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Summary 

Soil organic matter (SOM) is the primary source of plant-available nutrients, as well 

as a substantial carbon (C) reservoir in terrestrial ecosystems. Maintenance of SOM 

levels is therefore critical for ecosystem sustainability. SOM stocks mainly depend on 

the balance between uptake (by photosynthesis) and release (via SOM decomposition). 

Mycorrhizal colonization increases net photosynthesis within the host plant for 4-30%, 

thus stimulates microbial activity and accelerate or retard SOM decomposition, 

consequently leading to SOM destabilization and losses. Furthermore, this SOM 

destabilization is also depends strongly on temperature, which are predicted to rise by 

1.0 to 4.8 °C at the end of twenty-first century, with high risk to activate 

microorganisms and accelerate their turnover, thus promoting terrestrial C cycle. 

Therefore, this thesis aims to evaluate the effects of mycorrhization and warming on 

SOM stability and its underlying microbial mechanisms.  

In Study 1, we used continuous 13CO2 labeling to quantify the C allocation and 

rhizosphere priming effect (RPE) of a mycorrhizal wild type progenitor and its 

mycorrhiza defective mutant (reduced mycorrhizal colonization) of tomato. 

Arbuscular mycorrhizal fungi (AMF) increased the net rhizodeposition by 25-72% in 

soils, and lowered the RPE on SOM decomposition by 24-38%. This indicated a 

higher potential for C sequestration by MYC plants because the reduced nutrient 

availability restricted the activity of free-living decomposers. The RPE and N-cycling 

enzyme activities decreased by N fertilization 8 and 12 weeks after transplanting, 

suggesting a lower microbial N demand from SOM mining. 

Based on the 13C profile of microbial phospholipid fatty acids (PLFAs) (Study 2), the 
13C incorporation into fungal biomarker (PLFA and NLFA 16:1ω5c) increased with 

sampling time, indicated that AMF was prominent in the plant-soil system. The 

preferential C allocation to AMF was at the expense of C flow to other microbial 

groups, thus resulting in a lower 13C incorporation into bacteria and saprotrophic 

fungi. Even more, high N availability negatively impacted on AMF growth and 

further rhizodeposited C recovered in the AMF, which resulted from higher C 

immobilization in the aboveground and higher rhizosphere respiration. Overall, AMF 

facilitates soil C sequestration by retaining more plant rhizodeposits in soils and by 

reducing the RPE on SOM decomposition, which is mainly dependent on the N 

availability.  

Together with AMF, ectomycorrhizal fungi (ECM) are the two most widespread 

mycorrhizal types on Earth. Therefore, 14C imaging coupled with zymography was 

used to investigate the spatial distribution of rhizodeposite C and enzyme activities in 

response to ECM and another major soil fungal guilds in temperature forests- 

non-mycorrhizal rhizosphere fungi (NMRF) in Study 3. Plants inoculated with ECM 

and NMRF allocated more C to soils compared to uninoculated control. When NMRF 

is co-existence with ECM (MIX), ECM competed with NMRF and thus the growth of 

ECM was suppressed, as a consequence less assimilated C was allocated to the 
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rhizohyphosphere for MIX compared to ECM. Furthermore, we observed 57% higher 

chitinase and 49% higher leucine-aminopeptidase in the rhizohyphosphere with ECM 

compared with the control, whereas NMRF showed a higher production of 

β-glucosidase. Therefore, Picea abies colonized with ECM and NMRF both induced 

an increased root exudation and promote enhanced enzyme activities, but ECM 

focused on nutrient mobilization, whereas NMRF presence stimulates enzymes of the 

C cycle. 

Besides rhizodeposits via mycorrhizal pathway, temperature is a another crucial factor 

enhancing soil microbial activity, and thus threatening SOM stability. Based on 

microbial and enzymatic functional traits under 8-year long-term warming 

agricultural field (Study 4), soil organic C (SOC) and total nitrogen (TN) remained 

stable at warming below 2 °C, while higher warming (by 2-4 °C) did not affect SOC 

but it increased TN content. Possible explanation of increased TN was linked to 

unbalanced process of necromass formation and enzymatic decomposition. 2-4 °C 

warming induced faster microbial growth and turnover, whereas it reduced catalytic 

efficiency and slowed down the enzyme-mediated turnover of oligosaccharides and 

polypeptides. Lower enzymatic efficiency and slower turnover of organic residues 

under 2-4 °C warming thus may cause accumulation of N-related necromass.  

Consequently, the responses of microbial functional traits to climate warming were 

dependent on warming magnitudes, above 2 °C warming would exceed a threshold 

that changes the predicted temperature effect on soil C and N pools in the future, 

which might in its feedback reaction rather a further future CO2 source feeding into 

the atmosphere globally 

Furthermore, the response of soil C cycle to climate warming is also dependent on the 

ecosystem types. Given that montane grasslands are expected to be exposed to 

intensive warming, the response of microbial functions may be different from 

agroecosystems. Therefore, intact plant-soil mesocosms were translocated downslope 

spanning a temperature increase of 7 °C (from 13, 15, 17 to 20 °C) in the European 

Alps (Study 5). Microbial community in lower elevation shifted toward to 

slow-growing K-strategists due to the decreased availability of C substrates. Further, 

the increase of C-degrading enzymes, accompanied by the decrease of substrate 

turnover time of β-glucosidase, implied a stronger microbial C turnover because of 

the C limitation in the lower versus higher elevation soils. This, in turn, presumably 

leads to potential C losses under climate warming due to the significantly increased C 

and nutrients cycling of montane grassland soils. 

Since enzymes are closely linked to SOM decomposition, knowledge on temperature 

sensitivity (Q10) of enzyme activities is required to predict the future soil C release to 

the atmosphere. Soil samples from eight-years warming field sites (ambient, +1.6 °C, 

+3.2 °C) were incubated at a short-term constant temperature (from 5 to 25 °C with 

5 °C intervals) under microbial steady-state and activated mode (Study 6). We found a 

legacy effect of eight-year field warming which facilitated the consumption of labile 

organics due to faster microbial growth and turnover. Thus, it caused a lower Q10 of 

enzyme activities in warmed soils. Additional labile C inputs caused a higher 

Q10-Vmax in warmed versus ambient soil, which demonstrated a reduced microbial 
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memory effect due to thermophilic nature of activated microorganisms. Consequently, 

the microbial memory is strongly dependent on microbial physiological state, which 

can be quickly altered by substrate supply. 

Overall, this thesis suggests that temperature effect on soil C and N pools are mainly 

dependent on warming magnitudes and ecosystem types. Specifically, if future 

climate warming beyond the aim of Paris Climate Agreement (> 2 ℃), it would  

accelerates SOM mineralization and threaten SOM stability. For example, is may 

induce a severe alteration of N cycle with several potential negative feedbacks-from 

unhealthy net primary productivity increase in natural ecosystems via groundwater 

NO3- accumulation up to increased N2O emission with feedback on related climate 

change. However, mycorrhizae is ubiquitous in terrestrial ecosystems because it can 

stimulate belowground C inputs and inhibit the growth of saprotrophic fungi, 

consequently facilitate soil C sequestration. Therefore, mycorrhization may act as a 

positive mitigation strategy buffer against the predicted increases in SOM 

decomposition in the future warmer world. 
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Zusammenfassung 

Organische Bodensubstanz (SOM) ist die Hauptquelle f ü r pflanzenverf ügbare 

Nährstoffe sowie ein bedeutendes Kohlenstoff (C)-Reservoir in terrestrischen 

Ökosystemen. Die Aufrechterhaltung der SOM-Werte ist daher für die Nachhaltigkeit 

des Ökosystems von entscheidender Bedeutung. SOM-Bestände hängen hauptsächlich 

vom Gleichgewicht zwischen Aufnahme (durch Photosynthese) und Freisetzung (über 

SOM-Zersetzung) ab. Die Mykorrhizenkolonisation erhöht die Nettophotosynthese 

innerhalb der Wirtspflanze um 4 bis 30%, stimuliert somit die mikrobielle Aktivität 

und beschleunigt oder verzögert die SOM-Zersetzung, was zu SOM-Destabilisierung 

und -Verlusten führt. Darüber hinaus hängt diese SOM-Destabilisierung auch stark 

von der Temperatur ab, die voraussichtlich Ende des 21. Jahrhunderts um 1,0 bis 4,8 ° 

C ansteigen wird, wobei ein hohes Risiko besteht, auch Mikroorganismen zu 

aktivieren und ihren Umsatz zu beschleunigen, wodurch der terrestrische C-Zyklus 

gefördert wird. In dieser Arbeit sollen daher die Auswirkungen von Mykorrhisierung 

und Erwärmung auf die SOM-Stabilität und die zugrunde liegenden mikrobiellen 

Mechanismen untersucht werden. 

In Studie 1, verwendeten wir eine kontinuierliche 13CO2-Markierung, um die 

C-Allokation und den Rhizosphären-Priming-Effekt eines Mykorrhiza Wildtyp 

Vorläufers und seiner Mykorrhiza defekten Mutante von Tomaten zu quantifizieren. 

AMF erhöhte die Netto-Rhizodeposition in Böden um 25 bis 72% und senkte die RPE 

bei SOM-Zersetzung um 24 bis 38%. Dies deutete auf ein höheres Potenzial für die 

C-Sequestrierung durch mit AMF besiedelte Pflanzen hin, da die verringerte 

Nährstoffverfügbarkeit die Aktivität frei lebender Zersetzer einschränkt. Die RPE- 

und N-zyklischen Enzymaktivitäten nahmen 8 und 12 Wochen nach der 

Transplantation durch N-Befruchtung ab, was auf einen geringeren mikrobiellen 

N-Bedarf aus dem SOM-Abbau hinweist. 

Basierend auf dem 13C-Profil von mikrobiellen Phospholipidfettsäuren (PLFAs) 

(Studie 2), der 13C-Einbau in Pilzbiomarker (PLFA und NLFA 16: 1ω5c) mit der 

Probenahmezeit zu, was darauf hinweist, dass AMF im Pflanzenboden hervorragend 

ist System Rollenspiel. Die bevorzugte C-Zuordnung zu AMF ging zu Lasten des 

C-Flusses zu anderen mikrobiellen Gruppen, was zu einem geringeren 13C-Einbau in 

Bakterien und saprotrophe Pilze führte. Darüber hinaus wirkte sich eine hohe 

N-Verfügbarkeit negativ auf AMF aus, und das rhizodepositivierte C im AMF erholte 

sich weiter, was auf eine geringere C-Zuordnung zum Untergrund aufgrund einer 

höheren C-Immobilisierung im oberirdischen Bereich und einer höheren 

Rhizosphärenatmung zurückzuführen war. Insgesamt erleichtert AMF die 

Sequestrierung von Boden C, indem mehr Pflanzen-Rhizodeposits 

(Netto-Rhizodeposition) in Böden erhalten bleiben und die RPE während der 

SOM-Zersetzung verringert wird, was hauptsächlich von der Verfügbarkeit von N 

abhängt. 

Ektomykorrhizapilze (ECM) sind zusammen mit AMF die weltweit am weitesten 
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verbreiteten mykohhizalen Pilze. Daher wurde die 14C-Bildgebung in Verbindung mit 

der Zymographie verwendet, um die räumliche Verteilung der Rhizodeposit C- und 

Enzymaktivitäten als Reaktion auf ECM und andere wichtige Bodenpilzgilden in 

Temperaturwäldern - nicht mykorrhizale Rhizosphärenpilze (NMRF) - in Studie 3 zu 

untersuchen. Mit ECM und NMRF inokulierte Pflanzen wiesen den Böden im 

Vergleich zur nicht inokulierten Kontrolle mehr C zu. Wenn NMRF neben ECM 

(MIX) existiert, konkurrierte ECM mit NMRF und somit wurde das Wachstum von 

ECM unterdrückt, was dazu führte, dass der Rhizohyphosphäre für MIX im Vergleich 

zur ECM-Behandlung weniger assimiliertes C zugeordnet wurde. Darüber hinaus 

beobachteten wir 57% höhere chitinase und 49% höhere leucine-aminopeptidase in 

der Rhizo-Hyphosphäre mit ECM im Vergleich zur Kontrolle, während NMRF eine 

höhere Produktion von β-glucosidase zeigte. Daher induzieren mit ECM und NMRF 

kolonisierte Picea-Abies beide eine erhöhte Wurzelexsudation und fördern verstärkte 

Enzymaktivitäten, aber ECM konzentrierte sich auf die Nährstoffmobilisierung, 

während die Anwesenheit von NMRF Enzyme des C-Zyklus stimuliert. 

Neben Rhizodeposits über den Mykorrhisierungsweg ist die Temperatur ein weiterer 

entscheidender Faktor, der die mikrobielle Aktivität des Bodens erhöht und damit die 

SOM-Stabilität gefährdet. Basierend auf mikrobiellen und enzymatischen 

Funktionsmerkmalen unter 8-jähriger langfristiger Erwärmung des 

landwirtschaftlichen Feldes und kombinierter erweiterter Literaturrecherche (Studie 

3), Das organische C (SOC) des Bodens und der Gesamtstickstoff (TN) blieben bei 

Erwärmung unter 2 °C stabil, während eine höhere Erwärmung (um 2-4 °C) den SOC 

nicht beeinflusste, aber den TN-Gehalt erhöhte. Eine mögliche Erklärung für eine 

erhöhte TN war mit der gegensätzlichen Reaktion der kinetischen Parameter der 

funktionellen Merkmale des enzymatischen und mikrobiellen Wachstums verbunden. 

Eine höhere Erwärmungsgröße induzierte ein schnelleres Wachstum und einen 

schnelleren Umsatz von Mikroben, während die katalytische Effizienz verringert und 

der durch Enzyme vermittelte Umsatz von Oligosacchariden und 

Polypeptid-ähnlichen Verbindungen verlangsamt wurde. Dies f ü hrte zu einer 

langsameren Zersetzung organischer R ü ckstände und zu Ansammlungen von 

mikrobieller Nekormasse. Daher stieg der N-Gehalt in gelösten organischen und 

SOM-Pools unter einer höheren Erwärmungsgröße an, was zu einem verringerten 

stöchiometrischen Ungleichgewicht zwischen der mikrobiellen Biomasse und ihrer 

Verfügbarkeit labiler Ressourcen führte, was zu einer SOM-Zersetzung führte. 

Folglich waren die Reaktionen mikrobieller Funktionsmerkmale auf die 

Klimaerwärmung von den Erwärmungsgrößen abhängig. Sie sollten in die Modelle 

aufgenommen werden, um die Vorhersage der Rückkopplungen von Boden C und N 

auf die Klimaerwärmung zu verbessern. 

Darüber hinaus hängt die Reaktion der Boden-C-Funktionen auch von den 

Ökosystemtypen ab. Angesichts der Tatsache, dass montanes Grasland einer 

intensiven Erwärmung ausgesetzt sein dürfte, können biogeochemische Zyklen des 

Bodens anfällig für zukünftige klimatische Bedingungen sein und die Reaktion 

mikrobieller Funktionen kann sich von denen von Agrarökosystemen unterscheiden. 

Daher wurden intakte Pflanzen-Boden-Mesokosmen drei Jahre lang entlang eines 
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Höhengradienten übertragen (Studie 5). Die mikrobielle Gemeinschaft in geringerer 

Höhe verlagerte sich aufgrund der verringerten Verfügbarkeit von C-Substrat zu 

langsam wachsenden K-Strategen. Ferner implizierte die Zunahme von C-abbauenden 

Enzymen, begleitet von der Abnahme der Substratumsatzzeit von β-glucosidase, einen 

stärkeren mikrobiellen C-Umsatz aufgrund der C-Begrenzung in den Böden mit 

niedrigerer oder höherer Höhe. 

Da Enzyme für die SOM-Zersetzung verantwortlich sind, sind Kenntnisse über 

enzymatische Mechanismen der Temperaturanpassung erforderlich, um die 

Auswirkungen der Erwärmung auf den Boden-C-Zyklus vorherzusagen. So wurden 

Bodenproben von acht Jahre wärmenden Feldstandorten (Umgebungstemperatur, 

+1,6 °C, +3,2 °C) bei einer kurzfristigen Inkubation bei konstanter Temperatur (von 5 

bis 25 °C in Intervallen von 5 °C) unter mikrobiellem Steady inkubiert -Zustand und 

aktivierter Modus (Studie 6) zur Messung der Temperaturempfindlichkeit (Q10) von 

hydrolytischen Enzymaktivitäten. Wir fanden einen Legacy-Effekt der achtjährigen 

Felderwärmung, der den Verbrauch labiler organischer Stoffe aufgrund des 

schnelleren mikrobiellen Wachstums und Umsatzes erleichterte und somit zu einer 

langfristigen Erwärmung des Bodengedächtnisses führte, was zur Folge hatte, dass 

Q10 der Enzymaktivitäten in erwärmten Böden geringer war. Labile C-Einträge 

verursachten einen höheren Q10-Vmax in erwärmtem Boden im Vergleich zu 

Umgebungsboden und zeigten aufgrund der thermophilen Natur aktivierter 

Mikroorganismen einen verringerten mikrobiellen Gedächtniseffekt. Folglich ist das 

mikrobielle Gedächtnis stark vom mikrobiellen physiologischen Zustand abhängig, 

der durch die Substratversorgung schnell verändert werden kann. 

Deutet diese These darauf hin, dass die Klimaerwärmung, die über das Ziel des 

Pariser Klimaabkommens (> 2 ℃) hinausgeht, das mikrobielle Wachstum und die 

Produktion von Enzymen stimuliert, wodurch die SOM-Mineralisierung beschleunigt 

und der SOC verringert wird. Mykorrhizen sind jedoch in terrestrischen Ökosystemen 

allgegenwärtig, da sie unterirdische C-Einträge stimulieren und das Wachstum von 

saprotrophen Pilzen hemmen können, wodurch die Sequestrierung von Boden C 

erleichtert wird. Folglich könnte die Mykorrhizierung als positiver Puffer für die 

Abschwächungsstrategie gegen die vorhergesagten Erhöhungen der SOM-Zersetzung 

in der zukünftigen erwärmten Welt wirken. 
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1. Extended summary 

1.1 Introduction 

Globally, soils store 1500 Pg carbon (C), twice as much as the atmosphere and 

biosphere combined together (Todd-Brown et al., 2013; Wieder et al., 2013). The 

global soil organic carbon (SOC) storage depend mainly on CO2 uptake 

(photosynthesis) and release (microbial soil organic matter (SOM) decomposition) 

(Song et al., 2018). Even small changes in the soil C pool (e.g., plant-derived C input, 

SOM decomposition) will affect the maintenance of soil fertility, the stability of 

ecosystem, and the regulation of greenhouse gas emission (Swift et al., 2004). 

Mycorrhization and warming are important biotic and abiotic factors affecting SOM 

stability (Bardgett et al., 2008; Schmidt et al., 2011; Frey, 2019; Zhou et al., 2020a).  

 

1.1.1 Mycorrhization and soil organic matter stability 

Mycorrhiza is one of the most common inter-species interactions on Earth, involving 

90% of plant species (Smith and Read, 2008). There is increasing evidence that a 

significant part of rhizodeposition (4-30% of the net photosynthesis) enters the soil 

through the mycorrhizal network, contributing to microbial biomass build-up and 

subsequent soil C storage (Finlay and Rosling, 2006; Finlay, 2008; Zhou et al., 2020a). 

However, this additional C supply by mycorrhizaes also provides energy for 

rhizosphere microbial communities, thereby shaping their structures and functions and 

thus driving distinct microbial nutrient cycling (Eisenhauer et al., 2010; Pausch and 

Kuzyakov, 2018). Therefore, mycorrhizal fungi may serve as a useful predictor of C 

cycling processes in ecosystems around the world (Frey, 2019).  

Arbuscular mycorrhizal fungi (AMF) can form symbiotic associations with about 

71% of all flowering plants, including many important crops such as wheat and barley 

(Brundrett and Tedersoo, 2019). AMF are obligate symbionts and, there is no 

evidence that they have the saprotrophic capacity to degrade SOM (Talbot et al. 2008; 

Bödeker et al. 2014). However, AMF can promote free-living microorganisms by 

releasing labile substrates via exudation and hyphal turnover, and providing energy 

for enzyme production and SOM decomposition (Schmidt et al., 2011). Although 

several studies have reported that AMF can enhance or inhibit litter decomposition 

(Hodge, 2001; Leifheit et al., 2015), the mechanisms underlying the effects of AMF 

on SOM decomposition still remain unsolved. What’s more, numerous studies have 

demonstrated that AMF are sensitive to N fertilization (Treseder, 2004; Johnson et al., 

2013). This is an important issue because N fertilization is widely used as a common 

agricultural management strategy to increase crop yield in agroecosystems (Galloway 

et al., 2008). The extent to which AMF contribute to ecosystem C storage may 

therefore change, if soil N availability increases (Johnson et al., 2013). However, the 

mechanisms underlying the effects of AMF on C allocation and SOM decomposition 

under N fertilization are still an open question. This knowledge gap was addressed in 

https://link.springer.com/article/10.1007/s11104-009-9925-0#CR55
https://link.springer.com/article/10.1007/s11104-009-9925-0#CR54
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Study 1, which aimed to investigate the interactive effect of AMF and N fertilization 

on rhizodeposition and SOM decomposition. 

Although recent progress has been made in our understanding of C fluxes from the 

plant to AMF, and rhizosphere microorganisms, knowledge is still scare with respect 

to the relative flow of C to specific biological groups in plant-AMF-soil systems 

(Olsson and Johnson, 2005; Drigo et al., 2010). This knowledge is important for the 

understanding of terrestrial C dynamics and storage, as groups of soil biota (in 

particular bacteria, mycorrhizal fungi and saprotrophic fungi) function differently in 

the incorporation and turnover of C, in the chemical nature of their respective 

byproducts, and in their respective effects on soil biogeochemical cycles (Six et al., 

2006; Strickland and Rousk, 2010). This knowledge gap was addressed in Study 2, 

which aimed to study the influence of AMF symbiosis and N fertilization on the 

incorporation and fate of rhizodeposit-C into microorganisms.  

Together with AMF, ectomycorrhizal fungi (ECM) are the two most widespread 

mycorrhizal fungi in the world (Brundrett, 2009). For example, ECM accounts for 

approximately one-third of the living biomass in forest soils (Högberg and Högberg, 

2002). ECM assist plants’ uptake of nutrients from soil via the decomposition of the 

organic N pools and receive C from the host plant in return (Read and Perez-Moreno, 

2003; Smith and Read, 2010). It is evidenced that up to 30% of plant’s total 

assimilates is consumed by their ECM partner for the development of the extraradical 

mycelium and exudations (Hobbie et al., 2013). Therefore, ECM plays a major role in 

soil C cycles in forests and it requires to further research to quantify the C allocation 

to belowground via ECM and its’ role in the subsequent microbial functions. However, 

non-mycorrhizal rhizosphere fungi (NMRF), exhibits diverse lifestyles, from 

plant-beneficial endophytes over saprophytic fungi to parasitic organisms thriving on 

fungal, plant or animal biomass (Peršoh, 2015), is another major soil fungal guilds in 

forests (Read and Perez-Moreno, 2003; Kohout et al., 2013). NMRF living in the 

rhizosphere could compete with ECM for root exudates (Cairney and Meharg, 2002; 

Esperschütz et al., 2009), thus indirectly affect belowground C allocation when ECM 

is in co-existence with NMRF. Thus, NMRF abundance is expected to be a major 

determinant of the ECM-induced microbial functions and deserves much more 

attention. This knowledge gap was addressed in Study 3, which aimed to disentangle 

the effects of ECM and NMRF on plant C allocation belowground and enzyme 

activities, especially in co-existence with ECM and NMRF. 

 

1.1.2 Warming and soil organic matter stability 

Elevated temperature is projected to activate microorganisms and accelerate their 

turnover, thus promoting terrestrial C cycle with potential feedbacks to future climate 

change (Davidson and Janssens, 2006; Bardgett et al., 2008; Alvarez et al., 2018). 

Warming-induced acceleration of SOM mineralization is the result of microbial 

growth on heterogeneous organic substrates and is strongly dependent on the size and 

functional traits of the active microbial fraction (Schlesinger and Andrews, 2000; 

Chen et al., 2014). However, the predictions on whether microorganisms will grow 

faster or slower under climate warming remain controversial. As an immediate 
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response, warming may accelerates the turnover of the fast-growing microbial 

population (Blagodatskaya et al., 2010), whilst the microbial growth rate may reduces 

due to the rapid exhaustion of available organic C under long-term warming 

(Bradford et al., 2008). As exoenzymes produced and released by microorganisms are 

the engine of SOM decomposition and labile organic compounds production (Koch et 

al., 2007; Wallenstein et al., 2009), shifts in enzyme activities lead to changes in SOM 

decomposition, C storage, and other biological processes (Waldrop et al., 2004). 

Alterations in soil C and nutrient cycles not only cause a positive feedback on 

atmospheric CO2 and exacerbate climate change (Heimann and Reichstein, 2008), but 

affects nutrient limitation and plant growth (Laganière et al., 2010), especially in 

agroecosystem which could influence global food productions. Previous experimental 

studies also reported that the responses of microbial functional traits to climate 

warming were complex and depended on warming magnitudes, methods, and 

ecosystem types. Taken together, mountain grassland systems are of great ecologically 

importance and are particularly sensitive to global warming (Sala et al., 2000). This 

leads to uncertainty for future soil C cycle in terrestrial ecosystems. Climate warming 

responses of microbial growth and enzyme kinetics thus was determined under 

different warming magnitude and methods in agroecosystems and mountain 

grasslands in Study 4 and 5. 

Additionally, soil C dynamics are also discussed from the point of view of their 

sensitivity to climate warming (Heimann and Reichstein, 2008). And the responses of 

enzyme kinetics to short- and long-term duration of warming changes may feed with 

empiric data to better predict the vulnerability of soil C stocks in a future warmer 

world (Alvarez et al., 2018; Chen et al., 2020). Given that the substrate supply is a 

key factor regulating microbial growth and enzyme production (Wallenstein et al., 

2009; Karhu et al., 2014), ignoring microbial activation by increasing C inputs due to 

increased net primary productivity under climate warming (Heimann and Reichstein, 

2008; Yin et al., 2013), could result in a underestimation of SOM decomposition as 

well as in the missing feedbacks between the climate and nutrient turnover 

(Salazar-Villegas et al., 2016). Therefore, we aimed to study the temperature 

sensitivity of enzymes in response to labile substrate input with future climate 

warming in Study 6. 

1.2 Aims and hypotheses 

As mentioned in the introduction, SOM stability is based on the rhizodeposition and 

microbial activities, which can be affected by mycorrhization (i.e. AMF and ECM). 

Therefore, this thesis focuses on the following objectives: 

(1) To assess the C input via AMF as well as its impact on SOM stabilization and C 

sequestration depending on N fertilization (Study 1 and 2). We hypothesize that 

AMF would increase C allocation to the soils due to the direct linkage with their 

hosts (Study 1). Further, we expect that AMF would be most benefited in the 

plant-soil interactions, and the stimulated growth of AMF is at the expense of 

other free-living decomposers, and thus less C is incorporated into saprotrophic 

microorganisms, consequently decrease RPE on SOM decomposition (Study 1 
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and 2). However, N fertilization applied in agroecosystems would decrease C 

allocated to belowground, suppress AMF growth, and thus reduce RPE on SOM 

decomposition (Study 1 and 2). 

(2) To reveal the relative C flow towards soils and the corresponding spatial 

rearrangement of microbial functions, specifically those involved in nutrient 

cycling as affected by ECM and NMRF, two major soil fungal guilds in forest 

soils (Study 3). We hypothesize that s higher amount of photosynthetic C is 

allocated to the soils inoculated with ECM as compared to inoculation with 

NMRF, and ECM colonization would increase soil N- and P-related enzyme 

activities, while NMRF would increase predominantly C-degrading enzyme 

activities. Furthermore, ECM colonization would extend the spatial distribution 

of rhizodeposited C and this would induce an increase in the spatial dispersal of 

nutrient-mobilizing enzymes. When competition between ECM and NMRF, it 

would reduce plant C allocation to the soils (Study 3). 

Besides rhizodeposition via mycorrhization pathway, global warming is a another 

crucial factor enhancing soil microbial activity and thus threatening SOM stability. 

Thus, this thesis also focuses on the following objectives: 

(3) To estimate the microbial functioning and enzyme kinetics change with climate 

warming in situ (Study 4 and 5). We hypothesize that climate warming would 

stimulate microbial growth rate, as well as enzyme activities, reduce soil C and N 

pools, and thereby shrinking soil C sequestration due to plant-derived labile C 

inputs under warming. We also predict that this positive response of soil C and N 

pools would depend on the warming magnitudes and ecosystem types (Study 5 

and 6). 

(4) To investigate the temperature sensitivity (Q10) of enzyme activities after 

long-term warming, and to see whether Q10 would be altered by the labile C input 

(Study 6). We hypothesize that under long-term warming, faster microbial 

turnover would reduce labile organic compounds, which restrict the energy 

available for enzymes production and their Q10, thus, retarding decomposition of 

SOM. This can be destroyed by the input of available substrate (e.g., as a result of 

increased rhizodeposition under warming) due to altering microbial physiological 

state, accelerating enzyme activity and consequently, reducing soil C stocks. 

1.3 Materials and methods 

1.3.1 Soil sample 

Soil collected from the Ap horizon (0-20 cm) of an experimental field at the Reinshof 

Research Station of the Georg-August University of Göttingen, Germany, was used 

for Study 1 and 2. Soil collected from northern part of Göttingen, Lower Saxony, 

Germany, was used for Study 4 and 6. The soil was air-dried and sieved (< 2 mm) to 

achieve a high degree of homogeneity and reduce the variability among replicates. A 

sterilized 1:1:1:1 w/w mixture of nutrient-poor soil, fine sand, coarse sand and perlite 

was used for Study 3.  

1.3.2 Experiment set-up 

Two tomato genotypes (Lycopersicon esculentum L.): a mutant tomato with highly 
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reduced AMF symbiosis, termed rmc (reduced mycorrhizal colonization), and a 

closely related wild type hereafter termed MYC (Barker et al., 1998), were were 

grown in PVC pots with and without N fertilization. N-treatments received 344 mg N 

per pot, equivalent to a rate of 150 kg N ha-1 (Study 1 and 2).  

For the Study 3, European spruce (Picea abies L.) seedlings were grown in 

rhizoboxes, which were divided into rhizohyphosphere and hyphosphere by a nylon 

mesh. Spruce seedlings were inoculated with a mixture of three ECM fungal species 

(ECM), a mixture of three non-mycorrhizal rhizosphere fungal species (NMRF), and 

a mixture of all ECM and NMRF fungal species (MIX), respectively, as listed in 

Table. ES1. 

 

Table. ES1 Fungal types used in the experiment. ECM: ectomycorrhizal fungi, NMRF: 

non-mycorrhizal rhizosphere fungi. 

Fungal type Taxa 

ECM Amanitamuscaria Hebeloma crustuliniforme 
Cenococcum 

geophilum 

NMRF Trichoderma asperellum Trichoderma viride 
Cryptococcus 

terricola 

 

The Study 4 was conducted on an on-going (since August 2010) long-term warming 

experiment. The three heating regimes included: (1) ambient soil temperature, (2) 

ambient +1.6 °C, and (3) ambient +3.2 °C. The experimental site consisted of 12 plots 

(2 m × 2.5 m each) arranged in two rows. Soil samples were collected from the upper 

10 cm of ambient, +1.6 °C and +3.2 °C plots in October 2018 (8-year warming). 

The study 5 was conducted conducted on four grassland sites along an elevational 

gradient ranging from 350 m to 1300 m a.s.l. in the European Alps (Fig. ES1). In the 

summer 2016, the intact plant-soil community monoliths were extracted from the 

pre-alpine grassland in Esterberg, and then translocated within site as a control and 

downslope to each site with a lower elevation than the original. During peak growing 

season of 2018, soil samples were collected from field and brought back to the 

laboratory to do further analyse. 
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Fig. ES1 Geographic and climatic characteristics of the research sites along the elevational gradient in 

the European Alps. MAT, MST and MAP are mean annual temperature, mean summer temperature and 

mean annual precipitation, respectively. 

 

The soils sampled from long-term warming field were used to incubate in Study 6. 

Soil samples were incubated in a Rapid Automated Bacterial Impedance Technique 

bioanalyser (RABIT; Microbiology International Ltd, Frederick, MD, USA), at 5, 10, 

15, 20 and 25 °C, added with water (microbial steady-state) and substrates (a mixture 

of glucose and nutrition solution, microbial activation). 

1.3.3 Analytical methods 

1.3.3.1 Isotope approaches 

To gain a better understanding of rhizosphere processes, stable and radioactive isotope 

based labeling techniques were applied to differentiate between plant-derived C and 

native SOM. For the Study 1 and 2, the tomatoes were exposed to 13C enriched CO2 in 

a growth chamber equipped with a continuous 13CO2 labeling system, from the 

emergence of the first leaf till harvest. For the Study 3, the trees were exposed to the 

radioactive tracer (14C-CO2) in a plastic chamber for a short period of time (10 h).  

Analysis of 13C 

In order to determine the δ13C value, CO2 trapped in NaOH was precipitated as SrCO3 

after the addition of SrCl2 solution, and analyzed with an Elemental Analyzer (EA, 

Eurovector) coupled to an IRMS (Delta Plus XL IRMS, Thermo Finnigan MAT, 

Bremen, Germany) (Study 1). Roots, shoots and soil samples were dried at 60 oC for 3 

days and, homogenized in a ball mill and analyzed for δ13C and C content, as well as 

for N content by EA-IRMS. For the MBC and DOC, the K2SO4-extracted solutions 

were freeze-dried (Beta 1-8 LSCplus, Martin Christ Gefriertrocknungsanlagen GmbH, 

Harz, Germany) and analyzed using IRMS. The 13C/12C isotope ratios of the single 

fatty acids were determined by an IRMS Delta PlusTM coupled to a gas 

chromatograph (GC; Trace GC 2000) via a GCII/III-combustion interface (all units 

from Thermo Fisher, Bremen, Germany). 

Analysis of 14C 
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To determine the 14C activity of plants (roots and shoots) and soils (Studies 3), the 

samples were combusted in a combustion unit and the released CO2 was trapped in 

NaOH. The 14C activity was measured with a LSC and the total C content with a TOC 

analyzer. The 14C activity of fumigated and non-fumigated extracts was measured 

with scintillation cocktail and determined with a liquid scintillation counter Tricarb™ 

B3180 TR/SL (PerkinElmer Inc., Waltham, MA, U.S.A.). The 14C-MBC was 

estimated as the difference in K2SO4-extractable 14C between fumigated and 

non-fumigated soils without a correction factor (Zang et al., 2020) (Study 3). To 

determine the spatial distribution of plant-derived C (Study 3), 14C phosphor image 

was taken per rhizobox for 17 h, and were scanned (FLA 5100 scanner, Fujifilm). The 
14C images were converted to 14C activities by a regression describing the relation 

between pixel-wise photo-stimulated luminescence and known imaging activities of 
14C according to Banfield et al. (2017). 

1.3.3.2 CO2 emission, microbial biomass and DOC 

Soil CO2 was trapped from seal pots by circulating the soil air through NaOH solution 

at 8, 12, and 16 weeks transplanting (Study 1). The total C concentration of the NaOH 

samples was measured by titration with HCl against phenolphthalein after addition of 

BaCl2. MBC and DOC was determined by the chloroform-extraction-extraction 

methods (Study1, 2, 3, 4, 5). 

1.3.3.3 AMF abundance 

The magnified intersection method described by McGonigle et al. (1990) was used to 

determine the percentage of root length colonization by AMF (Study 1).The neutral 

lipid fatty acid (NLFA) 16:1ω5c was measured as a biomarker for extraradical AMF 

biomass in the soil (Olsson, 1999), following the protocol described by Frostegard et 

al. (1991). 

1.3.3.4 Enzyme activity 

Enzyme activities were measured using fluorogenically labeled substrates (Marx et al., 

2001; Study 1, 4, 5, 6). Fresh soil suspension (1g soil + 50 ml sterile water) was 

prepared and 50 µl of this suspension was dispensed into a microplate. Afterwards, 50 

μl of buffer (MES for MUF; Trizma for AMC based substrates, respectively) and 100 

μl of the corresponding substrates were added, fluorometric measurements (excitation 

360 nm; emission 450 nm) were taken. In order to determine the spatial distribution of 

specific enzymes involved in C, N and P cycling (Study 3), zymography was used to 

visualize according to the methodology of Zhou et al. (2021). The images obtained 

from zymography were transferred into a 16-bit gray scale using the open source 

software ImageJ. Then the calibration line obtained for each enzyme was used to 

convert gray values of each zymography pixel into enzyme activities. 

1.3.3.5 Kinetics of substrate-induced growth respiration  

The kinetics of substrate-induced growth response (SIGR) (Study 4, 5, 6) in the soil 

was analyzed according to Blagodatskaya et al. (2010) and Zhou et al. (2020b). Soil 
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samples were incubated in a RABIT system, and the measurement of CO2 release was 

based on the conductivity changes. Microbial growth respiration in the glucose 

amended soil was used to model the specific growth rates of microorganisms (µ), the 

growing microbial biomass (GMB) (Blagodatskaya et al., 2010). 

