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2. Chapter 1 – General introduction 

1. 1. Genus Tilletia 

The subphylum Ustilaginomycotina (next to Pucciniomycotina and Agaricomycotina) is one 

of the three subphyla of the Basidiomycota that accommodates most smut fungi. It contains the 

classes of Ustilaginomycetes, Exobasidiomycetes (Begerow et al., 1997; Bauer et al., 2006; Hibbett et 

al., 2013), and recently the Moniliellomycetes and the Malasseziomycetes (Wang et al., 2015b; Riess 

et al., 2016). Tilletiales is one of the six orders within Exobasidiomycetes (Begerow et al., 1997; Wang 

et al., 2015b). The genus Tilletia was named in the honor of the French botanist M. Mathieu Tillet’s 

work (Tillet, 1755) by the Tulasne brothers in 1847. Tillet was the first who showed that the cause of 

wheat bunt was the blackish powder on the contaminated wheat kernels. At the moment, the genus 

Tilletia comprises nearly some 200 described species (Vánky, 2012; Denchev and Denchev, 2013; Li 

et al., 2014; Denchev et al., 2018; Denchev and Denchev, 2018b; Denchev and Denchev, 2018a) 

(Accessed 20.08.2019). The genus is Poaceae parasite and is characterized by the formation of dark-

colored teliospores with reticulated ornamentations (Castlebury et al., 2005). Species are mainly 

classified based on morphological features of the teliospores ornamentation and host specificity. The 

majority of Tilletia species cause locally infecting bunt diseases and only a few of them cause systemic 

infections (Carris et al., 2006). Teliospores germinate to produce basidiospores at the terminal of 

aseptate basidium. Basidiospores almost immediately conjugate (Goates, 1996) and give rise to 

infectious intercellular hyphae which have capless dolipore septa (Roberson and Luttrell, 1989; Bauer 

et al., 2006). The cereal-infecting Tilletia species, which produce teliospores in the ovary of the host 

plant are called bunt fungi (Carris et al., 2006) instead of smut.  

1. 2. Wheat bunts; causal agents, epidemiology, and distribution 

Four Tilletia species are reported to infect wheat species (Triticum spp.) and triticale (× 

Triticosecale) namely, T. caries, T. controversa, T. laevis, and T. indica. The type species of the genus is 

T. caries (DC.) Tul. (syn. T. tritici). This species as well as T. laevis Kühn (syn. T. foetide) causes common 

bunt of wheat in both spring and winter wheat. Tilletia controversa Kühn causes dwarf bunt and is 

restricted to winter wheat (Carris, 2010) and finally T. indica Mitra (syn. Neovossia indica) is the causal 

agent of karnal bunt. Four species can be morphologically differentiated based on their teliospores 

ornaments and sizes. Tilletia laevis has smooth teliospores walls of 14 - 17 × 16 - 24 µm diam, while 
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teliospores of T. caries are reticulately ornamented and (14 -)16 - 20(-25) µm in diameter with muri 

height of 0.5 - 1.5 µm. Both species lack a gelatinous sheath. Teliospores of T. controversa are 17 - 21 

× 18 - 23 µm diam with muri height of 1.5 - 3 µm. The ornament shape is similar to that of T. caries, 

but the exospore is relatively deeper (Vánky, 2012). Hyaline sheath is reported from absent to 

prominent in T. controversa species (Hess, 1986). Teliospores of T. indica can range from 26 - 54 µm in 

diameter (average of 35 µm) and are tuberculate with cerebriform exospore ornamentation (Mathur 

and Cunfer, 1993). This makes the species easily distinguishable from other wheat bunts, while the 

differentiation of T. caries from T. controversa teliospores is especially difficult due to their 

ornamentation similarity and presence of great morphological variability within two species (Holton, 

1954). 

The epidemiology and life cycle of the wheat bunts are distinct from each other. Common 

bunt (T. caries and T. laevis) teliospores germinate within a week at the temperature of 15 °C and do 

not require light. Dwarf bunt (T. controversa) teliospores require the optimum temperature of 5 °C and 

germinate between 6 - 8 weeks. Illumination is essential for the successful germination of teliospores 

(Carris, 2010). Teliospores of T. indica germinate after three weeks of incubation in continuous 

illumination at 15 - 20 °C (Morris R. Bonde, 1977). Common bunt is soil and seed-borne diseases 

whereas the source of inoculum in T. controversa is mostly teliospores that remain in the soil (Goates 

and Peterson, 1999). Additionally, common bunt infection occurs shortly after germination of wheat 

seed whereas T. controversa infects seedling during coleoptile emergence (Purdy et al., 1963). In both 

cases, pathogens remain latent until clum elongation stage. Infection of T. indica is via airborne 

inoculum meaning that primary sporidia on the soil surface are the main inoculum source. The fungus 

attacks wheat plants while flowering (Morris R. Bonde, 1977; Goates, 1996) and unlike common and 

dwarf bunt, T. indica does not replace the entire kernels of a wheat spike with sori. Infected wheat has 

a fetid, fishy smell due to the production of trimethylamine in all four species (Hanna et al., 1932; 

Nielsen, 1963). 

Common bunt is distributed worldwide and can be found almost everywhere in wheat 

cultivating regions. It was reckoned as one of the destructive diseases of wheat in Europe (Strickland, 

2008) and the Pacific Northwest of the USA before the 1950s (Hoffmann, 1982). Later, the disease 

could be controlled by using effective systemic fungicides (Sitton et al., 1993; Goates, 1996). 

Common bunt is however re-emerging especially in European organic farming due to the lack of 

resistant cultivars and exclusion of synthetic chemical seed treatments (Borgen and Davanlou, 2001; 

Matanguihan et al., 2011; Zupunski et al., 2012; Dumalasová et al., 2014). Unfortunately, most of the 

widely grown local wheat cultivars in Europe are susceptible to common bunt (Waldow and Jahn, 
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2007; Matanguihan et al., 2011; Aydoğdu and Kaya, 2020) and consequently to dwarf bunt, because 

the wheat genes confer the common bunt resistance are also responsible in dwarf bunt resistance 

(Hoffmann and Metzger, 1976). Therefore, seed contamination threshold limitation for control of 

common and dwarf bunt is practiced in the European Union and other countries. For instance, only 

one teliospore per wheat kernel in Scotland (Cockerell and McNeil, 2004) and maximum 20 

teliospores per wheat kernel in Germany (Spiess and Dutschke, 1991) is accepted to be sown without 

seed treatments in organic wheat production.  

Dwarf bunt is more restricted to higher altitudes and regions with prolonged low temperatures 

in winter, favorably with clay soil (Conners, 1954; Goates, 1996), which is suitable for its teliospore 

germination. The disease caused substantial yield loss mostly in the 1990s where fields with 95% 

infected wheat were reported (Mathre, 1996). The current distribution, as well as loss caused by 

T. controversa in recent years, are largely unknown. One of the recent surveys showed that T. controversa 

plays practically no role in the production of conventional winter wheat in Germany (Rudloff et al., 

2020). The same study also reported the expanse of disease to lowland regions in Germany. 

Altogether, fifteen countries including Algeria, Brazil, Canada, Chile, People’s Republic of China, 

Czech Republic, India, Macedonia, Morocco, New Zealand, Paraguay, Poland, South Africa, Tunisia, 

and Turkey have documented regulatory restrictions against the importation of T. controversa–infested 

wheat (Peterson et al., 2009). This is done to either prevent the establishment of the fungus (ten 

countries) or limit the distribution of the disease within the country (five countries).  

Tilletia indica is geographically more restricted compared to the other wheat bunt pathogens 

and its presence is limited to small areas in the United States, Afghanistan, India, Iran, Iraq, Mexico, 

Nepal, Syria, and South Africa (Royer and Rytter, 1985; Crous et al., 2001; Rush et al., 2005; Jones, 

2008). The pathogen has not yet been reported from Europe, and it is therefore treated as A1 

quarantine pathogen (OEPP/EPPO, 2018). Common bunt is seldom under phytosanitary regulation 

for wheat importation. One such country is Mexico where T. caries is considered a regulated pathogen 

(IPPC, 2020). 

1. 3. Phylogenetic relationship of common and dwarf bunt 

The first phylogenetic analysis of Tilletia genus utilizing a part of the nuclear large subunit 

(nLSU) rDNA gene was published by Castlebury et al. (2005). Analysis based on nLSU showed that 

reticulate-spored species within Tilletia genus formed a well-supported clade from the rest of the taxa. 

Before this study, the internal transcribed spacer (ITS) rDNA and Polymerase Chain Reaction-
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Restriction Fragment Length Polymorphism (RFLP) was employed to differentiate T. walkeri 

(ryegrass bunt) and T. indica on the limited number of Tilletia species by Levy et al. (2001). Since then, 

the new species descriptions have been mostly based on ITS in combination with nLSU region, next 

to morphological analyses and host affiliation (Shivas and McTaggart, 2009; McTaggart et al., 2012; 

Li et al., 2014). However, a few numbers of taxa (max. 18 species) have been analyzed by molecular 

phylogenetic analyses for the description of the new Tilletia species in those studies. A broader taxa 

screening based on these two regions was done by Jayawardena et al. (2019). These regions were not 

variable enough to separate Pooid-infecting species within the genus. Another study based on 

phenotypic analysis of teliospores combined analysis of DNA sequences of the ITS, translation 

elongation factor 1 alpha (EF1α), and the second largest subunit of RNA polymerase II (RPB2) 

provided strongly supported clades representing species with a narrow host range on Pooid grass 

hosts (Carris et al., 2007). The same analyses could not resolve the relationship between the three 

species of T. caries, T. controversa, and T. laevis, unequivocally. Exploring variability of other loci such 

as encoding the sixth subunit of ATP synthase (ATP6), Beta-tubulin, Cyclooxygenase-3 (COX3), 

intergenic spacer I (IGS1), and the largest subunit of RNA polymerase II gene (RPB1) has been 

reported by Carpenter-Boggs et al. (2003). They reported lack of sufficient variability in the sequenced 

loci. To the best of my knowledge, it is unknown if the phylogenetic relation between common and 

dwarf bunt has been resolved utilizing those loci. 

1. 4. Host specificity in common and dwarf bunt 

Besides wheat species and triticale, common and dwarf bunt also occur on various grasses 

belonging to Poaceae (Hardison et al., 1959; Durán and Fischer, 1961; Vánky, 2012). The host spectra 

of T. controversa was extended by Durán and Fischer (1956) in a critical study of the comparative 

morphology of many hundreds of collections of the genus Tilletia from all over the world. In this 

study, several species such as T. calospora, T. elymicola, T. hordei, T. hordeina, T. lolii, T. pancicii, T. pancicii, 

T. secalis, T. trabutii, and T. tritici on different hosts were synonymized to T. controversa because 

distinguishable morphological differences between these samples and those of T. controversa were hard 

to define. At the moment the host spectra for common and dwarf bunt species includes some 60 

different hosts (Purdy et al., 1963). Many of the hosts are determined after successful artificial 

inoculation under laboratory conditions. Most of the grasses by using an injection of sporidia into 

the plant boot stage turn susceptible under laboratory conditions, whereas only a small fraction of 

them naturally occur (Hardison and Corden, 1952; Hardison et al., 1959; Goates, 1996). This method 
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therefore may not represent natural conditions unequivocally and consequently, it is unknown 

whether such hosts play any role in the dissemination of fungus in nature (Purdy et al., 1963). The 

recognition of T. controversa especially affected species concept of T. brevifaciens which is treated 

differently and remains under debate until now (Fischer, 1952; Della Torre, 1962; Carris et al., 2007; 

Vánky, 2012).  

Begerow et al. (2004) showed that out of 600 studied smuts, 55% of the species are reported 

to only occur on a single host suggesting that the smut species are generally highly host-specific. In 

line with this finding, the recent phylogenetic studies of several broad host range smuts and anther 

smut revealed that they mostly represent some host-specific species (Kemler et al., 2009; Piątek et al., 

2013; Savchenko et al., 2014; Ziegler et al., 2018; Kruse et al., 2018). The majority of Tilletia species, 

like other smuts, have also a relatively narrow host range which is usually restricted to one genus or 

even a single host (Vánky, 2012). However, sorting hosts of multi-species parasites within the Tilletia 

genus, such as T. caries and T. controversa, using molecular phylogenetic analyses have yet to be 

completed. For instance, the study of species similar to T. controversa on Thinopyrum intermedium 

(intermediate wheatgrass), Hordeum murinum (false barley), and Secale cereale (rye) showed that the 

samples were distinct not only phylogenetically but also physiologically from T. controversa on wheat 

(Carris et al., 2007). They therefore were distinguished or re-distinguished as three distinct species; 

T. brevifaciens (syn T. controversa by (Fischer, 1952; Conners, 1954; Vánky, 1994)); T. trabutii; and 

T. secalis respectively (Carris et al., 2007). Sorting especially T. controversa hosts based on molecular 

analyses to delineate species boundaries is of great importance because T. controversa is a quarantine 

pathogen in several countries and needs to be accurately and specifically identified. 

1. 5. Molecular detection of T. controversa, causal agent of dwarf bunt 

The current international diagnostic protocol for detection and quantification of T. controversa 

in wheat seeds is based on morphological features of teliospores by a filtration method according to 

the International Seed Testing Association (ISTA) handbook (1984). In this method, a filtration 

apparatus is used to collect the spore suspension that is washed from a subsample of wheat seeds on 

a filter membrane. A qualified person examines the filter membrane using a light microscope for the 

presence of dwarf bunt teliospores. This morphology-based diagnostic method has obvious 

limitations. The resolution of the microscopical picture is dramatically disturbed when using a filter 

membrane, compared to spores in water. Moreover, several Tilletia species have overlaps in the 

morphological features of teliospores with T. controversa (compare teliospores morphometrics in 
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(Carris, 2008)). Especially, “virtually every characteristic used in the separation of dwarf bunt 

(T. controversa) from common bunt (T. caries) is one of degree only” stated by Holton and Kendrick 

(1956). All together identification based on a single teliospore, where average teliospore sizes cannot 

be measured and the host is unknown, is difficult to impossible. To eliminate such uncertainty and 

accelerate the identification process, a robust, sensitive, and reliable molecular method for the 

detection of T. controversa is required. 

In recent years, several studies have addressed the detection of wheat bunt pathogens using 

different DNA-based detection methods as an alternative for the time-consuming and laborious 

traditional microscopic method. Some of the developed markers were designed in a way that the 

assay could not differentiate between common and dwarf bunt (Mulholland and McEwan, 2000; 

Josefsen and Christiansen, 2002; Kochanova et al., 2004; McNeil et al., 2004; Eibel et al., 2005; 

Kochanová et al., 2006; Zouhar et al., 2010; Zgraja et al., 2016; Pieczul et al., 2018; Yao et al., 2019). 

For instance, Mulholland and McEwan (2000) used 25s rRNA region, which is a component of the 

LSU rDNA region, and reported the developed PCR assay as genus-specific. Similarly, Pieczul et al. 

(2018) used part of rDNA IGS 2 (intergenic spacers II) to develop an assay for the common detection 

of common and dwarf bunt. The lack of phylogenetic resolution with respect to T. caries, T. controversa, 

and T. laevis employing EF1α, ITS, and RPB2 (Mulholland and McEwan, 2000; Levy et al., 2001; 

Carris et al., 2007; Bao, 2010; Jayawardena et al., 2019) suggested that these regions were not suitable 

for the development of species-specific detection assays. Therefore, alternative DNA regions needed 

to be explored for the development of species-specific markers. 

Finding suitable polymorphic regions for species-specific marker development among closely 

related species is challenging. Several approaches have been developed to facilitate the findings of 

such regions for species-specific assay development. These segments can be driven from approaches 

based on PCR amplification namely; inter-simple sequence repeats (ISSR) (Stewart et al., 2013; Gao 

et al., 2014; Priyanka et al., 2014), start codon targeted (SCoT)(Mulpuri et al., 2013; Hao et al., 2018), 

inter-retrotransposon amplified polymorphism (IRAP) (Pasquali et al., 2007; Su et al., 2008; Shimada 

et al., 2009; Xiao et al., 2011; Abdollahi Mandoulakani et al., 2015) and intron length polymorphisms 

(ILP)(Shimada et al., 2009). However, these methods are sensitive to PCR amplification conditions 

and altogether, fewer candidate regions are identified. Anonymous loci specific to T. controversa were 

identified in several studies using different approaches such as Amplified fragment length 

polymorphism (AFLP) and ISSR (Liu et al., 2009; Gao et al., 2010; Gao et al., 2011; Gao et al., 2014; 

Liu et al., 2020). However, the developed assays based on these loci were tested only on a limited 

number of samples, and the close relatedness of common and dwarf bunt (Russell and Mills, 1993; 
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Russel, 1993; Russell, 1994) was not taken into account. By using the genomic data, we could 

demonstrate that for example, the DNA fragment used for marker development by Liu et al. (2020) 

identified by the inter-simple sequence repeat (ISSR) technique could not be specific to T. controversa 

because of having homologous in common bunt genome (Accessed 01.02.2020). The same was 

demonstrated for T. laevis-specific loci identified by Yao et al. (2019), which has identical homologous 

loci in T. caries whole-genome sequences (Accessed 01.12.2019). Additionally, the markers developed 

by (Gao et al., 2014) depicted some false-positive amplification of T. caries (collected from Europe) 

samples in our laboratory (unpublished data). In the end, comparative genomic remains a promising 

approach to find a substantial number of potential DNA regions unique to T. controversa (or other 

fungi) for the species-specific assay development. Genome comparison for finding such loci is 

becoming more and more common in selective assay development (Moolhuijzen et al., 2009; Behr et 

al., 2016; Burbank and Ortega, 2018). Nguyen et al. (2019) were the first to apply a comparative 

genomic approach for finding candidate gene regions specific to each of common and dwarf bunt 

species. The study however lacks the wet lab validation of the suggested primers and the selection 

criteria are limited to single-copy genes. 

1. 6. Genome resources and comparative genomics of Tilletia spp. 

At the initiation of this work and until 2016, no genomic data was available for common and 

dwarf bunt fungi, while two other Tilletia species namely T. horrida, the causal agent of rice kernel 

smut (Wang et al., 2015a), and two T. indica (Sharma et al., 2016) whole genomes were sequenced. 

Tilletia indica and T. horrida are nonsystemic fungi that are only distantly related to systemically 

infecting common and dwarf bunt (Carris et al., 2006). Soon after, one T. caries and one T. controversa 

genome sequence were released in GenBank (released on 16.05.2019), the publication though was 

lacking until the end of 2019 (released on 30.10.2019) when the initially submitted assembly versions 

were superseded (Nguyen et al., 2019). At the moment 18 genome assemblies of Tilletia isolates 

belonging to two T. caries (GCA_001645005.2, GCA_004334575.1), two T. controversa 

(GCA_001645045.2, GCA_009428265.1), one T. horrida (GCA_001006505.1), eight T. indica 

(GCA_009428345.1, GCA_009428365.1, GCA_001645015.2, GCA_001689995.1, 

GCA_001689945.1, GCA_002220835.1, GCA_002997305.1) (genome assembly accession of 

GCA_002997305.1 is the improved version of GCA_003054935.1 and both belong to a single 

isolate), two T. laevis (GCA_009428275.1, GCA_009428285.1), and two T. walkeri 

(GCA_001645055.2, GCA_009428295.1) are available in GenBank (accessed on 08.09.2020), which 
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were released during this project (Wang et al., 2015a; Sharma et al., 2016; Kumar et al., 2017; Kumar 

et al., 2018; Gurjar et al., 2019; Nguyen et al., 2019). Additionally, one isolate of T. horrida (Wang et 

al., 2018) and seven further (Wang et al., 2019) are sequenced for which only raw reads became 

publicly available (accessed on 09.08.2020).  

The basic genomic features of common and dwarf bunt agents comprise of structural 

annotations were published by Nguyen et al. (2019) through whole-genome sequencing of one strain 

of T. caries, two strains of T. controversa, and two strains of T. laevis beside three strains of T. indica and 

two strains of T. walkeri. The draft genomes of common and dwarf bunt strains were assembled from 

28.1 to 29.9 Mb and predicted to code for 9649 to 9952 genes. These genome sizes were bigger than 

the largest genome size proposed for T. horrida (23.2 Mb (Wang et al., 2018)) and smaller compared 

to that of T. indica drafted up to 33.7 Mb (Gurjar et al., 2019). Nguyen et al (2019) compared single-

copy orthologous protein-coding genes of ten Tilletia isolates and identified 72 unique proteins to 

T. caries, two to T. controversa, and one to T. laevis. The putative functions of the identified proteins 

remained unknown. Lack of genome sequences not only delayed the development of species-specific 

markers for closely related common and dwarf bunt fungal agents but also their functional genomics, 

genomic structure, and genomic diversity among and between them remained unknown. 

1. 7. Phylogenomic analysis of Tilletia spp. 

Tilletia species were absent from the phylogenomic studies of the broad Ustilaginomycotina 

members published by Kijpornyongpan et al. (2018). This has changed in the last year by the 

availability of the whole-genome sequencing data to study the phylogenetic relationships of Tilletia 

species employing more loci. The first phylogenomic report was published by Mishra et al. (2019) 

using seven Tilletia genomes. The only representative of each T. caries and T. controversa species were 

placed in one clade together with T. walkeri, while the samples of T. indica were in a separated clade. 

Several studies have shown that T. walkeri, the causal agent of ryegrass bunt (Castlebury and Carris, 

1999) is closely related to T. indica (Pimentel et al., 1998; Levy et al., 2001; Tan and Murray, 2006). 

The placement of T. walkeri, in one cluster together with common and dwarf bunt fungi and T. indica 

samples in another is contradictory to previous studies. We speculate that not trimming the poorly 

aligned regions and divergent regions, which may have been saturated by multiple substitutions might 

have caused artifacts (Castresana, 2000; Portik and Wiens, 2020). Soon after, using the same genomes 

and analyzing 3751 orthologous genes Gurjar et al. (2019) reported one clade containing wheat bunts 

where common and dwarf bunt clustered together and separated from T. indica isolates. The latest 
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phylogenomic study of Tilletia species by using 4896 single-copy orthologous genes of 10 Tilletia 

strains (one T. caries strain, two T. controversa strains, two T. laevis strains, three T. indica strains, and 

two T. walkeri strains) was done by Nguyen et al. (2019). Using these loci, the five species clustered 

into separated well-supported clades. Due to the lack of the corresponding annotation from the other 

six publicly available whole genomes (one T. horrida isolate, five T. indica strains), the inclusion of all 

16 genomes available by that time was not possible and the study was limited to their sequenced 

genomes which were mostly collected from North USA. 

1. 8. Objectives of the thesis 

Investigation of inter- and intraspecies variation in genomes of Tilletia caries, T. controversa 

and T. laevis – Chapter 2 

Although there is an increasing concern about the threat of common and dwarf bunt, especially 

in organic farming, less is known about their genomic structure, their gene content, and what set 

these three species apart. 

Objectives of this study were to 1) sequence genomes of four T. caries, five T. controversa, and 

two T. laevis isolates which except for one are collected from recent European populations; 2) 

structurally and functionally annotate their genomes to gain first insight into their genomic features; 

3) in silico compare common and dwarf bunt isolates for inter- and intraspecies genomic variation 

with special focus on important modulators such as secretomes and effectors, carbohydrate-active 

enzymes, and secondary metabolite biosynthesis gene clusters; 4) find species-specific protein-coding 

genes that may explain the three species differences in their teliospores physiology and infection 

biology.  

 

Development of a loop-mediated isothermal amplification assay for the detection of 

Tilletia controversa based on genome comparison – Chapter 3 

For over 38 years, seed testing organizations in the European Union are using the filtering 

method established by the International Seed Testing Association (ISTA) (1984), followed by 

microscopic examination of teliospores, to detect and quantify T. controversa teliospores in wheat seed 

samples. The method is however time-consuming and needs experts. Therefore, a robust, sensitive, 

and quick DNA-based detection assay is urgently needed. The sequenced loci, mainly routinely used 

loci for the phylogenetic studies, lack suitable polymorphism to be used for the species-specific assay 

development.  
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The objective of this study was to develop a loop-mediated isothermal amplification (LAMP) 

assay to detect T. controversa species using 21 genomic data of six Tilletia species in a genome 

comparison approach. The developed assay was validated for its reproducibility in an interlaboratory 

test performance study that included five national seed testing organizations and plant protection 

agencies. 

 

Species delimitation of Tilletia controversa using molecular phylogenetic and phylogenomic 

approaches – Chapter 4  

Despite different physiological and morphological features of teliospores between common 

bunt causal agents (T. caries and T. laevis) and dwarf bunt (T. controversa), multilocus phylogenetic 

analysis incorporating sequencing data of three loci including elongation factor 1α (EF1α), partial 

internal transcribed spacer (ITS) rDNA, and partial the second largest subunit of RNA polymerase 

II (RPB2) could not resolve the phylogenetic relationship corresponding to each species. Moreover, 

common and dwarf bunts are reported to infect more than 60 grasses species of Poaceae besides 

wheat species and triticale. The phylogenetic relationships of such samples to those collected from 

wheat hosts have remained largely unknown. 

