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Summary 
 

Strong artificial selections of canine morphological and behavioral traits lead to the 

formation of more than 400 modern dog (Canis familiaris, CFA) breeds within the past 

300 years. Most dog breeds are derived from small numbers of founders, and this closed 

genetic pool within each breed results in the high frequency of occurrence of canine 

congenital disorders. The majority of these heredopathies share common clinical signs 

with corresponding human diseases. Therefore, dogs are appropriate spontaneous 

models for studying human diseases. Congenital deafness can cause both health and 

welfare problems in dogs, and it is quite prevalent among several dog breeds such as 

Dalmatian, Australian Cattle Dog, English Setter and Australian Stumpy Tail Cattle 

Dog (ASCD). However, hearing loss causative or associated genes in these dog breeds 

are not yet identified. The purpose of the study in Chapter 2 was to identify congenital 

deafness related genes in ASCD. Three bilateral deaf and one normal hearing ASCDs 

were whole genome sequenced. The publicly available 722 canine whole genome 

sequences were also used to investigate potential causative mutations in this study. A 

case-control genome-wide association study (GWAS) was conducted by setting three 

deafness affected ASCDs as cases, and one unaffected ASCD and 43 additional herding 

group dogs were used as controls. The GWAS identified several loci on six 

chromosomes with potential canine deafness association (CFA3, 8, 17, 23, 28 and 37), 

and most (7 out of 13) of the significantly associated loci were located within CFA37. 

The private variants unique to three deaf ASCD were filtered by comparison to 722 

canine controls of over 144 modern breeds. Subsequent annotation of these variants 

was performed, only potentially functional variants were filtered resulting in four 

remaining missense mutations. A missense mutation in the Kruppel-like factor 7 (KLF7) 

gene (NC_006619.3: g.15562684G>A; XP_022270984.1: p.Leu173Phe) on CFA37 

could be emphasized to be associated considering the variant effect prediction and gene 

function. KLF7 inner ear expression and a corresponding functional impact in 

development of inner ear and sensory neurons is known. Further genotyping of the 
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KLF7 variant in 28 affected and 27 normal hearing ASCDs still supported its 

association with ASCD congenital deafness. 

 

Dogs have been selectively bred to intensify the performance abilities in regard to 

diverse tasks such as herding, hunting or companionship. Finally, modern dog breeds 

vary diversely in not only morphological but also behavioral traits. GWAS analysis of 

dog morphological traits using breed standard values have been well studied, and many 

auspicious genes were identified. However, due to the complexity of dog behavior traits, 

research progress on this topic is still limited. The study of Chapter 3 was intended to 

elucidate the candidate genes underlying dog behavior traits including herding, 

predation, temperament and trainability. The phenotype information of these behavioral 

traits was obtained from American Kennel Club, which classified dog breeds into seven 

groups (Herding, Hound, Working, Terrier, Toy, Sporting and Non-sporting) based on 

the behavior, heritage and historical roles. 268 publicly available dog whole genome 

sequences of 130 modern breeds were used in this study. Four GWASs were performed 

to investigate potential candidate genes. Dogs with herding behavior were compared 

with the other dog categories by GWAS. Candidate neurological genes such as THOC1, 

ASIC2, MSRB3, LLPH, RFX8 and CHL1 were detected within or nearest to the 

significant loci of herding GWAS. Regarding dog predation behavior, herding behavior 

is the modified predatory behavior like repression of killing instinct, while hound dogs 

were selectively bred to enhance predation behaviors. We then use hound and herding 

group dogs in GWAS to analyze the dog predation behavior. Three neural genes JAK2, 

MEIS1 and LRRTM4 that were nearest to the significant loci of predation GWAS were 

revealed as candidates. In temperament GWAS, candidate neurological gene ACSS3 

was significantly associated with dog temperament trait. Dog behaviors were reported 

to be associated with body mass, so we repeated the four GWASs with incorporating 

dog breed standard body size as covariates. Similar results except for the significant 

associations of ASIC2, JAK2 and MEIS1 were observed, while these three candidate 

genes could contribute to dog behaviors through their effects on dog brain architecture. 

Linkage disequilibrium (LD) analysis of the herding GWAS significant associated 
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signals were also conducted. Promising neurological processes or cellular components 

were disclosed in GO analysis of potentially functional private genes of herding dogs. 

 

In the study described in Chapter 4, one loss of function mutation in ABHD16B was 

identified to be associated with bull infertility. However, the exact gene function of 

ABHD16B remains unknown. Western blot was applied to locate ABHD16B protein 

expression, uncovering its occurrence in bull testis tissue but not in sperm cells. 

ABHD16B protein owns a function domain of α/β-hydrolase (ABHD) and several 

ABHD members are involved in lipid metabolism. It is assumed that ABHD16B could 

play roles in biosynthesis of sperm membrane lipids. Lipidomes of heterozygous and 

homozygous wild-type bull sperms were analyzed to explore potential aberrations. 

Several lipid components including PC, DAG, Cer, SM and PC were found 

significantly altered which verified our hypothesis. Therefore, the imbalanced lipid 

homeostasis of sperm membrane could be responsible for the bull infertility problem 

subjected in this study.  
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1. Hearing loss impact, classification and causes  

 

Hearing loss is one common sensory defect with around 466 million affected people 

globally, and it is estimated to be the fourth highest human disability cause in the world 

[1]. It is predicted by Word Health Organization that the number of people with disabled 

hearing ability will increase to 630 million by the year 2030 [2]. It is quite urgent to 

develop novel therapies to prevent the increasing trend. Understanding the molecular 

genetic mechanism that enhance or reduce susceptibility to hearing loss is fundamental 

for future deafness therapies. Impaired communication is the direct obstacle for hearing 

loss patients, which will reduce their life quality by affecting education and chances in 

professional career [3, 4]. Deaf people also suffer higher risk from mental diseases, like 

dementia [5] and depression [6]. Hearing loss inconveniences animals and increases 

their risk of mortality because auditory function is vital for responding to external 

environmental dangerous factors such as predators and cars. In domestic dogs, deafness 

compromises their health, welfare and utility. Working dogs with deafness may lose 

the ability to perform tasks [7].  

 

Deafness can be classified following different parameters. It can be categorized mainly 

by three criteria in humans: (1) genetic or non-genetic cause; (2) syndromic association 

(combination with other abnormalities) or non-syndromic (with only hearing loss 

disorder); (3) prelingual or postlingual onset [8]. Deafness can also be classified by the 

number of affected ears: unilateral or bilateral hearing loss. Depending on the severity 

degree of hearing loss for the better-hearing ear, it can be classified into four hearing 

loss levels: mild, moderate, severe and profound. Regarding the affected sites of 

deafness, it can be classified into conductive or sensorineural hearing loss. External 

and/or middle ear dysfunctions belong to conductive hearing loss, and other defects 

from inner ear to brain cortical auditory centers are regarded as sensorineural deafness. 

Mixed hearing loss is recognized if conductive and sensorineural components were 

present at the same time [9]. 
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Disfunctions in both peripheral and central parts of auditory systems could lead to 

hearing loss. The peripheral auditory part is composed by outer ear, middle ear and 

inner ear (cochlea). Inner ear is the site for transformation of physical sound waves into 

neural signals. Harmful noise exposure could cause physical damage into sensory hair 

cells of the inner ear, which is a quite common causative factor in acquired deafness 

[10, 11]. Besides physical causing factors, more than 400 diverse syndromes involving 

hearing impairment have been reported to be caused by genetic mutations [12], and 

more than 120 genes have been reported to cause human non-syndromic hearing loss 

[13]. Other factors such as aging [14], therapy drug side effects on auditory system [15, 

16] and chronic diseases [17, 18] also contribute to hearing loss onset. 

 

2. Genetics of human non-syndromic hearing loss  
 
Genetics of hereditary deafness is highly heterogeneous in humans, as it can be caused 

by a single mutation (monogenic) or by a combination of different genes (polygenic). 

Environmental factors could also contribute to deafness pathogenesis, which will be 

considered as multifactorial hearing loss. The inheritance patterns of human deafness 

are also diverse being either autosomal recessive, autosomal dominant, X-linked or 

mitochondrial [19]. More than 120 genes have been identified to be associated with 

human non-syndromic deafness including 50 autosomal dominant, 77 autosomal 

recessive and five X-linked genes (Table 1) [20].  
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 Table 1. Human non-syndromic hearing loss genes. 

Hereditary Model Genes 

Autosomal Recessive  

GJB2, GJB6, MYO7A, MYO15A, SLC26A4, TMIE, TMC1, TMPRSS3, OTOF, CDH23, GIPC3, STRC, 

USH1C, OTOG, TECTA, OTOA, PCDH15, RDX, GRXCR1, GAB1, TRIOBP, CLDN14, MYO3A, 

WHRN, CDC14A, ESRRB, ESPN, MYO6, HGF, ILDR1, ADCY1, CIB2, MARVELD2, BDP1, 

COL11A2, PDZD7, PJVK, SLC22A4, SLC26A5, LRTOMT/COMT2, DCDC2, LHFPL5, S1PR2, 

PNPT1, BSND, MSRB3, SYNE4, LOXHD1, TPRN, GPSM2, PTPRQ, OTOGL, TBC1D24, ELMOD3, 

KARS, SERPINB6, CABP2, NARS2, MET, TSPEAR, TMEM132E, PPIP5K2, GRXCR2, EPS8, CLIC5, 

FAM65B/RIPOR2, DFNB32, EPS8L2, ROR1, WBP2, ESRP1, MPZL2, CEACAM16, GRAP, SPNS2, 

CLDN9, CLRN2 

Autosomal Dominant  

DIAPH1, KCNQ4, GJB3, IFNLR1, GJB2, GJB6, MYH14, CEACAM16, GSDME/DFNA5, WFS1, 

LMX1A, TECTA, COCH, EYA4, MYO7A, COL11A2, POU4F3, MYH9, ACTG1, MYO6, SIX1, 

SLC17A8, REST, GRHL2, NLRP3, TMC1, COL11A1, CRYM, P2RX2, CCDC50, MIRN96, TJP2, TNC, 

SMAC/DIABLO, TBC1D24, CD164, OSBPL2, HOMER2, KITLG, MCM2, PTPRQ, DMXL2, MYO3A, 

PDE1C, TRRAP, PLS1, SCD5, SLC12A2, MAP1B, RIPOR2/FAM65B 

X-Linked  PRPS1, POU3F4, SMPX, AIFM1, COL4A6 

Gene lists were obtained from: https://hereditaryhearingloss.org (accessed on 24 February 2021). 

 

3. Identifications of deafness genes in domestic animals 

 

Hearing loss in domestic animals can also be caused by several factors. Hereditary 

deafness contributes a significant amount in several domestic animal species such as 

pigs and dogs. Hereditary deafness can be classified into late onset and congenital 

deafness, and white pigmentation genes have been reported to be associated with 

hereditary deafness in several domestic animal species. In pigs, de novo mutation within 

non-regulatory region of the melanocyte-specific promoter of MITF gene causes 

hearing loss [21]. One missense mutation of KIT gene leads to both congenital bilateral 

severe sensorineural deafness and hypopigmentation in Bama miniature pigs. This 

disease resembles one common human syndromic hearing loss disease - the 
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Waardenburg syndrome [22]. In cattle, German White Fleckvieh syndrome is 

characterized by typical characters such as inherited bilateral deafness, colobomatous 

eyes, hypopigmentation and heterochromia irides. One missense mutation of MITF 

gene has been detected to be associated with the above-mentioned syndrome [23]. One 

approximate 63 kb deletion spanning exons 6-9 of the MITF gene is reported to be 

associated with splashed white depigmentation phenotype of American Paint horses, 

which is also identified as a risk variant of deafness in this horse breed [24].  

 

Congenital deafness is quite prevalent in dogs, which has been reported in more than 

100 dog breeds [25]. Several modern dog breeds were attested to have high hearing loss 

prevalence. Dalmatian dog breed was identified to have the most prevalent deafness 

rate with 29.9%. Congenital hearing loss is also quite common in Bull terrier, 

particularly in the white fur individuals. Other dog breeds such as English Setter, 

English Cocker Spaniel, Australian Cattle Dog and Australian Stumpy Tail Cattle Dog 

were also reported to show high hearing loss percentage [26-28]. Other dog breeds that 

were not investigated in detail to date might also bear a high deafness rate. Considering 

the great harmfulness and disadvantages of deafness, this problem should be subjected 

in dog breeding guidelines. The correlation between pigmentation and the occurrence 

of deafness has also been observed in dogs. White coat color seems to be associated 

with the deafness onset in some certain dog breeds like Bull Terrier [25]. Red coat color 

is positively associated with congenital deafness in Australian Stumpy Tail Cattle dogs 

when compared with blue ones [28]. On the other hand, blue eyes in dogs are likely to 

be associated with deafness onset, e.g. it was observed that Dalmatian dogs with blue 

eyes have higher risk for deafness. It is similar in English Setter and English Cocker 

Spaniel dog breeds: blue eyed dogs are more susceptible to congenital hearing loss [25]. 

However, not all dog breeds have shown a relationship between coat color and deafness. 

Investigations on breeds including Australian Cattle Dog showed no significant 

associations between coat color and deafness [27]. No significant differences of 

deafness associations were observed between black- and liver-spotted Dalmatians [25].  
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Congenital deafness in humans has been well studied. Because of the similarities 

between canine and human genetic disorders [29], many human deafness causative 

genes are considered as candidates for studying dogs with hearing loss. Human deafness 

candidate gene-based diagnosis has been performed in dogs, like exclusion of PAX3, 

TMC1, TMIE, SILV, ESPN, MYO3A, SLC26A5 and USH1C as causative or associated 

genes for Dalmatian hereditary deafness [30-33]. The costs for canine SNP chips and 

whole genome sequencing (WGS) have declined in recent years. Several GWAS and 

WGS analysis were applied to detect the causative variants or genes for dog deafness. 

For example, seven quantitative trait loci were revealed by GWAS for congenital 

sensorineural deafness in Dalmatian dogs (235 Dalmatian dogs including 157 hearing 

and 78 deaf samples), five significantly associated loci on CFA6, 14, 27, 29 and 31 

were detected near the well-known human or mouse deafness genes. These were 

COL11A1 on CFA6, GSDME and HOXA1 on CFA14, GDAP1 on CFA29 and CLDN14 

on CFA31, while no causative genes were found in this study [34]. One recent GWAS 

of dog congenital deafness was conducted in three breeds (Dalmatian, Australian Cattle 

Dog and English Setter) with a high deafness prevalence, all of which have piebald 

coats. Though several loci exceeded the suggestive association threshold, no loci in 

common of these three breeds and none of these significant signals were near the 

piebald loci. It implies congenital pigment-associated deafness is a complex trait and 

larger sample size is required to figure out the causative genes [35]. Whole genome re-

sequencing of hearing loss dogs has recently been proved to be one efficient way to 

identify causative genes. In Doberman Pinscher breed, PTPRQ and MYO7A have been 

detected to be associated with hearing loss [36, 37]. By combining GWAS with targeted 

next-generation sequencing, USP31 and RBBP6 showed strong associations with adult-

onset deafness in Border Collies. These two genes are either involved in NF-κB 

pathway or cochlear development [38]. Recently, a rare missense variant within in one 

human deafness gene LOXHD1 was detected to be correlated with hearing loss in 

Rottweiler breed [39]. Congenital deafness in dogs is much more complex than just 

associated with white pigmentation, genes that are involved in sensory nervous and 

auditory system development should also be evaluated during genetic diagnosis. 
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4. Genome-wide association analysis using modern dog breed standards as 

phenotypes  

 

Dogs were the first domesticated animal species, which are assumed to accompany 

humans since approximately 30,000 years according to archaeological records [40]. 

Recent studies found that modern dogs have originated from the now-extinct wolf 

population more than 11,000 years ago [41]. More than 400 documented dog breeds 

with various stable breed phenotypes were recognized around the world. The modern 

dog breeds were formed in less than three centuries with strong and continuous human-

purpose based selective breeding. Diverse breed-specific morphological traits of dogs 

were formed such as body mass, skull shape and coat color. High morphological 

variations were present in different dog breeds, while the within-breed phenotypic 

difference is typically low [42]. This is due to the strict regulations for modern dog 

breed standards, and dogs of the same breed are required to have specific and unified 

morphological traits. The variation between dog breeds is around 27.5 percent, while 

genetic variation among human populations is only 5.4 percent [43]. Psychological 

characteristics of dogs are unique and diverse among modern dog breeds. For example, 

there might be a 50-fold difference in body size between Chihuahua and Saint Bernard 

breeds. Therefore, dogs can be good genetic models to study underlying molecular 

mechanism of these morphological traits. After the dog reference genome had been 

assembled in 2005 [44], GWAS with dog breed standards as phenotypes has become a 

powerful way to identify genetic factors underlying these traits. Meanwhile, extensive 

linkage disequilibrium (LD) (megabase scale) in dog genome makes it easier to get 

significant signals with smaller sample size [45]. Several convincing genes were 

pointed out in the first landmark study which was conducted in 2008 [46]. Notably, the 

body size associated genes were confirmed by subsequent researches. Many successful 

examples of genetic mapping of canine morphological traits using dog breed 

stereotypes have been conducted [47, 48]. Compared with humans, some complex traits 
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of purebred dogs can be explained by a rather small number of genes such as body size. 

Nearly 50% of dog breed standard weight variants could be explained by only six genes 

(IGF1, GHR, SMAD2, STC2, HMGA2, IGF1R), while 180 loci explained only around 

10% of individual height in humans [49]. Other morphological traits that are shared 

across dog breeds can be used in case-control GWAS analysis such as ear shape. Highly 

significant signals were detected on CFA10 for drop ear and CFA12 for large and round 

ears [50]. In the same study, several other morphological traits like furnishing (RSPO2 

gene on CFA13, p = 1.06*10-68) and length of fur (FGF5 gene on CFA32, p = 4.71*10-

20) were also analyzed and convincing results were obtained. All of these traits were 

detected with single and very highly associated (-log(p-value)) signals. Moreover, a 

retrogene gene encoding fibroblast growth factor 4 (FGF4) on CFA18 has been 

identified to cause chondrodysplasia (short-legged phenotype in dog breeds such as 

Dachshund and Corgi) by GWAS in 2009 [51]. Eight years later, the same retrogene on 

CFA12 was demonstrated to be related with chondrodystrophy and intervertebral disc 

disease in dogs [52]. 

 

However, longer LD block of dog genome is a double-sided sword. It has 

disadvantages in fine mapping of causative variants. For instance, several studies have 

detected significantly associated signals within or around HMGA2 gene indicating its 

determination role of small body size in dogs, while the causal mutation is still unknown 

[53].  

 

5. Genetic interpretations of dog behaviors 

 

During the dog breed formation, strong human selective breeding has also resulted in 

specific and diverse behavior traits among dog breeds. Different dog breeds own 

different characteristics such as aggressiveness and boldness. Using breed average 

values of behavioral traits as phenotypes, several GWASs were applied in detection of 

correlated genes across breeds. For example, dog behavioral stereotypes (herding, 
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pointing, boldness and trainability) have been firstly investigated as qualitative 

variables in 2008 by genome-wide mapping between modern dog breeds [46]. In 

another study, average values of five dog personality traits including aggressiveness, 

sociability, curiosity, chase-proneness and playfulness were used as phenotypes in 

GWAS mapping, and these data are obtained from the Swedish Kennel Club [48]. In 

the same study, boldness trait was also investigated. GWAS mapping of behavioral 

traits using breed-average values that were obtained from large scale questionnaires as 

phenotypes has been applied in several studies. For instance, Canine Behavioral 

Assessment and Research Questionnaire (C-BARQ) breed-average scores were applied 

in GWAS analysis to map dog personality traits [54]. GWAS of more than 100 dog 

breeds using breed-average C-BARQ scores were calculated from 29,656 pet dogs. 

MacLean et al, found that dog behavioral traits are highly heritable between breeds, and 

the significantly associated genes are involved in neurological development and express 

in brain. Genetic factors contributing to dog cognition traits including inhibitory control, 

communication, memory and physical reasoning were also analyzed [56]. GWAS using 

breed-average cognition values obtained from questionnaires has also revealed several 

neural genes [57]. A recent study of social skills such as communication with human 

beings in 375 8-week-old puppies have indicated that dog cognition is highly heritable, 

and genetic factors account for 40% of the variation of dog point-following abilities 

and attention to human faces [58]. American Kennel Club (AKC) is the most 

authoritative organization to register and classify modern purebred dogs in United 

States. Considering heritage, behavior, and physical attributes of dog breeds, 197 AKC 

recognized dog breeds were assigned into seven loosely defined groups: herding, 

hunting, terrier, toy, sporting, non-sporting and working [59]. Using AKC group 

classification information, genes involved in athletic success of sporting and hound 

dogs were identified by comparing with village and other group dogs [60]. 

 

Dog breed-specific behaviors are correlated with body sizes [61], which might be 

caused by the effect of brain mass differences between breeds with diverse body sizes 

[46, 54, 62]. Including body size effects into GWAS analysis could reveal residual 
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genes that are not explained by effects of brain size [55]. Thus, correcting body mass 

factors in the GWAS analysis of dog behaviors has both advantages and disadvantages 

[57].  

 

6. Genetic mapping of dog complex diseases such as neurological disorder and 

cancer  

 

Selective breeding programs of purebred dogs have resulted in an increased frequency 

of inherited diseases such as neurological diseases in dogs [63]. Genetic mapping of 

these neurological disorders has been conducted in several studies of various breeds, 

which could be applied to improve the health and welfare levels for dogs. Promising 

candidate genes including CDH2, CTNNA2, ATXN1 and PGCP were identified for 

canine obsessive-compulsive disorders [64]. Canine myoclonic epilepsy is caused by 

one 4-bp deletion of DIRAS1 gene in Rhodesian Ridgeback dogs, which could be used 

as naturally occurring models for human epilepsy [65]. Recently, an in-frame 6-bp 

deletion in PITRM1 gene has been detected to be associated with epilepsy, 

mitochondrial dysfunction and neurodegeneration in Parson Russel Terriers [66]. 

Neuroaxonal dystrophy in Papillon dogs was shown to be associated with a missense 

variant within PLA2G6 gene [67]. Mutations with DMD gene have been detected to be 

responsible for Duchenne muscular dystrophy disorder in 15 dog breeds 

(https://omia.org/OMIA001081/9615/). Progressive retinal atrophy resembling human 

retinitis pigmentosa was revealed to be associated with IFT122 gene in Lapponian 

herders [68]. Mutations within human amyotrophic lateral sclerosis causative gene 

SOD1 showed significant association with canine degenerative myelopathy, one 

modification risk gene SP110 was also identified [69, 70]. Sensory neuropathy in the 

Border Collies was caused by an inversion within FAM134B [71]. Demyelinating 

polyneuropathy in Miniature Schnauzer is caused by a splicing variant of SBF2 [72]. A 

missense variant of CNTNAP1 gene was considered as one candidate mutation for 

canine laryngeal paralysis and polyneuropathy [73]. Using GWAS and WGS analysis, 
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a deletion in LRIT3 was identified to be associated with canine congenital stationary 

night blindness [74]. One novel canine inherited neurodegenerative disorder 

(neurodegenerative vacuolar storage disease) was described in Lagotto Romagnolo dog 

breed, and ATG4D was identified as the potential causative gene [75]. Progressive 

retinal atrophy was related to IMPG2 in Lhasa Apso dogs [76], while PDE6B was 

detected to be the candidate gene in Spanish Water Dogs [77]. Several causative genes 

including ATP1B2 [78], CAPN1 [79], GRM1 [80], ITPR1 [81], KCNJ10 [82-84], 

RAB24 [85], SEL1L [86], SNX14 [87], SPTBN2 [88] and SLC12A6 [89] were identified 

for canine hereditary ataxia in various breeds. 