1.3.3.6 Phospholipid fatty acid analysis of microbial communities 

Phospholipid (PLFA) lipid fatty acids (Study 2) were extracted and analyzed 

according to the protocol described by Frostegard et al. (1991). Briefly, 6 g of soil was 

extracted with a 25 mL one-phase mixture of chloroform, methanol and 0.15 M 

aqueous citric acid (1:2:0:8, v/v/v, pH 4.0) with two extraction steps. Phospholipids 

were separated from neutral lipids and glycolipids by solid phase extraction using a 

activated Silica gel (Silica gel Merck, particle size 0.063-0.200 mm). Alkaline 

saponification of the purified phospholipids was performed with NaOH dissolved in 

dried MeOH, followed by methylation with BF3 dissolved in methanol, purified by 

liquid–liquid extraction with hexane. All PLFA samples were analyzed by GC. 
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1.4 Results and Discussion 

1.4.1 Overview of objectives and main results of the studies 

Objectives and main conclusions of individual studies are presented in Table ES2. 

Table. ES 2 Objectives and main results of the studies. 

Study Objectives Main results and conclusions 

Study 1 Arbuscular mycorrhiza 

enhances rhizodeposition and 

reduces the rhizosphere priming 

effect on the decomposition of soil 

organic matter 

⚫ To assess the effect of AMF symbiosis 

on C allocation within the plant-soil 

system depending on N fertilization  

⚫ To study the RPE and its underlying 

microbial mechanisms by AMF 

symbiosis and N fertilization 

⚫ To estimate the soil C balance and RPE 

induced by AMF symbiosis and N 

fertilization 

✓ AMF symbiosis decreased the relative C allocation to 

roots, in turn increased the net rhizodeposition. 

✓ Net rhizodeposition was higher for MYC than rmc 

plants 16 weeks after transplanting, the RPE was 

comparatively lower. This indicated a higher potential 

for C sequestration by plants colonized with AMF 

because the reduced nutrient availability restricts the 

activity of free-living decomposers.  

✓ N fertilization lowered the magnitude of RPE, because 

of decreased enzyme activities that indicated a 

lowered microbial N demand. 

✓ N fertilization decreased the net C rhizodeposition 

induced by AMF symbiosis, which may partly reflect 

the more restricted mycorrhizal abundance. 

Study 2 Arbuscular mycorrhizae 

prominents in the rhizosphere 

carbon uptake and saprotrophic 

microorganism shift 

⚫ To assess the effect of AMF symbiosis 

and N fertilization on the incorporation 

and fate of rhziodeposit-C into 

microorganisms 

⚫ To identify predominant microbial 

✓ Although less 13C was incorporated into AMF hyphal 

biomass (PLFA 16:1ω5c, 0.12-0.25%), there was 

significant allocation of 13C into AMF storage 

compounds (NLFA 16:1ω5c, 3.09-4.07%) in the soil 

with AMF symbiosis. This suggested that AMF 
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groups utilizing newly rhizodeposit-C symbiosis play a main role in the utilization of 

rhizodeposits. 

✓ AMF symbiosis shifted the microbial community 

composition, resulting in a lower 13C incorporation 

into the bacteria, SAP fungi compared to plants 

without AM. 

✓ High N availability negatively impacted on AMF 

symbiosis and further rhizodeposited C recovered in 

the AMF. 

Study 3 Ectomycorrhizal and 

non-mycorrhizal rhizosphere fungi 

increase root exudation and enzyme 

activities: a 14C pulse labeling of 

Picea abies seedlings 

⚫ To quantify the role of ECM and NMRF 

and their interactive effects on plant C 

allocation belowground and spatial 

distribution of rhizodeposit-C 

⚫ To investigate the role of ECM and 

NMRF and their interactive effects on 

spatial distribution of microbial enzyme 

activities 

✓ ECM and NMRF allocated more C to soils compared 

to uninoculated control soil. 

✓ ECM competed with NMRF and thus the growth of 

ECM was suppressed, which was supported by the 

plant C allocated to the rhizohyphosphere for MIX 

was 110% higher than for the control, but 64% lower 

than that for ECM treatment. 

✓ A higher chitinase and leucine-aminopeptidase in the 

rhizohyphosphere with ECM compared with the 

control and NMRF inoculation was observed, which 

suggests that enzyme activities are regulated by the 

supply of photosynthates from the hosts. 

✓ NMRF showed a higher production of β-glucosidase, 

probably because NMRF consumed rhizodeposits 

efficiently.  

Study 4 Restricted power: is 

microbial pool still able to maintain 

⚫ To estimate whether warming exceeding 

2 °C affects soil C and N pools 

✓ A low magnitude of temperature increase (< 2 °C) 

only altered microbial traits (i.e. microbial biomass), 
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the stability of soil organic matter 

under warming exceeding 2 

degrees? 

⚫ To quantify the changes of soil 

microbial and enzymatic process, as 

well as their consequences for C and N 

pools depending on the magnitude of 

warming (< 2 °C and > 2 °C) 

but neither enzyme functioning nor soil basic 

properties. However, a higher warming (2-4 °C) was 

sufficient to change almost all soil, microbial pools, 

and enzyme-related processes in the long-term. 

✓ Microorganisms grow and turnover faster under 

higher warming, and enzyme systems shift towards 

lower affinity to the substrate, i.e. slower glucose or 

amino-N production. 

✓ The SOC and total nitrogen (TN) remained stable at 

warming below 2 °C, while stronger warming (by 

2-4 °C) did not affect SOC but it increased the TN 

content. 

Study 5 Response of microbial 

growth and enzyme kinetics to 

climate change in montane 

grassland 

⚫ To estimate the microbial functioning 

and change with climate warming in situ 

⚫ To investigate the response of enzymatic 

kinetic to climate change 

✓ Climate warming shifted microbial community  

towards slow-growing microorganism. 

✓ Substrate turnover time of C-degrading enzymes was 

lower in the soil at lower elevations, implies a 

stronger and faster C turnover in warmer than in 

colder soils. 

✓ Warming can lead to proportionally high soil C and N 

losses when increased N mineralization rates at 

warmer temperatures are not compensated by rapid 

plant N uptake and plant-derived C inputs to the soil 

due to lower root biomass production of less diverse 

plant communities. 

Study 6 The soil memory: 

Long-term field warming controls 

⚫ How does long-term warming affect the 

temperature responses of potential 

✓ At steady-state, Vmax of C- and N-degrading enzymes 

was lower in historically warmed compared to 
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short-term temperature responses of 

soil microbial functions 

enzyme activities 

⚫ Whether or not soil microbial memory 

occurs persistently when 

microorganisms were activated by the 

labile C input with future climate 

warming 

ambient soil. 

✓ Native available substrates for β-glucosidase, 

chitinase, and leucine aminopeptidase in historically 

warmed was 2-times lower than in ambient soil. Thus 

it caused a lower Q10-Vmax in warmed soils. 

✓ At activation mode, Vmax and Q10-Vmax was higher in 

historically warmed compared to ambient soil, 

suggested that input of labile substrate activated 

dormant microorganisms in historically warmed soils. 
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Fig. ES2 Synthesis of main results of the thesis.
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1.4.2 Mycorrhization and soil organic matter stabilization 

1.4.2.1 Arbuscular mycorrhizal fungi enhances rhizodeposition and decreases soil 

organic matter decomposition  

Plants with AMF had 33% higher net rhizodeposition than plants without 

mycorrhization in the soil (rhizosphere + bulk) (Fig. ES3). This is in accordance with 

a study from Kong and Fridley (2019) who reported mutualistic microorganisms 

increased C allocation to soil. Higher C inputs under plants with AMF are explained 

by higher amounts of assimilates allocated to the development of extraradical 

mycelium and spores (Olsson and Johnson, 2005), and by the extremely long 

residence time of glomalin-related soil protein released from AMF (Rillig, 2004). The 

symbiotic AMF interactions are known to transfer C away from the rhizosphere to the 

bulk soil (less microbial activity) (Zhu and Miller, 2003; Hafner et al., 2014), and thus 

to facilitate C sequestration. In summary, the AMF symbiosis increased net 

rhizodeposition in the rhizosphere and the bulk soil, due to the important pathway of 

C inputs through AMF hyphae.  

 

Fig. ES3 Rhizodeposition remaining in rhizosphere (a) and bulk soil (b) at harvest (net rhizodeposition) 

of mycorrhizal wild type (MYC) and mutant (rmc) tomato with reduced mycorrhizal colonization with 

and without N fertilization over a 16 weeks growth period. Fertilization: with and without N; Genotype: 

MYC and rmc. Net rhizodeposition means the total amount of 13C remaining in soil at the time of 

harvest. 

 

Compared with unfertilized soil, we recorded a reduced C flow to the belowground 

pools and less AMF abundance (NLFA 16:1ω5c) for MYC plants with N fertilization 

(Fig. ES6). This suggested that N fertilization has reduced AMF fungal activity as a 

result of a decreased transport of photosynthate-C to roots and further to their AMF 

symbiosis. Firstly, plants invested relatively more resources to aboveground biomass 

under N fertilization, thus resulted in reduced relative belowground C inputs and less 

C allocation to the symbiotic fungi. Secondly, high soil N availability stimulated plant 

growth (higher aboveground biomass) and thus increased the competition for essential 

resources between roots, including AMF and neighboring microorganisms (Kuzyakov 

and Xu, 2013; Konvalinková et al., 2017). This, in turn, may have reduced the 
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development of AMF. Accordingly, AMF growth and their C sink strength are reduced 

by N fertilization. 

 

Fig. ES4 Soil-derived (a), root-derived CO2 (b), and rhizosphere priming effect (RPE) (c) of 

mycorrhizal wild type (MYC) and mutant (rmc) tomato with reduced mycorrhizal colonization with 

and without N fertilization over a 16 weeks growth period. 

 

Rhizosphere priming effect was lower in soil under MYC versus rmc plants. The 

lower rhizosphere respiration of MYC plants represented less readily available 

plant-derived C (Fig. ES4), which further decreased the activated microorganisms and 

thus the demand for nutrients from SOM mining (Fontaine et al., 2011). In the present 

study, AMF symbiosis actively scavenge soil for nutrients, making them highly 

efficient for nutrient uptake (Verbruggen et al., 2016). The reduced N and P 

availability further imposed nutrient limitation for free-living decomposers and 

reduced their activities in bulk soil (Fig. ES4; Brzostek et al., 2015). AMF are less 

limited by C than saprotrophic fungi due to direct C allocation from the plant hosts 

(Fig. ES6). Thus, AMF may produce secondary metabolites that are antagonistic 

against free-living saprotrophic fungi (Keller et al., 2005; Fernandez and Kennedy, 

2016). The efficient substrate uptake of nutrients by AMF may have restricted the 

activity and nutrient use of free-living decomposers (Fig. ES5). This is the most 

plausible mechanism for increased C retention by AMF symbiosis.  

The intensity of RPE on SOM decomposition decreased by two thirds in fertilized 

versus unfertilized pots at earlier stages (e.g., 8 and 12 weeks; Fig. ES4). This could 

be explained by the reduced nutrient demand of soil microbes and to their preferential 
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utilization of root-released C (Phillips et al., 2011; Zang et al., 2017). 

 

Fig. ES5 Conceptual figure showing rhizosphere priming on SOM decomposition accompanied by 

microbial substrate (i.e. C and nutrient) competition. Arrow thickness indicates process intensity. 

 

1.4.2.2 The predominant role of AMF in rhizosphere C flow and microbial 

community shift 

In the present study, the direct incorporation of plant-derived C was much greater for 

AMF than bacteria and SAP (Fig. ES6). The 13C incorporation in the AMF-specific 

biomarker (NLFA and PLFA 16:1ω5c) increased over the growth period and was still 

prominent at 16 weeks after transplanting (Fig. ES6). Increased 13C labeling of NLFA 

16:1ω5c suggested the enhanced production of AMF storage compounds, and 

increased 13C labeling of PLFA 16:1ω5c implied AMF growth stimulation (Olsson 

and Johnson, 2005). These data confirmed earlier results on the dominant role of 

AMF in the flow of C from plants into the soil and AMF hyphae (Johnson et al., 2002; 

Olsson and Johnson, 2005; Drigo et al., 2010).  

By contrast, SAP fungi exhibited 20-30 times lower 13C enrichment than in bacterial 

PLFAs (Fig. ES6). This is in line with Wardle et al. (2004) who suggested fungi 

dominate the turnover of C bound in complex structures. SAP fungal assimilation of 

C derived from necromass or dead root material rather than from labile root exudates 

might form an alternative explanation for the lower incorporation of 13C into the 

fungal PLFAs (Rousk and Frey, 2015).  

When conditions became less suitable for AMF colonization of the root (e.g., under N 

fertilization), there is a lower surplus of carbohydrates that can be used by the fungus 

for storage structures (Fig. ES6). In other words, in the case of greater nutrient 

limitation in plants without fertilization, AMF symbiosis thus could be more 

important, promoting preferential C allocation to AMF, at the expense of SAP. This 

could be an important explanation of the decreased 13C enrichment in SAP in the 
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unfertilized soil. Overall, the general explanation is that the N-limited plant consumes 

more of the newly fixed C to the root that reduce the C availability to the free living 

saprotrophic microorganisms, whereas a high N availability negatively impact on 

AMF symbiosis results from less C allocation. The mechanism behind this is an 

increased C immobilization in the aboveground biomass as well as the stimulated 

rhizosphere respiration.  

 

 

Fig. ES6 Carbon (C) budget within a plant-soil system of mycorrhizal and non-mycorrhizal plants with 

and without N fertilization presented as % of total assimilated C into each C pool of plant and soil 

during 16-weeks continuous 13C labelling. The C losses includes root respiration and CO2 released 

from soil organic matter decomposition. 

 

1.4.2.3 Ectomycorrhizal and non-mycorrhizal rhizosphere fungi increase root 

exudation and enzyme activities 

Based on 14C imaging, we found that both ECM and NMRF increased plant C 

allocation belowground relative to Control, as indicated by the higher specific 14C 

activities in the rhizohyphosphere with NMRF (Fig. ES7). This agrees with earlier 

studies which found that NMRF could incorporate recently fixed plant C and thus be 

major consumers of root exudates (Hannula et al., 2012; Pausch et al., 2016).  

Although both ECM and NMRF increase plant C allocation belowground, they 

exerted various influences on the radial patterns of exudates (Fig. ES8). Although 

most of the recently assimilated C was allocated to infected root tips (Wu et al., 2002), 
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mycorrhizal hyphae can displace plant C beyond the root zone (Smith and Read, 

2008), leading to a wider spread and even distribution of C and, hence, to a smaller 
14C hotspot area in soil inoculated with ECM. As a consequence, the rhizosphere 

extent was broader for plants inoculated with ECM compared to others (Fig. ES8). 

Overall, both ECM and NMRF increased the belowground C sink strength but 

exerted different effects on the spatial distribution of exudates in the rhizosphere. 

When co-inoculated with ECM and NMRF, the specific 14C activity decreased by 

35% compare to ECM inoculation (Fig. ES7). This points to a competitive 

relationship between these fungal groups. In the context of our experiment, this means 

that ECM potentially limit their growth due to the necessity to share substrates with 

NMRF, especially with regard to N resources. As a consequence,14C activities were 

lower in the hyphosphere soil of MIX compared with ECM treatment. 

 
Fig. ES7 14C activity in the rhizohyphosphere soil (a), hyphosphere soil (b), specific 14C activity (c), 

and percentage of hotspots in rhizohyphosphere soil (b) of European spruce (Picea abies L.) without 

inoculation (Control), inoculated with non-mycorrhizal rhizosphere fungi (NMRF), inoculated with 

ectomycorrhizal fungi (ECM), and inoculated with ECM and NMRF (MIX). 

 

Besides rhizodeposited C, enzyme activities and their spatial extension in the 

rhizosphere were strongly affected by the type of fungi present (Fig. ES8). ECM are 

supplied with C by their host and are generally rather nutrient- than C-limited (Smith 

and Read, 2010; Franklin et al., 2014). Accordingly, the use of these exudates by 

microorganisms as C and energy resources implies an increase in the soil volume for 

nutrient uptake. Besides, the higher C content in the extraradical mycelium of ECM 

(Trudell and Edmonds, 2004; Trocha et al., 2016) also suggests a higher nutrient 

demand for ECM itself compared with NMRF.  

Although NMRF increased belowground C inputs, the C allocated to soils may be 

insufficient to meet the growth demand of the entire hyphal network of NMRF 
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(Hobbie and Horton, 2007) because of the high hyphal density in soil (Söderström, 

1979). Therefore, more β-glucosidase (and presumably also other C-cycle involved 

enzymes) were released to mineralize native SOM and dead root tissue to acquire 

energy for their hyphal growth (Fig. ES8).   

Overall, the target enzymes released by ECM and NMRF were different due to the 

acquisition of their most limited or required elements - either for their own tissue 

(Allison and Vitousek, 2005) or for maintaining their symbiotic relationship (Read 

and Rerez-Moreno, 2003). 

 

Fig. ES8 General conceptual pattern of C allocation belowground, specific enzyme production, and 

spatial distribution of rhizodeposit-C and enzyms from plants inoculated with ectomycorrhizal (ECM) 

and non-mycorrhizal rhizosphere fungi (NMRF). 

 

1.4.3 Warming and soil organic C storage 

1.4.3.1 Self-regulatory mechanism of soil organic carbon stability under warming 

in agroecosystems 

Remarkably, the SOC remained stable even with higher warming magnitude (2-4 °C) 

in long term, as proved by both case study and literature review (Fig. ES9). The stable 

SOC was attributed to the faster microbial growth and necromass formation, which 

was counterbalanced by the slower enzyme-mediated substrate turnover. The 

increased fraction of DOC with 2-4 °C warming, accompanied by an essential 

decrease in microbial biomass (Fig. ES10), implying that necromass (dead microbial 

biomass) was a possible source of the higher labile organic matter with higher 

warming magnitude (Miltner et al., 2012). This further favored fast-growing 

microorganisms, and consequently accelerated microbial turnover. However, 

fast-growing microorganisms with r-strategy are very sensitive to any limitation (e.g., 
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energy and resource availability), and commonly shift to dormancy or even die when 

substrate becomes limiting (Salazar-Villegas et al., 2016; Shahbaz et al., 2017). After 

consumption of labile C, the r-strategists therefore reduce their biomass rather than 

mine available organic compounds from recalcitrant SOM pools. As a result of such 

self-regulation, the SOC pool remained unaffected.   

 

Fig. ES9 Effect of warming on soil parameters (SOC, TN, IN, DOC, DON), basal respiration (BS), 

microbial parameters (MBC, MBN, µ, GMB/TMB), and enzyme activities (BG, XYL, CBH, LAP, 

NAG) based on our study (panel a) or from a review of the literature (panel b). The details for data 

selection can be found in the text.  

 

Although 8 years warming did not change SOC, TN was increased by 26% (+3.2 °C) 

(Fig. ES9). The 2-4 °C warming changed enzyme systems towards lower affinity to 

the substrate, i.e. slower glucose or amino-N production, but lower turnover time and 

catalytic efficiency of β-glucosidase and leucine aminopeptidase (Fig. ES10). Thus, it 

caused a slower decomposition of organic residues compared with faster necromass 

production. Specifically, the generation time of microbial population was 3 h faster 

but the turnover time of peptides (cleaved by leucine aminopeptidase) was 7 h slower 

at higher warming (+2-4 °C) compared with ambient soil (Fig. ES10), resulting in 

increased total N. Moreover, the ambient C:N of soil (~19) was close to the theoretic 

threshold (20-25, Fig. ES10), i.e., the C:N value above which the N will be 

immobilized and below which N will be mobilized by microorganisms (Mooshammer 

et al., 2014). The possible consequences of decreased soil C:N to a value of 16 by 

2-4 °C warming, is net N mobilization for improving N availability for plant growth 

(Manzoni et al., 2012). This corroborates with the relatively stable microbial C:N 

ratios with warming (~5.5), which means microorganisms did not immobilize more N 
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even when it was available (Fig. ES10). Therefore, the stoichiometric imbalance 

between microbial decomposers and their labile resources (dissolved organic pool) 

may also result in enhanced N releases from necromass under the higher magnitude of 

warming. 
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Fig. ES10 The fundamental microbial mechanistic framework with soil temperature increases of ≤ 2 °C 

or 2-4 °C. 

 

1.4.3.2 Response of microbial growth and enzymatic kinetics to climate warming 

in montane grassland 

Due to decreased root and shoot biomass with climate warming, less rhizodeposition 

was released into soil with lower elevation, thus induced a strong competition for 

easily degradable C sources which favors the K-selected microorganisms 

(Blagodatskaya et al., 2014). Under lower C availability as indicated by lower DOC, 

active but starving microorganisms, the K-strategists contribute to microbial growth 

(Chen et al., 2014), as a result the µ values decreases as compared with soil under 

higher elevation (Fig. ES11).  

As microorganisms regulate the production of enzymes in response to environmental 

resource availability (Allison and Vitousek, 2005), and warming decreased plant C 

supply as mentioned above, it is possible that microorganisms allocate more resources 

to the acquisition of C (Sinsabaugh and Follstad, 2012). Hence, these findings 

indicate that warming-induced decreased C availability stimulated C-degrading 

enzymes and increased microbial C limitation. There was a clear stoichiometry shift 

to higher investment in C acquisition in soils with lower elevation, as indicated by 

higher enzymatic ratio of C- to N-degrading and C- to P-degrading enzymes in soil 

under lower elevation. The decreased DOC and DN content with climate warming 

further suggested that translocation could decrease C availability and stimulate labile 

C-acquired enzyme activity, which reflects the aggravation of C limitation in lower 
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elevation. Furthermore, a shorter substrate turnover time and higher Ka of 

β-glucosidase in soil at lower elevation compared with higher elevation was observed, 

which suggests that the microbial community was more limited by C rather than 

nutrient in the warmer and drier soils at lower elevation. 

μ

Vmax

Km

Labile C
(E0, 13℃)   

(E1, 15℃)   

(E2, 17℃)   

(E3, 20℃)   

 

Fig. ES11 Conceptual figures of microbial functional traits in soil at four elevations (E0 with 13°C, E1 

with 15°C, E2 with 17°C, E3 with 20°C). 

 

1.4.3.3 Temperature sensitivity of enzyme activities under steady-state and 

microbial activation mode 

The temperature sensitivity (Q10-Vmax) of β-glucosidase, chitinase, and leucine 

aminopeptidase decreased with historical warming (Fig. ES12), because of the 

microbial memory effect (thermal acclimation) (Bradford et al., 2008; Walker et al., 

2018), which could result from limitations by labile organic substrates (Davidson and 

Janssens, 2006). Eight years of accelerated C cycling substantially depleted the easily 

available C pool in the historically warmed soils. This was further proved by the 

lower content of native substrates for β-glucosidase, chitinase, and leucine 

aminopeptidase in the historically warmed compared with ambient soils (Fig. ES12). 

The low amount of available substrates precludes slow microbial metabolic activity, 

and thus many soil microorganisms shifted to dormancy (Lennon and Jones, 2011). 

Given that active microorganisms are more sensitive to the fluctuating environment 

(Blagodatskaya and Kuzyakov, 2013), and therefore showed a higher temperature 

sensitivity in the ambient soils compared with dormant microorganisms under 

long-term warming. 

After activating microorganism, we observed an increase both in all the tested enzyme 

activities and Q10-Vmax (Fig. ES12) compared with steady-state. Altered C availability 

in soil are well known to affect microbial physiological status (Cleveland et al., 2007). 

Stronger limitation by the labile native substrate in the historically warmed soil 

reduced metabolic activity, and thus caused a memory effect in response to further 
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short-term increasing temperature. In contrast, the surplus of glucose increased native 

labile substrates, induced microbial growth, as well as increased both enzyme activity 

and catalytic efficiency, as a consequence eliminated the microbial memory effect in 

the historically warmed soils. Thus, a sudden increase in C availability can induce a 

short-term fluctuation in community composition shifting the domination from 

slow-growing oligotrophic microorganisms (favored by low substrate availability) to 

temporal dominance of copiotrophic microorganisms (Cleveland et al., 2007). Shifts 

towards more active microorganisms at warmer temperatures combined with 

increasing labile C input (e.g., microbial activation) from enhanced vegetation 

productivity at higher mineralization rates can thus result in higher temperature 

sensitivity (Hartley et al., 2008). Therefore, the Q10-Vmax was higher in the historically 

warmed compared with ambient soils after substrate addition. However, due to the 

limited binding between enzymes and soil organics because of the increased 

absorption rate between organic-mineral surface with elevated incubation temperature 

(Wallenstein et al., 2011), the apparent increase of Q10-Vmax after microbial activation 

between historical warmed and ambient soil was only observed at low incubation 

temperatures. 

 

Fig. ES12 Temperature sensitivity of potential enzyme activities (Q10-Vmax) of β-glucosidase (a), 

chitinase (b), leucine aminopeptidase (c), and acid phosphomonoesterase (d) for soil incubated with 

temperature increasing from 5 to 25 °C at 5 °C increments. Soil was sampled after 8 years of field 

warming (at: ambient; +1.6 °C; and +3.2 °C).  
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1.5 Conclusions and outlook 

Based on 13C labeling, this thesis demonstrated for the first time that AMF symbiosis 

facilitate soil C sequestration by retaining more plant rhizodeposits in soil (net 

rhizodeposition) and by reducing SOM decomposition. The latter was demonstrated 

by restricted growth and activities of saprotrophic microorganisms due to the 

sufficient C and nutrient uptake by AMF. However, the AMF growth and C sink was 

dependent on N fertilization in agroecosystems. Although ECM also stimulated 

belowground C inputs which was similar with AMF, it boosted enzyme activities to 

degrade organic N pools to cover the nutrient demand of ECM. In contrast, NMRF 

showed a higher investment in enzymes involved in maintaining their C supply, thus 

boosting C cycling. When co-existence between ECM and NMRF, ECM could inhibit 

the growth of NMRF, thus suppressed SOM decomposition in forest soils. Therefore, 

we highlighted the effect of mycorrhization on rhizodeposition has important 

consequences for SOM decomposition, which is dependent on N fertilization and 

fungal competition for substrates. 

Besides rhizodeposits via mycorrhization pathway, temperature is a another crucial 

factor enhancing soil microbial activity and thus threatening SOM stability. However, 

we demonstrated that changes in SOM decomposition strongly depends on warming 

magnitudes. A low magnitude of temperature increase (< 2 °C) only altered microbial 

traits (i.e. microbial biomass), but neither enzyme functioning nor soil basic properties. 

However, a higher warming (2-4 °C) that beyond the Paris Climate Agreement aim 

was sufficient to activate microbial growth and turnover, enzyme production, thus 

accelerated SOM mineralization. Furthermore, increasing labile C input from 

enhanced vegetation productivity in the future warmer world would shift microbial 

physiological status, thus resulted in higher temperature sensitivity of enzyme 

activities, consequently enhancing SOM decomposition. These findings inferred that 

higher warming magnitude have a profound impact on global soil C cycling processes 

with implications of a positive feedback on atmospheric CO2 and exacerbate climate 

change. 

Given their multiple potential impacts on SOM formation, stabilization and 

decomposition, mycorrhization may be a factor contributing to the observed SOM 

stabilization and decomposition and furthermore, it may help explain the variation in 

responses of soil climate-C feedback. Given that climate warming may affect abiotic 

and biotic factors influencing mycorrhizal symbiosis directly and indirectly, whether 

this C sequestration via mycorrhization will persistent under climate warming, as well 

as whether it could act as a positive mitigation strategy buffer against the predicted 

increases in SOM decomposition in the future warmer world requires further research. 

Altogether, this indicates a clear need for further investigation of the 

warming-plant-mycorrhization-soil C link, for which empirical tests are lacking. 

Further, the Paris Climate Agreement is pursuing efforts to limit the increase in global 

temperature to below 2 °C above the pre-industrial level. However, there is increasing 

evidence that climate change will be faster than projected, indicating that soils face 

accelerating damage. Therefore, it is important to examine mycorrhizal abundance 
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under the 2 ℃ target and to evaluate what will happen if the soils bear greater 

warming. Filling up this critical knowledge gap will help predict the ecological 

consequences of changes in mycorrhizal abundance under global change scenarios. 
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Abstract 

Arbuscular mycorrhizal fungi (AMF) represent an important route for plant carbon (C) 

inputs into the soil. Nonetheless, the C input via AMF as well as its impact on soil 

organic matter (SOM) stabilization and C sequestration remains largely unknown. A 

mycorrhizal wild type progenitor (MYC) and its mycorrhiza defective mutant 

(reduced mycorrhizal colonization: rmc) of tomato were continuously labeled with 
13CO2 to trace root C inputs into the soil and quantify rhizosphere priming effects 

(RPE) as affected by AMF symbiosis and N fertilization. Mycorrhizal abundance and 
13C incorporation into shoots, roots, soil and CO2 were measured at 8, 12 and 16 

weeks after transplanting.  

AMF symbiosis decreased the relative C allocation (% of total assimilated C) to roots, 

in turn increased the net rhizodeposition. Positive RPE was recorded for both MYC 

and rmc plants, ranging from 16-71% and 25-101% of the unplanted control, 

respectively. Although net rhizodeposition was higher for MYC than rmc plants 16 

weeks after transplanting, the RPE was comparatively lower. This indicated a higher 

potential for C sequestration by plants colonized with AMF (MYC) because the 

reduced nutrient availability restricts the activity of free-living decomposers. 

Although N fertilization decreased the relative C allocation to roots, rhizosphere and 

bulk soil, it had no effect on the absolute amount of rhizodeposition to the soil. The 

RPE and N-cycling enzyme activities decreased by N fertilization 8 and 12 weeks 

after transplanting, suggesting a lower microbial N demand from SOM mining. The 

positive relationship between enzyme activities involved in C cycling, microbial 

biomass C and SOM decomposition underlines the microbial activation hypothesis, 

which explains the RPE. We therefore concluded that AMF symbiosis and N 

fertilization increase C sequestration in soil not only by increasing root C inputs, but 

also by lowering native SOM decomposition and RPE. 

 

Keywords: Arbuscular mycorrhizal fungi (AMF), Carbon balance, Continuous 

labeling, N fertilization, Rhizodeposition, Rhizosphere priming effect (RPE)  

 

1. Introduction 

Globally, soils store 500-3000 Pg carbon (C), more than the atmosphere and biosphere 

together (Todd-Brown et al., 2013; Wieder et al., 2013). The global C storage depends 

on the balance between newly formed soil organic matter (SOM) and C lost through 

the decomposition of old SOM (Song et al., 2018). About half of total plant 

assimilated C is translocated from above- to below-ground pools, either as root and 

shoot litter or as rhizodeposits released from living roots (Zang et al., 2019). The soil 

CO2 efflux is one of the largest fluxes in the global C cycle, with 50% controlled by 

plant-soil interactions (Hopkins et al., 2013).  

There is increasing evidence that a significant part of this C enters and leaves the soil 

through the mycorrhizal network (Finlay and Rosling, 2006; Finlay, 2008). 

https://link.springer.com/article/10.1007/s11104-009-9925-0#CR55
https://link.springer.com/article/10.1007/s11104-009-9925-0#CR54
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Arbuscular mycorrhizal fungi (AMF) are the dominant mycorrhizal type, forming 

symbiotic associations with about 71% of all flowering plants including many 

important crops such as wheat, barley, corn and soybean (Brundrett and Tedersoo, 

2019). Since the 1990s it has been recognized that AMF symbiosis often increase the 

allocation of photosynthates to both roots and AMF (Jakobsen and Rosendahl, 1990; 

Olsson et al., 2005; Drigo et al., 2010). In fact, C allocation to AMF ranges between 

5% and 25% of the available photoassimilates (Jakobsen and Rosendahl, 1990; 

Johnson et al., 2002; Konvalinková et al., 2017; Řezáčová et al., 2018). This 

contributes to microbial biomass build-up (Olsson and Johnson, 2005). Accordingly, 

AMF are important regulators of the C flux from above- to below-ground pools (Zhu 

and Miller, 2003). 

AMF symbiosis contributes to soil C flux by incorporating C into the intra- and 

extraradical mycelium (Leake et al., 2004), transporting and exuding C through the 

extraradical mycelium (Godbold et al., 2006), stabilizing the soil structure (e.g., 

aggregation) (Rillig, 2004), as well as by providing C to the microbial community 

(Jones et al., 2009). Furthermore, AMF can promote free-living microbial 

communities by releasing labile substrates via exudation and hyphal turnover, 

stimulating microbial growth (Toljander et al., 2007) and providing energy for 

enzyme production and SOM decomposition (Schmidt et al., 2011). The change of 

SOM decomposition in the presence of living roots is termed rhizosphere priming 

effect (RPE) (Kuzyakov, 2002; Cheng et al., 2014). Compared to root-free soil, the 

SOM decomposition with living roots can be altered by as much as -70% to 380% 

(Zhu and Cheng, 2011; Cheng et al., 2014). Although there is general consensus that 

roots stimulate microbial activity (Blagodatskaya et al., 2009; Kuzyakov and 

Blagodatskaya, 2015; Loeppmann et al., 2016a; 2018), it is unclear how interactions 

between roots, AMF and saprotrophic microorganisms alter the belowground C inputs 

and, therefore SOM decomposition, and consequently C storage (Fierer et al., 2009; 

Phillips, Brzostek and Midgley, 2013). Several studies have reported that AMF 

symbiosis can enhance litter decomposition and support plant N capture, assuming 

enhanced C-flow to microbial communities (Hodge et al., 2001; Cheng et al., 2012). 

On the contrary, AMF symbiosis did not accelerate (Nottingham et al., 2013; Shahzad 

et al., 2015) or inhibit litter decomposition (Leifheit et al., 2015). So far, the 

mechanisms underlying the effects of AMF symbiosis on SOM decomposition still 

remain unsolved (Carrillo et al., 2016; Paterson et al., 2016). This emphasis of the 

AMF on soil C storage and C balance remains an open question (Averill et al., 2014). 

Answering this question can help to better predict how AMF symbiosis will affect 

pools and fluxes of the C cycle when vascular plants become more abundant.  

Numerous studies have demonstrated that AMF are sensitive to N fertilization 

(Treseder, 2004; Reay et al., 2008; Lilleskov et al. 2011; Johnson et al., 2013; Mohan 

et al., 2014). Nitrogen fertilization can affect the allocation pattern of 

photosynthesized C in various belowground C pools (Kuzyakov, 2002; Zang et al., 

2017). The abundance of AMF (percentage of root length colonization) in general 

declines by 15% in ecosystems exposed to mineral N fertilization (Treseder, 2004), 

which may change the magnitude of C flow from plants to AMF and to soil C pools, 

subsequently altering the magnitude of RPE and soil C storage.  
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Here, we investigated the dynamics of C allocation and transformation in the 

plant-soil system as affected by AMF symbiosis and N fertilization based on 

continuous 13CO2 labeling of a mycorrhizal wild type progenitor (MYC) and its 

mycorrhizal defective mutant of tomato (rmc). Continuous 13CO2 labeling was 

conducted to trace plant C inputs into the soil to quantify RPE by partitioning soil 

CO2 efflux into root-derived and soil-derived CO2. The objectives of this study were 

to 1) assess the effect of AMF symbiosis on C allocation within the plant-soil system 

depending on N fertilization; 2) quantify C inputs by AMF symbiosis into the soil; 3) 

estimate the soil C balance and RPE induced by AMF symbiosis and N fertilization.  

 

2. Materials and Methods 

2.1 Soil origin and plant growth 

Soil samples were collected from the Ap horizon (0-20 cm) of an experimental field at 

the Reinshof Research Station of the Georg-August University of Göttingen, 

Germany (28°33 2́6´́N, 113°20 8́´́E). The soil was air-dried and sieved (< 2 mm) to 

achieve a high degree of homogeneity and reduce the variability among replicates. 

Fine roots and visible plant residues were carefully removed manually. The soil 

contained 1.3% total C, 0.14% total N, had a pH of 6.8, and a δ13C-value of organic C 

of -25.78‰, δ15N-value of total N of 5.69‰, and a bulk density of 1.30 g cm-3. 

Two tomato genotypes (Lycopersicon esculentum L.) were grown in this experiment: 

1) mutant tomato with highly reduced AMF symbiosis, termed rmc (reduced 

mycorrhizal colonization), and 2) a closely related wild type hereafter termed MYC 

(Barker et al., 1998). The growth of the two genotypes is very similar under a range of 

circumstances, including non-mycorrhizal conditions, suggesting that the mutation 

affecting colonization of rmc has no pleiotropic effects on other plant processes 

(Cavagnaro et al., 2004). The use of genotypes enabled studying the impacts of AMF 

symbiosis on C allocation and RPE, without soil sterilization to establish a 

non-mycorrhizal control, thereby maintaining an intact soil microbial community. 

Both tomato types were grown with and without N fertilization (e.g. MYC-N, 

MYC+N, rmc-N, and rmc+N). In addition, unplanted pots with and without N 

fertilization (unplanted-N; unplanted+N) were prepared as controls. Each treatment 

was replicated 12 times, yielding a total of 72 pots, of which 4 replicates per treatment 

were harvested at each of the three harvests (8, 12, and 16 weeks after transplanting). 

N-treatments received 344 mg N per pot (60% of N from NH4
+ and 40% of NO3

-), 

equivalent to a rate of 150 kg N ha-1.  

PVC pots (7.5 cm diameter, 21 cm height), equipped with an inlet tube at the bottom 

and outlet tube at the top, were filled with 1 kg air-dried, sieved soil. To potentially 

improve AMF colonization, the soil was inoculated with Rhizophagus irregularis by 

mixing 1 kg soil with 500 mg of microgranulate (100 spores g-1 microgranulate) 

(BIOFA AG, Münsingen, Germany). The soil was kept at 20% gravimetric soil 

moisture content (equivalent of 60% of the water holding capacity) with deionized 

water. After pre-incubation at room temperature for two weeks, the seedlings in pots 

were moved to a growth chamber (day time of 14 h and 25 oC; night time of 10 h and 
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15 oC). The relative humidity was 40% and plants received artificial light with 800 

μmol m-2 s-1 photosynthetic active radiation (PAR). The locations of the pots in the 

growth chamber were changed weekly by mixing them randomly to guarantee similar 

growing conditions for the plants. The soil water content of all pots was maintained at 

60% water holding capacity by deionized water addition (every 1-3 days). 

