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Abstract 

Misfolding and accumulation of disease-related proteins are common hallmarks 

among several neurodegenerative diseases. This phenomenon causes the progressive loss 

of cognitive and motor functions correlated with specific cell loss in the brain. Despite the 

different clinical manifestations, these disorders share common features and molecular 

mechanisms, such as aggregation and accumulation of disease-related proteins in specific 

regions of the brain. These include alpha-synuclein aggregates in Parkinson’s disease and 

other synucleinopathies, inclusions of hyperphosphorylated microtubule-binding Tau in 

tauopathies, and extended polyglutamine protein aggregates (huntingtin) in Huntington’s 

disease.  

The association between the progression of clinical symptoms and the topographical 

distribution of pathology in neurodegenerative diseases has led to the hypothesis that specific 

pathological disease-related proteins can be transferred intercellularly in a prion-like manner. 

This hypothesis was created after the observation Lewy body pathology, a characteristic 

hallmark in synucleinopathies, within fetal dopaminergic neurons grafts in Parkinson’s disease 

patients. Later, injection of Tau aggregates into animal models was shown to induce 

pathology. More recently, similar mechanisms were proposed to occur in monogenic forms of 

neurodegenerative diseases after the observation  of mutant huntingtin aggregates within fetal 

striatal allografts in the brain of Huntington’s disease patients. Furthermore, the presence of 

co-pathology in the brain of patients with distinct neurodegenerative diseases has implied that 

several proteins may overlap to contribute to the neuropathophysiology and can share 

common molecular mechanisms in neurodegeneration.  

Several mechanisms have been suggested to contribute to the spreading of alpha-

synuclein, Tau and huntingtin pathology. These include diffusion through the plasma 

membrane, release via extracellular vesicles (as ectosomes and exosomes), misfolded-

associated protein secretion pathway, membrane carriers, membrane pores, tunnelling 

nanotubes, endocytosis, and receptor-mediated endocytosis. To date, it is unclear if alpha-

synuclein, Tau and huntingtin release to the extracellular milieu occurs through similar cellular 

mechanisms and their effect in receptor cells. Also, the role of protein secretion and their 

involvement in neuronal dysfunction and disease progression remains elusive. Further 

elucidation of these questions will permit a better understanding of protein propagation on 

disease pathogenesis in neurodegenerative diseases. 

In recent years, extracellular vesicles have emerged as central mediators in 

intercellular communication under physiological and pathological conditions. Their 

heterogeneity and presence in several human biofluids have led to extensive research 
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regarding their content and functional properties as relevant biomarkers in neurodegenerative 

diseases. In particular, ectosomes and exosomes are considered important carriers of 

misfolded proteins between cells in disease. These can be internalized in diverse cell types, 

although their effect in neuronal activity is unclear. Discernment between ectosomes and 

exosomes has been difficult due to the moderate differences in their physical properties and 

absence of reliable markers. While exosomes have been extensively studied in the field, the 

role of ectosomes in the pathogenesis of neurodegenerative diseases has not been explored. 

Additional studies focusing in the role of ectosomes and other types of extracellular vesicles 

in neurodegenerative diseases will open new avenues to uncover potential disease 

biomarkers and therapeutic targets.  

In our first study, we developed a detailed differential ultracentrifugation protocol to 

efficiently purify ectosomes and exosomes, and provided a proteomic and functional 

characterization of these vesicles subtypes. Comprehensive proteomic analysis revealed 

specific protein composition and pathways enrichment for ectosomes and exosomes. 

Interestingly, ectosomes isolated from human cerebrospinal fluid and from cell media 

displayed enrichment in annexin-A2, suggesting this protein as an important marker for 

ectosomes characterization. Furthermore, treatment of neuronal cortical cultures with 

ectosomes and exosomes resulted in their internalization at similar ratios. Using multi-

electrode array technology, we further demonstrated that extracellular vesicles internalization 

affects differently the spontaneous activity of neuronal cells.  

In our second study, we demonstrated that common cellular mechanisms are used for 

the transfer of alpha-synuclein, Tau and huntingtin exon-1 fragments between cells. 

Interestingly, we observed that these proteins are handled in different ways depending on the 

receptor cells. Our results reveal the release of the different disease-related proteins to the 

cell media at different levels in a free form and in extracellular vesicles. Overall, alpha-

synuclein, Tau and normal huntingtin exon-1 were found in higher levels in the cell media in 

contrast to mutant huntingtin exon-1. We further observed discernible alterations in the 

spontaneous firing activity in primary cortical neurons after treatment with the different 

recombinant proteins, suggesting that the effects of alpha-synuclein, Tau and huntingtin in the 

extracellular space and on neuronal activity are dependent of the protein properties and not 

only correlated with their secretion levels. Interestingly, alpha-synuclein, Tau and huntingtin 

exon-1 were present in higher levels in ectosomes than in exosomes. We revealed that these 

vesicles could be internalized in microglial and astrocytic cells, and resulted in the production 

of pro-inflammatory cytokines and autophagy activation. Neuronal cells also internalized 

ectosomes and exosomes enriched with alpha-synuclein, Tau or huntingtin, and exhibited 

irregularity in the cell bursting properties that overall was correlated with the vesicles subtype. 
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Overall, our work indicates that extracellular vesicles cargoes likely reflect core 

pathophysiological intracellular processes in their origin cells. A clear understanding of the 

specific functional properties of different vesicles subtypes might represent a step forward in 

the search of novel biomarkers. Furthermore, our results propose that common cellular 

mechanisms are used for the transfer of alpha-synuclein, Tau and huntingtin between cells. 

These similarities could suggest common therapeutic targets for neurodegenerative diseases, 

and the need to target several cellular mechanisms to halt the detrimental effects of protein 

transmission and pathology progression. 
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1. Introduction 

The longer-life expectancy is increasing the prevalence of neurodegenerative diseases 

in the world population [1]. At present, several therapeutic interventions are available to 

prevent the onset of the symptoms and slow down the disease progression. However, the 

absence of a deep understanding of the causes and mechanisms of each disease and lack of 

diagnostic biomarkers hinders the early detection of these disorders [2]. Hence, the search of 

specific biomarkers in human biofluids and individual targets are a priority for the development 

of novel therapies. 

Neurodegenerative disorders are generally classified by their clinical presentations, as 

cognitive and movement symptoms, with most patients having mixed clinical features [3]. 

Furthermore, these disorders share several central pathways associated with gradual cell 

dysfunction and death, such as oxidative stress, proteasomal and autophagosomal/ lysosomal 

degradation systems, and neuroinflammation [4]. Nonetheless, the protein abnormalities that 

characterize neurodegenerative diseases are typically developed before the onset of clinical 

features and more than one neurodegenerative process can be found in an individual [5, 6]. 

The most common neurodegenerative diseases include amyloidosis, tauopathies, 

synucleinopathies, and polyglutamine (polyQ) proteinopathies [7]. Individual neuropathologic 

diagnosis is performed through the observation of specific abnormal protein conformations 

and their cellular and anatomical distribution in the brain of patients with these disorders [4]. 

Assessment of post-mortem human brain tissue from patients with a variety of clinical and 

pathological features founded the elaboration of staging systems that describe the stereotypic 

progression of many neurodegenerative disorders. These include Alzheimer’s disease (AD) 

[8, 9], Parkinson’s disease (PD) [10, 11], and Huntington’s disease (HD) staging schemes [12].  

Most proteins have an inherent tendency to convert from their native functional state 

into a pathological intractable amyloid aggregate [7]. These include proteins known to have a 

physiological role in the cells and to be deposited as amyloid or other aggregate types in 

human disorders. Protein accumulations that constitute the major histopathologic features in 

neurodegenerative disorders include hyperphosphorylated tau in neurofibrillary tangles 

(NFTs), alpha-synuclein (aSyn) in Lewy bodies (LBs) and Lewy neurites (LNs), and mutant 

huntingtin (mHtt) in neuronal intranuclear and cytoplasmic inclusions. 
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1.1. Alpha-synuclein in Parkinson’s disease and other 

synucleinopathies  

Neurodegenerative diseases are commonly associated with accumulation of 

pathological proteins, as aSyn in synucleinopathies [13, 14]. These diseases include PD, 

dementia with Lewy bodies, multiple system atrophy, neurodegeneration with brain iron 

accumulation type I, diffuse Lewy body disease and Lewy body variant of AD [15-18].  

James Parkinson presented the first clinical description of PD over 200 years ago [19], 

with patients exhibiting motor symptoms as resting tremor, slow movements, rigidity and 

postural instability [20, 21]. These symptoms result from a deregulation in the activity of the 

basal ganglia activity, due to the loss of dopaminergic neurons in the substantia nigra pars 

compacta [22]. Furthermore, patients also display numerous non-motor symptoms as 

cognitive impairment, hyposmia, rapid eye movement sleep disorder and constipation [23, 24]. 

Friedrich Lewy in 1912 described intracellular inclusion bodies as neuropathological hallmarks 

in PD [25]. Currently, it is known that LBs and LNs are enriched with aSyn and are involved in 

the pathogenesis of synucleinopathies [15, 26]. aSyn has been the focus of intense 

investigation due to its central role in synucleinopathies since it is the main component of Lewy 

pathology, but it is also implicated in several cellular and molecular processes that contribute 

to PD pathology progression [14].  

The synuclein family is composed with 3 members, alpha-, beta- and gamma-synuclein 

(a-, b- and gSyn, respectively) [27]. These small soluble proteins bind to phospholipid 

membranes and share a highly conserved alpha-helical lipid-binding domain [28]. Despite the 

similarity in their sequence, these proteins have different roles in the cells and display different 

biochemical properties. Synucleins are ubiquitously expressed in the human body and are 

particularly enriched in neurons. In particular, aSyn is predominantly expressed in the 

hippocampus, striatum, neocortex, cerebellum and thalamus [29, 30]. Intriguingly, knockout of 

the synuclein family in animal models did not result in major brain morphological changes [31-

35]. Nonetheless, the triple knockout model exhibited neuronal dysfunction, alterations in 

synaptic structure and transmission, and reduced survival, implying that synucleins contribute 

to the long-term synaptic function.  

aSyn was firstly identified in the electric organ of Torpedo californica, being distributed 

in the nuclear envelope and in the presynaptic terminal [36]. In the brain, this protein is initially 

localized in the soma of immature neurons and afterwards is concentrated in the synapses at 

the presynaptic terminals in mature neurons [27, 37-40]. During aging, aSyn changes its 

localization to the soma, and is often interpreted as a pathology development marker in PD 
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[41, 42]. Indeed, aSyn has been associated with numerous cellular and molecular processes 

that contribute to synucleinopathies, but whether it is a culprit or a bystander is still unknown 

[14]. Furthermore, several studies propose that aSyn has a physiological role in the 

maintenance of the synaptic function, particularly in the recycling of synaptic vesicles and in 

SNARE-complex assembly [35, 43, 44].  

aSyn is a 14.5 kDa acidic protein comprising 140 amino acid residues (Figure 1) [45]. 

Structurally, it is divided in three main domains: residues 1- 60 comprise the lipid binding 

alpha-helix N-terminal, residues 61- 95 delimit the non-amyloid beta-component (NAC) 

domain, and residues 96- 140 define the unstructured C-terminal. Rare familial forms of PD 

are associated with missense mutations in the SNCA gene encoding for aSyn (A30P, A30G, 

E46K, H50Q, G51D, A53E, A53T) [46-52], as well as gene duplications and triplications 

(Figure 1) [53-55]. Additionally, polymorphisms in regulatory elements of the SNCA gene 

increase the predisposition for development of PD and have earlier disease onset [56]. aSyn 

missense mutations are located within the membrane-binding domain in the N-terminal and 

the lipid binding is only affected by A30P, G51D and A53E mutations [57-59]. The NAC region 

is relatively hydrophobic and prone to aggregation [60]. The acidic C-terminal is associated in 

multiple protein interactions, as with as ions and metals [61-64]. This terminal is unstructured 

and important for protection of aSyn aggregation [65, 66].  

 

 

Figure 1. Schematic representation of aSyn structural domains and familial mutations. The N-terminal 

domain (amino acids 1- 60, in turquoise) displays the KTKEGV motifs (white rectangles) and contains the mutations 

sites associated with familial PD (A30P, A30G, E46K, H50Q, G51D, A53E, and A53T). Residues 61- 95 (blue) 

represent the non-amyloid-β component (NAC) that is mainly hydrophobic and is involved in aSyn oligomerization 

process. The C-terminal (amino acids 96-140, purple) is highly acidic and is involved in the interaction with other 

proteins and metals. Also, truncations in this domain are linked with enhanced aggregation. Adapted from Brás IC, 

Outeiro TF. (2021) Alpha-synuclein spreading mechanisms in Parkinson’s Disease: the role of membrane 

receptors. Elsevier. In revision. 

 

Numerous post-translational modifications (PTMs) have been described in aSyn within 

the C-terminal. This includes truncation, phosphorylation, glycation, acetylation, glycosylation, 

oxidation, ubiquitination and nitration [67]. These modifications alter the protein charge and 
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structure, resulting in alterations in the binding affinities with other proteins and lipids. 

Particularly, membrane binding, oligomerization and neurotoxicity are regulated through aSyn 

phosphorylation. The major phosphorylation sites are serine 87 and 129 (S87 and S129) [68-

73]. Furthermore, LBs are enriched in hyperphosphorylated aSyn at S129 and this PTM has 

been considered a pathological hallmark in PD [74-76].  

Generally, aSyn exists in an equilibrium between a soluble and a membrane-bound 

state. Cytosolic aSyn is natively unfolded and soluble in cells [77-79], while when bound to 

membranes adopts an alpha-helical structure [80-83]. aSyn was also described to exist as a 

soluble tetrameric form, though this finding was not confirmed in other studies [84-86]. 

Additionally, aSyn oligomerizes into multimers upon membrane binding [87, 88]. Under 

pathological conditions, aSyn adopts a beta-sheet amyloid conformation commonly 

associated with its aggregation and neurotoxicity in cells (Figure 2) [89-93]. 

 

 

Figure 2. Several pathways are affected by aSyn misfolding and aggregation in synucleinopathies. aSyn 

toxicity in cells results in (A) organelle dysfunction (purple boxes), (B) alterations in inter-organelle connections 

(blue box) and (C) dysfunction in organelle dynamics (green box). Adapted from [94]. 
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1.2. Tau as a key player in tauopathies 

In 1907, Alois Alzheimer and Oskar Fischer discovered the characteristic amyloid 

plaques and neurofibrillary lesions in AD [95-99]. The structure and composition of these 

lesions remained unidentified until nearly 80 years later, when it was revealed that these NFTs 

were composed of Tau filaments with atypical phosphorylation [100-102]. Bernardino Ghetti 

and Michel Goedert introduced later the term tauopathies to categorize neurological disorders 

with deposition of Tau fibrils as their main neuropathological hallmark [103]. This group of 

heterogenous diseases includes Pick’s disease, corticobasal degeneration, progressive 

supranuclear palsy, globular glial tauopathy and argyrophilic grain disease as primary 

tauopathies. AD is considered a secondary tauopathy due to the deposition of Tau fibrils in 

combination with extracellular beta-amyloid plaques [104]. Primary tauopathies are a 

subgroup of the frontotemporal lobar degeneration (FTLD) disorders, a group of diseases that 

exhibit a predominant atrophy of the frontal and temporal lobes with accumulation of Tau 

inclusions [105]. Abundant filamentous Tau deposits often occur in neurons alongside with 

glial cells and are associated with severe neuronal toxicity and cell loss [106, 107]. Individuals 

with these disorders display diverse clinical symptoms and distinctive pathology distribution 

[104].  

Tau was firstly perceived as a dull initiator of the toxic effects in AD pathology. 

Nowadays, this protein is considered a main factor in the development of several 

neurodegenerative diseases [104]. In AD, Braak proposed a disease staging system through 

the correlation of accumulation of Tau lesions with disease progression [8]. Development of 

Tau pathology follows in a hierarchical pattern of accumulation beginning from the layer II of 

entorhinal cortex and disseminating towards the cortical regions [8, 108]. Furthermore, 

advanced Tau pathology is often associated with increased cognitive impairment in 

tauopathies, and increased Tau levels in the cerebrospinal fluid (CSF) are associated with 

faster cognitive decline and worse clinical outcome in AD [9, 109-112].  

Tau is a microtubule-associated protein (MAP) present in six major isoforms in the 

human brain which span from 352 to 441 amino acids (Figure 3) [113]. This protein is encoded 

by the MAPT gene and can undergo alternative splicing of exon 2 and 3 producing proteins 

with three amino terminal variants (N), whereas alternative splicing of exon 10 generates 

isoforms with either 3 or 4 microtubule binding domains (R) in the carboxyl terminal (0N3R, 

1N3R, 2N3R, 0N4R, 1N4R, 2N4R) [104]. Only 0N3R Tau is expressed in the fetal human 

brain, in contrast with the adult brain where all the six isoforms are present with a 1:1 ratio of 

the 3R and 4R isoforms. Alterations in the proportion of the Tau isoforms can lead to its 

dysfunction and pathology development in cells [114, 115]. In tauopathies, 3R Tau isoforms 
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accumulate in Pick’s disease while 4R Tau isoforms accumulate mainly in progressive 

supranuclear palsy, corticobasal degeneration, globular glial tauopathy and argyrophilic grain 

disease. Furthermore, both Tau isoforms accumulate in AD [116, 117]. Tau isoforms 

containing exon 2 and exon 10 are more prone to aggregation due to the existence of the 

VQIINK hexapeptide in exon 10 that mediates oligomerization [118, 119]. 

 

Figure 3. Physiological and pathological functions of human Tau. (A) MAPT gene undergoes alternative 

splicing and generates six Tau isoforms, comprising three (3R) or four (4R) microtubule (MT)-binding domains in 
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the C-terminal, and zero- two N-terminal domains. (B) Tau regulates MT stability and dynamics in neuronal cells. 

Tau binding to the MT is regulated through its phosphorylation levels that are regulated by kinases and 

phosphatases. In pathological conditions, increase in Tau phosphorylation levels leads to its detachment from the 

MT, resulting in axonal dysfunction. The increase in other post-translational modifications (PTMs) drives Tau 

misfolding and aggregation into large insoluble fibrils termed neurofibrillary tangles (NFTs). (C) Tau contains 

numerous PTMs under physiological and pathological conditions, as phosphorylation, O-GlcNAcylation, 

acetylation, and ubiquitination. In particular, phosphorylation is intensified in tauopathies and is regulated by key 

regulatory kinases. Adapted from [120]. 

 

Structurally, Tau comprises four functional domains: the N-terminal projection domain, 

a proline-rich region, the microtubule binding domain, and the C-terminal region (Figure 3). 

The N-terminal regulates microtubule binding despite not being directly involved in the physical 

interaction (residues 1-150 of the longest isoform), and when absent promotes Tau re-

localization from the cytosol to the nucleus [121, 122]. This domain also mediates Tau 

localization in the plasma membrane through annexin-A2 interaction [123]. The proline-rich 

domain is the disordered central domain of the protein (residues 151-243) and this region 

interacts with Src homology-3 (SH3) proteins and nucleic acids [124-126]. The microtubule-

binding repeat domains regulate Tau binding affinity to microtubules and actin for cytoskeleton 

stability (residues 244-441 of the longest isoform). Several disease-associated proteins, as 

aSyn, FUS, TIA-1 and presenilin-1 interact with the microtubule-binding repeat and the proline-

rich domains, suggesting that protein interactions with Tau can have a relevant role in 

pathology development [127]. In last, the C-terminal region is involved in the inhibition of Tau 

polymerization [128, 129]. 

In neurons, Tau is distributed throughout the neuron and it becomes enriched in the 

axon during maturation [130]. It can also be found in the plasma membrane, dendrites, 

synapses, nucleus, and mitochondria [131-135]. Tau has an important role in cytoskeletal 

organization and trafficking during microtubules formation, which is critical for the transport of 

cellular cargo between axonal and dendritic peripheries [136, 137]. Dysregulation of Tau 

interaction with microtubules leads to their disassembly and subsequent impairment in cell 

polarity and viability [138-140]. Several Tau domains interact with lipids and membranes, and 

this protein can also act as a signalling regulator via its interaction with membrane receptors 

[141-144]. In the synapse, Tau has been reported to be involved in synaptic development and 

neuronal activity [134, 145]. During pathology, Tau induces synaptic dysfunction and 

alterations in neuronal excitability [146-150]. Indeed, higher levels of phosphorylated Tau 

induced a higher depolarized threshold for action potential and reduced firing in neuronal cells 

[151, 152].  
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In 1997, the first familial mutations in the MAPT gene were associated to 

frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17), indicating 

that Tau mutations can lead to its aggregation and neurodegeneration in cells (Figure 3) [153-

155]. Nowadays, more than 50 pathogenic mutations in the MAPT gene were described to 

exist mostly located in exons 9- 12 [156]. These can modulate Tau microtubule binding 

properties (as K257T, G272V, P301L, V337M and R406W mutations), and change alternative 

splicing towards overproduction of the 4R isoform (as N279K, N296H, P301S and S305I 

mutations) [157, 158].  

In physiological conditions, Tau is a natively unfolded protein and can adopt various 

structural states relevant to its function in cells [159, 160]. During pathological conditions, the 

protein conformation changes to beta-sheet and leads to the formation of filamentous 

structures [161, 162].  

Tau undergoes a variety of PTMs, including phosphorylation, ubiquitination, oxidation, 

glycation, truncation, and glycosylation under physiological and pathological conditions 

(Figure 3) [163]. Enhancement of these modifications in tauopathies leads to Tau 

accumulation and aggregation [164]. Abnormal phosphorylation is considered the first step for 

Tau oligomerization and formation of NFTs [100, 165-167].  

 



 13 

1.3. Polyglutamine repeats in Huntington’s disease and 

other monogenic neurodegenerative disorders 

Polyglutamine (polyQ) diseases are a diverse group of inherited neurodegenerative 

disorders caused by expansions of CAG repeats encoding polyQ tracts in specific genes [168, 

169]. These include HD, spinocerebellar ataxia 1, 2, 3, 6 and 7, dentatorubral-pallidoluysian 

atrophy and spinal-bulbal muscular atrophy [170-179]. Disease onset is determined by the 

pathogenic polyQ length threshold and lead to slowly progressive phenotypes. In each case, 

the expanded repeat is unstable and can increase in length as it is passed from one generation 

to the next, resulting in earlier manifestation of the disease at younger ages in the subsequent 

generations. These disorders also share various clinical and pathological features despite 

having only in common the genetic pathogenic repeat expansion in differently affected genes 

[180, 181]. A common pathological hallmark in polyQ diseases is the accumulation of the 

polyQ proteins as intracellular aggregates predominantly in the nucleus [168, 182, 183].  

In 1872, George Huntington described an progressive hereditary chorea with the 

phrase “Once it begins it clings to the bitter end” [184]. Nowadays, this disease is known as 

HD, a dominantly inherited genetic neurodegenerative disorder usually manifested during 

adulthood and that progressively worsens over a period of 10- 30 years [185, 186]. The 

cardinal neuropathological hallmark of this disease is a massive atrophy of the caudate and 

putamen regions culminating in neuronal dysfunction and cell loss [187, 188]. Striatal medium 

spiny neurons are most vulnerable to the mHtt toxicity, though considerable neuronal 

dysfunction and cell death also occurs in the cortex [189, 190]. Patients often exhibit 

alterations in personality, cognitive deficits, and involuntary movements [191-194]. Also, 

several studies have described peripheral symptoms including muscle degeneration, weight 

loss, and activation of inflammatory processes [195]. Due to the absence of treatments that 

can prevent or slow down HD progression, the clinical care of patients focuses on 

management of the symptoms through medical treatments to extend function and quality of 

life [186]. 

The length of the CAG repeats in the exon 1 of the huntingtin gene (HTT) on 

chromosome 4, which encodes for the protein huntingtin (Htt), determines whether an 

individual will develop or not HD [196, 197]. The CAG repeat is polymorphic in the normal 

population with the range between 6- 35 repeats. Individuals with 36- 39 CAG repeats show 

reduced penetrance, as some individuals live a normal lifespan without being clinically 

diagnosed or they can manifest the disorder [198]. The disease pathology is exhibited when 

an individual possesses a CAG expansion higher than 40, that leads to the production of the 

toxic and mutant form of the huntingtin protein with an expanded polyglutamine stretch at the 
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N-terminal, which is prone to misfold and aggregate in cells [193, 199]. Numerous proteases 

cleave mHtt and generate exon 1 N-terminal polyglutamine fragments, which subsequently 

interact with other proteins and lead to the formation of toxic mHtt aggregates [186, 200-203].  

Normal Htt protein has polyQ repeat length of 23 glutamines with a total of 3144 amino 

acids and a molecular weight of 348 kDa (Figure 4) [204]. The full-length Htt exhibits a compact 

shape with three domains: N-terminal, a central domain and C-terminal [204]. The N-terminal 

domain contains the expandable polyQ stretch, preceded of 17 amino acids, and followed by 

a proline-rich domain (PRD). The 17 amino acids region consists of an amphipathic alpha-

helix, important for Htt retention in the ER [205, 206]. Furthermore, it functions as a nuclear 

export signal (NES) and is subject to several PTMs as acetylation, ubiquitination, and 

sumoylation that modulate Htt degradation and subcellular localization [205, 207-209]. The 

PRD domain seems to be important for mediating protein-protein interaction [210]. The central 

domain consists mainly of supercoiled alpha-helical structures termed HEAT repeats 

important for protein-protein interaction and mediating inter- and intra-molecular interactions 

[211]. The HEAT repeats are separated by regions with disordered structure known to undergo 

several PTMs, as proteolytic cleavage, phosphorylation, and glycosylation [212, 213]. Lastly, 

Htt also contains other functional motifs such as nuclear localization signal (NLS) and NES for 

protein shuttling between nucleus and cytoplasm via active transport [214-216]. 

Htt is involved in the development of the central nervous system (CNS), as neural tube 

formation and neuroblast migration, and animal models with Htt deletion die before birth [217, 

218]. This protein is involved in several cellular and biological functions such as transcription, 

cell division, cell survival, axonal transport, vesicular trafficking, synaptic function, and energy 

metabolism [204, 219]. Htt is expressed throughout the body, with higher levels in the brain. 

In cells, it localizes in the nucleus, cytoplasm, mitochondria, endoplasmic reticulum (ER), Golgi 

complex, endosomes, and synaptic vesicles [219, 220]. The polyQ tract length affects the 

PTMs distribution, which influences the stability, cleavage, subcellular distribution, and 

function of Htt (Figure 4) [221]. This protein also binds and interacts with DNA, and the 

expanded polyQ tract results in transcriptional dysregulation [222]. This leads to upregulation 

of the immune response and mRNA processing, and downregulation of metabolic processes 

and synaptic function [223].  
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Figure 4. Cellular mechanisms involved in the pathogenicity of mutant huntingtin (HTT) in Huntington’s 

disease (HD). (1) Translation of HTT gene generates the full-length or the N‑terminal exon1 fragment HTT protein 

(as a result of alternative splicing). (2) Proteolytic cleavage of full-length huntingtin generates protein fragments 

that can (3) enter the nucleus. (4) Formation of HTT inclusions in the nucleus, through protein oligomerisation and 

aggregation, causes transcriptional dysregulation. (5) HTT aggregates in the cytoplasm that exacerbated due to 

(6) impairment in the proteostasis network, which leads to (7) impairment in synaptic dysfunction, mitochondrial 

toxicity and axonal transport. PRD- proline-rich domain; Ub- ubiquitin. Adapted from [186]. 

 

In HD, the expanded polyQ tract causes abnormal folding of Htt, which leads to the 

formation of oligomers that act as seeds to the formation of fibrils and inclusions in cells (Figure 

4) [224, 225]. The fibrillar aggregates have amyloid-like properties and a central beta-strand 

rich core [226-228]. More recently, studies demonstrated that N-terminal mHtt oligomers are 

toxic and that the consequent inclusions formation can be protective in cells [229-231]. Also, 

large mHtt inclusions can occur without cell death [229, 232, 233]. Aggregation of N-terminal 

mHtt fragments produced by proteolytic cleavage or abnormal splicing aggregate faster than 

the full-length protein in the brain of HD patients [234-236]. 
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1.4. Prion diseases, protein misfolding disorders and 

prionoids 

The concept of prion as disease triggering agent was created after the observation of 

neurodegeneration in animals exposed to ‘‘small proteinaceous infectious particle which is 

resistant to inactivation’’ [237]. Prions are infectious protein assemblies capable of transmitting 

and propagating a disease throughout the brain, and can be transmitted among individuals 

from the same or different species [237].  

Transmissible spongiform encephalopathies (TSE) are a group of neurodegenerative 

diseases characterized by the misfolding and accumulation of the scrapie prion protein (PrPSc) 

[238]. PrPSc results from the aberrant folding of the endogenous prion protein (PrPC), or 

alternatively from mutations, repetitions, or truncations in the PRNP gene [239, 240]. This was 

the first protein described to have infectious properties and has exhibited the highest capacity 

to propagate neurodegeneration [241]. Creutzfeldt-Jakob disease is a well-known TSE as it 

can be initiated by consumption of beef from animal infected with bovine spongiform 

encephalopathy (also identified as “mad cow disease”). In addition, numerous genetic 

mutations in the PRNP gene are associated with distinctive TSE, as familial Creutzfeldt–

Jakob’s disease, fatal familial insomnia, prion systemic amyloidosis and Gerstmann–

Sträussler– Scheinker syndrome [240, 242]. PrPSc are highly stable proteins that accumulate 

in the CNS and lead to spongiform degeneration and neuronal loss [243]. Although the period 

of incubation can be from months to years, the clinical symptoms progress quickly and 

comprise motor dysfunction, ataxia, behavioural abnormalities and cognitive impairment [244].  

Cellular PrPC is a glycosylphosphatidylinositol (GPI) anchored protein and contains 

two N-linked glycosylation sites [245]. Mature PrPC is present at the surface of the plasma 

membrane in lipid-enriched microdomains, and structurally can be divided in a disordered N-

terminal domain and a globular C-terminal domain composed of three alpha-helices and a 

short anti-parallel beta-pleated sheet [246, 247]. Several functions have been attributed to 

PrPC [248], as neural development, synapse formation, myelin maintenance, and signalling 

[249-252]. Also, post-natal deletion of PrPC does not lead to neuronal death [253]. 

Since PrPSc is the origin of distinct TSE, the clinical variability in these disorders has 

been considered to arise from unique misfolded protein conformations, termed as strains 

(Figure 5). These protein species display different degrees of infectivity and can induce a 

conformational change in the endogenous protein, perpetuating the pathology throughout the 

brain [254, 255]. Furthermore, peripheral infection can contribute to the development of the 

disease in the CNS [256].  
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Figure 5. Proposed templated misfolding of disease-related proteins in neurodegenerative diseases.  Due 

to stress, environmental factors, or genetic mutations, native protein monomers can self-aggregate into 

pathological oligomers. These species can be extended into protofibrils and other mature species as fibrils or 

ribbons that deposit into inclusions in the cells. These diverse assemblies coexist in a dynamic equilibrium and can 

be converted into higher- or lower-order conformations. Adapted from [257]. 

 

A key event in the pathophysiology of prion diseases is the template-directed 

misfolding of PrPC into a pathogenic beta-sheet–rich form (PrPSc) [258]. The pathogenic 

protein conformation is a crucial element for the infectivity and transmission of prion diseases. 

However, the mechanism that underlies PrPC conversion into PrPSc remains unknown [259]. 

It has been proposed that short segments of PrPSc can interact with PrPC in a steric zipper, in 

which complementary amino acid side chains from two beta-sheets are tightly interdigitated 

and efficiently stabilize growing fibrils, mainly through hydrogen bonds [260, 261]. In fact, 

differences within the sequence of the steric zipper segments blocks the PrPC conversion 

between species [262, 263]. Conversion mainly occurs on the plasma membrane or within the 

endocytic pathway in the multivesicular bodies (MVBs) [264]. In the brain, PrPSc spreads 

throughout anatomically connected brain regions [265]. However, the mechanisms involved 

in the transmission are poorly understood. In vitro studies propose that prions can be 

transferred from cell-to-cell via several cellular mechanisms, as extracellular vesicles (EVs) 

[266-270].  

In 1987, Stanley Prusiner proposed that other neurodegenerative diseases could have 

prion-like properties [271, 272]. More recently, several studies demonstrated that protein 

strains are not unique to PrPSc, as similar findings have been observed for aSyn [273-276], 

Tau [277, 278], and Htt [279, 280] (Figure 5- 6).  
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Figure 6. Protein misfolding disorders, prionoids and prions. Misfolding and accumulation of disease-related 

proteins is a common feature in several neurodegenerative diseases. This includes cellular prion protein (PrP), 

alpha-synuclein (α-Synuclein), amyloid precursor protein (APP), ataxin, RNA- binding protein (FUS), TAR DNA- 

binding protein 43 (TDP43), guanine nucleotide exchange (C9orf72), superoxide dismutase (SOD1), huntingtin 

and Tau. Aging, stress, and environmental conditions can trigger the misfolding of these proteins into toxic species. 

Remarkably, the same protein can be involved in different diseases exhibiting a spectrum of neuropathological and 

clinical symptoms, indicating the existence of diverse protein strains that exert toxicity in distinct manners. Adapted 

from [272]. 

 

Similarities between several neurodegenerative diseases with prion disorders led to 

their designation as prion-like and the respective disease-related proteins as prionoid proteins 

[272, 281]. This includes the abnormal folding of endogenous protein into different strains via 

a template protein, transfer of misfolded proteins between cells and pathology propagation in 

the brain throughout interconnected regions (Figure 5- 6) [257, 282, 283]. However, the 

infectivity of these aggregates by successive transmission across hosts has not been proven 

yet.  
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1.5. The role of prion-like spreading mechanisms in the 

progression of neurodegenerative diseases  

Proteins involved in neurodegenerative diseases have been proposed to acquire their 

pathogenicity by a prion-like mechanism [284, 285]. Their self-propagation and transmission 

cell-to-cell seem to play an important role in disease progression, but it may also have a 

biological function that is not yet known [258, 286]. Histopathological analyses indicate that 

proteinaceous lesions develop in a disease-specific spatiotemporal pattern and through 

connected regions [265, 287].  

Several mechanisms have been associated with transmission of aSyn, Tau and Htt 

between cells, as passive diffusion through the plasma membrane, misfolding-associated 

protein secretion pathway (MAPS), tunnelling nanotubes (TNTs), EVs as ectosomes and 

exosomes, membrane carrier proteins and release via pore-like structures [257, 282, 283]. 

Seeds can also be released by cells with damaged cell membrane (Figure 7).  

