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Prologue

What does a star look like? Given that the observable universe is estimated to have
roughly 1011 galaxies, each of which is populated by 1011 stars, this fundamental as-
trophysics question is surprisingly difficult to answer. The sheer vastness of space limits
what we can see and the most powerful of telescopes have been able to resolve the sur-
face features of just one star - the Sun. Luckily, the Sun is close enough to be observed
to a high degree of detail and decades of thorough observations have revealed that a stel-
lar surface can harbour a myriad of magnetic features spanning a wide range of length
and timescales - tiny bright points that last a few minutes to giant dark spots that survive
an entire rotational period. Unfortunately, for other stars the only existing approach to
glean any information is to solve difficult inverse problems that often rely on apriori as-
sumptions. This means, we have, at best, uncertain information about their large scale
structures. Even the most conspicuous of solar features, its dark spots, observed since
the invention of the telescope, have not been directly observed on other stars. Naturally,
computer models that solve the equations of radiation magnetohydrodynamics, which al-
low us to artificially mimic the physical conditions of the outer layers of different types
of stars, have proved to be extremely useful. Such models have been used, not only to
reproduce and provide physical explanations for many of the observed features on the
Sun, but to also simulate the small scale magnetic and hydrodynamic features of other
stars. However, the simulation of magnetic spots on stars other than the Sun is territory
that is yet to be charted. In this thesis, I compute the first simulations of spots on other
stars and present a unified theory connecting the thermodynamic and radiative properties
of magnetic spots on cool main-sequence stars.
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Summary

Sunspots are cool, dark features on the solar surface consisting of two distinct parts -
the inner dark umbra and its surrounding brighter, filamentary penumbra. Strong nearly
vertical fields found in the umbra locally suppress overturning convective motion while
the more inclined fields of the penumbra support the outward Evershed flow. The fine
structure of sunspots has been studied in much detail with the help of both ground and
space-based telescopes.

Our knowledge about starspots, in comparison, is very limited. This is mainly because
other stellar surfaces are at best poorly resolved. Nonetheless, inversions of lightcurves
and in particular of spectropolarimetric time series have allowed us to map the large scale
temperature and magnetic field in-homogeneities on other stars. However, the derived
properties of spots on stars very similar to the Sun display strong differences to sunspots,
suggesting that the properties of starspots derived from stellar observations may not be so
reliable. The fine structure of starspots is still unknown and how similar, or dissimilar,
they are to spots on the Sun remains to be answered. In this thesis, we have attempted to
make headway into these unsolved astrophysical problems.

In Chapter 1, I have briefly covered the existing body of knowledge on the photo-
spheric physics of different types of stars, sunspots and spots on other stars. I have also
described the MURaM code which has been used for the radiative MHD computations
presented in this thesis.

In Chapter 2, I have presented the first-ever, realistic simulations of the photospheric
structure of starspots for a range of cool main-sequence stars, namely the spectral types-
M0V, K0V, and G2V. I explored several fundamental properties like umbral intensity
contrast, temperature, and magnetic field strength as functions of spectral type. The sim-
ulations show that there is an increase in spot contrast with the increase in stellar surface
temperature, which is consistent with observations. The umbral field strength is deter-
mined by the depth at which the optical surface forms and the surface pressures of the
host stars and it depends much less strongly on spectral type. I discussed in detail the
physics behind the trends seen in temperature and magnetic field.

In Chapter 3, I synthesized three spectral lines from the simulated starspot atmo-
spheres - two in the visible and another in the infrared wavelength. I then studied the
center-to-limb variations of the emergent spectra. I combined synthetic line profiles of
umbrae, penumbrae, and quiet star regions calculated at various viewing angles to create
disk integrated line profiles which were used to estimate the effects of spots on stellar
radial velocity.

While constraining the initial conditions for our starspot simulations presented in
Chapter 2, I found that interchange instabilities were affecting some of the magnetic flux
tubes. In Chapter 4, I present the results of a detailed, separate study on this. I performed
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Summary

numerical experiments with magnetic flux tubes of different curvatures and tested their
susceptibility to the fluting instability. I found that the subsurface structure of sunspot
flux tubes play a role in penumbra formation and flux tubes which are highly curved tend
to be more vulnerable to penetration by flute-like intrusions of the surrounding gas.

Finally in Chapter 5, I have summarized the main conclusions of this thesis and
discussed future directions of research the work in thesis has opened up.
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Zusammenfassung

Sonnenflecken sind kühle, dunkle Stellen auf der Sonnenoberfläche, die aus zwei ver-
schiedenen Teilen bestehen, der inneren dunklen Umbra und der umgebenden, aus helleren
Filamenten gebildeten Penumbra. Starke, vorwiegend vertikale Felder in der Umbra un-
terdrücken lokal die Konvektion, während die stärker geneigten Felder in der Penum-
bra den nach außen gerichteten Evershed-Fluss unterstützen. Die Feinstruktur der Son-
nenflecken wurde mit Hilfe von bodengebundenen und weltraumgestützten Teleskopen
eingehend untersucht.

Unser Wissen über Sternflecken ist im Vergleich dazu sehr begrenzt. Dies liegt haupt-
sächlich daran, dass die Oberflächen anderer Sterne sehr schwer aufzulösen sind. In-
versionen von Lichtkurven und spektropolarimetrische Daten haben es uns jedoch er-
möglicht, die großskaligen Inhomogenitäten von Temperatur und Magnetfeld auf an-
deren Sternen abzubilden. Die Feinstruktur von Sternflecken ist noch unbekannt und
wie ähnlich oder unähnlich sie Flecken auf der Sonne sind, ist noch nicht beantwortet.
In dieser Arbeit haben ich versucht, Fortschritte bei der Lösung dieser herausragenden
astrophysikalischen Probleme zu machen.

In Kapitel 1 gehe ich kurz auf den aktuellen Wissensstand über die Physik der Photo-
sphäre verschiedener Arten von Sternen, Sonnenflecken und Flecken auf anderen Sternen
ein. Ich beschreibe auch den MURaM-Code, der für die in dieser Arbeit präsentierten
Strahlungs-MHD-Simulationen verwendet wurde.

In Kapitel 2 stelle ich die ersten realistischen Simulationen der photo- sphärischen
Struktur von Sternflecken für eine Reihe kühler Hauptreihensterne vor, nämlich die Spek-
traltypen M0V, K0V und G2V. Ich untersuche verschiedene grundlegende Eigenschaften,
wie den Intensitätskontrast der Umbra, die Temperatur und die Magnetfeldstärke, als
Funktionen des Spektraltyps. Die Simulationen zeigen, dass der Kontrast der Flecken
mit steigender Temperatur der Sternoberfläche zunimmt, was mit den Beobachtungen
übereinstimmt. Die Feldstärke der Umbra wird bestimmt durch die Tiefe, an der sich
die optische Oberfläche gebildet wird, und durch den Druck an der Oberfläche der betr-
effenden Sterne. Ich diskutiere ausführlich die physikalischen Prozesse, welche für die
Trends in Temperatur und Magnetfeld verantwortlich sind.

In Kapitel 3 synthetisiere ich zwei Spektrallinien aus unseren simulierten Sternflecken-
Atmosphären - eine im sichtbaren, die andere im infraroten Wellenlängenbereich. Ferner
untersuche ich die Variation der erhaltenen Spektren vom Zentrum bis zum Rand der
Sternscheibe. Ich kombiniere synthetische Linienprofile für Umbrae, Penumbrae und
ruhige Sternregionen, die unter verschiedenen Beobachtungswinkeln berechnet wurden,
zu integrierten Linienprofilen, mit denen ich die Auswirkungen von Flecken auf die stel-
laren Radialgeschwindigkeiten abschätzen kann.

Während wir die Anfangsbedingungen für unsere in Kapitel 2 vorgestellten Stern-
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Zusammenfassung

fleckensimulationen bestimmten, stellten wir fest, dass einige der magnetis- chen Flussröhren
von der Austauschinstabilität (fluting instability, oder interchange instability) beeinflusst
werden. In Kapitel 4 führen wir dazu eine detaillierte, separate Studie durch. Ic führe nu-
merische Experimente mit magnetischen Flussröhren unterschiedlicher Krümmung durch
und testen deren Anfälligkeit für die Austauschinstabilität. Wir stellen fest, dass die Struk-
tur der Flussröhren der Sonnenflecken unter der Oberfläche eine Rolle bei der Entstehung
der Penumbrae spielt, außerdem sind stark gekrümmte Flussröhren anfälliger für das ril-
lenartige Eindringen des umgebenden Gases.

Abschließend fasse ich in Kapitel 5 die wichtigsten Schlussfolgerungen dieser Arbeit
zusammen und erörtere zukünftige Forschungsrichtungen, welche durch die Arbeit in
dieser Dissertation eröffnet werden.

12



1 Introduction

The work presented in this thesis explores the thermodynamic, radiative and magnetic
properties of spots on stars of different spectral types on the main-sequence, through nu-
merical radiative magnetohydrodynamic (MHD) simulations. However, before a discus-
sion of the simulations of starspots performed in this thesis ensues, the following ques-
tions, which provide the backdrop of this work, must be addressed -

1) How are stars classified into spectral types? What is the main-sequence? (Section
1.1)

2) Starspots are manifestations of concentrated magnetic fields embedded in granular
convection. What drives granular convection? How does a star’s spectral type affect the
hydrodynamics of granular convection? (Section 1.2)

3) How does magnetic field affect granulation? What have we learned from past sim-
ulations of stellar surfaces that included magnetic fields? (Section 1.3)

4) What do we know about the fundamental properties of sunspots and spots on other
stars? (Section 1.4)

I will begin with a discussion of the different spectral types stars are classified into,
and the Hertzsprung-Russell (HR) diagram - concepts that will be frequently invoked in
this chapter.

1.1 Classification of stars - The HR Diagram
Stars are giant luminous balls of gas that are bound together by their own gravity. Their
luminosity is powered by nuclear reactions at their core, that were triggered by a gravita-
tional collapse creating extreme conditions of temperature and pressure. The luminosity
(L) of a star with radius R is given by,

L = (4πR2)σT 4
e f f , (1.1)

where Te f f is the temperature of the star if it were to radiate like a blackbody and σ is the
Stefan-Boltzmann’s constant.

Luminosity and Te f f are both measurable quantities and in an effort to better under-
stand stellar evolution, luminosity is often plotted against Te f f in what is known as the
Hertzsprung-Russell (HR) diagram, as shown in Figure 1.1. Stars are also grouped into
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1 Introduction

Figure 1.1: Hertzsprung-Russell (HR) diagram, with each point represent-
ing a separate star. In this thesis, we are concerned with the spectral
types G, K and M that lie on the main-sequence. Image source: chan-
dra.harvard.edu/edu/formal/variable_stars/bg_info.html

spectral types in accordance with the Morgan-Keenan system, in which they are assigned
a temperature class and a luminosity class, based on the characteristics of their spectral
lines. In this system, the temperature class of a star is determined by the strength of its
absorption lines, while the pressure broadening (a high surface pressure would be caused
by a high surface gravity, which is related its size) of its spectral lines is used to assign it a
luminosity class. For example, the Sun is a G2V star, where G indicates a broad temper-
ature range of roughly 5000 - 6000 K, and 2 indicates its sub-temperature group. It has
a luminosity class of V, which tells us it is in the main-sequence. A star’s spectral type,
naturally, is also indicative of its position in the HR diagram. A position of a star on the
HR diagram tells us much more than just its luminosity and temperature; it reveals infor-
mation about its mass, size, internal structure and stage of its life. A casual look at eqn.
1.1 tells us that a cold and luminous star will have a much larger radius than a warmer
but fainter star. It is also a star’s mass that determines the gravitational force it exerts on
itself, and through much of its lifetime, a star is kept in equilibrium by the competing
forces of its own gravity and the thermal and radiation pressure created by the nuclear
reactions at its core that also make it luminous. One can derive, starting from the stellar
structure equations, simple scaling laws that relate the mass (M), radius (R), luminosity
(L) and internal temperature (TInternal)of a star. This exercise, which involves a series of
radical assumptions, yields the following approximate relations for a star (see Appendix
A: for a full derivation)

TInternal ∝
M
R
, (1.2)

14



1.1 Classification of stars - The HR Diagram

Figure 1.2: Mode of heat transport in stars with stellar mass. Image adapted from:
www.sun.org - http://www.sun.org/encyclopedia/stars, CC BY-SA 3.0

and
L ∝ M3.∗ (1.3)

The stars discussed in this thesis have internal temperatures in the same order-of-
magnitude and therefore eqn. 1.2 can be further simplified to a better approximation for
cool main sequence stars:

M ∝ R. (1.4)

As one can see, the mass and size of a star are intimately connected to its internal
temperature and luminosity. The mass of a star also critically decides its structure and
evolution, which I will proceed to illustrate, in broad terms, in the following paragraphs.

A star is born when a gravitational instability in the protostellar cloud causes mass to
lump together, which triggers further accumulation of mass. As the star contracts under
its own mass, the gravitational energy heats up the star. For stars that exceed a certain
mass threshold, this process continues until the core reaches the temperature and pressure
to support nuclear fusion which converts hydrogen into helium. Now the star has enough
radiation pressure to counteract its own gravity and this stable luminous ball of gas is
a part of the main-sequence. A star spends a significant portion of its life in the main-
sequence. Once a star is depleted of its hydrogen, its core contracts under its own weight,
until the temperature and pressure are high enough that nuclear fusion, "burning" hydro-
gen, restarts in a shell surrounding its core. The increased radiation pressure expands its

∗This is a relation derived purely theoretically using order of magnitude approximations to demonstrate
the intimate connection between L and M. In reality, L ∝ Mα, where α is a piecewise step function of
the mass of the star. Mass-luminosity relations derived empirically (Demircan and Kahraman 1991) and
calculated from observations (Griffiths et al. 1988, Eker et al. 2015) place α between 2.4 and 4.8 (see Table 1
of Wang and Zhong (2018)). It is interesting that despite the simplistic nature of the derivation, the obtained
value of α = 3 lies well within the range of observed values.
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1 Introduction

outer layer and the star enters the red-giant phase of its life cycle. Depending on the star’s
mass, it either meets it end through an explosive supernova or throws off most of its outer
shell in the form of a strong wind and then cools down to a white dwarf.

A vast majority (≈ 90%) of the stars in the observable universe lie on the main-
sequence, a narrow diagonal band, stretching from the top left corner to the bottom right
corner of the HR diagram. As we move up along the main-sequence we sample stars of
increasingly larger radii and larger masses. A main-sequence star has a core that converts
hydrogen into helium by nuclear fusion. As illustrated in Figure 1.2, the mode of trans-
port of this generated energy depends, again, on the stellar mass. Stars with low mass
(< 0.35M�) are fully convective (Chabrier and Baraffe 1997), while stars with mass in the
range 0.35M� − 1.5M� have an inner radiative zone and an outer convective zone. Stars
heavier than 1.5M� have an inner convective zone and an outer radiative zone.

In this thesis, we are concerned with the spectral types G2V, K0V, and M0V. All of
them have masses in the range 0.35M� to 1.5M� and therefore they have outer convec-
tive zones. They have comparable surface gravities and their surface temperatures lie in
the range 4000 - 6000 K. I will discuss next, the surface layers of these stars, where the
convection zone meets the outermost radiating layer, with a particular focus on granular
convection and how its properties vary with spectral type. It is important to note that in
all of the discussions that will follow, it will be assumed that matter is in thermodynamic
equilibrium. For a very entertaining explanation of what thermodynamic equilibrium is
and to witness in vivid imagery what happens at the atomic level inside a star, I implore
you to read the excerpt provided in the next page, from "The internal constitution of
stars." by Eddington (1930).

1.2 Granular Convection
This thesis is an improvement upon previous simulations that studied stellar granular con-
vection and small scale magnetic features embedded in granules. It is therefore, impera-
tive that I discuss the theoretical aspects of near surface convection in stars and previous
work that provides the framework for this thesis.

Convection is a mode of energy transport where the motion of fluid parcels itself
transports heat energy. In a gravitationally stratified stellar atmosphere, for convection to
set in, the vertical gradient in temperature must be greater than the adiabatic temperature
gradient.

∂T
∂z

>
∂T
∂z adiabatic

. (1.5)

What does it mean when an atmosphere is said to be adiabatically stratified ? Imag-
ine a parcel of gas sitting at the bottom of the convection zone, slightly hotter than its
surroundings. By virtue of being hotter it will be less dense than the background and
naturally buoyant. As it rises up through the stratified stellar interior, this parcel of gas
encounters an increasingly vacuous background and expands as its higher internal pres-
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1.2 Granular Convection

Figure 1.3: Excerpt from Arthur Eddington’s "The internal constitution of stars"

sure tries to adjust to the constantly thinning environment around it. If we assume that
the journey of this parcel has been adiabatic, that is, it did not exchange any heat with
it surroundings, the cooling of the gas inside the parcel will be strictly from the loss of
pressure. Let us consider the case, where the surrounding gas at the new elevation of the
parcel is cooler than the gas inside the parcel. The parcel would be still hotter and less
dense than its surroundings and would continue to rise. This would be possible, only if
the vertical gradient in temperature of the background medium is steeper than the adia-
batic drop in temperature inside the parcel. This has been expressed mathematically in
eqn. 1.5.

It is often convenient to state the criterion for convection in terms of entropy. Entropy

17



1 Introduction

Figure 1.4: An image of the solar surface taken at a resolution of 30km by the Daniel K.
Inouye Solar Telescope (DKIST).

is a state function which is defined in classical thermodynamics as:

dS =
dQ
T
, (1.6)

where dQ is the amount of heat energy absorbed or expended by the system, and T the
temperature. Naturally any adiabatic system, in this case, our parcel of gas rising through
the atmosphere, is also isentropic as its cooling is solely due to the drop in pressure and
not mediated through an exchange of energy with its surroundings (dQ = 0). For a system
that is superadiabatic, the change in entropy will naturally be non-zero, and the convective
instability criterion can be formulated as

dS
dz

< 0. (1.7)

It is advantageous to restate the criterion for convection in terms of entropy because
any heat exchange a parcel of gas lives through, leaves an imprint on its entropy. For
example, once our gaseous blob reaches the stellar surface and "sees the universe", it
loses heat energy through radiation and therefore loses some its entropy.

Convection in a star occurs over multiple length scales, the largest being the global
mode while the smallest scale manifests in the surface layers, in the form of granules.
Granules, as shown in Figure 1.4, are bright cells of buoyant hot gas, bordered by dark
lanes where the gas, after cooling off, sinks back into the star. The thin layer, where
radiative cooling takes place, induces a sharp vertical gradient in entropy and drives the
near-surface, vigorous convection. Further the departure from adiabaticity, or sharper the
gradient in entropy, more vigorous is the convection.
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1.2 Granular Convection

The characteristic length scale of granules and their velocities can be estimated from
simple first principle calculations (see Nordlund et al. (2009) for a more detailed dis-
cussion). Since the size of granules should be congruent with mass conservation, it is
reasonable to expect that the horizontal extent of granules should be dependent on the
vertical length scale over which thermodynamic properties change, that is the average
pressure scale height (Hp) near the surface. The pressure scale height is given by

Hp =
P
ρg
.

Using the arguments above and invoking the ideal gas law, we can write

granule size ∝
T
g
. (1.8)

This means as we as we go deeper into a star, the size of granules increases, with
increasing temperature. As we move from the left to right on the HR diagram along the
main-sequence (which I do in this thesis) we witness a decrease in surface temperature and
an increase in surface gravity. This would mean granules would become monotonically
smaller from the G2V star to the M0V star.

Another conspicuous property of granules, is their temperature contrast, that is the
temperature difference between upflows and downflows. From mixing-length theory the
amount of heat energy transported upwards (Fconv) by a unit volume of fluid can be ap-
proximated as:

Fconv ≈ ρcp(Tupvup − Tdnvdn). (1.9)

Here ρ is the density, cp is the specific heat capacity at constant pressure, Tup and Tdn are
the temperatures of the upflowing and downflowing plasma respectively, and vup and vdn

are the upflow and downflow velocities. Assuming that vup and vdn are of the same order
of magnitude, one can replace these terms by vvert and rewrite eqn. 1.9 as,

Fconv ≈ ρcpvvert(Tup − Tdn). (1.10)

Now, all of the net energy that is carried up by convection must be radiated away.
Therefore we can write,

ρcpvvert(Tup − Tdn) ≈ σT 4
e f f ,

or,

vvert(Tup − Tdn) ∝
T 4

e f f

ρ
. (1.11)

This result has powerful predictive abilities. Let us look at the stars we are concerned
with - G2V, K0V and M0V. Te f f decreases from the G2V to the M0V star, while ρ in-
creases. This means the product of granule velocity and temperature contrast would be
the highest in the G2V case and lowest in the M0V case.