 

Since dogs suffer from several cancers similar to humans, the genetics of dog cancer 

has recently been studied utilizing these valuable spontaneous models [90]. For 

example, GWAS and fine mapping using only 31 cases and 34 controls could identify 

the predisposing gene KITLG for canine squamous cell carcinoma of the digit in 

Standard Poodles [91]. Via combined GWAS with gene expression analysis, two risk 

genes (TRPC6 and STX8) have been shown to contribute to B-cell lymphoma and 

hemangiosarcoma of Golden Retriever [92]. Risk variant of DSCAM has been detected 

to be significantly associated with mast cell tumor in Labrador and Golden Retrievers 

[93]. Candidate genes including CDK5RAP2 have been identified for canine mammary 

tumors [94]. Three glioma susceptibility genes (CAMKK2, P2RX7 and DENR) were 

detected to be significantly associated in across-breed GWAS using 39 dog glioma 

cases and 141 controls from 25 dog breeds [94]. GWASs of three hematopoietic cancers 

including histiocytic sarcoma, lymphoma and mast cell tumor in four dog breeds 

identified several common susceptible loci [95]. Mutations of FBXW7 gene have been 

detected to be negatively associated with prognosis in canine B-cell lymphoma using 

exome sequencing of 71 affected dogs [96]. 
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7. Effects of sperm membrane lipid on male fertility 

 

Lipid homeostasis of sperm membrane is critical for male fertility. For example, the 

cholesterol/phospholipid ratio in sperm of unexplained infertile humans is about twice 

that of fertile men, so the ratio could be an indicator for male infertility [97]. It was 

suggested that lower phospholipid content in spermatozoa could be the cause of 

unexplained male reproduction disorders [97]. The cholesterol/phospholipid ratio was 

reported to be negatively associated with capacitation speed [98]. Reduction of 

cholesterol content of sperm membrane occurs during capacitation [99]. Abnormally 

high cholesterol content was observed in human sperms which failed to fertilize eggs 

in vitro [100]. ATGL is highly expressed in testis and it hydrolyses long-chain fatty acid 

triacylglycerol (TAG) to diacylglycerol (DAG). Impaired male fertility was observed 

in deficient ATGL(−/−) mice. The deletion of ATGL gene could lead to defects in 

spermatogenesis in testis and also affect sperm maturation in epididymis, which is 

essential for sperms to acquire motility [101]. Lipid peroxidation and overproduction 

of reactive oxygen species have been reported to cause sperm defects in male infertile 

patients [102-105]. ALOX15 and its inhibitor (6,11-dihydro[1]benzothiopyrano[4,3-

b]indole) were reported to be involved in mouse and human sperm oxidative stress 

process [106, 107]. Increased ALOX15 abundance was observed in sperms of infertile 

patients which could result in infertility by accelerating sperm membrane lipid 

peroxidation [108]. Several polyunsaturated fatty acids (PUFAs) of sperm membrane 

have been studied in male fertility. Reduced docosahexanoic acid (DHA) levels were 

detected in dysfunctional sperms with lower motility of boar (low motility) [109] and 

man (asthenozoospermia and oligozoospermia) [110]. Significantly elevated levels of 

phosphatidyl serine and some n-6 PUFAs with decreased amount of phosphatidyl 

ethanolamine and n-3 PUFAs were observed in sperms of infertile patients, indicating 

that disorders of sperm lipid metabolism may be the cause of male infertility [111].  
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Abstract 

Congenital deafness is prevalent among modern dog breeds, including Australian 

Stumpy Tail Cattle Dogs (ASCD). However, in ASCD, no causative gene has been 

identified so far. Therefore, we performed a genome-wide association study (GWAS) 

and whole genome sequencing (WGS) of affected and normal individuals. For GWAS, 

3 bilateral deaf ASCDs, 43 herding dogs, and one unaffected ASCD were used, 

resulting in 13 significantly associated loci on 6 chromosomes, i.e., CFA3, 8, 17, 23, 

28, and 37. CFA37 harbored a region with the most significant association (-log10(9.54 

× 10-21) = 20.02) as well as 7 of the 13 associated loci. For whole genome sequencing, 

the same three affected ASCDs and one unaffected ASCD were used. The WGS data 

were com-pared with 722 canine controls and filtered for protein coding and non-

synonymous variants, resulting in four missense variants present only in the affected 

dogs. Using effect prediction tools, two variants remained with predicted deleterious 

effects within the Heart development protein with EGF like domains 1 (HEG1) gene 

(NC_006615.3: g.28028412G>C; XP_022269716.1: p.His531Asp) and Kruppel-like 

factor 7 (KLF7) gene (NC_006619.3: g.15562684G>A; XP_022270984.1: 

p.Leu173Phe). Due to its function as a regulator in heart and vessel formation and 

cardiovascular development, HEG1 was excluded as a candidate gene. On the other 

hand, KLF7 plays a crucial role in the nervous system, is expressed in the otic placode, 

and is reported to be involved in inner ear development. 55 additional ASCD samples 

(28 deaf and 27 normal hearing dogs) were genotyped for the KLF7 variant, and the 

variant remained significantly associated with deafness in ASCD (p = 0.014). 

Furthermore, 24 dogs with heterozygous or homozygous mutations were detected, 

including 18 deaf dogs. The penetrance was calculated to be 0.75, which is in agreement 

with previous reports. In conclusion, KLF7 is a promising candidate gene causative for 

ASCD deafness. 

 



CHAPTER 3 
 

  30 

Keywords: deafness; kruppel-like factor 7; genome wide association study; 

Australian stumpy tail cattle dog; brainstem auditory evoked response 

 

Introduction 

 

Deafness can cause several inconveniences for dogs (Canis familiaris, CFA), as more 

attention is required to avoid undetected danger. Deaf dogs are not suitable as working 

dogs because their training is more challenging than for normal hearing dogs. In 

addition, they are more likely to be startled and show more tendency to bite [1]. More 

than 100 modern dog breeds have been reported to be affected by congenital deafness 

[2]. Hence, deafness seems to be a common disorder among dogs, particularly in breeds 

such as the Dalmatian, Bull Terrier, English Setter, English Cocker Spaniel, and 

Australian Cattle Dog [3]. Hearing loss or deafness can be categorized mainly by five 

criteria in dogs: (1) Cause (genetic or nongenetic, inherited or acquired); (2) association 

with other diseases or phenotypes (syndromic or non-syndromic); (3) number of 

affected ears (unilateral or bilateral); (4) degree of loss (partial or total); and (5) site of 

pathology (peripheral or central) [4]. Peripheral deafness can also be classified as 

inherited or acquired, congenital or late onset, and sensorineural or conductive. In dogs, 

three classifications of deafness are commonly seen, including inherited congenital 

sensorineural, acquired later-onset sensorineural, and acquired later-onset conductive 

deafness [5]. 

 

In dogs, congenital sensorineural deafness is common, resulting in total deafness in 

young puppies that is either unilateral or bilateral. Sensorineural deafness results from 

dysfunction of cochlea or spiral ganglion. While it can be a degenerative process that 

relates to aging, noise trauma, exposure to therapeutic drugs that have ototoxic side 

effects, and chronic conditions [6], it is frequently inherited and so linked to one or 

more genetic mutations. Some morphological studies in dogs showed congenital 

sensorineural deafness manifested hypoplasia or aplasia of the sensory cells in the organ 
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of Corti, stria vascularis, macula saccule, solidification, and calcification of tectorial 

membrane [7, 8]. Congenital sensorineural deafness is usually, but not always, related 

to pigmentation genes in some breeds [3]. 

 

Diagnosis of canine deafness usually consists of behavioral or electrodiagnostic testing. 

The behavioral testing is often unreliable, especially for the unilateral deafness or 

partial hearing impairment cases. The response of dogs may be affected by psychology 

(e.g., anxiety or loss of interest) and other senses (e.g., visual cues, vibration, or even 

air movement) [9]. The brainstem auditory evoked response (BAER) is the averaged 

record of the electrical activity of the auditory pathway in response to externally applied 

acoustic stimuli [10]. Compared with behavioral testing, the BAER test is an objective 

diagnostic method, with the advantages of being easy to record, noninvasive, safe, short 

test time, and giving reliable results [11]. 

 

The Australian Stumpy Tail Cattle Dog (ASCD) is a unique breed with a natural bob-

tail, which should be distinguished from the Australian Cattle Dog breed. ASCD is alert, 

watchful and obedient, and talented in working and controlling cattle. It has been 

recognized as a standardized breed since 1988 by the Australian National Kennel 

Council. For a long time, general opinion held that the origins of the Australian Stumpy 

Tail Cattle Dog arose from European herding dogs and the Australian Dingo. However, 

recently it has been suggested that the ancestors of the Australian Stumpy Tail Cattle 

Dog and the Australian Cattle Dog, sharing a common origin, arrived in Australia with 

early free settlers, as their unidentified companions, between 1788 and c. 1800 (Clark, 

Noreen R. A Dog for the Job. (in prep. 2020)). Each pup should undergo a BAER test 

because this breed has a high deafness prevalence (https://www.akc.org/dog-

breeds/australian-stump-tail-cattle-dog/ (accessed on 24 March 2021)). A research 

study of 315 ASCDs showed the incidence of congenital sensorineural deafness was 

17.8% [12]. There was no evidence that congenital sensorineural deafness in ASCD has 



CHAPTER 3 
 

  32 

a left/right asymmetry or a sex-specific pattern, but there was a significant correlation 

between red (over blue) coat color and deafness [12]. 

 

No unique causative variants have been identified so far for any dog breeds, possibly 

in part due to the fact that deafness appears to be a comparatively heterogenous disease 

as described above. In addition, there are several hypotheses about the inheritance 

pattern of congenital sensorineural deafness (reviewed by [1]). In Border Collies, for 

instance, Ubiquitin Specific Peptidase 31 (USP31) and RB Binding Protein 6 (RBBP6) 

have been associated with adult-onset deafness [13], whereas in the Doberman Pinscher, 

an insertion in Protein Tyrosine Phosphatase Receptor Type Q (PTPRQ) and a missense 

variant in Myosin VIIA (MYO7A) have been shown to be causative for a form of 

deafness that includes vestibular disease [14, 15]. Although chromosome 2 (CFA2), 6, 

14, 17, 27, and 29 have been associated with hearing loss in Dalmatians, no causative 

variants have been identified so far [16]. 

 

In ASCD, congenital sensorineural deafness has been linked to a chromosomal region 

on CFA10 [12]. However, within a potential candidate gene Sry-related Hmg-box gene 

10 (SOX10) located in this region, no causative alterations were detected. A recent 

genome-wide association study (GWAS) reported 14 chromosomes that were 

significantly associated with deafness in three canine breeds, and CFA3 was 

significantly associated with bilateral deafness in Australian Cattle Dogs [17]. In this 

study, three suggestive candidate genes near significantly associated regions were 

detected in these three dog breeds, including ATPase Na+/K+ Transporting Subunit α 4 

(ATP1A4), Transformation/Transcription Domain Associated Protein (TRRAP), and 

Potassium Inwardly Rectifying Channel Subfamily J Member 10 (KCNJ10) [17]. 

However, none have been convincingly identified as causative mutations. 
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To extend the identification of potential candidate genes causing deafness in ASCD we 

performed a genome-wide association study and whole genome sequencing (WGS) in 

deaf ASCD. We identified a unique missense variant in Kruppel-like factor 7 (KLF7) 

gene significantly associated with deafness in ASCDs. This variant was absent in 722 

dogs of bioproject PRJN448733 (see below). As KLF7 plays an important role in the 

nervous system, is expressed in the inner ear, and seems to be involved in inner ear 

development [18, 19], it was a convincing candidate for ASCD deafness. 

 

Materials and Methods 

 

Ethical Statement 

The collection of dog blood samples was done by S. Sommerlad at the time of BAER 

testing. The collection of samples was approved by the ‘‘Niedersächsisches Landesamt 

für Verbraucherschutz und Lebensmittelsicherheit” (33.19-42502-05-15A506) 

according to §8a Abs. 1 Nr. 2 of the TierSchG. All ASCDs were tested and sampled 

under approval of The University of Queensland’s Animal Ethics Committee. 

 

Phenotyping and Samples 

Fifty-nine Australian Stumpy Tail Cattle Dogs (Table S1) from a previous study [12] 

were used in this study. BAER testing was performed on 59 dogs [20], 28 were normal 

hearing dogs and 31 were diagnosed as deaf, of which 10 were bilateral deaf, 12 were 

left-sided deaf, and 9 were right-sided deaf (Table S1). Three bilaterally deaf ASCDs 

(#217, #253 and #330), and one control dog with normal hearing (#326) were used for 

next generation sequencing. Dog #326 was a littermate of #330. These four dogs were 

female and red in color; all but #330 had a speckled coat. DNA was extracted using a 

salting-out method as described [12]. All samples were pseudonymized using internal 

IDs. Furthermore, data from two repository were used in this study. One repository 

contain Variant Call Format (VCF) data of 722 canine individuals 
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(https://www.ncbi.nlm.nih.gov/bioproject/PRJNA448733 (accessed on 24 March 

2021)) [21]. It consists of 144 established breeds, 11 samples with mixed breed, 26 

samples with unknown breed status, 104 village and feral dogs from different regions, 

and 54 wild canids from six species. An additional dataset consisted of 590 samples 

including 582 dogs from 126 breeds and 8 wolves 

(https://www.ebi.ac.uk/ena/data/view/PRJEB32865 (accessed on 24 March 2021)) [22]. 

 

Next Generation Sequencing and Variant Calling 

A total of 1.0 µg DNA per ASCD sample was used as input material for the DNA library 

preparations. Sequencing libraries were generated using NEBNext® DNA Library Prep 

Kit following manufacturer’s recommendations and indices were added to each sample. 

The genomic DNA was randomly fragmented to a size of 350bp by shearing, then DNA 

fragments were end polished, A-tailed, and ligated with the NEBNext adapter for 

Illumina sequencing, and further PCR enriched by P5 and indexed P7 oligos. The PCR 

products were purified (AMPure XP system) and resulting libraries were analyzed for 

size distribution by Agilent 2100 Bioanalyzer and quantified using real-time PCR. For 

#217, #253, #326, #330, a total of 599,770,692, 723,624,660, 743,641,356, 

620,101,998 raw reads were obtained, respectively. Corresponding coverages were 

around 40× (paired-end reads, 2 × 150 bp). 

 

Raw sequence data were aligned to dog genome CanFam3.1 using BWA 0.7.17 [23]. 

SAMtools 1.9 were used for format change and sorting of sequences [24]. Duplicates 

were marked by PICARD (http://broadinstitute.github.io/picard/ (accessed on 24 

March 2021)). Variant calling was performed by GATK 4.1.3 with best practice 

pipeline [25]. 
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Genome Wide Association Analysis 

We used the VCF data obtained in the previous step for GWAS analysis. Three deaf 

dogs (#217, #253, #330) were used as cases. As ASCD is utilized for control and 

herding of cattle according to its breed standard 

(http://www.fci.be/Nomenclature/Standards/351g01-en.pdf (accessed on 24 March 

2021)), VCFs of 43 herding dogs from 15 breeds (Australian Cattle Dog, Bearded 

Collie, Belgian Malinois, Belgian Sheepdog, Belgian Tervuren, Berger Blanc Suisse, 

Berger Picard, Border Collie, Bouvier des Flandres, Entlebucher Sennenhund, Finnish 

Lapphund, German Shepherd Dog, Pembroke Welsh Corgi, Shetland Sheepdog, 

Spanish Water Dog) were extracted from the publicly available 722 canine VCF 

repository (https://www.ncbi.nlm.nih.gov/bioproject/PRJNA448733 (accessed on 24 

March 2021)) [21]. Sample selection criteria were the same as described [21]. A total 

of 43 herding dogs and the normal hearing dog #326 were chosen as controls (Table 

S2). The VCF files of the 43 herding dogs and 4 ASCDs were merged by BCFtools 1.9 

[24]. Filtering was done using VCFtools 0.1.13 with options --max-alleles 2, --min-

alleles 2, --min-meanDP 20, --minQ 20, --minGQ 20, --remove-indels, --max-missing 

0.95, --maf 0.05, --hwe 0.001 [26]. After filtering, 857,343 variants remained and were 

further pruned by Linkage Disequilibrium with –indep 1000 3 1 function in PLINK 

1.90 [27]. The final data set consisted of 20,656 SNPs. Principal component analysis 

(PCA) was performed using EIGENSOFT package [28]. GEMMA 0.98 was used for 

association analysis by case–control setting (3 deaf cases vs. one normal hearing ASCD 

and 43 herding dogs as controls) [29]. A univariate linear mixed model with sex, 5 

principal components, and relatedness of 47 dog individuals for corrections was applied 

for the association test. Bonferroni threshold -log10P (0.01/20,656) = 6.32 was utilized. 

Qqman package was used to generate Manhattan and quantile–quantile (QQ) plots [30]. 

The genomic inflation factor lambda was calculated with formula lambda = median 

(qchisq(1-p, 1))/qchisq(0.5, 1) where p is a vector of p values. 
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Next Generation Sequencing Data Analysis for Identification of Associated 

Variants 

Data after variant calling were analyzed with SNP & Variation Suite 8.8.3 (Golden 

Helix Inc., Bozeman, MT, USA). SNPs and indels were set to missing with read depth 

≤ 10, genotype quality ≤ 15, alt read ratios for Ref_Ref ≥ 0.15, Ref_Alt outside 0.3 to 

0.7, Alt_Alt ≤ 0.85. Variants were analyzed using autosomal recessive and dominant 

models, respectively. In the autosomal recessive filtering model, 3 deaf ASCDs were 

set as Alt_Alt, control ASCD as Ref_Ref or Alt_Ref. In the autosomal dominant 

filtering model, the 3 deaf ASCDs were set as Alt_Alt or Alt_Ref and controls as 

Ref_Ref. To further narrow the range of candidate variants, we compared the common 

variants of deaf ASCDs with 722 canine genomes to identify private variants. The 

shared variants in the three deaf dogs were filtered by BCFtools 1.9 with ‘isec’ option. 

Private variants were annotated using SnpEFF software [31] to determine high (loss of 

function) and moderate (missense) impact variants (Ensembl transcripts release 101). 

These functional variants were further checked by Integrative Genome Viewer (IGV) 

software to obtain real high quality variants [32]. Variant effects were predicted by 

SIFT [33], PolyPhen-2 [34], and PROVEAN [35]. 

 

Genotyping of KLF7 Variant in Australian Stumpy Tail Cattle Dogs 

Targeted genotyping of the KLF7 missense variant was performed in 59 ASCDs by 

PCR amplification using primers cfa_KLF7_Ex3_F (5′-

AGACTCTCTCAGCCGTGGAT-3′) and cfa_KLF7_Ex3_R (5′-

GGCCAACTTGTACCACTACCT-3′), resulting in a 295 bp fragment. Genotyping of 

PCR products were implemented by RFLP analysis after cleavage with the restriction 

enzyme HinP1I (NEB). The wild type allele was cleaved into two fragments, 236 bp 

and 59 bp, while the homozygous mutant remained uncut. Frequency distribution for 

alleles and genotypes was calculated using Fisher’s Exact Test in these 59 ASCDs. 

Allelic and genotypic odds ratios were calculated according to [36]. 
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Investigation of Human Deafness Genes in 3 Deaf Australian Stumpy Tail Cattle 

Dogs 

Human hearing loss or deafness genes were queried using online software GLAD4U 

with “hearing loss” and/or “deafness” as keywords [37]. After combining the three 

query results, 346 genes were chosen for further analysis (Table S3). The variants of 

these gene regions (including 1000 bp up- and downstream regions) were extracted by 

BCFtools from VCF files of the three deaf ASCDs and annotated by SnpEFF software. 

Variants with high (loss of function) and moderate (missense) impacts were selected 

for further analysis (Ensembl transcripts release 101). The genotype information of the 

chosen variants was further checked in 722 canines. 

 

Results 
 

Genome Wide Association Analysis 

The analysis was done using three bilateral deaf female dogs from three different litters. 

The hearing status of the individuals determined using BAER is shown in Table 1 and 

Table S1. 

 
Table 1. BAER (brainstem auditory evoked response) results of 4 Australian Stumpy Tail Cattle Dogs (ASCDs). 

ID Gender Coat Colour BAER Test Results 

217 Female Red speckled Bilaterally Deaf 

253 Female Red speckled Bilaterally Deaf 

330 Female Red Bilaterally Deaf 

326 Female Red speckled Normal Hearing 

 

The three affected ASCDs were compared with 44 control dogs. 13 SNPs on 6 

chromosomes (CFA3, 8, 17, 23, 28, 37) above the Bonferroni significance level were 

identified. The QQ-plot indicated that some associations might be due to population 

substructure. Associated SNPs are shown in Figure 1 and summarized in Table 2. The 

majority of the significantly associated SNPs (7/13) were located on CFA37 including 
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SNP chr37:44793 (position according to CanFam3.1) with the highest −log10p-value = 

20.02. A search for large structural variants (SVs) flanking the significantly associated 

regions on CFA3, 8, 17, 23, 28, and 37 using IGV was unsuccessful. 

 

 
Figure 1. Manhattan and quantile–quantile (QQ) plots illustrating deafness associated chromosomal regions. (a) The 

Manhattan plot shows on the y-axis the negative log-base-10 of the p value for each of the polymorphisms in the 

genome (along the x-axis), when tested for differences in frequency between 3 bilateral deaf dogs (cases) and 44 

controls (1 × ASCD, 43 herding dogs of 15 dog breeds). The red line indicates the Bonferroni significance threshold 

(-log10(0.01/20,656) = 6.32). (b) The QQ plot depicts the distribution of p-values of the genome-wide association 

study (GWAS) analysis and genomic inflation factor lambda is 1.20. 

 
Table 2. Significantly associated SNPs above Bonferroni significance threshold (6.32). 

CFA Position p-Value Nearby Genes Distance (bp) 

3 90,987,932 2.67 × 10−8 LCORL 186,575 

8 62,032,863 5.93 × 10−13 DGLUCY 19,884 

17 1,977,343 1.73 × 10−7 EIPR1 0 

17 9,456,133 2.34 × 10−15 TRIB2 204,307 

23 50,096,314 3.04 × 10−7 KCNAB1 0 

28 21,516 4.50 × 10−9 PTPN20 42,882 

37 13,393 2.04 × 10−7 WDR75 144,007 

37 44,793 9.54 × 10−21 WDR75 112,607 

37 80,438 1.36 × 10−9 WDR75 76,962 

37 16,399,127 2.66 × 10−8 CRYGD 25,757 

37 22,102,392 6.48 × 10−10 ABCA12 34,340 

37 22,579,983 2.93 × 10−7 FN1 57,573 

37 22,711,697 1.10 × 10−8 FN1 189,287 
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Whole Genome Sequencing Reveals Four Potential Variants 

To further locate the candidate variants, next generation sequencing was performed in 

3 deaf ASCDs (#217, #253, #330) and 1 normal hearing ASCD (#326). After quality 

control, a total of 4,208,002 SNPs and 2,298,760 indels were detected. According to 

previous deafness studies, sequence data were initially analyzed using a recessive 

model of inheritance. Using this model, 129,383 SNPs and 51,942 indels were detected. 