The objectives of this work were to 1) test whether T. controversa collected from different hosts 

were conspecific with those obtained from wheat species by employing multilocus (EF1α, ITS, RPB2) 

phylogeny approach, 3) phylogenomically infer the relation of common and dwarf bunt that could 

not be resolved using multi-locus phylogenetic study. For this, the eleven newly sequenced genomes 

of common and dwarf bunt which mostly have European origin are complimented with two T. caries, 

two T. controversa, one T. horrida, two T. laevis, seven T. indica, and two T. walkeri whole-genomes which 

became available during the course of this work.  
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2. 1.  Abstract 

Tilletia caries and T. laevis, which are the causal agents of common bunt, as well as T. controversa, 

which causes dwarf bunt of wheat, threaten especially organic wheat farming. The three closely 

related fungal species differ in their teliospore morphology and partially in their physiology and 

infection biology. Intraspecies variation in these species and the genetic basis of their separation is 

unknown. 

We sequenced four T. caries, five T. controversa, and two T. laevis genomes. We extended this 

dataset with five publicly available genomes. The genomes of the three species displayed 

microsynteny with up to 94.3% pairwise aligned regions excluding repetitive regions. Overall, 75% 

of the total identified protein-coding genes were conserved and shared across all 16 isolates, 

comprising 84% of the total predicted carbohydrate utilizing enzymes, 72.5% putatively secreted 

proteins, and 47.4% of effector-like proteins. Most of the functionally characterized genes involved 

in pathogenicity, life cycle, and infection of corn smut, Ustilago maydis, were absent or poorly 

conserved in the draft genomes. We predicted nine highly identical secondary metabolite biosynthesis 

gene clusters comprising in total 62 genes in all species. The biosynthetic pathway for trimethylamine 

in Tilletia spp. was found to be different from bacteria. Less than 0.1% of the protein-coding genes 

were species-specific and their function remained mostly unknown. Excluding repetitive regions, 

T. controversa had the highest inter- and intraspecies genetic variation, followed by T. caries and the 

lowest in T. laevis. 

Although the genomes of the three species are very similar, T. controversa differs from common 

bunt fungi by higher genetic diversity. Despite the conspicuously different teliospore ornamentation 

of T. caries and T. laevis, a high degree of genomic identity and the lack of species-specific genes 

indicate that the two species could either be conspecific or separated only recently. 

 

Keywords 

comparative genomics, fungal pangenomes, functional genomics, trimethylamine biosynthesis, 

Basidiomycota  
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2. 2.  Introduction 

The basidiomycete genus Tilletia (Tilletiales, Exobasidiomycetes, Ustilaginomycotina) 

comprises about 186 described species causing smut disease on Poaceae (Vánky, 2012; Denchev and 

Denchev, 2013; Li et al., 2014; Denchev and Denchev, 2018b; a; Denchev et al., 2018). Tilletia species 

are biotrophs that do not develop specialized cellular infection structures but form so-called local 

interaction zones in the host tissue (Begerow et al., 2014). The term bunt is used for cereal-infecting 

species of Tilletia that produce teliospores in the ovary of the host plant (Carris et al., 2006). The 

infection of cereal crops by bunt species remains asymptomatic up to culm elongation (Purdy et al., 

1963). The infected seeds smell like fish due to the production of trimethylamine (Hanna et al., 1932; 

Nielsen, 1963). Contaminated seeds are not suitable for human and animal consumption at a certain 

infection level and must be treated according to their infection level for use as seeds in organic and 

conventional farming. 

Three kinds of bunt diseases are known from wheat species (Triticum spp.). Common, dwarf, 

and karnal bunt. Only common and dwarf bunt affect wheat production in Central Europe, where 

they are under phytosanitary regulation for seed certification in organic and conventional farming. 

Tilletia caries [syn. T. tritici] and T. laevis [syn. T. foetida] cause common bunt of wheat (Woolma and 

Humphrey, 1924; Vánky, 2012), a disease that occurs in wheat-growing areas worldwide (Hoffmann, 

1982; Goates, 1996). Dwarf bunt is caused by T. controversa, which is reported to be limited to higher 

elevations (Goates, 1996) or regions with prolonged cooler temperatures (Carris, 2010). However, in 

recent years the disease has also been observed to extend to lowland regions in Germany (Rudloff et 

al., 2020). Tilletia controversa is economically important for international seed trading because it is a 

quarantine pathogen in several countries (Mathre, 1996; Whitaker et al., 2001; Peterson et al., 2009; Jia 

et al., 2013). 

Tilletia caries, T. controversa, and T. laevis differ in several biological and physiological features. 

Firstly, the morphology of teliospores varies from smooth in T. laevis to deep and broadened 

reticulations in T. controversa and an intermediate form in T. caries. Secondly, the teliospores of T. caries 

and T. laevis germinate within a week at 12 to 15 °C under illumination or in dark, while germination 

of T. controversa teliospores requires up to eight weeks at the optimum temperature of 3 to 5 °C and 

light is essential for germination (Purdy et al., 1963). Furthermore, the infection of wheat by common 

bunt pathogens occurs before the emergence of the coleoptile, whereas T. controversa attacks the same 

organ after emergence (Carris, 2010). Also, disease symptoms differ moderately between common 

and dwarf bunt. Substantial wheat stunting and enhanced tillering occur in dwarf bunt and its severity 
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varies among wheat cultivars (Goates, 1996; Carris, 2010), while stunting in common bunt diseased 

wheat is not readily distinguishable. Despite the different morphological and physiological features, 

molecular phylogenetic analysis based on three loci could not resolve the three species unequivocally 

(Carris et al., 2007). However, a phylogenomic study based on 4,896 single-copy orthologous genes 

analyzing ten Tilletia isolates (one T. caries, two T. controversa, two T. laevis, three T. indica (wheat karnal 

bunt), two T. walkeri (ryegrass bunt) isolates) suggested that the three species are distinct (Nguyen et 

al., 2019).  

Recent studies reported transcriptomic analyses of wheat spikes infected by T. controversa (Ren 

et al., 2020) and characterization of the wheat resistance response against T. controversa (Muhae-Ud-

Din et al., 2020). Despite the growing concern about common and dwarf bunt as major threat to 

especially organic wheat production due to a limited number of durably resistant cultivars (Ruzgas 

and Liatukas, 2008; Matanguihan et al., 2011; Aydoğdu and Kaya, 2020), and the fact that T. controversa 

is a quarantine pathogen, the genomic structure and gene contents of the three species has so far not 

been studied. Recent studies reported however genomic and transcriptomic analyses of T. indica, 

(Sharma et al., 2016; Kumar et al., 2017; Kumar et al., 2018; Gurjar et al., 2019; Mishra et al., 2019; 

Pandey et al., 2019; Singh et al., 2019; Singh et al., 2020), and T. horrida, the rice kernel smut (Wang et 

al., 2015; Wang et al., 2018; Wang et al., 2019a; Wang et al., 2019b; Wang et al., 2020). Within the genus 

these two species are only distantly related to common and dwarf bunt and also differ in their 

infection biology as they are not systemically but locally infecting species (Carris et al., 2006).  

Recently, genome sequencing data for one T. caries isolate, two isolates of T. controversa, and 

two isolates of T. laevis, mainly collected from North America, as well as T. indica and T. walkeri were 

published and used for the identification of species-specific DNA markers as well as their 

phylogenetic relation (Nguyen et al., 2019) The study has however not addressed the differences 

among the sequenced genomes where sampling size per common and dwarf bunt species was small. 

Here, we report draft genome sequences of four T. caries isolates, five T. controversa isolates, and two 

isolates of T. laevis, obtained from single teliospore cultures that except for one isolate of T. laevis, 

originated from recent European populations. These genome sequences were analyzed together with 

five published Tilletia spp. genomes (Nguyen et al., 2019) to provide a first insight into the genomic 

diversity within and between these three important pathogens.  
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2. 3.  Methods  

2. 3. 1.  Isolates, single teliospore cultures, and genomes 

Isolates of four T. caries, five T. controversa, and two T. laevis were whole-genome sequenced in 

this study (Table 1). To obtain DNA for genome sequencing, cultures of T. caries, T. controversa, and 

T. laevis were grown from single teliospores. For the production of single teliospore cultures, 

teliospores were surface-sterilized as described by Castlebury et al. (2005). Briefly, bunt balls were 

crushed using a pair of sterile fine-point forceps and the wheat ovary tissue was carefully removed. 

The teliospores were immersed in 0.26% (v/v) NaClO (Carl Roth, Karlsruhe, Germany) for 30 s, 

pelleted by centrifugation for 10 s and rinsed twice with sterile, distilled water. For germination, 

surface-sterilized teliospores were streaked on 1.5% water-agar and incubated either at 5 °C under 

constant light (T. controversa germination) or at 15 °C in darkness (T. caries and T. laevis germination). 

A single germinated teliospore of each specimen was then transferred to M-19 agar medium (Trione, 

1964) using a sterile needle. Cultures on M-19 were maintained at 15 °C in the dark to establish 

colonies for nucleic acid extraction. The medium was supplemented with penicillin G (240 mg/L) 

and streptomycin sulfate (200 mg/L). The mycelium was freeze-dried (Christ ALPHA1-4 LSC, 

Martin Christ Gefriertrocknungsanlagen, Osterode am Harz, Germany) at -40 °C for 48 h and 

afterward kept at 4 °C until use. Duplicates of the single teliospore cultures obtained in this study 

were deposited at Westerdijk Fungal Biodiversity Institute (CBS-KNAW, Utrecht, The Netherlands). 

Additionally, the genome assembly and annotation files of one T. caries, two T. controversa, and two 

T. laevis isolates were retrieved from the National Center for Biotechnology Information (NCBI) 

repository. In total, 16 genomes comprising five T. caries, seven T. controversa, and four T. laevis isolates 

were used in this study (Table 2-1). 
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2. 3. 2.  High molecular weight nucleic acid extraction and whole-genome sequencing 

Total genomic DNA from freeze-dried mycelium was extracted using a modified CTAB-based 

method (Brandfass and Karlovsky, 2008). We prepared pulverized 30 – 50 mg lyophilized mycelium 

in 2 ml reaction tubes with four 4 mm sterile tungsten carbide beads at 22 Hz for 50 s using a tissue 

lyser (Qiagen Tissuelyser II, Qiagen, Hilden, Germany). The bead-beating step was repeated twice. 

The reaction tubes were shaken vigorously between the two disruption steps to loosen the mycelium 

from the bottom of the tubes after bead beating.  

The CTAB-based protocol was modified as follows: the ultrasonic bath step was omitted, the 

CTAB buffer was additionally supplemented with 400 µg RNase (Carl Roth, Karlsruhe, Germany) 

and β-mercaptoethanol was increased to 5 µL. Both chemicals were added to the buffer shortly before 

incubation. The samples were incubated for 60 min at 65 ºC and 400 rpm. DNA was additionally 

purified by adding one volume of phenol/chloroform/isoamylalcohol (25:24:1 v/v/v) (Carl Roth, 

Karlsruhe, Germany) and then precipitated by using 0.6 volume of isopropanol (Merck, Darmstadt, 

Germany). The DNA was finally dissolved in 500 µL commercially available elution buffer (10 mM 

Tris-Cl, pH 8.5) (Qiagen, Hilden, Germany) at room temperature. 

To digest the remaining RNA, 100 µg RNase (Carl Roth, Karlsruhe, Germany) were added to 

the extracted gDNA, the mixture was inverted several times and incubated for 1 h at 42 °C at 

100 rpm. After 30 min 7 µg proteinase K (Carl Roth, Karlsruhe, Germany) were also added. RNA 

and proteins were removed by adding one volume of phenol/chloroform/isoamylalcohol 

(25:24:1 v/v/v), and DNA was precipitated by isopropanol (1:1 v/v) (Merck, Darmstadt, Germany). 

Polar fractions were retrieved through 13,000 ×g centrifugation. The obtained DNA pellet was 

washed twice with 70% (v/v) ethanol and resuspended in the elution buffer. DNA from different 

extraction replicates was pooled. The quality and quantity of the isolated DNA was measured with a 

Qubit® 3.0 Fluorometer (Thermo Fisher Scientific, Darmstadt, Germany) and stored at -20 ºC until 

shipping.  

For whole-genome sequencing, the DNA from single teliospore cultures of eleven isolates was 

shipped to GATC biotech AG (GATC Biotech AG, Konstanz, Germany) for fragmentation, library 

preparation, and sequencing on an Illumina HiSeq 4000 platform (125 bp, paired-end reads). Whole-

genome shotgun sequencing of one isolate (T. controversa OR) was additionally performed using a 

PacBio RS II instrument P6-C4 chemistry and a total of seven Single Molecule Real-Time (SMRT) 

cells were sequenced for this isolate. 
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2. 3. 3.  DNA sequence assembly  

Trimmomatic v0.36 (Bolger et al., 2014) was used to trim adapters and low quality reads from 

Illumina HiSeq data from 11 Tilletia species (ILLUMINACLIP:TruSeq3-PE.fa:2:30:10 LEADING:3 

TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:70 AVGQUAL:25). High-quality reads with 

minimum lengths of 70 bp for both reads and >25 average quality were retained for further 

processing. PacBio reads of T. controversa (OR) were corrected using the cleaned Illumina HiSeq reads 

from the same species using Proovread v2.12 (Hackl et al., 2014). The prooveread-corrected 

untrimmed PacBio reads were further corrected and trimmed using self-correction and trimming 

method implemented in Canu v1.6 assembler (Koren et al., 2017). A draft assembly was constructed 

using corrected-trimmed PacBio reads using Canu assembler, which was further scaffolded using 

Illumina paired reads (SSpace-Standard V3.0 (Boetzer et al., 2011)) and with Illumina-corrected-

trimmed PacBio reads (SSpace-LongRead (Boetzer and Pirovano, 2014)). The assembly statistics 

were generated using assemblathon_stats.pl (Author: Keith Bradnam, Genome Center, UC Davis) 

and CEGMA v2.5 (Parra et al., 2007) to assess genome completeness. In a separate approach, all the 

11 Tilletia isolates were assembled, using the remaining Illumina reads employing Velvet assembler 

v1.2.10 (Zerbino and Birney, 2008) (-scaffolding on). Several assemblies were generated for all the 

species at different k-mers. Assembly statistics and CEGMA completeness of all the assemblies were 

tabulated and for individual species the best assembly in terms of statistics and CEGMA 

completeness was manually chosen. 

2. 3. 4.  Identification of repetitive regions, simple sequence repeats, and transposable 

elements  

Draft genome sequences were used to identify SSRs, also known as microsatellites by using 

the tool MIcroSAtellite identification (MISA) (Beier et al., 2017). The search criteria were at least ten 

repeat units for mononucleotide, six repeats for dinucleotide, and five for tri-, tetra-, penta-, and 

hexanucleotide motifs. SSRs with less than 100 bp distance from each other were considered as 

compound microsatellite. The relative abundance for each SSR type was calculated by the number of 

repeats per Megabyte of genome.  

Transposable elements (TE)s were identified computing TransposonPSI (Haas, 2010) with 

default settings. The program employs PSI-BLAST search (Altschul et al., 1997) against a database of 

various collections of TE families to identify matching regions in the genome. Additionally, we used 

RepeatModeler version 1.0.11 (Smit et al., 2008-2019) to create a library comprising de novo identified 
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repetitive elements. RepeatModeler employs three de novo repeat finders, RECON (Bao and Eddy, 

2002), RepeatScout (Price et al., 2005), and Tandem Repeats Finder (Benson, 1999). The number of 

identified TEs and SRRs (see above) was subtracted from the total number of repeats identified by 

RepeatModeler as unclassified repetitive elements.  

The resulting library of RepeatModeler was used to mask respective elements in the target 

genome sequences using RepeatMasker 4.0.9 (Smit et al., 2013-2015). For different purposes (see 

below), we used both soft-masking (repeats replaced by lowercase letters) and hard-masking (repeats 

replaced by N). 

2. 3. 5.  Detection of single nucleotide polymorphisms (SNPs) and small insertions and 

deletions (indels)  

For pairwise SNP and indel identification, we used hard-masked genomes generated by 

RepeatMasker. For each genome pair, SNPs and the total length of indels in the aligned regions were 

counted using dnadiff wrapper from MUMmer 3.0 (Kurtz et al., 2004) package (show-snps -C). 

Average nucleotide identities of one-to-one alignments were also obtained from dnadiff output.  

2. 3. 6.  Gene model prediction  

Genes in the newly sequenced genomes (n = 11) were predicted from the soft-masked 

assemblies while for the publicly available genomes we used the existing gene annotations. We used 

a combination of ab initio and homology-based approach for gene model prediction. Gene models 

were created first by the incorporation of multiple sources of evidence using Gene Model Mapper 

(GeMoMa pipeline: V1.6.2 beta) (Keilwagen et al., 2016; Keilwagen et al., 2018). GeMoMa is a 

homology-based gene prediction program and uses RNA-Seq data to incorporate evidence for splice 

site prediction. Afterwards, BRAKER2 (Brůna et al., 2020), which utilizes the ab initio gene predictor 

Augustus 3.3.3 (Stanke et al., 2006) and GeneMark-ET 4.33 (Lomsadze et al., 2014) self-training 

algorithms were applied. To do so, publicly available genome sequences and structural annotations 

of six Exobasidiomycetes isolates (Kijpornyongpan et al., 2018) and additionally the smut model 

organism U. maydis (Kamper et al., 2006) were downloaded from GenBank (references are given in 

Additional Table 2-1). Additionally, three RNA-Seq datasets were derived from two different T. caries 

isolates (DAOMC 238032 and WSP 72095/517) and one T. controversa isolate (DAOMC 236426) 

were downloaded from GenBank (Additional Table 2-2).  

For adapter clipping and read trimming of the RNA-Seq data, the utility program Trim Galore 

version 0.4.0 (Krueger, 2012-2019) was employed (qval >= PHRED 30, minimal read length of 
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50 bp). Trimmed reads were mapped to the assembled genome sequences using STAR version 2.4.0d-

2 (Dobin et al., 2012) with default parameters. The two RNA-Seq datasets of T. caries (SRR2513861 

and SRR3337311) were mapped to T. laevis assemblies because no RNA-Seq data was available for 

T. laevis and the two species are closely related.  

Protein-coding exons were extracted from the seven reference genomes by GeMoMa module 

Extractor (part of GeMoMaPipeline) using the default parameters. The GeMoMa Extract RNA-Seq 

evidence (ERE) was used to extract intron boundaries of each target genome by utilizing RNA-Seq 

data (coverage = true). We permitted alternative transcripts. The rest of the parameters were set as 

follows: maximum intron length = 2500, tBLASTn = false, ambiguity = ambiguous, 

score = ReAlign, rename = no. Filtered predictions (start = ’M’ and stop = ’*’ 

sorting = score/AA >= 0.50) file for each genome generated by GeMoMa was used with align2hints 

command to produce hint file for BRAKER2. The corresponding softmasked genome, the STAR 

RNA-Seq mapped file, and the GeMoMa hint file were used to run BRAKER2 (UTR = on) for each 

genome. The generate gene model by BRAKER2 was used for further analysis. To predict the coding 

regions of transfer RNA (tRNAs), tRNAscan-SE 2.0 (Lowe and Chan, 2016) was retrieved with 

eukaryotic sequence source in the default search mode.  

To estimate the completeness of the gene model predictions, BUSCO V. 3.0.2 (Benchmarking 

Universal Single-Copy Orthologs) program (Simao et al., 2015) was used. BUSCO utilizes sets of core 

genes in taxon-specific databases to evaluate the relative completeness of a given annotation. We 

used the lineage dataset for Fungi-OrthoDB9 (Zdobnov et al., 2016) in the proteome mode.  

2. 3. 7.  Functional annotation of the predicted genes 

Genome-wide annotation was done to relate putative biological functions to the predicted 

genes. To make functional annotation comparable between all draft genomes, we analyzed all 16 

genomes used in this study. The putative functions were assigned to the predicted proteins through 

one-to-one orthology assignments by eggNOG-Mapper 5.0.0 (Huerta-Cepas et al., 2018) (one-to-one 

ortholog, auto taxonomic adjust mode). Only functional annotations derived from Eukaryote or 

fungal sequence sources were accepted. Functional descriptions of Gene Ontology (Go) terms 

(Ashburner et al., 2000; Gene Ontology, 2015), Kyoto Encyclopedia of Genes and Genomes 

(KEGG) pathways and modules (Kanehisa et al., 2013), and COG/KOG functional categories 

(Levasseur et al., 2013; Galperin et al., 2014), and SMART/PFAM domains (Letunic and Bork, 2018) 

were obtained using eggNOG-Mapper.  
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2. 3. 8.  Prediction of encoded carbohydrate-active enzymes, secreted proteins, and 

secondary metabolites 

Carbohydrate-active enzymes derived from the draft genomes were predicted using the HMM-

based-dbCAN server (HMMdb v8.0) with a cut-off E-value < 1e-17 (suggested for fungi) and 

coverage > 0.50 (Zhang et al., 2018). Out of this prediction, the potential plant cell wall degrading 

enzymes were classified for their substrate according to Kijpornyongpan et al. (2018).and Benevenuto 

et al. (2018). 

Putatively secreted proteins (referred to secretome in their totality) were identified by the 

presence of a signal peptide and absence of transmembrane domains in the predicted proteomes of 

each genome according to the suggestions of (Min, 2010). Briefly, the proteome of each draft genome 

was first screened by SignalP 5.0 (Almagro Armenteros et al., 2019). To check whether the prediction 

belonged to an integral membrane protein, transmembrane α-helix predictor TMHMM v. 2.0 (Krogh 

et al., 2001) in tandem was employed. Those signal-peptide-like proteins showing any transmembrane 

helix topology were filtered out. Additionally, the signal peptides were predicted using Phobius (Kall 

et al., 2007) webserver accessed on Sep. 2019 with default parameters. In the end, only those putative 

proteins containing signal peptides that had been predicted by both independent approaches were 

annotated as secretome. To predict the effector repertoire from the predicted secretome of each 

genome, EffectorP 2.0 (Sperschneider et al., 2018) accessed on Sep. 2019 was used. 

The draft genome sequences were searched for secondary metabolites and biosynthetic gene 

clusters using the fungal version of antiSMASH 5.0 (antibiotics and Secondary Metabolite Analysis 

Shell) (Medema et al., 2011). Identified gene clusters were grouped based on their similarity (>80% 

identity). Since genes of a cluster may be dispersed on different contigs, the presence, the 

completeness, and the order of each gene cluster was validated by aligning Illumina reads of each 

isolate to a reference sequence from each gene cluster group according to a mapping approach 

described by Weber et al. (2019). Briefly, the reference sequence was selected for each gene cluster 

group based on either length or high sequence conservation among the different isolates. Illumina 

reads of each isolate (Additional Table 2 6) were trimmed using Trimmomatic version 0.36 (Bolger 

et al., 2014) with a 4:15 sliding window. The trimmed reads were aligned to the different genes clusters 

references using Bowtie v2.4.1 (Langmead and Salzberg, 2012). SAMtools v1.10 (Li et al., 2009) was 

used for file conversion to bam, validation of read pairing information (fixmate), removal of reading 

duplicates (rmdup), removal of mapped singleton version 3.5.1 (R Development Core Team, 2013). 
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2. 3. 9.  Orthologous gene identification and clustering  

The OrthoMCL pipeline v 2.0 (Li et al., 2003) was used to identify clusters of orthologous 

genes among all 16 isolates of the three species (inflate = 1.8 and E-value = 1e-10). Input translated 

protein sequences of all predicted genes contained also alternative transcripts per gene. The 

OrthoMCL program applies all-against-all BLASTp to estimate similarities between proteins and 

identifies groups using Markov clustering algorithm. The output of the program was parsed by using 

a custom-made phyton script to define; (i.) orthologous genes that were present in all isolates referred 

to shared genes at the interspecies level and core genome at intraspecies level; (ii.) orthologues genes 

shared between all isolates of a species and absent in the others (species-specific genes); (iii.) the 

accessory (at intraspecies level) or variable (at interspecies level) genes which were dispensable and 

not present in all genomes; (iv.) singletons presented only in a single isolate (isolate-specific genes). 

Putative functional prediction of an orthology cluster was reported only when at least 75% of the 

genes within shared an identical annotation. 

