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Abstract 

Catatonia is a CNS derived psychomotor syndrome comprising disturbed volition and aberrant 

motor and behavioral features. Targeted and effective treatment today is scarce and further 

impeded by its heterogeneous clinical representation across various CNS disorders. Moreover, 

respective research on the etiology and underlying cellular pathomechanisms are hampered by 

sustained conceptual limitations, inadequate clinical rating scales and the lack of reliable animal 

models.  

To this end, we had previously reported a catatonia-like phenotype in C57Bl/6 mice 

heterozygous for the major myelin genes Cnp and Mbp upon progressed age, along with 

indications of low-grade neuroinflammation. In the first project of my thesis, I thus addressed 

the question whether neuroinflammation of subcortical white matter is causative to catatonia in 

both mice and man. Neurological assessment of schizophrenic subjects (n=1095) revealed a 

high prevalence of catatonic signs (25%), which were more pronounced in carriers of a CNP 

loss-of-sunction SNP (rs207106-AA). Additionally, elevated signs of white matter 

hyperintensities were observed in carriers of the SNP in a general population sample by 

neuroimaging. Cnp-null mutant mice exhibit catatonic signs as early as 8 weeks of age. 

Importantly, microglia targeted treatment via the CSF1 receptor inhibitor PLX5622, 

successfully prevented the occurrence of the phenotype upon early treatment and further 

alleviated catatonic signs even at progressed age. The beneficial impact of PLX5622 on mouse 

behavior was accompanied by sustained reduction of neuropathology, i.e. microgliosis and 

neurodegeneration. Collectively these findings indeed suggest key involvement of impaired 

white matter integriy and neuroinflammation in the etiology of catatonia.  

Based on a follow-up study, which revealed a strong correlation of catatonia and executive 

dysfunction in mice and man, the objective of the second project was to determine the relevance 

of white matter integrity of the frontal brain in the etiology of the psychomotor syndrome. A 

novel mouseline, lacking the major myelin gene Plp1 in Emx1 expressing ventricular zone stem 

cells of the forebrain (cKO), was characterized on a behavioral and neuropathological scope. 

Longitudinal and elaborate behavioral assessment revealed an isolated catatonia-executive 

dysfunction in cKO mice of both genders, while no other behavioral domain was affected. 

Neuropathology revealed significant astro- and microgliosis along with neurodegeneration, 

exclusively in frontal strucutres such as the fimbria and corpus callosum, thereby confirming the 

crucial importance of white matter integrity of the frontal brain in the observed catatonia-like 

phenotype in the here reported mouse models. 
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Introduction 
 

Introduction 

The syndrome of catatonia  

The first report on the syndrome of catatonia dates back to the year 1874. The German 

physician Karl Ludwig Kahlbaum reported on observations of patients exhibiting hypo- and 

hyperkinetic motor and behavioral abnormalities along with affective symptoms, which he 

characterized as the independent psychomotor syndrome catatonia (Kahlbaum, 1874, 2007). 

Specifically, catatonic patients present with disturbed volition, resulting in distinct motor and 

behavioral features, such as rigor, posturing, counteracting or catalepsy as well as affective 

symptoms like anxiety or flat affect (Hirjak et al., 2020). Collectively, all three symptom domains 

result in aberrant psychomotor behavior, which can be both increased or decreased, likely 

dependent on the given context (Walther et al., 2019).  

 

In contrast to this initial characterization, catatonia has historically been considered a subtype 

of dementia praecox, as described by Emil Kraepelin (1899), thereby diminishing its 

acknowledgement as an independent diagnostic syndrome. Eugen Bleuler later on introduced 

the concept of schizophrenia (1911), in which he classified catatonia as a subtype. It was thereby 

further neglected as a separate entity, until the removal of all schizophrenia subtypes in the 

Diagnostic and Statistical Manual of Mental Disorders 5 (DSM-5) in 2013 (American Psychiatric 

Association, 2013; Walther et al., 2019). However, as defined by DSM-5 and the International 

Statistical Classification of Diseases 10 (ICD-10; American Psychiatric Association, 2013; World 

Health Organization, 2004), catatonia remains unacknowledged as an independent diagnostic 

entity to date. Due to these tight limitations it was mostly recognized by its motor and behavioral 

features only, thereby neglecting the affective component as originally described by Kahlbaum. 

Consequently, clinical examinations focused particularly on behavioral and motor abnormalities, 

of which DSM-5 defines a total of 12 as catatonic symptoms (American Psychiatric Association, 

2013). Likewise, the application of many respective diagnostic rating scales, such as the Modified 

Rogers Scale, the Bräunig Catatonia Rating Scale or the Bush-Francis Catatonia Rating Scale 

(Bräunig et al., 2000; Bush et al., 1996a, 1996b; Lund et al., 1991; McKenna et al., 1991), 

unfortunately neglect the important factor of affective symptoms. Taken together, these 

shortcomings are rendering catatonia essentially misperceived and underepresented in scientific 

research. 

 

This misconception of catatonia (Appiani et al., 2018), fueled by the failure of examiners to 

assess signs or their misinterpretation (Van der Heijden et al., 2005), ultimately impairs the 
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distinction of catatonia from other medical conditions. In addition, catatonia has a high 

comorbidity with various medical conditions, and its features are observed across numerous 

neuropsychiatric disorders such as schizophrenia, mood disorders, autism spectrum disorders 

(ASD) and affective psychosis (Hirjak et al., 2020; Walther et al., 2019). Inflammatory and 

immunological conditions such as anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis 

or multiple sclerosis (MS) have also been associated with catatonic features (Rogers et al., 2019). 

In summary, lack of experience by examiners along with rating scales, which often neglect 

affective symptoms, and its high comorbidity, are rendering catatonia underdiagnosed. 

Moreover, the prominent psychomotor symptoms, nowadays used to define catatonia, are 

observed across various medical conditions, ultimately hampering research, diagnosis and 

therapy. Walther et al. (2019), therefore, recently suggested future studies to evaluate differences 

in the clinical presentation, quality and the possibly underlying mechanisms of these symptoms 

throughout different disease conditions, to improve both diagnosis and treatment of catatonia.  

 

Therapeutical approaches specifically rely on mechanistic insight, allowing for improved 

understanding of the underlying neuroanatomical and biochemical causes of catatonia. In this 

regard, an abundance of neuroimaging studies on human subjects have been conducted, 

collectivly aiming to uncover and delineate underlying neural mechanisms and involved central 

nervous circuits (Iseki et al., 2009; Northoff, 2000; Northoff et al., 2004; Scheuerecker et al., 

2009). Depending on the diagnostic rating scales applied, as well as the central symptom domain 

considered thereby, the current state of research is associating catatonia to alterations and 

dysfunctions of either cortico-subcortical circuits or higher-order fronto-parietal networks 

(Hirjak et al., 2020; Northoff, 2000). Although both concepts share the involvement of motor 

circuits, such as the primary motor cortex and the supplementary motor area, they differ with 

regard to the importance of other interconnected brain regions. Studies focusing on cortico-

subcortical circuits suggest a critical involvement of the thalamus and the cerebellum and find 

mainly dopaminergic neurotransmission to be causative to catatonia (Hirjak et al., 2020; 

Northoff et al., 1995; Walther et al., 2017). The higher-order fronto-parietal concept of 

catatonia, however, implies key involvements of the parietal and prefrontal cortex (PFC) and 

reports altered gamma-aminobutoric acid (GABA) transmission to be crucial in the etiology of 

catatonia (Northoff, Braus, et al., 1999; Richter et al., 2010; Ungvari et al., 1994). 
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Despite the advantages of state-of-the-art research and imaging techniques, the etiology and 

underlying cellular pathomechanisms of catatonia remain poorly understood. Consequently, 

adequate and efficient treatment are scarce and a challenge to date.  The most commonly used 

approaches are electroconvulsive therapy (ECT) and medication targeting GABAergic 

neurotransmission, such as benzodiazepines (American Psychiatric Association, 2013; Bush et 

al., 1996b; Girish et al., 2003; Northoff, Braus, et al., 1999; Northoff et al., 1995; Seethalakshmi 

et al., 2008). However, both approaches are of unspecific nature and the effectiveness of 

benzodiazepines depends on various factors, including chronicity and presence or absence of 

psychosis (Bush et al., 1996b; Ungvari et al., 1994; Ungvari et al., 1999). Clinical presentation of 

catatonia is heterogeneous and may show along with other complications such as renal failure, 

pulmonary thrombosis, delirium or psychosis. Antipsychotic treatment of catatonic patients has 

been reported (Numata et al., 2001; Valevski et al., 2001; Van Den Eede et al., 2005), although 

their frequent usage is controversial (Bahro et al., 1999; Markham-Abedi et al., 2007). In fact, 

antipsychotic treatment, by dopamine D2 receptor antagonists, may induce or worsen catatonia 

(Cassidy et al., 2001; Graham et al., 2001; Hirjak et al., 2020). Thus, in treating psychotic patients, 

presenting with catatonic features, alternative treatment with a low affinity for dopamine 

receptors is suggested (Beach et al., 2017; Madigand et al., 2016; Martényi et al., 2001; Walther 

et al., 2019).  

 

In summary, research on catatonia has been hampered by various factors. Moreover, 

translational approaches, by application of animal models, remain challenging to date, due to its 

heterogeneous symptomatology. However, animal models are crucial to studying the underlying 

mechanisms in the various clinical presentations of catatonia, rendering them indispensable with 

respect to the development of potential therapeutic strategies. While the scientific community 

is essentially lacking a construct-valid rodent model of catatonia to date, recent studies from our 

group have reported an age-dependent catatonia-depression syndrome in C57Bl/6 mice upon 

heterozygous deficiency of the myelin genes 2´,3´-cyclic nucleotide 3´-phosphodiesterase (Cnp) 

and myelin basic protein (Mbp; Hagemeyer et al., 2012; Poggi et al., 2016). In both studies, the 

authors reported an age-dependent low-grade inflammation of the central nervous system 

(CNS) along with a catatonia-like phenotype. Interestingly, Hagemeyer et al. (2012) also 

described a similar age-dependent catatonia-depression syndrome in human subjects suffering 

from schizophrenia, which carry the loss-of-function single nucleotide polymorphism (SNP) 

rs2070106. Carriers of this SNP exhibited diminished expression of CNP messenger ribonucleic 

acid (mRNA). Additionally, diffusion tensor imaging (DTI) revealed signs of increased 

axonopahty and inflammation in the frontal brain regions of carriers (Hagemeyer et al., 2012). 
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Collectivly, these findings indicate a critical role of white matter integrity and neuroinflammation 

in catatonia and point to altered frontal brain functions. In need of a better understanding of 

catatonia, its mechanistic causes and involved brain circuits, experimental approaches in 

elaborate mouse models constitute reasonable and promising measures, ultimately aiming to 

improve treatment of the syndrome. 
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Myelination in health and neuropsychiatric conditions  

Healthy functioning of the CNS and peripheral nervous system, including cognition, motor and 

sensory functions, require fast and coherent conduction of signals between cortical and 

subcortical areas and peripheral organs. This rapid propagation of action potentials is provided 

by myelination, the ensheathment of neuronal axons with multiple concentrical layers of 

compact myelin, providing electrical insulation. The complex process of myelination by CNS 

oligodendrocytes has been reported on in great detail before (Bunge, 1968; Hildebrand et al., 

1993; Kuhn et al., 2019; Michalski et al., 2015; Nave, 2010; Nave & Werner, 2014; Simons et al., 

2016). Schwann cells or oligodendrocytes carry out this critical task within the PNS or CNS, 

respectively. However, while both cell types essentially carry out the same functions, they differ 

with respect to various features including their origin, the process of myelination and the thereby 

utilized structural proteins (Nave & Werner, 2014). In the framework of this doctoral thesis, I 

focused on the white matter integrity of the CNS, knowingly dependent on proper 

oligodendrocyte function. Alterations, such as deficiency of critical myelin genes, not only 

impair structure and function of myelin, but are increasingly appreciated as underlying features 

of neuropsychiatric disorders, as I will discuss below. 

 

Myelination, carried out by mature oligodendrocytes, allows for rapid and efficient saltatory 

signal propagation (Nave, 2010). Initially, multipolar oligodendrocyte progenitor cells (OPCs), 

originating from precursor cells of the subventricular zone (SVZ), migrate through white matter 

tracts and constantly extend and retract their numerous processes in search for unoccupied 

space (Hughes et al., 2013; Kirby et al., 2006). Unmyelinated axons are enwrapped by 

concentrical layers of expanded oligodendrocyte membrane, via simultaneous radial and lateral 

movements (Michalski & Kothary, 2015; Snaidero et al., 2014). While ensheathment is driven 

by the uncompacted most inner layer outwards, compaction of myelin is carried out the other 

way around and crucially relies on the myelin gene Mbp (Aggarwal et al., 2013; Readhead et al., 

1990; Roach et al., 1983; Schain et al., 2014; Snaidero et al., 2014). Essentially, MBP encloses 

the myelin membrane by connecting two opposing bilayers at their cytoplasmic sites (Aggarwal 

et al., 2013; Nave & Werner, 2014). By simultaneous interaction with multiple axons, a single 

oligodendrocyte can generate and maintain numerous internodes (Nave, 2010), thereby 

facilitating and maintaining healthy CNS function and white matter integrity.
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In addition to myelination, oligodendrocytes further ensure survival of the axons by long-term 

trophic and metabolic support. Metabolites such as lactate are transported to the cytoplasmic 

non-compacted sites via monocarboxylate transporters (MCTs), and provide energy supply by 

mitochondrial production of adenosine triphosphate (ATP; Fünfschilling et al., 2012; Lee et al., 

2012; Rinholm et al., 2011; Saab et al., 2013). Structural compounds, required for myelin 

maintenance, are transported through non-compacted cytosolic channels within compacted 

myelin (Flores et al., 2008; Narayanan et al., 2009; Nave, 2010). By secretion of respective 

exosomes, oligodendrocytes even exert neuroprotective functions (Frühbeis et al., 2013). 

Moreover, they remain adaptive in adulthood and can thus respond appropriately to 

environmental demands (Baraban et al., 2016; Mount et al., 2017; Young et al., 2013). Gibson 

et al. (2014)  reported proliferation of OPCs and particularly thickening of myelin in response 

to distinct neuronal activity. In fact, numerous studies have shown myelination to be stimulated 

upon activity (Bengtsson et al., 2005; Keller et al., 2009; Sampaio-Baptista et al., 2013), while 

other studies linked diminished myelination of the PFC to social isolation in mice (Liu et al., 

2012; Makinodan et al., 2012). Additionally, transgenic mice lacking the ability of de novo 

myelination exhibited inferior motor performance compared to controls (McKenzie et al., 

2014). Taken together, these findings reflect the ability of oligodendrocytes to adapt to 

environmental demands on multiple levels including number of cells, size of axonal myelin and 

de novo myelination. Thus, myelinating cells constitute a crucial feature of white matter integrity 

and the preservation of reliable, plastic and healthy CNS functioning (Hughes et al., 2013; Purger 

et al., 2016; Sampaio-Baptista et al., 2017; Young et al., 2013). 

 

Insults to this sensitive system may cause or promote CNS disorders, as previously reported by 

Nave and Ehrenreich (2014) . The authors discussed possible mechanisms, reflecting how 

altered function of oligodendrocytes may contribute to the development of neuropsychiatric 

disorders such as schizophrenia, ASD as well as degenerative disorders including Alzheimer´s 

disease (AD) or Huntington´s chorea. The hypothesized mechanisms range from hypo- or 

hypermyelination to the loss of axonal metabolic support. The downstream impact on CNS 

functioning and cognition likely depending on the initial alteration of oligodendrocyte function 

(Nave & Ehrenreich, 2014). Continuous metabolic support of axons, by myelinating 

oligodendrocytes, is critical to healthy axonal functioning (Nave, 2010) and disruption of energy 

supply has been associated with cognitive decline (Dean et al., 2017; Mosconi et al., 2009; 

Winkler et al., 2015), likely due to the formation of spheroids and degenerative processes (Saab 

et al., 2013). Postmortem analysis of brains of SSD subjects revealed significant reduction of 

oligodendrocyte transcripts (Hakak et al., 2001). Additionally, diminished white matter integrity 
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has been reported in SSD, bipolar disorder and major depression disorder (MDD; Edgar & 

Sibille., 2012; Fields, 2008; Roussos & Haroutunian, 2014). Hence, the structural and functional 

integrity of white matter is increasingly appreciated in higher-order cognitive abilities and mental 

conditions particularly in recent years (Filley et al., 2016; Haroutunian et al., 2014; Tomassy et 

al., 2014). As Haroutunian et al. (2014) reported, each of these conditions are known to be 

multifactorial, and while some are linked to developmental alterations, others unfold throughout 

adulthood and can be facilitated by the process of aging. The latter is known to affect white 

matter integrity and cognitive abilities such as memory (Bowley et al., 2010; Lasiene et al., 2009; 

Peters, 2002; Sturrock, 1976; Wang et al., 2020). However, disruption of white matter integrity 

is likely a consequence of neuronal loss, triggering dys- or demyelination and eventually gliosis 

and inflammation of the CNS (Nave & Ehrenreich, 2014). 

 

To evaluate the relevance of the above-mentioned hypothesis in the context of my doctoral 

studies, I focused on the consequences of CNP/Cnp and proteolipid protein (PLP/Plp) 

deficiencies. Both are critical myelin genes with individual subsets of features and distinct 

spatiotemporal expression by oligodendrocytes.  The cholesterol-associated transmembrane 

protein PLP, predominantly expressed by oligodendrocytes (Lüders et al., 2017; Trapp et al., 

1987; Werner et al., 2013), is the most abundant protein residing in compact CNS myelin (de 

Monasterio-Schrader et al., 2012; Jahn et al., 2009; Nave & Werner, 2014). While PLP and its 

shorter isoform DM20 are not required for myelin assembly or compaction (Klugmann et al., 

1997), they have been shown to be critical to the maintenance and survival of myelinated axons 

(Griffiths et al., 1998), likely being key players in their proper metabolic support (Hirrlinger et 

al., 2014; Nave, 2010; Stassart et al., 2018). Moreover, PLP and DM20 are involved in the 

assembly of cholesterol into CNS myelin (Werner et al., 2013), known to be a rate limiting factor 

to myelin biogenesis (Nave & Werner, 2014), as well as the rate of biogenesis itself (de 

Monasterio‐Schrader et al., 2013; Yool et al., 2001). Mutations of PLP are causative to a number 

of human diseases such as Pelizaeus-Merzbacher disease (PMD) or spastic paraplegia type 2 

(SPG2), with similar phenotypes observed in respective mouse models (Anderson et al., 1998; 

Griffiths et al., 1998; Saher et al., 2012; Saugier-Veber et al., 1994). Constitutive deficiency 

(Plpnull/Y) in mice causes alterations of CNS myelin regarding both its components and 

ultrastructure (Duncan et al., 1987; Garbern et al., 2002; Klugmann et al., 1997; Möbius et al., 

2016; Möbius et al., 2008; Rosenbluth et al., 2006; Werner et al., 2013; Werner et al., 2007) along 

with impaired axonal transport (Edgar et al., 2004).
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Importantly, Plpnull/Y mice exhibit progressive axonopathy including axonal spheroids and 

degeneration throughout the CNS, along with secondary neuroinflammation and gliosis (Edgar 

et al., 2004; Griffiths et al., 1998; Lüders et al., 2019; Lüders et al., 2017). However, they do not 

exhibit demyelination (Griffiths et al., 1998), suggesting independent functions of 

oligodendrocytes with respect to myelination or axonal survival and maintenance (Saab et al., 

2013). The most prominent behavioral phenotype of these mice is their inability to perform on 

the RotaRod at progressed age, reflecting a strong motor impairment along with altered gaiting 

and spasticity (Griffiths et al., 1998). The severe motor impairments are preceded by other subtle 

behavioral deficits including increased pain sensitivity, diminished odor perception and 

particularly impaired executive function in the Puzzle box paradigm, as early as 3 months of age 

(Gould et al., 2018; Petit et al., 2014). The latter, suggests oligodendrocyte malfunction in higher-

order cognitive functions of the frontal lobes and possibly throughout neuropsychiatric 

conditions per se (Nave & Ehrenreich, 2014). 

 

In this respect, significant reduction of another important myelin gene, CNP, has been reported 

in postmortem brains of schizophrenic, bipolar and depressive patients (Aston et al., 2005; 

Mitkus et al., 2008; Tkachev et al., 2003). Like PLP, CNP is abundantly expressed by 

oligodendrocytes in the brain and not required for myelin assembly but for axonal survival 

(Lappe-Siefke et al., 2003; Scherer et al., 1994; Yu et al., 1994). Within myelin, CNP is only 

found in non-compacted regions and counteracts the MBP-driven compaction of myelin (Braun 

et al., 1988; Gravel et al., 1996; Saab et al., 2013; Scherer et al., 1994; Simons & Nave, 2016; Yin 

et al., 1997). CNP provides numerous functions to CNS myelin including involvement in 

oligodendrocyte process outgrowth, interaction with the cytoskeleton, metabolic support of 

axons by maintenance of cytosolic channels, and maintenance of axon-glia interactions at nodes 

of Ranvier (Bauer et al., 2009; Lappe-Siefke et al., 2003; Lee et al., 2005; Rasband et al., 2005; 

Saab et al., 2013). Constitutive lack of Cnp (Cnp-/-) in mice results in progressive 

neurodegeneration and inflammation throughout the CNS along with reactive gliosis and severe 

motor dysfunctions, which eventually lead to premature death (Lappe-Siefke et al., 2003). 

Hence, deficiency of the critical myelin genes Plp and Cnp both result in severe axonopathy and 

combination of them has recently been shown to enhance pathology (Lüders et al., 2017). 

Heterozygous deficiency of Cnp (Cnp+/- ) results in an age-dependent low-grade 

neuroinflammation, axonal spheroids and a distinct behavioral phenotype reminiscent of the 

psychomotor syndrome of catatonia (Hagemeyer et al., 2012). Importantly, a similar age-

dependent catatonia-depression syndrome along with indications of axonopathy was observed 

in subjects suffering from schizophrenia, carrying a partial CNP loss-of-function SNP 
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(Hagemeyer et al., 2012). However, it remains unclear to which extent neuroinflammation 

contributes to the observed phenotype regarding its development and its progression. 