Using only variants that had been annotated and verified as mRNA transcripts (Ensembl 

release 101), 338 SNPs and 523 indels remained (Table S4). After filtering these 

variants against the 722 dog database, none of the homozygous Alt_Alt genotypes were 

exclusively present in the deaf ASCDs (Table S4). As there were no reports about such 

a high prevalence of deafness in the 722 control dogs and it can be assumed that the 

majority of the controls were hearing, these variants were presumably not causative. 

 

As no associated variants were found using the recessive inheritance model, a dominant 

inheritance model was applied. In this analysis, private variants only present in the three 

deaf ASCDs (Alt_Alt and Alt_Ref) compared to the 722 controls (Ref_Ref) were 

filtered, resulting in 270,980 SNPs and 351,927 indels. After quality control and 

functional annotating, 167 protein-changing variants (58 SNPs and 109 indels) 

remained (Table S5). These variants were further filtered against #326 (normal hearing 

littermate of #330) assuming that this dog should be homozygous wild type under the 

supposed model. After this step, four missense variants remained as potential causative 

candidates (Table 3). Within the 722 control dogs, no homozygous Alt_Alt or 

heterozygous carriers were detected for these 4 missense variants. In an additional 

dataset consisting of 590 dog samples, only two heterozygous individuals (Brussels 

Griffon dogs) were determined for the Microtubule associated protein 6 (MAP6) gene 

variant. To deduce which of the variants could be causative for deafness, protein 

function prediction tools were used. As shown in Table 4 only the variants in Heart 
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development protein with EGF like domains 1 (HEG1) and KLF7 were predicted to be 

deleterious by at least two of the prediction tools. 

 

Table 3. Genotype information of four potential causative variants for ASCD deafness. 

Chr HGVS Genome Position (a) Variant Type Gene (b) #217 #253 #330 #326 

13 NC_006595.3:g.60805542 C>T missense variant GC C_T C_T C_T C_C 

21 NC_006603.3:g.23019999 C>T missense variant MAP6 C_T C_T C_T C_C 

33 NC_006615.3:g.28028412 G>C missense variant HEG1 G_C G_C G_C G_G 

37 NC_006619.3:g.15562684 G>A  missense variant KLF7 A_A A_A A_G G_G 
(a) Positions according to CanFam3.1; (b) GC: GC vitamin D binding protein, MAP6: Microtubule associated 

protein 6, HEG1: Heart development protein with EGF like domains 1, KLF7: Kruppel-like factor 7. 

Table 4. Variant effect predicted by SIFT, PolyPhen-2, and PROVEAN. 

Gene Amino acid exchange SIFT Polyphen-2 PROVEAN 

GC p.Gly389Rrg Tolerated Benign Neutral 

MAP6 p.Arg486Cys Affect protein function Benign Neutral 

HEG1 p.His531Asp Affect protein function Unknown Deleterious 

KLF7 p.Leu173Phe  Affect protein function Possibly damaging Neutral 

SIFT: https://sift.bii.a-star.edu.sg (accessed on 24 March 2021), Polyphen-2: 

http://genetics.bwh.harvard.edu/pph2/index.shtml (accessed on 24 March 2021), PROVEAN: 

http://provean.jcvi.org/index.php (accessed on 24 March 2021). 

 

To further confirm the causative possibilities of the two remaining variants, their amino 

acid conservation was analyzed in the same 7 species. The missense variant in HEG1 

gene (NC_006615.3: g.28028412G>C) resulted in an amino acid exchange of 

p.His531Asp (XP_022269716.1). In KLF7 gene (NC_006619.3: g.15562684G>A), the 

variant led to an exchange of p.Leu173Phe (XP_022270984.1). Especially in KFL7, the 

amino acid position seems to be highly conserved across several different species, as 

shown in Figure 2. 
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Figure 2. Cross-species comparison of variant amino acid positions in HEG1 and KLF7. Partial protein sequences 

of HEG1 (A) and KLF7 (B) flanking the variant amino acid positions were aligned using ClustalW 

(https://www.ebi.ac.uk/Tools/msa/clustalo/ (accessed on 24 March 2021)). The variant positions are highlighted with 

a red arrow. Residual color scheme was referred from [38], sequence logos are shown according to [39]. 

 

Genotyping of KLF7 Variant in ASCDs 

To verify the association of the KLF7 variant with ASCD congenital deafness, 27 

normal hearing and 28 deaf ASCDs (21 unilaterally and 7 bilaterally deaf dogs) were 

used to investigate the KLF7 variant genotype distribution. As summarized in Table 5, 

59 ASCDs including the 4 whole genome sequenced dogs were used to check the 

association of the KLF7 missense variant with ASCD deafness. Four dogs were 

homozygous carriers (A_A) and 14 heterozygous (A_G) among the 31 deaf ASCDs. 

Within the 28 normal hearing ASCDs, 5 heterozygous and one homozygous carrier 

were detected. The penetrance of ASCD deafness was calculated to be 0.75. As 

determined by Fisher’s exact test, homozygosity for the KLF7 variant was significantly 

associated with congenital deafness (p = 0.014). The odds ratioAA = 6.8 (95% CI [0.68, 

67.25]), i.e., homozygous carriers are 6.8 times more likely to be deaf than wild type. 
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Table 5. Genotype distribution of KLF7 variant in 31 deaf and 28 normal hearing ASCDs dogs. 

Phenotype G_G A_G A_A Total Number P (c) 

Unilaterally deaf 10 10 1 21 0.054 

Bilaterally deaf 3 4 3 10 0.010 

Deafness (uni (a) + bi (b)) 13 14 4 31 0.014 

Normal hearing 22 5 1 28  

(a) uni: Unilaterally deaf; (b) bi: Bilaterally deaf; (c) p-value using Fisher’s exact test. 

 

Discussion 

 

Deafness is a common disorder among dogs, and the observed prevalence is highest in 

Dalmatians (29.9%) [3] and 17.8% in ASCD [12]. Even selective breeding based on 

deafness phenotyping decreased the prevalence in Dalmatians only to 17.8% [40]. 

Several other dog breeds also show rather high prevalence rates (> 10%), e.g., 

Australian Cattle Dog and Bull Terrier [3]. To accelerate the decline of overall 

prevalence of congenital sensorineural deafness, it would be important to identify the 

genetic cause of the disorder to enable informed breeding. 

 

We used four ASCD DNA samples from a previous study of deafness in Australian 

Stumpy Tail Cattle Dogs for GWAS and WGS analysis. The previous study used a 

genome screen with 325 microsatellite (290 were used for linkage mapping) to 

determine a significantly linked deafness region on CFA10 [12]. However, SOX10, the 

only potential candidate gene in this region, had to be excluded, as it did not harbor any 

causative variants. Another promising candidate in the CFA10 region, i.e., Trio- and f-

actin-binding protein (TRIOBP), had also to be excluded. In the above mentioned study, 

deafness was reported to be autosomal recessive inherited with incomplete penetrance 

[12]. As shown before, GWAS with multiple breeds can improve the accuracy of 

causative variant mapping [41, 42]. Our analysis provided evidence for at least six 

highly associated chromosomal regions. However, due to the small number of affected 

dogs, some associated regions might have resulted from the close relationship of the 
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dogs. This can be seen in the QQ-plot which showed convincing evidence for an 

association with some indication of a population substructure. In our study, more than 

half of the significant associated SNPs (7 out of 13) were located on CFA37, including 

the most significantly related SNP (chr37:44793, p = 9.54 × 10-21). In a recent study of 

Dalmatian deafness, signals were also detected in this region [17]. However, there was 

no associated peak on CFA37 reported in the previous microsatellite-based study in 

ASCD. A possible explanation could be that there were only five microsatellite markers 

on CFA37, one of which had a low degree of polymorphism (3 alleles, PIC 0.5) [12]. 

This might have been insufficient to detect associations on this chromosome. An 

alternative explanation is that ASCD deafness may be heterogeneous. There may be 

more than one variant causing congenital deafness in this breed, and using limited 

family associations may reveal private mutations. Further genotyping analysis in a 

wider range of affected (28) and unaffected (27) ASCDs revealed that the KLF7 

missense variant was still significantly associated with congenital deafness (Table 5). 

Furthermore, the penetrance of deafness in ASCD calculated based on the KLF7 variant 

was 0.75, which was in agreement with the previously calculated penetrance of 0.72 

[12]. Altered allele (A) frequency is 24.58% (Table 5). If we take penetrance into 

consideration, the deafness frequency is (24.58% * 0.75) = 18.4%, which is also close 

to the previous investigation of 17.8% overall ASCD breed deafness frequency [12]. 

Several homozygous wild type individuals were detected among the deaf ASCDs 

suggesting additional genetic risk factors. This was not surprising, as canine congenital 

deafness seems to be a complex disorder and different regions were detected in other 

GWASs for deafness so far [17]. 

 

According to our GWAS, functional relationships with deafness of genes near the 

significantly associated loci on most chromosomes were unapparent (Table 2). Only 

the region on CFA37 was further supported by WGS. In the initial GWAS 651 variants 

on chromosome 37 (between CFA37:7217 to CFA37:30803691) were identified 
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(Figure 1). Variant CFA37:15503029 T>C with a p-value of 8.61 × 10-6 was only 

12,534 bp distant from KLF7. To evaluate LD over-pruning and potential effects on 

resolution, we repeated the GWAS using less stringent pruning parameters (--indep 

1000 5 4). This increased the number of associated variants to 60,746. In agreement 

with the previous analysis, a variant with -log10p-value= 14.68 at position 

CFA37:15463045 remained in the vicinity of KLF7 (Table S6) and a significantly 

associated region spanning from CFA37:15463045 to CFA37:16433709 was detected 

harboring KLF7 (CFA37:15515563-15607345). As expected, a further reduction of 

pruning stringency resulted in more chromosomal regions above the significant 

threshold (Figure S1). However, especially on CFA10, no significantly associated 

variants were identified. 

 

In addition, we applied whole genome sequencing of the deaf dogs and used a large 

number of available canine whole genome sequence data as controls to improve the 

accuracy and efficiency of causative variant identification. Several GWAS of canine 

complex hereditary deafness failed to identify causative variants with the exception of 

two associated genes (MYO7A, PTPRQ) causative for a specific form of canine 

congenital bilateral deafness with vestibular disease [14, 15]. 

 

For next generation sequence analysis in the present study, functional variants within 

coding regions were primarily considered due to their direct impact on protein function 

[43]. We filtered all variants using an autosomal recessive model, however, no 

functional variants fulfilled this mode of inheritance. Again, the chromosomal region 

1Mb up- and downstream of SOX10 (CFA10:25680441-27690530) was checked using 

IGV, but no deafness associated variants including larger structural variants were 

identified. After WGS analysis and variant effect prediction, only two missense variants 

within HEG1 and KLF7 remained. HEG1 is involved in cardiovascular development 

[44] and therefore seemed unlikely to be involved in the development of deafness. 
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However, the candidate variant (NC_006619.3: g.15562684G>A) in KLF7 

(CFA37:15515563-15607345) was close to the significantly associated SNP 

CFA37:16399127 (p = 2.66 × 10-8) (Table 2). KLF7 is a zinc finger transcription factor 

and has been reported to play a role in the nervous system and is vital for neuronal 

morphogenesis that could function in axon outgrowth [18]. KLF7 was suggested to have 

potential functions in neurogenesis of mice, like neuronal differentiation and maturation 

[45]. KLF7 was also found to promote axon regeneration [46]. Furthermore, KLF7 is 

required for the development of sensory neurons [47], and it has been reported to play 

roles in neurotransmission and synaptic vesicle trafficking [48]. These two processes 

have important influences on the auditory system, and therefore disruption of KLF7 

could lead to hearing impairment and dysfunction [49]. Indeed, KLF7 was confirmed 

to be expressed in the otic placode which will develop into ears, indicating KLF7 could 

have an effect on ear development [19]. KLF7 was also detected to be a fibroblast 

growth factor (FGF) responsive factor in ear progenitor induction processes, which 

implies it may be involved in early ear induction [50]. KLF7 has been considered as 

one high quality candidate gene for human branchio-oto-renal syndrome, which is an 

autosomal dominant disease with hearing loss as one clinical sign [51]. KLF7 was the 

nearby gene (50,519 bp distance) of one significant signal in adult hearing difficulty 

GWAS [52]. One recent GWAS of hearing-related traits with up to 330,759 individuals 

(UK Biobank) revealed 31 significant genomic risk loci for adult hearing difficulty, 

KLF7 was also detected to be significantly associated [53]. Furthermore, the protein 

sequence segments surrounding KLF7 variant are much more conserved than that of 

HEG1 among the same 7 species (Figure 2). Recently, KLF7 has been reported to 

directly regulate GATA Binding Protein 3 (GATA3) expression [54]. GATA3 is 

expressed in the otic placode and is involved in inner ear development [55]. Though the 

interaction between KLF7 and GATA3 was reported in chicken adipogenesis, KLF7 is 

quite conserved among several species (Figure 2). Knockdown of Paired Box Protein 

Pax-2 (PAX2) (inner ear development gene) led to a significant up-regulation of both 
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KLF7 and GATA3 expression [19], which implies KLF7 and GATA3 are probably 

involved in the same pathway. Furthermore, GATA3 is the causative gene for human 

hypoparathyroidism, deafness, and renal dysplasia (HDR) syndrome [56]. Therefore, 

KLF7 could interact with GATA3 during the development of inner ear, and defects in 

KLF7 could affect GATA3 normal expression patterns in otic placode. This may be a 

potential cause of hearing loss in ASCD cases. The incomplete penetrance presented by 

the KLF7 variant in deafness may be related to its role as a transcription factor that is 

involved in a specific part of the hearing pathway. Our findings could provide clues for 

the functional analysis of the KLF7 in inner ear development. Functional analysis of 

KLF7 regarding ear development may provide further evidence for its role in deafness.  

Another intriguing possible pathway is suggested by the finding of a KLF binding site 

upstream of the M promoter of Microphthalmia-associated transcription factor (M-

MITF) that induces gene expression changes in humans [57]. Although the 

aforementioned study was related to melanoma development, M-MITF has been 

identified as the locus responsible for white coat patterning in dogs [58]. Hereditary 

deafness has been reported to be associated with white pigmentation in several species, 

e.g., by affecting M-MITF isoform expression in pigs [59] and cows [60] as well as 

humans [61]. Canine deafness was also linked with white pigmentation due to the merle 

and piebald locus [62]. Congenital sensorineural deafness of English Bull Terrier is 

predominant in individuals with white coat color [63]. Similarly, congenital hereditary 

sensorineural deafness in the Australian Cattle Dog was negatively associated with 

bilateral facial masks, also individuals with pigmented body patches showed a lower 

risk of deafness [64]. An inverse association of pigmented head patches and congenital 

sensorineural deafness was also observed in Dalmatians, while on the other hand, a 

positive correlation was detected with blue irises [65-71]. In ASCD, congenital 

sensorineural deafness was moderately significant associated with red/blue coat color, 

but not with speckling and facial masks [12]. However, no functional alterations in 

genes related to coat color or pigmentation were detected after filtering for case–control 
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setting in the present study. Thus far, no causative variants within genes involved in 

pigmentation have been identified in canine deafness. Some pigmentation genes have 

actually been excluded as candidates in different dog breeds, e.g., c-Kit (KIT) and 

melanocyte protein 17 (SILV) [72, 73]. An alternative explanation is that deafness 

caused by dysfunctions of other biological processes may be more common, such as 

ear development and morphogenesis. This is highly relevant in the Gene Ontology (GO) 

category analysis of potential canine hereditary deafness genes [2]. In our study, KLF7 

was reported to participate in inner ear development processes [50]. There is good 

evidence here that the KLF7 variant contributes to deafness, but the genotyping data 

supports the view that this is a multigene/multifactorial disease, and so this is one 

contributing mutation. 

 

Conclusions 

 

In summary, a missense variant within KLF7 gene has been identified to be significantly 

associated with congenital deafness in Australian Stumpy Tail Cattle Dogs. As KLF7 

gene was reported to be expressed in the inner ear and associated with human hearing 

difficulties, our findings could provide clues for further elucidating novel genetic 

causes for human hearing loss. 
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Figure S1. Manhattan and QQ plots of the Genome Wide Association Analysis (GWAS) for ASCD deafness. (a) 

Association of 60,746 variants with bilateral deafness in 47 dogs (3 cases and 44 controls). The plot shows the -

log10p-values for all variants. 60,746 were remained after pruning by Linkage Disequilibrium with parameters --

indep 1000 5 4. The red horizontal line represents the Bonferroni genome-wide significance threshold of 

−log10(0.01/60,746) = 6.78. (b) Quantile-quantile (QQ) plot showed the observed -log10p-values in the black curve, 

the red line indicated the distribution of expected -log10p-values. λ is calculated to be 1.10. 

 

Table S1.  KLF7 variant genotypes of 59 ASCDs. 

Group Sample Deafness Genotype of NC_006619.3:g.15562684 G>A 

Normal Sue143 normal GG 

Sue265 normal GG 

Sue75 normal GG 

Sue137 normal GG 

Sue264 normal GG 

Sue144 normal GG 

Sue266 normal GG 

Sue426 normal AG 

Sue145 normal AG 

Sue194 normal GG 

Sue286 normal GG 

Sue287 normal GG 

Sue211 normal GG 

Sue326 normal GG 

Sue288 normal GG 

Sue113 normal GG 

Sue116 normal  GG 
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Sue251 normal AA 

Sue317 normal AG 

Sue393 normal GG 

Sue433 normal GG 

Sue252 normal GG 

Sue318 normal AG 

Sue395 normal GG 

Sue434 normal AG 

Sue139 normal GG 

Sue394 normal GG 

Sue435 normal GG 

Deaf L ear Sue331 deaf L ear AG 

Sue339 deaf L ear AG 

Sue346 deaf L ear  AG 

Sue428 deaf L ear AG 

Sue429 deaf L ear  GG 

Sue111 deaf L ear AG 

Sue200 deaf L ear GG 

Sue373 deaf L ear GG 

Sue375 deaf L ear GG 

Sue431 deaf L ear AG 

Sue316 deaf L ear AG 

Sue130 deaf L ear GG 

Deaf R ear Sue332 deaf R ear  AG 

Sue424 deaf R ear GG 

Sue284 deaf R ear GG 

Sue427 deaf R ear  AG 

Sue81 deaf R ear  GG 

Sue106 deaf R ear  AA 

Sue112 deaf R ear  AG 

Sue342 deaf R ear  GG 

Sue380 deaf R ear GG 

Bilat deaf Sue78 bilat deaf AA 

Sue425 bilat deaf GG 

Sue187 bilat deaf AG 

Sue285 bilat deaf AG 

Sue343 bilat deaf GG 

Sue430 bilat deaf AG 

Sue217 bilat deaf AA 

Sue253 bilat deaf AA 

Sue330 bilat deaf AG 

Sue432 bilat deaf GG 



CHAPTER 3 
 

  51 

Reference 

 
1. Rak, S.G. and O. Distl, Congenital sensorineural deafness in dogs: a molecular genetic approach 

toward unravelling the responsible genes. The Veterinary Journal, 2005. 169(2): p. 188-196. 

2. Kelly-Smith, M. and G.M. Strain, STRING Data Mining of GWAS Data in Canine Hereditary 

Pigment-Associated Deafness. Veterinary and Animal Science, 2020: p. 100118. 

3. Strain, G.M., Deafness prevalence and pigmentation and gender associations in dog breeds at 

risk. The Veterinary Journal, 2004. 167(1): p. 23-32. 

4. Strain, G.M., The genetics of deafness in domestic animals. Frontiers in veterinary science, 2015. 

2: p. 29. 

5. Strain, G.M., Aetiology, prevalence and diagnosis of deafness in dogs and cats. British Veterinary 

Journal, 1996. 152(1): p. 17-36. 

6. Cunningham, L.L. and D.L. Tucci, Hearing loss in adults. New England Journal of Medicine, 2017. 

377(25): p. 2465-2473. 

7. Hiraide, F. and M.M. Paparella, Histopathology of the temporal bones of deaf dogs. Auris Nasus 

Larynx, 1988. 15(2): p. 97-104. 

8. Coppens, A., A. Resibois, and L. Poncelet, Bilateral deafness in a maltese terrier and a great 

pyrenean puppy: inner ear morphology. Journal of Comparative Pathology, 2000. 122(2-3): p. 

223-228. 

9. Strain, G.M., Hereditary deafness in dogs and cats: causes, prevalence, and current research. 

strain, 2003. 225: p. 578-9758. 

10. Sims, M.H., Electrodiagnostic evaluation of auditory function. Veterinary Clinics of North 

America: Small Animal Practice, 1988. 18(4): p. 913-944. 

11. Wilson, W.J. and P.C. Mills, Brainstem auditory-evoked response in dogs. American journal of 

veterinary research, 2005. 66(12): p. 2177-2187. 

12. Sommerlad, S. et al., Congenital sensorineural deafness in Australian stumpy-tail cattle dogs is 

an autosomal recessive trait that maps to CFA10. PLoS One, 2010. 5(10). 

13. Yokoyama, J.S. et al., Variation in genes related to cochlear biology is strongly associated with 

adult-onset deafness in border collies. PLoS genetics, 2012. 8(9). 

14. Guevar, J. et al., Deafness and vestibular dysfunction in a Doberman Pinscher puppy associated 

with a mutation in the PTPRQ gene. Journal of veterinary internal medicine, 2018. 32(2): p. 665-

669. 

15. Webb, A.A., A.L. Ruhe, and M.W. Neff, A missense mutation in MYO7A is associated with 

bilateral deafness and vestibular dysfunction in the Doberman pinscher breed. Canadian Journal 

of Veterinary Research, 2019. 83(2): p. 142-148. 

16. Kluth, S. and O. Distl, Congenital sensorineural deafness in Dalmatian dogs associated with 

quantitative trait loci. PloS one, 2013. 8(12). 

17. Hayward, J.J. et al., A genome-wide association study of deafness in three canine breeds. PLOS 

ONE, 2020. 15(5): p. e0232900. 

18. Laub, F. et al., Transcription factor KLF7 is important for neuronal morphogenesis in selected 

regions of the nervous system. Molecular and Cellular Biology, 2005. 25(13): p. 5699-5711. 



CHAPTER 3 
 

  52 

19. Chen, J. et al., A systems-level approach reveals new gene regulatory modules in the developing 

ear. Development, 2017. 144(8): p. 1531-1543. 

20. Strain, G., Brainstem auditory evoked response (BAER). Deafness in dogs and cats, 2011: p. 83-

107. 

21. Plassais, J. et al., Whole genome sequencing of canids reveals genomic regions under selection 

and variants influencing morphology. Nature communications, 2019. 10(1): p. 1-14. 

22. Jagannathan, V. et al., A comprehensive biomedical variant catalogue based on whole genome 

sequences of 582 dogs and eight wolves. Animal genetics, 2019. 50(6): p. 695-704. 

23. Li, H. and R. Durbin, Fast and accurate long-read alignment with Burrows–Wheeler transform. 

Bioinformatics, 2010. 26(5): p. 589-595. 

