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Summary 

Cognition describes an individual’s abilities to perceive, process, and act on information 

of the abiotic and biotic environment. The investigation of cognitive variation between 

individuals and species has been of interest for many decades and several hypotheses 

have been proposed to explain the evolution of cognition. Sizes of certain brain areas 

covary with the cognitive abilities they process, and socio-ecological factors have been 

related to various brain size measures. However, covariations of phenotypic cognitive 

performances with socio-ecological factors are essential to understand the adaptive value 

of cognitive abilities. While links with social factors have been the focus of comparative 

studies, which and how cognitive abilities and ecological factors link with each other, has 

been less systematically investigated. Precisely, it is assumed, that ecological generalists 

consistently outperform ecological specialists in cognitive challenges, but a respective link 

lacks systematic empirical evidence. 

In my first theoretic approach, I reviewed the literature for comparative studies 

that experimentally assessed cognitive performances among at least two species of the 

same phylogenetic order. I found that cognitive variation can be related to species-specific 

dietary preferences, related foraging behaviors, migratory behavior, or habitat 

complexity. However, other ecological factors, such as the synecology with predators or 

parasites, or the degree of ecological specialization, have largely been disregarded to be 

linked with cognitive performances. Only a subset of the reviewed studies specifically 

mentioned the degree of ecological specialization of the species in comparison. After 

complementing the respective information using additional literature, I applied a sign-test 

to estimate whether the degree of dietary or habitat specialization consistently covaries 

with cognitive performances. Across a total of 34 comparisons, N = 26 cognitive 

performances differed between the species in comparison. In 62% of these comparisons, 

the dietary generalist achieved higher performance scores than the relative dietary 

specialist. Habitat generalists achieved higher scores than relative habitat specialists in 

72% of the comparisons. However, ecological generalism was not significantly associated 

with higher performances that go beyond innovative and flexible learning abilities. It 
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remains therefore questionable, whether generalist species consistently outperform more 

specialist species across a broader range of cognitive abilities. 

In my second empirical approach, I applied a conclusive cognitive test battery to 

two wild primate sister species. The gray and the Madame Berthe’s mouse lemur possess 

a comparable social system, occur in sympatry at the chosen study site, but are 

differentially adapted to ecological factors. Essentially, the gray mouse lemur is a dietary 

and habitat generalist, while the Madame Berthe’s mouse lemur is more specialized along 

these ecological niche axes. Occupying different ecological niches, while experiencing 

similar ecological challenges, assumes complex evolutionary processes for ecological 

adaptations that may be linked to cortical development, and may covary with cognition. 

Following the Opportunistic Intelligence Hypothesis, the generalist gray mouse lemur should 

consistently outperform the specialist Madame Berthe’s mouse lemur across the various 

cognitive tests. Alternatively, species-specific performance levels could covary with 

specific ecological adaptations. For instance, gray mouse lemurs feed more on gum, a 

characteristic that has been associated with better self-control. Madame Berthe’s mouse 

lemurs have larger home ranges and feed mostly on spatially clumped homopteran 

secretions, which may covary with spatial abilities. In summary, the two species differed 

in about two third of the assessed performance scores. Gray mouse lemurs were more 

innovative, which may provide them the advantage to adaptively respond to variable 

environmental conditions. However, they did not consistently outperform Madame 

Berthe’s mouse lemurs, which were more active and learned visual and spatial reward 

contingencies faster. 

Hence, the experimental results in mouse lemurs parallel the theoretic findings of 

the reviewed literature, in that generalist species do not outperform specialist species per 

se. Despite the apparent superposition of generalists with respect to innovative problem-

solving, they do not consistently outperform specialists in other cognitive tasks. Rather, 

performances are better linked to other ecological factors, which might be more accurately 

disentangled in future studies using metric estimates instead of the categoric classification 

of ecological specialization. Nevertheless, as the first large scale comparative approach 

within this exciting research field, the results of my thesis offer substantial insight into the 

link between cognitive test performances and ecological factors. 
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Zusammenfassung 

Mit kognitiven Fähigkeiten können Tiere Informationen aus der abiotischen und 

biotischen Umwelt wahrnehmen, verarbeiten und auf diese Informationen in einem 

angemessenen Umfang reagieren. Die Untersuchung kognitiver Variabilität zwischen 

Individuen und Arten ist von großem wissenschaftlichem Interesse, das zur Formulierung 

mehrerer Hypothesen zur Erklärung kognitiver Evolution geführt hat. Hirnareale können 

in Größe und Entwicklung mit kognitiven Fähigkeiten, die sie verarbeiten korrelieren, 

und sozio-ökologische Faktoren wurden mit verschiedenen Maßen zur kognitiven 

Entwicklung in Verbindung gebracht. Um den adaptiven Wert kognitiver Fähigkeiten zu 

verstehen, sind jedoch Kovariationen zwischen phänotypischen kognitiven Leistungen 

und sozio-ökologischen Faktoren ausschlaggebend. Während die Untersuchung 

entsprechender Zusammenhänge mit sozialen Faktoren im Fokus vergleichender Studien 

standen, wurde weniger systematisch untersucht, inwiefern kognitive Fähigkeiten mit 

welchen ökologischen Faktoren verknüpft sind. So wird zwar vermutet, dass ökologische 

Generalisten ökologische Spezialisten bei kognitiven Herausforderungen konsequent 

übertreffen, ein entsprechender Zusammenhang ist jedoch empirisch nicht systematisch 

belegt. 

In dem ersten theoretischen Ansatz meiner Dissertationsarbeit, habe ich bisherige 

vergleichende Studien untersucht, in denen kognitive Leistungen zwischen mindestens 

zwei Arten der gleichen phylogenetischen Ordnung experimentell verglichen wurden. 

Diese Studien belegen, dass kognitive Variationen mit artspezifischen Nahrungs-

präferenzen, damit im Zusammenhang stehenden Futtersuchverhalten, sowie der 

Anpassung zur Migration oder der Komplexität des Lebensraums zusammenhängen 

können. Andere ökologische Faktoren, wie beispielsweise eine Synökologie mit 

Raubtieren oder Parasiten, oder der Grad der ökologischen Spezialisierung, wurden 

jedoch nur gelegentlich mit kognitiven Leistungen in Verbindung gebracht. Nur ein Teil 

der untersuchten Studien erwähnte ausdrücklich den Grad der ökologischen 

Spezialisierung der verglichenen Arten. Nachdem ich die entsprechenden Informationen 

durch das Heranziehen zusätzlicher Literatur ergänzt hatte, verwendete ich einen 

Vorzeichentest, um abzuschätzen, ob der Grad der Nahrungs- oder 
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Habitatspezialisierung konsistent mit kognitiven Leistungen kovariiert. In insgesamt 26 

von 34 Vergleichen unterschieden sich die untersuchten Arten in ihren kognitiven 

Leistungen. In 62% dieser Vergleiche erzielte der Nahrungsgeneralist höhere 

Leistungswerte als der relative Nahrungsspezialist. Habitatgeneralisten erzielten in 72% 

der Vergleiche höhere Werte als relative Habitatspezialisten. Allerdings war die 

Ausprägung zum ökologischen Generalisten nicht signifikant mit höheren 

Leistungswerten verbunden, vor allem, wenn andere kognitive Fähigkeiten als innovative 

und flexible Lernfähigkeiten untersucht wurden. Es bleibt daher fraglich, ob Generalisten 

über ein breiteres Spektrum kognitiver Fähigkeiten hinweg generell besser abschneiden 

als spezialisiertere Arten. 

In dem zweiten empirischen Ansatz meiner Dissertationsarbeit, habe ich zwei 

wildlebende Primatenarten in einer umfangreichen kognitiven Testbatterie getestet. Die 

beiden Schwesterarten, der Graue und der Madame Berthe-Mausmaki besitzen ein 

vergleichbares Sozialsystem, sind im gewählten Studienort zeitgleich vorzufinden, sind 

dort aber unterschiedlich an ökologische Faktoren angepasst. Im Wesentlichen ist der 

Graue Mausmaki ein Nahrungs- und Habitatgeneralist, während der Madame Berthe- 

Mausmaki entlang dieser Achsen ihrer ökologischen Nische stärker spezialisiert ist. Das 

Besetzen unterschiedlicher ökologischer Nischen bei ähnlichen ökologischen 

Herausforderungen steht mit komplexen evolutionären Prozessen für ökologische 

Anpassungen in Zusammenhang, die mit der kortikalen Entwicklung verbunden sein und 

mit kognitiven Fähigkeiten kovariieren können. Entsprechend der Hypothese zur 

Opportunistischen Intelligenz, sollte der generalistische Graue Mausmaki den 

spezialisierten Madame Berthe-Mausmaki durchwegs in kognitiven Tests übertreffen. 

Alternativ dazu könnten artspezifische Leistungsniveaus mit artspezifischen 

ökologischen Anpassungen kovariieren. Zum Beispiel fressen Graue Mausmakis mehr 

Baumharz, eine Eigenschaft, die mit besserer Selbstkontrolle in Verbindung gebracht 

wurde. Madame Berthe-Mausmakis bewegen sich über größere Aktionsräume und 

ernähren sich hauptsächlich von ungleichmäßig verteilten Insektensekreten, was mit 

räumlichen Fähigkeiten kovariieren könnte. Letztendlich haben sich die beiden Arten in 

etwa zwei Dritteln der untersuchen kognitiven Leistungswerte unterschieden. Graue 

Mausmakis waren dabei innovativer, was ihnen den Vorteil verschaffen könnte, adaptiv 
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auf variable Umweltbedingungen zu reagieren. Jedoch übertrafen sie die Madame Berthe-

Mausmakis nicht durchgehend. Diese waren beispielsweise aktiver und konnten visuelle 

und räumliche Zusammenhänge mit einer Futterbelohnung schneller erlernen. 

Meine experimentellen Ergebnisse der Mausmakis decken sich also mit den 

theoretischen Erkenntnissen der untersuchen Literatur, indem Generalisten Spezialisten 

nicht per se in kognitiven Experimenten übertreffen. Trotz der scheinbaren Überlegenheit 

von Generalisten in Bezug auf innovatives Problemlösen, sind sie Spezialisten in anderen 

kognitiven Aufgaben nicht durchweg überlegen. Vielmehr sind kognitive Leistungen 

besser mit anderen ökologischen Faktoren verknüpft, die in zukünftigen Studien 

detaillierter entschlüsselt werden könnten, wenn anstelle der kategorischen 

Klassifizierung der ökologischen Nische eher metrische Variablen gemessen würden. 

Nichtsdestotrotz geben die Ergebnisse meiner Arbeit als erster groß angelegter 

vergleichender Ansatz in diesem spannenden Forschungsfeld einen wesentlichen Einblick 

in den Zusammenhang zwischen testbaren kognitiven Fähigkeiten und ökologischen 

Faktoren. 
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Chapter I: General introduction 

Cognition – “The word seems straightforward, yet it is often a cause of debate in the 

psychological and neuroscience fields, particularly about whether a behavior of an animal 

that happens not to be human is truly “cognitive”, in a similar sense to human cognition.” 

– Geoffrey North (in Bayne et al. 2019, p R608) 

In non-human animals, we consider cognition as all cognitive traits, that provide an 

individual the abilities to “acquire, process, store and act on information from the 

environment” (Shettleworth 2009). Cognitive traits vary between individuals, as well as 

between species. Due to the neurological nature of cognition, it is assumed that cognitive 

abilities covary with neuronal structures, such as the development of certain brain areas. 

Consequently, the Social Intelligence Hypothesis (Humphrey 1976; Whiten and Byrne 1988) 

and the Ecological Intelligence Hypothesis (Parker and Gibson 1977; Milton 1988) suggest 

that brain size varies with social or ecological factors. While these hypotheses have been 

posited to be exclusive, more recent studies support a rather complementary influence of 

social and ecological factors on cognitive evolution (Emery and Clayton 2004; Lefebvre 

and Sol 2008; Reader et al. 2011; MacLean et al. 2012; Rosati 2017a). A respective link 

between social complexity and cognitive abilities finds broad support (Bond et al. 2003; 

Bond et al. 2007; MacLean et al. 2008; Amici et al. 2008; Byrne and Bates 2010; MacLean et 

al. 2013; Perry et al. 2017; Ashton et al. 2018b; Amici et al. 2018). However, which specific 

ecological factors covary with which cognitive abilities has rarely been empirically 

investigated across the animal kingdom. 

To better understand the ecological nature of cognitive variation and, therefore, 

the adaptive value of certain cognitive abilities, potential links between ecological factors 

and cognitive abilities need to be systematically investigated. By comparing individuals 

of different species that exhibit different ecological adaptations while possessing 

comparable social organizations, the coevolution of cognitive traits and adaptations to 

ecological conditions may be better understood. With my thesis, I contribute to this 

endeavor by investigating cognitive variation among two closely related and sympatric 

primate species that are differently adapted to ecological conditions but are socially 

similarly organized. 
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In the following, I explain the principles of cognitive variation in response to socio-

ecological factors. Thereby, I wrap-up the most prominent hypotheses that have been 

proposed to understand the evolution of brain size and correlating cognitive abilities. 

Further, I provide a brief overview of common links, as well as mixed patterns of previous 

investigations on cognitive variation in relation to socio-ecological factors. Subsequently, 

I describe the concept of niche theory with the classification of ecological specialization 

and respective adaptive responses to habitat and dietary breadth. Then, I introduce two 

mouse lemur species which I tested for this thesis by also giving an overview of prior 

investigations in this genus. Finally, I outline the specific aims of my thesis and provide 

an overview of the content of the next chapters. 

1 Towards understanding variation in brain size and 

cognitive abilities 

As Thorndike emphasized in the 18th century, it is “[associations], and not instinct, [that] 

make the animal use the best feeding grounds, sleep in the same lair, avoid new dangers 

and profit by new changes in nature” (Thorndike 1898). An essential prerequisite for 

associative learning abilities, as for cognitive traits in general, are neuronal structures. 

However, the more complex the neuronal structures and the larger the metabolically 

expensive brain, the more energy must be consumed (Rumbaugh and Washburn 2003; 

Roth and Dicke 2005). Therefore, larger brains should only evolve when their benefits 

exceed their high metabolic costs (Laughlin et al. 1998; Lennie 2003). Essentially, such 

benefits can be related to an animal’s socio-ecological conditions. Hence, different 

hypotheses have been proposed to explain variation in brain size and subsequently 

variation in cognitive abilities. 

1.1 Principles of cognitive variation in response to socio-ecological 

factors 

According to the Social Intelligence Hypothesis (SIH), it is suggested, that brain size covaries 

with social factors (Humphrey 1976; Whiten and Byrne 1988; Dunbar 1998; Dunbar et al. 
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2007). Specifically, social complexity seems to be associated with brain size (Jolly 1966; 

Barton 1996; Kudo and Dunbar 2001; Byrne and Bates 2010). More socially complex species 

are those that live in larger groups instead of smaller pair-bonds or that spend most of 

their active time solitary. Subsequently, they experience more complex social challenges 

that require specific social skills, like managing group dynamics, or effectively 

communicating and coordinating with group members (Dunbar et al. 2007; Kappeler 2019; 

Peckre et al. 2019). In support for the SIH, primates, bats, and specifically insectivores that 

live in larger groups developed larger brains than species living in smaller groups (Barton 

1996; Dunbar 1998; Kudo and Dunbar 2001; Byrne and Bates 2010; MacLean et al. 2013; 

Todorov et al. 2019). However, this correlation is debated in carnivores and ungulates 

(Shultz and Dunbar 2006; Dunbar and Shultz 2007; Shultz and Dunbar 2007; Holekamp et 

al. 2007; Pérez-Barbería et al. 2007; Finarelli and Flynn 2009), and seems to be absent in 

birds (Beauchamp and Fernández-Juricic 2004; Iwaniuk and Arnold 2004). Additionally, 

recent comparative analyses indicate that brain size is better predicted by ecological than 

social factors (DeCasien et al. 2017; Powell et al. 2017; DeCasien and Higham 2019). 

Following the Ecological Intelligence Hypothesis (EIH), larger brains allow animals to 

develop better cognitive abilities to cope with ecological challenges (Parker and Gibson 

1977; Milton 1988). Evidence for the EIH has been reported in many animals, including 

birds and primates (Harvey et al. 1980; MacLean et al. 2009; DeCasien et al. 2017; Powell 

et al. 2017). Specifically, birds that rely on food-caching or food-hoarding develop larger 

hippocampi, the brain area which is associated with spatial processing and memory 

(Krebs 1990; Sherry et al. 1992; Clayton 1998). This relation parallels with spatial abilities 

in mammals, with species feeding on spatiotemporally distributed fruits having larger 

brains than more folivorous species (Clutton-Brock and Harvey 1980; MacLean et al. 2009; 

Mace et al. 2009; Rosati et al. 2014). In primates, specific manipulation skills, such as 

extractive foraging techniques, covary with neocortex size (Heldstab et al. 2016). 

Nocturnal or cathemeral lemurs have larger relative brain sizes than diurnal species 

(MacLean et al. 2009). 

Additionally, the Cognitive Buffer Hypothesis (Deaner et al. 2003) posits that a larger 

brain specifically buffers challenges that come along with variable environmental 

conditions, as it allows for more adaptive behavioral flexibility. Therefore, generalists, 
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which face more variable conditions, might have evolved larger brains than more 

specialized species (Reader 2003; Lefebvre et al. 2004; Sol et al. 2005b; Ducatez et al. 2015). 

1.2 (Co-)Variation of cognitive abilities 

Despite an apparent covariation of cognitive abilities with brain size or brain structure 

(Clutton-Brock and Harvey 1980; Barton and Harvey 2000; Kudo and Dunbar 2001; Deaner 

et al. 2007; Chittka and Niven 2009; Dicke and Roth 2016), the suggested hypotheses do 

not consider a direct relationship of social or ecological factors with cognitive abilities. 

However, when investigating variation in cognitive abilities in animals, we mostly rely on 

the behavioral phenotype that can be observed while solving problems (Shettleworth 

2009). Thus, cognitive abilities have been operationalized using performance scores in 

artificial experimental set-ups (Ramsey et al. 2007; Healy et al. 2009; Pritchard et al. 2016; 

Shaw and Schmelz 2017). 

Yet, such empirical studies report evidence for a covariation with social, as well as 

ecological factors and a link with the size of specific cortical areas. For instance, social 

complexity correlated positively with performance scores of inhibitory control, transitive 

inference, or flexible learning abilities in primates and birds (Bond et al. 2003; Bond et al. 

2007; MacLean et al. 2008; Amici et al. 2008; Ashton et al. 2018a; Amici et al. 2018; Miller 

et al. 2019; Ashton et al. 2019). Inhibitory control is also enhanced in more frugivorous or 

gum-feeding primates, as compared to rather folivorous primates or primates that 

predominantly feed on mobile insects, and inhibitory control further correlates with brain 

size (Stevens et al. 2005; MacLean et al. 2014). Migratory or food-storing birds and 

mammals experience better spatial abilities than residential or non-storing species and 

develop larger hippocampi (Shettleworth et al. 1990; Clayton and Krebs 1994a; Cristol et 

al. 2003; Emery and Clayton 2004; Barkley and Jacobs 2007). Spatial abilities are also 

enhanced in species living in more complex habitats, or species that feed on more stable 

rather than mobile food items (Pleskacheva et al. 2000; White and Brown 2015a; Trapanese 

et al. 2019; Teichroeb and Vining 2019). More actively foraging species are more flexible 

learners than sit-and-wait predators (Day et al. 1999a). Flexible learning and related 

innovative propensities are also enhanced in species or individuals, that experience 
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harsher environmental conditions, more urban environments or seasonal changes in food 

availability (van Woerden et al. 2012; Tebbich et al. 2016; Sayol et al. 2016; Preiszner et al. 

2017; Chow et al. 2021). Further, learning abilities have been related to both ecological 

factors and brain morphology in fish (White and Brown 2015a; White and Brown 2015b; 

Pike et al. 2018). However, some studies report no difference in cognitive performances in 

relation to socio-ecological factors or brain size measures (Healy and Suhonen 1996; Bond 

et al. 2007; Clarin et al. 2013; Hernández-Montero et al. 2020; Pladevall et al. 2020). 

Additionally, it is questioned if cognitive abilities emerge in a convergent manner 

or rather in concordance with a mosaic brain evolution (Barton and Harvey 2000). 

Functionally different brain areas vary in size in relation to cognitive and sensory 

specializations to respective ecological adaptations and, therefore, cognitive abilities 

would vary between cognitive domains (Cosmides and Tooby 1994; Domain-Specific 

Hypothesis; Barton 1996; Striedter 2006). For example, olfactory cortical structures are 

larger in nocturnal than in diurnal primates, which have larger visual cortexes (Barton et 

al. 1995). Further, both of these brain regions are enlarged in primates with high-quality 

diets or group-living species, while brain regions that are related to spatial processing are 

enlarged in primates with low-quality diets or solitary species (DeCasien and Higham 

2019). 

Alternatively, according to the Domain-General Hypothesis or the congruent General 

Intelligence Hypothesis, cognitive abilities covary across cognitive domains and correlate 

onto a common psychometric g-factor (Spearman 1904; Humphreys 1979; Jensen 1985; 

Deaner et al. 2006). In WEIRD (western, educated, industrialized, rich, and democratic) 

people, a higher-level g-factor even provides advantages in several decision-making 

processes (Gottfredson 1997; Henrich et al. 2010). In non-human animals, a g-factor has 

been reported for rodents, dogs, birds, and non-human primates (Anderson 1993; 

Herndon et al. 1997; Galsworthy et al. 2002; Matzel et al. 2003; Banerjee et al. 2009; Keagy 

et al. 2011; Reader et al. 2011; Isden et al. 2013; Hopkins et al. 2014; Matzel et al. 2011; 

Woodley of Menie et al. 2015; Shaw et al. 2015; Arden and Adams 2016; Ashton et al. 2018a; 

Damerius et al. 2019). However, other studies on rodents, birds, as well as non-human 

primates reject the Domain-General Hypothesis (Locurto et al. 2003; Locurto et al. 2006; 
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Herrmann et al. 2007; Boogert et al. 2011; Herrmann and Call 2012; Amici et al. 2012; 

Anderson et al. 2017; Huebner et al. 2018). 

Therefore, common patterns of (co)variation of cognitive abilities are not yet 

completely understood across the animal kingdom. Cognitive abilities may correlate 

within, and partly also between cognitive domains. Further, cognitive abilities can covary 

with certain social, as well as ecological factors. The investigation of a respective link with 

sociality has received great interest in previous studies (Bond et al. 2003; Bond et al. 2007; 

MacLean et al. 2008; Amici et al. 2008; Byrne and Bates 2010; Ashton et al. 2018b; Amici et 

al. 2018). The link between cognitive variation and ecological factors remains biased 

towards innovative and spatial abilities, and towards a species diet, invasion potential, or 

migratory behavior (Pleskacheva et al. 2000; Day et al. 2003; Cristol et al. 2003; Stevens et 

al. 2005; Bond et al. 2007; MacLean et al. 2009; White and Brown 2015a; Rosati 2017b; 

Trapanese et al. 2019; Teichroeb and Vining 2019). Specifically, a covariation between 

cognitive abilities and the degree of ecological specialization has been rarely investigated. 

1.3 Niche theory and the classification of ecological specialization 

The degree of ecological specialization aims to characterize an animal’s ecological niche, 

i.e., a multidimensional space comprising all ecological factors to which the animal has 

evolved adaptive phenotypic traits. Species that experience a broad habitat or dietary 

breadth are classified as ecological generalists, while species with more specialized 

preferences are classified as ecological specialists (Hutchinson 1953; MacArthur 1957; 

Hutchinson 1957; Roughgarden 1972; Sargeant 2007). Adaptive phenotypic traits can be 

either specific morphological structures or behavioral tactics to explore and exploit 

specific habitats and food patches most efficiently, or more general and flexible behaviors 

to be able to explore and exploit various habitats and food types. For example, nectivorous 

hummingbirds (Trochilidae) or bats (e.g., Leptonycteris spp.) have evolved specialized 

rostra, such as elongated and thinner beaks or tongues and snouts, with which they can 

more efficiently exploit flowers that are specifically rich in nectar (Hoffmeister 1957; 

Temeles et al. 2002; Rico-Guevara et al. 2019). In line with these morphological 

adaptations, these species have evolved behavioral adaptations which allows them to 
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better profit from their specialized lifestyle. Nectivorous Saussure’s long-nosed bats 

(L. yerbabuenae), for example, have more pronounced spatial skills compared to Palla’s 

long-tongued bats (Glossophaga soricine), which additionally feed on fruits and insects 

(Henry and Stoner 2011). In contrast, generalists do not possess such specialized 

adaptations, but are more likely to innovate and they are more flexible learners than 

specialists (Daly et al. 1982; Overington et al. 2011; Mettke-Hofmann 2014; Ducatez et al. 

2015). This provides the generalist with the advantage to flexibly respond to variable 

environmental conditions, whereas specialists experience advantages over generalists in 

more stable environments (Lahann et al. 2006; Dewar and Richard 2007; Wilson and 

Yoshimura 2008). Specifically, specialists may exhibit better long-term memory which 

allows to use and improve specific routes during habitat exploration, and to discriminate 

between and relocate former food patches (Mettke-Hofmann 2014). 

Despite suggestive covariations between cognitive abilities and the degree of 

ecological specialization, respective empirical studies have rarely been conducted. 

Instead, it remains hypothesized that generalist species exhibit better cognitive abilities 

per se (Parker 1978). Supporting this, generalists are more likely to innovate, and 

innovative propensity has been reported to correlate with general intelligence and, 

further, with brain size measures (Reader 2003; Reader et al. 2011; Ducatez et al. 2015). 

Additionally, self-control is enhanced in dietary generalist primates and dietary generalist 

birds and primates developed larger brains than dietary specialists (Reader 2003; Lefebvre 

et al. 2004; Sol et al. 2005b; MacLean et al. 2014; Ducatez et al. 2015).  

Yet, for an overall conclusion, we lack systematic investigations across a broader 

variety of cognitive abilities. Therefore, in the scope of my thesis, I reviewed the literature 

on comparative approaches that experimentally assessed interspecific variation in 

cognitive abilities in relation to ecological factors. With this basis of previously reported 

common links across studies, I empirically investigated interspecific variation across 

various cognitive abilities with the use of a comprehensive cognitive test battery applied 

to wild non-human primates. As study species served two sympatric species of mouse 

lemurs that experience similar environmental conditions and possess comparable social 

systems, while exhibiting different adaptations to ecological factors, including different 

degrees of ecological specialization. 
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2 Studying mouse lemurs 

Studying non-human primates is specifically of broad interest, due to their close 

relatedness to us humans. Researchers hope to shed light on our distinctiveness to non-

human animals and on the evolutionary success of our own species. In the scope of the 

present topic to investigate variation in cognitive abilities in relation to ecological factors, 

mouse lemurs (Microcebus spp.) represent a suitable study organism. These small 

(appr. 31 – 100 g), nocturnal, and primarily solitary lemurs encompass 25 described 

species that are endemic to Madagascar but occupy different ecological niches (Yoder et 

al. 2000; Mittermeier et al. 2008; Schüßler et al. 2020). Adaptations to ecological conditions 

can even differ across populations of one species that are exposed to different 

environments (Ganzhorn and Schmid 1998; Lahann et al. 2006; Schülke and Ostner 2007; 

Zimmermann and Radespiel 2014). In several regions, at least two mouse lemur species 

occur in sympatry, usually with one species being more ecologically specialized than the 

other (Schmid and Kappeler 1994; Rakotondravony and Radespiel 2009; Rakotondranary 

and Ganzhorn 2012). In central Western Madagascar, the generalist gray mouse lemur 

(M. murinus) and the more specialized Madame Berthe’s mouse lemur (M. berthae) occur 

in sympatry in parts of the remaining dry-deciduous lowland forests, as at my study site 

in Kirindy forest (Schwab and Ganzhorn 2004). 

The larger gray mouse lemur (60 g) is a habitat and dietary generalist, occurring 

across various habitat types (Lahann et al. 2006; Mittermeier et al. 2010), including highly 

degraded forest fragments (Ganzhorn and Schmid 1998; Ganzhorn et al. 2012), and 

experiencing a broad dietary breadth (Dammhahn and Kappeler 2008a). The World’s 

smallest primate, the Madame Berthe’s mouse lemur (31 g) is a habitat and dietary 

specialist, occurring only in dry-deciduous lowland forest in central Western Madagascar 

(Rasoloarison et al. 2000; Schäffler and Kappeler 2014), and experiencing a narrower 

dietary breadth (Dammhahn and Kappeler 2008a). In Table 1.1, I summarize the main 

species-specific characteristics concerning socio-ecological factors, as well as prior 

research efforts in the broad context of cognition and the currently assigned IUCN states. 

