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“Der Chemiker, welcher Alles gelernt hat, was man in chemischen Vorlesungen lernen 

kann, hat es in der Chemie eben so weit gebracht, wie ein Schwimmer, welcher sich über 

die Kunst des Schwimmens mündlich hat unterrichten lassen, und zugleich andere hat 

schwimmen sehen, er kann darum noch nicht schwimmen. Beides will geübt sein.”[1] 

– Hermann Kolbe  
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1 INTRODUCTION 

Almost two centuries after Wöhler's fundamental work in organic synthesis,[2] the 

discipline has propelled to a central position in molecular assembly of various compounds 

with transformative applications to drug development, crop-protecting agents, energy 

storage or material sciences, among others. Despite significant advances, chemical 

synthesis continues to be inefficient and often large amounts of resources such as solvents, 

leaving groups and stoichiometric additives are consumed to achieve certain levels of 

molecular complexity. As a consequence, numerical concepts[3] and theoretical principles[4] 

such as the 12 Principles of Green Chemistry[4g] have been designed by chemists to provide 

practitioners in the field with guidelines to design overall more efficient and future oriented 

synthetic methods. 

1.1 Transition Metal-Catalyzed C–H Activation 

The past several decades have witnessed the development of more sustainable 

transformations with the aid of metal-catalyzed manifolds that have revolutionized the art 

of forming chemical bonds.[5] The importance of these methodologies was appreciated by 

a number of Nobel Prizes for Chemistry within the past few years, such as 2010 in 

recognition of palladium-catalyzed cross-coupling reactions to Heck, Negishi and Suzuki.[6] 

Furthermore, the use of catalytic reactions is often advantageous for economic reasons, 

since mild reaction conditions, increased throughput and overall reduced waste formation 

lead to cost savings.[7]   

Despite the tremendous influence of cross-coupling reactions for modern carbon–carbon 

(C–C) or carbon–heteroatom (C–Het) bond formations,[8] these approaches often fall short 

in addressing key green chemistry criteria,[4g] such as waste reduction, the minimization of 

pre-functionalization and the common requirement of precious metal catalyst (Scheme 1).[9] 

In sharp contrast, the direct activation of omnipresent C–H bonds has emerged as an 

increasingly powerful tool to minimize waste products and at the same time significantly 

improve the atom economy[10] of coupling reactions.[11] In addition, the direct formation 

of the desired bond avoids laborious pre-functionalization of the synthetic building blocks 
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and thus enables excellent levels of step economy.[12]  

Although isohypsic C–H activation obviates the 

manipulation of one substrate, additional reaction 

steps are required to synthesize the second 

preactivated coupling partner, such as organic 

(pseudo)halides.[13] In contrast, oxidative C–H/C–H or 

C–H/Het–H functionalizations are particularly 

desirable in terms of atom and step economy since 

they are devoid of additional pre-functionalization steps, and in theory, only hydrogen is 

formed as the byproduct.[9, 14] 

 

Scheme 1. Comparison of metal-catalyzed coupling reactions. 

However, twofold C–H activations or cross-

dehydrogenative couplings (CDC)[9, 14] inherently 

require stoichiometric amounts of often toxic and 

environmentally-harmful chemical oxidants and 

therefore result in poor levels of oxidant economy. 

Moreover, dehydrogenative coupling reactions frequently suffer from harsh reaction 

conditions, strongly limiting their application to the synthesis of complex organic 

molecules.  

Atom economy: maximizing 

the number of atoms of the raw 

materials that are incorporated 

in the desired product.[10]  

Step economy: reducing the 

number of reaction steps for 

efficient organic synthesis.[12]  

Oxidant economy: minimizing 

stoichiometric and non-

renewable oxidants to affect 

oxidative transformations.[9] 
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In comparison to classical cross-coupling reactions, the direct functionalization of 

omnipresent C–H bonds with similar bond dissociation energies[15] also features additional 

challenges in terms of site-selectivity control.[16] To discriminate among different C–H 

bonds, chemists employ different approaches (Scheme 2a). First, activated arenes or 

heterocycles, such as indoles, exhibit distinct pKa-values[17] of the C(sp2)–H bonds and 

consequently C–H metalation via proton-transfer proceeds at the kinetically most acidic  

C–H bond.[18] Likewise, sterically demanding groups lead to a steric bias of the adjacent 

C–H bonds and hence C–H activation will occur in the most accessible position.[19] Since 

these two approaches are inherently substrate dependent, their range of application in 

organic synthesis is rather limited. In contrast, the most common way to achieve site-

selective C–H metalation is the use of auxiliary groups that contain Lewis-basic 

heteroatoms which coordinate the metal complex and bring the catalytically active center 

in close proximity to a specific C–H bond (Scheme 2b). In recent years, the interest in 

chelation-assisted C–H activation has increased dramatically and notable efforts have been 

made to expand the approach to weakly coordinating,[20] removable[21] or transient[22] 

directing groups.  

 

Scheme 2. Site-selectivity control in C–H activation. 

Although there are different definitions describing C–H transformations,[23] C–H activation 

in this thesis refers to an organometallic reaction step and the involvement of a resulting 

C–Met bond, whereas C–H functionalization is used in a broader context and can involve 
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the abstraction of an electron or proton via outer-sphere/radical-type mechanism, thus 

creating radical intermediates before a new functional group is introduced.[24]  

One of the key challenges in developing novel C–H activations is to elucidate the 

underlying reaction mechanism. Over the past decades, different mechanistic pathways 

have been proposed for the key elementary step of the organometallic C–H activation event 

(Scheme 3).[23b, 25] In this context, oxidative addition was mainly described to occur for 

electron-rich late transition metals in low oxidation states, such as iridium(I) or rhodium(I) 

complexes (Scheme 3a).[26] In contrast, early transition metals of group 3 and 4 or actinides 

and lanthanides were prevalently reported to undergo isohypsic σ-bond metathesis (Scheme 

3b).[27] Often, the catalytically active complex features alkyl or hydride ligands. A closely 

related mechanistic scenario was mainly suggested for electrophilic late transition metals 

such as Pd2+, Pt2+ or Pt4+ (Scheme 3c).[28] Here, the metal acts as a Lewis acid and undergoes 

electrophilic attack with the C–H containing substrate.[29]  

 

Scheme 3. Established mechanistic pathways for organometallic C–H activation. 
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The concept was later extended by Periana and Goddard for internal electrophilic 

substitutions (IES) in where the deprotonation is facilitated by oxy-ligands in a concerted 

fashion.[30] Among these, a 1,2-addition was proposed for early transition metals or 

complexes which contain M=Y double bonds, with Y as π-donating ligands such as oxo, 

imido or alkylidines (Scheme 3d).[31] Within the last two decades, base-assisted C–H 

activation has received significant attention, which commonly proceeds via a five- or six-

membered transition state (Scheme 3e). Here, bifunctional basic ligands such as 

carbonates,[32] secondary phosphine oxides[33] or carboxylate facilitate the hydrogen 

abstraction.[23b, 34] Indeed, detailed mechanistic studies have unravelled manifold 

mechanistic pathways for base-assisted C–H metalation (Figure 1).[35] 

 

Figure 1. Proposed transition states for base-assisted C–H metalation. 

After pioneering theoretical studies by Sakaki on undirected benzene activation,[34b] 

detailed mechanistic work by Fagnou and Gorelsky have suggested that the C–H metalation 

proceeds via a simultaneous metalation and intramolecular deprotonation within a six-

membered transition state.[36] Hence, they have termed the pathway concerted metalation 

deprotonation (CMD).[37] Important experimental observations included typically a 

preference of electron-deficient arenes for palladium-catalyzed C–H arylations[38] and the 

presence of large kinetic isotope effects (KIEs).[39] Subsequently, MacGregor and Davies 

have proposed a related scenario but, based on theoretical calculations, explicitly postulated 

an agostic interaction between the metal center and the C–H bond and summarized their 

findings as ambiphilic metal-ligand activation (AMLA).[40] 

More recently, Ackermann has identified the pivotal role of bifunctional basic ligands 

within electrophilic substitution-type C–H activations. In contrast to CMD/AMLA, 

intermolecular competition reactions revealed a strong preference for electron-rich 

substrates and theoretical studies were suggestive of a six-membered transition state. Based 
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on their findings, the mechanistic pathway was termed base-assisted internal electrophilic 

substitution (BIES).[35, 41]  

In spite of major progress, C–H activations and foremost cross-dehydrogenative couplings 

are largely dominated by cost-intensive and toxic precious metal catalysts. In addition, due 

to their low abundance, their extraction represents a serious environmental impact.[42] Also, 

among poor levels of oxidant economy, oxidative couplings usually demand toxic, 

halogenated solvents, which contradicts the inherently green nature of C–H activations.  

Within recent years a remarkable progress has 

been made to address those limitations and to 

achieve ideal levels of resource economy in 

molecular syntheses.[9, 43] Notable efforts include 

the use of Earth-abundant catalyst,[23a, 44] the 

employment of biomass-derived solvents[45]  and 

alternative concepts for the catalyst reoxidation 

to avoid sacrificial oxidants (vide infra).  

 

Figure 2. Precious Metal versus Earth-abundant metal catalyst. Molar amount of 
transition metal per 100€.[46] 

 

Resource economy: minimizing the 

in the overall footprint of chemical 

transformations as to the complete 

life cycle analysis, including, but not 

being limited to the use of naturally 

abundant or renewable feedstocks, 

solvents, metal catalysts, energy, and 

redox reagents.[9, 43]  
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1.1 Cobalt-Catalyzed C–H Activation 

In the context of 3d base metal catalysts for molecular transformations, cobalt has 

received considerable attention, mainly due to its low cost compared to precious 4d and 5d 

elements (Figure 2) and its versatile reactivity in organometallic chemistry. Indeed, already 

in 1938 pioneering industrial applications for hydrocarbonylations of ethylene to yield 

propanal in the Fischer-Tropsch process were enabled with cobalt complexes 

[CoH(CO)4],[47] thus ensuring an important alternative for conventional oil-based fuels 

during World War II.[48] Shortly thereafter, in 1941 Kharasch and Fields observed the 

catalytic effect of cobalt(II) salts in homocoupling reactions of phenylmagnesium bromide 

toward the synthesis of biphenyls.[49] About seven years later, in 1948, Folkers and Smith 

successfully isolated vitamin B12 (cobalamin), which was found to be an important cofactor 

in biocatalytic processes, such as methylation or dehalogenation.[50] Furthermore, cobalt 

complexes have been identified as versatile catalysts for various transformations of π-bond 

containing substrates, such as alkene, alkyne, allene or aryne, as was exemplified for 

cycloaddition reactions,[51] the Nicholas reaction,[52] or the Pauson–Khand reaction.[53] In 

addition, cross-coupling reactions could be carried out with cobalt catalysts, providing a 

cost-efficient alternative to their more toxic noble metal counterparts.[54] In spite of the rich 

nature of cobalt-catalyzed organic transformations, C–H activation reactions under cobalt 

catalysis have been rarely reported in the last century, in particular compared to palladium-, 

rhodium- or ruthenium-catalyzed C–H transformations.[11] Nevertheless, since the report 

by Kharasch, some remarkable pioneering work has been performed in this context and 

extensive research, especially in the last decade, has made cobalt one of the most promising 

3d metals for C–H activation reactions. In this regard, cobalt-catalyzed C–H activations 

can be mainly divided into two concepts, namely, low-valent and high-valent cobalt 

catalysis, which will be discussed in the following sections. In addition, cobalt-catalyzed 

C–H activations have recently been extensively covered in numerous excellent review 

articles by Ackermann,[23a, 44c, 55] Chatani,[56] Cheng,[57] Matsunaga,[58] Niu and Song,[59] 

Ribas,[54b, 60] Yoshikai,[61] among others[62] and therefore, only selected examples will be 

discussed in more detail. 

1.1.1 Low-Valent Cobalt-Catalyzed C–H Activations 

Low-valent cobalt catalysis is characterized by simple cobalt(II) salts and 

stoichiometric reductants, such as Grignard-reagents, or by the use of well-defined 
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electron-rich cobalt(0) or cobalt(I) complexes. In this context, in 1955, Murahashi 

disclosed not only the first cobalt-catalyzed C–H activation, but also the first directing 

group-assisted C–H activations in general. In this pioneering work, isoindolinones 2 were 

synthesized from imines 1 under carbonylative cyclization with carbon monoxide as the 

coupling partner under relatively harsh reaction conditions (Scheme 4).[63] Soon thereafter, 

the scope of the reaction was extended to the transformation of azobenzenes 3.[64] The 

remarkable findings also served as an inspiration for other metal-catalyzed C–H activation 

reactions, such as for pioneering work on nickel-[65] or manganese-catalyzed C–H 

activations.[66] 

 

Scheme 4. Pioneering work for cobalt-catalyzed C–H activation. Carbonylative 
cyclization of a) imines 1 and b) azobenzenes 3.  

About 40 years later, Klein reported on the stoichiometric C–H cleavage of similar aryl 

substrates 3, albeit with the use of low-valent cobalt(I) phosphine complex 

[Co(CH3)(PMe3)4] (Scheme 5).[67] The key C–H cobaltation was reported to occur via 

oxidative addition with the C–H bond and concomitant loss of methane, thus furnishing 

cyclocobaltated complex 5. The concept proved to be viable for a broad range of Lewis-

basic directing groups, such as ketones,[68] phosphines[69] or pyridine.[70] Furthermore, 

methane elimination was found to be an essential part of the catalysis since no 

cyclometalated complexes were observed when using [Co(C2H4)(Ph3)3] as the precatalyst.   
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Scheme 5. Low-valent stoichiometric cyclometalation with [Co(CH3)(PMe3)4]. 

Almost at the same time, in 1994, a seminal report on cobalt-catalyzed hydroarylations of 

azobenzenes 3 with diphenylacetylene (6a) was reported by Kisch (Scheme 6).[71] Notably, 

no further additives were required to perform the catalysis under relatively mild conditions 

with overall good levels of efficiency. The key to obtain a catalytic turnover[72] was found 

to be the employment of the well-defined cobalt(I) hydride complexes [CoH(N2)(PPh3)3] 

or [CoH(N2)(PPh3)3]. The authors proposed that the active catalytic species was formed in-

situ after the loss off either H2 or N2, respectively, followed by coordination of azobenzene 

3 and subsequent oxidative C–H activation to yield a dihydrido cobalt(III) complex. 

Insertion of the alkyne 6a into one of the Co–H bonds and final reductive elimination 

resulted the desired product 7 and the active cobalt(I) species. Notably, depending on the 

substitution pattern of the arene moieties also 2,3-dihydrocinnolines (8) were isolated. The 

annulated products were most likely formed in a post-catalytic thermal cyclization 

reaction.[71]   

 

Scheme 6. Pioneering cobalt-catalyzed hydroarylations of azobenzenes 3. 

Another key finding was later reported by Brookhart for Cp*Co(I)-catalyzed 

hydroacylations of benzaldehydes 9 with trimethyl(vinyl)silane (10a) (Scheme 7).[73] The 

catalytic transformation was characterized by a low catalyst loading of 1 mol % and mild 

reaction conditions. Interestingly, mechanistic studies were suggestive of the formation of 

cobalt(III) hydride complex 13 after oxidative C–H activation. Migratory insertion of the 
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alkene 10a into the Co–H bond and subsequent reductive elimination furnished the desired 

products 12. Additionally, detailed kinetic studies were supportive that the reductive 

elimination was the rate-limiting step of the catalysis. Indeed, the same Cp*Co(I) complex 

11 was recently employed by Pérez-Temprano for the synthesis of various cyclometalated 

Cp*Co(III) complexes, albeit via oxidative addition of the corresponding aryl halides.[74]   

 

Scheme 7. Cobalt-catalyzed hydroacylation of benzaldehydes 9 with alkene 10a. 

Likely inspired by the report of Kisch, in 2010, Yoshikai devised a cobalt-catalyzed 

hydroarylation of internal alkynes 6 with 2-arylpyridines 14 (Scheme 8).[75]  

 

Scheme 8. Cobalt-catalyzed hydroarylation of alkynes 6 with 2-arylpyridines 14. 

Here, the key low-valent cobalt species was proposed to be formed by in-situ reduction 

from simple cobalt(II) salts with stoichiometric amounts of Grignard-reagents. Further 

addition of phosphine ligands stabilized the thus formed cobalt(0) or cobalt(I) complexes 

responsible for the C–H activation. The scope of the reaction was later extended to the 

hydroarylation of other aromatic scaffolds, such as ketimines,[76] aldimines[77]and 
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indoles.[78] These important results initiated a plethora of notable developments for low-

valent cobalt-catalyzed C–H activations.[23a, 44c, 61] It is further noteworthy that the initial 

findings of Klein were later rediscovered by Petite for Grignard-free low-valent cobalt-

catalyzed C–H activations with the well-defined and air-sensitive cobalt(0) phosphine 

complex [Co(PMe3)4].[79] 

1.1.2 High-Valent Cobalt-Catalyzed C–H Activations 

In spite of these remarkable contributions, low-valent cobalt-catalyzed C–H activations 

were found to be experimentally tedious, often limited in functional group tolerance and 

the excess of Grignard-reagents diminished the overall atom-economy of the strategy. At 

the same time, after initial findings by Miura,[80] rhodium(III)-complexes were established 

as robust and bench-stable catalyst for a plethora of C–H activation reactions,[11v, 81] thus 

setting the stage for their more abundant and cost-efficient 3d homologous. In fact, early 

reports on stoichiometric high-valent cobalt-catalyzed C–H activations were already 

disclosed in 1986 by an elegant study of Broderick and Legg using a tetradentate 

macrocyclic ligand system to stabilize the high-valent cobalt(III) center (Scheme 9).[82] 

Here, intramolecular electrophilic C(sp3)–H activation via the agostic C–H coordinating 

complex 17 took place after oxidation of the chelated cobalt(II) complex 16, to yield the 

cyclometalated complex 18. The authors noted that oxidation to the coordinatively 

unsaturated 16-electron cobalt(III) species 17 was essential for the successful C–H 

activation as well as the presence of strong field ligands, such as CN–, SO3
2– or NH3. The 

isolation of an air-stable Co(III)–C containing organometallic species 18 was a remarkable 

finding, since earlier reports for cobalt-catalyzed alkane functionalization[83] with simple 

cobalt(III) salts mainly proposed an outer-sphere homolytic bond cleavage manifold.[84]  

 

Scheme 9. Intramolecular high-valent cobalt(III)-mediated C–H activation. 

However, it took almost another 15 years before the first intermolecular high-valent cobalt-

mediated C–H activation was reported. In a seminal approach, Avilés employed a mono-
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cyclopentadienyl cobalt(III) complex 19 for the ortho-metalation of azobenzene 3a 

(Scheme 10).[85] An important feature of the study was the formation of a cationic 

cobalt(III) complex 20 via silver-mediated dehalogenation. In fact, Brookhart[86] previously 

showed that the Cp*-ligated cobalt(I) complex 11 could even be oxidized to a rarely 

reported bishydrido cobalt(V) complex under appropriate reaction conditions.[87]  

 

Scheme 10. Intermolecular high-valent cobalt(III)-mediated C–H activation. 

In light of the successes for Cp*-rhodium(III)-catalyzed C–H activations and the early work 

on high-valent cobalt complexes,[88] a major breakthrough for synthetically useful 

applications of high-valent Cp*-cobalt(III)-catalyzed C–H activation was made by 

Matsunaga and Kanai in 2013.[58d] Within their study, a cationic cobalt(III) complex 

[Cp*Co(PhH)](PF6) 21 was employed for the additive-free hydroarylation of enones 22 or 

N-sulfonyl imines 24 with 2-arylpyridines 14 (Scheme 11).  

 

Scheme 11. Intermolecular cobalt(III)-catalyzed C–H hydroarylations. 
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The proposed redox-neutral mechanistic scenario was based on previously reported 

transformations with Cp*-rhodium(III) complexes.[89] Indeed, all three of the 

aforementioned high-valent cobalt-catalyzed C–H activation strategies mechanistically 

differ from the pathways reported for low-valent cobalt complexes. Low-valent cobalt 

complexes have been reported to cleave the C–H bond within an oxidative addition-type 

mechanism and thus resulting in a cobalt hydride species[44c, 61b, 79c] or via a ligand-to-ligand 

hydrogen transfer (LLHT) mechanism.[90] In contrast, the high-valent cobalt(III) complexes 

most likely facilitated C–H scission via either electrophilic substitution or base-assisted 

metalation (cf. Scheme 3).[60]  

Based on these notable findings, a wide range of Cp*-cobalt(III)-catalyzed C–H activations 

were developed, including largely redox-neutral transformations[23a, 58, 60] whereas 

oxidative C–H transformations were only sporadically achieved.[55a] Moreover, in contrast 

to cyclometalated rhoda(III)cycles, cost-efficient organometallic cobalt complexes and 

thus the Co–C bond were often found to be particularly nucleophilic, leading to decreased 

Co–C bond distances,[91] which allowed new reactivities and unique chemo- or 

regioselectivities.[44c, 92] 

1.1.3 Oxidative Cobalt-Catalyzed C–H Activation without Cp*-Ligands 

Since the early reports by Lewis and Smith[93] and following work by Murai[94] on 

ruthenium-catalyzed hydroarylations by C–H activation, notable studies have been 

conducted on precious metal-catalyzed C–H alkyne annulations. In particular, oxidative 

transformations within rhodium(III)-catalyzed C–H annulation reactions with the aid of 

stoichiometric amounts of chemical oxidants were flourishing.[80a, 81i]  

In contrast, considerable recent efforts have been devoted to more sustainable, Earth-

abundant cobalt-catalyzed C–H activations, yet oxidative transformations toward the step-

economical formation of heterocyclic scaffolds have remained largely untapped until 2014. 

In a seminal report, Daugulis disclosed the oxidative C–H/N–H activation of benzamides 

26 and subsequent alkyne 6 annulation with simple cobalt(II) salts as the catalysts (Scheme 

12).[95]  
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Scheme 12. Cobalt-catalyzed oxidative C–H/N–H alkyne annulation with alkynes 6. 

The key to success was the employment of an additional directing group, such as 8-

aminoquinoline (AQ) (Scheme 12a) or picolinamide (PA) (Scheme 12b) on the amide 

scaffold to stabilize high-valent cobalt(III) species. The use of these N,N’-bidentate 

directing groups was previously introduced for high-valent palladium-[96] and later also for 

other 3d, 4d and 5d transition metal-catalyzed C–H activations,[11b, 97] albeit not for cobalt. 

The reaction optimization revealed that TFE was the solvent of choice and a combination 

of oxygen/air atmosphere as well as stoichiometric amounts of a metal-based co-oxidant 

were necessary to enable good catalyst turnover. In addition, carboxylate additives proved 

to be essential for the cobalt-catalyzed C–H activation. Furthermore, the authors were able 

to synthesize an electrophilic cyclometalated cobalt(III) complex 30 under an atmosphere 

of oxygen (Scheme 12c), which was shown to be catalytically potent for the C–H/N–H 

annulation reaction.[95] Unfortunately, the characterization of the organometallic species 

was limited to NMR spectroscopic studies. Based on control experiments and the detection 

of intermediate 30, a simplified reaction mechanism was put forward (Scheme 13). Initially, 
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base-assisted cobaltation generates the cyclometalated complex 31, followed by alkyne 6 

insertion to generate the seven-membered intermediate 32. Subsequent reductive 

elimination releases the desired product 27 and a reduced cobalt(I) species 33. Hence, the 

overall mechanistic manifold most-likely proceeds within a cobalt(II/III/I) catalytic cycle. 

However, no further studies were conducted toward the generation of the active cobalt(III) 

species, the mechanism of the C–H activation step or the nature of the oxidation.  

 

Scheme 13. Mechanistic proposal for the cobalt-catalyzed alkyne annulation.  

Based on the groundbreaking work, a large number of oxidative cobalt-catalyzed C–H 

transformations were disclosed under either mono- or bidentate directing group assistance 

(Scheme 14). Thus, the in-situ formed high-valent cobalt complexes enabled various 

oxidative C–C or C–Het bond formations.[55a, 60] Therein, N,N’-bidentate 8-aminoquinoline 

(AQ), N-2-pyridylhydrazide or N,O-bidentate pyridine-N-oxide (PyO) proved to be among 

the most prominent DGs for the stabilization of high-valent cobalt species.[11b, 97] The DG 

is commonly attached to an amide group or an arene ring and consequently directs the 

cobalt center to the C–H bond of interest (vide supra).  

 

Scheme 14. Selected directing groups for oxidative cobalt-catalyzed C–H activation 
with simple cobalt(II) salts.  
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1.1.3.1 Oxidative Cobalt-Catalyzed C–H Oxygenation 

During the last six years, significant progress has been made toward step economical 

oxidative cobalt-catalyzed C–Het formations, including valuable C–N, C–X (X = Cl, Br, I, 

CN), C–S or C–O bonds.[23a, 44c, 55a, 59-60] Due to the wealth of reported transformations, the 

following section will be limited to intermolecular C–O formations.  

Early reports for SET-type cobalt-mediated C–H/O–H transformations date back to 

1973,[98] however it was not until recently that Niu and Song reported on cobalt-catalyzed 

two-fold C–H activation of benzamide 34 or acryl amides 37 with simple alcohols 35 as 

the coupling partner (Scheme 15).[99] The reaction proceeded under relatively mild reaction 

conditions of 40–60 °C with catalytic amounts of cost-efficient and bench-stable 

Co(OAc)2·4H2O as the catalyst and stoichiometric amounts of silver(I) salts as the terminal 

oxidant. Among other directing groups, pyridine-N-oxide gave the best results. Overall, 

good functional group compatibility and ample substrate scope was accomplished under 

the reaction conditions. Mechanistic studies indicated the formation of radical 

intermediates and a KIE of 1.0 was supportive for a non-rate limiting C–H activation step. 

However, the authors did provide only limited mechanistic insights.  

 

Scheme 15. Cobalt-catalyzed C–H alkoxylations with Ag2O as the oxidant. 

Thereupon, Niu and Wei disclosed more detailed mechanistical work with the aid of DFT 

calculations that further supported the preliminary working hypothesis for a cobalt(II/III) 

catalytic cycle (Scheme 16).[100] Initially, the in-situ generated cobalt(III) species 39 

undergoes SET with substrate 34 to form the arene radical cation 40.  
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Scheme 16. Proposed catalytic cycle for the cobalt-catalyzed C–H alkoxylation.  

At the same time, the cobalt(III) species 39 is regenerated after oxidation with the sacrificial 

silver salt. Subsequent coordination of amide 40 to 39, followed by a nucleophilic attack of 

the coordinating alkoxy species to the arene ring yields the Wheland intermediate 41. 

Thereafter, base-assisted deprotonation gives cobalt(II) species 42 and following proto-

demetalation releases the product 36. Finally, reoxidation of the cobalt(II) species 43 with 

the consumable silver oxidant reinitiates the catalysis. Moreover, the calculations indicated 

that the single electron transfer might be the rate-limiting step of the catalysis. The scope 

of the strategy was later extended by Huang for C–H alkoxylation of quinolinamides 26 

with Co(acac)2 as the catalyst.[101] In the same context, Das disclosed regioselective cobalt-

catalyzed C–H methoxylation of N-phenylpyridin-2-amine (44) with Ag2O and oxygen as 

the oxidants (Scheme 17).[102] Interestingly, DFT calculations were supportive of a PCET-

type mechanistic manifold and the generation of an aminyl radical on the aniline derivative 

44.  
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Scheme 17. Cobalt-catalyzed C–H methoxylation of aniline derivative 44. 

In addition to cobalt-catalyzed C–H alkoxylation, Zeng recently disclosed the cobalt-

catalyzed C–H acyloxylation of arenes 28 with picolinamide as the directing group 

(Scheme 18a).[103] Here, readily available carboxylic acids 46 were employed as the 

coupling partner with Ag2CO3 as the chemical oxidant at 120 °C reaction temperature. 

Concurrently, Chatani[104] and Zhang[105] independently reported on cobalt-catalyzed C–H 

acyloxylations of benzamides 26 under slightly different reaction conditions (Scheme 18b). 

Both approaches required the use of silver salts as the oxidant. Notably, all three studies 

suggested a organometallic cyclometalated cobalt(III) complex as the key intermediate 

within a cobalt(II/III/I) catalytic manifold. Shortly thereafter, Deb and Cai independently 

reported on C–H acetoxylations of benzamides and anilides under slightly modified 

reaction conditions.[106] Very recently, Guo and Cao developed a C–H acetoxylation[107] 

with PIDA as the oxidant/acetyl transfer reagent and Co(acac)2 as the catalyst (Scheme 

18c).[108] Notably, no reaction was detected under an atmosphere of nitrogen. The reaction 

exhibited a broad substrate scope, and the synthetic utility was demonstrated by late-stage 

acetoxylation of the herbicide diflufenican (49). 
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Scheme 18. Cobalt-catalyzed C–H acyloxylation of arenes a) 28 and b) 26. C–H 
Acetoxylation of diflufenican (49). 

1.1.3.2 Oxidative Cobalt-Catalyzed C–H/N–H Alkyne or Allene Annulations 

Since the pioneering study by Daugulis (cf. Scheme 12),[109] a plethora of oxidative C–

H/N–H activations with inter alia alkynes, allenes, alkenes, carbon monoxide or 

isocyanides as the coupling partner have been reported in the following years.[55a, 60] Only 

selected relevant examples are discussed in the following section with a focus on oxidative 

cobalt-catalyzed C–H/N–H annulations with alkynes[11o, 57] or allenes.[110] 
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Despite the significant impact of the study by Daugulis, the method relied on the use of 

stoichiometric amounts of manganese salts as the oxidant. In contrast, Ackermann elegantly 

developed an alternative cobalt-catalyzed C–H alkyne annulation toward a step-economical 

synthesis of pharmaceutically-relevant isoquinolones[111] 51 with the aid of the bidentate 

directing group 2-pyridyl-N-oxide (PyO) and oxygen as the sole oxidant (Scheme 19).[112] 

The cobalt oxidase catalysis[113] was characterized by mild reaction conditions of 60 °C, 

water as the sole byproduct and broad functional group tolerance. It is noteworthy that the 

use of fluorinated TFE as the solvent was essential to observe catalytic turnover. Besides 

other solvent effects,[114] this observation can be rationalized by the highly pH-dependent 

standard oxidation potential of oxygen in different solvents.[115] The synthetic utility of the 

concept was further highlighted by the step-economical synthesis of a rosettacin derivative 

52, which belongs to the class of aromathecin alkaloids that show activity as 

topoisomerase-I inhibitors.[116]  

 

Scheme 19. Aerobic cobalt-catalyzed C–H/N–H annulations with alkynes 6; step-
economical synthesis of anticancer drug 52. 

Furthermore, intermolecular competition studies indicated a clear preference for electron-

rich substrates and H/D-exchange gave support for an irreversible C–H activation step. In 

addition, detailed DFT-calculations were indicative of a cobalt(II/III/I) catalytic cycle. An 

extension of the approach was later accomplished by Niu and Song for cobalt-catalyzed 

decarboxylative C–H/N–H alkyne annulations with alkynyl carboxylic acids as the 

coupling partner.[117] Remarkably, the cobalt catalysis delivered either isoquinolones 51 or 

isoindolinone derivatives 54. Likewise, the same authors previously reported on the 
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formation of 54 for cobalt-catalyzed alkyne annulations with pyridine-N-oxide as the 

auxiliary group (Scheme 20).[118]  

 

Scheme 20. Cobalt-catalyzed isoindolinone 54 synthesis with terminal alkynes 53. 

Here, and in contrast to the oxidase catalysis,[112] silver(I) salts were employed as the 

terminal oxidant. The authors reasoned that the in-situ formation of a silver-acetylide 

complex 55 with terminal alkynes 53 was responsible for the drastic change in selectivity. 

Additionally, kinetic studies revealed a KIE of 2.5, hence being suggestive of a rate-

limiting C–H scission step. Thus, a reasonable working profile was drawn for both reaction 

motifs (Scheme 21). Coordination of the cobalt(II) salt and concomitant oxidation to the 

cobalt(III) species set the stage for a base-assisted C–H activation of benzamides 34. The 

key cyclometalated cobalt(III) complex 56 can now undergo different follow-up reactions 

depending on the reaction conditions. In the presence of internal alkynes 6 or, in the case 

of terminal alkynes 53 and the absence of an excess of silver salts, a migratory insertion of 

the coordinating alkyne occurs and forms the seven-membered cobalt(III) species 57 (left 

cycle). Then, reductive elimination releases the isoquinolone 51 and a reduced cobalt(I) 

species 58. In contrast, the cobalta(III)cycle 56 undergoes transmetalation with the alkynyl 

silver(I) species 55 to furnish a cobalt(IV) species 60, which undergoes a facile reductive 

elimination to yield the ortho-alkynylated[119] product 61 and a cobalt(II) species 59 (right 

cycle). Subsequently, 5-exo-dig cyclization delivers the desired isoindolinone 54. Finally, 

oxidation of the reduced cobalt(I) 58 or cobalt(II) species 59, respectively, reinitiates the 

catalysis. However, it should be noted that at this stage experimental support for the 

working hypothesis was scarce and robust information for the formation of a high-valent 

cobalt(IV) intermediate 60 was lacking. 
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Scheme 21. General mechanistic proposal for cobalt-catalyzed C–H/N–H alkyne 
annulations toward isoquinolones 51 (left) or isoindolinones 54 (right). 

Importantly, the reactivity of the cobalt(III)-catalyzed C–H/N–H alkyne annulation was not 

limited to 8-aminoquinoline or pyridine-N-oxide as the directing group. Indeed, within the 

last five years, numerous strategies were disclosed for step-economical syntheses of 

different heterocycles (Scheme 22). Thus, Zhai developed an easily removable N,N’-

bidentate auxiliary, based on a N-2-pyridylhydrazide group, for the synthesis of 

isoquinolones 63 with alkynes 6 (Scheme 22a).[120] Notably, the hydrazyl group was 

removed via reductive N–N cleavage in a traceless fashion. The approach was later 

extended for a spirocyclization cascade of benzamides 63 with maleimides.[121] Next, Cui 

reported on alkyne annulations toward the assembly of isoquinoline scaffolds 65 under the 

use of a traceless picolinamide auxiliary group (Scheme 22b).[122] Likewise, Carretero 

disclosed oxidative cobalt-catalyzed C–H/N–H alkyne annulations of the benzylamine 

derivatives 64 to access dihydroisoquinolines 66 (Scheme 22c).[123] Notably, the authors 

used ESI-MS studies to detect several elusive cobalt(III) species, such as a five-membered 

cobaltacycle 67, which they assumed to be an on-cycle catalytically active intermediate.  
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Scheme 22. Cobalt-catalyzed C–H activations for the synthesis of various heterocycles.  

The strategy of cobalt-catalyzed alkyne annulations with picolinamides as the directing 

group was later extended to the synthesis of dibenzo‐[b,d]azepines.[124] In addition to 

carboxamides 26, 62 or 64, also sulfonamides[125] and phosphonic amides[126] proved viable 

for oxidative cobalt-catalyzed C–H/N–H activations with alkynes 6 as the coupling partner. 
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Very recently, Daugulis further accomplished a rare example of oxidative cobalt-catalyzed 

C–H/O–H alkyne annulation of readily accessible aromatic carboxylic acids 68.[127] Here, 

TFE was used as the solvent, along with O2 and CeSO4 as chemical oxidants (Scheme 22d). 

Moreover, instead of simple alkynes 6, Nicholls recently demonstrated that 1,3-diynes 70 

were broadly applicable in C–H/N–H annulation reactions with benzamides 26 to deliver a 

variety of alkynylated isoquinolones 71 (Scheme 22e).[128] In light of the pioneering work 

on cobaltaelectrocatalysis (vide infra), in 2019, Rueping and Sundararaju reported on 

cobalt-catalyzed C–H/N–H alkyne annulations of benzamides 26 with the aid of 

photoredox catalysis and oxygen as the terminal oxidant. The merger of cobalt catalysis 

and photoredox catalysis enabled mild reaction conditions.[129] The scope of the method 

was later extended to oxidative alkene annulations of benzamides 26.[130]  

Indeed, the oxidative C–H/N–H alkyne annulations with inexpensive cobalt(II) salts were 

not restricted to the activation of C(sp2)–H bonds. Zhang recently exemplified cobalt-

catalyzed C(sp3)–H activations of amides 72 with alkynes 53 for the step-economical 

synthesis of γ-lactams 73 (Scheme 23).[131] Under relatively harsh reaction conditions of 

150 °C and an excess of chemical oxidants, several different aliphatic amides 72 were 

successfully transformed into the desired products 73. Interestingly, the authors found that 

TBAI was essential for the catalysis and a combination of two bases Na2CO3 and pyridine 

gave the best results. Mechanistic studies provided strong support for an organometallic  

C–H cleavage event and the formation of a catalytically-relevant cobalta(III)cycle 74 was 

supported by MALDI-TOF mass spectrometric analysis.  

 

Scheme 23. Cobalt-catalyzed annulation of aliphatic amides 72 with alkynes 53. 



Introduction   25 
 

Similar to the vast number of reports on alkyne annulations, several groups have recently 

shown great interest in the use of more versatile allenes 75[132] as an unsaturated coupling 

partner for oxidative cobalt-catalyzed C–H/N–H activations.[23a, 55a, 110] The first report on 

cobalt-catalyzed heterocyclization reactions of aromatic or alkenyl amides 26 with allenes 

75 was devised by Volla in 2016 (Scheme 24).[133]  

 

Scheme 24. Cobalt-catalyzed C–H/N–H allene annulations of benzamides 26. 

The catalysis comprised mild reaction conditions at ambient temperature, Mn(OAc)3·2H2O 

and O2 as the oxidants, TFE as the ideal solvent and bench-stable Co(acac)2 as the catalyst. 

In line with previous studies on precious metal-catalyzed C–H allene annulations,[134] regio- 

and stereoselectivity control proved to be challenging and was particularly sensitive to the 

steric and electronic nature of the allene’s substituents. Thus, electron-poor or sterically 

hindered allenes, for instance allene 75a, delivered the unsaturated heterocycle such as 

isoquinolone 76 (Scheme 24a). In contrast, when more electron-rich allene 75b was 

employed, the addition of the aryl group proceeded at the central carbon atom of the allene 

to furnish dihydroisoquinolin-1(2H)-ones 77. Besides the synthetic contributions, a set of 

mechanistic experiments were performed to elucidate the reaction’s working mode. First, 

H/D exchange experiments revealed an irreversible C–H activation step, whereas kinetic 
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isotope effect studies were indicative of a facile C–H cleavage with a KIE of 1.1. Second, 

intermolecular competition experiments excluded the presence of an electrophilic 

cobaltation mechanism since electron-rich benzamides 26 were favored over electron-

deficient arenes 26. Finally, stoichiometric experiments of benzamide 26a with Co(acac)2 

in the presence of K2S2O8 as the oxidant, delivered an octahedral cobalt(III) complex 78, 

which was structurally confirmed by X-ray crystallography (Scheme 24b). Based on the 

mechanistic results and the previous findings, the authors proposed a general catalytic cycle 

(Scheme 25). Initially, oxidation of the cobalt(II) precursor results in the catalytically active 

cobalt(III) species, which along with coordination of substrate 26 generates the detected 

cobalt(III) complex 78. Thereafter, base-assisted C–H activation takes place and furnishes 

the cyclometalated species 79. Then, allene coordination results in complex 80 and 

subsequent migratory insertion is mainly dictated by the electronic nature of the allene, thus 

affording two distinct seven-membered cobaltacycles 81 or 82, respectively. Finally, 

reductive elimination of intermediate 81, decorated with the electron-rich allene 75b, 

results in the exo-methylene product 77. In contrast, when electron-deficient allene 75a was 

employed, reductive elimination takes place from a cobalt(III)-alkenyl complex 82 to 

release intermediate 83, which undergoes a 1,3-hydrogen shift to yield the desired 

isoquinolones 76.  
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Scheme 25. Proposed mechanism for regioselective cobalt-catalyzed allene annulations. 

Shortly thereafter, Rao[135] and Cheng[136] independently disclosed related oxidative cobalt-

catalyzed heterocyclizations of arylamides 26 with electron-rich or electron-deficient 

allenes to afford either the exo-cyclized 87 or endo-cyclized products 85/88 (Scheme 26a 

and 26b). Interestingly, Rao observed that in addition to the electronic properties of the 

allenes 86, the use of different bases could alter the formation of the final products. Notably, 

the groups of Volla[137] and Rao[138] concurrently expanded the scope of the cobalt-

catalyzed C–H/N–H allene annulation for the functionalization of sulfonamides 89 

(Scheme 26c) and later for oxidative transformations of phosphonic amides 91 (Scheme 

26d).[139] Furthermore, allene annulations were not restricted to the use of 8-aminoquinoline 

as the directing group. In this context, Zhai recently accomplished cobalt-catalyzed 

heterocyclizations of benzamides 62 and allenes 75 with the aid of N,N’-bidentate N-2-

pyridylhydrazides as the directing auxiliary (Scheme 26e).[140] Interestingly, in the presence 

of oxygen and DMP as the terminal oxidant, the authors observed oxidation of the benzylic 

position of the corresponding isoquinolones. 
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Scheme 26. Cobalt-catalyzed C–H/N–H annulations with allenes 75, 84 or 86. 

1.1.3.3 Oxidative Cobalt-Catalyzed Two-Fold C–H Arylation 

The development of cost-efficient and sustainable synthetic methods for the preparation 

of bi(hetero)aryls is of high demand for inter alia pharmaceutical and agrochemical 

research.[141] In this context, particularly C–H activation,[5d, 11y, 142] ideally catalyzed with 

Earth-abundant metal catalysts,[23a, 143] has attracted considerable attention within the past 

decades. Despite the notable advances in canonical methodologies of viable isohypsic       

C–H arylations, an ideal strategy in terms of step-economy and minimization of byproduct 
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formation (vide supra) represents the direct coupling of C(sp2)–H/C(sp2)–H bonds.[9, 14] For 

this purpose, oxidative cobalt-catalyzed dehydrogenative arylations via C–H activation are 

highly desirable, but only rarely achieved.[54b, 55a, 60] However, it should be noted that high-

valent cobalt-catalyzed C–H arylations with pre-functionalized arenes as the coupling 

partner have previously been reported.[144] 

Likely inspired by the pioneering work of Kharash[49] and earlier reports on Earth-abundant 

copper-catalyzed homocoupling reactions,[145] in 2015, Daugulis devised a cobalt-

catalyzed two-fold C–H arylation of benzamides 26 with simple cobalt(II) salts as the 

precatalyst and a combination of oxygen and Mn(OAc)2 as the sacrificial oxidants (Scheme 

27a).[146] Although the reaction was performed in ethanol, the authors did not report on 

competing alkoxylation reactions under the optimized reaction conditions (cf. Chapter 

1.1.3.1).[101] Shortly thereafter, Liu, Zhu and Wu reported similar findings and reoptimized 

the reaction conditions for cobalt-catalyzed C–H/C–H coupling of mono-dentate 2-

arylpyridines 14 with the aid of PIDA as the terminal oxidant (Scheme 27b). 

 

Scheme 27. Cobalt-catalyzed oxidative biaryl-coupling of arenes 14 or 26. 

In striking contrast, Niu and Song merged both strategies and disclosed an efficient cross-

dehydrogenative coupling of benzamides 26 with 2-arylpyridines 14 with inexpensive 

cobalt(III) salts as the catalyst (Scheme 28).[147] The reaction was characterized by excellent 

levels of regio- and chemoselectivity and broad functional group tolerance. However, 
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relatively harsh reaction conditions and super-stoichiometric amounts of chemical oxidants 

were required to enable high yields. 

 

Scheme 28. Mixed two-fold C–H arylation under oxidative cobalt catalysis. 

Moreover, based on detailed mechanistic studies, the authors proposed a plausible catalytic 

cycle, which involves two different mechanistic pathways for the cobalt-catalyzed C–H 

cleavage step (Scheme 29).  

 

Scheme 29. Proposed catalytic cycle for cross-dehydrogenative coupling. 

Thus, similar to their previous report on cobalt-catalyzed C–H alkoxylation reactions,[99-

100] the catalytic cycle is initiated by single-electron transfer (SET) of the catalytically active 

cobalt(III) species 97 to the benzamide 26 to generate the radical cation 98. Concurrently, 
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the cobalt(III) species 97 is prone to undergo base-assisted C–H activation with the 2-

phenylpyridine substrate 14 to generate the cobalt(III)cycle 99. Subsequently, coordination 

of the radical cation and a second SET-type cyclometalation forms the putative cobalt(IV) 

species 100. Finally, facile reductive elimination releases the biaryl product 96 and a 

reduced cobalt(II) species 101. The catalytic cycle is then reinitiated by oxidation of 101 to 

the corresponding cobalt(III) species 97. The mechanistic proposal goes in line with 

dehydrogenative couplings reported for 4d and 5d transition-metals, which are commonly 

suggested to proceed via high-valent metal complexes such as Pd(IV),[148] Ir(IV)[149] or 

Ru(IV) intermediates.[33b, 150] 

Furthermore, the scope of the cobalt-catalyzed two-fold C–H activation was recently 

extended by Zhang for the cross-dehydrogenative coupling of benzamides 26 with various 

other arenes, decorated with directing groups such as oximes, hydrazones or imidates.[151] 

In contrast to the report by Nui and Song, the authors proposed two consecutive cobalt-

catalyzed CMD-type C–H activation events. 

In addition to the presented strategies, You devised a cobalt-catalyzed cross-

dehydrogenative arylation of (hetero)aromatic carboxamides 26 with benzoxazoles and 

other C–H acidic azoles 102 as the coupling partner (Scheme 30).[152] Remarkably, with a 

reduced catalyst loading of 0.5 mol % of Co(OAc)2·4H2O, selected products were 

efficiently generated in 74–98% yield at slightly elevated reaction temperatures and longer 

reaction times. The method was later expanded by Wang for cobalt-catalyzed C–H 

arylations with viable picolinamide as the directing group.[153] 

 

Scheme 30. Cobalt-catalyzed oxidative (het)aryl-coupling. 

1.1.3.4 Mechanistic Insights into High-Valent Cobalt-Catalyzed C–H Activations 

Despite the vast amount of reports on high-valent cobalt(III)-catalyzed C–H activations, 

detailed analytical data or snapshots of reaction intermediates are scarce and often restricted 

to mass spectrometry or limited NMR spectroscopic analysis. The initial findings of 

Daugulis on cyclometalated cobalt(III) species 30 (vide supra) have indicated the 



32 Introduction 

difficulties associated with the isolation and full characterization of mechanistically 

relevant organometallic reaction intermediates. However, there has also been a long-

standing interest in the isolation and full characterization of highly oxidized species 

containing a Co–C bond, such as cobalt(IV) or cobalt(V) complexes.[24j, 154] Thus, one of 

the first precedence for cobalt(IV)-carbon complexes was already reported in 1972 by 

reaction of alkyllithium reagents with the corresponding cobalt salt.[155] Although, most of 

the reports presented to date remain as academic curiosities and have rarely been reported 

for synthetically useful applications.[87, 156] Nevertheless, within the last few years, few 

elusive cobalta(III)cycles were accessible via stoichiometric C–H activation reactions. 

Cyclometalated Cp*-cobalt(III) complexes will not be discussed and can be found 

elsewhere.[74, 157]  

The first reported isolation of an organometallic Co–C containing cobalt(III) complex 104 

with a bidentate 8-aminoquinoline ligand was accomplished by Maiti[158] in 2016 (Scheme 

31a), and later independently by Ribas with bipyridine as the co-ligand 105 (Scheme 

31b).[159] Both groups were able to fully characterize the elusive cobalt(III) cycles by means 

of X-ray diffraction crystallography. Moreover, the well-defined complex 104 was shown 

to be catalytically active for the C–H allylation of benzamides 26 with unactivated alkenes. 

Based on these studies, similar cyclometalated cobalt(III) complexes have been reported 

by inter alia Song,[160] Chatani,[161] Zhang[105] and Grigorjeva.[162] 

 

Scheme 31. Reported cyclometalated cobalt(III) arylamide complexes 104 and 105.  
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Further attempts toward the synthesis of cyclometalated cobalt(III) complexes via direct 

C–H activation were made by Ribas with the aid of macrocyclic arene[163] ligands (Scheme 

32).[159] The reactivity of the well-defined cobalt complex 106 was studied for selective 

alkyne 53 annulation reactions to afford either five- or six-membered ring products. Shortly 

thereafter, the same group disclosed a lactam 110 synthesis, when complex 106 was treated 

with diazo ester 107.[164] Here, the formal SN2 reaction proceeded via an uncommon 

cobalt(III) enolate complex in which the aryl moiety acts as the nucleophile and the 

coordinating carboxylate as the leaving group.[165] 

 

Scheme 32. Organometallic cobalt(III) complex 106 with a multidentate ligand system.  
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1.2 Undirected C–H Functionalization 

In the previous chapters, a key strategy to selectively activate the C–H bond is presented 

by employing a Lewis-basic directing group, which brings the metal catalyst in close 

proximity to the target. While this concept has obvious benefits which justify its raison 

d'être, the auxiliary often needs to be present within the molecule or additional reaction 

steps are required to install or modify existing functional groups to meet this purpose. In 

addition, this prerequisite inherently limits the valuable approach for the activation of only 

selected C–H bonds. In contrast, to functionalize C–H bonds distant to the directing group 

or to transform unactivated aliphatic hydrocarbons without any Lewis-basic functional 

groups at all, chemists have developed innovative concepts that can be classified as 

undirected C–H functionalization.[23g, 25c, 166] Among others,[167] hydrogen atom abstraction 

via homolytic bond cleavage has proven to be particularly powerful within this context.[24, 

168] Generally, these free radical pathways include photochemical irradiation,[169] 

electrochemistry[170] or highly oxidizing chemical intermediates.[171] However, controlling 

the site- and chemoselectivity in intermolecular alkane functionalizations remains a key 

challenge and is commonly dictated by the inherent electronic properties or steric 

environment of the C–H bond. To overcome these limitations, transition-metal catalysis 

has become prevalent within the last decades to significantly improve the selectivity and 

efficiency of C–H functionalizations. In this context, biological systems have evolved 

powerful enzymes that are capable of selective C–H functionalizations for inter alia C–H 

oxygenations[172] or C–H halogenations.[173] Inspired by this toolbox,[174] scientist have put 

large efforts in the development of biomimetic metal-catalyzed C–H transformations to 

achieve oxidation and group transfer reactions in a more controlled fashion.[24a-d, 24f, 166d, 

170d, 175]  

1.2.1 Undirected C(sp3)–H Azidation 

Organic azides[176] have been recognized as key structural motifs in numerous 

molecules of interest to medicinal chemistry,[177] material sciences,[178] peptide chemistry 

or molecular biology.[179] Due to the vast utility of azide-containing molecules,[180] a 

plethora of functional group interconversion strategies have been developed, exploiting 

organic halides, alcohols or epoxides, among others.[176e, 181] However, more step-

economical methods that directly install the azido-group into otherwise inert C(sp3)–H 

bonds continue to be scarce.[182] 
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In 1992, Magnus disclosed a pioneering study on metal-free C(sp3)–H azidation in the β-

position of enol ethers to afford 112, with the aid of potentially explosive hypervalent 

iodine reagents and TMSN3 as the azide source (Scheme 33a).[183] Based on this reagent 

combination, the substrate scope was later extended to the azidation of other functional 

groups such as carbamates and ureas,[184] among others.[185] Encouraged by these findings, 

notable contributions for metal-free C–H azidations of aliphatic substrates 111 with the aid 

of stoichiometric amounts of hypervalent iodine reagents were independently reported by 

Kita,[186] Zhdankin[187] and Bols.[188] More recently, Tang devised a metal-free C–H 

azidation of unactivated hydrocarbons 111 with K2S2O8 as a strong oxidant and sulfonyl 

azide 115 as the electrophilic azide source, to deliver the desired azidation products 113 

(Scheme 33b).[189] In 2016, Chen disclosed photoredox-catalyzed C(sp3)–H azidations of 

tertiary C–H bonds under visible-light irradiation using the Zhdankin reagent[187a] 116 as 

the azide source (Scheme 33c).[190] Likewise, photocatalytic azidations of benzylic C–H 

bonds were subsequently reported by Greaney[191] and Kamijo.[192]  

 

Scheme 33. Metal-free and photoredox-catalyzed C(sp3)–H azidation.  

A general approach for the photocatalytic azidation of unactivated C–H bonds was later 

devised by Alexanian and Nicewicz (Scheme 33d).[169b] The method encompassed an 

essential phosphate salt, sulfonyl azide 117 and an acridinium photoredox catalyst 118, 
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powered by blue LED irradiation. Moreover, the reaction conditions allowed for a broad 

substrate scope, including unactivated cyclic hydrocarbons. In the case of unsymmetrical, 

acyclic hydrocarbons, C–H azidation occurred at the inherently more electron-rich C–H 

bond with moderate regioselectivities. Detailed Stern-Volmer plot analysis was suggestive 

of a SET process from the phosphate salt to the photoexcited catalyst 118*, thus generating 

an oxygen-centered radical. Next, the highly oxidizing radical abstracts the most electron-

rich C–H bond from substrate 111, producing a carbon-centered radical, which upon 

trapping by the sulfonyl azide transfer reagent 117 affords the desired organic azides 113.  

In spite of these notable contributions, the site-selectivity of metal-free H atom abstractors 

such as alkoxyl, iodanyl[193] or sulfate radicals are inherently limited to the innate reactivity 

of the substrate. These radicals are typically highly electrophilic and therefore abstract the 

most electron-rich, less polarized, and weakest C–H bonds in terms of bond dissociation 

energy.[15, 194] In contrast, a specifically designed metal catalyst can bypass these 

restrictions and thereby significantly enhance the reactivity profile for aliphatic C–H 

functionalizations.[182d]  

In 2014, Bollinger employed a modified iron-dependent wild-type halogenase SyrB2 for 

the direct azidation of aliphatic C–H bonds.[175h] In this proof-of-concept study, a high-

valent iron(IV)-oxo active center abstracted the C4-hydrogen from L-threonine, followed 

by azidation via a radical-rebound mechanism. However, this approach was limited to the 

functionalization of substrates that were directly bonded to the carrier protein. Although 

early attempts to develop biomimetic iron- or manganese-catalyzed C–H azidations of 

unactivated C(sp3)–H bonds date back to 1983, these approaches suffered from low 

efficiency and large excesses of chemical oxidants.[195] In contrast, from 2010 onwards, 

Groves developed a series of highly efficient manganese-catalyzed C–H halogenations[196] 

that showed reactivity beyond typical hydroxylation of the previously used manganese 

porphyrin complexes.[197] Inspired by these findings, the same group elegantly devised an 

efficient and selective manganese-catalyzed C–H azidation of aliphatic hydrocarbons 111 

with user-friendly NaN3 as the azide source,  and a biphasic solvent mixture (Scheme 

34).[198] The manganese catalysis was characterized by low catalyst loadings of 1.5–

5 mol %, high functional group tolerance and efficient transformation of activated, as well 

as unactivated hydrocarbons 111 to the corresponding organic azides 113. The synthetic 

utility of the approach was highlighted by late-stage diversification[199] of bioactive and 

pharmaceutically-relevant compounds.  
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Scheme 34. Manganese-catalyzed aliphatic C–H azidation. [a] Azide 113 to oxygenated 
125 product ratios: 2–4:1. [b] Yield was determined relative to starting 
material by GC-MS. 

Moreover, based on previous reports and mechanistic studies by experiment and DFT-

calculations, the authors proposed a catalytic cycle of the manganese-catalyzed C–H 

azidation (Scheme 34b). Initially, PhIO-mediated oxidation of the manganese(III) complex 

119 generates the manganese(IV)-oxo complex 120. The highly oxidizing species 120 now 

undergoes hydrogen atom transfer (HAT) with substrate 111 to afford the carbon-centered 

radical 121 and a manganese(IV) species 122. Finally, azide transfer takes place between 

an azidomanganese(IV) complex 123 and radical 121 via a heteroatom rebound 

mechanism, thus forming the desired C–N3 product 113. Despite the broad synthetic 
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applicability of the method, a major drawback is the use of super-stoichiometric amounts 

of hypervalent iodine reagents[200] and the relatively poor levels of chemoselectivity. 

Concurrently, Hartwig reported iron-catalyzed C–H azidations of aliphatic substrates 111 

with a chiral iron PyBOX catalyst and the Zhdankin azidation reagent 116 (Scheme 35).[201] 

The mild reaction conditions enabled broad functional group tolerance and the strategy was 

later also applied to the late-stage diversification of drugs and other complex organic 

molecules.[202] However, in contrast to Groves’ report, iron-catalyzed C–H azidations were 

limited to the functionalization of tertiary and benzylic C–H bonds.  

 

Scheme 35. Iron-catalyzed C–H azidation of tertiary and benzylic C–H bonds. 

Although detailed mechanistic studies were not conducted, the authors proposed that the 

reaction proceeds through a radical pathway, since radical traps such as BHT or TEMPO 

completely inhibited the catalysis. Moreover, kinetic studies with deuterated ethylbenzene-

d10 and the non-deuterated compound revealed a large KIE of 5.0. Based on the obtained 

diastereomeric excess for some azidated products 113 and the relatively mild reaction 

conditions when comparing to Zhdankin’s report,[187a] Hartwig proposed a key catalyst-

mediated azide-transfer step. With these observations in hand, the hydrogen abstraction 

likely proceeds by oxo-radical 127, followed by azidoiron(III)-catalyzed azide transfer to 

afford the azidated products 113.   

In addition to these notable contributions, other metal-catalyzed C(sp3)–H azidations were 

reported, which however were limited to activated C–H bonds such as benzylic,[203] 

allylic[204] or acidic β-keto ester substrates.[205]  
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1.3 Organic Electrocatalysis 

In organic synthesis, energy input is required in order to promote a desired chemical 

transformation. Indeed, since the very first chemical transformations were conducted, 

external heat was often applied to overcome intrinsic activation barriers. Likewise, scientist 

commonly use energy carriers to perform chemical oxidation or reduction reactions.[206] 

However, apart from transferring or accepting the electrons, the carrier molecule is 

consumed after the transfer step and typically results in stoichiometric amounts of toxic 

and expensive waste products. Moreover, chemical oxidation reactions, although often used 

on a laboratory scale, constitute major safety concerns when performed on preparative scale 

and are therefore generally avoided for industrial synthetic processes.[207] Also, most 

chemical energy carriers need to be chemically produced, which commonly occurs through 

electricity. Consequently, chemists have sought for more environmentally-benign and safe 

alternatives to sacrificial reagents and instead directly utilize adjustable electrical energy 

for synthetic operations – ideally generated by renewable energy sources such as hydro, 

wind or solar power (Scheme 36a).[13a, 208] In electrooxidation, a positive electrical potential 

decreases the Fermi-level of the working electrode and thus allows for oxidation of the 

substrate in solution with the lowest oxidation potential. To close the electrochemical 

circuit, electrons are transferred from the cathode to the substrate with the lowest reduction 

potential, which often results in the formation of hydrogen as the sole byproduct of the 

electrosynthetic reaction.[170g, 209]  

 

Scheme 36. (a) Sustainable energy sources for electrolysis. (b) Kolbe reaction.  

In 1848, inspired by the recent reports of Faraday on the laws of electrolysis and 

preliminary experiments,[210] Kolbe from Göttingen understood, interpreted and performed 

the first electroorganic transformation.[211] In the later termed Kolbe reaction, organic 

aliphatic carboxylates 129 undergo anodic oxidation to the corresponding carboxyl radicals 
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130, followed by decarboxylation to provide CO2 and the alkyl radical 131, which finally 

leads to the formation of alkane 132 (Scheme 36b).[212] 

Since this pioneering work, electrosynthesis has evolved enormously and a variety of 

elegant reactions powered by electricity have been realized during the past century,[213] 

ranging from applied industrial processes such as the hydrodimerization of acrylonitrile for 

the production of polyamide fibers – the Monsanto process,[214] to fundamental 

transformations including Shono oxidation,[215] Simons fluorination process[216] or notable 

contributions to total synthesis.[217] However, despite the powerful synthetic potential of 

electrochemistry,[218] organic electrosynthesis has largely been underestimated by the 

synthetic community and the direct use of electric current for modern metal-catalyzed 

transformations was largely neglected.[219] 

Stimulated by the global increase in awareness of the importance of circular[4b, 4e] or green 

chemistry[4a, 4d, 4g] and the determined pursuit of unprecedented synthetic methodology by 

organic chemists, electrosynthesis has experienced a resurgence in recent years.[170b, 170i, 220] 

Apart from the inherently green and cost-effective nature of electrosynthesis, a major 

advantage is the full control of oxidation/reduction potential applied to a chemical reaction. 

This provides practitioners in both academia and industrial settings with a convenient and 

knowledge-based tool for controlling reagent-free redox operations.[208] However, the 

charge transfer selectivity is inherently dictated by the substrate’s HOMO level and metal-

free synthetic operations suffer from low levels of step economy for C–C or C–Het 

formations, since direct homolytic transformations would occur at the C–H bond with the 

lowest bond dissociation energy (Scheme 37).[15] 

 

Scheme 37. Electrosynthesis vs. oxidative C–H activation and the merger of both: 
electrocatalysis. BDEC–H (red ≈ 90 kcal·mol–1; green ≈ 112 kcal·mol–1).[15] 
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In this context, directed oxidative metal-catalyzed C–H activation has emerged as a 

transformative tool to overcome the substrate’s innate reactivity and constitutes one of the 

most promising strategies for breaking otherwise inert bonds and consequently allows for 

more atom- and step-economic molecular assembly with full selectivity control (Scheme 

37). However, oxidative C–H activation features an additional level of complexity in terms 

of oxidant economy for the key catalyst reoxidation step (cf. Scheme 1). Thus, based on the 

previously introduced economies of organic synthesis (vide supra), a detailed assessment 

of the respective synthetic strategies: electrosynthesis and metal-catalyzed C–H activation, 

revealed that both concepts have specific advantages and disadvantages. Hence, the direct 

merger of the two methodologies would eliminate the respective weaknesses and hence led 

to unmatched levels of resource economy and reactivity control (Scheme 37).  

1.3.1 Electrocatalysis: Merging C–H Activation and Electrosynthesis 

Despite an early work by Bercaw for anodic oxidation of benzylic C–H bonds by means 

of Shilov-type[167e] chemistry,[221] one of the first reports on directed oxidative C–H 

activation was disclosed by Jutand and Amatore for palladium-catalyzed alkenylation of 

acetanilide 133 with alkenes 10 (Scheme 38).[222] The electrified Fujiwara-Moritani 

alkenylation[223] employed catalytic amounts of benzoquinone 136 as a redox mediator to 

reoxidize the palladium(0) species 137 after reductive elimination to the catalytically active 

palladium(II) complex 138. However, the reaction had to be performed by strong N-

coordination in a divided cell setup to avoid electrodeposition of the palladium catalyst and 

the requirement of a redox mediator diminished the overall atom economy. Nevertheless, 

this example demonstrated the compatibility of metal-catalyzed C–H activation with 

electrosynthesis and indicated the significant potential of electrocatalysis[224] for organic 

synthesis.[9, 208, 213a, 225]   
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Scheme 38. Pioneering work on electrocatalytic palladium-catalyzed C–H alkenylation.  

In 2009, Kakiuchi disclosed a palladaelectro-catalyzed C–H halogenation of 2-aryl 

pyridines 14 with simple aqueous hydrogen halides as the halogenation reagents (Scheme 

39).[226]  

 

Scheme 39. Palladaelectro-catalyzed C–H halogenation of 2-arylpyridines 14. 

The proposed working mode followed previously established palladium(II)-catalyzed C–H 

halogenations with N-halosuccinimides as the electrophilic halogen surrogate.[227] Thus, 

site-selective C–H activation generates palladacycle 141 and subsequent electrophilic 

attack of the anodically generated halonium ion 140 furnishes the halogenated products 139 
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in an isohypsic fashion. The scope of the approach was later extended to C–H 

iodination,[228] including palladium-catalyzed domino-reactions[229] and the C–H 

halogenation of valuable quinolinamides.[230] Notably, Mei recently discovered that less 

corrosive ammonium bromides were likewise viable for electrochemical palladium-

catalyzed C–H brominations.[231] However, in the presented examples, the utilization of 

electricity was limited to ensure a sufficient concentration of halonium ions, while the redox 

chemistry of the metal catalyst was not directly involved in the heterogeneous electron 

transfer step. To exploit the potential of electro-catalyzed C–H activations, the direct 

oxidation of the metal catalyst on the electrode surface would be highly desirable. 

In this context, Mei devised a palladaelectro-catalyzed C(sp3)–H oxygenation of aliphatic 

oximes 143 featuring strong N-coordination with carboxylic acids 46 as the solvent and the 

corresponding sodium salts as the base (Scheme 40).[232]  

 

Scheme 40. Palladaelectro-catalyzed C(sp3)–H oxygenation and a proposed catalytic 
cycle. CV studies were performed in Ac2O (n-Bu4NOAc, 0.1 M). 
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Notably, the electro-catalyzed C–H oxygenation enabled high levels of chemo- and 

regioselectivity and was compatible with valuable functional groups, such as ester, nitrile, 

and aliphatic halides. Based on previous reports and preliminary mechanistic studies, the 

authors proposed that catalysis is initiated by coordination of substrate 143 to a 

palladium(II) species to form species 145. Next, base-assisted C–H palladation occurs at 

the neighbouring primary C(sp3)–H bond to form palladacycle 146. Direct anodic oxidation 

of 146 furnishes a high-valent palladium(III) or palladium(IV) complex 147, which 

degrades under facile reductive elimination to release the acetoxylated product 144 and a 

reduced palladium(II) species. In order to substantiate the mechanistic proposal, the authors 

successfully isolated a cyclometalated palladium(II) complex 148. Subsequent CV studies 

revealed two distinct oxidation events at Ep,ox
 = 1.05 V and 1.54 V vs. Ag/AgCl, 

respectively. Although a detailed interpretation of the electroanalytical results was not 

performed, the authors considered a direct anodic oxidation of the organometallic species 

to be sufficiently supported. 

The scope of palladaelectro-catalyzed C–H oxygenations was shortly thereafter extended 

to aromatic oximes by Mei[233] and subsequently by Sanford.[234] Likewise, Chu and Sun 

developed palladaelectro-catalyzed C–H oxygenations with Oxone as the hydroxylation 

reagent.[235] Indeed, pallada-electrocatalysis was not limited to C–H oxygenations.[236] 

Accordingly, Mei later expanded the concept of palladaelectro-catalyzed C–H 

transformations with N-containing directing groups for C–H alkylations[237] or C–H 

benzoylation.[238] Moreover, in 2020, Ackermann devised the first asymmetric 

palladaelectro-catalyzed C–H olefination with a transient directing group, thus 

exemplifying full selectivity control under exceedingly mild reaction conditions.[239]  

Despite these early advances, electrocatalytic C–H activation was at the outset of this thesis 

limited to the use of costly noble palladium catalysts. In contrast, the pioneering work 

presented in Chapter 3.1 represents the first electrocatalytic C–H activation with Earth-

abundant metal catalysts.[23a, 44] Since these early findings, metallaelectro-catalyzed C–H 

activation has become an increasingly vibrant research arena with key contributions by 

Ackermann,[13a, 43, 55a, 240] Mei,[236d, 241] Lei[168, 242] and Xu,[243] among others.[244]  

1.3.2 Cobaltaelectro-Catalyzed C–H Activation 

While electrochemical cobalt-catalyzed cross-couplings,[245] reductive couplings with 

CO2
[246] or outer-sphere transformations[247] had been reported earlier,[248] cobaltaelectro-
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catalyzed C–H activations were unprecedented until the beginning of this thesis. Based on 

the pioneering work on C–O formations (cf. Chapter 3.1),[249] further cobaltaelectro-

catalyzed C–H transformations have been investigated and shall be discussed in the 

following chapter. 

At the beginning of 2018, Ackermann developed oxidative C–H/N–H annulations of 

benzamides 34 with terminal alkynes 53 as versatile coupling partners in a cobaltaelectro-

catalyzed manifold (Scheme 41a).[250] The reaction proceeded at exceedingly mild reaction 

conditions and tolerated a broad range of functional groups, including halides, ethers and 

oxidatively labile heterocycles such as thiophene. Notably, the same group later expanded 

the electrooxidative alkyne annulation for the functionalization of benzamides 62 with 

internal alkynes 6 by means of an electroreductively removable benzhydrazide auxiliary 

(Scheme 41b).[251]  

 

Scheme 41. Cobaltaelectro-catalyzed isoquinolone synthesis via C–H/N–H activation.  

Thereafter, Lei reported a similar C–H/N–H activation of benzamides 26 with 8-

aminoquinoline as the directing group (Scheme 41c). Key findings of their report included 

the use of gaseous acetylene (6c) or ethylene as the coupling partner. Also, kinetic studies 

were indicative of an overall rate-limiting anodic oxidation event. However, in direct 
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comparison with the previous reports of Ackermann, the activation of benzamides 26 

required inherently higher reaction temperatures, additional conducting salts and a divided 

cell setup.  

