydrogenation reaction to cyclohexanone. This step is followed 

by another monooxygenase attack to form epsilon-caprolactone, followed by ring cleavage that 

is carried out by gluconolactonase (Figure 5a). All the genes involved in this degradation 

pathway are present in the metagenome of the enrichment culture, but a single taxon in the 

bacterial community that possess all the genes involved in this pathway was not detected 
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(Figure 5b). This indicates a synergistic interaction of different bacterial genera in the 

degradation of recalcitrant hydrocarbons. The high number of cpnA, chnB, gnl, adh and chnD 

genes (35 CDSs) in the metagenome of the enrichment culture indicates the significant 

potential of the microbial community for the degradation of cycloalkanes present in diesel fuel. 

The degradation of aromatic hydrocarbons requires initial activation by oxygenases 

resulting in the formation of oxygenated intermediates such as catechol (Atashgahi et al. 2018; 

Das and Chandran 2011; Peters et al. 2004). The bacterial consortium contains more genes that 

putatively encode dioxygenases than those that encode monooxygenases (Table 1). The genes 

that encode dioxygenases include the todABC1C2, etbAaAbAc and benABCD genes (Fong et 

al. 1996; Werlen et al. 1996; Zylstra and Gibson 1989). The higher abundance of genes 

encoding dioxygenases indicates that the activation of alkylbenzenes and phenolic compounds 

by the microbial consortium predominantly follows the dioxygenase pathway rather than the 

monooxygenase pathway. 

The central metabolism of aromatic hydrocarbons that follows initial activation 

involves ortho- and meta-cleavage of catechol or methylcatechol (Benjamin et al. 1991; Ehrt 

et al. 1995; Hidalgo et al. 2020; Liang et al. 2019; Neidle et al. 1988; Peters et al. 2004; 

Rohrbacher and St-Arnaud 2016). Functional analysis reveals that genes encoding enzymes 

putatively involved in the central metabolism of aromatic hydrocarbons are present in the 

microbial community. The most abundant CDSs in our diesel-degrading community that are 

responsible for this reaction are catechol 1,2-dioxygenase and catechol 2,3-dioxygenase (7 and 

5 CDSs, respectively) (Table 1). Other enzymes that are present include 3-oxoadipate enol-

lactonase, muconolactone D-isomerase (a decarboxylating dehydrogenase), 4-oxalocrotonate 

tautomerase, and acetaldehyde dehydrogenase. Most of the corresponding genes are affiliated 

to Alphaproteobacteria. 

Polycyclic aromatic hydrocarbons (PAHs) are more resistant to microbial attack than 

smaller aromatic hydrocarbons, and when biodegradation is possible, this often proceeds 

through oxidation and ring cleavage by dioxygenases (Sipilä et al. 2008). The metagenome 

contains genes that encode enzymes putatively involved in the degradation of PAHs and other 

recalcitrant hydrocarbons, such as biphenyl and alkylbiphenyls. These enzymes include 

naphthalene 1,2-dioxygenase (nahAb) and 1,2-dihydroxynaphthalene dioxygenase (nahC) for 

naphthalene and alkylnaphthalenes (Peng et al. 2008), biphenyl 2,3-dioxygenase (bphA) for 

biphenyl and alkylbiphenyls, and PAH dioxygenase (nidA) for phenanthrene, 
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alkylphenanthrenes, and other high molecular weight PAHs (Iwasaki et al. 2006; Robrock et 

al. 2011) (Table 1). Since crude oil and oil spills often contain significant amount of polycyclic 

aromatic hydrocarbons such as naphthalene, alkylnaphthalenes, phenanthrene and 

alkylphenanthrenes (Ahmed and George 2004; Eze and George 2020), the presence of putative 

genes encoding PAH dioxygenases in the metagenome of the consortium indicates the potential 

of the consortium for the remediation and reclamation of petroleum-contaminated soils. 

 Interestingly, the majority of previous studies on microbially-enhanced 

rhizoremediation of petroleum hydrocarbons have focused on Pseudomonas (de Lima-Morales 

et al. 2015; Di Martino et al. 2012), Burkholderia (Okoh et al. 2001), and Paraburkholderia 

(Dias et al. 2019; Lee and Jeon 2018), but these organisms often do not have the enzymes to 

run the complete metabolic pathways for the degradation of all hydrocarbons present in diesel 

fuel, especially the aromatic constituents. For example, in a study of rhizoremediation of diesel-

contaminated soils, a scarcity of ring-hydroxylating and ring-cleavage dioxygenases among 

Gammaproteobacteria was reported by Garrido-Sanz et al. (2019). These researchers also 

noted that none of the nahA genes in the metagenome was affiliated to Pseudomonas or even 

to the Gammaproteobacteria class that dominated the PAH-degrading consortium. In contrast, 

the consortium reported here contains the CDSs required for the complete degradation of these 

aromatic components in diesel fuel. 

The comparison made between the MAGs assembled from the metagenome data of the 

enrichment culture and those obtained from studies of similar sites (Eze et al. 2020) revealed 

the relatively higher abundance, in the consortium, of genes involved in hydrocarbon 

degradation. These include the adhP and yiaY genes encoding alcohol dehydrogenases 

(Drewke and Ciriacy 1988; Glasner et al. 1995; Williamson and Paquin 1987), and the cpnA 

and chnB involved in the degradation of cycloalkanes (Iwaki et al. 2002; Sheng et al. 2001). 

These genes are also involved in the degradation of other organic contaminants such as 

haloalkanes (Belkin 1992; Yokota et al. 1986). This difference in potential degradative capacity 

between the MAGs from the two studies can be explained by the taxonomic differences 

between the MAGs obtained in both cases. In the study of a crude oil bore hole (Eze et al. 

2020), majority of the reconstructed MAGs were affiliated to Gammaproteobacteria. In 

contrast, Alphaproteobacteria, especially Acidocella was the dominant genus in both the 

enrichment culture and the MAGs from the enrichment culture. 
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The potential of the enrichment culture to degrade recalcitrant hydrocarbons was also 

revealed by the presence of genes encoding enzymes involved in degradation of recalcitrant 

organic compounds. For example, one of the three MAGs from the enrichment culture 

contained genes encoding 2-halobenzoate 1,2-dioxygenase (cbdA), an enzyme that activates 

the oxidation of 2-chlorobenzoate to catechol. In contrast, none of the 36 MAGs from the 

previous study contains this gene. Since the enrichment culture is composed of predominantly 

Acidocella strains, the abundance of genes that putatively encode for the degradation of 

cycloalkanes and aromatic hydrocarbons in the MAGs classified as Acidocella is an indication 

for the potential of the consortium for petroleum hydrocarbon biodegradation. 

Conclusions 

The degradation of petroleum hydrocarbons requires several microorganisms with both the 

ability to withstand toxicity and to harbour the required metabolic pathways. Therefore, a 

foremost step in establishing a successful microbially-mediated bioremediation approach is the 

selective cultivation of a suitable microbial consortium with the required degradative capability 

for the target contaminants. Through successive enrichment using soil samples taken from an 

historical oil-contaminated site in Germany, we successfully generated a bacterial consortium 

capable of degrading diesel fuel. We further reconstructed a total of 18 genomes from both the 

original soil sample and the isolated consortium. The analysis of both the metagenome of the 

consortium and the reconstructed metagenome-assembled genomes shows that the most 

abundant bacterial genus in the consortium, Acidocella, possess many of the coding DNA 

sequences required for the degradation of diesel fuel aromatic hydrocarbons, which are often 

the most toxic components. This can explain why this genus proliferated in all the enrichment 

cultures. Therefore, this study revealed that the microbial consortium isolated in this study or 

its dominant genus, Acidocella, could potentially serve as an effective inoculum for 

biotechnological applications in the reclamation of soils contaminated with diesel fuel. 
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Supplementary Table S1. Richness, diversity and evenness obtained from the 16S rRNA 

sequencing of sampling sites and enrichment cultures 

Sample ID Name Richness Chao1 Chao1 (%) 

Shannon 

Diversity 

Pielou’s 

Evenness 

X20200114.BEWE.a.2136_S261 S1S 381.99 475.51 80.33 4.140482857 0.696418531 

X20200114.BEWE.a.2137_S262 S2S 958.43 1166.75 82.15 5.927652696 0.863422675 

X20200114.BEWE.a.2138_S263 S3S 885.54 1076.78 82.24 5.625668073 0.828986773 

X20200114.BEWE.a.2139_S264 S1W 731.44 971.95 75.25 4.491982504 0.68111784 

X20200114.BEWE.a.2140_S265 S2W 666.94 848.21 78.63 3.840835511 0.590652415 

X20200114.BEWE.a.2141_S266 S3W 389 581.5 66.9 2.409478261 0.40403223 

X20200114.BEWE.a.2142_S267 R1S 629.32 806.44 78.04 4.89315041 0.759258936 

X20200114.BEWE.a.2143_S268 R2S 1168.08 1274.35 91.66 6.322569919 0.89515298 

X20200114.BEWE.a.2144_S269 S1E1 62.34 67.76 92 2.684138231 0.649503002 

X20200114.BEWE.a.2145_S270 S2E1 44.91 50.35 89.2 2.228003222 0.585598434 

X20200114.BEWE.a.2146_S271 S3E1 38.41 40.95 93.8 1.755745383 0.481247923 

X20200114.BEWE.a.2147_S272 S1E2 45.09 56.52 79.78 1.896011697 0.497815886 

X20200114.BEWE.a.2148_S273 S2E2 31.88 35.16 90.68 1.921605494 0.555059859 

X20200114.BEWE.a.2149_S274 S3E2 14.05 14.66 95.82 0.829529079 0.313903749 

X20200114.BEWE.a.2150_S275 S1E3 23.26 30.09 77.3 1.761694985 0.55984851 

X20200114.BEWE.a.2151_S276 S2E3 27.44 40.95 67 1.257543211 0.379692792 

X20200114.BEWE.a.2152_S277 S3E3 15.28 19.03 80.3 0.962736927 0.353097786 



 

 

Supplementary Table S2. Metagenome-assembled genomes (MAGs) from both the soil and the enrichment metagenomes. 

User_genome 

Source 

metagenome classification closest_placement_taxonomy closest_placement_ani aa_percent 

BEWE_m_45_metabat2.1 Soil sample f__Acidobacteriaceae;g__Terracidiphilus;s__ s__Terracidiphilus sp002314435 80.06 73.89 

BEWE_m_45_metabat2.11 Soil sample f__Mycobacteriaceae;g__Williamsia_A;s__ s__Williamsia_A herbipolensis 80.27 89.46 

BEWE_m_45_metabat2.15 Soil sample f__Acetobacteraceae;g__Acidocella;s__ N/A N/A 74.21 

BEWE_m_45_metabat2.18 Soil sample f__Steroidobacteraceae;g__;s__ N/A N/A 71.59 

BEWE_m_45_metabat2.19 Soil sample f__Koribacteraceae;g__Koribacter;s__ s__Koribacter sp003151155 89.00 70.85 

BEWE_m_45_metabat2.21 Soil sample f__Rhodanobacteraceae;g__Rudaea;s__ s__Rudaea cellulosilytica 78.03 68.95 

BEWE_m_45_metabat2.22 Soil sample f__UBA5335;g__UBA5335;s__ s__UBA5335 sp002862435 94.10 61.21 

BEWE_m_45_metabat2.25 Soil sample f__UBA5335;g__;s__ N/A N/A 94.40 

BEWE_m_45_metabat2.26 Soil sample f__Nevskiaceae;g__Solimonas;s__ N/A N/A 65.24 

BEWE_m_45_metabat2.27 Soil sample f__Burkholderiaceae;g__BOG-994;s__ N/A N/A 86.96 

BEWE_m_45_metabat2.28 Soil sample f__UBA4822;g__UBA4822;s__ N/A N/A 73.71 

BEWE_m_45_metabat2.33 Soil sample f__Actinomycetaceae;g__Pauljensenia;s__ N/A N/A 81.75 

BEWE_m_45_metabat2.35 Soil sample f__UBA5335;g__;s__ N/A N/A 87.62 

BEWE_m_45_metabat2.41 Soil sample f__Acetobacteraceae;g__;s__ N/A N/A 66.59 

BEWE_m_45_metabat2.6 Soil sample f__Burkholderiaceae;g__Caballeronia;s__ N/A N/A 93.91 

BEWE_m_46_metabat2.2 Enrichment culture f__Acetobacteraceae;g__Acidocella;s__ s__Acidocella aminolytica 82.29 82.02 

BEWE_m_46_metabat2.4 Enrichment culture f__Acidobacteriaceae;g__Acidobacterium;s__ s__Acidobacterium capsulatum 85.13 97.02 

BEWE_m_46_metabat2.5 Enrichment culture f__Acetobacteraceae;g__Acidocella;s__ N/A N/A 96.83 
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Supplementary Table S3. Quality check for the MAGs 

Bin.Id Marker.lineage X..genomes X..markers X..marker.sets X0 X1 X2 X3 X4 X5. Completeness Contamination 

Strain. 
Hetero-
geneity 

BEWE_m_45_metabat2.1 k__Bacteria (UID3187) 2258 187 116 54 125 8 0 0 0 82.75 6.47 12.5 

BEWE_m_45_metabat2.11 
o__Actinomycetales 
(UID1814) 148 572 276 25 547 0 0 0 0 97.53 0 0 

BEWE_m_45_metabat2.15 
o__Rhodospirillales 
(UID3754) 63 336 201 48 284 4 0 0 0 93.75 1.49 25 

BEWE_m_45_metabat2.18 
c__Gammaproteobacteria 
(UID4202) 67 481 276 110 329 41 0 1 0 77.26 8.06 0 

BEWE_m_45_metabat2.19 k__Bacteria (UID3187) 2258 188 117 55 132 1 0 0 0 87.39 0.85 0 

BEWE_m_45_metabat2.21 
f__Xanthomonadaceae 
(UID4214) 55 659 290 103 536 20 0 0 0 91.72 3.88 30 

BEWE_m_45_metabat2.22 
c__Gammaproteobacteria 
(UID4201) 1164 275 174 93 179 3 0 0 0 64.27 1.72 66.67 

BEWE_m_45_metabat2.25 
c__Gammaproteobacteria 
(UID4267) 119 544 284 28 513 3 0 0 0 94.55 0.82 0 

BEWE_m_45_metabat2.26 k__Bacteria (UID203) 5449 104 58 48 52 4 0 0 0 66.07 6.03 50 

BEWE_m_45_metabat2.27 
c__Betaproteobacteria 
(UID3888) 323 387 234 41 340 5 1 0 0 89.01 0.88 25 

BEWE_m_45_metabat2.28 k__Bacteria (UID203) 5449 102 56 13 89 0 0 0 0 80.36 0 0 

BEWE_m_45_metabat2.33 
f__Actinomycetaceae 
(UID1531) 42 420 211 58 358 2 2 0 0 87.1 2.37 25 

BEWE_m_45_metabat2.35 
c__Gammaproteobacteria 
(UID4267) 119 544 284 44 493 7 0 0 0 90.77 1.88 14.29 

BEWE_m_45_metabat2.41 
o__Rhodospirillales 
(UID3754) 63 336 201 114 219 3 0 0 0 65.49 0.76 66.67 

BEWE_m_45_metabat2.6 
g__Burkholderia 
(UID4006) 64 769 248 51 692 26 0 0 0 94.03 1.51 38.46 

BEWE_m_46_metabat2.2 
o__Rhodospirillales 
(UID3754) 63 336 201 80 256 0 0 0 0 72.39 0 0 

BEWE_m_46_metabat2.4 k__Bacteria (UID3187) 2258 188 117 1 186 1 0 0 0 99.79 0.85 0 

BEWE_m_46_metabat2.5 
o__Rhodospirillales 
(UID3754) 63 336 201 0 335 1 0 0 0 100 0.08 0 
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Relationship to the Overall Thesis 

This chapter perfectly complements the preceding chapter by examining, through metagenome 

and greenhouse studies, the plant growth-promoting capacity of the isolated hydrocarbon-

degrading bacterial consortium. This is an important step since the goal was to identify 

microorganisms potentially involved in both hydrocarbon degradation (Chapter 6) and plant 

growth promotion (Chapter 7). 