The MAPS pathway was recently described to export aberrant cytosolic proteins using 

the ER-associated deubiquitylase USP19 [288]. Misfolded proteins are recruited to the ER 

surface for deubiquitylation, and later its encapsulated into late endosomes and secreted to 

the extracellular space (Figure 7). This protein quality control pathway promotes protein 

homeostasis by exporting misfolded proteins through an unconventional protein secretion 

process [288]. 

TNTs are F-actin membranous structures that allow the direct communication between 

the cytoplasm of distant cells (Figure 7) [289, 290]. These connections can be either connexin-

positive gap junction-ended protrusions or open-ended [291], and allow the transfer of several 

cargoes, as proteins and cellular components [292]. However, it is unknown if these structures 

exist in the human brain or in vivo in animal models. 

The misfolded proteins are then internalized by other cells via direct diffusion through 

the plasma membrane, endocytosis, or receptor- mediated endocytosis, or fusion of the EVs 

with the cell membrane (Figure 7). Pathological seeds can also interact with membrane 

receptors that can activate downstream signalling pathways or stimulate their internalization 

in the cells. Despite intensive research, the factors that modulate the molecular mechanisms 

involved in proteins transmission are not well understood. 
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Figure 7. Proposed mechanisms involved with transmission of disease-related proteins between cells. 

Under pathological conditions, monomeric proteins can self-aggregate into pathological misfolded seeds and 

accumulate as mature fibrils in cells. Several mechanisms have been proposed to be involved in the release and 

internalization of aSyn, Tau and Htt assemblies. Misfolded proteins can be released via passive diffusion through 

the plasma membrane but can also be directed to the ER to be deubiquitylated by USP19 and encapsulated into 

late endosomes to be secreted to the cell exterior [misfolding-associated protein secretion pathway (MAPS)]. 

Misfolded seeds were described to be transferred using tunnelling nanotubes, secreted into extracellular vesicles 

(as ectosomes and exosomes), or be released by cells with damaged cell membrane. In particular, aSyn was 

described to be released via pore-like structures that penetrate in the cell membrane (there is no evidence that 

these structures exist in vivo) or use membrane carrier proteins. In the extracellular space, the released seeds can 

then be internalized by diverse cell types. This includes direct diffusion through the plasma membrane, endocytosis 

or receptor- mediated endocytosis, or fusion of the exosomal/ ectosomal vesicles with the cell membrane. 

Misfolded proteins can also interact with membrane receptors that might activate downstream signalling pathways 

or stimulate its internalization in the cells. After internalization via endocytosis, pathological seeds can disrupt the 

endosomal membrane to gain access to the cytosol or be carried for degradation. Free seeds can interact with 

endogenous proteins and template its fibrillization. This interaction can lead to potential disruption of the cell 

membrane and seeds release to the extracellular space, restarting the toxic vicious cycle. Adapted from Brás IC, 

Outeiro TF. (2021) Alpha-synuclein spreading mechanisms in Parkinson’s Disease: the role of membrane 

receptors. Elsevier. In revision. 
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1.5.1. Extracellular vesicles as relevant mediators in intercellular 

communication in physiological and pathological conditions  

EVs mediate long range signalling events in the CNS and are essential vehicles in 

intercellular communication (Figure 7) [293-296]. These vesicles are secreted by different cell 

types and can be found in several biofluids, such as blood and CSF [297, 298]. Nuclei acids, 

proteins, and lipids are incorporated into EVs and often used for the search of novel 

biomarkers in diseases (Figure 8) [299-301]. The three main EVs subtypes are apoptotic 

bodies, microvesicles (as ectosomes) and exosomes, which differ in their mechanisms of 

biogenesis, function, content and size [302, 303]. Their diversity suggests the possibility that 

cells secrete numerous different types of vesicles [304].  

 

 

Figure 8. Exosomes and microvesicles transport numerous cargoes, as lipids, proteins and nucleic acids. 

The specific composition of extracellular vesicles (EVs) determines their function and fate, and changes in 

accordance with the cellular environment and cell type. This includes exosomes (top image, blue) and 

microvesicles (bottom image, green). The existence of varied EVs subtypes emphasizes the importance of 

selective cargo-sorting mechanisms that allow the transfer of different cargoes between cells. Despite distinctive 

mechanisms of biogenesis, exosomes and microvesicles contain several proteins in common, highlighting the 

importance of deeper characterization of EVs subtypes. APP- amyloid precursor protein; ARF6- ADP-ribosylation 

factor 6; ARMMs- arrestin-domain-containing protein 1‑mediated microvesicles; CXCR4, CXC-chemokine receptor 
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4; GAPDH, glyceraldehyde‑3‑phosphate dehydrogenase; HSP70- heat shock 70 kDa protein; HSPG- heparan 

sulfate proteoglycan; ICAM- intercellular adhesion molecule; LBPA- lyso-bis-phosphatidyl acid; LFA1- lymphocyte 

function-associated antigen 1; MHC- major histocompatibility complex; PECAM1- platelet endothelial cell adhesion 

molecule; PLD- phospholipase D; PrP- prion protein; ROCK- RHO-associated protein kinase; TCR- T cell receptor; 

TDP43- TAR DNA-binding protein 43; TFR- transferrin receptor; TSG101- tumour susceptibility gene 101 protein; 

TSPAN- tetraspanin; VPS- vacuolar protein sorting-associated protein. Adapted from [295]. 

 

Exosomes (30 to 150nm in diameter) originate from endosomes released from MVBs 

after fusion with the plasma membrane [305, 306]. In contrast, microvesicles (also termed 

ectosomes), have a diameter between 100 to 300nm and are generated by direct shedding 

from the plasma membrane [307, 308]. While exosomes have been extensively characterized 

in multiple studies, ectosomes proteomic and functional characterization remains 

understudied. Additionally, discrepancies in the purification strategies and lack of reliable 

protein markers that can discriminate between EVs types limits the understanding regarding 

their physiological and pathological functions [295, 299, 309].  

The nature and abundance of EVs cargoes are determined by the cell type of origin 

and can be modified according to the physiological or pathological conditions in the cells [310]. 

Furthermore, several of the proteins that are considered as cargoes are involved in the 

regulation of EVs biogenesis (Figure 8) [295]. Once released into the extracellular space, EVs 

reach the recipient cells and deliver their content to promote physiological or pathological 

responses [295].  

The presence of disease-related proteins in EVs highlight their potential roles in the 

spreading of the pathology in neurodegenerative disease. In contrast, these vesicles can act 

as vehicles for clearing of the toxic proteins associated with disease pathophysiology. They 

can further transport other pathogenic/ toxicity-inducing elements correlated with the disease. 

The functional duality between protective and pathological roles of EVs has not been fully 

addressed in the field [311]. 

Recently, EVs have been considered potential non-invasive biomarkers in several 

neurodegenerative diseases. Their presence in diverse human biofluids and stability highlights 

EVs as attractive targets for disease diagnostics [312, 313]. Furthermore, alterations in their 

content with aging might reflect the different stages of disease progression, providing the 

possibility of early diagnostic or monitoring the effect of current therapies [314-316]. To date, 

only a few studies addressed ectosomes and their composition in the search for biomarkers 

[317, 318]. 

Additionally, due to their ability to cross the blood-brain barrier, promising therapeutic 

drug carriers are being developed based on EVs into the CNS [319-321]. For example, the 
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loading of nucleic acids, protein fragments or chemical compounds that can rescue the 

neurotoxic processes occurring in the disease context [322, 323].  

Further research regarding the biogenesis, structure, cargo, and target cells of different 

EVs subtypes in physiological conditions and their alteration in neurodegenerative diseases 

will provide novel insights into their role in disease modulation and importantly clarify their 

potential as a source of disease biomarkers [324]. 

 

1.5.2. Propagation of aSyn pathology 

The initial seeding capacity of misfolded aSyn was described in reports where PD 

patients who had received fetal nigral tissue grafts in the striatum exhibited Lewy pathology 

identical to the one observed in the patient tissue [325-333]. These results implied that grafted 

neurons inherited aSyn pathology from the host neurons. 

Assessment of post-mortem brain samples of PD patients showed that Lewy pathology 

develops in a temporally and spatially expected manner. At early disease stages, aSyn 

pathology develops in the dorsal motor nucleus of the vagus nerve, which is connected to the 

enteric nervous system (ENS), and in the olfactory bulb. Afterwards, pathology progresses to 

the brainstem and cortical areas [10, 11, 334]. Further observations lead to the suggestion 

that PD could be initiated in the olfactory bulb or via the gastric route, and move upwards to 

the dorsal motor nucleus of the vagus nerve and finally travel through the CNS [335]. This 

proposal was also supported with the observation of Lewy pathology in the enteric and 

peripheral nervous systems [336, 337].  

Experimental studies in vitro and in vivo subsequently provided further support for the 

self-propagation of aSyn seeds [273-276, 338-341]. Injection of brain-derived or recombinant 

aSyn seeds recapitulated some of the features observed in PD patients [341-344]. In addition, 

aSyn pathology was observed to propagate through the brain along anatomically connected 

regions, suggesting selective neuronal transport [341, 343, 345]. Peripheral injection of aSyn 

seeds can also induce pathology in the brain [346-348]. aSyn can also be found in the media 

of cell lines and primary neuronal cultures expressing this protein [349, 350]. 

aSyn was originally considered to be an exclusively intracellular protein due to the 

absence of a classical secretory signal peptide at the N-terminal. Later, aSyn was found in 

CSF and plasma in PD patients [351-353]. Therefore, it uses unconventional exocytosis 

pathways to be release to the extracellular space [354, 355]. Numerous studies are consistent 

with the use of prion-like spreading mechanisms for the transmission of aSyn pathology [257, 

356]. These include passive diffusion [357-359], MAPS pathway [288], exosomes [349, 360-
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364], tunnelling nanotubes [365, 366], membrane pores [367], membrane carrier proteins 

[368], exo- and endocytosis [349] and receptor-mediated endocytosis [369]. The interaction of 

aSyn assemblies with lipid membranes can create annular pore-like structure in the plasma 

membrane [92, 367, 370, 371]. However, it is not known if these structures exist in vivo. 

Furthermore, membrane carrier proteins regulate membrane trafficking in cells and were 

described to participate in the release of aSyn [368].  

 Exosomes have been widely studied in PD. The transport of aSyn in these vesicles 

was shown to induce aSyn aggregation due to their lipid and protein composition [362, 364, 

372, 373]. Exosomes internalization can induce protein aggregation along with a 

neuroinflammatory response [374]. Also, aSyn associated with exosomes appears to be 

preferentially internalized by cells when compared with free aSyn [375]. Injection of exosomes 

derived from various biofluids results in different functional effects in animal models, 

emphasizing that EVs content might change depending on their biofluid of origin [376, 377]. 

However, the correlation between the levels of aSyn in exosomes and disease severity has 

been inconsistent. While vesicles purified from CSF of early-stage PD patients exhibited 

reduced levels of aSyn compared to controls, exosomes purified from plasma displayed 

elevated levels of aSyn [373, 378].  

Different aSyn strains can be spread between cells, conceiving a possible explanation 

for the heterogeneity observed in synucleinopathies [379]. However, there are several 

observations that contradict the prion-like hypothesis. For example, PD cases that do not 

present a typical pattern of Lewy pathology consistent with Braak staging [380-382]. Also, 

distribution of aSyn aggregates without correlation between the stage of Lewy pathology and 

clinical progression in patients [383-385]. Moreover, aSyn capacity to propagate from cell-to-

cell and between individuals is a matter of debate, since there is still no evidence of disease 

propagation between individuals, and several studies do not show pathology in grafted cells 

[386, 387]. Other possible explanations for the manifestation of pathology in transplanted cells 

are stress conditions or alterations in the cellular milieu surrounding the graft that may trigger 

aSyn pathology [388]. 

 

1.5.3. Propagation of Tau pathology 

Tau, the major component of NFTs in AD and other tauopathies, has also the capacity 

to self-assemble and propagate through prion-like molecular processes [277, 278, 389-399]. 

Intracerebral injection of Tau seeds into transgenic mice expressing human Tau or 

wild-type animals leads to the accumulation of hyperphosphorylated Tau [277, 389, 390, 400, 
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401]. Tauopathy then spreads systematically from the site of injection to linked brain regions 

[402-404], implying endocytosis, amplification, transport, and release of Tau seeds between 

cells [278, 391, 405]. Expression of human Tau in the projection neurons of the entorhinal 

cortex can subsequently spread to other connected areas [392, 393]. Furthermore, peripheral 

administration of Tau aggregates can trigger intracerebral tauopathy in transgenic mice [406]. 

In AD, Tau pathology appears downstream of beta-amyloid aggregation [407, 408]. 

Additionally, tauopathy is stereotypically distributed through interconnected brain regions, 

indicating that neuronal trafficking mechanisms contribute to the dissemination of Tau seeds 

within the CNS [8, 409].  

Recently, several studies suggested that Tau may adopt distinct conformations and 

their injection in animal models recapitulated the characteristic hallmark lesions observed in 

each tauopathy via a prion-like process [278, 389, 399, 410-412]. 

Despite Tau being a microtubule-associated and cytosolic protein, its release and 

presence in the extracellular space can be associated with a physiological role. Indeed, 

neuronal activity can influence Tau release at the synaptic terminal and does not seem 

connected to a propagation mechanism [413, 414]. Furthermore, CSF of AD patients display 

high levels of phosphorylated Tau species that seem to correlate with disease severity [415, 

416]. These findings suggest the existence of active cellular processes involved in Tau 

secretion relevant for its role in disease pathogenesis and progression.  

Tau can be secreted and internalized via multiple routes [283, 417]. Release in a free 

form involves its secretion directly through the plasma membrane [418, 419]. Tau interacts 

with specific lipids-rich membrane microdomains that allows its penetration and release to the 

extracellular space facilitated by cell surface heparan sulphate proteoglycans (HSPGs) [420, 

421]. Furthermore, this process is partially mediated by interaction with proteins localized in 

the plasma membrane, such as annexin-A2 and A6 [422]. Misfolded Tau seeds were shown 

to disrupt membranes by forming pore-like amyloid structures, allowing their release to the 

extracellular space [423, 424]. Cell-to-cell transfer of Tau seeds can occur via tunnelling 

nanotubes [425], and the MAPS pathway also promotes the secretion of cytosolic misfolded 

Tau to the extracellular space [288, 426].  

Studies have also demonstrated that EVs, in particular ectosomes and exosomes, can 

incorporate Tau and then fused or be endocytosed by receptor cells [317, 318, 427, 428]. 

Exosomes isolated from both CSF and brain of AD patients contain Tau [429-432]. Also, 

injection of these vesicles led to an increase in Tau phosphorylation and formation of 

inclusions in animal models [433, 434]. Interestingly, Tau release in ectosomes was suggested 
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to have a physiological role, while secretion in exosomes may predominate under pathological 

conditions [317, 318].  

After being secreted to the extracellular space, pathological Tau seeds enter in 

receptor cells through cellular uptake, as dynamin-dependent and receptor-mediated 

endocytosis [391, 405, 435]. After Tau seeds reach the cytosol of the recipient cells, the 

templated seeding of the endogenous Tau occurs and leads to further pathology propagation. 

 

1.5.4. Propagation of huntingtin pathology 

Recently, the observation of mHtt aggregates within fetal striatal allografts in HD 

patients supported the possibility of protein spreading mechanisms in monogenic disorders 

[436]. These clinical pathological observations have been further supported by several in vitro 

and in vivo studies that demonstrate internalization and transmission of Htt between cells [279, 

280, 437-449]. 

To date, the importance of prion-like mechanisms in HD has been questioned due to 

the genetic origin of the disease and the ubiquitous expression of Htt throughout the body. 

However, Htt is detected in significant quantities in plasma, CSF and extracellular matrix, 

suggesting that this protein can be exported from the cells of origin [436, 441, 447, 450-454]. 

Although the precise mechanisms of cell-to-cell transfer are not completely understood, 

several pathways have been suggested to occur in HD [282]. Both Htt and mHtt can be 

released to the extracellular space through synaptic transmission, vesicular transport, in a free 

form, exosomes and tunnelling nanotubes [439-442, 455-458]. More recently, administration 

of recombinant mHtt was shown to be taken up by several cell models, as well as to generate 

disease phenotypes in animal models injected with protein seeds [280].  

The transfer of mHtt between cells through EVs has been a complex and not yet clear 

mechanism. Interestingly, exosomes have been proposed to be a propagation mechanism for 

both RNA and mHtt protein between cells [459]. However, it was also reported the absence of 

mHtt in exosomes isolated from platelets of HD patients [460]. Injection of exosomes derived 

from HD patients in animal models triggered the formation of HD pathology and demonstration 

of HD-related behaviour [441, 456]. In contrast, exosomes secreted from astrocytes and stem 

cells have been described to have a neuroprotective role with the reduction of mHtt aggregates 

[461, 462].  

Once released, secreted mHtt can be internalized in receptor cells and amplify the 

disease due to its propensity to seed aggregation of the soluble protein [438, 454, 463].  
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The existence of protein strains and acquisition of sporadic forms of the disease have 

not been yet addressed in the field. However, there is evidence supporting their potential 

existence in HD [193, 449, 464]. For example, disease manifestation of patients with an 

identical CAG repeat length can develop at different ages and follow diverse clinical courses 

for unknown reasons [197, 465-468]. Allelic variations and environmental factors have been 

suggested to contribute to the discrepancies in age of onset and disease severity. 

Furthermore, the existence of different protein strains might explain the high clinical variability 

within the HD population [282]. These findings highlight a possible role of prion-like 

mechanisms in HD progression, and the need of further research regarding the factors 

governing these pathways. 
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1.6. Co-pathology in neurodegenerative diseases 

A relevant topic in neurodegenerative diseases is the co-occurrence of protein 

inclusions composed of diverse proteins in the same patient, and their participation in the 

neurodegenerative process [469]. The presence of co-pathology is often accompanied by 

overlapping clinical symptoms, faster cognitive decline, and shortened lifespan. The 

correlation between clinical and pathological features in co-pathology has prompted several 

studies to understand the mechanisms by which diverse pathological protein aggregates 

accumulate in the brain of patients. 

In AD, it was observed synergistic effects between beta-amyloid and Tau [470]. 

Although beta-amyloid is known to originate Tau pathology, beta-amyloid toxicity has been 

shown to be Tau dependent [133, 149, 471]. Furthermore, Tau levels in the CSF are correlated 

with disease progression [472, 473]. Also, AD patients exhibit significant LB pathology 

together with beta-amyloid plaques and NFTs [474-477]. In synucleinopathies, the presence 

of beta-amyloid plaques is associated with aSyn aggregation and spreading [478, 479]. 

Tau and aSyn are distinct proteins that contribute to singular disease-specific 

pathologies, yet several studies suggest that they interact, modulate the aggregation of each 

other and co-occur in pathological inclusions in the human brain [480]. Tau aggregates have 

been implicated in PD [396, 481-485]. aSyn enhances Tau phosphorylation, triggering Tau 

pathogenicity, and these proteins can seed aggregation of each other possibly accelerating 

the neuropathological cascade [486-490]. Also, recombinant aSyn strains have been shown 

to promote Tau aggregation [489, 491]. Interestingly, grafted tissue in HD patients exhibited 

abundant Tau-related pathology [492-495]. 

These results suggest that co-pathology is a feature in several neurodegenerative 

diseases. Furthermore, it implies that this phenomenon may be common to several 

neurodegenerative diseases and a number of proteins may overlap to contribute to the 

complex pathophysiology of neurodegenerative diseases. Moreover, it suggests the existence 

of common molecular pathways that bring together singular proteins with very distinctive 

cellular functions, possibly linking the development of distinct pathological features and 

resulting in synergistic modes of toxicity.  
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2. Aims of the study 
 

Several disease-related proteins appear to be transferred from cell-to-cell, contributing 

for the dissemination of pathology in the brain and disease progression in neurodegenerative 

diseases. However, the molecular mechanisms involved in the release of these proteins that 

are typically present in the cytosol are still unclear. Similarly, their effect in neuronal function 

is also unknown. Therefore, it is important to establish differences and similarities in the ways 

that disease-related proteins are handled in order to identify specific therapeutic targets for 

each disease. Hence, we investigated some of the pathways through which cells transfer 

proteins, but also the consequences of the presence of normal and pathological forms of 

disease-associated proteins in the extracellular space and after internalization in diverse 

receptor cell types. 

 

Aim 1 (Publication I). Investigation and characterization of ectosomes and exosomes, 

assessment of specific protein markers, and functional relevance in neuronal networks in vitro. 

 

Aim 2 (Publication II). Systematic comparison of the molecular mechanisms involved 

in the release of proteins associated with distinct neurodegenerative disorders, and their 

consequences in spontaneous neuronal activity.  
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2.1. Publication I 

 

 

 
 

Link: https://www.biorxiv.org/content/10.1101/2021.06.24.449731v1  
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Abstract 

 Extracellular vesicles (EVs) are important mediators in intercellular communication. 

However, understanding the biological origin and functional effects of EVs subtypes has been 

challenging due to the moderate differences in their physical properties and absence of 

reliable markers. Here, we characterize the proteomes of ectosomes and exosomes using an 

improved differential ultracentrifugation protocol and quantitative proteomics. Cytoskeleton 

and glycolytic proteins are distinctively present in ectosomes, while endosomal sorting 

complexes proteins and tetraspanins are enriched in exosomes. Furthermore, annexin-A2 

was identified as a specific marker for ectosomes derived from cell media and human 

cerebrospinal fluid. Expression of EGFP as a cytosolic reporter leads to its incorporation in 

EVs and enables their imaging with higher resolution. Importantly, ectosomes and exosomes 

internalization in neuronal cells results in the modulation of neuronal spontaneous activity. Our 

findings suggest that EVs cargoes reflect core intracellular processes, and their functional 

properties might regulate basic biological and pathological processes. 

 

Keywords: Extracellular vesicles, ectosomes, microvesicles, exosomes, spreading, 

proteomics, multi-electrode array, neuronal activity  
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Introduction 

Extracellular vesicles (EVs) are important vehicles in intercellular communication, 

mediating long range signalling events [293-296]. These vesicles are important in the central 

nervous system (CNS), where they are secreted by diverse cell types, appearing also in the 

cerebrospinal fluid (CSF) [297, 298]. Proteins, RNA, and lipids are actively and selectively 

incorporated into EVs, justifying the importance of these vesicles not only in normal biology 

but also in disease, as they may report on pathological alterations [299-301].  

Size and mechanisms of biogenesis are the conventional classification approaches for 

EVs [302, 303, 310]. Exosomes (30 -150nm in diameter) are derived from endosomes 

released from multivesicular bodies (MVBs) after fusion with the plasma membrane [305, 306]. 

In contrast, microvesicles (also termed ectosomes, 100 -1000 nm in diameter) are larger EVs 

generated by direct shedding from the plasma membrane [307, 308].  

While exosomes have been characterized in multiple studies, ectosomes remain 

understudied. Furthermore, disparities in purification strategies and lack of reliable protein 

markers that can discriminate between these EVs types limits our knowledge regarding 

ectosomes [295, 299, 309]. Therefore, further characterization of ectosomes may provide 

valuable information on biogenesis, cargo sorting and functional roles of these vesicles in 

physiological and pathological conditions. 

Herein, we provide an in-depth molecular and functional characterization of ectosomes 

and exosomes based on differential ultracentrifugation. Comprehensive proteomic analysis 

revealed specific protein composition and pathway enrichment for each EV subtype. 

Exosomes are composed of endosomal sorting proteins required for transport (ESCRT) and 

tetraspanins [496]. In contrast, ectosomes are enriched in cytoskeletal proteins, glycolytic 

enzymes, integrins and annexins. Interestingly, ectosomes isolated from human CSF and from 

cell media are enriched in annexin-A2, suggesting this protein can be exploited as an 

important marker for ectosomes characterization. EGFP incorporation in both ectosomes and 

exosomes enabled their imaging at higher resolution when compared with the use of the thiol-

based dye Alexa Fluor 633 C5-maleimide. Remarkably, we demonstrate that EVs 

internalization affects the spontaneous activity of primary cortical neurons. Our work provides 

novel insight into the cell biology of intercellular communication via EVs, demonstrating they 

transfer cargoes that can modulate cellular function. Ultimately, our study also forms the 

foundation for future biomarker studies and for the understanding of the molecular basis of 

different diseases.  
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Results 

Separation of ectosomes and exosomes by differential ultracentrifugation 

Biological samples contain a heterogeneous mixture of EVs. To understand their 

composition and functional properties, ectosomes and exosomes were isolated from the 

media of human HEK cells using an improved differential ultracentrifugation protocol (Figure 

1A) [317, 497]. To avoid possible contamination with EVs from fetal bovine serum (FBS) 

present in the cell media, cells were incubated with conditioned media (previously depleted of 

EVs) for 24 hours, as previously described [497, 498].  

 

Figure 1. Purification and characterization of secreted EVs using differential centrifugation. (A) Schematic 

overview of the EVs purification protocol. Conditioned cell media was collected from HEK cells after 24 hours and 

subsequently centrifuged at different speeds. After isolation, EVs were used for label-free quantitative mass 

spectrometry, immunoblot and MEA recordings. (B) Whole-mount EM analysis of each pellet showing 
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representative images of ectosomes and exosomes (scale bar 100nm). (C) NTA measurements of particle 

concentrations and average size distributions of ectosomes and exosomes. Data from at least three independent 

experiments. Significant differences were assessed by two-tailed unpaired t-test comparison and are expressed 

as mean ± SD, *p<0.05.  

 

Both EVs subtypes exhibited a cap-shaped morphology, typical for negative stained 

vesicular structures, and presented the expected size differences by electron microscopy (EM) 

(Figure 1B). Nanoparticle tracking analysis (NTA) was used to determine the size and to 

quantity of ectosomes and exosomes based on Brownian motion (Figure 1C). The diameter 

distribution for ectosomes was considerably larger and peaked at 140nm, while exosomes 

had an average diameter of 60nm (Figure 1C). Furthermore, the concentration of ectosomes 

was significantly greater when compared to exosomes (Figure 1C).  

 

Ectosomes and exosomes exhibit characteristic proteomic profiles 

To determine the protein composition of ectosomes and exosomes, label-free 

quantitative mass spectrometry was performed (Figure 2). In total, 2216 proteins were 

identified in our study, with 371 proteins exclusively recognized in ectosomes, and 193 

proteins enriched in exosomes (Figure 2A, Supplementary Tables 1 and 2).  

 

Figure 2. Proteomic analyses of ectosomes and exosomes using label-free quantitative mass 

spectrometry. (A) Diagram representing the number of unique proteins identified in each EV type and total number 

of proteins identified in the study. (B) PCA of the quantitative differences in spectral counts between ectosomes 

(turquoise) and exosomes (blue) in the biological replicates. (C) Heatmap of the significantly different identified 
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proteins from proteomic profiling of in ectosomes and exosomes. High and low expression are shown in red and 

blue, respectively (protein intensity z-score -2 for dark blue, protein intensity z-score for 2 dark red). Data 

represented from five independent samples. Data analyses were performed using Perseus software. 

 

Principal component analysis (PCA) of protein composition revealed a clear separation 

of the two EVs subtypes (Figure 2B). Despite some overlap in identifiable proteins, which was 

to be expected, hierarchical clustering of the protein datasets uncovered two separate 

fractions with distinct proteomic profiles (Figure 2C).  

These results indicate individual proteomic profiles of ectosomes and exosomes, 

supporting functional biological differences between the two EVs subtypes.  

 

Exosomes are enriched with tetraspanins and ESCRT-related proteins, while 

ectosomes contain cytoskeletal proteins and glycolytic enzymes 

Next, we searched for specific markers of exosomes and ectosomes among the 

proteins uniquely present in each EV subtype [310]. Proteomic profiling identified a number of 

known exosomal proteins, including ESCRT and vacuolar protein sorting-associated (VPS) 

proteins (Supplementary Table 1). This included alix (PDCD6IP), syntenin-1 (SDCBP), 

vesicle-associated membrane protein 2 (VAMP2) and VPS25/ 28/ 37B (VPS25/ 28/ 37B) 

(Figure 3A, Table 1). Since the ESCRT machinery is important for the sorting of ubiquitinated 

cargo and regulation of exosomal biogenesis, their identification in our exosomal fraction is 

consistent with previous studies [496, 497, 499-501]. Tetraspanins are highly enriched in 

exosomes and are associated with exosome biogenesis [502]. Consistently, our exosomal 

fraction comprised CD63 antigen (CD63), CD81 antigen (CD81) and tetraspanin-4, 6, 7, 9 

(TSPAN4/ 6/ 7/ 9) (Figure 3B, Supplementary Table 1). Furthermore, our proteomic analysis 

also highlighted the presence of lipid raft components in exosomes, such as flotillin-1 and 2 

(FLOT1/ 2). However, their levels were not statistically different from the ones found in 

ectosomes. Similarly, TSG101 (TSG101) and CD9 (CD9) were also slightly enriched in 

exosomes, although this did not reach statistical significance in comparison to the levels found 

in ectosomes. Importantly, our results indicate that certain proteins commonly considered 

exosomal can also occur in ectosomes, emphasizing the need for using multiple protein 

markers to distinguish EVs.  

In our study, we identified 11 proteins in exosomes that are frequently identified in EVs, 

of the 100 most frequently reported proteins in Vesiclepedia and ExoCarta databases [503, 

504] (Table 2, Supplementary Table 3). This indicates the specificity in proteins in exosomes 

and the existence of common exosomal protein markers across different samples. 
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Table 1. List of top 30 up-regulated proteins in exosomes identified in this study organized according to the 

significance values (full list in Supplementary Table 1). 

Protein names Gene names Biological process -log10 (p-
value) 

Alix PDCD6IP Cell cycle 4,836 

Glycogen phosphorylase PYGM/ L Alcohol metabolic process 4,300 

Proteasome subunit alpha/ beta PSMA/ B Protein catabolic process 4,098 

Asporin ASPN Anatomical structure development 3,734 

Homogentisate 1,2-dioxygenase HGD Amine metabolic process 3,611 

Receptor-type tyrosine-protein phosphatase PTPRM Axon guidance 3,610 

Vacuolar protein sorting-associated protein 28 
homolog 

VPS28 Catabolic process 3,525 

Cation-independent mannose-6-phosphate receptor IGF2R Anatomical structure 
morphogenesis 

3,377 

Eukaryotic initiation factor 4A-II EIF4A2 Biological regulation 3,345 

Protein kinase C-binding protein NELL2 NELL2 Cellular homeostasis 3,340 

3-mercaptopyruvate sulfurtransferase MPST Biosynthetic process 3,327 

Mannose-1-phosphate guanyltransferase beta GMPPB Alcohol biosynthetic process 3,264 

Cytosolic 10-formyltetrahydrofolate dehydrogenase ALDH1L1 10-formyltetrahydrofolate catabolic 
process 

3,226 

Cytoplasmic aconitate hydratase ACO1 Acetyl-CoA catabolic process 3,172 

S-adenosylmethionine synthase isoform type-1 MAT1A Amine biosynthetic process 3,097 

Delta-aminolevulinic acid dehydratase ALAD Biosynthetic process 3,039 

Tubulin alpha-4A chain TUBA4A Cell cycle 3,033 

Vacuolar protein sorting-associated protein 37B VPS37B Cellular component assembly 3,012 

Adenosylhomocysteinase AHCY Amine metabolic process 2,989 

Regucalcin RGN Calcium ion homeostasis 2,989 

Fructose-bisphosphate aldolase B ALDOB Alcohol biosynthetic process 2,989 

4-trimethylaminobutyraldehyde dehydrogenase ALDH9A1 Amine biosynthetic process 2,960 

Microtubule-associated protein RP/EB family member 
2 

MAPRE2 Cell cycle 2,933 

Uroporphyrinogen decarboxylase UROD Cellular metabolic process 2,927 

Coronin-1A CORO1A Actin cytoskeleton organization 2,918 

Haptoglobin HP Inflammatory response 2,859 

Collagen alpha-3(VI) chain COL6A3 Axon guidance 2,814 

Argininosuccinate synthase ASS1 Amide biosynthetic process 2,791 

Galectin-3-binding protein LGALS3BP Biological adhesion 2,774 

von Willebrand factor VWF Biological adhesion 2,736 

 

Table 2. Top 11 proteins identified in this study and present in the Top 100 proteins list of often identified in EVs 

(in total our study found 11 proteins enriched in exosomes that are referred in the Top 100 list in vesiclepedia 

(Supplementary Table 3). 

Protein names Gene names Biological process -log10(p-
value) 

Alix PDCD6IP Cell cycle 4,836 

Adenosylhomocysteinase AHCY Amine metabolic process 2,989 

Galectin-3-binding protein LGALS3BP Biological adhesion 2,774 

Syntenin-1 SDCBP Actin cytoskeleton organization 2,464 

GTP-binding nuclear protein Ran RAN Actin cytoskeleton organization 1,877 

CD63 antigen CD63 Biological adhesion 1,589 

Talin-1 TLN1 Actin cytoskeleton organization 1,479 

Gelsolin GSN Actin cytoskeleton organization 1,477 

CD81 antigen CD81 Activation of MAPK activity 1,454 

Complement C3 C3 Activation of immune response 1,344 

Alpha-2-macroglobulin A2M Biological regulation 1,112 
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In ectosomes, we detected several proteins commonly identified in larger vesicles, 

such as plexin-A1 (PLXA1), glutathione S-transferase (GSTP1), the plasma membrane 

marker sodium/potassium-transporting ATPase (ATP1A1) and epidermal growth factor 

receptor (EGFR) (Figure 3C, Table 3 and Supplementary Table 2) [299, 309, 500]. Importantly, 

ADP-ribosylation factor 6 (ARF6) is thought to regulate ectosome biogenesis, and was also 

identified in our dataset (Figure 3C) [505].  

Actin, tubulin, and keratins are highly abundant cellular cytoskeletal proteins observed 

in EVs preparations [305, 499, 500]. In our proteomic dataset for ectosomes, we found an 

enrichment in cytoskeletal proteins as profilin-1 (PFN1), cofilin-1/ 2 (CFL1/ 2), vimentin (VIM), 

ezrin (EZR), moesin (MSN), tubulin beta chain (TUBB) and actin (ACTG1) (Figure 3D, Table 

3 and Supplementary Table 2). The absence of other cytoskeletal-associated proteins in our 

ectosomes and exosomes, such as those involved in actin filament polymerization, associated 

with microtubules, or intermediate filaments, may be related with their exclusion as potential 

contaminants in our hit list using Perseus software. The removal of these proteins avoided the 

identification of proteins that might be present in the cell media but not specifically in our 

vesicle fractions (Supplementary Table 1 and 2).  