In summary, the two species differ in various ecological adaptations, while social 

characteristics are largely comparable. As they occur in sympatry at my study site in 

Kirindy forest, they experience similar environmental characteristics. The fact that they, 
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Table 1.1 Main socio-ecological characteristics of gray and Madame Berthe’s mouse lemurs, as well as 
IUCN state and cognitive research effort. Dietary breadth (B) based on Levin’s standardized index (Krebs 
1989) 

 

 
Gray mouse lemur 

 
Mme Berthe’s mouse lemur 

mean body mass1,² 60 g 31 g 
distribution1,2 throughout western Madagascar central western Madagascar 
occurrence diverse: evergreen littoral forest, 

dry-deciduous forest, primary 
and secondary forest, degraded 
forest fragments3 

specific: dry-deciduous 
lowland forest, primary 
forest only4 

diet 
- dietary breadth5 

- composition6 

 
- broad (B = 0.63) 
- patchy homopteran 

secretions (59%), abundant 
animal matter (17%), 
stationary fruits/flowers 
(9%), patchy/stationary gum 
(9%), others (6%) 

 
- narrow (B = 0.12) 
- patchy homopteran 

secretions (82%), mobile 
insects (11%), stationary 
fruits/flowers (2%), 
patchy/stationary gum 
(0.2%), others (5%) 

ecological 

specialization4,6 

habitat generalist 
dietary generalist 

habitat specialist 
dietary specialist 

energy saving 

strategies7 

- males 
- females 

 
 

- short-term torpor 
- short- & long-term torpor 

 
 

- short-term torpor 
- short-term torpor 

home range size8 

- males 
- females 

 
- 2.8 ha 
- 1.7 ha 

 
- 4.9 ha 
- 2.4 ha 

sleeping sites mainly tree holes9 mainly leave nests8 

sociality solitary forager, formation of 
sleeping groups, cooperative 
breeder10 

solitary forager, solitary 
resting, formation of 
sleeping groups8 

mating season October – November11 November8 
cognition research diverse: captivity & wild, social 

& physical abilities, personality, 
aging effects12 

wild only, innovation, 
personality13 

IUCN state least concern14 critically endangered15 

1 Schmid and Kappeler 1994; Rasoloarison et al. 2000; 2 Mittermeier et al. 2010; 3 Ganzhorn and Schmid 
1998; Lahann et al. 2006; 4 Schäffler and Kappeler 2014; 5 Dammhahn and Kappeler 2008a; 6 Dammhahn 
and Kappeler 2008b; 7 Schmid 1999; Schmid et al. 2000; Dammhahn and Kappeler 2012; 8 Dammhahn and 
Kappeler 2005; 9 Schmid 1998; 10 Eberle and Kappeler 2006; 11 Eberle and Kappeler 2004a; 12 Schilling 1979; 
Joly et al. 2004; Picq 2007; Dammhahn 2012; Joly et al. 2014b; Huebner et al. 2018; 13 Henke-von der 
Malsburg and Fichtel 2018; 14 Reuter et al. 2020; 15 Markolf et al. 2020 
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nevertheless, occupy different ecological niches, assumes complex evolutionary processes 

for ecological adaptations that may be linked to cortical development, and may covary 

with cognition. Hence, they are suitable study species to investigate patterns of covariation 

of interspecific differences in cognitive abilities and adaptations to ecological factors in the 

wild. 

Assuming, that social factors cannot solely explain variation in cognition (Rosati 

2017a), I expected interspecific variation in cognitive performances in relation to the 

species’ adaptations to ecological conditions. Specifically, according to the Opportunistic 

Intelligence Hypothesis, the generalist gray mouse lemur should consistently outperform 

the specialist Madame Berthe’s mouse lemur. Alternatively, species-specific ecological 

characteristics, irrespective of the degree of ecological specialization, should covary with 

specific cognitive performances. For instance, since Madame Berthe’s mouse lemurs 

inhabit larger home ranges and feed on more stationary food items (Dammhahn and 

Kappeler 2008b), they should exhibit better spatial abilities. Instead, gray mouse lemurs 

feeding more on fruits and flowers (Dammhahn and Kappeler 2008b), should exhibit 

better causal understanding. 

Finally, by studying Madame Berthe’s mouse lemurs’ various cognitive abilities, I 

extend our overall knowledge of cognition in non-human primates. Cognitive abilities of 

gray mouse lemurs have been studied to a large extend in previous studies, both in 

captivity and in the wild (Lührs et al. 2009; Dammhahn 2012; Schilling 2012; Joly et al. 

2014; Huebner et al. 2018; Kittler et al. 2018; Schmidtke et al. 2018; Henke-von der 

Malsburg and Fichtel 2018; Fichtel et al. 2020). Using a great variety of experimental tasks, 

we already have knowledge about cognitive abilities in the social and the physical domain, 

about personality traits, sensory predispositions, as well as aging effects and links with 

fitness parameters (Jolly 1964; Schilling 1979; Santos et al. 2005; Bons et al. 2006; Joly et al. 

2004; Picq 2007; Siemers et al. 2007; Lührs et al. 2009; Dammhahn and Almeling 2012; 

Languille et al. 2012; Schilling 2012; Huebner et al. 2018; Kittler et al. 2018; Fichtel et al. 

2020). Additionally, both species habituate easily to short-term captivity, they are trap 

happy and their populations have been monitored for over 25 years in Kirindy forest 

(Eberle and Kappeler 2002; Kraus et al. 2008; Hämäläinen et al. 2014b; Huebner et al. 2018; 

Henke-von der Malsburg and Fichtel 2018). Thus, wild populations of mouse lemurs at 
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this study site are particularly suited to examine their cognitive skills using a 

comprehensive test battery that requires many experimental sessions and, accordingly, 

the chance to repeatedly recapture single individuals. 

3 This study 

The specific aim for my thesis was to broaden our understanding of cognitive evolution 

in relation to ecological factors. Therefore, I empirically investigated patterns of 

covariation between cognitive performances and species-specific adaptations to ecological 

conditions, specifically the degree of ecological specialization. 

Specifically, I answered the questions (1) how ecological factors, including the 

degree of ecological specialization, covary with cognitive performances across various 

species of the animal kingdom (Chapter II), (2) whether the generalist gray mouse lemur 

consistently outperforms the specialist Madame Berthe’s mouse lemur in cognitive 

performances (Chapter III), (3) to which extent cognitive abilities can covary with 

ecological factors (Chapter III) and (4) whether cognitive performances in mouse lemurs 

correlate to general intelligence (g-factor) which further correlates across species (G-factor; 

Chapter III). For this, I reviewed the literature by selecting experimental comparative 

studies that investigated variation in cognition in relation to ecological adaptation. To add 

experimental data to this theoretic approach, and to test formulated hypotheses 

concerning the evolution of cognition, I conducted a comprehensive cognitive test battery 

on wild populations of the sympatric gray and Madame Berthe’s mouse lemurs, which 

differ in their degree of ecological specialization. 

In Chapter II of my thesis, I start with a summary of proposed hypotheses aiming 

to explain the evolution of cognition and provide an overview of covariations with brain 

size, sociality, and ecology. I continue evaluating the results of my literature survey on 

experimental comparative studies investigating covariations of cognitive performances 

with ecological factors in non-human animals. Finally, I estimate general patterns of 

covariation between cognitive performances and the degree of habitat and dietary 

specialization, the social group size, as well as the brain size. 
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In Chapter III, I first introduce the topic of interspecific variation in cognitive 

abilities across non-human animals and in relation to socio-ecological factors. Then, I 

describe the species-specific socio-ecological factors characterizing gray and Madame 

Berthe’s mouse lemurs in more detail. For this experimental approach, I applied a test 

battery comprising several cognitive tasks to investigate innovative problem-solving 

abilities, persistence, associative and reversal learning abilities, spatial abilities, inhibitory 

control, means-end understanding, and goal directedness. I included two additional 

personality tests to measure the individuals’ explorative and neophilic tendencies which 

might confound cognitive test performances. In addition to the investigation of 

interspecific variation in cognitive abilities, I estimate the probability of general 

intelligence in mouse lemurs. 

In Chapter IV, I summarize and connect the main aspects of the results reported 

in Chapter II and III. Additionally, I evaluate the gained knowledge in terms of how it 

helps to understand cognitive evolution and provide ideas of how this data can be used 

for future studies extending this exciting field of research. 
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Abstract 

Variation in cognitive abilities is thought to be linked to variation in brain size, which 

varies across species with either social factors (Social Intelligence Hypothesis) or ecological 

challenges (Ecological Intelligence Hypothesis). However, the nature of the ecological 

processes invoked by the Ecological Intelligence Hypothesis, like adaptations to certain 

habitat characteristics or dietary requirements, remains relatively poorly known. Here, we 

review comparative studies that experimentally investigated interspecific variation in 

cognitive performance in relation to a species’ degree of ecological specialization. Overall, 

the relevant literature was biased towards studies of mammals and birds as well as studies 

focusing on ecological challenges related to diet. We separated ecological challenges into 

those related to searching for food, accessing a food item, and memorizing food locations. 

We found interspecific variation in cognitive performance that can be explained by 

adaptations to different foraging styles. Species-specific adaptations to certain ecological 

conditions, like food patch distribution, characteristics of food items or seasonality also 

broadly predicted variation in cognitive abilities. A species’ innovative problem-solving 

and spatial processing ability, for example, could be explained by its use of specific 

foraging techniques or search strategies, respectively. Further, habitat generalists tended 

to outperform habitat specialists. Hence, we found evidence that ecological adaptations 

and cognitive performance are linked, but that the classification concept of ecological 

specialization cannot sufficiently explain variation in cognitive performance. 

Keywords 

cognition, ecological adaptation, foraging style, habitat complexity, Ecological Intelligence 

Hypothesis, brain size 

1 Introduction  

Cognition can be defined as the ability to perceive, memorize and process information 

from an individual’s social as well as ecological environment (Shettleworth 2009), and 

variation in this ability is thought to be positively correlated with brain size. Relative brain 
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size varies considerably among species (e.g., Sol et al. 2008; Mace et al. 2009) and is indeed 

associated with variation in average species-typical cognitive performance (Deaner et al. 

2006; Reader et al. 2011). Several hypotheses have been proposed to explain this link 

between interspecific variation in brain size and the associated cognitive abilities. The 

most prominent hypotheses are the Social Intelligence Hypothesis (SIH; Humphrey 1976) 

and the Ecological Intelligence Hypothesis (EIH; Parker and Gibson 1977; Milton 1988), which 

have been subsequently refined as the Domain-General Hypothesis (Deaner et al. 2006), 

Domain-Specific Hypothesis (Whiten and Byrne 1988), Adaptive Intelligence Hypothesis (Tooby 

and Cosmides 2003), Machiavellian Intelligence Hypothesis (Whiten and Byrne 1988), 

Cultural Intelligence Hypothesis (Herrmann et al. 2007; van Schaik and Burkart 2011), Social 

Brain Hypothesis (Dunbar 1998; Dunbar et al. 2007) and Cognitive Buffer Hypothesis (CBH; 

Deaner et al. 2003) (see Fig. 2.1) . 

The SIH suggests that bigger brains co-evolved with increasing social complexity, 

i.e., cognitive challenges to manage social relationships, which, in turn, have evolved as 

means of solving ecological problems (Jolly 1966; Humphrey 1976; Whiten and Byrne 

Fig. 2.1 Relationships between ecology, sociality, brain size measures and cognitive abilities. Main 
hypotheses related to particular links are represented with colored thick lines: red for the Social Intelligence 

Hypothesis (challenges related to sociality drive brain development; Humphrey 1976), green for the 
Ecological Intelligence Hypothesis (challenges related to ecology drive brain evolution; Parker and Gibson 
1977), blue for the Social Brain Hypothesis (ecological challenges predict sociality which drives brain size; 
Dunbar 1998; Dunbar and Shultz 2017), and yellow for the Cognitive Buffer Hypothesis (environmental 
variation drives brain size which favours adaptive behavioural flexibility; Deaner et al. 2003). Thinner 
black lines represent previously reported relationships between cognitive abilities and sociality, 
behavioral flexibility, and brain size. The dashed line represents the relationship between cognitive 
abilities and ecology discussed in this paper 
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1988; Barton 1996; Dunbar 1998; Kudo and Dunbar 2001; Dunbar et al. 2007; Byrne and 

Bates 2010). In contrast, the EIH posits that ecological challenges in food acquisition, 

including spatial or spatio-temporal processes to memorize seasonally available food or 

manipulative skills for extractive foraging, have ultimately selected for larger brains (e.g., 

Clutton-Brock and Harvey 1980; Heldstab et al. 2016; DeCasien et al. 2017; Powell et al. 

2017). At the end of the day, brains evolve within species, where environmentally induced 

changes in physiological traits, such as glucose concentrations and hormone levels, impact 

cognitive performance (Roth et al. 2010; Thornton and Lukas 2012; Maille and Schradin 

2016a). 

Comparative studies investigating the link between measures of brain size and 

socio-ecological factors revealed inconsistent results, finding either a positive relationship 

between measures of brain size and sociality in primates and ungulates (Dunbar 1998; 

Pérez-Barbería et al. 2007; Dunbar and Bever 2010) or equivocal support in carnivores 

(Holekamp et al. 2007; Pérez-Barbería et al. 2007; Finarelli and Flynn 2009), for instance. 

Among primates, the most recent comparative analyses indicated that brain size is better 

predicted by ecological than social factors (DeCasien et al. 2017; Powell et al. 2017). 

However, compared to social factors (Ashton et al. 2018b), less is known about the extent 

to which variation in specific ecological factors predicts cognitive performance (Fig. 2.1). 

Here, we therefore explore the question whether ecological adaptations can explain 

interspecific variation in cognitive abilities by first briefly summarizing hypotheses about 

the evolution of cognitive abilities addressing potential links between cognition and brain 

size, sociality, as well as ecology, respectively. Second, we provide a summary of 

comparative studies relating interspecific variation in cognitive performance with 

ecology, specifically the degree of ecological specialization. Using these studies, we also 

explore the relative impact of sociality and brain size on variation in cognitive 

performance. Finally, we discuss the effects of the degree of ecological specialization, 

potentially confounding factors in experimental studies, and limitations of this review that 

may inform future research on this topic. 
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1.1 The link between cognition and brain size  

Some comparative studies have suggested that measures of brain size co-vary positively 

with performance in cognitive tests (see Appendix 1, Table S1-1 for explanations of 

cognitive terms), such as performance in inhibitory control across vertebrates (MacLean 

et al. 2012), a general intelligence (g)-factor extracted from performance in innovation, 

social learning, tool use, extractive foraging and tactical deception (Reader and Laland 

2002; Reader et al. 2011), a g-factor extracted from performance in tests on spatial and 

causal understanding, reversal learning and delayed response (Deaner et al. 2006, 2007), 

or performance in problem-solving (Benson-Amram et al. 2016). In addition, guppies 

(Poecilia reticulata) selected for larger brains outperformed those with smaller brains in a 

numerical learning assay (Kotrschal et al. 2013), demonstrating this link also at the intra-

specific level.  

However, it is questionable whether simple measures of brain size can be used to 

infer its impact on the solution of a specific problem (Healy and Rowe 2007). In addition, 

different neuroanatomical measures of brain size have been combined with inconsistently 

labelled methods and various cognitive response measures (Healy and Rowe 2007). To 

circumvent these problems, some studies extracted a general intelligence factor, which is 

a statistical value derived from correlating performance in several cognitive tasks 

(Spearman 1904; Jensen 1985). In primates (Reader and Laland 2002; Deaner et al. 2006; 

Deaner et al. 2007; Reader et al. 2011), the g-factor co-varied positively with brain size. 

Although some other studies provided evidence for a g-factor in humans (Jensen 1985), 

non-human primates (Fernandes et al. 2014; Damerius et al. 2019), rodents, rabbits, cats, 

dogs (Galsworthy et al. 2014), and birds (Sol et al. 2005a; Ducatez et al. 2015), we lack 

validation that this correlation factor represents general intelligence (Burkart et al. 2017). 

In fact, it can simply reflect the selection of cognitive tasks that tap into similar cognitive 

domains, which would not necessarily validate the notion of general intelligence (Shaw 

and Schmelz 2017; Bräuer et al. 2020). 

Alternatively, domain-specific cognition might support the notion of mosaic brain 

evolution (Barton and Harvey 2000). The vertebrate brain consists of several functionally 

different structures, of which many vary in size within and between clades (Striedter 

2006). Differences in the relative size of different brain regions are thought to reflect both 
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neurodevelopmental/functional size changes and selection for ecologically relevant 

cognitive and sensory specialization (Barton 1996). For example, food-caching birds have 

relatively, but not absolutely larger hippocampi (Krebs 1990), and brain regions associated 

with spatial processing are enlarged in species with better spatial abilities (Sherry et al. 

1992; Clayton 1998). Moreover, group-living primates with high-quality diets have larger 

brain regions for olfactory or visual processing, whereas solitary species or those with low-

quality diets have larger brain regions for processing spatial memory (DeCasien and 

Higham 2019). Finally, the number of neurons in the mammalian cerebral cortex, or in the 

bird pallium, appear to be good predictors of inhibitory control (Herculano-Houzel 2017). 

Hence, specific neuroanatomical measures can be broadly associated with variation in 

cognitive performance. 

1.2 The link between cognition and sociality 

Cognitive abilities have been linked to traits associated with variation in social factors. 

Variation in sociality is often operationalized in terms of group size (Lukas and Clutton-

Brock 2013; Kappeler 2019), which varies from solitary individuals and small pair-bonded 

units to large aggregations. The need for several social skills, like effective communication 

or coordination with other group members, requires specific neural structures (Dunbar 

and Shultz 2007; Peckre et al. 2019). Thus, group size or group dynamics are contributing 

to the complex social challenges an animal faces (Kappeler 2019).  

Accordingly, primates living in dynamic fission-fusion systems (Aureli et al. 2008) 

performed better in inhibitory control tasks than those living in more stable groups, 

suggesting that the former exhibit greater behavioral flexibility (Amici et al. 2008; Amici 

et al. 2018). In lemurs and birds, species organized into more complex social groups 

outperformed others in transitive inference tasks (Bond et al. 2003; MacLean et al. 2008). 

A similar inter-specific difference was found in birds subjected to a reversal-learning task 

(Bond et al. 2007). Moreover, within species, Australian magpies (Gymnorhina tibicen 

dorsalis) living in larger groups performed better in several cognitive tests (inhibitory 

control, associative and reversal learning abilities, spatial memory and innovation) than 

those living in smaller groups (Ashton et al. 2018a, 2019). Since traits such as inhibitory 
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control and (reversal) learning abilities reflect behavioral flexibility, the underlying 

variation in cognition can be related to variation in sociality. 

1.3 The link between cognition and ecology 

Ecological challenges, such as variable schedules of resource availability, habitat 

complexity, predation risk or parasite exposure, may have contributed to cognitive 

evolution (Garamszegi et al. 2007; Lefebvre and Sol 2008; Shumway 2008; Soler et al. 2012; 

Morand-Ferron et al. 2016; Sayol et al. 2016). With respect to resource variation, the CBH 

posits that larger brains evolved to allow species to adjust their behavior adaptively in 

response to variable environmental conditions (Deaner et al. 2003). For instance, 

frugivorous species, which have on average larger brains than folivorous species, rely 

more on resources that vary in their spatiotemporal distribution than folivorous species 

(Clutton-Brock and Harvey 1980; Mace et al. 2009). Moreover, birds and Old World 

primates exposed to seasonal changes in food availability tend to have larger brains than 

species living in non-seasonal habitats (van Woerden et al. 2012; Sayol et al. 2016). 

Innovativeness, which is adaptive in variable environmental conditions, correlates 

positively with brain size in primates and birds (Reader and Laland 2002; Lefebvre et al. 

2004; Overington et al. 2009), but it also correlates positively with parasitism and 

immunocompetence in birds (Møller et al. 2005; Garamszegi et al. 2007; Vas et al. 2011), 

though the link between innovation and the transmission mode of parasite types is not 

obvious (Ducatez et al. 2020a). Finally, in line with the EIH, brain size was best predicted 

by diet or home range size in primates (DeCasien et al. 2017; Powell et al. 2017).  

Comparisons within species also revealed evidence that variation in cognitive 

abilities is associated with parasitism (Dunn et al. 2011; Bókony et al. 2014), predation 

(Brown and Braithwaite 2005; Park et al. 2008; Ferrari 2014), habitat complexity (Roth et 

al. 2010; Tebbich and Teschke 2014; Croston et al. 2017; Morand-Ferron et al. 2019), or 

foraging behavior (Mazza et al. 2019; Sonnenberg et al. 2019). However, only a few 

comparative studies explicitly explored which cognitive skills might be associated with 

which species-specific ecological challenges. In birds, innovation was positively correlated 

with parasitism (Garamszegi et al. 2007; Vas et al. 2011; Soler et al. 2012) or habitat breadth 
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(Overington et al. 2011), but not with predation (Overington et al. 2011). In primates, 

abundance of socially transmitted parasites were positively associated with rates of social 

learning, and environmentally transmitted parasites were positively associated with rates 

of exploration (McCabe et al. 2015). Habitat complexity was positively correlated with 

spatial cognition and brain size in rodents (Mackay and Pillay 2017) and fish (White and 

Brown 2015a). Hence, some results point towards an association between cognitive 

performance and ecological adaptations and a systematic summary of respective 

associations across species may contribute to a better understanding of potential 

causalities and their relative effect sizes. 

The required assessment of a species’ ecological adaptation can be based on a 

characterization of its niche, which is a multidimensional space comprising all ecological 

factors that determine species viability (Hutchinson 1953; MacArthur 1957). Specialization 

and generalization represent the extremes of the continuous variation along each of the 

dimensions (Sargeant 2007). Utilizing this niche concept, however, involves some 

difficulties. First, it is important to differentiate between intrinsic specializations due to 

evolutionary adaptations (i.e., an individual’s genetics describing its fundamental niche) 

and extrinsic specializations due to interspecific competition over resources (i.e., the 

observed realized niche), for instance (Hutchinson 1957; Devictor et al. 2010). Second, 

niche breadth can be defined by the diversity of resources used by a species, or by its 

overlap, measured as the deviation from other species’ resource values (Sargeant 2007). 

Considering niche breadth, a specialist would then be a species consistently using a 

narrower niche than other species (Roughgarden 1972; Bolnick et al. 2003). Considering 

niche overlap, however, a specialist would use items/tactics that are rarely used within 

other species’ niches (Bolnick et al. 2002). Moreover, classifications refer to only one niche 

axis (Futuyma and Moreno 1988), leading to species that can be highly specialized along 

one ecological gradient while being a generalist along another ecological gradient. It has 

therefore been proposed to use species co-occurrence as a measure of habitat breadth 

(Ducatez et al. 2014b). Finally, different studies use different terms for similar concepts 

without stating their definition, or they ignore differences between niche breadth and 

niche overlap, hampering broader comparisons (Colwell and Futuyma 1971; Devictor et 

al. 2010). 
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We, thus, use the concept of ecological specialization as formalized by Hutchinson 

(Hutchinson 1957) and similarly to Hughes (Hughes 2000). Accordingly, we consider a 

dietary specialist as a species consuming a lower variety of food types and a habitat 

specialist as a species occurring in a lower variety of habitat types than a dietary generalist 

or habitat generalist, respectively. We use this distinction always relative to the species in 

comparison, not as an absolute attribute. Since animals are expected to have evolved 

cognitive adaptations to exploit these respective conditions as efficiently as possible 

(Mettke-Hofmann 2014), generalists and specialists are expected to vary in their 

performances across cognitive tasks, but also in some personality traits. Hence, generalists 

have been suggested to be more explorative, to have better working memory, to learn 

faster, to exhibit greater behavioral flexibility and to have a higher innovative potential 

than specialists. Specialists are instead expected to exhibit better long-term memory, 

despite smaller brains, than generalists (Reader 2003; Mettke-Hofmann 2014). 

Below, we review relevant studies that explicitly investigated inter-specific 

variation in cognitive performance posed by problems that are related to species-specific 

adaptations to factors reflecting the degree of ecological specialization. Using the search 

query “(ecolog* or generali* or speciali* or “lifestyle” or opportunist*) and (cogniti* or 

learn* or memory) and animal” in “topic” (including titles, abstracts, keywords, and 

keywords plus) in the Web of Science [https://apps.webofknowledge.com/, accessed on 

2019-07-14] and complementing the collection with other relevant studies via cross-

references, we found a total of N = 25 studies, that fit our criteria. 

All selected studies (1) experimentally compared (2) cognitive abilities between (3) 

at least two species with the aim to investigate (4) different ecological adaptations with a 

focus on the degree of ecological specialization. We controlled for potential phylogenetic 

effects by excluding studies comparing species across taxonomic classes. The remaining 

studies either compared species within the same genus (40%), family (48%), or order 

(12%). Most of the studies compared wild-caught or semi-free ranging (72%) individuals 

in mammals (56%) or birds (24%) (N = 2 for each in reptiles and fish, N = 1 for 

invertebrates). The investigated ecological adaptations were mostly related to dietary 

challenges and variation in habitat complexity (Table 2.1). As studies of cognitive 

performance often differ in experimental conditions (animal housing, feeding regimes, 
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environmental conditions, local and temporal conditions, experimental task and 

procedure, role of experimenter, etc.), measurement of cognitive performance and analysis 

in interspecific comparisons, we focused on explicitly comparative studies. Since only a 

few species were explicitly labelled as either generalist or specialist in the original studies, 

we assessed the relative degrees of habitat and/or dietary specialization between the 

species investigated using additional literature. Similarly, if not mentioned in the original 

study, we gleaned information on group and brain size or proxies for brain size by 

consulting additional literature (Table 2.2). 

2 Cognitive performance and ecological specialization 

Ecological challenges are of various nature, including the avoidance of predators and 

parasites and securing access to shelter or resources. However, most existing studies 

investigated variation in cognitive performance related to experienced foraging 

challenges. In the following, we distinguish among challenges related to habitat 

exploration while searching and finding food, accessing food items, and memorizing 

previous resource locations, and summarize their associations with the degree of 

ecological specialization. 

2.1 Habitat exploration while searching and finding food  

Exploring different habitat types while searching for food may require different foraging 

techniques. More complex habitats with variable and unpredictable environments may 

require superior spatial learning abilities, allowing animals to flexibly adjust to these 

variable environments. Bats have been widely studied across habitats since their 

echolocation varies with landscape features (Schnitzler et al. 2003). Geoffroy’s bats (Myotis 

emarginatus) and greater mouse-eared bats (M. myotis), which forage in more complex and 

less stable habitats, learned a complex spatial discrimination faster and showed more 

flexibility when reward contingencies changed, than long-fingered bats (M. capaccinii), 

which forage in simpler and more stable open water habitats (Clarin et al. 2013). Similarly, 

Cocos frillgobies (Bathygobius cocosensis) and Krefft’s gobies (B. krefftii) that occur in 
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spatially complex rock pool habitats performed better in a spatial learning test than 

Eastern long finned gobies (Favonigobius lentiginosus) and Hoese’s sandgobies (Istigobius 

hoesei) occurring in homogenous sandy shores (White and Brown 2015). Also bank voles 

(Myodes glareolus), which occur in more complex habitats, exhibited better spatial search 

behavior than root voles (Microtus oeconomus), which occur in more open habitats 

(Pleskacheva et al. 2000). Moreover, omnivorous bank voles and herbivorous common 

voles (M. arvalis) were similar in their efficiency of exploiting stable habitats, but the 

omnivorous bank voles were more efficient in exploiting habitats with temporally 

changing food locations (Haupt et al. 2019). However, striped mice (Rhabdomy pumillo, R. 

bechuanae, R. dilectus) occurring in habitats of different complexity did not differ in spatial 

learning abilities, possibly due to phylogenetic constraints (Mackay and Pillay 2017). 

Finally, adapting to and persisting in urban landscapes have been suggested to be 

associated with behavioral flexibility in several species (Sih 2013; Sol et al. 2013; Ducatez 

et al. 2020b). However, Eastern blue-tongue skinks (Tiliqua scincoides scincoides) originating 

from urbanized areas did not perform better in a reversal learning task than sleepy lizards 

(T. rugosa asper) originating from rural areas (Szabo and Whiting 2020). Hence, variation 

in habitat complexity seems to covary with learning abilities in most cases, in particular 

spatial learning abilities and decision-making. 

Regarding the search for food, animals use specific ranging behavior to track the 

spatio-temporal distribution of dietary items. By using specific navigational heuristics, i.e., 

decision rules applied to certain situations (Gigerenzer 2008), animals can improve their 

exploitation of the environment while reducing cognitive effort and energy expenditure. 

The use of such heuristics varies with the distribution of food items or the mobility of 

preferred food items. In primates, the more frugivorous Tonkean macaques (Macaca 

tonkeana) exhibited more goal directed search strategies while foraging than the less 

frugivorous long-tailed macaques (M. fascicularis) or capuchin monkeys (Sapajus apella; 

Trapanese et al. 2019). The mobility of food items also influenced search strategies in three 

lemur species (Teichroeb and Vining 2019). Fat-tailed dwarf lemurs (Cheirogaleus medius), 

which are specialized on stationary fruits, performed best in a multi-destination array 

with several feeding platforms. Their superiority was explained by efficient use of specific 

heuristics for exploration and feeder exploitation. In comparison, dietary generalist grey 
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mouse lemurs (Microcebus murinus), which feed on stationary food items like flowers and 

gum but also on mobile food items such as insects, used fewer heuristics. Aye-ayes 

(Daubentonia madagascariensis), which are specialized on mobile and ephemeral insect 

larvae, used basically no heuristics at all, resulting in greater explorative effort and lower 

cognitive task performance. Similarly, Saussure’s long-nosed bats (Leptonycteris 

yerbabuenae), which are specialized on nectar, foraged more efficiently in a feeder set-up 

with artificial flowers by revisiting the feeders less often and depleting them more than 

long-tongued bats (Glossophaga soricina), who complement their nectar and pollen diet 

additionally with fruits and insects according to seasonal availability (Henry and Stoner 

2011). Thus, the reliance on more mobile food items seems to increase exploration, which 

results in lower task performance in spatial cognition tests. 

Variation in cognitive performance is also associated with foraging style. In 

rodents, faster exploring mice (Mus musculus) learned contingencies between an auditory 

cue and a food reward or punishment differently than slower exploring rats (Rattus 

norvegicus). Both rodents could learn either of the reward contingency, i.e., to stay in the 

initial compartment or move to a second compartment, to receive a food reward. 