 

 

Author Contributions 

Conceived and designed the study: MOE, GCH, SCG and RD 

Performed the experiments: MOE and VT 

Analysed the data: MOE and VT 

Wrote the paper: MOE, VT, GCH, SCG and RD 

mailto:meze@gwdg.de
https://doi.org/10.1101/2021.03.26.437261


 

72 
 

Metagenomic insight into the plant growth-promoting potential of a diesel-degrading 

bacterial consortium for enhanced rhizoremediation application 

Michael O. Eze1,2*, Volker Thiel3, Grant C. Hose4, Simon C. George2† and Rolf Daniel1† 

1Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, 

Georg-August University of Göttingen, 37077 Göttingen, Germany. 

2Department of Earth and Environmental Sciences, Macquarie University, Sydney, NSW 2109, 

Australia. 

3Geobiology, Geoscience Centre, Georg-August University of Göttingen, 37077 Göttingen, 

Germany. 

4Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia. 

†These authors contributed equally to this work. 

*Correspondence: meze@gwdg.de 

 

Abstract 

The slow rate of natural attenuation of organic pollutants, together with unwanted 

environmental impacts of traditional remediation strategies, has necessitated the exploration of 

plant-microbe systems for enhanced bioremediation applications. The identification of 

microorganisms capable of promoting both plant growth and hydrocarbon degradation is 

crucial to the success of plant-based remediation techniques. Through successive enrichments 

of a soil sample from a historic oil-contaminated site in Wietze, Germany, we isolated a plant 

growth-promoting and hydrocarbon-degrading bacterial consortium. Metagenome analysis of 

the consortium led to the identification of genes and taxa putatively associated with these 

processes. The majority of the coding DNA sequences involved in these reactions were 

affiliated to Acidocella aminolytica and Acidobacterium capsulatum. In microcosm 

experiments performed in association with Medicago sativa L., the consortium achieved 91% 

rhizodegradation of diesel fuel hydrocarbons within 60 days, indicating its potential for 

biotechnological applications in the remediation of sites contaminated by organic pollutants. 

Keywords: Plant growth promotion, plant-microbe synergy, rhizoremediation, diesel fuel, 

Acidocella aminolytica, Acidobacterium capsulatum. 
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INTRODUCTION 

Phytoremediation is the remediation of contaminants by plant-based techniques. This approach 

offers an environmentally friendly and cost-effective in-situ method for the remediation of 

contaminated soils 1, and has been applied to both organic and inorganic contaminants. Closely 

related to phytoremediation is rhizoremediation, which is the degradation of contaminants by 

root-associated microorganisms. To enhance the effectiveness of phytoremediation and 

rhizoremediation, plant growth-promoting rhizobacteria (PGPR) have been the focus of 

research in recent decades 2,3.  

PGPR inhabit the rhizospheric zones of plants and can directly or indirectly influence 

plant growth. PGPR provide nutrients to host plants, produce phytohormones that regulate 

plant growth and metabolic activities, and protect host plants from pathogens and abiotic stress 

4,5. The plant growth-promoting activities of PGPR include nitrogen fixation, phosphate and 

potassium solubilization, indoleacetic acid and pyrroloquinoline quinone biosynthesis, 

siderophore transport, induction of systemic resistance, and interference with pathogen toxin 

production 6-8.  

PGPR readily establish in soils due to their high growth rate and adaptability to a wide 

variety of environments, and in some cases, due to their ability to metabolize a wide range of 

natural and xenobiotic compounds 6. Consequently, there is an increasing interest in enhancing 

rhizoremediation through the inoculation of microbial consortia with the required metabolic 

pathways 9,10. Unfortunately, research to date has focused just on hydrocarbon-degrading 

microbes 11,12, with few studies targeting organisms capable of both plant growth promotion 

and hydrocarbon degradation 13. 

Rhizospheric soils derived from petroleum contaminated sites are often a rich source of 

microorganisms that have the metabolic ability to degrade organic contaminants while 

enhancing plant growth 14-16. Since microorganisms present in oil-polluted sites often possess 

adaptability and resistance to toxic organic compounds, an examination of their plant growth-

promoting ability will help bridge the knowledge gap required to develop effective plant 

growth-promoting inocula for plants in contaminated soils. The application of such inocula will 

enhance the tolerance of plants to hydrocarbon toxicity, promote biomass production, and 

enhance rhizoremediation. Thus, the aims of this study were to isolate a bacterial consortium 

capable of enhancing plant growth and hydrocarbon degradation. In microcosm experiments 

performed in association with Medicago sativa L., the consortium significantly enhanced the 
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growth of M. sativa, and achieved 91% rhizodegradation of diesel fuel hydrocarbons within 60 

days. The choice of M. sativa was based on our previous study that revealed the plant’s 

tolerance to hydrocarbons 17. The results of this study will expand the range of available PGPR 

for use in rhizoremediation of environmental contaminants. 

 

RESULTS 

Bacterial diversity in the consortium 

The consortium used in this study was isolated by Eze, et al. 18 from a crude-oil polluted site 

in Wietze, Germany. The bacterial diversity in both the original soil sample and the enrichment 

culture was discussed in Eze, et al. 18.  

The relative abundance of classifiable bacterial sequences based on metagenome 

analysis showed the dominance of Alphaproteobacteria in the original soil sample, with relative 

abundance of 22% (Figure 1). This was followed by Acidobacteriia (9%), Betaproteobacteria 

(8%), Gammaproteobacteria (6%), Actinobacteria (5%), Deltaproteobacteria (2%), 

Sphingobacteria (1%) and Planctomycetia (1%). Viruses and Archaea accounted for 0.09% and 

0.3% of the total sequences, while Eukaryota accounted for 3% (of which 2% are Fungi). At 

genus level, Bradyrhizobium (3%) dominated in the original soil followed by Pseudomonas 

(2%). Other genera present included Sphingomonas, Mycobacterium, Mucilaginibacter, 

Acidocella, Acidobacterium and Aquabacter. The successive enrichments resulted in a 

consortium with approximately 60% relative abundance of Alphaproteobacteria 

(predominantly Acidocella), followed by Acidobacteriia (Figures 1b and 1c). Other bacterial 

classes with representative abundance (at least 1%) in the consortium include 

Betaproteobacteria, Gammaproteobacteria and Actinobacteria. At the genus level, Acidocella, 

Acidobacterium and Acidiphilium dominated (Figure 1b). 
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Figure 1. Taxonomic classification of (a) the original soil sample and (b) the enrichment culture based on 

metagenome data, with (c) a summary column chart of the key differences in the bacterial community 

composition. 

 

Identification of plant growth-promoting enzymes 

Functional analysis of the bacterial consortium revealed the presence of 26 enzymatic classes 

involved in plant growth-promoting activities putatively (Figure 2). The majority of the 177 

coding DNA sequences (CDSs) potentially involved in these reactions were associated with 
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phosphate solubilization and nitrogen fixation (99 and 55 CDSs, respectively). These were 

followed by pyrroloquinoline quinone synthesis (13 CDSs), zinc solubilization (5 CDSs), 

siderophore transport (3 CDSs), and indoleacetic acid synthesis (2 CDSs). 

 

Figure 2. Key enzymes involved in plant growth-promoting activities and their taxonomic assignation at the class 

level. For detailed information, see Supplementary Table S1. 

 

Taxonomic assignation of CDSs associated with nitrogen uptake 

Functional analysis of the metagenome data revealed the presence of 55 CDSs potentially 

involved in nitrogen uptake by plants. These include the nifAJU and fixABJKL genes 19-21. 

Taxonomic assignment revealed that 56% of the CDSs involved in nitrogen uptake (31 CDSs) 

belonged to the Acidocella and Acidobacterium genera (Figure 3). Other represented genera 

include Acidiphilium, Rhodopseudomonas, Acetobacter, Asaia and Bradyrhizobium. At the 

species level, Acidocella aminolytica accounted for the majority of the CDSs assigned to 

Acidocella (Supplementary Table S1). 
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Figure 3. Genus assignment of the genes involved in biological nitrogen fixation. nifA: Nif-specific regulatory 

protein; nifJ: pyruvate-flavodoxin oxidoreductase; nifU: nitrogen fixation protein NifU; fixA: electron transfer 

flavoprotein beta subunit; fixB: electron transfer flavoprotein alpha subunit; fixJ: two-component system, LuxR 

family, response regulator; fixK: nitrogen fixation regulation protein; fixL: two-component system, LuxR family, 

sensor kinase. 

 

Taxonomic assignation of CDSs associated with phosphate solubilization 

Bacterial taxa involved in phosphate solubilization include Alphaproteobacteria such as 

Acidocella, Acidiphilium, Methylovirgula, Roseovarius, Skermanella and Sphingomonas; 

Betaproteobacteria such as Paraburkholderia and Hydrogenophaga; Acidobacteriia such as 

Acidobacterium capsulatum; Chitinophagia such as Niastella; and Verrucomicrobiae such as 

Pedosphaera (Supplementary Table S1). The majority of the CDSs belonged to the Acidocella 

(68%) and Acidobacterium (19%). At the species level, the majority of the CDSs belonged to 

Acidocella aminolytica (44 CDSs) and Acidobacterium capsulatum (19 CDSs) (Supplementary 

Table S1). 

Zinc solubilization, siderophore, indoleacetic acid and pyrroloquinoline quinone 

syntheses 

The results of the metagenome analysis showed that 5 CDSs were putatively involved in zinc 

solubilization, 3 CDSs in siderophore transport, 2 CDSs in indoleacetic acid synthesis, and 13 

CDSs in pyrroloquinoline quinone synthesis (Figure 4). Of the five zinc-solubilizing CDSs, 

three were assigned to Acidobacterium capsulatum, one to Acidocella aminolytica and one to 
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Acidocella facilis (Supplementary Table S1). The three CDSs involved in siderophore 

production were assigned to Acidobacterium, Acidocella and an unclassified Burkholderiales 

(1 CDS each) (Figure 4a). The two CDSs responsible for indoleacetic acid synthesis were 

assigned to Hyphomicrobium and Mesorhizobium genera (Figure 4b). The majority of the 

pyrroloquinoline quinone synthases belong to Acidocella (9 CDSs), followed by 

Acidobacterium (2 CDSs), Acidiphilium (1 CDS) and Bosea (1 CDS). 

 

Figure 4. Genus assignment of the genes involved in (a) zinc solubilization and siderophore transport; and (b) 

indoleacetic acid and pyrroloquinoline quinone biosynthesis. pqqL: zinc protease; entS: Enterobactin 

(siderophore) exporter; iaaH: indoleacetamide hydrolase; pqqB: pyrroloquinoline quinone biosynthesis protein B; 

pqqC: pyrroloquinoline-quinone synthase; pqqD: pyrroloquinoline quinone biosynthesis protein D; pqqE: PqqA 

peptide cyclase. 

 

Effect of bacterial inoculation on plant growth and biomass production 

The inoculation of Medicago sativa with the isolated consortium resulted in increased growth 

and biomass production of the inoculated plants (Figure 5). The mean dry biomass (± standard 

error) of M. sativa plants inoculated with the consortium was 5.48 ± 0.07 g, significantly greater 

(p < 0.001) than the dry biomass of plants in the uninoculated control (3.30 ± 0.07 g).  
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Figure 5. Changes in growth and biomass production of (a) Medicago sativa plants inoculated with the isolated 

microbial consortium, in comparison with (b) uninoculated Medicago sativa plants. (c) Boxplot showing 

significant differences in biomass production of inoculated and uninoculated plants. 

 

Effect of inoculation on biodegradation of petroleum hydrocarbons 

Microbial inoculation of M. sativa enhanced the biodegradation of petroleum hydrocarbons. 

