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Abstract

Inner hair cells (IHC) are responsible for transforming mechanical sound-borne vibrations

into electrical signals and conveying this information to the afferent spiral ganglion neurons

(SGNs). Upon stimulation, the receptor potential triggers the opening of voltage-gated Ca2+

channels, mediating the fusion of vesicles and the consequent release of neurotransmitter

from the presynaptic active zone to the postsynaptic bouton. In vivo recordings from SGNs

revealed highly synchronized onset responses and indefatigably sustained firing rates. A

plethora of techniques has been used to understand how IHCs accomplish this impressive

performance of neurotransmitter release, and which mechanisms establish the diversity of

auditory nerve fibers (ANFs) responses to stimulation. This thesis provides further insight

into the molecular physiology of sound encoding.

First, synaptic transmission at individual murine IHC afferent synapses was studied using

paired IHC-bouton patch clamp recordings in near physiological conditions. Synapses

contacting the pillar side of the IHC had higher rates of spontaneous EPSCs that were

characterized by larger amplitudes yet similar charges. High spontaneous rates (SR)

synapses had significantly lower voltage thresholds of release and tended to have shorter

synaptic delays, as well as faster recovery from readily releasable pool (RRP) depletion.

Furthermore, this study corroborated that a Ca2+-nanodomain-like control of exocytosis

operates at IHCs synapses.

Second, collaborators and I studied synaptic transmission in IHC synapses from RIBEYE

knockout (KO) mice. Their ribbonless synapses were characterized by several small active

zones opposing each postsynaptic density. In vivo ANFs recordings revealed an impaired

synaptic transmission, characterized by lower spontaneous and evoked firing rates, lower

temporal precision and a slower recovery from adaptation. Ca2+ imaging of individual active

zones showed that the Ca2+ channels required more depolarized potentials to activate.

Consequently, weak depolarizations during perforated patch-clamp recordings resulted in

reduced exocytosis compared to wildtype (Wt). We postulated a role of the ribbon in

synaptic vesicle replenishment and Ca2+ channel regulation.

Third, collaborators and I studied the role of endophilin-A1-3, endocytic adaptor proteins,

in IHCs. Perforated patch-clamp recordings from organotypic cultures and from explanted

organs of Corti revealed lower Ca2+ influx, impaired sustained exocytosis and slower
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endocytic membrane retrieval in Endophilin-A-deficient IHCs. At the ultrastructural level,

the IHC active zones had lower counts of synaptic vesicles, but increased numbers of coated

structures and endosome-like vacuoles. In addition, we postulated a molecular interaction

between endophilin-A1 and otoferlin based on co-immunoprecipitation. We proposed a

positive role of endophilin-A in the modulation of Ca2+ channels, and in synaptic vesicle

recycling, likely via coupling of exo- and endocytosis, membrane retrieval, synaptic vesicle

uncoating and reformation.
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Chapter 1 General introduction

The sense of hearing, also known as audition, allows us to experience a wonderful world,

from crucial sounds for survival to the emotions triggered by music. Audition shares

principles with other senses: it is most sensitive to its specific stimulus, here sound pressure

changes, and bears receptor cells, the mechanosensory hair cells transducing the stimulus.

In the following sections, I will give a brief introduction into the auditory system with a

focus on the cochlea and its sensorineural elements, covering aspects of the anatomy,

physiology and molecular players.

Sound processing and cochlear anatomy

Our auditory system analyses acoustic input from the external environment. It captures the

sound, efficiently transmits it to the receptor organ, and transduces it into electrical signals

that travel to central stages of the auditory system for further processing of sensory

information. To perform this task, the ear is equipped with three functional parts: the outer

ear, the middle ear and the inner ear |Figure 1|.

Acoustic waves are funneled by the auricle of the outer ear into the external ear canal until

they reach the tympanic membrane. The periods of compression and rarefaction of the

soundwave cause the tympanic membrane to vibrate back and forth. These vibrations are

transmitted to the three osscicles, incus, malleus and stapes, located in the middle ear. The

stapes then acts as a piston that compresses the fluid contained in the inner ear, allowing the

transformation of airborne vibrations into fluid movements in the cochlea.

The cochlea of the inner ear is a snail-shaped bony structure with three liquid-filled

compartments in its interior: the scala vestibuli, the scala tympani and the scala media. The

scala vestibule and tympani end with sealed openings called the oval window and the round

window, respectively. The two chambers are separated by the cochlear partition along most

of their length, but communicate with one another through the helicotrema at the apex. The

third compartment, the scala media, lies within the cochlear partition, separated from the

scala vestibuli by the Reissner’s membrane and from the scala media by the basilar

membrane. Upon sound arrival, the stapes pushes the oval window and produces changes in

the fluid pressure of the scala vestibuli. The pressure displaces the cochlear partition

downwards and consequently, increases the fluid pressure in the scala tympani. Each period
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of compression and rarefaction of a soundwave initiates pressure oscillations in the three

compartments that ultimately cause the basilar membrane to resonate (Von Bekesy, 1956).

The mechanical properties of the basilar membrane are crucial for sound processing and

analysis. At the apex of the cochlea, the basilar membrane is broader, relatively thin and

flaccid, while it progressively becomes narrower, thicker and stiffer toward the base.

Because of this variation along the cochlea’s length, each sound frequency produces

maximal oscillation at a particular position in the basilar membrane. Low frequency sounds

evoke movement near the apex, while high frequency sounds produce motion near the base.

The arrangement of sound frequency onto the basilar membrane, called tonotopy, is

approximately logarithmic. Tonotopy is well-maintained along the auditory pathway, from

the auditory nerve, to the midbrain stations and up to the auditory cortex.

|Figure 1| The ear and the organ of Corti
Incoming soundwaves arrive at the outer ear, travel through the ear canal and reach the tympanic membrane.
The vibration of the tympanic membrane is transmitted to the osscicles, incus, malleus and stapes, present in
the middle ear. The stapes then acts as a piston and transmits the sound vibration to the inner ear. Within the
sensory epithelium of the auditory system, the organ of Corti, the sound vibration is transduced into a neural
code. The organ of Corti is composed of three rows of outer hair cells, one row inner hair cells, the nerve fibers
from the spiral ganglion neurons, and supporting and ancillary structures. On the ‘pillar side’, IHCs face pillar
cells, OHCs and Deiters’ cells, while on the ‘modiolar side’, IHCs face the modiolus that contains the SGNs.
Illustration modified from (Kandel et al., 2012).

The organ of Corti and the hair cells

Sitting on the basilar membrane is the organ of Corti, a highly organized epithelium

composed of sensory cells, nerve fibers, and supporting and ancillary structures. The sensory
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cells, called hair cells, are organized in three rows of outer hair cells (OHCs) and one row of

inner hair cells (IHCs), with two rows of pillar cells separating them. Deiters’s and

phalangeal cells support the base of the OHCs and IHCs, respectively |Figure 1|. Afferent

nerve fibers (ANFs) from the spiral ganglion neurons (SGNs) contact the hair cells at their

basal pole.

The hair cells derive their name from the presence of a set of stereocilia in their apical

surface. These modified microvilli are organized in three rows of increasing height in a

staircase fashion, with a more linear arrangement in IHCs and a V-shape configuration in

OHCs. The stereocilia protrude into the endolymph solution contained in the scala media,

where they serve as receptors for mechanical movements. In addition, the top of the OHC’s

hair bundles is embedded in the tectorial membrane, an acellular matrix that lies above the

organ of Corti. Each stereocilium is composed of cross-linked actin and adjacent stereocilia

are connected at their apex by cadherin structures called tip links (Pickles et al., 1984;

Siemens et al., 2004; Söllner et al., 2004). At the lower end of each tip link, two

mechanotransducer (MET) channels sit in the tip of the first and second row of stereocilia

(Assad et al., 1991; Beurg et al., 2009; Howard and Hudspeth, 1987; Jaramillo and Hudspeth,

1991; Lumpkin and Hudspeth, 1995). The oscillation of the basilar membrane in response

to sound leads to movements of the tectorial membrane and of the endolymph in the space

beneath it. These movements deflect the stereociliary bundles of OHCs and IHCs and thus,

initiate the mechanoelectrical transduction process. Deflection toward the taller stereocilia

causes the activation of MET ion channels and the consequent depolarization of the hair cell

due to the increase in cation influx (mostly K+) from the endolymph (Corey and Hudspeth,

1979). In contrast, deflection toward the shorter stereocilia causes MET channels to close,

thereby hyperpolarizing the cell. With a sinusoidal stimulus, the opening and closing of the

MET channels produces an oscillatory receptor potential in the hair cells (Palmer and

Russell, 1986).

The receptor potential consists of a phasic component (AC component) and a continuous

component (DC component). The predominance of each component varies according to the

stimulus frequency (Palmer and Russell, 1986). In response to low frequency tones, IHCs

generate a phasic, large and asymmetrical potential dominated mostly by the AC component.

Contrary, in response to high frequency tones, the receptor potential is dominated by a

positive DC component with an overlapping AC component that decreases in amplitude with
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the stimulus frequency. Both the AC and DC component rise linearly with the stimulus

intensity and saturate at high sound pressure levels (Russell and Sellick, 1978).

When OHCs are stimulated by relative movements of the tectorial and basilar membrane,

their depolarization leads them to primarily amplify sound vibrations with little if any

contribution to synaptic sound encoding (Ashmore, 2008, 1987). OHCs elongate or contract

in response to changes in their membrane potential. This membrane-based motor process is

called electromotility and is mediated by the motor protein prestin (Cheatham, 2004; Zheng

et al., 2000). The oscillatory movements accelerate the basilar membrane motion, amplifying

the sound-born vibrations and thus enhancing the sensitivity of hearing and sharpening the

frequency tuning of the basilar membrane.

Inner hair cells

The IHCs are the key players to convey the acoustic information to higher auditory areas

through the afferent fibers of type I SGNs. Ca2+ influx through L-type voltage gated Ca2+

channels located at the base of the IHC triggers the fusion of synaptic vesicles with the IHC

plasma membrane, and the subsequent release of glutamate onto the synaptic cleft.

Glutamate then binds the postsynaptic AMPA receptors located in the boutons of SGNs. The

ensuing depolarizing current initiates the generation of the action potential in the SGNs.

IHCs are specialized to encode sound. In vivo, IHCs are reported to have resting potentials

ranging between -55 and -20 mV (Russell, 1983; Russell and Sellick, 1978). In vitro,

however, the resting potential has been determined to be -58 mV for apical and -66 mV for

basal IHCs (Johnson, 2015). The resting mechanotransducer current (Johnson et al., 2005;

Xu and Lipscombe, 2001) and several basolateral membrane currents - including rapidly

activating large conductance Ca2+-activated K+ (BK) currents, small conductance Ca2+-

activated K+ (SK) currents and negatively activating delayed rectifier current - are

responsible to maintain the IHC at its receptor potential (Johnson, 2015; Kharkovets et al.,

2006; Oliver et al., 2003). As it will be discussed later on, the relatively positive resting

potential of IHCs is a key feature that shapes high rates of neurotransmitter release even in

the absence of sound.
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Ribbon synapse

The IHC synapses are located in the basal pole of the cell. They differ from the conventional

synapses in terms of structure, function and molecular machinery. Ultrastructurally, these

synapses are characterized by a cytoplasmic electron-dense proteinaceous structure termed

the synaptic ribbon [for review see (Pangršič et al., 2012; Safieddine et al., 2012)]. The

ribbon is anchored to the active zone by the scaffold protein Bassoon (Jing et al., 2013;

Khimich et al., 2005) and tethers numerous vesicles around it [for a review (Chakrabarti and

Wichmann, 2019)]. At a molecular level, synaptic ribbons are composed mainly by the

proteins RIBEYE (Becker et al., 2018; Jean et al., 2018; Khimich et al., 2005; Lv et al.,

2016) and Piccolino (Dick et al., 2003; Regus-Leidig et al., 2014).

In mammals, each IHC ribbon is associated with one unmyelinated ending of a type I SGN

(Robertson, 1984), the most abundant type present in the cochlea (95%) (Berglund and

Ryugo, 1987; Kiang et al., 1982). Roughly, 10 to 30 SGNs contact one IHC, but this number

varies by species and tonotopy (Fuchs et al., 2003; Kiang et al., 1982; Liberman, 1982;

Meyer and Moser, 2010). Imaging studies using electron microscopy of the mature IHC

synapses have been of great utility for estimation of the IHC active zone topography. The

estimated presynaptic density of about 420 x 80 nm2 is mostly occupied by one synaptic

ribbon tethering on average 40-70 vesicles [for a review (Chakrabarti and Wichmann,

2019)]. Beneath the ribbon, about 11 to 14 vesicles compose the membrane-associated pool

that is thought to constitute the readily releasable pool of vesicles. These vesicles are located

20-50 nm away from the plasma membrane with 40% of them tethered to the plasma

membrane with a tether length of 20-25 nm [for a review (Chakrabarti and Wichmann, 2019;

Chakrabarti et al., 2018)].

Upon stimulation, glutamate released into the synaptic cleft binds to the postsynaptic AMPA

receptors present in the afferent dendrites of the ANFs (Glowatzki and Fuchs, 2002; Ruel et

al., 1999). These receptors are composed manily of GluR2/3 and GluR4 subunits (Parks,

2000; Ravindranathan et al., 2000). Other main constituents of the postsynapse are the

scaffolding proteins PSD-95 (Davies et al., 2001), Homer (Becker et al., 2018) and Shank1

(Braude et al., 2015).
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Exocytosis at IHCs

Exocytosis at IHCs has been extensively studied by performing capacitance measurements

(Cm) during whole-cell patch clamp recordings. During the initial recordings, Moser and

Beutner described the IHC synaptic release as bi-phasic with initial high secretory rates

followed by a slower exocytosis during prolonged stimulation (Moser and Beutner, 2000).

This suggests the presence of two distinct pools of synaptic vesicles. The first fast

exponential component of exocytosis presumably reflects the fusion of the readily-releasable

pool of vesicles (RRP). Capacitance measurements, paired IHC and bouton patch-clamp

recordings, and modeling of in vivo recordings from SGNs have led to RRP estimates of 4

to 45 vesicles depleting with time constants ranging between 3 to 54 ms (Frank et al., 2010;

Goutman and Glowatzki, 2007; Johnson et al., 2005; Moser and Beutner, 2000; Pangrsic et

al., 2010; Peterson et al., 2014). The high variability of the estimates might be a reflection

of different animal models, recording conditions and/or assumptions of

univesicular/multivesicular release at single active zones. It remains clear though, that

synaptic transmission in IHCs achieve high onset release rates exceeding thousands of

vesicles per second. The abolishment of this first excitatory component in the presence of

the fast Ca2+ buffer, BAPTA, but its persistence in the presence of the slow Ca2+ buffer,

EGTA, suggests that the RRP is composed of vesicles released in the close proximity to the

Ca2+ channels (Moser and Beutner, 2000). The second slow exponential component of

exocytosis is suggested to represent sustained release of synaptic vesicles that have been

mobilized to the fusion site by replenishment mechanisms. Due to its sensitivity to EGTA,

the mobilization and fusion of this second pool might depend on long distance Ca2+ signaling

(Moser and Beutner, 2000).

One prominent characteristic of the IHC ribbon synapse is the high variability in the

excitatory postsynaptic current (EPSC) amplitude (coefficient of variations: 77-95%) and

waveform in the absence of stimulus (Glowatzki and Fuchs, 2002). The mechanisms behind

this phenomenon are under ongoing debate. Initially, it was proposed that the release of

multiple vesicles in a more or less coordinated fashion accounted for the variability in the

waveforms. Under this hypothesis, monophasic EPSCs with a sharp rise and decay arise

from the highly coordinated exocytosis of on average six vesicles, whereas EPSCs with

multiple peaks and variable rise and decay times were attributed to uncoordinated release of

several vesicles (Glowatzki and Fuchs, 2002). This notion, although with fewer vesicles

involved in the average release event, was supported by the higher apparent capacitance of
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elementary events derived from a non-stationary fluctuation analysis based on whole-cell

capacitance measurements than the capacitance estimates based on electron microscopy

micrographs (Neef et al., 2007). Additionally, or alternatively, variable EPSC waveforms

might originate from single vesicles with different glutamate concentrations (Takamori,

2016).

The multiquantal hypothesis seems hard to reconcile with the fact that several vesicles would

need to simultaneously fuse at resting conditions when the release probability is low

(Chapochnikov et al., 2014). Therefore, an alternative hypothesis was postulated, in which

the variability was attributed by the fusion pore dynamics during fusion of a single vesicle

with the plasma membrane (Chapochnikov et al., 2014). In this uniquantal hypothesis, large

monophasic EPSCs can be explained by the instantaneous release of the neurotransmitter

when the vesicle rapidly and fully collapses with the plasma membrane. The flickering of

the fusion pore, which results in the varied diffusion rate of the vesicle content to the synaptic

cleft, would then account for multiphasic EPSCs (Chapochnikov et al., 2014). Two recent

studies using postsynaptic bouton recordings (Huang and Moser, 2018) and low noise cell-

attached capacitance measurements (Grabner and Moser, 2018) support this hypothesis.

Unconventional synaptic release machinery of IHCs

The molecular players at ribbon synapses have been under intensive research. The role of

the ribbon itself has been one of the major questions regarding these unconventional

synapses. It is well known that ribbons contain the unique scaffolding protein RIBEYE

(Schmitz et al., 2000). It is transcribed from the same gene as the essential transcription

factor CtBP2 (Hildebrand and Soriano, 2002), making RIBEYE-disruption a challenging

task.

Researchers have used different techniques to bypass this issue, including studying the

natural variation in size and abundance of RIBEYE during hibernation or diurnal cycle (Hull

et al., 2006; Mehta et al., 2013), as well as ribbon photoablation (Mehta et al., 2013;

Snellman et al., 2011). A common circumventing approach is to disrupt the presynaptic

scaffold protein bassoon that anchors the ribbons to the active zones (Dick et al., 2003;

Khimich et al., 2005). However, this leads to combinatory effects of bassoon deletion and

ribbon loss on the function of the active zone. In zebrafish, morpholino-mediated RIBEYE

knockdown led to reduced afferent innervation and postsynaptic densities (Sheets et al.,

2011), while frameshift mutations in the two genes encoding for RIBEYE resulted in
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vesicles gathering around ribbon-like structures that lack electron density, called ‘ghost

ribbons’ (Lv et al., 2016). Yet, there was evidence in both studies of an uncomplete abolition

of RIBEYE, probably due to the duplicated genome of this animal model.

Only a couple of years ago a complete disruption of RIBEYE was achieved by knocking-

out the RIBEYE specific exon in mouse (Maxeiner et al., 2016). At the retina level, the

resulting ribbonless synapses showed impaired evoked release and looser coupling of the

Ca2+ channels to the release sites. This study supported the view of the synaptic ribbon as a

conveyor belt that promotes sustained release and helps in the nanodomain positioning of

the Ca2+ channels to the readily-releasable synaptic vesicles. Nonetheless, retinal and IHC

ribbon synapses are functionally distinct, hence, assessment of the effects of ribbon absence

on IHC synaptic transmission and sound encoding is of great importance.

The large cytomatrix protein bassoon is responsible for anchoring the ribbon to the

presynaptic density (Khimich et al., 2005). Disruption of bassoon, for instance, leads to

reduced pool of membrane-proximal vesicles, smaller and misshaped Ca2+ channel clusters

(Frank et al., 2010), and defective ribbon anchoring (Jing et al., 2013). Physiologically,

bassoon mutants show reduced spontaneous and sound-evoked firing rates (Buran et al.,

2010; Khimich et al., 2005), impaired RRP exocytosis (Khimich et al., 2005) and smaller

EPSC amplitudes (Jing et al., 2013), supporting an essential role of Bassoon for normal

hearing. Nevertheless, and as mentioned before, some of these findings might originate from

the combinatorial effect of bassoon deletion and ribbon mis-anchoring and/or absence.

IHCs do not express the conventional fundamental synaptic proteins such as synaptophysins,

synapsins, or complexins (Safieddine and Wenthold, 1999; Strenzke et al., 2009). Essential

neurosecretory soluble N-ethylmaleimide-sensitive factor attachment protein receptor

(SNARE) proteins (synaptobrevins/VAMPS 1-3, syntaxins 1-3 and SNAP25) seem also to

be absent (Nouvian et al., 2011, but see Safieddine and Wenthold, 1999 for a deviating view).

Based on the lack of obvious effects of clostridial neurotoxins on exocytosis, no homologous

or functionally redundant proteins are thought to be expressed in the IHC ribbon synapse

(Nouvian et al., 2011). Priming factors like Munc13 and proteins from the CAPS family,

which are critical for transmission at many synapses (Imig et al., 2014; James and Martin,

2013), are also undetected (Vogl et al., 2015). Additionally, the Ca2+ sensors synaptotagmin

1 and 2 are only transiently expressed during early postnatal age but not in mature IHCs

(Beurg et al., 2010; Reisinger et al., 2011).
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Instead, Otoferlin is currently the best candidate as a priming factor and vesicular Ca2+ sensor

in IHCs (Michalski et al., 2017; Pangrsic et al., 2010). This multi-C2-domain protein is

specifically expressed in hair cells and defects in it cause human deafness DFNB9 (Yasunaga

et al., 2000). Otoferlin’s binding of Ca2+ -with Ca2+ binding to most of its C2 domains-, as

well as its Ca2+ dependent interaction with the SNARE complex in vitro (Ramakrishnan et

al., 2014), strongly supports its Ca2+ sensor activity. In line with this hypothesis, otoferlin-

deficient IHCs have almost complete absence of exocytosis despite structurally normal

afferent synapses (Roux et al., 2006). On top of its fundamental role in exocytosis, Otoferlin

might also mediate efficient release site clearance and synaptic vesicle reformation (Jung et

al., 2015).

Endocytosis at IHCs

IHCs support high release rates. In consequence, they require an efficient and robust

endocytotic machinery that allows retrieval of exocytosed membrane, recycling of synaptic

vesicle components and that ensures trafficking of synaptic vesicles’ membranes (Kamin et

al., 2014). The broad distribution and expression of endocytic proteins (Neef et al., 2014),

as well as studies using FM dyes (Kamin et al., 2014), indicate an abundant membrane

recycling in IHCs during rest and stimulation.

Membrane trafficking microscopy, ultrastructural analysis and electrophysiological studies

suggest three complementary modes of membrane retrieval to support the efficient recycling

of synaptic vesicles in IHCs. The first mode, denominated rapid endocytosis or “kiss and run

endocytosis”, occurs predominantly when intracellular calcium levels exceed 15 µM (as a

reference, a voltage depolarization to -15 mV presumably increases intracellular calcium

concentration to 20-30 µM) (Beutner et al., 2001). This mode displays a time constant ~250-

300 ms (Beutner et al., 2001; Neef et al., 2014) and it is thought to retrieve a significant

fraction of membrane within one second, contributing to the homeostasis of membrane

trafficking when the stimulus intensity is high (Beutner et al., 2001). The second mode,

clathrin-mediated endocytosis (CME), participates to the membrane retrieval regardless the

amount of exocytosis (Duncker et al., 2013; Neef et al., 2014) and it is limited at the IHCs

basal surface (Griesinger et al., 2002; Revelo et al., 2014). CME in IHCs occurs at a nearly

constant rate of 1-2 fF/s (approximately 2-4 synaptic vesicles per s) in order to balance

membrane recycling at low rates of stimulation, athough it can occur concomitantly with

other modes of endocytosis (Neef et al., 2014). Besides the conventional molecular players
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-clathrin and dynamin-, a complex of otoferlin with AP-2 and Myosin IV has also been

suggested to participate in CME (Duncker et al., 2013). The third mode, bulk endocytosis,

is proposed as one of the principal mechanisms for IHCs. This mode relies on the formation

of large endocytic cisternae in the vicinity of the ribbon when exocytosis exceeds 3-4 times

the RRP equivalent (Kamin et al., 2014; Neef et al., 2014; Revelo et al., 2014). The cisternae

are then further turned into smaller compartments, seemingly synaptic vesicles, in that they

co-localize with synaptic vesicle markers and seem able to participate in another round of

exocytosis (Kamin et al., 2014; Revelo et al., 2014). As this type of endocytosis is not

commonly found in resting conditions (Neef et al., 2014), it seems as a clathrin- and

dynamin- independent mechanism to retrieve big portions of membrane faster (time constant

of ~6 s) than CME. Thus, bulk endocytosis seems to mediate active zone clearance to

counteract the sustained high rate of exocytosis observed in ribbon synapses (Holt et al.,

2003; Paillart et al., 2003).

However, considering the rapid vesicle pool resupply (with a maximum rate of ~1200-1900

vesicle/s in IHC, (Griesinger et al., 2005; Moser and Beutner, 2000)), CME and bulk

endocytosis seem too slow to account for RRP recovery. The large reserve pool of synaptic

vesicles observed in IHCs might play an important role in the replenishment of the ribbon

(Kamin et al., 2014). Therefore, it appears that endocytosis is rather involved in the resupply

of the RRP at longer timescales (Moser and Beutner, 2000).

Importantly, intracellular Ca2+ concentration seems to act as a switch between the different

modes of endocytosis in IHCs and determine the onset and extent of each mode. The

ocurrance of rapid endocytosis increases from 15% to 90% when intracellular Ca2+

concentration passes from 15 µM to 40 µM (Beutner et al., 2001). Lower Ca2+ concentrations

trigger a slower endocytic retrieval, probably reflecting CME (Beutner et al., 2001; Neef et

al., 2014). Interestingly, the kinetics of these two modes of endocytosis remain unaffected

by changes in intracellular Ca2+ levels (Beutner et al., 2001; Moser and Beutner, 2000; Neef

et al., 2014). Whether this holds true for bulk endocytosis remains to be tested.

The described Ca2+ dependence of endocytosis suggests a tight coupling between exo- and

endocytosis in IHCs. In this context, the presumable Ca2+-sensor, otoferlin, might couple the

two processes via interaction with adaptor proteins implicated in endocytosis per se and

active zone clearance (Duncker et al., 2013; Jung et al., 2015; Neef et al., 2014; Revelo et

al., 2014).
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Calcium channels at IHCs

Transmitter release at the IHC is driven by the influx of Ca2+ through voltage gated calcium

channels (Brandt et al., 2003; Dou et al., 2004; Platzer et al., 2000). They belong to the L-

type class of dihydropyridine sensitive Ca2+ channels which are encoded by the Cav1.3 D1D

gene. Overall, these type of Ca2+ channels are well suited to respond to graded potentials.

Their rapid gating (W of activation of 300 µs at room temperature) ensures short delays in

synaptic transmission (Xu and Lipscombe, 2001) and supports the proper response to voltage

fluctuations of the periodic (AC) and sustained (DC) component of the receptor potential.

Their lower voltage of activation (between -65 and -55 mV) compared to other members of

the same class (Beutner et al., 2001; Koschak et al., 2001; Platzer et al., 2000; Spassova et

al., 2004; Xu and Lipscombe, 2001), makes Cav1.3D1 channels crucial to mediate IHC

responses to small membrane depolarizations and consequently, to transmit information

from low sound intensities (Xu and Lipscombe, 2001). Additionally, their slow inactivation

(Fuchs et al., 1990; Koschak et al., 2001; Roberts et al., 1990; Spassova et al., 2004) bolsters

sustained signaling while eventually avoiding Ca2+ overload of IHCs (Johnson et al., 2008).

Several factors influence the spatiotemporal contribution of Ca2+ during IHC stimulation,

including the topology of Ca2+ channels and the distribution of Ca2+ buffers. Although little

is known about the precise distribution of Ca2+ buffers at IHCs active zones, the topology of

Ca2+ channels have been intensively studied. Ca2+ channels are abundantly expressed in the

basolateral surface of the IHCs (Brandt et al., 2005). In mature IHCs, most of the Ca2+

channels are clustered as a stripe under the synaptic ribbon as shown by super-resolution

immunofluorescence and electron microscopy (Neef et al., 2018; Wong et al., 2014).

Electrophysiological measurements of macroscopic and single-channel currents have led to

an estimation of 1000-3000 Ca2+ channels per IHC (Brandt et al., 2005; Graydon et al., 2011;

Zampini et al., 2010), with less than 10% of them located extrasynaptically after the onset

of hearing (Wong et al., 2014). Thus, based on the number of synapses per IHC, it was

initially suggested that each active zone harbors 40-180 channels. Recently, a study

combining confocal microscopy, optical fluctuation analysis and 3D-STED microscopy set

the estimation between 30-360 Ca2+ channels at each active zone (Neef et al., 2018).

In addition to differences in the number of Ca2+ channels per active zone, the coupling

between the Ca2+ source and the Ca2+ sensor critically determines how the acoustic stimulus

is encoded at the synapse between the IHC and the SGN. However, morphological studies
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using freeze-fracture to determine the arrangement of Ca2+ channels are difficult to achieve.

This comes in addition to the limited knowledge regarding the number of functional Ca2+

channels that open at different sound intensities. Therefore, indirect techniques are used to

estimate the Ca2+ channel cooperativity (i.e., the number of Ca2+ channels contributing to

vesicle fusion). A classical approach is to relate the presynaptic Ca2+ influx and exocytosis

during an experimental reduction in the number of active Ca2+ channels or in the single

channel current (Augustine et al., 1991; Eggermann et al., 2012). The change in the number

of active Ca2+ channels can be achieved either by gradually changing the strength of

depolarization, or by slowly applying Ca2+ channel blockers. The obtained apparent Ca2+

cooperativity reflects the active zone morphology. Instead, if the single Ca2+ channel current

is experimentally varied, the resulting relationship between Ca2+ influx and exocytosis will

reflect the intrinsic cooperativity (i.e., number of Ca2+ binding steps required for one vesicle

to fuse) [for a review see (Eggermann et al., 2012)].

There are two opposing hypotheses regarding the Ca2+ control of vesicular release. The Ca2+

nanodomain hypothesis of exocytosis control proposes that one or very few Ca2+ channels

in nanometer proximity (less than 100 nm) from the vesicular release site govern the Ca2+

concentration that drives the release of a synaptic vesicle (Moser et al., 2006a; Neher, 1998).

Exocytosis is thus linearly dependent on the number of open Ca2+ channels, leading to an

apparent cooperativity close to 1. This results in increased sensitivity and speed of synaptic

transmission, and a better adaptation for encoding graded potentials with a large dynamic

range (Eggermann et al., 2012; Jarsky et al., 2010; Matveev et al., 2011). Contrary, the Ca2+

microdomain hypothesis proposes that a pool of several Ca2+ channels located further away

from the vesicular Ca2+ sensor (>100 mn) are necessary to elicit exocytosis of a given vesicle

[for a review see (Eggermann et al., 2012; Oheim et al., 2006)]. In this case, exocytosis

shows a nonlinear dependence on the number of open channels (i.e., high apparent Ca2+

cooperativity close or equal to the intrinsic Ca2+ cooperativity). Stochastic Ca2+ channel

openings have then a reduced impact in the exocytosis of vesicles and therefore, synaptic

transmission is predicted to have less jitter and noise (Matveev et al., 2009, 2011).

Fusion of vesicles in IHCs exhibits a high intrinsic Ca2+ cooperativity of 4-5 determined

using flash photolysis of caged Ca2+(Beutner et al., 2001). This implies that at least 4 Ca2+

ions have to bind the Ca2+ sensor in a cooperative manner. The non-linearity in the intrinsic

dependence of release means that synaptic transmission strongly depends on the distance of

the vesicle to the Ca2+ channel. This distance has been estimated from the effects of EGTA,
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a slow Ca2+ chelator, on vesicle fusion. Supporting the Ca2+ nanodomain hypothesis, EGTA

has little effect on exocytosis from apical IHCs (Moser and Beutner, 2000). Taking into

account the rate of diffusion of Ca2+ and the binding kinetics of EGTA to Ca2+, the weighted

average coupling distance between a Ca2+ channel and the release site has been estimated

around 15-17 nm (Pangršič et al., 2015).

The variety and distribution of Ca2+ buffers in the cell also shape the cytoplasmic gradient

of Ca2+ away from the Ca2+ source. These buffers can be mobile or fixed, including Ca2+-

channel interacting proteins. Diffusion of Ca2+ is increased by mobile buffers, yet slowed by

fixed buffers (Zhou and Neher, 1993). The major mobile Ca2+-binding proteins in IHCs are

the EF-hand Ca2+ mobile buffers such as calretinin, parvalbumin-D and calbindin-D28k (and

oncomodulin that is only present transiently during development, Hackney et al., 2005;

Pangršič et al., 2015). Their absence enhances Ca2+ dependent inactivation, while the Ca2+

channel activation kinetics remain intact (Pangršič et al., 2015). It is not clear yet whether

these buffers interact directly with the Ca2+ channel, but the direct interaction of calretinin

with Cav2.1 channels opens the possibility (Christel et al., 2012).

Cav1.3 channels have several reported interacting partners in IHC. These interacting proteins

often modify the biophysical properties and behaviors of the Ca2+ channels, and are involved

in Ca2+ signaling. Among the most prominent ones is the Ca2+ sensor Calmodulin (CaM).

CaM associates with the COOH-terminal domain of L-type Ca2+ channels (Ben Johny et al.,

2013). Upon Ca2+ influx, Ca2+ binds to this preassociated complex and triggers a

conformational change that mediates Ca2+ dependent inactivation. Calcium binding proteins

(CaBPs) are also a crucial family of proteins that interact with Ca2+ channels. Upon Ca2+

binding, they appear to displace CaM from the Ca2+ channel antagonizing the CaM-

dependent inactivation (Hardie and Lee, 2016). CaBP2 disruption is associated to a

significant hearing impair in humans (Picher et al., 2017a; Schrauwen et al., 2012), while

CaBP4 mildly affects IHC physiology (Cui et al., 2007), which argues for a potential

functional redundancy among the CaBP family members.

Spiral ganglion neurons and their in vivo response properties

As mentioned before, SGNs connect the hair cells to the central auditory pathway. Two types

of SGNs are present in the cochlea: type I and type II. Type I SGNs constitute the vast

majority (90-95%) of cochlear nerve afferents (Liberman, 1982; Spoendlin, 1969). They

receive input solely from IHCs (Robertson, 1984) and are myelinated almost in all their
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length with the exception of a small segment close to the postsynaptic bouton. Type II SGNs,

the remaining 5-10%, form multiple synapses with several OHCs. Contrary to type I, type II

SGNs are unmyelinated and do not seem to be involved in sound encoding but rather in

monitoring the state of the organ of Corti (Spoendlin, 1969, 1972). Type II afferents will not

be considered further in this section.

The central axon of the SGNs projects to the brainstem forming the eight cranial nerve. In

vivo recordings from ANFs have been crucial to characterize SGNs and to understand the

first synapse of the auditory system. ANFs fire action potentials spontaneously in the

absence of sound. In mammals, the spontaneous firing rate (SR) ranges from close to zero

spikes/s to more than 150 spikes/s (Kiang et al., 1965; Tsuji and Liberman, 1997). The SR

can be used to classify ANFs in 3 groups (Liberman, 1982): i) high SR with > 18 spikes/s,

ii) medium with 0.5 < SR ≤ 18 spikes/s, and iii) low SR with ≤ 0.5 spikes/s. Those 3 groups

have been associated with a distribution along the pillar/modiolar axis of the IHC (Liberman,

1980; Merchan-Perez and Liberman, 1996; Tsuji and Liberman, 1997). In mice, ANFs are

classified only in high (> 1 EPSC/s) and low (< 1 EPSC/s) SR fibers (Taberner and

Liberman, 2005). Intracellular recordings and labeling of cat ANFs, in combination with

electron microscopy, showed that high SR fibers have larger axon diameters and contact the

IHC predominantly on the pillar side into AZs with smaller ribbons (Liberman, 1980). Low

and medium SR fibers, on the other hand, have smaller axon diameters and form synapses

with larger ribbons on the modiolar face of the IHC (Liberman et al., 2011). |Figure 2|

Several parameters have been used to describe the diversity of the synaptic response of

ANFs. The threshold, for instance, dictates the sound pressure level required to increase the

ANF response above a criterion (experimenters often use a 20 spikes/s increase in the ANF

response above the SR, Johnson, 1980; Rose et al., 1967, 1971). The threshold as a function

of the frequency is measured by the tuning curve, which is independent for each ANF and

presents a V-shape (Kiang et al., 1962). The characteristic frequency (CF) of an ANF is the

frequency for which the ANF has the lowest threshold and corresponds to the tip of the

tuning curve. This CF depends on the fiber’s position on the basilar membrane (Liberman,

1980; Merchan-Perez and Liberman, 1996; Müller et al., 2005; Tsuji and Liberman, 1997).

A physiological consequence of the classification based on the SR is that high SR fibers

tipically have the lowest threshold, and medium/low SR the higuest one. This negative

correlation between SR and threshold has been observed in mice (Taberner and Liberman,
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2005), cats (Liberman, 1980; Tsuji and Liberman, 1997), guinea pigs (Winter et al., 1990),

gerbils (Huet et al., 2016; Ohlemiller et al., 1991) and ferret (Sumner and Palmer, 2012).

|Figure 2| In vivo response properties of spiral ganglion neurons
In vivo juxtacellular recordings from individual auditory nerve fibers have unraveled the diversity in their
response properties. A. Spontaneous rate: Some ANFs (A1) have low spontaneous activity (low SR < 1 spike/s,
measured in absence of sound in mice), while some other ANFs (A2, upper panel) have high rates (high SR >
1 spikes/s). (Taberner and Liberman, 2005) B. Evoked activity: In response to a sound stimulation, the low SR
ANFs (B1) typically show a lower peak to adapted rate ratio than high SR ANFs (B2). It is thought that low
SR fibers innervate prerefentially the IHC modiolar side, while the high SR innervate the pillar side. C.
Intensity coding: Low SR ANFs typically have higher sound thresholds and a broader dynamic range (C1,
shaded area). High SR ANFs show a low sound threshold and a narrow dynamic range (C2, shaded area)
(Winter et al., 1990). Plots are courtesy of Dr. Antoine Huet.

The strength of the synaptic response has been addressed by studying the response

dependence on the stimulus intensity. ANFs increase their AP rates from minimum to

maximum over a range of dBSPL (dB Sound Pressure Level, Pref = 10 µPa at 1 kHz,

Ohlemiller and Echteler, 1990; Sachs et al., 1989; Winter et al., 1990, Ohlemiller et al.,

1991). The resulting rate level function describes an ANF firing rate as stimulus intensity

and allows to calculate the fiber’s operating range (called dynamic range). The dynamic

range is defined as the sound intensities for which the firing rate increases from 10% to 90%

of the difference between spontaneous and maximal rates. Most murine ANFs have dynamic

ranges of less than 15 dB, yet there is a correlation between SR and dynamic range. High

SR fibers increase their spiking rate steeply, leading to an early saturation of the response,

and a narrow dynamic range (Ohlemiller et al., 1991; Taberner and Liberman, 2005; Winter
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et al., 1990). Contrary, low SR fibers display shallower rise in the spiking rate, with little or

no saturation, thereby, a wider dynamic range. |Figure 2|

The fact that fibers with the same CF can have high or low SR supports the idea that a single

IHC encompasses synapses of both types. How does a presumably isopotential and

uncompartmentalized IHC harbor synapses with heterogeneous response properties? Recent

studies indicate that part of the diversity in the afferent response originates from

heterogeneous Ca2+ clusters within individual IHCs (Frank et al., 2009; Jean et al., 2019;

Neef et al., 2018; Ohn et al., 2016). Postsynaptic mechanisms have also been postulated,

including gradient in the number and/or properties of AMPA receptors (Liberman et al.,

2011; Zhang et al., 2018), fiber diameter and mitochondrial enrichment (Merchan-Perez and

Liberman, 1996) and varying levels of voltage-gated channels and Ca2+ mobile buffers

(Petitpré et al., 2018; Shrestha et al., 2018; Sun et al., 2018). All these presynaptic and

postsynaptic mechanisms most likely ensure the correct encoding of intensity information

of the sound stimuli.

Aim of this work

The mechanisms that shape the impressive performance and heterogeneity of the IHC ribbon

synapses are still scarcely understood. The first part of this work aims at understanding

synaptic transmission at individual active zones. Here, I used paired IHC and bouton patch-

clamp recordings in near physiological conditions to investigate spontaneous activity,

vesicle pool dynamics, stimulus-intensity coding and Ca2+ dependence of neurotransmitter

release. The second part is focused on assessing the role of the synaptic ribbon on sound

encoding using a RIBEYE KO mouse model. In collaboration with other researchers, we

characterized the morphology and physiology of ribbonless active zones using

immunofluorescence, electron microscopy, patch-clamp recordings, Ca2+ imaging and in

vivo ANFs recordings. The last part of this work aims to determine the effect of the deletion

of endophilin A in IHCs. Together with collaborators, we used single-cell RT and

immunoblot to corroborate the expression of endophilin A. We further investigated

exocytosis, endocytosis and the general morphology using immunofluorescence, electron

microscopy, patch-clamp recordings and co-immunoprecipitations.
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Introduction

Inner hair cells (IHCs) convey the acoustic information to higher stages of the auditory

system through their synapses with type I spiral ganglion neurons (SGNs). Upon

mechanoelectrical transduction, the IHC receptor potential triggers the opening of L-type

voltage-gated Ca2+ channels, mediating the fusion of vesicles with the plasma membrane

(Brandt et al., 2003; Moser and Beutner, 2000; Platzer et al., 2000; Spassova et al., 2001).

Glutamate released from the presynaptic active zone binds AMPA receptors located in the

postsynaptic bouton (Glowatzki and Fuchs, 2002; Keen and Hudspeth, 2006; Matsubara et

al., 1996; Schnee et al., 2013), ultimately initiating an action potential in the SGN

(Rutherford et al., 2012). Sound encoding is thought to rely on individual IHC active zones

providing the sole input to individual SGNs [for review, see (Fettiplace, 2017; Moser and

Vogl, 2016)].

In vivo juxtacellular recordings from auditory nerve fibers (ANFs) have unraveled key

physiological aspects of synaptic transmission. First, release occurs even in the absence of

sound at rates greater than 100 spikes/s, depending on the species (Barbary, 1991; Evans,

1972; Kiang et al., 1965; Schmiedt, 1989; Taberner and Liberman, 2005). Second, strong

sound elicits onset responses of approximately one thousand spikes per second within

submilliseconds (Taberner and Liberman, 2005). During continuous stimulation, the initial

firing rate adapts to hundreds of spikes per second, yet release continues indefatigably as

long as the sound lasts (Westerman and Smith, 1984). Third, SGNs differ in their response

to increasing tone levels. The resulting rate level functions vary within SGNs. Some fibers

show a low sound threshold and a steep increase in the spike rate to increasing sound

intensities until the rate saturates, while other fibers have a higher sound threshold and

shallower spike rate increment with saturation at higher sound intensities (Winter et al.,

1990). Furthermore, there is a relation of the latter characteristics to the spontaneous rate of

the fibers. Low threshold fibers have a high spontaneous firing rate, while high threshold

fibers have a low spontaneous firing rate (Ohlemiller et al., 1991). |Figure 2|

Differences in the response properties have been attributed to both presynaptic and

postsynaptic features, including presynaptic heterogeneity and diverse postsynaptic

molecular composition [for a comprehensive overview, see (Meyer and Moser, 2010; Moser

et al., 2019; Rutherford and Moser, 2016)]. Despite efforts to dissect the underlying

mechanisms of these response properties, the prevalent techniques only provide information



Chapter 2

21

from either one of the synaptic players, IHC or SGN, limiting the conclusions. Our

understanding of sound encoding could be much advanced by biophysical studies of

transmitter release from single IHC active zones of hearing animals performed under near

physiological conditions. This approach provides detailed information on synaptic

transmission for the interpretation of in vivo recordings of spontaneous and sound-evoked

firing of SGNs.

Here we studied the biophysical properties of the auditory ribbon synapse using paired

recordings from IHC and postsynaptic boutons in near physiological conditions in organs of

Corti from hearing mice. This technique allows a tight control of the presynapse while

recording the postsynaptic response of a single active zone. Our results emphasize that

murine IHC synapses have differences in the spontaneous rate that depends on the

topographical position of the synapses (modiolar or pillar). High SR synapses displayed

spontaneous EPSCs of higher amplitude and more compact waveform, lower threshold and

a tendency to shorter latencies of evoked neurotransmitter release, as well as faster recovery

from RRP depletion. Our study also provides strong and direct support that a Ca2+

nanodomain-like control of synaptic vesicle fusion operates during physiological sound

encoding.