 

2.2 Set-up of 13CO2 continuous labeling of plants 

The growth chamber was equipped with a continuous 13CO2 labeling system. Briefly, 

the 13CO2 used in the experiment was generated through the reaction of Na2
13CO3 (2.9 

atom% 13C, 0.5 mol L-1) and excess of lactic acid outside of the chamber. The tracer 

solution was prepared by mixing 1g of 99 atom% 13C enriched Na2CO3 (Cambridge 

Isotope Laboratories, Tewksbury, MA, USA) with 52 g of unlabeled Na2CO3 in 1 L of 

deionized water. The concentration was continuously monitored by an infrared gas 

analyzer (LI-830, LI-COR, USA) and ranged from 350 to 700 ppm. Lactic acid was 

added to the tracer solution when the CO2 concentration inside the chamber dropped 

below 350 ppm. Chamber CO2 was sampled periodically in order to validate its 13C 

enrichment (mean δ13C value was slightly fluctuating at 700‰). The plants were 

labeled from the emergence of the first leaf until harvest. They were watered during 

the dark period to avoid assimilation of unlabeled CO2. After closing the chamber, the 

chamber air was pumped through external 50-L tight soda lime to remove unlabeled 

CO2 and was then flushed with 13C-enriched CO2 before the light switched on and 

plants started photosynthesis.   

 

2.3 Measurements 

2.3.1 Soil CO2 efflux 

The soil CO2 efflux and the δ13C–signature of soil CO2 efflux were measured 3 times 

during the continuous labeling experiment (8, 12 and 16 weeks after transplanting) 

using a closed-circulation CO2 trapping system (Cheng et al., 2003; Pausch et al., 

2013; 2016). Briefly, a Plexiglas lid was placed on the soil surface, containing a hole 

for the tomato shoots. Each pot was the sealed with nontoxic silicon (Wasserfuhr 

GmbH) at the base of the plant to avoid any leakage. Prior to CO2 trapping, CO2 

inside each pot was removed by circulating the isolated air through 1 M NaOH for 1 h. 

Afterwards, CO2 produced during a 48-h period in each sealed pot was trapped in 100 

ml of 1 M NaOH solution by periodic air circulation for 1 h at a 6-h interval. Blanks 

were included (empty, sealed pot) and treated in the same way to correct inorganic C 

for handling errors. An aliquot of each NaOH solution was measured by titration of 

0.25 ml with 0.01 M HCl against phenolphthalein after addition of 0.5 M BaCl2. 

Another aliquot was precipitated as SrCO3, washed several times with deionized 

water to reduce the pH to 7.0 (Blagodatskaya et al., 2011). After drying at 60 oC for 3 

days the δ13C of the SrCO3 was analyzed at the Center for Stable Isotope Research 

and Analysis (KOSI) of the University of Goettingen with an Elemental Analyzer (EA, 

Eurovector) coupled to an IRMS (Delta Plus XL IRMS, Thermo Finnigan MAT, 

Bremen, Germany).  

 

2.3.2 Plant and soil sampling 
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Plants and soil were sampled immediately after each CO2 trapping. Shoots were cut at 

the base, and roots were pulled out of the pot. The main root system was manually 

removed with tweezers for root biomass and colonization analyses. The rhizosphere 

soil was collected by quickly shaking off soil adhered to the main roots and passing it 

through a 2-mm sieve to remove broken root fragments. In addition, roots were 

picked from the subsample to upscale root dry weight to the total soil per pot. Fine 

root subsamples (~ 1 g fresh fine roots) were randomly picked and cut into 1 cm 

length to measure AMF colonization. A representative homogenized soil subsample of 

each pot was stored at 4 oC to determine microbial biomass C, mineral N (NH4
+ and 

NO3
-), available P, neutral lipid fatty acid (NLFA) 16:1ω5c, and enzyme activities.  

Roots, shoots and soil samples were dried at 60 oC for 3 days and, after weighing the 

dry biomass, the samples were homogenized in a ball mill and analyzed for δ13C and 

C content, as well as for N content by EA-IRMS (see above). To determine the soil 

water content, 10 g fresh soil were dried at 105 oC for 1 day. 

 

2.3.3 AMF abundance assessment 

Roots were washed with distilled water, cleared in 10 % KOH (60 oC, 40 min), 

acidified with 1% HCl (20 oC, 5 min), stained with ink in lactoglycerol (60 °C, 20 min) 

and destained in lactoglycerol. All stained roots were arranged lengthwise in 

lactoglycerol on slides and mounted under a light microscope (100×) (Axionplan, 

Zeiss, Germany). The magnified intersection method described by McGonigle et al. 

(1990), was used to determine the percentage of root length colonization by AMF. 

In addition to root staining, the neutral lipid fatty acid (NLFA) 16:1ω5c was measured 

as a biomarker for extraradical AMF biomass in the soil (Olsson, 1999), following the 

protocol described by Frostegard et al. (1991). Briefly, lipids were extracted from 6 g 

soil in a one-phase mixture of chloroform, methanol and 0.15 M citric acid (1:2:0.8, 

v/v/v, pH 4.0). The lipids were fractionated into neutral lipids with activated Silica gel 

(Silica gel Merck, particle size 0.063-0.200 mm) by eluted with 10 mL chloroform. 

The fatty acid residues in neutral lipids was transformed into free fatty acid methyl 

esters and analyzed by a Hewlett Packard 5890 gas chromatograph. 

 

2.3.4 Microbial biomass C 

Soil microbial biomass C (MBC) was determined by the chloroform fumigation 

extraction method (Vance et al., 1987) with modification. After destructive sampling, 

the soil was carefully mixed and 8 g soil was directly extracted for 1 h using 32 ml of 

0.05 M K2SO4. Another 8 g soil was fumigated with chloroform for 24 h and 

extracted in the same manner. The samples were filtered and the extracts were frozen 

until analysis. Total C concentration was measured using a 2100 TOC/TIC analyzer 

(Analytik Jena, Germany).  

MBC was calculated by dividing the difference between extracted C from fumigated 

and non-fumigated soil samples with a kEC factor of 0.45 (Wu et al. 1990). After 

freeze-drying (Beta 1–8 LSCplus, Martin Christ Gefriertrocknungsanlagen GmbH, 

Harz, Germany), the δ13C of MBC was analyzed by an elemental analyzer 

(Eurovector) coupled to an IRMS (Delta Plus XL IRMS, Thermo Finnigan MAT, 
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Bremen, Germany) at the Center for Stable Isotope Research and Analysis (KOSI) 

located at the Georg-August University of Göttingen.  

  

2.3.5 Enzyme kinetics 

Enzyme activities were measured using the method described by Marx et al. (2001). 

Fluorogenic methylumbelliferone (MU)-based artificial substrates were used to 

estimate the activities of β-1, 4-glucosidase (BG) (EC 2.2.1.21), cellobiohydrolase 

(CBH) (EC 3.2.1.91), xylanase (XYL) (EC 3.2.2.27), β-1, 4-N-acetylglucosaminidase 

(NAG) (EC 3.2.1.52), leucine aminopeptidase (LAP) (EC 3.4.11.1) and acid 

phosphatase (ACP) (EC 3.1.3.2) (Sinsabaugh and Follstad 2012). Briefly, 1g soil (dry 

weight equivalent) was suspended in 50 mL sterile water by shaking for 30 min and 

then dispersing with an ultrasonic disaggregator for 2 min using low-energy 

sonication (50 Js-1) (Loeppmann et al., 2016a). 50 mL of the soil suspension was 

pipetted into 96-well black microplates (Puregrade, Germany) while stirring the soil 

suspension to ensure uniformity. Afterwards, 50 μL of buffer (MES, pH 6.5 or 

TRIZMA, pH 7.8) and 100 μL of the corresponding substrates at concentrations of 20, 

40, 60, 80, 100, 200 and 300 μmol L-1 were added. Immediately after substrate 

addition, the microplates were measured fluorometrically (excitation wavelength 360 

nm; emission 450 nm) at 0, 60 and 120 min with an automated fluorometric 

plate-reader (Victor3 1420 050 Multi-label Counter, PerkinElmer, USA). 

To calculate the potential enzyme activity (V), we used the Michaelis-Menten 

equation for enzyme kinetics (Marx et al. 2001): 

 

V = (Vmax×[S]) / (Km + [S])                                            (1) 

 

where Vmax is the maximal enzyme activity; Km (Michaelis constant) is the substrate 

concentration at which Vmax is half; and [S] is the substrate concentration. 

 

2.3.6 Soil N and P analysis 

Soil mineral N (Nmin: NO3
- + NH4

+) was extracted from 5 g fresh soil with 10 ml of 2 

M KCl solution. Samples were shaken for 2 h, filtered, and the extracts were analyzed 

for NO3
- and NH4

+ based on absorbance measurements (Mulvaney et al., 1996). 

Soil inorganic P was extracted from 1 g fresh soil with 30 ml of 0.5 M NaHCO3 (pH 

8.5) in a 50 ml Falcon tube. Samples were shaken for 16 h, centrifuged and filtered. 

The P concentration in the extracts of the samples and standards were determined by 

the malachite green colorimetric method (Yevdokimov et al., 2016). 

 

2.4 Calculations 
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2.4.1 13C isotopic composition of MBC/ metabolic quotient 

The 13C isotopic composition of the microbial biomass C (δ13CMBC) was determined 

by a mass balance equation: 

 

δ13CMBC= (δ13Cf × Cf - δ
13Cuf × Cuf ) / (Cf - Cuf)                           (2)                                                                 

 

where δ13Cf and Cf are the δ13C values and amount of C in fumigated samples and 

δ13Cuf and Cuf are the δ13C values and amount of C in non-fumigated samples, 

respectively. 

Based on the continuous 13C labelling method, we calculated the metabolic quotient 

(qCO2) by obtaining the rate of soil-derived CO2 production per unit of soil-derived 

microbial C and unit of time. 

 

2.4.2 Contribution of root-derived and soil-derived C to rhizosphere and bulk soil, 

CO2 and MBC 

The contributions of soil-derived (%soil-C) and root-derived C (%root-C) to 

rhizosphere soil (RS), bulk soil (BS), MBC and soil CO2 were calculated using linear 

two-source mixing models (Kuzyakov and Bol, 2006): 

%Soil-Ct= (δ13Ct - δ
13Croot) / (δ

13Csoil - δ
13Croot)                           (3)                                                            

%Root-Ct= 100 - %Soil-Ct                                                               (4)                                                                          

where δ13Ct represents the C isotopic ratio of rhizosphere soil, bulk soil, soil CO2 

efflux, or MBC. δ13Croot is the C isotopic ratio of the respective root and δ13Csoil is the 

mean C isotopic ratio of the respective pool/flux in the unplanted control.  

To calculate absolute soil- and root-derived CO2 fluxes, the percentage was multiplied 

with the total C in the efflux.  

 

2.4.3 Rhizosphere priming effect 

The rhizosphere priming effect (RPE, mg C kg-1 soil day-1) on SOM decomposition 

was calculated as the difference in absolute soil-derived CO2 between planted and 

unplanted soils. The calculations were done separately for soils with and without N 

fertilization. 

[RPE]fertilized = [Csoil-planted]fertilized - [Csoil-control]fertilized                         (5)                                     

[RPE]unfertilized = [Csoil-planted]unfertilized - [Csoil-control]unfertilized                     (6)                                 

where [Csoil-planted]fertilized and [Csoil-planted]unfertilized (mg C kg-1 soil day-1) were CO2 

emitted by bare control soil with and without N fertilization, respectively.  

 

2.5 Statistical analysis 

The experiment was carried out with 4 replicates of each treatment harvested at each 

of the 3 time points. The values presented in the figures are given as means ± standard 

error (mean ± SE). AMF colonization was analyzed using a generalized linear model 

(GLM) following a binomial distribution in R studio (v 3.4.1). Prior to analysis of 

variance (ANOVA), where data from each sampling time were analyzed separately, 

the data sets have been tested for normality and homogeneity of variance by 

Shapiro-Wilk (P > 0.05) and Levene-test (P > 0.05), respectively. Any data that were 

not fit for normal distribution were log transformed. A two-way ANOVA was used to 
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assess the effects of tomato genotypes and N fertilization, as well as their interaction 

for all measured parameters separately for each sampling time. Significant (P < 0.05) 

differences between means were identified using the post hoc Tukey HSD test. 

Residuals were checked for a normal distribution using the Shapiro-Wilk test. All 

ANOVA analyses were performed using SPSS version 19.0 (SPSS Inc., USA).  

 

3. Results 

3.1 Plant biomass and isotope enrichment 

Plant growth was unaffected by AMF colonization; both genotypes had similar shoot 

and root biomass, especially in the unfertilized soil (Fig. 1). N fertilization suppressed 

root biomass at early stages (e.g., 8 and 12 weeks after transplanting) (Fig. 1, P < 0.05) 

and increased shoot biomass 12 and 16 weeks after transplanting by 33-68% (Fig. 1, P 

< 0.01). The C/N ratio of shoot and root was not affected by AMF colonization, 

indicating stable steady-state plant nutrition. However, N fertilization decreased the 

C/N ratio of shoot and roots, except at the last sampling (Table. S1, S2, P < 0.05).  

The plants were successfully labeled with 13CO2 (Table. S1). The δ 13C values ranged 

from 638‰ to 698‰ in shoots and from 604‰ to 680‰ in roots.  

 

 

Fig. 1 Shoot and root biomass of mycorrhizal wild type (MYC) and mutant (rmc) tomato with 

reduced mycorrhizal colonization with and without N fertilization over a 16 weeks plants  ́growth 

period. Values shown are presented as means (n=4) ± standard error (SE). P values were 

calculated by using a two-way ANOVA for each sampling time (e.g. 8, 12, 16 weeks after 

transplanting). N reflects the N fertilization. Fertilization: with and without N; Genotype: MYC 

and rmc. 
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3.2 Abundance of arbuscular mycorrhizal fungi  

The AMF colonization for MYC and rmc tomato roots was similar and less than 1% 

of root length (data not shown) at 8 weeks after transplanting. However, the root 

lengths colonized by AMF for MYC plants were 21-37% and 34-58% at 12 and 16 

weeks, respectively (P < 0.001). Only 2.5% and 7% of rmc root length were 

colonized at 12 and 16 weeks, respectively. N fertilization strongly decreased AMF 

colonization of MYC plants by 69% after 12 weeks and by 66% after 16 weeks 

following transplanting. 

 

 

Fig. 2 Neutral lipid fatty acid (NLFA) 16:1ω5c of mycorrhizal wild type (MYC) and mutant (rmc) 

tomato with reduced mycorrhizal colonization with and without N fertilization across 16 weeks of 

plant growth. Values shown are means (n=4) ± standard error (SE). P values were calculated by 

using a two-way ANOVA for each sampling time (e.g. 8, 12, 16 weeks after transplanting). N 

reflects the N fertilization. Fertilization: with and without N; Genotype: MYC and rmc. 

 

Eight weeks after transplanting, the neutral lipid fatty acid (NLFA) 16:1ω5c in soil 

under MYC plants accounted 2.2 µg g-1, reflecting 1-fold higher values than that in 

soil under rmc plants (1.15 µg g-1) (Fig. 2, P < 0.05). At later growth stages (12 and 

16 weeks after transplanting), the amount of NLFA 16:1ω5c was 11-39 times higher 

in soil under MYC than under rmc plants (Fig. 2; P < 0.05). N fertilization showed a 

negative effect on NLFA 16:1ω5c in the soil under MYC plants (P < 0.05), whereas 

there was no significant difference in soil under rmc plants.  

 

3.3 Soil mineral N and available P  

Mineral N was reduced by 90% in planted versus unplanted soil over the 16 weeks of 

plant growth. Not expected was the lower NH4
+ concentration in soil under MYC than 

that for rmc plants at 16 weeks (Fig. S1a, P < 0.05). N fertilization significantly 

increased the soil NO3
- concentration solely 8 weeks after transplanting (Fig. S1b, P < 

0.001).  

Planting decreased soil-available P throughout the experiment (Fig. S1c). Soil 
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available P was 25% lower in soil planted with MYC than for rmc plants at the latest 

sampling date (P < 0.01). Here, N fertilization did not change the available P 

concentrations during the plant growth period. 

 

3.4 Carbon input into the soil 

Eight weeks after transplanting, root-derived C in the rhizosphere soil was 1.7 to 2.3 

times higher in unfertilized versus fertilized soil (Fig. 3a, P < 0.001). At later growth 

stages, there was no significant effect of fertilization on rhizodeposition for rmc plants. 

The net rhizodeposition of MYC plants, however, decreased by 21% and 75% in the 

fertilized compared with unfertilized soil at 12 and 16 weeks, respectively. At 12 and 

16 weeks, the symbiosis with AMF (MYC plants) increased the amount of assimilated 

C remaining in the bulk soil (Fig. 3b, P < 0.05).  

 

Fig. 3 Rhizodeposition remaining in rhizosphere (a) and bulk soil (b) at harvest (net 

rhizodeposition) of mycorrhizal wild type (MYC) and mutant (rmc) tomato with reduced 

mycorrhizal colonization with and without N fertilization over a 16 weeks growth period. Values 

shown are means ± standard error (SE) (n=4). P values were calculated from two-way ANOVA for 

each sampling (e.g. 8, 12, 16 weeks after transplanting). Fertilization: with and without N; 

Genotype: MYC and rmc. Net rhizodeposition means the total amount of 13C remaining in soil at 

the time of harvest. 

 

The ratio of net rhizodeposition in the soil (rhizosphere + bulk) to roots was higher for 

MYC (0.23-0.37) than for rmc plants (0.27-0.34) after 12 and 16 weeks (Fig. S2a, P < 

0.05). N fertilization increased the ratio of net rhizodeposition-to-roots by 1.0 and 0.5 

times compared to unfertilized soil at 8 and 12 weeks, respectively (P < 0.01). 

Overall, MYC plants had 33% higher net rhizodeposition than rmc plants in the soil 

(rhizosphere + bulk) without fertilization at 16 weeks despite similar root biomass 

(Fig. 1, 3).  

 

3.5 Carbon output from the soil 

Total soil CO2 efflux was influenced by the presence of plants, genotype and N 

fertilization. Planting increased total CO2 efflux by 25-150% during the growth period, 

while N fertilization decreased the total CO2 efflux by 6-22%. Moreover, the CO2 

efflux was not affected by plant genotypes at early growth stages (e.g., 8 and 12 

weeks) whereas lower efflux in MYC compared with rmc plants was observed at 16 
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weeks (Fig. 4, P < 0.001).  

Similarly, soil-derived CO2 was unaffected by plant genotypes at 8 and 12 weeks, 

although that of MYC (~ 25 mg C kg-1 day-1) was lower than rmc plants (~ 32 mg C 

kg-1 day-1) (Fig. 4a, P < 0.01). In the planted pots, N fertilization decreased 

soil-derived CO2 by 17-37%, 2-26% and 17-31% compared to unfertilized plants at 8, 

12 and 16 weeks, respectively (Fig. 4a, P < 0.05).  

Root-derived CO2 decreased by 34-65% for MYC compared to rmc plants within 16 

weeks (Fig. 4b, P < 0.05). Root-derived CO2 of N-fertilized soil was 56-61% and 

10-52% higher than that from unfertilized soil 8 and 16 weeks after transplanting, 

respectively, but it was similar between N-fertilized and unfertilized soil at 12 weeks 

(Fig. 4b).  

 

3.6 Rhizosphere priming effect 

Plants induced positive RPE regardless of plant genotypes (MYC and rmc), N 

fertilization and plant growth stages. RPE did not differ between MYC and rmc plants 

at 8 weeks. At 12 weeks, however, RPE was 54% higher for MYC than for rmc plants 

without fertilization (P < 0.05). The patterns changed at 16 weeks, where the rmc 

showed a significantly higher RPE than the MYC genotype with AMF colonization 

(Fig. 4c, P < 0.01). The RPE increased by 16-23% for MYC plants compared to the 

unplanted soil. The greatest positive RPE (44-60%) was measured for rmc plants 

with reduced AMF colonization. This was obviously accompanied with N fertilization, 

which reduced the RPE, especially at earlier plant growth stages (e.g., 8 and 12 weeks) 

(Fig. 4c, P < 0.05). 
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Fig. 4 Soil-derived (a), root-derived CO2 (b), and rhizosphere priming effect (RPE) (c) of 

mycorrhizal wild type (MYC) and mutant (rmc) tomato with reduced mycorrhizal colonization 

with and without N fertilization over a 16 weeks growth period. Values shown are means (n=4) ± 

standard error (SE). P values were calculated by two-way ANOVA for each sampling (e.g. 8, 12, 

16 weeks after transplanting). Fertilization: with and without N; Genotype: MYC and rmc. 

 

3.7 Microbial metabolic quotient 

The rate of soil-derived CO2 production per unit of soil-derived MBC and unit of time 

(qCO2) was 28% higher in MYC than in rmc soil 12 weeks after transplanting. At 16 

weeks, a 36-44% reduction was recorded for MYC plants (Fig. S2b, P < 0.01). qCO2 

declined (~45%) with N fertilization at 8 weeks (Fig. S2b, P < 0.05), then the negative 

effect diminished in the later periods.  
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Fig. 5 Potential enzyme activities (Vmax; nmol g-1 soil h-1) of BG (β-1, 4-glucosidase, a), CBH 

(Cellobiohy-drolase, b), XYL (xylanase, c), NAG (β-1, 4-N-acetyglucosaminidase, d), LAP 

(leucine aminopeptidase, e), ACP (acid phosphatase, f) of mycorrhizal wild type (MYC) and 

mutant (rmc) tomato with reduced mycorrhizal colonization with and without N fertilization over 

a 16 weeks growth period. Values shown are means (n=4) ± standard error (SE). P values were 

calculated  by using a two-way ANOVA for each sampling time (e.g. 8, 12, 16 weeks after 

transplanting). Fertilization: with and without N; Genotype: MYC and rmc. 

 

3.8 Enzyme activities 

The potential activities of BG, XYL, CBH, NAG, LAP and ACP increased by 

planting (except at 16 weeks) (Fig. 5), reflecting plants as a meaningful additional 

source of enzyme production. This points to strong rhizosphere activity for balanced 

nutrient cycling. Similar BG, XYL and LAP activities were observed between plant 

genotypes during the growth period. The potential activity of ACP for MYC versus 

rmc plants was 20-26% and 34-39% higher at 12 and 16 weeks, respectively (Fig. 5f, 

P < 0.05). All the tested enzyme activities decreased after N fertilization at earlier 

plant growth stages (P < 0.05).  

 

4. Discussion 

4.1 Belowground plant carbon inputs 

4.1.1 Effect of arbuscular mycorrhizal fungi on belowground plant C inputs  
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The response of plant biomass to AMF symbiosis was neutral or even negative in this 

study (Fig. 1). The stimulation of plant growth through mutualistic interaction with 

AMF is controlled by the balance between C costs and nutritional benefits, and hence, 

depends on climatic and edaphic conditions (Friede et al., 2016). In our study, the C 

cost for construction and maintaining the AMF association possibly exceeded the 

mycorrhizal growth benefits of enhanced nutrient acquisition as reported earlier 

(Jakobsen et al., 2016; Konvalinková et al., 2017). It has to be considered, that the 

plants were grown in pots, which may have increased the C cost compared to field 

trials due to nutrient constraints. The literature has also revealed that arbuscular 

mycorrhizal associations comprise a broad spectrum of plant growth responses, with 

positive (mutualism), neutral (commensalism), or even negative (parasitism) effects 

(Johnson et al., 1997; Klironomos, 2003; Friede et al., 2016).  

The C allocation into belowground pools under MYC (42-46% of total belowground 

C) was higher than that under rmc plants (33-34%) during the 16 weeks of plant 

growth. This is in accordance with a study from Kong and Fridley (2019) who 

reported mutualistic microbes reduced the allocation of C to root mass but increased 

C allocation to soil. Higher C inputs under plants with AMF are explained by higher 

amounts of assimilates allocated to the development of extraradical mycelium and 

spores (Fig. 2; Olsson and Johnson, 2005), and by the extremely long residence time 

of glomalin-related soil protein released from AMF (Rillig, 2004). Importantly, net 

rhizodeposition in the current experiment also includes AMF hyphae and their 

exudation. The symbiotic AMF interactions are known to transfer C away from the 

rhizosphere to the bulk soil (less microbial activity) (Zhu and Miller, 2003; Herman et 

al., 2012; Hafner et al., 2014), and thus to facilitate C sequestration. In summary, the 

AMF symbiosis increased net rhizodeposition in the rhizosphere and the bulk soil, 

due to the important pathway of C inputs through AMF hyphae, an interpretation 

supported by the higher net rhizodeposition per unit of root biomass under MYC 

plants.  

 

4.1.2 Effect of N fertilization on plant C inputs and allocation 

N fertilization increased aboveground biomass and decreased root biomass, especially 

during the earlier growth periods (e.g., 8 and 12 weeks; Fig. 1), reflecting less of 

plants  ́ C was used to built-up root structure. Compared to fertilized plants, 

unfertilized plants generally allocated relatively more C into the belowground: roots 

as well as rhizosphere and bulk soil (Fig. S3). This result is consistent with the 

negative correlation between N fertilization and the allocation of newly 

plant-assimilated C to belowground pools and fluxes (Kuzyakov, 2001; Pausch and 

Kuzyakov, 2018). The higher belowground C inputs without fertilization reflected 

predominant responses on a stimulated root biomass production under N-deficiency, 

implying optimal partitioning of resources between shoots and roots (Farrar and Jones, 

2000). Maintaining high microbial activity in unfertilized soil (e.g., enzyme activity, 

Fig. 4) requires more available C and energy input by roots into the soil for microbial 

mineralization of SOM and nutrient mining to meet the nutrient demand of the plants 

(Phillips et al., 2011).  

N fertilization enhanced the net rhizodeposition per unit of root biomass (Fig. S2a), 

boosting plants  ́C for N and P trading potential. At the same time, however, less root 
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biomass and promoted mineralization of newly rhizodeposited C by N inputs (Zang et 

al., 2019) led to similar absolute amounts of net C remaining in the soil irrespective of 

N fertilization (Fig. 3). The fast turnover of rhizodeposits under N fertilization is 

connected with the stimulation of enzymes to degrade labile C (i.e. rhizodeposited C) 

(Loeppmann et al., 2016b) and with the inhibition of enzyme activities for the 

decomposition of more recalcitrant SOM (Fig. 6; Dijkstra et al., 2013; Zang et al., 

2017). This resulted in a lower SOM decomposition but higher root and 

rhizomicrobial CO2 emissions (Fig. 4). Therefore, the overall effect of N fertilization 

on net rhizodeposition is difficult to predict due to the complex processes affected by 

N availability, including belowground C allocation, turnover and stabilization.   

 

4.1.3 The interactive effects of arbuscular mycorrhizal fungi and N fertilization on 

plant C allocation and belowground C inputs  

We recorded a reduced C flow to the belowground pools and less AMF abundance 

(NLFA 16:1ω5c), as well as mycorrhizal colonization of roots for MYC plants with N 

fertilization (Fig. 2; Fig. S3; Table. S1). The difference in net rhizodeposition of MYC 

and rmc plants was smaller in fertilized than in unfertilized soil (Fig. 3), suggesting 

that the balance between plant and AMF symbiosis largely depends on soil nutrient 

availability. Firstly, plants invested relatively more resources to aboveground biomass 

under N fertilization. This resulted in reduced relative belowground C inputs (Fig. S3) 

and less C allocation to the symbiotic fungi, as indicated by lower AMF colonization 

and NLFA 16:1ω5c (Fig. 2; Table. S1). This confirms the proposed assumption that 

plants prefer to allocate more C to their symbionts in order to be able to trade for 

nutrients under scarcity conditions (Schleuss et al., 2015). Secondly, N fertilization 

reduced the C availability to the AMF symbiosis (Olsson et al. 2005) due to the 

decrease of root biomass (Fig. 1). Thirdly, high soil N availability stimulated plant 

growth (higher aboveground biomass) and thus increased the competition for essential 

resources between roots, including AMF and neighboring microorganisms (Kuzyakov 

and Xu, 2013; Konvalinková et al., 2017). This, in turn, may have reduced the 

development of AMF. Accordingly, AMF growth and their C sink strength are reduced 

by N fertilization. 

 

4.2 Rhizosphere priming effect on soil organic matter decomposition 

RPE was consistently positive (16-101%) during the 16 weeks of plant growth (Fig. 

4c). We explain this by the “microbial activation hypothesis”. It assumes that the 

activity and growth of microorganisms are enhanced through metabolizing labile 

substrates (e.g., root exudates), leading to an accelerated SOM turnover (Kuzyakov, 

2002; Cheng and Kuzyakov, 2005). This was supported by the positive correlation 

between MBC and SOM decomposition (Fig. S4a, P < 0.001), and between BG, XYL, 

CBH, NAG and LAP activities and SOM decomposition (Fig. S4b, c, d, e, f, P < 0.05). 

The positive correlation suggests that rhizodeposit-induced microbial enzyme 

production as an important mechanism for RPE (Phillips et al., 2011; Blagodatskaya 

et al., 2014).  
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The intensity of RPE on SOM decomposition decreased by two thirds in fertilized 

versus unfertilized pots at earlier stages (e.g., 8 and 12 weeks), but did not differ at 16 

weeks (Fig. 4c). Microorganisms accelerated SOM mineralization for nutrients under 

N-deficiency to meet their stoichiometric ratios (Dijkstra et al., 2013; Kirkby et al., 

2013) and here, consequently induced positive RPE. By contrast, soil microorganisms 

could have down-regulated the synthesis of enzymes in response to higher N supply 

(Fig. 5), leading to a suppressed RPE (Craine et al., 2007; Phillips et al., 2011). The N 

reduced SOM decomposition and corresponded with decreased C-related enzyme 

activities (Fig. 5a, b, c). This suggests that N fertilization increased available plant C 

sources to support surrounding microbes, thus reducing the production of 

carbohydrate hydrolase (Chen et al., 2014). The higher C/N ratio of unfertilized roots 

(Table. S1) reflects a large N demand, yielding a higher RPE (Pausch et al., 2016). 

Additionally, the decreased RPE after N fertilization could reflect microbial 

preferential utilization of root-released labile C stimulated by fertilization (Zang et al., 

2017). This was also supported by the increased root-derived CO2 in the rhizosphere 

(Fig. 4b) under fertilization, especially in the earlier growth periods. Accordingly, N 

fertilization suppressed RPE due to the reduced nutrient demand of soil microbes and 

to their preferential utilization of root-released C.  

At the end of the experiment, more root-derived C was retained in soil under MYC 

versus rmc plants, reflecting the increased C use efficiency as supported by the 

decreased qCO2 (Fig. S2b). The lower rhizosphere respiration of MYC plants (16 

weeks after transplanting) represented less readily available plant-derived C (Fig. 4b), 

which further decreased the activated microorganisms and thus the demand for 

nutrients from SOM mining (Fontaine et al., 2011). Moreover, AMF symbiosis is 

known to increase the abundance of large macroaggregates by temporary binding 

agents, such as glomalin-related soil protein (Rillig, 2004; Rillig and Mummey, 2006), 

enabling physically protected rhizodeposited-C against microbial degradation. 

Therefore, a weaker positive RPE was revealed in soil planted with MYC compared 

with rmc 16 weeks after transplanting.  

Although AMF probably cannot decompose SOM directly, due to a lack of 

saprotrophic capacity (Read and Perez-Moreno, 2003), they may still be involved in 

decomposition processes. These include the stimulation or the inhibition of 

saprotrophic fungal activity via the release of labile C by AMF, or by affecting the 

competition for nutrients between AMF and saprotrophs (Talbot et al., 2008). In the 

current study, the higher NLFA 16:1ω5c is associated with higher external hyphae 

production in soil planted with MYC (Fig. 2). These hyphae actively scavenge soil for 

nutrients, making them highly efficient for nutrient uptake (Verbruggen et al., 2016). 

This is indicated by both, the reduced NH4
+ and available P content in soil under 

MYC plants (Fig. S1), as well as by the slightly higher C/N of soil under MYC versus 

rmc plants (Table. S1, 2). The reduced N and P availability further imposed nutrient 



Manuscript 

 52 

limitation for free-living decomposers and reduced their activities in bulk soil 

(Nottingham et al., 2013; Brzostek et al., 2015). In turn, this process contributed to 

soil C build-up in the respective areas. AMF are less limited by C than saprotrophic 

fungi due to direct C allocation from the plant hosts (Drigo et al., 2010). Thus, AMF 

may produce secondary metabolites that are antagonistic against free-living 

saprotrophic fungi, retarding saprotrophic activity (Keller et al., 2005; Fernandez and 

Kennedy, 2016). The efficient substrate uptake of nutrients by AMF may have 

restricted the activity and nutrient use of free-living decomposers. This is the most 

plausible mechanism for increased C retention by AMF symbiosis.  

 

5. Conclusions 

Plants  ́symbiosis with arbuscular mycorrhizal fungi (AMF) (MYC plants) decreased 

the relative carbon (C) allocation to roots compared to plants with reduced 

mycorrhizal colonization (rmc plants). However, the absolute amount of net 

rhizodeposition increased after 12 and 16 weeks. AMF declined the rhizosphere 

priming effect (RPE) compared to rmc plants, which reflects the increasing nutrient 

limitation with time, especially the available soil P. These conditions likely restricted 

activity of free-living microorganisms in the bulk more than in the rhizosphere soil. 

Despite the reduced root biomass, N fertilization facilitated C sequestration by 

increased net rhizodeposition and decreased soil organic matter decomposition. 

Moreover, N fertilization lowered the magnitude of RPE, because of decreased 

enzyme activities that indicated a lowered microbial N demand. Without fertilization, 

the amount of net rhizodeposition in the rhizosphere and bulk soil for MYC plants 

increased by 20% and 30% compared to rmc plants, respectively. N fertilization 

decreased the net C rhizodeposition induced by AMF symbiosis, which may partly 

reflect the more restricted mycorrhizal abundance. In conclusion, AMF symbiosis and 

N fertilization increase soil C sequestration by retaining more plant rhizodeposits (net 

rhizodeposition) and by reducing the rhizosphere priming effect on the decomposition 

of soil organic matter. 
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Supplementary 

 

Fig. S1 Soil NH4
+ (a), NO3

- (b) and inorganic P (c) content of mycorrhizal wild type (MYC) and 

mutant (rmc) tomato with reduced mycorrhizal colonization with and without N fertilization. 

 

Fig. S2 The ratio of net rhizodeposition (rhizosphere+bulk soil) and root biomass (a), and  

microbial metabolic quotient (qCO2) (b) of mycorrhizal wild type (MYC) and mutant (rmc) 

tomato with reduced mycorrhizal colonization with and without N fertilization. 
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Fig. S3 Allocation of photosynthate-C (% of total assimilated C) into shoots (a), roots (b), 

rhizosphere (c), bulk soil (d), and root-derived CO2 (e) of mycorrhizal wild type (MYC) and 

mutant (rmc) tomato with reduced mycorrhizal colonization with or without N fertilization over a 

16-weeks growth period. Values shown are means (n=4) ± standard error (SE). 
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Fig. S4 Relationship between soil organic matter (SOM) decomposition and microbial biomass 

carbon (MBC) (a), β-1,4-glucosidase(BG) (b), xylanase (XYL) (c), cellobiohydrolase (CBH) (d), 

β-1,4-N-acetyglucosaminidase (NAG) (e), and leucine aminopeptidase (LAP) (f) of mycorrhizal 

wild type (MYC) and mutant (rmc) tomato with reduced mycorrhizal colonization with or without 

N fertilization over a 16-weeks growth period. Values shown are means (n=4) ± standard error 

(SE).
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Abstract 

The overall processes by which carbon (C) is fixed by plants in photosynthesis then 

released into the soil by rhizodeposition and subsequently utilized by soil microorganisms, 

links the atmospheric and soil C pools. Taken together, large fraction of C stored in the soil 

was allocated through arbuscular mycorrhizal fungi (AMF). However, little is known about 

the path of rhizodeposited-C into soil-borne communities in response to AMF symbiosis and 

nitrogen (N) fertilization. A mycorrhiza defective mutant of tomato (reduced mycorrhizal 

colonization: rmc) and its mycorrhizal wild type progenitor (MYC) were used to control for 

the formation of AMF symbiosis. Continuous 13CO2 labeling was performed to quantify the 

photosynthetic C allocation in the specific active microbial communities via 13C profile of 

microbial neutral (NLFA) and phospholipid fatty acids (PLFAs) depending on AMF 

symbiosis and N fertilization.  