The mean residual total petroleum hydrocarbon concentrations (± standard error) for the 

“Control” (representing natural attenuation) was 2.77 ± 0.03 g/Kg, for “M. sativa” was 1.36 ± 

0.04 g/Kg, for the “Consortium” was 1.15 ± 0.05 g/Kg, and for “M. sativa + Consortium” was 

0.40 ± 0.03 g/Kg (Figure 6a). These concentrations represent 40%, 70%, 75% and 91% 

degradation, respectively. Statistical analysis showed that the effects of the different treatment 

options were significantly different (p < 0.05) from each other. Gas chromatography-mass 

spectrometry (GC-MS) of solvent extracts prepared from the experimental soils revealed a near 

complete degradation of both the aliphatic and aromatic hydrocarbons in diesel fuel in the “M. 

sativa + Consortium” treatment (Figure 6b and 6c). Thus, while natural attenuation resulted in 

the lowest degradation efficiency, synergistic interactions of M. sativa and the consortium led 

to a significantly higher degradation efficiency.  
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Figure 6. (a) Bar chart showing the mean values of residual total petroleum hydrocarbons (TPH, g/Kg) for the 

different treatments after 60 days (n=3). (b) Partial m/z 57 mass chromatograms showing a homologous series of 

residual n-alkanes in the contaminated soils under different treatments (carbon numbers annotated for n-

tetradecane and n-heptadecane). (c) Partial m/z 142 + 154 mass chromatograms of residual soils at the end of the 

experiment showing differential degradation of methylnaphthalene isomers (MN) and biphenyl under different 

treatments. 

 

DISCUSSION 

The use of plants to clean up contaminated sites is an eco-friendly and cost-effective 

technology. However, petroleum hydrocarbons are phytotoxic to most plant species, and 

consequently impact negatively on plant growth and biomass production 17. Most plants are 

unable to prosper in contaminated soils due to hydrocarbon-induced toxicity. Therefore, the 

isolation of microbial consortia capable of stimulating plant growth and enhancing contaminant 

degradation in the rhizosphere is crucial to the success of plant-based remediation techniques. 

The bacterial consortium cultured in this study enabled both enhanced growth of M. sativa and 

the degradation of hydrocarbons added to the soil. 



 

81 
 

 The successive enrichment of microorganisms in the contaminated soil resulted in a 

shift in microbial community composition and diversity. Although Alphaproteobacteria were 

dominant in both the original soil sample and the enrichment culture, successive enrichment 

using diesel fuel resulted in an increase in the percentage of Alphaproteobacteria from 22% in 

the soil sample to approximately 60% in the enrichment culture, with Acidocella being the 

dominant genus. Similarly, previous studies have shown that with increasing duration of 

hydrocarbon contamination in the environment, there is usually a preferential increase in 

Alphaproteobacteria over Gammaproteobacteria 22. 

The consortium isolated from this study contains enzymes involved in nitrogen uptake 

by plants. These include the nif and fix genes. Studies of nitrogenases have revealed that they 

require electrons to reduce N2, and either a flavodoxin or a ferredoxin is required to transfer 

electrons from a donor to a nitrogenase, and that nifF and nifJ are responsible for such electron 

transport 19,23. In addition, nifA encode a number of regulatory proteins involved in nitrogen 

fixation 24. Besides the nif genes, regulation of nitrogen fixation is dependent on the fix genes 

21. The majority of CDSs putatively encoding for nitrogen uptake in the metagenome data were 

assigned to Acidobacterium and Acidocella. This is not surprising considering the dominance 

of these genera in the consortium (Figure 1). A recent study of various strains of Acidobacteria 

revealed that they harboured homologous genes for nitrogen uptake 25. The presence of similar 

genes in the consortium indicate its potential to enhance nitrogen uptake. Nitrogen is an 

important limiting element for plant growth and production. It is required for the synthesis of 

macromolecules such as amino acids, nucleic acids, and chlorophyll. Significantly, efforts 

toward maximizing plant’s nitrogen uptake, translocation and assimilation by rhizobacteria 

inoculation have attracted much attention in recent decades 26-30. 

 Metagenome analysis revealed the presence of genes putatively responsible for 

phosphate solubilization in our microbial consortium (99 CDSs, Supplementary Table S1). 

These include acpPS (acyl carrier proteins), phoAB (alkaline phosphatase), otsB (trehalose 6-

phosphate phosphatase), gph (phosphoglycolate phosphatase), and plc (phospholipase). 

Previous studies have shown that acyl carrier proteins play a crucial role in the synthesis of 

fatty acids, which are necessary for cellular membranes’ integrity, fluidity and permeability 

31,32. Fatty acids also confer structural barriers to the environmental stresses that plants face 33. 

Five of the seven CDSs putatively encoding phosphoglycolate phosphatase were assigned to 

Acidocella (Supplementary Table S1). This enzyme plays a major role in photorespiratory 2-

phosphoglycolate metabolism, an essential pathway for photosynthesis in plants 34-36. 
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Similarly, seven of the eleven CDSs encoding trehalose 6-phosphate phosphatase, an enzyme 

that catalyses the biosynthesis of trehalose, were assigned to Acidocella. Trehalose has been 

found to enhance the tolerance of plants to stress 37. Consequently, the abundance of such 

phosphatases in our consortium may account for not only the growth promotion of M. sativa 

plants but also their tolerance to diesel fuel toxicity. 

Functional analysis of the metagenome of the consortium from the enrichment revealed 

the presence of other potential genes important for plant growth promotion. These genes 

include pqqL (for zinc solubilisation), entS (for siderophore transport), iaaH (for indoleacetic 

acid synthesis) and pqqBCDE (for pyrroloquinoline quinone synthesis) (Supplementary Table 

S1). The enzymes that they encode are vital for plant growth and tolerance to contaminant 

toxicity. For example, the defence strategies of plants against pathogens has been linked to 

their ability to solubilize zinc 38. Rhizobacteria that are able to release iron-chelating molecules 

serve to attract iron towards the rhizosphere, where it can be absorbed by the plants 39. In 

addition, siderophore-producing PGPR can hinder the growth of pathogens by limiting the iron 

available for the pathogen, mostly fungi, which are unable to absorb the iron–siderophore 

complex 40,41. Previous studies on siderophore and pyrroloquinoline quinone biosynthesis have 

focused on Pseudomonas 42. Similarly, studies on indoleacetic acid production by PGPR have 

generally been limited to a few microorganisms such as Azospirillum, Pseudomonas, 

Rhizobium and Burkholderia 7,43-46. Hence, the identification of Acidocella and Acidobacterium 

as being potentially involved in these processes, coupled with their hydrocarbon-degrading 

potentials 18, significantly expands the range of PGPR applicable for microbially-enhanced 

phytoremediation of organic pollutants. 

During the pot experiment, the consortium significantly enhanced plant growth and 

hydrocarbon degradation. The inoculation of M. sativa with the consortium significantly 

enhanced plant growth and biomass production (66%, Figure 5), indicating that the consortium 

was effective in promoting the growth of M. sativa in contaminated soils. Similarly, 

geochemical analyses revealed not only a reduction in the total petroleum hydrocarbons but 

also the degradation of both aliphatic and aromatic hydrocarbons (Figure 6). In terms of unitary 

application, M. sativa and the consortium resulted in 70% and 75% degradation respectively, 

indicating that the consortium was marginally more effective for hydrocarbon degradation than 

M. sativa alone. These results differed from that of a previous study by Garrido-Sanz, et al. 10, 

in which the isolated consortium was less effective than M. sativa for hydrocarbon remediation. 

The difference in remediation effectiveness between the two consortia may be attributed to 
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differences in their bacterial community composition. The consortium isolated by Garrido-

Sanz, et al. 10 was dominated by Gammaproteobacteria, especially Pseudomonas. In contrast, 

Alphaproteobacteria dominated in the consortium isolated in this study (Figure 1). The 

hydrocarbon-degrading ability of the consortium is evidently associated with the presence of 

CDSs putatively encoding for monooxygenase and dioxygenases. Previous metagenome 

analysis of the consortium revealed the presence of key monooxygenases and dioxygenases 

including, but not limited to, long-chain alkane monooxygenase (ladA), toluene 

monooxygenase (tmoCF), benzene/toluene/chlorobenzene dioxygenase (todABC1C2) and 

ethylbenzene dioxygenase (etbAaAbAc) 18. Central metabolism of aromatic hydrocarbons that 

follows initial activation involves ortho- and meta-cleavage of catechol or methylcatechol, and 

these reactions are orchestrated by enzymes such as catechol 1,2-dioxygenase and catechol 2,3-

dioxygenase 47-53. These genes are also present in the metagenome data of the consortium 18.  

Our experiments using the isolated consortium highlighted the role of plant-microbe 

synergy in the remediation of environmental pollutants. Although bioremediation by either M. 

sativa or the consortium significantly enhanced biodegradation of petroleum hydrocarbons, the 

greatest effectiveness was achieved in the M. sativa + Consortium treatment (91% degradation 

within 60 days). These results are of interest not only for biotechnological applications aimed 

at phytoremediation of toxic compounds, but also for improving crop yield in agriculture 54,55. 

The affiliation of most of the plant growth-promoting and hydrocarbon-degrading activities to 

the two dominant species, namely, Acidocella aminolytica and Acidobacterium capsulatum, is 

an indication that these species are promising candidates for biotechnological applications in 

the remediation of organic contaminants. 

 

MATERIALS AND METHODS 

Study site description 

Wietze is an important historical site in terms of crude-oil production. Industrial extraction of 

petroleum in Germany began in 1859 56. Between 1900 and 1920, Wietze was the most 

productive oil field in Germany, and almost 80% of German crude oil was produced here. 

Although oil production ceased at Wietze several decades ago, there are still a significant 

number of oil seeps, contaminating soils, and water bodies. These sites harbour several plant 

species. Therefore, Wietze is an ideal place to mine for plant growth-promoting and 

hydrocarbon-degrading microorganisms. 
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Soil sampling, enrichment and growth conditions 

Approximately 10 g of topsoil (0-10 cm) was taken from a heavily polluted site located at the 

historical oil field at Wietze (52°39’0’’N, 09°50’0’’E), Germany in November 2019 18. The 

sample was transported to the laboratory on ice.  

A 1 g subsample of the field sample was added to an Erlenmeyer flask (300 mL) containing 

100 mL of liquid mineral medium. Mineral medium was KH2PO4 (0.5 g/L), NaCl (0.5 g/L), 

NH4Cl (0.5 g/L). Sterile-filtered trace elements (1 mL/L) 57, vitamin solution (1 mL/L) 57 and 

MgSO4·7H2O (5 mL of a 100 mg/mL) were added post-autoclaving. Sterile-filtered diesel fuel 

(1 mL) was added to the flask as the sole carbon and energy source. The culture was grown at 

30°C with constant shaking at 110 rpm (INFORS HT shaker, model CH-4103, Infors AG, 

Bottmingen, Switzerland) and subcultured every five days. After three successive enrichments, 

microbial cells were harvested for both metagenome studies and a greenhouse experiment. 

DNA extraction 

Microbial cells (OD600 = 0.635) from 30 mL of the enrichment culture were harvested by 

centrifugation at 4000 x g for 10 min. The supernatant was subsequently discarded. DNA from 

the cell pellets was extracted using the PowerSoil® DNA Extraction kit (Qiagen, Hilden, 

Germany). 

DNA extraction, metagenome sequencing, assembly and analysis 

The extraction of the DNA was described in Eze, et al. 18. In brief, microbial cells (OD600 = 

0.635) from 30 mL of the enrichment culture were harvested by centrifugation at 4000 x g for 

10 min. DNA from the cell pellets was extracted using the PowerSoil® DNA Extraction kit 

(Qiagen, Hilden, Germany). Sequencing libraries were generated from environmental DNA. 

These were barcoded using the Nextera XT-Index kit (Illumina, San Diego, USA) and the Kapa 

HIFI Hot Start polymerase (Kapa Biosystems, Wilmington, USA). The Göttingen Genomics 

Laboratory determined the sequences employing an Illumina HiSeq 2500 system using the 

HiSeq Rapid SBS kit V2 (2x250 bp). Metagenomic reads were further processed as described 

in Eze, et al. 16. In brief, reads were processed with the Trimmomatic tool version 0.39 58 and 

assembled using metaSPAdes version 3.13.2 59. Coverage information for each scaffold was 

determined using Bowtie2 version 2.3.2 60 and SAMtools version 1.7 61. Functional annotation 

of coding DNA sequences putatively encoding for the various plant growth-promoting 
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enzymes was as described previously 18, and taxonomic assignment was performed using kaiju 

version 1.7.3 62. 

Potential plant growth-promoting enzymes 

The enzymes of interest include nif-specific regulatory protein, pyruvate-flavodoxin 

oxidoreductase, nitrogen fixation protein, electron transfer flavoprotein, nitrogen fixation 

regulation protein, phosphatases, acyl carrier protein, phospholipases, zinc protease, 

enterobactin (siderophore) exporter, indoleacetamide hydrolase and pyrroloquinoline quinone 

synthases. 

Plant growth and bacterial inoculation 

Plant growth and bacterial inoculation involved the inoculation of diesel fuel-spiked soils with 

the isolated consortium in order to determine effects on plant growth and hydrocarbon change. 

The soil used for this experiment was “Primaster turf”. Primaster turf is made from a mixture 

of screened sand, soil, and composted organics. It is blended with a nitrogen-phosphorous-

potassium fertiliser to promote root growth throughout the year. The soil texture was sand 

(88.6% sand, 6.1% silt and 5.3% clay), with 12.5% organic matter content measured by loss 

on ignition. The soil had a total nitrogen content of 0.15% and a pH of 7.1. The soil was sieved 

using a 2-mm sieve to remove large particles. Diesel fuel (C10-C25) from a Shell service station 

in Göttingen (Germany) was added to the soil and homogenized following the methods of Eze, 

et al. 17 with some modifications. In brief, the soil was manually homogenized for an hour. This 

was followed by automatic homogenization using a portable soil mixing machine (Güde Model 

GRW 1400) for 30 minutes. Gas chromatography-mass spectrometry analysis revealed that the 

resulting total petroleum hydrocarbons concentration in the diesel fuel-contaminated soil was 

4.59 g/kg. Viable seeds of Medicago sativa L. were placed in pots (3 seeds per pot) containing 

150 g of diesel fuel contaminated soils.  