Furthermore, we need to evaluate whether this phenotype is exclusive to oligodendrocyte-

specific alterations. Importantly, the distinct role of higher-order frontal brain circuits remains 

to be addressed, aiming to evaluate whether catatonia is driven by motor impairments or rather 

reflects impaired volition and executive functions. 
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Microglia in healthy and inflammatory CNS  

The integrity of a healthy CNS further requires intact function and appropriate immune 

responses by microglia, the resident macrophages of the CNS. These highly dynamic cells are 

covering a broad array of tasks, ranging from CNS development and homeostasis to responding 

to environmental demands and insults to the system, including remyelination upon damage 

(Colonna et al., 2017; Lloyd et al., 2017). Under healthy CNS conditions, subpopulations exhibit 

characterisitic and region-specific functions along with respective gene expression patterns 

(Ayata et al., 2018; De Biase et al., 2017; Grabert et al., 2016; Marshall et al., 2014). Microglial 

functions and morphology may shift to detrimental phenotypes under pathological conditions 

and thereby facilitate neuroinflammation and –degeneration (Colonna et al., 2017; Tay et al., 

2018). Consequently, abberant functions have been shown to be implicated in various 

developmental, degenerative and psychiatric CNS disorders (Frick et al., 2013; Salter et al., 

2017).  In this section, I will therefore discuss the origin and function of microglia in health and 

conclude with implications of microglia in CNS disorders predominantly due to 

neuroinflammation. 

 

Microglia derive from erythro-myeloid progenitors in the yolk-sac and sustain into adulthood 

via continuous self-renewal (Ajami et al., 2007; Alliot et al., 1999; Kierdorf et al., 2013; 

Perdiguero et al., 2015). By rapid proliferation they colonize the entire CNS (Ginhoux et al., 

2010; Kierdorf et al., 2013), reaching a steady-state population within weeks after birth 

(Nikodemova et al., 2015). In this regard, the class III receptor tyrosine kinase colony-

stimulating factor 1 receptor (CSF1-R) and its natural ligands CSF1 and interleukin-34 (IL-34) 

are of particular importance, since they are essential to microglial development, proliferation 

and survival (Chitu et al., 2016 ). Expression of the CSF1-R is not limited to microglia only, but 

also found on neuronal subpopulations (Murase et al., 1998; Nandi et al., 2012; Wang et al., 

1999). Its ligands CSF-1 and IL-34 are predominantly expressed by neurons with distinct 

spatiotemporal patterns throughout the CNS (Nandi et al., 2012; Wang et al., 2012). Both 

contribute to the development and steady-state maintenance of microglia and other target cells 

(Greter et al., 2012; Nandi et al., 2012; Wang et al., 2012; Wei et al., 2010). Deficiency of the 

CSF1-R and CSF-1 in mice have been shown to affect microglial numbers as well as structure 

and function of respective CNS sites, largely reflecting neurodegeneration, which can result in 

behavioral and anatomical alterations (Chitu et al., 2016).
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Separated from the periphery via the blood-brain barrier (BBB), microglia are the innate 

immune cells of the CNS and crucial to regulating brain homeostasis (Matcovitch-Natan et al., 

2016). Along with the developing CNS, they mature into a ramified and motile morphology 

(Colonna et al., 2017), constantly surveilling and interacting with the environment via their 

dynamic processes (Davalos et al., 2005; Nimmerjahn et al., 2005). Microglial motility enforces 

multiple physiological responsibilities at resting state including sculpting neural circuits during 

development (Schafer et al., 2012), neurogenesis and synaptic pruning and plasticity by diverse 

measures (Kettenmann et al., 2013; Salter et al., 2016), even in adulthood. Of the various 

microglial surface receptors, the C-X3-C Motif Chemokine Receptor 1 (CX3CR1) is of major 

importance to microglia-neuron interactions (Eyo et al., 2013; Kierdorf et al., 2017). Moreover, 

microglia are a part of the innate immune system and respond to CNS insults by exerting tissue 

repair and anti-inflammatory functions (Colonna et al., 2017; Ransohoff et al., 2016). By 

promoting oligodendrocyte survival and functions (Miron, 2017), microglia are also involved in 

myelination and remyelination processes (Hagemeyer et al., 2017; Lampron et al., 2015; Olah et 

al., 2012; Wlodarczyk et al., 2017). Importantly, remyelination upon damage is a prerequisite of 

restoring and preserving healthy axonal functions (Irvine et al., 2008; Mei et al., 2016).  

 

Taken together, microglia assist in maintaining CNS integrity by above-mentioned means, 

though their morphology and funtions can be heterogeneous (Doorn et al., 2015; Grabert et al., 

2016; Lawson et al., 1990). Microenvironments, and other signals experienced over time, may 

distinguish microglial subpopulations (De Biase et al., 2017; Gosselin et al., 2017). Collectivly, 

microglia ensure CNS maintenance and respond to injury and damage via immune responsive 

and neuroprotective functions (Glezer et al., 2007, Hickman et al., 2013; Rivest et al., 2009). 

However, excessive activation by environmental factors (Gosselin et al., 2014; Mosher et al., 

2015; Perry et al., 2014), aging (Hickman et al., 2013; Ritzel et al., 2015; Sierra et al., 2007) or 

CNS disease (Mastroeni et al., 2018; Spittau, 2017) can shift microglial activities into detrimental 

and pro-inflammatory modifiers (Frick et al., 2013; Tay et al., 2018; Wes et al., 2016). Rather 

than exerting protective functions, they become highly activated, neurotoxic and fail to exert 

regular functions in the CNS (Choi et al., 2011; Du et al., 2017; Graeber et al., 2011; Streit et al., 

2005). Dependent on the given context, progressive neuroinflammation along with microgliosis, 

abberant phagocytic activities and demyelination, ultimately contribute to degeneration, which 

in turn facilitates various CNS disorders (El Khoury, 2010; Frick et al., 2013; Streit et al., 2004; 

Tay et al., 2018). Microglial dysfunctions are thereby implicated in developmental disorders such 

as Nasu-Hakola disease(NHD; Bianchin et al., 2004; Paloneva et al., 2001), ASD (Lee et al., 

2017; Morgan et al., 2010) or hereditary diffuse leukoencephalopathy with spheroids (HDLS; 
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Konno et al., 2014; Rademakers et al., 2012). Moreover, abberant microglial functions are linked 

to the development of neuropsychiatric disorders including MDD (Holmes et al., 2018; Wohleb 

et al., 2018), bipolar disorder (Muneer, 2016; Naaldijk et al., 2016) and SSD (Monji et al., 2013; 

Wierzba-Bobrowicz et al., 2005). Lastly, microglia are also associated with degenerative 

conditions such as AD or Parkinson´s disease (PD; Doorn et al., 2014; Hong et al., 2016; 

McGeer et al., 1987; Subramaniam et al., 2017; Wang et al., 2015). 

 

The involvement of microglia in numerous CNS disorders is increasingly investigated, 

particularly in recent years. However, the question whether microglial dysfunctions are the cause 

or a mere consequence of other underlying features remains to be addressed. Therapeutic 

strategies, such as glial replacement (Cartier et al., 2014; Shen et al., 2017; Srivastava et al., 2018), 

have emerged as promising approaches in that regard. Another frequently used experimental 

setup involves genetic or pharmaceutical depletion of microglia along with repopulation 

subsequent to the latter (Han et al., 2019; Waisman et al., 2015). A critical feature of repopulating 

microglia in restoring CNS health upon damage are their contributions to remyelination 

(Beckmann et al., 2018; Lloyd et al., 2017). Interestingly, mutations of the CSF1-R in HDLS are 

associated with progressive atrophy of frontal and parietal white matter along with thinning of 

the corpus callosum (CC; Kondo et al., 2013; Konno et al., 2014; Sundal et al., 2012), suggesting 

an important interplay of microglial and myelin abnormalities. Noteworthy, frontro-parietal 

alterations have been suggested in catatonia as well (Hirjak et al., 2020) and increased 

neuroinflammation and axonal swellings in the CC have been reported in aged Cnp+/- 

(Hagemeyer et al., 2012). Recent studies successfully attenuated axonopathy in mouse models 

of Charcot-Marie-Tooth (CMT) disease, a neuropathy modeled by myelin gene defects (Sereda 

et al., 1996; Sereda et al., 2006), upon depletion of macrophages via the CSF1-R inhibitor 

PLX3397 (Klein et al., 2015; Scherer, 2015). Usage of PLX3397 and PLX5622, targeting 

microglia more selectively (Dagher et al., 2015), further improved pathology and cognition in 

mouse models of AD and MS (Asai et al., 2015; Dagher et al., 2015; Groh et al., 2019; Nissen 

et al., 2018; Sosna et al., 2018).  

 

Such therapeutic approaches seem promising, since studies suggest healthy genetic profiles 

(Huang et al., 2018), proper surveillance activities (Varvel et al., 2012) and even restored 

behavior (Dagher et al., 2015; Elmore et al., 2015; Elmore et al., 2014) upon replacement or 

repopulation. However, microglial subpopulations are known to have region- and context-

specific activities (Grabert et al., 2016; Xue et al., 2014), which can turn into pro- or anti-

inflammatory responses (Han et al., 2019). Thus, particularly the characterization of 
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autonomous subpopulations and their functions remains to be tackled. The thereby generated 

more profound knowledge on microglia as disease modifiers, could promote developing anti-

inflammatory therapeutic approaches to a variety of CNS disorders. Yet, the timepoint of 

application and impacts on other target cells or immunomodulatory microglia have to be 

considered in subsequent preclinical and clinical trials (Han et al., 2019; Nelson et al., 2017).
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Current perspectives in catatonia research 

As described above, catatonia was misperceived as a subtype of other medical conditions for a 

long period of time. The detachment from SSD in  DSM-5 (2013), may  enable urgently needed 

new diagnostic and experimental approaches, despite the failure to classify catatonia as an 

independent entity (Hirjak et al., 2020). Improved clinical rating scales, considering all 

symptomatic domains of catatonia, such as the Northoff Catatonia Rating Scale (NCRS) 

(Northoff, Koch, et al., 1999) may further promote reliability and accuracy of diagnosis 

(Oldham, 2019). Advanced technologies, such as targeted neuroimaging studies, are further 

essential to understanding catatonic symptoms on a functional and structural scope (Hirjak et 

al., 2020). Such advancements are crucial to improving clinical representation of a syndrome 

with a high comorbidity and heterogeneous symptomatology.  

 

However, the lack of reliable animal models to date, continues to hamper research, particularly 

with regard to mechanistic insights. While not all features of catatonia can be sculpted or 

assessed in animal models, they constitute an important scientific tool in translational and 

therapeutic approaches. Previous studies from our group reported a catatonia-like phenotype in 

Cnp+/- and Mbp+/- mice upon aging (Hagemeyer et al., 2012; Poggi et al., 2016). Importantly, mice 

of both models exhibited signs of neuroinflammation, most prominently in frontal brain 

regions, which was also observed in human SSD carriers of a partial loss-of-function SNP in 

the CNP gene (Hagemeyer et al., 2012). Taking into account that dysregulated microglia as well 

as myelin abnormalities are increasingly recognized as disease modifiers (Frick et al., 2013; Nave 

& Ehrenreich, 2014; Salter & Stevens, 2017), the question emerges, whether neuroinflamamtion 

of subcortical white matter is causative to the observed phenotype or rather a mere consequence 

of other neuronal dysfunctions. Additionally, a potential improvement by depletion of abberant 

microglia remains to be evaluated, since such strategies are suggested as a promising therapeutic 

application in multiple CNS disorders (Han et al., 2019; Waisman et al., 2015). Noteworthy, 

inflammatory signs were observed in the frontal brain, suggesting a key function of inherent 

structures. Executive function, a higher-order cognitive ability, is known to be predominantly 

carried out by the frontal lobes (Alvarez et al., 2006; Otero et al., 2014; Stuss et al., 1984). It 

embraces a wide range of tasks including selective attention, working memory, cognitive 

flexibility and problem solving (Diamond, 2013). These functions are regulated by an interplay 

of multiple cortical structures (Carpenter et al., 2000), of which the PFC appears to be 

substantial (Chudasama, 2011; Yuan et al., 2014). Thus, the relevance of frontal lobe 

inflammation and executive dysfunction remain to be delineated and will help to clarify, whether 
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catatonia is driven by dysfunctional motor circuits or rather a frontal lobe disorder resulting in 

impaired volition and psychomotor behavior.  
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Scope of the studies of the present work 

The clinical presentation of catatonia is heterogeneous and its widespread occurence throughout 

various CNS disorders is well known. Due to several shortcomings, including conceptual 

limitations and general misrepresentations, the etiology and underlying cellular 

pathomechanisms of the syndrome remain largely unclear to date. Importantly, research on 

catatonia has been hampered by these misperceptions and respectively inadequate or incomplete 

clinical rating scales. In addition, the scientific community is essentially lacking a targeted and 

reliable animal model, which in turn continues to retard mechanistic insights. 

 

To this end, previous findings from our group reported a catatonia-like phenotype in C57Bl/6 

Cnp+/- and Mbp+/- mice upon progressed age. Mice of both models exhibited signs of low-grade 

inflammation of the CNS, particularly observed in frontal brain structures. Interestingly, a 

comparable age-dependent catatonic phenotype was noted in human SSD carriers of a partial 

loss-of-function SNP in the CNP gene. Collectively, these findings suggest altered white matter 

integrity, possibly accompanied by abberant microglial activities, as key features of the observed 

phenotypes. However, critical question remain to be tackled, to assess whether and how 

neuroinflamation contributes to the catatonia-like phenotype. Moreover, the distinct roles of 

white matter integrity and the frontal brain need to be evaluated, aiming to enhance our 

understanding of the mechanisms resulting in the catatonia. Taking into account that 

dysregulated microglia as well as impaired white matter integrity are increasingly recognized as 

important disease modifiers, I aimed to address and characterize the relevance of these factors 

in the context of catatonia, a syndrome yet to be better understood and treated. 

 

To address these questions we conducted experiments on both mice and men in my first project, 

with the former mainly focusing on Cnp-/- mice. The aim of all respective experiments was to 

evaluate, whether neuroinflammtion of subortical white matter itself is indeed causative to 

previously reported findings. Accordingly, we investigated (i) the impact of age on exhibition of 

catatonic signs in our sample of schizophrenic subjects; (ii) the representation of the CNP loss-

of-function SNP rs2070106-AA in SSD subjects, in collaboration with Prof. Dr. Andreas Reif 

(iii) a potential impact of this SNP in healthy carriers on WMH, in collaboration with Prof. Dr. 

Hans Jörgen Grabe; (iv) the onset of catatonic signs in Cnp-/- mice; (v) along with microglia-

targeted therapeutical trials in an early intervention (prevention) and a late intervention 

(treatment) study; (v) immunohistochemical analysis of gliosis, neuroinflammation and 

degeneration within the CC and the cingulate cortex in the prevention and treatment study, 
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respectively; (vi) neuroinflammation under microglia-targeted treatment and 5 weeks after 

cessation by magnetic resonance spectroscopy (MRS), in collaboration with Prof. Dr. Susann 

Boretius. A detailed description of the project along with respective findings are reported in 

Chapter 2 of this thesis. 

 

Based on the findings from project I, we conducted further experiments on wildtype (WT) and 

Cnp-/- mice, aiming to characterize microglial activities before and upon repopulation. We 

thereby recently reported the relevance of executive function in catatonia in mice and men 

(Garcia-Agudo et al., 2019). Executive function comprises a broad variety of cogntitive abilities 

(Diamond, 2013), which the frontal lobes are known to be critical to (Alvarez & Emory, 2006; 

Otero & Barker, 2014). To further delineate the role of neuroinflammation of the former in 

catatonia, I employed a second project in which we investigated and characterized mice lacking 

another important myelin gene, Plp1, predominantly in the frontal brain. Plp1-deficient mice 

have been reported to exhibit axonopathy and neuroinflammation (Griffiths et al., 1998; Lüders 

et al., 2019; Lüders et al., 2017) along with catatonia in adulthood, rendering them a suitable 

follow-up model of catatonia, in which we specifically targeted white matter integrity of the 

frontal brain.  

 

In close collaboration with PD Dr. Hauke B. Werner and Prof. Klaus-Armin Nave Ph.D., we 

generated conditional knockout (cKO) by crossing mice with loxP site-flanked Plp1 alleles to 

mice expressing the Cre recombinase under the control of the Emx1 promoter promoter 

(Gorski et al., 2002). Subsequently, cKO mice were carefully characterized by (i) 

immunohistochemisty and (ii) neuropathological assessment, carried out by PD Dr. Hauke B. 

Werner and co-workers; (iii) extensive longitudinal behavioral phenotyping of mice of both 

genders, covering a wide range of behavioral domains such as motor and sensory function, 

cognition and specifically catatonia and executive function. A detailed description of the project 

along with respective findings are reported in Chapter 3 of this thesis. 
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Project I 

Microglia ablation alleviates myelin-associated catatonic signs in 
mice 

 

Outline of the project 

Previous studies from our group reported an unexpected age-dependent behavioral phenotype 

reminiscent of the psychomotor syndrome of catatonia (Hagemeyer et al., 2012; Poggi et al., 

2016). Mice heterozygous for the myelin genes Cnp and Mbp exhibited catatonic signs along 

with low-grade inflammation and microgliosis. The latter further showed significant reduction 

of myelination in the PFC upon aging, accompanied by reduction of both Mbp and Cnp as well 

as thinning of the CC (Poggi et al., 2016). Noteworthy, a similar age-dependent catatonia-

depression phenotype was reported in SSD carriers of a partial loss-of-function SNP in the CNP 

gene resulting in increased inflammatory signs by DTI (Hagemeyer et al., 2012). In my doctoral 

thesis, I aimed to address the question whether neuroinflammation of subcortical white matter 

is causative to the observed phenotype in mice and men. Based on accumulating findings 

associating aberrant microglial functions with neuropsychiatric disorders (Frick et al., 2013) and 

implications of therapeutic benefits by microglial depletion and subsequent repopulation (Han 

et al., 2018; Waisman et al., 2015), I further investigated the impact of the CSF1-R inhibitor 

PLX5622 (Dagher et al., 2015) on the onset and progression of the phenotype by behavioral, 

immunohistochemical and neuroimaging measures of distinct target sites.  

 

(I) Assessment of catatonic signs in subjects suffering from SSD 
 
A total of 1095 subjects from the GRAS schizophrenia sample were evaluated for potential 

catatonic signs and their severity by application of the Cambridge Neurological Inventory (CNI) 

catatonia score (Chen et al., 1995). These analyses were carefully carried out by our co-worker 

Dr. Martin Begemann and revealed an age-dependent increase in the CNI catatonia score in 

SSD subjects. Subsequently, Marina Mitjans, Ph.D., conducted a genome-wide association study 

(GWAS) on all subjects to investigate the representation of carriers of the CNP SNP rs2070106 

within groups exhibiting no CNI catatonia score up to subjects with a score of 2 or higher. 

Comparison of extreme groups revealed approximately 18 % of the latter to be carriers of the 

SNP. This finding was further confirmed in another independent sample of SSD patients 

(N=288) by Prof. Dr. Andreas Reif and co-workers.   

 

35



Project I 
 

(II) Impact of the SNP rs2070106 on white matter hyperintensities 
 
To tackle this question, we carried out another GWAS on the baseline cohort of SHIP-

TREND-0 (N=552; Völzke et al., 2011) in close collaboration with Prof. Dr. Hans Jörgen 

Grabe and co-workers. Healthy subjects with avaialbale magnetic resonance imaging (MRI) and 

SNP information were included into the study and revealed an age-dependent increase in white 

matter hyperintensities (WMH), which was significantly exceeded by carriers of the SNP. 

Regional anaylsis of CNS areas most affected suggested particularly frontotemporal regions as 

such. 

 

(III) Onset and prevention of catatonic signs in Cnp-/-  mice 
 
Since we previously observed a catatonia-depression phenotype in Cnp+/- mice upon progressed 

age (Hagemeyer et al., 2012), we initially addressed the question whether homozygous KO 

would facilitate the phenotype. Analysis of the Bar test data revealed catatonic-signs in Cnp-/- 

mice as early as 8 weeks age. Subsequently, WT and Cnp-/-  mice were fed with PLX5622 or 

control chow for 5 weeks and tested in the Bar test at 8 weeks age. Indeed, microglia-targeted 

treatment with PLX5622 alleviated catatonia in Cnp-/- mice, while it did not affect WT behavior. 

To address the question whether depletion of microglia would have a sustained impact on 

neuropathology and inflammation, observed in untreated Cnp-/- mice, we conducted 

immunohistochemical labeling of ionized calcium-binding adapter molecule 1 (IBA1), amyloid 

precursor protein (APP) and glial fibrillary acidic protein (GFAP) in the CC of cross-sectioned 

brain slices 4 weeks after cessation of treatment. Surprisingly, treatment with PLX5622 

sustainably reduced the numer of Iba1- and APP-positive (IBA1+ and APP+, respectively) cells 

in Cnp-/- mice, while the number of GFAP+ cells remained elevated in treated and untreated Cnp-

/- mice. These findings strongly suggested a prevention of the catatonia-like phenotype in Cnp-/- 

mice along with diminished signs of neuropathology in white matter tracts. The latter was 

confirmed by MRS in close collaboration with Prof. Dr. Susann Boretius and co-workers, since 

myoinositol, an appreciated marker of glial activation and neuroinflammation (Chang et al., 

2013; Poggi et al., 2016; Ross et al., 1997), was reduced in the CC and cortex of PLX5622-

treated Cnp-/- mice, even 5 weeks after cessation of treatment.  

 

 

(IV) Treatment of catatonic signs upon disease progression in  Cnp-/-  mice 
 
Since we efficiently intercepted the catatonic phenotype in the above-mentioned studies, we 

next aimed to investigate, whether microglial depletion via PLX5622 would also benefit the 
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phenotype at a more progressed state. To this end, WT and Cnp-/- mice were treated with 

PLX5622 and control chow for a total of 8 weeks starting at the age of 27 weeks. Analysis of 

the Bar test after 5 and 8 weeks of treatment successfully attenuated catatonic signs in Cnp -/- 

mice, while treatment did not affect WT behavior. Analysis of neuropathology under 8 weeks 

of treatment further revealed significant reduction of microgliosis (IBA1+) and phagocytic 

microglial activities (CD68+), axonal spheroids (APP+), astrogliosis (GFAP+) and infiltrating T 

lymphocytes (CD3+), all of which were drastically increased in the CC of untreated Cnp-/- mice. 