Based on the abundance and 13C enrichment results, the 13C incorporation into fungal 

biomarker (PLFA 16:1ω5c, NLFA 16:1ω5c, and PLFA 18:2ω6, 9) was increased with 

sampling time over 16-weeks incubation, and AMF was prominent in the plant-soil system in 

the end of experiment (4.62% of total assimilated C). Although only less 13C was incorporated 

into AMF hyphal biomass (PLFA 16:1ω5c, 0.12-0.25%), there was significant allocation of 
13C into AMF storage (NLFA 16:1ω5c, 3.09-4.07%) in the soil with AMF symbiosis. This 

suggested that AMF symbiosis play a main role in rhizodeposited C uptake, as well as 

long-term retention of rhizodeposited C in AMF spores, which could be of importance to soil 

organic C sequestration. However, high N availability negative impacted on AMF symbiosis 

and further rhizodeposited C recovered in the AMF, which resulted from less C allocation to 

belowground because of higher C immobilization in the aboveground and higher rhizosphre 

respiration. Followed by AMF, gram-negative bacteria also took up a significant proportion of 

the belowground allocated C. However, SAP fungi showed a less reliance on rhizodeposited C 

throughout the growth period which may due to a lower use of rhizodeposits or a preference 

to older C compounds as energy sources. AMF symbiosis shifted the microbial community 

composition, resulting in a lower 13C incorporation into the bacteria, SAP fungi compared to 

the soil with rmc plants. These results suggested that plant-derived C was more allocated to 

AMF storage for later use rather than translocated to free-living microorganisms or respiration, 

as supported by the higher ratio of NLFA and PLFA. The preferential C allocation to AMF 

was at the expense of C flow to other microbial groups may form a alternative explanation for 

the lower enrichment of 13C in the other free-living microorganisms. Overall, our results 

confirmed that mycorrhizal plant exerting a greater influence on both bacterial and SAP 

fungal communities, which was highly dependent on N fertilization. We also concluded that 

root C is predominantly transloacted by AMF symbiosis, which will be most favoured without 

fertilization. 

 

Keywords: arbuscular mycorrhizal fungi (AMF), microbial utilization, N fertilization, 

rhizodeposits, bacteria and fungi, soil carbon assimilation, 13C-phospholipid fatty acid
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1. Introduction 

Plants are the primary source of carbon (C) for soil microorganisms and soil organic C 

(SOC) (Ge et al., 2017). Living roots release approximately 5-20% of photosynthesized C into 

soil via rhizodeposition (Kuzyakov and Domanski, 2000; Jones et al., 2009; Pausch and 

Kuzyakov, 2018). Rhizodeposits are used by rhizomicrobial communities to fuel metabolic 

processes and build up microbial biomass (Kindler et al., 2009), which eventually contributes 

to (SOC stabilization through this microbial transformation (Cotrufo et al., 2013; Sokol and 

Bradford, 2019). However, knowledge with respect to the relative flow and translocation of 

plant-derived C among microbial functional groups, is still limited (Drigo et al., 2010; De 

Deyn et al., 2011; Birgander et al., 2017), as groups of soil biota (in particular bacteria, 

mycorrhizal fungi and saprotrophic fungi) function differently in the incorporation and 

turnover of C, in the chemical nature of their respective byproducts, and in their respective 

effects on soil biogeochemical cycles (Six et al., 2006; Strickland and Rousk, 2010). This 

limited understanding is a critical uncertainty of soil C formation and stabilization. 

Next to direct root exudation, plants influence soil microorganisms through symbiotic 

relationships in which microorganisms receive C directly from the plants (Jones et al., 2009). 

Arbuscular mycorrhizal fungi (AMF) form symbioses with 71% of all flowering plants 

(Brundrett and Tedersoo, 2019), and have been recognized as a potentially important 

functional group involved in the sequestration of plant-derived C (Frey-Klett et al., 2007; 

Averill et al. 2014; Wurzburger and Brookshire 2017; Zhou et al., 2020). Given that large 

quantities of recently fixed C can be transferred to AMF from their autotrophic symbiont 

(Johnson et al., 2002), AMF have a competitive advantage over other free-living 

microorganisms in the acquisition of soil resource with such a large of energy (Nottingham et 

al., 2013). Competition among AMF and other free-living microorganisms for soil nutrients 

can lead to increased soil C stocks as microbial activity is suppressed (Averill et al., 2014; 

Zhou et al., 2020). On the other hand, AMF can facilitate free-living microbial communities 

by releasing organic compounds, which stimulate microbial growth more than 

non-mycorrhizal plants (Barea et al. 2005). As a feedback, alterations in soil microbial 

composition could have significant consequences for C and N transformations (Singh et al., 

2010). For instance, it has been postulated that bacteria-dominated food webs lead to higher 

short-term mineralization rates of organic C and N (Wardle et al., 2004), whereas fungal 

stimulation, in particular of AMF, may enhance C uptake (Treseder and Allen, 2000), and N 

immobilization through hyphal translocation (Frey et al., 2000). Although recent progress has 

been made in our understanding of C fluxes from the plant to AMF, and rhizosphere 

microorganisms, knowledge is still scare with respect to the relative flow of C to specific 

biological groups in plant-AMF symbiosis-soil systems (Olsson and Johnson, 2005; Drigo et 

al., 2010). Therefore, precise identification of the microbial groups involved in C utilization 

and sequestration is the key to explore the functional roles of microorganisms improving soil 

fertility. 

Up to 30% of C fixed during photosynthesis can be allocated to the AMF (Drigo et al., 

2010), which is not constant, but depends on soil N availability (Treseder, 2004; Mohan et al., 

2014). The abundance of AMF in general declines by 15% in ecosystems exposed to mineral 

N fertilization (Treseder, 2004; Zhou et al., 2020), thereby affecting AMF functions as well as 

other free-living microbial community structures and functions (Toljander et al., 2007). 

However, there is still a general lack of knowledge with respect to the relative responses of 

different specific microbial groups in response to AMF and N fertilization. 

Phospholipid fatty acids (PLFAs) are essential components of cellular membranes, 

https://link.springer.com/article/10.1007/s11104-018-3789-0#CR2
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several of which have been used as biomarkers for specific microbial groups (Frostegård et al., 

1993; Zelles, 1997). Determination of neutral (NLFA) and PLFAs in combination with stable 

isotope probing have provided an efficient approach to follow the C flow to soil 

microorganisms, as well as study the relative importance of rhizodeposits in determining 

specific microorganisms (Butler et al., 2003; Paterson et al., 2011; Drigo et al., 2010). In this 

study, we performed a continuous 13C-CO2 labeling experiment of a mycorrhizal wild type 

progenitor (MYC) and its mycorrhizal defective mutant of tomato (rmc) with or without N 

fertilization during 16-weeks incubation. We expected that AMF should be most benefited in 

the soil plated with MYC plants, which is dependent on the N availability. Because AMF have 

the most direct connection with plant rhizosphere allocation and should thus respond more 

than other free-living microorganisms (e.g., bacteria and SAP fungi). We also anticipated that 

SAP fungi is less affected by the AMF symbiosis than the bacteria, since it has been reported 

that they are less dependent on the rhizodeposits in the soil (Birgander et al., 2017). Moreover, 

we aimed to (i) assess the effect of AMF symbiosis and N fertilization on the incorporation 

and fate of rhziodeposit-C into microorganisms; (ii) identify predominant microbial groups 

utilizing newly rhizodeposit-C. Hence, we hypothesized that: (1) root C is predominantly 

transloacted by AMF symbiosis, which will be most favoured without fertilization and will 

obtain significantly more C from plants than when soil is fertilized; (2) SAP fungi will be 

least affected by AMF symbiosis with regard to C flow from plants. 

 

2. Materials and methods 

2.1 Soil preparation, plant growth, and continuous 13C labeling 

Soil samples were collected from the Ap horizon (0-20 cm) of an experimental field at 

the Reinshof Research Station of the Georg-August University of Göttingen, Germany 

(28°33 2́6´́N, 113°20 8́´́E). The soil was air-dried and sieved (< 2 mm) to achieve a high 

degree of homogeneity and reduce the variability among replicates. Fine roots and visible 

plant residues were carefully removed manually. The soil contained 1.3% total C, 0.14% total 

N, had a pH of 6.8, and a δ13C-value of organic C of -25.78‰, δ15N-value of total N of 5.69‰, 

and a bulk density of 1.30 g cm-3 (Zhou et al., 2020). 

Two tomato genotypes (Lycopersicon esculentum L.) were grown in this experiment: 1) 

mutant tomato with highly reduced AMF symbiosis, termed rmc (reduced mycorrhizal 

colonization), and 2) a closely related wild type hereafter termed MYC (Barker et al., 1998). 

The use of genotypes enabled studying the impacts of AMF symbiosis on microbial C 

utilization, without soil sterilization to establish a non-mycorrhizal control, thereby 

maintaining an intact soil microbial community. Both tomato types were grown with and 

without N fertilization (e.g. MYC-N, MYC+N, rmc-N, and rmc+N). N-treatments received 

344 mg N per pot (60% of N from NH4
+ and 40% of NO3

-), equivalent to a rate of 150 kg N 

ha-1.  

PVC pots (7.5 cm diameter, 21 cm height) were filled with 1 kg air-dried, sieved soil. 

The soil was kept at 20% gravimetric soil moisture content (equivalent of 60% of the water 

holding capacity) with deionized water. After pre-incubation at room temperature for two 

weeks, the seedlings in pots were moved to a growth chamber (day time of 14 h and 25 oC; 

night time of 10 h and 15 oC). The relative humidity was 40% and plants received artificial 

light with 800 μmol m-2 s-1 photosynthetic active radiation (PAR). The locations of the pots in 

the growth chamber were changed weekly by mixing them randomly to guarantee similar 

growing conditions for the plants. The soil water content of all pots was maintained at 60% 

water holding capacity by deionized water addition (every 1-3 days). 
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The growth chamber was equipped with a continuous 13CO2 labeling system. Briefly, the 
13CO2 used in the experiment was generated through the reaction of Na2

13CO3 (2.9 atom% 13C, 

0.5 mol L-1) and excess of lactic acid outside of the chamber. The tracer solution was prepared 

by mixing 1g of 99 atom% 13C enriched Na2CO3 (Cambridge Isotope Laboratories, 

Tewksbury, MA, USA) with 52 g of unlabeled Na2CO3 in 1 L of deionized water. The plants 

were labeled from the emergence of the first leaf until harvest. They were watered during the 

dark period to avoid assimilation of unlabeled CO2. After closing the chamber, the chamber 

air was pumped through external 50-L tight soda lime to remove unlabeled CO2 and was then 

flushed with 13C-enriched CO2 before the light switched on and plants started photosynthesis.   

Soil were sampled immediately after each harvest. A representative homogenized soil 

subsample of each pot was stored at 4 oC to determine microbial biomass C. Another soil 

sub-sample was stored at -20 oC to neutral lipid fatty acid (NLFA) 16:1ω5c, and phospholipid 

lipid fatty acids (PLFA).  

 

2.3 Measurements 

2.3.1 Microbial biomass C 

Soil microbial biomass C (MBC) was determined by the chloroform fumigation 

extraction method (Vance et al., 1987) with modification. After destructive sampling, the soil 

was carefully mixed and 8 g soil was directly extracted for 1 h using 32 ml of 0.05 M K2SO4. 

Another 8 g soil was fumigated with chloroform for 24 h and extracted in the same manner. 

The samples were filtered and the extracts were frozen until analysis. Total C concentration 

was measured using a 2100 TOC/TIC analyzer (Analytik Jena, Germany). MBC was 

calculated by dividing the difference between extracted C from fumigated and non-fumigated 

soil samples with a kEC factor of 0.45 (Wu et al. 1990). The extracted C contents from 

non-fumigated soil samples were considered as dissolved organic C (DOC). After 

freeze-drying (Beta 1–8 LSCplus, Martin Christ Gefriertrocknungsanlagen GmbH, Harz, 

Germany), the δ13C of MBC was analyzed by an elemental analyzer (Eurovector) coupled to 

an IRMS (Delta Plus XL IRMS, Thermo Finnigan MAT, Bremen, Germany) at the Center for 

Stable Isotope Research and Analysis (KOSI) located at the Georg-August University of 

Göttingen.  

 

2.3.2 Lipid biomarker and stable isotope analysis 

Neutral (NLFA) and phospholipid (PLFA) lipid fatty acids were extracted and analyzed 

according to the protocol described by Frostegård et al. (1993) with some modifications 

(Gunina et al., 2014). Briefly, 6 g of soil was extracted with a 25 mL one-phase mixture of 

chloroform, methanol and 0.15 M aqueous citric acid (1:2:0:8, v/v/v, pH 4.0) with two 

extraction steps. The 19:0-phospholipid (dinonadecanoylglycerolphosphatidylcholine, 

Larodan Lipids, Malmö, Sweden) was used as internal standard one (IS1) and was added 

directly to soil before extraction (25 µL with 1 µg µL-1). Additional chloroform and citric acid 

were added to the extract to achieve a separation of two liquid phases, in which the lipid 

fraction was separated from other organics. Phospholipids were separated from neutral lipids 

and glycolipids by solid phase extraction using a activated Silica gel (Silica gel Merck, 

particle size 0.063-0.200 mm). Alkaline saponification of the purified phospholipids was 

performed with 0.5 mL of 0.5 M NaOH dissolved in dried MeOH, followed by methylation 

with 0.75 mL of BF3 dissolved in methanol. The resulting fatty acid methyl esters (FAMEs) 

were purified by liquid–liquid extraction with hexane (three times). Before the final quality 

and quantity measurements, internal standard two (IS2) (13: 0 FAME) (15 µL with 1 µg µL-1) 
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was added to the samples (Knapp, 1979). All PLFA and NLFA samples were analyzed by gas 

chromatograph (GC) (Hewlett Packard 5890 GC coupled to a massselective detector 5971A) 

(Gunina et al., 2014).  

The 13C/12C isotope ratios of the single fatty acids were determined by an IRMS Delta 

PlusTM coupled to a gas chromatograph (GC; Trace GC 2000) via a GCII/III-combustion 

interface (all units from Thermo Fisher, Bremen, Germany) (Gunina et al., 2014). A 15 m 

HP-1 methylpolysiloxane column coupled with a 30 m HP-5 (5 % 

phenyl)-methylpolysiloxane column (both with an internal diameter of 0.25 mm and a film 

thickness of 0.25 µm) was used.  

To classify PLFA to corresponding microbial groups, a factor analysis based on principal 

component analysis with varimax standard rotation was performed on C contents of 

individual PLFA for the entire dataset. Fatty acids with a factor loading of > 0.5 (absolute 

value) on the same factor were grouped together, considering their known association to 

microbial groups as described by previous studies based on pure cultures (Zelles, 1999). The 

results of the factor analysis are presented in Supplementary Table S1. 

The amount of the PLFA 16:1ω5c and NLFA 16:1ω5 were used as signatures for AMF 

biomass to confirm that genotype plants significantly reduced AMF across the treatments and 

control. The PLFA 16:1ω5c is not specific to AMF since it can occur in some bacterial groups, 

but a considerable proportion of this PLFA is considered to originate from AMF when the 

ratio of NLFA to PLFA 16:1ω5c is > 1 (Olsson, 1999). The ratio of saturated to 

monounsaturated PLFAs was used in conjunction with the ratios of the sum of cyclopropyl 

PLFAs to the sum of their monoenoic precursors (cy17:0 + cy19:0)/ (16:1ω7+18:1ω7; 

abbreviated cy/pre) as indicators of physiological or nutritional stress in bacterial 

communities (Kaur et al., 2005). Total PLFA concentration was the sum of single identified 

PLFA. The PLFA ratios relative to fungal to bacteria, Gram (+) to Gram (-) bacteria were 

calculated by using the sum of the respective fatty acid biomarkers and were assumed to 

represent the relative abundance of these groups. 

 

2.4 Calculations 

Obtained δ13C data were used to calculated 13Catom%. The amount of 13C incorporated into 

individual C pools were calculated as follows: 
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where f is the fumigated soil extract and nf means non-fumigated soil extract; Cf and Cuf 

are the amount of C in fumigated and non-fumigated samples.  

The 13C incorporation into individual PLFA (µg 13C g-1 soil) was determined using a 

mass balance approach: 
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samples, respectively. CPLFA was the content of individual PLFA in the labeled samples. Then 

we calculated the relative 13C distribution (%) in each specific microbial group according: 
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where 13CPLFA-group is the amount of 13C-PLFA incorporated into the specific microbial 

group, and 
PLFA

13C  is the total amount of 13C-PLFA incorporated into soil microorganism 

excepts the unclassified biomarkers. 

The percentage of root-derived C that was incorporated into DOC, MOC, SOC, and 

microbial groups in the soil and plant-soil system was expressed as the percentage of 13C 

recovery on each sampling time (e.g., 8, 12, 16 weeks after transplanting) according to: 
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where 13Csample is the amount of 13C in the shoot, root, soil, MBC, DOC, bacteria, SAP 

fungi, AMF (PLFA+NLPF).  C13
is the total amount of 13C in the soil or plant-soil systems. 

For calculation of the C content of AMF hyphal biomass and SAP fungal C, PLFA 16:1ω5c 

and 18:2ω6, 9 were multiplied with the conversion factor of 107 and 366, respectively 

(Johansen et al., 1996; Olsson and Johansen, 2000; Olsson and Wilhelmsson, 2000; Klamer 

and Bååth, 2004; Korkama et al., 2007). Since the microbial biomass C consists mainly of 

fungal and bacterial C, the bacterial C was calculated by subtracting AMF hyphal and SAP 

fungal C values from mean MBC values of soil. 

 

2.5 Statistical analysis 

The experiment was carried out with three replicates of each treatment. The values 

presented in the figures are given as means ± standard error (mean ± SE). Prior to analysis of 

variance (ANOVA), the data were tested for normality (Shapiro-Wilk, p > 0.05) and 

homogeneity of variance (Levene-test, p > 0.05). Any data that appear non-normal and 

percentage data were log transformed so that they conform to the assumption of normality 

before further statistical analysis. A two-way ANOVA was used to assess the effects of AMF 

colonization (tomato genotype) and N fertilization, as well as their interaction for all 

measured parameters separately for each sampling time. Significant (p < 0.05) differences 

between means were identified using the post hoc Tukey HSD test. Residuals were checked 

for a normal distribution using the Shapiro-Wilk test. All statistical analyses were performed 

using SPSS version 19.0 (SPSS Inc., USA). 

 

3. Results 

3.1 Abundance of microbial community 

After 16 weeks, total PLFA biomass was 50-54 µg g-1 soil for MYC, which was 10-20% 

higher compared to rmc plants (p < 0.05, Fig. S1). After 12 and 16 weeks, PLFA 16:1ω5c was 

accounted for 4.5-5.2% for MYC, higher than rmc plants (p < 0.05, Fig. 1; Table. S1). In 

contrast, the relative abundance of PLFA 18:2ω6, 9 was lower for MYC than that for rmc 

(2.46% vs 3.49%, p <0.05). N fertilization decreased the relative abundance of AMF but 

increased the abundance of SAP (p < 0.05, Fig. 1; Table. S1). 

 

3.2 13C incorporation into soil microbial community 

Compare with rmc plants, total 13C incorporated into PLFAs increased by 10-42% for 
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MYC after 8 and 16 weeks, whereas 13C-PLFA was 73% lower in soil with MYC after 12 

weeks (p < 0.05, Fig. 2). The 13C incorporated into PLFA 16:1ω5c ranged from 0.02-0.32 

nmol g-1 soil for MYC and gradually increased with incubation time. After 16 weeks, the 

amount of 13C in the PLFA 18:2ω6, 9 was 39-68% lower for MYC than that for rmc plants (p 

< 0.05), whereas there were no difference between tow genotype plants after 8 and 12 weeks. 

After 16 weeks, N fertilization decreased the amount of 13C in the total PLFAs, 16:1ω5c, but 

increased the 13C incorporation into 18:2ω6, 9 compared to the unfertilized soil (p < 0.05, Fig. 

2). 

 

Fig. 1 Relative abundance of specific microbial groups of mycorrhizal wild type (MYC) and mutant tomato 

with reduced mycorrhizal colonization (rmc) with and without N fertilization over a 16 weeks growth 

period. Values shown are means ± standard error (SE) (n = 3). G(+) bacteria, gram positive bacteria; G(-) 

bacteria, gram negative bacteria; SAP, saprotrophic fungi (18:2ω6,9); AMF, arbuscular mycorrhizal fungi 

(16:1ω5c). Here, we summed up the amount of G(+) bacteria, G(-) bacteria, actinomycete, protozoa, SAP 

and AMF as total. 

 

The relative incorporation of 13C into specific biomarker was AMF symbiosis and N 

fertilization dependent, especially after 16 weeks (Table. S1). After 8 weeks, there were no 

difference in 13C distribution in G(+), G(-), Actinomycete and 16:1ω5c irrespective of N 

fertilization or genotype plants, whereas N fertilization increased the relative abundance of 

SAP in fertilized than in unfertilized soil (6% vs 1%, Fig. 3). After 12 weeks, N fertilization 

did not change the 13C distribution in microbial specific groups. The relative abundance of 13C 

in 16:1ω5c and 18:2ω6,9 for MYC was accounted for around respective 16% and 14%, higher 

than that for rmc at 12 weeks after transplanting, whereas it was lower in G(+) and G(-) 

bacteria for MYC compared with rmc (p < 0.05, Fig. 3; Table. S1). After 16 weeks, AMF 

symbiosis increased the 13C distribution in PLFA 16:1ω5c, but decreased the relative 

abundance of 13C in the G(+), G(-) bacteria, and PLFA 18:2ω6,9 (p < 0.05). In the fertilized 

soil, the 13C distribution of PLFA 18:2ω6,9 was significant higher compared with unfertilized 

soil (16% vs 9%, p < 0.05, Fig. 3), whereas it was lower for PLFA 16:1ω5c, G(+) and G(-) 

bacteria than that in the unfertilized soil after 16 weeks. For all three sampling time and in all 

four treatments more than 40% of the 13C recovered from the PLFA was incorporated into G(-) 

bacteria (Fig. 3). 
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Fig. 2 Absolute amount of plant-derived carbon incorporation into specific microbial groups f mycorrhizal 

wild type (MYC) and mutant tomato with reduced mycorrhizal colonization (rmc) with N and without N 

fertilization over a 16 weeks growth period. Values shown are means ± standard error (SE) (n = 3). G(+) 

bacteria, gram positive bacteria; G(-) bacteria, gram negative bacteria; SAP, saprotrophic fungi (18:2ω6,9); 

AMF, arbuscular mycorrhizal fungi (16:1ω5c). P values were calculated from two-way ANOVA for each 

sampling (e.g., 8, 12, 16 weeks after transplanting). N: with and without N; AMF: with highly and low 

arbuscular mycorrhizal fungi colonization for MYC and rmc tomato. 

 

 

Fig. 3 Relative abundance of 13C distribution in the specific microbial groups of mycorrhizal wild type 

(MYC) and mutant tomato with reduced mycorrhizal colonization (rmc) with N and without N fertilization 

over a 16 weeks growth period. Values shown are means ± standard error (SE) (n = 3). G(+) bacteria, 

gram positive bacteria; G(-) bacteria, gram negative bacteria; SAP, saprotrophic fungi (18:2ω6,9); AMF, 

arbuscular mycorrhizal fungi (16:1ω5c). Here, we summed up the amount of G(+) bacteria, G(-) bacteria, 

actinomycete, SAP and AMF as total. 
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Fig. 4 The ratio of neutral and phosphorous fatty acid 16:1ω5c in microbial abundance (NLPF/PLFA) and 
13C amount (13C-NLFA/13C-PLFA) of mycorrhizal wild type (MYC) and mutant tomato with reduced 

mycorrhizal colonization (rmc) with and without N fertilization over a 16 weeks growth period. Values 

shown are means ± standard error (SE) (n = 3). N: with and without N; AMF: with highly and low 

arbuscular mycorrhizal fungi colonization for MYC and rmc tomato. 

 

 

3.3 The ratio of neutral and phosphorus fatty acid 

The NLFA/PLFA ratio for MYC plants ranged from 1.48 to 17.48 and increased with 

incubation time, whereas the ratio of NLFA and PLFA was around 0.42 to 1.39 for rmc plants 

(Fig. 4a). This suggested a well-developed AMF growth in soil with MYC plants, especially 

at 12 and 16 weeks after transplanting. Similarly, the ratio of 13C-NLFA and 13C-PLFA ranged 

from 26-86 for MYC, which was significant higher than that for rmc plants (0.49-1.89, p < 

0.05, Fig. 4b), indicating that AMF allocated proportionally more C to storage structure for 

MYC compared with rmc plants. However, both ratios remained unchanged between 

fertilized and unfertilized soils over growth period (p > 0.05, Fig. 4). 

 

Fig. 5 The amount of 13C in microbial biomass (13C-MBC), dissolved organic carbon (DOC), storage 

compound of arbuscular mycorrhial fungi (AMF spore), AMF hyphae, saptrophic fungi (SAP), and bacteria 

biomass of mycorrhizal wild type (MYC) and mutant tomato with reduced mycorrhizal colonization (rmc) 
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with and without N fertilization over a 16 weeks growth periods. Values shown means ± standard error 

(SE) (n=3). N: with and without N; AMF: with highly and low arbuscular mycorrhizal fungi colonization 

for MYC and rmc tomato. 

 

3.4 Carbon budget in the soil pools 

The 13C-MBC increased from 9.5 after 8 weeks to 43.2 mg C kg-1 after 16 weeks, and N 

fertilization decreased the amount of 13C-MBC by 26-33% compared with unfertilized soil (p 

< 0.05, Fig. 5a). AMF spores and hyphal biomass in soil with MYC plants also increased with 

incubation time, and up to 120 and 6 mg C kg-1, respectively (Fig. 5c, d). After 16 weeks, 

AMF symbiosis decreased the amount of 13C in SAP fungal biomass by 23-48% compared 

with rmc plants, whereas N fertilization increased the 13C incorporated into SAP fungal 

biomass by 47-78% (p < 0.05, Fig. 5e). Moreover, the amount of 13C in the bacteria biomass 

was lower for MYC compared with rmc plants at 12 and 16 weeks after transplanting, 

whereas it was higher in the fertilized than that in the unfertilized soil after 16 weeks (p < 

0.05, Fig. 5f). 

The recovery of 13C-MBC in the soil pools with MYC was around 13-18%, lower than 

that for rmc plants (22-35%) after 12 and 16 weeks (p < 0.05, Fig. 6a). Similarly, the 13C 

recovered in the DOC pools was also lower for MYC compared with rmc plants in the last 

two sampling time (p < 0.05, Fig. 6b). The percentage of rhizodeposited C recovered in the 

AMF spore and hyphal biomass were much greater for MYC (65% and 3.5%, respectively) 

than for rmc plants (0.4% and 0.5%, respectively). Further, 0.35-0.64% of rhizodeposited C 

was recovered in the SAP fungal biomass for MYC, whereas 0.54-0.91% of 13C was 

recovered in the SAP for rmc plants at 12 and 16 weeks after transplanting (p < 0.05, Fig. 6e). 

Similarly, more 13C was recovered in the bacteria biomass for rmc compared with MYC 

plants after 12 and 16 weeks (p < 0.01, Fig. 6f). Moreover, N fertilization increased the 13C 

recovery in SAP at 8 and 16 weeks (p < 0.05). After 8 and 12 weeks, N fertilization decreased 

the rhizodeposited C recovered in the bacteria biomass compared with unfertilized soil (14% 

vs 22%, Fig. 6).  

Overall, the percentage of total assimilated C enriched in the bacteria and AMF in the 

unfertilized soil with MYC plants increased from 0.78 and 1.29 to 0.89% and 4.92% with 

time, respectively (Fig. 7). However, N fertilization decreased the assimilated C enriched in 

the bacteria and AMF. With incubation time, the 13C recovered in the SAP fungi increased 

from 0.017 to 0.028%, and N fertilization increased the assimilated C incorporated into SAP 

for MYC plants after 16 weeks (Fig. 7). 
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Fig. 6 The 13C recovery (percent of soil recovery) in the microbial biomass (13C-MBC), dissolved organic 

carbon (DOC), storage compound of arbuscular mycorrhial fungi (AMF spore), AMF hyphae, saptrophic 

fungi (SAP), and bacteria biomass of mycorrhizal wild type (MYC) and mutant tomato with reduced 

mycorrhizal colonization (rmc) with and without N fertilization over a 16 weeks growth periods. Values 

shown means ± standard error (SE) (n=3). Here, we summed up the 13C in the soil (rhizosphere + bulk 

soil) as total. N: with and without N; AMF: with highly and low arbuscular mycorrhizal fungi colonization 

for MYC and rmc tomato. 

 

4. Discussion 

4.1 Microbial community dynamics as affected by AMF symbiosis 

The AMF symbiosis are known to affect exudation patterns (Frey-Klett et al., 2007), 

thereby shaping the distinct size and structure of soil-borne communities (Fig. 1; Table. S1). 

As reported in the same experiment, AMF symbiosis enhanced C translocation to 

belowground via AMF symbiosis for MYC compared with rmc plants (Zhou et al., 2020), 

and this increased in C availability could explain the higher total PLFAs in soil with MYC 

plants (Fig. S1). The proportion of Gram (-) bacteria was the highest and this group increased 

in the soil planted with MYC compared with rmc plants (Fig. 1), which preferably take up 

easily available substances (Paterson, 2003; Dippold et al. 2014). Since rhizodeposits mostly 

consists of rather bioavailable neutral sugars, Gram-negatives showed the strongest 

preference for rhizodeposite-C utilization, especially at the higher C input for MYC plants 

with AMF symbiosis. In contrast, higher rhizodeposites decreased the abundance of Gram (+) 

bacteria in soil with MYC and N fertilization. This was supported by Buyer et al. (2010) who 

showed that Gram (+) bacteria decreased with increasing soil organic C availability. As SAP 

fungi is more capable of colonizing in nutrient poor soils with their wide-range enzymatic 

capabilities (Frey et al., 2003), AMF symbiosis resulted in relative smaller abundance of 

PLFA 18:2ω6,9c, due to the nutrient deficiency because of the uptake by AMF hyphae as 

shown in the same experiment (Zhou et al., 2020).   

https://link.springer.com/article/10.1007/s00374-017-1237-6#CR23
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Fig. 7 Carbon (C) budget within a plant-soil system of mycorrhizal tomato (MYC) with and without N 

fertilization presented as % of total assimilated C into each C pool of plant and soil during 16-weeks 

continuous 13C labelling. The percentage data of C losses, shoot, root and soil were collected from the same 

experiment (Zhou et al., 2020). The C losses includes root respiration and CO2 released from soil organic 

matter decomposition 

 

4.2 Distinct 13C incorporation into microbial functional groups 

Consistent with our first hypothesis, the direct incorporation of plant-derived C was 

much greater for AMF than bacteria and SAP. The 13C enrichment in the AMF-specific NLFA 

and PLFA biomarker (16:1ω5c) increased over the growth period and was still prominent at 

16 weeks after transplanting (Fig. 2). Increased 13C labeling of NLFA 16:1ω5c suggested 

enhanced production of AMF storage organs, and increased 13C labeling of PLFA 16:1ω5c 

implied AMF growth stimulation (Olsson and Johnson, 2005). Because NLFA 16:1ω5c is 

usually stored in intraradical vesicles or in spores and make up a large proportion of AMF 

biomass (Olsson and Johnson, 2005), whilst fine absorptive AMF hyphae turnover rapidly, 

which are known to live only 5-6 days (Staddon et al., 2003). Therefore we observed a lower 

retention of C in the PLFA 16:1w5c fraction (4% of soil recovery), whereas much of the C 

contained within AMF is translocated into spores(60% of soil recovery) that may remain in 

the soil for long periods (Fig. 6). These data confirmed earlier results on the dominant role of 

AMF in the flow of C from plants into the soil and AMF are consistently the first to profit 

from plant derived photosynthates (Johnson et al., 2002; Olsson and Johnson, 2005; Drigo et 

al., 2010).  

Followed by AMF, bacteria was more active in cycling newly fixed plant-derived C 

within the rhizosphere. Indeed, other studies have shown rapid allocation of C to rhizosphere 

inhabiting bacteria (Elias et al., 2017), with Gram (-) bacteria particularly utilize labile C 

compounds such as exudates in the rhizosphere (Bird et al., 2011; Koranda et al., 2014). 

Although Gram (-) bacteria take up root exudates fast and show a rapid turnover, they do not 

exchange their biomass as rapidly as AMF (Apostel et al., 2013; Sommer et al., 2017). None 

of the other microorganisms reached a similarly high and fast C replacement as the 

mycorrhizal fungal groups. Therefore, the direct C flux into AMF is highly efficiency and 
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dominates the C nutrition of these fungal groups. Gram (-) bacteria are less important in 13C 

uptake than AMF, but more important than Gram (+) bacteria. Similar results were also 

observed by Drigo et al. (2010) in a 13CO2 pulse labeling experiment who showed that Gram 

(-) and mycorrhizal fungi appeared to be most important actively assimilating root derived C. 

Our results further illustrated that rather low amounts of actinomycete fatty acid were present 

in soil of both genotypes with or without N fertilization (Fig. 3). This indicated that 

actinomycete is less active or that have a preference for other C substrates with the soil 

system in the presence of rhizodeposits (Kramer and Glexner, 2008; Mellado-Vázquez et al., 

2016). Actinomycetes can degrade complex organic polymers and are positioned late in the 

microbial reaction chain (Lacey, 1973). Accordingly, they might not compete well for the 

large amount of easily available plant-derived C (Sommer et al., 2017).  

SAP fungi exhibited 20-30 times lower 13C incorporation than in bacterial PLFAs. This 

is in line with Wardle et al. (2004) who suggested that bacteria is more important for the 

turnover of easily available C, while fungi dominate the turnover of C bound in complex 

structures. As a result of the difference between fungal and bacterial lifespans, the storage of 

C in microbial biomass is highly persistent in fungi, while it turns over rapidly in bacteria 

(Rousk and Bååth, 2011). Previous studies have indicated that bacterial biomass turns over 

2-3 times during a growing season, while fungi regenerate only 75% of their biomass over 

the same period (Moore et al., 2005). Thus characteristic of bacteria causes an accelerated 

transfer of labile C derived from the lysis of cells through the movement of soil solution or 

the re-use of bacteria (Liu et al., 2019). Alternatively, SAP fungal assimilation of C derived 

from necromass or dead root material rather than from labile root exudates might form an 

alternative explanation for the lower incorporation of 13C into the fungal PLFAs (Paul, 2007; 

Rousk and Frey, 2015). Additionally, previous studies also showed that soil bacteria could 

active feeding on living SAP through weaken the living fungal exterior (cell wall and cell 

membrane) via the release of a combination of lytic enzymes (chitinaes) and fungicides 

(Rudnick et al., 2015; Ballhausen and Boer, 2016), and thus less 13C was incorporated into 

SAP fungal rather than bacterial groups. 

The pattern of 13C incorporation by different microbial groups observed in our study are 

consistent with observations in earlier studies (Paterson et al., 2007): AMF are the major C 

pools in the belowground (Fig. 7). High 13C incorporation in the AMF represented by the 

NLFA 16:1ω5c signature was observed which indicates that the AMF are important in the C 

transfer from plants into other soil microorganisms (Treonis et al., 2004; Olsson and Johnson, 

2005; Drigo et al., 2010). 

 

4.3 Microbial carbon utilization as mediated by AMF symbiosis and N fertilization 

Following AMF colonization, root exudation patterns may be altered with the fungi 

acting as a C sink (Jones et al., 2004), retaining plant-derived C in AMF biomass and spores 

and controlling its time of release to other soil microorganisms (Olsson and Johnson, 2005). 

In our study, more rhizodeposits were stored in the AMF spores (NLFA 16:1ω5c), 

subsequently the activity of soil microorganisms reduced because of the lack of sufficient C 

and energy. Due to that the C cost for construction and maintaining the AMF association 

possibly exceeded the mycorrhizal growth benefits of enhanced nutrient acquisition (Jakobsen 

et al., 2016), the response of plant biomass to AMF symbiosis was neutral or even negative in 

this study as reported by Zhou et al. (2020). Therefore, the 13C distribution of PLFA 

signatures cy17:0 and cy19:0, which was respective recognized as plant growth promoting 

rhizobacteria Pseudomonas spp. and Burkholderia spp. (Artursson et al., 2005; Jalili et al., 

https://www.frontiersin.org/articles/10.3389/fmicb.2015.00268/full#B53
https://www.frontiersin.org/articles/10.3389/fmicb.2015.00268/full#B38
https://www.frontiersin.org/articles/10.3389/fmicb.2015.00268/full#B38
https://www.frontiersin.org/articles/10.3389/fmicb.2015.00268/full#B13
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2009), was relative lower in soil with MYC compared with rmc plants. Furthermore, the 

modification of cis-monounsaturated fatty acids to the more stable cyclo fatty acids could 

help in maintaining a functional living membrane during stress (e.g., less available 

rhizodeposits for rmc plants than for MYC plants), as indicated by the concomitant increase 

in cyclopropyl (cy17:0 and cy19:0) fatty acids, together with an increase in the trans:cis ratio 

of unsaturated fatty acids ((cy17:0+cy19:0)/(16:1ω7c+18:1ω7c)). Bacillus spp. has been 

recognized as typical bulk-soil inhabitants (Smalla et al., 2001). Using PLFA signature i17:0 

for Bacillus spp. (Kaneda, 1991), we detected less plant-derived C for this group in soil with 

AMF symbiosis throughout the experiment, which was consistent with previous studies that 

slow-growing soil microorganism were less affected by AMF symbiosis (Drigo et al., 2007). 

Therefore, AMF-associated microorganisms generally assimilated less plant-derived C than 

the microbial communities for rmc plants.  