The contaminated soil was treated with the following: (1) M. sativa; (2) Consortium; (3) M. 

sativa + consortium. An unplanted and uninoculated soil served as the control. Since the goal 

of the study was to assess the effectiveness of each treatment for hydrocarbon degradation, the 

soil used for the entire experiment was the diesel fuel-contaminated soil (4.59 g/kg) as 

described above. The microbial consortium used was harvested from the culture by 

centrifugation at 4000 x g for 10 min, washed twice in mineral medium and concentrated to 

OD600 = 1.800. For the M. sativa + consortium treatment, the cells (at OD600 = 1.800) were 

inoculated to the base of one-week-old Medicago sativa L. seedlings at the depth of 1.5 cm 
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below-ground level. The whole experiment was performed in triplicate, and pots were watered 

with 90 mL sterile water every three days for the first two weeks. After that, the planted pots 

were watered with 90 mL sterile water every two days to compensate for the water needs of M. 

sativa plants. After 60 days, the plants were harvested, washed under tap water, oven-dried at 

70 °C until constant weights were achieved, and then their dry biomass weights were obtained. 

Organic geochemical analysis of biodegradation 

At the end of the experimental period, soils in each pot were homogenized as described earlier. 

Soils were freeze dried and 1 g of the ground freeze-dried soil was further homogenized with 

a small amount of sodium sulfate (Na2SO4) and transferred into a Teflon microwave digestion 

vessel for hydrocarbon analysis. The samples were solvent extracted twice with fresh 2.5 mL 

n-hexane each in a microwave device (Mars Xpress, CEM; 1600W, 100 °C, 20 min). For 

reference, 2.5 µL diesel fuel (density = 0.82 g/mL) was dissolved in 5 mL n-hexane instead of 

1 g soil sample. The extracts for each sample were combined into a 7 mL vial and topped to 5 

mL with n-hexane. A 1 mL aliquot (20%) of each extract was pipetted into a 2 mL autosampler 

vial, and 20 µL n-icosane D42 [200 mg/L] was added as an internal quantification standard. 

Gas chromatography-mass spectrometry (GC-MS) analyses of the samples were performed 

using a Thermo Scientific Trace 1300 Series GC coupled to a Thermo Scientific Quantum XLS 

Ultra MS. The GC capillary column used was a Phenomenex Zebron ZB–5MS (30 m, 0.1 µm 

film thickness, inner diameter 0.25 mm). Compounds were transferred splitless to the GC 

column at an injector temperature of 300 °C. Helium was used as the carrier gas at a flow rate 

of 1.5 mL/min. The GC temperature program was as follows: 80 °C (hold 1 min), 80 °C to 310 

°C at 5 °C/min (hold 20 min). Electron ionization mass spectra were recorded at 70eV electron 

energy in full scan mode (mass range m/z 50–600, scan time 0.42 s). Peak areas were integrated 

using Thermo Xcalibur software version 2.2 (Thermo Fisher Scientific Inc., USA). 

Statistical analysis 

All statistical analysis were performed using R 63. One-way analysis of variance (ANOVA) 

was used to compare the mean dry biomass of “M. sativa” and “M. sativa + consortium” 

treatments.  Similarly, comparisons of soil residual hydrocarbon concentrations between 

treatments were made using one-way ANOVA, followed by Tukey’s all-pairwise comparisons. 

In all cases, the normality of variances was tested by the Shapiro-Wilk’s method 64, while 

homogeneity of variances was tested using Levene’s test 65. Differences were considered 

significant at p < 0.05. The p values were adjusted using the Holm method, as this approach 
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offers a simple, yet uniformly powerful method to control family-wise error rate in multiple 

comparisons 66,67. 
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Supplementary Table S1. Genes involved in plant growth promotion, number of coding DNA sequences (CDSs), and their taxonomic classification. 

 

Group 

 

Genes 

KEGG 

Orthology 

No. of 

CDSs 

 

Taxa (Class) 

 

Taxa (Genus) 

Nitrogen fixation 

Nitrogen uptake nifA K02584 1 Alphaproteobacteria Acidocella aminolytica 

  
 

K02584 
 

4 
 

Acidobacteriia 
Acidobacterium 
capsulatum 

  K02584 1 Alphaproteobacteria Bradyrhizobium mercantei 

  K02584 1 Alphaproteobacteria Rhodobacter 

  K02584 1 Alphaproteobacteria Methylocella silvestris 

 
Nitrogen uptake 

 
por, nifJ 

 
K03737 

 
2 

 
Acidobacteriia 

Acidobacterium 
capsulatum 

  
 

K03737 
 

1 
 

Actinobacteria 
Mycobacterium 
malmoense 

  K03737 2 Alphaproteobacteria Asaia sp. W19 

  K03737 1 Alphaproteobacteria Acetobacter senegalensis 

  K03737 1 Alphaproteobacteria Acetobacter cibinongensis 

 
Nitrogen uptake 

 
iscU, nifU 

 
K04488 

 
1 

 
Acidobacteriia 

Acidobacterium 
capsulatum 

  K04488 1 Alphaproteobacteria Acidocella aminolytica 

Nitrogen uptake fixA, etfB K03521 1 Alphaproteobacteria Elioraea sp. YIM 72297 

  K03521 1 Alphaproteobacteria unclassified Rhizobiales 

  
 

K03521 
 

1 
 

Acidobacteriia 
Acidobacterium 
capsulatum 

  K03521 1 Alphaproteobacteria Labrys okinawensis 

  
 

K03521 
 

3 
 

Alphaproteobacteria 
Acidocella aminolytica (2) 
and Acidocella (1) 

  
 

K03521 
 

1 
 

Alphaproteobacteria 
Acidiphilium multivorum 
AIU301 

Nitrogen uptake fixB, etfA K03522 1 Alphaproteobacteria Komagataeibacter 

  K03522 1 Alphaproteobacteria unclassified Rhizobiales 

  
 

K03522 
 

1 
 

Acidobacteriia 
Acidobacterium 
capsulatum 

  
 

K03522 
 

3 
 

Alphaproteobacteria 
Acidocella aminolytica (2) 
and Acidocella (1) 

  
 

K03522 
 

1 
 

Alphaproteobacteria 
Acidiphilium multivorum 
AIU301 

 
Nitrogen uptake 

 
fixL 

 
K14986 

 
4 

 
Acidobacteriia 

Acidobacterium 
capsulatum 

  
 

K14986 
 

2 
 

Alphaproteobacteria 
Rhodopseudomonas 
palustris 

  
 

K14986 
 

4 
 

Alphaproteobacteria 
Acidocella aminolytica (2) 
and Acidocella (2) 

  K14986 1 Alphaproteobacteria unclassified Rhizobiales 

 
Nitrogen uptake 

 
fixJ 

 
K14987 

 
1 

 
Alphaproteobacteria 

unclassified 
Alphaproteobacteria 

  
 

K14987 
 

2 
 

Alphaproteobacteria 
Acidocella aminolytica (1) 
and Acidocella (1) 

  K14987 2 Alphaproteobacteria unclassified Rhizobiales 

 
Nitrogen uptake 

 
fixK 

 
K15861 

 
4 

 
Alphaproteobacteria 

Acidocella aminolytica (1) 
and Acidocella (3) 
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K15861 
 

1 
 

Alphaproteobacteria 
Rhizomicrobium sp. SCGC 
AG-212-E05 

  K15861 1 Alphaproteobacteria Roseomonas rosea 

  K15861 1 Alphaproteobacteria Acidiphilium 

  Subtotal: 55   

Phosphate solubilization 

 
Phosphate solubilization 

 
acpS 

 
K00997 

 
4 

 
Alphaproteobacteria 

Acidocella aminolytica (2) 
and Acidocella (2) 

Phosphate solubilization acpP K02078 1 Alphaproteobacteria Skermanella stibiiresistens 

  
 

K02078 
 

2 
 

Acidobacteriia 
Acidobacterium 
capsulatum 

  
 

K02078 
 

3 
 

Alphaproteobacteria 
Acidocella aminolytica (2) 
and Acidocella (1) 

  K02078 1 Betaproteobacteria Hydrogenophaga 

 
Phosphate solubilization 

 
phoA, phoB 

 
K01077 

 
1 

 
Acidobacteriia 

Acidobacterium 
capsulatum 

 
Phosphate solubilization 

 
serB, PSPH 

 
K01079 

 
2 

 
Acidobacteriia 

Acidobacterium 
capsulatum 

  
 

K01079 
 

3 
 

Alphaproteobacteria 
Acidocella aminolytica (2) 
and Acidocella (1) 

 
Phosphate solubilization 

 
cysQ 

 
K01082 

 
6 

 
Alphaproteobacteria 

Acidocella aminolytica (3) 
and Acidocella (3) 

  K01082 1 Alphaproteobacteria Acidiphilium 

  K01082 1 Alphaproteobacteria Sphingomonas sp. YR710 

Phosphate solubilization otsB K01087 1 Alphaproteobacteria unclassified Rhizobiales 

  
 

K01087 
 

7 
 

Alphaproteobacteria 
Acidocella aminolytica (4) 
and Acidocella (3) 

  
 

K01087 
 

2 
 

Acidobacteriia 
Acidobacterium 
capsulatum 

  
 

K01087 
 

1 
 

Betaproteobacteria 
Paraburkholderia sp. 
BL23I1N1 

 
Phosphate solubilization 

 
E3.1.3.16 

 
K01090 

 
3 

 
Acidobacteriia 

Acidobacterium 
capsulatum 

  
 

K01090 
 

6 
 

Alphaproteobacteria 
Acidocella aminolytica (4) 
and Acidocella (2) 

  K01090 1 Chitinophagia Niastella 

 
Phosphate solubilization 

 
gph 

 
K01091 

 
1 

 
Acidobacteriia 

Acidobacterium 
capsulatum 

  K01091 1 Verrucomicrobiae Pedosphaera parvula 

  
 

K01091 
 

5 
 

Alphaproteobacteria 
Acidocella aminolytica (4) 
and Acidocella (1) 

 
Phosphate solubilization 

 
suhB 

 
K01092 

 
2 

 
Acidobacteriia 

Acidobacterium 
capsulatum 

  
 

K01092 
 

8 
 

Alphaproteobacteria 
Acidocella aminolytica (4) 
and Acidocella (4) 

 
Phosphate solubilization 

 
appA 

 
K01093 

 
1 

 
Acidobacteriia 

Acidobacterium 
capsulatum 

 
Phosphate solubilization 

 
pgpA 

 
K01095 

 
1 

 
Acidobacteriia 

Acidobacterium 
capsulatum 

  
 

K01095 
 

3 
 

Alphaproteobacteria 
Acidocella aminolytica (2) 
and Acidocella (1) 
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Phosphate solubilization 

 
plc 

 
K01114 

 
4 

 
Acidobacteriia 

Acidobacterium 
capsulatum 

  K01114 5 Alphaproteobacteria Acidocella aminolytica 

  
 

K01114 
 

1 
 

Betaproteobacteria 
Paraburkholderia sp. 
PDC91 

  K01114 1 Alphaproteobacteria unclassified Rhizobiales 

 
 

Phosphate solubilization 

 
 

cobC, phpB 

 
 

K02226 

 
 

9 

 
 

Alphaproteobacteria 

Acidocella aminolytica (6); 
Acidocella facilis (1) and 
Acidocella (2) 

Phosphate solubilization cbiB, cobD K02227 1 Alphaproteobacteria Roseovarius sp. A-2 

  K02227 1 Alphaproteobacteria Acidocella aminolytica 

 
Phosphate solubilization 

 
glpR 

 
K02444 

 
7 

 
Alphaproteobacteria 

Acidocella aminolytica (5) 
and Acidocella (2) 

  K02444 1 Alphaproteobacteria Methylovirgula sp. 4M-Z18 

Phosphate solubilization glpX K02446 1 Alphaproteobacteria Acidiphilium 

  Subtotal: 99   

Zinc solubilization 

 
Zinc solubilization 

 
pqqL 

 
K07263 

 
3 

 
Acidobacteriia 

Acidobacterium 
capsulatum 

  
 

K07263 
 

2 
 

Alphaproteobacteria 
Acidocella aminolytica (1) 
and Acidocella facilis (1) 

  Subtotal: 5   

Siderophore transport 

 
Siderophore transport 

 
entS 

 
K08225 

 
1 

 
Acidobacteriia 

Acidobacterium 
capsulatum 

  
 

K08225 
 

1 
 

Betaproteobacteria 
unclassified 
Burkholderiales 

  K08225 1 Alphaproteobacteria Acidocella 

  Subtotal: 3   

Indoleacetic acid (IAA) synthesis 

IAA synthesis iaaH K21801 1 Alphaproteobacteria Hyphomicrobium sp. 99 

  K21801 1 Alphaproteobacteria Mesorhizobium 

  Subtotal: 2   

Pyrroloquinoline quinone synthesis 

PQQ synthesis pqqB K06136 1 Alphaproteobacteria Acidiphilium 

  
 

K06136 
 

2 
 

Alphaproteobacteria 
Acidocella aminolytica (1) 
and Acidocella (1) 

PQQ synthesis 
 

pqqC 
 

K06137 
 

1 
 

Acidobacteriia 
Acidobacterium 
capsulatum 

  
 

K06137 
 

2 
 

Alphaproteobacteria 
Acidocella aminolytica (1) 
and Acidocella (1) 

PQQ synthesis 
 

pqqD 
 

K06138 
 

3 
 

Alphaproteobacteria 
Acidocella aminolytica (2) 
and Acidocella (1) 

PQQ synthesis pqqE K06139 1 Alphaproteobacteria Bosea sp. 117 

  
 

K06139 
 

1 
 

Acidobacteriia 
Acidobacterium 
capsulatum 

  
 

K06139 
 

2 
 

Alphaproteobacteria 
Acidocella aminolytica (1) 
and Acidocella facilis (1) 

  Subtotal: 13   

  TOTAL: 177   
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Relationship to the Overall Thesis 

The biotechnological applicability of consortia is limited since they are often difficult to 

reproduce. Therefore, the identification of specific single bacterial isolates capable of 

enhancing both plant growth promotion and hydrocarbon degradation will expand the range of 

bacteria available for biotechnological applications. Additionally, this paper examined the 

synergistic efficacy of Medicago sativa and Paraburkholderia tropica for enhanced 

rhizoremediation of diesel fuel hydrocarbons, with potential in situ applications. 
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Abstract 

The biotechnological application of microorganisms for rhizoremediation of contaminated 

sites requires the development of plant-microbe symbionts capable of plant growth promotion 

and hydrocarbon degradation. Studies focusing on microbial consortia are often difficult to 

reproduce, thereby necessitating the need for culturable single bacterial species for 

biotechnological applications. Through genomic analyses and plant growth experiments, we 

examined the synergistic interactions of Medicago sativa L. and Paraburkholderia tropica for 

enhanced remediation of diesel fuel-contaminated soils. Comparative genomics revealed 

strong potential of P. tropica for plant growth-promotion, chemotaxis and motility, root 

nodulation and colonization, and diesel fuel degradation. Plant growth experiments confirmed 

that P. tropica thrived in the contaminated soils and effectively enhanced M. sativa growth. 