Materials and Methods

Animals and tissue preparation

c57BL/6N mice of either sex between postnatal day 14-23 (p14-23) were used. The animal

handling and experiments complied with national animal care guidelines and were approved

by the University of Göttingen Board for animal welfare and the Animal Welfare Office of

the State of Lower Saxony. Animals were sacrificed by decapitation and the cochleae were

extracted in modified Hepes Hank’s solution containing: 5.36 mM KCl, 141.7 mM NaCl, 1

mM MgCl2-6H2O, 0.5 mM MgSO4-7H2O, 10 mM HEPES, 0.5 mg/ml L-glutamine, and 1

mg/ml D-glucose (pH 7.2, osmolarity of ~300 mOsm). The apical coil of the organ of Corti

was dissected and placed under a grid in the recording chamber. Pillar or modiolar

supporting cells were removed using soda glass pipettes in order to gain access to the

basolateral face of the IHCs and to the postsynaptic boutons of type I SGNs. Dissection of

the organ of Corti and cleaning of the supporting cells were performed at room temperature

(20-25°C).
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Electrophysiological recordings

|Figure 3| Paired IHC-bouton patch-clamp recordings to study the biophysical
properties of individual IHC ribbon synapses
A. Differential Interference Contrast (DIC) image of an explanted mouse organ of Corti. Supporting cells from
the modiolar side were removed to gain access to the IHCs and their contacting boutons. The recorded boutons
were classified based on their position (△ pillar or ❍ modiolar) and on their spontaneous activity (Low SR <
1 EPSC/s vs High SR > 1 EPSC/s). Scale bar: 10 µm. B. Spontaneous release was recorded in absence of
stimulation (i.e., IHC holding potential = -58 mV). EPSCs were classified as monophasic (a steady rising and
monoexponential decay) or as multiphasic (multiple inflections and slowed raising and decaying kinetics). C.
Evoked release was recorded using depolarizing pulses (black trace), triggering whole IHC Ca2+ influx (ICa,
blue trace) and concomitant release of neurotransmitter (EPSC, light orange trace). Ca2+ charge and EPSC
charge were estimated by taking the integral of the current (shaded light blue and light orange areas).

Pre- and postsynaptic paired patch clamp recordings were performed at near physiological

temperature (32-37°C) using an EPC-9 amplifier (HEKA electronics). |Figure 3| Patch

electrodes were positioned using a PatchStar micromanipulator (Scientifica, UK). Whole-

cell recordings from IHCs were achieved using the perforated-patch clamp technique (Moser

and Beutner, 2000) using Sylgard™–coated 1.5 mm borosilicate pipettes with typical

resistances between 3.5 and 6 MΩ. The IHC pipette solution contained: 129 mM Cs-

gluconate, 10 mM tetraethylammonium (TEA)-Cl, 10 mM 4-AP, 10 mM HEPES, 1 mM

MgCl2 (pH 7.2, osmolarity of ~290 mOsm), as well as 300 μg/ml amphotericin B added prior

to the experiment. Once the series resistance of the IHC reached below 30 MΩ, whole-cell

voltage-clamp recordings from a contacting bouton was performed largely as described in

previous studies (Glowatzki and Fuchs, 2002; Grant et al., 2010; Huang and Moser, 2018).
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Sylgard™-coated 1.0 mm borosilicate pipettes with typical resistances between 7 and 12

MΩ were used for the postsynaptic recordings. The bouton pipette solution contained: 137

mM KCl, 5 mM EGTA, 5 mM HEPES, 1 Mm Na2-GTP, 2.5 mM Na2-ATP, 3.5 mM

MgCl2·6H2O and 0.1 mM CaCl2 (pH 7.2 and osmolarity of ~290 mOsm). The organ of Corti

was continuously perfused with an extracellular solution containing 4.2 mM KCl, 95-100

mM NaCl, 25 mM NaHCO3, 30 mM TEA-Cl, 1mM Na-Pyruvate, 0.7 mM NH2PO4·H2O,

1mM CsCl, 1 mM MgCl2·H2O, 1.3 mM CaCl2, and 11.1 mM D-glucose (pH 7.3, osmolarity

of ~310 mOsm). 2.5 µM tetrodotoxin (Tocris or Santa Cruz) was added to block voltage-

gated Na+ channels in the postsynaptic bouton.

Data were acquired using the Patchmaster software (HEKA electronics). The current signal

was sampled at 20-50 kHz and filtered at 5-10 kHz. IHC were voltage-clamped at a holding

potential of -58 mV, corresponding to the presumable in vivo resting potential (Johnson,

2015). The bouton was hold at a potential of -94 mV. All reported potentials are corrected

by the liquid junction potential (19 mV for the IHC and 4 mV for the bouton). Ca2+ current

recordings were corrected for the linear leak current using a P/n protocol. We excluded IHCs

and boutons with leak currents exceeding -60 pA and -100 pA at holding potential,

respectively. The series resistance of the IHCs was typically below 30 MΩ. The apparent

series resistance of the bouton was calculated from the capacitive transient in response to a

10-mV test pulse. The actual series resistance (Rs) was offline calculated as reported in

(Huang and Moser, 2018). Recordings with bouton Rs > 70 MΩ were discarded.

Spontaneous activity was calculated from time windows without stimulation when the IHC

was held at the resting potential (see above); either from a 5 – 10 s recording or by averaging

the number of events from the segments preceding a depolarizing pulse. |Figure 3B| To study

the depletion and recovery of the pool of vesicles, we used a protocol adapted from the

forward masking protocol performed during in vivo extracellular recordings of SGNs (Harris

and Dallos, 1979; Jean et al., 2018). It consisted of two consecutive depolarizing pulses to

the voltage that elicited the highest peak of Ca2+ current (-17 mV). |Figure 3C| The first

pulse, called masker, lasted 100 ms and it was followed by a second pulse, called probe,

which lasted 15 ms. The two pulses were separated by intervals without depolarization

(interstimulus intervals, ISI) that lasted 4, 16, 64 and 256 ms. The waiting time between

masker and masker was 20 s and each protocol was repeated between 3 – 20 times. To study

dynamic range, we used a current-voltage (IV) protocol with 10 ms pulses of increasing

voltage (from -70 mV/-60 mV to 70 mV in 5 mV steps). The interval between two stimuli
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was 1.5 ms. The apparent Ca2+ dependence of neurotransmitter release was studied using 2

to 5 ms step-depolarizations, and using different intensities of depolarization or the slow

perfusion of Ca2+ channel blockers to vary the Ca2+ influx into the IHC. For the latter,

isradipine (Sigma-Aldrich) or ZnCl2 (Sigma-Aldrich) were added to the extracellular

solution and slowly perfused into the chamber while recording the responses to a 5ms pulse.

Isradipine was diluted to a final concentration of 0.5-2 µM from a stock of 20 mM in DMSO.

ZnCl2 was diluted to a final concentration of 1 mM from a stock of 0.1 M and filtered by 0.2

µm. The time interval between two subsequent depolarizations was 20 s. In addition, we

used a tail current protocol to study release in response to graded numbers of open Ca2+

channels.

Data Analysis

Electrophysiological data was analyzed using the IgorPro 6 Software Package

(Wavemetrics), GraphPad Prism and Excel. Ca2+ (QCa) and EPSC charge (QEPSC) were

estimated by taking the integral of the current.

For forward masking experiments, the postsynaptic response was averaged for all the

repetitions from each paired recording (between 3 and 20, depending on the stability of the

pair). Single active zone pool dynamics were determined by fitting an exponential plus line

function to the individual EPSC charge plots. RRP size (in vesicles) was estimated from the

amplitude of the exponential function divided by the charge of the average sponEPSC for

each pair. Sustained exocytosis rate (in vesicles per s) was calculated from the slope of the

linear function divided the charge of the average sponEPSC. Individual recovery kinetics

were determined from the ratio of probe and masker responses at 10 ms of the depolarization,

with the ratio between masker and masker being 1. The time when 50% of the response

recovered was noted as half time of recovery.

To obtain IV curves, we averaged the evoked Ca2+-currents (ICa) during 5 to 10 ms after the

start of each depolarization. Fractional activation of the Ca2+ channels (Pactivation) was

obtained from the normalized chord conductance, g,

𝑔 =
𝐼

(𝑉 − 𝑉𝑟𝑒𝑣)
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where V is the membrane potential and Vrev is the reversal potential determined by fitting a

line function between the voltage of ICa peak + 10 mV and the maximal depolarization. The

activation curve was approximated by a first-order Boltzmann equation:

𝑔 =
𝑔𝑚𝑎𝑥

1 + exp(𝑉ℎ 𝐶𝑎 − 𝑉
𝑆 )

where gmax is the maximum chord conductance, Vh Ca is the membrane potential at which the

conductance is half activated, and S is the slope factor describing the voltage sensitivity of

activation.

Rate level curves were obtained by calculating QEPSC by the end of each depolarization step

and fitted using a sigmoidal function:

𝑅 = 𝑅𝑠𝑝𝑜𝑛 +
𝑅𝑚𝑎𝑥

1 + exp(𝑉ℎ 𝐸𝑃𝑆𝐶 − 𝑉
𝑟𝑎𝑡𝑒 )

where Rspon is the spontaneous vesicle release, Rmax is the maximal vesicle release, Vh EPSC

corresponds to the voltage of half-maximal release and R is the rate of release. The dynamic

range was determined as the range of voltage between 10% and 90% of the maximal vesicle

release.

Ca2+-dependence of release was determined by fitting the QEPSC vs QCa plots with a power

of exponent function:

𝑄𝐸𝑃𝑆𝐶  =  a + b(𝑄𝐶𝑎 )𝑚

where m corresponds to the Ca2+ cooperativity.

For dynamic range analysis, we included only pairs for which both the Ca2+ fractional

activation and the rate level curves were possible to fit. Similarly, we only included pairs

with effective fitting for analysis of the apparent Ca2+ dependence of release.

Data was prepared for presentation using Adobe Illustrator and Adobe InDesign. Skewness

of the histograms from |Figure 4| was determined using GraphPad Prism. Statistical

significance was assessed with unpaired t test or a non-parametric Mann-Whitney test. Data

is expressed as mean ± sem. The box plots show 25th, 50th and 75th percentiles with the

individual data points overlaid.
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Model of RRP release and replenishment

We adapted a previously developed biophysical model of RRP pool dynamics (Buran et al.,

2010; Frank et al., 2010; Jean et al., 2018; Jung et al., 2015). Briefly, the model assumes a

fixed number of release sites (Nslots). RRP is composed by readily releasable vesicles that

occupy these release sites. Each vesicle can fuse at any time point with a probability

described by the fusion rate constant, kfusion. The refilling of an empty slot is described by

the refill rate constant, krefill. Both kfusion and krefill are stimulus-dependent, meaning they will

pass from kfusion, spont and krefill, spont to kfusion, stim and krefill, stim with the depolarization of the

IHC from resting potential to a potential eliciting the maximal Ca2+ influx. Originally, the

model was developed to fit the poststimulus time histograms of SGNs in response to tone

bursts. Therefore, we modified the model to fit EPSC recordings from the postsynaptic

bouton by 1) excluding the factor f that scales the fraction of exocytic events triggering an

action potential and 2) removing refractoriness.

The model was fit to the grand average of the aligned responses for each forward masking

interval (4, 16, 64, 256 ms). To obtain a grand average that is not smeared out due to

differences in synaptic delays between pairs, EPSC average traces were smoothed (3-point

box smooth) and aligned by the point where the response was above 50% of the peak

response for each pair. The resulting grand average was fit with the modified model

waveform using a genetic fit algorithm implemented in IgorPro 6 (Wavemetrics).

Importantly, only the first 50 ms of the synaptic response was included in the fit of the model.

Later adaptation processes are not accounted by the model’s equations and were therefore

disregarded.

Results

In the present study, we analyzed synaptic release at individual active zones of murine IHCs

after the onset of hearing. We used perforated patch-clamp recordings from the IHCs and

simultaneous whole-cell rupture patch-clamp from the associated postsynaptic SGN bouton.

|Figure 3| Our recordings were performed at body temperature and in artificial perilymph-

like solution (Wangemann and Schacht, 1996) aiming to preserve the physiological resting

conditions of the IHCs.
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Spontaneous synaptic vesicle release

In the absence of sound, SGN fire spontaneously as shown by in vivo recordings from single

auditory nerve fibers (e.g. for mice: Taberner and Liberman, 2005). In our experimental

conditions, spontaneous EPSCs (sponEPSC) |Figure 4A| were observed in 18 of 23 pairs in

the absence of stimulation (i.e. when the IHC was held at -58 mV, approximating its

physiological resting potential (Johnson, 2015)). By holding the bouton at -94 mV and

including TTX in the bath solution, we ensure that the recorded postsynaptic activity was

not contaminated with voltage-gated Na+ currents. Amplitudes of sponEPSC in all pairs

typically varied from around -10 pA to -400 pA |Figure 4B|. One pair displaying

exceptionally large sponEPSCs as big as -800 pA was excluded from further statistical

analysis throughout, but it is displayed as an outlier. The amplitude histogram for all pairs

was slightly skewed towards larger amplitudes (skewness of 1.15) with a coefficient of

variation (CV) of 0.73 |Figure 4D|. The charge distribution for all pairs displayed a

prominent peak between 45-60 fC, a skewness of 1.88 and a CV of 0.97 |Figure 4E|.

To establish the paired recording, we approached boutons facing either the pillar or the

modiolar face of the IHC, allowing us to make a distinction between synapses from each

side |Figure 3A|. Due to the technical difficulty of establishing the paired recording, typically

only one bouton was recorded per IHC. Interestingly, the average amplitude of the

sponEPSCs from modiolar boutons was significantly smaller than of pillar boutons (mean ±

s.e.m.: -49.28 ± 12.34 pA vs -94.75 ± 6.92 pA; p = 0.0104, Mann-Whitney test) |Figure 4C|.

However, the mean charge did not differ between the two sides (54.61 ± 13.46 fC for

modiolar boutons vs 76.62 ± 7.78 fC for pillar boutons; p = 0.2478, Mann-Whitney test)

|Figure 4F|. The striking difference in amplitude, yet not in charge, between both sides could

result from slower sponEPSC kinetics in modiolar synapses. We therefore quantified the

percentage of multiphasic sponEPSCs (i.e. EPSCs with inflections and slowed kinetics on

their rising or decaying phases as initially reported by (Glowatzki and Fuchs, 2002)) for each

synapse. Synapses from the modiolar side displayed on average ~20% more multiphasic

sponEPSCs (p = 0.0969, Mann-Whitney test) |Figure 4G|.



Chapter 2

28



Chapter 2

29

|Figure 4| Pillar synapses have higher rates of spontaneous release with larger
sponEPSCs
A. Spontaneous EPSCs recorded in the absence of stimulation (i.e. IHC holding potential = -58 mV) from two
exemplary paired recordings with different spontaneous rate. ‘Pair #’ indentifies individual paired recordings.
Insets show the selected sponEPSCs in an expanded time scale. (a,c) correspond to typical monophasic EPSCs
(b) represents a multiphasic EPSC. B. Cumulative sponEPSC amplitude plots for 23 paired recordings. C.
Synapses contacting the pillar face of the IHC had higher average amplitudes of sponEPSCs (p = 0.0104,
Mann-Whitney test). D-E. Pooled sponEPSC amplitude and charge distributions. F-G. Average sponEPSC
charge (F) and percentage of multiphasic sponEPSCs (G) in individual synapses recorded from the pillar or
modiolar side of the IHC. H. Cumulative fraction (left axis) and normalized histogram (right axis) of the
spontaneous rate (bin size is 1 EPSC/s). I. Pillar synapses had higher rates of sponEPSCs (p = 0.0086, Mann-
Whitney test). J,J’. Synapses with the highest SRs also had the largest sponEPSCs. (J) Spearman’s correlation
coefficient = -0.7118. (J’) p = 0.0398, Mann-Whitney test. K,K’. Average sponEPSC charge was not correlated
to SR. L,L’. The percentage of multiphasic EPSCs was inversely correlated to SR (Spearman’s correlation
coefficient = -0.7365).
Scatter plots represent the 25th, 50th and 75th percentiles with the individual data points overlaid. Synapses were
classified as △ pillar or ❍ modiolar, and as Low SR < 1 EPSC/s or High SR > 1 EPSC/s.

Next, we calculated the rate of sponEPSC (SR) for each paired recording during 400 or 600

ms before the step depolarization protocols, or during 5 or 10 s of a continuous recording, in

each case at a presynaptic holding potential of -58 mV. SRs ranged from 0 to 18 EPSC/s

|Figure 4H|. The distribution of the SR was highly skewed: 75% of the pairs had rates lower

than 1 EPSC/s and the median was 0.2 EPSC/s. SR was significantly higher in boutons

recorded from the pillar side (mean SR of 3.75 ± 1.60 EPSC/s) compared to the modiolar

side (mean SR of 0.21 ± 0.09 EPSC/s; p = 0.0086, Mann-Whitney test) |Figure 4I|. Following

Taberner and Liberman (2005), recordings were further classified as synapses with low (< 1

sponEPSC/s) or high (≥ 1 sponEPSC/s) SR. Synapses with the highest SRs also had the

largest sponEPSCs (Spearman’s correlation coefficient = -0.7118; average EPSC amplitude

of -67.57 ± 9.43 pA for low SR vs -105.4 ± 7.35 pA for high SR synapses; p = 0.0398, Mann-

Whitney test) |Figure 4J, J’|. Contrary, the average charge of the sponEPSCs was comparable

regardless the SR (Spearman’s correlation coefficient = 0.3387; charge of 64.74 ± 8.43 fC

for low SR vs 78.72 ± 13.97 fC for high SR synapses; p = 0.5621, Mann-Whitney test)

|Figure 4K, K’|. The percentage of multiphasic EPSCs was inversely correlated to the rate

of spontaneous release (Spearman’s correlation coefficient = -0.7365) |Figure 4L|, even

though there was no significant difference when compared between low and high SR

synapses |Figure 4L’|. Taken together, these results suggest that pillar synapses have higher

rates of spontaneous release with larger and more compact sponEPSCs.
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Synaptic vesicle pool dynamics

In 8 (all from the pillar side) of the 23 aforementioned pairs, we studied IHC synaptic vesicle

pool dynamics. We used a modified version of the forward masking paradigm that has been

introduced for in vivo analysis of SGN spike rate adaptation and recovery from adaptation

(Harris and Dallos, 1979). Applied to recordings of EPSCs, the protocol provides direct

experimental assessment of depression and recovery of the readily releasable pool of vesicles

(RRP). Given its potential presynaptic effects (Diamond and Jahr, 1995; Dittman and

Regehr, 1998), we did not employ cyclothiazide to inhibit AMPA receptor desensitization,

which also contributes to synaptic depression (Goutman, 2017). The paradigm consisted of

a set of two strong step IHC depolarizations (to -17 mV) separated by different interstimulus

intervals (ISI: 4, 16, 64 and 256 ms) |Figure 5A|. The first stimulus - called masker, as it

depresses the response to a subsequent stimulus when applied in rapid succession - had a

duration of 100 ms. The second stimulus (denominated probe) lasted for 15 ms. The

recordings included a time frame of 400 ms preceeding the masker and 400 ms following

the probe. The interval between masker and masker was 20 s, and each protocol was repeated

between 3 to 20 times.

The synaptic response to the masker stimulus had a mean latency of 1.27 ± 0.09 ms,

calculated from the onset of the voltage step to the onset of the triggered EPSC. The EPSC

charge (QEPSC) in response to the first 50 ms of the masker was fitted by the sum of a single

exponential and a line function (discontinuous lines in |Figure 5B|). The amplitude of the

exponential, thought to reflect RRP exocytosis, was on average 0.97 ± 0.18 pC. The linear

component had on average a slope of 32.31 ± 5.55 pC/s, reporting the rate of sustained

exocytosis.

To quantify synaptic release in terms of vesicles, we used the average charge of sponEPSCs

recorded for each pair. This assumes that each sponEPSC corresponds to a unitary release

event (“univesicular mode of release” (Chapochnikov et al., 2014)). On average, 12.64 ±

1.68 vesicles constituted the RRP, which was depleted with a mean time constant of 6.47 ±

1.03 ms. The mean initial rate of release was 2400 ± 600 vesicles/s, while the mean rate of

sustained exocytosis was 445.7 ± 87.92 vesicles/s. Neither the dynamics of synaptic vesicle

release, nor the integral of the IHC Ca2+ influx (QCa), significantly differed between low and

high SR synapses in our relatively small data set (|Figure 5C-H, J|; table 1). High SR

synapses, however, were slightly faster, with higher initial release rates and had a tendency

towards a stronger adaptation of the release rate after the initial peak (|Figure 5H|; table 1).
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|Figure 5| Synaptic vesicle pool dynamics of individual IHC synapses
A. Representative responses of Ca2+ influx (blue), EPSC (light orange) and QEPSC (green) to forward masking
protocols used to study depression and recovery of RRP. The stimulus (top panel) consists of two sequential
voltage steps (masker and probe) separated by different interstimulus intervals (ISI in ms). B. Pool depletion
dynamics were studied by fitting the sum of a single exponential and a line function (black discontinuous
line) to the first 50 ms of average QEPSC in response to the masker. C. Synaptic delay as the latency between
stimulus onset and EPSC onset. D-H. RRP, tau of depletion, initial release rate and sustained release were
calculated from the fits and the average Qspon EPSC for each pair. I. Recovery from RRP depletion shown as
ratio of QEPSC probe and QEPSC masker (mean ± sem) during the first 10 ms of the stimulus. J. Ca2+ charge
during the masker. K. Half time of recovery from RRP depletion calculated from the plots in (I). L. Time to
recovery of the spontaneous release after the probe offset. M. Averaged trace of the aligned responses of 6
pairs was fitted with an adapted version of a previously developed model of RRP pool dynamics (black line)
(Jean et al., 2018). The refilling (Krefill) and fusion (Kfusion) rate constant during spontaneous (spont) and
stimulated (stim) conditions as well as the number of occupied release sites (Nslots) are provided.
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Scatter plots represent the 25th, 50th and 75th percentiles with the individual data points overlaid. Synapses
were classified as △ pillar or ❍ modiolar, and as Low SR < 1 EPSC/s or High SR > 1 EPSC/s.

Next, we determined the QEPSC amplitude in the first 10 ms of both masker and probe stimuli.

The ratio of probe and masker responses was plotted against each interstimulus interval (ISI),

including the masker-to-masker interval (20 s, |Figure 5I|). We determined the half time of

the recovery from RRP depletion. Synapses with low SR tended to recover slower than high

SR ones (half time of recovery was 212 ± 158 ms vs. 43 ± 16 ms, respectively; |Figure 5K|;

table 1). Spontaneous activity was also resumed faster in high SR synapses (198.1 ± 23.48

ms for low SR vs 140.3 ± 19.80 ms for high SR synapses; |Figure 5L|; table 1) even though

this difference is not statistically significant in our dataset.

Table 1. Parameters of release dynamics for low and high SR synapses obtained from

forward masker paradigms

Parameter Low SR pair High SR pair p-value

Latency of Masker response (ms) 1.38 ± 0.08 1.16 ± 0.16 0.3429

Amp exponential component (pC) 0.71 ± 0.05 1.24 ± 0.33 0.3429

Slope linear component (pC/s) 26.70 ± 1.8 37.92 ± 10.93 0.3429

RRP (vesicles) 10.63 ± 1.30 14.93 ± 3.06 0.4857

Tau of depletion of RRP (ms) 7.61 ± 1.59 5.33 ± 1.25 0.3429

Initial release rate (vesicles/s) 1540 ± 269 3411 ± 1155 0.3429

Sustained exocytosis (vesicles/s) 416 ± 89 477 ± 161 0.6857

Initial/sustained release rate 4.09 ± 0.91 7.26 ± 0.97 0.0571

QCa (pC) 7.58 ± 1.82 7.82 ± 0.63 >0.999

Half time of RRP recovery (ms) 212.2 ± 158.8 43.71 ± 16.46 0.3429

Recovery time of spon. release (ms) 198.1 ± 23.48 140.3 ± 19.80 0.2000

Finally, we adapted a previously developed biophysical model of RRP pool dynamics (Frank

et al., 2010; Jean et al., 2018; Jung et al., 2015) to extract information regarding the number

of vesicular release sites of the RRP (Nslots), as well as stimulus-dependent rates (fusion and

replenishment rate constants per release site in the presence and absence of stimulation). The

model was fitted to the average trace of the aligned responses of 6 pairs for each ISI (|Figure

5M|; for this analysis, we selected pairs for which the forward masking paradigm was

repeated at least five times). The results of the model fitting suggested 18 release sites per
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synapse, each release site with fusion and refill rate constants during stimulation of 188 s-1

and of 37 s-1, respectively.

Stimulus intensity coding at IHC synapses

IHC synapses encode stimulus intensity. Average discharge rates of auditory nerve fibers

recorded in vivo increase sigmoidally with the strength of the acoustic stimuli (Sachs and

Abbas, 1974; Taberner and Liberman, 2005; Winter et al., 1990). To further understand

stimulus intensity coding in mouse IHC synapses, we measured Ca2+ currents and EPSCs in

response to 10 ms depolarizations to different potentials ranging from -58 to -18 mV in 5

mV steps |Figure 6A|. We used step depolarizations instead of a sinewave depolarization

given that mature and high frequency IHCs have graded receptor potentials that represent

the rectified envelope of an acoustic stimulus (i.e. the DC component) (Russell and Sellick,

1978). The voltage dependence of Ca2+ channel activation was studied by fitting a

Boltzmann function to the activation curves |Figure 6B, C|. Similarly, the voltage

dependence of synaptic vesicle release per active zone was approximated by fitting a

sigmoidal function to the individual rate-level plots |Figure 6B, G|. One postsynaptic bouton

was recorded per IHC. Two out of 20 paired recordings were excluded from this analysis

due to failure to fit a sigmoidal function (assessed by visual inspection).

Pairs with low SR (<1 EPSC/s) exhibited a higher voltage threshold of release (10% of the

maximum release -Q10, EPSC- occurred at -48.71 ± 0.88 mV) compared to boutons with high

SR (Q10 at -57.12 ± 0.98 mV; p = 0.0017, Mann-Whitney test) |Figure 6H|. The voltage of

half-maximal release (Vhalf QEPSC) of low SR boutons (-42.30 ± 1.12 mV) also displayed a

depolarized shift of ~9 mV compared to high SR boutons (-51.37 ± 1.15 mV; p = 0.0017,

Mann-Whitney test) |Figure 6I|. The voltage sensitivity of vesicle release, determined by a

slope factor, was similar between high and low SR synapses |Figure 6J|. Interestingly, IHCs

from which low SR boutons were recorded also displayed a small but significant depolarized

shift in the voltage dependence of whole-cell Ca2+ current activation (Vhalf ICa of -37.73 ±

0.83 mV vs -41.55 ± 1.04 mV in IHCs from which high SR boutons were recorded; p =

0.0184, Mann Whitney test) |Figure 6E|. The voltage sensitivity of the whole-cell Ca2+ influx,

as well as the voltage-threshold for Ca2+ influx, were similar regardless the SR of the

accompanying bouton |Figure 6D, F|. Dynamic ranges, defined as the voltage range for

which the exocytosis changes from 10-90%, were comparable regardless of the SR of the

synapses (15.28 ± 1.512 mV for low SR boutons vs 14.45 ± 2.99 mV for high SR boutons)

|Figure 6K|.



Chapter 2

34

|Figure 6| Voltage dependence of IHC Ca2+ influx and synaptic release
A. IHC Ca2+ current (blue traces) and EPSCs (orange traces) of two examplary pairs in response to 10 ms
depolarizations to different potentials ranging from -58 to -18 mV in 5 mV steps (upper left panel). The upper



Chapter 2

35

right panel shows the current-voltage relationships for the two examplary pairs. B. Upper panel: Fractional
activation of the Ca2+ channels (Pactivation, blue data points) was obtained from the normalized chord
conductance. Voltage of half-maximal activation (Vhalf Ca) and voltage sensitivity of the Ca2+ current (slope)
were determined using a Boltzmann fit (black trace) to the activation curve. Lower panel: Rate level curves
(orange data points) were obtained from the QEPSC for each depolarization step. A sigmoidal function (black
trace) was fitted to obtain the voltage of half-maximal synaptic release (Vhalf QEPSC) and the voltage sensitivity
of the release (slope), as well as the dynamic range for which the exocytosis changes from 10-90% (gray area).
C, D. Voltage dependence of whole-cell Ca2+ channel activation (activation curve; C) and triggered single
active zone EPSCs (rate level curve; G) for 23 pairs of low (≤1 EPSC/s) and high SR (>1 EPSC/s). Averages
(thick lines) and individual curves (thin lines) are overlaid. D-F. The threshold (D), Vhalf ICa (E) and voltage
sensitivity of the Ca2+ current (F) from the activation curves in C. H-J. Voltage of 10% of maximum release
(Q10 EPSC, H), Vhalf QEPSC (I) and voltage sensitivity of the release (J) from the rate level curves in G. K.
Dynamic range from pairs shown in G.
Scatter plots represent the 25th, 50th and 75th percentiles with the individual data points overlaid. Synapses were
classified as △ pillar or ❍ modiolar, and as Low SR < 1 EPSC/s or High SR (blue when it referes to Ca2+

influx parameters) > 1 EPSC/s.

Apparent Ca2+ dependence of neurotransmitter release

The coupling between Ca2+ influx and exocytosis critically determines how acoustic stimuli

are encoded at the synapse between the IHC and the SGN (Moser and Vogl, 2016).

Therefore, we were interested in understanding the Ca2+ dependence of IHC

neurotransmitter release. The Ca2+ nanodomain hypothesis of exocytosis control proposes

that one Ca2+ channel in nanometer proximity from the vesicular release site governs the

Ca2+ concentration that drives the release of a synaptic vesicle [reviewed in (Eggermann et

al., 2012; Moser et al., 2006b)]. As data and modeling indicated that the Ca2+ at the Ca2+-

sensor of exocytosis is dominated by one channel, but few other channels still contribute in

IHC exocytosis (partial domain overlap), the control has been coined “Ca2+ nanodomain-

like” hypothesis (Brandt et al., 2005; Pangršič et al., 2015; Wong et al., 2014). However,

this was based on membrane capacitance measurements summing over all IHC synapses. A

previous study using pre- and postsynaptic recordings from immature rat IHCs also

supported a Ca2+ nanodomain-like control of exocytosis (Goutman and Glowatzki, 2007).

To our knowledge, this hypothesis has not yet been tested by paired pre- and postsynaptic

recordings in mice after the onset of hearing. Moreover, it remained unclear whether the

Ca2+ nanodomain-like control operates in IHC synaptic transmission under physiological

conditions. Finally, most previous studies had used stimulus durations that cause partial

depletion of the RRP, thereby violating the requirement for estimating the Ca2+ cooperativity

based on the initial rate of release. Here, we addressed these open questions by determining

the apparent Ca2+ cooperativity of vesicle release with brief stimuli while manipulating the
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single Ca2+ channel domain or the number of open Ca2+ channels of IHCs maintained at

near-physiological conditions.

|Figure 7| Pharmacological approaches to manipulate the (apparent) single Ca2+

channel influx or the open Ca2+ channel number in IHCs
A, B. Slow perfusion of 1 mM Zn2+ reduced the effective single Ca2+ channel current and the concomitant
neurotransmitter release evoked by 5 ms step depolarizations. C. Scatter plot of normalized Ca2+ current
integrals (QCa) versus the corresponding normalized elicited EPSC charge (QEPSC). The solid line is a least-
squares fit of a power of exponent function (QEPSC = a+b(QCa)m) revealed a supralinear relationship of
neurotransmitter release (m = 4.17; n = 7 pairs). D-F. The slow reduction in the number of open Ca2+ channels
achieved by perfusion of 0.5 – 2µM Isradipine, yielded a linear relationship between QEPSC and QCa (m = 1.31,
n = 7 pairs) as can be observed in F.

We first varied the single channel current by slowly perfusing 1 mM Zn2+ to cause a rapid

(microsecond scale) flicker block of the Ca2+ channel current (Winegar and Lansman, 1990)

|Figure 7A, B|. We argue that this causes an apparent reduction of the fusogenic Ca2+ signal:

while the current through the unblocked channel is not changed, the limited kinetics of the

Ca2+ binding to the Ca2+ sensor leads to a temporal averaging of the flickering single Ca2+

channel current and thus the fusogenic Ca2+ domain around the channel. The relationship of
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QEPSC and Ca2+ charge (IHC QCa) evoked by 5 ms long depolarizations was approximated

by a power of exponent function (QEPSC = a+b(QCa)m). This manipulation revealed a supralinear

relationship between QEPSC and IHC QCa (m = 4.15) |Figure 7C|, most likely reflecting the

high intrinsic Ca2+ cooperativity at the Ca2+ sensor (Beutner et al., 2001).

|Figure 8| Few Ca2+ channels control vesicle-stimulus secretion in the physiological
range of receptor potentials in IHCs
A. The IHC was depolarized for 2 ms to different potentials ranging from -58 to -17mV, triggering different
presynaptic Ca2+ currents (blue traces) and the concomitant neurotransmitter release that elicited postsynaptic
currents (orange traces). B. Scatter plot of Ca2+ current integrals (QCa) versus the corresponding elicited EPSC
charge (QEPSC). The solid line is a least-squares fit of a power of exponent function (QEPSC = a+b(QCa)m) to the
data yielding a Ca2+ cooperativity (m) of 1.83 (n = 9 pairs). C. Latency of release (measured from the onset of
the stimulus to the onset of the EPSCs) decreased with increasing Ca2+ influx.

Three independent protocols were performed to manipulate the number of open Ca2+

channels. In the first manipulation, we slowly perfused a low concentration (0.5- 2 µM) of

isradipine to gradually reduce the number of Ca2+ channels contributing to the release

process during a 5 ms pulse |Figure 7D, E|. This DHP antagonist shifts the Ca2+ channels to

an inactivated non-conducting state (Berjukow et al., 2000), but does not affect the single

channel current amplitude of the remaining open channels (Hess et al., 1984). As observed

during the perfusion of Zn2+, the reduction of Ca2+ influx resulted in the concomitant
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reduction of QEPSC. However, contrary to Zn2+ block, the relationship between QEPSC and

QCa was nearly linear and described by a power function with an exponent of 1.31 |Figure

7F|.

During a second manipulation, we altered the presynaptic Ca2+ influx using 2 ms

depolarizations from -58 mV to -17 mV in 2 mV randomized steps |Figure 8A|. This protocol

variates Ca2+ influx via changing the open probability, and the single channel current to a

lesser extent, over a range covering physiological receptor potentials. These short stimuli

were used to avoid synaptic vesicle pool depletion and a possible overlap of Ca2+ domains

due to strong Ca2+ influx. Under these conditions, a power of 1.83 suggested that few Ca2+

channels control vesicle fusion in the physiological range of potentials |Figure 8B|. The

synaptic delay, measured as the latency between the onset of the stimulus and the onset of

the response, shortened with increasing presynaptic Ca2+ |Figure 8C|.

|Figure 9| Neurotransmitter release varies quasi linearly with the number of open Ca2+

channels recruited during Ca2+ tail current protocols
A. Presynaptic voltage steps of increasing duration (0 - 2 ms) from -58 mV to +60 mV to titrate the number of
open Ca2+ channels. Increasing the length of the depolarization increased the amplitude of the Ca2+ tail current
(blue traces) and the size of the postsynaptic response. The evoked EPSC was normalized to the responses
elicited by 10 ms voltage steps that fully releases RRP. B. Scatter plot of release probability (Pr: tail QEPSC/10
ms QEPSC) vs the normalized presynaptic Ca2+ charge. The solid line is a least-squares fit of a power of exponent
function (QEPSC = a+b(QCa)m) to the data yielding a Ca2+ cooperativity (m) of 1.69 (n = 6 pairs). C. Failures in
synaptic transmission were prominent but decreased with the length of the depolarization (data points
correspond to mean ± s.e.m.). D. Power function fit to the binned data (bin size of 0.15; datas points are mean
± s.e.m.) from (B) resulted in a cooperativity of 1.58.
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For the third manipulation, we titrated the number of open Ca2+ channels by eliciting Ca2+

tail currents after depolarizations to +60 mV of varying durations (0 – 2 ms). Increasing the

length of the depolarization recruits more open Ca2+ channel and thus, increases the

amplitude of the Ca2+ tail current upon repolarization |Figure 9A, inset|. The evoked EPSC

was normalized to the responses elicited by 10 ms voltage steps that fully releases the RRP.

The resulting release probability (Pr) was plotted against the normalized IHC QCa |Figure

9B|. The relationship was described by a power function with a coefficient of 1.69. Synaptic

transmission had a considerable number of failures that decreased with the length of the

depolarization, although they were still present even at maximum Ca2+ influx |Figure 9B, C|.

Therefore, a power function was also fitted to the binned data (bin size of 0.15) |Figure 9D|.

The power fit yielded an apparent cooperativity of 1.58.

Taken together, these findings validate that physiological sound encoding relies on the close

coupling of few Ca2+ channels to control fusion of a given vesicle, and support the hypothesis

of Ca2+ nanodomain-like control of vesicle release.

Discussion

Much of the information regarding neurotransmitter release from mouse IHCs has often been

based on summing over all synapses of a given IHC and has been acquired in

unphysiological recording conditions. Since exocytosis is a Ca2+-, temperature- and activity-

dependent process, we investigated the first synapse of the auditory pathway under near-

physiological conditions. We performed paired pre- and postsynaptic recordings from single

IHC synapses using protocols that provide the opportunity for comparison to in vivo

recordings of spontaneous and sound-evoked spiking in SGNs. We analyzed synapse

properties in terms of spontaneous activity, vesicle pool dynamics, as well as dynamic range

and Ca2+-dependence of release. We found that SGNs contacting the pillar side of the IHC

exhibited a higher spontaneous rate of EPSCs compared to synpases contacting the modiolar

side. High SR synapses had larger sponEPSCs that tended to assume a more compact

waveform (i.e., without inflections and faster kinetics in the rise and decay phases) in

contrast to low SR synapses. In terms of evoked synaptic transmission, high SR synapses

were characterized by lower voltage-thresholds. Although not significant in our small data

set, high SR synapses had on average shorter latencies of evoked neurotransmitter release,

higher onset rates and a slightly faster recovery from RRP depletion compared to low SR

synapses. The RRP size and rates of sustained exocytosis, as well as the dynamic range of
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release, were comparable regardless the SR of the synapses. Furthermore, our study

corroborates that a Ca2+-nanodomain-like control of exocytosis operates at IHCs synapses

under near physiological conditions.

Pillar synapses have higher rates of spontaneous release

In order to recapitulate synaptic transmission in the absence of sound stimulation, we aimed

to hold the IHC at their tentative resting potential (around -58 mV, Johnson, 2015). The IHC

resting potential is set by the endolymph, perilymph and intracellular ionic compositions

(Sewell, 1984), and by the interplay between the MET channels (Johnson, 2015) and several

voltage-dependent K+ channels (Kros et al., 1998; Marcotti et al., 2003, 2004; Oliver et al.,

2003). Since CaV1.3 Ca2+-channels activate at negative voltages (-65 to -45 mV, (Koschak

et al., 2001; Platzer et al., 2000; Xu and Lipscombe, 2001)), their open probability at the

IHC resting potential might be sufficient to trigger exocytosis. Indeed, spontaneous SGN

firing depends on such Ca2+ channel openings (Robertson and Paki, 2002). Additionally, this

depolarized resting potential renders the IHC in a permanently facilitated state that may

mediate a faster Ca2+ current activation and shorter latency of release (Cho and von

Gersdorff, 2012; Goutman and Glowatzki, 2011). The concentration of resting Ca2+ can

already have an effect on Ca2+ dependent processes such as vesicle priming and recruitment

(Awatramani et al., 2005). Interestingly, the rate of spontaneous firing of SGNs with similar

characteristic frequency (i.e. potentially synapsing on the same IHC) ranges from zero to

120 spikes/s (Taberner and Liberman, 2005). This variability in the rate of spontaneous firing

among SGNs has been attributed, at least in part, to differences in the voltage-dependent

activation of Ca2+ influx at their presynaptic active zones of IHCs (Frank et al., 2009; Ohn

et al., 2016).

Under our experimental conditions, the rates of spontaneous transmission also varied

substantially, ranging from 0 up to 18 EPSC/s. Our SRs do compare to the ones recorded ex

vivo from the afferent bouton of rats of a similar age group (p15-p17, Wu et al., 2016).

Assuming each EPSC will trigger one action potential in the SGN for low EPSC rates

(Rutherford et al., 2012), the maximum spontaneous EPSC rate found in this study would

predict spontaneous firing rates 3 times smaller than those recorded in vivo from single ANFs

of p14-p21 mice (60 spikes/s; Wong et al., 2013) and at least 6 times lower than those

recorded from 16-17 weeks old mice (up to 120 spikes/s in mouse, Taberner and Liberman,

2005). Additionally, multiphasic EPSCs may have a lower chance to trigger an action

potential in the postsynapse, further segreggating the spontaneous spikes rates between low
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and high ANFs (Grant et al., 2010). This might hold true in 4 out of the 13 low SR synapses

whose average amplitude of sponEPSC fell below 50 pA, the low rheobase of spike

generation (Rutherford et al., 2012).The pronounced difference between in vivo and ex vivo

could be attributed to the age group, since developmental changes lead to the gradual

recruitment of high SRs fibers in older animals [seen in in vivo data from mice, (Wong et

al., 2013), kittens (Romand, 1984; Walsh and McGee, 1987) and in vitro data from rats (Wu

et al., 2016)]. Additionally, we cannot exclude a sampling bias accounted for the lower

probability of encountering a high SR synapse due to the fact that about 65% of the mouse

fibers in vivo have a SRs <20 spikes/s (Taberner and Liberman, 2005). Finally, there can be

differences in the recording conditions despite our efforts to mimic the IHC’s in vivo

environment in terms of resting potential, composition of the artificial perilymph and

temperature.

However, the fraction of synapses with a release rate higher than 1 EPSC/s (“high

spontaneous rate”, following the definition based on ANF firing by Taberner and Liberman,

2005) compares to the values obtained for spontaneous mouse ANF firing in vivo, where

about 25% of the ANFs had a SR > 1 spike/s (Taberner and Liberman, 2005). In our

recordings, high SR synapses were found exclusively on the side of the IHC facing the inner

pillar cells (“pillar side”), agreeing with findings from in vivo labelling of physiologically

characterized single auditory fibers in cats (Liberman, 1982). Yet, not all the synapses of the

pillar face had high frequencies of spontaneous release. It is important to point out that our

modiolar/pillar classification is based on the side where the postsynaptic pipette was

positioned, and it is therefore less precise as in other studies (Frank et al., 2009; Liberman

et al., 2011; Ohn et al., 2016). Moreover, other functional readouts of IHC synapses also

support an overall pillar-modiolar gradient of synaptic properties rather than their strict

segregation (Ohn et al., 2016).

Distinct release modes at low and high SR synapses

To estimate the numbers of vesicles released in a single active zone during stimulation, we

used the average charge of the spontaneous EPSCs obtained for each paired recording. This

assumes that each sponEPSC corresponds to a unitary release event (“univesicular mode of

release” (Chapochnikov et al., 2014)). In contrast to the hypothesis that coordinated

multivesicular release explains the large variability of amplitude and shape of spontaneous

EPSCs (Glowatzki and Fuchs, 2002), Chapochnikov et al. (2014) proposed an alternative

model wherein neurotransmitter release from a single vesicle through a dynamic fusion
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accounts for the observed EPSC heterogeneity. Recently, two independent studies using low

noise cell-attached capacitance measurements and postsynaptic bouton recordings further

supported the hypothesis that the univesicular mode of release prevails at IHC synapses

(Grabner and Moser, 2018; Huang and Moser, 2018). Our finding of similar average charge

of sponEPSCs between different pairs, despite the high variability in their amplitudes, adds

support to the hypothesis of univesicular mode of release.

Similar to previous studies (Glowatzki and Fuchs, 2002; Grant et al., 2010), we found a high

variability in the modes of release between synapses, with some synapses exhibiting no

monophasic EPSCs. The dissimilarities in the percentage of multiphasic EPSCs in low and

high SR fibers could arise from variability in the fusion pore dynamics on the way to vesicle

fusion. We hypothesize that flickering of the fusion pore, instead of a fusion pore opening

followed directly to full vesicle collapse, might be favored in low SR (and modiolar)

synapses, leading to a higher percentage of multiphasic EPSCs.

In general, high SR synapses also had shorter synaptic delay times, significantly lower

thresholds of voltage-triggered release (evaluated by the EPSC Q10) and a more

hyperpolarized voltage of half-maximal release. These characteristics might originate from

a more hyperpolarized operating range of Ca2+ influx and, consequently, transmitter release

of pillar AZs (Ohn et al., 2016). Recent evidence supports the idea that longer duration of

Ca2+ influx at the release site promotes full-collapse fusion (Huang and Moser, 2018).

Subsequently, it is tempting to speculate that heterogeneity in the gating of Ca2+ channels

along the modiolar/pillar axis partly accounts for the variability of spontaneous EPSCs

waveforms and SRs between synapses. Possible factors that could set distinct biophysical

properties of the Ca2+ channels -comprising but not limited to their voltage sensitivity-

include different splice variants, preferential presence of specific auxiliary subunits and

modulation by interacting proteins (Hoppa et al., 2012; Jean et al., 2018; Neef et al., 2009;

Ohn et al., 2016; Scharinger et al., 2015).