While AMF symbiosis are not known to produce antibiotics, the presence of AMF 

symbiosis has been shown to repress some members of SAP fungi and bacteria (Fig. 2), 

which may resulted from the direct or indirect manipulation of the community through 

hyphal exudates (Toljander et al., 2007; Welc et al., 2010). As our previous study shown, 

AMF symbiosis reduced the available N and P thus depleted microorganisms of shared 

limiting nutrients, suppressed the activities of free-living saprotrophs (Veresoglou et al., 2011; 

Leifheit et al., 2015). Further, AMF symbiosis may parasitize nutrient-rich saprotrophic fungi 

as an alternate resource-acquisition strategy (Fernandez and Kennedy, 2016). Alternatively, 

AMF symbiosis may occupy the same niche as these microorganisms and compete with them 

during nutrient acquisition (Veresoglou et al., 2011). For example, some bacterial strains 

such Pseudomonas spp. are able to colonize both plant roots and AMF hyphae (Miransari, 

2011). However, whether the suppression is based on qualitative changes of rhizodeposits, 

modifications of the soil abiotic environment, competition for nutrients or reflects direct 

interactions between compounds released by the fungi and certain bacterial taxa should be an 

issue for future investigations. 

In particular, the C retention in the AMF fraction was significantly lower under N 

fertilization (Fig. 5, 6), may be triggered as plants respond to N availability in the soil by 

changing their C allocation patterns (Johnson et al., 2003). When conditions became less 

suitable for AMF colonization of the root, the fungi invested proportionally less in storage 

lipids, that is, spores. One interpretation of this could be that at higher N availability, when 

less C is allocated to the roots (Fig. 7), there is less of surplus of carbohydrates that can be 

used by fungi for storage structures (Olsson and Johnson, 2005). This suggested that N 

fertilization has reduced AMF fungal activity as a result of a decreased transport of 

photosynthate-C to roots and reduced C allocation by plants to their AMF symbiosis. In the 

case of greater nutrient limitation in plants without fertilization, AMF symbiosis could be 

more important, promoting preferential C allocation to AMF, at the expense of SAP fungi. 

This could be an important explanation of the decreased 13C incorporation in SAP fungi in 

the unfertilized soil. On the other hand, a stimulated root growth and AMF colonization and 

hence nutrient acquisition in unfertilized soil were believed to suppress the 13C uptake of 

SAP. Furthermore, increased 13C incorporation into SAP fungi in the fertilized compared with 

unfertilized was observed by Steer and Harris (2000), due to that the increased nutrient 

availability enable fungi to utilize C resources unavailable to other bacteria. Overall, the 

general explanation has been that the N-limited plant consumes more of the newly fixed C to 

the root that reduce the C availability to the free living saprotrophic microorganisms, whereas 

a high N availability negative impact on AMF symbiosis results from less C allocation and 
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that the mechanism behind this is an increased C immobilization in the aboveground biomass 

as well as the stimulated rhizosphere respiration (Zhou et al., 2020). 

 

4.4 Carbon budget in the plant-AMF symbiosis-soil interaction 

Total photosythate allocation to AMF symbiosis has been estimated to be as high as 

20-30% (Drigo et al., 2010), but we only measured 3.22-4.92% of total assimilated C in the 

AMF (Fig. 7). On the one hand, a large proportion of neutral lipids in AMF are found in 

intraradical vesicles (Olsson and Johansen, 2000). On the other hand, the transfer from 

intraradical mycelium to extraradical may be rapid (Drigo et al., 2010), and respiration and 

turnover in the soil may be high (Staddon et al., 2003). Alternatively, PLFA are rapidly 

degraded upon cell death and are not found in storage lipids (Zelles et al., 1992), therefore 

more plant-derived C were recovered in the microbial necormass pools, as a consequence 

contribution the SOC sequestration in soil with AMF symbiosis. Compared to the soil with 

rmc plants, approximately 60% of plant-derived C was stored in fungi storage lipids in soil 

with AMF symbiosis. This lipid reserve is probably sequestered in structures with a low 

turnover rate (i.e. extraradical spores), but also provide a source of lipids for translocation to 

the extraradical mycelia or other free-living microorganisms (Bago et al., 2002). However, the 
13C incorporated into AMF hyphal biomass increased with incubation, and in the end up to 

0.12-0.25% of total assimilated C in the plant-soil system, which accounted for around 

16-22% of MBC (Fig. 6, 7). This was consistent with Leake et al. (2004) who found AMF 

accounts for 20-30% of soil microbial biomass, thus contributes largely in soil C cycling. 

 

  

5. Conclusions 

With simultaneous AMF symbiosis and N fertilization manipulations, our results 

highlight the importance of microbial communities and especially AMF for belowground C 

fluxes in agroecosystem. According to the results of this study, AMF are particularly 

important for C flow in soils. This is in accordance with the fact that AMF are receive all of 

their C from the plant host, thus the AMF biomarker (PLFA- and NLFA- 16:1w5c) should 

have the highest rhizodepsoits. After AMF biomarkers, the highest label occurred in 

biomarkers of gram-negative bacteria, which showing them to be the major rhizodeposits 

utilizers together with AMF. Together, our results suggest that AMF symbiosis affects the 

composition of soil microbial communities. The major functional changes included decreased 

SAP and bacterial abundance. The preferential C allocation to AMF also appears to reduce the 

C flow to other free-living microorganisms, particularly SAP fungi.  
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Supplementary 

 

Fig. S1 Total microbial biomass (PLFA) and specific microbial groups (AMF, SAP, G(+), G(-) 

bacteria, Actinomycetes, protozoa), as well as ratios of fungi and bacteria, G(+) and G (-) of 

mycorrhizal wild type (MYC) and mutant tomato with reduced mycorrhizal colonization (rmc) 

with N and without N fertilization. 

Table. S1 Principle component analysis of phosphorous fatty acid. 

 1 2 3 4 5 6 Specific group 

i14:0 0.052 0.901 -0.052 0.024 0.057 0.108 G(+) bacteria1 

i15:0 0.882 0.008 0.151 0.004 0.155 0 G(+) bacteria 2 

a15:0 0.805 0.352 0.091 0.04 0.068 -0.021 G(+) bacteria 2 

i16:0 0.405 0.502 0.041 -0.045 -0.007 -0.405 G(+) bacteria 1 

a16:0 0.22 0.898 0.059 0.076 0.033 -0.052 G(+) bacteria 1 

16:1ω7c -0.029 -0.145 0.263 0.196 0.734 -0.182 G(-) bacteria 2 

16:1ω5c -0.004 0.189 0.087 0.905 -0.022 0.064 AMF 

10Me16:0 0.335 -0.277 0.479 0.044 -0.105 -0.435 Actinomycets 1 

i17:0 0.544 0.331 0.204 -0.327 -0.038 -0.251 G(+) bacteria 2 

a17:0 0.365 0.573 0.233 0.045 0.066 -0.186 G(+) bacteria 1 

cy17:0 0.362 0.17 0.462 -0.012 0.024 -0.416 G(-) bacteria 1 

10Me17:0 -0.303 0.936 -0.01 0.009 -0.048 -0.296 Actinomycets 2 

18:2ω6,9 0.485 0.485 0.001 -.0507 -0.259 0.039 SAP fungi 

18:1ω9c 0.021 -0.02 0.958 0.109 -0.025 0.047 G(-) bacteria 1 

18:1ω7c -0.099 -0.431 0.549 0.214 0.015 -0.487 G(-) bacteria 1 

10Me18:0 -0.15 0.203 0.075 -0.075 0.119 -0.931 Actinomycets 1 

cy19:0 0.138 -0.018 0.849 0.037 0.038 -0.165 G(-) bacteria 1 

20:4ω6c -0.565 0.114 0.592 -0.327 -0.129 0.165 Prorozoa 

20:1ω9c 0.033 0.039 0.017 -0.078 0.999 -0.007 G(-) bacteria 2 
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Abstract 

Consequences of interactions between ectomycorrhizal fungi (ECM) and 

non-mycorrhizal rhizosphere fungi (NMRF) for plants carbon (C) allocation 

belowground and nutrient cycles in soil remain unknown. To address these questions, 

we performed a mesocosm study with Norway spruce seedlings (Picea abies L.) 

inoculated with ECM, NMRF, or a mixture of both (MIX). 14CO2 pulse labeling of 

spruce was applied to trace and visualize the 14C incorporation into roots, 

rhizohyphosphere and hyphosphere. Activities and localization of enzymes involved 

in the C, nitrogen (N) and phosphorus (P) cycling were visualized using zymography.  

Spruce seedlings inoculated with ECM and NMRF allocated more C to soils (ECM: 

10.7%; NMRF: 3.5% of total recovered C) compared to uninoculated control 

seedlings. The 14C activity in the hyphosphere was highest for ECM and lowest for 

NMRF. In the presence of both, NMRF and ECM (MIX), the 14C activity was 64% 

lower compared with ECM inoculation alone. This suggests a suppressed C allocation 

via ECM likely due to the competition between ECM and NMRF for nutrients. 

Furthermore, we observed 57% higher chitinase and 49% higher 

leucine-aminopeptidase in the rhizohyphosphere of ECM compared to Control 

treatment. In contrast, β-glucosidase activity (14.3 nmol cm-2 h-1) was highest with 

NMRF. In support of this, enzyme stoichiometry in soil with ECM shifted to a higher 

investment of nutrient acquisition enzymes (e.g., chitinase, leucine-aminopeptidase, 

acid phosphatase) compared to NMRF inoculation, where investment in β-glucosidase 

increased. In conclusion, the alleviation of ECM from C limitation promotes higher 

activities of enzymes involved in the N and P cycle to cover the nutrient demand of 

ECM and host seedlings. In contrast, C limitation of NMRF probably led to a shift in 

investment towards higher activities of C cycling enzymes. 

 

Keywords: 14C imaging, Carbon allocation, Rhizodeposits, Ectomycorrhizal fungi, 

Non-mycorrhizal rhizosphere fungi, Enzyme activity
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1. Introduction 

Up to half of the carbon (C) fixed by plants through photosynthesis is 

translocated to the roots and associated fungi (Orwin et al., 2011; Clemmensen et al., 

2013). About 50% of this translocated C is subsequently transferred into the soil 

(Kuzyakov & Domanski, 2000) through root exudation and turnover of roots and 

fungal hyphae (Zhou et al., 2006; Strand et al., 2008). Root-released C provides 

energy for soil microbial communities, consequently shaping their structure and 

function and thus driving microbial nutrient cycling (Eisenhauer et al., 2010; Cheng et 

al., 2014; Pausch & Kuzyakov, 2018). However, with respect to different trophic 

modes of fungi, knowledge about the relative C flow to soil and subsequent microbial 

functioning is still limited. 

Ectomycorrhizal fungi (ECM) and free-living non-mycorrhizal rhizosphere fungi 

(NMRF) are two major soil fungal guilds in boreal temperate forests with contrasting 

strategies in C resource capture (Read & Perez-Moreno, 2003; Kohout et al., 2013). 

Carbon used for ECM growth and extraradical hyphae extension is mainly plant 

derived (Högberg et al., 2001; Nehls, 2008), although some ECM can absorb organic 

nutrients from soil solution (Chalot et al., 1996; Teramoto et al., 2016). Up to 30% of 

total assimilates of a plant is consumed by their ECM partner (Wu et al., 2002). Most 

of this C is used for the development of the extraradical mycelium and for respiration, 

while only a small amount is released into soil as exudates (Högberg et al., 2001; 

Ekblad et al., 2013). In contrast to ECM, the impact of NMRF on C allocation to the 

soil remains unclear, although some studies showed that NMRF can rapidly 

metabolize organic compounds released from living roots which may probably affect 

plant C allocation to soil (Hannula et al., 2012; Pausch et al., 2016).  

ECM acquire C directly from the host plant and do therefore not depend on soil 

organic matter (SOM) as a C source (Lindahl & Tunlid, 2015; Verbruggen et al., 

2017). The assumption is that ECM play a major role in the soil organic N and P 

degradation to obtain nutrients for their own growth but also to supply their host plant 

(Read & Perez-Moreno, 2003; Smith & Read, 2010; Fernandez & Kennedy, 2016). 

Hence, ECM-associated plants exhibit enhanced exoenzyme activities, specifically 

chitinase and phosphatase compared with non-mycorrhizal plants (Talbot et al., 2008; 

Kluber et al. 2010). In contrast, NMRF are commonly co-limited by C and nutrients 

(Bödeker et al., 2016) due to the rapid utilization of easily available C in soils 

(Högberg et al., 2003; Hopkins et al., 2014). To meet their C and nutrient demand, 

NMRF rely on the excretion of a broad variety of hydrolases and oxidases, including 

proteinases and cellulases, which enables them to access SOM-derived C and 

nutrients (Baldrian, 2008; Baldrian & Valášková, 2008). It can therefore be assumed 

that under ECM mostly N and P targeting enzymes are increased while under NMRF 

also C targeting enzymes are expressed. This can have pronounced effects on soil C 

and nutrient cycling but has not yet been tested experimentally .  
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Another difference between the two fungal groups relates to their spatial 

distribution in soil. While ECM mainly colonize fine roots and spread their 

extraradical hyphae into the rhizosphere and behind (hyphosphere) (Wu et al., 2002; 

Teramoto et al., 2012), NMRF are also abundant in the bulk soil (Aguilar-Trigueros et 

al., 2014). Traditional destructive sampling techniques do not enable considering the 

spatial heterogeneity of nutrients and enzymes in the soil (Pinton et al., 2001). 

However, imaging techniques can be used to gain detailed data on the spatial 

distribution of plant-derived C and of soil enzyme activities. For example, 14C 

imaging has been used to study 14C allocation in the plant-soil system, and to assess 

the radial patterns of root exudates (Wu et al., 2002; Pausch & Kuzyakov, 2011; 

Banfield et al., 2017; Holz et al., 2018). Soil zymography enables the visualization the 

radial gradients of enzyme activities (Spohn & Kuzyakov, 2014; Razavi et al., 2019). 

Here, we combine these techniques (14C imaging and soil zymography) to quantify 

the spatial distribution of recently assimilated C in soil and of exoenzyme activities 

depending on two major functional fungal groups in soils, the NMRF and the ECM. 

We hypothesized that 1) a higher amount of photosynthetic C is allocated to the ECM 

hyphosphere as compared to NMRF, due to the direct support of ECM by the host 

plant; 2) ECM colonization, due to the alleviation in C limitation, increases activities 

of N- and P-related exoenzymes in soil, while NMRF predominantly increase 

C-degrading enzyme activities; 3) ECM hyphae will extend the spatial distribution of 

photosynthetic C in soil, accompanied by an increase in the spatial distribution of 

nutrient-mobilizing enzymes; 4) the competition between ECM and NMRF will 

reduce plant C allocation to the soil and overall soil enzyme activities. 

 

2. Materials and methods 

2.1 Seed germination and plant growth 

Seeds of Norway spruce (Picea abies L.) were sterilized in 30% H2O2 for 20 

min and rinsed with pure H2O for 10 min afterwards. Seeds were germinated on plant 

agar in Petri dishes (in total 320 seeds distributed to 40 Petri dishes) in a cooling room 

at 4 °C for 4 days. After that, the seeds were kept in a dark room at approximately 

21 °C for 10 days. About one third of the germinated seeds were placed in tubes with 

agar for another 7 days before planting them on soil. Afterwards, 80 plants were 

transferred into 50 mL pots with a substrate mixture which consisted of 50% sterilized 

peat and 50% perlite / vermiculate mix (1:1). During the growth in pots, plants were 

watered twice a week with approximately 50 mL H2O per pot and fertilized twice 

with 10 mL of 1% NPK fertilizer solution (4:1:5; Primaster Universaldünger, Stuttgart, 

Germany).  

Given that spruce (Picea abies) occurs as a host of the basidiomycetes 

Amanita muscaria (Sauter and Hager, 1989) and Hebeloma crustuliniforme (Meyer, 

1989). And Cenococcum  geophilum is one  of  the  most  commonly 

encountered soil fungi forming ectomycorrhizal (ECM) associations with 

gymnosperms in diverse habitats throughout  northern  temperate  regions  
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(Trappe,  1964). The fungal species used in this study are listed in Table 1.  The 

species were isolated by the Department of Forest Botany and Tree Physiology 

(Georg-August University of Göttingen, Germany). For a period of two years, all 

fungi were grown in dual pot cultures under similar culture conditions. During that 

time, mycorrhizal fungi were subcultured at three-month intervals in liquid medium to 

keep the cultures clean and viable.  

Three inoculation treatments were established. Tree seedlings were inoculated 

with a mixture of three ECM fungal species (ECM), a mixture of three 

non-mycorrhizal rhizosphere fungal species (NMRF), and a mixture of all ECM and 

NMRF fungal species (MIX), respectively, as listed in Table 1. Twenty remaining 

plants were taken as non-inoculated control (Control). During growth in the pot, 

inoculation was performed three times per each treatment by 10 adding mL of a 

hyphae solution. The hyphae solution was prepared by adding fungal tissue from 

liquid medium into H2O and macerating it with a mixer at 8000 rpm (Ultra-Turrax 

T25, Janke & Kunkel, IKA Labortechnik). 

Table. 1 Fungal types used in the experiment. ECM: ectomycorrhizal fungi, NMRF: 

non-mycorrhizal rhizosphere fungi. 

Fungal type Taxa 

ECM Amanitamuscaria Hebeloma crustuliniforme 
Cenococcum 
geophilum 

NMRF Trichoderma asperellum Trichoderma viride 
Cryptococcus 

terricola 

 

2.2 Experiment setup 

After a growth period of three months at room temperature, 60 plants (15 trees 

per treatment) were transferred to rhizoboxes (20 × 20 × 3 cm). The rhizoboxes were 

divided into two compartments, a root and a hyphae compartment, which will be 

referred to as rhizohyphosphere and hyphosphere in the following. The compartments 

were disassociated by a nylon mesh (20 µm, Taoyuan, China). The nylon mesh 

allowed the penetration of hyphae but prevented the passage of roots. The 

rhizohyphosphere was used to grow host plants that were expected to become 

colonized by the ectomycorrhizal fungi (in the treatments with ECM inoculation). 

Extraradical mycorrhizal hyphae were expected to develop from the 

rhizohyphosphere towards the hyphosphere. The rhizoboxes were filled with 1 kg of a 

sterilized 1:1:1:1 w/w mixture of nutrient-poor soil, fine sand, coarse sand and perlite. 

The boxes were transferred to a climate chamber with 14 and 10 h of day and night 

time, respectively. At day time seedlings were received artificial light with 800 μmol 

m-2 s-1 photosynthetic active radiation (Zhou et al., 2020). Deionized water was added 

to all rhizoboxes every 3 days to keep soil water content at 20%. During the time of 

growth (three months) in the climate chamber, the hyphosphere was watered once a 

week with 5 mL of a factor 10 diluted nutrient solution prepared from the previously 

used nutrition stock solution. In addition, the seedlings were re-inoculated twice a 

week with 10 mL per rhizobox of each corresponding hyphae solution (5 mL in 

hyphosphere and 5 mL in rhizohyphosphere). The hyphae solution was added until the 

mycorrhization of the roots was confirmed under the microscope (Leica M205, Leica 
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Mikrosysteme Vertrieb GmbH, Germany). Totally hyphae solution was added 4 times 

to the rhizobox. During the last three months of incubation, bacteria were inoculated 

in all the rhizoboxes to avoid the contamination of bacteria in air and growth chamber, 

which was obtained from the original soil solution and grown in the medium with 5% 

fungicide. 

 

2.3 14C pulse labeling 

After six months growth, 14CO2 labeling was conducted in a transparent plastic 

chamber. The labeling procedure followed Pausch and Kuzyakov (2011). Briefly, 11.8 

MBq of 14C as Na2
14CO3 (Hartmann Analytic, Brunswich, Germany) was injected into 

chamber from a connecting glass vial. 14CO2 was formed by adding sulfuric acid (5 

mL, 1 M) to the labeled Na2
14CO3, and then pumped into the chamber with 10 h of 

circulation. A fan inside the chamber was used to support the even distribution of the 
14CO2. At the end of labeling, NaOH solution (20 mL, 1 M) was used to capture the 

remaining 14CO2 inside the chamber for half hour. The 14C content of NaOH was 

determined after adding 3 ml of scintillation cocktail (CarlRoth GmbH + Co. KG, 

Karlsruhe, Germany) with the liquid scintillation counter TricarbTM B3180 TR/SL 

(LSC, PerkinElmer Inc., Waltham, MA, U.S.A.). This measurement showed that 

approximately 60% of the added 14C was taken up by seedlings after 10 h labeling. 

 

2.4 Measurements and calculations 

2.4.1 14C imaging and quantification 

One hour after labeling, one 14C image was taken per rhizobix. To get a good 

signal, the imaging plates were attached to the rhizobox (rhizohyphosphere and 

hyphosphere) for 17 h in darkness. 14C imaging information was obtained by using a 

FLA 5100 scanner (Fujifilm) with setting spatial resolution of 100 µm. 

The 14C images were converted to 14C activities by a linear regression which 

describes the relationship between pixel-wise photo-stimulated luminescence (PSL) 

and known imaging activities of 14C (Banfield et al., 2017). Briefly, 0.5 g fresh soil 

sampled from the experiment and added to a sterile 4 ml plastics tube. Next, 100 µL 

of dissolved 14Cactivities (ranging from 0 to 15 Bq µL-1) was added dropwise to the 

plastic tube to adjust soil moisture to 30%, and then transferred to a 24-well microtiter 

plate. To measure its 14C activity, the plates were attached to the imaging plate after 

smoothed the soil surface. Aliquots of 14C-glucose were dissolved in 3 ml of 

scintillation cocktail and determined with the LSC. The 14C activity were normalized 

to the microtiter plate.areas and a linear regression was fitted to the PSL values. 

 

2.4.3 Zymography 

Zymography was applied to visualize four hydrolytic enzymes (Razavi et al., 

2016). The four enzymes (β-glucosidase, BG; acid phosphatase, ACP; chitinase, NAG; 

and leucine-aminopeptidase, LAP) were chosen to reflect key enzymes in the soil C, P 

and N cycle, respectively. Polyamide membrane (20 × 20 cm, pore size of 0.45 mm, 

Tao yuan, China) were saturated with 4-methylumbelliferyl (MUF) and 

7-amido-4-methylcoumarin (AMC) based substrate to visualize the specific enzymes.  
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4-methylumbelliferyl-β-D-glucoside, 4-methylumbelliferyl-phosphate, 

4-methylumbelliferyl-N-acetyl-a-D-glucosaminide, and 

L-leucine-7-amido-4-methylcoumarin hydrochloride were used to detected the 

β-glucosidase, acid phosphatase, chitinase, and leucine-aminopeptidase, respectively. 

Each substrate was separately dissolved in 10 mM MES and TRIZMA buffer for 

MUF and AMC substrate, respectively. The saturated membranes were attached to the 

rhizobox for 60 min. Then carefully lifted off the membrane to the rhizobox, and 

gently removed any attached soil particles with tweezers (Razavi et al., 2016). 

Enzyme detection sequences followed as: chitinase, β-glucosidase, acid phosphatase, 

leucine-aminopeptidase activity, with 1 h interval after each zymography. The 

membranes were placed under ultraviolet (UV) light with 355 nm wavelength) in 

darkness, and zymogram was taken by camera (EOS 5D, Canon). During zymography, 

the camera and the UV light was fixed, the distance between membranes and camera 

was kept same. The grey scale values transferred to the enzyme activities was 

calibrated using membranes (2 × 2 cm) saturated with a range of concentrations of 

corresponding products, i.e. MUF and AMC (0. 0.01, 0.2, 0.5, 1, 2, 4, 6, 10 mM). 

These membranes were imaged under same UV light and environment as samples. 

    The zymograms were transferred into a 16-bit gray scale by ImageJ (Schneider et 

al., 2012). The light variations and camera noise were corrected by the images taken 

in darkness (Razavi et al., 2016). The average grey value of the blank membrane (only 

with buffer) was viewed as background, and then subtracted from all samples (Zhang 

et al., 2019). The calibration line obtained for each enzyme was used to convert gray 

values of each zymography pixel into enzyme activities (Liu et al., 2017). 

 

2.4.4 Plant and soil sampling 

After zymography, seedlings were pulled out from the rhizobox and soil samples 

were carefully collected directly from the rhizohyphosphere and hyphosphere. 

Seedlings (shoots and roots) and soil (rhizohyphosphere and hyphosphere) were 

oven-dried (105 °C, 5 days) and then weighed. Afterwards, the dry plant biomass and 

soil were homogenized with a ball mill before further analysis. Soil microbial biomass 

C (MBC) and dissolved organic C (DOC) in rhizohyphosphere and hyphosphere soil 

was extracted with K2SO4 (32 mL, 0.05 M ) according to Vance et al., (1987) and 

Zhou et al. (2020). The 14C activity of fumigated and non-fumigated extracts was 

determined by mixing 1 mL of the K2SO4 solution with 4 mL scintillation cocktail and 

analyzed with a LSC. The 14C-MBC was determined as the difference between 

fumigated and non-fumigated K2SO4-extractable 14C (Zang et al., 2020). 

The 14C amounts of plant and soil materials were measured by oxidization in an 

Oxymat OX500 Biological Oxidiser (RJ Harvey Instrument Corp., Hillsdale, USA), 

with 14CO2 collected in an Oxosol scintillator (C400, Zinsser). Afterwards, the 14C 

activity was determined by LSC with automated quench correction. 

 

2.5 Calculations 

The total 14C recovery in the plant-soil system was the sum of 14C amount in 

plants, rhizohyphosphere soil and hyphosphere soil: 

Total 14C recovered = 14C-shoot + 14C-root + 14C-rhizohyphosphere + 
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14C-hyphosphere                    (1) 

The 14C incorporation (as proportion of total 14C recovered) of shoots, roots, 

rhizohyphosphere soil, hyphosphere soil, MBC, and DOC were calculated as follows 

(Zang et al., 2020): 

)2(%100
cov

C
14

14

X

14 =
eredreCTotal

C
ionincorporat X  

where X is the corresponding pool, such as shoots, roots, rhizohyphosphere soil, 

hyphosphere soil, MBC, and DOC. 

To quantify the gradients of 14C and enzyme activities, corrected 14C images and 

zymograms were converted to 16-bit grey values and imported to ImageJ as 

mentioned above. Root segmentation was easy to perform because of the remarkably 

contrasting color between soil and roots. We selected 4 single root segments of each 

tree seedling that showed minimal overlap with other roots. Then, we drew a line in 

an angle of about 90° to the root and moved the line 10 times for each of the 4 roots 

with about 1 cm distance. The gray values on this line were extracted and were 

converted to 14C and enzyme activity based on the corresponding calibration curves. 

Generally, 10 analyses along one main root were performed. Then 40 different lines 

were chosen from each zymograme randomly, and the average converted 14C and 

enzyme activity of these replicates was plotted against distance from root (Zhang et 

al., 2019). To quantify the radial pattern of 14C and enzyme activity, a logistic curve 

(four-parameter) was used to 14C and enzyme activity as a function of distance from 

the root surface (Razavi et al., 2016). We defined the rhizosphere extension (i.e. 14C 

and enzyme activities) as the radial gradient from the root up to activities of at least 

20% higher than the constant level of the regression curve (Fig. 4 and Fig. S3) (Zhang 

et al., 2019).  

The 14C and specific enzyme activities in the rhizohyphosphere and hyphosphere 

soil for each treatment were calculated as the average of sum of pixel-wise 14C and 

enzyme activities in the rhizohyphosphere and hyphosphere soil after subtraction of 

their background, respectively. The area with distinguished intensity color contrast 

with surrounding area were considered as 14C and enzyme hotspots (Duan et al., 

2019).14C and enzyme activities exceeding 20% of mean corresponding activity of the 

rhizohyphosphere soil were defined as 14C and enzyme hotspots, respectively (Liu et 

al., 2017). The hotspots areas were expressed as the percentage of total surface area of 

the rhizohyphosphere. In addition, to avoid effects of different photosynthesis and 

root biomass between the treatments on 14C allocation into the rhizohyphosphere, the 

specific 14C activity was calculated as follows: 

Specific 14C activity = 14C activity / 14C-root                          (3) 

where 14C activity in the rhizohyphosphere soil is measured by imaging, and 
14C-root is the amount of 14C in root biomass measured by LSC. 

Enzyme ratios (BG / (NAG + LAP)) and (BG / ACP) represent the relative C or 

nutrient (N and P) limitations (Sinsabaugh et al., 2008). 

 

2.6 Statistical analysis 

All data are presented as the means of four replicates ± SE (n = 4). 
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Shapiro-Wilk's test and Levene test were used to check the normality and 

homogeneity. The log10 transformed to used to conform the assumption of normality 

before further analysis if the data were non-normally distributed. A one-way ANOVA 

(with Tukey test) was used to identify differences between treatments by SPSS 

version 19.0 (SPSS Inc., USA). 

3. Results 

3.1 Plant biomass  

Ectomycorrhizae (ECM) colonization caused a 50% reduction in root biomass 

compared to uninoculated (Control) or plants inoculated with non-mycorrhizal 

rhizosphere fungi (NMRF) (p < 0.05, Table. 2). When co-inoculated with ECM and 

NMRF (MIX), root biomass was less reduced than for plants inoculated with only 

ECM, but was still 20% lower than that for the control (Table 2). Plants with solely 

NMRF inoculation showed no changes in root biomass. Contrary to the plant biomass 

pattern, ECM colonization increased the root-to-shoot ratio up to 2.8, which was the 

highest among the treatments (p < 0.05, Table. 2).  

Table. 2 Shoot biomass, root biomass, and the ratio of root to shoot of European spruce (Picea 

abies L.) without inoculation (Control), inoculated with non-mycorrhizal rhizosphere fungi 

(NMRF), inoculated with ectomycorrhizal fungi (ECM), and inoculated with ECM and NMRF 

(MIX). Values are averages (±SE) of four replicates. Letters show significant differences (p < 

0.05). 

 Shoot biomass (g) Root biomass (g) Root: Shoot 

Control 0.26±0.02a 0.54±0.04a 2.038±0.118b 

NMRF 0.22±0.01ab 0.52±0.06a 2.180±0.215b 

ECM 0.13±0.01b 0.33±0.01b 2.704±0.154a 

MIX 0.18±0.02ab 0.41±0.01ab 2.356±0.221ab 

 

3.2 Assimilated 14C allocation in the plant-soil system 

Regardless of the inoculation treatment, plant roots were the main sink for 

assimilated CO2, incorporating more than 70% of total 14C recovered in the plant-soil 

system (Fig. 1b). The 14C recovery in soil (Fig. 1c) and microbial biomass (Fig. S1c) 

showed a similar pattern with lowest 14C allocation to belowground pools for Control 

and NMRF inoculation, intermediate allocation for MIX, and highest 14C allocation 

for ECM. The 14C released into the rhizohyphosphere with ECM inoculation was 2-3 

times higher compared to Control (p < 0.05, Fig. 1c), whereas 14C allocation to the 

rhizohyphosphere inoculated with NMRF was only around 2.3%. In soils with 

co-existence of ECM and NMRF, 14C allocation to the rhizohyphosphere was lower 

than that for soil with ECM inoculation, but it was on average 90% higher compared 

to plants without inoculation or inoculated with NMRF (Fig. 1c). Moreover, ECM 

inoculation increased the 14C allocation to the hyphosphere compared to Control (p < 

0.05); however, there was no difference in 14C allocation to the hyphosphere between 

Control and NMRF inoculation (p > 0.05, Fig. 1d). 14C incorporation into the soil 

microbial biomass and into the DOC pool represented < 1% of the total 14C recovery 

(Fig. S1). Similarly to the 14C allocation to soil, ECM inoculation increased 14C 

allocation to microbial biomass in both the rhizohyphosphere and hyphosphere soil 

compared to Control (p < 0.05), whereas NMRF inoculation did not increase 
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14C-MBC relative to Control (p > 0.05). Importantly, the 14C allocation to DOC was 

highest for soils inoculated with both types of fungi (Fig. S1).  

 

Fig. 1 The allocation of photosynthetically-fixed C, as a percentage of the total 14C recovered, to 

shoots (a), roots (b), rhizohyphosphere soil (c), and hyphosphere soil (d) of European spruce 

(Picea abies L.) without inoculation (Control), inoculated with non-mycorrhizal rhizosphere fungi 

(NMRF), inoculated with ectomycorrhizal fungi (ECM), and inoculated with ECM and NMRF 

(MIX). Values are averages (±SE) of four replicates. Note the difference in y-axis scale and that 

some do not start from 0. 

 

Fig. 2 14C phosphor images of the root system of European spruce (Picea abiesL.) without 

inoculation (control), inoculated with non-mycorrhizal rhizosphere fungi (NMRF), inoculated 

with ectomycorrhizal fungi (ECM), and inoculated with ECM and NMRF (MIX) in the 

rhizohyphosphere soil (20 × 10 cm). Side color scale is proportional to the 14C activities (Bq 

mm-2). 

 

3.3 Spatial distribution of plant-derived 14C  

The plant C allocation and spatial distribution was visualized by 14C imaging, 

with the red colors indicating high 14C activity (Fig. 2). 14C activities in 

rhizohyphosphere inoculated with ECM or NMRF (4.3-4.8 Bq mm-2) were much 

higher than in Control (p < 0.05, Fig. 3a). Compared with Control, the 14C specific 

activity in rhizohyphosphere was 90% and 200% higher for plants inoculated with 
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NMRF and ECM, respectively (p < 0.05, Fig. 3c). When co-inoculated with ECM and 

NMRF, the specific 14C activity in the rhizohyphosphere was 0.88 Bq mm-2 g-1 root, 

decreased by 35% compared to ECM inoculation (p < 0.05, Fig. 3c). In the 

hyphosphere, activity with ECM inoculation was 0.25 Bq mm-2, 8-20 times higher 

compared to Control or NMRF inoculation (p < 0.05, Fig. 3b). This demonstrates that 

extraradical mycelium penetrated from the root to the hyphosphere. In soils with both 

types of fungi, 14C activity in the hyphosphere (0.12 Bq mm-2) decreased 2-fold 

compared to ECM inoculation (p < 0.05, Fig. 3b). Interestingly, the 14C activity 

hotspot area in the rhizohyphosphere was much larger under plants with fungi 

inoculation (0.17-0.23%) than under Control plants (0.08%, Fig. 3d). 

 

Fig. 3 14C activity in the rhizohyphosphere soil (a), hyphosphere soil (b), specific 14C activity (c), 

and percentage of hotspots in rhizohyphosphere soil (b) of European spruce (Picea abies L.) 

without inoculation (Control), inoculated with non-mycorrhizal rhizosphere fungi (NMRF), 

inoculated with ectomycorrhizal fungi (ECM), and inoculated with ECM and NMRF (MIX). To 

avoid effects of photosynthesis and root biomass on 14C allocation into the rhizohyphosphere, the 

14C activity in the rhizohyphosphere from imaging were normalized by the 14C activity in the root 

biomass. Values are averages (±SE) of four replicates. Letters show significant differences (p < 

0.05). 

 

Radial distributions of 14C activities along the main roots as a function of 

distance from the root surface are given in Fig. 4. The inoculated fungi affected the 
14C activity in the rhizohyphosphere. The activity at the root surface was on average 

0.8 Bq mm-2 for plants inoculated with ECM (ECM and MIX), which was 2-2.5 times 

higher than that without ECM (NMRF and Control, Fig. 4). Besides higher 14C 

activity, plants with ECM inoculation transport plant-derived 14C components to a 

slightly broader rhizosphere area (2.0 mm away from root surface) compared with 

plants without ECM inoculation (1.6 mm, Fig. 4).  
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Fig. 4 Vertical 14C gradients as a function of distance from the root surface of European spruce 

(Picea abies L.) without inoculation (control), inoculated with non-mycorrhizal rhizosphere fungi 

(NMRF), inoculated with ectomycorrhizal fungi (ECM), and inoculated with ECM and NMRF 

(MIX). Values are averages (±SE) of four replicates. Letters show significant differences (p < 

0.05). 

 

3.4 Spatial distributions of enzyme activity 

Zymography was used to visualize and evaluate four classes of enzyme activities 

involved in C, N and P cycles in the rhizosphere of plants inoculated with various 

fungal groups (Fig. S2). Chitinase and leucine-aminopeptidase activities were 57 and 

49% higher in soil with ECM compared to soil with NMRF-inoculation, respectively 

(p < 0.05, Fig. 5a). In contrast, β-glucosidase in the soil with NMRF inoculation was 

20% and 59% higher compared with MIX and ECM inoculation, respectively. The 

hotspots area of chitinase and leucine-aminopeptidase were broader in 

rhizohyphosphere with ECM (ECM, MIX) versus NMRF or Control (Fig. 5b). 
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Fig. 5 Enzyme activity (a) and hotspot area (b) of β-glucosidase (BG), chitinase (NAG), 

leucine-aminopeptidase (LAP), and acid phosphatase (ACP)  in rhizohyphosphere soil of 

European spruce (Picea abies L.) without inoculation (Control), inoculated with non-mycorrhizal 

rhizosphere fungi (NMRF), inoculated with ectomycorrhizal fungi (ECM), and inoculated with 

ECM and NMRF (MIX). Values are averages (±SE) of four replicates. Letters show significant 

differences (p < 0.05). 

 

The C/N acquisition ratio was about 150% lower in soils with ECM compared to 

NMRF and Control (p < 0.05, Fig. 6). There was no significant difference in C/N ratio 

between ECM and MIX treatments. Similarly, the C/P acquisition ratio was 30-94% 

smaller for ECM than that for any other treatments (p < 0.05, Fig. 6). 

The rhizosphere extent of enzyme activities involved in the N and P cycle, e.g., 

chitinase and acid phosphatase, was broader for ECM (2.9-3.4 mm) than for NMRF 

treatment (1.6-1.9 mm) (Fig. S3a, c, d; Fig. S4). In contrast, the rhizosphere extent of 

β-glucosidase for ECM was 36% smaller than under NMRF inoculation (p < 0.05, Fig. 