Later in 2018, Ackermann elegantly devised valuable cobaltaelectro-catalyzed C–H 

aminations of benzamides 34 under mild reaction conditions and the absence of chemical 

oxidants (Scheme 42).[252] Moreover, biomass-derived GVL was used as the reaction 

medium, thus enabling full resource economy. However, to overcome the low conductivity 

of the solvent, n-Bu4NPF6 was required as the conducting salt. Under the optimized reaction 

conditions, various aromatic or heteroaromatic amides 34 were aminated, using a broad 

range of secondary amines 149 as the coupling partner.  

 

Scheme 42. Cobaltaelectro-catalyzed C–H amination with H2 as the sole byproduct.  

In addition, in-depth mechanistic studies were performed. Here, headspace gas 

chromatography unambiguously confirmed the formation of hydrogen as the sole 

byproduct. Furthermore, kinetic reaction profiles were recorded by in-operando electro-

IR-spectroscopic analysis and revealed a non-rate-limiting C–H activation step. The 

proposed working mode followed previously established cobaltaelectro-catalyzed C–O 

formations (vide infra). Concurrently, Lei reported a related cobaltaelectro-catalyzed C–H 

amination of benzamides 26. To enable high yields, higher reaction temperatures of 65 °C 

and the use of a divided cell setup were required.[253]  

Based on these seminal reports, a plethora of dehydrogenative cobaltaelectro-catalyzed C–

C or C–Het formations with hydrogen as a valuable byproduct were subsequently disclosed 

(Scheme 43). Thus, Ackermann developed C–H acyloxylation of benzamides 34 with 

abundant carboxylic acids 46 (Scheme 43a).[254] Notably, biomass-derived GVL proved to 

be the optimal solvent for the electrocatalysis. Almost at the same time, Ackermann 

demonstrated the effective conversion of isocyanides 152 or gaseous carbon monoxide 

(153) for the synthesis of valuable heterocycles 154 (Scheme 43b) and 155 (Scheme 43c), 
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respectively.[255] Here, N-2-pyridylhydrazide proved to be the optimal directing group and 

allowed for ample substrate scope with high levels of functional group tolerance. 

Concurrently, Lei reported a similar cobaltaelectro-catalyzed C–H/N–H carbonylation of 

quinolineamides 26 with a divided cell setup (Scheme 43d).[256] On the basis of the 

previously reported electrooxidative alkyne annulations, Lei recently devised the synthesis 

of pharmaceutically-relevant sultams 157 under anodic cobalt catalysis (Scheme 43e). [257] 

The scalability of the approach was highlighted in a gram-scale electrocatalytic reaction 

with no loss of efficiency. The cobalta-electrocatalysis gained further momentum for the 

conversion of π-containing substrates. In this context, in 2020, Ackermann devised a C–H 

allylation of benzamides 26 with unactivated alkenes 158, delivering the corresponding 

allylated arenes 159 with high levels of chemo- and regiocontrol (Scheme 43f).[258] The 

robust cobalta-electrocatalysis proved likewise effective for regio- and chemoselective     

C–H/N–H annulation of hydrazides 62 with 1,3-diynes 70 (Scheme 43g).[259] Remarkably, 

unsymmetrical 1,3-diynes 70 were inserted with excellent levels of regiocontrol.  
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Scheme 43. Recent advances in cobaltaelectro-catalyzed C–H activation. 
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2 OBJECTIVES 

The development of novel concepts for selective metal-catalyzed C–C or C–Het bond 

forming processes is of key-importance to expand the toolbox of modern organic synthesis. 

The several past decades have been witnessed major advances toward these goals by 

implementing step- and atom economical C–H activation manifolds. But in spite of the 

indisputable advances, most of the developed approaches fall short in fulfilling sustainable 

or green synthetic criteria and rely on harsh reaction conditions, generation of undesired 

waste, and the use of precious metal catalysts. Thus, the focus of this thesis is directed 

toward the exploration of novel resource economical C–H functionalizations, with a major 

center of attention on the previously underdeveloped merger of metal-catalyzed C–H 

activation and electrosynthesis.[9, 13a, 213a, 225, 240f]  

In recent years, Earth-abundant and cost-effective cobalt complexes have emerged as viable 

catalyst for oxidative C–H activations.[23a, 44c, 55, 61] Despite major progress,[55a] these 

transformations largely suffer from the use of stoichiometric amounts of toxic metal-based 

oxidants, which contradicts the inherently green nature of the C–H activation strategy. 

Within this thesis the first cobalt-catalyzed oxidative C–H/C–H or C–H/Het–H coupling 

should be explored, employing anodic oxidation to reactivate the catalyst and cathodic 

proton reduction to generate molecular H2, which would obviate the use of sacrificial 

oxidants (Scheme 44). The envisioned concept would be highly desirable for the 

environmentally-benign formation of C–O bonds or the synthesis of heterocycles via 

straightforward C–C/C–N formation.  

 

Scheme 44. The merger of cobalt-catalyzed C–H activation and electrochemistry. 

In previous studies on cobalt-catalyzed C–H activations, the catalysis was largely reported 

to proceed via a cobalt(II/III/I) catalytic manifold.[60] Likewise, cobaltaelectro-catalyzed 
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C–H activations were postulated to follow similar pathways, albeit detailed experimental 

or computational studies were lacking.[240c, 240e, 240f] For this purpose, comprehensive 

mechanistic insights would be highly desirable to not only elucidate the working-mode of 

the existing methodologies,[249-250, 260] but also to unravel novel reactivities (Scheme 45). 

Co

Co(II/III/I)

Co(III/IV/II)

novel mechanism
facile red. el.

mild conditions

commonly proposed
cobalt-catalyzed pathway

high G barrier

 

Scheme 45.  Mechanistic insights into cobaltaelectro-catalyzed C–H activation.  

Electrochemical synthesis offers the possibility to directly utilize electrical power and to 

transform the harvested energy in value-added chemical products.[261] This concept 

represents an ideal scenario for a sustainable energy economy since unprofitable energy 

conversions from electricity to chemical charge carriers can be circumvented.[13a] 

Furthermore, a major environmental drawback of metal-catalyzed C–H activation is 

reflected in the reaction media of the catalysis as commonly toxic halogenated organic 

solvents are used.[3a, 4e, 4i, 45, 262] Thus, in a proof-of-concept study, a cobaltaelectro-

catalyzed C–H activation was intended to be powered by renewable energy sources and 

performed within a biomass-derived reaction medium to enable full resource economy 

(Scheme 46).  

 

Scheme 46. Cobalta-electrocatalysis powered by renewable energy sources and 
performed in biomass-derived solvents.  
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Electroanalytical methods represent a powerful tool for the elucidation of short-lived redox-

active reaction intermediates.[263] During the course of this thesis, a selection of these tools 

such as cyclic voltammetry or rotating disc electrode experiments should be utilized to 

examine the reaction mechanism of various organic electrocatalytic transformations 

(Scheme 47).  

 

Scheme 47. Modern electroanalytical tools for reaction mechanism elucidation. 

Efficient synthetic methods toward direct C–N formations are in strong demand.[11h] In this 

context, bioinspired manganese(V)oxo complexes have proven to be particularly powerful 

for various undirected C(sp3)–H functionalizations, such as C–H azidation reactions.[182d, 

196a, 198] However, these methodologies unfortunately require the employment of sacrificial 

oxidants, such as iodosobenzene, to generate the high-valent oxo species, thus resulting in 

undesired waste-products and low chemoselectivity due to competing C–H oxygenation 

reactions.[24c, 264] Here, the exploration of an electrochemical method for direct manganese-

catalyzed C–H functionalization of otherwise unactivitated C(sp3)–H bonds would be 

highly desirable and of prime importance for inter alia late-stage drug diversification 

(Scheme 48). 

 

Scheme 48. Manganaelectro-catalyzed C–H azidation of unactivated C(sp3)–H bonds. 
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3 RESULTS AND DISCUSSION 

3.1 Cobaltaelectro-Catalyzed C–H Oxygenation 

There is a high demand for novel synthetic strategies to facilitate the construction of 

C(sp2)–O bonds owing to their utmost importance as structural motif in a variety of 

pharmaceuticals and functional materials.[265] Traditional cross-couplings by palladium[266] 

or copper[267] catalysis have been established as versatile tools for the synthesis of aryl 

ethers, yet rely on pre-functionalized substrates, which inevitably result in undesired 

amounts of byproducts and solvent waste. In contrast, the direct oxidative coupling of 

ubiquitous C(sp2)–H and O–H bonds would be highly desirable since pre-functionalization 

of the substrates could be entirely avoided. Despite major progress, previously developed 

oxidative C–H/O–H couplings commonly exploit stoichiometric amounts of toxic and cost-

intensive chemical oxidants, such as copper(II) or silver(I) salts, to reinitiate the catalysis[99]  

and often rely on precious metal catalysts.[14f, 145i, 268] Based on studies on palladium-

catalyzed C–H transformations under electrochemical conditions,[222, 226, 232] we envisioned 

to establish the first electrooxidative C–H activation with an Earth-abundant metal 

catalyst[23a] such as cobalt,[44c, 55b] with molecular hydrogen as the sole side product.   

Even though I have initiated the project, it is particularly noteworthy that the development 

and execution of the following electrocatalytic experiments were performed together with 

Dr. N. Sauermann and both authors contributed equally to the work.[249] Hence, larger parts 

of the presented project[249] have been previously published in his doctoral thesis.[269]  

3.1.1 Optimization Studies for the Cobaltaelectro-Catalyzed C–H Oxygenation 

With the general working hypothesis in mind, various oxidative cobalt-catalyzed C–H 

activations were evaluated.[55a] Here, particularly arenes with electron-deficient bidentate 

amide directing groups[11b] were chosen as the model substrate to stabilize the cobalt 

intermediates[99] and to avoid undesired direct anodic amide oxidation.[270] Furthermore, 

alcoholic solvents were envisioned to serve as the ideal reaction medium for the 

metallaelectro-catalyzed C–H transformation, due to its protic nature and high 

conductivity.[271] Inert electrode materials, such as platinum or graphite, were chosen as the 

anode and cathode material,[272] respectively, to avoid electrode fouling under the 
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electrolysis conditions and in case of platinum, to facilitate the hydrogen evolution reaction 

(HER).[273]  

After initial successes for the cobaltaelectro-catalyzed C–H oxygenations with benzamide 

34a and readily available ethanol (35a), it was found that the electrochemical conditions, 

inter alia electrolysis cell dimensions,[274] electrode materials as well as the mode of 

electrolysis had a strong impact on the reaction outcome (Table 1).[43] Thus, by the use of 

an undivided electrolysis cell (cf. Figure 77), constant potential electrolysis at 2.0 V vs. 

Ag/Ag+ and two platinum electrodes, product 36aa was isolated in 18% yield and 

significant metal-deposition was observed on the cathode (entry 1). To avoid 

electrodeposition of the cobalt catalyst, a H-type divided cell was developed, based on 

previously reported designs.[275] With the custom-made divided setup in hand (cf. Figure 

78), the C–H alkoxylation of benzamide 34a was achieved in 51% yield (entry 2).  

Table 1. Preliminary results for the cobaltaelectro-catalyzed C–H oxygenation.[a] 

 

Entry Mode of Electrolysis Anode Cathode T [°C] Yield [%] 

1 CPE (2.0 V vs. Ag/Ag+) Pt Pt 60 18[b]  

2 CPE (2.0 V vs. Ag/Ag+) Pt Pt 60 51 

3 CPE (2.0 V vs. Ag/Ag+) Pt Pt 23 48 

4 CPE (1.4 V vs. Ag/Ag+) Pt Pt 23 40 

5 CPE (2.0 V vs. Ag/Ag+) Pt Pt 23 24[c] 

6 CPE (2.0 V vs. Ag/Ag+) GF Pt 23 65[d] 

7 CCE at 6 mA GF Pt 23 65 

8 CCE at 8 mA GF Pt 23 58[c] 

[a] Reaction conditions: 34a (0.50 mmol), Co(OAc)2·4H2O (20 mol %), NaOPiv (2.00 equiv in each half-
cell), EtOH (35a) (7.0 mL in each half-cell), T [°C], electrolysis, 16 h, graphite felt anode, Pt-plate cathode, 
divided cell. Isolated yields are given. [b] Undivided cell, EtOH (35a) (14 mL). [c] Electrolysis for 6 h. [d] 
Reaction was performed by Dr. N. Sauermann.  

Notably, decreasing the reaction temperature from 60 °C to 23 °C resulted in negligible 

differences in the catalytic efficacy (entry 3), while lowering the applied potential or the 

reaction time proved less efficient (entries 4 and 5). In contrast, by changing the anode 



Results and Discussion   53 
 

material from platinum to graphite felt allowed for significantly higher catalytic efficacy 

(entry 6). Likewise, the more user-friendly constant current electrolysis was found to 

generate aryl ether 36aa in comparable yields (entries 7 and 8). Additionally, several 

repetitions of entries 6 and 7 revealed that the constant current electrolysis was more robust 

in terms of reproducibility and was therefore favored for further optimization studies.  

Encouraged by these preliminary findings, various reaction parameters were evaluated for 

the cobaltaelectro-catalyzed C–H oxygenation in a divided cell setup (Table 2). For the 

screening of different carboxylate additives, Dr. N. Sauermann observed that the 

countercation did not have a significant influence on the reaction outcome,[269] whereas 

NaOPiv was found to outperform the sterically less demanding acetate salts (entry 2). In 

contrast, carbonate or trifluoroacetate bases led to a significant drop in reactivity (entries 3 

and 4).  The optimization of different cobalt(II) catalysts revealed that Co(OAc)2·4H2O was 

indeed the best catalyst for the electrocatalytic manifold (entries 5–7), while no conversion 

was observed when copper(II) salts were employed as the catalyst (entry 8).[268b] 

Furthermore, increasing the reaction temperature under the optimized reaction conditions 

or lowering the catalyst loading did not improve the product formation (entries 9 –11). The 

reversal of the polarity on the electrodes highlighted the essential role of the platinum 

cathode for the HER (entry 12). Additional control experiments verified that the cobalta-

electrocatalysis was not viable in the absence of either electrical current, base, or cobalt 

catalyst (entries 13–15). Although the preliminary studies in undivided electrolysis cells 

did not lead to a satisfactory reaction outcome (cf. Table 1, entry 1), a more standardized 

undivided cell setup was later developed by a subsequent extensive cell design (cf. Figures 

79–82).[274] Notable contributions for the design and construction have been made by Dr. 

N. Sauermann, Dr. C. Tian, Dr. L. Finger, M. Stangier and the mechanical workshop of 

the chemistry department at the University of Göttingen. Here, important features of the 

revised electrolysis cell included a fixed and reduced inter-electrode distance as well as a 

decreased cell volume. These key characteristics allowed for a reduction in cell resistance 

and according to Ohm’s law, a lower applied potential to ensure the desired constant 

current. When using the novel undivided cell for the cobaltaelectro-catalyzed C–H 

oxygenation, product 36aa was obtained in 70% yield under slightly modified reaction 

conditions (entry 16).   
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Table 2. Optimization studies for the cobaltaelectro-catalyzed C–H oxygenation.[a] 

 

Entry [TM] Additive T [°] Yield [%] 

1 Co(OAc)2·4H2O NaOAc 23 58 

2 Co(OAc)2·4H2O NaOPiv 23 75 

3 Co(OAc)2·4H2O Na2CO3 23 34 

4 Co(OAc)2·4H2O NaO2CCF3 23 traces 

5 Co(acac)2 NaOAc 23 44 

6 CoCl2 NaOPiv 23 64 

7 CoBr2 NaOPiv 23 55 

8 Cu(OAc)2 NaOPiv 23 --- 

9 Co(OAc)2·4H2O NaOPiv 40 68
[b]

 

10 Co(OAc)2·4H2O NaOPiv 60 58
[c]

 

11 Co(OAc)2·4H2O NaOPiv 23 26
[d]

 

12 Co(OAc)2·4H2O NaOPiv 23 traces
[e]

 

13 Co(OAc)2·4H2O NaOPiv 23 ---[f] 

14 Co(OAc)2·4H2O --- 23 --- 

15 --- NaOPiv 23 --- 

16 Co(OAc)2·4H2O NaOPiv 23 70
[g]

 

[a] Reaction conditions: 34a (0.50 mmol), [TM] (20 mol %), additive (2.00 equiv in each half-cell), EtOH 
(35a) (7.0 mL in each half-cell), T, 8.0 mA, 6 h, graphite felt anode, Pt-plate cathode, divided cell. Isolated 
yields are given. [b] 40 °C. [c] 60 °C. [e] Co(OAc)2·4H2O (10 mol %). [f] Graphite felt cathode, Pt-plate 
anode. [g] Without current. [g] Undivided cell, 16 h, 4 mA. 

The robustness of the protocol was further demonstrated conducting the electrolysis with 

the commercially available electrosynthesis kit ElectraSyn 2.0 from the IKA company 

(Table 3 and Figure 83). Here, a carbon electrode material other than graphite felt proved 

to be equally viable to promote the cobalta-electrocatalysis in a user-friendly undivided cell 

setup (entries 1 and 2). However, the use of more cost-efficient nickel cathodes resulted in 

a diminished reaction outcome (entry 3).  
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Table 3. Cobaltaelectro-catalyzed C–H oxygenation with IKA ElectraSyn 2.0.[a]  

 

Entry Anode Cathode Yield [%] 

1 RVC Pt 68 

2 GF Pt 69 

3 RVC Ni 38 

[a] Reaction conditions: 34a (0.50 mmol), Co(OAc)2·4H2O (20 mol %), NaOPiv (2.00 equiv), EtOH (35a) 
(5.0 mL), 25 °C, 4.0 mA, 16 h, undivided cell (10 mL). Isolated yields are given. Platinum-plated electrodes. 
Ni = nickel foam electrode. 

In spite of the success with the undivided electrolysis cells, the subsequent co-solvent 

optimization studies were completed with the more efficient divided cell setup (Table 4).  

Table 4. Evaluation of the co-solvent.[a] 

 

Entry Solvent Ratio (Solvent/EtOH) Yield [%] 

1 EtOH --- 75 

2 MeCN 16:1 12 

3 MeCN 1:1 19 

4 DMSO 16:1 --- 

5 DMSO 1:1 --- 

6 CH2Cl2 1:1 --- 

[a] Reaction conditions: 34a (0.50 mmol), Co(OAc)2·4H2O (20 mol %), NaOPiv (2.00 equiv in each half-
cell), solvent (7.0 mL in each half-cell), 23 °C, 8.0 mA, 6 h, graphite felt anode, Pt-plate cathode, divided 
cell. Isolated yields are given.   

The investigation of a suitable co-solvent to decrease the used equivalents of the alcohol 

coupling partner 35 proved to be challenging (entries 1–6).[269] Thus, different mixtures of 

MeCN and 35a were found to be tolerated under the standard conditions, however, aryl 
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ether 36aa was isolated in significantly reduced yields (entries 2 and 3). Unfortunately, 

other co-solvents failed to serve as a reaction medium for the electrocatalysis (entries 4–6). 

Next, different N-substituted benzamides 26, 34, 64, 162–167 were tested as the directing 

group to chelate the cobalt catalyst, and thus to guide the C–H activation event (Table 5).   

Table 5. Studies on the directing group effect for the C–H oxygenation.[a]  

 

Entry Benzamide  Product  
Yield 
[%] 

1 

 

34a 

 

36aa 75 

2 

 

26a 

 

161aa 36 

3 

 

162a 

 

163aa --- 

4 

 

164a 

 

165aa --- 

5 N
H

H

O

N
 

64a 

 

166aa --- 

6 

 

167a 

 

168aa --- 

[a] Reaction conditions: Benzamide (0.50 mmol), Co(OAc)2·4H2O (20 mol %), NaOPiv (2.00 equiv in each 
half-cell), EtOH (35a) (7.0 mL in each half-cell), 23 °C, 8.0 mA, 6 h, graphite felt anode, Pt-plate cathode, 
divided cell. Isolated yields are given. 
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Here, substrate 34a bearing a Lewis-basic pyridine-N-oxide group was found to promote 

the cobaltaelectro-catalyzed C–H oxygenation in high yield (entry 1). In addition, the 

commonly employed 8-aminoquinoline directing group[96a] enabled electrochemical C–H 

oxygenation in moderate yield (entry 2). Other structural motifs, including monodentate N-

methylbenzamide (167a) failed to provide any alkoxylated products (entries 3–6), thus 

showcasing the unique features of the bidentate scaffold of 34a (entry 6).[269]  

3.1.2 Substrate Scope of the Cobaltaelectro-Catalyzed C–H Alkoxylation 

With the optimized reaction conditions identified, the robustness of the first 

cobaltaelectro-catalyzed C–H activation of benzamides 34 was probed (Table 6).  

Table 6. Scope of cobaltaelectro-catalyzed C–H oxygenation of benzamides 34.[a]  

 

Entry Benzamide 34 Product 36 
Yield 
[%] 

1 

 

34a 

 

36aa 75 

2 

 

34b 

 

36ba 62 

3 

 

34c 

 

36ca 51 

4 

 

34d 

 

36da 74 

5 N
H

O

H

PyO

MeS  

34e N
H

O

OEt

PyO

MeS  

36ea 66 
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6 

 

34f 

 

36fa 61 

7 

 

34g 

 

36ga 43 

8 

 

34h 

 

36ha 53 

9 

 

34i 

 

36ia 51 

[a] Reaction conditions: Benzamide 34 (0.50 mmol), Co(OAc)2·4H2O (20 mol %), NaOPiv (2.00 equiv in 
each half-cell), EtOH (35a) (7.0 mL in each half-cell), 23 °C, 8 mA, 6 h, graphite felt anode, Pt-plate cathode, 
divided cell. Isolated yields are given. 

Thus, various substituents in the C4-position of the benzamide 34 were well tolerated, 

including electron-donating methyl or methoxy groups, as well as the electron-withdrawing 

trifluoromethyl group (entries 1–4). Notably, even oxidatively sensitive thioether 34e, as 

well as phenyl and iodo substituents were compatible under the electrooxidative reaction 

conditions and delivered the desired oxygenated products in moderate to good yields with 

excellent chemoselectivities (entries 5–7). Moreover, sterically demanding substituents in 

the C3-position were likewise tolerated, furnishing halogenated aryl ethers 36ha and 36ia 

as the sole products (entries 8 and 9). Furthermore, Dr. N. Sauermann tested a wealth of 

other substituents in the meta and para-position of benzamide 34, including amines or 

enolizable ketones with overall moderate to good yields of the desired products 36. 

However, ortho-substituted benzamides 34 were generally not tolerated and remained 

unaffected under the reaction conditions (vide infra).[269]   

In addition to various benzamides 34, the versatility of the electrocatalytic manifold was 

further illustrated by the successful conversion of different alcohols 35 (Table 7). Here, 

methanol (35b) or propanol (35c) proved to be equally viable (entries 1–3). However, the 

functionalization of electron deficient TFE (35d) turned out to be more challenging under 

the standard conditions and furnished the corresponding product 36ad in a reduced yield 

(entry 3). Nonetheless, the reaction of fluorinated alcohol 35d was later reoptimized by Dr. 

N. Sauermann to enable the synthesis of 36ad in 62% yield at a slightly elevated reaction 

temperature of 60 °C. Furthermore, he was able to extend the scope of 35 to oxidation- 



Results and Discussion   59 
 

sensitive benzylic alcohols or even more complex alcoholic scaffolds, such as 

citronellol.[269]  

Table 7. Scope of cobaltaelectro-catalyzed C–H oxygenation of alcohols 35.[a]  

 

Entry Alcohol 35 Product 36 
Yield 
[%] 

1 MeOH 35b 

 

36ab 71 

2 n-PrOH 35c 

 

36ac 65[b] 

3 CF3CH2OH 35d 

 

36ad 40 

[a] Reaction conditions: Benzamide 34a (0.50 mmol), Co(OAc)2·4H2O (20 mol %), NaOPiv (2.00 equiv in 
each half-cell), alcohol 35 (7.0 mL, in each half-cell), 23 °C, 8 mA, 6 h, graphite felt anode, Pt-plate cathode, 
undivided cell. Isolated yields are given. [b] Addition of n-Bu4NOAc (1.00 mmol in each half-cell).  

Additionally, along other limitations reported by Dr. N. Sauermann,[269]  allylic alcohol 35e 

or secondary alcohols 35f and 35g failed to furnish the desired oxidative C–H alkoxylated 

products 36 (Scheme 49). Based on previous reports on electrochemical phenol coupling 

reactions,[276] differently substituted aromatic alcohol derivatives were tested for the 

cobaltaelectro-catalyzed C–H oxygenation. Unfortunately, no desired biaryl ether 36 

formation was observed.  
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Scheme 49. Limitations of the cobaltaelectro-catalyzed C–H alkoxylation. 

Besides the applicability of the cobalta-electrocatalysis toward the resource economical 

alkoxylation of arenes 34, also more challenging[99] alkenes 37 were tested (Table 8). 

Interestingly, after extensive experimentation, it was found that an undivided cell setup and 

lower constant current conditions were beneficial to convert acrylic amides 37 in high 

yields and selectivities into the desired enol ethers 38.  

Table 8. Scope of cobaltaelectro-catalyzed C–H oxygenation of alkenes 37.[a]  

 

Entry Alkene 37 Product 38 
Yield 
[%] 

1 

 

37a 

 

38aa 69 

2 

 

37a 

 

38ab 62 
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3 

 

37b 

 

38ba 72 

4 

 

37c 

 

38cb 62 

5 

 

37d 

 

38da 53 

6 

 

37d 

 

38db 71 

7 

 

37e 

 

38eb traces 

[a] Reaction conditions: Alkene 37 (0.25 mmol), Co(OAc)2·4H2O (20 mol %), NaOPiv (2.00 equiv in each 
half-cell), alcohol 35 (7.0 mL), 23 °C, 4 mA, 6 h, graphite felt anode, Pt-plate cathode, undivided cell. 
Isolated yields are given. 

Thus, both ethanol (35a) and methanol (35b) were found to be suitable reactants for the 

alkoxylation of alkene 37a (entries 1 and 2). Also, more rigid internal alkene 37b and 

diphenyl substituted alkene 37c were efficiently converted into the corresponding enol 

ethers 38ba and 38ca, respectively (entries 3 and 4). Asymmetrically substituted acryl 

amide 37d was likewise oxygenated to the corresponding ethyl- 38da or methyl ethers 

38db (entries 5 and 6). In this particular case, methanol (35b) was found to outperform 

ethanol (35a) as the coupling partner in terms of product yield. This is likely due to the 

increased conductivity of methanol (35b), which resulted in a decreased cell resistance and 

thus in lower working potentials. Interestingly, when using the trans-cinnamamide 

derivative 37e for the cobalta-electrocatalyzed C–H methoxylation, only traces of product 

38eb were detected (entry 7).  

3.1.3 Mechanistic Studies for the Cobaltaelectro-Catalyzed C–H Oxygenation 

The mechanistic studies were commenced by detailed electrochemical analysis of the 

redox properties of the reaction components. Cyclic voltammetry of substrate 34a in MeOH 
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(35b) (n-Bu4NPF6, 0.1 M) as the electrolyte (Figure 3, red line), revealed an irreversible 

oxidation at Ep,ox = 1.51 V vs. SCE. In contrast, oxidation of a mixture of Co(OAc)2·4H2O 

and NaOPiv occurred at a significantly lower anodic oxidation event at Ep,ox = 1.19 V vs. 

SCE (blue line). The irreversible redox event can be assigned to the oxidation of the 

cobalt(II) complex to the corresponding cobalt(III) carboxylate species.[277] In the presence 

of substrate 34a, a considerable prewave formation at approximately 0.70 V vs. SCE was 

detected, thus being indicative of a precatalyst formation (green line).[278]  

 

Figure 3.  Cyclic voltammograms at 25 °C and 100 mV·s–1 using MeOH (35b) and 
n-Bu4NPF6 (0.1 M) as the electrolyte and a GC working electrode; 
concentration of substrates 34 1.0 mM (NaOPiv 4.0 mM). (black) blank; 
(red) 34a; (blue) Co(OAc)2∙4H2O and NaOPiv; (green) Co(OAc)2∙4H2O, 
NaOPiv and 34a. 

When using MeCN (n-Bu4NPF6, 0.1 M) as the electrolyte instead of MeOH (35b) (Figure 

4), similar redox properties were found for substrate 34a and for the cobalt(II) precatalyst 

(red and blue line). However, several redox events were detected for a mixture of 34a, 

NaOPiv and the cobalt(II) salt (green line). Notably, a significant irreversible current 

response at Ep,ox = 0.70 V vs. SCE was indicative of the formation of a novel cobalt 

complex. Interestingly, upon addition of different amounts of the reactant EtOH (35a), the 

current response was diminished, and a new irreversible oxidation event emerged at a 

potential of approximately 1.22 V vs. SCE (purple, orange and magenta lines), thus being 
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suggestive of the generation and subsequent consumption of a catalytically relevant cobalt 

species.[249, 269]  

 

Figure 4.  Cyclic voltammograms at 25 °C and 100 mV·s–1 using MeCN and 
n-Bu4NPF6 (0.1 M) as the electrolyte and a GC working electrode; 
concentration of substrates 34 1.0 mM (NaOPiv 4.0 mM). (black) blank; 
(red) 34a; (blue) Co(OAc)2∙4H2O and NaOPiv; (green) Co(OAc)2∙4H2O, 
NaOPiv and 34a; (purple) as green with 35a (1.0 mM); (orange) as green 
with 35a (2.0 mM); (magenta) as green with 35a (3.0 mM). 

Furthermore, ortho-substituted substrates, such as 34s, were found to be unreactive under 

the electrocatalytic reaction conditions. Likewise, the cobaltaelectro-catalyzed C–H 

oxygenation selectively provided the mono-functionalized benzamides 36 and no 

difunctionalization was observed, even though the obtained aryl ethers 36 are more 

electron-rich compared to the substrates 34 and overoxidation could become predominant. 

Hence, additional CV experiments were performed and revealed that substrate 34s (1.71 V) 

or products 36ab (1.82 V) and 36db (1.76 V) in fact possess very similar oxidation 

potentials when compared to model substrate 34a (1.51 V) (Figure 5). Consequently, these 

findings indicated that unfavorable steric interactions within organometallic cobalt 

intermediates 169 were likely responsible for the high levels of chemoselectivity (Scheme 

50).  
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Figure 5.  Cyclic voltammograms at 25 °C and 100 mV·s–1 using MeOH and 
n-Bu4NPF6 (0.1 M) as the electrolyte and a GC working electrode; 
concentration of substrates 4.0 mM. (black) blank; (red) 34s; (orange) 36ab; 
(dark blue) 36db. 

 

Scheme 50. Proposed model for the observed chemoselectivity.  

Given the unique features of the first cobaltaelectro-catalyzed C–H activation, additional 

mechanistic studies were performed by Dr. N. Sauermann to unravel its mode of action.[249, 

269] To this end, isotopic labeling studies were suggestive of an irreversible C–H metalation 

event since no significant H/D scrambling was observed. Nonetheless, kinetic isotope effect 

(KIE) studies provided strong support for a facile and non-rate-determining C–H cleavage 

step. In agreement with the findings obtained during the substrate scope (cf. Table 6, entries 
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2 and 3), intermolecular competition experiments showed that electron-rich benzamides, 

such as 34b, were inherently more reactive than electron-poor substrates, such as 34c. 

Similar findings were obtained for intermolecular competition reactions with MeOH (35b) 

and TFE (35c).  

On the basis of the mechanistic studies, a plausible catalytic cycle was proposed (Scheme 

51). Initial anodic oxidation of the cobalt(II) salt forms the catalytically competent 

cobalt(III) species 170. Thereafter, coordination of substrate 34 occurs, followed by 

irreversible C–H activation via a base-assisted internal substitution (BIES) manifold.[35, 41] 

Thereafter, the five-membered cobalta(III)cycle 171 undergoes reductive elimination to 

form a cobalt(I) complex 172 and the desired C–O bond with excellent levels of positional 

control. Subsequent proto-demetalation releases the C–H oxygenated product 36. Finally, 

anodic oxidation of the reduced cobalt(I) species 173 regenerates the catalytically active 

cobalt(III) catalyst 170 and cathodic HER closes the electrochemical cycle.  

 

Scheme 51. Proposed catalytic cycle for the cobaltaelectro-catalyzed C–H oxygenation. 

It is noteworthy that at this stage, single electron transfer between benzamide 34 and a 

cobalt(III) species as was previously proposed by Niu, Wei[100] and Song,[99] could not be 

fully ruled out (vide infra).[249, 269]  
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3.2 Cobaltaelectro-Catalyzed C–H Activation for Allene 

Annulations 

Allenes, a subclass of cumulenes, have attracted considerable attention as versatile 

building blocks for organic syntheses during the last two decades.[132] At the same time,  

C–H activation has proven as a powerful strategy for step-economical molecular assembly 

toward molecular complexity within a single reaction step.[11q, 21, 166c, 279] In this context, the 

unique reactivity of allenes, compared to their alkenyl or alkynyl complements,[132d] renders 

the allenylic structural motive a particularly versatile substrate class for intermolecular     

C–H annulation reactions.[57] Despite major advances with Earth-abundant metals,[110, 133, 

135-140, 280] most of the reported C–H transformations with allenes rely on precious metal 

catalyst.[81d, 132a, 132b, 134, 281] Furthermore, all developed oxidative C–H activation reactions 

with allenes require stoichiometric amounts of chemical oxidants such as silver(I) or copper 

salts. However, until this study,[260] allenes were only rarely presented in electrochemical 

transformations[282] and are fully unprecedented within metalla-electrocatalysis. Based on 

the pioneering work for cobaltaelectro-catalyzed C–H oxygenation[249] and alkyne 

annulation reactions,[250] an electrochemical C–H annulation protocol was envisioned with 

allenes as the coupling partner. A major challenge here is the control of regioselectivity for 

the desired electrocatalytic C–H transformation (Scheme 52).[283] 
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Scheme 52. The quest for selectivity; multiple insertion products are possible for the 
cobaltaelectro-catalyzed C–H activation with allenes 86.  
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3.2.1 Optimization Studies 

The study was commenced by exploring various reaction conditions for the desired 

cobaltaelectro-catalyzed C–H/N–H functionalization of benzamide 34a and allene 75a in a 

user-friendly undivided cell setup with a platinum plate cathode and a graphite felt (GF) 

anode. Initially, different cobalt sources were tested as the catalyst (Table 9) with TFE as 

the solvent and NaOPiv as the additive.[112, 133] The reaction proceeded in good yield and 

high selectivity when Co(OAc)2∙4H2O was used as the precatalyst (entry 1). Other 

cobalt(II) or cobalt(III) sources proved less efficient (entries 2–4). Interestingly, a 

pentamethylcyclopentadienyl cobalt(III) complex furnished isoquinolone 176aa in 60% 

yield (entry 5). Notably, this represents the first and thus far sole report of an 

electrocatalytic C–H activation with a Cp*cobalt(III) catalyst.[55a]  

Table 9. Catalyst optimization.[a] 

 

Entry [Co] Yield [%] 

1 Co(OAc)2∙4H2O  82 (72) 

2 Co(acac)2 50 

3 Co(acac)3 40 

4 CoBr2 70 

5 [Cp*Co(CO)I2] 62 (60) 

[a] Reaction conditions: Undivided cell, 34a (0.30 mmol), 75a (0.36 mmol), [Co] (20 mol %), NaOPiv 
(2.00 equiv), TFE (5.0 mL), 23 °C, 2.0 mA, 9 h, graphite felt anode, Pt-plate cathode. Conversion of 176aa 
determined by 1H-NMR analysis with 1,3,5-trimethoxybenzene as an internal standard is given. Isolated 
yields are shown in parentheses.   

Encouraged by the preliminary optimization results, different reaction media were tested 

for the oxidative cobalt-catalyzed C–H annulation reaction (Table 10). A variety of solvents 

were found to be tolerated, including protic solvents, such as benign MeOH or EtOH, 

delivering the desired isoquinolone 176aa with similar levels of efficiency, compared to 

harmful TFE (entries 1–3). When aprotic solvents were used, an additional conducting salt 
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was required to enable sufficient conductivity (entries 4–6). Acetic acid failed to furnish 

product 176aa in synthetically useful yields (entry 7).  

Table 10. Optimization of the solvent.[a] 

 

Entry Solvent Yield [%] 

1 TFE  82 (72)[b] 

2 MeOH  78 (75)[b] 

3 EtOH 74[b] 

4 MeCN 52[c] 

5 CH2Cl2 73[c] 

6 THF 69[c] 

7 HOAc 9 

[a] Reaction conditions: Undivided cell, 34a (0.30 mmol), 75a (0.36 mmol), Co(OAc)2∙4H2O (20 mol %), 
NaOPiv (2.00 equiv), solvent (5.0 mL), 23 °C, 2.0 mA, 9 h, graphite felt anode, Pt-plate cathode. Conversion 
of 176aa determined by 1H-NMR analysis with 1,3,5-trimethoxybenzene as an internal standard is given. 
Isolated yields are shown in parentheses. [b] Traces of C–H oxygenated product 36 was detected. [c] Addition 
of n-Bu4NPF6 (1.0 equiv) as supporting electrolyte. 

Thereafter, different additives were evaluated for the cobaltaelectro-catalyzed C–H 

activation (Table 11). Similar to previous reports on cobaltaelectro-catalyzed C–H 

oxygenation[249] or alkyne annulations,[250] NaOPiv proved to be the ideal additive, 

outcompeting other carboxylate salts (entries 1–3).[23b, 34a, 284] When triflate salts were 

employed, 176aa was formed with decreased efficacy (entry 4) and carbonate or phosphate 

salts failed to facilitate the desired C–H transformation (entries 5 and 6).  
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Table 11. Additive effects.[a] 

 

Entry Additive Yield [%] 

1 NaOPiv  78 (75) 

2 NaOAc 71 (70) 

3 KOAc 76 (73) 

4 KOTf 37 

5 Na2CO3 --- 

6 K3PO4 --- 

[a] Reaction conditions: Undivided cell, 34a (0.30 mmol), 75a (0.36 mmol), Co(OAc)2∙4H2O (20 mol %), 
additive (2.00 equiv), MeOH (5.0 mL), 23 °C, 2.0 mA, 9 h, graphite felt anode, Pt-plate cathode. Conversion 
of 176aa determined by 1H-NMR analysis with 1,3,5-trimethoxybenzene as an internal standard is given. 
Isolated yields are shown in parentheses.  

Finally, the electrolysis parameters, reaction temperature, reaction time and catalyst loading 

were optimized (Table 12). Changing the reaction time from 9 h (Q·mol–1 = 2.24 F) to 15 h 

(Q·mol–1 = 3.73 F) led to decreased yields of 176aa (entries 1–2), which can be rationalized 

by possible overoxidation of the product (vide infra). Likewise, an increased constant 

current of 5 mA (Q·mol–1 = 5.60 F) resulted in diminished yields (entry 3), as well as a 

constant current of 4 mA (Q·mol–1 = 2.24 F) along with a reduced reaction time (entry 4). 

A platinum anode failed to promote the electrocatalysis (entry 5). Fortunately, a slight 

increase of the reaction temperature to 40 °C (entry 6) resulted in superior formation of 

isoquinolone 176aa and even allowed a significant reduction of catalyst loading without 

notable losses in the catalyst’s efficacy (entry 7 and 8). Additionally, when the 

concentration of the benzamide 34a was raised to 0.1 M, while maintaining the overall 

applied charge (Q·mol–1 = 2.24 F), almost quantitative yield of the desired product 176aa 

was obtained (entry 9). Mild constant potential electrolysis at potentials as low as 1.3 V vs. 

Ag/Ag+ proved equally viable (entry 10). Remarkably, in contrast to electrocatalysis with 

precious metal catalyst such as palladium,[226, 232, 236a, 236c, 236d] the cobaltaelectro-catalyzed 

C–H/N–H annulation reaction did not require the use of a more laborious divided-cell setup 



70 Results and Discussion 

(entry 11). Control experiments verified the essential role of the cobalt catalyst and 

electricity (entries 12 and 13). Finally, the cobalta-electrocatalysis was performed with a 

standardized electrochemistry kit, ElectraSyn 2.0 from IKA. The reaction proceeded equally 

well (entry 14), although reticulated vitreous carbon (RVC) was used as the anode material.  

Table 12. Optimization of various reaction parameters.[a] 

 

Entry [Co] [mol %] Current [mA] T [%] Time [h] Yield [%] 

1 20 2 23 9 78 (75) 

2 20 2 23 15  65 

3 20 5 23 9  52 

4 20 4 23 4.5 49 

5 20 2 23 15 3[b] 

6 20 2 40 9 86 

7 10 2 40 9 85 (79) 

8 10 2 23 9 48 

9 10 2 40 15 92 (91)[c] 

10 10 1.30 V 40 12 91[c, d] 

11 10 2 40 9 55[e] 

12 --- 2 40 9 --- 

13 10 --- 40 15 ---[f] 

14 10 2 23 9 81 (79)[g] 

[a] Reaction conditions: Undivided cell, 34a (0.30 mmol), 75a (0.36 mmol), [Co] (xx mol %), NaOPiv 
(2.00 equiv), MeOH (5.0 mL), T [°C], constant current [mA], time, graphite felt anode, Pt-plate cathode. 
Isolated yields are given. Conversion of 176aa determined by 1H-NMR analysis with 1,3,5-
trimethoxybenzene as an internal standard is given. Isolated yields are shown in parentheses. [b] Pt-plate 
anode and cathode. [c] 34a (0.50 mmol). [d] Constant potential electrolysis at 1.30 V vs. Ag/Ag+. [e] Divided 
cell. [f] N2 Atmosphere. [g] Performed with IKA ElectraSyn 2.0, RVC anode, Pt cathode. 

Utilizing the optimized conditions, different N-substitution patterns were probed for the 

desired cobaltaelectro-catalyzed C–H/N–H allene annulation (Table 13). It was found that 
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similar to the electrochemical cobalt-catalyzed C–H oxygenation reactions (vide supra), 

pyridine-N-oxide served as the ideal directing group within the cobaltaelectro regime (entry 

1). In contrast, commonly employed 8-aminoquinoline derivative 26a[133, 285] did not 

furnish the desired annulated product 76aa under the optimized conditions. However, when 

the reaction was performed with TFE as the solvent, 76aa was isolated in moderate yields 

(entry 2). Notably, also the electroreductive removable[251] hydrazide directing group[120, 

140] 62a proved to be viable under the exceedingly mild reaction conditions (entry 3) 

providing product 177aa in excellent yields. The scope of this reaction was later extended 

in an independent work by Mei and Ackermann.[286] Here, the authors used slightly 

modified reaction conditions with TFE as the solvent, NaOAc as the additive and the 

electrocatalysis was performed under an atmosphere of argon.   

Table 13. Studies on the N-substitution pattern for the C–H/N–H activation.[a]  

 

Entry Benzamide  Product  
Yield 
[%] 

1 

 

34a 

 

176aa 91 

2 

 

26a 

 

76aa 
traces 
(42[b]) 

3 

 

62a 

 

177aa 86 
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4 

 

162a 

 

178aa --- 

5 

 

164a 

 

179aa --- 

6 

 

180a 

 

181aa --- 

[a] Reaction conditions: Undivided cell, benzamide (0.50 mmol), allene 75a (0.60 mmol), Co(OAc)2∙4H2O 
(10 mol %), NaOPiv (2.00 equiv), MeOH (5.0 mL), 40 °C, 2.0 mA, 15 h, graphite felt anode, Pt-plate 
cathode. Isolated yields are given. [b] Reaction was performed in TFE (5.0 mL). 

3.2.2 Versatility of the Cobaltaelectro-Catalyzed C–H/N–H Allene Annulations 

With the optimized conditions in hand, the robustness of the cobaltaelectro-catalyzed 

C–H/N–H allene annulation was evaluated through an extensive substrate scope (Table 14). 

Table 14. Substrate scope of benzamides 34 with allene 75a.[a]  

 

Entry Benzamide 34 Product 176 
Yield 
[%] 

1 

 

34a 

 

176aa 91 
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2 

 

34b 

 

176ba 96 

3 

 

34d 

 

176da 90 

4 N

O

H

PyO

H
MeS  

34e 

 

176ea 91 

5 

 

34f 

 

176fa 70 

6 

 

34g 

 

176ga 56 

7 

 

34j 

 

176ja 84 

8 

 

34k 

 

176ka 60 

9 

 

34l 

 

176la 65 
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10 

 

34m 

 

176ma 51 

11 

 

34n 

 

176na 97 

12 

 

34o 

 

176oa 89 

13 

 

34p 

 

176pa 
96 

(3:1) 

14 

 

34q 

 

176qa 
87 

(4:1) 

15 

 

34r 

 

176ra 
81 

(1:1) 

16 

 

34s 

 

176sa 73 
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17 

 

34t 

 

176ta 53 

[a] Reaction conditions: Undivided cell, benzamide 34 (0.50 mmol), allene 75a (0.60 mmol), Co(OAc)2∙4H2O 
(10 mol %), NaOPiv (2.00 equiv), MeOH (5.0 mL), 40 °C, 2.0 mA, 15 h, graphite felt anode, Pt-plate 
cathode. Isolated yields are given.  

First, a variety of para-substituted benzamides 34 were tested for the C–H/N–H annulation 

reaction with allene 75a. In comparison to the unsubstituted substrate 34a (entry 1) the 

electrocatalytic manifold was fully tolerant of functional groups, including benzylic C–H 

bonds, methoxy, thioether, phenyl, halogens and even iodo (entries 2–8). Second, also 

enolizable ketones or strongly deactivated ester groups were compatible with the cobalta-

electrocatalysis (entries 9 and 10). More sterically demanding substrates 34n and 34o 

furnished the desired isoquinolones 176na and 176oa in excellent yields and with full 

positional control (entries 11 and 12). It is noteworthy that the significantly weaker benzylic 

C–H bond (BDE[15] = 82.2 kcal·mol–1) remained untouched, as the mass balance accounted 

for unreacted starting material 34o. 

Furthermore, the positional selectivity for the cobaltaelectro-catalyzed allene annulation 

was evaluated with differently meta-substituted benzamides 34 (entries 13–15). Hence, the 

electrocatalytic C–H activation was mainly controlled by repulsive steric interactions, 

unless a secondary directing group effect was present, as was the case for substrate 34q and 

34r (entries 14 and 15). In contrast to the previously reported cobaltaelectro-catalyzed       

C–H manifolds,[249-250] the highly efficient allene annulation was also compatible with 

challenging ortho-methyl substituted substrate 34s, providing isoquinolone 176sa in 73% 

yield (entry 16). Finally, also heteroarenes such as a benzothiophene derivate 34t proved 

viable under the reaction conditions, furnishing the annulated product 176ta in moderate 

yield (entry 17). In terms of limitations for the benzamide 34, strongly electron-

withdrawing groups such as nitro- or cyanide substituents resulted in low yields, as well as 

nicotinic acid derivates did not provide the desired annulated products in satisfactory yields. 

As a proof-of-concept, acrylic amide was likewise successfully transformed into the 

corresponding pyridine-2(1H)-one derivative 182aa (Scheme 53).  
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Scheme 53. Cobaltaelectro-catalyzed C–H annulation toward pyridines 182. 

The versatility of the cobaltaelectro-catalyzed C–H activation was further substantiated by 

the successful use of diversly substituted allenes 75 (Table 15).  

Table 15. Cobaltaelectro-catalyzed C–H annulations of allenes 75.[a]  

 

Entry Allene 75 Product 176 
Yield 
[%] 

1 
 

75c 

 

176ac 57 

2 
 

75d 

 

176ad 71 

3 

 

75e 

 

176ae 45[b] 
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4 
 

75b 

 

176ab 51[c] 

[a] Reaction conditions: Undivided cell, 34 (0.50 mmol), 75 (0.60 mmol), Co(OAc)2∙4H2O (10 mol %), 
NaOPiv (2.00 equiv), MeOH (5.0 mL), 40 °C, 2.0 mA, 15 h, graphite felt anode, Pt-plate cathode. Isolated 
yields are given. [b] 60 °C, Co(OAc)2∙4H2O (20 mol %), performed by Dr. S. C. Sau. [c] Reaction was 
performed using constant potential electrolysis (CPE) at 1.25 V vs. Ag/Ag+. 

Under the standard conditions, ester substituted allenes 75c and 75d smoothly provided the 

annulated products with excellent control of chemo- and regioselectivity (entries 1 and 2). 

Sterically demanding 3,3-disubstuted allene 75e required slightly modified reaction 

conditions to provide the annulated product 176ae in synthetically useful yields (entry 3). 

However, the annulation solely occurred in the allene’s terminal position. In contrast, 

propa-1,2-dien-1-ylbenzene (75b) resulted in various reaction products under the less 

selective constant current electrolysis conditions. Thus, cyclic voltammetry revealed a 

relatively low oxidation potential for allene 75b with an onset potential of 1.35 V vs. SCE 

(Figure 6, magenta line). In comparison, allene 75a proved to be significantly more redox-

stable with an anodic onset potential at around 2.0 V vs. SCE (Figure 6, blue line). 

 

Figure 6.  Cyclic voltammograms at 100 mV·s–1: n-Bu4NPF6 (0.1 M in MeOH), 
concentration of allenes 3.0 mM. Allene 75a (blue); Allene 75b (magenta). 
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Based on these information, mild constant potential electrocatalysis was performed at 

1.25 V vs. Ag/Ag+, thus furnishing the desired product 176ab with excellent 

regioselectivity control (entry 4). It is noteworthy that previous studies on cobalt-catalyzed 

C–H/N–H annulation reactions using manganese(III) salts as the chemical oxidant, reported 

dihydroisoquinolin-1(2H)-ones 77 as the major product of different regioisomers, when 

allene 75b was used (cf. Scheme 24).[133] However, when silver(I) salts were employed as 

the oxidant along with an elevated temperature of 80 °C, 85 was reported as the major 

product, albeit in 37% yield (cf. Scheme 26a).[136] 

In addition to terminally substituted allenes, N. Ang successfully explored the scope for 

cobaltaelectro-catalyzed C–H/N–H annulations with internal allenes 84 (Scheme 54).  

 

Scheme 54. C–H/N–H annulation with internal allenes 84, performed by N. Ang. 

Interestingly, when allenes 84 were used with a 1,3-disubstitution pattern, the 

corresponding exo-methylen isoquinolones 183 were obtained. Thus, the reaction outcome 

is supportive of a base-assisted post-catalytic allene isomerization manifold.  

Apart from the broadly applicable substrate scope of the electrocatalytic C–H activation, 

some limitations were disclosed (Scheme 55). Particularly, differently substituted allenes 

75 were found to be challenging and resulted in complex product mixtures or did not 

provide synthetically useful product yields. Based on the findings for allene 75e, it cannot 

be excluded that extensive optimization studies or constant potential electrolysis could be 

beneficial for some of the presented substrates to enable the desired transformation. 
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Scheme 55. Limitations for the allene 75 substrate scope. 

Finally, the practical utility of the cobalta-electrocatalysis was reflected by a multigram-

scale electrocatalytic preparation of isoquinolone 176na (Scheme 56) with similar levels 

of efficiency and regioselectivity (cf. Table 14, entry 11). Notable features of the gram-

scale synthesis include an user-friendly undivided cell setup, cost-efficient graphite felt 

anode material, Earth-abundant cobalt catalyst, industrially compatible[287] MeOH as the 

solvent and a high current efficiency (CE) of 76%.  

 

Scheme 56. Multigram-scale electrocatalytic isoquinolone 176na synthesis. 

3.2.3 Mechanistic Studies 

Given the unique features of the first cobaltaelectro-catalyzed C–H activation with 

allenes, detailed mechanistic studies by experiment and computation[260] were performed 

to delineate the catalyst’s mode of action and to rationalize the high levels of 

regioselectivity.  
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3.2.3.1 H/D-Exchange Experiment 

In order to gain deeper knowledge on the C–H activation mechanism, the 

electrocatalytic reaction was carried out under standard conditions with isotopically 

labelled CD3OD as the solvent (Scheme 57). The reisolated substrate 34a did not undergo 

H/D exchange, thus being indicative of an irreversible C–H scission event. It has to be 

noted that in-situ 1H-NMR studies were suggestive for full H/D exchange of the acidic 

amide proton. Here, the detected N–H protonation likely occurred during the subsequent 

column chromatographic purification. In case of the product 176aa, significant deuterium 

incorporation was observed in the vinylic position, which can be rationalized by facile base-

assisted H/D exchange following the electrocatalysis.  

 

Scheme 57. H/D-Exchange study for the cobaltaelectro-catalyzed allene annulation. 

3.2.3.2 Intermolecular Competition Experiments 

To further examine the mechanistic rationale of the cobalt-catalyzed C–H activation 

event, two intermolecular competition experiments were performed with electronically 

distinct substrates 34d/34k or 34b/34c, respectively (Scheme 58).    
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Scheme 58. Intermolecular competition studies. 

Both experiments highlighted the preference for the electron-rich arenes 34d or 34b, which 

reacted approximately 1.3 times faster than the electron-poor arenes 34k and 34c. These 

findings are in good agreement with a BIES-type[35, 41] C–H activation to be operative for 

the cobaltaelectro-catalyzed C–H/N–H allene annulation manifold. Furthermore, electron-

rich substrates would increase the nucleophilicity of the cobalt(III)-carbon bond and thus 

enhance a kinetically relevant migratory insertion of the allene. These findings were further 

substantiated by detailed computational mechanistic studies performed by Dr. J. C. A. 

Oliveira. Indeed, the allene insertion showed a relatively high activation barrier of 

16 kcal·mol–1.[260] 

3.2.3.3 Kinetic Reaction Profile 

Next, in-operando IR spectroscopy (ReactIR) was performed to study the kinetic profile 

of the cobaltaelectro-catalyzed C–H activation (Scheme 59). Unfortunately, preliminary 

attempts under the standard conditions failed to deliver suitable data, due to overlapping 

IR-bands of MeOH with the signals of interest. However, when CH2Cl2 was used as the 

solvent, two characteristic IR-bands were identified for the product 176aa (1675 cm–1) and 

the starting material 34a (1510 cm–1), respectively. 
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Scheme 59. In-operando IR studies. 3D surface plot and kinetic reaction profile of the 
electrocatalytic C–H activation. 

Additionally, product conversion was monitored by 1H-NMR spectroscopic analysis and 

allowed the quantification of the ReactIR data (Figure 7). Thus, the gathered data showed 

a linear product formation within the first two hours of the reaction without a significant 

induction period.  

 

Figure 7. Initial rate plot for the electrocatalytic formation of 176aa. 
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3.2.3.4 KIE Studies 

The kinetic isotope effect (KIE) of the cobaltaelectro-catalyzed C–H/N–H allene 

annulation was determined via the comparison of two independent reaction rates for 

substrate 34a and its deuterated analogue [D]5-34a (Scheme 60). The experiments revealed 

a minor KIE of kH/kD = 1.2 (Figure 8).  

 

Scheme 60. KIE studies for the cobalta-electrocatalysis. 

 

Figure 8. KIE studies for the cobalta-electrocatalysis. 

Based on the previously developed method for the in-operando reaction monitoring of 

cobaltaelectro-catalyzed C–H activation with allenes 75a (vide supra), additional KIE 

studies were performed and followed via ReactIR analysis (Scheme 61). Likewise, a minor 

KIE of kH/kD = 1.2 was detected (Figure 9). These observations are in good agreement with 
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previous mechanistic studies on cobaltaelectro-catalyzed C–H activations[249-250] and 

indicate that the C–H cleavage is not the rate-determining step of the electrocatalysis. 

 

Scheme 61. KIE studies followed by in-situ IR analysis. 

 

Figure 9. Initial rate analysis of 176aa and [D]4-176aa. 

3.2.3.5 CV Studies   

Finally, the oxidative cobaltaelectro-catalyzed C–H activation was analyzed by means 

of cyclic voltammetry (Figure 10). The voltammograms were recorded with a scan rate of 

100 mV·s–1 in MeOH with n-Bu4NPF6 (0.1 M) as the conducting salt. In accordance to 

previous projects on cobalta-electrocatalysis (vide supra),[249-250] substrate 34a was found 

to be relatively stable toward overoxidation with an irreversible oxidation at Ep,ox = 1.51 V 

vs. SCE. Likewise, allene 75a was found to be voltammetrically silent in the tested potential 

window (cf. Figure 6). The cobalt(II) precatalyst revealed an irreversible oxidation peak at 

1.19 V vs. SCE, which can be assigned to the respective formation of the active cobalt(III) 

carboxylate species.[277] Moreover, irreversible oxidation of product 176aa was observed 

at potentials beyond 1.44 V vs. SCE, which is in accordance with the previous findings for 

overoxidation at higher applied constant currents or longer reaction times (cf. Table 12).  
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Figure 10.  Cyclic voltammograms at 25 °C and 100 mV·s–1 using MeOH and 
n-Bu4NPF6 (0.1 M) as the electrolyte and a GC working electrode; 
concentration of substrates 3.0 mM. (black) 34a; (red) Co(OAc)2∙4H2O and 
NaOPiv; (green) Co(OAc)2∙4H2O, NaOPiv and 34a; (blue) 176aa. 

3.2.4 Proposed Catalytic Cycle 

Based on the mechanistic findings, a catalytic cycle was proposed for the 

cobaltaelectro-catalyzed C–H/N–H allene annulation (Scheme 62). The electrocatalysis 

commences by anodic oxidation of the cobalt(II) salt to the cobalt(III) carboxylate complex 

184, followed by irreversible C–H activation of substrate 34a in a BIES-type fashion to 

furnish 185. Next, kinetically relevant migratory insertion of allene 75 generates cobalt(III) 

complex 186 and the desired C–C bond. Additionally, computational studies performed by 

Dr. J. C. A. Oliveira showed that the allene 75 insertion distal to the substituent is favoured 

by 2.2 kcal·mol–1 over the insertion pathway proximal to the substituent via complex 188 

and thus enables the high levels of regioselectivity for the cobalta-electrocatalysis.[260] 

Thereafter, reductive elimination releases a reduced cobalt(I) species 188 and the exo-

methylene isoquinolone 183, which in the presence of base, undergoes irreversible 

isomerization to the desired product 176. Finally, anodic oxidation regenerates the active 

cobalt(III) complex 184 and cathodic proton reduction closes the electrochemical cycle and 

hence obviates the necessity for toxic metal-based terminal oxidants.  
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Scheme 62. Proposed catalytic cycle for the cobaltaelectro-catalyzed allene annulation. 

3.2.5 Cobaltaelectro-Catalyzed C–H Allene Annulation in Flow 

The combination of electrosynthesis and continuous-flow chemistry[288] represents a 

particularly attractive concept in terms of efficient heat and mass transfer, high current 

efficiency and potential reaction scale-up.[289] In spite of major advances in metal-free 

electroflow reactions,[290] until the beginning of this study, flow-metallaelectro-catalyzed 

C–H activations[291] were unprecedented. Based on the achievements on cobalta-

electrocatalysis, preliminary studies for the oxidative C–H/N–H annulation of allenes under 

flow conditions were conducted, using benzamide 34a and allene 75a as the model 

substrates (Table 16). The study was commenced with the commercially available flow-

electrosynthesis kit from IKA with a GC plate as the anode and a nickel plate cathode.[289i] 

Remarkably, product 176aa was isolated in 44% yield after constant potential electrolysis 

for 4 h (entry 1). It should be noted that the electrolysis was performed in a two-electrode 

setup and non-referenced cell potentials are reported. Also, the efficiency of the flow-

electrocatalysis drastically decreased upon lowering the flow rate to 8.2 μL·min–1 (entry 2). 
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When a custom-made graphite-felt anode compartment was employed, the desired 

isoquinolone 176aa was isolated in 48% yield (entry 3). These promising, yet not optimized 

preliminary results highlight the potential of cobaltaelectro-catalyzed C–H activations in 

flow. It is noteworthy that the latter flow-setup was significantly advanced and modified 

by Dr. L. Finger in the Ackermann group and was recently successfully applied for 

rhodaelectro-catalyzed C–H annulation reactions with alkynes under flow conditions.[292]  

Table 16. Attempts for cobaltaelectro-catalyzed C–H allene annulation in flow.[a] 

 

Entry Anode Flow-rate [μL·min–1] Time [h] Yield [%] 

1 GC 42.2 4 44 

2 GC 8.2 6 15 

3 GF 818 2 48 

[a] Reaction conditions: Undivided flow cell, 34a (0.25 mmol), 75a (0.30 mmol), Co(OAc)2·4H2O 
(20 mol %), NaOPiv (2.00 equiv), MeOH (10.0 mL), 23 °C, constant cell potential of 1.3 V, time, xx anode, 
Ni-plate cathode. Isolated yields are given.  
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3.3 Cobaltaelectro-Catalyzed C–H Activation in Biomass-Derived 

Glycerol Powered by Renewable Energy Sources 

Molecular electrosynthesis is often classified as a green methodology for organic 

transformations, since toxic and dangerous chemical energy carriers can be replaced by 

traceless electric charge.[218c] The sustainability of the approach can be further substantiated 

by the direct interconversion of renewable energies into value-added products.[293]  Here, 

electrosynthesis has particularly proven useful for the valorisation of biomass-derived 

solvents[45d, 294] or waste-products such as glycerol.[295] At the same time, electrochemical 

cobalt-catalyzed C–H activation has been established as a versatile and resource 

economical tool for molecular transformations (vide supra).[240e] In this context, previous 

studies on cobaltaelectro-catalyzed C–H annulation reactions with alkynes 53[250, 259, 285, 296] 

or allenes 75[260] as the coupling partner, largely employed short-chained alcohols as the 

solvent such as methanol, ethanol or halogenated 2,2,2-trifluoroethanol (TFE). However, 

these solvents, especially the latter,[112] can be classified as noxious and competing 

undesired cobalt-catalyzed alkoxylation reactions were commonly observed in small 

amounts (vide infra).[249] To obviate these drawbacks, we turned our attention toward the 

identification of less hazardous and environmentally-benign solvents[45b, 45c, 262, 297] for the 

resource economical[9, 13a, 43] cobaltaelectro-catalyzed C–H activation of benzamides 34. 

Here, the use of glycerol as the solvent would be highly desirable, since it is non-flammable 

and is produced on large scale as the byproduct of bio-diesel production.[295a-c, 295e] 

Furthermore the high dielectric constant of glycerol (ε = 42.5 at 25 °C),[298] would render it 

as an ideal electrolyte-free[299] solvent for organic electrochemistry. However, until the 

beginning of this study its use as a reaction medium for sustainable C–H activation 

reactions has been elusive.[300] 

3.3.1 Optimization Studies for Cobaltaelectro-Catalyzed C–H Activation in 

Biomass-Derived Solvents 

The optimization studies were commenced by the testing of different organic solvent 

mixtures for the desired cobaltaelectro-catalyzed C–H/N–H annulation of benzamide 34a 

with alkyne 53a (Table 17). Initial results with biomass-derived solvents[45b, 45c] or aqueous 

mixtures[301] thereof showed promising results for the green synthesis of isoquinolone 51aa 

(entries 1–9). Most notably, aqueous glycerol mixtures outperformed other, more 

commonly employed biomass-derived solvents, such as γ-valerolactone (GVL) (entries 4 
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and 7). Due to the high viscosity of glycerol, the addition of water and slightly elevated 

temperatures of 40 °C were essential to obtain isoquinolone 51aa in high yields (entries 6–

9).  

Table 17. Optimization of the solvents and the reaction temperature.[a] 

 

Entry Solvent T [°C] Yield [%] 

1 2-MeTHF  40 69[b] 

2 2-MeTHF/H2O 40 65 

3 furfuryl alcohol/H2O (1:1) 40 61 

4 GVL/H2O (1:1) 40 56 

5 GVL/glycerol (1:1) 40 9 

6 glycerol 40 24 

7 glycerol/H2O (1:1) 40 70 (71) 

8 glycerol/H2O (1:1) 23 47 

9 glycerol/H2O (1:1) 60 72 (70) 

10 MeOH 40 82 (78)[c] 

11 TFE 40 87[d] 

12 THF 40 18[b] 

13 DCE 40 43[b] 

14 CH2Cl2 40 53[b] 

15 DMF 40 21[b] 

16 DMSO 40 29[b] 

17 MeCN 40 51(51)[b] 

18 HFIP 40 21 

[a] Reaction conditions: Undivided cell, 34a (0.50 mmol), 53a (1.00 mmol), Co(OAc)2∙4H2O (20 mol %), 
NaOPiv (2.00 equiv), solvent (5.0 mL), CCE = 4 mA, 15 h, graphite felt anode, Pt-plate cathode. Yield of 
51aa determined by 1H-NMR analysis with 1,3,5-trimethoxybenzene as an internal standard. Isolated yield 
in parentheses. [b] Addition of LiClO4 (1.00 equiv). [c] Oxygenated product 36ab (11 mg, 45 µmol, 9%) was 
formed as a byproduct. [d] Oxygenated product 36ad was detected in 5%, based on 1H-NMR analysis. 
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In contrast, conventional toxic organic solvents were less efficient in terms of product 51 

yield (entries 10–18) and selectivity (entries 10 and 12). In comparison to other commonly 

employed biomass-derived solvents such as GVL, it is noteworthy that water-soluble 

glycerol was easily removed after the reaction. Furthermore, different cobalt sources and 

additives were tested for the cobalta-electrocatalysis in aqueous glycerol (Table 18).  

Table 18. Catalyst optimization and additive effects.[a] 

 

Entry Additive (equiv) [Co] xx [mol %] Yield [%] 

1 NaOPiv (2.00) Co(OAc)2∙4H2O 20 70 (71) 

2 Na2CO3 (2.00) Co(OAc)2∙4H2O 10 29 

3 NaOAc (2.00) Co(OAc)2∙4H2O 10 31 

4 KOAc (2.00) Co(OAc)2∙4H2O 10 33 

5 NaOH (2.00) Co(OAc)2∙4H2O 10 --- 

6 HOPiv (2.00) Co(OAc)2∙4H2O 10 14 

7 NaOPiv (2.00) Co(OAc)2∙4H2O 10 96 (92) 

8 NaOPiv (1.00) Co(OAc)2∙4H2O 10 93 

9 NaOPiv (2.00) Co(OAc)2∙4H2O 5 90 (85) 

10 NaOPiv (1.00) Co(OAc)2∙4H2O 5 73 

11 NaOPiv (0.50) Co(OAc)2∙4H2O 5 67 

12 NaOPiv (2.00) Co(OAc)3 10 92 (91) 

13 NaOPiv (2.00) Co(OAc)3 5 82 

14 NaOPiv (2.00) Co(OAc)2∙4H2O 10 (71)[c] 

15 NaOPiv (2.00) Co(OAc)2∙4H2O 10 traces[b] 

16 NaOPiv (2.00) --- --- --- 

17 --- Co(OAc)2∙4H2O 20 19 

[a] Reaction conditions: Undivided cell, 34a (0.50 mmol), 53a (1.00 mmol), [Co] (xx mol %), additive 
(xx equiv), glycerol/H2O (1:1, 5.0 mL), 40 °C, 4 mA, 15 h, graphite felt anode, Pt-plate cathode. Yield of 
51aa determined by 1H-NMR spectroscopy with 1,3,5-trimethoxybenzene as an internal standard. Isolated 
yield in parentheses. [b] No current. [c] 8 mA, 6 h. 
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Among a series of different bases, sodium pivalate proved to be the additive of choice 

(entries 1–5), while pivalic acid delivered the desired product 51aa in only unsatisfactory 

amounts of yield (entry 6). Optimization of the catalyst and additive loading revealed 

increased reactivity at lower concentrations of the cobalt(II) catalyst (entries 7 and 8). 

Remarkably, in contrast to the previously reported cobaltaelectro-catalyzed C–H alkyne 

annulation reactions,[250, 259, 285, 296] the electrocatalytic reaction proceeded with high turn-

over at catalyst loadings of 5 mol % (entry 9). Here, decreased equivalents of NaOPiv 

resulted in diminished product yields (entries 10 and 11). Interestingly, the use of cobalt(III) 

acetate yielded isoquinolone 51aa in similar yields (entries 12 and 13). Shorter reaction 

times of 6 h, along with an increased constant current of 8 mA, resulted in a decreased 

isolated yield of product 51aa (entry 14). Finally, control experiments verified the essential 

role of the electricity, the cobalt catalyst, and the base for the desired transformation (entries 

15–17).  

3.3.2 Substrate Scope 

With the optimized reaction conditions in hand, the versatility and robustness of the 

cobaltaelectro-catalyzed C–H/N–H functionalization of benzamides 34 was investigated. 