Ca2+ channel density and their topography relative to the vesicular release sites -which, if

different, could go along with heterogeneity of stimulus-secretion coupling between

synapses- might be alternative and/or complementary mechanisms to regulate kinetics of

vesicle release. Indeed, modiolar AZs are, on average, larger, with a greater number of Ca2+

channels and maximal synaptic Ca2+ influx (Liberman et al., 2011; Ohn et al., 2016). How

do modiolar synapses with bigger Ca2+ channel clusters have lower SRs and sensitivity to

sound? Neurotransmitter release properties depends on two parameters acting in concert, the
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size of the RRP and the release probability of these vesicles. Contrary to previous

morphological estimates of the RRP size from low and high SR synapses (Kantardzhieva et

al., 2013), our physiological estimates from a relatively small dataset do not show a clear

divergence in RRP size between the low and high SR synapses. However, our current

estimates of RRP come only from synapses positioned in the pillar face of the IHC. Whether

modiolar synapses migth hold indeed a larger RRP due to their larger synaptic size (Wittig

and Parsons, 2008), remains to be determined using forward masking recordings from

modiolar boutons. In addition, multiple ribbons per contacting bouton have also been

reported to occur predominantly in modiolar synapses (Michanski et al., 2019), increasing

the possibility of observing larger RRPs at modiolar/low SR synapses.

Regarding release probability, multiple factors govern it: the number of Ca2+ channels (Gratz

et al., 2019; Holderith et al., 2012; Scimemi and Diamond, 2012; Sheng et al., 2012; Wong

et al., 2013), the spatial coupling of the Ca2+ channels to the vesicular release site

(Eggermann et al., 2012; Moser et al., 2019) and the fusion competence of the individual

synaptic vesicles (Klenchin and Martin, 2000). Using STED microscopy, Neef and

colleagues observed variable length but similar width of the Ca2+ channel clusters between

active zones (Neef et al., 2018). They postulated a conserved topography of Ca2+ channels -

and coupling distance- in IHC active zones regardless of their size (Neef et al., 2018). In the

present study, the apparent Ca2+ cooperativity was assessed mostly on synapses from the

modiolar face of the IHC, hindering the evaluation of heterogeneity along the modiolar-pillar

axis in the Ca2+ dependence of release. Interestingly, high SR synapses contacted IHC with

a more hyperpolarized activation potential of whole cell Ca2+ influx. This poses the question

if part of the diversity in the SGN response properties, in addition to the heterogeneity of

Ca2+ influx among AZs within an IHC, comes from overall differences in the voltage

dependence of activation or differences in the resting potential between IHCs. Future studies

combining the readout of neurotransmitter release with AZ Ca2+ imaging or Ca2+ uncaging

will help to understand the impact of the number and/or the coupling distance of Ca2+

channels in the diversity of response properties of IHC ribbon synapses.

Synaptic vesicle pool dynamics at individual active zones

In response to a constant sound stimulus, auditory nerve fibers recorded in vivo show a

maximum onset spike rate that declines rapidly (Taberner and Liberman, 2005). The peak

firing rate is thought to reflect the release of the standing RRP (release sites occupied by

synaptic vesicles (Oesch and Diamond, 2011; Pangršič et al., 2012). The adapted firing rate
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is thought to reflect synaptic vesicle replenishment [reviewed in (Pangršič et al., 2012;

Rutherford and Moser, 2016)]. During the masker stimulus in our recordings,

neurotransmitter release at individual synapses was also characterized by an initial high rate

of ~2400 vesicles/s, followed by a slower sustained rate of ~445 vesicles/s. We estimated a

standing RRP of ~12 vesicles (and a total RRP of 18 release slots based on the model), fusing

with a time constant of 6.47 ms. Our estimated standing RRP compares to prior results

obtained using capacitance measurements of murine IHCs (Beutner et al., 2001; Moser and

Beutner, 2000; Pangrsic et al., 2010), in which RRP sizes and release rates were calculated

with a conversion factor of 45 aF per synaptic vesicle and an average of 12 synapses per

IHC, and to the ones previously determined using paired recordings in rats (Goutman and

Glowatzki, 2007). These numbers also fit well with electron microscope estimates of 12-16

vesicles in close proximity to the plasma membrane (<50 nm) (Chakrabarti et al., 2018;

Khimich et al., 2005).

The initial and sustained rates of release were not statistically different between low and high

SR fibers. However, the highest release rates observed in our relatively small sample dataset

were uniquely found from high SR synapses, comparable to reports from ANFs recorded in

vivo (Buran et al., 2010; Taberner and Liberman, 2005). Based on the number of synaptic

vesicle release slots (Nslots) and the fusion rate constant estimated from the model fit, onset

release could occur at a maximal rate of 3384 vesicles/s if all the release sites are occupied

with release ready vesicles at stimulus onset. Thus, the status of the synapse will critically

influence the observed release rates during stimulation (Cho and von Gersdorff, 2012;

Goutman and Glowatzki, 2011).

Nanodomain control of exocytosis at murine IHCs

Because of the technically challenging recordings from the postsynaptic bouton of

mammalian SGNs, most of the studies tested the IHC Ca2+ dependence of exocytosis using

whole cell capacitance recordings that measured the sum of several active zones of one IHC

(Brandt et al., 2005; Johnson et al., 2017; Wong et al., 2014). Only one study so far

implemented simultaneous pre- and postsynaptic paired recordings from rats, nonetheless

before the onset of hearing (Goutman and Glowatzki, 2007), when developmental synaptical

refinements have not occurred yet (Johnson et al., 2005, 2007, 2008, 2009; Wong et al.,

2014). In addition, the stimulus duration used in most of the cases typically exceeded the

phase of initial release, partially depleting the RRP and including vesicle replenishment,
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which complicates the interpretation of the results (e.g. (Wong et al., 2014)). Overall, all

these factors might explain the discrepancy in experimental findings among different studies.

Using simultaneous patch clamp recordings from murine IHCs and their postsynaptic SGN

terminals after the onset of hearing, the present work provides strong and most direct support

that a Ca2+ nanodomain-like control of synaptic vesicle fusion operates during physiological

sound encoding. The high temporal resolution of this technique allowed us to use short

stimulation protocols avoiding depletion of RRP, prominent vesicle replenishment and

possible overlap of Ca2+ domains due to strong Ca2+ influx. Three independent

manipulations to titrate the number of open Ca2+ channels converged in the result of a near-

linear relationship between Ca2+ influx and vesicle fusion at single ribbon synapses, similar

to previous reports mentioned before. Nanodomain control of release ensures rapid and

reliable release of neurotransmitter upon stimulation and thus preserves the temporal

precision of the synapses (Neher, 1998).
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Chapter 5 General discussion

Inner hair cells (IHCs) and their unconventional synapses have fascinated researchers over

the years. In vivo recordings from mammalian auditory nerve fibers (ANFs) revealed

impressive performance of synaptic sound encoding. Sound stimulation evoked, within

submilliseconds, a highly synchronized onset response with a jitter lower than 1 ms (Buran

et al., 2010). Even though adaptation to lower firing rates occurred after few milliseconds,

transmission indefatigably sustained high firing rates up to hundreds spikes/s with sound

stimulation. Strikingly, ANFs had spontaneous firing rates (SR) that ranged below 0.5

spikes/s to more than 100 spikes/s depending on the species [up to 120 spikes/s for rat, cat

and mouse (Barbary, 1991; Kiang et al., 1965; Liberman, 1978; Taberner and Liberman,

2005), up to 140 for guinea pigs and gerbils (Evans, 1972; Schmiedt, 1989), and up to 200

spikes/s for chinchilla (Temchin et al., 2008)]. Interestingly, low and high SR fibers encode

sound differently. For example, sound threshold (Ohlemiller et al., 1991; Sumner and

Palmer, 2012; Taberner and Liberman, 2005; Tsuji and Liberman, 1997; Winter et al., 1990)

and the spike rate variation within a range of sound intensities (termed dynamic range)

differed between low and high SR fibers (Ohlemiller et al., 1991; Sachs and Abbas, 1974;

Taberner and Liberman, 2005; Winter et al., 1990). Since the SR was uncorrelated to the

sound frequency at which each fiber achieved the maximum sensitivity to sound

(characteristic frequency), it was hypothesized that both low and high SR ANFs contact the

same IHC (Johnson and Kiang, 1976). A plethora of techniques has been used to understand

how IHCs accomplish fast and indefatigable release of neurotransmitter, and which

mechanisms establish the diversity of the ANF responses to stimulation. In this thesis, I

provided further insight into the molecular physiology of sound encoding.

First, I studied synaptic transmission at individual murine IHC afferent synpases employing

paired IHC-bouton patch clamp recordings in near physiological conditions. Boutons

contacting the pillar side of the IHC showed higher rates of spontaneous EPSCs. The

spontaneous EPSCs from high SR synapses tended to assume more compact waveforms and

were characterized by larger amplitudes yet similar charges. During voltage step

stimulations, synaptic transmission followed an initial release rate of 2400 vesicles/s that

depleted with a time constant of 6.47 ms to a sustained release rate around 445 vesicles/s.

The latency of the evoked release was around 1.27 ms. High SR synapses had significantly

lower voltage thresholds of release with a tendency to have shorter synaptic delays and faster
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recovery from RRP depletion. Furthermore, this study corroborates that a Ca2+-nanodomain-

like control of exocytosis operates at IHCs synapses under near physiological conditions.

Second, collaborators and I studied synaptic transmission in ribbonless IHC synapses from

mice lacking RIBEYE. Structurally, these synapses contained several small active zones

opposing each postsynaptic density instead of one active zone. In vivo ANFs recordings

revealed an impaired synaptic transmission, characterized by lower spontaneous and evoked

firing rates, lower temporal precision and a slower recovery from adaptation. Ca2+ imaging

of individual active zones showed that the Ca2+ channels required more depolarized

potentials to activate. This resulted in reduced exocytosis to weak depolarizations assessed

by perforated patch-clamp recordings. We postulated a role of the ribbon in synaptic vesicle

replenishment and Ca2+ channel regulation.

Third, collaborators and I studied the role of endophilin-A1-3, endocytic adaptor proteins,

in IHCs. Perforated patch-clamp recordings from organotypic cultures and from explanted

organs of Corti revealed lower Ca2+ influx, impaired sustained exocytosis and slower

endocytic membrane retrieval in Endophilin-A-deficient IHCs. At the ultrastructural level,

the IHC active zones had lower counts of synaptic vesicles, but increased numbers of coated

structures and endosome-like vacuoles. In addition, we postulated a molecular interaction

between endophilin-A1 and otoferlin based on co-immunoprecipitation. We proposed a

positive role of endophilin-A in the modulation of Ca2+ channels, and in synaptic vesicle

recycling, likely via coupling of exo- and endocytosis, membrane retrieval, synaptic vesicle

uncoating and reformation.

In this general discussion, I will start by briefly reviewing the advances made by different

techniques in understanding synaptic vesicle pool dynamics. I will then discuss the

mechanisms underlying the temporal acuity and indefatigable release of mammalian IHCs,

covering vesicle pool dynamics, mechanisms for synaptic vesicle reformation and

replenishment, and properties and distribution of Ca2+ channels. I will finish by briefly

summarizing the mechanisms mediating synaptic heterogeneity and its relation to the

diversity in the response properties of SGNs.

Techniques to study exocytosis at IHCs

Most of the estimates of the presynaptic function of IHCs originated from biophysical studies

using whole-cell patch clamp recordings with capacitance measurements (Beutner and



General discussion

53

Moser, 2001; Brandt et al., 2005; Johnson et al., 2005; Moser and Beutner, 2000; Pangrsic

et al., 2010) or with Ca2+ imaging (Frank et al., 2009; Ohn et al., 2016), fluorescence

membrane imaging (Griesinger et al., 2005), and from models fitted to in vivo responses

from ANFs (Buran et al., 2010; Frank et al., 2010; Jean et al., 2018; Jung et al., 2015;

Peterson et al., 2014). Current estimates fall in the range of 1800-10200 vesicles/s for onset

release rate and 177-679 vesicles/s for sustained (adapted) release rates per active zone, with

an RRP size between 4 to 45 vesicles that depletes with a time constant of 3 to 54 ms. The

wide ranges of these numbers might reflect different animal models, experimental protocols,

recording conditions, differences in analysis and/or assumptions in the models. In addition,

while still being powerful, each method has drawbacks. Whole-cell capacitance

measurements, for instance, sample exocytosis occurring at the entire set of active zones as

well as extrasynaptically in one IHC (Fuchs et al., 2003; Pangršič et al., 2015). Furthermore,

the signal to noise of the technique (typically between 1-10 fF, Lindau and Neher, 1988) is

insufficient to study unitary fusion events which produce capacitance increments as small as

40 aF, unless variance analysis (Neef et al., 2007) or cell-attached capacitance measurements

(Grabner and Moser, 2018) is used.

Modeling of the spike responses from ANFs relies on the assumption of several parameters

that are still under debate for IHC afferent synapses, including the contribution of AMPA

receptor desensitization to the steady state postsynaptic response (Goutman, 2017; Goutman

and Glowatzki, 2007), the relation between synaptic input and spike generation (Grant et al.,

2010; Rutherford et al., 2012), particularly during stimulation, and multivesicular vs.

univesicular mode of vesicle release (Chapochnikov et al., 2014; Glowatzki and Fuchs,

2002; Grabner and Moser, 2018; Grant et al., 2010; Graydon et al., 2011; Huang and Moser,

2018; Matthews and Sterling, 2008; Rudolph et al., 2015). In addition, while in vivo

recordings bring the advantage of an unperturbed milieu for the IHCs, interpretation of the

response needs to consider factors upstream of the depolarization of the IHC (e.g., basilar

membrane displacement, stimulus amplification by the OHCs, mechanotransduction process

at the IHC stereocilia, receptor potential dynamics). On top, few in vivo experiments have

offered a correlation between the SGN response properties and the fiber’s relative position

to the IHC or the synaptic ultrastructure (Liberman, 1982; Merchan-Perez and Liberman,

1996). This is particularly true for mice, for which the challenging morphological description

of functionally characterized ANFs has not yet been performed. This last point acquires great

importance when considering the reported functional and morphological presynaptic

heterogeneity across active zones of one IHC [chapter 2 (Frank et al., 2009; Jean et al., 2019;
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Kantardzhieva et al., 2013; Merchan-Perez and Liberman, 1996; Michanski et al., 2019; Ohn

et al., 2016)].

The first in vitro whole-cell patch-clamp recording from the bouton of a mammalian SGN

offered the temporal resolution to record individual release events of a single active zone

(Glowatzki and Fuchs, 2002). These experiments allowed to experimentally manipulate the

synapse using pharmacological approaches. Key features about the ribbon synapse were

unraveled, including the high variability of EPSC amplitudes –ranging from 20 to 800 pA–

and of EPSC waveforms –monophasic and multiphasic– in individual synapses (Glowatzki

and Fuchs, 2002). Further studies showed that the rate of EPSC discharge and the proportion

of monophasic EPSCs vary greatly between boutons (Grant et al., 2010), findings that might

contribute to the diversity of the ANFs response properties in vivo (for a review see Heil and

Peterson, 2015). Specific and precise stimulation of the IHC was not possible in the above

studies, and thus, stimulus-secretion dependence and synaptic vesicle pool dynamics

remained open questions.

Paired IHC and bouton whole-cell patch-clamp recordings from rats provided crucial

information regarding synaptic transmission during stimulation. The time course of

neurotransmitter release followed an initial rate of more than 1000 EPSC/s that adapted to

43 EPSC/s within 3 ms (Goutman and Glowatzki, 2007). Under the assumption that the

variable size of single EPSCs is caused by multivesicular release, the authors estimated an

onset release rate over 7000 vesicles/s, a sustained rate of about 300 vesicles/s, and RRP size

of 12 vesicles. Due to their unphysiological recordings conditions in terms of temperature

(room temperature), IHC resting potential (around -80 mV) and composition of the

extracellular medium (HEPES-based), the estimates might not truly compare to sound

encoding in vivo. Furthermore, recordings were performed previous to the onset of hearing,

before some developmental refinements have taken place in the synapse [e.g. tightening of

the coupling of Ca2+ influx to exocytosis (Johnson et al., 2005; Wong et al., 2014), reduction

of the proportion of multiphasic EPSCs (Grant et al., 2010), emergence of high spontaneous

rate fibers (Wong et al., 2013; Wu et al., 2016)]. Finally, distinction of the bouton’s position

and spontaneous activity was not addressed in these studies.

In the present thesis, I established paired pre– and post–synaptic recordings in near

physiological conditions to understand the response properties of individual ribbon synapses

from mice after the onset of hearing. The recordings conditions are of utmost importance

given that the physiological state and environment of the IHC critically shapes synaptic
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transmission. i) The relatively depolarized IHC resting potential (around -58 mV, Johnson,

2015) sets the synapses in a constant facilitated mode (Cho and von Gersdorff, 2012;

Goutman and Glowatzki, 2011); this is attributed to Ca2+ influx mediated by the stochastic

opening of the Cav1.3 channels which have a lower voltage of activation compared to other

Ca2+ channels (-65 to -45 mV, (Koschak et al., 2001; Platzer et al., 2000; Xu and Lipscombe,

2001)). ii) Temperature influences both Ca2+ influx and exocytosis [(Kushmerick et al.,

2006; van Lunteren et al., 1993; Micheva and Smith, 2005; Renden and von Gersdorff,

2007); also in IHCs (Nouvian, 2007)]. iii) The presence and concentration of exogenously

added Ca2+ buffers in the cell affects the release of synaptic vesicle pools (Adler et al., 1991;

Moser and Beutner, 2000). iv) Proton-mediated modulation of Ca2+ channels might be

affected by the presence of strong extracellular proton buffers such HEPES (Chen et al.,

1996; Cho and von Gersdorff, 2014; DeVries, 2001; Palmer et al., 2003; Vincent et al.,

2018). In an attempt to emulate the physiological state and milieu of IHCs, paired recordings

were performed at 33-37°C with an extracellular solution that mimics the perilymph

[including 25 mM sodium bicarbonate and 1.3 mM CaCl2; (Wangemann and Schacht,

1996)]. IHCs were patched at -58 mV using perforated patch-clamp technique to better

preserve the intracellular composition. Under these conditions, synaptic transmission

followed an initial release rate of 2400 vesicles/s that depleted with a time constant of 6.47

ms to a sustained release rate around 445 vesicles/s. The difference in the release rates from

the ones determined by (Goutman and Glowatzki, 2007) could originate from their

assumption that single EPSCs represent multivesicular release. They deconvolved the

response using an average EPSC waveform obtained from non-overlapping EPSCs recorded

during stimulation. In the work presented here, I used spontaneous EPSCs recorded in

absence of stimulation as the unitary event for each pair. This relies on the assumption that

spontaneous EPSCs correspond to the release event of single vesicles (Chapochnikov et al.,

2014; Huang and Moser, 2018).

Distinction between boutons with high (> 1 EPSC/s) or low (< 1 EPSC/s) was also made in

this thesis. The relatively small dataset already suggests differences in release rates

according to the basal activity of the synapse. Further experiments to expand the dataset are

required to draw stronger conclusions. Additionally, it was typically not possible to obtain

two boutons from the same IHC, limiting conclusions regarding the functional heterogeneity

across active zones of one IHC. Fluorescence imaging methods could offer a complementary

approach to simultaneously monitor exocytosis at several active zones (for review see

Kavalali and Jorgensen, 2014). However, genetically encoded exocytosis sensors, such as
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pHluorin, mOrange2 and pHtomate, reported a low signal-to-noise ratio in IHCs, making

them unsuitable to monitor synaptic activity in these cells (Neef et al., 2014; personal

communication with Özge Demet Özcete). Future efforts to establish further optical methods

could advance our understanding of synaptic heterogeneity.

Inner hair cell synaptic vesicle pool dynamics

Spontaneous activity

ANFs fire action potentials in vivo in the absence of sound (Sewell, 1984; Taberner and

Liberman, 2005). Such spontaneous activity has also been observed in EPSC recordings

from the postsynaptic SGN bouton from explanted organs of Corti (Chapochnikov et al.,

2014; Glowatzki and Fuchs, 2002; Grant et al., 2010; Wu et al., 2016). These observations,

in combination with the reported dependence of the spontaneous activity on the activity of

Ca2+ channels (Robertson and Paki, 2002) and the irregular ocurrance of the events (review

by Kim et al., 2013), suggested that spontaneous SGN firing reflects the stochastic

spontaneous, but Ca2+-driven, release of neurotransmitter from the presynaptic IHC. Loose

bouton patch extracellular recordings provided further evidence that the ANF spontaneous

firing properties observed in vivo derive from presynaptic mechanisms of vesicular release

(Wu et al., 2016).

During paired IHC-bouton recordings in near physiological conditions performed in this

thesis (chapter 2), spontaneous release of neurotransmitter occurred between 0 and 18

EPSCs/s, with 75% of the synapses having low SR (below 1 EPSCs/s; following the high

and low SR classification proposed in mice by Taberner and Liberman, 2005). These results

are comparable to results from loose-patch clamp recordings of ANFs from explanted rat

cochleae (Wu et al., 2016). Based on the low rheobase for spike generation determined using

bouton patch clamp recordings (around 50 pA; Rutherford et al., 2012) and the high

reliability of EPSPs to trigger action potentials in vivo (around 12% failure rate; Siegel,

1992), the EPSC rates can be translated into spike rates. This would suggest inferior

spontaneous spike rates than those observed in vivo of up to 60 spikes/s in mice after hearing

onset (Wong et al., 2013) and up to 120 spikes/s in 16-17 weeks old mice (Taberner and

Liberman, 2005). The discrepancy between rates observed in vitro and in vivo could be

attributed to a sampling bias due to lower percentage of fibers with SRs > 20 spikes/s (around

35% in mice; Taberner and Liberman, 2005). However, the range of SRs should not be

underrepresented by the sampling region of the organ of Corti since SRs do not variate with
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the ANFs characteristic frequency in rat and mice (Barbary, 1991; Taberner and Liberman,

2005). Effects of the recording conditions, such as variations of the IHC resting potential,

composition of the artificial perilymph and/or fluctuations in the temperature cannot be

excluded.

Dual afferent recordings provided the first direct evidence that low and high discharge rate

fibers contact the same IHC (Wu et al., 2016). In line with the hypothesis that high SR fibers

contact predominantly the pillar face of the IHC (Liberman, 1982; Ohn et al., 2016), high

SR pairs reported in this thesis were patched exclusively from the pillar side (chapter 2).

Future experiments including a post-patch-clamp reconstruction of the IHC and the recorded

bouton will offer a better understanding of the SR gradient along the modiolar/pillar IHC

axis. Similar to previous studies (Chapochnikov et al., 2014; Grant et al., 2010), spontaneous

EPSCs had variable amplitudes and waveforms, despite their comparable charge.

Interestingly, amplitude and percentage of monophasic EPSCs, but not charge, were

inversely correlated to SR. This suggests that, on average, synaptic vesicles proceed more

rapidly to full-collapse fusion in high SR synapses than at low SR synapse, where fusion

pore flickering might be more prevalent and cause a higher fraction of multiphasic EPSCs.

The implications of this finding on the subsequent ANF spike generation and sound encoding

will be the work of future studies.

Latency

Sound stimulation evokes an increase in the firing frequency of ANFs in vivo. The latency

between sound onset and the first spike recorded (first spike latency) ranges between 2 and

4 ms in absence of phase-locking (Buran et al., 2010; Heil and Neubauer, 2001; Huet et al.,

2016; Taberner and Liberman, 2005). This latency is a composite of the acoustic delay of

~0.1 ms, the synaptic delay and the time for spike propagation (0.15 to 0.4 ms) to the

recording position (Palmer and Russell, 1986). Synaptic delay comprises the openening of

Ca2+ channels, fusion of vesicles with the plasma membrane, neurotransmitter diffusion in

the synaptic cleft, and binding and opening of the AMPA receptors. A synaptic delay of 0.8

ms was determined in vivo by direct recording of the IHC receptor potential and, in close

sucession, of the postsynaptic potential of an adjacent fiber in response to tone bursts at 75

dB SPL (Palmer and Russell, 1986). Paired recordings from IHCs and their contacting

boutons have reported synaptic delays -measured from the beginning of the step

depolarization to the onset of the EPSC- of 1.27 ± 0.09 ms (mouse IHC at physiological
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temperature in this thesis; chapter 2) and of ~1.5 ms (rat IHC at room temperature; Goutman,

2012; Goutman and Glowatzki, 2011).

Synaptic delays in evoked EPSCs decreased with increasing voltage step intensity (chapter

2; Goutman, 2012), in line with the reduction of the first spike latency with sound intensity

observed from ANFs in vivo (Heil and Irvine, 1997; Heil and Neubauer, 2001; Huet et al.,

2016). Modelling and experimental observations (Buran et al., 2010; Goutman, 2012; Wittig

and Parsons, 2008) have showen that the initial EPSC rates also depend on stimulus

intensity, possibly via the recruitment of more Ca2+ channel-vesicle units with increasing

depolarization [for review see (Moser et al., 2006b)]. Therefore, the increased accuracy and

magnitude of the postsynaptic response with increasing presynaptic Ca2+ influx reflects the

close relation between Ca2+ and exocytosis, as reported in ribbon (Beutner et al., 2001;

Heidelberger et al., 1994) and conventional synapses (Felmy et al., 2003; Neher and Sakaba,

2008). Furthermore, larger and faster EPSCs elicited with stronger stimuli might promote

shorter first spike latencies by speeding up action potential generation in SGN (Rutherford

et al., 2012). These observations highlight the presynaptic relevance and contribution to

transmission latencies.

The IHC status drastically influences synaptic delay, most likely related to the stimulus

history and consequently, to the presynaptic Ca2+ influx (Cho and von Gersdorff, 2014;

Goutman, 2012; Goutman and Glowatzki, 2011) and to the RRP (Buran et al., 2010; Wittig

and Parsons, 2008). Other strategies to achieve a precise timing include a short distance

between the Ca2+ sensor and the Ca2+ channel, high single Ca2+ channel conductance, large

numbers of Ca2+ channels, and/or increased open probability of the channel (Wittig and

Parsons, 2008). The latter three may cause partial occupation of the Ca2+ binding sites of the

sensor, favoring intermediate states before fusion that increase the release probability of such

vesicles and thus decrease the latency of release. The relatively depolarized resting potential

of IHCs (around -58 mV, Johnson, 2015), in combination with the negative activation

voltages of Cav1.3 channels (-65 to -45 mV, (Koschak et al., 2001; Platzer et al., 2000; Xu

and Lipscombe, 2001)), are some of the mechanisms employed by IHCs to potentially favor

intermediate fusion states. A near-linear Ca2+ dependence of release reported in this thesis

(chapter 2) and in previous studies (Brandt et al., 2005; Goutman and Glowatzki, 2007;

Johnson et al., 2005; Wong et al., 2014), indicate a Ca2+ nanodomain control of exocytosis

as an additional mechanism used by IHCs to achieve high temporal precision of synaptic

transmission (further discussed in section 5.3).
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Both experimental (chapter 3 and (Becker et al., 2018; Buran et al., 2010; Frank et al., 2010;

Jean et al., 2018)) and computational (Buran et al., 2010; Wittig and Parsons, 2008) studies

support a predominant role of the ribbon to ensure a short and reproducible first-exocytosis

latency by maintaining a sufficiently large RRP (but for an opposing view, please refer to

Lv et al., 2016; Sheets et al., 2017). In mutants lacking the scaffolding protein bassoon, the

disruption of the ribbon anchorage was accompanied by a smaller RRP and fewer Ca2+

channels, which resulted in delayed and jittered first sound evoked spikes and reduced

compound action potential of the auditory nerve (Buran et al., 2010; Frank et al., 2010; Jing

et al., 2013; Khimich et al., 2005). In RIBEYE KO (chapter 3), the resulting ribbonless

synapses also showed impaired temporal precision which could be related to the the

depolarized shift in the voltage activation of the Ca2+ channels and to a smaller standing RRP

consequence of the slower synaptic vesicle replenishment. However, these effects were less

pronounced than in bassoon KOs, presumably originated from the partial compensation of

the RRP size by a multi active zone organization at RIBEYE KO synapse, such as it is

observed in the Calyx of Held (von Gersdorff and Borst, 2002). Additional effects of the

absence of bassoon itself can not be excluded. Yet, it remains clear that the particular

organization encountered at IHC synapses is crucial for a precise and fast response to stimuli.

Synaptic depression, spike rate adaptation and vesicle replenishment

During prolonged sound stimulation, adaptation of the onset spike rate of ANFs (Kiang et

al., 1965; Westerman and Smith, 1984) is not accompanied by a reduction in the cochlear

potential (Davis et al., 1935) and on the IHC receptor potentials (Russell and Sellick, 1978).

This suggests mechanisms of adaptation localized at the synapse level (Moser and Beutner,

2000), including inactivation of the Ca2+ current (Johnson and Marcotti, 2008; Moser and

Beutner, 2000), synaptic depression [exhaustation of RRP, (Furukawa and Matsuura, 1978;

Furukawa et al., 1982; Moser and Beutner, 2000)] and/or desensitization of the postsynaptic

glutamate receptors (Goutman, 2017; Goutman and Glowatzki, 2007).

Synaptic depression observed during capacitance measurements most likely reflects RRP

depletion with a time course (W) around 10 ms (Moser and Beutner, 2000). Synaptic

depression is also evident from paired IHC-bouton recordings (chapter 2 and Goutman,

2017; Goutman and Glowatzki, 2007), where the postsynaptic response decays after the

initial peak. The time course of depletion from these recordings can be determined either by

fitting an exponential to the average EPSC response (W = ~8 ms, Goutman, 2017; Goutman

and Glowatzki, 2007), or by fitting the sum of a single exponential and a line function to the
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EPSC charge (W = 6.47 ms; chapter 2). The mild Ca2+ current inactivation (e.g. less than 20%

during 1 s long depolarizations) does not explain the strong reduction of exocytosis (>90%;

(Goutman and Glowatzki, 2007; Moser and Beutner, 2000)). Synaptic depression

determined with capacitance and paired recordings follows a similar time course to the ANFs

spike rate adaptation in vivo (rapid adaptation between 1-25 ms, Buran et al., 2010; Spassova

et al., 2004; Westerman and Smith, 1984; Yates et al., 1985). The extent of the contribution

of AMPA receptor desensitization to adaptation (Goutman, 2017) is still debatable given the

potential presynaptic effects of desensitization blockers (Diamond and Jahr, 1995; Dittman

and Regehr, 1998).

The degree of adaptation relates to the SR of ANFs in vivo (Taberner and Liberman, 2005;

Westerman and Smith, 1984). Modelling of frog hair cell afferent synapses proposed that

the differences in adaptation between fibers might result from the IHC’s replenishment as

well as from differences in fiber’s endogenous buffers (Wittig and Parsons, 2008).

Supporting the former point, high SR synapses obtained during paired recording experiments

(chapter 2) tended to have stronger adaptation of the evoked release rate, as well as faster

half time recovery of RRP depletion. Supporting the second point, recent studies reported

gradients in the expression of mobile Ca2+ buffers among SGNs (Petitpré et al., 2018;

Shrestha et al., 2018).

Despite the initial synaptic depression, IHCs employ effective mechanisms to maintain

sustained release during continuous stimulation. It is thought that the ribbon-associated pool

of vesicles is released during sustained exocytosis (Guillet et al., 2016; Schnee et al., 2005).

Morphological studies, particularly electron tomograms, show about 30-60 vesicles

associated to the synaptic ribbon (Chakrabarti and Wichmann, 2019; Chakrabarti et al.,

2018). Yet, the high sustained exocytic rates (between 100 and 700 vesicles/s, chapter 2 and

(Goutman and Glowatzki, 2007; Johnson et al., 2005; Moser and Beutner, 2000; Pangrsic et

al., 2010)) and the indefatigable release of neurotransmitter suggests that additional vesicles

must be recruited to the release sites. Replenishment of synaptic vesicles to the ribbon and/or

the active zone membrane is scarcely understood. In IHCs, the process appears to involve

Ca2+ (Beutner et al., 2001; Schnee et al., 2005; Spassova et al., 2004) and the proteins

otoferlin (Michalski et al., 2017; Pangrsic et al., 2010; Strenzke et al., 2016; Vogl et al.,

2015, 2016), bassoon (Frank et al., 2010), RIM2 (Jung et al., 2015) and RIM-BP2 (Krinner

et al., 2017).
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Results from this thesis (chapter 3) supported the crucial role of the ribbon in replenishment,

in line with previous studies (Frank et al., 2010). Yet, the multiple ribbonless ‘conventional’

active zones found at the synapses of RIBEYE KO might have led to underestimate the

replenishment defect. Consequently, studies with inducible RIBEYE KO will be of great

importance to rule out developmental compensation mechanisms. Sustained release and

number of ribbon-associated synaptic vesicles were also reduced in endophilin mutants

(chapter 4), probably reflecting the slowed reformation of synaptic vesicles. Less likely, this

phenotype was caused by an impaired otoferlin-mediated replenishment produced by the

slightly decreased otoferlin levels in the mutants. The rapid replenishment of the RRP in

IHCs might not only support sustained exocytosis (Griesinger et al., 2005; Wittig and

Parsons, 2008) but also preserve the temporal precision of the synapse during adaptation.

The vesicles retained by the ribbon are mobilized to the active zone during refilling, thus

maintaining a large pool for short and reproducible exocytosis during stimulus onset (Buran

et al., 2010; Frank et al., 2009, 2010; Wittig and Parsons, 2008).

Membrane recycling and SV reformation

Given these high rates of transmission, it is logical to think the IHC is equipped with efficient

mechanisms for membrane recycling and synaptic vesicle reformation. As a matter of fact,

IHCs display three kinetically distinct modes of membrane retrieval - rapid (300 ms), fast (4

s) and slow (20 s half time recovery) - that might resemble the modes of “kiss-and-run”

(Beutner et al., 2001; Neef et al., 2014), bulk endocytosis (Jung et al., 2015; Kamin et al.,

2014; Neef et al., 2014; Revelo et al., 2014) and clathrin-mediated endocytosis (CME)

(Duncker et al., 2013; Jung et al., 2015; Neef et al., 2014). Clathrin (Neef et al., 2014),

dynamin 1 (Neef et al., 2014), and synaptojanin-1 (Trapani et al., 2009) appear to mediate

slow endocytosis (CME) in IHCs. The adaptor protein AP2, on the other hand, was

dispensable for endocytosis in IHCs (Jung et al., 2015), despite being associated to CME in

conventional synapses (for review Kaksonen and Roux, 2018; Kononenko et al., 2014).

Nonetheless, absence of the subunit AP2µ led to accumulation of endosome-like vacuoles

and reduced coated structures near the active zone (Jung et al., 2015). These two findings

supported the hypothesis that IHCs synaptic vesicles are reformed from bulk-retrieved

membrane using clathrin-dependent, as well as clathrin-independent, mechanisms. Bulk

retrieval additionally offers more membrane surface for AP-2/clathrin synaptic vesicle

reformation.
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It is clear that the mechanisms and players mediating endocytosis at IHC synapses are poorly

understood. This is partly due to the lethal phenotype of mice carrying mutations in classical

endocytic actors [e.g. endophilin triple KO (Milosevic et al., 2011), synaptojanin KO

(Cremona et al., 1999)]. Among them is the family of endophilin A proteins (comprising

three isoforms, A1-A3, for review Kaksonen and Roux, 2018). In the present thesis,

collaborators and I assessed the effects of the absence of endophilin in exocytosis and

endocytosis of IHCs (chapter 4). In line with previous reports (Kjaerulff et al., 2011;

Milosevic et al., 2011; Reutens and Begley, 2002), endophilins appeared to be involved in

fission and uncoating of synaptic vesicles during CME. This was inferred from the modest

accumulation of clathrin coated pits near the active zone and from the prominent

accumulation of other clathrin coated structures. This probably underlies the reduced rate of

CME endocytosis in endophilin-deficient IHC assessed with capacitance measurements.

Accumulation of endosome-like vacuoles with coated-pits upon stimulation further

supported the role of endophilins in vesicle reformation and uncoating. Due to the perinatal

lethality of the triple knockout, we relied on combinatory KOs of the different isoforms,

hence the interpretation was often challenging. Future studies using inducible KO will help

to further discern the roles of each endophilin isoform.

Number and organization of Ca2+ channels

Synaptic transmission is coordinated by Ca2+ entering through presynaptic voltage-gated

Ca2+ channels (Llinás et al., 1981a, 1981b). The coupling between Ca2+ channels and the

Ca2+ sensor for vesicular release governs synaptic transmission (for review Eggermann et

al., 2011). Results from this thesis validated the Ca2+ nanodomain-like control of synaptic

transmission in IHCs under physiological conditions. Nanodomain control might ensure that

random independent gating of individual Ca2+ channels trigger the fusion of a nearby vesicle

(Neher, 1998). This factor, in combination with the hyperpolarized resting membrane

potential of the IHC, probably shapes the spontaneous activity and sensitivity of the IHC

ribbon synapse.

At IHC active zones, Ca2+ channels are present in stripe-like clusters located beneath the

synaptic ribbon (Frank et al., 2010; Neef et al., 2018; Wong et al., 2014). These clusters

appear to have similar density of channels, yet variable length (100-600 nm, Neef et al.,

2014, 2018). Hence, the number of Ca2+ channels varies greatly among active zones within

one IHC, ranging between 20-330 channels (Neef et al., 2018). Moreover, the voltage
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dependence of Ca2+ influx diverges between different clusters (Frank et al., 2009; Ohn et al.,

2016). These two key determinants of Ca2+ influx have opposing spatial gradients along the

modiolar/pillar IHC axis. Active zones of the modiolar face have larger Ca2+ channels

clusters and greater maximal synaptic Ca2+ influx, but their channels activate at higher

potentials (Moser et al., 2019; Ohn et al., 2016; Pangrsic et al., 2018). Which mechanisms

determine the number and biophysical properties of Ca2+ channels in IHC ribbon synapses?

The expression of Ca2+ channel subunits (Frank et al., 2009; Kuhn et al., 2009), splice

variants (Bock et al., 2011; Shen et al., 2006; Vincent et al., 2017), and interacting partners

[GIPC3, (Ohn et al., 2016); bassoon (Frank et al., 2010; Jing et al., 2013); RIM (Picher et

al., 2017b); CaBP2 (Picher et al., 2017a); RIM-BP (Krinner et al., 2017)] can affect both the

number of Ca2+ channels as well as modulate their functional properties. In IHCs, the core

Ca2+ selective channels pore is likely formed by the subunits Cav1.3D, CavE2 (Neef et al.,

2009), and CavD2G (Fell et al., 2016). The Cavß2 subunit promotes the trafficking of the Ca2+

channel and its stabilization at the plasma membrane and thus, regulates the abundance of

Cav1.3 channels at the active zone (Neef et al., 2009). The D2G2 subunit appears to reduce

the turnover of the channel and exerts a role in the channel gating (Fell et al., 2016). Its

deletion results in reduced Ca2+ current and a misalignment of the Ca2+ cluster to the AMPA

receptors (Fell et al., 2016). Alternative splicing in the COOH terminus of the Cav1.3D

subunit generates short and long variants with different biophysical properties (Singh et al.,

2008; Tan et al., 2011). The properties will depend on the presence or absence of the

proximal and distal COOH-terminal regulatory domain (Bock et al., 2011; Tan et al., 2011).

This domain reduces channel open probability and shifts the voltage dependence to more

positive potentials. It also weakens calmodulin mediated Ca2+ dependent inactivation

(Scharinger et al., 2015). However, replacing the distal domain with a hemagglutinin tag did

not change the voltage dependence of Ca2+ influx in IHC from KI mice, in which long Cav1.3

channels should biophysically resemble the short splice isoform. It remains to be determined

whether the subunit composition and/or presence of splice variants differs between modiolar

and pillar synapses.

Among the interacting partners, RIM2, RIM-BP2 and GIPC3 appear to influence the

abundance and properties of Ca2+ channels. RIM2 D and ß isoforms are present at the base

of the ribbon, where they promote the abundance of channels at the active zone (Jung et al.,

2015). Ca2+ influx, and consequent exocytosis, is reduced in IHCs lacking these two

isoforms, yet there is no impact in the Ca2+ channel cluster shape and organization (Jung et
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al., 2015). RIM-BP2 positively regulates the number of channels (Krinner et al., 2017).

GIPC3 is one of the strongest candidates for the heterogeneity in of Ca2+ channel voltage

activation. Absence of this cytosolic scaffold protein increases the whole cell IHC Ca2+

current, causes an overall hyperpolarizing shift in the activation of the Ca2+ channels, and,

most strikingly, reverses the modiolar/pillar gradient of maximal Ca2+ influx (Ohn et al.,

2016). These presynaptic changes are accompanied by increased spontaneous spike rates,

sound-onset firing and narrower dynamic ranges in SGNs from mutant mice. These findings

support the hypothesis that the diversity in response properties might come from the

presynaptic clustering of Ca2+ channels.

In this thesis, collaborators and I found that RIBEYE/ribbon and endophilin also mediate

Ca2+ channels properties in mouse IHC. In RIBEYE KO, the abundance of Ca2+ channels

and maximal Ca2+ influx remained the same, while some functional properties were

distorted. For instance, Ca2+ channels required higher potentials for their activation and

inactivation was enhanced. These functional changes were accompanied by reduced

exocytosis for weak depolarizations, reduced spontaneous firing rates and a lower temporal

precision. A direct interaction between the ribbon and the Ca2+ channels has not been shown

and therefore, the exact mechanism of the observed changes remains unknown. EGTA

experiments (Becker et al., 2018), superresolution imaging of the active zone and whole cell

Ca2+ current measurements suggested unaffected coupling distance and number of Ca2+

channels (chapter 3 and Becker et al., 2018). Contrary, Ca2+ channel cluster size, and whole-

cell Ca2+ influx and inactivation were reduced in endophilin deficient IHCs, in line with the

reported interaction between endophilin A1 and Ca2+ channels (chapter 4).

Diversity of SGN responses and heterogeneity

High SR synapses studied with paired recordings showed significantly lower voltage

thresholds of release and a trend to shorter latencies, faster recovery from RRP depletion

(chapter 2), findings that are compatible with the in vivo phenotype of high SR, low sound

threshold ANFs (Bourien et al., 2014; Relkin and Doucet, 1991; Rhode and Smith, 1985;

Taberner and Liberman, 2005). Thus, these results support the hypothesis that heterogeneity

of active zones within individual IHCs might underlie the diversity of spontaneous and

sound-evoked SGN firing properties (Frank et al., 2009; Ohn et al., 2016). Yet, a

contribution from the IHC’s resting state to the heterogeneity between boutons cannot be

ruled out. The differences in the threshold of ANFs could also be accounted by differences
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in IHCs of very similar CFs. The present thesis (chapter 2) shows that high SR synapses also

contacted IHCs with a more hyperpolarized activation potential of whole cell Ca2+ influx.

However, recordings from several boutons contacting one IHC were not systematically

achieved, thus future experiments with optical readouts of Ca2+ influx and/or exocytosis

might give insights about the heterogeneity among IHCs and synapses. Estimates of RRP

size and vesicular release probability (time constant of RRP release), congruent with

literature, were comparable among synapses and thus, suggest that this might not be a

contributing factor to the diversity. This finding is surprising as the heterogeneity of AZ size

and Ca2+ channel cluster (e.g. Frank et al., 2009; Neef et al., 2018; Ohn et al., 2016; Wong

et al., 2014) would lead one to assume that the RRP size should vary substantially. However,

the relatively small sample size of synapses recorded from the modiolar and pillar side,

together with the mild gradient of size and maximal Ca2+ influx of IHC AZs (“salt and

pepper” distribution), might have precluded the present thesis to reveal such differences.