Interestingly, our analyses also revealed a significant enrichment in metabolic 

enzymes in ectosomes, such as peroxiredoxin-1/ 2/ 6 (PRDX1/ 2/ 6), pyruvate kinase (PKM), 

alpha-enolase (ENO1) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (Figure 

3E, Supplementary Table 2). The presence of annexin family members in EVs fractions has 

been previously documented and, importantly, perturbations in the levels of their secretion are 

associated with disease [506]. Remarkably, we found several annexin proteins enriched in 

ectosomes, including annexin-A1, A2, A3, A4, A5, A6, A7, A8, A11 (ANXA1/ 2/ 3/ 4/ 5/ 6/ 7/ 

8/ 11) (Figure 3F, Table 3 and Supplementary Table 2). Integrins have been reported in 

microvesicles [505, 507] and we found them abundantly in ectosomes [alpha-1/ 2/ 5/ 6 (ITGA1/ 

2/ 5/ 6)] (Supplementary Figure 1A, Supplementary Table 2). Furthermore, other proteins were 

enriched in ectosomes as clathrin (CLTC), MHC class I (HLA-A/ B), cell division control protein 

42 (CDC42), 14-3-3 proteins (YWHAZ/ E/ B/ G/ H/ Q), histones H1.4 / H1.0/ H2A (HIST1H1E 

/ H1F0/ HIST2H2AC), heat shock protein HSP90 (HSP90AB1/ AA1), heat shock 70 kDa 

protein (HSPA1A/ B, HSPA4) and heat shock protein 105 kDa (HSPH1) (Supplementary 

Figure 1A, Supplementary Table 2). Matrix metalloproteinase 2 (MMP2) is a protease in the 

extracellular matrix and it was previously described as an ectosomal marker [508, 509]. 

However, in our study we did not find an enrichment in matrix metalloproteinases proteins 

(Supplementary Table 2). 

Rabs are small GTPases that regulate numerous vesicle docking and fusion events, 

including the sorting and trafficking of MVBs to the plasma membrane [295]. Rabs form 
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complexes with proteins involved in membrane trafficking through the endocytic system and 

are usually used as markers of different endocytic compartments. Despite being frequently 

identified in exosomes, we also identified several Rab proteins in ectosomes (Supplementary 

Figure 1B, Supplementary Tables 1 and 2). In particular, Rab-1A/ 1B/ 4A/ 5B/ 27B (RAB1A/ 

1B/ 4A/ 5B/ 27B) were enriched in exosomes, while Rab-2A/ 5C/ 6A/ 6B/ 7A/ 8A/ 8B/ 9A/ 10/ 

11B/ 13/ 21/ 23/ 35 (RAB2A/ 5C/ 6A/ 6B/ 7A/ 8A/ 8B/ 9A/ 10/ 11B/ 13/ 21/ 23/ 35) were present 

in ectosomes (Supplementary Figure 1B, Supplementary Tables 1-2). Our findings suggest 

that Rab proteins may play unique roles in the biogenesis of distinct types of EVs. 

 

Figure 3. Protein hits enriched in ectosomes and exosomes. Volcano plots of quantitative differences in 

proteins in EVs fractions. (A) Endosomal sorting complexes required for transport (ESCRT) proteins present in 

A D

E

F

B

C



 44 

exosomes - alix (PDCD6IP), tumor susceptibility 101 (TSG101) and vacuolar protein sorting-associated proteins 

25/ 28/ 29/ 37B (VPS25/ 28/ 29/ 37B). (B) Tetraspanins proteins enriched in exosomes - CD9 antigen (CD9), CD63 

antigen (CD63), CD81 antigen (CD81) and tetraspanin-4, 6, 7, 9 (TSPAN4/ 6/ 7/ 9). (C) Commonly identified 

proteins in larger vesicles, as ectosomes - plexin-A1 (PLXA1), glutathione S-transferase (GSTP1), 

sodium/potassium-transporting ATPase (ATP1A1), ADP-ribosylation factor 6 (ARF6) and Epidermal growth factor 

receptor (EGFR). (D) Cytoskeletal proteins enriched in ectosomes - profilin-1 (PFN1), cofilin-1/ 2 (CFL1/ 2), 

vimentin (VIM), ezrin (EZR), moesin (MSN) tubulin beta chain (TUBB) and actin (ACTG1). (E) Metabolic enzymes 

identified in ectosomes - peroxiredoxin-1/ 2/ 6 (PRDX1/ 2/ 6), pyruvate kinase (PKM), alpha-enolase (ENO1) and 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH). (F) Annexin proteins enriched in ectosomes - annexin A1, 

A2, A3, A4, A5, A6, A7, A8, A11 (ANXA1/ 2/ 3/ 4/ 5/ 6/ 7/ 8/ 11). Blue dots represent the proteins enrichment in 

exosomes, while turquoise dots represent enrichment in ectosomes. Proteins in the plots are identified with their 

gene name. Dots above the dashed line represent proteins for which differences were significant (false discovery 

rate [FDR]<0.1). Data represented in “t-test Difference (Ectosomes - Exosomes)” vs. “-Log t-test p-value” from five 

independent samples for each group. Data analyses were performed using Perseus software. See also 

Supplementary Figure 1. 

Table 3. List of top 30 up-regulated proteins in ectosomes identified in this study organized according to the 

significance values (full list in Supplementary Table 2).  

Protein names Gene names Biological process -log10 (p-value) 

Band 4.1-like protein 2/ 3 EPB41L2/ L3 Actin cytoskeleton organization 9,852 

Plasma membrane calcium-transporting ATPase 1 ATP2B1 Ion transmembrane transport 7,567 

Phosphatidylinositol 4-kinase alpha PI4KA Actin cytoskeleton organization  7,239 

Tubulin-specific chaperone A TBCA Cellular component assembly 6,731 

Profilin-1 PFN1 Actin cytoskeleton organization 6,708 

MARCKS-related protein MARCKSL1 Regulation of cell proliferation 6,644 

4F2 cell-surface antigen heavy chain SLC3A2 Amine transport 6,412 

Cytoplasmic FMR1-interacting protein 1 CYFIP1 Axon extension 6,209 

Myelin protein zero-like protein 1 MPZL1 Cell communication 6,167 

Na(+)/H(+) exchange regulatory cofactor NHE-RF1 SLC9A3R1 Actin cytoskeleton organization 6,151 

Unconventional myosin-Ic MYO1C Cellular component organization 5,986 

Protein scribble homolog SCRIB Anatomical structure development 5,985 

N(G),N(G)-dimethylarginine dimethylaminohydrolase 1 DDAH1 Amine catabolic process 5,900 

2,3-cyclic-nucleotide 3-phosphodiesterase CNP Aging, synaptic transmission 5,696 

Sodium/potassium-transporting ATPase subunit alpha-1 ATP1A1 Cation homeostasis  5,640 

FERM, RhoGEF and pleckstrin domain-containing protein 1 FARP1 Actin cytoskeleton organization 5,604 

Integrin alpha-5 ITGA5 Cell projection organization 5,589 

Catenin delta-1 CTNND1 Axon guidance 5,556 

Charged multivesicular body protein 6 CHMP6 Adherens junction organization 5,507 

Basigin BSG Cellular component organization 5,349 

PDZ domain-containing protein GIPC1 GIPC1 
Anatomical structure 

morphogenesis 5,304 

Plastin-3 PLS3 Cell communication 5,244 

Peripheral plasma membrane protein CASK CASK Anatomical structure development 5,235 

Trifunctional purine biosynthetic protein adenosine-3 GART 
Calcium ion transmembrane 

transport 5,214 

14-3-3 protein epsilon YWHAE Protein binding 5,213 

Moesin MSN Cell migration 5,169 

Annexin-A6 ANXA6 Calcium ion binding 5,150 

Myristoylated alanine-rich C-kinase substrate MARCKS Calcium ion transport 5,105 

Guanine nucleotide-binding protein subunit alpha-13 GNA13 Activation of adenylate cyclase  5,054 

Ubiquitin-40S ribosomal protein S27a RPS27A Activation of MAPK activity 5,027 
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We also assessed if the proteins we identified in ectosomes are among the 100 most 

commonly identified EVs proteins, reported in the Vesiclepedia and ExoCarta databases 

(Supplementary Table 2 and 3) [503, 510]. Interestingly, we found 52 proteins in ectosomes 

that are common to this list (Table 4, Supplementary Table 2). Strikingly, cytoskeleton proteins 

and cytosolic glycolytic enzymes were absent from our exosomal fraction and were only 

identified in ectosomes (Supplementary Table 2).  

In summary, proteomic profiling revealed a diverse protein content in both ectosomes 

and exosomes but enabled us to identify a unique protein signature that enables their 

distinction. 

 

Table 4. Top 20 proteins identified in this study and present in the Top 100 proteins list of often identified in EVs 

(in total our study found 52 proteins enriched in ectosomes that are referred in the Top 100 list in vesiclepedia 

(Supplementary Table 3). 

Protein names Gene names Biological process -log10 (p-value) 

Profilin-1 PFN1 Actin cytoskeleton organization 6,708 

4F2 cell-surface antigen heavy chain SLC3A2 Amine transport 6,412 

Sodium/potassium-transporting ATPase subunit alpha-1 ATP1A1 Cation homeostasis 5,640 

14-3-3 protein epsilon, beta/alpha, theta, zeta/delta YWHAE/AB/Q/Z Amine metabolic process 5,213 

Moesin MSN Cell migration 5,169 

Annexin-A6 ANXA6 Calcium ion binding 5,150 

Peroxiredoxin-1 PRDX1 Anatomical structure homeostasis 4,263 

Fatty acid synthase FASN Acetyl-CoA metabolic process 4,138 

Guanine nucleotide-binding protein G GNAS Activation of adenylate cyclase  4,055 

Ras GTPase-activating-like protein IQGAP1 Biological regulation 3,751 

Annexin-A2 ANXA2 Calcium binding 3,628 

Integrin beta-1 ITGB1 Actin cytoskeleton organization 3,579 

Ezrin EZR Actin cytoskeleton organization 3,375 

Heat shock protein HSP 90-beta HSP90AB1 Cellular response to stress 3,294 

Ras-related protein Rab-10 RAB10 
Anatomical structure 

morphogenesis 3,255 

T-complex protein 1 subunit alpha TCP1 Cell recognition 3,167 

Annexin-A1 ANXA1 Innate immune response 3,162 

Ras-related protein Rab-7a RAB7A 
Antigen processing and 

presentation 3,137 

L-lactate dehydrogenase A chain LDHA Alcohol metabolic process 2,965 

Elongation factor 1-alpha 1 EEF1A1 Biosynthetic process 2,761 

 

Gene ontology enrichment terms are unique for ectosomes and exosomes 

To further understand the distinct biological roles of exosomes and ectosomes, we 

performed (GO) enrichment analysis using Perseus software (Figures 4 and 5). Signalling 

processes, immune response, as well as proteasomal and ubiquitination biological processes 

were enriched in exosomes (Figures 4A). Furthermore, most of the proteins identified were 

associated with proteasome, organelle, and vesicle cellular components, correlating with 

cytosolic molecular functions of these proteins (Figure 4B and C). Using STRING, we next 

assessed the physical and functional protein association networks, in order to identify known 
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and predicted protein-protein interactions [511, 512]. These analyses exhibited a cluster of 

protein-protein interactions involving proteasomal proteins, as highlighted in the KEGG 

pathway analyses (Figure 4D and E, Supplementary Figure 2).  

In ectosomes, several of the enriched biological processes were related with the 

regulation of biological and cellular processes, ion transport, actin regulation related pathways 

and signal transduction (Figure 5A). As expected, our molecular function hits included protein 

binding, enzymes, and cytoskeletal proteins (Figure 5B). Also, we found a significant 

enrichment of both glycolysis and gluconeogenesis, key processes of energy metabolism. A 

large fraction of the proteins identified were associated with plasma membrane, vesicles, 

cytoplasm and cell interaction and communication processes, thus enabling ectosomes to act 

as putative intercellular transporters (Figure 5C). Furthermore, KEGG pathway analyses 

revealed an enrichment of ectosomes in actin cytoskeleton processes and tight junctions, 

compatible with their plasma membrane origin and enrichment in membrane and cytoplasmic 

proteins (Figure 5D). STRING association network analyses revealed a large protein-protein 

interaction network, showing the diversity of proteins enclosed in the vesicles (Supplementary 

Figure 3).  

Overall, these findings suggest that ectosomes may be involved in cell communication, 

regulating cellular metabolism and organization, and transferring immune or pathological 

signals between cells. 
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Figure 4. GO terms for proteins enriched in exosomes. The following categories were evaluated: biological 

process (A), molecular function (B), cellular component (C), and KEGG pathways (D). Data from five independent 

samples for each group was analysed using Perseus software. See also Supplementary Figure 2.  
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Figure 5. GO terms for proteins enriched in ectosomes. The following categories were evaluated: biological 

process (A), molecular function (B), cellular component (C), and KEGG pathways (D). Data from five independent 

samples for each group was analysed using Perseus software. See also Supplementary Figure 3. 
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Validation of protein markers for ectosomes and exosomes 

To confirm the protein markers identified in the proteomic datasets, ectosomes and 

exosomes fractions were applied into immunoblots and analysed for several of the protein 

hits. Staining of ectosomes and exosomes fractions showed a similar total protein profile 

(Figure 6A, Supplementary Figure 4A). Notably, this was markedly different from what we 

observed in whole the cell lysates, and we also confirmed that the conditioned media used to 

collect EVs did not carry residual EVs from the FBS (Supplementary Figure 4B).  

In order to evaluate the EVs diversity in each fraction, the vesicles were applied into a 

sucrose gradient (Figure 6B). This enabled us to separate the EVs according to their floatation 

speed and equilibrium density, and to uncover the protein markers in each EVs type [513]. We 

found alix was uniformly distributed in the EVs, although in higher levels in exosomes. 

Interestingly, flotillin-1 was present in higher levels in light exosomes, and was slightly 

enriched in heavier ectosomes. Interestingly, annexin-A2 was specifically incorporated in 

lighter ectosomes, and was almost not detected in exosomes (Figure 6B).  

Additionally, we assessed the presence of several proteins in the proteomic analyses 

by immunoblot and compared their distribution among EVs (Figure 6C). Consistent with 

previous data, alix, flotillin-1, TSG101 and CD9 were significantly enriched in exosomes 

(Figure 6C) [496, 497, 499]. Conversely, annexin-A2 and annexin-A5 were significantly 

increased in ectosomes [496] (Figure 6C). MMP2 and CD54 are commonly identified in EVs, 

but in our samples we did not detect significant differences in their levels in the immunoblot 

analyses or in the proteomic results [508, 509, 514]. Importantly, calnexin and GM130, 

endoplasmic reticulum and Golgi apparatus markers, respectively, were absent from our 

preparations, confirming no cross-contamination in the fractions due to cell death (Figure 6C) 

[515]. 
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Figure 6. Validation of the proteomic profiling in ectosomes and exosomes. (A) MemCode staining 

demonstrates the total protein levels present in each fraction. (B) Ectosomes and exosomes were covered with a 

discontinuous sucrose step-gradient and fractions were applied into a Dot-Blot system and incubated with 

antibodies for alix, flotillin-1 and annexin-A2. (C) Immunoblots of HEK whole-cell lysates, ectosomes and exosomes 

fractions. Equal quantities of protein were separated on SDS-PAGE gels, and membranes were blotted with the 

indicated antibodies. Protein levels were normalized to total protein levels. Data from at least three independent 

experiments. Significant differences were assessed by one-way ANOVA followed by multiple comparisons with 

significance between groups corrected by Bonferroni procedure. Differences were considered to be significant for 

values of p<0.05 and are expressed as mean ± SD, ***p<0.001, ****p<0.0001. See also Supplementary Figure 4. 
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Markers of cell-derived EVs distinguish ectosomes and exosomes in human 

CSF  

CSF, the fluid bathing the central nervous system, is considered a relevant and 

accessible window into brain function and homeostasis. Therefore, we next asked whether 

the markers identified in our cell-derived EVs would enable us to distinguish EVs present in 

human CSF. Interestingly, ectosomes and exosomes purified from human CSF showed the 

presence of the same protein markers identified in EVs purified from the cell media (Figure 7). 

These results indicate that the protocol we used can be applied to different biofluids and 

confirm that the protein markers we identified are valid for EVs of different origins. 

 

Figure 7. Presence of ectosomal and exosomal markers in human CSF. (A) Total protein levels were visualized 

by staining with MemCode. (B) Immunoblot validation of annexin-A2 as ectosomes marker. Alix and flotillin-1 were 

also evaluated in the blot. 

 

Purification and visualization of EVs using high-resolution microscopy 

Several strategies have been established to enable the visualization of EVs in 

internalization experiments. These include incubation with dyes that bind to the membrane, or 

the expression of EVs-related proteins fused to fluorescent tags [516-520]. However, these 

strategies present several limitations, such as the leakage of the dye to the plasma membrane 

after labelled-EVs are internalized, or the incomplete labelling of fluorescent vesicles due to 

the heterogeneity of protein markers in EVs.  

Therefore, to overcome these obstacles, we developed a labelling strategy by stably 

expressing the green fluorescent protein (EGFP) in HEK cells and purifying ectosomes and 

exosomes from the cell media. As comparison, we labelled EVs using the thiol-based dye 

Alexa Fluor 633 C5-maleimide [521]. As expected, the EGFP signal co-localized with the 
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signal of labelled-EVs (Figure 8A). Interestingly, EGFP-labelled EVs could be imaged at higher 

resolution when compared with dye-labelled EVs.  

 

Figure 8. Visualization of ectosomes and exosomes using STED microscopy. (A) Representative image of 

primary cortical neurons treated with exosomes containing EGFP and labelled with thiol-based dye Alexa Fluor 

633 C5-maleimide (scale bar 5µm). Higher magnification images of the vesicles on the cell plasma membrane 

(dashed boxes in white) show the colocalization signal of the double labelling strategies (scale bar 1µm). (B) On 

the top, XY and ZX axis STED imaging of purified ectosomes and exosomes from HEK cells expressing EGFP tag 

(scale bars represent 1µm in XY and ZX axis). On the bottom, immunoblot of the vesicles displaying the 

incorporated levels of EGFP and respective vesicle protein markers. The immunoblot lanes represent a montage 

from the same blot. (C) STED imaging of purified ectosomes and exosomes from HEK cells expressing mCherry-

Annexin-A2 (scale bar 5µm). (D) STED images of purified ectosomes and exosomes containing EGFP and 

mCherry-Annexin-A2 (scale bar 1µm). See also Supplementary Figure 5. 
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When the EGFP-positive vesicles were visualized by stimulated emission depletion 

(STED) microscopy, ectosomes exhibited stronger fluorescence than exosomes (Figure 8B). 

Additionally, ectosomes incorporated higher levels of EGFP compared with exosomes, 

independent of their size or total protein levels (quantifications were normalized to total protein 

levels) (Figure 8B, Supplementary Figure 5A). The higher incorporation of EGFP in ectosomes 

might be related with its cytosolic expression, making it more available for incorporation into 

ectosomes. This is consistent with our finding of a greater number of cytoplasmatic proteins 

in ectosomes than in exosomes. 

Next, we further evaluated this labelling strategy and constructed an mCherry-annexin-

A2 stable cell line. Ectosomes showed stronger fluorescence intensity for annexin-A2 when 

compared with exosomes, further validating the enrichment of annexin-A2 in these vesicles 

(Figure 8C, Supplementary Figure 5B). Additionally, ectosomes purified from cells co-

expressing EGFP and mCherry-annexin-A2 exhibited the co-localization of both signals 

(Figure 8D). mCherry-annexin-A2 was also detected in exosomes using STED microscopy, 

albeit at lower levels (Figure 8D, Supplementary Figure 5B).  

In summary, stable expression of EGFP in cells allows the purification of fluorescently 

labelled EVs from media of cultured cells for high-resolution imaging studies without changing 

the levels of specific protein markers.  

 

Annexin-A2 as specific marker for ectosomes 

Annexins are abundant membrane-associated proteins that have been identified as 

EVs constituents [295, 496, 499, 500]. In our proteomic analyses, we found several annexin 

proteins enriched in ectosomes, such as annexin-A2 (Figure 3F, Supplementary Table 2). 

Using sucrose gradients and immunoblot analyses, we observed that annexin-A2 is markedly 

present in ectosomes (Figure 6B and C). Expression of mCherry-annexin-A2 in cells showed 

its higher incorporation in ectosomes using STED microscopy (Figure 8C-D, Supplementary 

Figure 5). Remarkably, ectosomes purified from human CSF also demonstrated an 

enrichment in annexin-A2 (Figure 7). Together, these results indicate that annexin-A2 is a 

specific marker of ectosomes from different origins. 

 

Neuronal cells take up ectosomes and exosomes at similar levels 

The uptake of EVs by recipient cells is a key step for intercellular communication. 

Therefore, we next investigated the internalization and intercellular transfer of both ectosomes 

and exosomes in vitro. Primary cortical neurons were seeded in microfluidic devices in order 
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to separate neuronal cell bodies from their axons and from second-order neurons that would 

be contacted by those axons (Figure 9A, Supplementary Figure 6A and B).  

Fluidic isolation was achieved using a volume difference between the soma and axon 

chambers [522]. At DIV14, neurons were treated with an equal amount of exosomes or 

ectosomes enriched with EGFP (20μg/mL) in the upper left well (input) (Figure 9A, 

Supplementary Figure 6A and B). Both ectosomes and exosomes were taken up and 

transferred between neurons. Visualization of the axons in the microgrooves revealed the 

colocalization of EGFP from the EVs with tubulin staining, demonstrating their internalization 

and transport in the cells (Figure 9A).  

To determine the internalization levels of ectosomes and exosomes in primary cortical 

neurons, Alexa Fluor 633 C5-maleimide-labelled EVs, with and without EGFP, were added to 

the medium at DIV14 to a final concentration of 20μg/mL. After 24 hours, cells were fixed, 

immunostained for MAP2 and analysed by confocal microscopy. Labelled EVs were observed 

as puncta predominantly in the cytoplasm of cells, confirming the internalization of ectosomes 

and exosomes (Figure 9B). PBS-treated neurons did not show positive signal for the dye, 

indicating that the dye efficiently bound to EVs (Figure 9B). Interestingly, ectosomes and 

exosomes were internalized at similar levels and the signal of EGFP and dye co-localized for 

double-labelled EVs (Figure 9B). Additionally, EVs treatment was not toxic to the neurons 

(Supplementary Figure 6C). Interestingly, after internalization, the EVs-EGFP signal was 

surrounded by LC3 staining, suggesting a possible engulfment and degradation of EVs in 

primary cortical neurons (Figure 9C).  
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Figure 9. Internalization and axonal transport of EVs by primary cortical neurons. (A) Primary cortical 

neurons were seeded in microfluidic devices to separate neuronal cell bodies. On the left, EVs containing EGFP 

were added to primary cortical neurons at DIV14 for 24 hours in the upper left input well (20μg/mL). On the right, 
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representative images of cortical neurons immunostained for tubulin demonstrating cytoplasmic internalization and 

axonal transport of ectosomes and exosomes. White arrowheads show the fluorescent signals within the cell (scale 

bar 5µm). (B) Primary cortical neurons were treated with 20μg/mL EVs at DIV14 for 24 hours. Ectosomes and 

exosomes without and with EGFP were previously labelled with the fluorescent dye Alexa Fluor 633 C5-maleimide. 

As a control, dye was incubated with PBS and monitored in the same manner. Representative images of cortical 

neurons immunostained for MAP2 to demonstrate cytoplasmic internalization of different EVs subtypes (scale bar 

5µm). Quantification of the internalized vesicles was performed by measuring the EVs dye or EGFP signal area 

per cell area internalized by neuronal cells. Data from at least three independent experiments. Significant 

differences were assessed by two-tailed unpaired t-test comparison and are expressed as mean ± SD. (C) Primary 

cortical neurons were treated with 20μg/mL of EGFP-enriched EVs at DIV14 for 24 hours. Representative images 

of cortical neurons immunostained for LC3 and cell membrane was labelled using WGA dye. White arrowhead 

indicates the fluorescent signals within the cell and higher magnification images are presented below each panel 

(scale bar 5µm). See also Supplementary Figure 6. 

 

Ectosomes modulate spontaneous activity of cortical neuronal networks 

Finally, we assessed the functional relevance of EVs. Since several cell types in the 

brain actively release EVs to the extracellular space, we hypothesized that neuronal function 

might be modulated by ectosomes and/or exosomes [523-526]. Therefore, we used multi-

electrode arrays (MEAs) to evaluate the effect of EVs internalization on spontaneous activity 

in primary cortical neuronal cultures [527]. Cells were cultured in MEA chambers until DIV14 

to allow the establishment of mature neuronal networks, and spontaneous firing activity was 

recorded 24 hours after incubation with 20μg/mL of EVs (Figure 10, Supplementary Figure 7). 

Representative raster plots and voltage traces show the typical firing activity and bursts events 

in neuronal cultures treated with PBS, ectosomes or exosomes (Figure 10A). Interestingly, 

assessment of bursting activity parameters showed that under EVs treatment, spikes bursts 

came more irregularly and showed increased duration (Figure 10B). Exosomes internalization 

also resulted in longer inter-burst intervals, decreased intra-burst spiking frequency, and a 

smaller percentage of spikes within the bursts, in contrast to ectosomes (Figure 10B). 

Although not significant, EVs treatment caused a slight reduction in the burst rate 

(Supplementary Figure 7C). In our cultures, we also observed a reduction in the mean firing 

rate after EVs internalization, with decrease of the average spike amplitude for the neurons 

treated with ectosomes (Supplementary Figure 7D). 
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Figure 10. EVs modulate spontaneous activity in primary cortical neurons. (A) On the left, representative 

raster plots of the spontaneous firing activities recorded from cortical neurons after incubation with 20µg/mL of EVs 

for 24 hours at DIV14, recorded using 60-electrode MEAs. Each row represents one single cell (20 cells shown) 

and each vertical line represents a single spike obtained on DIV15 [scale bar represents 10 seconds (s)]. On the 

right, representative voltage traces showing the typical firing activity and bursts events in neuronal cultures treated 

with PBS, ectosomes or exosomes (upper traces, scale bars represent 60µV and 6s). Closeups of the dashed 

boxes represent the spikes occurring within a burst ([lower traces, scale bars represent 60µV and 100 milliseconds 

(ms)]. (B) Bursting properties of the cortical neurons treated with EVs (burst duration, inter-burst intervals, intra-

burst spiking frequency and percentage of spikes in bursts). Data from at least three independent experiments for 

each condition. Significant differences were assessed by one-way ANOVA followed by multiple comparisons with 

significance between groups corrected by Bonferroni procedure. Differences were considered to be significant for 

values of p<0.05 and are expressed as mean ± SD, **p<0.01, ***p<0.001****, p<0.0001. See also Supplementary 

Figure 7. 

Altogether, these results suggest that ectosomes and exosomes can modulate 

important parameters of neuronal spontaneous activity and make the cultured neurons fire in 

a less synchronized and more irregular fashion. 
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Discussion 

EVs are important vehicles for remote intercellular communication and signalling. 

These vesicles encapsulate proteins, RNAs, lipids and signalling molecules that reproduce 

the cellular content of the origin cell and can modulate several processes in the recipient cells 

[528-530]. It is unclear how many different types of EVs are secreted by each cell type. The 

diversity in their size and content suggests that cells may secrete a large number of different 

types of vesicles, reflecting distinct physiological roles [310].  

The use of EVs as biomarkers has attracted significant interest in several areas of 

study. However, the use of different EVs purification methods, the absence of reliable markers, 

and the lack of comprehensive characterization, caused an accumulation of contradictory data 

and challenges in the study of EVs biology [295, 499, 500, 531]. Numerous studies have 

focused on the characterization and study of the biological function of exosomes. However, 

ectosomes remain largely understudied [528, 530, 532, 533]. Thus, understanding the role of 

ectosomes in intercellular communication, the mechanisms involved in their biogenesis, and 

the characterization of their content will shed light into their biological function and into how 

they may be used as disease biomarkers.  

In our study, we developed a differential ultracentrifugation protocol to efficiently and 

reproducibly isolate ectosomes and exosomes from diverse biofluids, including human CSF. 

We observed that ectosomes are larger and are released from cells in higher quantities when 

compared to exosomes. 

Inclusion or exclusion of cellular proteins into EVs appears to be based on controlled 

protein-sorting mechanisms during their biogenesis, rather than simply on protein abundance 

in the cell, in agreement with unique protein signatures for each EV subtype. For example, it 

is known that exosomes are distributed in subpopulations displaying distinct compositions 

and/or functions [306, 499]. Slight differences in protein content are also expected depending 

on the isolation protocol and cell type/tissue of origin. Our comprehensive proteomic analyses 

revealed singular proteomic profiles for ectosomes and exosomes that enabled us to establish 

protein markers that can be used for their biochemical distinction [309, 496, 499]. We have 

identified several membrane-associated proteins, such as annexin-A2 and annexin-A5, as 

markers for ectosomes. Furthermore, we confirmed that human CSF-derived ectosomes are 

also enriched in annexin-A2. As previously shown, CD9 and alix are specific markers for cell 

and CSF-derived exosomes [299, 496, 499].  

EVs in any biofluid comprise diverse subpopulations that can differ in composition and 

biogenic mechanisms. Therefore, the variety of machineries involved in the generation of EVs 

will result in differences in protein composition, lipids and RNA, thereby determining their 
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function and fate. In our study, we demonstrate that ectosomes and exosomes reflect distinct 

biological processes in the cells. The assessment of ectosomal content highlighted proteins 

and enzymes involved in processes occurring in the cytosol and plasma membrane. In 

contrast, exosomal content revealed proteins involved in precise biological processes, such 

as proteasomal activity. These results indicate that evaluation of different EVs from the same 

biofluid will provide comprehensive information on biological processes and on the status of 

the cells. Also, their composition might differ under normal and stress conditions, informing on 

the signals and cargoes transferred between cells, and reflecting physiological and 

pathological statuses.   

 Fluorescent labelling of EVs to investigate their internalization in cells remains 

challenging due to possible changes in their functionality. The majority of labelling strategies 

include the use of dyes which bind non-covalently to the membrane bilayer. However, dyes 

can aggregate or transfer signal to the cell plasma membrane after treatment with labelled-

EVs, resulting in misleading results from uptake experiments [516-518]. Other labelling 

methods include the use of stable cell lines that fuse GFP to protein markers in EVs [519, 

520]. Subsequently, only a subpopulation of EVs will be fluorescent due to EVs heterogeneity. 

Therefore, we fluorescently labelled EVs through the stable expression of EGFP in cells. 

EGFP signal co-localized with the signal of labelled-EVs using a thiol-based dye [521]. 

Interestingly, the EGFP signal allowed the imaging of EVs internalization with high-resolution, 

which will be useful for future studies of EVs biology. Furthermore, EGFP is more incorporated 

in ectosomes than in exosomes, likely as a result of EGFP availability in the cytoplasm and 

due to the distinct origins of the EVs. We also observed that stable expression of mCherry-

annexin-A2 resulted in its incorporation in higher levels in ectosomes than in exosomes, 

further confirming the use of annexin-A2 as an ectosomal marker. In summary, in our study 

we developed a simple and practical tool to fluorescently label EVs derived from cultured cells. 

This strategy takes advantage of the cytosolic expression of EGFP, without compromising the 

protein composition of the EVs.  

After the detailed biochemical characterization of both ectosomes and exosomes, we 

evaluated their internalization and functional implications in neuronal activity by treating 

primary cortical neurons with the different EVs. Neurons take up and transport both ectosomes 

and exosomes between cells and do not display any detectable signs of neurotoxic effects. 

The LC3 staining surrounding the EVs after internalization suggests at least a fraction enters 

in the cells as intact vesicles and are sorted for degradation by autophagy.  

Ectosomes and exosomes carry a complex assortment of biomolecules with distinct 

activities that become internalized by receptor cells, most probably producing distinct 

functional outputs. EVs have been hypothesized to play important roles in the nervous system 
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[295]. However, the potential role of ectosomes and exosomes in neural function is unclear. 

Assessment of neuronal network activity using MEA recordings demonstrated that 

spontaneous neuronal activity can be modulated by ectosomes and exosomes. Most 

importantly, EVs treatment disrupted the regular synchronized bursting activity neuronal 

cultures, resulting in overall lower and more disorganized spiking activity. We hypothesize that 

this reorganization of concerted neuronal activity might result from EVs acting on the 

presynaptic site, where they may decrease the release of synaptic vesicles. Previous studies 

showed that exosomes purified from microglial and oligodendroglial cells can also modulate 

neuronal activity [523, 526]. However, the impact of EVs on neuronal excitability in vivo 

remains understudied. 

Altogether, our study forms the foundation for future studies of EVs biology, 

demonstrates distinct biogenesis and, importantly, confirms distinct functional effects of 

exosomes and ectosomes in neuronal networks in vitro. Moreover, our work will aid efforts to 

discover future biomarkers for different human pathological conditions. 

 

Acknowledgments 

We thank Sabine König and Uwe Plessmann from Max Planck Institute for Biophysical 

Chemistry (Göttingen) and Christof Lenz from the Core Facility Proteomics at University 

Medical Center Göttingen (Göttingen) for helping with mass spectrometry analysis. TFO is 

supported by European Union’s Horizon 2020 research and innovation program under grant 

agreement No. 721802 (SynDegen), and by the Deutsche Forschungsgemeinschaft (DFG, 

German Research Foundation) under Germany’s Excellence Strategy - EXC 2067/1- 

390729940, by SFB1286 (B8). TG is supported by the European Research Council (ERC) 

under the European Union’s Horizon 2020 research and innovation programme (grant 

agreement number 724822). This work was partly supported by the Göttingen Graduate 

School for Neurosciences, Biophysics, and Molecular Biosciences (DFG grant GSC 226/4). 

Annexin-A2-GFP plasmid was kindly provided by Volker Gerke & Ursula Rescher (Plasmid 

#107196, Addgene) (Rescher, Zobiack et al. 2000). Figures were created with 

BioRender.com. 

 

Author contributions 

T.F.O. and I.C.B. conceived the study. I.C.B performed all the cell culture, molecular 

biology and imaging experiments. M.H.K and I.C.B stablished the spike sorting framework, 

performed MEA experiments and data analysis. D.R performed the EM experiments. I.P. 

evaluated the mass spectrometry data using MaxQuant. E.G prepared the lentiviral vectors 



 61 

used in the study. C.V.R provided the CSF material for the study. T.G. provided methodology 

and resources for the MEA experiments. I.C.B analysed and interpreted the data. I.C.B 

generated the graphs and figures. I.C.B. and T.F.O. wrote the manuscript. T.F.O. supervised 

the work.  

 

Declaration of Interests 

The authors declare no competing interests. 

 

 Materials and Methods 

Resource availability  

Lead contact for reagent and resource sharing 

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Tiago F. Outeiro (touteir@gwdg.de). 

Data and code availability 

Original data generated by this study are available upon request. 