24. Li, H. et al., The sequence alignment/map format and SAMtools. Bioinformatics, 2009. 25(16): p. 

2078-2079. 

25. McKenna, A. et al., The Genome Analysis Toolkit: a MapReduce framework for analyzing next-

generation DNA sequencing data. Genome research, 2010. 20(9): p. 1297-1303. 

26. Danecek, P. et al., The variant call format and VCFtools. Bioinformatics, 2011. 27(15): p. 2156-

2158. 

27. Purcell, S. et al., PLINK: a tool set for whole-genome association and population-based linkage 

analyses. The American journal of human genetics, 2007. 81(3): p. 559-575. 

28. Price, A.L. et al., Principal components analysis corrects for stratification in genome-wide 

association studies. Nature genetics, 2006. 38(8): p. 904-909. 

29. Zhou, X. and M. Stephens, Genome-wide efficient mixed-model analysis for association studies. 

Nature genetics, 2012. 44(7): p. 821-824. 

30. Turner, S.D., qqman: an R package for visualizing GWAS results using QQ and manhattan plots. 

Biorxiv, 2014: p. 005165. 

31. Cingolani, P. et al., A program for annotating and predicting the effects of single nucleotide 

polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; 

iso-3. Fly, 2012. 6(2): p. 80-92. 

32. Thorvaldsdóttir, H., J.T. Robinson, and J.P. Mesirov, Integrative Genomics Viewer (IGV): high-

performance genomics data visualization and exploration. Briefings in bioinformatics, 2013. 

14(2): p. 178-192. 

33. Kumar, P., S. Henikoff, and P.C. Ng, Predicting the effects of coding non-synonymous variants on 

protein function using the SIFT algorithm. Nature protocols, 2009. 4(7): p. 1073. 

34. Adzhubei, I., D.M. Jordan, and S.R. Sunyaev, Predicting functional effect of human missense 

mutations using PolyPhen-2. Current protocols in human genetics, 2013. 76(1): p. 7.20. 1-7.20. 

41. 

35. Choi, Y. and A.P. Chan, PROVEAN web server: a tool to predict the functional effect of amino 

acid substitutions and indels. Bioinformatics, 2015. 31(16): p. 2745-2747. 

36. Clarke, G.M. et al., Basic statistical analysis in genetic case-control studies. Nat Protoc, 2011. 

6(2): p. 121-33. 

37. Jourquin, J. et al., GLAD4U: deriving and prioritizing gene lists from PubMed literature. BMC 

genomics, 2012. 13(8): p. S20. 



CHAPTER 3 
 

  53 

38. Taylor, W., Residual colours: a proposal for aminochromography. Protein engineering, 1997. 

10(7): p. 743-746. 

39. Schneider, T.D. and R.M. Stephens, Sequence logos: a new way to display consensus sequences. 

Nucleic acids research, 1990. 18(20): p. 6097-6100. 

40. Lewis, T., J. Freeman, and L. De Risio, Decline in prevalence of congenital sensorineural deafness 

in Dalmatian dogs in the United Kingdom. Journal of Veterinary Internal Medicine, 2020. 

41. Daetwyler, H.D. et al., Whole-genome sequencing of 234 bulls facilitates mapping of monogenic 

and complex traits in cattle. Nature genetics, 2014. 46(8): p. 858. 

42. Raven, L.-A., B.G. Cocks, and B.J. Hayes, Multibreed genome wide association can improve 

precision of mapping causative variants underlying milk production in dairy cattle. BMC 

genomics, 2014. 15(1): p. 62. 

43. Yan, J. and X. Wang, Detection of Disease-associated Mutations and Biomarkers Using Next-

generation Sequencing. Detection Methods in Precision Medicine, 2020. 18: p. 119. 

44. Donat, S. et al., Heg1 and Ccm1/2 proteins control endocardial mechanosensitivity during 

zebrafish valvulogenesis. Elife, 2018. 7: p. e28939. 

45. Laub, F. et al., Developmental expression of mouse Krüppel-like transcription factor KLF7 

suggests a potential role in neurogenesis. Developmental biology, 2001. 233(2): p. 305-318. 

46. Blackmore, M.G. et al., Krüppel-like Factor 7 engineered for transcriptional activation promotes 

axon regeneration in the adult corticospinal tract. Proceedings of the National Academy of 

Sciences, 2012. 109(19): p. 7517-7522. 

47. Lei, L. et al., The zinc finger transcription factor Klf7 is required for TrkA gene expression and 

development of nociceptive sensory neurons. Genes & development, 2005. 19(11): p. 1354-

1364. 

48. Kajimura, D. et al., Identification of genes regulated by transcription factor KLF7 in 

differentiating olfactory sensory neurons. Gene, 2007. 388(1-2): p. 34-42. 

49. Akçimen, F. et al., A novel homozygous FBXO38 variant causes an early-onset distal hereditary 

motor neuronopathy type IID. Journal of human genetics, 2019. 64(11): p. 1141-1144. 

50. Tambalo, M. et al., Enhancer activation by FGF signalling during otic induction. Developmental 

biology, 2020. 457(1): p. 69-82. 

51. Brophy, P.D. et al., Genome-wide copy number variation analysis of a Branchio-oto-renal 

syndrome cohort identifies a recombination hotspot and implicates new candidate genes. 

Human genetics, 2013. 132(12): p. 1339-1350. 

52. Wells, H.R. et al., GWAS Identifies 44 Independent Associated Genomic Loci for Self-Reported 

Adult Hearing Difficulty in UK Biobank. The American Journal of Human Genetics, 2019. 105(4): 

p. 788-802. 

53. Kalra, G. et al., Biological insights from multi-omic analysis of 31 genomic risk loci for adult 

hearing difficulty. PLoS genetics, 2020. 16(9): p. e1009025. 

54. Sun, Y. et al., GATA binding protein 3 is a direct target of Kruppel-like transcription factor 7 and 

inhibits chicken adipogenesis. Frontiers in Physiology, 2020. 11. 

55. Lawoko-Kerali, G., M.N. Rivolta, and M. Holley, Expression of the transcription factors GATA3 

and Pax2 during development of the mammalian inner ear. Journal of Comparative Neurology, 

2002. 442(4): p. 378-391. 



CHAPTER 3 
 

  54 

56. Van Esch, H. et al., GATA3 haplo-insufficiency causes human HDR syndrome. Nature, 2000. 

406(6794): p. 419-422. 

57. Pierrat, M.-J. et al., Expression of microphthalmia-associated transcription factor (MITF), which 

is critical for melanoma progression, is inhibited by both transcription factor GLI2 and 

transforming growth factor-β. Journal of Biological Chemistry, 2012. 287(22): p. 17996-18004. 

58. Karlsson, E.K. et al., Efficient mapping of mendelian traits in dogs through genome-wide 

association. Nature genetics, 2007. 39(11): p. 1321-1328. 

59. Chen, L. et al., A de novo silencer causes elimination of MITF-M expression and profound 

hearing loss in pigs. BMC biology, 2016. 14(1): p. 1-15. 

60. Philipp, U. et al., A MITF mutation associated with a dominant white phenotype and bilateral 

deafness in German Fleckvieh cattle. PloS one, 2011. 6(12): p. e28857. 

61. Tassabehji, M., V.E. Newton, and A.P. Read, Waardenburg syndrome type 2 caused by mutations 

in the human microphthalmia (MITF) gene. Nature genetics, 1994. 8(3): p. 251-255. 

62. Strain, G.M., Canine deafness. Veterinary Clinics: Small Animal Practice, 2012. 42(6): p. 1209-

1224. 

63. De Risio, L., J. Freeman, and T. Lewis, Prevalence, heritability and genetic correlations of 

congenital sensorineural deafness and coat pigmentation phenotype in the English bull terrier. 

BMC veterinary research, 2016. 12(1): p. 146. 

64. Sommerlad, S.F. et al., Prevalence of congenital hereditary sensorineural deafness in Australian 

Cattle Dogs and associations with coat characteristics and sex. BMC Veterinary Research, 2012. 

8(1): p. 202. 

65. Strain, G.M. et al., Brainstem auditory-evoked potential assessment of congenital deafness in 

Dalmatians: Associations with phenotypic markers. Journal of Veterinary Internal Medicine, 

1992. 6(3): p. 175-182. 

66. Greibrokk, T., Hereditary deafness in the Dalmation: relationship to eye and coat color. Journal 

(USA), 1994. 

67. Famula, T., A. Oberbauer, and C. Sousa, A threshold model analysis of deafness in Dalmatians. 

Mammalian genome, 1996. 7(9): p. 650-653. 

68. Wood, J. and K. Lakhani, Prevalence and prevention of deafness in the Dalmatian—assessing the 

effect of parental hearing status and gender using ordinary logistic and generalized random 

litter effect models. The Veterinary Journal, 1997. 154(2): p. 121-133. 

69. Muhle, A.C. et al., Further contributions to the genetic aspect of congenital sensorineural 

deafness in Dalmatians. The Veterinary Journal, 2002. 163(3): p. 311-318. 

70. Juraschko, K. et al., Analysis of systematic effects on congenital sensorineural deafness in 

German Dalmatian dogs. The Veterinary Journal, 2003. 166(2): p. 164-169. 

71. Cargill, E. et al., Heritability and segregation analysis of deafness in US Dalmatians. Genetics, 

2004. 166(3): p. 1385-1393. 

72. Metallinos, D. and J. Rine, Exclusion of EDNRB and KIT as the basis for white spotting in Border 

Collies. Genome biology, 2000. 1(2): p. 1-4. 

73. Stritzel, S., A. Wohlke, and O. Distl, Elimination of SILV as a candidate for congenital 

sensorineural deafness in Dalmatian dogs. Animal genetics, 2007. 38(6): p. 662-662. 

 



CHAPTER 3 
 

  55 

Chapter 3  

 

 
Genome-wide Association Studies Reveal Neurological Genes for Dog 

Herding, Predation, Temperament and Trainability Traits 
 
Shuwen Shan, Fangzheng Xu*, Bertram Brenig 
 
Department of Animal Sciences, Faculty of Agricultural Sciences, Institute of Veterinary 
Medicine, University of Goettingen, Goettingen, Germany  
 
* Corresponding author 
 

The article was published online in Frontiers in Veterinary Science, 8:693290. in July 

2021. The full article can be found online at: 

https://doi.org/10.3389/fvets.2021.693290 
 
  



CHAPTER 3 
 

  56 

Abstract 

 

Genome-wide association study (GWAS) using dog breed standard values as 

phenotypic measurements is an efficient way to identify genes associated with 

morphological and behavioral traits. As a result of strong human purposeful selections, 

several specialized behavioral traits such as herding and hunting have been formed in 

different modern dog breeds. However, genetic analyses on this topic are rather limited 

due to the accurate phenotyping difficulty for these complex behavioral traits. Here 268 

dog whole genome sequences from 130 modern breeds were used to investigate 

candidate genes underlying dog herding, predation, temperament and trainability by 

GWAS. Behavioral phenotypes were obtained from American Kennel Club based on 

dog breed standard descriptions or groups (conventional categorization of dog historical 

roles). The GWAS results of herding behavior (without body size as covariates) 

revealed 44 significantly associated sites within 5 chromosomes. Significantly 

associated sites on CFA7, 9, 10 and 20 were either located in or near neuropathological 

or neuronal genes including THOC1, ASIC2, MSRB3, LLPH, RFX8 and CHL1. MSRB3 

and CHL1 genes were reported to be associated with dog fear. Since herding is a 

restricted hunting behavior by removing killing instinct, 36 hounds and 55 herding dogs 

were applied to analyze predation behavior. Three neuronal-related genes (JAK2, 

MEIS1 and LRRTM4) were revealed as candidates for predation behavior. The 

significantly associated variant of temperament GWAS was located within ACSS3 gene. 

The highest associated variant in trainability GWAS is located on CFA22, with no 

variants detected above the Bonferroni threshold. Since dog behaviors are correlated 

with body size, we next incorporate body mass as covariates into GWAS, and 

significant signals around THOC1, MSRB3, LLPH, RFX8, CHL1, LRRTM4 and ACSS3 

genes were still detected for dog herding, predation and temperament behaviors. In 

humans these candidate genes are either involved in nervous system development or 

associated with mental disorders. In conclusion, our results imply that these neuronal 

or psychiatric genes might be involved in biological processes underlying dog herding, 

predation and temperament behavioral traits. 

 

Keywords: dog behavior, GWAS, herding, predation, temperament, trainability, 

neurological genes 
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Introduction 
 

Dogs are man’s best friend and the first domesticated animal, originating from a now-

extinct wolf population. Dogs have shared living space and food sources with humans, 

and have maintained this close relationship for more than 11,000 years (1). For only 

200-300 years, humans have selectively bred dogs for excellence in herding, hunting 

and obedience, and created diverse breeds with a wealth of behaviors. At the same time, 

humans have also bred dogs for different morphological traits such as body types, sizes, 

skull shapes, coat colors and textures according to human preferences and needs. Two 

major bottlenecks in dog history: early domestication and the creation of modern breeds, 

have characterized long-range linkage disequilibrium (LD) within dog breeds, 

providing an excellent natural model for studying morphology, complex diseases and 

behaviors (2). Over the past two decades, scientists have attempted to explain the 

genetic basis of phenotypic variation among dog breeds. Many cross-breed researches 

were performed including morphologic traits (3-5), diseases (6), behavior or cognition 

(6-8) and athletic ability (9).  

 

Dog behavior traits have been reported to be highly heritable, with a mean among-breed 

heritability (h2) of 0.51 ± 0.12 (Standard Deviation) for 14 behavioral traits. Specifically, 

high h2 values were observed for attachment and attention-seeking (0.56), chasing 

(0.62), stranger-directed aggression (0.68) and trainability (0.73) (7). However, the 

genetic mapping of behavior among dog breeds remains challenging. One reason is that 

behavior and cognition are complex traits, which are difficult to define and measure 

accurately (10). Therefore, different methods have been developed to classify and 

describe behavioral phenotypes. Behavioral studies across and within dog breeds have 

been explored and discussed. Using large SNP datasets and C-BARQ data of diverse 

breeds, dog fearlessness and aggression traits have been mapped to be associated with 

GNAT3-CD36 (CFA18) and IGSF1 (CFAX) loci (8). In the same study, variants within 

body size genes (IGF1 and HMGA2) showed significant associations with dog 

behaviors such as dog rivalry, separation anxiety, touch-sensitivity and owner directed 

aggression (8). In one recent study, using breed-averaged C-BARQ data as phenotypes, 

131 single nucleotide polymorphisms were demonstrated to be significantly associated 

with dog behavioral differences among 101 breeds, and the identified neurological 

candidate genes were highly expressed in brain (7). In addition, the among-breed 
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heritability of 14 behavioral traits was significantly higher than the heritability assessed 

in large within-breed samples (7). This study only did GWAS considering body size 

covariates, and they might have missed loci that affect both body size and behavior. 

Another GWAS of dog cognition (with and without body mass factors) using breed-

averaged phenotypic values identified 5 SNPs significantly associated with breed 

differences in dog communication, memory, inhibitory control, and physical reasoning, 

and identified 188 genes related to breed cognitive differences (6).  

 

Behavioral traits often exhibit complexity, polygenic control, and susceptibility to 

environmental influences. And they are inherited in linkage with other traits, for 

example, behavioral traits in dog are related to body size (11). For some behavioral 

studies, within-breed studies have shown good results and have been able to obtain 

more specific behavioral or cognitive locus. Recently, using the C-BARQ data as 

phenotypes, 11 SNPs within eight genomic regions were detected to be significantly 

related with six canine personality traits in Labrador retrievers (12). Two chromosome 

regions of CFA7:75-79Mb and CFA20:8-11Mb were investigated to be significantly 

associated with fearfulness in German Shepherd (13). Meanwhile, a locus of 

CFA11:12.8Mb was found to be significantly associated with fearfulness when 

investigated in Great Dane (14). These regions and the contained genes all correspond 

to the neuropsychiatric or neuronal gene regions in humans. In addition, human 

obsessive-compulsive disorder (OCD) has phenotypes similar to canine compulsive 

disorder (CCD), such as repetitive and time-consuming behaviors (15). Four CCD 

candidate genes: CDH2, CTNNA2, ATXN1 and PGCP were mapped by case-control 

GWAS in Doberman pinschers and validated in high-risk breeds (16). Structural 

variants on CFA6 containing GTF2I and GTF2IRD1 genes could contribute to 

behavioral differences (extreme sociability) between dogs and wolves, and these two 

genes are associated with human Williams–Beuren syndrome which is characterized by 

a happy and friendly disposition (17). Notably, HS6ST2 gene was first reported to be 

associated with dog sociability behavior (8) and recently was detected to be 

significantly related to human neuroticism in GWAS of 405,274 UK Biobank samples 

(18). This indicates dogs could be good natural models for studying the molecular 

etiology of human neural disorders. 
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Herding dogs were bred to help people manage livestock, and they excel at controlling 

livestock movement. Herding derives from predatory behavior by amplifying some 

predatory instincts such as eye staring, stalking and chasing, while suppressing other 

instincts as crush, bite or kill the prey (19). Herding dogs are energetic, enthusiastic and 

eager to work. If they are not properly trained or assigned tasks, they even use the 

inclination to herd other creatures including human beings (20). They also exhibit 

characteristics such as agility, bravery, steadiness, and relatively low aggressiveness 

(21). The current study used breed specific behaviors and groupings from American 

Kennel Club (AKC), the most authoritative organization for the registration and 

classification of purebred dogs in the United States. The AKC recognizes and classifies 

197 modern purebred dog breeds into seven loosely defined groups based on their breed 

features (heritage, physical attributes and behavior) and historical roles: Sporting, 

Hound, Working, Terrier, Toy, Non-sporting and Herding groups (22). The AKC group 

method has been successfully applied in identifications of genetic factors contributing 

to athleticism in sporting and hound dogs (9) as well as relationship investigations 

between artificial selection and human-directed play behavior (23). Genetic mapping 

of dog herding behavior has been firstly studied as qualitative variable in 148 dog 

breeds (24), and three other dog behaviors including pointing, boldness, and trainability 

were studied using cross-breed mapping.  

 

Different dog breed specific traits are selected based on different human purposes, thus 

each dog breed has its unique temperament and trainability characteristic. Temperament 

is of great importance for dog breeding, especially in choosing good guide dogs (25). 

Pet owners are also interested in matching dog with suitable temperament (26). Among 

the genetic studies of temperament traits, dog activity-impulsivity endophenotype was 

first studied through the association analysis of candidate gene DRD4 (27). Trainability 

levels were detected to have significant differences between 7 breed groups 

(conventional breed categories), which implies dog behavior traits such as trainability 

and boldness are partly owing to original function of breed. In the same study, scores 

of trainability, boldness, calmness and dog sociability were all detected significant 

differences among dog breeds (28). These breed-level behavioral differences can be 

used as phenotypes to study underlying genetic mechanisms, which will help us 

understand how these behaviors developed in dogs.  
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Significant brain neuroanatomical variations among breeds with different behavioral 

specialties, such as herding, hunting, guarding and companionship, are likely due to 

human selection for the behavior (29). It is reasonable to hypothesize that using a cross-

breed research strategy could help us find loci that control significant behavioral 

variations between breeds. Therefore, this study used behavioral groupings provided by 

AKC to perform cross-breed GWAS to find genetic markers associated with behavioral 

differences among breeds. Incorporating body size factors into dog behavior GWAS 

can bring both merits and drawbacks as body-size related variants could also play roles 

in behaviors through their effects on brain architectures (30). While controlling body 

size factors could reveal genetics variants that are not explained by brain or body size 

(7). Inspired by Gnanadesikan et al. (6), significant signals identified in GWASs either 

with or without body mass corrections were regarded as candidates in our analysis. This 

study provides clues to the molecular genetic mechanisms underlying canine behaviors 

such as herding, predation, temperament and trainability. Understanding the formation 

of breed-specific behaviors in dogs will also pave the way for further elucidations of 

mechanisms underlying human neuropsychiatric disorders. 

 

Materials and Methods 

 

Samples and phenotypes 

All 268 whole genome sequences of dogs that were used in this study have been 

extracted from vcf file data of 722 canine individuals 

(https://www.ncbi.nlm.nih.gov/bioproject/PRJNA448733), which is deposited by Dr 

Elaine A. Ostrander group of National Institutes of Health (NIH) (5). Many sources (n= 

128) such as NIH Intramural Sequencing Center are involved in the data generation 

with funds such as Intramural Program of the National Human Genome Research 

Institute. The 268 dog genomes consist of 130 established dog breeds (Supplementary 

Table 1) and the selection criterion is same as described in (5). For herding behavior, 

dogs were divided into cases and controls according to whether they belong to AKC 

herding group (conventional categorization) (https://www.akc.org/dog-breeds/herding/) 

or not. Forty-three herding group dogs were obtained, containing 15 modern dog breeds 

(Supplementary Table 1). In addition, extra 6 modern dog breeds with a herding 

phenotype (Rottweiler, Bernese Mountain Dog, Fonni's Dog, Lapponian Herder, 
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Samoyed and Swedish Lapphund) were selected according to the article (24), although 

these breeds were classified to working group in the AKC. Twelve cases were obtained 

in this step and finally fifty-five herding dogs were available as a case group. Herding 

dogs and hunting dogs are selected to meet different job requirements and therefore 

they have different degrees of prey-driven instincts. Thus, hounds and herding dogs can 

serve as good cases and controls for studying hunting behavior, such as aggressive 

behavior. In order to decipher this complex behavior, 36 hound group dogs were set as 

cases and 55 herding group dogs were regarded as controls for GWAS. Temperament 

and trainability traits were referred to the average scores of the AKC breed standard. 

When the ideal physical characteristics and temperament of a dog breed are specified 

in a written document, the breed becomes the standard breed. Therefore, different dog 

breeds have different levels of temperament (Outgoing, Friendly, Alert/Responsive, 

Reserved with Strangers and Aloof/Wary) (Figure 1A) and trainability (Eager to Please, 

Easy Training, Agreeable, Independent and May be Stubborn) (Figure 1B). Since 

kennel club group classifications are not the most accurate way to apply those 

phenotypes, we only set the top two levels as cases and last two levels as controls, and 

the middle levels (Agreeable and Alert/Responsive) were not included in GWAS 

analysis and considered as missing (NA). In total, 105 cases and 81 controls for the 

temperament analysis, 98 cases and 85 controls for trainability analysis were finally 

obtained (Table 1). Phenotype information of dog breed temperament and trainability 

traits were collected on 20 December 2020. 

 

Genome wide association analysis (GWAS) 

To obtain high-quality and only biallelic variants (Single nucleotide variants (SNVs) 

and small indels) for GWAS, vcf file of 722 dog genomes were firstly filtered by 

PLINK 1.90 with following functions (--max-alleles 2, --min-alleles 2, --minQ 20, --

max-missing 0.9) (31). Then individual dogs for each GWAS were extracted from the 

above filtered vcf file and variants with missing value > 1% (--maf 0.01) were removed 

using PLINK 1.90 (31). After filtering, 14,489,548, 14,654,804, 14,984,476 and 

14,853,066 biallelic variants were used for GWASs of herding, predation, temperament 

and trainability traits, respectively. 