Dynamic range and voltage sensitivity of release were indistinguishable between low and

high SR synapses. This contrasts the characteristic shapes of the rate level functions recorded

in vivo from low SR ANFs, with shallow rise with late saturation, and high SR ANFs, with

steep rise with fast saturation. The findings from this thesis (chapter 2) support the idea that

the non-saturated rate level function from the low SR fibers might arrise from the non-linear

saturating properties of the basilar membrane (Sachs and Abbas, 1974; Sachs et al., 1989;

Yates et al., 1990, discussed in Ohlemiller et al, 1991). Alternatively, the shape of the

relationship of firing rate and sound pressure level could be determined downstream of

glutamate release and AMPA receptor activation. Additionally, differences in the number

and/or properties of the glutamate receptors unlikely produce the heterogeneous response,

contrary to previously proposed (Grant et al., 2010). Postsynaptic excitability differences

appear more probable to contribute to the distinct rate level functions recorded in vivo. In

fact, high SR fibers have thicker diameters and are highly enriched in mitochondria

(Liberman, 1982; Merchan-Perez and Liberman, 1996; Shrestha et al., 2018; Sun et al.,

2018), two characteristics that potentially mediate and reflect faster conduction velocities

and higher activity levels. Moreover, other components, including voltage-gated channels

and mobile buffers, show gradients in their expression levels among subtypes of SGNs

(Shrestha et al., 2018; Sun et al., 2018). Future studies combining paired patch clamp

recordings, fiber tracing and immunostainings of molecular markers will be crucial to find

morphological correlates to the response properties of individual IHC synapses.
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List of abbreviations

ABR Auditory brainstem response

AC Alternating current

AMPA α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor

ANF Auditory Nerve Fiber

AP Action potential

AZ Active zone

BAPTA 1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid, “fast” Ca2+

chelator

[Ca2+] Ca2+ concentration

C2 Ca2+-binding protein domain

CaBP Ca2+ binding protein

CaM Calmodulin

CaV1.3 Voltage-gated Ca2+ channel, L-type, pore-forming α-1D subunit

CaVß Auxiliary ß-subunit of voltage-gated Ca2+ channel

CaVα2δ Auxiliary α2δ-subunit of voltage-gated Ca2+ channel

ΔCm Membrane capacitance changes

CtBP2 C-terminal binding protein 2

DC Direct current

DPOAE Distortion product otoacoustic emissions

EGTA Ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid, “slow”

Ca2+ chelator

EPSC Excitatory postsynaptic current

EPSP Excitatory postsynaptic potential

GluA Glutamate receptor subunit type, comprising AMPA receptors

HCN Hyperpolarization-activated, cyclic nucleotide-gated nonspecificationic

current (Ih)

IHC Inner hair cell

ISI Interstimulus interval

IV Current-voltage relationship

k Slope

KO Knockout

KV Voltage-gated K+ channel
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LJP Liquid junction potential

m Apparent Ca2+ cooperativity of exocytosis; from a power function fit to the

relationship between exocytosis and Ca2+ influx

MET Mechanoelectrical transduction

MVR Multivesicular release

NaV Voltage-gated Na+ channel

Nslots Number of release sites

OHC Outer hair cell

PSD Postsynaptic density

pX Postnatal day X

QCa Calcium charge

QEPSC EPSC charge

RIM Rab3-interacting molecule

RIM-BP RIM binding protein

RRP Readily releasable pool of vesicles

s.d. Standard deviation

s.e.m. Standard error of the mean

SGN Type I spiral ganglion neuron, also called auditory nerve fiber, cochlear nerve

fiber, or auditory nerve single-unit

SNARE Soluble NSF attachment protein receptors, including SNAP, syntaxin, and

synaptobrevin proteins

SPL Sound pressure level

SR Spontaneous rate of EPSCs or APs of a SGN

STED Stimulated emission depletion microscopy

SV Synaptic vesicle

UVR Univesicular release

Vglut Vesicular glutamate transporter

Vh Voltage for half activation
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Abstract We studied the role of the synaptic ribbon for sound encoding at the synapses
between inner hair cells (IHCs) and spiral ganglion neurons (SGNs) in mice lacking RIBEYE (RBEKO/

KO). Electron and immunofluorescence microscopy revealed a lack of synaptic ribbons and an
assembly of several small active zones (AZs) at each synaptic contact. Spontaneous and sound-
evoked firing rates of SGNs and their compound action potential were reduced, indicating
impaired transmission at ribbonless IHC-SGN synapses. The temporal precision of sound encoding
was impaired and the recovery of SGN-firing from adaptation indicated slowed synaptic vesicle (SV)
replenishment. Activation of Ca2+-channels was shifted to more depolarized potentials and
exocytosis was reduced for weak depolarizations. Presynaptic Ca2+-signals showed a broader
spread, compatible with the altered Ca2+-channel clustering observed by super-resolution
immunofluorescence microscopy. We postulate that RIBEYE disruption is partially compensated by
multi-AZ organization. The remaining synaptic deficit indicates ribbon function in SV-replenishment
and Ca2+-channel regulation.
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Introduction
Encoding and processing of sensory information in the ear and the eye rely on ribbon synapses.
Described in the 1960s as an electron dense structure tethering a halo of vesicles (Sjostrand, 1958;
Smith and Sjostrand, 1961), the function of the synaptic ribbon has remained enigmatic despite
decades of work (recent reviews in Lagnado and Schmitz, 2015; Moser and Vogl, 2016;
Safieddine et al., 2012; Wichmann and Moser, 2015). Approaches to ribbon function included
studies that employed natural variation of ribbon size or abundance during diurnal cycle or hiberna-
tion (Hull et al., 2006; Mehta et al., 2013), photoablation (Mehta et al., 2013; Snellman et al.,
2011) and genetic manipulation (Dick et al., 2003; Frank et al., 2010; Jing et al., 2013;
Khimich et al., 2005; Lv et al., 2016; Maxeiner et al., 2016; Sheets et al., 2011; Van Epps et al.,
2004). Mutations initially focused on the presynaptic scaffold protein bassoon that is required for
ribbon anchorage to the AZ (Dick et al., 2003; Khimich et al., 2005) via interaction with RIBEYE
(tom Dieck et al., 2005). However, bassoon also exerts direct effects on AZ function
(Davydova et al., 2014; Hallermann et al., 2010; Mendoza Schulz et al., 2014) and, hence, distin-
guishing direct effects of bassoon deletion and those caused by ribbon loss remained challenging
(Jing et al., 2013).

RIBEYE-disruption turned out to be difficult: it is transcribed from the same gene as CtBP2, an
essential transcription factor, disruption of which causes embryonic lethality (Hildebrand and Sor-
iano, 2002). Complete abolition of RIBEYE was hard to achieve in zebrafish (Lv et al., 2016;
Van Epps et al., 2004) given their duplicated genome. In fact, despite targeting both ribeye genes,
RIBEYE immunofluorescence remained present in the retina and hair cells displayed ‘ghost ribbons’:
structures recognized by a synaptic vesicle-halo but lacking electron density (Lv et al., 2016). Com-
plete disruption of RIBEYE expression and lack of retinal ribbons were recently reported in a mouse
knock-out of the RIBEYE-specific exon (Maxeiner et al., 2016). This study proved that RIBEYE is
required for ribbon formation in the mammalian retina and the observed ribbon loss grossly
impaired glutamate release from bipolar cell terminals. The key conclusion was that ribbons help to
couple voltage-gated Ca2+-channels to vesicular release sites to enable tight, so-called Ca2+-nano-
domain control of exocytosis (Maxeiner et al., 2016), that was previously reported for ribbon synap-
ses of ear and eye (Bartoletti et al., 2011; Brandt et al., 2005; Graydon et al., 2011; Jarsky et al.,
2010; Johnson et al., 2017; Pangršič et al., 2015; Wong et al., 2014). By employing the most spe-
cific, yet chronic, manipulation of the ribbon, this functional study on ribbonless retinal rod bipolar
cells also confirmed that RIBEYE/the ribbon promotes a large complement of vesicular release sites.
However, the electrophysiology was performed on rod bipolar cells while the molecular anatomy
(immunofluorescence) focused on rod photoreceptors. Since the structure and function of ribbons
formed at these two different cell types are distinct, a simple structure-function model was not easy
to derive from this study. Moreover, the consequences of ribbon loss remained to be investigated at
the systems level. Here, we studied the effects of RIBEYE-disruption on synaptic sound encoding in
the cochlea. Combining assessments of the molecular anatomy from electron and fluorescence
microscopy with cell and systems physiology, we revealed a role for the synaptic ribbon in organizing
the topography of the IHC AZ, in Ca2+-channel regulation and in vesicle replenishment. In summary,
we demonstrate that the synaptic ribbon is important for sound encoding at high rates and with
temporal precision at IHC synapses.

Results

Genetic disruption of RIBEYE transforms ribbon-type AZs of IHC
synapses into synaptic contacts with multiple small ribbonless AZs
We first employed immunohistochemistry to study IHCs of 3-week-old RIBEYE knock-out mice
(RBEKO/KO), in which the unique A-domain exon of RIBEYE was deleted by Cre-mediated excision
(described in Maxeiner et al., 2016). Next to the A-domain, RIBEYE contains a B-domain that is
largely identical to the transcription factor CtBP2, which is spared by the genetic manipulation and
used as a target in immunohistochemistry of ribbons and nuclei (Figure 1A,B; Khimich et al., 2005).
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Synaptic ribbons of IHC afferent synapses were identified as presynaptic RIBEYE/CtBP2-immunofluo-

rescent spots in wild-type (Figure 1B, RBEWT/WT) and heterozygous (Figure 1—figure supplement

1, RBEWT/KO) mice. Their number per IHC did not change in the heterozygous condition (15.5 ± 0.7,

S.D. = 1.58; n = 50 cells, N = 4 for RBEWT/KO vs. 15.7 ± 1.1, S.D. = 2.19; n = 39 cells, N = 3 for

RBEWT/WT at P21), while their intensity was significantly reduced (in arbitrary units: 3.4 ± 0.7, S.

D. = 1.78; n = 600 spots for 40 cells, N = 3 in RBEWT/KO vs. 5.1 ± 1.1, S.D. = 2.23; n = 411 spots for

29 IHCs, N = 3 in RBEWT/WT; p<0.0001, Mann-Whitney-Wilcoxon test; Figure 1—figure supplement

1A,B). RBEKO/KO IHCs lacked synaptic RIBEYE/CtBP2 immunofluorescence spots (Figure 1B), while

immunolabeling of nuclear CtBP2 remained present, corroborating previous findings in the retina

(Maxeiner et al., 2016). The number of afferent synapses per IHC was determined by the count of

postsynaptic densities (PSDs) identified as PSD-95 immunofluorescent spots (Figure 1C,D,E) and

was unchanged when RIBEYE was removed (13.7 ± 0.8, S.D. = 2.04; n = 56 cells, N = 4 in RBEKO/KO

vs. 12.9 ± 0.6, S.D. = 2.13; n = 55 cells, N = 5 in RBEWT/WT). Bassoon (Figure 1C) and RIM2

(Figure 1D), both presynaptic scaffold proteins (Khimich et al., 2005;Jung et al., 2015a), remained

present at the ribbonless afferent synapses of RBEKO/KO IHCs (marked by PSD-95). The scaffold pro-

tein piccolino, the short isoform of piccolo (Regus-Leidig et al., 2013) that is present in cochlear

and retinal ribbons (Khimich et al., 2005; tom Dieck et al., 2005; Regus-Leidig et al., 2013), was

absent from afferent synapses of RBEKO/KO IHCs. However, piccolo immunofluorescence was present

in the vicinity of afferent synapses likely marking the long form piccolo at the efferent presynaptic

AZs (Figure 1E, see schematic in Figure 1A). The PSD areas were calculated by fitting a 2-

eLife digest Our sense of hearing relies on our ears quickly and tirelessly processing information
in a precise manner. Sounds cause vibrations in a part of the inner ear called the cochlea. Inside the
cochlea, the vibrations move hair-like structures on sensory cells that translate these movements into
electrical signals. These hair cells are connected to specialized nerve cells that relay the signals to
the brain, which then interprets them as sounds.

Hair cells communicate with the specialized nerve cells via connections known as chemical
synapses. This means that the electrical signals in the hair cell activate channel proteins that allow
calcium ions to flow in. This in turn triggers membrane-bound packages called vesicles inside the
hair cell to fuse with its surface membrane and release their contents to the outside. The contents,
namely chemicals called neurotransmitters, then travels across the space between the cells, relaying
the signal to the nerve cell.

The junctions between the hair cells and the nerve cells are more specifically known as ribbon
synapses. This is because they have a ribbon-like structure that appears to tether a halo of vesicles
close to the active zone where neurotransmitters are released. However, the exact role of this
synaptic ribbon has remained mysterious despite decades of study.

The ribbon is mainly composed of a protein called Ribeye, and now Jean, Lopez de la Morena,
Michanski, Jaime Tobo!n et al. show that mutant mice that lack this protein do not have any ribbons
at their “ribbon synapses”. Hair cells without synaptic ribbons are less able to timely and reliably
send signals to the nerve cells, most likely because they cannot replenish the vesicles at the synapse
quickly enough. Further analysis showed that the synaptic ribbon also helps to regulate the calcium
channels at the synapse, which is important for linking the electrical signals in the hair cell to the
release of the neurotransmitters.

Jean et al. also saw that hair cells without ribbons reorganize their synapses to form multiple
active zones that could transfer neurotransmitter to the nerve cells. This could partially compensate
for the loss of the ribbons, meaning the impact of their loss may have been underestimated. Future
studies could explore this by eliminating the Ribeye protein only after the ribbon synapses are fully
formed.

These findings may help scientists to better understand deafness and other hearing disorders in
humans. They will also be of interest to neuroscientists who research synapses, hearing and other
sensory processes.
DOI: https://doi.org/10.7554/eLife.29275.002
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Figure 1. Loss of synaptic ribbons and piccolino from the AZs of RIBEYE-deficient IHCs. (A) Simplified schematic representation of an IHC with the

afferent and efferent connectivities. (B) Maximal projection of confocal sections from organs of Corti immunolabeled for CtBP2 and RIBEYE, present in

the nuclei and the ribbons, respectively. The RBEWT/WT staining (top row) shows small puncta in the outer hair cell (OHC) and IHC rows representing the

synaptic ribbons, which are completely absent in the RBEKO/KO hair cells (bottom row). Scale bar = 50 mm. Zoom into the IHC row (right column),

Figure 1 continued on next page
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dimensional Gaussian function to each PSD-95 immunofluorescent spot, revealing a significant

increase in the RBEKO/KO condition (2.82 ± 0.09 mm2, S.D. = 1.25; n = 178 spots, N = 3 vs.

1.74 ± 0.05 mm2, S.D. = 0.58; n = 163 spots, N = 3 in RBEWT/WT IHCs; p<0.0001, Mann-Whitney-Wil-

coxon; Figure 1F).
In order to study the effects of RIBEYE deletion on the ultrastructure of afferent IHC synapses, we

performed transmission electron microscopy on random sections and electron tomography. Random

ultrathin (70–75 nm) sections prepared from P21 mice (two animals per genotype) after aldehyde fix-

ation and conventional embedding procedures showed that IHCs from RBEKO/KO mice completely

lack synaptic ribbons, while RBEWT/WT and heterozygous RBEWT/KO typically display one ribbon per

AZ (Figure 2A–C). Interestingly, ribbons of RBEWT/KO IHCs were smaller in height, width and area

compared to RBEWT/WT IHC synaptic ribbons (Figure 2—figure supplement 1A–C; ribbon height:

118.32 ± 3.17 nm, S.D. = 31.84 nm; n = 101 ribbons, N = 2 for RBEWT/KO vs. 197.09 ± 4.36 nm, S.

D. = 44.93 nm; n = 106 ribbons, N = 2 for RBEWT/WT; ribbon width: 119.80 ± 6.23 nm, S.D. = 62.27

nm for RBEWT/KO vs. 168.34 ± 6.83 nm, S.D. = 70.27 nm for RBEWT/WT; ribbon area: 11.5e3 ± 6.2e2

nm2, S.D. = 6.3e3 nm2 for RBEWT/KO vs. 25.4e3 ±1.1e2 nm2, S.D. = 1.1e3 nm2 for RBEWT/WT;

p<0.0001, Mann-Whitney-Wilcoxon test for all) agreeing with the significantly reduced ribbon immu-

nofluorescence intensity in the RBEWT/KO condition (see above and Figure 1—figure supplement

1A–B).
Random sections of synaptic contacts of RBEKO/KO mice (Figure 2C) often showed more than one

presynaptic density (PD), each associated with a cluster of synaptic vesicles (henceforth considered

individual AZs). The multiple AZs typically faced one continuous PSD, which is different from the syn-

apses of immature IHC synapses that show multiple appositions of pre- and postsynaptic densities

(Sendin et al., 2007; Wong et al., 2014). Moreover, we found more than one PD per synaptic con-

tact in IHCs of older RBEKO/KO mice (Figure 2E,F; 6 weeks and 8 months, respectively), arguing

against a delayed synaptic maturation to be the cause of the phenotype. Sections from tangential

cuts of the synapse (Figure 2D), reconstructions from serial ultrathin sections (Figure 2G,G’) and

quantifications of random sections (Figure 2H) corroborated the notion of multiple small ribbonless

AZs at the synaptic contacts of RBEKO/KO IHCs. Analysis based on serial 3D reconstructions of synap-

tic contacts of RBEKO/KO IHCs from P21 animals showed on average 1.92 ± 0.34 PDs (S.D. = 1.16;

n = 17 serial 3D reconstructions, N = 2) and 20.58 ± 2.98 total SVs per contact, S.D. = 10.34

(Figure 2I). The lateral extent of the individual PDs, determined in random sections, was comparable

between RBEKO/KO and RBEWT/WT synapses (129.89 ± 2.53 nm, S.D. = 26.26 nm; n = 108 PDs, N = 2

for RBEKO/KO vs. 129.35 ± 4.89 nm, S.D. = 50.86 nm; n = 108 PDs, N = 2 for RBEWT/WT; p=0.92,

NPMC test), while that of RBEWT/KO was enlarged (Figure 2M; 157.64 ± 7.19 nm, S.D. = 72.24 nm;

n = 101 PDs, N = 2; p=0.0004 for comparison to RBEWT/WT, NPMC test). PSDs tended to be

increased in length at RBEKO/KO synapses compared to RBEWT/WT PSDs and were significantly larger

Figure 1 continued

emphasizes the complete disappearance of CtBP2-labeling at the basolateral part of RBEKO/KO IHCs. Scale bar = 10 mm. (C) Maximal projection of

confocal sections from organs of Corti co-labeled for the presynaptic marker and anchor of the ribbon, bassoon (left column), and the postsynaptic

marker, PSD-95 (middle column), in RBEWT/WT and RBEKO/KO IHCs. The merged picture (right column) shows the juxtaposition of bassoon (magenta)

with PSD-95 (green), indicating its presence both at RBEWT/WT and ribbonless RBEKO/KO IHC synapses. Scale bar = 1 mm. (D) Maximal projection of

confocal sections from organs of Corti co-labeled for the presynaptic marker RIM2 (left column) and the postsynaptic marker PSD-95 (middle column).

The merged picture (right column) shows the co-localization of RIM2 (magenta) with PSD-95 (green) meaning its presence at the ribbonless IHC pre-

synapses (scale bar = 5 mm). (E) Maximal projection of confocal sections from organs of Corti co-labeled for piccolino, a specific short splice variant of

piccolo found at ribbons of RBEWT/WT IHC synapses (left column), co-labeled with PSD-95 (middle column). The merged pictures (right column) show

PSD-95 (green) immunofluorescence lacking juxtaposed piccolino signal (magenta) in RBEKO/KO (bottom row), indicating absence of piccolino from

afferent synapses of mutant IHCs. The punctate labeling for piccolo, away from PSD-95, most likely represents labeling of piccolo at conventional

efferent synapses (schematically shown in Figure 1A). Scale bar = 5 mm. (F) Quantification of the area of PSD-95 immunofluorescent spots. The PSD-95

spots are siginificantly bigger in the RBEKO/KO IHCs (p<0.0001, Mann-Whitney-Wilcoxon test, n = 178 spots, N = 3 for RBEKO/KO and n = 163 spots,

N = 3 for RBEWT/WT). Box plots show 10, 25, 50, 75 and 90th percentiles with individual data points overlaid; means are shown as crosses.

DOI: https://doi.org/10.7554/eLife.29275.003

The following figure supplement is available for figure 1:

Figure supplement 1. Gene-dosage dependent expression of the RIBEYE at IHC AZs.

DOI: https://doi.org/10.7554/eLife.29275.004
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Figure 2. RIBEYE disruption transforms IHC synapses into contacts with multiple small ribbonless AZs. (A–C) Representative electron micrographs of

IHC afferent synapses from P21 RBEWT/WT, RBEWT/KO and RBEKO/KO mice. Ribbonless RBEKO/KO synapses display one or more presynaptic densities

(PD) clustering SVs. Scale bars = 200 nm. (D) RBEKO/KO IHC AZ cut tangentially, revealing multiple PDs (here six) per AZ. (E, F) Representative electron

micrographs of RBEKO/KO IHC synapses from mice at 6 weeks (E) and 8 months (F) of age: the presence of at least 2 AZs per contact in mature IHCs

Figure 2 continued on next page
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than RBEWT/KO PSDs (Figure 2N; 623.77 ± 26.70 nm, S.D. = 264.33 nm; n = 98 PSDs, N = 2 for

RBEKO/KO vs. 555.91 ± 22.24 nm, S.D. = 236.42 nm; n = 113 PSDs, N = 2 for RBEWT/WT vs.

521.34 ± 24.20 nm, S.D. = 242.03 nm; n = 100 PSDs, N = 2 for RBEWT/KO; p=0.01 for RBEKO/KO vs.

RBEWT/KO, Tukey’s test), which is consistent with the greater area of PSD-95 immunofluorescent

spots in the knock-out condition (Figure 1E).
In the following, we characterized the populations of presynaptic SVs in random sections of verti-

cally-cut IHC synapses. We counted membrane-proximal SVs (MP-SVs, !25 nm distance between SV

membrane and plasma membrane, laterally within 80 nm of the PD, yellow in Figure 2J–L) as well as

ribbon-associated SVs (RA-SVs, first layer of SVs around the ribbon within 80 nm, green in Figure 2J,

K) or ‘PD-associated’ SVs (PDA-SVs, ribbonless AZs: SVs within 80 nm distance of the PD and not

falling into the MP-SV pool (see above), green in Figure 2J,L). We found both MP-SVs (Figure 2O;

1.92 ± 0.09, S.D. = 0.93; n = 108 AZs, N = 2 for RBEKO/KO vs. 2.99 ± 0.12, S.D. = 1.18; n = 101 AZs,

N = 2 for RBEWT/KO vs. 2.77 ± 0.12, S.D. = 1.18; n = 106 AZs, N = 2 for RBEWT/WT; p<0.0001 for

RBEKO/KO vs. RBEWT/WT, NPMC test) and PDA-SVs (Figure 2P; 4.12 ± 0.15, S.D. = 1.50; n = 108 AZs,

N = 2 for RBEKO/KO vs. 10.09 ± 0.27, S.D. = 2.75; n = 106 AZs, N = 2 for RBEWT/WT; p<0.0001,

Tukey’s test) of the individual ribbonless IHC AZs of RBEKO/KO mice to be significantly fewer than the

corresponding number of MP-SVs and RA-SVs counted at RBEWT/WT AZs. The fraction of PDA-SVs

relative to the total number of SVs at RBEKO/KO AZs was less than that of RA-SVs at RBEWT/WT AZs

(Figure 2Q; 0.67 ± 0.02, S.D. = 0.16; n = 108 AZs, N = 2 for RBEKO/KO vs. 0.78 ± 0.01, S.D. = 0.08;

n = 106 AZs, N = 2 for RBEWT/WT; p<0.0001, NPMC test). Consequently, we observed an increase in

the fraction of MP-SVs at RBEKO/KO AZs (Figure 2Q; 0.33 ± 0.02, S.D. = 0.16; n = 108 AZs, N = 2 for

RBEKO/KO vs. 0.22 ± 0.01, S.D. = 0.08; n = 106 AZs, N = 2 for RBEWT/WT; p<0.0001, NPMC test). In

line with the decreased ribbon size of RBEWT/KO AZs, we found a reduced number of RA-SVs, indi-

cating a hypomorphic phenotype upon the loss of one allele of the RIBEYE gene. The SV diameter

was unchanged for all three genotypes when jointly considering SVs of all categories in random sec-

tions (Figure 2—figure supplement 1D; 39.59 ± 0.21 nm, S.D. = 5.37 nm; n = 108 AZs, N = 2 for

RBEKO/KO vs. 40.53 ± 0.14 nm, S.D. = 4.44 nm; n = 101 AZs, N = 2 for RBEWT/KO vs. 41.80 ± 0.13

nm, S.D. = 4.79 nm; n = 106 AZs, N = 2 for RBEWT/WT; p=0.30, NPMC test). However, we found a

subtle but significant SV-diameter reduction in RBEKO/KO and RBEWT/KO for MP-SVs (Figure 2—fig-

ure supplement 1E; 39.29 ± 0.34 nm, S.D. = 4.82 nm; n = 108 AZs, N = 2 for RBEKO/KO vs.

41.79 ± 0.26 nm, S.D. = 4.53 nm; n = 106 AZs, N = 2 for RBEWT/WT; p<0.0001, NPMC test and

Figure 2 continued

argues against a developmental delay. (G) Consecutive serial sections of a typical RBEKO/KO P21 IHC synapse showing multiple AZs. Scale bar = 200

nm. (G’) Corresponding serial 3D reconstruction of the synapse in (G) showing four PDs (magenta) surrounded by a total of 48 SVs (gray). Scale bar =

200 nm. (H) Quantification of the number of ribbon/PD per random section. AZs with a single PD are less frequently observed in RBEKO/KO IHCs

(n = 108 AZs, N = 2 for RBEKO/KO and n = 106 AZs, N = 2 for RBEWT/WT; p<0.05, NPMC test). (I) Number of PDs and SVs per AZ in P21 RBE KO/KO mice

in serial 3D reconstructions of RBEKO/KO afferent synapses. Box plots show 10, 25, 50, 75 and 90th percentiles with individual data points overlaid, as for

(M, N, O, P & Q). (J) Schematic drawing illustrating the quantitative analysis of random sections. SV diameter: average of vertical and horizontal

measurements from outer rim to outer rim. The ribbon height, width and area were measured as indicated by the gray lines. The length of the PD was

determined along the AZ. For ribbon-occupied AZs: Membrane-proximal (MP) SVs (yellow) were counted in a distance of !25 nm from the AZ

membrane (blue) and !80 nm from the PD. Ribbon-associated (RA) SVs were found in the first layer around the ribbon (red) with a maximum distance

of 80 nm to the ribbon, quantified as indicated by the gray lines. For ribbonless AZs: Instead of RA-SVs we defined PD-associated SVs (PDA-SVs: all SV

at PD with a maximum distance of 80 nm to the PD not matching the MP-SV criteria, defined as above). (K, L) Electron micrographs illustrating the

quantification of the MP-SVs (yellow crosses) and the RA/PDA-SVs (green crosses). (M–Q) Quantification of random IHC synapse (P21) sections revealed
no significant differences between RBE KO/KO and RBEWT/WT for the PD and PSD length (PD length: n = 108 PDs, N = 2 for RBE KO/KO and n = 108 PDs,

N = 2 for RBEWT/WT; p=0.92, NPMC test and PSD length: n = 98 PSDs, N = 2 for RBE KO/KO and n = 113 PSDs, N = 2 for RBEWT/WT; p=0.11, Tukey’s

test). However, in the RBEWT/KO IHCs, the PDs were bigger than in the WT IHCs (n = 101 PDs, N = 2; p=0.0004, NPMC test), and the PSDs were smaller

than in the knock-out IHCs (n = 100 PSDs, N = 2 for RBEWT/KO; p=0.01, Tukey’s test). MP-SVs (n = 108 AZs, N = 2 for RBEKO/KO, n = 106 AZs, N = 2 for

RBEWT/WT; p<0.0001, NPMC test) and RA/PDA-SVs (n = 108 AZs, N = 2 for RBEKO/KO, n = 106 AZs, N = 2 for RBEWT/WT; p<0.0001, Tukey’s test) per AZ,

as well as the fraction of RA/PDA-SVs in RBEKO/KO, were significantly reduced (n = 108 AZs, N = 2 for RBEKO/KO, n = 106 AZs, N = 2 for RBEWT/WT;

p<0.0001, NPMC test).

DOI: https://doi.org/10.7554/eLife.29275.005

The following figure supplement is available for figure 2:

Figure supplement 1. Random section analysis showed smaller synaptic ribbons and vesicles in RBEWT/KO mice.

DOI: https://doi.org/10.7554/eLife.29275.006
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40.29 ± 0.25 nm, S.D. = 4.40 nm; n = 101 AZs, N = 2 for RBEWT/KO vs. RBEKO/KO; p=0.03, NPMC

test) and for RA-/PDA-SVs (Figure 2—figure supplement 1F; 39.72 ± 0.27 nm, S.D. = 5.61 nm;
n = 108 AZs, N = 2 for RBEKO/KO vs. 41.81 ± 0.15 nm, S.D. = 4.86 nm; n = 106 AZs, N = 2 for

RBEWT/WT; p<0.0001, NPMC test and RBEKO/KO vs. 40.63 ± 0.17 nm, S.D. = 4.45 nm; n = 101 AZs,
N = 2 for RBEWT/KO; p=0.003, NPMC test and RBEWT/KO vs. RBEWT/WT; p=0.02, NPMC test).

Next, to capture the synapses in a near-to-native state and to evaluate vesicle tethering, we per-
formed electron tomography on 250 nm thick sections that were prepared with high-pressure freez-

ing and freeze-substitution (HPF/FS) of organs of Corti from P21 mice (Figure 3). Tomography
confirmed the absence of synaptic ribbons and the presence of multiple AZs per contact, each with

a clear PD (Figure 3B,D,F). However, we note that the 250 nm thick sections did typically not fully
cover the synaptic contact, which leads to an underestimation for the total number of SVs particu-

larly for the spatially extended RBEKO/KO synapses. The PDs appeared roundish in the RBEKO/KO with

MP-SVs closely arranged around the PD as found at the more elongated RBEWT/WT AZs (Figure 3C,
D). For the tomograms, we followed the definition of MP-SV pool according to the 2D-random sec-

tions (Figure 2), but in addition we measured the MP-SVs also in a maximum distance of 50 nm from
the AZ membrane and !100 nm from the PD (Figure 3—figure supplement 1 and

supplementary file 1). This was motivated by the presence of long tethers connecting SV and AZ
membrane and was previously introduced (Jung et al., 2015a). Further, we distinguished between

tethered and non-tethered SVs (Figure 3G, Figure 3—figure supplement 1A). There, we focused

our analysis on tethers to the ribbon/PD, plasma membrane and those interconnecting two adjacent
SVs (Figure 3H,I,M,N). We found a significant reduction in the number of MP-SVs per AZ in RBEKO/

KO IHCs (Figure 3J; RBEKO/KO = 6.30 ± 0.86, S.D. = 2.87 MP-SVs; n = 11 AZs, N = 3 vs. RBEWT/WT =
8.70 ± 0.82, S.D. = 2.45 MP-SVs; n = 9 AZs, N = 3; p=0.04, Mann-Whitney-Wilcoxon test; significant

also by the second analysis method: Figure 3—figure supplement 1B, supplementary file 1), while
the fraction of tethered MP-SVs (No. of tethered MP-SVs/No. of all MP-SVs) was not significantly

altered (Figure 3K; RBEKO/KO = 0.75 ± 0.07, S.D. = 0.24; n = 11 AZs, N = 3 vs. RBEWT/WT = 0.65 ±

0.06, S.D. = 0.18; n = 9 AZs, N = 3; p=0.30, t-test; Figure 3—figure supplement 1C,
supplementary file 1). The majority of the MP-SVs were tethered via a single tether in both RBEWT/

WT and RBEKO/KO IHCs. The fraction of MP-SVs with multiple ("2) tethers was significantly larger in
RBEKO/KO IHCs (Figure 3K; single-tethered MP-SVs: RBEKO/KO = 0.55 ± 0.06, S.D. = 0.19; n = 11

AZs, N = 3 vs. RBEWT/WT = 0.61 ± 0.06, S.D. = 0.17; n = 9 AZs, N = 3; p=0.81; multiple-tethered
MP-SVs: RBEKO/KO = 0.20 ± 0.05, S.D. = 0.15; n = 11 AZs, N = 3 vs. RBEWT/WT = 0.04 ± 0.02, S.

D. = 0.05; n = 9 AZs, N = 3; p=0.01, Tukey’s test; Figure 3—figure supplement 1C,

supplementary file 1). Further, and in line with analysis of random sections, the number of PDA-SVs
per RBEKO/KO AZ was smaller than that of RA-SVs at RBEWT/WT AZs (Figure 3O; RBEKO/KO:

9.30 ± 1.13, S.D. = 3.74 PDA-SVs; n = 11 AZs, N = 3 vs. RBEWT/WT: 30.33 ± 3.00, S.D. = 9.01 RA-SVs;
n = 9 AZs, N = 3; p<0.0001, Mann-Whitney-Wilcoxon test; Figure 3—figure supplement 1,

supplementary file 1). However, the fraction of PDA-SVs tethered to the PD was not different from
that of RA-SVs tethered to the ribbon (Figure 3P; RBEKO/KO: 0.80 ± 0.06, S.D. = 0.19 tethered PDA-

SV fraction; n = 11 AZs, N = 3 vs. RBEWT/WT: 0.70 ± 0.06, S.D. = 0.17 tethered RA-SV fraction; n = 9

AZs, N = 3; p=0.12, t-test; Figure 3—figure supplement 1F, supplementary file 1).
Finally, tomography indicated unchanged SV diameters at RBEKO/KO AZs (Figure 3L,Q; MP-SV

diameter: 50.17 ± 0.90 nm, S.D. = 2.95 nm; n = 11 PDs, N = 3 for RBEKO/KO vs. 47.81 ± 0.60 nm, S.

D. = 1.70; n = 9 ribbons, N = 3 for RBEWT/WT; p=0.06, Mann-Whitney-Wilcoxon test, Figure 3—fig-

ure supplement 1D, supplementary file 1; RA/RA-SV diameter: 49.71 ± 0.83 nm, S.D. = 2.75;
n = 11 PDs, N = 3 for RBEKO/KO vs. 49.80 ± 0.78 nm, S.D. = 2.35; n = 9 ribbons, N = 3 for RBEWT/WT;

p=0.71, Mann-Whitney-Wilcoxon test; Figure 3—figure supplement 1G, supplementary file 1). We
presume that differences in the comparison of RBEKO/KO and RBEWT/WT between the random section

and electron tomography analysis primarily reflects the larger number of AZ analyzed by the former
approach.

We then used confocal and stimulated emission depletion (STED) super-resolution immunofluo-
rescence microscopy in order to study the abundance and spatial organization of presynaptic CaV1.3

Ca2+-channels (Neef et al., 2018), which contribute more than 90% of the voltage-gated Ca2+-influx
into IHCs (Platzer et al., 2000; Brandt et al., 2003; Dou et al., 2004). Organs of Corti from 3-

week-old RBEKO/KO and RBEWT/WT mice were processed in parallel for immunohistochemistry and
imaging. CaV1.3 Ca2+-channels remained clustered at RBEKO/KO AZs and were identified as CaV1.3

Jean et al. eLife 2018;7:e29275. DOI: https://doi.org/10.7554/eLife.29275 8 of 39

Research article Cell Biology Neuroscience

https://doi.org/10.7554/eLife.29275


RBEWT/WT RBEKO/KO

P21

R

PD

PD
PD

HPF/FS HPF/FSA P21 B

Front view with RA/PDA-SVsTop view with MP-SVs

PDPD

Aff

Aff
100 nm100 nm

RBEWT/WT

RA/PDA tethered SVs
RA/PDA non-tethered SVs

R

E RBEKO/KO

X

Y Z

FRBEWT/WT

MP tethered SVs
MP non-tethered SVs
Docked

PD

C RBEKO/KO

X

Z

PD
PD

100 nm

D

IHC IHC

n.s.K

P

n.s.L

QM

G Tomogram analysis 
(RBEWT/WT)

(RBEKO/KO)

25 nm PD

80 nm80 nm

80 nm

PD

80 nm

25 nm

80 nm

80 nm

Ribbon

 RBEWT/WT

 RBEKO/KO

N = 3 animals,
n = 9 ribbons
N = 3 animals,
n = 11 PDs

MP tethered SVs
MP non-tethered SVs
Docked

RA/PDA tethered SVs
RA/PDA non-tethered SVs

100 nm

I

J

RBEWT/WT

RBEKO/KON

O

RBEWT/WT

RBEKO/KO

40 nm

H *
12

10

8

6

4

2

0

 #
 o

f 
M

P
-S

V
s

1

0.8

0.6

0.4

0.2

0 F
ra

c
tio

n
 o

f 
M

P
 t
e
th

e
re

d
 S

V
s

Total 1 ≥ 2

****

Tether

60

50

40

30

20

10

0

 M
P

-S
V

 d
ia

m
e
te

r 
(n

m
)

****

PD

R 40 nm
+

+
+

+

+

+

+

+
+

n.s.

*

****

50

40

30

20

10

0

 
  
#
 o

f 
R

A
/ P

D
A

-S
V

s

1

0.8

0.6

0.4

0.2

0

 
 F

ra
c
tio

n
 o

f 
R

A
/ P

D
A

 t
e
t h

e
re

d
 S

V
s n.s.

60

50

40

30

20

10

0

 
 R

A
/P

D
A

-S
V

 d
ia

m
e
te

r 
(n

m
)

n.s.

Figure 3. Electron tomography analysis of synaptic ultrastructure obtained after HPF/FS. (A, B) Exemplary virtual electron tomographic sections of P21

RBEWT/WT (A) and RBEKO/KO (B) highlight the ribbon R in red, the presynaptic density (PD) in magenta and the AZ membrane with blue dotted lines. No

synaptic ribbons, but two PDs were observed in RBEKO/KO (B). Scale bars = 100 nm. (C–F) 3D rendered models of RBEWT/WT (C, E) and RBEKO/KO (D, F)
IHC synapses. (C, D) The top view depicts the MP-SV pool with tethered (orange), non-tethered (yellow) and docked (light orange) SVs. For clarity

Figure 3 continued on next page
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labeling juxtaposed to PSD-95 immunofluorescent spots (Figure 4A). In order to analyze the spatial

organization of synaptic Ca2+-channels, we performed 3-color, 2D-STED immunofluorescence imag-

ing for CaV1.3, bassoon (as a PD-marker), and PSD-95. While more than 80% of the RBEWT/WT synap-

ses showed the typical stripe-like co-alignment of CaV1.3 and bassoon immunofluorescence

(Neef et al., 2018), imaging of RBEKO/KO synapses indicated a high prevalence (over 70%) of

smaller, rounder and often several Ca2+-channel clusters and PDs per synaptic contact (Figure 4B,

C). We then quantified stripe-like clusters by measuring their long and short axis using 2D Gaussian

fits and found no differences between RBEKO/KO and RBEWT/WT AZs (Figure 4D). Finally, we quanti-

fied the number of CaV1.3-immunofluorescent structures per contact (as indicated by PSD-95 immu-

nofluorescence). While more than 80% of RBEWT/WT synapses displayed a single cluster, over 60% of

the RBEKO/KO synapses contained two or more Ca2+-channel clusters (Figure 4E). Hence, the aver-

age number of CaV1.3-immunofluorescent structures was significantly higher at RBEKO/KO synapses

compared to RBEWT/WT (2.06 ± 0.09, S.D. = 1.16; n = 178 spots, N = 3 vs. 1.16 ± 0.03, S.D. = 0.38;

n = 183 spots, N = 2; p<0.0001, Mann-Whitney-Wilcoxon test) and we likely underestimated this dif-

ference due to the low resolution of 2D-STED in the z-axis. In summary, our results indicate that

RIBEYE-disruption transforms the single ribbon-type AZ into a complex presynaptic organization

with multiple conventional-like AZs facing the postsynaptic bouton.

Altered operating range of presynaptic Ca2+-influx at ribbonless IHC
synapses
Next, we combined whole-cell patch-clamp with confocal Ca2+-imaging of IHCs to study Ca2+-influx

at the whole IHC and single synapse levels using 5 mM [Ca2+]e to augment the signal to noise. Using

step-depolarizations in conditions that isolated the Ca2+-current (see Materials and methods), we

probed the amplitude and voltage-dependence of IHC Ca2+-influx (Figure 5A). The amplitude of

Ca2+-influx (Figure 5Ai; for Ca
2+-current density, see Figure 5Aii) was unaltered in RBEKO/KO IHCs (-

151 ± 12.9 pA, S.D. = 59 pA; n = 21 IHCs, N = 8 in RBEKO/KO vs. -161 ± 15.4 pA, S.D. = 71 pA;

n = 21 IHCs, N = 9 in RBEWT/WT; p=0.62, t-test), in agreement with findings in retinal bipolar neurons

(Maxeiner et al., 2016) but in contrast to our previous findings in ribbon-deficient IHCs of bassoon

mutant mice (Khimich et al., 2005; Frank et al., 2010; Jing et al., 2013). Kinetics of Ca2+-channel

activation were unchanged (Figure 5B), whereas inactivation kinetics were slightly faster in the

RBEKO/KO IHCs (smaller residual Ca2+-current at 200 ms of depolarization (normalized to the peak

current): 0.82 ± 0.007, S.D. = 0.02; n = 10 IHCs, N = 5 for RBEKO/KO vs. 0.85 ± 0.01, S.D. = 0.04;

n = 11 IHCs, N = 7, in the RBEWT/WT condition; p=0.017, Mann-Whitney-Wilcoxon test; Figure 5D).

When analyzing the voltage-dependence of Ca2+-channel activation (Figure 5C), we found a small (2

Figure 3 continued

ribbons, RA/PDA-SVs are removed. Scale bars = 100 nm. (E,F) The front view shows the RA/PDA-SV pool from RBEWT/WT (E) and RBEKO/KO (F) IHCs.
Tethered (dark green) and non-tethered (light green) RA/PDA-SVs. For the ease of visualization, the MP-SV pool is transparent here and other synaptic

structures such as ribbon (red), PD (magenta) and AZ membrane (blue) are indicated. Scale bars = 100 nm. (G) Illustrations show the tomogram analysis

parameters comparable to 2D-random section analysis (Figure 2), in addition to that the vesicle pools are subdivided into tethered, non-tethered and

docked SVs. (H, I, M, N) Representative tomogram virtual sections of membrane-tethered MP-SVs (H, I; orange cross), ribbon/PD tethered SVs and

ribbon/PD proximal interconnecting SVs (M, N; green cross) in RBEWT/WT (H, M) and in RBEKO/KO (I, N). Tethers are marked with a white arrowhead and

other synaptic entities are color-coded similar to (A, B). Scale bars = 40 nm. (J–L) Quantification for the MP-SV pool is depicted; n = 9 ribbons, N = 3

animals for RBEWT/WT and n = 11 PDs, N = 3 animals for RBEKO/KO. Fewer MP-SV were observed in RBEKO/KO (J; p=0.04, Mann-Whitney-Wilcoxon test).

The fraction of tethered MP-SVs was unaltered in RBEKO/KO (K; p=0.30, t-test). Most of the SVs were tethered by a single tether in both RBEKO/KO and

RBEWT/WT. Significantly more SVs with multiple-tethers were observed in RBEKO/KO (K; single tethered MP-SVs, multiple-tethered MP-SVs: n.s.: p>0.05,*:

p=0.01, ****: p<0.0001, Tukey’s test). MP-SV diameter was unaltered in RBEKO/KO (L; p=0.06, Mann-Whitney-Wilcoxon test). (O–Q) Quantification for the

RA/PDA-SVs, sample size is same as for the MP-SV analysis. Significantly fewer PDA-SVs were observed in RBEKO/KO (O; RBEKO/KO: p<0.0001, Mann-

Whitney-Wilcoxon test). The fraction of PDA tethered SVs in RBEKO/KO was comparable to RA tethered SVs in RBEWT/WT (P; p=0.12, t-test). SV diameters

were unaltered in the RA/PDA vesicle pool (Q; p=0.06, Mann-Whitney-Wilcoxon test). Box plots show 10, 25, 50, 75 and 90th percentiles with individual

data points overlaid. See Figure 3—figure supplement 1 and supplementary file 1 for modified tomogram analysis according to Jung et al., 2015a.

DOI: https://doi.org/10.7554/eLife.29275.007

The following figure supplement is available for figure 3:

Figure supplement 1. Electron tomogram analysis according to Jung et al., 2015a.

DOI: https://doi.org/10.7554/eLife.29275.008
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mV) but significant depolarizing shift of the potential of half-maximal Ca2+-channel activation, Vh

(Figure 5Ci, #22.96 ± 0.43 mV, S.D. = 2.39 mV; n = 21 IHCs, N = 8 in RBEKO/KO vs. #25.04 ± 0.65

mV, S.D. = 2.98 mV; n = 21 IHCs, N = 9 in RBEWT/WT; p=0.017, t-test). When analyzed in a smaller

data set recorded in 2 mM [Ca2+]e the depolarized Vh-shift did not reach statistical significance (data
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Figure 4. Analyzing AZ Ca2+-channel clusters using confocal and STED immunofluorescence microscopy. (A) Maximal projections of confocal sections

from organs of Corti immunolabeled for CaV1.3 Ca2+-channels (left column) and PSD-95 (middle column). The merged pictures (right column) show

their juxtaposition in both conditions. While we mostly found one linear/spot-like Ca2+-channel cluster per PSD in RBEWT/WT IHCs (top row), we often

observed several spots per PSD in RBEKO/KO IHCs (bottom row). Scale bar = 5 mm. (B) Triple co-labeling of CaV1.3 (green), bassoon (red), and PSD-95

(blue) at several IHC AZs from RBEWT/WT and RBEKO/KO mice, imaged in 2D-STED (CaV1.3 and PSD-95) and confocal mode (bassoon), showing that

CaV1.3 Ca2+-channels cluster at AZs in IHCs of both genotypes. CaV1.3 immunofluorescence is displayed in gray next to the merged image for better

visualization. Scale bar = 500 nm. (C) 178 RBEWT/WT and 183 RBEKO/KO synapses were categorized according to the pattern of CaV1.3

immunofluorescence found by assigning them to a group of either line-shaped clusters, fat line-shaped clusters or one/multiple spots. A markedly

higher fraction of synapses was found to display a spot-like CaV1.3-signal in RBEKO/KO than in RBEWT/WT IHCs. (D) Fitting of a 2D-Gaussian function to

the immunofluorescence data of the line-shaped CaV1.3 clusters showed no difference in terms of size between RBEWT/WT and RBEKO/KO clusters, as

estimated by the full width at half maximum of the Gaussian’s short and long axis. Box plots show 10, 25, 50, 75 and 90th percentiles with individual

data points overlaid. (E) Quantification of the number of fluorescent structures (lines or spots) labeled by the anti-CaV1.3 antibody at RBEWT/WT and

RBEKO/KO synapses showed a significantly increased number in the knockout (p<0.0001, Mann-Whitney-Wilcoxon test).