Geochemical analysis showed that the M. sativa + P. tropica treatment resulted in an efficient 

degradation of diesel fuel hydrocarbons within two months, offering great prospects for 

enhanced biodegradation of organic pollutants. 

 

Keywords: Biodegradation, rhizoremediation, diesel fuel hydrocarbons, Medicago sativa L., 

Paraburkholderia tropica. 
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INTRODUCTION 

The quest for energy to meet the growing global demand has depended largely on petroleum 

and other fossil fuels. Consequently, petroleum spillage, either through human error or 

equipment failure has plagued the environment for decades 1. For example, in 2010, the 

Deepwater Horizon oil spill discharged more than 700 million litres of South Louisiana crude 

oil into the Gulf of Mexico, resulting in the largest marine oil spill in U.S. history and the 

second largest in the world 2, 3. While large-scale marine spills often make headlines, the 

majority of petroleum spills occur on land, with significant human health and ecological 

impacts 4.  

Remediation of petroleum contaminated sites is essential to mitigating the human and 

ecological risks. Remediation strategies are classified as either ex situ or in situ 5. Ex situ 

techniques involve the excavation and relocation of contaminants for off-site treatments and, 

as a result, are expensive and environmentally unfriendly. In contrast, in situ remediation 

involves the on-site treatment of contaminants, which is typically more eco-friendly and 50 to 

80% cheaper than traditional methods such as excavation and landfill incineration 6. 

Phytoremediation, that is, the use of plants to remediate contaminated sites, is a cost-

effective method for in situ remediation. This technique relies on the use of plant interactions 

(physical, biochemical, biological, chemical, and microbiological) to remediate the toxic 

effects of pollutants 7, 8. This technique is based on carefully selected plants with fibrous roots 

that serve as a natural host for hydrocarbon-degrading microorganisms. The extensive rooting 

systems allow air to enter the rhizosphere, thus serving as a natural bioventing system, leading 

to increased biodegradation of pollutants. Notwithstanding the merits of this technique, the 

slow metabolic activity of the hydrocarbon-degrading microorganisms leads to longer 

remediation times, limiting the application of the technique. To address this shortfall, there is 

growing interest in the isolation of microbial consortia usable as inocula for contaminant 

degradation.  

In addition to their hydrocarbon-degrading capacities, some of the inoculated microbes 

can potentially enhance the growth of host plants through processes such as nitrogen fixation, 

and phosphate and potassium solubilization 9. In turn, the root exudates released by the host 

plants provide nutrition to the associated bacteria, enabling continuous biodegradation of 

contaminants. This synergistic relationship has been described as the ecological driver of 
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rhizoremediation 10. Therefore, when carefully applied, bioaugmentation offers great potential 

for effective reclamation of hydrocarbon contaminated sites.  

While a number of studies have been carried out on the use of microbial consortia for 

rhizoremediation 11, 12, few studies have been performed with single bacterial isolates. This is 

a major challenge to the adoption of microbially-enhanced rhizoremediation since the 

replication of consortia is always difficult. Hence, there is an urgent need to isolate single 

culturable bacterial species for biotechnological applications. Therefore, the aims of this study 

were to isolate potential plant growth-promoting and hydrocarbon-degrading single bacterial 

species, and examine their capacity to enhance the rhizodegradation of diesel fuel 

hydrocarbons. Specifically, this study is the first attempt to examine the synergistic interactions 

of Medicago sativa L. and Paraburkholderia tropica for enhanced rhizoremediation of diesel 

fuel-contaminated soils. This is highly relevant considering recent studies have shown that 

Paraburkholderia strains can potentially promote plant growth and/or degrade contaminants 

13, 14. Additionally, our earlier studies revealed that M. sativa has high tolerance to petroleum 

hydrocarbons, relative to other plant species 15, thereby making it an ideal plant to investigate 

plant-microbe synergy for biodegradation. By combining genome studies of P. tropica with a 

pot-based rhizodegradation experiment, we demonstrate that synergistic interactions between 

M. sativa and P. tropica promotes rhizodegradation of petroleum hydrocarbons. 

 

RESULTS 

Genome Sequencing 

The sequencing of the three genomes resulted in a total of 4,228,774 gene sequences. After 

processing, a total of 3,450,275 paired-end reads and 356,023 unpaired reads were retained and 

assembled. Assembly resulted in 575 scaffolds (Supplementary Table S1). The average 

sequencing depth was approximately 30x. The three genomes were taxonomically classified as 

Acidocella facilis, Burkholderia sp. and Paraburkholderia tropica. 

Functional Analysis of the Genomes 

Plant growth-promotion, chemotaxis, motility and root colonization 

Functional analysis of the three genomes revealed that P. tropica has the greatest potential for 

plant growth promotion, with 36, 31, 4, 2 and 2 coding DNA sequences (CDSs) putatively 
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involved in nitrogen fixation, phosphate solubilization, pyrroloquinoline quinone synthesis, 

siderophore transport and indoleacetic acid synthesis respectively (Supplementary Table S2). 

Key genes involved in these processes include the nifAUQ, fixABJL, acpP, otsB, gph, plc, 

pqqBCDE, entS and iaaH genes (Table 1). In comparison, the genomes of the other bacterial 

isolates had far fewer (24-44) CDSs putatively involved in plant growth promotion, with nifAQ, 

phoD, entS and iaaH genes missing in the genome of A. facilis (Supplementary Table S2). 

Table 1. Key genes in Paraburkholderia tropica genome that are potentially involved in plant growth promotion, 

bacterial chemotaxis, motility, root nodulation and colonization (See Supplementary Table S2 for more details). 

Genes CDSs Enzyme Function 

Plant growth promotion 

nifA 2 Nif-specific regulatory protein Nitrogen fixation 

nifUQ 2 Nitrogen fixation proteins NifU, NifQ Nitrogen fixation 

fixAB 10 Electron transfer flavoprotein Nitrogen fixation 

fixJL 22 Two-component system, LuxR family Nitrogen fixation 

acpP 4 Acyl carrier protein Phosphate solubilization 

otsB 3 Trehalose 6-phosphate phosphatase Phosphate solubilization 

gph 6 Phosphoglycolate phosphatase Phosphate solubilization 

plc 9 Phospholipase C Phosphate solubilization 

pqqBDE 3 
Pyrroloquinoline quinone biosynthesis 

proteins B, D, E 
PQQ synthesis 

pqqC 1 Pyrroloquinoline-quinone synthase PQQ synthesis 

entS 2 
MFS transporter, ENTS family, 

enterobactin exporter 
Siderophore transport 

iaaH 2 Indoleacetamide hydrolase IAA synthesis 

Bacterial chemotaxis, motility, and root colonization 

cheABCDVWXYZ 20 Two-component chemotaxis protein Bacterial chemotaxis 

wspBDEF 4 Two-component chemotaxis protein Bacterial chemotaxis 

mcp, tsr, tar, trg, 

tap, wspA 
47 Methyl-accepting chemotaxis protein Bacterial chemotaxis 

flg, flh, fli 52 Flagellar proteins Bacterial motility 

nodD 2 
Nod-box dependent transcriptional 

activator 
Root nodulation 

tadB 2 Tight adherence protein B Plant colonization 

tadC 2 Tight adherence protein C Plant colonization 

PQQ: Pyrroloquinoline quinone; IAA: Indole-3-acetic acid. 
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Hydrocarbon-degrading potential 

Functional analysis revealed that P. tropica contains genes putatively involved in hydrocarbon 

degradation (Table 2). While the three isolates are potentially able to degrade petroleum 

hydrocarbons, there were some specific differences in their metabolic capabilities. For 

example, the genomes of P. tropica and Burkholderia sp. encode for greater numbers of 

enzymes putatively involved in the degradation of n-alkanes (especially long-chain n-alkanes) 

and cycloalkanes than the Acidocella genome (Supplementary Table S3). This is crucial for 

diesel fuel degradation since the chemical composition of diesel fuel is 75% saturated 

hydrocarbons (predominantly long-chain n-alkanes and cycloalkanes) 16, 17.  

Table 2. Key genes in the Paraburkholderia tropica genome that putatively encode for hydrocarbon-degrading 

enzymes. 

Genes CDSs Enzyme Function 

Hydrocarbon degradation 

ladA 6 Long-chain alkane monooxygenase n-Alkane degradation 

alkR 2 Alkane utilization regulator Activates AlkM expression 

adhP 4 Alcohol dehydrogenase (propanol-preferring) n-Alkane degradation 

cpnA 2 Cyclopentanol dehydrogenase Cycloalkane activation 

chnB 2 Cyclohexanone monooxygenase Cycloalkane activation 

gnl 5 Gluconolactonase 
Ring cleavage of 

cycloalkanes 

xylC 1 Benzaldehyde dehydrogenase Toluene/Xylene degradation 

benABC 6 Benzoate/toluate 1,2-dioxygenase Benzoate degradation 

benD 1 
Dihydroxycyclohexadiene carboxylate 

dehydrogenase 

Decarboxylation of 

benzoates 

pcaGH 2 Protocatechuate 3,4-dioxygenase Ring cleavage of benzoates 

etbD 1 2-Hydroxy-6-oxo-octa-2,4-dienoate hydrolase Ethylbenzene degradation 

catA 2 Catechol 1,2-dioxygenase Ortho-cleavage of catechol 

dmpB 1 Catechol 2,3-dioxygenase Meta-cleavage of catechol 

catB 2 Muconate cycloisomerase Catechol degradation 

catC 2 Muconolactone D-isomerase Catechol degradation 

pcaDL 8 3-Oxoadipate enol-lactonase Catechol degradation 

CDSs = coding DNA sequences. 
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The degradation of aromatic hydrocarbons proceeds through initial activation by 

monooxygenases, followed by ring cleavage of catechols. While genes putatively encoding for 

monooxygenases and dehydrogenases were more abundant in the genome of P. tropica, genes 

encoding for ring-activating dioxygenases (such as benzoate/toluate 1,2-dioxygenase) were 

more abundant in the A. facilis genome (Supplementary Table S3). In addition, putative DNA 

sequences encoding for ortho-cleavage of catechol (catABC and pcaDL genes) were more 

abundant in the P. tropica and Burkholderia sp. genomes than in the genomes of A. facilis 

(Supplementary Table S3).  

Effect of Bacterial Inoculation on Plant Growth and Biomass Production 

The inoculation of M. sativa with P. tropica resulted in increased growth rate and biomass 

production (Figure 1). The analysis of variance (ANOVA) revealed that the mean dry biomass 

(± standard error, SE) produced by plants inoculated with P. tropica (6.74 ± 0.06 g) was 

significantly higher than, and significantly different (p < 0.001) from that of the uninoculated 

plants (3.38 ± 0.07 g) (Figure 1b). Statistical analysis of growth (in terms of mean shoot height 

per time) revealed that the inoculated M. sativa plants exhibited greater relative growth rate 

(0.109 ± 0.002 cm/day at the point of inflection) than the uninoculated plants (0.092 ± 0.004 

cm/day) (Figure 1c). 
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Figure 1. (a) Enhancement of growth and biomass production of M. sativa plant by P. tropica inoculation. (b) 

Boxplot showing significant differences in dry biomass of inoculated and uninoculated plants. (c) 3-parameter 

logistic model showing differential growth rates (cm/day) of M. sativa inoculated with P. tropica vs. uninoculated 

control. 

 

Organic Geochemical Analysis of Biodegradation 

Total petroleum hydrocarbons 

Geochemical analysis of residual hydrocarbons revealed that the inoculation of contaminated 

soils with the P. tropica isolate significantly enhanced hydrocarbon degradation and 

reclamation of the diesel fuel-contaminated soils (Figure 2). As shown in the gas 

chromatograph-mass spectrometry (GC-MS) chromatograms, nearly all the distinctive diesel 

fuel hydrocarbons, including C10–C25 n-alkanes, branched alkanes, cyclic alkanes and aromatic 

hydrocarbons (approximately 96%) were degraded in the planted and inoculated soils (Figure 

2a). Similar results were obtained with the replicates (Supplementary Figure S1). The mean 

total petroleum hydrocarbons (± SE) at the beginning of the experiment (T0) was 4.13 ± 0.04 

g/kg. At the end of the experimental period, the greatest decrease in residual total petroleum 

hydrocarbons was observed in the “planted and inoculated soils” (Soil+M.sativa+P.tropica), 

while the least decrease occurred in  the “unplanted and uninoculated soils” (Soil at T60) 
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(Figure 2b). This is an indication of greatest biodegradation in the “Soil+M.sativa+P.tropica” 

treatment, a claim further supported by the huge UCM observed under this treatment (Figure 

2c). Preparation blanks ruled out possible cross contamination of hydrocarbons among the 

samples (Supplementary Figure S2). 

 

Figure 2. (a) Partial total ion chromatograms showing the initial total hydrocarbons in the contaminated soils and 

the residual hydrocarbons after 60 days under different treatments. The chromatograms can be directly compared 

with reference to the internal standard peak (the same amount was added to all samples). (b) Boxplot showing the 

mean values of residual total petroleum hydrocarbons for the different treatments. (c) Partial total ion 

chromatograms showing preferential biodegradation of nC16, nC17 and nC18 relative to nor-pristane (nor-Pr), 

pristane (Pr), and phytane (Ph) with increasing biodegradation among the different treatments. “Soil at T0”: 

contaminated soils at the beginning of experiment; “Soil at T60”: unplanted and uninoculated soils after 60 days; 

“Soil+M.sativa”: soils planted with M. sativa L.; “Soil+P.tropica”: soils inoculated with P. tropica; 

“Soil+M.sativa+P.tropica”: soils planted with M. sativa L. and inoculated with P. tropica; UCM: unresolved 

complex mixture. 

