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A. SUMMARY 

Microbial communities in carbonate sediments from the alkaline Lake Neusiedl and 

the Aldabra Atoll were characterized. The aim was to determine the microbial 

community composition and function in the context of their contribution to 

biogeochemical cycles and carbonate precipitation. Total DNA and RNA were 

extracted from sediment and water samples. 16S ribosomal RNA genes and transcripts 

were amplified and sequenced to determine the bacterial community composition. 

Metagenomes were assembled from selected sampling sites to determine the 

functional potential encoded within the microbial community. Detailed insights into 

bacterial genomes and metabolism were gained through isolation and characterisation 

of two novel bacterial species derived from Aldabra. 

The first sampling campaign represents the proof-of-concept study at Lake 

Neusiedl (Chapter C.1 & C.2). In this study the sampling procedure for the push-cores 

and water column was established. Bacterial 16S rRNA genes were amplified from the 

total DNA, sequenced, and analysed. The results showed that freshwater 

picoplanktonic Alphaproteobacteria and Actinobacteriota were abundant in the water 

column (Chapter C.1). Together with Synechococcales sheaths they may provide 

nucleation sites for carbonate precipitation in the water column. The sediment 

followed the standard biogeochemical succession and showed signs of diatom 

dissolution (Chapter C.2). This was linked to high abundance of heterotrophic 

Gammaproteobacteria and fermenting Chloroflexota, which likely contributed to 

maintaining the neutral pH and supported the dissolution process. 

The main sampling campaign to the Aldabra Atoll took place at the end of the 

dry season in November 2017. Sediment cores and water samples were taken at three 

sampling sites in the lagoon and one pool at the island rim (Chapter C.3). The bacterial 

community composition was identified using both 16S rRNA genes and transcripts, 

covering both present and past members of the community. The sampling sites Cinq 

Cases and Westpool D were selected for direct metagenome sequencing and analysis, 

as these were landlocked pools with a history of stromatolites (Chapter C.5). The sand 

sediment was oxic with low bacterial diversities and dominant Pseudomonas. The 

surface was covered by a slightly lithified crust, potentially linked to tidally induced 

carbonate oversaturation and precipitation driven by the activity of Gloeocapsopsis 
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(Chapter C.3). In the mud and silt sediments bioturbation and tidal mixing led to a 

mixed surface and sulphate reduction zone. These were followed by atypical low 

bacterial phylogenetic diversity zones with high proportions of Gammaproteobacteria. 

Their onset was linked to changes in redox conditions, sediment age and available 

organic material (Chapter C.3). This was supported by results from the analysis of 

abundant metagenome-assembled genomes (MAGs) of the low-diversity zones at Cinq 

Cases. The MAGs harboured key genes for aerobic metabolism and denitrification 

(Chapter C.5). MAGs and 16S rRNA genes from Westpool D suggested that a biofilm 

comprising Gloeocapsa, Salinivibrio and Francisella is responsible for biologically 

induced carbonate precipitation of the local stromatolites. The unlithified microbial 

mat at the bottom of the pond harboured Cyanobium and Arthrospira, indicating that 

only specific Cyanobacteria support carbonate precipitation (Chapter C.5).  

To identify novel bacteria and provide information on the vast majority of 

uncultured taxa, we enriched halophilic members of the bacterial community. Two 

isolates were selected and characterized both physiologically and genomically 

(Chapter C.4). Pontibacillus sp. ALD_SL1 was isolated form the mudflat of the South 

Lagoon and exhibited a high relative abundance (30%) in the active bacterial 

community of the water column at Cinq Cases. Psychroflexus sp. ALD_RP9 was 

isolated from the bacterial bloom at Westpool D. Its ability to form extensive EPS to 

protect itself from salt and solar radiation may result in binding Ca2+-ions. Upon EPS 

degradation, local increase of Ca2+ and rearrangement of the EPS residues support the 

nucleation of carbonates.  

This study encompasses the first characterization of microbial communities from 

the Aldabra Atoll using amplicon, metagenome, and genome analyses. The study 

highlights the different modes of carbonate precipitation, which can occur in the 

lacustrine and lagoonal environments. It also provides a basis for in-depth analysis of 

individual members of the community and their involvement in sediment 

biogeochemical cycling. 
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B. GENERAL INTRODUCTION 

1. Microbial communities in global (carbonate) sediments 

1.1.  Carbonate sediments 

Prokaryotes, more precisely bacteria and archaea are the dominant lifeforms in 

sediments, able to withstand harsh environmental conditions. They are the main 

drivers of organic matter degradation, recycling, and biogeochemical cycling. 

Sediments containing more than 50% CaCO3 are defined as carbonate sediments 

(Smith, 1998). They form through inorganic precipitation in the water column or by 

deposition of carbonate shells and skeletons over time. After deposition, the sediment 

carbonates can change in structure through environmental and microbial alteration, a 

process termed diagenesis (Montañez and Crossey, 2018). This leads to 

recrystallisation, lithification and cementation, leading to limestone formation (Smith, 

1998). In the tropics, carbonate sediments occur mainly in shallow waters in the shape 

of coral reefs, coastal and intertidal mud and ooid deposits. Popular examples are the 

Bahamian ooid shoals (Diaz et al., 2013), extensive coral reef systems (Rusch and 

Gaidos, 2013), or atolls and lagoons, such as Kiritimati (Schmitt et al., 2019; Schneider 

et al., 2013) and Aldabra (this thesis). North and South of the tropics, carbonate 

sediments are mainly formed of calcareous skeletons of foraminifera, bryozoans and 

molluscs, and undergo stronger mixing, dissolution and diagenesis (Nelson, Keane and 

Head, 1988). In the deep-sea, carbonates dissolve as they pass the lysocline (Berger 

and Wefer, 2009). The lysocline occurs at the water depth where carbonate-ion 

concentrations in the water column switch from saturation to undersaturation. 

Depending on temperature, pressure, and pH, this depth is variable, however, it occurs 

increasingly below a water depth of 3,000 m (Bickert, 2009). Vast carbonate deposits 

occur in the deep sea, yet deposition rates are exceptionally slow. The sediment is 

formed by marine (planktonic) snow and is referred to as calcareous ooze (Smith, 

1998). In addition to marine carbonate sediments, saline marine and lacustrine ponds 

and alkaline lakes can contain carbonate sediments (Fussmann et al., 2020, Chapter 

C.2) or carbonate deposits in form of microbialites (Russell et al., 2014) and 

stromatolites (Casaburi et al., 2016). Freshwater deposits are not common but can be 

found along karst water creeks and caves as, e.g.: tufa (Schneider et al., 2015). 
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Depending on the environmental conditions, as well as the microbial communities, 

these environments are shaped through different modes of precipitation and 

dissolution, which will be discussed in Chapter 2. 

1.2.  Global microbial players in the marine environment 

Microbial communities are a key component to understanding the processes and 

alteration of sediments. Global sediment bacterial communities are dominated by a 

few phyla. Of 89 phyla listed in the SILVA database, six are regarded as global key 

marine taxa (Figure 1). Proteobacteria, including Alpha-, Gamma- and 

Deltaproteobacteria (now Desulfobacterota) are the most prevalent. They can be 

found in almost all sediments, ranging from freshwater lakes and rivers to the deep sea 

(Figure 1) and throughout the ocean (Sunagawa et al., 2015). As a main component of 

global bacterial communities, they drive the nutrient exchange within the ecosystem. 

 

Figure 1. Main globally distributed bacterial phyla based on 16S rRNA gene amplicon studies 

in sediments of different origin. The pie charts were generated in R using the package 

rworldmap v. 1.3-6 and are based on the six most abundant bacterial phyla in the studies listed 

in Appendix 1.1. 

Alphaproteobacteria are less prevalent in sediments but dominate the global 

water column (Sunagawa et al., 2015). For instance, the SAR11 clade or 

Pelagibacterales are the most abundant bacteria in the oceans and are highly adapted 

to oligotrophic conditions (Brown et al., 2012). Many Alphaproteobacteria harbour 
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bacteriochlorophylls (i.e., Rhodobacteraceae) to support their energy metabolism and 

are abundant in sun-exposed microbial mats, sediments and sea water (Brinkhoff, 

Giebel and Simon, 2008; Pohlner et al., 2017, Chapter C.3, C.5). In the sediment and 

soil environment, members of the Rhizobiales live as nitrogen fixers in root nodules 

or in root-association (Kuypers, Marchant and Kartal, 2018). 

Gammaproteobacteria harbour a large variety of taxa with different metabolic 

capabilities. Members of this class include sulphur oxidizing Beggiatoales and 

Chromatiales (purple sulphur bacteria), facultatively anaerobic and potentially 

pathogenic Enterobacterales, ammonia oxidizing Nitrosococcales, as well as the 

ubiquitous Pseudomonadales including both Pseudomonas and Halomonas (formerly 

Oceanospirillales). In marine sediments the sulphur oxidizing taxa represent a main 

component of dark carbon fixation from organic matter (Dyksma et al., 2016). The 

Enterobacterales include the well-known gut bacterium Escherichia coli, but also 

opportunistic and ubiquitous Vibrio and Photobacterium, which are often found in 

association with marine fauna (Chimetto et al., 2008; Urbanczyk, Ast and Dunlap, 

2011). Gammaproteobacteria are key players in global nitrogen cycling, as they 

produce ammonia from organic matter, are able to nitrify, denitrify and fix nitrogen 

under variable oxygen conditions (Kuypers, Marchant and Kartal, 2018). 

Deltaproteobacteria, recently reclassified as Desulfobacterota, are an abundant 

phylum in anoxic sediments. Members of this phylum are key sulphate reducers, most 

of which can also ferment organic substrates to CO2 or acetate (Waite et al., 2020). 

With decreasing permeability of sediments, they show increasing relative abundances 

(Probandt et al., 2017). Their activity can be traced through monitoring of sulphate and 

total sulphides in the sediment, which culminates in a sulphate reduction zone 

(Jørgensen and Kasten, 2006). As high-molecular-weight organic matter is initially 

broken down by aerobic and anaerobic macro- and microfauna in the surface 

sediments, sulphate reducers use the released short-chained organic carbons, e.g.: 

acetate and formate, as electron donors (Jørgensen and Kasten, 2006; Wasmund, 

Mußmann and Loy, 2017). By fermenting short-chained organic carbons to CO2 they 

carry out the last step within the organic matter degradation chain. In addition to the 

classical sulphate reducing taxa, Desulfobacterota also harbour the Desulfobulbaceae 

known as cable bacteria, which can set up electron transport between the oxic and the 
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anoxic sediment. Along their cell chains, or cables, they oxidize sulphide in the anoxic 

environment while reducing oxygen at the sediment surface (Burdorf et al., 2016). 

Another prominent group are the Bacteroidetes, which are abundant in the 

water column and flourish during the first stages of decaying phytoplankton blooms 

(Alderkamp, Sintes and Herndl, 2006; Wemheuer et al., 2015). As r-strategists, they 

show fast doubling rates in response to blooms, attaching to algal particles to degrade 

the high-molecular-weight organic matter and particularly sulphated polysaccharides 

(Teeling et al., 2012 and references therein). In surface sediments they are less 

abundant than in the water column, particularly in studies based on 16S rRNA gene 

transcripts (Zhang et al., 2014; Chapter C.3). This indicates that they may have 

sedimented from the water column and may no longer be as metabolically active as 

they would be during a bloom. 

The only currently known phylum to harbour bacteria with the ability to 

anaerobically oxidize ammonia to di-nitrogen gas (anammox, Candidatus Brocadiae) 

are the Planctomycetes. Anammox bacteria are an essential contributor to the nitrogen 

cycle (Kartal et al., 2013). Most members of this phylum, however, follow a 

facultatively anaerobic, free-living heterotrophic lifestyle and reach peak abundances 

in marine surface sediments in association with micro- and macro-algae (Wiegand, 

Jogler and Jogler, 2018). It is assumed that they survive by scavenging and degrading 

macromolecules from phototrophs and algae which they attach to. This ability allows 

them to be one of the first organic matter degraders along the carbon cycling chain in 

sediments and results in peak abundances during algal blooms (Wiegand, Jogler and 

Jogler, 2018 and references therein). They are therefore major competitors of 

Bacteroidetes in the water column. In the sediments they likely replace Bacteroidetes 

as dominant macromolecule degraders (Probandt et al., 2017). 

Chloroflexota are a poorly described phylum containing anaerobic fermenters 

and green non-sulphur bacteria. Members of the phylum have been found to 

accumulate in wastewater treatment plants (Petriglieri et al., 2018), lake (Hoyningen-

Huene et al., 2019) and river (Hug et al., 2013) sediments, and microbial mats 

(Schneider et al., 2013), where they are the dominant anaerobic degraders of organic 

matter. In intertidal sediments they are less abundant in relation to other phyla (Figure 

1).  
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Archaea occur ubiquitously alongside bacterial communities yet remain largely 

uncultivated. With recent advances in single-cell sequencing and the assembly of 

genomes from metagenomes (MAGs), our knowledge of archaea has considerably 

expanded (Baker et al., 2020). The marine water column harbours mainly Marine 

Groups I, II and III archaea, the first of which belong to the Thaumarchaeota and the 

latter two belonging to the Euryarchaeota (Zhang et al., 2015). Members of Marine 

Group II are associated with the photic zone and coastal surface waters where they can 

degrade particulate organic matter and gain energy through a photoheterotroph 

lifestyle (Rinke et al., 2019), sharing a niche with Bacteroidetes. The Euryarchaeota 

currently contain the most cultured representatives ranging from methanogens and 

anaerobic methane oxidizers (ANME) to aerobic halo-, acido- and thermophiles, and 

photoheterotrophs (Baker et al., 2020 and references therein). In coastal sediments 

Euryarchaeota and Candidatus Bathyarchaeota are the prevalent community members 

(Starnawski et al., 2017; Wang et al., 2020). Candidatus Bathyarchaeota occur mainly 

in anoxic environments, where they are able to degrade recalcitrant organic matter, fix 

CO2 and gain energy through methanogenesis (Baker et al., 2020 and references 

therein). Oxic marine sediments can harbour high relative abundances of ammonia 

oxidizing Thaumarchaeota, which can cope with low amount of ammonia and 

oligotrophic conditions to support their nitrifying activity (Pester, Schleper and 

Wagner, 2011; Wemheuer et al., 2019).  

2. Marine biogeochemical cycling and carbonate precipitation 

2.1.  Global biogeochemical cycles 

In the previous chapter marine sediment and water environments were introduced with 

regard to the dominant bacterial and archaeal taxa. Through their metabolism they are 

key drivers of the global biogeochemical cycles. The cycles describe the biological 

(biogenic) and geochemical (abiogenic) journey of key elements including carbon, 

nitrogen, sulphur, hydrogen and oxygen (Hilairy E. H., 2018). Abiogenic processes 

include geothermal and atmospheric processes, such as tectonics or weathering. 

Biogenic processes are determined by aerobic and anaerobic metabolic cycles which 

both produce and degrade organic matter (Falkowski, Fenchel and Delong, 2008). 

During oxygenic and anoxygenic photosynthesis energy is generated using water, or 
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sulphur compounds as electron donors, while CO2 is fixed as organic matter. The 

generated organic matter is later degraded by aerobic and anaerobic heterotrophs 

(Dupraz et al., 2009). Different heterotrophic taxa can stepwise degrade large- to 

small-molecular-weight organic matter forming distinct microbial successions in the 

environment.  

As the biogeochemical cycles are determined by the availability of different 

elements, they usually occur in zones (Figure 2). In the water column, oxygen and light 

availability determine the community structure and metabolism of the surface zone 

and deep chlorophyll maximum. As the oceans are mostly oligotrophic, 

biogeochemical cycling relies on photosynthesis as the main carbon-fixing process. 

Phytoplankton blooms are hotspots for 

diverse microbial communities, which 

live freely or in particle association on 

the produced organic matter using both 

aerobic and anaerobic respiration 

(Decho and Gutierrez, 2017; 

Giovannoni and Stingl, 2005). 

Anaerobes may survive in oxygen 

minimum zones, or by forming particle 

attachments and living in the central 

oxygen depleted parts of particles 

(Bertagnolli and Stewart, 2018; Decho 

and Gutierrez, 2017). Each particle by 

itself can harbour a complex nutrient 

cycle depending on the specialization 

of the associate members and the 

metabolic flexibility of many marine 

taxa (Moran, 2015). Particles and 

detritus from the marine food chain 

sink to the seafloor as marine snow, 

thereby supplying the light-depleted 

meso- and bathypelagic zone with 

nutrients (Decho and Gutierrez, 2017).  

Figure 1. Water column and sediment 

biogeochemical zonation adapted from 

(Bertagnolli and Stewart, 2018; Löscher et al., 2016) 

and (Jørgensen, Findlay and Pellerin, 2019; 

Jørgensen and Kasten, 2006). Abbreviations: DCM: 

Deep chlorophyll maximum, OMZ Oxygen 

minimum zone. Adapted and reused with 

permissions from Springer Nature (Springer 

eBook license: 5172951031127) and Elsevier 

(Geochimica et Cosmochimica Acta license: 

5172960259869) 
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In sediments the succession of biogeochemical zones was schematically 

determined by Jørgensen and Kasten (2006, Figure 2). Starting with a surface zone, 

the availability of oxygen and sunlight determine the community structure of aerobic 

heterotrophs and phototrophs, similarly to the water column. When oxygen or nitrate 

are present in this zone, sulphur oxidizing (SOX) bacteria utilize sulphide and other 

sulphur compounds as an energy source. They replenish available sulphate and 

contribute to sediment detoxification (Wasmund, Mußmann and Loy, 2017). The 

surface zone is followed by a sulphate reduction (SR) zone where sulphate reducing 

bacteria (SRB) reduce sulphate and sulphur compounds to hydrogen sulphide. Part of 

the released hydrogen sulphide reacts with iron to form black FeS-precipitates in the 

sediment, thereby acting as a sulphur sink (Jørgensen, 2019). The SR zone transitions 

via a sulphate-methane-transition zone to the methanic zone, where methanogenic 

archaea live alongside syntrophs and methanotrophs (Jørgensen and Kasten, 2006). As 

the different metabolic pathways drive and are driven by environmental conditions, 

changes in these can lead to both precipitation and dissolution of calcium carbonates. 

2.2.  Carbonate precipitation in the environment 

The precipitation of calcium carbonate (CaCO3 or carbonate in the following) is 

dependent on the equilibrium and solubility of its components (Ca2+, CO3
2-) in the 

environment and its overall saturation. The saturation of a solution can be assessed 

through the saturation index (SI), which is calculated from the ion activity product 

(IAP) and the solubility product of the mineral (Kmineral) (Reimer and Arp, 2011): 

SI = log (IAP/Kmineral) 

In the environment carbonates can precipitate as soon as the solution becomes 

saturated. In biofilms inhibition by EPS only allows calcite to precipitate when it 

exceeds a ten-fold super saturation (SIcalcite > 1.0) (Arp, Reimer and Reitner, 2001). 

During mineralization the environmental equilibrium of carbonate is mainly dependent 

on the addition or removal of CO2 from the system and can be formulated as (Mann, 

2001): 

  Ca2+ + 2HCO3
-  CaCO3 + CO2 + H2O 

Shifts in the equilibrium can either occur through physicochemical processes from the 

outside (abiogenic) or biological processes (biogenic) from within the system. 
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Environmental changes in temperature and pressure, for instance, can cause extensive 

degassing of CO2 and evaporation, thereby shifting the equilibrium and inducing fresh 

abiotic precipitation (Figure 3). Alternatively, carbonate can abiotically precipitate in 

supersaturated environments, such as hypersaline or alkaline lakes and brines (Riding 

and Awramik, 2000).  

 

Figure 3. Modes of abiotic and biogenic carbonate precipitation in the environment. 

2.3.  Biogenic carbonate precipitation 

Biogenic carbonate precipitation can be subdivided into three categories: biologically 

controlled, induced, and influenced precipitation (Dupraz et al., 2009 and references 

therein, Figure 3). Biologically controlled carbonate precipitation occurs when, for 

instance echinoderms, molluscs, sponges and corals, form a protective carbonate shell 

or calcareous skeleton (Mann, 2001). On the microbiological scale, controlled 
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precipitation is utilized by i.e.: protozoan Foraminifera, ostracods (Mann, 2001), and 

some bacteria, such as Achromatium which form carbonate inclusions (Monteil et al., 

2021 and references therein). Importantly, carbonate precipitation in this category is 

usually an essential component of the organism. 

Biologically induced and biologically influenced carbonate precipitation occur 

as a result of the direct or indirect interaction of microbes with their environment and 

cannot clearly be separated (Figure 3). As a starting point, the environment (extrinsic 

factors) determines the conditions for a given microbial community. The community, 

in turn, changes the physicochemical parameters of its immediate surroundings 

through their metabolism (intrinsic factors) (Figure 3). This interaction forms a cycle 

called the alkalinity engine (Dupraz et al., 2009), leading to favourable conditions for 

carbonate precipitation. These conditions are dependent on the dissolved inorganic 

carbon (DIC), pH and alkalinity (the buffering capacity of water, Dickson, 1992; 

Gallagher et al., 2012) and the availability of nucleation sites. Nucleation sites can be 

provided by microbial cells, both alive and dead, as well as their extrapolymeric 

substances (EPS)(Gallagher et al., 2012). The status of the cell in terms of viability is 

one of the key differences between biologically induced and biologically influenced 

carbonate precipitation. For biologically induced precipitation, cells are required to be 

alive and metabolically active, while this is not the case for biologically influenced 

precipitation where cells and cell components act as nucleation sites (Dupraz et al., 

2009). 

During biologically induced precipitation, live cells actively change their 

environment with their auto- or heterotroph metabolism (Figure 3). Oxygenic and 

anoxygenic photosynthesis are autotroph pathways, which fix CO2 into organic carbon, 

thereby increasing the pH in their environment. If the surrounding conditions are high 

in Ca2+ and low in DIC, this can induce precipitation around the cells (Arp, Reimer 

and Reitner, 2001). Organic matter produced during the carbon fixation process is 

broken down stepwise by heterotrophs during aerobic and anaerobic respiration. In the 

first instance, this is a destructive process for carbonates, as excess H+ and organic 

acids lower the pH and cause carbonate dissolution. This, in turn, can create a knock-

on effect where the dissolution of environmental carbonates and organic matter break-

down funnel Ca2+ and HCO3
- ions back into the system. In this case, local pH, 
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alkalinity, and saturation can rise to levels suitable for precipitation (Dupraz et al., 

2009). 

Biologically influenced precipitation relies on microbial cells and their 

components to act as nucleation sites (Dupraz et al., 2009). It can therefore also be a 

by-product of heterotrophic metabolism, which is involved in the organic matter 

degradation. Extracellular polymeric substances (EPS) play a key role within this 

process. EPS are composed of a mixture of high and low molecular weight organic 

polymers, which consist of polysaccharides and glycoproteins with anionic residues 

(Chamizo et al., 2020; Decho and Gutierrez, 2017). They act as carbon storage and are 

produced by microbial cells to provide protection. Further, they allow attachments as 

well as biofilm- and inter-cell-connectivity. Microbial communities can create a 

micro-environment with altered rates of diffusion and retention of nutrients, as well as 

a space for inter-cell communication, DNA-exchange and extracellular degradation of 

nutrients, by utilizing EPS (Decho and Gutierrez, 2017). Importantly for carbonate 

precipitation, EPS anionic residues can bind positively charged ions, such as Ca2+ and 

Mg2+, thereby reducing their free environmental saturation. EPS and its multitude of 

components are considered as key nucleation sites, however, while cells are alive their 

metabolism and irregular free acidic residues should counteract any precipitation (Arp, 

Reimer and Reitner, 2001). When EPS is in a state of degradation, it can happen that 

sterically blocked residues randomly rearrange to form a lattice. If the environment is 

saturated with Ca2+ at the same time, this lattice can act as the starting point for 

precipitation (Arp, Reimer and Reitner, 2001). 

2.4.  Microbial metabolism and the link to carbonate precipitation 

As described in the previous section, microbial metabolism may support the 

precipitation of carbonate in the environment. A variety of metabolic pathways have 

been linked to precipitation and dissolution (Table 1). The major metabolic pathways 

in microbial mats and hypersaline lakes are photosynthesis and sulphate reduction 

(Baumgartner et al., 2006; Glunk et al., 2011). As Aldabra harbours similar 

environmental conditions, these will be described in more detail below. In deep marine 

sediments and seep environments carbonate precipitation can occur linked to the 

anaerobic oxidation of methane coupled to the reduction of sulphate (Table 1, 

Reeburgh, 2007). Aerobic and anaerobic heterotrophy usually favours dissolution of 
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carbonates as the degradation of organic matter releases CO2 and organic acids, which 

have a pH lowering effect. Sulphide oxidation also lowers the pH by oxidizing 

hydrogen sulphide to sulphate and releasing hydrogen. In both cases the increase in 

pH will shift the carbonate equilibrium towards dissolution (Visscher and Stolz, 2005). 

Some pathways, such as ureolysis and denitrification have been explored with regard 

to bioremediation of limestone (Muynck et al., 2013) or in the anaerobic high-pressure 

subsurface (Martin et al., 2013). Their mode of action relies on the local increase of 

pH and alkalinity through their metabolic activity, thereby favouring precipitation in 

an artificially Ca2+ saturated environment (Martin et al., 2013). 

Table 1. Microbial metabolic processes favouring precipitation (blue) or dissolution (red) of 

calcium carbonates. The asterisks indicate precipitation observed under laboratory conditions. 

Abbreviations: PSB: purple sulphur bacteria, ABC bacteria: aerobic bacteriochlorophyll-

containing, ANME: anaerobic methanotrophic. 

Metabolic 

Process 
Taxon Formula pH Source 

Oxygenic 

Photosynthesis 
Cyanobacteria 

2HCO3
- + Ca2+ 

 [CH2O] + CaCO3 + O2 
 

(Dupraz et 

al., 2009; 

Visscher and 

Stolz, 2005) 

Anoxygenic 

Photosynthesis 

PSB (e.g., 

Chromatiaceae) 

3HCO3
-+ Ca2+ + HS- 

 2[CH2O] + CaCO3 + SO4
2- 

 
(Visscher and 

Stolz, 2005) 

Sulphate  

Reduction 

Desulfobacterota: 

Desulfovibrio 

4CHO2
- + SO4

2- + H2O 

 4HCO3
- + HS- + OH- 

 

(Gallagher et 

al., 2012) 2C2H6O + 3SO4
2- + 

 4HCO3
- + 3HS- + 

2H2O + H+ 

 

Sulphide 

Oxidation 

PSB, 

Desulfobulbaceae: 

Candidatus 

Electrothrix 

3HS- + 4O2 + HCO3
- + CaCO3 

 2[CH2O] + SO4
2- + Ca2+ 

 

(Dupraz et 

al., 2009; 

Trojan et al., 

2016; 

Visscher and 

Stolz, 2005) 

Denitrification* Halomonas 

CH2O + NO3
- + H+ 

 HCO3
- + H2O + N2 

 
(Martin et al., 

2013) 

5CH2O + 4NO3
- + CaCO3 

 6HCO3
- + 2N2 + 

2H2O + Ca2+ 

 
(Visscher and 

Stolz, 2005) 
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Ureolysis* 

Bacillus sphaericus, 

Sporosarcina 

pasteurii  

CO(NH2)2 + 2H2O 

 2NH4
+ + CO3

2- 
 

(Muynck et 

al., 2013; 

Stocks-

Fischer, 

Galinat and 

Bang, 1999) 

Fermentation Chloroflexota 
3[CH2O] + CaCO3 + H2O 

 2HCO3
- + Ca2+ + C2H6O 

 

(Dupraz et 

al., 2004; Hug 

et al., 2013) 

Aerobic 

Respiration 

ABC bacteria: 

Roseobacter 

denitrificans 

[CH2O] + CaCO3 + O2 

 2HCO3
- + Ca2+ 

 

(Dupraz et 

al., 2004; 

Imhoff and 

Hiraishi, 

2005) 

Anaerobic 

Methane 

Oxidation 

Desulfosarcina, 

ANME archaea 

CH4 + SO4
2- 

 CaCO3 +H2S + H2O 

 

 

(Boetius et 

al., 2000; 

Reeburgh, 

2007) 

Aerobic 

Methane 

Oxidation 

Methylococcaceae, 

Methylocystaceae 

CH4 + 2O2 

 CO2 + 2H2O 
 

(Bowman, 

2006; 

Reeburgh, 

2007) 

 

Cyanobacteria are the classical example for involvement in biologically induced 

carbonate precipitation. Many Cyanobacteria acquire carbonate sheaths due to their 

photosynthetic activity, which removes CO2 and HCO3
- and releases CO3

2- and OH--

ions into their immediate surroundings, i.e., EPS sheaths, thereby locally increasing 

pH and alkalinity (Couradeau et al., 2012). In the water column this is suggested to 

supply carbonate crystals which can be shed, while in microbial mats Cyanobacteria 

acquire calcified sheaths preserving them as microfossils on the long-term (Riding, 

2006). Whether the sheath is actively acquired, or a by-product of the cyanobacterial 

metabolism under certain environmental conditions is not yet fully understood. Both 

possibilities have been discussed in literature including its function as protective 

sheath, buffering agent of the carbon concentration machinery, or metabolic side-

product ultimately blocking the cells access to sunlight and photosynthesis 

(Kamennaya et al., 2012). Cyanobacteria are not only important for carbonate 

precipitation regarding their sheath formation, but also in early diagenesis due to their 

endolithic activity. Endolithic cyanobacteria bore into the limestone by locally 

removing Ca2+-ions and extruding them from the area, thereby causing localised 
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dissolution. Their boreholes may be refilled by their own or other photosynthetic 

activity, thereby creating the first stages of diagenetic alteration to the bored carbonate 

grain (Garcia-Pichel, Ramírez-Reinat and Gao, 2010). The ability to produce 

boreholes is not only limited to bacteria but is commonly also seen in heterotroph fungi 

and algae, which bore through dissolution or mechanical force (Gleason et al., 2017; 

Littler and Littler, 2011). 