 

GWAS was conducted applying a univariate linear mixed model with sex and kinship 

(relatedness matrix) as covariates. The model is available in GEMMA 0.98 and two 
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steps of calculation were applied (32). A centered relatedness matrix was calculated in 

the first step, which was used as a covariate to adjust for sample structure after eigen-

decomposition in the second step (32). Wald test was applied for the association 

significance assessment. Bonferroni thresholds (Pbon = -log(0.05/number of analyzed 

variants)) were used to identify significant association sites for herding (Pbon = 8.46) 

and predation (Pbon = 8.47) behavior. As no associated variants were above Bonferroni 

thresholds for temperament and trainability, suggestive thresholds (Psug = -

log(1/number of analyzed variants)) of temperament (Psug = 7.18) and trainability (Psug 

= 7.17) were applied. The suggestive threshold was first introduced by Lander and 

Kruglyak (33), which represents one false positive is expected per genome scan under 

the null hypothesis. Manhattan and quantile–quantile (QQ) plots were generated by 

qqman package (34). To account for body size factors in dog behavior, dog standard 

breed weights (SBW) and height (SBH) were further included in GWASs as covariates. 

Average values of body size were collected from (5). Only dog breeds that have SBW 

and SBH values were chosen for further analysis. The variant filtering conditions are 

the same as above. After filtering, 255 individuals with 14,416,697 variants, 88 dogs 

with 14,542,561 variants, 178 dogs with 14,829,902 variants and 177 dogs with 

14,726,409 variants were analyzed in herding (Pbon = 8.46, Psug = 7.16), predation (Pbon 

= 8.46, Psug = 7.16), temperament (Pbon = 8.47, Psug = 7.17) and trainability (Pbon = 8.47, 

Psug = 7.17) GWAS, respectively. Bonferroni and suggestive thresholds were showed 

in the figures of GWAS results. 

 

The genomic inflation factor lambda (λ) was calculated with the following formula: λ 

= median (qchisq(1-p, 1)) / qchisq(0.5, 1) where p is a vector of P values in GWAS 

results. The lambda inflation factor indicates the rate of excess false positive and the 

extent of the bulk inflation. When values of λ < 1.1 are obtained, significant population 

stratification will not be considered, which was also observed in the GWAS of canine 

complex traits (35). The QQ plot shows the observed versus expected -log P values. 

The straight line in the QQ plot indicates the distribution of variant markers under the 

null hypothesis, and the skew at the right edge indicates those markers that are more 

strongly associated with the trait than would be expected by chance. 

 

The detected associated signals were annotated by NCBI Canis lupus familiaris 3.1 

Annotation Release 105. The positions were viewed by Genome Data Viewer with 
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CanFam3.1 reference genome 

(https://www.ncbi.nlm.nih.gov/genome/gdv/?org=canis-lupus-familiaris). 

 

Alternative allele frequencies of significantly associated variants 

The allele frequencies of significantly associated sites were investigated in cases and 

controls for each GWAS trait setting separately using VCFtools 0.1.16 (36). The results 

of altered allele frequencies within these traits are shown in Table 2. 

 

Linkage disequilibrium (LD) analysis of GWAS significant association signals 

Linkage disequilibrium of each significantly associated site was analyzed by PLINK 

1.90 (31) using following functions: --ld-window-kb 5,000, --ld-window 99,999, --ld-

window-r2 0.8. Sites with r2 value more than 0.8 were listed in Supplementary Table 2. 

Genes near or located around these LD sites were annotated by Genome Data Viewer. 

 

Analysis of private variants in dogs with herding behavior 

We next analyzed variants that were only present in 55 dogs with herding behavior. 

First, a total of 268 samples were quality controlled for all types of variants using 

VCFtools 0.1.16 (36). Only variants with minor allele frequency (MAF) > 0.05, 

genotype quality score (GQ) > 20 and mean depth values > 10x were selected. After 

separate filtering, 10,415,191 variants of 213 control dogs and 9,864,535 variants of 55 

herding behavior dogs remained for further analysis. Private variants were analyzed by 

comparing the above filtered vcf files of 55 herding dogs and 213 controls using ‘--diff-

site’ function in VCFtools 0.1.16 (36). The private variants were further annotated by 

SnpEff 5.0 with Ensembl genome 101 release (37). We have acquired 987,046 sites 

which were absent or rare (MAF < 0.05) in non-herding controls, and these variants 

were present in at least one herding dog. Variants within protein-coding genes were 

selected for further analysis. Variants with possible functions (high and moderate 

impact) in protein-coding genes were chosen, and 611 high impact variants within 270 

genes and 6,740 moderate-impact variants within 2,133 genes were left. After merging 

genes of high and moderate impacts, 2,287 private genes remained. GO analysis was 

performed using these 2,287 genes with the online software WebGestalt 

(http://www.webgestalt.org/) (38). The top 10 significant biological process and 

cellular components were chosen for further analysis, WebGestalt applied FDR method 

to account for multiple testing.  
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The variant filtered quality conditions such as MAF and mean depth values could 

influence the variant content of filtered vcf files of cases and controls. For example, one 

variant has a MAF of 0.049 in 213 controls while its MAF is 0.051 in 55 cases, then it 

will be one private variant because it is absent in quality filtered vcf file of 213 controls 

due to MAF < 0.05. To prioritize the private candidate variants, these possibly 

functional private variants were further checked their altered allele frequencies in raw 

vcf files of 55 herding and 213 control dogs separately using ‘--freq’ function in 

VCFtools 0.1.16 (36). Variants present in more than one herding dog but not in controls, 

or variants with altered allele frequency differences greater than 0.1 between cases and 

controls are listed (Supplementary Table 3). 

 

Investigate gene expressions of 10 candidate genes in online gene expression 

databases 

Gene expressions of 10 candidate genes (THOC1, ASIC2, MSRB3, LLPH, RFX8, CHL1, 

JAK2, MEIS1, LRRTM4, ACSS3) were further examined by online database SCDevDB 

(https://scdevdb.deepomics.org) for single-cell atlas in the human neural developmental 

pathway (39). The cell types were oocyte, zygote, 2-cell, 4-cell, 8-cell,16-cell, 

blastocyst, human embryonic stem cells (hESC), H1_24_wells, H1_96_wells, 

neural_D12 (neural cells generate from H1 cell line, 12 days after differentiation), 

neural_D26 (neural cells generate from H1 cell line, 26 days after differentiation), 

neural_D54 (neural cells generate from H1 cell line, 54 days after differentiation), 

neural_D80 (neural cells generate from H1 cell line, 80 days after differentiation). Cell 

details are available at https://scdevdb.deepomics.org/data-summary/, data information 

of neural cell lines was referenced in (40).  

 

These genes were further investigated in Allen Brain Atlas Developing Mouse Brain 

atlas (http://developingmouse.brain-map.org) (41). Days of Embryonic (E) specimen 

age and postnatal (P) specimen age which is relative to birth (P0) are used to define the 

mouse brain development stages. 

 

Results 
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Distribution and allele frequencies of GWAS associated sites of dog herding, 

predation, temperament and trainability traits 

 

GWASs not including body size as covariates 

We investigated 4 dog behavior trait phenotypes (herding, predation, temperament and 

trainability) using a univariate linear mixed model incorporating in GEMMA 0.98 (32). 

Sex and relatedness matrices (correcting for population stratification) were used as 

covariates to perform association tests on one single trait phenotype. For GWAS of dog 

herding behavior, 55 dogs with herding behavior and 213 control dogs were used. 44 

significantly associated variants within regions of 5 chromosomes (CFA6, CFA7, 

CFA9, CFA10 and CFA20) were above Bonferroni threshold (Fig. 2). The most 

significantly associated region is located on CFA20 (16594598-16610335) including 

16 associated sites, all of which were near or in one lncRNA: LOC111091431. Five of 

them were within LOC111091431, and one variant at position 16,607,008 was located 

in the exonic region of the lncRNA. Moreover, this variant (CFA20:16607008 A>T) 

was only present in dogs with herding behavior (Table 2). Another variant 

(CFA20:16603809 A>C) was located only 164 bp upstream of LOC111091431. More 

importantly, LOC111091431 is located 159,124 bp upstream of the neural cell adhesion 

molecule L1-Like protein (CHL1), a neural-associated gene. On CFA7, one variant was 

594 bp upstream of THO Complex 1 (THOC1) gene. One, two and eight significantly 

associated intron variants were detected in acid sensing ion channel subunit 2 (ASIC2), 

Methionine sulfoxide reductase B3 (MSRB3) and Regulatory factor X8 (RFX8) genes 

on chromosomes 9 and 10, respectively (Table 2). Genes such as MSRB3 (42), THOC1 

(43), ASIC2 (44) and RFX8 (45) are reported to have either neuropathological or 

neuronal functions. These genes near significantly associated variants are indicated in 

Figure 2A. Other loci were located in genes that are not functionally annotated, or were 

located in intergenic regions and away from genes. For instance, two associated regions 

on CFA10 were located around 8.1 Mb and 8.6 Mb, and the closest genes in these 

regions were Long-term synaptic facilitation protein (LLPH) and LOC111097584. 

 

Prey drive is the innate behavioral pattern of carnivores to pursue and capture prey, and 

it is a fundamental characteristic of herding dogs. Through selective breeding, humans 

have been able to reduce prey-driven behavior of herding dogs while maintaining their 

hunting skills (46). Therefore, we investigated the genetic difference between herding 
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and hunting dogs. Thirty-six hound group dogs and fifty-five herding group dogs were 

selected to study the predation differences between these two groups. This may provide 

further understanding of formation of herding behavior. Three chromosome regions on 

CFA1, 10 and 17 showed significant signals (Figure 3A). Three genes nearest to these 

regions were janus kinase 2 (JAK2) (about 1kp), meis homeobox 1 (MEIS1) (around 

26kb) and Leucine rich repeat transmembrane neuronal 4 (LRRTM4) (approximately 

313kb) (Table 2, Figure 3A).  

 

To clarify potential genes that are associated with dog temperament and trainability 

traits, phenotypes based on breed-averaged measures were grouped as described on the 

AKC website (https://www.akc.org). The phenotypes were classified into five levels 

(Figure 1). The GWAS for dog temperament trait was based on 105 dogs of 

extraversion type and 81 dogs of aloof type. There was only one variant above 

suggestive threshold located in the intron region of Acyl-CoA synthetase short chain 

family member 3 (ACSS3) gene on CFA15 (Table 2 and Figure 4A). For trainability 

GWAS, 98 high and 85 low trainability level dogs were selected for analysis, and only 

one variant was detected near LOC111091672 with a suggestive significant association 

for trainability (Table 2).  

 

GWASs with body size as covariates 

As body size has been reported to be related with dog behaviors, we then performed 

GWAS adding body size values into covariates. As shown in Figure 2-5, similar results 

were observed after incorporating SBW and SBH into analysis for herding, predation, 

temperament and trainability. In the new herding GWAS, the significantly associated 

chromosome regions were similar to the results without body size covariates, except for 

the associated site on CFA9. Although the p-values (p = 4.03E-09) for the CFA9 

variants (CFA9:40067785 and CFA9:40068138) increased, they were still close to the 

Bonferroni threshold (Figure 2B). Bonferroni significantly associated signals of dog 

herding behavior remained around candidate genes like THOC1, MSRB3, LLPH, RFX8 

and CHL1 (Figure 2B). For the predation GWAS analysis, only region of CFA17 

remained significantly associated after incorporating body mass covariates into analysis, 

while variants near MEIS1 gene on CFA10 were above the suggestive threshold (Figure 

3B). In the new temperament GWAS analysis, the same variant of ACSS3 showed a 

smaller p value (1.92E-09) above the Bonferroni threshold (Figure 4B). No significant 
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association was found for trainability after adding body size factors. GWAS QQ plots 

can be referred to Supplementary Figure 1. 

 

One missense variant of MSRB3 was in high LD level with herding GWAS 

associated sites 

Causative variants are usually not directly detected by GWAS, and phenotypically 

based causal variants may be in linkage disequilibrium with GWAS-related markers. 

Linkage disequilibrium of each GWAS significant associated site for herding behavior 

was calculated by Plink 1.90 (31). The results are shown in Supplementary Table 2. 

Only sites with r2 > 0.8 were chosen for further analysis. Except variants that already 

exceeded the significant threshold, 6 other variants within genes are shown in Table 3. 

A variant on CFA6 (CFA6:39,977,184 G>A) was located in the intron region of PIGQ 

gene, which has been reported to be the causative gene for human early-onset epilepsy 

(47). One missense variant (NC_006592.3:g.8037693G>A, 

XP_013972688.1:p.Gly179Ser) was detected in MSRB3 gene, and the other 4 variants 

were located in exon regions of one lncRNA (LOC111097584) near MSRB3 (38kb 

downstream). These 5 potentially functional variants may promote the development of 

dog herding behavior through directly or indirectly affecting the functions of MSRB3 

and LOC111097584. Ten species were chosen to analyze the MSRB3 missense variant 

conservation. Six mammals have amino acid D and three species including dog, chicken 

and chimpanzee own G in this position (Supplementary Figure 2). This indicated that 

the missense variant is not conserved. 

 

Neural development processes were highlighted in herding private genes with 

possible functions 

Private functional variants that were only present in herding dogs could contribute to 

the herding behavior trait formation. Therefore, we analyzed the private functional 

genes of herding dogs in an attempt to find candidate genes. To obtain variants that 

were only present in 55 dogs with herding behavior, high quality variants of 55 herding 

and 213 control dogs were separately filtered. After comparing different sites between 

cases and controls, the variants that only existed in 55 herding dogs were annotated by 

SnpEff 5.0 software (37). The remained 7,351 private (611 high impact and 6,740 

moderate) variants were chosen for further analysis, and these private variants were 

within in 2,287 protein coding genes (Supplementary Table 3). Considering that 
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functional variants can impact gene function, these 2,287 genes were used in GO 

analysis. Among the top 10 significantly enriched biological processes, 112 genes were 

enriched in nervous system development process (GO:0007399) and 54 genes were in 

neuron projection development process (GO:0031175) (Table 4). Moreover, 76 genes 

were enriched in neuron part (GO:0097458) within cellular component analysis. Details 

of the gene names and private functional variants are listed in Supplementary Table 3. 

 
Nine candidate genes were highly expressed in different cell stages of neural 

development process 

As these genes are related to nervous system or human mental disorders, ten candidate 

genes, i.e. THOC1, ASIC2, LLPH, RFX8, MSRB3, CHL1, JAK2, MEIS1, LRRTM4 and 

ACSS3, were used for further analysis in a single-cell expression database of human 

neural developmental. Except ASIC2, 9 candidate genes were detected to be highly 

expressed in different early development stages of neural cells, which were generated 

after 12, 26, 54, 80 days’ differentiation (Supplementary Figure 3). It is noted that RFX8 

gene showed unique high expression in neural cells of 12 days. 

 

After checking these 10 genes in Allen Developing Mouse Brain Atlas, three genes 

including ASIC2, CHL1 and MEIS1 showed high expressions in mouse brain 

development stages (E11.5, E13.5, E15.5, E18.5, P4, P14 and P28). This suggests that 

ASIC2 is also a neurodevelopmental gene. 

 

 

Discussion 
 

Research on the genetic mechanism of dog behaviors can help us understand dog 

domestication process and guide us on how to get along with dogs, which is important 

for dog welfare. Moreover, it could also provide clues to research of human behavior 

and health disorders. Dog genomes have undergone strong artificial selection with 

increased haplotype homozygosity and linkage disequilibrium (2). Therefore, 

compared with human studies, GWAS with smaller dog samples can even produce good 

results (2, 15). For example, GWAS with whole genome sequences across diverse 



CHAPTER 3 
 

  69 

breeds has proved to be a powerful method to study canine morphological traits (5). 

Here we used genomic data from 268 modern dogs to perform GWAS for four 

behaviors and tried to find the genetic clues behind these phenotypes. In this study, 

phenotypes were based on dog breed standard values or group information from AKC, 

which is valid for revealing genomic regions and variants for several specific 

phenotypes such as dog fear, aggression, boldness, cognition and athleticism (4, 6, 7, 9, 

24). Some dog behaviors have been reported to be highly heritable and higher than 

those assessed within breeds, and it is hypothesized that specific loci associated with 

behavioral differences between breeds can be found using across-breed genome-wide 

approach (7). Previous behavior or cognition GWAS were all performed with SNP chip 

data (≤ 173K), whereas we used nearly 15M variants of 130 dog breeds in this study, 

which were obtained by whole genome resequencing. It has a higher coverage of non-

coding regions of the dog genome, which have important roles in dog behavioral traits 

such as differentiating dog from wolf (48). In this study, several promising candidate 

genes with neuronal or psychiatric were detected to be associated with breed differences 

of herding, predation, temperament and trainability traits. 

 

Herding is a complex behavioral trait that requires dogs to be fearless and bold when 

facing large numbers of sheep or cattle. The genome-wide significant loci of fearless 

were mapped on CFA7:75-79 Mb and CFA20:8-11 Mb (13) and that of boldness was 

discovered on CFA10:6.8-8.8 Mb (4). In our herding GWAS results, nearby genomic 

regions of 67.1 Mb on CFA7 and 16.6 Mb on CFA20 were detected to be significantly 

associated (Table 2). Furthermore, two regions of 8-8.1 Mb and 8.6 Mb on CFA10, 

were also significantly related. These regions were either near or in the regions that 

were reported with dog behaviors before. The area of CFA10:8-8.6 Mb has been found 

to be associated with at least two morphological (ear type and body size) (3, 5, 24) and 

two behavioral (boldness and fear) traits (4, 7), including genes such as MSRB3 and 

HMGA2. MSRB3 has been reported to be associated with human deafness (42, 49), 

brain morphology and late-onset Alzheimer's disease (50). It is also involved in stress 

resistance in Drosophila (51). Furthermore, according to GWAS Catalog database 

(https://www.ebi.ac.uk/gwas/genes/MSRB3), MSRB3 was detected to be significantly 

associated with brain area volumes with the largest number of associations among the 

31 reported traits. These reports suggest that MSRB3 gene plays multiple roles in the 

nervous system. Except MSRB3 region, we also identified a fragment downstream of 
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HMGA2, which is closer to the LLPH gene. It has been reported that LLPH is involved 

in regulating neuronal development and synaptic transmission (52). Ear shape and body 

mass are two common targets of selection in domestic breeding, and selective breeding 

for specific traits in dogs may result in this region being selected. Also, body size was 

investigated to be correlated with dog behaviors (11), which were also observed in 

several genome-wide mapping of dog behaviors (4, 8, 24). One plausible explanation 

for these associations could be pleiotropy of these regions, which implies that genetic 

variants could affect both behavior and morphology traits in dogs. Alternatively, 

morphological and behavioral traits may have been co-selected due to genetic linkage 

(53). 

 

We also localized another region on CFA10 (41.5 Mb) that was associated with herding 

behavior, which covered exons 9 and 10 of the RFX8 gene (Table 2). This region is 

approximately 1.99 Mb apart from the top significantly associate site 

(CFA10:43493767) of dog rivalry behavior (7). It was suggested that RFX8 could play 

roles in Schwann cell proliferation, as it was detected to be most prominently expressed 

in the Schwannoma cell line (45). Schwann cells are important for the nervous system 

as they direct the regeneration of peripheral axons (54). Meanwhile, RFX8 has been 

identified as a candidate gene underlying human neurodevelopmental disorders (55). A 

significantly associated region on CFA20 covered the uncharacterized lncRNA-

LOC111091431, the closest to which is a neural-associated gene, CHL1. Long non-

coding RNAs are thought to be commonly but not absolutely involved in transcriptional 

regulation of nearby genes, and often function as cis, enhancer activity (56). Thus, it is 

assumed that LOC111091431 may influence the formation of behavior through 

unknown interactions with CHL1, but its exact function remains to be verified. It was 

reported that CHL1 could  promote neurite outgrowth (57) and regulate cell migration 

during nerve regeneration (58). It is suspected that CHL1 is also associated with 

intelligence (59), this could be an explanation of the higher learning ability of herding 

dogs. Meanwhile, CHL1 was detected to be significantly associated with dog fear (7) 

and human 3p- syndrome mental impairment (60). Mice with CHL1 deficiency 

demonstrated exploratory behavior changes in novel environments (61) and affected 

several behavioral parameters such as emotional reactivity (stress) and motor 

coordination (62). It was also supposed that CHL1 could participate in nervous system 

development and signal transduction by regulating synaptic vesicles recycling (63). 
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In addition to requirements of courage, herding dogs have hunting instincts such as 

chasing. They are CCD-like behavioral traits that are manifested by dogs using pacing 

and circling to maintain and control the herd. Some CCD behaviors derive from 

predatory behavior, like tail chasing and fly snapping (15). The same study reported a 

strongly associated region of canine compulsive disorders between 61.83 and 63.87 Mb 

on CFA7, including CDH2 gene (15, 16). It is noted in our findings that the region 

significantly associated with herding was localized between 67.13 and 67.16 Mb on 

CFA7, approximately 3.26 Mb from above-mentioned CCD interval. In addition, a 

significantly related variant CFA7:67137186 T>G was only 594 bp upstream of 

THOC1 gene. However, the abovementioned variant is located within 27 Ts in a row, 

which suggests that it is unlikely to be regulatory. It is noted that THOC1 gene is 

involved in presynaptic development and plays roles in dopamine neuron survival (43). 

It is also one causative gene for human late-onset hearing loss (64). Herding dogs have 

been selectively bred to detect and react to slight differences in whistle commands from 

a long distance nearly 1 kilometer and excellent hearing ability is necessary for herding 

tasks (65). Therefore, genes that are essential for auditory functions such as MSRB3 and 

THOC1 were detected in our herding GWAS analysis. 

 

Significant associated regions of herding GWAS were also mapped on CFA9 

containing ASIC2 gene. ASIC2 was reported to play roles in hippocampal neurons (44) 

and innating fear-like behaviors in mice (66). GO analysis revealed that ASIC2 was 

detected in multiple neural cell components (Table 4). ASIC2 was also detected among 

private genes of herding dog (Supplementary Table 3). ASIC2 was detected high 

expressions in mouse brain development processes. However, significant signals were 

absent in the GWAS analysis including body mass factors (Figure 2b). Though gene 

functions of LOC611691 and OR28H03 detected on CFA6 were not related with neural 

function, one high LD site with the associated variant was located within PIGQ gene 

(Table 3). It has been reported that PIGQ is associated with the neurologic disorder of 

severe early-onset epilepsy (47). Overall, genes MSRB3, LLPH, RFX8, CHL1, THOC1 

and ASIC2 are our top candidates based on herding GWAS and likely-functional 

variation in behavioral genes. 
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Hunting dogs exhibit higher prey-driven behavior in orientation, chasing, grab-bite and 

kill-bite (67). They usually show more excitement and aggression when hunting. 

However, herding dogs have higher abilities of eye-stalk and chase, but strongly inhibit 

the grasping, biting and killing instincts to prevent them from hurting livestock (19, 21). 

In a study of the behavioral interactions between dogs and livestock during herding, 

dog lip-licking and barking occurred less frequently, while stalking, crouching and 

chasing were more frequent. Moreover, not a single case of biting was observed (21). 