Although these arguments are very simplistic, they are useful in developing a qualita-
tive understanding of granular convection across the HR diagram. For a thorough quan-
titative analysis, one must resort to numerical simulations, the history of which I will
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Figure 1.5: White-light intensity images of granulation across the HR diagram. The
grey lines show evolutionary tracks for different stellar masses. Image created by Zazralt
Magic with the STAGGER code.
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1.2 Granular Convection

Figure 1.6: R.M.S (Root mean square) of the vertical component of the flow velocity on
surfaces of constant geometrical depth, plotted against normalized pressure, for different
spectral types. This figure is a reproduction of Figure 6a of Beeck et al. (2013a). Credit:
Beeck et al. 2013, A&A, 558, A48, reproduced with permission c©ESO

briefly present in the following paragraphs.

The first simulations of a stellar surface were of the Sun’s granulation, computed in
the early 1980s by Nordlund (1982, 1984, 1985). These early simulations, despite the lim-
ited computing resources available at the time, provided crucial insight into photospheric
physics and their effect on spectral lines. Soon after, Nordlund and Dravins (1990b) ex-
tended their solar simulations to other sun-like stars. This seminal work produced the first
images of stellar surface granulation and established the role of temperature dependence
of opacity in shaping stellar granular structure. The continuum opacity of cool main-
sequence stars is governed by H− opacity and in the temperature range 4000 - 8000 K
, the opacity (κ) scales as T 9. This means the variation of opacity with depth would be
strongly dependent on the surface temperature of the star, and as a consequence the thick-
ness of the radiative cooling layer, which is the driver of near surface convection, would
also vary with spectral type. In hot F stars, the cooling occurs over a very thin slice and
as a result the highest temperature contrast is close to the surface. Such hot stars exhibit
"naked" granules, while in cooler stars, where the radiative cooling is spread out over a
larger vertical extent, the granulation is "veiled" granulation with the highest temperature
contrast of the granules being reached underneath the visible surface.

Since then, a few other radiative magnetohydrodynamic (rad-MHD, henceforth) codes
- Co5BOLD (Freytag et al. 2012), STAGGER (Stein and Nordlund 1998, Magic et al.
2013a, Trampedach et al. 2013), MURaM (Vögler et al. 2005, Rempel et al. 2009b, Beeck
et al. 2013a,b) and Stellar-Box (Wray et al. 2015), have been used to perform stellar
surface simulations on different spectral types. It was shown by Beeck et al. (2012) that
the Co5BOLD, STAGGER, and MURaM codes, despite their differences in numerical
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approaches, exhibit overall similar behaviour.
These independent investigations have led to an emergence of a cohesive picture of

stellar granulation. In Figure 1.5 (image created by Zazralt Magic using the STAGGER
code), the variation of emergent white-light intensity across the HR diagram is shown.
The most visible feature of granular convection - granule size, is indeed determined by
the competing effects of surface temperature and surface gravity as predicted by equation
1.8. An increase in log g results in smaller granules whereas an increase in Te f f increases
granule sizes. This creates an interesting scenario for red giants (Te f f - 4000 - 4500
K, log g - 1.5 - 2.0), where despite their low temperatures, they have massive granules
(comparable to the stellar radius!) because of the drastic reduction in log g. The contrast
between granules and intergranular lanes is also a function of Te f f . Higher the stellar
temperature, higher is the contrast, confirming the very early results of Nordlund and
Dravins (1990b). In Figure 1.6 (image taken from Beeck et al. (2013a)), the variation
of upflow speeds with depths, for different spectral types are shown. There are three
important takeaways from this plot -

1) The upflow speeds show a monotonic decrease from the hottest (F3V) to the coolest
star (M2V). Given that temperature contrast also reduces from F3V to M2V, note that the
relation given in equation 1.11, despite its simplicity, turns out to be quite useful.

2) For every spectral type, the upflow speeds reach a peak and then gradually become
slower as we move deeper down. However the sharpness of the peaks varies with spectral
type, with the sharpness gradually decreasing from F3V to M2V.

3)The maximum speed is reached at different depths. For the F3V star it is at the
surface, whereas for the colder M0V star it is at a depth where the pressure is 10 times
that of the surface. This and the point discussed above, is related to the vertical extent
of the layer over which radiative cooling takes place, which is again, as discussed before,
determined by the temperature dependence of opacity.

In this section I have discussed in detail how stellar near-surface convective properties
vary with spectral type. The following section will be a discussion of what happens when
we throw magnetic fields into the mix.

1.3 Small-scale magnetic fields

Needless to say, it is, at present, impossible to observe small-scale (< or ≈ granular
lengthscales) magnetic features on stars other than the Sun. However, it is possible to
study their collective effect from disk-integrated spectra. Therefore, when we talk about
magnetic fields on other stars, we often associate it with a filling factor which tells us
how much of the disk surface is covered by magnetic field. I have described some of the
difficulties of measuring magnetic fields in the Introduction of Paper - I, later in this thesis.
For a detailed review of stellar magnetic field measurement techniques see the reviews by
Berdyugina (2005) and Reiners (2012).

However, I will focus my discussions on how individual small-scale magnetic flux
tubes interact with convection and radiation. This is important because I later make the
assumption that starspots are essentially large magnetic flux tubes that are embedded in
stellar photospheres. Therefore, many of the results that came out of previous studies
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1.3 Small-scale magnetic fields

where smaller magnetic flux tubes interacted with granular convection and radiation, are
relevant and applicable to the work presented in this thesis.

Magnetic flux tubes have two effects on the plasma they are embedded in - a) They
inhibit convective motions which inhibit the flow of heat energy to the solar surface. This
causes a reduction in temperature and therefore also a reduction in opacity b) Magnetic
pressure displaces some of the gas and decrease the local density. The combined effect of
reduced opacity and density causes a depression in the optical surface, known as the Wil-
son depression. This exposes the inner hot walls of the flux tube and if the circumference
of the flux tube is small enough, for geometrical reasons, the radiation from the hot walls
dominates over the radiation coming from the dark floor of the evacuated space above
the optical surface and this makes the overall magnetic element brighter. For smaller flux
tubes, even the floor is bright as it is heated by the radiation coming from the bright walls.
The brightness depends on the strength of the magnetic field, which determines the Wil-
son depression and therefore how much of the inner hot wall we are seeing. Also it is
crucial that the magnetic flux tube has a small area and this is why pores are dark and not
bright. This effect, known as the hot-wall effect, is a well studied area in solar physics
(Spruit 1976, Keller et al. 2004, Steiner 2005). I can condense the above discussion into
two key points:

1) Individual magnetic elements can be bright or dark, depending on their size. Only
small magnetic elements can be bright.

2) The degree of brightness depends on the Wilson depression, which in turn depends
on the magnetic field strength.

Although there have been numerous efforts towards modelling stellar convection, stel-
lar surface simulations that include both magnetic fields and radiative transfer have been
sparse and only been done by two codes so far - MURaM (Beeck et al. 2011a, 2015a) and
Co5BOLD (Steiner et al. 2014, Salhab et al. 2018a). The MURaM group simulated the
spectral types - F3V, G2V, K0V, K5V, M0V and M2V, while the Co5BOLD group simu-
lated the types - F5V, G2V, K2V and K8V. The findings from these two sets of papers can
be summarized as follows:

1) The introduction of magnetic field changes the net outgoing radiative flux and there-
fore the Teff of a star.

2) As we have discussed before, the amount of brightening crucially depends on the
Wilson depression, which is a function of pressure scale height, density, and temperature
dependence of opacity, and therefore also a function of spectral type. For the same mag-
netic field strength, the brightening increases from the K to the F models. See Figure 1.7
for a visual explanation.

3) The M star models show no bright points as their Wilson depression is extremely
small. This leads to a net decrease in Teff .

As I have demonstrated in the last two sections, the temperature dependence of opac-
ity, pressure scale height and density are the key factors that not only shape granulation
but also the physics of magnetic flux tubes embedded in them. We should obviously look
out for the significance of these factor later when we analyse our starspot simulations.
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Figure 1.7: Cartoon showing magnetic flux sheets in two different stellar atmospheres.
Note the difference in the depression of the optical surface and the resulting increase of
the hot wall effect in the G star. Image Credit: Oskar Steiner

1.4 Sunspots
A discussion on starspots can not begin without a description of spots on the Sun, which
is what I will do in this section. While discussing sunspots in the context of stellar spots,
it is important to bear in mind that starspots have not been directly imaged and even a
rudimentary understanding of their basic structure does not exist (again, see Berdyugina
(2005)). Therefore I will confine my discussion to the basic properties of sunspots.

A sunspot is a cool (≈ 4500 K in the umbra compared to the photospheric temperature
of 5800 K), therefore dark (≈ 20% of the quiet sun intensity, in the umbra) structure on the
solar surface, composed primarily of two morphologically distinct regions- a dark central
region called the umbra, and a brighter (≈ 75% of the quiet sun intensity) filamentary
structure surrounding the umbra, called the penumbra. The umbra is dark because it is a
region of strong magnetic fields which quench convective motions that would have oth-
erwise transported heat energy to the solar surface. The penumbral region has magnetic
fields that are highly inclined and harbours a flow, known as the Evershed flow, directed
away from the umbra. In this section, I will provide an overview of the existing body of
knowledge on the fundamental properties (morphology, temperature, magnetic field and
flows) of the umbra and the penumbra.

1.4.1 The Umbra

The umbra forms the central dark core of a spot. It has typically a brightness of around
20-30% (Solanki 2003) of the quiet Sun and magnetic field strengths in the range 1.5
to 3.7 kG (Livingston 2002). It was suggested very early on (von Klüber 1948), and
later confirmed by other studies (Martinez Pillet and Vazquez 1993, Kopp and Rabin
1992), that a local relationship exists between the darkness at a given point inside the
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1.4 Sunspots

umbra and the magnetic field strength at that point. Stronger magnetic fields are better at
inhibiting convection therefore results in lower temperatures. The umbral brightness and
its magnetic field strength are also related to the size of the sunspot. Larger spots have
darker umbrae (Mathew et al. 2007, Schad 2014a) and they also harbour the strongest
magnetic fields (Livingston 2002, Schad and Penn 2010, Kiess et al. 2014). If, and how,
the temperature and magnetic field strength of umbrae depend on the phase of the solar
cycle has been the subject of much debate. Albregtsen and Maltby (1978) reported that
sunspots are the darkest, early on in the solar cycle and sunspots emerging later become
increasingly bright. However, Norton and Gilman (2004) found contradicting results of
sunspot brightness decreasing with the advent of the solar cycle, and then increasing again
in the latter half. Mathew et al. (2007) conducted a study on 160 spots and arrived at the
conclusion that umbral brightness is not significantly correlated with the phase of the
solar cycle. Several studies since then (Watson et al. 2011, Rezaei et al. 2015, Penn and
Livingston 2006) have reported a decrease in umbral field strength and often an associated
increase in brightness as the cycle progresses. Schad (2014a), the study covering the
largest number of sunspots (7530) found no evidence of a long term decrease in magnetic
field strength. As of now, the debate stands unresolved. Fortunately, even if the umbral
temperature and field strength were to have a solar cycle dependence, the reported yearly
rates of change are weak enough that, for the purpose of this thesis we can ignore any
such variations.

The umbra is not a homogeneous structure; in fact it is populated by bright umbral
dots (see Watanabe (2014) for a review). MHD simulations have suggested that these
bright dots are sites of very localized magnetoconvection and their brightness is caused by
upflows bringing up hot material from greater depths (Schüssler and Vögler 2006). These
simulations further predicted that umbral dots should have a a dark core that would form
higher up in the atmosphere where the upflow loses its inertia and turns over. Significant
headway was made when observations confirmed the presence of upflows in umbra dots
(Bharti et al. 2007, Riethmüller et al. 2008). These upflows were surrounded by localized
downflows (Riethmüller et al. 2013) lending support to the theory proposed by Schüssler
and Vögler (2006). Although Bharti et al. (2007) and Rimmele (2008) found the dark
cores predicted by MHD simulations, the umbral dots they analysed were located close
to the periphery of the umbra and could have been remnants of light bridges. The studies
of centrally located umbral dots by Riethmüller et al. (2013) and Louis et al. (2012a) did
not find any substructures.

From an energy balance point of view the convective nature of the umbra is not at all
surprising. Given that the umbra carries about 20 % of the heat flux of the quiet sun, a
mean flow of the order of a few 100 m/s can be expected. Tiwari et al. (2015), did find a
height dependent downflow of a few 100 m/s in the umbra in their 3D inversion, despite
using the line core at τ = 1 of the umbra as their reference wavelength for calculating the
Doppler shifts. Recently, Löhner-Böttcher et al. (2018a) attempted to study the absolute
velocities in the umbra using the Ti I 571.4 nm line, which forms in the deep photosphere,
and found a height dependent flow as well. Deep in the umbral photosphere they measured
an upflow of few 10s of m/s while higher up they measured downflows. Whether the
umbra harbours a mean flow is a question that is yet to be resolved.

25



1 Introduction

1.4.1.1 The Wilson Depression

The presence of strong magnetic fields in the umbra reduces the temperature and gas
pressure. This leads to a drop in opacity and density and allows us to see deeper into the
photosphere. This depression of the optical surface is termed as the Wilson Depression.
Measuring the Wilson depression is a difficult task and initial estimates, using methods
based on geometry produced a wide range of values - 400 to 2000km (Solanki 2003).
Recently, using a new technique which minimizes the divergence of the 3D magnetic
field vector, Löptien et al. (2020) puts the value of the Wilson depression between 400
and 700km. They also found out, unsurprisingly, that strong magnetic fields cause larger
Wilson depressions.

1.4.2 The Penumbra

The penumbra is a display of magnetoconvective processes in all their glory. It is com-
posed of numerous bright filaments (sometimes also called intraspines) which are sep-
arated by narrow dark lanes (also called spines) (Moore 1981). The terms spine and
intraspine were first introduced by Lites et al. (1993), who also found that the spines are
regions of stronger and more vertical magnetic fields, while the intraspines have fields
that are horizontal and weaker. The bright filaments have thin dark cores (not to be con-
fused with the much broader dark spines that separate the bright filaments) running along
their centres. The dark cores, which are about 100 km wide, are visible only at high
resolution and were first reported by Scharmer et al. (2002), and subsequently further
studied by Bellot-Rubio et al. (2007) and Langhans et al. (2007a). The tip of the fila-
ment that is on the umbral side, also known as penumbral grain, is usually brighter than
the rest of the filament and often migrate inwards into the umbra (Muller 1976, Sobotka
et al. 1999).The first complete picture of a penumbral filament, with detailed descriptions
of their flows and magnetic field structures, was provided by Tiwari et al. (2013), using
spatially coupled 2D inversions (also see van Noort et al. (2013)). They also found that
penumbral filaments are nearly identical to each other and do not show much variation of
their properties.

1.4.2.1 The Evershed flow

The penumbra is much more dynamic and lacks the reticent, sage-like demeanour of the
umbra. Its convective nature was discovered by Evershed (1909), who found that spectral
lines coming from the disk-side penumbra show a blueshift, while those coming from the
limb-side penumbra show a redshift. For sunspots located at the disk centre, spectral lines
originating from the penumbra did not show strong Doppler shifts. He concluded that the
penumbra harbours a flow that is directed radially outwards from the umbra.

The Evershed flow is intricately connected to, and driven by the magnetic field ge-
ometry of the penumbra. Recent high resolution observations with the aid of realistic
MHD simulations have helped form a coherent picture of how the Evershed flow interacts
with the inclined magnetic field of the penumbra and shapes its structure and appearance.
Here I will attempt to explain the physics of the penumbra by following the journey of the
Evershed flow.
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The Evershed flow rears its head from underneath the photosphere as a vertical up-
flow at the umbral edge of a penumbral filament. As it is carrying hot, dense material, it
lends a bright tear-drop shaped glow to the tip of the filament. Its inertia helps it move
further up the atmosphere, pushing up the optical surface in the process. As it moves up
it cools down and begins to tread the inclined path laid out by the horizontal fields of the
penumbra. As a consequence of the optical surface being pushed up, the Evershed flow,
now rapidly losing its heat by radiation, leaves behind a cool dark lane (the thin dark core
of the bright filaments) in its wake. The flow, as it moves along the dark core of the bright
filament, keeps losing mass from either side. Finally, as it reaches the end of the filament
and the outer edge of the penumbra it has become dense enough to sink back into the Sun.
As it dives back into the Sun, it pulls down the magnetic field lines with it, creating fields
of the opposite polarity. Clearly, this process is very similar to overturning convection
in granules, except the flows are asymmetric and are guided by strong horizontal fields.
(Westendorp Plaza et al. 1997, Scharmer et al. 2002, Heinemann et al. 2007, Langhans
et al. 2007b, Zakharov et al. 2008, Rempel et al. 2009b,a, Rempel 2011a, Borrero and
Ichimoto 2011, Franz et al. 2016, Borrero et al. 2017, Siu-Tapia et al. 2018).

Although much of the physics of the penumbra has been laid bare, what leads to its
formation is still shrouded in mystery. The general consensus is that the presence of hor-
izontal fields leads to penumbra formation. This can be either as a result of a) horizontal
fields emerging from below the photosphere (Leka and Skumanich 1998, Guglielmino
et al. 2014) or b) field lines from above being pushed down (Murabito et al. 2016). Ob-
servations that show the appearance of the penumbra in the chromosphere (Romano et al.
2013, Shimizu et al. 2012) before it appears on the surface have bolstered the second the-
ory. So far, in MHD simulations (Rempel 2011a) respectable penumbral proportions are
achieved by artificially modifying the upper boundary condition; the horizontal compo-
nent of potential configuration is multiplied by a factor of 2. Clearly, this is an area of
research that is still ripe for picking.

1.4.2.2 Light Bridges

Rogue penumbral filaments often intrude into the umbra (Louis et al. 2012, Benko et al.
2018a) and divide a sunspot into two or more parts. Such penumbral intrusions are called
lightbridges. Lightbridges are not necessarily penumbral intrusions; they can simply be
granulation invading a spot (for example, Lagg et al. (2014)), or form during spot for-
mation when the emerged flux is coalescing together (Cheung et al. 2010, Toriumi et al.
2015). Lightbridges have recently come to the fore for nesting very strong transient mag-
netic fields. When they form between two umbrae of opposite polarities, the colliding
Evershed flows create turbulent conditions that facilitate the formation of very strong
magnetic fields (Okamoto and Sakurai 2018, Hotta and Toriumi 2020, Castellanos Durán
et al. 2020).

To summarize, sunspots offer us the unique opportunity to study magnetoconvective
processes at play. Clearly, radiative-MHD simulations have helped unearth much of the
physics described above and additionally have produced intensity images that are often
indistinguishable from actual observations of sunspots (see Figure 1.8).
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Figure 1.8: The left half of the image is a simulated sunspot, created (by Matthias Rempel)
using the rad-MHD code MURaM, while the right half is an actual observed sunspot
(F. Wöger, National Solar Observatory). The composite image was created by Matthias
Rempel.

Figure 1.9: Left: Number of refereed papers published with sunspot(s) in their title. Right:
Number of refereed papers published with starspot(s) in their title.
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Figure 1.10: The "starspot(s)" paper network generated using ADS
(ui.adsabs.harvard.edu). All 342 papers published on starspots divided into groups
based on the references they share. The size of a wedge of a given colour is proportional
to the number of papers published in that group. The thickness of the gray bands indicate
the number of references two different groups have in common.

1.5 Starspots

The field of starspots is still in its nascency. Figure 1.9 shows a comparison between
the number of papers published with the word sunspot (or sunspots) in the title, and the
number of papers published with the word starspot (or starspots) in the years 1974-2020.
The number of papers published on starspots are still roughly an order of magnitude less
than the papers published on sunspots. A primary reason for this is that spots on other stars
are very hard to resolve and individual starspots have not been directly observed. There
is little to no knowledge about their morphology or fine structure. However, different
inversion techniques have been used to retrieve large scale surface inhomogeneities of
other stars, which allows us to study the average properties of what could be either very
large starspots or clusters of spots.

Figure 1.10 divides papers published on starspots into groups based on the references
they share. The names of the groups are created by searching for unique, shared words
in the group’s paper titles. The group names are indicators of the broad subtopics that
papers on "starspots" fall in (for details see https://ui.adsabs.harvard.edu/help/
actions/visualize#paper-network). As you can see, a significant chunk of the re-
search done on starspots is in the context of exoplanets. The other major areas of research
on starspots are directed towards measuring individual starspot properties (keywords -
"measure", "line ratios"), their distribution on stellar disks ("patterns", "images"), and
RS Canum Venaticorum (RS CVn) stars. The word "longterm" appears in two different
groups. In this section, I will first list the different types of techniques used to detect
and/or characterize starspots and then discuss the collective knowledge we have gained
from these diverse techniques, using Fig: 1.10 as a rough guide.
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1.5.1 Starspot Observation Methods
1. Lightcurves - The modulations seen in the lightcurve of a star can be attributed to

inhomogeneities on the stellar surface. Using a trial and error method, it is possible
to model the distribution and darkness of spots that would cause the observed pho-
tometric variations (Budding 1977, Vogt 1981b). However, one major disadvantage
of this method is that the solutions are generally rather simple (typically 2 or 3 spot
models) and are often not unique.