Special attention has been paid to sulphate reducing bacteria (SRB), as they are 

one of the metabolically most active heterotrophs in coastal sediments and 

precipitation zones of microbial mats (Gallagher et al., 2012; Jørgensen and Kasten, 

2006). Sulphate reducers are at the end of the organic matter degradation chain, 

degrading small organic compounds, such as ethanol, acetate and lactate which are 

formed during respiration and fermentation, to the end-product CO2 (Wasmund, 

Mußmann and Loy, 2017). Depending on the electron donor utilised by SRB, the 

amounts of HCO3
-, CO2 and H+-ions released by their metabolism vary. Generally, the 

production of CO2 by heterotrophs including SRB should lead to a decrease in pH and, 

thus, dissolution of carbonates. If hydrogen or formate are used as electron donors, 

their activity will, however, lead to a net increase in alkalinity, thus favouring 

carbonate precipitation (Gallagher et al., 2012). While the latter mechanism is an 

example for induced precipitation, SRB can also trigger biologically influenced 

carbonate precipitation as they, and other heterotrophs, release inorganic carbon and 

Ca2+ during organic matter degradation (Dupraz et al., 2009). 

Overall whether carbonate precipitation or dissolution occurs is determined by 

net increase or decrease in pH and alkalinity by microbial community activities, as 

well as the availability of Ca2+, shifting the carbonate equilibrium either way. Shifts in 

community type and carbonate equilibrium may not only occur laterally with depth or 

sediment type, but also diurnally in a sunlight-dependent manner (Baumgartner et al., 

2006). 

2.5.  Detection of microbial communities and biogeochemical 

processes in sediments 

A series of approaches exist to determine the interplay between microbial communities 

and sediment (carbonate) geochemistry. Microbe-focussed approaches vary from 

enrichment, cultivation, and characterisation of individual members (Chapter C.4), 
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over the taxonomic and metabolic assessment of microbial communities through 

marker genes and detection of their metabolic products (i.e., SO4
2-, NH4

+, ∑H2S, PO4
3-

, Chapter C.3), to metagenomic sequencing of the entire communities and in-silico 

reconstruction of their metabolism (Chapter C.5). The enrichment and characterization 

of microbes from environmental samples can provide new information on as-of-yet 

uncultured species. This information can be added to existing databases to provide 

more context about these taxa. While isolation of specific taxa can give detailed insight 

into their metabolic capabilities, marker genes and metagenomics focus on the broad 

community setup. As to date only about 0.5% of non-human associated microbes have 

been cultured under laboratory conditions (Lloyd et al., 2018), the latter aims to 

understand the environment from a reverse approach. Metagenomics utilize large 

datasets in the form of DNA sequences to investigate the functional potential of a 

microbial community from a gene-centred perspective (Frioux et al., 2020). In 

addition, in-silico genomes, also called metagenome assembled genomes or MAGs, 

are assembled to provide context for the functional annotation. The metagenomic reads 

or assembled MAGs are decorated with taxonomic and gene-functional information 

from the large available databases, in order to provide an initial understanding of the 

microbes and their metabolism for which isolates are not yet available (Frioux et al., 

2020). This approach has led to the discovery and description of a large number of 

uncultured taxa called the candidate phyla radiation (CPR) (Hug et al., 2016). The 

marker-gene approach can be used in a taxonomy and partly in a metabolism directed 

manner. For instance, 16S rRNA gene sequencing is used to taxonomically identify 

bacteria and archaea to describe the taxonomic community composition (Knight et al., 

2018). In addition, functional information can be inferred by connecting taxonomic 

information with data on cultured representatives and available genomes (Wemheuer 

et al., 2020). However, it should be kept in mind, that the approach is only as good as 

the available references and their origin, leading to an overrepresentation on 

information linked to human-associated biota (Lloyd et al., 2018). While the 16S 

rRNA gene is used for taxonomic and general community member identification, 

sequencing of other marker genes, i.e.: dsr genes, can capture specific metabolic 

groups of interest, in this example sulphate reducers (Wagner et al., 2005).  

The approaches to characterize the microbial community are complemented by 

geochemical analyses of the sediment, water column and/or porewater. These measure 
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the overall environmental conditions, i.e.: temperature, pH, salinity, and underlying 

geochemistry, e.g.: total organic and inorganic carbon (TOC, TIC), C/N ratio, 

carbonate compound saturation (aragonite, calcite, gypsum, etc.), describing the 

microbial habitat. In addition, metabolic end-products, such as O2, CO2, SO4
2- and 

NH4
+, indicate the on-going metabolic processes (Chapters C.2 and C.3). Together, the 

geochemical and microbiological data can corroborate each other’s findings, forming 

a snapshot of the sedimentary environment at the time of sampling.  

 

3. Study sites: Lake Neusiedl and Aldabra Atoll 

3.1.  Proof of concept 

Two independent sampling campaigns were undertaken to study different carbonate 

sediment environments. The first campaign to Lake Neusiedl in Austria was the proof-

of-concept study (Chapters C.2 and C.3) for the second expedition to the Aldabra 

Atoll, Seychelles (Chapters C.3, C.4 and C.5). Lake Neusiedl is a large steppe-lake at 

the border of Austria and Hungary (Figure 4.A). The shallow alkaline lake receives its 

water input from precipitation transported by rivers from the surrounding catchment 

area (Soja et al., 2013). Its sediments consist of high magnesium calcite (HMC), calcite 

and protodolomite (Fussmann et al., 2020). The formation of the sedimentary calcite 

components, particularly proto-dolomite and dolomite, have been the subject of 

previous studies (Boros et al., 2014; Müller, Irion and Förstner, 1972; Schroll and 

Wieden, 1960). The lake is of economic importance to the region, as it is a popular 

holiday location and national park. The anthropogenic impact on the lake is monitored 

on a regular basis by analysing water quality (Magyar et al., 2013), and assessing 

pathogen load (Hatvani et al., 2018; Pretzer et al., 2017) and pollutants (Jirsa et al., 

2014; Krachler et al., 2018). The fine-grained carbonate mud and shallow water levels 

presented an ideal opportunity to establish our sampling procedures and methodology. 

In addition, the proof-of-concept study provided insight into a closed saline, but non-

marine system in opposition to the open marine lagoon and landlocked saline pools of 

Aldabra. 
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Figure 4. Main sampling sites at Lake Neusiedl, Austria (A) and the Aldabra Atoll, Seychelles 

(B). A: The sampling site at Lake Neusiedl in the bay of Rust (RN, green). B: Sampling sites on 

Aldabra: West Lagoon (WL), North Lagoon (NL), South Lagoon (SL), the pool system Cinq Cases 

(CC) and the unnamed Westpool D (WPD). Orange: sampling sites used for 16S rRNA 

sequencing, blue: ocean water reference, yellow: sampling sites with metagenomes. The scale 

bars indicate 10 km of distance. Both images face north, as indicated by the compass arrow. 

The map was plotted in ArcGis Maps using ESRI world imagery and the sources in the bottom 

right corner. 

3.2.  The Aldabra Atoll 

The main part of this thesis is centred on the Aldabra Atoll. Situated in the Indian 

Ocean, approximately 420 km North-West of Madagascar at 9°24’S and 46°22’E, it is 

the outermost island of the Seychelles, roughly 1,000 km away from the capital 

Victoria on Mahé (Figure 4.B). The atoll consists of an island rim of four islands, 

Grand Terre, Malabar, Picard and Polymnie, surrounding a 34 by 15 km large lagoon. 

Aldabra covers a surface of 365 km2, 203 km2 of which are attributed to the lagoon 

and 162 km2 to the island rim (Hamylton et al., 2018). It is situated within the tropics 

just south of the equator. The climate is consistently warm at temperatures between 24 

and 28°C and an average yearly rainfall of 975 mm. Rainfall is determined by two 

seasons, the wet north-west monsoon (November-April) and the dry south-east 

monsoon (May-October). Over the past 30 years, the atoll has been subjected to more 

severe dry periods and a tripling in drought frequency has been observed (Haverkamp 

et al., 2017). 
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3.3.  Protection and global importance 

The push to protect the Aldabra Atoll began with scientific and public protest amid 

plans for the establishment of a British-US American military base. This triggered a 

reconnaissance expedition in 1966 with investigations into the unique ecology, 

describing it as “one of the last relatively undisturbed elevated-limestone island 

ecosystems in the world“(Stoddart, 1968, p. 63). “There was general agreement that to 

build a military airfield on the atoll would be a biological disaster” (Stoddart, 1968, 

p. 65). After military plans were disbanded for economic reasons, Aldabra was leased 

and maintained by the Royal Society between 1967-1979 to protect its unique flora 

and fauna. Since 1979 the Seychelles Islands Foundation (SIF) maintains the atoll. 

This includes maintenance of the research station, eradication, and monitoring 

programmes, as well as external scientific projects. Ultimately this led to Aldabra 

gaining UNESCO protection status in 1982 (Braithwaite, 2020). Nowadays Aldabra is 

inhabited only by SIF staff, visiting researchers and tourists, which rarely exceed 20 

persons at a time. This means, that Aldabras’ large range of endemic species can 

flourish protected from a direct anthropogenic impact. 

3.4.  Geology of Aldabra 

The elevated atoll sits atop a volcanic seamount. It consists of layers of reef limestone 

which were deposited during sea level high stands during different interglacial 

intervals. The most recent submersion occurred approximately 125 kyr BP, suggesting 

that the present flora and fauna established itself following this event (Thomson, 

Walton and A., 1972). The deposited limestones recrystallized and cemented to 

varying degrees, retaining visible remnants of the former coral and molluscan 

inhabitants (Braithwaite, Taylor and Kennedy, 1973). Most of the surface limestone 

consists of highly karstic, sharp reef rock, also termed champignon. In some areas 

flatter, smooth limestone, termed platin, forms shallow basins, which are periodically 

filled with water (Fryer, 1911; Stoddart et al., 1971). The shallow water and extensive 

mangrove vegetation along the inner rim sustain a diverse ecosystem. This shapes the 

present-day sediment, which consists of organic detritus, shell debris, carbonate mud 

and sand (Chapter C.3). 
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3.5.  State of research on Aldabra 

The Aldabra Atoll harbours diverse biomes, which were extensively studied in the 

1960’s – 1970’s by the Royal Society’s multi-phase Aldabra expedition (Griffin, 

1974). These studies form the basis for all ongoing research to date and cover all 

biomes from the lagoon to the champignon rim. The lagoon harbours extensive 

seagrass beds, macroalgal assemblages on carbonate sand and coral reefs, which are 

replenished with fresh sea water by the strong tidal currents (Hamylton, Hagan and 

Doak, 2012). The seagrass meadows are the home of the last colony of dugongs 

(Dugong dugon) in the Indian Ocean (Hamylton, Hagan and Doak, 2012). The edge 

of the lagoon is characterized by intertidal flats consisting of fine sand and silt with 

high amounts of organic matter, rimmed by dense Avicennia and Lumnitzera mangrove 

forests (Hamylton, Spencer and Hagan, 2012). In some areas, the mangroves remain 

submerged at all times, thereby providing protection and nutrients for large schools of 

fish and sea turtles (Haupt, 2020). The intertidal flats harbour a rich fauna of molluscs, 

crustaceans, and other invertebrates (Farrow, 1971; Hughes and Gamble, 1977; 

Kensley, 1988), which sustain the endemic bird population. Large parts of the 

sediment are covered by blue-green algal (cyanobacteria) crusts and mats, which 

consist mainly of Scytonema sp. and Microcoleus chtonoplastes. Thin crusts and 

laminar stromatolites were found in few places in the lagoon harbouring Microcoleus 

and Schizothrix. Sediment surfaces are often covered by pink phototrophic bacteria 

(Chromatiaceae) with occasional blooms in intertidal pools (Potts and Whitton, 1977, 

1980). On the coarse carbonate sands, they were observed to follow a horizontal 

zonation with decreasing proximity to the mangrove edge. The transition from brown 

pennate diatoms, via blue-green algae to pink Chromatium cover occurred along a 

decrease in redox values (Eh) towards the mangrove (Potts and Whitton, 1979a). 

The high mangroves in the north lagoon house extensive seabird colonies and 

breeding grounds for red-footed boobies (Sula sula) and frigatebirds (Fregata 

minor/ariel) (Diamond, 1971). Mangroves change to dense shrubbery on the karstic 

island rim. Any soil cover on Aldabra is very shallow with an acidic pH (Potts and 

Whitton, 1979b). The vegetation is characterized by the so-called tortoise turf (Grubb, 

1971) and mixed scrubs including, Fimbristylis cymosa, Pemphis acidula, Ochna 

ciliata, and tree stands of different Cyperus species and Calophyllum inophyllum 
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(Gibson and Phillipson, 1983). Apart from the shrubbery and karstic overhangs, almost 

no shade is available on the islands, which are the home to some 100,000 giant tortoises 

(Aldabrachelys gigantea) (Bourn et al., 1999) and endemic birds, such as the Aldabra 

Drongo (Dicrurus aldabranus) and flightless Aldabra rail (Dryolimnus cuvieri 

aldabranus) (van de Crommenacker et al., 2016). 

Depressions in the karstic and platin limestone form pools, whose water levels 

depend on the rainy season or underground connections to the ocean and lagoon 

(Braithwaite et al., 1989). Some pools with marine connections harbour upside-down 

jellyfish and crustaceans, however fish are absent (Drew, 1972). The conditions in the 

pools vary strongly throughout the year. During the rainy and early dry season fresh 

to brackish water conditions were measured (Donaldson and Whitton, 1977), which 

turned increasingly saline during the dry season (Braithwaite et al., 1989), leading to 

the observed moderately hypersaline conditions in this study (Chapters C.3, C.4, and 

C.5). Accordingly, water levels encountered during the present expedition were 

extremely low. In some cases, even prominent pools, such as Bassin Profond with a 

former water depth of up to 2 m (Braithwaite et al., 1989), were virtually dried out. In 

addition to seasonal fluctuation of the pools, their chemistry is influenced by birds, 

crabs and tortoises, which drink, bathe and defecate in these, and can cause increasing 

levels of ammonia and phosphate (Donaldson, 1978; Chapter C.3). Previous research 

on the pools has centred around pH, Eh, nitrogen fixation and their diurnal changes in 

relation to local blue-green algae and Chromatium species (Donaldson, 1978; Potts 

and Whitton, 1979a). Further, three large pools (Bassin Profond, Bassin Mackenzie 

and Cinq Cases) where described for their stromatolites and the conditions leading to 

their development (Braithwaite et al., 1989). The stromatolites were covered by 

filamentous green algae, such as Chladophora and Rhizoclonium. On and within the 

stromatolite surface layers Pleurocapsa, Dichothrix gypsophila, Entophysalis and 

Schizothrix were identified morphologically, although their sheaths were only locally 

preserved. Further, sulphur oxidizing Beggiatoa and Thiothrix as well as pink 

gelatinous phototrophs were observed as parts of the stromatolite surface mat. 

Although the algal and cyanobacterial communities were closely associated with 

stromatolites, the precipitation of these was not linked to microbial activity 

(Braithwaite et al., 1989). 
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3.6.  Anthropogenic impacts on Aldabra 

The Aldabra Atoll has remained largely unaffected by a direct anthropogenic impact 

due to the protection and preservation efforts of the last decades. This also includes 

eradication programmes targeting introduced invasive bird species (van de 

Crommenacker et al., 2016), as well as goats (Bunbury et al., 2018), feral cats, rats, 

and various insects (Range to Reef Environmental, 2016). Increasingly, however, 

Aldabra waters and shores are being inundated with marine plastic debris and litter 

brought in from the surrounding continents by the Indian Ocean currents. The waste 

consists mainly of buoys and ghost nets from the fishing industries (Burt et al., 2020), 

as well as large quantities of flip flops and plastic bottles (Figure 5). A clean-up project 

was able to remove around 25 tonnes of the estimated 500 tonnes of waste from some 

of the outer beaches and karst (Burt et al., 2020). The lagoon of Aldabra is relatively 

protected from the large debris, however, the impact of marine litter or smaller debris 

and microplastics has not been assessed.  

 

Figure 5. Plastic pollution at Anse Cedres on the outer coast of the Aldabra Atoll. 

3.7.  Expedition to the Aldabra Atoll 

The main sampling campaign to the Aldabra Atoll took place in November 2017. 

During the 21-day stay on the Atoll 500 samples for microbial community analysis 

were taken at 15 different sampling sites. The majority of the samples comprised 

sediments from 30-50 cm deep push cores. Further samples included biofilms, 

microbial mats, whale cadaver, tortoise faeces and water samples. The main sampling 

locations were the four sediment coring sites (West Lagoon WL, North Lagoon NL, 

South Lagoon SL, Cinq Cases CC), and a landlocked moderately hypersaline pool 
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(Westpool D WPD a.k.a. Ronny’s Pool) with stromatolites (Figure 4). Samples were 

taken during multiple field trips, which were extremely dependent on the tidal 

fluctuations. Detailed descriptions of the samples and sampling procedures can be 

found in Chapter C.1, C.3 and C.5. 

4. Research goals 

This research project set out to determine the microbial and geochemical composition 

in carbonate sediments and to assess any diagenetic changes encountered in these. The 

proof-of-concept study was designed to test the sampling and analysis methodology 

and create a basis for comparison to the main study site Aldabra. Microbial 

communities at Aldabra were last investigated some 30-40 years ago. The studies 

focused on blue-green algae highlighting the main cyanobacteria and purple-sulphur 

bacteria on Aldabra. A key component of this research was the determination of rates 

of nitrogen fixation in microbial mats throughout the atoll. Shortcomings were 

highlighted in identifying specific cyanobacterial taxa, due to the lack of an accurate 

classification system and methods at the time (Donaldson, 1978; Potts, 1977). Using 

metagenomic complemented with cultivation-based approaches, we aimed to shed 

light on the to-date untapped diverse microbial communities in the different sediment 

settings, as well as similar microbial mats and biofilms. The project was approached 

from a top-down sequence-based standpoint using taxonomic profiling of both the total 

(DNA-based) and active (RNA-based) bacterial community, as well as metagenome 

sequencing. In addition, an isolation-based approach was used to identify and 

characterize novel bacterial isolates both physiologically and genomically. The data 

were completed by detailed porewater and geochemical characterization of the local 

sediments and waters. This is the first study on microbial communities of the Aldabra 

Atoll using a combination of next-generation sequencing and biogeochemistry to 

provide an in-depth analysis of the microbial roles in the unique environments of 

Aldabra. 
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Bacterial succession along a 
sediment porewater gradient at 
Lake Neusiedl in Austria
Avril Jean Elisabeth von Hoyningen-Huene  1, Dominik Schneider  1, Dario Fussmann2, 

Andreas Reimer2, Gernot Arp  2 & Rolf Daniel  1

We provide bacterial 16S rRNA community and hydrochemical data from water and sediments of 
Lake Neusiedl, Austria. The sediments were retrieved at 5 cm intervals from 30–40 cm push cores. The 
lake water community was recovered by filtration through a 3.0/0.2 µm filter sandwich. For 16S rRNA 
gene amplicon-based community profiling, DNA was extracted from the sediment and filters and the 
bacterial V3-V4 regions were amplified and sequenced using a MiSeq instrument (Illumina). The reads 
were quality-filtered and processed using open source bioinformatic tools, such as PEAR, cutadapt 
and VSEARCH. The taxonomy was assigned against the SILVA SSU NR 132 database. The bacterial 
community structure was visualised in relation to water and porewater chemistry data. The bacterial 

community in the water column is distinct from the sediment. The most abundant phyla in the sediment 

shift from Proteobacteria to Chloroflexota (formerly Chloroflexi). Ammonium and total alkalinity 
increase while sulphate concentrations in the porewater decrease. The provided data are of interest for 

studies targeting biogeochemical cycling in lake sediments.

Background & Summary
Lake Neusiedl is the largest, seasonally evaporative lake in western Europe covering an area of approximately 
315 km2 1. Its sediments show high contents of authigenic high magnesium calcite and poorly ordered dolomite, 
which have been the focus of multiple studies on sediment formation, geochemistry and water level1–4. There is a 
strong economic interest in the lake and the surrounding national parks due to their recreational value1,5. Thus, 
the lake’s water quality, including potential pathogenic microbes, is monitored on a regular basis6–9. Nevertheless, 
the bacterial community composition of water and sediment remains largely unexplored, particularly in relation 
to the lakes’ hydrochemistry.

Soft sediment push-cores were taken in the bay of Rust in August 2017 (Fig. 1a). Two 30–40 cm cores were 
used for bacterial community analysis and one for porewater extraction and analysis. The water (core superna-
tant) was filtered through a 3.0 and 0.2 µm filter sandwich. All samples for bacterial community analysis were 
stored in RNAprotect Bacteria Reagent (Qiagen, Hilden, Germany) for transport. The reagent was removed by 
centrifugation from the samples prior to storage at −80 °C. Metagenomic DNA was extracted from 0.25 g of 
sediment or one third of a filter. Subsequently, the V3-V4 region of bacterial 16S rRNA genes were amplified 
using primers described by Klindworth et al.10. After purification with magnetic beads, the amplicons were 
sequenced, yielding a total of 6,044,032 raw paired-end reads. Bioinformatic processing of the data included 
quality-filtering and base pair correction of overlapping regions (fastp), read-merging (PEAR), primer clipping 
(cutadapt), size-selection, dereplication, denoising and chimera removal (VSEARCH). After taxonomic assign-
ment 2,263,812 high-quality 16S rRNA gene sequences remained in the dataset11. Amplicon sequence variants12 
(ASVs) with 100% sequence identity were screened with BLASTn against the SILVA SSU 132 NR database for 
taxonomic assignment. The ASV abundance table13 was used for visualisation of the bacterial community. Total 
alkalinity (TA) was determined by titration. Major cations and anions were measured by ion-chromatography and 
ICP-MS was used to determine trace element content. Nutrient concentrations and total sulphide were assessed 
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photometrically14. Porewater chemistry and bacterial community composition were analysed in intervals of 5 
cm15 (Fig. 1c).

The bacterial community composition and diversity as well as the porewater chemistry of the sediment are 
distinct from the water column and change gradually with depth (Fig. 1b). The water column has a lower phyloge-
netic diversity than the top sediment layers (Fig. 1c) and is dominated by aquatic Actinobacteria (hgcl clade)16–20 
and freshwater Alphaproteobacteria (SAR11 clade III)16,21–25 with relative abundances of more than 40% and up 
to 20% (Figs 1c and 2). The uppermost sediment layer is the most diverse and harbours the largest number 
of associated genera (Fig. 2). It shares community members of water and sediment, such as Synechococcus or 
the algae-associated Phaeodactylibacter26,27. The phylogenetic diversity (Fig. 1c) and associated genera (Fig. 2) 

Fig. 1 Sampling site in the bay of Rust, NMDS and depth profiles of the bacterial community composition 
and porewater properties. (a) Sampling site of this study (red star) and previous studies (blue stars). Markers 
for anthropogenic influences, such as a wastewater treatment, holiday houses (brown dashed lines) and 
recreational sites (pool, boat club, camp site) are indicated by pictograms or dashed lines. (b) Non-metric 
multidimensional scaling (NMDS) of bacterial communities (n = 47) with the environmental fit (p < 0.01) of 
porewater properties (grey arrows) based on a weighted generalized UniFrac analysis using the vegan package 
incorporated into ampvis251,57. Depths are indicated in cm or w (water column) and triangles or circles indicate 
the sediment core. (c) Sampling depths of the sediment cores (Rust Neusiedl RN-K01 and RN-K02) for bacterial 
community analysis. Each bacterial phylum depicted here comprises more than 1% relative abundance of the 
bacterial community in at least one sample. All other amplicon sequence variants (ASVs) are summarized as 
rare taxa and those with a taxonomic match below 95% sequence identity were summarized as “Unclassified”. 
The phylum Proteobacteria is shown at class level (Alpha-, Gamma-, Deltaproteobacteria). Names in brackets 
indicate revised phylum classifications according to Parks et al.28. The phylogenetic diversity (Faith’s PD) was 
calculated based on the rarefied community (5,873 reads per sample) and a midpoint-rooted phylogenetic tree. 
Indicators for microbial activity in the porewater chemistry were selected and depicted as profiles of up to 25 cm 
depth.
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in the sediment decrease gradually with depth until approximately 20 cm. Members of the Proteobacteria and 
Chloroflexota28 are dominant in the sediment community, which shifts from 15–35% Gammaproteobacteria in 
the top 15 cm to approximately 40% Chloroflexota below 15 cm. Notably, the upper sediment layers harbour 
sulphate-reducing bacteria, such as Desulfobacteraceae and Desulfarculaceae29–32 (Fig. 2). The decline in sulphate, 
increase in total sulphide (ΣH2S) and low redox potential also indicate sulphate reduction (Fig. 1c). Below 15 cm 
the bacterial community is associated with Anaerolineae, Aminicenantales and Dehalococcoidia (Fig. 2). Members 
of these taxa are known fermenters, organohalide respirators and hydrocarbon degraders33–35. Increasing degra-
dative processes are indicated by the increase in ammonium and total alkalinity (Fig. 1c).

The bacterial community of Lake Neusiedl has mainly been studied with regard to potential pathogens6,9. 
Here, Enterobacteriaceae, more specifically Escherichia/Shigella, but not Vibrionaceae were detected with a relative 
abundance of up to 10% at almost all depths in the sediment, but not in the water column. While they indicate 
an anthropogenic impact on the sediment, the bacteria detected are based on DNA amplification and may not be 
metabolically active. This data may contribute to studies identifying the sampling site as hotspot for faecal pollu-
tion6,7 (Fig. 1a). Further, this survey forms a basis for studies targeting biogeochemical cycling in alkaline lakes.