However, they were unable to overcome their baseline activity tendencies to avoid a 

punishment: the more active mice only reached the learning criterion when they had to 

move to the second compartment, while rats only reached the learning criterion when they 

had to stay in the initial compartment to avoid punishment (Jones et al. 2017). In reptiles, 

the actively foraging Bosc’s fringe-toed lizard (Acanthodactylus boskianus) learned a visual 

reversal learning paradigm faster than the Nidua fringe-toed lizard (A. scutellatus), which 

is a sit-and-wait predator (Day et al. 1999a). Thus, a more proactive foraging style is 

consistently associated with superior performance in various cognitive tests. 

2.2 Accessing food items 

Once an animal has solved the problem of locating a given food patch, it encounters the 

next challenge: the extraction of the actual food item. Depending on the item’s 

characteristics, superior sensorimotor coordination or manipulative skills, including 

extractive foraging techniques or tool use, are beneficial but also energetically more costly, 
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and ultimately require a larger brain (Parker and Gibson 1977; Heldstab et al. 2016). 

Sensorimotor control and extractive foraging abilities seem to be especially helpful for 

solving innovative problems, and the majority of innovative behaviors has indeed been 

recorded in the foraging domain (Reader and Laland 2002). Indian mynas (Acridotheres 

tristis) which exhibited greater diversity in motor behaviors, were more innovative than 

noisy miners (Manorina melanocephala) (Griffin and Diquelou 2015). Madame Berthe’s 

mouse lemurs (Microcebus berthae) that expressed better motor control than grey mouse 

lemurs, subsequently learned a modified innovative problem faster (Henke-von der 

Malsburg and Fichtel 2018). In seven species of callitrichid monkeys, the existence of 

extractive foraging techniques predicted innovative abilities, with lion tamarins 

(Leontopithecus spp.), which are manipulative extractive foragers with a higher innovative 

potential, exceeding the gum-specialized, extractive foraging marmosets (Callithrix spp.) 

and the non-extractive, but only visually foraging tamarins (Saguinus spp.) (Day et al. 

2003). These examples suggests that efficient access to food sources can vary with 

cognitive abilities such as innovative behaviors, which also seemed to be influenced by 

motor coordination. 

2.3 Memorizing previous resource locations 

When animals are highly reliant on cached food or when they migrate to other habitats, 

usually due to seasonal food shortage (Wall and Stephen 1990; Dingle 2014), they require 

well developed spatial cognitive abilities. In both cases, animals with good spatial 

processing abilities are better at memorizing locations of food patches than animals with 

no or only basic spatial processing abilities (Shettleworth 1990; Sherry et al. 1992). For 

example, compared to non-migratory dark-eyed juncos (Junco hyemalis carolinensis), 

migratory dark-eyed juncos (J. h. hyemalis) showed greater accuracy in remembering 

feeder locations that have been visited only once before a certain retrieval interval (Cristol 

et al. 2003). Moreover, Merriam’s kangaroo rats (Dipodomys merriami), intensive scatter 

hoarders, showed better spatial memory accuracy in a cache simulation task than Great 

Basin kangaroo rats (D. microps), leaf-eating specialists that do not rely on scatter-hoarding 

(Barkley and Jacobs 2007). Furthermore, food caching Clark’s nutcrackers (Nucifraga co-
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lumbiana) performed better in an initial spatial discrimination task than less food caching 

pinyon (Gymnorhinus cyanocephalus) and non-food caching Western scrub jays (Aphelocoma 

californica). Pinyon jays, however, performed better than the other two corvid species in 

serial reversal learning tasks (Bond et al. 2007) and Western scrub jays performed better 

in a distance discrimination task (Gibson and Kamil 2005). Thus, the reliance on food 

caching can co-vary with spatial memory, but not necessarily with other cognitive 

abilities. 

Although primates do not rely on food-caching, spatial memory abilities can be 

beneficial for relocating a certain food patch. Indeed, chimpanzees (Pan troglodytes) that 

feed on more patchy distributed foods than bonobos (P. paniscus) exhibited better retrieval 

performance when food items were hidden by a human demonstrator (Rosati and Hare 

2012). Similarly, lemurs varied in performance in spatial memory tasks according to their 

diet. The most frugivorous ruffed lemurs (Varecia spp.) showed better spatial memory than 

ring-tailed lemurs (Lemur catta), mongoose lemurs (Eulemur mongoz) and Coquerel’s 

sifakas (Propithecus coquereli); the latter being the most folivorous species (Rosati et al. 

2014). Wied’s marmosets (Callithrix kuhlii) performed better than golden lion tamarins 

(Leontopithecus rosalia) in spatial memory experiments with relatively short retention 

intervals (5 or 30 min). However, they performed poorly after longer retention intervals 

(24 or 48 h), while the tamarins could maintain their performance level (Platt et al. 1996). 

Again, the observed interspecific differences match the species’ foraging strategies: while 

marmosets revisit single food patches several times per day (Rylands 1989), tamarins do 

so only every three days (Peres 1989). Hence, spatial memory abilities also vary in 

accordance with a species-typical foraging ecology. 

3 Ecological generalism versus ecological specialization 

Empirical comparisons of cognitive performance between generalists and specialists have 

either investigated effective habitat exploration in, for instance, spatial memory tasks 

(Pleskacheva et al. 2000; Haupt et al. 2010), or specific foraging abilities like innovative 

propensities (Day et al. 2003; Overington et al. 2009; Overington et al. 2011; Griffin and 

Diquelou 2015; Henke-von der Malsburg and Fichtel 2018), associative learning (Hoedjes 
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et al. 2012), or behavioral flexibility (Day et al. 1999a), using a variety of problem-solving 

experiments, including food extraction tasks, visual or olfactory discriminations, or 

reversal learning tasks. 

3.1 Habitat exploration and the degree of habitat specialization 

Occurring across larger and more complex areas, habitat generalists would benefit from 

advanced navigational strategies to efficiently explore these areas, specifically when they 

feed on patchy distributed but potentially predictable food sources. The habitat generalist 

bank vole, for instance, showed increased spatial memory compared to the more 

specialized root vole (Pleskacheva et al. 2000). In lemurs, the species with greater habitat 

specialization performed better in the spatial memory task due to more efficient use of 

navigational heuristics (Teichroeb and Vining 2019). In bats, Saussure’s long-nosed bats, 

a relative habitat generalist, exhibited more efficient feeder exploitation than the sympatric 

but more specialized long-tongued bats (Henry and Stoner 2011). Similarly, the relative 

habitat generalists, the greater mouse-eared and Geoffroy’s bats, learned a complex visual 

discrimination faster and were more flexible in a reversal learning task than the most 

specialized long-fingered bat (Clarin et al. 2013). 

Migratory vertebrates tend to be more habitat specialists than generalists, possibly 

because they need to disperse further to find a habitat patch with suitable conditions 

(Martin and Fahrig 2018). In a comparative study on spatial memory accuracy in two junco 

subspecies (Cristol et al. 2003), the migratory subspecies performed better than the 

residential subspecies. However, since both subspecies rely on comparable diets and occur 

in similar habitats throughout the year, and due to a lack of data on population densities 

and different habitat types, it is neither possible to calculate a species specialization index 

(Martin and Fahrig 2018), nor to classify the migratory subspecies as more specialized than 

the residential one. Overall, one may argue, however, that the degree of habitat 

specialization tends to covary with spatial memory accuracy, learning flexibility and 

decision-making. 
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3.2 Foraging and the degree of dietary specialization 

Food storing or caching can be considered as a behavioral adaptation to variable resource 

abundance. While a positive link between these behaviors and spatial memory abilities 

has been reported (Clayton and Krebs 1994a, b; Bednekoff et al. 1997), it is not clear how 

the degree of ecological generalism may fit into this relationship. The aforementioned 

example on spatial memory accuracy in a cache simulation task reported the better 

performing kangaroo rat to be a leaf-eating specialist (Barkley and Jacobs 2007), but others 

classified them as less specialized because they also, although more rarely, feed on seeds 

like other kangaroo rats (Cassola 2016; Timm et al. 2016), indicating that the classification 

into generalists and specialists is not always straightforward.  

The degree of dietary breadth was related to discriminative learning abilities in a 

comparative study of parasitic wasps. The more dietary generalists (Nasonia vitripennis, 

N. longicornis) learned an association between an odor and a rewarding host better than 

the more specialized N. giraulti (Hoedjes et al. 2012). Also, the dietary generalist bank vole 

performed better in a spatial learning task with temporally changing food locations than 

the more dietary specialist common vole (Haupt et al. 2010). Hence, dietary generalism 

seems to covary with discriminative and spatial learning abilities.  

Individuals with greater innovative abilities are also expected to deal more 

efficiently with changing environmental conditions, including diet (Sol et al. 2005a). Since 

generalist species are by definition exposed to more variable conditions, they are 

suggested to express greater behavioral flexibility and greater innovative propensities 

than specialists (Ducatez et al. 2015; Navarrete et al. 2016). Among birds, habitat generalist 

species have indeed higher innovation rates than habitat specialists (Overington et al. 

2011). Moreover, the omnivorous Indian myna showed a higher innovative propensity 

than the noisy miner, which is specialized on honey (Griffin and Diquelou 2015). In 

contrast, the more dietary and habitat specialized Madame Berthe’s mouse lemur 

outperformed the sympatric generalist gray mouse lemur in innovative extractive 

foraging tasks with variable difficulties (Henke-von der Malsburg and Fichtel 2018). The 

better performance of the specialist might have been a result of enhanced executive control 

enabling individuals to inhibit the use of a previously learned problem-solving technique 

and to develop an adjusted solution to a modified problem, indicating that other factors 
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than ecological specialization may explain variation in performance. Across primates, 

however, performance in inhibitory control tests was best predicted by absolute brain size 

and dietary breadth, suggesting that species differences in dietary specialization might 

indeed be related to levels of self-control (MacLean et al. 2014). Hence, dietary 

specialization seems to covary with learning ability, spatial learning, and inhibitory 

control.  

In general, cognitive performance can be related to the degree of ecological 

specialization. Eighteen of the interspecific comparisons reviewed here report cognitive 

differences between species expressing a different degree of habitat specialization, while 

five do not (sign-test: p = 0.011). By trend, habitat generalists (N = 13) were more likely to 

outperform habitat specialists (N = 5; sign-test: p = 0.064). Twenty-one of the comparisons 

report cognitive differences between species expressing a different degree of dietary 

specialization while three do not (sign-test: p < 0.001). However, the degree of dietary 

specialization could not explain interspecific variation in cognitive performance (sign-test: 

Ngeneralist = 13, Nspecialist = 8, p = 0.383). 

4 Variation in cognitive performance in relation to group 

size 

Because performance in cognitive tests in these studies might be explained by consistent 

differences in sociality, we scored the species included in this review with respect to their 

group size to index their social complexity (Table 2.2). While half of the comparisons 

(N = 12) controlled for group size effects, the other half (N = 12) compared species living 

in differently sized groups, which also exhibit interspecific cognitive variation. However, 

we do not find species living in larger groups to generally perform better than those living 

in smaller groups, which might also be due to our small sample size (sign-test: Nlarger = 7, 

Nsmaller = 5, p = 0.774). 

Five studies supported a positive link between group size and cognitive 

performance: Mexican, pinyon, as well as Western scrub jays, which live in larger flocks, 

performed better in spatial learning paradigms than Clark’s nutcrackers (Bednekoff and 

Balda 1996; Gibson and Kamil 2005), Saussure’s long-nosed bats, which form larger 
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colonies, performed better in a spatial working paradigm than Palla’s long-tongued bats 

(Henry and Stoner 2011), pair-living sleepy lizards were more behaviorally flexible in a 

visual reversal learning task than solitary Eastern blue-tongue skinks (Szabo and Whiting 

2020), and golden lion tamarins, which live in relatively larger groups, showed better 

memory retention for longer retention intervals than Wied’s marmosets (Platt et al. 1996). 

However, Wied’s marmosets outperformed golden lion tamarins in the same task using a 

shorter retrieval period (Platt et al. 1996). In lemurs, performance in a spatial memory task 

was not linearly related to group size across four species (Rosati et al. 2014). Moreover, in 

innovative problem-solving paradigms, primates living in intermediate-sized (Day et al. 

2003) or birds living in smaller groups (Griffin and Diquelou 2015) outperformed the 

respective species living in relatively larger groups. 

Based on the currently available evidence, it is therefore not possible to determine 

whether sociality covaries with cognitive performance scores in these studies. First, we set 

the focus on studies comparing species with variation in ecological adaptations, which 

were not designed to compare species with different group size. Second, we indexed 

sociality in terms of group size, but disregarded group composition, stability, cohesion, or 

hierarchy. Finally, most of the cognitive tests were not explicitly designed to have any 

functional relevance in terms of sociality or variation in social traits, so that a correlation 

with performance scores is unlikely. Hence, to address the relative importance of either 

ecological or social factors driving the evolution of brain size, comprehensive cognitive 

test batteries addressing both sets of factors are required (Shaw and Schmelz 2017; Völter 

et al. 2018; Fichtel et al. 2020). 

5 Variation in cognitive performance in relation to brain size 

Brain size can be assessed via absolute or relative brain mass or volume, via an 

encephalization quotient (Jerison 1973; Hartwig et al. 2011), or neural connectivity, for 

instance. Since the studies included in this review were not designed to compare potential 

effects of a certain brain size measure, we had to find comparable measures or proxies 

elsewhere (Table 2.2). With this information, we did not find evidence for a link between 

experimental cognitive performance and brain size in this sample (sign-test: Nbigger = 10, 
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Nsmaller = 7, p = 0.629). Since the available brain size measures differed between these 

relatively few studies, the observed lack of an effect of brain size on cognitive performance 

might reflect this methodological shortcoming. 

6 Discussion 

In this review, we summarized comparative research investigating variation in cognitive 

performance in relation to specific adaptations to ecological factors animals are exposed 

to in their daily life. Although these ecological factors can vary greatly among species in 

the same taxonomic group, studies systematically investigating the relationship between 

ecological factors and cognitive performance are still rare. Most studies reported a 

predicted relationship between the measured cognitive performance and an ecological 

factor differentiating the study species (Table 2.1), but we cannot know whether this 

pattern is affected by a publication bias against studies reporting no effect. Our rough 

control indicated that phylogeny as well as group and brain size did not have pervasive 

effects on the observed pattern. Nonetheless, some studies failed to find an effect of 

ecology, perhaps due to unsuitable study designs (Bednekoff and Balda 1996; Healy and 

Suhonen 1996) and/or ecological irrelevance of the respective cognitive ability tested (Day 

et al. 1999a; Gingins and Bshary 2016). Below, we discuss the main correlates of 

interspecific variation in cognitive performance in terms of flexible foraging strategies, 

spatiotemporal habitat exploration and food patch exploitation, as well as the degree of 

ecological specialization. Further, we highlight the importance of considering potentially 

confounding factors when designing a study appropriate for the investigation of species-

specific ecological adaptations (Shaw and Schmelz 2017; Schubiger et al. 2020). 

6.1 Adaptations to ecological factors correlate with cognitive 

performance 

6.1.1 Flexible foraging strategies 

Interspecific differences in cognitive performance have been reported as a function of 

variation in ranging behavior and search strategies (Trapanese et al. 2019; Teichroeb and 
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Vining 2019), foraging activity (Day et al. 1999a; Day et al. 2003; Jones et al. 2017), foraging 

techniques (Day et al. 2003), characteristics of preferred dietary items (Pleskacheva et al. 

2000; Henry and Stoner 2011; Teichroeb and Vining 2019), adaptations to habitat 

complexity (Pleskacheva et al. 2000; Clarin et al. 2013; White and Brown 2015a), or 

adaptations to seasonality (Cristol et al. 2003; Barkley and Jacobs 2007; Henry and Stoner 

2011) (Fig. 2.2). Active or manipulative extractive foragers have been reported to learn 

more flexibly (Day et al. 1999a) or to be more innovative (Day et al. 2003), respectively. 

Flexible learning and innovative abilities can be linked in innovators that possess the 

ability to invent a new behavior or to modify an existing behavior (Reader and Laland 

2003) and to incorporate these into the behavioral repertoire via flexible learning 

Fig. 2.2 Links between ecology and cognition. We identified several links (thick lines) between cognitive 
abilities and adaptations to ecological factors (thin lines) such as certain habitat characteristics, characteristics 
of dietary items or ecological challenges related to the foraging process (including the search for food, access 
to food items and memorizing resource locations). Positive relationships between specific adaptations and 
cognitive abilities are represented with thick solid lines while negative relationships are represented with 
dashed lines 
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mechanisms (Dukas and Ratcliffe 2009). In contrast to sit-and-wait predators, active 

foragers need to rapidly adjust the current foraging strategy to the behavior of the prey of 

interest as well as to the environment while searching and hunting for prey. They would 

specifically benefit by learning the association of a certain stimulus with a reward (i.e., the 

prey) and to flexibly update such associations whenever the stimulus or other conditions 

change. This underlying behavioral flexibility is then an advantageous characteristic when 

environmental conditions change (Lee 2003; Lefebvre et al. 2004). Further, innovations 

appear predominantly in the foraging context (Reader and MacDonald 2003), favoring a 

link with a species’ foraging ecology rather than with its sociality. 

6.1.2 Spatiotemporal habitat exploration and food patch exploitation 

When searching for food, animals always need to deal with the trade-off between habitat 

exploration and food patch exploitation (Hills et al. 2015). The decision of when to switch 

from one to the other varies with the spatiotemporal distribution of food items since this 

determines the energetic costs of habitat exploration and energy intake during patch 

exploitation. Habitat exploration is particularly costly when food items are sparse or 

patchy distributed or when food abundance is (seasonally) low. Using specific 

navigational heuristics or investment in spatial memory can reduce foraging costs under 

these conditions. However, the underlying capacities are energetically constrained and 

should, therefore, evolve in species that feed on stationary rather than mobile food items, 

on dispersed rather than highly abundant items, or in species, that are exposed to harsh 

environments (Roth and Pravosudov 2009). 

Also, when relocating a certain food patch, irrespective of the length of a retrieval 

interval, the energetic investment in spatial memory capacities can be beneficial. At least 

in birds, rodents, and primates, there is evidence that the evolution of spatial memory 

abilities parallels a species-specific foraging ecology. Better spatial cognition has been 

reported for species feeding on dispersed items of rather unpredictable abundance (Platt 

et al. 1996; Pleskacheva et al. 2000; Rosati and Hare 2012; Clarin et al. 2013), frugivorous 

species (Rosati et al. 2014; Trapanese et al. 2019; Teichroeb and Vining 2019), scatter 

hoarders (Barkley and Jacobs 2007) or migrating species (Cristol et al. 2003). In such cases, 
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better-adapted species evolve greater hippocampi as an adaptation to the highly 

demanding ecological challenge of memorizing previous food locations or caches. 

6.1.3 Other ecological adaptations 

Evidence for a general association between cognitive performance and ecological factors 

might be biased since most studies measuring interspecific variation conducted 

experiments on only a few cognitive skills such as spatial processing, flexible learning or 

innovative problem-solving. It remains to be investigated, however, whether other 

cognitive tasks, such as those estimating the ability of causal reasoning or numerical 

understanding, or a combination of different tasks in a valid test battery can also be linked 

to ecological factors (Shaw and Schmelz 2017). Also, the potential effects of other 

ecological factors, such as predation and parasite risk, on relevant cognitive abilities 

remains largely unstudied (Garamszegi et al. 2007; Soler et al. 2012). Thus, there is a need 

for additional studies to obtain a more comprehensive understanding of the ecology-

cognition link. 

6.2 How does cognitive performance correlate with the degree of 

ecological specialization? 

In several studies we found the degree of ecological specialization to be correlated with 

variation in certain cognitive abilities (Platt et al. 1996; Pleskacheva et al. 2000; Day et al. 

2003; Barkley and Jacobs 2007; Haupt et al. 2010; Henry and Stoner 2011; Hoedjes et al. 

2012; Rosati et al. 2014; Griffin and Diquelou 2015; Henke-von der Malsburg and Fichtel 

2018). We found that habitat generalists were likely to outperform habitat specialists, but 

this relation was not significant and the degree of dietary specialization did not 

consistently covary with cognitive performance. Given, that habitat generalists regularly 

face more challenges by exploring a broader, more variable habitat than specialists, they 

might specifically exhibit better spatial processing abilities and more behavioral flexibility 

(Overington et al. 2011); at least in the sense of ‘behavioral flexibility’ allowing for 

adaptations to variable environments (Lea et al. 2020). However, behavioral flexibility 
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does not necessarily result in better cognitive performance per se because less behaviorally 

flexible species, as specialists, may instead possess other behavioral characteristics that 

promote better performance in certain cognitive skills (Henke-von der Malsburg and 

Fichtel 2018). In studies reporting the more specialized species to exhibit better 

performance than the generalist (e.g. Teichroeb and Vining 2019), better performance was 

linked to specific adaptations for habitat exploration or exploitation. In this context, 

efficiency can be of various nature: to not use certain paths multiple times while foraging, 

to deplete a certain food patch to a certain extent varying with search decision rules (Wilke 

et al. 2009), or to not use ineffective solutions but to inhibit the execution of related 

behaviors. Greater efficiency might be more likely to vary with specific adaptations to 

certain ecological challenges than to the degree of ecological specialization per se and 

would require a more detailed investigation than the currently available evidence allows. 

6.3 Confounding factors and limitations of the review 

Several factors may confound a putative relationship between a particular ecological 

factor and a corresponding cognitive ability. First, the cognitive trait under study must 

have ecological relevance. This problem becomes apparent for example in a study 

designed to compare cognitive abilities in an ecologically non-relevant context, i.e., spatial 

discrimination abilities across six species of labrid fishes (Gingins and Bshary 2016). 

Because these cleaner fish do not rely on advanced spatial abilities, as they do not actively 

search for food patches but are visited by parasitized client fish, it is not surprising that 

they exhibited similar performances when associating a food source with a location. 

Second, social factors that differ systematically between species may obscure the 

effects of ecological factors on cognitive abilities. For example, more social Mexican jays 

performed better than food-caching Clark’s nutcrackers in a spatial memory task in which 

the birds’ recovery performance of food caches made by conspecifics was measured 

(Bednekoff and Balda 1996). Similarly, of three corvid species, pinyon jays, who live in the 

most socially complex environment, performed better in a reversal learning task than 

Clark’s nutcrackers and Mexican jays with a more generalist ecology (Bond et al. 2007). 
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Finally, given the currently available sample size of studies meeting our criteria, 

the purported link between ecological specialization and cognitive performance might 

reflect a publication bias. Comparisons of mostly mammals (especially primates) and 

birds, and the focus on ecological challenges related to foraging may also create a bias. 

Nonetheless, we hope that the present review will stimulate more comparative research 

regarding this interesting topic, using additional taxa and, most importantly, a wider 

range of ecologically relevant cognitive traits to draw firm conclusions about the relative 

importance of various ecological factors in shaping cognitive abilities. 
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Appendix 1 

Table S1-1 Definitions and explanations of cognitive terms. 

General terms 

Cognitive ability Ability to perceive, process and memorize information from the 
environment or other individuals. 

Decision-making Determination of an action considering environmental cues and 
experience. 

Learning Any change in behavior as result of experience; operationalized by 
an increase in performance. 

Cognitive task 
performance 

Operationalization for an individual’s learning abilities, often 
measured as success latency or ratio to solve a problem. 

Problem-solving 
ability 

Ability to solve problems incorporating objects (i.e., inanimate 
objects, food), e.g., puzzle box, object manipulation test. 

General intelligence 

(g-factor) 
Composite factor derived from correlating cognitive performances 
across various cognitive tasks. 

Cognitive test 
battery 

Array of at least two different cognitive tasks; often conducted to 
investigate correlations between cognitive abilities. 

Cognitive abilities related to perception 

Discrimination 
learning 

Learning contingencies between events via conditioning. In a visual 
discrimination learning task, usually objects differing in shape, color, 
pattern, and/or location serve as stimuli, of which only one is 
associated with a reward. Performance is measured as trials or time 
until a specified learning criterion is reached. 

Reversal learning Reversed learning after an initial discrimination learning with the 
previously rewarded stimulus becoming unrewarded. 

Numerical learning Learning of contingencies in relation with numbers, e.g., the ability 
to discriminate between quantities. 

Cognitive abilities related to processing 

Behavioral flexibility Ability to flexibly adjust the behavior according to the actual 
circumstances. 

Innovation Solution to a novel problem or novel solution to a modified problem; 
operationalized using problem-solving tasks. 

Causal reasoning Cognitive ability to relate two events with each other using causal 
understanding instead of arbitrary contingencies like space or time; 
operationalized using, e.g., a string-pulling task where pulling a 
string should be related to getting access to an attached reward. 

Tool use Behavior in which an animal uses a secondary object as a specific 
tool to solve a given problem. 
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Table S1-1 (continued) 

Cognitive abilities related to memory 

Shor-term memory Holding information that is currently being processed, e.g., the 
memorization of a certain learning contingency from one 
experimental session to the other. 

Long-term memory Relatively persistent storing of information; can be manifested via 
several repetitions. 

Spatial memory Holding specifically spatial information; operationalized, e.g., using 
a maze with several end locations of which only one holds the 
rewarded stimulus, or using a cache simulation task, where the 
subject can relocate a hidden food reward after a certain retention 
interval. 

Cognitive abilities in social contexts 

Social learning Changes in an individual’s behavior resulting from attending to 
another individual’s behavior or its products. 

Recognition memory  Memory capacities to recognize other individuals. 

Transitive inference Deductive reasoning allowing to derive a relation between items or 
individuals that have not been explicitly compared before. I.e., if A is 
related to B and B is related to C, then A must also be related to C. 

Tactical deception Usage of a behavior in an unusual context that is likely to be 
misinterpreted by other individuals. 

Individual characteristics that could affect problem-solving performance 

Personality trait Behavior that is consistent across time and space. 

E.g., exploration as the tendency to explore an unknown arena over 
a short time interval. 

Persistence Perseverance of a certain behavior despite its inefficiency; often 
operationalized by measuring the manipulative effort towards a 
puzzle box with a blocked opening mechanism. 

Executive/Inhibitory
/Self-control 

Ability to inhibit a prepotent behavior due to its (temporary) 
inefficiency; operationalized using, for example, a detour reaching 
task with a transparent cylinder. 

Electronic supplementary material 

The online version contains the literature search records as supplementary material and is 

available at https://doi.org/10.1007/s00265-020-02923-z 
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Abstract  

Cognitive abilities covary with both social and ecological factors across animal taxa. 

Ecological generalists have been attributed with enhanced cognitive abilities, but which 

specific ecological factors may have shaped the evolution of which specific cognitive 

abilities remains poorly known. To explore these links, we applied a cognitive test battery 

(two personality, ten cognitive tests; N = 1,104 tests) to wild individuals of two sympatric 

mouse lemur species (N = 120 Microcebus murinus, N = 34 M. berthae) varying in ecological 

adaptations but sharing key features of their social systems. The habitat and dietary 

generalist gray mouse lemurs were more innovative and exhibited better spatial learning 

abilities; a cognitive advantage in responding adaptively to dynamic environmental 

conditions. The more specialized Madame Berthe’s mouse lemurs were faster in learning 

associative reward contingencies; providing relative advantages in stable environmental 

conditions. Hence, our study revealed key cognitive correlates of ecological adaptations 

and indicates potential cognitive constraints of specialists that may help explain why they 

face a greater extinction risk in face of current environmental changes. 

1 Background 

The evolution of cognitive abilities has been linked to variation in brain size, which 

covaries across species with social factors (Social Intelligence Hypothesis; Humphrey 1976) 

and/or ecological challenges (Ecological Intelligence Hypothesis; Parker and Gibson 1977). 

Recent comparative analyses across primates suggested that evolutionary variation in 

brain size is better predicted by ecological than social factors (DeCasien et al. 2017). Yet, 

little is known about whether and how these factors are linked to performance in cognitive 

tests in primates, but also across other taxonomic groups (Ashton et al. 2018b; Henke-von 

der Malsburg et al. 2020). Hence, to better understand the evolution of cognitive abilities 

and the underlying variation in brain size, studies of how variation in specific ecological 

or social factors are linked to performance in cognitive tests across taxa are required. 

In this context, the degree of ecological specialization has been suggested to covary 

with cognitive abilities (Opportunistic Intelligence Hypothesis; Parker 1978). This notion 

builds upon the idea of characterizing a species’ ecological niche as a multidimensional 
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space that combines all adaptations to ecological conditions that contribute to its 

evolutionary success (Hutchinson 1953). Accordingly, an ecological generalist experiences 

a wider niche breadth than a specialist (Sargeant 2007). 

Generalist species are assumed to be better and more flexible learners than 

specialists (Overington et al. 2011; Mettke-Hofmann 2014). Since generalists should be 

exposed to a greater variety of ecological conditions, they may also face a greater variety 

of ecological problems. Hence, they may have evolved specific innovative problem-

solving abilities to overcome various problems. Similarly, the diverse ecological 

conditions may create a need for greater behavioral flexibility, especially, when conditions 

change unexpectedly(Lea 2020). Hence, species that experience harsher or more dynamic 

environmental conditions are more flexible or more innovative than others (Tebbich et al. 

2016). Innovative abilities and flexibility, therefore, appear to be tightly linked (Griffin 

2016). Furthermore, innovation appears to be positively correlated with other cognitive 

abilities (Reader et al. 2011). In addition, more innovative or behaviorally flexible species 

experience greater colonization success(Sol et al. 2002) or a greater diversification potential 

(Nicolakakis et al. 2003). Both evolutionary processes have been linked to the evolution of 

larger brains, especially when colonizing seasonal regions (Ducatez et al. 2020b). Finally, 

dietary generalists have indeed larger brains than dietary specialists (Lefebvre et al. 2004; 

Sol et al. 2005b; MacLean et al. 2014). Despite these suggestive links, generalists, do not 

consistently perform better in cognitive tests than specialists, however (Henke-von der 

Malsburg et al. 2020). 