Thus, the resource-economical and water-tolerant cobalta-electrocatalysis efficiently 

converted differently substituted benzamides 34 to the corresponding isoquinolones 51 

with overall high efficacy (Table 19). Among others, a wealth of functional groups, such 

as benzylic alkyl, ether, thioether, and halogen groups, were fully tolerated (entries 1–9).  

Table 19. Versatility of the cobaltaelectro-catalyzed C–H activation in glycerol.[a]  

 

Entry Benzamide 34 Product 51 
Yield 
[%] 

1 

 

34a 

 

51aa 92 
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2 

 

34b 

 

51ba 73[b] 

3 

 

34d 

 

51da 69 

4 N

O

H

PyO

H
MeS  

34e N

O

PyO

MeS Ph  

51ea 61 

5 

 

34g 

 

51ga 41 

6 

 

34j 

 

51ja 69 

7 

 

34k 

 

51ka 66 

8 

 

34u 

 

51ua 63[c] 

9 

 

34v 

 

51va 78 

10 

 

34w 

 

51wa 
83 

(4:1) 

[a] Reaction conditions: Undivided cell, benzamide 34 (0.50 mmol), alkyne 53a (1.00 mmol), 
Co(OAc)2∙4H2O (10 mol %), NaOPiv (2.00 equiv), glycerol/H2O (1:1, 5.0 mL), 40 °C, 4.0 mA, 15 h, graphite 
felt anode, Pt-plate cathode. Isolated yields are given. [b] Under sonification, Co(OAc)3 (10 mol %). Under 
standard conditions only 28% were isolated. [c] Co(OAc)3 (10 mol %). 

The positional selectivity of the reaction was mostly controlled by repulsive steric 

interactions, as was exemplified for the conversion of meta-methylated benzamide 34w 

(entry 10). In addition, due to poor solubility of the alkyl-substituted benzamide 34b, a 

novel approach for sonoelectrochemical C–H activation was developed (entry 2). In 
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contrast to conventional electrochemical methods, sonoelectrochemistry is far less explored 

for organic synthesis.[295c, 302] Thus, the ultrasound sonification resulted in a fine suspension 

of the substrate 34b and prooved to be beneficial for high catalytic efficiency of the cobalt 

catalyst in the glycerol/H2O mixture, since only 28% of the product 51ba were isolated 

under the standard conditions. 

Gratifyingly, the scope of the cobaltaelectro-catalyzed C–H activation was not limited to 

benzamides 34. Indeed, the use of glycerol/H2O as a solvent mixture proved also viable for 

the step-economical synthesis of 2-pyridones 189aa and 189ba via alkenylic C–H 

activation (Table 20, entries 1 and 2). The robustness of the developed method even allowed 

for the conversion of furan 37e to deliver the fused heteroarene 189ea in 52% yield, 

featuring high levels of regioselectivity (entry 3).  

Table 20. Substrate scope of substituted alkenes and heteroarenes.[a]  

N

O

H

+

37

N

O

Co(OAc)2∙4H2O (10 mol %) N

O

PyO

Ph

Pt

53a 189

GF

H

H

Ph

glycerol/H2O (1:1)
NaOPiv, 15 h, 40 °C

CCE at 4 mA
 

Entry Substrate 37 Product 189 
Yield 
[%] 

1 

 

37a 

 

189aa 63 

2 

 

37b 

 

189ba 55 

3 

 

37e 

 

189ea 
52 

(10:1) 

[a] Reaction conditions: Undivided cell, 37 (0.50 mmol), 53a (1.00 mmol), Co(OAc)2∙4H2O (10 mol %), 
NaOPiv (2.00 equiv), glycerol/H2O (1:1, 5.0 mL), 40 °C, 4.0 mA, 15 h, graphite felt anode, Pt-plate cathode. 
Isolated yields are given.  

The regioselectivity of the novel products 51ea and 189ea was unambiguously validated 

by X-ray crystal structure analysis (Figure 11). 



94 Results and Discussion 

 

Figure 11. Molecular structures of 51ea and 189ea with thermal ellipsoids at 50% 
probability level. The hydrogen atoms are omitted for clarity. 

Thereafter, a variety of alkynes 53 was tested toward the cobaltaelectro-catalyzed                

C–H/N–H activation in biomass-derived glycerol (Table 21). Hence, the robustness of the 

electrocatalytic C–H activation strategy was reflected by the annulation of diverse alkynes 

53, fully tolerating valuable functional groups, including sensitive alkyl chloride (entry 4) 

and alkyl nitrile substituents (entry 5) or the strained cyclopropyl group (entry 6).  

Table 21. Cobaltaelectro-catalyzed C–H annulation of alkynes 53 in glycerol.[a]  

 

Entry Alkyne 53 Product 51 
Yield 
[%] 

1 
 

53a 

 

51aa 92 

2 
 

53b 

 

51ab 51 
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3  53c 

 

51ac 63 

4  53d 

 

51ad 65 

5  53e 

 

51ae 79 

6  53f 

 

51af 57 

[a] Reaction conditions: Undivided cell, 34a (0.50 mmol), 53 (1.00 mmol), Co(OAc)2∙4H2O (10 mol %), 
NaOPiv (2.00 equiv), glycerol/H2O (1:1, 5.0 mL), 40 °C, 4.0 mA, 15 h, graphite felt anode, Pt-plate cathode. 
Isolated yields are given.  

Notably, the intermolecular cobaltaelectro-catalyzed C–H/N–H annulation proved further 

viable for challenging allene 75a (Scheme 63). Key to success was a slightly lower constant 

current of 2 mA for 15 h in the biomass-derived glycerol solvent system.  

 

Scheme 63. Cobaltaelectro-catalyzed C–H annulation with allene 75a in glycerol/H2O. 

3.3.3 Cobaltaelectro-Catalyzed C–H Activation Powered by Renewable Energies 

Finally, direct valorisation of renewable solar and wind energy was envisioned for the 

desired oxidative C–H transformation. In general, within constant current electrolysis the 

potential at the working electrode will adjust until the substrate with the lowest oxidation 

potential is fully consumed.[170g] Evaluation of the redox properties of the reaction 

components by cyclic voltammetry revealed that the cobalt(II) salt has the lowest oxidation 

potential compared to solvent or reactants/product, thus preventing undesirable degradation 

or decomposition pathways (cf. Figure 50 and 51). Hence, the working potential of the 
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electrolysis would remain relatively constant during the course of the reaction. With this in 

mind, a proof-of-concept study was envisioned for the direct use of inexpensive and 

commercially available photovoltaic cells as the power supply for the depicted C–H 

activation (Scheme 64).[300] The applied current was fixed and regulated by the aid of a 

custom-made constant current regulator. With a commercially-available amorphous silicon 

photovoltaic cell in hand, the cobaltaelectro-catalyzed C–H/N–H annulation – powered by 

sunlight – delivered isoquinolone 51aa in comparable yields to the conventional direct 

current galvanostat (cf. Table 18, entry 14). The reaction was performed on the rooftop of 

the Institute of Organic and Biomolecular Chemistry in Göttingen, once on a sunny day 

during October (Scheme 64, left) and with similar reaction yields on the 20th of December 

2018, with less solar irradiance (Scheme 64, right). 

 

 

Scheme 64. Cobaltaelectro-catalyzed C–H activation powered by sunlight.  

Likewise, a similar reaction setup was used to perform the first organic electrocatalytic 

transformation powered by green wind energy (Scheme 65). Here, a commercially 
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available wind turbine was connected via USB-cable with a custom-made constant current 

regulator. Under laboratory conditions, the wind turbine was propelled by a fan to enable a 

steady wind velocity. The electrolysis setup was connected and the wind-powered 

cobaltaelectro-catalyzed C–H/N–H functionalization afforded isoquinolone 51aa in 

comparable yields with the conventional reaction setup (cf. Table 18, entry 7). The slightly 

diminished performance can be rationalized by small current variations during the course 

of the reaction.  

 

Scheme 65. Cobaltaelectro-catalyzed C–H activation powered by wind energy.  

In summary, the presented proof-of-concept study highlights the potential of 

metallaelectro-catalyzed C–H activations toward fully resource economical and green 

organic synthesis.[9] Herein, the unprecedented utilization of biomass-derived glycerol was 

disclosed as a suitable reaction medium for Earth-abundant cobaltaelectro-catalyzed C–H 

activations. Additionally, renewable energy sources such as wind and solar energy were 

directly utilized for cobaltaelectro-catalyzed C–C/N–C formations, with hydrogen gas as 

the sole byproduct.  
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3.4 Mechanistic Insights into Cobalta(III/IV/II)-Electrocatalysis 

In recent years, a plethora of oxidative cobalt-catalyzed C–H transformations have 

successfully been developed – employing chemical redox reagents or electrochemical 

methods as terminal oxidant alike. Despite indisputable advances, the mechanistic 

understanding of their key-elementary steps continues to be underdeveloped and catalytic 

scenarios were thus far largely suggested to occur via a cobalt(II/III/I) manifold (vide 

supra). In contrast to Earth-abundant cobalt catalysis,[55a, 60, 154b, 156h, 303] in depth 

mechanistic studies have been conducted with 4d and 5d precious metals, such as 

palladium,[148a, 304] rhodium[11v, 80-81] and iridium.[305] Here, particularly oxidation-induced 

reductive elimination has been identified as an important mechanistic feature to facilitate 

the often rate-determining reductive elimination within the C–H activation catalytic cycle, 

as was described by Chang,[306] Jones[81l] and Tilset[307] among others.[308] Along the same 

lines, Ackermann[292] and subsequently Xu[243a] have recently suggested that similar 

mechanistic scenarios are of equal importance for rhodaelectro-catalyzed C–H activations 

and the formation of high-valent rhodium(IV) complexes was proposed to take place upon 

anodic oxidation. However, until the beginning of this study, limited mechanistic 

information on metallaelectro-catalyzed C–H activation was available,[232] especially for 

cobalta-electrocatalysis. Based on previously proposed mechanistic scenarios on 

cobaltaelectro-catalyzed C–H activations,[240e, 240f, 249-252, 260] the isolation and full 

characterization of an ideally electrochemically generated, cyclometalated cobalt complex 

would thus be essential to support the suggested organometallic C–H scission event, 

evaluate subsequent bond formations and allow for further mechanistic 

experimentation.[309]  

3.4.1 Isolation and Characterization of Cobalta(III)cycle 190 

The study was initiated by stoichiometric oxidation of amide 34a with the previously 

employed cobalt(II) acetate[249] for the envisioned synthesis of a cyclometalated cobalt(III) 

complex 190 (Table 22). Acetonitrile was selected as an inert solvent to prevent follow-up 

reactions of the complex and to ensure a sufficient conductivity throughout the electrolysis. 

However, the desired complex 190 could not be detected when chemical oxidants such as 

silver or manganese salts were used (entries 1 and 2).[95, 158] Likewise, oxygen failed to 

deliver the desired cobalt(III) complex 190 (entry 3). In contrast, when direct anodic 

oxidation under constant current conditions was applied, the desired cobalta(III)cycle 190 
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was successfully isolated in 21% yield, along with various paramagnetic side products 

(entry 4). However, no cyclometalated complex was detected in the absence of sodium 

pivalate (entry 5), thus highlighting the importance of a carboxylate base to facilitate the 

C–H activation step.[23b, 34a, 284] Furthermore, undesired side-reactions (vide infra) were 

successfully suppressed by switching to more controlled constant potential electrolysis 

(CPE), at relatively low potentials of 1.3 V or 1.4 V vs. Ag/Ag+ (entries 6–8). Here, the 

electrolysis was stopped after 1.0 F of electrons were consumed. The potential range for 

the chronoamperometric synthesis was chosen based on previously performed CV-studies 

for cobaltaelectro-catalyzed C–H oxygenations (cf. Figure 4).[249-250, 258, 260]  

Table 22. Optimization of the reaction conditions.[a] 

 

Entry [Co] Oxidant Yield [%] 

1 Co(OAc)2∙4H2O Ag2O --- 

2 Co(OAc)2∙4H2O Mn(OAc)3 traces 

3 Co(OAc)2∙4H2O O2 (air, 1 atm) ---[b] 

4 Co(OAc)2 CCE at 4 mA 21 

5 Co(OAc)2 CCE at 4 mA traces[c] 

6 Co(OAc)2 CPE at 1.3 V (vs. Ag/Ag+) 42[d] 

7 Co(OAc)2 CPE at 1.4 V (vs. Ag/Ag+) 46[d] 

8 Co(OAc)2 CPE at 4.0 V (vs. Ag/Ag+) 14[d] 

9 Co(OAc)3
[e] --- 14 

[a] Reaction conditions: 34a (2.00 equiv), [Co] (0.33 mmol), NaOPiv (2.00 equiv), MeCN (5.0 mL), 7.5 h, 
undivided cell, nitrogen atmosphere. Isolated yield is given. When electricity was applied, a graphite felt 
anode, Pt-plate cathode, and a silver-wire as the reference electrode were used. [b] The reaction was 
performed under air. [c] The reaction was performed with a constant current of 4 mA for 2.5 h in the absence 
of NaOPiv. [d] Electrolysis was stopped after 1.0 F was applied. Reaction conditions: 34a (1.00 equiv), [Co] 
(0.50 mmol), NaOPiv (1.00 equiv), MeCN (13 mL). [e] Kochi and co-workers described the cobalt(III) 
acetate as a bi-metallic complex with the formula: Co2(OAc)4(OH)2(HOAc).[310]  

Interestingly, when cobalt(III) acetate was utilized as the cobalt source, only low 

conversion to the desired complex 190 was observed (entry 9). This can be rationalized by 

a slow ligand exchange rate at the cobalt(III) metal center or a competing 
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disproportionation of the high-valent cobalt salt.[84e, 98a, 311] However, the results are 

supportive of the C–H activation occurring in the cobalt(III) oxidation state and oxidation 

of the cobalt(II) species being necessary prior the C–H scission step. Likewise, it can be 

rationalized that deprotonation and coordination of substrate 34a to the cobalt(II) salt 

occurs prior to the oxidation step.   

Molecular characterization of the cyclometalated cobalt(III) complex 190 was 

accomplished via NMR-spectroscopic analysis, high-resolution electrospray ionization 

mass spectrometry (ESI-MS), UV–vis and IR spectrophotometry.[309] The solid state 

structure was unambiguously confirmed by means of X-ray diffraction analysis. Single 

crystals were obtained by slow evaporation of a saturated solution of 190 in MeOH (Figure 

12).  

 

Figure 12.  Molecular structure of 190 with thermal ellipsoids at 50% probability level. 
The hydrogen atoms are omitted for clarity. Crystallization was performed 
by Dr. D. Ghorai. 

Analysis of the bond angles revealed a slightly distorted octahedral coordination geometry 

(O(1)–Co(1)–O(3) = 96.41(8)°, N(2)–Co(1)–O(5) = 166.23(10)°). The bond length 

between the cobalt(III) center and the C–H activated carbon Co–C20 were found to be 

1.916(3) Å and similar to the previously reported cyclometalated cobalt(III) benzamide 

complexes (104 (Maiti): 1.916(3);[158] Song: 1.923;[160] 105 (Ribas): 1.919(2)[159]). It was 

also detected that the axially bonded, terminal, oxygen-coordinated substrate 34a with a 
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bond length of 1.9621(19) Å (Co–O5), readily dissociated in solution. The dissociation was 

confirmed by means of ESI-MS and NMR spectroscopic analysis.  

In order to investigate the redox properties of the obtained cyclometalated complex 190, a 

series of cyclovoltammetric studies was performed (Figure 13). With a special focus on the 

mechanistic investigation of cobaltaelectro-catalyzed C–H oxygenation, the analytical 

experiments were performed in methanol as the solvent and n-Bu4NPF6 (0.1 M) was used 

as the conducting salt. Complex 190 showed an irreversible redox event with an anodic 

peak potential of Ep,a = 0.95 V (vs. SCE, 100 mV·s–1), while a half-peak potential of Ep,2 = 

0.89 V (vs. SCE, 100 mV·s–1) was determined for further comparison with computational 

studies (Table 23, entry 1). Even at higher scan rates of up to v = 1000 mV·s–1, the oxidation 

event showed no reversible behavior, thus being indicative of a fast homogeneous, 

irreversible chemical follow-up reaction. Here, a possible EC-mechanism could consists of 

the electrochemical generation of a putative cobalt(IV) species, followed by ligand 

substitution or deprotonation.[154b, 312] The small shoulder with a slightly lower anodic peak 

potential of Ep,a = 0.76 V (vs. SCE), was assigned to a different cobalt(III) complex 191.  

 

Figure 13. Cyclic voltammograms at 25 °C, with different scan rates using MeOH and 
n-Bu4NPF6 (0.1 M) as the electrolyte and a GC working electrode. 190 
(3.5 mM). 

With the aid of computational evaluated redox potentials, conducted by Dr. J. C. A. 

Oliveira (Table 23), it was found that substitution of the weakly mono O-coordinating 
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substrate 34a with a methanol molecule had a stabilizing effect, as was reflected by the 

lower anodic oxidation potential of the cobalt(III) complex 191 (entry 2).[309]  

Table 23. Calculated oxidation potentials.[a] 

Entry Redox pair Potential (V vs. SCE) 

1 190: [Co(III)] → [Co(IV)] + 1e- 0.886 

2 191: [Co(III)] → [Co(IV)] + 1e- 0.818 

[a] DFT calculations were performed by Dr. J. C. A. Oliveira. 

To decrease the reaction rate of chemical follow-up reactions, investigations of the 

oxidation events were performed at lower temperatures.[24j, 154-155, 313] When the CV-

experiments were performed at a temperature of 0 °C (Figure 14), a reversible 

Co(III)/Co(IV) redox-event was observed, albeit at a fast scan rate of more than 1.0 V·s–1. 

However, at lower scan rates, the oxidation remained irreversible.[309]  

 

Figure 14. Cyclic voltammograms at 0 °C with different scan rates using MeOH and 
n-Bu4NPF6 (0.1 M) as the electrolyte and a GC working electrode. 190 
(3.5 mM). 

At decreased temperatures of T = –78 °C, a reversible redox event was detected even at 

lower scan rates (10 mV·s–1), showcasing the stability of a potentially formed high-valent 

cobalt(IV) complex after anodic oxidation of the cobalt(III) complex 190 (Figure 15). The 

recorded current response at –78 °C was diminished, compared to the previous 
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measurements at T = 0 °C, due to the reduced electrolyte concentrations. Also, a silver-wire 

was used as the reference-electrode since the SCE was not applicable at these temperatures.  

 

Figure 15. Cyclic voltammograms at –78 °C with different scan rates using MeOH and 
n-Bu4NPF6 (0.02 M) as the electrolyte and a GC working electrode. 190 
(3.5 mM).  

Cyclic voltammograms of different reaction components revealed observable changes in 

the redox events of cobalta(III)cycle 190 (Figure 16). Upon addition of NaOPiv, the 

irreversible oxidation wave at Ep = 0.95 V (vs. SCE) was shifted to lower potentials of 

Ep,ox = 0.84 V (vs. SCE). Likewise, the shift to lower oxidation potentials can be ascribed 

to the ligand exchange of the weakly O-coordinating substrate 34a by a pivalate anion (vide 

supra). The new oxidation wave at Ep,ox = 1.28 V (vs. SCE) can be attributed to the 

irreversible oxidation of the pivalate anion. Further addition of substrate 34a did not lead 

to significant changes in the voltammogram.  
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Figure 16. Cyclic voltammograms at 25 °C and 100 mV·s–1 using MeOH and 
n-Bu4NPF6 (0.1 M) as the electrolyte and a GC working electrode. (Black) 
190 (3.5 mM); (red) 190 (3.5 mM) and NaOPiv (10 mM); (blue) 190 
(3.5 mM), NaOPiv (10 mM) and 34a (10 mM). 

Interestingly, with MeCN as the electrolyte, different redox properties of the 

cobalta(III)cycle 190 were observed (Figure 17 and 18). At scan rates of 100 mV·s–1 and 

200 mV·s–1, respectively, one irreversible and one quasi-reversible oxidation event was 

observed. With an increased scan rate, it was found that the first oxidation event became 

reversible and a half-wave potential of E1/2 = 1.00 V (vs. SCE) was detected. These 

observations strongly indicate that the chemical follow-up reaction is much slower in 

MeCN when comparing to the irreversible chemical reaction in MeOH. It is noteworthy 

that unpublished computational investigations performed by Dr. J. C. A. Oliveira revealed 

a metal-centered oxidation event.  
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Figure 17. Cyclic voltammogram at 100 mV·s–1 using MeCN and n-Bu4NPF6 (0.1 M) 
as the electrolyte and a GC working electrode. 190 (3.5 mM). 

 

Figure 18. Cyclic voltammograms at 25 °C with different scan rates using MeCN and 
n-Bu4NPF6 (0.1 M) as the electrolyte and a GC working electrode. 190 
(3.5 mM). 
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Additionally, spectrophotometric UV–vis studies of cobalt(II) acetate, cobalt(III) acetate 

and 190 were performed in MeOH at ambient temperature (Figure 19a). The simple cobalt 

salts revealed only low absorption in the ultraviolet region with absorption maxima at 

approximately 245 nm. In contrast, the cyclometalated cobalt(III) complex 190 displayed 

a strong UV–vis absorption within the ultraviolet, violet and blue color region. Based on 

the intensive green color of the cobalt(III) complex (Figure 19b), an absorption at 380 nm 

should be observable. Indeed, a strong absorption maximum at 380 nm was detected, which 

is most likely caused by a ligand-to-metal charge-transfer.  

 

Figure 19. a) UV–vis studies in MeOH. i) Co(OAc)2 (0.25 mM, blue). ii) Co(OAc)3 
(0.25 mM, red). iii) 190 (0.08 mM, green). b) Characteristic dark green color 
of 190 solvated in CD2Cl2. 

3.4.2 Reaction Monitoring by Mass Spectrometry 

For the detection of potential reaction intermediates and to monitor the reaction profile 

upon electrochemical stimulus, in-operando analytical techniques were evaluated. Here, 
1H-NMR spectroscopic analysis was not viable, due to the strong paramagnetic properties 

of the cobalt(II) species. Unfortunately, 19F-NMR spectroscopy likewise resulted in 

unsatisfactory results. Previous results obtained by ESI-mass spectrometry in positive 

polarization mode exhibited high affinity of the pyridine-N-oxide group toward cations, 

especially sodium ions, thus rendering ESI-MS an ideal tool to probe the formation and the 

reaction profile of the cobaltacycle 190.[314] However, it is noteworthy that the ion response 

 

 321 nm 

379 nm 

227 nm 

190 in CD2Cl2 

a) b) 

249 nm 

284 nm 

246 nm 

245 nm 
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in electrospray ionization is not linear, thus the signal intensity was not directly correlated 

with the concentration of the individual species in solutions.[315] Initially, the formation of 

the cyclometalated complex under anodic oxidation in MeCN was monitored by ESI-mass 

spectrometry over a period of 120 min (Scheme 66). Notably, prior to anodic oxidation, 

almost complete complexation of substate 34a was detected. This indicates that the 

cobalt(II) acetate readily undergoes complexation with the deprotonated bidentate 

benzamide 34a to generate cobalt(II) bisamide 192.[309]  

 

Scheme 66. ESI-MS monitoring of the formation of 190 upon anodic oxidation.  

In contrast, when constant current electrolysis was applied to the reaction mixture, C–H 

activation took place and the cyclometalated cobalt(III) complex 190 was detected. These 

results are in good agreement with the stoichiometric experiments and support the finding 

that ligation of substrate 34a occurred prior to anodic cobalt(II/III) oxidation (cf. Table 22). 

After successful reaction monitoring of the complex 190 formation, further experiments 

were performed to confirm the relevance of the anodically generated cobaltacycle 190 for 

the cobaltaelectro-catalyzed C–O formation (Scheme 67). At t = 0 min, small quantities of 



108 Results and Discussion 

dissociated substrate 34a could be detected. However, no alkoxylated product 36ab was 

observed. With the start of electrolysis, a significant growth of product 36ab was observed, 

following a linear increase over time/applied current (Figure 20). Along with the decrease 

of cobalta(III)cycle 190 [190–34a+Na]+, an increasing intensity of cobalt(III) complex 193 

was detected.  

 

Scheme 67. ESI-MS monitoring of the formation of 36ab upon anodic oxidation.  
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Figure 20.  Relative intensity of 36ab detected with ESI-MS versus time.  

3.4.3 Reactivity of Cyclometalated Cobalt(III) Complex 190 

Stimulated by these findings, stoichiometric experiments were conducted to validate 

and quantify the initial hypothesis that oxidation of the cyclometalated cobalt(III) 

complexes 190 facilitates reductive elimination to release the C–O coupled product.[309] As 

was previously observed in the ESI-MS experiments, no alkoxylated product 36ab was 

formed in the absence of electricity (Scheme 68a). To assess if electricity is required to 

generate the potentially more nucleophilic alkoxide, a stoichiometric reaction with sodium 

methoxide was performed (Scheme 68b). Likewise, no C–H oxygenated product 36ab was 

detected. 

 

Scheme 68. Stoichiometric reactivity of 190 for C–O formation without oxidants.  



110 Results and Discussion 

Next, the oxidation-induced reductive elimination was probed by anodic oxidation of 

cobaltacycle 190 with constant potential electrolysis in MeOH (Scheme 69). In contrast to 

the redox-neutral reaction conditions, the desired product 36ab was isolated in 99% yield 

after chromatographic isolation, translating into quantitative conversion of the C–H 

metalated substrate.  

 

Scheme 69. Oxidatively-induced reductive elimination for C–H methoxylation.   

In order to compare the results with the previously performed constant current electrolysis, 

an aliquot was removed before the reaction was stopped and analyzed by ESI time-of-flight 

mass spectrometry. Likewise, various cobalt complexes were detected, providing an overall 

insightful snapshot of the crude reaction mixture (Figure 21).  

 

 

 

 

 

 

 

Figure 21. ESI-MS (positive ionization-mode) of the crude reaction mixture after 4 h. 

Two signals with a mass-to-charge ratio of 215 and 237 correspond to the free starting 

material 34a ([M+H]+ and [M+Na]+). The detection of 34a in the crude mixture provides 

support for the weak coordination of the O-coordinating substrate in the cobalt(III) complex 
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190. Furthermore, unreacted complex [190+Na]+ was detected with small intensities, as 

well as the cobalt(III) complex 194, in which one substrate 34a was substituted by the 

product 36ab (m/z = 751).  

To better understand and rationalize the nature of the C–O bond forming reductive 

elimination step, density functional theory (DFT) calculations were performed by Dr. J. C. 

A. Oliveira.[309] In accordance with the experimental results, DFT calculations were 

suggestive of an oxidatively-induced reductive elimination via a cobalt(III/IV/II) manifold. 

Here, facile reductive elimination from the cobalt(IV) precursor proved to be highly 

feasible with a calculated activation barrier of 9.9 kcal·mol–1.[309] 

Encouraged by the results on cobaltaelectro-catalyzed C–H oxygenations, analogous 

stoichiometric transformations of the cyclometalated cobalt(III) complex 190 with alkyne 

53a and allene 75a were performed (Scheme 70).[250, 260, 300] 

 

Scheme 70.  Stoichiometric reactivity of 190 for C–C formations without oxidants. 

Interestingly, a facile product formation was observed for both desired transformations 

without the aid of additional oxidants. These results are in good agreement with previously 

performed computational studies for cobalt-catalyzed C–H/N–H alkyne annulations with 

oxygen as the terminal oxidant and for cobaltaelectro-catalyzed C–H/N–H allene 

annulations (vide supra), respectively.[112, 260] Based on these results, it can be assumed that 

the cobaltaelectro-catalyzed C–H annulation reactions proceeds via a cobalt(II/III/I) 

catalytic manifold. It is further noteworthy that during ESI-MS studies of the alkyne 

annulation reaction, a mass signal was observed which could be assigned as the seven-

membered cobalta(III)cycle 195 (Figure 22).[112] Unfortunately, the signal was of low 

intensity and further validation by MS/MS studies was not possible.[251, 269]  
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Figure 22. Attempted ESI-MS detection of seven-membered cobalt(III) complex 195. 

3.4.4 Hammett-Zuman Correlation 

A Hammett plot analysis is a commonly used empirical method to evaluate the rate 

dependence of a given reaction of interest with respect to electronic modifications of the 

reactant.[316] In this study, a particularly interesting question was the relationship between 

the molecular structure of different cobalt(III) complexes and the electrochemical redox 

event:  

 [Co୍୍୍] → [Co୍୚] + 𝑒ି  

 
𝐾଴ =

[Co୍୚]

[Co୍୍୍]
 

 

with the equilibrium constant 𝐾଴ for the unsubstituted cobalt(III) complex 190. In this 

context, a Hammett-Zuman plot analysis was applied to investigate the influence of a 

substituent on the voltametric properties of the studied electron transfer process.[317] Based 

on the established correlation (3.1), chemical reaction parameters such as the equilibrium 

constant K (3.2) or reaction rates k (3.3) can be directly related to different substituents on 

benzamide 34.  

 Δ𝐸ଵ/ଶ = 𝜎୮ × 𝜌 (3.1) 

 log ൬
𝐾

𝐾଴
൰ = 𝜎୮ × 𝜌 (3.2) 

 log ൬
𝑘

𝑘଴
൰ = 𝜎୮ × 𝜌 (3.3) 
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In the Hammett-Zuman correlation, the Hammett-values σp represents the polar substituent 

constants, here in the para-position to the metalated carbon atom of the aromatic ring. The 

proportionality constant ρ, expresses the susceptibility of the electron transfer to the polar 

effects of the respective substituent and is, in contrast to the standard Hammett correlation 

(3.2 and 3.3), measured in volts. To study the influence of ligand substitutions on the 

oxidation-induced reductive elimination, differently substituted cobalt(III) complexes 190 

and 196–201 were synthesized (Table 24).[309]  

Table 24. Synthesis of differently substituted cyclometalated cobalt(III) complexes.[a]  

 

Entry R =  34 Product, Ar =  Yield [%] 

1 H 34a 

 

190 46 

2 Me 34b 

 

196 51 

3 i-Pr 34w 
 

197 28 

4 OMe 34p 

 

198 13[b] 

5 CN 34x 

 

199 19 

6 CF3 34y 
 

200 13 

7 F 34r 

 

201 51 

[a] Reaction conditions: Undivided cell, 34 (2.00 equiv), Co(OAc)2 (0.50 mmol), NaOPiv (2.00 equiv), 
MeCN (13.0 mL), 25 °C, constant potential electrolysis (CPE) at 1.4 V vs. Ag/Ag+, 1 F, graphite felt anode, 
Pt-plate cathode. Yields of isolated complexes are given. [b] C–H acyloxylation[254] was detected with 3% 
conversion. 
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Under the previously optimized reaction conditions for the electrosynthesis of 190, 

cyclometalated cobalt(III) complexes 196–198 decorated with electron-donating (entries 

2–4), as well as electron-withdrawing groups 199–201 were synthesized (entries 5–7). The 

fluctuation in reaction yields can be attributed to a fast degradation of the complexes during 

workup or side reactions during the electrolysis. Especially with electron-donating 

substituents, larger amounts of purple, paramagnetic undesired products were observed 

(vide infra). In order to obtain detailed information about the influence of the substituent 

on the redox properties of the cyclometalated cobalt complexes, cyclic voltammograms 

were recorded in MeOH (Table 25). Notably, all cobalt(III) complexes displayed similar 

redox behaviors, yet electron-donating groups lowered the oxidation potential of the 

corresponding complexes, whereas electron-withdrawing substituents, para to the 

metalated carbon, led to increased oxidation potentials.[309]  

Table 25. Oxidation potentials of cobalt(III) complexes 190, 196–201 and tabulated 
σp-values.[a] 

Entry Cobalt(III) complex  Substituent Ep,ox (V vs. SCE) σp
[316a] 

1 190 H 1.01 0 
2 196 Me 0.96 –0.17 
3 197 i-Pr 0.92 –0.15 
4 198 OMe 0.91 –0.27 
5 199 CN 1.16 +0.66 
6 200 CF3 1.08 +0.54 
7 201 F 1.05 +0.06 

[a] Cyclic voltammograms were recorded in MeOH with n-Bu4NPF6 (0.1 M) as the electrolyte. A GC working 
electrode and a saturated calomel electrode (SCE) reference electrode were used.  

Next, the measured anodic peak potentials were plotted against the Hammett-values σp of 

the respective substituents (Figure 23). A linear correlation was uncovered with a reaction 

constant of ρ = 0.24 V ± 0.04 V. This finding illustrates that the electronic properties of 

the benzamide moiety have only little effect on the oxidation potential of the complex and 

thus minor inductive influence on the cobalt center. Nevertheless, the results indicate that 

electron-donating substituents stabilize the putative cobalt(III/IV) oxidation event.[156l]  
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Figure 23. Hammett-Zuman plot of differently substituted cobalta(III)cycles 190, 196–
201. 

Based on previous results for cobaltaelectro-catalyzed C–O formations (cf. Section 3.1), 

electron-donating substituents resulted in higher yields, whereas electron-withdrawing 

groups led to decreased product yields.[249-250, 260] Intuitively, it would be expected that 

electron-withdrawing substituents on the benzamide 34 would accelerate the reductive 

elimination step, since the high-valent cobalt complex would be destabilized. Based on the 

aforementioned findings, it is likely that the electron-donating substituents lower the 

activation energy of the oxidation event, prior to reductive elimination, thus being 

supportive of the oxidation[285] as the bottleneck of the catalytic cycle. However, since the 

substrate 34 acts as an ancillary ligand, as well as the product forming carbon ligand, 

additional experiments with e.g. differently substituted pyridine-N-oxides or 

distinguishable ligand systems,[318] collectively with computational studies, would be 

required to unambiguously evaluate the ligand effect on the cobaltaelectro-catalyzed C–H 

activation. 

3.4.5 Cobaltaelectro-Catalyzed C–H Arylation via Twofold C–H Scission  

During the synthesis of the cyclometalated cobalt(III) complexes 190, 196–201, a 

considerable amount of unidentified paramagnetic byproducts were typically observed. 

Since the stoichiometric C–H cobaltation reactions were performed in MeCN as an inert 
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solvent, it was hypothesized that electrochemical oxidation of the cobalta(III) cycle to a 

cobalt(IV) species might result in an oxidation-induced dimerization of two of the 

coordinating substrates 34.[146] Although, cyclovoltammetric studies in MeCN revealed a 

reversible oxidation event at scan rates higher than 900 mV·s–1, at slower scan rates, the 

anodic event became irreversible, thus being indicative of chemical follow-up reactions (cf. 

Figure 18).[309] Unfortunately, attempts to recrystallize the crude paramagnetic mixture 

from MeOH failed to produce suitable crystals for X-ray diffraction analysis and only small 

amounts of greenish needles were isolated, thus revealed the octahedral cobalt(II) complex 

202 (Figure 24). 

 

Figure 24.  Molecular structure of 202 with thermal ellipsoids at 50% probability level.  

When the crude reaction mixture was purified by column chromatography, a purple fraction 

was separated. Based on ESI-MS data, a major signal at m/z = 719 was indicative of the 

homocoupled product [203+Na]+. To unambiguously characterize the isolated material, 

crystals suitable for X-ray diffraction analysis were grown via slow diffusion of n-hexane 

into a saturated solution of 203 in CH2Cl2 (Figure 25). The solid state structure revealed a 

pentacoordinated, distorted trigonal bipyramidal cobalt(II) complex 203 with a newly 

formed C–C bond between two of the coordinated benzamides (C8–C9). Similar to the 

cyclometalated cobalt(III) complex 190, a third substrate 34a was found to coordinate via 

the pyridine-N-oxide group. Interestingly, when the crystallization was performed in 

MeOH as the solvent, the mono-O-coordinated substrate 34a was dissociated and a 

substrate-bridged polymeric cobalt(II) complex 204 was formed (Figure 26).  
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Figure 25.  Molecular structure of 203 with thermal ellipsoids at 50% probability level. 
The hydrogen atoms are omitted for clarity. 

 

Figure 26.  Molecular structure of 204 with thermal ellipsoids at 50% probability level. 
The hydrogen atoms are omitted for clarity. 

Inspired by these findings, attempts to optimize the cobaltaelectro-mediated two-fold C–H 

arylation were conducted (Table 26). However, the yield of the dimerized product 203 was 

relatively low with either constant current or constant potential electrolysis (entries 1 and 

2). After considerable experimentation, it was found that increased levels of homocoupling 

occurred at higher reaction temperatures and constant current electrolysis (entries 3 and 4). 

Also, solvents other than polar-aprotic MeCN proved to be unsuitable for the desired 

oxidation-induced reductive dimerization (entries 5–9). Noteworthily, with EtOH as the 

solvent, 70% of the C–H ethoxylated product 36aa was isolated (entry 8), whereas no        

C–H oxygenation was observed with a tertiary alcohol (entry 9).  
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Table 26. Optimization of the twofold C–H activation.[a] 

 

Entry Solvent T [°C] Yield [%] 

1 MeCN 25 25[b] 

2 MeCN 25 20 

3 MeCN 40 32 

4 MeCN 60 73 

5 CH2Cl2 40 ---[c] 

6 HFIP 40 --- 

7 GVL 60 traces[c] 

8 EtOH 40 traces[d] 

9 t-AmOH 40 traces[c] 

[a] Reaction conditions: 34a (0.50 mmol), Co(OAc)2∙4H2O (0.50 equiv), NaOPiv (2.00 equiv), solvent 
(5.0 mL), 14 h, constant current electrolysis at 4 mA, undivided cell, graphite felt anode, Pt-plate cathode. 
Isolated yields are given. [b] CPE at 1.4 V (vs. Ag/Ag+). [c] n-Bu4NPF6 (1.00 equiv) was added as a 
conducting salt. [d] 2-(2-Ethoxybenzamido)pyridine-1-oxide (36aa) was isolated in 70% yield.[249] 

The biphenyl backbone of the dimerized product 203 served as a strong linkage within the 

tetradentate ligand and thus formed a matching cavity for the cobalt(II) metal center. 

Attempts to demetalate and to release the homocoupling product 205 proved challenging 

and commonly used methods failed, such as acidic workup (aq. HCl (1 M)) or washings 

with aqueous solutions of chelating sodium tartrate. Finally, it was found that the highly-

polar demetalated product 205 could be isolated by stirring a solution of cobalt(II) complex 

203 in CH2Cl2 for 12 h at 25 °C, with an aqueous EDTA solution (Scheme 71).  
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Scheme 71.  Demetalation of the dimerized cobalt(II) complex 203. 

3.4.6 Catalyst Inhibition Studies 

The knowledge of possible catalyst deactivation pathways is of key importance to 

improve the efficacy of a catalyst and to decrease the required catalyst loadings.[319] 

However, currently, there is only limited knowledge about factors controlling the catalyst 

lifetime in Cp*-free cobalt-catalyzed C–H activations, including cobalta-electrocatalysis. 

Therefore, the isolated dimerized chelator 205 was investigated as an inhibitor in 

established cobaltaelectro-catalyzed C–H activations (Scheme 72). 

 

Scheme 72.  Catalyst poisoning: A) Cobaltaelectro-catalyzed C–H alkoxylation. B) 
Cobaltaelectro-catalyzed C–H annulation with phenylacetylene (53a). 

The catalyst poisoning studies were exemplified for the cobaltaelectro-catalyzed C–H 

alkoxylation with ethanol (35a) (Scheme 72a) and for the cobaltaelectro-catalyzed C–H 

annulation with phenylacetylene (51a) as the coupling product (Scheme 72b). Strikingly, 
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both reactions showed a strong inhibition of the cobalta-electrocatalysis upon addition of 

the homocoupled product 205. Presumably, chelated cobalt(II) complex 203 was rapidly 

formed in-situ and thereby inhibited the regeneration of the active cobalt(III) species upon 

anodic oxidation. The presented ESI-MS studies (vide supra) also revealed that the 

dimerized cobalt(II) complex 203 was formed during the electrolysis, thus supporting the 

hypothesis that 203 is a possible off-cycle product. 

3.4.7 Proposed Catalytic Scenarios 

Based on the experimental studies summarized above,[309] and the mechanistic data 

obtained within previous projects,[112, 249-252, 260]
 a plausible mechanistic rational for 

cobaltaelectro-catalyzed C–H alkoxylations and C–H annulations with alkynes 53 and 

allenes 75 can be proposed (Scheme 73). Initially, salt metathesis forms the cobalt(II) 

pivalate species, which upon deprotonation of substrate 34 produces the cobalt(II) complex 

192 (A).[320] Anodic oxidation (B), followed by concomitant C–H activation via a base-

assisted internal electrophilic-type substitution (BIES)[35, 41] mechanism generates the key 

cyclometalated cobalt(III) complex 190 (C). At this stage of catalysis, the cobaltaelectro-

catalyzed C–H activation can divert into two different reaction pathways. In case of the C–

H/N–H annulation reactions (Scheme 73, upper cycle), ligand substitution/coordination of 

the π-containing substrate 53 occurs (D), followed by migratory insertion into the Co–C 

bond to furnish the seven-membered cobaltacycle 195 (E).[112, 251] Finally, reductive 

elimination releases the desired isoquinolones 51 and the reduced cobalt(I) complex 207 

(F). Facile anodic oxidation and ligand coordination regenerates the cobalt(II) complex 192 

(G). Thus, the cobaltaelectro-catalyzed alkyne 51 or allene 75 annulation reactions can be 

described to follow a cobalt(II/III/I) catalytic manifold. In the case of cobaltaelectro-

catalyzed C–H oxygenation reactions, a distinctively different catalytic scenario is 

proposed (Scheme 73, bottom cycle). Here, alcohol 35 coordination/ligand substitution at 

the key organometallic cobalta(III)cycle 190, followed by proton-coupled electron transfer 

(PCET)[321] via anodic oxidation is proposed to furnish the transient cobalt(IV) complex 

208 (H).[154b] Thereafter, facile reductive elimination (I) leads to intermediate 209. Finally, 

proto-demetalation (J) delivers the desired alkoxylated product 36 and the reduced 

cobalt(II) complex 192. Conclusively, the cobaltaelectro-catalyzed C–O formation follows 

an oxidation-induced reductive elimination pathway via a cobalt(III/IV/II) manifold. For 

both catalytic scenarios, cathodic generation of hydrogen closes the electrical circuit and 

obviates the need for chemical oxidants.  
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Scheme 73.  Proposed general mechanism for cobaltaelectro-catalyzed C–H annulation 
reactions (top) and C–H alkoxylation reactions (bottom). Color code: grey 
Co(I); purple Co(II); green Co(III); red Co(IV). 

Notably, anodic oxidation of cobalt(III) complex 190 without any additional coupling 

partner furnishes the high-valent cobalt(IV) off-cycle intermediate 210, likely featuring two 

Co–C bonds (K). Likewise, facile reductive elimination generates the dimerized C–C 

coupled cobalt(II) complex 203 (L). However, the N,O-tetradentate ligand operates as a 

strong chelator and thus stops the cobaltaelectro-catalyzed C–H activation. Here, the 

mechanistic insights on the biaryl coupling[322] would benefit from detailed DFT studies[100, 
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112, 260, 323] to support the proposed heterolytic C–C formation via twofold C–H activation. 

Alternative mechanistic scenarios, including homolytic C–H cleavage via cobalt(IV) 

intermediates, have also been proposed based on DFT-calculations.[324] Also, instead of a 

second N,O-bidentate substrate 34, additional pivalate coordination cannot be excluded.  

After the presented work was published, a theoretical study on the mechanism of cobalt-

catalyzed twofold C–H activations with an 8-aminoquinoline directing group 26 was 

reported by Musaev and Macbeth.[325] Interestingly, similar cobalt(II) and cobalt(III) 

complexes could be synthesized and analyzed. Experimental attempts for the synthesis of 

the dimerized products 94 were performed under harsh reaction conditions at 100 °C, in 

DCE as the solvent, and with super-stoichiometric amounts of silver oxidants. The authors 

also supported the mobile ligand environment on the cobalt complexes and stated that fast 

ligand exchange between substrate 26 and pivalate was observed and theoretically feasible. 

Most notably, the catalytic scenario proposed by the authors was consistent of two 

consecutive CMD-type C–H scission events for the oxidative cobalt-mediated 

dehydrogenative aryl–aryl coupling. Finally, DFT-calculations confirmed that the C–C 

coupling was the rate-determining step of the overall reaction. 

Also, Maseras and Pérez-Temprano recently reported that oxidation-induced reductive 

elimination likewise applies for Cp*Co(III)-catalyzed C–S formations. Here, the generation 

of a key-cyclometalated cobalt(IV) species was supported by stoichiometric experiments, 

CV studies, and DFT calculations.[74a] 
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3.5 Mechanistic Studies of Metallaelectro-Catalyzed C–H 

Activations 

Electrochemistry offers a plethora of analytic tools to study the reaction mechanism of 

molecular transformations.[170g, 209c, 263, 278a, 326] A profound knowledge of the respective 

redox potentials of the individual reaction components, as well as their interplay within the 

catalytic system is of key importance to delineate the catalyst’s working mode, but also for 

the design of new catalysts and synthetic concepts. Here, a variety of electroanalytic studies 

were performed during the course of this thesis, with a major focus on cyclic voltametric 

studies, which are briefly summarized within the following chapter.  

After the success of the proof-of-concept study on cobaltaelectro-catalyzed C–H 

alkoxylation,[249] Dr. C. Tian and L. Massignan have expanded the scope of the 

methodology on cobaltaelectro-catalyzed C–H annulation reactions with alkynes 53 (cf. 

Scheme 41).[250] Within this study, I have performed cyclic voltametric studies to gain 

further insights into the catalyst modus operandi. The results of these experiments were 

related to the ones previously discussed in the chapters on cobaltaelectro-catalyzed C–H 

allene and alkyne annulations in biomass-derived glycerol and are thus not further 

described (vide supra).  

Further mechanistic studies have been performed in cooperation with M. Stangier and Dr. 

Y. Qiu on the first iridaelectro-catalyzed C–H oxidation through weak O-coordination 

(Scheme 74).[327] It is noteworthy that the reaction design, optimization, scope and other 

mechanistic experiments, including DFT-calculations by Dr. J. C. A. Oliveira, were 

investigated by the co-authors. In contrast to similarly reported rhodaelectro-catalyzed      

C–H activations,[328] the key for high levels of chemoselectivity control and excellent 

functional group tolerance within the iridaelectro-catalyzed manifold, was proposed to 

result from the employment of an additional redox catalyst 136.[220q, 224b] Within this 

project, a major focus was to unravel the mechanistic scenario of this novel mediated 

cooperation, between the benzoquinone redox mediator 136 and the active iridium(III) 

catalyst.[329] First, it was found that the reduction and oxidation of the benzoquinone 136 

occurred at less negative potentials, compared to the iridium(III/II) redox event (Scheme 

74, green vs. red). Second, the mixture of both catalysts resulted in irreversible redox 

behavior of the redox mediator 136, thus being indicative of sufficient electron transfer to 

the iridium complex (blue). However, the exact nature of the electron transfer step between 



124 Results and Discussion 

the iridium complex 212 and the redox mediator 136 is still uncertain and might occur via 

pre-coordination of the benzoquinone 136.[330]  

 

Scheme 74. Cooperated, indirect iridaelectro-catalyzed C–H alkenylations of benzoic 
acids 68 with acrylates or acryl amidates 10. Cyclic voltammograms at 
25 °C and 100 mV·s–1 using MeCN and n-Bu4NPF6 (0.1 M) as the 
electrolyte and a GC working electrode. a) Benzoquinone 136 (green), b) 
[Cp*IrCl2]2 (red); and a mixture of a) and b) (blue). 

In addition to metallaelectro-catalyzed transformations, also catalyst- and reagent-free 

electrochemical C–H amination of azoles have been mechanistically examined.[331] Within 

the study, mainly developed and performed by Dr. Y. Qiu, J. Struwe and Dr. J. C. A. 

Oliveira, I assisted the mechanistic assessment with detailed CV experiments. The 

experiments were performed together with J. Struwe during her master thesis and are thus 

not further discussed within this thesis. 

Electroanalytical tools have been particularly effective when combined with other 

analytical techniques, such as in-operando IR or NMR spectroscopic analysis. Hence, the 

following cooperated project will be described in more detail to highlight the advantages 

of both analytical techniques for the mechanistic study of highly reactive reaction 

intermediates.  
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3.5.1 Mechanistic Studies for Ruthenaelectro-Catalyzed C–H Oxygenations 

The synthesis of phenol derivatives via direct C–H oxygenation has become a valuable 

tool in modern organic synthesis and has particularly proven to be effective via ruthenium 

catalysis, with key contributions by Ackermann,[332] among others.[319a, 333] The oxidative 

hydroxylation strategy, however, generally suffers from the employment of stoichiometric 

amounts of chemical oxidants and harsh reaction conditions, thus lowering the atom-

economy and ecological footprint of the overall process.[333a, 334] Previous studies 

demonstrated that the chemoselectivity of the ruthenium-catalyzed C–H activation strongly 

depended on the terminal oxidant[335] and that hypervalent-iodine(III) reagents[336] solely 

resulted in intermolecular C(sp2)–H hydroxylation.[332h] Based on these findings, and the 

recent achievements in electrochemical generation of hypervalent-iodine reagents from 

simple iodoarenes 215,[290d, 299b, 337] as well as the recent success in ruthena-

electrocatalysis,[243b, 244d-f, 338] it was reasoned to orchestrate both techniques within a user-

friendly and resource-economic dual-catalytic manifold (Scheme 75).[339] L. Massignan and 

Dr. X. Tan have developed, optimized and evaluated the ruthenaelectro-catalyzed C–H 

hydroxylation in terms of substrate scope and mechanistic studies by experiment, other than 

the results presented below. Dr. R. Kuniyill performed DFT-calculations[340] on the 

presented ruthena-electrocatalysis.  

 

Scheme 75. Dual electrocatalysis in practice: iodine(III)/ruthenium(II) electrocatalytic 
C–H hydroxylation.  

It is noteworthy that instead of weakly-coordinating amides 214, also ketones and pyrazols 

were fully applicable as a directing group under the dual electrocatalytic conditions. Also, 

directing group-free remote C–H oxygenation[332e] was likewise accomplished.[339] If, 

however, strong chemical oxidants, such as meta-chloroperoxybenzoic acid (m-CPBA) or 
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ozone, commonly employed for the synthesis of hypervalent iodine reagents, were used 

instead of electricity, the desired product formation was drastically diminished.  

Mechanistic studies, performed by L. Massignan and Dr. X. Tan revealed a reversible        

C–H cleavage in the ortho-position of the substrate 214, along with a minor kinetic isotopic 

effect (KIE) of kH/kD ≈ 1.6. Also, competition experiments were indicative of a BIES C–H 

activation manifold.[35, 41] In contrast, when chemical oxidants were used instead of 

electricity, the C–H activation step was found to be the rate-determining step.[332e, 332f] This 

remarkable finding suggested that different mechanistic scenarios were operative within 

the two catalytic manifolds. Given the efficiency of the unprecedented dual electrocatalytic 

C–H oxygenation system, the authors became particularly interested in the cooperative 

effect of the in-situ formed iodine(III) reagent and the ruthenium(II) complex 217, since 

both catalyst proved to be essential to deliver the oxygenated product 216.[339] However, 

the strong acidic solvent conditions and the transiently formed electrocatalytic species 

made the quest for potential reaction intermediates a major challenge. To tackle this issue, 

anodic oxidation in continuous flow has recently proven to be an efficient and safe tool for 

the synthesis and study of hypervalent iodine reagents.[290d, 290j] With this in mind, the 

reaction profile of the anodic formation of different iodine(III) reagents 218 and 219 was 

studied by in operando flow 1H-NMR spectroscopy (Scheme 76).  
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Scheme 76. In operando flow 1H-NMR studies for the formation of i) 218 and ii) 219 at 
10 mA constant current electrolysis in trifluoroethanol (TFE) or 
trifluoroacetic acid (TFA), respectively. The conversion was determined by 
1H-NMR analysis, using CH2Br2 as the internal standard.  

Initially, the anodic conversion of 1-iodo-4-methylbenzene (215b) in trifluoroethanol 

(TFE) was monitored. Notably, almost full consumption of 215b was detected after 2.5 h 

at 10 mA. Subsequently, the anodic generation of 219 from acidic TFA and 215b was found 

to occur with similar efficacy, with only slightly prolonged reaction times of 3 h. The 

results were supportive of a facile anodic oxidation of the iodoarenes 215 and highlighted 

the stability of the formed products 218 and 219 under the reaction conditions. Thereafter, 

the redox properties of different haloarenes and substrate 214 were examined via cyclic 

voltammetry in TFA as the solvent (Figure 27). 
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Figure 27. Cyclic voltammetry (TFA, 0.1 M n-Bu4NPF6, 100 mV·s–1) using GC as the 
working electrode. i) (red) blank; (green) 214; (black) iodobenzene (215a) 
+ 214; (blue) 1-iodo-4-methylbenzene (215b); (magenta) methyl 4-
iodobenzoate. ii) (red) fluorobenzene; (black) chlorobenzene; (green) 
bromobenzene; (blue) iodobenzene (215a). The concentration of the 
individual analytes was 5.0 mM.  

The comparison of voltammograms of different reaction components highlighted the 

unique redox properties of electron-rich iodoarenes 215 in TFA with an onset potential of 

E = 1.25 V vs. ferrocene for 215b (Figure 27i). Other haloarenes did not show any redox 

activity in the evaluated potential window (Figure 27ii).[341] A mixture of iodobenzene 215a 

and 214 did not lead to significant changes in the voltammogram. This finding is in good 

agreement with the control experiments performed by L. Massignan, which showed no 

reaction in the absence of the ruthenium catalyst. However, the examination of the 

ruthenium complex 217 proved to be challenging under the corrosive solvent conditions 

and different solvent environments had to be investigated. Based on previous ruthenium-

catalyzed C–H oxygenations with PIFA as a chemical oxidant,[332d, 332e] DCE was chosen 

as a less corrosive and more practical solvent for the evaluation of all reaction components 

and the well-defined ruthenium(II) carboxylate complex 217 (Figure 28). Cyclic 

voltammograms of the different reaction components revealed facile oxidation of the 

ruthenium complex 217 (Figure 28i). Notably, two irreversible oxidation reactions were 

detected (Ep,ox = 0.90 V and Ep,ox =  1.27 V vs. Fc/Fc+, 100 mV·s–1), which were assigned 

to the formal Ru(II/III) and Ru(III/IV) oxidation, respectively.[342] The irreversible 

character was further substantiated with voltammograms at different scan rates, being 

indicative of a fast chemical follow-up reaction (Figure 28ii).  
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Figure 28. Cyclic voltammograms at (i) 100 mV·s–1 and (ii) as depicted, using DCE 
and n-Bu4NPF6 (0.1 M) as the electrolyte and a GC working electrode; the 
concentration of the analytes was 5.0 mM; concentration of Ru(OAc)2(p-
cymene) was 3.0 mM. i) (black) blank; (red) 214; (blue) [Ru]; (magenta) 
[Ru] + 214; (green) [Ru] + 214 + 215a; (navy blue) [Ru] + 214 + 215a was 
heated for 1 h at 50 °C and cooled to 25 °C before the analysis was started. 
ii) [Ru] at different scan rates. [Ru] = Ru(OAc)2(p-cymene) (217). 

Given the key importance of a cyclometalated ruthenacycle[25a, 343] as a potential 

intermediate in the ruthenaelectro-catalyzed C–H oxygenation, L. Massignan and Dr. A. 

Messinis have synthesized and fully characterized the cycloruthenated complex 221 

(Scheme 77).  

 

Scheme 77.  Synthesis of cyclometalated ruthenium(II) complex 221. Reaction and 
characterization were performed by Dr. A. Messinis.  

With the well-defined ruthena(II)cycle 221 in hand, a detailed electroanalytical study was 

performed to unravel the nature of the oxidation reaction of the ruthenium complex. The 

study was initiated by cyclic voltammetry of complex 221 in DCE (Figure 29).   
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Figure 29. Cyclic voltammogram at 100 mV·s–1 using DCE and n-Bu4NPF6 (0.1 M) as 
the electrolyte and a GC working electrode; concentration of complex 221 
was 3.86 mM.  

The voltammogram of complex 221 revealed a strong, reversible redox event at E1/2 = 

0.21 V (vs. Fc/Fc+; ΔEp = 170 mV), a weak second redox event at E1/2 = 0.75 V (vs. Fc/Fc+; 

ΔEp = 120 mV) and an irreversible oxidation at Ep = 1.22 V (vs. Fc/Fc+). The latter, 

irreversible oxidation most likely corresponds to the coordinating chloride atom. To gain 

more information on the number of transferred electrons n within the first redox event,[263] 

a combined study by steady-state and non-steady state voltammetry was performed, 

following a known procedure.[344] By comparison of the Randles-Ševčík equation (Eq. 3.4):  

 𝑖୮ = 0.4463ඨቆ
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where ip is the current maximum of the oxidation wave in amperes, F is the Faraday 

constant in C·mol−1, R is the gas constant in J·K−1·mol−1, C is the concentration of the 

ruthenium complex 221 (3.9·10–6 mol·cm–3), A is the surface area of the working electrode 
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(WE) (0.071 cm2), v is the scan rate in V·s–1, D is the diffusion coefficient in cm2·s–1 and n 

is the electron transfer number, with the Levich equation (3.6): 
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where ilim is the limiting or Levich current in amperes, ω is the rotation rate of the GC-disc 

electrode in rad·s–1 (A = 0.126 cm2), ν is the kinematic viscosity of DCE in cm2·s–1 (defined 

by the ratio of the dynamic viscosity μ = 0.7644 mPa·s to the density ρ = 1.245 kg·m–3 at 

T = 298 K),[345] and C is the concentration of the complex 221 (1.0·10–6 mol·cm–3) it 

becomes visible that both equations are proportional with the transferred number of 

electrons n during the redox event. Plotting the peak current of the ruthenium complex 221, 

measured via CV, as a function of the square root of the scan rate (Figure 30i), alongside 

plotting the limiting current as a function of the square root of the rotation rate at the 

rotating ring disc electrode (RDE) (Figure 30ii), delivered two slopes S1 and S2, 

respectively, which directly depend on the function of n (Eq. 3.7).  
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2.87 ∗ 10ିସ
= 0.935 ± 0.206 (3.7) 

 

Figure 30. i) Linear fit for the Randles-Ševčík equation. ii) Linear fit for the Levich 
equation.  

Thus, the results were supportive of a stepwise one-electron oxidation, rather than a 

concerted two-electron oxidation, facilitated by the electrochemically in-situ generated 

hypervalent iodine reagent. Recently reported detailed mechanistic studies on similar 

ruthenium-catalyzed C–H oxygenation reactions supported the main mechanistic 

assumptions by experiment and computational DFT studies.[332a] 
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Based on the mechanistic studies by experiment and computation, a plausible catalytic 

cycle was proposed for the unprecedented dual electro-catalyzed C–H oxygenation 

(Scheme 78).[339] Initially, the pre-catalyst 217 undergoes fast ligand exchange in the 

TFA/TFAA solvent mixture, to form the catalytically potent cationic ruthenium complex 

222. Carboxylate-assisted, reversible C–H activation of amide 214 initiates the catalytic 

cycle to form the cyclometalated ruthenium(II) complex 223.[23b, 34a, 284, 319c] Concurrently, 

the iodobenzene 215 is anodically oxidized to generate the hypervalent iodine(III) species 

219. The transient redox catalyst 219 now mediates the oxidation of ruthenacycle 223 in a 

step-wise electron/carboxylate transfer process, to deliver the high-valent ruthenium(IV) 

complex 224. Oxidation-induced reductive elimination releases intermediate 225. The 

desired hydroxylated product 216 is formed after hydrolysis. Cathodic hydrogen formation 

closes the electrochemical cycle. 

 

Scheme 78. Proposed catalytic scenario for the cooperative electrocatalytic C–H 
oxygenation.  
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3.6 Manganaelectro-Catalyzed Undirected C(sp3)–H Azidation 

The development of selective and resource-economic methods for the direct 

transformation of otherwise unreactive C(sp3)–H bonds has remained as one of the most 

auspicious challenges in molecular syntheses.[23g, 25c, 166] While numerous biologically-

inspired methods are known for aliphatic C–H oxygenations,[24a-d, 170d, 175a-f, 175i-n] Nature 

does not rely on C–H amination reactions.[346]  Challenged by this topical quest, synthetic 

chemists have developed concepts for the direct amination of C(sp3)–H bonds to overcome 

this lack of biosynthetic precedents.[347] Among those methods, especially direct C–H 

azidation reactions have been established as a step-economical tool to enable the desired 

C–N bond formation.[182b, 182d, 348] Despite the significant progress in oxidative C–H 

azidation reactions in recent years, previously developed strategies predominantly rely on 

stoichiometric amounts of strong, hazardous chemical energy carriers, such as 

persulfates,[189] N-fluorobenzenesulfonimide (NFSI)[203a] or hypervalent iodine reagents[185-

187, 188b, 191, 201-202], among others.[169b, 190, 192] 

In this context, a far more appealing, but thus far unprecedented strategy would involve the 

direct electrochemical C–H azidation of aliphatic groups with valuable hydrogen gas as the 

sole byproduct.[349]  

3.6.1 Preliminary Studies toward Metal-Free Electrochemical C–H Azidation of 

Benzylic C–H Bonds 

Initially, different conditions were probed for the anodic generation of azidyl radicals 

from readily available inorganic azide sources. In accordance with previous reports,[350] it 

was found that azide anions in water were successfully oxidized at a graphite-felt (GF) 

anode and resulted in vigorous nitrogen gas formation, while hydrogen gas was formed on 

the platinum cathode (Scheme 79).  

 

Scheme 79. Anodic oxidation of azide anions in water.  

Based on these findings, the formation of azidyl-radicals via anodic oxidation was 

envisaged for metal-free C–H azidations of activated benzylic C(sp3)–H bonds (BDE C–H 

= 82.9 ± 1.2 kcal·mol–1)[15] via hydrogen atom abstraction.[24d, 169b, 321d, 351] Preliminary 
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attempts for the electrochemical C–H azidation of 1,2,3,4-tetrahydronaphthalene (111a), 

by means of anodic oxidation under constant current electrolysis of an aqueous solution of 

sodium azide in a polar protic or aprotic co-solvent, resulted in a mixture of azidated 

product 113a and undesired oxygenated products 226a and 227, respectively (Table 27). 

Interestingly, when a biphasic mixture was used, only traces of oxidized products 226a and 

227 were observed (entry 1). In contrast, when MeCN was employed as a polar-aprotic 

solvent, high conversion of the substrate 111a was obtained, albeit with only low formation 

of the desired organic azide 113a (entry 2). However, alcoholic solvents resulted in only 

low conversion of the benzylic substrate 111a (entries 3 and 4). Notably, high conversion 

of 111a was achieved, when acetic acid was tested as the solvent (entries 5–7), albeit with 

only poor chemoselecitvity toward the desired product 113a.  

Table 27. Initial results for metal-free electrochemical C–H azidation.[a] 

 

Entry Solvent Yield [%] (Ratio 113a/226a/227) Conversion [%] 

1 EtOAc 2 (1/1/0) 8 

2 MeCN 38 (6/32/0) 67 

3 MeOH 4 (0/4/0) 31 

4 CF3CH2OH 9 (5/4/0) 38 

5 AcOH 88 (15/48/25) 89 

6 AcOH 85 (15/38/32) 95[b] 

7 AcOH  51 (20/28/3) 70[c] 

[a] Reaction conditions: 111a (0.50 mmol), aq. NaN3 (2.0 mL, 2.0 M), additive (1.00 equiv), solvent (2 mL), 
4 h, CCE = 10 mA, 25 °C. Undivided cell, graphite felt (GF) anode and platinum plate cathode. Conversion 
of 111a, yields and ratios were determined by gas chromatography (GC-FID) with n-dodecane as internal 
standard. Calibrations were conducted with authentic samples and compared with 1H-NMR spectroscopy, 
using 1,3,5-trimethoxybenzene as internal standard, and isolated yields, respectively. [b] Under nitrogen 
atmosphere. [c] Reticulated vitreous carbon (RVC) instead of GF. 

In summary, the findings are suggestive of an efficient single-electron transfer (SET) 

oxidation of the benzylic substrate 111a with the azidyl radical as hydrogen atom abstractor 

(vide infra).[352] Alternatively, 111a directly undergoes anodic oxidation (Ep,a = 2.1 V vs. 

SCE[353])  to form a stabilized[194] benzylic radical cation.[354] Subsequent deprotonation and 
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a facile second single-electron-transfer oxidation would generate the benzylic cation,[355] 

prone to nucleophilic trapping by among azide, water or acetate, to form the azidated 

product 113a, 1-tetralone (226a)[170d, 356] or the ester 227, respectively. It is noteworthy that 

a control experiment revealed facile overoxidation of the azidated product 113a to the 

corresponding ketone 226a, under constant current electrolysis in acetic acid/water 

mixtures (Scheme 80).  

 

Scheme 80. Overoxidation of product 113a at constant current electrolysis. 

Hence, it became apparent that a suitable catalyst was required to mediate the desired 

C(sp3)–Het formation in a more selective fashion to avoid competitive overoxidation of the 

intermediates and products. In this context, synthetic manganese(III) porphyrin complexes 

represent a particularly versatile and attractive catalyst platform for bioinspired C–H 

oxidation and subsequent heteroatom-transfer reactions to the otherwise inert aliphatic 

substrates.[175f, 196a, 197, 347b, 347i, 357] However, these methods commonly employ super-

stoichiometric amounts of iodosobenzene as the chemical oxidant and oxygen-surrogate to 

generate high-valent manganese(V)-oxo porphyrin complexes,[175c, 358] which represent the 

active catalyst for hydrogen atom abstraction of aliphatic C(sp3)–H bonds to form the 

desired alkyl radical.[24c, 24i, 196c, 359] These hydroxo intermediates directly compete with the 

desired hetero-atom transfer reaction as was shown in a recent study by Groves on 

manganese-catalyzed C–H azidations and therefore the reported azide to oxygen 

incorporation ratio was relatively low (2–4:1) (cf. Scheme 34).[198] Hence, the undesired 

oxygenation reaction seemed unavoidable in C–H azidations involving manganese-oxo 

species. Hence, it was reasoned that replacing the chemical charge carrier with reagent-free 

electrochemical potential would allow to generate high-valent manganese-catalyst in the 

absence of competing oxo-species.  

Notably, manifolds have been developed to employ electrochemistry for manganese-

catalyzed olefin functionalization[220f, 360] among others.[361] However, the merger of 

manganese- and electrocatalysis for undirected C–H functionalization reactions of 

saturated hydrocarbons has largely remained elusive.  
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3.6.2 Optimization Studies for Manganaelectro-Catalyzed C(sp3)–H Azidation 

The experimentation was initiated with cyclooctane (111b) as the model substrate for 

the desired manganaelectro-catalyzed C–H azidation of unactivated (BDE C–H: 

95.7 kcal·mol–1)[362] alkanes (Table 28). Based on previous studies for the in-situ generation 

of hypervalent iodine species upon electrochemical stimulus (vide infra),[339] it was 

envisioned that catalytic amounts of iodobenzene might replace the otherwise required 

super-stoichiometric amounts of potentially explosive iodosobenzene. Indeed, promising 

conversion of cyclooctane (111b) was observed in acetic acid/H2O (v/v 1:1) mixtures at 

25 °C with simple sodium azide as the nitrogen source and catalytic amounts of 

iodobenzene (entry 1). It was further noticed that the manganese salen catalyst [Mn2] 

resulted in slightly higher conversion of the alkane 111b, compared to manganese 

porphyrin complex [Mn1] (entry 2). Unfortunately, for both catalysts, the azide-to-oxygen 

ratio was relatively low and a significant amounts of ketone 226b were detected as a side 

product. Surprisingly, and in contrast to the well-established protocols,[363] it was noticed 

that similar outcome for the manganaelectrocatalytic manifold was achieved in the absence 

of any oxygen-transfer reagent (entry 3). Thus, the reactivity of the electrocatalysis was 

probed in MeCN/AcOH mixtures. Interestingly, in the absence of water, the azide-to-

oxygen ratio was significantly improved with overall similar levels of efficacy of the 

manganaelectro-catalyzed C–H functionalization (entry 4). Notably, if the reaction time 

was extended from five (Q·mol–1 = 2.24 F) to ten hours (Q·mol–1 = 4.48 F), higher overall 

conversion was detected, albeit with increased levels of overoxidation to the undesired 

oxygenated product 226b (entry 5).  

After these initial successes for the manganaelectro-catalyzed C–H azidation, Dr. R. C. 