Methods
Sediment sampling at Lake Neusiedl, Austria. Three soft sediment push-cores (RN-K01/K02/K03) 
covering 30 to 40 cm depth were sampled in close lateral distance to each other at the bay of Rust (16°42′33.635″E, 
47°48′12.929″N) at Lake Neusiedl, Austria in August of 2017. PVC coring tubes (Uwitec, Mondsee, Austria) 
of 60 cm length and 63 mm diameter (RN-K01/K03) or 100 cm and 50 mm diameter (RN-K02) were man-
ually pushed into the sediment at the sampling site. A rubber plug was applied to the top of the coring tube 
to create a partial vacuum, which allowed retrieval of the sediment. After allowing the sediment to settle on 

Fig. 2 Bacterial genera associated with the different depths of the sediment cores and water column. The 
association network was calculated with the indicspecies54 package in R and visualised in Cytoscape with an 
edge-weighted spring embedded layout. Branch lengths indicate the phi correlation coefficient. Each light grey 
circle indicates a bacterial genus associated (p < 0.001) with the depth it is connected to. The 30 most abundant 
genera are indicated by filled circles and named up to the point where the classification turns to uncultured. 
Revised names according to Parks et al.28 are indicated in brackets. Average relative abundance of each genus 
among all samples is indicated by the circle size. Each sampling depth is indicated by a filled diamond shape 
containing the depth in cm or w (water column).
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cores RN-K01 and K02, 600 ml core supernatant (water column) was filtered through a 3.0 µm polycarbonate 
(Merck, Darmstadt, Germany) and 0.2 µm polyethersulfone (Sartorius, Göttingen, Germany) filter sandwich. 
Subsequently, filters were immediately stored in RNAprotect Bacteria Reagent (Qiagen, Hilden, Germany). 
Sampling of the sediment for community analysis occurred under exclusion of the outer 1 cm of sediment, which 
is in contact with the walls of the coring tubes. RN-K01/K02 were sampled in triplicate at every 5 cm of depth. 
RN-K02 was sampled at a higher resolution (every 2.5) as the sediment showed finer lamination. Every triplicate 
was immediately mixed with RNAprotect Bacteria Reagent (Qiagen, Hilden, Germany) and kept at ambient tem-
perature in a cool box with freezer elements for transport. Before storage, samples were centrifuged at 3,220 × g 
for 15 min and the clear supernatant containing the RNAprotect Bacteria Reagent discarded. Samples were stored 
at −80 °C. Core RN-K03 and the core supernatant were stored in the cool and dark until analytical chemical 
analysis.

DNA extraction and amplification of bacterial 16S rRNA genes. DNA was extracted from 0.25 mg of 
sediment from each sample of RN-K01/K02 using the MoBio Power Soil Kit (MoBio, CA, USA) with minor mod-
ifications. For this purpose, sediments were thawed on ice and homogenized to disrupt any layering caused by 
the previous centrifugation step. Subsequently, 0.25 mg were transferred into bead-beating tubes supplied by the 
manufacturer. DNA from the water column (core supernatant) was extracted by cutting one third of the frozen 
filter sandwiches into small pieces in the bead-beating tubes. After the addition of SDS-containing Solution C1, 
cells were mechanically disrupted with a FastPrep (MP Biomedicals, Eschwege, Germany) at 6.5 m/s for 20 s. After 
disruption, the DNA was extracted according to manufacturer’s instructions. Subsequently, DNA was eluted twice 
in 50 µl of prewarmed DEPC-treated water36. Bacterial 16 S rRNA genes were amplified by PCR with forward and 
reverse primers published by Klindworth et al.10 and added adapters for MiSeq sequencing (underlined) (D-Bact-
0341-b-S-17, TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG CCTACGGGNGGCWGCAG; S-D-Bact-
0785-a-A-21, GTCTCGTGGGCTCGGAGATGTGTATAAGA GACAGGACTACHVGGGTATCTAATCC). PCR 
reactions were performed in a total volume of 50 µl containing 10 µl of five-fold GC Buffer (Thermo Scientific, 
Waltham, MA, USA), 5% DMSO, 0.2 mM of forward and reverse primer, 200 µM dNTPs, 0.2 mM MgCl2, 1 U 
Phusion High-Fidelity DNA polymerase (Thermo Scientific, Waltham, MA, USA) and 20–25 ng template DNA. 
The PCR mixture was denatured for 1 min at 98 °C and then subjected to 25 cycles at 98 °C for 45 s, 45 s at 60 °C, 
and 30 s at 72 °C, followed by a final extension at 72 °C for 5 min. Negative controls were prepared without 
template and positive controls with genomic E. coli DH5α DNA as template. PCR reactions for each sample 
were performed in triplicate. PCR triplicates were pooled in equal amounts in order to minimize amplifica-
tion bias, concentrated and purified with MagSi-NGSPrep magnetic beads as recommended by the manufacturer 
(Steinbrenner, Wiesenbach, Germany). After the final washing step, the beads were air-dried and DNA eluted 
in 30 µl of elution buffer EB (Qiagen, Hilden, Germany). Purified PCR products were quantified and sequenced 
as described by Schneider et al.37 using a MiSeq instrument and v3 chemistry (Illumina, San Diego, CA, USA).

Bioinformatic processing of 16S rRNA gene amplicons. Paired-end sequencing data from the 
Illumina MiSeq were quality-filtered with fastp38 (version 0.19.4) using default settings with the addition of an 
increased per base phred score of 20, base pair corrections by overlap (-c), as well as 5′- and 3′-end read trimming 
with a sliding window of 4, a mean quality of 20 and minimum sequence size of 50 bp. After quality control, 
the paired-end reads were merged using PEAR39 (version 0.9.11) and primers clipped using cutadapt40 (version 
1.18) with default settings. Sequences were then processed using VSEARCH41 (v2.9.1). This included sorting and 
size-filtering of the paired reads to ≥300 bp (--sortbylength --minseqlength 300), dereplication (--derep_full-
length). Dereplicated amplicon sequence variants (ASVs) were denoised with UNOISE3 using default settings 
(--cluster_unoise – minsize 8) and chimeras were removed (--uchime3_denovo). An additional reference-based 
chimera removal was performed (--uchime_ref) against the SILVA SSU NR database (version 132). Raw reads 
were mapped to ASVs (--usearch_global–id 0.97). The taxonomy was assigned using BLAST 2.7.1+42 against the 
SILVA SSU 132 NR database with an identity of at least 95% to the query sequence resulting in a total of 21,009 
ASVs43.

Bacterial community analysis. For data evaluation all samples from the 5 cm intervals were analysed. 
Additional samples taken due to the finer lamination of one core were not considered in the presented analysis 
but are available in the dataset44. Sequences comprising extrinsic domains, eukaryotes and archaea were removed 
from the ASV table using grepl, a base R function (version 3.4.4). A phylogenetic tree was generated by aligning 
all sequences of the filtered dataset with MAFFT45 at a maximum of 100 iterations. The tree was calculated using 
FastTree 2.1.7 (OpenMP)46, saved in newick format and midpoint rooted using FigTree47 (version 1.4.4).

The dataset was analysed in R48 (version 3.4.4) and RStudio49 (version 1.1.456). Depth profiles in the form 
of bar and line charts were generated with ggplot250 (version 3.1.0) using standard R packages. Alphadiversity 
indices and species richness were calculated with the ampvis251 package (version 2.4.1) and Faith’s phylogenetic 
diversity with picante52 (version 1.7) and the midpoint-rooted tree15. For this purpose, 16 samples with a read 
count below 5,000 were excluded from the diversity analysis (RN17_K1_DNA_Bac_2a, 3a, 5a, 6a, RN17_K2_
DNA_Bac_5a-c, 7a-c, 9a-c, 11a-c). All other samples were rarefied in ampvis2 to 5,873 reads. For the visualisation 
in bar charts, the mean of all replicates from both cores was used to account for the variance at the sampling sites. 
The non-metric multidimensional scaling (NMDS) matrix was calculated using the ASV table and phylogenetic 
tree in a weighted generalized UniFrac analysis using the ampvis2 package (version 2.4.1) including the package 
GUniFrac53 (version 1.1). Environmental fit of the metadata were also calculated and plotted onto the NMDS 
if p < 0.01. An association network of the bacterial community was calculated using the indicspecies54 package 
(version 1.7.6) with the multipatt function and the r.g species-site group association function for calculation of 
the association strength. The significance cut-off for the phi coefficient was set to p < 0.001. The network was 
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visualised in Cytoscape (version 3.5.1) with an edge-weighted spring-embedded layout using weight as the force 
and average abundance as the circle size.

Water column and porewater analysis. For hydrochemical analysis, capped and tightly sealed sediment 
cores, including the supernatant water column above, were stored upright in the cool and dark until analytical 
investigation 5 days after sampling. Core supernatants were collected in 250 ml polyethylene (PE) bottles for 
anion, nutrient, and total alkalinity determination. For cation analysis, a 50 ml aliquot of the supernatants was 
filtered through 0.7 µm diameter membrane filters (Merck, Darmstadt, Germany) into a PE-bottle and acidified 
with 100 µl HNO3 (suprapure, Merck, Darmstadt, Germany). Physicochemical parameters of the core superna-
tants were measured using a WTW Multi 3430 device equipped with a WTW Tetracon 925 conductivity probe, 
a WTW FDO 925 probe for dissolved O2, a Schott Pt 61 redox electrode, and a WTW Sentix 940 electrode for 
temperature and pH, which was calibrated against standard pH-buffers 7.010 and 10.010 (HI6007 and HI6010, 
Hanna Instruments, Vöhringen, Germany). Total alkalinity (TA) was determined via titration using a hand-held 
titration device and 1.6 N H2SO4 cartridges (Hach, Loveland, CO, USA).

Redox potential (Eh) and pH gradients were measured through boreholes directly in the sediment core 
using a portable WTW 340i pH meter equipped with an Inlab Solids Pro pH-electrode (Mettler Toledo, Gießen, 
Germany) and a Pt 5900A redox electrode (SI Analytics, Mainz, Germany). Porewater was extracted from core 
RN-K03 using 5 cm CSS Rhizon samplers (Rhizosphere, Wageningen, Netherlands). Immediately after extrac-
tion, aliquots were fixed with Zn-acetate for determination of total sulphide or acidified with suprapure HNO3 for 
analysis of main cations and trace elements. Porewater alkalinity was immediately determined by titration with 
cartridges (Hach, Loveland, CO, USA) containing self-prepared 0.01 n HCl as titrant. An aliquot for determina-
tion of nutrients and anions was stored in the cool and dark until subsequent analysis. Total sulphide (ΣH2S) and 
nutrient concentrations (NH4, NO2, PO4, SiO2) were measured by photometric methods according to Grasshoff 
et al.14, using an SI Analytics Uviline 9400 spectrophotometer within a few days after extraction.

Major cation (Ca, Mg, Na, K and Li) and anion (Cl, F, Br and SO4) concentrations of all water samples (pore-
waters, water column) were analysed by ion chromatography with non-suppressed and suppressed conductivity 
detection, respectively (Metrohm 820 IC/Metrosep C3-250 analytical column, Metrohm 883 Basic IC/Metrohm 
ASupp5-250 analytical column). ICP-MS (ICAP-Q, Thermo Fisher, Waltham, MA, USA) was used to determine 
Sr, Ba, Fe, Mn, Rb and B, as well as control for the cation determination by ion chromatography. Total dissolved 
salts (TDS) were calculated as the sum of all measured cations and anions. The chemical analysis was completed 
within two weeks after extraction with the analytical accuracy of all methods exceeding 1.5%15.

All measured values were processed by the PHREEQC software package, version 355, using the phreeqc.dat 
and wateqf4.dat databases in order to calculate ion activities and pCO2 (partial pressure of CO2) of the water sam-
ples and mineral saturation states. The saturation indices of all mineral phases are given as log (IAP/KSO) where 
IAP denotes the ion activity product and KSO is the solubility product of the corresponding mineral (solid phase).

Data Records
The 16S rRNA gene paired-end raw reads were deposited to the National Center for Biotechnology Information 
Sequence Read Archive (SRA) and can be found under the accession number PRJNA507590 (Bio Project 507590/
SRP171602). This BioProject contains 63 samples and 126 zipped FASTQ files, which were processed using 
the CASAVA software (Illumina, San Diego, CA, USA)44. The processing included demultiplexing and adapter 
removal from the sequences. The following files have been deposited at figshare: a FASTA file with the assigned 
ASV sequences after bioinformatic processing56; the ASV count table with taxonomic assignments13, the read 
statistics before, during and after bioinformatic processing11; the metadata, porewater chemical data and alphadi-
versity metrics of each sample15. The individual files may also be accessed through a figshare collection43.

Technical Validation
For microbial community analysis the layers (2.5–5 cm) of both soft sediment push-cores were sampled in three 
technical replicates to allow for the microbial heterogeneity at each depth. The PCR reactions were run in three 
technical replicates per sample and PCR products were pooled equimolar. Negative controls without DNA tem-
plate and positive controls with genomic E. coli DH5α DNA as template were also performed. Correct amplicon 
size was determined on a 0.8% agarose gel. PCR triplicates per sample were pooled in equimolar amounts for 
amplicon sequencing to minimize possible PCR bias. Physiochemical data were measured with calibrated probes 
and ions and nutrients were measured against IC and nutrient standards from Merck (Darmstadt, Germany) and 
Honeywell Fluka (Charlotte, NC, USA). The analytical accuracy of all methods exceeded 1.5%.
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Abstract. Despite advances regarding the microbial and
organic-molecular impact on nucleation, the formation of
dolomite in sedimentary environments is still incompletely
understood. Since 1960, apparent dolomite formation has
been reported from mud sediments of the shallow, oligoha-
line and alkaline Lake Neusiedl, Austria. To trace potential
dolomite formation or diagenetic alteration processes in its
deposits, lake water samples and sediment cores were an-
alyzed with respect to sediment composition, hydrochem-
istry and bacterial community composition. Sediments com-
prise 20 cm of homogenous mud with 60 wt % carbonate,
which overlies dark-laminated consolidated mud containing
50 wt % carbonate and plant debris. Hydrochemical measure-
ments reveal a shift from oxic lake water with pH 9.0 to
anoxic sediment pore water with pH 7.5. A decrease in SO2−

4
with a concomitant increase in 6H2S and NH+

4 from 0 to
15 cm core depth indicates anaerobic heterotrophic decom-
position, including sulfate reduction. The bacterial commu-
nity composition reflects the zonation indicated by the pore
water chemistry, with a distinct increase in fermentative taxa
below 15 cm core depth.

The water column is highly supersaturated with respect to
(disordered) dolomite and calcite, whereas saturation indices
of both minerals rapidly approach zero in the sediment. No-
tably, the relative proportions of different authigenic carbon-
ate phases and their stoichiometric compositions remain con-
stant with increasing core depth. Hence, evidence for Ca–Mg
carbonate formation or ripening to dolomite is lacking within

the sediment of Lake Neusiedl. As a consequence, precipi-
tation of high-magnesium calcite (HMC) and protodolomite
does not occur in association with anoxic sediment and
sulfate-reducing conditions. Instead, analytical data for Lake
Neusiedl suggest that authigenic HMC and protodolomite
precipitate from the supersaturated, well-mixed aerobic wa-
ter column. This observation supports an alternative concept
to dolomite formation in anoxic sediments, comprising Ca–
Mg carbonate precipitation in the water column under aero-
bic and alkaline conditions.

1 Introduction

Dolomite (CaMg(CO3)2) is the most abundant carbonate
mineral in Earth’s sedimentary record. It has rarely been ob-
served forming in recent environments. Instead, most occur-
rences of large dolomite deposits in the geological record are
the result of pervasive dolomitization of precursor carbon-
ates by fluids with high Mg : Ca ratios and temperatures dur-
ing burial (e.g., Machel, 2004). In contrast, the formation of
dolomite near the sediment surface, so-called penecontempo-
raneous dolomite (Machel, 2004, and references therein), or
even primary precipitation in shallow aquatic environments
is often difficult to trace in the rock record and capture in
modern environments. The difficulty in capturing ongoing
dolomite formation is due to its peculiar kinetics, which are
still incompletely understood despite intense laboratory and
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field experiments. Dolomite does not form in sites where suf-
ficient Ca, Mg and carbonate ions are provided, which is gen-
erally explained by the high kinetic barrier of dolomite nu-
cleation and growth (e.g., Lippmann, 1973).

Based on the presence of sulfate-reducing bacteria (SRB),
Vasconcelos et al. (1995) proposed a microbial model, in
which sulfate-reducing bacteria mediate carbonate precipita-
tion, while Brady et al. (1996) consider sulfate ions to be in-
hibitors for dolomite growth. Further experiments were per-
formed with various different organisms, such as denitrifiers
(Rivadeneyra et al., 2000), methanogenic archaea (Roberts et
al., 2004) and aerobic halophilic bacteria (Sánchez-Román
et al., 2009). All of these studies showed aggregate forma-
tion of carbonate minerals with the characteristic d104 peak of
dolomite under X-ray diffraction, hence supporting a micro-
bial factor in dolomite formation. It has been hypothesized
that dolomite nucleation is mediated by microbial extracel-
lular polymeric substances (EPSs; Bontognali et al., 2014).
However, Gregg et al. (2015) re-analyzed the X-ray diffrac-
tion data of many of the aforementioned microbial experi-
ments, demonstrating that microbial dolomite products lack
typical ordering reflections in XRD spectra and are in fact
very high magnesium calcite (VHMC or “protodolomite”).
In further studies sulfide (F. Zhang et al., 2013), dissolved
organic matter (Frisia et al., 2018) or clay minerals (Liu et
al., 2019) were suggested to favor protodolomite nucleation
in pore fluids. Nevertheless, it is not entirely clear which of
these factors play a fundamental role in natural environments
and how the specific reaction mechanisms work.

While the concept that dolomite forms within sediments
mediated by anaerobic microbial processes and their extra-
cellular polymeric substances is widely acknowledged, an-
other aspect should be taken into account: the site of dolomite
formation may not always coincide with the location where
the mineral is found due to relocation after precipitation.
Several studies describe unlithified dolomite precipitation in
warm, arid and hypersaline marine environments, like coastal
sabkhas (Illing et al., 1965; Bontognali et al., 2010; Court et
al., 2017), coastal lakes, such as Lagoa Vermelha in Brazil
(Vasconcelos and McKenzie, 1997; van Lith et al., 2002;
Sánchez-Román et al., 2009), and ephemeral lakes along the
Coorong lagoon in southern Australia (von der Borch, 1976;
Rosen et al., 1989; Warren, 1990; Wright and Wacey, 2005).
Dolomite precipitation is further reported in endorheic hy-
persaline lakes, e.g., Qinghai Lake in Tibet (Deng et al.,
2010), Lake Acıgöl (Turkey; Balci et al., 2016) and alkaline
playa lakes such as Deep Springs Lake in California (Meister
et al., 2011).

Another location where Ca–Mg carbonate is formed can
be found in Turkey, where McCormack et al. (2018) describe
dolomite in Quaternary sediments from Lake Van, which is
suggested to have formed at the sediment–water interface
characterized by varying salinities and low temperatures.
These dolomite-bearing deposits have been related to the on-
set of a falling paleo-lake level, hence changing hydrochem-

ical conditions. Importantly, McCormack et al. (2018) locate
the formation of dolomite near the sediment–water interface,
where it is presumably related to microbial EPS. However,
this area is also exposed to significant fluctuations in pH,
temperature and supersaturation. Precipitation experiments
conducted by Deelman (1999) have shown that dolomite can
form due to such fluctuations in pH and temperature. Hence,
they agree with Ostwald’s step rule because dolomite forma-
tion happens via undersaturation of other metastable carbon-
ate phases.

Lake Neusiedl is a water body that precipitates Ca–Mg
carbonate at exceptionally low salinity (1–2 g L−1). It is a
shallow and seasonally evaporative lake in the proximity of
Vienna, Austria. Schroll and Wieden (1960) first reported
the occurrence of poorly crystallized dolomite (notable by
its broad XRD reflections) at this locality, and Müller et
al. (1972) related its formation to diagenetic alteration of
high-magnesium calcite (HMC). The Mg : Ca ratios in Lake
Neusiedl are unusually high (> 7) compared to freshwater
lakes, which favor the precipitation of HMC (Müller et al.,
1972). Little is known about the crystallization paths of the
Ca–Mg carbonate phases in this lake, in particular whether
they form in the anoxic sediment or oxic water column and
if early diagenetic alteration to dolomite (“ripening”) takes
place.

We revisit the formation of dolomite in Lake Neusiedl by
comparing the sediment geochemical and in situ pore wa-
ter data and critically evaluating the location of precipita-
tion. This approach has been used to study dolomite forma-
tion in Lagoa Vermelha (van Lith et al. 2002; Moreira et al.,
2004) or in Deep Springs Lake (Meister et al., 2011). Since
2005, in situ pore water extraction via rhizon samplers has
been applied for geoscientific research questions (Seeberg-
Elverfeldt et al., 2005), and several in situ pore water studies
were conducted using this technique (e.g., Bontognali et al.,
2010; Birgel et al., 2015; Steiner et al., 2018). Comparable in
situ pore water data from an oligohaline seasonally evapora-
tive lake, which address the question of authigenic Ca–Mg
carbonate precipitation, are absent so far. We further pro-
vide bacterial community analyses to address the potential
role of microbes and their metabolisms in a carbonate min-
eral precipitation or alteration pathway. Hence, our study has
three goals: (i) finding indications for the origin of Ca–Mg
carbonate formation, (ii) evaluating the microbiological and
geochemical conditions and their influence on carbonate sat-
uration, and (iii) discussing which factors drive the formation
of Ca–Mg carbonates in Lake Neusiedl.

2 Study area

Lake Neusiedl, situated at the Austrian–Hungarian border,
is the largest endorheic lake in western Europe. It is lo-
cated in the Little Hungarian Plain, a transition zone be-
tween the Eastern Alps and the Pannonian Basin in central
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Hungary. The region has been tectonically active since the
early Miocene (Horváth, 1993) and is affected by NE–SW-
trending normal faults. This early Miocene tectonic activity
included the closing of the Central Paratethys Sea and the
formation of Lake Pannon about 11.6 million years ago. This
ancient water body was characterized by highly fluctuating
water levels that caused the deposition of local evaporite lay-
ers, which influence the salinity of today’s deeper aquifers
in the area (Piller et al., 2007; Krachler et al., 2018). The
present topography of the Little Hungarian Plain is the result
of ongoing local uplift and subsidence, which commenced
in the latest Pliocene (Zámolyi et al., 2017). Elevated re-
gions are represented by the Rust and Leitha hills, which are
horst-like structures located west of Lake Neusiedl. North-
ward, the water body is separated from the Vienna Basin
by the raised Parndorf plateau, which has a 25–45 m higher
surface elevation than the lake area. South- and eastward,
Lake Neusiedl is surrounded by flats, namely the Hanság
and Seewinkel plain. Despite its proximity to the Alps, the
region surrounding Lake Neusiedl did not have an ice cover
during the last glacial maximum. Hence, its morphology is
shaped by periglacial erosion and sedimentation (van Husen,
2004). Throughout the Seewinkel plain, Pannonian marine to
brackish sediments are largely covered by fluvioglacial grav-
els. The gravels thin out westwards and are thus missing be-
neath parts of Lake Neusiedl, where fine-grained, unlithified
lacustrine mud directly overlies compacted Pannonian strata
(Loisl et al., 2018). The absence of a gravel layer has made
the former lake area vulnerable to aeolian erosion, favoring
the formation of the present-day flat trough over tectonic sub-
sidence (Zámolyi et al., 2017).

The surface area of the water body spreads over 315 km2,
with a maximum depth of 1.8 m. With a salinity of 1–
2 g L−1 and elevated pH values (> 8.5), the water chemistry
differs significantly from that of freshwater lakes (salinity:
< 0.5 g L−1; pH: 6.5–7.5). Increased amounts of sodium and
bicarbonate ions mainly contribute to the lake’s soda-like
character (Herzig, 2014). Furthermore, the Mg : Ca ratio is
unusually high in comparison to freshwater lakes (Krachler
et al., 2012). Permanent surface water inflow is mainly pro-
vided by the Rákos and the Wulka streams, which drain a
catchment area that is approximately 2.6 times the size of
Lake Neusiedl (1120 km2). Thus, their contribution to the
lake’s water balance is negligible compared to the signifi-
cantly higher input from precipitation, providing 80 %–90 %
of the lake water (Herzig and Dokulil, 2001). As a result of
its shallowness and the endorheic drainage system, the lake is
very vulnerable to climatic changes, which highly influence
the water level, water volume and, hence, the surface area of
the lake throughout the year and over the centuries. In the
past, Lake Neusiedl was characterized by highly fluctuating
water levels and desiccation events (Moser, 1866), the last of
which dates back between 1865 and 1870. Since 1910, the
lake’s water outflow can be regulated by the artificial Hanság

or Einser canal in case of severe flooding events. The canal
is located at the lake’s southeastern shore (Fig. 1).

More than half (178 km2) of Lake Neusiedl’s surface area
is covered with reed. Due to its wind exposure and shal-
lowness, the water column of the open water area is well
mixed and contains high amounts of suspended particles. The
wind sheltering effect of Phragmite spears, in contrast, leads
to clearer water in the reed belt. Clastic input into the wa-
ter body is minor and reflects the mineralogical composition
of the western neighboring Rust and Leitha hills, which are
characterized by crystalline rocks of the Eastern Alpine base-
ment and Miocene marine carbonates (“Leithakalk”; Fig. 1).
The deposits forming the present bed of Lake Neusiedl con-
sist of fine-grained mud, which mainly contains typical authi-
genic carbonate phases such as Mg calcite and protodolomite
(Löffler, 1979). Those phases can clearly be distinguished
from pure calcite, which is considered to be allochthonous
in the sedimentary environment of Lake Neusiedl (Müller et
al., 1972). It is noteworthy that the mud volume doubled in
the time from 1963 to 1988, leading to an increase in the vol-
umetric mud / water ratio from 36 : 64 in 1963 to 49 : 51 in
1988. This mud layer covers the whole lake area and would
yield an average thickness of 64 cm, assuming an equal dis-
tribution across the lake basin (Bácsatyai, 1997). The thick-
ness of soft sediment can increase up to 1 m at the border of
the reed belt and open water, where Phragmite spears act as
sediment traps for current driven, suspended particles (Löf-
fler, 1979).

3 Material and methods

3.1 Sampling and field measurements

The sampling campaign at Lake Neusiedl was performed
in August 2017 in the bay of Rust (47◦48′12.929′′ N,
16◦42′33.635′′ E), situated at the lake’s central western
shore. A pedalo boat was utilized to enable sampling ap-
proximately 500 m offshore. Physicochemical parameters of
the lake water were measured directly in the field using
a WTW Multi 3430 device equipped with a WTW Tetra-
con 925 conductivity probe, a WTW FDO 925 probe for
dissolved O2, and a WTW Sentix 940 electrode for tem-
perature and pH (Xylem, Rye Brook, NY, USA), calibrated
against standard pH buffers 7.010 and 10.010 (HI6007 and
HI6010, Hanna Instruments, Woonsocket, RI, USA; stan-
dard deviation ≤ 2 %). Lake water was retrieved from a
depth of 10 cm with a 500 mL SCHOTT-DURAN glass bot-
tle without headspace from which subsamples for anion, nu-
trient and total alkalinity determination were distributed into
100 mL polyethylene (PE) and 250 mL SCHOTT-DURAN
glass bottles (SCHOTT, Mainz, Germany). For cation anal-
ysis, a 50 mL aliquot was filtered through membrane filters
with a pore size of 0.7 µm (Merck, Darmstadt, Germany) into
a PE bottle and acidified with 100 µL HNO3 (sub-boiled).
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Figure 1. Lake Neusiedl and its surrounding geology, redrawn and simplified after Herrman et al. (1993).

Total alkalinity was determined via titration within 3 h after
sampling using a handheld titration device and 1.6 N H2SO4

cartridges (Hach Lange, Düsseldorf, Germany; standard de-
viation ≤ 1.5 %).

Five sediment cores, with the sample codes LN-K01, LN-
K02, LN-K03, LN-K04 and LN-K05, were retrieved using
PVC tubes (6.3 cm diameter; Uwitec, Mondsee, Austria) in
approximately 30 cm lateral distance. All cores were 30 to
40 cm in length and were used for sediment, pore water and
bacterial community profiling. Cores LN-K01 and LN-K02
were subsampled and treated for bacterial community profil-
ing as described in von Hoyningen-Huene et al. (2019) di-
rectly after recovery. Cores LN-K03, LN-K04 and LN-K05
were hermetically sealed after recovery and stored upright at
temperatures close to their natural environment (22 ± 2 ◦C).

Effects of pressure differences are neglectable in the present
case because the cores were sampled just below the lake
floor.

3.2 Petrographic, mineralogical and geochemical

analyses

Two cores, labeled LN-K04 and LN-K05, were used for
sediment geochemical and petrographic analyses. Sediment
dry density and porosity were calculated from the corre-
sponding sediment weights and volumes. For bulk organic
and inorganic carbon content detection, sediment increments
of 2.5 cm were subsampled from core LN-K04. They were
freeze-dried and powdered with a ball mill before they were
measured by a LECO RC612 (Leco, St. Joseph, MI, USA)
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multi-phase carbon and water determination device. For cal-
ibration, Leco synthetic carbon (1 and 4.98 carbon %) and
Leco calcium carbonate (12 carbon %) standards were used.
The same increments were utilized for CNS elemental de-
tection, which was operated with a Euro EA 3000 Elemen-
tal Analyser (HEKAtech, Wegberg, Germany); 2,5-bis(5-
tert-benzoxazol-2-yl)thiophene BBOT and atropine sulfate
monohydrate (IVA Analysetechnik, Meerbusch, Germany)
were provided as reference material. Analytical accuracy of
all analyses was better than 3.3 %.