Morever, KO mice exhibited an expected increase in OPCs in the CC, which was counteracted 

by PLX5622, irrespective of genotypes. Interestingly, IBA1+ cells were increased in the cingulate 

cortex of Cnp-/- mice and successfully reduced by PLX5622 treatment, suggesting expansion of 

inflammatory processes into the frontal gray matter in Cnp-/- mice. 

 

(V) Catatonic signs in myelin mutant mice and other mouse models of CNS disease 
 

In conclusion, we investigated whether the observed catatonic signs are restricted to mice with 

altered white matter integrity due to myelin gene deficiencies and neuroinflammatory processes., 

I conducted the Bar test with a battery of mutant mice including Cnp+/-, Mbp+/-, Plp1null/y. The 

former two exhibited catatonic signs upon progressed age, as reported previously (Hagemeyer 

et al., 2012; Poggi et al., 2016) while the later showed catatonic signs at an earlier time point 

during adulthood. As a proof-of-principle experimental approach, I tested various other mouse 

models with deficiencies of the autophagy and beclin 1 regulator gene (Ambra1+/-; Dere et al., 

2014), neuroligin-4 (Nlgn4-/; Jamain et al., 2008), calcium-dependent secretion activator 1 (Caps1-

/; Jockusch et al., 2007), postsynaptic density protein-93 and -95 (PSD93-/-, PSD95-/-; Winkler et 

al., 2018) and apolipoprotein-E (ApoE-/-; Hammer et al., 2014), all of which did not exhibit 

catatonic signs at any time. These findings strongly suggested a critical role of altered white 

matter integrity and neuroinflammatory processes to be causative to the observed phenotype, 

at least in our mouse models of catatonia.
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Personal contributions: Under supervision of Prof. Dr. Dr. Hannelore Ehrenreich, I was 

particularly responsible for all behavioral mouse studies conducted in the process of this 

publication. Hence, I conducted the Bar test in animals of all cohorts including the initial 

comparison of WT versus Cnp+/- and Cnp-/- mice (Figure 2A) as well as mice of the prevention 

and the treatment studies (Figures 2B-D, 4A-B). All data acquired with the Bar test were 

analyzed and prepared by myself (Figures 2A, 2D, 4B, 5G). Moreover, I performed and 

monitored treatment of all mice from the prevention, the treatment and the MRS studies with 

control diet or PLX5622 (Figures 2D, 3B-G, 4B). The latter experiments were carried out in 

collaboration with Prof. Dr. Susann Boretius. I further conducted enzymatic 

immunohistochemical labeling and quantification of APP+ swellings within the CC of mice from 

the prevention and treatment studies (Figures 2F, 5A). Together with Dr. Hana Janova, I carried 

out statistical analyses of all data acquired by studies in mice. In conclusion, I was also actively 

involved in the assembly of figures and display items as well as preparation of the manuscript 

itself. Specifically, I contributed by writing the material and methods sections involving mouse 

maintenance and behavioral experiments as well as description of applied statistical analyses 

within the caption of figures 2 to 5. 
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Introduction
White matter tracts in the CNS largely comprise long axons, associ-
ated glial cells, and the ensheathment of axons with myelin. While 
the role of myelin for axonal conduction and normal motor-sensory 
function is well known (1), the contribution of white matter integri-
ty to cortical networks and higher cognition is just emerging. More-
over, myelin defects are increasingly linked to mental disease, but 
mechanistic insight is still lacking and the relationship between 
cause and consequence difficult to establish in humans (2, 3).

Catatonia is among the most mysterious and as yet poorly 
understood neuropsychiatric phenotypes. Appearing as a “psy-
chomotor syndrome,” it reflects temporary disruption of executive 
control in the absence of any “classical” motor dysfunction. Cata-

tonia is typically characterized by a fluctuating course with episod-
ic exacerbations and has historically been associated with schizo-
phrenia, for which it is classified as a positive symptom. Catatonia 
is, however, also observed in mood- and substance-induced psy-
chotic disorders, malignant neuroleptic syndrome, most encepha-
litides, and even general medical conditions (4, 5). Reports on brain 
areas involved in catatonia are scarce. Available data point to fron-
tal lobe regions, such as the pronounced catatonia in a case of but-
terfly glioma of the frontal corpus callosum (6) or frontal activation 
in akinetic catatonic patients detected by functional MRI (7).

The full-blown clinical picture of catatonia is dominated by 
immobility, catalepsy, or stupor, sometimes suddenly switching 
from “frozen posturing” to excessive motor activity (“movement 
storm”). Milder forms are more common, even though frequently 
missed in the diagnostic process, and addressed as catatonic signs 
(8). In schizophrenia, prevalence is estimated at 0.2%–3.0% (5). 
Treatment with benzodiazepines or electroconvulsive therapy is 
nonspecific and not always effective (4, 5).

Similarly to what occurs in humans, catatonia appears in mice 
as a state of transient immobility in which mice persist in an exter-
nally imposed abnormal posture. However, in animals, catatonia 
has previously been reported only upon induction by body pinch 

The underlying cellular mechanisms of catatonia, an executive “psychomotor” syndrome that is observed across 
neuropsychiatric diseases, have remained obscure. In humans and mice, reduced expression of the structural myelin protein 
CNP is associated with catatonic signs in an age-dependent manner, pointing to the involvement of myelin-producing 
oligodendrocytes. Here, we showed that the underlying cause of catatonic signs is the low-grade inflammation of white 
matter tracts, which marks a final common pathway in Cnp-deficient and other mutant mice with minor myelin abnormalities. 
The inhibitor of CSF1 receptor kinase signaling, PLX5622, depleted microglia and alleviated the catatonic symptoms of Cnp 
mutants. Thus, microglia and low-grade inflammation of myelinated tracts emerged as the trigger of a previously unexplained 
mental condition. We observed a very high (25%) prevalence of individuals with catatonic signs in a deeply phenotyped 
schizophrenia sample (n = 1095). Additionally, we found the loss-of-function allele of a myelin-specific gene (CNP rs2070106-
AA) associated with catatonia in 2 independent schizophrenia cohorts and also associated with white matter hyperintensities 
in a general population sample. Since the catatonic syndrome is likely a surrogate marker for other executive function defects, 
we suggest that microglia-directed therapies may be considered in psychiatric disorders associated with myelin abnormalities.
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catatonic signs. Such a mechanism would be in line with the emerg-
ing role of microglia for behavioral phenotypes (15–18).

Here, we demonstrate an unexpectedly high, age-associated 
prevalence of catatonic signs in more than 25% of deeply pheno-
typed schizophrenic subjects. In 2 independent schizophrenia 
cohorts, we found severe catatonic signs associated with the CNP 
partial loss-of-function genotype rs2070106-AA. Moreover, we 
show by MRI that CNP rs2070106-AA carriers in the general popu-
lation are more likely than G carriers (GG or AG) to display fron-
totemporal white matter hyperintensities (WMH) on T2-weighted 
images as proposed subclinical signs of vascular changes, neuroin-
flammation, and demyelination (19–21).

To provide proof-of-principle for microgliosis as the key dis-
ease mechanism, we studied Cnp–/– (null) mutant mice. Surpris-
ingly, they developed neuroinflammation with catatonic signs by 
the early age of 8 weeks. Indeed, we show causality by depletion 
of microglia with the colony-stimulating factor 1 receptor (CSF1R) 

or drug exposure (9, 10). More recently, we detected catatonia in 
aging mice heterozygous for either Cnp or Mbp (also known as 
shiverer), both encoding structural proteins of the myelin sheath, 
2′-3′-cyclic nucleotide 3′-phosphodiesterase (Cnp) and myelin 
basic protein (Mbp). Interestingly, in aging Mbp heterozygotes, 
Cnp expression in the forebrain is also reduced by 50% (11, 12). 
Correspondingly, individuals homozygous for the A allele of the 
SNP rs2070106 in human CNP show reduced mRNA expression 
(13) and association with catatonia (11). Therefore, mutant oli-
godendrocytes yield a predisposition to catatonia, which is not 
explained by any paucity of myelin; however, the responsible 
mechanisms have remained obscure.

The neuropathology of Cnp and Mbp heterozygous mice starts 
late in life and is surprisingly mild, but in either mutant accompanied 
by an increased number of microglial cells (11, 12, 14). We therefore 
hypothesized that neuroinflammation of subcortical white matter, 
possibly spreading into the prefrontal cortex, could be the cause of 

Figure 1. Age–dependent association of the loss-
of-function genotype CNP rs2070106-AA with 
catatonia in 2 independent schizophrenia cohorts 
and with WMH in a general population sample. 
(A) Bars show mean age of schizophrenic subjects 
(GRAS), sorted by severity of catatonic signs. Red 
line denotes percentage of risk for genotype car-
riers (rs2070106-AA) within each severity group. 
Note that severity of catatonic signs increases 
with age. Two-sided values for Kruskal-Wallis (P = 
7.6 × 10–9) and Jonckheere-Terpstra (P = 1.3 × 10–9).
Mean ± SEM. Also note that CNP rs2070106-AA 
carriers are most frequent (18.2%) among individu-
als with highest expression of catatonic signs 
compared with noncatatonic subjects (10.4%). 
Two-sided P value for Mann-Whitney U test for 
extreme-group comparison given in the figure. 
(B) Distribution of CNP rs2070106 genotype in the 
Würzburg replication sample of schizophrenia 
patients based on dichotomous catatonia clas-
sification. The AA genotype is significantly more 
prevalent in patients with (17.9%) than without 
catatonia (7.8%). Two-sided P values from χ2 test 
given. (C) Left panel: interaction effect between 
age and genotype in SHIP-TREND-0 sample on 
overall WMH volume (minimum 10 mm3 per single 
WMH cluster). Shown are WMH volume residuals 
after correcting for intracranial volume, age (non-
linear), and gender. Genotype and age-genotype 
interaction term contributed 1.1% of variance to 
overall WMH volumes. Right panel: frequency map 
averaging all subjects of the general population 
(SHIP-TREND-0; n = 552), analyzed here. Data 
highlight WMH appearance predominantly in 
frontal regions.
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inflammation markers, namely C-reactive protein 
serum levels (natural logarithm) and white blood cell 
count were tested as covariates, but also did not sub-
stantially change the significance level (P = 0.013 and 
P = 0.014, respectively).

Catatonic signs in Cnp-null mutant mice start at 
around 8 weeks of age and are prevented by the CSF1R 
inhibitor PLX5622. To show proof-of-principle for the 
causal relationship of inflammation and catatonic signs 
in a construct-valid experimental model, we turned 
to Cnp–/– mutant mice. As early as the age of 8 weeks, 
Cnp–/– mice developed catatonic signs (Figure 2, A and 
B). For illustration, Supplemental Video 1 (supplemen-
tal material available online with this article; https://
doi.org/10.1172/JCI97032DS1) demonstrates a strik-
ing example of catatonia in a young Cnp–/– mutant, 
tested on the bar, followed by normal-appearing motor 
performance. This exemplifies the transiently obvi-

ous executive dysfunction in the absence of an underlying motor 
disturbance. Supplemental Video 2 shows excerpts of undisturbed 
home-cage observation in an enriched environment of another 
Cnp–/– mutant with normal motor performance and phases of spon-
taneous catatonia-like posturing (note the “manneristic” stretch-
ing of hind limbs when on the bar).

Catatonic signs were prevented by a 5-week oral application of 
the CSF1R inhibitor PLX5622 via food pellets, starting at 3 weeks 
of age, immediately after weaning (Figure 2, C and D), consistent 
with a nearly complete depletion of microglia as reported earlier 
(22, 23) and reproduced by pilot experiments in preparation of 
the present study (8-week-old WT mice, treated for 5 or 8 weeks 
with PLX5622 versus untreated: 1–2 versus ~260 ionized calcium 
binding adaptor molecule-1 positive [Iba1+] cells/mm2 corpus cal-
losum area, as delineated in Figure 2E). Intriguingly, immunohis-
tochemical (IHC) analysis of the corpus callosum of these mice 
after 4 weeks of drug recovery showed still lower numbers of Iba1+ 
cells and amyloid precursor protein–positive (APP+) swellings 
compared with nontreated Cnp–/– mice, suggesting that PLX5622 
treatment has a persistent antiinflammatory benefit, since it is 
known that microglia recover from inhibition within only 1 week 
(22, 23). The slightly enhanced glial fibrillary acidic protein–posi-
tive (GFAP+) area (Figure 2, E and F) as well as the mildly extended 
CD68+ (macrosialin) area (0.8% ± 0.04% in WT versus 6.8% ± 
0.7% in Cnp–/–; P < 0.014) in young mutants is not reduced after 
PLX5622 treatment.

Magnetic resonance spectroscopy signs of white and gray matter 
inflammation in Cnp–/– mice and their prevention by CSF1R inhibi-
tion. An independent cohort of WT and Cnp–/– mice underwent a 
follow-up magnetic resonance spectroscopy (MRS) study at 8 and 
13 weeks of age (design shown in Figure 2C), focusing on regions 
of interest (ROI) in corpus callosum (white matter) and cortex 
(gray matter) (Figure 3A). The first MRS in 8-week-old mice was 
performed after 5 weeks of control versus PLX5622 diet (starting 
at age 3 weeks, as in the prevention study above), and the second 
MRS was performed in the same mice at the age of 13 weeks, i.e., 
after 5 weeks of PLX5622 food cessation/microglia repopulation. 
Brain myoinositol is seen as a global marker of glial activation 
including microglia that strongly correlates with neuroinflam-

inhibitor PLX5622 (22, 23), which blocks a critical microglial sur-
vival pathway. The so-caused ablation of microglia prevents cata-
tonia onset in young mutants and ameliorates existing catatonia in 
adult Cnp–/– mice. These findings shed light on the nature of cata-
tonia and suggest that this striking neuropsychiatric syndrome — 
and possibly related executive function deficits — may be prevent-
able as well as treatable.

Results
Catatonic signs are highly prevalent in schizophrenia and associ-
ated with the CNP partial loss-of-function genotype rs2070106-AA 
in independent samples. Within the Göttingen Research Associa-
tion for Schizophrenia (GRAS) population of deeply phenotyped 
schizophrenic subjects, 26.7% exhibited signs of catatonia. The 
severity of catatonic signs clearly increases with age (Figure 1A). 
The percentage of CNP loss-of-function SNP rs2070106-AA car-
riers among individuals with the highest expression (≥2) of cata-
tonic signs is greater compared with that in noncatatonic subjects 
(18.2% versus 10.4%; P = 0.03; OR = 1.93; Figure 1A). This asso-
ciation between catatonia and rs2070106-AA is replicable in an 
independent sample of schizophrenic individuals (17.9% versus 
7.8%; P = 0.015; OR = 2.55; Figure 1B), categorically classified for 
catatonia according to Leonhard (24).

CNP rs2070106-AA carriers in the general population display 
increased age-dependent WMH in frontal and temporal brain areas. 
We wondered whether the CNP loss-of-function rs2070106-AA 
would reveal any measurable effects on suggested MRI indicators 
of neuroinflammation and white matter alterations. Employing a 
subsample of the baseline cohort of Study of Health in Pomera-
nia (SHIP-TREND-0), namely general population subjects with 
MRI scans available, we quantified WMH. AA carriers showed 
age-dependent higher WMH volume residuals as compared with 
GG and AG carriers, most prominently in frontotemporal brain 
regions and deep brain structures, with all analyses adjusted for 
total intracranial volume, age (nonlinear), and gender (Figure 1C 
and Table 1). Control covariance analyses, stepwise including fur-
ther (potentially interfering) covariates alone or together, namely 
education, waist circumference, serum triglycerides, and smok-
ing, did not appreciably alter the results. Importantly, peripheral 

Table 1. ROI analyses of WMH in analogous regressions showing that 
frontotemporal regions including deep structures contribute most to the 
overall increase of WMH in AA carriers versus subjects with AG/GG genotype

Brain region Age-genotype interactionA 
(95% CI)

P value Variance contribution  
(Δ adj. R²)

Frontal 0.06 (0.01;0.10) 0.013 0.68%
Deep structuresB 0.02 (0.00;0.03) 0.048 0.36%
Parietal 0.05 (–0.00;0.09) 0.054 0.71%
Temporal 0.05 (0.00;0.10) 0.032 1.17%
Occipital 0.02 (–0.02;0.05) 0.333 0.13%
ARegression weight. BDeep structures include anterior limb of internal capsule, fornix, 
and posterior limb of internal capsule including cerebral peduncle. Δ adj. R² calculated 
by comparing the whole model with the model devoid of the genotype and the age-
genotype interaction term. Analyses are adjusted for intracranial volume, age (nonlinear), 
and gender. All P values are 2 sided. Bold numbers indicate P < 0.05.
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Figure 2. Early catatonia and white matter inflammation in Cnp mutant mice and their prevention by CSF1R inhibition. (A) Catatonic signs measured by 
the bar test in WT, Cnp+/–, and Cnp–/– mice at the age of 8 weeks (Kruskal-Wallis, P = 0.034). (B) Image illustrating a mouse with typical catatonic posture 
during the bar test. (C) Schematic overview of the prevention study design, including PLX5622 (versus regular food) feeding phase (blue arrow) and time 
points of testing/analyses. Black arrows: bar test (results in Figure 2D) and IHC (results in Figure 2F); yellow arrows: MRS measurements (results in Figure 
3). (D) Catatonic signs in WT and Cnp–/– mice (age 8 weeks) after 5-week PLX5622 or control food diet (Kruskal-Wallis, P = 0.165). (E) Schematic overview 
illustrating corpus callosum and neighboring cingulate cortex areas for IHC quantifications: defined ROI for quantifying APP+ swellings, Iba1+ and CD3+ cells 
as well as GFAP+ and CD68+ areas (densitometric analysis) shown by the yellow striped field and the blue area, respectively; cingulate area (Cg1/Cg2) for 
Iba1+ cell quantification displayed in rose. (F) IHC quantification within the corpus callosum of WT or Cnp–/– mice (age 12 weeks) at 4 weeks of microglia 
repopulation after 5 weeks of PLX5622 or control diet, as shown in C and E. Upper panels show representative images, including higher-magnification 
inserts, of the quantifications shown underneath: Iba1+ cells (no./mm2; 1 section/brain), APP+ swellings (yellow arrows indicating APP+ spheroids; no./mm2; 
3 sections/brain), and densitometric analysis of GFAP+ area (%; 1 section/brain). Original magnification (insets), ×2 (Iba1, GFAP); ×4 (APP). All data in A, 
D, and F were individually tested for Gaussian distribution using the Kolmogorov-Smirnov test. Nonparametric Kruskal-Wallis test was performed for A, D 
and F for multiple group comparisons, followed by post hoc 1-tailed Mann-Whitney U test. All data are shown as mean ± SEM; n indicated within bars.
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tially reduced microglia numbers upon PLX5622 administration 
to one-third of untreated Cnp–/– mice, but just reached untreated 
WT levels (Figure 4C). This finding may imply that upon aging 
and/or in situations of strong inflammatory stimulation, a con-
siderable number of microglia lose their responsiveness to CSF1R 
inhibition. CD68 immunostaining, localized to the lysosomal 
membrane and used as an additional readout of microglia activa-
tion that is upregulated in actively phagocytic cells (28), displayed 
a pattern very similar to that of Iba1 (Figure 4, D–F). Interestingly, 
quantification of microglia in the neighboring cingulate cortex 
as a crucial part of the prefrontal cortex also revealed a distinct 
increase in Iba1+ cells in Cnp–/– mice (Figure 2E and Figure 4E). 
This demonstrates that white matter inflammation in mutants 
spreads onto gray matter areas where PLX5622 again leads to a 
considerable reduction in Iba1+ cells.

Both the remarkably increased axonal swellings (APP+) and the 
strongly enhanced GFAP+ area seen in untreated Cnp–/– mice were 
diminished under PLX5622, but remained greater than that seen 
in WT (Figure 5, A and B). The same holds true for CD3+ T lym-
phocytes, which are attracted by chemokines and cytokines into 
the inflammatory brain and were also considerably reduced upon 

mation (12, 25–27). Quantification of myoinositol in the corpus 
callosum showed a distinct genotype difference and progres-
sion of inflammation over time in Cnp–/– mice (Figure 3B). Upon 
PLX5622, the progressive inflammatory phenotype of Cnp–/– mice 
was reduced to nearly the level seen in WT (Figure 3, C and D). A 
similar but less prominent effect of PLX5622 was observed in the 
cortex, where the MRS-detectable neuroinflammation in Cnp–/– 
mice was also less pronounced in treated mice (Figure 3, E–G).