 

Experimental model and subject details  

Human cerebrospinal fluid samples  

Human cerebrospinal fluid (CSF) samples were obtained with informed consent from 

adult volunteers and all experiments were performed in accordance with relevant guidelines 

and regulations. Samples were obtained from the CSF bank of the University Medical Center 

Göttingen (Göttingen, Germany). Samples were classified according to the disease 

diagnostics and information about sex and age were anonymized. CSF samples were stored 

in 0.5, 1.0 and 1.5mL aliquots at -80°C prior to analysis and were pooled for extracellular 

vesicles (EVs) isolation (10mL final volume). 

 

Neuronal culture 

Primary cortical neuronal cultures were prepared from C57BL6/J#00245 wild-type 

E15.5 embryos from the animal facility of the University Medical Center Göttingen (Göttingen, 

Germany), as previously described [534]. C57BL6/J#00245 background mice were bred and 

maintained under specific pathogen free conditions in the animal facility of the University 

Medical Center Göttingen (Göttingen, Germany). Animal procedures were performed in 

accordance with the European Community (Directive 2010/63/EU), institutional and national 
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guidelines (license number 19.3213). In detail, pregnant animals were sacrificed by carbon 

dioxide intoxication and the embryos extracted from the uterus. The meninges were removed, 

and the cortex was dissected under a stereomicroscope, and afterwards the tissue was 

transferred to ice-cold 1x Hanks balanced salt solution (CaCl2 and MgCl2 free; HBSS) (Gibco 

Invitrogen, CA, USA) supplemented with 0.5% sodium bicarbonate solution (Sigma-Aldrich, 

MO, USA). After trypsinization at 37°C for 15 minutes (min) (100μL of 0.25% trypsin; Gibco 

Invitrogen, CA, USA), the reaction was stopped by adding 100μL DNase I (0.5mg/mL, Roche, 

Basel, Switzerland) and 100μL fetal bovine serum (FBS) (Anprotec, Bruckberg, Germany). 

The tissue was gently dissociated using a glass pipette. After centrifugation at 300xg for 5 

min, cells were resuspended in pre-warmed neurobasal medium (Gibco Invitrogen, CA, USA) 

supplemented with 2% B27 supplement (Gibco Invitrogen, CA, USA), 1% penicillin-

streptomycin (PAN Biotech, Aidenbach, Germany) and 0.25% GlutaMAX (Gibco Invitrogen, 

CA, USA). Cells were seeded on coverslips coated with poly-L-ornithine (0.1mg/mL in borate 

buffer; PLO) (Sigma-Aldrich, MO, USA) or culture plates (Corning, Merck, Darmstadt, 

Germany) for immunocytochemistry and western blot experiments. Cells were maintained at 

37°C with 5% CO2, and fresh medium was added every 3-4 days. 

 

Human embryonic kidney cells 

Human embryonic kidney (HEK) 293 cells (ATTC, VA, USA) were maintained in DMEM 

medium (PAN Biotech, Aidenbach, Germany) supplemented with 10% FBS (Anprotec, 

Bruckberg, Germany) and 1% penicillin- streptomycin (PAN Biotech, Aidenbach, Germany) at 

37°C in a 5% CO2 atmosphere. Stable cell lines expressing pRRL-CMV-EGFP-PRE-SIN, 

FUGW-mCherry-Annexin-A2 or FUGW-mCherry were developed by lentiviral infection of HEK 

293 cells. Cells were incubated during 5 days with the virus and after three passages the 

infection rate was confirmed by microscopy (more than 90% of positive cells).  

 

Method details 

Lentivirus production protocol  

Production of lentivirus pRRL-CMV-EGFP-PRE-SIN, FUGW-mCherry-Annexin-A2 

and FUGW-mCherry was performed as previously described [535]. HEK 293 cells were 

seeded in culture plates (Corning, Merck, Darmstadt, Germany) and incubated overnight at 

37°C with 5% CO2 in DMEM (PAN Biotech, Aidenbach, Germany) supplemented with 10% 

FBS (Anprotec, Bruckberg, Germany) and 1% penicillin-streptomycin (PAN Biotech, 

Aidenbach, Germany). On the next day, cells were incubated with transfection medium 

containing DMEM with 2% FBS (Anprotec, Bruckberg, Germany) for 5 hours (h) before 
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transfection. Calcium phosphate (CaPO4) precipitation method was used for transfection with 

a plasmid mix [144μg of Delta 8.9 packaging virus, 57.9μg vesicular stomatitis virus 

glycoprotein (VSVG) packing virus and 160μg of the plasmid of interest]. DNA mix was added 

to 6 mL of 1x BBS (50 mM BES, 280 mM NaCl, 1.5 mM Na2HPO4) and 0.36 mL CaCl2 (2.5M 

CaCl2) was added to the mixture in a vortex shaker. Solution was incubated 20min in the dark 

before adding to the cells. On the next day, the medium was changed to Panserin (PAN 

Biotech, Aidenbach, Germany) supplemented with 1% of non-essential amino acids (MEM, 

Gibco Invitrogen, CA, USA) and 1% penicillin- streptomycin (PAN Biotech, Aidenbach, 

Germany). Viruses were harvested 72h after transfection, centrifuged at 3000xg for 15min at 

4°C. The supernatant was cleared of cell debris by filtering through a 0.45µm filter (Corning, 

Merck, Darmstadt, Germany) and mixed with 1x PEG solution (SBI System Bioscience, CA, 

USA) to pellet the virus. After 2 days of incubation at 4°C, viruses were spin down by 

centrifugation at 1500xg during 30min at 4 °C. Supernatant was discarded and the pellet was 

resuspended in Panserin (PAN Biotech, Aidenbach, Germany). 

 

Microfluidic chambers  

Triple compartment neuron silicone devices (TCND1000) with 2 microgroove barriers 

of 500μm with a 1000μm central compartment were obtained from Xona microfluidics and 

prepared for neuronal cell culture as previously described [522, 536] and following the 

manufacturer’s instructions (Xona microfluidics, NC, USA). Experiments were performed as 

previously described [537]. Cover glass 24mm x 40mm (Corning, Merck, Darmstadt, 

Germany) and microfluidic devices were rinsed with 70% ethanol (Sigma-Aldrich, MO, USA) 

and water under sterile conditions. Cover glass were coated with poly-L-lysine (0.5 mg/ mL in 

borate buffer; PLL) (Sigma-Aldrich, MO, USA). After bonding the microfluidic devices to glass 

coverslips, neurons were seeded in the soma channels and incubated at 37°C, 5% CO2, in a 

humidified incubator. Furthermore, the second and third chambers were filled with more 

neuronal cell media than in the first chambers. The volume difference between the chambers 

resulted in continuous hydrostatic pressure barrier, which also prevented diffusion of EVs from 

the treated chamber into others. Treatment was performed at days in vitro (DIV) 14 and the 

cells fixed for immunocytochemistry at DIV15 (see immunocytochemistry section). 

 

Immunocytochemistry experiments 

After treatment, primary and cell lines cultures were first washed with 1x PBS (PAN 

Biotech, Aidenbach, Germany) and fixed with 4% of paraformaldehyde solution (PFA) for 

20min at room temperature (RT). In order to quench PFA autofluorescence, samples were 

incubated with 50 mM of ammonium chloride (NH4Cl) solution for 30min. In order to label the 
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plasma membrane, cells were incubated during 10 min with wheat germ agglutinin (WGA) 

Alexa FluorTM 633 conjugate in 1x HBSS at RT (5.0 µg/mL; W21404, Invitrogen, CA, USA). 

Cells were washed with 1x PBS (PAN Biotech, Aidenbach, Germany). Cells were 

permeabilized with 0.1% Triton X-100 (Sigma-Aldrich, MO, USA) for 10min. Following 

permeabilization, cells were blocked with 2% bovine serum albumin (BSA) in 1x PBS (Sigma-

Aldrich, MO, USA) for 1h at RT and then incubated with the primary antibodies overnight at 

4°C [alpha-tubulin (1:500, T9026, Sigma-Aldrich), MAP2 (1:500, 17490-1-AP, Proteintech), 

LC3 (1:500, PM036, MBL International)]. Afterwards, the cells were washed with 1x PBS (PAN 

Biotech, Aidenbach, Germany) and then with fluorescence conjugated secondary antibodies 

for 2h at RT [Alexa Fluor 555 donkey anti-rabbit (1:1000, A31572, Invitrogen), Alexa Fluor 555 

donkey anti-mouse (1:1000, A31570, Invitrogen)]. Finally, nuclei were counter-stained with 

DAPI (Carl Roth, Karlsruhe, Germany) and mounted with mowiol for microscopy.  

 

Western blots 

Cultured cells were collected and lysed in RIPA buffer (50 mM Tris, pH 8.0, 0.15 M 

NaCl, 0.1% SDS, 1.0% NP-40, 0.5% Na-Deoxycholate, 2mM EDTA, supplemented with 

protease and phosphatase inhibitors cocktail (cOmpleteTM protease inhibitor and PhosSTOPTM 

phosphatase inhibitor; Roche, Basel, Switzerland). Protein concentrations in the lysates were 

determined by the Bradford protein assay (Bio-Rad, CA, USA). 30µg of protein were 

denaturated 5min at 95°C, loaded into 12% SDS-PAGE gels and transferred to nitrocellulose 

membranes using iBlot2 (Invitrogen, CA, USA). Membranes were blocked with 5% skim milk 

(Sigma-Aldrich, MO, USA) in Tris-buffered saline (pH 8) with 0.05% Tween 20 (TBS-T) and 

then incubated with the appropriate primary antibody overnight in 5% BSA (Sigma-Aldrich, 

MO, USA) in TBS-T at 4°C [alix (1:1000, ab117600, Abcam), annexin-A5 (1:1000, 8555, Cell 

signaling), annexin-A2 (1:1000, ab178677, Abcam), calnexin (1:1000, ab22595, Abcam), 

CD54 (1:1000, 4915, Cell signaling), CD9 (1:1000, 13174, Cell signaling), flotilin-1 (1:1000, 

18634, Cell signaling), GFP (1:1000, 11814460001, Roche), GM130 (1:1000, 12480, Cell 

signaling), MMP2 (1:1000, sc-13595, Santa Cruz), TSG101 (1:1000, ab30871, Abcam), 

mCherry (1:1000, ab167453, Abcam)]. After three washes with TBS-T, membranes were 

incubated for 2h with horseradish peroxidase (HRP) conjugated secondary antibodies [ECL™ 

Mouse IgG (1:10000, NXA931, Amersham), ECL™ Rabbit IgG (1:10000, NA934V, 

Amersham)]. After incubation with the secondary antibody, membranes were washed three 

times with TBS-T and developed in a chemiluminescence system (Fusion FX Vilber Lourmat, 

Vilber, France) using chemiluminescent HRP substrate (Millipore, MA, USA). Intensities of 

specific bands were normalized to a protein loading control or to the total protein levels marked 

using MemCode™ Reversible Protein (Thermo Fisher Scientific, MA, USA).  
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Isolation of extracellular vesicles 

Isolation of ectosomes and exosomes was performed using an adapted protocol from 

previous studies [317, 497]. HEK 293 cells were grown in conditioned medium (depleted of 

FBS-derived exosomes), produced as previously described [497]. Briefly, DMEM (PAN 

Biotech, Aidenbach, Germany) supplemented with 20% FBS (Anprotec, Bruckberg, Germany) 

and 2% penicillin-streptomycin (PAN Biotech, Aidenbach, Germany) was centrifuged in 

polypropylene tubes (Optiseal; Beckman Coulter, CA, USA) in a fixed rotor (type 70 Ti; 

Beckman Coulter, CA, USA) during 16h at 100 000xg, 4°C. The depleted medium was then 

diluted with DMEM medium (PAN Biotech, Aidenbach, Germany) in order to reach the final 

supplements concentration required to make the conditioned medium. The cells were seeded 

in T75 cm2 flasks (Corning, Merck, Darmstadt, Germany) and grew until 80% confluency, then 

were washed with warm 1x PBS (PAN Biotech, Aidenbach, Germany) and incubated with 

14mL of fresh conditioned media during 24h. The media was collected and placed on ice 

before centrifuging for 10min at 300xg at 4°C to pellet cell debris. The supernatant was 

collected for new tubes and frozen in 13mL aliquots at -80°C for further analyses. To isolate 

EVs, the supernatant was thawed in ice and centrifuged 20min at 2 000xg, 4°C. All the 

isolation protocol was performed in the cold room at 4°C and the samples were maintained in 

ice. 12mL of the supernatant was transferred into ultra-clear tubes (Beckman Coulter, CA, 

USA) and centrifuged in a swing rotor (TH-641 Sorvall; Thermo Fisher Scientific, MA, USA) 

during 90min at 20 000xg, 4°C. 11mL of the medium was carefully transferred into a new 

centrifuge tube with a sterile pipette and the pellet containing ectosomes was resuspended in 

ice cold 1x PBS (PAN Biotech, Aidenbach, Germany). The medium was again centrifuged in 

a swing rotor (TH-641 Sorvall; Thermo Fisher Scientific, MA, USA) during 90min at 100 000xg 

(4°C) to generate exosomes. The supernatant was discarded and the pellet containing 

exosomes was resuspended in ice cold 1x PBS (PAN Biotech, Aidenbach, Germany) with 

protease and phosphatase inhibitors (cOmpleteTM protease inhibitor and PhosSTOPTM 

phosphatase inhibitor; Roche, Basel, Switzerland). Both ectosomes and exosomes pellets 

were again centrifuged at the correspondent velocities in order to concentrate and clean the 

pellets. Afterwards the supernatant was removed completely by inverting the tubes and the 

pellets were resuspended in 100µl of 1x PBS (PAN Biotech, Aidenbach, Germany). Protein 

concentrations were determined by the BCA Protein assay (Thermo Fisher Scientific, MA, 

USA). 

 

Labelling of the EVs  

Labelling of EVs was performed as previously described [521]. Briefly, Alexa Fluor 633 

C5-maleimide (200μg/mL; A20342, Invitrogen, Carlsbad, California, CA, USA) was added to 
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an aliquot of EVs purified after ultracentrifugation containing 60-100µg of total protein for a 

final volume of 50μL in 1x PBS (PAN Biotech, Aidenbach, Germany). Samples were incubated 

for 1h with no agitation in the dark at RT. Non-incorporated and excess of dye was removed 

by washing the sample in 1x PBS (PAN Biotech, Aidenbach, Germany) and centrifugation 

during 90min at 20 000xg (4°C) for ectosomes and at 100 000xg for 90min for exosomes (4°C) 

in a swing rotor (TH-641 Sorvall; Thermo Fisher Scientific, MA, USA). As a control, 1x PBS 

(PAN Biotech, Aidenbach, Germany) without EVs was also incubated with the dye and 

performed in parallel to confirm dye removal by washing with 1x PBS (PAN Biotech, 

Aidenbach, Germany) and ultracentrifugation. For microscopy analysis, labelled EVs were 

gently mixed with mowiol and applied into PLO-coated coverslips and glass slides.  

 

Sucrose gradient 

Sucrose gradient centrifugation was performed from crude vesicle pellets adapted 

from previous studies [497, 538]. Sucrose stock solutions (10, 16, 22, 28, 34, 40, 46, 52, 58, 

64, 70 and 90%) (Sigma-Aldrich, MO, USA) were prepared in 1x PBS (PAN Biotech, 

Aidenbach, Germany). The crude exosome and ectosome preparations (in 100μL PBS) were 

resuspended in 1mL of 90% sucrose stock solution (82% final sucrose concentration). Each 

sample was transferred to an ultra-clear centrifuge tube (Beckman Coulter, CA, USA) and 

overlayed with the rest of the gradient stocks on top starting with 1mL of 70% sucrose solution 

and the last with 10% solution, in order to make a gradient going from the highest to lowest 

sucrose concentration. Samples were centrifuged for 16h at 100 000xg at 4°C (TH-641 

Sorvall; Thermo Fisher Scientific, MA, USA) and afterwards 1mL fractions were collected 

starting from the top to bottom. Fractions were resuspended in 1x PBS (PAN Biotech, 

Aidenbach, Germany) and centrifuged 100 000xg at 4°C for 90min (TH-641 Sorvall; Thermo 

Fisher Scientific, MA, USA). The final pellets were resuspended in 1x PBS (PAN Biotech, 

Aidenbach, Germany) and applied into a DotBlot system with a 0.2µm nitrocellulose 

membrane (Bio-Rad, CA, USA).  

 

NTA analysis 

Particle number and size distribution in ectosomes and exosomes samples were 

determined by nanoparticle tracking analysis (NTA) using a NanoSight LM10 instrument and 

a LM14 viewing unit equipped with a 532 nm laser (NanoSight, Salisbury, UK). Total EVs 

samples were diluted in 1x PBS (PAN Biotech, Aidenbach, Germany) to a final volume of 

400mL prior to analysis, according to the manufacturer recommendations. Data was recorded 

using NTA 2.3 software with a detection threshold of 5, captured with a camera level of 16 at 
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25°C, in videos of 5 x 60 seconds (s) repeated 4 times and averaged for each biological 

replicate.  

 

Electron microscopy 

Electron microscopy images from ectosomes and exosomes was performed following 

a protocol previously described [497]. Isolated EVs were bound to a glow discharged carbon 

foil covered grids. After staining with 1% uranyl acetate (aq.), the samples were evaluated at RT 

with a Talos L120C transmission electron microscope (Thermo Fisher Scientific, MA, USA). 

 

Proteomic analyses of EVs  

Samples were resuspended in Laemmli sample buffer and separated by SDS-PAGE. 

The entire lane was subsequently cut in 23 gel pieces and tryptically digested, as previously 

described [539]. Peptides extracted from the gel pieces were analysed in technical triplicates 

by liquid chromatography coupled to mass spectrometry (LC-MS) on a Dionex UltiMate 3000 

RSLCnano system connected to an Orbitrap Fusion mass spectrometer (Thermo Fisher 

Scientific, MA, USA). Peptides were separated by a 43min gradient ranging from 8% to 37% 

acetonitrile on an in-house packed C18 column (75µm x 30cm, Reprosil-Pur 120C18-AQ, 

1.9µm, Dr. Maisch GmbH, Ammerbuch, Germany) at 300 nl/min flow rate. MS1 spectra were 

acquired with 120 000 resolution (full width at half maximum, FWHM) and a scan range from 

350 to 1,600 m/z. Within a cycle time of 3s, precursor ions with a charge state between +2 

and +7 were selected individually with a 1.6 m/z isolation window and were fragmented with 

a normalized collision energy of 35 by higher energy collisional dissociation (HCD). MS2 

spectra were acquired in the ion trap with 20% normalized AGC and dynamic injection time. 

Once selected precursors were excluded from another fragmentation event for 30s. Raw 

acquisition files were subjected to database search with Maxquant (version 1.6.2.10) [540] 

against the reference proteome of Homo sapiens (downloaded on 19/2019). Default settings 

were used unless stated differently below. Fractions were defined according to the cutting of 

the gel lanes and experiments were defined on the level of technical replicates. Unique and 

razor peptides were used for label-free quantification. 

Data analysis was performed with Perseus (version and 1.6.15.0) [541]. Reverse hits, 

potential contaminants and hits only identified by site were filtered out. Quantitative values 

were averaged across technical replicates ignoring missing values. A two-sample t-test was 

performed on biological replicates of ectosomes and exosomes with an artificial within groups 

variance (s0) of 0.1 and a permutation-based FDR of 0.1 for multiple testing correction. 

Results were visualized by volcano plots. To assess the reproducibility of the experiments 
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within the biological replicates of each cell extracellular vesicle type, we employed principal 

component analysis (PCA), which was performed using the Perseus built-in tool. The EVs 

subtype-signature proteins were selected by extracting in Perseus the proteins with the most 

distinct expression profiles between the different subtypes. For hierarchical clustering, 

normalized intensities were first z-scored and then clustered using Euclidean as a distance 

measure for column and row clustering. GO enrichment analyses were performed using 

Perseus software and the human proteome as background (”mainAnnot.homosapiens.txt.gz, 

downloaded in 04/ 2021). Enrichment was considered statistically significant using Fisher 

exact test and corrected for multiple testing by the Benjamini-Hochberg FDR method with 

adjusted 0.02 threshold value (GO terms were plotted as -log10 of the p value). Gene ontology 

analyses were performed using the hit proteins identified in each EVs type. 

 

Internalization experiment with EVs 

Primary cortical neurons were treated with 20μg/mL of ectosomes or exosomes 

resuspended in 1x PBS (Sigma-Aldrich, MO, USA). EVs were added to cortical neurons at 

DIV14 and collected for further analyses at DIV15, 24h after the treatment.  

 

Lactate DeHydrogenase assay 

Cytotoxicity in primary and cell line cultures was assessed using the cytotoxicity 

Lactate DeHydrogenase (LDH) detection kit according to the manufacturer’s instructions 

(Roche, Basel, Switzerland). The culture medium was centrifuged at 500xg for 5min to pellet 

cell debris before used in the experiments. 

 

Multi-electrode array 

Multi-electrode array (MEA) experiments were performed following standard protocols 

for MEA recordings [523-526, 542, 543]. Primary cortical neuronal cultures were plated directly 

on 60MEA200/30iR-Ti-gr planar arrays (60 electrodes, 30µm electrode diameter and 200µm 

electrode spacing; MultiChannel Systems, Reutlingen, Germany). The arrays were coated 

with PLL (500µg/mL in borate buffer; Sigma-Aldrich, MO, USA) overnight at 4°C. The arrays 

were rinsed three times with distilled water before coating with laminin (5µg/mL in distilled 

water; Sigma-Aldrich, MO, USA) for at least 1h at RT. The solution was aspirated, and the 

cells were directly plated on top of the electrodes. Neurons were treated with 20µg/mL of EVs 

at DIV14 and recorded at DIV15, 24h after the treatment. The neuronal activity over the array 

was recorded using the MultiChannel MEA2100 system (MultiChannel Systems, Reutlingen, 

Germany) and the cells were kept in their culture medium with temperature maintained at 35-
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37°C during recordings. To avoid movement-induced artifacts, recordings started 10min after 

translocation of arrays from the incubator to the recording stage. The spontaneous activity of 

the cultured neurons was recorded for 5 - 10 min. The electrode signals were amplified, band-

pass filtered (200 Hz to 3 kHz) and recorded digitally at 25 kHz, using the MultiChannel 

Experimenter software (version 2.17.7.0, MultiChannel Systems, Reutlingen, Germany). 

Spike sorting was carried out using a modified version of the Kilosort automatic sorting 

software [544, 545] (available at: https://github.com/MouseLand/Kilosort and 

https://github.com/dimokaramanlis/KiloSortMEA). The output of Kilosort was visually 

inspected and manually curated with the “Phy 2” software (https://github.com/cortex-lab/phy). 

Only those clusters of spikes (“units”) with a well-separated spike waveform and a clear 

refractory period were included in the final analysis and considered as coming from individual 

cells. The spike clusters were pre-processed and analysed using custom-made MATLAB 

scripts (Version: 9.7.0, R2019b; Mathworks, MA, USA). The raster plots, average firing rate 

and spike amplitude were measured from the spontaneous activity of each recorded cell. In 

all our recordings, we observed frequent “bursts” - groups of spikes occurring rapidly and 

consecutively with short inter-spike intervals [less than few tens of milliseconds (ms)], followed 

by quiescent periods much longer than typical inter-spike intervals (in our recordings generally 

several seconds). The bursts typically occurred synchronously for multiple cells over the array 

and in our analysis, we focused on such population-wide synchronized bursts. To detect the 

concurrent bursts, we computed the population firing rate as a histogram (100ms bin size) of 

array-wide spiking activity. The peaks of the firing rate histogram were used to detect 

synchronous, array-wide bursts with at least 500ms distance between two consecutive peaks. 

The peaks that were smaller than 1/5 of the largest peak were excluded as they do not 

correspond to array-wide, synchronous activity. A time window of 650ms around each peak 

(150ms before to 500ms after) was defined as the burst window (onset and offset of each 

burst). For each recorded cell, the spikes belonging to bursts were measured during the 

defined burst windows, and cells with fewer than six spikes across all their detected bursts 

were excluded from this analysis. From the detected bursts, the following parameters were 

calculated: (1) burst rate of the culture as the number of bursts per time over the duration of 

each recording; (2) inter-burst-interval as the time between the measured offset of a burst and 

the onset of the following burst, calculated for each pair of successive bursts in a recording; 

(3) burst duration for each cell as the time between the cell’s first and last spike during the 

burst window; (4) intra-burst-frequency as the rate of spikes occurring within a burst, averaged 

over all the detected bursts for each cell; and (5) percentage of spikes in bursts as the ratio of 

spikes occurring during bursts relative to the total number of spikes for each cell. 

 

https://github.com/MouseLand/Kilosort
https://github.com/cortex-lab/phy
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Confocal imaging 

Imaging was performed on a Leica SP5 confocal laser scanning microscope equipped with 

hybrid detectors using Application Suite X software with 100x immersion objective lenses 

(Leica Biosystems, Wetzlar, Germany). Samples were excited using 405 Diode, argon and 

helium–neon 633 lasers, pinhole = 1, 0.2 µm thickness Z stacks and 2 averaging line-by-line. 

The acquisition settings were optimized to avoid underexposure and oversaturation effects 

and kept equal throughout image acquisition of the samples. 

 

STED microscopy 

Samples were imaged using an inverse 4-channel Expert Line easy3D STED setup (Abberior 

Instruments, Göttingen, Germany). The setup was based on an Olympus IX83 microscope 

body equipped with a plan apochromat 100x 1.4 NA oil-immersion objective (Olympus). 

Fluorescence lasers 595 nm and 775 nm (Abberior Instruments, Göttingen, Germany) were 

utilized for the imaging. Fluorescence signal was detected using avalanche photodiodes 

detectors (Abberior Instruments, Göttingen, Germany) in predefined channels. The operation 

of the setup and the recording of images were performed with the Imspector software, version 

0.14 (Abberior Instruments, Göttingen, Germany). 

 

Quantification and statistical analysis 

Images were analysed using ImageJ software (National Institutes of Health) [546]. To 

analyse the degree of EVs uptake in neuronal cells, measurement of EVs and cell area was 

performed from isolated areas chosen randomly within regions containing EVs signal. All data 

are presented as mean ± SD. Data from at least three independent experiments and each 

replicate represents one independent experiment. To assess differences between two groups, 

two-tailed unpaired student t-test was performed using GraphPad Prism 9 software 

(GraphPad, CA, USA). To assess differences between more than two groups, significant 

differences were assessed by one-way ANOVA followed by multiple comparisons with 

significance between groups corrected by Bonferroni procedure using GraphPad Prism 9 

software (GraphPad, CA, USA). Differences were considered to be significant for values of 

p<0.05 and are expressed as mean ± SD. For mass spectrometry, the spectral count 

differences between samples were considered to be significant for FDR values<0.1 (see 

proteomic analyses section). 
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Supplementary Figures 

 

Supplementary Figure 1. Protein hits enriched in ectosomes and exosomes. Volcano plots of quantitative 

differences in proteins in EVs fractions. (A) Other proteins enriched in ectosomes - clathrin (CLTC), cell division 

control protein 42 (CDC42), integrin alpha-1/ 2/ 5/ 6 (ITGA1/ 2/ 5/ 6), 14-3-3 proteins (YWHAZ/ E/ B/ G/ H/ Q), 

histones H1.4 / H1.0/ H2A (HIST1H1E / H1F0/ HIST2H2AC), heat shock protein HSP90 (HSP90AB1/ AA1), heat 

shock 70 kDa protein (HSPA1A/ B, HSPA4) and heat shock protein 105 kDa (HSPH1). (B) Ras-related proteins 

(Rabs) identified in EVs - in exosomes Rab-1A/ 1B/ 4A/ 5B/ 27B (RAB1A/ 1B/ 4A/ 5B/ 27B), in ectosomes Rab-2A/ 

5C/ 6A/ 6B/ 7A/ 8A/ 8B/ 9A/ 10/ 11B/ 13/ 21/ 23/ 35 (RAB2A/ 5C/ 6A/ 6B/ 7A/ 8A/ 8B/ 9A/ 10/ 11B/ 13/ 21/ 23/ 35). 

Blue dots represent the proteins enrichment in exosomes, while turquoise dots represent enrichment in ectosomes. 

Proteins in the plots are identified with their gene name. Dots above the dashed line represent proteins for which 

differences were significant (false discovery rate [FDR] <0.1). Data represented in “t-test Difference (Ectosomes - 

Exosomes)” vs. “-Log t-test p-value” from five independent samples for each group. Data analyses were performed 

using Perseus software. 

 

B A 
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Supplementary Figure 2. Functional protein association networks were plotted by using the STRING 

database. The exosomal proteins significantly identified in our study show robust networks and significant overlap. 

The line thickness represents the confidence of the association (https://version-11-0b.string-

db.org/cgi/network?networkId=br68rv2GDNdl ).  

 

https://version-11-0b.string-db.org/cgi/network?networkId=br68rv2GDNdl
https://version-11-0b.string-db.org/cgi/network?networkId=br68rv2GDNdl
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Supplementary Figure 3. Functional protein association networks were plotted by using the STRING 

database. The ectosome proteins significantly identified in our study show robust networks and significant overlap. 

The line thickness represents the confidence of the association (https://version-11-0b.string-

db.org/cgi/network?networkId=bwoR4jPEXhpC ).  

https://version-11-0b.string-db.org/cgi/network?networkId=bwoR4jPEXhpC
https://version-11-0b.string-db.org/cgi/network?networkId=bwoR4jPEXhpC
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Supplementary Figure 4. Conditioned media used for the experiments does not contain residual EVs. (A) 

Memcode staining from four different replicates from ectosomes and exosomes pellets purified from different media 

collections showing the efficiency in the isolation protocol. (B) Immunoblot of ectosomes and exosomes released 

by HEK cells, EVs that are present in the conditioned cell media without incubation with the cells and whole-cell 

lysate. Equal quantities of protein were separated on SDS-PAGE gels, and membranes were blotted for alix, flotillin-

1 and Annexin-A2.  

 

 

Supplementary Figure 5. Characterization of EGFP and annexin-A2 levels in EVs. (A) Immunoblot showing 

the levels of EGFP in ectosomes and exosomes and several EVs markers. (B) Immunoblot displaying the levels of 

mCherry-Annexin-A2 and flotillin-1 in EVs. 
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Supplementary Figure 6. Cellular uptake of EVs by primary cortical neurons. (A) Primary cortical neurons 

were seeded in microfluidic devices to separate neuronal cell bodies. EVs containing EGFP were added to primary 

cortical neurons at DIV14 with 20μg/mL of ectosomes or exosomes for 24 hours in the upper left well of the device. 

(B) Top panel shows contrast light images of the primary cortical neurons growing in microfluidic devices. Bottom 

panel shows neurons cell bodies and axons labelled with membrane cell dye Alexa Fluor 633 C5-maleimide (scale 

bar 100µm). (C) Lactate DeHydrogenase (LDH) measurements show that EVs enriched with EGFP or labelled with 

dye show similar low toxicity for the primary cortical neurons.  
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Supplementary Figure 7. EVs modulate spontaneous activity in primary cortical neurons. (A) MEA 

recordings were used to monitor neural spike firing after treating primary cortical neurons with 20μg/mL of 

ectosomes or exosomes at DIV14 for 24 hours. Schematic representation shows the steps performed for the data 

analysis. (B) Phase-contrast image of primary cortical neurons cultured on an MEA chamber. (C) Bursts rate (per 

minute) of the cortical neurons treated with EVs. (D) Quantification of the mean firing rate and average spike 

amplitude of primary cortical neurons incubated with PBS, ectosomes or exosomes. Data from at least three 

independent experiments for each condition. Significant differences were assessed by one-way ANOVA followed 

by multiple comparisons with significance between groups corrected by Bonferroni procedure. Differences were 

considered to be significant for values of p < 0.05 and are expressed as mean ± SD, *p<0.05, **p<0.01.  

D C 

A B 
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Supplementary Tables 

Supplementary Table 1. List of significantly altered proteins identified in exosomes. Common proteins (11) in the 

list of Top 100 proteins often identified in EVs are highlighted in bold (see Supplementary Table 3). 