2. 4.  Results 

2. 4. 1.  Whole-genome sequencing and genome annotation of T. caries, T. controversa, and 

T. laevis 

The assembly of ten draft genomes based only on Illumina reads (four T. caries, four 

T. controversa, and two T. laevis isolates) resulted in assembled genome sizes of 30.3 to 31.7 Mb 

(T. caries), 29.4 to 31.9 Mb (T. controversa), and 30.8 Mb (T. laevis) with GC contents between 56.5 to 

56.7% (Figure 2-1). N50 values varied between 9.3 and 17.8 kb. The hybrid assembly of the 

T. controversa isolate OR, which was sequenced using both Pacific Biosciences (PacBio) and Illumina 

reads, resulted in a draft genome size of 49.3 Mb (scaffold N50 = 137 kb) distributed in 985 scaffolds 

with the GC content of 55.7% (Figure 2-1).  

A combination of de novo and order-specific gene model data was used after assessing 

annotation completeness for each annotation approach separately employing a genome (Additional 

Table 2-4). In total, 9,807 to 9,943 protein-coding genes were annotated in the T. caries genomes, 

9,679 to 10,459 in the T. controversa genomes, and 10,160 and 10,203 in the two T. laevis genomes 

(Table 2-2). Coding sequences (CDS) consisted of 3.5 exons on average. Alternative splicing forms 

were predicted for up to 1.4% of the total CDS (Table 2-2). Genomes contained 110 to 178 genes 

encoding transfer RNAs (tRNAs) (Table 2-2). The specificity of these tRNAs covered up to 48 of 61 

possible anticodons and the codon usage was identical in all three species. To check whether the 
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tRNA genes were clustered, we examined the location of tRNA genes in the most contiguous genome 

(OR isolate). A total of 178 putative tRNA genes were distributed over 102 scaffolds. The maximum 

number of 14 tRNA genes plus 9 pseudogenes spanned a 151,829 bp long region on scaffold number 

OR-9 (accession number CAJHJB010000889).  

The completeness of the genomes annotation was evaluated using the fungi database 

(OrthoDB v9 (Zdobnov et al., 2016)) as a reference. From the 290 total BUSCO (Benchmarking 

Universal Single-Copy Orthologs) (Simao et al., 2015) groups of the database, 91.1 to 96.9% were 

recovered in the draft genomes (Table 2-2). For the comparative analyses, we added five publicly 

available draft genomes (see Table 2-1) to the 11 genomes obtained in this study, resulting in five 

genomes of T. caries, seven genomes of T. controversa, and four genomes of T. laevis. 

 

 

Figure 2-1 Bubble plots of descriptive numbers for each genome. The bubble sizes are scaled only 

within categories. The genome assemblies done in this work are presented in black color. Two 

T. controversa isolates OR and DAOMC 236426 were sequenced both on Illumina and PacBio 

platforms and marked with asterisk. 
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2. 4. 2.  Structural genomics 

2. 4. 2. 1.  Repetitive sequences and transposable elements 

In eukaryotic genomes, repetitive elements are widespread. Although they are generally 

regarded as genome parasites or remnants of molecular evolution, some repetitive sequences were 

shown to play diverse roles in environmental adaptation and genome evolution (Wöstemeyer and 

Kreibich, 2002). The genome fraction assigned to repetitive elements in Tilletia species ranged from 

7.8 to 13.7% for T. caries, 8.9 to 13.6% for T. controversa, and 9.1 to 11.8% for T. laevis (Additional 

Table 2-5) and overall, a higher proportion of repetitive elements was found in the newly sequenced 

genomes. Exceptionally, roughly four times higher repetitive elements (37%) in the genome sequence 

of T. controversa isolate OR and its 49.3 Mb assembled genome size was revealed. Transposition is one 

of the causes of genomic plasticity and plays an important role in pathogenicity and adaptive 

evolution (Casacuberta and González, 2013; Muszewska et al., 2019; Razali et al., 2019). Transposable 

elements (TEs) made up to 3.7% of all repetitive elements in the studied genomes. The values were 

very similar for all three species. Transposable elements can move or copy from one locus to another, 

are classified based on their mode of dispersion (Levin and Moran, 2011). The detected TEs were 

classified into one of 15 superfamilies (), of which DDE-1, gypsy, hAT, helitronORF, Itr-Roo, Line, 

mariner-ant1, MuDR-A-B, and TY1-copia were more prevalent in the genomes of European isolates 

compared to the North American genomes. In all isolates, regardless of the sequencing platform 

used, the gypsy-like and TY1-copia-like superfamilies were the most common, accounting for more 

than half of the total TEs in each genome (Figure 2-2).  

Additionally, we classified a total of 6,564 to 10,031 repetitive elements as simple sequence 

repeats (SSRs), accounting for 0.53 to 0.63% of the entire genomes. Trinucleotides SSRs (35.2 to 

42.8% of all SSRs) were the most abundant. 
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2. 4. 2. 2.  Genomic synteny and genome-wide diversity 

Overall, 82.7 to 94.3% of the genomes could be aligned pairwisely with an average nucleotide 

identity between 98.7 to 99.6% in one-to-one aligned regions, excluding repetitive sequences 

(Additional Table 2-7). Based on the number of single nucleotide polymorphisms (SNPs) and the 

total length of small insertion or deletions (indels) within species, T. laevis isolates, with max. 

0.52 SNPs/kb and 1.09 bp indels/kb, were the most homogeneous, while T. controversa showed the 

greatest degree of nucleotide diversity (max. 1.47 SNPs/kb and 2.48 indels bp/kb) (Figure 2-3). On 

the interspecies level, low nucleotide variation was observed between T. caries and T. laevis species 

while all isolates of these two species exhibited a greater distance to the isolates of T. controversa (Figure 

2-3). No correlation between the sequencing platform and genomic diversity was observed. 

2. 4. 3.  Functional genomics 

Functional information was assigned to gene products based on protein sequence homology 

(reference database: eggNOG v5.0) (Huerta-Cepas et al., 2018). To ensure comparability, functional 

annotation was performed for the protein-coding genes of all genomes including new functional 

annotation of published genomes. At least 55.5% of all coding sequences in each genome were 

functionally annotated (Figure 2-4A). In general, the identified biological pathways and functional 

categories were remarkably similar across the three species.  

To overcome plant defense systems for successful colonization, plant pathogens employ plant 

cell wall-degrading enzymes (PCWDE) that are part of carbohydrate-active enzymes (CAZymes), 

effectors which are a subgroup of secreted proteins, and secondary metabolites (Kimura et al., 2001; 

Chisholm et al., 2006). We searched the predicted proteomes for these modulators as described below. 
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2. 4. 3. 5.  Genomic insight into trimethylamine synthesis in Tilletia spp. 

Fishy smell of grains infected with smut is caused by trimethylamine (TMA), which was 

isolated already in 1887 from ergot (Claviceps purpurea) and Ustilago sp. (Diehl, 1887) and in 1932 from 

T. laevis-infected wheat (Hanna et al., 1932). It is not known how fungi synthesize TMA. The 

biosynthesis of TMA in bacteria was recently unraveled (Craciun and Balskus, 2012). The precursor 

of TMA in bacteria is choline and the reaction is catalyzed by choline trimethylamine-lyase CutC, 

which is activated by activating protein CutD. The sequences of both proteins are highly conserved 

(Martínez-del Campo et al., 2015). Based on the report that TMA in ergot also originates from choline 

Figure 2-5 The gene organization of the nine putative secondary metabolite gene clusters found 

in all 16 T. caries, T. controversa, and T. laevis isolates. 
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(Brieger, 1887), we assumed that TMA biosynthesis in bacteria and fungi follow a convergent path 

or the pathway was transferred from bacteria to fungi, as was reported for other genes (Jaramillo et 

al., 2015; Navarro-Muñoz and Collemare, 2020). We therefore searched for homologs of cutC in 

Tilletia spp. No such protein was found in the proteome of common and dwarf bunt proteome, 

indicating that Tilletia spp. do not possess choline trimethylamine-lyase. Search for proteins similar 

to activating protein CutD failed, too. Both genes were also missing from the genomes of Ustilago 

and Claviceps, indicating that the biosynthesis of TMA in smut and ascomycetes fungi is different from 

bacteria. Ethanolamine is a structural analog of choline. In bacteria, the degradation of ethanolamine 

to ammonia is catalyzed by vitamin B12-dependent ethanolamine ammonia-lyase EutBC (Garsin, 

2010). This enzyme inspired the search for choline degradation pathway that eventually led to the 

discovery of CutC/CutD (Craciun and Balskus, 2012). We searched Tilletia genomes for genes similar 

to eutBC, too, but no such gene was found, indicating that the synthesis of TMA in fungi does proceed 

by the removal of the hydroxyethyl group from choline by an enzyme related to ethanolamine 

ammonia-lyase.  

2. 4. 4.  Inter- and intraspecies variation of protein-coding genes  

To compare protein-coding genes within and among the three species, all 159,834 predicted 

CDS were grouped into orthology clusters based on the sequence homology of their products using 

OrhoMCL (Li et al., 2003). From the total of the CDS, 97.6% were grouped into 11,463 orthology 

clusters; the remaining 2.4% genes were singletons that did not group to any orthology cluster (Figure 

2-6). A total of 5,919 orthology clusters (comprising 75.4% of total CDS) were shared by all 16 

isolates. Many of them (4,167) were single-copy genes that did not have any paralog in any isolate. 

Additional 3,203 orthology clusters were shared among all species by at least one but not all isolates 

per species, indicating that these genes were neither essential nor species-specific. 

Interestingly, 84% of the total predicted CAZymes (Figure 2-7), 72.5% of the total secretome 

(Figure 2-4B), and 47.4% of the genes encoding effectors (Figure 2-4B) were among the 5,919 

orthology clusters shared and conserved across all species. The number of species-specific orthology 

clusters defined by CDS that were present in all isolates of the target species but not in any isolate of 

the other species varied between 1 (T. caries), 21 (T. controversa), and 3 (T. laevis) (Additional Table 

2-11). With a more relaxed definition, allowing the gene of an orthology cluster to be missing in the 

maximum one isolate of the target species, the numbers increased to 7, 39, and 10 in T. caries, 

T. controversa, and T. laevis, respectively. We were also interested in the genes that were present in both  
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causal agents of common bunt (T. caries and T. laevis) only. Using the strict definition, we found 19 

common bunt-specific orthology clusters. Under relaxed criteria, allowing an orthology cluster to be 

missing at most two isolates, we found 40 common bunt-specific orthology clusters. Putative 

functions were assigned to only 16 out of 96 total common and dwarf bunt-specific orthology clusters 

(relaxed and strict) (Additional Table 2-11). In total, species-specific orthology clusters comprised 

only 0.09% of the total CDS (Not a single effector nor CAZyme was detected among the species-

specific genes. However, two orthology clusters comprised genes that putatively encode secreted 

proteins. One of them was specific for T. controversa and the other for the common bunt species 

T. caries and T. laevis.  

Based on the orthology clusters, we assigned CDS to core genomes (present in all isolates of a species) 

and pan-genomes (all CDS present in at least one isolate of a species) of each species individually. 

The largest core genome belonged to T. laevis (95.4% of the pangenome). Tilletia controversa had the 

largest accessory genome (6.1% of the pangenome) (Table 2-4).  

 

Figure 2-6 Distribution of orthologues clusters and CDS among 16 isolates of T. caries, T. controversa, 

and T. laevis species. Out of 159,834 total CDS, the majority (120,600) which clustered in 5,919 

orthology clusters were among the shared between all the 16 isolates.  
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2. 5.  Discussion 

In this study, the results of the whole-genome sequencing, assembly, structural and functional 

annotation of 11 isolates of T. caries, T. controversa, and T. laevis were performed. We additionally 

included the assembled genome of five isolates which were publicly available (Nguyen et al., 2019) to 

assess the inter- and intraspecific genetic variation of these important wheat pathogens.  

The size of the assembled genomes of ten Tilletia isolates using only Illumina reads ranged 

from 29.4 to 31.9 Mb, which were in line with the size of previously published genomes (Nguyen et 

al., 2019). However, these ten sequenced genomes were more fragmented compared to the published 

genomes due to lower coverage. However, the gene-space seemed to be adequately covered as 

revealed by similar BUSCO results. The genome of one isolate of T. controversa (OR) was assembled 

using PacBio and Illumina reads, resulted in the fewest scaffolds (985 scaffolds) and an increase of 

N50 to 137 kb. In addition, as more repetitive DNA could be resolved using the long PacBio reads, 

the assembled genome size increased significantly. This higher sequencing depth also resulted in 

almost 50% more tRNA identification compared to the other isolates. 

Figure 2-7 Distribution of putative CAZyme in the shared and variable orthology clusters, and 

singleton genes between five isolates of T. caries, seven isolates of T. controversa, and four isolates of 

T. laevis. Majority of the CAZymes are conserved and shared between the three species. Glycoside 

Hydrolases (GHs), Polysaccharide Lyases (PLs), Carbohydrate Esterases (CEs), Glycosyltransferases 

(GTs), Auxiliary Activities (AAs), and Carbohydrate-Binding Modules (CBMs). 
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The proportion of repetitive regions can differ significantly between closely related species. 

For instance, Fusarium oxysporum and F. graminearum, two closely related species differ in their 

proportion of repetitive elements with 16.83 Mb and 0.24 Mb respectively (Ma et al., 2010). In our 

study, the percentage of repetitive regions was variable among the 15 isolates (7.8 to 13.7%) without 

resulting in a difference between the three species. However, the true proportion of repetitive regions 

can be expected to be higher as exemplified by the number of 37% found in the long read-based 

genomes of isolate OR, suggesting that a variable number of repeat elements might have been 

collapsed in the assemblies based on short reads due to their high sequence similarity. The transposon 

types Gypsy followed by Copia, both belonging to the long terminal direct repeats (LTR) class of 

retrotransposons, were the most abundant in all three bunt species. Similarly, Gypsys were the most 

frequent TE reported in T. indica (Gurjar et al., 2019; Mishra et al., 2019) as well as T. horrida 

(Wang et al., 2018). Gypsys are the most successful group of TEs in fungi (Gorinsek et al., 2004) and 

plants (Sabot and Schulman, 2006) that can increase their number by autonomous transposition 

(Elliott and Gregory, 2015). 

2. 5. 1.  Genomic synteny and genome-wide diversity 

The genomes of the three Tilletia species appeared to be largely syntenic as up to 94% of non-

repetitive DNA regions could be aligned in a pairwise manner. Furthermore, we detected more than 

98.7% average nucleotide identity in one-to-one aligned DNA regions (data not shown), which was 

in agreement with Nguyen et al. 2019 (Nguyen et al., 2019). Genomic macrosynteny among closely 

related species has been reported for some Fusarium species (De Vos et al., 2014) and within 

Dothideomycetes (Ohm et al., 2012). The microsynteny observed between the three species can be 

explained by their close phylogenetic relationship (Russell and Mills, 1993; Russell, 1994; Carris et al., 

2007; Vánky, 2012). 

Genome-wide average diversity was least between two species of T. caries and T. laevis with 

0.51 SNPs/kb and 1.04 indels bp/kb on average. At the same time, both species showed almost equal 

distance to T. controversa correlating with the fact that both are identical in teliospore physiological 

features and infection biology, but different from T. controversa. This is especially remarkable because 

the common bunts isolates’ geographic origins were more distant to each other (Austria, Italy, 

Germany, Switzerland, and USA) than those of the dwarf bunt isolates, which were mostly collected 

from Germany. 

At species level, up to three times higher nucleotide polymorphisms were observed among the 

seven isolates of T. controversa (max. 1.47 SNPs/kb) compared to the five isolates of T. caries (max. 
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0.53 SNPs/kb) and four isolates of T. laevis (max. 0.52 SNPs/kb). However, the number of SNPs 

were generally lower for all three bunt species compared to the reports for other species of 

Basidiomycota. For instance, different genotypes of Heterobasidion irregulare had 4 SNPs/kb (Sillo et 

al., 2015) and Melamspora larici-populina 6 SNPs/kb (Persoons et al., 2014), respectively. The especially 

low genetic diversity observed within the common bunt species and still low, and the somewhat 

higher genetic diversity of T. controversa, could be the consequence of different mating systems. Both 

common and dwarf bunt display bipolar mating behaviors meaning that selfing is the dominant 

reproduction form, which happens by quick mating of the compatible basidiospores of the same 

basidium (Goates, 1996) and limiting the chances of outcrossing. However, the mating system is 

biallelic in common bunt (Holton, 1951; Holton and Kendrick, 1957) and multiallelic in dwarf bunt 

(Hoffmann and Kendrick, 1969) leading to a higher chance of occasional outcrossing and 

consequently a higher degree of diversity in T. controversa (Pimentel et al., 2000). 

2. 5. 2.  Inter- and intraspecies diversification 

We compared the inventory of the protein-coding genes of the three closely related Tilletia 

species by clustering ortholog use to define variation across 16 isolates. A total of 97.7% of the total 

predicted CDS were clustered to an orthologous group and 75.4% of all predicted CDS were shared 

across all 16 isolates. The shared fraction of genes between the three species of T. caries, T. controversa, 

and T. laevis together was only 5% lower than the minimum core genome size reported within single 

fungal species. 

For instance, McCarthy and Fitzpatrick (2019) reported that 80% to 90% of the total genes 

represented the core genomes at species level studying four different fungal species 

(Aspergillus fumigatus, Candida albicans, Cryptococcus neoformans var. grubii and Saccharomyces cerevisiae). 

Moreover, the size of the core genome of six Aspergillus niger isolates was also 80% of the pan-genome 

(Vesth et al., 2018) while they mostly have asexual reproduction form. The high degree of gene 

conservation between the three Tilletia species is an indication that T. caries, T. controversa, and T. laevis 

share a common ancestor and further raise the question whether the morphological and physiological   
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differences the species definitions are based on are sufficient in the light of their high genomic 

similarity. 

In this study a large core-genome and a small accessory genome for each species. Accessory 

genes are frequently involved in pathogenicity, virulence, antimicrobial resistance, and adaptation to 

the environment (Sheppard et al., 2018; Lee and Andam, 2019). The fraction of accessory genome 

was highest in the pan-genome of T. controversa (6.1%) followed by T. caries (4.5%) and was the lowest 

for T. laevis (2.9%). All these values were significantly lower than the accessory genomes reported for 

other fungal species, which ranged from 9 to 20% of their pan-genomes (McCarthy and Fitzpatrick, 

2019). We found only very few species-specific genes to T. laevis and T. caries and a high percentage 

of shared orthology clusters between them. This corresponded with the low numbers of SNPs and 

indels and may suggest that the two species could be two morphotypes of one species so-called 

pseudomorphospecies (Vanky, 2008) or have just diverged recently. Altogether, the genomic 

similarities and differences found in this study correlated better with the delineation of the diseases 

common bunt (T. caries and T. laevis) versus dwarf bunt (T. controversa) than with the circumscription 

of the three species. 

2. 5. 3.  Carbon utilization and establishment of fungal biotrophy 

As other biotrophic pathogens, T. caries, T. controversa, and T. laevis encode for a relatively low 

number of CAZymes (Zhao et al., 2013; Lyu et al., 2015). Moreover, the three species were quite 

similar in the diversity and abundance of identified CAZyme families. Plant-parasitic fungi secrete a 

variety of CAZymes, which may play a role in pathogenicity and virulence and are needed to 

successfully degrade plant cell walls and to complete host invasion (Annis and Goodwin, 1997; 

Gibson et al., 2011; Kubicek et al., 2014). Based on the in silico analyses, all 16 isolates had two putative 

secreted CAZymes, one belonged to one chitin deacetylases of the family CE4 and one to the GH152 

family. CE4 is suggested to play role in the modification of the fungal cell walls for masking hyphae 

to escape from enzymatic hydrolysis by host chitinases through de‐N‐acetylation of chitin (El 

Gueddari et al., 2002; Boneca et al., 2007). The enzyme β-1,3-glucanase (GH152) is suggested to play 

a role in cell wall softening during morphogenesis in Aspergillus fumigatus (Mouyna et al., 2013). 

Interestingly, common and dwarf bunt, similar to T. indica (Gurjar et al., 2019) have genes 

encoding for GH8 (broad activity hydrolase), which was suggested to be present in all 

Ustilaginomycotina (Kijpornyongpan et al., 2018). In addition, Tilletia spp. harbored families coding 

for PL14 and AA2 enzymes that are involved in lignin decomposition, which were completely absent 

in other studied Ustilagoinmycotina, but present in Agaricomycotina (Kijpornyongpan et al., 2018). 
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Putative genes encoding for PL14 and AA2 are also reported from T. indica CAZyme analyses (Gurjar 

et al., 2019). 

Almost half of the putative genes encoding for effectors in the multi-species comparison of 

T. caries, T. controversa, and T. laevis were among the variable genes (dispensable and not present in all 

genomes), which is in agreement with their ability to undergo rapid diversification including 

duplication, deletions, and point mutations (Oliver and Solomon, 2010; Rouxel et al., 2011). 

Interestingly, the functionally characterized genes which had orthologous in the genome of the three 

species were suggested to be either essential for establishing biotrophy in smuts such as Pep1 or 

important virulence factor such as Srt1 (Hemetsberger et al., 2015; Kijpornyongpan et al., 2018; Lanver 

et al., 2018). 

2. 5. 4.  Secondary metabolites pathways and trimethylamine synthesis  

The putative secondary metabolite gene clusters in T. caries, T. controversa, and T. laevis were 

predicted in this study Secondary metabolites are known as virulence factors (Oide et al., 2006), toxins, 

inhibitors (Shwab and Keller, 2008), and antifeedants or deterrents (Tanaka et al., 2005; Xu et al., 

2019). NRPS gene clusters are often repetitive in their internal structures and the identification of a 

higher number of them in the PacBio sequenced genome can be explained by a higher coverage of 

repetitive regions. The in silico analysis of putative secondary metabolites gene clusters revealed that 

the three species were nearly identical. 

Production of TMA gave the stinking smut its name. The biological function of TMA in Tilletia 

spp. (Ettel and Halbsguth, 1963; Singh and Trione, 1969) as well as in Geotrichum candidum (Robinson 

et al., 1989) is the autoinhibition of spore germination. Other metabolites of Tilletia were shown to 

inhibit spore germination in vitro (Trione and Ross, 1988), but they are not volatile and therefore 

cannot fulfill the function of autoinhibitors. The precursor of TMA in smut fungi and bacteria is 

choline, but the lack of homologous genes in smut fungi indicates that the biosynthetic pathway is 

different. The biosynthesis of TMA in smut fungi also appears unrelated to ethylamine degradation 

by bacteria. We therefore hypothesize that smut fungi possess a different biosynthetic route to TMA, 

which has yet to be discovered. 
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Additional Table 2-10 Analysis of adenylation domains of putative NRPS genes in Tilletia spp. 

Domain Predicted AA 

substrate 

Nearest neighbor 

score (%) 

Extracted Stachelhaus-

code 

NRPS 
   

A1 phg 50 DLMIIGLLIK 

A2 orn 60 DVKAIGAIGK 

A3 lys 50 DVIDAGLVYK 

NRPS-like II 
   

A1 pro 90 DPRHFVMRAK 

NRPS-like IV 
   

A1 phe 30 GGRYAASPI- 
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Additional Figure 2-1 Coverage of putative secondary metabolites and biosynthetic gene clusters. 

Trimmed Illumina reads of each isolate were aligned to the selected reference gene cluster sequence 

using default mapping parameters. The plot shows the read depth up to 500 (blue line) and the lowest 

regression (filter: 1/25; orange line). The median coverage is indicated on the right y-axis in red and 

the x-axes shows length of the predicted secondary metabolite gene cluster in bp. Regions which 

were annotated as core genes by antiSMASH are shaded in gray. The reference secondary metabolite 

gene clusters used for mappings are as follow: The predicted gene cluster of T. controversa strain OR 

for, Indole, NRPS-like I, NRPS-like II, T1PKS/NRPS-like, T. caries isolate AA11 for NRPS, Terpene 

I, Terpene II, T. laevis isolate ATCC 42080 for NRPS-like IV, and T. controversa isolate DAOMC 

236426 for NRPS-like III. The region marked with arrow represent non-covered regions by reads. 

While the present and the order of nearly all gene clusters were also supported by Illumina reads, the 

observed drop in reads coverage in T1PKS/NRPS-like synthses was probably due to the present of 

long stretches of Ts and Ns nucleotides within this gene cluster in our selected reference. Part of the 

NRPS-like I gene cluster in the T. caries isolate DOAMC 238032 could not be recovered by mapping.  
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3. 1.  Abstract 

Tilletia controversa causing dwarf bunt of wheat is a quarantine pathogen in several countries. 

Therefore, its specific detection is of great phytosanitary importance. Genomic regions routinely used 

for phylogenetic inferences lack suitable polymorphisms for the development of species-specific 

markers. We therefore compared 21 genomes of six Tilletia species to identify DNA regions that were 

unique and conserved in all T. controversa isolates and had no or limited homology to other Tilletia 

species. A loop-mediated isothermal amplification (LAMP) assay for T. controversa was developed 

based on one of these DNA regions. The specificity of the assay was verified using 223 fungal 

samples, comprising, 43 fungal species including 11 Tilletia species, in particular 39 specimens of T. 

controversa, 92 of T. caries and 40 of T. laevis, respectively. The assay specifically amplified genomic 

DNA of T. controversa from pure cultures and teliospores. Only T. trabutii generated false positive 

signals. The detection limit of the LAMP assay was 5 pg of genomic DNA per reaction. A test 

performance study that included five laboratories in Germany resulted in 100% sensitivity and 97.7% 

specificity of the assay. Genomic regions, specific to common bunt (T. caries and T. laevis together) 

are also provided. 

