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Abstract 

Triple negative breast cancer (TNBC) is an aggressive type of cancer which makes up 15-20% 

of all newly diagnosed cases, lacking the main target molecules for tumor specific treatment.  

Surgery or systemic therapy by chemotherapy are frequently used in the clinic and combined 

with radiation therapy to improve locoregional control in breast cancer patients after surgery. 

With a poor prognosis, there is a clear need to explore new treatment options for TNBC. The 

aim of the here presented PhD project was to evaluate the feasibility to enhance the biological 

effect of radiation therapy and increase tumor contrast for diagnosis by applying an in vivo 

microCT imaging system in combination with barium nanoparticles (BaNPs) in a pH8N8 WAP-

T-NP8 mouse model for TNBC. Characterization of the BaNPs revealed strong x-ray 

attenuation and no toxic effects in different cancer and normal cell lines. Furthermore, 

irradiation of cancer cells using low energy x-rays in the keV range by a microCT resulted in a 

significant reduction on colony formation capability. In vitro, this low energy irradiation effect 

on clonogenic tumor cell survival was enhanced in the presence of BaNPs. Next, a subcutaneous 

lung cancer mouse model in immunodeficient mice and an orthotopic syngeneic mouse model 

for breast cancer was applied for further in vivo evaluation. Once the treatment plan was 

optimized regarding the applied x-ray doses and the frequency of irradiation, low energy 

radiation therapy within a classical in vivo microCT significantly reduced tumor growth or even 

resulted in shrinkage of the tumors without visible side effects and weight loss in comparison 

to untreated controls. However, the intratumoral application of BaNPs was not able to increase 

the irradiation effect on tumor growth kinetics. This might be in part due to inhomogeneous 

distribution of BaNPs within the tumor observed by microCT imaging. K-edge subtraction 

imaging as well as x-ray fluorescence of explanted tumor samples confirmed these findings. To 

localize the BaNPs in 3D to specific sites within the tumor environment and to detect 

morphological alterations within the tumor due to irradiation in proximity to BaNPs an ex-vivo 

imaging based analytic  platform was established, utilizing co-registration of microCT and 

histology data. This imaging approach co-localized BaNPs with CD68 positive phagocytic cells 

and revealed a non-uniform distribution of the BaNPs within the tumor, however with no signs 

of locally enhanced radiation effects. Furthermore, antibody functionalized BaNPs were 

generated for systemic application. Analysis of biodistribution revealed that EpCAM labeled 

BaNPs did not reach the tumor after intra-venous administration, but accumulated in liver and 

spleen, demonstrated by a strong CT contrast within these organs. 
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In summary, I showed that low energy radiation therapy by applying an in vivo microCT 

significantly reduced tumor volumes in comparison to untreated tumors in a syngeneic breast 

cancer tumor mouse model resembling TNBC. However, BaNPs while enhancing the 

effectiveness of irradiation on tumor cells in vitro, did not improve the irradiation effect on 

tumor growth in vivo.  
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Zusammenfassung 

“Triple Negative Breast Cancer” (TNBC) is eine besonders agressive Form von Brustkrebs die 

15-20% der diagnostizierten Fälle ausmacht und denen die Hauptzielmoleküle für die 

tumorspezifische Behandlung fehlen. Eine Operation oder systemische Therapie mittels 

Chemotherapie wird häufig in der Klinik eingesetzt und mit Strahlentherapie kombiniert, um 

die lokoregionale Kontrolle bei Brustkrebspatientinnen nach der Operation zu verbessern. 

Aufgrund der mit TNBC verbundenen schlechten Prognose besteht die Notwendigkeit, neue 

Behandlungsoptionen für zu untersuchen. Die hier vorgestellte Doktorabeit hatte zum Ziel eine 

solche Alternative: Niederenergetische Strahlentherapie unter Nutzung eines klassichen CT 

Systems in Kombination mit Barium Nanopartikeln (BaNPs) zur Verstärkung des Effekts zu 

etablieren. Diese Partikel sollen zusätzlich den CT Kontrast des Tumors erhöhen und somit 

seine Darstellung erleichtern. Dieses Konzept galt es in-vivo in einem pH8N8 WAP-T-NP8 

Mausmodell für TNBC zu evaluieren. 

Die neu geschaffenen BaNPs zeigten keinerlei toxische Effekte auf verschiedene Zelllinien und 

einen verstärkten Röntgenkontrast in-vitro. In Kombination mit Röntgenstrahlung im 

niederenergetischen keV-Bereich aus einem mikroCT wurde eine signifikante Reduktion der 

Poliferationsrate von pH8N8 Tumorzellen erzielt, die sich in einer eingeschränkten Fähigkeit 

zum Bilden von Kolonien manifestierte. Als nächstes wurden ein subkutanes Lungenkrebs-

Mausmodell bei immundefizienten Mäusen und ein orthotop-syngenes Mausmodell für 

Brustkrebs zur weiteren In-vivo-Bewertung angewendet. Sobald der Behandlungsplan 

hinsichtlich der angewendeten Röntgendosen und des Bestrahlungsintervalls optimiert war, 

reduzierte eine energiearme Strahlentherapie innerhalb einer klassischen in vivo Mikro-CT das 

Tumorwachstum signifikant oder führte sogar zu einer Schrumpfung der Tumoren ohne 

sichtbare Nebenwirkungen und Gewichtsverlust in Vergleich mit unbehandelten Kontrollen. 

Die intratumorale Anwendung von BaNPs konnte jedoch den Bestrahlungseffekt auf die 

Tumorwachstumskinetik nicht erhöhen. Dies könnte teilweise auf die inhomogene Verteilung 

von BaNPs innerhalb des Tumors zurückzuführen sein, die durch Mikro-CT-Bildgebung 

beobachtet wurde. „K-edge subtraction imaging“ und „x-ray fluorescence imaging“ 

angewendet an explantierten Tumoren bestätigten diese Ergebnisse. Um die BaNPs in 3D an 

bestimmten Stellen innerhalb ihrer Tumorumgebung zu lokalisieren und morphologische 

Veränderungen innerhalb des Tumors aufgrund von Bestrahlung in der Nähe von BaNPs zu 

erkennen, wurde eine auf Ex-vivo-Bildgebung basierende Analyseplattform eingerichtet, bei 

der Mikro-CT- und Histologiedaten fusioniert wurden. Dieser bildgebende Ansatz lokalisierte 
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BaNPs zusammen mit CD68-positiven Phagozytenzellen und zeigte eine ungleichmäßige 

Verteilung der BaNPs innerhalb des Tumors, jedoch ohne Anzeichen lokal verstärkter 

Strahlungseffekte. Darüber hinaus wurden Antikörper-funktionalisierte BaNPs zur 

systemischen Anwendung erzeugt. Die Analyse der Bioverteilung ergab, dass EpCAM-

markierte BaNPs nach intravenöser Verabreichung den Tumor nicht erreichten, sondern sich in 

Leber und Milz ansammelten, was durch einen starken CT-Kontrast dieser Organe gezeigt 

wurde. 

Zusammenfassend konnte ich zeigen, dass eine Strahlentherapie mit niedriger Energie durch 

Anwendung eines in vivo Mikro-CT das Tumorvolumen im Vergleich zu unbehandelten 

Tumoren in einem syngenen Brustkrebs-Tumor-Mausmodell, das TNBC ähnelt, signifikant 

reduzierte. BaNPs verbesserten zwar die Wirksamkeit der Bestrahlung von Tumorzellen in 

vitro, verbesserten jedoch nicht den Bestrahlungseffekt auf das Tumorwachstum in vivo.   
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1 Introduction 

1.1 Breast cancer 

Cancer is the 2nd leading cause of death worldwide. Breast cancer is by far the most common 

cancer type causing about 612.000 deaths per year worldwide1. The main risk factor for women 

to develop breast cancer is age2. Further risks are low parity, short breastfeeding phase and a 

long period from puberty to menopause3,4. There is increasing evidence that hormonal 

contraception can also increase the risk of breast cancer in certain cases5,6. These risk factors 

explain that women in industrialized countries are more likely to develop breast cancer7. In 

order to select the best possible therapy, the breast tumor must be fully characterized. Tumor 

classification includes the histopathological assessment and differentiation of breast carcinomas 

in grade one (G1, well differentiated), grade two (G2, moderately differentiated), grade three 

(G3, poorly differentiated) or grade four (G4, undifferentiated metastatic)8. In addition, the 

tumor is classified in the TNM system by the following three main criteria: I) the size and 

spread of the primary tumor (T), II) the absence or presence of local or adjacent lymph node 

metastases (N), and III) the presence of distant metastases (M)9. Figure 1 shows the large 

variability in molecular subtypes of breast cancer. Molecular biological methods enable the 

tumors to be further characterized by determining the Erb-B2 receptor tyrosine kinase 

(ERBB2), estrogen receptor alpha (ER-α) and progesterone receptor (PR) presence in 

connection with the molecular subtypes based on gene expression profiles: I) Luminal A, II) 

Luminal B, III) basal-like and IV) normal-like10. In 50–75% of the cases, the result of 

histological assessment is an invasive ductal carcinoma, followed by invasive lobular 

carcinoma in 5–15% of the cases. The remaining breast tumors are characterized by rare 

histologies11. The ER-α and PR, summarized here as hormone receptors (HR), are expressed in 

around 70% of invasive breast cancers12. Between 15–20% of breast cancers show increased 

activity or overexpression of the human epidermal growth factor receptor 2 (ERBB2), which is 

also known under the name HER2/neu and, if left untreated, are associated with a poor 

prognosis13.   
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Figure 1: Molecular Subtypes of breast cancer  

Adapted from Eric Wong and Jenna Rebelo14 

 

1.2 Triple negative breast cancer 

Fifteen percent of all breast cancers, that lack the aforementioned receptors, are called triple 

negative breast cancers (TNBC)15. Thus, therapies specifically targeting the activity of ER-, 

PR- or HER2-receptors are inappropriate. TNBC has a mortality rate of 40% (within the first 5 

years) versus ≤10% for all breast cancers and metastases in 46% of patients. It is a breast cancer 

type with a very poor prognosis, which occurs frequently in young and middle adulthood16. 

Patients with TNBC have a high risk of distant relapse (metastasis) occurring during the first 

three to five years after diagnosis and primary therapy17. The exact molecular biological 

pathophysiology of TNBC has so far been very poorly understood18. There are large differences 

in the five-year survival rates, which depend crucially on the degree of differentiation and the 

receptor status. For example, it is 99% for G1 tumors that are smaller than 2 cm and have a 

negative lymph node finding, for HR-positive breast carcinomas and for ERBB2-positive ones 

at 94% and for TNBC at 85%. Due to the triple negativity of the tumors TNBC lacks molecular 

targets for a specific treatment, thus chemotherapy is most commonly applied19. For non-

metastatic cases, breast-conserving surgery (BCS), as well as mastectomies are performed. This 

is mostly done in combination with adjuvant chemotherapy or radiation treatment traditionally 
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given in TNBC to improve locoregional control in breast cancer patients following mastectomy 

or conservative breast surgery20,21. Even though there are much more refined treatment 

regimens for TNBC to this date, the prognostic outcome for the patients is still relatively poor. 

Therefore, there is a clear need for the evaluation of novel therapeutic strategies against TNBC 

including radiation therapy. 

 

1.3 Imaging strategies for of breast cancer diagnosis 

The breast is mainly composed of adipose and fibrous tissue. Detection of a tumor within this 

complex architecture remains challenging and is predominantly done by mammography - a 

planar x-ray imaging technique. Mammography has two main weaknesses: I) the entire internal 

structure of the breast is projected onto one plane and thus breast cancer can be obscured by 

other structures and II) comparably low x-ray absorption of the breast tissue leads to poor 

contrast. Moreover, mammography requires compression of the breast which leads to 

discomfort of the patient. Additionally, the high rate of false positive findings in mammography 

are of concern as they cause trauma for the patient and lead to costly follow up biopsies. Thus, 

mammography has been critically discussed for a long time22. Breast CT23,24 and dedicated 

breast MRI25,26 have been proposed as alternatives but have not reached a widespread use yet. 

Breast CT as a true 3D technique does not suffer from the projection problem of mammography 

but can only hardly be achieved at low x-ray doses. In addition, without the use of contrast 

agents the sensitivity and specificity of breast CT is only marginally above classical 

mammography27. However, in combination with contrast agents a clear depiction of the tumor 

can be reached in most cases as demonstrated in Figure 2. Since breast cancer presents a severe 

burden to public health, screening programs have been established in many countries in the last 

decades. Since breast CT and MRI are expensive and are not widely available, screening is 

solely done by mammography with all its outlined weaknesses. In addition to screening and 

diagnosis, imaging also needs to be performed for radiation treatment planning, staging of the 

tumor and evaluation of therapy response. Thus, a novel imaging strategy that shows an 

improvement of tumor delineation is of great interest and would benefit many patients. 
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Figure 2: Comparison of mammography and breast CT on the example of an invasive ductal 

carcinoma.  

A) Mammography shows no presence of the tumor. B) Breast CT slice without the application of contrast 

agent. No tumor can be identified. C) Contrast enhanced breast CT clearly shows the tumor lesion. 

Modified from Wienbeck et al.28 

 

1.4 Radiation therapy of breast cancer 

Apart from surgical removal of the tumor, radiation therapy (RT) is commonly applied, 

especially in cases where the metastases cannot be easily removed or are too widespread for 

surgery21. RT is clinically used in several situations. After breast-conserving surgery (BCS) to 

reduce the chance of a tumor recurrence, after a mastectomy, if the cancer is found in many 

lymph nodes or in the surrounding tissue29,30.  

RT uses the fact that the fast dividing tumor cells have an impaired repair mechanism for 

radiation damage compared to healthy cells31. Thus, in RT the tumor regions are irradiated with 

high energy beams. Mostly x-ray beams with photon energies in MeV range are used, but also 

proton-beams can be utilized32. The main advantage of RT is therefore that it can be generally 

applied in all tumor entities in contrast to immunotherapy, which can only be used if the tumor 

expresses a certain antigen33. However, apart from the tumor cells, healthy cells also experience 

radiation damage, especially cell types with a high proliferation rate, such as the hematopoietic 

stem cells in the bone marrow. To spare the healthy tissue as good as possible RT is typically 

delivered from different angles that lead to overlapping irradiation fields within the tumor34,35. 

In addition, the high beam energies are used to reduce the absorption of the radiation in 
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superficial tissue like the skin. This concept has three consequences for the patient: I) in most 

cases a contrast enhanced CT image is needed for the irradiation planning , II) the high beam 

energies can only be delivered with special devices (linear accelerators, LINACs) and III) in 

the tumor region the absorption of the radiation is low due to the high energies. 

Since the initial CT image is the basis of the irradiation plan, the delineation of the tumor 

margins and the position of the tumor in this scan is of utmost importance. However, the CT is 

performed in a different device than the RT, meaning that the patient needs to be repositioned 

between CT scan and RT, which makes it challenging to reproduce the exact location of the 

tumor, especially in the cases of soft-tissue tumors. In addition, RT and CT are usually carried 

out in different departments and the irradiation planning also requires some time. Thus, 

typically there are days between CT and first irradiation36.  

The mode of action of RT is a combination of direct radiation damage to the DNA causing 

apoptosis of the cells and the production of reactive oxygen species (ROS) due to ionization37. 

These ROS are then damaging the surrounding cells. In both cases the effect is proportional to 

the dose, the energy that is absorbed, delivered to the tumor. Thus, increasing the absorption of 

the cells should boost the efficacy of RT. Therefore, the potential use of contrast agents has 

been studied, using the same formulations that are used for contrast enhancement in CT38. 

However, at the typical beam energies in the MeV range, the increase in absorption by such 

contrast agents is only marginal. The use of elements with even higher atomic numbers is 

difficult to achieve due to various reasons such as: limited accessibility of those substances as 

well as toxicity issues. As an alternative a reduction of the beam energy has been proposed39–

41. Low energy RT however also bears a higher risk of damaging healthy tissue in the light path. 

Thus, the ideal contrast agent should increase the efficacy of RT so much that the use of lower 

beam intensities is compensated by the favorable effect of the therapy. Such an approach - if 

realizable - would result in RT in an energy regime similar to that of CT and would therefore 

allow performing tumor diagnosis and treatment at the same time in the same system.  

 

1.5 Physical basics of dose and dose measurement 

As pointed out above the effect of RT is determined by the amount of absorbed energy / the 

applied dose. Therefore, understanding the definition of dose and how to measure dose is 

crucial. In physics, dose describes the work that is performed within matter by the absorbed 

radiation. This so-called absorbed dose D is measured in Gray [Gy] and is defined as 1 J of 

energy that has been absorbed by 1 kg of matter [Gy=J/kg]. Since the biological effect also 
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depends on the type of radiation the so-called equivalent dose H has been defined which 

includes a weighting factor for the type of radiation and is measured in Sievert [Sv]. The 

weighting factor for x-rays is 1 whereas for instance the factor for alpha-radiation is 2042. In 

addition, different organs have different susceptibilities for radiation damage. This is denoted 

in the so-called effective dose E which is also measured in Sievert [Sv] and includes weighting 

factors for specific organs, which add up to a weighting factor of 1 for whole-body exposure. 

The weighting factors take the stochastic dose effects - mostly the elevated cancer risk into 

account. Thus, they cannot directly be transferred to preclinical studies. In such studies virtually 

only the absorbed dose is discussed (if the dose is reported at all)43. 

Since the dose depends on several aspects such as the tissue composition, a reliable 

measurement is challenging. In addition, the tissue causes scattering of the x-rays that increases 

the absorbed dose. Thus, dose measurements should always be done in an appropriate phantom 

that mimics the properties of the animal/patient. However, dose measurements can only be used 

as an estimate, since a patient with a greater body mass will always receive a higher dose in 

comparison with a patient with a low body mass, even if exactly the same device settings are 

used. To measure the dose, an effect that converts absorbed photon energy into a measurable 

current need to be used, as in ionization chambers or Geiger-Müller counters. To measure the 

effective dose inside the experimental animal or even a patient is virtually impossible. One 

option to achieve this, at least in a dead animal, is the use of thermoluminescence dosimeters 

(TLDs). TLDs are small crystals that convert the absorbed dose into a permanent change of 

electron distribution and are commonly used in finger ring dosimeters. Due to their small size 

TLDs can be integrated in phantoms or for instance implanted in dead animals and will therefore 

provide a reliable readout of the absorbed radiation and the specific location within the body. 

When heated the crystal emits light proportional to the absorbed energy44.  

 

1.6 X-ray imaging and radiation therapy devices 

CT is a 3D imaging modality based on radiography. The patient/object is radiographed, which 

projects the attenuation of the x-rays along their light paths onto a 2D detector. To recover the 

3D information the inverse problem of these projections has to be solved45. In order to overcome 

the loss of the dimensionality from a 3D object to a 2D projection image, a reconstruction 

algorithm is applied which needs a set of (typically evenly) angularly distributed projection 

images as an input. Thus, CT is more dose dependent than planar radiography since a large 

number of images (most commonly in the range of thousands) needs to be taken, while either 
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the object is rotated, or the detector is circling around the object. Since the contrast in CT is 

based on the difference in the attenuation of x-rays between different tissues, which become 

marginal at higher photon energies, CT is usually performed with average energies in the range 

of 40-60 keV. These energies are large enough that an object as big as the human body can still 

be penetrated, but low enough to provide sufficient contrast. The x-rays are produced by an x-

ray tube as shown in Figure 3 A. Figure 3 B shows the typical setup for a clinical CT system. 

Both the x-ray tube as well as the x-ray detector rotate around the patient on a so-called gantry. 

Figure 3 C shows an exemplary microCT system which is used for non-living samples. Due to 

the need for a high precision, the x-ray tube and the detector are fixed in place. To achieve 

projections from different angles, the sample is rotated. 

 

 

Figure 3: Overview of x-ray imaging techniques. 

A) Functional principle of an x-ray tube. Electrons are emitted by the cathode and hit the rotating 

tungsten target on the anode. X-rays are emitted. B) Schematic representation of a clinical CT scanner 

using a gantry configuration, where x-ray tube and detector rotate around the patient. C) Schematic 

representation of a microCT using a fixed geometry with a rotation sample. 

 

To deliver radiation dose to the tumor site during RT, photons with high energies between 1 

and 25 MeV are generated and used for irradiation of the patient. This principle is called 

external beam RT and is the most commonly applied method. At these high energies the 

absorption within the tissue is rather low, thus only a minimal dose is delivered to the skin. To 

ensure a sufficient dose deposition at the tumor site, RT is applied from different angles, 

however fewer than in CT. Such high intensity, high energy beams cannot be produced in an x-

ray tube, the common x-ray source in CT. Therefore, linear accelerators (LINACs) must be 

employed. The functional principle of a LINAC is demonstrated in Figure 4 A. In comparison 

to classical x-ray tubes, producing higher energy x-rays requires additional electron 

acceleration. This is done by using alternating currents between so-called “drift tubes”. Figure 

4 B shows a clinical LINAC as used for RT. 
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Figure 4: Basics of medical LINACs. 

A) Functional principle of electron acceleration in a LINAC. Alternating currents between so-called 

drift tubes accelerate electrons. B) Medical LINAC for radiation therapy. Due to the accelerated 

electrons high energy x-rays are generated.  

 

Due to the different requirements CTs and LINACs differ vastly in the properties of the 

radiation they produce and are therefore not interchangeable.            

  

1.7 Nanoparticles in cancer diagnosis and therapy 

Nanoparticles, by definition are particles with a diameter between 1 and 100 nm and 

distinguished from microparticles for which the diameter ranges from 1 to 1000 µm46. Here we 

will use the term nanoparticles (NPs) for particles with a diameter below 1 µm.  

NPs have a broad spectrum usage in (bio-)medical applications47. Liposome and polymer based 

NPs are used as a vehicle for drug or gene delivery48,49. In addition, many different NPs are 

used for various imaging techniques50. Quantum dots for instance are inorganic semiconductor 

molecules used for optical imaging51,52, while metallic or metal-containing NPs are used for CT 

and MRI53–56. 