Protein names Gene names -log10(p-value) 

Alix PDCD6IP 4,836 

Glycogen phosphorylase, muscle form PYGM 4,300 

Proteasome subunit beta type-1 PSMB1 4,098 

Glycogen phosphorylase, liver form PYGL 4,097 

Proteasome subunit alpha type-7 PSMA7 3,984 

Proteasome subunit beta type-7 PSMB7 3,752 

Asporin ASPN 3,734 

Proteasome subunit alpha type-6 PSMA6 3,695 

Proteasome subunit beta type-5 PSMB5 3,652 

Homogentisate 1,2-dioxygenase HGD 3,611 

Receptor-type tyrosine-protein phosphatase  PTPRM 3,610 

Vacuolar protein sorting-associated protein 28 homolog VPS28 3,525 

Proteasome subunit alpha type-2 PSMA2 3,511 

Proteasome subunit alpha type-4 PSMA4 3,460 

Proteasome subunit beta type-4 PSMB4 3,443 

Cation-independent mannose-6-phosphate receptor IGF2R 3,377 

Eukaryotic initiation factor 4A-II EIF4A2 3,345 

Protein kinase C-binding protein NELL2 NELL2 3,340 

3-mercaptopyruvate sulfurtransferase MPST 3,327 

Mannose-1-phosphate guanyltransferase beta GMPPB 3,264 

Cytosolic 10-formyltetrahydrofolate dehydrogenase ALDH1L1 3,226 

Cytoplasmic aconitate hydratase ACO1 3,172 

S-adenosylmethionine synthase isoform type-1 MAT1A 3,097 

Delta-aminolevulinic acid dehydratase ALAD 3,039 

Tubulin alpha-4A chain TUBA4A 3,033 

Vacuolar protein sorting-associated protein 37B VPS37B 3,012 

Adenosylhomocysteinase AHCY 2,989 

Regucalcin RGN 2,989 

Fructose-bisphosphate aldolase B ALDOB 2,989 

4-trimethylaminobutyraldehyde dehydrogenase ALDH9A1 2,960 

Microtubule-associated protein RP/EB family member 2 MAPRE2 2,933 

Uroporphyrinogen decarboxylase UROD 2,927 

Coronin-1A CORO1A 2,918 

Serine protease 23 PRSS23 2,896 

Proteasome subunit beta type-2 PSMB2 2,860 

Haptoglobin HP 2,859 

Collagen alpha-3(VI) chain COL6A3 2,814 

Argininosuccinate synthase ASS1 2,791 

Galectin-3-binding protein LGALS3BP 2,774 

von Willebrand factor;von Willebrand antigen 2 VWF 2,736 

Lipoprotein lipase LPL 2,730 

Protein MON2 homolog MON2 2,712 

Coagulation factor X F10 2,700 
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3-oxo-5-beta-steroid 4-dehydrogenase AKR1D1 2,696 

Proteasome subunit alpha type-5 PSMA5 2,660 

Reelin RELN 2,654 

Proteasome subunit alpha type-3 PSMA3 2,636 

Prostaglandin reductase 1 PTGR1 2,592 

Complement C4-A C4A;C4B 2,588 

Prostamide/prostaglandin F synthase FAM213B 2,553 

Collectin-10 COLEC10 2,547 

26S proteasome non-ATPase regulatory subunit 5 PSMD5 2,523 

Carbonic anhydrase 2 CA2 2,519 

Ferritin heavy chain FTH1 2,515 

COP9 signalosome complex subunit 7b COPS7B 2,509 

Clusterin CLU 2,506 

COP9 signalosome complex subunit 3 COPS3 2,467 

Syntenin-1 SDCBP 2,464 

Immunoglobulin J chain IGJ 2,463 

Retinal dehydrogenase 1 ALDH1A1 2,440 

Ectonucleotide pyrophosphatase/phosphodiesterase family member 2 ENPP2 2,412 

Alpha-crystallin B chain CRYAB 2,407 

Integrin-linked protein kinase ILK 2,402 

Ubiquitin thioesterase OTUB1 OTUB1 2,375 

Tenascin TNC 2,365 

Neuroserpin SERPINI1 2,360 

Quinone oxidoreductase CRYZ 2,330 

Prolow-density lipoprotein receptor-related protein 1 LRP1 2,328 

Proteasome subunit beta type-6 PSMB6 2,324 

Membrane-bound transcription factor site-1 protease MBTPS1 2,321 

Proteasome subunit alpha type-1 PSMA1 2,316 

General vesicular transport factor p115 USO1 2,311 

Alcohol dehydrogenase class-3 ADH5 2,301 

COP9 signalosome complex subunit 4 COPS4 2,294 

Sulfotransferase 1C2 SULT1C2 2,293 

Thyroglobulin TG 2,282 

Ras-related protein Rab-5B RAB5B 2,269 

Collagen alpha-1(II) chain COL2A1 2,246 

Tetraspanin-14 TSPAN14 2,231 

Betaine--homocysteine S-methyltransferase 1 BHMT 2,218 

Collagen alpha-2(V) chain COL5A2 2,204 

Thrombospondin-4 THBS4 2,203 

Proteasome subunit beta type-3 PSMB3 2,197 

Nicotinate-nucleotide pyrophosphorylase [carboxylating] QPRT 2,184 

Golgi membrane protein 1 GOLM1 2,177 

Flavin reductase (NADPH) BLVRB 2,156 

26S protease regulatory subunit 6A PSMC3 2,154 

Phenazine biosynthesis-like domain-containing protein PBLD 2,146 

Glycogen phosphorylase, brain form PYGB 2,135 

Galactokinase GALK1 2,130 

Follistatin-related protein 1 FSTL1 2,130 
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Aflatoxin B1 aldehyde reductase member 4 AKR7L 2,122 

Actin-related protein 2/3 complex subunit 1B ARPC1B 2,120 

Ribonucleoside-diphosphate reductase large subunit RRM1 2,083 

Protocadherin Fat 1 FAT1 2,074 

Septin-9 09-Sep 2,074 

4-hydroxyphenylpyruvate dioxygenase HPD 2,068 

Complement C1q tumor necrosis factor-related protein 3 C1QTNF3 2,056 

Vesicular integral-membrane protein VIP36 LMAN2 2,020 

Procollagen-lysine,2-oxoglutarate 5-dioxygenase 1 PLOD1 1,988 

Collagen alpha-1(I) chain COL1A1 1,949 

Fumarylacetoacetate hydrolase domain-containing protein 2A FAHD2A;FAHD2B 1,929 

Ras-related protein Rab-1B RAB1B 1,910 

Dehydrogenase/reductase SDR family member 11 DHRS11 1,893 

Collagen alpha-2(I) chain COL1A2 1,880 

GTP-binding nuclear protein Ran RAN 1,877 

Collagen alpha-1(V) chain COL5A1 1,874 

Metalloproteinase inhibitor 2 TIMP2 1,870 

Tetraspanin-6 TSPAN6 1,852 

Serine/threonine-protein phosphatase 2A catalytic subunit alpha isoform PPP2CA 1,843 

Mitogen-activated protein kinase 1 MAPK1 1,822 

Endothelial protein C receptor PROCR 1,815 

Isocitrate dehydrogenase [NADP] cytoplasmic IDH1 1,811 

Membrane primary amine oxidase AOC3 1,810 

Low molecular weight phosphotyrosine protein phosphatase ACP1 1,803 

Bone morphogenetic protein 1 BMP1 1,796 

60S ribosomal protein L12 RPL12 1,784 

Adenosine kinase ADK 1,783 

Beta-parvin PARVB 1,779 

Peroxidasin homolog PXDN 1,775 

Arginase-1 ARG1 1,764 

Dihydropyrimidinase DPYS 1,763 

Fibrinogen gamma chain FGG 1,745 

Tetraspanin-9 TSPAN9 1,742 

Transforming growth factor beta-1 TGFB1 1,740 

Fibrocystin-L PKHD1L1 1,737 

Glutaminyl-peptide cyclotransferase QPCT 1,720 

Fumarylacetoacetase FAH 1,715 

Arrestin domain-containing protein 1 ARRDC1 1,706 

Probable maltase-glucoamylase-like protein  LOC93432 1,703 

V-type proton ATPase catalytic subunit A ATP6V1A 1,700 

Alpha-galactosidase A GLA 1,698 

Probable imidazolonepropionase AMDHD1 1,690 

ProSAAS PCSK1N 1,685 

Cerebellin-4 CBLN4 1,685 

Receptor-type tyrosine-protein phosphatase kappa PTPRK 1,671 

Collagen alpha-2(VI) chain COL6A2 1,671 

Lysosomal alpha-mannosidase MAN2B1 1,666 

Cathepsin L2 CTSV 1,659 
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Glucosamine 6-phosphate N-acetyltransferase GNPNAT1 1,649 

Isopentenyl-diphosphate Delta-isomerase 1 IDI1 1,636 

Vesicle-associated membrane protein 2 VAMP2 1,635 

cGMP-specific 3,5-cyclic phosphodiesterase PDE5A 1,630 

cAMP-dependent protein kinase type I-alpha regulatory subunit PRKAR1A 1,624 

Acetyl-CoA carboxylase 1 ACACA 1,620 

Alpha-mannosidase 2 MAN2A1 1,619 

Heat shock protein beta-1 HSPB1 1,616 

Extracellular matrix protein FRAS1 FRAS1 1,607 

CD63 antigen CD63 1,589 

MMS19 nucleotide excision repair protein homolog MMS19 1,583 

Apolipoprotein C-III APOC3 1,580 

40S ribosomal protein S20 RPS20 1,578 

L-xylulose reductase DCXR 1,556 

Fermitin family homolog 3 FERMT3 1,552 

Prolyl endopeptidase FAP FAP 1,545 

Estrogen sulfotransferase SULT1E1 1,544 

Sphingomyelin phosphodiesterase SMPD1 1,538 

Ras-related C3 botulinum toxin substrate 2 RAC2 1,536 

40S ribosomal protein SA RPSA 1,529 

Sorbitol dehydrogenase SORD 1,516 

Vacuolar protein-sorting-associated protein 25 VPS25 1,496 

Protein CutA CUTA 1,485 

26S proteasome non-ATPase regulatory subunit 14 PSMD14 1,483 

C-type lectin domain family 11 member A CLEC11A 1,483 

Talin-1 TLN1 1,479 

Gelsolin GSN 1,477 

COP9 signalosome complex subunit 2 COPS2 1,474 

Putative RNA-binding protein Luc7-like 2 LUC7L2 1,472 

40S ribosomal protein S17 RPS17 1,470 

CD81 antigen CD81 1,454 

Transmembrane protein 132C TMEM132C 1,444 

Nuclear transport factor 2 NUTF2 1,441 

Inositol-3-phosphate synthase 1 ISYNA1 1,428 

26S proteasome non-ATPase regulatory subunit 7 PSMD7 1,421 

Cochlin COCH 1,410 

ER lumen protein-retaining receptor 1 KDELR1 1,410 

ATP-dependent 6-phosphofructokinase, platelet type PFKP 1,398 

Carboxymethylenebutenolidase homolog CMBL 1,391 

26S proteasome non-ATPase regulatory subunit 11 PSMD11 1,388 

Deleted in malignant brain tumors 1 protein DMBT1 1,387 

Pleckstrin homology domain-containing family B member 2 PLEKHB2 1,360 

Gamma-glutamyl hydrolase GGH 1,349 

Complement C3 C3 1,344 

LIM and senescent cell antigen-like-containing domain protein 1 LIMS1 1,338 

Complement C1r subcomponent C1R 1,324 

Desmocollin-3 DSC3 1,321 

COP9 signalosome complex subunit 6 COPS6 1,316 
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26S proteasome non-ATPase regulatory subunit 3 PSMD3 1,312 

Bisphosphoglycerate mutase BPGM 1,301 

Galectin-related protein LGALSL 1,282 

Cathepsin Z CTSZ 1,275 

Tetraspanin-7 TSPAN7 1,272 

Multiple epidermal growth factor-like domains protein 10 MEGF10 1,242 

EMILIN-3 EMILIN3 1,232 

Vigilin HDLBP 1,225 

Serine/threonine-protein phosphatase CPPED1 CPPED1 1,189 

Collagen alpha-1(XII) chain COL12A1 1,181 

Alpha-2-macroglobulin A2M 1,112 

Ig gamma-4 chain C region IGHG4 1,089 

Cornulin CRNN 1,037 

Hemoglobin subunit beta HBB 1,016 

 

Supplementary Table 2. List of significantly altered proteins identified in ectosomes. Common proteins (52) in the 

list of Top 100 proteins often identified in EVs are highlighted in bold (see Supplementary Table 3). 

Protein names Gene names -log10(p-value) 

Band 4.1-like protein 2 EPB41L2 9,852 

Band 4.1-like protein 3 EPB41L3 8,468 

Plasma membrane calcium-transporting ATPase 1 ATP2B1 7,567 

Phosphatidylinositol 4-kinase alpha PI4KA 7,239 

Tubulin-specific chaperone A TBCA 6,731 

Profilin-1 PFN1 6,708 

MARCKS-related protein MARCKSL1 6,644 

4F2 cell-surface antigen heavy chain SLC3A2 6,412 

Cytoplasmic FMR1-interacting protein 1 CYFIP1 6,209 

Myelin protein zero-like protein 1 MPZL1 6,167 

Na(+)/H(+) exchange regulatory cofactor NHE-RF1 SLC9A3R1 6,151 

Unconventional myosin-Ic MYO1C 5,986 

Protein scribble homolog SCRIB 5,985 

N(G),N(G)-dimethylarginine dimethylaminohydrolase 1 DDAH1 5,900 

2,3-cyclic-nucleotide 3-phosphodiesterase CNP 5,696 

Sodium/potassium-transporting ATPase subunit alpha-1 ATP1A1 5,640 

Lethal(2) giant larvae protein homolog 1 LLGL1 5,620 

FERM, RhoGEF and pleckstrin domain-containing protein 1 FARP1 5,604 

Integrin alpha-5 ITGA5 5,589 

Catenin delta-1 CTNND1 5,556 

Charged multivesicular body protein 6 CHMP6 5,507 

Basigin BSG 5,349 

PDZ domain-containing protein GIPC1 GIPC1 5,304 

Plastin-3 PLS3 5,244 

Peripheral plasma membrane protein CASK CASK 5,235 

Trifunctional purine biosynthetic protein adenosine-3 GART 5,214 

14-3-3 protein epsilon YWHAE 5,213 

Moesin MSN 5,169 

Annexin A6 ANXA6 5,150 
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Myristoylated alanine-rich C-kinase substrate MARCKS 5,105 

Protein lin-7 homolog C LIN7C 5,092 

Guanine nucleotide-binding protein subunit alpha-13 GNA13 5,054 

Ubiquitin-40S ribosomal protein S27a RPS27A;UBB/C 5,027 

Immunoglobulin superfamily member 3 IGSF3 4,988 

EGF-like repeat and discoidin I-like domain-containing protein 3 EDIL3 4,974 

Sodium/potassium-transporting ATPase subunit beta-1 ATP1B1 4,960 

Unconventional myosin-Ib MYO1B 4,885 

WD repeat-containing protein 6 WDR6 4,826 

Guanine nucleotide-binding protein G(i) subunit alpha-1 GNAI1 4,814 

Inactive tyrosine-protein kinase 7 PTK7 4,790 

CD276 antigen CD276 4,781 

Sodium/potassium-transporting ATPase subunit beta-3 ATP1B3 4,738 

Catenin beta-1 CTNNB1 4,699 

Unconventional myosin-Id MYO1D 4,582 

Calcyclin-binding protein CACYBP 4,579 

Heat shock 70 kDa protein 4 HSPA4 4,550 

Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-12 GNG12 4,474 

Afadin MLLT4 4,449 

Catenin alpha-1 CTNNA1 4,449 

Ras-related protein Rab-21 RAB21 4,444 

Kinesin-like protein KIF23 KIF23 4,376 

A-kinase anchor protein 12 AKAP12 4,302 

Complement component 1 Q subcomponent-binding protein C1QBP 4,296 

Peroxiredoxin-1 PRDX1 4,263 

Neutral amino acid transporter B(0) SLC1A5 4,221 

Fatty acid synthase FASN 4,138 

Pachytene checkpoint protein 2 homolog TRIP13 4,113 

Radixin RDX 4,089 

Phospholipid-transporting ATPase IG ATP11C 4,077 

Guanine nucleotide-binding protein G(s) subunit alpha isoforms GNAS 4,055 

Nck-associated protein 1 NCKAP1 4,054 

C-1-tetrahydrofolate synthase MTHFD1 4,019 

Disks large homolog 1 DLG1 4,010 

Glutathione S-transferase P GSTP1 4,008 

Creatine kinase B-type CKB 4,007 

Ectonucleotide pyrophosphatase/phosphodiesterase family member 1 ENPP1 3,995 

Collagen alpha-1(XVIII) chain COL18A1 3,995 

Integrin alpha-1 ITGA1 3,987 

14-3-3 protein beta/alpha YWHAB 3,953 

Cyclin-dependent kinase 1 CDK1 3,950 

Zinc transporter ZIP6 SLC39A6 3,947 

Microtubule-associated protein RP/EB family member 1 MAPRE1 3,914 

Large neutral amino acids transporter small subunit 1 SLC7A5 3,865 

Translation initiation factor eIF-2B subunit alpha EIF2B1 3,790 

Monocarboxylate transporter 1 SLC16A1 3,788 

14-3-3 protein theta YWHAQ 3,784 

Ras GTPase-activating-like protein  IQGAP1 3,751 
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14-3-3 protein eta YWHAH 3,743 

Peroxiredoxin-6 PRDX6 3,729 

Cytoplasmic FMR1-interacting protein 2 CYFIP2 3,687 

Kinesin-1 heavy chain KIF5B 3,680 

Nicastrin NCSTN 3,677 

Guanine nucleotide-binding protein G(k) subunit alpha GNAI3 3,644 

Annexin A2 ANXA2 3,628 

dCTP pyrophosphatase 1 DCTPP1 3,580 

Integrin beta-1 ITGB1 3,579 

DnaJ homolog subfamily C member 5 DNAJC5 3,575 

Four and a half LIM domains protein 1 FHL1 3,567 

Actin, cytoplasmic 2 ACTG1 3,555 

Endoplasmin HSP90B1 3,554 

BolA-like protein 2 BOLA2 3,550 

Purine nucleoside phosphorylase PNP 3,538 

Basement membrane-specific heparan sulfate proteoglycan core protein HSPG2 3,487 

Receptor-type tyrosine-protein phosphatase F PTPRF 3,433 

D-3-phosphoglycerate dehydrogenase PHGDH 3,433 

Protein unc-45 homolog A UNC45A 3,432 

Insulin receptor substrate 4 IRS4 3,430 

Guanine nucleotide-binding protein G(i) subunit alpha-2 GNAI2 3,417 

Brain acid soluble protein 1 BASP1 3,383 

Ezrin EZR 3,375 

Cofilin-2 CFL2 3,371 

10 kDa heat shock protein, mitochondrial HSPE1 3,363 

Protein NDRG1 NDRG1 3,352 

Coxsackievirus and adenovirus receptor CXADR 3,347 

Poly(rC)-binding protein 2 PCBP2 3,321 

Ubiquitin carboxyl-terminal hydrolase isozyme L1 UCHL1 3,321 

Guanine nucleotide-binding protein subunit alpha-11 GNA11 3,303 

Heat shock protein HSP 90-beta HSP90AB1 3,294 

Heat shock protein 105 kDa HSPH1 3,259 

Ras-related protein Rab-10 RAB10 3,255 

GTP-binding protein Rheb RHEB 3,252 

Protein XRP2 RP2 3,245 

Equilibrative nucleoside transporter 1 SLC29A1 3,219 

Protein unc-13 homolog D UNC13D 3,212 

14-3-3 protein zeta/delta YWHAZ 3,209 

Poly(rC)-binding protein 1 PCBP1 3,208 

Ephrin type-A receptor 2 EPHA2 3,206 

Plexin-A1 PLXNA1 3,205 

Heat shock 70 kDa protein 1B;Heat shock 70 kDa protein 1A HSPA1B;HSPA1A 3,197 

Hypoxanthine-guanine phosphoribosyltransferase HPRT1 3,188 

Programmed cell death protein 5 PDCD5 3,183 

T-complex protein 1 subunit alpha TCP1 3,167 

Annexin A1 ANXA1 3,162 

Prohibitin PHB 3,152 

Chloride intracellular channel protein 4 CLIC4 3,144 
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Leucine-rich repeat-containing protein 57 LRRC57 3,142 

Neurogenic locus notch homolog protein 2 NOTCH2 3,139 

Ras-related protein Rab-7a RAB7A 3,137 

Junctional adhesion molecule C JAM3 3,108 

Nidogen-2 NID2 3,103 

Small VCP/p97-interacting protein SVIP 3,093 

MOB kinase activator 1A;MOB kinase activator 1B MOB1A;MOB1B 3,090 

Inorganic pyrophosphatase PPA1 3,088 

Ras-related protein Rab-23 RAB23 3,071 

Zinc finger CCCH-type antiviral protein 1 ZC3HAV1 3,039 

HLA class I histocompatibility antigen, A-2 alpha chain HLA-A 3,034 

Glypican-4;Secreted glypican-4 GPC4 3,033 

Phosphoribosylformylglycinamidine synthase PFAS 2,977 

L-lactate dehydrogenase A chain LDHA 2,965 

T-complex protein 1 subunit epsilon CCT5 2,944 

Single-stranded DNA-binding protein, mitochondrial SSBP1 2,938 

HLA class I histocompatibility antigen, B-7 alpha chain HLA-B 2,909 

Syntaxin-4 STX4 2,907 

Integrin alpha-V ITGAV 2,885 

Synaptosomal-associated protein 23 SNAP23 2,884 

Fascin FSCN1 2,883 

Peroxiredoxin-2 PRDX2 2,876 

14-3-3 protein gamma YWHAG 2,874 

Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-1 GNB1 2,860 

Rho GDP-dissociation inhibitor 1 ARHGDIA 2,851 

Copine-3 CPNE3 2,845 

Triosephosphate isomerase TPI1 2,842 

ADP-sugar pyrophosphatase NUDT5 2,839 

Solute carrier family 12 member 2 SLC12A2 2,802 

Elongation factor 1-alpha 1;Putative elongation factor 1-alpha-like 3 EEF1A1;EEF1A1

P5 

2,761 

Synaptic vesicle membrane protein VAT-1 homolog VAT1 2,731 

T-complex protein 1 subunit eta CCT7 2,729 

T-complex protein 1 subunit zeta CCT6A 2,728 

Serine/threonine-protein kinase MRCK beta CDC42BPB 2,699 

Multifunctional protein ADE2 PAICS 2,688 

Protein FAM49B FAM49B 2,686 

Ras-related protein Rab-5C RAB5C 2,680 

Receptor-type tyrosine-protein phosphatase gamma PTPRG 2,677 

Myosin light polypeptide 6 MYL6 2,673 

Destrin DSTN 2,673 

Fibronectin FN1 2,672 

Gap junction alpha-1 protein GJA1 2,665 

LIM and SH3 domain protein 1 LASP1 2,647 

Aspartate aminotransferase, cytoplasmic GOT1 2,643 

CTP synthase 1 CTPS1 2,640 

Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-2 GNB2 2,631 

Collagen alpha-1(IV) chain COL4A1 2,630 
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Ras-related protein Rab-8B RAB8B 2,629 

Elongation factor 1-delta EEF1D 2,609 

T-complex protein 1 subunit delta CCT4 2,597 

Serine/threonine-protein kinase 26 STK26 2,584 

60 kDa heat shock protein, mitochondrial HSPD1 2,582 

Integrin alpha-2 ITGA2 2,567 

Disks large homolog 3 DLG3 2,562 

Calcineurin B homologous protein 1 CHP1 2,549 

Ras-related protein Rab-35 RAB35 2,518 

Protein disulfide-isomerase A6 PDIA6 2,517 

Ras-related protein Ral-A RALA 2,509 

Elongation factor 1-beta EEF1B2 2,506 

Nuclear migration protein nudC NUDC 2,505 

Mitogen-activated protein kinase kinase kinase kinase 4 MAP4K4 2,487 

Choline transporter-like protein 2 SLC44A2 2,486 

Insulin-like growth factor 1 receptor IGF1R 2,486 

Glyceraldehyde-3-phosphate dehydrogenase GAPDH 2,478 

Ras-related protein R-Ras2 RRAS2 2,478 

Protein deglycase DJ-1 PARK7 2,444 

Coatomer subunit alpha;Xenin;Proxenin COPA 2,433 

Importin subunit beta-1 KPNB1 2,432 

T-complex protein 1 subunit beta CCT2 2,423 

Ras GTPase-activating protein 3 RASA3 2,405 

Importin-4 IPO4 2,393 

Presenilin-1 PSEN1 2,393 

2-deoxynucleoside 5-phosphate N-hydrolase 1 DNPH1 2,385 

Prohibitin-2 PHB2 2,378 

Heat shock protein HSP 90-alpha HSP90AA1 2,376 

Elongation factor Tu, mitochondrial TUFM 2,363 

Glycine-tRNA ligase GARS 2,356 

GTPase HRas HRAS 2,355 

Pyruvate kinase PKM PKM 2,355 

Guanine nucleotide-binding protein G(o) subunit alpha GNAO1 2,351 

Rac GTPase-activating protein 1 RACGAP1 2,343 

ATP-dependent RNA helicase DDX3X/ DDX3Y DDX3X;DDX3Y 2,341 

Zinc transporter ZIP14 SLC39A14 2,336 

Sorting nexin-5 SNX5 2,330 

Ubiquitin-conjugating enzyme E2 K UBE2K 2,325 

Thioredoxin domain-containing protein 17 TXNDC17 2,317 

Cofilin-1 CFL1 2,313 

Heterogeneous nuclear ribonucleoprotein A3 HNRNPA3 2,310 

DNA topoisomerase 2-alpha TOP2A 2,308 

Calcium-binding protein 39 CAB39 2,290 

Collagen alpha-2(IV) chain;Canstatin COL4A2 2,285 

Lactoylglutathione lyase GLO1 2,281 

Rho-associated protein kinase 1 ROCK1 2,271 

Centrosomal protein of 55 kDa CEP55 2,268 

Nucleoside diphosphate kinase B;Putative nucleoside diphosphate kinase NME2;NME2P1 2,255 
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Ras-related C3 botulinum toxin substrate 1 RAC1 2,246 

Neuropilin-1 NRP1 2,227 

Phosphatidylethanolamine-binding protein 1; Hippocampal cholinergic 

neurostimulating peptide 

PEBP1 2,217 

Integrin alpha-6 ITGA6 2,203 

Protein kinase C beta type PRKCB 2,196 

Fatty acid-binding protein, epidermal FABP5 2,190 

T-complex protein 1 subunit theta CCT8 2,180 

Endophilin-B1 SH3GLB1 2,168 

AP-2 complex subunit beta AP2B1 2,147 

Melanoma-associated antigen D2 MAGED2 2,127 

Stathmin STMN1 2,123 

Annexin A3 ANXA3 2,100 

Fructose-bisphosphate aldolase A ALDOA 2,100 

Heat shock cognate 71 kDa protein HSPA8 2,096 

Alpha-enolase ENO1 2,093 

Guanine nucleotide-binding protein G(q) subunit alpha GNAQ 2,090 

Phosphatidylinositol transfer protein beta isoform PITPNB 2,089 

Junction plakoglobin JUP 2,075 

Filamin-B FLNB 2,072 

Golgin subfamily A member 7 GOLGA7 2,071 

Programmed cell death protein 10 PDCD10 2,062 

Neuroblast differentiation-associated protein AHNAK AHNAK 2,045 

Puromycin-sensitive aminopeptidase NPEPPS 2,044 

Lysyl oxidase homolog 2 LOXL2 2,043 

Transgelin-2 TAGLN2 2,032 

Anosmin-1 KAL1 2,029 

Cyclin-Y CCNY 2,016 

Laminin subunit alpha-5 LAMA5 2,015 

Nucleoside diphosphate kinase A NME1 2,011 

Rho-related GTP-binding protein RhoG RHOG 2,008 

Serine/threonine-protein kinase TAO1 TAOK1 1,998 

Proliferating cell nuclear antigen PCNA 1,991 

BTB/POZ domain-containing protein KCTD12 KCTD12 1,977 

Staphylococcal nuclease domain-containing protein 1 SND1 1,963 

CD59 glycoprotein CD59 1,961 

Junctional adhesion molecule A F11R 1,959 

Annexin A5 ANXA5 1,957 

Protein NDNF NDNF 1,956 

NADH-cytochrome b5 reductase 3 CYB5R3 1,953 

Ras-related protein Rab-13 RAB13 1,943 

Occludin OCLN 1,938 

Glypican-6;Secreted glypican-6 GPC6 1,933 

CAD protein CAD 1,909 

Lysosome-associated membrane glycoprotein 1 LAMP1 1,899 

Protein-L-isoaspartate(D-aspartate) O-methyltransferase PCMT1 1,898 

Activator of 90 kDa heat shock protein ATPase homolog 1 AHSA1 1,886 

Fermitin family homolog 2 FERMT2 1,875 
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Band 4.1-like protein 5 EPB41L5 1,870 

STE20-like serine/threonine-protein kinase SLK 1,869 

Stress-70 protein, mitochondrial HSPA9 1,863 

DnaJ homolog subfamily B member 1 DNAJB1 1,858 

Malate dehydrogenase, mitochondrial MDH2 1,847 

Protein EFR3 homolog A EFR3A 1,842 

ATP synthase subunit alpha, mitochondrial ATP5A1 1,827 

Agrin AGRN 1,821 

Voltage-dependent anion-selective channel protein 2 VDAC2 1,821 

Hsc70-interacting protein ST13 1,816 

F-actin-capping protein subunit beta CAPZB 1,810 

POTE ankyrin domain family member E / F POTEE;POTEF 1,798 

Gamma-aminobutyric acid receptor-associated protein-like 2 GABARAPL2 1,775 

Teneurin-3 TENM3 1,767 

Histone H1.0 H1F0 1,727 

Ubiquitin-like modifier-activating enzyme 1 UBA1 1,726 

Eukaryotic translation initiation factor 2 subunit 1 EIF2S1 1,722 

Desmoglein-2 DSG2 1,721 

Elongation factor 2 EEF2 1,717 

GTPase NRas NRAS 1,710 

ATP synthase subunit beta, mitochondrial ATP5B 1,708 

Aspartate--tRNA ligase, cytoplasmic DARS 1,700 

E3 ubiquitin-protein ligase CHIP STUB1 1,697 

Developmentally-regulated GTP-binding protein 1 DRG1 1,697 

Protein-glutamine gamma-glutamyltransferase E TGM3 1,692 

Tyrosine-protein kinase Lyn LYN 1,668 

Clathrin heavy chain 1 CLTC 1,666 

Epidermal growth factor receptor EGFR 1,664 

Serine/threonine-protein phosphatase PP1-alpha catalytic subunit PPP1CA 1,663 

Thioredoxin-dependent peroxide reductase, mitochondrial PRDX3 1,658 

Malate dehydrogenase, cytoplasmic MDH1 1,655 

Syntaxin-7 STX7 1,638 

Inosine-5-monophosphate dehydrogenase 2 IMPDH2 1,635 

Ran-specific GTPase-activating protein RANBP1 1,630 

78 kDa glucose-regulated protein HSPA5 1,628 

Cell division control protein 42 homolog CDC42 1,607 

DnaJ homolog subfamily A member 2 DNAJA2 1,605 

L-lactate dehydrogenase B chain LDHB 1,599 

ADP/ATP translocase 2 SLC25A5 1,585 

Profilin-2 PFN2 1,580 

Phosphatidylinositol 5-phosphate 4-kinase type-2 alpha PIP4K2A 1,580 

Alanine--tRNA ligase, cytoplasmic AARS 1,560 

D-dopachrome decarboxylase;D-dopachrome decarboxylase-like protein DDT;DDTL 1,555 

Protein 4.1 EPB41 1,553 

Histone H2B type 1-C/E/F/G/I HIST1H2BC 1,537 

Long-chain-fatty-acid--CoA ligase 4 ACSL4 1,535 

Rab GDP dissociation inhibitor beta GDI2 1,524 

Phosphoribosyl pyrophosphate synthase-associated protein 2 PRPSAP2 1,523 
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Ras-related protein Rap-2b RAP2B 1,517 

Choline transporter-like protein 1 SLC44A1 1,516 

NudC domain-containing protein 2 NUDCD2 1,513 

Plasma membrane calcium-transporting ATPase 4 ATP2B4 1,504 

Ras-related protein Rab-8A RAB8A 1,503 

Axin interactor, dorsalization-associated protein AIDA 1,492 

High affinity cationic amino acid transporter 1 SLC7A1 1,492 

N-alpha-acetyltransferase 15, NatA auxiliary subunit NAA15 1,488 

Histone H1.4 HIST1H1E 1,469 

Translational activator GCN1 GCN1L1 1,462 

Caspase-3;Caspase-3 subunit p17;Caspase-3 subunit p12 CASP3 1,458 

Proliferation-associated protein 2G4 PA2G4 1,458 

Histone H2A type 1C;Histone H2A type 3;Histone H2A type 1-B/E HIST1H2AC;HIST

3H2A;HIST1H2AB 

1,454 

Eukaryotic peptide chain release factor subunit 1 ETF1 1,436 

Ephrin type-A receptor 7 EPHA7 1,434 

AP-2 complex subunit mu AP2M1 1,407 

Raftlin RFTN1 1,400 

ADP-ribosylation factor 6 ARF6 1,400 

Macrophage migration inhibitory factor MIF 1,392 

Na(+)/H(+) exchange regulatory cofactor NHE-RF2 SLC9A3R2 1,391 

Unconventional myosin-X MYO10 1,386 

Aldose reductase AKR1B1 1,384 

Ubiquitin-conjugating enzyme E2 L3 UBE2L3 1,381 

Synaptobrevin homolog YKT6 YKT6 1,379 

Transaldolase TALDO1 1,377 

Ras-related protein Ral-B RALB 1,377 

Barrier-to-autointegration factor BANF1 1,373 

Nidogen-1 NID1 1,361 

Protein kinase C and casein kinase substrate in neurons protein 3 PACSIN3 1,360 

V-type proton ATPase 116 kDa subunit a isoform 1 ATP6V0A1 1,345 

Tubulin beta chain TUBB 1,343 

Protein S100-A10 S100A10 1,340 

Ribose-phosphate pyrophosphokinase 1 PRPS1 1,337 

Adenine phosphoribosyltransferase APRT 1,333 

Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-10 GNG10 1,333 

von Willebrand factor A domain-containing protein 1 VWA1 1,328 

Arginine--tRNA ligase, cytoplasmic RARS 1,308 

Pre-mRNA-processing-splicing factor 8 PRPF8 1,298 

Polyadenylate-binding protein 1;Polyadenylate-binding protein 3 PABPC1;PABPC3 1,286 

Prefoldin subunit 2 PFDN2 1,286 

Syntaxin-3 STX3 1,282 

Vesicle-associated membrane protein 3 VAMP3 1,276 

Astrocytic phosphoprotein PEA-15 PEA15 1,276 

Cysteine and histidine-rich domain-containing protein 1 CHORDC1 1,275 

Histone H2A type 2-C;Histone H2A type 2-A HIST2H2AC;HIST

2H2AA3 

1,251 

Vimentin VIM 1,249 
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ATP-binding cassette sub-family E member 1 ABCE1 1,243 

Filamin-C FLNC 1,234 

Syndecan-2 SDC2 1,224 

Disco-interacting protein 2 homolog B DIP2B 1,211 

Calnexin CANX 1,201 

Heterogeneous nuclear ribonucleoprotein U HNRNPU 1,192 

Probable ATP-dependent RNA helicase DDX5 DDX5 1,176 

DNA damage-binding protein 1 DDB1 1,170 

40S ribosomal protein S23 RPS23 1,166 

Protein disulfide-isomerase A4 PDIA4 1,165 

Poly [ADP-ribose] polymerase 1 PARP1 1,114 

 

Supplementary Table 3. Table of the Top 100 proteins often identified in EVs (source: vesiclepedia, 

http://microvesicles.org/extracellular_vesicle_markers ). 