2. (Zeeman) Doppler Imaging - In fast rotating stars, each wavelength point in a
rotationally broadened spectral line profile corresponds to a specific longitude on
the star’s disk. Inversion techniques based on this principle, when applied to stel-
lar Stokes I profiles, can be used to retrieve temperature maps of a stellar surface
(Vogt and Penrod 1983, Goncharskii et al. 1977a). Unlike lightcurve inversions, this
technique can also constrain starspot latitudes - polar spots will only affect the line
core, whereas equatorial spots will affect the entire line profile. However, Doppler
imaging requires high resolution spectral data and can only map the surfaces of fast
rotating stars. The same principle, when applied to Stokes V profiles, can be used
to infer magnetic field inhomogeneities on a stellar surface (Semel 1989a, Donati
et al. 1989, Brown et al. 1991). A criticism of the Doppler Imaging technique is
that may produce polar spots as artefacts. Chromospheric activity and antisolar dif-
ferential rotation can both flatten photospheric line cores and therefore mimic the
signature of polar spots (Johns-Krull 1996, Bruls et al. 1998).

3. Interferometry - A recent advancement in mapping of stellar surfaces was the
imaging of a spotted star achieved using optical interferometry (Roettenbacher et al.
2016). A major advantage of this method is that the resolution is set by the distance
between the telescopes and not by the telescope diameter. Furthermore, interferom-
etry can unambiguously detect polar spots, the detection of which is not reliable by
Doppler Imaging.

4. Line-depth ratios (LDR) - This technique compares the depths of temperature sen-
sitive lines against those that are insensitive to temperature variations and can detect
temperature differences as small as 10K on a stellar surface (Gray 1996, Catalano
et al. 2002a). This does not provide any information about starspot location and is
typically very useful when used in conjunction with a mapping technique.

5. Molecular Bands Modeling - The surfaces of G and hotter stars are too hot for
most molecules to form. Therefore any presence of molecules on these stars must
come from cooler features. Since there is little knowledge about stellar atmo-
spheres, the modeling of the molecular bands is done by combining spectra of dif-
ferent standard stars (Huenemoerder and Ramsey 1987a, Neff et al. 1995a, O’Neal
et al. 1996a). For example, the spectra of a spotted G star can be modeled as a
superposition of the spectra of an inactive G star (representing the quiet star) and
an inactive M star (representing the spots). This method, like LDR, cannot be used
to produce a stellar surface map; it returns spot temperature and filling factor.

6. Planetary Transits - When a planet traverses a stellar disk, it might occult spots
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on the star. Such an occultation would cause an "emission bump" in the U-shaped
(caused by the transiting planet) dip of the lightcurve. This allows us to achieve a
very high resolution, since at any given point in time we are sampling only the area
of the stellar disk hidden by the transiting exoplanet (Mancini et al. 2013, Morris
et al. 2017). However the effectiveness of this method depends on chance - the area
of the stellar disk covered depends on (1) the angle between our line of sight and
the orbital plane of the transiting planet and (2) the inclination of the orbital plane
of the planet to the rotation axis of the star.

1.5.2 Spot characteristics: Temperature and Magnetic Field

Berdyugina (2005) compiled a list of starspot temperatures measured till then, and plotted
the spot temperature contrasts (Tphot - Tspot) versus the corresponding stellar photospheric
temperatures. She found that the higher the photospheric temperature is, the higher is the
temperature difference between the spot and its surrounding photosphere. The physical
reasons for this trend are still not clear and we will attempt to understand the physics
behind this trend in this thesis. Berdyugina (2005) had speculated that cooler stars might
have larger penumbrae and therefore lower spot temperature contrasts.

Mancini et al. (2013) updated the plot of Berdyugina (2005) and included spot tem-
perature contrasts measured using planetary transits. It seems that planetary transits and
lightcurve inversions often produce spot temperatures that are higher than those obtained
by modeling molecular bands. It is quite possible that molecules form only in the umbra
of spots and therefore fitting their spectra produce higher spot contrasts.

The magnetic field strength of an individual starspot is yet to be measured. Zeeman
Doppler Imaging is the most common technique that is used to map the large scale distri-
bution of magnetic fields on stellar surfaces. For reviews of magnetic fields measured on
stars other than the Sun see Strassmeier (2009) and Donati and Landstreet (2009). One
inherent flaw of the ZDI technique is that it is better at measuring magnetic fields in the
brighter regions of a star. For example, see the surface temperature and magnetic field
maps of II Pegasi (Carroll et al. 2007) where the colder regions hardly show any mag-
netic field. This makes ZDI somewhat unsuitable for measuring starspot magnetic fields.
Recently Afram and Berdyugina (2015) computed synthetic Stokes profiles of molecular
lines to gauge their potential to measure starspot field strengths on F,G, K and M stars.
Subsequently Afram and Berdyugina (2019), using molecular and atomic lines simultane-
ously, measured the magnetic field strengths in starspots on 9 M-dwarfs and found them
to lie in the range 3-6 kiloGauss.

Although the measurement of magnetic field strengths of individual starspots have not
been possible yet, a significant body of work exists on average magnetic fields on stellar
surfaces. While on the Sun the average unsigned field strength is only a few 10s of Gauss,
average field strengths in the kiloGauss range have been measured on M stars (Reiners
et al. 2009, Shulyak et al. 2019). It is not quite clear whether these high average field
strengths are more indicative of the field strengths of facular regions or of starspots.
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1.5.3 RS Canum Venaticorum (RS CVn) stars

For an uninitiated reader, it might seem odd that such a significant chunk of research on
starspots is directed towards RS CVn stars. These are typically close binary systems and
consisting of a subgiant that has evolved off the main sequence and a main sequence star.
The gravitaitonal interaction between the two stars makes them very fast rotators. In par-
ticular the subgiant component, due to its larger radius, shows very large surface rotation
velocities. Their fast rotation makes them prime targets to be studied using techniques that
rely on the Doppler effect. RS CVn binaries are also highly variable and their lightcurves
typically show a lot of modulation, which makes them suitable candidates for lightcurve
inversions. An added advantage is that the star’s companion can often occult starspots
producing an "emission" bump in the lightcurve. A significant chunk of our knowledge
about starspots has come from observing RS Cvn stars (see reviews by Hussain (2002),
Berdyugina (2005), Strassmeier (2009)).

1.5.4 Spot Distribution and Lifetimes

Sunspot studies spanning several centuries have revealed some fundamental properties
about the distribution and lifetimes of spots on the sun:

1. Sunspots do not appear near the poles of the Sun. They appear in a latitude belt
within 30 degrees of the equator (Solanki 2003).

2. If they have a longitudinal preference is unclear with studies contradicting each
other. While Berdyugina and Usoskin (2003) claim the Sun has active longitudes
180 degrees apart, Pelt et al. (2006) argue that this result is a mere artifact of their
analysis technique. However there is plenty of evidence for nesting of spots, that is,
sunspot groups appearing in locations where sunspots existed previously (see Is, ık
et al. (2020) and references therein).

3. Individual sunspots are very small compared to the solar disk and collectively they
can cover up to 1 % of the visible hemisphere during cycle maxima.

4. Sunspots typically last for a few days to a few weeks. Their lifetime has been
shown to be correlated with their size. Larger spots live longer (Petrovay and van
Driel-Gesztelyi 1997).

It was found early on that none of these properties are necessarily true for spots on other
stars. Starspots, to begin with, do not seem to have constraints on their latitude of oc-
currence. Polar spots and spots in high latitudes are commonly observed for giants and
subgiants that rotate rapidly (Strassmeier et al. 1991, Donati et al. 1992, Hatzes and Vogt
1992). In some young T Tauri stars, spots have been observed at both high and low lati-
tudes simultaneously (Strassmeier et al. 1994, Collier Cameron and Unruh 1994). Further,
some cool stars are definitely known to have active longitudes (Olah et al. 1991, Järvinen
et al. 2005, Lanza et al. 2009, García-Alvarez et al. 2011). While sunspots cover a tiny
fraction of the solar disk, spots on other stars are frequently known to cover a significant
fraction of the stellar surface, sometimes even up to 80 % (see figure 10 of Berdyugina
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(2005)). Such a high coverage of the stellar surface by magnetic fields (if indeed correct)
would seem to imply islands of relatively field-free gas surrounded by a magnetic ocean.

The lifetimes of starspots are important for a few reasons - (1) they can provide insight
about the dynamo processes that generate them, (2) spot lifetimes should be reflective of
the diffusive timescales and therefore convective velocities on stellar surfaces, and (3)
better constraints of starspot lifetimes will assist in disentangling starspot signatures from
exoplanet signatures. Spot lifetimes are usually studied using lightcurves and sometimes
Doppler Imaging. I will list below some of the major findings about starspot lifetimes.
For an early review on spot lifetimes see Hussain (2002); for a more recent review see
Section 13 of Strassmeier (2009).

1. Starspots, both on single giants and fast rotating RS CVn binaries, can last for
several years. It is quite possible that spots disintegrate and emerge at the same
"active longitude", giving the impression that a single active region persists over a
long time. On some RS CVn binaries, active longitudes have lasted for decades (see
Hussain (2002) and references therein). Doppler Imaging has also revealed polar
spots that have been known to last for several years (for example, Vogt et al. (1999)).
Basri and Shah (2020) caution us to be careful about "active longitudes" retrieved
from lightcurves alone, as they may be mere artifacts of the inversion process.

2. There has been a renewed interest in starspot lifetimes as they are also of importance
to planet hunters. Recently Giles et al. (2017) found that starspot lifetimes depend
on the stellar effective temperature; spots last longer on cooler stars. Namekata
et al. (2019) studied individual spots on 5356 solar-like stars using lightcurves and
puts spot lifetimes on these stars between 10 and 350 days. Basri and Shah (2020)
argue that the lifetimes derived by Namekata et al. (2019) should be reinterpreted
as the evolution of a dip in a lightcurve only tells us how long an asymmetry in spot
distribution lasts.

1.5.5 Spots and exoplanets
A widely used method of detecting exoplanets is to look at the radial velocity variations of
a star (Mayor and Queloz 1995). A planet revolving around a star will make the star wob-
ble about its axis. When the wobble is along our line-of-sight, it will introduce Doppler
shifts in the emergent spectra of the star. However, for this method to be effective, one
must rule out that variations in radial velocity (RV) are not due to the dynamics on the
stellar surface itself. Starspots, unfortunately, often produce RV signals that are indistin-
guishable from exoplanet signals and has led to false detections of planets (for example,
see Robertson et al. (2014)). There are several ways starspots can induce changes in the
RV of a star:

1. Spectral lines emerging from fast rotating stars undergo significant rotational broad-
ening. The presence of starspots in one hemisphere will cause of loss of photon flux
and will break the symmetry between red and blue shift. The first attempt to quan-
tify this was by Saar and Donahue (1997) who assumed the spot to be at 0 K. Hatzes
(2002a) improved on this and assumed a spot temperature difference of 1200 K with
the photosphere. Desort et al. (2007) showed that RV shifts depend on the spectral
line being used and computed RV using the full HARPS spectrum.

33



1 Introduction

2. Soon it was realized that starspots inhibit convection locally and their spectrum is
redshifted compared to the local convective blueshift and this further affects the
RV. This effect has been modelled several times (Lagrange et al. 2010, Lanza et al.
2010, Dumusque et al. 2014a).

3. Starspots, if they are anything like sunspots, should harbour flows of their own. The
penumbra harbours upflows, downflows and flows perpendicular to the line-of-sight
(at disc centre). This should further affect the convective blueshift. Since we do not
have simulations or observations of individual spots on other stars, this affect has
not been studied yet.

As one can see, our knowledge on starspots is very limited compared to what we know
about sunspots. Although we have made some progress about the properties of large -scale
stellar surface structures, we know very little about individual spots on other stars. In this
thesis, we aim to fill in this gap and study starspot fine structure using radiative-MHD
simulations.

1.6 The MURaM code
In this section, I will briefly describe the MURaM code used for the radiation magne-
tohydrodynamic simulations presented in this thesis. Magnetohydrodynamics (MHD)
describes the motion of an electrically conducting fluid as affected by the presence of
magnetic fields, and the strength and behaviour of these magnetic fields as affected by the
motions of the said fluid. The fluid is composed of charged particles, often of different
kinds, and to be able to use the abstraction of MHD which describes their macroscopic be-
haviour one must first make a few assumptions. The relevant lengthscales must be much
larger than the ion gyroradius and their mean free path. Our timescales of interest must
be much longer than the mean free time between collisons and the ion gyroperiod.

One can construct the MHD equations by postulating a set of laws that conserve mass,
momentum, energy and magnetic flux. The MURaM code solves the MHD equations in
conservative form, which ensures that certain fluxes are always conserved. The spatiotem-
pral evolution of a physical quantity that is conserved is described by -

∂(quantity)
∂t

+ ∇ · (flux of quantity) = source − sink.

Here I will describe the MHD equations in conservative form, as solved by MURaM.
ρ, v, e, p, B are density, velocity, energy per unit volume, pressure, and magnetic field
respectively. Note that the following equations will not have explicit diffusive or viscous
terms; MURaM uses artificial diffusivities for the variables ρ, v, e, and B (see Rempel
et al. (2009b) for the implementation of the diffusivity scheme).

The equation of continuity which states that mass in conserved is given by,
∂ρ

∂t
+ ∇ · (ρv) = 0. (1.12)

The equation of motion can be written down by balancing the forces acting on a parcel
of fluid of constant volume -

ρ
∂v
∂t

+ ρ(v · ∇)v = −∇p +
1

4π
(∇ × B) × B + ρg (1.13)
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The LHS,

ρ
∂v
∂t

+ ρ(v · ∇)v ≡ ρ
Dv
Dt

(1.14)

represents the acceleration of the fluid parcel caused by the forces acting on it. The terms
on the RHS, starting from the left, stand for the gradient in pressure, the Lorentz force,
and the gravitational pull. Multiplying equation 1.12 by v and combining with 1.14, the
LHS of 1.13 can be rewritten as:

ρ
∂v
∂t

+ ρ(v · ∇)v =
∂(ρv)
∂t

+ (ρv.∇)v + v∇ · (ρv) =
∂(ρv)
∂t

+ ∇ · (ρvv), (1.15)

where vv is the dyadic product. Clearly the quantity being conserved here is momen-
tum. We can rewrite the equation of motion as:

∂(ρv)
∂t

+ ∇ ·

[
ρvv +

(
p +
|B2|

8π

)
1 −

BB
4π

]
= ρg. (1.16)

where BB is a dyadic product, 1 is a 3 × 3 unit matrix.
The energy equation conserves total energy per unit volume (e), where e = einternal +

ekinetic + emagnetic.

∂e
∂t

+ ∇ ·

[
v
(
e + p +

|B2|

8π

)
−

B(v · B)
4π

]
= ρg · v + Qrad. (1.17)

The energy per unit volume of the system can change when there is a source/sink of
energy or work is done on/by the fluid. In the LHS of the equation, the ∇ · v

(
p + |B2 |

8π

)
term represents the work done by the pressure forces (fluid and magnetic), and ∇ ·

(
B(v·B)

4π

)
represents the work done by the Lorentz force. In the RHS, ρg · v is the work done
by gravity and Qrad, which accounts for the radiative heating and cooling processes, is
a source or sink term depending on its sign. Note that heat transport by conduction has
been ignored as it does not play an attention worthy role in the photosphere.

The evolution of the magnetic field is given by the magnetic induction equation,

∂B
∂t

+ ∇ · (vB − Bv) = 0, (1.18)

where vB and Bv are dyadic products. In order to close this system of equations,
equations of states relating ρ and eint to T (temperature) and p (pressure) are used. For
this, tabulated values, calculated using the OPAL equation of state are used (Rogers et al.
1996).

1.6.1 Calculating Qrad

The MHD equations are coupled to the radiation scheme through the Qrad term in the
energy equation. Qrad captures the contribution of radiative heating and cooling processes.
We first calculate the time-independent radiative transfer equation for frequency µ, which
is given by,
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dIµ
dτµ

= S µ − Iµ. (1.19)

Sµ is the source function and Iµ is the specific intensity. dτµ is the optical thickness
of the path element, and is the product of the length of the path element (ds) and the
absorption coefficient (κ). Under the assumption of local thermodynamic equilibrium
(LTE), Sµ is equal to the Planck function. The radiative flux (Fµ) is then calculated by
integrating the specific intensity over all ray directions. Qrad is now calculated as

Qrad =

∫
µ

(∇ · F)dµ (1.20)
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2 3D Radiative MHD simulations of
starspots

The contents of this chapter were authored by Mayukh Panja, Robert Cameron, and Sami
K. Solanki and published in the April 2020 edition of The Astrophysical Journal (Panja
et al 2020 ApJ 893 113, DOI: https://doi.org/10.3847/1538-4357/ab8230).

Abstract
There are no direct spatially resolved observations of spots on stars other than the Sun
and starspot properties are inferred indirectly through lightcurves and spectropolarimetric
data. We present the first self-consistent 3D radiative MHD computations of starspots on
G2V, K0V and M0V stars, which will help to better understand observations of activity,
variability and magnetic fields in late-type main-sequence stars. We used the MURaM
code, which has been extensively used to compute "realistic" sunspots, for our simula-
tions. We aim to study how fundamental starspot properties such as intensity contrast,
temperature and magnetic field strength vary with spectral type. We first simulated in
2D, multiple spots of each spectral type to find out appropriate initial conditions for our
3D runs. We find that with increasing stellar effective temperature, there is an increase
in the temperature difference between the umbra of the spot and its surrounding photo-
sphere, from 350K on the M0V star to 1400K on the G2V star. This trend in our simulated
starspots is consistent with observations. The magnetic field strengths of all the starspot
umbrae are in the 3-4.5 kG range. The G2V and K0V umbrae have comparable magnetic
field strengths around 3.5 kG, while the M0V umbra has a relatively higher field strength
around 4 kG. We discuss the physical reasons behind both these trends. All of the three
starspots develop penumbral filament-like structures with Evershed flows. The average
Evershed flow speed drops from 1.32 km s−1 in the G2V penumbra to 0.6 km s−1 in the
M0V penumbra.

2.1 Introduction
What do spots on stars other than the Sun look like? How dark are they and how strong
are their magnetic fields? The lack of direct spatially resolved observations of other stars
makes it difficult to answer such questions. Some properties of starspots can be inferred
using lightcurves and spectropolarimetric data. The most prevalent methods used to in-
fer information about starspot temperatures and filling factors are lightcurve inversions
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(Vogt 1981a), molecular bands modelling (Huenemoerder and Ramsey 1987b, Neff et al.
1995b, O’Neal et al. 1996b, 2004), line depth ratios, (Gray 1996, Catalano et al. 2002b)
and Doppler imaging (Goncharskii et al. 1977b, Vogt and Penrod 1983). Recently, plan-
etary transit lightcurves have also been used to gain information about starspot proper-
ties (Mancini et al. 2013, Espinoza et al. 2018). All of these methods, with the excep-
tion of molecular lines, suffer from the drawback that they can only detect spots that
are large enough to leave an imprint on disk integrated quantities. Even for sufficiently
large spots, it is difficult to distinguish between temperature contributions from the umbra
and the penumbra. Additionally, it is worthwhile to note that different techniques have
been known to produce very different spot temperatures for the same star, a notable ex-
ample being spots on the G1.5V sun-like star Ek Draconis. While Dorren and Guinan
(1994) found a spot temperature of 5400 K using lightcurve modelling, Strassmeier and
Rice (1998) and O’Neal et al. (2004) reported spot temperatures of 4800 K and 3800 K
using Doppler Imaging and modelling molecular bands, respectively. A comprehensive
discussion on the various methods of observations of starspots and their advantages and
disadvantages can be found in the reviews by Berdyugina (2005) and Strassmeier (2009).

The measurement of magnetic field strengths on other stars is even more difficult as
the lack of spatial resolution means the net circular polarisation tends to be cancelled
out by oppositely directed magnetic fields. However, in rapidly rotating stars, if mag-
netic features of opposite polarities are sufficiently separated in longitude, the Doppler
effect disentangles them in the Stokes V component of magnetically sensitive lines and
this is exploited by the Zeeman Doppler Imaging technique to map magnetic fields on the
stellar surface (Semel 1989b, Donati and Semel 1990). For slowly rotating stars if the
line broadening due to the Zeeman effect is larger than the rotational broadening, and the
surface coverage by such very strong fields is large enough, the magnetic field can be in-
ferred from the amount of broadening (Gray 1984). For starspots, there is the added issue
that, being dark, they provide little contribution to line profiles integrated over the stellar
surface. This makes measuring their fields particularly challenging. However, molecu-
lar lines that form primarily inside starspots and have little contribution from quiet-star
regions are being increasingly used to better constrain starspot magnetic field strengths
(Afram, N. and Berdyugina, S. V. 2015, 2019). For a review of stellar magnetic field
measurements, see Reiners (2012).