To systematically examine covariation between cognitive abilities and the degree 

of ecological specialization, we applied a comprehensive cognitive test battery to wild 

individuals of two mouse lemur species (Microcebus spp.) that vary in some of their 

ecological adaptations but share key features of their social systems. Gray (M. murinus, 

GML) and Madame Berthe’s mouse lemurs (M. berthae, MBML) represent separate 

lineages within the genus Microcebus that shared a common ancestor as long as 9-10 MA 

ago (Yoder et al. 2016). The comparison of these two species is informative because they 

are both nocturnal solitary foragers that are syntopic, and therefore experience identical 

current environmental conditions, but MBML is ecologically more specialized 

(Dammhahn and Kappeler 2005; Dammhahn and Kappeler 2008b). Such direct 
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comparisons of cognitive performance in pairs of sympatric sister species can help to 

reveal the role of ecological factors in the evolution of cognition. 

GML inhabit various habitat types across Western Madagascar, occur in primary 

as well as secondary forests, and even in highly degraded forest fragments (Lahann et al. 

2006; Andriatsitohaina et al. 2020), making them habitat generalists. Their feeding niche 

breadth, based on Levin’s standardized index, has been estimated as 0.63 (Dammhahn and 

Kappeler 2008b), supporting this classification. MBML occur only in a few km2 of 

seasonally dry deciduous lowland forests (Schäffler and Kappeler 2014) and have an 

annual feeding niche breadth of 0.12 (Dammhahn and Kappeler 2008b), qualifying them 

as habitat specialists. As the smallest living primates, they are also more sensitive to 

natural and anthropogenic habitat modifications (Schäffler and Kappeler 2014), markedly 

decreasing their population size in recent years (Schäffler et al. 2021), and justifying their 

classification as “Critically Endangered” (Markolf et al. 2020).  

Using a comprehensive test battery with ten cognitive tests and two standard 

personality tests, we compared cognitive abilities of these two species. In a total of 

1,104 tests, we tested N = 120 GML and N = 34 MBML. As ecologically relevant abilities, 

we chose variation in exploration and neophilia, innovative propensities, persistence, 

learning abilities regarding associative and flexible learning using visual and spatial cues, 

and spatial memory. To also examine cognitive performances in tasks without obvious 

ecological relevance (Henke-von der Malsburg et al. 2020), i.e., cognitive abilities that are 

not expected to covary with the degree of ecological specialization, we assessed variation 

in inhibitory control, means-end understanding and goal directedness (see Appendix 2 for 

justification and predictions, Fig. 3.1). Finally, we examined whether cognitive 

performance across tests loads onto one common general intelligence (G/g-)factor 

(Humphreys 1979; Deaner et al. 2006).  

2 Materials and Methods 

2.1 Study site and study period 

We conducted this study in Kirindy Forest, a dry deciduous lowland forest in central 

western Madagascar within a 12,500 ha forest concession operated by the Centre National 
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de Formation, d’Etudes et de Recherche en Environnement et Foresterie (CNFEREF) 

Morondava. Mouse lemurs at Kirindy Forest have been captured on a monthly basis as 

part of an ongoing long-term project (Dammhahn and Kappeler 2005; Kraus et al. 2008). 

We captured GML (N = 120) in a population that has been regularly monitored since 1993 

(Eberle and Kappeler 2002) and MBML (N = 34) in another population that has been 

monitored since 2002 (Dammhahn and Kappeler 2005) (see Appendix 2 for the details of 

the capture procedure). Between 2017 and 2019, we conducted experiments with wild 

animals in temporary short-term captivity across three field seasons covering the 

transitions from the wet to the dry season (March – May/June) and the transitions from 

the dry to the wet season (August – October/November), respectively. 

2.2 Study animals: Housing and experimental test battery 

In the following, we briefly describe the experimental procedure and the general statistical 

analyses. Detailed information about sample sizes, experimental set-ups, statistical 

analyses and repeatability analyses are provided in the Appendix 2. 

At the field station, individually marked mouse lemurs were housed in cages of 

80 cm x 80 cm x 80 cm equipped with a nest box, several branches, an experimental 

platform, and ad libitum access to water. We kept animals for a maximum of three (N = 488; 

in 65 cases four, in 17 cases five) nights, after which they were released at dusk at their site 

of capture. In total, we tested up to 150 mouse lemurs per task in a total of 1,104 tests. 

Sample sizes differ between tasks as it was not possible to recapture all individuals until 

they have participated in all tasks of the test battery (Appendix 2: Table S2-1). 

Testing started between 18:00 and 19:00h under red light conditions, when subjects 

were active and motivated, and ended when the motivation of the animals decreased. The 

experimental test battery comprised two personality tests, an open field test and a novel 

object test, and ten cognitive tests (food extraction task, persistence test, discrimination 

and reversal learning paradigms with visual discrimination, visual reversal learning, 

spatial discrimination, and spatial reversal learning, plus maze, cylinder test, two string-

pulling tasks), for which we used small pieces of banana as food rewards (Appendix 2: 

Table S2-1; Fig. 3.1). 
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Fig. 3.1 Experimental test battery and mouse lemurs. A) Arenas used in the open field test. B) Plus maze. C) 
Objects used in the novel object test. D) Food extraction task and persistence test. E) Cylinder test. F) Left: gray 
mouse lemur, right: Madame Berthe’s mouse lemur; scaled to size differences. G) String-pulling task, single-
string set-up. H) Apparatus used for the visual and spatial discrimination and reversal learning paradigm; 
numbers indicate the position of the forms. Green filled arrows indicate correct routes. Red striped arrows 
indicate incorrect routes. Yellow stars represent a food reward. 

2.2.1 Personality tests 

We assessed an individual’s explorative tendencies in an unknown environment, using an 

open field test (Fig. 3.1A). After subjects entered the arena voluntarily, they were observed 

for 5 min exploring the arena. We used the duration the subjects spent locomoting as 

measure for exploration (Appendix 2: Table S2-2). To assess an individual’s neophilic 

tendencies, we introduced a novel object (Fig. 3.1C) directly after each open field test into 

the arena. We counted the number of contacts over the course of a 5 min test duration and 

used this contact frequency as our measure for neophilia. 
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2.2.2 Food extraction task 

To assess innovative propensities, individuals could extract up to six food rewards from a 

problem-solving box with six uniform wells (Fig. 3.1D) within a test duration of 20 min. 

As initial innovation speed, we measured the success latency as the time span between the 

response (i.e., entering the experimental platform and visualizing the task) and the first 

success (i.e., extracting the 1st piece of banana; solver). In case an individual did not 

succeed at all (non-solver), we set its success latency to 20 min as the maximum test 

duration. Additionally, we counted the number of successes as measure for repeated 

innovative propensity. 

2.2.3 Persistence test 

To assess an individual’s persistence in manipulating an object with potential access to 

food, we modified the problem-solving box, in that five of the six lids were blocked and 

only one of the six rewards could be extracted. We calculated an individual’s persistence 

rate by dividing the duration manipulating the box by the duration being in contact with 

the box and noted whether an individual opened the well (solver) or not (non-solver). 

2.2.4 Visual and spatial discrimination and repeated reversal learning 

paradigm 

To assess an individual’s associative and flexible learning abilities, we used a repeated 

discrimination and reversal learning paradigm with four separate tasks. On a plate, we 

positioned four tubes that only differed in shape and pattern of a form at the front part 

(Fig. 3.1H). Attached to the form was a lid that could be easily rotated to obtain access to 

the food reward in case of the S+. For the first task, the visual discrimination, and the 

second task, the visual reversal, the shape and pattern of the form served as cue to locate 

the S+. In the third task, the spatial discrimination, and the fourth task, the spatial reversal, 

the shape and pattern became irrelevant, and the position of the form served as S+. Across 

sessions of 15 trials, we counted the number of correct trials (i.e., manipulating only the S+ 

form and extracting the food reward) which we used as measure for associative learning 



Chapter III: Empirical study 

62 
 

abilities. After the subject had correctly chosen the S+-form for at least 24 out of 30 trials 

(80%-learning criterion over two consecutive sessions), we proceeded with the next 

experimental task and used the total number of trials to reach this learning criterion as 

measure for the overall performance per task. As measure of flexibility, we calculated a 

transfer index (TI, Equation 1) for the transitions with changing reward contingencies (i.e., 

from the visual discrimination to the visual reversal, from the visual reversal to the spatial 

discrimination, and from the spatial discrimination to the spatial reversal). 

Equation 1 TI =
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2.2.5 Plus maze 

To assess an individual’s spatial learning abilities and spatial memory, we set up a plus maze 

with four arms leading to four terminal boxes (Fig. 3.1B), of which only one was baited 

(goal box). We counted how often a subject entered the wrong arm and/or box per trial 

and summed it up to an error score per trial, which we defined as spatial learning 

performance. For the overall spatial performance, we used the mean sum of errors throughout 

one session of 15 trials. 

2.2.6 Cylinder test 

To assess an individual’s inhibitory control, we conducted a detour-reaching task using the 

cylinder test design (MacLean et al. 2014) (Fig. 3.1E). After an initial training session with 

an opaque cylinder (see Appendix 2), we conducted the experimental session using a 

transparent cylinder. Throughout one session of ten trials, we counted the number of 

incorrect trials, i.e., when the subject did not take the detour as a first response to get access 

to the food reward in the center of the transparent cylinder. 



Chapter III: Empirical study 

63 
 

2.2.7 String-pulling task, single-string set-up 

To assess an individual’s means-end understanding, we conducted a string-pulling task in 

the single-string set-up (Fig. 3.1G). Within a 20 min test duration, the subject could pull a 

cable tie to access the food reward at the outer end of the cable tie. We measured the 

success latency as timespan between the response and reaching the reward. For subjects 

that did not succeed (non-solver), we set the success latency to the maximum time of the 

trial (20 min) plus the response latency. We used this success latency as proxy for means-

end understanding. 

2.2.8 String-pulling task, perpendicular strings set-up 

To assess an individual’s goal directedness, we conducted a string-pulling task with a 

perpendicular strings set-up, as modification of the single-string set-up, where a second, 

non-baited cable tie was presented. In a session of ten trials, we counted the number of 

incorrect trials, i.e., the subject did not succeed, or it manipulated the incorrect string, 

which we used as proxy for goal directedness. 

2.3 Statistical analyses 

2.3.1 Variation in cognitive performances 

We conducted all statistical analyses in R (version 4.0.0, R Core Team, 2020), using 

multivariate (mixed) models to examine interspecific and intraspecific variation in 

performances (gaussian linear models (LM), gaussian linear mixed models (LMM), 

negative binomial models (NBM), negative binomial mixed models (NBMM), zero-

inflated negative binomial models (0-infl NBM), cox-proportional hazards models (cox 

PHM), poisson models (PM)), and factor analytical approaches to examine general 

intelligence factors. Since there is no sexual dimorphism in either species, but body mass 

changes occur as a result of sex-specific energy strategies, as well as with hormonally 

induced somatic changes (Eberle and Kappeler 2002; Dammhahn and Kappeler 2005), we 

controlled for sex and body condition using the body mass index (BMI) as a proxy. In 

addition, we controlled for stable individual differences in behavior, i.e., personality traits, 
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since an individual’s exploration level or neophilic tendencies can potentially influence its 

engagement in experimental tasks and, subsequently, its performance level. In principle, 

we examined interspecific variation in performances by setting species, sex, and age 

(log-transformed) as fixed factors. To examine intraspecific variation in performance, we 

set sex, season, BMI (log-transformed) and personality factors as fixed factors. We tested 

for interactions of species and sex with other fixed factors but included the interaction only 

if the model significantly differed from the model without interactions. To test the 

significance of the predictors as a whole, we compared all full models with the respective 

null model comprising only the intercept and potential random factors (see Appendix 2; 

Forstmeier and Schielzeth 2011). 

2.3.2 General intelligence 

Finally, we investigated general intelligence across, as well as within species. For the 

interspecific G-factor, we calculated two principal axis factor analyses, using the function 

‘fa’ with the argument ‘fm’ set to ‘pa’ (‘psych’ package). The first PAF contained 

performance scores of individuals that completed all tests (N = 20 GML, N = 9 MBML). For 

the second PAF, we used performance scores of individuals that completed all tests, except 

for the discrimination and reversal learning paradigm, resulting in a larger sample size 

(N = 76 GML, N = 19 MBML). We controlled for sphericity by applying the Bartlett’s test 

and for sampling adequacy by applying the KMO. 

For the intraspecific g-factor, we used the same (log-transformed) performance 

scores as for the G-factor. For each species separately, we calculated two PCAs per species. 

The first PCA per species contained the performance scores of all tests excluding the 

spatial discrimination and the spatial reversal, which reduced the data sets to N = 21 GML 

and N = 9 MBML. For the second PCA per species, we excluded all performance scores of 

the repeated discrimination and reversal learning paradigm, achieving a sample size of 

N = 76 GML and N = 19 MBML. For each PCA, we controlled for sphericity by applying 

the Bartlett’s test and for sampling adequacy by applying the KMO. 
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3 Results 

3.1 Interspecific comparisons 

3.1.1 Personality: open field and novel object test 

Since locomotion loaded most strongly on the first principal component and was most 

repeatable (Appendix 2: Table S2-4), we retained this variable as personality trait 

exploration. Variation in exploration was predicted by an interaction between species and 

sex (LM: p = 0.018; Appendix 2: Table S2-5, model: a). Female MBML were more 

explorative than males as well as GML (Fig. 3.2A). Age did not predict variation in 

exploration. 

In the novel object test, approach speed and contact frequency were poorly 

repeatable (approach speed: ICC=0.158; contact frequency: ICC=0.106). Since approach 

speed was skewed towards individuals that did not contact the novel object, we retained 

contact frequency as a measure of neophilia. About one third of the individuals of both 

species (N = 28 out of 90 GML and N = 8 out of 24 MBML) did not contact the novel object. 

The full model estimating variation in neophilia did not significantly differ from the null 

model (0-infl NBM: p = 0.073, Appendix 2: Table S2-5, model: b). Thus, variation in 

neophilia was predicted by neither species (p = 0.489), sex (p = 0.791), nor age (p = 0.621). 

3.1.2 Food extraction task: problem solving 

Variation in innovation speed (latency to 1st success) differed between species (cox PHM: 

p = 0.013) and sexes (p = 0.044; Appendix 2: Table S2-6, model: a). GML were faster to 

extract the first food reward than MBML, and males of both species were faster than 

females. Age did not predict innovation speed (p = 0.209). 

Variation in innovative propensity (N opened wells) differed between species 

(Appendix 2: Table S2-6, model: b). GML opened more wells than MBML (PM: p = 0.006, 

Fig. 3.2B). Sex (p = 0.670) and age (p = 0.874) did not predict innovative propensity in either 

species. Both measures were repeatable (innovation speed: ICC=0.605, innovative 

propensities: ICC=0.405; N = 21 individuals: 15 GML and 6 MBML). 
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Fig. 3.2 A) Open field test: time spent exploring for females and males. B) Food extraction task: innovative 
propensity (N opened wells) per species. C) Persistence test: duration spent manipulating the box as a rate to 
the duration spent in contact with the box per species. D) Visual discrimination learning across sessions per 
species (p<0.05). E) Visual discrimination and reversal learning paradigm: overall performances within tasks. 
F) Visual discrimination and reversal learning paradigm: flexible learning between tasks. G) Plus maze: spatial 
memory performance per species. Sample sizes (N) are given below each boxplot. Gray: GML, orange: MBML. 
Significance levels: * p<0.05, ** p<0.01, *** p<0.001 

3.1.3 Persistence test 

Variation in persistence was predicted by species (LM: p<0.001; Appendix 2: Table S2-7, 

model: a). GML were more persistent than MBML (Fig. 3.2C). Sex (p = 0.198) and age 

(p = 0.090) did not predict persistence in either species. Persistence was repeatable 
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(ICC=0.725, N = 15 individuals, 9 GML and 6 MBML). Persistence across the two food 

extraction tests correlated positively (Spearman rho = 0.382, p<0.001, N = 108) and was 

repeatable (ICC=0.394). 

3.1.4 Visual discrimination 

Variation in visual discrimination learning was predicted by species in an interaction with 

session (NBMM: p = 0.020) and age (p = 0.015; Appendix 2: Table S2-8, model: a). Both 

species decreased the number of incorrect trials across sessions, but this decrease was less 

pronounced in GML than in MBML (Fig. 3.2D). In both species, older individuals had 

more incorrect trials across sessions than younger individuals. Sex did not predict 

variation in visual discrimination learning across sessions (p = 0.102). Variation in the overall 

visual discrimination performance was predicted by species (LM: p = 0.009; Appendix 2: 

Table S2-8, model: b; Fig. 3.2E) and age (p = 0.008). GML and older individuals reached 

the learning criterion after more trials than MBML and younger individuals, respectively. 

Sex did not predict variation in visual discrimination performance (p = 0.458). 

3.1.5 Visual reversal learning 

Variation in visual reversal learning was predicted by species (NBMM: p = 0.001), session 

(p<0.001) and age (p = 0.018, Appendix 2: Table S2-9, model: a). Both species decreased the 

number of incorrect trials across sessions. However, this decrease was less pronounced in 

GML than in MBML. Older individuals had fewer incorrect trials across sessions than 

younger individuals. Sex did not predict variation in visual reversal learning across sessions 

(p = 0.758). Variation in the overall visual reversal performance was predicted by species (LM: 

p = 0.011, Appendix 2: Table S2-9, model: b; Fig. 3.2E). GML reached the learning criterion 

after more trials than MBML (p = 0.003). Sex (p = 0.614) and age (p = 0.186) did not predict 

variation in the visual reversal performance. 

Neither species (LM: p = 0.310; Fig. 3.2F), sex (p = 0.192), nor age (p = 0.054; 

Appendix 2: Table S2-9, model: c) had a significant effect on the transfer index (TI), i.e., 

flexible learning from visual discrimination to visual reversal learning. The TI did not 
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correlate with the number of trials to reach the learning criterion in the visual reversal 

learning (Spearman rho = 0.006, p = 0.974, N = 36) or with the innovative propensity 

(Spearman rho = 0.144, p = 0.401, N = 36). 

3.1.6 Spatial discrimination 

Variation in spatial discrimination learning was predicted by species in an interaction with 

session (NBMM: p = 0.002), sex in an interaction with session (p = 0.001), age in an 

interaction with species (p = 0.005), and by the position of the rewarded tube S+ (p<0.001, 

Appendix 2: Table S2-10, model: a). Both species and sexes decreased the number of 

incorrect trials across sessions. However, in GML and females this decrease was less 

pronounced than in MBML and males, respectively. While older GML had more incorrect 

trials across sessions than younger individuals, older MBML had fewer incorrect trials 

than younger ones. Mouse lemurs that learned to associate position 1 (S+) with the food 

reward had fewer incorrect trials than individuals learning the positions 2, 3 or 4. 

Variation in spatial discrimination performance was predicted by species (Fig. 3.2E) in an 

interaction with age (LM: p = 0.043), and by the S+ (p = 0.002, Appendix 2: Table S2-10, 

model: b). While older GML reached the learning criterion after more trials than younger 

individuals, the effect was reversed for MBML. Position 1 was learned after fewer trials 

than the other three positions. Sex (p = 0.931) did not predict variation in spatial 

discrimination performance. 

The TI from visual reversal learning to spatial discrimination was predicted by sex 

(LM: p = 0.014), with males achieving a higher TI than females, but not by species 

(p = 0.066; Fig. 3.2F) and age (p = 0.680; Appendix 2: Table S2-10, model: c) The TI 

correlated negatively with the number of trials to reach learning criterion in the spatial 

discrimination task (Spearman rho = -0.463, p = 0.008, N = 32). Hence, initially more 

flexible individuals (higher TI) were faster learners (fewer trials to reach the learning 

criterion). However, TI did not correlate with innovative propensity (Spearman rho = 0.039, 

p = 0.831, N = 33). 
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3.1.7 Spatial reversal learning 

Variation in spatial reversal learning was predicted by species in interaction with session 

(NBMM: p = 0.004), sex (p = 0.034), and by the S+ (p = 0.041, Appendix 2: Table S2-11, 

model: a). In both species, the number of incorrect trials decreased across sessions. 

However, in GLM this decrease was less pronounced than in MBML. Females had fewer 

incorrect trials across sessions than males. Mouse lemurs that learned to associate position 

1 with the food reward (N = 7), had fewer incorrect trials than others (position 2: N = 5, 

position 3: N = 6, position 4: N = 8). Age did not predict variation in spatial reversal learning 

(p = 0.931). Variation in the overall spatial reversal performance was predicted by sex in 

interaction with the S+ (LM: p = 0.012, Appendix 2: Table S2-11, model: b). Male mouse 

lemurs that learned to associate position 3 with the food reward (N = 3), reached the 

learning criterion after more trials than the others. Species (p = 0.267; Fig. 3.2E) and age 

(p = 0.122) did not predict variation in the spatial reversal performance. 

The TI from spatial discrimination to spatial reversal learning was predicted by 

species (LM: p<0.001), with GML achieving a higher TI than MBML (Appendix 2: Table 

S2-11, model: c; Fig. 3.2F). Sex (p = 0.168) and age (p = 0.492) did not predict variation in 

flexible learning. TI correlated negatively with the number of trials to reach the learning 

criterion in the spatial reversal learning task (Spearman rho = -0.522, p = 0.006, N = 26). 

Hence, initially more flexible individuals (higher TI) were faster learners (fewer trials to 

reach the learning criterion). However, TI did not correlate with innovative propensity 

(Spearman rho = 0.112, p = 0.549, N = 31). Since we only tested one to two GML repeatedly 

in 2-4 of the tasks, we could not estimate repeatability of the performance scores in this 

experiment. 

3.1.8 Plus maze: spatial memory 

Variation in spatial learning was predicted by species in an interaction with trial (NBMM: 

p = 0.005) and by the goal box (p<0.001; Appendix 2: Table S2-12, models: a). Both species 

made fewer errors across trials, and mouse lemurs assigned to the straight goal box 

(N = 22) made fewer errors across trials than those assigned to the left (N = 52) or right 
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goal box (N = 47). Sex (p = 0.254) and age (p = 0.537) did not predict variation in spatial 

learning across trials. 

Variation in spatial memory was predicted by species (LM: p = 0.003) and by the goal 

box (p<0.001, Appendix 2: Table S2-12, model: b). GML made fewer errors than MBML 

(Fig. 3.2G). Mouse lemurs assigned to the left or right goal box made more errors than 

those assigned to the straight goal box. Sex (p = 0.361) and age (p = 0.429) did not predict 

variation in spatial memory. Spatial memory was repeatable ICC=0.412 (N = 21 individuals, 

15 GML and six MBML). 

3.1.9 Cylinder test: inhibitory control 

In the inhibitory control task, individuals that needed more trials to reach the learning 

criterion prior to testing made more errors during the testing session (NBM: p = 0.005). 

Variation in inhibitory control was not predicted by either species (p = 0.126), sex (p = 0.783), 

or age (p = 0.319; Appendix 2: Table S2-13, model: b). 

Inhibitory control did not correlate with innovative propensity (Spearman 

rho = -0.152, p = 0.121, N = 105), flexible learning (TI from visual reversal learning: 

Spearman rho = -0.096, p = 0.576, N = 36; TI visual reversal to spatial discrimination 

learning: Spearman rho = -0.030, p = 0.869, N = 36; TI from spatial reversal learning: 

Spearman rho = -0.026, p = 0.891, N = 33) or overall learning performances (visual 

discrimination: Spearman rho = -0.133, p = 0.439, N = 36; visual reversal: Spearman 

rho = -0.007, p = 0.970, N = 34; spatial discrimination: Spearman rho = 0.008, p = 0.966, 

N = 31; spatial reversal: Spearman rho = 0.078, p = 0.713, N = 25). The number of training 

trials (ICC=0.556) were repeatable, but the number incorrect test trials were only poorly 

repeatable (ICC=0.141). 

3.1.10 String pulling task: means-end understanding and goal 

directedness 

Performance in the means-end understanding (cox PHM: p = 0.600) and goal directedness (PM: 

p = 0.874) was not predicted by any of the investigated factors (Appendix 2: Table S2-14, 



Chapter III: Empirical study 

71 
 

model: a, b). We estimated the repeatability for N = 11 individuals (7 GML and 4 MBML) 

that repeated this test (response latency: ICC=-0.137, success latency: ICC=-0.192). 

3.2 General intelligence 

We did not find evidence for an interspecific G-factor in either mouse lemur species. The 

performance scores did not load similarly onto the first component of the PAF, including 

data from the larger sample size (including tests on problem solving, spatial memory, 

means-end understanding, goal directedness, inhibitory control), and Bartlett’s tests of 

sphericity was non-significant, indicating a generally low correlation across performance 

scores (Appendix 2: Table S2-15). The results were similar for the reduced PAF (including 

tests on visual and spatial discrimination as well as reversal learning, Appendix 2: Table 

S2-16). 

3.3 Intra-specific variation in performance in personality and 

cognitive tests 

We also investigated whether intra-specific performance in these tests was influenced by 

sex, age, body mass index, or in case of cognitive tests, also by variation in personality 

traits. In both species, variation in performance scores was only occasionally explained by 

these individual characteristics, with no systematic variation within species. We also did 

not find evidence for an intraspecific g-factor. The complete results and the discussion 

thereof can be found in the Appendix 2 (GML: Table S2-17, MBML: Table S2-18). 

4 Discussion 

Gray and Madame Berthe’s mouse lemurs differed in 13 of 21 performance measures 

(Table 3.1), which were moderately repeatable in the majority of tests and, hence, 

consistent within individuals (Appendix 2: Table S2-2). Overall, the ecological generalist 

GML were more innovative, more persistent, showed better spatial learning and memory, 

and greater flexibility when spatial stimulus-reward contingencies were changed. The 
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ecologically more specialized MBML were more explorative and learned visual and 

spatial reward contingencies faster, achieving better total performances in visual 

association learning. However, the two species did not differ in neophilia, inhibitory 

control, means-end understanding or goal directedness. Moreover, we did not find 

evidence for an interspecific G- or intraspecific g-factor. In summary, our study provides 

support for domain-specific cognitive co-evolution with ecological factors, and a 

particular advantage of generalists in confronting novel challenges with a greater 

innovative potential and greater flexibility when confronted with changing spatial stimuli. 

Table 3.1 Overview of species differences in performance across tasks. () indicates better and () indicates 
worse performance, whereas (-) indicates no difference in performance. 

Task GML MBML Age Sex 

Activity - - -  GML: females 
Neophilia - - -  males 
Innovation:     
speed   -  males 
propensity   - - 
persistence   - - 
Visual discrimination:     

learning    old - 
performance    old - 
Visual reversal:     

learning    old - 
performance   - - 
Spatial discrimination:     
learning    old GML,  old MBML  males 
performance - -  old GM,L  old MBML - 
Spatial reversal:     
learning   -  males 
performance - - -  males: position 3 
Flexibility (TI)     
visual - - - - 
visual - spatial - - -  males 
spatial   - - 
Spatial memory:     
learning   - - 
performance   - - 
Inhibitory control - - - - 
Means-end understanding - - - - 
Goal directedness - - - - 
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In both species, performance in personality and cognitive tests was weakly and 

inconsistently influenced by individual characteristics and moderately repeatable, 

reflecting general patterns on intra-individual consistency in cognitive performances in 

animals (Cauchoix et al. 2018). Regarding personality traits, both species did not differ in 

exploration. However, female MBML were more explorative than males in comparison to 

GML. In addition, the two species did not differ in their neophilic response, supporting 

neither the Dangerous-Niche Hypothesis (i.e., generalists should be more neophobic as they 

may encounter more dangerous situations) nor the Neophobia Threshold Hypothesis (i.e., 

generalists should be less neophobic as they may have more diverse prior experiences; 

Greenberg 1983; Greenberg 2003). 

Concerning cognitive performance, GML were indeed more innovative and 

achieved higher flexibility scores, at least under changing spatial stimuli. These abilities 

may allow them to respond more adaptively to dynamically changing habitats and 

anthropogenic influences (Schäffler and Kappeler 2014; Rakotoniaina et al. 2016). In our 

study region, the abundance of GML is generally higher than that of MBML, especially in 

habitats with anthropogenic influence, such as edge habitats (Schäffler and Kappeler 2014; 

Rakotoniaina et al. 2016). Similarly, in Northern Madagascar, GML were largely 

unaffected by habitat fragmentation, while the abundance of the sympatric but 

ecologically more specialized golden-brown mouse lemurs (M. ravelobensis) decreased 

with increasing habitat fragmentation (Andriatsitohaina et al. 2020). Increasing 

anthropogenic activities, such as deforestation or habitat fragmentation contribute to an 

alarming species loss in Madagascar (Schwitzer et al. 2014a). Such environmental changes 

may eventually promote a species turnover towards ecological generalists, whereas more 

specialized species may suffer from decreased population size (Irwin et al. 2010; Markolf 

et al. 2020). Our study therefore indicates potential cognitive constraints of ecological 

specialization that may help to explain why some species experience a higher extinction 

risk in the face of ongoing environmental changes. 