DOI: https://doi.org/10.7554/eLife.29275.009
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not shown). The average voltage-sensitivity of activation (slope factor k) was not altered (5 mM

[Ca2+]e: p=0.67, t-test, Figure 5Cii). Together, this suggests a RIBEYE/ribbons-mediated regulation

of IHC Ca2+-channels affecting their voltage-range of operation as well as their inactivation kinetics.
We then used the low-affinity Ca2+-indicator dye Fluo-4FF (800 mM) to study Ca2+-influx at indi-

vidual IHC AZs (Frank et al., 2009) using a spinning-disk confocal microscope that allows rapid reg-

istering and recording of the majority of the IHC synapses (Figure 6A, Ohn et al., 2016). We chose

conditions in which the Ca2+-indicator fluorescence approximates synaptic Ca2+-influx (Frank et al.,
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Figure 5. IHC Ca2+-influx shows normal amplitude but a mild depolarized shift in voltage-dependence. (A) IV-relationship of the whole-cell Ca2+-

current in RBEWT/WT (black, n = 21 cells, N = 8) and RBEKO/KO (red, n = 21 cells, N = 8) IHCs show comparable (sign-inverted) current amplitudes (Ai,

p=0.62, t-test) and density (Aii, p=0.37, t-test.). Mean (line) ± S.E.M. (shaded areas) are displayed as for (C, D). The protocol, consisting of 20 ms steps of

5 mV from #82 to +63 mV, as well as exemplary resulting currents, aredisplayed in the left. Box plots show 10, 25, 50, 75 and 90th percentiles with

individual data points overlaid, means are shown as crosses, as for (C, D). (B) Activation time constants (mean ± S.E.M.) of Ca2+-currents at different

potentials were obtained by fitting a power exponential equation to the first 5 ms of the current traces, revealing no differences between conditions. (C)
Fractional activation of the whole-cell Ca2+-current derived from the IV-relationships (A) was fitted to a Boltzmann function. (Ci) Box plots of the voltage

for half-maximal activation Vh and Vh-estimates of individual IHCs show a depolarized shift of the fractional activation of the Cav1.3 Ca2+-channels in the

RBEKO/KO IHCs (p=0.029, t-test). (Cii) Box plots of the voltage-sensitivity or slope factor k and k-estimates of individual IHCs illustrate comparable

voltage sensitivity between both conditions (p=0.67, t-test). (D) Average peak-normalized Ca2+-currents resulting from 200 ms depolarizations to #14

mV. We observe an enhanced inactivation in ribbonless IHCs, quantified as a reduced residual Ca2+-current (inset). (n = 10 cells, N = 5 for RBEKO/KO

and n = 11 cells, N = 7 in the RBEWT/WT; p=0.017, Mann-Whitney-Wilcoxon test).

DOI: https://doi.org/10.7554/eLife.29275.010
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Figure 6. Synaptic Ca2+-influx shows normal amplitude but shifted voltage-dependence and broader spread. (A, B) IHCs were patch-clamped at the

modiolar basolateral face, loaded with TAMRA-CtBP2-binding peptide and the low affinity Ca2+-indicator Fluo-4FF, and scanned in the red

channel after loading for 4 min to image TAMRA-labeled ribbons, nuclei, and cytosol. 3D projection of TAMRA fluorescence shows the absence of

ribbons in RBEKO/KO IHCs (B: 3D projection and red channel). Voltage-ramps from #87 to +63 mV during 150 ms (A: left top) were used to trigger

Figure 6 continued on next page
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2009; Ohn et al., 2016) and henceforth refer to synaptic Ca2+-influx when describing observations

based on hotspots of Ca2+-indicator fluorescence at the basolateral IHC membrane. Prior to analysis

of synaptic Ca2+-influx, we imaged fluorescently-conjugated CtBP2-binding peptide (Zenisek et al.,

2004), which bound to the ribbon-occupied AZs in RBEWT/WT IHCs while it only caused nuclear and

diffuse cytosolic fluorescence in the ribbonless RBEKO/KO IHCs (Figure 6B). We then employed

ramp-depolarizations to assess amplitude and voltage-dependence of Ca2+-influx at the synapses

located in the subnuclear, basal part of the IHCs (Figure 6A). We found comparable maximal ampli-

tudes of the baseline-normalized fluorescence change (DF/F0, 0.88 ± 0.08, S.D. = 0.66; n = 61 AZs in

15 IHCs, N = 7 for RBEKO/KO vs. 0.85 ± 0.08, S.D. = 0.68; n = 78 AZs in 15 IHCs, N = 8 for RBEWT/WT;

p=0.20, Mann-Whitney-Wilcoxon test; Figure 6C). This is compatible with an unaltered number of

synaptic Ca2+-channels at AZs of RBEKO/KO IHCs and consistent with our observations of normal

whole-cell Ca2+-current amplitudes. As previously reported (Frank et al., 2009; Ohn et al., 2016),

there was a substantial variation of the maximal DF/F0 among the AZs, which was also comparable

between AZs of both genotypes (c.v. = 0.75 for RBEKO/KO vs. c.v. = 0.80 for RBEWT/WT).
Next, we analyzed the voltage-dependence of activation for the synaptic Ca2+-influx as previously

described (Ohn et al., 2016). Analysis of fractional activation revealed a depolarized shift in Vh by

on average 5 mV in RBEKO/KO IHCs (#22.76 ± 1.25 mV, S.D. = 9.26 mV; n = 55 AZs in 15 IHCs, N = 7

for RBEKO/KO vs. #27.37 ± 0.90 mV, S.D. = 7.48 mV; n = 68 AZs in 15 IHCs, N = 8 for RBE WT/WT;

p=0.0029, t-test; Figure 6D,Di), while the slope factor of voltage-dependent activation was unal-

tered (p=0.42, t-test, Figure 6Dii). Such a shift in the operating range of synaptic Ca2+-influx is

expected to alter spontaneous and sound-evoked transmitter release (see below and Ohn et al.,

2016). Finally, we studied the spatial extent of the synaptic Ca2+-signals and estimated Full Width

Half Maximum (FWHM) by fitting 2D Gaussian functions to the hotspots of Ca2+-indicator fluores-

cence and found a greater spread of Ca2+-signals at RBEKO/KO AZs (Figure 6E,F; long axis (L.

A.) = 1317 ± 49 nm, S.D. = 384 nm, short axis (S.A.) = 906 ± 36 nm, S.D. = 284 nm; n = 61 AZs in 15

IHCs, N = 7 vs. L.A. = 1083 ± 33 nm, S.D. = 283 nm; (p=0.00016, t-test), S.A. = 793 ± 27 nm, S.

D. = 233 nm, (p=0.0029, t-test); n = 74 AZs in 15 IHCs, N = 8 for RBEWT/WT). This larger spread of

the presynaptic Ca2+-signals is in agreement with the presence of several CaV1.3-immunofluorescent

clusters at RBEKO/KO synapses. In order to exclude lower IHC Ca2+-buffering to contribute to the

observed larger spread of presynaptic Ca2+-signals, we performed semi-quantitative immunofluores-

cence analysis for the three major cytosolic Ca2+-buffers, the EF-hand Ca2+-binding proteins parval-

bumin-a, calretinin and calbindin-28k (Pangršič et al., 2015). We did not find any significant

differences in their immunofluorescence intensity between IHCs of both genotypes (in arbitrary units,

parvalbumin intensity: 2.24 ± 0.15, S.D. = 1.04 for RBEKO/KO vs. 1.88 ± 0.15, S.D = 1.01 for RBEWT/

WT, p=0.08; calbindin intensity: 0.82 ± 0.06, S.D. = 0.43 for RBEKO/KO vs.0.95 ± 0.07, S.D. = 0.49 for

Figure 6 continued

synaptic hotspots of Fluo-4FF fluorescence (A: left middle, 10 AZs in one exemplary RBEWT/WT IHC, B: green channel, marked by arrowheads; DF:

average of the nine brightest pixels (red square)) and IHC Ca2+-influx (A, left bottom). Ca2+-imaging proceeded from the IHC bottom to the most apical

ribbon in RBEWT/WT, and from IHC bottom to +12 mm (typically reaching the bottom of nucleus) in RBEKO/KO. Scale bar = 5 mm. (C) FV-relationship (DF/

F0 vs. depolarization level in ramp, protocol as in A): approximating the voltage-dependence of synaptic Ca2+-influx.Mean (line) ± S.E.M. (shaded areas)

are displayed as for (D). (Ci) DFmax/F0 was calculated by averaging 5 values at the FV-peak (between the dotted lines) and was comparable between

RBEWT/WT (n = 78 AZs for 15 cells, N = 8) and RBEKO/KO IHCs (n = 61 AZs for 15 cells, N = 7) (p=0.20, Mann-Whitney-Wilcoxon test). Box plots show 10,

25, 50, 75 and 90th percentiles with individual data points overlaid, means are shown as crosses, as for (D, F). (D) Fractional activation curves derived

from fits to the FV-relationships (C) were fitted to a Boltzmann function. Mean (line) ± S.E.M. (shaded areas) are displayed. (Di) The voltage for half-

maximal activation Vh was significantly different between RBEWT/WT (n = 68 AZs for 15 IHCs, N = 8) and RBEKO/KO (n = 55 AZs for 15 IHCs, N = 7) AZs

(p=0.0029, t-test), while the voltage-sensitivity or slope factor k (Dii) not (p=0.42, t-test). (E) Exemplary DF pictures of Fluo-4FF hotspots at RBEWT/WT

(left) and RBE KO/KO (right) synapses fitted and overlaid by 2D-Gaussian functions to estimate spatial extent as full width at half maximum (FWHM) for

the short axis (S.A.) and the long axis (L.A.). Scale bar = 1 mm. (F) Ribbonless synapses of RBEKO/KO IHCs showed a greater spatial spread of the Fluo-

4FF fluorescence change. FWHM calculated from the Gaussian fitting to the Fluo-4FF fluorescence hotspot was larger for both axes in RBEKO/KO (n = 61

AZs for 15 IHCs, N = 8) compared to RBEWT/WT (n = 74 AZs for 15 IHCs, N = 7) (L.A.: p=0.00016; S.A.: p=0.0029, t-test).

DOI: https://doi.org/10.7554/eLife.29275.011

The following figure supplement is available for figure 6:

Figure supplement 1. Semi-quantitative immunofluorescence analysis of the three main proteinaceous Ca2+-buffers.

DOI: https://doi.org/10.7554/eLife.29275.012
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RBEWT/WT, p=0.23; calretinin intensity: 0.91 ± 0.04, S.D. = 0.26 for RBEKO/KO vs. 0.82 ± 0.04, S.

D. = 0.28 for RBEWT/WT, p=0.09; n = 49 cells and N = 4 for both conditions, Mann-Whitney-Wilcoxon

test for all; Figure 6—figure supplement 1).

IHC exocytosis is normal for strong depolarizations but mildly reduced
for weak ones
The ribbon has been proposed to play a crucial role in the exocytosis of SVs at the IHC AZ

(Khimich et al., 2005). Therefore, we monitored stimulated exocytosis of SVs with perforated-patch

whole-cell recordings of exocytic membrane capacitance changes (DCm). Using IHCs from 2/3-week-

old RBEWT/WT and RBEKO/KO mice, we found that DCm in response to step-depolarizations to the

potential that elicits maximal Ca2+-influx (#14 mV) were not different between IHCs with or without

ribbons. Both, fast exocytosis elicited by depolarizations of up to 20 ms, attributed to the fusion of

the readily releasable pool of SVs (RRP, Moser and Beutner, 2000), and longer stimuli, thought to

reflect sustained exocytosis, ongoing SV replenishment and fusion, were unaltered in RBEKO/KO IHCs

(Figure 7A,B,C). On average, DCm induced by 20 ms long maximal Ca2+-influx was 16.70 ± 1.67 fF

(S.D. = 5.80 fF; n = 12 cells, N = 7) for RBEKO/KO compared to 15.22 ± 0.98 fF (S.D. = 3.26 fF; n = 11

cells, N = 8) for RBEWT/WT. Exocytic DCm elicited by 200 ms long maximal Ca2+-influx (same IHCs as

for 20 ms), on average, amounted to 62.09 ± 5.40 fF (S.D. = 18.70 fF) for RBEKO/KO versus

63.28 ± 6.64 fF (S.D. = 22.04 fF) for RBEWT/WT.
Moreover, trains of 20 step-depolarizations to #17 mV of 20 ms pulse duration did not reveal

impaired exocytosis in RBEKO/KO IHCs, even when the inter-stimulus interval time was as short as 160

ms (Figure 7D; n = 11 cells, N = 5 for RBEWT/WT and n = 13 cells, N = 8 for RBEKO/KO). We further

explored RRP recovery from partial depletion using a paired-pulse protocol (two strong 20 ms depo-

larizations to #14 mV separated by 50, 110, 260 and 510 ms inter-pulse intervals; Figure 7E,F). RRP

recovery, estimated as the DCm ratio of the second and the first pulse, was not altered in RBEKO/KO

IHCs at least when probing RRP exocytosis with maximal Ca2+-influx from a hyperpolarized resting

potential (Figure 7F). These data are in strong contrast to our previous findings in IHCs of bassoon

mutant mice, which we had equivalently analyzed. There, the loss of synaptic ribbons, combined

with a loss of functional bassoon resulted in profound deficits in exocytosis (Khimich et al., 2005;

Frank et al., 2010; Jing et al., 2013).
Given the finding of a small depolarized shift in the operating range of Ca2+-channels in RBEKO/

KO IHCs (Figure 6D), we also probed the voltage-dependence of DCm elicited by 100 ms step-depo-

larizations (Figure 7G,H). In agreement with the results obtained at maximal Ca2+-influx, we did not

find significant differences in DCm for stronger depolarizations (e.g. pulses to #39 mV elicited an

average DCm of 20.67 ± 7.46 fF, S.D. = 23.58 fF, nmin = 10 IHCs, N = 9 for RBEKO/KO vs. 24.12 ± 4.04

fF, S.D. = 13.98 fF, nmin = 10 IHCs, N = 9 for RBEWT/WT; p=0.20; Mann-Whitney-Wilcoxon test). How-

ever, for weaker depolarizations in the range of physiological receptor potentials (Russell and Sell-

ick, 1983), we observed a subtle but significant reduction in exocytosis for RBEKO/KO IHCs

(Figure 7H, p=0.0115, p=0.0295 and p=0.1321 for #45, –43 and #41 mV; without definitive outliers

as determined by Graphpad Prism: p=0.0017, p=0.0042 and p=0.0489, respectively; Mann-Whitney-

Wilcoxon test for all). For instance, depolarization to #45 mV elicited a DCm of 4.79 ± 2.26 fF for

RBEKO/KO (S.D. = 7.14 fF; nmin = 10 cells, N = 9) compared to 9.85 ± 1.60 fF for RBEWT/WT (S.

D. = 5.05 fF; nmin = 10 cells, N = 8). The Ca2+-current integral (Ca2+-charge, QCa), as well, tended to

be reduced for RBEKO/KO IHC at these mild depolarizations, which, however, did not reach statistical

significance (e.g. QCa for #45 mV: 3.90 ± 0.49 pC, S.D. = 1.54 pC for RBEKO/KO vs. 5.15 ± 0.54 pC,

S.D. = 1.72 pC for RBEWT/WT; p=0.1053; t-test). In summary, we found exocytosis to be unaltered for

strong depolarizations but mildly decreased for more physiological stimuli in RBEKO/KO IHCs, which

is in line with the findings of the companion paper by Becker et al..

Lack of synaptic ribbons impairs synchronous activation of the auditory
pathway
Next, we studied sound encoding in RBEKO/KO mice in vivo. First, we recorded auditory brainstem

responses (ABR) and found a significant reduction in the amplitude of wave I that reflects the SGN

compound action potential (1.14 ± 0.13 mV, S.D. = 0.38 mV, N = 10 for RBEKO/KO vs. 3.30 ± 0.51 mV,

S.D. = 1.54 mV, N = 10 for RBEWT/WT, p=0.0007, NPMC test). This indicates less synchronous SGN
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Figure 7. IHC exocytosis is normal for strong depolarizations but mildly reduced for weak ones. (A) Representative Ca2+-currents (top) and

corresponding low passed-filtered membrane capacitance (DCm) traces recorded from RBEWT/WT and RBEKO/KO IHCs upon 50 ms depolarizations from

#69 to #14 mV. (B) Cumulative exocytosis (exocytic DCm, top) and corresponding Ca2+-charge (QCa, bottom) of RBEWT/WT (n = 11 cells, N = 8) and

RBEKO/KO (n = 12 cells, N = 7) IHCs as a function of stimulus duration (2 to 200 ms to #14 mV) were unaltered in RBEKO/KO IHCs. Data is presented as

mean ± S.E.M as for (F). (C) Relating DCm to the corresponding QCa indicated comparable Ca2+ efficiency of exocytosis between RBEWT/WT and RBEKO/

KO IHCs. Mean ± S.E.M. for each pulse duration is presented in black and red; individual IHCs data points are overlaid. (D) Mean DCm traces (shaded

areas: S.E.M.) in response to trains of 20 ms depolarizations from #87 to #17 mV (20 stimuli separated by 160 ms) of RBEWT/WT (n = 11 cells, N = 5) and

RBEKO/KO (n = 13 cells, N = 8) IHCs show comparable exocytic DCm. (E) Representative low pass-filtered DCm traces in response to a pair of 20 ms

pulses to #17 mV, separated by a 50 ms of inter-pulse interval (IPI). (F) Ratios of exocytosis (DCm2/ DCm1) to a pair of 20 ms pulses with varying inter-

pulse intervals (50, 110, 260 and 510 ms) reveal a comparable recovery from RRP depletion between RBEWT/WT (n = 9 cells, N = 6) and RBEKO/KO IHCs

(n = 9 cells, N = 6). (G) Representative low pass-filtered DCm traces in response to 100 ms step-depolarizations to #45, –43 and #41 mV. (H) Box plot

and single values of DCm elicited by 100 ms step-depolarizations of RBEWT/WT (nmin = 10 cells, N = 8) and RBEKO/KO (nmin = 9 cells, N = 9) IHCs to

different potentials. Exocytic DCm of RBEKO/KO IHCs was reduced for mild depolarizations (#45, –43 and #41 mV; p=0.0115, p=0.0295 and p=0.1321,

respectively; p=0.0017, p=0.0042 and p=0.0489, without definitive outliers; Mann-Whitney-Wilcoxon test), but comparable to RBEWT/WT IHCs at stronger

depolarizations (#39 mV; p=0.2030, Mann-Whitney-Wilcoxon test). Box plots show 10, 25, 50, 75 and 90th percentiles with the individual data points

overlaid.
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activation in the absence of synaptic ribbons (Figure 8A,B). The subsequent ABR waves (Figure 8—

figure supplement 1) were normal in amplitude (waves II, IV and V, while wave III was reduced) indi-

cating a degree of central auditory compensation for the sound encoding deficit, for example via

coincidence detection of converging SGN input in the cochlear nucleus (Joris et al., 1994;
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Figure 8. Auditory brainstem responses indicate impaired synchronous SGN activation in RBEKO/KO mice. (A)
Average ABR waveforms in response to 80 dB clicks (n = N = 10 for RBEKO/KO and RBEWT/WT, N = 9 for RBEWT/KO

at 6 weeks of age) showed a reduced amplitude of ABR wave I in RBEKO/KO mice indicating an impairment of SGN

activation, which is quantified in (B). This decrease was not as pronounced as in SGNs lacking bassoon (BsnDEx4/5,

data from Jing et al., 2013). The central ABR waves were better preserved, except for wave III. SP: summating

potential (hair cell receptor potential), roman numerals (I–V): ABR waves generated along the early auditory

pathway. Mean (lines) ± S.E.M. (shaded areas) are displayed. (B) ABR wave I was significantly reduced in RBEKO/KO

mice as compared to RBEWT/WT and RBEWT/KO (p=0.0051 and p=0.0017, respectively, NPMC test). No statistical

significance was observed between responses recorded in RBEWT/WT and RBEWT/KO mice (p>0.9999, NPMC test).

Data from BsnDEx4/5 are shown for comparison. Box plots show 10, 25, 50, 75 and 90th percentiles with the

individual data points overlaid, means are shown as crosses. (C) ABR thresholds were comparable in RBEWT/WT,

RBEWT/KO and RBEKO/KO for tone burst-driven (n.s., Tukey’s test) and click-driven ABRs (n.s., NPMC test). Previously

published data for BsnDEx4/5 showed elevated thresholds as a response to short stimuli (click 20 Hz) but a similar

threshold level at 12 kHz. (D) DPOAE amplitude in response to pairs of simultaneous sine waves (f1 and f2,

frequencies indicated on panel) at increasing stimulus intensity (f1 intensity 10 dB above f2 in all cases). Mean (thick

lines) and data from individual mice (n = N = 3 in RBEWT/WT and RBEKO/KO) are displayed.

DOI: https://doi.org/10.7554/eLife.29275.014

The following figure supplement is available for figure 8:

Figure supplement 1. Quantification of ABR waves II-V amplitude in RBEKO/KO mice.

DOI: https://doi.org/10.7554/eLife.29275.015
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Strenzke et al., 2009). We found a non-significant trend of ABR threshold to be increased across all

frequencies in RBEKO/KO mice (approximately 10 dB across all frequencies, Figure 8C; refer to the
companion paper Becker et al. showing significantly increased ABR-thresholds based on a larger

sample, N = 28 RBEKO/KO mice vs. 22 RBEWT/WT mice). Cochlear amplification, probed by recordings
of distortion product otoacoustic emissions (DPOAE, Figure 8D), was intact in RBEKO/KO mice. Addi-

tionally, RBEWT/KO mice showed no significant changes in ABR wave I amplitudes and ABR thresholds
(Figure 8), suggesting that the subtle morphological differences observed for afferent synapses of

RBEWT/KO IHCs by electron and confocal-immunofluorescence microscopy did not turn into a deficit
of sound coding measurable by ABR recordings. The wave I amplitude reduction and ABR threshold

elevation were much less pronounced than in bassoon mutant mice (Khimich et al., 2005;
Buran et al., 2010; Jing et al., 2013).

We then turned to in vivo extracellular recordings from single auditory neurons by targeting glass
microelectrodes to where the auditory nerve enters the anteroventral cochlear nucleus (AVCN) in

the brainstem (Taberner and Liberman, 2005; Jing et al., 2013). ‘Putative’ SGNs (hereafter dubbed
SGN for simplicity) were identified based on the depth of electrode position and their firing

response to pure-tone stimulation (primary-like peristimulus time histogram and latency, Figure 9)
and analyzed in separation from ‘putative’ cochlear nucleus neurons (Figure 10). Since all firing of

the individual SGN is thought to be driven by transmitter release from a single IHC AZ (Heil et al.,

2007; Liberman, 1978; Robertson and Paki, 2002), these recordings provide insight into single AZ
function. We first assessed the spontaneous firing activity and found an increased abundance of

SGNs with low spontaneous firing rates in RBEKO/KO mice (72% with rates < 10 Hz, n = 43 SGNs,
N = 9 vs. 50% in RBEWT/WT, n = 40 SGNs, N = 8; p=0.0267, Kolmogorov-Smirnov test; Figure 9A).

Frequency tuning was intact in RBEKO/KO SGNs (Figure 9B): the sharpness of tuning expressed by
the Q10dB (width of tuning curve 10 dB above threshold at the characteristic frequency (Cf) normal-

ized by Cf) was comparable (mean: 9.28 ± 1.01, S.D. = 6.32 and median: 7.41 for RBEKO/KO SGNs,
n = 39 SGNs, N = 9 vs. mean: 12.50 ± 1.98, S.D. = 11.91 and median: 8.36 for RBEWT/WT SGNs,

n = 36 SGNs, N = 9; p=0.28, Mann-Whitney-Wilcoxon test). However, the sound threshold at Cf was
significantly elevated by almost 20 dB in RBEKO/KO mice (35.60 ± 3.45 dB SPL, S.D. = 22.66 dB SPL

for RBEKO/KO SGNs, n = 43 SGNs, N = 9 vs. 16.05 ± 2.47 dB SPL, S.D. = 15.42 dB SPL for RBEWT/WT

SGNs, n = 39 SGNs, N = 9, p<0.0001, Mann-Whitney-Wilcoxon test; Figure 9C). Given the normal
frequency tuning and DPOAE, this threshold increase seems unlikely to result from a putative func-

tional cochlear deficit upstream of the IHCs.
Next, we studied the firing response of SGNs to 50 ms tone bursts (at Cf and 30 dB above sound

threshold, 200 ms inter-stimulus interval), which is governed by the presynaptic glutamate release

and postsynaptic spike generation. The peak firing rate at sound onset is thought to reflect the initial
rate of release from the SV-occupied release sites of the RRP (‘standing RRP’, [Oesch and Diamond,

2011; Pangršič et al., 2012]). Refractoriness and the decline of release rate due to partial depletion

of the standing RRP likely dominate the subsequent spike rate adaptation. Finally, the adapted firing
rate reports SV replenishment and subsequent fusion (reviewed in Pangršič et al., 2012;

Rutherford and Moser, 2016). We observed reduced spike rates of SGNs from RBEKO/KO mice
(Figure 9D,E) both at sound onset (p=0.0001, n = 39 SGNs, N = 8 in RBEKO/KO and n = 38 SGNs,

N = 9 in RBEWT/WT, t-test) and after short-term adaptation (p=0.0023, Mann-Whitney-Wilcoxon test).
Both, peak and adapted rates were similarly affected by the RIBEYE-disruption, indicated by the

scatter plot of peak vs. adapted rates (Figure 9E). A significant peak rate reduction was also
observed at higher stimulation frequencies (10 Hz, Figure 9G–H). The spike rates were better pre-

served in RBEKO/KO SGNs than in SGNs of bassoon mutant mice (BsnDex4/5 data of Jing et al. (2013),
purple data in Figure 9G–I). We approximated adaptation within the 50 ms response by single-

exponential fitting since double exponential fitting did not regularly report two temporally discern-

ible components in RBEKO/KO SGNs. The mean apparent adaptation time constant reported by sin-
gle-exponential fitting were significantly slowed in RBEKO/KO SGNs (9.83 ± 0.50 ms, S.D. = 2.85 ms,

median: 10.46 ms, n = 32 SGNs, N = 8) as compared to RBEWT/WT SGNs (8.71 ± 0.50 ms, S.
D. = 3.05 ms, median: 8.73 ms, n = 37 SGNs, N = 9, p=0.033, Mann-Whitney-Wilcoxon test). The

results of double-exponential fitting of RBEWT/WT and RBEKO/KO SGNs support the slowed adapta-
tion kinetics and are presented in Table 1. As expected for the reduced peak firing rate, we found

prolonged first spike latency which also showed greater temporal jitter (Figure 9F). The reduced
peak firing rate together with increased first spike latency jitter likely explain the reduction in ABR
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Figure 9. Impaired spontaneous and sound-evoked firing in putative SGNs of RBEKO/KO mice. (A) Cumulative distribution functions of spontaneous

firing rates of putative SGNs showed a higher fraction of low spontaneous rate SGNs in RBEKO/KO mice (n = 43 SGNs) than in RBEWT/WT mice (n = 40

SGNs, N = 8) (p=0.027, Kolmogorov-Smirnov test). (B) Representative frequency tuning curves of RBEKO/KO and RBEWT/WT SGNs showed comparable

sharpness of tuning between SGNs of both genotypes. * point to the characteristic frequency (Cf) for which an increase in SGN firing requires the least

sound pressure level. (C) Thresholds at Cf of RBE
KO/KO SGNs (n = 43 SGNs, N = 9) were higher than those in RBEWT/WT mice (n = 39 SGNs, N = 9)

(p<0.0001, Mann-Whitney-Wilcoxon test). Box plots show 10, 25, 50, 75 and 90th percentiles, means are shown as crosses, as for (E), (F), (H) and (I). (D)
Average PSTH (bin width = 2 ms) of RBEKO/KO (n = 39 SGNs, N = 8) and RBEWT/WT SGNs (n = 38 SGNs, N = 9) recorded in response to 50 ms tone

bursts at Cf 30 dB above threshold at a stimulus rate of 5 Hz. The time course of adaptation of RBEKO/KO SGNs (calculated by fitting a single

exponential function to the individual histograms) was significantly longer (p=0.033, Mann-Whitney-Wilcoxon test). Mean (line) ± S.E.M. (shaded areas)

are displayed as for (G). (E) Scatterplot of peak firing rate (bin with highest rate at sound onset) and adapted firing rate (averaged 35–45 ms from

response onset) revealed lower firing rates in RBEKO/KO (n = 39 SGNs) as compared to RBEWT/WT (n = 38 SGNs, N = 9) mice (data from (D), peak rate:

p=0.0001, adapted rate: p=0.0023, Mann-Whitney-Wilcoxon test). (F) Increased latency (data from (D), p=0.0002) and variance of latency (p<0.0001,

Mann-Whitney-Wilcoxon test) of the first spike after sound onset in RBEKO/KO SGNs indicated lower temporal precision of sound onset coding. (G)

Average PSTH (bin width = 2 ms) of RBEKO/KO (n = 20 SGNs, N = 6) and RBEWT/WT SGNs (n = 28 SGNs, N = 8) were recorded in response to 50 ms

tone bursts at Cf 30 dB above threshold at a stimulus rate of 10 Hz and showed a similar adapted response in RBEKO/KO as compared to lower

stimulation rates (Figures 9,11) but still a lower onset response than in RBEWT/WT SGNs. Responses in BsnDEx4/5 mutants (shown for comparison, re-

plotted from Jing et al., 2013) were considerably lower. (H) Scatterplot of peak firing rate (bin with highest rate at sound onset) and adapted firing rate

(averaged 35–45 ms from response onset) show decreased onset firing rates in RBEKO/KO as compared to RBEWT/WT mice (data from (G), p=0.0093,

Mann-Whitney-Wilcoxon test). The adapted response was comparable in both cases (p=0.3584, t-test). Data points from BsnDEx4/5 mutants (re-plotted

from Jing et al., 2013) and WT littermates are shown for comparison, also in (I). (I) Increased variance of first spike latency after sound onset in RBEKO/

Figure 9 continued on next page
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wave I amplitude. The firing of putative AVCN neurons was better preserved: putative bushy cells

showed normal sound driven rates and chopper cells only a mild reduction in peak rate (Figure 10).
Next, we explored the encoding of sound intensity by estimating the mean firing rate during 50

ms tone bursts at different sound pressure levels. These ‘rate-level functions’ (Figure 11A) indicated

that the spike rate increase with the sound pressure level (p=0.068, n = 24 SGNs, N = 8 in RBEKO/KO

and n = 19 SGNs, N = 7 in RBEWT/WT, Mann-Whitney-Wilcoxon test, Figure 11—figure supplement

1A) and the dynamic range of sound coding (sound pressure level for which the spike rate changes

from 10–90%, Figure 11—figure supplement 1B, p=0.3044, t-test) were not significantly altered.

We then used transposed tones (Cf at 500 Hz modulation frequency) in order to probe for the tem-

poral fidelity and reliability of firing in RBEKO/KO SGNs in the steady state (Figure 11D). These

experiments corroborated the reduced maximal firing rate of RBEKO/KO SGNs (n = 22 SGNs, N = 7

in RBEKO/KO and n = 15 SGNs, N = 6 in RBEWT/WT, p<0.0001, t-test) and indicated that the temporal

precision of sound coding is impaired also in the steady state (reduced Synchronization Index:

p=0.0043, t-test).
In order to further scrutinize the potential role of the synaptic ribbon in vesicle replenishment, we

studied the response to prolonged tone-stimulation (Figure 11B, 500 ms at Cf and 30 dB above

threshold, 2 s inter-stimulus interval). The peak rate was better preserved in RBEKO/KO SGNs than

Figure 9 continued

KO SGNs (p=0.0089, Mann-Whitney-Wilcoxon test) and comparable latencies were observed at this stimulation frequency (data from (G), p=0.0761,

Mann-Whitney-Wilcoxon test).

DOI: https://doi.org/10.7554/eLife.29275.016
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Figure 10. Responses to pure tones in cochlear nucleus cells showed that the mutant phenotype is partially

compensated in higher stations of the auditory pathway. (A) Quantification of peak and adapted responses to 50

ms tone burst stimulation, 30 dB above threshold at Cf in SGNs displaying a chopper discharge pattern

(periodically alternating phases of high firing rates with low firing rates, typical of multipolar cells in the posterior

ventral cochlear nucleus), showed that the differences in rate faded away opposite to those shown at the level of

the auditory nerve. Peak rates were still significantly lower in RBEKO/KO (n = 29 SGNs, N = 9) as compared to

RBEWT/WT (n = 16 SGNs, N = 9) mice (p=0.0303, Mann-Whitney-Wilcoxon test), while the adapted rate showed a

non-significant trend towards reduction in RBEKO/KO (p=0.0538, t-test). Box plots show 10, 25, 50, 75 and 90th

percentiles and means are shown as crosses, as for (B). (B) Same recordings paradigm as (A) performed in a fiber

with bushy cell discharge pattern (similar to the one found in SGNs, typical also in this type of cochlear nucleus

neurons) showed comparable responses in both peak (p=0.2601, Mann-Whitney-Wilcoxon test) and adapted rate

(p=0.0510, Mann-Whitney-Wilcoxon test) in RBEKO/KO (n = 19 SGNs, N = 7) and RBEWT/WT (n = 28 SGNs, N = 10).
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seen with shorter inter-stimulus interval (e.g. 200 ms, Figure 9C), likely reflecting more complete SV-

replenishment (i.e. larger standing RRP) owing to the longer recovery interval (2 s vs. 200 ms). How-

ever, the adapted spike rate of RBEKO/KO SGNs was even more reduced than found with 50 ms tone

bursts (to about half of that for RBEWT/WT SGNs, Figure 11B,C) highlighting the impaired SV
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Figure 11. Lack of ribbons impairs vesicle replenishment in RBEKO/KO mice. (A) Intensity coding was largely preserved for suprathreshold sound

stimulation: rate-level functions (average increase in spike rate with stimulus intensity) of SGNs in response to 50 ms tone bursts at Cf at 5 Hz

corroborated the notion of increased sound threshold but were otherwise comparable in RBEKO/KO (n = 24 SGNs, N = 8) and RBEWT/WT (n = 19 SGNs,

N = 7) mice, for quantification see Figure 11—figure supplement 1C. (B) Average PSTH recorded in response to 50 $ 500 ms tone bursts at Cf and 30

dB above threshold at a stimulus rate of 0.5 Hz (bin width = 2 ms): the onset response to this stimulus was preserved better in RBEKO/KO SGNs (n = 18

SGNs, N = 7) as compared to higher stimulation rates (Figure 9), but it was still lower than in RBEWT/WT SGNs (n = 19 SGNs, N = 7), as well as the

adapted firing rate. Mean (line) ± S.E.M. (shaded areas) are displayed. (C) Scatterplot of peak (highest 2 ms bin) and adapted (averaged 405–415 ms

from response onset) firing rates: significantly reduced peak (p=0.0005, t-test) and adapted (p<0.0001, Mann-Whitney-Wilcoxon test) rates in RBEKO/KO

SGNs. Box plots show 10, 25, 50, 75 and 90th percentiles and means are shown as crosses, as for (D). (D) Temporal precision and reliability of sound

coding is impaired in RBEKO/KO SGNs. Synchronization of firing to stimulus and firing rates (reflecting spike probability) were reduced when probed

with amplitude-modulated (transposed) tones (continuous stimulation with a carrier frequency at Cf and at a modulation frequency of 500 Hz)

(p=0.0043, t-test, for synchronization index, and p<0.0001, t-test, for firing rate, when comparing RBEKO/KO (n = 22 SGNs, N = 7) and RBEWT/WT (n = 15

SGNs, N = 6) SGNs). (E) Forward masking experiments were used to study presynaptic SV dynamics: a stimulus complex consisting of a 100 ms masker

stimulus, a silent interval of 4/16/64/256 ms and a 15 ms probe (both at the characteristic frequency, 30 dB above threshold) was presented at 2 Hz. The

averaged data after alignment of RBEWT/WT (n = 24 SGNs, N = 7, black) and RBEKO/KO (n = 27 SGNs, N = 8, red) SGNs responses are displayed as

described in Materials and methods. On top of the data we present a fit of a biophysical model (light gray and pink lines) to the data used to study the

SV dynamics at the AZ. The refilling and fusion rate constant during spontaneous and stimulated conditions as well as the number of occupied release

sites are provided in Table 2. (F) Recovery of onset response showed as ratio of probe and masker response (number of spikes during first 10 ms,

mean ± S.E.M), and prediction (dashed lines) derived from the model fit shown in (E). Recovery was slower in RBEKO/KO SGNs (n = 27 SGNs, N = 8) as

compared to RBEWT/WT (n = 24 SGNs, N = 7) with significant differences in the ratio after 4 ms (p=0.0019, t-test), 16 ms (p<0.0001, Mann-Whitney-

Wilcoxon test), and 64 ms masker-probe intervals (p<0.0001, Mann-Whitney-Wilcoxon test), but not after 256 ms (p=0.0835, t-test).

DOI: https://doi.org/10.7554/eLife.29275.019

The following figure supplement is available for figure 11:

Figure supplement 1. Rate-level functions and dynamic range remained unchanged in RBEKO/KO.

DOI: https://doi.org/10.7554/eLife.29275.020
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replenishment during prolonged stimulation. Finally, we evaluated presynaptic vesicle pool dynamics

by recording and modeling responses to forward masking protocols (Harris and Dallos, 1979), that

are thought to reflect depletion and recovery of the RRP (Figure 11E,F; Figure 11—figure supple-

ment 1C). We approximated the recovery from forward masking by single exponential fitting (Fig-

ure 11—figure supplement 1C) to provide an estimate of the kinetics of vesicle pool

replenishment. The time constant of recovery was prolonged in RBEKO/KO SGNs (90.80 ± 8.66 ms, S.

D. = 45.00 ms, n = 27 SGNs, N = 8 vs. 33.53 ± 5.74 ms, S.D. = 28.11 ms, in RBEWT/WT SGNs, n = 24

SGNs, N = 7, p<0.0001, Mann-Whitney-Wilcoxon test) indicating slowed RRP replenishment in the

absence of the ribbon. We noted that SGNs showed considerably lower spontaneous and evoked

rates during the forward masking paradigm compared to other stimulus protocols (compare

Figure 11B E), likely due to enhanced RRP depletion with the more extended stimulation in this

protocol.
Amplitude and waveform of the forward masking responses were consistent with a two-fold

reduction of the number of contributing vesicular release sites of the RRP (N’slot: contributing release

sites during forward masking, Nslot: the contributing release sites for the same AZs during tone

bursts at 5 Hz stimulation). The ratio Nslots/N’slots was estimated to be 2.2 for RBEKO/KO and 2.3 for

RBEWT/WT from the drop in spontaneous and evoked SGN spiking rates. We used a previously devel-

oped biophysical model of RRP dynamics and spike generation (Frank et al., 2010; Jung et al.,

2015b) to extract information on fusion and replenishment rate constants as well as the Nslot by fit-

ting the responses to tone bursts, that is PSTHs with 100, 200 and 2000 ms inter-stimulus interval,

and also the forward masking spiking data across all recovery intervals (Figure 11E). Importantly,

only the first 50 ms of the 500 ms stimulus response during the PSTH 2000 were included in the fit;

any later adaptation processes were disregarded, as they were not accounted by the model’s

equations.
The results of model fitting suggested that during the forward masking only about half of all

release sites (Nslots) were engaged in the response (N’slots). Throughout, RBE
KO/KO SGNs showed a

lower fusion rate than the RBEWT/WT SGNs, reflecting the reduced onset response in RBEKO/KO

SGNs. When more recovery time was allowed, that is in the 0.5 Hz tone burst and the forward mask-

ing, where recovery times from around 250 to 500 ms occured between the probe and subsequent

masker, the onset response improved in RBEKO/KO. Consequently, the estimated fusion rate almost

reached the level of RBEWT/WT in the forward masking fits. With the scaling factors of approximately

2, the estimates for the number of release sites were consistent between tone bursts and forward

Table 1. Average double-exponential fitting results to peristimulus time histograms obtained by 50 ms tone bursts 30 dB above
threshold at Cf (200 ms inter-stimulus interval).

Fast time constant Slow time constant Amplitude fast component Amplitude slow component R

RBEWT/WT 6.31 ± 0.77 95.63 ± 24.21 484.61 ± 104.76 58.42 ± 12.90 0.93 ± 0.00

RBEKO/KO 18.79 ± 6.91 101.66 ± 27.77 310.56 ± 73.60 64.92 ± 107.49 0.91 ± 0.01

p-value 0.0045 0.3580 0.0519 0.5475 0.2041

DOI: https://doi.org/10.7554/eLife.29275.018

Table 2. Parameters for the biophysical model capturing the release dynamics during forward-
masking and repetitive tone burst experiments

Forward masking All tone bursts – global fit

RBEWT/WT RBEKO/KO RBEWT/WT RBEKO/KO

Nslots 8 6.5 15.6 13.7

krefill, stim 29.5 18.2 18.4 19.9

krefill, spont 13.3 7.1 5.59 2.71

kfusion, stim 32.2 31 82.5 45.1

kfusion, spont 0.6 0.9 0.63 0.54

DOI: https://doi.org/10.7554/eLife.29275.021
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masking data, and in both cases only slightly smaller for the RBEKO/KO (Table 2). Taken together the
fits from forward masking and tone bursts suggest that the total number of release sites (RRP) was
only slightly reduced at ribbonless synapses of RBEKO/KO IHCs. However, a strong firing response at
sound onset, that is release of a large standing RRP, required longer recovery indicating more effi-
cient SV replenishment in the presence of ribbons, which is reflected in the larger refilling rate con-
stants estimated by the model of RBEWT/WT synapses.

Discussion
The role of the synaptic ribbon has remained a topic of intense research. Here, we studied the struc-
ture and function of IHC afferent synapses with SGNs in mice lacking RIBEYE, the core component
of the synaptic ribbon. Morphologically, synapses of RBEKO/KO IHCs did not simply lack ribbons but
instead appeared transformed to contacts where release from multiple AZ feeds into one postsynap-
tic bouton. Synaptic transmission was impaired at the ribbonless IHC synapses of RBEKO/KO mice.
Spontaneous SGN firing was reduced, sound-evoked firing had higher sound thresholds, lower peak
and adapted rates, recovered more slowly from adaptation and had a greater temporal jitter.
Modelling of synaptic sound encoding corroborated the notion of reduced rates of SV fusion and
replenishment at the ribbonless synapses of RBEKO/KO mice. Analysis of IHC function revealed a
small depolarized shift in the operating range of the synaptic CaV1.3 Ca2+-channels, which likely con-
tributes to the reduced spontaneous and evoked firing rates and to the elevated sound thresholds
of RBEKO/KO SGNs. DCm recordings revealed a mild reduction of exocytosis but only for weaker
depolarizations, which we primarily attribute to the depolarized shift of Ca2+-channel activation. In
summary, our data support a role of the ribbon in vesicle replenishment and Ca2+-channel regulation
at the AZs as required for synchronous activation of SGNs in normal hearing. However, our analysis
of RBEKO/KO mice likely underestimated the role of the ribbon due to substantial compensation that
is best illustrated by the striking transformation of AZ morphology and the mild ex vivo phenotype
of IHC Ca2+-influx and exocytosis.

RIBEYE deletion transforms IHC synapses to ‘conventional-like’
presynaptic ultrastructure, where multiple ribbonless AZs collectively
maintain large complements of Ca2+-channels and SVs
Our work confirms the central role of RIBEYE for forming synaptic ribbons (Schmitz et al., 2000;
Magupalli et al., 2008; Maxeiner et al., 2016). We did not observe structures reminiscent of ‘ghost
ribbons’ reported for ribeye mutants in zebrafish neuromast hair cells (Lv et al., 2016) in IHCs of
RBEKO/KO mice. These ghost ribbons were characterized as a halo of synaptic vesicles around a non-
electron-dense area that resembled in size, though smaller, and shape to a synaptic ribbon. In zebra-
fish, two gene copies of ribeye (ribeye a and b) exist, making it harder to achieve a complete knock-
out (Lv et al., 2016; Van Epps et al., 2004). In keeping with this notion, Lv et al. found residual
immunofluorescence of ribeye a in the double mutants. Hence, we speculate that residual RIBEYE,
possibly together with other scaffold proteins such as piccolo, might have formed the observed elec-
tron-translucent SV-framed structures (Lv et al., 2016). In contrast, immunofluorescence, as well as
electron microscopy, revealed the complete absence of RIBEYE and ribbons in IHCs of RBEKO/KO

mice in our work and the companion study (Becker et al.), which is in agreement with findings in the
RBEKO/KO mouse retina (Maxeiner et al., 2016).