Different neurotransmitter have been detected among three dog breeds with distinct 

predatory behaviors: Border Collies, Siberian Huskies and Sharplaninatz (68). The 

GWAS between hound and herding dogs revealed three genes for prey-driven behavior 

(Figure 3A). The JAK2 gene is located 1,193bp downstream of CFA1 association region 

(Table 2), which has been previously detected to be associated with dog snout ratio and 

curly tail (3, 4). One study found that dog chasing behavior has been significantly 

associated with skull shape. Specifically, hound or herding dog breeds tend to have long 

skulls as their historical roles in pursuit of potential prey animals or livestock, while 

companionship dogs such as toy group canines tend to have short skulls. It implies that 

skull shape is an indicator of hunting related behavior (11). Artificial selection based 

on morphological traits (like short skulls) could have affected dog behavior traits (like 

tendency to hunt). Meanwhile, JAK2 is widely expressed and found to be potentially 

associated with dozens of traits by GWAS Catalog 

(https://www.ebi.ac.uk/gwas/genes/JAK2). Among these diverse roles, JAK2 gene is 

involved in synaptic plasticity and has an essential role in the induction of NMDA-

receptor dependent long-term depression (69). Inactivation of JAK2 can cause memory 

loss in Alzheimer's disease (70). We found that MEIS1 gene was detected as the nearest 

gene to the significantly associated region on CFA10 (Figure 3A, Table 2), and MEIS1 

was reported to be associated with Restless Legs Syndrome (71). Patients with this 

neurological disorder are irresistible to move the leg, which can affect sleep quality and 

even cause mood problems, like depression. Hyperactivity was also observed in 

heterozygous MEIS1-deficient mice suggesting its role in the specification of neuronal 

progenitors (72). Therefore, we propose that MEIS1 may be associated with greater 

search and chase impulses in hounds when confronted with prey. The nearest gene to 

the significantly associated region on CFA17 for predation was LRRTM4. It has been 

reported that LRRTM4 facilitates formation of excitatory synapse development on 

hippocampal dentate gyrus granule cells (73). More importantly, this gene was close to 
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the strongest associated signal in GWAS analysis of children aggressive behavior (74). 

Combined with the gene function and the report in humans, we suggest that LRRTM4 

may play a role in the differences in aggressive behavior between hounds and herding 

dogs. Moreover, only LRRTM4 gene was left to be significantly associated with 

predation after correcting with breed standard body sizes. 

 

Well-behaved dogs are appealing and conducive to establishing good interaction with 

humans. Temperament and trainability are the foundation of a dog's daily socialization 

or sports training, which are interesting traits for both dog owners and breeders. Dog 

fetching behavior has been detected to be suggestive associated with CFA22:32270336, 

which is 2.6 Mb away from our significantly associated signal CFA:34873149 (12). 

Fetching behavior has been proved to be the most efficient training method for building 

human-dog relationships, and it is a good indicator of trainability. The significantly 

associated gene of temperament GWAS has been detected to be ACSS3 gene (Figure 

4). Recently, ACSS3 has been reported to be significantly associated with human 

depressive symptoms (75) and antidepressant response (76). Our results suggested that 

the ACSS3 gene may contribute to the development of temperament in dogs. Different 

breeds of dogs have been strongly artificially selected to perform different tasks, 

accompanied by the production of multiple personalities. Increasing numbers of 

researches are focusing on the possibilities of dogs as models for studying neurological 

diseases (29, 77). Although the variant significantly associated with dog trainability is 

nearest to a LOC111091672, the nearest protein-coding genes upstream and 

downstream are SPRY2 (distance of 1.50 Mb) and SLITRK1 (distance of 1.45 Mb). 

SPRY2 was detected to be highly expressed in the human brain, with the highest 

expression in the cerebellum (http://biogps.org/#goto=genereport&id=10253) (78). 

Variants in SLITRK1 gene are associated with human psychiatric disorders such as 

Tourette's syndrome (79) and obsessive-compulsive disorder (80). MacLean et al. 

found that trainability had a very high heritability (h2= 0.73) (7), indicating that the 

percentage of variance explained in the GWASs should be high. However, our top vs 

bottom GWAS designed based on AKC breed standard descriptions was underpowered. 

AKC written descriptions of dog breed temperament and trainability are not accurate 

enough for detecting variants controlling the behavioral differences among breeds. This 

may be one reason for the less signals obtained in GWAS of temperament and 

trainability.  
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The selection of genomic regulatory regions could contribute large effects on the 

formation of canine breed standards (81). Notably, epigenetic variations also play 

important roles in the behavioral formation (82-84). This might due to the fact that gene 

coding regions are more conserved than non-coding regions, and protein-coding regions 

typically evolve at a slower rate. Behavioral selection for dog domestication might be 

caused by the regulation of gene expressions in hypothalamus (85). Several variants 

within lncRNAs or potential gene regulatory regions were detected in our studies, 

which implies they could play crucial roles in herding behavior formation through 

regulating gene expressions of the candidate neural genes. 

 

Enrichment analysis was performed with candidate genes obtained from private variant 

analysis. Several processes or cellular components related to neurology function were 

obtained (Table 4). This indicates that changes in the regulation of neuron and nervous 

system development could contribute to herding behavior formation. These 7 candidate 

genes could be involved in the early neural system development (Supplementary Figure 

3), which raise their possibilities of being regarded as candidate genes underlying dog 

behaviors. To increase the credibility of mapping, only variants above the Bonferroni 

genome-wide significance threshold were considered as candidates for herding and 

predation GWAS. Overall, 7 promising candidate genes were identified for dog herding 

(THOC1, MSRB3, LLPH, RFX8 and CHL1), predation (LRRTM4) and temperament 

(ACSS3) between dog breeds after correcting with body mass in this study. Though 

associations of ASIC2, JAK2 and MEIS1 gene regions were not above significant 

threshold after controlling body size, they could still have potential roles on dog 

behaviors through effects on dog brain architectures which are related with body mass. 

 

There are several limitations in this study. Specifically, herding group dogs are from 

different breeds that share herding behavior, but we were not able to determine if all 

herding dog breeds share a common ancestor. Phenotypic classification based on breed 

standard described by AKC is not robust enough to detect all the genetic variants 

between dog breeds, especially for trainability. Further studies using breed-average C-

BARQ values could improve the accuracy. Even though GWASs using small numbers 

of dog individuals of very many breeds have proved to be powerful methods to 
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identifying variants influencing morphology (5), it is still prudent to simply apply 

GWASs to behavioral traits.   

 

To fine-map the casual variants or genes for these behavioral traits accurately, 

professional behavioral scientists are required to perform accurate phenotypic 

dissections for those traits, which will be performed in Dog10K project (86). With more 

accurate phenotypic definitions of dog behavioral traits and more dog whole genome 

sequences released by Dog10k project, the understanding of genetic mechanisms 

underlying these behavioral traits will be significantly enhanced. In the following 

studies, accurate behavioral measurement methods such as Herding Trait 

Characterization (HTC) could be applied to evaluate large number of dogs from diverse 

breeds (87). Similar to this study, GWASs using breed-average scores of HTC 

questionnaire as phenotypes can be applied to identify genetic differences among dog 

breeds. To improve genetic mapping accuracy and reveal additional genes for these 4 

dog behaviors, GWASs can be performed using genotype and phenotype data from the 

same canine individuals. 

 

Cross-breed mapping approaches can effectively identify loci that may affect genetic 

differences between breeds that cannot be studied by segregation within breeds. The 

classic example is that the specific negative correlation between longevity and size is a 

strictly between-breed phenomenon and is difficult to conduct genetic analysis by 

within-breed studies (24). The herding behavior is also a clear between-breed behavior. 

Therefore, the method of classifying behaviors according to the historical roles of dogs 

and analyzing herding behaviors among dog breeds is reasonable. This was also 

reflected in the genetic mapping of herding, pointing, boldness and athleticism in dogs, 

and convincing genes appropriate to behaviors were obtained (4, 9, 24). Zapata et al. 

(77) performed a genome-wide scan of several dog behaviors of diverse breeds and also 

identified genes that overlap with human neurodevelopmental and psychopathological 

genes, implying that dogs and humans share some degree of common molecular 

mechanisms during neurological development. Hence, this study may provide genetic 

clues to further elucidate the formation of behavioral traits in dogs and provide potential 

models for studying complex neuropsychiatric disorders in humans. 
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Figures 
 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Classifications of trainability and temperament traits among modern dog breeds. Trait level information 

is obtained from AKC website (https://www.akc. org/dog-breeds/) (accessed on 20 December 2020), and each breed 

has a specific score for one of these five phenotype levels. (A) Aloof/wary, reserved with strangers, alert/responsive, 

friendly and outgoing were used to describe temperament character of each dog breed stereotype. (B) May be 

stubborn, independent, agreeable, easy training and eager to please were applied to describe trainability character of 

each dog breed stereotype. 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Manhattan plots of herding behavior Genome Wide Association Analysis (GWAS). The plots show the -

log10 p-values for all variants of GWAS. Red horizontal line represents the Bonferroni genome-wide significance 

threshold, and blue horizontal line indicates suggestive significance threshold. (A) Without including body size as 

covariates. Candidate genes around significantly associated sites (above the Bonferroni threshold) were marked with 

red color in the Manhattan plot; they are THOC1 of CFA7, ASIC2 of CFA9, MSRB3, LLPH and RFX8 of CFA10, 

CHL1 of CFA20. (B) With including body size as covariates. Candidate genes (THOC1, MSRB3, LLPH, RFX8 and 

CHL1) were marked in the plot. 
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Figure 3: GWAS of dog predation analysis between hound and herding group dogs. Manhattan plots demonstrates 

the p-value distribution across all chromosomes. The Bonferroni and suggestive GWAS significance thresholds are 

indicated with the red and blue horizontal lines, respectively. (A) Without including body size as covariates. JAK2, 

MEIS1 and LRRTM4 were nearest genes to the significantly associated regions of CFA1, CFA10 and CFA17. (B) 

With including body size as covariates. Significantly associated region of CFA17 was remained after incorporating 

body size covariates into GWAS. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: Temperament GWAS reveals an intron variant (CFA15:23,340,008 A>T) of ACSS3 gene. Manhattan plots 

showing the association of whole genome variants with temperament levels in dogs. Bonferroni and suggestive 

thresholds are indicated with red and blue lines. (A) Without including body size as covariates. The ACSS3 intron 



CHAPTER 3 
 

  79 

variant is above the suggestive threshold. (B) With including body size as covariates. The ACSS3 intron variant is 

above the Bonferroni threshold. 

 
 
 
 

 
 
Figure 5: One variant is above the suggestive threshold of dog trainability GWAS. Manhattan plots showing the 

association of whole genome variants with trainability levels in dogs. Bonferroni and suggestive thresholds are 

indicated with red and blue lines. (A) Without including body size as covariates. One variant on CFA15 was slightly 

passed the suggestive threshold. (B) With including body size as covariates. No variants were detected above the 

suggestive threshold.  
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Tables 
 
Table 1. Summary of dog behavioral phenotypes used in GWAS analysis. 

Trait Phenotype Levels Numbers of dog Group 

Herding 
Herding behavior 55 Case 

Non-herding  213 Control 

Predation 
Hound group 36 Case 

Herding group 55 Control 

Temperament 

Outgoing 19 Case 

Friendly 86 Case 

Alert/Responsive 65 NA 

Reserved with Strangers 76 Control 

Aloof/Wary 5 Control 

Trainability 

Eager to Please 63 Case 

Easy Training 35 Case 

Agreeable 72 NA 

Independent 68 Control 

May be Stubborn 17 Control 
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Table 2. GWAS significant associated variants of dog herding, predation, temperament and trainability behavior traits. 

Trait Variant Ref Alt Alt_Freq_cases Alt_Freq_controls P_value_a P_value_b 
Nearest Gene 

Symbol 
Distance to Gene (bp) 

Herding 

CFA6:40747205 A C 0.1545 0 2.20E-09 2.75E-09 LOC611691 0 

CFA6:41114381 T C 0.1545 0 2.20E-09 2.75E-09 OR28H03  13,451 

CFA7:67137186 T G 0.1759 0.0024 5.72E-10 2.07E-09 THOC1 594 

CFA7:67155662 C G 0.1455 0.0023 6.50E-10 2.07E-09 THOC1 19,070 

CFA7:67163810 A T 0.1132 0.0023 2.78E-09 1.03E-08 THOC1 27,218 

CFA9:40067785 A G 0.0545 0 2.33E-09 4.03E-09 ASIC2 0 

CFA9:40068138 T C 0.0545 0 2.33E-09 4.03E-09 ASIC2 0 

CFA10:8016660 A G 0.8182 0.331 3.29E-09 1.33E-09 MSRB3 0 

CFA10:8116174 T G 0.7455 0.2379 2.04E-09 3.66E-10 LOC111097584 32,715 

CFA10:8116175 T C 0.7455 0.2402 1.73E-09 3.00E-10 LOC111097584 32,716 

CFA10:8116176 C G 0.7455 0.239 1.38E-09 3.00E-10 LOC111097584 32,717 

CFA10:8581163 C T 0.5091 0.1056 4.40E-10 9.63E-10 LLPH 50,728 

CFA10:8583785 T A 0.5 0.1056 1.26E-09 2.54E-09 LLPH 48,106 

CFA10:8589159 A G 0.4909 0.1033 2.05E-09 3.87E-09 LLPH 42,732 

CFA10:8597348 G A 0.4909 0.1033 1.52E-09 2.80E-09 LLPH 34,543 

CFA10:8601766 C T 0.5 0.1056 5.50E-10 1.10E-09 LLPH 30,125 

CFA10:8604778 C T 0.5091 0.1132 3.67E-10 1.49E-10 LLPH 27,113 

CFA10:8614536 CG C 0.5545 0.1479 2.00E-09 4.86E-10 LLPH 17,355 

CFA10:8614872 AAGCTC A 0.5545 0.1479 2.00E-09 4.86E-10 LLPH 17,091 

CFA10:8615480 G A 0.5545 0.1479 2.00E-09 4.86E-10 LLPH 16,411 

CFA10:41504918 C CCCTTT 0.1636 0.0236 2.98E-10 1.03E-09 RFX8 0 

CFA10:41505049 T A 0.1545 0.0235 1.56E-10 5.89E-10 RFX8 0 

CFA10:41506217 A G 0.1636 0.0258 2.70E-09 8.97E-09 RFX8 0 

CFA10:41506301 C T 0.1636 0.0258 2.70E-09 8.97E-09 RFX8 0 

CFA10:41506568 C T 0.1545 0.0235 2.31E-09 7.11E-09 RFX8 0 

CFA10:41506655 T C 0.1636 0.0258 2.70E-09 8.97E-09 RFX8 0 

CFA10:41506849 C T 0.1545 0.0235 2.31E-09 7.11E-09 RFX8 0 

CFA10:41507558 G A 0.1636 0.0259 2.71E-09 8.99E-09 RFX8 0 

CFA20:16594598 C T 0.1364 0 8.48E-11 3.16E-10 LOC111091431 9,375 

CFA20:16595519 T C 0.1364 0 8.48E-11 3.16E-10 LOC111091431 8,454 

CFA20:16595717 G A 0.1364 0 8.48E-11 3.16E-10 LOC111091431 8,256 

CFA20:16595938 C T 0.1364 0 8.48E-11 3.16E-10 LOC111091431 8,035 

CFA20:16596248 A AAAG 0.1364 0 8.48E-11 3.16E-10 LOC111091431 7,725 

CFA20:16596343 A G 0.1296 0 2.48E-09 6.74E-09 LOC111091431 7,630 

CFA20:16596466 C T 0.1273 0 1.65E-09 5.14E-09 LOC111091431 7,507 

CFA20:16596631 A G 0.1364 0 8.48E-11 3.16E-10 LOC111091431 7,342 

CFA20:16597311 C T 0.1455 0 1.30E-10 4.84E-10 LOC111091431 6,662 

CFA20:16598698 C G 0.1364 0 8.48E-11 3.16E-10 LOC111091431 5,275 

CFA20:16603809 A C 0.1364 0 8.48E-11 3.16E-10 LOC111091431 164 

CFA20:16604304 T G 0.1364 0 8.48E-11 3.16E-10 LOC111091431 0 
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CFA20:16607008 A T 0.1364 0 8.48E-11 3.16E-10 LOC111091431 0 

CFA20:16607290 T C 0.1364 0 8.48E-11 3.16E-10 LOC111091431 0 

CFA20:16610276 C T 0.1364 0 8.74E-11 3.28E-10 LOC111091431 0 

CFA20:16610335 G A 0.1364 0 8.48E-11 3.16E-10 LOC111091431 0 

Predation 

CFA1:93319503 C T 0.1528 0.8273 2.59E-09 1.64E-06 JAK2 1,552 

CFA1:93319523 C CATG 0.1528 0.8273 2.59E-09 1.64E-06 JAK2 1,532 

CFA1:93319862 T C 0.1667 0.8364 1.28E-09 1.02E-06 JAK2 1,193 

CFA10:65924498 T C 0.2639 0.9091 3.96E-10 6.02E-09 MEIS1 25,784 

CFA10:65924663 G A 0.2639 0.9091 3.96E-10 6.02E-09 MEIS1 25,949 

CFA10:65924694 C G 0.2639 0.9091 3.96E-10 6.02E-09 MEIS1 25,980 

CFA10:65924801 G A 0.2639 0.9091 3.96E-10 6.02E-09 MEIS1 26,087 

CFA10:65925175 C G 0.2639 0.9091 3.96E-10 6.02E-09 MEIS1 26,461 

CFA17:47109846 C T 0.3056 0.8182 2.97E-09 4.16E-10 LRRTM4  312,739 

CFA17:47109848 C T 0.3056 0.8182 2.97E-09 4.16E-10 LRRTM4  312,741 

CFA17:47109850 T A 0.3056 0.8182 2.97E-09 4.16E-10 LRRTM4  312,743 

CFA17:47109882 C T 0.3056 0.8182 2.97E-09 4.16E-10 LRRTM4  312,775 

Temperament CFA15:23340008 A T 0.7019 0.284 1.54E-08 1.92E-09 ACSS3 0 

Trainability CFA22:34873149 A G 0.5941 0.1633 5.94E-08 7.92E-08 LOC111091672 19,895 

Bold indicates significantly associated variants that were identified in both GWASs without/with body size as covariates. P_value_a: 

GWASs without body size as covariates, P_value_b: GWASs with body size as covariates. 

  

Table 3. Interesting LD sites of herding GWAS significant variants with r2 > 0.8. 

Chromosome Position A Position B r2 Gene Gene Region Gene type 

6 40747205 39977184 0.805667 PIGQ intron Protein coding 

10 8016660 8037693 0.934985 MSRB3 exona) Protein coding 

10 8016660 8079815 0.908056 LOC111097584 exon lncRNA 

10 8016660 8079868 0.912205 LOC111097584 exon lncRNA 

10 8016660 8082492 0.891195 LOC111097584 exon lncRNA 

10 8016660 8083437 0.917264 LOC111097584 exon lncRNA 

a) One missense mutation within MSRB3: NC_006592.3:g.8037693 G>A, XP_013972688.1:p.Gly179Ser. Position 

A is the position of herding GWAS significant association sites and Position B is the position of LD sites. 
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Table 4. Go analysis for potentially functional private genes of herding dogs. 

GO category GO ID Description P value FDR p-value Gene Counts 

Biological Process 

GO:0051239 Regulation of multicellular organismal process 3.49E-6 1.74E-2 167 

GO:0120036 Plasma membrane bounded cell projection organization 5.65E-6 1.74E-2 82 

GO:0050793 Regulation of developmental process 9.18E-6 1.89E-2 138 

GO:0030030 Cell projection organization 1.32E-5 2.04E-2 82 

GO:0045595 Regulation of cell differentiation 4.66E-5 5.75E-2 95 

GO:0007399 Nervous system development 5.86E-5 6.03E-2 112 

GO:2000026 Regulation of multicellular organismal development 7.00E-5 6.20E-2 109 

GO:0031175 Neuron projection development 9.99E-5 7.70E-2 54 

GO:0048869 Cellular developmental process 1.88E-5 0.11 193 

GO:0030154 Cell differentiation 1.95E-4 0.11 184 

Cellular Component 

GO:0044463 Cell projection part 1.40E-09 5.54E-7 73 

GO:0120038 Plasma membrane bounded cell projection part 1.40E-09 5.54E-7 73 

GO:0044459 Plasma membrane part 1.08E-08 2.85E-6 129 

GO:0042995 Cell projection 2.76E-08 5.11E-6 98 

GO:0005886 Plasma membrane 3.22E-08 5.11E-6 216 

GO:0120025 Plasma membrane bounded cell projection 4.09E-08 5.40E-6 96 

GO:0071944 Cell periphery 4.95E-08 5.61E-6 220 

GO:0098590 Plasma membrane region 2.52E-06 2.50E-4 55 

GO:0097458 Neuron part 3.22E-06 2.84E-4 76 

GO:0005887 Integral component of plasma membrane 5.92E-06 4.70E-4 71 
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Supplementary Figure 1: QQ plots of dog herding, predation, temperament and trainability GWASs 

without(A)/with(B) including body size as covariates. 

 

 
 
Supplementary Figure 2: Evolutionary conservation analysis results of MSRB3 missense mutation in 10 species 

using Clustal W (https://www.ebi.ac.uk/Tools/msa/clustalo/). The amino acid sequence accession numbers of the 10 

species are as follows: House mouse XP_006513829.1, Chimpanzee XP_016778576.1, Pig XP_020947614.1, Cattle 

XP_024848255.1, Sheep XP_027823281.1, Chicken XP_015137097.1, Dog XP_013972688.1, Horse 

XP_023499721.1, Human XP_024304686.1 and Rhesus monkey NP_001244780.1. 
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Abstract 

 

We have identified a Holstein sire named Tarantino who had been approved for 

artificial insemination that is based on normal semen characteristics (i.e., morphology, 

thermoresistance, motility, sperm concentration), but had no progeny after 412 first 

inseminations, resulting in a non-return rate (NRdev) of -29. Using whole genome 

association analysis and next generation sequencing, an associated nonsense variant in 

the α/β-hydrolase domain-containing 16B gene (ABHD16B) on bovine chromosome 13 

was identified. The frequency of the mutant allele in the German Holstein population 

was determined to be 0.0018 in 222,645 investigated cattle specimens. The mutant 

allele was traced back to Whirlhill Kingpin (bornFeb. 13th, 1959) as potential founder. 

The expression of ABHD16B was detected by Western blotting and 

immunohistochemistry in testis and epididymis of control bulls. A lipidome comparison 

of the plasma membrane of fresh semen from carriers and controls showed significant 

differences in the concentration of phosphatidylcholine (PC), diacylglycerol (DAG), 

ceramide (Cer), sphingomyelin (SM), and phosphatidylcholine (-ether) (PC O-), 

indicating that ABHD16B plays a role in lipid biosynthesis. The altered lipid contents 

may explain the reduced fertilization ability of mutated sperms. 

 

Keywords: Holstein cattle; male infertility; ABHD16B 

 

Introduction 

 
Fertility is an important economical productivity factor in animal breeding [1–4]. 

Indicators to assess male fertility can either be indirect (e.g., productivity of progeny, 

sire conception rate, non-return rate) or direct (e.g., semen characteristics, testis size) 

[5–10]. The latter parameters have the advantage that they can be easily measured and 

they provide an immediate answer; however, the heritabilities of scrotal circumference 

and semen traits vary extremely, ranging from 0.0 (i.e., abnormal heads, bent tails, distal 
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cytoplasmic droplets) to 0.57 (i.e., scrotal circumference) and, therefore, their use in 

selection is not always straightforward [11]. Alternative approaches were used to 

determine the differences between fertile and infertile bulls while using molecular tools. 