 

Biodegradation parameters 

The highest values of nC17/Pr, nC18/Ph, nC16/nor-Pr and total petroleum 

hydrocarbons/unresolved complex mixture (TPH/UCM) (1.34, 1.39, 2.65 and 1.82 

respectively) were observed in the aged initial contaminated soil (Soil at T0) (Table 3), 

followed by the unplanted and uninoculated contaminated soil at the end of the experimental 

period (Soil at T60). The lowest values of these ratios, indicating most intense biodegradation, 
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were found in the planted and inoculated soils (Soil+M.sativa+P.tropica). The nC17/Pr, 

nC18/Ph, nC16/nor-Pr and TPH/UCM ratios for the treatment “Soil+P.tropica” were smaller 

than that of “Soil+M.sativa” treatment (Table 3). This is an indication that the inoculation of 

diesel fuel-contaminated soils with P. tropica alone resulted in greater hydrocarbon 

degradation than simple phytoremediation using M. sativa. This is also in agreement with the 

results of total residual hydrocarbon measurements (Figure 2b). 

Table 3. Biodegradation parameters (ratios) for the different treatments. 

Biodegradation Parameters 

Treatment nC17/Pr nC18/Ph nC16/nor-Pr TPH/UCM 

Soil at T0 1.34 1.39 2.65 1.82 

Soil at T60 1.33 1.37 2.58 1.45 

Soil+M.sativa 1.29 1.34 2.10 1.39 

Soil+P.tropica 0.82 0.92 1.42 1.33 

Soil+M.sativa+P.tropica 0.57 0.60 0.55 1.18 

 

 

Tukey’s pairwise comparisons showed that the mean total petroleum hydrocarbons 

(g/kg) in the soils at the end of the experiment (Soil at T60) were significantly different from 

the initial mean concentration (Soil at T0), indicating that biodegradation occurred in the 

treatments (Supplementary Table S4). It also revealed that the residual hydrocarbon 

concentrations differed significantly between each treatment (Figure 2b; Supplementary Table 

S4). The greatest percentage of biodegradation (96%) observed in the planted and inoculated 

samples (Soil+M.sativa+P.tropica) were the result of the synergistic actions of M. sativa and 

P. tropica. 

Biodegradation of polycyclic aromatic hydrocarbons 

Molecular analysis of residual polycyclic aromatic hydrocarbons such as alkylnaphthalenes 

and alkylphenanthrenes revealed that the combined application of M. sativa and P. tropica 

resulted in complete biodegradation of these otherwise recalcitrant hydrocarbons (Figure 3). 

When compared to other treatments, “M. sativa+P. tropica” treatment appeared to be the most-

effective approach for biodegradation of these organic pollutants (Supplementary Figure S3). 
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Figure 3. Partial (a) m/z 156 + 170 and (b) m/z 192 + 206 mass chromatograms of contaminated “soil at T0” and 

“planted and inoculated soil” at the end of the experiment, showing effective biodegradation of alkylnaphthalenes 

and alkylphenanthrenes by the combined actions of M. sativa and P. tropica. EN: ethylnaphthalene; DMN: 

dimethylnaphthalene; MP: methylphenanthrene; EP: ethylphenanthrene; DMP: dimethylphenanthrene. Numbers 

denote positions of alkylation. 

 

16S rRNA Analysis of the Residual Soils 

The relative abundances of Paraburkholderia in the uninoculated soils (both planted and 

unplanted) were less than 1%. In contrast, the relative abundance of Paraburkholderia in the 

inoculated soil was approximately 5%, making it the fourth most-abundant bacterial genera in 

the inoculated soils (Supplementary Figure S4). This indicates that the inoculated microbes 

prospered in the rhizosphere. 

 

DISCUSSION 

The results of whole genome analysis revealed that P. tropica is a potential plant growth-

promoting bacterium (Table 1). Functional analysis of the genomes of the three isolates 

revealed that P. tropica has the highest potential for plant growth promotion. For example, 

while A. facilis has 11 coding DNA sequences (CDSs) potentially involved in nitrogen uptake 

processes, P. tropica has 36 CDSs potentially involved in nitrogen metabolism (Supplementary 

Table S2). Similarly, P. tropica isolates possess the highest number of genes encoding 
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phosphatases, siderophore exporter and indoleacetic acid synthase. The potential of P. tropica 

to enhance plant growth through these processes have also been documented in few recent 

studies 14, 18.  

The genome of P. tropica revealed other important genes involved in chemotaxis, 

motility, and root colonization. These processes are highly important if the inoculated isolate 

is to prosper in the rhizosphere. Chemotaxis proteins identified in the genome include 24 genes 

encoding two-component systems (cheABCDVWXYZ and wspBDEF genes) and 47 methyl-

accepting chemotaxis proteins. This is about 2–4 times the number present in the genomes of 

the other bacteria (Supplementary Table S2). We also identified 52 flagellar biosynthesis 

proteins belonging to the flg, flh and fli genes. These genes are crucial for bacterial motility. 

For example, Böhm, Hurek and Reinhold-Hurek 19 found that the deletion of genes involved 

in motility in the endophyte Azoarcus sp. prevented their twitching, motility and colonization 

of rice plants. The nod and tad genes are vital for root nodulation and plant colonization. The 

nodD gene has previously been associated with root nodulation in Rhizobium 20. Similarly, 

previous in silico and experimental studies of other plant growth promoting bacteria have 

linked the tight adherence (tad) systems to plant attachment and colonization 21-23. The presence 

of more genes encoding for plant growth-promoting processes, and for chemotaxis, motility, 

and root colonization in P. tropica than in the other bacteria, strongly suggests a possible 

advantage in rhizoremediation. 

Diesel fuel is phytotoxic to most plant species, and therefore often has negative effects 

on plant growth and biomass production 15. The inoculation of M. sativa with P. tropica in this 

study resulted in increased growth rate and biomass production of M. sativa. The mean dry 

biomass of inoculated plants was more than twice that of the uninoculated plants (Figure 1). 

Additionally, during the 60-day experimental period, the inoculated plants attained an average 

height of 80 cm, in contrast to approximately 42 cm for the uninoculated plants. These results 

are not surprising in view of the strong plant growth-promoting potential of P. tropica as shown 

by the genome analysis. 

Rhizoremediation of petroleum-contaminated soils also depends on the ability of the 

inoculated bacteria to degrade hydrocarbons. The examination of the three genomes revealed 

that all of them are potentially able to utilize aliphatic and aromatic hydrocarbons as carbon 

and energy sources. Key hydrocarbon-degrading enzymes present in the genome of P. tropica 

include long-chain alkane monooxygenase, cyclohexanone monooxygenase, benzoate/toluate 
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1,2-dioxygenase, protocatechuate 3,4-dioxygenase, catechol 1,2-dioxygenase and catechol 2,3-

dioxygenase (Table 2). Among the three genomes, P. tropica genome possesses more genes 

potentially involved in long-chain alkane (ladA and alkR genes) and cycloalkane (cpnA, chnB 

and gnl genes) degradation. Since diesel fuels and similar low-volatile petroleum distillates are 

composed predominantly of aliphatic hydrocarbons (approximately 75%) 16, 17, the presence of 

more high-molecular weight aliphatic hydrocarbon-degrading genes in P. tropica than in other 

species suggests stronger potential for the biodegradation of diesel spills. The presence of ring-

cleavage dioxygenase such as catechol 1,2-dioxygenase and catechol 2,3-dioxygenase in the 

genome of P. tropica also indicates its potential to metabolise intermediate products of 

aromatic hydrocarbon degradation. In a recent study, a particular strain of Paraburkholderia 

aromaticivorans isolated from a petroleum-contaminated soil was found capable of degrading 

naphthalene and BTEX (benzene, toluene, ethylbenzene and xylene) 24. In addition, 

Paraburkholderia isolate exhibited higher growth rate in neutral pH (as determined by OD600 

values) than either the Acidocella or the Burkholderia isolate, indicating potential wider 

application of P. tropica for rhizoremediation than the other species. Conversely, the 

adaptability of Acidocella to acidic conditions can be exploited for the remediation of sites 

contaminated with metals and organic pollutants such as mining sites 25-27. 

Geochemical analysis of biodegradation revealed that M. sativa + P. tropica treatment 

significantly enhanced the biodegradation of diesel fuel hydrocarbons, resulting in 96% 

rhizodegradation of the total petroleum hydrocarbons (Figure 2). Natural attenuation led to 

only 49% degradation. In comparison, M. sativa alone, P. tropica alone, and M. sativa + P. 

tropica treatments resulted in 72%, 86% and 96% biodegradation respectively. Biodegradation 

parameters revealed that the removal of petroleum hydrocarbons in the different treatments 

came from biodegradation. These parameters (nC17/Pr, nC18/Ph, nC16/nor-Pr and 

TPH/UCM) followed the expected trends, with n-alkanes more biodegradable than branched 

alkanes, and the UCM more recalcitrant than TPH. The parameters indicate that the highest 

degree of biodegradation among the different treatments occurred in “planted and inoculated” 

soils (Table 3). Tukey’s pairwise comparisons confirmed these results and also indicated that 

the results of biodegradation were significantly different among the different treatments. 

Although the chemical composition of diesel fuel is predominantly n-alkanes, branched 

alkanes and cycloalkanes, it also contains approximately 25% aromatic hydrocarbons such as 

alkylbenzenes, naphthalene, alkylnaphthalenes, phenanthrene, and alkylphenanthrenes 17. 

Molecular analysis of residual polycyclic aromatic hydrocarbons revealed that M. sativa + P. 



 

111 
 

tropica treatment led to an almost complete degradation of these contaminants (Figure 3). 

These results are of great relevance considering the toxicity of these compounds. Among the 

United States Environmental Protection Agency’s 16 priority polycyclic aromatic 

hydrocarbons are naphthalene and phenanthrene 28. Naphthalene is also classified as a group 

2b carcinogen. In 2019, the European Chemical Agency added phenanthrene to the candidate 

list of substances of very high concern due to its very persistent, very bioaccumulative (vPvB) 

nature 29, 30. 

 Finally, the relative abundances of Paraburkholderia in the residual uninoculated and 

inoculated soils were <1% and 5% respectively. This indicated that the inoculated bacteria 

thrived in the soils and were evidently responsible for the observed growth promotion of M. 

sativa and associated diesel fuel degradation. While many plant growth-promoting 

rhizobacteria have been experimented as inoculants for agricultural purposes, a major setback 

has always been the failure of inoculated microorganisms to effectively thrive against 

indigenous microbes 31. Therefore, the results of this study will prove beneficial not only for 

environmental remediation but also for biotechnological applications in agriculture.  

 

MATERIALS AND METHODS 

Soil Sampling 

A topsoil sample (10 g) was taken from a heavily polluted site in Wietze (52°39’0’’N, 

09°50’0’’E), Germany in November 2019 and transported to the laboratory on ice. Wietze is a 

site of historical petroleum production beginning in 1859 32. Between 1900 and 1920, about 

80% of German crude oil was produced in Wietze. The former oil field still contains petroleum 

seepages (Supplementary Figure S5) amidst a forested environment. 

Enrichment Cultures, Isolation of Single Bacterial Isolates and Growth Conditions 

Approximately 1 g of the crude-oil-polluted soil was added to an Erlenmeyer flask (300 mL) 

containing 100 mL of liquid mineral medium (MM) composed of KH2PO4 (0.5 g/L), NaCl (0.5 

g/L), NH4Cl (0.5 g/L). Sterile-filtered trace elements (1 mL/L) 33, vitamin solution (1 mL/L) 33 

and MgSO4.7H2O (5 mL of a 100 mg/mL solution) were added to the MM, post MM-

autoclaving. The pH was adjusted to 7.0. One mL of sterile-filtered diesel fuel was added to 

the flask as the sole carbon and energy source. The culture was grown at 30°C with shaking at 

110 rpm (INFORS HT shaker, model CH-4103, Infors AG, Bottmingen, Switzerland) and 
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subcultured after every five days. After three successive subculturing, the cells were plated on 

agar plates, after which diesel fuel was added to the plates using an airbrush. The plates were 

incubated at 30°C. After 48 hours, single colonies were transferred into separate flasks 

containing 100 mL liquid MM and 1 mL diesel fuel, and grown for five days. During the five-

day period, bacterial growth in terms of optical density (OD600) was monitored every 12 hours 

using the UV/Visible spectrophotometer (Ultrospec 3000, Model 80-2106-20, Pharmacia 

Biotech, Cambridge England). Based on the OD600 values, three representative isolates were 

selected for whole genome studies. 

DNA Extraction 

Microbial cells from approximately 30 mL of the cultures containing single isolates were 

harvested by centrifugation at 4000 x g for 10 min. DNA from the cell pellets were extracted 

using a MasterPureTM DNA Extraction kit (Epicentre®, Madison, USA) according to the 

manufacturer’s protocol. The DNA was used for Illumina-based whole genome sequencing. In 

addition, microbial cells from 30 mL of the cultures were harvested for Nanopore-based whole 

genome sequencing. Similarly, at the end of the experimental period, DNA from 100 mg of the 

inoculated and uninoculated residual soil samples were extracted using the PowerSoil® DNA 

Extraction kit (Qiagen, Hilden, Germany). 

High-Throughput Sequencing 

Genome sequencing and assembly 

Genomes were sequenced at the Göttingen Genomics Laboratory, Germany. Short-reads were 

generated using a MiSeq sequencer and v3 chemistry (Illumina, San Diego, CA, USA), while 

long-reads were sequenced using a MinIon (Oxford Nanopore Technologies; Oxford, 

England). Reads were quality filtered with fastp version 0.20.1 34. The leading 15cp were 

truncated from forward and reverse reads. Read shorter than 30bp were removed. Adaptor 

sequences were trimmed. Nanopore data were processed with porechop version 0.2.4 35.  

Default parameters were used for all software unless otherwise specified. The quality of the 

processing was confirmed using FastQC version 0.91. Reads were assembled using Unicycler 

version 0.4.8 36. Contigs shorter than 500bp were removed. Coverage information for each 

scaffold was determined using Bowtie 2 version 2.4.2 37 and SAMtools version 1.11 38. 

Genomes were classified taxonomically using GTDB-Tk version 1.0.2 and the Genome 

Taxonomy Database (release 86) 39, 40.  