IHC synapses normally employ a single ribbon-type AZ. But in the absence of RIBEYE, there were
typically two or more ribbonless AZs, akin to multiple conventional AZs (Figure 2). These ribbonless
‘conventional’ AZs at RBEKO/KO IHC synapses consist mostly of roundish PDs, each with a cluster of
SVs, of which approximately one third were directly adjacent to the plasma membrane (membrane-
proximal: MP-SVs). Using electron tomography we found that about two-thirds of the MP-SVs were
tethered to the AZ membrane, which was comparable to RBEWT/WT AZs (Figure 3). We speculate
that SVs associated with the PD, but not facing the membrane (PDA-SVs), serve to replenish the
release sites once tethered MP-SVs fused, and that the ribbonless PD more likely acts in long-range
SV tethering to the AZ in analogy to what is considered for conventional AZs (Cole et al., 2016; Fer-
nández-Busnadiego et al., 2013; Siksou et al., 2007). We assume that absence of RIBEYE does not
alter SV size since electron tomography, which provides the most reliable estimation of SV size, did
not reveal differences in SV diameter between RBEKO/KO and RBEWT/WT AZs, at least when
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considering all SVs. The RBEKO/KO PDs, like in RBEWT/WT, contained bassoon, CaV1.3, and RIM2, but
lacked piccolino which is likely part of the ribbon in RBEWT/WT (Figure 1) (Dick et al., 2001;

Khimich et al., 2005; Limbach et al., 2011; Regus-Leidig et al., 2013).
To some extent, the multi-AZ morphology is reminiscent of IHC synapses prior to synaptic matu-

ration (Huang et al., 2012; Sendin et al., 2007; Sobkowicz et al., 1982; Wong et al., 2014). While
we cannot rule out some sort of developmental delay of RIBEYE-deficient IHCs, we suspect that the

morphological transformation into a multi-AZ morphology reflects a compensatory effort. Reasons
for our interpretation include (i) the same morphological phenotype of RBEKO/KO IHCs at 8 months
of age (Figure 2), (ii) the finding of highly regular PDs at RBEKO/KO IHCs synapses, which differs from
less well-defined PDs at immature AZs (Wong et al., 2014), (iii) the typical continuous and large PSD

of RBEKO/KO IHCs synapses (Figure 2, see also the accompanying paper by Becker et al.) as a charac-
teristic of a mature synapse, rather than the several smaller PSD patches at developing IHC synapses
(Wong et al., 2014), and (iv) the synaptically confined CaV1.3 Ca2+-channel clusters, normal ampli-
tude of IHC ICa and mature amplitude of synaptic Ca2+-signals, rather than massive extrasynaptic

CaV1.3 abundance and larger whole-cell ICa but smaller synaptic Ca2+-signals in immature IHCs
(Wong et al., 2014; Zampini et al., 2010). The multi-AZ morphology of the RBEKO/KO IHC synapses
was also corroborated by high- and super-resolution microscopy of bassoon and CaV1.3 immunoflu-
orescence (Figure 4). The organization in several smaller Ca2+-channel clusters likely explains the
broader spread of the presynaptic Ca2+-signal at RBEKO/KO synapses (Figure 6). In contrast to bas-

soon mutant mice (Frank et al., 2010; Jing et al., 2013), the number of synaptic Ca2+-channels was
not reduced in RBEKO/KO mice as shown by normal amplitudes of whole-cell ICa and synaptic Ca2+-
signals. Therefore, the loss of synaptic Ca2+-channels from the bassoon-deficient ribbonless IHC syn-
apses, indicates a role of bassoon in promoting Ca2+-channel tethering at the AZ likely via interac-

tion with RIM-binding protein (Davydova et al., 2014), which was previously shown to interact with
CaV1.3 Ca2+-channels (Hibino et al., 2002) and is required for establishing a normal Ca2+-channel
complement of the IHC AZ (Krinner et al., 2017).

Interestingly, we observed changes in Ca2+-channel function in RBEKO/KO IHCs: the voltage-
dependence of Ca2+-channel activation was slightly, but significantly, shifted to more depolarized
potentials both at the levels of whole-cell Ca2+-current (Vh +2 mV) and synaptic Ca2+-influx at indi-
vidual synapses (Vh +5 mV) (at 5 mM [Ca2+]e, Figure 5 and 6). Similar as in this study, an enhanced

inactivation (Figure 5) of ICa was also found in bassoon-deficient IHCs, while their Vh was actually
mildly shifted in the opposite direction (#3 mV for imaging of synaptic Ca2+) and unaltered at the
level of the whole-cell lCa (Frank et al., 2010). One potential reason for why the depolarized Vh-shift
of the synaptic Ca2+-influx was greater than that of the whole-cell Ca2+-influx is the contribution of
extrasynaptic Ca2+-channels to the whole-cell Ca2+-influx. They are thought to contribute approxi-

mately 30% of the Ca2+-influx (Brandt et al., 2005) and are not regulated by RIBEYE/ribbon. In
order to test whether the depolarized Vh-shift of synaptic Ca2+ translates into changes in transmitter
release, we recorded exocytic DCm for different depolarization potentials. A small, but significant
reduction of exocytosis for weak depolarizations in RBEKO/KO IHCs (Figure 7, seen also in the accom-

panying paper by Becker et al.) suggests that the Vh shift is relevant for hair cell transmission (see
also below). How enhanced ICa inactivation might affect sound encoding is addressed by work on
Ca2+-binding proteins (CaBPs) that are thought to antagonize calmodulin’s role in mediating ICa inac-
tivation (Lee et al., 1999; Peterson et al., 1999). Among the several CaBPs expressed in IHCs

(Cui et al., 2007; Picher et al., 2017; Schrauwen et al., 2012; Yang et al., 2006), CaBP2 is defec-
tive in human genetic hearing loss DFNB93 (Picher et al., 2017; Schrauwen et al., 2012) and
required for hearing likely via inhibition of IHC ICa inactivation (Picher et al., 2017). However, dele-
tion of CaBP4 in mice caused only a very mild increase of ICa inactivation similar to the one found
here and did not alter auditory brainstem responses (Cui et al., 2007). Future studies need to

address how RIBEYE/ribbons mechanistically regulate the function and spatial organization of Ca2+-
channels.

What can the RIBEYE knock-out tell us about the function of the ribbon
in sensory coding?
Over some decades, research on retinal photoreceptors and bipolar cells, on hair cells of the inner
ear and the lateral lines, on electroreceptors as well as pineal cells, has aimed to elucidate the func-
tion(s) of the synaptic ribbon. Current hypotheses state that the ribbon functions in (i) replenishing
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release sites ([Bunt, 1971; Frank et al., 2010; von Gersdorff et al., 1996; Lenzi et al., 2002;

Maxeiner et al., 2016; Snellman et al., 2011; Vaithianathan and Matthews, 2014] for a deviating

view see {Jackman et al., 2009]), potentially by facilitated diffusion of SVs on the ribbon surface

towards the site of consumption (Graydon et al., 2014) and SV priming (Grabner and Zenisek,

2013; Snellman et al., 2011), (ii) establishing a large complement of vesicular release sites and

Ca2+-channels at the active zone (Frank et al., 2010; Khimich et al., 2005), which remained hard to

disentangle from potential function of bassoon (Frank et al., 2010; Jing et al., 2013), (iii) ensuring

close spatial coupling of Ca2+-channels and vesicular release sites (Maxeiner et al., 2016) or enhanc-

ing presynaptic Ca2+-signals by limiting diffusional Ca2+-spread (Graydon et al., 2011), (iv) contrib-

uting to multivesicular release (Graydon et al., 2011; Jing et al., 2013; Mehta et al., 2013), and (v)

contributing to SV reformation from endocytosed membranes (Jung et al., 2015b; Khimich et al.,

2005; Schwarz et al., 2011). Clearly, SV-replenishment was impaired at the ribbon-less IHC synap-

ses of RBEKO/KO mice. This is shown by slowed recovery from forward-masking and the use-depen-

dent reduction of peak and adapted firing rates, which we further scrutinized by modeling.

Therefore, our study supports a role of the ribbon in vesicle replenishment, which is also found in

the accompanying paper by Becker et al.. Why RRP-recovery was not significantly altered when

probed with pairs 20 ms long maximal Ca2+-influx by membrane capacitance measurements in IHCs

(Figure 7) will need to be addressed in future studies, ideally using paired pre-and postsynaptic

recordings of synaptic transmission with depolarizations of varying strength.
Each of the ribbon-manipulations employed to analyze its role has strengths, but also weak-

nesses, such as changes in other AZ proteins and long-term compensatory processes (e.g. bassoon

deletion), complex manipulations (e.g. diurnal changes or hibernation: [Hull et al., 2006;

Mehta et al., 2013; Spiwoks-Becker et al., 2004]) and photoablation (Mehta et al., 2013;

Snellman et al., 2011). Genetic RIBEYE manipulations (Lv et al., 2016; Maxeiner et al., 2016;

Sheets et al., 2011; Van Epps et al., 2004) have the greatest molecular specificity, but in some

cases, were incomplete, and to some extent masked by compensation. In fact, our study of IHCs,

unlike the situation for bipolar cell retinal ribbons (Maxeiner et al., 2016), suggests that some fea-

tures of the IHC ribbon-type AZ can be very well replaced by a ribbonless multi-AZ morphology: the

synaptic complement of Ca2+-channels and SVs, as well as exocytic DCm elicited by strong depolari-

zations, were similar. Therefore, we likely underestimated the role of the ribbon in sound encoding

in our present study.
For sound encoding at the afferent synapses between IHCs and SGNs, we observed some com-

monalities and differences with the bassoon mutants and RBEKO/KO mice, whereby the stronger phe-

notype of bassoon mutants suggests additive effects of bassoon and ribbon loss. Recordings from

single SGNs indicate reduced peak and adapted release rates at the IHC synapses of ribbonless syn-

apses, as well as impaired temporal precision of coding. High temporal precision is a hallmark of syn-

aptic sound encoding (e.g. (Köppl, 1997). Reduced release rates or smaller EPSC sizes would

increase the temporal jitter (Buran et al., 2010; Li et al., 2014; Rutherford et al., 2012; Wittig and

Parsons, 2008). Reduced spike rates and increased jitter of release likely explain the reduced ABR

wave I amplitude in both mutants. A striking difference from bassoon mutants, however, is that

sound encoding in RBEKO/KO mice was impaired substantially, despite unaltered exocytic DCm upon

strong stimulation. We propose two mechanisms with likely additive effects to explain this surprising

finding: i) the small depolarized shift of synaptic Ca2+-channels might contribute the lower spontane-

ous and evoked firing rates as well as higher sound thresholds of SGNs and ii) the reduced SV-

replenishment might not suffice to balance the rate of consumption leading to a smaller standing

RRP in vivo, while the arrest of exocytosis in the voltage-clamped IHCs for tens of seconds likely ena-

bles complete filling of the release sites (max. standing RRP). The changes in Ca2+-channel gating

observed in IHCs of RBEKO/KO mice were unexpected, as so far, a direct or indirect interaction of

RIBEYE and Ca2+-channels have not been described. Clearly, future studies, including studies on the

potential regulation of CaV1.3 Ca2+-channels by RIBEYE and piccolino in heterologous expression

systems, paired pre- and postsynaptic recordings, as well as further computational modeling, are

required.
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Materials and methods

Key resources table

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

Strain, strain background
(Mus musculus)

Constitutive RIBEYE knockout,
C57BL/6 background

PMID: 26929012

Antibody CtBP2 (mouse monoclonal) BD Biosciences 612044 1:200

Antibody PSD-95 (mouse monoclonal) Sigma Aldrich P246-100ul 1:200

Antibody Bassoon SAP7f407
(mouse monoclonal)

Abcam ab82958 1:200

Antibody Bassoon (guinea pig polyclonal) Synaptic Systems 141 004 1:500

Antibody RIM2 (rabbit polyclonal) Synaptic Systems 140 103 1:100

Antibody Cav1.3 (rabbit polyclonal) Alomone Labs ACC 005 1:75
or 1:100

Antibody Piccolino (rabbit polyclonal) Regus-Leidig et al. (2013) 1:500

Antibody Parvalbumin a
(guinea pig polyclonal)

Synaptic Systems 195 004 1:1000

Antibody Calbindin 28 k
(mouse monoclonal)

Swant 07(F) 1:500

Antibody Calretinin (rabbit polyclonal) Swant 1893–0114 1:1000

Antibody Alexa Fluor 488 conjugated
anti-rabbit (goat polyclonal)

Invitrogen A11008 1:200

Antibody Alexa Fluor 488 conjugated
anti-guinea-pig (goat polyclonal)

Invitrogen A11004 1:200

Antibody Alexa Fluor 568 conjugated
anti-mouse (goat polyclonal)

Invitrogen A11073 1:200

Antibody Alexa Fluor 647 conjugated
anti-rabbit (donkey polyclonal)

Invitrogen A31573 1:200

Antibody STAR580 conjugated
anti-mouse (goat polyclonal)

Abberior 2-0002-005-1 1:200

Antibody STAR580 conjugated
anti-rabbit (goat polyclonal)

Abberior 2-0012-005-8 1:200

Antibody STAR635p conjugated
anti-mouse (goat polyclonal)

Abberior 2-0002-007-5 1:200

Antibody STAR635p conjugated
anti-rabbit (goat polyclonal)

Abberior 2-0012-007-2 1:200

Software, algorithm Patchmaster or Pulse http://www.heka.com/products/
products_main.html#soft_pm

RRID:SCR_000034

Software, algorithm IGOR Pro http://www.wavemetrics.com/products
/igorpro/igorpro.htm

RRID:SCR_000325

Software, algorithm Patchers Power Tools http://www3.mpibpc.mpg.de/groups
/neher/index.php?page=software

RRID:SCR_001950

Software, algorithm MATLAB http://www.mathworks.com/
products/matlab/

RRID:SCR_001622

Software, algorithm Gatan Microscopy Suite http://www.gatan.com/products/tem
-analysis/gatan-microscopy-suite-software

RRID:SCR_014492 DigitalMicrograph
scripting

Software, algorithm Reconstruct PMID: 15817063

Software, algorithm Serial-EM PMID: 16182563

Software, algorithm 3dmod PMID: 8742726

Software, algorithm IMOD http://bio3d.colorado.edu/imod RRID:SCR_003297

Software, algorithm Genetic fit algorithm Sanchez del Rio and Pareschi, 2001 doi: 10.1117/12.411624

Software, algorithm Fiji http://fiji.sc RRID:SCR_002285

Continued on next page
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Continued

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

Software, algorithm ImageJ https://imagej.nih.gov/ij/ RRID:SCR_003070

Software, algorithm Imaris http://www.bitplane.com/imaris/imaris RRID:SCR_007370

Software, algorithm Excel microsoft.com/mac/excel

Software, algorithm Origin http://www.originlab.com/index.
aspx?go=PRODUCTS/Origin

RRID:SCR_014212

Software, algorithm GraphPad Prism https://www.graphpad.com/
scientific-software/prism/

RRID:SCR_015807

Software, algorithm Java Statistical Classes library Bertie, 2002

Animals
Constitutive RIBEYE knockout mice (RBEKO/KO derived from Ctbp2tm1.2Sud by Cre-recombination)

were generated by Maxeiner and colleagues (Maxeiner et al., 2016) and were back-crossed to

C57BL/6 for five generations (corresponding to a C57BL/6 background contribution of >95%). All

experiments complied with national animal care guidelines and were approved by the University of

Göttingen Board for Animal Welfare and the Animal Welfare Office of the State of Lower Saxony

(permit number: 14–1391). The colony was maintained by mating heterozygous mice. Whenever pos-

sible, experiments were performed in parallel on mutant mice and their wildtype littermates. How-

ever, the experimental schedule did not always permit this and we occasionally used individual mice

from the same colony but without littermate controls. Moreover, for some experiments giving rise to

Figure 6—figure supplement 1 and Figure 7E,F,G,H we also used C57Bl/6 wild-type mice and

combined their results with those of wildtype littermate controls.

Patch-clamp and confocal Ca2+-imaging
The apical 2/3 turns of organs of Corti from P14 to P28 aged mice were freshly dissected in HEPES

Hank’s solution containing (in mM): 5.36 KCl, 141.7 NaCl, 10 HEPES, 0.5 MgSO4-7H2O, 1 MgCl2-

6H2O, 5.6 D-glucose, and 3.4 L-glutamine (pH 7.2, ~300 mOsm). The basolateral membranes of the

IHCs were exposed by carefully removing the surrounding cells with a suction pipette. All experi-

ments were conducted at room temperature (20–25˚C).
Perforated-patch-clamp recordings were performed as described previously (Moser and Beutner,

2000). The pipette solution contained (in mM): 130 Cs-gluconate, 10 tetraethylammonium (TEA)-Cl,

10 4-AP, 10 HEPES, 1 MgCl2, as well as 300 mg/ml amphotericin B (pH 7.2, ~280 mOsm). The extra-

cellular solution contained the following (in mM): 112 NaCl, 35 TEA-Cl, 2.8 KCl, 1 MgCl2, 1 CsCl, 10

HEPES, 2 CaCl2, and 11.1 D-glucose (pH 7.2, ~305 mOsm). External solution change was done by

bath exchange through a perfusion system.
For live-imaging, the patch pipette solution contained (in mM): 111 Cs-glutamate, 1 MgCl2, 1

CaCl2, 10 EGTA, 13 TEA-Cl, 20 HEPES, 4 Mg-ATP, 0.3 Na-GTP and 1 L-Glutathione (pH 7.3, ~290

mOsm). To visualize the Ca2+-hotspots and the ribbons, the Ca2+-indicator Fluo-4FF penta-K+ salt

(0.8 mM, Life Technologies, Germany) and the TAMRA-conjugated CtBP2/RIBEYE-binding dimer

peptide (10 mM, Biosynthan, Germany) were added to the intracellular solution. The extracellular

solution contained the following (in mM): 2.8 KCl, 102 NaCl, 10 HEPES, 1 CsCl2, 1 MgCl2, 5 CaCl2,

35 TEA-Cl, and 11.1 D-Glucose (pH 7.2, ~300 mOsm).
EPC-10 amplifiers controlled by Patchmaster or Pulse software (HEKA Elektronik, Germany) were

used for the measurements. IHCs were held at #87 mV or #69 mV. All voltages were corrected for

liquid junction potential offline (17 mV or 14 mV, depending on intra- and extracellular solutions

used) and voltage-drops across the series resistance (Rs). Currents were leak corrected using a p/10

protocol in exocytosis experiments. Recordings were discarded when the leak current exceeded

#55 pA, Rs exceeded 30 MW (for perforated-patch) or 15 MW within 4 min after break-in (for rup-

tured-patch), or Ca2+-current rundown exceeded 25%. All passive electrical properties of the patch-

clamp recording experiments are detailed in Supplementary file 2.
Exocytosis was studied by measuring the membrane capacitance increments (DCm) using the Lin-

dau-Neher technique (Lindau and Neher, 1988). Cells were stimulated by step depolarizations of
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different durations to #17 or #14 mV, or by 100 ms pulses to voltages ranging from #53 to #37

mV. A resting interval of 10–100 s between the stimuli was used. Each protocol was applied two to

three times and only IHCs with reproducible exocytosis during the rounds were included. For dis-

play, traces were subjected to 1, 5 or 10 pass Binomial Smoothing using Igor Pro. Current-voltage

relationships (‘IVs’) displayed in Figure 5A (ruptured-patch, 3-week-old mice) were obtained by

applying 20 ms depolarizing step pulses of increasing voltage from #82 to 63 mV in 5 mV steps.
Ca2+-imaging was performed with a spinning disk confocal scanner (CSU22, Yokogawa, Germany)

mounted on an upright microscope (Axio Examiner, Zeiss, Germany) with 63x, 1.0 NA objective (W

Plan-Apochromat, Zeiss). Images were acquired by a scientific CMOS camera (Neo,

Andor, Germany). Ca2+-indicator F4FF and TAMRA-conjugated peptide were excited by diode-

pumped solid-state lasers with 491 nm and 561 nm wavelength, respectively (Cobolt AB). The spin-

ning disk was set to 2000 rpm to synchronize with the 10 ms acquisition time of the camera.
Using a piezo positioner for the objective (Piezosystem, Germany), a scan of the entire cell was

performed 4 min after breaking into the cell, taking sections each 0.5 mm at an exposure time of 0.5

s in the red (TAMRA-peptide) channel from the bottom to the top of the cell. In order to study the

voltage-dependence of Ca2+-indicator fluorescence increments at the synapses, the confocal scans

were acquired every 0.5 mm from the bottom to the top ribbon in the RBEWT/WT mice. For the

RBEKO/KO mice, the scanning was done from the bottom of the cell to +12 mm, which on average

corresponds to the bottom of the nucleus. Ca2+-currents were evoked by applying a voltage ramp

stimulus from #87 to +63 mV during 150 ms (1 mV/ms) in each focal plane. Simultaneously, fluores-

cence measurements were made in the green channel (Fluo-4FF) with a frame rate of 100 Hz. In

order to overcome the limitations of the frame rate and increase the voltage resolution of the fluo-

rescent signal acquired, the voltage ramp protocol was applied twice, once shifted by 5 ms such

that for any given frame during the second ramp the voltage was shifted by 5 mV compared to the

first stimulus. Alternating planes were acquired to avoid photobleaching encountered with the con-

secutive plane acquisition.

Immunohistochemistry, confocal and high resolution STED imaging
Apical turns of organs of Corti from 3-week-old mice were prepared for ‘whole-mount imaging’ as

described in (Ohn et al., 2016). In brief, the samples were fixed either in formaldehyde (4%, 10 min

on ice), or methanol (20 min at #20˚C). Afterwards, the following primary antibodies were used:

mouse anti-CtBP2 (1:200, BD Biosciences, Germany 612044), mouse anti-PSD-95 (1:200, Sigma

Aldrich, Germany P246-100ul), mouse anti-bassoon SAP7f407 (1:200, Abcam, Germany, ab82958),

guinea pig anti-bassoon (1:500, Synaptic Systems, Germany, 141 004), rabbit anti-RIM2 (1:100, Syn-

aptic Systems 140 103), rabbit anti-Cav1.3 (1:75 or 1:100, Alomone Labs, Germany, ACC 005), rabbit

anti-piccolino (1:500, kind gift of JH Brandstätter; see Regus-Leidig et al., 2013), guinea pig anti-

parvalbumin a (1:1000, Synaptic Systems, 195 004), mouse anti-calbindin 28 k (1:500,

Swant, Germany, 07(F)), and rabbit anti-calretinin (1:1000, Swant 1893–0114). Secondary antibodies

used were Alexa Fluor 488 conjugated anti-rabbit, Alexa Fluor 488 conjugated anti-guinea-pig,

Alexa Fluor 568 conjugated anti-mouse, and Alexa Fluor 647 conjugated anti-rabbit (1:200,

Invitrogen, Germany, A11008, A11004, A11073, and A31573 respectively). For high resolution STED

microscopy, STAR580 and STAR635p conjugated anti-rabbit and anti-mouse (1:200,

Abberior, Germany, 2-0002-005-1, 2-0012-005-8, 2-0002-007-5, and 2-0012-007-2) have been used

as secondary antibodies. Images were acquired using either a Leica SP5 with a 1.4 NA 63x oil immer-

sion objective or an Abberior Instruments Expert Line STED microscope, with excitation lasers at

488, 561, and 633 nm and STED lasers at 595 nm, 1 W, and 775 nm, 1.2 W, using a 1.4 NA 100x oil

immersion objective, either in confocal or in 2D-STED mode. Images were adjusted for brightness

and contrast using ImageJ.

Systems physiology: Auditory Brainstem Responses (ABR), Distortion
Product Otoacoustic Emissions (DPOAE) and extracellular recordings
from SGNs
ABR, DPOAE and extracellular recordings from single SGNs were performed essentially as described

before (Jing et al., 2013; Strenzke et al., 2016). ABR and DPOAE recordings were performed on 6-

week-old mice. For extracellular recordings from individual SGNs, 6 to 10 week-old mice were
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anesthetized by i.p. injection of urethane (1.32 mg/kg), xylazine (5 mg/kg) and buprenorphine (0.1

mg/kg), a tracheostomy was performed and the mice were then placed in a stereotactic system.

After partial removal of the occipital bone and cerebellum to expose the anteroventral cochlear

nucleus (AVCN), a glass microelectrode was advanced through the posterior AVCN portion to reach

the auditory nerve. Acoustic stimulation was provided by an open field Avisoft ScanSpeak Ultrasonic

Speaker (Avisoft Bioacoustics, Germany), and ‘putative’ SGNs (auditory nerve fibers formed by the

central SGN axons) were identified and distinguished from cochlear nucleus neurons based on their

stereotactic position (>1.1 mm from the surface of the cochlear nucleus), spontaneous and noise-

burst induced firing, peristimulus time histogram (PSTH), regularity of firing, and first spike latency.

Recordings were performed using TDT system III hardware and an ELC-03XS amplifier (NPI Electron-

ics, Germany), offline analysis using waveform-based spike detection using custom-written MATLAB

software (Source code 1).

Transmission electron microscopy
Conventional embedding
Conventional embedding of organs of Corti was essentially performed as described previously

(Wong et al., 2014). In brief, here P21, 6 weeks and 8 months old mice were used. The apical turn

of organs of Corti were dissected in phosphate-buffer saline (PBS) and fixed for 1 hr on ice with 4%

paraformaldehyde and 0.5% glutaraldehyde in PBS (pH 7.4). After an additional fixation overnight

on ice with 2% glutaraldehyde in 0.1 M sodium cacodylate buffer (pH 7.2), samples were washed in

0.1 M sodium cacodylate buffer and placed in 1% osmium tetroxide (v/v in 0.1 M sodium cacodylate

buffer) on ice for 1 hr. Next, samples were washed twice in 0.1 M sodium cacodylate buffer (10 min

each, on ice) and further in distilled water and subsequently en bloc stained with 1% uranyl acetate

(v/v in distilled water) for 1 hr on ice. Uranyl acetate treated samples were briefly washed three times

in distilled water, dehydrated using a series of increasing ethanol concentration and finally embed-

ded in epoxy resin (Agar 100 kit, Plano, Germany) and polymerized for 48 hr at 70˚C. An Ultracut E

microtome (Leica Microsystems, Germany) equipped with a 35˚ diamond knife (Diatome, Switzer-

land) was used to obtain ultrathin sections (70–75 nm) of the specimen. Sections were transferred to

1% formvar-coated (w/v in water-free chloroform) copper slot grids (ATHENE copper slot grids, 3.05

mm Ø, 1 mm x 2 mm; Plano, Germany) and subsequently stained with uranyl acetate replacement

solution (UAR-EMS) (Science Services, Germany) and Reynold’s lead citrate. The specimens were

investigated at 80 kV with a JEM1011 transmission electron microscope (JEOL, Germany) and micro-

graphs acquired at 10,000-x magnification using a Gatan Orius 1200A camera (Gatan,

Germany, using the Digital Micrograph software package). Serial 3D reconstructions of ultrathin sec-

tions were generated with the program Reconstruct (Fiala, 2005).

High-pressure freezing/freeze-substitution (HPF/FS) and electron
tomography
High-pressure freezing, freeze-substitution followed by electron tomography were essentially per-

formed as described previously (Vogl et al., 2015; Jung et al., 2015a). After freeze-substitution and

embedding in epoxy resin (Agar 100 kit, Plano, Germany), 250 nm semithin sections for electron

tomography were obtained on an Ultracut E ultramicrotome (Leica Microsystems, Germany) with a

35˚ diamond knife (Diatome, Switzerland). Sections were placed on 1% formvar-coated (w/v in

water-free chloroform) copper 100 mesh grids (ATHENE, Plano, Germany, 3.05 mm Ø) and post-

stained with UAR-EMS (Science Services, Germany) and Reynold’s lead citrate.
For electron tomography, 10 nm gold particles (British Bio Cell/Plano, Germany) were applied to

both sides of the stained grids. Single tilt series at 12,000-x magnification, mainly from #60 to +60˚
(if only fewer angles were possible, the tomograms were only accepted for quantification if the qual-

ity was sufficient) were acquired with an 1˚ increment at a JEM2100 (JEOL, Germany)) transmission

electron microscope at 200 kV using the Serial-EM software (Mastronarde, 2005). The tomograms

were generated using the IMOD package etomo and models were generated using 3dmod

(Kremer et al., 1996).
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Data analysis
Live-imaging and IHC-patch-clamp data were analyzed using custom programs in Igor Pro 6.3

(Wavemetrics, Portland, OR, USA; Source Code 2). For analysis of IV-curves, the evoked Ca2+-cur-

rent was averaged from 5 to 10 ms after the start of the depolarization. The total Ca2+-charge was

estimated by taking the integral of the leak-subtracted current during the depolarization step. For

most protocols, DCm was estimated as the difference between the mean of Cm 400 ms after and

before the depolarization (the initial 60 ms after the end of depolarization were skipped). For paired

pulse experiments, the calculation of the mean of Cm before and after the depolarization was limited

to the time remaining in the inter pulse interval after skipping (the initial 30 ms after the end of

depolarization were skipped).
DF images were generated by subtracting the fluorescence intensity inside the cell at the resting

state (F0, an average of 10 frames) from the one at the depolarized state (an average of 6 frames

during voltage ramp protocol). DF was calculated as the average of a 3 $ 3 pixel square placed in

the region showing the greatest intensity increase within the fluorescence hotspot. Maximal DF

(DFmax) was the average of 5 DF values obtained between #17 and +8 mV during the voltage ramp

(around the peak Ca2+-influx). Only AZs presenting a DFmax greater than the mean of the fluores-

cence intensity plus two standard deviations at rest were considered for further analysis. For analysis

of the voltage dependence of synaptic Ca2+-signals, raw traces were fitted to the following

F Vð Þ ¼ F0þ
fv ) Vr #Vð Þ

1þ e
Vh#Vð Þ

k

(1)

where fv is the fluorescence-voltage-relationship DF/DV obtained by linear fitting to the FV-curve in
the range of 3 to 23 mV, Vr the reversal potential of 65.6 mV, and V the command voltage, in order

to obtain Vh, the voltage of half-maximal activation, and k, the slope factor. The spatial extent of the

synaptic Ca2+-signals was estimated by fitting of a 2D Gaussian function to the fluorescent hotspot

using a genetic fit algorithm (Sanchez del Rio and Pareschi, 2001) to obtain the full width at half

maximum in the long and short axis. For each spot, the calculations were made at those confocal

sections where the intensity of the spot was strongest.
Activation time constants of Ca2+-currents at differing potentials were obtained by fitting to the

first 5 ms of the current traces the following equation:

f ðtÞ ¼ y0 þA$ð1# eð
#x
t ÞÞ2 (2)

Confocal and STED immunofluorescence images were analyzed and z-projected with Fiji software
and further analyzed using Igor Pro. For synapse counting, co-localized pre- and postsynaptic immu-

nofluorescent spots were counted manually. The spatial extent of the line-shaped Ca2+-channel clus-

ters was estimated by fitting a 2D Gaussian function to the individual clusters in 2D STED images to

obtain the full width at half maximum in the long and short axis. The areas of the PSD were calcu-

lated by the following formula: area = p x (Long Axis/2) (Short Axis/2). The semi-quantitative immu-

nofluorescence analysis of the proteinaceous Ca2+-buffers was performed by calculating the mean

immunofluorescence intensity of a volume (40 (X) x 40 (Y) x 4 (Z) voxels or 2.8 $ 2.8 $ 2 mm) below

the nucleus and above the synapses. This and the count and intensity of the CtBP2 immunofluores-

cent spots have been analyzed in Imaris 7.6.5 with custom Matlab routines (Source Code 4).
For extracellular SGN recordings, PSTHs were calculated as average firing rates across 200 pre-

sentations of 50 ms or 500 ms tone bursts presented at 0.1 s/0.2 s or 2 s intervals, resp. (PSTH at 10/

5 Hz and 0.5 Hz) at Cf, 30 dB above the threshold and binned at a width of 2 ms. Peak rate was

determined as the largest bin of the PSTH in a time window 3–11 ms after stimulus onset. Adapted

rate was averaged in a window spanning 35–45 ms or 405–415 ms after stimulus onset (for PSTH at

5 Hz and 0.5 Hz, respectively). Rate level functions were acquired using 50 ms tone bursts presented

at Cf and at 5 Hz. 25 repetitions for each stimulus intensity (5 dB steps) were recorded. Maximal

steepness was calculated as the maximal increase in spike rate between two consecutive 5 dB incre-

ment steps. Dynamic range was calculated by using sigmoidal fits in the rate level functions as

described in and measuring the range of sound pressure between 10% and 90% of maximal firing

rate. For amplitude modulation analysis, synchronization index was calculated as described by
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(Goldberg and Brown, 1969). Synchronization index estimation was only considered valid when at
least 15 spikes occurred in a 3 s time window and the Rayleigh statistic was below 13.8.

For analysis of forward masking experiments, spike counts in a 10 ms interval starting from
responses of both masker and probe onset were determined and presented as the ratio of probe
and masker responses for at least 25 repetitions for every masker-probe interval from each unit.

Exponential fitting to the plots of each individual SGN approximated the recovery kinetics.
Quantitative analysis of electron microscopy data was performed with ImageJ for conventional

embedded samples and with IMOD for HPF/FS tomograms. According to the presence of ribbon-

occupied and ribbonless synapses, we considered the following analysis criteria:
For ribbon-occupied synapses, membrane-proximal synaptic vesicles (MP-SVs, within a distance

of !25 nm from the AZ membrane and !80 nm from the presynaptic density) and ribbon-associated

synaptic vesicles (RA-SVs, first layer around the ribbon with a maximum distance of 80 nm from the
vesicle membrane to the ribbon) were counted (Figure 2J, random sections analysis according to
Strenzke et al., 2016 and Figure 3G for tomograms according to 2D-random section analysis
criteria). The tomogram analysis parameters were further modified, as used in Jung et al., 2015a.

Here, the MP-SVs were defined as vesicles with !50 nm from the AZ membrane and with the short-
est distance from the vesicle membrane to the presynaptic density of !100 nm, excluding RA-SVs
(Figure 3—figure supplement 1A). For random sections, SV diameters were calculated by the aver-
aged measurements of the horizontal and vertical axis. The ribbon size was measured in height and

width, taking the longest axis of the ribbon excluding the PD, and the edges of the synaptic ribbon
were traced manually using ImageJ. The length of the PD was measured along the AZ membrane
(Figure 2J).

For ribbonless synapses, a presynaptic density-associated synaptic vesicle (PDA-SVs) pool was
defined considering all clustered vesicles !80 nm around the PD that did not fulfill the criteria of a
MP-SV (see above, also Figure 2J for random sections). The MP-SV pool, as well as the SV diameter
and PD length, were analyzed as for the ribbon-occupied synapses. For tomograms, the PDA-SV

pool was defined as the SVs in the first layer ! 80 nm to the PD, excluding the MP-SVs. The MP-SV
pool criteria are the same as described in the previous paragraph (Figure 3G, according to 2D-ran-
dom section and Figure 3—figure supplement 1A, according to Jung et al., 2015a). For tomo-
grams, the according pools were further distinguished into tethered and non-tethered vesicles

(Figure 3G and Figure 3—figure supplement 1A). All vesicles were annotated using a spherical
‘scattered object’ at its maximum projection in the tomogram, encompassing the outer leaflet of the
vesicles. The vesicle radii were determined automatically (Helmprobst et al., 2015) with the pro-
gram ‘imodinfo option -p’ of the IMOD software package (Kremer et al., 1996).

Release site model of RRP release and replenishment
The coding of sound onset differs among the various SGNs in time due to different durations of the
traveling wave, synaptic delays and conduction times. To obtain an average PSTH for modeling that
is not smeared out due to such differences between units, the individual PSTHs were aligned before-
hand by shifting their timing relative to each other. Onset detection was based on a change in spike

statistics. For spontaneous activity, the 99.5 percentile of spike counts was determined. Next, the
time at which response rises to twice this percentile was found. This is certainly a point within the
sound response. Finally going back from this point, a drop back baseline activity, that is below the
percentile was detected and used as onset time. Aligned PSTH from all units were averaged. This

averaged PSTH from the forward masking data were fit with a model waveform using a genetic fit
algorithm implemented in IGOR Pro (Wavemetrics, Lake Oswego, OR, USA). The purpose of the
model is to give insight into the dynamics of SV cycling at the average IHC AZ. More specifically, the
notion of Ca2+-nanodomain-like control of RRP exocytosis (Brandt et al., 2005; Graydon et al.,

2011; Pangršič et al., 2015; Wong et al., 2014), as well as the limited MP-SVs at the AZ (see Fig-
ures 2 and 3) motivates the notion of a limited, quasi-fixed number of available vesicular release
sites or slots, Nslot,(Frank et al., 2010; Wong et al., 2014) that constitute the RRP. Each of these
sites can be either empty or occupied by a release ready SV (whereby all filled slots constitute the

‘standing’ RRP) and at each time point, a release ready SV will fuse with a certain probability
described by the fusion rate constant kfus. Its value depends on the sound pressure level in a relation
we assume to be linear within the dynamic range of the synapse/fiber. While the sound pressure
level rises from silence to saturation kfus increases from kfus, spont to kfus,stim. The refilling of empty
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sites is described by a refill rate constant krefill, which also depends on the sound intensity (krefill, spont
to krefill,stim).

The state of the release site was described by:

dN
filled
slot ðtÞ

dt
¼ krefillðtÞNslot #N

filled
slot ðtÞ kfusðtÞþ krefillðtÞ

! "

(3)

Although this equation is formulated for SV fusion rates, a scaling factor f can be used to account
for the fraction of fusion events that cannot successfully trigger an action potential (AP) despite suffi-

cient neural excitability for example because of the too small size of the elicited excitatory post syn-

aptic current. This factor effectively operates as if the number of release sites was scaled down. The
scaled equation then gives a rate R of potentially supra-threshold EPSCs as the product of the num-

ber of occupied release sites, the fusion rate constant and the scaling factor f:

RðtÞ ¼ kfusðtÞ:f :N
filled
slot ðtÞ (4)

The stationary solutions of Equation 3 together with Equation 4 determine steady state occu-
pancy and steady state event rates:

N
filled
solt

condition
stradystate

#

#

#
¼

Kcondition
refill

Kcondition
fusion þKcondition

refill

:Nsolt (5)

R condition
stradystate

#

#

#
¼

Kcondition
fusion :f :Kcondition

refill

Kcondition
fusion þKcondition

refill

:Nsolt (6)

In this equation, ‘condition’ is either silence or saturating sound pressure level.
In order to connect the postsynaptic event rate of potentially supra-threshold EPSCs to the actual

AP rate, refractoriness is considered as a combination of an absolute refractory period tabs, during

which the probability of an EPSC to trigger an AP is zero, with a relative refractory period during

which this trigger probability returns to one with an exponential time course characterized by trel
(Berry and Meister, 1998). This description of refractoriness can be applied to the ‘driving’ EPSC

rate R by means of a delayed differential equation. The equation is motivated by the concept of

three possible states of the SGN: ‘absolute refractory’, ‘relative refractory’ or ‘available’ (fully excit-

able). At any point, the probability that the SGN turns from ‘available’ to ‘refractory’ is proportional
to the rate R(t). The return back to ‘available’ happens ‘delayed’ by tabs and with a probability that is

proportional to 1/trel.

dfavailðtÞ
dt

¼ frelref ðtÞ
trel

# favailðtÞ:f :RðtÞ

dfrelref ðtÞ
dt

¼ favailðt# tabsÞ:f :Rðt# tabsÞ#
frelref ðtÞ
trel

(7)

Together with Equation 6 the stationary solution of this description of refractoriness connects the
observable steady state rates during silence and stimulation to the rate constants krefill und kfusion:

AP Rate condition
stradystate

#

#

#
¼

Kcondition
fusion :f :Kcondition

refill

Kcondition
fusion þKcondition

refill

:Nsolt:
1

1þR condition
stradystate

#

#

#
ðtabs þ trelÞ

(8)

To go beyond the description of steady state event rates and to use the model for a parameter-
ized description of the actual time course of experimentally observed PSTHs acquired during for-

ward masking (Figure 11E), it is necessary to define the relation between the applied stimulus and

the fusion and refill rate constants. For the experimental data presented here, the stimulus level was

increased from silence to 30 dB above fiber threshold within a 4 ms ramp having a quarter of a sin2

shape. It was assumed that kfusion and krefill follow the stimulus increase simultaneously. The ordinary
differential and delayed differential equations above were combined into a fit function. PSTHs (one

masker followed by one probe) were averaged per genotype for each masker probe interval (4, 16,

64 and 256 ms) and were fitted in parallel with one parameter set. During experiments, trials were

acquired in immediate succession without gaps. Therefore, the model implements cyclic boundary
conditions for the occupancy of the slots. This model only captures the short term processes,
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assuming that a set of experiments, for example forward masking trials quickly lead to a steady

state. Slow adapting processes were not explicitly modeled. The observed drop of the apparent

number of available slots in the forward masking experiments was described here as a change in the

number of slots from Nslots to a reduced capacity N’slots and for a given spiral ganglion neuron that

was tested with tone bursts and forward masking, the ratio Nslots/N’slots could be estimated from the

change in rates (see Results).

Statistical analysis
The data were analyzed using Matlab (Mathworks), Excel, Igor Pro 6 (Wavemetrics), Origin 9.0

(Microcal Software), and GraphPad Prism (GraphPad Software). Averages were expressed as

mean ± standard error of the mean (S.E.M.). For every dataset, the standard deviation (S.D.), number

of replicates (n) and animals (N) were indicated. For Figure 7, nmin corresponds to the minimum

number of cells included in the analysis of each depolarization potential given that the number of

cells for each potential differs. In order to compare two samples, data sets were tested for normal

distribution (Jarque-Bera test, D’Agostino and Pearson omnibus normality test or the Shapiro-Wilk

test) and equality of variances (F-test), followed by two-tailed unpaired Student’s t-test, or, when

data were not normally distributed and/or variance was unequal between samples, the unpaired

two-tailed Mann-Whitney-Wilcoxon test was used. Cumulative distributions in Figure 9A were statis-

tically compared using the Kolmogorov-Smirnov test. The ROUT method (Q = 0.1%) from GraphPad

Prism was used to identify definitive outliers for Figure 7H.
For multiple comparisons, statistical significance was calculated by using one-way ANOVA test

(two-way ANOVA in the case of ABR thresholds) followed by Tukey’s test for normally distributed

data or Kruskal-Wallis (K-W) test followed by non-parametric multiple comparisons test (NPMC) for

non-normally distributed data.
For SV diameter quantifications in random sections, a custom-written routine using Java Statistical

Classes library (JSC) (Bertie, 2002) was utilized for statistical analysis (Source code 5). Due to the

tied ranks of SV diameter measurements obtained for random sections, their S.E.M. was used as a

tolerance value for the usage of Kruskal-Wallis test as suggested by Bertie et al. in JSC library (Ber-

tie, 2002), where two values were treated as equal if their difference was ! S.E.M.. The non-signifi-

cant difference between samples is reported as n.s., significant differences are reported as *p<0.05,

**p<0.01, ***p<0.001, ****p<0.0001.
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Endophilin-A regulates presynaptic Ca2+ influx and
synaptic vesicle recycling in auditory hair cells
Jana Kroll1,2,3,4,† , Lina M Jaime Tobón3,4,5,6,7,† , Christian Vogl3,5,7,8,† , Jakob Neef3,5,6,7,
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Ira Milosevic1,3,** & Tobias Moser3,5,6,7,***

Abstract

Ribbon synapses of cochlear inner hair cells (IHCs) operate with
high rates of neurotransmission; yet, the molecular regulation of
synaptic vesicle (SV) recycling at these synapses remains poorly
understood. Here, we studied the role of endophilins-A1-3, endo-
cytic adaptors with curvature-sensing and curvature-generating
properties, in mouse IHCs. Single-cell RT–PCR indicated the expres-
sion of endophilins-A1-3 in IHCs, and immunoblotting confirmed
the presence of endophilin-A1 and endophilin-A2 in the cochlea.
Patch-clamp recordings from endophilin-A-deficient IHCs revealed
a reduction of Ca2+ influx and exocytosis, which we attribute to a
decreased abundance of presynaptic Ca2+ channels and impaired
SV replenishment. Slow endocytic membrane retrieval, thought to
reflect clathrin-mediated endocytosis, was impaired. Otoferlin,
essential for IHC exocytosis, co-immunoprecipitated with purified
endophilin-A1 protein, suggestive of a molecular interaction that
might aid exocytosis–endocytosis coupling. Electron microscopy
revealed lower SV numbers, but an increased occurrence of coated
structures and endosome-like vacuoles at IHC active zones. In
summary, endophilins regulate Ca2+ influx and promote SV recy-
cling in IHCs, likely via coupling exocytosis to endocytosis, and
contributing to membrane retrieval and SV reformation.

Keywords electron microscopy; endocytosis; membrane capacitance; ribbon

synapse; super-resolution microscopy
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Introduction

Ribbon synapses of auditory IHCs faithfully convert acoustic signals

into an action potential code in spiral ganglion neurons (SGNs).