Due to their size in the range or even below the wavelength of visible light they cannot be seen 

using standard light microscopes. Nowadays, a large variety of NPs can be generated, ranging 

from compact NPs like gold particles57, crystal like structures58 and particles composed by a 

core material encapsulated in a shell59. Due to their small size they can enter cells and can 

therefore be used as carriers for different compounds60. An example in CT imaging is the use 

of NPs with surface modifications to increase the blood half time, compared to classical contrast 

agents. The so-called “blood pool” agents were developed for clinical applications at a time 
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when CT acquisitions took much longer61. Nowadays, they are not used in clinical CT anymore. 

However, they experienced a renaissance in preclinical imaging as demonstrated in Figure 5, 

where a clear contrast enhancement of the tumor vasculature can be observed when using the 

blood pool contrast agent eXia160 in comparison with the clinical contrast agent Isovist300. 

 

 

Figure 5: Contrast enhanced microCT for vascular imaging using iodine-based contrast agents.  

A) 3D rendering of a CT scan of a mouse injected with the clinical contrast agent Isovist 300. 

Visualization of the tumor vasculature is not possible because of the short blood half lifetime of the 

contrast agent. B) 3D rendering of a CT scan of a mouse injected with Exia160, a contrast agent 

optimized for preclinical imaging, showing a clear delineation of the tumor vasculature.  Adapted from 

Jannasch et al.62 

 

In the context of this work the NPs should boost the contrast for imaging as well as raise the 

efficacy of RT. Such a combined approach of diagnostics and therapy is typically called 

Theranostics. Several questions arise for the development of an effective RT enhancer: I) what 

the core material should be, II) how big should the particle be and II) how it can be 

functionalized to specifically target the tumor cells. Similar approaches are discussed by Choi 

et al.63. Typically, gold or gadolinium are used as core material64. To my knowledge, barium 

was not used as an element for RT enhancement yet. High Z-elements show a strong x-ray 

attenuation, which does not guarantee an increase in radiation dose delivered to tumor cells. 

However, the interaction of the particles with the incident x-ray beam triggers several effects, 
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mainly the production of primary photoelectrons, the generation of Auger-electrons as well as 

inelastic scattering of the x-ray photons65. These mechanisms typically result in an increased 

RT effect in close proximity of the particles66. Since I propose to use CT as the irradiation 

source, the comparably low photon energy of about 40-45 keV makes photo-electron emission 

the most dominant effect. If the emission of the photoelectron leads to an inner shell vacancy, 

highly cytotoxic Auger electrons can be emitted67,68. However, it can be expected that such 

effects are restricted to the immediate vicinity of the NPs. Thus, many studies reported dramatic 

increases in the efficacy of in-vitro RT in combination with NPs of sizes in the range up to 

15 nm69–72. Particles, in this size range, are taken up by cells and will therefore be located close 

to the nucleus allowing the photo and Auger electrons to directly damage the DNA. However, 

it is very likely that such particles would also be taken up by healthy cells if applied 

systemically, thus they do not present a suitable approach for patient application.  

Typically, CT imaging in small animals is done with a tube voltage of about 80-90 kV which 

(slightly depending on the type of x-ray source) results in an x-ray spectrum centered around 

40-45 keV73. Depending on their atomic structure all elements show specific non-linearities in 

their x-ray absorption. The most dominant of these is the so-called k-edge, the energy for which 

a k-shell electron gets emitted. At this energy there is a maximum in the absorption. For iodine 

and barium, the k-edges are at 33.2 keV and 37.4 keV respectively74. The x-ray attenuation 

spectrum of barium and an estimated x-ray spectrum are visualized in Figure 6. Thus, especially 

barium is ideally suited for my purposes and was selected as core material for the RT enhancers 

used in my thesis.  

 

Figure 6: Energy dependence of x-ray attenuation of barium.  

The black line depicts the x-ray attenuation of barium. A clear attenuation maximum is visible at the K-

edge of barium at 37.4 KeV. The red line shows a typical x-ray spectrum of a standard x-ray tube. The 

maximum of the spectrum almost perfectly overlaps with the barium K-edge. 
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Regarding the size of an effective RT enhancer, it should present an optimization between being 

small enough for good biodistribution and large enough to provide effective absorption of x-

rays. In my case, the size ranged between 120 and 300 nm as demonstrated by transmission 

electron microscopy images shown in Figure 7.  

 

 

Figure 7: Transmission electron microscopy of BaNPs. 

A) Ba120 NPs with a hydrodynamic diameter of 120 nm and a core diameter of 43 nm. B) Ba300 NPs 

with a hydrodynamic diameter of 300 nm and a core diameter of 120 nm. 

 

The barium core in the proposed NPs is protected by a polymer layer to avoid any toxic side 

effects. This polymer layer can also be used for functionalization with a tumor specific antibody 

(Ab). However, such an approach would eliminate the advantage of RT as a tumor entity 

independent therapy. Even if functionalized Abs are used, it is questionable if a sufficient 

concentration of NPs for RT enhancement is achievable. It is often claimed that even without 

functionalization, particle enrichment within the tumor can be obtained by the so-called 

enhanced permeability and retention (EPR) effect. But the extent to which the EPR effect 

improves the tumor NP enrichment is very controversial60,75.  Thus, superficial tumor models 

were chosen for this thesis, which allow for a direct intra tumoral administration of NPs. 
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1.8 The WAP-T transgenic mouse model 

In preclinical oncology, it is often difficult to find the right and clinically relevant tumor model 

to examine the complex biomedical processes of breast cancer as well as the systemic 

interaction with the tumor-bearing organism and its immune system. There is now an abundance 

of mouse models for breast carcinogenesis and tumor progression available. Because of the 

great anatomical and genotypic similarities between rodents and humans as well as the 

comparable development of the breasts, the murine breast is particularly suitable as a model for 

examining breast cancer and for the preclinical evaluation of new therapies76–78.  

For the presented animal experiments, the orthotopically implanted pH8N8 syngeneic mouse 

model was chosen. It is based on the syngeneic WAP-T breast cancer mouse model, which was  

established as a useful surrogate of human TNBC by Schulze-Garg et al79,80. pH8N8 breast 

cancer cells were isolated from an endogenously induced tumor of the bi-transgenic WAP-T-

NP8xWAP-mutp53-H8 mouse line, then established80.  After orthotopic transplantation of 

these cells in WAP-T-NP8 mice, breast carcinomas of an epithelial phenotype with 

mesenchymal components are formed. They have a morphology similar to the parental tumors 

and mostly depict a poorly differentiated phenotype81,82. After orthotopic transplantation, the 

pH8N8 tumor cells continue to grow independently of hormones because of accumulation of 

further genetic alterations in the pH8N8 genome due to T-Ag-mediated inactivation of Tp53 

and Rb183. The immunocompetent orthotopically implanted pH8N8 syngeneic mouse model is 

a valuable system for investigating the effectiveness of therapy because it is uncomplicated to: 

I) generate tumors, II) administer therapeutic agents, III) follow the development of growth 

kinetics by measuring the tumors using a caliper. In addition, immunocompetent mice are used, 

which allows to evaluate the role of the immune system in cancer progression and therapy.  

 

1.9 X-ray based virtual histology as a tool for the 3D analysis of 

tumor samples 

While classic section based histology has been used for pathological analysis of soft tissue 

specimens for decades, lately 3D techniques based on high resolution CT imaging (microCT) 

have emerged84–87. Classical histology has many advantages, the specimen preparation protocol 

is relatively straightforward and compatible with countless different staining regimens. To date, 

this makes histology the gold standard for the analysis of tissue samples. Especially, in 

combination with immunohistochemistry and the use of color or enzyme labeled antibodies, 
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histology allows staining of certain cell types and tissue structures specifically. The resolution 

of histology is thereby only limited by the used microscope. 

However, there are disadvantages to classical histology: I) the specimen needs to be chemically 

dehydrated and embedded, both of which can significantly alter the morphology of the tissue, 

II) the sample needs to be cut, which can introduce additional deformations and destroy the 

specimen within the process and, III) since histological processing of tissue is time consuming, 

usually only a small fraction of the tissue is analyzed, which holds the risk of missing important 

features of the sample. In addition, the cutting process is done in a nearly blind manner and in 

a fixed direction depending on the position of the tissue in the embedding material. Reliable 

and reproducible sectioning can therefore be rarely obtained. Moreover, since histology is based 

on imaging of micrometer thin tissue slices, the obtained parameters are intrinsically two-

dimensional (2D) and in terms of geometric measures are of questionable quality due to the 

mentioned deformation processes. 

MicroCT has been previously tested for the 3D assessment of tissue specimens. microCT is 

intrinsically 3D, can provide resolution even below 1 µm and since it uses high energetic 

radiation can penetrate larger specimens. The disadvantage of microCT is that its contrast is 

based on the relative electron density and therefore it generates only poor image quality in soft-

tissue specimens composed solely of low atomic number elements with only minor differences 

in their electron density. In contrast, for the 3D analysis of bones microCT can already be 

considered the method of choice. To circumvent the problem of low contrast in soft-tissue 

different heavy metal ion-based staining protocols have been reported similar to the ones used 

for electron microscopy88–91. Another option to drastically increase the contrast is the use of 

different microCT imaging techniques, which do not rely solely on x-ray attenuation as the 

method for contrast generation. Our group, among others, has already demonstrated that the use 

of synchrotron light sources to perform so-called “phase contrast imaging” or “propagation-

based imaging” (PBI) enables the use of unstained soft tissue specimens for high resolution 

microCT analysis92,93. Our group has already demonstrated that by optimizing these protocols 

microCT imaging can be combined with subsequent histological analysis and even 

immunohistochemistry92,94. We called this approach x-ray based virtual histology (xVH) and 

the basic workflow is shown in Figure 8. 
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Figure 8: Workflow of microCT guided sectioning. 

A) Sample generation by organ explantation. B) Specimens are PTA dehydrated and embedded. (C) A 

microCT scan is performed and the position of interest defined within the 3D reconstructed phase 

retrieved data sets. D) The samples are cut at the predefined. E) A virtual slice is produced from the 

microCT data set. F) A microscopical image is generated from stained histological images. G) fusion 

of both imaging modalities. Figure was taken from Albers et al.94  

 

The biggest downside of microCT imaging in comparison to histology is the lack of specificity 

for certain structures or tissue types. Thus, other imaging techniques have been developed such 

as k-edge subtraction imaging (KES). KES exploits the non-linearity in the x-ray absorption of 

elements with respect to the x-ray energy95,96. If an energy is reached which equals the binding 

energy of a specific electron, the electron is emitted and a strong increase in the absorption can 

be seen. The strongest absorption band can be found at the binding energy of the k-shell electron 

and is called k-edge. The k-edge is element specific and can therefore be exploited for imaging. 

In KES two acquisitions are performed with x-rays filtered specifically to two specific energies 

above and below the k-edge of the element of interest. In my case for barium the k-edge is at 

37.4 keV which is ideally suited for medical CT imaging which is typically done in that energy 

range. Since for the two energies the absorption of all other elements will basically not change, 

a subtraction of those images will be highly specific for barium only. KES imaging can also be 

combined for two or more elements to perform multiplexing as shown by Bayat et al. on the 

example of xenon and iodine97. However, the approach of filtering the x-ray spectra to two 

sharp energies results in a dramatic loss of flux which virtually limits the approach to 

synchrotron light sources. 

Analyzing the fate of the NPs inside the tumors after RT is an important step to understanding 

their functional mechanism. xVH is an especially useful tool for that because it is intrinsically 

3D and the BaNPs can be easily discerned from their surrounding tissue. PBI allows the use of 
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unstained tumor samples, which is important due to the fact that an additional staining may 

mask the contrast of the BaNPs and therefore would complicate the analysis of the local 

environment and distribution of the BaNPs inside the tumor specimen.  

 

1.10 Bioluminescence imaging for the evaluation of tumor 

progression 

Bioluminescence itself describes the ability of living organisms to produce light98. In nature 

bioluminescence can be found in fireflies, the sea pansy and various bacteria99. 

Bioluminescence imaging (BLI) is a commonly applied method in preclinical imaging in which 

specific cells (like in my case the pH8N8 breast tumor cells) are transfected with DNA 

fragments which encode for an enzyme like luciferase, which catalyzes the light reaction. In 

addition, whole transgenic bioluminescent animals can be created100. As soon as a substrate 

molecule, like in my case luciferin, is injected, light with wavelengths in the visible spectrum 

is produced by luciferase containing cells.  The big advantage of BLI is that only living 

transfected cells can produce a signal, which is therefore specific to the analyzed disease model. 

This specificity in combination with the fact that BLI allows non-invasive monitoring of tumor 

development makes it a great tool for longitudinal cancer therapy studies101. However, the 

signal is typically weak and is strongly absorbed when originating from locations in the body. 

To ensure measurements of weak signals a light proof cabinet and a cooled CCD camera to 

reduce the electronic noise are used.  
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1.11 Aims of the study 

Radiation therapy is commonly employed for various tumor entities as a single treatment or in 

combination with surgery or chemotherapy. Due to its non-specificity, irradiation also effects 

healthy tissue and is therefore connected with unavoidable side effects. TNBC is an aggressive 

type of breast cancer, which lacks tumor specific therapy targets and is therefore only treated 

with systemic treatments like chemotherapy or surgery. Radiotherapy is given in TNBC as 

indicated in other breast cancer subtypes to improve locoregional control following mastectomy 

or breast conserving surgery. Thus, there is a clear need to explore new treatment options for 

TNBC. The aim of the here presented PhD project is to evaluate the feasibility of using the 

combination of an in vivo microCT imaging system with barium nanoparticles (BaNPs) to 

perform radiation therapy using a mouse model for TNBC. The use of BaNPs as radiotherapy 

enhancer would locally increase the administered x-ray dose in the tumors and therefore allow 

for a reduction of the total applied dose, limiting the side effects of radiation therapy. 

 

For this purpose, the thesis presented here addresses the following questions:      

 

- Can low energy radio therapy in an in vivo microCT be effectively used for 

irradiation treatment of breast cancer? 

This will be addressed by: 

o Establishing an irradiation setup for CT radiotherapy of breast tumors, including 

shielding of non-tumor regions to treat tumors that developed in mice after 

orthotopic breast cancer cell implantation 

o Performing dose measurements in order to implement irradiation protocols in 

tumor mouse models with doses comparable to those used in the clinic. 

o Designing an irradiation-based tumor treatment regimen based on low energy 

microCT aiming at efficient reduction of tumor growth, with minimum side 

effects. 
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- Does the application of BaNPs enhance the effect of radio therapy on tumor 

growth? 

This will be addressed by: 

o Evaluation of BaNP cytotoxicity by in vitro cell viability assays, to ensure the 

compatibility of the BaNPs with in vivo studies 

o Assessment of CT contrast enhancement of BaNPs 

o In vitro evaluation of a BaNP dependent enhancement of the irradiation effect 

on clonogeneic cell survival using colony forming assays. 

o In vivo assessment of an improved radio therapy outcome in the presence of 

BaNPs by monitoring tumor progression in relation to irradiation 

o Ex vivo analysis of the fate of BaNPs in explanted tumors using histology and 

x-ray based virtual histology  
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2 Material 

2.1 Cell lines 

Table 1: Cell Lines used in this work 

Cell line Origin Manufacturer 

3T3 murine fibroblast Leibniz Institute DSMZ-

German Collection of Micro-

organisms and Cell Cultures 

GmbH, Braunschweig 

A549 human adenocarcinoma lung cancer American Type Culture 

Collection, Manassas, USA 

MH-S murine immortalized macrophages American Type Culture 

Collection, Manassas, USA 

pH8N8 murine triple negative like breast cancer Prof. Dr.W. Deppert 

(Universitätsklinikum, 

Hamburg-Eppendorf) 

pH8N8-BLI murine breast cancer cells transduced 

with lentiviral vector for luciferase and 

eGFP 

(Firefly luciferase-GFP lentivirus 

(CMV, Puro)) 

cells: 

Prof. Dr. W. Deppert 

(Universitätsklinikum, 

Hamburg-Eppendorf) 

lentiviral vector: 

Cellomics Technology, 

Halethorpe, USA 

 

2.2 Mouse strains 

Table 2: Mouse strains used in this work 

Mouse line Manufacturer 

NMRI-nu Immunodeficient Mouse Janvier Labs, Le Genest-Saint-Isle, France 

WAP-T NP8 breeding colony, MPI EM, Göttingen 
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2.3 Devices 

Table 3: Devices used in this work 

Device Manufacturer 

Axiovert 200 inverted microscope Carl Zeiss Microscopy GmbH, Jena 

Bone density CT phantom 
QRM Quality Assurance in Radiology and 

Medicine GmbH, Möhrendorf 

Cell culture incubator (BB6220)  Heraeus Holding GmbH, Hanau 

Cryo microtome (CM1950) 
Leica Biosystems Nussloch GmbH, 

Nussloch 

Dehydration automat Süsse Labortechnik, Gudensberg 

Dose measurement device + probe (Diados) PTW, Freiburg 

Epson PERFECTION V800 PRO flatbed 

scanner 
Seiko Epson K.K , Suwa, Japan 

Flattening Table for Histology Medax GmbH & Co.KG, Neumünster 

Glass syringe (10 µl) Hamilton, Reno, USA 

HM 340 E microtome  
Thermo Fisher Scientific Corp., Waltham, 

USA 

IP67 TESA digital caliper  Hexagon Metrology GmbH, Wetzlar 

Isoflurane anesthesia system (for IVIS 

Spectrum, Matrix™ VIP 3000 Calibrated 

Vaporizer) 

Midmark, Dayton, USA 

Isoflurane anesthesia system (for 

QuantumFX) 
VisualSonics, Toronto, Canada 

IVIS Spectrum Perkin Elmer, Waltham, US 

Laminar Flow Hood (cell culture work 

bench, HBB2448)  
Heraeus Holding GmbH, Hanau 

LSM880 confocal laser scanning 

microscope 
Carl Zeiss Microscopy GmbH, Jena 

Multiplate spectrometer (Eon) BioTek Instruments, Inc., Winooski, USA 

Neubauer cell counting chamber Schuett-Biotec GmbH, Göttingen 

Paraffin embedding station (EG1160)  
Leica Biosystems Nussloch GmbH, 

Nussloch 

Quantum FX microCT system Perkin Elmer, Waltham, US 

Steam cooker for IHC (Braun)  De'Longhi Deutschland GmbH, Frankfurt 

Stereo microscope (Stemi SV 6) Carl Zeiss Microscopy GmbH, Jena 

Tissue Float Bath 
GFL Gesellschaft für Labortechnik mbH, 

Burgwedel 
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2.4 Chemicals 

Table 4: Chemicals used in this work 

Chemicals Manufacturer 

2-Mercaptoethanol Merck KGaA, Darmstadt 

Acetone Merck KGaA, Darmstadt 

Acetic acid Merck KGaA, Darmstadt 

AEC substrate kit Becton Dickinson GmbH, Heidelberg 

Agarose (BioReagent) Merck KGaA, Darmstadt 

Aniline blue Sigma-Aldrich, Darmstadt 

Antibody Diluent (Dako) Agilent Tech., Santa Clara, USA 

Aquatex mounting medium Merck KGaA, Darmstadt 

Bieberich's scarlet red acid fuchsin solution 

red 
Sigma-Aldrich, Darmstadt 

Bouin’s solution Sigma-Aldrich, Darmstadt 

Carprofen 
Zoetis Schweiz GmbH, Delémont, 

Switzerland 

DAPI  
Thermo Fisher Scientific Corp., Waltham, 

USA 

Dulbecco‘s Modified Eagle Medium 

(DMEM) 

Thermo Fisher Scientific Corp., Waltham, 

USA 

Entellan mounting medium  Merck KGaA, Darmstadt 

Eosin Merck KGaA, Darmstadt 

Ethanol Merck KGaA, Darmstadt 

Ethylendiamintetraacetat (EDTA) Merck KGaA, Darmstadt 

Fetal calf serum (FCS) 
Thermo Fisher Scientific Corp., Waltham, 

USA 

Formaldehyde (4%) Merck KGaA, Darmstadt 

Glycine (0.3 M) Merck KGaA, Darmstadt 

Hoechst 33342 
Thermo Fisher Scientific Corp., Waltham, 

USA 

Hydrogen peroxide (3%) Merck KGaA, Darmstadt 

Isoflurane Abbvie, Ludwigshafen, Gemany 

Isopropanol Merck KGaA, Darmstadt 

Ketamine 
Medistar Arzneimittelvertrieb GmbH, 

Ascheberg 

Luciferine (Vivo Glo Luciferin) Promega, Madison, USA 
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Mayers hematoxylin solution Merck KGaA, Darmstadt 

Paraffin Süsse Labortechnik, Gudensberg 

Paraformaldehyde (4%) Merck KGaA, Darmstadt 

PermaFlour mounting medium 
Thermo Fisher Scientific Corp., Waltham, 

USA 

Phosphate buffered saline (PBS) 
Thermo Fisher Scientific Corp., Waltham, 

USA 

RPMI-1640 cell culture medium 
Thermo Fisher Scientific Corp., Waltham, 

USA 

Saline solution (0.9 %) B. Braun Melsungen AG, Melsungen 

Sea Block Blocking Buffer 
Thermo Fisher Scientific Corp., Waltham, 

USA 

Sorbitol Merck KGaA, Darmstadt 

Target Retrieval Solution pH 6 (Dako) Agilent Tech., Santa Clara, USA 

TRIS buffer  Merck KGaA, Darmstadt 

Triton-X 100 Merck KGaA, Darmstadt 

Trypan blue 
Thermo Fisher Scientific Corp., Waltham, 

USA 

Trypsin-EDTA (0,05 %/0,02 %) Merck KGaA, Darmstadt 

Weigert's iron hematoxylin Merck KGaA, Darmstadt 

WST-1 cell titer solution  Sigma-Aldrich, Darmstadt 

Xylazine Riemser Pharma GmbH, Greifswald 

Xylol Merck KGaA, Darmstadt 

 

 

2.5 Consumables 

Table 5: Consumables used in this work 

Consumables Manufacturer 

6-well plate Greiner Bio-One GmbH, Frickenhausen 

24-well plate Greiner Bio-One GmbH, Frickenhausen 

96-well plate Greiner Bio-One GmbH, Frickenhausen 

Bepanthen Eye ointment Roche, Basel, Switzerland 

Cell culture flasks Sarstedt AG & Co. KG, Nümbrecht 

Combitips advanced (Biopur) Eppendorf AG, Hamburg 
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Cover slips 
Thermo Fisher Scientific Corp., Waltham, 