S4).  

 

Fig. 6 Enzyme C (β-glucosidase, BG) to N (the sum of chitinase and leucine-aminopeptidase) (a), 

and C to P (acid phosphatase, ACP) acquisition ratio (b) in rhizohyphosphere soil of European 

spruce (Picea abies L.) without inoculation (Control), inoculated with non-mycorrhizal 

rhizosphere fungi (NMRF), inoculated with ectomycorrhizal fungi (ECM), and inoculated with 

ECM and NMRF (MIX). Values are averages (±SE) of four replicates. Letters show significant 

differences (p < 0.05). 

 

4. Discussion 

4.1 Ectomycorrhizal and non-mycorrhizal rhizosphere fungi modify photosynthetic 

carbon allocation belowground 

The reduced shoot and root biomass of plants with ECM colonization compared 

to the other treatments was probably caused by high C investment into extraradical 

mycelium, a strong sink for C allocation belowground (Conjeaud et al. 1996; Wu et 

al., 2002). This could help to explain the higher 14C activity in the hyphosphere soil 
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of ECM compared to other inoculations (Fig. 1d, 3b). As the 14C incorporation into 

roots was similar in ECM inoculation and in Control soil (Fig. 1b), we conclude that 

the extra photosynthetic C is used for exudation of low molecular weight exudates or 

for production and secretion of exoenzymes (Qu et al., 2004). As a consequence, 

more 14C remained in the soil under ECM inoculation versus Control (Fig. 1c). In 

this study, the tissue of the ECM hyphae themselves may have contributed to the 

high 14C activity in the hyphosphere (Fig. 3b) because after destructive sampling the 

soil sample also contains fungal structures.   

Similar to ECM, NMRF inoculation increased plant C allocation belowground 

relative to that in the Control, as indicated by the higher specific 14C activities in the 

rhizohyphosphere with NMRF (Fig. 3c). This agrees with earlier studies that NMRF 

incorporate recently fixed plant C and are therefore major consumers of 

rhizodeposits (Ballhausen & Bore, 2016; Pausch et al., 2016). On the one hand, 

NMRF could obtain root-derived C via antagonistic interactions, caused by host 

defense due to the ability of NMRF to disrupt living plant cell walls 

(Aguilar-Trigueros et al., 2014; Voříšková et al., 2014). In particular, Hoeksema and 

Kummel (2003) suggested that plants could promote the mortality of root tips 

colonized by less beneficial fungi (i.e. Trichoderma). Note, two of the NMRF taxa 

we inoculated - Trichoderma asperellum and Trichoderma viride, have 

root-penetrating abilities, which may enable them to feed on assimilated C before 

released by roots (Harman et al., 2004; Field et al., 2015). Hence, part of the 14C 

allocated to NMRF may be independent of rhizodeposition or may be directly 

consumed during the process of rhizodeposition.  

The radial rhizosphere extension of 14C-rhizodeposits ranged from 1.4-2.1 mm, 

which is comparable to previous studies (Kuzyakov et al., 2003; Hafner et al., 2014; 

Holz et al., 2018). In the rhizohyphosphere soil, plants with ECM inoculation showed 

a much broader extent of 14C than those with NMRF inoculation, but released the 

rhizodeposits within a smaller hotspot area (Fig. 3c,d). Hotspots of root-derived C 

were highly concentrated in small areas around the root tips for ECM-inoculated tree 

seedlings (Fig. 2), where the ECM often form a hyphal sheath covering the root tips 

(Teromoto et al., 2012). However, mycorrhizal hyphae can displace plant C beyond 

the root zone (Smith & Read, 2008), leading to a wider spread and even distribution 

of C and, hence, to a smaller 14C hotspot area in soil inoculated with ECM (Fig. 3d). 

Furthermore, the ECM extraradical mycelium secrets 14C photosynthates not only 

through radial paths from the colonized ECM root tips but also lateral ones in hyphal 

anastomosis, then 14C photosynthates is transformed freely in every direction through 

sites of hyphal branching (Teromoto et al., 2016). As a consequence, the rhizosphere 

extent defined by rhizodeposition was broader for plants inoculated with ECM 

compared to others (Fig. 4). Overall, both ECM and NMRF increased the 

belowground C sink strength and modified the C allocation pattern in plant-soil 

systems.  

4.2 Plant photosynthetic C drives rhizosphere enzyme activities 

Enzyme activities and their spatial extension in the rhizosphere were strongly 

affected by the type of fungi present (Fig. 5, S4). ECM are supplied with C by their 
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host and are generally rather nutrient- than C-limited (Smith & Read, 2010). 

Accordingly, the increase in the radial extension of photosynthetic C around roots is 

of particular importance because it expands the soil volume in which these root 

exudates can interact with microorganisms (Holz et al., 2018). The use of these 

exudates by microorganisms as C and energy resources implies an increase in the soil 

volume for nutrient uptake. We therefore observed such a wider rhizosphere 

extension of chitinase and acid phosphatase for soils inoculated with ECM (Fig. S4). 

This was also supported by a positive correlation between the extent of 

rhizodeposition and rhizosphere extension of acid phosphatase (p < 0.05, Fig. S5). 

Besides in exchange nutrients with their hosts for C, the higher C content in the 

extraradical mycelium of ECM (Trudell & Edmonds, 2004; Trocha et al., 2016) also 

suggests a higher nutrient demand of ECM compared to NMRF. Accordingly, more 

N-degrading enzymes were exuded by the extraradical mycelium to hydrolyse SOM 

to acquire nutrients for the growth of extraradical mycelium. This is indicated by the 

lower ratio of enzyme activities of C- to N-cycle related enzymes (C:N) and C- to 

P-cycle related enzymes (C:P) in ECM versus NMRF or MIX treatments (Fig. 6a, b). 

Unlike ECM, NMRF not only increased belowground C inputs (Fig. 3c) but also 

invested more of this C resource in β-glucosidase, as indicated by a higher activity of 

β-glucosidase activity in the rhizohyphosphere than in any other treatment (Fig. 5a). 

This could be explained by the fact that the direct exudation by plants may be 

insufficient to meet the growth demand of the entire hyphal network of NMRF 

(Hobbie & Horton, 2007) because of the highest hyphal density in soil (Söderström, 

1979). Therefore, more β-glucosidase (and presumably also other C-cycle involved 

enzymes) were released to mineralize native SOM and dead root tissue to acquire 

energy and C for their hyphal growth. Such an explanation, however, requires further 

studies to investigate the link between hyphae density, microbial community 

composition, C-degrading enzyme-related gene expression, and the molecular 

composition of root exudates as well as their consumption.  

The target enzymes released by ECM and NMRF were therefore different due to 

the acquisition of their most limited or required elements - either for their own tissue 

(Allison & Vitousek, 2005) or for maintaining their symbiotic relationship (Read & 

Rerez-Moreno, 2003). 

4.3 Competition between NMRF and ECM affects plant C allocation  

Consistent with our fourth hypothesis, joint NMRF and ECM inoculation 

reduced C allocation belowground compared to ECM inoculation alone. This points to 

a competition of ECM and NMRF for the same nutrients ((Lindahl et al., 2001; 

Bödeker et al., 2016; Clemmensen et al., 2016). In our study, ECM growth is likely 

suppressed due to the competition with NMRF for soil nutrients. During the 

competitive processes, ECM may produce less or lose parts of their hyphal biomass 

(mostly 14C-enriched root tips). As a consequence,14C activities were lower in the 

hyphosphere soil of MIX compared with ECM treatment (Fig. 3b). However, even 

though competition exists, ECM remain the winner of this battle, as indicated by a 

higher 14C activity in the hyphosphere for MIX than for NMRF inoculation (Fig. 1d, 

3b). This favorable position of ECM reflects the fact that they gain high proportions 
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of their C in an available form directly from plants, while NMRF only access the 

limited C resources from SOM, which has to be mobilized by “costly” enzyme 

production (Fernandez & Kennedy, 2016). Moreover, ECM can also capture nutrients 

released from SOM decomposition by saprotrophic fungi (Lindahl et al., 1999; 

Cairney & Meharg, 2002). This enables them to profit from their energy and C 

investment into enzyme production. Finally, under certain conditions, ECM were 

found to release antibiotics to limit NMRF activities (Bödeker et al., 2016) - a process 

we were unable to detect in this experiment. Nonetheless, this range of processes 

probably helped ECM to outcompete NMRF when living in competition for C and 

nutrients. Such an explanation about the competition between ECM and NMRF, 

however, requires further studies to investigate the links between fungal community 

composition and 14C activity as well as enzyme activity in the soil inoculated with 

both fungal species. 

 

Fig. 7 Graphical abstract of C allocation belowground and specific enzyme production from plants 

inoculated with ectomycorrhizal (ECM) and non-mycorrhizal rhizosphere fungi (NMRF). Orange 

arrow indicates C allocated from above- to belowground pools, arrow width indicates C flow 

strength. Blue arrow: nutrient flow from soil organic matter decomposition by specific enzymes 

(e.g., C- and N-degrading enzymes). 

 

Conclusions 

Both ectomycorrhizal (ECM) and non-mycorrhizal rhizosphere fungi inoculation 

(NMRF) induced a higher C allocation belowground, due to the direct linkage 

between the host and extraradical mycelium for ECM, and the indirect uptake of 

exudates by NMRF. Higher N-acquiring enzyme activities were observed in the 

rhizohyphosphere soil with ECM inoculation compared with the control and the 

NMRF inoculation. This suggests that such changes may be regulated by the supply 

of photosynthates from the host plant. In contrast, NMRF produced 59% higher 

β-glucosidase compared to plants inoculated with ECM, presumably because NMRF 
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consumed plant-derived C efficiently whereas ECM received plant C directly from 

host plants. The ECM growth decreased when co-inoculated with NMRF, which was 

accompanied by a reduced 14C movement from the rhizohyphosphere to hyphosphere 

soil. Nonetheless, similar rhizosdeposit allocations into the hyphosphere for ECM and 

MIX inoculations indicate that ECM outcompeted NMRF, which could slow down 

SOM decomposition and lead to a potential C storage in forest soils. Overall, Picea 

abies colonized with ECM and NMRF both induced an increased root exudation and 

promoted enhanced enzyme activities, but ECM focused on nutrient mobilization 

whereas NMRF presence stimulates enzymes of the C cycle. This suggests that shifts 

in the fungal community composition of mycorrhizal plants could induce changes in 

the quality and quantity of rhizodeposition, thereby potentially affecting both soil C 

and soil nutrient cycles.  
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Supplementary 

 

Fig. S1 Microbial biomass C (MBC, a), dissolved organic C (DOC, b), and 14C incorporated into 

MBC (c) and DOC (d) in the soil planted with European spruce (Picea abies L.). 

 

Fig. S2 Profiles of the enzyme activity distribution as a function of the distance from the root 

surface towards the surrounding soil. 
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Fig. S3 Rhizosphere extent of β-glucosidase (BG) (a), chitinase (NAG) (b), 

leucine-aminopeptidase (LAP) (c), and acid phosphatase (ACP) (d)). 

 

 

Fig. S4 A correlation between extent of rhizodeposition and the extent of acid phosphatase of 

European spruce (Picea abies L.). 
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Abstract 

The Paris Climate Agreement is pursuing efforts to limit the increase in global 

temperature to below 2 °C above the pre-industrial level. Therefore, there is an urgent 

need to know whether microbial self-regulation is able to maintain the stability of soil 

organic carbon (SOC) under warming approaching and exceeding 2 degrees. Here, we 

tested the self-regulatory mechanisms mediating soil C and N cycling through 

microbial and enzymatic functional traits by long-term warming field study and 

combined the results with extended literature review. The SOC and total nitrogen (TN) 

remained stable at warming below 2 °C, while stronger warming (by 2-4 °C) did not 

affect SOC but it increased the TN content. Possible explanation of increased TN was 

linked to contrasting response of kinetic parameters of enzymatic and microbial 

growth functional traits. Warming induced faster microbial growth and turnover 

(indicated by 71% higher microbial specific growth rates, by 18h and 3h shorter lag- 

and generation time, respectively). In contrast, warming reduced catalytic efficiency 

and slowed down the enzymes-mediated turnover of oligosaccharides and 

polypeptide-like compounds (indicated by 1-1.5 times decreased affinity to substrate 

of β–glucosidase and leucine aminopeptidase). As fast-growing microorganisms are 

not able to maintain high level of population for a long time, the total microbial 

biomass decreased under warming by 32%. Lower enzymatic efficiency and slower 

turnover of organic residues under warming thus may cause accumulation of 

microbial necromass. Such a self-regulation by tiny but powerful microbial controller 

should be included in the models to improve the prediction of soil C and N feedbacks 

to climate warming.  

 

Keywords: Carbon cycling, Enzyme kinetics, Microbial growth rate, Warming 

magnitude
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1. Introduction 

Global temperatures are predicted to rise by 1.0 to 4.8 °C at the end of twenty-first 

century (IPCC, 2013; O'Neill et al., 2017), with high risk to accelerate soil organic 

carbon (SOC) mineralization (Emmett et al., 2004; Davidson & Jassens, 2006; 

Alvarez et al., 2018). Given that soils store vast amounts of carbon (C), any small 

reduction in SOC would result in strong positive feedback on atmospheric CO2 and 

exacerbate climate change (Heimann & Reichstein, 2008). The majority of field 

experiments investigating the effects of climate warming on soil C cycling, however, 

have either exceeded the predicted temperature increase (> 4 °C) or were based on 

relatively short-term warming (< 5 years) (Allison et al., 2008; Bradford et al., 2008; 

Melillo et al., 2011; Rousk et al., 2012; Contosta et al., 2015). Therefore, studies with 

more realistic future temperature regimes conducted over longer periods are required 

for accurate prediction of the response of soil C and nitrogen (N) cycling to climate 

change. Specifically, the Paris Climate Agreement aims to limit global mean 

atmosphere warming to no more than 2 ℃ above pre-industrial levels. There is 

increasing evidence that climate change will be faster than projected, indicating that 

soils face accelerating damage (Xu et al., 2018). Thus, it is important to examine 

microbial functional traits under the 2 ℃ target and to evaluate what will happen if 

the soils bear greater warming.  

Warming-induced acceleration of SOC mineralization is the result of microbial 

growth on heterogeneous organic substrates and is strongly dependent on the size and 

functional traits of the active microbial fraction (Schlesinger & Andrews, 2000; Chen 

et al., 2014). However, the predictions on whether microorganisms will grow faster or 

slower under climate warming remain controversial. As an immediate response, 

warming may accelerate the turnover of the fast-growing microbial population 

(Blagodatskaya et al., 2010), whilst the microbial growth rate may reduce due to the 

rapid exhaustion of available organic C under long-term warming (Bradford et al., 

2008). Therefore, the question ‘How will long-term warming (i.e. < 2 °C and > 2 °C 

warming for > 5 years) affect soil microbial physiology and in turn, how will this 

feedback on C cycling?’ still remains to be satisfactorily answered.  

Temperature strongly affects microbially-mediated enzymatic processes (Conant et al., 

2011; Weedon et al., 2013) by altering the availability of energy and nutrients in soil 

(Allison, 2006; Sinsabaugh et al., 2009). Enhanced inputs of plant C with warming 

(Bai et al., 2010; Yin et al., 2013), could induce greater enzyme production due to the 

increased nutrient demand to meet microbial stoichiometric requirements (Conant et 

al., 2011). This enhanced enzyme production subsequently causes an increase in the 

maximal reaction rate (Vmax), which can be counterbalanced by the reduced substrate 

affinity of the enzyme (increased Km) with increasing temperature (Blagodatskaya et 

al., 2016). Shifts in the enzyme’s intrinsic properties (Km) could then, in turn, lead to 

changes in SOC decomposition, C storage, and other biological processes 
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(Sinsabaugh et al., 2002; Waldrop et al., 2004). It is not clear, however, to what extent 

the affinity of exo-enzymes towards substrates will be altered under < 2 °C and > 2 °C 

warming in the long term.  

Theoretical models have suggested that the stoichiometric imbalance between 

microorganisms and organic compounds in soil is the major cause for C or N 

limitation of SOC decomposition (Manzoni et al., 2008; Kaiser et al., 2014). Warming 

could stimulate plant nutrient uptake and root exudation, resulting in decreased soil 

nutrient availability but in increased C availability (Zak et al., 2003; Bird et al., 2011; 

Lin et al., 2018). These changes in C and N pools with warming could result in a 

microbial stoichiometric imbalance, thereby inducing the specific release of enzymes 

to liberate growth-limiting elements from soil (Mooshammer et al., 2014b). However, 

it remains highly uncertain whether microorganisms maintain their stoichiometric 

ratios in soil and subsequently influence SOC decomposition under different warming 

regimes. This knowledge gap limits our ability to build mechanistic mathematical 

models that can accurately simulate how soil ecosystems will respond to climate 

warming.  

Therefore, we aimed to: 1) estimate the changes in microbial functioning and enzyme 

kinetics after 8 years of warming; 2) link the stoichiometric ratios of soil and 

microorganisms; and 3) quantify the changes of soil microbial and enzymatic process, 

as well as their consequences for C and N pools depending on the magnitude of 

warming (< 2 °C and > 2 °C). We hypothesized that climate warming would stimulate 

microbial growth rate, as well as enzyme activities, reduce soil C and N pools, and 

thereby shrinking soil C sequestration due to plant-derived labile C input under 

warming. We also predicted that this positive response of soil C and N pools would 

depend on the magnitude of warming. 

 

2. Materials and methods 

2.1. Site description and sampling 

This study was conducted on an on-going (since August 2010) long-term warming 

experiment, located in the northern part of Göttingen, Lower Saxony, Germany 

(51°33′29.28′′N, 9°55′59.46′′E) in which soil temperature has been manipulated using 

heating cables. The mean annual temperature and precipitation were 9.5 °C and 712 

mm, respectively (Siebold & von Tiedemann, 2012). The soil is classified as a silt 

loam textured Haplic Luvisol under an arable cropping regime. The winter oilseed 

rape cultivar Falcon (NPZ, Hohenlieth, Germany) and the breeding line SEM 

05–500256 (SW Seed, Sweden) were sown by hand in a split plot design in August, 

and harvested in November (Siebold & von Tiedemann, 2012). The three heating 

regimes included: (1) ambient soil temperature, (2) ambient +1.6 °C, and (3) ambient 

+3.2 °C. The experimental site consisted of 12 plots (2 m × 2.5 m each) arranged in 

two rows. Heating cables were buried at a depth of 10 cm in each plot, also in the 
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control plots, to ensure equivalent physical conditions. Detailed information about the 

set-up of the warming plots and experimental sites can be found in Siebold & von 

Tiedemann (2012) and Lukas et al. (2018).  

Soil samples were collected from the upper 10 cm of ambient, +1.6 °C and +3.2 °C 

plots in October 2018. In each of the four field replicates, five sub-samples were 

pooled to form a mixed soil sample. Once collected, samples were hand-mixed and 

any visible roots and stones manually removed. Soil samples were stored in 

gas-permeable plastic bags at 10 °C (approximate field temperature during sampling) 

until the start of further laboratory experiments (within 5 days of collection).  

 

2.2. Soil basic and microbial properties analyses 

Total organic C and N were determined on oven-dried, ground soil using a 2100 

TOC/TIC analyzer (Analytik Jena, Jena, Germany). Soil pH was measured in a 1:2.5 

(w/v) distilled water extract using a standard calomel electrode (Hanna Instruments 

Ltd., Leighton Buzzard, UK).  

Soil microbial biomass C (MBC) and N (MBN) were determined on fresh soil 

samples using the chloroform fumigation-extraction procedure of Vance et al. (1987) 

with minor modifications. After destructive sampling, the soil was carefully mixed 

and a 5 g sub-sample directly extracted for 1 h using 20 ml of 0.05 M K2SO4. Another 

5 g of soil was fumigated with chloroform for 24 h and extracted in the same manner. 

Total C and N concentration in extracts were measured using a 2100 TOC/TIC 

analyzer (Analytik Jena, Germany). MBC and MBN were calculated by the difference 

between extracted C and N from fumigated and non-fumigated soil samples with a 

KEC and KEN factor of 0.45 and 0.54, respectively (Wu et al., 1990). The extracted C 

and N contents from non-fumigated soil samples were considered as dissolved 

organic C (DOC) and dissolved organic N (DON), respectively (Jones & Willett, 

2006). Soil mineral N (NO3
- + NH4

+) was measured colorimetrically on the 

non-fumigated soil extracts using the method of Mulvaney et al. (1996).  

The C:N imbalance between resources and microorganisms (both the total form  

SoilC:N / MBC:N) and labile form (DOC:N / MBC:N) were calculated as the ratio of the 

resource C:N ratios (SoilC:N and DOC:N) normalized to MBC:N (Chen et al., 2018). 

Higher C:N imbalance correspond to lower N availability relative to C availability 

and could therefore be used as a proxy of microbial N limitation (Wild et al., 2012; 

Mooshammer et al., 2014a). The ratio of DOC to DON was presumed a better 

representative of the available microbial resource stoichiometry than the bulk soil C:N 

ratio because the dissolved C and N are more easily available for microbial 

communities (Wild et al., 2012; Chen et al., 2018).  

 

2.3. Kinetics of substrate-induced growth respiration 

The substrate-induced growth respiration (SIGR) approach (Panikov, 1995) was used 
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to distinguish between the total and active biomass fractions, as well as to determine 

microbial specific growth rate and lag-time before growth (Blagodatsky et al., 2014). 

It has to be noted that although C substrate addition is required for the SIGR approach, 

all kinetic parameters analyzed by SIGR represent the intrinsic features of the 

dominant microbial populations before substrate addition.  

Field-moist soil (1 g) was amended with a mixture containing 10 mg g-1 glucose, 1.9 

mg g-1 (NH4)2SO4, 2.25 mg g-1 K2HPO4, and 3.8 mg g-1 MgSO4.7H2O. Soil samples 

were then placed in a Rapid Automated Bacterial Impedance Technique bioanalyser 

(RABIT; Microbiology International Ltd, Frederick, MD), for measuring CO2 

emission at their corresponding field temperature (10 °C as ambient temperature, 

+1.6 °C, and +3.2 °C). Firstly, we incubated four soil samples at each temperature for 

2 days at 45% water holding capacity (WHC) to reduce the impact of the initial 

disturbance from handling. To measure substrate-induced respiration, a mixture of 

glucose and nutrients was then added and the samples incubated for a further five 

days at 75% WHC. The measurement of CO2 release was based on the conductivity 

changes in the RABIT system. The average value of CO2 emission in the 4 h 

preceding substrate addition was used as a measure of basal respiration (BR). The 

metabolic quotient (qCO2) was determined by the ratio of basal respiration to MBC 

(Anderson & Domsch, 1995). To confirm the adaptation of microbial communities to 

warming, we also determined microbial growth parameters in soils from all treatments 

at the same temperature.  

The kinetics of microbial growth was estimated by fitting the parameters of Eqn (1) to 

the measured dynamics of CO2 evolution (Panikov, 1995):  

CO2(t)=A+ B*exp(μ×t)                                              (1)                                                                                                

where A is the initial respiration rate uncoupled from ATP generation, B is the initial 

rate of the growing fraction of total respiration coupled with ATP generation and cell 

growth, μ is the maximal specific growth rate of soil microorganisms, and t is time. 

The parameters of Eqn (1) were optimized using a least-square minimization routine. 

Four replicate respiration curves were used for each treatment. We omitted the first 3 

h of measurements from the analysis to exclude the transient effects of glucose 

addition (Wutzler et al., 2012).  

The parameters of microbial growth were calculated from the optimized parameters of 

the fitted respiration curve Eqn (1). The duration of the lag period (Tlag) was 

calculated using the equation: 

Tlag = ln (A/B) / μ                                                     (2)                                                                                                           

The total microbial biomass (TMB) and growing microbial biomass (GMB) before 

substrate addition were calculated using Eqns (3) and (4), respectively. 

TMB = B / (r0 × Q)                                                   (3)                                                                                                                   

GMB = TMB × r0                  (4)  

where, r0 is the physiological state index of the microbial biomass before substrate 
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addition and was calculated as follows: 

r0 = (B × (1-λ)) / (A + B × (1- λ))                                       (5) 

where λ is a basic stoichiometric constant, which has an accepted value of 0.9 

(Panikov, 1995). Q is the total specific respiration activity: 

Q = μ / (λ × ϒCO2)                                                    (6)                                                                                                            

The theory of microbial growth kinetics has been presented previously (Panikov, 

1995). Note that in Eqn (6), ϒCO2 is the microbial biomass yield per unit of glucose-C 

and was assumed to be constant throughout the monitoring period with a mean value 

of 0.6 (Petersen et al., 2005). 

In addition, the kinetic approach allowed the assessment of generation time (Tg) of 

both actively growing and total microbial population consuming glucose. The 

estimation of for actively growing biomass is based on specific growth rates: 

Tg = ln (2) / μ                                                        (7) 

Microbial maximal specific growth rate μ, derived from Eqn (1) was used as an 

intrinsic property of the microbial population for the estimation of the prevailing 

growth strategy of the soil microbial community. According to the definitions (Pianka, 

1970; Andrews & Harris, 1986), higher μ values reflect a relative domination or shift 

towards fast-growing r-strategists, while lower μ values indicate a relative domination 

or shift towards slow-growing K-strategists.  

 

2.4. Enzyme kinetics 

Activity of exo-enzymes: β-1,4-glucosidase (BG) (EC 2.2.1.21), cellobiohydrolase 

(CBH) (EC 3.2.1.91), xylanase (XYL) (EC 3.2.2.27), β-1,4-N-acetylglucosaminidase 

(NAG) (EC 3.2.1.52), and leucine aminopeptidase (LAP) (EC 3.4.11.1) were 

determined using fluorogenic methylumbelliferone (MUF)-based artificial substrates 

(Marx et al., 2001; Sinsabaugh & Shah, 2012). Briefly, 0.5 g soil (dry weight 

equivalent) was suspended in 50 mL sterile water by shaking for 30 min, and 

dispersing with an ultrasonic disaggregator for 2 min using low-energy sonication (50 

J s-1). 50 µL of the soil suspension was pipetted into 96-well black pure Grade® 

microplates (Brand GmbH, Wertheim, Germany), while stirring the soil suspension to 

ensure uniformity. Afterwards, 50 μL of buffer and 100 μL of the corresponding 

substrates at concentrations of 2, 5, 10, 20, 50, 100 and 200 μmol substrate g-1 soil 

were added. After substrate addition, the microplates were measured fluorometrically 

(excitation wavelength 360 nm; emission 450 nm) at 0, 30, 60, and 120 min with an 

automated fluorometric plate-reader (Victor3 1420 050 Multi-label Counter; 

PerkinElmer, Waltham, MA, USA). It should be noted that after each fluorescence 

measurement the microplates were promptly returned to the corresponding climate 

chambers, so that the measurement time did not exceed 2 min (Razavi et al., 2015).  

To describe key enzyme kinetics parameters, we used the Michaelis-Menten kinetic 

equation which describes how enzyme rate (V) alters with increasing substrate 
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concentration [S] (Marx et al., 2001): 

V = (Vmax×[S]) / (Km + [S])             (8)                                                          

where Vmax is the maximal rate of enzyme activity and Km (Michaelis constant) is the 

substrate concentration at which ½Vmax occurs.  

The substrate turnover time was calcuated according to the following equation: T = 

(Km + S) / Vmax (Panikov et al., 1992), where S is the substrate concentration. The 

substrate turnover time was calculated at substrate concentration for the situations 

corresponding of the lack and excess of substrate, as S = Km / 10 and S = Km * 10, 

respectively. 

The catalytic efficiency of enzymes (Ka) was determined as Ka = Vmax / Km (Hoang et 

al., 2016). The Ka characterizes the enzyme catalytic proporties and is used as an 

indicator to reflect the functional changes of microbial communities (Ticher et al., 

2015). 

 

2.5. Data collection 

A synthesis of soil microbial responses to temperature was performed on published 

data using ISI Web of Science (http://apps.webofknowledge.com/) and Google 

Scholar (http://scholar.google.com/) for the period 1990-2019. The search key words 

were combined with ‘warming’, ‘elevated temperature’, ‘soil carbon stock’, 

‘microbial biomass’, and ‘enzyme activity’. The criteria were applied to select 

appropriate studies as follows: (1) We restricted the data collection to studies where 

the magnitude of warming was ≤ 4 °C; (2) vegetation, soil parameter, and climate 

were similar between control and warming treatments; (3) samples size and standard 

deviations (or standard errors) were reported; (4) warming magnitude and methods 

were clearly described. Therefore, studies solely focused on the effects of warming 

under vegetation clipping, precipitation, drought, season, and fertilization regime 

were excluded. In total, 48 published papers were based on 31 study sites among five 

ecosystem types (e.g., tundra, shrubland, grassland, forest, or cropland). The data 

presented in graphs were extracted by digitizing the figures using G3DATA software 

(http://www. frantz.fi/software/g3data.php). When some critical information was not 

reported in the published paper, we tried to obtain the information by contact the 

corresponding author.  

                                          

2.6. Statistical analysis 

The experiment was carried out with four field replicates for each parameter. The 

value presented in the figures is given as means ± standard error (mean ± SE). Prior to 

analysis of variance (ANOVA), the data were tested for normality (Shapiro-Wilk) and 

homogeneity of variance (Levene-test). Any data that were non-normal were either 

square root or log10-transformed to conform to the assumption of normality before 

further statistical analysis. One-way ANOVA followed by the Tukey HSD (p < 0.05) 

http://scholar.google.com/
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was used to assess the effect of temperature on all parameters. All the statistical 

analyses were performed using SPSS version 22.0 for Windows (SPSS Inc. Chicago). 

 

3. Results 

3.1. Stoichiometry of soil organic pools in response to long-term warming 

The size of the soil dissolved organic C (DOC) pool was not altered under +1.6 °C. 

However, +3.2 °C warming increased DOC by 20%, and doubled the DON pool, 

resulting in a decreased DOC:DON ratio compared to the ambient control (p < 0.05, 

Fig. 1). Soil microbial biomass carbon (MBC) and nitrogen (MBN) were reduced by 

32% and 37% under the +1.6 °C, respectively, whilst remained stable with further 

warming (+3.2 °C; Fig. 1b, e). The C:N ratio of the microbial biomass was similar in 

all treatments, ranging from 5.3 to 5.9 (Fig. 1h). Although 8 years warming increased 

total nitrogen (TN) by 26% (+3.2 °C) (p < 0.05), the soil organic carbon (SOC) 

content was not changed (Fig. 1c, f). Therefore, warming decreased the soil C-to-N 

ratio from 19 to 16 (Fig. 1i). Correspondingly, microbial N limitation decreased, 

indicated by the decreased C:N imbalance between labile resources and 

microorganisms (decreased DOC:N / MBC:N) in soil with +3.2 °C (p < 0.05, Fig. S3d). 

To prove such a remarkable stoichiometric imbalance revealed by the case study, we 

analyzed the relevant data about soil response to climate warming available from the 

literature. 

 

Fig. 1 Dissolved organic carbon (DOC) (a), microbial biomass carbon (MBC) (b), soil organic 

carbon (SOC) (c), dissolved organic nitrogen (DON) (d), microbial biomass nitrogen (MBN) (e), 

total nitrogen (TN) (f), and DOC:DON ratio (g), MBC:MBN ratio (h), soil C:N ratio (i) after 8 

years warming (ambient, ambient +1.6 °C, and ambient +3.2 °C). Values are the average (± SE) of 

four replicates. Note the difference in y-axis scale and that some do not start from 0. Asterisks 

indicate significant differences between warmed and ambient soils. 

 

3.2 Warming alters soil processes (literature review) 
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Similar to our case study, a synthesis of the literature revealed that a small rise in 

temperature (< 2 °C above ambient) either has no effect or slightly increased soil C 

and N related pools (e.g., TN and DON; Fig. 2b). Remarkably, warming (< 2 °C) 

decreased soil microbial biomass and enzyme activities (xylanase and 

cellobiohydrolase) by 3.5-4.8% and 8.4-16.5%, respectively. However, higher 

increases in temperature (2-4 °C) accelerated almost all soil processes, including soil 

respiration, and specific enzyme activity (chitinase and leucine aminopeptidase). 

Although 2-4 °C of soil warming increased the content of available N, DOC, and 

microbial biomass, as well as TN, it did not alter soil SOC pool, consequently 

reducing the soil C:N stoichiometric ratios. Taking together, both our case study and 

literature review suggested the restrictions of soil self-regulatory mechanisms. Thus, 

the 2 °C temperature increase can be generally considered as a threshold for the 

sustainability of the soil ecosystem. To reveal the drivers of N accumulation in soil, 

we determined how microbial and enzymatic functional traits were affected by 

warming. 

 

Fig. 2 Effect of warming on soil parameters (SOC, TN, IN, DOC, DON), basal respiration (BS), 

microbial parameters (MBC, MBN, µ, GMB/TMB), and enzyme activities (BG, XYL, CBH, LAP, 

NAG) based on our study (panel a) or from a review of the literature (panel b). The left panel 

shows the changes in parameter value with soil temperature increases of 1.6 and 3.2 °C after 8 

years of field warming. The right panel shows the changes in parameter value with soil 

temperature increases of ≤ 2 °C or 2-4 °C based on 48 observations from the literature. The details 

for data selection can be found in the text. All value is expressed as percentage change relative to 

the control (ambient temperature). The vertical dotted black line means control (ambient). The 

sample size for each variable is shown next to the point. 

 

3.3 Microbial growth kinetics in response to long-term warming 

Sight warming (+1.6 °C) did not change maximum specific growth rate (μm) of the 

microbial community, whereas a higher warming (+3.2 °C) increased the μm by up to 
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71% (Fig. 3c). To prove whether such an increase was just a common physiological 

response to temperature or whether it represents a functional change in the prevailing 

population, the μm was determined at the same temperature (25 °C) for all treatments. 

Remarkably, the μm values in the ambient and +3.2 °C treatments were also 

significantly different when determined at the same temperature (Fig. S2). +3.2 °C 

decreased the total microbial biomass (TMB) but increased the proportion of the 

actively growing microbial biomass within the TMB by 1.4-fold compared to ambient 

(p < 0.05, Fig. 3d). Consequently, the lag-period and generation time of active 

microbial biomass were, respectively, shortened by 53% and 34% under +3.2 °C 

warming versus ambient soil, (Fig. 3e, f). The basal respiration (BR) was increased by 

58% (p < 0.05, Fig. 3b) and the qCO2 doubled (Fig. S3a) with +3.2 °C warming. 
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Fig. 3 CO2 efflux after nutrient addition to soil (a), basal respiration (BR) (b), specific growth rate 

(μ) (c), the fraction of growing microbial biomass to total microbial biomass (GMB/TMB) (d), and 

their lag time (e), as well as generation time (f) at soil with long-term warming (ambient, ambient 

+1.6 °C, and ambient +3.2 °C). Values are the average (± SE) of four replicates. Asterisks indicate 

significant differences between warmed and ambient soils. 

 

3.4 Enzyme activities and kinetics in response to long-term warming 

The activity of the three exo-enzymes β-glucosidcase, chitinase, and leucine 

aminopeptidase, responded positively to the +3.2 °C increase in temperature. The 

+3.2 °C warming increased the Vmax of β-glucosidcase and leucine aminopeptidase, 

respectively by 35% and 28% versus those at ambient temperature. Furthermore, the 

increased Km value indicated that enzyme systems were altered already by +1.6 °C for 

β-glucosidase and by +3.2 °C of warming magnitude for leucine aminopeptidase (p < 

0.05, Fig. 4b) towards retarded reaction rate under substrate limitation. This, 

correspondingly, slowed down the β-glucosidase-driven turnover of oligosaccharides 

at +1.6 °C warming, whereas the turnover time of peptides (driven by leucine 

aminopeptidase) changed under +3.2 °C warming (p < 0.05, Fig. S5). Similarly, the 

catalytic efficiency (Vmax / Km) for β-glucosidase decreased by 47% under +1.6 °C, 

while the leucine aminopeptidase responded only to +3.2 °C warming by 50% 

decrease in catalytic efficiency compared with ambient temperature (p < 0.05). In 
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contrast to β-glucosidcase and leucine aminopeptidase, the Vmax and Km of the 

exoenzymes, which decompose relatively recalcitrant polymeric holocelluloses of 

plant origin (xylanase and cellobiohydrolase), were not changed with warming (Fig. 4; 

S5).  

 

Fig. 4 Potential maximum enzyme activity (Vmax) and substrate affinity (Km) of β-glucosidase 

(BG), xylanase (XYL), cellobiohydrolase (CBH), leucine aminopeptidase (LAP) and chitinase 

(NAG) in soil exposed to three contrasting long-term temperature regimes (ambient, ambient 

+1.6 °C, and ambient +3.2 °C). Values are the average (± SE) of four replicates. Asterisks indicate 

significant differences between warmed and ambient soils. 

 
Fig. 5 Effect of long-term warming (+1.6 °C and +3.2 °C during 8 years) on basic soil properties 

(SOC, TN, IN, DOC, DON), microbial parameters (MBC, MBN, µ, GMB/TMB), and enzyme 

activities (BG, XYL, CBH, LAP, NAG), as well as basal respiration (BR). Dotted circle means 
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control (ambient temperature). Blue and red petals mean +1.6 °C and +3.2 °C above ambient 

temperature. The length of the petals shows the magnitude of the effect of warming relative to the 

ambient temperature response, i.e. more and less than dotted circle mean increase and decrease, 

respectively. Shaded petals indicate no significant difference (p > 0.05) between warming and 

ambient temperature. 
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Fig. 6 The fundamental microbial mechanistic framework with soil temperature increases of ≤ 

2 °C or 2-4 °C. 