Individual presynaptic active zones (AZs) of IHCs are thought to

drive firing in a single SGN at rates of up to hundreds of Hz for as

long as the sound continues (Safieddine et al, 2012; Wichmann &

Moser, 2015; Rutherford & Moser, 2016). Exocytosis of synaptic

vesicles (SVs) at IHC AZs is both, fast and indefatigable. It seems to

operate independently of classical neuronal SNARE proteins,

Munc13-like priming factors, or complexins (Strenzke et al, 2009;

Nouvian et al, 2011; Vogl et al, 2015), but, instead, involves the

deafness gene product otoferlin (Roux et al, 2006; Pangrsic et al,

2010). Probably the most important coordinator of synaptic trans-

mission is Ca2+ that enters IHCs primarily through presynaptic volt-

age-gated CaV1.3 Ca2+ channels and mediates excitation–secretion
coupling (Platzer et al, 2000; Brandt et al, 2003, 2005; Weiler et al,

2014; Wong et al, 2014). At IHC AZs, Ca2+ channels are present in

defined numbers, organized in a stripe-like manner, and show little

inactivation, which enables reliable information transfer during

sustained stimulation (Brandt et al, 2005; Frank et al, 2009, 2010;

Ohn et al, 2016; Neef et al, 2018). Interestingly, Ca2+ channels have

been reported to interact with otoferlin (Ramakrishnan et al, 2009)

and with endophilins (Chen et al, 2003), the protein family under

study here.

To sustain high transmission rates, IHCs need to balance exocy-

tosis by equally efficient SV recycling (Siegel & Brownell, 1986;

Parsons et al, 1994; Moser & Beutner, 2000; Beutner et al, 2001;

Lenzi et al, 2002; Trapani et al, 2009; Neef et al, 2014; Revelo et al,

2014; Jung et al, 2015). Here, at least three kinetically distinct forms
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of endocytic membrane retrieval—rapid (300 ms), fast (4 s), and

slow (20 s half-time recovery)—have been described for IHCs

(Moser & Beutner, 2000; Beutner et al, 2001; Neef et al, 2014).

However, to date, knowledge of the molecular entities mediating

these kinetically distinct forms of endocytosis in IHCs remains

scarce. In line with findings at conventional synapses (Ferguson &

De Camilli, 2012; Kononenko & Haucke, 2015), work on endocytosis

in IHCs has indicated a role of dynamins (Boumil et al, 2010; Neef

et al, 2014), synaptojanin-1 (Trapani et al, 2009), and clathrin

(Siegel & Brownell, 1986; Neef et al, 2014; Jung et al, 2015) in slow

endocytosis that most likely represents clathrin-mediated endocyto-

sis [CME, recently reviewed in Pangrsic and Vogl (2018)].

Surprisingly, genetic disruption of the clathrin adaptor AP-2 did

not noticeably affect endocytic membrane retrieval in IHCs (Jung

et al, 2015). However, in AP-2l mutants, the abundance of clathrin-

coated structures near the presynaptic AZs was reduced and large

membranous organelles (endosome-like vacuoles, ELVs) accumu-

lated after stimulation (Jung et al, 2015) similar to findings at

conventional synapses (Kononenko et al, 2014). This supports the

notion that, next to CME, bulk retrieval (reviewed in Kokotos and

Cousin (2015)) may play a prominent role in hair cells (Lenzi et al,

2002; Neef et al, 2014; Revelo et al, 2014; Jung et al, 2015). SVs are

then rapidly reformed from endocytosed membranes (Kamin et al,

2014; Revelo et al, 2014), which seems to employ clathrin-depen-

dent and clathrin-independent mechanisms (Jung et al, 2015).

Importantly, the processes of exocytosis and endocytosis are inti-

mately coupled and tightly coordinated—both at classical neuronal

and IHC ribbon synapses—and the proper function of both types of

synapses depends on this coupling (Haucke et al, 2011; Wichmann

& Moser, 2015; Milosevic, 2018). In IHCs, AP-2, which interacts

with otoferlin (Duncker et al, 2013; Jung et al, 2015), has been

implicated in exocytosis and endocytosis coupling (Jung et al,

2015).

In neurons, a range of molecular key players have been identified

that orchestrate endocytic membrane retrieval and SV reformation

(Kononenko & Haucke, 2015; Milosevic, 2018); yet, their respective

relevance for these processes in IHCs remains unclear. In this

context, one interesting molecular target is the evolutionary

conserved family of endophilin-A proteins (henceforth “endo-

philin”), which are involved in endocytic membrane retrieval and

uncoating in neurons of invertebrates (Verstreken et al, 2002, 2003;

Schuske et al, 2003) and mammals (Milosevic et al, 2011;

Watanabe et al, 2018). The current view on mammalian endophi-

lins (A1-A3) pictures them as hubs of a protein network that co-

ordinates cargo packing, bud constriction, actin assembly, and

recruitment of factors needed for fission and uncoating (Saheki &

Camilli, 2012). Structurally, endophilins contain a BAR domain that

senses and induces membrane curvature, as well as a SH3 domain

that recruits the GTPase dynamin and the PI(4,5)P2 phosphatase

synaptojanin-1 to clathrin-coated pits (Verstreken et al, 2002, 2003;

Schuske et al, 2003; Perera et al, 2006; Ferguson et al, 2009;

Simunovic et al, 2017). Upon fission, PI(4,5)P2 degradation initiates

the shedding of clathrin adaptor proteins from the endocytosed

membranes, ultimately leading to the uncoating of SVs (Schuske

et al, 2003; Verstreken et al, 2003; Milosevic et al, 2011; Pechstein

et al, 2015; Watanabe et al, 2018).

To clarify a potential contribution of endophilins in IHC pre-

synaptic physiology, we performed a comprehensive functional and

morphological analysis encompassing single-cell RT–PCR,
immunoblotting, electron microscopy, immunohistochemistry,

patch-clamp recordings, biochemical interaction studies, and audi-

tory systems physiology using constitutive endophilin knockout

mice.

Results

All three endophilins are expressed in the cochlea

To investigate the expression of endophilin genes in the organ of

Corti and, more specifically, in IHCs, we collected mRNA from IHCs

of the apical cochlear coil of Wt mice (C57BL/6J, 2 weeks old, i.e.,

right after hearing onset). After reverse transcription, we performed

single-cell multiplex-nested real-time PCR. In these experiments, all

three endophilin-A transcripts (i.e., A1, A2, and A3; Fig 1A and B)

could be detected in all tested single IHC samples that were also

positive for the housekeeping gene HPRT (see Appendix Table S1

for primer sequences). Importantly, we could not detect endophilin

mRNAs in our negative control samples, i.e., a small volume of bath

solution that was collected in close proximity to the IHC row prior

to and directly after the extraction of the IHC cytoplasm. We note

that, while this approach does not provide a quantitative assessment

of expression levels due to the nature of the amplification procedure

with nested primer pairs, it reliably indicates the presence of endo-

philin-A1-3 mRNAs in IHCs.

To further investigate endophilin protein expression in situ, we

have tested several commercially available as well as custom-made

anti-endophilin-A antibodies (see Materials and Methods) in various

fixation and permeabilization conditions; yet, we did not obtain

specific immunolabeling in the organ of Corti. Therefore, we

proceeded to perform immunoblotting with KO-verified antibodies

(Milosevic et al, 2011) on cochlear samples of all genotypes using

hippocampal and cerebellar tissue extracts as positive controls.

Here, we detected bands with the expected molecular weight of

endophilin-A1 (~39 kD) and endophilin-A2 (~42 kD) in Wt

cochleae. These bands were absent in cochlear lysates of the respec-

tive KO genotypes, hence strongly suggesting target specificity

(Fig 1C–C0; c-adaptin was used as an independent loading control).

Taken together, these data indicate the expression of endophilins-

A1-3 in IHCs and show the presence of endophilin-A1 and endo-

philin-A2 protein in the murine cochlea.

Endophilin promotes Ca2+ influx and efficient SV replenishment
in IHCs

Next, we employed perforated patch-clamp recordings to assess

the role of endophilins in presynaptic IHC function. Since the

cumulative loss of all three endophilin genes is perinatally lethal,

we first prepared organotypic cultures of organs of Corti

harvested from endophilin-A1/2/3 triple KO (TKO; see Materials

and Methods for exact genetic descriptions and breeding schemes

of endophilin mutants) and endophilin-A1/3 double KO (1/3-

DKO) mice, as well as C57BL/6J pups within 3–8 h after birth.

Thereafter, organs of Corti were maintained in culture for 1 week

to enable synaptic maturation and the otoferlin-dependence of

exocytosis to be established (Sobkowicz et al, 1982; Vogl et al,
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2015) prior to detailed electrophysiological analysis (Fig 2A0). In

order to boost depolarization-induced exocytosis, whole-cell Ca2+

currents (ICa) and the ensuing exocytic membrane capacitance

changes (DCm) were recorded at an elevated extracellular Ca2+

concentration of 10 mM ([Ca2+]e; 1.3 mM is considered physio-

logical). In these experiments, IHCs of 1/3-DKOs exhibited a 25%

reduction of the presynaptic ICa and TKO IHCs showed a non-

significant trend toward smaller ICa (Fig 2A and A″, Imax:

!317 " 27.3 pA for TKO IHCs, !298 " 22.9 pA for 1/3-DKO,

and !403 " 32.2 pA for Wt; one-way ANOVA, F(2, 26) = 3.89,

P = 0.0334; post hoc Tukey’s test: P = 0.046 Wt versus 1/3-DKO;

P = 0.103 Wt versus TKO for the maximal ICa elicited by depolar-

ization to –17 mV). Interestingly, ICa of TKO IHCs showed

enhanced inactivation, as evident from a significantly reduced

fraction of ICa remaining at 100 ms of depolarization, which was

not found in 1/3-DKO IHCs (Fig 2B–B0, Inorm, res 100 ms: 0.65 " 0.02

for TKO IHCs, 0.73 " 0.02 for 1/3-DKO, and 0.71 " 0.02 for Wt;

one-way ANOVA, F(2, 26) = 4.89, P = 0.0158; post hoc Tukey’s

test: P = 0.046 for TKO versus Wt; P = 0.794 for 1/3-DKO versus

Wt). Such ICa reduction and enhanced ICa inactivation suggest a

functional interaction of endophilins and Ca2+ channel complexes,

which is in line with previous biochemical interaction studies

(Chen et al, 2003).

Recordings of exocytic changes in membrane capacitance

(DCm) showed impaired exocytosis. Exocytosis of the readily

releasable pool (RRP), as approximated by DCm responses to 20-

ms depolarizations, was significantly attenuated in 1/3 DKO IHCs

and tended to be reduced in TKO IHCs (one-way ANOVA, F(3,

33) = 5.35, P = 0.0041; post hoc Tukey’s test: P = 0.075 for Wt

versus TKO; P = 0.006 for Wt versus 1/3-DKO). Similarly,

sustained exocytosis, probed by 100-ms-long depolarizations,

tended to be attenuated in both genotypes (Fig 2C–C″, Kruskal–
Wallis statistic (KWS) = 10.93, P = 0.0121; post hoc Dunn’s test:

P = 0.220 for Wt versus TKO; P = 0.025 for Wt versus 1/3-DKO).

In contrast, no significant difference was found for responses to

short stimuli (< 10 ms, also see Appendix Tables S2 and S3),

indicating that endophilins are dispensable for SV fusion. In order

to disentangle the reduction of exocytosis caused by diminished

ICa from a potential impairment of SV replenishment in the

absence of endophilin-A1 and endophilin-A3, we attempted to

match the decreased ICa amplitudes by performing additional

recordings from Wt (C57BL/6J) IHCs at lower [Ca2+]e (i.e., 6 mM

instead of 10 mM; Fig 2C0–D). Under these conditions, ICa of Wt

IHCs closely resembled the ones of endophilin-deficient mutant

IHCs. However, the extent of exocytosis from Wt IHCs still

exceeded that of cultured 1/3-DKO and TKO IHCs for depolariza-

tions ≥ 10 ms and remained comparable to the data acquired at

10 mM [Ca2+]e (Fig 2C0–C″). Hence, the reduction in ICa in the

endophilin mutants cannot fully account for the observed impair-

ment of exocytosis, suggesting an additional requirement for

Figure 1. Endophilin-A expression in the cochlea.

A Schematic domain overview of endophilins-A1-3, highlighting the BAR
and SH3 domains.

B–B0 Schematic overview of the sample collection procedure for single-cell
RT-PCR (scPCR). Single IHC cytoplasms from acutely dissected organs of
Corti of C57BL/6J (Wt) mice after hearing onset were aspirated and
processed for scPCR as depicted. (B0) Expression analysis of endophilins-
A1-3 from individually isolated IHC cytoplasms using RT–PCR from a
representative experimental run. Please note that for these experiments,
negative bath control samples from before and after the isolation
procedure were an essential requirement to ensure lack of
contamination from cellular debris in the bath solution. HPRT was used
as a housekeeping gene.

C–C0 Immunoblotting of tissue lysates from postnatal day (p)15 Wt (C57BL/6J),
1-SKO, 1/2-DKO, and 1/3-DKO revealed protein expression of endophilin-
A1 and endophilin-A2 in the murine cochlea and ensured antibody
specificity. Unfortunately, none of the commercially available
endophilin-A3 antibodies we tested in these experiments gave a specific
signal for A3 in cochlear extracts, but rather appeared to (also) detect
A1. c-Adaptin was used as loading control. All antibody epitopes localize
to the distinct C-terminal regions of the different endophilin-A family
members. Hi, hippocampus; Ce, cerebellum; Co, pooled cochleae from a
single individual of the indicated genotype; Md, modioli (micro-dissected
and pooled from 10 Wt animals); OC, organs of Corti (micro-dissected
and pooled from 10 Wt animals).

Source data are available online for this figure.
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endophilin-A1 and endophilin-A3 in exocytosis, e.g., in vesicle

replenishment. This is further illustrated by plotting DCm versus

the corresponding charge of ICa, which shows a reduced efficiency

of ICa to drive exocytosis (Fig 2D; individual statistics for all

depolarization durations can be found in Appendix Table S4).

Taken together, patch-clamp analysis of organotypically cultured

IHCs from endophilin mutants revealed reduced ICa amplitudes

alongside altered ICa inactivation and impaired exocytosis. More-

over, our data imply a partial functional dispensability of endo-

philin-A2 in the presence of endophilin-A1 and endophilin-A3,

since both ICa and DCm amplitudes were statistically indistinguish-

able between 1/3-DKO and TKO IHCs.

Guided by these results, we focused our further perforated patch-

clamp studies on ICa and exocytosis of 1-SKO and 1/3-DKO IHCs

after hearing onset (at p14-17) and at near physiological [Ca2+]e
(2 mM). Analogous to our observations from cultured immature

IHCs, we found a statistically significant reduction of ICa of ~20%
for 1-SKO and 1/3-DKO IHCs under these conditions (Fig 3A–A0;

Imax: !128 " 5.0 pA for 1-SKO IHCs, !129 " 2.1 pA for 1/3-DKO,

and !153 " 5.0 pA for Wt; KWS = 18.72; P < 0.0001; post hoc

Figure 2. Reduced presynaptic Ca2+ currents and exocytosis in endophilin-deficient IHCs maintained in organotypic culture.

A–A″ Ca2+ current–voltage relationships evoked by incremental 15-ms step depolarizations from !87 mV to +58 mV revealed a ~25% reduction of ICa in 1/3 DKO and
TKO mice. (A0) Due to the perinatal lethality of TKO mice, detailed electrophysiological characterization of TKO IHCs had to be performed on organotypically
cultured organs of Corti after 7 days in vitro (DIV). C57BL/6J (Wt) and 1/3-DKO served as controls. Please note that all recordings from cultured IHCs
were performed at [Ca2+]e of 10 mM to maximize IHC exocytic performance. (A″) Quantification and statistical analysis of individual maximum ICa amplitudes
(Imax) of the respective genotypes revealed a significant reduction in Imax in both endophilin mutant genotypes (*P = 0.046, one-way ANOVA with post hoc
Tukey’s test).

B–B0 Ca2+ current inactivation was probed by test pulses of 100 ms to the Imax potential and revealed a significantly stronger inactivation phenotype in TKO IHCs when
directly compared to Wt and 1/3-DKO cells. (B0) Quantification and statistical analysis of the residual current (Ires 100 ms) at the end of the test pulse (*P = 0.046,
one-way ANOVA with post hoc Tukey’s test).

C–C″ Representative ICa (upper panel) and Cm (lower panel) in response to a 50 ms depolarizing step to the potential eliciting Imax. (C0) Exocytic DCm and corresponding
QCa elicited by depolarizations of stimulus durations from 2 to 100 ms for all respective genotypes and at [Ca2+]e = 6 mM for a second set of recordings from
wild-type IHCs to experimentally approximate the decreased ICa observed in the endophilin mutants. (C″) Magnification of the initial, short depolarizing steps (2–
20 ms) for clarity. Exocytic DCm of cultured endophilin-deficient IHCs was strongly reduced (*P < 0.05; **P < 0.01; one-way ANOVA with post hoc Tukey’s or non-
parametric K–W with post hoc Dunn’s test; please also refer to Appendix Tables S2 and S3 for detailed statistical analysis).

D The reduced Ca2+ efficiency of exocytosis (DCm/QCa) in endophilin-deficient IHCs indicates that diminished Ca2+ influx cannot fully account for the reduction of
exocytosis (*P < 0.05; **P < 0.01; one-way ANOVA with post hoc Tukey’s or non-parametric K–W with post hoc Dunn’s test; please also refer to Appendix Table S4
for detailed statistical analysis).

Data information: For panels (A–D), the following numbers of replicates were used: Wt 10 mM [Ca2+]e number of cells (n) = 12, number of animals (N) = 9, number of
organotypic cultures (C) = 5; Wt 6 mM [Ca2+]e n = 8/N = 5/C = 4; 1/3-DKO 10 mM [Ca2+]e n = 8/N = 7/C = 3; TKO 10 mM [Ca2+]e n = 9/N = 7/C = 4. Error bars in (C0–D)
indicate the SEM; box plots in (A″) and (B0) illustrate the median with the interquartile range, whiskers indicate 10–90% of data points, and the squares present the
respective mean value.
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Figure 3. Disruption of endophilins reduces Ca2+ influx of IHCs after hearing onset.

A Ca2+ current–voltage relationships in response to 10-ms step depolarizations. (A0) The peak of Ca2+ influx was significantly reduced in endophilin 1-SKO
(**P = 0.0024) and 1/3-DKO (***P = 0.0003) when compared to Wt (Wt n = 30/N = 20; 1-SKO n = 15/N = 9; 1/3-DKO n = 39/N = 20; non-parametric K–W with post
hoc Dunn’s correction).

B Quantification of CtBP2-labeled ribbons revealed a number of approximately 14–15 ribbon synapses per IHC comparable across all genotypes (Wt n = 12/N = 9; 1-
SKO n = 6/N = 4; 1/3-DKO n = 8/N = 6; one-way ANOVA, P = 0.717).

C Quantification of the cross-sectional area of CaV1.3 immunofluorescence revealed approx. 34% smaller clusters in 1-SKOs and 24% smaller clusters in 1/3-DKOs (Wt
n = 153/N = 2; 1-SKO n = 102/N = 2; 1/3-DKO n = 441/N = 4; ***P < 0.0001; K-W and post hoc Dunn’s test).

D Representative maximum projections of confocal sections from organs of Corti of p15 Wt, 1-SKO, and 1/3-DKO mice stained for CtBP2 to label synaptic ribbons. Please
note that CtBP2 expression is also found in the nucleus (nuclei are highlighted by dashed circles in the individual panels). Scale bars: 10 lm.

E 2D STED images of IHC ribbon synapses stained for CtBP2 (magenta) and CaV1.3 (green). CaV1.3 Ca
2+ channels remain clustered at AZs of 1-SKO and 1/3-DKO IHCs.

Scale bars: 1 lm.

Data information: Box plots in (A0–C) illustrate the median with the interquartile range, whiskers indicate 10–90% of data points, and the squares present the respective
mean value.
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Dunn’s test: P = 0.0024 for Wt versus 1-SKO and P = 0.0003 for Wt

versus 1/3-DKO for the maximal ICa elicited by depolarization to

!14 mV). ICa inactivation at 200 ms of depolarization was

not altered in 1-SKO, 1/2 DKO, and 1/3-DKO IHCs (Fig EV1;

Inorm, res 200 ms: 0.72 " 0.02 for 1-SKO IHCs, 0.74 " 0.01 for 1/2-DKO,

0.73 " 0.02 for 1/3-DKO, and 0.70 " 0.02 for Wt; one-way ANOVA,

F(3, 55) = 0.95, P = 0.4218), likely suggesting functional redundancy

between the different endophilin genes.

In order to explore potential reasons for the observed reduction of

ICa, such as a decreased number of IHC synapses or a lower abun-

dance of CaV1.3 Ca2+ channels per AZ, we performed semi-quantita-

tive immunohistochemistry on IHCs from 2-week-old Wt, 1-SKO, and

1/3-DKO mice. Firstly, we counted the number of synaptic ribbons

per IHC as a proxy of the number of afferent synapses (Khimich et al,

2005; Meyer et al, 2009, Fig 3B and D) and found no difference

between the genotypes (one-way ANOVA, F(2, 23) = 0.337,

P = 0.717). Secondly, all ribbons appeared anchored at the AZ

(Fig 3E and electron microscopy data in Fig 8A, see below), where

presynaptic Ca2+ channels remained clustered (Fig 3E). In line with

the reduced ICa amplitudes, super-resolution 2D STED imaging of

CaV1.3 immunofluorescence revealed a significant decrease in cross-

sectional area of presynaptic Ca2+ channel clusters of 1-SKO and 1/3-

DKO IHCs (Fig 3C and E; Wt: 0.032 " 0.001 lm2 versus 1-SKO:

0.021 " 0.001 lm2 versus 1/3-DKO: 0.024 " 0.001 lm2; KWS =
76.14, P < 0.0001; post hoc Dunn’s test: P < 0.0001 for Wt versus

1-SKO and P < 0.0001 for Wt versus 1/3-DKO).

Next, we tested the exocytic capacity of endophilin-deficient IHC

ribbon synapses after the onset of hearing by measuring exocytic

DCm in response to step depolarizations to –14 mV eliciting maximal

ICa at near physiological [Ca2+]e (2 mM, Fig 4). In line with our

observations from organotypically cultured IHCs, we found

sustained exocytosis to be reduced in 1/3-DKO IHCs (Fig 4A and B;

e.g., DCm, 200 ms for 1/3-DKO IHCs was 55.11 " 4.8 fF versus

88.16 " 13.11 fF for Wt IHCs; KWS = 6.03, P = 0.0490; post hoc

Dunn’s test: P = 0.0470 for 1/3-DKO versus Wt; individual Tukey’s/

post hoc Dunn’s results for all other depolarization durations can be

found in Appendix Tables S5 and S6). Likewise, when approximat-

ing the rate of sustained exocytosis as (DCm, 200 ms - DCm, 20 ms)/

180 ms, we found a tendency for lower rates in endophilin-deficient

IHCs (0.25 " 0.02 fF/ms for 1/3-DKO, 0.27 " 0.03 fF/ms for 1-SKO

versus 0.42 " 0.06 fF/ms for Wt; KWS = 5.223, P = 0.0734). This

trend remained also after normalizing to the integrated ICa (QCa),

suggesting an exocytic deficit beyond that explained by reduced

Ca2+ influx, as already seen in cultured IHCs (Fig 4C; e.g., for

200 ms: 2.54 " 0.19 fF/pC for 1/3-DKO versus 3.34 " 0.52 fF/pC

for 1-SKO versus 3.81 " 0.45 fF/pC for Wt; KWS = 6.70, P = 0.0352,

post hoc Dunn’s test: P = 0.0323 for 1/3-DKO versus Wt and

P > 0.99 for 1-SKO versus Wt; individual post hoc Tukey’s/Dunn’s

results for all other depolarization durations can be found in

Appendix Table S7).

Finally, to assess the consequences of endophilin disruption at the

level of the auditory system, we recorded auditory brainstem

responses (ABRs) from 1-SKO, 1/3-DKO and Wt mice at 6 weeks of

age. ABRs reflect the synchronous activation of auditory neurons of

the various stages of the early auditory pathway; e.g., Jewett wave 1

represents the compound action potential of the SGNs, and Jewett

waves 2 and 3 reflect signal propagation in the cochlear nucleus

(Melcher et al, 1996). Curiously, despite the morphological and

physiological deficiencies found at the synapses of endophilin-defi-

cient IHCs, ABR thresholds and amplitudes were comparable between

Wt, 1-SKO and 1/3 DKO mice (Fig EV2; note that 1/2-DKO and TKO

mice could not be tested due to their premature lethality).

In summary, our combined functional and morphological data

indicate a role of endophilins in promoting the abundance of CaV1.3

Ca2+ channels at IHC AZs. In addition, our data suggest that endo-

philins are required for efficient SV replenishment to IHC AZs as

required for sustained exocytosis.

Endophilin-A1 interacts with otoferlin, a key player in hair
cell exocytosis

Our patch-clamp recordings implied that the reduced Ca2+ currents

seen in endophilin mutants cannot fully account for the deficits in

SV replenishment, and hence, we focused our search on putative

presynaptic effector molecules that may be regulated by endophi-

lins. One such potential candidate is the multi-C2 domain protein

otoferlin—a key player that is essentially required for IHC exocyto-

sis (Roux et al, 2006; Pangrsic et al, 2010; Vogl et al, 2016). Otofer-

lin has previously been shown to interact with endocytic adaptor

protein AP-2 (Duncker et al, 2013; Jung et al, 2015), and this inter-

action might serve the clearance of release sites after SV fusion

(Jung et al, 2015), therefore placing otoferlin in the same subcellu-

lar framework where endophilins are thought to operate. We char-

acterized otoferlin levels and its subcellular distribution in

endophilin mutant IHCs using semi-quantitative immunohistochem-

istry (Fig 5). Interestingly, our analysis revealed a reduction of over-

all IHC otoferlin immunofluorescence intensity by 28.4 " 3.5% in

1/3-DKOs (Fig 5A–C; unpaired t-test, t = 6.71, P < 0.0001 Wt versus

1/3-DKO) that however was much less pronounced than in IHCs of

AP-2l mutants (by approximately 70%) (Jung et al, 2015). Further-

more, when assessing the subcellular distribution pattern of otofer-

lin in mutant IHCs via line profile analysis along the longitudinal

IHC axis, we found comparable patterns of otoferlin distribution,

but a reduction in the overall signal intensity in 1/3 DKO IHCs

(Fig 5C). In contrast, the fluorescence intensity of myosin 6, previ-

ously characterized as regulator of IHC maturation and interaction

partner of otoferlin (Roux et al, 2009) as well as of AP-2, seemed

unchanged in response to the disruption of endophilins (Fig EV3

and Appendix Fig S1, respectively).

In light of the reduction of otoferlin even in the partial absence of

endophilin, we aimed to better understand the relation of these

proteins. Thus, we tested whether otoferlin interacts with endo-

philin-A1 by immunoprecipitation. An interaction between otoferlin

and endophilin-A1 in vitro was revealed by specific enrichment of

endophilin in anti-GFP immunoprecipitates from HeLa cells express-

ing endophilin-A1-mRFP and EGFP-otoferlin (Fig 5D and D0).

Notably, using an alternative experimental approach, bead-coupled

EGFP-otoferlin was able to bind highly purified endophilin-A1

(Fig 5E and E0), thereby suggesting an interaction of endophilin-A1

and otoferlin in both systems. In IHCs, such an interaction might aid

the coupling of exocytosis and endocytosis.

Endophilin is involved in endocytic membrane retrieval in IHCs

Next, we performed Cm measurements to study whether endophilin

deficiency alters endocytic membrane retrieval following
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depolarization-induced exocytosis in IHCs after hearing onset. We

employed short and long step depolarizations to !14 mV to trigger

different amounts of exocytosis (Fig 6). In IHCs, short depolariza-

tions (20 ms, recruiting the RRP) predominantly result in a slow,

near linear post-stimulus Cm decline back to baseline, which we

assume to reflect CME (Neef et al, 2014). Long depolarizations

(200 ms)—turning over in excess of 3–4 times the equivalent of the

RRP—additionally evoke an exponentially decaying Cm component

that likely involves bulk retrieval (Neef et al, 2014). In these

experiments, we also included 1/2-DKO IHCs into the analysis of

the endocytic membrane retrieval as a prominent role of endo-

philin-A2 in scission and SV reformation had been reported

previously (Renard et al, 2015). After a 20-ms depolarization, the

endocytic Cm decline was significantly slowed in IHCs of both 1/2-

DKO and 1/3-DKO (Fig 6A, C and D). Here, the mean slope of a

line fit to the endocytic Cm decline amounted to !0.51 fF/s and

!0.50 fF/s for 1/2-DKO and 1/3-DKO IHCs, respectively, compared

to !0.84 fF/s in Wt IHCs (Fig 6D; one-way ANOVA, F(2,

35) = 5.87, P = 0.0063; post hoc Tukey’s test: P = 0.0144 for 1/2-

DKO versus Wt and P = 0.0144 for 1/3-DKO versus Wt). More-

over, there was a trend toward a delayed Cm return to baseline for

IHCs of both mutants that did not reach statistical significance

(Fig 6C, one-way ANOVA, F(2, 35) = 1.67, P = 0.2025). A trend

toward slower linear Cm decline was also observed in the

responses to a 200-ms depolarization (following the exponential

phase of retrieval; Fig 6B and D; individual statistics for all endo-

cytosis parameters can be found in Appendix Table S8). These

data suggest a reduced rate of membrane retrieval by CME in the

absence of endophilins-A1/2 or endophilins-A1/3 in IHCs. In addi-

tion, we found a trend toward a smaller and slower exponential

phase of Cm decline in 1/2-DKO and 1/3-DKO IHCs following

200 ms of depolarization, which however did not reach statistical

significance (Fig 6E and F; yet, these data reach statistical signifi-

cance, if statistical outliers are excluded for the time constant,

KWS = 8.52 and P = 0.0141). In conclusion, our Cm measurements

indicate a role of endophilins particularly in the slow component

of IHC endocytic membrane retrieval, likely reflecting CME.

Endophilin deficiency impairs vesicle uncoating and synaptic
vesicle reformation

In order to further characterize the deficits in endocytosis revealed

by electrophysiology, we performed extensive morphological analy-

ses using electron microscopy and electron tomography. Consistent

with the immunohistochemical data, the general morphology and

plasma membrane anchoring of synaptic ribbons at presynaptic AZs

of all genotypes appeared normal (Fig 8A).

In a first step, we used random ultrathin sections to explore

the abundance of small, clear, and uncoated vesicles (diameter

< 70 nm, likely representing SVs), endosome-like vacuoles (ELVs),
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Figure 4. Sustained exocytosis is impaired in endophilin-deficient IHCs.

A Representative Ca2+ currents (upper panel) and exocytic membrane
capacitance increments (DCm; lower panel) in response to a 200-ms
depolarizing step to !14 mV.

B Exocytic ∆Cm (top) and corresponding Ca2+ current integrals QCa (bottom)
of Wt and endophilin-deficient IHCs in response to voltage steps from !84
to !14 mV of variable stimulus duration (5–200 ms). In 1/3-DKO IHCs, our
data indicate reduced sustained exocytosis to a strong depolarization
(200 ms; *P = 0.0470, K-W with post hoc Dunn’s test; please also refer to
Appendix Tables S5 and S6 for detailed statistical analysis). Inset: Initial
∆Cm showed comparable RRP exocytosis in endophilin-deficient IHCs.

C Ca2+ efficiency to drive exocytosis was reduced for strong depolarizations
(200 ms) in 1/3-DKO IHCs (*P = 0.0323, K–W with post hoc Dunn’s test;
please also refer to Appendix Table S7 for detailed statistical analysis).

Data information: For panels (A-C), the numbers of replicates were Wt n = 20/
N = 8; 1-SKO n = 10/N = 7; 1/3-DKO n = 28/N = 17. Data represent
averages " SEM.
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and clathrin-coated membrane profiles within a radius of 1 lm
from the synaptic ribbon (Fig 7A). For this analysis, we excluded

the SVs directly adjacent to the presynaptic ribbon and considered

them in a separate analysis (see below). The total number of small

uncoated cytosolic vesicles was elevated in 1-SKO IHCs, but

reduced in 1/2-DKO IHCs, while 1/3-DKOs displayed unaltered

vesicle counts compared to Wt (Fig 7B; KWS = 130, P < 0.0001;

post hoc Dunn’s results can be found in Appendix Table S9).

Additionally, the area covered by ELVs was increased in 1/2-DKO

and 1/3-DKO (Fig 7C; KWS = 70.17, P < 0.0001; post hoc Dunn’s

results can be found in Appendix Table S9), suggesting compro-

mised reformation of SVs from ELVs in these genotypes. Quan-

tification of clathrin-coated profiles included the following: (i)

coated vesicles with diameters < 70 nm, (ii) fully coated vacuoles

with diameters > 70 nm, (iii) coated pits at the plasma membrane,

and (iv) coated pits budding from ELVs. We observed an overall

significantly increased number of coated structures in IHCs of 1-

SKOs, and, even more prevalently, in 1/3-DKOs and 1/2-DKO

compared to Wt (Fig 7D; KWS = 66.1, P < 0.0001). While 1-SKO

AZs exhibited more coated vesicles, numbers of coated vacuoles

and coated pits budding from the plasma membrane were

increased at AZs of both DKOs (Fig 7D0; coated SVs: KWS = 27.13,

P < 0.0001; coated vacuoles: KWS = 33, P < 0.0001; coated pits:

KWS = 79.67, P < 0.0001; coated pits at ELVs: KWS = 6.503,

P = 0.0895; post hoc Dunn’s results for all data sets can be found

in Appendix Table S9). These data point towards impaired SV

uncoating, taking effect already in 1-SKOs as well as additional

deficits in fission and/or membrane bending in 1/2-DKOs and 1/3-

DKOs during CME.

Secondly, we analyzed small vesicles in direct ribbon proximity

(diameters < 70 nm, clear, and uncoated), hereafter categorized as

SVs, using electron microscopy of random ultrathin sections

Wt 1/3-DKO

C

 ytisnetni lexip nacs enil nilrefot
O

UA[
] 

80

60

40

20

1.00.80.60.40.20.0

A

B

1/3-DKO
Wt

min

max

Distance (norm.) 

0.0

1.0

0

40

80

120 t
W ot .

mron ytisnetni nilrefot
O

%[
] 

***

D

En
do

A1 100 kDa

70 kDa

input bound non-bound 

Otof
-G

FP

+ A
1-R

FP

GFP
+ A

1-R
FP

Otof
-G

FP

+ A
1-R

FP

GFP
+ A

1-R
FP

Otof
-G

FP

+ A
1-R

FP

GFP
+ A

1-R
FP

1AodnE

input bound non-bound 

40 kDa

input bound non-bound 

Otof
-G

FP

+ p
A1

Otof
-G

FP

+ p
A1

Otof
-G

FP

GFP+p
A1

GFP+p
A1

GFP

Otoferlin
  -GFP

OtofGFP
A1

RFP

endoA1
-RFP purified 

endoA1 (pA1)
+

Otoferlin-GFP

OtofGFP
pA1

pA1
pA1

E

Agarose
bead

Agarose
bead

D′

E′

Figure 5. Disruption of endophilins causes a reduction of IHC otoferlin levels.

A Confocal maximum projections of otoferlin-immunolabeled IHCs from p15 Wt and 1/3-DKO mice illustrated with an intensity-coded lookup table where brighter
colors indicate higher intensity. Scale bars: 5 lm.

B Otoferlin levels were reduced by approx. 28.4 " 3.5% in 1/3-DKO IHCs compared to Wt IHCs (relative intensities normalized to Wtavg; Wt n = 31 images (229 IHCs)/
N = 5 organs of Corti (three animals); 1/3-DKO n = 20 images (196 IHCs)/N = 5 organs of Corti (four animals); unpaired Student’s t-test; ***P < 0.001; box plots
illustrate the median with the interquartile range, whiskers indicate 10–90% of data points, and the squares present the respective mean value).

C Normalized otoferlin intensity line profiles through single IHCs of the respective genotypes at a longitudinal central plane through the nucleus from apical (0.0) to
basal (1.0) revealed similar distribution patterns of otoferlin in IHCs of Wt and 1/3-DKO, but an overall reduction of otoferlin levels throughout the entire cell in 1/3-
DKOs. Traces indicate the mean pixel intensity " SEM; Wt n = 123/N = 3; 1/3-DKO n = 124/N = 3.

D, E Otoferlin interacts with endophilin-A1. (D, D0) Interaction of otoferlin and endophilin-A1 detected by co-IP in HeLa cells co-expressing GFP-otoferlin and RFP-
endophilin-A1. Otoferlin-GFP was immunoprecipitated (IP) by GFP-Trap beads, and blots were probed with a KO-validated anti-endophilin-A1 antibody. (E, E0)
Exogenously overexpressed GFP-otoferlin was immunoprecipitated using GFP-Trap beads and incubated with purified endophilin-A1 (pA1). IP was then followed by
immunoblotting with an anti-endophilin-A1 antibody.

Source data are available online for this figure.
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(Fig 8A–D). Here, we observed an overall reduction of SVs at the

AZs of 1/2-DKO and 1/3-DKO IHCs. We further categorized SVs into

ribbon-associated SVs (RA-SVs) and membrane-proximal SVs (MP-

SVs) (Fig 8B). The number of RA-SVs was significantly reduced in

1/2-DKO and 1/3-DKO IHCs compared to Wt (Fig 8C: one-way

ANOVA, F(3, 417) = 38.4, P < 0.0001; post hoc Tukey’s analysis for

all data sets can be found in Appendix Table S11) with the

membrane-distal half of the ribbon being affected to a greater extent

than the membrane-proximal half (Fig 8C0: KWS = 82.4,

P < 0.0001; post hoc Dunn’s analysis can be found in

Appendix Table S11). Likewise, the number of MP-SVs was reduced

in IHCs lacking endophilins-A1/A2 or endophilins-A1/A3 (Fig 8D:

one-way ANOVA, F(3, 425) = 17.6, P < 0.0001; post hoc Tukey’s

results for all data sets can be found in Appendix Table S11).

In order to further decipher the distribution of vesicles and ELVs

at the ribbon in 3D, we additionally performed 3D electron tomogra-

phy, which offers an improved axial resolution to revisit our analysis

of 1/2-DKO and 1/3-DKO IHCs (Fig 8E–J). Here, the reconstruction

of the electron tomograms (Fig 8E, an overview of the analysis

parameters and criteria can be found in Fig 8F) corroborated the

above notions and revealed a statistically significant reduction of

RA-SVs (Fig 8G: one-way ANOVA, F(2, 21) = 3.899, P = 0.036; post

hoc Tukey’s test: P = 0.023 for 1/2-DKO versus Wt and P = 0.14 for

1/3-DKO versus Wt) and of MP-SVs (Fig 8H; one-way ANOVA,

Figure 6. Slowed endocytic membrane retrieval in endophilin-deficient IHCs.

A, B Endocytosis was assessed by determining the decrease in Cm during 20 s post-depolarization in perforated patch-clamp recordings from Wt, 1/2-DKO and 1/3-DKO
IHCs. The two kinetic components are presented as average ∆Cm recordings after (A) 20 ms (Wt n = 12/N = 8; 1/2-DKO n = 13/N = 7; 1/3-DKO n = 13/N = 10) and
(B) 200 ms (Wt n = 12/N = 8; 1/2-DKO n = 13/N = 6; 1/3-DKO n = 14/N = 10) depolarization stimuli.

C Average time of return to baseline obtained by fitting a linear function to the Cm data following a 20-ms depolarization.
D Average slope of the linear component of endocytosis for 20-ms and 200-ms depolarizing pulses, obtained from fitting Cm data for 20 s after cessation of the 20-

ms depolarizations or for the last 10 s of the Cm recording for 200-ms depolarizations (*P < 0.05; one-way ANOVA with post hoc Tukey’s or non-parametric K-W
with post hoc Dunn’s test).

E, F Average amplitude (E) and time constant (F) of the exponential component obtained from fits to Cm data following 200-ms depolarization (nexp fit = 11 for Wt, 10
for 1/2-DKO, and 11 for 1/3-DKO; x data points in (E) correspond to IHCs with no exponential component in Cm). ⊗ corresponds to statistically identified outliers.

Data information: For panels (A, B), data represent grand averages " SEM; for (C–F), box plots illustrate the median with the interquartile range, whiskers indicate 10–
90% of data points, and the squares present the respective mean value. Please also refer to Appendix Table S8 for detailed statistical analysis.
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F(2, 21) = 4.912, P = 0.0178; post hoc Tukey’s test: P = 0.014 for 1/

2-DKO versus Wt and P = 0.051 for 1/3-DKO versus Wt) in 1/2-DKO

IHCs. The fraction of RA-SVs of the total count of SVs at the AZ was

not significantly affected (one-way ANOVA; F(2,21) = 0.4416,

P = 0.6488; see Appendix Fig S2B). Studying SV diameters with the

greater precision of tomography, we found larger SVs at 1/2-DKO

AZs, but not at 1/3-DKO AZs (Fig 8I; one-way ANOVA,

F(2, 21) = 11.59, P = 0.0004; post hoc Tukey’s test: P = 0.0215 for

1/2-DKO versus Wt; P = 0.176 for 1/3-DKO versus Wt; P = 0.0003

for 1/2-DKO versus 1/3-DKO). Moreover, tomograms showed an

increased abundance of ELVs at 1/2-DKO AZs and a non-significant

trend for more ELVs at 1/3-DKO AZs (Fig 8J; one-way ANOVA,

F(2, 21) = 11.59, P = 0.0004; post hoc Tukey’s test: P = 0.015 for 1/

2-DKO versus Wt; P = 0.136 for 1/3-DKO versus Wt).

Finally, we examined the effects of potassium stimulation on the

ultrastructure of endophilin-deficient IHCs. In these experiments,

we subjected acutely dissected 1/2-DKOs—the genotype with the

most perturbed presynaptic morphology—and Wt organs of Corti to

a stimulatory solution (15 min, 50 mM KCl, 5 mM CaCl2) prior to

immediate chemical fixation (Fig 9A). Analogous to the

Figure 7. Decreased number of small vesicles, accumulations of coated structures and ELVs at IHC synapses of endophilin mutants.

A Representative electron micrograph illustrating the region of interest for analysis within a radius of r = 1 lm from the ribbon center (exemplary for a 1/3-DKO
specimen). Graphical aids indicate small vesicles, ELVs, and different subpopulations of coated structures quantified in (B–D). Scale bar: 500 nm.

B While an increased number of small uncoated vesicles could be observed at 1-SKO AZs, reduced numbers of uncoated vesicles were present in a 1 lm radius around
the ribbon of 1/2-DKOs. RA-SVs and MP-SVs were excluded from this quantification.

C Accumulations of ELVs occurred in 1/2-DKO and 1/3-DKO IHCs, as measured by the relative cumulative ELV area per section.
D Increased overall number of coated structures in endophilin mutants. (D0) Prominent accumulations of coated pits could be observed in 1/2-DKO and 1/3-DKO IHCs

alongside a shift toward more coated vacuoles (d > 70 nm) in 1/2-DKO IHCs and 1/3-DKO IHCs.

Data information: For panels (B–D), the following numbers of replicates were used: Wt n = 72/N = 2; 1-SKO n = 106/N = 3; 1/2-DKO n = 129/N = 3; 1/3-DKO n = 172/
N = 6. Box plots illustrate the median with the interquartile range, whiskers indicate 10–90% of data points, and the squares present the respective mean value; K–W
followed by Dunn’s test; *P < 0.05; **P < 0.01; ***P < 0.001. Please also refer to Appendix Tables S9 and S10 for detailed statistical analysis.
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unstimulated probes, we compared SV pools in direct vicinity of the

ribbon. Here, both, RA- and MP-SV numbers were significantly

lower in stimulated 1/2-DKO compared to stimulated Wt (Fig 9B

and C; Mann–Whitney test, for RA-SVs: U = 368, P < 0.0001; for

MP-SVs: U = 783, P = 0.0438). Moreover, all findings made within

the analyzed 1 lm perimeter of the ribbon of unstimulated 1/2-DKO

IHCs compared to unstimulated Wt IHCs were also present in the

stimulated IHCs of 1/2-DKO (compared to stimulated Wt IHCs), but

to a greater extent. We found (i) reduced numbers of small uncoated

cytosolic vesicles (Fig 9D; Student’s t-test, t = 4.67; P < 0.0001) and

(ii) vast accumulations of ELVs (Fig 9E; Mann–Whitney test,

U = 264; P < 0.0001). The formation of coated pits at ELVs was

more frequently seen in stimulated 1/2-DKO than in stimulated Wt

or unstimulated samples (Fig 9A and F0; Mann–Whitney test,

U = 623, P = 0.001; see also Appendix Table S13 for the compar-

isons of other coated structures), again pointing toward a function

of endophilin in clathrin-dependent SV reformation from ELVs.

In summary, our electrophysiological and ultrastructural analy-

ses indicate that loss of endophilins from IHCs impaired, but did not

abolish, presynaptic endocytosis. Fission and uncoating of clathrin-

coated membranous structures, e.g., processes such as clathrin-

dependent SV reformation, seem to be facilitated by—but do not

essentially require—endophilins in IHCs.