Transcriptome analyses for instance have shown that spermatozoa of high-fertility bulls 

show a higher concentration of specific transcripts for membrane and extracellular 

space protein locations [12,13]. In another study residual RNA content in spermatozoa 

of bulls with extreme non-return rates was analysed [14]. Low-fertile bulls showed a 

significantly increased amount of ribosomal and mitochondrial sequences, whereas 

high-fertile bulls exhibited transcripts of genes that are involved, for example, in 

metabolism, signal transduction, translation, and protein degradation [14]. From 

transcriptome and proteome studies, mainly in man, mouse, and rat, it is evident that 

differences between RNA and protein content, DNA methylation, posttranslational 

modifications between fertile and infertile individuals exist [15–18]. The use of these 

types of biomarkers in reproductive medicine is believed to bridge the gap between 

conventional semen analysis with limited clinical utility and biochemical pathways that 

regulate male fertility [19]. 

 

However, the assessment of mutational effects in candidate genes is normally 

challenging, especially when there are only subtle deviations in expression levels, due 

to the complex interactions of geno- and phenotypes in fertility traits [20,21]. With the 

advancement of high-throughput screening tools (DNA chip, next generation 

sequencing) and the availability of large datasets on fertility parameters of bulls, 

especially in Holstein cattle male fertility, can be practically implemented into genomic 

selection [22]. Genome-wide association studies have been conducted in Holstein bulls, 

identifying several fertility associated genomic regions [23]. A recent genome-wide 

association study has detected at least eight genomic regions, i.e., on bovine 

chromosome 5 (BTA5), BTA9, BTA13, BTA21, and BTA25, in Holstein cattle 

associated with bull fertility while using Sire Conception Rate (SCR) as a parameter 

[24]. In a large multi-species comparative study 33 promising candidate genes have 

been identified for male fertility/infertility [25]. Recently, a whole exome sequencing 

of 24 high and low fertile bulls identified 484 SNPs that were significantly associated 

with fertility [26]. The second most significantly associated SNP in this study was 

located on BTA13 at position 53,691,419 within the SIRPA gene. Although these data 

point at a number of potential molecular targets only three causative mutations, 
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resulting in male sub- or infertility in cattle have been determined in the FSHB, 

TMEM95, and ARMC3 gene hitherto [27–30]. 

 

Here, we report about the identification of nonsense variant in the bovine α/β-hydrolase 

D16B gene (ABHD16B) on BTA13 significantly associated with male subfertility in 

Holstein cattle. So far, nothing was known regarding the physiological or biochemical 

function of ABHD16B [31,32]. Our data provide evidence that ABHD16B is involved 

in lipid biosynthesis in testis and is crucial for fertilization. 

 

Results 

 

Conception Ability of Sires is Highly Associated with a Chromosomal Region on 

Bovine Chromosome 13 
A Genome Wide Association Analysis (GWAS) was performed while using a cohort 

of 289 Holstein sires to determine chromosomal regions harboring associated causative 

genes for conception ability (NRdev). The cohort consisted of 10 sires with a NRdev ≤ -2 

(= cases) (Table 1) and 279 randomly chosen sires of the active breeding population (= 

controls). 

 
Table 1. Sub- and infertile sires selected for genome-wide association analysis. 

Sire/ID NRdev
a) No. of First Inseminations 

Tarantino -29 412 

19_39644 -27 402 

19_39643 -25 364 

05_34345 -9 412 

04_44565 -4 421 

04_39067 -3 315 

04_43327 -3 424 

04_40476 -2 407 

04_41962 -2 640 

04_37666 -2 571 

a) NRdev: Non-return rate deviation. 

 

Individual NRdev values of the control sires were not available; however, they were 

assumed to be normal, as all of these sires were used in the current breeding population. 

As shown in Figure 1A, one genome-wide highly significant associated position on 
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BTA13 (ARS-BFGL-NGS-107931; position 63,500,701) was detected (-log10P-value 

= 167.56). Seventeen additional regions above a Bonferroni threshold of -log10P = 5.9 

(p < 0.05) with much lower significance were present on BTA1, 2, 3, 6, 7, 8, 10, 11, 14, 

17, 18, 21, 22, 24, 25, 26, and 27. The QQ-plot clearly indicated a compelling evidence 

for an excess of association with no population substructure (Figure 1B). Whole-

genome sequencing was performed while using Tarantino and his parents to determine 

which of the associated chromosomal regions harbored protein-altering variants that 

were causative for Tarantino’s infertility. 

 

Whole-Genome Sequencing Reveals Two Potential Protein-Altering Variants 

Upstream the Associated Position on BTA13 
Raw next generation sequencing data were quality filtered. Within the filtered 78,472 

SNPs, only 20 resulted in a predicted loss of function, including 10 nonsense variants, 

five splice-donor variants, three splice acceptor-variants, and two initiator-codon 

variants. Two SNPs were located near the associated position on BTA13, i.e., a 

nonsense variant at position 54,429,815 within the single exonic α/β-hydrolase D16B 

(ABHD16B) gene (AC_000170.1: g.54429815G>A, rs468948776) and a splice-

acceptor variant at position 53,003,648 within the transmembrane channel-like protein 

2 (TMC2) gene (AC_000170.1: g.53003648C>T, rs465702794). TMC2 has been shown 

to be expressed in the inner ear and it is necessary for the mechanotransduction in 

cochlear hair cells [33,34]. TMC2 was excluded as potential candidate due to this very 

specific function. On the other hand, ABHD16B has been shown in humans to be mainly 

expressed in testis, which suggested a potential role in Tarantino´s infertility [35]. In 

addition, aberrant methylation patterns of ABHD16B have been shown to be associated 

with infertility in men [36].  
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Figure 1. Manhattan plot of the Genome Wide Association Analysis (GWAS) (n = 289; 279 controls, 

10 cases). (A) The plot shows the -log10-transformed p-values for all SNPs. The black horizontal line 

represents the genome-wide significance threshold of -log10P = 5.9. (B) Quantile-quantile (QQ) plot of 

the GWAS. 

 

 

 

 



CHAPTER 4 
 

  97 

Verification and Validation of the Nonsense Variant g.54429815G>A 

(ABHD16B) in the Holstein Population 
An initial set of 2072 randomly selected Holstein DNA samples were genotyped to 

verify and validate the presence of the detected variant in ABHD16B. In this set, 2052 

wild type (G_G), 20 heterozygous (G_A), and no homozygous (A_A) carrier were 

detected (HWE χ2= 0.05). The results proved that the variant was present in the 

population at a very low frequency. Therefore, are larger cohort of 222,645 HF cattle 

(208,165 female, 14,480 male) was genotyped while using the bovinSNP50 BeadChip. 

In this cohort, 810 heterozygous (781 female, 19 male, 10 unknown sex) and no 

homozygous animals were identified, resulting in a frequency of the variant allele of 

0.0018. According to Hardy-Weinberg equilibrium it was not unexpected that no 

homozygous individuals were detected (HWE χ2= 0.73). The low allele frequency 

further supported the data that the nonsense variant in ABHD16B was most likely the 

causative variant for Tarantino´s infertility, because sires will be rapidly removed from 

the breeding population once a sub- or infertility would have been evident during 

routine fertility testing. Such a selection will efficiently reduce the transmission and 

spreading of the causative variant. The limited number of heterozygous individuals in 

the randomly chosen large Holstein cohort prompted us to determine the number of 

heterozygous sires in the available DNA samples of Tarantino´s close male relatives in 

correlation with their conception ability (NRdev). A total of 34 DNA samples were 

available and genotyped, resulting in 16 wild type and 18 heterozygous sires (HWE χ2= 

4.4). Within the heterozygous sires, 15 had negative NRdev values (-9 to < 0) and only 

three sires showed positive NRdev values (0 to 2). 

 

Expression and Tissue Distribution of ABHD16B 
ABHD16B codes for a protein of 470 amino acids with a predicted α/β-hydrolase fold 

domain. The nonsense variant g.54429815G>A causes a premature stop at amino acid 

position 218 (glutamine residue), resulting in a truncation of 253 C-terminal amino 

acids and 53.8% of the protein (Figure 2). In silico protein sequence comparison of 11 

mammals revealed that the glutamine residue (Q) is highly conserved. Due to the 

truncation 67.4% of the α/β-hydrolase fold domain is missing. Regarding the 

evolutionary appearance, it is interesting to note that ABHD16B first evolved in reptiles 
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performing internal fertilization. Species with external fertilization, e.g., fish and frogs, 

do not harbor an ABHD16B gene. 

 
Figure 2. (A) Schematic representation of the ABHD16B protein structure indicates the position of the 

α/β-hydrolase fold domain (blue) and the transmembrane helices (green), predicted by NCBI Conserved 

Domains Database and TMbase, respectively. The amino acid position (218) of the nonsense variant 

leading in a premature stop is marked by a red triangle. (B) The comparative alignment of amino acid 

sequences of 11 mammals while using Clustal W (178-amino acid position 178–237) is shown. The 

amino acid position at the truncation site is indicated in red. NCBI protein sequence accession numbers 

are as follows: Bos (Bos Taurus) NP_001033630.1, Ovis (Ovis aries) XP_014955258.1, Felis (Felis 

catus) XP_003983341.3, Sus (Sus scrofa) XP_020933693.1, Pan (Pan troglodytes) XP_003317106.1, 

Homo (Homo sapiens) NP_542189.1, Macaca (Macaca mulatta) NP_001180656.1, Oryctolagus 

(Oryctolagus cuniculus) XP_008250767.2, Mus (Mus musculus) NP_899004.1, Loxodonta (Loxodonta 

Africana) XP_003421827.1, Tursiops (Tursiops truncates) XP_019806804.1. (C) The amino acid 

sequence of bovine ABHD16B truncated protein with the stop-gain variant. 

 

ABHD16B Is Expressed in Testis but not in Spermatozoa 
Western blotting was used to detect ABHD16B in testis (wild type) and spermatozoa 

(wild type, heterozygous, and homozygous variant) extracts. Testes of heterozygous 

and/or homozygous carriers were unavailable due to the low genotype frequencies. 

However, a limited amount of deep-frozen semen samples of Tarantino and a further 

not directly related homozygous carrier (Ca) provided from the safety inventory of an 

AI station were included in the analysis. An ABHD16B specific band was detected in 

testis of wild type bulls at the expected size of approx. 70 kDa, as shown in Figure 3. 

Neither in wild type nor in heterozygous or homozygous variant spermatozoa extracts 

ABHD16B was detected (Figure 3B).  
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Figure 3. Western blot analysis of ABHD16B protein expression in tissues and spermatozoa. (A) 

ABHD16B protein band (red arrow) detected in wild type testis (G_G) but not in spermatozoa. Using 

liver as negative control, muscle and human ABHD16B over-expression lysate as positive controls (PC). 

α-Tubulin used as the loading control. (B) ABHD16B (approx. 70 kDa) is absent in spermatozoa of three 

genotypes (wild type (G_G), heterozygous (G_A) and homozygous carrier (A_A)). Spermatozoa of 

homozygous carriers were from Tarantino and Ca. (C) Box and Whisker plot of relative ABHD16B 

expression. Areas under curve were determined using ImageJ 1.52k software and relative expression 

ratios of ABHD16B (%) in liver, muscle, testis, and spermatozoa (G_G) were calculated while using α-

Tubulin expression as internal standard. Horizontal lines within boxes indicate median values and 

whiskers show upper and lower extremes. 
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Immunohistochemical Analysis Revealed ABHD16B Expression in Testis and 

Epididymis 
Sections of testicular and epididymal tissue samples that were collected at an abattoir 

were prepared for IHC. The ABHD16B genotype of the samples was tested prior to IHC 

and shown to originate from wild type sires. While using the PAC-ARK antibody, 

ABHD16B expression was detectable in testicular parenchyma, ductuli efferentes, as 

well as epididymal tail, body, and head, as shown in Figure 4. Specifically, there is 

ABHD16B expression in the nucleoplasm of Leydig cells, in the seminiferous tubules 

and, with variable intensity, in the epithelium of the ductus epididymis. These findings 

suggest that ABHD16B probably plays a role in spermatogenesis and sperm maturation. 

 

 

 
 

Figure 4. ABHD16B protein detection and localization in testis and epididymis of wild type bull by 

immunohistochemistry. PAC-ARK antibody was used as primary antibody. Positive staining is indicated 

with red arrows. When the primary antibody (PAC-ARK) was replaced with antibody diluent and isotype 

rabbit IgG at the same working dilution, no staining was observed in any of these tissues. Scale bars = 

50 µm. 
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ABHD16B Is Involved in Lipid Metabolism and Influences Sperm Plasma 

Membrane Lipid Composition 
We hypothesized that ABHD16B could be involved in plasma membrane lipid 

biosynthesis, as many members of the α/β-hydrolase superfamily of hydrolytic enzymes 

are involved in lipid metabolism. Sperm lipidomics of heterozygous and wild type 

semen samples was performed to interrogate this hypothesis. The number of available 

semen samples of Tarantino was limited and, therefore, it was decided not to include 

these valuable samples. However, if ABHD16B would have an effect on lipid 

biosynthesis during spermatogenesis, this should also be detectable in heterozygous 

samples. After normalization to 106 sperms per sample, no significant difference in the 

total lipid content between 15 wild type and 15 heterozygous samples was detected 

(Figure 5). 

 

 
Figure 5. Total lipid amount of 106 sperms of each genotype revealed no significant difference after 

normalization. G_G: wild type; G_A: heterozygous carrier. 

 

However, 10 out of 16 lipid classes showed significant differences (Figure 6A). The 

majority of different lipids belonged to the classes of diacylglycerols (DAG), 

glycerophosphocholines (PC, PC O-), ceramides (Cer), and sphingomyelins (SM). The 

sperms of heterozygous carriers showed significantly decreased amounts of SM and 

DAG, while PC, PC O-, and Cer were increased (Figure 6A). In total, 99 of 144 lipid 

species demonstrated significant differences between wild type and heterozygous 

sperm samples. Eight lipid species significantly decreased (p(BH)<0.05, log2fc < −1), six 

of them were DAGs. 25 lipid species significantly increased (p(BH) < 0.05, log2fc > 1), 

almost half (n=12) of them were PCs (Figure 6B). Figure 6C shows the ten most 

significantly changed lipid species. An important indicator of cell membrane integrity 

is the PC:PE ratio. As shown in Figure 6D, heterozygous sperms have a significantly 
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increased the PC:PE ratio. Another sperm membrane structure criterion is the ratio 

between LPC 22:6 and PC 16:0_22:6, and it also significantly increased in the 

heterozygous samples (Figure 6E). 
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Figure 6. Lipid distribution and variance of spermatozoa in wild type and heterozygous sires. (A) Change profile of 

total lipid content for each lipid class of sperms in two genotypes. (B) -log10 of adjusted p-value (p(BH)) and mean 

log2-fold change (G_A vs G_G) of 144 lipid species were plotted, lipid species with -log10p(BH) > 1.3 and |log2fold 

change|> 1 (dashed grey lines are included) were annotated with lipid feature names (simplified without the saturated 

acyl groups). (C) Top 10 most significantly changed lipid species between G_G and G_A bull sperm cells. (D) Bar 

chart shows the mean of PC:PE ratio in G_G and G_A bull sperms. (E) Bar chart shows the ratio between LPC 22:6 

and PC 16:0_22:6 in two genotypes. G_G: wild type; G_A: heterozygous. Differential changes were tested by the 

Mann–Whitney U test or Student’s t-test. Data are presented as mean ± SEM; n = 15/group; FDR adjusted p-values 

are indicated: * p < 0.05, ** p < 0.01, *** p < 0.001. 

 

Discussion 

 
Male infertility is a complex multifactorial idiopathic, congenital, or acquired 

heterogeneous disease [37,38]. In men, genetic factors predominantly cause idiopathic 

conditions contributing to 30–40% of male infertility [39]. However, up to now, for 

only three genes, i.e., NR5A1, DMRT1, and TEX11, associations with male infertility 

have been evidenced in independent biological and functional studies [40]. The same 

number of genes has been identified in cattle causing bull sub- or infertility so far, i.e., 

FSHB (BTA15, 61.7 Mb), TMEM95 (BTA19, 27.6 Mb), and ARMC3 (BTA13, 24.3 

Mb) [27–30]. Although the exact chromosomal positions of these genes differ from 

precise infertility associated chromosomal regions that have been identified either by 

QTL studies, GWAS using SCR as parameter, or whole exome sequencing, they are 

located on the same chromosomes [24,26,41]. Regarding the location of ABHD16B on 

BTA13, it is noteworthy that not only ARMC3 is located on the same chromosome, but 

also QTLs for percentage of normal sperms (68.18 cM), male fertility (43.76 cM), and 

non-return rate (EBV) (85.19 cM) have been mapped to BTA13 [42–44]. One region 

explaining roughly 0.6% of the genetic variance of SCR was detected on BTA13 from 

position 58,456,868–59,951,247 harboring two potential candidate genes for male 

fertility, i.e., CTCFL and SPO11 [45]. This region is located approximately 4 Mb 

downstream of ABHD16B. The closest SNP identified by whole exome sequencing was 

located on BTA13 at position 53,691,419 within the SIRPA gene only 738,396 bp 
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upstream of the nonsense variant in ABHD16B. In a further GWAS using a much larger 

dataset (11.5 k Holstein bulls) and higher density SNP chip (about 300 k), five markers 

with marked dominance effects were detected, one of them being located on BTA13 

(13:g.60263194A>C; rs41701032) [46]. Hence, the molecular genetic data that are 

published elsewhere are well in agreement with our findings. 

 

The identification of ABHD16B as an associated causative gene for bull infertility also 

allowed for us to elucidate its biochemical function. Except that ABHD16B belongs to 

a large protein superfamily of catalytic enzymes harboring an α/β-hydrolase domain 

and is predominantly expressed in Leydig cells of the testis, nothing was known 

regarding its biochemical or physiological function so far [31]. The methylation of 

ABHD16B was reported to be associated with chronic obstructive pulmonary disease 

(COPD) and aberrant methylation patterns were identified in infertile man [32,36]. In 

proteome studies, 11 members of the ABHD family (1, 2, 5, 6, 10, 11, 12, 13, 14B, 16A, 

17A, 17B) have been detected in testis or spermatozoa [47,48]. Human ABHD2 

participates in sperm hyperactivation as a lipid hydrolase through depleting 

endocannabinoid 2-arachidonoylglycerol (2-AG), an inhibitor of sperm calcium 

channel (CatSper) [49]. However, in most cases, their exact role remains elusive. 

 

Our data show that ABHD16B is involved in lipid biosynthesis of DAGs. According to 

the ABHD16B molecular structure, it is supposed to participate in lipid metabolism, 

like other ABHD family members, which could contribute to sperm maturation. Sperm 

lipidomics of two different genotypes was performed to confirm this. Sperm lipid 

composition changes during their maturation through the epididymis, the percentage of 

SM in spermatozoa increased [50,51]. SM is synthesized by the combination of Cer and 

phosphorylcholine from PC. During this reaction, DAG is produced as a by-product 

[52]. Our data demonstrated that SM and DAG were significantly decreased, while PC 

and Cer were significantly increased in heterozygous spermatozoa. This implies that 

ABHD16B might be involved in the lipid biosynthesis of DAG, which influences SM 

synthesis in the later process. On the other hand, increased levels of PCs in 

heterozygous sperms could also result from an inhibited degradation from PC to DAG 

and phosphorylcholine. Cer increased correspondingly without enough 

phosphorylcholine combined to synthesize SM. 
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The presence of ABHD16B in the epididymis, as shown by IHC, suggests a role in the 

lipid metabolism of DAG and SM during sperm maturation. DAG also influences the 

synthesis of 2-AG, which is an inhibitor of sperm calcium channel (CatSper) preventing 

sperm hyperactivation. DAG is hydrolized to 2-AG by diacylglycerol lipase (DAGL) 

and, hence, decreased DAG levels in homozygous carrier sperms could result in an 

insufficient amount of 2-AG leading to a premature capacitation [53]. Furthermore, this 

effect could be enhanced by the lack of SM. On the other hand, the accumulation of PC 

and Cer could also interfere with the fertilization capacity. For instance, increased PC 

concentrations in chicken sperms were reported to be negatively associated with 

fertility during aging [54]. It has also been observed that imbalanced lipid homeostasis 

of PC and SM caused sperm membrane instability and infertility in knockout mice [55]. 

The final sperm lipid composition is formed during epididymal maturation, which 

results in a decreased amount of cholesterol, PS, CL, PE, and PI, and an increase in PC 

and DAG. The amount of PI, PC, and DAG was significantly different between the wild 

type and heterozygous variant spermatozoa (Figure 6A), indicating a potential role of 

ABHD16B in sperm maturation. 

 

Another impact of ABHD16B on lipid metabolism can be seen in the increased PC:PE 

ratio. Abnormal PC:PE ratios affect membrane permeability, fluidity, and integrity 

[56,57]. In cells that have abundant unsaturated fatty acids, such as spermatozoa, LPC 

is normally regarded as a marker of sperm membrane quality and oxidative stress. The 

increase of LPC content in the deteriorated membrane of spermatozoa indicates affected 

acrosome reaction, and an increased ratio between LPC 22:6 and PC 16:0/22:6 was 

observed in human spermatozoa with impaired membrane [58]. The ratio was also 

significantly enhanced in the heterozygous samples analysed here. Furthermore, LPC 

22:6 is a reliable marker of spermatozoa lipid oxidation [59]. A significant increased 

concentration of LPC 22:6 was also found in heterozygous carrier samples. This could 

result in a higher oxidized state or membrane damaged level in contrast to wild type 

sperms. The lipidomics analysis clearly showed that the loss of ABHD16B function has 

a profound effect on sperm plasma membrane lipid composition. Therefore, in analogy 

with experiments in humans and mice, it can be hypothesized that the altered lipid 

composition of the ABHD16B homozygous carrier sperms interferes with the 

fertilization ability. 
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Materials and Methods 

 

Ethical Statement 
EDTA blood samples of cattle were taken for routine parentage control exclusively by 

local veterinarians. The Lower Saxony State Office for Consumer Protection and Food 

Safety approved the collection of samples (33.19-42502-05-17A196), according to §8a 

Abs. 1 Nr. 2 of the German Animal Protection Law. 

 

Genome Wide Association Analysis (GWAS) 
The conception ability of sires (non-return rate, NRdev) was calculated based on the 

latest three daughter proven service-sire age groups (2019: A.I. sires born 2014–2016; 

0% deviation). The NRdev is expressed in %-deviation on the original non-return-rate 

scale. Sires in the breeding population with NRdev values of approx. ± 2% are scored as 

average (for more information see 

https://www.vit.de/fileadmin/DE/Zuchtwertschaetzung/Zws_Bes_eng.pdf). Data of 

NRdev deviations of service-sires were provided by VIT (https://www.vit.de/en/). 