Gene Number of times identified 

PDCD6IP 399 

GAPDH 377 

HSPA8 363 

ACTB 350 

ANXA2 337 

CD9 328 

PKM 327 

HSP90AA1 327 

ENO1 327 

ANXA5 313 

HSP90AB1 306 

CD63 306 

YWHAZ 301 

YWHAE 300 

EEF1A1 295 

PGK1 291 

CLTC 283 

PPIA 278 

SDCBP 277 

ALDOA 275 

EEF2 274 

ALB 274 

TPI1 270 

VCP 269 

CFL1 268 

MSN 266 

ATP1A1 266 

PRDX1 263 

MYH9 262 

EZR 262 

CD81 262 

ANXA6 260 

FLOT1 259 

YWHAB 258 

http://microvesicles.org/extracellular_vesicle_markers
http://microvesicles.org/query_results?query_name=HSPA8&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=ACTB&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=ANXA2&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=CD9&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=PKM&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=HSP90AA1&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=ENO1&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=ANXA5&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=HSP90AB1&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=CD63&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=YWHAZ&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=YWHAE&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=EEF1A1&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=PGK1&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=CLTC&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=PPIA&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=SDCBP&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=ALDOA&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=EEF2&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=ALB&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=TPI1&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=VCP&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=CFL1&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=MSN&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=ATP1A1&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=PRDX1&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=MYH9&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=EZR&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=CD81&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=ANXA6&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=FLOT1&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=YWHAB&prot_name_s=&prot_name_c=&miRNA_c=
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LDHB 258 

SLC3A2 257 

GNB1 257 

PFN1 256 

TSG101 255 

YWHAQ 254 

GNAI2 252 

CLIC1 251 

ANXA1 251 

ITGB1 250 

LDHA 249 

FASN 248 

CDC42 248 

RAP1B 242 

CCT2 242 

YWHAG 240 

GNB2 240 

ACTN4 240 

RAB5C 239 

C3 239 

RAB10 236 

HIST1H4A 234 

KRT1 233 

FN1 233 

AHCY 233 

A2M 232 

BSG 230 

ACTN1 229 

ANXA7 228 

ACLY 228 

HIST1H4B 227 

GDI2 227 

FLNA 227 

UBA1 226 

GNAS 226 

GSN 225 

CCT4 225 

RAN 222 

PRDX2 222 

RHOA 220 

CCT3 220 

RAC1 219 

LGALS3BP 219 

TCP1 218 

KRT10 218 

CAP1 218 

RAB7A 217 

TUBB4B 216 

HSPA5 215 

IQGAP1 214 

GPI 214 

http://microvesicles.org/query_results?query_name=LDHB&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=SLC3A2&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=GNB1&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=PFN1&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=TSG101&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=YWHAQ&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=GNAI2&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=CLIC1&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=ANXA1&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=ITGB1&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=LDHA&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=FASN&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=CDC42&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=RAP1B&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=CCT2&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=YWHAG&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=GNB2&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=ACTN4&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=RAB5C&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=C3&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=RAB10&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=HIST1H4A&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=KRT1&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=FN1&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=AHCY&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=A2M&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=BSG&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=ACTN1&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=ANXA7&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=ACLY&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=HIST1H4B&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=GDI2&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=FLNA&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=UBA1&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=GNAS&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=GSN&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=CCT4&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=RAN&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=PRDX2&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=RHOA&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=CCT3&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=RAC1&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=LGALS3BP&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=TCP1&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=KRT10&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=CAP1&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=RAB7A&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=TUBB4B&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=HSPA5&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=IQGAP1&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=GPI&prot_name_s=&prot_name_c=&miRNA_c=
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RALA 213 

KPNB1 212 

HIST1H4I 212 

TFRC 211 

EIF4A1 211 

HIST4H4 210 

CCT8 210 

TLN1 209 

HIST1H4K 209 

HIST1H4H 209 

CCT6A 209 

ANXA11 209 

HIST1H4J 208 

HIST1H4F 208 

HIST1H4D 208 

http://microvesicles.org/query_results?query_name=RALA&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=KPNB1&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=HIST1H4I&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=TFRC&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=EIF4A1&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=HIST4H4&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=CCT8&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=TLN1&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=HIST1H4K&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=HIST1H4H&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=CCT6A&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=ANXA11&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=HIST1H4J&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=HIST1H4F&prot_name_s=&prot_name_c=&miRNA_c=
http://microvesicles.org/query_results?query_name=HIST1H4D&prot_name_s=&prot_name_c=&miRNA_c=
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Abstract 

The misfolding and accumulation of disease-related proteins are common hallmarks 

among several neurodegenerative diseases. Alpha-synuclein (aSyn), Tau and huntingtin (wild-

type and mutant, 25QHtt and 103QHtt, respectively) were recently shown to be transferred 

from cell-to-cell through different cellular pathways, thereby contributing to disease 

progression and neurodegeneration. However, the relative contribution of each of these 

mechanisms towards the spreading of these different proteins and the overall effect on 

neuronal function is still unclear.  

To address this, we exploited different cell-based systems to conduct a systematic 

comparison of the mechanisms of release of aSyn, Tau and Htt, and evaluated the effects of 

each protein upon internalization in microglial, astrocytic, and neuronal cells. In the models 

used, we demonstrate that 25QHtt, aSyn and Tau are released to the extracellular space at 

higher levels than 103QHtt, and their release can be further augmented with the co-expression 

of USP19. Furthermore, cortical neurons treated with recombinant monomeric 43QHtt 

exhibited alterations in neuronal activity that correlated with the toxicity of the polyglutamine 

expansion. Tau internalization resulted in an increase in neuronal activity, in contrast to slight 

effects observed with aSyn. Interestingly, all these disease-associated proteins were present 

at higher levels in ectosomes than in exosomes. The internalization of both types of 

extracellular vesicles (EVs) by microglial or astrocytic cells elicited the production of pro-

inflammatory cytokines and promoted an increase in autophagy markers. Additionally, the 

uptake of the EVs modulated neuronal activity in cortical neurons.  

Overall, our systematic study demonstrates the release of neurodegenerative disease-

associated proteins through similar cellular pathways. Furthermore, it emphasizes that protein 

release, both in a free form or in EVs, might contribute to a variety of detrimental effects in 

receiving cells and to progression of pathology, suggesting they may be exploited as valid 

targets for therapeutic intervention in different neurodegenerative diseases.  

 

Keywords: Alpha-synuclein, Tau, huntingtin, extracellular vesicles, ectosomes, microvesicles, 

exosomes, spreading, multi-electrode array, neuronal function 

 

  



 99 

Introduction 

Neurodegenerative diseases are associated with the progressive loss of a variety of 

brain functions due to the loss of different types of neuronal cells. In spite of characteristic 

clinical manifestations, these disorders share common neuropathological features and cellular 

alterations, such as the aggregation and accumulation of disease-related proteins in relatively 

specific regions of the brain [547]. Alpha-synuclein (aSyn)-containing aggregates are typical in 

Parkinson’s disease (PD) and other synucleinopathies, hyperphosphorylated Tau-containing 

inclusions are typical in tauopathies, and mutant huntingtin (Htt)-containing inclusions are 

typical in Huntington’s disease (HD) [14, 104, 223].  

The progressive accumulation of protein pathology in different brain regions [8-10, 548, 

549] and the observation of aSyn Lewy body (LB) pathology fetal dopaminergic neurons 

grafted in the brains of PD patients led to the hypothesis that the progression of different 

neurodegenerative diseases may be correlated with the transfer of pathological proteins from 

sick cells to healthy cells [327, 332]. Consistently, injection of Tau aggregates into the brains 

of transgenic animals induces pathology along connected brain networks [390, 392-394]. 

Furthermore, a similar process was hypothesized to occur also in monogenic forms of 

neurodegenerative diseases after the observation of mutant Htt aggregates within fetal striatal 

allografts in the brains of HD patients [436]. 

The old brain is characterized by multi-morbidity, with the simultaneous accumulation 

of different types of protein pathology [550-552]. In addition, abundant Tau-related pathology 

can be observed in the brains of PD and HD patients, suggesting that multiple proteins may 

jointly contribute to the pathophysiology of different neurodegenerative disorders [484, 492-

494]. Furthermore, the propagation of the pathological proteins between cells and across 

anatomical connected regions is consistent with the progression patterns described in different 

neurodegenerative diseases [257, 282, 553]. However, the precise molecular mechanisms 

underlying the spreading of pathology, and the relative contributions of each of them towards 

spreading, are still unclear. At a fundamental level, it is also unclear whether cells utilize similar 

pathways for releasing proteins, such as aSyn, Tau or Htt, and how the released proteins affect 

neighbouring cells.   

Several conventional and unconventional pathways have been implicated in the cell-

to-cell transfer of proteopathic seeds [257, 282, 554]. The conventional secretory pathway 

requires the presence of a signal peptide sequence in the secreted protein that is then 

translocated to the endoplasmic-reticulum (ER), and sorted through Golgi-derived vesicles 

that, ultimately, fuse with the plasma membrane, thereby releasing their content/cargoes to the 

extracellular space [555-558]. Alternatively, cargoes can be sorted and released through 
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unconventional pathways, resulting in the release of proteins in free forms, in extracellular 

vesicles (EVs) [559], or via tunnelling nanotubes, structures that enable the direct transfer of 

cargoes between connected cells [560]. 

EVs have been shown to play various roles in the central nervous system (CNS), such 

as in intercellular communication, or the removal of toxic materials from the cell. In this context, 

they may also contribute to the transfer of pathogenic proteins in neurodegenerative diseases. 

EVs may be classified as exosomes or microvesicles (also known as ectosomes). They differ 

significantly in size, mechanism of biogenesis, and in protein, lipid, and nucleic acid content 

[295, 310]. Exosomes (30-100 nm in diameter) originate from the multivesicular bodies (MVBs) 

and are released upon the fusion of MVB with the plasma membrane. In contrast, ectosomes 

(100-500 nm in diameter) are formed by the outward budding of the plasma membrane [310]. 

Recently, several studies reported that exosomes can contain proteins associated with 

neurodegenerative diseases and, therefore, may be explored as disease biomarkers [293, 

559, 561]. However, the role of ectosomes in the pathogenesis of neurodegenerative diseases, 

and the general effects of EVs in neuronal activity remain largely unknown [562].  

More recently, another unconventional secretion mechanism known as misfolding-

associated protein secretion pathway (MAPS), was described to export misfolded proteins 

[288, 426]. This mechanism uses the ER-associated deubiquitylase USP19 to preferentially 

export misfolded cytosolic proteins through the recruitment of proteins to the ER surface for 

deubiquitylation. These cargoes are then encapsulated into late endosomes and secreted to 

the extracellular space [288]. After internalization, misfolded proteins may act as seeds to 

template the misfolding and aggregation of their physiological forms [563-565].  

Here, we developed stable cell lines expressing aSyn, Tau and Htt exon 1 (carrying 

either 25 or 103 polyglutamines, 25QHtt and 103QHtt, respectively) fused to EGFP in order to 

afford a systematic comparison of the various proteins. Our results demonstrate that the 

different disease-related proteins are released, as free forms and in EVs, at different levels. 

Overall, 25QHtt-EGFP, aSyn-EGFP and EGFP-Tau were found at higher levels in the cell 

media than 103QHtt-EGFP. We observed similar results when these proteins were expressed 

in primary cortical neurons or expressed without the EGFP tag, suggesting that the process of 

release to the extracellular space is mainly dependent on the protein properties. Furthermore, 

we modelled the occurrence of the proteins in the extracellular space, as when proteins are 

released from cells, and assessed their effect in the spontaneous firing activity and bursting 

events of mature primary cortical neurons using multi-electrode arrays (MEA). Monomeric 

43QHtt induced discernible alterations in the bursting properties of the cells when compared 

with 23QHtt or with vehicle-treated cells, suggesting detrimental effects of the polyglutamine 

expansion on neuronal activity. Interestingly, Tau internalization resulted in increased neuronal 
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activity, with cells exhibiting shorter bursts and higher intra-burst spike frequency, in contrast 

with only minor alterations observed with aSyn. These results suggest that intrinsic properties 

of aSyn, Tau or Htt present in the extracellular space, and not necessarily the levels of the 

proteins, modulate their effect on neuronal activity. 

Interestingly, aSyn, Tau and Htt are present at higher levels in ectosomes than in 

exosomes, without altering the overall proteome of the vesicles. Additionally, the internalization 

of EVs by microglial or astrocytic cells elicited an increase in the levels of IL-6, IL-1 and TNF, 

pro-inflammatory cytokines. Microglial cells also displayed an increase in p62 and LC3 puncta, 

suggesting the activation of autophagy for digesting the EVs. Finally, neuronal cells also 

internalized ectosomes and exosomes enriched in aSyn, Tau or Htt and, consequently, 

exhibited cell bursting irregularities that, overall, correlated with the type of EV used. 

Our results indicate that common cellular mechanisms may be used for the transfer of 

aSyn, Tau and Htt between different cell types. Interestingly, we report that these proteins are 

handled differently depending on the receptor cell. We posit that the identified similarities and 

differences between the release and extracellular effects of the three proteins suggest the 

need for careful consideration of possible targets for therapeutic intervention in different 

diseases.  

 

Results 

aSyn, Tau and Htt are released to the extracellular space in different cell models 

To evaluate the release of aSyn, Tau and Htt to the extracellular space, we established 

stable HEK cell lines expressing the different disease-related proteins fused to EGFP (Figure 

1). In particular, we expressed two biologically- relevant N-terminal exon 1 Htt fragments with 

either 25 or 103 polyglutamines (representing wild-type and mutant Htt, 25QHtt-EGFP and 

103QHtt-EGFP, respectively) (Figure 1A-B). While 25QHtt-EGFP, aSyn-EGFP and EGFP-Tau 

expression was mainly diffused in the cytoplasm, 103QHtt-EGFP accumulated in inclusions in 

the nucleus and throughout the cell (Figure 1A). Importantly, the use of the same cell type 

expressing the different proteins enabled us to directly compare the effect of the cellular 

machinery on protein release. We found that aSyn, Tau and Htt were differentially released to 

the extracellular space (Figure 1B). Cell lysates and conditioned media were assessed by 

SDS-PAGE, and protein levels were normalized to total protein levels using Memcode (Figure 

1B). In particular, the levels of 25QHtt-EGFP in the media were higher than those of 103QHtt-

EGFP, aSyn-EGFP or EGFP-Tau (Figure 1B).  
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Figure 1. aSyn, Tau and Htt are released to the extracellular space. (A) Representative images of HEK cells 

stably expressing 25QHtt-EGFP, 103QHtt-EGFP, aSyn-EGFP, or EGFP-Tau. Scale bar 5µm. (B) Immunoblots 

showing the protein levels in cell lysates and in the cell media of the different cell lines. Quantifications were 

normalized to total protein levels using MemCode. (C) Representative images of primary cortical neurons infected 

with lentiviral vectors encoding 25QHtt-EGFP, 103QHtt-EGFP, aSyn-EGFP or EGFP-Tau, and immunostained for 

synaptophysin (red) and MAP2 (grey). Neurons were infected at DIV14 and cultured until DIV19. They were then 
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fixed for imaging and the media was collected for further analyses. Scale bar 5µm. (D) Dot blot analyses of the 

protein levels released to the cell media of cells expressing the different proteins. Quantifications were normalized 

to total protein levels using Memcode. (E) Immunoblots showing the EGFP levels in whole-cell lysates. 

Quantifications were normalized to β-actin. Data from at least three independent experiments for each condition. 

Significant differences were assessed by one-way ANOVA followed by multiple comparisons with significance 

between groups followed by Bonferroni correction. Differences were considered to be significant for values of 

p<0.05 and are expressed as mean ± SD, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. See also Supplementary 

Figure 1. 

 

In addition, we evaluated the release of aSyn, Tau and Htt in primary neuronal cultures 

(Figure 1C-E). Cortical neurons were infected with lentiviral vectors encoding for the various 

proteins (DIV14), to ensure homogeneous transduction (Figure 1C). Cell media was collected 

at DIV19 and applied onto a dot blot system to assess the presence of the different proteins in 

the extracellular space (Figure 1D). We observed that 25QHtt-EGFP was released at higher 

levels than 103QHtt-EGFP. Overall, 25QHtt-EGFP and aSyn-EGFP were released at higher 

levels compared with the other proteins (Figure 1D), but these differences were not simply 

associated with the expression levels in the cells (Figure 1E).  

To rule out that secretion was associated with the presence of the EGFP tag, we 

expressed untagged aSyn, Tau and Htt proteins in HEK cells (Supplementary Figure 1). 

Consistently with the previous data, we observed higher levels of 22QHtt, aSyn and Tau in the 

cell media, and lower levels of 72QHtt (Supplementary Figure 1B). Furthermore, cells did not 

exhibit signs of toxicity-induced permeabilization, as shown by the lactate dehydrogenase 

(LDH) cytotoxicity assay (Supplementary Figure 1C - E). 

These results demonstrate that aSyn, Tau and Htt are released to the extracellular 

space at different levels, independently of the cell model used. 

 

USP19 promotes the secretion of disease-related proteins 

Recently, USP19 has been proposed to regulate protein secretion [288]. To investigate 

whether MAPS was involved in the release of aSyn, Tau or Htt, we co-expressed USP19 or 

the catalytic inactive form USP19 C506S with aSyn, Tau or Htt using the HEK stable cell lines 

we generated above (Figure 2).  Interestingly, USP19 significantly increased the secretion of 

25QHtt-EGFP after 24 hours (Figure 2A). We also observed a trend towards an increase in 

the secretion of 103QHtt-EGFP, aSyn-EGFP and EGFP-Tau, but this did not reach statistical 

significance (Figure 2A). No effects were observed when we co-expressed the catalytic 

inactive form USP19 C506S, confirming the effects observed were associated with the activity 

of USP19. Cells did not exhibit signs of toxicity-induced permeabilization (Figure 2B). 
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Figure 2. USP19 increases the release of aSyn, Tau or Htt to the extracellular space. (A) Immunoblots showing 

protein levels in cell lysates and released to the cell media of cells expressing the different proteins. HEK cell stably 
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expressing 25QHtt-EGFP, 103QHtt-EGFP, aSyn-EGFP and EGFP-Tau were transfected with USP19 or with the 

catalytic inactive form USP19 C506S. Quantifications were normalized to total protein levels using MemCode. (B) 

LDH measurements confirm the absence of cell toxicity and cell death in the experiments. (C) Tau is more strongly 

internalized by naïve cells. Percentage of EGFP positive cells after incubation with media from cells co-expressing 

25QHtt-EGFP, 103QHtt-EGFP, aSyn-EGFP or EGFP-Tau together with USP19 or USP19 C506S for 24 hours. Cell 

counting was performed using flow cytometry. Data from at least three independent experiments for each condition. 

Significant differences were assessed by one-way ANOVA followed by multiple comparisons with significance 

between groups corrected by Bonferroni procedure. Differences were considered to be significant for values of 

p<0.05 and are expressed as mean ± SD, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.  

 

Next, we tested whether the secreted proteins could be internalized by naïve cells. For 

this, the cell media from the different stable cell lines was collected after 24 hours, shortly 

centrifuged to deplete possible floating cells present in the media, and then added to naïve 

HEK cells for 72 hours. The number of EGFP-positive cells was analysed using flow cytometry, 

and we found a higher percentage of EGFP-Tau positive cells compared with the other 

conditions (Figure 2A, 2C). Strikingly, EGFP-Tau was not the protein released at higher levels 

to the cell media (Figure 2A). Interestingly, we also observed that incubation of naïve cells with 

media from cells co-expressing EGFP-Tau and USP19 resulted in a higher percentage of 

positive cells, indicating higher internalization levels when compared with the other proteins 

(Figure 2C). 

Together, these results indicate that the levels of protein secretion are not directly 

correlated with the levels of internalization by receiving cells and may, instead, depend on 

intrinsic properties of the proteins and on the pathways involved in protein uptake. 

 

Disease-related proteins are present at higher levels in ectosomes  

Previous research indicates that aSyn, Tau and Htt can be secreted in association with 

EVs [293, 324]. To assess the contribution of ectosomes and exosomes towards the transfer 

of aSyn, Tau and Htt, we used an optimized differential ultracentrifugation protocol to purify 

these EVs from the cell media of HEK cells stably expressing the different proteins (Figure 3, 

Supplementary Figure 2) [562]. Staining of ectosomal and exosomal fractions showed a similar 

total protein profile that, as expected, was distinct from that of the whole-cell lysate 

(Supplementary Figure 2A). Electron microscopy (EM) imaging confirmed the greater diameter 

of ectosomes in comparison to exosomes, and their characteristic cup-shape derived from the 

ultracentrifugation protocol (Supplementary Figure 2B). In addition, the size distribution and 

concentration of the two EV types was further validated using Nanosight (Supplementary 

Figure 2C). While ectosomes presented a diameter of ~140nm, the diameter of exosomes was 

~60nm (Supplementary Figure 2C). Conventional exosomal protein markers such as alix, 
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flotillin-1 or TSG101 were clearly enriched in the exosomal fraction, whereas the ectosomal 

fraction was enriched in annexin-A2 and annexin-A5 (evaluated using immunoblot and mass 

spectrometry) (Figure 3A, Supplementary Figure 2D). The ER and Golgi markers calnexin and 

GM130, respectively, were not detected, confirming the high purity of the isolated EVs 

(Supplementary Figure 2D). 

Interestingly, aSyn, Tau and Htt were detected at higher levels in ectosomes than in 

exosomes (EGFP levels were normalized to the total protein levels in the immunoblot using 

MemCode) (Figure 3A). These results were further confirmed using antibodies specific for 

aSyn, Tau or Htt, and by mass spectrometry analyses (Supplementary Figure 3). We also 

detected S129 phosphorylation of aSyn, a posttranslational modification (PTM) typically 

associated with pathology, in the lysates of aSyn-EGFP expressing cells, but not in the EV 

fractions (Supplementary Figure 3A). Surprisingly, ectosomes and exosomes containing 

25QHtt-EGFP, 103QHtt-EGFP, aSyn-EGFP or EGFP-Tau presented similar proteomic 

signatures when compared with EVs purified from control cells (Supplementary Figure 3B-C).  

Immuno-EM experiments demonstrated the presence of the different disease-related 

proteins in the cytoplasm, as expected, but also near to the plasma membrane, implying their 

availability to be incorporated in ectosomes (Figure 3B). Next, to assess the biochemical state 

of aSyn, Tau and Htt in the cell media and in EVs, the different samples were applied onto a 

native gel (Figure 3C). Overall, cell media presented greater levels of high molecular species 

when compared with the EV fractions, possibly due to the higher levels of 25QHtt-EGFP, 

103QHtt-EGFP, aSyn-EGFP or EGFP-Tau present in the cell media. Furthermore, ectosomes 

containing the disease-related proteins presented a stronger smear when compared with 

exosomes.  

These results highlight the prominent role ectosomes, and not only exosomes, may 

play in the release of disease-related proteins to the extracellular space. 
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Figure 3. Disease-related proteins are enriched in ectosomes. (A) Immunoblots of ectosomal and exosomal 

fractions purified from the media of HEK cells stably expressing 25QHtt-EGFP, 103QHtt-EGFP, aSyn-EGFP or 

EGFP-Tau for 24 hours. Equal amounts of protein were separated on SDS-PAGE gels, and membranes were 

incubated with the indicated antibodies. Protein levels were normalized to total protein levels using Memcode. (B) 

Representative immunoelectron microscopy images of HEK cells stably expressing 25QHtt-EGFP, 103QHtt-EGFP, 

aSyn-EGFP or EGFP-Tau immunolabelled for EGFP, as a common marker (scale bar 200 nm). (C) Ectosomes and 

exosomes containing disease-related proteins have high molecular weight (HMW) species. Ectosomal and 

exosomal fractions, cell media and whole-cell lysates of HEK cells stably expressing 25QHtt-EGFP, 103QHtt-EGFP, 
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aSyn-EGFP or EGFP-Tau. Equal amounts of the proteins were separated on native gels, and membranes were 

incubated with the indicated antibodies. Data from at least three independent experiments for each condition. 

Significant differences were assessed by one-way ANOVA followed by multiple comparisons with significance 

between groups corrected by Bonferroni procedure. Differences were considered to be significant for values of 

p<0.05 and are expressed as mean ± SD, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. See also Supplementary 

Figures 2-3. 

 

EVs containing aSyn, Tau and Htt are internalized by glial cells and induce the 

production of pro-inflammatory cytokines 

Microglial and astrocytic cells produce neuroinflammatory cytokines and appear to be 

involved in the spreading in neurodegenerative diseases [298, 566, 567]. Therefore, we then 

asked whether ectosomes and exosomes containing aSyn, Tau and Htt were internalized by 

different brain cell types, and whether the disease-associated protein present in the vesicles 

would alter the responses elicited (Figure 4).  

Primary microglial cells were treated with 10g/mL of ectosomes and exosomes 

purified from the media of cells expressing 25QHtt-EGFP, 103QHtt-EGFP, aSyn-EGFP or 

EGFP-Tau (Figure 4, Supplementary Figure 4-5). Furthermore, cell were also exposed to the 

bacterial endotoxin lipopolysaccharide (LPS) as a pro-inflammatory stimulus [568]. After 24 

hours of treatment, EGFP–labelled ectosomes and exosomes were found to colocalize with 

the microglial marker Iba1 in the cell cytoplasm, indicating EVs were internalized (Figure 4A, 

Supplementary Figure 4A). Interestingly, EVs containing 103QHtt-EGFP were less 

internalized, or degraded more rapidly, when compared with EVs containing 25QHtt-EGFP 

(Figure 4B). Overall, the internalization ratio was similar for all ectosomes and exosomes 

tested (Figure 4B). Labelling of EVs with the thiol-based dye Alexa Fluor 633 C5-maleimide 

further confirmed the previous results (Supplementary Figure 4B-C) [521]. EV internalization 

resulted in microglia activation, as demonstrated by an increase in cell area and elevated levels 

of the pro-inflammatory cytokines IL-6 and TNF (Figure 5B-D). These results were 

independent of the presence of aSyn, Tau or Htt in the vesicles (Supplementary Figure 5). 

Furthermore, EV uptake resulted in an increase in autophagosomes in the cytoplasm (increase 

in LC3 puncta) and higher p62 levels, indicating autophagy activation [569] (Figure 4B-C). No 

differences in the levels of iNOS, Iba1, APG5L/ ATG5 or LC3 were observed, and no toxicity 

was observed after the treatment (Supplementary Figure 5). 
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Figure 4. Ectosomes and exosomes containing disease-related proteins are internalized by microglial cells. 

(A) Ectosomes and exosomes from cells expressing 25QHtt-EGFP, 103QHtt-EGFP, aSyn-EGFP or EGFP-Tau 

were applied to microglial cultures at a concentration of 10𝜇g/mL for 24 hours. Cells were immunoassayed for LC3 

(red) and Iba1 (grey). Scale bar 10 µm. (B) EV internalization was evaluated through imaging analysis by measuring 

EGFP signal and cell area. Microglial cells treated with EVs show an increase in average cell area and number of 

cells containing LC3-positive puncta. (C) Increase in p62 levels after 24hours of EV treatment. Quantifications were 

normalized to β-actin levels. (D) EV treatment resulted in the activation of the pro-inflammatory markers IL-6 and 

TNFα in microglia cells after 24hours. Data from at least three independent experiments for each condition. 

Significant differences were assessed by one-way ANOVA followed by multiple comparisons with significance 

between groups corrected by Bonferroni procedure. Differences were considered to be significant for values of 

p<0.05 and are expressed as mean ± SD, *p<0.05, **p<0.01. See also Supplementary Figures 4-5. 
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To further explore the effect of EV internalization in glial cells, primary astrocytes were 

treated with 20g/mL of ectosomes and exosomes purified from cells expressing 25QHtt-

EGFP, 103QHtt-EGFP, aSyn-EGFP or EGFP-Tau (Figure 5, Supplementary Figure 6-7). After 

24 hours of treatment, we observed the colocalization of the astrocytic marker GFAP with 

EGFP–labelled ectosomes and exosomes, confirming internalization (Figure 5A, 

Supplementary Figure 6A). Interestingly, after internalization, the EGFP signal of the EVs was 

surrounded by LC3 signal, suggesting a possible engulfment and degradation of EVs in the 

cells (Figure 5A, Supplementary Figure 6A-C). Quantification of the internalization ratio 

indicated greater engulfment of ectosomes than exosomes, and these results were further 

confirmed using dye labelled EVs (Figure 5B, Supplementary Figure 6D). Internalization of 

ectosomes and exosomes caused an increase in pro-inflammatory cytokines, including IL-6, 

IL-1β and TNFα, without changing the average cell area (Figure 5B-C). These results were 

independent of the presence of aSyn, Tau or Htt in the vesicles (Supplementary Figure 7). No 

significant differences in the levels of iNOS, APG5L/ ATG5, p62, GFAP or LC3 were observed 

after EV treatment, and no cytotoxicity was detected (Supplementary Figure 7).  

These results indicate that different types of EVs can be internalized in microglial and 

astrocytic cells, independently of the presence of aSyn, Tau and Htt in the vesicles. 

Furthermore, EV internalization elicited similar responses, with an increase in inflammatory 

markers and autophagy activation.  
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Figure 5. Ectosomes and exosomes containing disease-related proteins are internalized by astrocytic cells. 

(A) Ectosomes and exosomes from cells expressing 25QHtt-EGFP, 103QHtt-EGFP, aSyn-EGFP or EGFP-Tau 

were applied to astrocytic cultures at a concentration of 20𝜇g/mL for 24 hours. Cells were immunoassayed for LC3 

(red) and GFAP (grey). Scale bar 10 µm. (B) Astrocytic cells treated with EVs do not change average cell area. 

EVs internalization levels were evaluated through imaging analysis by measuring EGFP signal and cell area. (C) 

EV treatment resulted in the activation of the pro-inflammatory markers IL-6, IL- β and TNFα in astrocytic cells after 

24 hours. Data from at least three independent experiments for each condition. Significant differences were 

assessed by one-way ANOVA followed by multiple comparisons with significance between groups corrected by 
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Bonferroni procedure. Differences were considered to be significant for values of p<0.05 and are expressed as 

mean ± SD, *p<0.05, **p<0.01, ***p<0.001. See also Supplementary Figures 6-7. 

 

Treatment with EVs containing aSyn, Tau and Htt modifies spontaneous 

neuronal activity in cortical neurons 

Since EVs are actively released to the extracellular space by different types of brain 

cells, we hypothesized that spontaneous neuronal activity might be influenced by the 

internalization of ectosomes and/or exosomes in neuronal cells [562]. To test this, we treated 

primary cortical neurons with 20g/mL of ectosomes and exosomes purified from cells 

expressing 25QHtt-EGFP, 103QHtt-EGFP, aSyn-EGFP or EGFP-Tau, at DIV14, for 24 hours 

to allow internalization of EVs (Figure 6, Supplementary Figure 8).  

We observed neuronal cells internalized ectosomes and exosomes at similar levels, 

and that the EV signal was surrounded by LC3 staining, suggesting the targeting of the EVs 

for degradation after uptake (Figure 6A-C, Supplementary Figure 8A). The internalization of 

EVs did not alter the average cell area or caused toxicity and it did not induce significant 

differences in synaptic and autophagic protein levels (Figure 6D, Supplementary Figure 8C-

D).  

Next, we assessed the effects induced by the EVs on neuronal activity using multi-

electrode arrays (MEAs) [562]. Primary cortical neurons were cultured in MEA chambers and 

treated with 20μg/mL of EVs at DIV14. Firing activity was recorded 24 hours after treatment 

with ectosomes or exosomes purified from cells expressing 25QHtt-EGFP, 103QHtt-EGFP, 

aSyn-EGFP or EGFP-Tau (Figure 7). Representative raster plots showed the individual firing 

activity and bursts events in neuronal cultures for each treatment condition (Figure 7A). We 

observed a reduction in the mean firing rate after EV internalization, and a decrease in the 

average spike amplitude for the neurons treated with exosomes (Figure 7B). The assessment 

of bursting activity parameters showed that, upon treatment with EVs, spike bursts were more 

irregular and with longer duration (Figure 7C). Overall, exosome internalization resulted in 

longer inter-burst intervals with reduced intra-burst spiking frequency, and a reduced 

percentage of spikes within bursts, in contrast to what we observed in neurons treated with 

ectosomes (Figure 7C). Furthermore, these alterations were more strongly correlated with the 

EV subtype, and not with the presence of aSyn, Tau or Htt. 

Altogether, our results indicate that, after exposure to EVs, the firing of cultured neurons 

is more irregular, highlighting the potential of ectosomes and exosomes in modifying important 

aspects of spontaneous neuronal activity.  
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Figure 6. Ectosomes and exosomes containing disease-related proteins are internalized by primary cortical 

neurons. (A) Ectosomes and exosomes from cells expressing 25QHtt-EGFP, 103QHtt-EGFP, aSyn-EGFP or 

EGFP-Tau were applied to primary cortical neurons 20𝜇g/mL for 24 hours. Cells were immunoassayed for LC3 

(red) and MAP2 (grey). Scale bar 5 µm. (B) Ectosomes and exosomes containing 25QHtt-EGFP, 103QHtt-EGFP, 

aSyn-EGFP or EGFP-Tau were labelled with Alexa Fluor 633 C5-maleimide (grey) and applied to cell cultures at a 

concentration of 20𝜇g/mL for 24 hours. Cells were immunostained for MAP2 (red). Scale bar 5µm. (C) EV 

internalization was evaluated through imaging analysis by measuring EGFP signal, dye area, and cell area. (D) 

Neuronal cells treated with EVs do not change average cell area. Data from at least three independent experiments 

for each condition. Significant differences were assessed by one-way ANOVA followed by multiple comparisons 
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with significance between groups corrected by Bonferroni procedure. Differences were considered to be significant 

for values of p<0.05 and are expressed as mean ± SD. See also Supplementary Figures 8. 

 

 

Figure 7. EVs containing disease-related proteins modulate spontaneous activity in primary cortical 

neurons. (A) Representative raster plots of the spontaneous firing activities recorded from cortical neurons after 
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incubation with 20µg/mL ectosomes and exosomes control or containing aSyn-EGFP, EGFP-Tau, 25QHtt-EGFP 

and 103QHtt-EGFP at DIV14 for 24 hours, recorded using 60-electrode MEAs. In every block, each row represents 

one single cell (15 cells shown) and each vertical line represents a single spike obtained on DIV15 [scale bar 

represents 10 seconds (s)]. (B) Quantification of the mean firing rate and average spike amplitude from primary 

cortical neurons incubated with PBS or disease-related proteins. (C) Bursting properties of the cortical neurons 

treated with PBS or EVs (inter-burst intervals, intra-burst spiking frequency, percentage of spikes in bursts and burst 

duration). Data from at least three independent experiments for each condition. Significant differences were 

assessed by one-way ANOVA followed by multiple comparisons with significance between groups corrected by 

Bonferroni procedure. Differences were considered to be significant for values of p<0.05 and are expressed as 

mean ± SD, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 

 

Neuronal network activity is differentially modulated by the internalization of 

monomeric aSyn, Tau or Htt 

Our results indicate the release of wild-type and pathogenic forms of disease-related 

proteins to the extracellular space. Although these proteins are taken up by cells, it is still not 

known whether and how they modulate neuronal activity [391, 570-575]. To address the 

functional effects of free forms of aSyn, Tau and Htt, we treated primary cortical neurons with 

100nM of monomeric aSyn, Tau, 23QHtt or 43QHtt for 5 days, starting at DIV14 (this 

concentration was selected as it demonstrated no detrimental effects, which would be 

incompatible with long-term observations) (Figure 8) [562]. 