Discussion

The presented morphological and physiological analysis of IHC

ribbon synapses lacking endophilins provides novel insights into the

molecular regulation of transmitter release and membrane retrieval

in IHCs. Based on our findings, we propose that the main functions

of the endophilin family at IHC synapses are to promote (i) the orga-

nization of Ca2+ channel clusters and presynaptic Ca2+ influx, (ii)

replenishment of SVs to the release sites, (iii) coupling of exocytosis

and endocytosis, probably via interaction with otoferlin, (iv) endo-

cytic membrane retrieval, and (v) SV reformation from clathrin-

coated structures (summarized in the cartoon in Fig 10).

Endophilin-A1 positively regulates the abundance and modulates
the function of CaV1.3 channels at IHC synapses

While endophilins are indispensable for life, they do not seem to be

required for the development and survival of the organ of Corti,

even though single-cell RT–PCR indicated the expression of all three

endophilins in IHCs. Given the perinatal lethality of endophilin TKO

mice, we analyzed their IHCs in organotypic cultures, which did not

show obvious developmental or gross morphological deficits. They

did, however, show a reduction of depolarization-evoked Ca2+

currents and enhanced inactivation kinetics (in the TKO), features

that could partly also be recapitulated in the viable 1-SKOs and 1/3-

DKO mice after hearing onset. Moreover, STED microscopy of

CaV1.3 immunofluorescence indicated a reduction in Ca2+ channel

cluster size at the presynaptic AZ membrane of endophilin mutants.

These observations provide insights into the functional conse-

quences of the interaction of endophilins with Ca2+ channels that

had previously been reported by biochemistry (Chen et al, 2003).

To our knowledge, this is the first report showing such a positive

regulation of Ca2+ channel abundance and function (i.e., inhibiting

inactivation) by endophilins. The Ca2+ current inactivation pheno-

type we observed in organotypically cultured IHCs of TKO mice

appeared to be compensated in the other mutants studied—likely by

expression of the remaining endophilins—and hence seems to

require the complete loss of all endophilins to become apparent.

Notably, the observed decrease in whole-cell ICa was not accompa-

nied by (i) detachment of synaptic ribbons, (ii) loss of afferent

synapses, or (iii) mislocalization of presynaptic CaV1.3 Ca2+ chan-

nels. Indeed, the channels remained tightly clustered in the AZ

membrane underneath the normally sized synaptic ribbon, as

shown by super-resolution microscopy. Instead, our data reflect a

reduced presynaptic abundance of CaV1.3 Ca2+ channels, as demon-

strated by the decreased size of presynaptic Ca2+ channel clusters

of 1-SKOs and 1/3-DKOs. Future studies should test how endophi-

lins promote a large Ca2+ channel complement at the IHC AZ and

whether such positive regulation of Ca2+ channel abundance is

found also at other synapses.

◀ Figure 8. Absence of endophilins causes changes in SV number and distribution at IHC ribbon synapses.

A Representative electron micrographs of random ultrathin sections from IHC ribbon synapses of p15 mutants lacking different endophilin-A alleles. Scale bars:
200 nm.

B Schematic illustration depicting the analysis criteria for random section electron micrographs (not drawn to scale). Synaptic vesicles (SVs) were categorized as
ribbon-associated SVs (RA-SVs, green) or membrane-proximal SVs (MP-SVs, yellow).

C, D Reduced numbers of RA-SVs (C) and of MP-SVs (D) in IHCs of endophilin mutants with the strongest reduction observed in 1/2-DKO mice. One-way ANOVA
followed by post hoc Tukey’s test; **P < 0.01; ***P < 0.001.

C0 Reduced ratio of RA-SVs in the distal half of the ribbon over RA-SVs in its proximal half in 1/2-DKO and 1/3-DKO IHCs. K–W followed by Dunn’s test;
***P < 0.001.

E Representative 3D reconstructions of EM tomograms of 250-nm sections from Wt and endophilin DKO mutants. Please note the accumulations of ELVs in IHCs of
endophilin 1/2-DKOs. Analysis was performed on eight tomograms from two animals per genotype. Scale bars: 100 nm.

F Schematic illustration depicting the analysis criteria for tomograms (not drawn to scale). SVs were categorized as RA-SVs (green) and as MP-SVs (yellow). ELVs
(light blue) were counted if the smallest distance between ELV and ribbon was < 200 nm.

G Significantly reduced numbers of RA-SVs in 1/2-DKO IHCs (one-way ANOVA followed by post hoc Tukey’s test; *P = 0.0229).
H Significantly reduced numbers of MP-SVs in 1/2-DKO and a strong trend (P = 0.0511) toward less MP-SVs in 1/3-DKO IHCs (one-way ANOVA followed by post hoc

Tukey’s test; *P = 0.0138).
I Increased SV diameter in 1/2-DKOs, but unchanged SV diameter in 1/3-DKOs (one-way ANOVA followed by post hoc Tukey’s test; *P = 0.0154).
J Accumulation of ELVs with a minimal distance to the ribbon of less than 200 nm in 1/2-DKOs (one-way ANOVA followed by post hoc Tukey’s test; ***P = 0.0002).

Data information: Analysis was performed on random sections of ribbon-occupied AZs derived from several IHCs per genotype; the following numbers of replicates were
used: Wt n = 78 sections from N = 2 animals; 1-SKO n = 95, N = 3; 1/2-DKO n = 135, N = 3; 1/3-DKO n = 176, N = 6. Box plots illustrate the median with the
interquartile range, whiskers indicate 10–90% of data points, and the squares present the respective mean value. For panels (C-E), please also refer to Appendix Tables
S11 and S12 for detailed statistical analysis.
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Endophilins facilitate endocytic membrane retrieval and
reformation of SVs

Our focus on mature IHCs, moving away from cultured TKO cells,

leaves room for functional compensation given that endophilins have

previously been shown to exhibit redundancy for several cellular

functions (Milosevic et al, 2011; Murdoch et al, 2016). Nonetheless,

we found a modest accumulation of clathrin-coated pits (CCPs) in the

proximity of IHC ribbon-type AZs, suggesting that even partial

absence of endophilins becomes rate-limiting for the fission process at

IHC synapses. Indeed, this hypothesis is strongly supported by our

finding of a reduced rate in the slow (linear) component of endocytic

membrane retrieval in 1/2-DKO and 1/3-DKO IHCs that has previ-

ously been attributed to CME (Neef et al, 2014). In neurons, endo-

philin is recruited to CCPs prior to membrane fission (Ringstad et al,

1999; Perera et al, 2006; Ferguson et al, 2009; Milosevic et al, 2011;

Sundborger et al, 2011), and several other studies have reported

an accumulation of CCPs following perturbation of endophilin func-

tion (Ringstad et al, 1999; Gad et al, 2000; Schuske et al, 2003;

Verstreken et al, 2003; Sundborger et al, 2011). Yet, no significant
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Figure 9. High K+ stimulation leads to accumulations of ELVs and an increased occurrence of coated pits at ELVs in endophilin 1/2-DKOs.

A Representative electron micrographs of Wt and 1/2-DKO specimen indicate accumulations of ELVs and high numbers of coated pits forming from ELVs in ribbon
proximity (radius r = 1 lm from the center of the ribbon) in 1/2-DKOs after 15-min stimulation with extracellular solution supplemented with 50 mM K+. Scale bars:
200 nm.

B Significantly reduced numbers of RA-SVs in IHCs of 1/2-DKO compared to Wt after stimulation, as quantified using random ultrathin sections of ribbon-occupied AZs
from several IHCs per genotype. Mann–Whitney test; ***P < 0.001.

C Numbers of MP-SVs were slightly reduced in stimulated 1/2-DKOs compared to stimulated Wt. Mann–Whitney test; *P < 0.05.
D Numbers of small uncoated vesicles were reduced in a 1 lm radius around the ribbon of 1/2-DKOs compared to Wt after stimulation. RA-SVs and MP-SVs were

excluded from this quantification. Student’s t-test; ***P < 0.001.
E Stimulated 1/2-DKOs exhibited accumulations of ELVs in comparison with stimulated Wt. Mann–Whitney test; ***P < 0.001.
F Increased overall number of coated structures in stimulated endophilin 1/2-DKOs compared to stimulated Wt. (F0) Both, coated vesicles and coated pits forming at

ELVs, were significantly increased in 1/2-DKOs after stimulation. Mann–Whitney test; **P < 0.01; ***P < 0.001.

Data information: Stimulated Wt n = 36 sections from N = 2 animals; stimulated 1/2-DKO n = 76/N = 3; dashed lines indicate mean values of the unstimulated
conditions from the respective genotypes for reference. Box plots illustrate the median with the interquartile range, whiskers indicate 10–90% of data points, and the
squares present the respective mean value. For panels (B–F), please also refer to Appendix Table S13 for detailed statistical analysis.
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accumulation of CCPs was detected at cortical synapses at rest in

endophilin 1/2-DKO and TKO mice (Milosevic et al, 2011), suggesting

that fission was not rate-limiting in this model. Given that endophilins

interact directly with dynamin 1 (Ringstad et al, 1999; Anggono &

Robinson, 2007), they likely promote dynamin’s recruitment to the

neck of CCPs in IHCs, as they do in neurons (Perera et al, 2006; Fergu-

son et al, 2009; Milosevic et al, 2011). Furthermore, endophilins have

been reported to have a direct role in dynamin-independent scission

of tubular membrane necks in vitro (Renard et al, 2015; Simunovic

et al, 2017). It is therefore likely that endophilin promotes fission in

IHCs via recruitment of dynamins; however, a dynamin-independent

role of endophilin in fission remains possible.

Not only the higher numbers of coated pits but also larger coated

vacuoles in IHCs of both endophilin DKOs may serve as an indicator

for the impaired fission. Alternatively or in addition, endophilin

may, as previously reported in invertebrates (Bai et al, 2010), be

required for membrane bending prior to the pit formation, thus

resulting in larger coated structures. Curiously, the number of

coated vesicles was significantly increased in 1-SKO IHCs, but not in

1/2-DKO or 1/3-DKO IHCs, which have an overall much stronger

phenotype. Yet, if the numbers of coated vesicles and coated

vacuoles are pulled together, one can notice a shift toward larger

coated structures in the endophilin 1/2-DKO and 1/3-DKO IHCs.

One possible explanation here is that the recruitment of dynamin(s)

and/or the fission process may not be rate-limiting in the absence of

endophilin-A1 alone. The recruitment of synaptojanin-1 and/or

other factors involved in uncoating is already disturbed in synapses

of endophilin A1-SKOs, though. This finding is in agreement with

Milosevic et al (2011) who reported accumulations of CCVs at

murine cortical synapses of 1/2-DKO and TKO mice.

In addition to the increased occurrence of coated pits and coated

vesicles in the proximity of IHC ribbon synapses, we observed a
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2

Figure 10. Putative functions of endophilins in IHCs.

All three endophilin-A genes are present in IHCs. We found two novel functions of endophilin-A1: a positive regulation of IHC presynaptic Ca2+ influx and Ca2+ channel
abundance (1) and a physical interaction of endophilin-A1 with the exocytic protein otoferlin that might contribute to exocytosis–endocytosis coupling (2). Moreover, like in
neurons, all endophilins in IHCs seem to be involved in fission (3) and uncoating (4) of clathrin-coated organelles supporting CME, and, furthermore, promote SV reformation
from endosomal intermediates (5).
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prominent accumulation of other recycling intermediates with a

clathrin coat. Most strikingly in stimulated 1/2-DKO IHCs, coated

pits accumulated at ELVs, indicating that fission also displays the

rate-limiting step here. Consistent with a role of endophilins in SV

reformation, we further found an increased occurrence of ELVs at

endophilin 1/2-DKO mutant AZs and a larger area covered by ELVs

in both DKO IHCs. Similar accumulation of ELVs can also be found

in AP-2-deficient IHCs, which however, unlike endophilin mutants,

showed a clear reduction of coated structures in the ribbon’s vicinity

(Jung et al, 2015). One likely hypothesis is that clathrin recruitment

is disturbed in AP-2 mutants, whereas in endophilin mutants,

fission and/or uncoating limits endocytic membrane retrieval and

SV reformation.

Future studies should address to which extent the impaired SV

reformation contributes to the reduction of vesicle replenishment

during sustained exocytosis observed in our Cm recordings in endo-

philin-deficient IHCs (see below). Importantly, while a prominent

reduction in the number of SVs and protein levels of several main

SV proteins had been observed at cortical synapses, we detected

only mild—albeit statistically significant—alterations in vesicle

numbers of endophilin mutants (as reported in Figs 7 and 8). It is

not trivial to test the levels and distribution of proteins in this

system, in part since IHCs do not use the same molecular machinery

as cortical neurons: for example, (i) IHC exocytosis operates without

classical neuronal SNAREs including synaptobrevin-2 (Nouvian

et al, 2011) and (ii) since various antibodies against SV proteins are

found to be non-specific in our hands in IHCs (e.g., synaptojanin-1),

thus limiting the tools available to examine SV proteins in IHCs.

Nevertheless, while we observed altered levels/distribution of

otoferlin and Ca2+ channels, we did not detect obvious differences

in the levels and/or distribution of AP-2 or myosin 6, which has

previously been reported to be required for ribbon synapse matura-

tion and function (Roux et al, 2009), or AP-2.

Endophilins are involved in SV replenishment at IHC AZs

Double and triple mutants of endophilins showed reduced sustained

exocytosis, likely caused by impaired recruitment of SVs to the

release sites of the IHC AZ. It is unlikely that the deficits in

sustained exocytosis solely reflect the slowed reformation of SVs

(see above), as the overall numbers of small, uncoated vesicles were

unaltered in 1/3-DKOs. Here, to our knowledge for the first time, we

describe an interaction of endophilin-A1 with otoferlin, a critical

component in the processes of synaptic release and SV replenish-

ment in IHCs (Roux et al, 2006; Pangrsic et al, 2010; Vogl et al,

2016). This interaction appears especially relevant in light of the

previously described observations. In fact, in mouse mutants suf-

fering from reduced otoferlin levels, such as the otoferlin mutants

pachanga (Pangrsic et al, 2010) or otoferlin Ile515Thr (Strenzke

et al, 2016), as well as a knockout mouse model for AP-2l (Jung

et al, 2015), sustained exocytosis is likewise disturbed.

However, the mechanism at work here seems to be different

from what was observed in AP-2l KO. While endophilin-A1, like

AP-2, is an interaction partner of otoferlin (Duncker et al, 2013;

Jung et al, 2015), lack of endophilin does not cause a drastic

decrease in IHC otoferlin levels or alter the subcellular distribution

of otoferlin, as seen in AP-2l-deficient IHCs. In fact, genetic loss of

AP-2l results in dramatically decreased otoferlin expression and a

significant reduction in sustained exocytosis, as well as a profound

hearing loss, as assessed by ABR recordings. Importantly, AAV-

mediated AP-2l rescue succeeded in restoring otoferlin levels of AP-

2l mutant IHCs to ~50% of Wt levels, which sufficed to fully restore

the observed exocytosis phenotype and drastically improved ABR

performance. Based on these findings, we would suspect that the

overall reduction of ~25% of otoferlin levels in endophilin 1/3-DKO

should not have any major effects on IHC exocytic performance in

the endophilin mutants. Therefore, we propose that the impairment

of sustained exocytosis is not due to the reduction of otoferlin

levels. The precise mechanism(s) by which endophilins promote

replenishment of SVs to the release site remain to be investigated in

future studies. The reduced number of RA-SVs at endophilin-defi-

cient AZs might indicate that endophilins are required for efficient

resupply of SVs to the ribbon. Given that endophilins are capable of

interacting with actin and/or actin-modifying proteins such as inter-

sectin (Ferguson et al, 2009; Soda et al, 2012; Vehlow et al, 2013;

Pechstein et al, 2015; Yang et al, 2015), as well as that the F-actin

cytoskeleton is important for SV exocytosis in IHCs (Vincent et al,

2015; Guillet et al, 2016), an additional role of endophilin in SV

resupply to the ribbon appears likely. Alternatively or in addition,

endophilin binding to otoferlin at the release site might facilitate the

lateral diffusion of fused vesicular proteolipids (site clearance) as

proposed for AP-2 (Jung et al, 2015).

Materials and Methods

Animals

All experiments complied with national animal care guidelines and

were approved by the University Medical Center Göttingen Board

for animal welfare and the animal welfare office of the state of

Lower Saxony. Constitutive knockout mice for endophilin-A1

(E1!/!), endophilin-A2 (E2!/!), endophilin-A3 (E3!/!), described

in Milosevic et al (2011), were employed in two separate breeding

schemes: (i) perinatally lethal E1!/!E2!/!E3!/! (hereafter dubbed

TKO) mice, as well as viable E1!/!E2+/!E3!/! and E1!/!E2+/

+E3!/! mice (hereafter pooled, as we did not find significant dif-

ferences in IHC physiology and morphology and dubbed 1/3-

DKOs), were obtained from breeding E1!/!E2+/!E3!/! mice and

(ii) mating of E1!/!E2+/! mice yielded E1!/!E2!/! mice (here-

after dubbed 1/2-DKOs), and E1!/!E2+/! and E1!/!E2+/+ (here-

after pooled and dubbed 1-SKOs). E1+/+E2+/+E3+/+ with the

same genetic background (approximately 80% C57BL/6J + 20%

SV129) were bred to generate wild-type controls (Wt) for electron

microscopy, immunohistochemistry, and physiology experiments.

For gene expression studies and a set of cell physiology experi-

ments, we employed C57BL/6J mice as Wt controls. Most experi-

ments were performed at 2–3 weeks of age (after hearing onset

around postnatal day p12 in mice; Mikaelian & Ruben, 1965),

except for (i) cell physiology on TKO mice, which due to perinatal

lethality were used within hours after birth to prepare organotypic

cultures of organs of Corti, and (ii) auditory brainstem responses

that were recorded at 6–8 weeks (taking into consideration that

the C57BL/6J background is genetically predisposed for early onset

age-related hearing loss; Shnerson & Pujol, 1981). Both male and

female mice were used for all experimental paradigms.
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Single-cell RT–PCR

To determine the expression of the three endophilin-A genes in

IHCs, we isolated mRNA from single IHCs of C57BL/6J mice at

p14-16. In these experiments, individual IHCs were harvested from

the apical coils of freshly dissected organs of Corti after cleaning

off supporting cells. The filtered bath solution contained (in mM)

5.36 KCl, 141 NaCl, 0.5 MgSO4#7H2O, 10 HEPES, 1 MgCl2, 1.3

CaCl2 (pH 7.2, ~300 mOsm/l) and was continuously perfused at

high rate (1.7–3.3 ml/min) to clear off cell debris. Individual IHCs

were aspirated into a glass pipette containing 8 ll of intracellular

solution (135 mM KCl, 10 mM HEPES, 0.5 mM MgCl2#6H2O). The

pipette content was then transferred into first-strand cDNA synthe-

sis mix containing after dilution (in mM): 50 Tris–HCl (pH 8.4), 50

KCl, 5 MgCl2, 10 DTT, and 50 units of SuperScript II Reverse Tran-

scriptase (Invitrogen, Carlsbad, CA) and 40 units of RNaseOUT

ribonuclease inhibitor (Invitrogen). Aspirated bath solution in close

proximity to the IHCs before and after IHC harvesting was used as

a negative control. Reverse transcription (RT) was performed with

SuperScriptTM II RT and SuperScript! First-Strand Synthesis System

for RT–PCR according to the manufacturer’s instructions using

oligo(dT) primers and random hexamers (Invitrogen). After

ethanol precipitation, cDNA was pre-amplified with 20 cycles of a

multiplex PCR, and the reaction product was used to perform

quantitative real-time polymerase chain reaction (qPCR) using

SYBR! Green (Thermo Fisher). Sequences of endophilin-A-specific

primers are listed in Appendix Table S1. Each sample was

processed as technical duplicates using QuantStudioTM 6 Flex (Life

Technologies). Data were analyzed with QuantStudioTM Real-Time

PCR software.

Immunoblotting of cochlear extracts

Detection of endophilin-A1-3 protein from cochlear lysates was

performed by Western blotting essentially as described in Vogl et al

(2017). In brief, p15 animals of all respective genotypes were sacri-

ficed and cochleae, hippocampi, and cerebellar fragments were

dissected in ice-cold PBS. Additionally, modioli and organs of Corti

were carefully micro-dissected and respectively pooled from 10 Wt

animals to assess expression in the two tissue fractions. Pooled

cochleae of individual animals as well as the selected other tissue

samples were transferred to fresh tubes containing a modified RIPA

lysis buffer with the following composition (in mM): Tris–HCl (pH
7.5) (50), NaCl (150), Na-deoxycholate (1), EDTA (1), PMSF (1),

NaF (1), 1% IGEPAL (v/v), 0.25% (w/v), PhosSTOP phosphatase

inhibitors, and complete protease inhibitors (Roche Holding AG,

Basel, Switzerland). After manual homogenization of the tissue with

a Teflon plunger and initial incubation for 30 min on ice, samples

were transferred to a rotating wheel and gently lysed for an addi-

tional 2.5 h at 4°C. Subsequently, samples were centrifuged at

1,000 g for 15 min at 4°C to precipitate large cell debris and bone

fragments. Thereafter, the protein concentrations of the sample

supernatants were determined using a BCA protein determination

assay (Thermo Fisher) and the remaining samples were boiled for

6 min at 95°C in SDS sample buffer (62.5 mM Tris–HCl (pH 6.8),

10% (v/v) glycerin, 2% SDS (w/v), 5% (v/v) b-mercaptoethanol,

0.002% (w/v) brome phenol blue). Then, 10 lg of protein per

sample was subjected to 12% SDS–PAGE, transferred onto PVDF

membranes, and—after blocking with 5% (w/v) milk powder

dissolved in TBS-Tween—probed with the following primary anti-

bodies: goat anti-endophilin-A1 (sc-10875; Santa Cruz), rabbit anti-

endophilin-A2 (a kind gift of Pietro de Camilli, Yale University,

USA), goat anti-endophilin-A3 (sc-10880; Santa Cruz or Abcam,

ab184008), and mouse anti-c-adaptin (Cat. No.: 610386; BD Trans-

duction Laboratories). After extensive washing, species-specific

peroxidase-conjugated secondary antibodies were applied for chemi-

luminescent detection on an Intas ChemoCam imaging platform. In

our experiments, none of the tested A3 antibodies showed selectiv-

ity for A3 but rather appeared to (also) detect A1.

Immunohistochemistry and confocal microscopy of
immunolabeled hair cells

Freshly dissected apical cochlear turns of 2-week-old mice were

fixed with (i) 4% formaldehyde (FA) in phosphate-buffered saline

(PBS)—depending on the experimental paradigm either for 20 or

for 60 min—on ice, or (ii) for 20 min in methanol at !20°C
(CaV1.3-staining). Thereafter, specimens were washed in PBS and

incubated for 1 h in goat serum dilution buffer (GSDB: 16% normal

goat serum, 450 mM NaCl, 0.3% Triton X-100, 20 mM phosphate

buffer, pH 7.4) in a wet chamber at room temperature. Primary

antibodies were dissolved in GSDB and applied for 3 h at room

temperature (CaV1.3-staining), or overnight at 4°C in a wet cham-

ber. After washing 3 × 10 min (wash buffer: 450 mM NaCl, 20 mM

phosphate buffer, 0.3% Triton X-100), the tissue was incubated

with GSDB-diluted secondary antibodies in a light-protected wet

chamber for 1 h at room temperature. Then, the specimens were

washed in wash buffer and finally in 5 mM phosphate buffer and

mounted onto glass microscope slides with mounting medium

(Mowiol). The following primary antibodies were used: mouse

monoclonal anti-CtBP2 (also recognizing the ribbon protein

RIBEYE, 1:200, BD Biosciences, Cat. No. 612044), mouse anti-

otoferlin (1:300, Abcam, Cat. No. ab53233), rabbit anti-vGlut3

(1:300, Synaptic Systems, Cat. No. 135 203), rabbit anti-CaV1.3

(1:30, Alomone Labs, Cat. No. ACC 005), and rabbit polyclonal

myosin 6 (1:300, Proteus Biosciences Inc., #25-6791). The

secondary antibodies used for (i) confocal microscopy were goat

anti-rabbit Alexa Fluor 488 and goat anti-mouse Alexa Fluor 568

(1:200, Invitrogen, Cat. No. A 11008 and A 11004, respectively),

and (ii) STED were STAR 580-tagged goat anti-mouse (1:200, Abbe-

rior, Cat. No. 2-0002-005-1) and STAR 635P-tagged goat anti-rabbit

(1:200, Abberior, Cat. No. 2-0012-007-2). Confocal images were

acquired using a laser scanning confocal microscope (Leica TCS

SP5, Leica Microsystems GmbH, Mannheim, Germany, and Zeiss

LSM800, Carl Zeiss AG, Oberkochen, Germany) with 488 nm (Ar)

and 561 nm (He-Ne) lasers for excitation and 1.4 NA 63× oil

immersion objectives. Z-axis stacks from comparable tonotopic

regions were acquired with a pixel size of 80 × 80 nm and step size

of (i) 0.6 lm for otoferlin quantifications and (ii) 0.25 lm for

ribbon counting. 2D STED images were acquired with a pixel size

of 15 × 15 nm using an Abberior Instruments Expert Line 775 nm

2-color STED microscope (Abberior Instruments, Göttingen,

Germany), with excitation lasers at 561 and 640 nm and a STED

laser at 775 nm, 1.2 W, using a 1.4 NA 100× oil immersion objec-

tive. Images were processed using ImageJ (http://imagej.net/) and

assembled for display in Adobe Illustrator software.
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Patch clamp of IHCs from cultured neonatal organs of Corti

Organotypic cultures of perinatal (p0) mice were prepared as

described previously (Nouvian et al, 2011; Reisinger et al, 2011;

Vogl et al, 2015). Briefly, organs of Corti were dissected from TKO,

1/3-DKO, or C57BL/6J mice in HEPES-HBSS supplemented with

250 ng/ml fungizone (Life Technologies) and 10 lg/ml Penicillin G

(Sigma-Aldrich), mounted on Cell-TakTM-coated coverslips (BD Bios-

ciences) and incubated in DMEM/F12 with 5% FBS. During the

culture period of 1 week, half of the medium was replaced with

fresh culture medium every second day. After 7 days in culture,

perforated patch-clamp recordings were performed on apical coil

IHCs using an extracellular solution containing (in mM) 103 NaCl,

2.8 KCl, 1 MgCl2, 10 HEPES, 35 TEA-Cl, 11.2 D-glucose, 10 CaCl2,

and apamin (100 nM) to inhibit small conductance (SK) K+ chan-

nels (pH 7.2, ~300 mOsm/l), and an intracellular solution contain-

ing (in mM) 129 Cs-gluconate, 10 TEA-Cl, 10 4-AP, 10 HEPES, 1

MgCl2, and amphotericin B (300 lg/ml) (pH 7.2, ~280 mOsm/l). In

a subset of experiments, the extracellular Ca2+ concentration

([Ca2+]e) was lowered to 6 mM to reduce presynaptic Ca2+ influx

in C57BL/6J mice; this was balanced by a complementary increase

in NaCl to maintain overall ionic strength. All experiments were

done at room temperature (22–24°C) using an EPC10 amplifier with

PatchMaster software (HEKA, Elektronik, Lambrecht, Germany).

Ca2+ current and membrane capacitance measurements were

performed using the Lindau–Neher technique (Lindau & Neher,

1988; Moser & Beutner, 2000). Currents were leak-subtracted with a

p/10 protocol. Liquid junction potentials (17 mV) were corrected

offline.

Patch clamp of IHCs in acutely dissected organs of Corti

Patch-clamp recordings from IHCs of freshly dissected organs of

Corti (apical coil) from p14-18 mice were essentially performed as

described previously (Moser & Beutner, 2000). For recordings of

Ca2+ current, exocytosis, and endocytosis, the pipette solution

contained (in mM) 129 Cs-gluconate, 10 TEA-Cl, 10 4-AP, 10

HEPES, 1 MgCl2, and amphotericin B (300 lg/ml) (pH 7.2,

~280 mOsm/l). The extracellular solution contained (in mM) 105

NaCl, 35 TEA-Cl, 2.8 KCl, 2 CaCl2, 1 MgCl2, 5 4-AP, 1 CsCl, 10

HEPES, and 11.1 D-glucose (pH 7.2, ~300 mOsm/l). EPC-9 ampli-

fiers (HEKA) controlled by Pulse software (HEKA) were used for

measurements. All voltages were corrected offline for the liquid

junction potential (14 mV). Currents were leak-corrected using a p/

10 protocol for exocytosis or a p/20 protocol for endocytosis. Cells

with leak currents exceeding !35 pA at !84 mV holding potential

or with a series resistance higher than 30 MΩ were excluded from

the analysis. Current–voltage (IV) relationships were obtained by

applying 10-ms pulses of increasing voltage. For capacitance (Cm)

measurements, IHCs were stimulated by depolarizations of different

durations to !14 mV at intervals of 20–120 s.

Electron microscopy and tomography

Conventionally embedded samples for electron microscopy and

tomography were prepared as described previously (Jung et al,

2015). Apical turns of the organ of Corti were acutely dissected and

either stimulated for 15 min at room temperature with a solution

containing (in mM) 50 KCl, 95 NaCl, 1 MgCl2, 5 CaCl2, 10 HEPES

and subsequently fixed for 1 h on ice with 4% PFA and 0.5%

glutaraldehyde in PBS, or immediately fixed for 1 h on ice with the

same fixative. Subsequently, samples were post-fixed overnight on

ice with secondary fixative comprising 2% glutaraldehyde in 0.1 M

sodium cacodylate buffer, pH 7.2. The next day, samples were

washed thrice in sodium cacodylate buffer, before 1% osmium

tetroxide ((v/v) in 0.1 M sodium cacodylate buffer) was applied for

post-fixation for 1 h on ice. After 2 × 10 min washing steps in

sodium cacodylate buffer and three brief washing steps in distilled

water, the samples were stained en bloc with 1% uranyl acetate

((v/v) in distilled water) for 1 h on ice and briefly washed with

distilled water. The dehydration was performed on ice in solutions

with increasing ethanol concentrations, and the samples were

subsequently infiltrated in Epon resin (100% EtOH/Epon 1:1 (v/v),

30 and 90 min; 100% Epon, overnight), placed into embedding

molds, and polymerized for 48 h at 70°C. 65-nm sections of the

embedded samples were obtained approaching from the anterior

edge using an ultramicrotome (UC6, Leica Microsystems) and

placed on formvar-coated 2 × 1 mm copper slot grids. Sections were

post-fixed and post-stained with uranyl acetate or uranyl acetate

replacement (Science Services, Munich) and lead citrate following

standard protocols. Micrographs were acquired with a JEM 1011

electron microscope (JEOL) equipped with a Gatan Orius 1200A

camera using the Digital Micrograph software package at a 5,000-

fold to 12,000-fold magnification.

Electron tomography was essentially performed as described

previously (Jung et al, 2015; Strenzke et al, 2016). Briefly, 250-nm

sections were applied to formvar-coated copper mesh grids and

post-stained as described above. 10 nm gold beads were applied to

both sides of the grid as fiducial markers. Tilt series were acquired

with a JEOL electron microscope (JEM 2100) from !60° to +60° with

an increment of 1° using Serial-EM software. Tomograms were

generated using the IMOD package etomo, and models were gener-

ated using 3dmod (bio3d.colorado.edu/imod/).

Auditory brainstem responses

Recordings of ABRs (auditory brainstem responses) and DPOAE

(distortion product otoacoustic emissions) were performed as previ-

ously described (Jing et al, 2013). In brief, mice were anesthetized

with a combination of ketamine (125 mg/kg) and xylazine (2.5 mg/

kg) i.p. The core temperature was maintained constant at 37°C
using a heat blanket (Hugo Sachs Elektronik–Harvard Apparatus).

For stimulus generation, presentation, and data acquisition, we used

the TDT II system run by BioSig software (Tucker Davis Technolo-

gies) (MathWorks). Tone bursts (4/6/8/12/16/24/32 kHz, 10 ms

plateau, 1 ms cos2 rise/fall) or clicks of 0.03 ms were presented at

40 Hz (tone bursts) or 20 Hz (clicks) in the free field ipsilaterally

using a JBL 2402 speaker. The difference potential between vertex

and mastoid subdermal needles was amplified 50,000 times, filtered

(400–4,000 Hz), and sampled at a rate of 50 kHz for 20 ms, 1,300

times, to obtain two mean ABR traces for each sound intensity.

Purification of recombinant endophilin-A1

Plasmid pGEX6P-endopilin-A1 (rat) was a kind gift of Prof. P. De

Camilli (Yale University, New Haven CT, USA). After an overnight
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expression (16°C for ~9 h), in E. coli BL21(DE3) (Sigma) the protein

was purified on a GST-glutathione affinity column (GE Healthcare,

Piscataway, NJ). The GST-tag was cleaved using PreScission

protease (GE Healthcare, Piscataway, NJ), and the sample was then

subjected to gel filtration chromatography (Superdex 200 10/300

GL; Amersham Pharmacia Biosciences, Piscataway, NJ) in 20 mM

Tris (pH 7.4), 300 mM KCl, 5 mM imidazole, 1 mM DTT. The

protein concentration was determined (14.5 mg/ml), and aliquots

of the purified protein were stored at !80°C until being used as

detailed below.

Immunoprecipitation experiments

The immunoprecipitation experiments were performed as described

in Murdoch et al (2016). Briefly, HeLa cells (ATCC! CCL-2;

1.5 × 106) were plated in a Ø10-cm plate and transfected with

pmRFP-endophilin-A1 (a gift of P. De Camilli, Yale University, New

Haven, CT, USA) and pEGFP-otoferlin (gift of T. Weber, University

Medical Center Göttingen), or pEGFP-N1 (Clontech) for control,

using Fugene (Invitrogen) 3 h after plating (the total DNA amount

was 8 lg/plate). On average, 75–80% of HeLa cells were trans-

fected. Cells were harvested 72 h after transfection and lysed in

10 mM Tris/Cl (pH 7.5), 150 mM NaCl, 0.5 mM EDTA, 0.5% NP-

40. The lysates were then incubated for 2 h at 4°C with ChromoTek

Trap!-GFP agarose beads (ChromoTek, Germany) following manu-

facturer’s protocol (GFP-Trap!_A for immunoprecipitation of GFP-

fusion proteins from mammalian cell extract). After binding, protein

GST-Trap_A beads were resuspended in ice-cold dilution buffer and

centrifuged. The washing step was repeated twice according to the

standard protocol. Fractions (input = cell lysate; bound = beads

with bound proteins, non-bound = supernatant) were loaded onto

SDS–PAGE gel followed by an immunoblot analysis against endo-

philin-A1 (Endo A1 antibody, L-18, Santa Cruz, USA), RFP (5F8;

ChromoTek, Germany), using standard procedure and Odyssey!

imaging system (LI-COR, Lincoln, NE, USA). Three independent

experiments were performed.

To check whether otoferlin binds directly to endophilin, HeLa

cells (ATCC! CCL-2; 1.2x106) were plated in a Ø10-cm plate and

transfected with pEGFP or pEGFP-otoferlin (7 lg/plate in total)

using Fugene (Invitrogen). 75–80% of HeLa cells were transfected

on average. Cells were harvested 72 h after transfection and lysed in

10 mM Tris/Cl (pH 7.5), 150 mM NaCl, 0.5 mM EDTA, 0.5% NP-40.

EGFP or otoferlin-EGFP was then bound to Trap!-GFP agarose beads

(ChromoTek) following manufacturer’s instructions, and the beads

were incubated with 50 lg of purified endophilin-A1 protein for 2 h

at 4°C. After centrifugation (2,500 g, 2 min, 4°C), two fractions were

obtained: beads with bound proteins (bound) and supernatant (non-

bound). In addition to cell lysates (input), these fractions were

loaded onto SDS–PAGE gel followed by an immunoblot analysis

against endophilin-A1 (EndoA1 antibody L-18, Santa Cruz, USA)

using standard procedure and Odyssey! imaging system (LI-COR,

Lincoln, NE, USA). Two independent experiments were made.

Data analysis

Immunohistochemistry
IHC synaptic ribbons were manually counted in confocal z-projec-

tions of immunolabeled organs of Corti using ImageJ software.

Analysis of CaV1.3 STED imaging data was performed in Igor Pro

6.3 software (Wavemetrics). The area of spot- and line-shaped Ca2+

channel clusters was estimated by fitting a 2D Gaussian function

(genetic fit algorithm; Sanchez del Rio & Pareschi, 2001) to the indi-

vidual clusters in 2D STED images to obtain the full width at half

maximum (FWHM) of the long and short axes. Subsequently, areas

of the clusters were calculated by the following formula:

area = p × (long axis/2) × (short axis/2). Otoferlin levels of IHCs

were semi-quantitatively assessed as immunofluorescence intensity

values and analyzed using Imaris (Bitplane) and MATLAB (Math-

Works) as described before (Strenzke et al, 2016). Otoferlin inten-

sity line scans along the longitudinal axis of IHCs were generated

from single sections using ImageJ; Igor Pro 6.3 software was used to

generate average intensity profiles after normalizing the intensity

profiles of the individual cells to their lengths.

Patch-clamp electrophysiology
Electrophysiological data were analyzed using custom-written

programs in Igor Pro 6.3. For analysis of IV curves, the last 5 ms of

the evoked Ca2+ current was averaged. For measurements of

exocytosis, total Ca2+ charge (QCa) was estimated by taking the

integral of the leak-subtracted current during the depolarization

step and the exocytic increment in capacitance (DCm) was quanti-

fied as the difference in the averaged Cm 400 ms before and after

(skipping the first 60 or 100 ms) the depolarization. Mean estimates

of individual IHCs were calculated from two to four rounds of

exocytosis, and were used to calculate grand averages of IHCs per

genotype. This avoided dominance of IHCs contributing more

sweeps. Only IHCs with reproducible DCm among the individual

rounds were included.

Endocytosis was assessed as described previously (Neef et al,

2014). IHCs showed a slow depolarization-independent decrease in

Cm during the perforated patch-clamp recording. To correct for this,

we used two independent methods: (i) by fitting and subtracting an

exponential function to the baseline Cm as recorded during the

entire experiment (Fig EV4A, C and C0) or (ii) by fitting and

subtracting a linear function to the last 10 s of a non-depolarizing

pulse recorded before the actual trace (Fig EV4D and D0). The

results obtained using both methods were comparable (Fig EV4C″
and D″). We favor the first method, which seems to perform a better

correction, evident from the least divergence of the recorded traces

for each individual IHC (for an example, see Fig EV4C).

The endocytic decline in Cm following a depolarization-induced

exocytic DCm was measured over 20 s following a 2-s-long recording

of Cm baseline and 20 or 200 ms of depolarization. After correction,

we determined the residual slope of the 2 s preceding the depolar-

ization (residual pre-slope) and excluded those IHCs where the

residual pre-slope exceeded the average " 2 times the standard

deviation for each genotype (for 20 ms, one cell was excluded for

each genotype; for 200 ms, one cell was excluded for the Wt and for

the 1/3-DKO). Even though the residual pre-slope exhibits a nega-

tive trend (for 20 ms: !0.51 " 0.24 fF/s for Wt, !0.20 " 0.28 fF/s

for 1/2-DKO, and !0.62 " 0.22 fF/s for 1/3-DKO; for 200 ms:

!0.27 " 0.37 fF/s for Wt, !0.28 " 0.23 fF/s for 1/2-DKO, and

0.036 " 0.22 fF/s for 1/3-DKO), it is not statistically different

between the genotypes (for 20 ms: one-way ANOVA, F(2, 35) =
0.80, P = 0.4507; for 200 ms: one-way ANOVA, F(2, 36) = 0.45,

P = 0.6391).
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Analysis of the linear component of endocytosis following brief

depolarizations (20 ms) was performed by fitting a linear function

to the post-depolarization Cm data, skipping the first 200 ms, and

noting the point at which the line fit or its extrapolation in time

returned to baseline Cm. Responses in which Cm did not return to

baseline within 80 s were excluded from this analysis. The number

of IHCs where Cm did not return to baseline was low for all geno-

types: Wt (3 out of 17 recorded IHCs), 1/2-DKO (0 cells out of 14),

and 1/3-DKO (3 cells out of 17), but many IHCs regardless of geno-

type showed at least one trace without Cm return within 80 s.

We analyzed the exponential component of Cm decline following

200-ms-long depolarization by fitting a linear function to the final

10 s of Cm data and subtracting the extrapolated fit. The residual

was then fitted with an exponential function using a genetic curve

fitting algorithm (Sanchez del Rio & Pareschi, 2001). In few cases,

the fitting window for the linear component was slightly adjusted to

exclude Cm artifacts. For some cells, the Cm decline did not exhibit

an exponential component (1 out of 12 IHCs for Wt, 3 out of 13 for

1/2-DKO, and 3 out of 14 for 1/3-DKO). Therefore, they were

excluded from the statistical analysis of the amplitude or time

constant of the exponential component; yet, they are still included

for the slope of the linear component for 200 ms.

Auditory brainstem recordings
Recordings were performed as described (Jing et al, 2013). In brief,

hearing threshold was determined with 10 dB precision as the

lowest stimulus intensity that evoked a reproducible response wave-

form in both traces by visual inspection.

Transmission electron microscopy (TEM)
Quantification of electron microscopy data was performed with

ImageJ for random sections, and with IMOD software for tomo-

grams. In random sections, the ribbon proximity (Fig 7) was defined

as area around the ribbon in 1 lm distance from the center of the

synaptic ribbon. For each section, the exact area of the intracellular

cytoplasm was measured, whereby the area of mitochondria was

excluded. Numbers of small, clear vesicles (max. diameter 70 nm

between outer leaflets of the vesicle membrane; Figs 7B and 9D)—
except of the vesicles in the first row around the ribbon—were

counted and divided by the respective area. For quantification of

endosome-like vacuoles (ELVs), the area of all ELVs per section was

cumulated and divided by the cytoplasmic area (Figs 7C and 9E).

For coated structures, the following subgroups were defined: (i)

coated vesicles with a maximum outer diameter of 70 nm; (ii)

coated vacuoles with an outer diameter of more than 70 nm as well

as tubular structures fully covered by a coat; (iii) coated pits

containing a connection to the plasma membrane; and (iv) coated

pits on otherwise uncoated ELVs. For quantification of SVs around

the ribbon, the following analysis criteria were used for random

sections: Ribbon height was measured from the top of the ribbon to

the bottom excluding the presynaptic density; the distal half of the

ribbon was defined as the upper 50% of the total ribbon length. SVs

were allocated to the distal or proximal halves of the ribbon if more

than 50% of the SV area were located in the respective region

(Fig 8C0). Moreover, two distinct SV pools were defined: (i) The

ribbon-associated pool contained all SVs in the first row around the

ribbon with a maximum distance of 80 nm (RA-SVs, Figs 8C and

9B) and (ii) the membrane-proximal SV pool (MP-SVs), which was

formed by SVs in the first layer above the AZ membrane within a

maximum distance of < 25 nm to the plasma membrane and a

maximum lateral distance of < 100 nm to the presynaptic density

(Figs 8D and 9C).

Electron tomography
For quantification of tomograms, the definition of MP-SVs was

adjusted to include all SVs with a maximal distance of 50 nm to the

AZ membrane that were no more than 100 nm apart from the presy-

naptic density (all criteria being valid at the maximum projection of

the respective SV in the tomogram, no changes to RA-SV definition).

This adjustment was made not only to guarantee for comparability

with other recent ultrastructural studies of SV pools at ribbon

synapses, but also because the high z-resolution of virtual sections

from tomograms facilitates the identification of tethers (also includ-

ing lengths > 25 nm) linking MP-SVs to the presynaptic density and

to the AZ membrane. Since 65-nm random sections do not provide

visualization of tethers, we chose a stricter criterion of 25 nm maxi-

mal distance to avoid over-interpretation of the MP-SV pool. Never-

theless, we re-quantified all tomography data also with the criteria

used for random sections resulting in overall unchanged significance

values. For quantification of ELVs, the minimal distance between

ELV and ribbon was measured; only ELVs within a distance of

200 nm were included. All distances for random sections and for

tomograms were measured between the outer membrane of SVs and

the respective structure.

Experimental design and statistical analysis
Sample sizes were chosen according to typical observation numbers

used on each respective field (e.g., immunohistochemistry, cellular

or systems electrophysiology, electron microscopy), and can be

found both in the respective figures and in the corresponding figure

legends. Data were analyzed using MATLAB (MathWorks), Excel

(Microsoft), Igor Pro 6 (Wavemetrics), Origin 9.0 (Microcal soft-

ware), and GraphPad Prism (GraphPad software). Averages are

expressed as mean " SEM or mean " SD, as specified. Data sets

were tested for normal distribution (Jarque–Bera test, D’Agostino

and Pearson omnibus normality test, or the Shapiro–Wilk test) and

equality of variances. Statistical significance was calculated using

one-way ANOVA test followed by Tukey’s test for normally distrib-

uted data, or Kruskal–Wallis (K–W) test followed by post hoc

Dunn’s test for non-normally distributed data. Significant dif-

ferences are reported as *P < 0.05, **P < 0.01, and ***P < 0.001.

Box plots are drawn from 25 to 75%, whiskers indicate 10–90% of

data points, and squares show the averages. For the endocytosis

data (Fig 6), the ROUT method from GraphPad Prism was used to

identify outliers (Q = 1%).

Expanded View for this article is available online.
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