The review by Berdyugina (2005) compiled a list of starspot observations obtained
by using various methods and, despite the many limitations placed on observations, she
found a clear trend when she plotted starspot temperature contrast against stellar surface
temperature. The cooler the star, the lower is the difference between the spot and quiet
star temperature and the physical reasons for this are unclear.

All of the above-mentioned reasons point to the need for performing MHD simulations
to better understand the physics of starspots and how it may differ from that of sunspots.
Such simulations of thermal and magnetic structures of spots on other stars could also be
useful to interpret observations and may even help in understanding the underlying stellar
dynamo processes.

Although 3D radiative hydrodynamic simulations of near-surface layers for stars other
than the Sun had been performed as early as 1990 by Nordlund and Dravins (1990a), the
first stellar simulations including magnetic fields were performed by Beeck et al. (2011b)
and Wedemeyer et al. (2013). Subsequently, Beeck et al. (2015a,b), studied the effects of
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the magnetic field on surface properties such as intensity contrast and granulation struc-
ture in the spectral types F through M, using the MURaM code (Vögler et al. 2005). They
further generated synthetic disk integrated spectral line profiles that can be compared with
observations. Similar numerical studies using the CO5BOLD code, investigating the ef-
fects of magnetic fields on surface processes in cool stars, have been carried out by Steiner
et al. (2014) and Salhab et al. (2018b).

Spots on the Sun have been extensively simulated (Rempel et al. 2009a,b) using the
MURaM code. These simulations have been fairly successful in reproducing the fun-
damental observed features of sunspots - a dark umbra dotted with bright umbral dots,
surrounded by brighter penumbrae composed of filaments with thin dark cores, and the
Evershed flow directed away from the umbral region towards the quiet Sun. Such simu-
lations have been used to investigate the physical origins of many hitherto ill-understood
observed properties of sunspots (Rempel 2011a,b, 2012, Rempel 2015, Siu-Tapia et al.
2018).

In this paper, we have used the MURaM code to perform the first-ever ab-initio sim-
ulations of spots on cool main-sequence stars other than the Sun, to investigate their fun-
damental properties, specifically - brightness relative to the stellar surface and magnetic
field strength, as functions of stellar spectral type. As host stars we have considered a
G2V, a K0V and an M0V star. Before carrying out 3D simulations, we first performed
2D computationally inexpensive simulations to navigate the parameter space with the in-
tent of a) identifying suitable initial conditions for our final 3D runs and b) testing the
sensitivity of our results to the variations in the initial conditions.

2.2 Simulations
We have used the MURaM (Max-Planck University of Chicago Radiative MHD) code
(Vögler et al. 2005), which solves the MHD equations along with the radiative transfer
equation and an equation of state that takes into account the effects of partial ionization.
The version of the code used was the one employed by Beeck et al. (2013a,b, 2015a,b).
Since we do not generate synthetic line profiles in this study, we used the grey approxi-
mation for the radiative energy transport.

Table 2.1 lists the dimensions and initial physical properties of the simulation boxes
used for our 3D and 2D runs. We have simulated the spectral types - G2V, K0V, and
M0V. The atmospheres of the M0V and K0V stars were obtained by starting from a so-
lar atmosphere and changing the gravity (assumed constant throughout the computational
domain) and entropy density of the plasma at the lower boundary until our desired ef-
fective temperatures were achieved. All the simulated stars are assumed to have solar
metallicities.

2.2.1 3D Simulation Setup

We started our simulations with hydrodynamical runs of the three spectral types of stars.
Once the hydrodynamical runs were sufficiently relaxed, we put in wedge-shaped mag-
netic flux tubes as initial conditions for the magnetic field. The horizontal extents of the
inserted flux tubes at the optical surface were chosen such that they covered a similar num-
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ber of granules in all of the different spectral types. Figure 2.1 shows the initial condition
for the G2V starspot simulation.

The initial vertical field strength (Bz) of the flux tube is dependent only on geometrical
height and is prescribed by:

Bz = Bbot exp
−z
σ
, x ∈ [−w/2,w/2],

= 0, otherwise. (2.1)

Here z is the height from the lower boundary, x is the longer horizontal dimension, and
w is the width of the flux tube at every z, determined such that the vertical flux through
every height is constant.

At z = 0 we set Bz to Bbot and at z = hopt (height of optical surface from lower
boundary) , we set Bz to Bopt, and this yields σ to be

σ = hphot/ log(
Bbot

Bopt
). (2.2)

We choose By (y being the shorter horizontal dimension) to be zero initially, every-
where. Thus the ∇ · B = 0 constraint demands that ∂Bx

∂x +
∂Bz
∂z = 0 and we calculate Bx as

follows:

∂Bz

∂z
= −

Bbot

σ
exp
−z
σ

= −
Bz
σ
. (2.3)

Therefore,

∂Bx

∂x
=

Bz
σ
. (2.4)

With Bz being independent of x, and σ being a constant, the integration is straightfor-
ward and

Bx =
Bz
σ

x, (2.5)

with Bx =0 at x = 0 (the centre of the flux tube).
Our choices of Bbot and Bopt have been tabulated in Table 2.2. Our 3D boxes extended

to similar pressure scale depths and we chose similar values of Bbot for all the three stars
- 15,14, and 15 kG for the G2V, K0V, and M0V stars respectively. We picked values of
Bopt that one would naively guess from just the surface pressures – 3 and 3.2 kG for the
G2V and K0V stars as they have comparable surface pressures. For the M0V star which
has a surface pressure 5 times that of the G2V quiet star, a higher Bopt of 7 kG, which is
roughly 3*sqrt(5), was chosen.
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X

Z

Y

Figure 2.1: Initial magnetic structure for the G2V spot simulation. The depicted flux
tube was introduced after the hydrodynamic run had achieved thermal equilibrium. The
colours on the flux tube show Bz in Gauss (see right colorbar). The gray surface shows
the emergent bolometric intensity at the time the flux tube was inserted.

Table 2.1: Simulation Box Properties - 3D and 2D

Spectral Type G2V K0V M0V

log ga 4.438 4.609 4.826

Te f f [K] 3D 5824.5 4809.5 3871.6
2D 5738.2 4894.3 3864.8

Box Height [Mm] 3D 10.3 6 1.3
2D 7.3 " "

Photosphere [Mm] 3D 9.8 5.43 1.05
2D 6.4 5.44 1.04

Box Lengthb[Mm] 3D 36 27 10
2D " " "

# of Hp
c(above,below) 3D 5, 11 8.2, 11.3 8.1, 8.2

2D 6.3, 9.3 4, 11.1 8.6, 8.0

Resolution (hor,vert)[km] 3D 48, 17 36, 15 13.3, 4
2D 48, 21.5 " "

a g is the surface gravity in cm2 s−1

b All boxes have a length:width ratio of 6:1
c Number of pressure scale heights
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Figure 2.2: Evolution of average umbral temperatures (top) and average umbral magnetic
field strengths (bottom) with time for the three simulated starspots. The circles mark
the points in time when our snapshots were taken, which were after a similar number of
granule lifetimes.

Table 2.2: Initial Magnetic Flux Tube Properties

Spectral Type G2V K0V M0V

Bopt[kG] 3D 3 3.2 7
2D (range) 2.2 - 8.8 3.2 -12 3 - 12

Bbot[kG] 3D 15 14 15
2D (range) 4 - 14 6 - 16 5 - 18

The magnetic field at the upper boundary was matched to a potential field configura-
tion and the upper boundary was kept open to plasma flows. At the lower boundary, the
flow velocity was artificially set to zero inside the flux tube, effectively "tying down" the
flux tube to the lower boundary. This also mimics the physical effects of the flux tube
extending below the lower boundary as heat flow by means of convection is prohibited.

2.2.1.1 Choosing a snapshot

All of our simulated starspots are dynamical in nature, and they underwent several stages
of evolution in the course of the simulation. After an initial highly dynamic phase, the
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Figure 2.3: A 3D rendition of the simulated G2V star spot at the timestep of our analysis.
The top grayscale surface shows the bolometric intensity and the vertical slice shows Bz.
The corrugations of the top surface represent the variations in the geometric height of the
optical surface (τ =1). The colorbar shows Bz in Gauss.

magnetic flux tubes reach magnetostatic equilibrium with the surrounding fluid typically
within the first hour of stellar run time. Subsequently, all of the three spots formed penum-
bral filament-like structures and the G2V and the K0V spots developed umbral dots. After
a few additional hours, all of the flux tubes begin to get distorted underneath the surface
by flute-like intrusions from the surrounding fluid. If allowed to develop for a sufficiently
long time these intrusions manifest themselves at the optical surface as lightbridges. This
process sets in at different times for the three spectral types, earliest for the M star and
latest for the G star. Figure 2.2 shows the evolution of average umbral temperatures and
average umbral magnetic field strengths of the three simulated spots with time.

We have chosen the time of our snapshots such that the umbral temperatures were well
past their initial fluctuating phases and the spots had developed penumbral filament-like
structures, but also sufficiently ahead of the umbrae of the spots getting too distorted by
intruding lightbridges, for a meaningful analysis. A 3D rendition of the G2V starspot at
the instance our snapshot was taken is depicted in Figure 2.3.

The G2V, K0V, and M0V snapshots were taken after 8.7, 4.6 and 2.7 hours of stellar
runtime respectively. It is important to note that the timescales of granule evolution are
different for different spectral types. A typical granule lifetime on the Sun is on average
about 6 minutes whereas on the M0 star the granules last around 2.5 minutes. (Beeck
et al. 2013b). Consequently, the snapshots were taken after a similar number of granule
lifetimes - 80, 60 and 65 respectively for the G2V, K0V, and M0V stars.

2.2.2 2D Simulation Setup
The initial conditions used for the 2D simulations were the 2D analogs of the conditions
used for the 3D runs, with the flux tubes being inserted in a 2D hydro-dynamical run.
The computational ease afforded by having one less dimension allowed us to vary the two
free parameters- Bbot and Bopt, of the inserted flux tubes to simulate multiple spots for
each spectral type. This allowed us to test the sensitivity of our results to changes in our
chosen initial parameters. We simulated 24 spots in 2D, 8 for each spectral type. First, we
kept Bopt constant (2.2, 3.2 and 3 kG for the G2V, K0V and M0V cases respectively) and
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Figure 2.4: Upper Panel: Average umbral intensities, normalized by their quiet star inten-
sities, of the 2D simulations, plotted against spectral type. Lower Panel: Average umbral
field strengths at the optical surface. The size of the circles, in both the upper and lower
panels, indicate the strength of Bbot while the color indicates the strength of Bopt. Blue
circles indicate runs with original Bopt, while red and black correspond to runs where Bopt

was increased by factors of 2 and 4 respectively. See Section 2.2 and the Appendix for
more details.

explored a range of values of Bbot. We started with Bbots of 4 (G2V), 6 (K0V) and 5 (M0V)
kG and increased them roughly by a factor of 3, in steps of 2-3 kG. This constituted 6 of
the 8 simulated spots for each spectral type. Then, keeping Bbot constant we increased Bopt

by factors of 2 and 4. Table 2.2 lists our choices for Bbot and Bopt. A detailed description
of the 2D runs is given in the Appendix.

2.3 2D Results

Figure 2.4 summarizes the results obtained from our 2D simulations, where we have plot-
ted the obtained umbral relative intensities(Iumbra/Iquiet) and the average umbral magnetic
field strengths at the stellar surface for the three different spectral types.

We see a steep decrease in umbral relative intensity (or increase in umbral contrast rel-
ative to the quiet star) with increasing Teff in our 2D simulations. Interestingly, the relative
intensities do not show much variation (< 10%) within a spectral type when we change
the initial magnetic field strengths of the flux tube. This is important as it demonstrates
that the relative brightness of spots of a certain size is largely determined by the stellar
surface properties and does not depend significantly on our choice of initial conditions.
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2.3 2D Results

Figure 2.5: Bolometric intensity images of the simulated G2V, K0V and M0V starspots,
repeated in the y-directon. The colorbar shows the intensity in units of 1010 erg cm−2

ster−1 s−1. The red contours mark the boundaries of the penumbra.
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2 3D Radiative MHD simulations of starspots

Figure 2.6: Temperature maps, in Kelvin (see colour bars at right of the individual panels),
at the τ =1 surfaces of the three simulated stars - G2V, K0V and M0V.

This allows us to compare our results on spot brightness to observations with some degree
of certainty.

All of the simulated spots have field strengths in the 4-6 kG range. The K0V spots,
on average, have slightly lower umbral field strengths compared to the G2V and M0V
spots, and the M0V spots reach the highest field strengths.The M0V umbral field strengths
also have the maximum dependence on Bbot and therefore the widest distribution in field
strength. Nevertheless, we find that the obtained umbral field strengths do not vary by
more than 25% even when we change Bbot by a factor of 3 and Bopt by a factor of 4.
Although the umbral field strengths obtained in our 2D simulations are higher than 3D
simulations (Rempel et al. 2009b), their only weak dependence on initial conditions is
reassuring. A detailed analysis of the 2D runs has been presented in the Appendix.

2.4 3D Results

2.4.1 Surface Properties

Figure 2.5 shows the bolometric intensity images of the three simulated spots. There are
significant differences between the quiet star regions of the three spectral types, the most
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Figure 2.7: Top to bottom: Umbral, penumbral and quiet star temperatures, in Kelvin,
averaged over different iso-τ surfaces. The error bars show the standard deviations of the
computed averages.
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Figure 2.8: Top Panel: Spot (both with and without penumbra) temperature contrasts
(Tquiet(τ=1) − Tspot(τ=1,0.01)) plotted against photospheric temperature (Tquiet(τ=1)). Lower
Panel: Spot (both with and without penumbra) magnetic field strengths plotted against
photospheric temperature at different τ heights. The error bars show the standard devia-
tions of the computed averages. The green line in the top panel has been reproduced from
Figure 7 of Berdyugina (2005) and is a fit to observed starspot temperatures. The red
dashed line in the lower panel has been reproduced from Figure 8 of Berdyugina (2005)
and is a fit to magnetic field strengths measured on stellar surfaces. The black line in both
the panels represent the range of umbral values (also includes pores) measured on the Sun
taken from Schad (2014b) (lower panel, Figure 2).
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Figure 2.9: Magnetic field strengths, in Gauss, at the τ=1 surfaces of the three simulated
stars - G2V, K0V and M0V.
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Figure 2.10: Umbral magnetic field strengths, averaged over different iso-τ surfaces.
Black: G2V, Blue: K0V, Red: M0V. The error bars show the standard deviations of the
computed averages.
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2 3D Radiative MHD simulations of starspots

Figure 2.11: Geometric height maps of the τ=1 surface, in km, of the the three simulated
stars - G2V, K0V and M0V. Here, zero corresponds to the average height of the quiet star
τ=1 surface.

conspicuous of them being - 1) the contrast in the intensity between the granules and
the intergranular regions is the most pronounced in the G star and is progressively lower
in the cooler K and M stars, 2) the average granule size decreases from the G to the M
stars and 3) there are almost no bright magnetic features on the M star. These findings
are in line with the results of earlier studies focusing on quiet-star magnetoconvection
simulations. Detailed analyses have been done by Beeck et al. (2013b, 2015a) and Salhab
et al. (2018b), to which we direct the reader. It is important to note that even though we
have performed grey simulations, our results for the quiet star regions are similar to the
results obtained by both these sets of papers. Here we focus solely on spot properties.

2.4.1.1 Identifying the umbra

For all of the three simulated starspots, we first smoothed the intensity images and then
applied intensity thresholds to identify the penumbrae. The lower limits (upper limits) of
the intensity thresholds, normalized by their average quiet star intensities were - 0.4 (0.8),
0.6 (0.85) and 0.8 (0.94) for the G2V, K0V and the M0V spot respectively. All points
within the inner boundaries of the penumbrae were considered as part of the umbrae. We
obtained these thresholds by trial and error, using visual inspection to determine what
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2.4 3D Results

Figure 2.12: The panels on the left show intensity images of sections of penumbral re-
gions, with the umbrae being to the right of the selected regions. The intensities are in
units of 1010 erg cm−2 ster−1 s−1 . The panels on the right show corresponding horizontal
velocities in km s−1 for the same regions. The color blue indicates flows going towards
the left, and yellow indicates flows going towards the right.

thresholds work the best. The results of the intensity thresholds are shown in Figure 2.5,
where the penumbral boundaries are marked in red.

Table 2.3: Spatial average of umbral properties.

Star Iumbra/Iquiet |B|tau=1(G) Tτ=1(K) Te f f (K)
G2V 0.33 3406 4462 4610.8

(0.1) (505) (419.53) (102.6)
K0V 0.52 3254 4150 4262.5

(0.09) (561.3) (233.6) (83.6)
M0V 0.71 4187 3627 3622.8

(0.05) (426) (75) (58.8)

The averages were computed at the time of our snapshots,
with the standard deviations displayed inside brackets.
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2.4.1.2 Relative intensity and temperature of starspots

Table 2.3 lists the spatially averaged umbral properties at the time of our selected snap-
shots. The most striking difference between the three simulated starspots is in the intensity
contrast between the umbrae of the spots and the surrounding quiet star regions. The spot
contrast decreases progressively from the G starspot to the M starspot. The IUmbral/IQuiet

ratios for the three stars are 0.3, 0.5 and 0.7 for the G, K, and M stars respectively. Not
surprisingly, the temperature maps (Figure 2.6) correlate well with the intensity maps.
Therefore, following the trend in intensity contrasts, the temperature differences between
the spots and the quiet star regions decrease from spectral type G to M.

The umbral dots are noticeably numerous in the maps of G-star and K-star spot tem-
perature and intensity maps than in those of the M-star spot. This points towards the
existence of small-scale convective processes underneath the visible surface in the G and
K spots. Such processes appear to be comparatively suppressed below the M star umbra.

In Figure 2.7, we have plotted the average umbral, penumbral and quiet stars temper-
atures at different τ levels. As expected, there is a monotonic increase in temperature with
increasing τ. For τ >1, the M0V atmospheres (spot and quiet star) show a more gentle
increase with optical depth than the G2V and K0V atmospheres.

In the top panel of Figure 2.8, we have plotted the temperature differences between
the quiet star photosphere at τ=1 and the spot at the τ levels 1 (blue) and 0.01(red). Nat-
urally, at τ=0.01 the spots are colder and the temperature contrast between the quiet star
photosphere at τ=1 and the spot at τ=0.01 is higher. In our simulations, the periodicity
of our boundary conditions inhibits the growth of an expansive penumbra, as the field is
forced to point vertically in the upper part of the box near its boundary in the x-direction
(due to the virtual presence of another spot with the same polarity outside the domain).
In addition, in slab geometry, the penumbra to umbra area ratio is always underestimated,
for purely geometrical reasons. Thus, we estimate penumbra-to-umbra area ratios of ap-
proximately 1, 0.5, 1 for the G2V, K0V, and M0V spots respectively, while for the Sun
observations typically give a ratio of 4-5 (Solanki 2003). This means that those spot
temperatures which include contributions from the penumbra (boxes), although warmer,
are not significantly different from umbral temperatures(circles). The green line shows
a fit to observed starspot temperature contrasts and has been reproduced from Figure 7
of Berdyugina (2005). Simulated spot temperature contrasts at τ height 0.01, compare
well with the fit to the observed data. However, the spot temperature differences at τ=1
show a systematic offset to the line fitted to the observed data points. Note, however, that
starspot temperature differences obtained from transit mapping are considerably smaller
(e.g. Espinoza et al. (2018), Mancini et al. (2013)), even below the simulated temperature
differences at τ = 1. In any case, the observations and simulations display a remarkably
similar dependence of the temperature difference on the host star’s effective temperature.

Assuming the solar umbra:penumbra area ratio of 1:4 to hold true for all the three
simulated spectral types and using temperatures at τ=1 obtained from our simulations,
we predict spot temperatures of 4900 K, 4360 K and 3790 K and therefore quiet star
to spot temperature contrasts of 980 K, 560 K, and 190 K for the G2V, K0V, and M0V
spots respectively. Further, we can calculate spot to umbra temperature contrasts of 440
K (G2V), 210 K (K0V), and 160 K (M0V).

This increase in spot temperature contrast with stellar surface temperature is an effect
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of the strong dependence of opacity on temperature in the near-surface layers of our sim-
ulated spectral types. The opacity dependence of temperature is also responsible for the
increase in contrast seen between the granular and intergranular regions with increasing
Teff . We have expanded on this in the Discussion (Section 5).

2.4.1.3 Spot Magnetic Field Strengths

Figure 2.9 depicts magnetic field strength maps at the optical surface of the three stars.
At the time when we took the snapshots, the M-star spot had the highest umbral average
field strength, around 4200 Gauss, and the G and K starspots have average umbral field
strengths of around 3400 Gauss and 3200 Gauss respectively.The umbral magnetic field
distribution is highly non-uniform in both the G and K spots and shows a lot of fine
structure, which is related to the fine structure also seen in the surface temperature maps
(Figure 2.6) and is caused by the presence of umbral dots.