Samanta joined the project, and the minor further reaction optimization was conducted in 

a cooperative manner. The experiments performed by Dr. R. C. Samanta are thus 

specifically highlighted in the following optimization tables.  
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Table 28. Optimization of general reaction conditions for the C–H azidation.[a] 

 

Entry [Mn] Solvent 
Additive 
(equiv) 

Yield [%]  
(Ratio 113b/226b) 

Conversion 
[%] 

1 [Mn1] AcOH/H2O PhI (0.20) 25 (2.6:1.0) 37[b] 

2 [Mn2] AcOH/H2O PhI (0.20) 33 (2.0:1.0) 45[b] 

3 [Mn2] AcOH/H2O --- 30 (2.8:1.0) 41[b] 

4 [Mn2] AcOH/MeCN LiClO4 (1.00) 31 (5.2:1.0) 43[b] 

5 [Mn2] AcOH/MeCN LiClO4 (1.00) 43 (3.3:1.0) 72[c] 

6 [Mn2] AcOH/MeCN LiClO4 (1.00) 40 (12.3:1.0) 56*[c,d] 

7 [Mn2] AcOH/MeCN LiClO4 (1.00) 45 (10.0:1.0) 70[d] 

8 [Mn2] AcOH/MeCN LiClO4 (1.00)  30 (1.0:1.0) 96*[d,e] 

9 [Mn2] AcOH/MeCN LiClO4 (1.00) 42 (9.5:1.0) 65[d,f] 

10 [Mn2] AcOH/MeCN LiClO4 (1.00) 42 (10.0:1.0) 68[d,g] 

11 [Mn2] AcOH/MeCN LiClO4 (1.00) 46 (5.6:1.0) 64*[d,h] 

12 [Mn1] AcOH/MeCN LiClO4 (1.00) 44 (1.6:1.0) 86[d] 

13 [Mn3] AcOH/MeCN LiClO4 (1.00) 10 (4.0:1.0) 10[d] 

14 [Mn4] AcOH/MeCN LiClO4 (1.00) 39 (12.0:1.0) 47[d] 

15 [Mn5] AcOH/MeCN LiClO4 (1.00) 47 (8.4:1.0) 62[d] 

16 [Mn6] AcOH/MeCN LiClO4 (1.00) 32 (9.7:1.0) 38[d,i] 

17 --- AcOH/MeCN LiClO4 (1.00) 10 (2.0:1.0) 49[d] 

[a] Reaction conditions: 111b (0.50 mmol), NaN3 (4.00 mmol, 8.00 equiv), [Mn] (5.0 mol %), additive (xx 
equiv), solvent (1:1, 5.0 mL), 10 h, CCE = 8 mA, 25 °C. Undivided cell, graphite felt (GF) anode and platinum 
plate cathode. Conversion of 111b, yields and ratios were determined by gas chromatography (GC-FID) with 
n-dodecane as internal standard. Calibrations were conducted with authentic samples and compared with 1H-
NMR spectroscopy, using 1,3,5-trimethoxybenzene as internal standard, and isolated yields, respectively. [b] 
5 h, 6 mA. [c] 10 h, 6 mA. [d] Under nitrogen atmosphere. [e] Light irradiation with blue LEDs. [f] 50 °C. 
[g] Reaction was performed in dark. [h] [Mn2] (2.5 mol %). [i] [Mn6] = (S,S)-Jacobsen’s catalyst. *Performed 
by Dr. R. C. Samanta. 
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Previous studies on electrochemical C–H oxygenations with manganese or iron[175l, 364] 

porphyrin and related complexes as the catalyst have indicated that oxygenation reactions 

can either occur via O2 from air or concurrent anodic water oxidation.[360c-f, 360h-j, 365] When 

the mangana-electrocatalysis was conducted with degassed solvents, under a nitrogen 

atmosphere, overall good conversion of cyclooctane (111b) to the desired azide 113b was 

observed, with only traces of cyclooctanon (226b) as the side-product and an overall 

satisfactory mass-balance (entry 6). When the current output was increased to 8 mA 

(Q·mol–1 = 5.97 F), a slightly increased yield of azide 113b was obtained, with a 

satisfactory azide-to-ketone ratio of 10:1 (entry 7). Furthermore, light-irradiation or an 

increase in the reaction temperature did not have a beneficial effect on the reaction outcome 

(entries 8–10). A decrease in the catalyst loading to 2.5 mol % did result in similar 

conversion, however with slightly diminished azide-to-ketone ratio of 5.6:1 (entry 11). 

Moreover, when other manganese(III) catalyst instead of [Mn2] were used, overall lower 

yields in azidation were detected (entries 12–16). Notably, complex [Mn3] with an 

unsubstituted salen ligand, resulted in a significantly reduced yield and chemoselectivity 

(entry 13). One possible catalyst deactivation pathway could be the oxidation of the Schiff 

base ligand backbone under the electrochemical conditions.[366] In this context, the study of 

differently substituted salen-ligands could be interesting for future developments.[367] 

Control experiments without catalyst revealed only minor background reactivity (entry 

17).[368]  This was expected since the direct anodic electron transfer for unactivated alkanes 

can be excluded, simply due to their inherently high oxidation potential of Eox ≥ 2.5 V.[369] 

Next, different solvent mixtures were evaluated for the manganaelectro-catalyzed C–H 

azidation of unactivated alkane 111b (Table 29). Changing the solvent ratio for 

MeCN/AcOH mixtures from 1:1 to 3:1 drastically enhanced the chemoselectivity toward 

the desired azidation reaction, with a concomitant drop in reactivity (entry 2). Interestingly, 

when aqueous solvent mixtures were degassed prior to use, AcOH/H2O resulted in similar 

reaction outcome as of reactions under air (entry 3 vs. Table 28, entry 3), whereas when 

MeCN/H2O was used, the mangana-electrocatalysis provided product 113b with acceptable 

chemoselectivity, albeit in low yield (entry 4). Other solvent mixtures did not result in 

satisfactory conversion of the hydrocarbon under the electrocatalytic conditions (entries 5–

10). Additional polar solvent mixtures were tested by Dr. R. C. Samanta, however all were 

inferior to AcOH/MeCN.[349] 
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Table 29. Optimization of solvents.[a] 

 

Entry Solvent Additive (equiv) 
Yield [%] 

 (Ratio 113b/226b) 
Conversion [%] 

1 AcOH/MeCN LiClO4 (1.00) 45 (10.0:1.0) 70 

2 AcOH/MeCN LiClO4 (1.00) 31 (30.0:1.0) 40[b] 

3 AcOH/H2O --- 25 (2.1:1.0) 43 

4 MeCN/H2O --- 17 (7.5:1.0) 28 

5 MeOH/H2O --- 4 (1.0:1.0) 4 

6 HFIP/H2O --- 10 (1.5:1.0) 67 

7 CH2Cl2/H2O --- 0 1 

8 CF3COOH/H2O --- 3 (0:3.0) 69 

9 AcOH/EtOAc LiClO4 (1.00) 4 (3.0:1.0) 6[c] 

10 EtOAc/H2O --- 1 (0:1.0) 1[d] 

[a] Reaction conditions: 111b (0.50 mmol), NaN3 (4.00 mmol, 8.00 equiv), [Mn2] (5.0 mol %), additive (xx 
equiv), solvent (1:1, 5.0 mL), 10 h, CCE = 8 mA, 25 °C. Undivided cell, graphite felt (GF) anode and platinum 
plate cathode. Conversion of 111b, yields and ratios were determined by gas chromatography (GC-FID) with 
n-dodecane as internal standard. Calibrations were conducted with authentic samples and compared with 1H-
NMR spectroscopy, using 1,3,5-trimethoxybenzene as internal standard, and isolated yields, respectively. [b] 
MeCN/AcOH (3:1). [c] 10 h, CPE = 2.0 V. [d] [Mn1] instead of [Mn2].  

Thereafter, various azide sources and different electrode materials were tested within the 

electrochemical manganese-catalyzed C(sp3)–H azidation (Table 30). When the amount of 

NaN3 was decreased, lower conversion was detected, together with increased levels of 

overoxidation to the ketone 226b (entry 2). Other nucleophilic azide sources delivered the 

desired product 113b in slightly lower yields (entries 3 and 4). In contrast, electrophilic 

azide sources fell short in the formation of the azidated product 113b within the 

manganaelectrocatalytic manifold (entries 5 and 6).[169b, 370] Notably, when other carbon-

based electrodes were used as the anode material, almost no oxygenated side products 226b 

were observed, albeit overall lower conversion of cyclooctane (111b) was detected (entries 

7–9). One reason for the low oxygenation could be the high overpotential of glassy carbon 

toward the oxygen evolution reaction.[170g] It also should be noted that full degassing of the 
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graphite felt electrodes prior its insertion was challenging, due to its inherent high structural 

density and small pore size. When platinum was used as the anode material, no conversion 

of the alkane 111b was observed (entry 10).   

Table 30. Optimization of electrode material and azide source.[a] 

 

Entry XN3 (equiv) Anode xx 
Yield [%] 

 (Ratio 113b/226b) 
Conversion [%] 

1 NaN3 (8.0) GF 45 (10.0:1.0) 70 

2 NaN3 (4.0) GF  35 (4.8:1.0) 67 

3 KN3 (8.0) GF 44 (5.3:1.0) 69 

4 TMSN3 (4.0) GF 30 (8.0:1.0) 87* 

5 4-CF3-C6H4SO2N3 (2.0) GF 0 4 

6 TsN3 (4.0) GF 0 25 

7 NaN3 (8.0) GC 6 (1.0:0.0) 11* 

8 NaN3 (8.0) RVC 15 (14.0:1.0) 23 

9 NaN3 (8.0) graphite 19 (1.0:0.0) 29* 

10 NaN3 (8.0) Pt 0 1 

[a] Reaction conditions: 111b (0.50 mmol), XN3 (xx equiv), [Mn2] (5.0 mol %), LiClO4 (1.0 equiv), 
AcOH/MeCN (1:1, 5.0 mL), 10 h, CCE = 8 mA, 25 °C. Undivided cell, anode xx and platinum plate cathode. 
Glassy carbon (GC). Reticulated vitreous carbon (RVC). Conversion of 111b, yields and ratios were 
determined by gas chromatography (GC-FID) with n-dodecane as internal standard. Calibrations were 
conducted with authentic samples and compared with 1H-NMR spectroscopy, using 1,3,5-trimethoxybenzene 
as internal standard, and isolated yields, respectively. *Performed by Dr. R. C. Samanta. 

Moreover, different current densities and reaction times were evaluated (Table 31). A 

variation in the current revealed that 8.0 mA (j = 5.33 mA·cm–2), applied over ten hours, 

was optimal in terms of conversion and chemoselectivity (entry 1). With lower applied 

current densities, the overall reaction yield and also the chemoselectivity was diminished. 

Likewise, higher current (entry 7) or longer reaction time with lower current than 8 mA led 

to overall diminished yields of the azidated product 113b (entries 2, 4 and 6). These 

findings are in line with the previously performed control experiment for metal-free C–H 
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azidations (cf. Scheme 80), which supported that the organic azide easily undergoes 

overoxidation to the corresponding ketone during the course of the reaction. Importantly, 

in the absence of external charge, no azidation was observed (entries 8 and 9).  

Table 31. Optimization of applied charge.[a] 

 

Entry Current 
Yield [%] 

 (Ratio 113b/226b) 
Conversion [%] 

1 CCE at 8.0 mA 45 (10.0:1.0) 70 

2 CCE at 8.0 mA 33 (2.0:1.0) 91[b] 

3 CCE at 4.0 mA 28 (8.3:1.0) 41 

4 CCE at 4.0 mA 44 (6.3:1.0) 73[b] 

5 CCE at 6.0 mA 43 (3.3:1.0) 67 

6 CCE at 6.0 mA 32 (3.3:1.0) 80[b] 

7 CCE at 10.0 mA 26 (2.6:1.0) 94 

8 No current 0 9 

9 No current, under air 0 10 

[a] Reaction conditions: 111b (0.50 mmol), NaN3 (8.0 equiv), [Mn2] (5.0 mol %), LiClO4 (1.0 equiv), 
AcOH/MeCN (1:1, 5.0 mL), 10 h, 25 °C. Undivided cell, GF anode and Pt plate cathode. Conversion of 111b, 
yields and ratios were determined by gas chromatography (GC-FID) with n-dodecane as internal standard. 
Calibrations were conducted with authentic samples and compared with 1H-NMR spectroscopy, using 1,3,5-
trimethoxybenzene as internal standard, and isolated yields, respectively. [b] 15 h. 

3.6.3 Substrate Scope of the Manganaelectro-Catalyzed C(sp3)–H Azidation 

With the optimized reaction conditions being identified, the performance of the 

manganaelectro-catalyzed manifold was explored for the intermolecular C–H azidation of 

various activated and unactivated substrates 111 (Table 32). Secondary cyclic 

hydrocarbons 111b and 111g were converted to the corresponding organic azides 113b and 

113g in moderate yields (entries 1 and 2). In contrast to the metal-free C–H 

functionalization (vide supra), manganaelectro-catalyzed C–H azidation of tetraline (111a) 

was far superior and delivered the corresponding benzylic azide 113a in 56% yield, with 

good levels of chemoselectivity (entry 3). 
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Table 32. Reaction scope of manganaelectro-catalyzed C(sp3)–H azidation.[a] 

 

Entry Substrate 111 Product 113 
Yield 
[%] 

1 

 

111b 

 

113b 40 

2 
 

111g 
 

113g 32 

3 

 

111a 

 

113a 56[b] 

4 

 

111h 

 

113h 62 

5 

 

111i 

 

113i 68 (33:1) 

6 
 

111j 

 

113j 56 (2.7:1) 

7 

 

111k 

 

113k 39 

8 

 

111l 

 

113l 48 (3:1) 
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9 

 

111m 

OMe

H

H

AcO

N3

 

113m 75[c]  

[a] Reaction conditions: substrate 111 (0.50 mmol), NaN3 (4.00 mmol), [Mn2] (5.0 mol %), LiClO4 
(0.50 mmol), MeCN/AcOH (5 mL, 1:1), nitrogen atmosphere, 10 h, 25 °C, constant current electrolysis at 
8.0 mA in an undivided cell. All yields are isolated products; ratios for site-selectivity are determined by 1H-
NMR of the crude mixture. [b] 3,4-Dihydronaphthalen-1(2H)-one (226a) was detected in 10% from crude 
1H-NMR with 1,3,5-trimethoxybenzene as internal standard. [c] dr = 1:1. 

Also, bibenzyl (111h) was selectively converted to the corresponding azide 113h in 62% 

yield without detectable amounts of diazidation or overoxidation (entry 4). When p-cymene 

(111i) was used as the substrate with two distinct benzylic C–H bonds, almost exclusive 

site-selective C–H azidation was detected in the sterically more demanding tertiary 

position, with a tertiary-to-primary product ratio of 33:1 (entry 5). Likewise, site-selectivity 

studies with isobutylbenzene (111j) as the substrate revealed a preference for the benzylic 

C–H cleavage over the tertiary C–H bond in a ratio of 2.7:1 (entry 6).  

Subsequently, the developed manganaelectro-catalyzed C–H azidation protocol was 

employed for the late-stage functionalization of biologically relevant and pharmaceutically 

active molecules.[166c, 202, 371] In this context, electrocatalytic C–H azidation was 

successfully implemented for the conversion of biaryl 111k, an analogue of a retinoic acid 

receptor agonist,[372] to the corresponding azide derivative 113k (entry 7). In addition, 

acetoxylated (–)-menthol (111l), with two electronically comparable tertiary C–H bonds, 

reacted preferentially at the sterically more accessible isopropyl sidechain to provide azide 

113l in overall 48% yield (entry 8). Estrone acetate (111m) was transformed with high 

levels of efficacy under the standard conditions to provide the corresponding azide 113m 

as a diastereomeric mixture in 75% yield (entry 9). The result is indicative of a radical 

pathway, with a persistent radical formed in the tertiary benzylic position. However, a 

second oxidation of the benzylic radical could not be excluded and would result in a 

stabilized carbocation, as was previously proposed for iron-catalyzed C–H azidations.[202] 

The results are supportive of an overall slow azide addition to yield the final product 113 

and significantly improved site- and chemoselectivities were found when comparing with 

the previously reported findings on manganese-catalyzed C–H azidation with chemical 

oxidants.[198]  

The versatility of the approach was further substantiated by Dr. A. Del Vecchio and Dr. R. 

C. Samanta with additional 22 scope examples for the manganaelectro-catalyzed C–H 
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azidation of secondary or tertiary C(sp3)–H bonds in overall moderate to high yields (32–

95%), including late-stage diversification of active pharmaceutical ingredients (API) such 

as ibuprofen or musk fragrance celestolide. Generally, when multiple reactive sites were 

present, C–H azidation inherently took place at the tertiary C–H bond over secondary or 

primary homolytic C–H scission. Moreover, various functional groups including silyloxy, 

amides, ethers, esters, enolizable ketones and nitriles, were well tolerated. The scalability 

of the approach was further validated by Dr. R. C. Samanta in a successful electrocatalytic 

gram-scale C(sp3)–H azidation of TBS-protected 4-isopropylphenol at the isopropyl group, 

with similar levels of efficiency.[349]  

3.6.4 Mechanistic Studies 

3.6.4.1 Radical Trap Experiment 

To support the involvement of radical intermediates, the effect of radical scavengers, 

such as (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO), was probed (Scheme 81). Here, 

complete inhibition of the reaction was observed, and no desired product 113n was 

detected. Nevertheless, reaction monitoring with ESI mass spectrometry or 1H-NMR 

spectroscopy failed to detect the putative radical adduct 228. Other radical scavengers such 

as 2,6-di-tert-butyl-4-methylphenol (BHT) provided similar results.[349] In this context, it 

is noteworthy that recent studies by Lin reported the anodic generation of oxoammonium 

ions (TEMPO+) to mediate electrochemical C–H azidation of olefins via a TEMPO–N3 

charge-transfer complex.[373] Thus, it can not be excluded that the easily oxidizable radical 

species, e.g. TEMPO or BHT, were anodically oxidized and resulted in a nonproductive 

redox bypass, with the C–H bond remaining untouched.  

 

Scheme 81. Experiment with TEMPO as the radical scavenger.  



Results and Discussion   145 
 

3.6.4.2 Intermolecular Competition Experiment 

In addition, an intermolecular competition reaction with differently decorated cumene 

derivatives 111o and 111p, with the substituent para to the isopropyl group, was performed 

to compare the effect of the electronic properties of the substrate on the reaction rates of 

the manganaelectro-catalyzed C–H azidation. It was found that the electron-rich 1-

isopropyl-4-methoxybenzene (111o) reacted preferentially with a ratio 113o vs. 113p of 

6:1 (Scheme 82). The result highlighted the preferential C–H functionalization of electron-

rich C–H bonds.  

 

Scheme 82. Intermolecular competition reaction.  

Furthermore, the kinetic isotope effect (KIE) for manganaelectro-catalyzed C–H azidation 

of triphenylmethane and deuterated triphenylmethane-d1 was evaluated by Dr. A. Del 

Vecchio. Two parallel reactions were monitored via GC-FID and revealed a KIE of 

kH/kD = 3.0, thus implying that the C–H cleavage is the turnover-limiting step of the 

catalysis.[349] 

3.6.4.3 Synthesis of Manganese Azide Complexes Mn5(III)-N3 and Mn5(IV)-(N3)2 

To identify the role of the manganese catalyst in the newly developed electrocatalytic 

C–H transformation, studies were performed toward the preparation and full 

characterization of potentially active manganese azide complexes (Scheme 83). For the 

synthesis of the desired manganese salen complex Mn5(III)-N3 and Mn5(IV)-(N3)2, 

respectively, procedures by Fujii on related Jacobsen-azide-salen complexes were 

followed.[374]  Initially, Mn5(III)-N3 was synthesized by treating the corresponding chloride 

complex [Mn5] with sodium azide in a CH2Cl2/MeOH mixture at 25 °C. The complex was 

isolated in 66% yield after recrystallization from hot MeCN. The azide coordination was 
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unambiguously confirmed by means of IR spectroscopy, ESI HR-MS and elemental 

analysis. 

 

Scheme 83. Stoichiometric synthesis of the well-defined manganese(III) azide complex 
Mn5(III)-N3. Color code: brown Mn(III). 

Likewise, the high-valent trans-diazidomanganese(IV) complex Mn5(IV)-(N3)2 was 

accessed by treating the manganese(III) complex Mn5(III)-N3 with a defined amount of 

m-CPBA as a chemical oxidant, in the presence of an excess of sodium azide (Scheme 84). 

Due to the potentially explosive nature of metal-azide complexes, the diazide complex was 

strictly handled at low temperatures and purification was performed by recrystallization 

from a CH2Cl2/n-pentane mixture at –32 °C. Elemental analysis and ESI mass spectrometry 

unambiguously confirmed the formation of the desired complex Mn5(IV)-(N3)2.  

 

Scheme 84. Synthesis of the novel manganese(IV) diazide complex Mn5(IV)-(N3)2. 
Color code: brown Mn(III); green Mn(IV). 

To further compare the two novel manganese azide complexes, a detailed IR spectroscopic 

analysis was performed (Figure 31).   
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Figure 31. IR spectra comparison of the asymmetric stretching vibrations (νas) of NNN 
at a) Mn5(III)-N3

 and b) Mn5(IV)-(N3)2, respectively. 

The appearance of two distinct asymmetric stretching vibrations (νas)[375] at 2044 cm–1 and 

2026 cm–1 for Mn5(III)-N3 is in agreement with previous studies of Fujii[374b] and can be 

explained by the presence of differently azide-bridged, polymeric complexes in solution[376] 

or by the presence of different complexes in asymmetric cells.[374b] For the high-valent 

Mn5(IV)-(N3)2, the asymmetric azide stretching vibration however was significantly 

shifted to lower wavelength of νas = 2012 cm–1. This finding is suggestive of a weakening 

of the coordinating azide bond upon oxidation of the complex to the corresponding high-

spin d3 Mn(IV) species and increased ligand-to-metal charge transfer.[377] The similar IR 

bands at 1608 cm–1 for Mn5(III)-N3 as well as for Mn5(IV)-(N3)2 can be assigned to the 

C=N stretching mode of the salen ligand. Thus, revealing only minor or no changes in the 

salen ligand due to oxidation of the manganese central atom.  

Finally, the molecular structure of the manganese(IV) diazide complex Mn5(IV)-(N3)2 was 

unambiguously confirmed by X-ray diffraction analysis (Figure 32). The solid state 

structure revealed an octahedral manganese(IV) complex with two azide groups in the axial 

positions. Interestingly, in a previous study by Fujii on related manganese(IV) azide 

complexes, a distorted stepped conformation was found with a Jacobsen’s salen ligand.[374] 

In contrast, the obtained molecular structure revealed a planar conformation of the salen 

ligand and only a minor twist of the two salicylidene rings was observed.  

 

 

 
2026 cm–1 

2012 cm–1 

1608 cm–1 

1608 cm–1 

2044 cm–1 
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Figure 32. Molecular structure of Mn5(IV)-(N3)2 with thermal ellipsoids at 50% 
probability level. The hydrogen atoms are omitted for clarity. 

3.6.4.4 UV–Vis Absorption Spectroscopic Studies 

Next, UV–vis spectroscopy was used to evaluate the properties of the well-defined 

manganese azide complexes and different reaction components in solution. The study was 

initiated with the manganese(III) chloride complex [Mn5] in MeCN (Figure 33). 

Characteristic absorption maxima were detected at 244 nm, 328 nm and 440 nm. Similar 

absorption maxima were observed when a solution of complex [Mn5] in MeCN was treated 

with NaN3, as well as for the well-defined manganese(III) azide complex Mn5(III)-N3. 

However, the oxidized manganese(IV) bis(azide) complex Mn5(IV)-(N3)2 revealed 

significantly different absorption properties with maxima at 277 nm, 342 nm, 442 nm, and 

642 nm. The strong increased absorption at 442 nm was assigned to the charge transfer 

bands from coordinating N3 to the manganese(IV) metal center.[374] 



Results and Discussion   149 
 

 

Figure 33. UV–vis studies in MeCN at 25 °C. a) [Mn5] (black). b) [Mn5] and NaN3 
(red). c) Mn5(III)-N3 (blue). d) Mn5(IV)-(N3)2 (green). 

With the characteristic absorption maxima identified, additional UV–vis experiments were 

performed to identify possible reaction intermediates and to evaluate the oxidation state of 

the manganese catalyst during the reaction. Therefore, three reaction mixtures were 

prepared and subsequently examined by UV–vis spectroscopy (Scheme 85 and Figure 34). 

To support the anodic oxidation of the manganese(III) complex, measurements were 

performed with reaction mixtures A and B. Mixture A contained complex [Mn5] and NaN3 

prior anodic oxidation and mixture B consisted of the same components, but was treated 

with constant current electrolysis for 30 min, prior the spectroscopic analysis (Q·mol–1 = 

5.96 F). Visually, the color of the reaction mixture changed drastically during the course of 

the electrolysis, from a clear brown solution into a dark green mixture, which was 

comparable to the dissolved well-defined manganese(IV)-bis(azide) complex Mn5(IV)-

(N3)2 (Scheme 85). Thus, after anodic oxidation, mixture B showed similar absorption 

maxima to manganese(IV) complex Mn5(IV)-(N3)2 (Figure 34, green line vs. red line). 

Interestingly, when the crude reaction mixture was analyzed, mixed absorption maxima of 

both species, manganese(III) (328 nm) and manganese(IV) (277, and 440 nm), were 

detected, providing strong support for the catalytic formation and consumption of 

Mn5(IV)-(N3)2 during electrocatalytic C–H azidations of hydrocarbons 111b (Figure 34, 

blue line). 
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Scheme 85. Reaction mixture for UV–vis studies. A) [Mn5] + NaN3. B) [Mn5] + NaN3 
and CCE at 8 mA for 30 min. C) [Mn5] + NaN3 + 111b CCE at 8 mA, 2 h. 

 

Figure 34. UV–vis studies in MeCN/AcOH (1:1) at 25 °C. a) Mn5(IV)-(N3)2 (green). 
b) Reaction mixture A: [Mn5], NaN3 and LiClO4 (black). c) Reaction 
mixture A after constant current electrolysis of 8 mA for 30 min (red). d) 
Reaction mixture B: [Mn5], NaN3, LiClO4 and cyclooctane (111b) after 
constant current electrolysis for 2 h (blue).  

A
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3.6.4.5 Electrochemical Analysis 

To further substantiate the obtained findings, detailed electrochemical analyses via 

cyclic voltammetry were performed. Initially, the anodic azide oxidation was probed in 

MeCN as the solvent, using different working electrodes (WE) (Figure 35). Due to poor 

solubility of NaN3, tetra-n-butylammonium azide was used as the azide source of choice. 

Under these conditions, the azide anion revealed an anodic onset potential of +0.75 V vs. 

Ag/AgCl (3 M KCl), with an irreversible peak potential of Ep,a = 0.88 V and Ep,a = 0.94 V 

for GC (black line) and Pt (red line) as the WE, respectively.  

 

Figure 35. Cyclic voltammetry of tetra-n-butylammonium azide (0.3 mM) at GC 
(black) or Pt (red, 3 mm-diameter, disc-electrode) in the absence of or in the 
presence of an excess of AcOH (blue, 100 mM). 

Based on these results, it is expected that different anodic working electrodes do not have 

a significant influence on the heterogeneous oxidation of azide anions. However, during 

the optimization studies, a platinum working electrode showed no product formation under 

the reaction conditions (cf. Table 30, entry 10). This is a notable finding since previous 

studies on azidation of olefins under similar reaction conditions used platinum anodes.[378] 

Hence, these outcomes were supportive of the important cooperation of manganese catalyst 

and carbon-based anode materials for electrocatalytic C–H azidation reactions of 

unactivated hydrocarbons 111. Upon addition of glacial acetic acid (100 mM, blue line) the 
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irreversible anodic oxidation event was shifted to an onset potential of 1.0 V vs. Ag/AgCl 

(3 M KCl) with a peak potential of Ep,a = 1.45 V. The difference for the oxidation potential 

was illustrative of a pH-dependent oxidation event, following the Nernst equation. 

Likewise, the manganese(III) complex [Mn2] and other reaction components, such as 

1,2,3,4-tetrahydronaphthalene (111a), were investigated by cyclic voltammetry (Figure 

36). The manganese(III) chloride complex [Mn2] showed two distinct redox potentials in 

MeCN (black line). The first reversible redox event (ΔEp = 91 mV) at E1/2 = –0.062 V vs. 

Ag/AgCl (3 M KCl) was attributed to the Mn(II)/Mn(III) redox pair. The second, quasi-

reversible redox-event (ΔEp = 112 mV) at E1/2 = 0.906 V vs. Ag/AgCl (3 M KCl) was 

attributed to the Mn(III)/Mn(IV) redox couple.[379] Reports by Fuji on similar complexes 

gave strong support for a ligand-centered electron transfer.[380]  

 

Figure 36.  Cyclic voltammetry of a) [Mn2] (black); b) in the presence of tetra-n-
butylammonium azide (red); c) as b) but with the addition of acetic acid 
(100 mM); d) as c) but in the presence of 111a. 

Upon addition of the organic azide salt, the first reversible redox event (ΔEp = 91 mV) at 

E1/2 = –0.086 V vs. Ag/AgCl (3 M KCl) was only slightly shifted (ΔE1/2 = 26 mV) (red line). 

However, a significant change of the second quasi-reversible redox event (ΔEp = 132 mV) 

was detected (E1/2 = 0.448 V vs. Ag/AgCl (3 M KCl)). The difference (ΔE1/2 = 458 mV) can 

be explained by stabilization of the oxidized products by further addition of azide-anions, 
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thus resulting in the corresponding Mn2(IV)-(N3)2 complex (vide infra). Similar findings 

have been previously reported, albeit with chloride or cyanide anions.[379a, 381] The small 

irreversible anodic event at Ep,a = 0.93 V represents most-likely non-coordinating azide 

anions, dissociated chloride anions or free manganese(III) chloride complex [Mn2]. In the 

presence of an excess of acetic acid, the redox events are diminished and supportive for 

chemical follow-up reactions (blue line). Addition of substrate 111a did not result in 

significant changes of the voltammogram (magenta line). 

In contrast to the manganese(III) chloride complex, the well-defined manganese(III) azide 

complex Mn5(III)-N3 showed a less-pronounced and broadened current response (Figure  

37). The first, quasi-reversible redox event (ΔEp = 372 mV) at E1/2 = –0.368 V vs. Ag/AgCl 

(3 M KCl) was attributed to the Mn(II)/Mn(III) redox couple, thus revealing a more difficult 

reduction compared to the manganese(III) chloride complex [Mn2].  

 

Figure 37.  Cyclic voltammograms of Mn5(III)-N3 (0.3 mM) in the absence (black) and 
in the presence (red) of an excess of tetra-n-butylammonium azide. 

The second, quasi-reversible redox-event (ΔEp = 264 mV) at E1/2 = 0.328 V vs. Ag/AgCl 

(3 M KCl) was assigned to the Mn(III)/Mn(IV) redox couple. Addition of tetra-n-

butylammonium azide led to increased current response for the second redox event, which 

is supportive of the anodic formation of the Mn5(IV)-(N3)2 complex (red line).  
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Finally, the well-defined manganese(IV) azide complex Mn5(IV)-(N3)2 was investigated in 

electroanalytical studies. Similar to the previous complexes, a potential range of +1.2 V to 

–1.0 V vs. Ag/AgCl (3 M KCl) was chosen. When the first voltammogram was recorded, 

with a starting potential of E = 0 V and a positive sweep rate of 100 mV·s–1, a negative 

current response was recorded. The negative current gap is indicating that the 

manganese(IV) complex already undergoes reduction at a potential of below E = 0 V 

(Figure 38). However, previous reports by Fuji on similar complexes assigned the 

manganese(III/IV) redox couple to potentials at E1/2 = –0.17 V vs. Fc/Fc+,[374b] which was 

contradicted by our experiments.  

  

Figure 38. Cyclic voltammogram of Mn5(IV)-(N3)2 (0.3 mM). Two voltammograms 
were recorded and the first voltammogram is presented. Starting potential 
was E = 0 V, with a positive sweep rate. 

To reveal the full redox properties of the complex, a second voltammogram was performed, 

with a starting potential of 1.2 V vs. Ag/AgCl (3 M KCl) and a negative sweep rate of             

–100 mV·s–1, to ensure that the complex is not reduced prior to the signal recording. Now, 

two redox events were measured (Figure 39). The first quasi-reversible redox event (ΔEp = 

0.136 V) at E1/2 = –0.370 V vs. Ag/AgCl (3 M KCl) was assigned to the Mn(II)/Mn(III) 

redox couple with a concomitant loss of both azide ligands, which was reflected in a EC 

mechanism. The second, quasi-reversible redox-event (ΔEp = 0.174 V) at E1/2 = 0.366 V 

negative  

current gap 
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vs. Ag/AgCl (3 M KCl) or E1/2 = 0.071 V vs. Fc/Fc+ was attributed to the Mn(III)/Mn(IV) 

redox couple.[377] Cyclic voltammograms at different scanning rates revealed a fast 

chemical follow-up reaction upon reduction of the manganese(IV) complex (cf. Figures 

64–67). 

 

Figure 39. Cyclic voltammogram of Mn5(IV)-(N3)2 (0.3 mM). Two voltammograms 
were recorded and the second voltammogram is presented. 

With the redox properties of all reaction components in hand, it became apparent that the 

anodic formation of manganese(IV) azide complexes is likely to occur under the reaction 

conditions and direct oxidation of the azide anion or the substrate 111 would require 

considerably higher working potentials. To put these findings into practice, a 

chronoamperometric experiment was performed to obtain electrocatalytic C–H azidation 

reactions at exceedingly low oxidation potentials of 0.8 V vs. Ag/Ag+ (Scheme 86). The 

detected current-time response revealed fast current consumption within the first two hours, 

followed by 8 hours of steady current response, indicative of a catalytic reaction profile. 

After overall 10 h, the catalytic current response slowly decreased. Notably, substrate 111a 

was oxidized in 56% yield to the desired organic azide 113a, without any detection of 

overoxidation to the ketone 226a (vide supra). Based on the previous cyclovoltammetric 

analysis, none of the other reaction components were able to undergo anodic oxidation at 
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these potentials, indicating the involvement of the manganese catalyst in both steps of the 

electrocatalytic C–H azidation. 

 

Scheme 86. Constant potential manganese-catalyzed C–H azidation. 

3.6.5 Proposed Mechanism for Manganaelectro-Catalyzed C(sp3)–H Azidation 

In summary, it is proposed that the catalytic cycle is initiated by ligand-exchange of the 

manganese(III) chloride complex [Mn2] to form the active Mn(III)–N3 complex 229, 

followed by facile anodic oxidation to generate the manganese(IV) diazide complex 230 

(Scheme 87). Those catalytic steps were strongly supported by the electroanalytical and 

spectrophotometrical data. The high-valent d3 manganese(IV) complex 230 is prone to 

undergo hydrogen-atom-transfer (HAT)[24f, 321d, 382] or PCET[321] with the substrate 111, 

thus generating the aliphatic radical 121. These findings are supported by the radical 

quenching experiments (cf. Scheme 81), the KIE studies and the results obtained within the 

substrate scope, inter alia for substrate 111m where a carbon-centered radical is generated 

that is sufficiently long-lived to epimerize before the formation of the C−N bond (cf. Table 

32, entry 9). Subsequently, the key C–N3 bond is formed via azide-radical rebound from 

manganese(IV) complex 230.[198, 358c, 363, 383] However, alternative azide transfer scenarios 

via radical polar cross-over cannot be ruled out.[171c, 185a, 203a, 384] It is further noteworthy 

that stoichiometric experiments with the well-defined manganese(III) azide complex 

Mn5(III)-N3 were unsuccessful in providing the desired C–H azidated product 113.[349] 

Finally, cathodic hydrogen formation closes the electrochemical cycle and obviates the 

employment of chemical oxidants. Future studies should include detailed computational 

studies on the manganese-catalyzed C–N formation.  
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Scheme 87. Proposed catalytic cycle for the manganaelectro-catalyzed C–H azidation. 

While our work represents the first manganaelectro-catalyzed C–H azidation, it is 

noteworthy that during the preparation of our manuscript, the group of Lei reported a 

similar study on photoelectrochemical manganese-catalyzed C–H azidation of saturated  

C–H bonds, with comparable levels of efficiency.[385] Within their report, it was found that 

light-irradiation and catalytic amounts of a carbonyl photophor were essential to ensure 

high catalyst turnover. Furthermore, based on their mechanistic studies, it was proposed 

that the azide group transfer occurred within a manganese(II/III) manifold. Hydrogen atom 

transfer was proposed to take place via the photoexcited carbonyl-group or the azide-

radical. Possible side reactions of the photophore and the C(sp3)-radical were not 

reported.[386]  
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4 SUMMARY AND OUTLOOK 

The selective oxidative functionalization of otherwise inert C–H bonds has emerged as 

an increasingly powerful tool in molecular syntheses. Despite remarkable advances in the 

field, most of the reported methods largely rely on precious metal catalysts, harsh reaction 

conditions and the necessity of stoichiometric amounts of chemical oxidants, 

compromising the overall sustainability of the strategy. In contrast, within this thesis, the 

merger of electrosynthesis and Earth-abundant 3d metal-catalyzed C–H activation has 

enabled a plethora of resource-economical strategies for the formation of C–C and C–Het 

bonds. The environmentally-sound approach enables molecular assembly under 

exceedingly mild reaction conditions and avoids the formation of undesired waste-

products.  

In the first project, the working hypothesis was put into practice for cobaltaelectro-

catalyzed C–H oxygenations of benzamides 34 or alkenes 37 (Scheme 88).[249] The 

optimized reaction conditions comprised of cost-effective cobalt(II) salts as the catalyst, 

mild reaction conditions at 23 °C, user-friendly constant current electrolysis and NaOPiv 

as the sole additive.  

 

Scheme 88. Cobalt-catalyzed electrocatalytic C–H alkoxylation of (a) benzamides 34 
and (b) alkenes 37.  
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The robustness of the C–H alkoxylation was characterized by ample substrate scope, 

including full tolerance of various oxidatively labile substituents on the amides 34 or 37, 

as well as on the alcohol coupling partner 35. Detailed mechanistic studies by cyclic 

voltammetry unraveled the key anodic formation of the active cobalt(III) catalyst and were 

suggestive of the formation of organometallic cyclometalated species.  

The findings of this proof-of-concept study proved essential for various subsequent Earth-

abundant metallaelectro-catalyzed C–H activations by inter alia nickel,[240b] copper[387] or 

iron.[388]  

Based on the established strategy for sustainable C–H oxygenations, an oxidative 

cobaltaelectro-catalyzed C–H/N–H annulation reaction with allene 75 as a versatile 

coupling partner was devised (Scheme 89).[260]  

 

Scheme 89. Cobaltaeletro-catalyzed C–H/N–H activation with allenes 75.  

Thus, electrocatalytic C–H/N–H activation and subsequent allene 75 insertion was 

accomplished with excellent levels of chemo-, site- and regioselectivity under mild reaction 

conditions of 40 °C with non-fluorinated solvents. The versatility of the approach was 

reflected by a broad substrate scope with differently decorated benzamides 34, being fully 

tolerant of oxidatively labile functional groups, such as thioethers or benzothiophene. The 

practical utility of the electrocatalytic allene annulation was furthermore highlighted by a 

multigram-scale isoquinolone 176 synthesis. Mechanistically guided constant potential 

electrolysis enabled the functionalization of oxidatively-labile allenes 75 with excellent 

levels of regio- and chemoselectivity. In addition, detailed kinetic studies by in-operando 

IR spectroscopy provided strong support for a facile C–H cleavage and revealed the 

absence of an induction period for the electrocatalysis. Electroanalytical studies by cyclic 

voltammetry provided further insights into the electrochemical stability of the reaction 

components and unraveled the key anodic oxidation of organometallic cobalt intermediates. 
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Furthermore, preliminary studies have been conducted for the first electrocatalytic C–H 

activation with Earth-abundant metal catalyst under flow conditions.  

The established cobaltaelectro-catalyzed allene annulation bears great potential for the 

development of the first asymmetric electrooxidative C–H activation with 3d a base metal 

catalyst, [11e, 389] for example when using chiral allenes[390] as the coupling partner.  

Inspired by the previously reported electrooxidative cobalt-catalyzed C–H activation with 

alkynes 53 for the synthesis of biologically relevant isoquinolones 51 and pyridones 

189,[250] the first C–H activation in biomass-derived glycerol was disclosed within the third 

project (Scheme 90).[300] The strategy proved likewise viable for electrooxidative                 

C–H/N–H annulations with allene 75a. 

 

Scheme 90. Cobaltaelectro-catalyzed C–H activation in biomass-derived glycerol, 
powered by renewable energy sources. 

To achieve full resource economy, the developed cobaltaelectro-catalyzed C–H activation 

was powered by renewable energy sources, such as wind and solar energy, thus generating 

valuable hydrogen as the sole byproduct.  

In a follow-up project, the electrochemical synthesis and full characterization of cobalt(II) 

complexes, such as 203, and key cyclometalated cobalt(III) complex 190, has led to 

manifold mechanistic insights for the previously established cobaltaelectro-catalyzed C–H 

activation reactions (Scheme 91).[309] Cyclic voltammetry and computational analysis gave 

strong support for the facile generation of high-valent cobalt(IV) complexes within 

cobaltaelectro-catalyzed C–O formations. Detailed mass spectrometric analysis enabled in-

situ analysis of catalytically-relevant intermediates and proved viable for the tracking of 
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cobaltaelectro-catalyzed C–H oxygenations. Stoichiometric experiments likewise 

supported an oxidatively-induced reductive elimination via a cobalt(III/IV/II) modus 

operandi to be operative within the electrocatalytic C–O formation. Hammett-Zuman 

correlations were applied to study the electronic influence on the benzamide 34 toward the 

catalytic efficacy of the respective cobalt complexes 190, 196–201. The mechanistically 

guided study furthermore enabled the development of unprecedented cobaltaelectro-

catalyzed twofold C–H arylations and provided insights for possible catalyst deactivation 

pathways. Here, future studies could include the development of novel ligand systems to 

avoid catalyst deactivation and to increase the catalyst lifetime. In addition, the report 

represents the first detailed study for the involvement of organometallic cobalt(IV) 

intermediates within synthetically-meaningful cobaltaelectro-catalyzed C–H activation 

reactions. Noteworthy, oxidation-induced reductive elimination later also proved effective 

for nickela-,[391] ferra-,[388] or ruthenaelectro-catalyzed[392] C–H activations.[225] 

 

Scheme 91. Mechanistic insights into cobaltaelectro-catalyzed C–H activation.  

Within different projects, detailed mechanistic studies via electroanalytical or in-operando 

spectroscopic techniques proved also viable to rationalize the working mode of other 

metallaelectro-catalyzed C–H transformations. Notable examples include mediated 
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iridaelectro-catalyzed C–H alkenylations of benzoic acids 68 and novel dual 

electrocatalytic iodine(III)/ruthenium(II) C–H oxygenation reactions.  

In the last project, the merger of electrosynthesis and manganese catalysis enabled 

oxidative C–H azidation of otherwise inert C(sp3)–H bonds 111 with excellent levels of 

chemoselectivity (Scheme 92).[349] Key features of the novel manganaelectro-catalyzed    

C–H azidation include: no directing groups; the avoidance of chemical oxidants; 

hypervalent iodine transfer reagents or laborious photochemical irradiation; the utilization 

of most user-friendly sodium azide as nitrogen source and Earth-abundant, bioinspired 

manganese catalyst for full selectivity control. The exceedingly mild reaction conditions 

enabled the tolerance of various functional groups and undesired side reactions, such as 

overoxidation, were minimized. The robustness and utility of the resource-economic C–N 

formation was further emphasized by the late-stage diversification of bioactive and 

pharmaceutically relevant compounds.  

 

Scheme 92. Mangana(III/IV)electro-catalyzed C(sp3)–H azidation. [a] dr = 1:1. 

In addition, detailed mechanistic studies were performed to delineate the catalyst’s mode 

of action. The investigations revealed a rate-determining C–H cleavage event and provided 

support for the generation of radical intermediates. Furthermore, the synthesis and 

subsequent full characterization of high-valent manganese azide complexes by extensive 

spectrophotochemical and voltametric analysis thereof, gave strong support for a metal-

catalyzed aliphatic radical formation, followed by an azidyl radical transfer within a 

manganese(III/IV) catalytic cycle. 
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Given the topical interest in undirected C(sp3)–H functionalization with sustainable 

electricity as the driving force, future prospects could include the functionalization of inert 

polymer scaffolds[393] or light hydrocarbons.[394] Moreover, a variety of other 

manganaelectro-catalyzed C–H functionalizations are conceivable, such as selective C–H 

isocyanations[395] or valuable C–H fluorinations.[196b, 196c, 396] The synthesized and fully 

characterized manganese azide complexes might also be of relevance for other research 

arenas such as the formation of manganese nitrido compounds[156j, 397] or nitrogen-based 

fuel cell technologies.[398]  

A major element of this thesis also focused on the design and development of the 

electrochemical equipment, which were essential for the success of the presented projects. 

Parts of this efforts were published in a Nature Protocols article that also focused on a 

direct comparison of the custom-made setups and commercially available products.[274]  
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5 EXPERIMENTAL PART 

5.1 General Remarks 

Air and moisture sensitive reactions were carried out under inert gas atmosphere (HiQ 

nitrogen 5.0 with additional CaH2-filled drying funnel). Glassware was stored in an oven 

(120 °C) and dried under high-vacuum prior to use (three times, in between filled with 

nitrogen). Liquids and solutions were transferred via nitrogen-flushed syringes by BRAUN, 

with oven-dried stainless-steel cannulas (120 °C). Solids were added under counter flow of 

nitrogen (standard Schlenk technique). Solutions were concentrated under reduced pressure 

by rotary evaporation at 40 °C with either IKA RV 10 digital FLEX or a HEIDOLPH Hei-VAP 

Core. Non-volatile products were dried under high-vacuum for 14 h. Air and moisture 

sensitive substances were stored in a MBRAUN glovebox. Yields refer to isolated 

compounds, estimated to be >95% pure as was determined by 1H-NMR spectroscopy and 

GC analysis.  

5.1.1 Caution: Experimentation with Organic Azides[176e, 180, 399] 

Special safety consideration should be taken for any experimentation with organic azide 

compounds as they are considered as toxic and potentially explosive chemicals that can 

decompose under external impact such as heat, pressure, shock. For safety reasons, all 

reactions and processing steps involving azides were carried out behind a blast shield. 

Recommended storage of organic azides is below room temperature and away from light 

sources. As a recommended rule of thumb, azide compounds fulfilling equation (1) are 

generally stable.  

(1)      
൫ேి౗౨ౘ౥౤ାேో౮౯ౝ౛౤൯

ேొ౟౪౨౥ౝ౛౤
≥ 3 

Azide compounds with a ratio of 1–3 can be isolated but should be stored in small amounts 

of less than 5 grams and in diluted concentrations. Special care should be taken for mixtures 

of azides with strong acids as highly toxic and explosive hydrazoic acid can be generated. 

Solutions of sodium azide can react with halogenated solvents and extremely explosive 

organic azides with a ratio <1 can be generated such as diazidomethane.[400] The azide waste 

formed during the following procedures was separated, collected and diluted to aqueous 

solutions of less than 5% sodium azide and treated with freshly prepared nitrous acid.[401]  
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5.1.2 Solvents and Reagents 

Solvents 

All solvents for air- and moisture sensitive reactions were obtained from a solvent 

purification system (SPS-800 by MBRAUN) with the following exceptions:  

Acetonitrile (MeCN) was dried over 3 Å molecular sieves for at least 24 h and 

degassed using multiple cycles of freeze-pump-thaw 

(FPT) method.  

1,2-Dichloroethane (DCE) was stirred over CaH2 for 8 h, degassed and distilled under 

reduced pressure.    

Methanol (MeOH)      was distilled over magnesium methanolate.  

tert-Amyl alcohol (t-AmOH) was stirred over Na chips for 5 h at 120 °C, degassed and 

distilled under reduced pressure.  

Toluene was pre-dried over KH and distilled under nitrogen over 

sodium and benzophenone.  

For flash column chromatography technical grade solvents were used, which were distilled 

prior to use.  

Reagents 

Chemicals obtained from commercial sources with a purity higher than 95% were used 

without further purification. The following compounds were known from the literature and 

synthesized according to previously reported procedures:  

Benzamides 34,[112] allenes 75,[402] Co(OAc)3,[310b] methyl 4'-hexyl-[1,1'-biphenyl]-4-

carboxylate (111k),[347d] menthol acetate (111l),[201] estrone acetate (111m),[347d]  salen[403] 

and porphyrin ligands,[404] as well as the corresponding manganese complexes [Mn1]–

[Mn6].[403b, 404a] 

The following chemicals were synthesized and generously provided by the people named 

below:  

G. Chesnokov: 34e, 34q, and 34r 

I. Choi: TsN3 

S. Homölle: 34l, 34m, and 34s, 62a 

I. Maksso: [Mn1] 
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L. Massginan: 214 

Dr. A. Messinis: 221 

M. Oelschlegel: 26a, 75f, 75g, 75h, and 75m 

Dr. R. C. Samanta: 111n, 111o, 111p, and [Mn5] 

Dr. S. C. Sau: 75a, 75j, 75k, and 75l  

Dr. N. Sauermann: 34h and 162a 

5.1.3 Analytical and Experimental Methods 

Chromatography 

Analytical thin-layer chromatography (TLC) was used for reaction monitoring, analysis of 

column chromatography and determination of Rf values. TLC was performed on silica gel 

60 coated aluminium-sheets, with fluorescence indicator F-254 (MACHEREY NAGEL, by 

MERCK). The plates were either visualized by UV light (λ = 254 nm or 366 nm), if 

applicable, or by staining solution (KMnO4 solution) followed by gentle heating by heat-

gun at 300 °C.  

Chromatographic purification of crude products was accomplished by flash column 

chromatography using MERCK silica gel, grade 60 (40–63 µm, 70–230 mesh ASTM, 

Geduran SI 60). The crude products were loaded with the respective eluent. For acid-

sensitive compounds, such as azides, the silica gel was neutralized with Et3N prior to use. 

Electrochemistry 

Constant Potential Reactions under Amperometric Detection 

The constant potential electrolyses (CPE) were performed using a METROHM Autolab 

PGSTAT204 or a METROHM Dropsense 8000P workstation and Nova 2.1 or the Dropview 

8400 software, respectively. A silver-wire (d = 1 mm) was used as the pseudo-reference 

electrode in close proximity to the working electrode. To ensure comparable constant potential 

conditions with the results gained by cyclic voltammetry, calibration of the pseudo-reference 

electrode versus ferrocene was performed for each reaction system. If applicable, an aqueous 

Ag/AgCl reference electrode was used instead of the silver-wire.  

Cyclic Voltammetry 

The cyclic voltammetry measurements were carried out using a METROHM Autolab 

PGSTAT204 workstation, and the following data analysis was performed with Nova 2.1. 
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For the experiments, a glassy-carbon (GC) disc electrode (d = 3 mm) or a platinum disc 

electrode (d = 3 mm) was used as the working electrode (WE). Either a saturated calomel 

electrode (SCE) (Hg/Hg2Cl2, ceramic frit, OD = 6 mm); an aqueous Ag/AgCl (Ag/Ag+, aq. 

KCl (3 M), ceramic frit, OD = 6 mm) or a non-aqueous Ag/AgNO3 (Ag/Ag+, solution of 

MeCN with AgNO3 (0.01 M) and n-Bu4NClO4 (0.1 M), vycor glass, OD = 6 mm) was used 

as the reference electrode (RE), if not stated otherwise. If a silver-wire (d = 1 mm) was used 

as the pseudo-reference electrode, the voltammograms were referenced internally versus 

ferrocene. The counter electrode (CE) was a coiled platinum wire (d = 1 mm). The electrodes 

were purchased from ALS JAPAN Co., Ltd. Measurements were recorded at a scan rate of 

100 mV·s–1, if not indicated otherwise. The working temperature was 298 K, if not 

indicated otherwise. All solutions were degassed via freeze-pump-thaw method prior to use 

and nitrogen was bubbled through the solutions for at least 5 min before the experiment 

was performed. The voltametric studies were performed under a constant flow of dry 

nitrogen. The rotating-disc electrode (RDE) experiments were performed using a 

METROHM Autolab PGSTAT204 workstation and a RRDE-3A Rotating Ring Disk Electrode 

Apparatus Ver.2.0 purchased from ALS JAPAN Co., Ltd. For the RDE experiments a glassy-

carbon disc electrode (d = 4 mm, disc-electrode) was used as the working electrode, a coiled 

platinum wire (d = 1 mm) was used as the counter electrode and a non-aqueous Ag/AgNO3 

(Ag/Ag+, solution of MeCN with AgNO3 (0.01 M) and n-Bu4NClO4 (0.1 M), vycor glass, 

OD = 6 mm) was used as the reference electrode. The operation temperature was 25 °C and 

dry nitrogen was bubbled through the solution for at least 5 min before the analytical 

experiment was performed.  

Constant Current Electrolysis (CCE) 

The electrocatalytic reactions were performed in undivided electrochemical cells (10 mL) 

using pre‐dried glassware, unless stated otherwise. Platinum electrodes (10 mm × 15 mm 

× 0.125 mm, 99.9%, CHEMPUR Karlsruhe, Germany or 99.95%; ESG-EDELMETALL-

HANDEL GMBH & CO. KG), graphite felt electrodes (10 mm × 15 mm × 6 mm, 

SIGRACELL®GFA 6 EA, SGL CARBON, Wiesbaden, Germany) and reticulated vitreous 

carbon (RVC) (40 mm x 5.0 mm x 6.0 mm, Duocel® Reticulated Vitreous Carbon RVC100 

(100 PPI) ERG AEROSPACE CORPORATION, Oakland, United States of America) were 

connected using stainless steel adapters, following the published protocol.[274] Electrolysis 

was conducted using an AXIOMET AX-3003P galvanostat in constant current mode. Divided 

cells, separated by a P4 glass frit, were custom-made and obtained from GLASGERÄTEBAU 
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OCHS LABORFACHHANDEL e. K. (Bovenden, Germany). A detailed description of the 

electrochemical equipment for the bulk electrolysis and further graphical information for 

the small electrolysis cells are given in the appendix (Figures 77–85). For reactions 

performed with the standardized electrochemistry kit, ElectraSyn 2.0 from IKA, the 

commercialized electrodes and 10 mL undivided cells were used, if not stated otherwise. If 

reactions were performed at temperatures other than room temperature, the vial was 

connected via the IKA ElectraSyn GOGO Module® and mounted in a silicon oil bath.  

For reactions in flow, an ISMATEC REGLO Digital MS-2/12 (ISM 596) peristaltic pump and 

a KEYSIGHT E36104A galvanostat was employed. The flow-electrocatalysis was performed 

with either a commercially available IKA ElectraSyn flow system and the respective half-

cell electrodes or custom-made flow reactor compartments for reactions with the graphite-

felt electrode, designed together with Dr. L. Finger.[292]  

For the electrocatalysis powered by sunlight, the commercially available amorphous silicon 

photovoltaic cell TPS-103 from CONRAD ELECTRONIC SE (6 W, 17.5 V max. voltage, 

428 mA max. current, 467 mm x 161 mm x 19 mm) was used. For the electrocatalysis 

powered by wind energy, the commercially available wind turbine Infinite Air obtained 

from TEXENERGY (7.5–10 W, 1.5–2 A at 5 V output voltage, blade diameter: 320 mm) was 

employed. The wind turbine was powered with an external fan, to ensure a steady wind 

velocity. For both setups, the output current was controlled with a customized and 

normalized constant current regulator and regularly double checked with an ammeter. The 

reaction temperature was controlled with an oil bath temperature reservoir.  

For experiments performed by sonoelectrochemistry, the reaction cell was mounted in a 

closed ultrasonic bath RK 100 SONOREX SUPER from BANDELIN in continuous operation 

mode. The ultrasonic bath was filled with water and covered with aluminum foil to avoid 

water evaporation. The sonication and electrolysis were started and stopped 

simultaneously. 

Elemental Analysis 

Elemental analyses were performed by the analytical laboratory in the Institute of Inorganic 

Chemistry of the University of Göttingen on a 4.1 vario EL 3 from ELEMENTAR. Analysis 

of the relative amounts of the elements: C, H, N, S was reported as was received and are 

uncorrected.  
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Gas Chromatography 

Gas chromatographic analysis (GC) was performed on an AGILENT 7890A GC System or 

AGILENT 7890B GC System equipped with an AGILENT HP-5MS column (30 m  0.25 mm 

diameter, 0.25 μm film thickness) and a flame-ionization detector (FID) using hydrogen as 

the carrier gas. Gas chromatography coupled with mass-spectrometry (GC-MS) was 

performed on the same instrument coupled with AGILENT 5875C Triple-Axis-Detector or 

AGILENT 5977B MSD. Mass spectra were obtained with electron ionization (EI) at 70 eV 

in positive ion mode. Quantitative GC analyses were performed with the addition of n-

dodecane as an internal standard.  

Infrared Spectroscopy (IR) 

Infrared (IR) spectra were recorded on a BRUKER Alpha-P FT-IR spectrometer with an ATR 

diamond probe for detection in the range of ṽ = 4000–400 cm–1. Analysis of the spectra was 

performed with the software Opus 6.5 from BRUKER. For in situ-IR measurements, a 

ReactIR™ 15 from METTLER TOLLEDO was used. The analysis of the spectra was 

performed with the software iC IR 4.3® from METTLER TOLLEDO. 

Mass Spectrometry 

High resolution (HR) electrospray ionization (ESI) mass spectra were recorded on a 

micrOTOF or a maXis from BRUKER DALTONICS or a LTQ Orbitrab XL from THERMO 

SCIENTIFIC. EI-MS spectra were recorded on a JEOL AccuTOF (EI) instrument. Ionization 

of the samples was achieved using electrospray ionization (ESI) or electron ionization (EI). 

The ratio of mass to charge (m/z) is given, intensities I relative to the base signal (I = 100) 

are written in parentheses.  

Nuclear Magnetic Resonance (NMR) Spectroscopy  

Nuclear magnetic resonance (NMR) spectra were recorded on BRUKER Avance 300, Avance 

III HD 400, Avance Neo 400, Avance III HD 500; VARIAN Mercury VX 300, Inova 500 or 

Inova 600 spectrometer at 300 MHz, 400 MHz, 500 MHz, 600 MHz (1H-NMR), 75 MHz, 

100 MHz, 125 MHz (13C-NMR) and 282 MHz (19F-NMR), respectively. Chemical shifts 

are reported as δ-values in parts per million (ppm) relative to SiMe4 and are referenced to 

the residual proton peak or the carbon peak of the deuterated solvent:  
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 1H-NMR [ppm] 13C-NMR [ppm] 
   

CDCl3 7.26 (s) 77.16 ppm (t) 

CD2Cl2 5.32 (t) 53.84 (quint) 

CD3OD 4.87 (s), 3.31 (quint) 49.00 (sept) 

For 19F-NMR spectra, CFCl3 was used as an external standard. All measurements were 

performed at 298 K, unless stated otherwise. The measured resonance multiplicities were 

reported by the following abbreviations: s (singlet), d (doublet), t (triplet), q (quartet), quint 

(quintet), sext (sextet), sept (septet), dd (doublet of doublets), dt (doublet of triplets), ddd 

(doublet of doublets of doublets), td (triplet of doublets), dddd (doublet of doublets of 

doublets of doublets), m (multiplet) and br (broad singlet). The coupling constants J are 

reported in Hertz (Hz). Analysis of all spectra until February 2019 was performed with 

MestReNova v10.0.2 and from February onwards with MestReNova v14.1.0 from 

MESTRELAB RESEARCH S.L.  

The 1H-NMR spectroscopic experiments in flow were performed on a Magritek Spinsolve 

60ULTRA from MAGRITEK GmbH, Germany. The spectra were batch-processed with the 

reaction monitoring wizard of the MestReNova v12.0.3 software. Arbitrary integral values 

were transformed to mmol and percentage values by referencing with dibromomethane as 

internal standard. 

Melting Points 

Melting points were measured using a Stuart® Melting Point Apparatus SMP 3 from 

BARLOWORLD SCIENTIFIC and are uncorrected. 

Vacuum 

The following average pressure was measured on the used rotary vane pump RD4 from 

VACUUBRAND: 3·10–2 mbar (uncorrected value). 

UV–Vis Spectroscopy 

Ultraviolet–visible spectroscopy was performed on a JASCO V-770 UV–vis/NIR 

spectrophotometer. UV–vis measurements were performed at 298 K, unless stated 

otherwise. 
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5.2 General Procedures 

5.2.1 General Procedure A: Cobaltaelectro-Catalyzed C–H Oxygenation in a 

Divided Cell Setup 

The electrocatalysis was carried out in an H-type divided cell (P4 sintered glass 

membrane), with a graphite felt anode (10 mm × 15 mm × 6.0 mm) and a platinum cathode 

(10 mm × 15 mm × 0.125 mm). NaOPiv (122 mg, 1.00 mmol, 2.00 equiv) was added in the 

cathodic chamber and dissolved in alcohol 35 (7.0 mL). The anodic chamber was charged 

with Co(OAc)2∙4H2O (25.7 mg, 0.10 mmol, 20 mol %), NaOPiv (122 mg, 1.00 mmol, 

2.00 equiv) and benzamide 34 (0.50 mmol, 1.00 equiv) and dissolved in alcohol 35 

(7.0 mL). Electrolysis was started at ambient temperature with a constant current of 8 mA 

maintained for 6 h (Q·mol–1 = 3.58 F). Then, the DC power supply was stopped and direct 

evaporation of the solvent and subsequent column chromatography on silica gel 

(CH2Cl2/acetone) yielded the desired product 36. 

5.2.2 General Procedure B: Cobaltaelectro-Catalyzed C–H Oxygenation in an 

Undivided Cell Setup 

The electrocatalysis was carried out in an undivided cell, with a graphite felt anode 

(10 mm × 15 mm × 6.0 mm) and a platinum cathode (10 mm × 15 mm × 0.125 mm). A 

mixture of NaOPiv (122 mg, 1.00 mmol, 2.00 equiv), Co(OAc)2∙4H2O (25.7 mg, 

0.10 mmol, 20 mol %), benzamide 34/acrylamide 37 (0.50 mmol, 1.00 equiv) and alcohol 

35 (7 mL) was added to the electrochemical cell. Electrolysis was started at ambient 

temperature with a constant current of 8 mA maintained for 6 h (Q·mol–1 = 3.58 F). Then, 

the DC power supply was stopped and direct evaporation of the solvent and subsequent 

column chromatography on silica gel (CH2Cl2/acetone) yielded the desired product 36 or 

38, respectively. 

5.2.3 General Procedure C: Cobaltaelectro-Catalyzed C–H Oxygenation in an 

Undivided Cell Setup  

The electrocatalysis was carried out in an undivided cell, with a graphite felt anode 

(10 mm × 15 mm × 6.0 mm) and a platinum cathode (10 mm × 15 mm × 0.125 mm). A 

mixture of NaOPiv (63.9 mg, 0.50 mmol, 2.00 equiv), Co(OAc)2∙4H2O (12.7 mg, 

0.05 mmol, 20 mol %), acrylamide 37 (0.25 mmol, 1.00 equiv) and alcohol 35 (7 mL) was 
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added to the electrochemical cell. Electrolysis was started at ambient temperature with a 

constant current of 6 mA maintained for 4 h (Q·mol–1 = 3.58 F). Then, the DC power supply 

was stopped and direct evaporation of the solvent and subsequent column chromatography 

on silica gel (CH2Cl2/acetone) yielded the desired product 38.  

5.2.4 General Procedure D: Cobaltaelectro-Catalyzed C–H Activation for Allene 

Annulations 

The electrocatalysis was carried out in an undivided cell, with a graphite felt anode 

(10 mm × 15 mm × 6.0 mm) and a platinum cathode (10 mm × 15 mm × 0.125 mm). 

Benzamide 34 (0.50 mmol, 1.00 equiv), allene 75 (0.60 mmol, 1.20 equiv), NaOPiv 

(124 mg, 1.00 mmol, 2.00 equiv) and Co(OAc)2∙4H2O (12.7 mg, 10 mol %) were placed in 

a 10 mL cell and dissolved in MeOH (5.0 mL). Electrolysis was performed at 40 °C with a 

constant current of 2 mA maintained for 15 h (Q·mol–1 = 2.24 F). At ambient temperature, 

the DC power supply was stopped, H2O (10 mL) was added, and the graphite felt anode 

was washed with CH2Cl2 (10 mL) in an ultrasonic bath. The combined phases were 

extracted with CH2Cl2 (3 × 10 mL), and then dried over Na2SO4. Evaporation of the 

solvents and column chromatography on silica gel, using CH2Cl2/acetone to CH2Cl2/MeOH 

as the eluent, yielded the desired product 176. 

5.2.5 General Procedure E: Cobaltaelectro-Catalyzed C–H Activation in 

Aqueous Glycerol for Alkyne Annulations  

The electrocatalysis was carried out in an undivided cell, with a graphite felt anode 

(25 mm × 10 mm × 6.0 mm) and a platinum cathode (25 mm × 10 mm × 0.125 mm). 

Benzamide 34 (0.50 mmol, 1.00 equiv), alkyne 53 (1.00 mmol, 2.00 equiv), NaOPiv 

(124 mg, 1.00 mmol, 2.00 equiv), glycerol/H2O (5.0 mL, 1:1) and Co(OAc)2∙4H2O 

(12.7 mg, 10 mol %) were placed in a 10 mL cell. Electrocatalysis was performed at 40 °C 

with a constant current of 4 mA maintained for 15 h (Q·mol–1 = 4.48 F). Then, the DC 

power supply was stopped, and the reaction mixture was diluted with CH2Cl2 (2.0 mL). 

The graphite felt anode was washed with CH2Cl2 (3 × 5.0 mL) in an ultrasonic bath (3 x 

3 min). The combined washings were added to the reaction mixture and the combined 

phases were washed with H2O (15 mL). The aqueous phase was extracted with CH2Cl2 (4 × 

10 mL). The crude extracts were then dried over Na2SO4. Evaporation of the solvent and 

subsequent column chromatography on silica gel afforded the corresponding product 51. 



Experimental Part   173 
 

5.2.6 General Procedure F: Cobaltaelectro-Catalyzed C–H Activation in 

Aqueous Glycerol for Allene Annulations  

The electrocatalysis was carried out in an undivided cell, with a graphite felt anode 

(25 mm × 10 mm × 6.0 mm) and a platinum cathode (25 mm × 10 mm × 0.125 mm). 

Benzamide 34 (0.50 mmol, 1.00 equiv), allene 75 (1.00 mmol, 2.00 equiv), NaOPiv 

(124 mg, 1.00 mmol, 2.00 equiv), glycerol/H2O (5.0 mL, 1:1) and Co(OAc)2∙4H2O 

(12.7 mg, 10 mol %) were placed in a 10 mL cell. Electrocatalysis was performed at 40 °C 

with a constant current of 2 mA maintained for 15 h (Q·mol–1 = 2.24 F). Then, the DC-

power supply was stopped, and the reaction mixture was diluted with CH2Cl2 (2.0 mL). 

The graphite felt anode was washed with CH2Cl2 (3 × 5.0 mL) in an ultrasonic bath (3 x 

3 min). The combined washings were added to the reaction mixture and the combined 

phases were washed with H2O (15 mL). The aqueous phase was extracted with CH2Cl2 (4 × 

10 mL). The crude extracts were then dried over Na2SO4. Evaporation of the solvent and 

subsequent column chromatography on silica gel afforded the corresponding product 176. 

5.2.7 General Procedure G: Electrosynthesis of Cobalta(III)cycle 190 

The electrosynthesis was carried out in an undivided cell, with a graphite felt (GF) 

anode (25 mm × 10 mm × 6.0 mm), a platinum cathode (25 mm × 10 mm × 0.125 mm) and 

a silver-wire (100 mm × 1.0 mm) as the reference electrode (Figure 85). Benzamide 34 

(1.00 mmol, 2.00 equiv), NaOPiv (124 mg, 1.00 mmol, 2.00 equiv), MeCN (13 mL) and 

anhydrous Co(OAc)2 (88.5 mg, 0.50 mmol, 1.00 equiv) were placed in a 20 mL cell under 

a nitrogen atmosphere. Electrolysis was performed at 25 °C with a constant potential of 

1.4 V vs. Ag/Ag+ maintained until 1.0 F was passed through the cell. Then, the electrolysis 

was stopped, the suspension was filtered over Celite and the electrolysis cell was washed 

with MeCN (3 x 5.0 mL). The graphite felt anode was washed with MeCN (3 × 5.0 mL) in 

an ultrasonic bath (3 x 3 min). The combined washings were filtered over Celite and added 

to filtrate of the reaction mixture. Evaporation of the solvent and subsequent fast column 

chromatography on silica gel (CH2Cl2/MeOH) yielded the desired complex 190. The 

solvents were removed at low temperature, as decomposition was otherwise observed in 

CH2Cl2 within a few hours at room temperature.  
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5.2.8 General Procedure H: Metal-Free Electro C(sp3)–H Azidation 

The electrocatalysis was carried out in an undivided cell, with a graphite felt anode 

(10 mm × 15 mm × 6 mm) and a platinum cathode (10 mm × 15 mm × 0.125 mm). An 

aqueous solution of sodium azide (2.0 mL, 2.0 M), AcOH (2.0 mL), and 1,2,3,4-

tetrahydronaphthalene (111a) (66.1 mg, 0.50 mmol) were placed in a 10 mL cell. The 

reaction mixture was stirred at 400 rpm. The electrodes were connected, and electrolysis 

was performed at 25 °C with a constant current of 10 mA maintained for 4 h (Q·mol–1 = 

2.98 F). At ambient temperature, the reaction mixture was quenched with sat. aq. NaHCO3 

(20 mL) and EtOAc (10 mL) was added, and the graphite felt anode was washed with 

EtOAc (3 × 5 mL) in an ultrasonic bath (3 x 3 min). The separated aqueous layer was 

extracted with EtOAc (3 × 10 mL). The combined organic layers were dried over Na2SO4, 

filtered and the solvents were removed in vacuo. The crude product mixture was purified 

by column chromatography. 