XRD analyses were conducted with identical increments
at the Department of Geodynamics and Sedimentology in
Vienna by a PANanalytical (Almelo, Netherlands) X’pert
Pro device (CuKα radiation, 2θ refraction range of 2–70◦

and a step size of 0.01◦). Semi-quantitative phase compo-
sition analysis was performed with Rietveld refinement of
peak intensities by using MAUD (version 2.8; Lutterotti et
al., 2007). To ensure a better reproducibility of the semi-
quantitative XRD analysis, Rietveld-refined results were
compared and correlated with carbon data retrieved from the
aforementioned LECO RC612 device.

In core LN-K05, sediment increments of 5 cm were sub-
sampled for thin sectioning and light microscopic obser-
vations. To ensure a continuous section, rectangular steel
meshes, 5 cm in length, were placed along the sediment col-
umn. These steel meshes, filled with soft sediment, were
then embedded in LR White resin (London Resin Company,
Reading, United Kingdom) after a dehydration procedure
with ethanol. During dehydration, the sediments were treated
with SYTOX Green nucleic acid stain (Invitrogen, Carlsbad,
CA, USA) to stain eukaryotic cell nuclei and prokaryotic
cells for fluorescence microscopy. Samples were cured for
24 h at 60 ◦C before thin-section preparation. The thin sec-
tions were ground down to a thickness of 40 to 50 µm and
then capped with a glass cover. Petrographic observations
were conducted with a petrographic and a laser-scanning
microscope (ZEISS, Oberkochen, Germany; lsm excitation:
543, 488, 633 nm; laser unit: Argon/2, HeNe543, HeNe633).

For scanning electron microscopy, non-capped unpolished
thin-section fragments and freeze-dried loose sediment from
cores LN-K05 and LN-K04 were placed on 12.5 mm plano
carriers and sputtered with a platinum–palladium mixture.
Field emission scanning electron microscopy was conducted
with a Gemini Leo 1530 device (ZEISS, Oberkochen, Ger-
many) with a coupled INCA x-act (Oxford Instruments,
Abingdon, UK) EDX detector.

3.3 Pore water analysis

Redox potential and pH gradients were directly measured
in the sediment of core LN-K03 one week after sampling
with a portable WTW 340i pH meter, equipped with an In-
Lab Solids Pro pH electrode (Mettler Toledo, Columbus,
OH, USA) and a Pt-5900 A redox electrode (SI Analyt-
ics, Mainz, Germany) through boreholes (standard deviation

≤ 2 %). Pore water was extracted from the core, using 5 cm
CSS Rhizon samplers (Rhizosphere, Wageningen, Nether-
lands). Immediately after extraction, aliquots were fixed
with Zn acetate for determination of total sulfide (6H2S).
Pore water alkalinity was determined using a modified Hach
titration method with self-prepared 0.01 N HCl cartridges
as titrant. Major cation (Ca2+, Mg2+, Na+, K+ and Li+)
and anion (Cl−, F−, Br−, SO2−

4 and NO−

3 ) concentrations
of lake and pore water samples (including supernatants in
the cores) were analyzed by ion chromatography with non-
suppressed and suppressed conductivity detection, respec-
tively (Metrohm 820 IC/Metrosep C3 – 250 analytical col-
umn, Metrohm 883 Basic IC/Metrohm A Supp 5 – 250 ana-
lytical column; Metrohm, Herisau, Switzerland; standard de-
viation ≤ 2 %). Inductively coupled plasma mass spectrome-
try (ICP-MS; iCAP-Q, Thermo Fisher, Waltham, MA, USA)
was used to determine Sr, Ba, Fe, Mn, Rb and B as control
for the cation determination by ion chromatography (stan-
dard deviation ≤ 3 %).

Concentrations of NH+

4 , NO−

2 , PO3−

4 , 6H2S and dissolved
silica (SiO2(aq)) were measured by photometric methods ac-
cording to Grasshoff et al. (2009), using a SI Analytics
UviLine 9400 spectrophotometer. In addition, methane and
dissolved inorganic carbon (DIC) amounts were retrieved
from a different core, sampled at the same locality in Au-
gust 2017. Methane concentrations were determined from
5 cm3 sediment samples stored upside down in gas-tight
glass bottles containing 5 mL NaOH (5 % w/v). Aliquots
of 5 mL headspace methane were transferred to evacuated
10 mL vials. The aliquots were analyzed with an automated
headspace gas chromatograph (GC Agilent 7697A coupled
to an Agilent 7890B auto sampler) at the University of Vi-
enna. Methane concentrations were quantified at a runtime
of 1.798 min by a flame ionization detector and a methanizer.
For linear calibration, a standard series with the concentra-
tions 1001, 3013 and 10 003 ppb was used. DIC concentra-
tions were retrieved by using a Shimadzu TOC-LCPH (Shi-
madzu, Kyoto, Japan) analyzer with an ASI-L autosampler
and a reaction vessel containing a reaction solution of phos-
phoric acid (H3PO4, 25 %). The DIC was measured by con-
version to carbon dioxide, which was detected by a NDIR
detector.

All measured values were processed with the PHREEQC
software package (version 3; Parkhurst and Appelo, 2013).
The implemented phreeqc.dat and wateqf4.dat databases
were used in order to calculate ion activities and pCO2 (par-
tial pressure of CO2) of the water samples and mineral sat-
uration states. The saturation indices of mineral phases are
given as SI = log (IAP / KSO).

3.4 Bacterial 16S rRNA gene community profiling

Two sediment cores labeled LN-K01 and LN-K02 were sam-
pled for bacterial 16S rRNA gene-based community profil-
ing. Each core was sampled in triplicate at every 2.5–5 cm
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of depth and the surface water filtered through a 2.7 (Merck,
Darmstadt, Germany) and 0.2 µm (Sartorius, Göttingen, Ger-
many) filter sandwich. RNAprotect Bacteria Reagent (QIA-
GEN, Hilden, Germany) was immediately added to all sam-
ples in order to preserve the nucleic acids. Before storage at
−80 ◦C, the samples were centrifuged for 15 min at 3.220×g

and the RNAprotect Bacteria Reagent was decanted.
DNA was extracted and 16S rRNA genes were amplified

and sequenced as described in detail by von Hoyningen-
Huene et al. (2019). Briefly, DNA was extracted from 250 mg
of each homogenized sediment sample or one-third of each
filter with the MoBio PowerSoil DNA isolation kit (MoBio,
Carlsbad, CA, USA) according to manufacturer’s instruc-
tions with an adjusted cell disruption step. Bacterial 16S
rRNA genes were amplified in triplicate by PCR, with the
forward primer D-Bact-0341-b-S-17 and the reverse primer
S-D-Bact-0785-a-A-21 (Klindworth et al., 2013) targeting
the V3–V4 hypervariable regions. Primers included adapters
for sequencing on an Illumina MiSeq platform. PCR trip-
licates were pooled equimolar and purified with MagSi-
NGSPREP magnetic beads (Steinbrenner, Wiesenbach, Ger-
many) as recommended by the manufacturer and eluted in
30 µL elution buffer (EB; Qiagen, Hilden, Germany).

PCR products were sequenced with the v3 Reagent kit on
an Illumina MiSeq platform (San Diego, CA, USA) as de-
scribed by Schneider et al. (2017). Sequencing yielded a to-
tal of 6 044 032 paired-end reads, which were quality-filtered
(fastp, version 0.19.4; Chen et al., 2018), merged (PEAR,
version 0.9.11; J. Zhang et al., 2013) and processed. This
comprised primer-clipping (cutadapt, version 1.18; Martin,
2011), size-filtering, dereplication, denoising and chimera
removal (VSEARCH, v2.9.1; Rognes et al., 2016). Taxon-
omy was assigned to the resulting amplicon sequence vari-
ants (ASVs; Callahan et al., 2017) via BLAST 2.7.1+ against
the SILVA SSU 132 NR (Quast et al., 2012). After taxo-
nomic assignment, 2 263 813 merged reads remained in the
dataset. The resulting ASV abundance table was used for the
visualization of community gradients along the cores (von
Hoyningen-Huene et al., 2019). Data were analyzed using
R (version 3.5.2; R Core Team, 2019) and RStudio (ver-
sion 1.1.463; RStudio; R Core Team, 2016) using the base
packages. Extrinsic domains, archaea and eukaryotes were
removed from the ASV table for analysis. All ASVs with
lower identity than 95 % to database entries were assigned
as unclassified. Replicates for each depth were merged and
transformed into relative abundances, and all ASVs with an
abundance > 0.5 % were summarized by their phylogenetic
orders. Putative functions of all orders were assigned accord-
ing to literature on cultured bacterial taxa and the closest cul-
tured relatives of the ASVs present in our samples. For un-
cultured taxa, functions were inferred from literature on ge-
nomic and metagenomic sequencing data (Table S6). The re-
sulting table with relative abundances and functional assign-
ments was used to generate bar charts in SigmaPlot (version
11; Systat Software, 2008).

4 Results

4.1 Sediment petrography and mineralogy

The cored sediment can be divided into three different litho-
logical units. Unit I, in the first 15 cm below surface (b.s.),
is characterized by homogenous, light to medium grey mud
with very high water content and porosity (> 65 wt %, 0.67).
The mud consists of very fine grained carbonate and sili-
ciclastics, largely in the clay and silt size fraction. In the
thin sections of embedded mud samples, carbonates make up
most of the fine-grained matrix (Fig. 2a and b). Remnants of
diatoms and ostracods occur with random orientation. De-
trital grains up to fine sand fraction, consisting of quartz,
feldspar, mica, chlorite and carbonates, make up as much as
20 % of the sediment. The detrital carbonates are distinguish-
able from authigenic carbonate phases by their bigger (up to
mm measuring) size and fractured shape. The Corg : Ntot ra-
tio scatters around 10 (Fig. 3), and plant detritus is evident in
thin sections as particles that are opaque, up to several hun-
dred micrometers in size, often elongated and randomly ori-
entated (Fig. 2a and b). These can be identified in the laser
scan images due to their chlorophyll-related bright fluores-
cence (Fig. 4a and b).

Unit II is located between 15 and 22 cm b.s. and appears as
slightly darker, grey-colored mud without macrostructures.
The microcrystalline matrix appearance is similar to Unit
I; however, phytoclasts and detrital mineral grains are more
abundant and up to millimeters in size, whereas the num-
ber of bioclasts remains the same. Noticeably, detrital car-
bonate minerals and quartz grains occur layer-like or in de-
fined lenses (Fig. 2c and d). The component-to-matrix ra-
tio slightly increases up to 25 : 75, and cubic, small (up to
10 µm), opaque minerals often occur intercalated with plant
detritus. The Corg : Ntot ratio also changes from 10 at 15 cm
to 12 at 22 cm b.s.

Unit III occurs from 22 to 40 cm b.s. It is distinctly darker
than the units above and shows a significant decrease in wa-
ter content and porosity to < 50 wt % and < 0.6, respectively.
This decrease in porosity is also recognizable by a more co-
hesive sediment texture. Lamination is visible at the core’s
outer surface but not in the cut section, in which plant detri-
tus noticeably increases. Thin sections of this unit illustrate
a rather compacted matrix, a horizontal orientation of elon-
gated phytoclasts and a layered structure with detrital mineral
grains (Fig. 2e and f), further supported by the laser scan im-
age (Fig. 4c). Ostracod or diatom fragments still occur but are
less abundant than in the units above. The particle-to-matrix
ratio increases up to 35 : 65, and the Corg : Ntot ratio steadily
increases from 12 to 14 through Unit III.

In scanning electron microscope (SEM) images, the
matrix appears as microcrystalline aggregate of several
nanometer-sized clotted crumbs (Fig. 5). Locally, rhombohe-
dral crystals that are small, up to 1 µm in scale and irregularly
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Figure 2. (a) Microfabric of Unit I at 5 cm depth in transmitted light. Note the randomly oriented, opaque and brownish plant particles. The
microcrystalline matrix is more apparent under crossed polars (b). (c) Microfabric overview of Unit II at 17 cm depth. Large, up-to-fine-sand-
scale detrital feldspar grains occur in layers. (d) Same image section under crossed polars. (e) Microfabric of Unit III at 28 cm, illustrating
the rather compacted shape of the matrix and the elongated appearance of plant detritus. The layering is evident by the occurrence of larger
detrital grains in the upper image part. (f) Same section under crossed polars.

shaped are observable. With EDX measurements, these tiny
crystals were identified as Ca–Mg carbonate phases.

According to the XRD spectra, the bulk sediment mainly
consists of carbonates and quartz, with minor contributions

of feldspar, clay and mica (Fig. 6). The d104 peak shift
provides a suitable approach to estimate the Mg : Ca ra-
tio in magnesium calcite and dolomite (Lumsden, 1979).
Based on the d104 peak positions, three carbonate phases

www.biogeosciences.net/17/2085/2020/ Biogeosciences, 17, 2085–2106, 2020



2092 D. Fussmann et al.: Authigenic formation of Ca–Mg carbonates

Figure 3. Geochemical parameters through Core LN-K04, showing an increasing amount of organic carbon and total sulfur and a decreasing
porosity with depth.

with different MgCO3 content are present: a calcite phase
with minor amounts of MgCO3, a high-magnesium-calcite
phase (HMC) with circa 18 mol % MgCO3 and a very
high magnesium–calcium carbonate phase (protodolomite,
Fig. 6). The latter shows a 104 peak, shifted from 31◦2θ in or-
dered dolomite to ca. 30.8◦2θ , indicating a MgCO3 content
of approx. 45 mol %. Due to the fact that typical dolomite
ordering peaks (i.e., 01.5 and 10.1) could not be identi-
fied in the XRD spectra, we informally define the phase as
“protodolomite”, i.e., a carbonate phase with a nearly 1 : 1
stoichiometry of Ca and Mg, in which an incipient dolomite
structure may or may not be present. Estimated relative min-
eral abundances vary between the three units (Fig. 7): in Unit
I the amount of authigenic carbonate minerals remains rel-
atively constant at 55 wt %, whereas in Unit II a steep and
large increase in detrital mineral phases (feldspar, quartz, cal-
cite, mica) can be found. In Unit III the amount of Ca–Mg
carbonate minerals decreases and scatters around 40 wt %.
Mica slightly increases with depth below 23 cm. Neverthe-
less, the authigenic HMC-to-protodolomite ratio does not
change significantly throughout the section. Notably, neither
authigenic Ca–Mg carbonate phase shows any down-core
trend in stoichiometry. The Mg/(Ca + Mg) ratios of distinct
solid phases remain largely constant with depth (Fig. 8).

4.2 Pore water chemistry

The water chemistry of Lake Neusiedl is characterized
by high pH values (9.02) and moderate salinity (1.8 ‰).
Sodium (Na+) and magnesium (Mg2+) are the major cations,

with concentrations of 14.3 and 5.1 mmol L−1, respectively.
Calcium (Ca2+) concentration is considerably lower, at
0.3 mmol L−1. Total alkalinity (TA) measures 11.2 meq L−1,
whereas other major anions like chloride (Cl−) and sulfate
(SO2−

4 ) hold a concentration of 7 and 4 mmol L−1, respec-

tively. Nutrient (NH+

4 , NO−

2 , PO3−

4 , 6H2S, SiO2(aq)) con-
centrations lie below 0.004 mmol L−1.

The pore water chemistry strongly differs between the sed-
iment and the water column. The pH drops significantly at
the water–sediment interface to a value around 7.5, which
stays constant throughout the sediment core (Fig. 9a). The
entire section is anoxic, with a redox potential of −234 mV at
the top, which increases to −121 mV at the bottom (Fig. 9b).
Na+ and Cl− contents continuously increase with depth,
from 14 to 20 and from 7 to 8.8 mmol L−1, respectively
(Fig. 9a). Mg2+ and Ca2+ show a different pattern: from
5 to 10 cm depth, the Mg2+ content decreases from 5 to
4 mmol L−1, whereas the Ca2+ content increases from 0.5
to 0.6 mmol L−1 in the same increment. From 10 cm down-
wards, the Mg2+ content scatters around 4 mmol L−1 and
the Ca2+ content decreases from 0.6 to below 0.5 mmol L−1

(Fig. 9a). Dissolved SO2−

4 and hydrogen sulfide (6H2S) also
show a noticeable trend: the 6H2S content is close to zero
in the top 5 cm of the sediment column, rapidly increases to
1 mmol L−1 between 5 and 10 cm b.s., and remains constant
to the bottom of the section. SO2−

4 follows an opposite trend.
Its concentration decreases from 4 to 1 mmol L−1 in the up-
per 10 cm b.s. and remains constant at 1 mmol L−1 towards
the section bottom. Total alkalinity also increases towards the
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Figure 4. (a) Laser scanning micrograph (excitation 365 nm; emission 397–700 nm) of Unit I microfabric at 2 cm depth. The small and
randomly orientated plant particles show bright fluorescence due to their chlorophyll content. (b) Same section in transmitted light. (c) Flu-
orescent texture of Unit III (at 28 cm depth) is visible. The higher amount of plant detritus, particle layering and a compacted matrix are
notable. Voids are resin-embedding artifacts. (d) Same section as in (c) but under transmitted light.

lower part of the section, from 11.2 to 16.8 meq L−1, with an
increase between 5 and 15 cm depth.

NO−

2 is present in the upper 10 cm of the core and
reaches its highest value (0.9 µmol L−1) at 2 cm b.s., while
its concentration decreases to zero below 10 cm b.s. Dis-
solved iron (Fe2+) has a similar trend in the upper 10 cm b.s.,
reaching its highest concentration at a depth of 2 cm
(1.4 µmol L−1). Below 10 cm core depth, iron concentrations
lie below 0.3 µmol L−1, with the exception of an outlier value
of 0.5 µmol L−1 at 13 cm b.s. Concentrations of ammonia

(NH+

4 ) and phosphate (PO2−

4 ) increase with depth. In the
uppermost part of the sediment column, they are close to
zero and increase to 0.37 and 0.02 mmol L−1 at 13 cm. These
values remain constant to the bottom of the core. Dissolved
silica shows a curved profile with 0.3 mmol L−1 at the top,
reaching a maximum at 15 cm depth with 0.8 mmol L−1, and
declines to concentrations around 0.5 mmol L−1. Methane
(CH4) concentration also shows a curved trend, reaching its
highest value of 227 µmol L−1 at a depth of 20 cm and con-
centrations between 14 and 64 µmol L−1 close to the sedi-
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Figure 5. SEM images of Core LN-K 05, showing the crystal morphology of Ca–Mg phases with increasing depth. (a) HMC or protodolomite
crystal at 9 cm depth. (b) Aggregate of 3 HMC or protodolomite crystals at 17 cm depth. (c) Matrix overview containing microcrystalline
crumbs, layered mica crystals and a HMC or protodolomite rhombohedron (indicated by dashed rectangle) at 17 cm depth. (d) Detail of
rhombohedron visible in (c). (e) Matrix overview in 27 cm depth. HMC and protodolomite carbonate crystals appear rather xenomorphic
(indicated by dashed rectangle). (f) Close-up of HMC and protodolomite crystal accentuated in (e). Images produced with a ZEISS Gemini
Leo 1530.
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Figure 6. X-ray diffractograms of bulk Lake Neusiedl sediment (a) from 2 cm and (b) from 27.5 cm depth. Positions of dolomite peaks
are marked in grey. Position of major calcite (Cc 104) and high-magnesium-calcite (HMC 104) peaks are also indicated. Note that typical
dolomite ordering peaks could not be identified in the XRD spectra. Furthermore, a figure and a list containing major peaks of identified
mineral phases is provided in the Supplement.

ment surface (5 and 1 cm, respectively). Dissolved inorganic
carbon (DIC) increases from 11.71 mmol L−1 at the top to
18.01 mmol L−1 at 30 cm depth. Only in the 15 to 20 cm
increment does the amount of DIC slightly decrease, from
15.37 to 14.94 mmol L−1.

According to PHREEQC calculations, the water column at
the sampling site (bay of Rust) is supersaturated with respect
to aragonite (SI = 0.92), calcite (SI = 1.07), protodolomite
(SI = 2.92) and dolomite (SI = 3.46; Fig. 10). Sediment pore
water is close to equilibrium throughout the whole sec-
tion with respect to aragonite, whereas calcite is in equi-
librium to slightly supersaturated between 10 and 27.5 cm
depth. Protodolomite reaches equilibrium between 2.5 and
5 cm, while dolomite is supersaturated in the entire section.
It should be noted that all saturation graphs reveal parallel
trends, with their highest saturation at 17.5 cm and their low-
est at 2.5 cm depth.

4.3 Bacterial community composition

Bacterial 16S rRNA gene analysis revealed the presence of a
diverse bacterial community, with 1226 amplicon sequence
variants (ASVs) clustered at 100 % sequence identity within
the water column, 2085 to 2467 ASVs in the top 20 cm of
the sediment core and 1417 to 1581 ASVs in the deeper sed-
iment (20–35 cm core depth). The different bacterial taxa
were grouped by known metabolic properties of character-
ized relatives, listed in Whitman (2015) and additional liter-
ature (see Supplement). The distribution of the most abun-
dant bacterial taxa differs between the water column and the
sediment (Fig. 11a and b).

The water column is dominated by aerobic heterotrophs,
mainly Alphaproteobacteria and Actinobacteria, which are
only of minor abundance in the sediment. Among the Al-
phaproteobacteria, the SAR11 clade capable of oxidizing C1
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Figure 7. Core LN-K04 with the defined units I–III (left) and mineral quantities estimated from main peak heights (right; HMC: high-
magnesium calcite). The changes of mineral abundances coincide with unit boundaries.

Figure 8. Stoichiometric compositions of authigenic carbonate
phases (HMC and protodolomite), their abundance ratio and their
relation to detrital calcite.

compounds (Sun et al., 2011) is predominant. The nitrogen-
fixing Frankiales are the most abundant representatives of the
Actinobacteria. Furthermore, coccoid cyanobacteria (Syne-
chococcales) and Bacteroidetes are present in high relative
abundances in the water column.

Within sediment Unit I (0–15 cm b.s.), the bacterial com-
munity composition changes to mainly anaerobic and facul-
tatively anaerobic taxa. Only the uppermost 5 cm shows in-
creased relative abundances of cyanobacteria (Synechococ-
cales) and Bacteroidetes (aerobes and facultative anaer-
obes; Alderkamp et al., 2006; Flombaum et al., 2013)
as well as Verrucomicrobia (mostly aerobic and faculta-
tive anaerobic heterotrophs; He et al., 2017), which in-
clude nitrogen-fixing members (Chiang et al., 2018). Besides
these groups, Gammaproteobacteria, Acidobacteria, Chlo-
roflexi and sulfate-reducing Deltaproteobacteria are abun-
dant. Deltaproteobacteria mainly consist of Desulfobacter-
aceae and Desulfarculales (Fig. 11c and d).

In sediment Unit II (15–22 cm b.s.), the relative propor-
tions of these groups show a transition between sediment unit
I and III. While Gammaproteobacteria, Acidobacteria and
Deltaproteobacteria are still abundant, the relative abundance
of Chloroflexi increases strongly from 24.29 % to 35.43 %.
Within the SRB, Desulfobacteraceae and Desulfarculales are
successively replaced by Deltaproteobacteria of the Sva0485
clade. The Syntrophobacterales show their maximum relative
abundance within sediment Unit II.

In sediment Unit III (22–40 cm b.s.), the abundance of
Chloroflexi further increases to form the dominant bacte-
rial phylum. The phylum consists of Dehalococcoidia and
Anaerolineae. Other abundant groups in this unit are Aci-
dobacteria, Gammaproteobacteria and Deltaproteobacteria
of the Sva0485 clade. Further details of the microbial com-
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Figure 9. Major ion (a) and metabolite concentrations (b) in the pore water of core LN-K03. Note that the sample slightly above 0 cm depth
represents the supernatant water, and the top data points represent the water column (see text for explanations).

munity composition are given in von Hoyningen-Huene et
al. (2019).

5 Discussion

5.1 Pore water gradients and their effect on Ca–Mg

carbonate supersaturation

Concentrations of the conservative trending ions Na+, K+

and Cl− steadily increase towards the bottom of the core sec-
tion, reaching 19, 1 and 9 mmol L−1, respectively. These con-
centrations are considerably higher than in the water column,
where these ions measure 14, 0.9 and 7 mmol L−1. Moreover,
SO2−

4 shows an increase near the bottom of the core and is
reported to further increase to values of 6.5 mmol L−1 in a
longer section from a different locality in the bay of Rust
(not shown in this study), which is higher than the overly-
ing lake water (3.9 mmol L−1). This rise in ion concentration

indicates an ion source below the sampled interval. While
saline deep ground waters are known to be present in deep
aquifers (Neuhuber, 1971; Blohm, 1974; Wolfram, 2006), it
is also possible that more highly concentrated brine exists
in deeper mud layers due to more recent evaporation events
(Fig. 12). Lake Neusiedl dried out entirely between 1865 and
1875 (Moser, 1866), and high ion concentrations may re-
late to thin evaporite layers and brine that formed during this
event.

The cause of the exceptionally high Mg : Ca ratio, which
reaches values around 15 in the water column, is not yet
entirely understood. The low Ca2+ concentrations in Lake
Neusiedl can be linked to calcium carbonate formation (e.g.,
Wolfram and Herzig, 2013), but the high amounts of Mg2+

ions and their source remain elusive. Boros et al. (2014) de-
scribe similar phenomena in small alkaline lakes of the west-
ern Carpathian plain and relate the high magnesium levels to
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Figure 10. Saturation indices (SIs) of selected carbonate mineral
phases. It can be noted that all phases are clearly supersaturated
in the water column but close to saturation throughout most of the
sediment column (except for the uppermost 10 cm).

local hydrogeological conditions and the geological substrate
of the lakes.

It should be noted that the Mg : Ca ratio reaches values
around 7 in the 5–10 cm increment of the pore water section.
This is caused by a considerable decrease in the Mg2+ ions
in this increment (from 5 to 4 mmol L−1) and an increase in
Ca2+ concentration (from 0.3 to 0.5 mmol L−1). This effect
can be partly explained by a transition zone between lake and
pore water in this section, in which the concentration gradient
is balanced. Other factors contributing to this concentration
shift may include ion exchange, e.g., with NH+

4 generated in
the pore water at clay minerals (von Breymann et al., 1990;
Celik et al., 2001). However, in the case of Lake Neusiedl,
the NH+

4 concentration is not sufficient to explain this change
within the Mg : Ca ratio. Another factor causing the decrease
in Mg2+ concentrations may be the supply of dissolved silica
for the precipitation of clay mineral precursor phases (Bir-
soy, 2002). Increasing SiO2 concentration with depth indi-
cates the dissolution of diatom frustules, which have been
observed in thin sections of the present study. It is not en-
tirely clear if this SiO2 release into the pore water is related
to hydrochemical or biogenic parameters. As the SiO2 in-
crease in the upper 20 cm of the pore water neither clearly
correlates with alkalinity nor with the salinity gradients (con-
centrations of conservative ions), and pH is not predictive
(Ryves et al., 2006), diatom dissolution by an evident chem-
ical undersaturation (saturation indices of amorphous SiO2

lie between −1.35 and −0.65) may be not the only driver
for the SiO2 release. It is also conceivable that the enhanced

silica release in the pore water is caused by bacteria, which
attack the organic matrix of diatom frustules and, thus, ex-
pose the silica-bearing skeletons to chemical undersaturation
(Bidle and Azam, 1999). Bidle et al. (2003) have linked en-
hanced dissolution potential to uncultured Gammaproteobac-
teria. This phylum showed increased abundances in the up-
per sediment column, supporting the hypothesis of a bio-
genic contribution to diatom dissolution and, hence, the pro-
vision of SiO2 to sequester Mg2+ (Fig. 12; Eq. 5) in Lake
Neusiedl’s pore waters.

5.2 Microbial activity and carbonate saturation

Microbial metabolic reactions strongly affect pore water
chemistry, particularly pH, alkalinity and hence carbonate
mineral saturation state. In the present approach, the assess-
ment of bacterial community composition is based on the
metagenomic DNA within the sediment. This contains the
active bacterial communities at their current depth as well as
deposited, dormant or dead cells that originated in the water
column or at shallower sediment depth (More et al., 2019).
In the present study, a background of dormant or dead cells is
evident through ASVs belonging to strict aerobes (e.g., Rhi-
zobiales, Gaiellales) that were detected within deeper parts
of the anaerobic mud core (Figs. 11, 12 and 13; Supplement
Table S5).