USA 

Eppendorf Safe-Lock Tubes Eppendorf AG, Hamburg 

Falcon tubes  Corning, New York, USA 

Glass slides (Menzel Superfrost plus) 
Thermo Fisher Scientific Corp., Waltham, 

USA 

Insuline syringes (Micro-Fine U100 0,3 ml) Becton Dickinson GmbH, Heidelberg 

Leukosilk tape BSN medical GmbH, Hamburg 

Paraffin embedding cassettes (Rotilabo)  Carl Roth GmbH + Co. KG, Karlsruhe 

Pipette tips Sarstedt AG & Co. KG, Nümbrecht 

Serological pipettes Greiner Bio-One GmbH, Frickenhausen 

TLDs (GR-200 A) 
Hangzhou Freq-control Electronics 

Technology Co., Ltd, Hangzhou, China 

Vicryl surgical thread (Ethicon 4-0 Vicryl) 
Johnson & Johnson Medical GmbH, 

Norderstedt 

 

 

2.6 Antibodies 

Table 6: Antibodies used in this work 

Antibody Species Manufacturer 

anti-mouse CD326 (Ep-CAM) antibody 

(Biolegend 118222) 
Rat 

BioLegend, San Diego, 

USA 

anti-mouse CD68 antibody (abcam 

125212) 
Rabbit 

Abcam, Cambridge, Great 

Britain 

anti-mouse SV40 T-Antigen antibody  Rabbit 

Prof. Dr. W. Deppert 

(Universitätsklinikum, 

Hamburg-Eppendorf) 

Histofine Simple Stain Goat 
Nichirei Biosciences Inc., 

Tokyo, Japan 
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2.7 Nanoparticles 

Table 7: Nanoparticles used in this work 

Nanoparticles Concentration  Manufacturer 

BaNP-120 300 mg/ml nanoPET Pharma, Berlin 

BaNP-160 300 mg/ml nanoPET Pharma, Berlin 

BaNP-220 500 mg/ml nanoPET Pharma, Berlin 

BaNP-300 355 mg/ml nanoPET Pharma, Berlin 

Ba120-EpCam-A594 320 mg/ml nanoPET Pharma, Berlin 

IodineNPs 220 mg/ml nanoPET Pharma, Berlin 

 

2.8 Software 

Table 8: Software used in this work 

Software Manufacturer 

Fiji / ImageJ  NIH, Bethesda, USA 

GraphPad Prism 8 GraphPad Software, San Diego, USA 

Imaris (v9.1.2) Oxford Instruments, Abingdon, England 

Living Image (v4.4) Caliper Life Science Inc., Hopkinton, USA 

MATLAB R2018b MathWorks, Natick, USA 

Office 365  Microsoft, Redmond, USA 

Photoshop CS6 Adobe Inc., San Jose, USA 

QT Creator (v15) The Qt Company, Espoo, Finland 

Scry (v6.0) Kuchel & Sautter Gbr, Bad Teinach-Zavelstein 

Syrmep Tomo Project (STP, v1.2.4) ElettraSciComp/ Francesco Brun, Trieste, Italy 

VG Studio MAX (v3.2) Visual Graphics GmbH, Heidelberg 

 

2.9 Synchrotron Facilities 

Table 9: Synchrotron facilities used in this work 

Synchrotron facilities Beamline Location 

ELETTRA Synchrotrone Trieste SYRMEP Trieste, Italy 

European Synchrotron Research 

Foundation (ESRF) 

ID 17 Grenoble, France 
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3 Methods 

3.1 Maintenance of cell lines 

All cell lines (Table 1) were cultivated under standardized conditions at 37 °C, 5% CO2 and a 

relative humidity of 95% in an incubator. All cell culture work was carried out under a sterile 

workbench and with sterile materials. pH8N8, A549 and 3T3 cells were kept as a monolayer 

culture in uncoated cell culture flasks in high glucose Dulbecco's modified Eagle medium 

(DMEM) with the addition of 10% fetal calf serum (FCS). For MH-S cells, RPMI-1640 medium 

containing 0.05 mmol 2-mercaptoethanol and 10% FCS was used. Depending on the rate of 

growth, the cells were passaged at a confluence of 70-80% two to three times per week in a 

ratio of 1:10. For this purpose, they were washed with a phosphate buffered saline solution 

(PBS) and removed from the flask by adding a 0.05% trypsin / 0.02% EDTA solution for a 

short incubation time of approx. 3 min in the incubator. After centrifuging for 2 min at 1200 

rpm and room temperature, the pellet was taken up in fresh cell culture medium and the number 

of cells was determined with a Neubauer cell counting chamber and seeded again in the 

appropriate concentrations. 

 

3.2 Generation and validation of bioluminescent pH8N8 cells 

The bioluminescent pH8N8 breast cancer cells were generated by Dr. Joanna Napp and Jakub 

Mitrega (Translational Molecular Imaging, MPI EM, Göttingen).  

pH8N8 cells were transduced with a lentiviral vector encoding for firefly luciferase and eGFP 

under the CMV promotor. A puromycin resistance gene was used for cell selection. The cells 

were sorted for eGFP positive cells using fluorescence-activated cell sorting (FACS) and clonal 

selection was performed by seeding one cell per well on a 96-well plate. The cells were grown 

into small colonies and transferred into six well plates. Cells with good growth rates were 

transferred into cell culture flasks and their BLI signal was measured in vitro using the IVIS 

Spectrum device. These cells are referred to as pH8N8-BLI in the thesis. 
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3.3 Nanoparticle synthesis and characterization 

All NPs for this work were specifically designed and manufactured by nanoPET pharma and 

due to company’s intellectual property protection policies, no detailed information about the 

formulations can be provided. Briefly, barium sulphate (BaSO4)-based nanoparticles (BaNPs) 

were produced by chemical precipitation at ambient conditions. After a purification step, the 

particles were sterically stabilized using a biocompatible polymer. The obtained highly stable 

colloidal suspension was sterilized and formulated for in vitro / in vivo use. Particles with 

different hydrodynamic diameters between 120-300 nm were produced. Before being used for 

this work, the NPs were tested in vitro by nanoPET pharma and were found to be non-toxic and 

to have no effect on the vitality of mammalian cells (data not shown). 

BaNP-120 were also conjugated with Alexa Fluor® 594 anti-mouse CD326 (Ep-CAM) 

antibody for certain in vivo applications. These BaNPs are referred to as Ba120-EpCam-A594. 

 

3.4 WST cell proliferation assay  

Proliferation assays were used to analyze the number of viable cells by the cleavage of 

tetrazolium salts added to the culture medium. Tetrazolium salts like WST-1 ((4-[3-(4-

Iodophenyl)-2-(4-nitro-phenyl)-2H-5-tetrazolio]-1,3-benzene sulfonate) are cleaved to 

formazan by cellular enzymes (Figure 9). An expansion in the number of viable cells results in 

an increase in the overall activity of mitochondrial dehydrogenases in the sample, which in turn 

increases the amount of formazan dye formed. Quantification of the formazan dye produced by 

metabolically active cells was done using a scanning multi-well spectrophotometer.  

To perform the cell proliferation assay, 1x105 cells per well of different cell lines were pipetted 

into 96-well plates with 200 µl of cell culture medium. The plates were incubated for 24 h at 

37 °C. The different NP-solutions were diluted 1:10 in cell culture medium containing 20 mg/ml 

sorbitol. 200 µl of NP containing medium was added to the well. After 0, 4, 8, 24 or 48 h the 

medium was removed, the cells were washed twice with 200 µl PBS and 200 µl fresh medium 

with 20 µl WST-1 cell titer solution was added. The cell proliferation was measured after 2 h 

using a BioTek Eon photometric device at a wavelength of 490 nm. 
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Figure 9: Chemical reaction for colorimetric detection in a WST assay. 

The substrate WST-1 is cleaved by cellular enzymes to the dark red product formazan. Image was taken 

from Sigma-Aldrich102. 

 

 

3.5 Quantification of CT contrast enhancement of NPs 

To measure the x-ray contrast enhancement of different NPs, a dilution series was done, and 

CT datasets were acquired using the QuantumFX in vivo microCT. A 2 min scan was performed 

using a tube voltage of 90 kV, a tube current of 200 µA and a field of view (FOV) of 20 mm. 

The NPs were scanned either undiluted or diluted in PBS in a ratio of 1:1, 1:5 and 1:10 in 1.5 ml 

micro reaction tubes. The NP concentrations of the undiluted stock solutions can be found 

below in Table 10:  

 

Table 10: Concentrations of NP stock solutions for quantification of CT contrast enhancement 

NP Concentration [mg/ml] 

BaNP-120 300 

BaNP-160 300 

BaNP-220 500 

Iodine NPs 220 
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To correct for possible contrast differences caused by the CT system, a bone density phantom 

with known concentrations of calcium hydroxyapatite was included in each acquisition. A 

calibration curve of the calcium concentrations in the phantom (200, 400, 600, 800, 1000 

mg/cm3) was used to normalize the measured gray values of the NPs. For better comparison of 

the NPs, the normalized contrast was divided by the concentration of the NPs.  

 

3.6 Quantification of X-ray irradiation effect on tumor cell 

survival 

3.6.1 Principle 

The colony forming assay (CFA) is an in vitro cell survival assay based on the ability of a single 

cell to grow into a colony103. After irradiation of the cells, they are counted, separated and a 

specific number of cells is seeded into cell culture plates. The mean number of colonies which 

grow following addition of fresh culture medium represents the absolute colony forming ability 

of cells. This number reflects the survival rate of the cells after passage and seeding in the 

culture plates. A cluster of at least 50 adjacent cells was defined as a colony. To avoid the labor-

intensive manual counting of the cells under a (stereo-) microscope, I developed a semi-

automated workflow using a standard flatbed scanner and a self-made software based on 

MATLAB to quantify the CFA colonies (Figure 10).  

 

 

Figure 10: Workflow auf automatized CFA analysis.  

A) A standard flatbed scanner in transillumination mode is used to acquire images of well plates. B) 

Exemplary image of a well containing cell colonies. C) Segmented cells inside the same well. D) Cells 

that were identified as colonies are pseudo-colored in red. 
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3.6.2 Irradiation of tumor cells and NPs 

Murine pH8N8 breast tumor cells or human A549 lung cancer cells were cultured in a T-75 cell 

culture flask. When confluency was reached, the cells were washed with 10 ml PBS. The 

adhesive cells were removed from the flask by adding 5 ml trypsin/EDTA and incubating for 5 

min. Trypsination was stopped by adding 10 ml cell culture medium containing FCS. The cells 

were centrifuged for 2 min at 1200 rpm. The cell pellet was resuspended in 4 ml PBS and 

distributed into four 1.5 ml E-cups. Before irradiation the cells were gently centrifuged again, 

and the PBS was removed with a pipette. When required, 50 µl undiluted BaNP-120 solution 

(concentration 300 mg/ml) was added and gently mixed using a pipette. Subsequently the cells 

were irradiated in the QuantumFX in vivo microCT using the following parameters: 

 

Table 11: In vitro CT irradiation parameters 

Parameter Value 

Tube voltage 90 kV 

Tube current  200 µA 

FOV 20 mm 

Irradiation time 2 min  

X-ray dose ~ 1 Gy 

 

 

After irradiation, the cells were resuspended in cell culture medium and counted using a 

Neubauer chamber. 1000 cells per well for pH8N8 cells or 500 cells per well for A549 cells 

were plated into 6-well plates. One plate was used per treatment group per experiment. 

 

3.6.3 Colony forming assay (CFA) 

The plated colonies were incubated for 7-10 days at 37 °C and 5% CO2 until the colonies were 

large enough for imaging but did not start to merge. The cell culture medium was removed, and 

each well was washed with 2 ml PBS. The cells were fixed by adding 1 ml/well of 70 % EtOH 

for 15 min. The plates were left open to dry in the workbench. To stain the cells, 1 ml/well of 

hematoxylin staining solution was added and incubated for 5 min. The staining solution was 
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removed with a pipette and kept for re-use. The wells were rinsed gently with demineralized 

water followed by a bluing step for 5 min under a light tab water flow. The cell culture plates 

were left open in the workbench until they were completely dry. 

 

3.6.4 Imaging of CFA colonies using a flatbed scanner 

To replace the labor-intensive manual counting of the cell colonies, all plates were imaged using 

a standard flatbed scanner (Epson Perfection V800). 16-bit gray value images were acquired 

using the transillumination mode of the scanner (Figure 10 A). The images were taken at a 

resolution of 1200 dpi, resulting in images of an approximate size of 4000 x 6000 px for each 

6-well plate. Colonies on the images were automatically counted using a self-made software 

written in MATLAB. 

 

 

3.7 Confocal microscopy of pH8N8 tumor cells with 

fluorescence labeled Abs 

5x104 pH8N8 breast cancer cells were plated on coverslips and grown overnight (ON). The 

cells were then fixed for 15 min with 4% PFA, blocked for 30 min with 5% FCS-PBS and 

incubated with 1 µg/ml of either Alexa Fluor® 594 anti-mouse CD326 (Ep-CAM) antibody or 

with Ba120-EpCam-A594 BaNPs, ON at 4°C. Cell nuclei were stained with Hoechst 33342 for 

10 min at room temperature, before the coverslips were mounted on glass slides. 

A Zeiss LSM880 confocal laser scanning microscope equipped with Airyscan and hybrid 

detectors, a 40× oil objective lens (1.4 Plan-APOCHROMAT), a motorized stage and a tunable 

laser (470–670 nm) was used for acquisition. Image analysis was performed with Imaris 9.1.2 

and Fiji software. 
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3.8 Housing and maintenance of mouse lines 

The housing conditions consisted of a twelve-hour light-dark rhythm at 22 °C and 55% relative 

humidity. Animal food and water were given ad libitum. The mice were handled in accordance 

with the animal welfare experimental animal regulations. 

Female nude NMRI-nu immunodeficient mice were ordered from Janvier Labs and used 

entered into the experiment after two weeks of acclimatization. 

Maintenance of the WAP-T-NP8 mouse colony was ensured by mating heterozygous WAP-T-

NP8 males with wild-type BALB/c females. Thus, the risk of accumulation of mutations by 

homozygous mating and inadvertent induction of the transgene in females is avoided. All 

animal in vivo procedures were performed in compliance with the guidelines of the European 

Directive (2010/63/EU) and the German ethical laws and were approved by the administration 

of Lower Saxony, Germany under the reference numbers 33.9-42502-04-17/2630 and 33.9-

42502-04-18/3022. 

 

3.9 Preparation of tumor cells for transplantation 

A549 lung cancer cells as well as pH8N8 and pH8N8-BLI breast cancer cells were prepared 

according to the following protocol for in vivo application. Cells were passaged 24 h prior to 

transplantation, to reach about 80% of confluency. Cells were washed with 10 ml PBS once 

and removed from the cell culture flask by adding 3 ml trypsin/EDTA and incubating for 5 min 

at 37 °C. Cells were rinsed from the bottom of the flask by adding 7 ml of medium. 20 µl cell 

suspension was mixed with 20 µl trypan blue and counted using a Neubauer cell counting 

chamber. The cell suspension was centrifuged for 5 min at 1200 rpm. 1x106 cells were 

resuspended in 1 ml cell culture medium and transferred to an e-cup. The e-cups were 

centrifuged again and carefully transported to the site of transplantation. Immediately before 

the injection of the cells the cell culture medium is removed with a pipette and the cell pellet 

resuspended in PBS.  

 

3.10 Orthotopic transplantation of breast cancer cells 

The orthotopic transplantation of 1x106 pH8N8 or pH8N8-BLI tumor cells into the right 

abdominal mammary gland of syngeneic WAP-T-NP8 mice was performed after 

intraperitoneal (i.p.) administration of 2.5–3 μl/g body weight (BW) ketamine/xylazine 
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combination anesthesia. It consists of 75 mg/kg BW ketamine and 15 mg/kg BW xylazine in a 

0.9% saline solution and was prepared 24 h before the orthotopic transplantation. After the 

anesthesia set in, 5 mg/kg BW of the analgesic carprofen was applied i.p. in a volume of 

1.2 μl/g BW. The eyes were protected from drying by applying Bepanthen eye ointment. The 

anesthetized mouse was placed on a 37 °C heating plate to protect against hypothermia in supine 

position and fixed with Leukosilk tape. Next to the right nipple of the abdominal mammary 

gland a 3-4 mm incision was made. 1x106 tumor cells were suspended in 20 μl PBS using a 

0.3 ml U100 insulin syringe. After carefully separating the breast from the connective tissue, 

the prepared cell suspension was injected directly into the breast tissue. The syringe remained 

in the injection site for 5 s to prevent reflux of cell suspension. The skin of the wound was 

closed with 2-3 stitches with absorbable Vicryl surgical thread. The duration of the 

transplantation procedure was 5–10 min in total. Transplanted animals were checked and 

weighed three times a week for the entire duration of the experiments. Irradiation treatment was 

started when a tumor volume of 300 mm2 was reached. Tumor volumes were measured using 

a caliper and determining the width, length and height of the tumors. Tumor volume was 

calculated using the simplified ellipsoid volume equation: 

𝑉 ≈
𝑤𝑖𝑑𝑡ℎ × 𝑙𝑒𝑛𝑔𝑡ℎ× ℎ𝑒𝑖𝑔ℎ𝑡

2
 

 

3.11 Subcutaneous implantation of lung cancer cells 

Nude NMRI-nu immunodeficient mice were used for the implantation of the human A549 lung 

cancer cells. 4x106 A549 cells were resuspended in 100 µl PBS and subcutaneously (s.c.) 

injected in the left flank of the mouse using a U100 insulin syringe. Tumor volumes were 

measured using a caliper and determining the width, length and height of the tumors. Tumor 

volume was calculated using the simplified ellipsoid volume equation:  

𝑉 ≈
𝑤𝑖𝑑𝑡ℎ × 𝑙𝑒𝑛𝑔𝑡ℎ× ℎ𝑒𝑖𝑔ℎ𝑡

2
 

 

3.12  In vivo administration of BaNPs 

For irradiation experiments the undiluted NP solutions were directly injected into the tumor. 

This was performed as soon as the tumors reached a size of 300 mm³ and 24 h before the first 
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irradiation. To achieve a homogeneous NP distribution in the tumor, 3x 10 µl of BaNP solution 

were injected with a 10 µl Hamilton glass syringe at three different sites of the tumor.  

To evaluate the biodistribution of functionalized NPs, 100 µl anti-EpCAM-Ab labeled Ba120 

NPs were administered i.v. into two WAP-T NP8 pH8N8 tumor bearing mice (tumor size 

approx. 300 mm3).  

 

3.13 Evaluation of biodistribution of i.v. administered anti-

EpCAM-Ab labeled BaNPs 

Two WAP-T NP8 pH8N8 tumor bearing mice were scanned in-vivo under isoflurane anesthesia 

(2-3 % isoflurane in 1:1 O2/air with a flow of 1 L/min) in the QuantumFX in-vivo microCT 

directly after BaNP injection, as well as 1, 7 and 24 h later. The QuantumFX was operated at 

90 kV tube voltage, 200 µA tube current using a FOV of 40x40 mm2 and the cardiac gating 

acquisition protocol with a total scanning time of 4.5 min.  

 

3.14 Measurement of x-ray doses generated by the in vivo 

microCT 

The absorbed dose was measured for different settings of the QuantumFX in vivo microCT 

using a commercial dose rate measuring system (Diados, PTW), which is commonly used for 

consistency checks in clinical CT scanners. This system measures the dose length product (Unit: 

𝐺𝑦 ∙ 𝑐𝑚) and is typically used in combination with an appropriate phantom. As no appropriate 

phantom is available for mouse irradiation and the clinical phantoms do not fit into the small 

animal CT, the measurements were performed without a phantom. 

In order to test the performance of the purposely built mouse holder and shielding device and 

to obtain a more accurate reading of the dose at the tumor site, thermoluminescence detectors 

(TLDs) were implanted into dead mice in different locations. The TLDs were provided and 

analyzed by the Radiation Protection group of the Italian Synchrotron ELETTRA.   
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3.15 BLI measurements of breast cancer bearing mice 

Bioluminescence imaging (BLI) was performed using the IVIS Spectrum system. The IVIS 

Spectrum is essentially a dark chamber equipped with a sensitive camera that is electronically 

cooled down to -90 °C to reduce noise. Each night, the system measures the dark current in the 

detector and the background radiation and calibrates for it. The IVIS is one of the few optical 

imaging systems that provides a completely referenced unit in terms of photons per second, 

area and solid angle with respect to the camera objective lens and additionally takes the quantum 

efficacy of the camera into account. The total flux of the BLI signal was measured as photons/s. 

pH8N8-BLI tumor bearing mice were injected i.p. with 3 µl luciferin (concentration: 50 mg/ml) 

per 1 g BW prior to the administration of isoflurane anesthesia. The anesthetized mice were 

scanned 4, 7, 10 and 13 min after luciferin injection to ensure that the peak of the 

bioluminescence was captured. Since the luciferin needs to reach the site of the bioluminescent 

cells and is used up during the production of light, a correlation between signal intensity and 

amount of living tumor cells can only be made at the peak of the signal. 

To take the irregular shape of the tumor into account, the analysis was performed using a 

threshold of 10%. This means that all signals/pixel with an intensity greater than 10% of the 

maximum signal were analyzed. For these signals, the total flux (integral) and the tumor area 

(amount of pixel times pixel size) were calculated.     

 

3.16 Tumor sample processing and embedding 

The mice were sacrificed using a CO2 overdose in combination with a cervical dislocation. The 

tumors were explanted, the skin and fur removed and fixed in 4% PFA (paraformaldehyde) ON.  
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3.17 Histological staining procedures 

3.17.1 Embedding in paraffin blocks 

To produce paraffin blocks, formalin-fixed tissue samples were washed for 10 min with 

deionized water (D-water) in order to remove formalin residues. The samples were dehydrated 

by sequential incubation steps for 1.5 h each in 60%, 70%, 80%, 90%, 95%, 100% ethanol and 

xylol. This procedure was followed by infiltration with liquid paraffin for 1.5 h. Dehydration 

and infiltration took place in the automatic tissue infiltration machine with the program shown 

in Table 12. Finally, the tissue samples were embedded in paraffin blocks using a paraffin 

pouring station. Paraffin blocks were stored in the dark at room temperature. 