Catatonia and IHC markers of brain inflammation and neuro-
degeneration in 6-month-old Cnp–/– mice are reduced by PLX5622 
treatment. The encouraging results of the prevention study made 
us wonder whether similar effects of microglia depletion by 
CSF1R inhibition could be observed at a more progressed disease 
state with advanced neurodegeneration (14) (Figures 4, A–F, and 
Figure 5, A–G). As expected, Cnp–/– mice at the age of 27 weeks 
were catatonic (Figure 5G). After 5 and 8 weeks of PLX5622, cata-
tonic signs were reduced (Figure 4B). In agreement with the liter-
ature, PLX5622-treated WT mice were almost completely deplet-
ed of Iba1+ cells (22, 23), even though — compared with young 
mice — around 10 times more microglial cells/mm2 corpus callo-
sum area were retained. In contrast, Cnp–/– mice showed substan-

Figure 3. MRS signs of white matter 
(corpus callosum) and gray matter (cortex) 
inflammation (myoinositol) in Cnp–/– mice 
and prevention by CSF1R inhibition. 
(A) Representative sagittal MR images 
illustrating corpus callosum and cortex ROI 
for analysis of myoinositol levels (yellow 
squares). (B–D) Corpus callosum: follow-up 
MRS for quantification of myoinositol in 
WT and Cnp–/– mice at 8 and 13 weeks of age 
(experimental design shown in Figure 2C). 
Statistical comparison of the first MRS in 
8-week-old mice, after 5 weeks of control 
(B) versus PLX5622 (C) diet (starting at 
age 3 weeks) and the second MRS in these 
same mice at the age of 13 weeks, after 5 
weeks of regular food (repopulation after 
PLX5622). (D) Note the return to nearly 
WT level in PLX5622-treated Cnp–/– mice. 
(E–G) Cortex: same design as for corpus 
callosum. (E) Inflammatory phenotype 
of Cnp–/– mice less pronounced. (F and G) 
Effect of PLX5622 less prominent. All data 
in B–G were individually tested for Gaussian 
distribution using the Kolmogorov-Smirnov 
test. Two-way ANOVA was performed for 
B, E, and F, followed by post hoc 1-tailed t 
tests. Nonparametric Kruskal-Wallis test 
was used for multiple group comparisons in 
C, followed by post hoc 1-tailed Mann-Whit-
ney U test. Two-way ANOVA for treatment × 
time interaction performed in D and G, fol-
lowed by post hoc unpaired t test. P = 0.008 
(D); P = 0.52 (G). All data shown as mean ± 
SEM; n indicated within bars.
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PLX5622 treatment (Figure 5, C and D). Since the abundance of oli-
godendrocyte precursor cells is known to be influenced by microglia 
and CSF1R inhibition during postnatal development was shown to 
decrease their numbers (29), PDGFRα staining was also performed. 
Indeed, Cnp–/– mice, with their elevated numbers of PDGFRα+ oli-
godendrocyte precursors, as well as WT mice respond to PLX5622 
with a reduction of PDGFRα+ cells to nearly 50% (Figure 5, E and F).

Other myelin mutants with neuroinflammation also develop cata-
tonia. Finally, we asked whether and when other mouse mutants 
exhibiting subtle myelin abnormalities and mild neuroinflamma-
tion later in life would likewise display a catatonic phenotype. This 
included mice heterozygous for Mbp (12) and Plp-null mutant mice 

(30). Behavioral testing began at 8 weeks of age and was repeated 
every 4 to 6 weeks. Indeed, we detected signs of catatonia in het-
erozygous Mbp+/– mice at ages 60 to 72 weeks, similar to those seen 
in the aging phenotype of Cnp+/– mice (11). Hemizygous Plp–/y mice 
displayed catatonic signs already at 25 weeks of age (Figure 5G). 
We note, however, that in all of these mouse lines, including Cnp 
mutants, and similarly across the different age groups, catatonic 
signs show some variability regarding time on the bar. While as 
a group, catatonic mice clearly differ from WT mice, the severity 
range is sometimes considerable.

To test for specificity of catatonic signs as a white matter prob-
lem, the bar test was performed at various ages in a wide range 

Figure 4. Catatonia and white mat-
ter inflammation in Cnp mutant 
mice and their treatment by CSF1R 
inhibition: Part I. (A) Schematic 
overview of the treatment study 
design, including PLX5622 (versus 
regular diet) feeding phase (blue 
arrow) and time points/age of 
testing/analyses (black arrows). 
(B) Catatonic signs in WT and 
Cnp–/– mice after 5 and 8 weeks on 
PLX5622 or control diet. (C and D) 
IHC quantifications in the corpus 
callosum (as shown in Figure 2E) at 
the age of 35 weeks after 8 weeks 
of PLX5622 or control diet: Iba1+ 
cells (no./mm2; 1 section/brain) and 
CD68+ area (%; 1 section/brain). (E) 
Iba1+ cells in the cingulate cortex 
(no./mm2; 1 section/brain; area 
described in Figure 2E). (F) Repre-
sentative IHC images illustrating 
the results in C and D. All data in B, 
C, D, and E were individually tested 
for Gaussian distribution using the 
Kolmogorov-Smirnov test. Non-
parametric Kruskal-Wallis test was 
performed in B for multiple group 
comparisons, followed by post 
hoc 1-tailed Mann-Whitney U test. 
Two-way ANOVA was performed 
for C, D, and F, followed by post hoc 
1-tailed unpaired t test. All data are 
shown as mean ± SEM; n indicated 
within bars.
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of CNS mutants with reported behavioral phenotypes relevant for 
other facets of neuropsychiatric disease, e.g., autistic, cognitive, or 
metabolic syndromes. This included mutations of synaptic genes 
Nlgn4–/– (31), Caps1–/– (32), Psd93–/–, and Psd95–/– (33), autophagy 
dysfunction in Ambra1+/– mutants (34), and ApoE–/– mice with a 
disturbed blood-brain barrier (35), yet none of these control mice 
revealed catatonic signs (all P ≥ 0.2 compared with respective 

WT). In addition, normal WT (C57BL/6N) mice were tested at 1, 
6, 10, or 14 weeks after a single injection of high-dose LPS (5 mg/
kg i.p. given at the age of 4 months), known to induce persistent 
microgliosis (36). Also here, no catatonic signs were observed (all 
P ≥ 0.2 compared with respective untreated controls). Interest-
ingly, even catatonic Plp–/y mice did not reveal any further increase 
in their catatonic signs upon LPS (5 mg/kg i.p.) when tested at 1, 

Figure 5. Catatonia and white matter inflammation in Cnp mutant mice and their treatment by CSF1R inhibition: Part II. (A) APP+ swellings (indicating 
APP+ spheroids; no./mm2; 3 sections/brain) and (B) densitometric analysis of GFAP+ area (%; indicating astrogliosis; 1 section/brain). (C) CD3+ cells (no./
mm2; indicating T lymphocyte invasion; 1 section/brain). (D and E) Representative IHC images illustrating CD3 and PDGFRα staining. (F) PDGFRα+ cells 
(no./mm2; indicating oligodendrocyte precursors; 1 section/brain). (G) Catatonic signs in WT, Cnp–/– (age of onset at 8 weeks of age, shown in Figure 2A), 
and Cnp+/– mice compared with mice with mutations in other myelin-related genes (Mbp+/–, Plp–/y). Age of onset of catatonia in heterozygous mice (Cnp+/–, 
Mbp+/–) seen at around 60–72 weeks and in Plp–/y mice at 25 weeks. All data in A, B, C, F, and G were individually tested for Gaussian distribution using the 
Kolmogorov-Smirnov test. Nonparametric Kruskal-Wallis test was performed for B, C, and G for multiple group comparisons, followed by post hoc 1-tailed 
Mann-Whitney U test. Two-way ANOVA was performed for A and F, followed by post hoc 1-tailed unpaired t test. All data are shown as mean ± SEM; n 
indicated within bars.
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diately after weaning. The CSF1R inhibitor also proved effective 
for treatment of existing catatonia in older Cnp–/– mutants, in 
which it caused a reduction (but not prevention) of axonal degen-
eration. This is in line with CNP deficiency as a “driver” of neu-
rodegeneration following traumatic brain injury (42). However, 
the complete prevention of catatonic signs in the young Cnp-null 
mutants strongly suggests that catatonia is not caused by axo-
nal degeneration but is primarily a “microglial disease” induced 
by mild myelin perturbations. This conclusion is also supported 
by the catatonic phenotype in aged heterozygous Mbp mice that 
exhibit microglial activation (12), but will not develop the axonal 
degeneration phenotype of Plp- and Cnp-null mutant mice with 
motor impairments (14, 43).

We note that catatonic signs in mice are presently measured 
by the bar test only, which requires an experienced examiner to 
yield reproducible results. Having to build on a single readout may 
explain the cohort-to-cohort variation in the expression sever-
ity of this phenotype, which does not show consistent worsening 
over time (compared with WT controls). Thus, catatonic signs 
constitute a dichotomous variable in mice (yes/no) rather than a 
continuous one, as in humans. In fact, several readouts underlie 
the severity rating used here for humans (9 subtests of Cambridge 
Neurological Inventory [CNI], including gait mannerisms, gegen-
halten, mitgehen, imposed posture, abrupt, or exaggerated spon-
taneous movements, iterative movements, automatic obedience, 
and echopraxia; ref. 8). To obtain a similarly robust continuous 
measure for mice, more catatonia tests are presently being devel-
oped in our laboratory, but these tests still require replications in 
independent mouse cohorts and extensive crossvalidation with 
bar test results. We hope to ultimately provide a catatonia sever-
ity composite score for mice — as we previously established for 
autistic phenotypes (44) — which will then help diminish sample 
heterogeneity as typically obtained for single tests.

Interestingly, treating older Cnp mutants with PLX5622 was 
less effective in eliminating microglial cells. Thus, at least a sub-
population of microglia seems to become unresponsive to CSF1R 
inhibition in the course of neurodegeneration. This represents a 
therapeutically relevant observation that may reflect the activa-
tion status of these cells and deserves further investigation. Based 
on our data, we cannot exclude that some of these resilient cells 
are invading peripheral macrophages, known to be Iba1+ and 
perhaps resistant to PLX5622, or that a higher dose of PLX5622 
would have eliminated even those seemingly less responsive cells. 
The fact, however, that in our pilot experiments with older WT 
mice, a higher cumulative dose (8-week treatment versus 5-week 
treatment) had not resulted in any stronger depletion may point 
against this interpretation.

We point out that CSF1R inhibition also affects cells other than 
microglia, which may have contributed to the catatonic phenotype 
(45). Upon CSF1R inhibition, we saw not only a decline in CD3+ 
T cells that are attracted to the brain by the inflammatory milieu 
and may influence microglial behavior, but also a decrease in the 
GFAP+ area as a measure of robust astrogliosis. In addition, we 
noted a diminished number of PDGFRα+ oligodendrocyte precur-
sors following CSF1R inhibition, similar to what was shown earlier 
during brain development (29). We thus have to assume that indi-
rect effects could add to the therapeutic benefit of PLX5622.

4, 8, or 12 weeks after a single injection (all P ≥ 0.8 compared with 
PBS-injected controls), suggesting that just the myelin-associated 
inflammation is critical for catatonic signs.

Discussion
We have identified altered myelin gene expression and minor 
structural abnormalities of CNS myelin as the trigger of an inflam-
matory response predominantly in white matter tracts and an 
underlying cause of catatonic signs in the behavior of mice and 
humans. This provides a mechanistic insight into a previously 
enigmatic neuropsychiatric phenotype and expands our view on 
the role of white matter integrity in cognitive and executive func-
tions in general. Importantly, we have discovered a potential ther-
apy by targeting microglial cells, which emerge as mediators of 
this neuropsychiatric syndrome.

Our study was based on the previously reported “catatonia-
depression” phenotype of aged mice heterozygous for Cnp (11), 
which led us to a translational approach from mice to humans and 
back. Studying the deeply phenotyped GRAS sample of schizo-
phrenic patients (37, 38), we first demonstrated an age-dependent, 
unexpectedly high prevalence of more than 25% of catatonic 
signs, exceeding by far the current estimates of approximately 
0.2%–3.0% catatonia in schizophrenic subjects (5). This major dis-
crepancy is likely explained by the often-missed clinical diagnosis, 
in particular of the milder forms that are much more common and 
classified as neurological soft signs (8).

Importantly, we noticed that the more severe catatonic signs 
of GRAS patients are associated with rs2070106-AA, a CNP par-
tial loss-of-function genotype (13, 39, 40), a finding that we repli-
cated in an independent schizophrenia cohort. We could further 
show by MRI in a general population sample that CNP rs2070106-
AA subjects were more likely than G carriers (GG or AG) to dis-
play WMH in frontal and temporal brain areas as well as in deep 
brain structures. These subclinical findings are not unusual in 
healthy individuals, where they have been associated with vascu-
lar changes, demyelination, and activated microglia (19–21). Even 
though this literature is suggestive, we have of course no direct 
proof (e.g., brain biopsies) that inflammation is increased in white 
matter tracts of live human AA carriers. We note, however, that 
diffusion tensor imaging identified higher axial diffusivity and a 
higher apparent diffusion coefficient in the frontal part of the cor-
pus callosum of AA as compared with GG subjects, consistent with 
a more progressed axonal loss/degeneration (11). This finding fur-
ther supports the presence of at least low-grade inflammation in 
AA individuals.

While WMH in humans may be an indirect indicator of white 
matter inflammation, presence of the latter in Cnp–/– mice and its 
reduction upon microglia depletion were directly shown in the 
present study. In fact, since microgliosis is a feature of Cnp mutant 
mice (14) and aged Cnp heterozygotes exhibit a catatonia-depres-
sion phenotype together with late-onset brain inflammation (11), 
we tested our hypothesis that neuroinflammation itself is causal 
for the catatonic signs of myelin mutant mice. We chose to treat 
Cnp-null mutant mice at an age at which they were still free of 
motor impairments, and indeed, we could completely prevent 
catatonia onset in these young animals by depleting microglia via 
administration of the CSF1R inhibitor PLX5622 (22, 23, 41) imme-
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Catatonia in Cnp mutant mice was prevented by depletion of 
microglia at a young age and was even treatable in older animals. 
While this is important as a proof-of-principle, more research 
will be needed to define effects of repeated treatment cycles with 
CSF1R inhibitors as well as to delineate more specific pharma-
cological targets in activated microglia. In fact, repeated treat-
ment cycles with treatment-free intervals may still be effective, 
but reduce the risk of side effects, potentially resembling heredi-
tary diffuse leukoencephalopathy with spheroids (HDLS), a CNS 
white matter disease described in individuals with loss-of-function 
mutations of the CSF1R gene (54). Catatonic signs in patients with 
schizophrenia are generally mild and per se may not even require 
specific treatments. However, they likely constitute a surrogate 
marker for disturbance of broader executive functions and for cog-
nitive deficits, which are severely disabling and currently untreat-
able, but may also be responsive to specific microglia-targeting 
antiinflammatory therapies.

Methods

Human studies
GRAS sample of schizophrenic subjects. The GRAS data collection (37, 
38) involved deeply phenotyped patients (n = 1095, age 39.1 ± 12.7 
years; 66.8% men) diagnosed with schizophrenia or schizoaffective 
disorder according to DSM-IV-TR (55). Catatonic signs as the present 
study’s target phenotype are from the CNI (8). Genotyping of CNP 
SNP rs2070106 was performed using a semi-custom Axiom MyDesign 
Genotyping Array (Affymetrix) as reported previously (35, 56).

Würzburg replication sample. Schizophrenic subjects (n = 288, age 
41.4 ± 13.5 years; 54.5% men) were assessed categorically into catato-
nia versus no catatonia according to Leonhard’s classification (24), as 
described earlier (57). Genotyping of CNP SNP rs2070106 was per-
formed by means of a quantitative reverse-transcriptase PCR–based 
(qRT-PCR–based) system using a custom-made primer (KASP assay, 
LGC Genomics).

SHIP general population sample. A subsample (n = 552, age 46.2 
± 11.4 years; 42.6% men) of the baseline cohort of SHIP-TREND-0 
(accessible via application at www.community-medicine.com) was 
analyzed (58). Only individuals with available SNP information, valid 
brain MRI scans, complete covariate data, and no neurological con-
ditions were included. Genotyping was performed using the Illumina 
HumanOmni2.5-Quad and imputation of genotypes via IMPUTE 
v.2.1.2.3 against the HapMap II (CUv22, Build36) reference panel. The 
call rate was very high for the CNP SNP rs2070106 (1.00).

MRI acquisition. T1- and T2-weighted MRI were used to measure 
regional patterns of WMH. All images were obtained using a 1.5T Sie-
mens MRI scanner (Magnetom Avanto, Siemens Medical Systems) 
with an axial T1-weighted MPRAGE sequence and the following 
parameters: 1 mm isotropic voxels (flip-angle 15°); 3.37 ms echo time; 
1900 ms repetition time, and 1100 ms inversion time. Axial T2-FLAIR 
sequence had the following parameters: 0.9 × 0.9 mm in-plane spatial 
resolution; 3.0 mm slice thickness (flip-angle 15°); 325 ms echo time; 
5,000 ms repetition time. An automated multimodal segmentation 
algorithm for WMH determination produced a probabilistic map, 
thresholded to generate a binary image. Thresholding was based on 
the default threshold value obtained from algorithm training data. To 
calculate WMH volume within specific ROI, we applied a multiatlas 

A large number of studies in mouse models of neuropsychi-
atric disease have analyzed the contributions of single genes and 
developmental defects on cognitive dysfunction, autistic traits, 
signs of depression, and other mental disease–relevant pheno-
types (46–49). However, this research has mainly focused on neg-
ative and cognitive symptoms, which are easier to model in mice 
than any of the positive symptoms (delusions, hallucinations), 
most of which are considered human specific. Catatonia, defined 
in DSM-5 as a disease specifier for schizophrenia and major mood 
disorders (5), emerges as an intriguing exception, a positive symp-
tom, and quantifiable readout that can be studied across species.

Our study is, to our knowledge, the first molecular-genetic 
approach to catatonia and catatonic signs. However, we have to 
assume that the etiology of these conditions might be heteroge-
neous. Myelin perturbations may be just one of several possible 
causes. Further studies are needed to determine whether second-
ary neuroinflammation is always essential in the “final common 
pathway” to catatonia. The inefficiency, however, of LPS-mediated 
brain inflammation to induce catatonic signs in WT mice or to fur-
ther enhance them in catatonic Plp–/y mutants supports the concept 
of primary myelin alterations (or other underlying causes) being of 
critical importance for the development of a catatonic phenotype. 
In fact, peripheral LPS injection most likely acts by causing the liver 
to produce high levels of circulating TNF-α, which enters the brain 
at specific sites to incite the abnormal stimulation of endogenous 
microglia and trigger a vicious and long-lasting circle of events that 
may even lead to neurodegeneration (50, 51). Here, gray matter 
areas, such as dopaminergic nuclei, seem to be at higher risk than 
white matter, whereas myelin-associated inflammation is a unique 
feature of Cnp–/– and other myelin mutant mice.

The sudden loss of motor control in catatonia, followed by an 
equally sudden regaining of control — often within seconds — ulti-
mately suggests a dysfunction of synaptic circuitry. Importantly, we 
could show that chronic neuroinflammation in the subcortical white 
matter progresses into the cingulate cortex, where activated microg-
lia are known to perturb normal synaptic function (16). The pro-
duction of nitric oxide and axonal conduction blocks, for instance, 
constitute well-established links between activated microglia and 
neurodegeneration (52). Within the cortex, the inflammation asso-
ciated with myelinated fibers may also affect nonmyelinated axons 
and dendrites (as bystanders), but is probably rather transient or 
fluctuating because neuronal somata (unlike axons) and the synap-
tic circuitry are more likely to recover from acute mitochondrial per-
turbations caused by reactive oxygen species such as NO, as seen in 
chronic progressive multiple sclerosis (53).

Inflammation, identified in the present study as a major 
mechanism of catatonic signs, might also affect other pheno-
types of mental disease, which could explain the frequently 
observed fluctuations in their clinical presentation (“episodes”). 
Alteration of the body’s inflammatory state, as encountered in 
infectious diseases or even during the normal estrous cycle (lute-
olysis), may have an additional amplifying impact on inflam-
mation within the CNS and thus contribute to the still poorly 
explained episodic course of many neuropsychiatric diseases. 
Also, the most severe acute form of catatonia, the life-threaten-
ing febrile pernicious catatonia (4), may represent a fulminant 
inflammation of white matter tracts.
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Wako), GFAP (mouse, 1:500, catalog NCL-GFAP-GA5, Novocastra-
Leica), CD3 (rat, clone CD3-12, 1:100, catalog MCA1477, Bio-Rad), 
CD68 (rat, 1:400, catalog MCA1957GA, Bio-Rad), PDGFRα (rabbit, 
1:300, catalog 3174, Cell Signaling), or APP (mouse, 1:850, catalog 
MAB348, Chemicon-Millipore) in 3% NHS/0.5% Triton X-100 in PBS 
over 2 nights at 4°C. For fluorescent microscopy, 1 hour incubation at 
room temperature with donkey anti-rabbit Alexa Fluor 647 (catalog 
A-31573), donkey anti-mouse Alexa Fluor 488 (catalog A-21202), goat 
anti-rat Alexa Fluor 647 (catalog A-21247), or goat anti-rabbit Alexa 
Fluor 555 (catalog A-21428) antibodies (1:1,000; Thermo Fisher Sci-
entific-Life Technologies) in 3% NHS/0.5% Triton X-100 in PBS was 
used. For DAB-based immunostaining, biotinylated horse anti-mouse 
antibody (1:200; Vector Laboratories) in 3% NHS/0.5% Triton X-100 
in PBS and subsequent Vectastain Elite ABC Kit (Vector Laboratories) 
were used according to the manufacturer’s instructions. Cell nuclei 
were counterstained with DAPI (1:5,000, Sigma-Aldrich) or Mayer′s 
hemalum solution (Merck).

Morphometry. For the analysis of Iba1, GFAP, CD3, CD68, and 
PDGFRα fluorescent staining, brain slices were scanned using an 
inverted epifluorescent microscope with a 20×/NA0.4 or 40×/
NA0.6 objective lens (Leica, DMI6000B) and quantified using Fiji 
software (http://fiji.sc/Fiji). Corpus callosum or cingulate cortex 
(Cg1 and Cg2) of each brain was defined on a DAPI channel as ROI. 
Iba1+DAPI+, CD3+DAPI+, and PDGFRα+DAPI+ cells were manually 
counted and density calculated with normalization to ROI. GFAP+ 
and CD68+ regions were quantified upon uniform thresholding with 
the respective area expressed as percentage of corpus callosum. 
APP+ swellings were manually counted using a light microscope 
(Olympus BX-50) connected to a computer-driven motorized stage, 
z-axis position encoder (microcator), and a microfire video camera 
interfaced to a PC using Stereo Investigator 6.55 software (Micro-
Brightfield Inc.). Representative images of APP+ swellings were tak-
en with a light microscope with a 100×/NA 1.30 oil objective lens 
(Zeiss Imager Z1).