 

Keywords 

Bunts of wheat, Comparative genomics, Average nucleotide identity, Species-specific detection, 

Closely related phytopathogenic fungi 
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3. 2.  Introduction 

Wheat (Triticum aestivum) is the most widely cultivated crop worldwide with a production that 

reached 734 M tons in 2018 (FAOSTAT, 2018) and is still increasing. Several fungal pathogens reduce 

wheat yield by colonizing different organs of the plant; among them, causal agents of bunt diseases 

belong to the most important seed- and soil-borne pathogens (Carris, 2010; Matanguihan et al., 2011), 

especially in organic farming. Disease symptoms appear at the heading stage and can be recognized 

by the formation of black, sooty masses of powdery spores, which replace mostly all grains of a kernel 

while the modified ovary coat is preserved. The infected grain breaks easily, causing the spread of 

millions of teliospores.  

Common bunt of wheat is caused by Tilletia caries and T. laevis, dwarf bunt by T. controversa, and 

karnal bunt by T. indica. Tilletia belongs to the Exobasidiomycetes within the basidiomycetous smut 

fungi (Ustilaginomycotina). Tilletia caries [syn. T. tritici] and T. laevis [syn. T. foetida] are closely related 

species present throughout the wheat growing regions of the world (Goates, 1996; Vánky, 2012). 

Teliospores of common bunt germinate at 15 °C within one week even in the absence of light. 

Tilletia controversa causes dwarf bunt and is less widely distributed and reSed to certain regions of the 

Americas, Europe, and West Asia. For instance, the occurrence of the disease has not been reported 

from China and Australia. Dwarf bunt is distinguished from common bunt by requiring lower 

temperature (optimum at 5 °C) and light for the germination of teliospores (Lowther, 1948; Wade 

and Tyler, 1958). Germination of T. controversa typically takes 3 - 8 weeks. Tilletia indica [syn. 

Neovossia indica] requires temperatures between 15 - 25 °C for germination and takes 2 - 3 weeks 

(Singh, 1994). Karnal bunt is geographically reSed to a few countries Karnal bunt is geographically 

reSed to a few countries namely Afghanistan, India, Iran, Mexico, Nepal, Pakistan, South Africa, 

Syria, and USA and has not been reported from Europe (Fuentes-Davila, 1996) and has not been 

reported from Europe, where it is treated as an A1 quarantine pathogen by the European and 

Mediterranean Plant Protection Organization (EPPO) (2019, Sep). 

Morphology of teliospores and sterile cells comprising their color and size, the size and height 

of muri, the number of meshes per teliospore diameter, and form of the sori (bunt balls), are 

traditionally used to distinguish the species of wheat bunt fungi (Vánky, 1994). Differentiation 

between T. caries and T. controversa requires extensive experience because of the variability of their 

teliospores morphology (Holton and Kendrick, 1956), however T. laevis, with its smooth teliospores, 

generally is easier to distinguish. (Pimentel et al., 2000b; Carris et al., 2007). Accurate distinction of 

dwarf bunt from common bunt and other Tilletia species, which are morphologically similar to dwarf 
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bunt, is of high importance. It is required for efficient disease management, as well as for regulatory 

reasons from a wheat trading perspective. Fifteen countries, including China and Brazil, implemented 

quarantine measures or reSions on the number of T. controversa teliospores per kernel in their wheat 

trade (Mathre, 1996; Whitaker et al., 2001; Peterson et al., 2009). 

In recent years, several studies have attempted the detection of wheat bunt pathogens using 

different DNA-based methods. Some of these assays were not intended to differentiate between 

common and dwarf bunt (Mulholland and McEwan, 2000; Josefsen and Christiansen, 2002; 

Kochanova et al., 2004; Zouhar et al., 2010; Pieczul et al., 2018). Assays designed to specifically detect 

T. controversa have been tested only against a limited number of samples (Liu et al., 2009; Gao et al., 

2010; Gao et al., 2011; Gao et al., 2014; Liu et al., 2020). Due to the lack of polymorphism in the 

genomic regions typically used for phylogenetic analyses (Mulholland and McEwan, 2000, Carris et 

al., 2007; Bao et al., 2010; Jayawardena et al., 2019), alternative DNA regions had to be explored for 

the development of a species-specific assay. With the advent of new sequencing technologies, it has 

now become feasible to identify DNA regions for the development of a detection assay without prior 

knowledge regarding the function of the target sites (Lang et al., 2010; Pieck et al., 2017). Here, we 

employed a comparative genomics approach to detect DNA regions that are conserved in and unique 

to the T. controversa genome. These regions were then used to develop a loop-mediated isothermal 

amplification (LAMP) assay (Notomi et al., 2000; Nagamine et al., 2001; Tomita et al., 2008) for the 

detection of T. controversa DNA in pure mycelia and teliospores (from bunt balls). The new assay was 

validated using a significant number of dwarf and common bunt specimens as well as other wheat 

pathogens and in an interlaboratory test performance study. 

3. 3.  Results 

3. 3. 1.  Genome comparison and primer design 

Average nucleotide identity (ANI) analysis based on MUMmer(Kurtz et al., 2004) alignment 

(ANIm) and a single linkage dendrogram were calculated among 20 genomes. For that we divided 

the genomes into two groups of closely related species, namely T. caries, T. controversa, and T. laevis 

together, and karnal bunt (T. indica) and ryegrass bunt (T. walkeri) in another group (Figure 3-1A and 

B; Additional Table 3-1). The alignment coverage is shown in Additional Table 3-2. In general, the 

higher the alignment coverage and the ANI values, the more identical are the genomes. The genomes 

of T. caries, T. controversa, and T. laevis (shown in dark red) shared >99%  sequence  identity  with  an  

 



Chapter 3 – A loop-mediated isothermal amplification assay for Tilletia controversa  

106 

 

average of 91% alignment coverage of the total genome length. In comparison, the identity within 

T. indica genomes was >97 % with an average of 79% alignment coverage. 

 The T. indica genomes shared on average 94% sequence identity to the single T. walkeri 

genome. In the first group, two clades corresponding to common bunt (T. caries and T. laevis) and 

dwarf bunt (T. controversa) were discriminated using single linkage cluster analysis (Figure 3-1A). 

Tilletia caries and T. laevis clustered together in a common clade, with little genetic distance from its 

neighboring clade comprising the genomes of T. controversa. In the second group, Tilletia indica samples 

were separated from the single representative of T. walkeri.  

The program rapid identification of PCR primers for unique core sequences (RUCS) 

(Thomsen et al., 2017) was used to identify species-specific sequences in the genome of T. controversa. 

A total of 11,136 unique DNA segments (N50 = 61 bp) were obtained, of which 22 were longer than 

1,500 bp. These sequences were used for the design of LAMP primers. 

A total of 78 primer sets were designed and initially tested for their specificity against a preset 

comprising eight (three T. caries, three T. controversa, and two T. laevis isolates) selected cultured samples 

Figure 3-1 Heatmaps of ANIm percentage identity between genomes of Tilletia spp. Pairwise average 

nucleotide identity between two groups of Tilletia species (A: T. caries, T. controversa, and T. laevis, B: 

T. indica and T. walkeri) were determined by Pyani and used for the construction of a single linkage 

dendrogram. The isolates and species assignments are given as row and column labels. The value of 

the cophenetic correlation coefficient of the hierarchical clustering was 0.97 for (A) and 0.99 for (B). 

 

A B 
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(Additional Table 3-3) shows the list of cultured samples). The primer sets with no false detection 

and strong amplification as visualized on agarose gels were selected. The second round of testing was 

performed against the samples of common and dwarf bunt only. The primer sets were excluded when 

a false positive or false negative reaction occurred. The remaining primer sets were then tested against 

other Tilletia species and fungal pathogens. The primer set with the lowest false detection rate in this 

round was finally selected. We tested the selected primer set three times independently against the 

complete sample collection. 

 

Table 3-1 provides the primer sequences and Figure 3-2 shows their location in the target 

sequence (T. controversa isolate OR, scaffold accession number CAJHJB010000001). The primer 

sequences did not show similarity to any relevant species when blasted against GenBank and this 210 

bp intergenic region used for the development of the LAMP assay did not produce a BLAST hit 

when searched at the DNA level against GenBank’s nucleotide collection. 

 

Table 3-1 Primer sequences used in the LAMP assay 

Primer name Nucleotide sequences 5´ - 3´ 

O_8_2F3 GTGTATGAGCGTGAGTTCGA  

O_8_2B3 CGACGCGTTTTGTGACATTC  

O_8_2F2 CTCCCTTTKTCTTTGTGGCA 

O_8_2B2 ATTTGAGCATCCTTGGAGCA 

O_8_2FIP (F1c-F2) GGCACACCAGGTAAGCAACGA_CTCCCTTTKTCTTTGTGGCA 

O_8_2BIP (B1c-B2) TTACCGCTGACGCTTGGA_ATTTGAGCATCCTTGGAGCA 
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3. 3. 2.  Sequence analysis of the species-specific DNA region used for the LAMP assay  

PCR products of the predicted length (209 bp) were amplified from DNA of three samples of 

T. controversa from the culture collection (OA3, OR, and ORB isolates) using the LAMP primers 

O_8_2F3 and O_8_2B3 (Table 3-1). Sanger-sequencing of the obtained amplicons showed 100% 

sequence identity with the target DNA region derived from the genome analyses. Only one 

degenerate nucleotide (K) was introduced into one of the primers (Figure 3-2) because at this position 

a double signal (T/G) was observed in the sequencing chromatogram of an individual isolate. No 

PCR product was obtained when a subset of DNA obtained from T. caries or T. laevis samples were 

used (Figure 3-3).  

3. 3. 3.  The LAMP assay and DNA amplification 

The LAMP assay detected DNA of T. controversa obtained from pure fungal cultures as well as 

from pure teliospores collected from bunt balls. Colorimetric detection of T. controversa was achieved 

by observing a color change of the reaction mixture from orange (no amplification) to pink (positive 

amplification). Figure 3-4 shows an example of the colorimetric visualization of the LAMP assay. The 

products of the reactions were also separated on a 2% agarose gel for confirmation. The typical 

ladder-like structure of different size amplicons produced in a positive LAMP reaction confirmed 

that the color change only happened when amplification occurred.  

Figure 3-2 Position and orientation of the primer sequences in the scaffold (accession number 

CAJHJB010000001) that was used for the development of T. controversa LAMP assay. Binding sites 

for outer primers are shown in dark green, for inner primers in light green. Separation of the binding 

part is shown with the (_) in the primer sequences. The numbers show the position of nucleotides in 

the DNA segment. The nucleotide (G) shown in bold is changed to wobble position (K) in the primer 

sequence, after resequencing of the target region. 
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3. 3. 4.  Verification of LAMP products  

The amplification of the target DNA segment was confirmed with the DNA of six randomly 

selected T. controversa samples from the culture collection (OA2, OA3, OA6, OC1, OC2, and OMO 

isolates) as a template in the LAMP assay. Figure 3-5 shows the multiple alignments of 12 forward 

and reverse reads obtained from the shortest amplicon against the target DNA region (O_8_2F2 and 

O_8_2B2 primers). The sequences of the recovered amplicons (151 bp of 152 bp) were almost 

identical to the target region confirming that the target DNA segment was amplified during the 

LAMP assay 

 

 

. 

Figure 3-3 Polymerase chain reaction (PCR) using the outer LAMP primers to amplify the DNA 

region used for LAMP assay development. PCR products were separated on a 2% agarose gel and 

visualized using SYBR Safe gel staining. Ladder is a 100 bp Plus GeneRuler and NC is negative 

control. No amplicon was produced in the absence of T. controversa DNA. 
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3. 3. 5.  Specificity and limit of detection of the LAMP assay 

In total, we tested 223 fungal DNA samples of which 39 belonged to T. controversa. Pure 

cultures were produced for the development of the test. No false positive was observed with 92 

T. caries and 40 T. laevis samples (Additional Table 3-3). Also, no cross-amplification of the assay was 

observed when testing 40 other fungal phytopathogens including other Tilletia species such as 

T. cerebrina, T. holci, T. indica, T. lolioli, T. menieri, and T. olida. However, T. trabutii and a taxonomically 

uncertainly identified T. secalis (GD 1707) were positive under the assay conditions. Wheat did not 

generate a positive signal when up to 5 ng DNA was used as template. 

Figure 3-6 shows a series of LAMP assays with serial dilutions of pure T. controversa DNA. We 

estimated the LOD as the lowest DNA concentration at which all four repetitions displayed positive 

results. The assay gave positive results with all replicates at concentrations above 5 pg of DNA per 

reaction. Three out of four repetitions were amplified when 1 pg of the DNA was tested.  

Figure 3-4 End-point detection of T. controversa using neutral red. The LAMP assay was performed at 

65 °C for 45 min. A: Colorimetric detection under daylight conditions. Positive reactions appear in 

pink while negative reactions are light orange. NC is a water control. B: The same reactions separated 

on a 2% agarose gel and visualized using SYBR safe. A positive LAMP reaction is represented by a 

ladder-like fragments pattern. NC is the water control and Ladder is 1kb Plus DNA size marker. The 

assay detects only T. controversa gDNA. 
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3. 3. 6.  Reproducibility of the LAMP assay in an interlaboratory test performance 

Testing five sets of LAMP test packages prior to sending them to different laboratories showed 

that all sets detected all T. controversa DNA above LOD after one week of storage of the reagents 

at -20 °C except for betaine, which was stored at +4 °C. From a total of 80 reactions (five participants 

testing 15 DNA samples and one negative control each), one false positive (FP), 35 true positives 

(TP), and 44 true negatives (TN) were reported. The performance parameters are presented in Table 

3-2 and the photos provided by the participants are given in the Additional Figure 3-1. The positive 

predictive value (PPV) indicates how many of the test positives are true positives and negative 

predictive value (NPV) shows how many of the test negatives are true negatives. Both the sensitivity 

(the fraction of true positive samples that score positive) and the NPV of the assay were 100%. 

Specificity (the fraction of true negative samples that score negative) and the PPV were 97.7% and 

96.5%, respectively.  

Figure 3-5 Sequence comparison of the shortest LAMP-product to the target region. The forward 

and reverse reads obtained from six randomly selected T. controversa samples aligned to the target 

region. The alignment is illustrated using BOXSHADE and non-matching nucleotides to the target 

region are highlighted in pink. 
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Table 3-2 Performance parameters of the LAMP assay performance 

3. 4.  Discussion 

So far, the lack of DNA polymorphisms between the very closely related causal agents of 

common and dwarf bunt has hampered the development of species-specific DNA-based diagnostic 

assays for T. controversa, as was also shown by other studies (Levy et al., 2001; Carris et al., 2007; Bao, 

2010; Bao et al., 2010; Stewart et al., 2013; Jayawardena et al., 2019). However, the recent availability 

of the whole-genome sequences of Tilletia species enabled us to develop a specific LAMP assay. 

We calculated >99% average nucleotide identity (ANI) with a minimum alignment coverage 

of 88% between common and dwarf bunt if T. controversa isolate (OR) is excluded due to its 

significantly larger assembled genome size. This was in line with ANI values reported by Nguyen et 

Evaluated parameter Value (%) 

True Positive Fraction (Sensitivity) 100 

True Negative Fraction (Specificity) 97.7 

Positive Predicted Value (PPV) 96.5 

Negative Predicted Value (NPV) 100 

Figure 3-6 Determination of the LOD of the LAMP assay for T. controversa. A: The LAMP assay was 

carried out with serial dilutions of DNA of T. controversa isolate OL and the result was photographed 

under daylight condition. B: The products were separated on a 2% agarose gel and visualized under 

UV 360nm. NC: water control; Ladder: size marker 1kb plus. 
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al. (2019), who used independent assemblies of DOAM isolates collection, and our previous study 

where we analyzed 16 common and dwarf bunt genomes while excluding repetitive regions 

(Sedaghatjoo et al. under review). The high ANI values indicate a remarkably high genetic similarity 

of common and dwarf bunt fungi. In comparison, the two closely related species of T. indica and 

T. walkeri (Pimentel et al., 1998; Castlebury and Carris, 1999; Carris et al., 2006) had ANI values of >94%. 

Despite the high similarity between the genomes of common and dwarf bunt fungi, nucleotide 

polymorphism in the genomes were sufficient to unambiguously separate six T. controversa samples 

from all T. caries and T. laevis. However, T. caries and T. laevis could not be differentiated. Interestingly, 

the ANI values within the sequenced isolates of T. indica were lower (>97%) compared to the ANI 

values between the three species of T. caries, T. laevis, and T. controversa together (>99%) indicating a 

very low genetic diversity between common and dwarf bunt and a relatively high genetic diversity 

within T. indica. Gurjar et al. (2020) also reported high genetic diversity within T. indica isolates 

analyzing single nucleotide polymorphisms (SNP)s and small deletions and insertions (indel)s. 

Because the percentage of aligned genomic regions between distantly related species was very low, 

the comparison of all 21 genomes in our ANI analysis was not possible. 

The genomic regions of T. controversa shared with other Tilletia species, but not present in all 

the T. controversa isolates (n = 6) were excluded to be used for the LAMP assay development using 

RUCS (Thomsen et al., 2017). RUCS employs k-mer comparisons to exclude regions shared between 

target and background genomes. Nguyen et al. (2019) used ten Tilletia genomes (one isolate of T. caries, 

two isolates of T. controversa, two isolates of T. laevis, three isolates of T. indica, and two isolates of 

T. walkeri) for the PCR primer design for species-specific detection of T. controversa. They limited their 

sequence comparison to a small number of single-copy protein-coding genes specific and unique to 

T. controversa. The use of RUCS in our study allowed us to include all publicly available sequences and 

genomes that were not structurally annotated (i.e., genes and their intron-exon locations were not 

predicted). This approach provided also a higher number of candidate genome regions because it also 

included intergenic regions. Since the comparison of k-mers by RUCS is independent of annotation, 

it also excludes errors due to annotation ambiguity. 

In an attempt to specifically detect T. caries, we also searched for conserved and unique regions 

in their genomes by RUCS (Additional Table 3-4). In T. caries, 235 unique and specific regions were 

found (N50 = 39 bp), the longest spanning 116 bp. In T. laevis, we found 228 candidate regions 

(N50 = 39 bp), the longest of which spanned 215 bp. A minimum length of 200 bp is needed for 

LAMP because of the optimum distances between primer binding sites. Therefore, differentiation 

between T. caries and T. laevis by LAMP appears difficult. Species-specific real-time PCR assays based 
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on the regions identified by RUCS should however be theoretically possible. The number of unique 

and conserved regions dramatically increased when T. caries together with T. laevis were treated as a 

single target. This finding is well in line with the observation that T. caries and T. laevis could not be 

differentiated based on the ANI comparisons and clustered together in the single linkage 

dendrogram. RUCS identified 11,888 regions (N50 = 52 bp) with the longest contig length of 

6,790 bp, suggesting that developing a common bunt-specific LAMP assay will be feasible. 

The updated assembly of four out of 21 genomes (DAOM collection updated to DAOMC) 

used in this study as well as six additional Tilletia genomes has been published by Nguyen et al. (2019) 

at the time this manuscript was in preparation. We reconfirmed the specificity of the target region 

identified in this work by comparison of these genomes (see Additional Table 3-5 for the list of 

accession). The target region used in this study was present in both T. controversa genomes and absent 

from all eight genomes of the other Tilletia species. We also repeated the RUCS analysis on all 27 

genomes (Additional Table 3-4). The number of extracted species-specific regions dropped sharply, 

which led to no remaining candidate region for T. caries. These results corroborated the pattern 

observed with 21 genomes. The positions of eleven top-ranked common bunt-specific DNA regions 

are provided in Additional Table 3-6. 

In this study, the LAMP assay for the detection of T. controversa was optimized for 45 min at 

65 °C using betaine and four salt-free primers with a colorimetric end-point detection. Adding betaine 

was essential for successful amplification even though the target region was not GC-rich (52.2% GC). 

This finding is in conflict with a previous report that betaine had no effect on the amplification in 

non-GC-rich target regions (Wang et al., 2019). We suggest that the formation of secondary structures 

rather than mere GC content may account for the effect of betaine. Increasing the concentration of 

betaine above 0.5 M did not further improve amplification (data not shown). Here, the LAMP assay 

was optimized for primers that were not purified by HPLC. Tomita et al. (2008) suggested that HPLC-

purification of primers were crucial for a successful LAMP. We compared both HPLC-purified and 

salt-free primers and found no difference. Although the region in general is long enough to design 

loop-primers (Nagamine et al., 2002), we did not succeed in integrating them into the assay without 

compromising the test specificity. Therefore, and because they are generally not essential for 

the proper functioning of LAMP reactions, we did not include them in the assay. Recently swarm 

primers have been introduced, which can be added to a LAMP assay in order to improve its 

general performance (Martineau et al., 2017). We manually designed and tested a set of swarm primers 

for the new LAMP assay (data not shown). However, also the addition of these primers neither 
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improved the sensitivity nor the specificity of the assay. Therefore, the final assay comprised only the 

four basic LAMP primers.  

Colorimetric end-point detection of DNA amplification not only shortens the assay time but 

also reduces the risk of contamination by carryover of LAMP products. Apart from the pH-sensitive 

indicators neutral red and phenol red (Tanner et al., 2015), two additional dyes have been widely used 

for the visualization of LAMP products: hydroxynaphthol blue, added before the reaction (Goto et 

al., 2009) and SYBR Green (Tomita et al., 2008), added after the completion of the reaction. Using 

SYBR Green increases the risk of cross-contamination due to the necessity to open the reaction 

vessels after the LAMP reaction. The color change in hydroxynaphthol blue, which is a metal-

sensitive indicator, is occasionally difficult to distinguish (Tanner et al., 2015). We therefore used 

neutral red as dye to ensure easy differentiation due to the high contrast between the pink color of a 

positive reaction and the light orange of a negative reaction. 

In this study, the detection limit of the LAMP assay was estimated to be 5 pg total DNA (on 

average 142 genomes copy when (LOD*6.022x1023)/(genome length*1x109*650)) isolated from pure 

fungal cultures. This is similar to the sensitivity of the LAMP assay for T. indica with the LOD of 

10 pg (265 genome copies), reported by Gao et al and (Gao et al., 2016); Tan et al. (2016). It is however 

less sensitive than the reported LOD of 1 pg (22 genome copies on average) for the LAMP assay not 

differentiating among T. caries, T. controversa, and T. laevis published by Pieczul et al. (2018). The rough 

estimation of detection limits based on genome copy numbers should be taken cautiously since the 

exact genome sizes of the three species are unknown. The copy number of the target region and 

loop-primers (Nagamine et al., 2002) may account for these differences. Higher sensitivity in the 

detection of T. controversa by LAMP could presumably be achieved by targeting a multi-copy region. 

Further investigation is needed to correlate the LAMP detection limit with the number of teliospores 

per kernel, which is of special interest for seed testing laboratories and farmers, because most of the 

practiced regulation is based on the number of teliospores per kernel (International Seed Testing 

Association (ISTA), 1984). But irrespective of this, the clear-cut results we obtained by applying 

LAMP to bunt samples suggest that it might play an important role in the future by differentiating 

T. controversa from T. caries, which can be a daunting task given their subtle morphological differences. 

These differences that can also show some overlaps are especially hard to distinguish if the teliospores 

are microscoped on filter paper as is done in the official seed testing method. 

Broad geographical sampling is crucial for the validation of a species-specific assay, especially 

when information about the population diversity of the target organism is limited. Additionally, the 

extensive similarity between the genomes of common and dwarf bunt found here and in other studies 



Chapter 3 – A loop-mediated isothermal amplification assay for Tilletia controversa  

116 

(Russel, 1993; Russell and Mills, 1993; Russell, 1994; Nguyen et al., 2019) as well as the probable role 

of hybridization and recombination between these species (Flor, 1932; Holton, 1951; Holton, 1954) 

in nature makes testing of a geographically broad set of samples essential. One hundred sixty-eight 

samples of common bunt and dwarf bunt from a variety of geographical locations (Asia, Europe, and 

North America) were used in this study to evaluate the specificity of the developed LAMP assay using 

the broadest geographic sampling we could obtain. We made an effort to test both old herbarium 

samples (collected from 1920 onward) and more recently collected samples to test the independence 

of the LAMP results from sample age.  

A Tilletia sample (GD 1707) from Secale cereale collected in Germany and identified as T. secalis 

tested positively in the LAMP assay developed in this study. Tilletia controversa and T. secalis can infect 

both wheat and rye (Dewey and Hoffmann, 1975; Carris, 2008; Vánky, 2012) and their differentiation 

based only on teliospores morphology is not possible (Niemann, 1954; Durán and Fischer, 1956; 

Durán and Fischer, 1961). Thus, the taxonomic identity of this sample remained ambiguous. 