 

4. Discussion 

4.1 Is warming exceeding 2 degrees affects soil C and N pools?  

Our results are not always in agreement with expectations that warming would induce 

strong changes in all soil processes (e.g., SOC decomposition, microbial biomass) (Lu 

et al., 2013; Romero-Olivares et al., 2017). Based on the case study and literature 

review, we found that the changes in soil C and N pools strongly depends on warming 

magnitudes. For the first time, we revealed that the active fraction of microbial 

community was more sensitive to warming compared to total biomass (Fig. 2a). Even 

a small but long-term temperature increase (<2 °C) was sufficient to increase growing 

microbial fraction and to shorten lag-time before growth (Fig. 2a; 3). This confirmed 

that climate warming affects microbial physiology and accelerates microbial 

metabolism (Walker et al., 2018). Although microbial activity and turnover of labile C 

were altered by temperature increases below 2 °C (Fig. S5), most stable C and N 

pools (e.g. dissolved organic and soil organic matter pools) were not affected. This 

was consistent with the idea that soil microbial response to climate warming is 

short-lived and leaves little legacy (Cruz-Martínez et al., 2009). However, higher 

warming magnitude (2-4 °C), which is still in the IPCC prediction for the next 80 

years, was sufficient to fundamentally alter almost all soil, microbial pools, and 

enzyme-related processes significantly (except SOC pool). This could be attributed to 

the direct changes in microbial growth and activity, but also be related to indirect 

effects through decreased soil moisture by warming or shifts in microbial community 

structure (Schindlbacher et al., 2011, 2012; Siebold & Tiedemann, 2013). These 
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changes will further influence enzyme production and pool size of major soil C and 

nutrient contents over the long term (Liu et al., 2009; Allison et al., 2010), and thus 

alter soil biogeochemical processes. When the magnitude of climate warming is not 

considered, the changes in soil C and N cycling at a global scale maybe 

underestimated.   

There is a strong concern that the goals to eliminate CO2 emission and safely keep the 

world from warming above 2 °C can be met according to the Climate action and 

support trends (UNFCCC, 2019). Consequently, if this target of < 2.0 °C in global 

warming cannot be met, microorganisms will mobilize N from soil organic matter 

stronger due to the stoichiometric imbalance between soil and microbial biomass, and 

stimulating plant growth. This, in turn, may increase a fresh labile C input from the 

plant and maintaining soil C storage (Luo & Zhou, 2006; Liu et al., 2020). However, 

given that microorganisms increased soil respiration by 21-59% with exceeding 

2.0 °C (Fig. 2a, b), positive feedback to atmospheric CO2 might be triggered. On the 

global scale, therefore, such a strong alteration of soil, microbial, and enzyme-related 

processes caused by warming exceeding 2.0 °C would be large enough to change the 

predicted temperature effect on the soil C storage in the future. 

 

4.2 Self-regulatory mechanism of soil organic carbon stability under warming 

Remarkably, the SOC remained stable even with higher warming magnitude (2-4 °C) 

in long term, as proved by both case study (Fig. 1c, 2a) and literature review (Fig. 2b). 

This implies that soil microbial pool still able to maintain the stability of SOC under 

warming exceeding 2 °C through self-regulation. The stable SOC was attributed to the 

faster microbial growth and necromass formation, which was counterbalanced by the 

slower enzyme-mediated substrate turnover. A faster microbial specific growth rate 

(µm) under stronger warming (2-4 °C, Fig. 3c) was attributed to the stimulation of 

fast-growing microorganisms with r-strategy. The increased rhizodeposits as indicated 

by higher plant biomass with warming in this site (Siebold & Tiedemann, 2013) and 

more frequent winter freeze/thaw cycles in the warmed soil due to less snow cover 

(Schimel & Clein, 1996) may stimulate r-strategy by marked labile substrates input 

(Groffman et al., 2001). This explanation was supported by the increased fraction of 

DOC with 2-4 °C warming (Fig. 1), accompanied by an essential decrease in 

microbial biomass, implying that necromass (dead microbial biomass) was a possible 

source of the higher labile organic matter with higher warming magnitude (Miltner et 

al., 2012). This further favored fast-growing microorganisms, and consequently 

accelerated microbial turnover, as supported by the increased active fraction of the 

microbial biomass, and by increased basal respiration (Frey et al., 2008; Hagerty et al., 

2014). However, fast-growing microorganisms with r-strategy are very sensitive to 

any limitation (e.g., energy and resource availability), and commonly shift to 

dormancy or even die when substrate becomes limiting (Salazar-Villegas et al., 2016; 

Shahbaz et al., 2017). Therefore, the preferential strategy of fast-growing 

microorganisms is a quick switch from dormancy to activity with available C input. 

After consumption of labile C, the r-strategists reduce their biomass rather than mine 

available organic compounds from recalcitrant SOC pools. As a result of such 
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self-regulation, the SOC pool remained unaffected while the DOC was released from 

lysed fast-growing microbial cells.   

The slight warming magnitude (<2 °C) only increased the Km of β-glucosidase by 1.3 

times compared to ambient (Fig. 4b), indicating slow down C turnover and 

counter-balancing acceleration of chemical reactions by warming. As a result, the real 

production of glucose-like compounds did not increase, as indicated by stable DOC  

and SOC pools with slight warming magnitude (<2 °C, Fig. 1). However, higher 

warming (2-4 °C) further increased growing microbial biomass fraction and shifted 

the microbial community towards fast-growing microorganisms, which was sufficient 

to stimulate C-degrading as well as N-degrading enzymes. On the other hand, the 

2-4 °C warming changed enzyme systems towards lower affinity to the substrate, i.e. 

slower glucose or amino-N production, as indicated by higher Km (Fig. 4b), but lower 

turnover time and catalytic efficiency of β-glucosidase and leucine aminopeptidase 

(Fig. S5). Thus, it caused a slower decomposition of organic residues either of plant or 

microbial origin (i.e., necromass) compared with faster necromass production due to 

the faster turnover of microorganisms. Specifically, the generation time of microbial 

population was 3 h faster but the turnover time of peptides (cleaved by leucine 

aminopeptidase) was 7 h slower at higher warming (2-4 °C) compared with ambient 

soil (Fig. 3f), resulting in increased total N.  

Higher warming (2-4 °C) decreased soil C:N ratio due to increased N along with 

un-altered C content as mentioned above. The decreased soil C:N ratio might be 

related to the altered SOM quality with long-term warming (Conant et al., 2008) due 

to the fast turnover of labile C pools and consequently, greater contribution of 

microbial necromass (relatively low C:N) to soil organic matter. Moreover, the 

ambient C:N of soil (~19) was close to the theoretic threshold (20-25 i.e., the C:N 

value above which the N will be immobilized and below which N will be mobilized 

by microorganisms (Mooshammer et al., 2014a). The possible consequences of 

decreased soil C:N to a value of 16 by 2-4 °C warming, is net N mobilization (release) 

improving N availability for plant growth (Manzoni et al., 2012; Kaiser et al., 2014). 

Such an N release was further confirmed by the increased DON amount under higher 

warming, which was mainly contributed from NO3
- (Fig. 1d, h; Fig. S1c). This also 

corroborates with the relatively stable microbial C:N ratios with warming (~5.5), 

which means microorganisms did not immobilize more N even when it was available. 

Thus, microorganisms were not N limited in the soil with higher warming magnitude. 

It was further supported by the decreased C/N imbalance between labile resources 

(dissolved organic pools) and the microbial biomass with warming (Fig. S3d). 

Therefore, the stoichiometric imbalance between microbial decomposers and their 

labile resources (dissolved organic pool) may result in enhanced N releases from 

necromass under the higher magnitude of warming.  

 

5.Conclusions 

By combining the long-term field warming study and literature review, we pointed out 

that a low magnitude of temperature increase (< 2 °C) only altered microbial traits (i.e. 

microbial biomass), but neither enzyme functioning nor soil basic properties. 
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However, a higher warming (2-4 °C) was sufficient to change almost all soil, 

microbial pools, and enzyme-related processes in the long-term. Microorganisms 

grow and turnover faster under higher warming, and enzyme systems shift towards 

lower affinity to the substrate, i.e. slower glucose or amino-N production. This was 

indicated by higher Km, lower turnover time and catalytic efficiency of β-glucosidase 

and leucine aminopeptidase. Thus, it caused a slower decomposition of organic 

residues either of plant or of microbial origin (i.e., necromass). Therefore, N content 

increased in dissolved organic and soil organic matter pools under higher warming 

magnitude, thus causing a decreased stoichiometric imbalance between the microbial 

biomass and their labile resource availability, consequently driving soil C 

decomposition. In conclusion, this study presents strong evidence showing microbial 

self-regulatory mechanism mitigating global temperature increase and maintaining the 

stability of soil C storage as i) faster microbial growth and necromass formation, 

which is counterbalanced by ii) slower enzyme-mediated substrate turnover, which 

depends on the magnitude of future climate warming. Consequently, the microbial 

pool still able to maintain the stability of SOC under warming exceeding 2 degrees 

but may increase total N due to the self-regulation mechanism proposed above. 
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Supplementary 

 

Fig. S1  pH (a) NH4
+ (b), and NO3

- content (c) in soil exposed to long-term warming (ambient, + 

1.6 °C, and + 3.2 °C). Values are average (± SE) of four replicates. Asterisks indicate significant 

differences between warmed and ambient soils (p < 0.05). 

 

Fig. S2 CO2 efflux after nutrient addition in soil maintained under ambient, +1.6 °C, and +3.2 °C 

conditions, but here were determined at the same temperature (25 °C). Values are average (± SE) 

of four replicates.  

 

Fig. S3 qCO2 (BS: MBC) (a), and MBN:TN (b), SoilC:N / MBC:N (the ratio of C: N between soil 

organic and microbial biomass pools) (c), as well as  DOC:N / MBC:N (the ratio of C: N between 

dissolved organic and microbial biomass pools) (d) at soil with long-term warming (ambient, 
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+1.6 °C, and +3.2 °C). Values are the average (± SE) of four replicates. Asterisks indicate 

significant differences (p < 0.05) between warmed and ambient soils. 

 

 

Fig. S5 The turnover time at excess of substrate and lack of substrate, and the catalytic efficiency 

(ratio of Vmax/Km) of β-glucosidase (BG), cellobiohydrolase (CBH), xylanase (XYL), leucine 

aminopeptidase (LAP), and chitinase (NAG) in soil exposed to ambient, + 1.6 °C, and + 3.2 °C 

temperature regimes. Values are average (± SE) of four replicates. Asterisks indicate significant 

differences between warmed and ambient soils (p < 0.05). 
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Abstract 

Mountain grassland systems are of great ecologically importance and are particularly 

sensitive to global warming. Changes in soil microbial properties are one of the main drivers 

controlling the soil carbon (C) cycling in response to climate change. Knowledge of the extent 

to which the functional properties of soil microorganisms vary with climate warming in 

mountain grassland remains unclear. Here, we analyzed microbial properties in soils from a 

translocation experiment along an elevation gradient in the Alps. Our aim was  to assess the 

effect of climate change on the microbial growth and enzyme kinetics by substrate-induced 

growth respiration (SIGR) coupled with kinetics of enzymes involved in C, N, and P cycling. 

Intact soil columns were translocated downslope to three sites at decreasing elevation. These 

sites spanned 7 °C increase in temperature (from 13, 15, 17 to 20 °C).  

Translocation from colder regions at higher elevation to warmer sites at lower elevation 

decreased the specific growth rate (μ) of the microbial community, indicating an alteration in 

their ecological strategy, i.e. a shift towards slow-growing K-strategists. This could be 

attributed to the decreased available C substrate. Further, the increase of enzyme activities 

with warming, accompanied by the increase of catalytic efficiency, implied the microbial 

production of less efficient enzymes in the lower versus higher elevation soils. Simultaneously, 

substrate turnover time of C-degrading enzymes was lower in the soil at lower elevations, 

implying a stronger and faster C turnover in warmer compared to colder soils due to C rather 

nutrient limitation. However, Km of N-related enzymes showed a gradual increase with 

climate warming, whereas the Km of C- and P-degrading enzymes increase strongly with 

translocation from E0 (13 °C) to E1 (15 °C) and then remained unaffected at higher 

temperatures, i.e. at lower elevations. This could be explained by the expression of 

iso-enzymes with less flexibility. We conclude that climate warming increases microbial 

activities, and thus induces a positive soil C-climate feedback in the future warmed world. 

 

Keywords: Climate warming, Enzyme kinetics, Microbial growth kinetics, r and K strategy, 

Tranalocation
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1. Introduction 

Montane grasslands comprise 20-25 % of terrestrial landscape and store 28-37% of the 

global terrestrial soil carbon (C) stocks, as well as one of the most sensitive ecosystems to 

global environmental changes and anthropogenic activities (Scurlock and Hall, 1998; Chou et 

al., 2008). Given the quantitative importance, any change in soil C dynamics could result in a 

positive climate feedback. Indeed, climate change has led to increasing surface temperatures 

by roughly 5.8 °C by 2100 and changes in precipitation regime (IPCC, 2013). However, the 

climate-change associated abiotic and biotic factors altering soil processes for Montane 

grasslands remain largely unclear despite their consideration importance to greenhouse gas 

emissions, soil fertility, plant nutrition (Makkonen et al., 2012; Althuizen et al., 2018). 

Therefore, better understanding of how soil organic matter (SOM) respond to climate change 

in montane grasslands has raised considerable interests.  

SOM mineralization is the result of microbial growth on heterogeneous organic 

substrates and is strongly dependent on the size and functional properties of the active 

microbial fraction (Schlesinger and Andrews, 2000; Chen et al., 2014). Therefore, 

measurements of the size and composition of the microbial biomass alongside changes in 

growth rate and functioning are needed to understand how climate warming affects soil C 

cycling (Strickland and Rousk, 2010; Reinsch et al., 2013). The kinetic approach based on 

substrate-induced growth respiration (SIGR) represents a suitable tool to estimate microbial 

growth parameters (Blagodatsky et al., 2000; Zhou et al., 2020). It is commonly assumed that 

fast-growing microorganisms with r-strategy benefit by utilizing easily available C substrates, 

whereas slow-growing K-strategists have an advantage in utilizing more recalcitrant organic 

substrates (Fontaine et al., 2003). However, the predictions on which microbial group will 

prevail under climate warming remains controversial. One view is that the increased input of 

easily available C substrates may accelerate the turnover of the fast-growing microbial 

population (Blagodatskaya et al., 2010). In contrast, the microbial growth rate may reduce due 

to the rapid exhaustion of available organic C under long-term warming (Bradford et al., 

2008). Therefore, the extent to which the microbial physiological statues changed with 

climate warming remains an open question. 

The break down of soil organic polymers (e.g. dead plant and microbial necromass) is  

catalyzed by microbially produced extracellular enzymes (Nannipieri et al., 2003). Therefore, 

the catalytic properties of exo-enzymes determine the direction and magnitude of soil C and 

nutrients cycling (Sinsabaugh, 2009; Burns et al., 2013). Due to enzyme production by soil 

microorganisms is regulated by their demand and by substrate availability, which in turn is 

affected by several factors, such as temperature and soil water content (Burns et al. 2013). 

Enhanced plant C input with warming (Bai et al., 2010; Yin et al., 2013), could induce greater 

enzyme reaction rate (Vmax) due to the increased nutrient demand to meet microbial 

stoichiometric requirements (Conant et al., 2011). Conditions of low soil water availability, 

such as caused by warming-induced soil water shortage (Butschoen et al. 2011), however, 

could in addition lead to diffusion limitations of enzymes and substrates (Allison, 2005). Thus 

lead to reduced substrate affinity of enzyme (increased Km) with increasing temperature, 

which could potentially counterbalance the positive feedback between the Vmax of hydrolytic 

enzymes, and thus counteract loss of SOM under warming (Davidson and Janssens, 2006; 

Davidson et al., 2006; Blagodatskaya et al., 2016). Climate warming responses of soil enzyme 

kinetics thus demand more attention so that the fate of soil C cycling can be determined under 

future climate change.  

Translocation experiments along elevation gradients have become increasingly important 
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in understanding the fate of C and its underlying microbial dynamics under climate change 

(Sundqvist et al., 2013; Looby et al., 2018). Translocation studies have shown that soil 

respiration (Zimmermann et al., 2009) and litter decomposition (Scowcrofy et al., 2000; 

Salinas et al. 2011) may increase with changing climate conditions. But, more detailed 

information is needed on how soil microbial functional traits (i.e. microbial growth rate and 

enzyme activity) altered with climate warming. Here, microbial growth and enzyme kinetics 

were determined after one-year translocation in mountainous grassland ecosystems. We 

coupled soil microbial growth parameters estimated by substrate-induced growth respiration 

(SIGR) with the kinetic parameters (i.e. Vmax and Km) of enzymes involved in C, N, and P 

cycling to reveal the microbial regulatory mechanisms under climate warming. We aimed to 

estimate the microbial functioning and enzyme kinetics change with climate warming in situ.  

 

2. Materials and method 

2.1 Soil site and experimental setup 

This study was conducted on four grassland sites along an elevational gradient ranging 

from 350 m to 1300 m a.s.l. in the European Alps. Four representative grassland sites were 

selected for downslope translocation of intact plant-soil monoliths. These sites are Esterberg 

(EB, 1300 m a.s.l.), Graswang (GW, 900 m a.s.l.), Fendt (FE, 550 m a.s.l.), and Bayreuth (BT, 

350 m a.s.l.), ranging from pre-alpine to colline ecosystems. For a description of the 

geographic and climate characteristics see Fig. 1.  

 

Fig. 1 Geographic and climatic characteristics of the research sites along the elevational gradient in the 

European Alps. MAT, MST and MAP are mean annual temperature and mean summer temperature and 

mean annual precipitation, respectively. 

 

In the summer 2016, the intact plant-soil community monoliths were extracted from the 

pre-alpine grassland in Esterberg by inserting in a 30 cm diameter PVC tube, the bottoms of 

which were left open to allow for water flow. After excavation of the monoliths at their 

respective origin site, they were translocated to recipient sites and dug into the extant 

vegetation with the rim of the monolith level to its surrounding. Monoliths were translocated 

within site as a control and downslope to each site with a lower elevation than the original site 

to simulate possible future climate scenarios (Fig. 1). Here, the translocation of control 

monoliths within original site allowed us to exclude for treatment effects because of the 

extraction and installation of the PVC tubes. In addition to the treatment of translocation 

downslope, a randomly selected sub-section of each origin type (Bayreuth, Fendt, Graswang, 
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Esterberg) received irrigation treatment at the Bayreuth (Recipient) site in 2018, in order to 

compensate a substantial lower precipitation than that in other sites in Alps. The irrigation 

amount was calculated as the difference between the amount of mean summer precipitation 

received at Alps and that at Bayreuth, and then was added to the monoliths twice a week.  

The soil in “Esterberg” study site is classified as Rendzic Phaeozem (IUSS Working 

Group WRB, 2006). The bulk density of soil is 0.5 g cm−3 from 0-10 cm depth with a clay 

texture (43% silt, 5% sand, 52 % clay). A detailed description of soil characters is provided in 

Table 1. The plant association are Cynosuretum cristate, and the dominant species are 

Anthoxanthum odoratum, Cynosurus cristatus, Elymus repens, Festuca pratensis, Festuca 

rubra, Lolium perenne, Trifolium pratense.  

 

2.2 Measurement 

2.2.1 Plant and soil sampling 

During peak growing season of 2018, the aboveground biomass of each monolith was 

harvested 3 cm above ground level and then divided into three plant functional groups 

(graminoids, forbs, and legumes), dried at 60 °C for 48 hours and weighed. The in-situ 

ingrowth cores were used for estimating the root production rate. Before the peak growing 

season (in may 2018), two ingrowth cores (2 mm mesh, 10 cm length by 3 cm diameter) were 

filled with 2 mm sieved soil from corresponding origin soil and installed into randomly 

selected monoliths (n = 9) at each site. Towards the end of peak growing season in July 2018, 

the ingrowth cores were carefully removed from monoliths and brought back to the laboratory 

stored around 5 °C. In the lab, the wet soil with the roots were removed from ingrowth cores 

and weighed. Then, root and soil samples were separated by sieving through a 2-mm sieve 

and stored at 4 °C prior to analyses. Then, root samples were washed over a 5 µm sieve and 

dried at 60 °C for 48 hours and weighed.  

 

2.2.2 Meteorological and soil parameters 

Since the spring 2017, sensors for soil moisture (EcH2O 5-TM, Decagon Devices Inc., 

USA) and for soil temperature were installed horizontal at 5 cm depth together with data 

loggers (EcH2O Em50, Decagon Devices Inc., USA) from each origin and each recipient site. 

Data were recorded at 15 min intervals and were gathered to daily mean values. Hourly air 

temperature and precipitation was monitored by a Frankenberger psychrometer (Theodor 

Friedrichs & Co, Schenefeld, Germany) plus a OTT Pluvio (OTT HydroMet GmbH, Kempten, 

Germany) in Bayreuth, and by the KIT Campus Alpin in Fendt and Graswang with the 

Weather Transmitter WXT520 (Vaisla, Helsinki, Finland), while in Esterberg the Atmos 41 

(MeterGroup AG, Munich, Germany) was used. Soil C and N content were measured using a 

C/N Elemental Analyzer (Vario EL Cube, Elementary Analysis Systems GmbH, Hanau, 

Germany). For determining dissolved organic carbon (DOC) and dissolved nitrogen (DN), 10 

g of fresh soil was extracted with 20 ml of 0.05 M K2SO4 after shaking for 60 min on a 

reciprocating shaker (Laboratory shaker, GFL 3016) and the filtrates were measured for total 

extractable C and N with a multi C/N analyzer (multi C/N analyzer 2100S, Analytik, Jena). 

The soil pH was measured with a calibrated pH meter (FiveEasy F20, Mettler Toledo GmbH, 

Gießen, Germany) in 10 g soil with 25 mL distilled water. 

 

2.2.3 Kinetic parameters of substrate-induced growth respiration 

The substrate-induced growth respiration (SIGR) approach was used to distinguish total 

and active biomass fractions, microbial specific growth rate, and lag-time before growth 

(Panikov, 1995; Blagodatsky et al., 2000). It has to be noted that although substrate addition is 

required for the SIGR approach, all kinetic parameters analyzed by SIGR represent the 

intrinsic features of the dominant microbial populations before substrate addition 

(Blagodatsky et al., 2000). 
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Field-moist soil (1 g) was amended with a mixture containing 10 mg g-1 glucose, 1.9 mg 

g-1 (NH4)2SO4, 2.25 mg g-1 K2HPO4, and 3.8 mg g-1 MgSO4.7H2O. Soil samples were then 

placed in a Rapid Automated Bacterial Impedance Technique bioanalyser (RABIT; 

Microbiology International Ltd, Frederick, MD), for measuring CO2 emission at their 

corresponding field temperature (13, 15, 17 and 20 °C in 1300, 900, 550, 350 m elevation, 

respectively). Firstly, we incubated four soil samples at each temperature for 2 days at 45% 

water holding capacity (WHC) to reduce the impact of the initial disturbance from handling. 

To measure substrate-induced respiration, a mixture of glucose and nutrients was then added 

and the samples incubated for a further five days at 75% WHC. The measurement of CO2 

release was based on the conductivity changes in the RABIT system.  

Microbial respiration in glucose amended soil (Substrate Induced Growth Response, 

SIGR) was used to calculate the following kinetic parameters: the specific growth rate of 

microorganisms (µ), the microbial biomass capable for immediate growth on glucose (GMB), 

physiological state index of microbial biomass before substrate addition (r0), the total 

microbial biomass (TMB) responding by respiration to glucose addition, and the lag period 

(Tlag). This method was suggested by Panikov (1995) and the experimental procedure, 

calculations, fitting, and statistics are presented in Wutzler et al. (2012). 

  

2.2.4 Enzyme activity 

Activity of extracellular enzymes: β-1,4-glucosidase (BG) (EC 2.2.1.21), 

cellobiohydrolase (CELLO) (EC 3.2.1.91), xylanase (XYL) (EC 3.2.2.27), 

β-1,4-N-acetylglucosaminidase (NAG) (EC 3.2.1.52), leucine aminopeptidase (LAP) (EC 

3.4.11.1) and acid phosphatase (ACP) (EC 3.1.3.2) were determined by the 

4-methylumbelliferyl (MUF)-based and 7-amido-4-methylcoumarin (AMC)-based artificial 

substrates (Marx et al., 2001). Briefly, 0.5 g soil was mixed with 50 ml sterile water and then 

shaking for 30 min. After 2 min low-energy sonication (40 J s-1) by ultrasonic disaggregation, 

50 µl of the soil suspension, 50 μl of corresponding buffer (MES or TRIZMA) and 100 μl of 

the corresponding substrates at concentrations of 2, 5, 10, 20, 50, 100 and 200 μmol l-1 were 

pipetted into 96-well black microplates (Brand® plates pureGrade, Sigma-Aldrich, Germany). 

The microplates were determined by an automated fluorometric plate-reader (Victor3 

1420-050 Multi-label Counter, PerkinElmer, USA).  

To calculate key parameters describing the enzyme kinetics, we fitted a 

Michaelis-Menten equation to the experimental data (Marx et al., 2001): 

 
 

)1(max

SK

SV
V

m +


=  

where V is the enzymatically mediated rate of reaction, Vmax is the maximal rate of reaction, 

Km (Michaelis constant) is the substrate concentration at ½Vmax and S is substrate 

concentration. The substrate turnover time (Tt) was based on: Tt (hours) = (Km + S) / Vmax, 
where S is the substrate concentration. The substrate turnover time was calculated at substrate 

concentration for the situations corresponding to the lack and excess of substrate, as S = Km 

/10 and S = 10* Km, respectively. The catalytic efficiency of enzymes (Ka) was calculated by 

the ratio of Vmax and Km (Hoang et al., 2016). Enzyme activity ratios were determined to 

examine the relative allocation to labile C versus nutrient acquisition, e.g. Vmax ratio of BG 

and sum of LAP and NAG, Vmax ratio of BG and ACP (Sinsabaugh and Follsatd, 2012).  

 

2.3 Statistical analysis 

The experiment was carried out with three replicates of each treatment. The values 

presented in the tables and figures are given as means ± standard error (mean ± SE). Prior to 

analysis of variance (ANOVA), the data were tested for normality (Shapiro-Wilk, p > 0.05) 

and homogeneity of variance (Levene-test, p > 0.05). One-way ANOVA followed by the 

Tukey HSD test at a probability level of p < 0.05 was used to define temperature ranges with 
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significantly different specific growth rate (μ), growing microbial biomass (GMB), lag time 

(Tlag), potential enzyme activity (Vmax), substrate affinity (Km) and substrate turnover time (Tt), 

as well as catalytic efficiency (Ka). All statistical analyses were performed using SPSS version 

19.0 (SPSS Inc., USA). 
 

3 Results 

3.1 Plant and Soil chemical properties 

With decreased elevation, soil pH remained unchanged (Table 1). Root and shoot 

biomass were 8.09 mg g-1 soil and 36.88 g in soil at the highest elevation (E0), which was 

significantly higher than those in soil at the lower elevation (E3) (p < 0.05, Table. 1). 

Furthermore, dissolved organic carbon (DOC) and nitrogen (DON) were 42% and 26% higher 

in soil under higher elevation (E0) compared to lower elevation soils (E3) (p < 0.05, Table 1). 

 
Table. 1 Soil pH, dissolved organic carbon (DOC), dissolved organic nitrogen (DON), and root and shoot 

biomass in soil under four levels of elevations (E0 with 13°C, E1 with 15°C, E2 with 17°C, E3 with 20°C). 

Values are means (±SE) of three replicates. Different letter indicate significant difference at a level of P < 

0.05. 

 
pH  

(H2O) 

DOC 

(mg C kg-1) 

DN 

(mg N kg-1) 

Root 

biomass 

(mg g-1 soil) 

Shoot 

biomass  

(g) 

E0 with 

13 °C 
6.83±0.23a 

234.77±19.

20a 
52.66±9.27a 

8.09±1.30a 
36.88±1.47b 

E1 with 

15°C 
7.12±0.04a 

250.39±23.

86a 
28.48±8.32b 

6.82±1.17a 
53.57±3.93a 

E2 with 

17°C 
6.99±0.05a 

168.52±17.

60b 
40.01±6.35a

b 

4.48±0.91ab 
48.24±3.08a 

E3 with 

20°C 
7.05±0.02a 

136.20±22.

97b 
39.07±4.53b 

2.72±0.46b 
25.47±3.89c 

 

3.2 Microbial growth kinetics 

The glucose-induced respiration rates increased earlier and responded more intensively 

in soil at the lowest elevation (E3), i.e. under warmer temperatures (20 °C). Patterns of the 

exponential CO2 evolution rate were similar in soils at higher elevations (under 13, 15 and 

17 °C). As an inherent property of microorganisms, the specific growth rate (μ) decreased by 

22% when comparing E0 with E3, i.e. with increasing temperature (p < 0.05, Fig. 2). Total 

(TMB) and growing microbial biomass (GMB) were significantly higher in soil at the lowest 

elevation (E3) compared with that at highest elevation (p < 0.05, Fig. 3a,b). Further, 

microorganisms in warmer soil under lower elevation required significantly less time to start 

exponential growth after glucose amendment compared to that in soils under colder 

conditions at higher elevation (8 and 27 h in soil at E3 and E0, respectively) (p < 0.05, Fig. 

3c). Similarly, the generation of microbial populations was around 5 h in soil under E3, 2 h 

slower than that in the soil under E0 (p < 0.05, Fig. 3d). 
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Fig. 2 Substrate-induced respiratory responses of microbial community and their corresponding specific 

growth rate (μ: insert figures) after a mixture of glucose and nutrient solutions in soil under four levels of 

elevations (E0 with 13°C, E1 with 15°C, E2 with 17°C, E3 with 20°C). Experimental data are shown as 

symbols and model simulation (Equation 1) as curves. Values are means (±SE) of three replicates. Different 

letter indicate significant difference at a level of P < 0.05. 

 

 
Fig. 3 Growing microbial biomass (a) and its fraction of total biomass (b), lag-time and generation time of 

actively microbial community consuming substrate in soil under four levels of elevations (E0 with 13°C, 

E1 with 15°C, E2 with 17°C, E3 with 20°C). Values are means (±SE) of three replicates. Different letter 

indicate significant difference at a level of P < 0.05. 

 

3.3 Enzyme kinetics 

The potential enzyme activity (Vmax) increased with warming from E0 to E3 (i.e. from 13 

to 20°C) by 1.2-12.5 times (Fig. 4a). The temperature response pattern of Km was enzyme 

specific. NAG and LAP showed a general increase of Km values from E0 (13°C) to E3 (20°C) 

(Fig. 4b). For BG, XYL, CELLO, and ACP, however, after the initial increase in Km from E0 

(13°C) to E1 (15°C), the values did not change significantly between E1, E2, and E3.  

The turnover time of XYL, NAG, and LAP showed no difference between lower and 

higher elevations sites, whereas it was shorter at lower elevation with warmer temperature 

compared to higher elevation for BG and CELLO (Fig. 5). No changes in the catalytic 

efficiency (Ka, Vmax/Km) was detected for XYL, CELLO, and NAG. However, the Ka for BG 

was 3-folds larger at lower elevation than that athigher elevation (p < 0.05, Fig. 5c). The C/N 

and C/P acquisition ratios were about 3 times higher at warmest temperatures (E3) compared 

with coldest temperatures (E0) (p < 0.05, Fig. 6).  
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Fig. 4 Enzyme activity (Vmax) and substrate affinity (Km) of β-glucosidase (BG), xylanase (XYL), 

cellobiohydrolase (Cello), chitinase (NAG), leucine aminopeptidase (LAP) and acid phosphatase (ACP ) in 

soil under four levels of elevations (E0 with 13°C, E1 with 15°C, E2 with 17°C, E3 with 20°C). Values are 

means (±SE) of three replicates. Different letter indicate significant difference at a level of P < 0.05. 
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Fig. 5 The turnover time at excess of substrate (a) and lack of substrate, as well as catalytic efficiency of 

enzymes (Vmax/Km)  in soil under four levels of elevations (E0 with 13°C, E1 with 15°C, E2 with 17°C, 

E3 with 20°C). Values are means (±SE) of three replicates. Different letter indicate significant difference at 

a level of P < 0.05. 

 

 
Fig. 6 Enzymatic ratio of labile C versus nutrient (N and P) related enzymes ((BG/(NAG+LAP), BG/ACP)  
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in soil under four levels of elevations (E0 with 13°C, E1 with 15°C, E2 with 17°C, E3 with 20°C). Values 

are means (±SE) of three replicates. Different letter indicate significant difference at a level of P < 0.05. 

 

4. Discussion 

4.1 Soil microbial growth kinetics 

A lower microbial specific growth rate (µ) with translocation (decreased elevation) (Fig. 

2) was attributed to the stimulation of slow-growing microorganisms. Due to decreased root 

and shoot biomass with climate warming (Table. 1), less rhizodeposition was released into 

soil with lower elevation, thus induced a strong competition for easily degradable C sources 

which favors the K-selected microorganisms (Blagodatskaya et al., 2014). On the other hand, 

the changes in plant community composition could contribute to the shift in microbial 

community. Because Berauer et al. (2019, unpublished data) found that the species richness of 

plant community at this site decreased after one-year translocation from higher to lower 

elevation, which was positively related with plant productivity (Tilmen et al., 1996; 2001). As 

a consequence, this would result in a reduced supply of C substrate for roots and 

microorganisms, and thus induce a microbial shift towards to K-strategists. Under lower C 

availability as indicated by lower DOC, active but starving microorganisms, the K-strategists 

contribute to microbial growth (Chen et al., 2014), as a result the µ values decreases as 

compared with soil under higher elevation (Fig. 2). Further, the catalytic efficiency of BG 

increased from elevation 1300 m to 350 m, again indicating a shift to K-selected 

microorganisms (Fig. 5c).  

 

Fig. 7 Relationships between plant and soil properties and microbial functional traits in soil under four 

levels of elevations (E0 with 13°C, E1 with 15°C, E2 with 17°C, E3 with 20°C). Pairwise correlations of 

soil properties were presented as Spearman's correlation coefficients. μ, specific growth rate; TMB, total 

microbial biomass; GMB, growing microbial biomass; Tlag, lag time;  BG, Vmax of β-glucosidase; XYL, 

Vmax of xylanase; CELLO, Vmax of cellobiohydrolase; NAG, Vmax of chitinase; LAP, Vmax of leucine 

aminopeptidase; ACP, Vmax of acid phosphatase. 

 

Although irrigation was applied in the lower elevation soil (E3), it is also likely that 

reduced soil moisture may played a role in the microbial community shift, perhaps in 

combination with temperature changes in the field site (Fig. 1). It has been proposed that the 
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effective K-strategist are more dominated by fungi (Fontaine and Barot, 2005; de Graaff et al., 

2010; Reinsch et al., 2013). Climate warming has the potential to decrease soil moisture (Fig. 

1), which could limit positive effects of warming on microbial activity (Reinsch et al., 2013). 

For example, drought stress likely facilitates increased survival of fungi, because soil fungi 

rely on more aerobic conditions and are more tolerant of drought due to their filamentous 

nature (Zhang et al., 2005). Aerobic filamentous fungi have variable hyphal networks that can 

relocate water and nutrient resource by cytoplasm translocation (Klein and Paschke, 2004). 

Therefore, under lower elevation with relative warmer and drier soil, the K-strategist 

overwhelmed r-strategists (with lower µ values). 

Besides, GMB increased with climate warming (Fig. 3b), suggesting a quick shift of 

dormant microorganisms to an active physiological state, which corresponded to the increase 

in BG activity (Fig. 4a, 7). The microbial community in the lower elevation also has a shorter 

lag-period (Fig. 3c), and was ready for immediate growth on available substrate compared to 

the microbial community in soil under higher elevation. This could be explained by the 

activity state of microbial biomass is responsible of the duration of Tlag (Blagodatskaya et al., 

2014), which was supported by the positive correlation between Tlag and the fraction of GMB 

(Fig. 7). 

 

4.2 Soil enzymatic kinetics 

For all the tested enzymes, we found that activities of C, N and P-degrading enzymes 

increased with warmer temperatures (Fig. 4a), as a result of enhanced growing microbial 

biomass (Fig. 4a). Growing microorganisms produce larger amounts of enzymes and thereby 

enhance the enzyme activity (Blagodatskaya et al., 2016; Tian et al., 2019). Shifts in microbial 

community composition from r- to K-microorganisms from high to low elevation ecosystems 

could have contributed to the changes in enzyme activity, since fungi can be equipped with a 

larger set of enzymes than bacteria (de Boer et al., 2005; McGuire et al., 2010; Berlemont, 

2017). Alternatively, the decreased soil water content could also limit enzyme and substrate 

diffusion (Allison, 2005), and soil microorganisms may compensate by increasing enzyme 

production (Bell et al., 2010). Therefore, higher soil temperature may stimulate soil microbial 

investment in enzyme production. 