MRI and 1H-MRS. Mice were anesthetized with 5% isoflurane, 
intubated, and kept at 1.75% isoflurane by active ventilation with a 
constant respiratory frequency of 85 breaths/min (Animal Respirator 
Advanced, TSE Systems). MRI and localized 1H-MRS were performed 
at a magnetic field strength of 9.4T (Bruker BioSpin). MRI consisted 
of T2-weighted images (2D-FSE, TR/TE = 2800/11 ms, 100 × 100 × 
300 μm3) based on which respective volumes of interest for localized 
proton-MR spectra were positioned. MR spectra (STEAM, TR/TE/
TM = 6,000/10/10 ms) were obtained from a volume of interest in the 
cortex (3.9 × 0.7 × 3.2 mm3) and corpus callosum (3.9 × 0.7 × 1.7 mm3). 
Metabolite quantification was completed with spectral evaluation by 
LCModel (Version 6.3-1L). Results with Cramer-Rao lower bounds 
greater than 20% were excluded from further analysis.

Statistics
Group differences for continuous variables in human samples were 
assessed using the Kruskal-Wallis and Jonckheere-Terpstra trend 
tests. Genotype comparisons used the χ2 test. Multivariate linear 
regression models were run with WMH volume as a dependent vari-
able and rs2070106 genotype-age interaction term as a predictor 
of interest. WMH volumes were transformed via cubic root due to 
their highly skewed distributions (20). For whole brain, total WMH 
volume was calculated summing all clusters greater than 10 mm3 to 

segmentation method. This included nonlinear registration of multi-
ple atlases with ground-truth labels for every individual scan. Finally, 
WMH was determined for every region of the brain by masking WMH 
from all other regions (20).

Mouse studies
In all experiments, the experimenter was unaware of mouse geno-
types and treatments (fully blinded).

Mouse maintenance and genotyping. Male and female mice were 
group-housed separately in ventilated cabinets (Scantainers; Scan-
bur Karlslunde) unless otherwise indicated for experiments requir-
ing single housing. Mice were maintained on a 12-hour light/12-hour 
dark cycle (lights off at 7 pm) at 20–22°C, with access to food and 
water ad libitum, woodchip bedding, and paper tissue as nesting 
material. Mutant mice (all C56BL/6J background) were genotyped 
as previously described for Cnp (11, 14), Mbp (12), and Plp (30). Only 
males were used for experiments with Mbp and Plp mutants, while 
both females and males were used for experiments with Cnp mutants 
(housing and testing were always separated). We did not observe any 
gender differences in catatonic signs. The following neuropsychiatric 
phenotype-relevant mouse lines, with mutations affecting synapses, 
blood-brain barrier function or autophagy, were used as controls: 
Psd93–/– (Dlg2–/–), Psd95–/– (Dlg4–/–) (33), Nlgn4–/– (31), Cadps1–/– (32), 
ApoE–/– (35), and Ambra1+/– (34).

Treatments. PLX5622 (formulated in AIN-76A standard chow by 
Research Diets; 1,200 ppm) and control food (AIN-76A) were pro-
vided by Plexxikon Inc. (22, 23). For tracking of potential batch-to-
batch variations in future studies, PLX5622 lot numbers are given: 
17032710A5TT1.0i; 16010809A9TT1.0i; 17010309A7TT1.0i; and 
16092608A1TT1.0i. LPS was injected intraperitoneally (5 mg/kg LPS; 
O111:B4; Sigma-Aldrich).

Bar test for catatonia. All mice were transferred to the experi-
mental room 30 minutes prior to testing for habituation. The bar test 
was performed as previously described (11, 59). Briefly, the mouse 
was gently carried by the tail to a horizontal bar made of stainless 
steel (12 cm length, 2.5 mm diameter). Upon grasping the bar with 
both forepaws, the mouse was moved downwards so that its hind 
paws had contact with the floor before its tail was released. All 
experiments were recorded using a high-resolution camcorder (Sony 
HDR-CX405, Sony Europe Limited). Catatonic signs were scored 
manually from video recordings as the duration of uninterrupted 
time a mouse stood nonmoving with at least 1 forepaw on the bar 
and both hind paws on the ground. Scoring was performed by trained 
observers blinded to treatments and genotypes (for illustration, see 
Supplemental Video 1).

Immunohistochemistry. Anesthetized mice were perfused with 
Ringer’s solution (Braun) followed by 4% formaldehyde. Brains were 
collected, postfixed overnight in 4% formaldehyde, cryoprotected 
in 30% sucrose, and stored at –80°C. Whole mouse brains were cut 
into 30-μm–thick coronal sections on a cryostat (Leica, CM1950) and 
kept in storage solution (25% ethylene glycol/25% glycerol in PBS) at 
–20°C. For APP and CD3 staining, sections were microwaved in citrate 
buffer (1 mM, pH 6.0) and for APP detection further pretreated in 3% 
H2O2. All sections were permeabilized and blocked with 5% normal 
horse serum (NHS)/0.5% Triton X-100 in PBS for 1 hour at room 
temperature. Sections at a bregma level between +1.15 and +0.5 mm 
were immunostained for Iba1 (rabbit, 1:1,000, catalog 019-19741, 
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ses, all models described above were rerun using bootstrap method-
ology (2,000 replications) to derive SEM and CI independently of 
parametric assumptions such as Gaussian distribution or homosce-
dasticity. No major differences in standard ordinary least squares 
results were found. For mouse statistics, data distribution and vari-
ance homogeneity were determined by Kolmogorov-Smirnov test 
and outliers via the Grubbs test (https://graphpad.com/quickcalcs/
Grubbs1.cfm). Two-way ANOVA with/without repeated measures 
was used for normally distributed data. Kruskal-Wallis test was used 
for data without normal distribution. Between-group comparisons 
were performed by Student’s t test for dependent/independent 
samples or Mann-Whitney U test. P ≤ 0.05 was considered signifi-
cant. All statistical analyses were performed using SPSS (v 17.0; IBM-
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Project II 

Isolated catatonia-executive dysfunction complex in aged mice 

induced by forebrain-specific loss of myelin integrity 

 

Outline of the project 

In the framework of my first project we reported on a myelin gene-associated catatonic 

phenotype in Cnp-/- mice (Janova et al., 2018). Importantly, the phenotype was accompanied by 

neuroinflammation and -degenerative processes in white matter tracts and the cingulate cortex. 

Depletion of microglia at young and old age by usage of PLX5622 alleviated the phenotype on 

a behavioral and neuropathological level.  Based on these findings, we aimed to characterize the 

phenotype of microglia undergoing depletion and upon repopulation in a subsequent study, and 

found catatonia and executive function to correlate in mice and men (Garcia-Agudo et al., 2019). 

The latter can be described as a complex cognitive function of higher-order (Diamond, 2013), 

even though historically diverse theories along with a respective battery of experimental 

approaches have been described (Chan et al., 2008). However, the importance of the frontal 

lobes and dominant functions of the PFC are well-accepted (Alvarez & Emory, 2006; 

Chudasama, 2011; Yuan & Raz, 2014). Knowing that Plp1 constitutive KO mice exhibit 

catatonic signs and impaired executive function in adulthood (Gould et al., 2018; Janova et al., 

2018), I aimed to investigate the impact of neuroinflammation of frontal brain structures on 

these phenotypes, by application of cKO mice.  

 
(I) Immunohistochemical control of functionality of the mouse model 
 
In close collaboration with Prof. Klaus-Armin Nave, Ph.D., and PD Dr. Hauke B. Werner from 

the department of Neurogenetics from the Max Planck Institute of Experimental Medicine, we 

generated cKO mice lacking Plp1 in frontal brain structures by crossing Plpfl/fl mice to mice 

expressing Cre recombinase under control of the Emx1 promotor (Gorski et al., 2002). By 

application of immunohistochemical measures PD Dr. Werner and co-workers confirmed the 

functionality of the cKO mouse model, since Plp was essentially lacking in frontal brain 

structures such as the PFC and the hippocampal fimbria as well as the CC, but present in control 

regions. Additionally, Plp and DM20 were absent in the PFC, while expression was not affected 

in the cerebellum by immunoblot.
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(II) Assessment of neuropathology in cKO mice 
 
To assess neuropathology in cross-sectioned brain slices, we conducted respective 

immunohistochemical experiments in close collaboration with PD Dr. Werner and co-workers, 

targeting axonal spheroids (APP+), neuroinflammation (IBA1+, MAC3+) and astrogliosis 

(GFAP+). Analysis of these features was performed in sections of the hippocampal fimbria, the 

CC and the PFC with diverse results. Analysis of the former two brain regions revealed 

neuropathological features known from other Plp1 KO mouse models (Griffiths et al., 1998; 

Lüders et al., 2019; Lüders et al., 2017), comprising significant increases in all measured 

parameters. However, none of these were affected in the PFC. 

 
(III) Behavioral characterization of the mouse model 

 
Founded on our knowledge that constitutive Plp1 KO mice exhibit catatonic signs and executive 

dysfunction upon adulthood (Gould et al., 2018; Janova et al., 2018), I investigated the relevance 

of white matter integrity of frontal brain structures in this respect by application of these novel 

cKO mice. To this end, I conducted a longitudinal and elaborate behavioral characterization of 

mice of both genders. Experimental approaches covered a wide spectrum of behavioral domains 

including motor function and coordination, sensory functions, sensorimotor gating, social 

behavior, depression-like behavior and cognitive abilities such as working memory, spatial 

memory, cognitive flexibility and perserveration. Interestingly, cKO mice of both genders were 

not affected in any of these measures. However, cKO mice specifically exhibited an age-

dependent phenotype comprising catatonic signs and executive dysfunction. The latter was 

assessed by application of an adapted version of the Puzzle box (Ben Abdallah et al., 2011; 

Gould et al., 2018; O'Connor et al., 2014) and a modified version of a novel behavioral 

experiment we recently developed in our group, the Hurdle test. We had previously reported 

the latter to correlate with catatonic signs in another mouse model of catatonia (Garcia-Agudo 

et al., 2019). Importantly, the most prominent behavioral phenotype of constitutive KO mice, 

impaired RotaRod performance (Griffiths et al., 1998), was unaffected in our novel mouse 

model measured at adulthood and progressed age as well as via overnight complex running 

wheel (CRW) performance, thereby delineating frontal brain executive control from this motor 

phenotype.  
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Original manuscript for publication 
 
Arinrad, S., Siems, S.B., Eichel, M.A., Depp, C., Ronnenberg, A., Hammerschmidt, K, Lüders, 

K.A., Werner, H.B., Ehrenreich, H. and Nave, K.A. (currently under revision). Isolated 

catatonia-executive dysfunction complex in aged mice induced by forebrain-specific loss of 

myelin integrity.  

 

 

Personal contributions: Under supervision of Prof. Dr. Dr. Hannelore Ehrenreich and in 

close collaboration with PD Dr. Hauke B. Werner and Prof. Klaus-Armin Nave, I was 

particularly responsible for all behavioral mouse studies conducted in the process of this 

publication. All mice described here in the context of behavioral assessments were under my 

care and monitored maintenance, starting at the age of 6 weeks up to the age of 22 to 23 months. 

During this timeframe, I successively characterized cKO and control mice of both genders 

behaviorally, by applying elaborate longitudinal behavioral assays along with respective data 

analyses. In this process, I covered various behavioral domains such as general health 

monitoring, motor performance and coordination, sensory function, sensorimotor gating, pain 

perception, social behavior, depression-like behavior and cognitive abilities (supplementary 

Table 1). In particular, I applied behavioral measures to assess catatonia and executive function 

in all mice from adolescence to progressed age (Figures 3 – 4, supplementary Table 1). In this 

context, I modified a novel behavioral assay to assess executive function, the Hurdle test (Figure 

3 E-F), and further established a modified version of an additional known behavioral test in this 

regard, the Puzzle box (Figure 3 C-D, Figure 3 – supplement 1).  As a critical behavioral control 

experiment, with respect to known phenotypes upon null mutations of Plp1, I specifically 

conducted the RotaRod test (Figure 3 – supplement 2) and overnight CRW (Figure 4), to asses 

motor performance and motor learning abilities. Anja Ronnenberg assisted with distinct 

behavioral setups and I assisted Dr. Kurt Hammerschmidt in executing experiments in male 

mice to assess vocalization (supplementary Table 1). I carried out statistical analyses of all 

behavioral experiments. In conclusion, I was also actively involved in the assembly of figures, 

display items and supplementary information as well as preparation of the manuscript itself. 

Specifically, I prepared the supplementary Table 1 and wrote the entire material and methods 

section on mouse behavior as well as proofreading of the manuscript.
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ABSTRACT 

 

A key feature of advanced brain aging includes structural defects of intracortical myelin that is 

associated with secondary neuroinflammation. A similar pathology is seen in specific myelin 

mutant mice that model 'advanced brain aging' and exhibit a range of behavioral abnormalities. 

However, the cognitive assessment of these mutants is problematic because myelin-dependent 

motor-sensory functions are required for quantitative behavioral readouts. To better understand 

the role of cortical myelin integrity for higher brain functions, we generated mice lacking Plp1, 

encoding the major integral myelin membrane protein, selectively from ventricular zone stem 

cells of the mouse forebrain. In contrast to conventional Plp1 null mutants, subtle myelin defects 

were restricted to the cortex and underlying callosal tracts. Moreover, forebrain-specific Plp1 

mutants exhibited no defect of basic motor-sensory performance at any age tested. Surprisingly, 

several behavioral alterations reported for conventional Plp1 null mice (Gould et al., 2018) were 

absent and even social interactions appeared normal. However, with novel behavioral 

paradigms, we determined catatonia-like symptoms and isolated executive function defects in 

both genders at older age. This suggest that loss of myelin integrity has an impact on cortical 

connectivity and underlies specific defects of executive function, emerging only with increasing 

age. These observations are likewise relevant for human brain aging and neuropsychiatric 

conditions. 
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INTRODUCTION 

 

In the central nervous system (CNS), oligodendrocytes synthesize myelin to facilitate rapid 

impulse conduction of axons and to support functional integrity (Nave & Werner, 2014; Stassart 

et al., 2018). The formation and preservation of healthy myelin is a prerequisite for normal 

motor and sensory functions, as indicated by human myelin diseases and their corresponding 

mouse models, which have been studied in more detail at the molecular and cellular level. The 

servere developmental defects myelination that affect children at a young  

age are dominated by the lack of motor development and severe neurological defects, often  

leading to premature death. Only milder perturbations of myelination make the associated  

delays of cognitive development obvious, but they are still masked by severe neurological  

impairments. Some demyelinating diseases of adult onset are degenerative in nature and  

begin with psychiatric symptoms, including psychosis, such as in metachromatic  

leukodystrophy (Baumann et al., 2002). Indeed, there is increasing evidence of  

oligodendrocyte and white matter defects in a range of neuropsychiatric diseases (Nave &  

Ehrenreich, 2014; Zhou et al., 2021). Moreover, advanced brain aging in healthy individuals is 

associated with subtle myelin defects, as first demonstrated by electron microscopy in aged  

non-human primates (Peters et al., 2002). This raises the question whether structural myelin  

abnormalities play a role in age-dependent cognitive decline. 

 

In psychiatric patients it is difficult to decide whether the correlation of MRI detectable white  

matter abnormalities or the ultrastructural loss of myelin integrity are the cause or effect of  

(age-dependent) neuronal dysfunctions, or even caused by long-term pharmacological  

interventions (Nave & Ehrenreich, 2014). Thus, novel genetic animal models are required to  

define the role of oligodendrocytes and subtle myelin defects as an underlying cause of a  

psychiatric phenotype (Hagemeyer et al., 2012). Unfortunately, the cognitive testing of mice  

depends on quantitative behavioral readouts which are affected by subcortical and myelin- 

dependent motor-sensory functions. 

 

An entire range of myelin abnormalities with a corresponding wide spectrum of clinical defects 

characterizes mutations of the proteolipid protein gene (PLP1/Plp1). The X-linked gene is 

highly expressed in oligodendrocytes and encodes a tetraspan membrane protein of CNS myelin 

(PLP) along with a minor splice isoform, termed DM20 (Jahn et al., 2009; Milner et al., 1985; 

Nave et al., 1987). At one end of the disease spectrum, PLP1 mutations cause the expression of 

misfolded proteins that trigger oligodendroglial ER stress, apoptosis, hypomyelination and 
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connatal leukodystrophy (Pelizaeus-Merzbacher disease, PMD) with  

premature death in children and corresponding mouse mutants (Nave and Boespflug-Tanguy, 

1996). At the other end, the mere loss-of-function (null) mutations of PLP1, such as by a 

genomic deletion or in Plp1 null mice (Klugmann et al., 1997), cause late onset  

neurodegeneration (Griffiths et al., 1998), modeling spastic paraplegia type 2 (SPG2) in  

humans (Inoue, 2019; Saugier-Veber et al., 1994). The isolated loss of axonal integrity in the  

presence of myelin led to the concept that oligodendrocytes not only facilitate impulse  

propagation but also maintain the axonal integrity (Griffiths et al., 1998; Nave, 2010). The latter 

includes glycolytic support of axonal energy metabolism (Fünfschilling et al., 2012; Lee et al., 

2012) and most likely other cellular interactions, such as anti-oxidant defense (Mukherjee et al., 

2020). 

 

Loss of myelin integrity and axonal degeneration are invariably associated with secondary  

neuroinflammation (Kassmann et al., 2007; Lappe-Siefke et al., 2003). Recently, we  

discovered in different myelin mutant mice that microgliosis causes a unique behavioral  

phenotype: when mice were placed with their forepaws onto a horizontal bar, wildtype animals 

turn away within 0.2s, whereas these mutants exhibit longer response times. We hypothesized 

that this delay reflects the loss of higher brain (executive) functions rather than a motor 

impairment. Strikingly, these 'catatonic signs' were completely lost following the targeted 

pharmacological depletion of microglia (Janova et al., 2018). In an independent study (Gould et 

al., 2018), Plp1 null mice showed defects in the 'puzzle box' paradigm, which measures the 

escape latency from a brightly lit open space into a shelter via a mechanically blocked entry. 

Successfully overcoming these obstacles is also considered an 'executive function' (Ben Abdallah 

et al., 2011; Gould et al., 2018; O'Connor et al., 2014; Pease-Raissi et al., 2018). 

 

Human catatonia and the loss of executive functions may result from defects in the frontal  

lobes and its underlying white matter (Arora et al., 2007; Northoff et al., 2004), but experimental 

evidence is lacking. To test whether executive functions are specifically dependent onforebrain 

integrity, we targeted the floxed Plp1 allele (Lüders et al., 2019) in mice expressing Cre under 

control of the Emx1 promoter in ventricular zone stem cells (Gorski et al., 2002). When 

applying a large battery of behavioral tests on adult mutants of both sexes, we found impaired 

executive functions at adult ages, coinciding with well-known histopathological signs of 

advanced white matter aging. Surprisingly, this was in the presence of unchanged motor-sensory 

performance, memory functions and social behavior. Our genetic data are thus in strong support 
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of the hypothesis that the integrity of myelinated fibers in the forebrain is critical for isolated 

aspects of executive functions. 

 

RESULTS 

 

Targeting PLP expression in the mouse forebrain 

We crossbred mice harboring a floxed Plp1 allele (Lüders et al., 2017) with mice expressing  

Cre recombinase under control of the Emx1 promoter (EmxCre mice; Gorski et al., 2002),  

yielding experimental male (Plpflox/Y*EmxCre) and female (Plpflox/flox*EmxCre) mice, termed cKO in 

the following, as well as male Plpflox/Y and female Plpflox/flox mice as controls (Ctrl). EMX1 is a 

homeobox transcription factor in ventricular zone stem cells of the forebrain, including the 

prefrontal cortex, neocortex, corpus callosum and hippocampal fimbria (Gorski et al., 2002). 

Substantial reduction of PLP in the fully myelinated target region was confirmed in 22 months 

old mice by light-sheet microscopy (Figure 1A,B). By Western blotting of prefrontal cortical 

lysates, PLP/DM20 was hardly detectable, whereas the abundance of myelin basic protein 

(MBP), another myelin-specific structural protein (Boggs, 2006; Nawaz et al., 2013), was 

unchanged (Figure 1C). Using the cerebellum as a control region that lacks Emx-Cre 

expression, the abundance of PLP/DM20 did not differ between genotypes (Figure 1D). The 

detection of isolated PLP positive cells in the forebrain indicates that recombination efficacy 

did not reach 100%. However, since expression of Plp1 is restricted to oligodendrocytes (Lüders 

et al., 2017; Trapp et al., 1997), phenotypical effects are caused by the vast majority of PLP-

deficient oligodendrocytes. 

 

Restricted neuropathology 

Conventional Plp1 null mutant mice develop a secondary axonopathy throughout the CNS at 

higher age (Griffiths et al., 1998). In Plp1 cKO mice this neuropathology was largely restricted 

to the forebrain. We studied 17 months and 22 months old mice by immunohistochemistry and 

found amyloid precursor protein (APP) positive axonal spheroids in white matter structures of 

the forebrain, such as the hippocampal fimbria (Figure 2A,B and I,J, respectively). 

Ventricular enlargement was obvious. APP+ axonal spheroids were also increased in the dorsal 

corpus callosum, although less pronounced (Figure 2-supplement 1A,B). In contrast, the 

prefrontal cortex itself did not exhibit APP+ axonal spheroids (Figure 2-supplement 1I,J) at 

22 months, the oldest age tested. However, axonal pathology included some white matter 

structures outside the Emx1 expression domain. We presume these reflect distal axonal 
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projections from neurons in the target region, such as fibers in the internal capsule (Figure 

2I,J). 

 

Inflammation in white matter tracts 

At higher age, Plp1 null mutant mice show widespread microglia activation and astrogliosis (de 

Monasterio-Schrader et al., 2013; Griffiths et al., 1998), presumbably triggered by progressive 

axonopathy and/or oligodendroglial stress signals. Staining 22 months old mice for astroglial 

GFAP (glial fibrillary acidic protein) and two microglial markers, MAC3 (lysosomal associated 

membrane protein 2) and IBA1 (ionized calcium-binding adaptor molecule 1), gliosis was 

increased in the hippocampal fimbria and in the corpus callosum of Plp1 cKO mice (Figure 

2C-H; Figure 2-supplement 1C-H). Interestingly, the prefrontal cortex itself, comprising 

numerous myelinated axons, did not show these signs of gliosis (Figure 2-supplement 1K-P). 