Additionally, the assay could not differentiate between T. controversa and T. trabutii. Tilletia trabutii was 

reported from barley grasses (Hordeum spp.) and clustered as the sister group of T. secalis in a 

multilocus phylogenetic analysis (Carris et al., 2007). It will be interesting to compare the phylogenetic 

relationship of T. secalis and T. trabutii to T. controversa on the whole-genome level. Furthermore, 

T. controversa, unlike the majority of smut fungi that are reSed to a single or few closely related host 

species (Begerow et al., 2004), has been reported to infect not only wheat but also other members of 

the Poaceae family (Hardison et al., 1959). We examined T. controversa collected from Elymus repens and 

T. controversa (Fischer, 1952; Conners, 1954; Vánky, 1994) (syn. T. brevifaciens (Carris et al., 2007)) 

collected from Thinopyrum intermedium subsp. intermedium (syn Elymus hispidus) using our LAMP assay. 

All were positive. Additionally, T. bromi is morphologically similar to T. controversa and has similar 

teliospores germination requirements (Pimentel et al., 2000b). These similarities make the distinction 

of those two species difficult. Although T. bromi and T. controversa are phylogenetically distinct, they 

are reproductively compatible under artificial condition (Pimentel et al., 2000a; Pimentel et al., 2000b). 

We did not have access to any T. bromi sample; therefore, the specificity of the LAMP assay toward 

this species could not be estimated. 

The reproducibility of the LAMP assay was also examined in an interlaboratory test 

performance study including five laboratories, which used different equipments for the amplification. 

The assay LOD could be successfully reproduced in all the laboratories. We speculate that the most 

likely reason for one single false-positive result reported was cross-contamination. These results show 
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that the LAMP assay is robust. The assay has potential for several applications in seed testing 

laboratories, wheat export and import control as well as field applications.  

3. 5.  Methods 

3. 5. 1.  Sample collection and single teliospore cultures 

Samples examined in this study are listed in Additional Table 3-3. Host names are listed 

according to Kew Royal Botanic Gardens online database (https://wcsp.science.kew.org/).  

To produce single teliospore cultures, 54 viable samples were randomly selected (marked with 

* in Additional Table 3-3). Teliospores were surface-sterilized as described by Castlebury et al. (2005). 

Briefly, bunt balls were crushed using a pair of sterile fine-point forceps and wheat tissue was carefully 

removed. The teliospores were immersed in 0.26% v/v NaClO for 30 s, pelleted by centrifugation in 

a benchtop microcentrifuge for 10 s and rinsed twice with sterile, distilled water. Surface-sterilized 

teliospores were streaked on 1.5% water-agar and incubated either at 5 °C under constant light 

(T. controversa teliospores) or at 15 °C in darkness (T. caries and T. laevis). A single germinated teliospore 

of each sample was then transferred to M-19 agar medium (Trione, 1964) using a sterile needle and 

incubated at 15 °C in the dark. Medium was supplemented with penicillin G (240 mg/L) and 

streptomycin sulfate (200 mg/L). The developing mycelium was scraped from the medium using a 

flat blunt spatula, freeze-dried at -40 °C for 48 h and kept at +4 °C until use. Cultures of other fungal 

species were grown on PDA medium and stored at +4 °C. 

3. 5. 2.  Extraction of DNA from fungal mycelia and spores 

Total DNA (gDNA) including mitochondrial DNA and mycoviruses was isolated from both 

mycelia and spores (cultured isolates) or only from spores (uncultured samples). For extraction of 

gDNA from fungal cultures, 10 - 30 mg of lyophilized mycelium were homogenized by shaking with 

four sterile tungsten carbide beads of 4 mm diameter in 2 ml reaction tubes at 22 Hz for 50 s using a 

tissue lyser. The bead beating step was repeated once. The tubes were shaken vigorously between the 

disruption steps to loosen mycelium from the bottom of the tubes.  

For gDNA extraction directly from spores, 10 - 25 mg spores were surface-sterilized as 

described above and rinsing water was carefully removed. Four 1 mm and four 4 mm sterile tungsten 

carbide beads were added to each reaction tube. The tubes were then frozen in liquid nitrogen and 

the spores were disrupted in the tissue lyser at 22 Hz for 50 s. The procedure including cooling the 
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samples in liquid nitrogen was repeated twice. After tissue disruption, DNA was extracted using the 

Qiagen DNeasy Plant Mini kit (Qiagen GmbH, Hilden, Germany) according to the manufacturer’s 

protocol.  

3. 5. 3.  Genome comparisons and identification of DNA segments specific to T. controversa 

Twenty one genome sequences used in this study are listed in Table 3-3. Average nucleotide 

identity (ANI), the alignment coverage between genomes, and hierarchical clustering were calculated 

and reconstructed using Pyani (v 0.2.10) (Pritchard et al., 2016) which employs MUMmer (ANIm 

mode) to align genomes, with default parameters (-m ANIm -g). The cophenetic correlation 

coefficient of the hierarchical clustering was calculated in RStudio (Version 1.1.463). 

Conserved and unique DNA regions of T. controversa were extracted using RUCS (rapid 

identification of PCR primers for unique core sequences) v. 1.0 (Thomsen et al., 2017) 

(https://cge.cbs.dtu.dk/services/RUCS/) with default parameters. The six target genomes 

(T. controversa) were defined and grouped as positive while the remaining 15 Tilletia genomes (T. caries, 

T. horrida, T. indica, T. laevis, and T. walkeri) were defined and grouped as negative data set or exclusion 

criteria. Extracted contigs found in the unique-core-sequences-contigs output file of RUCS that were 

longer than 1500 bp were selected as targets for LAMP development. To check these contigs for 

similarities with nontarget genomes, a custom BLAST database of all available Tilletia genomes 

(n = 15) excluding T. controversa genomes was constructed.  

3. 5. 4.  Primer design for the LAMP assay 

A set of two inner and two outer primers were designed for the unique DNA contigs to 

T. controversa by PrimerExplorer V5 (http://primerexplorer.jp.) with default parameters. Since 

PrimerExplorer does not accept sequences longer than 2000 bp, we split sequences exceeding this 

limit. The designed primers were subjected to MegaBLAST against the non-redundant database 

‘nr/nt’ of the National Centre for Biotechnology Information (NCBI) to examine their similarity with 

other relevant species.  

 

 

  

https://cge.cbs.dtu.dk/services/RUCS/
http://primerexplorer.jp/
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Table 3-3 Genome sequences used in this study and their accession numbers 

3. 5. 5.  Sequence analysis of DNA segment used for the LAMP assay  

To confirm the nucleotide sequence of the target region obtained by RUCS, we used the outer 

primers (F3 and B3) of LAMP as forward and reverse primers, respectively, in a conventional PCR 

and sequenced the obtained PCR product for a subset of samples. The PCR was conducted in 50 μL 

reaction mixtures containing 5 μL of 10x DreamTaq (Thermo Scientific, Vilnius, Lithuania), 0.2 mM 

of each of the four deoxynucleotide triphosphates (dNTPs, Thermo Scientific), 0.2 µM concentration 

of each forward and reverse primers, 1.25 U of Taq DNA polymerase (DreamTaq DNA polymerase, 

Species Isolate 
(voucher number) 

Assembly 
accession 
numbers 

Genome 
size 
(Mb) 

Reference 

T. caries AA11 (CBS 
144825) 

GCA_905072865.1 31.51 This study 

T. caries AI (CBS 145171) GCA_905068135.1 31.84 This study 

T. caries AO (CBS 145172) GCA_905071735.1 30.46 This study 

T. caries AZH3 (CBS 
145166) 

GCA_905071745.1 31.38 This study 

T. caries DAOM 238032 GCA_001645005.1 29.54 NA 

T. controversa DAOM 236426 GCA_001645045.1 28.84 NA 

T. controversa OA2 (CBS 145169) GCA_905071725.1 32.05 This study 

T. controversa OL14 (CBS 
145167) 

GCA_905071785.1 30.83 This study 

T. controversa OR (CBS 144827) GCA_905071765.1 49.87 This study 

T. controversa OV (CBS 145170) GCA_905071775.1 29.54 This study 

T. controversa OW (CBS 145168) GCA_905071705.1 31.24 This study 

T. horrida QB-1 GCA_001006505.1 20.10 Wang et al. (2015) 

T. indica DAOM 236416 GCA_001645015.1 30.38 NA 

T. indica PSWKBGD_1_3 GCA_001689965.1 43.73 NA 

T. indica PSWKBGH_1 GCA_001689995.1 37.46 Sharma et al. (2016) 

T. indica PSWKBGH_2 GCA_001689945.1 37.21 Sharma et al. (2016) 

T. indica RAKB_UP_1 GCA_002220835.1 33.77 Gurjar et al. (2019) 

T. indica Tik_1 GCA_002997305.1 31.83 Kumar et al. (2017); 
(Kumar et al., 2018) 

T. laevis L-19 (CBS 145173) GCA_905071715.1 31.00 This study 

T. laevis LLFL (CBS 
144826) 

GCA_905071755.1 30.98 This study 

T. walkeri DAOM 236422 GCA_001645055.1 24.34 NA 
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Thermo Scientific, Vilnius, Lithuania), and 1 μL of DNA template (5 ng/µL). Initial denaturation 

was conducted at 95 °C for 2 min, followed by 35 cycles of denaturation at 95 °C for 30 s, annealing 

at 60 °C for 30 s and extension at 72 °C for 60 s. The final extension was performed at 72 °C for 

10 min in a thermal cycler. Following PCR, 5 µl per reaction combined with 2 µL of 6x loading buffer 

(Thermo Scientific, Vilnius, Lithuania) were loaded onto a 2% agarose gel (w/v). The electrophoresis 

was run at 8 V cm-1 for 45 min in 1×TAE buffer (Maniatis et al., 1975). PCR fragments were stained 

using SYBR® Safe DNA gel stain. The gel was visualized under UV 360nm using a digital imaging 

system. PCR products were purified using the DNA Clean & ConcentratorTM-5 kit (Zymo Research, 

Irvine, California, USA) according to the manufacturer’s instructions. Purified PCR products were 

Sanger-sequenced (Eurofins Genomics GmbH, Ebersberg, Germany) from both ends using PCR 

primers. 

3. 5. 6.  LAMP assay and verification of the LAMP products 

The LAMP master mix (25 μL) contained 2.5 µL 10x amplification buffer (100 mM KCl, 

100 mM (NH4)2SO4, pH 8.7), 2 μM of each inner primer and 0.2 μM for each outer primer (all salt-

free), 8 mM MgSO4, 1.4 mM concentration of each of the four deoxynucleoside triphosphates 

(dNTPs, Thermo Fisher), 0.5 M betaine (Sigma-Aldrich, Darmstadt, Germany), 8 U Bst DNA 

Polymerase 2.0 (New England Biolabs, Frankfurt, Germany), and 100 µM neutral red (Sigma-Aldrich, 

Darmstadt, Germany) prepared according to Niessen et al. (2018). One µL of DNA template was 

added per reaction. The reaction mixture was incubated at 65 °C for 45 min in a thermal cycler. The 

reaction was terminated by heating to 80 °C for 5 min. The tubes were photographed with a digital 

camera under daylight conditions. Gel electrophoresis of the LAMP products was performed as 

described above but the separation lasted 120 min. Either a 100 bp plus or 1kb Plus GeneRuler 

(Thermo Scientific, Vilnius, Lithuania) were used as DNA size markers in all electrophoretic gels. 

To confirm that the amplification corresponded to the target DNA region, the shortest amplicon of 

six positive LAMP reactions was excised from a 2% agarose gel (w/v) (described previously) and 

recovered using the ZymocleanTM Gel DNA Recovery Kit (Zymo Research, Irvine, USA) according 

to the manufacturer’s instructions. The recovered amplicons were Sanger-sequenced using primers 

F2 and B2. Consensus sequences of all forward and reverse reads produced and trimmed using 

SequencherTM 5.4.6 (Gene Codes Corporation, Ann Arbor, Michigan, USA) were pairwise aligned to 

the sequence of the target DNA region. 
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3. 5. 7.  Determination of the specificity and limit of detection of the LAMP assay 

The specificity of the LAMP assay was determined by applying the assay to DNA extracted 

from Tilletia cultures and teliospores, and from a range of phylogenetically distant fungal pathogens 

(Additional Table S3) under the described LAMP conditions. The following groups of pathogens 

were selected as negative controls: i) closely related species with a “sister group” phylogenetic 

relationship to the target pathogen (92 T. caries and 40 T. laevis samples); ii) further pathogens related 

to the target species (e.g. eight other Tilletia spp. and species of Ustilaginomycetes); iii) common wheat 

pathogens (e.g. Fusarium spp.); iv) fungi that are abundant in the environment due to their strong 

sporulation and airborne mode of distribution (e.g. Penicillium spp.). In addition, wheat DNA 

extracted from seedlings grown under sterile conditions was tested.  

Limit of detection (LOD) was defined as the lowest amount of analyte detectable in a single 

reaction (Nutz et al., 2011). DNA obtained from a pure culture of T. controversa isolate OL was 

quantified using Qubit® 3.0 Fluorometer (Thermo Fisher Scientific, Darmstadt, Germany) and used 

to prepare a dilution series at the concentrations of 10000, 5000, 1000, 500, 100, 50, 10, 5, 1, and 

0.5 pg per assay. 

3. 5. 8.  Reproducibility of the LAMP assay in a test performance study 

To evaluate the reproducibility and specificity of the LAMP assay, we conducted a test 

performance study with five German participants including plant protection agencies and seed testing 

laboratories. Total DNA of four T. caries, five T. controversa, and three T. laevis sample was extracted 

from teliospores as described above. The concentration of DNA stocks was determined using a 

Qubit® 3.0 Fluorometer and adjusted to 500 pg/µL. One of the T. controversa sample was additionally 

prepared in a serial dilution of 50, 5, and 0.5 pg/µL. All 15 DNA samples were coded, and aliquots 

were dispatched to the participating laboratories. Several batches of the LAMP master mix were 

prepared independently and assigned randomly to the participating laboratories. Homogeneity and 

stability testing were performed under described conditions with five randomly selected batches. The 

assays were performed on different days shortly before the chemicals and samples were distributed 

by an express delivery service while kept at -20 °C (except for betaine). The participants were asked 

to provide a photo of the reaction tubes and assign the samples as positive or negative according to 

the color of the reaction mixture after performing the assay. The results were evaluated according to 

Hajian-Tilaki (Hajian-Tilaki, 2013) using performance parameters shown in Table 3-4. 
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Table 3-4 Evaluation of the LAMP assay  
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Additional Table 3-3 List of samples and isolates used in this study 

Taxon Sample 
number 

Year Host Geographic 
origin 

Collector/ 
Source 

Voucher 
No 

T. caries 5150903 2015 Triticum aestivum France G. Orgeur i 
 

T. caries 18150622 2015 Triticum aestivum France G. Orgeur 
 

T. caries 32150804 2015 Triticum aestivum France G. Orgeur 
 

T. caries 35150921 2015 Triticum aestivum France G. Orgeur 
 

T. caries 41150831 2015 Triticum aestivum France G. Orgeur 
 

T. caries 43150918 2015 Triticum aestivum France G. Orgeur 
 

T. caries 49150621 2015 Triticum aestivum France G. Orgeur 
 

T. caries 49150722 2015 Triticum aestivum France G. Orgeur 
 

T. caries 58150915 2015 Triticum aestivum France G. Orgeur 
 

T. caries 61150720 2015 Triticum aestivum France G. Orgeur 
 

T. caries 61151016 2015 Triticum aestivum France G. Orgeur 
 

T. caries 77150804 2015 Triticum aestivum France G. Orgeur 
 

T. caries 79150803 2015 Triticum aestivum France G. Orgeur 
 

T. caries 89150818 2015 Triticum aestivum France G. Orgeur 
 

T. caries 89150903 2015 Triticum aestivum France G. Orgeur 
 

T. caries 26151001-1 2015 Triticum aestivum France G. Orgeur 
 

T. caries 26151001-2 2015 Triticum aestivum France G. Orgeur 
 

T. caries 26151001-4 2015 Triticum aestivum France G. Orgeur 
 

T. caries 26151001-5 2015 Triticum aestivum France G. Orgeur 
 

T. caries AA10 2015 Triticum aestivum Austria A. E. 
Müllner 

* 

T. caries AA11 2015 Triticum aestivum Austria A. E. 
Müllner 

*CBS 
144825 

T. caries AA12 2015 Triticum aestivum Austria A. E. 
Müllner 

* 

T. caries AA7 2015 Triticum aestivum Austria A. E. 
Müllner 

* 

T. caries AA8 2015 Triticum aestivum Austria A. E. 
Müllner 

* 

T. caries AA9 2015 Triticum aestivum Austria A. E. 
Müllner 

* 

T. caries AC 2015 Triticum aestivum Germany H. Spieß * 

T. caries AD 2014 Triticum aestivum Germany S. Schumann * 

T. caries AD1 - Triticum aestivum Denmark A. Borgen  

T. caries AD2 - Triticum aestivum Denmark A. Borgen  

T. caries AD3 2017 Triticum aestivum Denmark A. Borgen  

T. caries AD4 - Triticum aestivum Denmark A. Borgen  

T. caries AD5 - Triticum aestivum Denmark A. Borgen  
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Additional Table 3-3 (continued) 

Taxon Sample 
number 

Year Host Geographic 
origin 

Collector/ 
Source 

Voucher 
No 

T. caries AD10 2017 Triticum aestivum Denmark A. Borgen  

T. caries AD119 - Triticum aestivum Denmark A. Borgen  

T. caries AD341N - Triticum aestivum Denmark A. Borgen  

T. caries AD341R - Triticum aestivum Denmark A. Borgen  

T. caries ADG 2017 Triticum aestivum Denmark A. Borgen  

T. caries ADP - Triticum aestivum Denmark A. Borgen  

T. caries ADPS - Triticum aestivum Denmark A. Borgen  

T. caries AER 2016 Triticum aestivum Germany S. Weller * 

T. caries AES 2016 Triticum aestivum Germany S. Weller * 

T. caries AEZO 2016 Triticum spelta Germany S. Weller * 

T. caries AGW 2016 Triticum aestivum Germany B. Schwab  * 

T. caries AHW 2016 Triticum aestivum Germany S. Weller,  
H. Eichinger 

* 

T. caries AI 2015 Triticum durum Italy V. 
Weyermann 

*CBS 
145171 

T. caries AKW 2016 Triticum aestivum Germany S. Weller * 

T. caries AL 2010 Triticum aestivum Germany H. Mitterer * 

T. caries AL14 2014 Triticum aestivum Germany H. Mitterer * 

T. caries AL15 2015 Triticum aestivum Germany H. Mitterer * 

T. caries AL17 2017 Triticum aestivum Germany M. K. Forster 
 

T. caries ALA 2018 Triticum aestivum Latvia V. Strazdina  

T. caries ALI1 - Triticum aestivum Lithuania A. Borgen  

T. caries ALI3 - Triticum aestivum Lithuania A. Borgen  

T. caries AM 2016 Triticum aestivum Austria  M. 
Weinhappel 

 

T. caries AN 2014 Triticum aestivum Germany R. Bauer * 

T. caries AN15 2015 Triticum aestivum Germany R. Bauer * 

T. caries AO 2014 Triticum aestivum Germany R. Bauer *CBS 
145172 

T. caries AOA 2016 Triticum aestivum Germany B. Schwab * 

T. caries ARW 2016 Triticum aestivum Germany S. Weller * 

T. caries AS 1977 Triticum aestivum Switzerland H. Zogg  

T. caries AS11 2011 Triticum aestivum Switzerland I. Bänziger  

T. caries AS14 2014 Triticum aestivum Germany B. Pölitz  

T. caries ASR 2014 Triticum aestivum Switzerland I. Bänziger  

T. caries ASW13 2013 Triticum aestivum Switzerland I. Bänziger  
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Additional Table 3-3 (continued) 

Taxon Sample 
number 

Year Host Geographic 
origin 

Collector/ 
Source 

Voucher 
No 

T. caries AUN - Triticum aestivum Germany - * 

T. caries AUO - Triticum aestivum Germany - * 

T. caries AW 2014 Triticum aestivum Germany R. Bauer * 

T. caries AZH1 2015 Triticum aestivum Switzerland  V. Weyermann * 

T. caries AZH2 2015 Triticum aestivum Switzerland  V. Weyermann * 

T. caries AZH3 2015 Triticum aestivum Switzerland V. Weyermann *CBS 
145166 

T. caries AZH4 2015 Triticum aestivum Switzerland V. Weyermann * 

T. caries AZH5 2015 Triticum aestivum Switzerland V. Weyermann * 

T. caries GD 1968 1998 Triticum aestivum Romania C. Gebhart 
 

T. caries GD 404  1933 Triticum aestivum Latvia V. Tumss 
 

T. caries GD 4420 1923 Triticum aestivum Germany H. Zillig 
 

T. caries GD 4425  1922 Triticum aestivum Germany H. Zillig 
 

T. caries GD 4421  1923 Triticum aestivum Germany H. Zillig 
 

T. caries GD 4427  1922 Triticum aestivum Germany H. Zillig 
 

T. caries GD 4431 1921 Triticum aestivum - M. Rotsweols 
 

T. caries T-1 1984 Triticum aestivum USA R. J. Metzger,  
J. A. 
Hoffmann 

 

T. caries T-15 1978 Triticum aestivum USA R. J. Metzger, 
J. A. 
Hoffmann 

 

 T-19 - Triticum aestivum USA R. J. Metzger, 
J. A. 
Hoffmann 

 

T. caries T-2 1989 Triticum aestivum USA R. J. Metzger, 
J. A. 
Hoffmann 

 

T. caries T-30 - Triticum aestivum USA  R. J. Metzger,  
J. A. 
Hoffmann 

 

T. caries T-33 - Triticum aestivum USA R. J. Metzger  

T. caries T-34 - Triticum aestivum USA R. J. Metzger  

T. caries V117 2005 Triticum aestivum Czech Republic V. 
Dumalasova 

 

T. caries V154 2012 Triticum aestivum Czech Republic V. 
Dumalasova 

 

T. caries V155 2007 Triticum aestivum Czech Republic V. 
Dumalasova 

 

T. caries V92 2003 Triticum aestivum Czech Republic V. 
Dumalasova 

 

T. caries V94 2004 Triticum aestivum Czech Republic V. 
Dumalasova 
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Additional Table 3-3 (continued) 

Taxon Sample 
number 

Year Host Geographic 
origin 

Collector/ 
Source 

Voucher No 

T. caries/ 
T. laevis mix 

RU11 - Triticum 
aestivum 

Czech Republic V. 
Dumalasova 

 

T. cerebrina GD 
1713 

1984 Deschampsia 
caespitosa 

Finland A. & W. Fuß 
 

T. controversa Vánky 
528 

1984 Triticum 
aestivum 

Germany H. & I. 
Scholz 

HUV 11761/ 
WSP 69062  

T. controversa D-12 - Triticum 
aestivum 

USA R. J. Metzger, 
J. A. 
Hoffmann 

 

T. controversa D-13 - Triticum 
aestivum 

USA R. J. Metzger, 
J. A. 
Hoffmann 

 

T. controversa D-17 1999 Triticum 
aestivum 

USA R. J. Metzger, 
J. A. 
Hoffmann 

 

T. controversa D-18 - Triticum 
aestivum 

USA B. J. Goates, 
R. J. Metzger 

 

T. controversa D-19 - Triticum 
aestivum 

Turkey B. J. Goates, 
R. J. Metzger 

 

T. controversa D-3 - Triticum 
aestivum 

USA R. J. Metzger, 
J. A. 
Hoffmann 

 

T. controversa D-4 - Triticum 
aestivum 

USA R. J. Metzger, 
J. A. 
Hoffmann 

 

T. controversa D-7 1999 Triticum 
aestivum 

USA R. J. Metzger, 
J. A. 
Hoffmann 

 

T. controversa GD 
1016  

1980 Triticum sp. Germany -  
 

T. controversa GD 
1951  

1997 Triticum 
aestivum 

Germany  G. Deml  

T. controversa GD 
1952  

1997 Triticum 
aestivum 

Germany G. Deml  

T. controversa GD 
1953  

1997 Triticum spelta Germany G. Deml  

T. controversa GD 
1954  

1997 Triticum spelta Germany G. Deml  

T. controversa GD 
1955  

1997 Triticum 
aestivum 

Germany G. Deml  

T. controversa OA1 2015 Triticum 
aestivum 

Austria A. E. Müllner * 

T. controversa OA2 2015 Triticum 
aestivum 

Austria A. E. Müllner *CBS 145169 

T. controversa OA3 2015 Triticum 
aestivum 

Austria A. E. Müllner * 

T. controversa OA4 2015 Triticum 
aestivum 

Austria A. E. Müllner * 

T. controversa OA5 2015 Triticum 
aestivum 

Austria A. E. Müllner * 

T. controversa OA6 2015 Triticum 
aestivum 

Austria A. E. Müllner * 

T. controversa OC1 2015 Triticum 
aestivum 

Germany H. Spieß * 

T. controversa OC2 2015 Triticum 
aestivum 

Germany H. Spieß * 
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Additional Table 3-3 (continued) 