 

Table 12: Dehydration and paraffinization protocol 

Step Time (h) 

60% EtOH  1.5  

70 % EtOH  1.5  

80 % EtOH  1.5  

90 % EtOH  1.5  

100 % EtOH  1.5  

100 % EtOH  1.5  

xylol  1.5  

paraffin  1.5  

 

 

3.17.2 Microtome sectioning of histological slices 

The paraffin blocks were cooled on a -20 °C cooling plate for 30 min. The tissue sections were 

produced with a microtome at a section thickness of 2 μm. The sections were immediately 

smoothed in a water bath at approx. 45 °C, transferred to microscope slides and dried overnight 

at room temperature or for 20 min at a maximum of 65 °C on a hot plate. Sections treated 

according to this scheme were either stained histochemically, by IHC or stored in slide boxes 

at room temperature. 
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3.17.3 Deparaffinization and rehydration of tissue sections 

For histochemical and IHC staining, tissue sections were first manually deparaffinized and 

rehydrated. For this, the paraffin was melted in a drying cabinet at 60 °C for 30 min, followed 

by sequential incubation steps in xylol and a descending alcohol series (Table 13). 

 

 

Table 13: Deparaffinization and rehydration protocol 

 Time (min) Reagent 

Deparaffinization 
7 xylol 

7 xylol 

Dehydration 

5 isopropanol 

5 98% EtOH 

5 75% EtOH 

5 60% EtOH 

5 H2O (demineralized) 

 

 

3.17.4 Hematoxylin-eosin staining (HE) 

HE staining is a standard staining in histology, where hematoxylin stains cell nuclei in 

blue/violet, while eosin stains the cytoplasm, collagen, keratin, and erythrocytes in red. The 

sections were first deparaffinized and rehydrated. After rehydration, the sections were stained 

for 5 min in Mayer's hematoxylin solution. Subsequently, the sections were rinsed shortly in 

demineralized water followed by a bluing step for 5 min with tap water. The samples were 

stained for another 5 min in eosin staining solution. To prepare the eosin staining solution, 5 g 

eosin were solved in 500 ml demineralized water and 1-2 drops of acetic acid were added. To 

stop the staining process, the samples were rinsed in demineralized water. Subsequently the 

samples were dehydrated and mounted using Entellan mounting medium. The dehydration 

protocol is shown in Table 14. 

 

 



Methods  36 

 

Table 14: Dehydration protocol 

 Time (min) Reagent 

 

 

 

Dehydration 

short H2O (demineralized) 

short 60% EtOH 

short 75% EtOH 

5 98% EtOH 

5 isopropanol 

5 xylol 

5 xylol 

 

3.17.5 Masson’s trichrome staining 

For the assessment and analysis of the collagen content in the tumor, Masson’s Trichrome 

staining (MTS) was performed. Cell nuclei were stained black with Weigert's iron hematoxylin, 

cytoplasm and muscle tissue with Bieberich's scarlet red acid fuchsin solution red and collagen 

with aniline blue. Slides were incubated at 60 °C for 30 min, followed by a deparaffinization 

and rehydration protocol as described in Table 13. Tissue sections were fixed in Bouin’s 

solution at room temperature ON, then rinsed with tap water to remove excess reagent. Sections 

were stained with Weigert’s hematoxylin solution, rinsed sequentially in tap and deionized 

water, and then stained with the trichrome kit whereby the slides were placed in 

phosphotungstic/phosphomolybdic acid solution and aniline blue solution for 5 min each. 

Slides were treated with 1% acetic acid, dehydrated through alcohol, cleared in xylene and 

mounted using Aquatex mounting medium. 

 

3.17.6 Immunohistochemical staining 

IHC staining is used to detect target proteins in formalin-fixed organs. The detection is based 

on the affinity of a primary antibody (pAb) for a specific epitope of a protein. Here we used 

unconjugated pAbs, which were made visible by secondary antibodies (sAb). The sAb is linked 

to a detection system, that is based on an enzymatically catalyzed conversion of the colorless 

aminoethylcarbazole (AEC) substrate into a colored end product by oxidation of the peroxidase 

coupled to the sAbs. In order to make target proteins more accessible for their Ab, tissue 

sections were boiled for 20 min in a steam cooker in 1x citrate buffer pH 6 (Target Retrieval 

Solution). After cooling for 5 min in double-distilled water on ice, the sections were washed 
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twice for 5 min in Tris-HCl buffer pH 7.6. The samples were then treated with 3% hydrogen 

peroxide for 10 min at room temperature in order to reduce the effect of endogenous oxidases 

and then washed again twice with Tris-HCl pH 7.6. The individual tissue sections were 

incubated for 20 min at room temperature with salmon serum (Sea Block Blocking Buffer) in 

order to minimize nonspecific binding and thus background staining. The pAb was diluted in 

Antibody Diluent and applied to the tissue sections. The incubation took place ON at 4 °C in a 

humid chamber, followed by two washing steps with Tris-HCl pH 7.6. To detect the pAb, the 

sections were then incubated with the sAb in Tris-HCl pH 7.6 at RT for 1 h and washed again 

twice with Tris-HCl pH 7.6. Tissue sections were incubated for 30 min at RT with the AEC 

substrate kit and the color reaction was stopped with distilled water. For counterstaining, the 

tissue sections were immersed in Mayers' hemalum solution for 20 s, washed briefly in distilled 

water and then blued in tap water for 5 min. Finally, the stained sections were sealed airtight 

with the mounting medium Aquatex and a cover slip. The pAbs and sAbs used as well as the 

dilutions and individual conjugations used are listed in Table 15 below.  

 

Table 15: Antibodies for IHC 

Antibody pAb/sAb Species Reactivity Dilution 

CD68 pAb rabbit mouse 1:500 

T-Ag (R15) pAb rabbit mouse 1:5000 

Histofine Simple Stain sAb goat rabbit undiluted 

 

Histological and IHC images were acquired using an Axiovert 200 inverted microscope. To 

depict the whole paraffin section, the built-in stitching algorithm of the microscope was used 

with a 10× magnification. 

 

3.17.7 Antibody staining for confocal microscopy of pH8N8 tumor slices 

For confocal microscopy, cryosections of pH8N8 breast tumors were cut with a microtome 

(Leica CM1950). The thawed sections were fixed with acetone for 10 min at room temperature. 

After the acetone was evaporated under the workbench, an incubation of 20 min at room 

temperature with 0.2% Triton-X was performed. The slices were washed two times for 5 min 

with Tris-HCl pH 7.6. Afterwards the slices were incubated for 30 min in 0.3 M glycine at room 

temperature and washed again twice with Tris-HCl pH 7.6 for 5 min each. The individual tissue 

sections were incubated for 20 min at room temperature with salmon serum (Sea Block 
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Blocking Buffer) to minimize nonspecific binding and thus background staining. The EpCAM-

Alexa594 pAb was diluted in a ratio of 1:200 in Antibody Diluent and applied to the tissue 

sections. The incubation took place ON at 4 °C in a humid chamber, followed by two washing 

steps with Tris-HCl pH 7.6. Cell nuclei were stained with DAPI (dilution 1:4000) for 5 min and 

washed again with Tris-HCl pH 7.6 for 5 min. sections were sealed airtight with the mounting 

medium PermaFlour and a cover slip. 

A Zeiss LSM880 confocal laser scanning microscope equipped with Airyscan and hybrid 

detectors, a 20× oil objective lens (1.4 Plan-APOCHROMAT), a motorized stage and a tuneable 

laser (470–670 nm) was used for acquisition. Image analysis was performed with Imaris 9.1.2 

and Fiji software. 

 

3.18 Synchrotron radiation microCT (SRµCT) of mouse breast 

tumor samples embedded in paraffin 

To specifically detect the barium content in the tumor, I used k-edge subtraction imaging (KES) 

at the European Synchrotron Research Foundation (ESRF) in Grenoble. KES uses the fact that 

the x-ray absorption for a given material is non-linear with so-called edges at energies specific 

for the binding energy of a certain electron. To obtain barium specific contrast subtraction 

images the Pixie-III detector was set to energy thresholds of 36.5 and 38.5 keV. 2000 angular 

projections with a pixel size of 52 µm and an exposure time of 100 ms per projection were 

acquired resulting in a scanning time of 200 s. For the generation of barium maps the low energy 

reconstructions were subtracted from the high energy reconstructions. 

 

All high-resolution SRµCT acquisitions for xVH were performed using the white/pink beam 

setup of the SYRMEP (SYnchrotron Radiation for MEdical Physics) beamline of the Italian 

synchrotron ELETTRA which is depicted in Figure 11.  

Whole paraffin embedded samples were scanned with a sample to detector distance (SDD) of 

500 mm. 3600 angular distributed projections with an exposure time of 50 ms were acquired 

over 360° resulting in a scan time of 180 s. A 0.5 mm Si filter was used, resulting in a mean 

beam energy of 19.6 keV. All high resolution SRµCT data sets were reconstructed using 

SYRMEP Tomo Project software (STP Version 1.3.2)104. A single distance phase retrieval 

algorithm developed by Paganin et al.105 was used with a delta over beta ratio of 100. To image 
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the entire tumors, 3-4 single acquisitions were performed, and the resulting reconstructions 

were manually stitched together using Fiji (NIH). 

 

 

Figure 11: White beam setup of the SYRMEP beamline. 

The light path which originates from the bending magnet and passes through the beam outlet and the 

filters is indicated by the yellow arrow. The sample is positioned and rotated using a combined 

hexapod/rotation unit. The x-ray detector is mounted on a movable rail and contains a scintillator 

crystal for the conversion of the x-rays into the visible light spectrum, as well as microscope optics and 

a water-cooled CCD camera. 

 

3.19 Elastic registration of microCT and histological images for 

xVH 

To perform image registration between SRµCT data sets and histological slices the CT data 

was reoriented to match the cutting angle of the histology. This resampling and identification 

of the appropriate matching virtual slice was done using VG Studio MAX. Fiji was used to pre-

process the histological images. Calculation of the deformation and transformation of the 

images was done via Elastix and Transformix106,107 that were integrated into a tailored graphic 

user interface called Fuxlastix. The Fuxlastix frontend was developed in C++, using QT5.15 

and is available on https://github.com/xPITcoding/Fuxlastix. For the presented data, the 

registration process took less than a minute using a standard computer with a quad-core CPU. 

https://github.com/xPITcoding/Fuxlastix
https://github.com/xPITcoding/Fuxlastix
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3.20 Statistical analysis 

In order to check for statistically significant differences between the analyzed groups I applied 

variance analysis utilizing two types of ANOVA tests. For all in vitro analysis for which a 

sample size of larger than 6 could be achieved, I applied a “Brown-Forsythe” test that assumes 

Gaussian distribution of the measured values but does not imply equal variances in all groups108. 

Since “Brown-Forsythe” uses the median for comparison and not the mean it has been found to 

be more robust even if the assumption of Gaussian distribution is violated109. For all in vivo 

measurements, due to the comparably small sample sizes and the larger variations, a Gaussian 

distribution could not be assumed. Thus, I applied a “Kruskal Wallis” test that operates on ranks 

and not on medians but otherwise is equivalent to the “Brown-Forsythe” test110. For both tests 

I used the implementations in GraphPad Prism 8. From here on *, **, ***, **** indicate p-

values of <0.05, <0.01, <0.001 and <0.0001, respectively.   
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4 Results 

The concept of using BaNPs to enhance breast tumor contrast in CT and in parallel to enable 

radiation therapy in the same device has not previously been attempted. The BaNPs used in this 

study were designed especially for this purpose and therefore needed to be characterized before 

a possible in vivo application. Thus, all components to develop this novel treatment approach 

had to be established and optimized.   

 

4.1 Evaluation of toxic effects of BaNPs on cell growth 

In order to rule out any toxic effects of the newly designed BaNPs, I performed cell metabolic 

activity (WST) assays. Three different murine cell lines (pH8N8 breast cancer, 3T3 fibroblasts 

and MHS immortalized macrophages) were used. These cell lines were chosen, because pH8N8 

was chosen to be used for further in vivo experiments. MHS macrophages were used, because 

these cells were expected to take up and incorporate the NPs56. 3T3 fibroblasts are commonly 

used as a non-tumor reference cell line. All three cell lines were exposed to three different 

particle types: BaNP-120, BaNP-160 and BaNP-220 which only differ in their hydrodynamic 

diameter as indicated by the number, which refers to the average diameter in nanometers.  

To assess the viability of the cells the optical density (OD) was measured at 0, 4, 8, 24 and 48 h 

using a photometric device at a wavelength of 490 nm. To compensate the absorption of the 

NPs inside the corresponding cell culture medium itself, a blank sample, which did not contain 

any cells was measured additionally and subtracted from the measured values. Figure 12 shows 

the corrected OD over time. A Brown-Forsythe ANOVA test was performed at all measured 

datapoints at 24 h to evaluate if the NPs had a significant influence on cell viability. No 

significant reductions in the metabolic activity in comparison with the control group was found 

except for the BaNP-220s and pH8N8 cells (Figure 12 A) and the BaNP-120 and the 3T3 cells 

(Figure 12 B).  

Since almost no negative effects of the NPs on the metabolic activity of the cells was found, I 

concluded that all three formulations are suited for in-vivo applications.  
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Figure 12: Cell viability of different cell lines in response to BaNPs.  

WST assay using BaNPs with different diameters. Graphs show the corrected ODs over time.  A)+D) 

WST assays using pH8N8 mouse breast cancer cells. B)+E) WST assays using 3T3 mouse fibroblasts. 

C)+F) WST assays using MHS immortalized mouse macrophages. 

 

4.2 Quantification of CT contrast enhancement of NPs 

To satisfy the two purposes of radiation therapy and improvement of the tumor visualization in 

CT, the x-ray contrast of the NPs is of great importance. The contrast in CT is generated by the 

difference in x-ray attenuation between neighboring structures, which means by their difference 

in the absorption of x-rays. A strong absorption is not only important for the contrast but is also 

a key aspect to function as an efficient radiation therapy enhancer. Thus, I assessed the x-ray 

attenuation of four dilutions (1/10, 1/5, 1/1 and undiluted) of each of the three different BaNPs 

(BaNP-120, BaNP-160, BaNP-220) using the microCT. In addition, I used iodine containing 

NPs for comparison. I found that the highest x-ray contrast was achieved with BaNP-120, as 

can be seen in Figure 13 A, which shows the maximum intensity projections of the CT scans. 

A higher contrast is obtained at higher concentrations of the NPs. In Figure 13 B the results are 

displayed in terms of relative contrast agent concentrations. Despite being the smallest particle, 

BaNP-120 outperformed the other contrast agents in terms of relative contrast and was therefore 

selected for all following experiments. 
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Figure 13: CT contrast enhancement of different NPs.  

A) Differently sized BaNPs as well as iodine NPs were imaged with the same imaging parameters later 

used for radiation therapy (QuantumFX, 90 kV, 200 µA, FOV 20mm, 2 min scan time). Stock particle 

solutions (BaNP-120 300 mg/ml, BaNP-160 300 mg/ml, BaNP-220 500 mg/ml, IodineNPs 220 mg/ml) 

and different dilutions in PBS were used. B) Plotted mean gray values of the data shown in A) reveals 

that BaNP-120 demonstrated the strongest x-ray contrast. 

 

 

4.3 Dose calibration for in vitro irradiation with the microCT 

Since there were no calibrated dose measurements available for our preclinical microCT 

system, it was necessary to evaluate the dose generated by the system at different parameters 

as a prerequisite for the following in vitro irradiation experiments. To achieve this, I used a 

dosimetric device which is usually used to perform consistency measurements for clinical CT 

scanners. The device measures the dose length product (dose integrated along one dimension 

of the irradiated area). The measurement probe was placed in the isocenter of the CT system 

and different acquisition protocols were performed. The results are shown in Table 16. For a 

standard CT acquisition protocol using 90 kV tube voltage, 200 µA tube current, 2 min scan 

time and a FOV of 20 mm dose values of 2.7 Gy were measured. The system can generate data 

sets at different resolutions, which is achieved by geometric magnification. Thus, to achieve a 

higher resolution, the x-ray tube is moved closer to the object/mouse while the distance between 

source and detector is kept constant. Since radiation intensity reduces with the distance to the 

power of 2, the scans performed at lower FOV generated a higher dose. Therefore, the values 

of measurements taken at larger FOVs (2 min, 90 kV, 200 µA, 73 mm FOV) of 0.95 Gy were 

in line with the expectations. The dose is linearly proportional to the tube current which can 
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also be seen in Table 16, since measurements at 100 µA tube current (2 min, 90 kV, 100 µA, 

20 mm FOV) show values of 1.3 Gy, which is half the x-ray dose measured at 200 µA. In 

addition, we confirmed that the irradiated region is not much larger than the FOV by using an 

x-ray sensitive film. Thus, a 2 min scan at 90 kV and 200 µA at FOV 20 mm results in an 

absorbed dose of approximately 1.3 Gy. 

 

Table 16: Dose length product measurements of the in vivo microCT with different acquisition 

parameters 

t [min] kV µA  FOV [mm] Dose length product  

[Gy x cm] 

2 90 200 20 2.692 

2 90 200 20 2.685 

2 90 200 73 0.9545 

2 90 200 73 0.9506 

2 90 100 20 1.322 

2 90 100 20 1.316 

2 90 200 40 1.386 

2 90 100 40 0.6724 

 

 

 

4.4 Quantification of the X-ray irradiation effect on tumor cell 

survival 

Radiation damage of cells is commonly analyzed by performing colony forming assays as 

described in the method section 3.6. In short, the irradiated cells were plated and left to 

proliferate for 7-10 days. Then their ability to form colonies – clusters of 50 cells and over - 

were analyzed. To bypass the very time consuming and subjective manual counting of colonies 

using a microscope, I developed a new analysis pipeline using a flatbed scanner to image the 

cell culture plates in combination with a self-made quantification software. 
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4.4.1 Establishment of an automated quantification approach for colony 

forming assays 

To quantify the number of colonies as well as their area I developed an image analysis software 

based on MATLAB. The code is publicly available and can be found under 

https://github.com/xPITcoding/CFA_analyze_plate. The workflow of the software is shown in 

Figure 14. The software allows to import a 16-bit *.tif image of a 6 well plate. To identify the 

wells, the image is downscaled by a factor of five and binarized using a gray value threshold of 

35000. Subsequently an automated circle detection utilizing a circle Hough Transform was used 

to detect the coordinates and the radius of each well. A circular mask is generated with a radius 

which is 150 px smaller than the detected circle. Following this step, each single well is cut out 

from the original 16-bit data and the wall of the well is removed by applying the circular mask. 

A background correction is performed using a filtered version of each well (Gaussian filter, 

σ=100) and subtracting it from the image to remove shading and incorrect lighting. To segment 

the cells as colonies and not as single cells, the images are binarized, using a set threshold. Then 

a closing filter is applied to merge all pixels that belong to a single colony. To count the colonies 

subsequently an algorithm based on region growing is used. In short, a region growing 

algorithm can segment structures by checking a similarity criterion to neighboring pixels, in 

this case a low variation in their gray values. In addition, the function allows to exclude clusters 

which have insufficient size. The number of colonies, as well as their area and average 

brightness in the original data is exported as a *.csv file. 

This approach allows the analysis of a six-well plate in a matter of seconds. In addition, images 

of all wells and their processing steps are saved, to check the reproducibility of the results. 

 

 

 

 

https://github.com/xPITcoding/CFA_analyze_plate
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Figure 14: Flowchart of the automated colony forming assay analysis software written with 

MATLAB. 
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4.4.2 Quantification of the in vitro irradiation effects of BaNPs 

To test the influence of low energy x-ray irradiation on the survival of cancer cells and the 

ability of the BaNPs to enhance this effect, an in vitro irradiation study was performed. 

BaNP-120 solution was added to a cell pellet of murine pH8N8 breast cancer cells or human 

A549 lung cancer cells inside a micro reaction tube and irradiated in the microCT two times for 

2 min, resulting in a dose of approx. 2.6 Gy Following this step, the cells were counted and 

seeded into 6-well plates and left to form colonies. The novel pipeline described above was 

utilized for the analysis of the colonies. The experiment was performed two times with the 

murine pH8N8 cells and two times with the human A549 cells. In each experiment, the cells 

were divided into four groups: the control group, CTRL represents cells that did not receive 

NPs and were not exposed to radiation, NP CTRL received NPs but no radiation, RAD were 

irradiated but did not receive NPs and NP RAD received both NPs and irradiation. One 6-well 

plate was used for each group and experiment. Figure 15 illustrates the outcome of the 

experiments. The bars show the relative difference to the mean of the respective CTRL group 

in each individual experiment. 

Figure 15 A shows a significant reduction in the number of formed pH8N8 colonies for the NP 

RAD group in comparison to all other groups. The RAD group without BaNPs also shows a 

significant reduction in the colony number. But this reduction is only around 20 %, while the 

reduction in the NP RAD group is greater than 90 %. The NP CTRL group also shows a rather 

small but significant reduction in the colony number. Since the WST assay did not show any 

toxic effect of the BaNPs on pH8N8 cell proliferation, this result is most likely not due to toxic 

effect of the BaNPs, but rather due to the fact that the presence of BaNPs hampered the 

dissociation to single cells during the seeding process. As indicated in Figure 15 E, the colonies 

in the NP CTRL group were not as homogeneously distributed over the area of the well than in 

the other groups. This trend was similar for the analysis of the colony area, revealing an even 

larger area of colonies for the NP CTRL group than the one of the CTRL group (Figure 15 C). 