MBML learned the associative reward contingencies faster; a characteristic that 

allows specialists to experience advantages over generalists in stable environmental 

conditions (Wilson and Yoshimura 2008). Specifically, MBML’s better motor control to 

abandon previously successful behaviors (Henke-von der Malsburg and Fichtel 2018) and 
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their lower persistence to produce a behavior that does not lead to success (this study), 

may have contributed to their superior performance, at least in visual associative learning 

experiments. GML feed relatively more often on tree gum, a foraging strategy associated 

with enhanced inhibitory control (Stevens et al. 2005). However, the two species did not 

differ in inhibitory control, suggesting that the fact that they feed on gum rather than the 

relative frequency of this foraging behavior is associated with superior inhibitory control. 

Both inhibitory control and reversal learning abilities reflect behavioral flexibility 

(MacLean et al. 2014; Beran 2015). However, these measures did not correlate with each 

other, suggesting that they reflect different aspects of cognitive flexibility in mouse lemurs. 

The TI is a standard proxy for flexible learning abilities, reflecting the potential to switch 

between tactics when conditions change, i.e., in the context of a first response to a modified 

reward contingency (Rumbaugh et al. 1972). However, it does not indicate how well the 

old tactic will be abandoned in favor of the new tactic. This might be better reflected by 

the number of trials until criterion after reversal or the number of perseverative errors 

across sessions, because these measures better reflect how quickly individuals may 

overcome the previously learned reward contingency and, therefore, how flexible an 

animal switches between strategies (Hauser 1999). The TI and the number of trials to reach 

the criterion after reversal correlated negatively with each other in the transfer from the 

visual to spatial stimuli and in the spatial reversal learning, indicating that individuals 

that responded more flexibly to the reversed reward contingency learned this reward 

contingency faster in spatial learning. Hence, with regard to spatial stimuli, which might 

be ecologically more relevant than abstract forms as in the visual reversal paradigm, 

mouse lemurs were able to switch flexibly between strategies, and GML were more 

flexible when confronted with changing spatial stimuli than MBML. 

The plus maze assays spatial learning and memory that is essential for effective 

spatial navigation. GML learned this task faster than MBML, supporting earlier results on 

their spatial learning and high travel efficiency (Lührs et al. 2009). Although MBML have 

larger home ranges and should therefore have better spatial abilities, the ability to adapt 

to different habitat types may require more flexible spatial learning abilities and may 

therefore better explain from an evolutionary perspective why GML performed better in 
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this task and also why they responded more flexibly when spatial stimulus-reward 

contingencies changed. 

In tasks with little ecological relevance, where species differences in cognitive 

performance were not predicted regarding the degree of ecological specialization, such as 

inhibitory control, means-end understanding or goal directedness, both species performed 

on par, suggesting that they did not differ per se in cognitive performance. These results 

also support our interpretation of the adaptive nature of the observed differences as being 

driven by different ecological factors. 

In humans, cognition has evolved towards positively correlating generally high-

level cognitive abilities (Herrmann et al. 2007; Burkart et al. 2017). However, a general 

correlation between cognitive abilities and brain size has received mixed support in 

comparative studies of animals (Burkart et al. 2017). In mouse lemurs, we did not find 

evidence for general intelligence, neither on the interspecific, nor on the intraspecific level. 

Our results rather support the Domain-Specific Hypothesis (Cosmides and Tooby 1994), 

which postulates enhanced abilities in only some cognitive domains, whereas abilities in 

others remain on more basic performance levels (Poirier et al. 2020).  

Finally, this study raises new questions about the evolutionary mechanisms 

driving cognitive adaptations to environmental features. From a phylogenetic perspective, 

the split between the basic lineages to which these two species belong occurred about 8-

10 million years ago. Phylogenetic reconstructions of the speciation patterns in mouse 

lemurs suggests that the longitudinal dispersal along the west coast of Madagascar by 

GML was achieved with relative ease throughout the Pleistocene (Yoder et al. 2016). 

However, habitat fragmentation via Holocene droughts may have erected natural barriers 

such as rivers, creating several centers of endemism (Wilmé et al. 2006), isolating some 

species, such as MBML, in small ranges. Thus, gray mouse lemurs actually had more time 

available to evolve cognitive and ecological adaptations to the habitat in which they now 

co-occur, but they appear to have retained cognitive abilities that may provide ecological 

advantages across their entire range. Genetic studies investigating patterns of gene flow 

and heritability in different cognitive abilities are now indicated to begin exploring the 

evolutionary mechanisms shaping the links between ecological adaptations and cognitive 

constraints. 
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5 Conclusions 

We show that direct comparisons of cognitive performances between sympatric sister-

species with a similar social system can help to unfold the role of ecological factors in the 

evolution of cognition. Species-specific ecological adaptations covary with cognitive 

abilities. The ecologically more generalist species was particularly more innovative, 

persistent, exhibited better spatial learning abilities, spatial memory, as well as spatial 

flexibility than the specialist, affording them with the behavioral flexibility to respond 

adaptively to rapidly changing habitats and anthropogenic disturbances. How these 

differences in cognitive abilities have been maintained over millions of generations in local 

sympatry requires further study. 
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Predictions 

Regarding variation in personality, we predicted that Madame Berthe’s mouse lemurs 

(MBML), which have larger home ranges, are more explorative than gray mouse lemurs 

(GML). In line with the Dangerous-Niche Hypothesis, high neophobia may protect 

individuals from potentially dangerous situations(Greenberg 2003). As GML may 

encounter more dangerous situations, we predicted them to be more neophobic than 

MBML. Alternatively, as the ecological generalist encounters a greater variety of habitat 

and/or food types, it should have more diverse prior experiences against which it can rate 

novelty (Neophobia Threshold Hypothesis(Greenberg 1983)). Accordingly, the GML should 

be less neophobic than MBML. 

 Regarding variation in cognitive abilities, we predicted that the generalist GML 

exhibit greater innovative potential and greater flexible learning abilities than the 

ecologically more specialized sister-species. Since MBML live in less variable 

environments, we predicted that they learn associated reward contingencies faster. We 

also predicted that they have better spatial memory because they feed preferentially on 

spatially clumped resources, whereas GML feed on more abundant and mobile food 

items(Dammhahn and Kappeler 2008a). Moreover, because MBML were more flexible in 

solving a more complex food extraction task, as they had better inhibitory motor control 

than GML(Henke-von der Malsburg and Fichtel 2018), we predicted GML to be more 

persistent. Self-control is generally associated with dietary breadth across 36 

primates(MacLean et al. 2014), suggesting that dietary generalists should have better self-

control than dietary specialists. Since both species do not feed on dietary items requiring 

specific extractive foraging techniques, we did not predict significant interspecific 
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differences regarding means-end understanding or goal directedness. We nonetheless 

included these tests to also examine cognitive performances in tasks without obvious 

ecological relevance(Henke-von der Malsburg et al. 2020), in which differences in 

performance are not predicted by the degree of ecological specialization. Finally, given the 

contrasting predictions across the various cognitive abilities, we did not expect variation 

in performance across tasks to be correlated and to load onto one common general 

intelligence (G/g-)factor(Humphreys 1979; Deaner et al. 2006). Rather, we expected both 

species to have evolved domain-specific cognitive abilities (Domain-Specific 

Hypothesis(Cosmides and Tooby 1994)). 

Supplemental methods 

Study animals: Capture and housing 

We baited Sherman live traps with a slice of banana, set them at dusk at trail intersections 

and collected them at dawn. Captured mouse lemurs were brought to the near-by field 

station and individually identified. All individuals were weighted. If they were newly 

captured, they were briefly restrained with 0.6 µl ketamine (50 mg/ml) per 1 g body mass 

to mark them individually with a subdermal microtransponder (Trovan, Usling, 

Germany). If they were captured for the first time, we also took several standard 

morphologic measures(Eberle and Kappeler 2002). We calculated an individual’s current 

body mass index (BMI) by dividing its bizygomatic head breadth [mm] by the individual’s 

current body mass [g]. We estimated an individual’s age by determining the number of 

days between birth and the date of the respective experimental test. We set an individual’s 

birth date to the modal birth date 1 January of the year of its first capture(Eberle and 

Kappeler 2002). The individuals’ ages ranged from 0.26 to 8.58 yrs. (mean = 1.21 ± 1.40) in 

GML and from 0.33 to 5.35 yrs. (mean = 1.20 ± 1.17) in MBML. 

At the field station, mouse lemurs were housed in cages of 80 cm x 80 cm x 80 cm 

equipped with a nest box, several branches, an experimental platform, and ad libitum 

access to water. We kept animals for a maximum of three (N = 488; in 65 cases four, in 

17 cases five) nights, after which they were released at dusk at their site of capture. Since 

the complete experimental test battery was usually not completed during one test session 
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comprising three nights, we selectively recaptured subjects after they had spent at least 

three nights in the forest. The animals usually exhibited great trap happiness, with some 

individuals entering traps more than 100 times(Eberle and Kappeler 2002). Testing started 

each evening between 0600 and 0700 pm under red light conditions, which wavelengths 

is not visible for the dichromatic mouse lemurs (Peichl et al. 2019), and ended when the 

motivation of the animals decreased, usually around midnight. When a mouse lemur 

voluntarily left its nest box, the nest box was closed to facilitate later testing. Throughout 

the night, it could hide between branches and rest at any time. The mouse lemurs were 

fed after testing with cockroaches, moths and pieces of banana. In total, we tested up to 

150 mouse lemurs per test in a total of 1,104 tests (Table S2-1). 

General experimental procedure 

The experimental test battery comprised two personality tests, an open field test and a 

novel object test, and ten cognitive tests (food extraction task, persistence test, 

discrimination and reversal learning paradigms with visual discrimination, visual 

reversal learning, spatial discrimination, and spatial reversal learning, plus maze, cylinder 

test, two string-pulling tasks; Table S2-1; Fig. 3.1). The order of the tests was randomized 

and counterbalanced between subjects. All subjects were naïve to experimental 

conditions, unless otherwise stated (N = 20; Table S2-1). Subjects were captured on average 

2.39 ± 1.68 times. To complete the relatively time-consuming discrimination and reversal 

learning paradigm, subjects were tested on average in 3.00 ± 1.26 test sessions (i.e., time 

periods of three nights), resulting in smaller sample sizes in these tests (Table S2-1). The 

remaining tests could be completed on average in 2.07 ± 0.80 test sessions. 

We started with the experiments only when subjects were active and motivated, 

i.e., when they were actively moving around and could be easily lured with a stick covered 

with banana to the start position at the opposite end of the experimental platform. We 

used small pieces of banana as food rewards. Before any experimental session, we cleaned 

the experimental platform, the test apparatus, or the respective arena for the open field 

test and plus maze with 70%-ethanol to remove any odor cues. In experiments comprising 
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several trials, we repeated the cleaning procedure throughout the trials as stated in the 

respective test section. 

Each experimental test session was videotaped (Sony HDR-CX 240) and later 

analyzed using BORIS(Friard and Gamba 2016). For each test, 10% of the videos were 

double-coded by a second observer naïve to the research question, resulting in a mean 

interobserver reliability of 96.0% (min.: 80.2%, max.: 100%; Table S2-2). 

General statistical analyses 

We conducted all statistical analyses in R (version 4.0.0, R Core Team, 2020), using 

multivariate (mixed) models to examine interspecific and intraspecific variation in 

performances (gaussian linear models (LM), gaussian linear mixed models (LMM), 

negative binomial models (NBM), negative binomial mixed models (NBMM), zero-

inflated negative binomial models (0-infl NBM), cox-proportional hazards models (cox 

PHM), poisson models (PM)), and factor analytical approaches to examine general 

intelligence factors. Since there is no general sexual dimorphism in either species, but body 

mass changes occur as a result of sex-specific energetic strategies, as well as with 

hormonally induced somatic changes(Eberle and Kappeler 2002; Dammhahn and 

Kappeler 2005), we controlled for sex and body condition using BMI as a proxy. In 

addition, we controlled for stable individual differences in behavior, i.e., personality traits, 

since an individual’s exploration level or neophilic tendencies can potentially influence its 

engagement in experimental tasks and, subsequently, its performance level. 

We examined interspecific variation in performances by setting species, sex, and 

age (log-transformed) as fixed factors. To examine intraspecific variation in performance, 

we set sex, season, BMI (log-transformed) and personality factors as fixed factors. For 

models including data of a smaller sample size, we calculated several reduced models by 

retaining only a maximum of N = 10 data points for fixed factors each. We scaled 

covariates to a mean of zero and a standard deviation of one to obtain comparable 

estimates and to achieve more easily interpretable coefficients. If a continuous variable 

was not symmetrically distributed (visual inspection), we log-transformed it before 

scaling. 
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We tested for interactions of species and sex with other fixed factors but included 

the interaction only if the model significantly differed from the model without 

interactions. We first tested the overall effect of the fixed factors by comparing the selected 

full model’s deviance with that of its null model comprising only the intercepts (and 

random factors, if applicable). These tests of significance were based on an analysis of 

variance (ANOVA) with F-test for gaussian linear models, Wald-test for cox-proportional 

hazards models, or likelihood ratio test (LRT) for other models. For the individual 

predictors, we derived respective test-statistics and p-values using the function ‘drop1’, 

which compares the deviance of the full model with that of the reduced model, lacking 

the respective individual predictor. For all tests, we used a significance level of 0.05. We 

extracted sample size adjusted effect sizes (R²) directly from the summary output for linear 

models. For other models, we calculated Nagelkerke’s R². We checked various diagnostics 

of model validity and stability (Cook’s distance using the function ‘cooks.distance’; 

DFBetas using the function ‘dfbeta’; DFFits using the function ‘dffits’; overdispersion; 

variance inflation factors using the function ‘vif’ (‘car’ package(Fox and Weisberg 2011)) 

applied to standard linear models without any random factors; normality and 

homogeneity of residuals by plotting a qq-plot for the residuals and a scatterplot between 

residuals and fitted values), which never indicated obvious influential cases, nor obvious 

deviations from the respective model assumptions. 

Additionally, we tested the repeatability of the measured performances, as well as 

the interobserver reliability of video codes using the intraclass correlation coefficient (ICC; 

‘ICCest’ function, ‘ICC’ package(Wolak 2015)). 

Task-specific experimental procedure and statistical analyses 

Open field test: Experimental set up 

We assessed an individual’s explorative tendencies in an unknown environment, using 

either a rectangular (80 cm x 60 cm x 60 cm) or cylindric wooden arena (Ø 80 cm x 80 cm; 

Fig. 3.1A). To avoid potential influences on the personality measures arising from initial 

neophobic responses due to the new housing conditions, we conducted this test only after 

subjects got used to the new housing condition, i.e., after the first night being in camp. 
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After subjects entered the arena voluntarily, they were observed for 5 min 

exploring the arena. To measure the repeatability of personality traits, we subjected 

individuals repeatedly to the open field test, using the two arenas alternately. The first 

repetition was usually conducted when subjects were captured for the second time 

(number of days between tests: mean = 81.38 ± 88.02). Further repetitions were conducted 

each time when we re-captured the subject until it had accomplished the complete test 

battery, but for a maximum of two times per field season (days between test 2 and 3: 

mean = 130.14 ± 122.12; days between test 3 and 4: mean = 66.14 ± 76.32). We tested 

118 GML and 32 MBML at least once and one third of all individuals up to three times 

(Table S2-3). Only a small subset was tested in a fourth (N = 29), fifth (N = 8), sixth (N = 4) 

or seventh (N = 1) open field test. N = 16 individuals were tested in the rectangular arena 

in previous studies conducted 11 – 47 months before (mean = 25.12 ± 15.75; Table S2-

1(Huebner et al. 2018; Henke-von der Malsburg and Fichtel 2018)). Based on video-

recordings, we measured time spent locomoting and exploratory tendencies of subjects 

(Table S2-2). 

Open field test: Statistical analyses 

We visually inspected whether the variables of the first open field test were symmetrically 

distributed and applied a log-transformation to achieve a more symmetric distribution if 

necessary. We checked the correlation matrix of symmetrically distributed 

(log-transformed) variables using the function ‘rcorr’ (‘Hmisc’ package(Harrell 2021)) and 

controlled for sphericity by applying Bartlett’s test (function ‘cortest.bartlett’, ‘psych’ 

package(Revelle 2020)), which was significant (X² = 203.51, df = 10, p<0.001). Then, we 

conducted a principal component analysis (PCA) using the ‘pca’ function (‘psych’ 

package) with the standard varimax rotation. The Kaiser-Meyer-Olkin index (KMO; 

‘KMO’ function, ‘psych’ package(Morton and Altschul 2019)) revealed good sampling 

adequacy with a value of 0.56. We retained two components as suggested by the function 

‘fa.parallel’ (‘psych’ package). The first component explained an individual’s active 

exploration, with locomotion and cells traversed loading positively and the latency enter 

(log-transformed) loading negatively. The second component explained an individual’s 
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more passive, stationary exploration, with rears, i.e., standing on hindlegs, 

(log-transformed) and dips, i.e., inserting head into blind holes or closed doors of the open 

field, (log-transformed) loading positively (Table S2-4). 

To estimate variation in exploration, we used a linear model with gaussian error 

distribution (‘lm’ function) with the duration subjects spent locomoting as response 

variable. In the interspecific model (Table S2-5, model: a), we used species in interaction 

with sex, and age (log-transformed) as fixed factors. In the intraspecific models (Table S2-

17, Table S2-18, models: a), we used sex, season, and BMI (log-transformed) as fixed 

factors. 

Novel object test: Experimental set-up 

To assess an individual’s neophilic tendencies, we introduced a novel object (either a 

plastic snoopy or a metallic toy car; Fig. 3.1C) directly after each open field test into the 

arena. Out of the 150 individuals, only one was tested with a similar novel object in a 

previous study 11 months earlier (Table S2-1; (Henke-von der Malsburg and Fichtel 2018).) 

We measured an individual’s latency to approach the novel object by one grid cell 

(approach latency), to contact the novel object (contact latency), and the number of 

contacts over the course of a 5 min test duration (contact frequency). With the two 

latencies, we calculated the approach speed by subtracting the contact latency from the 

approach latency. If an individual did not contact the novel object, we set the approach 

speed to the sum of contact latency (which was set to the 5 min test duration) and the 

respective approach latency (which was also set to 5 min in case the individual did not 

approach the object). We chose the contact frequency as our measure for neophilia, as the 

other variables were highly skewed towards individuals that did not contact the object. 

Novel object test: Statistical analyses 

To estimate variation in neophilia, we used a zero-inflated negative binomial model with 

logit-link error function (function ‘zeroinfl’ with the argument ‘dist’ set to ‘negbin’; ‘pscl’ 

package(Jackman et al. 2020)) and the number of contacts with the novel object as response 
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variable. In the interspecific model (Table S2-5, model: b), we used species, sex, and age 

(log-transformed) as fixed factors in the count part and set sex as fixed factor in the zero 

part. In the intraspecific models (Table S2-17, Table S2-18, models: b), we used sex, season, 

and BMI (log-transformed) as fixed factors in the count part and set sex as fixed factor in 

the zero part. 

Food extraction task: Experimental set-up 

To assess an individual’s innovative propensities, we presented a problem-solving box 

(6 cm x 12 cm; Fig. 3.1D). Each of the six uniform wells (5 cm x 4.5 cm) was baited with a 

small piece of banana, which could be extracted by sliding a lid open. After the box was 

introduced onto the experimental platform within the subject’s cage, the animals had 

20 min to extract the six rewards. We tested a total of N = 112 individuals (83 GML and 

29 MBML). N = 5 individuals were subjected to this task in a previous study 

11 – 53 months earlier (mean = 34.30 ± 15.31; (Huebner et al. 2018)). 

We measured an individual’s response latency from the start of the test, when the 

box was deposited on the experimental platform, to its approach to the experimental 

platform, visualizing the task. As initial innovation speed, we measured the success latency 

as time span between the response latency and the first success (i.e., extracting the 1st piece 

of banana; solver). In case an individual did not succeed at all (non-solver), we set its 

success latency to 20 min as the maximum test duration. Additionally, we counted the 

number of successes as measure for repeated innovative propensity. We estimated the 

repeatability of the variables by calculating the ICC for N = 21 individuals (15 GML and 

six MBML), that repeated this test (response latency: ICC = -0.050, success latency: 

ICC = 0.605, success number: ICC = 0.405). 

Food extraction task: Statistical analyses, innovation speed 

To investigate interspecific variation in innovation speed (Table S2-6, model: a), we 

calculated a cox-proportional-hazards model (function ‘coxph’, ‘survival’ 

package(Therneau et al. 2020)) with the function Surv(success latency (log-
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transformed) | solver) as proportional hazard and species, sex, and age (log-transformed) 

as fixed factors. In the model for GML (Table S2-17, model: c), we used sex, season, BMI 

(log-transformed), activity, and neophilia as fixed factors. For MBML, we calculated four 

less complex models (Table S2-18, model: c) according to the small sample size. We set sex 

and season, sex, and BMI (log-transformed), sex in interaction with activity, and sex and 

neophilia as fixed factors, respectively. 

Food extraction task: Statistical analyses, innovation propensity 

To investigate interspecific variation in innovative propensity (Table S2-6, model: b), we 

calculated a poisson model with log link error function (function ‘glm’, family = ‘poisson’) 

with the number of successes as response and species, sex, and age (log-transformed) as 

fixed factors. In the intraspecific model for GML (Table S2-17, model: d), we used sex, 

season, BMI (log-transformed), activity, and neophilia as fixed factors. For MBML, we 

calculated four less complex models (Table S2-18, model: d) adapted to the low sample 

size in this species. We set sex and season, sex and BMI (log-transformed), sex and activity, 

and sex and neophilia as fixed factors, respectively. 

Persistence test: Experimental set-up 

To assess an individual’s persistence in manipulating an object with potential access to 

food, we modified the problem-solving box, in that five of the six lids were blocked and 

only one of the six rewards could be extracted. Therefore, the persistence test always 

followed the food extraction test. If an individual did not open all the six wells during the 

food extraction test, we performed an additional training session prior to the persistence 

test (N = 17). This training session was similar to the food extraction test, with the only 

modification that all lids were opened by 5 mm. 

The persistence test lasted 20 min and was extended by 10 min in case the 

individual was still manipulating the box after 20 min (N = 6). We calculated an 

individual’s persistence as the duration manipulating the box in relation to the duration 

being in contact with the box and noted whether an individual opened the well (solver) or 
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not (non-solver). We tested a total of N = 108 (82 GML and 26 MBML). We estimated the 

repeatability of the variables by calculating the ICC for N = 15 individuals (nine GML and 

six MBML), that repeated this test (manipulation: ICC = 0.570, contact: ICC = -0.147, 

persistence: ICC = 0.725). Additionally, we estimated the repeatability of persistence across 

tasks by calculating the ICC across the food extraction task and the persistence test for 

N = 108 individuals (82 GML and 26 MBML). 

Persistence test: Statistical analyses 

To investigate variation in persistence, we calculated a linear model with gaussian error 

distribution. We used persistence as response variable and species, sex, and age 

(log-transformed) as fixed factors in the interspecific model (Table S2-7, model: a). 

Running the same model excluding the N = 17 individuals that received additional 

training, did not affect the results (Table S2-7, model: b). In the intraspecific model for 

GML (Table S2-17, model: e), we used sex, season, BMI (log-transformed), activity, and 

neophilia as fixed factors. For MBML, we calculated four less complex models (Table S2-

18, model: e) due to the low sample size for this species. We set sex and season, sex in 

interaction with BMI (log-transformed), sex and activity, and sex and neophilia as fixed 

factors, respectively. 

Visual and spatial discrimination and repeated reversal learning 

paradigm: Experimental set-up 

To assess an individual’s associative and flexible learning abilities, we used a repeated 

discrimination and reversal learning paradigm with four individual tasks. On a plate, we 

positioned four tubes that only differed in shape and pattern at the front part (Fig. 3.1H). 

Tubes were fixed with clips on the plate, so that we could easily exchange the position 

between trials. The tube opening was surrounded of a plate in the form of either a square 

(pattern: black-white striped), a circle (pattern: white), a triangle (pattern: black), or flower 

(pattern: white with black dots). In front of each plate, we attached a lid that could be 

easily rotated to access a small piece of banana. As an odor control for non-rewarded 
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tubes, we placed a piece of banana in the center of each tube, which, however, was not 

accessible to the subjects. 

Before the first testing session, we conducted a familiarization session. In this 

session, the order of the tubes was always the same across the subjects 

(square – circle – triangle – flower) and each tube opening was baited with a food reward. 

We removed the lids, so that the animals could easily access the food reward in each of 

the tubes. A trial started when the apparatus was fully introduced on the experimental 

platform within the subject’s cage and lasted a maximum of 10 min, or until the subject 

retrieved all four food rewards. After the subject had retrieved all four food rewards in six 

familiarization trials, we started with the actual experiment. 

In the first experimental task, the visual discrimination, we randomly selected one 

of the four forms serving as S+, containing the food reward. Across sessions of 15 trials, we 

randomized the position of the S+-form across the four positions in a counterbalanced 

order between the left (position 1 and 2) and right side (position 3 and 4) of the plate (Fig. 

3.1H). The S+-form was never presented on the same position for more than two times in 

a row. We additionally cleaned the apparatus after every third trial. The time-interval 

between trials within a session was 10-30 s, depending on how fast the experimenter could 

re-bait the tube, change the tube positions and clean the apparatus, as well as how easily 

the subject was lured back to the starting position. We defined a trial as correct, if the 

subject extracted the food reward by only manipulating the S+-form. If it manipulated an 

incorrect form, we noted the trial as incorrect and let the subject continue to explore the 

apparatus until it retrieved the reward or a maximum of 10 min. Depending on the 

subject’s motivation (i.e., actively moving around and easily lured to the start position), 

we conducted two sessions in a row with a short break of 5 min between sessions and a 

break of at least 30 min to a third session. We conducted a total of four to five sessions per 

individual and night, always taking the subject’s motivation into account. After the subject 

had correctly chosen the S+-form for at least 24 out of 30 trials (80%-criterion over two 

consecutive sessions), we proceeded with the next experimental task, the visual reversal 

learning. 

For the visual reversal learning, the former S+-form became unrewarded, and we 

chose one of the other three forms as new S+. We started with the first session of this part 
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in the same testing period as the last visual discrimination session. The rest of the testing 

procedure remained the same as in the visual discrimination until the 80%-learning 

criterion was reached. 

As the third experimental task, we conducted a spatial discrimination test. In this 

task, the shape and pattern of the forms became irrelevant, but only the position of the 

tube served as S+. We conducted the first session in the night following the last visual 

reversal learning session, which could be either during the same testing period, or when 

we recaptured the individual (days between tests: mean = 6.88 ± 7.99, max = 27). As in the 

visual tasks, we removed odor cues from the apparatus after every third trial. 

Additionally, we cleaned the tube opening, the frontal form, and the lid after each trial to 

remove any remainder of the food reward from the previous trial, if this specific tube was 

not positioned at the S+-position in the subsequent trial. The rest of the testing procedure 

remained the same until the 80%-learning criterion was reached. 

Finally, we conducted a spatial reversal learning test, with the former S+-position 

becoming non-rewarded and another position becoming the new S+. We chose a position 

on the other side of the plate to avoid a potential side preference. If, for example, the 

S+-position in the spatial discrimination was position 1, we chose the S+-position in the 

spatial reversal learning as either position 3 or 4. As for the visual reversal learning, we 

conducted the first spatial reversal session in the same testing period as the last spatial 

discrimination session. The rest of the testing procedure remained the same as in the 

spatial discrimination until the 80%-learning criterion was achieved. 

For each trial, we measured the response latency and success latency similarly to 

the other experiments. For each session, we counted the number of correct and incorrect 

trials (errors) and calculated the mean response latency and the mean success latency. We 

used the number of errors across sessions as proxy for associative learning abilities in each 

task. For the overall performance per task, we used the total number of trials until the 

learning criterion was reached. As measure of flexibility, we calculated a transfer index (TI, 

Equation 1; (Rumbaugh and Pate 1984)) for the transitions with changing reward 

contingencies (i.e., from the visual discrimination to the visual reversal, from the visual 

reversal to the spatial discrimination, and from the spatial discrimination to the spatial 

reversal). Therefore, we used the last 15 trials of the previous task (pre-reversal 
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performance) and the trial 2 to 15 of the following task (post-reversal performance). The 

first trial of the post-reversal session was excluded, since it primarily served as a cue that 

the initial reward contingency has changed. 

Equation 2 TI =  
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The sample sizes slightly decreased over the experimental tasks (Table S2-1), since 

we failed to recapture some individuals before they completed the repeated 

discrimination and reversal learning paradigm. Only N = 1 individual failed to learn the 

reward contingency in the spatial discrimination. For N = 2 individuals, we erroneously 

continued with the subsequent experimental task before the previous reward contingency 

was learned, and they were subsequently excluded from the analyses. 

Discrimination and reversal learning paradigm: Statistical analyses, 

learning across sessions 

To assess differences in associative learning abilities within each task, we used negative 

binomial mixed models with log link error function (function ‘glmer.nb’, ‘MASS’ 

package(23)) with the number of incorrect trials per session as response. For all the 

interspecific models, we set subject ID and session ID as random factors. We controlled 

for a possible influence of performance of the S+ but did not include this variable as fixed 

factor if it did not affect the performance in the respective task. For the visual 

discrimination model (Table S2-8, model: a), we set species in interaction with session, sex, 

and age (log-transformed) as fixed factors. For the visual reversal learning model (Table 

S2-9, model: a), we set species, sex, age (log-transformed) and session as fixed factors. For 

the spatial discrimination model (Table S2-10, model: a), we set species in interaction with 

age (log-transformed), species in interaction with session, sex in interaction with session, 

and the S+ as fixed factors. Since this model did not converge with standard settings, we 

set the optimizer to “bobyqa” and the maximum likelihood estimation to 100,000 

iterations. For the spatial reversal learning model (Table S2-11, model: a), we set species 

in interaction with session, sex, age (log-transformed), and the S+ as fixed factors. Since 
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this model also did not converge with standard settings, we set the optimizer to “bobyqa” 

and the maximum likelihood estimation to 100,000 iterations. 