Representative raster plots and voltage traces show the firing activity and burst events 

in neuronal cultures treated with PBS (as a negative control), 23QHtt, 43QHtt, aSyn or full-

length Tau (Figure 8A). Overall, neurons treated with monomeric proteins showed a reduction 

in the mean firing rate. In addition, neurons treated with Htt exhibited a decrease in the average 

spike amplitude (Figure 8B). Remarkably, treatment of neuronal cultures with monomeric aSyn 

or Tau resulted in an increase in the average spike amplitude (Figure 8B). Furthermore, we 

observed that Tau led to condensed and more intense spike bursting, as demonstrated by 

bursts with shorter duration and higher intra-burst spike frequency. Also, the percentage of 

spikes in each burst increased, suggesting that neurons fire in a more regular and 

synchronized manner (Figure 8C). Cells treated with recombinant aSyn exhibited slight 

alterations in their activity, with longer burst duration and larger intervals between them. 

Treatment with monomeric 23QHtt or 43QHtt resulted in bursts with longer intervals and a 

reduction in the number of spikes within the burst when compared with the control. 

Interestingly, 43QHtt induced a stronger alteration in the spontaneous neuronal activity with a 

slight reduction in burst rate and a decrease in the percentage of spikes per burst when 

compared with 23QHtt or PBS-treated cells. In addition, neurons displayed longer inter-burst 
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intervals and higher intra-spike frequency, which was possibly correlated with toxic effects 

induced by the polyglutamine expansion.  

 

Figure 8. Free monomeric disease-related proteins modulate neuronal activity in primary cortical neurons. 

(A) On the left, representative raster plots of the spontaneous firing activities recorded from cortical neurons after 

incubation with 100nM of recombinant protein at DIV14 for 5 days, recorded using 60-electrode MEAs. In every 

block, each row represents one single cell (15 cells shown) and each vertical line represents a single spike obtained 

on DIV19 [scale bar represents 10 seconds (s)]. On the right, representative voltage traces showing the typical firing 

activity and bursts events in neuronal cultures treated with PBS, monomeric 23Qhtt, 43QHtt, aSyn and Tau (upper 
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traces, scale bars represent 60µV and 6s). Closeups of the dashed boxes represent the spikes occurring within a 

burst ([lower traces, scale bars represent 60µV and 100 milliseconds (ms)]. (B) Quantification of the mean firing 

rate and average spike amplitude from primary cortical neurons incubated with PBS or disease-related proteins. 

(C) Bursting properties of the cortical neurons treated with PBS or the disease-related proteins (burst duration, inter-

burst intervals, intra-burst spiking frequency, percentage of spikes in bursts and burst rate). Data from at least three 

independent experiments for each condition. Significant differences were assessed by one-way ANOVA followed 

by multiple comparisons with significance between groups corrected by Bonferroni procedure. Differences were 

considered to be significant for values of p<0.05 and are expressed as mean ± SD, *p<0.05, **p<0.01, ***p<0.001, 

****p<0.0001. 

 

Altogether, our results demonstrate that different disease-related proteins induce 

specific effects on spontaneous neuronal activity. 

 

Discussion 

Several neurodegenerative disease-related proteins appear to be transferred from cell-

to-cell, contributing for the spreading of pathology and disease progression [257, 282, 554]. 

However, the basic molecular mechanisms involved in the release of proteins which are, 

oftentimes, not typical secretory proteins, are still unclear. Likewise, the effect of such proteins 

once they are in the extracellular milieu, is also unclear. Therefore, deciphering the pathways 

through which brain cells release, sense, and respond to the extracellular presence of normal 

and pathological forms of disease-associated proteins is essential. Here, we conducted a 

systematic comparison of the basic molecular mechanisms involved in the release of three 

proteins associated with distinct neurodegenerative disorders, aSyn, Tau, and Htt, and of 

general cell-autonomous responses in different brain cell types. Since these proteins 

accumulate in different types of brain cells, forming distinct proteinaceous inclusions, and 

spreading through different neuronal circuits, it is important to establish differences and 

similarities in the ways they are handled in order to identify specific therapeutic targets for each 

disease. In our study, exploiting simple, yet tractable, cell systems, we found that aSyn, Tau 

and Htt are transferred between cells at different levels, but using overlapping cellular 

pathways. Importantly, we report that the release of these proteins in a “free form”, or in 

extracellular vesicles, elicits different molecular processes in neighbouring cells.  

By taking advantage of stable cell lines expressing aSyn, Tau, 25QHtt and 103QHtt 

fused to EGFP, as a common denominator, we were able to study and compare different 

molecular mechanisms involved in the release, and uptake of the various in receptor cells. We 

demonstrate that 25QHtt-EGFP, aSyn-EGFP and EGFP-Tau are released to the extracellular 

space at higher levels than 103QHtt-EGFP. Importantly, the presence of the EGFP tag did not 

alter the release patterns of aSyn, Tau and Htt.  
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Our study further implicates the MAPS pathway in the release of a fraction of aSyn, 

Tau or Htt. In agreement with previous studies, USP19 expression led to a slight increase in 

the release of aSyn, Tau and Htt [288, 426]. Interestingly, USP19 promoted a significant 

increase in the secretion of 25QHtt-EGFP, suggesting a relevant role for this pathway in HD, 

as it was previously described to interact and regulate mutant Htt protein levels and promote 

its aggregation [576, 577].  

After release, aSyn, Tau or Htt were found to be internalized by naïve receptor cells. In 

particular, we observed a significant increase in the percentage of EGFP-positive cells after 

incubation of naïve cells with media collected from cells expressing EGFP-Tau. Although 

25QHtt-EGFP and aSyn-EGFP were more abundant in the cell media than EGFP-Tau, we 

observed more internalization of this protein in cells. These results suggest that Tau might be 

more easily, or more rapidly, internalized by cells, or that different pathways might be involved 

in its uptake when compared with the other proteins. Strikingly, this observation also 

demonstrates that protein internalization is not a process solely dependent of the protein levels 

in the exterior space but determined by the type of protein and mechanisms involved in the 

cellular uptake. 

In addition to the release of proteins in free form, several studies have also reported 

the secretion of disease-related proteins in ectosomes and exosomes [293, 578]. Exosomes 

are the most extensively studied type of EVs, and are also implicated in the secretion of 

pathological proteins [324]. However, Tau was also found to be present in ectosomes extracted 

from culture media from cell models and human cerebrospinal fluid [317, 318], highlighting the 

relevance of this EV type, and need for further research to address their role in 

neurodegenerative diseases. In our study, we found that ectosomes purified from the cell 

media of stable cell lines contained higher levels of aSyn, Tau and Htt than exosomes. 

Interestingly, we observed that aSyn, Tau and Htt are present near the plasma membrane, in 

agreement with their possible incorporation in ectosomes, and release via passive diffusion. 

Traditionally, ectosome characterization has been challenging due to the lack of specific 

protein markers. In our study, we highlight the enrichment of annexin-A2 in ectosomes, 

suggesting this protein as a specific marker for this EV type, as previously described [562].  

We also found that incorporation of aSyn, Tau or Htt in EVs did not change the normal 

vesicle protein composition, suggesting these vesicles are not deregulated when they transport 

the disease-associated proteins we tested. However, future research will be necessary to 

determine whether the content of other biomolecules, such as lipids or nucleic acids, is altered, 

and this then inform on whether the uptake of the EVs by receptor cells may be altered. This 

is particularly relevant in the context of neurodegenerative diseases, as these vesicles may 
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not only play a role in the transmission of proteins but also in signalling cellular alterations 

taking place during the disease process.  

Microglia and astrocytes are two important cell types in the brain that mediate 

neuroinflammatory processes and, thereby, playing an important role in the pathogenesis of 

neurodegenerative diseases [579, 580]. Our study shows that ectosomes and exosomes can 

be taken up by microglial and astrocytic cells, and that both EV types elicited an increase in 

pro-inflammatory cytokines (IL-6, IL-1 and TNF). Microglial cells adopted an activated 

phenotype and exhibited LC3 puncta in the cytoplasm and increase in p62 levels, indicating 

autophagy activation, possible for the clearance of the EVs. Astrocytes also displayed 

accumulation of EVs in the cytoplasm, with the EGFP signal being surrounded by LC3 staining. 

Interestingly, microglia cells were more sensitive to EV-treatment: while astrocytes tolerated 

20μg/mL, microglia tolerated only up to 10μg/mL of EV protein. Ectosomes and exosomes 

containing aSyn-EGFP, EGFP-Tau or 25QHtt-EGFP were taken up at similar levels in 

microglia, and these were higher than those observed with 103QHtt-EGFP. Indeed, both wild-

type and mutant Htt can influence vesicle transport in the secretory and endocytic pathways 

through associations with clathrin-coated vesicles [581]. In contrast, astrocytes seemed to, in 

general, internalize more ectosomes, or degrade exosomes faster. Together, our findings 

demonstrate that EVs can be targeted by different types of glial cells, and that their uptake and 

effects are likely correlated with the EV type and content. These findings provide new insights 

into molecular mechanisms of intercellular communication.  

We also observed that ectosomes and exosomes are taken up by primary cortical 

neurons, as previously described [562]. The internalization ratio was similar for EVs with aSyn, 

Tau or Htt, but was considerably lower than that observed with microglia and astrocytes. The 

potential effects of EVs on neuronal network activity are still unclear. In this context, we 

demonstrate that spontaneous neuronal function can be modulated by ectosomes and 

exosomes, and that EV internalization is associated with a disruption of the typical 

synchronized bursting activity, resulting mostly in lower and less organized spiking activity. 

Interestingly, these alterations are mainly correlated with the EV subtype, and not with the 

presence of aSyn, Tau or Htt, although slight differences could be perceived between 25QHtt-

EGFP and 103QHtt-EGFP [562].  

We also demonstrate that aSyn, Tau or Htt present in the cell media can modify the 

spontaneous activity in cortical neurons. The use of identical concentrations of monomeric 

protein allowed us to compare the consequences of aSyn, Tau and Htt internalization, at sub-

cytotoxic concentrations. aSyn function has been associated with synaptic activity through the 

regulation of the vesicle pool [36, 582-584]. Interestingly, incubation of cortical neurons with 

monomeric aSyn resulted in a reduction of the firing rate and in an increase in burst duration, 
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without changing the coordinated network activity. These effects contrast with those reported 

with higher concentrations of extracellular aSyn or with aggregated assemblies that strongly 

reduce neuronal activity by disrupting synaptic transmission, thereby contributing to neuronal 

death [585, 586]. Remarkably, treatment of neurons with monomeric Tau results in increased 

neuronal activity and in robust and synchronized bursting activity, suggesting that neurons fire 

in a more regular and synchronized manner. Consistently, full-length monomeric Tau was 

previously described to be rapidly and efficiently internalized in healthy neurons, implying this 

might be part of a physiological, and not pathological, process [574]. Treatment of neurons 

with 23QHtt or 43QHtt resulted in longer burst intervals and a reduction in the synchronized 

bursting activity. As expected, internalization of 43QHtt resulted in greater impairment in the 

coordinated network activity, correlated with the toxic effects of the polyglutamine expansion 

[280, 437, 438]. A detailed understanding of the mechanisms of internalization of monomeric 

and aggregated forms of aSyn, Tau and Htt will be invaluable for the development of potential 

therapies for preventing the interneuronal transfer of proteins, without interfering with the 

physiological transfer of non-pathogenic forms. 

Overall, our systematic study compares the transfer of disease-related proteins through 

various cellular mechanisms, and between different cell types. In particular, we emphasize that 

protein release, either in a free form or in EVs, induces diverse effects in neighbouring receptor 

cells, and that great care is important when considering the development of therapeutic 

strategies to avoid interfering with normal physiological intercellular communication.  
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Primary cultures 

Neuronal cultures 

C57BL6/J#00245 wild-type E15.5 embryos from the animal facility of the University 

Medical Center Göttingen (Göttingen, Germany) were used for the preparation of primary 

cortical neuronal cultures, as previously described [534]. In detail, pregnant animals were 

anesthetized using carbon dioxide intoxication and the embryos extracted from the uterus. 

After removal of the meninges, cortex was dissected under a stereomicroscope and the tissue 

was transferred to ice-cold 1x Hanks' balanced salt solution (CaCl2 and MgCl2 free) (HBSS; 

Gibco Invitrogen, CA, USA) supplemented with 0.5% sodium bicarbonate solution (Sigma-

Aldrich, MO, USA). Trypsinization was performed at 37°C for 15 minutes (min) (100μL of 

0.25% trypsin; Gibco Invitrogen, CA, USA), and the reaction was stopped with the addition of 

100μL fetal bovine serum (FBS; Anprotec, Bruckberg, Germany) and 100μL DNase I (0.5 

mg/mL; Roche, Basel, Switzerland). After dissociation, the cell suspension was centrifuged at 

300xg for 5 min and then resuspended in pre-warmed neurobasal medium (Gibco Invitrogen, 

CA, USA) supplemented with 2% B27 supplement (Gibco Invitrogen, CA, USA), 0.25% 

GlutaMAX (Gibco Invitrogen, CA, USA) and 1% penicillin- streptomycin (PAN Biotech, 

Aidenbach, Germany). Cells were seeded on coverslips coated with poly-L-ornithine (0.1 

mg/mL in borate buffer) (PLO; Sigma-Aldrich, MO, USA) or culture plates (Corning, Merck, 

Darmstadt, Germany) for immunocytochemistry and western blot experiments. Cells were 

maintained at 37°C with 5% CO2, and fresh medium was added every 3-4 days. 

 

Microglial cultures 

Primary microglia were obtained from mixed glial cell cultures from C57BL6/J#00245 

wild-type P0 pups from the animal facility of the University Medical Center Göttingen 

(Göttingen, Germany), as previously described [587]. Briefly, meninges were removed from 

the isolated brains and the tissue was collected into ice cold 1x HBSS (Gibco Invitrogen, CA, 

USA). The supernatant was removed, the brains were washed 3 times with HBSS solution 

(without Ca2+, Mg2+ and phenol) (PAN Biotech, Aidenbach, Germany) and incubated with 

0.05% trypsin-EDTA (PAN Biotech, Aidenbach, Germany) in a water bath at 37°C during 10 

min. Trypsin was aspirated and the digestion was stopped by adding 0.5 mg/mL DNase I 

(Roche, Basel, Switzerland) in microglia medium [Dulbecco’s modified Eagle’s medium 

(DMEM; PAN Biotech, Aidenbach, Germany) supplemented with 0.5% penicillin- streptomycin 

(PAN Biotech, Aidenbach, Germany) and 10% FBS (Anprotec, Bruckberg, Germany)]. Tissue 

was shortly incubated for 2-3 min at 37°C in the water bath and carefully homogenized into 

single-cell suspensions with a glass pipette. Suspension was centrifuged for 10 min at 800xg, 

the supernatant was discarded, and the pellet was resuspended in microglia medium. Cell 
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suspension was plated into T75 flask (Corning, Merck, Darmstadt, Germany) and incubated 

overnight at 37°C and 5% CO2. On the following day, 2 days in vitro (DIV2), the cells were 

washed 3 times with pre-warmed HBSS solution (PAN Biotech, Aidenbach, Germany), 1 time 

with microglia medium and incubated with new medium until the next day. On DIV3, cell 

medium was replaced once more. On DIV5, the culture was stimulated by substitution of one 

third of the medium with L929 medium previously prepared in aliquots (see description in the 

cell lines section). The first harvest was performed on DIV8 by mild shaking and collection of 

the floating microglial cells. Medium was then centrifuged for 10 min at 800xg, the pellet 

resuspended in microglia medium, and cells were plated into culture plates previously coated 

with PLO (0.1 mg/mL in borate buffer) (Sigma-Aldrich, MO, USA) for immunocytochemistry, 

western blot, and gene expression studies. The culture was re-stimulated with new medium 

containing one third of L929 medium and incubated during 2-3 days until the next harvest. 

Three harvests were performed for the same culture. 

 

Astrocytic cultures 

Primary astrocytic cultures were prepared from C57BL6/J#00245 wild-type cerebral 

cortices of P0 pups from the animal facility of the University Medical Center Göttingen 

(Göttingen, Germany), as previously described [588]. After decapitation, meninges were 

removed, and the cortex was isolated from the brains and kept in ice cold 1x HBSS (Gibco 

Invitrogen, CA, USA). Tissue was digested in a fresh prepared solution of 0.25% trypsin (Gibco 

Invitrogen, CA, USA), 0.5 mg/mL DNase I (Roche, Basel, Switzerland), 1mM EDTA (Carl Roth, 

Karlsruhe, Germany), 10mM HEPES (Gibco Invitrogen, CA, USA), 2mg/mL bovine serum 

albumin (BSA) (Sigma-Aldrich, MO, USA) in 1x HBSS (Gibco Invitrogen, CA, USA) at 37°C for 

20 min. The reaction was stopped by adding astrocytes medium containing DMEM (PAN 

Biotech, Aidenbach, Germany) supplemented with 10% FBS (Anprotec, Bruckberg, Germany), 

1% penicillin- streptomycin (PAN Biotech, Aidenbach, Germany) and 25mM HEPES (Gibco 

Invitrogen, CA, USA), followed by a short centrifugation at 800xg during 2 min. After aspiration 

of the supernatant, the tissue was dissociated with astrocytes medium until obtain a cell 

homogenate. After centrifugation at 800xg during 5 min, the pellet was resuspended in 

medium, and cells were plated in a T75 cm2 flask (Corning, Merck, Darmstadt, Germany). 

Mixed culture was incubated at 37°C with 5% CO2 for 3 days. At DIV1 cells were washed with 

warm HBSS solution (PAN Biotech, Aidenbach, Germany) and fresh media was added to the 

culture. The mixed astrocytic culture was agitated at DIV7 in an orbital plate shaker at 200 rpm 

for 40 min at 37°C. Cell culture agitation was repeated at DIV 9 for 2.5 hours (h) at 250 rpm 

(37°C). A third shake was performed on DIV10 at 350 rpm, overnight at 37°C. After each 

agitation step, the supernatant was aspirated and the remaining cells in the flask were washed 
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1 time with warm HBSS solution (PAN Biotech, Aidenbach, Germany) and fresh media was 

added to the cells. Cells were detached at DIV11 using 0.25% trypsin (Gibco Invitrogen, CA, 

USA) at 37°C for 5 min. Culture medium was added to stopped trypsin action, and the cell 

suspension was collected and centrifuged at 800xg for 5 min. Cell pellet was resuspended in 

medium and cells were seeded with fresh medium on plates or coverslips (Corning, Merck, 

Darmstadt, Germany) coated with PLO (0.1 mg/mL in borate buffer) (Sigma-Aldrich, MO, USA) 

for immunocytochemistry, western blot and gene expression studies at the appropriate density.  

 

Cell lines 

Mouse fibroblast L929 cells 

Generation of L929-conditioned medium as performed as previously described [587]. 

L929 mouse fibroblast cells (kindly provided by Prof. Dr Hannelore Ehrenreich, MPI-EM, 

Göttingen, Germany) were plated into a T175cm2 cell culture flask (Corning, Merck, Darmstadt, 

Germany) with 100mL culture medium for 7 days containing DMEM (PAN Biotech, Aidenbach, 

Germany) supplemented with 10% FBS (Anprotec, Bruckberg, Germany) and 1% penicillin- 

streptomycin (PAN Biotech, Aidenbach, Germany) at 37°C with 5% CO2. The media was then 

collected, sterilized by filtration with 0.22µm filter (Sartorius, Göttingen, Germany) and stored 

at -20°C. The aliquots were freshly thawed when used for stimulation of the microglial cell 

culture. 

 

Human embryonic kidney cells 

Human embryonic kidney (HEK) 293 cells (ATTC, VA, USA) were maintained in DMEM 

medium (PAN Biotech, Aidenbach, Germany) supplemented with 10% FBS (Anprotec, 

Bruckberg, Germany) and 1% penicillin- streptomycin (PAN Biotech, Aidenbach, Germany) at 

37°C in a 5% CO2 atmosphere. 

 

Transfection protocol  

HEK 293 cells were seeded in cell culture plates (Corning, Merck, Darmstadt, 

Germany) in the day before at the appropriate density. Transfection protocol was performed 

using Metafectene (Biotex, TX, USA) according to the manufacturer’s instructions and using 

equimolar amounts of the plasmids of interest. The following plasmids used for the transfection 

protocol: pcDNA 3.1, pcDNA 3.1-aSyn, pcDNA 3.1-Tau (4R2N), pcDNA 3.1-22QHtt exon 1 (1-

90, CAG, ID CHDI-90000027, Coriell Institute), pcDNA 3.1-72QHtt exon 1 (1-90, CAG, ID 

CHDI-90001882-1, Coriell Institute), mCitrine-USP19 (Plasmid #78593, Addgene), mCitrine-
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USP19 C506S (Plasmid #78594, Addgene). After 4h of transfection, fresh medium was added 

to the cells (as described above in the cell lines section). Cells were collected or stained for 

further western blot or immunocytochemistry analysis after 24h or 72h as described in each 

experiment section. USP19 plasmids were kindly provided by Prof. Dr. Yihong Ye through 

Addgene (Lee et al., 2016), and Htt plasmids were kindly provided by NIGMS Human Genetic 

Cell Repository at the Coriell Institute for Medical Research. 

 

Lentivirus production  

Production of FUGW-aSyn-EGFP, FUGW-EGFP-Tau, pRRL-CMV-25QHtt-EGFP-

PRE-SIN and pRRL-CMV-103QHtt-EGFP-PRE-SIN lentivirus was performed as previously 

described [535]. Htt lentiviral vectors were kindly provided by Prof. Dr. Flaviano Giorgini 

(Leicester University, Leicester, United Kingdom) [589]. HEK 293 cells were seeded in culture 

plates (Corning, Merck, Darmstadt, Germany) and incubated in DMEM (PAN Biotech, 

Aidenbach, Germany) supplemented with 10% FBS (Anprotec, Bruckberg, Germany) and 1% 

penicillin-streptomycin (PAN Biotech, Aidenbach, Germany) overnight at 37°C with 5% CO2. 

On the following day, cells were incubated with DMEM with 2% FBS (Anprotec, Bruckberg, 

Germany), transfection medium for 5 h before transfection. Cells were transfected using 

calcium phosphate (CaPO4) precipitation method with a plasmid mix [57.9μg vesicular 

stomatitis virus glycoprotein (VSVG) packing virus, 144μg of Delta 8.9 packaging virus, and 

160μg of the plasmid of interest]. The DNA mix was added to 6 mL of 1x BBS (50 mM BES, 

280 mM NaCl, 1.5 mM Na2HPO4) and 0.36 mL CaCl2 (2.5M CaCl2) was added to the mixture 

in a vortex shaker in the dark under sterile conditions. Before adding the mixture to the cells, 

solution was incubated 20 min in the dark. On the following day, cells were incubated with 

Panserin (PAN Biotech, Aidenbach, Germany) supplemented with 1% of non-essential amino 

acids (MEM, Gibco Invitrogen, CA, USA) and 1% penicillin- streptomycin (PAN Biotech, 

Aidenbach, Germany). Viruses were harvested 72h after transfection and centrifuged at 

3000xg for 15min at 4°C. The supernatant was filtrated through a 0.45µm filter (Sartorius, 

Göttingen, Germany) and incubated with 1x PEG solution (SBI System Bioscience, CA, USA) 

to pellet the viruses. Viruses were spin down by centrifugation at 1500xg during 30min (4°C) 

after 2 days of incubation at 4°C. The pellet was resuspended in 100μL Panserin (PAN Biotech, 

Aidenbach, Germany).  

 

Lentiviral infections 

For neuronal cortical cultures, cells were infected at DIV14 with FUGW-aSyn-EGFP, 

FUGW-EGFP-Tau, pRRL-CMV-25QHtt-EGFP-PRE-SIN and pRRL-CMV-103QHtt-EGFP-
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PRE-SIN and collected for further analyses at DIV19. Culturing conditions were the same as 

specified above (primary culture section). 

Stable cell lines expressing alpha-synuclein (aSyn), Tau and huntingtin (Htt) were 

established by lentiviral infection of HEK 293 cells with FUGW-aSyn-EGFP, FUGW-EGFP-

Tau, pRRL-CMV-25QHtt-EGFP-PRE-SIN and pRRL-CMV-103QHtt-EGFP-PRE-SIN. Cells 

were incubated during 5 days with the viruses and after 3 passages the infection rate was 

confirmed by microscopy (more than 90% of positive cells). 

 

Lactate dehydrogenase assay 

Cytotoxicity in the cell cultures (primary cortical neurons and cell lines) was assessed 

using the cytotoxicity lactate dehydrogenase (LDH) detection kit according to the 

manufacturer’s instructions (Roche, Basel, Switzerland). Furthermore, culture medium was 

centrifuged at 500xg for 5 min to pellet cell debris before used in the experiments. 

 

Immunocytochemistry experiments 

Primary cortical neurons and cell lines cultures after the treatments were washed with 

1x PBS (PAN Biotech, Aidenbach, Germany) and fixed with 4% of paraformaldehyde solution 

(PFA) for 20 min (home-made) at room temperature (RT). PFA autofluorescence was 

quenched by incubation with 50 mM of ammonium chloride (NH4Cl) solution for 30 min at RT. 

Cells were permeabilized with 0.1% Triton X-100 (Sigma-Aldrich, MO, USA) for 10 min at RT, 

and then incubated with 2% BSA in PBS (NZYTech) blocking solution for 1h at RT. Incubation 

with primary antibody was performed overnight at 4°C [aSyn (1:1000, 610787, BD 

Biosciences), aSyn (phospho S129) (1:500, ab51253, Abcam), -tubulin (1:1000, 302217, 

Synaptic Systems), Glial Fibrillary Acidic Protein (GFAP) (1:1000, Z0334, Dako), Htt (1:500, 

MAB5374, Merck Millipore), Iba1 (1:1000, ab5076, Abcam), LC3 (1:500, PM036, MBL 

International), MAP2 (1:1000, ab11267, Abcam), Synaptophysin (1:500, 101002, Synaptic 

Systems), Tau (1:1000, MN1000, Thermo Fisher Scientific)]. Subsequently, the cells were 

washed with 1x PBS (PAN Biotech, Aidenbach, Germany) and then incubated with 

fluorescence conjugated secondary antibodies for 2h at RT [Alexa Fluor 488 donkey (1:1000, 

A21206, A21202, A11055, A21208, Invitrogen), Alexa Fluor 555 donkey (1:1000, A31572, 

A31570, A21432, Invitrogen), Alexa Fluor 633 goat (1:1000, A21050, Invitrogen), Alexa Fluor 

633 donkey (1:1000, A21082, Invitrogen) and Alexa Fluor 680 donkey (1:1000, A10043, 

Invitrogen)]. Lastly, nuclei were counter-stained with DAPI (Carl Roth, Karlsruhe, Germany) 

and mounted with mowiol (home-made) for imaging experiments.  
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Western blots 

Primary cortical neurons and cell lines cultures after the treatments were washed with 

1x PBS (PAN Biotech, Aidenbach, Germany) and lysed in RIPA buffer [50mM Tris, pH 8.0, 

0.15M NaCl, 0.1% SDS, 1.0% NP-40, 0.5% Na-Deoxycholate, 2mM EDTA, supplemented with 

protease and phosphatase inhibitors cocktail [(cOmpleteTM protease inhibitor and 

PhosSTOPTM phosphatase inhibitor) (Roche, Basel, Switzerland)]. Lysate protein 

concentrations were determined using the Bradford protein assay (Bio-Rad, CA, USA). 

Samples containing 30µg of protein were denaturated for 5 min at 95°C, loaded into 12% SDS-

PAGE gels and transferred to nitrocellulose membranes using iBlot 2 (Invitrogen, CA, USA). 

Membranes were incubated in blocking solution containing 5% skim milk (Sigma-Aldrich, MO, 

USA) in tris-buffered saline (pH 8) with 0.05% tween 20 (TBS-T). Primary antibody incubation 

was performed overnight at 4°C diluted in 5% BSA (Sigma-Aldrich, MO, USA) in TBS-T. The 

following primary antibodies were used in this study: Alix (1:1000, ab117600, Abcam), aSyn 

(1:3000, 610787, BD Biosciences), aSyn (phospho S129) (1:1000, ab51253, Abcam), -

tubulin (1:1000, 302217, Synaptic Systems), β-Actin (1:10000, A5441, Sigma-Aldrich), 

Annexin-A2 (1:1000, ab178677, Abcam), APG5L/ATG5 (1:1000, ab23722, Abcam), Flotilin-1 

(1:1000, #18634, Cell Signaling), GFP (1:1000, 11814460001, Roche), Glial Fibrillary Acidic 

Protein (GFAP) (1:1000, Z0334, Dako), Huntingtin anti-N17 (1-8) [1:5000, kindly provided by 

Prof. Dr. Ray Truant (McMaster University, Ontario, Canada)], iNOS / NOS II (1:1000, 06-573, 

Upstate), Iba1 (1:1000, ab178846, Abcam), LC3 (1:1000, PM036, MBL International), MAP2 

(1:1000, ab11267, Abcam), p62/SQSTM1 (1:1000, ab91526, Abcam), Synaptophysin (1:1000, 

101002, Synaptic Systems), Tau (1:5000, A0024, Dako), USP19 (1:1000, A301-587A-M, 

Biomol). On the next day, the membranes were washed with TBS-T and incubated for 2 h with 

horseradish peroxidase (HRP) conjugated secondary antibodies [ECL™ Rabbit or Mouse IgG, 

HRP-linked whole antibody (1:10000, NA934V or NXA931, Amersham)]. Subsequently, 

membranes were washed with TBS-T and incubated with a chemiluminescent HRP substrate 

(Millipore, MA, USA) for bands visualization in a chemiluminescence system (Fusion FX Vilber 

Lourmat, Vilber, France). Intensities of specific bands were normalized to a protein loading 

control or to the total protein levels marked using MemCode™ Reversible Protein (Thermo 

Fisher Scientific, MA, USA). 

 

Native-PAGE 

For native gel electrophoresis, samples were mixed with protein sample buffer (0.31M 

Tris HCl pH 6.8, 50% Glycerol, 0.4% Bromophenol blue). Samples were loaded on pre-cast 

vertical Serva gels 4–16% (Serva, Heidelberg, Germany) and ran according to the 

manufacturer’s instructions using the appropriate buffers [50 mM BisTris-HCl pH 7.0 for the 
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anode buffer; 50 mM Tricin, 15 mM BisTris-HCl pH 7.0 for the cathode buffer] (Serva, 

Heidelberg, Germany). Proteins were transferred to nitrocellulose membranes using iBlot 2 

(Invitrogen) and immunoblotting was performed as previously described in the western blot 

section. 

 

Isolation of extracellular vesicles 

Isolation of ectosomes and exosomes was performed as previously described [562]. 

HEK cells expressing the proteins of interest were grown in conditioned medium (depleted of 

FBS-derived exosomes). Briefly, DMEM (PAN Biotech, Aidenbach, Germany) supplemented 

with 20% FBS (Anprotec, Bruckberg, Germany) and 2% penicillin- streptomycin (PAN Biotech, 

Aidenbach, Germany) was centrifuged in polypropylene tubes (Optiseal; Beckman Coulter, 

CA, USA) in a fixed rotor (type 70 Ti, Beckman) during 16h at 100000xg (4°C), as previously 

described [497]. The medium was subsequently diluted with DMEM medium (PAN Biotech, 

Aidenbach, Germany) for a final concentration of 10% FBS (Anprotec, Bruckberg, Germany) 

and 1% penicillin- streptomycin (PAN Biotech, Aidenbach, Germany).  Cells were seeded in 

T75 cm2 flasks (Corning, Merck, Darmstadt, Germany) and incubated with fresh conditioned 

media during 24h at 80% confluency. The media was collected, and protease and phosphatase 

inhibitors [(cOmpleteTM protease inhibitor and PhosSTOPTM phosphatase inhibitor) (Roche, 

Basel, Switzerland)] were added before centrifuging for 10 min at 300xg (4°C). A second 

centrifugation was performed at 2000xg for 20 min (4°C). Supernatant was transferred into 

ultra-clear tubes (Beckman Coulter, CA, USA) and ultracentrifuged in a swing rotor (TH-641 

Sorvall; Thermo Fisher Scientific, MA, USA) during 90 min at 20000xg (4°C). Supernatant was 

carefully transferred into a new centrifuge tube and the pellet containing ectosomes was 

resuspended in ice cold PBS with protease and phosphatase inhibitors (PAN Biotech, 

Aidenbach, Germany). The medium was centrifuged in a swing rotor (TH-641 Sorvall; Thermo 

Fisher Scientific, MA, USA) during 90 min at 100000xg (4°C) to purify exosomes. The pellet 

was resuspended in ice cold PBS with protease and phosphatase inhibitors (PAN Biotech, 

Aidenbach, Germany). Ectosomal and exosomal pellets were diluted in PBS (PAN Biotech, 

Aidenbach, Germany) and centrifuged at the correspondent velocities to wash and concentrate 

the vesicles fractions. The pellets were resuspended in 100µl of ice cold 1x PBS with protease 

and phosphatase inhibitors (PAN Biotech, Aidenbach, Germany). Protein concentrations were 

determined by the BCA assay following the manufacturer’s instructions (Thermo Fisher 

Scientific, MA, USA). 
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Labelling of extracellular vesicles  

Extracellular vesicles were labelled with a fluorescent dye following a protocol 

previously described [521, 562]. Briefly, extracellular vesicles (60-100µg of total protein in 50μL 

PBS) were incubated with Alexa Fluor 633 C5-maleimide dye (200μg/mL; Invitrogen, Carlsbad, 

California, CA, USA) for 1h in the dark at RT. Samples were resuspended in 10mL PBS (PAN 

Biotech, Aidenbach, Germany) and centrifugated during 90 min at 20000xg (4°C) for 

ectosomes and 100000xg for 90 min for exosomes (4°C) in a swing rotor (TH-641 Sorvall; 

Thermo Fisher Scientific, MA, USA). As a control, PBS was similarly incubated with the dye to 

confirm the removal of the dye excess.  

 

NTA analysis 

Extracellular vesicles size distribution and particle number were measured using 

nanoparticle tracking analysis (NTA) with NanoSight LM10 instrument (LM14 viewing unit 

equipped with a 532 nm laser) (NanoSight, Salisbury, UK). For each replicate, ectosomes and 

exosomes fractions were diluted in 1x PBS (PAN Biotech, Aidenbach, Germany) to a final 

volume of 400mL prior to analysis, according to the manufacturer’s recommendations 

(NanoSight, Salisbury, UK). Measurements were recorded using NTA 2.3 software with a 

detection threshold of 5, captured with a camera level of 16 at 25 °C, in videos of 5 x 60s 

repeated 4 times. 

 

Electron microscopy (EM) 

Electron microscopy (EM) images from extracellular vesicles was performed following 

a protocol previously described [562]. Isolated ectosomes and exosomes were bound to a glow 

discharged carbon foil covered grids. Samples were sained with 1% uranyl acetate (aq.) and 

then evaluated at RT using Talos L120C transmission electron microscope (Thermo Fisher 

Scientific, MA, USA). 