The colony area of the pH8N8 cells in the NP RAD group is also drastically reduced when 

compared to the other groups. Irradiation of A549 lung cancer cells revealed comparable results 

to those with pH8N8 cells, as evidenced in Figure 15 B and D. There is a highly significant 

reduction in both colony number and area even of the NP RAD group, although the 

enhancement effect of the BaNPs is not as dramatic as for the pH8N8 cells. Figure 15 E shows 

four exemplary wells of treated pH8N8 cells. The cells that are marked in red represent the 

automatically detected colonies. Bright gray cells/structures were not counted because they did 

not fulfill the size and roundness criteria of the analysis. 
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Figure 15: Irradiation enhancement effect of BaNPs in vitro.  

In vitro irradiation was performed for murine pH8N8 cells and human A549 cells and the following 

groups were compared. CTRL (no irradiation, no NPs), NP CTRL (no irradiation, NPs), RAD 

(irradiation, no NPs) and NP RAD (irradiation, NPs). A) Relative difference of colony number 

compared to CTRL group for pH8N8 breast cancer cells (n=12). B) Relative difference of colony 

number compared to CTRL group forA549 lung cancer cells (n=12). C) Relative difference of colony 

area compared to CTRL group for pH8N8 breast cancer cells (n=12). D) Relative difference of colony 

area compared to CTRL group for pH8N8 breast cancer cells (n=12). E) Exemplary images of 

segmented colonies of pH8N8 cells for each treatment group. Segmented colonies are pseudo-colored 

in red. 

 

 

4.5 In vitro evaluation of tumor cell specificity of Ba120-EpCam-

A594 NPs 

To improve the BaNP enrichment in the tumor after systemic administration, BaNPs were 

functionalized with an antibody targeting a tumor associated protein. To this end, anti-EpCAM 

antibody (Ab) was chosen for functionalization of BaNPs, as previous studies showed a high 

expression of EpCAM in pH8N8 tumors111. Additionally, the BaNPs- EpCAM antibody 

construct was labeled with the fluorescent dye Alexa594 to enable microscopic analysis. To 
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validate that the Ab binds to the tumor cells, we performed in vitro cell culture assays with the 

free anti-EpCAM-A594 Ab as well as the Ba120-EpCam-A594 conjugate. These demonstrated 

a clear signal located at the cell membrane of the tumor cells for both assays, as representatively 

shown in confocal microscopy images of pH8N8 tumor cells of Figure 16. The Ab signal is 

depicted in yellow/orange, while the cell nuclei are stained with Hoechst dye and shown in blue. 

For the Ba120-EpCam-A594 conjugate some signal can also be found inside the cells, hinting 

at an internalization of the labeled BaNPs. 

 

 

Figure 16: Confocal microscopy of pH8N8 breast cancer cells using fluorescence labeled anti-EpCam 

antibodies.  

A)+C) Representative images of H8N8 breast cancer cells incubated overnight with free EpCam-A594 

antibody (yellow/ orange signal) show a specific binding of the antibody to the tumor cell membranes. 

B)+D) pH8N8 breast cancer cells incubated overnight with Ba120-EpCam-A594 BaNPs (yellow/ 

orange signal) show an enhanced fluorescence signal at the cell membranes as well as fluorescence 

signal inside the tumor cells hinting at internalization of the Ba120-EpCam-A594 particles. Cell nuclei 

are stained with Hoechst dye and depicted in blue.   
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Specific binding of EpCAM-A594 antibody to tumor cells was also confirmed in pH8N8 tumor 

cryosections. Representative confocal microscopy images in Figure 17 clearly show a strong 

signal at the cell membranes of the pH8N8 tumor cells. These results demonstrate that the 

generated Ab-labeled BaNPs specifically bind to the tumor cells.  

 

 

Figure 17: Confocal microscopy of pH8N8 tumor slices using Alexa594 labeled anti-EpCAM 

antibodies.  

Confocal microscopy of a tumor cryosection. A) DAPI stained cell nuclei depicted in blue. B) EpCAM-

A594 signal depicted in yellow/orange. C) merge of A) and B) showing the antibody binding to the tumor 

cell membranes. 

 

In summary the in-vitro analysis identified the BaNP-120 as the particles with the highest 

relative contrast, together with no signs of toxicity. BaNP-120 showed very promising results 

in RT in vitro and was therefore selected for in vivo testing. 
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4.6 Setup of an in vivo microCT radiotherapy approach  

In order to perform RT with the in-vivo microCT system, I developed a dedicated mouse holder 

as shown in Figure 18 A. The system is based on a plastic pipe and equipped with a mask for 

isoflurane anesthesia. Two cylindrical covers made from 3 mm thick lead can be adjusted to 

protect the organs from radiation and only expose the tumor. A third piece of lead is used to 

counterbalance the setup. 3 mm of lead causes 100% attenuation of x-rays in the energy range 

produced by the QuantumFX x-ray tube.  As the irradiation of the tumor is done by CT, meaning 

the x-ray tube is rotating around the mouse, the contralateral side will also receive the same 

radiation dose. Shielding the contralateral side - while feasible - would obviate a 3D image from 

the data and therefore prevent the use of the approach for a combined diagnosis and treatment. 

Intensive dose measurements were then performed to further characterize the setup.  

 

 

Figure 18: Preparatory work for radio therapy experiments.  

A) Custom made mouse holder for irradiation. Lead is used to shield all areas of the mouse outside of 

the tumor region. An anesthesia mask is integrated for isoflurane anesthesia. B) Dose measurement 

setup. TLDs were implanted into dead mice as shown and the position of the mouse holder is indicated. 

Agarose blobs were injected subcutaneously in the flank of the dead animal to mimic a tumor. The TLDs 

were implanted under the agarose blob. 
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In order to test the functionality of the mouse holder / shielding device and to obtain an estimate 

of the dose inside the tumor, thermoluminescence dosimeters (TLDs) were implanted at 

different positions into five dead mice as indicated in Figure 18 B. TLDs implanted in either 

the chest or the liver region were behind the led shielding and therefore expected to not receive 

any irradiation dose. The bladder region was used as a control region for healthy tissue that is 

within the unprotected FOV. The hind limb region was used to mimic the tumor location. For 

this purpose, 300 µL of agarose gel was injected subcutaneously in the flank of the mice to act 

as an artificial tumor. Two of the mice received the agarose gel mixed with 15 µL of BaNP-120. 

The results of the TLD measurements are summarized in Table 17. On average the hind limb 

region received a dose of approximately 1.4 Gy within 125 s. Given the fact, that the FOV or 

more precisely the irradiated FOV, is slightly larger than 20 mm, the result matches exactly the 

preceding measurements of the dose length product. In the two cases (mouse 1 and 2) in which 

the agarose gel was mixed with BaNP-120, the TLD measurements show slightly lower dose 

values. This suggests that compared to the artificial tumors without BaNPs, a higher percentage 

of radiation is absorbed in the presence of the particles and therefore does not reach the TLD. 

Contrary to the expectation, the TLDs labelled “Chest” and “Liver” demonstrated values of 

approximately 1% of the readings at the artificial tumor site. There are three effects that can 

account for this observation: I) scattering of the x-ray occurs within the mouse which can even 

reach locations protected by the lead cover, II) the TLDs may also see all other sources of 

radiation especially during their shipment from the Synchrotron (Trieste, Italy) to Göttingen 

and back and III) there may be a sensitivity threshold in the readout of the TLDs. However, a 

reduction of the radiation by 99% should keep harmful effects in the protected regions in the 

mouse to a minimum.      

In summary, the TLD measurement confirmed the in vitro measurement of the dose length 

product. The small diameter of the mouse did not influence the dose distribution, because no 

scattering occurred. The CT system can be used to deliver a dose of approximately 1.4 Gy for 

a 2 min scan. Thus, by combining multiple scans, a sufficient dose for RT can be generated. 
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Table 17: Dose measurements of TLDs implanted into dead mice 

 

Weight [g] Time [s] 
TLD 

Chest 

Dose 

[Gy] 

TLD 

Liver 

Dose 

[Gy] 

TLD Bladder 

region (Subq) 

Dose 

[Gy] 

TLD hind limb 

(Subq) 

Dose 

 [Gy] 

300 µg Agarose 

Tumor  

Mouse 1 38.5 125 A5 0.0098 A8 0.0263 A6 1.4733 A0 1.3587 +15µL BaNPs 

Mouse 2 45 30 B5 0.0017 A3 0.0034 B8 0.2980 A7 0.2360 +15µL BaNPS 

Mouse 3 40.7 30 A1 0.0032 B7 0.0058 B3 0.4127 B9 0.2969 

  

Mouse 4 40 125 B4 0.0090 A4 0.0332 A2 1.2651 B1 1.3824 

  

Mouse 5 38.3 125 B2 0.0143 B0 0.0669 A9 1.3512 B6 1.3802 
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4.7 Analysis of BaNP distribution and fate after intratumoral 

application 

In order to generate an effective RT strategy, a specific homogenous enrichment of BaNPs in 

the tumor must be achieved. In addition, it is important to know if the BaNPs are excreted or 

where they remain in the body. The data sets shown here were generated in the first irradiation 

experiment which is shown in section 4.8.1 below. Human A549 tumor cells were 

subcutaneously injected in the flank of the mice. 30 µL BaNP-120 was injected intratumorally 

once 24 h before the first treatment when the tumors reached a size of 300 mm3. Since the mice 

were irradiated using a standard acquisition protocol of the in vivo microCT (90 kV tube 

voltage, 200 µA tube current, FOV 20 mm, 2 min scan time), 3D volume data sets were 

generated during the therapy. Six therapy sessions were performed every second day. Figure 19 

A shows 3D renderings of the tumors and the BaNP distribution at each therapy session. Two 

general distribution patterns were found: intra-tumoral distribution of the particles and cases in 

which the NPs were mostly enriched in the capsule. However, in both cases there was virtually 

no change in the local distribution over the entire duration of the experiment. This is further 

illustrated by two exemplary tumors in Figure 19 B showing that the volume of particle enriched 

regions of the tumor remains constant over time. Therefore, it can be concluded that the BaNPs 

remain at their injection site over two weeks until the end of the experiment.  

In addition, I did not find any BaNPs in other organs, which were scanned in the CT and 

analyzed by histology after explantation. In summary, the distribution of the particles in the 

tumor was inhomogeneous but static over time. 
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Figure 19: Fate of BaNPs after intratumoral application in subcutaneous A549 lung tumors. 

Subcutaneous A549 lung tumors after i.t. application of 30 µl BaNPs. A) 3D renderings of microCT 

data sets acquired during RT. Two tumors are visualized from two different angles at six different time 

points. Upper panel exemplifies a tumor with intratumoral accumulation of NPs; lower panel 

exemplifies a tumor with accumulation of NPs in the tumor capsule. No visual difference in the NP 

amount or distribution was observed over time. B) Segmented NP-positive volume (VNP+) over time. No 

changes can be found. 
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4.8 NP enhanced low energy RT performed in an in vivo microCT 

In vivo experiments were conducted that followed the workflow presented in Figure 20, except 

for panel D - the bioluminescence measurement - which was only performed in the last 

experiment. The first experiment was conducted on subcutaneously implanted lung cancer cells 

(A549), the latter three on orthotopically implanted breast cancer cells (pH8N8). For all 

experiments, following the implantation (Figure 20 A), the size of the tumors was continuously 

evaluated using a caliper (Figure 20 C). When tumors reached a size of 300 mm3, the mice were 

randomly assigned to one of the therapy groups and BaNPs were injected intratumorally (Figure 

20 B). Irradiation was performed with the QuantumFX in-vivo microCT system at an energy 

of 90 kV. The details and the results for the specific experiments are given in the following 

chapters.  

 

 

Figure 20: Workflow of the irradiation experiments.  

A) Implantation of tumor cells. B) Intra tumoral injection of 30 µl BaNP solution. C) Manual caliper 

measurements for tumor volume assessment, performed by 2-3 readers. D) Measurement of BLI 

intensity.  BLI measurements were only performed in the fourth experiments. E) RT performed in the in 

vivo microCT.  
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4.8.1  Preliminary evaluation of the therapy approach using a 

subcutaneous lung cancer model 

To evaluate a NP-enhanced RT approach we initially thought of using a subcutaneous tumor 

model that provides the advantage of directly injecting the BaNPs into the tumor and easy tumor 

measurements by caliper. For this purpose, A549-cell induced subcutaneous tumors were 

irradiated six times every second day using four consecutive CT scans of 2 mins at 90 kV and 

200 µA resulting in a dose of about 5.5 Gy per session and a total dose of ~33 Gy.  Mice were 

randomly assigned to four groups CTRL (no NPs, no irradiation, N=4), NP CTRL (NPs, no 

irradiation, N=5), RAD (no NPs, irradiation, N=5) and NP RAD (NPs and irradiation, N=5). 

Tumor size was monitored by caliper measurements by two readers every second day. Body 

weight was also measured every second day. 

The selected irradiation schedule revealed no significant adverse effect on the body weight, es 

demonstrated in Figure 21 A, which shows changes in body weight at the end of the experiment 

in comparison to the date of tumor cell implantation. Both non-irradiated groups (CTRL & NP 

CTRL) gained weight of approx. 5-7 %, suggesting no harmful side effects of the BaNPs on 

the wellbeing of the mice. Mice of both irradiated groups did not show any weight loss, 

indicating no severe side effects. The starting point of the experiment was defined as the day 

when the tumors reached a size of 300 mm3. Since the individual tumors showed very different 

growth kinetics, the animals were divided into 5 different cohorts. The treatment group of each 

mouse was randomly assigned independently of the cohort. Figure 21 B shows the measured 

tumor volumes for each mouse over time. Figure 21 C shows the relative change in tumor 

volume in comparison to the day of BaNP injection. 
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Figure 21: Results of the first irradiation experiment.  

A) Mean weights over time for each treatment group. No significant weight loss was observed in any of 

the groups. B) Tumor volumes over time relative to the therapy start. C) Relative tumor volumes in 

comparison to the day of NP injection (day -1) over time. 
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Interpretation of the graphs shown in Figure 21 B and C is rather difficult, because of the 

different growth kinetics, treatment dates and the large standard deviations of the caliper 

measurements. Therefore, Figure 22 shows the tumor volumes over time in the different 

treatment groups. 

As shown in Figure 22 A and B the tumor volumes in both control groups (CTRL & NP CTRL) 

increased steadily over time. In contrast, we found that in both irradiated groups (RAD & NP 

RAD) the tumors shrunk, or the tumor growth was minimized (Figure 22 C and D). The effect 

can be observed 3-4 days after therapy start and is stronger in larger or faster growing tumors. 

No apparent difference was detected in the tumor volume kinetics after treatment between the 

RAD and the NP RAD group. 

 

 

Figure 22: Growth kinetics over time as a result of radiotherapy divided into the treatment groups.  

Tumor volumes for individual animals over time measured by manual caliper measurements. A) CTRL 

group (no radiation, no BaNPs; N=4). B) NP CTRL group (no radiation, BaNPs; N=5). C) RAD group 

(radiation, no BaNPs; N=5). D) NP RAD group (radiation & BaNPs; N=5). Both non-irradiated groups 

show a steady tumor growth, while the irradiated tumors show a decrease in tumor volume due to the 

therapy. 
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In summary, this pilot experiment provided evidence that RT can be indeed performed 

successfully in a CT. However, it also showed experimental flaws, which most probably 

contributed to non-statistically significant results as tested by ANOVA. In particular, the 

measurement of the tumor by caliper is difficult to reproduce and especially challenging for 

small tumor volumes despite the superficial nature of the subcutaneous lung tumors. The current 

experimental numbers and set-up did not show a strong increase in the efficacy of RT based on 

the presence of NPs. We cannot exclude smaller differences in the tumor growth between RAD 

and NP RAD that were not measurable in these data sets.  

In the following experiment, I optimized the treatment scheme and utilized the pH8N8 breast 

cancer model for TNBC. 
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4.8.2 Radiation therapy effect in the orthotopically implanted breast 

cancer model  

Since the main aim of my thesis was to evaluate if NP-enhanced RT can be used as a therapy 

for TNBC, I used an orthotopic breast cancer model for further experiments, which provides a 

more disease-relevant environment for the assessment of tumor growth. In addition, the pH8N8 

breast cancer cells are of murine origin and allow the use of immunocompetent mice, which is 

important because of the role of the immune system in response to cancer treatment. Moreover, 

as the current route for administering the NPs was intratumoral injection an application in breast 

cancer therapy seemed more likely than in lung cancer. Since neither the cell viability assays  

nor the mice in the control group (no BaNPs, no irradiation) in the previous experiment showed 

any signs of toxicity or altered tumor growth compared to the NP CTRL group which received 

BaNPs, I only evaluated the concept in three groups: NP CTRL (NPs, no irradiation, N=2), 

RAD (no NPs, irradiation, N=4) and NP RAD (NPs and irradiation, N=5).  

The preliminary irradiation experiment did not show a strong difference in the tumor volumes 

when BaNPs where used in combination with irradiation. I therefore adjusted the irradiation 

schedule to achieve an increase in the NP-based RT effect.  For this purpose, the same radiation 

dose of 5.5 Gy was delivered per treatment, but the schedule was changed to daily irradiation 

instead of every second day to give the tumor cells less time to repair the damage. Thus, seven 

therapy sessions were performed with four 2 min CT scans at 90 kV and 200 µA per session.  

This treatment schedule  resulted in a strong weight loss of up to 20% within 10 days of 

treatment in both irradiated groups (Figure 23 A) and led to a premature termination of the 

experiment. Figure 23 B shows the relative volumes over time in comparison to the treatment 

start. While the mice in the non-irradiated NP CTRL group exhibited a tumor volume increase 

up to a factor of five, the irradiated groups (RAD & NP RAD) displayed a therapy effect. In the 

RAD group the tumors grew similarly to the NP CTRL group until day five and then the tumors 

receded in size. When the experiment was terminated the tumor volumes were approximately 

the same as at the beginning of the experiment. The NP RAD group showed a slower tumor 

growth from the start of the experiment. The tumors also began to shrink after day 5. However, 

these differences between the RAD and NP RAD group were not significant 
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Figure 23: Outcome of radiotherapy using the orthotopic breast cancer model.  

Mean values for the following groups are depicted: NP CTRL (BaNPs, no irradiation; N=2), RAD (no 

BaNPs, irradiation; N=4) and NP RAD (BaNPs and irradiation; N=5). A) Mean relative weights over 

time for each treatment group. Significant weight loss in the treated groups. B) Tumor volume over time 

relative to the therapy start. Both treated groups show a reduction in tumor growth. 

 

In summary, this experiment revealed a clear reduction in the pH8N8 tumor volumes in treated 

mice in comparison to the NP CTRL group, similar to the results we observed in the A594 

subcutaneous tumors. However, a significant benefit of the BaNPs for reducing the tumor 

volumes was not detected. Due to the strong side effects of the irradiation dose, I decided to 

further optimize the treatment schedule by adding rest days with the aim to reduce side effects, 

while maintaining the effect of the RT.  
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4.8.3 Improving the treatment schedule to reduce side effects for 

radiotherapy of pH8N8 breast cancer bearing mice 

The daily irradiation schedule as described in the previous chapter led to a significant weight 

loss of the mice due to applied irradiation dose of 5.5 Gy per day. To reduce these side effects, 

I adapted the treatment scheme to a protocol which is similar to irradiation of breast cancer 

residues in patients30. The mice were now irradiated for 5 consecutive days, followed by 2 days 

of rest. Furthermore, the dose per therapy session was reduced by 50% using only two 2 min 

CT scans at 90 kV and 200 µA which resulted in an applied dose of 2.7 Gy. In total 16 sessions 

were performed to reach a total dose of approx. 40 Gy.  The same group design was kept as 

before, with an additional group using NPs with a larger diameter of 300 nm (NP300 RAD). I 

speculated that due to the rather small diameter of the BaNP-120 the effective cross section was 

too small, leading to the low efficacy.  

As in previous experiments, the NP CTRL mice showed no weight loss (Figure 24 A). The mice 

in all three irradiated groups demonstrated a weight loss of up to 10% during the therapy days 

(marked by dotted lines), but a weight gain was observed during the days without treatment. 

The overall weight loss of the animals was smaller than in the previous experiment, even though 

the time period of therapy was much longer (Figure 24 A). The exclusion criterion of the ethics 

approval for the study of 20% weight loss was never reached. In addition, the mice showed 

significantly reduced signs of stress, such as minimally reduced activity, no diarrhea or dull fur.  

These results were also reflected in the absolute mean tumor volumes (Figure 24 B). The 

animals in the NP CTRL group showed continuous tumor growth. Since the therapy schedule 

was changed and the treatment period was longer, two NP CTRL animals reached the exclusion 

criterion for the tumor size (1500 mm3) at day 18 and day 13 (indicated by the cross) and had 

to be sacrificed before the end of the experiment. The tumor volumes of the three irradiated 

groups started to decrease from day 7 onwards. When comparing the start tumor volumes (day 

0, therapy start) and the end volumes (day 25), the volume decreased by 41% for the RAD 

group, 50% for the NP120 RAD group and 60% for the NP300 RAD group. However, there were 

no significant differences in the tumor volumes between the three groups as tested by ANOVA.  
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Figure 24: Outcome of radiation therapy in the pH8N8 breast cancer model using an improved 

treatment schedule  

Mean values are depicted for the following groups: NP CTRL (BaNP-120, no irradiation; N=4), RAD 

(no BaNPs, irradiation; N=4), NP120 RAD (BaNP-120 and irradiation; N=4) and NP300 RAD (BaNP-

300 and irradiation; N=3). A) mean relative weights over time for each treatment group. B) tumor 

volume over time relative to the therapy start for each treatment group. All therapy days are marked by 

dotted lines. Irradiated mice show decreased tumor volumes after the onset of the therapy, while control 

tumors show continuous growth. 

 

In summary, the results so far prove that low energy irradiation in an in vivo microCT can 

significantly reduce tumor growth and is well tolerated if an adapted treatment protocol is used. 

These optimizations include lowering the x-ray dose per session from 5.5 Gy to 2.7 Gy and 

irradiating the mice for five consecutive days followed by two rest days. Since the tumor 

volume measured by caliper was the only readout for therapy success, and this method does not 

take into account the viability of the tumor cells, I opted for a further improvement of read-outs 

by utilizing bioluminescent tumor cells to gain more information. 
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4.8.4 Utilization of bioluminescent pH8N8 breast cancer cells to gain 

more insights on radiation therapy effects  

In previous experiments the only parameter for RT outcome was the manual measurements of 

tumor size with a caliper. Even when using multiple readers, this type of measurement has 

proven to be prone to large variations. To have another readout for the therapy success I 

therefore decided to use bioluminescent tumor cells, which provide the possibility to assess 

tumor progression based on their bioluminescence intensity. For this purpose, pH8N8 breast 

cancer cells were transduced with a lentiviral vector encoding for both luciferase and eGFP. 