Figure 2.10 shows the umbral magnetic field strengths averaged over different iso-τ
surfaces. The M0V spot shows a slight but steady increase in field strength with increasing
optical depth. The magnetic field strengths for the G and K spots do not show much
variation with increasing τ and becomes almost constant below τ=1.

In the bottom panel of Figure 2.8 we have plotted our obtained average spot field
strengths at the heights where τ = 1 and 0.01. The red line is a fit to field strengths mea-
sured on different stars and has been reproduced from Figure 8 of Berdyugina (2005). It is
important to note that the observations are of field strengths averaged over large portions
of stellar surfaces and therefore have, probably large, contributions from magnetic fields
outside starspots as well. Also, the linear fit in Figure 8 of Berdyugina (2005) does not
include the solar umbral field strength. Therefore, it is not surprising that our simulation
results do not agree very well, although the general trend does show some similarity.

2.4.1.4 Wilson Depression

The presence of strong magnetic fields causes a reduction in the local gas pressure and
consequently a reduction in the gas density. The reduction in temperature, because of the
inhibition of convection, also causes a drop in the opacity. The absorption coefficient(κρ),
which is the product of the gas density and the opacity, naturally drops. This allows us
to see deeper into the star within the starspot and this depression of the optical surface is
called the Wilson depression. Figure 2.11 shows the depth of the Wilson depressions of
the three spots. The optical surface of the G2V spot is the most depressed and the value of
the Wilson depression in the umbra drops by roughly an order of magnitude from the G2V
to the M0V spot. The average Wilson depressions of the G, K and M umbral regions are
515, 161 and 34 km respectively. This difference in Wilson depression is a combination
of several factors - the difference in pressure scale heights among the stars, the plasma-β
ratio and the temperature dependence of opacity. We have explored this further in the
Discussion.

2.4.1.5 Penumbral Filaments

The periodicity of our boundary conditions in the horizontal directions implies that our
positive spots effectively sit between two other spots of the same magnetic polarity. This
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Figure 2.13: Histograms of Evershed flow speeds, in, from top to bottom, the G2V, the
K0V and the M0V starspots, calculated using the areas marked as penumbrae in Figure
2.5.

hinders the full development of penumbrae in all three cases. Nevertheless, we present
here some results from our obtained penumbrae.

The left-hand panel of Figure 2.12 shows the intensity images of segments from the
penumbral regions, while the right-hand panel shows the associated horizontal flow ve-
locities in the same regions. All of the three spots show penumbra like features. The K0V
penumbral filaments are similar to filaments observed on the Sun - elongated with thin
dark cores in the middle. The M0V filaments do not develop dark cores and are more ho-
mogeneous. The average intensities of the penumbral regions, normalized by their quiet
star intensities, and their average Evershed flow speeds have been listed in Table 2.4. Like
the umbra, the relative intensity of the penumbra increases from the G2V to the M0V star.
Plotted in Figure 2.13 are the histograms of the Evershed flow speeds. For all the three
spectral types, the distributions are skewed with only a very small fraction of the penum-
bra having high horizontal velocities. The G2V penumbral Evershed flows are the fastest
with the maximum value reaching almost 8 km s−1. In the K0V penumbra, they reach 4
km s−1 while the M0V penumbra has the slowest Evershed flows with the maximum value
reaching only ∼ 3 km s−1. The average sound speed at the photospheres is roughly 8 km
s−1, 7 km s−1 and 5 km s−1 for the G, K and M stars, respectively. So, while penumbral
flows on the G2V star reach supersonic speeds, penumbral flows on the K0V and M0V
stars are always subsonic.
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Table 2.4: Average penumbral properties with spectral type.

Star Ipenumbra/Iquiet Evershed velocity(km s−1) Ttau=1(K)
G2V 0.57 1.32 5007

(0.2) (1.58) (564)
K0V 0.71 1.00 4412

(0.15) (1.06) (298))
M0V 0.88 0.59 3833

(0.07) (0.52) (115)

The standard deviations are in brackets. The areas marked as penum-
bral regions in Figure 2.5 were used to compute the averages.

2.4.2 Subsurface Properties
Figures 14 to 19 show the variation of starspot properties with depth, averaged horizon-
tally along the width of the simulation boxes.

We have shown only the first few relevant pressure scale heights in the following
figures.

2.4.2.1 Temperature Structure

Figure 2.14 shows the variation of temperature with depth. In the quiet star regions, there
is a sharp vertical gradient in temperature with depth, at the photosphere of the G star,
where the temperature rises from ∼ 6000 K at the surface to ∼ 9000 K within a span of
half a pressure scale height. This gradient is weaker for the K star and smoothest for
the M star. In the M star, the temperature rises by a mere 2000 K over 2 pressure scale
heights, from ∼ 4000 K at the photosphere to ∼ 6000 K at a depth of 2 pressure scale
heights. It is important to note that the opacity due to the ionization of H− is the main
source of continuum opacity in the surface layers of cool main-sequence stars. The H−

opacity shows a steep temperature dependence in the range 3000 - 8000 K and therefore,
the vertical temperature gradient plays an important role in determining the observed
intensity contrasts.

Inside the spots, the reduced temperatures also diminish the pressure scale heights and
this is evident in Figure 2.14. Below a certain depth, the temperatures inside the spots of
all three spectral types become indistinguishable from their surroundings.

2.4.2.2 Plasma-Beta and Convection

The ratio of the gas pressure (P) to the magnetic pressure (B2/8π), called the plasma-β
ratio, has been plotted in Figure 2.15. Inside all of the spots, the plasma-β ratio is close to
unity around the surface. The atmosphere above the M0V spot is less evacuated (the ratio
is around 0.1 just above the surface) than the G2V spot, where the ratio drops to below
0.01 within a span of 2 pressure scale heights. This plays a role in the G2V spot having a
much more depressed optical surface.

The depth dependence of the magnitude of the velocity field, |v| = (v2
x + v2

y + v2
z )

1
2 ,

averaged along the y-axis of the box is shown in the Figure 2.16. Convection is suppressed
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Figure 2.14: First 3 panels from the top: Temperatures, in Kelvin, plotted with depth,
averaged horizontally over iso-z surfaces along the y-axis of the box. Overplotted on all
of the figures are contours of loge(< ( p

p0
) >y), where p is the pressure and p0 is the pressure

at τ = 1 at every column of the atmosphere. The red contours mark the boundary of |B| =
2000 Gauss. The x-axes show the distances in Mm along the length of the box, while the
z-axes mark the geometrical heights with respect to the optical surface. We have shown
only the first few relevant pressure scale heights. Bottom panel: 1D horizontal averages
(along x and y) of umbral and quiet star temperatures plotted against pressure scale height.
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Figure 2.15: The, horizontally averaged, plasma-β ratio - 8πP
B2 . The black and red contours

are the same as in Fig: 2.14.

because of the presence of strong magnetic fields and the average velocities inside the
umbra drop roughly by a factor of 10, for all the three spots. The G spot has average
photospheric velocities of around 4 km s−1 and inside the umbra the convection is reduced
to around 0.3 km s−1. Similarly for the M star, the photospheric convective velocity of
around 1 km s−1 is reduced to less than 0.075 km s−1. The K star has velocity fields of
around 2.5 km s−1 at the surface which are reduced to around 0.3 km s−1 inside the spot
umbra.

2.4.2.3 Radiation Field

Figure 2.17 shows the horizontally averaged absorption coefficient(κρ) of the stellar at-
mospheres. In the quiet star regions, we find that the transition from optically thin to thick
takes place over a larger number of pressure scale heights for the cool M star, while for
the G star this change is much more rapid. This is also reflected in the vertical component
of the radiative flux which is plotted in Figure 2.18. The radiative flux has been normal-
ized at every point by the final radiative flux leaving the box above the quiet star regions.
This value rises from less than 1 % to nearly 100 % over a single pressure scale height for
the quiet G2V atmosphere. The transition from radiative to convective energy transport
is much more gradual for the cooler M star and takes place over several pressure scale
heights. For the K star the transition rate lies between the M and G stars.
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Figure 2.16: The, horizontally averaged, magnitude of the velocity field (|v| = (v2
x + v2

y +

v2
z )

1
2 ) in units of km s−1. The black and red contours are the same as in Fig: 2.14.

In the quiet G2V atmosphere, the energy transport by radiation is negligible (< 1%
of the flux leaving the box) at a depth of 1 pressure scale height, whereas in the spot
atmosphere the radiative flux is already at 10% at a similar depth. Clearly, the radiative
properties inside the G starspot are very different from the radiative properties of the G
quiet star atmosphere. However, the differences between the M spot atmosphere and its
surroundings are not that pronounced. The radiative properties of the K spot lie between
the M and G starspots.

Figure 2.19 plots the radiative heating rates for the different stars with depth. In the
G star the cooling is much more concentrated and intense near the photosphere, while the
radiative cooling for the M star is spread out over a larger vertical extent. However inside
the spots, the radiative cooling is spread out over almost 2 pressure scale heights for all of
the spots. The spots are at much lower temperatures and therefore their cooling rates are
lower as well.

2.5 Discussion

2.5.1 Spot Temperature Contrast
The results of our simulations reveal a clear pattern in starspot intensity contrasts. There
is a monotonic decrease in contrast from the hottest to the coolest star. This is also seen in
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Figure 2.17: The absorption coefficient (κρ), averaged horizontally, computed in units of
cm−1. The black and red contours are the same as in Fig: 2.14.

the list of starspot temperature measurements compiled by Berdyugina (2005). This trend
can be explained by the dependence of opacity on temperature. In the context of stel-
lar near-surface simulations, this has been described by Nordlund and Dravins (1990a),
Beeck et al. (2013a), Magic et al. (2013b), Salhab et al. (2018b). The opacity at the sur-
face of cooler stars is largely governed by H− ions and in the temperature range 3000 -
6000 K, the H− opacity is approximately proportional to T 9 (Hansen and Kawaler 1994).
Thus, the opacity of H− increases much more sharply with temperature in the hotter G2V
surface (6000 K) in contrast to the cooler photospheres of K (5000 K) and M (4000 K)
stars. Therefore, in the hotter G2V quiet star atmosphere, a slight increase in temperature
with depth causes the opacity to rise sharply. This results in a sudden change from con-
vective energy transport to radiative energy transport in the hotter G2V star within a span
of half a pressure scale height, whereas this change, from convective to radiative energy
transport, is the most gradual for the M0V case and is spread over nearly 2 pressure scale
heights

When we introduce strong magnetic fields in the G2V star, the transport of energy
upwards by convection is hindered. Since convection is the primary mode of heat trans-
port below the photosphere in the G2V star, the temperature of the umbra is lowered
substantially. As a consequence, the opacity falls sharply and the increased effectiveness
of radiation also contributes to lowering the temperature. On the other hand, in the M0V
star, where radiation already plays a substantial role in energy transport below the photo-
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Figure 2.18: The vertical component of the radiative flux, expressed a percentage of the
average radiative flux leaving the box above the quiet star regions. The black and red
contours are the same as in Fig: 2.14.

sphere, the magnetic fields have a smaller impact on the energy transport. Also at 4000
K, the surface temperature of the M0V star, the opacity is less dependent on temperature
and on introducing magnetic fields, there is only a small change in radiative properties of
the medium as seen in Figures 2.17, 2.18 and 2.19.

This explains why the G starspot has the highest temperature contrast, and the M spot
is not as cool as one would naively expect it to be. The radiative properties of the K
star atmosphere lie in between the M and the G star and this is reflected in the K spot
temperature contrast as well.

2.5.2 Wilson Depression

The Wilson Depression of the starspots varies significantly with spectral type - 500 km
for the G2V spot to around 30 km for the M0V spot. This can be explained largely by
the difference in pressure scale height between the stars. The pressure scale heights, near
the surface, of the quiet star atmospheres are 230 (G2V), 100 (K0V) and 40 km(M0V).
However, the Wilson depression when expressed in terms of pressure scale height also ex-
hibits significant differences - the G2V umbra is more than 2 pressure scale heights deep,
whereas the M0V umbra is less than a pressure scale height deep. Similar variations of the
Wilson depression with spectral type, were also observed in small flux tubes embedded
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2.5 Discussion

Figure 2.19: Radiative heating rates, averaged horizontally, in erg cm−3 s−1. The black
and red contours are the same as in Fig: 2.14.
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Figure 2.20: Scatter plots of the magnetic forces against the fluid pressure forces at con-
stant geometrical depths. The horizontal cuts were taken at depths which corresponded to
the average Wilson depression of the umbrae

.

in the intergranular regions in the simulations of Beeck et al. (2013b) and Salhab et al.
(2018b).

The substantial depression of the optical surface in the G2V spot compared to the M0V
spot can be explained by the difference in the absorption coefficient inside and outside the
spot. At the same geometrical height, the absorption coefficient (plotted in Figure 2.17)
drops by several orders of magnitude inside the G2V spot. This is not the case for the
M0V spot. The M0V star has a higher surface pressure (∼ 5 times that of the G2V star)
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Figure 2.21: The first panel shows the evolution of average fluid pressure with time in
a box close to the optical surface inside the starspots. The three bottom panels plot the
average magnetic field strength in the box (red curves) and the field strength one would
expect (blue curves) from the drop in fluid pressure (

√
8π(Pt − Pinitial)).

and therefore the gas is less evacuated in the M spot atmosphere, in spite of its larger field
strength. This is reflected in the plasma-β ratio - 8πP/B2 (see Figure 2.15) above the M0V
spot. In addition, the weaker dependence of opacity on temperature in the 3000 - 4000
K range means that the opacity inside and outside the M0V spot are comparable. This
results in the much smaller depression of the M-spot optical surface.

2.5.3 Umbral Magnetic Field Strength
The umbral field strengths of the starspots lie between 3 and 4.5 kG. The difference be-
tween the average umbral field strengths of the M0V spot and the G2V spot is only around
700 Gauss despite the surface pressure of the M star being 5 times higher. This is related
to the change in the magnitude of the Wilson Depression with spectral type.

In Figure 2.20 we have plotted the x-component of the Lorentz force against the x-
component of the fluid pressure force at a constant geometrical depth close to the optical
surface of the spots. If we assume magnetostatic equilibrium, ∇(P) and J × B should
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2.6 Summary and Conclusion

have equal values and opposite signs. The y = −x line shows a good fit to the points and
this shows the simulated spots are close to magnetostatic equilibrium at their respective
optical surfaces.

Further, we have constructed a simple model to predict the umbral field strength as-
suming pressure balance. For each of the three spots, we take a small region inside the
starspots near the optical surface and plot the fluid pressure with time (top panel in Figure
2.21).

If P0 is the initial pressure, then P0 - Pt (pressure at time t) would give us the pressure
of the displaced gas. Equating P0 - Pt with B2

8π would give us an expected magnetic field
strength. In the lower three panels of Figure 2.21, we have plotted the expected magnetic
field strength and the actual field strength obtained in this box, with time. After an initial
transient phase, the field strengths we obtain from our simulations are comparable to what
is predicted by a simple pressure equilibrium model.

The measured umbral field strength is thus a result of two competing effects – the gas
pressure of the star and how deep we are seeing into the star. As we move from the G2V
to the M0V star the surface pressure increases, which would mean higher umbral field
strengths, while the atmosphere becomes less vacuous and more opaque, which would
lower the measured umbral field strengths. In the case of the K0V star, the effect of
the absorption coefficient becoming higher wins over the competing effect of increased
surface pressure ( 1.8 times the G2V case) and therefore the umbral field strength of the
K0V starspots (2D and 3D) is lower than the G2V starspots. Whereas for the M0V star,
the gas pressure is high enough ( 5 times the G2V case) that we still record higher umbral
field strengths. We have further demonstrated this with a simple calculation.

Let the pressure at the surface of the G2V star be Po. So the surface pressures of
the K0V and the M0V stars would roughly be 1.8Po and 5Po respectively. The Wilson
depressions of the G2V, K0V, and M0V starspots, when expressed in terms of pressure
scale height (Hp) are – 2.25, 1.61, and 0.85 respectively. This means, at the heights
where the optical surfaces of the three spots form, the ambient gas pressures would be
approximately Po exp(2.25), 1.8Po exp(1.61) and 5Po exp(0.85). This yields values of
9.5Po, 9.0Po, and 11.7Po for the G2V, K0V, and M0V stars respectively. Although this
calculation is very simplistic, it explains the trend in umbral field strengths very well.

2.6 Summary and Conclusion

We have performed the first-ever, ab-initio radiative MHD simulations of spots on cool
main-sequence stars of the spectral types G2V, K0V and M0V. We investigated the vari-
ation of fundamental spot properties - temperature, intensity and magnetic field strength
with spectral type. Our main findings can be summarized as follows -

1) Our simulations show that the temperature contrast between a starspot and its sur-
rounding photospheric environment is a function of the stellar surface temperature. The
hotter the stellar surface, the higher is the spot temperature contrast. Obviously, this trend
is reproduced in the intensity contrast as well. Our analysis has revealed that the vari-
ation in spot contrast with spectral type can be attributed to radiative processes playing
an increasingly dominant role in the atmospheres of cooler stars. This is because as we
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progress to cooler stars the ionisation of H− takes place at greater pressure scale depths,
making the atmosphere near the surface more transparent, thereby smoothing out both
horizontal and vertical fluctuations in temperature. Our starspot simulation results are
consistent with the larger picture that cooler the stellar surface, lower are the variations in
temperature and intensity.

2) Our simulated umbral field strengths for all the spectral types lie in the 3-4.5 kG
range. The umbral field strength is largely determined the fluid pressure at the depth
where the τ = 1 surface of the spots form. The optical surface of the G2V starspot is
more than 2 pressure scale heights deep whereas the optical surface of the M0V starspot
is less than 1 pressure scale height deep. This explains why M stars and G stars have
umbral field strengths that are not too different.

3) Prior to conducting 3D simulations, we carried out 2D studies, where we varied the
initial conditions of our magnetic flux tubes extensively. Although our 2D starspots dis-
play slightly different values of temperature and field strength, they reproduce the trends
seen in the intensity contrasts in our 3D simulations very well. In addition, they also show
that our obtained trends in spot temperatures and magnetic field strengths do not depend
crucially on our choice of initial conditions.

4) All the simulated starspots develop penumbral filament-like structures. The fila-
ments of the K0V spot look similar to solar penumbral fiaments, with thin dark cores
running along the centre of the filaments. The M0V penumbral filaments are more homo-
geneous and do not develop such dark cores. The Evershed speeds decrease progressively
from the G2V spot to the M0V spot.

We expect our calculations to help understand the variability of G-M main-sequence
stars, which is largely determined by starspots on rotational timescales. Conversely, our
starspot models provide useful priors for reconstructing stellar spottedness based on light-
curve modeling and (Zeeman) Doppler Imaging. Our results will also aid the hunting of
exo-planets. Starspot intensity contrasts are important in the exoplanet detection process
as spots and planets both reduce the amount of light we receive from a star. Our con-
straints on spot temperatures should also be useful in interpreting maps of stellar mag-
netic fields derived using Zeeman Doppler Imaging. In addition, we expect our starspot
properties to help improve estimates of the total magnetic flux on lower main-sequence
stars, thus setting improved constraints on the efficiencies of stellar dynamos.

Future work may involve using non-grey radiative transfer to enable the synthesis of
spectral lines. Additionally, simulating spot pairs of opposite polarities would facilitate
the formation of more expansive penumbrae and therefore better constraints on starspot
properties.
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3 3D Radiative MHD simulations of
starspots II: Synthetic spectral lines,
Effect on Radial Velocity

3.1 Introduction

The mapping of temperature and magnetic field inhomogeneities on stars, other than the
Sun, is a notoriously difficult endeavour. The difficulty stems primarily from the lack
of spatial resolution and one has to solve inverse problems, that often hinge on a priori
assumptions, to glean information concealed in disk integrated spectra. Fortunately, the
Doppler effect can be exploited to disentangle surface features of a rapidly rotating star.
Different longitudes have different line-of-sight velocities and therefore they leave their
imprints at different wavelength points on a rotationally broadened absorption line pro-
file. The Doppler effect, combined with the modulation of the Stokes I profile brought
about by temperature variations, is used by the Doppler Imaging technique (Goncharskii
et al. 1977a, Vogt and Penrod 1983) to infer stellar surface temperature maps. The same
principle is applied to Stokes V profiles in the Zeeman Doppler Imaging method to gen-
erate surface magnetic field maps (Semel 1989a, Donati et al. 1989, Brown et al. 1991).
Both these techniques rely on synthesizing Stokes I and V profiles of magnetic and non-
magnetic regions at different disk locations, which serve as initial input profiles to the
inversions. These profiles are currently poorly constrained due to insufficient knowledge
about starspot atmospheres and temperatures.