5.2.9 General Procedure I: Manganaelectro-Catalyzed C(sp3)–H Azidation 

The electrocatalysis was carried out in an undivided cell, with a graphite felt anode 

(10 mm × 15 mm × 6.0 mm) and a platinum cathode (10 mm × 15 mm × 0.125 mm). The 

manganese catalyst [Mn2] (12.7 mg, 25.0 µmol, 5.0 mol %), sodium azide (260 mg, 

4.00 mmol, 8.00 equiv), substrate 111 (0.50 mmol, 1.00 equiv) and LiClO4 (53.2 mg, 

0.50 mmol, 1.00 equiv) were placed in a 10 mL cell under nitrogen atmosphere. The 

reaction components were dissolved in MeCN (2.5 mL), followed by AcOH (2.5 mL) and 

the reaction mixture was stirred at 400 rpm. The electrodes were connected under vigorous 

nitrogen-flow. Electrolysis was performed at 25 °C with a constant current of 8 mA 

maintained for 10 h (Q·mol–1 = 5.97 F). At ambient temperature, the reaction mixture was 

quenched with sat. aq. NaHCO3 (20 mL) and EtOAc (10 mL) was added, and the graphite 

felt anode was washed with EtOAc (3 × 5 mL) in an ultrasonic bath (3 x 3 min). The 

combined organic mixture was washed with H2O (3 × 10 mL), and then dried over Na2SO4, 

filtered and the solvents were removed in vacuo. The crude product mixture was purified 

by column chromatography to afford the desired organic azides 113. 
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5.3 Cobaltaelectro-Catalyzed C–H Oxygenation 

5.3.1 Characterization Data 

 

2-(2-Ethoxybenzamido)pyridine-1-oxide (36aa): The general procedure A was followed 

using 2-benzamidopyridine 1-oxide (34a) (107 mg, 0.50 mmol) and ethanol (35a) 

(2 × 7.0 mL). Purification by column chromatography on silica gel (CH2Cl2/acetone 3:1) 

yielded 36aa (97.5 mg, 376 μmol, 75%) as a white solid. 

M. p.: 141–143 °C.  

1H-NMR (500 MHz, CDCl3):  = 12.29 (s, 1H), 8.72 (dd, J = 8.6, 1.9 Hz, 1H), 8.30–8.23 

(m, 2H), 7.50 (ddd, J = 8.4, 2.1, 0.7 Hz 1H), 7.32 (dd, J = 8.6, 1.9 Hz, 1H), 7.11–7.01 (m, 

2H), 6.97 (dd, J = 8.4, 2.1 Hz, 1H), 4.29 (q, J = 6.7 Hz, 2H), 1.69 (t, J = 6.7 Hz, 3H).  

13C-NMR (125 MHz, CDCl3):  = 163.8 (Cq), 157.3 (Cq), 145.3 (Cq), 137.2 (CH), 134.2 

(CH), 132.5 (CH), 127.7 (CH), 121.0 (CH), 120.5 (Cq), 118.3 (CH), 115.7 (CH), 112.3 

(CH), 65.3 (CH2), 14.8 (CH3).  

IR (ATR): ṽ = 3178, 3060, 1658, 1507, 1278, 1241, 1029, 737 cm−1.  

MS (EI) m/z (relative intensity): 258 (10) [M]+, 241 (12), 197 (34), 149 (55), 121 (100), 93 

(22).  

HR-MS (EI) m/z calcd. for C14H14N2O3 [M]+: 258.1004, found: 258.1009.  

The analytical data are in accordance with those previously reported in the literature.[99] 

 

2-Ethoxy-N-(quinolin-8-yl)benzamide (161aa): The general procedure A was followed 

using N-(quinolin-8-yl)benzamide (26a) (124 mg, 0.50 mmol) and ethanol (35a) 

(2 × 7.0 mL). Purification by column chromatography on silica gel (CH2Cl2/acetone 6:1) 

yielded 161aa (52.0 mg, 178 μmol, 36%) as a white solid.  

M. p.: 101–103 °C. 
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1H-NMR (500 MHz, CDCl3):  = 12.06 (s, 1H), 9.08 (dd, J = 7.6, 2.2 Hz, 1H), 8.80 (dd, 

J = 4.4, 2.2 Hz, 1H), 8.34 (dd, J = 7.7, 2.3 Hz, 1H), 8.14 (dd, J = 7.7, 2.3 Hz, 1H), 7.57 (dd, 

J = 8.0, 7.7 Hz, 1H), 7.53–7.45 (m, 2H), 7.43 (dd, J = 4.4, 4.2 Hz 1H), 7.10 (dd, J = 8.0, 

7.7, 2.2 Hz, 1H), 7.05 (dd, J = 7.7, 2.3 Hz, 1H), 4.36 (q, J = 7.5 Hz, 2H), 1.73 (t, J = 7.5 Hz, 

3H).  

13C-NMR (125 MHz, CDCl3):  = 164.0 (Cq), 157.1 (Cq), 147.7 (CH), 139.3 (Cq), 136.2 

(CH), 135.9 (Cq), 133.1 (CH), 132.6 (CH), 128.1 (Cq), 127.5 (CH), 122.4 (Cq), 121.5 (CH), 

121.4 (CH), 121.0 (CH), 117.7 (CH), 112.3 (CH), 66.3 (CH2), 15.0 (CH3).  

IR (ATR): ṽ = 3294, 2985, 1655, 1524, 1485, 1324, 1162, 1039, 752 cm−1.  

MS (EI) m/z (relative intensity): 292 (35) [M]+, 259 (25), 205 (12), 149 (65), 144 (69), 121 

(100).  

HR-MS (EI) m/z calcd. for C14H14N2O3 [M]+: 292.1212, found: 292.1221.  

 

2-(2-Ethoxy-4-methylbenzamido)pyridine-1-oxide (36ba): The general procedure A was 

followed using benzamide 34b (114 mg, 0.50 mmol) and ethanol (35a) (2 × 7.0 mL). 

Purification by column chromatography on silica gel (CH2Cl2/acetone 3:1) yielded 36ba 

(84.0 mg, 309 μmol, 62%) as a white solid.  

M. p.: 159–161 °C.  

1H-NMR (400 MHz, CDCl3):  = 12.20 (s, 1H), 8.72 (dd, J = 8.6, 1.8 Hz, 1H), 8.28 (d, J 

= 6.5 Hz, 1H), 8.13 (d, J = 8.0 Hz, 1H), 7.33–7.24 (m, 1H), 6.99–6.91 (m, 1H), 6.87 (d, J 

= 8.1 Hz, 1H), 6.81 (s, 1H), 4.29 (q, J = 7.0 Hz, 2H), 2.36 (s, 3H), 1.67 (t, J = 7.0 Hz, 3H).  

13C-NMR (125 MHz, CDCl3):  = 164.0 (Cq), 157.5 (Cq), 145.7 (Cq), 145.5 (Cq), 137.5 

(CH), 132.6 (CH), 128.0 (CH), 122.0 (CH), 118.3 (CH), 117.8 (Cq), 115.8 (CH), 113.1 

(CH), 65.3 (CH2), 21.9 (CH3), 14.8 (CH3).  

IR (ATR): ṽ = 3195, 3054, 2988, 1653, 1607, 1502, 1395, 1257, 757, 473 cm−1.  

MS (EI) m/z (relative intensity): 272 (10) [M]+, 255 (10), 163 (100), 135 (95).  

HR-MS (EI) m/z calcd. for C15H16N2O4 [M]+: 272.1161, found: 272.1156.  

The analytical data are in accordance with those previously reported in the literature. [99] 
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2-(2-Ethoxy-4-(trifluoromethyl)benzamido)pyridine-1-oxide (36ca): The general 

procedure A was followed using benzamide 34c (141 mg, 0.50 mmol) and ethanol (35a) 

(2 × 7.0 mL). Purification by column chromatography on silica gel (CH2Cl2/acetone 3:1) 

yielded 36ca (85.3 mg, 262 μmol, 52%) as a white solid.  

M. p.: 186–189 °C.  

1H-NMR (400 MHz, CDCl3):  = 12.26 (s, 1H), 8.68 (dd, J = 8.4, 1.7 Hz, 1H), 8.37 (d, 

J = 8.0 Hz, 1H), 8.28 (dd, J = 6.7, 1.4 Hz, 1H), 7.39–7.30 (m, 2H), 7.28 (s, 1H), 7.00 (ddd, 

J = 8.4, 6.4, 1.7 Hz, 1H), 4.39 (q, J = 7.0 Hz, 2H), 1.73 (t, J = 7.0 Hz, 3H).  

13C-NMR (125 MHz, CDCl3):  = 162.7 (Cq), 157.4 (Cq), 145.0 (Cq), 137.3 (CH), 135.6 

(q, 2JC-F = 33.3 Hz, Cq), 133.5 (CH), 127.8 (CH), 123.5 (Cq), 123.4 (q, 1JC-F = 280 Hz, Cq), 

118.9 (CH), 117.6 (q, 3JC-F = 3.8 Hz, CH), 116.0 (q, 3JC-F = 4.0 Hz, CH), 109.5 (CH), 66.1 

(CH2), 14.6 (CH3).  

19F-NMR (282 MHz, CDCl3):  = –63.19.  

IR (ATR): ṽ = 3180, 3061, 1654, 1501, 1268, 1071, 760, 744 cm−1.  

MS (EI) m/z (relative intensity): 326 (10) [M]+, 209 (19), 265 (31), 217 (40), 189 (100), 

161 (28), 113 (10).  

HR-MS (EI) m/z calcd. for C15H13F3N2O3 [M]+: 326.0878, found: 326.0876. 

 

2-(2-Ethoxy-4-methoxybenzamido)pyridine-1-oxide (36da): The general procedure A 

was followed using benzamide 34d (123 mg, 0.50 mmol) and ethanol (35a) (2 × 7.0 mL). 

Purification by column chromatography on silica gel (CH2Cl2/acetone 2:1) yielded 36da 

(106.3 mg, 369 μmol, 74%) as a white solid.  

M. p.: 191–193 °C.  

1H-NMR (300 MHz, CDCl3):  = 12.13 (s, 1H), 8.72 (d, J = 7.9 Hz, 1H), 8.28 (d, 

J = 2.1 Hz, 1H), 8.22 (d, J = 9.3 Hz, 1H), 7.29 (d, J = 7.9, 2.1 Hz, 1H), 6.96 (dd, J = 7.4, 
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7.1 Hz, 1H), 6.60 (dd, J = 9.3, 2.5 Hz, 1H), 6.53 (d, J = 2.5 Hz, 1H), 4.27 (q, J = 7.0 Hz, 

2H), 3.84 (s, 3H), 1.64 (t, J = 7.0 Hz, 3H).  

13C-NMR (125 MHz, CDCl3):  = 164.5 (Cq), 163.6 (Cq), 158.8 (Cq), 145.7 (Cq), 137.3 

(CH), 134.3 (CH), 127.8 (CH), 117.7 (CH), 115.6 (CH), 113.6 (Cq), 105.7 (CH), 99.1 (CH), 

65.4 (CH2), 55.6 (CH3), 14.7 (CH3).  

IR (ATR): ṽ = 3193, 3057, 2203, 2120, 1658, 1504, 1030, 727, 516 cm−1.  

MS (EI) m/z (relative intensity): 288 (12) [M]+, 227 (10), 179 (100), 151 (82), 95 (15).  

HR-MS (EI) m/z calcd. for C15H16N2O4 [M]+: 288.1110, found: 288.1120.  

The analytical data are in accordance with those previously reported in the literature. [99] 

 

2-[2-Ethoxy-4-(methylthio)benzamido]pyridine-1-oxide (36ea): The general procedure 

A was followed using benzamide 34e (130 mg, 0.50 mmol) and ethanol (35a) (2 × 7.0 mL). 

Purification by column chromatography on silica gel (CH2Cl2/acetone 5:1) yielded 36ea 

(100 mg, 329 μmol, 66%) as a white solid.  

M. p.: 176–177 °C.  

1H-NMR (300 MHz, CDCl3):  = 12.15 (s, 1H), 8.71 (dd, J = 8.6, 1.9 Hz, 1H), 8.30–8.24 

(m, 1H), 8.17 (d, J = 8.4 Hz, 1H), 7.31 (ddd, J = 8.6, 7.6, 1.4 Hz, 1H), 6.96 (ddd, J = 7.6, 

6.5, 1.9 Hz, 1H), 6.90 (dd, J = 8.4, 1.7 Hz, 1H), 6.84 (d, J = 1.7 Hz, 1H), 4.30 (q, J = 7.0 Hz, 

2H), 2.51 (s, 3H), 1.70 (t, J = 7.0 Hz, 3H).  

13C-NMR (125 MHz, CDCl3):  = 163.6 (Cq), 157.4 (Cq), 147.1 (Cq), 145.6 (Cq), 137.4 

(CH), 132.9 (CH), 127.8 (CH), 118.3 (CH), 117.6 (CH), 117.1 (Cq), 115.8 (CH), 109.2 

(CH), 65.6 (CH2), 15.1 (CH3), 14.9 (CH3).  

IR (ATR): ṽ = 3225, 3054, 1651, 1501, 1269, 896, 734 cm−1.  

MS (EI) m/z (relative intensity): 304 (10) [M]+, 243 (14), 195 (100), 167 (70), 152 (10), 

111 (10), 43 (24).  

HR-MS (EI) m/z calcd. for C14H14N2O3 [M]+: 304.0882, found: 304.0877.  
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2-[3-Ethoxy-(1,1’-biphenyl)-4-carboxamido]pyridine-1-oxide (36fa): The general 

procedure A was followed using benzamide 34f (145 mg, 0.50 mmol) and ethanol (35a) 

(2 × 7.0 mL). Purification by column chromatography on silica gel (CH2Cl2/acetone 3:1) 

yielded 36fa (101 mg, 302 μmol, 61%) as a white solid.  

M. p.: 164–168 °C.  

1H-NMR (400 MHz, CDCl3):  = 12.27 (s, 1H), 8.72 (dd, J = 8.6, 1.8 Hz, 1H), 8.35–8.29 

(m, 2H), 7.62–7.57 (m, 2H), 7.47–7.41 (m, 2H), 7.40–7.34 (m, 1H), 7.34–7.27 (m, 2H), 

7.22–7.20 (m, 1H), 6.98–6.92 (m, 1H), 4.39 (q, J = 7.0 Hz, 2H), 1.73 (t, J = 7.0 Hz, 3H). 

13C-NMR (125 MHz, CDCl3):  = 163.8 (Cq), 157.8 (Cq), 147.4 (Cq), 145.5 (Cq), 140.0 

(Cq), 137.4 (CH), 133.2 (CH), 129.0 (CH), 128.5 (CH), 127.9 (CH), 127.4 (CH), 120.0 

(CH), 119.4 (Cq), 118.5 (CH), 115.9 (CH), 111.2 (CH), 65.7 (CH2), 15.0 (CH3).  

IR (ATR): ṽ = 3212, 2980, 1751, 1667, 1606, 1500, 1475, 1210, 753 cm−1.  

MS (EI) m/z (relative intensity): 334 (10) [M]+, 317 (10), 225 (100), 197 (59), 141 (20), 

115 (14).  

HR-MS (EI) m/z calcd. for C20H18N2O3 [M]+: 334.1317, found: 334.1326.  

The analytical data are in accordance with those previously reported in the literature. [99] 

 

2-(2-Ethoxy-4-iodobenzamido)pyridine-1-oxide (36ga): The general procedure A was 

followed using benzamide 34g (170 mg, 0.50 mmol) and ethanol (35a) (2 × 7.0 mL). 

Purification by column chromatography on silica gel (CH2Cl2/acetone 5:1) yielded 36ga 

(82.8 mg, 215 μmol, 43%) as a white solid.  

M. p.: 212–214 °C.  

1H-NMR (300 MHz, CDCl3):  = 12.13 (s, 1H), 8.69 (d, J = 8.5 Hz, 1H), 8.29 (d, J = 

6.5 Hz, 1H), 7.94 (d, J = 8.5 Hz, 1H), 7.45 (dd, J = 8.3, 1.5 Hz, 1H), 7.38 (d, J = 1.5 Hz, 

1H), 7.35–7.28 (m, 1H), 7.05 5–6.96 (m, 1H), 4.30 (q, J = 7.0 Hz, 2H), 1.68 (t, J = 7.0 Hz, 

3H). 
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13C-NMR (75 MHz, CDCl3):  = 163.4 (Cq), 157.4 (Cq), 145.5 (Cq), 137.6 (CH), 133.8 

(CH), 130.7 (CH), 128.1 (CH), 122.0 (CH), 120.3 (Cq), 118.7 (Cq), 115.9 (CH), 101.2 (CH), 

66.1 (CH2), 14.7 (CH3).  

IR (ATR): ṽ = 3161, 3053, 1656, 1511, 1276, 1242, 799, 763 cm−1.  

MS (EI) m/z (relative intensity): 384 (15) [M]+, 367 (30), 323 (25), 275 (100), 247 (80), 

219 (25), 148 (20), 120 (40).  

HR-MS (EI) m/z calcd. for C14H13IN2O3 [M]+: 383.9971 found: 383.9978.  

The analytical data are in accordance with those previously reported in the literature.[405]  

 

2-(5-Chloro-2-ethoxybenzamido)pyridine-1-oxide (36ha): The general procedure A was 

followed using benzamide 34h (124 mg, 0.50 mmol) and ethanol (35a) (2 × 7.0 mL). 

Purification by column chromatography on silica gel (CH2Cl2/acetone 5:1) yielded 36ha 

(78.0 mg, 266 μmol, 53%) as a white solid.  

M. p.: 226–227 °C.  

1H-NMR (300 MHz, CDCl3) δ = 12.23 (s, 1H), 8.70 (dd, J = 8.4, 1.9 Hz, 1H), 8.29 (d, J = 

6.5 Hz, 1H), 8.24 (d, J = 2.8 Hz, 1H), 7.46 (dd, J = 8.9, 2.8 Hz, 1H), 7.40–7.29 (m, 1H), 

7.06–6.96 (m, 2H), 4.32 (q, J = 7.0 Hz, 2H), 1.70 (t, J = 7.0 Hz, 3H).  

13C-NMR (125 MHz, CDCl3):  = 162.6 (Cq), 156.0 (Cq), 145.3 (Cq), 137.4 (CH), 133.9 

(CH), 132.3 (CH), 127.9 (CH), 126.6 (Cq), 122.0 (Cq), 118.8 (CH), 116.0 (CH), 110.1 (CH), 

66.1 (CH2), 14.9 (CH3).  

IR (ATR): ṽ = 3164, 3061, 1656, 1563, 1514, 1431, 1273, 1031, 754, 507 cm-1.  

MS (EI) m/z (relative intensity): 294 (7) [37Cl-M]+, 292 (20) [35Cl-M]+, 275 (25), 231 (20), 

183 (70), 155 (100), 43 (50).  

HR-MS (EI) m/z calcd. for C14H13N2O3
35Cl [35Cl-M]+: 292.0615, found: 292.0614.  

The analytical data are in accordance with those previously reported in the literature. [99] 
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2-(2-Ethoxy-5-iodobenzamido)pyridine-1-oxide (36ia): The general procedure A was 

followed using benzamide 34i (170 mg, 0.50 mmol) and ethanol (35a) (2 × 7.0 mL). 

Purification by column chromatography on silica gel (CH2Cl2/acetone 5:1) yielded 36ia 

(98.0 mg, 255 μmol, 51%) as a white solid.  

M. p.: 235–236 °C.  

1H-NMR (300 MHz, CDCl3):  = 12.20 (s, 1H), 8.69 (dd, J = 8.6, 1.9 Hz, 1H), 8.55 (d, 

J = 2.4 Hz, 1H), 8.32–8.26 (m, 1H), 7.78 (dd, J = 8.7, 2.4 Hz, 1H), 7.36 (ddd, J = 8.7, 7.6, 

1.5 Hz, 1H), 7.01 (ddd, J = 7.6, 6.5, 1.9 Hz, 1H), 6.83 (d, J = 8.8 Hz, 1H), 4.32 (q, 

J = 7.0 Hz, 2H), 1.70 (t, J = 7.0 Hz, 3H).  

13C-NMR (126 MHz, CDCl3):  = 162.4 (Cq), 157.3 (Cq), 145.2 (Cq), 142.7 (CH), 141.2 

(CH), 137.4 (CH), 127.9 (CH), 122.7 (Cq), 118.8 (CH), 116.0 (CH), 114.9 (CH), 83.3 (Cq), 

66.0 (CH2), 14.9 (CH3).  

IR (ATR): ṽ = 3166, 3058, 1656, 1512, 1278, 1240, 801, 762 cm−1.  

MS (EI) m/z (relative intensity): 384 (20) [M]+, 367 (37), 323 (15), 275 (100), 247 (84), 

219 (19), 148 (26), 120 (40).  

HR-MS (EI) m/z calcd. for C14H13IN2O3 [M]+: 383.9971 found: 383.9980.  

The analytical data are in accordance with those previously reported in the literature. [99] 

 

2-(2-Methoxybenzamido)pyridine-1-oxide (36ab): The general procedure A was 

followed using benzamide 35a (107 mg, 0.50 mmol) and methanol (35b) (2 × 7.0 mL). 

Purification by column chromatography on silica gel (CH2Cl2/acetone 2:1) yielded 36ab 

(86.8 mg, 256 μmol, 71%) as a white solid.  

M. p.: 121–124 °C.  

1H-NMR (400 MHz, CDCl3):  = 12.41 (s, 1H), 8.67 (dd, J = 8.3, 1.7 Hz, 1H), 8.28–8.25 

(m, 2H), 7.53 (ddd, J = 7.9, 7.0, 1.7 Hz, 1H), 7.35 (ddd, J = 8.3, 7.0, 1.4 Hz, 1H), 7.10 (ddd, 
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J = 8.5, 7.5, 2.1 Hz, 1H), 7.05 (dd, J = 8.5, 1.0 Hz, 1H), 6.97 (ddd, J = 8.0, 7.5, 1.0 Hz, 

1H), 4.13 (s, 3H).  

13C-NMR (101 MHz, CDCl3):  = 163.5 (Cq), 157.9 (Cq), 145.4 (Cq), 137.3 (CH), 134.3 

(CH), 132.4 (CH), 128.3 (CH), 121.3 (CH), 120.4 (Cq), 118.3 (CH), 115.5 (CH), 111.6 

(CH), 56.3 (CH3).  

IR (ATR): ṽ = 3175, 1671, 1564, 1479, 1238, 1043, 744 cm−1.  

MS (EI) m/z (relative intensity): 244 (18) [M]+, 227 (11), 197 (10), 135 (100), 110 (15), 92 

(22), 77 (25).  

HR-MS (ESI) m/z calcd. for C14H13N2O3
79Br [M]+: 244.0848, found 244.0851.  

The analytical data are in accordance with those previously reported in the literature. [99] 

 

2-(2-n-Propoxybenzamido)pyridine-1-oxide (36ac): The general procedure A was 

followed using benzamide 34a (107 mg, 0.50 mmol), tetra-n-butylammonium acetate 

(152 mg, 0.50 mmol, 1.00 equiv in each half-cell) and n-propanol (35c) (2 × 7.0 mL). 

Purification by column chromatography on silica gel (CH2Cl2/acetone 10:1) yielded 36ac 

(88 mg, 324 μmol, 65%) as a white solid.  

M. p.: 74–75 °C.  

1H-NMR (300 MHz, CDCl3):  = 12.23 (s, 1H), 8.72 (ddd, J = 8.6, 1.9, 0.5 Hz, 1H), 8.31–

8.24 (m, 2H), 7.50 (ddd, J = 8.3, 7.3, 1.9 Hz, 1H), 7.36–7.29 (m, 1H), 7.12–7.02 (m, 2H), 

6.97 (ddd, J = 7.5, 6.5, 1.9 Hz, 1H), 4.21 (t, J = 7.1 Hz, 2H), 2.22–2.06 (m, 2H), 1.09 (t, 

J = 7.4 Hz, 3H).  

13C-NMR (126 MHz, CDCl3):  = 164.0 (Cq), 157.6 (Cq), 145.4 (Cq), 137.4 (CH), 134.3 

(CH), 132.7 (CH), 127.6 (CH), 121.1 (CH), 120.7 (Cq), 118.5 (CH), 115.9 (CH), 112.6 

(CH), 71.6 (CH2), 22.4 (CH2), 10.7 (CH3).  

IR (ATR): ṽ = 3212, 2967, 1668, 1600, 1504, 1239, 724 cm-1.  

MS (EI) m/z (relative intensity): 272 (10) [M]+, 255 (10), 230 (32), 163 (65), 135 (18), 121 

(100), 93 (23), 65 (18).  

HR-MS (EI) m/z calcd. for C15H16N2O3 [M]+: 272.1161, found: 272.1171.  
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2-[2-(2,2,2-Trifluoroethoxy)benzamido]pyridine-1-oxide (36ad): The general 

procedure A was followed using benzamide 34a (107 mg, 0.50 mmol) and trifluoroethanol 

(35d) (2 × 7.0 mL). Purification by column chromatography on silica gel (CH2Cl2/acetone 

4:1) yielded 36ad (97.6 mg, 312 μmol, 40%) as a white solid.  

M. p.: 152–154 °C.  

1H-NMR (300 MHz, CDCl3):  = 11.93 (s, 1H), 8.68 (dd, J = 7.8, 2.2 Hz, 1H), 8.33 (dd, 

J = 6.6, 1.2 Hz, 1H), 8.27 (dd, J = 7.9, 1.6 Hz, 1H), 7.59 (ddd, J = 7.9, 7.8, 2.2 Hz, 1H), 

7.38 (ddd, J = 8.1, 6.6, 1.7 Hz, 1H), 7.29 (ddd, J = 8.1, 6.6, 1.2 Hz, 1H), 7.12 (dd, J = 8.1, 

1.7 Hz, 1H), 7.03 (ddd, J = 7.9, 7.8, 1.6 Hz, 1H), 4.76 (t, J = 8.6 Hz, 2H).  

13C-NMR (125 MHz, CDCl3):  = 163.0 (Cq), 155.6 (Cq), 144.9 (Cq), 137.2 (CH), 134.1 

(CH), 132.8 (CH), 127.6 (CH), 123.3 (CH), 123.0 (q, 1JCF = 258 Hz, Cq), 122.3 (Cq), 118.7 

(CH), 115.5 (CH), 113.5 (CH), 66.5 (q, 2JCF = 34.5 Hz, CH2).  

19F-NMR (282 MHz, CDCl3):  = –72.81.  

IR (ATR): ṽ = 3172, 1669, 1563, 1504, 1452, 1092, 670 cm−1.  

MS (EI) m/z (relative intensity): 312 (16) [M]+, 203 (100), 197 (35), 183 (10) 155 (5), 120 

(6), 92 (12).  

HR-MS (ESI) m/z calcd. for C14H12F3N2O3 [M+H]+: 313.0795, found: 313.0791.  

 

(Z)-2-(3-Ethoxy-2-methylbut-2-enamido)pyridine-1-oxide (38aa): The general 

procedure C was followed using alkene 37a (48.1 mg, 0.25 mmol), and ethanol (35a) 

(7.0 mL). Purification by column chromatography on silica gel (CH2Cl2/acetone 3:1) 

yielded 38aa (41.1 mg, 174 μmol, 69%) as a white solid.  

M. p.: 110–112 °C.  
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1H-NMR (300 MHz, CDCl3):  = 12.14 (s, 1H), 8.66 (dd, J = 8.5 Hz, 1H), 8.23 (dd, J = 

6.4 Hz, 1H), 7.25 (ddd, 1H), 6.92 (ddd, J = 6.6 Hz, 1H), 4.26 (q, J = 7.6 Hz, 2H), 2.20 (s, 

3H), 1.96 (s, 3H), 1.50 (t, J = 7.6 Hz, 3H).  

13C-NMR (101 MHz, CDCl3):  = 166.0 (Cq), 160.0 (Cq), 146.0 (Cq), 137.4 (CH), 128.2 

(CH), 117.7 (CH), 115.4 (CH), 108.6 (Cq), 65.4 (CH2), 16.1 (CH3), 15.5 (CH3), 13.9 (CH3).  

IR (ATR): ṽ = 3201, 2927, 1701, 1620, 1503, 1423, 1161, 1038, 763 cm−1.  

MS (EI) m/z (relative intensity): 236 (5) [M]+, 191 (8), 165 (5), 149 (9), 127 (66), 99 (100), 

84 (23), 58 (41).  

HR-MS (EI) m/z calcd. for C12H16N2O3 [M]+: 236.1161, found: 236.1162.  

The analytical data are in accordance with those previously reported in the literature. [99] 

 

(Z)-2-(3-Methoxy-2-methylbut-2-enamido)pyridine-1-oxide (38ab): The general 

procedure C was followed using alkene 37a (96.1 mg, 0.50 mmol) and methanol (35b) 

(7.0 mL). Purification by column chromatography on silica gel (CH2Cl2/acetone 2:1) 

yielded 38ab (69.0 mg, 310 μmol, 62%) as a white solid.  

M. p.: 116–118 °C.  

1H-NMR (300 MHz, CDCl3):  = 12.24 (s, 1H), 8.59 (dd, J = 8.5, 2.1 Hz, 1H), 8.23 (dd, 

J = 6.4, 1.6 Hz, 1H), 7.35–7.23 (m, 1H), 6.92 (ddd, J = 8.5, 6.4, 2.1 Hz, 1H), 3.95 (s, 3H), 

2.15 (d, J = 1.0 Hz, 3H), 1.91 (d, J = 1.0 Hz, 3H).  

13C-NMR (125 MHz, CDCl3):  = 165.7 (Cq), 160.3 (Cq), 145.0 (Cq), 137.5 (CH), 128.4 

(CH), 117.3 (CH), 114.8 (CH), 108.1 (CH), 56.2 (CH2), 15.2 (CH3), 13.7 (CH3).  

IR (ATR): ṽ = 3205, 2947, 1651, 1501, 1425, 1163, 1028, 756 cm−1.  

MS (EI) m/z (relative intensity): 222 (5) [M]+, 191 (8), 175 (7), 148 (8), 113 (100), 105 

(10), 78 (8).  

HR-MS (EI) m/z calcd. for C11H14N2O3 [M]+: 222.1004, found: 222.1001.  

The analytical data are in accordance with those previously reported in the literature. [99] 
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2-(2-Methoxycyclohex-1-ene-1-carboxamido)pyridine-1-oxide (38bb): The general 

procedure B was followed using alkene 37b (54.6 mg, 0.25 mmol), and methanol (35b) 

(7.0 mL). Purification by column chromatography on silica gel (CH2Cl2/acetone 1:1) 

yielded 38bb (44.9 mg, 181 μmol, 72%) as a white solid.  

M. p.: 104–106 °C.  

1H-NMR (400 MHz, CDCl3):  = 12.17 (s, 1H), 8.55 (dd, J = 8.5, 1.9 Hz, 1H), 8.19 (d, J = 

6.5 Hz, 1H), 7.28–7.21 (m, 1H), 6.88 (ddd, J = 8.0, 6.5, 1.9 Hz, 1H), 3.91 (s, 3H), 2.44–

2.34 (m, 4H), 1.77–1.68 (m, 2H), 1.64–1.55 (m, 2H).  

13C-NMR (75 MHz, CDCl3):  = 165.7 (Cq), 162.4 (Cq), 145.9 (Cq), 137.3 (CH), 128.1 

(CH), 117.5 (CH), 115.0 (CH), 109.6 (Cq), 55.2 (CH3), 25.6 (CH2), 24.3 (CH2), 22.6 (CH2), 

22.0 (CH2).  

IR (ATR): ṽ = 3210, 2940, 1654, 1504, 1427, 1178, 907, 723 cm−1.  

MS (EI) m/z (relative intensity): 248 (6) [M]+, 217 (12), 201 (7), 139 (100), 128 (9), 79 

(17).  

HR-MS (EI) m/z calcd. for C13H16N2O3 [M]+: 248.1161, found: 248.1164.  

The analytical data are in accordance with those previously reported in the literature. [99] 

 

(Z)-2-(3-Ethoxy-2-methyl-3-phenylacrylamido)pyridine-1-oxide (38ca): The general 

procedure C was followed using 37c (63.6 mg, 0.25 mmol) and ethanol (35a) (7.0 mL). 

Purification by column chromatography on silica gel (CH2Cl2/acetone 3:1) yielded 38ca 

(39.8 mg, 133 μmol, 53%) as a white solid.  

M. p.: 124–126 °C.  

1H-NMR (400 MHz, CDCl3):  = 12.38 (s, 1H), 8.65 (dd, J = 7.9, 1.8 Hz, 1H), 8.27 (dd, 

J = 6.5, 2.1 Hz, 1H), 7.51–7.43 (m, 3H), 7.35–7.29 (m, 3H), 6.96 (ddd, J = 7.9, 6.5, 1.8 Hz, 

1H), 3.86 (q, J = 7.3 Hz, 2H), 1.81 (s, 3H), 1.40 (t,  J = 7.3 Hz, 3H).  
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13C-NMR (125 MHz, CDCl3):  = 166.1 (Cq), 160.8 (Cq), 145.6 (Cq), 137.3 (Cq), 133.9 

(Cq), 129.4 (CH), 128.9 (CH), 128.6 (CH), 127.8 (CH), 117.8 (CH), 115.3 (CH), 110.9 

(CH), 67.1 (CH2), 15.1 (CH3) 15.1 (CH3).  

IR (ATR): ṽ = 3206, 3058, 2923, 1649, 1502, 1389, 1129, 763, 703 cm−1.  

MS (ESI) m/z (relative intensity): 619 (32) [2M+Na]+, 321 (100) [M+Na]+, 299 (52) 

[M+H]+, 189 (67), 161 (25), 137 (9).  

HR-MS (ESI) m/z calcd. for C17H18N2O3 [M+H]+: 299.1394, found: 299.1390.  

 

(Z)-2-(3-Methoxy-2-methyl-3-phenylacrylamido)pyridine-1-oxide (38cb): The general 

procedure C was followed using alkene 37c (63.6 mg, 0.25 mmol) and methanol (35b) 

(7.0 mL). Purification by column chromatography on silica gel (CH2Cl2/acetone 1:1) 

yielded 38cb (50.7 mg, 178 μmol, 71%) as a white solid.  

M. p.: 131–133 °C.  

1H-NMR (400 MHz, CDCl3):  = 12.48 (s, 1H), 8.64 (dd, J = 7.2, 1.3 Hz, 1H), 8.30 (dd, 

J = 7.7, 2.1 Hz, 1H), 7.54–7.43 (m, 3H), 7.42–7.34 (m, 3H), 6.97 (ddd, J = 7.7, 7.2, 1.3 Hz, 

1H), 3.68 (s, 3H), 1.81 (s, 3H).  

13C-NMR (125 MHz, CDCl3):  = 165.9 (Cq), 161.6 (Cq), 145.7 (Cq), 137.2 (Cq), 133.2 

(Cq), 129.6 (CH), 129.0 (CH), 128.7 (CH), 128.3 (CH), 117.8 (CH), 115.1 (CH), 110.6 

(CH), 58.2 (CH3), 15.0 (CH3).  

IR (ATR): ṽ = 3203, 2927, 1656, 1501, 1425, 1235, 1103, 751, 701 cm−1.  

MS (ESI) m/z (relative intensity): 591 (65) [2M+Na]+, 307 (100) [M+Na]+, 285 (33) 

[M+H]+, 175 (49).  

HR-MS (ESI) m/z calcd. for C16H16N2O3 [M+H]+: 285.1234, found: 285.1236.  
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(Z)-2-(3-Methoxy-2,3-diphenylacrylamido)pyridine-1-oxide (38db): The general 

procedure C was followed using 37d (79.1 mg, 0.25 mmol) and methanol (35b) (7.0 mL). 

Purification by column chromatography on silica gel (CH2Cl2/acetone 3:1) yielded 38db 

(54.0 mg, 156 μmol, 62%) as a white solid.  

M. p.: 205–207 °C.  

1H-NMR (400 MHz, CDCl3):  = 12.26 (s, 1H), 8.60 (dd, J = 8.5, 1.8 Hz, 1H), 8.24 (dd, 

J = 6.0, 1.8 Hz, 1H), 7.37 (ddd, J = 8.5, 6.0, 1.8 Hz, 1H), 7.23–7.19 (m, 3H), 7.16–7.09 (m, 

5H), 7.08–7.05 (m, 2H), 6.98 (ddd, J = 8.5, 6.0, 1.8 Hz, 1H), 3.75 (m, 3H).  

13C-NMR (125 MHz, CDCl3):  = 165.1 (Cq), 163.6 (Cq), 135.7 (Cq), 132.6 (Cq), 131.7 

(CH), 131.7 (CH), 129.7 (CH), 129.7 (CH), 129.3 (CH), 128.2 (CH), 128.2 (CH), 127.7 

(CH), 127.7 (CH), 126.8 (CH), 118.2 (Cq), 114.9 (Cq), 58.7 (CH3).  

IR (ATR): ṽ = 3156, 2947, 1650, 1557, 1498, 1426, 1244, 1012, 760, 703 cm−1.  

MS (ESI) m/z (relative intensity): 715 (83) [2M+Na]+, 692 (15) [2M+H]+, 369 (100) 

[M+Na]+, 347 (71) [M+H]+, 237 (96), 194 (11).  

HR-MS (ESI) m/z calcd. for C21H18N2O3 [M+H]+: 347.1390, found: 347.1395.  

 

 

 

 

 

 

 

 

 



188 Experimental Part 

5.4 Cobaltaelectro-Catalyzed C–H Activation for Allene 

Annulations 

5.4.1 Characterization Data 

 

2-{3-[(Diphenylphosphoryl)methyl]-1-oxoisoquinolin-2(1H)-yl}pyridine 1-oxide 

(176aa): The general procedure D was followed using benzamide 34a (107 mg, 0.50 mmol) 

and allene 75a (144 mg, 0.60 mmol). Purification by column chromatography on silica gel 

(CH2Cl2/acetone 1:1 to CH2Cl2/MeOH 9:1) yielded 176aa (206 mg, 455 µmol, 91%) as a 

white solid.  

M. p.: 128–130 °C.  

1H-NMR (600 MHz, CDCl3): δ = 8.36–8.26 (m, 2H), 7.76–7.70 (m, 2H), 7.60–7.54 (m, 

2H), 7.51–7.44 (m, 6H), 7.43–7.35 (m, 3H), 7.33–7.30 (m, 1H), 7.29–7.25 (m, 2H), 6.36 

(d, J = 3.1 Hz, 1H), 3.74–3.61 (m, 1H), 3.16–3.01 (m, 1H).  

13C-NMR (126 MHz, CDCl3): δ = 162.6 (Cq), 143.8 (Cq), 140.0 (CH), 136.7 (Cq), 133.3 

(CH), 132.9 (d, 2JC–P = 7.9 Hz, Cq), 132.3 (d, 4JC–P = 2.7 Hz, CH), 132.2 (d, 4JC–P = 2.7 Hz, 

CH), 132.1 (d, 1JC–P = 100.1 Hz, Cq), 131.4 (d, 2JC–P = 9.1 Hz, CH), 131.1 (d, 1JC–P = 

101.2 Hz, Cq), 130.6 (d, 2JC–P = 9.4 Hz, CH), 130.3 (CH), 128.9 (d, 3JC–P = 4.2 Hz, CH), 

128.8 (d, 3JC–P = 4.2 Hz, CH), 128.2 (CH), 127.0 (CH), 126.1 (CH), 125.9 (CH), 125.8 

(CH), 124.9 (Cq), 108.9 (d, 3JC–P = 7.0 Hz, CH), 34.5 (d, 1JC–P = 65.6 Hz, CH2).  

31P{1H}-NMR (162 MHz, CDCl3): δ = 27.6.  

IR (ATR): ṽ = 3057, 1675, 1628, 1432, 1271, 1189, 719, 498 cm−1.  

MS (EI) m/z (relative intensity): 452 (25) [M]+, 453 (45), 319 (10), 251 (28), 234 (100), 

201 (80), 77 (40).  

HR-MS (EI) m/z calcd. for C27H21N2O3P [M]+: 452.1290, found: 452.1297.  
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3-[(Diphenylphosphoryl)methyl]-2-(quinolin-8-yl)isoquinolin-1(2H)-one (76aa): A 

modified general procedure D was followed using benzamide 26a (124 mg, 0.50 mmol), 

allene 75a (144 mg, 0.60 mmol) and TFE (5.0 mL) as the solvent. Purification by column 

chromatography on silica gel (EtOAc/n-hexane 9:1) yielded 76aa (102 mg, 209 µmol, 

42%) as a white solid.  

M. p.: 233–234 °C. 

1H-NMR (400 MHz, CDCl3): δ = 8.86–8.80 (m, 1H), 8.36–8.30 (m, 1H), 8.22 (dd, J = 8.4, 

1.8 Hz, 1H), 7.92 (dd, J = 8.3, 1.4 Hz, 1H), 7.65–7.49 (m, 5H), 7.49–7.38 (m, 7H), 7.38–

7.31 (m, 3H), 7.21 (dd, J = 7.3, 1.4 Hz, 1H), 6.83 (d, J = 3.0 Hz, 1H), 3.52–3.33 (m, 1H), 

3.03 (dd, J = 16.0, 12.7 Hz, 1H).  

13C-NMR (101 MHz, CDCl3): δ = 163.7 (Cq), 151.6 (CH), 144.5 (Cq), 136.9 (d, 4JC–P = 

2.4 Hz, Cq), 136.5 (CH), 135.7 (Cq), 134.3 (d, 2JC–P = 6.2 Hz, Cq), 132.7 (CH), 132.6 (d, 
1JC–P = 100.8 Hz, Cq), 132.3 (d, 4JC–P = 2.8 Hz, CH), 132.2 (d, 4JC–P = 2.8 Hz, CH), 131.7 

(CH), 131.4 (d, 2JC–P = 9.1 Hz, CH), 131.2 (d, 1JC–P = 100.3 Hz, Cq), 130.1 (d, 2JC–P = 

9.4 Hz, CH), 129.4 (CH), 129.3 (Cq), 128.9 (d, 3JC–P = 4.8 Hz, CH), 128.7 (d, 2JC–P = 4.8 Hz, 

CH), 128.3 (CH), 126.7 (CH), 126.6 (CH), 126.2 (CH), 125.4 (Cq), 122.0 (CH), 108.1 (d, 
3JC–P = 6.5 Hz, CH), 35.0 (d, 1JC–P = 66.9 Hz, CH2).  

31P{1H}-NMR (121 MHz, CDCl3): δ = 27.7.  

IR (ATR): ṽ = 1654, 1623, 1497, 1247, 880, 830, 764, 538 cm−1.  

MS (ESI) m/z (relative intensity): 509 (30) [M+Na]+, 487 (100) [M+H]+.  

HR-MS (ESI) m/z calcd. for NaC31H23N2O2P [M+Na]+: 509.1389, found: 509.1389.  

The analytical data are in accordance with those previously reported in the literature.[133] 
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3-[(Diphenylphosphoryl)methyl]-2-[methyl(pyridin-2-yl)amino]isoquinolin-1(2H)-

one (177aa): The general procedure D was followed using benzamide 62a (114 mg, 

0.50 mmol) and allene 75a (144 mg, 0.60 mmol). Purification by column chromatography 

on silica gel (neutralized with Et3N, CH2Cl2/acetone 5:1) yielded 177aa (200 mg, 

430 μmol, 86%) as a white solid.  

M. p.: 109–111 °C.  

1H-NMR (500 MHz, CDCl3): δ = 8.27–8.24 (m, 1H), 8.21 (ddd, J = 5.0, 1.9, 0.9 Hz, 1H), 

7.78–7.68 (m, 4H), 7.60 (ddd, J = 8.3, 7.1, 1.4 Hz, 1H), 7.54–7.50 (m, 2H), 7.48–7.37 (m, 

7H), 6.79–6.74 (m, 2H), 6.27 (d, J = 8.5 Hz, 1H), 3.94 (dd, J = 15.9, 13.7 Hz, 1H), 3.71 

(dd, J = 16.0, 12.6 Hz, 1H), 3.35 (s, 3H).  

13C-NMR (126 MHz, CDCl3): δ = 161.5 (Cq), 159.1 (Cq), 148.2 (CH), 138.1 (CH), 136.4 

(d, 2JC–P = 5.3 Hz, Cq), 136.3 (d, 4JC–P = 2.3 Hz, Cq), 133.0 (CH), 132.8 (d, 1JC–P = 101.2 Hz, 

Cq), 132.3 (d, 4JC–P = 3.0 Hz, CH), 132.2 (d, 4JC–P = 3.0 Hz, CH), 131.3 (d, 2JC–P = 9.3 Hz, 

CH), 131.2 (d, 1JC–P = 100.1 Hz, Cq), 130.9 (d, 2JC–P = 9.4 Hz, CH), 128.9 (d, 3JC–P = 4.7 Hz, 

CH), 128.9 (d, 3JC–P = 4.7 Hz, CH), 128.0 (CH), 126.7 (CH), 126.3 (CH), 126.2 (Cq), 115.9 

(CH), 108.4 (d, 3JC–P = 6.3 Hz, CH), 107.0 (CH), 38.3 (CH3), 32.3 (d, 1JC–P = 67.7 Hz, CH2). 

31P{1H}-NMR (162 MHz, CDCl3): δ = 27.6.  

IR (ATR): ṽ = 3057, 1661, 1622, 1475, 1192, 1147, 928, 720 cm−1.  

MS (EI) m/z (relative intensity): 465 (5) [M]+, 359 (82), 282 (7), 235 (55), 201 (100), 107 

(12), 77 (18).  

HR-MS (EI) m/z calcd. for C28H24N3O2P [M]+: 465.1606, found: 465.1611. 

N

O

N

O

PPh

Ph

O

Me

 

2-{3-[(Diphenylphosphoryl)methyl]-6-methyl-1-oxoisoquinolin-2(1H)-yl}pyridine 1-

oxide (176ba): The general procedure D was followed using benzamide 34b (114 mg, 
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0.50 mmol) and allene 75a (144 mg, 0.60 mmol). Purification by column chromatography 

on silica gel (CH2Cl2/acetone 1:1 to CH2Cl2/MeOH 9:1) yielded 176ba (224 mg, 481 µmol, 

96%) as a white solid.  

M. p.: 213–215 °C.  

1H-NMR (400 MHz, CDCl3): δ = 8.35–8.25 (m, 1H), 8.17 (d, J = 8.2 Hz, 1H), 7.74 (ddd, 

J = 11.6, 8.3, 1.4 Hz, 2H), 7.61–7.55 (m, 1H), 7.54–7.45 (m, 5H), 7.44–7.35 (m, 3H), 7.35–

7.26 (m, 2H), 7.26–7.20 (m, 1H), 7.07 (s, 1H), 6.33 (d, J = 3.2 Hz, 1H), 3.67 (dd, J = 15.9, 

11.9 Hz, 1H), 3.17–3.01 (m, 1H), 2.42 (s, 3H).  

13C-NMR (101 MHz, CDCl3): δ = 162.7 (Cq), 144.1 (Cq), 141.7 (Cq), 140.2 (CH), 136.7 

(d, 4JC–P = 2.7 Hz, Cq), 133.0 (d, 2JC–P = 7.8 Hz, Cq), 132.4 (d, 4JC–P = 2.7 Hz, CH), 132.3 

(d, 4JC–P = 2.7 Hz, CH), 132.1 (d, 1JC–P = 102.2 Hz, Cq), 131.5 (d, 2JC–P = 9.2 Hz, CH), 

131.0 (d, 1JC–P = 101.3 Hz, Cq), 130.7 (d, 2JC–P = 9.5 Hz, CH), 130.4 (CH), 129.0 (d, 3JC–P 

= 5.3 Hz, CH), 128.9 (d, 3JC–P = 5.2 Hz, CH), 128.7 (CH), 128.3 (CH), 126.1 (CH), 126.0 

(CH), 125.9 (CH), 122.8 (Cq), 108.8 (d, 3JC–P = 7.0 Hz, CH), 34.4 (d, 1JC–P = 66.3 Hz, CH2), 

22.0 (CH3).  

31P{1H}-NMR (162 MHz, CDCl3): δ = 27.6.  

IR (ATR): ṽ = 3051, 1656, 1612, 1488, 1270, 885, 691, 521 cm−1.  

MS (EI) m/z (relative intensity): 466 (12) [M]+, 449 (28), 319 (10), 265 (14), 248 (100), 

201 (40), 77 (22).  

HR-MS (EI) m/z calcd. for C28H23N2O3P [M]+: 466.1446, found: 466.1449.  

 

2-{3-[(Diphenylphosphoryl)methyl]-6-methoxy-1-oxoisoquinolin-2(1H)-yl}pyridine 

1-oxide (176da): The general procedure D was followed using benzamide 34d (122 mg, 

0.50 mmol) and allene 75a (144 mg, 0.60 mmol). Purification by column chromatography 

on silica gel (CH2Cl2/acetone 1:1 to CH2Cl2/MeOH 9:1) yielded 176da (218 mg, 452 µmol, 

90%) as a white solid.  

M. p.: 174–176 °C.  

1H-NMR (400 MHz, CDCl3): δ = 8.30–8.16 (m, 2H), 7.79–7.69 (m, 2H), 7.59–7.52 (m, 

1H), 7.52–7.43 (m, 5H), 7.43–7.34 (m, 3H), 7.35–7.29 (m, 1H), 7.26–7.16 (m, 2H), 6.97 
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(dd, J = 8.9, 2.5 Hz, 1H), 6.67 (d, J = 2.5 Hz, 1H) 6.42–6.35 (m, 1H), 3.85 (s, 3H), 3.77–

3.58 (m, 1H), 3.17–3.00 (m, 1H).  

13C-NMR (126 MHz, CDCl3): δ = 163.5 (Cq), 162.2 (Cq), 140.4 (CH), 138.9 (Cq),  136.7 

(d, 4JC–P = 2.7 Hz, Cq), 133.7 (d, 2JC–P = 5.9 Hz, Cq), 132.3 (d, 4JC–P = 2.0 Hz, CH), 132.2 

(d, 4JC–P = 2.0 Hz, CH), 132.1 (d, 1JC–P = 103.9 Hz, Cq), 131.4 (d, 2JC–P = 8.8 Hz, CH), 

131.0 (d, 1JC–P = 100.9 Hz, Cq), 130.7 (d, 2JC–P = 8.8 Hz, CH), 130.3 (CH), 130.1 (CH), 

128.9 (d, 3JC–P = 5.8 Hz, CH), 128.8 (d, 3JC–P = 5.8 Hz, CH), 126.1 (CH), 125.7 (CH), 118.6 

(Cq), 116.2 (CH), 108.8 (d, 3JC–P = 6.3 Hz, CH), 107.4 (CH), 55.7 (CH3), 34.6 (d, 1JC–P = 

67.7 Hz, CH2).  

31P{1H}-NMR (162 MHz, CDCl3): δ = 27.6.  

IR (ATR): ṽ = 3057, 1660, 1599, 1489, 1250, 1192, 721, 696, 528 cm−1.  

MS (ESI) m/z (relative intensity): 987 (80) [2M+Na]+, 965 (20) [2M+H]+, 505 (80) 

[M+Na]+, 483 (100) [M+H]+.  

HR-MS (ESI) m/z calcd. for C28H24N2O4P [M+H]+: 483.1468, found: 483.1465.  

 

2-{3-[(Diphenylphosphoryl)methyl]-6-(methylthio)-1-oxoisoquinolin-2(1H)-

yl}pyridine 1-oxide (176ea): The general procedure D was followed using benzamide 34e 

(130 mg, 0.50 mmol) and allene 75a (144 mg, 0.60 mmol). Purification by column 

chromatography on silica gel (CH2Cl2/acetone 1:1 to CH2Cl2/MeOH 9:1) yielded 176ea 

(226 mg, 454 µmol, 91%) as a white solid.  

M. p.: 232–234 °C.  

1H-NMR (400 MHz, CDCl3): δ = 8.33–8.21 (m, 1H), 8.13 (d, J = 8.5 Hz, 1H), 7.78–7.67 

(m, 2H), 7.60–7.53 (m, 1H), 7.52–7.43 (m, 5H), 7.41–7.35 (m, 3H), 7.34–7.28 (m, 1H), 

7.26–7.21 (m, 2H), 7.02 (d, J = 1.8 Hz, 1H), 6.37 (d, J = 2.9 Hz, 1H), 3.67 (dd, J = 15.9, 

12.0 Hz, 1H), 3.13–3.01 (m, 1H), 2.50 (s, 3H).  

13C-NMR (126 MHz, CDCl3): δ = 162.3 (Cq), 146.2 (Cq), 140.2 (CH), 137.1 (Cq), 133.9 

(d, 2JC–P = 7.2 Hz, Cq), 133.3 (Cq), 132.7 (d, 1JC–P = 99.8 Hz, Cq), 132.4 (d, 4JC–P = 2.5 Hz, 

CH), 132.2 (d, 4JC–P = 2.4 Hz, CH), 131.4 (d, 2JC–P = 9.1 Hz, CH), 131.2 (d, 1JC–P = 

104.5 Hz, Cq), 130.6 (d, 2JC–P = 9.3 Hz, CH), 130.1 (CH), 128.9 (d, 3JC–P = 5.4 Hz, CH), 
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128.8 (d, 3JC–P = 5.1 Hz, CH), 128.3 (CH), 126.0 (CH), 124.6 (CH), 121.6 (Cq), 120.9 (CH), 

108.3 (d, 3JC–P = 6.7 Hz, CH), 107.4 (CH), 34.5 (d, 1JC–P = 65.5 Hz, CH2), 15.0 (CH3). 

31P{1H}-NMR (162 MHz, CDCl3): δ = 27.7.  

IR (ATR): ṽ = 1660, 1628, 1434, 1259, 1196, 723, 683, 521 cm−1.  

MS (ESI) m/z (relative intensity): 1019 (60) [2M+Na]+, 537 (5) [M+K]+, 521 (100) 

[M+Na]+, 499 (90) [M+H]+.  

HR-MS (ESI) m/z calcd. for C28H24N2O3PS [M+H]+: 499.1240, found: 499.1238.  

 

2-{3-[(Diphenylphosphoryl)methyl]-1-oxo-6-phenylisoquinolin-2(1H)-yl}pyridine 1-

oxide (176fa): The general procedure D was followed using benzamide 34f (145 mg, 

0.50 mmol) and allene 75a (144 mg, 0.60 mmol). Purification by column chromatography 

on silica gel (CH2Cl2/acetone 1:1 to CH2Cl2/MeOH 9:1) yielded 176fa (185 mg, 350 µmol, 

70%) as a white solid.  

M. p.: 146–148 °C.  

1H-NMR (400 MHz, CDCl3): δ = 8.37–8.32 (m, 2H), 7.80–7.72 (m, 2H), 7.68–7.55 (m, 

4H), 7.53–7.44 (m, 9H), 7.43–7.36 (m, 3H), 7.36–7.28 (m, 2H), 6.46 (d, J = 3.3 Hz, 1H), 

3.76–3.63 (m, 1H), 3.12 (dd, J = 16.0, 13.3 Hz, 1H).  

13C-NMR (101 MHz, CDCl3): δ = 162.6 (Cq), 146.2 (Cq), 143.7 (Cq), 140.1 (CH), 137.3 

(d, 4JC–P = 2.8 Hz, Cq), 133.5 (d, 2JC–P = 7.9 Hz, Cq), 132.9 (d, 1JC–P = 100.2 Hz, Cq), 132.5 

(d, 4JC–P = 2.8 Hz, CH), 132.3 (d, 4JC–P = 2.8 Hz, CH), 131.7 (Cq), 131.8 (d, 1JC–P = 

103.4 Hz, Cq), 131.5 (d, 3JC–P = 9.0 Hz, CH), 130.7 (d, 2JC–P = 9.2 Hz, CH), 130.4 (CH), 

129.1 (CH), 129.1 (CH), 129.0 (d, 3JC–P = 5.3 Hz, CH), 128.9 (d, 3JC–P = 5.3 Hz, CH), 128.4 

(CH), 127.6 (CH), 126.3 (CH), 126.3 (CH), 125.8 (CH), 124.4 (CH), 123.9 (Cq), 109.1 (dd, 
3JC–P = 7.1 Hz, CH), 34.5 (d, 1JC–P = 65.9 Hz, CH2).  

31P{1H}-NMR (126 MHz, CDCl3): δ = 27.7.  

IR (ATR): ṽ = 3054, 1664, 1598, 1489, 1273, 1189, 719, 695, 518 cm−1.  

MS (EI) m/z (relative intensity): 528 (5) [M]+, 512 (10), 327 (5), 301 (100), 281 (12), 201 

(25), 77 (10).  

HR-MS (EI) m/z calcd. for C33H25N2O3P [M]+: 528.1603, found: 528.1611. 
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2-{3-[(Diphenylphosphoryl)methyl]-6-iodo-1-oxoisoquinolin-2(1H)-yl}pyridine 1-

oxide (176ga): The general procedure D was followed using benzamide 34g (170 mg, 

0.50 mmol) and allene 75a (144 mg, 0.60 mmol). Purification by column chromatography 

on silica gel (CH2Cl2/acetone 1:1 to CH2Cl2/MeOH 9:1) yielded 176ga (160 mg, 278 µmol, 

56%) as a white solid.  

M. p.: 135–137 °C.  

1H-NMR (400 MHz, CDCl3): δ = 8.38–8.26 (m, 1H), 7.97 (d, J = 8.4 Hz, 1H), 7.78–7.69 

(m, 3H), 7.70–7.65 (m, 1H), 7.64–7.57 (m, 1H), 7.55–7.46 (m, 5H), 7.45–7.43 (m, 1H), 

7.42–7.36 (m, 2H), 7.35–7.27 (m, 2H), 6.22 (d, J = 3.2 Hz, 1H), 3.65 (dd, J = 15.8, 11.4 Hz, 

1H), 3.13–3.03 (m, 1H).  

13C-NMR (126 MHz, CDCl3): δ  = 162.3 (Cq), 143.4 (Cq), 140.0 (CH), 138.1 (Cq), 136.0 

(CH), 134.8 (CH), 134.6 (d, 2JC–P = 8.1 Hz, Cq), 132.8 (d, 1JC–P = 99.5 Hz, Cq), 132.5 (d, 
4JC–P = 2.7 Hz, CH), 132.3 (d, 4JC–P = 2.7 Hz, CH), 131.4 (d, 2JC–P = 9.2 Hz, CH), 131.2 (d, 
1JC–P = 101.4 Hz, Cq), 130.6 (d, 2JC–P = 9.4 Hz, CH), 130.4 (CH), 129.7 (CH), 129.0 (d, 3JC–

P = 5.6 Hz, CH), 128.9 (d, 3JC–P = 5.6 Hz, CH), 126.3 (CH),  125.8 (CH), 124.2 (Cq), 107.3 

(d, 3JC–P = 6.9 Hz, CH), 101.4 (Cq), 34.7 (d, 1JC–P = 65.3 Hz, CH2).  

31P{1H}-NMR (162 MHz, CDCl3): δ = 27.7.  

IR (ATR): ṽ = 3057, 1670, 1490, 1261, 889, 843, 764, 526 cm−1.  

MS (EI) m/z (relative intensity): 578 (12) [M]+, 561 (28), 377 (10), 360 (100), 234 (20), 

201 (50), 78 (18).  

HR-MS (EI) m/z calcd. for C27H20IN2O3P [M]+: 578.0256, found: 578.0264.  

 

2-{6-(tert-Butyl)-3-[(diphenylphosphoryl)methyl]-1-oxoisoquinolin-2(1H)-yl}pyridine 

1-oxide (176ja): The general procedure D was followed using benzamide 34j (135 mg, 

0.50 mmol) and allene 75a (144 mg, 0.60 mmol). Purification by column chromatography 
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on silica gel (CH2Cl2/acetone 1:1 to CH2Cl2/MeOH 9:1) yielded 176ja (213 mg, 419 µmol, 

84%) as a white solid.  

M. p.: 135–136 °C.  

1H-NMR (400 MHz, CDCl3): δ = 8.35–8.17 (m, 2H), 7.75 (ddd, J = 11.6, 8.1, 1.4 Hz, 2H), 

7.60–7.54 (m, 1H), 7.54–7.43 (m, 6H), 7.42–7.32 (m, 3H), 7.32–7.27 (m, 2H), 7.25–7.17 

(m, 1H), 6.48 (d, J = 3.0 Hz, 1H), 3.78–3.59 (m, 1H), 3.19–3.02 (m, 1H), 1.34 (s, 9H).  

13C-NMR (126 MHz, CDCl3): δ = 162.5 (Cq), 157.0 (Cq), 140.2 (CH), 136.7 (Cq), 132.7 

(d, 2JC–P = 7.6 Hz, Cq), 132.3 (d, 4JC–P = 1.9 Hz, CH), 132.2 (d, 4JC–P = 1.9 Hz, CH), 132.0 

(d, 1JC–P = 101.9 Hz, Cq), 131.4 (d, 2JC–P = 9.0 Hz, CH), 131.2 (d, 1JC–P = 101.2 Hz, Cq), 

130.7 (d, 2JC–P = 9.2 Hz, CH), 130.1 (CH), 128.9 (d, 3JC–P = 4.1 Hz, CH), 128.8 (d, 3JC–P = 

4.1 Hz, CH), 128.0 (CH), 125.9 (CH), 125.8 (CH), 125.1 (CH), 122.7 (Cq), 122.4 (CH), 

109.4 (d, 3JC–P = 6.7 Hz, CH), 35.4 (Cq), 34.5 (d, 1JC–P = 66.2 Hz, CH2), 31.2 (CH3).  

31P{1H}-NMR (162 MHz, CDCl3): δ = 27.5.  

IR (ATR): ṽ = 2967, 1658, 1596, 1272, 1193, 725, 689, 541 cm−1.  

MS (ESI) m/z (relative intensity): 1039 (40) [2M+Na]+, 1017 (20) [2M+H]+, 531 (40) 

[M+Na]+, 509 (100) [M+H]+.  

HR-MS (ESI) m/z calcd. for C31H30N2O3P [M+H]+: 509.1989, found: 509.1984. 

 

2-{3-[(Diphenylphosphoryl)methyl]-6-fluoro-1-oxoisoquinolin-2(1H)-yl}pyridine 1-

oxide (176ka): The general procedure D was followed using benzamide 34k (116 mg, 

0.50 mmol) and allene 75a (144 mg, 0.60 mmol). Purification by column chromatography 

on silica gel (CH2Cl2/acetone 1:1 to CH2Cl2/MeOH 9:1) yielded 176ka (142 mg, 302 µmol, 

60%) as a white solid.  

M. p.: 198–200 °C.  

1H-NMR (400 MHz, CDCl3): δ = 8.35–8.26 (m, 2H), 7.73 (ddd, J = 11.6, 8.2, 1.4 Hz, 2H), 

7.62–7.55 (m, 1H), 7.55–7.46 (m, 5H), 7.46–7.42 (m, 1H), 7.42–7.36 (m, 2H), 7.36–7.26 

(m, 2H), 7.10 (td, J = 8.7, 2.5 Hz, 1H), 6.90 (dd, J = 9.2, 2.5 Hz, 1H), 6.26 (d, J = 3.2 Hz, 

1H), 3.65 (dd, J = 15.9, 11.5 Hz, 1H), 3.15–3.02 (m, 1H).  
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13C-NMR (126 MHz, CDCl3): δ  = 165.7 (d, 1JC–F = 253.9 Hz, Cq), 161.8 (Cq), 143.5 (Cq), 

140.0 (CH), 139.0 (dd, 3JC–F = 10.7 Hz, 4JC–P = 2.7 Hz, Cq), 134.6 (d, 2JC–P = 8.0 Hz, Cq), 

132.6 (d, 1JC–P = 100.2 Hz, Cq), 132.4 (d, 4JC–P = 2.6 Hz, CH), 132.2 (d, 4JC–P = 2.6 Hz, 

CH), 131.5 (d, 3JC–F = 10.1 Hz, CH), 131.3 (d, 2JC–P = 9.2 Hz, CH), 131.4 (d, 1JC–P = 

102.2 Hz, Cq), 130.5 (d, 2JC–P = 9.5 Hz, CH), 130.2 (CH), 128.9 (d, 3JC–P = 6.8 Hz, CH), 

128.8 (d, 3JC–P = 6.6 Hz, CH), 126.1 (CH), 125.9 (CH), 121.5 (Cq), 115.5 (d, 2JC–F = 

23.5 Hz, CH), 111.0 (d, 2JC–F = 22.1 Hz, CH), 108.0 (dd, 3JC–P = 7.0 Hz, 4JC–F = 3.1 Hz, 

CH), 34.4 (d, 1JC–P = 65.3 Hz, CH2).  

19F-NMR (376 MHz, CDCl3): δ = –104.8 (td, J = 8.8, 5.9 Hz).  

31P{1H}-NMR (162 MHz, CDCl3): δ = 27.7.  

IR (ATR): ṽ = 3057, 1666, 1601, 1430, 1267, 873, 720, 525 cm−1.  

MS (EI) m/z (relative intensity): 470 (15) [M]+, 453 (35), 319 (5), 251 (100), 224 (12), 201 

(60), 78 (20).  

HR-MS (EI) m/z calcd. for C27H20FN2O3P [M]+: 470.1196, found: 470.1183.   

 

2-{6-Acetyl-3-[(diphenylphosphoryl)methyl]-1-oxoisoquinolin-2(1H)-yl}pyridine 1-

oxide (176la): The general procedure D was followed using benzamide 34l (128 mg, 

0.50 mmol) and allene 75a (144 mg, 0.60 mmol). Purification by column chromatography 

on silica gel (CH2Cl2/acetone 1:1 to CH2Cl2/MeOH 9:1) yielded 176la (161 mg, 326 µmol, 

65%) as a white solid.  

M. p.: 192–194 °C.  

1H-NMR (400 MHz, CDCl3): δ = 8.41–8.29 (m, 2H), 7.93 (dd, J = 8.3, 1.7 Hz, 1H), 7.85 

(s, 1H), 7.79–7.71 (m, 2H),  7.62–7.56 (m, 1H), 7.55–7.44 (m, 6H), 7.42–7.36 (m, 2H), 

7.36–7.30 (m, 2H), 6.44 (d, J = 3.3 Hz, 1H), 3.68 (dd, J = 15.9, 11.3 Hz, 1H), 3.20–3.05 

(m, 1H), 2.65 (s, 3H).  

13C-NMR (126 MHz, CDCl3): δ  = 197.5 (Cq), 162.0 (Cq), 143.3 (Cq), 140.5 (Cq), 140.0 

(CH), 136.8 (Cq), 134.4 (d, 2JC–P = 7.8 Hz, Cq), 132.6 (d, 4JC–P = 2.8 Hz, CH), 132.3 (d,  
4JC–P = 2.8 Hz, CH), 132.6 (d, 1JC–P = 101.2 Hz, Cq), 131.3 (d, 2JC–P = 9.2 Hz, CH), 131.3 

(d, 1JC–P = 101.8 Hz, Cq), 130.6 (d, 2JC–P = 9.5 Hz, CH), 130.3 (CH), 129.0 (d, 3JC–P = 
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12.8 Hz, CH), 128.9 (d, 3JC–P = 12.8 Hz, CH), 128.7 (CH),  127.7 (Cq), 126.5 (CH), 126.4 

(CH), 125.8 (CH), 125.7 (CH), 108.7 (d, 3JC–P = 7.0 Hz, CH), 34.6 (d, 1JC–P = 65.5 Hz, 

CH2), 27.2 (CH3).  

31P{1H}-NMR (162 MHz, CDCl3): δ = 27.7.  

IR (ATR): ṽ = 3093, 1672, 1634, 1433, 1259, 1201, 717, 537 cm−1.  

MS (EI) m/z (relative intensity): 494 (5) [M]+, 478 (12), 319 (5), 276 (100), 234 (10), 201 

(35), 77 (12).  