Taxon Sample 
number 

Year Host Geographic 
origin 

Collector/ 
Source 

Voucher 
No 

T. controversa OL 2013 Triticum aestivum Germany H. Mitterer * 

T. controversa OL13 2000& 
2013 

Triticum aestivum Germany M. K. Forster  

T. controversa OL14 2014 Triticum aestivum Germany H. Mitterer *CBS 
145167 

T. controversa OL16 2016 Triticum aestivum Germany M. K. Forster * 

T. controversa OMO 2016 Triticum spelta Germany R. Klügl * 

T. controversa OR 2013 Triticum aestivum Germany R. Bauer *CBS 
144827 

T. controversa ORB 2016 Triticum aestivum Germany S. Weller * 

T. controversa OST 2001 Triticum aestivum Germany W. Wenig  

T. controversa OUN - Triticum aestivum Germany - * 

T. controversa OUO - Triticum aestivum Germany - * 

T. controversa OV 2011 Triticum aestivum Germany R. Bauer *CBS 
145170 

T. controversa OW 2013 Triticum aestivum Germany R. Bauer *CBS 
145168 

T. controversa OW15 2015 Triticum aestivum Germany R. Bauer * 

T. controversa OZH 1998 Triticum aestivum Switzerland I. Bänziger  

T. controversa  1986 Elymus repens  Hungary K. Vánky HUV 
12434 

T. controversa  Vánky 
2675 

1982 Thinopyrum 
intermedium subsp. 
Intermedium 
(Elymus hispidus) 

Hungary M. Juhász, 
K. Vánky 

HUV 
11040 

T. holci Vánky 
765 

1990 Holcus mollis New Zealand E. H. C 
McKenzie, 
K. Vánky 

HUV 
15067 

T. indica II7 2007 Triticum sp. India P. Chhuneja  

T. indica IM5 2005 Triticum sp. Mexico CIMMYT  

T. indica IM6 2006 Triticum sp. Mexico CIMMYT   

T. laevis 5150826 2015 Triticum aestivum France G. Orgeur  

T. laevis GD 
4402  

1935 Triticum sp. USA G. L. Zundel  

T. laevis GD 683 1977 Triticum aestivum Switzerland H. Zogg  

T. laevis L-1 1990 Triticum aestivum - R. J. Metzger, 
J. A. 
Hoffmann 

 

T. laevis L-10 1990 Triticum aestivum - R. J. Metzger, 
J. A. 
Hoffmann 

 

T. laevis L-16 1984 Triticum aestivum - R. J. Metzger, 
J. A. 
Hoffmann 

 

T. laevis L-18 - Triticum aestivum - R. J. Metzger  
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Additional Table 3-3 (continued) 

Taxon Sample 
number 

Year Host Geographic 
origin 

Collector/ 
Source 

Voucher 
No 

T. laevis L-19 - Triticum aestivum - R. J. Metzger *CBS 
145173 

T. laevis L-20 - Triticum aestivum Turkey R. J. Metzger  

T. laevis L-21 - Triticum aestivum USA R. J. Metzger * 

T. laevis LCR - Triticum aestivum Czech Republic A. Borgen  

T. laevis LI-134 2018 Triticum aestivum Iran M. Kheirgoo  

T. laevis LI-137 2018 Triticum aestivum Iran M. Kheirgoo  

T. laevis LI-138 2018 Triticum aestivum Iran M. Kheirgoo  

T. laevis LI-139 2018 Triticum aestivum Iran M. Kheirgoo  

T. laevis LI-141 2018 Triticum aestivum Iran M. Kheirgoo  

T. laevis LI-142 2018 Triticum aestivum Iran M. Kheirgoo  

T. laevis LI-143 2018 Triticum aestivum Iran M. Kheirgoo  

T. laevis LLFL 2015 Triticum aestivum Germany R. Bauer  *CBS 
144826 

T. laevis LLI2 - Triticum aestivum Lithuania A. Borgen  

T. laevis LQ1 - Triticum aestivum Iraq A. Borgen  

T. laevis LQ2 - Triticum aestivum Iraq A. Borgen  

T. laevis LQ3 - Triticum aestivum Iraq A. Borgen  

T. laevis LSW - Triticum aestivum Sweden A. Borgen  

T. laevis LT-1 - Triticum aestivum Turkey A. Borgen  

T. laevis LT-2 - Triticum aestivum Turkey A. Borgen  

T. laevis V61 1997 Triticum aestivum Czech Republic V. 
Dumalasova 

 

T. laevis Vánky 
766  

1988 Triticum aestivum Iran B. Pourjam HUV 
15003/ 
WSP 71300 

T. laevis  1979 Triticum aestivum Turkey R. J. Metzger WSP 73142  

T. laevis  1979 Triticum aestivum Turkey R. J. Metzger WSP 73143 

T. laevis  1979 Triticum aestivum Turkey R. J. Metzger WSP 73146 

T. laevis  1979 Triticum aestivum Turkey R. J. Metzger WSP 73148 

T. laevis  1979 Triticum aestivum Turkey R. J. Metzger WSP 73149 

T. laevis  1979 Triticum aestivum Turkey R. J. Metzger WSP 73150 

T. laevis  1979 Triticum aestivum  Turkey R. J. Metzger WSP 73152 

T. laevis  1979 Triticum aestivum Turkey R. J. Metzger WSP 73155 

T. laevis ii  1979 Triticum aestivum Turkey B. Metzger WSP 73156  

T. laevis  1979 Triticum carthlicum Turkey R. J. Metzger WSP 73157 

T. laevis  1979 Triticum durum Turkey R. J. Metzger WSP 73145 
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Additional Table 3-3 (continued) 

Taxon Sample 
number 

Year Host Geographic 
origin 

Collector/ 
Source 

Voucher 
No 

T. laevis  1979 Triticum durum Turkey R. J. Metzger WSP 
73153 

T. lolioli  Vánky 763 1990 Festuca orientalis 
(Loliolum 
subulatum) 

Iran D. Ershad, M. 
Abbasi, 
T. & K. 
Vánky 

HUV 
15065/ 
WSP 
71305 

T. menieri Vánky 581 1985 Phalaris arundinacea Germany  H. & I. 
Scholz 

HUV 
12681 

T. olida  1983 Brachypodium 
pinnatum 

Italy T. & k. Vánky HUV 
12682 

T. olida  1985 Brachypodium 
sylvaticum  

Germany G. Hirsch HUV 
11766 

T. olida  1987 Brachypodium 
pinnatum  

Germany K. Vánky HUV 
20601 

T. secalis GD 1707 1984 Secale cereale  Germany G. Deml  

T. trabutii Vánky 764 1990 Hordeum murinum 
ssp. glaucum  

Iran D. Ershad, H. 
Golzar, 
T. & K. 
Vánky 

HUV 
15036/ 
WSP 
71299 

Alternaria 
alternata 

 2017 Hordeum vulgare Germany P. Büttner  

A. alternata  69505 1995 Triticum aestivum Germany W. Radtke  

Alternaria sp. 72926 2016 Secalse cereale Germany P. Büttner  

Aspergillus niger 71709 2001 Solanum tuberosum Germany M. Götz  

Bipolaris 
sorokiniana 

72924 2016 Triticum aestivum Germany P. Büttner  

Boeremia exigua 
var. exigua 

62040 - Digitalis lanata  Germany -  

Botrytis cinerea 62086 - Triticum aestivum Germany -  

B. cinerea 72325 2016 Triticum aestivum Germany P. Büttner  

Cladosporium 
fulvum 

72927 2016 Triticum aestivum Germany P. Büttner  

Fusarium 
acumulatum 

 - - - A. Sisic  

F. avenaceum  - Pisum sativum - A. Sisic  

F. culmorum  65219 - Triticum durum Germany C. Kling   

F. equiseti  - Prunus dulcis - A. Sisic  

F. graminearum 64967 1987 Triticum aestivum Germany C. Kling  

F. oxysporum  - Prunus dulcis - A. Sisic  

F. poae 73010 2017 Hordeum vulgare Germany P. Büttner  

F. sambusium  - - - A. Sisic  

F. sporotrichioides 72922 2016 Triticum aestivum Germany P. Büttner  

F. tricinctum  - Pisum sativum - A. Sisic  

Magnaporthe 
oryzae 

IPP0685 2008 Triticum aestivum Bolivia M. Kohli  
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Additional Table 3-3 (continued) 

Taxon Sample 
number 

Year Host Geographic 
origin 

Collector/ 
Source 

Voucher 
No 

Monographella nivali  72923 2016 Triticum 
aestivum 

Germany P. Büttner  

Penicillium expansum 67687 1993 - Germany -  

Penicillium sp.  2016 Glycine max Germany P. Büttner  

Puccinia graminis f. 
sp. tritici 

 - Triticum 
aestivum 

- -  

P. recondita 77wxr - Triticum 
aestivum 

- -  

P. striiformis var. 
striiformis 

 - Triticum 
aestivum 

- -  

Pyrenophora tritici-
repentis 

Asc-1 - Triticum 
aestivum 

Canada L. Lamari  

P. tritici-repentis Asc203 - Triticum 
aestivum 

- -  

Rhizoctonia cerealis 64616 1985 Triticum 
aestivum 

Germany -  

Sclerotinia 
sclerotiorum 

73011 2016 Glycine max Germany P. Büttner  

Septoria tritici 68366 - Triticum 
aestivum 

Germany H. Mielke  

Sporisorium sorghi  2008 - Egypt M. 
Moharam 

 

Ustilago avenae  2012 Avena sativa Scotland M. McNeil  

U. hordei  2010 - Germany K. J. Müller  

U. maydis  - - - -  

U. nuda 42874 2017 Hordeum 
vulgare 

Germany M. K. 
Forster 

 

U. nuda  2012 Hordeum 
vulgare 

Switzerland I. Bänziger  

U. tritici  2009 - Germany K. J. Müller  

U. tritici  2012 Triticum 
aestivum 

Switzerland I. Bänziger  

Urocystis occulta  2012 - Germany Syngenta 
AG 

 

CBS, Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands; HUV (BRIP), Herbarium 
Ustilaginales Vánky, Queensland Plant Pathology Herbarium, Queensland, Australia; WSP, Washington State 
Plant Pathology Herbarium, Pullman, WA, USA 
single teliospore cultures produced in this study 
i the samples received from G. Orgeur are part of Groupe d'Etude et de contrôle des Variétés Et des Semences 
(Beaucouzé cedex, France) sample collection  

ii the sample was originally defined as T. caries by B. Metzger 
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Additional Table 3-4 Unique and conserved DNA segments identified by RUCS, when 21 and 27 
Tilletia genomes were used 

RUCS output using 21 Tilletia genomes 

Target species No of extracted 
regions 

N50 (bp) Longest extracted 
region (bp) 

T. controversa 11,135 61 6,133 

T. caries 235 39 116 

T. laevis 228 39 215 

T. caries/T. laevis 11,884 52 6,790 

RUCS output using 27 Tilletia genomes 

Target species No of extracted 
regions 

N50 (bp) Longest extracted 
regions (bp) 

T. controversa 10,282 53 6,134 

T. caries 16 39 95 

T. laevis 43 39 215 

T. caries/T. laevis 10,024 42 6,790 
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Additional Table 3-5 List of newly released and updated assemblies accession numbers 

The assemblies marked with * are updated versions of the assemblies used initially in the LAMP assay 
development (Nguyen et al. 2019) 

Taxon Strain Assembly accession numbers Reference 

T. caries AA11 (CBS 144825) GCA_905072865.1 This work 

T. caries AI (CBS 145171) GCA_905068135.1 This work 

T. caries AO (CBS 145172) GCA_905071735.1 This work 

T. caries AZH3 (CBS 145166) GCA_905071745.1 This work 

T. caries DAOMC 238032 GCA_001645005.2* Nguyen et al. 2019 

T. controversa DAOMC 236426 GCA_001645045.2* Nguyen et al. 2019 

T. controversa DAOMC 238052 GCA_009428265.1 Nguyen et al. 2019 

T. controversa OA2 (CBS 145169) GCA_905071725.1 This work 

T. controversa OL14 (CBS 145167) GCA_905071785.1 This work 

T. controversa OR (CBS 144827) GCA_905071765.1 This work 

T. controversa OV (CBS 145170) GCA_905071775.1 This work 

T. controversa OW (CBS 145168) GCA_905071705.1 This work 

T. horrida QB-1 GCA_001006505.1 Wang, et al. 2015 

T. indica DAOMC 236408 GCA_009428345.1 Nguyen et al. 2019 

T. indica DAOMC 236414 GCA_009428365.1 Nguyen et al. 2019 

T. indica DAOMC 236416 GCA_001645015.2* Nguyen et al. 2019 

T. indica PSWKBGD_1_3 GCA_001689965.1 NA 

T. indica PSWKBGH_1 GCA_001689995.1 Sharma, et al. 2016 

T. indica PSWKBGH_2 GCA_001689945.1 Sharma, et al. 2016 

T. indica RAKB_UP_1 GCA_002220835.1 Gurjar, et al. 2019 

T. indica Tik_1 GCA_002997305.1 Kumar, et al. 2017, 
Kumar, et al. 2018 

T. laevis ATCC 42080 GCA_009428275.1 Nguyen et al. 2019 

T. laevis DAOMC 238040 GCA_009428285.1 Nguyen et al. 2019 

T. laevis L-19 (CBS 145173) GCA_905071715.1 This work 

T. laevis LLFL (CBS 144826) GCA_905071755.1 This work 

T. walkeri DAOMC 236422 GCA_001645055.2* Nguyen et al. 2019 

T. walkeri DAOMC 238049 GCA_009428295.1 Nguyen et al. 2019 
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* 

Additional Figure 3-1 Photos of the interlaboratory test performance study of the developed LAMP 

assay. A: the reference photo taken by the organizer. B – F: photos that are received from the 

participants. The reaction color changes to pink when T. controversa is detected. The False Positive 

(FP) reported reaction is marked by (*). Photo F is color intensified by a photo-editing software 

(Adobe Photoshop version 6.0). The sensitivity and specificity of the test were 100 and 97.7%, 

respectively. 
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4. 1. Abstract 

The smut species of Tilletia, are of particular importance, because they parasite Poaceae family 

which contains a variety of important crop plants. Among the most economically important species 

are T. caries, T. controversa, and T. laevis, the causal agents of common and dwarf bunt of wheat. Unlike 

other Tilletia species which are proposed to be mostly host-specific, common and dwarf bunt are 

reported to have broad host range. To clarify whether they are indeed generalist species with a broad 

host range or rather represent complexes of cryptic species with narrow host ranges phylogenetic 

relationships of those species and close relatives by employing sequencing data of the internal 

transcribed spacer region rDNA (ITS), translation elongation factor 1 alpha (EF1α), and the second 

largest subunit of RNA polymerase II (RPB2). We additionally employed phylogenomic approach to 

investigate the relationship among ten common bunt and seven dwarf bunt isolates. In total 70 

specimens of which 20 specimens were newly produced for this study. In general, the multi locus 

phylogenetic analysis resolved various species with narrow host ranges parasitizing wild grasses as 

distinct lineages such as T. fusca up to T. olida representing 12 species and T. bromi and T. puccinelliae. 

The situation is more complex in the case of T. controversa:, several small clusters of T. controversa from 

wild grasses (Thinopyrum intermedium, Bromus marginatus, Agropyron cristatum) and rye (Secale cereale), 

respectively, clustered as subgroups in a polytomous manner between different clusters of T. caries, 

T. controversa, and T. laevis on wheat. Interestingly, one group of T. controversa sequences obtained from 

Elymus repens, Th. intermedium, and Agropyron sp. clustered with high support values clearly separate 

from this polytomous group and together with T. brevifaciens isolates also obtained from Th. 

intermedium. These representatives of T. controversa with high likelihood represent at least one cryptic 

species restricted to these wild grasses as hosts and might potentially be conspecific with T. brevifaciens.  

Phylogenomic analysis based on 241 genes employing 27 genomes of seven Tilletia species supported 

distinction of T. controversa species from common bunt, however the analyses failed to support T. caries 

as phylogenetically distinct from T. laevis species. Therefore, it is suggested that common bunt fungi 

are either two pseudomorphs of a species or just recently separated. 

 

Keywords 

Tilletia, common and dwarf bunt of wheat, host specificity, multilocus phylogeny, phylogenomic 
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4. 2. Introduction 

Tilletiales is one of the fungal orders in Exobasidiomycetes (Ustilaginomycetes, Basidiomycota) 

(Begerow et al., 1997; Begerow et al., 2006) that comprises of nearly 200 described species (Carris et 

al., 2007; Denchev and Denchev, 2013; Denchev and Denchev, 2018; Denchev et al., 2018; Li et al., 

2014; Vánky, 2012). Genus Tilletia is characterized by the formation of usually reticulate ornamented 

teliospores, which replace mainly ovary tissues of Poaceae members (Castlebury et al., 2005; Vánky, 

2012); the fifth largest family of flowering plants (Soreng et al., 2017). Teliospores germinate to form 

aseptate basidium (holobasidium) that bears terminal basidiospores. Basidiospores often conjugate 

and give rise to infectious intercellular hyphae which have dolipore septum without cap (Bauer et al., 

2006; Bauer et al., 1997; Roberson and Luttrell, 1989). 

Species delimitations within the genus are mainly based on teliospores morphology, host, and 

if available, the number and nuclear condition of primary basidiospores and ability of primary 

basidiospores to conjugate and form an infective dikaryon (Castlebury et al., 2005). Molecular 

phylogenetic analysis of Tilletia and allied taxa utilizing a part of the nuclear large subunit (nLSU) 

rDNA gene distinguished a well-supported lineage containing Tilletia species on the subfamily 

Pooideae (Castlebury et al., 2005). Neither this region, nor combined with internal transcribed spacer 

(ITS) (Jayawardena et al., 2019) were variable enough to separate pooid-infecting species within the 

lineage. However, a multilocus phylogenetic study based on combined ITS, translation elongation 

factor 1 alpha (EF1α), and the second largest subunit of RNA polymerase II (RPB2) provided strong 

support for individual, narrow host range species of Tilletia on pooid grass hosts (Carris et al., 2007). 

The three important species of wheat bunt (T. caries, T. controversa, and T. laevis) were shown to have 

a common origin with low genetic distances and could not be resolved according to the species 

boundaries as individual monophyletic lineages. 

Common bunt of wheat is caused by T. caries and T. laevis, dwarf bunt by T. controversa which 

are wheat bunt causal agents reported in central Europe condition. Tilletia controversa was first reported 

on quackgrass (Elymus repens) in Germany by Kühn (1874) and is phylogenetically and genetically so 

close to T. caries and T. laevis that some studies have been questioned whether they can be regarded 

as distinct species (Carris et al., 2007; Holton, 1954; Holton and Kendrick, 1956; Russell, 1994; 

Russell and Mills, 1993). Tilletia caries and T. controversa are not only described from wheat species 

(Triticum spp.), but also on several different genera of Poaceae family (Goates, 1996; Hardison et al., 

1959; Purdy et al., 1963; Schuhmann, 1960) and T. controversa is proposed to have a broad host range 

by Durán and Fischer (1961), while majority of the Tilletia species have a relatively narrow host range 
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usually reSed to one genus or even a single host (Begerow et al., 2004; Castlebury et al., 2005). So far, 

little is known about the molecular phylogenetic relation of T. controversa originated from different 

hosts. However, the phylogenetic study of several broad host range smut fungi has revealed that they 

are mostly representing species complexes comprising several species with narrow host specificities 

(Kruse et al., 2018; Piątek et al., 2013; Savchenko et al., 2014). Similar finding was also reported for 

the anther smuts of the genus Microbotryum belonging to Pucciniomycotina (Kemler et al., 2009; 

Ziegler et al., 2018). 

After the recent publication of the first genome of one T. caries isolate and one T. controversa 

isolate, the first phylogenomic analyses that also included five T. indica (causal agent of wheat karnal 

bunt) isolates and one T. horrida (rice kernel smut) was published by Gurjar et al. (2019). This study 

showed that T. caries and T. controversa are very similar and closely related. A similar finding was made 

by Mishra et al. (2019) analyzing 3751 loci and including one T. walkeri (causal agent of ryegrass smut) 

isolate. The most recent study using 4896 single-copy orthologous genes of ten Tilletia isolates (one 

isolate of T. caries, two isolates of T. controversa, two isolates of T. laevis, three isolates of T. indica, and 

two isolates of T. walkeri) was done by Nguyen et al. (2019) resolved the five species into well-

supported clades where only one T. caries isolates was included. Yet a phylogenomic analyses of all 

the available genomes is lacking while there are now 11 additional genomes of common bunt and 

dwarf bunt (four isolates of T. caries, five isolates of T. controversa and two isolates of T. laevis) available. 

The aim of this study was i) molecular phylogenetic analyses using three loci (EF1α, ITS, and RPB2), 

with broader taxon sampling, especially including specimens of T. controversa originated from grasses 

to obtain indications whether T. controversa represents a polyphagous species or rather several host 

specific species; ii) a phylogenomic analyses using several specimens of T. caries, T. controversa, and 

T. laevis from different geographic origins to test species status of these bunt fungi. 

4. 3. Material and Methods 

4. 3. 1.  Fungal isolates and nucleic acid extraction 

Collection of Tilletia spp. used in this study are listed in . Host taxonomy followed the Kew 

Royal Botanic Gardens online database (https://wcsp.science.kew.org/). Total genomic DNA was 

extracted from either single teliospore cultures or directly from teliospores when they were not viable 

anymore. Single teliospore cultures production and DNA extractions from both sources were done 

according to chapter 3. 
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4. 3. 2.  PCR amplification and sequence analysis 

Three nuclear DNA regions were amplified and sequenced: the elongation factor 1 alpha 

(EF1α), the complete internal transcribed spacers 1 and 2 (ITS), and the second largest subunit of 

RNA polymerase II (RPB2) using a combination of the primers presented in Table 4-2.  

All PCR reactions were performed in a final volume of 25 µL containing 1 µL template. We 

used different PCR mixes including; (i) 10× TrueStart, (NH4)2SO4 amended Taq buffer (Thermo 

Scientific, Vilnius, Lithuania), 2.5 mM MgCl2, 0.2 mM of each dNTPs (Thermo Scientific, Vilnius, 

Lithuania), 0.4 µM of each primer, and 1 Unit Taq DNA polymerase (TrueStart Hot Start, Thermo 

Scientific, Vilnius, Lithuania), (ii) 20 µL ALLinTM Hot Strat Taq Mastermix (HighQu GmbH, 

Kraichtal, Germany), 0.4 µM of each primer, (iii) 10× DreamTaq Buffer, 0.2 mM each of dNTPs 

(Thermo Scientific, Vilnius, Lithuania), 1 µM of each primer and 1.25 Unit Taq DNA polymerase 

(DreamTaq, Thermo Scientific, Lithuania). Standard cycling parameters according to the 

manufacturers’ manuals was used for each PCR mixture. For the amplification of EF1α 59 °C 

annealing temperature was used, 53 °C for ITS, and 60 °C for RPB2.  

PCR products were purified using the DNA Clean and ConcentratorTM-5 kit (Zymo Research 

Corp., Irvine, California, USA) according to the manufacturer’s instructions. The purified amplicons 

were sequenced by their respective PCR primers. A contig of the obtained forward and reverse 

sequences were produced, quality-checked edited and manually trimmed using SequencherTM 5.4.6 

software (Gene Codes Corporation, Ann Arbor, Michigan, USA). The generated sequences and 

sequences downloaded from GenBank are summarized in Table 4-1. We did not include samples that 

were publicly available but lacked any of the three loci sequences, with two exceptions: one isolate of 

T. togwateei and T. laguri. These two samples were included even by lacking ITS sequences because 

they are only distantly related to T. controversa. 
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Table 4-2 Primers used in this study 

Locus Primer Sequence (5´ - 3´) Reference 

EF1α EF1-526F* GTCGTYGTYATYGGHCAYGT Rehner, (DeepHypha web 
page) 

 EF1-636F TCAAGGTCGTYGTYATCGG (Carris et al., 2007) 

 EF1-1567R* ACHGTRCCRATACCACCRATCTT Rehner, (DeepHypha web 
page) 

 EF1-2218R ATGACACCRACRGCRACRGTYTG Rehner, (DeepHypha web 
page) 

ITS ITS1-F CTTGGTCATTTAGAGGAAGTAA (Gardes and Bruns, 1993) 

 ITS2 GCTGCGTTCTTCATCGATGC (White et al., 1990) 

 ITS3 GCATCGATGAAGAACGCAGC (White et al., 1990) 

 ITS5* GGAAGTAAAAGTCGTAACAAGG (White et al., 1990) 

 ITS4* TCCTCCGCTTATTGATATGC (White et al., 1990) 

 ITS4-B CAGGAGACTTGTACACGGTCCAG (Gardes and Bruns, 1993) 

RPB2 RPB2-740F GATGGACGCGGTTTGTAATG (Carris et al., 2007) 

 RPB2-
1365R 

TCGAAGAGCYAACACTGAGACG (Carris et al., 2007) 

The primers that most of the samples were amplified with are marked with asterisks. Alternative primers were 
used when the sequencing results based on marked primers were not optimum, or the amplification failed. 