As microorganisms regulate the production of hydrolytic enzymes in response to 

environmental resource availability (Allison and Vitousek, 2005), and warming decreased 

plant C supply as mentioned above, it is possible that microorganisms allocate more resources 

to the acquisition of C (Sinsabaugh and Follstad, 2012). Hence, these findings indicate that 

warming-induced decreased C availability stimulated C-degrading enzymes and increased 

microbial C limitation. There was a clear stoichiometry shift to higher investment in C 

acquisition in soils with lower elevation. This was indicated by the higher ratio of enzyme 

activities of labile C- to N-degrading enzymes (BG/(NAG+LAP)) and C- to P-degrading 

enzymes (BG/ACP) in soil under lower elevation (Fig. 6a, b). In line with the enzymatic 

ratios, the content of DOC and DN decreased with climate warming, which further suggests 

that translocation could decrease C availability and stimulate labile C-acquired enzyme 

activity, which reflects the aggravation of C limitation in lower elevation. On the contrary, soil 

microorganisms were limited by nutrients in soil under higher elevation, especially in highly 

diverse plant communities, due to nutrient competition between free-living soil 

microorganisms and plants (Kuzyakov and Xu, 2013). Alternatively, the higher mobilization 

of nutrients in soil under higher elevation caused by higher water availability, reduces the 

need for nutrient mining compared to soil under lower elevation (Zuccarini et al., 2020). 
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Furthermore, a shorter substrate turnover time and higher Ka of BG in soil at lower elevation 

(E3, 20 °C) compared with higher elevation (E0, 13 °C) was observed (Fig. 5c), which 

suggests that the microbial community was more limited by C rather than nutrient in the 

warmer and drier soils at lower elevation.  

 Km increased with warming for all enzyme groups (Fig. 4b), which is in agreement with 

others (German et al., 2012; Stone et al., 2012). Higher Km at lower elevation confirmed the 

expression of low efficient enzymes (Razavi et al., 2016). This means that microorganisms in 

warmer and drier environments maintained a slow growth rate but maximized substrate use 

efficiency (Fierer et al., 2007). These accelerated rates are supported by shorter substrates 

turnover time at warmer environment (Fig. 5a). However, Km of N-degrading enzymes (NAG 

and LAP) increased gradually from higher to lower elevation, whereas the Km of C- and 

P-degrading enzymes remained nearly constant after sharp increase from 350 m (E3) to 550 m 

(E2) elevation (Fig. 4b). Microbial communities are often known to produce different 

isoenzymes that could differ in their intrinsic Km values (Somero, 1978; Bradford, 2013). The 

presence of different enzyme isoforms is the plausible reason for having different patterns 

under climate warming as isozymes are known to conserve their unique Km values (Somero, 

2004). Extracellular enzyme systems therefore adapted to the altered substrate supply resulted 

in a change of Ka and in a corresponding shift in the functional structure of the microbial 

community. Thus, a lower Ka indicated the dominance of r-strategists at high elevations (E0, 

13 °C) as compared with low elevations (E3, 20 °C) , where the K-strategists relatively 

dominated (Loeppmann et al., 2016). In other words, it also supports our first results that 

K-strategists overwhelm r-strategists under warming field because of the C limitation, caused 

by the higher microbial and enzyme activities.  

Overall, microbial community shifts towards slow-growing microorganisms after 

two-year translocation from higher to lower elevations in montane grasslands. This could be 

attributed to the decreased available C substrate as well as reduced soil water content. Further, 

the increase of enzyme activities with warming, accompanied by the increase of catalytic 

efficiency, implied microbial production of less efficient enzymes in the lower versus higher 

elevation soils. Simultaneously, substrate turnover time of C-degrading enzymes was lower in 

the soil at lower elevations, implies a stronger and faster C turnover in warmer and drier soil 

compared to colder soils due to C rather nutrient limitation, which is mainly induced by 

higher fraction of growing microbial biomass. This has direct consequences for C and nutrient 

cycling. Warming can therefore lead to proportionally high soil C and N losses when 

increased N mineralization rates at warmer temperatures are not compensated by rapid plant 

N uptake and plant-derived C inputs to the soil due to lower root biomass production of less 

diverse plant communities. 
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Abstract  

Short-term acceleration of soil organic carbon decomposition with warming 

conflicts with the thermal adaptation observed in long-term studies. The adaption and 

stabilization mechanisms of microbial functions in response to long-term warming, 

however, remains poorly understood. Here, we explored these mechanisms using 

eight-years warming field sites (ambient, +1.6 °C, +3.2 °C) and a short-term constant 

temperature incubation (from 5 to 25 °C with 5 °C intervals) under microbial 

steady-state and activated mode. We found that eight-year field warming facilitated 

the consumption of labile organics due to faster microbial growth and turnover. Two 

times reduction in native available substrates suppressed total microbial biomass and 

especially, the fraction of growing microorganisms up to 3 times. Consequently, the 

microbial growth and enzyme activities acclimated to warming over eight-years 

responded up to 40% weaker to further short-term temperature increase. Temperature 

sensitivity of enzyme affinities to substrate did not respond on warming history 

indicating acclimated microbial communities and enzyme systems and thus caused a 

soil memory to long-term warming. Under microbial activation induced labile 

substrates input, however, the higher enzyme activity and temperature sensitivity of 

Vmax in historically warmed versus ambient soil demonstrated reduced microbial 

memory effect due to thermophilic nature of activated microorganisms. Thus, we 

found experimental evidence that microbial memory to warming is driven by reduced 

amount of native substrate and is strongly dependent on microbial physiological state, 

which can be quickly altered by the available substrate supply, and therefore 

constitutes fundamental processes to improve model prediction of C dynamic in 

response to climate change.   

 

Keywords: Soil enzymes; Temperature sensitivity; Substrate availability; Microbial 

activation
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1. Introduction 

Elevated temperature is projected to activate microorganisms and accelerate their 

turnover, thus promoting terrestrial carbon (C) cycle with potential feedbacks to 

future climate change (Davidson and Janssens, 2006; Bardgett et al., 2008; Zang et al., 

2020). As exoenzymes produced and released by microorganisms are the engine of 

soil organic matter (SOM) decomposition and labile organic compounds production 

(Koch et al., 2007; Wallenstein et al., 2009), shifts in enzyme activities change C and 

nutrient cycling (Sinsabaugh et al., 2002; Wen et al., 2019b). A recent 

microbial-enzyme model predicts that decreased microbial biomass would promote 

soil C accumulation with warming, irrespective of accelerated microbial turnover and 

enzyme activity (Hagerty et al., 2014). The ability of new generation models that 

incorporate microbial dynamics and functionality, to predict soil C response to 

warming needs empirical verification considering short- and long-term duration of 

warming. Additionally, the responses of enzyme kinetics to changes in temperature 

may feed these new models with empiric data to better predict the vulnerability of soil 

C stocks and nutrient cycling in a future warmed world. Thus, assessing the impact of 

global warming on biogeochemical cycles in soils requires a detailed process-based 

understanding of the interaction of microbial communities and their enzyme systems. 

Soil microorganisms can modify their physiology and functionality to 

compensate for the changes in temperature, and this acclimation can confer resilience 

to climate change (Davidson and Janssens, 2006; Allison and Martiny, 2008). In long 

term, this may result in i) the expression of isozymes with different kinetic properties, 

and ii) changes in the relative abundances of microorganisms expressing enzyme 

systems with altered kinetics and efficiency (Bradford, 2013; Blagodatskaya et al., 

2016). Theoretically, environmental variability (i.e. temperature, moisture, C and 

nutrient availability) induces stress that results either in thermal adaptation or in the 

evolution of physiological flexibility (Bradford et al., 2008; Wallenstein et al. 2009; 

Stone et al. 2012). For example, cold-adapted enzymes tend to be more responsive to 

increasing temperature than warm-adapted enzymes (Koch et al., 2007; Dong and 

Somero, 2009). This is primarily due to differences in protein structure that cause 

cold-adapted proteins to lose functionality more readily as temperatures increase 

(Hochachka and Somero, 2002). In contrast, this response may vary among enzyme 

classes (Nottingham et al., 2016). In short-term, however, the sudden temperature 

changes might affect the kinetic properties of existing enzymes at the physiological 

level (Razavi et al., 2016; Liu et al., 2017), thereby stimulating the respiratory 

consumption of C by soil microorganisms (Frey et al., 2013; Bölscher et al., 2017). 

Therefore, an improved mechanistic understanding of temperature sensitivity of 

enzyme kinetics is still required to resolve the uncertainty surrounding ecosystem 

responses to climate warming.  

In strong interactions with temperature, the substrate supply is a key factor 

regulating microbial growth, enzyme production (Allison et al., 2009; Wallenstein et 

al., 2009; Karhu et al., 2014) and catalytic efficiency of enzymes (Loeppmann et al., 

2016). Thus, any enzymatic response of growing microbial populations to temperature 

can only be identified in excess of substrates (Giardina and Ryan, 2000). Due to the 
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faster depletion of soil C pools (especially of the easily accessible, hydrolyzable C 

pools), substrate limitation of hydrolytic enzyme activity is common in warmed soils 

(Knorr et al., 2005; Conant et al., 2011). Limited substrate input imposes a tradeoff by 

either reducing the energy available for growth or expression of enzymes (Angilletta 

et al., 2003). However, there are no studies to date that directly related 

thedecomposition of soil organics to native amount of corresponding substrate in 

long-term warming system at field scale. At sufficient supply of energy (i.e. C and 

nutrients), microorganisms may shift from a steady-state to exponential growth 

accelerating metabolic reactions and extracellular enzymatic activity (Stolpovsky et 

al., 2011; Wang et al., 2014). Ignoring microbial activation by increasing C input due 

to increased net primary productivity under climate warming (Cox et al., 2000; 

Heimann and Reichstein, 2008; Yin et al., 2013), could result in underestimation of 

SOM decomposition as well as in the missing feedbacks between the climate and 

nutrient turnover (Blagodatsky et al., 2000; Barnard et al., 2015; Salazar-Villegas et 

al., 2016).  

Thus, we hypothesized that (1) under long-term warming, faster microbial 

turnover reduces labile organic compounds and therefore, restricts the energy 

available for exoenzymes production and their temperature sensitivity,  thus, 

retarding decomposition of SOM. This could work as a self-regulatory acclimation 

mechanism. (2) This self-regulation can be destroyed by the input of available 

substrate, (e.g., as a result of increased rhizodeposition under elevated CO2 and 

warming) altering microbial physiological state, accelerating enzyme activity and 

concequently, reducing soil C stock. There is a lack of experimental proof of the 

resilience of this self-regulation under warming considering microbial growth, 

enzyme activity, and substrate availability. To test this hypotheses, we determined 

kinetic parameters (Vmax and Km) of β-glucosidase, chitinase, leucine aminopeptidase, 

and acid phosphomonoesterase (involved in C, N, and P cycling) at two physiological 

modes: i) steady-state (non-activated microbial community) and ii) active growth 

induced by a mixture of glucose and nutrients addition at temperature gradients in 

soils from a long-term (8 years) field experiment with soil warming. For the first time, 

we applied a kinetic approach to estimate the amount of substrate natively present in 

soil for the set of tested enzymes. Microbial growth parameters, i.e. the specific 

growth rate (μ) and the portion of growing microbial biomass (GMB/TMB) were 

determined by substrate-induced growth respiratory response (SIGR).We aimed to 

study (1) How does long-term warming affect the temperature responses of potential 

enzyme activities ? (2) Whether or not soil microbial memory occurs persistently 

when microorganisms were activated by the labile C input with future climate 

warming?  

 

2. Materials and methods 

2.1 Site description and sampling 

The soil samples were sampled from an on-going (since August 2010) long-term 

warming experiment located in the northern part of Göttingen, Lower Saxony, 

Germany (51°33′29.28′′N, 9°55′59.46′′E, WGS84), in which soil temperature has 
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been manipulated using heating cables for 8 years. The annual mean temperature and 

precipitation were 9.5 °C and 712 mm, respectively (Siebold and von Tiedemann, 

2012). The soil at the site is classified as a silt loam textured Haplic Luvisol under an 

arable cropping regime. The winter oilseed rape cultivar Falcon (NPZ, Hohenlieth, 

Germany) and the breeding line SEM 05–500256 (SW Seed, Sweden) were sown by 

hand in a split-plot design in August, and harvested in November every year (Siebold 

and von Tiedemann, 2012). The three heating regimes included: (1) ambient soil 

temperature (with an average of 10 °C), (2) ambient +1.6 °C, and (3) ambient +3.2 °C. 

These were chosen to reflect warming scenarios by the year 2050 and 2100, 

respectively (Werner and Gerstengarbe, 2007). The experimental site consisted of 12 

plots (2 m × 2.5 m each) arranged in two rows. Heating cables were buried at a depth 

of 10 cm in each plot, also in the control plots, to ensure equivalent physical 

conditions. Detailed information about the set-up of the warming plots and 

experimental sites can be found in Siebold and von Tiedemann (2012).  

Soil samples were collected from the upper 10 cm of ambient, +1.6 °C and 

+3.2 °C plots in October 2018. In each of the four field replicates, five sub-samples 

were pooled to form a mixed soil sample. Once collected, samples were hand-mixed 

and any visible roots and stones manually removed. Soil samples were stored in 

gas-permeable plastic bags at 10 °C (approximate field temperature during sampling) 

until the start of further laboratory experiments (within 5 days of collection). Basic 

soil properties are shown in Table.1. 

Table. 1 Basic properties of the sampling site. Letters mean significant difference 

between ambient and historical warming in the field (p < 0.05). 

 pH 

SOC 

(%) 

TN 

(%) 

MBC 

(mg kg-1) 

MBN 

(mg kg-1) 

Ambient 7.61±0.10a 2.701±0.18a 0.119±0.01b 691.2±55a 118.0±7a 

+1.6 °C 7.78±0.09a 2.398±0.09a 0.131±0.01a 523.2±38b 85.9±10b 

+3.2 °C 7.57±0.04a 2.500±0.08a 0.154±0.01a 506.9±31b 90.6±5b 

 

2.2 Kinetics of substrate-induced growth respiration  

The kinetics of substrate-induced growth response (SIGR) in the soil was 

analyzed according to Blagodatsky et al. (2000). The SIGR approach is based on 

microbial physiology and, thus, enables distinguishing total and growing biomass 

fractions along with parameters of microbial growth (Panikov, 1995). It has to be 

noted that although substrate addition is required by the SIGR approach, all kinetic 

parameters (e.g., specific growth rate, active and total microbial biomass) analyzed by 

SIGR represent the proportion of the soil microbial community at the time of 

sampling, i.e. before substrate addition. For this, one gram of fresh soil was amended 

with a mixture substrate containing 10 mg g -1 glucose, 1.9 mg g -1 (NH4)2SO4, 2.25 

mg g-1 K2HPO4. Substrate concentrations sufficient for the unlimited exponential 

growth of microorganisms were estimated in preliminary experiments in which 

increasing amounts of glucose were added. The quantity of mineral salts was selected 
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so that any substrate-induced change in soil pH was < 0.1. 

For each treatment (ambient, +1.6 °C, and + 3.2 °C, 8 replicates), 1 g soil 

samples were then incubated in a Rapid Automated Bacterial Impedance Technique 

bioanalyser (RABIT; Microbiology International Ltd, Frederick, MD, USA), at 5, 10, 

15, 20 and 25 °C. First, we incubated the soil samples for 2 days at 45% WHC to 

stabilize the system. After stabilization CO2 production was monitored every 20 

minutes to determine the soil basal respiration (without any substrate addition). Then, 

glucose and mineral nutrients were added to the four replicates of each treatment. Soil 

water content was raised up to 75% WHC. Thereafter, the samples were incubated in 

the RABIT system additional 160, 90, 62, 35 and 24 h at 5, 10, 15, 20 and 25 °C, 

respectively. Microbial growth respiration in the glucose amended soil was used to 

model the specific growth rates of microorganisms (µ), the growing microbial 

biomass (GMB) (Panikov, 1995; Wutzler et al., 2012).  

 

2.3 Enzyme kinetics 

 Enzyme activities were determined in the soil with and without substrate 

addition using the method described by Marx et al. (2001) and Zhou et al., (2020). 

Fluorogenic methylumbelliferone (MU)-based artificial substrates were used to 

estimate the activities of β-1, 4-glucosidase (EC 2.2.1.21), 4-N-acetylglucosaminidase 

(EC 3.2.1.52), leucine aminopeptidase (EC 3.4.11.1) and acid phosphomonoesterase 

(EC 3.1.3.2 ) (Sinsabaugh and Follstad, 2012). Briefly, 1 g soil (dry weight equivalent) 

was suspended in 50 mL sterile water by shaking for 30 min, and dispersing with an 

ultrasonic disaggregator for 2 min using low-energy sonication (50 Js-1). 50 mL of the 

soil suspension was then pipetted into 96-well black microplates (Puregrade, 

Germany), while stirring the soil suspension to ensure uniformity. Afterwards, 50 μL 

of buffer and 100 μL of the corresponding substrates at concentrations of 2, 5, 10, 20, 

50, 100 and 200 μmol substrate g-1 soil were added. Following substrate addition, the 

microplates were measured fluorometrically (excitation wavelength 360 nm; emission 

450 nm) at 0, 30, 60, and 120 min with an automated fluorometric plate-reader 

(Victor3 1420 050 Multi-label Counter, PerkinElmer, USA). It should be noted that 

each fluorescence measurement did not exceed 2 minutes (Razavi et al., 2015) after 

which microplates were promptly returned to the climate chambers at the 

corresponding incubation temperature. 

To calculate the enzyme kinetics parameters, we used the Michaelis-Menten 

equation for enzyme kinetics and adapted measured enzyme activities, V, with 

increasing substrate concentrations [S] where (Marx et al. 2001): 

V=(Vmax×[S])/(Km+[S])                                         (1)                                                                                       

where Vmax is the maximal enzyme activity; Km (Michaelis-Menten constant) is 

the substrate concentration at which Vmax is half.  

The native available substrate (Sn) for specific enzymes was evaluated based on 

Monod kinetics (Panikov et al., 1992; Blagodatskaya et al., 2009), considering that 

the parameter S in Eq. 1 is a sum of naturally existing and of added fluorogenically 

labelled substrate (Sadd), i.e.  

S = Sadd + Sn; 
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V=(Vmax×([Sadd+Sn])) / (Km + [Sadd+Sn])                          (2)                                            

We used the routine Q10 function to examine temperature sensitivity and to 

express the temperature response of each enzyme kinetic parameter (i.e. Vmax and 

Km) separately: 

Q10=(R(T+10 °C))/R(T)                                       (3)                                                                    

where R is the rate of a process or a kinetic parameter value and T is the 

temperature (Razavi et al. 2016; Zang et al., 2020).           

The classical Arrhenius equation was used to estimate enzyme denaturation on 

apparent activation energy that contributed to enzymes reaction rate (Razavi et al., 

2015; Liu et al., 2017) : 

k = A exp(-Ea/RT)                                             (4)                                                         

Where k is the reaction rate constant; A is the frequency of molecular collisions; 

Ea is the required activation energy in Joules per mole; R is the gas constant (8.314 J 

mol-1 K-1) and T is the temperature in Kelvin.  

Noted, the soil added with and without labile substrate (a mixture of glucose and 

nutrients) means microbial activation and steady-state mode in our case. The 

activation effect on enzyme activities and system under different incubation 

temperatures and historical warming were quantified as effect size: 

Activation effect = (EA - ES)/ES                                    (5)                                         

where EA and ES are the kinetic parameters of enzyme activity (i.e. Vmax or Km) 

under microbial activation and steady-state mode, respectively. Activation effect 

above zero indicates that the activation had a positive effect on Vmax and Km.   

                     

2.4 Statistical analysis 

The experiment was carried out with four replicates for each parameter. The 

value presented in the figures and tables are given as means ± standard error (mean ± 

SE). Both Vmax and Km parameters were approximated by the Michaelis-Menten 

equation (1) with the non-linear regression routine of SigmaPlot (version 12.5; Systat 

Software, Inc., San Jose, Ca, USA). Fitting was performed for four replicates 

separately. The R2 values of non-linear regression were greater than 0.9; the p values 

among all the non-linear fitting in this study were less than 0.05. Prior to the analysis 

of variance (ANOVA), the data were tested for normality (Shapiro-Wilk, p > 0.05) 

and homogeneity of variance (Levene-test, p > 0.05). The effects of incubation 

temperature and historical warming treatment (ambient, +1.6 °C, +3.2 °C) on: specific 

growth rate (µ); growing microbial biomass (GMB); total microbial biomass (TMB); 

the ratio of GMB and TMB (GMB/TMB); enzyme activities (Vmax); and substrate 

affinity (Km) were analyzed using a two-way ANOVA, with “temperature” and 

“warming” as factors, and the different parameters as response variables. The effect of 

historical warming and microbial activation on the enzyme activity temperature 

sensitivities (Q10-Vmax) and substrate affinity (Q10-Km) at different incubation 

temperature ranges were also examined using a two-way ANOVA. One-way ANOVA 

was used to assess the effect of historical warming on Vmax and on the activation 

effect of Vmax at each incubation temperature, as well as onthe activation energy (Ea) 

of enzymes under steady-state and activation mode. All statistical analyses were 
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performed using SPSS software (version 19.0; SPSS Inc., Chicago, IL, USA), using 

Tukey HSD analyses to distinguish significant differences (p < 0.05).  

  

3.Results 

3.1 Kinetics of substrate induced growth respiration and enzyme under steady-state  

The specific growth rate (μ) of soil microorganisms substantially increased with 

incubation temperature irrespective of historical warming (Fig. 1a), reflecting faster 

microbial turnover with higher temperatures. The total microbial biomass (TMB) 

decreased with increasing incubation temperature. However, the growing microbial 

biomass (GMB) increased at temperatures below 15 °C, but it decreased with further 

temperature increase (Fig. 1b,c). Consequently, the portion of GMB in TMB generally 

increased from 5 to 15 °C and then (up to 25 °C) it kept relatively stable or even 

decreased (Fig. 1d). 

 

Fig. 1 Specific growth rate (μ) (a), total microbial biomass (TMB) (b), growing microbial biomass 

(GMB) (c), and the portion of GMB to TMB (d) for soil incubated at temperatures increasing from 

5 to 25 °C in 5 °C increments under steady-state mode. Soil was sampled after 8 years of field 

warming (at: ambient; +1.6 °C; and + 3.2 °C). Values are the average (± SE) of four replicates.  
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Fig. 2 Potential enzyme activities (Vmax) of β-glucosidase (a, e), chitinase (b, f), leucine 

aminopeptidase (c, g), acid phosphomonoesterase (d, h) for soil incubated with temperature 

increasing from 5 to 25 °C at 5 °C increment under steady-state and microbial activation modes. 

The soil was sampled after 8 years of field warming (ambient, +1.6 °C, and +3.2 °C). Values are 

average (± SE) of four replicates. Asterisk indicates significant difference between ambient and 

historically warmed soil sites at different incubation temperature (p < 0.05). 

 

The potential activity (Vmax) of four hydrolytic enzymes responded positively to 

increased incubation temperature, regardless of substrate addition and historical soil 

warming (p < 0.05, Fig. 2). The Vmax of β-glucosidase and leucine aminopeptidase 

was 11-27% higher in the ambient than in the historically warmed soils (p < 0.05, Fig. 

2a, c), when incubated at higher temperatures (i.e. 15-25 °C). The Km remained stable 

under the different long-term warming regimes (Fig. S1). Under steady-state mode, 

the native available substrate (Sn) for β-glucosidase, chitinase, leucine aminopeptidase 

was 49-96%, 34-40%, and 12-74% higher in ambient compared with historically 

warmed soils (p < 0.05, Fig. 3a), respectively. However, the native available substrate 

for acid phosphomonoesterase was not significantly altered by long-term warming.  



Manuscript 

 156 

 

Fig. 3 Native available substrate for β-glucosidase, chitinase, leucine aminopeptidase, acid 

phosphomonoesterase for soil incubated with 15 °C under steady-state and microbial activation 

modes. The soil was sampled after 8 years of field warming (ambient, +1.6 °C, and +3.2 °C). 

Values are average (± SE) of four replicates. Letter indicates significant difference between 

ambient and historically warmed soil sites (p < 0.05). H 

 

3.2 Enzyme kinetics under microbial activation 

Under microbial activation mode, β-glucosidase and chitinase activities 

increased by 23-110% and 37-148% in historically warmed as compared with ambient 

soil (p < 0.05, Fig. 2), respectively. All enzyme affinities under activation mode 

increased with increasing incubation temperature, except for leucine aminopeptidase 

(Fig. S1). Microbial activation reduced the Sn pool in ambient, but partly increased 

that in historically warmed soils (Fig. 3). Therefore, the differences were either 

smoothed or showed the opposite trend under activation compared to steady-state 

mode (Fig. 3b). 

Activation had a greater effect on Vmax in the historically warmed soils compared 

with soil under the ambient temperature (except acid phosphomonoesterase) (Fig. 4). 

The activation effect on Vmax increased with temperature from 5 to 15 °C, above 

which it remained stable. On the contrary, the activation effect on Km of β-glucosidase, 

chitinase and acid phosphomonoesterase decreased from 200% to 0% with increased 

incubation temperature (Fig. 5). The activation did not alter the Km of leucine 

aminopeptidase at lower incubation temperature, and thus showed an increased 

pattern.  
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Fig. 4 Activation effect on potential enzyme activities (Vmax) of β-glucosidase (a), chitinase (b), 

leucine aminopeptidase (c), acid phosphomonoesterase (d) for soil incubated with temperatures 

increasing from 5 to 25 °C at 5 °C increments. Soil was sampled after 8 years of field warming (at: 

ambient; +1.6 °C; and +3.2 °C). Values are the average (± SE) of four replicates. Asterisk 

indicates significant difference between ambient and historically warmed soil sites at different 

incubation temperature (p < 0.05). 

 

3.3 Temperature sensitivity of enzymes under steady-state and microbial activation  

Under steady-state mode, the temperature response of Vmax differed across 

enzymes, corresponding to Q10-Vmax values up to 2.11 (Fig. 6), with the activation 

energy (Ea) values ranged from 22.9 to 50.5 kJ mol-1 (Fig. S2). Ea was always lower 

in the historically warmed compared with ambient soil under steady-state mode. The 

temperature sensitivity of Km was less than that of Vmax, and Q10-Km varied between 

0.30 - 2.01 (Fig. S3). The Q10-Vmax for enzymes involved in C and N cycling (e.g., 

β-glucosidase, chitinase, and leucine aminopeptidase) were 9-27% lower in 

historically warmed than in ambient soil, only at lower incubation temperatures (p < 

0.05, Fig. 6). However, acid phosphomonoesterase had much higher Q10-Vmax 

(between 1.2-1.6 irrespective of historical soil warming and incubation temperature).  
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Fig. 5 Activation effect on substrate affinity (Km) of β-glucosidase (a), chitinase (b), leucine 

aminopeptidase (c), and acid phosphomonoesterase (d) for soil incubated with temperatures 

increasing from 5 to 25 °C at 5 °C increments. Soil was sampled after 8 years of field warming (at: 

ambient; +1.6 °C; and +3.2 °C). Values are the average (± SE) of four replicates. 

 

Under activation mode, the Q10-Vmax of enzymes ranged from 1.2 to 4.0, 

two-folds higher than in soils under steady-state mode. This was demonstrated 

especially under low incubation temperatures (Fig. 6). In contrast to steady-state, the 

Q10-Vmax of all enzymes (except acid phosphomonoesterase) was higher in the 

historically warmed soil than in soil with ambient soil temperatures. The Q10-Km 

decreased after microbial activation, but was not affected by long-term soil warming 

(Fig. S3). 
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Fig. 6 Temperature sensitivity of potential enzyme activities (Q10-Vmax) of β-glucosidase (a), 

chitinase (b), leucine aminopeptidase (c), and acid phosphomonoesterase (d) for soil incubated 

with temperature increasing from 5 to 25 °C at 5 °C increments. Soil was sampled after 8 years of 

field warming (at: ambient; +1.6 °C; and +3.2 °C). Values are the average (± SE) of four 

replicates. 

 

4. Discussion 

4.1 Effects of temperature changes on soil enzyme activities under steady-state mode 

We observed a weaker increase in enzyme activities (Vmax) with increasing 

incubation temperature in samples from historical field warming versus ambient soil, 

which partly supported our hypothesis that long-term warming reduces the 

temperature sensitivity of enzymes. In the historically warmed soils, enzymes 

performance was more efficient as indicated by the lower activation energy (Fig. S2), 

and therefore, microorganisms can reduce the de-novo synthesis of enzymes while 

achieving the same functions (Koch et al., 2007; Machmuller et al., 2016). However, 

such a decline in Vmax of tested enzymes involved in C and N cycling in historically 

warmed compared with ambient soils was only observed under high incubation 

temperatures, which suggests that a reduction in enzyme synthesis is a trait of 

warm-adapted enzymes.  

Further, the temperature sensitivity (Q10-Vmax) of β-glucosidase, chitinase, and 

leucine aminopeptidase decreased with historical warming (Fig. 6), which supported 

our first hypothesis that enzymes in the historically warmed soil ambient soil would 

show lower Q10 than in ambient soils, because of the microbial memory effect 

(thermal acclimation) (Bradford et al., 2008; Tucker et al., 2013; Walker et al., 2018). 

Microbial memory effect in historically warmed soil could result from limitations by 

labile organic substrates (Davidson and Janssens, 2006; Frey et al., 2008). Eight years 

of accelerated C cycling substantially depleted the easily available C pool in the 

historically warmed soils. This was further proved by the lower content of native 

substrates for β-glucosidase, chitinase, and leucine aminopeptidase, as well as by 

lower  MBC/SOC ratio in the historically warmed compared with ambient soils (Fig. 

3; Table 1). The low amount of available substrates precludes slow microbial 

metabolic activity, and thus many soil microorganisms shifted to dormancy (Lennon 

and Jones, 2011), as indicated by a lower proportion of growing in total biomass (i.e., 

GMB/TMB, Fig. 1d). Given that active microorganisms are more sensitive to the 

fluctuating environment (Kussell and Leibler, 2005; Blagodatskaya and Kuzyakov, 

2013), and therefore showed a higher temperature sensitivity in the ambient soils 

compared with dormant microorganisms under long-term warming. Furthermore, 

dormant microorganisms are able to slowly recycle their own cell components and to 

down-regulate enzyme-expressing gens (Joergensen and Wichern, 2018). As a 

consequence, they decreased microbial investment in the production of hydrolytic 
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enzymes, and hence decreased the response of enzyme activity to temperature.  

Alternatively, this trend could be related to isoenzyme production by 

microorganisms (Wallenstein, 2011), which occurs as an acclimation response of the 

enzyme itself or the enzyme-producing microbial community, as supported by the 

inapparnet changes of Km of β-glucosidase and leucine aminopeptidase (Fig. S1). 

These expressed isoenzymes catalyze the same reaction but differ in protein structure, 

enabling them to act more effectively in the ambient soil (Nottingham et al., 2016; 

Razavi et al., 2016). Decreased carbon use efficiency in historically warmed soils 

could at least partly explain the decline in growing microbial biomass (Tucker et al., 

2013; Wen e al., 2019a), thus restricts the Q10-Vmax in the historically warmed soil. 

Further, lower total microbial biomass supported the possibility of greater microbial 

dieback under higher incubation temperatures (Sihi et al., 2017), thus providing via 

microbial necromass readily available substrate for decomposition and microbial use 

(Dippold and Kuzyakov, 2016). This C and nutrient source provides the fast-growing 

microorganisms (Fig. 1a) with their growth substrate (Bore et al., 2017). In contrast to 

the enzymes involved in C and N cycling, there was an absence of significant trend of 

Q10-Vmax for acid phosphomonoesterase (Fig. 6). This was probably an indication of 

no limitation for P, and thus no any reaction of P cycling enzyme systems even with 

climate warming. 

 

4.2 Activation altered the temperature sensitivity of soil enzymes  

After activating microorganism, we observed an increase both all the tested 

enzyme activities with incubation temperature (Fig. 2) and temperature sensitivity of 

enzyme activities (Q10-Vmax) (Fig. 6). This indicated the interactive effect of substrate 

and temperature on the catalytic reaction, induced by microorganisms originally 

adapted to historical warming. Similarly, microbial activation with glucose 

significantly increased the Q10 values of respiration (Zhu et al., 2011). Furthermore, 

substrate availability might also shift enzyme expression towards lower affinity 

(Steinweg et al., 2008), where the trade-off is an increase in maximum catalytic rates 

as supported by the higher Km (i.e., lower affinity) for all enzymes under microbial 

activation compared with steady-state modes (Fig. S1). Such a shift in enzyme 

expression favored fast-growing microorganisms and higher respiration rates under 

future warming.  

Altered C availability in soil are well known to affect microbial physiological 

status (Cleveland et al., 2007; Fierer et al., 2007). Stronger limitation by the labile 

native substrate in the historically warmed soil reduced metabolic activity (Fig. 3a), 

and thus caused a memory effect in response to further short-term increasing 

temperature. In contrast, the surplus of glucose increased native labile substrates (Fig. 

3b), induced microbial growth, as well as increased both enzyme activity and catalytic 

efficiency (Fig. 2, S2), as a consequence eliminated the microbial memory effect in 
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the historically warmed soils. Thus, a sudden increase in C availability can induce a 

short-term fluctuation in community composition shifting the domination from 

slow-growing oligotrophic microorganisms (favored by low substrate availability) to 

temporal dominance of copiotrophic microorganisms (Cleveland et al., 2007). Shifts 

towards more active microorganisms at warmer temperatures combined with 

increasing labile C input (e.g., activation mode) from enhanced vegetation 

productivity at higher mineralization rates can thus result in higher temperature 

sensitivity (Melillo et al., 2002; Hartley et al., 2008). Therefore, the Q10-Vmax was 

higher in the historically warmed compared with ambient soils after substrate addition, 

and substrate input accelerated enzymes-mediated C and N mobilization in the soil 

under climate warming. 

 Under the C limitation, microorganisms acclimated to 8- years soil warming 

with annual fluctuate soil temperature of 5-15 °C, could slowly maintain their 

metabolism at temperatures below 15 °C (Marchant et al., 2008). At warmer 

environment (above 15 °C), however, meso/thermophilic microorganisms grow faster 

and rapidly increase their number during a short time. Therefore, the mesophic (and 

even thermophilic) nature of acclimated microorganism expressing the enzymes 

beneficial in warmer environment in long-term warmed soils, could serve as an 

adaptation strategy to adverse environments (e.g., C limitation) enabling to 

outcompete or partially replace the mesophiles under favorable conditions i.e., 

temperature increase and additional labile substrate (Portillo et al., 2012). As a 

consequence, the input of labile substrate stimulated microbial growth and increased 

Q10-Vmax in historically warmed compared to ambient soils. However, the uncommon 

high temperatures (e.g., above 15 °C which never reached up in the field) not only 

activate dormant microorganisms (Birgander et al., 2013), but also increase in 

short-term microbial mortality by thermal denaturation, especially in the ambient soils 

dominated with psychrophilic microorganisms (Joergensen et al., 1990), as indicated 

by the stable activation effect of Vmax above 15 °C, as well as the weaker activation 

effect in the ambient compared with historically warmed soils (Fig. 4). Furthermore, 

this could be explained by the limited binding between enzymes and soil organics due 

to the increased absorption rate between organic-mineral surface with elevated 

incubation temperature (Nannipieri et al., 1996; Wallenstein et al., 2011). Therefore, 

the apparent increase of Q10-Vmax after microbial activation was only observed at low 

incubation temperatures, and no difference in Q10-Vmax as well as Q10-Km between 

historical warmed and ambient soil was observed at higher incubation temperatures. 

 

5.Conclusions 

Overall, this study provided new empirical confirmation that even slight 

warming (which is highly relevant to current climate change predictions) in long-term 

reduced the amount of native labile substrates in soil, leading to a soil microbial 
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memory effect. The temperature sensitivity (Q10) of enzymes involved in C and N 

cycling under the steady-state mode was higher in ambient than in historically 

warmed soils. This strongly suggests that microorganisms in the historically warmed 

soils shifted to dormancy due to the substrate limitation, as indicated by the lower 

native available substrates for β-glucosidase, chitinase, and leucine aminopeptidase 

compared with that in ambient soils. Substrate depletion in the historically warmed 

soils further induced a microbial thermal compensation, as indicated by an inapparent 

sensitivity of enzyme systems (Km). Input of labile substrate, however, remarkably 

activated dormant microorganisms in the historically warmed soils, stimulated 

enzyme activity, and thus counterbalanced the soil microbial memory effect resulting 

in higher Q10-Vmax as compared to ambient soil. Our results identified that the 

transition between microbial physiological states owing to changes in substrate (C or 

nutrient) availability is the most likely explanation for the observed variations in 

temperature sensitivity of enzyme activities. Thus, we showed a strong interaction of 

C input and climate warming, both suggested to be substantially altered by global 

change. Therefore, accelerated soil C cycling due to climate warming might induce a 

self-enhancing feedback reaction resulting in the depletion of the easily available C 

pool in soils. Shifts in SOM quantity then vice verse will imply shifts in microbial 

community composition and nutrient cycling functions much more severe as a single 

altered factor such as temperature alone can induce. 
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Supplementary 

Ambient +1.6 oC +3.2 oC

 

Fig. S1 Substrate affinity (Km) of β-glucosidase, chitinase, leucine aminopeptidase, and acid 

phosphomonoesterase for soil incubated with temperature increasing from 5 to 25 °C at 5 °C 

increment under steady-state and microbial activation modes.  

 

Fig. S2 The activation energy (Ea) of β-glucosidase (a), chitinase (b), leucine aminopeptidase (c), 

and acid phosphomonoesterase (d) for soil under steady-state and microbial activation modes.  
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Fig. S3 Temperature sensitivity of enzyme substrate affinity (Q10-Km) of β-glucosidase (a), 

chitinase (b), leucine aminopeptidase (c), and acid phosphomonoesterase (d) for soil incubated 

with temperature increasing from 5 to 25 °C at 5 °C increment under steady-state and microbial 

activation modes.
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