 

Immuno-EM 

Immuno-EM images from HEK 293 cells expressing FUGW-aSyn-EGFP, FUGW-

EGFP-Tau, pRRL-CMV-25QHtt-EGFP-PRE-SIN and pRRL-CMV-103QHtt-EGFP-PRE-SIN 

were performed following a protocol previously described [590]. Briefly, cells were fixed with 

4% formaldehyde and 0.2% glutaraldehyde in 0.1M phosphate buffer. The cells were washed 

and then scraped from the dish in 0.1M phosphate buffer containing 1% gelatine, spun down, 

and resuspended in 10% gelatine in 0.1M phosphate buffer at 37°C. After spinning down again, 

the resulting pellets in gelatine were cooled on ice, removed from the tubes, and cut in small 
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blocks. These blocks were infiltrated in 2.3M sucrose in 0.1M phosphate buffer, mounted onto 

aluminium pins for cryo-ultramicrotomy (Leica Microsystems, Vienna, Austria) and frozen in 

liquid nitrogen. Ultrathin cryosections were cut with a cryo-immuno diamond knife (Diatome, 

Biel, Switzerland) using a UC6 cryo-ultramicrotome (Leica Microsystems, Vienna, Austria) and 

picked up in a 1:1 mixture of 2% methylcellulose and 2.3M sucrose. For immuno-labelling, 

sections were incubated with 3H9 GFP primary antibody (#029762, ChromoTek, Planegg-

Martinsried, Germany), followed by the secondary antibody (#112-4102, Rockland 

Immunochemicals, PA, USA) and then protein A-gold (10nm) (Cell Microscopy Core, Utrecht, 

Netherlands). Sections were analysed with a LEO EM912 Omega (Zeiss, Oberkochen, 

Germany) and digital micrographs were obtained with an on-axis 2048x2048-CCD camera 

(TRS). 

 

Proteomic analyses of extracellular vesicles 

For the proteomic analyses, ectosomes and exosomes samples were resuspended in 

Laemmli sample buffer and separated in SDS-PAGE gel, as previously described [562]. Briefly, 

the entire lane was cut in 23 gel pieces and tryptically digested [539]. Extracted peptides were 

analysed in technical replicates by liquid chromatography coupled to mass spectrometry (LC-

MS) on a Dionex UltiMate 3000 RSLCnano system (Thermo Fisher Scientific, Waltham, USA) 

connected to an Orbitrap Fusion mass spectrometer (Thermo Fisher Scientific, Waltham, 

USA). A 43 min gradient ranging from 8% to 37% acetonitrile on an in-house packed C18 

column was used to separate the peptides (75 µm x 30 cm, Reprosil-Pur 120C18-AQ, 1.9 µm, 

Dr. Maisch GmbH, Ammerbuch, Germany) at 300 nl/min flow rate. MS1 spectra were acquired 

with 120000 resolution (full width at half maximum, FWHM) and a scan range from 350 to 1600 

m/z. Within a cycle time of 3s, precursor ions with a charge state between +2 and +7 were 

selected individually with a 1.6 m/z isolation window and were fragmented with a normalized 

collision energy of 35 by higher energy collisional dissociation (HCD). MS2 spectra were 

acquired in the ion trap with 20 % normalized AGC and dynamic injection time. Once selected 

precursors were excluded from another fragmentation event for 30s. Raw acquisition files were 

subjected to database search with Maxquant (version 1.6.2.10) [540] against the reference 

proteome of Homo sapiens (downloaded on 02/19/2019) and the GFP fusion proteins. Default 

settings were used unless stated differently below. Fractions were defined according to the 

cutting of the gel lanes and experiments were defined on the level of technical replicates. 

Unique and razor peptides were used for label-free quantification except for the GFP fusion 

constructs where all peptides were used due to the difficulty of peptide assignment and protein 

grouping related to the EGFP tag. 
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All the proteomic data analysis were performed with Perseus (version and 1.6.15.0) 

[541]. The initial data was filtered for reverse hits, potential contaminants and hits only 

identified by site. Quantitative values were averaged across technical replicates ignoring 

missing values. A two-sample t-test was performed on biological replicates of the samples with 

an artificial within groups variance (s0) of 0.1 and a permutation-based FDR of 0.1 for multiple 

testing correction. These results were visualized in volcano plots. 

 

Secretion and internalization assays 

The collection of the cell media and evaluation of proteins secretion was performed 

using an adapted protocol from a previous study [455]. Briefly, 1mL of medium from HEK cells 

expressing FUGW-aSyn-EGFP, FUGW-EGFP-Tau, pRRL-CMV-25QHtt-EGFP-PRE-SIN or 

pRRL-CMV-103QHtt-EGFP-PRE-SIN was collected after 24h and centrifuged for 5 min at 

500xg at 4 °C to pellet cell debris. Supernatants were concentrated 10 times in an Amicon ultra 

10K centrifugal filters (Millipore, MA, USA) following the manufacturer’s instructions. Only 30µL 

of the 100µL final volume was analysed by western blot.  

For the neuronal cell media, the DotBlot system was used to exclude the possibility that 

the proteins of interest could be retained in the centrifugal filters and change the results 

observed in the experiments. Briefly, 1mL of the neuronal cell media was collected from 

primary cortical neurons expressing FUGW-aSyn-EGFP, FUGW-EGFP-Tau, pRRL-CMV-

25QHtt-EGFP-PRE-SIN or pRRL-CMV-103QHtt-EGFP-PRE-SIN and centrifuged for 5 min at 

500xg (4°C). Only 300µL of the 1mL final volume was directly applied into the system in a 

nitrocellulose membrane (Bio-Rad, CA, USA).  

For the internalization experiments, 1mL of medium from HEK cells expressing FUGW-

aSyn-EGFP, FUGW-EGFP-Tau, pRRL-CMV-25QHtt-EGFP-PRE-SIN or pRRL-CMV-

103QHtt-EGFP-PRE-SIN was collected after 24h and centrifuged for 5 min at 500xg (4°C). 

Afterwards, the media was added to naïve HEK cells for 72h. 

 

Flow cytometry experiments 

As described in the previous section, naïve HEK cells were incubated during 72h with 

1mL of cell media from HEK cells expressing FUGW-aSyn-EGFP, FUGW-EGFP-Tau, pRRL-

CMV-25QHtt-EGFP-PRE-SIN or pRRL-CMV-103QHtt-EGFP-PRE-SIN. Subsequently, HEK 

cells were washed with 1x PBS and trypsinized (PAN Biotech, Aidenbach, Germany). Cell 

suspension was centrifuged during 5 min at 300xg (4°C). Cell pellet was resuspended in 1x 

PBS (PAN Biotech, Aidenbach, Germany) to remove residual cell media and centrifuged for 5 

min at 300xg (4°C). The supernatant was removed by aspiration and the cell pellet was 
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resuspended in 1 mL of ice cold 1x PBS (PAN Biotech, Aidenbach, Germany) with 0.1% of 

propidium iodide (Sigma-Aldrich, MO, USA). Cells without EGFP expression, treated with 0.1% 

triton-X (Sigma-Aldrich, MO, USA) or PBS alone were used as negative controls. 10 000 

events were acquired on a FACSAria II flow cytometer (BD Biosciences, NJ, USA). Flow 

cytometric data were analysed with FlowJo Analysis Software (BD Biosciences, NJ, USA). 

 

Treatment of cells with extracellular vesicles  

Primary cortical neurons and astrocytes were treated with 20g/mL of ectosomes or 

exosomes resuspended in 1x PBS (PAN Biotech, Aidenbach, Germany) with protease and 

phosphatase inhibitors [(cOmpleteTM protease inhibitor and PhosSTOPTM phosphatase 

inhibitor) (Roche, Basel, Switzerland)]. Due to high toxicity, microglial cells were treated only 

with 10g/mL of extracellular vesicles. Treatment was performed in cortical neurons at DIV14, 

and cells were fixed or collected for further analyses at DIV15 (24h treatment). Microglial and 

astrocytic cell cultures were treated in the day after their plating for 24h, and then fixed or 

collected for further analyses. Pro-inflammatory stimulation was evaluated by the exposition to 

lipopolysaccharide (LPS; Thermo Fisher Scientific, MA, USA). Microglia cells were treated with 

50ng/mL and astrocytes with 100ng/mL of LPS (Thermo Fisher Scientific, MA, USA). Culturing 

conditions were the same as specified above in the primary culture section.  

 

Gene expression studies - RNA isolation and Quantitative real-time PCR 

Total RNA was extracted from microglial and astrocytic cultures 24h after treatment using 

TRIzol Reagent according to the manufacturer’s instructions (Invitrogen, CA, USA). Reverse 

transcription of RNA to produce cDNA was performed using QuantiTect Reverse Transcription kit 

(Qiagen, MD, USA) following the protocol provided by the manufacturers. Quantitative real-time 

PCR (qPCR) analysis was performed on an Applied Biosystems Real-Time PCR Systems using 

SYBR Green Master Mix (Qiagen, MD, USA). The thermal cycler conditions were as following: 

95°C for 10 min, then 40 cycles at 95°C for 15 s and 60°C for 25 s. Primers used in the quantitative 

real-time PCR experiments to evaluate the inflammatory markers were (mouse, sequence 5' to 3'): 

IL-6 Forward- ATCCAGTTGCCTTCTTGGGACTGA, IL-6 Reverse- 

TAAGCCTCCGACTTGTGAAGTGGT, IL-10 Forward- GGTTGCCAAGCCTTATCGGA, IL-10 

Reverse- CACTCTTCACCTGCTCCACT, IL-1β Forward- TCATTGTGGCTGTGGAGAAG, IL-1β 

Reverse - AGGCCACAGGTATTTTGTCG, TNFα Forward- CCCTCTCATCAGTTCTATGG, 

TNFα Reverse- GGAGTAGACAAGGTACAACC, β-actin Forward- 

GCGAGAAGATGACCCAGATC and β-actin Reverse- CCAGTGGTACGGCCAGAGG. Fold 

change expressions were calculated using the 2−ΔΔCT method, with β-actin as a reference gene 
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[591]. Quantification in the graphs show the normalized relative quantity (NRQ) values compared 

with the control. 

 

Treatment with recombinant monomeric protein 

Primary cortical neurons were treated at DIV14 with recombinant monomeric protein 

until DIV19 (5 days). Final concentration of protein in the cultures was 100nM and PBS was 

employed as negative control. Recombinant aSyn, full-length 2N4R Tau, 23QHtt and 43QHtt 

were prepared as previously described [592-594]. Culturing conditions were the same as 

specified above (primary culture section). 

 

Multielectrode array experiments 

Multi-electrode array (MEA) experiments were performed following standard protocols, 

as previously described [543, 562]. Primary cortical neuronal cultures were plated directly on 

60MEA200/30iR-Ti-gr planar arrays (60 electrodes, 30µm electrode diameter, 200µm 

electrode spacing) (MultiChannel Systems, Reutlingen, Germany). The arrays were coated 

with poly-L-lysine overnight at 4°C (500µg/mL in borate buffer; PLL) (Sigma-Aldrich, MO, USA) 

and the next day with laminin for 1h at RT (5µg/mL in distilled water) (Sigma-Aldrich, MO, 

USA). Neuronal cells were plated directly on top of the electrodes and treated with EVs or 

recombinant proteins. For the EVs recordings, cells were incubated with 20µg/mL of 

ectosomes or exosomes containing the different disease-related proteins at DIV14 and 

recorded at DIV15, 24h after the treatment. In the recombinant monomeric protein 

experiments, cells were incubated with 100nM of aSyn, full Tau, 23QHtt exon 1 or 43QHtt exon 

1 at DIV14 and recorded at DIV19, 5 days after the treatment. The neuronal activity was 

recorded using the MultiChannel MEA2100 system (MultiChannel Systems, Reutlingen, 

Germany) with temperature maintained at 35-37°C. Recordings started 10 min after 

translocation of the arrays from the incubator to the recording stage to avoid movement-

induced artifacts, and the spontaneous activity was recorded for 5-10 min. The electrode 

signals were amplified, band-pass filtered (200Hz to 3kHz) and recorded digitally at 25kHz, 

using the MultiChannel Experimenter software (version 2.17.7.0) (MultiChannel Systems, 

Reutlingen, Germany). 

Spike sorting was carried out using a modified version of the Kilosort automatic sorting 

software, as previously described [544, 545, 562] (available at: 

https://github.com/MouseLand/Kilosort and https://github.com/dimokaramanlis/KiloSortMEA). 

Kilosort output was visually inspected and manually curated with the Phy2 software 

(https://github.com/cortex-lab/phy). Only spike clusters (“units”) with a well-separated spike 

https://github.com/MouseLand/Kilosort
https://github.com/cortex-lab/phy
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waveform and a clear refractory period were included in the data analysis and considered as 

originated from individual neuronal cells. The spike clusters were pre-processed and analysed 

using custom-made MATLAB scripts (Version: 9.7.0, R2019b; Mathworks, MA, USA). The 

raster plots, voltage traces, average firing rate and spike amplitude were measured from the 

spontaneous activity of each recorded cell. In all the recordings, we observed the occurrence 

of frequent bursts [groups of spikes occurring rapidly and consecutively with short inter-spike 

intervals, less than few tens of milliseconds (ms)], followed by quiescent periods longer than 

normal inter-spike intervals [generally several seconds (s) in our recordings]. The burst activity 

usually occurred synchronously for multiple cells over the array and in our analysis, and we 

focused on this population-wide synchronized bursts for further data analysis. To detect the 

concurrent bursts, the population firing rate was computed as a histogram (100ms bin size) of 

array-wide spiking activity. The peaks of the firing rate histogram were used to detect 

synchronous, array-wide bursts with at least 500 ms distance between two consecutive peaks. 

The peaks that were smaller than 1/5 of the largest peak were excluded as they do not 

correspond to array-wide synchronous activity. A time window of 650 ms around each peak 

(150 ms before to 500 ms after) was defined as the burst window (onset and offset of each 

burst). For each recorded cell, the spikes belonging to bursts were measured during the 

defined burst windows, and cells with fewer than six spikes across all their detected bursts 

were excluded from this analysis. From the detected bursts, the following parameters were 

calculated: (1) burst rate of the culture as the number of bursts per time over the duration of 

each recording; (2) inter-burst-interval as the time between the measured offset of a burst and 

the onset of the following burst, calculated for each pair of successive bursts in a recording; 

(3) burst duration for each cell as the time between the cell’s first and last spike during the 

burst window; (4) intra-burst-frequency as the rate of spikes occurring within a burst, averaged 

over all the detected bursts for each cell; and (5) percentage of spikes in bursts as the ratio of 

spikes occurring during bursts relative to the total number of spikes for each cell. 

 

Confocal microscopy imaging 

Imaging was performed on a Leica SP5 confocal laser scanning microscope equipped 

with hybrid detectors using Application Suite X software with 100x immersion objective lenses 

(Leica Biosystems, Wetzlar, Germany). Samples were excited using 405 Diode, argon and 

helium–neon 633 lasers, pinhole = 1, 0.2 µm thickness Z stacks and 2 averaging line-by-line. 

The acquisition settings were optimized to avoid underexposure and oversaturation effects and 

kept equal throughout image acquisition of the samples. 
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Quantifications and Statistical Analyses 

Analyses of the images was performed using ImageJ software (National Institutes of 

Health) [546]. The EVs uptake in neuronal cells was measured by the ration of the EVs signal 

area and cell area from different isolated areas chosen randomly within regions containing EVs 

signal. All data are presented as mean ± SD. Data from at least three independent experiments 

and each replicate represents one independent experiment. To assess differences between 

two groups, two-tailed unpaired student t-test was performed using GraphPad Prism 9 

software (GraphPad, CA, USA). To assess differences between more than two groups, 

significant differences were assessed by one-way ANOVA followed by multiple comparisons 

with significance between groups corrected by Bonferroni procedure using GraphPad Prism 9 

software (GraphPad, CA, USA). Differences were considered to be significant for values of 

p<0.05 and are expressed as mean ± SD. For mass spectrometry, the spectral count 

differences between samples were considered to be significant for FDR values<0.1 (see 

proteomic analyses section).  
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Supplementary Figures 

Supplementary Figure 1. Different disease-related proteins are secreted to the extracellular space. (A) 

Representative images of HEK cells transfected with plasmids encoding untagged 22QHtt, 72QHtt, aSyn or Tau. 

Control cells were transfected with an empty plasmid. Scale bar 5 µm. (B) Western blots showing the protein levels 

in the lysates and released to the cell media of the different cells. Quantifications were normalized to total protein 

levels using MemCode. (C-E) LDH measurements confirm the absence of cell toxicity and cell death in (C) cells 

transfected with disease-relate proteins without tag, (D) in HEK cells stably expressing 25QHtt-EGFP, 103QHtt-

EGFP, aSyn-EGFP or EGFP-Tau, and (E) in primary cortical neurons expressing 25QHtt-EGFP, 103QHtt-EGFP, 

aSyn-EGFP or EGFP-Tau. Data from at least three independent experiments for each condition. Data from at least 

three independent experiments for each condition. Significant differences were assessed by one-way ANOVA 

followed by multiple comparisons with significance between groups corrected by Bonferroni procedure.  
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Supplementary Figure 2. Purification and characterization of secreted EVs using differential centrifugation. 

(A) MemCode staining demonstrates the total protein levels present in each fraction. Exosome-depleted cell media 

was collected from HEK cells after 24 hours and subsequently centrifuged at different speed. (B) Whole-mount 

electron microscopy analysis of each pellet showing representative images of ectosomes and exosomes (scale bar 

100 nm). (C) Nanoparticle tracking analysis (NTA) measurements of particle concentrations and average size 

distributions of ectosomes and exosomes. Average is represented with the filled line while each dotted line 

represents one biological replicate. Yellow dots represent exosomes measurements, while orange dots represent 

ectosomes measurements. Data from at least three independent experiments for each condition. (D) Proteomic 

analyses of ectosomes and exosomes using label-free quantitative mass spectrometry demonstrates the 

enrichment of specific protein markers in each fraction. Yellow dots represent the proteins enrichment in exosomes, 

while orange dots represent enrichment in ectosomes. Dots above the volcano plot line represent proteins for which 

differences were significant (false discovery rate [FDR] <0.1). Data represented in “t-test Difference (Ectosomes - 

Exosomes)” vs. “-Log t-test p-value” from 5 independent samples for each group. Data analyses were performed 

using Perseus software. 
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Supplementary Figure 3. Disease-related proteins are enriched in ectosomes. (A) Immunoblots of ectosomes 

and exosomes purified from the media of HEK cells stably expressing 25QHtt-EGFP, 103QHtt-EGFP, aSyn-EGFP 

or EGFP-Tau for 24 hours. Equal quantities of protein were separated on SDS-PAGE gels, and membranes were 

blotted with the indicated antibodies. Protein levels were normalized to total protein levels using Memcode. Data 

from at least three independent experiments for each condition. Significant differences were assessed by two-tailed 

unpaired t test comparison and are expressed as mean ± SD, *p<0.05, **p<0.01. (B-C) Proteomic analyses of 

ectosomes and exosomes using label-free quantitative mass spectrometry demonstrates the enrichment of 25QHtt-

EGFP, 103QHtt-EGFP, aSyn-EGFP and EGFP-Tau in ectosomes (B) and exosomes (C) compared with the control 
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(proteins are identified in green). (B) Data represented in “t-test Difference (Ectosomes – Ectosomes 25QHtt-EGFP/ 

103QHtt-EGFP/ aSyn-EGFP/ EGFP-Tau)” vs. “-Log t-test p-value” from 3 independent samples for each group. (C) 

Data represented in “t-test Difference (Exosomes – Exosomes 25QHtt-EGFP/ 103QHtt-EGFP/ aSyn-EGFP/ EGFP-

Tau)” vs. “-Log t-test p-value” from 3 independent samples for each group. Dots above the volcano plot line 

represent proteins for which differences were significant (false discovery rate [FDR] <0.1). Data analyses were 

performed using Perseus software. 

 

Supplementary Figure 4. Ectosomes and exosomes containing disease-related proteins are internalized by 

microglial cells. (A) Ectosomes and exosomes were applied to microglial cultures at a concentration of 10𝜇g/mL 
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for 24 hours. Cells were immunostained for LC3 (red) and Iba1 (grey). Scale bar 10 µm. (B) Ectosomes and 

exosomes were labelled with Alexa Fluor 633 C5-maleimide (grey) and applied to microglial cultures at a 

concentration of 10𝜇g/mL for 24 hours. Cells were immunostained for Iba1 (red). Scale bar 10 µm. (C) Ectosomes 

and exosomes containing 25QHtt-EGFP, 103QHtt-EGFP, aSyn-EGFP or EGFP-Tau were labelled with Alexa Fluor 

633 C5-maleimide (grey) and applied to microglial cultures at a concentration of 10𝜇g/mL for 24 hours. Cells were 

immunostained for Iba1 (red). Scale bar 10 µm. (D) EV internalization was evaluated through imaging analysis by 

measuring fluorescence intensity and cell area. Data from at least three independent experiments for each 

condition. Significant differences were assessed by one-way ANOVA followed by multiple comparisons with 

significance between groups corrected by Bonferroni procedure. Differences were considered to be significant for 

values of p<0.05 and are expressed as mean ± SD, *p<0.05, **p<0.01.  

 

Supplementary Figure 5. Ectosomes and exosomes containing disease-related proteins are internalized by 

microglial cells. (A) Ectosomes and exosomes containing 25QHtt-EGFP, 103QHtt-EGFP, aSyn-EGFP or EGFP-

Tau were applied to microglial cultures at a concentration of 10𝜇g/mL for 24 hours. Immunoblot and protein 
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quantifications of iNOS, Iba1 and APG5L/ ATG5. (B) EV treatment leads to the activation of the pro-inflammatory 

markers IL-6 and TNFα in microglia cells after 24hours. (C) LDH measurements confirm the absence of cell toxicity 

and cell death in the experiments. Data from at least three independent experiments for each condition. Significant 

differences were assessed by one-way ANOVA followed by multiple comparisons with significance between groups 

corrected by Bonferroni procedure. Differences were considered to be significant for values of p<0.05 and are 

expressed as mean ± SD, *p<0.05. 

Supplementary Figure 6. Ectosomes and exosomes containing disease-related proteins are internalized by 

astrocytic cells. (A) Ectosomes and exosomes were applied to astrocytic cultures at a concentration of 20𝜇g/mL 
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for 24 hours. Cells were immunostained for LC3 (red) and GFAP (grey). Scale bar 10 µm. (B) Ectosomes and 

exosomes were labelled with Alexa Fluor 633 C5-maleimide (grey) and applied to astrocytic cultures at a 

concentration of 20𝜇g/mL for 24 hours. Cells were immunostained for Iba1 (red). Scale bar 10 µm. (C) Ectosomes 

and exosomes containing 25QHtt-EGFP, 103QHtt-EGFP, aSyn-EGFP or EGFP-Tau were labelled with Alexa Fluor 

633 C5-maleimide (grey) and applied to cell cultures at a concentration of 20𝜇g/mL for 24 hours. Cells were 

immunostained for Iba1 (red). Scale bar 10 µm. (D) EV internalization levels were evaluated by image analyses 

measuring fluorescence intensity and cell area. Data from at least three independent experiments for each 

condition. Significant differences were assessed by one-way ANOVA followed by multiple comparisons with 

significance between groups corrected by Bonferroni procedure. Differences were considered to be significant for 

values of p<0.05 and are expressed as mean ± SD, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.  
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Supplementary Figure 7. Ectosomes and exosomes containing disease-related proteins are internalized by 

astrocytic cells. (A) Ectosomes and exosomes containing 25QHtt-EGFP, 103QHtt-EGFP, aSyn-EGFP or EGFP-

Tau were applied into astrocytic cultures at a concentration of 20𝜇g/mL for 24 hours. Immunoblot and protein 

quantifications of iNOS, APG5L/ ATG5, p62, GFAP and LC3. (B) EV treatment leads to the activation of the pro-

inflammatory markers IL-6, IL-β and TNFα in astrocytic cells after 24hours. (C) LDH measurements confirm the 

absence of cell toxicity and cell death in the experiments. Data from at least three independent experiments for 

each condition. Significant differences were assessed by one-way ANOVA followed by multiple comparisons with 

significance between groups corrected by Bonferroni procedure. Differences were considered to be significant for 

values of p<0.05 and are expressed as mean ± SD, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.  
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Supplementary Figure 8. Ectosomes and exosomes containing disease-related proteins are internalized by 

primary cortical neurons. (A) Ectosomes and exosomes were applied to primary cortical neurons 20𝜇g/mL for 24 

hours. Cells were immunostained for LC3 (red) and GFAP (grey). Scale bar 5µm. (B) Ectosomes and exosomes 
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were labelled with Alexa Fluor 633 C5-maleimide (grey) and applied to neuronal cultures at a concentration of 

20𝜇g/mL for 24 hours. Cells were immunostained for MAP2 (red). Scale bar 5µm. (C) Ectosomes and exosomes 

containing 25QHtt-EGFP, 103QHtt-EGFP, aSyn-EGFP or EGFP-Tau were applied to primary cortical cultures at a 

concentration of 20𝜇g/mL for 24 hours. Immunoblot and protein quantifications of PSD95, synaptophysin, MAP2, 

APG5L/ ATG5, p62, and LC3. (D) LDH measurements confirm the absence of cell toxicity and cell death in the 

experiments. Data from at least three independent experiments for each condition. Significant differences were 

assessed by one-way ANOVA followed by multiple comparisons with significance between groups corrected by 

Bonferroni procedure. Differences were considered to be significant for values of p<0.05 and are expressed as 

mean ± SD. 

 



 146 



 147 

3. Discussion  

Neurodegenerative disorders are characterized by progressive loss of specific 

vulnerable neuronal populations, and are classified according to clinical features, anatomic 

distribution of pathology, and molecular mechanisms involved in the disease progression. The 

most common neurodegenerative disorders are amyloidosis, tauopathies, alpha-

synucleinopathies, and polyQ proteinopathies [4]. The accumulation of abnormal protein 

conformations in the brain is a common hallmark in these disorders. Recently, the specific 

anatomical pattern of disease progression in neurodegenerative diseases has been partially 

explained through the transmission of abnormal protein conformers along anatomically 

connected pathways in the brain. This includes aSyn in PD and other synucleinopathies, Tau 

in tauopathies and mHtt in HD. Diverse molecular mechanisms seem to be involved in this 

process, contributing for disease progression and neurodegeneration. However, their 

functional consequences and contribution for the development of the pathology are only 

partially understood. Therefore, it is important to establish differences and similarities in the 

pathways that aSyn, Tau and Htt are handled in order to identify specific therapeutic targets 

for each disease. 

Protein secretion is often associated with intracellular accumulation of misfolded 

proteins. The cellular burden of aggregated proteins can induce the activation of several 

mechanisms that aim to reduce their levels in the cells and promote protein secretion to the 

extracellular milieu. However, as we present in our work, proteins can also be physiologically 

released from cells unrelated to protein aggregation. This hypothesis might explain the 

inconsistencies regarding protein spreading described in the literature. However, further 

research is necessary to evaluate the physiological role of aSyn, Tau and Htt secretion. 

In our work, we demonstrate the release of distinct disease-related proteins through 

similar prion-like spreading mechanisms. Despite the diverse functional roles of aSyn, Tau 

and Htt, cells direct these proteins to ER, MVBs and plasma membrane for their secretion. 

Overall, these results indicate that prion-like spreading mechanisms are common to several 

neurodegenerative diseases and may not be restricted to a specific protein or disease. 

Although, proteins can be sorted more favourably for one of these mechanisms since we 

observed differences between the secretion and internalization levels of aSyn, Tau and Htt. 

Additionally, cell-to-cell transmission can depend on the protein intrinsic properties, cellular 

function, and their potential role in the extracellular milieu. 

Protein secretion involves non-vesicular and vesicular-mediated pathways. In our 

study, aSyn, Tau and Htt were present in the cell media both as free proteins and associated 

with EVs. In particular, release of aSyn, Tau and normal Htt in a free form occurred in higher 
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levels compared with mHtt. The size, distribution, and stability of mHtt might affect its secretion 

through the plasma membrane or using the MAPS pathway. Interestingly, the percentage of 

cells that internalized Tau were higher when compared with the other proteins, despite Tau 

not being the protein more exported to the extracellular space. This indicates that Tau might 

be more easily/ faster internalized in cells, or additional pathways might be involved in its 

uptake compared with the other proteins. It is also possible the existence of protein 

degradation in the extracellular space by proteases. Additionally, it demonstrates that protein 

internalization is not a process entirely dependent of the protein levels in the exterior space, 

but it might be determined by the type of protein, receptor cell, and mechanisms involved in 

the cellular uptake. 

The role of EVs in health and age-associated diseases is far from being completely 

understood. These membrane-enclosed particles are released by several cell types in the 

brain and are central for intercellular communication. EVs are a selective pathway for the 

physiological transfer of nucleic acids, lipids and proteins, but also for the elimination of 

misfolded proteins. Recently, evidence implicated these vesicles as causative players in the 

spreading of neurodegenerative diseases but also as relevant biomarkers for these disorders. 

Cells release a variety of EVs that differ in size, morphology, composition, and mechanisms 

of biogenesis. However, the use of different EVs purification methods, absence of reliable 

markers and lack of comprehensive characterization resulted in numerous contradictory data 

and challenges in their study.  

Numerous studies have been focusing on the characterization and biological function 

of exosomes. However, ectosomes have been described in the literature as important EVs in 

AD and remain largely understudied. In our work, we provide a reproducible differential 

ultracentrifugation protocol optimized to efficiently isolate ectosomes and exosomes from 

diverse biofluids. Comprehensive proteomic and molecular analysis of the different EVs 

subtypes revealed singular proteomic profiles and displayed their individual biological and 

molecular signatures. Notably, we have identified several membrane-associated proteins 

annexins as novel markers for ectosomes, in particular annexin-A2. We also demonstrate that 

ectosomes and exosomes are internalized in similar quantities in cortical neurons and can be 

transported through the axons to other cells. Still, other EVs content may be altered as lipids 

and nucleic acids. We further demonstrate that spontaneous neuronal function can be 

differently modulated by ectosomes and exosomes, and that EVs uptake is associated with a 

disruption of the typical synchronized bursting neuronal activity. Overall, these results indicate 

that ectosomes and exosomes not only have different biogenesis and protein content, but also 

specific functional effects in physiological conditions. 
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Interestingly, ectosomes exhibited higher levels of aSyn, Tau and Htt compared with 

exosomes. Also, incorporation of these proteins in EVs did not change the vesicles protein 

composition. The internalization of disease-related proteins in EVs can be a protective 

mechanism for clearance of aggregation-prone proteins and possible be involved in the 

spreading of pathology in the brain. This is context, these vesicles may also play a role in 

signalling intracellular changes taking place during the disease process to the neighbouring 

cells. 

Once in the extracellular space, aSyn, Tau and Htt in a free form or in EVs have distinct 

functional consequences in cortical neurons. Treatment with monomeric aSyn, Tau and Htt 

resulted in the modulation of the spontaneous neuronal activity depending on the protein 

added to the culture, in contrast to EVs where the alterations were mainly correlated with the 

EVs type. This might indicate different functional effects of aSyn, Tau and Htt in neuronal cells 

when present in a free form and in EVs. However, aSyn, Tau and Htt were present in lower 

levels in EVs compared with the total levels in the cell media, potentially explaining the distinct 

functional effects observed. Indeed, we observed sight differences in the spontaneous 

neuronal activity in cells treated with ectosomes and exosomes containing 25QHtt and 

103QHtt. Also, different mechanisms may be involved in the internalization of these proteins 

in a free form or in EVs, possibly leading to distinctive functional effects.  

Protein secretion in EVs might contribute to a variety of detrimental effects in receiving 

cells, not only in the spontaneous activity in neuronal cells, but also in the activation of 

autophagic and inflammatory processes in microglial and astrocytic cells. It is also conceivable 

the existence of specificity between the EVs type and the receptor cells, since we observed 

different internalization levels for EVs in neurons, microglia and astrocytes. Altogether, our 

results emphasize the potential distinct effects of ectosomes and exosomes in physiological 

and pathological conditions. 

Many studies suggest that aSyn, Tau and Htt have prion-like properties, however there 

are several topics that need further clarification. One of the main arguments against this 

hypothesis is the lack of studies demonstrating protein infectivity between individuals, and 

evidence regarding endogenous protein transmission cell-to-cell. Also, PrP, aSyn, Tau and 

Htt have different protein functions and distribution in cell types and in the brain. Although the 

passive release of misfolded proteins from damaged or dead neurons is considered 

insignificant, these levels may be enough for the development of pathology prior to the 

manifestation of the typical motor features. Lastly, the proposed prion-like spreading 

mechanisms already exist in physiological conditions, implying that they do not have a role 

only in pathology progression. 



 150 

Our current understanding suggests that prion-like mechanisms may not be the main 

driving factor in neurodegenerative diseases, but that they might contribute to the acceleration 

of disease progression. Also, it is unknow the factors promoting progressive cell-to-cell 

transfer of proteins, and if this is a physiological or pathological process. Our work highlights 

the involvement of common molecular mechanisms in the transmission of aSyn, Tau and Htt 

in neurodegenerative diseases, and emphasizes potential biomarkers and targets for the 

development of novel therapeutic strategies.  
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4. Conclusions 

Herein, we provide evidence that disease-related proteins found to be important in 

several neurodegenerative diseases may transfer from cell-to-cell via similar mechanisms, 

and therefore negatively impacting on the neighbouring cells and contributing for disease 

progression. Although each neurogenerative disease is usually presented as a distinct entity, 

they often overlap in several features.  

The functional and toxic consequences of aSyn, Tau and Htt in the extracellular space 

are dependent not only on each of their properties, but also in the mechanisms involved in 

their release. Particularly, we emphasize that protein release in a free form or in EVs might 

contribute to a variety of detrimental effects in receptor cells and to pathology progression. 

However, protein secretion may also constitute an important physiological process in the brain.  

Understanding the function of EVs under physiological and pathological conditions will 

unravel the molecular mechanisms underlying dementias and assist in the development of 

disease-modifying strategies. Also, it is important when considering the development of 

therapeutic strategies to avoid interfering with the normal physiological intercellular 

communication. Studies focusing in EVs are essential for opening new avenues for their 

clinical use as biomarkers, and as vehicles for the targeted delivery of compounds and other 

therapies. 

An immense advance has been achieved in the field over the last years regarding the 

understanding of the molecular and cellular mechanisms that regulate protein release and 

internalization, and whether and how these contribute to the pathology transmission in 

neurodegenerative diseases. Despite several important questions remain unanswered, these 

are exciting times in research, as today we now more than when the prion-like hypothesis was 

proposed. 
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