 

Behavioral defects of Plp1 cKO mice 

In contrast to Plp1 null mice (Griffiths et al., 1998), Plp1 forebrain-specific mutants remained  

free of spasticity and motor impairments at any age. On the rotarod, the latency to fall did not 

differ between cKO and control at 6 months and 17 months of age, also when quantified  

separately for males and females (Figure 3-supplement 2). Details are summarized in  

supplemental Table 1. Interestingly, in several other behavioral paradigms, in which  

conventional Plp1 null mice were affected (Gould et al., 2018; Petit et al., 2014), the Plp1 cKO 

mice were normal; e.g. hot plate (pain), beam balance (coordination), motor performance and 

olfaction. 

 

On the other hand, Plp1 cKO mice showed and shared defects in paradigms that measured  

executive functions. Exclusively in our test set-up, the 'bar test' was included and repeatedly  

performed. For this, mice were placed with their forelimbs against a horizontally held rod  

(Hagemeyer et al., 2012; Janova et al., 2018; Poggi et al., 2016). Here, adult Plp cKO mice  

showed an extended response time, in which the apparent immobility constitutes a ‘catatonia-

like’ feature (Figure 3A,B). Both female and male groups showed delayed response times on 

the bar, also when tested at several ages. 

 

We also employed the 'puzzle box' paradigm, a problem solving task, using skills obtained in  

previous stages of the test (Ben Abdallah et al., 2011; Gould et al., 2018; O'Connor et al.,  

2014). Placed into the brightly lit area of an open arena, the latency to reach entry into a ‘safe  

box’ was monitored, but made increasingly difficult by a series of camouflaging tools. When  
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assessed at the age of 18 and 20 months, both male and female Plp1 cKO mice, exhibited  

significant delays compared to controls, respectively (Figures 3C and 3D). 

 

We additionally found performance differences of Plp1 cKO mice in comparison to controls in 

an adapted 'hurdle test' that measures ‘executive function’. Mice were placed into the middle 7 

of a 120 cm round open field that was divided into squares (5 x 5 cm), separated from each 

other by 5 cm 'hurdles', but 2.3 cm higher than in our previous experiments (Garcia-Agudo et 

al., 2019). We measured the time it took Plp1 cKO mice and controls to reach the periphery of 

this arena. Since motor performance was not affected, a longer than normal latency reflects a 

reduced goal-directed orientation towards the periphery, an executive psychomotor function, 

together perhaps with dampened motivational force. While behaving normally at age 6 months, 

when analyzed at the age of 18 months, male Plp1 cKO mice required more time to reach the 

periphery in two of two trials (Figure 3F), in agreement with an age-dependent decline of white 

matter integrity. Interestingly, in subsequent trials mutant mice often lost this abnormal delay, 

which confirms an abnormal executive function rather than motor impairments. Female Plp1 

cKO mice displayed the longer delay in the first of two trials already at the age of 6 months, but 

when tested again at 20 months only with a non-significant trend. This demonstrates 

contributory effects of both, sex and age, in this paradigm (Figure 3E). 

 

Finally, we assessed the performance of Plp1 cKO and controls at more advanced age (23  

months) on the ‘complex running wheel’ (CRW), a paradigm testing cortical motor learning that 

involves myelinating oligodendrocytes (Gibson et al., 2014; McKenzie et al., 2014). Both  

female and male groups displayed significantly reduced total running distance and running  

times (Figures 4A,B and 4C,D, respectively). Since the average running speed did not differ 

between cKO and control groups (Figure 4E,F), this performance difference may reflect a 

reduced drive rather than altered motor learning, in accordance with a feature of executive 

dysfunction in the Puzzle box and Hurdle test paradigms.
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DISCUSSION 

 

We report the generation and behavioral analysis of a novel mouse mutant, in which the lack  

of oligodendroglial Plp1 expression was spatially restricted to neocortex, hippocampus and  

corpus callosum by targeting Plp1 in ventricular zone stem cells of the embryonic forebrain.  

Since Plp1 is only required by oligodendrocytes in the CNS (Lüders et al., 2019), the resulting  

conditional mouse exhibits a region- and cell type-specific defect. This allowed behavioral tests 

of higher brain functions that rely on motor output, because the myelinating oligodendrocytes 

in cerebellum and spinal cord, which contribute to basic motor-sensory functions, were spared.  

 

The Plp1 gene was chosen as a target, because the cardinal features of PLP-deficiency are  

slowly-progressive axonopathy in the presence of close to normal amounts of myelin, with  

ultrastructural features reminiscent of advanced brain aging (Griffiths et al., 1998; Janova et al., 

2018). Moreover, the Plp1 null mutation in mice is a genetic model of human Spastic  

Paraplegia type-2 (SPG2; Garbern et al., 2002). The conventional Plp1 null mutation in mice  

(Klugmann et al., 1997), which has recently been studied at the behavioral level (Gould et al.,  

2018), can be directly compared. 

 
The pathology in the forebrain of Emx-Cre::Plp1flox/flox mice occurred exactly as predicted and 

includes previously described subtle ultrastructural abnormalities of PLP-deficient myelin 

(Klugmann et al., 1997; Möbius et al., 2016; Patzig et al., 2016; Rosenbluth et al., 2006) that 

become disease relevant at age one year. We have shown that PLP, which provides structural 

stability to compact myelin, also stabilizes the architecture of the 'myelinic channel system' 

(Steyer et al., 2020). The latter is a cytosolic space that connects the oligodendroglial cell body 

with the peri-axonal myelin compartment that contains transporters involved in axonal 

metabolic support. We could further show that conventional Plp1 KO mice, which are well 

myelinated, exhibit lower ATP levels in axons of the optic nerves compared to controls, when 

analyzed with transgenically expressed metabolic sensors (Trevisiol et al., 2020). This makes it 

likely that conduction blocks, axonal swellings and neurodegeneration are caused by perturbed 

axonal energy metabolism (Fünfschilling et al., 2012; Lee et al., 2012; Saab et al., 2016; Trevisiol 

et al., 2017). In addition, axonal degeneration leads to secondary  

neuroinflammation. We note that other myelin mutants, such as Cnp KO mice (Lappe-Siefke  

et al., 2003), exhibit an even earlier onset of axonal pathology that virtually coincides with the 

onset of neuroinflammation (Edgar et al., 2009). 
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This raises the possibility that inflammation in myelinated tracts is a more general response of 

resident microglia to oligodendrocyte dysfunctions, possibly reflecting the failure to deliver 

lactate to the axonal compartment and its release into the extracellular space. It is this secondary 

neuroinflammation that contributes to reversible catatonic signs in myelin mutant mice (Janova 

et al., 2018) and that can now be defined as a clinical feature of forebrain-specific white matter 

disturbance. 

 

Theoretically, the specific behavioral defects of Plp1 cKO mice could be caused by (1) the  

moderate decrease of the axonal conduction velocity that was previously reported (Gould et  

al., 2018; Gutiérrez et al., 1995), (2) the progressive axonopathy that is caused by energy  

deficits and is likely preceded by conduction blocks in fiber tracts that appear morphologically 

intact (Trevisiol et al., 2020), (3) the secondary neuroinflammation and gliosis, as also 

documented for Cnp KO mice (Garcia-Agudo et al., 2019; Janova et al., 2018), another mutant 

with structural abnormalities of myelin (Lappe-Siefke et al., 2003; Snaidero et al., 2017), or (4) 

any combination hereof. The age-dependent increase of symptom severity suggests that the 

responsible mechanisms are the progressive myelin-dependent axonopathy (including 

conduction blocks) plus neuroinflammation rather than conduction delays. That is in agreement 

with the “rescue” of the catatonic signs, which we consider a readout of reduced executive 

functions, by microglial depletion (Janova et al., 2018). We also note that reduced conduction 

velocity has by itself little impact on cortical processing, as we have shown for auditory signalsin 

shiverer mice (Moore et al., 2019). 

 

With respect to CNS regions, the present work further uncouples the role of myelinated tracts 

for basic motor performance and executive functions. Conventional Plp1 KO mice exhibit first 

behavioral abnormalities at the age of 3 months (Gould et al., 2018), i.e. before the impairment 

of motor performance that we had initially determined by rotarod experiments (Griffiths et al., 

1998). Here, we show in Plp1 cKO mice that the forebrain-specific loss of axon-myelin integrity 

impairs selectively executive functions that require the multimodal integration of cortical 

processing upstream of any motor output. Motor performance itself was spared at any age 

tested. Also olfactory and thalamic input as well as emotionally relevant input into (and from) 

the amygdala should be less affected in Plp1 cKO mice, which could explain different behaviors 

of conventional Plp1 KO mice (Gould et al., 2018).  

 

The principle finding that (PLP-dependent) aging processes affecting myelin and axonal  

integrity in the forebrain cause the impairment of executive functions is relevant to higher brain 
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functions in aging humans independent of PLP itself. Similar ultrastructural abnormalities of 

myelin were found in the cortex of aged primates (Peters et al., 2012) and are associated with 

low grade inflammation, all of which is triggered in our mouse model prematurely by the 

absence of PLP. We have previously shown that mice with reduced Cnp1 gene dosage show 

virtually all these features of the aging white matter approximately 8 months earlier than 

corresponding wildtype controls, and are thus models of "advanced" aging (Hagemeyer et al., 

2012). It is plausible that our observations in aging white matter and its functional impact in 

mouse mutants can be carefully extrapolated to the aging human brain, which is not amenable 

to comparable ultrastructural analyses. The resulting working hypothesis is that age-dependent 

loss of structural integrity of myelinated fibers in the forebrain reduces executive functions. It 

will be important to learn whether these changes are a risk factor for age-dependent psychiatric 

conditions, including dementia. 
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MATERIALS AND METHODS 

 

Mouse model 

To delete the Plp1 gene in the forebrain we interbred Plpflox mice in which exon 3 of the Plp1 

gene is flanked by loxP sites (Lüders et al., 2019; Lüders et al., 2017; Wang et al., 2017) with 

mice expressing Cre recombinase under control of the Emx1 gene promoter (Gorski et al., 

2002) on C57Bl/6N background. Genotyping was as reported previously (Gorski et al., 2002; 

Lüders et al., 2017). Experimental male Plpflox/Y*EmxCre and female Plpflox/flox*EmxCre mice are 

termed conditional knockout mice (cKO) whereas male Plpflox/Y and female Plpflox/flox mice  

served as controls (Ctrl). Mice were bred and kept in the animal facility of the Max Planck  

Institute of Experimental Medicine with a 12 h light/dark cycle and 2–5 mice per cage. All  

experiments were performed in accordance with the German animal protection law (TierSchG) 

and approved by the Niedersächsisches Landesamt für Verbraucherschutz und  

Lebensmittelsicherheit (LAVES); License numbers were 33.19-42502-04-15/1833 and 33.19-

42502-04-18/2803.  

 

Light-sheet microscopy (LSM) 

Light-sheet microscopy to detect PLP labelling displayed in Figure 1 A,B was perfomed as  

follows. Animals were sacrificed using CO2 followed by transcardial perfusion with HBSS and 

Paraformaldehyd (4%) in PBS. Brains were extracted and postfixated in 4% PFA/PBS  

overnight and stored in PBS at 4°C until further use. Brains were cut using a 1mm custom  

made brain matrix and subjected to whole mount staining and clearing. Samples were  

dehydrated in a methanol/PBS series (50%, 80%, 100%) followed by overnight bleaching and 

permeabilization in a mixture of 5% H2O2/20% dimethyl sulfoxide (DMSO) in methanol at 

4°C. Samples washed further in methanol prior to incubation in 20% DMSO in methanol at RT 

for 2h. Samples were then rehydrated using a descending methanol/PBS series (80%, 50%, 

PBS)and further washed with in PBS/0.2% TritonX-100 for 2h. The samples were then 

incubated overnight in 0.2% TritonX-100, 20% DMSO, and 0.3 M glycine in PBS at 37°C and 

blocked using PBS containing 6% goat serum, 10% DMSO and 0.2% Triton-X100 for 2 days 

at 37°C. Samples were retrieved, washed twice in PBS containing 0.2% Tween20 and 10μg/ml 

heparin (PTwH) at RT for 1h and incubated with primary antibody solution [rat anti-PLP (aa3, 

1:250), mouse anti-CNP (Atlas, 1:250)] for 14 days at 37°C. After several washes in PTwH, 

samples were incubated with secondary antibody solution (goat anti-rat Alexa555; goat anti-

mouseAlexa633) for 7 days at 37°C. Prior to clearing, the samples were again washed in PTwH 

and brain slices were embedded in 2% Phytagel in PBS. Slices were dehydrated using an 
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ascending series of Methanol/PBS (20%, 40%, 60%, 80%, 2x 100% 1h, RT) followed by 

overnight incubation in a mixture of 33% dichloromethan (DCM) and 66% methanol at RT. 

Samples were further delipidated by incubation in 100% DCM for 40min and transferred to 

pure ethyl cinnamate (Eci; Sigma Aldrich #112372) as clearing agent. LSM was performed using 

a LaVision Ultramicroscope II equipped with a 2x objective, corrected dipping cap and zoom 

body. Slices embedded in phytagel tubes were mounted onto the sample holder. Images were 

acquired in mosaic acquisition mode with the following specifications: 5μm sheet thickness; 

30% sheet width; 2x zoom; 2x3 tiling; 4μm z-step size; dual site sheet illumination; 100ms 

camera exposure time. Green, red and far red fluorescence were recorded using 488nm, 561nm 

and 633 laser excitation (30%) and respective emission filters. Images were loaded into 

Vision4D 3.3 (Arivis) and stitched using the tile sorter setup. Datasets were pseudocoloured 

and visualized in 3D (maximum intensity mode). 

 

Immunohistochemistry 

Immunohistochemistry for neuropathological analysis displayed in Figure 2 and Figure 2-

supplement 1 was performed as previously described (Lüders et al., 2019; Patzig et al., 2016). 

Antibodies were specific for MAC3 (1:400; Pharmingen 553322; clone M3/84), IBA1 (1:1,000; 

Wako 019-19741), APP (1:1,000; Millipore MAB 348) or GFAP (1:200; Novocastra NCL-

GFAP-GA5). Images were captured at 20x (GFAP, IBA1, MAC3) or 40x (APP) magnification 

using a bright-field light microscope (Zeiss AxioIm7ager Z1) coupled to a Zeiss AxioCam MRc 

camera controlled by Zeiss ZEN 1.0 software and processed using Fiji. To quantify axonal 

swellings, the region of interest was selected and APP-immunopositive axonal swellings were 

counted. To quantify brain region immunopositive for IBA1, MAC3 or GFAP, the region of 

interest was selected and analyzed using an ImageJ plug-in (de Monasterio‐Schrader et al., 2013; 

Lüders et al., 2019; Lüders et al., 2017) for semi-automated analysis. Per genotype (Ctrl, cKO), 

5-7 male mice were assessed at the age of 22 months as indicated by the data points in Figure 

2 and Figure 2-supplement 1, in which n numbers represent individual mice. Assessment of 

neuropathology was performed blinded to the genotype. Statistical analysis was performed by 

two-tailed unpaired t-test in GraphPad Prism 6.0. Levels of significance were set as p 0<0.05 

(*), p 0<0.01 (**), and p 0<0.001 (***). 

 

Immunoblotting 

Prefrontal cortex (frontal to bregma 5.22) and cerebellum were dissected from mice and 

homogenized in 1x TBS with protease inhibitor (Complete Mini, Roche). Protein concentration 

was measured using the DC protein assay (BioRad). Immunoblotting displayed in Figure 1C,D 
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was essentially as described (Kusch et al., 2017; Schardt et al., 2009). Briefly, lysates from 

prefrontal cortex (3.2 µg for PLP/DM20 and 1µg for actin) and cerebellum (0.8 µg for 

PLP/DM20 and 1µg for actin) were separated on 15% SDS-polyacrylamide gels and blotted 

onto PVDF membranes (Hybond, Amersham) using the Novex Semi-Dry Blotter (Invitrogen). 

Primary antibodies were incubated in 5% milk powder in TBST over night at 4°C. Primary 

antibodies were specific for PLP/DM20 (A431; 1:5000; (Jung et al., 1996)), MBP (1:500; 

DAKO) and actin (1:1000 for cerebellum, 1:5000 for prefrontal cortex; Sigma). Secondary HRP-

coupled antibodies (dianova) were detected using the ChemoCam system (Intas). 

 

Mouse maintenance and behavioral tests 

All mice for behavioral tests were maintained in ventilated cabinets (Scantainers, Scanbur,  

Karlslunde, Denmark), separated by gender, under standard laboratory conditions, including  

a 12 h light/dark cycle (lights off at 7 PM) at 20-22°C, 50-60% humidity and with access to food 

and water ad libitum. Upon weaning, mice were separated by gender and genotype and  

remained group-housed in standard plastic cages (2-5 mice per cage). Male mice were single- 

housed at age of 6 months, due to requirements of experimental tests. Male and female cKO  

mice (N=14 and 20, respectively) were compared to respective control mice (N=16 and 17,  

respectively) in all behavioral experiments. A series of behavioral paradigms, described below, 

was conducted on mice throughout lifespan, covering ages between 2 – 23 months  

(supplemental Table 1). General health status of mice was continuously monitored by body  

weight, home-cage observation including general activity and appearance, nest building and  

interaction with littermates. Group sizes decreased upon progressing age due to natural death. 

In all behavioral experiments, mice were allowed to habituate to conditions of the experimental 

room for a minimum of 30 min prior to testing. Male and female mice were tested separately. 

 

Muscle strength, Motor coordination and Motor Learning 

Rotarod – motor coordination and learning. The rotarod (ENV-577M, Med Associates Inc. 

Georgia, Vermont, USA) was performed as previously described (Dere et al., 2014). Briefly, all 

mice were tested in a total of two trials over two consecutive days. Each trial consisted of a 

maximum of 5 min, in which mice had to run continuously on a horizontal rotating drum 

accelerating from 4-40 rpm. The latency to fall (s) was assessed for each mouse during both 

trials. Mice of both genders were tested in the rotarod at the age of 6 and 17 months. 

Grip-strength – forelimb muscle strength. The forelimb grip strength of male and female  

mice was assessed at age 6, 13 and 15 months. The test was performed as previously  

described (Netrakanti et al., 2015). Briefly, each mouse was tested in a total of three  
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consecutive trials. During each trial, mice were lifted gently by their tails and allowed to grasp  

a wire of the grip strength meter (TSE Systems, Bad Homburg, Germany). Upon grasping the 

wire, mice were brought into a horizontal position before being gently pulled back by their tails, 

to assess the applied forelimb force. The average grip strength per mouse was calculated. 

Beam balance – motor coordination. Motor coordination was assessed at age 13 months,  

using beam balance test as previously described (Netrakanti et al., 2015). Briefly, the ability of 

mice to cross elevated beams (59 cm length) of decreasing diameter (25 mm, 10 mm or 8 mm) 

was measured. Mice were placed at the illuminated end of the respective beam and the latency 

to reach the target zone, an attached cardboard cage with bedding, was recorded. The test was 

conducted over three consecutive days, starting with the 25 mm beam (day 1), then 10 mm (day 

2) and 8 mm beam (day 3). Each mouse was tested in a maximum of three trials per day, in case 

it fell off the beam, and given 60 s to reach the target. 

 

Hearing and Sensorimotor Gating 

Pre-pulse inhibition of the acoustic startle response (PPI). Male and female mice were  

tested for both general hearing and sensorimotor gating at age of 6 and 18 or 6 and 20 months, 

respectively. A detailed protocol of PPI was reported previously (Netrakanti et al., 2015). 

Sensorimotor gating experiments were conducted within sound attenuating chambers (TSE 

Systems, Bad Homburg, Germany), in which acoustic stimuli (120 dB) both with and without a 

preceding pre-pulse evoked startle responses, recorded by a force-sensitive platform. PPI, using 

a 70, 75 or 80 dB pre-pulse, was calculated by following formula: %PPI = 100 – 

[(startleamplitude after prepulse) / (startle amplitude after pulse only) x 100] (Pan et al., 2018). 

To assess hearing abilities of male and female mice, the amplitude of response (arbitrary units) 

to 65 dB background noise as well as to six pulse-alone trials with startle stimuli of 120 dB was 

measured. 

 

Sensory functions 

Hot plate test – nociception. Pain perception in male and female was assessed at the age  

of 13, 15, 17 and 20 months, using the hot plate test as described (Dere et al., 2014). Briefly, 

mice were placed on a preheated (55°C) metal plate (Ugo Basile Srl, Comerio, Italy) and the  

latency (s) to retract by jumping or licking of the hind paws was recorded. Mice were exposed  

for a maximum of 40 s, used as cut-off time, in case they did not show an aversive response  

to the heated plate. 

Cued platform training in the Morris water maze – vision. General vision of male and  

female mice was evaluated within the Morris water maze experiment at age 19 or 13 months, 

70



                                                                              Project II 
  
respectively, as detailed before (Dere et al., 2014). Vision was assessed during the first two  

days of acquisition training, in which an escape platform was submerged 1 cm below the  

surface of opaque water. A small blue flag protruding above the water surface was attached  

at the center of the platform and used as cue for locating the escape platform. Each mouse  

was tested on two consecutive days á 4 trials per day with a 5 min inter-trial-interval (ITI).  

Escape latency, velocity of swimming and path length were recorded with video-tracking  

system (Viewer3, Biobserve GmbH, Bonn, Germany). 

 

Social behavior and social preference 

Ultrasound vocalization – communication. Ultrasonic vocalization was evaluated as  

described in male mice only, at age 6 months (Dere et al., 2014; Hammerschmidt et al., 2012).  

Male mice of both genotypes were single-housed one week prior to testing. Each male mouse  

was exposed to an anesthetized unfamiliar C57Bl/6N WT female within its home-cage for 3  

min. Number of ultrasonic calls of the resident males and latency to first call (s) were recorded. 

Social boxes in the IntelliCage® design - pheromone-based social preference. 