The spectrum emerging from a star has applications beyond stellar physics. It is also
used (Mayor and Queloz 1995) to detect exoplanets orbiting a star. As a planet orbits
around its host star, the gravitational pull of the planet makes the star wiggle about its
axis. This can be measured through changes in the radial velocity (RV), which leaves
its signature in the star’s spectral lines. However, variations in RV can also be induced
by stellar hydrodynamic activity like granulation and oscillations (Butler et al. 2004, Du-
musque et al. 2011), and magnetic activity in the form of spots and active regions (La-
grange et al. 2010, Meunier et al. 2010, Dumusque et al. 2014b, Borgniet et al. 2015,
Bauer et al. 2018). In fact, what was once thought to be a rocky planet in the habitable
zone of an M dwarf, later turned out to be starspots rotating across the stellar disk (Robert-
son et al. 2014). The most obvious way a starspot rotating across the disk changes the RV
signal, is by causing a reduction in the number of photons coming from one side of the
star and thereby breaking the rotationally induced symmetry between red and blue shift.
Further, starspots locally suppress convective motions and this causes a change in the
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net convective blueshift. Although, there have been efforts towards quantifying the RV
caused by convective motions using realistic MHD simulations (Cegla et al. 2013), the
effect that starspots have on RV has been studied only using simplistic 1D atmospheres
or blackbody spectra (Hatzes 2002b, Desort et al. 2007, Lagrange et al. 2010). Also, the
possible contribution from the penumbra to the RV signal (on the Sun, a spot is typically
80 % penumbra (Solanki 2003)) has been completely ignored so far. The penumbra har-
bours flows both along the line-of-sight and perpendicular to it (Tiwari et al. 2013). As a
spot gradually moves across the disk, the horizontal Evershed flow (typically in the km/s
range) begins to have a line-of-sight component. Whether penumbral flows near the limb
can significantly affect RV signals has not been explored yet.

The discussion above makes it abundantly clear that better constraints on Stokes I and
V profiles of individual starspots on different spectral types are the need of the hour. The
recent 3D radiative MHD simulations of starspots (Panja et al. 2020) presents us with
the unique opportunity to do just that - compute realistic Stokes I and V line profiles
of individual starspots and their components - the umbra and the penumbra at different
locations on the stellar disk. Further we can combine them with quiet star line profiles to
study the effect of starspots on disk-integrated stellar absorption line profiles.

For this study, we have chosen atomic absorption lines from two different parts of
the spectrum, a Fe-I line pair from the visible range (630.2 nm) and a Ti-I line from the
near infrared (2231.06 nm). While magnetic field measurements are much easier towards
the infrared as the Zeeman effect is proportional to the square of the central wavelength
of the line, temperature contrasts are poorly captured in the infrared because the Planck
function changes slowly at larger wavelengths. This is not the case for lines in the visible
range and these lines are often exploited to determine starspot temperature contrasts (see
Catalano et al. (2002c), Frasca et al. (2008)). We specifically chose the Fe I pair at 630.2
nm for our synthesis in this chapter because of its widespread use in solar physics. The
Hinode mission (Kosugi et al. 2008) provided the full Stokes parameters of this Fe-pair
and they have been extensively studied for both magnetic and non-magnetic regions on
the Sun. The Ti-I line at 2231.06 nm, besides being a useful tool in solar physics (for
example, see Rüedi et al. (1998)), is routinely used to infer magnetic field strengths on T
Tauri stars, which comprises G, K and M stars (for example, Lavail et al. (2019)).

In this chapter, we present the first computations of Stokes I and V profiles of the
above-mentioned atomic lines using realistic 3D starspot atmospheres that properly cap-
ture the effect of temperature, magnetic field, velocity and their gradients. We set out to
answer the following questions in this chapter - 1) What do absorption line profiles of
spots on early K and M stars look like and how do they differ from sunspot line profiles?
2) How do these line profiles change as starspots move across the stellar disk? 3) How
much do spots affect disk integrated line profiles emerging from a star? 4) At what filling
factors do starspots induce RV changes large enough to hinder the detection of exoplan-
ets?

The methods employed are described in Section 3.2, followed by a brief discussion
of continuum contrasts of the starspots at various viewing angles in Section 3.3. The line
profiles synthesized at disk centre are discussed in 3.4, and their centre-to-limb variations
in 3.5. In Section 3.6 we have mixed average spot line profiles with quiet star line profiles
and computed the effect of spots on radial velocity and finally in Section 3.7 we have
summarized this chapter and presented our conclusions.
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3.2 Methods

3.2 Methods

We use non-gray simulations to recompute the stellar atmospheres starting from the gray
MURaM simulations presented in Panja et al. (2020). We ran our simulations until the
net outgoing radiative flux stabilizes, after its initial drop. This stabilization happens
in less than 5 mins of stellar time and we ran all three spectral types for more than 10
mins of stellar time. Nonetheless, the Teff of the non-gray simulations are cooler by
around 20-30 K compared to the gray runs, for all of the spectral types. We subsequently
calculate synthetic spectral lines using the STOPRO (STOkes PROfiles) code (Solanki
1987, Solanki et al. 1992, Frutiger et al. 2000), which operates under the assumption of
local thermodynamic equilibrium. We computed the Stokes profiles of two Fe-I lines at
630.15 and 630.25 nm, with Landé g factors of 1.67 and 2.50 respectively. The Ti-I line
at 2231.06 nm has a Landé factor of 2.50. The line parameters fed into STOPRO were
downloaded from the VALD database (http://vald.astro.uu.se/).

We have computed the average Stokes I and V profiles of four distinct regions - the
umbra, the penumbra, the quiet star and the magnetic quiet star, representing facular or
plage regions. To demarcate these regions, we used the continuum intensity images of
the three starspots, at 630 nm, normalized by the quiet star continuum intensity (shown
in the left panels of Figure 3.1). We first smoothed the images and then applied intensity
thresholds to find the contours of the penumbral and umbral boundaries (marked in red).
Then we used Stokes V maps to further designate areas as quiet star and plage regions.
We define our quiet star regions such that the spatially averaged V

Icont
in that region does

not exceed 2 %, and the plage regions such that the average V
Icont

is always less than 10
%. In order to calculate the effect of spots on the RV, we chose the Fe 630.25 nm line,
similar to Cegla et al. (2013). Since the RV caused by exoplanets can be less than 100m/s,
we chose a higher spectral resolution and focussed on just one line. We computed 2000
points for a wavelength interval of 0.1 nm as opposed to the first study where we used
300 points for a wavelength interval of 0.4 nm.

3.3 Continuum Contrasts

In Figure 3.1 we have presented continuum intensity images of the three simulated starspots
at 630 nm and 2231 nm at the disk centre. The Planck function changes more sharply with
temperature at lower wavelengths and the contrasts are therefore higher at 630 nm. The
umbral (penumbral) relative intensities at 630nm are 0.27 (0.56), 0.37 (0.66) and 0.61
(0.85) for the G2V, K0V and M0V spots respectively. The relative intensities at 2231 nm
are 0.71 (0.85), 0.76 (0.89) and 0.87 (0.97). Naturally, the relative intensities at 630 nm
are lower than the bolometric relative intensities computed in Panja et al. (2020), while
the reverse is true for the intensities at 2231 nm. It is interesting that at 2231 nm, the
umbral dots become more visible and further add to the decrease in contrast. Note that
the penumbra of the M0V spot becomes almost indistinguishable from the quiet star in
the infrared. This means, if we assume that in the M0V spot, the 1:4 umbra-penumbra
ratio typically observed on the Sun holds, the spot contrast (0.05) in the infrared becomes
almost negligible. Also, in the M0V starspot, the spines (dark excursions into the penum-
bra), although appearing roughly as dark as the umbra at 630nm, are considerably brighter
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Figure 3.1: Continumm intensity of the G2V, K0V and M0V starspot non-grey simula-
tions at 630nm (top panel) and at 2231 nm (bottom panel).
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Figure 3.2: Continumm intensity of the G2V, K0V and M0V starspot non-grey simu-
lations at 630nm (top panel) and at 2231 nm (bottom panel) at a viewing angle of 60
degrees. The boxes have been tilted such that the penumbrae in the upper halves of the
images become the limb-side penumbrae.
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Figure 3.3: The intensity of spots as a fraction of the local quiet star intensity with chang-
ing viewing angle, at two different wavelength points on the continuum. Black - G2V,
Blue - K0V, Red - M0V. Solid - Umbra, Dashed - Penumbra.

in the infrared.
In Figure 3.2 we have plotted the continuum contrasts at a viewing angle of µ =

0.5. The change in viewing angle is equivalent to a spot moving across the stellar disk.
We have tilted our simulation boxes such that the penumbrae in the lower halves of the
images in Fig. 3.1 become discward penumbrae in Fig. 3.2 while the penumbrae in the
upper halves of the images become limbside penumbrae. Choosing this geometry has the
advantage that the horizontal Evershed flow in the penumbra now has a LOS component.
There are several key differences between Figure 3.1 and Figure 3.2 that arise purely
because of geometrical reasons. In the quiet star region, at a viewing angle of 60 degrees,
the rays traverse along a longer, more slanted path and probe the inner hot walls of pores.
This means pores which appear dark at the disk centre, now resemble bright faculae.
This is a well studied area in stellar surface simulations and has been discussed in detail
by Beeck et al. (2015a), Steiner (2005). The slanted ray path also causes the disk side
penumbra to appear shorter while we see more of the limb side penumbra. The reason is
purely geometrical and is principally similar to the hot wall effect. We can think of the
penumbra as the walls of the spot (a much gentler slope than a pore wall) and naturally the
slanted ray path blocks a part of the disk-side penumbra out of view while we see deeper
into the limb-side penumbra. It is this phenomenon that led Alexander Wilson in 1769
to conclude that sunspots are saucer shaped depressions on the solar surface. See Wilson
and Cannon (1968) for an observational study of the Wilson effect on a sunspot traversing
the solar disk. However as the Wilson depression of the spots vary with spectral type -
maximum for the G2V spot and minimum for the M0V spot (see Panja et al. (2020)),
this effect is the most pronounced for the G2V spot while for the M0V spot which has
a shallow umbra, the disk-side penumbra and the limb-side penumbra are of comparable
sizes.

At higher viewing angles, the longer ray paths also mean that they probe higher layers

70



3.4 Spectral lines at Disk centre

of the atmosphere. This is what causes the limbs of a star to appear darker than the
disk centre. In both the figures, we have normalised the images by the local quiet star
intensity, which is why the effect of limb darkening is not visible. This allows us to study
the change in spot contrast with respect to the local quiet star intensity at various viewing
angles. At higher viewing angles, since we are seeing higher layers of the atmosphere for
both the spot and the quiet star, the local spot contrast would depend on how fast the spot
temperature decreases with decreasing optical depth, compared to the quiet star. We have
plotted this change in Figure 3.3 and it turns out that starspot contrast with respect to the
local quiet star intensity is more or less invariant with viewing angle, especially in the
visible wavelengths. Sunspot umbral contrasts are known to show no appreciable centre-
to-limb variation (Maltby et al. 1986). It is reassuring that our simulations reproduce this
observational effect for the Sun. They also show that this holds true for spots on other
stars. Limb darkening is the only effect one has to worry about when modelling starspot
contrasts at various positions on the disk. Note that in the infrared the contrasts of the
K0V and the M0V spots do show a mild variation (less than 10 %) near the limb.

3.4 Spectral lines at Disk centre

3.4.1 Fe I 630.15 and 630.25 nm

In Figure 3.4 we have plotted the Stokes I and V profiles of the Fe I pair of lines along
the red dashed lines of Fig: 3.1, mimicking spectro-polarimetric data taken through a slit.
This allows us to visualize how the line profiles at individual spatial points vary as we
move from the quiet star to the penumbra and then to the umbra. We notice several things
immediately in the Stokes I plots -

1) The 630.15 nm line is stronger than the 630.25 nm line for all the spectral types.
Both the lines become weaker as we move from the G2V star to the M0V star.

2)The more magnetically sensitive 630.25 nm line shows more splitting. The splitting
is maximum in the M0V umbra. The 630.25 nm is split into three wherever there are
strong horizontal fields (penumbra and umbral edge).

3) The bright horizontal stripes outside the spots correspond to granules and darker
(yellow in the adopted color scale) stripes correspond to the intergranular lanes where the
lines show a redshift.

The Stokes V profiles appear wherever there are vertical magnetic fields. The Stokes
V (normalized by the local Stokes I continuum) is the strongest in the G2V umbra (≈ 0.3
times the Stokes I continuum for the 630.25 line) and it is much weaker in the M0V umbra
(≈ 0.1 of Stokes I continuum for the 630.25 line). Notice that the Stokes V lobes show
both blue and redshifts in the G2V spot whereas the Stokes V lobes in the M0V spot do
not show any discernible shifts, signifying the presence of convective activity in the G2V
spot, but its absence in the M0V umbra.

In Figure 3.5 we have plotted the spatially averaged Stokes I (left panel) and the
Stokes V (right panel) profiles of the Fe I line pair. We divided our box into four distinct
regions - the umbra (red), the penumbra (red dashed), the quiet star (green), and plage
regions (blue). All the Stokes I profiles have been normalised to the continuum of the
non-magnetic quiet star region. The left column shows the Stokes I of these four distinct
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Figure 3.4: Stokes I (top) and Stokes V (bottom) profiles of the Fe I pair of lines along a
slice (red dashed lines in Fig 3.1) cut through each of the simulations, resembling spectro-
polarimetric data obtained with a split spectrograph. The points marked L1 and L2 corre-
spond to the centers of the 630.15 and 630.25 lines respectively.
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Figure 3.5: Left Panel: Stokes I profiles, normalized by the continuum intensity at 630 nm
in quiet star regions, for the umbra (red), penumbra (red-dashed), quiet star (green) and
plage regions (blue). Right Panel: Stokes V profiles, normalized by the local continuum
intensity at 630 nm.
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regions. The quiet star regions show the expected convective blueshift, best visible for the
G2V star. Similar to the slit spectra plot, the 630.15 nm line is stronger on average in all
the three quiet star regions. The continuum drops for the umbral and penumbral profiles
and owing to the splitting of the lines and their lower temperatures the lines are shallower
than their quiet star counterparts. A flatter temperature stratification in the umbrae could
also play a role.

The penumbral regions have mostly horizontal field and they are dominated by the
π component. The umbral Stokes I profiles have both the σ and π components. The
630.25 nm line in the G2V umbral case has all the three components and they are equally
prominent, while the M0V umbral Stokes I for this line has only the σ components,
indicating that umbral fields are the most vertical in the M0V umbra, while the G2V
umbra also has some horizontal fields.

The right panel shows the Stokes V profiles of the spots normalised by the local Stokes
I continuum. It is interesting to note that the amplitude of Stokes V (both the 630.15 and
630.25 nm) drops from the G2V to the M0V star also seen in Fig: 3.4). This is because
the Stokes V amplitude is not only determined by the magnetic field strength but also
by the line strength. The lines become weaker as we move from the G2V star to the
M0V star and this might contribute to the difference in the degree of polarisation between
the spectral types. Other factors like formation heights of the lines might also play a
role. Within each spectral type, the Stokes V profiles show their expected behaviour - the
umbra has the strongest Stokes V while the quiet star has the weakest.

3.4.2 Ti - I 2231.06 nm
Figure 3.6 shows "slit spectra" (similar to Fig: 3.4) for the Ti I line. The first thing we
notice is that the Zeeman splitting, owing to the larger wavelength of the line, is much
more severe than the Fe 630.25 line. The splitting is considerably larger in the M0V spot
than the G2V spot. The amount of splitting, the line undergoes, fluctuates in the G2V and
the K0V umbrae, whereas in the M0V umbrae the splitting is maximum at the centre of
the umbra and decreases at the umbral edge. This tells us that the M0V umbral magnetic
field has a smooth gradient in the y-direction and the G2V and K0V umbral field strengths
have random variations . Another interesting feature of the Ti line is that in the G2V star
it is very weak in the quiet star and forms primarily in the spot. The Ti line is extremely
sensitive to temperature. Owing to the low ionisation potential, the Ti I line cannot form at
temperatures higher than 5000 K, whereas in very cold regions Ti combines with oxygen
to form TiO molecules (Rüedi et al. 1998). This strong temperature sensitivity makes the
Ti I line a very useful tool to study cool spots on relatively hotter (G and above) stars.
However this is not the case in the cooler M0V star, where the line is in fact stronger in
the quiet star. This is because the M0V spot is cold enough for TiO molecules to start
forming thereby weakening the Ti I line inside the spot.

In Figure 3.7 we have plotted the spatially averaged Stokes I (left panel) and the Stokes
V (right panel) profiles of the Ti I line. Like in the Fe I line, the Ti I line in the M0V umbra
shows only the σ components whereas the G2V umbra exhibits also the π component.
Note that the two σ lobes of the M0V umbra are highly asymmetric - the wing of the left
lobe is highly blueshifted while the wing of the right lobe is redshifted. This indicates a
strong vertical gradient in the the magnetic field: the Zeeman splitting is much stronger
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Figure 3.6: Same as Fig: 3.4, but for the Ti I line. The point L marks the line centre.
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Figure 3.7: Same as Figure 3.5, but for the Ti I line.
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closer to the stellar surface than higher up.
The normalised Stokes V signal shows a monotonic increase from the G2V umbra to

the M0V umbra, unlike what we saw for the Fe-I line pair. This is probably because the
line is not saturated in the M star umbra.

3.5 Centre-to-Limb Variation
In Figure 3.8 we have plotted the spatially averaged Stokes I profiles (Fe 630.25 nm
line ) of the penumbra and umbra of G2V and M0V spots at different viewing angles. The
profiles have been normalised with respect to the continuum of the quiet star at disk centre
so the limb darkening effect is accounted for. Here we have considered the discward and
the limbside penumbra separately. As we discussed in Section 3.3, a significant portion
of the discward penumbra is blocked out of view while we see deeper into the limbside
penumbra and therefore they ought to be analysed separately.

For both the discward and limbside penumbra of the G2V spot, the relative line
strength decreases with an increase in viewing angle. The penumbra has strong hori-
zontal fields, and at disk centre both the penumbra show π components. As we increase
the viewing angles, the mostly out-of-view discward penumbra shows a decrease in the π
component and at 75 ◦ the 630.25 nm is split into two weak σ components.

In the colder M starspot, the penumbral line profiles show minimal change with view-
ing angle. We do not see a discernible increase in the σ components in the Stokes I
profiles. The M0V umbral profile (630.25 nm), however, does show a significant increase
of the π component with increasing viewing angle, in accordance with what one would
expect for a change in LOS.

We have plotted the CLV of the Stokes I profiles of the Ti - I line in Figure 3.9. The
discward penumbra which is mostly blocked out of view assumes a complicated profile at
higher viewing angles. In the G2V umbra we see an increase in the π component relative
to the σ components and this can be easily explained by change in LOS. However in the
limbside penumbra there is an apparent increase in the both π and σ components with
viewing angle. A possible explanation is this - as we approach the limb, the rays emerge
from the upper cooler layers of the atmosphere and the Ti -I line in the penumbra actually
becomes stronger. It could also be that at very large angles, 75 deg, the rays also pass
through the very cold umbra, making the line stronger. Only a careful comparison of
spatially resolved line profiles with the structure of the magnetic field (and other physical
quantities) in the MHD simulation will provide reliable guidance, which we will do in the
future.

In the M0V umbra we see the expected increase of the π component of the magnetic
field.

3.6 Effect of a spot on the host star’s Radial Velocity
As we have discussed before, the simplest way a spot can affect the radial velocity of a star
is by reducing the flux of photons coming from the hemisphere on which it is located. This
will break the balance between the rotationally induced redshift and blueshift integrated
over the stellar surface. However, starspots can also affect the RV in another less studied,
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Figure 3.8: CLV of the Fe I 630.25 nm Stokes I profiles. Left Panel: G2V Stokes I profiles,
normalized by the quiet star (disk-centre) continuum intensity at 630nm, of the discward
penumbra (top), limbside penumbra (middle) and the umbra (bottom), at different viewing
angles - 0 (red), 30 (green), 60 (blue), and 75 (black) degrees. Right Panel: Same as the
left panel but for the M0V case.
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Figure 3.9: Same as 3.8, but for the Ti - I line. Left panel - G2V, Right panel - M0V.
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but crucial way. Spots are inhibitors of convection and may harbour flows of their own.
Thus, their presence will affect a star’s net convective blueshift. Desort et al. (2007)
showed that when the v sin i of a star is smaller than the resolution of the spectrograph
even moderately sized spots (1 %) do not change the shape the bisector but merely shifts
the bisector and therefore may cause RV changes similar to that of a planet. Obviously for
stars with significant rotational broadening of their lines, a higher spectrograph resolution
means a smaller portion of the disk is sampled. In this study, we have not considered
the effects of rotation, as we want to estimate the RV changes caused by spot for reasons
other than a loss of radiative flux.