The water column is characterized by aerobic het-
erotrophs, including C1 oxidizers (SAR11 clade of the Al-
phaproteobacteria) and highly abundant freshwater Acti-
nobacteria. These are common in most freshwater environ-
ments. An impact on carbonate mineral saturation or nucle-
ation, however, is unknown, as their role in the biogeochem-
ical cycles remains largely undescribed (Neuenschwander, et
al., 2018). A high abundance of cyanobacteria of the Syne-
chococcales is present in the water column. Synechococcales
are known to create favorable conditions for carbonate nu-
cleation in alkaline environments by raising the pH, pho-
tosynthetic metabolism and the complexation of cations at
their cell envelopes (Thompson and Ferris, 1990). Further
research is required to verify their potential role in HMC or
protodolomite formation in Lake Neusiedl.

In sediment Unit I (0–15 cm b.s.) Synechococcales as well
as aerobic Bacteroidetes are still abundant in the top 5 cm,
likely due to the sedimentation of their cells from the wa-
ter column. The uppermost measurement at 2.5 cm depth re-
vealed reducing conditions and a low, close-to-neutral pH.
This supports heterotrophic metabolisms and fermentation
by Gammaproteobacteria, Acidobacteria, Chloroflexi and
Deltaproteobacteria, which are the major taxa at this depth.
At the very top of the sediment, a peak in NO−

2 and Fe2+

points to nitrate reduction and Fe3+ reduction (Kotlar et al.,
1996; Jørgensen and Kasten, 2006). Farther below, the suc-
cessive increase in NH+

4 and PO3−

4 reflects anaerobic bacte-
rial decomposition of organics, consistent, for example, with
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Figure 11. Most abundant taxa in Core 1 (a) and Core 2 (b). The legend indicates all abundant taxa on the phylum level, including the class
level for Proteobacteria and Firmicutes. All orders below 0.5 % relative abundance were summarized as rare taxa. The abundant taxa change
at the transitions from water column to sediment and the lithological units (I–III). The taxonomic composition of sulfate reducers in Core 1
(c) and Core 2 (d) changes gradually from Unit I–II and more pronouncedly from Unit II–III. Sulfate reducers are shown on the class and
order level. The column thickness relates to the sampled increments of either 5 or 2.5 cm. Sulfate reducers represent up to 15 % of the total
bacterial community and were normalized to 100 % relative abundance to illustrate the changes within their composition.

Chloroflexi capable of dissimilatory nitrate reduction to am-
monium (DNRA).

Sulfate reducers are present in Unit I. Their increasing rel-
ative abundance coincides with a decrease in SO2−

4 and an
increase in 6H2S (Fig. 9). Despite a concomitant increase

in alkalinity, the bulk metabolic effect of the microbial com-
munity keeps the pH and carbonate saturation low (Fig. 12;
Eq. 7). Model calculations in aquatic sediments have shown
that sulfate reduction initially lowers the pH (e.g., Soetart et
al., 2007), and as the alkalinity increases, the pH converges
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Figure 12. Suggested major microbial (simplified, indicated in white) and geochemical processes in water and sediment column of Lake
Neusiedl.

at values between 6 and 7. As a consequence, the saturation
index for carbonate minerals concomitantly drops. If a suffi-
cient amount of sulfate is reduced (> 10 mmol L−1), the sat-
uration level recovers and may slightly surpass initial condi-
tions (Meister, 2013). Only when sulfate reduction is coupled
to anaerobic oxidation of methane (AOM) would the effect
of both raise the pH to higher values. However, as methane
occurs below 10 cm (Fig. 10), where SO2−

4 is still present,
AOM is incomplete or absent.

In sediment Unit II (15–22 cm b.s.) and Unit III (22-
40 cm b.s.), the bacterial community composition shifts to-
wards a high abundance of Chloroflexi (Dehalococcoidia and
Anaerolineae), known for their involvement in carbon cy-
cling as organohalide respirers and hydrocarbon degraders
(Hug et al., 2013). This change may reflect an increase
in poorly degradable organic electron donors and hence
plant debris in the laminated core Unit III. The change in
the relative composition of different orders within the SRB
(i.e., change from Desulfobacterales and Desulfarculales to
Sva0485 and Spirochaetales) may also be related to a change
in available organic substrates. In total, sulfate reduction re-
mains high, also recognizable by the occurrence of opaque
(sulfide) mineral spots and the increase in Stot in the lower
part of the section (Figs. 2e, 3). Fermentation and sulfate re-

duction remain high with increasing depth, indicated by the
near-neutral pH and raised alkalinity at low carbonate min-
eral saturation.

5.3 Time and depth of carbonate formation

A significant difference in saturation state between the wa-
ter column and the sediment is evident. Whilst the water
column is supersaturated with respect to aragonite, HMC,
protodolomite and dolomite, they are close to equilibrium in
the pore water. The downward shift of saturation from the
water column to the pore water is to be expected due to the
onset of anaerobic, heterotrophic metabolic activity (Fig. 12;
Eq. 4).

The absence of aragonite at Lake Neusiedl is not entirely
clear, as its formation is commonly linked to an interplay be-
tween high temperature, mineral supersaturation and Mg : Ca
ratios (Fernández-Díaz et al., 1996; Given and Wilkinson,
1985). Based on precipitation experiments by De Choudens-
Sanchez and Gonzalez (2009), which include temperatures of
19.98 ◦C and Mg : Ca ratios up to 5, aragonite would be the
favored phase in Lake Neusiedl, as the lake’s Mg : Ca ratio
of 15 is too high and the concomitant calcite saturation not
sufficient to provide calcite growth. However, the mentioned
experiments were performed in a precipitation chamber with
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degassing conditions and hence reduced ρCO2, which makes
them incomparable to the present study. In contrast, Nieder-
mayr et al. (2013) observed the preferential formation of cal-
cite at high Mg : Ca ratios when an amino acid (polyaspar-
tic acid) is present. As the water column bears numerous
bacterial species (Fig. 11) and potentially comparable or-
ganic compounds, this is a likely scenario for Lake Neusiedl.
Nevertheless, the precise evaluation of why aragonite is not
present is impossible, as no related analytical data from the
water column are available.

According to Löffler (1979), magnesium calcite forms
first, which is then altered into protodolomite. The alter-
ation takes place from the inside, hence resulting in a
protodolomite core and a HMC rim. However, the observa-
tion that ratios of HMC to protodolomite remain constant
around 40 % to 50 % indicates no significant diagenetic al-
teration in the uppermost 30 cm of the sediment. Abrupt
changes in these ratios, along with changing contributions
of detrital mineral phases, such as mica and quartz, rather
suggest changing sedimentation. Likewise, (low-Mg) calcite
essentially depends on the input of ostracod shells and trans-
port of detrital carbonates delivered from the catchment area.
Furthermore, no significant diagenetic overprint in the form
of recrystallization and/or cementation is apparent from the
applied light- and electron-optical methods as well as the
geochemical gradients. Most importantly, the stoichiometric
ratio of each carbonate phase remains constant, confirming
that no large-scale recrystallization of these phases occurs.

Considering that no signs of carbonate precipitation or di-
agenetic alteration were observed in the sediment column
from the bay of Rust, it can be concluded that carbonate
minerals are unlikely to form in the pore water. Instead Ca–
Mg carbonate crystals may precipitate in the water column
and are deposited at the bottom of the lake (Fig. 12; Eq. 3).
Age estimations for the mud sediments range from 150 years
(Löffler, 1979) to 850–2300 years before present (radiocar-
bon ages from Neuhuber et al., 2015). Our dataset indicates
that authigenic Ca–Mg carbonate does not necessarily form
in its present location, which is consistent with the large dis-
crepancy between sediment and authigenic carbonate age.

The observed detrital mineral spectrum reflects the min-
eral composition of the adjacent Leitha (mica, feldspar,
quartz, calcite) and Rust hills (calcite), and minerals are
either windblown or transported by small, eastbound trib-
utaries (Löffler, 1979). The layering in the lower part of
the section (Unit III) reflects the lack of homogenization
by wind-driven wave action and indicates a higher water
level. As this unit also contains higher amounts of plant par-
ticles and siliciclastics, possibly due to a higher water in-
flux from vegetated surroundings, it is conceivable that the
deposition of Unit III reflects environmental conditions be-
fore the installation of the water level regulating the Einser
canal in 1909. The increase in Corg with depth further reflects
this depositional change. This fits the increasing number of
plant particles with depth. The lignin-bearing plant particles

are difficult to degrade for heterotrophic organisms under
the prevailing anoxic conditions (Benner et al., 1984). The
higher amounts of plant material may reflect a lower salinity
and thus higher primary production at their time of deposi-
tion, which can also be related to the stronger water level
oscillations before regulations, including a larger lake sur-
face and a catchment area that is almost a magnitude higher
(refer to a map in the Supplement, provided by Hegedüs,
1783). Based on this consideration one might concur with
the sediment age estimation of circa 150 years, as proposed
by Löffler (1979). Nevertheless, it is important to distinguish
between actual mineral formation and sediment deposition,
including relocation: an unpublished sediment thickness map
(GeNeSee project; unpublished) suggests a current-driven re-
location of mud deposits in the southwestern lake area, where
the bay of Rust is located. Thus, the radiocarbon data from
Neuhuber et al. (2015) possibly reflect the date of precipita-
tion, whereas Löffler’s age estimation may refer to the date
of local mud deposition.

5.4 Potential pathways of authigenic Ca–Mg carbonate

formation

The precise formation pathway of authigenic Ca–Mg car-
bonate mineral precipitation in Lake Neusiedl has been con-
troversially discussed. Some authors suggest a precipitation
of HMC in the water column and subsequent alteration to
protodolomite or dolomite within the anoxic pore water of
the sediment (Müller et al., 1972). Others suggest the direct
formation of protodolomite in the water column (Schiemer
and Weisser, 1972). Our XRD and geochemical data support
the latter hypothesis, as no diagenetic alteration is retrace-
able throughout the sediment section. While low saturation
or even undersaturation in the sediment precludes a micro-
bially induced precipitation in the pore water, high supersat-
uration in the surface water body would support precipita-
tion in the water column. Given the high alkalinity, CO2 up-
take by primary producers may have contributed to the high
pH and high supersaturation in the surface water.

An alternative explanation to the controversially discussed
microbial dolomite formation would be the ripening un-
der fluctuating pH conditions in the water column. Deel-
man (1999) has demonstrated in his precipitation experi-
ments that dolomite forms if the pH varies. At times of strong
supersaturation, metastable carbonates (protodolomite) are
formed, which ripen to ordered dolomite during subse-
quent phases of undersaturation of the metastable carbonate
(while the stable phase remains supersaturated). This obser-
vation reflects Ostwald’s step rule, according to which the
metastable phase always forms first. Ostwald’s step rule can
also be demonstrated in the pore water, which is buffered
by the metastable phase. Thereby the formation of the sta-
ble phase (dolomite) is inhibited despite its supersaturation.
This observation is comparable with Land’s (1998) “failure”
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Figure 13. Oxygen utilization within the most abundant members of the bacterial community (a) and the potential energy
metabolisms (b) plotted versus depth in Cores 1 and 2. The community in the water column indicates a predominantly aerobic regime.
Rare taxa (< 0.5 % relative abundance) were removed from the analysis, and abundances were normalized to 100 %. Bacteria with an un-
known metabolism were grouped as unknowns. The community inhabiting the sediment shows an early onset of sulfate reduction in the
upper sediment layers and a shift to fermentation at the transition from Unit II to III.

to form dolomite for 30 years despite 1000-fold supersatura-
tion.

In Lake Neusiedl, fluctuation of the pH in the overlying
water column is likely to occur due to variations in meteoric
water input and temperature, which may cause episodes of
undersaturation. This is a fact which is supported by Wolfram
and Herzig (2013), who report an increase in Ca2+ concen-
tration, depending on a dissolution of Ca carbonates in Lake
Neusiedl’s open water during the winter months, when water
levels rise and temperatures decrease. Such a seasonally de-
pendent formation mechanism has recently been suggested
to explain dolomite formation in a Triassic evaporative tidal
flat setting (Meister and Frisia, 2019). Alternatively, Mor-
eira et al. (2004) proposed that undersaturation of metastable
phases occurs as a result of sulfide oxidation near the sed-
iment surface. While we traced only small abundances of
sulfate-oxidizing bacteria near the sediment–water interface
(1 %), fluctuating hydrochemical conditions are likely to oc-
cur in the diffusive boundary layer, where a pH drop is ob-
served as a result of the biogeochemical processes discussed
above. Dolomite formation in the diffusive boundary layer
has been observed in Lake Van (McCormack et al., 2018)
and was interpreted as a result of abundant microbial EPS,
linked to a changing water level and hence chemistry. In Lake
Neusiedl, the amount of EPS in the diffusive boundary layer

is difficult to estimate, but the potential Ca–Mg carbonate fa-
voring change in hydrochemistry is granted.

6 Conclusions

Two phases of Ca–Mg carbonates (HMC, protodolomite)
as well as calcite occur in the form of fine-grained mud
in Lake Neusiedl. Bacterial metabolic activity, including
sulfate reduction and fermentation, leads to a decrease in
pH within the sediment, leaving the Ca–Mg carbonate phases
at low or minor saturation in the pore water. In contrast, Ca–
Mg carbonate phases are highly supersaturated in the alka-
line water column. There, the carbonate formation mech-
anism may involve fluctuating hydrochemical conditions,
leading to periods of undersaturation and ripening of HMC to
protodolomite. Further, carbonate precipitation may be sup-
ported by phototrophic uptake of CO2 by cyanobacteria, e.g.,
by Synechococcus. Precipitation of Ca–Mg carbonate, thus,
most likely occurs in the open water. Based on the presented
dataset, precipitation or diagenetic alteration within the sedi-
ment is not indicated. The precise Ca–Mg carbonate reaction
pathway needs further evaluation.
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Abstract 

The remote Aldabra Atoll in the Indian Ocean provides the ideal opportunity to study 

bacterial communities in pristine sediments across an entire biome. This is the first 

study using bacterial 16S rRNA gene and transcript analysis to distinguish between 

past and present inhabitants in these carbonate sediments. This allowed us to trace the 

bacteria across different porewater and temporal gradients. We aimed to determine 

whether the bacterial community composition follows typical geochemical zonation 

patterns of electron transfer gradients in different sediment types. The four sampled 

sites at the Aldabra Atoll cover sand with high porewater exchange, bioturbated silt 

and mud with intermediate exchange, as well as a seasonally and episodically 

desiccated landlocked pool. Accordingly, the community changed from aerobic 

Pseudomonas in the sand to diverse surface and sulphate reduction zones in the 

anaerobic mud. Total sulphide peaked alongside high relative abundances of sulphate 

reducing (Halo-) Desulfovibrio, sulphur oxidizing Arcobacteraceae, 

photo(hetero)troph Cyanobacteria and Alphaproteobacteria, and fermentative 

Propionigenium. Deeper mud and pool sediments harboured high abundances of 

Halomonas or Alphaproteobacteria alongside high C/N ratios instead of obligately 

anaerobic fermenters. We believe that this atypical community shift may be driven by 

a change in the complexity of available organic matter and sediment age. 

Introduction 

Microbial communities are major drivers of the global biogeochemical cycles. 

These cycles are based on a limited set of elements, which are used in the energy 

transduction pathways, depending on their abundance and the availability of oxygen 

[1]. In sediments, this results in a succession of redox zones. Once oxygen is depleted, 

the electron acceptors change to nitrate, followed by manganese, iron and sulphate. In 

the deepest sediments, CO2 is ultimately reduced to methane [2,3]. Changes in 

microbial community composition are favoured according to this standard 

biogeochemical zonation. Due to fluctuations and advection of porewaters and 

corresponding changes in ion concentrations, as well as bioturbation and bio-

irrigation, they may not necessarily appear as clearly separated zones [4,5]. This leads 

to a highly dynamic sediment environment with diverse bacterial communities in 

micro-niches characterized for instance by different levels of oxygenation [5]. Based 
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on total extractable DNA, the most applied approach to studying bacterial community 

assemblies is the use of the 16S rRNA gene as taxonomic marker. The approach has 

been shown to yield overlapping signals of past and present microbial communities, 

depending on organic matter degradation rates in the sediment. This means that in 

addition to DNA of present microbes, signals from extracellular DNA, dormant or 

dead microbes may be detected [6]. In sediments these may accumulate from the water 

column or derive from former sedimentary conditions. Thus, sediments with a varying 

history of short term tidal, as well as episodic or long-term changes, such as flooding 

or climate change, are included in the DNA-based record of the microbial communities 

to varying extents. In order to disentangle the past and present signatures in sediments, 

we utilize amplicons of both 16S rRNA genes derived from total DNA and transcripts 

derived from total RNA. 

The Aldabra Atoll is the second largest raised limestone atoll in the world. It 

is part of the Seychelles, situated approximately 420 km north of Madagascar. Aldabra 

covers an area of 365 km2 of which 155 km2 are attributed to the island rim [7]. Since 

gaining UNESCO protection status in 1982, the Aldabra lagoon has remained largely 

unaffected by anthropogenic impacts. In 2012, the lagoons’ sediment types and benthic 

cover were determined using remote sensing and ground reference points for spatial 

models [8]. The Pleistocene limestone basement was described in detail by Braithwaite 

[9] and the biota, including the giant tortoises [10] and (macro-)biota of the soft 

sediments [11], have received some attention. The most recent studies on microbial 

communities were performed 30-40 years ago. They focused on microbial mats 

covering the limestone within the lagoon or the landlocked pools and the rates at which 

they fix nitrogen in the intertidal zone [12,13]. For the identification of dominant blue-

green algae, such as Hyella balani, Lyngbya sp., and Schizothrix, the authors relied on 

phenotypic description [14]. 

We sampled sediment depth profiles at four sites with different tidal and depositional 

histories during an expedition to the Aldabra Atoll in 2017. Three sites were located 

within the lagoon and one within the Cinq Cases pool system on the eastern island rim. 

Our first aim was to establish which bacterial communities thrive in the different 

sediment facies and how they correlate with local porewater geochemical gradients. 

To this extent the sampled sites included settings with strong short-term tidal 

exchange, but overall long-term stability, as well as long-term seasonal porewater 
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change with a history of strong episodic changes in the sediment. Based on these 

results, we aimed to determine the bacterial involvement in the precipitation of any 

fresh carbonates or diagenetic alterations of the sediments. Our expectations for the 

geochemical and bacterial community profiles were based on the following 

hypotheses. Firstly, the porewater profiles and associated bacterial communities 

follow the standard geochemical zonation described by Jørgensen and Kasten [2 and 

references therein]. Secondly, the bacterial diversity decreases with increasing 

sediment depth [15]. Thirdly, comparison of both total (DNA-based) and potentially 

active (RNA-based) bacterial communities highlights present and past key players 

within the sediment, allowing us to understand their response to short and long-term 

environmental changes. This is the first study using next-generation sequencing to 

identify the bacterial communities of the Aldabra Atoll. 

 

Results 

Sediment cores, porewater and bulk sediment geochemistry 

Sediment push cores were taken at four sampling sites across the lagoon and the main 

island Grand Terre (Fig. 1). All cores were limited in depth by the underlying karstic 

limestone. Porewater geochemistry and bulk sediment geochemistry were measured in 

2.5-5 cm intervals at each sampling site (Fig. 2, Supplementary Table S1) and 

correlated against depth using Spearman-Rank correlations (Supplementary Table S2).  
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Figure 1. Aldabra Atoll, sampling sites and most abundant bacterial phyla (> 5 %) at 

each site. a: Map of the Aldabra Atoll showing the four sampling sites. The global location is 

indicated in the top right corner, on a map generated using ArcGIS Desktop and Esri World 

Imagery (July 17, 2020). Most abundant bacterial phyla across all samples are shown in pie 

charts by sampling site: All taxa below 5 % relative abundance were summarized as rare taxa. 

b-e: Sampling sites and a representative core for each location.  
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Figure 2. Selected porewater and bulk sediment geochemical profiles of the West Lagoon 

(WL), North (NL) and South (SL) Lagoon, and Cinq Cases (CC). Porewater profiles and 

sediment geochemistry were measured in two separate cores, except at Cinq Cases, where the 

same core was used. The water column (W) is set apart from the sediments by dashed lines 

and blue colour. Grey and white backgrounds indicate the geochemical zonation of the cores. 

The red line indicates the transition from reducing to oxidizing redox (Eh) conditions. 

Measurement accuracy deviated by less than 3 %. 

In the lagoon-derived cores, pore water salinity ranged from 36-41 g/kg at low tide, 

while Cinq Cases ranged between 42-82 g/kg. To account for changes in salinity, 

sulphate concentrations are shown as Cl-/SO4
2- ratios. The West Lagoon site was 

characterized by fine carbonate sand (Fig. 1b, Table 1) covered by a pink and green, 

slightly lithified top layer of 2-3 cm below the surface (cm bsf).  
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Table 1. Sediment characteristics (a) and sequencing features (b) of all sampling sites. a) 

The main environmental characteristics for each sampling site, including sediment type and 

depth, redox conditions, and mode of porewater exchange. b) total sample number and ASV 

counts, mean percentage of unclassified taxa and average diversity indices between the 

sampling sites and community fractions. Data were rarefied at 19,906 reads per sample for 

calculation of diversity indices. The phylogenetic diversity is based on a midpoint-rooted 

phylogenetic tree. 

a) Sediment cores and features 

Location West Lagoon North Lagoon South Lagoon Cinq Cases 

Depth (cm) 40.8 15.8 34.2 27.5 

Latitude -9.44733 -9.38396 -9.44298 -9.42979 

Longitude 46.23641 46.36124 46.39179 46.49524 

Sediments Carbonate sand 
Coarse carbonate 

sand and silt 

Fine-grained 

carbonate mud 

Fine-grained 

carbonate silt to 

mud 

Redox 

conditions 
Oxidizing Reducing Reducing 

Reducing to 

oxidizing 

Porewater 

exchange 

Tidal porewater 

exchange 

Advection, 

bioturbation 

Advection, 

bioturbation 

Evaporation, 

diffusion 

Additional 

features 

Lithified surface 

layer with biofilm 

Rich in organic 

matter and faeces 

from bird colony 

0-15 cm highly 

bioturbated; 15-

bottom high plant 

detrital input 

Surface covered 

by microbial 

mat, strong 

salinity and C/N 

gradient 

b) Sequencing features (Mean) 

Location West Lagoon North Lagoon South Lagoon Cinq Cases 

Material DNA RNA DNA RNA DNA RNA DNA RNA 

Samples (N) 35 46 23 25 35 36 69 73 

Raw reads 62,468 66,243 54,961 104,909 59,381 90,070 68,990 61,756 

Processed 

reads 
50,923 55,880 43,171 71,206 48,033 63,605 56,897 45,000 

Total ASVs 11,731 8,555 13,989 12,831 13,335 11,441 16,393 14,561 

Unclassified 

taxa (%) 
9.5 2 13.4 10 4.1 3.5 17.1 8.7 

Shannon 

(H’) 3.99 2.17 4.86 4.23 3.97 3.05 4.82 4.12 

Faith’s PD 230.9 94.6 350.1 236.5 254.7 144.5 322.8 207.1 

Chao1 2147.4 659.8 4026.5 2770.7 2420.3 1451.1 2230.3 1451.2 
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The tides drain and flush the porewater space with fresh seawater leading to oxic 

conditions with a mean Eh of +340 mV. All other geochemical measurements 

remained stable throughout the West Lagoon sediment and water column (Fig. 2). The 

North Lagoon cores were sampled near a red-footed booby (Sula sula) colony (Fig. 

1c, Table 1), leading to increased PO4
3- concentrations due to their droppings 

(Supplementary Table S1). The sediment was fine to coarse carbonate mud, silt, and 

shell debris with fully reducing conditions. Below a surface zone (0-7.5 cm bsf), total 

alkalinity (TA), NH4
+, Cl-/SO4

2- ratio and ΣH2S significantly increased in a sulphate 

reduction zone (10-17.5 cm bsf; Fig. 2, Supplementary Table S2). The South Lagoon 

sediment was sampled near the highly bioturbated mangrove edge on a large tidal flat. 

The sediment consisted of up to 40°cm deep fine-grained, grey carbonate mud (Fig. 

1d, Table 1) with a negative porewater Eh. Following a surface zone with low Cl-/SO4
2- 

from 0-2.5 cm bsf, an enhanced sulphate reduction zone with high Cl-/SO4
2- and a peak 

in ΣH2S was observed between 5-15 cm. The bottom 15-40 cm bsf were traversed by 

mangrove roots and debris, which explain the increase in C/N from marine values 

around 10 to more terrestrial values above 15 [16] (Fig. 2, Supplementary Table S1). 

Sulphate reduction and ammonification were diminished in this zone, as Cl-/SO4
2-, 

ΣH2S, total alkalinity (TA) and NH4
+ dropped in concentration. The Cinq Cases pool 

system on the island of Grand Terre (Fig. 1e, Table 1) is dependent on meteoric water 

during the rainy season (November-April) and occasional flooding from the lagoon 

during spring tides. Some areas experience minor tidal water level fluctuations, 

suggesting low connectivity to marine waters through the karstic limestone [12]. The 

sediment was covered by a 1-2 cm thick microbial mat with peak concentrations of Cl-

/SO4
2-, ΣH2S, TA and NH4

+. The underlying sediment consisted of light grey silt and 

showed a considerable decrease in concentration of the same porewater components. 

The drop occurred alongside a significant increase in salinity from 56 g/kg in the mat 

to 82 g/kg at 10 cm bsf (Fig. 2, Supplementary Table S2). The Eh increased from 

reducing conditions (-41 mV at 0 cm bsf) to increasingly oxidizing conditions, 

stabilizing at +150 mV around 10 cm bsf. Below 10 cm of depth Cl-/SO4
2- recovered 

to values around 7.1 and the other porewater components remained stable. A further 

change in sediment stratification was observed as a high TOC layer between 22.5–27.5 

cm bsf. TIC was almost completely absent in this layer, which had an ochre colour. 

Total N and S in the sediment matched the peak in TOC (Fig. 2). The deepest sediment 
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layer at Cinq Cases (30-35 cm bsf) was dark brown in colour (Fig. 1e) and rich in 

plant-based organic matter as the C/N ratio reached its maximum (Fig. 2).  

 

Bacterial community composition and diversity in sediments of Aldabra 

Sequencing of the V3-V4 region of 16S rRNA genes (total or DNA-based community) 

and transcripts (active or RNA-based community) yielded a total of 8,473,178 (DNA) 

and 9,941,279 (RNA) high-quality reads. On average 79 % of the reads passed 

bioinformatic processing and taxonomic assignment (Table 1, Supplementary Table 

S3). The final amplicon sequence variant (ASV) count was 32,331 in the total and 

28,212 in the active community. Bacterial diversity and richness were significantly 

higher in the total than in the active community, which is also reflected in the 

proportion of unclassified taxa (Table 1). The average amount of unclassified taxa was 

highest at Cinq Cases for DNA-based (17.1 %) and in the North Lagoon for RNA-

based communities (10 %) (Table 1). Faith’s phylogenetic diversity (PD) ranged from 

230.9 in the total and 94.6 in the active community of the West Lagoon to 350.1 (DNA) 

and 236.5 (RNA) in the North Lagoon (Table 1, Fig. 3).  
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Figure 3. Overview of phylogenetic diversity gradients (a) and bacterial community 

composition (b) along sediment cores of the Aldabra Atoll. a: Faiths’ phylogenetic diversity 
(PD) of the DNA and RNA-based community in relation to depth at each sampling site. b: 

Most abundant bacterial phyla (> 5 % relative abundance in at least one sample) in the total 

(DNA) and potentially active (RNA) community of the sediment and water column (W). Phyla 

below the threshold are summarized as rare taxa. Replicate samples from each core were 

averaged by depth. The most abundant phyla are highlighted by black boxes in the legend. 

Shading (a) and gaps (b) highlight the geochemical zonation. 