Multiple clones were created and their bioluminescence intensity was measured ex vivo. 

The cells were seeded into the wells at each corner of the plate and the total photon flux was 

measured 20-times with a one-minute interval after adding the luciferin substrate (Figure 25 

A). The image shows the BLI signal of the first measurement in pseudo-colors, according to 

the color map on the right side (blue = low, red = high).  Figure 25 B shows the total photon 

flux of the clones over a time span of 20 mins after the addition of luciferin. The clone 1G8 did 

not show any bioluminescence signal, while the three other clones showed a strong BLI signal. 

Clone 3D3 clearly demonstrated the strongest BLI signal.  

 

 

Figure 25: In vitro validation of bioluminescence of modified pH8N8 tumor cells.  

A) In vitro BLI measurements in a 24-well cell culture plate measured with the IVIS Spectrum device. 

B) Total flux values measured every min for 20 min after the addition of luciferin. The clone 3D3 shows 

the strongest signal. Clones 2F6 and 3D3 demonstrate a clear BLI signal while clone 1G8 shows no 

bioluminescence.  
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Clones 2F6, 2B12 and 3D3 were then orthotopically implanted into three WAP-T-NP8 mice 

each. The mice implanted with the clone 3D3, which showed the strongest in vitro BLI signal, 

did not develop any tumors. The remaining mice successfully developed breast tumors, which 

were large enough to be measured by caliper after three weeks. The tumor growth was 

monitored manually by caliper measurements (average of two readers) on the same days the 

BLI signals were measured.  

As shown in Figure 26 A and B the BLI signal was measured seven times after the luciferin 

application to determine the time point of the maximum signal, which was detected at 

approximately 10 min after luciferin administration. Comparison of the caliper volume 

measurements (black) with the BLI total flux measurements (red) of both clones (Figure 26 C 

and D) demonstrated that the manual volume measurements and the BLI total photon flux 

showed similar trends. For further irradiation experiments I decided to use the clone 2F6, 

because the tumor growth was similar to the non-bioluminescent pH8N8 cell used before. In 

addition, the BLI signal of clone 2F6 was slightly stronger than for clone 2B12. 

 

 

Figure 26: In vivo validation of bioluminescent pH8N8 breast tumor cells.  

Representative images of BLI measurements of breast tumors induced with pH8N8 clone 2B12 (A) and 

2F6 (B) at 7 different time points after luciferin injection. Graphs comparing BLI total flux 

measurements and manual caliper measurements over time for the clone 2B12 (C) and 2F6 (D) 

demonstrating similar trends for both methods.  
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All irradiation experiments so far revealed that the data evaluation is impeded by multiple 

factors. Since the tumors show different growth kinetics the therapy start had to correspond to 

either a specific date or a specific tumor size. I chose the latter option since this should make 

the biological properties of the tumors more comparable. A consequence of this choice was that 

the mice entered the treatment at different time points. Furthermore, the additional BLI 

measurements increased the treatment time per animal and thus the total workload, which 

necessitated splitting the mice into treatment cohorts. In addition, the manual caliper 

measurements are prone to inter-observer variability. Collectively, these aspects make the 

manual comparison of the different data sets very complicated and labor intensive. Therefore, 

I decided to develop a software that can assist with sorting and filtering of the data. The 

principle workflow of the software is described in the following section.  

All data points, such as the caliper measurements, the BLI data sets, as well as tumor size 

measurements based on the acquired CT data sets are imported as *.csv sheets.  The mouse 

number and the date of the data acquisition is used to identify the data sets. Internally a database 

is created that holds all the information for each animal as demonstrated in Figure 27. 

 

  

Figure 27: “mouse class” construct implemented in the analysis software.  

The class holds the date of each mouse specific parameter as well as each measurement (data type = 

QDate). In addition, the treatment group, cohort and section number are saved. 

 

Figure 28 illustrates a simplified flowchart of the developed software. The created database can 

be saved to avoid importing all data sheets every time the software is used. To enable a better 

comparison of the animal in the different treatment groups the software supports normalization 

of the data sets to either the day of tumor cell implantation (“start day”) or the day of the first 

therapy session (“therapy start”). In the next step the user manually filters which data is of 
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interest. If some data points are missing for the selected animals/ treatment groups/ cohorts, 

missing data points are interpolated using a simple linear interpolation algorithm. A moving 

average filter with a variable filter width can be applied to smooth the data if necessary. This is 

important for monitoring the trends of the data, due to the large standard deviations that can 

occur in both the manual caliper measurements as well as the BLI measurements. The selected 

data can be plotted, either over time or as a correlation plot. In addition, all values can be 

displayed as the absolute values or as a relative change in comparison to the “start day” or the 

“therapy start”. The data points can be exported as a *.csv file for further analysis.   

 

 

Figure 28: Flowchart of the software to analyze the effect of irradiation on tumor growth kinetics. 
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The bioluminescent pH8N8 clone 2F6 and the aforementioned newly developed software were 

then used to evaluate a further optimization step in the RT regimen. So far, the RT experiments 

showed that the irradiation itself leads to effective RT using a microCT but did not reveal any 

difference between the irradiated groups, either treated with or without BaNPs. Because RT 

without BaNPs already significantly decreased the tumor volumes, I speculated that, at lower 

dose rates, a larger difference may be found between the RAD and NP RAD groups. Therefore, 

an additional group NP RAD LD was added, which only received 50% of the irradiation dose 

(LD = low dose, one 2 min CT scan at 90 kV and 200 µA; ~1.35 Gy/treatment) in comparison 

with the previously applied dose of 2.7 Gy/treatment, which is here referred to as high dose 

(HD). In order to provide a better readout of the radiation damage the pH8N8-BLI cells were 

used for the orthotopic tumor mouse model, since the BLI signal correlates well with the amount 

of living tumor cells. In addition, to improve the volume measurement on its own, I used the 

acquired CT data sets to also calculate the tumor volumes. However, this was not possible for 

the NP CTRL group which did not receive any CT scans. 

The treatment schedule consisted of eight therapy sessions of two 2 min CT scans at 90 kV and 

200 µA (except for the NP RAD LD group) (Figure 29). Due to the addition of BLI 

measurements the mice were analyzed in a multiplexed fashion (50% on one day, 50% on the 

second day and then starting with the first 50% again). Thus, a daily irradiation was not feasible, 

due to time constraints. The BLI measurements were performed immediately before the RT to 

avoid multiple anesthesia of the animals.  Mice were again randomly assigned to four groups 

NP CTRL (NPs, no irradiation, N=4), RAD (no NPs, high dose irradiation, N=5), NP RAD HD 

(NPs, high dose irradiation, N=5) and NP RAD LD (NPs, low dose irradiation, N=4). The 

regular caliper tumor volume measurements were performed daily for each mouse by 2-3 

different readers to minimize the measurement error.  
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Figure 29: Optimized treatment schedule using bioluminescent pH8N8 tumor cells. 

The IVIS (BLI) measurements of the mice were performed immediately before radiation therapy every 

second day. Manual caliper measurements were performed every day by two to three different readers 

to reduce the measurement error. 

 

Figure 30 A shows the body weights of the mice on the day of tumor cell implantation. While 

the variation in weight was relatively large (22-32 g) there was no significant difference in 

weight between the groups. Tumor volumes on the day of the first RT demonstrated no 

significant differences between the groups, as seen in Figure 30 B. This result was confirmed 

by the total flux values of the BLI measurements on the day of the first RT, with no significant 

differences found between the groups (Figure 30 C). Therefore, I can exclude any bias in the 

outcome of the experiment based on the assignment of the mice to the different groups. In 

addition, any differences in the outcome of the RT were not related to differences at the starting 

point. 
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Figure 30: Statistical analysis of the starting condition of the radiation therapy experiment using 

pH8N8-BLI cells  

Comparison of A) mouse weights at the day of tumor cell implantation, B) tumor volumes at the day of 

therapy start and C) BLI total flux at the day of therapy start demonstrated no statistical differences 

between the groups ensuring unbiased starting conditions. 

Comparison of the body weights in the treatment groups over time demonstrated that the 

weights of the NP CTRL group remained constant over the course of the experiment (until they 

were excluded from the experiment), while the mice in the irradiated groups showed a minor 

weight loss after the start of the irradiation treatments (Figure 31 A). The weight loss was about 

10% and therefore not as evident as in previous experiments. It must be noted, that mice in the 

NP RAD LD group, which received only half of the x-ray dose suffered from a similar weight 

loss at the start of the RT treatment but regained some of the weight while both HD groups did 

not regain weight. The NP CTRL mice had to be excluded from the experiment at day 40 (after 
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tumor cell implantation) because the tumors reached the maximum tumor volume of 1500 mm3. 

When tumor volumes measured by caliper over time relative to the therapy start were evaluated 

(Figure 31 B), the NP CTRL group showed a continuous tumor growth and doubled their 

volumes every eight days. Similar to the previous experiments, the HD irradiation protocol 

reduced the tumor growth significantly, as shown in Figure 31 F. The mice in the NP RAD LD 

group had a reduced but steady tumor growth, indicating that the lower x-ray dose was not able 

to stop the tumor growth.  Figure 31 C shows the relative tumor volumes over time which were 

calculated from 3D CT data sets that were generated during RT. Therefore, no data sets were 

available for the NP CTRL group or for time points before the therapy start. The volume 

measurement was performed in a similar way to the caliper measurements by determining the 

length, height and width of the tumor. A segmentation-based approach was not feasible due to 

the poor x-ray contrast of the tumors. The CT-based tumor volumes demonstrated similar trends 

to the manual caliper measurements. Mice in both HD groups had unchanged tumor volumes 

over time, indicating that the RT can stop the tumor growth. The NP RAD LD group showed a 

constant but slow tumor growth. In comparison to the caliper measurements, the relative 

volumes of the CT measurement showed a slightly stronger tumor growth. The analysis  of the 

mean relative BLI total flux measurements (Figure 31 D) was more difficult when compared to 

caliper and CT measurements. The NP CTRL group displayed an increase in the BLI total flux 

similar to the increase in tumor volume. Since the mice of the NP CTRL group had to be 

removed from the experiment before the mice of the treatment groups due to their large tumor 

volumes, I extrapolated the values (dotted line) using linear extrapolation. Interestingly, all 

three treatment groups showed an initial increase in total flux until day 5 after therapy start. 

Then the values decreased to levels similar to those at the therapy start. The BLI total flux 

measurements showed no significant differences between the three treatment groups. I observed 

that the tumor position with respect to the camera angle of the device significantly impacted the 

intensity measurements. Thus, I decided to additionally use the area of the BLI signal above 

10% of the maximum value as 2D equivalent to the tumor size (Figure 31 E). While the graphs 

for the tumor area show the same trends as for the tumor volumes, the differences between the 

groups are much smaller. This can be explained by the fact that the area measurement is only 

two-dimensional, while the volume is three-dimensional. In comparison to the total flux 

measurements, the BLI tumor area values for the treated groups do not show a peak at day 5. 

No significant differences between the irradiated groups was observed. Finally, I evaluated the 

mean tumor volumes of each group at the last measurement before autopsy, as illustrated in 

Figure 31 F. Since the manual volume measurements are error prone, especially for small 
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tumors, and there were no significant differences in the tumor volumes at the therapy start, I 

decided to compare the absolute tumor volumes at the end of the therapy. This includes the 

measurement error only once, while a relative comparison would consider the error twice. The 

irradiated groups showed a highly significant reduction in tumor volumes in comparison to the 

NP CTRL group. The HD groups demonstrated a significant tumor volume reduction in 

comparison to the NP RAD LD group. However, no significant difference between the RAD 

HD and the NP RAD HD group was detected. 
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Figure 31: Outcome of the optimized radiation therapy using pH8N8-BLI tumors after data treatment with the proposed analysis software.  

Mean values are depicted for the following groups: NP CTRL (BaNPs, no irradiation; N=4), RAD (no BaNPs, high dose irradiation; N=5), NP RAD HD (BaNPs,  

high dose irradiation; N=5) and NP RAD LD (BaNPs, low dose irradiation; N=4). A) Mean weights relative to the weight at the therapy start over time for each 

treatment group. No significant weight loss was detected in any of the groups. B) Mean tumor volume caliper measurements over time relative to the therapy start. 

C) Tumor volume CT measurement over time relative to the therapy start. D) Mean BLI total flux over time relative to the therapy start. E) Mean BLI tumor area 

over time relative to the therapy start. F) Comparison of tumor volumes (caliper measurements) at the end of the therapy showing a significant decrease in tumor 

volumes in response to irradiation. 
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Comparisons of the manual caliper measurement with CT and BLI parameters are demonstrated 

in scatter plots as shown in Figure 32. A linear correlation was found between the tumor 

volumes measured by caliper and measured from the CT data sets (R2 = 0.7821) (Figure 32 A). 

Figure 32 B illustrates that there is no linear correlation between the BLI total flux and the 

manual tumor volume measurements (R2 = 0.1069). Since the trends shown in Figure 31 B and 

D were similar for the irradiated groups, a linear correlation was not expected. However, even 

for the NP CTRL group (red), which showed a similar behaviour in both graphs, no linear 

correlation was found. Figure 32 C demonstrates a weak linear correlation between the manual 

caliper measurements and the tumor areas measured by BLI (R2 = 0.4402). Note that the square 

root of the BLI areas was compared to the cube root of the tumor volumes to account for the 

fact that a two-dimensional measurement was compared with a three-dimensional 

measurement. 
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Figure 32: Statistical comparison of caliper tumor volume measurements with CT-based tumor 

volume assessment and bioluminescence readouts. 

A) Scatter plot of manual caliper tumor volume measurements with tumor volumes assessed from CT 

data sets, demonstrated a good correlation of both modalities (R2=0.7821). B) Scatter plot of manual 

caliper tumor volume measurements with BLI total flux measurements showed no correlation of both 

measurement types (R2=0.1069). C) Scatter plot of manual caliper tumor volume measurements with 

BLI tumor area measurements showed a weak correlation (R2=0.4402). 
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In summary, RT performed by microCT can significantly impede the growth of pH8N8-BLI 

breast tumors. However, no significant increase in therapy efficacy was achieved with the 

application of BaNPs. A reduction of the x-ray dose in the NP RAD LD group resulted in a 

weaker therapy effect in comparison to a higher dose in the HD therapy groups. The CT based 

tumor volume measurements confirmed the findings of the manual caliper measurements. The 

implementation of an analysis software eased the identification of trends as well as the 

normalization of the different data sets. The additional implementation of bioluminescence 

measurements also revealed significant differences between the NP CTRL group and the 

irradiated groups, but no direct correlation between tumor volume and BLI signal was found.   
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4.9 Biodistribution of functionalized BaNPs after i.v. application 

In the presented irradiation experiments the BaNPs were injected directly into the tumor to 

ensure a sufficient enrichment of BaNPs inside the tumor. Since an intratumoral injection would 

probably not be translatable into a patient application, another goal of this work was to analyze 

the accumulation of i.v. injected functionalized BaNPs in the tumor and other organs. For this 

purpose, the BaNPs were functionalized with an antibody against the membrane protein 

EpCAM and the specific binding of this construct to the pH8N8 cells was validated in vitro. To 

evaluate the biodistribution of systemically administered functionalized BaNPs, two tumor 

bearing mice were i.v. injected with 100 uL Ba120-EpCam-A594 NPs. The mice were scanned 

with the QuantumFX in vivo microCT directly after injection, as well as 1, 4, 7 and 24 h later. 

A scan protocol using 90 kV tube voltage, 200 µA tube current, a FOV of 40x40 mm2 and a 

scan time of 4.5 min was utilized. No visual contrast enhancement was found in the tumor (T) 

at any of the scan points, as demonstrated in virtual cross sections of a mouse over time (Figure 

33 A). However, the spleen (S) and liver (L) showed a strong uptake of the NPs within the first 

4 h and then a stable high CT contrast until the end of the experiment. Figure 33 B shows a 

maximum intensity projection of the data set taken 24 h after BaNP administration, confirming 

the absence of x-ray contrast in the tumor region. The average gray values of each organ 

(measured at three different slices) are displayed in Figure 33 C as a stacked bar graph. It is 

evident that the contrast within the tumor remains constant over time whereas the contrast in 

spleen and liver increases from 0-4 h and then remains unchanged until the end of the 

experiment. 
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Figure 33: Biodistribution of functionalized BaNPs after i.v. application.  

A) CT slices of the mouse abdomen 0, 1, 4, 7 and 24 h after i.v. administration of 100 µl Ba120-EpCam-

A594 show virtually no contrast enhancement in the tumor region, while the x-ray contrast in the liver 

and spleen is enhanced.  B) Maximum intensity projection of the CT data set acquired 24 h after Ba120-

EpCam-A594 administration confirms no contrast enhancement in the entire tumor (T), while Spleen 

(S) and liver (L) regions show drastic contrast enhancement. C) Cumulative bar chart of the measured 

CT gray values in the indicated regions over time. No contrast enhancement was found in the tumor.    

 

In summary, the developed RT setup enabled to successfully shield non-targeted regions of the 

animals, as proven by TLD dose measurements. Intratumoral administration of BaNPs resulted 

in an inhomogeneous but stable enrichment of BaNPs in the tumors. All in vivo irradiation 

experiments showed that RT in tumor bearing mice is possible using a conventional in vivo 

microCT. When an optimized treatment plan was used side effects of the therapy were 

minimized. Despite all efforts, no evidence of an increased effect of RT in the presence of 

BaNPs was found. Bioluminescent tumor cells provide additional readouts for the therapy 

success, but the direct effect of irradiation on the bioluminescence properties of the tumor cells 

need to be further evaluated. The biodistribution analysis of i.v. administered functionalized 

BaNPs showed no accumulation of NPs in the tumor.     
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4.10 Validation that tumor contrast enhancement is only caused 

by the BaNPs 

Since breast tumors are known to develop calcifications, which would cause a contrast 

enhancement in x-ray imaging, I needed to validate, that the contrast enhancement observed 

during the RT experiments was solely caused by the BaNPs. X-ray fluorescence imaging (XRF) 

is a method which can specifically detect and quantify the concentration and distribution of 

certain elements. Since barium is not present in soft tissues under natural conditions, the BaNPs 

were the only possible source of barium detectable in the tumors. XRF is a method in which 

typically a tissue section is raster scanned by a focused x-ray beam. Material is excited and 

responds with emitting fluorescence photons at specific wavelengths, which are detected. In 

combination with the known spectrum of the x-ray source, this information is element specific 

and can be used to produce concentration maps especially for lighter elements that are difficult 

to quantify by other techniques. Thus, XRF was performed in collaboration with Marius 

Reichardt, X-ray Physics Department, University of Goettingen, using A594 cell induced 

subcutaneous tumor samples intratumorally injected with BaNPs, as illustrated in Figure 34.  

Figure 34 A shows a 3D rendering of the in vivo CT data set of the particular tumor, 

demonstrating high contrast areas in the tumor. Low contrast areas are shown in gray, while 

high contrast areas are pseudo-colored in yellow-red. Following autopsy of the mouse, the 

tumor was embedded in paraffin, the surface of the paraffin block was cut until the tumor was 

clearly visible and scanned again by CT to provide a 3D reference for subsequent analysis. 

Figure 34 B shows the reconstructed CT slice which represents the surface of the cut paraffin 

block. The tumor margins were barely visible, due to the embedding and are outlined by the 

dashed line. The center of the tumor shows structures with very high contrast. Figure 34 C 

shows the complementary XRF scan of the surface of the paraffin block. The barium 

concentration in arbitrary units is shown color coded. We found high barium concentrations in 

XRF at the same position as the high contrast areas in the CT image, proving that the BaNPs 

are causing the contrast enhancement inside the tumors.    
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Figure 34: XRF measurement to validate Ba dependent x-ray contrast.  

A) 3D rendering of a subcutaneous A549 lung tumor in vivo. High contrast areas are pseudo-colored 

in yellow/red. B) microCT dataset of the same tumor after fixation and paraffin embedding. C) XRF 

map for barium of the surface of the paraffin block shown in B). XRF is pseudo-colored using a color 

gradient from blue (low barium concentration) to red (high barium concentration). 

 

4.11 K-edge subtraction imaging to further improve contrast 

enhanced tumor imaging  

The BaNPs design aimed to achieve two goals: I) Enhancement of RT and II) Improvement of 

tumor contrast for CT imaging. However, the systemic application of BaNPs did not show a 

contrast enhancement in the tumors in classical in vivo microCT. Therefore, methods that can 

improve the sensitivity and specificity for barium imaging are of great interest. K-edge 

subtraction imaging (KES) is one such method and was employed here to improve contrast 

enhance tumor imaging. Tumor bearing mice were intratumorally injected with BaNPs (30 µl 

BaNP-120), the animals were sacrificed, and the tumors explanted and embedded in paraffin 

blocks. The samples were scanned at the ID17 beamline at the European Synchrotron Radiation 

Facility (ESRF). An exemplary KES image of a BaNP injected tumor is given in Figure 35 A. 

Since the x-ray contrast is barium specific the tumor itself is not visible. Figure 35 B shows the 

segmented barium-positive area of the same image. Due to the high specificity, an automatic 

segmentation can be easily facilitated. Disadvantages of this approach are the need for 

monochromatic light, x-rays of a specific energy, which can only be produced by synchrotron 

light sources with reasonable x-ray flux. In addition, two acquisitions at different energies for 

each sample are required.  
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Figure 35: KES imaging of BaNP injected pH8N8 mouse breast tumors. 

 A) SRµCT of a breast tumor that was intratumorally injected with BaNPs. B) Segmentation of Ba 

containing areas. The considered gray value threshold was chosen as 5𝜎, where 𝜎 is the standard 

deviation of the gray levels in the background (scale bar = 2 mm). 