Discrimination and reversal learning paradigm: Statistical analyses, 

performance within tasks 

To assess variation in the overall performance within each task, we used linear gaussian 

models with the total number of trials (log-transformed) as response. For the interspecific 

models of the visual tasks (Table S2-8, Table S2-9, models: b), we set species, sex, and the 

mean age (log-transformed) between the first and the last session as fixed factors. For the 

spatial discrimination model (Table S2-10, model: b), we set species in interaction with the 

mean age (log-transformed), sex, and the S+ as fixed factors. For the spatial reversal 

learning model (Table S2-11, model: b), we set species, sex in interaction with the S+, and 

the mean age (log-transformed) as fixed factors. Due to small sample sizes, we calculated 

four less complex models per task for GML to model intraspecific variation in associative 

learning performances (Table S2-17, models: f, g, i, k). Therefore, we set sex and mean BMI 

(log-transformed) between the first and last session, sex and activity, sex and neophilia, 

and sex and the S+ as respective fixed factors. For MBML, we calculated five models per 

task, reducing the number of fixed factors to one (Table S2-18, models: f, g, i, k). 

Discrimination and reversal learning paradigm: Statistical analyses, 

flexible learning between tasks: transfer index 

To assess variation in flexible learning between tasks, we modelled the TI using linear 

gaussian models with species, sex, and the mean age (log-transformed) as fixed factors 

(Table S2-9 – Table S2-11, models: c). Due to small sample sizes, we calculated three less 

complex models per task for GML to model intraspecific variation in flexible learning 

(Table S2-17, models: h, j, l). Therefore, we set sex and mean BMI (log-transformed) 

between the last pre-reversal and the first post-reversal session, sex and activity, and sex 

and neophilia as respective fixed factors. For MBML, we calculated four models per task, 

reducing the number of fixed factors to one (Table S2-18, models: h, j, l). 
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Additionally, we calculated Spearman rank correlations between the TIs and the 

number of trials to reach the posterior learning criteria, as well as the innovative propensity 

to estimate potential covariations between these flexible learning proxies.  

 

Plus maze: Experimental set-up 

To assess an individual’s spatial learning abilities and spatial memory, we set up a plus maze 

with four arms (40 cm x 17 cm x 17 cm) leading to four terminal boxes 

(20 cm x 17 cm x 17 cm; Fig. 3.1B). Each terminal box contained a plastic lid in its back at 

the opposite side of its door, in which we placed a small piece of banana in case of the 

rewarding location. For an initial familiarization trial, we baited three terminal boxes and 

released the subject at the fourth box at the start arm. The familiarization trial started when 

we opened the door of the start box and ended either when the subject had eaten all the 

three food rewards or after a maximum of 15 min. In the latter case, we repeated the 

familiarization trial either at the same or the following testing night when the individual 

showed higher motivation to participate in the task. After the subject had eaten the third 

reward, we distracted it briefly with a stick smeared with banana at the backside of the 

box, closed the door and released it again at the start box for the next trial or in its home 

cage when the test was done. 

For the actual test session (15 successive trials), only one terminal box (= goal box) 

was baited. As goal box, we chose the box in which we caught the animal during the 

familiarization trial (Nstraight = 22, Nright = 47, Nleft = 52). Since only the goal box was baited 

during the test session, we placed on top of each terminal box a piece of banana peel that 

was out of reach for the subject to control for olfactory stimuli. Similar to the 

familiarization trial, a test trial started when we opened the door of the start box and ended 

as soon as the subject had retrieved the food reward in the goal box. However, we stopped 

a trial after 10 min, when the subject did not succeed. We stopped a session if the subject 

did not exit the start box within 10 min and continued the session either later in the night 

or in the following night. We additionally cleaned the maze after every third trial. We 



Chapter III: Empirical study 

92 
 

rotated the terminal boxes throughout the session to prevent the subject to follow potential 

odor cues left inside the goal box. 

We counted how often a subject entered the wrong arm and/or box and summed 

it up to an error score per trial, which we defined as spatial learning performance. For the 

overall spatial performance, we used the mean sum of errors throughout the 15 trials. We 

tested a total of N = 121 (96 GML and 25 MBML). We estimated the repeatability of the 

mean sum of errors by calculating the ICC for N = 21 individuals (15 GML and six MBML), 

that repeated this test (ICC = 0.412). N = 5 individuals were subjected to this task in a 

previous study 11 – 53 months earlier (mean = 33.23 ± 15.80; (Huebner et al. 2018)).  

Plus maze: Statistical analyses, spatial learning across trials 

To investigate variation in spatial learning, we modelled the sum of errors per trial in a 

negative binomial mixed model with log link error function (function ‘glmer.nb’, ‘MASS’ 

package(Brian et al. 2021)). Since the model did not converge with standard settings, we 

set the optimizer to “bobyqa” and the maximum likelihood estimation to 

100,000 iterations. We set species in interaction with trial, sex and the goal box as fixed 

factors and subject ID and trial ID as random factors (Table S2-12, model: a).  

Plus maze: Statistical analyses, spatial memory 

To investigate variation in spatial memory, we modelled the mean sum of errors across the 

15 trials (log-transformed) in a gaussian linear model. For the interspecific model, we set 

species, sex, age (log-transformed), and the goal box as fixed factors (Table S2-12, model: 

b). In the intraspecific model for GML (Table S2-17, model: m), we set sex, season, BMI 

(log-transformed), activity, neophilia and the goal box as fixed factors. For MBML, we 

calculated four less complex models (Table S2-18, model: m) due to the small sample size 

in this species. We set sex and season, sex and BMI (log-transformed), sex and activity, sex 

and neophilia, and sex and the goal box as respective fixed factors. 



Chapter III: Empirical study 

93 
 

Cylinder test: Experimental set-up 

To assess an individual’s inhibitory control, we conducted a detour-reaching task using the 

cylinder test design(MacLean et al. 2014; Kabadayi et al. 2018). Prior to testing, we 

conducted a training session with an opaque cylinder. The food reward was placed in the 

center of the cylinder, invisible for the subject during its approach. To reach the reward, 

the subject had to take a detour and enter the cylinder by one of the open sides which were 

set in an 90° angle from the approach direction onto the experimental platform within the 

subject’s cage. We additionally removed odor cues after every fifth trial. We counted the 

number of correct and incorrect trials until a learning criterion was met that was defined 

as five consecutive trials taking the detour as a first response without prior touching or 

sniffing at the cylinder(MacLean et al. 2014). In some cases (N = 23, 18.9%), we only noticed 

during the video analysis that this criterion was not entirely met. N = 15 individuals did 

not reach the criterion in the conducted trials. N = 8 individuals already reached the 

criterion earlier, but some more trials were conducted. This erroneous evaluation 

happened when an individual approached very quickly without directly touching the 

cylinder but sniffing at its very edge. In these cases, it could be difficult to directly classify 

the sniffing as happening only from the side, i.e., the entrance of the cylinder (correct) or 

as happening from the front (incorrect). However, whether the learning criterion was 

achieved or not did not affect performance in the subsequent testing session indicated by 

a model excluding these individuals (Table S2-13, model: a). 

For the actual testing session of ten trials, we changed the cylinder to a transparent 

cylinder and repeated the cleaning every third trial, the rest of the experimental set-up 

was the same as in the training (Fig. 3.1E). Using a transparent cylinder, the subject could 

see the charcoal-colored piece of banana, while approaching the task. It could also smell 

the banana from the front through little holes in the center of the cylinder. Nevertheless, 

it had to inhibit an initial response to reach directly through the transparent barrier. 

Instead, it had to take a detour to one of the open sides to enter the cylinder and reach the 

reward, as in the training. We used the number of incorrect trials as proxy for inhibitory 

control. We tested a total of N = 110 individuals (83 GML and 27 MBML). We estimated the 

repeatability of the used variables by calculating the ICC for N = 12 individuals 

(seven GML and five MBML), that repeated this test (number training trials: ICC = 0.556, 
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number incorrect test trials: ICC = 0.141). N = 2 individuals were subjected to this task in a 

previous study 34 – 41 months ago (mean = 37.61 ± 3.91; (Huebner et al. 2018)).  

Cylinder test: Statistical analyses 

To investigate variation in inhibitory control, we calculated a negative binomial model with 

log link error function (function ‘glm.nb’, ‘MASS’ package(Brian et al. 2021)). We set the 

number of incorrect trials during the testing session as response, and species, sex, age 

(log-transformed) and the number of training trials as fixed factors in the interspecific 

model (Table S2-13, model: b). In the intraspecific model for GML (Table S2-17, model: n), 

we set sex, season, BMI (log-transformed), activity and neophilia as fixed factors. For 

MBML, we calculated four less complex models (Table S2-18, model: n) due to the low 

sample size for this species. We set sex and season, sex and BMI (log-transformed), sex 

and activity, and sex and neophilia as fixed factors, respectively. 

Additionally, we calculated Spearman rank correlations between inhibitory 

control and the TIs, the number of trials to reach the learning criteria in the discrimination 

and reversal learning paradigm, as well as the innovative propensity to investigate potential 

covariations between these proxies for flexible learning abilities. 

String-pulling task: Experimental set-up, single-string set-up 

To assess an individual’s means-end understanding, we conducted a string-pulling task in 

the single-string set-up(Jacobs and Osvath 2015). As string served a cable tie that was 

placed onto an external platform attached to the subject’s cage just in front of the 

experimental platform within the cage. At the far end of the cable tie, we attached a piece 

of banana onto a small plate. The inner end of the cable tie reached 5 cm into the cage (Fig. 

3.1G). Just before we placed the cable tie at its position, we lured the subject to the top wire 

in the center of the experimental platform. After positioning the cable tie, the subject had 

20 min time to pull the end of the cable tie into reach to access the reward. We measured 

the response latency as duration from positioning the cable tie until the subject’s approach 

and calculated the success latency as timespan between the response and reaching the 
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reward. For subjects that did not succeed (non-solver), we set the success latency to the 

maximum time of the trial (20 min) plus the response latency. We used this success latency 

as proxy for means-end understanding. We tested a total of N = 114 individuals (86 GML and 

28 MBML). We estimated the repeatability of the variables by calculating the ICC for 

N = 11 individuals (seven GML and four MGML), that repeated this test (response latency: 

ICC = -0.137, success latency: ICC = -0.192). N = 5 individuals were subjected to this task in 

a previous study 11 – 53 months ago (mean = 34.36 ± 15.31; (Huebner 2020)).  

String-pulling task: Experimental set-up, perpendicular strings set-up 

To assess an individual’s goal directedness, we conducted a string-pulling task with a 

perpendicular strings set-up(Jacobs and Osvath 2015). To ensure that the animal had 

sufficient understanding of the string-pulling task itself, we conducted a training prior to 

testing. This training consisted of the means-end understanding test, that was repeated 

until the subject successfully pulled the string three times. If it continuously failed to pull 

the cable tie for three trials, we moved the cable tie 2 cm further into the cage and 

decreased the maximum trial length to 10 min (N = 11). If the subject failed to pull the cable 

tie for another three trials, we moved the cable tie another 2 cm further into the cage. We 

continued with this procedure until the subject succeeded. In the subsequent trials, we 

changed the set-up to the original one, with the cable tie reaching 5 cm into the cage. For 

the actual goal directedness task, we positioned two identic cable ties with four grid cells 

distance (about 6 cm) at the center of the platform. The food reward was only attached to 

one cable tie (correct string), but we attached a plate at the outer end of both cable ties. 

The position of the correct string (left or right) was randomly assigned but 

counterbalanced across a session of ten trials and changed every second to third trial. The 

trials started when the two cable ties were fully introduced and ended when the subject 

reached the reward or after a maximum of 10 min. When the subject pulled the incorrect 

string first, we did not stop the trial, but allowed it to further explore the task until it pulled 

the correct string and reached the reward within the maximum trial duration. After each 

trial, we removed potential odor cues with 70%-ethanol. 
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In the goal directedness task, we counted the number of correct and incorrect trials 

across one session of ten trials. We considered a trial as correct if the subject did only 

manipulate the correct string and reached the reward. We considered a trial as incorrect if 

the subject did not succeed, or if it manipulated the incorrect string. We used the number 

of incorrect trials as proxy for goal directedness. We tested a total of N = 105 individuals 

(83 GML and 22 MBML). We estimated the repeatability of the number of incorrect trials 

by calculating the ICC for N = 8 individuals (six GML and two MBML), that repeated this 

test (ICC = 0.119). 

String pulling task: Statistical analyses, means-end understanding 

To investigate interspecific variation in means-end understanding, we calculated a cox 

proportional-hazards model with the function Surv(success latency | solver) as 

proportional hazard and species, sex, and age (log-transformed) as fixed factors (Table S2-

14, model: a). In the intraspecific model for GML (Table S2-17, model: o), we set sex in 

interaction with neophilia, season, BMI (log-transformed) and activity as fixed factors. For 

MBML, we calculated four less complex models (Table S2-18, model: o) because of the low 

sample size in this species. We set sex and season, sex and BMI (log-transformed), sex and 

activity, and sex and neophilia as fixed factors, respectively. 

String pulling task: Statistical analyses, goal-directedness 

To investigate variation in goal directedness, we calculated a poisson model with log link 

error function. In the interspecific model (Table S2-14, model: b), we set the number of 

incorrect trials as response and species, sex, and age (log-transformed) as fixed factors. In 

the intraspecific model for GML (Table S2-17, model: p), we set sex, season, BMI 

(log-transformed), activity and neophilia as fixed factors. For MBML, we calculated four 

less complex models (Table S2-18, model: p) due to the low sample size for this species. 

We set sex and season, sex and BMI (log-transformed), sex and activity, and sex and 

neophilia as fixed factors, respectively. 
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General intelligence 

Finally, we investigated general intelligence across, as well as within species. For the 

interspecific G-factor, we calculated two principal axis factor analyses, using the function 

‘fa’ with the argument ‘fm’ set to ‘pa’ (‘psych’ package). The first PAF contained the 

performance scores of individuals that completed all tests (excluding the spatial 

discrimination and the spatial reversal due to very low sample sizes in these tasks; 

N = 21 GML, N = 9 MBML). For the second PAF, we used the performance scores of 

individuals that completed all tests, except for the discrimination and reversal learning 

paradigm (N = 76 GML, N = 19 MBML). We controlled for sphericity by applying Bartlett’s 

test and for sampling adequacy by applying KMO. 

For the intraspecific g-factor, we used the same (log-transformed) performance 

scores as for the G-factor. For each species separately, we calculated two PCAs per species. 

The first PCA per species contained the performance scores of all tests (excluding the 

spatial discrimination and the spatial reversal due to very low sample sizes in these tasks), 

which resulted in a data set of N = 23 GML and N = 9 MBML. For the second PCA per 

species, we excluded all performance scores of the repeated discrimination and reversal 

learning paradigm, obtaining a sample size of N = 76 GML and N = 19 MBML. For each 

PCA, we controlled for sphericity by applying Bartlett’s test and for sampling adequacy 

by applying KMO. 

Supplemental results and discussion 

Interspecific comparisons 

We report the statistic results of the models estimating interspecific variation in 

personality traits (Table S2-5) and cognitive abilities (Table S2-6 – Table S2-14), as well as 

the results of the factor analytical approach to estimate a G/g-factor (Table S2-15 – Table 

S2-16). 
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Intraspecific variation in performance in personality and cognitive tests 

Since we did not find systematic variation among sex or age within species performance, 

we briefly summarize only significant differences below. The complete results are 

presented for GML in Table S2-17, and for MBML in Table S2-18. 

Gray mouse lemurs 

Briefly, performance in the food extraction and persistence task, the visual discrimination 

and reversal learning paradigm, spatial discrimination, plus maze, cylinder test, and 

string-pulling task was not influenced by sex, BMI, or personality factors (Table S2-17).  

In the open field test, male GML were more explorative than females (LM: 

p = 0.009, Table S2-17, model: a) and individuals in less good body condition were slightly 

more neophilic than individuals with higher BMI (p = 0.041, Table S2-17, model: b). 

Variation in the spatial reversal performance (Table S2-17, model: k) was explained by sex 

(LM: p = 0.002) and body condition (p = 0.026). Males reached the learning criterion after 

more trials than females. GML in worse body condition reached the learning criterion after 

more trials than those in better body condition. Variation in flexible learning from the visual 

reversal learning to the spatial discrimination (Table S2-17, model: j) was explained by sex 

(LM: p = 0.049), with males reaching a higher TI than females. Variation in flexible learning 

from the spatial discrimination to the spatial reversal learning (Table S2-17, model: l) was 

explained by sex in interaction with neophilia (LM: p = 0.022), with more neophilic females 

achieving lower TIs than less neophilic females, whereas this effect was reversed for males. 

Madame Berthe’s mouse lemurs 

Performance in the personality tests, food extraction task, visual discrimination and visual 

reversal performance, spatial discrimination and spatial reversal performance, flexible 

learning from the visual reversal learning to the spatial discrimination and from the spatial 

discrimination to the spatial reversal learning, plus maze, cylinder test, and goal 

directedness was not influenced by sex, BMI, or personality factors (Table S2-18). 
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Variation in persistence (Table S2-18, model: e) was explained by sex in interaction 

with BMI (LM: p = 0.011). Females in better body condition were less persistent than those 

in worse body condition and for males, this effect was reversed. Variation in flexible 

learning from the visual discrimination to the visual reversal learning (Table S2-18, 

model: h) was explained by sex (LM: p = 0.029), with males achieving lower TIs than 

females. Variation in means-end understanding (Table S2-18, model: o) was predicted by 

BMI (cox PHM: p = 0.016), with MBML in better body condition solving the string-pulling 

task in the single-string set-up faster than those in worse body condition. 

Discussion: Intra-specific variation in performance in personality and 

cognitive tests 

Concerning individual characteristics influencing performance in personality and 

cognitive tests, we found minor and inconsistent sex or age effects across tasks. First, males 

and females differed only in four out of 22 performance measures (in two cognitive tests 

and in two personality tests). Second, we controlled for potential effects of motivational 

state to participate in tests by estimating an individual’s BMI(Sol et al. 2012; Cauchoix et 

al. 2020), but BMI was positively correlated with cognitive performance in only two out of 

22 performance measures, suggesting no systematic link between test performance and an 

individual’s current motivational state. Third, learning abilities partially covaried with age 

but not consistently across tasks and species. In our study, we mainly tested rather young 

individuals of a limited age range, with only 10 individuals being 4 yrs. or older 

(mean age = 1.21 ± 1.34 yrs.). Previous studies reported a positive correlation between age 

and learning abilities, and an increased impairment of cognitive abilities in elderly 

individuals(Bonté et al. 2014; Franks and Thorogood 2018; Hopkins et al. 2020). However, 

previous studies on mouse lemurs were conducted on captive individuals of larger age 

ranges (up to 13 yrs.) with a categorization of “elderly” or “aged” individuals starting at 

an age of five or six years(Languille et al. 2012). Compared to younger individuals, aged 

mouse lemurs express deficits in memory, flexible learning, and spatial abilities, while 

simple associative abilities seem to be preserved(Trouche et al. 2010; Picq et al. 2012). Wild 

mouse lemurs have a relatively short modal life expectancy of about three years and have 

been previously reported to not exhibit functional senescence, unlike their captive 
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conspecifics(Hämäläinen et al. 2014a). Thus, potential age effects in cognitive performance 

might be difficult to demonstrate in wild mouse lemurs and the here reported correlations 

do not allow for firm conclusions about a relationship between an individual’s age and its 

cognitive performance. 

Regarding the personality traits, neither neophilia, nor activity covaried with 

cognitive performance levels in either GML or MBML. In several prior studies, 

performance scores were confounded by variation in personality traits(Tebbich et al. 2012; 

Guenther et al. 2014). However, these links are by far not consistent across studies, 

emphasizing the importance to control for such non-cognitive factors(Ducatez et al. 2014a; 

Griffin et al. 2015; Guillette et al. 2015; Logan 2016; Huebner et al. 2018; Henke-von der 

Malsburg and Fichtel 2018; Rasolofoniaina et al. 2020; Schubiger et al. 2020). 

Supplemental tables 

Table S2-1 Sample sizes per species and sex for the single tasks, as well as the measured personality or 
cognitive trait, and the number of individuals that were not naïve to the respective experimental task. Sample 
sizes differ between tasks as it was not possible to recapture all individuals until they had completed all tasks 
of the test battery 

task measured trait 
GML not 

naïve 

MBML not 

naïve 
total 

F M F M 

open field test activity 51 67 15 19 13 1 150 
novel object test neophilia 51 67 0 19 13 1 150 
food extraction task  innovative 

propensity 
36 47 5 18 11 0 112 

persistence test persistence 35 47 0 17 9 0 108 
visual 
discrimination  

associative 
learning 

14 11 0 8 6 0 39 

visual reversal associative/ 
flexible learning 

14 11 0 7 5 0 37 

spatial 
discrimination  

associative/ 
flexible learning 

12 11 0 4 5 0 32 

spatial reversal 
 

associative/ 
flexible learning 

11 10 0 2 3 0 26 

plus maze spatial memory 39 57 5 15 10 0 121 
cylinder test inhibitory 

control 
37 46 2 17 10 0 110 

string-pulling task means-end 
understanding 

37 49 5 17 11 0 114 

perpendicular 
strings 

goal 
directedness 

36 47 0 15 7 0 105 
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Table S2-2 Intraclass correlation coefficients (ICC) estimating the interobserver reliability of the measured 
behaviors for 10% of the analyzed videos per task 

measured behavior ICC per behavior ICC per test 

open field test  0.989 
latency enter >0.999  
stationary 0.831  
locomotion 0.866  
cells traversed 0.990  
latency grid 0.918  
grid cell changes 0.995  
jumps 0.914  
rears 0.778  
dips 0.396  

novel object test  0.905 
approach latency 0.971  
contact latency 0.974  
approach speed 0.862  
contact frequency 0.910  

food extraction task  >0.999 
response latency >0.999  
success latency >0.999  
number of successes 0.837  

persistence test  0.957 
duration in contact 0.906  
duration manipulating 0.992  
solver 1.000  

repeated discrimination and reversal learning paradigm 0.999 
response latency >0.999  
success latency 0.997  
number of incorrect trials 0.937  

plus maze  0.986 
latency to enter correct arm per trial 0.984  
sum of errors per trial 0.877  
mean sum of errors per session 0.961  

cylinder test  0.802 
number of incorrect trials 0.802  

string-pulling task single-string set-up  >0.999 
response latency >0.999  
success latency >0.999  

string-pulling task perpendicular strings set-up  1.000 
number of incorrect trials 1.000  
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Table S2-3 Repeatability of the personality tests. Intraclass correlation coefficients were calculated between 
the first and second test, between the first, second, and third test, and between the first, second, third, and 
fourth test. Sample sizes are given in parentheses 

behavior test 1-2 (N = 104) test 1-3 (N = 52) test 1-4 (N = 29) 

latency enter* -0.103 -0.040 -0.061 
locomotion 0.343 0.409 0.415 
cells traversed 0.381 0.423 0.358 
rears* 0.365 0.275 0.269 
dips* 0.132 0.059 0.076 
contact latency 0.022 -0.046 0.017 
approach speed 0.158 0.044 0.073 
contact frequency 0.106 0.002 0.036 

*log-transformed variables 

Table S2-4 Loadings of the principal component analyses (varimax rotation) of the first and second open field 
test, including eigenvalues and explained variances per rotated component (RC), as well as the Kaiser-Meyer-
Olkin factor (KMO) and statistics of the Bartlett’s test of sphericity 

behavior 
test 1 test 2 

RC1 RC2 RC1 RC2 

latency enter* -0.486 -0.028 -0.424 -0.142 
locomotion 0.898 0.056 0.916 0.042 
cells traversed 0.904 0.138 0.912 0.107 
rears* 0.260 0.773 0.306 0.787 
dips* -0.073 0.868 -0.018 0.892 
eigenvalue 1.93 1.37 1.95 1.45 
explained variance 0.58 0.42 0.57 0.43 
KMO 0.555 0.547 
Bartlett’s test X² = 203.509 

df = 10 
p<0.001 

X² = 151.463 
df = 10 
p<0.001 

*log-transformed variables 
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Table S2-5 Personality traits. Given are estimates, test-statistics (ts), p-value and degrees of freedom (df) of 
the full-null-model comparison (bold), effect sizes (R²), as well as estimates and standard errors (SE), test-
statistics and p-values of the individual predictors. GML: gray mouse lemur, M: male 

model ID 
response 

fixed factors 
estimate ± SE ts p df R² 

a) activity  3.99 0.004 4 0.074 

 species * sex GML: -38.45 ± 10.90 
M: -18.26 ± 14.58 
GML:M: 39.35 ± 16.41 

5.75 0.018   

 age -2.22 ± 3.34 0.44 0.509   

b) neophilia  8.56 0.073 4 0.056 

 species GML: 0.11 ± 0.16 0.69 0.489   

 sex M: 0.04 ± 0.14 0.27 0.791   

 age -0.03 ± 0.07 -0.49 0.621   

 zero-part: sex F: -0.93± 0.32 
M: -1.49 ± 0.71 

-2.87 

-2.12 

0.004 

0.034 

  

 

Table S2-6 Foraging extraction task. Given are estimates, test-statistics (ts), p-value and degrees of freedom 
(df) of the full-null-model comparison (bold), effect sizes (R²), as well as estimates and standard errors (SE), 
test-statistics and p-values of the individual predictors. GML: gray mouse lemur, M: male 

model ID 
response 

fixed factors 
estimate ± SE ts p df R² 

a) innovation speed     

 Surv(success latency|solver) 11.37 0.010 3 0.102 

 species GML: 0.61 ± 0.24 2.49 0.013   
 sex M: 0.41 ± 0.20 2.02 0.044   
 age 0.13 ± 0.10 1.26 0.209   
b) innovation propensity     

 N opened wells 8.39 0.039 3 0.073 

 species GML: 0.28 ± 0.10 7.64 0.006   
 sex M: 0.04 ± 0.08 0.181 0.670   
 age 0.01 ± 0.04 0.03 0.874   
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Table S2-7 Persistence, a) total sample size, b) excluding N = 17 individuals that received additional training. 
Given are estimates, test-statistics (ts), p-value and degrees of freedom (df) of the full-null-model comparison 
(bold), effect sizes (R²), as well as estimates and standard errors (SE), test-statistics and p-values of the 
individual predictors. GML: gray mouse lemur, M: male 

model ID 
response 

fixed factors 
estimate ± SE ts p df R² 

a) persistence, N = 108 9.47 <0.001 3 0.192 

 species GML: 0.15 ± 0.03 25.56 <0.001   
 sex M: -0.03 ± 0.03 1.68 0.198   
 age -0.02 ± 0.01 2.92 0.090   
b) persistence, N = 91 6.36 <0.001 3 0.152 

 species GML: 0.15 ± 0.04 16.52 <0.001   
 sex M: -0.04 ± 0.03 1.98 0.163   
 age -0.02 ± 0.01 2.39 0.126   

 

Table S2-8 Visual discrimination. Given are estimates, test-statistics (ts), p-value and degrees of freedom (df) 
of the full-null-model comparison (bold), effect sizes (R²), as well as estimates and standard errors (SE), test-
statistics and p-values of the individual predictors. GML: gray mouse lemur, M: male 

model ID 
response 

fixed factors 
estimate ± SE ts p df R² 

a) visual discrimination learning     

 N incorrect trials 20.99 <0.001 5 0.088 

 species * session GML: -0.29 ± 0.19 
session: -0.25 ± 0.07 
session:GML: 0.14 ± 0.06 

5.46 0.020   

 sex M: 0.18 ± 0.11 2.68 0.102   
 age 0.14 ± 0.06 5.97 0.015   
b) visual discrimination performance     

 N total trials  5.16 0.005 3 0.247 

 species GML: 0.36 ± 0.13 7.70 0.009   
 sex M: 0.10 ± 0.13 0.56 0.458   
 age 0.18 ± 0.07 7.81 0.008   
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Table S2-9 Visual reversal and flexible learning. Given are estimates, test-statistics (ts), p-value and degrees 
of freedom (df) of the full-null-model comparison (bold), effect sizes (R²), as well as estimates and standard 
errors (SE), test-statistics and p-values of the individual predictors. GML: gray mouse lemur, M: male 

model ID 
response 

fixed factors 
estimate ± SE ts p df R² 

a) visual reversal learning     

 N incorrect trials 41.57 <0.001 4 0.234 

 species GML: 0.42 ± 0.12 10.31 0.001   
 sex M: 0.04 ± 0.11 0.10 0.758   
 age -0.14 ± 0.06 5.61 0.018   
 session -0.38 ± 0.03 24.75 <0.001   
b) visual reversal performance     

 N total trials  4.30 0.011 3 0.216 

 species GML: 0.31 ± 0.10 10.29 0.003   
 sex M: 0.05 ± 0.10 0.26 0.614   
 age -0.07 ± 0.05 1.83 0.186   
c) flexible learning (visual cues)     

 TI  2.87 0.050 3 0.128 

 species GML: 0.09 ± 0.09 1.06 0.310   
 sex M: -0.12 ± 0.09 1.77 0.192   
 age 0.08 ± 0.04 3.96 0.054   
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Table S2-10 Spatial discrimination and flexible learning. Given are estimates, test-statistics (ts), p-value and 
degrees of freedom (df) of the full-null-model comparison (bold), effect sizes (R²), as well as estimates and 
standard errors (SE), test-statistics and p-values of the individual predictors. GML: gray mouse lemur, M: male 

model ID 
response 

fixed factors 
estimate ± SE ts p df R² 

a) spatial discrimination learning     

 N incorrect trials 73.17 <0.001 10 0.412 

 species * session GML: -0.58 ± 0.25 
session: -0.33 ± 0.07 
session:GML: 0.21 ± 0.07 