The richness indicator Chao1 followed the same pattern (Table 1). In the West Lagoon, 

only bacterial richness in the active community decreased significantly with depth 

(Supplementary Table S2). The high diversity in the North Lagoon (0-7.5 cm bsf) 

occurred alongside increased phosphate and TOC concentrations and decreased in the 

sulphate reduction zone (10-17.5 cm bsf). In the South Lagoon, diversity and richness 

decreased significantly from the enhanced sulphate reduction zone to the underlying 

sediment. At Cinq Cases the sulphate reduction zone and highest diversity coincided 

with the microbial mat (0-2.5 cm bsf). Below this zone diversity fluctuated alongside 

changes in Cl-/SO4
2- ratio, salinity, and TOC (Fig. 2, Fig. 3). Both DNA-based 
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phylogenetic diversity and richness decreased significantly with sediment depth 

alongside extracted DNA concentrations (Supplementary Table S2).  

 

Total and active bacterial community structure along sediment cores 

The compositions of the total and active bacterial community did not differ 

significantly from each other (Procrustes: correlation = 0.816, p-value = 0.001, n = 

130; Fig. 4). The Cinq Cases community clustered in accordance with the geochemical 

zones determined by the porewater profiles (Fig. 2), while the surface and sulphate 

reduction zones of the North and South Lagoon overlapped. The sediment crust in the 

West Lagoon (0-2.5 cm bsf) was treated as individual zone and clustered separately in 

the total, but not in the active community (Fig. 4). 

 

Figure 4. Non-metric multidimensional scaling of total and active bacterial community 

composition, geochemical zonation and significantly correlated environmental factors. 

NMDS based on a Bray-Curtis distance matrix of all DNA- and RNA-based sediment and 

water samples. The ASV table was normalized using GMPR [75], and technical and biological 

replicates were averaged. Outlines indicate the geochemical zonation. Environmental fit was 

plotted if p ≤ 0.05 (Supplementary Table S2) using R2 as arrow length. 

The most abundant bacterial phyla (Fig. 3) and genera (Supplementary Fig. 1) 

highlight broad shifts in community composition along the sediment cores. 

Association networks were calculated to identify key genera which preferentially 

occur within the total or active community and each geochemical zone (Fig. 5, 

Supplementary Fig. 2). 
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Figure 5. Genera associated with the total or active community fraction at each sampling 

site based on the geochemical zonation. The network was calculated using the multipatt 

analysis from the indicspecies package [81]. Circle sizes indicate the mean relative abundance 

between all samples. Edges are coloured according to their association strength to each target 

zone. Unclassified signifies ASVs which could not be taxonomically classified at genus level. 

The West Lagoon sediment was dominated by Gammaproteobacteria (Pseudomonas), 

which were also detected in some samples within the water column (Fig. 3, 

Supplementary Fig. S1). As they were present at all depths Pseudomonas members 

were not significantly associated with a particular sediment zone (Fig. 5). The top 0-

2.5 cm bsf consisted of a lithified crust, with high relative abundances of 

Alphaproteobacteria and Halodesulfovibrio (Fig. 3, Fig. 5), and was considered as a 

separate layer in the subsequent analysis. The crust was associated with cyanobacterial 

Gloeocapsopsis and Rhodobacteraceae, as well as uncultured Actinomarinales at the 

total and Tropicimonas at active community level. The total community of the crust 

had the highest amount of rare associated genera at the West Lagoon (Supplementary 

Fig. 2). The association index did not identify any abundant or rare genera associated 
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with the active community at 5-42.5 cm bsf. The total community in these sediments 

was associated with Chloroflexi and Thermoanaerobaculaceae (Fig. 5). 

The North Lagoon cores exhibited the highest bacterial diversity and richness 

(Table 1), its community shifting gradually with depth. Desulfobacterota, particularly 

Halodesulfovibrio, occurred up to 52 % relative abundance at DNA level and 

Fusobacteriota up to 49 % of at RNA level (Fig. 3, Supplementary Fig. S1), both 

increasing with sediment depth. At RNA level, the genus Propionigenium was strongly 

associated with the sulphate reduction zone at 10-17.5 cm bsf (Fig. 5) in which it was 

the most abundant genus. Campylobacterota (Fig. 3) were present within the water 

column (uncultured Arcobacteraceae) and throughout the sediments (Halarcobacter, 

Sulfurimonas) (Fig. 5, Supplementary Fig. S1). Halarcobacter was also associated 

with RNA-based community at 0-7.5 cm bsf (Fig. 5).  

There was no clear community shift from surface to sulphate reduction zone in 

the South Lagoon. The phylum and genus level community composition mirrored that 

of the North lagoon (Fig. 3, Supplementary Fig. S1) and clustered closely together 

(Fig. 4). The fusobacterial Propionigenium was present throughout the sediment, 

particularly in the active community (Supplementary Fig. S1). Most associated taxa 

were shared between surface and sulphate reduction zone. Cyanobacteria were more 

strongly associated with the total than the active community. A strong shift in bacterial 

community composition occurred at 17.5 cm bsf accompanied by a drop in 

phylogenetic diversity (Fig. 3). From 17.5 cm bsf, Halomonas contributed up to 87 % 

of the total and 66 % of the active community (Supplementary Fig. S1). The number 

of associated bacterial genera decreased to three in the RNA-based and four in the 

DNA-based community, namely Chromohalobacter (RNA), two uncultured 

Anaerolineae (DNA), Halomonas and Vibrio (shared) (Fig. 5). The same trend was 

observed for the fraction with relative abundances < 2 % (Supplementary Fig. S2). 

The sediment at Cinq Cases showed the strongest changes in community along 

the sediment column. Starting in the microbial mat and underlying sediment (0-2.5 

cm), the community shifted from abundant Alphaproteobacteria (Tropicimonas) to 

Cyanobacteria (Synechococcus), Desulfobacterota (Desulfovibrio) and increasing 

proportions of Actinobacteriota (Actinomarinales) at 5-10 cm bsf (Fig. 3, Fig. 5). 

Cyanobacteria peaked in the DNA-based community at 5-10 cm bsf, while the RNA-

based community harboured increased proportions of Campylobacterota (Fig. 3b). 
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Actinobacteriota and Gammaproteobacteria (Halomonas) were most abundant in the 

12-20 cm bsf zone (Fig. 3) where some of the lowest values for diversity were recorded 

(Fig. 3a). Higher relative abundances of Chloroflexi (DNA) and Alphaproteobacteria 

(RNA) were observed from 22.5-27.5 cm bsf alongside a peak in TOC and increasing 

phylogenetic diversity (Fig. 3a). The bottom sediment zone (30-35 cm bsf) was 

characterized by a high proportion of Firmicutes and Desulfobacterota (Fig. 3b). The 

association network for Cinq Cases showed that the total and active community at 0-

2.5 cm bsf shared most of their associated genera (> 5 %) (Fig. 5). A larger number of 

rare genera (< 5 %) was connected with the total (152) than with the active (54) 

community (Supplementary Fig. S2). At 5-10 cm bsf the campylobacterial 

Malaciobacter was associated with the total, while Synechococcus MBIC10613 was 

strongly associated with the active community. Alongside the low diversity, low TOC, 

total S and N (Fig. 2), a low number of genera were detected in association with the 

rare community from 12-20 cm bsf (Supplementary Fig. S2). The active community 

at 22.5-27.5 cm bsf was the most distinct from other sediment layers at Cinq Cases. It 

was associated with Alphaproteobacteria (e.g., Aestuariispira, Labrenzia, 

Caulobacter) and Marinobacter (Gammaproteobacteria; Fig. 5). The total community 

at this depth showed a preference of S085 Dehalococcoidia. The sediments from 30-

35 cm bsf were associated with Fusibacter in the total, and Desulfovibrio and 

uncultured Thermodesulfovibrionia in the active community (Fig. 5, Supplementary 

Fig. S1). The association network of rare genera (Supplementary Fig. S2) generally 

shows much less interconnectivity between the deeper sediments, than the network of 

most abundant genera (Fig. 5).  

Despite their spatial proximity, the bacterial community observed in the water 

samples differs strongly from the sediment communities. The amount of unknown and 

rare bacterial taxa within the water samples was low with < 9 % relative abundance in 

the total and < 7 % of the active community (Fig. 3b). Of the overall 30 most abundant 

genera, only few appeared in the water column with low relative abundances 

(Supplementary Fig. S1). In addition to the ubiquitous Gammaproteobacteria 

(Litoricola), the water column harboured high abundances of Alphaproteobacteria 

(HIMB11) and Bacteroidota (uncultured Cryomorphaceae) at total community level 

(Fig. 3, Supplementary Fig. S1). Bacteroidetes reached only low relative abundances 

in the active community, while Firmicutes were more abundant. 
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Discussion 

The Aldabra Atoll provides an ideal opportunity to study bacterial succession and 

geochemical zonation under changing porewater dynamics. Due to strong tidal 

currents, sediments poorly accumulate in the lagoon and are limited in depth 

depending on the karst structure of the limestone below. Nevertheless, we expected to 

find bacterial communities and porewater gradients reflecting the standard 

geochemical zonation. This would follow an energetically favourable progression 

from oxygen to nitrate to sulphate as main electron acceptor [2 and references therein]. 

Our results, however, show overlapping signatures of porewater dynamics, location 

and time which diverge from this pattern. 

A gradient of decreasing porewater dynamics can be observed from the West 

Lagoon, over the North and South Lagoon, to Cinq Cases (Fig. 6).  

 

Figure 6. Model of Aldabra’s sediment environments, detected bacterial key taxa and 

geochemical zones. The sampling sites are ordered by sediment dynamic from left to right, 

starting with the highest. Most abundant bacterial taxa at each site are indicated close to the 

respective sediment core. Pictograms indicate further factors, such as macrofaunal input, 

bioturbation and mangrove roots and detritus. 

In the West Lagoon the fluctuation is high as sediments fall dry at low tide leading to 

a complete exchange of porewaters. This also results in a tidal exchange of the bacterial 

community, visible as overlap of water and sediment communities of the West Lagoon 

(Fig. 4). Planktonic taxa which are associated with the water column, i.e. Litoricola 

and alphaproteobacterial HIMB11 [17,18], do not accumulate in the sediment. Like 

the ooid sediments of the Bahamas [19], the Kiritimati lagoon [20], and Wadden Sea 

sands [21], the sand community of the West Lagoon is dominated by 

Gammaproteobacteria, primarily Pseudomonas and Vibrio (Fig. 3b, Supplementary 



RESULTS AND PUBLICATIONS 

71 

 

Fig. S1). Pseudomonas may persist by attaching to sand particles thereby resisting the 

strong advection caused by the tides [19]. No strong geochemical changes or microbial 

gradients can be observed along the West Lagoon sediment cores, however, a lithified 

crust at the surface beckons further investigation. The total community of the crust (0-

2.5 cm bsf) is inhabited by Desulfobacterota (Fig. 3b) and diverse rare taxa 

(Supplementary Fig. S2), which may represent remnant members of a microbial mat. 

As the mat dried out and calcified, their DNA may have been protected by 

exopolymeric substances in the surrounding mat [6 and references therein]. In 

comparison only the uppermost sample of the active community reflects the current 

biofilm where phototroph Gloeocapsopsis are potentially involved in the lithification 

process of the crust [22]. The total community of the remaining sediment (5-42.5 cm 

bsf) shows traces of anaerobic digesters, such as Anaerolinea or 

Thermoanaerobaculales (Fig. 5). They may have accumulated through tidal porewater 

drag from the mangrove hinterland and are either inactive under the oxic conditions or 

persist in oxygen-poor micro-niches [19,23 and references therein]. 

The North and South Lagoon represent environments with intermediate 

porewater exchange (Fig. 6). The sediments do not fall completely dry at low tide and 

are affected by mixing through the currents and bioturbation. Similar to the West 

Lagoon, Bacteroidota are most abundant in the total community of the lagoon water 

(Fig. 3b). As globally abundant primary degraders of phytoplankton blooms [24,25], 

their activity may be linked to phytoplankton abundance on Aldabra. Blooms may 

occur in eddies around the atoll [26] or more stagnant areas in the lagoon. Site specific 

differences in the lagoon water were most obvious in the North Lagoon where the 

presence of a bird colony lead to increased phosphate concentrations and an 

enrichment of Campylobacterota (Fig. 3b) including uncultured Arcobacteraceae and 

Arcobacter, which are typical for faecal contamination [27]. The porewater profiles of 

the North and South Lagoon mud and silt sediments follow the standard geochemical 

zonation [2] with a surface zone of up to 7.5 and 2.5 cm in the North and South Lagoon 

respectively, and an enhanced sulphate reduction zone below. The transition can be 

identified through a significant increase in Cl-/SO4
2- ratio, ΣH2S and TA (Fig. 2). The 

bacterial community reflects these transitions gradually at best resulting in a mixed 

surface and sulphate reduction zone. We detected typical photo(hetero-)troph 

Cyanobacteria (Pleurocapsa, Cyanobium) and Alphaproteobacteria (Tropicimonas, 
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Roseivivax) indicative of a surface zone with oxygen and light exposure, alongside 

bacteria known for their anaerobic metabolism (Propionigenium, Synergistaceae) and 

sulphate reduction ((Halo-)Desulfovibrio) (Fig. 3, Fig. 5, Supplementary Fig. 1). 

Benefiting from the sulphate reduction, Halarcobacter [28] and Candidatus Thiobios 

[29] oxidize sulphur compounds in the sediment directly above the highest measured 

ΣH2S concentrations (Fig. 5). Proteolytic Synergistia (EBM 39), which were 

frequently observed alongside Desulfobacterota, provide additional sulphate and 

short-chained fatty acids [30]. Notably, Synergistales have been linked to methane 

production, as they grow syntrophically with methanogenic archaea [31]. Increased 

abundance of Synergistales may, therefore, be regarded as an indicator for 

methanogenesis particularly under the strongly reducing Eh of the North and South 

Lagoon sediments. Bacterial ammonia oxidizers were rarely detected, yet, ammonia-

oxidizing archaea may be prevalent near the sediment surface [32]. The high 

phylogenetic diversity and variety of metabolic groups in these sediments, can be 

linked to both the porewater exchange with the water column [4] and strong 

bioturbation by i.e. fiddler crabs [5], which introduce nutrients and oxygen. The 

mixing also creates a multitude of microinches in the mainly anoxic sediments, leading 

to an enrichment of rare bacterial genera (Supplementary Fig. S2). This results in the 

observed mixed surface and sulphate reduction zone of the bacterial community, which 

cannot be distinguished as clearly as the porewaters imply.  

While the North Lagoon sediments end with the sulphate reduction zone, the 

South Lagoon shows an additional atypical zone below. The porewater measurements 

and bacterial diversity drop substantially below 17.5 cm bsf (Fig. 2, Fig. 3). Although 

the presence of methanogenic archaea cannot be excluded, the abundant aerobic and 

facultatively anaerobic Halomonas, Vibrio and Chromohalobacter [33–35] do not 

match our expectations for anoxic sediments. We hypothesize that the change in 

bacterial community may rather be linked to a change in sediment age and abundant 

mangrove detritus. The change occurs below 17.5 cm where low quantities of 

extractable DNA and RNA, lower bacterial diversity and richness (Supplementary 

Table S1) indicate low microbial biomass. At this stage, the majority of remnant DNA 

from previous inhabitants may already be degraded, removing most rare and 

sedimented taxa. Deeper sediment layers have previously been found to record 

generalist communities, which can persist on less labile substrates through their 
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efficient energy metabolism [15,36]. Even though the age difference is short on a 

geological time scale, this would explain the high relative abundances of a few 

versatile and specialised genera. For instance, Gammaproteobacteria have been linked 

with the ability to degrade organic matter in sediments with low levels of oxygen [37]. 

The available mangrove detritus may be in various states of decomposition visible 

through the increase in C/N ratio (Fig. 2) [38]. As both Halomonas and 

Chromohalobacter have been observed to break down even aromatic hydrocarbons 

[39], they may thrive on the complex mangrove detritus. Other taxa, such as uncultured 

Anaerolineae may follow a different strategy and persist in this sediment through a 

reduced metabolism and specialisation for starvation [40]. This would also explain 

their reduced abundance at active community level. Deeply burrowing marine fauna 

or plant-degrading fungi may also impact the older sediment [38,41].  

At the first glance, Cinq Cases is the most settled of the four settings regarding 

the exchange of porewaters. It is barely affected by tidal fluctuations, therefore time 

and season become dominant factors. The water level at Cinq Cases is mainly 

determined by the rainy season and high spring tides, as well as strong evaporation 

during the dry season [12]. This has allowed the accretion of sediments over time, 

creating five distinct sediment layers including a microbial mat on the surface (Fig. 6). 

We expected to see clear porewater zones and corresponding community shifts in the 

cores, together with fully reducing redox conditions. On the contrary, we encountered 

mainly oxidizing sediments with strongly overlapping signatures. Starting at the 

sediment surface, the microbial mat drives the porewater geochemistry of the first few 

centimetres. It harbours the main sulphate reduction and ammonification zone of the 

sediment, indicated by peaks in ΣH2S and ammonia (Fig. 2). The bacterial community 

composition resembles previous studies of microbial hypersaline mats and further sub-

sectioning would likely yield a finer zonation [42]. Below the mat, a strong diffusion 

gradient to moderately hypersaline conditions drives the porewater geochemistry up 

to 10 cm bsf. The diffusion gradient and the change to oxidizing Eh suggests a 

complete desiccation event in the past resulting in older evaporated sediment below 

10 cm bsf. The presence of Synechococcus in the total but not in the active community 

at 0-5 cm bsf, indicates remnants of former cyanobacterial blooms or mat. As a pile up 

of mats is often observed [43] this sediment may represent the old sediment surface. 

Like the community at 17.5-35 cm bsf in the South Lagoon, we find a decrease in 
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diversity, as well as Halomonas and Chromohalobacter associated with the active 

community below 12.5 cm bsf (Fig. 5). As mentioned above, these taxa may be 

adapted to a change to less labile organic matter and, in this case, salinity. As the C/N 

ratio increases and the metabolic products of the fast-lived surface community become 

scarce, the ability to degrade complex organic matter may become an increasingly 

important driver for the Cinq Cases community. This culminates in a high TOC layer 

(22.5-27.5 cm bsf) where the typical carbonate particles (e.g., mollusc and green algal 

fragments, foraminifera) of Aldabra are absent. The layer harbours high abundances 

of aerobic Alphaproteobacteria (Caulobacter, Aestuarispiira) and Marinobacter (Fig. 

5), which have been found in putrid [44] and hydrocarbon-producing systems [45], 

suggesting that they can degrade the organic matter responsible for the high TOC. 

Caulobacter have been reported to flourish in organic soils and survive desiccation 

[46]. As the Eh and salinity suggest the occurrence of a desiccation event (Fig. 2), this 

would explain their presence at this depth, as well as the overall low phylogenetic 

diversity (Fig. 3a). Slow growing Desulfopila [47] and Fusibacter (Firmicutes), which 

have been found to occur in saline sediment with low sulphate reduction rates [48], 

may survive through slower fermentation of a wide range of carbohydrates [49]. The 

bacterial community of the deepest sediment (30-35 cm bsf) shows similarities to the 

uppermost 5-10 cm bsf, as the same sulphate reducing taxa are associated with the 

active community (Fig. 5). The higher abundance of Fusibacter in the total than in the 

active community, suggests they only tolerate the suboptimal oxidizing conditions and 

persist in the sediment through a maintenance metabolism [36]. The change to more 

plant-bound organic matter (higher C/N and leaf litter) at this depth may again explain 

the change in community composition [38], as well as the switch in dominant sulphate 

reducers throughout the cores (Fig. 5).  

To conclude the results of all sampling sites, we find that the bacterial 

communities of the Aldabra’s sediments are dominated by Gammaproteobacteria and 

Desulfobacterota at both the total and active community level (Fig. 3). These bacterial 

taxa are commonly found in marine or saline sediments and water samples ranging 

from the Arctic [50] to the tropics [51] and the deep sea [52]. Desulfobacterota are the 

main sulphate reducers on Aldabra, albeit the dominant genera differ between 

sampling sites. While the lagoon sediments harbour mainly Halodesulfovibrio, their 

environmental niche is filled by Desulfovibrio at Cinq Cases. The latter have been 
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found in extreme hypersaline sediment and may be better adapted to saline conditions 

[53]. Anaerobic Propionigenium occur exclusively in the lagoon sediments, where 

they have been associated with bioturbation [54]. The higher diversity and amount of 

associated genera in the total community, particularly in the surface sediments (Fig. 5, 

Supplementary Fig. S2), are in line with observations, that sequencing of sediment 

DNA shows an overlap between current community members and free environmental 

DNA, former, dormant, and sedimented taxa [6]. 

The changes in bacterial community composition are related to short-term 

porewater fluxes as well as long-term seasonal and episodic changes. The West 

Lagoon, characterized by the strong porewater exchange, harbours an established 

community of aerobic heterotrophs. As the tidal water exchange occurs regularly, this 

allows only few anaerobic taxa to remain in anaerobic micro-niches. The North and 

South Lagoon are less affected by the tides, allowing them to maintain a highly diverse 

surface sediment community similar to other tropical locations [55]. A switch in 

sediment age at 17.5 cm depth is signified by a substantial decrease in diversity, 

including a shift in dominant metabolic type from sulphur cyclers and methylotrophs 

to denitrifying and complex organic matter degrading Gammaproteobacteria. The 

latter can cope with the concomitant shift from readily available organic matter to 

mangrove detritus. Similar community shifts related to organic matter have been 

observed for instance in older Baltic Sea sediments [56]. Cinq Cases shows the least 

porewater exchange at first glance, depending on the seasons rather than the tides. 

However, on a long-term scale the small water body in comparison to the lagoon 

experiences episodic exchanges of porewaters due to desiccation events. This results 

in formation of oxidizing hypersaline sediments at the bottom, covered by less saline 

Holocene sediment and a microbial mat. As drought conditions on Aldabra have 

tripled in the past fifty years [10], desiccation events driving the bacterial community 

may become increasingly frequent. With the ongoing climate change, this may 

ultimately lead to the disappearance of long-term stable pools including the previously 

described stromatolites [12]. 
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Methods 

Sample collection and storage 

Samples were taken during an expedition to the Aldabra Atoll in November 2017. 

Sediments were sampled using push cores made from PVC tubes (Ø 63 mm, 

Thyssenkrupp Plastics, Essen, Germany) at three sites on the tidal flats of the lagoon 

(North, South and West Lagoon), and one site at the Cinq Cases pools on Grand Terre 

island (Fig. 1). At each sampling site, three sediment cores were taken for microbial 

analysis and one each for porewater and sediment analyses (Supplementary Fig. S3). 

The cores were subsampled at intervals of 2.5-5 cm bsf with the exclusion of 1 cm of 

the outer rim, to avoid cross contamination from the coring tube. Three 200 ml water 

samples were taken 10 cm above each sediment and filtered through a 0.2 µm 

polyethersulfone (Sartorius, Göttingen, Germany) and 3.0 µm polycarbonate (Merck, 

Darmstadt, Germany) filter sandwich with a diameter of 47 mm. Filter sandwiches 

were placed on NALGENE™ reusable filter holders with receivers and water samples 

filtered using vacuum from a NALGENE™ manually operated PVC Vacuum Pump 

(both Thermo Fisher Scientific, Waltham, MA, USA). All samples were immediately 

stored in RNAprotect™ Bacteria Reagent (Qiagen, Hilden, Germany). After transport, 

RNAprotect™ Bacteria Reagent was removed from all samples by centrifugation at 

3,150 x g for 1 hour. The supernatant was decanted, and samples were placed at -80 °C 

for long-term storage. 

Coextraction of DNA and RNA 

Sediment samples were thawed on ice and homogenized before weighing into the 

extraction tubes. DNA and RNA were extracted simultaneously using the RNeasy™ 

PowerSoil Total RNA Extraction kit and the RNeasy™ PowerSoil DNA Elution kit 

and 1 g of sediment or half of a filter (water samples) per extraction as recommended 

by the manufacturer (Qiagen, Hilden, Germany). Final elution was performed with 

50 µl nuclease-free water (50 µl). In addition, RNA samples were supplemented with 

1 µl of RiboLock RNase Inhibitor (Thermo Fisher Scientific, Waltham, MA, USA) 

before storage at -80 °C. DNA and RNA concentrations were measured using a 

NanoDrop 1000 (Thermo Fisher Scientific, Waltham, MA, USA). 

RNA purification and reverse transcription 

Potential DNA contaminations were removed from RNA samples according to 

Schneider et al., [57]. RNA was purified using the RNeasy™ MinElute kit according 
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to manufacturers’ instructions (Qiagen). Purified RNA was reverse transcribed using 

SuperScriptIV (Thermo Fisher Scientific) and the manufacturers’ instructions for 

gene-specific primers with the reverse primer S-D-Bact-0785-a-A-21 [58]. To inhibit 

RNases 1 µl of RiboLock (Thermo Fisher Scientific) was added to the reverse 

transcription reaction. cDNA was treated with 0.5 µl of RNase H (Thermo Fisher 

Scientific) for 20 min at 37 °C. 

Amplification and sequencing of bacterial 16S rRNA genes and transcripts 

Bacterial 16S rRNA genes and transcripts were amplified by PCR using V3-V4 

primers (SD-Bact-0341-b-S-17 and S-D-Bact-0785-a-A-21 [58], purified and 

sequenced as described by Berkelmann et al. [59]. 

Raw read and amplicon sequence processing 

Raw reads were quality filtered and processed as described in detail by von 

Hoyningen-Huene et al. [60]. Where possible, processes were parallelized with GNU 

parallel 20190322 [61] and comprised the following steps and bioinformatic tools. 

Raw reads were quality-filtered with fastp 0.20.0 [62] and merged using PEAR v0.9.11 

[63]. Any remaining primer sequences were clipped using cutadapt 2.5 [64]. After 

merging, sequences were processed into ASVs with VSEARCH v.2.14.1 [65]. This 

included size-sorting, dereplication and denoising using the UNOISE3 algorithm [66] 

and default parameters. Chimeras were removed using a de novo and reference-based 

search against the SILVA SSU 138 Ref NR 99 database [67]. Quality filtered reads 

were mapped back to the ASVs using usearch_global in VSEARCH. ASVs were 

taxonomically assigned using BLAST 2.9.0+ [68] against the SILVA SSU 138 Ref 

NR 99 database with an identity cutoff at ≥ 90 %. Uncertain blast hits were removed 

as described previously [59]. ASV tables were generated and formatted using biom 

tools v1.0 [69]. ASVs were aligned using MAFFT v7.407 [70] and a phylogenetic tree 

was calculated using FastTreeMP 2.1.10 [71]. The tree was midpoint-rooted using 

FigTree v1.4.4 [72]. The fasta file including all ASVs can be found in Supplementary 

File S1 and the ASV table in Supplementary Table S4. 

Data analysis and visualisation 

All data were analysed using R Version 4.0.0 [73] and RStudio Version 1.3.959 [74]. 

Extrinsic domains (chloroplasts, mitochondria, archaea, eukaryota) were removed 

from the dataset. ASVs with a blastn identity below 95 % were labelled “unclassified”. 

ASV tables were normalized using two different methods depending on the analysis. 
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GMPR was used as normalization for comparative analysis of the microbial 

community [75] whereas diversity and richness indices were calculated from rarefied 

count data as recommended by Pereira et al. [76]. The former included the bar charts, 

heatmaps, NMDS and association networks. Data were analysed and visualized using 

ampvis2 [77], vegan [78] and ggplot2 [79]. The ASV count table was rarefied at 

19,906 reads. The phylogenetic diversity (Faith’s PD) was calculated using picante 

[80], a midpoint-rooted phylogenetic tree and the rarefied ASV table. Sediment zones 

were determined from the geochemical profiles (Fig. 2). Association networks for 

abundant and rare genera were calculated using the GMPR-normalized table of taxa 

above or below 2 % (West, North, South Lagoon) or 5 % (Cinq Cases) relative 

abundance. The geochemical sediment zones combined with total or active community 

were used as grouping variable for the multipatt analysis [81]. The resulting network 

table was visualized using an edge-weighted spring-embedded layout in Cytoscape 

version 3.8.2 [82]. 

 The Map of Aldabra was kindly supplied by the Seychelles Island Foundation 

(SIF). The global map indicating the location of Aldabra was generated using ArcGis 

Desktop 10.7.1. [83] and Esri World imagery (Sources: Esri, DigitalGlobe, GeoEye, 

Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AEX, Getmapping, 

Aerogrid, IGN, IGP, swisstopo, and the GIS User Community). Maps, photographs, 

and plots were combined using Inkscape 1.0 [84]. 