To compute the effect of spots on the stellar radial velocity, we must first create disk-
integrated stellar line profiles and estimate their net convective blueshift. The next step, is
to add spot line profiles to the disk-intergated spectra. We did this by placing spots at three
different positions on the disk - at the disk centre, and at viewing angles of 30 degrees and
60 degrees. Figure 3.10 illustrates how this has been done. We divide the stellar surface
into concentric rings. It is assumed that all points within an area of a particular color have
the same line profile. For example, all points within the central ring (green) are assumed
to be at disk-centre. Then, we sum up the different profiles weighted by the fraction of the
stellar disk they cover. Finally, we place spots of different sizes at different disk locations.
This is done by simply replacing some fraction of the quiet star spectra with an equal
amount of spot spectra. We calculated the spot spectra by combining the umbral and
penumbral profiles at a 1:4 ratio.

3.6.1 G2V
In the leftmost panel of Figure 3.11 we have plotted the profiles of the Fe 630.25 nm line
averaged over the quiet G2V star, at 5 different viewing angles. All the lines have been
normalized by the quiet star continuum intensity at disk-centre and the limb darkening
is clearly visible. The middle panel shows the bisectors of the profiles plotted on the
left. The right panel shows the bisector of the disk-integrated quiet star line profile. The
bisector at the disk centre has a C shape. Our synthetically computed line bisector shapes
at various viewing angles, although slightly blueshifted, match well with observations (see
Fig:8 of Löhner-Böttcher et al. (2018b)). The blueshift is maximum at the disk centre, as
the upflow area coverage is significantly more than the downflow area coverage. As we
move away from the stellar disk centre, due to geometrical effects we start seeing into
the intergranular lanes, which are regions of strong downflows and therefore the blueshift
decreases with viewing angle. In the rightmost panel we have computed the bisector of
the disk-integrated quiet star profile. The net convective blueshift of the G2V star comes
out to 167 m/s at the line core.

Figure 3.12 shows bisectors for the disk-integrated G2V star with spots of different
filling factors (0, 0.1 %, 1 % and 5 % ), placed at different viewing angles (0, 30 and 60
degrees). It is clear that spots placed at the disk centre have the maximum effect on RV,
if we neglect stellar rotation. The spot which covers only 0.1 % of the disk-area naturally
has the smallest effect on the disk-integrated profile. At all disk positions it affects the
RV by less than 1 m/s. The 1 % spot shifts the RV by more than 3 m/s at disk centre.
As expected, the spot with 5 % disk coverage has the maximum effect on RV. At the
disk centre it shifts the RV towards the red by 16 m/s. When this spot is placed at 60
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Figure 3.10: A cartoon explaining the disk-integration process. All points within an area
of a particular colour are assumed to have the same line profile. We then sum up the line
profiles weighted by their fractional area coverage. To calculate the effect of spots, we
replace some of the disk-integrated quiet star by average spot spectra.

Figure 3.11: Left: High resolution (2000 points) synthetic Fe 630.25 nm spectral line,
calculated for the G2V quiet star at different viewing angles. Middle: Line bisectors of
the quiet star line profiles. Right: Line bisector of the disk-integrated quiet star profile

degrees it induces a tiny blueshift of about 0.5 m/s. It is interesting that a spot adds to the
blueshift; it contradicts the simplistic idea that spots merely block convection and cause
a loss in radiative flux (both of which would only reduce the convective blueshift). This
emphasizes the need for properly accounting for flows within spots, as the net effect of
spots on RV does not seem to simply linearly depend on spot size and viewing angle.

3.6.2 M0V

In Figure 3.13 we have plotted the line profiles of the M0V quiet star at different viewing
angles (left), their bisectors (middle), and the bisector of the disk-integrated line profile
(right). The convective blueshift is much smaller than the G2V star. The bisector shapes
are also significantly different. The bisectors are flatter near the disk-centre, but become
more S shaped near the limb. This could be because of many possible reasons.

Like the G2V star, the spots have the most impact when they are at the disk-centre.
The spot with 1 % coverage affects the RV by only 0.04 m/s whereas the 5 % spot redshifts
the RV by almost 3 m/s at the disk centre. Unlike the G2V spot, at 60 degrees the 5 %
M0V spot does not add to the convective blueshift.
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Figure 3.12: Left: Line bisector of the disk-integrated G2V star with a spot placed at the
disk centre. We have used three spot filling factors- 0.1%, 1% and 5%. Middle: Same as
left image, but with a spot placed at 30 degrees. Right: Same as left and middle images,
but with a spot placed at 60 degrees.

Figure 3.13: High resolution (2000 points) synthetic Fe 630.25 nm spectral line, calcu-
lated for the M0V quiet star at different viewing angles. Middle: Line bisectors of the
quiet star line profiles Right:Line bisector of the disk-integrated quiet star profile

Figure 3.14: Left: Line bisector of the disk-integrated M0V star with a spot placed at the
disk centre. We have used three spot filling factors- 0.1%, 1% and 5%. Middle: Same as
left image, but with a spot placed at 30 degrees. Right: Same as left and middle images,
but with a spot placed at 60 degrees.
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3.7 Summary and Conclusions
In this chapter we have calculated continuum contrasts of G2V, K0V and M0V starspots
at the visible (630 nm) and the infrared (22310 nm). We concluded the following from
the continuum contrast calculations at various viewing angles: -

1) As expected, starspot contrasts are weak in the infrared because of the weak de-
pendence of the Planck function on temperature at larger wavelengths. This is especially
problematic for the M0V spot, whose penumbra is almost indistinguishable from its quiet
star. However for exoplanet hunters observing in the infrared this can be seen as good
news.

2) In the G2V starspot which has a large Wilson depression, geometrical effects be-
come important as the spot traverses the stellar disk. The disk-side is partially blocked
while we see deeper into the limb-side penumbra. This is not the case for the M0V spot.

3) Continuum contrasts of starspots, regardless of wavelength, do not change much
with viewing angle.

From the synthesized line profiles, our findings can be summarised as follows -
1) Local thermodynamic properties affects line strengths which in turn could affect

the degree of polarization.
2) The Ti-I line can prove to extremely useful to study cool spots on G and hotter stars,

as its high temperature sensitivity ensures that it only picks up signals from cool spots.

We further calculated disk integrated line profiles and estimated the effects spots can
have on a star’s RV. We found that spots can significantly affect the convective blueshift
not just because they inhibit convection but also because they themselves carry flows. An
interesting case is the G2V spot adding to the blueshift at a large viewing angle. Even on
the M0V star, where convective velocities are low, we computed spot induced RV shifts
of about 3 m/s, for a filling factor of 5 %.

To put this in context, an Earth-like planet revolving around a Sun-like star will in-
duce RV variations of only ≈ 0.1 m/s (see http://exoplanets.astro.yale.edu/
workshop/EPRV/Bibliography_files/Radial_Velocity.pdf for a table of RV sig-
nals induced by different kinds of planets). Therefore, we emphasize the need to properly
constrain motions within starspots - both umbral and penumbral. In this preliminary study,
we have considered only one snapshot of a starspot for each of the stellar types. Starspots
will have oscillations, (as are observed in sunspots (Bogdan and Judge 2006)) and a study
involving a number of snapshots is required to fully constrain their effects on the RV.
We are in the process of generating spectra over a period long enough to cover several
oscillations. Nonetheless, our preliminary results show the importance of this effort.
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4 Sunspot simulations: penumbra
formation and the fluting instability

The contents of this chapter were authored by Mayukh Panja, Robert Cameron, and
SamiK. Solanki and published in the Februrary 2021 edition of The Astrophysical Jour-
nal (Panja et al 2021 ApJ 907 102, DOI: https://doi.org/10.3847/1538-4357/
abccbf)

Abstract
The fluting instability has been suggested as the driver of the subsurface structure of
sunspot flux tubes. We conducted a series of numerical experiments where we used flux
tubes with different initial curvatures to study the effect of the fluting instability on the
subsurface structure of spots. We used the MURaM code, which has previously been used
to simulate complete sunspots, to first compute four sunspots in the slab geometry and
then two complete circular spots of opposite polarities. We find that the curvature of a flux
tube indeed determines the degree of fluting the flux tube will undergo - the more curved
a flux tube is, the more fluted it becomes. In addition,sunspots with strong curvature have
strong horizontal fields at the surface and therefore readily form penumbral filaments.
The fluted sunspots eventually break up from below, with lightbridges appearing at the
surface several hours after fluting commences.

4.1 Introduction
It is not known what the magnetic field associated with sunspots looks like underneath
the solar surface. Cowling (1946) proposed that a sunspot extends below the surface as
a magnetic flux tube - field lines bound tightly together in a single monolithic column
resisting deformation against pressure from the surrounding gas. However, the sharp
vertical gradient in the ambient gas pressure at the surface necessitates that the magnetic
field lines fan out rapidly. This would make a flux tube highly concave near the surface,
and therefore susceptible to the fluting instability. This prompted Parker (1979) to suggest
an alternative configuration in which the field underneath the surface may be structured
- a sunspot, in this view, is a cluster of numerous small flux tubes that are held together
by a converging flow below a certain depth. However, Meyer et al. (1977) had used a
vacuum model of a flux tube to study the stability of spots against the fluting instability,
and concluded that spots should not break up into smaller flux tubes up to a depth of 5
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Mm. Spruit (1981) built on the work of Meyer et al. (1977) and constructed a cluster
model of a sunspot which is similar to a tethered balloon model (see Figure 1 of Spruit
(1981)) - the tube remains coherent upto a certain depth, beyond which it is fragmented
into small individual flux tubes that are tied together at the base of the convection zone. It
differed from Parker (1979), in that the tying of the flux tube to the base of the convection
zone removed the necessity of a converging flow to explain the stability of sunspots. For
a discussion on the merits and demerits of both the monolithic and cluster models, see
Chapter 1 of Thomas and Weiss (1992).

The fact that penumbral filaments often invade a spot’s umbra and fragment it ( Louis
et al. (2012b), Benko et al. (2018b)), suggest that the fluting instability might play a
role in determining the subsurface structure of spots and therefore, by extension, their
appearance on the surface. However, the probing of sunspot subsurface structure using
helioseismic techniques has not been able to distinguish between the cluster and mono-
lithic models (Moradi et al. 2010). Existing MHD simulations of complete sunspots,
(Rempel et al. 2009a, Rempel 2011c,a) using the radiative-MHD code MURaM (Vögler
et al. 2005, Rempel et al. 2009b), correspond to the monolithic model. Rempel (2011c)
specifically addressed the question of whether a sunspot is monolithic or cluster-like un-
derneath the surface and concluded that sunspots are closer to the monolithic model, but
can become highly fragmented in its decay stage. However these models have field lines
that are too vertical near the spot periphery to form penumbral filaments naturally. This is
overcome by increasing the horizontal field strength at the top boundary by a factor of two
compared to a potential field configuration, and the extent of the penumbra is solely de-
termined by the magnetic top boundary condition (Rempel 2012). Recently, Jurčák et al.
(2020) presented a sunspot simulation with a decent sized penumbra without modifying
the top boundary, by using a strongly compressed flux tube at the lower boundary. Their
penumbra, however, is dominated by the counter-Evershed flow. Also their umbral field
strength is higher than what is observed.

In this paper, we conduct numerical experiments using the MURaM code to investi-
gate the susceptibility of flux tubes to the fluting instability by varying the initial mag-
netic field structure. We focus on the question - would sunspots with field lines inclined
strongly enough to form penumbral filaments, result in flux tubes that become highly
fluted under the surface? To this end, we constructed initial sunspot flux tube configu-
rations where the field lines are curved near the surface, such that they form penumbral
filaments without having to change the top boundary condition, and become close to ver-
tical below a certain depth.

We describe our simulation setups and detailed descriptions of our initial conditions
for our magnetic flux tubes in Section 4.2. We conducted four runs in the computationally
inexpensive slab geometry, where we systematically varied the radius of curvature (Rc) to
check if we can control the degree of fluting. Then we computed two complete circular
spots of opposite polarities in a shallow computational domain. We present our results in
Section 4.3 and discuss the implications of our results in Section 4.4.
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4.2 Simulation Setup
We used the MURaM radiative MHD code for our simulations. For our four slab geom-
etry runs, we chose simulation boxes with dimensions of 36 Mm (x) × 6 Mm (y) × 10.3
Mm (z) and resolutions of 48 km × 48 km × 25.8 km. We conducted a further run where
we computed complete circular spots of opposite polarities. We used a relatively shallow
domain with a vertical extent of 6 Mm which had a resolution of 20 km. The horizontal
extents of this run were 72 Mm × 36 Mm with a resolution of 48 km in both directions.
All of our boxes were periodic in the horizontal directions and the upper boundaries were
kept open to plasma flows. When our hydrodynamic runs achieved thermal equilibrium,
we introduced magnetic flux tubes in the simulation domains. We initialized our magnetic
runs by damping all three components of the velocity field by a factor of (1+(|B|2/80000)).
We do this only at the timestep where our magnetic flux tubes are introduced, and there-
after we let the convective flow field develop naturally. In the following paragraphs we
have described the initial structure of these flux tubes.

4.2.1 Slab Geometry Runs
As discussed, our initial conditions are designed to serve two purposes - 1) they should
result in the formation of penumbral filaments, and 2) have a small radius of curvature (Rc)
that induces the fluting instability. Since these are numerical experiments, we are free to
choose the initial conditions to achieve these goals. For our slab geometry runs, we define
the three components of the magnetic field inside the initial flux tubes, in conformity with
the ~∇ · ~B = 0 constraint, as follows:

Bz = f (z),
Bx = −x f ′(z),
By = 0, (4.1)

where,
f (z) = Bbot exp

−z
σ
. (4.2)

At z = 0 (the lower boundary) we set Bz to Bbot and at z = hopt (optical surface) , we set
Bz to Bopt. Bopt and Bbot are parameters that we are free to choose. Using these constraints
and eqn. 4.2 we can express σ as,

σ = hphot/ log(
Bbot

Bopt
). (4.3)

Keeping Bopt at 3000 Gauss, we conducted three runs with Bbot as 10000, 20000 and
30000 Gauss. We labeled these runs as R10, R20 and R30 respectively. The top 3 panels
of Figure 4.1 depict the initial Bz and their corresponding Rc, for these runs.

In order to quantify Rc we have to first calculate the curvature vector (~κ), which is
given by:

~κ = ~b · ~∇~b (4.4)

where,

87



4 Sunspot simulations: penumbra formation and the fluting instability

Figure 4.1: Panels a-d: Vertical slices of Bz (x-z plane, here Depth = hphot - z) used as
initial conditions for the slab geometry runs, with their corresponding Rc shown on the
right. The initial magnetic conditions for the slab geometry runs were invariant in the y
direction. Panel e: Vertical slice of Bz used as initial condition for the circular spot simu-
lation. The circular spot had an axisymmetric initial condition, with its corresponding Rc

shown on the right.
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~b =
~B

|~B|
(4.5)

The inverse of the magnitude of ~κ ( 1
|~κ|

) at any point, gives the local Rc. We have plotted
the corresponding Rc of our initial magnetic fields in the right hand column of Figure
4.1. In all of the cases, Rc is very high at the centre, implying near vertical fields, while
at the edges the fieldlines are significantly curved. Clearly, the fieldlines become more
curved as we progress from R10 to R30 (panels a - c). Note how the brighter band in
the centre, becomes narrower from R10 to R30. One can predict thus, fluid elements
can penetrate the furthest into the flux tube of R30 before meeting any resistance from
strong vertical fields. A side effect of decreasing Rc simply by continuously increasing
the field strength at the lower boundary is that it keeps making the flux tube narrower
at its base. We, therefore, carried out another experiment where we tried out a different
initial condition. We superimposed two additional flux tubes on either side of the main
flux tube used in R20, as shown in panel d of Figure 4.1. We did this because - 1) the
enhanced field strength at the edges, close to the lower boundary, would help keep the
flux tube coherent at the base of the simulation box (note that this run has the highest Rc

at the base) 2) the additional magnetic pressure around the centre of the flux tube, near
the surface, would help the fieldlines fan out more and become even more inclined once
the flux tube achieves pressure equilibrium, facilitating penumbral filament formation.
We labeled this run R20E. Note that due to the superposed smaller tubes, the initial field
strength at the base of the computational domain in this run locally reaches 30 kG at the
edges.

4.2.2 Round spots

For our shallow round spot simulation we use an initial condition, which has a vertical
cut similar to the vertical cut of the initial condition used in R20E. Two flux sheets were
superimposed on either side of the main flux sheet and this was rotated axisymmetrically,
while ensuring that ∇ · B = 0. A vertical cut of the initial condition through the centre of
the simulation box is shown in panel e of Figure 4.1.

4.2.3 Boundary Condition for the magnetic field

In the shallow sunspot simulation presented in Rempel (2011c), a lower boundary open to
plasma flows inside the magnetic flux tube caused the sunspot to disintegrate completely
within 6 hours. In our simulations, for all of the runs, we set all velocities to zero at the
lower boundary for |B| > 1000 Gauss. This allows us to study the effects of the fluting
instability with minimal interference from the lower boundary. At the upper boundary the
magnetic field was made to have a potential field configuration.
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Figure 4.2: Left Panel: Horizontal cuts of Bz of the slab geometry runs - R10, R20, R30,
R20E, in Gauss at a depth of 4.65 Mm after 8 hours of solar runtime. Right Panel: The
corresponding bolometric intensity maps in units of 1010 erg cm−2 ster−1 s−1. The images
have been repeated twice in the y-direction.

4.3 Results

4.3.1 Slab Geometry Runs

The left panel of Figure 4.2 shows horizontal cuts of Bz at a depth of 4.65 Mm below
the visible surface. It is clear that both the number of filament-like intrusions of the sur-
rounding plasma and the lengths of such intrusions, increase as we increase the curvature
of the initial flux tubes, as seen in the results of R10, R20 and R30. In all of the runs, the
instability originates close to the middle of the box, where the curvature is maximum, and
propagates both upwards and downwards. Some of these intrusions eventually manifest
themselves at the surface in the intensity images as long penumbral filaments with thin
dark cores (see right panel of Figure 4.2). The purpose of the runs in the slab geometry
was to vary Rc and see if it results in different amounts of fluting. Our results confirm that
Rc indeed controls the degree of fluting.

The run R20E exhibits properties that lie between R20 and R30 - the intrusions are
plentiful but only a couple of them manage to reach the centre of the flux tube. At the
surface, it develops the most expansive penumbra among the four cases, while having
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Figure 4.3: Zoomed in horizontal cuts of Bz (Gauss) of the run R20E at different depths
below the photosphere, after 8 hours of solar runtime. We have intentionally chosen only
4 contour levels to draw attention to the tongue like weak field regions at the edge of the
flux tube caused by fluid penetrating from outside.

an umbra that is not distorted by intruding filaments. This indicates that our numerical
experiment of superimposing two additional flux tubes achieved its intended purpose.
This prompted us to choose the initial condition for the next circular spot simulation such
that its vertical slice is similar to run R20E.

A side effect of the higher field strengths in the lower boundary is that the runs R30
and R20E have comparatively cleaner umbrae with fewer umbral dots.

In Figure 4.3 we have plotted horizontal cuts of Bz at different depths of the R20E run.
We have zoomed in on only a part of the flux tube so that we can investigate individual
filaments. We have chosen only 4 contour levels so that we can easily discern the pen-
etrating tongues of the external fluid. Notice that the tongue-like weak field regions are
the most prominent at a depth of 6 Mm, while at the lower boundary and at a depth of 2
Mm only traces of the intrusions have appeared. It is clear that the fluting originates near
the middle of the box and propagates both upwards and downwards through diffusive pro-
cesses and pressure differences generated by the penetrating plasma. This demonstrates
that the fluting is not merely a boundary effect.
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4.3.2 Round spots

For our circular spot simulation, we used initial conditions that are similar to the one
used in run R20E. Close to the surface, the initial flux tube had strong vertical fields near
the centre, while below a certain depth the field strength at the edges of the flux tube
were enhanced. We have plotted in Figure 4.4 (part a) the evolution of the circular spot
simulation in the shallow box. The top panel shows a series of intensity images at different
stages of the evolution, while the bottom panel shows the corresponding horizontal cuts
of Bz at a depth of 5.3 Mm. As seen in the intensity image panel, the inclined fields near
the surface and the presence of opposite polarities result in the formation of penumbral
structures of considerable extent in both the positive and negative spots 2 hours into the
run. By this time, the corresponding flux tubes already show a very high degree of fluting.
In the subsequent time frames, the flux tubes get more and more distorted and 6 hours into
the simulation they are no longer coherent and break up into disconnected fragments. The
instability propagates upwards and we see the head of the filaments gradually penetrating
the umbral regions. The last snapshot has been taken 10 hours into the run and by this time
the umbra in the intensity image is completely covered with protruding filaments whose
heads have migrated all the way to the center. The corresponding horizontal cut shows
that the flux tubes are completely distorted and they are both reminiscent of the spaghetti-
like structure hypothesized by Parker (1979). In our simulations, we see multiple flux
sheets form, some of them loosely connected. It is important to note that in addition to
being fluted the flux tubes are also continuously pulled apart by convection and we see the
circumferences of both the tubes expanding with time. This accelerates the breaking up
of the flux tubes into individual components which in turn facilitates the filaments at the
surface to penetrate further into the umbrae. This is in agreement with Parker (1979) who
suggested that in order to prevent a fluted flux tube from being completely pulled apart
there must be a converging flow that holds the different parts together and in the absence
of a converging flow in our simulations, the flux tubes simply break up. It is important to
bear in mind that we had set all velocities at points with |B| > 1000 at the lower boundary
to zero. However, the magnetic field at the lower boundary can still be transported by the
external flow field and be weakened by filamentary intrusions from above, mediated by
diffusive processes.