 

113 
 

Sequencing of bacterial 16S rRNA genes from residual soils 

Bacterial 16S rRNA genes were amplified using the forward primer S-D-Bact-0341-b-S-17 (5′-

CCT ACG GGN GGC WGC AG-3′) 41 and the reverse primer S-D-Bact-0785-a-A-21 (5′-GAC 

TAC HVG GGT ATC TAA TCC-3′) 41 containing Illumina Nextera adapters for sequencing. 

The PCR reaction (25 µL) contained 5 µL of five-fold Phusion HF buffer, 200 µM of each of 

the four deoxynucleoside triphosphates, 4 µM of each primer, 1 U of Phusion high fidelity 

DNA polymerase (Thermo Scientific, Waltham, MA, USA), and approximately 50 ng of the 

extracted DNA as a template. The negative controls were performed by using the reaction 

mixture without a template. The following thermal cycling scheme was used: initial 

denaturation at 98 °C for 30 s, 30 cycles of denaturation at 98 °C for 15 s, annealing at 53 °C 

for 30 s, followed by extension at 72 °C for 30 s. The final extension was carried out at 72 °C 

for 2 min. Obtained PCR products per sample were controlled for appropriate size and purified 

using the MagSi-NGS Plus kit according to the manufacturer’s protocol (Steinbrenner 

Laborsysteme GmbH, Germany). The quantification of the PCR products was performed using 

the Quant-iT dsDNA HS assay kit and a Qubit fluorometer, as recommended by the 

manufacturer (Thermo Scientific). The DNA samples were barcoded using the Nextera XT-

Index kit (Illumina, San Diego, USA) and the Kapa HIFI Hot Start polymerase (Kapa 

Biosystems, USA). Sequencing was performed at the Göttingen Genomics Laboratory on an 

Illumina MiSeq Sequencing platform (paired end 2 × 300 bp) using the MiSeq Reagent kit v3, 

as recommended by the manufacturer (Illumina). All bacterial samples were sequenced on the 

same MiSeq run. 

Processing of the 16S rRNA gene data 

Trimmomatic version 0.39 42 was initially used to truncate low quality reads if quality dropped 

below 12 in a sliding window of 4 bp. Datasets were subsequently processed with Usearch 

version 11.0.667 43 as described in Wemheuer, Berkelmann, Wemheuer, Daniel, Vidal and 

Bisseleua Daghela 44. In brief, paired end reads were merged and quality-filtered. Filtering 

included the removal of low-quality reads (maximum number of expected errors >2 and more 

than 1 ambitious base, respectively) and those shorter than 200 bp. Processed sequences of all 

samples were joined, dereplicated and clustered in zero-radius operational taxonomic units 

(zOTUs) using the UNOISE algorithm implemented in Usearch. A de novo chimera removal 

was included in the clustering step. Afterwards, zOTU sequences were taxonomically classified 

using the SINTAX algorithm against the SILVA database (SILVA SSURef 138 NR99). All 

non-bacterial zOTUs were removed based on their taxonomic classification. Subsequently, 
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processed sequences were mapped on final zOTU sequences to calculate the distribution and 

abundance of each OTU in every sample. Richness and coverage based on the Chao1 richness 

estimator were estimated in R using the vegan package. 

Functional Analysis of the Genomes 

Identification of CDSs involved in plant growth promoting and hydrocarbon-degrading 

processes 

Coding DNA sequences of putative enzymes involved in both plant growth-promoting 

activities and hydrocarbon degradation were identified in the bacterial genomes by means of 

annotations with prodigal version 2.6.3 45. Functional annotation was performed with diamond 

version v0.9.29 46 and the KEGG database (October release 2018) 47. The plant growth-

promoting enzymes of interest include nif-specific regulatory protein, nitrogen fixation protein, 

electron transfer flavoprotein, acyl carrier protein, trehalose 6-phosphate phosphatase, 

phosphoglycolate phosphatase, phospholipase C, pyrroloquinoline quinone biosynthesis 

proteins B, D and E, pyrroloquinoline quinone-synthase, enterobactin (siderophore) exporter, 

and indoleacetamide hydrolase. Additionally, the genes responsible for bacterial chemotaxis, 

motility and root colonization were examined. These include the che, wsp, flg, flh, fli and tad 

genes. Similarly, the hydrocarbon-degrading enzymes of interest include long-chain alkane 

monooxygenase, cyclopentanol dehydrogenase, cyclohexanone monooxygenase, 

benzoate/toluate 1,2-dioxygenase, benzaldehyde dehydrogenase, dihydroxycyclohexadiene 

carboxylate dehydrogenase, catechol 1,2-dioxygenase, catechol 2,3-dioxygenase, muconate 

cycloisomerase, muconolactone D-isomerase, 3-oxoadipate enol-lactonase. On the basis of the 

following factors, P. tropica was selected for greenhouse-based rhizoremediation study: (1) the 

differences in the plant growth-promoting potentials of the different species as revealed by 

functional genomics, and (2) the differences in species’ tolerance to and utilization of diesel 

fuel hydrocarbons as shown by their growth rates (OD600) in the diesel-containing mineral 

medium. 

Plant Growth and Bacterial Inoculation 

The soil used for this experiment was “Primaster turf”, which is a mixture of screened sand, 

soil, and composted organics blended with an NPK fertiliser. The soil textural class was 

determined as sand (88.6% sand, 6.1% silt and 5.3% clay) with 12.5% organic matter content 

by loss on ignition, total nitrogen content of 0.15%, and a pH of 7.1. The soil was initially 

homogenized by sieving using a 2-mm mesh sieve to remove large particles. Diesel fuel-



 

115 
 

contaminated soil was prepared following the detailed procedure described in Eze, Thiel, Hose, 

George and Daniel 48. Preliminary gas chromatography-mass spectrometry (GC-MS) analysis 

of the diesel fuel revealed the presence of fatty acid methyl esters (FAMEs) evidently from 

biodiesel (Supplementary Figure S6). Therefore, the soil was allowed to age for 7 days, so as 

to enable the removal of the FAMEs through natural attenuation by indigenous organisms. The 

resulting total petroleum hydrocarbons in the soil after ageing (designated as time T0) was 

determined using GC-MS. Viable seeds of Medicago sativa L. were placed in pots (3 seeds per 

pot) containing 150 g of the aged diesel fuel-contaminated soils. 

The contaminated soil was treated with the following: (1) M. sativa; (2) P. tropica; (3) M. 

sativa + P. tropica. An unplanted and uninoculated soil served as the control. Since the goal of 

the study was to assess the effectiveness of each treatment for hydrocarbon degradation, the 

soil used for the entire experiment was the diesel fuel-contaminated soil described above. The 

microbial consortium used was harvested from the culture by centrifugation at 4000 x g for 10 

min, washed twice in mineral medium and concentrated to OD600 = 1.650. The same amount 

of cells were applied to both the “P. tropica” and the “M. sativa + P. tropica” treatments. For 

the M. sativa + P. tropica treatment, the cells (at OD600 = 1.650) were inoculated to the base of 

one-week-old M. sativa seedlings at the depth of 1.5 cm below-ground level. The whole 

experiment was performed in triplicate, and pots were watered with 90 mL sterile water every 

three days for the first two weeks. After that, the planted pots were watered with 90 mL sterile 

water every two days to compensate for the water needs of M. sativa plants. To assess the effect 

of bacterial inoculation on growth rate, shoot heights (in mean values of plants per pot) attained 

with time were taken every two weeks. Plant height was measured from the shoot tip to the 

base of stem 15, 49. After 60 days, each plant was harvested, washed under tap water, oven-dried 

at 70°C until constant weights were achieved, and then their dry biomass weights were 

recorded. 

Geochemical Assessment of Microbial-Enhanced Bioremediation 

Extraction of residual hydrocarbons 

After 60 days, M. sativa plants were harvested from the pots. The soil samples from each pot 

were first manually homogenized. For hydrocarbon analyses, 1 g of the ground freeze-dried 

soils were further homogenized with a small amount of sodium sulfate (Na2SO4) and 

transferred into a Teflon microwave digestion vessel. The samples were solvent extracted twice 

with fresh 2.5 mL n-hexane in a microwave device (Mars Xpress, CEM; 1600W, 100°C, 20 
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min). For reference, 2.5 µL diesel fuel (density = 0.82 g/mL) were dissolved in 5 mL n-hexane 

instead of 1 g soil sample. The extracts were combined into 7 mL vials and topped to 5 mL 

with n-hexane. A 1 mL aliquot (20%) of each extract was pipetted into a 2 mL autosampler 

vial, and 20 µL n-icosane D42 [200 mg/L] was added as an internal quantification standard. 

Molecular analysis of biodegradation 

GC-MS analyses of the samples were performed using a Thermo Scientific Trace 1300 Series 

GC coupled to a Thermo Scientific Quantum XLS Ultra MS. The GC capillary column was a 

Phenomenex Zebron ZB–5MS (30 m, 0.1 µm film thickness, inner diameter 0.25 mm). 

Compounds were transferred splitless to the GC column at an injector temperature of 300°C. 

Helium was used as the carrier gas at a flow rate of 1.5 mL/min. The GC temperature program 

was as follows: 80°C (hold 1 min), 80°C to 310°C at 5°C/min (hold 20 min). Electron 

ionization mass spectra were recorded at 70eV electron energy in full scan mode (mass range 

m/z 50–600, scan time 0.42 s). Peak areas were integrated using Thermo Xcalibur software 

version 2.2 (Thermo Fisher Scientific Inc., USA). 

Biodegradation parameters 

To assess the nature and extent of biodegradation in the different treatments, the ratios of n-

hexadecane (nC16), n-heptadecane (nC17) and n-octadecane (nC18) versus the more refractory 

isoprenoid hydrocarbons nor-pristane (2,6,10-trimethylpentadecane, nor-Pr), pristane 

(2,6,10,14-tetramethylpentadecane, Pr) and phytane (2,6,10,14-tetramethylhexadecane, Ph) 

were calculated. As an additional parameter, the relative abundance of total petroleum 

hydrocarbons (TPH) versus the unresolved complex mixture (UCM, often referred to as the 

“hump”, a typical indicator of biodegradation 50) was determined. 

Statistical Analyses 

All statistical analysis were performed using R 51. One-way analysis of variance (ANOVA) 

was used to compare the mean dry biomass of M. sativa and M. sativa + P. tropica treatments. 

The normality and homogeneity of variances were tested by the Shapiro-Wilk’s test 52 and the 

Levene’s test 53 respectively. Relative growth rates of plants under different treatments were 

determined following the method of Eze, George and Hose 15. This method involved the 

assessment of growth rate in terms of mean shoot height per pot attained with time. This 

approach eliminates the biases associated with destructive harvesting methods 54. The logistic 
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model was used for the statistical analysis of relative growth rate 55, 56. The lower asymptote c 

was fixed at 0 since height at time t0 is 0, resulting in a 3-parameter logistic model. 

Similarly, comparisons of soil hydrocarbon concentrations before (T0) and after (T60), and 

between treatments were made using one-way ANOVA, followed by Tukey’s all-pairwise 

comparisons. In all cases, the normality of variances was tested by the Shapiro-Wilk’s method 

52, and homogeneity of variances was tested using the Levene’s test 53. The significance level 

(nominally 0.05) was adjusted for multiple comparisons using the Holm method 57, 58. 
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Supplementary Table S1. Sequencing results for the three genomes 

Genomes Size (bp) Raw reads Fastp Scaffolds Scaffolds 
(>500 bp) 

Coverage 

Paired reads Unpaired reads 

Acidocella facilis 4,079,951 1,234,060 1,119,120 52,554 216 181 44.4 

Burkholderia sp. 7,741,599 813,998 636,137 79,504 263 235 13.1 

Paraburkholderia 
tropica 

8,454,837 2,180,716 1,695,018 223,965 96 81 31.8 

Total  4,228,774 3,450,275 356,023 575 497 Avg: 30x 
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Supplementary Table S2. Plant growth promoting genes and number of CDSs for the three genomes 

Gene Genomes Enzyme name 

 1 2 3  

Plant growth promotion 

Nitrogen metabolism 

nifA 0 5 2 Nif-specific regulatory protein 

nifU 1 1 1 Nitrogen fixation protein NifU and related proteins 

nifQ 0 1 1 Nitrogen fixation protein NifQ 

fixA 2 5 5 Electron transfer flavoprotein beta subunit 

fixB 2 4 5 Electron transfer flavoprotein alpha subunit 

fixL 3 1 11 Two-component system, sensor kinase FixL 

fixJ 3 2 11 Two-component system, response regulator FixJ 

Phosphate solubilization 

acpS 1 1 1 Holo-[acyl-carrier protein] synthase [EC:2.7.8.7] 

acpP 1 2 4 Acyl carrier protein 

serB 1 1 1 Phosphoserine phosphatase [EC:3.1.3.3] 

otsB 4 2 3 Trehalose 6-phosphate phosphatase [EC:3.1.3.12] 

gph 3 6 6 Phosphoglycolate phosphatase [EC:3.1.3.18] 

phoD 0 1 1 Alkaline phosphatase D [EC:3.1.3.1] 

plc 1 10 9 Phospholipase C [EC:3.1.4.3] 

glpR 4 4 6 Glycerol-3-phosphate regulon repressor 

Pyrroloquinoline quinone synthesis 

pqqB 1 1 1 Pyrroloquinoline quinone biosynthesis protein B 

pqqC 1 1 1 Pyrroloquinoline-quinone synthase [EC:1.3.3.11] 

pqqD 2 1 1 Pyrroloquinoline quinone biosynthesis protein D 

pqqE 1 1 1 Pyrroloquinoline quinone biosynthesis protein E 

Siderophore transport 

entS 0 1 2 Enterobactin (siderophore) exporter 

Indoleacetic acid synthesis 

iaaH 0 0 2 Indoleacetamide hydrolase [EC:3.5.1.-] 