 

4. 3. 3.  Molecular phylogenetic reconstruction 

The sequences of each locus were aligned independently using Mafft V. 7 (Katoh et al., 2017) 

adopting the iterative refinement algorithms L_INS_i. The leading and trailing gaps were manually 

trimmed in AliView v 1.26 (Larsson, 2014). The three loci were aligned individually and then 

concatenated into a single alignment. All the specimens were included in the concatenated alignment, 

with missing data for the two loci where sequences were lacking.  

Phylogenetic relationships were inferred based on the concatenated alignment using Bayesian 

Metropolis coupled Markov chain Monte Carlo (MC3) analyses (BPP), minimum evolutionary (ME), 

and maximum likelihood (ML). For Bayesian interference the program MrBayes v3.2. 7 (Larget and 

Simon, 1999; Ronquist et al., 2012) was used. To run MrBayes, the evolutionary model was first 

estimated using jModelTest 2.1.10 (Darriba et al., 2012) based on Bayesian Information Criteria 

(BIC). Two runs over 1,000,000 generations MC3 sampling each consisting of 4 heated chains with a 

random start tree were then computed using the SYM+I+G model suggested by jModelTest 

(TrNef+I+G). Trees were sampled every 200th generation and from these, the first 20% were 

discarded. The remaining trees were used to compute a 50% majority rule consensus tree to obtain 

estimates for the posterior probability. Balanced minimum evolution inference was done using 
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FastMe 2.0 (Lefort et al., 2015) using F84 (Felsenstein, 1984) as the nucleotide substitution model 

and gamma distributed rates across sites. Branch support values were estimated applying 1000 

bootstrap replicates. The initial tree topology was optimized by the best of Nearest Neighbor 

Interchange (NNI) and Subtree Pruning and Regrafting (SPR) method which generally finds better 

tree topologies. Maximum likelihood analysis was done employing the partitioned-marked 

concatenated alignment (Chernomor et al., 2016) using IQ-TREE 1.6.10 (Nguyen et al., 2015). The 

best-fitting models of evolution were estimated by ModelFinder (Kalyaanamoorthy et al., 2017) 

implemented in IQ-TREE. For EF1α and ITS. The best fitting models were TNe+R2 and for RPB2 

HKY+F+G4, respectively. The tree was inferred using 1000 replicates of fast bootstrapping (Hoang 

et al., 2017). Only bootstrap support (BS) values with a minimum of 70% for ML and ME and 0.9 of 

Bayesian posterior probabilities (BPP) are given. The trees were visualized in the web interface iTOL 

v4 (Letunic and Bork, 2019). 

To estimate if the differences in clade was supported by raw alignment data (Wägele and 

Mayer, 2007), we used SplitsTree4 v4.15.1 (Huson and Bryant, 2006) to compute Neighbor-Net 

analysis (Bryant and Moulton, 2004). This method provides a collection of possible resolutions 

through reticulation. We used the concatenated alignment with settings 

Variance = OrdinaryLeastSquares and uncorrected P-distance, performing 1000 bootstrap replicates.  

4. 3. 4.  Orthologue gene identification and species tree recognition 

Genome sequences used in the phylogenomic analyses are listed in Table 4-3. For the 

phylogenomic study, orthologue genes were selected according to a modified approach described by 

Pizarro et al. (2018). Every genome was assessed for 303 single-copy genes of the eukaryote OrthoDB 

v9 (Waterhouse et al., 2013) using BUSCO (Benchmarking Universal Single-Copy Orthologs) version 

3.0.2 (Simao et al., 2015) in the genomic mode. The putative gene regions identified by BUSCO were 

extracted. For the duplicated genes, we used the sequence with the higher similarity scored to its 

BUSCO reference. Each BUSCO gene recovered from each of the 27 genomes was aligned using 

MAFFT V. 7 adopting the iterative refinement algorithms L-INS-i (-local pair -maxiterate 1000 - 

adjustdirectionaccurately). In order to reduce the effects of missing data, alignments with more than 

7% of missing data (lacking corresponding sequence in more than two isolates per loci) were 

removed. Ambiguous regions within each alignment were removed using Gblock v 0.91b (Castresana, 

2000) with the default parameters (S). 

The species tree inferences based on the multispecies coalescent model (Degnan and 

Rosenberg, 2006) was done because individual phylogenetic analyses based on individual genes can 
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result in different gene trees that differ from the true species tree (Rannala and Yang, 2003). First, we 

constructed approximately-maximum-likelihood phylogenetic trees for every single gene individually 

using FastTree 2.1.11 (Price et al., 2010) implemented in Geneious version 8.1.2 (Biomatters Limited, 

Auckland, New Zealand). We used settings of optimized gamma20 likelihood and Generalized Time-

Reversible (GTR) model. The Accurate Species Tree Algorithm II (ASTRAL-II) (Mirarab and 

Warnow, 2015) was employed to summarize coalescent interferences resulting from all trees. Clade 

support was evaluated by computing the local posterior probability (LPP), generated by ASTRAL-II 

which is suggested to be more precise (Sayyari and Mirarab, 2016). The tree was visualized as 

described before.  
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Table 4-3 List of the genomes used in this study 

No. Species Isolate Assembly accession 

number 

Genome 

size (bp) 

Reference 

1 T. caries AA11 

(CBS 144825) 

GCA_905072865 31,511,149 Sedaghatjoo et al 

2 T. caries AI 

(CBS 145171) 

GCA_905068135 31,849,506 Sedaghatjoo et al 

3 T. caries AO 

(CBS 145172) 

GCA_905071735 30,466,127 Sedaghatjoo et al 

4 T. caries AZH3 

(CBS 145166) 

GCA_905071745 31,386,298 Sedaghatjoo et al 

5 T. caries DAOMC 

238032 

GCA_001645005.2 28,142,201 (Nguyen et al., 2019) 

6 T. caries WSP 72095 

(517) 

GCA_004334575.1 35,802,276 - 

7 T. controversa DAOMC 

236426 

GCA_001645045.2 29,878,810 (Nguyen et al., 2019) 

8 T. controversa DAOMC 

238052 

GCA_009428265.1 28,565,061 (Nguyen et al., 2019) 

9 T. controversa OA2 

(CBS 145169) 

GCA_905071725 32,055,341 Sedaghatjoo et al 

10 T. controversa OL14 

(CBS 145167) 

GCA_905071785 30,830,153 Sedaghatjoo et al 

11 T. controversa OR 

(CBS 144827) 

GCA_905071765 49,872,806 Sedaghatjoo et al 

12 T. controversa OV 

(CBS 145170) 

GCA_905071775 29,542,762 Sedaghatjoo et al 

13 T. controversa OW 

(CBS 145168) 

GCA_905071705 31,249,642 Sedaghatjoo et al 

14 T. horrida QB-1 GCA_001006505.1 20,105,270 (Wang et al., 2015) 

15 T. indica DAOMC 

236408 

GCA_009428345.1 29,678,000 (Nguyen et al., 2019) 

16 T. indica DAOMC 

236414 

GCA_009428365.1 28,967,515 (Nguyen et al., 2019) 

17 T. indica DAOMC 

236416 

GCA_001645015.2 30,384,772 (Nguyen et al., 2019) 

18 T. indica PSWKBGH_1 GCA_001689995.1 37,460,344 (Sharma et al., 2016) 

19 T. indica PSWKBGH_2 GCA_001689945.1 37,216,861 (Sharma et al., 2016) 

20 T. indica RAKB_UP_1 GCA_002220835.1 33,771,691 (Gurjar et al., 2019) 

21 T. indica Tik_1 GCA_002997305.1 31,836,179 (Kumar et al., 2018; 

Kumar et al., 2017) 

22 T. laevis ATCC 42080 GCA_009428275.1 28,777,633 (Nguyen et al., 2019) 

23 T. laevis DAOMC 

238040 

GCA_009428285.1 28,279,804 (Nguyen et al., 2019) 

24 T. laevis LLFL 

(CBS 144826) 

GCA_905071755 30,985,200 Sedaghatjoo et al 
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Table 4-3 (continued) 

No. Species Isolate Assembly accession 

number 

Genome 

size (bp) 

Reference 

25 T. laevis L-19 

(CBS 145173) 

GCA_905071715 31,001,062 Sedaghatjoo et al 

26 T. walkeri DAOMC 

236422 

GCA_001645055.2 23,943,196 (Nguyen et al., 2019) 

27 T. walkeri DAOMC 

238049 

GCA_009428295.1 24,274,610 (Nguyen et al., 2019) 

 

4. 4. Results 

4. 4. 1.  Sequence alignments and molecular phylogenetic reconstruction 

In total the phylogenetic study comprises 70 taxa of which sequences for 24 taxa are newly 

generated for this study. The concatenated alignment consists of 716 characters for EF1α, 638 for 

ITS, and 578 for RPB2 (including gaps). Of 1932 total number of characters, 1655 were constant, 

186 were parsimony-informative, and 91 were variable but not parsimony-informative.  

Topology of the three trees (BPP consensus, balanced ME, and ML tree) remained the same 

for majority of the well-supported clades and were recovered similarly in all three trees, however 

exceptions were shown for less supported clades. The consensus tree of one run of the Bayesian 

phylogenetic analyses is presented with the support values of all three methods given in the order 

(Bayesian posterior probabilities / minimum evolution bootstrapping / maximum likelihood 

bootstrapping) (Figure 4-1). The combined analyses of the three loci distinguished several species 

with maximum to high support values: T. bromi (1/99/100), T. goloskokowii (1/100/100), T. puccinelliae 

(0.99/99/ 97), T. sphaerococca (1/ 80/97), T. togwateei (1/100/100), and T. vankyi (1/100/100). 

Additionally, three highly supported groups were recovered in all three analyses. One of these group 

contained two Tilletia samples on Aegilops cylindrica (1/100/98). The other one accommodated two 

collections, which initially were identified as T. controversa on Alopecurus myosuroides (1/98/100) and the 

third group comprised three samples of T. olida (1/95/100) on Brachypodium species. Moreover, a well-

supported lineage (1/86/100) was recovered that grouped samples of T. brevifaciens, T. controversa 

collected from Elymus repens, and Thinopyrum intermedium together with an undetermined Tilletia sample 

on Agropyron sp. Interestingly Tilletia samples on E. repens clustered within a clade together with 

T. brevifaciens only and did not appear in different clades. This was unlike T. controversa samples on 

Agropyron spp., Secale cereale, and Th. intermedium. 
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One of the high to moderately supported group (1/75/77) was comprised of one of the 

T. secalis and two Tilletia samples, one collected from Agropyron sp. (WSP 73158) and another from 

Aegilops biuncialis (WSP 73154). The latter was initially identified as T. caries by B. Metzger, which we 

could not confirm based on morphological features of teliospores using light microscopy. Position 

of European originated T. secalis (GD 1707) remained unclear. Three representatives of T. trabutii 

collected from Hordeum spp. were clustered together with high support in ML (93) and ME (99) 

analysis. Polytomous nodes (multifurcations rather than bifurcations) were mostly representing 

T. caries, T. laevis, and all the T. controversa collected from Triticum sp. Among them were also samples 

of T. controversa on different grasses such as;Ag. cristatum, Bromus marginatus, Secale cereale, and 

Th. intermedium. 

The incongruence between the single gene trees suggesting that gene trees cannot be 

successfully presented in a single concatenated phylogenetic tree, therefore we applied a network 

phylogeny analysis. The phylogenetic reconstruction of 70 taxa depicted by Neighbor-Net showed 

tree-like relationships and was in agreement with well-supported groupings in the phylogenetic tree 

of combined loci (data not shown). However, substructures in two clades containing T. brevifaciens 

and T. secalis may exist based on the reticulation of Network (Additional Figure 4-1). 
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Figure 4-1 Unrooted phylogram obtained by Bayesian inference of phylogenetic relationship of 
Tilletia spp. based on a concatenated alignment of DNA sequences of EF1α, ITS1 and RPB2 
regions. Support values are given for branches in the following order Bayesian posterior 
probabilities (BPP) >0.9, and bootstap values >70% balanced minimum evolution and 
maximum likelihood are given at first, second, and third positions, respectively. A minus sign 
denotes lacking support for the present topology, 100% and 1 are shown with * and. Samples 
are color coded based on host. Samples without color code are collected from Triticum spp. 
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4. 4. 2.  Phylogenomic inferences 

From the total of 303 initial BUSCO genes, 241 were included for construction of individual 

gene trees. The multispecies coalescent analyses recognized five groupings corresponding. A clade 

containing common and dwarf bunt fungi from the rest of the species was supported with maximum 

support level (LPP 1). Seven samples of T. controversa were clustered together and separated from 

common bunt fungi, however between two species of T. caries and T. laevis no grouping 

corresponding to each species was achieved. Moreover, two distinct clades; one containing all T. indica 

isolates and the other both isolates of T. walkeri with maximum support (Figure 4-2). The 

concatenated analysis of 416,222 aligned nucleotides in the Neighbor-Net was in agreement 

with Astral II results (Additional Figure 4-2).  

 

 

Figure 4-2 Proportional cladogram inferred on the set of 241 genes. Phylogeny inferred from input 

trees derived from single-partitioned ML per loci analyses (each gene tree reconstructed using a single 

partition) with ASTRAL II. Each isolate is color coded based on identified species. Node values 

indicate local posterior probability above 0.95 are shown. 
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4. 5. Discussion 

4. 5. 1.  Molecular phylogenetic reconstruction of Tilletia with a special focus on 

disentangling potentially host specific lineages within T. controversa 

In this study, molecular phylogenetic analyses based on three genetic loci (EF1α, ITS, and 

RPB2) was performed to understand the delimitation of T. controversa species on species of Pooideae. 

To this end T. controversa samples were analyzed that had been obtained not only from Triticum species 

but different hosts from five additional genera. In general, we found a weak resolution in the 

backbone of the phylogenetic tree based on the three genes. Most terminal taxa could however be 

resolved as distinct taxa either due to their significant genetic distances discriminating them from 

other species or based on high support values in those species where several representatives had been 

included. The present study reproduced several phylogenetic groupings such as T. bromi, 

T. goloskokowii, T. puccinelliae, T. sphaerococca, T. togwateei, T. trabutii, and T. vankyi that have been 

observed previously (Carris et al., 2007). Yet, current study suggests that T. controversa is a multispecies 

parasite. Several sequences of T. controversa obtained from Thinopyrum intermedium, Bromus marginatus, 

Agropyron cristatum and one from Secale cereale clustered without any or significant support intermingled 

with sequences obtained from T. caries, T. controversa and T. laevis from wheat, suggesting that 

T. controversa can infect different hosts. This is rather contrary to previous studies showing that 

generally there is a strong host specificity in Tilletia species parasitizing wild grass species (Boyd and 

Carris, 1997; Boyd and Carris, 1998). The evidence that T. controversa can infect different grasses is 

important since in nature those grasses can serve as disease inoculum sources not only for these grass 

species but also wheat. On the other hand, artificial cross infection of T. controversa comprises of a 

broad number of hosts, yet the occurrence of dwarf bunt on wild grasses is limited (Purdy et al., 

1963). Therefore, to what extent these sources of inoculum may play a role in the natural dispersal of 

dwarf bunt is unknown. 

Despite a wider sampling both in number and geographic range, the here presented 

phylogenetic analyses based on three loci could not clearly distinguish the three bunt species of 

T. caries, T. laevis and T. controversa from one another. This is in line with previous reports (Bao, 2010; 

Bao et al., 2010; Carris et al., 2007). The sequences of the three species clustered polytomously 

without significant support for the whole group showing that sampling a larger number of 

representatives, the three species of T. caries, T. controversa, and T. laevis did not form a well-supported 

monophyletic group as suggested previously (Bao et al., 2010; Carris, 2008; Carris et al., 2007). 

Despite lacking resolution, several subgroups within this polyphyletic cluster emerged which partially 
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correlated with host species. Two specimens of T. controversa parasiting Alopecurus myosuroides, as well 

as two undetermined specimens on Aegilops cylindrica, formed highly supported subclusters. Both 

samples collected from Al. myosuroides were originally identified as T. controversa based on their 

teliospores morphological features. These finding might hint at cryptic species hidden within 

T. controversa and in the whole wheat bunt complex, because of insufficient morphological features to 

readily distinguish them. Classical taxonomy of Tilletia species is only based on teliospores 

morphology and morphometric, soral shape, and host. Because teliospore features can overlap among 

several species (Carris, 2008; Vánky, 2012), the identification of such species based on morphology 

only is difficult and consequently, their genetic diversity can remain unnoticed (Shi et al., 1996). 

Another example of such a morphologically difficult to impossible distingushable species from 

T. controversa is T. secalis (rye bunt). Two specimens of T. secalis from (Secale cereale), one collected from 

US (WSP 71279) and the other from Germany (GD 1707) did not cluster together and are thus 

unlikely conspecific. The analyzed sample of T. secalis from US was the first report of rye bunt in 

North America and was phylogenetically distinct from the common and dwarf bunt fungi according 

to (Carris, 2008) while the specimen of European origin clustered within common and dwarf bunt of 

wheat. Since T. secalis and T. controversa are both widespread in Central Europe (Fischer, 1956) and 

identification of these two species is problematic due to their undistinguishable morphological 

features (Niemann, 1954; Niemann, 1956), the suggestion of nonconspecificity of the European 

T. secalis to American one should be taken with caution because it may be only wrong identification. 

Moreover, the specimens of T. secalis from the US clustered with two other undetermined specimens 

of Tilletia obtained from Aegilops biuncalis, and Agropyron sp. which are morphologically distinct from 

T. secalis (data not shown). More representatives of those two samples are needed to resolve this clade, 

which may accommodate distinct species.  

One group comprised of three T. controversa samples collected from Elymus repens (the type 

host), WSP 72054, WSP 72055, and UV 12434) two from Thinoyprum intermedium (WSP 63862 and 

WSP 70123), in addition to two T. brevifaciens (HUV 20802 and WSP 68945) specimens also from 

Th. intermedium, and one undetermined specimen on Agropyron sp. (WSP 73144) and separately from 

common and dwarf bunt of wheat. Tilletia brevifaciens originally was described on Th. intermedium (syn. 

Agropyron intermedium) by Fischer (1952) to distinguish dwarf bunt of wheat distinct from T. caries. It 

was later synonymized with T. controversa by Conners (1954) and confirmed by Durán and Fischer 

(1961) and treated accordingly by Vánky (1994) and Vánky (2012). However, T. brevifaciens on 

Th. intermedium was reclassified as a distinct species from T. controversa based on multilocus 

phylogenetic study and several lines of evidence (number of basidiospores per basidium and 
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temperature of teliospore germination) by Carris et al. (2007). Our multilocus phylogeny is in line 

with this reclassification since T. brevifaciens does not cluster with any of the phylogenetic groups 

comprising T. controversa obtained from Triticum spp. Due to the age of the samples, it remains 

unknown to us if these T. controversa samples within this lineage could be re-identified as T. brevifaciens 

by other lines of evidence. Additionally, both the internal support values within this clade in the 

phylogram and Neighbor-Net network suggest that further substructures may be present within this 

lineage which may be host associated. Additional variable genes and representatives are needed to 

obtain higher resolution and clearer picture within this lineage. 

We also sequenced a few Tilletia species such as T. holci, T. menieri, and T. olida for the first time for 

the three loci phylogenic analysis. In general, host specificity of Tilletia species varies. Some Tilletia 

species are restricted to a genus such as T. olida on Brachipodium spp. and T. trabutii on Hordeum species. 

Some can parasitise more than one host species such as T. controversa and T. vankyi. However, such 

lineages that appear to infect more than one host species could actually be host-specific but too 

recently diverged for our markers to detect their differentiation. Presumably, higher mutational rate 

loci are better options for studying them as shown also by (McDonald et al., 2000; Zupunski et al., 

2011) using inter simple sequence repeat regions. 

One of the current limitations in phylogenetic studies of Tilletia is the lack of known 

phylogenetically informative loci. We tested the ribosomal protein L4 (rpl4A) gene with the suggested 

primers (rpl4_F1 and rpl4_R1) by Kruse et al. (2017) for a subset of samples including T. caries 

(n = 1), T. controversa collected from different hosts (n = 3), T. holci (n = 1), T. lolioli (n = 1), T. olida 

(n = 2), T. secalis (n = 2), and T. trabutii (n = 1). The 580 bp amplified protein coding region contained 

five substitutions for T. olida and four in T. holci only. Since the focus of this study was T. controversa 

and closely related species, we did sequence this region in our analysis.  

We did not observe any correlation between obtained sequencing quality and age of herbarium 

specimens (data not shown). This observation is in agreement with the importance of teliospores 

storage rather than the age of teliospores collection material for the sequencing quality (Savchenko 

et al., 2014). The storage factor that plays the role remained unknown to us.  

4. 5. 2.  Phylogenomic inference of species boundaries of wheat bunt fungi  

We additionally employed a phylogenomic approach to study the phylogenetic relation of 

T. controversa to the two genetically (chapter 2) and phylogenetically (Carris et al., 2007) closely related 

species of T. caries and T. laevis, with all currently available genomes (accessed Dec 2019). We used 

241 single-copy genes to estimate the phylogenetic relation between 27 isolates of six Tilletia species. 
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Using a summary method of the multispecies coalescent approach, the causal agent of dwarf bunt, 

T. controversa, could be differentiated from the causal agents of common bunt; T. caries and T. laevis. 

However, despite the fact that Astral II takes into account the incomplete lineage sorting, the 

specimens of T. caries and T. laevis included in this study could not be resolved into individual lineages 

correlating with these two species. Nguyen et al. (2019) using a phylogenomic approach based on 

4896 single copy orthologous genes suggested that species of T. caries and T. laevis are distinct. This is 

in contrast to our finding using a smaller number of genes but including genomes of four additional 

T. caries and two more T. laevis collected from Europe. This may suggest that the two common bunt 

species are only two morphotypes of one species. Vanky (2008) used the 

term pseudomorphospecies for smuts with morphological differences showing no genetic 

differences. The conspecificity of T. caries and T. laevis is also supported by a high degree of genomic 

identity (Nguyen et al., 2019), low number of single nucleotide polymorphism among the two species 

(chapter 2), indistinguishable protein profiles of T. caries and T. laevis using MALTI TOP-MS (Forster 

et al unpublished data), possibility of the hybridization of them (Flor, 1932), and similar 

electrophoretic karyotyping of them (Russell, 1994). Tilletia indica (wheat karnal bunt) and T. walkeri 

(ryegrass smut) which are only distantly related to common and dwarf bunt of wheat (Carris et al., 

2006) were grouped together in a clade confirming their reported close relatedness (Castlebury and 

Carris, 1999). 

Finally, as there are numerous additional hosts for T. controversa that could not be included in 

the current study, it seems likely that more detailed patterns regarding the reported natural and 

artificial hosts await detection. The result of this study once again highlights the importance of 

phylogenetically re-investigation of broad host range of Tilletia genus. 
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Additional Figure 4-2 Visualization of incongruent splits among the used phylogenomic data by 

planar Neighbor-Net network (SplitsTree4). The concatenated analysis of 416,222 aligned 

nucleotides of 241 conserved loci from 27 isolates of six Tilletia species to highlight the character 

conflicts. The scale bar represents the number of character-state changes. The numbers correspond 

to the specimens in Table 3. Below a snapshot of the two wings of the network. Purple, yellow, red, 

and blue is representing isolates of T. walkeri, T. indica, T. controversa, and T. caries together with T. laevis 

(common bunt causal agents). Number (14) corresponds to the single representative of T. horrida. 

The Neighbor-Net is in agreement with Astrall II result in recognition of five groups and no structure 

is observed in the common bunt fungi network corresponding to each species. 