10.02 0.002   

 sex * session M: 0.14 ± 0.23 
session:M: -0.17 ± 0.05 

10.71 0.001   

 species * age age: -0.57 ± 0.20 
age:GML: 0.68 ± 0.24 

7.83 0.005   

 S± position 2: 1.47 ± 0.33 
position 3: 1.56 ± 0.28 
position 4: 1.34 ± 0.26 

27.91 <0.001   

b) spatial discrimination performance     

 N total trials  3.48 0.010 7 0.359 

 species * age GML: 0.05 ± 0.18 
age: -0.30 ± 0.16 
age:GML: 0.44 ± 0.20 

4.58 0.043   

 sex M: -0.02 ± 0.19 0.01 0.931   
 S± position 2: 0.96 ± 0.29 

position 3: 0.93 ± 0.24 
position 4: 0.74 ± 0.23 

6.42 0.002   

c) flexible learning (cue change)     

 TI  3.50 0.027 3 0.181 

 species GML: 0.16 ± 0.09 3.64 0.066   
 sex M: 0.22 ± 0.08 6.71 0.014   
 age 0.02 ± 0.04 0.17 0.680   
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Table S2-11 Spatial reversal and flexible learning. Given are estimates, test-statistics (ts), p-value and degrees 
of freedom (df) of the full-null-model comparison (bold), effect sizes (R²), as well as estimates and standard 
errors (SE), test-statistics and p-values of the individual predictors. GML: gray mouse lemur, M: male 

model ID 
response 

fixed factors 
estimate ± SE ts p df R² 

a) spatial reversal learning     

 N incorrect trials 41.78 <0.001 10 0.220 

 species * 
session 

GML: -0.86 ± 0.27 
session: -0.19 ± 0.05 
session:GML: 0.13 ± 0.05 

8.10 0.004   

 sex M: 0.35 ± 0.16 4.51 0.034   
 age 0.006 ± 0.07 0.01 0.931   
 S± position 2: 0.13 ± 0.25 

position 3: 0.64 ± 0.22 
position 4: 0.28 ± 0.24 

8.24 0.041   

b) spatial reversal performance     

 N total trials  6.19 <0.001 9 0.651 

 species GML: -0.24 ± 0.21 1.33 0.267   
 sex * S± M: 0.53 ± 0.29 

position 2: 0.61 ± 0.42 
position 2:M: -0.42 ± 0.53 
position 3: 0.23 ± 0.26 
position 3:M: 0.95 ± 0.40 
position 4: 0.45 ± 0.5 
position 4:M: -0.58 ± 0.38 

5.05 0.012   

 age -0.14 ± 0.09 2.66 0.122   
c) flexible learning (spatial cues)     

 TI  6.90 0.001 3 0.364 

 species GML: 0.39 ± 0.10 16.18 <0.001   
 sex M: -0.13 ± 0.09 2.01 0.168   
 age 0.03 ± 0.05 0.49 0.492   
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Table S2-12 Spatial memory. Given are estimates, test-statistics (ts), p-value and degrees of freedom (df) of 
the full-null-model comparison (bold), effect sizes (R²), as well as estimates and standard errors (SE), test-
statistics and p-values of the individual predictors. GML: gray mouse lemur, M: male 

model ID 
response 

fixed factors 
estimate ± SE ts p df R² 

a) spatial learning     

 N errors  73.77 <0.001 7 0.042 

 species * trial GML: -0.15 ± 0.21 
trial: -0.12 ± 0.02 
trial:GML: -0.06 ± 0.02 

7.88 0.005   

 sex M: -0.14 ± 0.13 1.18 0.277   
 goal box 

 

age 

right: 0.26 ± 0.14 
straight: -0.45 ± 0.18 

0.03 ± 0.05 

14.54 

 

0.38 

<0.001 

 

0.537 

 
 
 

 

b) spatial memory     

 N mean errors  5.11 <0.001 5 0.146 

 species GML: -0.47 ± 0.15 9.47 0.003   
 sex M: -0.11 ± 0.12 0.84 0.361   
 age 0.05 ± 0.06 0.63 0.429   
 goal box right: 0.24 ± 0.14 

straight: -0.46 ± 0.17 

8.10 <0.001   

 

Table S2-13 Inhibitory control, a) excluding N = 21 individuals that did not meet the learning criterion in the 
prior training session, b) total sample size. Given are estimates, test-statistics (ts), p-value and degrees of 
freedom (df) of the full-null-model comparison (bold), effect sizes (R²), as well as estimates and standard errors 
(SE), test-statistics and p-values of the individual predictors. GML: gray mouse lemur, M: male 

model ID 
response 

fixed factors 
estimate ± SE ts p df R² 

a) inhibitory control, N = 87     

 N incorrect trials  8.22 0.084 4 0.081 

 species GML: -0.16 ± 0.17 0.85 0.356   
 sex M: -0.09 ± 0.14 0.38 0.538   
 age -0.04 ± 0.07 0.27 0.598   
 N trials training 0.02 ± 0.01 6.85 0.009   
b) inhibitory control, N = 110     

 N incorrect trials  10.34 0.035 4 0.082 

 species GML: -0.21 ± 0.14 2.34 0.126   
 sex M: 0.03 ± 0.12 0.08 0.783   
 age -0.06 ± 0.06 0.99 0.319   
 N trials training 0.02 ± 0.01 7.98 0.005   
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Table S2-14 Means-end understanding and goal directedness. Given are estimates, test-statistics (ts), p-value 
and degrees of freedom (df) of the full-null-model comparison (bold), effect sizes (R²), as well as estimates and 
standard errors (SE), test-statistics and p-values of the individual predictors. GML: gray mouse lemur, M: male 

model ID 
response 

fixed factors 
estimate ± SE ts p df R² 

a) means-end understanding     

 Surv(success latency|solver) 1.98 0.600 3 0.018 

 species GML: 0.33 ± 0.24 2.01 0.156   
 sex M: 0.01 ± 0.20 0.00 0.986   
 age 0.01 ± 0.09 0.01 0.942   
b) goal directedness      

 N incorrect trials  0.67 0.874 3 0.006 

 species GML: -0.05 ± 0.10 0.25 0.621   
 sex M: 0.06 ±0.09 0.44 0.508   
 age 0.01 ± 0.04 0.10 0.747   

 

Table S2-15 General intelligence on reduced set of tests. Interspecific G loadings of the PAF, as well as 
intraspecific g loadings for gray mouse lemurs (GML) and Madame Berthe’s mouse lemurs (MBML). For each 
factor and component, the squared factor (SS) loadings or eigenvalue, and the proportion of explained 
variance are given. For each analysis, the sample size (N), the Kaiser-Meyer-Olkin (KMO) index, and the 
statistics for the Bartlett’s test of sphericity are given 

cognitive performance 
G loadings 

(NGML = 76, NMBML = 19) 

g loadings 

GML (N = 76) 

g loadings 

MBML (N = 19) 

FE: success latency 0.54 -0.57 -0.31 
FEP: persistence -0.02 -0.43 0.47 
CT: N incorrect trials -0.02 0.07 0.21 
SP1: success latency -0.22 0.29 0.53 
SP2: N incorrect trials -0.07 0.21 -0.26 
PM: N mean errors 0.50 -0.60 -0.54 
SS loadings 0.60   
eigenvalue  1.18 1.45 
explained variance 0.10 0.23 0.37 
KMO 0.45 0.45 0.55 
Bartlett’s test X² = 19.51 

df = 15 
p = 0.192 

X² = 18.95 
df = 15 
p = 0.216 

X² = 19.95 
df = 15 
p = 0.174 
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Table S2-16 General intelligence including all cognitive performance measures. Interspecific G loadings of the 
PAF, as well as intraspecific g loadings for gray mouse lemurs (GML) and Madame Berthe’s mouse lemurs 
(MBML). For each factor and component, the squared factor (SS) loadings or eigenvalue, and the proportion 
of explained variance are given. For each analysis, the sample size (N), the Kaiser-Meyer-Olkin (KMO) index, 
and the statistics for the Bartlett’s test of sphericity are given 

cognitive performance 
G loadings 

(NGML = 21, NMBML = 9) 

g loadings 

GML (N = 21) 

g loadings 

MBML (N = 9) 

FE: success latency 0.47 -0.40 0.50 
FEP: persistence 0.03 -0.15 -0.26 
CT: N incorrect trials 0.29 0.06 0.36 
SP1: success latency -0.45 0.17 -0.41 
SP2: N incorrect trials -0.01 -0.43 -0.39 
PM: N mean errors 0.74 -0.54 0.27 
Dv: N trials -0.20 -0.36 0.13 
Rv: N trials -0.08 -0.43 -0.39 
SS loadings 1.11   
eigenvalue  1.43 1.67 
explained variance 0.14 0.20 0.35 
KMO 0.49 0.32 0.21 
Bartlett’s test X² = 24.71 

df = 28 
p = 0.644 

X² = 36.60 
df = 45 
p = 0.810 

X² = 26.26 
df = 28 
p = 0.559 
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Table S2-17 Gray mouse lemurs, all statistic models. Given are test-statistics (ts), p-value and degrees of 
freedom (df) of the full-null-model comparison (bold), effect sizes (R²), as well as estimates and standard errors 
(SE), test-statistics and p-values of the individual predictors. M: male; visual stimuli: DF: dotted flower, SS: 
striped square, WC: black triangle 

model ID 
response 

fixed factors 
estimate ± SE ts p df R² 

a) activity  3.00 0.034 3 0.049 

 sex M: 20.43 ± 7.71 7.03 0.009   
 season dry-wet: 4.49 ± 8.64 0.27 0.604   
 BMI -0.192 ± 3.92 0.24 0.625   
b) neophilia  10.65 0.031 4 0.088 

 sex M: -0.04 ± 0.16 -0.25 0.806   
 season dry-wet: -0.10 ± 0.17 -0.58 0.561   
 BMI -0.157 ± 0.08 -2.05 0.041   
 zero-part: sex F: -0 83 ± 0.35 -2.34 0.019   
  M: -1.53 ± 0.73 -2.10 0.035   
c) innovation speed 

Surv(success latency|solver) 

 

9.29 

 

0.100 

 

5 

 

0.110 

 sex M: 0.34 ± 0.24 2.04 0.153   
 season dry-wet: 0.43 ± 0.24 3.34 0.067   
 BMI 0.22 ± 0.14 2.58 0.108   
 activity 0.11 ± 0.13 0.75 0.388   
 neophilia 0.02 ± 0.12 0.04 0.847   
d) innovation propensity 

N successes 

 

0.48 

 

0.993 

 

5 

 

0.006 

 sex M: 0.03 ± 0.10 0.09 0.771   
 season dry-wet: 0.04 ± 0.09 0.20 0.654   
 BMI -0.02 ± 0.05 0.09 0.763   
 activity 0.01 ± 0.05 0.07 0.795   
 neophilia 0 ± 0.05 0.00 0.998   
e) persistence  1.92 0.100 5 0.054 

 sex M: -0.04 ± 0.03 1.91 0.171   
 season dry-wet: -0.03 ± 0.03 0.99 0.323   
 BMI -0.02 ± 0.02 1.49 0.226   
 activity 0.05 ± 0.02 7.36 0.008   
 neophilia -0.01 ± 0.01 0.13 0.721   
f) visual discrimination 

N total trials 

 

2.34 

 

0.120 

 

2 

 

0.100 

 sex M: 0.11 ± 0.19 0.36 0.552   
 BMI 0.21 ± 0.10 4.66 0.042   
 N total trials  0.66 0.528 2 -0.029 

 sex M: -0.04 ± 0.20 0.03 0.857   
 activity 0.12 ± 0.10 1.30 0.267   
 N total trials  0.47 0.631 2 -0.046 

 sex M: 0.00 ± 0.20 0.00 0.995   
 neophilia 0.10 ± 0.10 0.93 0.347   
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 N total trials  0.95 0.458 4 -0.009 

 sex M: -0.03 ± 0.22 0.02 0.899   
 S± DF: 0.34 ± 0.30 

SS: -0.08 ± 0.27 
WC: 0.31 ± 0.32 

1.26 0.317   

g) visual reversal 

N total trials 

 

1.89 

 

0.153 

 

4 

 

0.129 

 sex M: 0.10 ± 0.10 0.94 0.344   
 S± DF: -0.17 ± 0.15 

SS: -0.20 ± 0.14 
WC: 0.12 ± 0.13 

2.43 0.096   

 N total trials  0.74 0.491 2 -0.023 

 sex M: 0.05 ± 0.11 0.25 0.620   
 BMI -0.06 ± 0.05 1.25 0.276   
 N total trials  0.23 0.793 2 -0.068 

 sex M: 0.03 ± 0.11 0.10 0.760   
 activity 0.03 ± 0.06 0.25 0.619   
 N total trials  0.11 0.898 2 -0.080 

 sex M: 0.05 ± 0.11 0.20 0.660   
 neophilia 0.00 ± 0.06 0.01 0.937   
h) flexible learning (visual cues) 

TI 

 

1.61 

 

0.224 

 

2 

 

0.048 

 sex M: -0.12 ± 0.13 0.93 0.346   
 BMI 0.10 ± 0.06 2.39 0.134   
 TI  0.58 0.569 2 -0.036 

 sex M: -0.14 ± 0.14 1.01 0.325   
 activity 0.04 ± 0.07 0.41 0.530   
 TI  0.39 0.681 2 -0.053 

 sex M: -0.12 ± 0.13 0.77 0.389   
 neophilia 0.01 ± 0.07 0.04 0.837   
i) spatial discrimination 

N total trials 

 

4.20 

 

0.014 

 

4 

 

0.368 

 sex M: -0.08 ± 0.22 0.14 0.714   
 S± position 2: 0.89 ± 0.32 

position 3: 0.94 ± 0.28 
position 4: 0.69 ± 0.28 

4.93 0.011   

 N total trials  2.38 0.118 2 0.111 

 sex M: -0.30 ± 0.25 1.50 0.235   
 BMI 0.23 ± 0.13 3.34 0.083   
 N total trials  0.61 0.554 2 -0.037 

 sex M: -0.29 ± 0.27 1.12 0.303   
 activity -0.00 ± 0.14 0.00 0.978   
 N total trials  1.14 0.340 2 0.012 

 sex M: -0.27 ± 0.26 1.11 0.304   
 neophilia -0.13 ± 0.13 1.00 0.329   
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j) flexible learning (cue change) 

TI 

 

4.22 

 

0.029 

 

2 

 

0.219 

 sex M: 0.19 ± 0.09 4.33 0.049   
 BMI -0.09 ± 0.05 4.09 0.056   
 TI  2.33 0.122 2 0.103 

 sex M: 0.16 ± 0.10 2.47 0.131   
 activity 0.05 ± 0.05 0.85 0.366   
 TI  1.90 0.174 2 0.073 

 sex M: 0.20 ± 0.10 3.79 0.065   
 neophilia -0.02 ± 0.05 0.13 0.722   
k) spatial reversal 

N total trials 

 

9.65 

 

0.001 

 

2 

 

0.464 

 sex M: 0.73 ± 0.20 13.75 0.002   
 BMI -0.24 ± 0.10 5.90 0.026   
 N total trials  6.03 0.004 4 0.501 

 sex M: 0.66 ± 0.20 11.00 0.004   
 S± position 2: 0.15 ± 0.29 

position 3: 0.72 ± 0.24 
position 4: 0.20 ± 0.27 

3.23 0.050   

 N total trials  6.04 0.010 2 0.335 

 sex M: 0.66 ± 0.22 8.60 0.009   
 activity 0.13 ± 0.11 1.27 0.275   
 N total trials  5.34 0.015 2 0.303 

 sex M: 0.70 ± 0.22 0.97 0.006   
 neophilia 0.07 ± 0.12 0.37 0.549   
l) flexible learning (spatial cues) 

TI 

 

4.42 

 

0.016 

 

3 

 

0.318 

 sex * neophilia M: -0.17 ± 0.10 
neophilia: -0.20 ± 0.06 
neophilia:M: 0.26 ± 0.11 

6.17 0.022   

 TI  2.03 0.158 2 0.085 

 sex M: -0.18 ± 0.11 2.39 0.138   
 BMI 0.08 ± 0.06 1.66 0.212   
 TI  1.87 0.180 2 0.073 

 sex M: -0.21 ± 0.12 3.20 0.089   
 activity 0.07 ± 0.06 1.38 0.253   
m) spatial memory 

N mean errors 

  

3.01 

 

0.007 

 

7 

 

0.129 

 sex M: -0.18 ± 0.14 1.64 0.203   
 season dry-wet: 0.06 ± 0.14 0.17 0.685   
 BMI 0.12 ± 0.07 3.02 0.086   
 activity 0.09 ± 0.07 1.64 0.204   
 neophilia -0.02 ± 0.07 0.06 0.805   
 goal box right: 0.30 ± 0.15 

straight: -0.44 ± 0.20 
7.22 0.001   
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n) inhibitory control 

N incorrect trials 

 

9.76 

 

0.135 

 

6 

 

0.100 

 sex M: -0.15 ± 0.15 0.95 0.331   
 season dry-wet: -0.16 ± 0.14 1.34 0.247   
 BMI -0.06 ± 0.07 0.81 0.367   
 activity 0.15 ± 0.08 3.59 0.058   
 neophilia 0.01 ± 0.08 0.02 0.889   
o) means-end understanding 

Surv(success latency|solver) 

 

10.29 

 

0.113 

 

6 

 

0.110 

 sex * neophilia M: 0.19 ± 0.26 
neophilia:F: -0.19 ± 0.18 
neophilia:M: 0.67 ± 1.96 

6.80 0.009   

 season dry-wet: 0.29 ± 0.24 1.41 0.236   
 BMI -0.14 ± 0.14 0.99 0.320   
 activity -0.03 ± 0.12 0.07 0.785   
p) goal directedness 

N incorrect trials 

 

1.79 

 

0.877 

 

5 

 

0.021 

 sex M: 0.02 ± 0.10 0.03 0.865   
 season dry-wet: -0.01 ± 0.10 0.01 0.918   
 BMI -0.05 ± 0.05 1.11 0.292   
 activity 0.03 ± 0.05 0.40 0.529   
 neophilia -0.05 ± 0.05 0.89 0.346   

 

Table S2-18 Madame Berthe’s mouse lemurs, all statistic models. Given are estimates, test-statistics (ts), p-
value and degrees of freedom (df) of the full-null-model comparison (bold), effect sizes (R²), as well as 
estimates and standard errors (SE), test-statistics and p-values of the individual predictors. M: male; visual 
stimuli: DF: dotted flower, SS: striped square, WC: black triangle 

model ID 
response 

fixed factors 
estimate ± SE ts p df R² 

a) activity  1.27 0.303 3 0.026 

 sex M: -13.00 ± 15.51 0.70 0.409   
 season dry-wet: -12.23 ± 16.83 0.53 0.473   
 BMI 11.40 ± 7.67 2.21 0.148   
b) neophilia  1.71 0.789 4 0.053 

 sex M: 0.19 ± 0.28 0.67 0.501   
 season dry-wet: -0.06 ± 0.31 -0.21 0.835   
 BMI 0.08 ± 0.15 0.55 0.581   
 zero-part: sex F: -1.07 ± 0.64 -1.68 0.093   
  M: -1.01 ± 1.31 -0.77 0.439   
c) innovation speed 

Surv(success latency|solver) 

 

6.87 

 

0.080 

 

3 

 

0.235 

 sex * activity M: 0.52 ± 0.43 
activity:F: -0.65 ± 0.52 
activity:M: 1.33 ± 0.55 

6.38 0.012   
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 Surv(success latency|solver) 1.62 0.400 2 0.033 

 sex M: 0.52 ± 0.45 1.16 0.247   
 season dry-wet: -0.41 ± 0.45 -0.90 0.366   
 Surv(success latency|solver) 0.94 0.600 2 0.059 

 sex M: 0.36 ± 0.42 0.85 0.396   
 BMI -0.08 ± 0.20 -0.37 0.713   
 Surv(success latency|solver 1.99 0.400 2 0.076 

 sex M: 0.61 ± 0.8 1.29 0.200   
 neophilia -0.30 ± 0.27 -1.12 0.261   
d) innovation propensity 

N successes 

 

1.39 

 

0.500 

 

2 

 

0.051 

 sex M: 0.11 ± 0.19 0.34 0.560   
 BMI 0.10 ± 0.09 1.18 0.278   
 N successes  0.76 0.682 2 0.028 

 sex M: 0.05 ± 0.19 0.08 0.772   
 season dry-wet: 0.14 ± 0.19 0.56 0.455   
 N successes  1.15 0.562 2 0.042 

 sex M: 0.06 ± 0.19 0.09 0.759   
 activity -0.09 ± 0.09 0.94 0.331   
 N successes  0.34 0.844 2 0.013 

 sex M: 0.07 ± 0.19 0.12 0.725   
 neophilia 0.03 ± 0.09 0.13 0.717   
e) persistence  5.97 0.004 3 0.374 

 sex * BMI M: -0.05 ± 0.04 
BMI: -0.08 ± 0.02 
BMI:M: 0.11 ± 0.04 

7.61 0.011   

 persistence  1.06 0.363 2 0.005 

 sex M: -0.06 ± 0.05 1.39 0.250   
 season dry-wet: 0.05 ± 0.05 1.04 0.318   
 persistence  1.39 0.270 2 0.030 

 sex M: -0.06 ± 0.05 1.67 0.209   
 activity -0.03 ± 0.02 1.67 0.210   
 persistence  1.16 0.324 2 0.015 

 sex M: -0.03 ± 0.05 0.54 0.468   
 neophilia -0.03 ± 0.02 1.28 0.270   
f) visual discrimination 

N total trials 

 

1.02 

 

0.332 

 

1 

 

0.002 

 activity -0.08 ± 0.08 1.023 0.332   
 N total trials  0.01 0.927 1 -0.083 

 sex M: -0.02 ± 0.16 0.01 0.927   
 N total trials  0.59 0.456 1 -0.032 

 BMI -0.06 ± 0.08 0.59 0.456   
 N total trials  0.44 0.522 1 -0.045 

 neophilia 0.05 ± 0.08 0.44 0.522   
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 N total trials  1.22 0.353 3 0.048 

 S+ DF: 0.31 ± 0.21 
SS: -0.01 ± 0.23 
WC: 0.04 ± 0.23 

1.22 0.353   

g) visual reversal 

N total trials 

  

2.22 

 

0.164 

 

3 

 

0.249 

 S+ DF: 0.04 ± 0.23 
SS: 0.42 ± 0.24 
WC: -0.11 ± 0.24 

2.22 0.164   

 N total trials  0.83 0.384 1 -0.016 

 sex M: 0.17 ± 0.18 0.83 0.384   
 N total trials  0.55 0.476 1 -0.043 

 BMI 0.07 ± 0.09 0.55 0.476   
 N total trials  0.51 0.493 1 -0.047 

 activity -0.07 ± 0.10 0.51 0.493   
 N total trials  0.16 0.700 1 -0.083 

 neophilia -0.04 ± 0.10 0.16 0.700   
h) flexible learning (visual cues) 

TI 

 

6.15 

 

0.029 

 

1 

 

0.284 

 sex M: -0.25 ± 0.10 6.15 0.029   
 TI  0.53 0.481 1 -0.038 

 BMI 0.05 ± 0.06 0.53 0.481   
 TI  1.85 0.198 1 0.062 

 activity 0.08 ± 0.06 1.85 0.198   
 TI  3.75 0.077 1 0.175 

 neophilia 0.11 ± 0.06 3.75 0.077   
i) spatial discrimination 

N total trials 

 

1.74 

 

0.229 

 

1 

 

0.085 

 sex M: -0.32 ± 0.24 1.74 0.229   
 N total trials  0.21 0.661 1 -0.110 

 BMI -0.09 ± 0.20 0.21 0.661   
 N total trials  0.28 0.611 1 -0.098 

 activity 0.08 ± 0.15 0.28 0.611   
 N total trials  1.27 0.298 1 0.032 

 neophilia -0.15 ± 0.13 1.27 0.298   
 N total trials  0.94 0.489 3 -0.025 

 S+ position 2: 0.10 ± 0.41 
position 3: 0.10 ± 0.41 
position 4: 0.53 ± 0.32 

0.94 0.489   

j) flexible learning (cue change) 

TI 

 

2.97 

 

0.119 

 

1 

 

0.164 

 sex M: 0.24 ± 0.14 2.97 0.119   
 TI  0.10 0.756 1 -0.099 

 BMI -0.03 ± 0.08 0.10 0.756   
 TI  2.82 0.128 1 0.154 

 activity -0.12 ± 0.07 2.82 0.128   
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 TI  0.20 0.663 1 -0.087 

 neophilia 0.04 ± 0.08 0.20 0.663   
k) spatial reversal 

N total trials 

  

6.00 

 

0.092 

 

1 

 

0.556 

 activity -0.31 ± 0.12 6.00 0.092   
 N total trials  0.55 0.512 1 -0.126 

 sex M: 0.27 ± 0.36 0.55 0.512   
 N total trials  3.31 0.167 1 0.366 

 BMI -0.27 ± 0.15 3.31 0.167   
 N total trials  4.75 0.118 1 0.484 

 neophilia -0.29 ± 0.13 4.75 0.118   
 N total trials  0.78 0.442 1 -0.058 

 S+ position 4: -0.38 ± 0.43 0.78 0.442   
l) flexible learning (spatial cues) 

TI 

 

0.90 

 

0.375 

 

1 

 

-0.013 

 sex -0.05 ± 0.05 0.90 0.375   
 TI  0.72 0.423 1 -0.036 

 BMI -0.02 ± 0.03 0.72 0.423   
 TI  0.00 0.959 1 -0.142 

 activity 0.00 ± 0.03 0.00 0.959   
 TI  0.73 0.422 1 -0.035 

 neophilia -0.02 ± 0.03 0.73 0.422   
m) spatial memory 

N mean errors 

  

1.13 

 

0.342 

 

2 

 

0.011 

 sex M: 0.17 ± 0.29 0.32 0.575   
 BMI 0.21 ± 0.15 2.06 0.165   
 N mean errors  0.42 0.665 2 -0.051 

 sex M: 0.09 ± 0.31 0.08 0.778   
 season dry-wet: 0.25 ± 0.31 0.65 0.429   
 N mean errors  1.05 0.366 2 0.004 

 sex M: 0.19 ± 0.30 0.40 0.533   
 activity 0.21 ± 0.15 1.91 0.181   
 N mean errors  0.96 0.399 2 -0.004 

 sex M: 0.20 ± 0.30 0.45 0.509   
 neophilia -0.20 ± 0.15 1.73 0.202   
 N mean errors  0.81 0.501 3 -0.024 

 sex M: 0.06 ± 0.31 0.04 0.847   
 goal box right: 0.01 ± 0.38 

straight: -0.49 ± 0.35 
1.13 0.343   

n) inhibitory control 

N incorrect trials 

  

0.34 

 

0.844 

 

2 

 

0.013 

 sex M: -0.04 ± 0.24 0.03 0.859   
 activity -0.07 ± 0.12 0.34 0.559   
 N incorrect trials  0.14 0.934 2 0.005 

 sex M: 0.01 ± 0.23 0.00 0.954   
 season dry-wet: -0.09 ± 0.23 0.14 0.713   
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 N incorrect trials  0.07 0.966 2 0.003 

 sex M: -0.01 ± 0.23 0.00 0.952   
 BMI -0.03 ± 0.11 0.07 0.791   
 N incorrect trials  0.06 0.969 2 0.002 

 sex M: 0.01 ± 0.23 0.00 0.961   
 neophilia -0.03 ± 0.11 0.06 0.802   
o) means-end understanding 

Surv(success latency|solver) 

 

6.35 

 

0.040 

 

2 

 

0.216 

 sex M: -0.36 ± 0.43 -0.82 0.410   
 BMI 0.58 ± 0.24 2.42 0.016   
 Surv(success latency|solver) 1.72 0.400 2 0.064 

 sex M: -0.38 ± 0.44 -0.87 0.382   
 season dry-wet: 0.49 ± 0.45 1.08 0.279   
 Surv(success latency|solver) 1.42 0.500 2 0.052 

 sex M: -0.33 ± 0.43 -0.78 0.438   
 activity -0.21 ± 0.22 -0.95 0.345   
 Surv(success latency|solver) 2.80 0.200 2 0.094 

 sex M: -0.58 ± 0.46 -1.24 0.216   
 neophilia 0.32 ± 0.21 1.48 0.138   
p) goal directedness 

N incorrect trials 

  

1.85 

 

0.396 

 

2 

 

0.082 

 sex M: 0.27 ± 0.20 1.82 0.178   
 activity 0.05 ± 0.10 0.25 0.617   
 N incorrect trials  1.63 0.444 2 0.073 

 sex M: 0.24 ± 0.20 1.32 0.250   
 season dry-wet: 0.03 ± 0.21 0.02 0.877   
 N incorrect trials  1.63 0.443 2 0.073 

 sex M: 0.25 ± 0.19 1.61 0.204   
 BMI 0.02 ± 0.10 0.03 0.869   
 N incorrect trials  1.84 0.399 2 0.082 

 sex M: 0.24 ± 0.19 1.48 0.223   
 neophilia 0.04 ± 0.09 0.24 0.627   
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Chapter IV: General discussion 

The objective of my thesis was to broaden our understanding of cognitive evolution in 

relation to ecological factors, with a specific focus on the degree of ecological 

specialization. The specific aims were to summarize common links of variation in 

cognitive test performances with ecological factors across the animal kingdom 

(Chapter II), and to link cognitive performances across a broad range of cognitive abilities 

with the degree of ecological specialization and species-specific ecological adaptations 

(Chapter III). To this end, I systematically investigated patterns of (co)variation between 

cognitive performances and species-specific ecological adaptations across the animal 

kingdom, and empirically assessed cognitive performances in two sympatric mouse lemur 

species, that differ in their degree of ecological specialization. In my first theoretic 

approach, I found that cognitive performances have been associated with ecological 

factors, such as food patch distribution, characteristics of food items, habitat complexity 

or seasonality. Other ecological factors, such as the synecology with predators or parasites 

remain largely understudied. Also, a covariation of cognitive performances with the 

degree of ecological specialization has rarely been explicitly investigated. By classifying 

the species in comparison in their degree of dietary and habitat specialization, I found that 

this categorical proxy for a species-specific ecological niche does not consistently correlate 

with cognitive performances (Chapter II). In my second experimental approach, I found 

that the generalist gray mouse lemur does not consistently outperform the more 

specialized and sympatric Madame Berthe’s mouse lemur across a broad range of 

cognitive abilities. The gray mouse lemur was more innovative and showed greater 

persistence, whereas the Madame Berthe’s mouse lemur was more active and learned 

associative reward contingencies faster. The two species did not differ in inhibitory 

control, means-end understanding, or goal directedness (Chapter III). These experimental 

results parallel the theoretic findings of the reviewed literature, in that generalist species 

do not outperform specialist species per se. Instead, generalists are specifically more 

innovative, which may provide them the adaptive advantage to better cope with rapidly 

changing environmental conditions. Other cognitive abilities, however, may rather covary 

with other ecological adaptations, such as species-specific ranging behavior or foraging 
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strategies, or social factors that are unrelated to the degree of dietary and habitat 

specialization. 