In Figure 4.5, we have presented after 3.5 solar hours the bolometric intensity image
(panel a), horizontal cuts of the magnetic field at different depths (panels b-d), the vertical
velocity profile at a depth of 2.5 Mm (panel e) and the velocity along the x direction at
the τ = 1 surface (panel f). At a depth of 5.3 Mm, the flux tubes are almost completely
shredded after 3.5 hours of runtime. The instability, in this case, had originated closer to
the lower boundary and propagated upwards as is evidenced by the decreasing severity
of the fluting at depths of 2.5 Mm and the τ=1 surface. In panel e, we have plotted
vz at a depth of 2.5 Mm. We find that in the areas that correspond to the penetrating
fluid at the edge of the flux tube, there is a systematic upflow. These upflows eventually
help the intrusions manifest at the surface as lightbridges. At the centre of the flux tube
vz becomes negligible. A noticeable feature in the intensity image is the extent of the
penumbra. We have achieved an umbra:penumbra area ratio of around 1:4 which is in the
range of what is observed on the Sun (Solanki 2003). This is a significant result since
sunspot simulations typically use the upper boundary to achieve respectable penumbral
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Figure 4.5: Snapshot of the circular spot simulation after 3.5 hours of solar runtime with
the bolometric intensity image in the top panel (a), horizontal cuts of Bz at two different
depths (b-c) and at the τ=1 surface (d). Panel e shows the vertical velocity profile at a
depth of 2.5 Mm and panel f plots vx at the τ=1 surface. The velocities are in units of
km/s.
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proportions. In contrast to Jurčák et al. (2020), who also used the subsurface structure
of the sunspot to produce a penumbra, we obtain Evershed flows that have the correct
orientation (panel f). We, however, also obtain umbral field strengths that are higher
than what is what is typically observed, like Jurčák et al. (2020). The periodicity of the
horizontal boundaries makes the penumbra slightly asymmetric and it is more elongated
in the x-direction, where the opposite polarities meet.

4.4 Conclusion
We have simulated complete sunspots that naturally form penumbral filaments and have
further demonstrated that sunspots with highly curved flux tubes may have subsurface
structures which are close to the cluster model proposed by Parker (1979). Our simula-
tions lead us to make the following conclusions about the nature of sunspots -

1) It is quite clear that the initial subsurface structure plays an important role in the
formation of penumbral filaments and the stability of sunspots. Highly curved flux tubes
are indeed vulnerable to the fluting instability, as had been speculated by many authors
before. Our experiments in the slab geometry where we systematically varied the curva-
ture of the initial flux tube confirm that the intrusions of plasma into the flux tubes are
indeed due to the fluting instability and we could control the degree of fluting to some
extent by continuously decreasing the radius of curvature.

2) Our circular spot simulation has strong horizontal fields and consequently develops
extended penumbral filaments that harbour the Evershed flow.

3) Our simulations suggest that even sunspots with little structuring at the surface
might already be highly fluted underneath and eventually the subsurface structuring is
manifested at the surface through penumbral filaments encroaching into the umbra. The
nearly field-free material typical of such intruding filaments reach down 5 Mm or more
in our simulations. Whether sunspots anchored deep in the convection zone can keep the
spaghetti-like structure from being torn apart, as predicted by Spruit (1981), remains an
open question. Sunspot simulations that cover the full convection zone, such as the one
by Hotta and Iijima (2020), can be used to answer this question.
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5.1 Conclusion
We performed the first radiative-MHD simulations of spots on stars other than the Sun,
namely the spectral types - K0V and M0V. Here I state our most important findings:

1. Temperature contrast: Starspot temperature is dependent on the host star’s pho-
tospheric temperature. Hotter stars harbor spots with higher temperature contrasts.
This is because the continuum opacity has a strong dependence on temperature in
the 4000-6000 K range. In less opaque (or more transparent) atmospheres, radia-
tive processes play a role in energy transport even below the photosphere and this
changes how much the presence of strong magnetic fields affects energy transport.

2. Wilson Depression: The Wilson Depression has a larger value in hotter stars with
rarefied atmospheres. In the colder and denser M0V star, the Wilson Depression of
its spot is an order of magnitude less than that of the spot on the G2V star.

3. Magnetic field strength: The umbral magnetic field strength is largely determined
by the external gas pressure at the height where the τ =1 surface of the umbra
forms. Thus, two competing factors are at play here - 1) surface pressure of the star
(increases from G to M) and 2) the Wilson depression (decreases from G to M). All
of our umbral field strengths lie in the range 3-4.5 kG.

Further, we used our simulated starspot atmospheres to take steps towards modelling
quantities that can be directly observed - continuum spot contrasts in the visible and the
infrared, Stokes profiles, and stellar RV with the effect of spots included. These are the
key points we learned from this exercise:

1. Spot intensity contrast with respect to their surrounding photospheric brightness is
fairly independent of the viewing angle for all of the spectral types.

2. The strength of lines and their degree of polarization is strongly affected by both
magnetic field strength, temperature and often their gradients. This indicates that
synthetic spectral lines calculated from simple 1D atmospheres are likely to be in-
accurate.

3. We find that spots can significantly affect RV measurements not just because they
cause a loss in the flux of photons, but because they inhibit convection and harbour
flows of their own. We recommend constraining flows inside spots more accurately
through simulations and observations.
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Our efforts to constrain the initial conditions of magnetic fields in the starspot simu-
lations lead to an interesting discovery - initial magnetic conditions that allow starspots
to have penumbral filaments also make them susceptible to interchange instabilities. We
conducted a separate study on the nature of sunspot flux tubes underneath the visible
surface. We drew the following conclusions from this study -

1. The subsurface structure of sunspots plays a role in their stability. Highly curved
flux tubes are susceptible to the fluting instability and the instability manifests itself
as lightbridges at the photosphere.

2. The presence of strong horizontal fields at the surface in our simulations, a conse-
quence of a highly curved initial flux tube, facilitated the formations of expansive
penumbral filaments.

5.2 Outlook
This thesis marks the beginning of an exciting new field of research - near surface starspot
simulations. Naturally, there are plenty of problems to explore and I will discuss the ways
that we can build on the work presented in this thesis.

1. Complete starspots - An obvious next step is to compute complete circular spots.
The main limitation of the slab geometry is that it results in stunted penumbral
filaments. In Figure 5.1 we have plotted the intensity images of a circular G2V spot
and a M0V spot. The penumbral filaments are clearly much more expansive than the
slab geometry simulations and the G2V spot looks much more similar to observed
sunspots. This geometry therefore not only provides more realistic starspots, but
will also allow us to compare more easily the large scale penumbral properties on
different spectral types. Reassuringly, the circular spots have intensity contrasts
similar to what we obtained in our slab geometry simulations. Note the difference
between the penumbra of the two spots. While the sunspot penumbra shows a wide
range of intensities and alternating bright and dark bands, the penumbra of the M
spot is much more homogeneous. Also, the G2V penumbra is visibly darker than
the quiet star while the M0V is almost as bright as its surroundings.

2. More spectral types: dwarfs and subgiants - We found a relationship between
spot temperature contrast and stellar surface temperature for the spectral types G2V,
K0V and M0V. We have to simulate more spectral types to find out if this relation-
ship holds true for a wider range of stellar temperatures and luminosity classes. It
will be also interesting to study how penumbral properties vary with stellar type.
Simulating spots on subgiants are also important as our knowledge on starspots
primarily stems from studies on RS CVn stars (typically luminosity class IV). The
Wilson depressions will be huge on these stars which might effect the contrast and
magnetic field strength in unforseeable ways.

3. Spots of different sizes - On the sun, the brightness of a spot is dependent on spot
size. Larger spots tend to be darker (Mathew et al. 2007, Schad 2014a). In this
thesis, we have compared spots of similar granule sizes. Does size have an impact
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5 Conclusion and Outlook

on spot contrast on other spectral types? If so, how much does size affect spot
brightness, magnetic field and internal velocities?

4. Spot Lifetimes - Recently Giles et al. (2017) found that starspot lifetimes depend on
spectral type. Spots seem to last longer on cooler stars. They speculated that stars
that are hotter have higher convective velocities at their photosphere which enables
faster diffusion of magnetic flux. We can study this problem using simulation boxes
with large horizontal extents and putting in spots of different radii. Since we are not
interested in the fine structure of spots for this problem, we can use a lower spatial
resolution for the simulations.

5. Massive Spots - ZDI has detected very large spots on other stars that cover signif-
icant fractions of the stellar disk (for example, see Flores et al. (2020), Cang et al.
(2020)). Also average field strengths in the kiloGauss range are regularly found
on M stars. Therefore, an interesting numerical experiment to conduct would be
to insert kiloGauss order vertical magnetic fields in boxes of large horizontal ex-
tents (several super-granules) and see if such large magnetic structures are stable
against convection. Similar to the previous problem this can be carried out in low
resolution.

6. Effect of spots on RV - We conducted some preliminary studies on how spots can
affect stellar RV. In order to make our calculations more realistic we can take the
following steps:

(a) Add the contribution of plages to the disk-integrated line profiles.

(b) Add the effects of rotation.

7. Synthetic Lightcurve modulations - We can compute the brightness contrasts of
the spots in the various wavelength bands in which planet-hunting telescopes, such
as Kepler, TESS, in future PLATO (but also ground based telescopes) observe.
Then we can put artificial spots on stellar surfaces and see how large the modulation
of the lightcurves are.

8. Observational Diagnostics - We can test and show how strongly spots contribute
to the DI and ZDI signals on different types of stars. We can further compute molec-
ular bands (primarily TiO, but also CH, CO, CN) to calibrate these as diagnostics
of starspot properties, including polarisation to determine magnetic field. Since
molecular lines are stronger in the spots, they partly overcome the problem of the
continuum being lower in spots.
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J.: 2018a, A&A 620, A191

Benko, M., González Manrique, S. J., Balthasar, H., Gömöry, P., Kuckein, C., and Jurčák,
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Appendix





A Mass-Luminosity-Temperature
Relations

In this chapter I will present the derivation of the mass-luminosity relation (eqn: 1.3)
given in the Introduction of this thesis. I will do order-of-magnitude (OOM) calculations
on two stellar structure equations- hydrostatic balance and energy transport to arrive at
our result. This derivation has been reproduced from Choudhuri (2010).

The hydrostatic balance equation can be written as
dP
dr

=
−GMr

r2 ρ. (A.1)

After OOM approximations we can rewrite A.1 as,
P
R
∝

M
R2ρ.

Plugging in ρ ∝ M
R3 we get

P ∝
M2

R4 . (A.2)

From the equation of state P ∝ ρT we can write

P ∝
M
R3 T. (A.3)

From A.2 and A.3 we can write
M
R3 T ∝

M2

R4 ,

=⇒ T ∝
M
R
.

The energy transport equation in a radiative stellar interior is written as:

dT
dR

=
3χρLr

4abT 34πr2 . (A.4)

After OOM approximations we get:
T
R
∝

M
R3T 3

L
R2 ,

=⇒ L ∝
(TR)4

M
.

Putting in T ∝ M
R we get,

L ∝ M3. (A.5)
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B 2D simulations of starspots

The appendix details the results of our 2D simulations which we used to explore the
parameter space more extensively. As discussed before, the two parameters that determine
the shape of our flux tubes are the vertical components of the magnetic field at the lower
boundary and at the optical surface - Bbot and Bopt. The initial conditions used for the
2D simulations were the 2D analogs of the conditions used for the 3D runs. Table B.1
summarizes our 2D runs. Figure B.1 shows the vertical velocity field before the magnetic
field is put in. The upflow areas are in yellow and the downflow areas are in blue. Figure
B.2 shows an example of a magnetic field configuration inserted into the hydrodynamic
simulation.

B.1 Selecting the umbra

We have selected the umbral region using two different methods. In the first method we
simply set thresholds for the intensity and magnetic field strengths, and all points that
satisfy the criteria are considered to be part of the umbra. We set a threshold of 1500
Gauss for the magnetic field strength in all three stars. For the G2V and K0V spots we
used a relative intensity threshold of IUmbra/IQuiet < 0.5. Since in the M0V spot there were
no regions with such low intensities we chose a threshold of IUmbra/IQuiet < 0.75. This
method which chooses just those points that satisfy the above mentioned criteria excludes
the peaks in the intensity inside the spot region as seen in Figure B.3. These intensity
peaks seem to be the 2D equivalent of umbral dots. However they are significantly larger
and brighter than umbral dots typically seen in 3D simulations. The second method of
selecting the umbral region does not ignore these intensity peaks. We choose the first
point and last point that satisfy the thresholds and take all points in between as shown in
Figure B.4.
Once we have chosen the umbra we average the properties over space and time, such that
several granule lifetimes are covered. Each spot was averaged over a few hours.
In all of the plots from B.5 to B.10, the data points in blue exclude the umbral dots, and
the data points in red include the umbral dots. The error bars show the standard deviation
of the computed spatio-temporal averages.
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B 2D simulations of starspots

Table B.1: Summary of the results of the 2D runs.

Sp. Type Bopt (kG) Bbot (kG) Iumbra/Iquiet |B|umbra(kG)

G2V 2.2 4 0.22, 0.30 4.15, 4.00
2.2 6 0.22, 0.27 4.70, 4.58
2.2 8 0.18, 0.20 5.07, 5.03
2.2 10 0.20, 0.22 4.89, 4.84
2.2 12 0.19, 0.23 4.95, 4.87
2.2 14 0.19, 0.22 5.16, 5.06

4.4 12 0.18, 0.19 4.82, 4.78
8.8 12 0.19, 0.19 4.98, 4.96

K0V 3.2 6 0.34, 0.40 4.32, 4.16
3.2 8 0.35, 0.39 4.45, 4.23
3.2 10 0.34, 0.38 4.22, 4.07
3.2 12 0.33, 0.47 4.25, 3.74
3.2 14 0.32, 0.35 4.43, 4.33
3.2 16 0.33, 0.37 4.33, 4.24

6 16 0.32, 0.33 4.57, 4.52
12 16 0.32, 0.35 4.53, 4.43

M0V 3.0 5 0.68, 0.74 4.50, 4.03
3.0 8 0.67, 0.69 4.66, 4.54
3.0 10 0.67, 0.69 4.91, 4.76
3.0 12 0.68, 0.71 5.06, 4.87
3.0 15 0.66, 0.69 5.30, 5.05
3.0 18 0.66, 0.71 5.40, 4.82

6 15 0.65, 0.69 5.36, 5.01
12 15 0.65, 0.67 5.57, 5.42

The numbers in black indicate averages computed using simple in-
tensity and magnetic field thresholds to define umbral regions.The
numbers in red indicate averages computed without ignoring the
sharp intensity peaks seen in the umbral regions of our 2D spot sim-
ulations. See A.1 for more details.
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B.1 Selecting the umbra

Figure B.1: Vertical velocity in the 2D simulation setup before the magentic field was
introduced. The colors show Vz in km s−1.

Figure B.2: Initial magnetic field configuration for a 2D G2V spot simulation. The colors
show Bz in Gauss and the white lines with arrows mark sample magnetic field lines.
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B 2D simulations of starspots

-14.4 -10.8 -7.2 -3.6 0 3.6 7.2 10.8 14.4 18

Mm

0

1000

2000

3000

4000

5000

6000

7000

F
ie

ld
 S

tr
e

n
g

th
 i
n

 G
a

u
s
s

-14.4 -10.8 -7.2 -3.6 0 3.6 7.2 10.8 14.4 18

Mm

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

In
te

n
s
it
y
 i
n

 e
rg

/c
m

2
/s

te
r/

s

10
10

Figure B.3: Umbral field strength at the optical surface and bolometric intensity for a
sample G2V spot. The parts in red mark the region defined as the umbra. This definition
of the umbra excludes the spike observed in both the intensity and field strength. The
black horizontal line represents the average quiet star intensity.

B.2 Varying Bbot

For this numerical experiment, we chose a Bopt of 2.2 kiloGauss for the G2V spots and
slightly higher field strengths of 3.2 kiloGauss and 3 kiloGauss for the K0V and M0V
starspots respectively, and varied Bbot, the field strength at the lower boundary. The
choices for Bopt were motivated by the fact that average sunspots have field strengths in
the 2-3 KiloGauss range, and we began with the assumption that starspot field strengths
would not be drastically different.

Plotted in Figure B.5 is the variation in IUmbra/IQuiet with Bbot for the all three stars.
The initial Bopt was the same for spots of the same spectral type. It is clear, in all three
spectral types, that the relative intensity of the spots does not have a clear dependence on
the field strength at the lower boundary especially when we do not consider the umbral
dots. Naturally, the cases where we do not consider the umbral dots (marked in blue) have
lower relative intensities. In none of the cases, the IUmbra/IQuiet ratio changes by more than
0.1 even when Bbot is changed by a factor of 3.

Figure B.6 shows the variation of the magnetic field strength, finally obtained at the
optical surface, with initial Bbot. Like the relative intensity, this shows no significant
dependence on the initially chosen Bbot. In the G2V case, after an increase in the first 3
cases (i.e. from Bbot = 4 kG to 8 kG), the final umbral field strength ceases to be sensitive
to an increase in Bbot. When the field strength at the lower boundary is too weak, we
get a lot more spikes in the intensity which weakens the umbral field strength. When we
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Figure B.4: Umbral field strength at the optical surface and bolometric intensity for the
G2V spot shown in Fig. B.3 . The parts in red mark the region defined as the umbra.
This definition of the umbra includes the spike observed in both the intensity and field
strength. The black horizontal line represents the average quiet star intensity.

increase Bbot, the spikes in the intensity become rarer and the magnetic field is largely
determined by the surface pressure. The M0V spots show the maximum dependence on
Bbot as seen in the lower panel of Figure 27. The magnetic pressure forces the field lines
to fan out until they experience pushback from the ambient gas and the balance between
magnetic pressure and fluid pressure determines the umbral field strength. In the case of
the M0V star, owing to the pressure scale heights being very small, the vertical extent of
the box is only 1.3 Mm compared to the 7.3 Mm of the 2D G2V box. The sharp drop in
magnetic field strength with height means that the field lines of the M0V spots are already
highly fanned out and the resulting magnetic tension limits how much they can fan out
further. Nevertheless, the dependence is marginal, as the final field strength increases by
only 25% even when Bbot is increased by a factor of 3.6.

Figure B.7 shows the dependence of spot relative intensity on the final magnetic
strength obtained at the optical surface. We see that for the G2V spot, the spots be-
come darker with an increase in the photospheric field strength. However for the cooler
K0 and M0 spots, the spot brightness shows no decrease with an increase in surface field
strength. This is consistent with the fact the radiation plays a more important role in en-
ergy transport in the cooler K0 and M0 stars, thereby making the brightness of the spot
less dependent on magnetic field strength.

Although the relative intensities of the 2D spots are 5-10 % lower than their 3D coun-
terparts in all three stellar types, the decrease in spot relative intensity with stellar surface
temperature is very well reproduced.
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Figure B.5: Relative intensity of spots plotted against initial field strengths at the lower
boundary. Top to bottom: G2V, K0V and M0V. Red: with umbral dots. Blue: without
umbral dots.

B.3 Varying Bopt

Our very limited knowledge about surface field strengths on other stars, and the fact that
M0V and K0V have higher surface pressures, prompted us to conduct further runs, where
we kept the field strengths at the lower boundary (Bbot) constant and increased the initial
field strengths at the optical surface (Bopt).

For all of the spectral types we increased the initial Bopt to 2 and 4 times the magnitude
used in our studies where we varied Bbot. The Bbot used was 12 kiloGauss for the G2V
runs, 16 kiloGauss for the K0V runs, and 15 kiloGauss for the M0V runs. We found that
despite increasing the initial Bopt by a factor of 4, there is little change in the final relative
intensity and magnetic field strength at the surface. This holds for all of the simulated
stars as shown in Figures B.8, B.9 and B.10.
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Figure B.6: Final umbral field strength at the optical surface plotted against initial field
strengths at the lower boundary. Top to bottom: G2V, K0V and M0V. Red: with umbral
dots. Blue: without umbral dots.
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Figure B.7: Relative intensity of spots plotted against final umbral field strengths at the
optical surface. Top to bottom: G2V, K0V and M0V. Red: with umbral dots. Blue:
without umbral dots.
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Figure B.8: Both plots are for the G2V star. Relative intensity of spots (upper panel) and
their final umbral field strengths (lower panel) plotted against initial field strengths at the
optical surface. Red: with umbral dots. Blue: without umbral dots.
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Figure B.9: The same as Figure B.8 but for the K0V star
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Figure B.10: The same as Figure B.8 but for the M0V star
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