HR-MS (EI) m/z calcd. for C29H23N2O4P [M]+: 494.1395, found: 494.1402.  

 

2-{3-[(Diphenylphosphoryl)methyl]-6-(methoxycarbonyl)-1-oxoisoquinolin-2(1H)-

yl}pyridine 1-oxide (176ma): The general procedure D was followed using benzamide 

34m (136 mg, 0.50 mmol) and allene 75a (144 mg, 1.00 mmol). Purification by column 

chromatography on silica gel (CH2Cl2/acetone 1:1 to CH2Cl2/MeOH 9:1) yielded 176ma 

(131 mg, 257 µmol, 51%) as a white solid.  

M. p.: 209–210 °C.  

1H-NMR (400 MHz, CDCl3): δ = 8.40–8.24 (m, 2H), 8.00 (dd, J = 8.3, 1.6 Hz, 1H), 7.98–

7.91 (m, 1H), 7.79–7.67 (m, 2H), 7.65–7.55 (m, 2H), 7.55–7.44 (m, 5H), 7.44–7.29 (m, 

4H), 6.39–6.30 (m, 1H), 3.95 (s, 3H), 3.77–3.61 (m, 1H), 3.22–3.06 (m, 1H).  

13C-NMR (126 MHz, CDCl3): δ = 166.2 (Cq), 162.1 (Cq), 143.8 (Cq), 140.3 (CH), 136.5 

(d, 2JC–P = 8.1 Hz, Cq), 134.2 (Cq), 133.9 (d, 1JC–P = 104.4 Hz, Cq), 133.1 (Cq), 132.5 (CH), 

132.4 (CH), 131.9 (d, 1JC–P = 102.5 Hz, Cq), 131.4 (d, 2JC–P = 9.1 Hz, CH), 130.6 (d, 2JC–P 

= 9.3 Hz, CH), 130.3 (CH), 129.0 (d, 3JC–P = 5.7 Hz, CH), 128.9 (d, 3JC–P = 5.7 Hz, CH), 

128.6 (CH), 127.9 (CH), 127.7 (Cq), 127.0 (CH), 126.3 (CH), 126.1 (CH), 108.6 (d, 3JC–P 

= 6.5 Hz, CH), 52.7 (CH3), 34.7 (d, 1JC–P = 65.4 Hz, CH2).  

31P{1H}-NMR (162 MHz, CDCl3): δ = 28.0.  

IR (ATR): ṽ = 3058, 1723, 1684, 1434, 1289, 1260, 1102, 721; 518 cm−1.  

MS (EI) m/z (relative intensity): 510 (10) [M]+, 493 (18), 319 (5), 292 (100), 234 (10), 201 

(45), 77 (15).  

HR-MS (EI) m/z calcd. for C29H23N2O5P [M]+: 510.1345, found: 510.1356.  
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2-{3-[(Diphenylphosphoryl)methyl]-6,7-dimethyl-1-oxoisoquinolin-2(1H)-yl}pyridine 

1-oxide (176na): The general procedure D was followed using benzamide 34n (121 mg, 

0.50 mmol) and allene 75a (144 mg, 0.60 mmol). Purification by column chromatography 

on silica gel (CH2Cl2/acetone 1:1 to CH2Cl2/MeOH 9:1) yielded 176na (232 mg, 483 µmol, 

97%) as a white solid.  

M. p.: 145–147 °C.  

1H-NMR (400 MHz, CDCl3): δ = 8.35–8.25 (m, 1H), 8.03 (s, 1H), 7.77–7.69 (m, 2H), 

7.60–7.54 (m, 1H), 7.52–7.46 (m, 4H), 7.46–7.43 (m, 1H), 7.41–7.34 (m, 3H), 7.34–7.23 

(m, 2H), 7.05 (s, 1H), 6.33 (d, J = 3.2 Hz, 1H), 3.66 (dd, J = 16.0, 12.0 Hz, 1H), 3.13–3.01 

(m, 1H), 2.34 (s, 3H), 2.33 (s, 3H).  

13C-NMR (126 MHz, CDCl3): δ = 162.5 (Cq), 144.2 (Cq), 143.3 (Cq), 140.1 (CH), 136.4 

(Cq), 134.9 (Cq), 132.3 (d, 1JC–P = 99.2 Hz, Cq), 132.3 (d, 4JC–P = 2.6 Hz, CH), 132.1 (d, 
4JC–P = 2.6 Hz, CH), 131.9 (d, 2JC–P = 7.7 Hz, Cq), 131.4 (d, 2JC–P = 9.0 Hz, CH), 131.2 (d, 
1JC–P = 103.4 Hz, Cq), 130.6 (d, 2JC–P = 9.3 Hz, CH), 130.2 (CH), 128.8 (d, 3JC–P = 5.7 Hz, 

CH), 128.8 (d, 3JC–P = 5.6 Hz, CH), 128.2 (CH), 126.5 (CH), 125.9 (CH), 125.7 (CH), 123.0 

(Cq), 108.6 (d, 3JC–P = 6.9 Hz, CH), 34.4 (d, 1JC–P = 66.2 Hz, CH2), 20.4 (CH3), 20.0 (CH3). 

31P{1H}-NMR (162 MHz, CDCl3): δ = 27.6.  

IR (ATR): ṽ = 2996, 1664, 1596, 1273, 1201, 840, 733, 511 cm−1.  

MS (EI) m/z (relative intensity): 480 (15) [M]+, 463 (20), 319 (15), 279 (15), 262 (100), 

201 (39), 77 (15).  

HR-MS (EI) m/z calcd. for C29H25N2O3P [M]+: 480.1603, found: 480.1608.  

 

2-{3-[(Diphenylphosphoryl)methyl]-1-oxo-1,11-dihydro-2H-indeno[1,2-

h]isoquinolin-2-yl}pyridine 1-oxide (176oa): The general procedure D was followed 
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using benzamide 34o (151 mg, 0.50 mmol) and allene 75a (144 mg, 0.60 mmol). 

Purification by column chromatography on silica gel (CH2Cl2/acetone 1:1 to 

CH2Cl2/MeOH 9:1) yielded 176oa (240 mg, 444 µmol, 89%) as a white solid.  

M. p.: 168–169 °C.  

1H-NMR (400 MHz, CDCl3): δ = 8.41–8.33 (m, 1H), 8.03 (d, J = 8.1 Hz, 1H), 7.84–7.71 

(m, 3H), 7.62–7.54 (m, 3H), 7.54–7.46 (m, 5H), 7.43–7.36 (m, 3H), 7.36–7.29 (m, 4H), 

6.43 (d, J = 3.3 Hz, 1H), 4.39 (d, J = 3.2 Hz, 2H), 3.70 (dd, J = 15.9, 11.4 Hz, 1H), 3.20–

3.09 (m, 1H).  

13C-NMR (126 MHz, CDCl3): δ  = 162.6 (Cq), 145.2 (Cq), 144.5 (Cq), 143.8 (Cq), 141.2 

(Cq), 140.3 (Cq),  140.0 (CH), 136.2 (d, 4JC–P = 2.8 Hz, Cq), 132.9 (d, 1JC–P = 99.5 Hz, Cq), 

132.4 (d, 4JC–P = 2.7 Hz, CH), 132.2 (d, 4JC–P = 2.7 Hz, CH), 132.0 (d, 2JC–P = 8.3 Hz, Cq), 

131.4 (d, 2JC–P = 9.2 Hz, CH), 131.2 (d, 1JC–P = 101.9 Hz, Cq), 130.6 (d, 2JC–P = 9.5 Hz, 

CH), 130.5 (CH), 128.9 (d, 3JC–P = 4.6 Hz, CH), 128.8 (d, 3JC–P = 4.4 Hz, CH), 127.0 (CH), 

126.6 (CH), 126.1 (CH), 125.8 (CH), 125.5 (CH), 125.1 (CH), 124.9 (CH), 121.9 (Cq), 

119.6 (CH), 109.6 (d, 3JC–P = 7.1 Hz, CH), 39.5 (CH2), 34.6 (d, 1JC–P = 65.8 Hz, CH2). 

31P{1H}-NMR (162 MHz, CDCl3): δ = 27.7.  

IR (ATR): ṽ = 3054, 1665, 1601, 1431, 1265, 1186, 846, 692, 522 cm−1.  

MS (EI) m/z (relative intensity): 540 (15) [M]+, 524 (45), 339 (15), 322 (100), 293 (15), 

201 (49), 77 (15).  

HR-MS (EI) m/z calcd. for C34H25N2O3P [M]+: 540.1603, found: 540.1593.  

 

2-{3-[(Diphenylphosphoryl)methyl]-7-methoxy-1-oxoisoquinolin-2(1H)-yl}pyridine 

1-oxide (176pa); 2-{3-[(diphenylphosphoryl)methyl]-5-methoxy-1-oxoisoquinolin-

2(1H)-yl}pyridine 1-oxide (176pa’) : The general procedure D was followed using 

benzamide 34p (122 mg, 0.50 mmol) and allene 75a (144 mg, 0.60 mmol). Purification by 

column chromatography on silica gel (CH2Cl2/acetone 1:1 to CH2Cl2/MeOH 9:1) yielded 

176pa/176pa’ (231 mg, 479 µmol, 96%) as a white solid. The ratio of 176pa/176pa’ 

(75:25) was determined by 1H-NMR spectroscopy. Resonances are reported for 176pa. 
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M. p.: 175–177 °C. 

1H-NMR (600 MHz, CDCl3): δ = 8.34–8.28 (m, 1H), 7.75–7.68 (m, 3H), 7.58–7.52 (m, 

1H), 7.50–7.45 (m, 6H), 7.40–7.27 (m, 4H), 7.23–7.18 (m, 2H), 6.34 (d, J = 3.4 Hz, 1H), 

3.65 (dd, J = 16.0, 11.5 Hz, 1H), 3.08 (dd, J = 15.8, 13.4 Hz, 1H).  

13C-NMR (126 MHz, CDCl3): δ = 162.3 (Cq), 158.8 (Cq), 143.8 (Cq), 140.0 (CH), 132.9 

(d, 1JC–P = 100.0 Hz, Cq), 132.3 (d, 4JC–P = 2.8 Hz, CH), 132.1 (d, 4JC–P = 2.0 Hz, CH),  

131.6 (d, 1JC–P = 101.4 Hz, Cq), 131.4 (d, 2JC–P = 9.1 Hz, CH), 130.8 (d, 4JC–P = 2.9 Hz, Cq), 

130.6 (d, 2JC–P = 9.4 Hz, CH), 130.2 (CH), 128.9 (d, 3JC–P = 4.1 Hz, CH), 128.8 (d, 3JC–P = 

4.1 Hz, CH), 127.7 (CH), 126.0 (Cq), 125.6 (CH), 123.6 (CH), 119.8 (CH), 112.8 (CH), 

108.7 (d, 3JC–P = 7.1 Hz, CH), 108.4 (CH), 55.7 (CH3), 34.3 (d, 1JC–P = 66.3 Hz, CH2).  

31P{1H}-NMR (162 MHz, CDCl3): δ = 27.7.  

IR (ATR): ṽ = 1665, 1598, 1489, 1432, 1256, 1189, 1256, 719, 505 cm−1.  

MS (EI) m/z (relative intensity): 482 (5) [M]+, 466 (20), 319 (10), 264 (100), 249 (50), 201 

(48), 77 (25).  

HR-MS (EI) m/z calcd. for C28H23N2O4P [M]+: 482.1395, found: 482.1389.  

 

2-{8-[(Diphenylphosphoryl)methyl]-6-oxo-[1,3]dioxolo[4,5-f]isoquinolin-7(6H)-

yl}pyridine 1-oxide (176qa); 2-{7-[(diphenylphosphoryl)methyl]-5-oxo-

[1,3]dioxolo[4,5-g]isoquinolin-6(5H)-yl}pyridine 1-oxide (176qa’): The general 

procedure D was followed using benzamide 34q (129 mg, 0.50 mmol) and allene 75a 

(144 mg, 0.60 mmol). Purification by column chromatography on silica gel 

(CH2Cl2/acetone 1:1 to CH2Cl2/MeOH 9:1) yielded 176qa/176qa’ (216 mg, 435 µmol, 

87%) as a white solid. The ratio of 176qa/176qa’ (81:19) was determined by 1H-NMR 

spectroscopy. Resonances are reported for 176qa. 

M. p.: 202–204 °C.  

1H-NMR (600 MHz, CDCl3): δ = 8.32–8.28 (m, 1H), 7.91 (d, J = 8.4 Hz, 1H), 7.76–7.70 

(m, 2H), 7.59–7.55 (m, 1H), 7.52–7.46 (m, 6H), 7.40–7.36 (m, 2H), 7.31–7.26 (m, 2H), 
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6.94 (d, J = 8.4 Hz, 1H), 6.32 (d, J = 3.4 Hz, 1H), 6.06 (dd, J = 4.4, 1.5 Hz, 2H), 3.67 (dd, 

J = 16.0, 11.6 Hz, 1H), 3.10 (dd, J = 15.3, 13.5 Hz, 1H).  

13C-NMR (126 MHz, CDCl3): δ = 161.9 (Cq), 150.7 (Cq), 143.7 (Cq), 141.4 (Cq), 139.9 

(CH), 133.6 (d, 2JC–P = 8.7 Hz, Cq), 132.9 (d, 1JC–P = 99.5 Hz, Cq), 132.4 (d, 4JC–P = 2.8 Hz, 

CH), 132.2 (d, 4JC–P = 2.8 Hz, CH), 131.4 (d, 2JC–P = 9.1 Hz, CH), 131.1 (d, 1JC–P = 

102.1 Hz, Cq), 130.6 (d, 2JC–P = 9.4 Hz, CH), 130.3 (CH), 128.9 (d, 3JC–P = 5.7 Hz, CH), 

128.8 (d, 3JC–P = 5.4 Hz, CH),  126.0 (CH), 125.6 (CH), 124.0 (CH), 120.7 (Cq), 119.8 (Cq), 

108.7 (CH), 102.4 (CH2), 101.6 (d, 3JC–P = 7.3 Hz, CH), 35.0 (d, 1JC–P = 65.4 Hz, CH2).  

31P{1H}-NMR (162 MHz, CDCl3): δ = 27.3.  

IR (ATR): ṽ = 1666, 1625, 1464, 1430, 1291, 1064, 715, 515 cm−1.  

MS (EI) m/z (relative intensity): 496 (10) [M]+, 480 (15), 319 (10), 278 (100), 249 (10), 

201 (35), 77 (15).  

HR-MS (EI) m/z calcd. for C28H21N2O5P [M]+: 496.1188, found: 496.1186.  

 

2-{3-[(Diphenylphosphoryl)methyl]-7-fluoro-1-oxoisoquinolin-2(1H)-yl}pyridine 1-

oxide (176ra); 2-{3-[(diphenylphosphoryl)methyl]-7-fluoro-1-oxoisoquinolin-2(1H)-

yl}pyridine 1-oxide (176ra’): The general procedure D was followed using benzamide 34r 

(116 mg, 0.50 mmol) and allene 75a (144 mg, 0.60 mmol). Purification by column 

chromatography on silica gel (CH2Cl2/acetone 1:1 to CH2Cl2/MeOH 9:1) yielded 

176ra/176ra’ (191 mg, 406 µmol, 81%) as a white solid. The ratio of 176ra/176ra’ (50:50) 

was determined by 1H-NMR spectroscopy. Resonances are reported for both isomers.  

M. p.: 188–190 °C.  

1H-NMR (600 MHz, CDCl3): δ = 8.34–8.28 (m, 2H), 8.06 (d, J = 7.0 Hz, 1H), 7.91 (dd, 

J = 9.1, 2.7 Hz, 1H), 7.74–7.68 (m, 4H), 7.63 (t, J = 4.9 Hz, 1H), 7.58–7.54 (m, 2H), 7.51–

7.43 (m, 12H), 7.39–7.35 (m, 4H), 7.33–7.25 (m, 7H), 6.37 (d, J = 3.6 Hz, 1H), 6.34 (d, 

J = 3.3 Hz, 1H),  3.71–3.59 (m, 2H), 3.16–3.04 (m, 2H).  

13C-NMR (126 MHz, CDCl3): δ  = 161.3 (d, 1JC–F = 247.8 Hz, Cq), 161.6 (d, 4JC–F = 3.3 Hz, 

Cq), 161.5 (Cq), 157.1 (d, 1JC–F = 252.1 Hz, Cq), 143.3 (Cq), 139.8 (CH), 139.7 (CH), 134.0 
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(d, 2JC–P = 9.1 Hz, Cq), 133.1 (dd, 3JC–F = 10.5 Hz, 2JC–P = 9.0 Hz, Cq), 132.3 (d, 4JC–P = 

2.9 Hz, CH), 132.3 (d, 4JC–P = 2.8 Hz, CH), 132.1 (d, 1JC–P = 102.9 Hz, Cq), 132.1 (CH), 

131.2 (d, 2JC–P = 9.4 Hz, CH), 130.5 (d, 3JC–F = 12.3 Hz, CH), 130.4 (d, 2JC–P = 9.9 Hz, CH), 

130.3 (Cq), 130.3 (d, 3JC–F = 12.3 Hz, CH), 130.1 (CH), 128.8 (d, 3JC–P = 5.2 Hz, CH), 128.7 

(d, 3JC–P = 4.9 Hz, CH), 128.3 (CH), 128.2 (CH), 127.0 (CH), 127.0 (CH), 126.5 (Cq), 126.4 

(d, 3JC–F = 6.8 Hz, Cq), 126.1 (CH), 125.9 (d, 2JC–F = 20.5 Hz, Cq), 125.6 (CH),123.8 (CH), 

121.9 (d, 2JC–F = 23.5 Hz, CH), 113.3 (d, 2JC–F = 23.0 Hz, CH), 108.0 (d, 3JC–P = 7.2 Hz, 

CH), 100.8 (d, 3JC–P = 6.6 Hz, CH), 35.1 (d, 1JC–P = 64.8 Hz, CH2), 34.3 (d, 1JC–P = 65.6 Hz, 

CH2). 

19F-NMR (376 MHz, CDCl3): δ = (–112.6)–(–112.5) (m, FA), –122.5 (dd, J = 9.7, 5.3 Hz, 

FB). 

31P{1H}-NMR (162 MHz, CDCl3): δ = 27.6.  

IR (ATR): ṽ = 1672, 1602, 1490, 1430, 1260, 1186, 854, 726, 526 cm−1.  

MS (EI) m/z (relative intensity): 470 (30) [M]+, 453 (40), 319 (10), 252 (100), 223 (15), 

201 (75), 77 (25).  

HR-MS (EI) m/z calcd. for C27H20FN2O3P [M]+: 470.1196, found: 470.1201.  

N

O

N

O

PPh

Ph

O

Me

Me

 

2-{3-[(Diphenylphosphoryl)methyl]-6,8-dimethyl-1-oxoisoquinolin-2(1H)-yl}pyridine 

1-oxide (176sa): The general procedure D was followed using benzamide 34s (121 mg, 

0.50 mmol) and allene 75a (144 mg, 0.60 mmol). Purification by column chromatography 

on silica gel (CH2Cl2/acetone 1:1 to CH2Cl2/MeOH 9:1) yielded 176sa (175 mg, 364 µmol, 

73%) as a white solid.  

M. p.: 148–149 °C.  

1H-NMR (500 MHz, CDCl3): δ = 8.36–8.31 (m, 1H), 7.74–7.70 (m, 2H), 7.60–7.55 (m, 

1H), 7.52–7.45 (m, 5H), 7.45–7.42 (m, 1H), 7.41–7.36 (m, 2H), 7.33–7.27 (m, 2H), 6.99 

(d, J = 1.7 Hz, 1H), 6.87 (d, J = 1.7 Hz, 1H), 6.24 (d, J = 3.2 Hz, 1H), 3.61 (dd, J = 16.0, 

11.5 Hz, 1H), 3.04 (dd, J = 16.0, 13.6 Hz, 1H), 2.74 (s, 3H), 2.34 (s, 3H).  

13C-NMR (126 MHz, CDCl3): δ = 163.3 (Cq), 144.3 (Cq), 143.2 (Cq), 142.4 (Cq), 140.1 

(CH), 138.7 (Cq), 133.7 (Cq), 133.5 (d, 1JC–P = 100.2 Hz, Cq), 132.5 (d, 2JC–P = 7.9 Hz, Cq), 
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132.4 (d, 4JC–P = 2.8 Hz, CH), 132.3 (d, 4JC–P = 2.8 Hz, CH), 131.7 (CH), 131.5 (d, 2JC–P = 

9.2 Hz, CH), 131.2 (d, 1JC–P = 103.3 Hz, Cq), 130.5 (CH), 129.0 (d, 3JC–P = 3.4 Hz, CH), 

128.8 (d, 3JC–P = 3.4 Hz, CH), 126.0 (CH), 125.9 (CH), 124.5 (CH), 121.1 (Cq), 109.4 (d, 
3JC–P = 7.0 Hz, CH), 34.2 (d, 1JC–P = 66.3 Hz, CH2), 23.5 (CH3), 21.6 (CH3).  

31P{1H}-NMR (121 MHz, CDCl3): δ = 27.6.  

IR (ATR): ṽ = 2920, 1666, 1561, 1263, 1195, 860, 729, 516 cm−1.  

MS (ESI) m/z (relative intensity): 503 (60) [M+Na]+, 481 (100) [M+H]+.  

HR-MS (ESI) m/z calcd. for C29H25N2O3P [M+H]+: 481.1676, found: 481.1673.  

 

2-{3-[(Diphenylphosphoryl)methyl]-1-oxobenzo[4,5]thieno[3,2-c]pyridin-2(1H)-

yl}pyridine 1-oxide (176ta): The general procedure D was followed using benzamide 34t 

(135 mg, 0.50 mmol) and allene 75a (144 mg, 0.60 mmol). Purification by column 

chromatography on silica gel (CH2Cl2/acetone 1:1 to CH2Cl2/MeOH 9:1) yielded 176ta 

(135 mg, 266 µmol, 53%) as a white solid.  

M. p.: 206–208 °C.  

1H-NMR (400 MHz, CDCl3): δ = 8.35 (d, J = 6.4 Hz, 1H), 7.91 (d, J = 8.1 Hz, 1H), 7.81–

7.68 (m, 3H), 7.63–7.57 (m, 1H), 7.57–7.48 (m, 6H), 7.48–7.38 (m, 4H), 7.38–7.28 (m, 

2H), 6.86–6.75 (m, 1H), 3.86–3.74 (m, 1H), 3.27–3.10 (m, 1H).  

13C-NMR (126 MHz, CDCl3): δ = 158.7 (Cq), 143.2 (Cq), 142.9 (Cq), 141.6 (Cq), 140.0 

(CH), 135.6 (d, 2JC–P = 7.8 Hz, Cq), 134.8 (Cq), 132.5 (d, 4JC–P = 2.3 Hz, CH), 132.4 (d, 4JC–

P = 2.1 Hz, CH) 132.3 (d, 1JC–P = 100.8 Hz, Cq), 131.5 (d, 2JC–P = 7.8 Hz, CH), 131.2 (d, 
1JC–P = 101.5 Hz, Cq), 130.7 (d, 2JC–P = 8.8 Hz, CH), 130.3 (CH), 129.0 (d, 3JC–P = 4.1 Hz, 

CH), 128.9 (d, 3JC–P = 4.1 Hz, CH), 128.5 (Cq), 128.4 (CH), 126.4 (CH), 125.7 (CH), 124.9 

(CH), 123.5 (CH), 123.3 (CH), 103.6 (d, 3JC–P = 5.9 Hz, CH), 35.1 (d, 1JC–P = 64.2 Hz, 

CH2).  

31P{1H}-NMR (162 MHz, CDCl3): δ = 27.5.  

IR (ATR): 1661, 1586, 1489, 1268, 1199, 852, 710, 525 cm−1.  

MS (EI) m/z (relative intensity): 508 (10) [M]+, 492 (20), 319 (10), 290 (100), 261 (12), 

201 (35), 77 (12).  
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HR-MS (EI) m/z calcd. for C29H21N2O3PS [M]+: 508.1010, found: 508.1020.  

 

6-[(Diphenylphosphoryl)methyl]-3,4-dimethyl-2-oxo-2H-[1,2'-bipyridine] 1'-oxide 

(182aa): The general procedure D was followed using alkane 37a (96 mg, 0.50 mmol) and 

allene 75a (144 mg, 0.60 mmol). Purification by column chromatography on silica gel 

(CH2Cl2/acetone 1:1 to CH2Cl2/MeOH 9:1) yielded 182aa (140 mg, 326 µmol, 65%) as a 

white solid.  

M. p.: 131–132 °C.  

1H-NMR (400 MHz, CDCl3): δ = 8.37–8.19 (m, 1H), 7.75–7.64 (m, 2H), 7.62–7.54 (m, 

1H), 7.53–7.41 (m, 5H), 7.41–7.34 (m, 3H), 7.33–7.26 (m, 1H), 7.24–7.16 (m, 1H), 5.85 

(d, J = 3.1 Hz, 1H), 3.63–3.49 (m, 1H), 3.10–2.95 (m, 1H), 2.00 (s, 6H).  

13C-NMR (126 MHz, CDCl3): δ  = 162.7 (Cq), 147.0 (d, 4JC–P = 2.4 Hz, Cq), 144.6 (Cq), 

140.0 (CH), 134.8 (d, 2JC–P = 7.9 Hz, Cq), 132.4 (d, 4JC–P = 2.8 Hz, CH), 132.2 (d, 4JC–P = 

2.8 Hz, CH), 132.4 (d, 1JC–P = 100.3 Hz, Cq), 131.3 (d, 2JC–P = 9.2 Hz, CH), 131.1 (d, 1JC–P 

= 102.4 Hz, Cq), 130.6 (d, 2JC–P = 9.4 Hz, CH), 129.9 (CH), 128.9 (d, 3JC–P = 3.9 Hz, CH), 

128.8 (d, 3JC–P = 3.9 Hz, CH), 125.9 (CH), 125.8 (CH), 125.4 (d, 4JC–P = 2.9 Hz, Cq), 111.9 

(d, 3JC–P = 6.4 Hz CH), 34.5 (d, 1JC–P = 65.1 Hz, CH2), 20.1 (CH3), 12.7 (CH3).  

31P{1H}-NMR (162 MHz, CDCl3): δ = 27.4.  

IR (ATR): ṽ = 1656, 1550, 1432, 1268, 1195, 757, 729, 697; 489 cm−1.  

MS (ESI) m/z (relative intensity): 883 (60) [2M+Na]+, 453 (100) [M+Na]+, 431 (70) 

[M+H]+.  

HR-MS (ESI) m/z calcd. for C25H24N2O3P [M+H]+: 431.1519, found: 431.1515.  

 

2-[3-(2-Ethoxy-2-oxoethyl)-1-oxoisoquinolin-2(1H)-yl]pyridine 1-oxide (176ac): The 

general procedure D was followed using benzamide 34a (107 mg, 0.50 mmol) and allene 
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75c (67.2 mg, 0.60 mmol). Purification by column chromatography on silica gel 

(CH2Cl2/acetone 5:1) yielded 176ac (92.3 mg, 285 µmol, 57%) as a white solid.  

M. p.: 172–174 °C.  

1H-NMR (500 MHz, CDCl3): δ = 8.39–8.31 (m, 2H), 7.67 (ddd, J = 7.9, 7.2, 1.3 Hz, 1H), 

7.53–7.44 (m, 3H), 7.41–7.37 (m, 1H), 7.37–7.30 (m, 1H), 6.57 (s, 1H), 4.06–3.92 (m, 2H), 

3.53 (d, J = 17.3 Hz, 1H), 3.34 (d, J = 17.3 Hz, 1H), 1.13 (t, J = 7.1 Hz, 3H).  

13C-NMR (126 MHz, CDCl3): δ = 169.4 (Cq), 162.6 (Cq), 143.9 (Cq), 140.7 (CH), 137.1 

(Cq), 135.2 (Cq), 133.5 (CH), 129.4 (CH), 128.4 (CH), 127.2 (CH), 126.3 (CH), 126.2 (CH), 

125.5 (CH), 125.2 (Cq), 108.9 (CH), 61.5 (CH2), 38.8 (CH2), 14.2 (CH3).  

IR (ATR): ṽ = 1736, 1668, 1628, 1491, 1433, 1258, 1149, 759, 691 cm−1.  

MS (EI) m/z (relative intensity): 324 (50) [M]+, 279 (25), 251 (25), 235 (100), 205 (45), 

145 (35), 78 (90).  

HR-MS (EI) m/z calcd. for C18H16N2O4 [M]+: 324.1110, found: 324.1115. 

 

2-{3-[2-(Benzyloxy)-2-oxoethyl]-1-oxoisoquinolin-2(1H)-yl}pyridine 1-oxide (176ad): 

The general procedure D was followed using benzamide 34a (107 mg, 0.50 mmol) and 

allene 75d (104 mg, 0.60 mmol). Purification by column chromatography on silica gel 

(CH2Cl2/acetone 5:1) yielded 176ad (137 mg, 355 µmol, 71%) as a yellow solid.  

M. p.: 109–110 °C.  

1H-NMR (400 MHz, CDCl3): δ = 8.38–8.27 (m, 2H), 7.67 (ddd, J = 8.2, 7.2, 1.4 Hz, 1H), 

7.52–7.44 (m, 2H), 7.37–7.31 (m, 3H), 7.30–7.20 (m, 4H), 7.07 (td, J = 7.8, 1.4 Hz, 1H), 

6.57 (s, 1H), 4.99 (s, 2H), 3.58 (d, J = 17.4 Hz, 1H), 3.38 (d, J = 17.4 Hz, 1H).  

13C-NMR (101 MHz, CDCl3): δ = 169.1 (Cq), 162.6 (Cq), 143.6 (Cq), 140.5 (CH), 137.0 

(Cq), 135.3 (Cq), 135.0 (Cq), 133.5 (CH), 129.3 (CH), 128.8 (CH), 128.7 (CH), 128.7 (CH), 

128.4 (CH), 127.3 (CH), 126.3 (CH), 126.3 (CH), 125.5 (CH), 125.3 (Cq), 109.0 (CH), 67.2 

(CH2), 38.9 (CH2).  

IR (ATR): ṽ = 1732, 1668, 1633, 1483, 1255, 1151, 756, 691 cm−1.  

MS (EI) m/z (relative intensity): 386 (25) [M]+, 279 (20), 251 (15), 235 (50), 205 (15), 91 

(100), 78 (30).  

HR-MS (EI) m/z calcd. for C23H18N2O4 [M]+: 386.1267, found: 386.1265. 
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2-[3-Benzyl-1-oxoisoquinolin-2(1H)-yl]pyridine 1-oxide (176ab): The electrocatalysis 

was carried out in an undivided cell, with a graphite felt anode (10 mm × 15 mm × 6.0 mm), 

a platinum cathode (10 mm × 15 mm × 0.125 mm) and a Ag-wire (100 mm × 1.0 mm) as 

the reference electrode. Benzamide 34a (53.6 mg, 0.25 mmol, 1.00 equiv), allene 75b 

(116 mg, 1.00 mmol, 4.00 equiv), NaOPiv (62.1 mg, 1.00 mmol, 2.00 equiv) and 

Co(OAc)2∙4H2O (12.7 mg, 20 mol %) were placed in a 10 mL cell and dissolved in MeOH 

(7.0 mL). Electrolysis was performed at 40 °C with a constant potential of 1.25 V vs. 

Ag/Ag+ maintained for 3 h (Q·mol–1 = 3.88 F). At ambient temperature, the electrolysis 

was stopped, H2O (10 mL) was added, and the graphite felt anode was washed with CH2Cl2 

(10 mL) in an ultrasonic bath. The combined phases were extracted with CH2Cl2 (3 × 

10 mL), and then dried over Na2SO4. Evaporation of the solvents and subsequent column 

chromatography on silica gel using, a mixture of CH2Cl2/acetone (5:1) as the eluent yielded 

176ab (42.3 mg, 128 µmol, 51%) as a white solid.  

M. p.: 208–209 °C.  

1H-NMR (400 MHz, CDCl3): δ = 8.40–8.31 (m, 2H), 7.66 (ddd, J = 8.2, 7.2, 1.4 Hz, 1H), 

7.50–7.42 (m, 2H), 7.29 (ddd, J = 8.5, 6.6, 2.0 Hz, 1H), 7.22–7.17 (m, 3H), 7.10–7.03 (m, 

1H), 6.98–6.90 (m, 3H), 6.42 (s, 1H), 3.85 (d, J = 16.3 Hz, 1H), 3.60 (d, J = 16.3 Hz, 1H).  

13C-NMR (101 MHz, CDCl3): δ = 162.9 (Cq), 144.3 (Cq), 141.3 (Cq), 140.5 (CH), 137.3 

(Cq), 136.7 (Cq), 133.4 (CH), 128.8 (CH), 128.7 (CH), 128.5 (CH), 128.4 (CH), 127.2 (CH), 

126.8 (CH), 126.0 (CH), 125.9 (CH), 125.2 (CH), 124.9 (Cq), 107.8 (CH), 39.1 (CH2).  

IR (ATR): ṽ = 1660, 1627, 1431, 1273, 904, 860, 759, 693 cm−1.  

MS (EI) m/z (relative intensity): 328 (10) [M]+, 311 (70), 249 (60), 235 (100), 209 (45), 

168 (25), 78 (90).  

HR-MS (ESI) m/z calcd. for C21H17N2O2 [M+H]+: 329.1285, found: 329.1283. 
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5.4.2 Multigram-Scale Synthesis of 176na 

 

Benzamide 34n (2.18 g, 9.00 mmol, 1.00 equiv), allene 75a (2.59 g, 1.20 equiv), NaOPiv 

(2.23 g, 2.00 equiv) and Co(OAc)2∙4H2O (234 mg, 10 mol %) were placed in an undivided 

cell (100 mL) together with a graphite felt anode (25 mm × 50 mm × 6.0 mm) and a 

platinum cathode (25 mm × 50 mm × 0.125 mm). The components were dissolved in 

MeOH (90 mL). Electrocatalysis was performed at 40 °C with a constant current of 10 mA 

maintained for 54 h (Q·mol–1 = 2.24 F). At ambient temperature, H2O (200 mL) was added, 

and the graphite felt anode was washed with CH2Cl2 (2 x 50 mL) in an ultrasonic bath. The 

combined phases were extracted with CH2Cl2 (3 × 150 mL), and then dried over Na2SO4. 

Evaporation of the solvents and subsequent column chromatography (CH2Cl2/acetone 1:1 

to CH2Cl2/MeOH 9:1) yielded 176na (3.66 g, 7.62 mmol, 85%) as a white solid. 

5.4.3 H/D Exchange Experiments 

 

Benzamide 34a (107 mg, 0.50 mmol, 1.00 equiv), allene 75a (144 mg, 1.20 equiv), NaOPiv 

(124 mg, 1.00 mmol, 2.00 equiv) and Co(OAc)2∙4H2O (12.7 mg, 10 mol %) were placed in 
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a 10 mL undivided cell together with a graphite felt anode  and a platinum cathode. The 

components were dissolved in CD3OD (5.0 mL). Electrocatalysis was performed at 40 °C 

with a constant current of 2 mA maintained for 6 h. At ambient temperature, H2O (10 mL) 

was added, and the graphite felt anode was washed with CH2Cl2 (10 mL) in an ultrasonic 

bath. The combined phases were extracted with CH2Cl2 (3 × 10 mL), and then dried over 

Na2SO4. Evaporation of the solvents and subsequent column chromatography 

(CH2Cl2/acetone 1:1 to CH2Cl2/MeOH 9:1) yielded [D]n-34a (14.1 mg, 13%) as a white 

solid and [D]n-176aa (81.9 mg, 82%) as a white solid. The D-incorporation was estimated 

by 1H-NMR spectroscopy.   

  

Figure 40. 1H-NMR of [D]n-176aa from the deuteration study.  
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Figure 41. 1H-NMR of reisolated [D]n-34a from the deuteration study. 

5.4.4 Competition Experiments 

 

The electrocatalysis was carried out in an undivided cell, with a graphite felt anode and a 

platinum cathode. Benzamide 34d (61 mg, 0.25 mmol), benzamide 34k (58 mg, 

0.25 mmol), allene 75a (0.60 mmol, 1.20 equiv), NaOPiv (124 mg, 1.00 mmol, 2.00 equiv) 

and Co(OAc)2∙4H2O (12.7 mg, 10 mol %) were dissolved in MeOH (5.0 mL). 

Electrocatalysis was performed at 40 °C with a constant current of 2 mA maintained for 

7.5 h. At ambient temperature, H2O (10 mL) was added, and the graphite felt anode was 

washed with CH2Cl2 (10 mL) in an ultrasonic bath. The combined phases were extracted 

with CH2Cl2 (3 × 10 mL), then dried over Na2SO4. Evaporation of the solvents and analysis 

of the crude mixture by 1H-NMR using 1,3,5-trimethoxybenzene (TMB) (14.0 mg, 

N
H

O

H

N
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83.3 µmol, 0.33 equiv) as an internal standard, showed a product distribution of 1.3:1 in 

favor of 176da.  

 

Figure 42. 1H-NMR spectra of the crude reaction mixture of 176da and 176ka. 

 

The electrocatalysis was carried out in an undivided cell, with a graphite felt anode and a 

platinum cathode. Benzamide 34b (34 mg, 0.15 mmol), benzamide 34c (42 mg, 

0.15 mmol), allene 75a (86 mg, 0.36 mmol, 1.20 equiv), NaOPiv (74 mg, 0.60 mmol, 

2.00 equiv) and Co(OAc)2∙4H2O (12.7 mg, 10 mol %) were dissolved in MeOH (5.0 mL). 

Electrocatalysis was performed at 40 °C with a constant current of 2 mA maintained for 

4.5 h. At ambient temperature, H2O (10 mL) was added, and the graphite felt anode was 

washed with CH2Cl2 (10 mL) in an ultrasonic bath. The combined phases were extracted 

with CH2Cl2 (3 × 10 mL), then dried over Na2SO4. Evaporation of the solvents and analysis 

H176da H176ka 
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of the crude mixture by 1H-NMR using 1,3,5-trimethoxybenzene (TMB) (8.4 mg, 

50.0 µmol, 0.33 equiv) as an internal standard, showed a product distribution of 1.3:1 in 

favor of 176ba.  

 

Figure 43. 1H-NMR spectra of the crude reaction mixture of 176ba and 176ca. 

5.4.5 Reaction Profile 

 

The electrocatalysis was carried out in an undivided cell, with a graphite felt anode and a 

platinum cathode. Benzamide 34a (107 mg, 0.50 mmol, 1.00 equiv), allene 75a (144 mg, 

1.20 equiv), NaOPiv (124 mg, 1.00 mmol, 2.00 equiv), n-Bu4NPF6 (387 mg, 2.00 equiv) 

and Co(OAc)2∙4H2O (12.7 mg, 10 mol %) were placed in a 10 mL cell and dissolved in 

CH2Cl2 (10 mL). A METTLER TOLEDO ReactIR was used. The solution was heated for 

H176ca H176ba 
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20 min to 40 °C, until a stable temperature was achieved. Then, electrocatalysis was 

performed at a constant current of 2 mA maintained for 16 h. Every minute (first 8 h) and 

every two minutes (further 8 h) an IR spectrum was recorded. After the first 2h, the product 

conversion was determined by 1H-NMR spectroscopy using 1,3,5-trimethoxybenzene 

(TMB) as an internal standard to correlate the signal intensity for the initial rate studies. 

Signals at 1510 cm–1 and 1675 cm–1
 were identified to originate from the starting material 

and the product, respectively (Figures 44 and 45).  

 

Figure 44. Plot of the observed vibrations of interest over time. 

 

Figure 45. 3D-Surface plot of one of the observed vibrations at 1675 cm–1. 
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5.4.6 Kinetic Isotope Effect 

5.4.6.1 KIE Studies by 1H-NMR Analysis 

 

Two parallel reactions using substrates 34a and [D]5-34a (0.50 mmol each) were carried 

out to determine the kinetic isotope effect (KIE) by comparison of the initial rates. After 

5 minutes, aliquots of 0.2 mL were removed from the cell. The mixture was extracted with 

CH2Cl2 (3 × 2 mL). After evaporation of the solvents, the crude mixture was analyzed by 
1H-NMR spectroscopy using 1,3,5-trimethoxybenzene as an internal standard. The 

measured yields for 176aa and [D]4-176aa were plotted and a linear fit revealed a KIE of 

kH/kD ≈ 1.2 (Figure 8). 

Time [min] 5 10 20 30 40 50 60 

176aa [%] 2.8 5.1 8.8 10.6 12.5 13.9 14.6 

[D]4-176aa [%] 2.5 4.6 7.3 8.3 9.7 11.1 13.5 

5.4.7 KIE Studies by In-Operando IR Analysis 

 

Two parallel reactions using substrates 34a and [D]5-34a (0.50 mmol each) were carried 

out, following the procedure for the ReactIR studies (vide supra), to determine the KIE. 

Every minute an IR spectrum was recorded. The KIE was determined by measuring the 

initial rates from the increase of the signal at 1675 cm–1. The measured relative conversion 
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for 176aa and [D]4-176aa were plotted and a linear fit revealed a KIE of kH/kD ≈ 1.2 

(Figures 46 and 47). 

 

Figure 46. Initial rate analysis of 176aa. 

 

Figure 47. Initial rate analysis of [D]4-176aa. 
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5.5 Cobaltaelectro-Catalyzed C–H Activation in Biomass-Derived 

Glycerol Powered by Renewable Energy Sources 

5.5.1 Characterization Data 

 

2-[1-Oxo-3-phenylisoquinolin-2(1H)-yl]-pyridine-1-oxide (51aa): The general 

procedure E was followed using benzamide 34a (107 mg, 0.50 mmol) and alkyne 53a 

(102 mg, 1.00 mmol). Purification by column chromatography on silica gel 

(CH2Cl2/acetone 3:1) yielded 51aa (145 mg, 92%) as a white solid.  

M. p.: 223–225 °C.  

1H-NMR (300 MHz, CDCl3):  = 8.46–8.37 (m, 1H), 8.23–8.14 (m, 1H), 7.70 (ddd, J = 

8.0, 7.1, 1.4 Hz, 1H), 7.53 (dd, J = 7.2, 0.7 Hz, 1H), 7.50 (ddd, J = 8.2, 7.1, 1.3 Hz, 1H), 

7.44–7.35 (m, 2H), 7.28–7.16 (m, 3H), 7.16–7.08 (m, 2H), 7.06 (ddd, J = 8.5, 6.9, 1.1 Hz, 

1H), 6.61 (s, 1H).  

13C-NMR (126 MHz, CDCl3):  = 162.0 (Cq), 145.3 (Cq), 142.7 (Cq), 139.8 (CH), 136.9 

(Cq), 134.7 (Cq), 133.2 (CH), 128.9 (CH), 128.2 (CH), 128.0 (CH), 127.8 (CH), 127.5 (CH), 

126.9 (CH), 126.2 (CH), 125.3 (CH), 124.9 (CH), 124.8 (Cq), 107.9 (CH).  

IR (ATR): ṽ = 3074, 1658, 1482, 1425, 1382, 1257, 1143, 890, 518 cm−1.  

MS (EI) m/z (relative intensity): 314 (20) [M]+, 298 (50), 269 (60), 194 (30), 181 (100), 

165 (30), 78.0 (93).  

HR-MS (EI) m/z calcd. for C20H14N2O2 [M]+: 314.1055, found: 314.1052.  

The analytical data are in accordance with those previously reported in the literature.[250] 

 

2-[6-Methyl-1-oxo-3-phenylisoquinolin-2(1H)-yl]-pyridine-1-oxide (51ba): A modified 

procedure E was followed using benzamide 34b (114 mg, 0.50 mmol), alkyne 53a (102 mg, 
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1.00 mmol), Co(OAc)3 (11.3 mg, 10 mol %). The reaction cell was mounted in a closed 

ultrasonic bath. The sonication and electrolysis were started and stopped simultaneously. 

Purification by column chromatography on silica gel (CH2Cl2/acetone 3:1) yielded 51ba 

(120 mg, 73%) as a white solid.  

M. p. = 222–223 °C.  

1H-NMR (400 MHz, CDCl3): δ = 8.31 (d, J = 8.1 Hz, 1H), 8.24–8.18 (m, 1H), 7.43–7.36 

(m, 2H), 7.35–7.29 (m, 2H), 7.26–7.18 (m, 3H), 7.16–7.10 (m, 2H), 7.09–7.02 (m, 1H), 

6.53 (s, 1H), 2.48 (s, 3H).  

13C-NMR (101 MHz, CDCl3): δ = 162.0 (Cq), 145.8 (Cq), 144.2 (Cq), 142.8 (Cq), 140.2 

(CH), 137.3 (Cq), 135.1 (Cq), 129.1 (CH), 128.8 (CH), 128.5 (CH), 128.4 (CH), 128.1 (CH), 

127.9 (CH), 126.3 (CH), 125.5 (CH), 125.2 (CH), 122.8 (Cq), 108.1 (CH), 22.0 (CH3).  

IR (ATR): ṽ = 3064, 1665, 1620, 1479, 1261, 902, 763, 725 cm–1.  

MS (EI) m/z (relative intensity): 328 (20) [M]+, 312.1 (15), 283 (15), 208 (25), 181 (100), 

165 (15), 78 (65).  

HR-MS (EI) m/z calcd. for C21H16N2O2 [M]+: 328.1212, found: 328.1206.  

The analytical data are in accordance with those previously reported in the literature.[250] 

 

2-[6-Methoxy-1-oxo-3-phenylisoquinolin-2(1H)-yl]-pyridine-1-oxide (51da): The 

general procedure E was followed using benzamide 34d (122 mg, 0.50 mmol) and alkyne 

53a (102 mg, 1.00 mmol). Purification by column chromatography on silica gel 

(CH2Cl2/acetone 3:1) yielded 51da (119 mg, 69%) as a white solid.  

M. p.: 201–202 °C.  

1H-NMR (400 MHz, CDCl3):  = 8.38–8.29 (m, 1H), 8.26–8.11 (m, 1H), 7.44–7.34 (m, 

2H), 7.26–7.17 (m, 3H), 7.17–7.09 (m, 2H), 7.08–7.02 (m, 2H), 6.91 (d, J = 2.4 Hz, 1H), 

6.52 (s, 1H), 3.92 (s, 3H).  

13C-NMR (125 MHz, CDCl3):  = 163.8 (Cq), 161.6 (Cq), 145.8 (Cq), 143.4 (Cq), 140.2 

(CH), 139.4 (Cq), 135.1 (Cq), 130.7 (CH), 129.2 (CH), 128.3 (CH), 128.0 (CH), 127.9 (CH), 

125.5 (CH), 125.1 (CH), 118.8 (Cq), 116.4 (CH), 108.0 (CH), 107.7 (CH), 55.7 (CH3).  

IR (ATR): ṽ = 1656, 1604, 1486, 1378, 1247, 1145, 767, 692 cm−1.  
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MS (EI) m/z (relative intensity): 344 (20) [M+], 299 (10), 255 (15), 224 (20), 181 (100), 

135 (10), 78 (45).  

HR-MS (EI) m/z calcd. for C21H16N2O3 [M+] 344.1161, found 344.1149.  

The analytical data are in accordance with those previously reported in the literature.[117] 

 

2-[6-(Methylthio)-1-oxo-3-phenylisoquinolin-2(1H)-yl]-pyridine-1-oxide (51ea): The 

general procedure E was followed using benzamide 34e (130 mg, 0.50 mmol) and alkyne 

53a (102 mg, 1.00 mmol). Purification by column chromatography on silica gel 

(CH2Cl2/acetone 3:1) yielded 51ea (110 mg, 61%) as a white solid.  

M. p.: 218–220 °C.  

1H-NMR (500 MHz, CDCl3):  = 8.28 (dd, J = 8.4, 1.8 Hz, 1H), 8.25–8.14 (m, 1H), 7.42–

7.36 (m, 2H), 7.32 (dd, J = 8.4, 1.8 Hz, 1H), 7.28 (d, J = 1.9 Hz, 1H), 7.26–7.19 (m, 3H), 

7.18–7.11 (m, 2H), 7.11–7.02 (m, 1H), 6.51 (s, 1H), 2.57 (s, 3H).  

13C-NMR (126 MHz, CDCl3):  = 161.8 (Cq), 146.4 (Cq), 145.6 (Cq), 143.6 (Cq), 140.2 

(CH), 137.6 (Cq), 134.9 (Cq), 129.3 (CH), 128.7 (CH), 128.4 (CH), 128.0 (CH), 127.9 (CH), 

125.6 (CH), 125.4 (CH), 124.8 (CH), 121.7 (Cq), 121.2 (CH), 107.6 (CH), 15.0 (CH3).  

IR (ATR): ṽ = 1663, 1587, 1431, 1372, 1269, 916, 730, 703 cm−1.  

MS (EI) m/z (relative intensity): 360 (20) [M]+, 315 (10), 240 (20), 193 (10), 181 (100), 78 

(45).  

HR-MS (EI) m/z calcd. for C21H16N2O2S [M]+: 360.0932, found: 360.0925.  

Crystals suitable for X-ray crystallography were grown by slow evaporation from a 

saturated solution of 51ea in EtOAc.  
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2-[6-Iodo-1-oxo-3-phenylisoquinolin-2(1H)-yl]-pyridine-1-oxide (51ga): The general 

procedure E was followed using benzamide 34g (170 mg, 0.50 mmol) and alkyne 53a 

(102 mg, 1.00 mmol). Purification by column chromatography on silica gel 

(CH2Cl2/acetone 6:1) yielded 51ga (91.4 mg, 41%) as a white solid.  

M. p.: 251–252 °C.  

1H-NMR (400 MHz, CDCl3):  = 8.22 (ddd, J = 6.5, 1.5, 0.7 Hz, 1H), 8.11 (dd, J = 8.5, 

0.6 Hz, 1H), 7.96 (d, J = 1.6 Hz, 1H), 7.80 (dd, J = 8.5, 1.7 Hz, 1H), 7.41–7.35 (m, 2H), 

7.30–7.26 (m, 1H), 7.26–7.21 (m, 2H), 7.18–7.11 (m, 2H), 7.10–7.05 (m, 1H), 6.49 (s, 1H).  

13C-NMR (101 MHz, CDCl3):  = 161.9 (Cq), 145.4 (Cq), 144.1 (Cq), 140.2 (CH), 138.6 

(Cq), 136.3 (CH), 135.3 (CH), 134.7 (Cq), 130.1 (CH), 129.5 (CH), 128.5 (CH), 128.0 (CH), 

127.8 (CH), 125.7 (CH), 125.2 (CH), 124.3 (Cq), 106.8 (CH), 101.6 (Cq).  

IR (ATR): ṽ = 1666, 1618, 1597, 1578, 1271, 898, 761, 726 cm−1.  

MS (EI) m/z (relative intensity): 440 (20) [M]+, 395 (15), 320 (20), 268 (10), 181 (100), 78 

(50).  

HR-MS (EI) m/z calcd. for C20H13IN2O2 [M]+: 440.0022, found: 440.0024.  

The analytical data are in accordance with those previously reported in the literature.[250]  

 

2-[6-(tert-Butyl)-1-oxo-3-phenylisoquinolin-2(1H)-yl]-pyridine-1-oxide (51ja): The 

general procedure E was followed using benzamide 34j (135 mg, 0.50 mmol) and alkyne 

53a (102 mg, 1.00 mmol). Purification by column chromatography on silica gel 

(CH2Cl2/acetone 3:1) yielded 51ja (128 mg, 69%) as a white solid.  

M. p.: 248–250 °C.  
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1H-NMR (300 MHz, CDCl3):  = 8.39–8.33 (m, 1H), 8.24–8.19 (m, 1H), 7.57 (dd, J = 8.5, 

1.9 Hz, 1H), 7.54–7.52 (m, 1H), 7.43–7.37 (m, 2H), 7.26–7.18 (m, 3H), 7.17–7.10 (m, 2H), 

7.09–7.03 (m, 1H), 6.60 (s, 1H), 1.40 (s, 9H).  

13C-NMR (126 MHz, CDCl3):  = 161.9 (Cq), 157.1 (Cq), 145.7 (Cq), 142.6 (Cq), 140.1 

(CH), 137.1 (Cq), 135.1 (Cq), 129.1 (CH), 128.3 (CH), 128.3 (CH), 128.1 (CH), 127.8 (CH), 

125.4 (CH), 125.3 (CH), 125.0 (CH), 122.8 (Cq), 122.6 (CH), 108.6 (CH), 35.5 (Cq), 31.3 

(CH3).  

IR (ATR): ṽ = 1681, 1617, 1606, 1488, 1270, 939, 764, 698 cm−1.  

MS (EI) m/z (relative intensity): 370 (15) [M]+, 325 (10), 250 (12), 235 (15), 181 (100), 78 

(40).  

HR-MS (EI) m/z calcd. for C24H22N2O2 [M]+: 370.1681, found: 370.1683.  

The analytical data are in accordance with those previously reported in the literature.[250] 

 

2-[6-Fluoro-1-oxo-3-phenylisoquinolin-2(1H)-yl]-pyridine-1-oxide (51ka): The general 

procedure E was followed using benzamide 34k (116 mg, 0.50 mmol) and alkyne 53a 

(102 mg, 1.00 mmol). Purification by column chromatography on silica gel 

(CH2Cl2/acetone 6:1) yielded 51ka (109 mg, 66%) as a white solid.  

M. p.: 191–192 °C.  

1H-NMR (300 MHz, CDCl3):  = 8.44 (dd, J = 9.6, 5.7 Hz, 1H), 8.21 (dd, J = 6.4, 1.6 Hz, 

1H), 7.40 (dd, J = 7.8, 1.8 Hz, 2H), 7.31–7.26 (m, 1H), 7.25–7.14 (m, 5H), 7.14–7.11 (m, 

1H), 7.10–7.03 (m, 1H), 6.54 (s, 1H).  

13C-NMR (125 MHz, CDCl3):  = 166.1 (d, 1JC–F = 254.1 Hz, Cq), 161.4 (Cq), 145.4 (Cq), 

144.3 (Cq), 140.2 (CH), 139.6 (d, 3JC–F = 10.6 Hz, Cq), 134.7 (Cq), 131.9 (d, 3JC–F = 10.2 Hz, 

CH), 129.5 (CH), 128.5 (CH), 128.0 (CH), 127.8 (CH), 125.7 (CH), 125.3 (CH), 121.7 (d, 
4JC–F = 1.8 Hz, Cq), 115.8 (d, 2JC–F = 23.4 Hz, CH), 111.5 (d, 2JC–F = 22.1 Hz, CH), 107.5 

(d, 4JC–F = 3.1 Hz, CH).  

19F-NMR (376 MHz, CDCl3): δ = –104.7 (td, J = 8.9, 5.7 Hz).  

IR (ATR): ṽ = 1666, 1610, 1506, 1479, 1421, 1270, 866, 758 cm−1.  
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MS (EI) m/z (relative intensity): 332 (55) [M]+, 315 (10), 287 (15), 212 (25), 181 (100), 78 

(65).  

HR-MS (EI) m/z calcd. for C20H13FN2O2 [M+H]+: 332.0961, found: 332.0966.  

The analytical data are in accordance with those previously reported in the literature.[250]  

 

2-[5,7-Dimethyl-1-oxo-3-phenylisoquinolin-2(1H)-yl]-pyridine-1-oxide (51ua): A 

modified general procedure E was followed using benzamide 34u (121 mg, 0.50 mmol), 

alkyne 53a (102 mg, 1.00 mmol) and Co(OAc)3 (11.3 mg, 10 mol %). Purification by 

column chromatography on silica gel (CH2Cl2/acetone 3:1) yielded 51ua (108 mg, 63%) 

as a white solid.  

M. p.: 238–239 °C.  

1H-NMR (400 MHz, CDCl3):  = 8.20 (dd, J = 6.9, 1.5 Hz, 1H), 8.11 (s, 1H), 7.45–7.39 

(m, 2H), 7.37 (s, 1H), 7.26–7.20 (m, 3H), 7.16–7.11 (m, 2H), 7.06 (ddd, J = 8.2, 7.1, 1.4 

Hz, 1H), 6.68 (d, J = 0.8 Hz, 1H), 2.51 (s, 3H), 2.45 (s, 3H).  

13C-NMR (125 MHz, CDCl3):  = 162.3 (Cq), 145.9 (Cq), 141.3 (Cq), 140.2 (CH), 137.0 

(Cq), 135.9 (CH), 135.5 (Cq), 133.7 (Cq), 133.6 (Cq), 129.1 (CH), 128.3 (CH), 128.2 (CH), 

127.8 (CH), 126.1 (CH), 125.5 (CH), 125.3 (Cq), 125.0 (CH), 105.1 (CH), 21.6 (CH3), 19.0 

(CH3).  

IR (ATR): ṽ = 1709, 1668, 1489, 1251, 851, 756, 700, 578 cm−1.  

MS (EI) m/z (relative intensity): 342 (10) [M]+, 326 (10), 297 (10), 222 (25), 207 (15), 181 

(100), 78 (60).  

HR-MS (ESI) m/z calcd. for C22H19N2O2 [M+H]+: 343.1441, found: 343.1444.  

The analytical data are in accordance with those previously reported in the literature.[250] 
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2-[5,7-Dimethoxy-1-oxo-3-phenylisoquinolin-2(1H)-yl]-pyridine-1-oxide (51va): The 

general procedure E was followed using benzamide 34v (137 mg, 0.50 mmol) and alkyne 

53a (102 mg, 1.00 mmol). Purification by column chromatography on silica gel 

(CH2Cl2/acetone 3:1) yielded 51va (146 mg, 78%) as a white solid.  

M. p.: 254–255 °C.  

1H-NMR (400 MHz, CDCl3):  = 8.23 (dd, J = 6.6, 1.3 Hz, 1H), 7.44 (dd, J = 2.4, 0.6 Hz, 

1H), 7.41–7.37 (m, 2H), 7.24–7.17 (m, 3H), 7.17–7.11 (m, 1H), 7.11–7.02 (m, 2H), 6.94 

(d, J = 0.7 Hz, 1H), 6.74 (d, J = 2.4 Hz, 1H), 3.91 (s, 3H), 3.90 (s, 3H).  

13C-NMR (101 MHz, CDCl3):  = 161.6 (Cq), 159.8 (Cq), 156.2 (Cq), 146.0 (Cq), 140.2 

(CH), 139.7 (Cq), 135.5 (Cq), 128.9 (CH), 128.3 (CH), 128.2 (CH), 127.6 (CH), 126.7 (Cq), 

125.5 (CH), 125.1 (CH), 122.9 (Cq), 104.0 (CH), 102.7 (CH), 99.8 (CH), 56.0 (CH3), 55.9 

(CH3).  

IR (ATR): ṽ = 1665, 1606, 1489, 1429, 1351, 1041, 788, 750 cm−1.  

MS (EI) m/z (relative intensity): 374 (10) [M]+, 358 (10), 269 (10), 254 (10), 181 (100), 78 

(45).  

HR-MS (EI) m/z calcd. for C22H18N2O4 [M]+: 374.1267, found: 374.1259.  

The analytical data are in accordance with those previously reported in the literature.[250]  

 

2-[7-Methyl-1-oxo-3-phenylisoquinolin-2(1H)-yl]-pyridine-1-oxide (51wa); 2-[5-

Methyl-1-oxo-3-phenylisoquinolin-2(1H)-yl]-pyridine-1-oxide (51wa’): The general 

procedure E was followed using benzamide 34w (114 mg, 0.50 mmol) and alkyne 53a 

(102 mg, 1.00 mmol). Purification by column chromatography on silica gel 

(CH2Cl2/acetone 3:1) yielded 51wa/51wa’ (130 mg, 83%) as a white solid. The ratio of 
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51wa/51wa’ (4:1) was determined by 1H-NMR spectroscopy. Resonances are reported for 

51wa. 

M. p.: 218–220 °C.  

1H-NMR (400 MHz, CDCl3):  = 8.24–8.29 (m, 2H), 7.55–7.50 (m, 1H), 7.47–7.44 (m, 

1H), 7.41–7.37 (m, 2H), 7.25–7.20 (m, 3H), 7.14–7.10 (m, 2H), 7.09–7.03 (m, 1H), 6.57 

(s, 1H), 2.49 (s, 3H).  

13C-NMR (101 MHz, CDCl3):  = 162.0 (Cq), 145.8 (Cq), 141.8 (Cq), 140.1 (CH), 137.4 

(Cq), 135.1 (Cq), 134.8 (CH), 134.8 (Cq), 129.1 (CH), 128.3 (CH), 128.1 (CH), 128.1 (CH), 

127.8 (CH), 126.4 (CH), 125.5 (CH), 125.1 (CH), 125.0 (Cq), 108.1 (CH), 21.6 (CH3).  

IR (ATR): ṽ = 1664, 1492, 1430, 1385, 1277, 847, 758, 704 cm−1.  

MS (EI) m/z (relative intensity): 328 (20) [M]+, 283 (10), 208 (35), 193 (10), 181 (100), 78 

(65).  

HR-MS (EI) m/z calcd. for C21H16N2O2 [M]+: 328.1212, found: 328.1221.  

 

3,4-Dimethyl-2-oxo-6-phenyl-2H-[1,2'-bipyridine]-1'-oxide (189aa): The general 

procedure E was followed using alkene 37a (96.0 mg, 0.50 mmol) and alkyne 53a (102 mg, 

1.00 mmol). Purification by column chromatography on silica gel (CH2Cl2/acetone 1:1) 

yielded 189aa (92.1 mg, 63%) as a white solid.  

M. p.: 203–204 °C.  

1H-NMR (300 MHz, CDCl3):  = 8.21 (ddd, J = 6.4, 1.0, 0.4 Hz, 1H), 7.36–7.30 (m, 2H), 

7.25–7.21 (m, 2H), 7.20–7.16 (m, 1H), 7.15–7.10 (m, 1H), 7.08–7.03 (m, 2H), 6.15 (s, 1H), 

2.25 (s, 3H), 2.15 (s, 3H).  

13C-NMR (125 MHz, CDCl3):  = 162.1 (Cq), 147.3 (Cq), 145.8 (Cq), 144.3 (Cq), 140.1 

(CH), 134.5 (Cq), 129.2 (CH), 128.3 (CH), 127.8 (CH), 127.4 (CH), 125.6 (Cq), 125.4 (CH), 

125.1 (CH), 111.3 (CH), 20.3 (CH3), 12.7 (CH3).  

IR (ATR): ṽ = 1659, 1558, 1488, 1434, 1258, 851, 767, 701 cm−1.  

MS (EI) m/z (relative intensity): 292 (35) [M]+, 276 (20), 198 (100), 181 (42), 170 (40), 78 

(70).  

HR-MS (EI) m/z calcd. for C18H16N2O2 [M]+: 292.1212, found: 292.1200.  



Experimental Part   223 
 

The analytical data are in accordance with those previously reported in the literature.[250]  

 

2-[1-Oxo-3-phenyl-5,6,7,8-tetrahydroisoquinolin-2(1H)-yl]-pyridine-1-oxide (189ba): 

The general procedure E was followed using alkene 37b (109 mg, 0.50 mmol) and alkyne 

53a (102 mg, 1.00 mmol). Purification by column chromatography on silica gel 

(CH2Cl2/acetone 2:1) yielded 189ba (87.0 mg, 55%) as a colorless oil.  

1H-NMR (400 MHz, CDCl3):  = 8.19 (dd, J = 6.3, 0.8 Hz, 1H), 7.35–7.30 (m, 2H), 7.24–

7.16 (m, 3H), 7.15–7.10 (m, 1H), 7.09–7.02 (m, 2H), 6.05 (s, 1H), 2.66–2.50 (m, 4H), 1.83–

1.73 (m, 4H).  

13C-NMR (101 MHz, CDCl3):  = 161.9 (Cq), 148.5 (Cq), 145.7 (Cq), 144.3 (Cq), 140.1 

(CH), 134.7 (Cq), 129.2 (CH), 128.4 (CH), 127.8 (CH), 127.5 (CH), 126.7 (Cq), 125.5 (CH), 

125.2 (CH), 110.2 (CH), 29.7 (CH2), 23.5 (CH2), 22.1 (CH2), 22.0 (CH2).  

IR (ATR): ṽ = 3021, 1655, 1481, 1431, 1249, 905, 840, 728 cm−1.  

MS (EI) m/z (relative intensity): 318 (30) [M]+, 301 (10), 224 (100), 195 (20), 181 (60), 78 

(60).  

HR-MS (EI) m/z calcd. for C20H18N2O2 [M]+: 318.1368, found: 318.1363.  

The analytical data are in accordance with those previously reported in the literature.[250]  

 

2-[4-Oxo-6-phenylfuro[3,2-c]pyridin-5(4H)-yl]-pyridine-1-oxide (189ea); 2-[4-Oxo-6-

phenylfuro[3,4-c]pyridin-5(4H)-yl]-pyridine 1-oxide (189ea’): The general procedure E 

was followed using 2-(furan-3-carboxamido)pyridine 1-oxide 37e (102 mg, 0.50 mmol) 

and alkyne 53a (102 mg, 1.00 mmol). Purification by column chromatography on silica gel 

(CH2Cl2/acetone 5:1) yielded 189ea/189ea’ (79.0 mg, 52%) as a white solid. The ratio of 
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189ea/189ea’ (10:1) was determined by 1H-NMR spectroscopy. Resonances are reported 

for 189ea.   

M. p.: 199–200 °C.  

1H-NMR (600 MHz, CDCl3): δ = 8.23–8.13 (m, 1H), 7.55–7.52 (m, 1H), 7.39–7.36 (m, 

2H), 7.26–7.25 (m, 1H), 7.23–7.20 (m, 2H), 7.16–7.11 (m, 2H), 7.09–7.04 (m, 1H), 7.02–

7.00 (m, 1H), 6.78 (s, 1H).  

13C-NMR (126 MHz, CDCl3): δ = 159.8 (Cq), 158.4 (Cq), 145.6 (Cq), 145.1 (Cq), 143.6 

(CH), 139.9 (CH), 134.4 (Cq), 129.3 (CH), 128.2 (CH), 127.1 (CH), 127.8 (CH), 125.5 

(CH), 125.0 (CH), 114.9 (Cq), 107.8 (CH), 98.2 (CH).  

IR (ATR): ṽ = 3112, 1675, 1574, 1488, 1266, 730, 590, 517 cm–1.  

MS (EI) m/z (relative intensity): 304 (35) [M]+, 288 (70), 259 (45), 231 (35), 181 (100), 78 

(60).  

HR-MS (ESI) m/z calcd. for C18H13N2O3 [M+H]+: 305.0921, found: 305.0922.  

Crystals suitable for X-ray crystallography were grown by slow evaporation from a 

saturated solution of 189ea in EtOAc.  

 

2-{3-[4-(tert-Butyl)phenyl]-1-oxoisoquinolin-2(1H)-yl}-pyridine-1-oxide (51ab): The 

general procedure E was followed using benzamide 34a (107 mg, 0.50 mmol) and alkyne 

53b (158 mg, 1.00 mmol). Purification by column chromatography on silica gel 

(CH2Cl2/acetone 4:1) yielded 51ab (119 mg, 51%) as a white solid.  

M. p.: 162–163 °C.  

1H-NMR (400 MHz, CDCl3): δ = 8.41 (dd, J = 8.0, 0.7 Hz, 1H), 8.28–8.17 (m, 1H), 7.69 

(ddd, J = 8.2, 7.1, 1.2 Hz, 1H), 7.54 (dd, J = 8.0, 1.1 Hz, 1H), 7.49 (ddd, J = 8.1, 7.1, 1.1 

Hz, 1H), 7.35–7.28 (m, 2H), 7.25–7.20 (m, 2H), 7.18–7.12 (m, 2H), 7.12–7.04 (m, 1H), 

6.60 (s, 1H), 1.24 (s, 9H).  

13C-NMR (126 MHz, CDCl3): δ = 162.1 (Cq), 152.3 (Cq), 145.7 (Cq), 142.8 (Cq), 140.1 

(CH), 137.3 (Cq), 133.4 (CH), 132.0 (Cq), 128.5 (CH), 127.9 (CH), 127.7 (CH), 127.0 (CH), 

126.3 (CH), 125.4 (CH), 125.2 (CH), 125.1 (CH), 125.0 (Cq), 108.1 (CH), 34.8 (Cq), 31.3 

(CH3).  
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IR (ATR): ṽ = 3056, 1678, 1621, 1478, 1432, 1272, 876, 758 cm–1.  

MS (EI) m/z (relative intensity): 370 (25) [M]+, 269 (10), 237 (100), 194 (25), 78 (40), 57 

(10).  

HR-MS (EI) m/z calcd. for C24H22N2O2 [M]+: 370.1681, found: 370.1680.  