Pheromone-based social preference was evaluated at age 6 months in female mice only as  

described (Dere et al., 2018). Briefly, mice underwent anesthesia for subcutaneous  

implantation of ISO standard transponders (PM162-8) below the skin of the neck, one day prior 

to group-housing within IntelliCages®. Mice remained in the cages for a total of 6 days for an 

IntelliCage®-based behavioral phenotyping (see below). Social preference was tested on the last 

day by connecting two social boxes to the left and right side of the cages. Connection of the 

boxes was carried out via plastic tubes equipped with 2 ring RFID antennas, which monitored 

entrance and exit of individual mice to each box. Initially, both boxes were filled with fresh 

bedding and animals were allowed to freely explore for a 1 h habituation. Subsequently, used 

bedding containing pheromones of male C3H mice was added to one of the boxes and the time 

spent in the pheromone vs. non-pheromone box was recorded for another hour. 

 

Cognitive flexibility, episodic-like memory and anhedonia 

IntelliCage®-based behavioral phenotyping battery. By application of our IntelliCage®- 

based behavioral phenotyping design, we assessed multiple facets of cognition as well as  

sucrose preference, as measure of anhedonia, in female mice only, at age 6 months as  

described (Dere et al., 2018). One day after subcutaneous implantation of transponders (see  

above), mice were group-housed, separated by genotype, and remained in the IntelliCages®  

for 6 days. Place learning was acquired within the first 24 h (day 1), in which an individual  

mouse learned that only one out of four corners was rewarded with water, while the other  
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corners remained blocked. The number of mice assigned to each corner was balanced and  

semi-randomly determined. On day 2, reversal learning was assessed to measure cognitive  

flexibility as well as perseveration. Mice had to learn that the previously rewarded corner was  

now blocked, and instead the diametrically opposed corner now rewarded. Sucrose preference 

was assessed on day 3 by comparing preference for a corner rewarded with a 2 % sucrose 

solution over another corner rewarded with tap water. During these 24 h, the two previously 

blocked corners were now rewarded with either sucrose solution or tap water, whereas the 

remaining corners were blocked. The visits to the respective target corners during place and 

reversal learning as well as sucrose preference testing were used for statistical analysis. On days 

4-5 mice had again access to two rewarding corners providing either a sucrose solution or tap 

water. However, these corners were now again the diametrically opposed corners to day 3 and 

access to the corners was only provided for a limited time, namely during the first two hours of 

the active phase of the mice (6.00-8.00 PM). Hence, mice were required to form a multi-modal 

association containing the information on the type of reward provided (what) as well as their 

locations (where) and the time at which to expect the reward (when), rendering this approach 

an experimental model for the assessment of episodic memory comparably to humans. Visits 

to rewarded corners during acquisition (day 4) and retrieval (day 5) of episodic-like memory 

were recorded and the delta between visits to the corner providing sucrose solution and the 

corner providing tap water was calculated. 

 

Cognitive flexibility, episodic-like memory and anhedonia 

Morris water maze. Spatial memory as well as cognitive flexibility and perseveration, via  

reversal learning, were evaluated in male and female mice at the age 19 or 13 months,  

respectively, using the Morris water maze task. The test was conducted as described (Dere et 

al., 2014; Netrakanti et al., 2015). Mice were tested within a circular tank (diameter 1.2 m and 

depth 0.6 m) filled with opaque water (25±1°C) in various successive phases, starting with two 

days of cued platform training as described above (see: vision). Subsequently, the blue flag cue 

was detached from the escape platform (10 cm x 10 cm), which was submerged 1 cm below the 

water surface and relocated within the tank, and mice were tested for 8 days during hidden 

platform training. Throughout these days mice had to form a spatial memory for the escape 

platform using various extra-maze cues placed on the walls of the testing room. During all 

training phases mice were tested in 4 daily trials with an ITI of 5 min and the individual 

performances were recorded with a video-tracking system (Viewer3, Biobserve GmbH, Bonn, 

Germany) for subsequent analysis. Training was followed by a probe test to assess spatial 

memory and the time spent in the target quadrant of the maze as well as visits and the latency 
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to the target quadrant were used for statistical analysis. Moreover, total distance swam and the 

average swimming velocity were analyzed, to exclude potential motor deficits. Finally, mice were 

exposed to 4 days of reversal training, in which the only difference to the hidden platform 

training was that the escape platform was relocated into a new quadrant of the tank. Reversal 

training was followed by another probe trial, wherein the same parameters were determined as 

in the first probe test. 

 

Working memory 

Y maze continuous alternation. Spontaneous alternation was assessed in male and female  

mice of 20 months age, in a Y shaped maze (Dere et al., 2014). Mice were individually placed  

into the center of a triangle-shaped maze with three identical open arms (7.5 cm x 18 cm x  

23.5 cm) and allowed to freely explore the maze for a total of 5 min. Performance of all mice  

including total number of arm entries, defined as entering with all four paws, was recorded with 

a video-tracking system (Viewer3, Biobserve GmbH, Bonn, Germany). An alternation ratio, 

defined as the number of alternating triplets multiplied by 100 and divided by the total number 

of entries, was calculated. 

 

Catatonic signs and executive function 

Bar test. Catatonic signs were assessed in male and female mice at various ages ranging from 

2-21 months in male and 2-22 months in female mice. The bar test was conducted as described 

before (Garcia-Agudo et al., 2019; Janova et al., 2018). Briefly, mice were gently carried by the 

tail and brought into proximity of a horizontal bar made of stainless steel. Upon grasping the 

bar with both forepaws and standing upright, the tail was released. Mice were tested in two 

consecutive trials, which were recorded with a high-resolution camcorder (Sony HDR-CX405, 

Sony, Tokyo, Japan) and the time spent immobile at the bar (s) was determined. 

Modified Hurdle test. The hurdle test is a novel tool to measure executive dysfunction in  

catatonia (Garcia-Agudo et al., 2019). The test setup comprises a circular open field arena  

containing a polyvinylchloride comb inset (119 cm diameter), made of equally built (10 x 10  

cm) connected combs, and 140 lux light intensity at the center of the arena, to motivate mice  

to move to the periphery. We applied minor modifications to the previously reported setup, by 

increasing the height of the connected combs from 2.7 cm to now 5.0 cm and adding fresh 

woodchip bedding into each comb. These modifications were applied, to increase the  

challenge, while simultaneously reducing aversive responses to the novel environment upon  

introduction of bedding as a familiar and comfortable texture. The experiment was conducted 

in male and female mice at age 6 and 18 or 6 and 20 months, respectively, as described (Garcia-
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Agudo et al., 2019). Briefly, mice were placed into the center of the above-mentioned inset and 

their performance until reaching the periphery or the cut-off time of 5 min, was recorded using 

the Viewer 3 tracking software (Biobserve GmbH, Bonn, Germany). All mice were tested in 

two consecutive trials with a 5 min ITI. Executive performance was assessed by calculating the 

ratio of latency to periphery (s) divided by the number of crossed hurdles (#). To account for 

animals that did not overcome any hurdle, we calculated the ratio as [(s)/(#+1)]. 

Puzzle box. As an additional test assessing executive function, the puzzle box was conducted 

on male and female mice at age 18 or 20 months, respectively. We employed the test as 17 

described (O'Connor et al., 2014) with minor modifications. The experimental setup comprises 

a rectangular-shaped arena (75 cm x 28 cm x 25 cm) split into an enclosed shelter (15 cm x 28 

cm) and an illuminated (140 lux) open compartment (60 cm x 28 cm). The compartments are 

connected to each other via a small doorway, centered at the front wall of the shelter (4 cm 

width), through which mice can escape into the shelter upon placement into the open 

compartment. Over a course of 5 consecutive days, mice were required to overcome a total of 

5 challenges of increasing difficulty, within a limited amount of time, to reach the shelter. We 

employed the following challenges: 1. open doorway, 2. gateway within doorway, 3. gateway 

filled with bedding, 4. plug made of paper tissue, 5. plug made of nesting material (shredded 

cardboard paper). Each mouse was tested in a total of three trials per day, in which mice were 

exposed to 2 different challenges daily. During the first trial on each day, mice were exposed to 

the challenge they had to overcome last on the day before, whereas the following two trials 

measured escape latencies upon introduction of a novel unfamiliar challenge. Exceptions to this 

approach were the very first trial on day 1 (open entry), which was tested only this one time, 

and day 5, since mice were tested only once with the most difficult challenge (plug made of 

nesting material) on day 5. Cut-off time was increased from 4 to 6 minutes during challenges 4 

and 5, to provide sufficient time for mice to be able to unplug the doorway into the shelter. 

Performance of each mouse was recorded with video-tracking system (Viewer3, Biobserve 

GmbH, Bonn, Germany) and averaged escape latency for each challenge measured.  

Complex wheel running. Overnight voluntary complex wheel running (CRW) was conducted 

at age 23 months, as an additional measure of both drive and motor-cognitive performance. 

Mice of both genotypes and genders were single-housed and exposed to CRW (TSE Systems, 

Bad Homburg, Germany) for 24 h. Placement of mice into the respective CRW cages was 

carried out in the morning (8-9 AM) allowing the mice to familiarize themselves with the novel 

environment throughout the day. CRW are defined by randomly omitted bars, providing a 

motor-cognitive and coordinatory challenge. Voluntary running on CRW was recorded 

automatically (Phenomaster software, TSE Systems, Bad Homburg, Germany) yielding 
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information on time spent running (min), total distance run (cm) and running velocity 

(cm/min). Analysis of CRW performance was conducted over 12 h during the active phase 

(lights off from 7 PM – 7 AM). 

 

Statisical Analyses 

Computation of an appropriate sample size for this study was carried out via G*Power software 

(Faul et al., Behavior Research Methods 2007, https://doi.org/10.3758/BF03193146) based on 

the following statistical requirements and assumptions: α-error 0.05, β-error 0.085, statistical 

effect size 1.000, based on previous IntelliCage-based experiments in our lab. We chose the 

IntelliCage-based assay serving a as a crucial limiting experiment, due to the high cognitive 

demand of the setup (see also: Dere et al., Neurobiology of learning and memory 2018, doi: 

10.1016/j.nlm.2018.02.023.) Mice of both genders (male/female) and both genotypes 

(control/conditional mutant) were used, with each mouse being a biological replicate in each 

assay.  

 

Statistical analysis was performed using GraphPad Prism 9.0. Between-group comparisons  

were made by either one-way or two-way analysis of variance (ANOVA) with repeated  

measures or t-test for independent samples. Mann Whitney U, Wilcoxon tests were used if the 

normality assumption was violated (as assessed by the Kolmogorov-Smirnov test). Data  

presented in the figures and text are expressed as mean±SEM; p-values <0.05 were  

considered significant. Statistical outliers were assessed using the GraphPad Grubbs outlier  

tool, but no such outliers had to be removed from the data. Only mice of any gender or  

genotype that did not perform in an experiment were excluded from statistical analyses. 
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FIGURE LEGENDS 

 

Figure 1. Targeting PLP expression in the forebrain of mice 

(A,B) Light-sheet microscopy to detect proteolipid protein (PLP) in the brains of Plpflox/Y (Ctrl;  

A) and EmxCre::Plpflox/Y (cKO; B) mice. Whole mount brain sections (1mm) were subjected to  

staining and clearing. Boxed areas in panels A and B are enlarged in A‘, A‘‘ and B‘, B‘‘,  

respectively. White arrows indicate the sparse labeling of PLP in forebrain cortical structures  

(B’) and the hippocampus (B’’) of cKO in comparison to controls (A’, A’’). PLP, proteolipid protein; 

CNP, 2’-3’-cyclic nucleotide 3’-phosphodiesterase; Autofl, autofluorescence.  

 

(C) Immunoblot detection of PLP and its smaller isoform DM20 in lysates of the prefrontal  

cortex from EmxCre ::Plpflox/Y (cKO) and Plpflox/Y (Ctrl) mice. Myelin basic protein (MBP) and  

actin were used as loading controls (n=2 biological replicates). (D) Immunoblots of the cerebellum from 

the same mice. 

 

Figure 2. Neurodegenerative changes in the subcortical white matter of the forebrain 

(A,C,E,G) Representative light microscopic images of cross-sectioned hippocampal fimbriae,  

immunolabeled for (A) APP, (C) MAC3, (E) IBA1 and (G) GFAP in EmxCre::Plpflox/Y (cKO) and Plpflox/Y 

(Ctrl) mice at age 22 months. The frequency of axonal spheroids and the area of  

immunopositivity for MAC3, IBA1 and GFAP are increased in the fimbria of cKO compared to  

Ctrl mice as quantified in B, D, F and H. Scale bars 50 μm. (I,J) Representative light  

microscopic images of cross-sectioned Ctrl (I) and cKO (J) mouse brains. Boxed areas in  

panels I and J are enlarged in I’, I’’ and J’, J’’, respectively. Black arrows indicate axonal  

spheroids in the fimbria (J’’) and internal capsule (J’) of cKO mice, which are essentially  

absent in Ctrl mice (I’, I’’). Mean +/ SEM; two-tailed unpaired t-test; **, p<0.01; ***, p<0.001.  

APP, amyloid precursor protein; CC, corpus callosum; Ctx, cortex; Fim, fimbria; GFAP, glial  

fibrillary acidic protein; IBA1, ionized calcium-binding adaptor molecule 1 MAC3, lysosomal- 

associated membrane protein 2 (LAMP2). 

 

Figure 2-supplement 1. Neuropathology in the forebrain of cKO mice in the corpus 

callosum but not the prefrontal cortex  

(A,C,E,G) Representative light microscopic images of cross-sectioned corpus callosum 

immunolabeled for APP (A), MAC3 (C), IBA1 (E) and GFAP (G) in Plpflox/Y*EmxCre (cKO) 

and Plpflox/Y (Ctrl) mice at age 22 months. Scale bars 50 µm.  

(B,D,F,H) Genotype-dependent quantification of the frequency of APP-immunopositive 

axonal spheroids in the corpus callosum (B) and the relative area of the fimbria immunopositive 

for the microglial markers MAC3 (D) or IBA1 (F) or the astroglial marker GFAP (H). Note 
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that the frequency of axonal spheroids and the area of immunopositivity for MAC3, IBA1 and 

GFAP are increased in the corpus callosum of cKO compared to Ctrl mice.  

(I,K,M,O) Representative light microscopic images of cross-sectioned prefrontal cortex 

immunolabeled for APP (I), MAC3 (K), IBA1 (M) and GFAP (O) in Plpflox/Y*EmxCre (cKO) 

and Plpflox/Y (Ctrl) mice at age 22 months. Scale bars 50 µm.  

(J,L,N,P) Genotype-dependent quantification of the frequency of APP-immunopositive 

axonal spheroids in the prefrontal cortex (J) and the relative area of the fimbria immunopositive 

for the microglial markers MAC3 (L) or IBA1 (N) or the astroglial marker GFAP (P). Note 

that the frequency of axonal spheroids and the area of immunopositivity for MAC3, IBA1 and 

GFAP are similar in the prefrontal cortex of cKO compared to Ctrl mice. Mean +/ SEM; two-

tailed unpaired t-test; not significant, n.s.; *, p<0.05; **, p<0.01. 

 

Figure 3. cKO mice display a catatonia-like sign along with impaired executive function 

(A,B) Bar test assessing the time that mice remain immobile upon placement of their forelimbs 

on a horizontal bar. Female (A) and male (B) groups of cKO and Ctrl mice were tested at the 

indicated ages. Note that cKO mice upon ageing spend extended time immobile on the bar. 

Mean +/ SEM; Mann-Whitney-U-test. (C,D) Puzzle box assessing the time to escape from a 

well-lit open space into a dark shelter with increasing difficulty (open entry, addition of a 

gateway, gateway filled with bedding, entry filled with paper tissue, entry filled with nesting 

material; see illustrating images in Figure 3-supplement 1). Female (C) and male (D) groups 

of cKO and Ctrl mice were assessed at age 20 or 18 months, respectively. Mean +/- SEM; 

repeated measures 2-way ANOVA; females significant ***, p<0.001; a trend to increased latency 

for males did not reach significance, n.s., p=0.0518. (E,F) Modified Hurdle test assessing the 

escape latency of mice by crossing 5 cm hurdles upon placement into the center of a circular 

open field arena. Female (E) and male (F) mice were assessed at the age of 6 and 20 months.  

Mean +/ SEM; Mann-Whitney-U-test; Trial 1 or 2, T1 or T2. All data in this figure are presented 

as mean +/- SEM;  p<0.05 considered significant. The precise number of mice tested per 

experiment, mean, SEM and p-values are specified in supplemental Table 1. 
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Figure 3-supplement 1. Puzzle box 

(A,A‘) Images showing top-view of the puzzle box with closed (A) and open lid (A‘).  

(B-F) Front-view of the shelter with open entry (B), entry with gateway (C), gateway filled with 

bedding (D), entry filled with paper tissue (E) and entry filled with nesting material (F).  

 

Figure 3-supplement 2. cKO mice display normal latency to fall on the Rotarod  

(A-D) Rotarod test assessing motor performance of cKO and Ctrl mice at ages 6 months (A,B) 

and 17 months (C,D) on two consecutive days (day 1 and day 2). Female (A,C) and male (B,D) 

groups were assessed. Note that cKO mice performed normally on the Rotarod. Mean +/- 

SEM; not significant (n.s.) by repeated measures 2-way ANOVA.  

 

Figure 4. cKO mice display reduced running distance but normal velocity  

(A-F) Complex running wheel (CRW) assessing voluntary running behavior. Female (A,C,E) 

and male (B,D,F) groups of cKO and Ctrl mice were assessed at age 23 months. Both female 

and male cKO mice displayed reduced running distance (A,B) but normal average running 

velocity (E,F). A trend toward reduced running time reached significance in female but not in 

male cKO mice (C,D). Note that the result is interpreted as reflecting that cKO mice show 

normal motor capability but impaired executive function. Superimposed plot with connecting 

lines; repeated measures 2-way ANOVA; not significant, n.s.; *, p<0.05. 
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Conclusions and Future Perspectives 

Despite its first description by Kahlbaum (1874) as a novel psychomotor syndrome, the clinical 

diagnosis of catatonia and its respective treatment have been hampered for more than a century. 

The inclusion of catatonia as a subtype of dementia praecox (Kraepelin, 1899), and later on 

schizophrenia (Bleuler, 1911), have largely contributed to conceptual limitations and 

misperceptions of the syndrome. Today, catatonia is considered an independent psychomotor 

syndrome, presenting with disturbed volition along with aberrant motor and behavioral 

phenotypes (Hirjak et al., 2020). However, its etiology and underlying pathomechanisms still 

remain unclear and efficient treatment scarce. Moreover, research on catatonia is confined by 

divided clinical rating scales (Bräunig et al., 2000; McKenna et al., 1991; Northoff, 2000; 

Northoff, Koch, et al., 1999) and particularly by the lack of reliable animal models. 

 

Previous studies from our group implied involvement of low-grade neuroinflammation as well 

as altered white matter integrity in C57Bl/6 mice deficient of the myelin genes Cnp (Hagemeyer 

et al., 2012) or Mbp (Poggi et al., 2016) upon aging. A comparable age-dependent catatonia-

depression syndrome was further reported in human schizophrenic carriers of a partial loss-of-

function SNP in the CNP gene (Hagemeyer et al., 2012). Based on these findings, I aimed to 

systematically investigate the revelance of white matter integrity and neuroinflammatory 

processes in the context of the catatonia-like phenotype, with a particular focus on frontal brain 

structures, known to be essential to healthy executive function and higher-order cognitive 

abilities (Alvarez & Emory, 2006; Diamond, 2013; Stuss & Benson, 1984). 

 

Increased signs of neuroinflammation and catatonic signs in schizophrenic 

patients carrying the the CNP partial loss-of-function SNP rs2070106-AA 

 

Upon first indications of neuropathology by DTI in schizophrenic carriers of the CNP SNP 

rs2070106-AA (Hagemeyer et al., 2012), we conducted a GWAS on the baseline cohort of 

SHIP-TREND-0 in close collaboration with Prof. Dr. Hans Jörgen Grabe and co-workers. We 

assessed the presence and extent of WMH in healthy subjects with and without the CNP SNP. 

An age-dependent increase in WMH was observed, confirming previous reports on the 

progression of WMH and its impact on white matter integrity even affecting cognitive abilities 

(Almkvist et al., 1992; Garde et al., 2005; Sullivan et al., 2001). Interestingly, WMH in our healthy 

subjects were significantly exceeded by carriers of the SNP, particularly affecting frontotemporal 

brain regions. While these data do not provide eminent proof of increased neuroinflammation 
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in CNP rs2070106-AA carriers, we previously also reported increased signs of degenerative 

processes in the frontal CC of AA carriers by DTI (Hagemeyer et al., 2012). These findings not 

only confirm a dominant phenotype in frontal brain stuctures, but further imply an underlying 

neuropathology.  

Moreover, application of another GWAS study using our GRAS database on schizophrenic 

subjects (Begemann et al., 2010; Ribbe et al., 2010) revealed a significant age-dependent increase 

in catatonic signs, assessed by the CNI catatonia score (Chen et al., 1995), in AA carriers of the 

SNP. Noteworthy, this finding was confirmed in an independent sample of schizophrenic 

subjects in close collaboration with Prof. Dr. Andreas Reif and co-workers. Collectively, these 

data are not only in accordance with our previous reports on the impact of the AA genotype 

on catatonic signs in schizophrenic subjects (Hagemeyer et al., 2012), but further suggest 

underlying neuroinflammatory processes and altered white matter integrity to be causative to 

the observed phenotype. Systematic analysis of postmortem tissue of schizophrenic subjects - 

comparing AA carriers with GG and AG carriers - would be helpful to further evaluate the 

extent and distribution of the underyling neuropathology. Additionally, state of the art 

neuroimaging techniques provide an essential tool aiming to uncover the underlying 

neuroanatomical and biochemical causes of catatonia (Hirjak et al., 2020). 