In this last chapter, I evaluate the compiled results by integrating them into the 

theory of cognitive variation and evolutionary development. Additionally, I discuss how 

my results can be useful for future studies on cognition within the animal kingdom. 

1 The generalist’s advantage? 

Studies examining innovative problem-solving, reversal leaning abilities or inhibitory 

control, aim to investigate an individual’s behavioral flexibility (Amici et al. 2008; Griffin 

and Guez 2014; Beran 2015; Griffin 2016). Having the potential to behave flexibly, allows 

an individual to better adapt to variable conditions (Lee 2003; Lefebvre et al. 2004; Sol et 

al. 2005a; Lea et al. 2020). Generalists are exposed to more variable conditions, i.e., a greater 

range of habitat types or a broader dietary niche. Thus, they presumably face a greater 

variety of ecological challenges in their natural habitats, which might explain their 

advantageous ability to invent novel or modified solutions to occurring problems (Reader 

and Laland 2003; Sol et al. 2005a). In fact, large literature reviews on innovation counts 

report generalist birds and primates to be more innovative than more specialized species 

(Overington et al. 2011; Ducatez et al. 2015). Similarly, dietary generalist primates possess 

better inhibitory control than more specialized primates (MacLean et al. 2014). 

Additionally, most of the here reviewed experimental studies reported generalists to 

outperform more specialized species in innovative problem-solving or reversal learning 

tasks (Day et al. 1999a; Day et al. 2003; Bond et al. 2007; Griffin and Diquelou 2015; Szabo 

and Whiting 2020). In mouse lemurs, I could replicate the correlation regarding innovative 

potential, with the generalist gray mouse lemurs performing better in the innovative 

problem-solving task. However, the more specialized Madame Berthe’s mouse lemur 

learned reversed reward contingencies faster, while the two species only partly differed 

in their degree of an initial flexible response (transfer index) and did not differ in their 

inhibitory control. Additionally, innovative propensity and inhibitory control did not 

correlate with each other, with the transfer indices or the discrimination and reversal 
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learning performances. Hence, these proxies may capture different aspects of flexibility in 

mouse lemurs. 

In a previous study comparing innovative abilities in the same species, the more 

specialized Madame Berthe’s mouse lemur outperformed the generalist gray mouse lemur 

in a modified version of the presented problem-solving task (Henke-von der Malsburg 

and Fichtel 2018). In that study, gray mouse lemurs persisted to use a previously 

successful solving technique, while Madame Berthe’s mouse lemurs were less 

conservative and, thus, better able to adjust their behavior to a more efficient solution 

(Henke-von der Malsburg and Fichtel 2018). Persistence reflects task-directed motivation 

and seems to be specifically important for innovative problem-solving using novel 

extractive foraging tasks (Benson-Amram and Holekamp 2012; Thornton and Samson 

2012; Huebner and Fichtel 2015; Chow et al. 2016; Guez and Griffin 2016). However, 

persistence can hinder efficient problem-solving, when individuals conservatively use 

previous solving techniques which result in a high number of perseverative errors (Hauser 

1999). In general, conservatism may prevent generalists to encounter potentially 

dangerous situations, such as the production of more costly and/or less efficient novel or 

modified behaviors (Omnivore’s paradox; Rozin 1976). This conservatism can be specifically 

favored over a more flexible response, when animals face more complex modifications 

(Chow et al. 2016; Davis et al. 2019; Lea et al. 2020), as it may have been the case in the 

previous study (Henke-von der Malsburg and Fichtel 2018) and in the here presented 

reversal learning paradigm. 

This challenges the notion of the generalist’s advantage to respond flexibly to 

changing environmental conditions, which, amongst others, come along with the current 

climatic change or anthropogenic disturbances (Sol et al. 2002; Schuck-Paim et al. 2008; 

Wilson and Yoshimura 2008; Wright et al. 2010). 

1.1 Insufficient explanatory potential of the categorical system of 

niche theory 

Despite the apparent superposition of generalists with respect to innovative problem-

solving, they do not consistently outperform specialists in other cognitive tasks. Thus, 
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categorizing species into generalists and specialists cannot sufficiently explain species-

specific cognitive adaptations. As with any categorical system, the degree of ecological 

specialization captures only a subset of an animal’s ecological adaptations (Hutchinson 

1957; Devictor et al. 2010). Moreover, an animal can be a generalist regarding one niche 

dimension, while being more specialized within another dimension (Futuyma and 

Moreno 1988). For example, golden lion tamarins (Leontopithecus rosalia) are omnivorous, 

while being restricted to the tropical rain forest in south-eastern Brazil (Day et al. 2003). 

They are, thus, categorized as dietary generalists and habitat specialists. Additionally, the 

classification can either be based on the relative comparison to other species, or on an 

estimate, such as Levin’s standardized index which measures dietary breadth (Krebs 

1989). For instance, the fat-tailed dwarf lemur (Cheirogaleus medius) is broadly described as 

omnivorous, but prefers a frugivorous diet, which leads to a more specialized 

classification (Lahann 2007; Teichroeb and Vining 2019). Similarly, the gray mouse lemur 

has a broad dietary breadth (Levin’s standardized index B = 0.63) and adjusts its diet 

flexibly to seasonal food availabilities throughout the year in dry-deciduous forests. 

However, in the same area, at the onset of the dry season they feed on a large proportion 

on homopteran secretions (>60%) which is mostly complemented with animal matter 

(Dammhahn and Kappeler 2008a; Dammhahn and Kappeler 2008b). Whereas in rain 

forests, they are mainly frugivorous year-round (Atsalis 1999; Lahann 2007). Thus, 

regarding its dietary preferences and depending on season and region, the gray mouse 

lemur maybe categorized as generalist or as more specialized when their mean dietary 

breadth throughout the year is not estimated using a metric index. 

While providing a ubiquitous scaling system, niche breadth estimates are rarely 

used to classify a species ecological niche in cognitive studies. These studies rather provide 

a descriptive overview of a species’ preferences which then are correlated with cognitive 

performances (Henry and Stoner 2011; Teichroeb and Vining 2019). Additionally, studies 

systematically estimating a species ecological niche, are only available for a subset of 

species, making it difficult to compare interspecific variation across studies. Similarly, a 

numeric degree of ecological specialization, which should categorize a certain ecological 

niche (Hutchinson 1953), is sparsely available across species and can be differently defined 

and measured. When defining the ecological specialization as niche breadth, the diversity 
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of resources a species uses would be measured (Roughgarden 1972; Bolnick et al. 2003). 

Accordingly, a specialist would use a narrower niche than a generalist. Alternatively, the 

ecological specialization can be defined as niche overlap. Here, the deviation of used 

resources in comparison to another species would be measured and a species would be 

categorized as specialist if it uses resources which are only rarely used by other species 

(Bolnick et al. 2002). Consequently, the interspecific comparison of cognitive abilities in 

relation to the species’ degree of ecological specialization can be already confounded by 

methodological issues. 

1.2 Factors explaining interspecific variation in cognitive abilities 

1.2.1 Social and cultural intelligence 

Social factors can covary with both, social and non-social cognition (Whiten and van 

Schaik 2007). For instance, social group size correlated positively with performances in 

reversal learning paradigms in birds on the species and the individual level (Bond et al. 

2007; Ashton et al. 2018a; Ashton et al. 2019). Social group size and dominance hierarchies, 

as well as dynamics in fission-fusion systems correlated positively with performances on 

transitive inference and inhibitory control in primates and birds (MacLean et al. 2008; 

Amici et al. 2008; Miller et al. 2019). 

Consequently, supporters of the Social Intelligence Hypothesis (Humphrey 1976; 

Whiten and Byrne 1988) or the related Cultural Intelligence Hypothesis (Whiten and van 

Schaik 2007; Herrmann et al. 2007; Street et al. 2017) suggest that social complexity broadly 

covaries with various cognitive abilities, not only within the social domain. These ideas 

are based on human evolution where humans have evolved outstanding cognitive 

abilities, specifically in western, educated, industrialized, rich, and democratic (WEIRD) 

communities. The formation of cultural structures thereby seems to evoke an immense 

selection pressure towards better cognitive abilities and ultimately to enlarged brains 

(Jerison 1973; Harvey et al. 1980; Herrmann et al. 2007; Street et al. 2017). Cultural 

structures are considered to include a sophisticated vocal communication, and physical 

cognition that is transmitted and spread via forms of social learning (Galef 1992; Boyd and 

Richerson 1996; De Waal 1999). Traits that are also apparent in non-human animals. 
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Consequently, recent research investigated cultural formation also in non-human 

primates, birds, or cetaceans that live in well-organized social groups, communicate 

vocally (e.g., bird songs), possess well-developed physical cognition (e.g., tool-use), as 

well as forms of social learning (e.g., motor imitation) (Whiten 2000; Rendell and 

Whitehead 2001; Whiten 2017; Aplin 2019). The Cultural Intelligence Hypothesis found, for 

instance, support in non-human primates, when great apes were reported to possess better 

cognitive abilities than monkeys and prosimians in terms of tool-use (Kittler et al. 2018), 

flexible learning (Rumbaugh and Gill 1973), or social learning (Reader and Laland 2002). 

However, the great ape’s superposition is not consistent across studies and 

cognitive traits (Deaner et al. 2006; Herrmann et al. 2007; Reader et al. 2011; Herrmann and 

Call 2012; Amici et al. 2012), contradicting the General Intelligence Hypothesis, which posits 

the convergent evolution of cognitive abilities within and across cognitive domains 

(Spearman 1904; Humphreys 1979). Instead, cognitive abilities may evolve in a rather 

domain-specific way, which is supported by the mixed evidence for general intelligence 

in other non-human animals (Cosmides and Tooby 1994; reviewed in Burkart et al. 2017), 

including mouse lemurs, both, on the species-level and on the individual-level (Kittler 

2017; Huebner 2020). Hence, different cognitive abilities may be differently selected for, 

leading to a more modular representation of cognitive abilities (Amici et al. 2012; 

DeCasien and Higham 2019). 

1.2.2 Ecological intelligence 

Cognitive abilities can covary with ecological factors when they provide benefits for daily 

challenges, such as efficient habitat exploration and exploitation (Dukas 1998; Dukas 

2004). In this respect, the assessment of spatial abilities receives great scientific attention, 

as spatial cognitive traits can be advantageous for solving various ecological problems, 

such as to efficiently navigate through large home ranges or complex habitats, or to 

(re-)locate previous, stationary or distributed food patches. Thus, spatial abilities covary 

broadly with a species diet (e.g., frugivory) or a migratory lifestyle (Platt et al. 1996; 

Pleskacheva et al. 2000; Cristol et al. 2003; Barkley and Jacobs 2007; Bond et al. 2007; Haupt 
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et al. 2010; Henry and Stoner 2011; Rosati and Hare 2012; Clarin et al. 2013; Rosati et al. 

2014; White and Brown 2015a; Trapanese et al. 2019; Teichroeb and Vining 2019). 

Moreover, in most of the reviewed studies investigating variation in spatial 

abilities, the more generalist species outperformed the more specialized species. This 

parallels the experimental finding in mouse lemurs, with the gray mouse lemur achieving 

higher performance scores than the Madame Berthe’s mouse lemur in the plus maze. 

However, this result was unexpected, since Madame Berthe’s mouse lemurs have larger 

home ranges and rely more on stationary food resources (Dammhahn and Kappeler 2005; 

Dammhahn and Kappeler 2008b) for which they would benefit from enhanced spatial 

abilities. However, their spatial performance may be confounded by individual 

characteristics, or methodological factors, that I discuss below. 

Another frequently examined ecological factor covarying with cognitive variation, 

is a species’ diet and related foraging behaviors. According to its diet, a species has 

evolved specific foraging strategies that can involve certain cognitive abilities. For 

instance, the dependence on scatter hoarding or food-caching requires spatial memory 

abilities to relocate the cached food items (Clayton and Krebs 1994a). Consequently, 

species that are more dependent on these foraging strategies, perform better in spatial 

memory tasks (Cristol et al. 2003; Barkley and Jacobs 2007; Bond et al. 2007). However, 

food-caching Clark’s nutcrackers performed worse than non-caching Mexican jays in a 

spatial memory task, where they were supposed to recover food caches made by 

conspecifics (Bednekoff and Balda 1996). In that study, the unexpected species difference 

with regard to a correlation with ecological adaptations, was explained by social factors, 

since Mexican jays experience more complex social organizations than Clark’s nutcrackers 

(Bednekoff and Balda 1996). Thus, potential interactions between ecological and social 

factors must be considered when designing experimental tasks. 

Species feeding predominantly on embedded or cryptic food items, benefit from 

cognitive abilities that facilitate the detection and extraction of these food items (Parker 

and Gibson 1977; Vitale et al. 1990). For instance, in order to extract concealed prey, lion 

tamarins (Leonthopitecus spp.) have not only evolved specialized morphological structures, 

i.e., elongated fingers, but also extractive manipulative techniques (Dietz et al. 1997). In 
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comparison to other callitrichids, that are less extractive or visual foraging, they, 

subsequently perform better in extractive problem-solving tasks (Day et al. 2003). 

Additionally, discriminative abilities allow to detect and discriminate between 

food items with higher nutritional value from food items with lower nutritional value or 

even detrimental food items which becomes specifically important for species feeding on 

ephemeral or cryptic prey (Shettleworth 2001; Dukas 2004). However, in my literature 

survey I did not detect comparative studies that investigated discriminative abilities 

between species within the same order that differed in this specific foraging ecology. 

Nevertheless, when primates that do not choose between ephemeral and resident food 

items on a regular basis, were compared to cleaner fish that prefer to clean and feed on 

ephemeral clients, cleaner fish performed better in a respective dichotomous choice task 

(Salwiczek et al. 2012; Prétôt et al. 2016). However, given the great phylogenetic distance 

between fish and primates, the different task performance might also result from other 

factors, such as adjusted experimental designs or species-specific solving strategies. 

In mouse lemurs, I found Madame Berthe’s mouse lemurs to learn visual and 

spatial reward associations faster than gray mouse lemurs. However, Madame Berthe’s 

mouse lemurs feed predominantly on homopteran secretions (Dammhahn and Kappeler 

2008b) which does not imply an apparent need for specific discrimination abilities. Thus, 

the interspecific variation in discrimination learning performance might be explained by 

other factors that do not necessarily relate to their foraging ecology. Specifically, as the 

presented artificial stimuli did not relate to any naturalistic stimulus mouse lemurs 

encounter in their natural habitat. 

In addition to dietary or habitat characteristics, ecological factors related to a 

synecology with predators or parasites might also covary with certain cognitive abilities. 

However, factors related to a species-specific synecology have rarely been associated with 

cognitive abilities. One example is provided by an intraspecific comparison in guppies 

(Poecilia reticulata), where predation risk was related to spatial memory performance 

(Burns and Rodd 2008). When compared to the population in the low-predation regime, 

the population in the high-predation regime was described as less hasty and tended to 

have larger telencephalons, which would provide greater cognitive capacity to process 

spatial information. Yet, the two populations did not differ in their spatial memory 
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performance (Burns and Rodd 2008). Concerning a potential link between cognitive 

performance and parasitism, a conclusive review on birds suggests that intraspecific 

variation in cognition covaries with exposure to parasites, as well as metabolic and 

energetic influences by the parasite on the host (Ducatez et al. 2020a). However, respective 

patterns seem to be mixed across species and do not yet allow for general conclusions. 

Respective interspecific comparisons have rarely been conducted, but suggest a positive 

correlation between innovation rates and parasite load in birds (Garamszegi et al. 2007; 

Vas et al. 2011; Soler et al. 2012). 

In summary, cognitive abilities in non-human animals coevolve with social and 

ecological factors, but not consistently with the degree of ecological specialization. While 

species-specific foraging behavior, habitat complexity, or responses to seasonal variability 

have been linked with innovative propensities, flexible problem-solving performances, or 

spatial memory abilities, potential patterns of covariation with the predator regime or 

parasite abundances require further systematic investigations. 

2 Coevolution with brain size and fitness implications 

Explaining variation in cognitive abilities with socio-ecological factors constitutes one step 

towards an understanding of how cognition evolves. However, in order to fully 

understand the evolution of cognition, we need to elucidate the benefits of cognitive 

abilities that are genetically inherited and ultimately lead to a greater fitness (Dukas 2004; 

Thornton and Lukas 2012; Thornton et al. 2014). 

2.1 Linking cognition with brain size proxies 

The fundamental structural variation of the brain underlies a cost-benefit trade-off with 

energetic requirements, and it is phylogenetically constrained (Laughlin et al. 1998; Lennie 

2003; Kotrschal et al. 2013; Logan et al. 2018). Various proxies of cortical development have 

been linked to cognitive abilities (Jerison 1973; Healy and Rowe 2007; Kotrschal et al. 2013; 

Logan et al. 2018). Such proxies can be measures of absolute or relative brain size, as well 

as assessments of cortical development by determining neuron density or connectivity or 



Chapter IV: General discussion 

128 
 

by ascertaining volume or density of gray and white matter. Which proxy is subsequently 

used to explain cognitive abilities, differs across studies and, more importantly, affects 

patterns of covariation (Deaner et al. 2000; Deaner et al. 2007; Healy and Rowe 2007). 

Additionally, data acquisition on brain structures can be complicated or even impossible 

in some species due to methodological or ethical issues. It is, therefore, difficult to reliably 

relate cognitive performance measures with structural variations of the brain across a 

broad range of species within the animal kingdom. 

In the scope of my thesis, I did not find a consistent covariation of cognitive 

abilities with cortical measures, which were mostly extracted from secondary literature 

(Chapter II). In the subjected wild mouse lemurs (Chapter III), it was ethically not 

justifiable to euthanize single individuals with the purpose to measure brain sizes. Instead, 

a rough estimation of head volumes based on head width, indicates that gray mouse 

lemurs have, on average, slightly larger absolute and relative brain sizes than Madame 

Berthe’s mouse lemurs (absolute: gray mouse lemur: 4.88 ± 0.96 cm³, Madame Berthe’s 

mouse lemur: 3.50 ± 1.12 cm³; relative: gray mouse lemur: 55.45 ± 9.53 mm³, Madame 

Berthe’s mouse lemur: 47.14 ± 12.63 mm³; Appendix 3, Table S3-1). Additionally, 

systematic prior investigations reported that dietary generalist birds and primates 

developed larger brains than dietary specialist species (Reader 2003; Lefebvre et al. 2004; 

Sol et al. 2005b; Ducatez et al. 2015). Thus, if brain size was a reliable predictor for cognitive 

abilities, gray mouse lemurs should consistently outperform Madame Berthe’s mouse 

lemurs. Since that was not the case, I cannot conclude that the size of the whole brain 

covaries with all cognitive abilities in mouse lemurs. Instead, brain size may correlate with 

innovative propensities, as suggested by previous studies (Reader and Laland 2002; 

Ratcliffe et al. 2006; Sayol et al. 2016; Buechel et al. 2018; Ducatez et al. 2020b), while other 

cognitive abilities may better correlate with the size or structure of single brain areas that 

I could not estimate in wild mouse lemurs. 

2.2 Adaptive advantage of enhanced cognitive abilities 

Developing a larger brain and/or enhanced cognitive abilities can have fitness 

implications. This relationship is important as it builds the basis for natural selection on 
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heritable variations. Investigating effects of cognitive variation on individual fitness can, 

thus, elucidate the adaptive value of cognitive abilities, as well as of cortical development 

(Thornton et al. 2014). For example, innovative propensities relate with greater invasion 

success and a greater diversification potential (Sol and Lefebvre 2000; Sol et al. 2002; 

Nicolakakis et al. 2003; Sol et al. 2005c; Griffin and Diquelou 2015; Reader et al. 2016). More 

accurate spatial memory or problem-solving performance were linked with male mating 

success or reproductive success in birds (Keagy et al. 2009; Cole et al. 2012; Cauchard et 

al. 2017; Wetzel 2017; Shaw et al. 2019; Sonnenberg et al. 2019). Faster responses to 

predation stimuli or better spatial memory increased survival in rodents (Maille and 

Schradin 2016b). However, survival was not linked to spatial memory or problem-solving 

performance in gray mouse lemurs (Huebner et al. 2018). Thus, enhanced cognitive 

abilities may provide adaptive fitness advantages. However, this research field has not yet 

received great empirical interest and needs further exploration to allow broad and general 

conclusions across the animal kingdom. 

Overall, cognitive abilities evolve in covariation with social and ecological factors, 

can covary with cortical development and can provide fitness benefits (Thornton et al. 

2014). However, cortical development also has fitness costs, due to a high energy 

consumption (Laughlin et al. 1998; Lennie 2003; Kotrschal et al. 2013). Additionally, as 

social and ecological factors are likely to interact with each other, it is difficult to 

disentangle their exclusive impact on the evolution of cognition. Similarly, occupying 

different ecological niches, while experiencing similar ecological challenges, assumes 

complex evolutionary processes for ecological adaptations that require systematic and 

more in-depth future investigations. 

3 Limitations and future implications 

With the present study, I provide a broad overview of how cognitive abilities can vary 

with species-specific ecological adaptations. By investigating patterns of covariation 

between cognitive task performances and the degree of ecological specialization, I 

broaden our understanding of how cognitive abilities link with a species ecological niche. 

However, this niche concept is only a categorical estimation of species-specific ecological 



Chapter IV: General discussion 

130 
 

adaptations. To further understand to which extent certain ecological factors relate with 

certain cognitive abilities, future studies might profit from focusing on metric ecological 

variables. Specifically, niche breadth can be assessed by behavioral observations in 

combination with fecal analyses or environmental characteristics, resulting in a metric 

standardized index (Colwell and Futuyma 1971; Krebs 1989), which could be related to 

cognitive performance measures. 

Further, my thesis stresses the importance to consider several methodological 

aspects of testing animals, especially in the wild. Experimental approaches must be 

properly designed to match a species’ morphological possibilities, but also to reduce 

potential internal (e.g., motivational aspects, personality traits) or external influences (e.g., 

distractions by other organisms, distracting interactions with human experimenters) to a 

minimum, or to be able to adequately control for such potential influences (Barrett 2014; 

Rowe and Healy 2014; Thornton 2014; Schubiger et al. 2020). First, considering the here 

conducted plus maze, the spatial learning score was confounded by species-specific 

avoidance behavior. Although neophilia scores did not correlate with spatial learning 

scores, it is likely that other individual characteristics, such as boldness impacted 

individual’s behaviors in this relatively open arena. Indeed, bolder individuals explore 

their environment more actively which can influence learning performances (Sih et al. 

2004; Verdolin and Harper 2013; Guenther et al. 2014; Liedtke and Fromhage 2019). It is 

therefore important to consider and control for various non-cognitive traits (Thornton and 

Lukas 2012; Griffin and Guez 2014; Griffin et al. 2015; Dougherty et al. 2018). 

Second, automatic testing procedures reduce distracting interactions with the 

human experimenter and facilitate the execution of cognitive tasks that require multiple 

trials (Wild et al. 2008; Fagot and Bonté 2010; McBride et al. 2016; Wither et al. 2020). 

However, to date most available automatic testing apparatuses are not yet well adapted 

to field studies, as they require stable set-ups and constant energy supply, and cannot 

sustain high temperatures, humidity, or relatively dusty environments.  

Third, in experimental tasks, researcher usually use stimuli that might not be 

relevant in the natural environment of an animal (Lahti 2015). On purpose, rather artificial 

stimuli are chosen with the aim to solely measure specific behavioral traits instead of a 

behavioral response towards a potentially familiar stimulus that would influence the 
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measured performance score by experience (Rowe and Healy 2014; Shaw and Schmelz 

2017). However, when these artificial stimuli do not have any relevance for the study 

subject, there might simply be no need for the animal to learn an association or to explore 

the presented stimulus/task, resulting in relatively low performances and rather arbitrary 

patterns of variation that do not match the species-specific ecological relevance (Rowe and 

Healy 2014; Gingins and Bshary 2016; van Horik and Madden 2016; Farashahi et al. 2020). 

Additionally, a defined “better” cognitive performance depends on the researchers 

understanding of how a given task is designed to be solved. However, the subjected 

animal may perceive the presented problem differently and approach the task in a 

different manner than expected. This can result in “lower” performance scores which do 

not necessarily reflect the actual cognitive ability (Byrne and Bates 2006; Bayne et al. 2019). 

Finally, despite increasing efforts, cognitive testing and the use of comprehensive 

test batteries remain rare in wild animals (Halsey et al. 2006; Benson-Amram and 

Holekamp 2012; Thornton and Samson 2012; Shaw et al. 2015; Cauchoix et al. 2017; 

Huebner et al. 2018; Audet et al. 2018; Henke-von der Malsburg and Fichtel 2018; Kumpan 

et al. 2020). However, to better understand, which ecological factors covary with cognitive 

performances and to disentangle social and ecological influences on cognitive variation, 

we need to test individuals in their natural ecological environment rather than under 

controlled conditions in captivity and to compare sympatric species differing in their 

socio-ecological adaptations (Domjan and Galef 1983; Pritchard et al. 2016). The thereby 

accumulated information could further impact future conservation efforts (Greggor et al. 

2014; Ratsimbazafy et al. 2016; Dinnen and Ware 2020), which would be desirable for 

many endangered species (Schwitzer et al. 2014b; Schwitzer et al. 2014a; Estrada et al. 

2017). 

4 Conclusions 

As the first large scale comparative approach to assess cognitive variation among species 

differing in their degree of ecological specialization, the results of my thesis offer 

substantial insight into the link between cognition and ecological factors, as well as the 

evolution of cognitive abilities on the species-level. The results of my literature review and 
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my empirical cognitive test battery show, that generalist species do not outperform more 

specialized species per se. Nevertheless, their greater innovative potential may allow for 

more adaptive responses towards changing environmental conditions. Other cognitive 

abilities, however, can be better explained by species-specific foraging or ranging behavior 

that do not necessarily correlate with the degree of ecological specialization. Additionally, 

cognitive abilities may rather evolve in a domain-specific way, as I did not find evidence 

for a general intelligence factor in mouse lemurs which parallels other studies on non-

human animals. Essentially, cognitive performances covary with a complex of several 

ecological and social factors, as well as individual characteristics. To disentangle single 

relationships, it is advisable to investigate patterns of covariation between different 

cognitive performances and measurable socio-ecological factors that go beyond species-

specific foraging behavior or social group size, and to include various species across the 

animal kingdom. 
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Appendix 3 

Table S3-1 Head volumes for a total of 422 gray mouse lemurs (N = 145 females, N = 277 males; Mmu) and 42 
Madame Berthe’s mouse lemurs (N = 23 females, N = 19 males; Mbe) that were captured between April 2013 
and November 2019. The total data set of 865 measures for Mmu and 106 measures for Mbe includes repeated 
measures (mean = 3.04 ± 1.57 times) for 223 Mmu and 26 Mbe. Absolute head volumes were estimated using 
the formula 4/3 πr^3, with r being half of the head width [mm]. Relative head volumes were related to the 
individuals’ body length [mm]. Given are mean ± standard deviation (SD), minimum and maximum values 

species sex 
absolute [cm³] relative [mm³] 

mean ± SD min max mean ± SD min max 

Mmu combined 4.88 ± 0.96 2.57 18.48 55.45 ± 9.53 8.94 205.30 

 female 4.97 ± 1.27 2.57 18.48 55.70 ± 12.81 8.94 205.30 

 male 4.83 ± 0.70 3.11 14.00 55.30 ± 6.82 38.82 147.33 

Mbe combined 3.50 ± 1.12 2.15 14.00 47.14 ± 12.63 30.62 164.66 

 female 3.65 ± 1.42 2.31 14.00 48.14 ± 16.01 34.57 164.66 

 male 3.28 ± 0.36 2.15 4.00 45.76 ± 4.99 30.62 53.37 
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