 

 



 

 

5. Chapter 5. General discussion 

After successful control of common and dwarf bunt by effective chemical seed treatments, the 

diseases were almost forgotten for decades, as the damage caused by these diseases in conventional 

farming was minor (Rudloff et al., 2020). This changed over the last few years after the European law 

for organic wheat production was amended in a way that conventionally produced (chemically 

treated) seeds were not any longer permitted to be used in organic farming. This shift resulted in the 

resurgence of bunt diseases, especially under favorable climate conditions in low-input and organic 

farming (Borgen and Davanlou, 2001; Matanguihan et al., 2011). In the meanwhile, however, the 

knowledge about the causal agents (T. caries, T. controversa, and T. laevis) remained limited and published 

literature was scarce. This thesis was designed to gain insights into inter- and intraspecies genomic 

variation of these three reemerging pathogens which may explain their partial ecological and 

physiological differences, and their phylogenetic and phylogenomic relationships through genome 

sequencing. Moreover, one specific aim was to develop a LAMP assay for the detection of 

T. controversa from teliospores and pure culture. I have highlighted the most important findings of this 

thesis below. 

5. 1. Insight into genomic features of wheat common and dwarf bunts 

5. 1. 1.  Genomic features of the three species are very similar  

In this study, the whole genomes of five isolates of T. controversa, four of T. caries, and two of 

T. laevis were sequenced, de novo assembled, and in silico functionally annotated. All isolates except one 

originated from recent European populations. Together with five recently published genomes (one 

T. caries, two T. controversa, and two T. laevis isolates) mostly collected from the Northern United states 

(Nguyen et al., 2019), they were compared for the variety of different genomic features at inter- and 

intraspecies level. Due to the relatively large genomic sample, the composition of genomes as well as 

genomic differences among these important wheat diseases could be examined on such a broad scale 

for the first time.  

The results in chapter I suggests that the causal agents of common and dwarf bunt were very 

similar in many genomic features, such as the proportion of repetitive elements including the content 

of simple sequence repeats and transposable elements, the genome size, the number of protein-

coding genes and tRNA-genes. Protein-coding genes also did not differ in their codon usage between 

the three species. The genomes displayed a generally high synteny and could be aligned by 82.7% to 

94.3% of their size (excluding repetitive regions). In line with the observation of Nguyen et al. (2019), 
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the causal agents of common and dwarf bunt also shared high average nucleotide identity (>98.7%) 

within the aligned regions. The high genomic similarity among the species is also supported by several 

other lines of evidence such as electrophoretic karyotypes, electrophoretic patterns of phenole-

soluble peptides, DNA fingerprinting, and MALDI TOF-MS analyses of teliospores proteins (Forster 

et al. under review; Kawchuk et al., 1988; Russell, 1994; Russell and Mills, 1993; Shi et al., 1996). The 

extensive genomic conservation and whole-genome macrosyntheny provide further evidence that the 

three bunt species have a common ancestor (Carris et al., 2007) and raise the question whether they 

can be regarded as three distinct species at all.  

The prediction of genomic functions in the three species revealed that the identified biological 

pathways and functional categories were remarkably similar across the three species. For example, 

among the putative secondary metabolite gene clusters, which were predicted in T. caries, T. controversa, 

and T. laevis for the first time, nine gene clusters comprising 65 genes were highly conserved across 

the three species showing >95% identity and similar gene arrangements. Almost half of the total 

predicted secreted proteins (up to 519 proteins per species) were conserved and shared across all 16 

studied isolates. The remaining predicted secreted proteins were also shared between the three 

species, but they were not present in all isolates. A small proportion of the T. caries, T. controversa, and 

T. laevis secreted proteins were made up of effector-like proteins (maximum detection of 144 

proteins), of which 47% were shared and conserved across the 16 studied isolates. None of the 

effector-like proteins was species-specific. The three biotrophic fungi encoded for a limited number 

of enzymes for plant cell wall decomposition and starch catabolism (T. caries isolates with 189 to 212 

proteins, T. controversa isolates with 188 to 213 proteins, T. laevis isolates with 191 to 209), of which 

84% were shared and conserved among the 16 studied isolates showing carbohydrate-active enzyme 

content was very similar across the three species. 

5. 1. 2.  Variable content of repetitive elements within the three species isolates 

In general, the proportion of repetitive elements within the isolates of T. caries varied from 

7.8% to 13.7% of the total genome size, in T. controversa from 8.9% to 37.7% and T. laevis isolates 

from 9.1% to 11.8%. This diversity however did not result in differences between the three species 

genome size excluding the draft genome of one T. controversa isolate with 49 Mb genome size. 

Moreover, five already published Tilletia genomes collected from Northern United States had a 

significantly lower number of several TE superfamilies compared to the genomes sequenced in this 

work. This observation raised the question whether the difference in the abundance of TE was due 

to an unequal amount of sequencing data, differences in the read lengths, or was related to the 
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geographical origin of the isolates. Differences in the proportion of TE among isolates of fungal 

species had previously been shown previously (Badet et al., 2020; Le Cam et al., 2019; Lorrain et al., 

2020). For example, in Zymoseptoria tritici the causal agent of Septoria leaf blotch, the TE amounted 

from 17 - 24% of the genome studying 19 isolates (Badet et al., 2020). Furthermore, Oggenfuss et al. 

(2020) showed a substantial genome-wide expansion of certain TE families from isolates in the 

pathogen’s center of origin to more recently founded populations. Sequencing of more samples from 

different geographical origins is needed to reveal whether geographical origin plays a role in the 

diversity of TE in the causal agents of common and dwarf bunt. 

5. 1. 3.  Tilletia controversa has the highest intraspecies genomic variation and highest 

genetic diversity compared to T. caries and T. laevis 

We showed that T. controversa had the highest genomic diversity compared to T. caries and 

T. laevis. These results were based on single nucleotide polymorphisms (SNP)s and small insertions 

or deletions (indel)s in aligned proportions of the genomes. Between the two species of T. caries and 

T. laevis, the genome-wide genetic identity was very high which resulted in equal genetic distances 

between T. controversa and T. caries and also T. controversa and T. laevis. In line with this observation, 

hierarchical clustering analysis based on k-mer comparisons of the whole genomes failed to separate 

isolates of T. caries from T. laevis, while isolates of T. controversa were clustered separately. Moreover, 

we identified only seven genes specific to T. caries and ten genes specific to T. laevis, while when both 

were taken together the number of genes specific for the two (T. caries and T. laevis) in comparison 

with T. controversa increased to 40. The limited number of species-specific genes and the highly 

identical gene content are in line with the fact that T. caries and T. laevis are the causal agents of the 

common bunt disease, causing identical disease symptoms and sharing identical requirements for 

teliospore germination. Separation of dwarf bunt from common bunt rather than from each bunt 

species was in agreement with the results obtained by randomly amplified polymorphic DNA 

(RAPD) analysis done by Shi et al., (1996). They, however, reported that some dwarf and common 

bunt individuals represent reciprocal characteristics of both. We did not find such a group in our 

limited number of compared genomes and suppose that discrepancy can be explained by the well-

known low reliability of RAPD, which should not be used for serious work. All in all, due to the 

limited number of species-specific genes and overall high genomic synteny, SNPs and indels may be 

the key factors that are significant in the differences between these species.  
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5. 2. Insight into the genomic diversification of Tilletia species 

The majority of functionally well-characterized genes in other members of Ustilaginomycotina, 

which play a role in pathogenicity, virulence, and life cycle (Benevenuto et al., 2018; Skibbe et al., 

2010), either lacked homologs in the proteomes of common and dwarf bunt or the protein sequences 

were poorly conserved, indicating that Tilletia spp. has developed a unique mechanism for infection 

and pathogenicity. Compared to necrotrophic and saprotrophic fungi, genomes of the three 

biotrophic species encode relatively few secreted proteins, which is in line with the expectation that 

they underly selection limiting the damage of plant cells, which can trigger hypersensitive reactions 

and other defense responses (Girard et al., 2013). Moreover, common and dwarf bunt lacked many 

core enzymes for plant cell wall decomposition and starch catabolism. In CAZyme comparison of a 

broad set of Ustilagomycotina where members of Tilletia were missing, Kijpornyongpan et al. (2018) 

reported that Ustilagomycotina harbored enzymes GH5_16 (β-1,6-galactanase), GH8, GH42 (β -

galactosidase), GT34 (α-galactosyltransferase), and AA10 (lytic polysaccharide monooxygenase) that 

are absent from other members of Basidiomycota. We reported the presence of the GH8 enzyme 

family (hydrolases with broad activities) in Tilletia spp. only and the others were absent in all 16 

studied isolates. In addition, Tilletia spp. harbored gene families coding for PL14 and AA2 enzymes 

that are involved in lignin decomposition, which were completely absent in other studied 

Ustilagoinmycotina, but present in Agaricomycotina (Kijpornyongpan et al., 2018). Putative genes 

encoding for PL14 and AA2 were also reported from T. indica CAZyme analyses (Gurjar et al., 2019). 

Common and dwarf bunt fungi are known to produce trimethylamine, which is responsible for the 

fishy odor of the teliospores (Hanna et al., 1932; Nielsen, 1963). In the present study, the genes 

involved in the trimethylamine production identified in bacteria (Craciun and Balskus, 2012) could 

not be identified in common and dwarf bunt. Therefore, we hypothesize that the trimethylamine 

synthesis pathway in Tilletia species is different from those known from bacteria. We also reported 

the lack of those genes in Ustilago maydis, the model organism with a nearly complete assembled 

genome up to the chromosome level (Kamper et al., 2006).  

5. 3. Genomic comparison of six Tilletia species for finding DNA segments 

specific to T. controversa and the lack of DNA segments specific for T. caries 

or T. laevis 

The whole-genome comparison approach generates a large number of species-specific 

candidate regions for the wet lab testing and validation and is quickly becoming the preferred option 

(Karim et al., 2019; Thomsen et al., 2017). It has especially become a method of choice for developing 
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markers between closely related species (Behr et al., 2016) or subspecies (Burbank and Ortega, 2018) 

where the genomic differences are minor. K-mer-based (based on a sequence's subsequences of 

length) whole-genome comparisons which include intergenic regions too, facilitate the identification 

of specific loci without prior knowledge of their function. 

The lack of suitable species-specific genomic loci has hampered the development of 

T. controversa detection assay. The lack of suitable loci was mostly due to the very close phylogenetic 

relationship of T. controversa to T. caries and T. laevis (Bao et al., 2010; Carris et al., 2007; Castlebury et 

al., 2005; Jayawardena et al., 2019). Here, a whole-genome comparison approach based on k-mers of 

whole genomes was applied employing six Tilletia species (T. caries, T. controversa, T. horrida, T. indica, 

T. laevis, and T. walkeri) to find regions unique to and conserved in T. controversa, suitable for the 

development of a LAMP assay. Using this approach, 22 DNA segments longer than 1500 bp were 

selected in silico and screened for their specificity in the lab.  

Employing the same approach, it was found that DNA regions suitable for specie-specific 

LAMP assays were lacking from both T. caries and T. laevis. The number of extracted DNA segments 

was very low (T. caries 16 segments, and T. laevis 43 segments), and they were too short (N50 = 39 bp 

for both species) for the development of the LAMP assays (optimum of >200 bp). Therefore, the 

development of LAMP assays for species-specific detection of T. caries and T. laevis appeared difficult. 

However, when common bunt causal agents were taken together, DNA segments suitable for a 

LAMP assay to specifically detect common bunt fungi were found. Especially the top 11 candidate 

regions and their genes could be used for the development of any DNA-base assay including LAMP. 

5. 4. DNA-based identification of T. controversa by loop-mediated isothermal 

amplification (LAMP) and assay validation in an interlaboratory performance 

study 

We established a LAMP assay to detect T. controversa DNA using an anonymous locus with a 

visual readout using neutral red as an indicator dye. The differentiation of T. controversa, as a regulated 

pathogen, from several other Tilletia species such as T. caries, T. trabutii (on Hordeum sp.), T. brevifaciens 

(on Thinopyrum intermideum) and T. secalis (on Secale cereale) based solely on morphological features of 

the teliospores is difficult to impossible. This is due to overlaps in the teliospores morphology of 

these species with highly variable teliospores of T. controversa (Bao, 2010; Carris, 2008; Fischer, 1952; 

Holton, 1954; Holton and Kendrick, 1956). For instance, the differentiation of T. secalis from 

T. controversa based on solely morphological features of teliospores is not possible at all (Niemann, 

1954; Niemann, 1956) while it has been suggested that the two species are phylogenetically distinct 
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(Carris, 2008; Carris et al., 2007). These studies, however, suffered from a limited number of isolates 

used.  

LAMP technique has been successfully applied for the detection of a variety of important 

clinical organisms as well as quarantine ones such as bacteria (Aglietti et al., 2019; Boehme et al., 

2007; Kuboki et al., 2003), fungi (Stehlíková et al., 2020; Tan et al., 2016), nematodes (Zhang and 

Gleason, 2019) and viruses (Lee et al., 2015; Yan et al., 2020). The simplicity and ease of use make 

LAMP the method of choice for high throughput applications. The developed LAMP assay was 

optimized for 45 min at 65 °C using betaine and four primers with a colorimetric end-point readout. 

Afterward, the LAMP assay was successfully validated against 223 fungal samples, of which 132 were 

common bunt fungi and 39 were T. controversa samples. To the best of my knowledge, this study used 

the broadest sample collections among all assays developed for T. controversa detection. Due to the 

high degree of genetic similarity of T. caries and T. laevis to T. controversa shown in this study, a broad 

collection of common bunt fungi was also used to evaluate the specificity of the assay. The LAMP 

assay developed in this study accurately identified all T. controversa samples (n=39) with no false 

positive of common bunt. However, we reported cross amplification of T. secalis (GD 1707) and T. 

trabutii (HUV 15036/ WSP 71299). The only representative of T. secalis used in this study should be 

taken cautiously. Our phylogenetic analysis showed that the sample was phylogenetically similar to 

T. controversa collected from wheat. Therefore, a well-characterized specimen of T. secalis is needed to 

confirm the cross amplification. Tilletia bromi is morphologically and biologically similar to 

T. controversa and is reproductively compatible under artificial conditions (Pimentel et al., 2000a; 

Pimentel et al., 2000b). We did not have access to any T. bromi sample; therefore, the specificity of 

the LAMP assay toward this species could not be estimated. 

Finally, the developed LAMP assay was validated in an interlaboratory performance study 

involving five national plant protection agencies and seed testing laboratories. The results showed 

100% sensitivity and 97.7% specificity of the test. The only false positive result in one of the labs, 

most likely was due to cross contamination. The values obtained suggesting that it has potential for 

application in seed testing, for example in wheat export and import control. 

5. 5. Tilletia controversa representing a species complex with hidden diversity 

and a parasite with a broad host range 

As quoted by Taylor et al., (2000) “understanding the nature of species’ boundaries is a 

fundamental question in evolutionary biology”. The majority of species within the genus Tilletia are 

described based on a combination of their host specificities, and by their distinguishable 



Chapter 5 – General discussion  

183 

morphological characters especially teliospore and sterile cell ornamentation and sizes (Vánky, 2012). 

Tilletia controversa unlike other Tilletia species, was recognized as a broad host range pathogen By Durán 

and Fischer (1956) and Hardison et al., (1959), However, the phylogenetic relationship between 

T. controversa isolates obtained from grasses and the isolates from Triticum spp. has not been addressed 

before. To clarify whether they are indeed generalist species with a broad host range or rather 

represent complexes of cryptic species with narrow host ranges phylogenetic relationships of those 

species and close relatives were inferred using sequences of three gene regions (ITS rDNA, EF1α, 

RPB2). 

In general, the analysis resolved various species with narrow host ranges parasitizing wild 

grasses as distinct lineages (i.e. the basal lineages from T. fusca up to T. olida representing 12 species 

and the crown lineage with T. bromi and T. puccinelliae, respectively). The analysis however failed to 

separate T. controversa collected from wheat from the samples obtained from other hosts such as 

Agropyrum cristatum, Bromus marginarus, Secale creale, and Th. intermedium, suggesting the ability of 

T. controversa to infect different grasses genera is conserved. The artificial cross-infection of 

T. controversa comprises a broad number of hosts, yet the occurrence of dwarf bunt on wild grasses is 

limited (Purdy et al., 1963). Whether these grasses play a role as an inoculum source for wheat 

infection in nature is a phytopathologically important question, which remains to be answered.  

The current phylogenetic analysis reconfirmed that T. brevifaciens on Th. intermedium is distinct 

from T. controversa collected from wheat since T. brevifaciens did not cluster with any of the phylogenetic 

groups comprising T. controversa obtained from Triticum spp. Tilletia brevifaciens was reclassified as a 

species different from T. controversa based on multilocus phylogenetic study and several lines of 

evidence (number of basidiospores per basidium and temperature requirements for teliospore 

germination) by Carris et al. (2007). Our multilocus phylogeny was in line with this reclassification. 

Within this group samples of T. controversa from Elymus spp. also clustered; however, our Neighbor-

Net analysis suggested that this cluster may comprise several host-specific lineages. More variable loci 

and additional samples are needed to gain a better understanding of the host spectrum of 

T. brevifaciense.  

We showed that the lack of distinguishable morphological characters lumped genetically 

isolated groups into morphological species such as in the two samples collected from 

Alopecurus myosuroides. Both samples were originally identified as T. controversa. While the differences in 

morphological characters of teliospores to T. controversa were hard to define, the two samples were 

resolved as phylogenetically distinct from T. controversa from wheat. Additional features such as the 

number and nuclear condition of primary basidiospores and the ability of primary basidiospores to 
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conjugate and form infective dikaryon (Carris et al., 2007; Castlebury et al., 2005) would be needed 

to physiologically differentiate these two samples from T. controversa while the teliospores 

morphological features alone failed. This was not possible due to the age of the specimens. 

We should be aware that the species concept and boundaries shown here may change after 

additional samples are examined. Moreover, isolates from several of the proposed T. controversa host 

species have not been studied yet using DNA-based approaches. Our study provides molecular 

evidence that morphologically dissimilar smut species (e.g. T. caries and T. laevis) may be genetically 

closer then species which are morphologically similar but obtained from different hosts such as 

T. controversa collected from Triticum spp. and the Tilletia samples obtained from Alopecurus myosuroides 

or T. secalis from S. cereale). The assumption has been proposed by Huang and Nielsen, 1984 and 

Nielsen, 1968. 

5. 6. Broader genomic sampling suggests conspecificity of T. caries and 

T. laevis 

Genome data provide utmost genetic information for the estimation of evolutionary 

relationships among organisms (Misof et al., 2013; Spatafora et al., 2017). Conserved single-copy 

genes are of high importance for inferring the phylogeny of eukaryota (Ren et al., 2016). We used 

OrthoDB v.9.1 (Zdobnov et al., 2016) database of 303 orthologs (www.orthodb.org) as reference for 

the identification of homologous single-copy genes in Tilletia spp. genome sequences. We inferred 

the phylogenomic relation of 27 Tilletia isolates (six T. caries, seven T. controversa, one T. horrida, seven 

T. indica, four T. laevis, and two T. walkeri) based on 241 out of the total 303 single-copy orthologs. 

Using a summary of multispecies coalescent approach (Rannala and Yang, 2003), five lineages were 

recognized. In one lineage, we obtained a well-supported phylogeny for the separation of dwarf bunt 

(T. controversa) isolates from common bunt (T. caries and T. laevis). It is unlike the previous studies that 

suggested the conspecificity of the two bunts by assessing electrophoretic karyotypes and 

morphological characters of the three species (Russel, 1993; Russell, 1994; Russell and Mills, 1993). 

In our phylogenomic analysis, five T. caries and four T. laevis, which were collected from four 

continents, could not be separated from each other. We therefore suggested that the isolates, which 

exhibited two morphotypes, were either conspecific or have just recently diverged. This finding was 

in an agreement with other results obtained in our studies, such as very few species-specific genes to 

each of common bunt agents, the lack of DNA segments (including intergenic regions) specific to 

each species, the high genomic identity of T. caries and T. laevis, and hierarchical clustering of the 

genomes based on k-mer comparisons. Nguyen et al. (2019) analyzing 4,896 single-copy orthologous 



Chapter 5 – General discussion  

185 

genes and testing a limited number of isolates (one T. caries and two T. laevis isolates) suggested that 

T. caries and T. laevis are two distinct species. We could not confirm this finding using broader genomic 

sampling while analyzing fewer loci. 

Finally, T. indica (causal agent of Karnal bunt) and T. walkeri (causal agent of ryegrass smut) 

grouped together, confirming their close relationship among them (Castlebury and Carris, 1999; 

Nguyen et al., 2019; Tan et al., 2016). The position of the single isolate of T. horrida used in this study 

remained unclear. Additional samples of this species will be required to investigate relationship of 

T. horrida to other studied Tilletia species.  
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Summary 

The fungal genus Tilletia is generally recognized by the production of darkly pigmented 

teliospores, which replace mostly the host ovary. Currently, nearly 200 species of Tilletia species 

infecting Poaceae are included in this smut genus. Three species, namely T. caries, T. controversa, and 

T. laevis, cause economically important diseases of wheat in central Europe. Common bunt is caused 

by T. caries and T. laevis, whereas dwarf bunt is caused by T. controversa. The three species are described 

based on the morphology of their teliospores. However, they could not be reliably distinguished by 

using molecular phylogenetic analyses. 

To obtain deeper insights into the inter- and intraspecies genetic variation and to compare 

gene contents of these three species we sequenced and functionally and structurally annotated the 

whole-genomes of four strains of T. caries, five of T. controversa, and two of T. laevis. The obtained data 

was analysed together with five publicly available genomes (one T. caries, two T. controversa, and two 

T. laevis strains). In general, our findings demonstrated that the three species were highly similar with 

regards to genome size and predicted gene content. There was no evidence for expansion or decrease 

of transposable elements in any of the species. The nine predicted secondary metabolites gene 

clusters, 84% of the total carbohydrate active enzymes, 72% of secreted proteins, and 50% effector-

like proteins were conserved across 16 studied strains. The species-specific proteins made only 0.1% 

of all predicted proteins, and their function were mainly unknown. In non-repetitive regions, the 

number of single nucleotide polymorphisms (SNPs) and small insertions or deletions (indels) were 

lowest within T. laevis (max. 0.52 SNPs/kb and 1.09 bp indels/kb), while they were highest within 

T controversa (max. 1.47 SNPs/kb and 2.48 indels bp/kb). We also observed extensive sequence 

identity between the two species of T. caries and T. laevis (0.51 SNPs/kb and 1.04 indels bp/kb on 

average). At the same time both species showed comparable distances to T. controversa. Accordingly, 

phylogenomic analysis of 241 protein coding genes revealed two groupings where isolates of T. caries 

and T. laevis were intermingled in a monophyletic group together, but separated from those of 

T. controversa, which formed another monophyletic group. Taken together these results suggest that 

T. caries and T. laevis have either diverged very recently or could be conspecific. These observations 

also correlate well with the fact that the two species are causing identical disease symptoms, need the 

same germination conditions, and have similar infection biology. These characteristics are different 

from those of T. controversa. 

Dwarf bunt is a quarantine pathogen in several countries. Consequently, its accurate 

identification is of high priority for plant health as well as to wheat exporters. The current 

international diagnostic protocol for detection of dwarf bunt in wheat seeds is based on a filtration 
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method and the teliospores morphology. The method is however laborious and requires expert 

knowledge. To facilitate identification of T. controversa, a loop-mediated isothermal amplification 

(LAMP) assay was developed. To do this, the generated genomic data were extended further with 

publicly available genomic data from ten Tilletia isolates in order to identify DNA segments that were 

conserved in and unique to T. controversa. The developed assay was based on one of these genome 

regions. The assay specificity was validated against 223 fungal phytopathogens including 11 Tilletia 

species. The end-point colorimetric based detection LAMP assay had 5 pg limit of detection and 

showed 100% sensitivity and 97.7% specificity in an interlaboratory test performance study. 

The majority of smuts are reported to have relatively narrow host ranges including Tilletia 

species. Tilletia caries and T. controversa however are reported to infect different host species 

representing several grass genera. To clarify whether they are indeed generalist species with a broad 

host range or rather represent complexes of cryptic species with narrow host ranges phylogenetic 

relationships of those species and close relatives were inferred using sequences of three gene regions 

(ITS rDNA, EF1α, and RPBII). In total 70 specimens were analysed of which 20 specimens were 

newly produced for this study. In general, the multi locus phylogenetic analysis resolved various 

species with narrow host ranges parasitizing wild grasses as distinct lineages (i.e., the basal lineages 

from T. fusca up to T. olida representing 12 species and the crown lineage with T. bromi and 

T. puccinelliae, respectively). Several small clusters of T. controversa from wild grasses (Thinopyrum 

intermedium, Bromus marginatus, Agropyron cristatum) and rye (Secale cereale), respectively, clustered as 

subgroups in a polytomous manner between different clusters of T. caries, T. controversa and T. laevis 

on wheat. Interestingly, one group of T. controversa sequences obtained from Elymus repens, 

Th. intermedium, and Agropyron sp. clustered with high support values clearly separate from this 

polytomous group and together with T. brevifaciens isolates also obtained from Th. intermedium. These 

representatives of T. controversa with high likelihood represent at least one cryptic species restricted to 

these wild grasses as hosts and might potentially be conspecific with T. brevifaciens. In the latter case, 

T. brevifaciens would represent a species with board host range. 
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