Total 31 51 75  
Bacterial chemotaxis, motility, root nodulation and colonization 

cheABCDVWXYZ 12 13 20 Two-component chemotaxis protein 

wspBDEF 0 4 4 Two-component chemotaxis protein 

mcp, tsr, tar, trg, 
tap, wspA 

7 11 47 Methyl-accepting chemotaxis protein 

flg, flh, fli 43 48 52 Flagellar proteins 

nodD 1 3 2 Nod-box dependent transcriptional activator 

tadB 1 2 2 Tight adherence protein B 

tadC 1 2 2 Tight adherence protein C 

Total 65 83 129  

Genome 1: Acidocella facilis; Genome 2: Burkholderia sp.; Genome 3: Paraburkholderia tropica. 
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Supplementary Table S3. Selected genes putatively involved in hydrocarbon degradation and number of CDSs 

Gene Genomes Enzyme name 

 1 2 3  

Aliphatic hydrocarbon degradation 

n-Alkanes 

alkM 2 1 0 Alkane 1-monooxygenase 

alkR 1 2 2 Alkane utilization regulator 

ladA 3 6 6 Long-chain alkane monooxygenase 

prmB 1 0 1 Propane monooxygenase reductase component 

Cycloalkanes 

cpnA 0 4 2 Cyclopentanol dehydrogenase 

chnB 0 2 2 Cyclohexanone monooxygenase 

gnl 3 1 5 Gluconolactonase 

chnD 0 0 1 6-Hydroxyhexanoate dehydrogenase 

Aromatic hydrocarbon degradation 

tmoF 0 0 2 Toluene monooxygenase 

pobA 1 1 1 p-Hydroxybenzoate 3-monooxygenase 

adhPE 7 12 13 Alcohol dehydrogenase 

benABC 0 6 6 Benzoate/toluate 1,2-dioxygenase 

benD 1 1 1 Dihydroxycyclohexadiene carboxylate dehydrogenase 

pcaGH 4 2 2 Protocatechuate 3,4-dioxygenase 

etbD 0 1 1 2-Hydroxy-6-oxo-octa-2,4-dienoate hydrolase 

catA 0 3 2 Catechol 1,2-dioxygenase 

catB 0 2 2 Muconate cycloisomerase 

catC 0 2 2 Muconolactone D-isomerase 

pcaDL 6 8 8 3-Oxoadipate enol-lactonase 

dmpB 2 2 1 Catechol 2,3-dioxygenase 

praC 1 4 4 4-Oxalocrotonate tautomerase 

mhpD 0 2 2 2-Keto-4-pentenoate hydratase 

mhpE 0 1 1 4-Hydroxy 2-oxovalerate aldolase 

Genome 1: Acidocella facilis; Genome 2: Burkholderia sp.; Genome 3: Paraburkholderia tropica. 
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Supplementary Figure S1. Partial total ion chromatograms showing replicates of (a) Soil at Tf, (b) Soil+M.sativa, (c) 
Soil+P.tropica, and (d) Soil+M.sativa+P.tropica. Refer to Figure 2 in the main text for sample descriptions. 

 

 

 

Supplementary Figure S2. Partial total ion chromatogram of preparation blank used to control cross contamination. 
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Supplementary Table S4. Statistical parameters for Tukey’s test showing significant differences in the mean values of 
residual hydrocarbons between treatments. 

Linear hypothesis (Tukey contrasts) Estimate Std. Error t value Pr(>|t|) 

Soil at T60 – Soil at T0 == 0 -2.0300 0.0738 -27.50 9.37e-10 *** 
Soil+M.sativa – Soil at T0 == 0 -2.9700 0.0738 -40.23 2.15e-11 *** 
Soil+P.tropica – Soil at T0 == 0 -3.5467 0.0738 -48.05 3.68e-12 *** 
Soil+M.sativa+P.tropica – Soil at T0 == 0 -3.9833 0.0738 -53.96 1.16e-12 *** 
Soil+M.sativa – Soil at T60 == 0 -0.9400 0.0738 -12.73 1.67e-06 *** 
Soil+P.tropica – Soil at T60 == 0 -1.5167 0.0738 -20.55 1.65e-08 *** 
Soil+M.sativa+P.tropica – Soil at T60 == 0 -1.9533 0.0738 -26.46 1.37e-09 *** 
Soil+P.tropica – Soil+M.sativa == 0 -0.5767 0.0738 -7.81 1.45e-04 *** 
Soil+M.sativa+P.tropica – Soil+M.sativa == 0 -1.0133 0.0738 -13.73 8.17e-07 *** 
Soil+M.sativa+P.tropica – Soil+P.tropica == 0 -0.4367 0.0738 -5.92 0.0015 ** 

Significant codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. (Adjusted p values reported -- Holm method). 

 

 

 

 

 

Supplementary Figure S3. Partial (a) m/z 156 + 170 and (b) m/z 192 + 206 GC-MS chromatograms of the different treatments 
showing differential biodegradation of naphthalenes and phenanthrenes. EN: ethylnaphthalene; DMN: 
dimethylnaphthalene; MP: methylphenanthrene; DMP: dimethylphenanthrene. Numbers denote positions of alkylation. 
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Supplementary Figure S4. Relative abundances of bacterial populations in the residual soils based on 16S rRNA gene 
amplicon data. Only taxa with relative abundance of ≥ 1% are presented. 

 

 

 

Supplementary Figure S5. Picture of the sampling site in Wietze, Germany. 
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Supplementary Figure S6. Partial total ion chromatograms of (a) pure diesel fuel prior to soil spiking and ageing showing the 
presence of fatty acid methyl esters (FAMEs) from a biodiesel component, and (b) extracted diesel fuel after ageing showing 
the absence of FAMEs. 
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Chapter 9 

Synthesis and Conclusions 

9.1 Summary 

The 20th Century novelist, Agatha Christie, DBE, once said: “everything must be taken into 

account. If the fact will not fit the theory – let the theory go” (Christie, 1920) This statement 

underpins the approach adopted in this study. 

The purpose of this PhD thesis was to examine the potentials of plant growth-promoting 

bacteria to enhance the rhizoremediation of diesel fuel hydrocarbons. Employing the tools of 

(meta)genomics and organic geochemistry, this innovative research evaluated any hypothesized 

agreement between bacterial potentials as revealed by functional genomics (“theory”) and 

actual biodegradation of contaminants (“fact”). 

Rhizoremediation of hydrocarbons relies heavily on biodegradation of contaminants by root-

associated bacteria (Rohrbacher and St-Arnaud, 2016). This therefore requires that the 

contaminants of interest must be within the rooting zones of plants, for rhizoremediation to be 

effective. The results of the leaching experiment in this study revealed that oxygenates such as 

ethanol, though beneficial in reducing the carbon footprint, enhance the leaching potentials of 

petroleum hydrocarbons by serving as co-solvents (Chapter 2). Consequently, appropriate care 

was taken when selecting plant species for phytotoxicity experiments, with many of the selected 

plants having rooting depths of about 1 metre. 

Fifteen plant species were examined for their ability to withstand diesel fuel toxicity (Chapters 

3 and 4). The results of this greenhouse experiment revealed an important truth: plant response 

to diesel fuel toxicity is species-specific. With the exception of the perennial legume Medicago 

sativa L. (common names are lucerne and alfalfa), diesel fuel impacted negatively on most of 

the studied plants, even at low concentrations (Chapter 3). This was expected considering the 

cytotoxic nature of hydrocarbons (Adam and Duncan, 2003; Chouychai et al., 2007). On the 

other hand, diesel fuel up to 10 g/kg soil concentration had a stimulatory effect on the growth 

of M. sativa plants. Although previous studies have shown that M. sativa is tolerant to 

hydrocarbons (Chekol and Vough, 2001; Marchand et al., 2018), this study is the first attempt 

to describe diesel fuel-induced hormesis using the Cedergreen-Ritz-Streibig model (Cedergreen 

et al., 2005). Interestingly, the concept of hormesis is gaining growing attention in recent 

decades, with some researchers claiming that hormesis is the norm rather than the exception 
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(Calabrese and Baldwin, 2003; Agathokleous et al., 2019; 2020). The suitability of M. sativa 

for diesel fuel rhizoremediation was further tested by examining the effect of diesel fuel on seed 

viability and the germination rate of M. sativa (Chapter 4). Significantly, the results revealed 

that neither the direct imbibition of diesel fuel by M. sativa seeds for ≤ 48 hours nor their 

exposure to soil diesel fuel concentrations of 0–10 g/kg compromised seed viability. Instead, 

these conditions only delayed seed emergence or germination, owing to the diesel fuel creating 

a physical barrier to air and water absorption by the seeds. These results suggest that the 

inhibitory effect of diesel fuel on M. sativa germination at ≤ 10 g/kg concentration could be 

attributed to physical constraints, rather than to biological damage to the seeds. Therefore, the 

results from Chapters 3 and 4 indicate that M. sativa is the most-promising plant species for 

rhizoremediation of diesel fuel. On this basis, M. sativa was chosen for further studies on 

microbially-enhanced rhizoremediation. 

The metagenome study provided insight into the diversity and potentials of hydrocarbon-

degrading consortia isolated from different petroleum-contaminated sites. The omics dataset of 

metagenomes and metagenome-assembled genomes (MAGs) from a former crude oil borehole 

in Wietze, Germany (Chapter 5) revealed that most of the bacterial MAGs belonged to 

Proteobacteria (10 MAGs). Other represented phyla include Actinobacteriota (4 MAGs), 

Bacteroidota (5 MAGs), Chloroflexota (5 MAGs), Desulfobacterota (4 MAGs), Firmicutes (2 

MAGs), Omnitrophota (1 MAG), Patescibacteria (1 MAG), Spirochaetota (1 MAG), 

Synergistota (1 MAG), and Thermotogota (1 MAG), with one bacterial MAG assigned to an 

unclassified taxon associated with Nitrospirae. Functional analysis revealed that all MAGs 

possess genes associated with xenobiotic degradation. The enrichment of soil samples from 

three contaminated sites in the oil field resulted in consortia that are dominated by 

Alphaproteobacteria in all cases (Chapter 6). The dominance of Alphaproteobacteria in the 

bacterial communities, especially Acidocella and Paraburkholderia, indicates that these genera 

are tolerant to high concentrations of diesel fuel. It is also an indication of their potential 

degradative capacity for organic contaminants (Lee et al., 2019). The dominance of Acidocella 

in the enrichment cultures may also be related to the slightly acidic conditions in the cultures. 

Previous studies by Röling et al. (2006) and Obieze et al. (2020) associated a number of 

Alphaproteobacteria, predominantly Acidiphilium and Acidocella, with natural oil seepages 

and acidic conditions. The biodegradative ability of these taxa and their tolerance to heavy 

metals (Giovanella et al., 2020) indicate that they are potentially suitable for the remediation of 

multiple contaminants such as hydrocarbon-polluted acidic mine sites. Metagenome analysis 

of one of the isolated consortia revealed the presence of genes putatively encoding for plant 

growth-promoting and hydrocarbon-degrading enzymes (Chapter 7). 
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The growth of single bacterial isolates in mineral medium composed of KH2PO4 (0.5 g/L), NaCl 

(0.5 g/L), and NH4Cl (0.5 g/L) and supplemented with sterile-filtered trace elements (1 mL/L) 

(Atlas, 2010), vitamin solution (1 mL/L) (Atlas, 2010) and MgSO4.7H2O (5 mL/L of a 100 

mg/mL solution) revealed that Paraburkholderia proliferated more under neutral pH, as shown 

by optical density (OD600) values. Genome analysis revealed that while both Acidocella and 

Paraburkholderia genera possess genes putatively involved in the biodegradation of petroleum 

hydrocarbons, Paraburkholderia was found to be potentially more effective for plant growth 

promotion (Chapter 8) than Acidocella. In view of Paraburkholderia tropica’s potential for 

greater plant growth stimulation, coupled with its stable growth under neutral pH conditions, 

P. tropica was selected for a series of rhizoremediation pot experiments. 

Finally, the results of the greenhouse-based experiments revealed that either the consortium 

(dominated by Acidocella) or the P. tropica single isolate, when used as a bacterial inoculum, 

significantly enhanced the growth of M. sativa and the rhizodegradation of diesel fuel 

hydrocarbons. However, the greatest remediation effect was seen with P. tropica inoculation, 

with “P. tropica + M. sativa” treatment achieving a 96% biodegradation of the total petroleum 

hydrocarbons. 

9.2 Outlook and Suggestions for Future Research 

The application of phytotechnology to clean up contaminated sites will continue to be an 

expanding field of research, owing to the low cost and eco-friendliness of this technology (Ali 

et al., 2013; Rohrbacher and St-Arnaud, 2016). Currently, the innovative use of single bacteria 

species in association with suitable plants is attracting increasing attention (dos Santos and 

Maranho, 2018; Fei et al., 2020). I expect that research in this emerging area of green science 

will be on the increase in the coming years, resulting in the possible development of more 

commercially-viable inocula for enhanced rhizoremediation. 

Notwithstanding the novelty of microbially-enhanced rhizoremediation, a major drawback is 

the inability of most bacterial species to proliferate in the soil following inoculation (Bashan et 

al., 2014). Consequently, this is an area requiring future research. Although this PhD thesis has 

shown that P. tropica thrived in soil following inoculation, more research is needed to confirm 

its viability in the field (in situ), thereby justifying commercial development. In addition, 

considering the wide range of contaminated sites, and the enormous diversity in the pollutants 

involved, there is a need to identify more bacterial species that will expand the range of 

microbes that are applicable for enhanced rhizoremediation under different environmental 

conditions, including those considered extreme. 
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9.3 Conclusions 

The use of plants to clean up contaminated sites is a cost-effective, environmentally-friendly 

and green approach for the reclamation of polluted sites. In this study, I carefully examined the 

suitability of M. sativa for hydrocarbon rhizoremediation. Utilizing the tools of 

(meta)genomics, I presented a synopsis of the ability of certain microbial species to enhance 

plant growth promotion and rhizodegradation of diesel fuel, with potential application in the 

remediation of petroleum-contaminated sites. Geochemical analysis of biodegradation revealed 

that the synergistic interactions between suitable microbial species and M. sativa plants resulted 

in enhanced rhizoremediation of diesel fuel contaminated soils. Most importantly, this study 

revealed that “M. sativa–P. tropica” are effective symbionts capable of effecting a near-

complete degradation of diesel fuel hydrocarbons. Thus, the results from this study will no 

doubt expand the range of culturable microbes for biotechnological applications in the 

remediation of sites contaminated with petroleum hydrocarbons or other organic contaminants. 

I am confident that the future is greener with green science! 
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