 

Neuroinflammation of subcortical white matter is causative to a catatonia-

like phenotype in Cnp-/- mice  

 

Based on previous observations of an age-dependent catatonia-like phenotype in C57Bl/6 mice 

with a heterozygous deficiency of the myelin genes Cnp (Hagemeyer et al., 2012) or Mbp (Poggi 

et al., 2016), I aimed to delineate the relevance of white matter integrity per se in the context of 

catatonia. To this end, we observed a striking facilitation of the onset of catatonic signs, assessed 

by a modified version of the well-established Bar test (Hagemeyer et al., 2012; Kuschiski et al., 

1972; Poggi et al., 2016), in Cnp-/- mice. In contrast to Cnp+/- mice, Cnp-/- exhibit a significantly 

prolonged time standing immobile on a horizontal rod as early as 8 weeks of age. Importantly, 

this phenotype occurs in the absence of any motor dysfunctions, known to develop at 

progressed age  upon CNP deficiency, including ataxia, hindlimb impairments and even 

premature death (Lappe-Siefke et al., 2003). Thus, we suggest the inability of Cnp-/- mice  to 

release themselves from an imposed unnatural posture to likely reflect a transient executive 

dysfuntion but no underlying motor impairments or forelimb paralysis.  
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To assess the distinct relevance of myelin-related alterations regarding the observed phenotype, 

I conducted the Bar test on Mbp+/- mice, the parental strain of shiverers (Chernoff, 1981; 

Readhead et al., 1987), as well as Plp-/y mice, a well-characterized mouse model of SPG2 

(Griffiths et al., 1998; Lüders et al., 2017; Saugier-Veber et al., 1994), both of which indeed 

exhibited catatonic signs at the ages of 60-72 or 25 weeks, respectively. Importantly, analysis of 

various other mouse models of CNS disease, including Ambra1+/- (Dere et al., 2014), Nlgn4-/- 

(Jamain et al., 2008), Caps1- /- (Jockusch et al., 2007), PSD93-/- and  PSD95-/- (Winkler et al., 2018) 

and ApoE-/-  (Hammer et al., 2014) mice did not result in any of these lines exhibiting catatonic 

signs in the Bar test. While I cannot exclude the presence of a similar phenotype in other mouse 

models of CNS diseases, our data reliably suggest a key involvement of myelin-related genes 

and (subtle) alterations of such to be causative to catatonia.  

Although Cnp+/-, Cnp-/-, Mbp+/- and Plp-/y mice present with individual neuropathological features 

(Griffiths et al., 1998; Hagemeyer et al., 2012; Lappe-Siefke et al., 2003; Poggi et al., 2016), they 

all share the development of progressive neuroinflammation, however with onset of such at 

distinct ages. The latter is predominantly caused by abberant microglial phenotypes, shifting 

into detrimental and neurotoxic activities (Graeber et al., 2011; Streit et al., 2004). Microglial 

contributions to neurological and neuropsychiatric disorders are of increasing interest in recent 

years (Ransohoff & El Khoury, 2016; Salter & Stevens, 2017), ultimately aiming to address the 

question whether microglial dysfunctions are the cause or the consequence of neuropathology. 

Noteworhty, neuroinflammatory processes in the catatonia-like phenotype of Cnp+/- and Mbp+/- 

mice have been reported before (Hagemeyer et al., 2012; Poggi et al., 2016). Thus, I aimed to 

tackle the question of their importance to the development of the phenotype, particularly by 

application of PLX5622, a CSF1-R inhibitor causing rapid depletion of microglia, while allowing 

swift repopulation upon cessation of treatment (Dagher et al., 2015). 

Indeed, treatment of Cnp-/- mice prior to the onset of the phenotype prevented it from occurring 

at a young age, i.e. 8 weeks. IHC analysis of the CC revealed a surprisingly sustained reduction 

of both neuroinflammation (IBA1+) and –degeneration (APP+), known features of Cnp- /- mice 

(Lappe-Siefke et al., 2003), even 4 weeks after cessation of treatment. The beneficial impact of 

microglia-targeted treatment to the phenotype was further confirmed by MRS. We report a 

reduction fo myoinositol, a marker of glial activation and neuroinflammation, to be reduced in 

the CC and cortex of PLX5622-treated Cnp-/- mice, even 5 weeks after cessation of treatment. 

The beneficial impact of microglia-targeted treatment, on a phenotype deriving from disrupted 

white matter integrity, is in accordance with another study, reporting attenuation of 

neuropathology induced by mutations of another myelin gene, namely PLP1 (Groh et al., 2019).
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In recent years, white matter integrity and microglial activities, as well as their interactions, have 

gained an increasing attention in the context of healthy CNS functions (Gomez-Nicola et al., 

2015; Nave & Ehrenreich, 2014; Ransohoff & El Khoury, 2016; Tay et al., 2018). Moreover, 

alterations of both appear to play an intertwined role in the development and progression of 

CNS disorders (Lloyd et al., 2017; Rissanen et al., 2018), rendering the decryption of these 

interactions a critical necessity with respect to future therapeutic approaches. In fact, therapeutic 

strategies via microglial replacement are increasingly appreciated as novel avenues in restoring 

the integrity of white matter and proper CNS functioning per se (Beckmann et al., 2018; Han et 

al., 2019; Lloyd et al., 2017; Waisman et al., 2015). However, whether treatment of mice at young 

age may reduce the pace of the underyling Cnp-/- phenotype, possibly by (partially) restoring 

healthy microglial functions, remains to be addressed by systematic characterization and 

profiling of repopulated microglia. Noteworthy, a study by Elmore et al. (2015) using PLX3397, 

a less selective variant of the CSF1-R inhibitor (Dagher et al., 2015), reported newly repopulated 

microglia to exhibit an inflammatory profile and functioning comparable to resident microglia 

in healthy adult mice. In another study using PLX5622, Elmore et al. (2018) further reported 

microglial repopulation, 4 weeks after cessation, to improve age-related cognitive impairments 

in healthy mice, along with re-juvenated microglial properties. While these findings do not 

reflect the microglial properties of young adult Cnp-/- mice, they certainly are of interest with 

regard to our observation of sustainable reduction even 4 weeks after cessation of treatment.  

Importantly, a prolonged treatment at a more progressed state of the underlying Cnp-/- 

phenotype, i.e. 27 to 35 weeks, successfully alleviated the catatonia-like phenotype, along with 

a reduction of neuroinflammatory processes, namely microgliosis (IBA1+), phagocytic 

microglial activities (CD68+), axonal spheroids (APP+), astrogliosis (GFAP+) and infiltrating T 

lymphocytes (CD3+). Collectively, these findings strongly suggest a crucial involvement of 

abberant microglial behavior and neuroinflammation, induced by white matter pertubations, 

with respect to the catatonia-like phenotype of Cnp-/- mice. Moreover, microglia-targeted 

pharmaceutical treatment via PLX5622 successfully prevents the onset of the phenotype upon 

early application and further alleviates catatonia at a progressed disease state. Yet, the timepoint 

of application as well as the impact of any CSF1-R inhibitor on other target cells have to be 

considered with respect to the outcome of the treatment (Han et al., 2019; Nelson & Lenz, 

2017). To this end, we observed a reduced efficacy of microglial depletion upon progressed 

neurodegenerative state of Cnp-/- mice. Furthermore, we cannot exclude involvement of other 

cell types equally affected by PLX5622, such as infiltrating T lymphocytes, astroglia or OPCs 

(PDGFRα+). Further studies are required to systematically delineate the functionality of 

individual glial cell lines both in the development of the here reported catatonia-like phenotype 
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and its reduction by CSF1-R inhibition. Irrespectively, to my knowledge, the here reported 

mouse model is the first construct-valid animal model of catatonia suggesting key involvement 

of disrupted white matter integrity as well as secondary neuroinflammation/abberant microglial 

activities. These insights provide new opportunities to investigate the underyling mechanisms 

of the psychomotor syndrome of catatonia, ultimately aiming to develop a more selective and 

targeted therapeutic strategy (Rogers et al., 2019). It is, however, important to bear in mind that 

clinical presentation of catatonia in patients is heterogeneous in both etiology and 

symptomatology. Moreover, catatonia has a high comorbidity with various medical conditions, 

rendering neuroinflammation of subcortical white matter, as reported here, as one among 

various possible causes. Noteworthy, we  confirmed the importance of disrupted white matter 

integrity in the here reported model, since we did not obrserve catatonic signs in WT mice upon 

intraperitoneal  injection of  lipopolysaccharide (LPS), a well-established method to induce 

chronic neuroinflammation and –degeneration (Qin et al., 2007). Application of LPS further 

did not amplify catatonic signs observed in Plp-/y mice, suggesting a crucial involvement of 

disrupted underyling white matter integrity in the observed catatonia-like phenotype in our 

model. 

 

Catatonic signs upon perturbed white matter integrity are accompanied by 

executive dysfunction in mice and man 

Previously, Hagemeyer et al. (2012) and Poggi et al. (2016) reported age-dependent elevated 

signs of neuroinflammation particularly in frontal brain regions of Cnp+/- and Mbp+/-, suggesting 

a key involvement of inherent structures with respect to the observed phenotypes. Additionally, 

elevated signs of neuroinflammation were also reported in schizophrenic carriers of the CNP 

SNP rs2070106-AA. In the framework of the here reported Project I, we further confirmed 

these findings, since we noted a progression of neuroinflammation into the cingulate cortex of 

Cnp-/- at a progressed disease state. Taking into account that the catatonic phenotype was 

observed as early as 8 weeks of age, i.e. prior to any known motor dysfunctions of Cnp-/- mice 

at progressed age (Lappe-Siefke et al., 2003), we hypothesized that the catatonia-like phenotype 

is likely a reflection of transient executive dysfunction rather than any underlying motor 

impairments. This assumption is further supported by the fact that Cnp+/- mice exhibit a 

catatonia-depression syndrome upon aging, while motor function is not impaired (Hagemeyer 

et al., 2012). 
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Executive function is defined as a higher-order cognitive ability, particularly of the frontal lobes 

(Alvarez & Emory, 2006; Otero & Barker, 2014; Stuss & Benson, 1984), comprising numerous 

functions such as selective attention, cognitive flexibility and problem solving (Diamond, 2013). 

The PFC has been reported to play a substantial part in proper and healthy execution of these 

functions (Chudasama, 2011; Yuan & Raz, 2014). While a battery of behavioral experiments 

assessing distinct features of executive function in rodents are available (Heisler et al., 2015; 

Izquierdo et al., 2006; Sanchez-Roige et al., 2012), the majority of them come with unfavorable 

shortcomings such as multiple phase approaches or motivation via food or water deprivation, 

rendering such approaches time consuming, more vulnerable to unwanted confounding factors 

and increased stress via deprivation. Hence, the development of a novel, and importantly fast 

and reliable behavioral paradigm based on the innate behavior of mice was crucial to the 

assessment of executive function in our model. In a recent publication by Fernandez Garcia-

Agudo et al. (2019), we reported the Hurdle test as a respective novel test to assess executive 

function, while avoiding the above-mentioned shortcomings, by making use of the innate drive 

of mice to escape from a brightly lit open space to a shelter, i.e. walled and dimmed periphery. 

Application of the Hurdle test on Cnp-/- mice indeed revealed executive dysfunction. 

Importantly, we further reported catatonic signs and executive dysfunction to correlate in both 

mice and man. The latter was assessed by application of the Trail Making Test B (Periáñez et 

al., 2007) and the Luria Test (Chen et al., 1995), both of which cover distinct features of 

executive function. These findings not only indicate the relevance of executive function in the 

context of catatonia, but further allow for an improved assessment of the latter by combination 

of two robust behavioral paradigms in mice. Surprisingly, analogous early-on and delayed 

treatment of Cnp-/- with PLX5622, as conducted in Project I, did not reveal alleviation of 

executive impairments as assessed by the Hurdle test, suggesting involvement of additional 

underlying causes to the catatonia-related executive dysfunctions, other than neuroinflammation 

alone. Clearly, future studies are required to investigate the underlying mechanisms of the 

differential responsiveness of catatonic signs (Bar test) and executive dysfunction (Hurdle test) 

in the here reported mouse model of catatonia. Nevertheless, the studies conducted in the 

framework of the article by Fernandez Garcia-Agudo et al. (2019) confirmed the relevance of 

executive dysfunction in the etiology of the observed catatonia-like phenotype, induced by 

pertubations of white matter integrity and secondary neuroinflammation.  
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Forebrain-specific loss of white matter integrity suffices to induce catatonia 

and related executive dysfuntion in mice 

Based on these findings, I employed a second project, in which we investigated and 

characterized mice with a cKO of Plp1 in frontal brain structures, further aiming to elaborate 

the role of the latter in the framework of catatonia in our models. Experimental male 

Plpflox/y*EmxCre and female Plpflox/flox*EmxCre mice were generated in close collaboration with Prof. 

Klaus-Armin Nave, Ph.D., and PD Dr. Hauke B. Werner, essentially lacking PLP and its 

isoform DM20 in oligodendrocytes of the forebrain (Gorski et al., 2002). Functionality of the 

mouse model was confirmed by respective immunohistochemical analysis resulting in lack of 

PLP in the PFC, the hippocampal fimbria as well the CC, but not in untargeted control regions. 

Importantly, myelination per se was not affected, since IHC revealed no differences in MBP in 

the PFC. Moreover, neuropathological assessment revealed prominent neuroinflammatory and 

–degenerative features in the fimbria and CC of cKO mice, comprising degeneration (APP+), 

microgliosis (IBA1+, MAC3+) and astrogliosis (GFAP+), all of which are known from other Plp1 

KO mouse models (Griffiths et al., 1998; Lüders et al., 2019; Lüders et al., 2017). Importantly, 

these observations were not made in the PFC, as expected. Collectively, these data confirm the 

targeted deletion of Plp1 in oligodendrocytes of the forebrain, resulting in the anticipated loss 

of myelin integrity along with secondary axonal degeneration and neuroinflammation.  

The successful generation of this forebrain-specfic cKO renders the model an optimal tool to 

elaborate the importance of forebrain white matter integrity in catatonia and catatonia-related 

executive dysfunctions. In a recent publication by Gould et al. (2018), the authors reported 

distinct behavioral anomalies of Plp1 null mice, all of which preceded their known motor 

impairments (Griffiths et al., 1998). Interestingly, among those observations the authors 

reported impaired executive function assessed by another behavioral experiment, the Puzzle 

box (Ben Abdallah et al., 2011; Gould et al., 2018; O'Connor et al., 2014; Pease-Raissi & Chan, 

2018). Moreover, we observed catatonic signs via the Bar test in Plp1 null mice in the framework 

of my first project. Knowing that catatonic signs and executive dysfunction are correlated 

(Garcia-Agudo et al., 2019), I conducted a thorough behavioral characterization of the here 

reported newly generated cKO mice, particularly focusing on the former two domains. 

Behavioral assessment of male and female mice comprised a broad spectrum of domains, such 

as motor and sensory function, coordination, sensorimotor gating, social behavor, depression-

like behavior and cognitive abilities such as working memory, spatial memory and cognitive 

flexibility. In contrast to the diverse observations reported by Gould et al. (2018) on Plp1 null 

mice, cKO of Plp1 in the forebrain did not result in any of the previously reported phenotypes, 
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including motor and sensory performance, coordination, anxiety-like behavior or stereotypy. In 

fact, cKO mice of both genders remained largely unaffected, except a gender-dependent onset 

of catatonia along with executive dysfunction, assessed by two behavioral paradigms, namely 

the Hurdle test and the Puzzle box. The conduction of a subsequent second trial of the former, 

consistently revealed a reduced ratio [escape latency / number of crossed hurdles + 1] in both 

genders, further reflecting an executive dysfunction upon initial exposure during the first trial. 

However, we report differences in the performance of male and female mice upon testing of 

the Hurdle test at 6 and 20 months, likely reflecting age- and gender-related effects in this 

behavioral paradigm. Neuropathological comparison of both genders, specifically describing the 

extent of axonopathy and neuroinflammation at these ages, would be worthwile to further 

investigate the underlying cause of the here reported differences. Importantly, as reported by 

Gould et al. (2018), development of these phenotypes occurred in the absence of any motor 

impairments known to develop in Plp1 null mice (Griffiths et al., 1998). In addition, overnight 

voluntary complex wheel running, a cortico-motor task relying on proper myelination (Gibson 

et al., 2014; McKenzie et al., 2014), in aged mice (23 months), further indicated altered executive 

function rather than motor impairments, since cKO mice of both genders exhibited reduced 

running times and distances, but not running velocities. 

These findings further confirm a critical involvement of perturbed white matter integrity along 

with neuroinflammatory processes with respect to the catatonia-like phenotype observed in our 

mouse models. Moreover, by cKO of Plp1 specifically in forebrain structures, we report the 

latter to be essential to both catatonia and related executive dysfunctions. These findings are in 

accordance with previous reports on catatonia and impaired executive functions in patients 

suffering from altered white matter integrity particularly in the frontal lobes (Arora & Praharaj, 

2007; Northoff et al., 2004). Moreover, a higher-order fronto-parietal concept of catatonia has 

been reported by several neuroimaging studies, implying key involvements of the parietal cortex 

and the PFC (Hirjak et al., 2020). Upon usage of the here reported Plp1 cKO mice, we ultimately 

dissected the role of forebrain white matter integrity with regard to catatonia and executive 

function, the latter of which was reported upon constitutive lack of PLP (Gould et al., 2018), 

from known late-onset motor impairments reported in Plp1 null mice (Griffiths et al., 1998). 

In conclusion, I report disrupted white matter integrity of of the forebrain, along with secondary 

neuroinflammation and axonopathy, to be essential to the etiology of a catatonia-like phenotype 

in our mouse models. While the myelin genes Cnp-/- and Plp1  clearly execute distinct tasks in 

the framework of proper myelination and healthy CNS functioning (Edgar & Nave, 2009; Nave 

& Werner, 2014), deficiency of either results in comparable neuropathological features, 

comprising altered white matter integrity and secondary neurodegeneration and -inflammation.  
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Although, pathology - caused by the individual lack of each gene - results in distinct 

spatiotemporal progression of such (Patzig et al., 2016), it is certainly interesting that 

combination of both have been reported to enhance these detrimental features (Lüders et al., 

2017). While we do confirm neuroinflammation of subcortical white matter to be causative to 

catatonia and executive dysfunction in the here reported mouse model, further questions remain 

to be tackled. For instance, a novel approach by combination of Cnp-/- and Plp1-deficient mice 

could be employed to investigate, whether the enhanced neuropathology translates into an 

enhanced behavioral phenotype as well. Moreover, the underlying mechanisms observed here 

in both animal models should be further investigated aiming to narrow down the precise 

alteration upon perturbed white matter integrity, which ultimately causes the here reported 

phenotype. It would be interesting to thereby elaborate whether both mouse models share other 

pathological features that result in the catatonia-like phenotype and further to which extent 

these features can be targeted by CSF1-R inhibition or microglial replacement strategies, both 

of which are increasingly appreciated as novel tools to tackle CNS disorders (Chitu et al., 2016; 

Han et al., 2019; Waisman et al., 2015). Noteworthy, altered white matter integrity has been 

compared to a prematurely aging brain in mice and primates (Hagemeyer et al., 2012; Peters & 

Kemper, 2012). Hence, possibly respective processes, reflecting premature aging of the CNS per 

se,  may contribute to the here reported executive dysfunctions, since we report the latter to 

specifically manifest upon aging in Plp1 cKO mice of both genders.  

Collectively, the here reported insights provide novel avenues to further investigate the 

underlying mechanisms of the psychomotor syndrome of catatonia (Rogers et al., 2019). 

However, I note that catatonia in patients is very heterogeneous in etiology and symptomatology 

along with a high comorbidity with various clinical conditions. Thus, the here reported model 

of neuroinflammation of subcortical white matter may not be the cause of catatonia in all 

catatonic patients. Nevertheless, our model clearly provides a novel and reliable animal model 

much needed in future research, ultimately aiming not only to expand our understanding of the 

psychomotor syndrome of catatonia but further to develop respective targeted and efficient 

therapeutic strategies. 
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Appendix I 
  
List of abbreviations 

AD Alzheimer´s Disease 

Ambra1 Autophagy and beclin 1 regulator 1 

ApoE Apolipoprotein-E 

APP Amyloid precursor protein 

ASD Autism Spectrum Disorder 

ATP Adenosine Triphophate 

BBB Blood-brain barrier 

Caps1 Calcium-dependent secretion activator 1 

CC Corpus callosum 

CD3/68 Cluster of differentiation 3/68 

cKO Conditional knockout 

CMT Charcot-Marie-Tooth Disease 

CNP/Cnp 2’,3’-cyclic nucleotide 3’-phosphodiesterase 

CNS Central Nervous System 

CRW Complex running wheels 

CSF1/CSF1-R Colony-stimulating factor 1/receptor 

Ctrl Control 

CX3CR1 C-X3-C Motif Chemokine Receptor 1 

dB Decibel 

DSM5 Diagnostic and Statistical Manual of Mental Disorders 5 

DTI Diffusion Tensor Imaging 

ECT Electroconvulsive Therapy 

Emx1 Empty spiracles homebox 1 

ER Endoplasmatic reticulum 

GABA Gamma-aminobutoric acid 

GFAP Glial fibrillary acidic protein 

GWAS Genome-wide association study 

HDLS Hereditary Diffuse Leukoencephalopathy with Spheroids 

HRP Horseradish peroxidase 

IBA1 Ionized calcium-binding adapter molecule 1 

ICD10 International Statistical Classification of Disease 10 

Il-34 Interleukin 34 

ITI Inter-trial-interval 
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LPS Lipopolysaccharide 

MAC3 Lysosomal-associated membrane protein 2  

MBP/Mbp Myelin basic protein 

MCTs Monocarboxylate transporters 

MDD Major Depression Disorder 

MRI/MRS Magnetic Resonance Imaging/Spectroscopy 

mRNA Messenger Ribonucleic Acid 

MS Multiple Sclerosis 

NCRS Northoff Catatonia Rating Scale 

NHD Nasu-Hakola Disease 

Nlgn4 Neuroligin-4 

NMDAR N-methyl-D-aspartate receptor 

OPCs Oligodendrocyte precursor cells 

PD Parkinson´s Disease 

PFC Prefrontal cortex 

PLP/Plp Proteolipid protein 

PLX5622 Plexxikon 5622 

PMD Pelizaeus-Merzbacher Disease 

PSD93/95 Postsynaptic density protein 93/95 

PVDF Polyvinylidene difluoride 

RFID Radio-frequency identification 

rpm Rotations per minute 

SEM Standard error of mean 

SNP Single nucleotide polymorphism 

SPG2 Spastic paraplegia type 2 

SVZ Subventricular zone 

TBST Tris-buffered saline and Tween 20 

WMH White matter hyperintensities 

WT Wildtype 
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