 

To circumvent these disadvantages, I followed a different route using a detector prototype 

(PIXIRAD Pixie-III), which allows acquiring simultaneous images at two different energy 

ranges, which leaves half the flux for each channel. Thus, the technique can also be used with 

classical x-ray tubes employed in clinical CT systems. The application of this technique on a 

BaNP-120 containing pH8N8 mouse breast tumor embedded in paraffin is demonstrated in 

Figure 36. In Figure 36 A a slice from the reconstructed low energy channel (cut off at 36.5 

keV) is shown, depicting a faint contrast of the NPs (note that since the tumor tissue has not 

received additional staining it is invisible in the scan). Figure 36 B shows the reconstructed 

high-energy bin, which shows an improved contrast of the NPs. Figure 36 C shows the 

subtraction of the two channels. Figure 36 D-F shows 3D renderings of the data sets from A-C. 

Using KES only the BaNPs are visible and the contrast to noise ratio is improved.         

These results were published 2020 in Physics in Medicine & Biology112. 

 



Results  83 

 

 

Figure 36: KES SRµCT for improved imaging of BaNPs.  

A) low energy CT slice (36.5 KeV). B) high energy CT slice (38.5 KeV). C) subtraction image removing 

the paraffin and the soft tissue. D) E) F) 3D renderings of the datasets shown in A) B) C) showing a 

clear improvement in the segmentation of the BaNPs. 
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4.12 Combined X-ray based virtual histology and classical 

histology to evaluate NP localization in the tumor tissue 

The in vivo NP-based RT experiments showed vastly different results than those performed in 

vitro, with a strong BaNP dependent enhancement of RT in the cell culture but no significant 

difference between RT with and without NPs found in animal tests. This discrepancy between 

the in vitro and in vivo results suggested that the effect of the NPs is limited to tumor cells in 

close proximity of the BaNPs. It was therefore important to evaluate the exact BaNP location 

in the tumor tissue. However, we found that the NPs were not visible in classical light 

microscopy due to their small size of 120 nm. A histological evaluation of the NP localization 

in irradiated tumors was therefore difficult to achieve. On the other hand, the high CT contrast 

that the NPs provide, comes as a welcome aid to localize them in the tumor environment by 

using microCT. A further goal of my thesis was therefore the approach to combine both 

methods, microCT and (immuno-) histochemistry, to precisely identify the BaNPs in their local 

tissue environment. Previous studies of our group already established microCT imaging as a 

supplemental technique to histology and immunohistochemistry92,94. However, for the current 

question of localizing NPs to specific tissue structures or cells, a precise match between 

histology and microCT data needed to be achieved. Since histology requires sectioning of the 

tissue specimen it introduces deformations as demonstrated in Albers et al94, which need to be 

corrected. In addition, typical soft tissue microCT acquisition enforces heavy metal based 

staining protocols to boost the contrast. In the context of localizing NPs such an approach would 

potentially obscure NP locations.   

Thus, we developed an elastic registration workflow between label free phase contrast microCT 

imaging and histology, which was recently accepted for publication in Scientific Reports113.  

For the 3D analysis of pH8N8 breast tumors, the explanted and paraffin embedded tumors were 

scanned at the SYRMEP beamline of the Italian synchrotron ELETTRA using the phase 

contrast white beam setup. These data sets are referred to as SRµCT (synchrotron radiation 

microCT). Subsequently, the samples were cut with a microtome and histological staining as 

well as IHC was performed. To combine both modalities the developed elastic image 

registration workflow was used as shown in Figure 37. The workflow is embedded into a 

software called “Fuxlastix”, which is publicly available under 

https://github.com/xPITcoding/Fuxlastix. In the first step the virtual plane in the CT data set, 

which resembles the histological cut section needs to be found and saved as a 2D image. The 

histological section is recored in tiles with a microscope. These tiles are then automatically 

https://github.com/xPITcoding/Fuxlastix
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stitched to resemble the entire tumor cross-section. The CT slice (“fixed image”), the histology 

image (“moving image”) as well as a script file with the general image registration settings 

(“Elastix parameters”) are used as input information for the software. Since the software was 

designed as a general tool for 2D image fusion also color images are supported as both the fixed 

and moving image. In that case the images are split into color channels and the calculation of 

the registration is based on one of the color channels but is later on applied to the color images. 

The calculation of the image registration is performed by an embedded tool called elastix. Since 

elastix has been found to be incompatible with large images, the images are downscaled by a 

factor of 10. After elastix is successfully performed, the resulting b-spline deformation grid is 

then upscaled to match the original resolution of the images. Finally, a second embedded tool 

called transformix is applied on each color channel separately. The resulting deformed image 

is shown in Figure 37 (two bottom images). The blue border (Figure 37, bottom left) indicates 

the degree of deformation calculated by the registration pipeline. The checkerboard view 

demonstrates the precision of the registration (Figure 37, bottom right). 
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Figure 37: Image transformation pipeline using the Fuxlastix frontend. 

The fixed image (non-transformed CT image, top left), the moving image (histology image to be 

transformed, top right) and the elastix parameter file are chosen manually in the user interface (GUI) 

of the software. If color images are selected, the user needs to decide manually which color channel 

should be used for the matching process. In addition, there is a choice to select the average of the color 

channels as a grey value image and/or to invert the image. The images are downscaled by a factor of 

10 and the elastix software is called, which outputs the transformix parameter file, which in turn is 

modified for the use on the original moving image. Each channel is transformed individually and 

subsequently merged to receive the final transformed moving image (bottom row, left image). The 

overlay of the fixed and the transformed overlay can be visualized using a checkerboard pattern (bottom 

row, right image).   
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In addition to the 2D overlaid images shown above the co-registration of the histology with 

virtual slice in SRµCT data at a known location allows to insert the histology information into 

the 3D context of the SRµCT data set as demonstrated in Figure 38. A 3D rendering of a SRµCT 

data set of an explanted and paraffin embedded pH8N8 breast tumor is shown. A registered HE 

stained histological image is embedded into the 3D scene at the correct location (red color). In 

addition, access to the quantification of 3D features - like the volumes of the vacuoles 

(“segmented blobs”) rendered in green is now accessible. BaNP-positive areas are pseudo-

colored in yellow and are easily visible in the 3D SRµCT data set. A precise co-localization of 

the BaNPs is described in the following chapters. 

 

 

Figure 38: Capabilities of CT-based 3D virtual histology. 

3D rendered mouse breast tumor, virtually cut at the position of the matching HE histological section. 

Barium NPs are depicted in yellow. Necrotic "blobs" inside the tumor are shown in green. The "blobs" 

were segmented using a region growing algorithm, embedded in VG StudioMAX. 
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In order to validate the functionality of the image co-registration approach, different staining 

protocols were applied on consecutive histological sections. Since every histological slice may 

display different degrees of non-uniform deformation, a direct overlay provides limited 

information. To correct for various degrees of deformation between the different histological 

slices, I used an unaltered CT data set as a fixed image template.  Figure 39 A shows a slice of 

the SRµCT data slice which was registered to the MTS histology which is shown in Figure 

39 B. MTS staining was applied to depict collagen fibers in blue. Figure 39 E shows a 

magnification and explicitly demonstrates the continuity of the structures achieved by the 

registration. Specific structures like the blood vessel were identified through histology and 

confirmed by tracking the vessel throughout the 3D CT data set. Figure 39 C and D show 

specific IHC stainings for the macrophage and monocyte marker CD68 and for the SV40 

T-Antigen (T-Ag), used as specific tumor marker in the WAP-T tumor mouse model, matched 

to their corresponding virtual slice. CD68 and T-antigen positive cells are depicted in red. 

Detailed views of the localization of IHC positive stained cells are visualized by a checkerboard 

view for the anti-CD68 IHC (Figure 39 F) and an alpha blending overlay of the segmented 

T-Ag positive tumor cells (Figure 39 G). These findings demonstrate that the proposed 

workflow was successfully applied for co-registration of SRµCT and histology/IHC data 

independently of the staining type. In addition, individual corrections of non-uniform 

deformations for every histological slice allow for effective comparison of the different staining 

techniques by removing the deformation-based variability between the different serial sections. 

This approach enables the selective comparison of cells and structures within specific regions 

in the different sections, which would not be possible without the co-registration. 

  



Results  89 

 

 

 

Figure 39: Matching of SRµCT data with different histological staining obtained from BaNPs 

injected mouse breast cancer tissues 

A) SRµCT virtual histology at the plane corresponding to the MTS histology shown in B. B) MTS 

histology. C) Anti-CD68 immunohistochemistry. D) Anti-T-Ag immunohistochemistry. E) Comparison 

of MTS staining with the corresponding CT slice of a magnified region as indicated by the black box in 

B). Gray values are inverted. F) Checkerboard comparison of anti-CD68-IHC staining with the 

corresponding CT slice of a magnified region as indicated by the black box in C). Gray values are 

inverted. G) Overlay of segmented T-Ag positive tumor cells with the corresponding CT slice of a 

magnified region as indicated by the black box in D). 

 

After validating that the image registration can be successfully applied to different staining 

methods, I used the workflow to localize the BaNPs in their local tumor environment. In Figure 

40 this process is exemplary shown for two tumors that showed an intertumoral enrichment of 

NPs (first row) and a concentration of the particles in the capsule (2nd row). Figure 40 A shows 

the SRµCT slice. The BaNPs show a strong contrast enhancement (white). Figure 40 B shows 

an MTS slice, corrected for deformations during the cutting process as indicated by the 

inhomogeneous boundary regions colored in blue. Figure 40 C shows the same histological 

slice with the overlaid and segmented BaNPs. The BaNPs were segmented by using a simple 

thresholding method using Otsu’s method implemented in ImageJ. The BaNPs are shown in a 

yellow pseudo-color, enabling to depict the position of NPs within the tumor.  

In the tumor shown here, BaNPs are concentrated in the periphery of necrotic regions, which 

are characterized by the lack of red staining in MTS. As indicated in the close-up image (Figure 

40 D), the registration approach allows to analyses the local environment of small clusters of 

particles. Since the BaNPs were designed for contrast enhanced radiation therapy, I assume that 

the visible necrotic regions were most likely formed due to the increased local radiation damage 

caused by the BaNPs. 
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The co-registration shown in Figure 40 E depicts another example of a breast tumor where the 

BaNPs can be allocated only to the tumor capsule, indicating a different pattern of NP 

distribution after intratumoral injection. Figure 40 F illustrates the corresponding anti-CD68 

stained IHC slice after the registration was performed. Furthermore, the fusion with an anti-

CD68 IHC stained slice (Figure 40 G) demonstrates that the localization of the NPs coincides 

with regions of CD68-positive cells, indicative of macrophages that have phagocyted the 

BaNPs. Figure 40 H shows a magnified detail view of Figure 40 G clearly depicting a co-

localization of the BaNPs and phagocytic cells. 

These examples neatly demonstrate how the information achieved by classical histology can be 

supplemented by means of registration with high resolution CT. 

 

 

Figure 40: Matching of SRµCT datasets with classical histology allows precise localization of BaNPs 

in histological slices. 

A) SRµCT of a mouse breast tumor. Injected BaNPs can be easily localized within the tumor tissue, due 

to their high CT contrast. B) Registered MTS-stained histological slice of the tumor in A). Deformation 

is indicated by the light blue border. C) Image fusion of the MTS staining shown in B) with the segmented 

BaNPs from A). BaNPs were segmented using a threshold-based approach. D) Magnification of the 

region indicated by the black box in C). E) SRµCT slice of a second mouse breast tumor. BaNPs are 

localized in the tumor capsule and in the adjacent fatty tissue. F) Registered anti-CD68 IHC slice of the 

tumor in E). G) Image fusion of the anti-CD68 IHC image in F) with segmented BaNPs from E). BaNPS 

are located at the same site as CD68 positive cells indicating an uptake of the BaNPs by these phagocytic 

cells. H) Magnification of the region indicated by the black box in G). 
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In summary, I was able to place the location of the NPs into the pathological context of the 

local tumor environment by using the novel virtual histology workflow. Since BaNPs were 

found in the periphery of necrotic tumor areas, I hypothesize, that this might be an effect of the 

combination of BaNPs and RT. However, I could not conclusively answer the question on how 

far the RT effect of the BaNPs extends into the local environment.  

 

4.13 Quantitative histological analysis of irradiated breast 

tumors 

The analysis of tumor volumes measured in the different RT experiments demonstrated no 

significant differences in tumor volumes between RT with and without BaNPs. The 

subsequently performed histological analysis revealed strong differences in the internal 

structure of the tumors. Some of them contained large necrotic areas, others did not. Since 

necrosis is typically caused by an insufficient blood supply it can either be a consequence of a 

rapid tumor growth or a response to the therapy. An analysis of this effect is complicated by 

the fact that the degree of necrosis is volume dependent and because the necrotic area is 

irregular in its shape and thus difficult to assess. I therefore developed an additional software 

that allows to segment and quantify specifically stained regions within the histological sections 

of the mouse breast tumors. Figure 41 shows the workflow of the software. Stitched microscopy 

images of whole tumor slices are imported and downscaled. A scaling factor can be chosen 

individually, but a value of 0.5 was used for the images shown here. Subsequently, the 

background and smaller tissue structures, such as debris or disconnected parts, are removed 

using a modified region growing algorithm. The remaining area can then be considered as the 

tumor area. To segment specifically stained regions, a simple color channel threshold/range 

approach was used. The user selects a specific range (between 0-255) in each color channel and 

every pixel that fulfills these criteria is segmented. Since the necrotic areas cannot always be 

separated from healthy areas only based on their color, an additional homogeneity criterion is 

used, based on the fact that necrotic areas usually appear to be more “chaotic” and therefore 

less homogeneous. The software computes the standard deviation in a square of 10 by 10 pixels 

around the pixel of choice. A high standard deviation was used additionally to the color ranges 

to identify necrotic regions. For HE staining, the area of vital tumor cells and necrotic areas 

were segmented. For IHC, the positively strained regions were segmented. For the identification 

of blue stained fibers in MTS staining a different approach was chosen. The image is split into 

its color channels and the red channel is subtracted from the blue channel. The resulting image 
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mainly depicts the blue regions, while depressing red and violet regions. A separate threshold 

is then used on the result for simple segmentation. The software creates a labeled image with 

the whole tumor depicted in black and the segmented areas shown in a solid color of choice. In 

addition, the “tumor area”, “segmented area” and their ratio are exported for further analysis. 

 

 

Figure 41: Flowchart of the histology segmentation and analysis software. 
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Figure 42 shows the outcome of the software analysis for one exemplary tumor and three 

different stainings. A stitched microscopical image of a HE stained tumor section, which was 

used as input for the software is illustrated Figure 42 A. Figure 42 B demonstrates the slice after 

successful segmentation of the tumor area. The labeled tumor regions representing healthy 

tumor cells are depicted in red, while necrotic areas are shown in green (Figure 42 C). Figure 

42 D-F shows the outcome for an MTS stained slice. The blue fiber regions are depicted in blue 

(Figure 42 F), while the tumor area is shown in black. Figure 42 G-I shows the outcome for an 

anti T-Ag IHC stained slice. Figure 42 I depicts the segmented IHC-positive regions in pink 

and the whole tumor area in black. 

 

 

Figure 42: Representative images from the histology analysis software for one exemplary tumor. 

A) HE stained input image. B) Segmented tumor area of the HE stained image. C) Labeled tissue 

regions. Tumor cells are depicted in red, necrotic regions are shown in green. D) MTS stained input 

image. E)  Segmented tumor area of the MTS stained image. F) Fiber regions in the MTS stained image 

are labeled in blue. G) Anti-T-Ag IHC input image. H) Segmented tumor area of the anti-T-Ag IHC 

stained image. I) T-Ag positive regions in the anti-T-Ag IHC stained image are labeled in pink. Insets 

are magnifications of selected red ROI boxes.  
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Figure 43 shows the results of the proposed histological analysis pipeline applied on pH8N8-

BLI tumor sections. The segmented fiber content of the tumors relative to the area of the tumor 

is represented in Figure 43 A. The tumors of the NP CTRL group had a lower relative fiber 

content than the irradiated groups. Since the fibers are mainly located in the tumor capsule, the 

displayed results are rather a consequence of the different tumor sizes than the internal tumor 

composition. Figure 43 B shows the relative CD68 positive area in the analyzed tumor sections. 

On average the NP CTRL group displayed the lowest ratio of 1-2% CD68-positive area, while 

irradiated tumors should values up to 15% CD68-positive area.  Figure 43 C shows the relative 

T-Ag positive area in the analyzed tumor sections. All groups show comparable values in the 

range of 1-8% T-Ag positive area except for one outlier in the RAD HD group (17% T-Ag 

positive area).  

 

Figure 43: Quantitative analysis of microscopic images of whole tumor microscopical images.  

Tumor sections of pH8N8-BLI tumors were quantitatively analyzed using the proposed software. Values 

are depicted for the following groups: NP CTRL (BaNPs, no irradiation), RAD (no BaNPs, high dose 

irradiation), NP RAD HD (BaNPs, high dose irradiation) and NP RAD LD (BaNPs, low dose 

irradiation). A) Quantification of blue fiber content in MTS stained tumor slices. B) Quantification of 

CD68 positive areas in anti-CD68 IHC slices. C) Quantification of T-Ag positive area in anti-T-Ag IHC 

slices. 
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Figure 44 shows the quantification of the tumor cell and necrotic portions in the tumors. Two 

to three separate HE stained slices per tumor were analyzed. To be able to make a statement 

about the whole tumor, under the assumption that the analyzed slices were representative, the 

results were multiplied with the tumor volume, which was measured before tumor explantation. 

Therefore, Figure 44 A shows the estimated volume of living tumor cells.  Both HD therapy 

groups show significantly lower values around 200 mm3 in comparison to the NP CTRL group, 

which had volumes of 400-650 mm3. But no difference between the RAD HD and NP RAD 

HD group was detected. Figure 44 B illustrates the estimated necrotic volume of the tumors. 

The NP CTRL group shows significantly higher amount of necrosis (500-900 mm3) in 

comparison to the HD treatment groups. The HD tumors showed very small necrotic regions of 

less than 100 mm3, while the LD tumors had necrotic volume of 200-400 mm3. When both 

graphs are compared, it becomes apparent, that the differences are bigger in the necrotic 

volumes than in the volumes of living tumor cells. The hypothesis that the use of BaNPs causes 

an increased formation of necrotic areas was completely refuted by these results. The main 

cause of the formation of necrotic areas is an increased tumor volume. The irradiation therapy, 

with or without BaNPs, is able to keep the tumor volumes low and can therefore effectively 

prevent necrosis formation. Nevertheless, these findings confirm that an irradiation in an in 

vivo microCT is effective.   

 

 

 



Results  96 

 

 

Figure 44: Quantification of healthy tumor cells and necrotic area on images of HE stained whole 

pH8N8-BLI breast tumor sections. 

HE stained tumor sections of pH8N8-BLI tumors were quantitatively analyzed using the proposed 

software. Values are depicted for the following groups: NP CTRL (BaNPs, no irradiation), RAD (no 

BaNPs, high dose irradiation), NP RAD HD (BaNPs, high dose irradiation) and NP RAD LD (BaNPs, 

low dose irradiation). A) Volume of living tumor cells compared for different treatment groups shows a 

significant decrease in the amount of living tumor cell after high dose irradiation treatment. B) Volume 

of necrotic regions compared for different treatment groups shows a significant reduction in necrotic 

regions after high dose irradiation treatment. 
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5 Discussion: 

The aim of this thesis was to evaluate if RT in combination with BaNPs as RT enhancers can 

be an effective treatment option for TNBC. For this purpose, BaNPs were characterized for 

their toxicity and their capability to enhance irradiation effects in vitro. To provide evidence 

that such a therapy could be performed in patients, a proof of concept study using a preclinical 

mouse model for TNBC were conducted.  

In the thesis presented here, I evaluated the possibilities of NP-enhanced low energy RT in a 

mouse model for TNBC. Characterization of BaNPs revealed that, independent of their 

diameter in a range from 120-220 nm, no toxic effects on the viability of cells and a high x-ray 

attenuation. BaNPs displayed a significant enhancement of the irradiation effect as evaluated 

as measured by capability of the tumor cells to form colonies by utilizing a novel analysis 

scheme for CFAs. Prior to in vivo RT experiments, the functionality of a self-made irradiation 

setup in a state-of-the-art in vivo microCT system was validated. Different x-ray dose 

measurements showed that the dose of 1.3 Gy per 2 min irradiation, is high enough for an 

efficient therapy and healthy tissue can be successfully shielded. RT experiments showed that 

low energy irradiation plans can successfully stop tumor growth and are well tolerated by the 

animals when an optimized treatment schedule, utilizing more therapy sessions with a lowered 

dose per session, is used. Successfully integrated BLI measurements into the RT provided 

additional readouts of average tumor bioluminescence intensity and projected bioluminescent 

tumor area. In contrast to the in vitro results, RT in tumor mouse models showed no benefit of 

applying BaNPs intratumorally. KES imaging as well as XRF further characterized the 

inhomogeneous distribution of BaNPs inside the explanted tumors. To gain more insight on the 

local effects of the BaNPs, I developed a new multimodal analysis approach, which combines 

high resolution SRµCT with classical histology, enabling a precise co-localization the BaNPs 

in their local tumor environment. In addition, CD68-positive cells accumulate in close 

proximity of BaNPs. Histological analysis showed that necrosis inside the breast tumors is a 

size dependent effect, and not related to the presence of BaNPs.  
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5.1 Design and characterization of BaNPs as radiation therapy 

enhancers 

The suitability of the newly designed BaNPs for in vivo application was proven by cell viability 

assays, as no toxic effects on pH8N8 breast cancer cells, 3T3 fibroblasts and MH-S 

macrophages were observed in vitro. In addition, the BaNPs are characterized by a strong x-ray 

attenuation as evaluated by microCT analysis and by the ability to enhance the reduced low 

energy x-ray irradiation effect on pH8N8 murine breast cancer cells as well as human A549 

lung cancer cells to form colonies in vitro. The NPs, which were designed to be used in this 

study had two purposes. On one hand they should improve tumor detection and imaging and on 

the other hand they should function as a radiation therapy (RT) enhancer. To function as a 

contrast agent, the physical properties of the NPs had to be compatible with standard CT 

devices. In addition, (pre-) clinical contrast agents must not be toxic and should not accumulate 

in non-targeted tissues or organs. Excretion of the contrast agent also must be considered. The 

BaNPs used in my work exhibited a good CT contrast both in vitro as well as in vivo after intra 

tumoral application. This was expected as barium-sulphate is commonly used for radiographic 

examinations of the gastrointestinal tract and therefore its enhancement of x-ray contrast is well 

known114,115. In addition, BaNP containing contrast agents are commonly used in preclinical 

experiments116,117. To enhance RT effects, the NPs must absorb more radiation than the 

surrounding tissue itself and convert the radiation locally into secondary effects that damage 

the targeted tumor cells. Based on these requirements NPs with a barium core and 

hydrodynamic diameters between 120-300 nm were designed to be evaluated in this thesis. The 

BaNPs were coated with a polymer to reduce toxicity and to enable functionalization with 

antibodies. This was confirmed as, BaNPs did not have any significant negative on cell viability 

as measured by WST-assays and therefore are suited for an in vivo application. However, to 

my knowledge Barium containing NPs have not been tested as RT enhancers in preclinical 

applications previously. Other NP core elements than barium, have been proposed for radio 

enhancement. Gold NPs72,118, gadolinium NPs119, hafnium NPs120 or iron oxide NPs121 

displayed an enhancement effect of radiation treatment. The BaNPs used in this work showed 

a significant enhancement effect, since they did successfully inhibit the formation of colonies 

after in vitro irradiation. 
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5.2 Concept of using a CT for radiation therapy 

Low energy irradiation treatment with an in vivo microCT in breast cancer bearing mice 

resulted in tumor regression and significantly reduced tumor growth in comparison to untreated 

controls. The use of a preclinical in vivo microCT allowed the combination of tumor staging 

and volume measurement with the actual treatment. Upon optimizing the treatment plan to 

mimic the strategy which is used for breast cancer patients30, the side effects of the therapy, 

assessed by weight measurements of the animals, were reduced drastically in comparison to RT 

using a higher dose per session. This included the use of more irradiation sessions with a 

reduction in the single doses from 5.5 to 2.7 Gy per treatment and effective shielding of healthy 

regions of the mice. The fact that irradiation efficiently reduced tumor volumes, proved that the 

concept of RT in a CT device can be applied in a mouse model for TNBC.  