Porewater and bulk sediment geochemistry 

At each sampling site except Cinq Cases, one core was taken for bulk geochemistry 

and one for pore water chemistry in close lateral distance. The core at Cinq Cases was 

used for both porewater and bulk geochemical analysis. Each core was subsampled at 

intervals of 2.5-5 cm of depth. Redox potential (Eh) and pH were measured directly 

through boreholes in the cored sediments within 24 hours after sampling with a 

portable WTW 340i pH meter, equipped with an Inlab Solids Pro pH-electrode 

(Mettler Toledo, Columbus, OH, USA) and a Pt 5900 A redox electrode (SI Analytics, 

Mainz, Germany; standard deviation ≤ 2 %). Porewater was extracted from the cores 

with 5 cm CSS Rhizon samplers (Rhizosphere, Wageningen, Netherlands). Porewater 

alkalinity (TA), cation (Ca2+ and Na+) and anion (Cl- and SO4
2- ), as well as NH4

+, 

PO4
3-, ΣH2S, and bulk organic (TOC), inorganic carbon (TIC), C, N, and S, were 

measured as described by Fussmann et al. [85]. Measured data were converted from 
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molarity (mmol/l) to molality (mmol/kg) by density calculations with the PHREEQC 

software package version 3 [86]. 

 

Data availability 

All raw sequences were deposited at the NCBI Sequence Read Archive as part of the 

BioProject PRJNA611521 with the accessions SRR11295008- SRR1129550. An 

overview can be found in Supplementary Table S3. 
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Supplement: 

Contents: 

Supplementary Figure S1. Heatmap of the 30 most abundant genera in the total (DNA) 

and active (RNA) bacterial community. Replicates were normalized, transformed into 

relative abundances, and averaged by depth. Gaps indicate the geochemical zonation. 

The figure can also be found on the enclosed CD and .zip folder:  

Supplement\Chapter_C3\Supplementary_Figure_S1.docx. 

 

Supplementary Figure S2. Association networks of the rare taxa in the total and active 

bacterial community of each geochemical zone. The abundance cut-off was set to < 

2% for all sites except Cinq Cases where <5% was used. Named genera with an 

association strength above 0.7 are indicated. Edge colour and width are scaled 

according to the association strength of each node to the target sediment zone.  

The figure can also be found on the enclosed CD and .zip folder:  

Supplement\Chapter_C3\Supplementary_Figure_S2.docx. 

 

Supplementary Figure S3. Original photographs of all sediment cores from the 

different sampling sites. Cores K01-03 of each site were used for bacterial community 

analysis. Cores K04 were used for bulk chemistry measurements at all sampling sites. 

Core K04 was also used for porewater chemistry measurement at Cinq Cases. For the 

remaining site porewaters were measured in separate cores, namely K04 in the West 

Lagoon, K06 in the North Lagoon and K07 in the South Lagoon. All used cores are 

highlighted in bold.  

The figure can also be found on the enclosed CD and .zip folder:  

Supplement\Chapter_C3\Supplementary_Figure_S3.docx. 

 

Supplementary Table S1. Sample metadata including location, bacterial diversity, 

porewater and bulk sediment geochemical data.  

The table can be found on the enclosed CD and .zip folder:  

Supplement\Chapter_C3\Supplementary_Dataset_Table_S1.xlsx. 

 

Supplementary Table S2. Spearman Rank correlations of depth against geochemical 

and bacterial diversity data (a). Environmental fit correlations (b). a: Significant 

correlation with a Rho ≥ 0.5 or ≤ -0.5 and a significance above 0.001 are highlighted. 

Significant p-values are indicated as asterisks: *** ≤ 0.001, ** ≤ 0.01, * ≤ 0.05. b: 
Results of the environmental fit analysis used for the NMDS arrows in Fig. 4.  

The table can also be found on the enclosed CD and .zip folder:  

Supplement\Chapter_C3\Supplementary_Dataset_Table_S2.xlsx. 
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Supplementary Table S3. Sequencing raw read counts, accession numbers and 

processing statistics.  

The table can be found on the enclosed CD and .zip folder:  

Supplement\Chapter_C3\Supplementary_Dataset_Table_S3.xlsx. 

 

Supplementary Table S4. Unnormalized ASV count table with taxonomic assignments. 

All hits with an identity <95% and hit quality < 93% are indicated as “No blast hit”. The 

table can be found on the enclosed CD and .zip folder:  

Supplement\Chapter_C3\Supplementary_Dataset_Table_S4.xlsx. 

 

Supplementary Data File S1. ASV sequences of the dataset in fasta format.  

The file can be found on the enclosed CD and .zip folder:  

Supplement\Chapter_C3\Supplementary_Dataset_Data_S1.txt. 
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Supplementary Figure S1. Heatmap of the 30 most abundant genera in the total (DNA) and active (RNA) bacterial community. Replicates were 

normalized, transformed into relative abundances, and averaged by depth. Gaps indicate the geochemical zonation. 



RESULTS AND PUBLICATIONS 

87 

 

 
Supplementary Figure S2. Association networks of the rare taxa in the total and active bacterial community of each geochemical zone. The abundance 

cut-off was set to < 2% for all sites except Cinq Cases where <5% was used. Named genera with an association strength above 0.7 are indicated. Edge colour 

and width are scaled according to the association strength of each node to the target sediment zone. 
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Supplementary Figure S3. Original photographs of all sediment cores from the different 

sampling sites. Cores K01-03 of each site were used for bacterial community analysis. 

Cores K04 were used for bulk chemistry measurements at all sampling sites. Core K04 was 

also used for porewater chemistry measurement at Cinq Cases. For the remaining site 

porewaters were measured in separate cores, namely K04 in the West Lagoon, K06 in the 

North Lagoon and K07 in the South Lagoon. All used cores are highlighted in bold. 
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Supplementary Table S2. Spearman Rank correlations of depth against geochemical and bacterial diversity data (a). Environmental fit correlations 

(b). a: Significant correlation with a Rho ≥ 0.5 or ≤ -0.5 and a significance above 0.001 are highlighted. Significant p-values are indicated as asterisks: *** ≤ 
0.001, ** ≤ 0.01, * ≤ 0.05. b: Results of the environmental fit analysis used for the NMDS arrows in Fig. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

a) Location 
West 

Lagoon 

North 

Lagoon 

South 

Lagoon 
Cinq Cases 

Faith’s PD 
(DNA) 

-0.394* -0.204 -0.796*** -0.682*** 

Faith’s PD 
(RNA) 

-0.389** -0.634*** -0.838*** -0.197 

Chao1 (DNA) -0.185 0.047 -0.743*** -0.618*** 

Chao1 (RNA) -0.498*** -0.538** -0.807*** -0.414*** 

DNA (ng/µl) 0.136 0.154 -0.169 -0.529*** 

RNA (ng/µl) 0.169 0.125 0.208 -0.360** 

RNA:DNA ratio 0.190 0.068 0.681*** 0.538*** 

pH 0.604*** -0.966*** 0.282 -0.784*** 

eH (mv) 0.823*** -0.990*** -0.982*** 0.498*** 

Salinity (g/kg) -0.413* 0.918*** -0.989*** 0.593*** 

TA -0.438* 0.978*** -0.420** -0.446*** 

NH4+ -0.127 0.993*** -0.374* -0.550*** 

Cl-/SO4
2- 0.321 0.978*** 0.360* 0.053 

∑H2S NA 0.966*** 0.573 -0.829*** 

PO4
3- -0.277 0.139 0.318 -0.360** 

TIC -0.369* -0.925*** 0.159 -0.313** 

TOC -0.275 -0.948*** 0.159 0.369* 

Total N -0.883*** -0.739*** -0.872*** -0.301** 

Total S 0.683*** -0.948*** 0.301 0.461*** 

C/N 0.807*** -0.562** 0.655*** 0.946*** 
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b) Environmental fit: total community Environmental fit: active community 

 NMDS1 NMDS2 r2 Pr(>r) significance NMDS1 NMDS2 r2 Pr(>r) significance 

DNA/RNA (ng/µl) -0.42629 -0.90459 0.185 0.001 *** -0.57163 -0.82051 0.1537 0.001 *** 

Salinity (g/kg) -0.99028 -0.13908 0.6239 0.001 *** -0.94629 0.32333 0.709 0.001 *** 

pH 0.54466 0.83865 0.6787 0.001 *** 0.83496 0.55032 0.6304 0.001 *** 

eH (mv) -0.45681 0.88956 0.8256 0.001 *** -0.22151 0.97516 0.667 0.001 *** 

TA -0.36731 -0.9301 0.352 0.001 *** -0.58076 -0.81407 0.2963 0.001 *** 

NH4+ 0.18334 -0.98305 0.3613 0.001 *** 0.03014 -0.99955 0.3997 0.001 *** 

PO4
3- -0.00052 -1 0.2098 0.001 *** -0.19062 -0.98166 0.2714 0.001 *** 

∑H2S 0.52313 -0.85225 0.3641 0.001 *** 0.3187 -0.94786 0.4261 0.001 *** 

TOC -0.53804 -0.84292 0.4551 0.001 *** -0.76015 -0.64974 0.4867 0.001 *** 

TIC 0.83372 0.55219 0.6273 0.001 *** 0.98222 0.18774 0.6561 0.001 *** 

Total N -0.62726 -0.77881 0.5495 0.001 *** -0.86696 -0.49838 0.5417 0.001 *** 

Total S -0.70375 -0.71045 0.5251 0.001 *** -0.90788 -0.41924 0.5613 0.001 *** 

C/N 0.50512 -0.86305 0.175 0.001 *** 0.20025 -0.97975 0.1823 0.001 *** 

---           

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1        

Permutation: free           

Number of permutations: 999          
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Abstract 

Pontibacillus sp. ALD_SL1 and Psychroflexus sp. ALD_RP9 are two novel 

bacterial isolates from mangrove sediment and a moderately hypersaline pool on the 

Aldabra Atoll, Seychelles. The isolates represent two novel species were characterised 

physiologically and genomically. Pontibacillus sp. ALD_SL1 is a facultatively 

anaerobic yellow, motile, rod-shaped Gram-positive, which grows optimally at a NaCl 

concentration of 11%, pH 7 and 28 °C. It is the third facultatively anaerobic member 

of the genus Pontibacillus. The organism gains energy through the fermentation of 

pyruvate to acetate and ethanol under anaerobic conditions. The genome is the first 

among Pontibacillus that harbours a megaplasmid. Psychroflexus sp. ALD_RP9 is an 

aerobic heterotroph, which can generate energy by employing bacteriorhodopsins. It 

forms Gram-negative, orange, non-motile rods. The strain grows optimally at NaCl 

concentrations of 10%, pH 6.5-8 and 20 °C. The Psychroflexus isolate tolerated pH 

conditions up to 10.5, which is the highest pH tolerance currently recorded for its 

genus. Psychroflexus sp. ALD_RP9 taxonomically belongs to the clade with the 

smallest genomes. Both isolates show extensive adaptations to their saline 

environments yet utilise different mechanisms to ensure survival. 

 

Introduction 

We describe two novel bacterial isolates from the Aldabra Atoll, Seychelles. 

They represent two novel species within the Pontibacillus and Psychroflexus genera. 

Samples from mangrove sediment within the lagoon (Pontibacillus isolate) and water 

from a moderately hypersaline pool on Grand Terre island (Psychroflexus isolate) were 

used for enrichment and isolation of halophilic bacteria.  

The genus Pontibacillus belonging to the Bacillaceae was first described by 

Lim et al. as bacillus pertaining to the sea [1]. It harbours seven validated species, 

P. chungwhensis [1], P. halophilus [2], P. litoralis [3], P. marinus [4], P. salicampi 

[5], P. salipaludis [6], and P. yanchengensis [7]. Members of the Pontibacillus are 

Gram-positive, facultatively anaerobic, moderately halophilic, endospore-forming 

rods and are motile through peritrichous flagella. The isolates derive from marine-

related habitats including salt farms across Asia and marine lifeforms, such as sea 

anemones and sea urchins [8]. They require salt for growth, which generally ranges 
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from 0.5 to 25% (w/v) NaCl. Optimal growth was recorded between 2 and 10% (w/v) 

NaCl. The pH optimum ranges from 7 to 8 and optimal growth temperatures from 25 

to 40 °C. Members of Pontibacillus form white- to orange-pigmented smooth colonies 

with a diameter of 1 to 3 mm.  

 The second isolate belongs to the genus Psychroflexus within the family 

Flavobacteriaceae. It was isolated from the pink, lower water layer of a saline 

landlocked pool (Westpool D). Psychroflexus (meaning cold bend) was first described 

by Bowman et al. in 1989 [9], who isolated the strain Ps. torquis from Antarctic sea 

ice and re-classified Flavobacterium gondwanense [10] to Ps. gondwanensis. The 

genus encompasses 12 validated and two non-validated published species. 

Psychroflexus species were isolated from hypersaline to saline lakes [11, 12] and 

salterns in China [13], Hawaii [14], Korea [15, 16], Antarctica [17], as well as saline 

soil [18], cheese [19] and coastal sediments [20, 21]. Growth occurs between 0 and 

20% (w/v) NaCl, a pH of 6 to 10, and -16 to 40 °C, demonstrating a high diversity in 

temperature tolerance and global dispersal of the genus. The growth optimum is 

generally around 2 to 10% NaCl, pH 7 to 8, and 10 to 15 °C or 25 to 30 °C, depending 

on arctic or tropical origin. Most isolates occur within the latter temperature range, 

thereby differing strongly from the type strain. All isolates of this genus are orange in 

colour. 

In this study, we present two novel species affiliated to the Pontibacillus and 

the Psychroflexus genus. The isolates were characterised phenotypically (i) using 

standard microbiological techniques. In addition, complete genomes were generated 

using a hybrid approach of Illumina and Nanopore sequencing. Both genomes 

represent the second complete genome of the corresponding genus. The genomes were 

used to assess the phylogenetic affiliation (ii) and the potential metabolism (iii) of the 

strains.  

 

Materials and methods 

Isolation and culture 

Pontibacillus sp. ALD_SL1 and Psychroflexus sp. ALD_RP9 were isolated 

from halophile medium using mangrove sediment from the South Lagoon of the 

Aldabra Atoll (ALD_SL), Seychelles (9°26'34.8''S, 46°23'30.5''E) and water from the 
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bottom water layer of Westpool D also known as Ronny’s Pool (ALD_RP) 

(9°26'40.5''S, 46°27'6.8''E). The water (salinity 9.9%, pH 7.9, 0.10 mg/L O2, 32.5 °C) 

was sampled underneath a sharp halocline. The stratification of this pool was likely 

caused by the occurrence of the first rainfall, leading to a bacterial bloom in the 

sampled bottom layer. Prior to use, the untreated sediment was stored at -80 °C and 

the water sample at 4 °C. Liquid modified growth medium with 9% total salinity 

(MGM9) was prepared from 30% (w/v) concentrated saltwater stock solution (SW) as 

described by Dyall-Smith [22]. Briefly, the 30% SW was prepared from 240 g/L NaCl, 

30 g/L MgCl2 ∙ 6 H2O, 35 g/L MgSO4 7 H2O, 7 g/L KCl, 0.5 g/L CaCl2 ∙ 2 H2O and 

0.2 g/L NaHCO3 in deionized water. The pH was adjusted to 7.5 using 

tris(hydroxymethyl)aminomethane (Tris) buffer. For 1 L of MGM9, 300 mL of 30% 

SW were added to 5 g/L peptone (Oxoid) and 1 g/L yeast extract and deionized water. 

The pH was adjusted to 7.5 using Tris buffer. For solid medium, 15 g/L BactoAgar 

(BD Biosciences, Franklin Lakes, New Jersey, USA) was added before autoclaving. 

Untreated mangrove sediment (500 mg) was thawed, homogenized, and suspended in 

1 ml of sterile 9% SW. Dilution series were prepared from the sediment suspension 

(SL) and from 100 µl of water sample (RP). They were plated on MGM9 and incubated 

at 28 °C in the light. Isolate ALD_SL1 was picked after two days from a sediment 

plate and ALD_RP9 was picked after five days from a plate with water sample. Both 

isolates were re-streaked at least three times to purify cultures. Pure isolates were 

stored at - 80°C in liquid MGM9 with 15% glycerol.  

Morphology 

Cells from a one-day-old culture were negatively stained with either 0.1% 

phosphotungstic acid (pH 7) or 0.5% uranyl acetate and applied onto a copper grid. 

Their morphology was determined using a Jeol 1011 electron microscope (Eching, 

Munich, Germany).  

Growth experiments 

Growth under differing NaCl, pH and temperature conditions were determined 

in an adjusted liquid MGM (nMGM). For this purpose, the SW was prepared without 

NaCl, which was added later in the required quantities. Salt tolerance was tested in 5% 

(w/v) increments of NaCl up to a concentration of 25% and 1% increments between 8 

and 12%. For the determination of pH and temperature optima, the isolates were 
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incubated in medium with 11% NaCl (Pontibacillus sp. ALD_SL1) and 9% NaCl 

(Psychroflexus sp. ALD_RP9). Temperature was tested between 10 and 50 °C at 

intervals of 5 °C between 20 and 40°C and 28°C instead of 30°C, and pH values 

between 5.5 and 10.5 at intervals of 0.5. Pontibacillus sp. ALD_SL1 was incubated in 

11% NaCl to reflect its slightly higher salt optimum. The pH intervals were adjusted 

with the addition of buffers (2-morpholinoethanesulfonic acid (MES), pH 5.5 and 6.0; 

Tris, pH 6.5 to 9.0; 3-(cyclohexylamino)-2-hydroxypropane-1-sulfonic acid (CAPSO), 

pH 9.5, 10.0 and 10.5) at concentrations of 1 M. For measurement of salinity and 

temperature optima, pH was set to 7.5. The pH and salinity experiments were 

incubated at 28 °C. All cultures were incubated using an Orbitron shaker (Infors HT, 

Einsbach, Germany) at 180 rpm. Growth under the different conditions was 

determined in triplicate (S1 Table). For this purpose, the optical density (OD600) was 

measured using an Ultraspec 3300 pro photometer (Amersham Pharmacia Biotec 

Europe GmbH, Munich, Germany) after 28 h, when both isolates had reached the 

stationary growth phase. Growth under anaerobic conditions was tested by placing 

inoculated nMGM plates with 11% NaCl (nMGM11) into an anaerobic jar with 

AnaeroGen 3.5 L gas packs (Thermo Fisher Scientific, Waltham, MA, USA) to 

generate an anaerobic atmosphere. The plates were incubated at 28 °C and monitored 

for colony growth for 14 days. Motility of the isolates was determined in soft 

nMGM11 with 3.5 g/L agar. 

Physiological characterisation 

Enzyme activity and carbohydrate utilisation of both isolates was tested using 

the API ZYM and API 50 CHB kits (bioMérieux, Nürtingen, Germany) according to 

the instructions of the manufacturer with adjusted salt concentrations. ALD_SL1 and 

ALD_RP9 cultures were washed twice before testing and resuspended in 11% or 5% 

saline respectively, for application in the API ZYM kit. The CHB medium of the 

50 CHB kit was supplemented with 11% NaCl. Reactions in the 50 CHB kit were 

recorded up to 72 h of incubation. Oxidase production was tested by applying a drop 

of Oxidase Reagent (bioMérieux, Nürtingen, Germany) to a Rotilabo-test disk (∅ 

6 mm). After adding a colony to the disk, it was monitored for a colour change. 

Catalase activity was tested in the same manner, but with 3% H2O2 as reagent and 

monitoring for bubble development. Each test was replicated three times. Both isolates 

were examined by Gram-staining [23]. 
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Genome sequencing 

Genomic DNA was extracted from isolate cultures using the MasterPure 

Complete DNA and RNA Purification kit and the instructions of the manufacturer 

(Epicentre, Madison, USA) for the extraction of DNA from cell samples with the 

following adjustments. Cell cultures were pelleted and washed twice in PBS before 

DNA extraction. Cells were lysed in Cell Lysis Solution without Proteinase K and 

mechanically disrupted in a FastPrep (MP Biomedicals, Santa Ana, USA) for 20 s at 

4 m/s with 0.1 mm glass beads. Afterwards, 2.5 µl of Proteinase K (20 mg/mL, 

Biotechrabbit, Düsseldorf, Germany) were added. Genomic DNA was eluted in 50 µl 

of nucleic acid free water and sequenced using both Illumina and Nanopore 

technology. Illumina paired-end reads were generated on a MiSeq sequencer using v3 

chemistry (Illumina, San Diego, CA, USA) and Nanopore sequences were generated 

with a MinIon (Oxford Nanopore Technologies, Oxford, England) as described 

previously [24]. 

Bioinformatic processing and analysis 

Illumina and Nanopore reads were quality-filtered using fastp v0.20.0 [25]. 

Nanopore long-reads were filtered with a sequence cut-off of 1,000 bp (Psychroflexus 

sp. ALD_RP9) or 500 bp (Pontibacullus sp. ALD_SL1). Porechop v0.2.4 [26] was 

used for adapter-trimming and read-splitting. Sequences were assembled with 

Unicyler v0.4.8 and the conservative hybrid assembly approach [27]. Initial 

assessment of genome relatedness and taxonomy was performed using the Genome 

Taxonomy Database Tool kit (GTDB-Tk) and database v1.0.1 [28]. Assembled 

genomes were annotated with the NCBI Prokaryotic Genome Annotation Pipeline 

(PGAP) v4.13 [29] and are accessible under the accessions CP062974, CP062975 and 

CP062973. The 16S rRNA gene consensus sequences of each genome were aligned 

against the 16S rRNA gene sequences of all other members of each genus with 

ClustalW in MEGA-X 10.1.8 [30]. MEGA-X was also used to calculate neighbor-

joining, maximum-likelihood and maximum-parsimony phylogenetic trees with the 

Kimura two-parameter model and 1,000 bootstraps. Genome average nucleotide 

identity (ANI) was compared using the ANIm method in pyANI v0.2.10 [31] and 

similarities visualised using the Blast Ring Image Generator (BRIG) [32]. All available 

genome assemblies, ranging from contig via scaffold to complete, were used for ANI 
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analysis. Cellular functions of both isolate genomes were inferred using BlastKOALA 

against the KEGG database [33] and pathway visualisation using the KEGG Mapper 

[34]. Transmembrane domains and signal peptides were predicted using TMHMM 

v.2.0 [35] and SignalP 5.0 servers [36]. Genomic islands and prophages were identified 

using IslandViewer4 [37] and PHASTER [38]. Putative antibiotic resistance genes 

(ARGs) were identified by searching the Resfams database v1.2.2 using HMMER 3.3 

[39, 40]. ARGs detected with Resfams were additionally verified with deepARG v2.0. 

Further hits were added to the putative list if identified genes crossed a threshold of 

50% identity, a bit score above 50 and an e-value below 1e-20 [41]. 

 

Results and discussion 

Cell and colony morphology 

Pontibacillus sp. ALD_SL1 is a Gram-positive, rod-shaped aerobic 

heterotroph, which forms yellow, opaque colonies with an entire margin. Cells are 2.5-

3 µm x 0.8-1 µm, motile rods with peritrichous flagella (Fig 1A). Psychroflexus sp. 

ALD_RP9 is a Gram-negative, rod-shaped aerobic heterotroph. It forms orange, 

convex, gelatinous colonies. Cells are 1.1-1.3 µm x 0.4-0.6 µm in size, lack flagella 

and pili, and are surrounded by a web of exopolysaccharides (EPS), which contribute 

to the gelatinous texture of the colonies (Fig 1B).  

 

Fig 1. Transmission electron micrograph of Pontibacillus sp. ALD_SL1 (A) and 

Psychroflexus sp. ALD_RP9 (B). Cells from an overnight culture were stained with 

phosphotungstic acid (A) or uranyl acetate (B). A: rod-shaped Pontibacillus sp. 

ALD_SL1 with two long peritrichious flagella. B: Psychroflexus sp. ALD_RP9 cells 

are rod-shaped and lack flagella or pili. EPS are visible as a web of thin filaments 

broadly surrounding the cell. The scale bars in the bottom left measure 0.5 µm (A) and 

0.1 µm (B). 
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Growth kinetics and optima 

Both isolates were moderately halophilic with growth matching the reported 

ranges for members of the corresponding genus [5, 12]. The NaCl optima were at 10% 

(ALD_RP9) and 11% (w/v) NaCl (ALD_SL1) (Table 1, S1 Table). ALD_SL1 

maintained growth between pH values of 6 and 10 with an optimum at pH 7. 

ALD_RP9 showed optimal growth between pH 6.5 and 8 and diminished growth 

between pH 9-10.5. Growth beyond pH 10.5 was not tested due to strong precipitation 

of medium components above this value. ALD_SL1 grew optimally at 28 °C. 

ALD_RP9 had a narrower growth range (20-40 °C) but same optimum as other 

members of the genus [19]. Incubation for 14 days under an anaerobic atmosphere 

showed growth of Pontibacillus sp. ALD_SL1, indicating that it is one of the 

facultative anaerobes of the genus [3, 6]. Psychroflexus sp. ALD_RP9 showed only 

punctiform colonies, which may have benefited from residual oxygen at the start of 

the experiment. 

Table 1. Morphological, growth and enzymatic characteristics of Pontibacillus sp. 

ALD_SL1 and Psychroflexus sp. ALD_RP9.  

Characteristic 
Pontibacillus sp. Psychroflexus sp. 

ALD_SL1 ALD_RP9 

Cell length (µm) 2.5-3 0.4-0.6 

Pigmentation yellow orange 

Gram-staining + - 

Motility + - 

Microaerophilic growth + + 

Temperature range (°C) 20-40 (28) 20-40 (20) 

NaCl range (%, w/v) 5-20 (11) 5-15 (10) 

pH range 6-10 (7) 6-10.5 (6.5-8) 

Enzyme activity:   

 Oxidase - - 

 Catalase + - 

 Alkaline phosphatase + + 

 Esterase (C4) + + 

 Esterase lipase (C8) + + 
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 Leucine arylamidase - + 

 Valine arylamidase - + 

 Cysteine arylamidase - + 

 Trypsin - + 

 Acid phosphatase - + 

 Naphtol-AS-BI-

 phosphohydrolase 
- + 

 α-glucosidase + - 

Acid production:  - 

 Glycerol + - 

 D-Ribose + - 

 D-Glucose + - 

 D-Fructose + - 

 D-Maltose + + 

 Sucrose + - 

 D-Trehalose + - 

 Inulin + - 

 Starch + + 

 Glycogen + - 

 Potassium 5-

 ketogluconate 
v - 

Temperature, NaCl and pH optima are indicated in brackets. Both strains were 

negative for lipase (C4), α-chymotrypsin, α/β-galactosidase, β-glucuronidase, β-

glucosidase, N-acetyl-β-glucosaminidase, α-mannosidase and α-fucosidase. Unless 

listed, tests from the API CHB kit were negative after 72 hours. Reactions are positive 

(+), negative (n) or variable (v). 

Both isolates were tested for activity of certain enzymes and carbohydrate 

metabolism using API kits ZYM and CHB. Pontibacillus sp. ALD_SL1 was catalase 

positive and oxidase negative and showed enzyme activity for four of the 19 tested 

substrates, namely alkaline phosphatase, esterase (C4), esterase lipase (C8) and α-

glucosidase activity. Acid production was observed for 10 of the 50 tested 

carbohydrates, including glycerol, D-ribose, D-glucose, D-fructose, D-maltose, 
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sucrose, D-trehalose, inulin, starch, and glycogen (Table 1). This profile indicated that 

ALD_SL1 is metabolically more similar to P. chungwhensis than to P. salipaludis [6], 

which cluster together phylogenetically (Fig 2). Psychroflexus sp. ALD_RP9 was both 

catalase and oxidase negative and hydrolysed 9 of the 19 tested substrates using 

alkaline phosphatase, esterase (C4) and esterase lipase (C8), leucine, valine, and 

cysteine arylamidase, trypsin, acid phosphatase, and napthol-AS-BI-

phosphohydrolase. Metabolic tests with the CHB kit showed acid production from 

maltose and starch (Table 1). While the growth ranges of all Psychroflexus isolates are 

similar, results from the metabolic tests differ strongly within the genus. Interpretation 

of these results is hampered by inconsistencies between studies and analyses regarding 

preparation (with/without NaCl) and incubation times (2-10 days) [12, 19]. 
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Fig 2. Neighbor-joining phylogenetic tree of the Pontibacillus and Psychroflexus 

genera. The tree includes 16S rRNA gene sequences from genomes (*), and genome 

scaffolds (S and scaffold number). The optimal tree with the sum of branch length 

1.05278265 is shown. The percentage of replicate trees in which the associated taxa 

clustered together in the bootstrap test (1,000 replicates) are shown next to the 

branches. Bootstrapping values at the branches indicate the mean result of the 

neighbor-joining, maximum-likelihood and maximum-parsimony method. 