The analytical data are in accordance with those previously reported in the literature.[250]  

N

O N
O

Me  

2-[3-Hexyl-1-oxoisoquinolin-2(1H)-yl]-pyridine-1-oxide (51ac): The general procedure 

E was followed using benzamide 34a (107 mg, 0.50 mmol) and alkyne 53c (110 mg, 

1.00 mmol). Purification by column chromatography on silica gel (CH2Cl2/acetone 3:1) 

yielded 51ac (102 mg, 63%) as a white solid.  

M. p.: 138–140 °C.  

1H-NMR (400 MHz, CDCl3):  = 8.40 (dd, J = 5.0, 2.9 Hz, 1H), 8.35–8.31 (m, 1H), 7.64 

(ddd, J = 8.3, 7.1, 1.4 Hz, 1H), 7.50–7.44 (m, 2H), 7.44–7.36 (m, 3H), 6.44 (s, 1H), 2.43–

2.09 (m, 2H), 1.62–1.45 (m, 2H), 1.31–1.11 (m, 6H), 0.84 (t, J = 6.9 Hz, 3H).  

13C-NMR (101 MHz, CDCl3):  = 162.8 (Cq), 144.6 (Cq), 142.7 (Cq), 140.8 (CH), 137.6 

(Cq), 133.3 (CH), 128.3 (CH), 128.2 (CH), 126.5 (CH), 126.1 (CH), 125.9 (CH), 125.6 

(CH), 124.6 (Cq), 105.1 (CH), 32.1 (CH2), 31.5 (CH2), 28.9 (CH2), 27.7 (CH2), 22.5 (CH2), 

14.1 (CH3). 

IR (ATR): ṽ = 2927, 1630, 1426, 1396, 1265, 876, 570, 493 cm−1.  

MS (EI) m/z (relative intensity): 328 (30) [M]+, 306 (48), 251 (45), 234 (100), 78.0 (61).  

HR-MS (EI) m/z calcd. for C20H22N2O2 [M]+: 322.1681, found: 322.1684.  

 

2-[3-(4-Chlorobutyl)-1-oxoisoquinolin-2(1H)-yl]-pyridine-1-oxide (51ad): The general 

procedure E was followed using benzamide 34a (107 mg, 0.50 mmol) and alkyne 53d 

(117 mg, 1.00 mmol). Purification by column chromatography on silica gel 

(CH2Cl2/acetone 3:1) yielded 51ad (107 mg, 65%) as a white solid.  
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M. p.: 169–170 °C.  

1H-NMR (300 MHz, CDCl3):  = 8.39 (dd, J = 4.9, 3.0 Hz, 1H), 8.36–8.28 (m, 1H), 7.65 

(ddd, J = 8.3, 7.1, 1.4 Hz, 1H), 7.52–7.45 (m, 2H), 7.45–7.41 (m, 1H), 7.41–7.36 (m, 2H), 

6.45 (s, 1H), 3.55–3.38 (m, 2H), 2.44–2.15 (m, 2H), 1.82–1.59 (m, 4H).  

13C-NMR (125 MHz, CDCl3):  = 162.6 (Cq), 144.3 (Cq), 141.7 (Cq), 140.7 (CH), 137.3 

(Cq), 133.3 (CH), 128.2 (CH), 128.1 (CH), 126.6 (CH), 126.2 (CH), 125.8 (CH), 125.7 

(CH), 124.6 (Cq), 105.3 (CH), 44.6 (CH2), 31.9 (CH2), 31.4 (CH2), 24.9 (CH2).  

IR (ATR): ṽ = 3092, 1631, 1561, 1490, 1424, 1259, 823, 768 cm−1.  

MS (EI) m/z (relative intensity): 328 (25) [M]+, 311 (40), 251 (50), 234 (100), 171 (30), 

78.0 (72).  

HR-MS (EI) m/z calcd. for C18H17ClN2O2 [M]+: 328.0979, found: 328.0971.  

The analytical data are in accordance with those previously reported in the literature.[250] 

 

2-[3-(3-Cyanobutyl)-1-oxoisoquinolin-2(1H)-yl]-pyridine-1-oxide (51ae): The general 

procedure E was followed using benzamide 34a (107 mg, 0.50 mmol) and alkyne 53e 

(117 mg, 1.00 mmol). Purification by column chromatography on silica gel 

(CH2Cl2/acetone 3:1) yielded 51ae (120 mg, 79%) as a white solid.  

M. p.: 176–177 °C.  

1H-NMR (300 MHz, CDCl3):  = 8.42–8.36 (m, 1H), 8.33 (dd, J = 8.1, 1.3 Hz, 1H), 7.67 

(ddd, J = 8.3, 7.1, 1.4 Hz, 1H), 7.53–7.47 (m, 2H), 7.46–7.44 (m, 1H), 7.44–7.37 (m, 2H), 

6.47 (s, 1H), 2.56–2.43 (m, 2H), 2.42–2.26 (m, 2H), 1.99–1.74 (m, 2H).  

13C-NMR (125 MHz, CDCl3):  = 162.5 (Cq), 144.1 (Cq), 140.8 (CH), 139.7 (Cq), 136.9 

(Cq), 133.5 (CH), 128.3 (CH), 128.0 (CH), 127.0 (CH), 126.5 (CH), 125.9 (CH), 125.9 

(CH), 124.8 (Cq), 118.9 (Cq), 106.1 (CH), 31.1 (CH2), 23.6 (CH2), 16.7 (CH2).  

IR (ATR): ṽ = 2921, 1630, 1596, 1428, 1247, 890, 766, 751 cm−1.  

MS (EI) m/z (relative intensity): 305 (26) [M]+, 265 (37), 249 (100), 234 (68), 171 (63), 

78.0 (66).  

HR-MS (EI) m/z calcd. for C18H15N3O2 [M]+: 305.1164, found: 305.1156. 
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2-[3-Cyclopropyl-1-oxoisoquinolin-2(1H)-yl]-pyridine-1-oxide (51af): The general 

procedure E was followed using benzamide 34a (107 mg, 0.50 mmol) and alkyne 53f 

(66.1 mg, 1.00 mmol). Purification by column chromatography on silica gel 

(CH2Cl2/acetone 3:1) yielded 51af (80.2 mg, 57%) as a white solid.  

M. p.: 224–226 °C.  

1H-NMR (300 MHz, CDCl3):  = 8.40 (dd, J = 5.0, 2.9 Hz, 1H), 8.34 (dd, J = 8.0, 0.6 Hz, 

1H), 7.63 (ddd, J = 8.2, 7.1, 1.4 Hz, 1H), 7.51–7.44 (m, 2H), 7.44–7.40 (m, 1H), 7.40–7.35 

(m, 2H),  6.38 (s, 1H), 1.59–1.44 (m, 1H), 1.00–0.89 (m, 1H), 0.70–0.46 (m, 3H).  

13C-NMR (126 MHz, CDCl3):  = 162.5 (Cq), 145.1 (Cq), 143.4 (Cq), 140.5 (CH), 137.4 

(Cq), 133.2 (CH), 128.3 (CH), 128.0 (CH), 126.6 (CH), 125.9 (CH), 125.9 (CH), 125.5 

(CH), 124.8 (Cq), 104.9 (CH), 13.3 (CH), 7.4 (CH2), 5.4 (CH2).  

IR (ATR): ṽ = 1666, 1632, 1592, 1428, 1392, 1266, 758, 728 cm−1.  

MS (EI) m/z (relative intensity): 278 (40) [M]+, 261 (85), 234 (80), 193 (50), 145 (55), 78 

(100).  

HR-MS (EI) m/z calcd. for C17H14N2O2 [M]+: 278.1055, found: 278.1057.  

The analytical data are in accordance with those previously reported in the literature.[250]  

 

2-{3-[(Diphenylphosphoryl)methyl]-1-oxoisoquinolin-2(1H)-yl}pyridine 1-oxide 

(176aa): The general procedure F was followed using benzamide 34a (107 mg, 0.50 mmol) 

and allene 75a (144 mg, 0.60 mmol). Purification by column chromatography on silica gel 

(CH2Cl2/acetone 1:1 to CH2Cl2/MeOH 9:1) yielded 176aa (206 mg, 455 µmol, 63%) as a 

white solid. The analytical data are in accordance with those previously reported (cf. 

Chapter 5.4.1).  
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5.5.2 Renewable Energy Power Setup 

5.5.2.1 Cobaltaelectro-Catalyzed C–H Activation Powered by Sunlight 

 

The electrocatalysis was carried out in an undivided cell, with a graphite felt (GF) anode 

(25 mm × 10 mm × 6.0 mm) and a platinum cathode (25 mm × 10 mm × 0.125 mm). 

Benzamide 34a (0.50 mmol, 1.00 equiv), alkyne 53a (1.00 mmol, 2.00 equiv), NaOPiv 

(124 mg, 1.00 mmol, 2.00 equiv), glycerol/H2O (5.0 mL, 1:1) and Co(OAc)2∙4H2O 

(12.7 mg, 10 mol %) were placed in a 10 mL cell. Electrocatalysis was performed at 40 °C 

with a constant current of 8 mA maintained for 6 h. The solar panel was disconnected, and 

the reaction mixture was diluted with CH2Cl2 (2.0 mL). The graphite felt anode was washed 

with CH2Cl2 (3 × 5.0 mL) in an ultrasonic bath (3 x 3 min). The combined washings were 

added to the reaction mixture and the combined phases were washed with H2O (15 mL). 

The aqueous phase was extracted with CH2Cl2 (4 × 10 mL). The crude extracts were then 

dried over Na2SO4. Evaporation of the solvent and subsequent column chromatography on 

silica gel afforded the corresponding product 51aa (114 mg, 73%) as a white solid.  

 

Figure 48. Cobalta-electrocatalysis powered by a photovoltaic cell.  



Experimental Part   229 
 

5.5.2.2 Cobaltaelectro-Catalyzed C–H Activation Powered by Wind Energy 

Wind as Power Source

N

O

PyO

H

N

O

51aa

+

53a

H

Ph
H

Ph

34a

PyOCo(OAc)2
.4H2O (10 mol %)

Pt

glycerol/H2O (1:1)
NaOPiv, 15 h, 40 °C

CCE at 4 mA

GF

conventional galvanostat: 92% 
wind turbine: 82%

A

 

The electrocatalysis was carried out in an undivided cell, with a graphite felt (GF) anode 

(25 mm × 10 mm × 6.0 mm) and a platinum cathode (25 mm × 10 mm × 0.125 mm). 

Benzamide 34a (0.50 mmol, 1.00 equiv), alkyne 53a (1.00 mmol, 2.00 equiv), NaOPiv 

(124 mg, 1.00 mmol, 2.00 equiv), glycerol/H2O (5.0 mL, 1:1) and Co(OAc)2∙4H2O 

(12.7 mg, 10 mol %) were placed in a 10 mL cell. Electrocatalysis was performed at 40 °C 

with a constant current of 4 mA maintained for 15 h. The wind turbine was stopped, and 

the reaction mixture was diluted with CH2Cl2 (2.0 mL). The graphite felt anode was washed 

with CH2Cl2 (3 × 5.0 mL) in an ultrasonic bath (3 x 3 min). The combined washings were 

added to the reaction mixture and the combined phases were washed with H2O (15 mL). 

The aqueous phase was extracted with CH2Cl2 (4 × 10 mL). The crude extracts were then 

dried over Na2SO4. Evaporation of the solvent and subsequent column chromatography on 

silica gel afforded the corresponding product 51aa (128 mg, 82%) as a white solid.  

 

 

 

 

 

 

Figure 49. A) TEXENERGY Limited, Infinite Air wind turbine. B) Wind turbine powered 
by a fan. 

A) B) 
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5.5.3 Cyclic Voltammetry 

 

Figure 50. Cyclic voltammograms at 100 mV·s–1 using H2O and NaOAc (0.2 M) as the 
electrolyte and a GC working electrode. (black) Blank; (red) glycerol 
(50 mM); (blue) Co(OAc)2 (10 mM). 

 

Figure 51. Cyclic voltammogram at 100 mV·s–1 using H2O and NaOAc (0.2 M) as the 
electrolyte and a GC working electrode. Co(OAc)2 (10 mM) and benzamide 
34a (10 mM). 
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5.6 Mechanistic Insights into Cobalta(III/IV/II)-Electrocatalysis 

5.6.1 Characterization Data 

 

(2-{[(1-Oxidopyridin-2-yl-κO)-λ2-azaneyl-κN]carbonyl}phenyl-κC1)-[(1-

oxidopyridin-2-yl-κO)benzamido-κN]-(2-benzamidopyridine 1-oxido-κO)cobalt(III) 

(190): The general procedure G was followed using benzamide 34a (214 mg, 1.00 mmol, 

2.00 equiv), NaOPiv (124 mg, 1.00 mmol, 2.00 equiv), MeCN (13 mL) and Co(OAc)2 

(88.5 mg, 0.50 mmol). Purification by column chromatography on silica gel 

(CH2Cl2/MeOH 99:1  30:1) yielded 190 (161 mg, 46%) as a dark green solid. NMR 

spectroscopy and ESI-MS studies revealed the dissociation of the weakly mono-O-

coordinated substrate 34a in solution. With increased ionization energy for the ESI-MS, a 

significant decrease of the corresponding cobalta(III)cycle 190 signal with three 

coordinating substrates ([M+Na]+, m/z = 721.1) was observed. 

1H-NMR (400 MHz, CD2Cl2):  = 8.66 (dd, J = 6.5, 0.8 Hz, 1H), 8.05 (dd, J = 7.7, 0.6 Hz, 

1H), 7.96 (dd, J = 8.8, 1.6 Hz, 1H), 7.51–7.44 (m, 1H), 7.37–7.29 (m, 2H), 7.18–7.06 (m, 

3H), 6.87–6.74 (m, 4H), 6.60–6.49 (m, 3H), 6.18–6.10 (m, 1H).  

13C-NMR (101 MHz, CD2Cl2):  = 182.1 (Cq), 174.3 (Cq), 157.0 (Cq), 156.6 (Cq), 148.7 

(Cq), 139.3 (CH), 138.3 (CH), 137.6 (Cq), 137.2 (Cq), 136.2 (CH), 136.1 (CH), 131.8 (CH), 

131.4 (CH), 131.0 (CH), 128.4 (CH), 128.3 (CH), 128.1 (CH), 126.0 (CH), 119.3 (CH), 

118.8 (CH), 114.1 (CH), 114.1 (CH).   

IR (ATR): ṽ = 3059, 1640, 1606, 1557, 1486, 1361, 1261, 751 cm−1.  

MS (ESI) m/z (relative intensity): 991.1 (25) [2xM–2x34a+Na]+, 721.1 (20) [M+Na]+, 

699.1 (5) [M+H]+, 507.0 (100) [M–34a+Na]+, 485.1 (25) [M–34a+H]+.  

HR-MS (ESI) m/z calcd. for C36H27CoN6NaO6 [M+Na]+: 721.1216, found 721.1221. 

Crystals suitable for an X-ray diffraction study were obtained from slow solvent 

evaporation of a saturated solution of 190 in MeOH. Crystallization studies were performed 

together with Dr. D. Ghorai. 
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(2-Benzamidopyridine 1-oxide) (2,2'-{[(1,1'-biphenyl)-2,2'-

dicarbonyl]bis(azanediyl)}bis(pyridine 1-oxido)cobalt(II) (203): Benzamide 34a 

(107 mg, 0.50 mmol, 1.00 equiv), NaOPiv (124 mg, 1.00 mmol, 2.00 equiv), MeCN 

(5 mL) and Co(OAc)2·4H2O (62.3 mg, 0.25 mmol, 0.50 equiv) were placed in a 10 mL cell. 

Electrosynthesis was performed at 60 °C with a constant current of 4 mA for 14 h. Then, 

the DC-power supply was stopped and the reaction mixture was diluted with CH2Cl2 

(2.0 mL). The graphite felt anode was washed with CH2Cl2 (3 × 5.0 mL) in an ultrasonic 

bath (3 x 3 min). The combined washings were added to the reaction mixture and the 

combined phases were stirred with aq. sodium tartrate (15 mL, 1.0 M). The aqueous phase 

was extracted with CH2Cl2 (4 × 10 mL). The crude extracts were dried over Na2SO4. 

Evaporation of the solvents and subsequent column chromatography on silica gel 

(CH2Cl2/MeOH 99:110:1), followed by recrystallisation in CH2Cl2 yielded 203 

(92.6 mg, 132 μmol, 53%) as pink crystals and 205 (21.0 mg, 49.2 μmol, 20%) as white 

crystals. Paramagnetic 1H-NMR spectroscopy and ESI-MS analysis showed dissociation of 

the mono-O-coordinated substrate 34a in solution, which could be confirmed by X-ray 

diffraction analysis.  

1H-NMR (300 MHz, paramagnetic, CD2Cl2):   = 132.26 (br, 1H), 128.80 (br, 1H), 103.86 

(br, 1H), 78.86 (br, 1H), 10.20–9.20 (m, 1H), 9.34–9.08 (m, 1H), 8.41–7.19 (m, 7H), –3.96 

(br, 1H), –17.52 (br, 1H), –22.60 (br, 1H).  

IR (ATR): ṽ = 3062, 2942, 1687, 1617, 1556, 1479, 1430, 1339, 1135, 750, 704 cm−1.  

MS (ESI) m/z (relative intensity): 1472.1 (25) [3xM–3x34a+Na]+, 1202.1 (20) [2xM–

34a+Na]+, 989.0 (50) [2xM–2x34a+Na]+, 719.1 (60) [M+Na]+, 506.0 (100) [M–34a+Na]+, 

484.1 (25) [M–34a+H]+.  

HR-MS (ESI) m/z calcd. for C36H25CoN6NaO6 [M+Na]+: 719.1060, found 719.1048. 
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Crystals suitable for X-ray diffraction studies were obtained from slow diffusion of 

n-hexane into a saturated solution of 203 in CH2Cl2 or concentrated solution of 203 in 

MeOH. 

 

2,2'-{[(1,1'-Biphenyl)-2,2'-dicarbonyl]bis(azanediyl)}bis(pyridine 1-oxide) (205): The 

representative synthesis of 203 was followed, using benzamide 34a (107 mg, 0.50 mmol, 

1.00 equiv), NaOPiv (124 mg, 1.00 mmol, 2.00 equiv), MeCN (5 mL) and 

Co(OAc)2·4H2O (62.3 mg, 0.25 mmol, 0.50 equiv). The obtained purple crystals were 

dissolved in CH2Cl2 (5.0 mL) and vigorously stirred with aq. EDTA solution (10 mL, 

0.1 M) for 12 h at 25 °C. The phases were separated, and the aqueous phase was extracted 

with CH2Cl2 (4 × 5.0 mL). The crude extracts were dried over Na2SO4. Evaporation of the 

solvents and subsequent column chromatography on silica gel (CH2Cl2/MeOH 15:18:1) 

yielded 205 (30.2 mg, 70.8 μmol, 28%) as white crystals.  

M. p.: 209–210 °C.  

1H-NMR (600 MHz, CDCl3):   = 10.60 (s, 2H), 8.42 (ddd, J = 8.5, 1.9, 0.6 Hz, 2H), 8.11 

(ddd, J = 6.5, 0.9, 0.6 Hz, 2H), 7.89–7.81 (m, 2H), 7.53–7.43 (m, 4H), 7.33–7.28 (m, 2H), 

7.23 (ddd, J = 8.5, 7.6, 1.5 Hz, 2H), 6.90 (ddd, J = 7.6, 6.5, 1.9 Hz, 2H). Even at –35 °C, 

no hindered rotation was detected.  

13C-NMR (151 MHz, CDCl3):   = 167.4 (Cq), 144.4 (Cq), 139.7 (Cq), 137.1 (CH), 134.7 

(Cq), 131.4 (CH), 130.6 (CH), 128.5 (CH), 128.4 (CH), 127.8 (CH), 118.8 (CH), 115.2 

(CH).  

IR (ATR): ṽ = 3257, 1678, 1566, 1501, 1425, 1282, 1208, 756, 725 cm−1.  

MS (ESI) m/z (relative intensity): 875.2 (30) [2xM+Na]+, 449.1 (100) [M+Na]+, 427.1 (10) 

[M+H]+.  

HR-MS (ESI) m/z calcd. for C24H18N4NaO4 [M+Na]+: 449.1220, found 449.1216. 
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5.6.2 Reaction Monitoring by Mass Spectrometry 

5.6.2.1 ESI-MS Monitoring of the Formation of 190 upon Anodic Oxidation 

 

Benzamide 34a (107 mg, 0.50 mmol, 1.00 equiv), Co(OAc)2·4H2O (125 mg, 0.50 mmol, 

1.00 equiv), NaOPiv (124 mg, 1.00 mmol, 2.00 equiv), and MeCN (9.0 mL) were placed 

in a 20 mL undivided cell. Electrosynthesis was performed at 25 °C with a constant current 

of 6 mA maintained for 2 h. Aliquots (100 µL) were collected after 0, 60, 120 min and were 

diluted with MeCN to give a 0.01 mM solution. 

 

Figure 52. ESI-MS (positive ionization-mode) after 0 min. 
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Figure 53. ESI-MS (positive ionization-mode) after 60 min. 

 

Figure 54. ESI-MS (positive ionization-mode) after 120 min. 
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5.6.2.2 ESI-MS Monitoring of the Formation of 36ab upon Anodic Oxidation of 

190 

 

34 (140 mg, 200 µmol, 1.00 equiv), NaOPiv (49.6 mg, 400 µmol, 2.00 equiv), and MeOH 

(35b) (9.0 mL) were placed in a 20 mL cell. Electrosynthesis was performed at 25 °C with 

a constant current of 6 mA maintained for 90 min. Aliquots (100 µL) were collected after 

0, 30, 60, 90 min and were diluted with MeOH to give a 0.01 mM solution. 

Table 33.  Plot of relative intensity of 36ab, detected with ESI-MS, versus time. 

Entry Time [min] Rel. Int. 36ab [%] 

1 0 0 

2 30 35 

3 60 72 

4 90 100 

 

Figure 55. ESI-MS (positive ionization-mode) after 0 min. 
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Figure 56. ESI-MS (positive ionization-mode) after 30 min.  

 

Figure 57. ESI-MS (positive ionization-mode) after 60 min.  
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Figure 58. ESI-MS (positive ionization-mode) after 90 min.  

5.6.3 Reactivity of Cyclometalated Cobalt(III) Complex 190 

5.6.3.1 Reactivity of Cobalt(III)-Complex 190 toward C–H Alkoxylation in the 

Absence of Oxidants 

 

Reaction A) Cobalt(III) complex 190 (45.1 mg, 64.4 µmol, 1.00 equiv), NaOPiv (16.0 mg, 

128 µmol, 2.00 equiv), and MeOH (35b) (3.0 mL) were placed in a 10 mL Schlenk tube. 

The mixture was degassed and purged with nitrogen for 3 times and stirred at 25 °C for 

16 h. Then, 1,3,5-trimethoxybenzene (10.8 mg, 1.00 equiv) was added as an internal 

standard. The crude mixture was filtered over Celite and the Schlenk tube was washed with 

MeOH (3 x 5.0 mL). Evaporation of the solvent in vacuo and subsequent 1H-NMR-

spectroscopic analysis, as well as ESI-MS analysis did not show any product formation.  
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Reaction B) Cobalt(III) complex 190 (45.1 mg, 64.4 µmol, 1.00 equiv), NaOMe (13.8 mg, 

256 µmol, 4.00 equiv), NaOPiv (16.0 mg, 128 µmol, 2.00 equiv), and MeOH (35b) 

(3.0 mL) were placed in a 10 mL Schlenk tube. The mixture was degassed and purged with 

nitrogen for 3 times and stirred at 25 °C for 16 h. Then, 1,3,5-trimethoxybenzene (10.8 mg, 

1.00 equiv) was added as an internal standard. The crude mixture was filtered over Celite 

and the Schlenk tube was washed with MeOH (3 x 5.0 mL). Evaporation of the solvent in 

vacuo and subsequent 1H-NMR-spectroscopic analysis, as well as ESI-MS analysis did not 

show any product formation.  

5.6.3.2 Reactivity of Cobalt(III)-Complex 190 toward Electrochemical C–H 

Alkoxylation  

 

190 (100 mg, 143 µmol, 1.00 equiv), NaOPiv (36.0 mg, 0.60 mmol, 4.20 equiv), and 

MeOH (35b) (4.0 mL) were placed in a 10 mL cell. Electrosynthesis was performed at 

25 °C with a constant potential of 1.3 V versus Ag/Ag+ maintained until 1.5 F was passed 

through the cell (4 h). Then, the electrolysis was stopped, the suspension was filtered over 

Celite and the electrolysis cell was washed with CH2Cl2 (3 x 5.0 mL). The graphite felt 

anode was washed with CH2Cl2 (3 × 5.0 mL) in an ultrasonic bath (3 x 3 min). The 

combined washings were added to the reaction mixture and the combined phases were 

washed with H2O (15 mL). The aqueous phase was extracted with CH2Cl2 (4 × 10 mL). 

The crude extracts were then dried over Na2SO4. Evaporation of the solvent in vacuo and 

subsequent column chromatography on silica gel (CH2Cl2/acetone 3:1) afforded 2-(2-

methoxybenzamido)pyridine-1-oxide (36ab) (35 mg, 99%) as a white solid. The yield of 

99% is based on the conversion of one of the coordinating substrates 34a. 
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5.6.3.3 Reactivity of Cobalt(III)-Complex 190 toward C–H Annulation with 

Alkyne 53a  

 

Cobalt(III) complex 190 (45.1 mg, 64.4 µmol, 1.00 equiv), phenylacetylene (53a) 

(26.3 mg, 258 µmol, 4.00 equiv), NaOPiv (16.0 mg, 128 µmol, 2.00 equiv), and MeOH 

(2.0 mL) were placed in a 10 mL Schlenk tube. The mixture was degassed and purged with 

nitrogen for 3 times and stirred at 25 °C for 16 h. Then, 1,3,5-trimethoxybenzene (10.8 mg, 

1.00 equiv) was added as an internal standard. The crude mixture was filtered over Celite 

and the Schlenk tube was washed with MeOH (3 x 5.0 mL). Evaporation of the solvent in 

vacuo and subsequent 1H-NMR-spectroscopic analysis revealed 99% 1H-NMR-conversion. 

Recombination of the reaction mixture with the NMR sample and subsequent column 

chromatography on silica gel (CH2Cl2/acetone 3:1) afforded the corresponding product 2-

[1-oxo-3-phenylisoquinolin-2(1H)-yl]-pyridine-1-oxide (51aa) (21 mg, 99%) as a white 

solid. The yield of 99% is based on the conversion of one of the coordinating substrates.  

At the end of the reaction and before the work-up, an aliquot (10 µL) was removed and was 

diluted with dry MeOH to give a 0.01 mM solution. The solution was sealed under a flow 

of nitrogen and the sample was analyzed via ESI-MS to detect a non-converted, seven-

membered cobalta(III)cycle 195. However, only traces were detected, being supportive for 

fast reductive elimination to release the desired product 51aa.  
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5.6.3.4 Reactivity of Cobalt(III)-Complex 190 toward C–H Annulation with 

Allene 75d  

 

Cobalt(III) complex 190 (45.1 mg, 64.4 µmol, 1.00 equiv), benzyl buta-2,3-dienoate (75d) 

(44.5 mg, 256 µmol, 4.00 equiv), NaOPiv (16.0 mg, 128 µmol, 2.00 equiv), and MeOH 

(2.0 mL) were placed in a 10 mL Schlenk tube. The mixture was degassed and purged with 

nitrogen for 3 times and stirred at 25 °C for 16 h. Then, 1,3,5-trimethoxybenzene (10.8 mg, 

1.00 equiv) was added as an internal standard. The crude mixture was filtered over Celite 

and the Schlenk tube was washed with MeOH (3 x 5.0 mL). Evaporation of the solvent in 

vacuo and subsequent 1H-NMR-spectroscopic analysis revealed 99% NMR-conversion. 

Recombination of the reaction mixture with the NMR sample and subsequent column 

chromatography on silica gel (CH2Cl2/acetone 3:1) afforded the corresponding 2-{3-[2-

(benzyloxy)-2-oxoethyl]-1-oxoisoquinolin-2(1H)-yl}pyridine 1-oxide (176ad) (24 mg, 

97%) as a yellow solid. The yield of 97% is based on the conversion of only one of the 

coordinating substrates. 

 

 

 

 

 

 

 



242 Experimental Part 

5.6.4 Hammett-Zuman Plot 

Characterization Data 

 

Tris[2-(3-methylbenzamido)pyridine 1-oxido]cobalt(III) (196): The general procedure 

G was followed using benzamide 34b (228 mg, 1.00 mmol, 2.00 equiv) and MeCN 

(13.0 mL). Purification by column chromatography on silica gel (CH2Cl2/MeOH 

99:130:1) yielded 196 (190 mg, 257 μmol, 51%) as a dark green solid.  

1H-NMR (400 MHz, CD3OD):  = 8.60–8.46 (m, 1H), 8.45–8.25 (m, 1H), 7.57–7.38 (m, 

2H), 7.36–7.20 (m, 4H), 7.14–7.08 (m, 1H), 7.06–6.94 (m, 2H), 6.90–6.83 (m, 1H), 6.83–

6.75 (m, 1H), 6.72–6.61 (m, 1H), 2.51 (s, 3H), 2.14 (s, 3H).  

13C-NMR (101 MHz, CD3OD):  = 185.7 (Cq), 156.3 (Cq), 150.8 (Cq), 148.6 (Cq), 138.5 

(Cq), 137.2 (Cq), 137.1 (Cq), 135.9 (CH), 135.7 (CH), 135.3 (CH), 134.1 (CH), 131.9 (Cq), 

131.5 (CH), 131.2 (CH), 131.1 (CH), 127.7 (CH), 127.1 (CH), 126.8 (CH), 124.2 (CH), 

120.3 (Cq), 119.2 (CH), 118.8 (CH), 116.6 (CH), 114.9 (CH), 20.1 (CH3), 19.3 (CH3).  

IR (ATR): ṽ = 2920, 1627, 1598, 1557, 1483, 1361, 1191, 755 cm−1.  

MS (ESI) m/z (relative intensity): 1047.2 (20) [2xM–2x34b+Na]+, 763.2 (10) [M+Na]+, 

535.1 (100) [M–34b+Na]+, 513.1 (20) [M–34b+H]+.  

HR-MS (ESI) m/z calcd. for C39H33CoN6NaO6 [M+Na]+: 763.1686, found 763.1686.  

 

Tris[2-(3-isopropylbenzamido)pyridine 1-oxido]cobalt(III) (197): The general 

procedure G was followed using benzamide 34w (256 mg, 1.00 mmol, 2.00 equiv) and 
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MeCN (13.0 mL). Purification by column chromatography on silica gel (CH2Cl2/MeOH 

99:130:1) yielded 197 (116 mg, 141 μmol, 28%) as a dark green solid.  

1H-NMR (400 MHz, CD3OD):  = 8.74–8.53 (m, 1H), 8.54–8.36 (m, 1H), 7.77–7.65 (m, 

1H), 7.64–7.48 (m, 2H), 7.48–7.38 (m, 1H), 7.37–7.19 (m, 2H), 7.19–7.00 (m, 4H), 7.00–

6.88 (m, 1H), 6.88–6.75 (m, 1H), 6.75–6.54 (m, 1H), 3.05–2.96 (m, 1H), 2.82–2.64 (m, 

1H), 1.36–1.29 (m, 6H), 1.16 (d, J = 6.5 Hz, 6H).  

13C-NMR (101 MHz, CD3OD):  = 186.2 (Cq), 157.6 (Cq), 157.0 (Cq), 149.8 (Cq), 149.6 

(Cq), 146.9 (CH), 146.9 (CH), 139.6 (Cq), 138.5 (Cq), 137.4 (Cq), 137.0 (CH), 136.9 (CH), 

133.2 (Cq), 132.7 (CH), 132.6 (CH), 130.1 (CH), 129.9 (CH), 128.5 (CH), 128.3 (CH), 

127.0 (CH), 126.3 (CH), 125.5 (CH), 120.3 (CH), 120.2 (CH), 117.8 (CH), 116.0 (CH), 

34.9 (CH), 34.7 (CH), 24.9 (2xCH3), 24.2 (2xCH3).  

IR (ATR): ṽ = 2960, 1625, 1599, 1556, 1485, 1363, 1200, 756 cm−1.  

MS (ESI) m/z (relative intensity): 1159.3 (10) [2xM–2x34w+Na]+, 847.3 (20) [M+Na]+, 

591.1 (100) [M–34w+Na]+, 569.2 (20) [M–34w+H]+.  

HR-MS (ESI) m/z calcd. for C45H45CoN6NaO6 [M+Na]+: 847.2625, found 847.2612.  

 

Tris[2-(3-methoxybenzamido)pyridine 1-oxido]cobalt(III) (198): The general 

procedure G was followed using benzamide 34p (244 mg, 1.00 mmol, 2.00 equiv) and 

MeCN (13.0 mL). Purification by column chromatography on silica gel (CH2Cl2/MeOH 

99:120:1) yielded 198 (52.1 mg, 66.1 μmol, 13%) as a dark green solid.  

1H-NMR (400 MHz, CD3OD):  = 8.54–8.25 (m, 2H), 7.42–7.34 (m, 1H), 7.28–7.18 (m, 

3H), 7.16–7.10 (m, 1H), 7.08–7.01 (m, 1H), 6.95–6.88 (m, 1H), 6.88–6.75 (m, 2H), 6.75–

6.63 (m, 3H), 6.63–6.51 (m, 1H), 3.85 (s, 3H), 3.50 (s, 3H).  

13C-NMR (101 MHz, CD3OD):  = 160.5, 160.3, 158.2, 157.7, 145.9, 141.0, 138.6, 137.2, 

137.1, 136.9, 135.6, 135.3, 132.9, 129.6, 121.4, 120.6, 120.2, 118.9, 118.7, 118.0, 117.7, 

116.2, 115.8, 112.7, 112.4, 55.9 (CH3), 55.5 (CH3). 13C-NMR signals could not be clearly 

assigned, due to decomposition of the complex during the measurement.  

IR (ATR): ṽ = 2963, 1626, 1581, 1558, 1485, 1363, 1268, 756 cm−1.  
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MS (ESI) m/z (relative intensity): 1111.1 (5) [2xM–2x34p+Na]+, 811.2 (20) [M+Na]+, 

789.1 (3) [M+H]+, 667.1 (20) [M–34p+OPiv+Na]+, 567.1 (100) [M–34p+Na]+, 545.1 (25) 

[M–34p+H]+.  

HR-MS (ESI) m/z calcd. for C39H33CoN6NaO9 [M+Na]+: 811.1533, found 811.1517.  

 

Tris[2-(3-cyanobenzamido)pyridine 1-oxido]cobalt(III) (199): The general procedure G 

was followed using benzamide 34x (239 mg, 1.00 mmol, 2.00 equiv) and MeCN 

(13.0 mL). Purification by column chromatography on silica gel (CH2Cl2/MeOH 

99:110:1) yielded 199 (74.9 mg, 96.9 μmol, 19%) as a brown solid.  

1H-NMR (400 MHz, CD3OD):  = 8.72–8.63 (m, 1H), 7.83–7.69 (m, 3H), 7.64–7.48 (m, 

3H), 7.44–7.30 (m, 4H), 7.27–7.19 (m, 1H), 7.13–7.09 (m, 1H), 7.01–6.86 (m, 2H).  

13C-NMR (101 MHz, CD3OD):  = 182.2, 157.3, 151.7, 142.8, 141.2, 139.3, 138.4, 137.4, 

135.1, 133.6, 133.1, 132.2, 131.2, 130.9, 130.9, 129.9, 129.1, 120.0, 119.4, 118.7, 112.6, 

109.9. 13C-NMR resonances could not be clearly assigned, due to partial decomposition 

during the measurement.  

IR (ATR): ṽ = 3081, 2229, 1625, 1598, 1489, 1370, 1337, 1178, 759 cm−1.  

MS (ESI) m/z (relative intensity): 1091.1 (10) [2xM–2x34x+Na]+, 796.1 (10) [M+Na]+, 

774.1 (3) [M+H]+, 557.0 (100) [M–34x+Na]+, 535.1 (10) [M–34x+H]+.  

HR-MS (ESI) m/z calcd. for C39H24CoN9NaO6 [M+Na]+: 796.1074, found 796.1068.  

 

Tris{2-[3-(trifluoromethyl)benzamido]pyridine 1-oxido}cobalt(III) (200): The general 

procedure G was followed using benzamide 34y (282 mg, 1.00 mmol, 2.00 equiv) and 



Experimental Part   245 
 

MeCN (13.0 mL). Purification by column chromatography on silica gel (CH2Cl2/MeOH 

99:110:1) yielded 200 (58.9 mg, 65.3 μmol, 13%) as a dark green solid.  

1H-NMR (400 MHz, CD3OD):  = 9.78–9.53 (m, 1H), 9.02–8.80 (m, 1H), 7.95–7.79 (m, 

2H), 7.75–7.52 (m, 4H), 7.46–7.31 (m, 2H), 7.30–7.21 (m, 2H), 7.10–6.98 (m, 1H), 6.90–

6.65 (m, 1H), 6.90–6.65 (m, 1H).  

13C-NMR (101 MHz, CD3OD):  = 165.2, 156.8, 153.1, 150.2, 144.2, 140.7, 139.4, 138.0, 

137.3, 136.7, 135.5, 134.6, 132.7, 132.3, 131.0, 130.2, 129.2, 128.7, 127.8, 126.7, 125.5, 

125.1, 123.2, 121.8, 120.9, 119.9, 118.6, 116.9, 116.8. 13C-NMR resonances could not be 

clearly assigned, due to partial decomposition during the measurement.  

19F{1H}-NMR (377 MHz, CD3OD):  = –63.8, –64.4.  

IR (ATR): ṽ = 3083, 1697, 1614, 1577, 1511, 1491, 1431, 1329, 1250, 1128, 761, 696 cm−1. 

MS (ESI) m/z (relative intensity): 925.2 (30) [M+Na]+, 903.2 (5) [M+H]+, 643.1 (100) [M–

34y+Na]+, 621.1 (10) [M–34y+H]+, 305.1 (50) [34y+Na]+.  

HR-MS (ESI) m/z calcd. for C39H24CoF9N6NaO6 [M+Na]+: 925.0838, found 925.0846. 

Based on NMR spectroscopy and ESI-MS studies, the cobalt(III) complex 200 still 

contained unreacted substrate 34y, which could not be fully separated by either column 

chromatography or recrystallisation. However, CV-experiments were not influenced by the 

contamination since 34y showed a significantly higher oxidation potential. 

 

Tris[2-(3-fluorobenzamido)pyridine 1-oxido]cobalt(III) (201): The general procedure G 

was followed using benzamide 34r (232 mg, 1.00 mmol, 2.00 equiv) and MeCN 

(13.0 mL). Purification by column chromatography on silica gel (CH2Cl2/MeOH 

99:130:1) yielded 201 (187 mg, 255 μmol, 51%) as a green solid.  

1H-NMR (400 MHz, CD3OD):  = 8.46–8.24 (m, 1H), 7.83–7.64 (m, 1H), 7.63–7.38 (m, 

4H), 7.40–7.17 (m, 3H), 7.14–7.02 (m, 1H), 6.98–6.81 (m, 3H), 6.79–6.59 (m, 2H).  

13C-NMR (101 MHz, CD3OD):  = 165.1, 163.2, 157.4, 152.9, 147.1, 138.9, 138.5, 136.8, 

133.6, 133.2, 132.8, 132.1, 130.6, 127.2, 126.6, 125.0, 124.3, 124.2, 121.2, 121.1, 120.4, 
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120.2, 119.8, 119.5, 118.6, 118.4, 118.2, 116.5, 92.8. 13C-NMR resonances could not be 

clearly assigned, due to partial decomposition during the measurement.  

19F{1H}-NMR (376 MHz, CD2Cl2):  = –112.5, –113.7.  

IR (ATR): ṽ = 3079, 1696, 1632, 1587, 1486, 1437, 1365, 757 cm−1.  

MS (ESI) m/z (relative intensity): 775.1 (35) [M+Na]+, 753.1 (5) [M+H]+, 543.0 (100) [M–

34r+Na]+, 521.0 (20) [M–34r+H]+, 255.1 (50) [34r+Na]+.  

HR-MS (ESI) m/z calcd. for C36H24CoFN6O6 [M+Na]+: 755.0934, found 755.0932.  

Based on NMR spectroscopy and ESI-MS studies, the cobalt(III) complex 201 contained 

unreacted substrate 34r, which could not be fully separated by either column 

chromatography or recrystallisation. However, CV-experiments were not influenced by the 

contamination since 34r showed a significantly higher oxidation potential.  

5.6.4.1 Cyclic Voltammetry  

 

Figure 59. Cyclic voltammograms at 100 mV·s–1 using MeOH and n-Bu4NPF6 (0.1 M) 
as the electrolyte and a GC working electrode. Substrate concentration was 
3.5 mM. 
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5.6.5 Inhibition Experiments 

 

Benzamide 34a (107 mg, 0.50 mmol, 1.00 equiv), NaOPiv (124 mg, 1.00 mmol, 

2.00 equiv), Co(OAc)2·4H2O (25.4 mg, 20 mol %), 205 (42.6 mg, 0.10 mmol, 20 mol %), 

and EtOH (35a) (5.0 mL) were placed in a 10 mL cell. Prior to electrolysis, the reaction 

mixture was stirred for 10 min at 25 °C. Electrosynthesis was performed at 25 °C with a 

constant current of 4 mA, maintained for 16 h. Then, 1,3,5-trimethoxybenzene (28.0 mg, 

0.33 equiv) was added as an internal standard and the reaction mixture was diluted with 

CH2Cl2 (2.0 mL). The graphite felt anode was washed with CH2Cl2 (3 × 5.0 mL) in an 

ultrasonic bath (3 x 3 min). The combined washings were added to the reaction mixture and 

the combined phases were washed with H2O (15 mL). The aqueous phase was extracted 

with CH2Cl2 (4 × 10 mL). The crude extracts were then dried over Na2SO4. Evaporation of 

the solvent in vacuo and subsequent 1H-NMR spectroscopic analysis revealed 75% 1H-

NMR-conversion of substrate 34a due to overoxidation and only low formation of the 

desired product 36aa (26%). The yield of the dimerized product 205 was determined to be 

4%. In parallel, a control reaction without the dimerized product delivered product 36aa in 

71% 1H-NMR conversion. 

NaOPiv
H2O/MeOH (1:1), 25 °C

16 h, CCE at 4 mA

N

O

PyO

51aa

GF Pt

Co(OAc)2∙4H2O (10 mol %)
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53a (2.0 equiv)

N
H

O

PyO

H

+

N
H

O

H
N

O

PyO

34a 205 (10 mol %)

PyO

with 205:
without 205:

9%
73%

 

Benzamide 34a (107 mg, 0.50 mmol, 1.00 equiv), phenylacetylene (102 mg, 1.00 mmol, 

2.00 equiv), NaOPiv (124 mg, 1.00 mmol, 2.00 equiv), Co(OAc)2·4H2O (12.7 mg, 

10 mol %), 205 (42.6 mg, 50.0 µmol, 10 mol %), and H2O/MeOH (v/v = 1:1, 5.0 mL) were 
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placed in a 10 mL cell. Prior to electrolysis, the reaction mixture was stirred for 10 min at 

25 °C. Electrosynthesis was performed at 25 °C with a constant current of 4 mA, 

maintained for 16 h. Then, 1,3,5-trimethoxybenzene (28.0 mg, 0.33 equiv) was added as 

an internal standard and the reaction mixture was diluted with CH2Cl2 (2.0 mL). The 

graphite felt anode was washed with CH2Cl2 (3 × 5.0 mL) in an ultrasonic bath (3 x 3 min). 

The combined washings were added to the reaction mixture and the combined phases were 

washed with H2O (15 mL). The aqueous phase was extracted with CH2Cl2 (4 × 10 mL). 

The crude extracts were then dried over Na2SO4. Evaporation of the solvent in vacuo and 

subsequent 1H-NMR spectroscopic analysis revealed 97% NMR conversion of substrate 

34a, due to overoxidation and only traces of the desired product 51aa (9%). The dimerized 

product 205 could only be detected in traces. In parallel, a control reaction without the 

dimerized product delivered product 51aa in 73% 1H-NMR conversion. 
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5.7 Mechanistic Studies for Ruthenaelectro-Catalyzed C–H 

Oxygenation 

5.7.1 Reaction Profile for the Formation of Hypervalent Iodine Reagents 

 

The flow NMR study was carried out in an undivided cell with two platinum electrodes 

(10 mm x 15 mm x 0.125 mm). The cell was charged with 4-iodotoluene (215b) (109 mg, 

0.50 mmol, 1.00 equiv) and LiClO4 (63.8 mg, 0.60 mmol, 1.20 equiv) in TFE (10 mL). 

After recording initial spectra, the electrolysis was initiated by applying a constant current 

of 10 mA at 25 °C. The in-line electrolysis and NMR monitoring were performed for 3 h. 

The reaction solution was circulated between the benchtop NMR spectrometer and the 

electrochemical cell with a flow speed of 0.8 mL·min–1. The reaction profile was monitored 

with 1H-NMR spectra recorded after every 90 seconds. After the electrolysis was stopped, 

the spectra were batch processed with the reaction monitoring wizard of the MestreNova 

12.0.3 software. Arbitrary integral values were transformed to mmol and percentage values 

by referencing with dibromomethane as internal standard. Accordingly, the product p-

tolylbis(2,2,2-trifluoroethoxy)-λ3-iodane (218) was formed in 78% NMR conversion. 1H-

NMR signals at a chemical shift (referenced against the trifluoroethanol solvent signal at 

4.81 ppm) of 1.96 ppm and 2.19 ppm were identified to originate from the starting material 

215b and 218, respectively.  

 

The flow NMR study was carried out in an undivided cell with two platinum electrodes 

(10 mm x 15 mm x 0.125 mm). The cell was charged with 4-iodotoluene (215b) (109 mg, 
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0.50 mmol, 1.00 equiv) and n-Bu4NPF6 (194 mg, 0.50 mmol, 1.00 equiv) in TFA/TFAA 

(10 mL, 3:1 v/v). After recording initial spectra, the electrolysis was initiated by applying 

a constant current of 10 mA at 25 °C. The in-line electrolysis and NMR monitoring were 

performed for 5 h. The reaction solution was circulated between the benchtop NMR and 

the electrochemical cell with a flow speed of 0.8 mL·min–1. The reaction profile was 

monitored with 1H-NMR spectra recorded after every 90 seconds. After the electrolysis 

was stopped, the spectra were batch processed with the reaction monitoring wizard of the 

MestreNova 12.0.3 software. Arbitrary integral values were transformed to mmol and 

percentage values by referencing with dibromomethane as internal standard. Accordingly, 

the product p-tolyl-λ3-iodanediyl bis(2,2,2-trifluoroacetate) (219) was formed in 76% NMR 

conversion. 1H-NMR resonances at a chemical shift (referenced against the trifluoroacetic 

acid residual solvent peak of 11.50 ppm) of 8.08 ppm and 6.83 ppm were identified to 

originate from the starting material 215b and 219, respectively.  

5.7.2 Evaluation of the Electron Transfer Number by CV and RDE 

 

Figure 60.  Cyclic voltammograms at different scan rates using DCE and n-Bu4NPF6 
(0.1 M) as the electrolyte and a GC working electrode; concentration of 
complex 221 was 3.86 mM. A non-aqueous Ag/AgNO3 in MeCN was used 
as the reference electrode. 
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Table 34.  Plot data of oxidative peak current ip in amperes versus square root of scan 
rate v. 

Entry ip [A] v1/2 [V1/2·s–1/2] 

1 2.76·10–5 0.141 

2 5.55·10–5 0.316 

3 1.02·10–4 0.632 

4 1.37·10–4 0.894 

5 1.63·10–4 1.095 

 

 

Figure 61.  Linear sweep voltammetry of complex 221 at different rotation speeds, 
using a GC rotating-disc electrode. DCE and n-Bu4NPF6 (0.1 M) was used 
as the electrolyte; a scan rate of 20 mV·s–1 and a concentration of complex 
221 of 3.859 mM, was used. A non-aqueous Ag/AgNO3 in acetonitrile was 
used as the reference electrode.  
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Table 35.  Plot data of Levich current ilim in amperes versus square root of rotation rate 
ω. 

Entry ilim [10–5A] ω1/2 [rad1/2·s–1/2] 

1 1.78 3.236 

2 2.43 4.576 

3 3.79 7.236 

4 5.33 10.23 

5 6.45 12.53 

The error number of the electron transfer number n was calculated via propagation of 

uncertainty, using the following values: σARDE = ± 0.0001 cm2; σACV = ± 0.01 cm2; σS1 = 

± 0.036·10–4; σS2 = ± 0.036·10–6; CRDE = ± 0.1·10–6 mol·cm–3; CCV = ± 0.1·10–6 mol·cm–3. 
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5.8 Manganaelectro-Catalyzed Undirected C(sp3)–H Azidation 

5.8.1 Characterization Data 

 

1-Azido-1,2,3,4-tetrahydronaphthalene (113a): The general procedure I was followed 

using 1,2,3,4-tetrahydronaphthalene (111a) (66.1 mg, 0.50 mmol) and sodium azide 

(260 mg, 4.00 mmol). Purification by column chromatography on silica gel (n-

pentane/EtOAc 99:1) yielded 113a (48.6 mg, 281 µmol, 56%) as a colorless liquid. 

1H-NMR (400 MHz, CDCl3): δ = 7.33–7.27 (m, 1H), 7.26–7.19 (m, 2H), 7.17–7.10 (m, 

1H), 4.57 (t, J = 4.9 Hz, 1H), 2.90–2.81 (m, 1H), 2.81–2.68 (m, 1H), 2.08–1.91 (m, 3H), 

1.89–1.72 (m, 1H).  

13C-NMR (101 MHz, CDCl3): δ = 137.5 (Cq), 133.9 (Cq), 129.6 (CH), 129.3 (CH), 127.8 

(CH), 126.3 (CH), 59.6 (CH), 29.3 (CH2), 28.9 (CH2), 19.1 (CH2).  

IR (ATR): ṽ = 2937, 2870, 2093, 1454, 1233, 943, 766, 741 cm−1.  

MS (EI) m/z (relative intensity): 155 (10), 145 (20) [M–N2]+, 131 (100), 115 (45), 102 (5), 

91 (20), 77 (5).  

HR-MS (ESI) m/z calcd. for C10H13N3Na [M+Na]+: 196.0845, found: 196.0845.  

The analytical data corresponds with those reported in the literature.[406]  

  

Azidocyclooctane (113b): The general procedure I was followed using cyclooctane (111b) 

(56.1 mg, 0.50 mmol) and sodium azide (260 mg, 4.00 mmol). Purification by column 

chromatography on silica gel (n-pentane/EtOAc 99:1) yielded 113b (30.8 mg, 201 µmol, 

40%) as a colorless liquid. 

1H-NMR (400 MHz, CDCl3): δ = 3.64–3.51 (m, 1H), 1.94–1.84 (m, 2H), 1.79–1.67 (m, 

4H), 1.61–1.48 (m, 8H). 

13C-NMR (101 MHz, CDCl3): δ = 62.4 (CH), 31.0 (CH2), 27.4 (CH2), 25.3 (CH2), 23.3 

(CH2). 

IR (ATR): ṽ = 2927, 2854, 2091, 1474, 1259, 1095, 940, 668 cm−1. 
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MS (EI) m/z (relative intensity): 125 (5) [M–N2]+, 110 (10), 96 (50), 82 (100), 67 (70), 55 

(15). 

HR-MS (EI) m/z calcd. for C8H15N1 [M–N2]+: 125.1204, found: 125.1200. 

The analytical data corresponds with those reported in the literature.[407] 

 

Azidocycloheptane (113g): The general procedure I was followed using cycloheptane 

(111g) (49.1 mg, 0.50 mmol) and sodium azide (260 mg, 4.00 mmol). Purification by 

column chromatography on silica gel (n-pentane/EtOAc 99:1) yielded 113g (23.1 mg, 

165 µmol, 33%) as a colorless liquid. 

1H-NMR (400 MHz, CDCl3): δ = 3.57–3.48 (m, 1H), 1.99–1.88 (m, 2H), 1.74–1.51 (m, 

8H), 1.49–1.36 (m, 2H).  

13C-NMR (101 MHz, CDCl3): δ = 62.8 (CH), 33.9 (CH2), 28.0 (CH2), 23.6 (CH2).  

IR (ATR): ṽ = 2927, 2858, 2083, 1459, 1249, 958, 830, 560 cm−1.  

MS (EI) m/z (relative intensity): 110 (15) [M–N2]+, 96 (25), 91 (5), 82 (100), 68 (40), 55 

(55).  

HR-MS (EI) m/z calcd. for C7H13N1 [M–N2]+: 111.1048, found: 111.1044.  

The analytical data corresponds with those reported in the literature.[408]  

N3

 

(1-Azidoethane-1,2-diyl)dibenzene (113h): The general procedure I was followed using 

1,2-diphenylethane (111h) (91.2 mg, 0.50 mmol) and sodium azide (260 mg, 4.00 mmol). 

Purification by column chromatography on silica gel (n-pentane/EtOAc 99:1) yielded 113h 

(72.1 mg, 309 µmol, 62%) as a colorless liquid.  

1H-NMR (400 MHz, CDCl3): δ = 7.40–7.32 (m, 3H), 7.31–7.23 (m, 5H), 7.17–7.13 (m, 

2H), 4.68 (td, J = 8.4, 6.2 Hz, 1H), 3.13–3.00 (m, 2H).  

13C-NMR (101 MHz, CDCl3): δ = 139.5 (Cq), 137.6 (Cq), 129.5 (CH), 128.9 (CH), 128.6 

(CH), 128.5 (CH), 127.1 (CH), 126.9 (CH), 67.8 (CH), 43.2 (CH2).  

IR (ATR): ṽ = 3030, 2921, 2094, 1495, 1453, 1247, 757, 696 cm−1.  

MS (ESI) m/z (relative intensity): 246 (2) [M+Na]+, 181 (100) [M–N3]+, 117 (60).  

HR-MS (ESI) m/z calcd. for C14H13N3Na [M+Na]+: 246.1002, found: 246.1002.  
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The analytical data corresponds with those reported in the literature.[406] 

 

1-(2-Azidopropan-2-yl)-4-methylbenzene (113i): The general procedure I was followed 

using p-cymene (111i) (67.1 mg, 0.50 mmol) and sodium azide (260 mg, 4.00 mmol). The 

ratio of 113i/113i’ (33:1) was determined by 1H-NMR spectroscopy of the crude reaction 

mixture. Purification by column chromatography on silica gel (n-pentane/EtOAc 99:1) 

yielded 113i/113i’ (59.4 mg, 339 µmol, 66%) as a colorless liquid. Analytical data is 

reported for 113i. 

1H-NMR (400 MHz, CDCl3): δ = 7.36 (d, J = 8.3 Hz, 2H), 7.20 (d, J = 8.3 Hz, 2H), 2.37 

(s, 3H), 1.65 (s, 6H).  

13C-NMR (101 MHz, CDCl3): δ = 141.8 (Cq), 137.2 (Cq), 129.3 (CH), 125.2 (CH), 63.8 

(Cq), 28.6 (CH3), 21.1 (CH3).  

IR (ATR): ṽ = 2978, 2925, 2103, 1515, 1460, 1256, 1099, 816 cm−1.  

MS (EI) m/z (relative intensity): 133 (20) [M–N3]+, 132 (98), 117 (100), 105 (10), 91 (40), 

77 (5).  

HR-MS (EI) m/z calcd. for C10H13 [M–N3]+: 133.1012, found: 133.1012.  

The analytical data corresponds with those reported in the literature.[191] 

 

(1-Azido-2-methylpropyl)benzene (113j): The general procedure I was followed using 

isobutylbenzene (111j) (67.1 mg, 0.50 mmol) and sodium azide (260 mg, 4.00 mmol). The 

ratio of 113j/113j’ (2.7:1) was determined by 1H-NMR spectroscopy of the crude reaction 

mixture.[409] Purification by column chromatography on silica gel (n-pentane/EtOAc 99:1) 

yielded 113j/113j’ (49.2 mg, 281 µmol, 56%) as a colorless liquid. Analytical data is 

reported for 113j.   

1H-NMR (400 MHz, CDCl3): δ = 7.41–7.34 (m, 2H), 7.34–7.29 (m, 1H), 7.28–7.24 (m, 

2H), 4.13 (d, J = 8.0 Hz, 1H), 2.00 (dh, J = 8.0, 6.7 Hz, 1H), 1.02 (d, J = 6.7 Hz, 3H), 0.80 

(d, J = 6.7 Hz, 3H). 
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13C-NMR (101 MHz, CDCl3): δ = 139.1 (Cq), 128.7 (CH), 128.2 (CH), 127.6 (CH), 73.4 

(CH), 34.2 (CH), 19.7 (CH3), 19.4 (CH3).  

IR (ATR): ṽ = 2963, 2928, 2096, 1468, 1249, 1153, 747, 701 cm−1.  

MS (EI) m/z (relative intensity): 146 (20) [M–N2]+, 132 (30), 117 (60), 104 (100), 91 (55), 

77 (55).  

HR-MS (EI) m/z calcd. for C10H12N1 [M–N2]+: 146.0964, found: 146.0966.  

The analytical data corresponds with those reported in the literature.[203a]  

 

Methyl 4'-(1-azidohexyl)-[1,1'-biphenyl]-4-carboxylate (113k): The general procedure I 

was followed using methyl 4'-hexyl-[1,1'-biphenyl]-4-carboxylate (111k) (148 mg, 

0.50 mmol) and sodium azide (260 mg, 4.00 mmol). Purification by column 

chromatography on silica gel (n-hexane/EtOAc 10:1) yielded 113k (65.7 mg, 195 µmol, 

39%) as a colorless liquid.  

1H-NMR (600 MHz, CDCl3): δ = 8.13–8.10 (m, 2H), 7.68–7.65 (m, 2H), 7.64 (d, J = 8.4 

Hz, 2H), 7.41–7.38 (m, 2H), 4.46 (dd, J = 7.8, 6.6 Hz, 1H), 3.95 (s, 3H), 1.92–1.82 (m, 

1H), 1.81–1.73 (m, 1H), 1.47–1.36 (m, 1H), 1.36–1.25 (m, 5H), 0.91–0.86 (m, 3H). 

13C-NMR (101 MHz, CDCl3): δ = 167.1 (Cq), 145.1 (Cq), 140.1 (Cq), 139.9 (Cq), 130.3 

(CH), 129.2 (Cq), 127.8 (CH), 127.6 (CH), 127.1 (CH), 66.2 (CH), 52.3 (CH3), 36.3 (CH2), 

31.6 (CH2), 26.1 (CH2), 22.6 (CH2), 14.1 (CH3).  

IR (ATR): ṽ = 2932, 2859, 2093, 1719, 1608, 1435, 1275, 1110, 773 cm−1.  

MS (ESI) m/z (relative intensity): 697 (100) [2M+Na]+, 360 (70) [M+Na]+, 295 (10) [M–

N3]+.  

HR-MS (ESI) m/z calcd. for C20H23N3O2Na [M+Na]+: 360.1682, found: 360.1681.  
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(1R,2S,5R)-2-(2-Azidopropan-2-yl)-5-methylcyclohexyl acetate (113l): The general 

procedure I was followed using (–)-menthol acetate (111l) (99.2 mg, 0.50 mmol) and 

sodium azide (260 mg, 4.00 mmol). The ratio of 113l/113l’ (3:1) was determined by 1H-

NMR of the crude reaction mixture. Purification by column chromatography on silica gel 

(n-pentane/EtOAc 95:5) yielded 113l/113l’ (57.6 mg, 241 µmol, 48%) as a colorless liquid. 

Analytical data is reported for 113l. 

1H-NMR (600 MHz, CDCl3): δ = 4.81 (td, J = 10.7, 4.5 Hz, 1H), 2.05 (s, 3H), 1.99–1.94 

(m, 1H), 1.92 (dq, J = 13.4, 3.5 Hz, 1H), 1.71 (ddq, J = 11.9, 3.6, 2.3 Hz, 1H), 1.68–1.63 

(m, 1H), 1.53–1.45 (m, 1H), 1.26 (s, 3H), 1.24 (s, 3H), 1.11 (tdd, J = 13.3, 12.3, 3.6 Hz, 

1H), 1.01 (td, J = 12.3, 10.9 Hz, 1H), 0.93–0.90 (m, 1H), 0.90 (d, J = 6.5 Hz, 3H).  

13C-NMR (101 MHz, CDCl3): δ = 170.5 (Cq), 73.4 (CH), 63.6 (Cq), 49.1 (CH), 41.4 (CH2), 

34.2 (CH2), 31.3 (CH), 26.6 (CH2), 25.1 (CH3), 24.7 (CH3), 21.8 (CH3), 21.8 (CH3).  

IR (ATR): ṽ = 2955, 2872, 2099, 1734, 1457, 1371, 1239, 1027 cm−1.  

MS (ESI) m/z (relative intensity): 379 (10), 262 (100) [M+Na]+, 197 (10) [M–N3]+, 152 

(10).  

HR-MS (ESI) m/z calcd. for C12H21N3O2Na [M+Na]+: 262.1526, found: 262.1528.  

The analytical data corresponds with those reported in the literature.[201] 

 

(8S,9R,13S,14S)-9-Azido-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6H-

cyclopenta[a]phenanthren-3-yl acetate (113m): The general procedure I was followed 

using estrone acetate 111m (156 mg, 0.50 mmol) and sodium azide (260 mg, 4.00 mmol). 

Purification by column chromatography on silica gel (n-hexane/EtOAc 99:1  80:20) 

yielded 113m (66.3 mg, 188 µmol, 38%) and 113m‘ (65.3 mg, 185 µmol, 37%) as a 

mixture of diastereomers as colorless liquids.  
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1H-NMR (600 MHz, CDCl3): δ = 7.43 (d, J = 8.5 Hz, 1H), 6.96 (dd, J = 8.3, 2.5 Hz, 1H), 

6.93 (d, J = 2.5 Hz, 1H), 3.00–2.88 (m, 3H), 2.66–2.59 (m, 1H), 2.49 (ddd, J = 19.2, 8.9, 

1.1 Hz, 1H), 2.30 (s, 3H), 2.17 (dt, J = 19.2, 8.9 Hz, 1H), 2.05–1.95 (m, 2H), 1.89 (td, J = 

11.4, 10.7, 2.9 Hz, 1H), 1.84–1.74 (m, 4H), 1.61–1.56 (m, 1H), 0.89 (s, 3H).  

13C-NMR (101 MHz, CDCl3): δ = 219.7 (Cq), 169.6 (Cq), 150.5 (Cq), 138.5 (Cq), 134.3 

(Cq), 126.2 (CH), 122.9 (CH), 119.2 (CH), 65.3 (Cq), 47.6 (Cq), 43.6 (CH), 40.8 (CH), 35.9 

(CH2), 29.5 (CH2), 28.9 (CH2), 28.0 (CH2), 21.4 (CH2), 21.3 (CH3), 20.5 (CH2), 13.4 (CH3).  

IR (ATR): ṽ = 2937, 2856, 2093, 1763, 1738, 1494, 1262, 1200, 756 cm−1.  

MS (ESI) m/z (relative intensity): 729 (10) [2M+Na]+, 376 (100) [M+Na]+, 311 (50) [M–

N3]+.  

HR-MS (ESI) m/z calcd. for C20H23N3O3Na [M+Na]+: 376.1632, found: 376.1629.  

The analytical data corresponds with those reported in the literature.[406] 

(8S,9S,13S,14S)-9-Azido-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6H-

cyclopenta[a]phenanthren-3-yl acetate (113m’) 

1H-NMR (600 MHz, CDCl3): δ = 7.44 (d, J = 8.6 Hz, 1H), 6.99 (dd, J = 8.6, 2.6 Hz, 1H), 

6.95 (d, J = 2.5 Hz, 1H), 2.84–2.79 (m, 3H), 2.71 (dt, J = 14.4, 3.3 Hz, 1H), 2.47 (ddd, J = 

19.4, 8.9, 1.1 Hz, 2H), 2.29 (s, 4H), 2.11–2.02 (m, 4H), 1.96–1.91 (m, 1H), 1.81–1.75 (m, 

2H), 1.71 (dt, J = 13.6, 3.4 Hz, 2H), 1.66 (ddd, J = 12.5, 9.0, 3.5 Hz, 1H), 1.61–1.53 (m, 

3H), 1.14 (td, J = 13.8, 3.5 Hz, 2H), 1.02 (s, 4H). 

13C-NMR (101 MHz, CDCl3): δ = 218.8 (Cq), 169.4 (Cq), 150.4 (Cq), 138.9 (Cq), 130.5 

(Cq), 127.1 (CH), 123.0 (CH), 119.8 (CH), 65.9 (Cq), 47.5 (Cq), 43.2 (CH), 39.4 (CH), 35.8 

(CH2), 30.6 (CH2), 28.4 (CH2), 25.2 (CH2), 21.9 (CH2), 21.3 (CH3), 19.6 (CH2), 13.6 (CH3).  

IR (ATR): ṽ = 2948, 2864, 2093, 1763, 1740, 1495, 1204, 1013, 755 cm−1.  

MS (ESI) m/z (relative intensity): 729.4 (10) [2M+Na]+, 376.2 (100) [M+Na]+, 311.2 (30) 

[M–N3]+.  

HR-MS (ESI) m/z calcd. for C20H23N3O3Na [M+Na]+: 376.1632, found: 376.1634.  
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5.8.2 Mechanistic Studies 

5.8.2.1 Radical Trap Experiments 

 

[Mn2] (12.7 mg, 25.0 µmol, 5.0 mol %), sodium azide (260 mg, 4.00 mmol, 8.00 equiv), 

N-(tert-butyl)-4-isopropylbenzamide (111n) (110 mg, 0.50 mmol, 1.00 equiv), LiClO4 

(53.2 mg, 0.50 mmol, 1.00 equiv) and (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) 

(156 mg, 1.00 mmol, 2.0 equiv) were placed in an undivided cell under nitrogen 

atmosphere. The reaction components were dissolved in MeCN (2.5 mL), followed by 

AcOH (2.5 mL) and the reaction mixture was stirred at 400 rpm. The electrodes were 

connected under vigorous nitrogen flow. Electrolysis was performed at 25 °C with a 

constant current of 8 mA maintained for 10 h (Q·mol–1 = 5.97 F). The reaction was 

monitored with ESI mass spectrometry to detect putative reaction intermediates. At 

ambient temperature, the reaction mixture was quenched with H2O (20 mL) and EtOAc 

(10 mL) was added, and the graphite felt anode was washed with EtOAc (3 × 5 mL) in an 

ultrasonic bath. The combined mixture was washed with H2O (3 × 10 mL), and then dried 

over Na2SO4, filtered and the solvents were removed in vacuo. The crude mixture was 

analyzed by 1H-NMR spectroscopy, but no desired product was detected. Column 

chromatography of the crude reaction mixture afforded substrate 111n (98.1 mg, 446 µmol, 

89%) without any of the desired products 113n or 228.   

5.8.2.2 Intermolecular Competition Experiment 
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[Mn2] (12.7 mg, 25.0 µmol, 5.0 mol %), sodium azide (260 mg, 4.00 mmol, 8.00 equiv), 

1-isopropyl-4-methoxybenzene (111o) (75.1 mg, 0.50 mmol, 1.00 equiv), 4-

isopropylbenzonitrile (111p) (72.6 mg, 0.50 mmol, 1.00 equiv) and LiClO4 (53.2 mg, 

0.50 mmol, 1.00 equiv) were placed in an undivided cell under nitrogen atmosphere. The 

reaction components were dissolved in MeCN (2.5 mL), followed by AcOH (2.5 mL) and 

the reaction mixture was stirred at 400 rpm. The electrodes were connected under vigorous 

nitrogen-flow. Electrolysis was performed at 25 °C with a constant current of 8 mA 

maintained for 3 h. At ambient temperature, the reaction mixture was quenched with H2O 

(20 mL) and EtOAc (10 mL) was added, and the graphite felt anode was washed with 

EtOAc (3 × 5 mL) in an ultrasonic bath. 1H-NMR spectroscopic analysis did not lead to 

clean signal separation of both products but revealed a clear favor of 111o. The combined 

mixture was washed with H2O (3 × 10 mL), and then dried over Na2SO4, filtered and the 

solvents were removed in vacuo. Column chromatography (n-pentane/EtOAc 99:1  10:1) 

of the crude reaction mixture afforded product 113o (29.6 mg, 155 µmol, 31%) and product 

113p (4.2 mg, 24.9 µmol, 5%) in a distribution of 6.2:1 in favor of 113o. 

5.8.2.3 Synthesis of Manganese Salen Azide Complexes Mn5(III)-N3 and 

Mn5(IV)-(N3)2 

Caution 

Special care should be taken for the preparation of the following metal-azide complexes 

(vide supra). The azide complexes are potentially toxic and explosive and should be 

handled only in small amounts. Due to high solubility of the complexes in chlorinated 

solvents, synthesis and purification was performed in CH2Cl2. To prevent unwanted 

generation of diazidomethane,[400] solutions should always be kept at low temperatures and 

residues should be neutralized immediately after the procedure was completed.  