The concept of low energy RT in a CT device is not used in the clinic, since low energy 

irradiation will result in high dose deposition in healthy tissue, especially close to the surface 

of the patient. Standard RT, which has been used for the treatment of cancer for many 

decades122, uses energies in the MeV range, which are generated by LINACs. In this energy 

range, the x-ray absorption of the tissue is low and therefore skin and other healthy tissue 

located in the radiation path experience no or only minor damage. To reach a sufficient dose 

deposition within the tumor area, this region is irradiated from different angles resulting in 

overlapping radiation fields within the tumor (stereotactic RT)34,35. For this approach, a precise 

knowledge of the tumor margins is needed, which is usually provided by a preceding CT or 

MRI scan123,124. The repositioning of the patient from the diagnostic device to the LINAC can 

change the position of the tumor with respect to its detected location. Moreover, access to 

LINACs is still much more limited than to CT systems. In addition, RT is an unspecific 

treatment which is solely based on the assumption that radiation damage is more efficient in 

tumor cells than in normal cells, due to their impaired DNA repair mechanism125. Here I 

demonstrated successfully that low energy RT in breast cancer bearing mice is feasible. X-ray 

doses of 2.7 Gy per treatment were able to reverse the growth of pH8N8 breast tumors once the 

therapy effect took place. Therefore, a combined imaging and therapy approach in an in vivo 

microCT can be performed. However, based on the results of the here presented preclinical 

work using mice, the question if CT-based RT would be applicable in humans in the future, 

cannot be answered and needs further experiments. The main reason for limiting the radiation 

dose in patients (also for diagnostic purposes) is to minimize the prevalence of so-called 

stochastic effects, which describe the increase in cancer risk in the rest of the lifespan of the 
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patient126. Since the average mouse life span is about two years and the experiments were 

terminated weeks after RT onset, stochastic effects could not be evaluated.  

Therefore CT-based RT for a patient application needs to be modified to decrease the dose 

related side effects, including an increased cancer risk. One concept to achieve this goal, would 

be to locally enhance the dose effect, while simultaneously lowering the overall radiation dose. 

So-called RT enhancers were proposed for this purpose127. The concept of RT enhancers entails 

the increase of the dose deposition in the tumor and/or the generation of a secondary effect that 

leads to additional damage of the tumor cells. To achieve these characteristics, all enhancers 

contain strongly absorbing elements such as barium, which was used in this study. However, in 

the energy range that is used for clinical RT, these materials are essentially transparent. Thus, 

low energy RT in the range of keV has been proposed39–41, which provides better absorption of 

the enhancers, but at the same time leads to negative effects on the healthy tissue surrounding 

the tumor. Low energy RT itself is not a new concept and is used for intra-operative irradiation 

in the clinical practice128. If successful therapy concepts, combining RT enhancers with low 

energy irradiation, were to be developed, treatment and diagnostic scan could be performed in 

the same CT device. Due to the large availability of CT devices such an RT could be performed 

in any radiological practice and would immensely increase the capacities of RT. The basis for 

the translation of such a novel technique is the evidence that specific enhancers lead to 

substantially increased radio therapy efficiency,  allowing the application of lower dose levels 

- a prerequisite for sparing the healthy tissue from negative radiation effects as is the case for 

conventional RT.  

 

5.3 Comparison of in vitro and in vivo effectiveness of BaNPs as 

radio therapy enhancers 

The in vitro assessment of different BaNPs as radio enhancers and CT contrast agents revealed 

no toxic effect of the NPs but a strong increase in radiation damage, especially when irradiation 

was combined with BaNP-120, which were therefore chosen for the in-vivo studies. However, 

in all performed in-vivo studies with orthotopically implanted pH8N8 breast cancer cells and 

subcutaneously implanted A549 lung cancer cells, BaNP-120 failed to significantly reduce 

tumor volumes RT when compared to low energy RT without NPs.  

BaNPs which were added to the tumor cells prior to in vitro irradiation effectively enhanced 

the irradiation effect on the ability to from colonies. In this setting, the cells were irradiated in 
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micro reaction tubes, instead after plating them into cell culture well plates, to create an almost 

spherical shape, which was supposed to mimic the situation in a tumor in vivo. Therefore, in 

contrast to the in vivo situation, the BaNPs were in a direct vicinity to the cells. For the in vivo 

RT experiments the BaNPs were directly injected into the tumor to ensure that the BaNP 

concentration was as high as possible. While this approach hardly represents a clinical therapy 

approach, it is commonly used in preclinical experiments129,130
. Even though I tried to improve 

the distribution of BaNPs inside the tumor, the CT data sets, which were acquired during the 

RT sessions, reveal a stable but inhomogeneous distribution of the BaNPs inside the tumors. It 

can be speculated that this is a major factor why BaNPs did not successfully improve the 

treatment effect in comparison with irradiated control mice, which did not receive any BaNPs. 

In contrast, several groups have shown an increased RT effect of different NPs in tumor studies 

using mice. The first proof of concept using NPs as RT enhancers was demonstrated by 

Hainfeld et al. who used gold nanoparticles (AuNPs) activated by 250 keV x-rays131. They used 

tumors from subcutaneously implanted EMT-6 breast cancer cells. 1.9 nm sized AuNPs were 

intravenously injected and mice were irradiated once with a dose of 30 Gy. They found a one-

year survival of 86% for mice treated with gold and irradiation versus 20% with x-rays alone 

and 0% with gold alone. An approach which was more comparable to the work of this thesis 

was presented by Wang et al., who used intratumorally applied barium tungstate nanoparticles 

(BaWO4)
129. Due of the presence of tungsten, which is another heavy metal ion, the 

demonstrated effect cannot be solely based on barium. The authors used subcutaneously 

implanted 4T1 breast cancer cells in combination with an intra tumoral application of 50 µl 

PVP-BaWO4. While the NPs could not stop the tumor growth entirely, the combination of the 

NPs with a single 10 Gy irradiation significantly reduced the tumor growth in comparison with 

control mice which only received a PBS injection. CT-guided radiotherapy using AuNPs to 

enhance both CT image contrast and radiation effects in a tumor was studied by Al Zaki et 

al.132. The authors applied retroorbital injected gold-loaded polymeric micelles, which showed 

a significant increase for tumor CT contrast in comparison to the clinical contrast agent 

Aurovist, while significantly increasing the survival fraction after irradiation with 6 Gy at 

175 kVp in comparison with animals that did not receive any nanoparticles. 

In the here presented study the survival of the treated mice was not analyzed, because tumors 

were explanted and further examined. The therapy outcome was evaluated by comparing the 

changes in tumor volumes. Since the pH8N8 tumors showed a fibrous capsule formation, and 

various degrees of intra tumoral necrosis in treated and untreated mice, the tumor volume might 

not have been an optimal criterion to evaluate therapy success. Bioluminescent tumor cells in 
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combination with multiple ex-vivo analysis approaches did not reveal any positive effects of 

using BaNPs. While non-irradiated mice showed the expected correlation between the tumor 

volume and the BLI signal133, treated animals showed after an initial increase in the BLI 

intensity a decrease of the BLI signal, which did not correlate with simultaneously performed 

caliper-based tumor volume measurements. For the luciferase catalyzed reaction intracellular 

oxygen as well as adenosine triphosphate (ATP) are needed134. Since irradiation produces ROS 

inside the tumor cells there might be a direct interference of irradiation with the light reaction 

of the bioluminescent cells135. Therefore, my results indicate that BLI does not generate a 

reliable readout in combination with RT.   

In summary, despite all efforts to optimize the in vivo RT to enhance the effect of the BaNPs, 

no significant improvement of the therapy outcome was found, and the promising results of the 

in vitro experiments could not be replicated. The main differences between both studies were 

the BaNP concentration and distribution with respect to the tumor cells.  

 

5.4 Physical principles of NP enhanced radiation therapy 

To understand potential reasons why the RT enhancement effect of the BaNPs did not translate 

from a successful in vitro application into a preclinical setting using an orthotopical breast 

cancer model for TNBC, it is necessary to understand the physical limitations of the concept of 

using RT enhancers. Irradiation damage in cells is caused by multiple secondary effects. High 

energy photon radiation causes enhanced oxidative stress, direct DNA damage and interferes 

with the cell cycle63. The idea of using heavy metal NPs is too amplify these biological effects 

by the local emission of electrons. There are different physical mechanisms for electron 

emission. Low energy irradiation (keV range) mainly produces electrons via the so-called 

photoelectric effect, in which an electron is removed from the electron shell of an atom, due to 

the energy transfer of an incident photon. Auger electrons are produced by the filling of an 

inner-shell vacancy of an atom, which is accompanied by the emission of an electron68,136–138. 

High energy irradiation (MeV range), as produced by medical LINACs, mainly causes the so-

called Compton effect as well as electron pair production139. Therefore, maximization of 

electron production is the essential property of RT enhancers. The k-edge is the energy level 

where the strongest bound electron in the k-shell of the atom is emitted. At this energy the 

probability of x-ray absorption is very high. The k-edge and therefore the x-ray attenuation 

maximum of barium is at 37.4 keV, which resembles the average of the x-ray energy used in 

(pre-)clinical CT systems. Had this been the only criterion for a successful therapy, barium 
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would have been an ideal choice to be used as a RT enhancer in combination with a CT. 

However, next to the probability of electron emission the travelling distance of the electron is 

important to maximize biological effects. The kinetic energy of the electron determines its 

possible travelling distance and equals the energy of the incident x-ray photon minus the 

binding energy of the electron. Kuncic and Lacombe state an average travelling distance of the 

photoelectron in water of 200 µm for a kinetic energy of ~120 keV or 9 µm for a kinetic energy 

of ~20 keV64. In my case the average photon energy emitted by the microCT was around 40-45 

keV, leaving only 3-8 keV of kinetic energy for the photoelectron. Therefore, the probability 

of photoelectron emission was very high, but the emitted electrons had a very limited travelling 

distance. As a consequence, the different results of in vitro and in vivo experiments are 

plausible. Due to the combination of inhomogeneous distribution and limited effective range of 

the BaNPs the tumors could not be treated optimally. However, a sufficient increase in photon 

energy would reduce the x-ray attenuation of the BaNPs and therefore their contrast, which 

would interfere with the intended bimodality of the BaNPs. In addition, (pre-) clinical CT 

systems cannot produce high energy irradiation. In summary, this discussion shows that finding 

a good RT enhancer is a complex problem that depends on multiple factors.   

 

5.5 Tumor targeting and biodistribution of NPs 

To guarantee a maximum accumulation of NPs in the tumor as part of the first efficacy 

evaluation process, intra tumoral administration of the particles was performed to minimize the 

possibility that RT fails due to a lack of NPs in the tumor. MicroCT data sets revealed a certain 

accumulation of BaNPs in the tumor, the distribution of the NPs was very inhomogeneous and 

remained localized at the injection sites of the tumors. This lack of homogenous NP distribution 

may at least in part be an explanation for the unsuccessful increase in RT efficiency of the NPs. 

It also must be pointed out that an intra tumoral application would limit the clinical use of the 

NPs to superficial tumor entities such as skin cancer. A systemic administration, as is possible 

by i.v. injection, would therefore be more clinically relevant. 

A common method for increased targeting of i.v. injected NPs to the tumor is the 

functionalization with antibodies directed to tumor specific antigens. Fluorescent labeled 

EpCAM antibodies were found to bind to pH8N8 tumor cells as well as pH8N8 breast tumors 

as demonstrated by confocal microscopy. EpCAM is a membrane protein that is frequently 

overexpressed in breast tumors140. In contrast, no accumulation of EpCAM-antibody labeled 

BaNP-120 in the breast tumors was detected after i.v. administration measured by microCT 
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analysis. However, i.v. administered EpCAM-antibody labeled BaNP-120 strongly increased 

the x-ray contrast in liver and spleen. Targeting NPs to the tumor site has been a long endeavor 

of research by exploring different routes of administration and labeling NPs with tumor antigen-

specific antibodies141. However, most NP-based therapeutic strategies have either not made it 

into the clinic or have failed to significantly improve patient outcome142,143. This is most likely 

due to the inter-and intra-individual heterogeneity of tumors and to the complexity of tumor 

and immune response that has been underestimated. For instance, the Enhanced Permeability 

and Retention (EPR) effect, was widely believed to be a general and homogenous feature of 

most tumors, a phenomenon caused by leaky vessels by which NPs would predominantly 

accumulate in the tumor. It has now been recognized that the EPR effect is greatly influenced 

by a number of parameters, including the tumor microenvironment, vessel density and 

permeability and stroma composition144,145. A sufficient accumulation of NPs in the tumor after 

i.v. administration assumes a sufficient blood supply of the tumor and even then, typically only 

5% of the administered NPs reach the tumor site75. A possible reason could have been that the 

tumors in this study were insufficiently vascularized and that the antibody labeled NPs 

remained only in the vessels surrounding the tumor without reaching the inner part of the tumor. 

As reported in many other studies which used i.v. administered of NPs146–148, I detected a strong 

accumulation of the NPs in the liver and in the spleen. Within the timeframe of the experiment 

(24 h) no decay of NP derived x-ray contrast was detected in these organs. These findings are 

in agreement with other publications stating enhanced liver contrast even months after NP 

administration149. It has been shown by others, that NPs are taken up by macrophages and other 

phagocytic cells in liver and spleen150–152. While a liver or spleen accumulation of NPs is not 

problematic in preclinical research, due to the short lifespan of mice and because the animals 

are sacrificed after the experiments. Regarding a clinical translation, this aspect of NP-based 

therapies should be considered. A possibility for reliable elimination of NPs from the body is 

the generation of biodegradable particles. While the barium sulphate in the core of the used NPs 

is very inert, free barium ions act as a muscle poison, causing gastrointestinal, cardiac and 

skeletomuscular stimulation followed by paralysis153. Therefore, for BaNPs, degradability 

would not be a good approach as it might generate toxic debris. Thus, the NPs need to be inert 

and stable and will therefore most likely never leave the liver and spleen, which is supported 

by the fact that we never saw a reduction in the tumor contrast during the time span of our 

experiments. While an application of the current Ba120 NPs as RT enhancers seems unlikely 

in patients, the absence of any toxic effects and the strong contrast registered in CT, suggest 

that the Ba120 NPs could present an interesting contrast agent for preclinical CT studies. 
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5.6 Ex vivo analysis of BaNPs in their local tumor environment 

The fact that in vitro irradiation showed an increase in the irradiation effect in the presence of 

BaNPs, while intratumorally applied BaNPs did not improve the RT outcome, hints at a small 

effective radius of the BaNPs. This hypothesis is supported by the fact that the travelling 

distance emitted photo electrons is very short. Since the BaNPs were not detectable in classical 

light microscopy154, a novel co-registration tool for microCT and histology was developed to 

analyze the BaNPs in their local tumor environment. BaNPs were found to be inhomogeneously 

distributed and colocalized with CD68-positive phagocytic cells.  

For a precise co-localization of the BaNPs visualized by high resolution microCT and the 

corresponding local tumor environment, depicted in histological sections, a simple overlay of 

images from both modalities proved to be insufficient. This work among others revealed non-

uniform deformation occur during the cutting and staining of the histological slices155–157. 

Therefore, a novel workflow, which used elastic registration to perform image fusion of both 

modalities was developed. This software has already been applied for multiple other fusion 

purposes, such as overlapping electron microscopy and histology, subsequently performed 

histology with different stainings and CT and macroscopic imaging. As co-registration of 

images from multiple modalities is increasingly important to allow for multiparametric 

characterization of tissue and cell types, this tool is now available to be used in many more 

projects in the future. 

By utilizing this image registration tool, BaNPs were frequently found in the tumor capsule. 

This in combination with their limited effective radius, probably prevented a significant RT 

enhancement effect on the tumor cells themselves. In addition, BaNPs co-localized with tumor 

areas with an increased occurrence of macrophages and other phagocytic cells, as indicated by 

a CD68 positive IHC. This leads to the hypothesis of an increased macrophage infiltration into 

the tumors and their capsule. Therefore, the macrophages might have “shielded” the tumor from 

the therapy enhancement effect of the BaNPs. This hypothesis is supported by reports from the 

literature. Chiang et al. found an increase in CD68+ tumor associated macrophages (TAMs) in 

hypoxic regions of subcutaneously expressed murine astrocytoma after irradiation. Seifert et al. 

also state an increased TAM infiltration caused by RT158.  

Quantitative histological evaluation of whole tumor histological stainings revealed that the 

degree of necrosis is dependent on the tumor volume, rather than on the presence of BaNPs, as 

no difference in necrotic areas was found between irradiated tumors and irradiated tumors, 

which received BaNPs. This correlation was already reported in the literature before and can 
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be explained by the fact that the volume increase of the tumor is faster than the subsequent 

vascularization159,160. The application of RT slowed down or stopped the tumor volume increase 

and therefore prevented the formation of necrosis.  

 

5.7 Alternative strategies for using NPs to enhance RT effects 

The BaNPs used in this thesis were not able to efficiently reduce tumor growth kinetics in 

comparison to tumors which received only irradiation. The BaNPs were designed to locally 

enhance the x-ray dose effect in the tumors, by converting the incident low energy x-rays into 

photo electron emission. While this concept was confirmed to be beneficial in increasing 

irradiation effects on tumor cells in vitro, these findings were not translatable into tumor mouse 

models. Novel approaches using NPs and RT try to not only use the immediate physical 

properties of heavy metal NPs but use them to activate secondary (bio-)chemical effects to 

improve therapy outcome. One way to achieve this is to use NPs to decrease the radio resistance 

of the tumors161. The epidermal growth factor receptor (EGFR), which is commonly 

upregulated in TNBC162, would be an optimal target for this purpose, since EGFR upregulation 

is connected to increased radio resistance163. First in vitro studies using NP encapsulated oligo 

nucleotides have been performed164, which showed that these NPs were successful in 

downregulating EGFR expression. The idea of using NPs as carriers for drugs or small 

molecules is also a reoccurring theme in cancer research49. This concept relies on the fact, that 

the NPs accumulate in the tumor tissue due to functionalization and the EPR effect and can 

therefore release their active components in close vicinity to the targeted tumor165. In addition 

NPs which are locally “activated” by the biological properties of the tumor such as pH are 

evaluated166. These concepts are also pursued in combination with RT because the incident 

irradiation can be used as an activator of secondary effects. Zhang et al. used barium peroxide 

(BaO2) NPs which are modified with a glutamic acid tetrasodium salt on their surface to 

decrease cytotoxic effects under physiological conditions130. In tumor regions, the hydroxyl 

radicals generated by irradiation will break the chemical structure of the surface coating and 

therefore release the barium ions, which then act as cytotoxins. The authors report a significant 

reduction in tumor volume when RT and BaO2 NPs are combined in a 4T1 tumor xenograft 

model. Intra tumoral hypoxia is a key factor for radio resistance of cancer cells167,168. Another 

concept called thermoradiotherapy uses NPs to create local hyperthermia in the tumor and 

therefore leads to enhanced vascular perfusion and consequent reduced hypoxia169. AuNPs were 

proposed to be used for thermoradiotherapy170. Self and Thompson propose a concept which 



Conclusion  107 

 

includes antibodies that can be activated by light171. While visible light or UV-light has a limited 

penetration depth in biological tissues x-rays can easily penetrate soft tissue. Therefore, the use 

of NPs which can convert x-ray into lower energetic light could solve this issue and could 

locally activated i.v. administered antibodies or compounds at the tumor site.  

 

6 Conclusion  

In the presented thesis, I confirmed that low energy RT can successfully reduce tumor growth 

in a mouse model for TNBC. BaNPs enhanced the effect of irradiation on tumor cells in vitro 

but did not however improve the radiotherapeutic effect on tumor growth in vivo. Future studies 

aim at evaluating if BaNPs can be used to enhance classical high energy RT using linear 

accelerators. To achieve the proposed concept of NP enhanced RT using a CT system, the NPs 

should be redesigned to activate secondary effects. 
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