 

For GWAS 279 sires of the current breeding population were randomly chosen as 

presumably fertile controls. As cases 10 sires (including Tarantino, NRdev = -29) with 

NRdev between -29 and -2 were selected (Table 1). The 289 samples were genotyped 

while using the Illumina BovineSNP50 or MD BeadChip. The chips were processed on 

a HiScan SQ and iScan System (Illumina GmbH, Munich, Germany) and raw data were 

converted using GenomeStudio Software (Illumina GmbH, Munich, Germany). Final 

reports were imported into SVS 8.8.3 for MacOSX (Golden Helix Inc. Bozeman, MT, 

USA). Prior to GWAS data were filtered while using a call rate < 0.95, number of 

alleles > 2, minor allele frequency (MAF) < 0.05, and Fisher´s HWE < 0.001 (based on 

controls) as marker dropping criteria. LD pruning was performed with a window size 

of 100 and increments of 5. R2-LD statistics with a threshold of 0.5 while using 

Cochran-Mantel-Haenszel (CHM) as computation method was applied. After filtering, 

38,671 markers remained for further analysis. GWAS was done using a multi-locus 

mixed model (MLMM) while applying an additive genetic model with correction for 

male X-chromosomal hemizygosity [60,61]. The associations were regarded as 
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statistically significant above a Bonferroni threshold of -log10P = 5.9 (p = 0.05). The 

associations of markers (-log10P-value, y-axis) were plotted against their chromosomal 

positions (UMD3.1.1, x-axis). 

 

Next Generation Sequencing of Tarantino and Its Parents 
Tarantino and its parents were sequenced on a HiSeq2500 System (Illumina GmbH, 

Munich, Germany), resulting in approx. 109 total reads per sample. Low quality 

(average phred quality < 15) and single reads were removed, resulting in approx. 9.4 × 

108 per sample. Mapping to the bovine reference genome sequence (UMD3.1.1) was 

done while using BWA [62]. PCR duplicates were removed using Picard 

(http://broadinstitute.github.io/picard/). After read mapping, alignment and refinement 

approx. 7.8 × 108 reads remained per sample, corresponding to an average depth of 

coverage of approx. 46x (mean insert size 360 bp). A total of 9,315,126 SNPs and 

1,439,972 indels were called using GATK Haplotype Caller [63]. SNP & Variation 

Suite 8.8.3 (Golden Helix Inc., Bozeman, MT, USA) was used for further analysis. 

SNPs and indels were set to missing with read depth ≤ 10, genotype quality ≤ 15, alt 

read ratios for Ref_Ref ≥ 0.15, Ref_Alt outside 0.3 and 0.7, Alt_Alt ≤ 0.85, and 

according to their inheritance pattern (Tarantino = Alt_Alt, parents Alt_Ref). After this 

filtering, 307,898 SNPs and 604 indels remained. A final filtering was done while using 

SNPs and indels only in annotated and verified mRNA transcripts, including splice 

donor and acceptor distances of 2 bp, splice region exonic distances of 3 bp and splice 

region intronic distances of 8 bp, resulting in 78,472 SNPs and 125 indels. 

 

Genotyping of SNP rs468948776 (ABHD16B) 
The nonsense variant in ABHD16B was genotyped while using fluorescence resonance 

energy transfer (FRET) analysis on a LightCycler 480 (Roche Life Science, Mannheim, 

Germany). The DNA concentrations were measured using NanoDrop ND-1000 

spectrophotometer (PEQLAB Biotechnologie GmbH, Erlangen, Germany). 

Conventional PCR primers were designed using the online program Primer3 

(http://bioinfo.ut.ee/primer3-0.4.0/). The FRET primers were designed with MeltCalc 

Software [64,65]. Table 2 lists FRET primers and probes. 
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Table 2. Fluorescence resonance energy transfer (FRET) primers and probes used for genotyping of      

ABHD16B variant. 

Gene Primer name Sequence (5’->3’) Probe Name Sequence (5’->3’) 

ABHD16B 
ABHD16B_FRET_f ACCCGGGCTTCGGGGGCAGC ABHD16B_FRET_Pro [Cy5]CGTTCCCTCAGCATGATG[Phos] 

ABHD16B_FRET_r GCGTACTTGACCACCACGTC ABHD16B_FRET_Anc GGGGCAGCACGGGCG[Flc] 

 

SNP rs468948776 (ABHD16B) was amplified in a total volume of 25 µL, including 20 

ng DNA, 10 µmol forward and reverse primer each, 10 µmol probe and anchor (Sigma-

Aldrich, Taufkirchen, Germany) each, 1 × GC-RICH solution, 1 × PCR reaction buffer 

(including 20 mM MgCl2), 100 µmol dNTPs and FastStart Taq Polymerase (1U; Qiagen, 

Hilden Germany) for 34 cycles at 95 °C for 15 S, 60 °C for 20 S, and 72 °C for 20 S. 

The melting curves were done using the following program: 95 °C for 30 S, 37 °C for 

30 S, 95 °C continuous acquisition mode (2/°C), ramp rate 0.29 °C/S, followed by 37 °C 

for 30 S. 

 

Western Blotting 
Immunoblotting on cryopreserved semen specimens of one wild type (G_G), one 

heterozygous carrier (G_A), two homozygous affected (A_A; Tarantino, Ca), and testis, 

muscle, and liver samples of wild type bulls were prepared. The semen samples of sire 

Ca were provided from the safety-inventory of an AI station. Human ABHD16B over-

expression lysate (NM_080622, OriGene, Rockville, Maryland, USA) was used as a 

positive control. Frozen semen samples were thawed at 37 °C in a water bath for 30 S., 

followed by 3 × washes with phosphate-buffered saline (PBS; Invitrogen/ThermoFisher 

Scientific) and lysed in cold RIPA buffer (Sigma, R0278, St. Louis, MO, USA). 

Protease inhibitor (Roche, Cat. No.04693159001, Mannheim, Germany) and 

phosphatase inhibitor (Roche, Cat. No. 04906845001, Germany) were added to RIPA 

buffer in advance. The samples were incubated for 1h at 4 °C and centrifuged at 

16,000× g for 20 min. at 4 °C. An additional homogenization of tissue samples with 

MagNA lyser green beads (Roche Life Science, Mannheim, Product No. 03358941001, 

Germany) was carried out followed by an incubation for 2h at 4 °C and then centrifuged 

at 16,000× g for 20 min. at 4 °C. Protein quantification was performed by Bradford 

method with the dye reagent concentrate (Bio-Rad, Cat. No. 5000006, Munich, 

Germany). 
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After denaturation (10 min. at 70 °C) in LDS sample buffer with 5% 2-mercaptoethanol, 

equal amounts of protein were loaded to SDS-PAGE (8% Bis-Tris Plus gel, 

ThermoFisher Scientific, Cat. No. NW00087BOX, USA). After electrophoresis at 15V 

for 1h, the proteins were transferred onto nitrocellulose membranes (Sigma, Cat. No. 

10600098, Germany) with semi-dry blotter (Brenzel Bioanalytik, Lahntal, Germany). 

Membranes were blocked with 5% non-fat dry milk in TBS-T (0.1% Tween) overnight 

at 4 °C and then incubated with primary antibodies for 1 h at room temperature, 

followed by incubation with the secondary antibodies at room temperature for 1 h. 

Subsequently, the membranes were incubated with an ECL detection reagent (GE 

Healthcare, Product No. RPN2109, Little Chalfont, UK) and then exposed to X-ray 

films (GE Healthcare, Product No. 28906836, Tokyo, Japan) for detection. 

 

A customized bovine ABHD16B primary antibody, affinity purification PAC-DFR 

(Davids Biotechnologie GmbH, Regensburg, Germany, 1 µg/mL dilution) was used. 

Goat Anti-Mouse IgG (H + L)-HRP (Bio-Rad, Munich, Germany; 1:10,000 dilution) 

and Goat Anti-Rabbit IgG (H + L)-HRP (Bio-Rad, Germany; 1:10,000 dilution) were 

the secondary antibodies. Anti-α-Tubulin (Sigma, T9026; 1: 2500 dilution) was used as 

the loading control. 

 

The quantification of ABHD16B Western blots was done using ImageJ 1.52k software 

[66]. Areas under curve of ABHD16B specific bands were determined for liver, muscle, 

testis and spermatozoa (G_G). Relative expression ratios (%) were calculated with α-

tubulin as the internal standard and plotted as Box and Whisker plot. 

 

Immunohistochemistry of Testes 
Testicular and epididymal tissues were obtained from freshly slaughtered wild type 

Holstein cattle and they were immediately fixed in 4% formaldehyde for 48 h. 

Immunohistochemistry (IHC) was performed on paraffin-embedded sections, including 

testicular parenchyma, as well as ductuli efferentes, epididymal head, corpus, and tail 

with efferent ducts and epididymal duct, respectively. The primary polyclonal antibody 

was directed against the PAC-ARK peptide and it was generated in the rabbit according 

to standard protocols (Davids Biotechnologie GmbH, Regensburg, Germany). IHC was 
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performed in an automated immunostaining system (Discovery XT, Roche Diagnostics 

GmbH, Mannheim, Germany) at a dilution of 1:1000 while using the SABC 

(streptavidin-biotin-complex) method, mild EDTA (ethylenediaminetetraacetic acid) 

pretreatment, and DAB (diaminobenzidine tetrahydrochloride) for signal detection 

(DAB Map Kit, Roche Diagnostics GmbH, Mannheim, Germany). A rabbit IgG isotype 

control (ABIN3023746, antibodies-online GmbH, Aachen, Germany) was included at 

the same concentration as the primary antibody for confirmation of primary antibody 

specificity. Additionally, pure antibody diluent instead of primary antibody was applied 

to the control sections for an evaluation of non-specific binding of the secondary 

antibody. 

 

Lipidomics of Wild Type and Heterozygous Spermatozoa 

 

Semen Collection for Lipidome Analysis 
Wild type and heterozygous fresh semen samples were prepared for lipidome analysis. 

Three independent fresh ejaculates were collected from a heterozygous bull and five 

technical replicates were produced by dilution from each sample. Wild type semen 

samples were flushed from the epididymal tail of four unrelated bulls and a total of 15 

technical replicates were generated by dilution. In the epididymal tail, spermatozoa are 

matured and the lipid composition is equivalent to ejaculated spermatozoa [67,68]. The 

samples were washed twice in Dulbecco’s phosphate-buffered saline (D-PBS) without 

magnesium and calcium and centrifugated at 1000× g for 5 min. at 4 °C. The cells were 

resuspended in D-PBS to a final concentration of approximately three million–eight 

million cells/mL. Cell density was determined in an improved Neubauer counting 

chamber (Marienfeld GmbH, Lauda-Königshofen, Germany). 

 

Lipid Extraction for Mass Spectrometry Lipidomics 
Mass spectrometry-based lipid analysis was performed by Lipotype GmbH (Dresden, 

Germany), as described [69]. The lipids were extracted while using a two-step 

chloroform/methanol procedure [70]. The samples were spiked with internal lipid 

standard mixture containing: cardiolipin 16:1/15:0/15:0/15:0 (CL), ceramide 

18:1;2/17:0 (Cer), diacylglycerol 17:0/17:0 (DAG), hexosylceramide 18:1;2/12:0 

(HexCer), lyso-phosphatidate 17:0 (LPA), lyso-phosphatidylcholine 12:0 (LPC), lyso-
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phosphatidylethanolamine 17:1 (LPE), lyso-phosphatidylglycerol 17:1 (LPG), lyso-

phosphatidylinositol 17:1 (LPI), lyso-phosphatidylserine 17:1 (LPS), phosphatidate 

17:0/17:0 (PA), phosphatidylcholine 17:0/17:0 (PC), phosphatidylethanolamine 

17:0/17:0 (PE), phosphatidylglycerol 17:0/17:0 (PG), phosphatidylinositol 16:0/16:0 

(PI), phosphatidylserine 17:0/17:0 (PS), cholesterol ester 20:0 (CE), sphingomyelin 

18:1;2/12:0;0 (SM), and triacylglycerol 17:0/17:0/17:0 (TAG). After extraction, the 

organic phase was transferred to an infusion plate and dried in a speed vacuum 

concentrator. First step dry extract was re-suspended in 7.5 mM ammonium acetate in 

chloroform/methanol/propanol (1:2:4, V:V:V) and second step dry extract in 33% 

ethanol solution of methylamine in chloroform/methanol (0.003:5:1; V:V:V). All liquid 

handling steps were performed while using Hamilton Robotics STARlet robotic 

platform with the Anti Droplet Control feature for organic solvents pipetting. 

 

MS Data Acquisition 
The samples were analyzed by direct infusion on a QExactive mass spectrometer 

(Thermo Scientific, Osterode am Harz, Germany) equipped with a TriVersa NanoMate 

ion source (Advion Biosciences, Ithaca, NY, USA). Samples were analyzed in both 

positive and negative ion modes with a resolution of Rm/z=200=280,000 for MS and 

Rm/z=200=17,500 for MSMS experiments, in a single acquisition. MSMS was 

triggered by an inclusion list that encompasses corresponding MS mass ranges scanned 

in 1 Da increments [71]. MS and MSMS data were both combined to monitor CE, DAG, 

and TAG ions as ammonium adducts; PC, PC O-, as acetate adducts; and, CL, PA, PE, 

PE O-, PG, PI, and PS as deprotonated anions. MS only was used to monitor LPA, LPE, 

LPE O-, LPI, and LPS as deprotonated anions; Cer, HexCer, SM, LPC, and LPC O- as 

acetate adducts. 

 

Data Analysis and Post-Processing 
The data were analyzed with in-house developed lipid identification software based on 

LipidXplorer [72,73]. Data post-processing and normalization were performed while 

using an in-house developed data management system. Only lipid identifications with 

a signal-to-noise ratio >5, and a signal intensity five-fold higher than in corresponding 

blank samples were considered for further data analysis. 
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The total lipid amount occurring in each sperm sample were pre-tested to ensure that 

optimal amounts are used to achieve the greatest analysis quality and result 

comparability, despite the broad dynamic range of our analytical methods. Afterwards, 

the initially detected total lipid amount per sample was normalized to one-million 

sperms. A significant difference between normalized total lipid amount of wild type 

and heterozygous samples was analyzed. 

 

A 70% occupational threshold was applied for data filter, valid data in more than 10 

samples for each genotype were selected, NAs were replaced with zeros. Afterwards, 

lipid data that were present in both genotypes were chosen for further analysis. In total, 

16 lipid classes with 144 lipid species were evaluated, and the data were analyzed in 

terms of lipid class and species separately. Shapiro–Wilk Test was used for normal 

distribution detection [74]. Significant difference analysis was performed with Mann–

Whitney U-test or two-tailed t-test, depending on the normal distribution results by 

SPSS 16.0. PC:PE and (LPC 22:6):(PC 16:0_22:6) ratios were also checked for 

significant difference. Benjamini & Hochberg method was used for p-value adjustment 

of multiple testing [75] with R version 3.5.1, p(BH) < 0.05 were considered to be 

statistically significant (Table S1). The comparison results of lipid classes and 10 most 

significantly changed lipid species between wild-type and rs468948776 heterozygous 

samples were demonstrated in histograms (data are presented with mean ± standard 

error of mean). 144 lipid species were plotted with Y-axis of adjusted values (-log10pBH) 

against X-axis of log2fold change (heterozygous vs wild type). 

 

Conclusions 

 
We have identified a nonsense mutation in the bovine ABHD16B gene as a potential 

causative protein-altering variant for male infertility in Holstein cattle. This made it 

possible to elucidate the so far unknown physiological and biochemical role of 

ABHD16B in lipid biosynthesis, spermatogenesis, and fertilization. Our findings could 

also have implications on further elucidating a novel genetic cause for human male 

infertility, due to the fact that a number of deleterious variants, e.g., missense, 

frameshift, indels and one stop-gain variant in the human ABHD16B gene have been 

reported to the human ENSEMBL database. 
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In this dissertation, genetic factors contributing to congenital deafness in ASCDs and 

dog herding, predation, temperament and trainability behaviors in modern dog breeds 

were analyzed. The obtained data could be used to improve dog health and welfare by 

understanding genetic mechanism underlying dog diseases and behaviors. Expression 

and function analysis of bull infertility candidate gene ABHD16B were conducted to 

understand its role in reproduction.  

 

1. Dogs as biomedical models for human inherited hearing loss 

 

Dogs share the longest history with humans among domestic animals, and they are the 

only animals domesticated prior to the appearance of agriculture [1, 2]. Meanwhile, 

dogs are naturally susceptible to variety of interspecific Mendelian or complex diseases 

similar to humans. More than 480 canine genetic disorders have been reported as 

potential models for studying human diseases (https://omia.org/home/). In Chapter 2 of 

this thesis, KLF7 gene was identified to be significantly associated with ASCD 

congenital deafness. Deafness has deleterious effects on dog health and welfare, so it is 

recommended to control the frequency of this risk factor in ACSD population. KLF7 

was reported to be a promising candidate gene for human Branchio-oto-renal (BOR) 

syndrome in which hearing loss is a symptom [3]. Notably, KLF7 was detected to be 

the nearest gene of one significantly associated locus in human hearing difficulty 

GWAS using more than 250,000 samples [4]. KLF7 was still the nearest gene to one of 

31 human hearing difficulty risk loci in GWAS of larger populations (n ≤ 330,759) [5]. 

As KLF7 has been detected in several studies of human hearing defects, it is suggested 

to be one candidate gene for human hearing loss. Our findings in ASCD deafness 

further support this possibility and may provide clues for the deciphering molecular 

mechanisms of human deafness. On the other hand, other three recently identified 

canine deafness genes (MYO7A, PTPRQ and LOXHD1) were all identified as causative 

genes for human hearing loss. Therefore, dogs can be good naturally occurring animal 

models to study human deafness [6-8]. 
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2. Dog behavioral genetics studies contribute to the understanding of human 

mental disorders 

 

Diverse modern dog breeds have been strongly and selectively bred to perform various 

tasks such as herding, hunting or companionship depending on human purposes since 

Victorian era. Behavioral and morphological diversity is extremely high between dog 

breeds [9]. Large animals such as dogs with spontaneous and anomalous behaviors 

could serve as good research models for human complex psychiatric disorders [10]. For 

example, several potential genes involved in brain development and synapse formation 

were successfully mapped for canine compulsive disorders [11]. Candidate canine 

compulsive disorder genes were then applied into genetic analysis of human obsessive-

compulsive disorder (OCD), at which four associated genes were identified [12]. The 

feasibility of using dogs as human OCD models was confirmed by one recent study on 

dog circling behavior. The study has identified two canine OCD risk genes (PPP2R2B 

and ADAMTSL3) which were reported to function in dendritic spines [13]. In chapter 3 

of this thesis, promising candidate neural genes underlying dog herding, predation, 

temperament traits are pointed out. These results could not only help to understand the 

biological origins of these complex behavioral traits, but also could provide genetic 

clues for studying human mental disorders and motivational predispositions. For 

instance, hyper-social behavior is one unique character of dog domestication that is 

quite different from that of wolves. Structural variants within human Williams-Beuren 

syndrome associated genes, including GTF2I and GTF2IRD1, were reported to 

contribute to this special behavior in dogs [14]. It is noted that individuals with 

Williams-Beuren syndrome typically present a hyper-sociability personality that is 

outgoing, friendly and/or talkative. GWAS analysis of dog fearfulness behavior in 

German Shepherds and Great Danes has also detected candidate genes that are 

implicated in human neuropsychiatric diseases [15, 16]. HS6ST2 was first reported to 

be associated with dog sociability behavior in GWAS of several hundred dogs [17], and 
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it was later detected to be significantly related with human neuroticism in GWAS of 

405,274 UK Biobank samples [18]. Human behavior is complex and heterogeneous, 

and accurate phenotypic definitions are difficult. These conditions have hindered the 

research process of genetic analysis on this topic. In contrast, it is easier to obtain 

sufficient number of dog samples with personality traits, and dog behavioral genetics 

could shed light on human mental studies. For example, behavioral genetic studies of 

aggressiveness and fearfulness in dogs can be used to assist the study of anger and 

anxiety in human.  

 

3. Genetic mapping of dog diseases and morphological traits using whole 

genome re-sequences 

 

The declining costs for whole genome re-sequencing has made WGS become a 

prevalent way to identify causative genes for inherited diseases in dogs. A large size of 

whole genome re-sequencing data of dog from diverse breeds around the world has 

been available [19, 20]. WGS of analyzed dogs could generate millions of variants, and 

variant filtering is a critical step in the data analysis. The publicly available canine 

WGSs can be used as controls for variant filtering. By comparing affected dog genome 

sequences with those sequenced control canines, unique variants of the affected dogs 

can be obtained using variant filtering software such as VCFtools [21]. Usually, only a 

few hundred or a few dozen private variants of affected dogs remain to be analyzed, 

which significantly improves the efficiency of variant filtering. New dog reference 

genomes and annotations have been released recently, which will also improve the 

genetic diagnostic capabilities for inherited disorders [22-24]. Since whole genome 

sequences own higher coverage and much more dense variants than SNP chip data, 

WGS can also be efficiently applied in GWAS to identify genes for dog morphological 

traits between breeds [20]. Restricted breeding conditions within one dog breed reduce 

phenotypic and genotypic heterogeneity [25, 26], and lead to long range of LD regions 

within dog breeds [27, 28]. Thus, these specific genetic architectures are of great 
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advantages for identifying genes/variants that contribute to complex morphological 

traits and diseases. The identification of KLF7 variant benefited from the WGS 

availability of large control canine samples that were applicable in both GWAS and 

variant filtering.  

 

4. Sperm lipidomics could be used to evaluate bull fertility  
 
Genomic analysis is one quite common way to identify markers for bull fertility [29]. 

Other omics assays such as transcriptomic [30] and proteomic analysis of spermatozoa 

have also been used to appraise bull fertility [31]. The balanced lipid components of 

sperms are vital for a successful reproduction process. Recently, sperm lipidomic 

analysis is being used to evaluate the quality of domesticated animal semen, including 

bull sperms [32]. Bull sperm lipidome studies have been performed to investigate the 

lipid profile differences for aging and cryo-tolerance traits, detecting several 

significantly different fatty acids associated with these two traits [33, 34]. Our 

ABHD16B function study also indicated that changes of sperm lipid contents might be 

related with bull infertility. Therefore, lipidomic analysis between high and low fertile 

sperms could be used to identify lipidomic biomarkers for bull fertilization competence. 

These additional markers could be incorporated into conventional semen analysis to 

improve the prediction accuracy of bull sperm fertility. 
 

5. Prospects 
 
More WGS from diverse dog breeds will be available with advanced process of 

Dog10K project, and the gene mapping accuracy of the dog complex traits and diseases 

will improve [35]. The current analysis of causative variants of dog diseases and 

morphological traits are mainly focused on protein coding-regions, but variants within 

non-coding regions of dog genome may also have large effects on phenotypic traits, 

disorders and domestication [36]. Novel variants or genes of interest for canine complex 

traits and diseases could be revealed after efforts working on the annotations of the 



CHAPTER 5 
 

  124 

genome regulatory regions [37, 38]. Except WGS, multi-omics approach combining 

transcriptomes, chromatin immunoprecipitation sequencing (ChIP-Seq), and assays for 

transposase-accessible chromatin using sequencing (ATAC-seq) will be applied to the 

molecular interpretations of dog complex diseases such as cancer [39]. With all these 

incoming efforts, our understanding of molecular mechanisms underlying dog and 

human health will be further enriched. 

 

Although lipidomic analysis indicated that ABHD16B gene participates in sperm lipid 

metabolisms, its exact function has not yet been elucidated. Further studies are 

necessary to identify the biochemical effects resulting from ABHD16B depletion in 

Holstein cattle.  
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