 

A Schlenk tube was charged with [Mn5] (366 mg, 0.50 mmol, 1.00 equiv), CH2Cl2 

(5.0 mL) and MeOH (5.0 mL). NaN3 (65.0 mg, 1.00 mmol, 2.00 equiv) was dissolved in 
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distilled water (1.0 mL) and added to the mixture. The reaction mixture was stirred at 25 °C 

for 1 h. Subsequently, the solvent was removed under reduced pressure, at ambient 

temperature. To the crude solids, CH2Cl2 (5.0 mL) was added and the dark brown solution 

was filtered over a pad of celite, followed by a second filtration through a membrane 

syringe filter. Then, the CH2Cl2 was removed in vacuo at ambient temperature and the 

remaining solid was recrystallized from hot MeCN to yield Mn5(III)-N3 (256 mg, 

332 µmol, 66%) as dark brown crystalline needles. The azide complex was subsequently 

stored in a freezer at –32 °C. 

IR (ATR): ṽ = 2955, 2905, 2869, 2044, 2026, 1608, 1532, 1429, 1313, 1251, 699 cm−1.  

MS (ESI) m/z (relative intensity): 697 (100) [M–N3]+.  

HR-MS (ESI) m/z calcd. for C44H54MnN2O2 [M–N3]+: 697.3560, found: 697.3560.  

Anal. calcd. for C44H54MnN5O2: C, 71.43; H, 7.36; N, 9.47. Found: C, 69.19; H, 7.28; N, 

9.11. 

 

A Schlenk tube was charged with Mn5(III)-N3 (74.0 mg, 0.10 mmol, 1.00 equiv) and 

MeCN (5.0 mL). NaN3 (65.0 mg, 1.00 mmol, 10.0 equiv) and meta-chloroperoxybenzoic 

acid (m-CPBA) (24.7 mg, 0.1 mmol, 1.00 equiv) were dissolved in distilled water (1.0 mL) 

and slowly added to the mixture at –10 °C. The reaction mixture was stirred at –10 °C for 

1 h. Subsequently, the solvent was removed under reduced pressure, at –10 °C. To the crude 

solids, CH2Cl2 (5.0 mL) was added and the dark green solution was filtered over a pad of 

celite, followed by a second filtration through a membrane syringe filter. Recrystallisation 

from CH2Cl2 and pentane at –32 °C afforded Mn5(IV)-(N3)2 (64.1 mg, 82.0 µmol, 82%) as 

dark green crystallin solid. The azide complex was subsequently stored in a freezer at            

–32 °C.  

IR (ATR): ṽ = 2956, 2906, 2869, 2012, 1608, 1534, 1430, 1309, 1249, 699 cm−1.  

MS (ESI) m/z (relative intensity): 1438 (15) [2M–3N3]+, 781 (5) [M]+, 762 (5) [M–

N3+Na]+, 739 (5) [M–N3]+, 697 (100) [M–2N3]+.  
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HR-MS (ESI) m/z calcd. for C44H54MnN5O2Na [M–N3+Na]+: 762.3550, found: 762.3535. 

Anal. calcd. for C44H54MnN8O2: C, 67.59; H, 6.96; N, 14.33. Found: C, 67.01; H, 6.91; N, 

13.94. 

Crystals suitable for X-ray diffraction studies were obtained from a saturated solution of 

Mn5(IV)-(N3)2 in toluene at 278 K. Crystallization studies were performed together with 

Dr. A. Messinis. 

5.8.2.4 UV–Vis Spectroscopy 

The UV–vis absorption spectroscopy was carried out using a JASCO V-770 UV–vis/NIR 

spectrophotometer. The working temperature was 25 °C and a quartz cell (l = 1 cm) was 

used. The experiments were performed under a nitrogen atmosphere if not stated otherwise. 

The concentration of the analyte was 4·10–5 mol·L–1 and 5·10–5 mol·L–1 for the reaction 

mixtures, respectively. Acetonitrile (HPLC-grade) was used as the solvent for dilution. 

Preparation of Reaction mixtures A and B 

The constant current electrolysis was carried out using standard conditions (vide supra). 

The manganese catalyst [Mn5] (18.3 mg, 25.0 µmol, 5.0 mol %), sodium azide (260 mg, 

4.00 mmol, 8.00 equiv) and LiClO4 (53.2 mg, 0.50 mmol, 1.00 equiv) were placed in a 

10 mL cell under nitrogen atmosphere. The reaction components were dissolved in MeCN 

(2.5 mL), followed by AcOH (2.5 mL) and the reaction mixture was stirred at 400 rpm. An 

aliquot was removed, diluted, and was transferred into the UV–vis cuvette (reaction 

mixture A). Now, the electrodes were connected under vigorous nitrogen-flow. Electrolysis 

was performed at 25 °C with a constant potential of 8 mA maintained for 30 min. Within 

few seconds, the dark brown solution turned dark green/black (cf. Scheme 85). At ambient 

temperature, 1.0 mL of the crude mixture was removed and diluted to 5·10–5 mol·L–1. The 

diluted mixture B was transferred into the cuvette and a UV–vis spectrum was recorded 

immediately.  

Preparation of Reaction mixture C 

The constant current electrolysis was carried out using standard conditions (vide supra). 

The manganese catalyst [Mn5] (18.3 mg, 25.0 µmol, 5.0 mol %), sodium azide (260 mg, 

4.00 mmol, 8.00 equiv), LiClO4 (53.2 mg, 0.50 mmol, 1.00 equiv) and cyclooctane (111b) 

(56.1 mg, 0.50 mmol) were placed in a 10 mL cell under nitrogen atmosphere. The reaction 

components were dissolved in MeCN (2.5 mL), followed by AcOH (2.5 mL) and the 
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reaction mixture was stirred at 400 rpm. The electrodes were connected under vigorous 

nitrogen-flow. Electrolysis was performed at 25 °C with a constant potential of 8 mA 

maintained for 120 min. Similar to reaction mixture A, the dark brown solution turned dark 

green/black within few seconds (cf. Scheme 85). At ambient temperature, 1.0 mL of the 

crude mixture was removed and diluted to 5·10–5 mol·L–1. The diluted mixture was 

transferred into the cuvette and a UV–vis spectrum was recorded immediately. 

5.8.2.5 Cyclic Voltammetry 

Cyclic voltammetry was performed according to the general procedure (vide supra). 

Acetonitrile (MeCN) with 0.1 mol·L–1 LiClO4 as a conducting salt served as electrolyte for 

the measurements. The concentration of the analyte was 0.3 mmol·L–1 if not stated 

otherwise. 

 

Figure 62. Cyclic voltammogram of Mn5(III)-N3 (0.3 mM) in the presence of tetra-n-
butylammonium azide.  
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Figure 63. Cyclic voltammogram of Mn5(III)-N3 (0.3 mM). Two cyclic 
voltammograms were recorded, and the second voltammogram is presented. 

 

Figure 64. CVs of complex Mn5(IV)-(N3)2 (0.3 mM) at different scan rates. Sweep 
direction was negative, with a starting potential of 0.8 V on the WE.  
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Figure 65. CV of complex Mn5(IV)-(N3)2 (0.3 mM) at 10 mV·s–1. Sweep direction was 
negative, with a starting potential of 0.8 V on the WE. 

 

 

Figure 66. CVs of complex Mn5(IV)-(N3)2 (0.3 mM) at different scan rates. Sweep 
direction was negative, with a starting potential of 0.0 V on the WE. 
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Figure 67. CV of complex Mn5(IV)-(N3)2 (0.3 mM) at 100 mV·s–1. Sweep direction 
was negative, with a starting potential of 0.0 V on the WE. 

5.8.2.6 Constant Potential Electrolysis 

For chronoamperometric experiments, a silver-wire (d = 1 mm) was used as the pseudo-

reference electrode in close proximity to the graphite felt working electrode. To ensure 

comparable constant potential conditions with the results gained by cyclic voltammetry, 

calibration of the silver-wire reference electrode versus ferrocene was performed. 

𝐸ଵ
ଶ

(Fc|Fcା) = 0.36 V (𝑣𝑠. Ag|AgCl) 

𝐸ଵ
ଶ

(Fc|Fcା) = 0.29 V (𝑣𝑠. Ag|Agା) 

Based on previous CV studies, no direct azide oxidation should occur in MeCN/AcOH 

solvent mixtures at potentials below 1.0 V vs. Ag/Ag+. 

The constant potential electrolysis was carried out in an undivided cell, with a graphite felt 

anode (10 mm × 15 mm × 6 mm), a platinum cathode (10 mm × 15 mm × 0.125 mm) and 

a silver-wire as the reference electrode. The manganese catalyst [Mn2] (12.7 mg, 

25.0 µmol, 5.0 mol %), sodium azide (260 mg, 4.00 mmol, 8.00 equiv), 1,2,3,4-

tetrahydronaphthalene (111a) (66.1 mg, 0.50 mmol, 1.00 equiv) and LiClO4 (53.2 mg, 
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0.50 mmol, 1.00 equiv) were placed in a 10 mL cell under nitrogen atmosphere. The 

reaction components were dissolved in MeCN (2.5 mL), followed by AcOH (2.5 mL) and 

the reaction mixture was stirred at 400 rpm. The electrodes were connected under vigorous 

nitrogen-flow. Electrolysis was performed at 25 °C with a constant potential of 0.8 V (vs. 

Ag/Ag+) maintained for 20 h. At ambient temperature, the reaction mixture was quenched 

with sat. aq. NaHCO3 (20 mL) and EtOAc (10 mL) was added, and the graphite felt anode 

was washed with EtOAc (3 × 5 mL) in an ultrasonic bath. The combined mixture was 

washed with H2O (3 × 10 mL), and then dried over Na2SO4, filtered and the solvents were 

removed in vacuo. Purification by column chromatography on silica gel (n-pentane/EtOAc 

99:1) yielded 113a (48.8 mg, 282 µmol, 56%) as a colorless liquid. 

 

Figure 68. Chronoamperometry at 0.8 V vs. Ag/Ag+; resulting current-time response. 

The strong interferences in current response during the recoding are most likely caused by 

the stirring plate below the electrolysis cell.  
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6 CRYSTALLOGRAPHIC DATA 

X-Ray Crystallography 

The following crystal structures were measured and solved by Dr. C. Golz. A suitable 

single crystal was selected via a SMZ1270 stereomicroscope from NIKON METROLOGY. The 

crystal was mounted on a MicroMounts or MicroLoops from MITEGEN holder, in NVH oil, 

on a BRUKER D8 Venture four-circle-diffractometer with a photon II detector. A microfocus 

IμS Cu/Mo from INCOATEC with mirror optics HELIOS and single-hole collimator from 

BRUKER were used as the X-ray sources. The crystal was cooled to given temperature with 

Cryostream 800 from OXFORD CRYOSYSTEMS. The data was collected with APEX3 Suite 

from BRUKER and were integrated with SAINTV8.38A and SADABS 2016/2 was used for 

the absorption correction. The structure was solved with the SHELXT[410] structure solution 

program using Intrinsic Phasing and refined with the SHELXL[411] refinement package 

using Least Squares minimization. Final data was processed and visualized with Olex2 

(v1.3.0) from OLEXSYS.[412]  

 

Figure 69.  Molecular structure of 51ea with thermal ellipsoids at 50% probability level. 
The hydrogen atoms are omitted for clarity. 

Table 36.  Crystal data and structure refinement for 51ea. 

Compound    51ea 

CCDC number   2044869 

Empirical formula    C21H16N2O2S 
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Formula weight    360.42 

Temperature     100.0 K 

Wavelength     0.71073 Å 

Crystal system    monoclinic 

Space group     P21/c 

Unit cell dimensions   a = 20.2946(17) Å  α = 90° 

     b = 8.5484(8) Å  β = 115.149(2)° 

     c = 22.0044(15) Å  γ = 90° 

Volume    3455.6(5) Å3 

Z     8 

Density (calculated)   1.386 g/m3 

Absorption coefficient  0.206 mm–1 

F(000)     1504.0 

Crystal size    (0.26  0.25  0.12) mm3 

2Θ range for data collection  4.434° to 57.51° 

Index ranges    –27 ≤ h ≤ 27, –11 ≤ k ≤ 11, –29 ≤ l ≤ 29 

Reflections collected   86523 

Independent reflections  8954 [Rint = 0.0456, Rsigma = 0.0245] 

Data / restraints / parameters  8954/0/471 

Goodness-of-fit on F2   1.036 

Final R indices [I>2σ(I)]  R1 = 0.0406, wR2 = 0.1044 

R indices (all data)   R1 = 0.0460, wR2 = 0.1082 

Largest diff. peak and hole  0.65 e·Å–3 and –0.40 e·Å–3 

Table 37.  Bond lengths in [Å]. 

Atoms Bond Length [Å] Atoms Bond Length [Å] 

S(1)–C(1) 1.7963(18) C(7)–C(8) 1.4357(18) 

S(1)–C(2) 1.7548(14) C(7)–C(16) 1.4072(17) 

O(1)–C(6) 1.2343(16) C(8)–C(9) 1.3482(18) 

O(2)–N(2) 1.2970(15) C(9)–C(10) 1.4834(18) 

N(1)–C(6) 1.3994(16) C(10)–C(11) 1.4019(19) 

N(1)–C(9) 1.4077(16) C(10)–C(15) 1.3887(19) 

N(1)–C(17) 1.4256(16) C(11)–C(12) 1.390(2) 
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N(2)–C(17) 1.3722(17) C(12)–C(13) 1.390(2) 

N(2)–C(21) 1.3679(18) C(13)–C(14) 1.383(2) 

C(2)–C(3) 1.414(2) C(14)–C(15) 1.394(2) 

C(2)–C(16) 1.3866(19) C(17)–C(18) 1.3774(18) 

C(3)–C(4) 1.3754(19) C(18)–C(19) 1.3925(19) 

C(4)–C(5) 1.4050(18) C(19)–C(20) 1.389(2) 

C(5)–C(6) 1.4581(17) C(20)–C(21) 1.372(2) 

C(5)–C(7) 1.4061(18)   

  

Table 38.  Bond angles in [°]. 

Atoms Angle [°] Atoms Angle [°] 

C(2)-S(1)-C(1) 102.79(7) C(9)-C(8)-C(7) 120.95(12) 

C(6)-N(1)-C(9) 123.07(11) N(1)-C(9)-C(10) 118.18(11) 

C(6)-N(1)-C(17) 114.84(11) C(8)-C(9)-N(1) 120.03(12) 

C(9)-N(1)-C(17) 119.70(11) C(8)-C(9)-C(10) 121.60(12) 

O(2)-N(2)-C(17) 120.70(11) C(11)-C(10)-C(9) 120.24(12) 

O(2)-N(2)-C(21) 120.38(12) C(15)-C(10)-C(9) 119.82(12) 

C(22)-N(2)-C(17) 118.91(12) C(15)-C(10)-C(12) 119.69(13) 

C(3)-C(2)-S(1) 115.94(10) C(12)-C(11)-C(10) 119.87(13) 

C(16)-C(2)-S(1) 124.23(11) C(11)-C(12)-C(13) 120.12(14) 

C(16)-C(2)-C(3) 119.82(12) C(14)-C(13)-C(12) 120.06(14) 

C(4)-C(3)-C(2) 120.59(13) C(13)-C(14)-C(15) 120.23(14) 

C(3)-C(4)-C(5) 119.84(13) C(10)-C(15)-C(14) 120.02(14) 

C(4)-C(5)-C(6) 119.35(12) C(2)-C(16)-C(7) 120.03(12) 

C(4)-C(5)-C(7) 120.07(12) N(2)-C(17)-N(1) 114.50(11) 

C(7)-C(5)-C(6) 120.56(12) N(2)-C(17)-C(18) 121.15(12) 

O(1)-C(6)-N(1) 119.85(12) C(18)-C(17)-N(1) 124.22(12) 

O(1)-C(6)-C(5) 124.11(12) C(17)-C(18)-C(19) 119.94(13) 

N(1)-C(6)-C(5) 116.03(11) C(20)-C(19)-C(18) 118.48(13) 

C(5)-C(7)-C(8) 119.01(12) C(21)-C(20)-C(19) 120.30(13) 

C(5)-C(7)-C(16) 119.54(12) N(2)-C(21)-C(20) 121.22(13) 

C(16)-C(7)-C(8) 121.44(12)   
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Figure 70. Molecular structure of 189ea with thermal ellipsoids at 50% probability 
level. The hydrogen atoms are omitted for clarity. 

Table 39.  Crystal data and structure refinement for 189ea. 

Compound    189ea 

CCDC number   2044870 

Empirical formula    C18H12N2O3 

Formula weight    304.30 

Temperature     100.0 K 

Crystal system    triclinic 

Space group     P-1 

Unit cell dimensions   a = 8.8017(9) Å  α = 62.870(4)° 

     b = 9.5871(13) Å  β = 75.576(5)° 

     c = 10.2305(14) Å  γ = 68.099(4)° 

Volume    709.58(16) Å3 

Z     2 

Density (calculated)   1.424 g/m3 

Absorption coefficient  0.099 mm–1 

F(000)     316.0 

Crystal size    (0.245 × 0.229 × 0.227) mm3 

Radiation    MoKα (λ = 0.71073) 

2Θ range for data collection  5.006° to 59.176° 
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Index ranges    –11 ≤ h ≤ 12, –13 ≤ k ≤ 13, –14 ≤ l ≤ 14 

Reflections collected   35405 

Independent reflections  3953 [Rint = 0.0249, Rsigma = 0.0132] 

Data / restraints / parameters  3953/0/208 

Goodness-of-fit on F2   1.056 

Final R indices [I>2σ(I)]  R1 = 0.0395, wR2 = 0.1040 

R indices (all data)   R1 = 0.0430, wR2 = 0.1072 

Largest diff. peak and hole  0.41 e·Å–3 and –0.32 e·Å–3 

Table 40.  Bond lengths in [Å]. 

Atoms Bond Length [Å] Atoms Bond Length [Å] 

O(1)–C(1) 1.3876(13) C(5)–C(6) 1.4120(13) 

O(1)–C(5) 1.3588(11) C(6)–C(7) 1.3577(13) 

O(2)–C(4) 1.2302(12) C(7)–C(8) 1.4864(13) 

O(3)–N(2) 1.2924(11) C(8)–C(9) 1.3943(13) 

N(1)–C(4) 1.4143(12) C(8)–C(13) 1.3950(13) 

N(1)–C(7) 1.4005(12) C(9)–C(10) 1.3916(14) 

N(1)–C(14) 1.4200(12) C(10)–C(11) 1.3910(15) 

N(2)–C(14) 1.3681(12) C(11)–C(12) 1.3895(15) 

N(2)–C(18) 1.3647(13) C(12)–C(13) 1.3919(14) 

C(1)–C(2) 1.3529(15) C(14)–C(15) 1.3774(14) 

C(2)–C(3) 1.4314(13) C(15)–C(16) 1.3866(14) 

C(3)–C(4) 1.4324(13) C(16)–C(17) 1.3896(15) 

C(3)–C(5) 1.3752(13) C(17)–C(18) 1.3746(15) 

  

Table 41.  Bond angles in [°]. 

Atoms Angle [°] Atoms Angle [°] 

C(5)-O(1)-C(1) 105.65(8) N(1)-C(7)-C(8) 116.23(8) 

C(4)-N(1)-C(14) 115.42(8) C(6)-C(7)-N(1) 120.35(8) 

C(7)-N(1)-C(4) 125.54(8) C(6)-C(7)-C(8) 123.37(8) 

C(7)-N(1)-C(14) 118.96(8) C(9)-C(8)-C(7) 118.99(8) 

O(3)-N(2)-C(14) 120.69(8) C(9)-C(8)-C(13) 119.85(9) 
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O(3)-N(2)-C(18) 120.68(8) C(13)-C(8)-C(7) 121.13(8) 

C(18)-N(2)-C(14) 118.63(8) C(10)-C(9)-C(8) 120.18(9) 

C(2)-C(1)-O(1) 111.66(9) C(11)-C(20)-C(9) 119.78(9) 

C(1)-C(2)-C(3) 105.36(9) C(12)-C(11)-C(10) 120.17(9) 

C(2)-C(3)-C(4) 132.32(9) C(11)-C(12)-C(13) 120.20(9) 

C(5)-C(3)-C(2) 106.86(8) C(12)-C(13)-C(8) 119.79(9) 

C(5)-C(3)-C(4) 120.83(8) N(2)-C(14)-N(1) 115.80(8) 

O(2)-C(4)-N(1) 119.91(9) N(2)-C(14)-C(15) 121.29(9) 

O(2)-C(4)-C(3) 127.33(9) C(15)-C(14)-N(1) 122.90(9) 

N(1)-C(4)-C(3) 112.73(8) C(14)-C(15)-C(16) 120.23(9) 

O(1)-C(5)-C(3) 110.47(8) C(15)-C(16)-C(17) 118.18(10) 

O(1)-C(5)-C(6) 125.07(9) C(18)-C(17)-C(16) 120.27(9) 

C(3)-C(5)-C(6) 124.45(9) N(2)-C(18)-C(17) 121.39(9) 

C(7)-C(6)-C(5) 116.07(9)   

  

 

Figure 71.  Molecular structure of 190 with thermal ellipsoids at 50% probability level. 
The hydrogen atoms are omitted for clarity. 
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Table 42.  Crystal data and structure refinement for 190. 

Compound    190 

CCDC number   1983755 

Empirical formula    C36H27CoN6O6 

Formula weight    698.56 

Temperature     99.98 K 

Crystal system    orthorhombic 

Space group     P212121 

Unit cell dimensions   a = 9.2770(12) Å  α = 90° 

     b = 20.177(3) Å  β = 90° 

     c = 32.452(7) Å  γ = 90° 

Volume    6074.6(17) Å3 

Z     8 

Density (calculated)   1.528 g/m3 

Absorption coefficient  0.626 mm–1 

F(000)     0.626 

Crystal size    (0.288 × 0.241 × 0.062) mm3 

Radiation    MoKα (λ = 0.71073) 

2Θ range for data collection  4.272° to 59.138° 

Index ranges    –12 ≤ h ≤ 10, –28 ≤ k ≤ 20, –45 ≤ l ≤ 44 

Reflections collected   45233 

Independent reflections  16976 [Rint = 0.0422, Rsigma = 0.0552] 

Data / restraints / parameters  16976/0/891 

Goodness-of-fit on F2   1.014 

Final R indices [I>2σ(I)]  R1 = 0.0382, wR2 = 0.0801 

R indices (all data)   R1 = 0.0454, wR2 = 0.0834 

Largest diff. peak and hole  0.67 e·Å–3 and –0.58 e·Å–3 

Flack parameter   0.019(6) 

Table 43.  Bond lengths in [Å]. 

Atoms Bond Length [Å] Atoms Bond Length [Å] 

Co–O(1) 1.896(2) C(7)–C(8) 1.396(4) 

Co–O(3) 2.0522(19) C(7)–C(12) 1.389(4) 
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Co–O(5) 1.9621(19) C(8)–C(9) 1.393(4) 

Co–N(2) 1.947(2) C(9)–C(10) 1.381(5) 

Co–N(4) 1.881(2) C(10)–C(11) 1.391(5) 

Co–C(20) 1.916(3) C(11)–C(12) 1.391(4) 

O(1)–N(1) 1.360(3) C(13)–C(14) 1.371(5) 

O(2)–C(6) 1.222(4) C(14)–C(15) 1.384(5) 

O(3)–N(3) 1.342(3) C(15)–C(16) 1.379(4) 

O(4)–C(18) 1.231(3) C(16)–C(17) 1.396(4) 

O(5)–N(5) 1.340(3) C(18)–C(19) 1.491(4) 

O(6)–C(30) 1.216(4) C(19)–C(20) 1.397(4) 

N(1)–C(1) 1.348(4) C(19)–C(24) 1.395(4) 

N(1)–C(5) 1.360(4) C(20)–C(21) 1.401(4) 

N(2)–C(5) 1.365(4) C(21)–C(22) 1.396(4) 

N(2)–C(6) 1.386(4) C(22)–C(23) 1.388(5) 

N(3)–C(13) 1.351(4) C(23)–C(24) 1.390(4) 

N(3)–C(17) 1.377(4) C(25)–C(26) 1.366(4) 

N(4)–C(17) 1.362(3) C(26)–C(27) 1.392(4) 

N(4)–C(18) 1.376(3) C(27)–C(28) 1.376(4) 

N(5)–C(25) 1.358(4) C(28)–C(29) 1.397(4) 

N(5)–C(29) 1.366(4) C(30)–C(31) 1.495(4) 

N(6)–C(29) 1.374(4) C(31)–C(32) 1.403(4) 

N(6)–C(30) 1.382(4) C(31)–C(36) 1.391(4) 

C(1)–C(2) 1.371(4) C(32)–C(33) 1.383(5) 

C(2)–C(3) 1.396(5) C(33)–C(34) 1.389(5) 

C(3)–C(4) 1.376(5) C(34)–C(35) 1.396(4) 

C(4)–C(5) 1.409(4) C(35)–C(36) 1.396(5) 

C(6)–C(7) 1.496(4)   

 

Table 44.  Bond angles in [°]. 

Atoms Angle [°] Atoms Angle [°] 

O(1)-Co(1)-O(3) 96.41(8) C(12)-C(7)-C(6) 119.5(3) 

O(1)-Co(1)-O(5) 83.35(9) C(12)-C(7)-C(8) 119.4(3) 
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O(1)-Co(1)-N(2) 83.08(10) C(9)-C(8)-C(7) 120.0(3) 

O(1)-Co(1)-C(20) 98.11(11) C(10)-C(9)-C(8) 120.1(3) 

O(5)-Co(1)-O(3) 84.45(8) C(9)-C(10)-C(11) 120.5(3) 

N(2)-Co(1)-O(3) 94.76(9) C(12)-C(11)-C(10) 119.4(3) 

N(2)-Co(1)-O(5) 166.23(10) C(7)-C(12)-C(11) 120.7(3) 

N(4)-Co(1)-O(1) 176.08(9) N(3)-C(13)-C(14) 120.8(3) 

N(4)-Co(1)-O(3) 81.43(9) C(13)-C(14)-C(15) 119.2(3) 

N(4)-Co(1)-O(5) 93.16(9) C(16)-C(15)-C(14) 120.3(3) 

N(4)-Co(1)-N(2) 100.33(10) C(15)-C(16)-C(17) 119.9(3) 

N(4)-Co(1)-C(20) 84.05(12) N(3)-C(17)-C(16) 118.3(3) 

C(20)-Co(1)-O(3) 165.48(11) N(4)-C(17)-N(3) 112.7(3) 

C(20)-Co(1)-O(5) 96.86(10) N(4)-C(17)-C(16) 128.9(3) 

C(20)-Co(1)-N(2) 87.35(11) O(4)-C(18)-N(4) 126.8(3) 

N(1)-O(1)-Co(1) 111.33(16) O(4)-C(18)-C(19) 124.8(3) 

N(3)-O(3)-Co(1) 108.38(16) N(4)-C(18)-C(19) 108.4(2) 

N(5)-O(5)-Co(1) 122.51(16) C(20)-C(19)-C(18) 116.2(3) 

O(1)-N(1)-C5) 117.6(2) C(24)-C(19)-C(18) 121.4(3) 

C(1)-N(1)-O(1) 118.2(2) C(24)-C(19)-C(20) 122.4(3) 

C(1)-N(1)-C(5) 124.2(3) C(19)-C(20)-Co(1) 112.3(2) 

C(5)-N(2)-Co(1) 110.57(18) C(19)-C(20)-C(21) 117.8(3) 

C(5)-N(2)-C(6) 118.0(2) C(21)-C(20)-Co(1) 129.8(2) 

C(6)-N(2)-Co(1) 125.0(2) C(22)-C(21)-C(20) 120.2(3) 

O(3)-N(3)-C(13) 118.9(3) C(23)-C(22)-C(21) 120.9(3) 

O(3)-N(3)-C(17) 119.6(2) C(22)-C(23)-C(24) 119.9(3) 

C(13)-N(3)-C(17) 121.5(3) C(23)-C(24)-C(19) 118.9(3) 

C(17)-N(4)-Co(1) 117.14(19) N(5)-C(25)-C(26) 121.0(3) 

C(17)-N(4)-C(18) 123.7(3) C(25)-C(26)-C(27) 118.4(3) 

C(18)-N(4)-Co(1) 118.99(18) C(28)-C(27)-C(26) 120.8(3) 

O(5)-N(5)-C(25) 119.5(2) C(27)-C(28)-C(29) 119.6(3) 

O(5)-N(5)-C(29) 118.5(2) N(5)-C(29)-N(6) 113.5(3) 

C(25)-N(5)-C(29) 121.7(3) N(5)-C(29)-C(28) 118.5(3) 

C(29)-N(6)-C(30) 125.6(3) N(6)-C(29)-C(28) 128.0(3) 

N(1)-C(1)-C(2) 120.2(3) O(6)-C(30)-N(6) 121.9(3) 
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C(1)-C(2)-C(3) 118.1(3) O(6)-C(30)-C(31) 122.0(3) 

C(4)-C(3)-C(2) 120.7(3) N(6)-C(30)-C(31) 116.1(3) 

C(3)-C(4)-C(5) 120.5(3) C(32)-C(31)-C(30) 116.3(3) 

N(1)-C(5)-N(2) 113.8(2) C(36)-C(31)-C(30) 124.4(3) 

N(1)-C(5)-C(4) 116.1(3) C(36)-C(31)-C(32) 119.2(3) 

N(2)-C(5)-C(4) 129.8(3) C(33)-C(32)-C(31) 120.5(3) 

O(2)-C(6)-N(2) 124.5(3) C(32)-C(33)-C(34) 120.5(3) 

O(2)-C(6)-C(7) 118.9(3) C(33)-C(34)-C(35) 119.5(3) 

N(2)-C(6)-C(7) 116.4(2) C(34)-C(35)-C(36) 120.3(3) 

 

 

Figure 72.  Molecular structure of 202 with thermal ellipsoids at 50% probability level.  

Table 45.  Crystal data and structure refinement for 202. 

Compound    202 

CCDC number   2045464 

Empirical formula    C34H38CoN4O8 

Formula weight    689.61 

Temperature     100.0 K 

Crystal system    triclinic 
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Space group     P-1 

Unit cell dimensions   a = 6.0548(11) Å  α = 75.515(6)° 

     b = 11.117(2) Å  β = 82.271(5)° 

     c = 12.341(3) Å  γ = 87.820(5)° 

Volume    797.0(3) Å3 

Z     1 

Density (calculated)   1.437 g/m3 

Absorption coefficient  0.598 mm–1 

F(000)     361.0 

Crystal size    (0.368 × 0.233 × 0.032) mm3 

Radiation    MoKα (λ = 0.71073) 

2Θ range for data collection  5.708° to 59.146° 

Index ranges    –8 ≤ h ≤ 8, –15 ≤ k ≤ 15, –17 ≤ l ≤ 17 

Reflections collected   8815 

Independent reflections  8815 [Rint = ?, Rsigma = 0.0158] 

Data / restraints / parameters  8815/0/221 

Goodness-of-fit on F2   1.080 

Final R indices [I>2σ(I)]  R1 = 0.0260, wR2 = 0.0689 

R indices (all data)   R1 = 0.0272, wR2 = 0.0700 

Largest diff. peak and hole  0.45 e·Å–3 and –0.49 e·Å–3 

Table 46.  Bond lengths in [Å]. 

Atoms Bond Length [Å] Atoms Bond Length [Å] 

Co(1)–O(11) 2.0527(10) C(1)–C(2) 1.3804(18) 

Co(1)–O(1) 2.0527(10) C(2)–C(3) 1.3919(19) 

Co(1)–O(3) 2.1192(10) C(3)–C(4) 1.3859(19) 

Co(1)–O(31) 2.1193(10) C(4)–C(5) 1.3958(18) 

Co(1)–O(41) 2.1372(10) C(6)–C(7) 1.4975(18) 

Co(1)–O(4) 2.1372(10) C(7)–C(8) 1.3986(19) 

Co(1)–C(13) 2.4588(13) C(7)–C(12) 1.3981(17) 

Co(1)–C(131) 2.4588(13) C(8)–C(9) 1.3950(19) 

O(1)–N(1) 1.3400(14) C(9)–C(10) 1.3908(19) 

O(2)–C(6) 1.2216(17) C(10)–C(11) 1.392(2) 
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O(3)–C(13) 1.2729(15) C(11)–C(12) 1.3917(19) 

O(4)–C(13) 1.2673(15) C(13)–C(14) 1.5272(18) 

N(1)–C(1) 1.3506(17) C(14)–C(15) 1.530(2) 

N(1)–C(5) 1.3680(16) C(14)–C(16) 1.540(2) 

N(2)–C(5) 1.3792(16) C(14)–C(17) 1.5324(19) 

N(2)–C(6) 1.3844(15)   

 

Table 47.  Bond angles in [°]. 

Atoms Angle [°] Atoms Angle [°] 

O(11)-Co(1)-O(1) 180.0 O(1)-N(1)-C(1) 119.79(11) 

O(1)-Co(1)-O(31) 94.83(4) O(1)-N(1)-C(5) 118.15(10) 

O(11)-Co(1)-O(31) 85.17(4) C(1)-N(1)-C(5) 122.04(11) 

O(1)-Co(1)-O(3) 85.17(4) C(5)-N(2)-C(6) 125.69(12) 

O(11)-Co(1)-O(3) 94.83(4) N(1)-C(1)-C(2) 120.52(12) 

O(1)-Co(1)-O(4) 87.63(4) C(1)-C(2)-C(3) 118.70(12) 

O(11)-Co(1)-O(4) 92.37(4) C(4)-C(3)-C(2) 120.53(12) 

O(1)-Co(1)-O(41) 92.37(4) C(3)-C(4)-C(5) 119.36(12) 

O(11)-Co(1)-O(41) 87.63(4) N(1)-C(5)-N(2) 113.85(11) 

O(1)-Co(1)-C(13) 84.90(4) N(1)-C(5)-C(4) 118.84(12) 

O(11)-Co(1)-C(131) 84.90(4) N(2)-C(5)-C(4) 127.30(12) 

O(1)-Co(1)-C(131) 95.10(4) O(2)-C(6)-N(2) 122.08(12) 

O(11)-Co(1)-C(13) 95.10(4) O(2)-C(6)-C(7) 121.39(11) 

O(3)-Co(1)-O(31) 180.00(4) N(2)-C(6)-C(7) 116.53(12) 

O(31)-Co(1)-O(4) 117.83(3) C(8)-C(7)-C(6) 124.32(12) 

O(3)-Co(1)-O(4) 62.17(3) C(12)-C(7)-C(6) 115.98(12) 

O(31)-Co(1)-O(41) 62.17(3) C(12)-C(7)-C(8) 119.63(12) 

O(3)-Co(1)-O(41) 117.83(3) C(9)-C(8)-C(7) 119.51(12) 

O(3)-Co(1)-C(131) 148.83(4) C(10)-C(9)-C(8) 120.68(13) 

O(31)-Co(1)-C(131) 31.17(4) C(9)-C(10)-C(11) 119.85(13) 

O(3)-Co(1)-C(13) 31.17(4) C(12)-C(11)-C(10) 119.86(13) 

O(31)-Co(1)-C(13) 148.83(4) C(11)-C(12)-C(7) 120.47(13) 

O(41)-Co(1)-O(4) 180.0 O(3)-C(13)-C(14) 119.59(11) 
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O(4)-Co(1)-C(13) 31.02(4) O(4)-C(13)-O(3) 119.79(12) 

O(41)-Co(1)-C(131) 31.02(4) O(4)-C(13)-C(14) 120.58(11) 

O(41)-Co(1)-C(13) 148.98(4) C(13)-C(14)-C(15) 110.39(11) 

O(4)-Co(1)-C(131) 148.98(4) C(13)-C(14)-C(16) 106.56(11) 

C(13)-Co(1)-C(131) 180.0 C(13)-C(14)-C(17) 109.88(11) 

N(1)-O(1)-Co(1) 118.31(7) C(15)-C(14)-C(16) 110.11(13) 

C(13)-O(3)-Co(1) 89.30(7) C(15)-C(14)-C(17) 110.14(12) 

C(13)-O(4)-Co(1) 88.65(8) C(17)-C(14)-C(16) 109.70(11) 

 

 

Figure 73. Molecular structure of 203 with thermal ellipsoids at 50% probability level. 
The hydrogen atoms and one molecule of CH2Cl2 are omitted for clarity.  

Table 48.  Crystal data and structure refinement for 203. 

Compound    203 

CCDC number   1983756 

Empirical formula    C37H28Cl2CoN6O6 

Formula weight    782.48 

Temperature     99.97 K 

Crystal system    triclinic 

Space group     P-1 

Unit cell dimensions   a = 8.1484(3) Å  α = 77.154(2)° 
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     b = 11.8103(5) Å  β = 84.964(2)° 

     c = 18.0756(8) Å  γ = 87.7910(10)° 

Volume    1689.10(12) Å3 

Z     2 

Density (calculated)   1.539 g/m3 

Absorption coefficient  0.725 mm–1 

F(000)     802.0 

Crystal size    (0.625 × 0.586 × 0.484) mm3 

Radiation    MoKα (λ = 0.71073) 

2Θ range for data collection  4.638° to 61.064° 

Index ranges    –11 ≤ h ≤ 11, –16 ≤ k ≤ 16, –25 ≤ l ≤ 25 

Reflections collected   59902 

Independent reflections  10220 [Rint = 0.0231, Rsigma = 0.0150] 

Data / restraints / parameters  10220/0/483 

Goodness-of-fit on F2   1.034 

Final R indices [I>2σ(I)]  R1 = 0.0279, wR2 = 0.0714 

R indices (all data)   R1 = 0.0293, wR2 = 0.0733 

Largest diff. peak and hole  0.45 e·Å–3 and –0.44 e·Å–3 

Table 49.  Bond lengths in [Å]. 

Atoms Bond Length [Å] Atoms Bond Length [Å] 

Co(1)–O(1) 2.1228(8) C(8)–C(9) 1.4900(14) 

Co(1)–O(3) 1.9785(8) C(8)–C(16) 1.3992(14) 

Co(1)–O(5) 2.0825(8) C(9)–C(10) 1.4010(14) 

Co(1)–N(2) 2.0123(9) C(9)–C(14) 1.4030(14) 

Co(1)–N(4) 2.0428(9) C(10)–C(11) 1.3863(16) 

O(1)–N(1) 1.3388(11) C(11)–C(12) 1.3946(16) 

O(2)–C(6) 1.2334(12) C(12)–C(13) 1.3873(15) 

O(3)–N(3) 1.3537(12) C(13)–C(14) 1.3967(14) 

O(4)–C(15) 1.2328(13) C(14)–C(15) 1.5000(14) 

O(5)–N(5) 1.3436(11) C(16)–C(17) 1.3899(16) 

O(6)–C(30) 1.2187(14) C(17)–C(18) 1.3905(16) 

N(1)–C(1) 1.3665(13) C(18)–C(19) 1.3875(15) 
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N(1)–C(5) 1.3540(14) C(20)–C(21) 1.4087(14) 

N(2)–C(1) 1.3740(13) C(21)–C(22) 1.3807(16) 

N(2)–C(6) 1.3687(13) C(22)–C(23) 1.3946(18) 

N(3)–C(20) 1.3708(14) C(23)–C(24) 1.3695(17) 

N(3)–C(24) 1.3550(14) C(25)–C(26) 1.3983(15) 

N(4)–C(15) 1.3718(13) C(26)–C(27) 1.3812(17) 

N(4)–C(20) 1.3609(13) C(27)–C(28) 1.3922(18) 

N(5)–C(25) 1.3593(14) C(28)–C(29) 1.3746(16) 

N(5)–C(29) 1.3500(14) C(30)–C(31) 1.4902(16) 

N(6)–C(25) 1.3750(14) C(31)–C(32) 1.3980(16) 

N(6)–C(30) 1.3819(14) C(31)–C(36) 1.3978(17) 

C(1)–C(2) 1.4002(14) C(32)–C(33) 1.3893(18) 

C(2)–C(3) 1.3816(15) C(33)–C(34) 1.388(2) 

C(3)–C(4) 1.3973(16) C(34)–C(35) 1.3905(18) 

C(4)–C(5) 1.3735(16) C(35)–C(36) 1.3894(17) 

C(6)–C(7) 1.5003(14) C(11B)–C(37) 1.719(7) 

C(7)–C(8) 1.4061(14) C(l2)–C(37) 1.7778(15) 

C(7)–C(19) 1.3978(14) C(37)–C(11A) 1.776(8) 

 

Table 50.  Bond angles in [°]. 

Atoms Angle [°] Atoms Angle [°] 

O(3)-Co(1)-O(1) 88.00(3) C(10)-C(9)-C(8) 117.94(9) 

O(3)-Co(1)-O(5) 119.75(3) C(10)-C(9)-C(14) 119.01(10) 

O(3)-Co(1)-N(2) 132.24(4) C(14)-C(9)-C(8) 122.96(9) 

O(3)-Co(1)-N(4) 79.99(3) C(11)-C(10)-C(9) 120.76(10) 

O(5)-Co(1)-O(1) 85.77(3) C(10)-C(11)-C(12) 120.14(10) 

N(2)-Co(1)-O(1) 77.13(3) C(13)-C(12)-C(11) 119.53(10) 

N(2)-Co(1)-O(5) 104.28(3) C(12)-C(13)-C(14) 120.84(10) 

N(2)-Co(1)-N(4) 118.12(4) C(9)-C(14)-C(15) 122.33(9) 

N(4)-Co(1)-O(1) 164.62(3) C(13)-C(14)-C(9) 119.70(9) 

N(4)-Co(1)-O(5) 91.84(3) C(13)-C(14)-C(15) 117.94(9) 

N(1)-O(1)-Co(1) 107.10(6) O(4)-C(15)-N(4) 126.02(10) 
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N(3)-O(3)-Co(1) 112.91(6) O(4)-C(15)-C(14) 120.60(9) 

N(5)-O(5)-Co(1) 115.12(6) N(4)-C(15)-C(14) 113.32(9) 

O(1)-N(1)-C(1) 118.51(9) C(17)-C(16)-C(8) 120.88(10) 

O(1)-N(1)-C(5) 119.28(9) C(16)-C(17)-C(18) 120.19(10) 

C(5)-N(1)-C(1) 122.22(9) C(19)-C(18)-C(17) 119.75(10) 

C(1)-N(2)-Co(1) 111.24(6) C(18)-C(19)-C(7) 120.36(10) 

C(6)-N(2)-Co(1) 129.30(7) N(3)-C(20)-C(21) 116.77(9) 

C(6)-N(2)-C(1) 116.11(9) N(4)-C(20)-N(3) 113.65(9) 

O(3)-N(3)-C(20) 119.17(9) N(4)-C(20)-C(21) 129.47(10) 

O(3)-N(3)-C(24) 117.77(9) C(22)-C(21)-C(20) 120.32(11) 

C(24)-N(3)-C(20) 123.06(10) C(21)-C(22)-C(23) 120.44(11) 

C(15)-N(4)-Co(1) 122.74(7) C(24)-C(23)-C(22) 118.61(11) 

C(20)-N(4)-Co(1) 113.55(7) N(3)-C(24)-C(23) 120.44(11) 

C(20)-N(4)-C(15) 120.82(9) N(5)-C(25)-N(6) 113.01(9) 

O(5)-N(5)-C(25) 118.21(9) N(5)-C(25)-C(26) 118.98(10) 

O(5)-N(5)-C(29) 119.92(9) N(6)-C(25)-C(26) 127.99(10) 

C(29)-N(5)-C(25) 121.82(10) C(27)-C(26)-C(25) 119.64(11) 

C(25)-N(6)-C(30) 126.72(10) C(26)-C(27)-C(28) 119.81(11) 

N(1)-C(1)-N(2) 114.63(9) C(29)-C(28)-C(27) 119.22(11) 

N(1)-C(1)-C(2) 118.18(9) N(5)-C(29)-C(28) 120.51(11) 

N(2)-C(1)-C(2) 127.01(9) O(6)-C(30)-N(6) 122.01(11) 

C(3)-C(2)-C(1) 120.18(10) O(6)-C(30)-C(31) 122.73(11) 

C(2)-C(3)-C(4) 119.75(10) N(6)-C(30)-C(31) 115.26(10) 

C(5)-C(4)-C(3) 119.14(10) C(32)-C(31)-C(30) 116.43(11) 

N(1)-C(5)-C(4) 120.44(10) C(36)-C(31)-C(30) 123.77(10) 

O(2)-C(6)-N(2) 124.96(10) C(36)-C(31)-C(32) 119.80(11) 

O(2)-C(6)-C(7) 119.72(9) C(33)-C(32)-C(31) 119.69(12) 

N(2)-C(6)-C(7) 115.14(9) C(34)-C(33)-C(32) 120.33(12) 

C(8)-C(7)-C(6) 122.93(9) C(33)-C(34)-C(35) 120.21(12) 

C(19)-C(7)-C(6) 116.84(9) C(36)-C(35)-C(34) 119.86(12) 

C(19)-C(7)-C(8) 120.23(10) C(35)-C(36)-C(31) 120.11(11) 

C(7)-C(8)-C(9) 121.28(9) C(l1B)-C(37)-C(l2) 110.6(2) 

C(16)-C(8)-C(7) 118.51(10)   
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Figure 74. Molecular structure of 204 as a polymer (C48H32Co2N8O8)n, with thermal 
ellipsoids at 50% probability level. The hydrogen atoms are omitted for 
clarity.  

 

Figure 75. Molecular structure of 204 with thermal ellipsoids at 50% probability level. 
The hydrogen atoms and one molecule of MeOH are omitted for clarity.  

Table 51.  Crystal data and structure refinement for 204. 

Compound    204 
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CCDC number   1983757 

Empirical formula    C50Co2H40N8O10 

Formula weight    1030.76 

Temperature     100.0 K 

Crystal system    monoclinic 

Space group     P21/c 

Unit cell dimensions   a = 10.2832(5) Å  α = 90° 

     b = 18.3959(9) Å  β = 90.550(2)° 

     c = 23.9133(13) Å  γ = 90° 

Volume    4523.4(4) Å3 

Z     4 

Density (calculated)   1.514 g/m3 

Absorption coefficient  0.805 mm–1 

F(000)     2120.0 

Crystal size    (0.251 × 0.154 × 0.058) mm3 

Radiation    MoKα (λ = 0.71073) 

2Θ range for data collection  3.962° to 55.794° 

Index ranges    –13 ≤ h ≤ 13, –24 ≤ k ≤ 24, –31 ≤ l ≤ 31 

Reflections collected   276458 

Independent reflections  10795 [Rint = 0.0360, Rsigma = 0.0107] 

Data / restraints / parameters  10795/0/595 

Goodness-of-fit on F2   1.157 

Final R indices [I>2σ(I)]  R1 = 0.0588, wR2 = 0.1343 

R indices (all data)   R1 = 0.0602, wR2 = 0.1350 

Largest diff. peak and hole  1.57 e·Å–3 and –1.13 e·Å–3 

Table 52.  Bond lengths in [Å]. 

Atoms Bond Length [Å] Atoms Bond Length [Å] 

Co(1)–O(1) 1.956(2) C(7)–C(12) 1.394(5) 

Co(1)–O(3) 2.086(2) C(8)–C(9) 1.402(5) 

Co(1)–O(81) 2.028(2) C(8)–C(13) 1.498(5) 

Co(1)–N(1) 2.056(3) C(9)–C(10) 1.393(5) 

Co(1)–N(3) 2.038(3) C(10)–C(11) 1.379(5) 
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Co(2)–O(4) 2.040(2) C(11)–C(12) 1.385(5) 

Co(2)–O(5) 1.954(3) C(13)–C(14) 1.394(5) 

Co(2)–O(7) 2.129(2) C(13)–C(19) 1.399(5) 

Co(2)–N(5) 2.054(3) C(14)–C(15) 1.515(4) 

Co(2)–N(7) 2.043(3) C(14)–C(16) 1.395(5) 

O(1)–N(2) 1.331(4) C(16)–C(17) 1.389(5) 

O(2)–C(6) 1.242(4) C(17)–C(18) 1.390(6) 

O(3)–N(4) 1.330(3) C(18)–C(19) 1.384(6) 

O(4)–C(15) 1.245(4) C(20)–C(21) 1.396(4) 

O(5)–N(6) 1.355(4) C(21)–C(22) 1.386(5) 

O(6)–C(30) 1.232(4) C(22)–C(23) 1.384(5) 

O(7)–N(8) 1.334(4) C(23)–C(24) 1.372(5) 

O(8)–C(39) 1.252(4) C(25)–C(26) 1.414(5) 

N(1)–C(1) 1.368(4) C(26)–C(27) 1.360(6) 

N(1)–C(6) 1.365(4) C(27)–C(28) 1.386(7) 

N(2)–C(1) 1.363(4) C(28)–C(29) 1.377(7) 

N(2)–C(5) 1.362(4) C(30)–C(31) 1.497(5) 

N(3)–C(15) 1.342(4) C(31)–C(32) 1.392(5) 

N(3)–C(20) 1.388(4) C(31)–C(36) 1.399(5) 

N(4)–C(20) 1.383(4) C(32)–C(33) 1.376(6) 

N(4)–C(24) 1.356(4) C(33)–C(34) 1.388(6) 

N(5)–C(25) 1.350(4) C(34)–C(35) 1.395(5) 

N(5)–C(30) 1.365(4) C(35)–C(36) 1.400(5) 

N(6)–C(25) 1.366(5) C(36)–C(37) 1.490(4) 

N(6)–C(29) 1.334(5) C(37)–C(38) 1.400(4) 

N(7)–C(39) 1.336(4) C(37)–C(43) 1.395(4) 

N(7)–C(44) 1.391(4) C(38)–C(39) 1.499(4) 

N(8)–C(44) 1.358(4) C(38)–C(40) 1.392(5) 

N(8)–C(48) 1.359(4) C(40)–C(41) 1.390(5) 

C(1)–C(2) 1.410(5) C(41)–C(42) 1.392(5) 

C(2)–C(3) 1.371(6) C(42)–C(43) 1.383(5) 

C(3)–C(4) 1.388(7) C(44)–C(45) 1.388(5) 

C(4)–C(5) 1.370(6) C(45)–C(46) 1.390(5) 



Crystallographic Data   287 
 

C(6)–C(7) 1.503(5) C(46)–C(47) 1.392(6) 

C(7)–C(8) 1.404(5) C(47)–C(48) 1.371(6) 

Table 53.  Bond angles in [°]. 

Atoms Angle [°] Atoms Angle [°] 

O(1)-Co(1)-O(3) 85.26(9) C(9)-C(8)-C(13) 119.9(3) 

O(1)-Co(1)-O(81) 134.65(10) C(10)-C(9)-C(8) 120.1(3) 

O(1)-Co(1)-N(1) 80.21(10) C(11)-C(10)-C(9) 120.3(3) 

O(1)-Co(1)-N(3) 123.24(11) C(10)-C(11)-C(12) 120.2(3) 

O(81)-Co(1)-O(3) 86.95(9) C(11)-C(12)-C(7) 120.6(3) 

O(81)-Co(1)-N(1) 95.43(10) C(14)-C(13)-C(8) 122.4(3) 

O(81)-Co(1)-N(3) 98.24(10) C(14)-C(13)-C(19) 119.2(3) 

N(1)-Co(1)-O(3) 161.77(10) C(19)-C(13)-C(8) 118.4(3) 

N(3)-Co(1)-O(3) 77.48(10) C(13)-C(14)-C(15) 122.3(3) 

N(3)-Co(1)-N(1) 119.84(11) C(13)-C(14)-C(16) 119.9(3) 

O(4)-Co(2)-O(7) 85.86(9) C(16)-C(14)-C(15) 117.7(3) 

O(4)-Co(2)-N(5) 94.89(10) O(4)-C(15)-N(3) 124.1(3) 

O(4)-Co(2)-N(7) 98.59(10) O(4)-C(15)-C(14) 118.5(3) 

O(5)-Co(2)-O(4) 131.18(11) N(3)-C(15)-C(14) 117.4(3) 

O(5)-Co(2)-O(7) 93.07(10) C(17)-C(16)-C(14) 120.2(3) 

O(5)-Co(2)-N(5) 80.66(11) C(16)-C(17)-C(18) 120.2(4) 

O(5)-Co(2)-N(7) 128.60(12) C(19)-C(18)-C(17) 119.6(4) 

N(5)-Co(2)-O(7) 172.30(10) C(18)-C(19)-C(13) 120.9(4) 

N(7)-Co(2)-O(7) 76.38(10) N(3)-C(20)-C(21) 129.4(3) 

N(7)-Co(2)-N(5) 111.02(10) N(4)-C(20)-N(3) 113.4(3) 

N(2)-O(1)-Co(1) 113.59(19) N(4)-C(20)-C(21) 117.1(3) 

N(4)-O(3)-Co(1) 107.97(17) C(22)-C(21)-C(20) 120.4(3) 

C(15)-O(4)-Co(2) 138.0(2) C(23)-C(22)-C(21) 120.5(3) 

N(6)-O(5)-Co(2) 112.9(2) C(24)-C(23)-C(22) 118.9(3) 

N(8)-O(7)-Co(2) 105.79(17) N(4)-C(24)-C(23) 120.6(3) 

C(39)-O(8)-Co(12) 141.2(2) N(5)-C(25)-N(6) 114.6(3) 

C(1)-N(1)-Co(1) 112.2(2) N(5)-C(25)-C(26) 128.3(3) 

C(6)-N(1)-Co(1) 124.6(2) N(6)-C(25)-C(26) 116.9(3) 
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C(6)-N(1)-C(1) 120.9(3) C(27)-C(26)-C(25) 120.5(4) 

O(1)-N(2)-C(1) 120.3(3) C(26)-C(27)-C(28) 120.4(4) 

O(1)-N(2)-C(5) 116.8(3) C(29)-C(28)-C(27) 118.6(4) 

C(5)-N(2)-C(1) 122.9(3) N(6)-C(29)-C(28) 120.7(4) 

C(15)-N(3)-Co(1) 128.8(2) O(6)-C(30)-N(5) 126.1(3) 

C(15)-N(3)-C(20) 120.1(3) O(6)-C(30)-C(31) 119.7(3) 

C(20)-N(3)-Co(1) 111.1(2) N(5)-C(30)-C(31) 114.1(3) 

O(3)-N(4)-C(20) 118.9(3) C(32)-C(31)-C(30) 118.9(3) 

O(3)-N(4)-C(24) 118.7(3) C(32)-C(31)-C(36) 120.4(3) 

C(24)-N(4)-C(20) 122.4(3) C(36)-C(31)-C(30) 120.6(3) 

C(25)-N(5)-Co(2) 112.3(2) C(33)-C(32)-C(31) 120.7(3) 

C(25)-N(5)-C(30) 120.2(3) C(32)-C(33)-C(34) 119.8(3) 

C(30)-N(5)-Co(2) 123.4(2) C(33)-C(34)-C(35) 120.0(4) 

O(5)-N(6)-C(25) 119.4(3) C(34)-C(35)-C(36) 120.6(3) 

C(29)-N(6)-O(5) 117.6(3) C(31)-C(36)-C(35) 118.4(3) 

C(29)-N(6)-C(25) 122.9(3) C(31)-C(36)-C(37) 120.6(3) 

C(39)-N(7)-Co(2) 130.4(2) C(35)-C(36)-C(37) 120.9(3) 

C(39)-N(7)-C(44) 118.6(3) C(38)-C(37)-C(36) 121.2(3) 

C(44)-N(7)-Co(2) 110.0(2) C(43)-C(37)-C(36) 120.3(3) 

O(7)-N(8)-C(44) 119.8(3) C(43)-C(37)-C(38) 118.5(3) 

O(7)-N(8)-C(48) 119.1(3) C(37)-C(38)-C(39) 120.8(3) 

C(44)-N(8)-C(48) 121.1(3) C(40)-C(38)-C(37) 120.5(3) 

N(1)-C(1)-C(2) 129.6(3) C(40)-C(38)-C(39) 118.6(3) 

N(2)-C(1)-N(1) 113.7(3) O(8)-C(39)-N(7) 127.0(3) 

N(2)-C(1)-C(2) 116.6(3) O(8)-C(39)-C(38) 117.0(3) 

C(3)-C(2)-C(1) 120.8(4) N(7)-C(39)-C(38) 116.0(3) 

C(2)-C(3)-C(4) 120.7(4) C(41)-C(40)-C(38) 120.1(3) 

C(5)-C(4)-C(3) 118.3(4) C(40)-C(41)-C(42) 119.7(3) 

N(2)-C(5)-C(4) 120.6(4) C(43)-C(42)-C(41) 120.1(3) 

O(2)-C(6)-N(1) 126.5(3) C(42)-C(43)-C(37) 121.1(3) 

O(2)-C(6)-C(7) 119.4(3) N(8)-C(44)-N(7) 113.5(3) 

N(1)-C(6)-C(7) 114.1(3) N(8)-C(44)-C(45) 119.3(3) 

C(8)-C(7)-C(6) 121.5(3) C(45)-C(44)-N(7) 127.0(3) 
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C(12)-C(7)-C(6) 119.0(3) C(44)-C(45)-C(46) 120.5(3) 

C(12)-C(7)-C(8) 119.5(3) C(45)-C(46)-C(47) 118.7(4) 

C(7)-C(8)-C(13) 120.5(3) C(48)-C(47)-C(46) 119.8(3) 

C(9)-C(8)-C(7) 119.4(3) N(8)-C(48)-C(47) 120.7(3) 

 

Figure 76. Molecular structure of Mn5(IV)-(N3)2 with thermal ellipsoids at 50% 
probability level. The hydrogen atoms are omitted for clarity. 

Table 54.  Crystal data and structure refinement for Mn5(IV)-(N3)2. 

Compound    Mn5(IV)-(N3)2 

Empirical formula    C44H54MnN8O2 

Formula weight    781.89 

Temperature     100.0 K 

Crystal system    monoclinic 

Space group     P21 

Unit cell dimensions   a = 18.0677(6) Å  α = 90° 

     b = 12.8060(4)   β = 108.4020(10)° 

     c = 18.9198(5)   γ = 90° 

Volume    4153.7(2) Å3 

Z     4 

Density (calculated)   1.250 g/m3 

Absorption coefficient  0.364 mm–1 

F(000)     1660.0 

Crystal size    (0.225 × 0.185 × 0.046) mm3 

Radiation    MoKα (λ = 0.71073) 
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2Θ range for data collection  3.768° to 55.868° 

Index ranges    –23 ≤ h ≤ 23, –16 ≤ k ≤ 16, –24 ≤ l ≤ 24 

Reflections collected   93554 

Independent reflections  19819 [Rint = 0.0391, Rsigma = 0.0343] 

Data / restraints / parameters  19819/100/1070 

Goodness-of-fit on F2   1.029 

Final R indices [I>2σ(I)]  R1 = 0.0340, wR2 = 0.0831 

R indices (all data)   R1 = 0.0399, wR2 = 0.0866 

Largest diff. peak and hole  0.28 e·Å–3 and –0.47 e·Å–3 

Flack parameter   0.019(6) 

Table 55.  Bond lengths in [Å]. 

Atoms Bond Length [Å] Atoms Bond Length [Å] 

 Mn(12)–O(12) 1.8486(19)  C(162)–C(172) 1.427(4) 

 Mn(12)–O(22) 1.8440(19)  C(162)–C(462) 1.414(4) 

 Mn(12)–N(12) 2.000(2)  C(172)–C(182) 1.379(4) 

 Mn(12)–N(42) 1.999(2)  C(172)–C(272) 1.542(4) 

 Mn(12)–N(72) 1.963(2)  C(182)–C(192) 1.413(4) 

 Mn(12)–N(82) 1.978(2)  C(192)–C(202) 1.372(4) 

 O(12)–C(12) 1.330(3)  C(192)–C(232) 1.531(4) 

 O(22)–C(162) 1.320(3)  C(202)–C(462) 1.427(3) 

 N(12)–N(22) 1.212(4)  C(222)–C(462) 1.439(4) 

 N(22)–N(32) 1.147(4)  C(232)–C(242) 1.540(4) 

 N(42)–N(52) 1.208(3)  C(232)–C(252) 1.535(4) 

 N(52)–N(62) 1.140(4)  C(232)–C(262) 1.532(4) 

 N(72)–C(72) 1.293(3)  C(272)–C(282) 1.537(4) 

 N(72)–C(312) 1.489(3)  C(272)–C(292) 1.534(4) 

 N(82)–C(222) 1.293(3)  C(272)–C(302) 1.535(4) 

 N(82)–C(322) 1.483(3)  C(312)–C(322) 1.542(3) 

 C(12)–C(22) 1.426(4)  C(312)–C(392) 1.508(4) 

 C(12)–C(62) 1.406(4)  C(322)–C(332) 1.514(3) 

 C(22)–C(32) 1.386(4)  C(332)–C(342) 1.392(4) 

 C(22)–C(122) 1.529(4)  C(332)–C(382) 1.393(4) 
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 C(32)–C(42) 1.403(4)  C(342)–C(352) 1.391(4) 

 C(42)–C(52) 1.378(4)  C(352)–C(362) 1.379(4) 

 C(42)–C(82) 1.530(4)  C(362)–C(372) 1.379(4) 

 C(52)–C(62) 1.417(4)  C(372)–C(382) 1.393(4) 

 C(62)–C(72) 1.441(4)  C(392)–C(402) 1.386(4) 

 C(82)–C(92) 1.549(5)  C(392)–C(442) 1.392(4) 

 C(82)–C(102) 1.523(5)  C(402)–C(472) 1.389(4) 

 C(82)–C(452) 1.532(4)  C(422)–C(432) 1.383(4) 

 C(122)–C(132) 1.539(4)  C(422)–C(472) 1.370(5) 

 C(122)–C(142) 1.526(4)  C(432)–C(442) 1.379(4) 

C(122)–C(152) 1.543(4)   

Table 56.  Bond angles in [°]. 

Atoms Angle [°] Atoms Angle [°] 

 O(12)-Mn(12)-N(12) 93.25(9)  C(142)-C(122)-C(132) 108.0(2) 

 O(12)-Mn(12)-N(42) 93.30(9)  C(142)-C(122)-C(152) 106.9(2) 

 O(12)-Mn(12)-N(72) 91.48(9)  O(22)-C(162)-C(172) 118.8(2) 

 O(12)-Mn(12)-N(82) 174.26(9)  O(22)-C(162)-C(462) 122.2(2) 

 O(22)-Mn(12)-O(12) 92.99(8)  C(462)-C(162)-C(172) 119.0(2) 

 O(22)-Mn(12)-N(12) 89.27(10)  C(162)-C(172)-C(272) 121.1(2) 

 O(22)-Mn(12)-N(42) 92.18(10)  C(182)-C(172)-C(162) 117.8(3) 

 O(22)-Mn(12)-N(72) 175.05(9)  C(182)-C(172)-C(272) 121.1(2) 

 O(22)-Mn(12)-N(82) 92.29(9)  C(172)-C(182)-C(192) 124.4(3) 

 N(42)-Mn(12)-N(12) 173.21(11)  C(182)-C(192)-C(232) 117.6(2) 

 N(72)-Mn(12)-N(12) 88.35(10)  C(202)-C(192)-C(182) 117.3(2) 

 N(72)-Mn(12)-N(42) 89.70(10)  C(202)-C(192)-C(232) 125.0(3) 

 N(72)-Mn(12)-N(82) 83.33(9)  C(192)-C(202)-C(462) 121.1(3) 

 N(82)-Mn(12)-N(12) 89.06(10)  N(82)-C(222)-C(462) 126.1(3) 

 N(82)-Mn(12)-N(42) 84.26(10)  C(192)-C(232)-C(242) 108.6(2) 

 C(12)-O(12)-Mn(12) 130.10(18)  C(192)-C(232)-C(252) 109.8(2) 

 C(162)-O(22)-Mn(12) 130.85(18)  C(192)-C(232)-C(262) 112.3(2) 

 N(22)-N(12)-Mn(12) 120.2(2)  C(252)-C(232)-C(242) 110.1(2) 

 N(32)-N(22)-N(12) 177.4(3)  C(262)-C(232)-C(242) 107.6(2) 



292 Crystallographic Data 

 N(52)-N(42)-Mn(12) 120.9(2)  C(262)-C(232)-C(252) 108.4(2) 

 N(62)-N(52)-N(42) 175.8(3)  C(282)-C(272)-C(172) 108.8(2) 

 C(72)-N(72)-Mn(12) 125.59(19)  C(292)-C(272)-C(172) 110.1(2) 

 C(72)-N(72)-C(312) 122.2(2)  C(292)-C(272)-C(282) 110.9(3) 

 C(312)-N(72)-Mn(12) 112.11(15)  C(292)-C(272)-C(302) 107.5(3) 

 C(222)-N(82)-Mn(12) 124.6(2)  C(302)-C(272)-C(172) 111.5(2) 

 C(222)-N(82)-C(322) 122.7(2)  C(302)-C(272)-C(282) 108.1(2) 

 C(322)-N(82)-Mn(12) 112.27(15)  N(72)-C(312)-C(322) 105.45(18) 

 O(12)-C(12)-C(22) 118.6(2)  N(72)-C(312)-C(392) 114.1(2) 

 O(12)-C(12)-C(62) 122.0(2)  C(392)-C(312)-C(322) 115.2(2) 

 C(62)-C(12)-C(22) 119.3(2)  N(82)-C(322)-C(312) 105.71(19) 

 C(12)-C(22)-C(122) 121.1(2)  N(82)-C(322)-C(332) 116.6(2) 

 C(32)-C(22)-C(12) 117.1(3)  C(332)-C(322)-C(312) 111.31(19) 

 C(32)-C(22)-C(122) 121.8(2)  C(342)-C(332)-C(322) 120.0(2) 

 C(22)-C(32)-C(42) 124.9(3)  C(342)-C(332)-C(382) 118.8(3) 

 C(32)-C(42)-C(82) 119.6(3)  C(382)-C(332)-C(322) 121.0(2) 

 C(52)-C(42)-C(32) 117.3(2)  C(352)-C(342)-C(332) 120.4(3) 

 C(52)-C(42)-C(82) 123.1(3)  C(362)-C(352)-C(342) 120.2(3) 

 C(42)-C(52)-C(62) 120.8(3)  C(372)-C(362)-C(352) 120.0(3) 

 C(12)-C(62)-C(52) 120.6(2)  C(362)-C(372)-C(382) 120.1(3) 

 C(12)-C(62)-C(72) 122.5(2)  C(372)-C(382)-C(332) 120.5(3) 

 C(52)-C(62)-C(72) 116.8(2)  C(402)-C(392)-C(312) 119.0(2) 

 N(72)-C(72)-C(62) 125.3(2)  C(402)-C(392)-C(442) 118.7(3) 

 C(42)-C(82)-C(92) 108.6(3)  C(442)-C(392)-C(312) 122.2(2) 

 C(42)-C(82)-C(452) 109.4(2)  C(392)-C(402)-C(472) 120.6(3) 

 C(102)-C(82)-C(42) 112.0(3)  C(472)-C(422)-C(432) 120.0(3) 

 C(102)-C(82)-C(92) 109.4(3)  C(442)-C(432)-C(422) 120.2(3) 

 C(102)-C(82)-C(452) 109.2(3)  C(432)-C(442)-C(392) 120.5(3) 

 C(452)-C(82)-C(92) 108.2(3)  C(162)-C(462)-C(202) 120.1(2) 

 C(22)-C(122)-C(132) 109.8(2)  C(162)-C(462)-C(222) 122.6(2) 

 C(22)-C(122)-C152) 110.1(2)  C(202)-C(462)-C(222) 117.2(2) 

 C(132)-C(122)-C152) 110.3(2)  C(422)-C(472)-C(402) 120.0(3) 

 C(142)-C(122)-C22) 111.8(2)   
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Apparatus 

 

Figure 77. Initial undivided cell with a three-electrode setup. 

 

Figure 78. Divided cell for constant current electrolysis.[249] 
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Figure 79. Improved undivided cell for constant current electrolysis.[274] 

 

 

Figure 80. Technical drawing of the thermal reservoir. Values are given in millimeter. 
Technical drawings were performed by H.-J. Heymel.[274] 
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Figure 81. Technical drawing of the reaction vessel caps. Values are given in 
millimeter. Technical drawings were performed by H.-J. Heymel.[274] 

 

 

Figure 82.  General reaction preparation for the cobaltaelectro-catalyzed C–H 
activation in an undivided cell. Photo credit: M. Stangier.[274] 
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Figure 83. Equipment for the reactions performed with the IKA Electrasyn 2.0.[274] 

 

 

Figure 84. General equipment for the large-scale electrolysis.[274] 
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Figure 85. General equipment for the constant potential electrolysis.[309] 

 