Evolutionary distances were calculated using the Kimura 2-parameter model with 

Archaeoglobus fulgidus L3 as an outgroup.  

 

Genome assembly and characteristics 

Two complete genomes were assembled with a hybrid assembly using long 

Nanopore reads and short Illumina paired-end reads. Quality-filtering with fastp 

removed 59% of the ALD_SL1 Nanopore reads, mainly due to the length constraints. 

Quality-filtering of ALD_SL1 Illumina reads removed 4% of the reads. The 

Pontibacillus sp. ALD_SL1 genome (CP062974) and plasmid (CP062975) were 

assembled from 233,024 quality-filtered Nanopore reads with a mean length of 

1,438 bp and 7,554,974 quality-filtered Illumina reads with a mean length of 235 bp. 

The genome assembly resulted in a closed circular chromosome (3,811,075 bp) and 

megaplasmid (897,839 bp) with a GC content of 40.84 and 42.38%, respectively. The 

whole genome exhibited a mean read coverage of 443 x, 4,759 putative protein-

encoding genes, 24 rRNAs, 78 tRNAs and five non-coding RNAs (Table 2). Of all 

sequenced Pontibacillus isolates, this is the only genome to harbour a (mega)plasmid. 

Of 1,236 hypothetical proteins in the whole genome, 725 are located on this plasmid. 

More than 50% of the megaplasmid were predicted as genomic islands, including two 

prophage regions. The chromosome harbours one putative prophage region (Fig 3).  
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Table 2. Genome compositions 

Genome characteristic 
Pontibacillus sp. Psychroflexus sp. 

ALD_SL1 ALD_RP9 

Genome size  4.7 Mbp 2.6 Mbp 

Extrachromosomal features Plasmid: 897,839 bp - 

Genome coverage 443x 1,056x 

GC content  41.1% 33.1% 

Protein coding genes (CDS) 4,759 2,336 

RNA-encoding genes 107 49 

 rRNA 24 9 

 tRNA 78 36 

 nc RNA 5 4 

Pseudogenes 157 13 

Hypothetical proteins 1,263 431 

Genes with transmembrane 

domains 
1,350 546 

Genes with signal peptides 437 492 

 SP (Sec/SPI) 271 298 

 TAT (Tat/SPI) 6 1 

 Lipo (Sec/SPII) 160 193 
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Fig 3. Genome features and comparison of Pontibacillus sp. ALD_SL1 and 

Psychroflexus sp. ALD_RP9 with all available scaffolds and genomes of their 

genus. The image was generated using BRIG [32] and a nucleotide blast for genome 

comparison. Ring 1: selected genome features from the functional annotation with 

BlastKOALA [33]. Ring 2: genomic islands (red) predicted with IslandViewer 4 [37] 
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and prophages (orange) identified using PHASTER [38]. Rings 3-9 (A) and 3-11 (B): 

available genomes and scaffolds for each genus.  

 

Quality filtering prior to Psychroflexus sp. ALD_RP9 assembly resulted in the 

removal of 16% of Nanopore and 4% of Illumina reads. The complete circular genome 

(CP062973) was assembled from 119,567 Nanopore reads with a mean length of 

14,283 bp and 3,909,382 Illumina reads with a mean length of 262 bp. The genome 

comprises a single circular chromosome (2,555,922 bp) with a GC content of 33.1%. 

The mean read coverage was 1,056-fold. A total of 2,336 putative protein-encoding 

genes were assigned of which 431 were hypothetical. In addition, genes for nine 

rRNAs, 36 tRNAs and four non-coding RNAs were identified. Two genomic islands 

were identified, which overlap with the prophage predictions. These regions share low 

sequence similarity or are absent from the other Psychroflexus genomes (Fig 3). 

 

Phylogeny 

A neighbour-joining phylogenetic tree was built with the consensus 16S rRNA 

gene sequences from each isolate and the 16S rRNA genes of all available genomes 

and scaffolds (Fig 2). GTDB-Tk resolved their taxonomy to the genus level with a 

RED value of 0.995 (ALD_SL1) and 0.994 (ALD_RP9), indicating that both are new 

species. Relatedness on the genomic level was assessed through average nucleotide 

identity analysis (ANIm) with all available genomes and genome assemblies (Fig 4). 

The available Pontibacillus genomes in the NCBI database consist of seven contig-

level assemblies, two scaffolds and one complete genome (Pontibacillus sp. 

HMF3514). Pontibacillus sp. ALD_SL1 is most closely related to P. chungwhensis 

BH030062T (ANI 93%) and P. salipaludis CGMCC 1.15353 (ANI 91%), which were 

isolated from a solar saltern in Chungwha, Korea [1] and marine sediment in Tuticorn, 

India [6]. All other available genome assemblies remain below 90% ANI, however, 

these values may be exaggerated due to gaps in the unclosed genomes and scaffolds. 

Available Psychroflexus assemblies comprise seven contig-level genomes, seven 

scaffolds and one complete genome (Ps. torquis). Psychroflexus sp. ALD_RP9 is most 

closely related to Ps. salarius MIC1008T with an ANI of 89% and forms a well-

supported cluster with Ps. saliphilus WDS4A14T and Ps. halocasei WCC 4520T. The 

relation of this branch to the cluster around the type species Ps. torquis ACAM627T 
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and Ps. tropicus LA1T could not fully be resolved (bootstrap values < 60) using the 

three tree building methods (Fig 2). Members on this branch contain the smallest 

genomes of the genus with an average of 2.62 Mbp. Smaller genomes and a higher 

percentage of coding genes (92%) than more distant relatives i.e., Ps. torquis (4.32 

Mbp, 81%) [42], indicate genome streamlining [43]. However, it has been proposed 

that the reverse is true and Ps. torquis may have benefitted from extensive gene 

acquisition to survive in its native arctic environment, leading to an increased genome 

size [42]. 

 

Fig 4. Relatedness of Pontibacillus (A) and Psychroflexus (B) genomes. All 

available genome assemblies of each genus were aligned and compared using ANIm 

in pyANI v0.2.10. [31]. The level of genome completeness is indicated in upper case: 

contig (C), scaffold (S), full genome (G), genus type species (T). 
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Genome features 

Pontibacillus sp. ALD_SL1 protein sequences were sorted into KEGG 

categories using BlastKoala [33] and KEGG Mapper [34], resulting in the assignment 

of 2,305 entries to 214 pathways (Table 3). Most genes of the Pontibacillus sp. 

ALD_SL1 genome were assigned to carbohydrate metabolism (266), followed by 

amino acid metabolism (228) and the metabolism of cofactors and vitamins (114). The 

most prevalent genes on the megaplasmid belong to cell motility (40) and replication 

and repair (32). Pontibacillus sp. ALD_SL1, like P. litoralis [3] and P. salipaludis [6], 

is putatively one of the facultatively anaerobic members of the genus. Under anaerobic 

conditions, it can generate energy potentially through oxidative phosphorylation (cox 

genes, F-type ATPase), and pyruvate metabolism, including fermentation to acetate 

(ala, pta, ackA), lactate (ldh), formate (pflD), butanol (crt, ptb, buk) and ethanol (ald, 

adh). Under nutrient-limiting conditions, ALD_SL1 can scavenge for iron using the 

siderophores bacilli- and enterobactin (entA-E). All 19 putative antibiotic resistance 

genes (ARGs) predicted for Pontibacillus sp. ALD_SL1 were located on the 

chromosome. The genes are mainly ATP-binding cassette (ABC) transporters, such as 

multidrug efflux pumps. In addition, putative resistance genes to fosfomycin (fosB), 

aminoglycosides (aacC, aadD, aadK), glycopeptides (vanY), tetracycline (tetB) and β-

lactam antibiotics (penP) were detected (S2 Table). Resistance to aminoglycosides, 

tetracycline, phosphomycin and ampicillin has previously been shown for other 

isolates of the genus [3, 5, 6]. ABC transporters not only convey resistance to 

antibiotics, but also act as channels for osmotic regulation in the marine environment. 

Transporters include Na+/H+ antiporters (nhaC, mrpA-G) regulating cell homeostasis 

[44], K+ transporters (trkA, kch), as well as mechanosensitive channels (mscL) (Fig 

5A). Genes for the transport of compatible solutes proline, glycine and betaine (proV-

X, opuD/betL, opuA-C), which act as osmolytes [45], were detected as in other 

Pontibacilli [8]. Genes for ectoine synthesis, which are common in many halotolerant 

bacteria [45 and references therein] as well as P. marinus [4], were not detected in the 

ALD_SL1 genome. Further regulation of osmotic and other stressors could occur via 

the encoded putative quorum-sensing and subsequent phosphor-relay systems. These 

are involved in the regulation of membrane fluidity (desK/R), degradative enzymes 

(degS/U) [46], competence (comX/K) [47], and induce sporulation (spo genes) [48] 

(Fig 5A). While regulators of cell competence were present in the genome, a type IV 
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secretion system for plasmid conjugation was not detected. ALD_SL1 can sense its 

environment and adjust its position using chemotaxis genes (mcp/che), which control 

flagella movement [49]. The chemotaxis receptors may be sensitive to oxygen, 

amongst other attractants, as the isolate showed aerotactic behaviour during motility 

testing. Most of its motility genes (i.e., fliG/M/N, motA/B) are situated both at the 

chromosome and the megaplasmid (Table 3). While encoding the same putative 

proteins, the genes share only low homology to each other. This indicates that they 

were acquired through horizontal gene transfer via the large mobile genetic elements 

(genomic islands/prophages) on the plasmid, rather than by interreplicon duplication 

[50]. As the plasmid does not harbour any essential genes, it is likely not critical for 

cell viability. 

 

Table 3. Functional assignment of genes into KEGG categories 

KEGG category 

Pontibacillus sp. Psychroflexus sp. 

ALD_SL1 ALD_RP9 

Chromosome Plasmid Chromosome 

Total Entries/ Pathways 2,305/ 214 252/ 72 1,160/ 214 

Metabolism    

 Carbohydrate metabolism 266 8 157 

 Energy metabolism 101 1 90 

 Lipid metabolism 59 7 40 

 Nucleotide metabolism 73 9 65 

 Amino acid metabolism 228 10 179 

 Metabolism of other amino acids 38 4 26 

 Glycan biosynthesis and 

metabolism 34 9 49 

 Metabolism of cofactors and 

 vitamins 114 7 97 

 Biosynthesis of other secondary 

 metabolites 29 1 28 

 Xenobiotics biodegradation and 

 metabolism 32 1 32 
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Genetic Information Processing    

 Transcription 7 3 3 

 Translation 82 0 79 

 Folding, sorting and degradation 35 3 28 

  Replication and repair 72 32 64 

Environmental Information 

Processing 
   

  Membrane transport 97 4 28 

 Signal transduction 78 10 37 

Cellular Processes    

 Transport and Catabolism 9 0 7 

  Cell growth and death 12 7 11 

 Cellular community - 

prokaryotes 76 5 30 

 Cell motility 50 40 4 

Human Diseases    

 Drug resistance: antimicrobial 18 3 18 
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Fig 5. Key aspects of the Pontibacillus sp. ALD_SL1 (A) and Psychroflexus sp. 

ALD_RP9 (B) metabolism. Metabolic pathways and capabilities were reconstructed 

from the complete genomes against the KEGG database using BlastKoala [33] and the 

KEGG Mapper [34].  

 

Psychroflexus sp. ALD_RP9 genes matched 1,160 KEGG entries which were 

assigned to 214 pathways. Most entries belonged to amino acid (179) and carbohydrate 
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(157) metabolism, followed by the metabolism of cofactors and vitamins (97). ARG 

search indicated that Psychroflexus sp. ALD_RP9 harbours six potential antibiotic 

resistance genes. Four of these are multidrug ABC transporters, one a multidrug and 

toxic compound extrusion (MATE) family resistance protein and one a bicyclomycin 

multidrug efflux protein (S2 Table). It has previously been shown, that Psychroflexi 

are resistant to aminoglycosides, polyketide, and quinolone antibiotics [13, 20], but 

the identified ARGs cannot directly be linked to resistance against specific antibiotic 

compounds. Psychroflexus sp. ALD_RP9 employs a different strategy compared to 

Pontibacillus sp. ALD_SL1 to cope with the high salinity in its environment. To 

maintain turgor, it employs a series of Na+/H+ antiporters (NhaC/D, MrpA) [44, 51] 

and (mechanosensitive) ion transport channels (MscL/S, Kch) and proteins (TrkA) 

[52]. These may also support its ability to cope with the high pH tolerated. In addition, 

ALD_RP9 has an extensive exopolysaccharide layer surrounding the cells (Fig 1) and 

colonies have an almost jelly-like consistency. The EPS layer can protect from high 

salinity and pH values, as well as provide protection against desiccation [53]. 

ALD_RP9 forms its EPS layer by using a variety of nucleotide sugars and the Raetz 

pathway (lpx/waa genes). They are translocated and connected with the outer 

membrane via an lipopolysaccharide (LPS) transport system (lpt genes, Fig 5B) [54]. 

Acquisition of EPS/LPS genes has previously been observed in Ps. torquis, for which 

it was hypothesised that they support growth under psychrophilic conditions [42]. 

Psychroflexus sp. ALD_RP9 harbours some additional EPS genes within regions 

which are absent from all other strains (Fig 4). This suggests that ALD_RP9 has 

acquired additional EPS genes to support its survival. While EPS provides some 

desiccation protection, ALD_RP9 uses carotenoids (crtB/I/Y/Z genes) within its cell 

membrane to protect from irradiation and oxidative stress. The carotenoids can also be 

cleaved into retinal by Blh, which is required as co-factor for bacteriorhodopsin 

function [55]. In Psychroflexus members the bacteriorhodopsins most likely act as 

proton pumps that can drive ATP synthesis. This can be used to supplement their 

energy metabolism while under osmotic and other stress conditions [56, 57]. 
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Conclusions 

We describe two novel bacterial species within the Pontibacillus and the 

Psychroflexus genus. Pontibacillus sp. ALD_SL1 is the third facultative anaerobe of 

the genus and first Pontibacillus to harbour a (mega-)plasmid. The plasmid contains 

genomic islands in large proportions and likely supports chemotaxis and motility but 

is not essential for cell viability. Psychroflexus sp. ALD_RP9 shows an enhanced 

capability to grow at high pH values in comparison to other Psychroflexus species. It 

clusters phylogenetically with members harbouring smallest genomes of the genus. 

Further, it contains genomic regions which are not present in other Psychroflexi and 

encode for additional genes involved in EPS synthesis. These may provide enhanced 

protection towards the moderately hypersaline conditions in its habitat. Taken 

together, both Pontibacillus sp. ALD_SL1 and Psychroflexus sp. ALD_RP9 are highly 

adapted to their environment but follow different strategies to support their survival. 
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Supplement: 

Contents: 

S1 Table. Growth ranges of Pontibacillus sp. ALD_SL1 and Psychroflexus sp. ALD_RP9. 

Measurements are given in triplicate as OD600 for each isolate. The starting OD has 

been subtracted from the values to reflect active growth rates. 

The table can also be found on the enclosed CD and .zip folder:  

Supplement\Chapter_C4\S1_Table.xlsx. 

 

S2 Table. Genomic features of Pontibacillus sp. ALD_SL1 and Psychroflexus sp. 

ALD_RP9. The table includes selected KEGG hits, antibiotic resistance genes, genomic 

islands and phages, and their location on the genomes.  

The table can be found on the enclosed CD and .zip folder:  

Supplement\Chapter_C4\S2_Table.xlsx. 

  



RESULTS AND PUBLICATIONS 

120 

 

S1 Table. Growth ranges of Pontibacillus sp. ALD_SL1 and Psychroflexus sp. ALD_RP9. 

Measurements are given in triplicate as OD600 for each isolate. The starting OD has been 

subtracted from the values to reflect active growth rates. 

Pontibacillus sp. ALD_SL1 Psychroflexus sp. ALD_RP9 

NaCl (%) 1 2 3 Mean NaCl (%) 1 2 3 Mean 

0 0.33 0.18 0.21 0.24 0 0.08 0.09 0.04 0.07 

5 2.13 1.77 1.87 1.92 5 3.09 3.15 3.18 3.14 

8 3.73 3.74 3.81 3.76 8 3.07 3.00 3.16 3.08 

9 4.18 4.00 4.22 4.13 9 3.09 3.13 3.14 3.12 

10 4.05 3.88 3.92 3.95 10 3.82 3.80 3.72 3.78 

11 5.65 5.63 5.60 5.63 11 3.16 3.24 3.33 3.24 

12 4.30 5.01 5.55 4.95 12 - - - - 

15 3.60 3.71 3.56 3.62 15 1.73 1.77 1.52 1.67 

20 1.11 1.11 0.84 1.02 20 0.29 0.24 0.26 0.26 

25 0.15 0.45 0.07 0.22 25 0.07 0.06 0.04 0.06 

                  

pH 1 2 3 Mean pH 1 2 3 Mean 

5.5 0.02 0.03 0.03 0.03 5.5 0.06 0.10 0.07 0.08 

6 4.45 4.35 4.28 4.36 6 2.71 2.70 2.73 2.71 

6.5 4.65 4.36 4.29 4.43 6.5 3.10 3.11 3.32 3.18 

7 4.71 4.85 4.98 4.85 7 3.08 3.12 3.11 3.10 

7.5 3.80 4.16 3.91 3.96 7.5 3.19 3.06 3.21 3.15 

8 3.75 3.73 3.49 3.66 8 3.27 3.12 3.15 3.18 

8.5 3.38 3.81 3.95 3.71 8.5 2.83 2.99 2.92 2.91 

9 3.50 3.83 3.45 3.59 9 1.45 1.48 1.53 1.49 

9.5 3.91 3.94 4.46 4.10 9.5 1.13 1.40 1.09 1.21 

10 2.34 1.72 2.30 2.12 10 1.11 1.13 1.02 1.09 

10.5 0.00 0.00 0.00 0.00 10.5 0.84 0.86 0.83 0.84 

                 

Temperature (°C) 1 2 3 Mean Temperature (°C) 1 2 3 Mean 

10 0.00 0.00 0.00 0.00 10 0.06 0.08 0.09 0.08 

20 2.61 2.69 2.62 2.64 20 3.21 3.12 3.20 3.18 

25 3.82 3.55 2.84 3.40 25 - - - - 

28 4.77 4.73 4.62 4.71 28 3.15 3.15 3.11 3.14 

35 4.04 4.27 4.22 4.18 35 2.98 2.82 2.98 2.93 

40 3.41 3.60 3.63 3.55 40 2.89 2.81 2.74 2.81 

50 0.06 0.03 0.05 0.05 50 0.06 0.00 0.00 0.02 
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Abstract 

The remote Aldabra Atoll harbours a series of moderately hypersaline pools associated 

with the formation of stromatolites. We used metagenomes and metagenome 

assembled genomes (MAGs) to study the microbial community composition and 

function within the water column, microbial mats and sediments of two pools Cinq 

Cases and Westpool D. The two sites differed by sediment depth and the presence of 

stromatolites at present (Westpool D) or in the past (Cinq Cases). Cinq Cases harbours 

non-lithified microbial mats and derived MAGs encode genes for photosynthesis, 

fermentation, sulphide oxidation and sulphate reduction. Below the mat and surface 

sediments an older, desiccated, and redox-positive bottom sediment occurred, 

characterized by MAGs derived from both aerobic heterotrophs and sulphate reducers. 

Westpool D harbours a stromatolite-forming biofilm at the pool margin, a non-

calcifying microbial mat within the pool, as well as a purple sulphur bacterial bloom 

in its stratified water column. The calcifying biofilm and non-lithified microbial mat 

hosted different Cyanobacteria, potentially leading to the two different outcomes. 

Overall, the two pools showed little overlap between their microbial communities. 

They exemplify the range of environmental conditions and microbial populations on 

Aldabra, leading to the precipitation or dissolution of stromatolites. 

 

Introduction 

In recent years it has become possible to assemble whole genomes from metagenomes 

derived from total environmental DNA (Ayling et al., 2020). The so-called 

metagenome assembled genomes (MAGs) allow detailed insight into the metabolic 

pathways of “microbial dark matter”. This includes microbes, which have thus far not 

been cultured or are only available as unclassified 16S rRNA sequences (Rinke et al., 

2013). MAGs and single cell assembled genomes (SAGs) can highlight the metabolic 

flexibility within individual prokaryotic groups. Combined with existing genomic data 

of sequenced isolates, they allow analysis of core genes and niche partitioning in 

different ecosystems (Delmont and Eren, 2018). Though MAGs are imperfect 

reconstructions of genomes and should be evaluated with caution (Frioux et al., 2020), 

they provide the possibility to better understand extreme or understudied environments 

until cultured and sequenced representatives are available. 
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Microbial communities have been studied along depth gradients in sediment 

cores ranging from the coastal marine environment (Dyksma et al., 2016) to shallow 

and deep-sea sediment (Bird et al., 2019; Peoples et al., 2019), as well as soda 

(Hoyningen-Huene et al., 2019) or meromictic (Rissanen et al., 2019) lakes ranging 

from temperate environments to the arctic circles. Hypersaline lakes and lagoons are 

rarely subjected to sediment coring beyond the surface sediment, as they are often 

studied with a focus on the water column (Naghoni et al., 2017) or precipitation 

features, such as microbialites (Saghaï et al., 2016) and microbial mats (Schneider et 

al., 2013; Baumgartner et al., 2009). The aim of most studies is to a) identify the 

abundant members, and b) understand their involvement in shaping their environment 

through their metabolism. Together with the measurement of corresponding porewater 

profiles, a standard biogeochemical model for sediments has been established. This 

follows the availability of electron acceptors starting with oxygen in the first 

millimetres of sediment and transitioning via manganese, iron and nitrate to sulphate 

and ultimately CO2 (Falkowski et al., 2008; Jørgensen and Kasten, 2006). 

In a previous study (Chapter C.3) we determined the bacterial composition of 

sediments and water samples from the Aldabra Atoll in the Indian Ocean using 16S 

rRNA genes and transcripts. The data were analysed alongside detailed sediment 

porewater and bulk geochemical profiles. The landlocked saline pools of Cinq Cases 

(CC), situated on Grand Terre Island, showed a porewater and associated bacterial 

community profile divergent to the standard biogeochemical model. The profiles 

suggested that temporal and episodic environmental factors had a large impact on the 

sediment. This was formed of an evaporated, highly saline, redox positive older 

sediment at the bottom, which was rich in plant-based organic matter. The older 

sediment was covered by a younger sediment layer topped with a microbial mat (data 

not shown). The high phylogenetic diversity in the mat and corresponding peaks in the 

porewater profiles indicated, that it drove the biogeochemical process in the upper part 

of the core. The lower, potentially oxic part harboured aerobic heterotrophs, as well as 

remains of sulphate reducers and fermenters (Chapter C.3).  

This initial study opened a variety of questions, including the metabolic 

capabilities of the large proportion of uncultured Actinobacteriota in the sediments, as 

well as the high relative abundance of sulphate reducers in the potentially oxic 

sediments at the bottom of the cores. In order to better understand these bacteria and 
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expand the profile to archaea, eukaryotes and viruses, we opted to profile these taxa 

using metagenomes and MAGs. We included an additional sampling site, Westpool D 

(WPD), as it harbours stromatolites and different types of biofilms. The pool resembles 

descriptions for CC more than thirty years ago which harboured stromatolites at the 

time (Braithwaite et al., 1989). As the stromatolites in CC were no longer evident 

during our expedition in 2017, it exemplifies the circumstances in which stromatolites 

may have developed on Aldabra in the past. This allows us to better understand 

differences between then and now. Taken together, this is the first study using 

metagenomes and metagenome-assembled genomes to characterise the diverse 

microbial community of the Aldabra Atoll. 

 

Materials & Methods 

Sampling 

Samples were taken during an expedition to the Aldabra Atoll, Seychelles at the end 

of the dry season in November 2017. Three sediment push cores and water samples 

were retrieved from the CC pool system in the southeast of the rim-island Grand Terre 

(-9.42979 S, 46.49524 E; Figure 1.A). The push cores were sampled at 2.5 cm depth 

intervals (Figure 1.C). The second sample set was taken in triplicate at WPD (-9.44458 

S, 46.45188 E), which was characterized by a stratified water column and stromatolites 

at the rim (Figure 1.B). Samples comprise the upper green and lower pink water layer 

of the stratified water column, the microbial mat and underlying sediment at the base 

of the pond, and the stromatolite biofilm (Figure 1.D). All water samples were filtered 

through a 0.2µm and 3.0 µm filter sandwich, as described by Hoyningen-Huene et al., 

(2019). All samples were stored immediately in RNAProtect Bacteria Reagent 

(Qiagen, Hilden, Germany). 
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Figure 1. Sampling sites Cinq Cases (A) and Westpool D (B), sediment cores sampled at 

CC (C) and sampling sites at WPD (D). (C) Three sediment cores sampled at CC in 2.5 cm 

depth intervals. The image was modified from Supplementary Figure S3 in Chapter C.3 as 

follows: the three sediment cores used for metagenomic analysis were cropped and aligned to 

visualise the sediment succession (D). WPD from above including the stromatolites where the 

biofilm (BF) was retrieved. The pictures on the right depict the stratified water column and 

underlying microbial mat. Here, the greenish surface water (SW), pink bottom water (PW), 

microbial mat (MM) and underlying sediment (Sed) were retrieved. 

Porewater and sediment geochemistry 

Pond water parameters, sediment porewater and bulk geochemistry were measured as 

described by (Fussmann et al., 2020) and in Chapter C.3. 

DNA extraction and sequencing 

DNA was extracted using the PowerSoil Total RNA and DNA accessory kit (Qiagen), 

as described in Chapter C.3. Bacterial 16S rRNA amplicons were generated by PCR, 

sequenced, and processed as described in (Chapter C.1, von Hoyningen-Huene et al. 

2019). DNA extracts of the three water samples from CC were pooled for metagenome 

sequencing. Libraries were built using the Nextera™ DNA Flex Library Preparation 
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Kit and Nextera™ DNA CD Indexes (Illumina, San Diego, CA, USA). Sample and 

library concentrations were measured using a Qubit and the Qubit 1x dsDNA HS 

Assay Kit 0.2-100 ng (Thermo Fisher Scientific, Walton, MA, USA). Library sizes 

were verified with the Agilent High Sensitivity DNA Kit (Agilent Technologies, 

Waldbronn, Germany). All samples were pooled equimolar and 2x250 bp paired-end 

reads were sequenced using a NovaSeq6000 instrument, the NovaSeq 6000 SP 

Reagent Kit v1.5 (500 cycles) and the NovaSeq XP 2-Lane Kit v1.5 as recommended 

by the manufacturer (Illumina).  

Initial sequence processing 

Short reads were quality-filtered using fastp v0.20.0 in paired-end mode with adapter 

removal (Chen et al., 2018b). After quality-filtering, the samples were interleaved and 

short reads were taxonomically assigned using Kraken v2.0.8-beta (Wood et al., 2019) 

and the NCBI non-redundant nucleotide database (NCBI nr/nt: downloaded 

22.07.2020) and Kaiju v1.7.0 with the nr_euk subset (Menzel et al., 2016) of the NCBI 

BLAST nr database (downloaded 2020-07-21). 

Co-assembly, binning, and annotation 

The quality-filtered reads were co-assembled using megahit v1.2.9 in paired-end mode 

(Li et al., 2015) with a minimum kmer-size of 27, as recommended for complex 

metagenomes by the developers. The co-assembly quality was evaluated using 

MetaQUAST (Mikheenko et al., 2016). After co-assembly, contig names were 

simplified using anvi-script-reformat-fasta from anvi’o v7 (Eren et al., 2021) and 

reads were mapped to the contigs using bowtie2 (Langmead and Salzberg, 2012). 

Contigs were loaded into anvi’o v7 contig databases with a size cut-off of 1,000 bp. 

Genes were annotated using prodigal v2.6.3 (Hyatt et al., 2010) and common marker 

genes were identified using anvi-run-hmms with the default hmm-databases. Clusters 

of orthologous groups (COGs) (Tatusov et al., 2000) were annotated using anvi-run-

ncbi-cogs and DIAMOND (Buchfink et al., 2015). The contigs were binned, optimized 

and refined using anvi’o. Within the anvi’o framework, the binners CONCOCT v1.1.0 

(Alneberg et al., 2014) and MetaBAT 2 v2.15 (Kang et al., 2019) were used with 

anvi’o standard settings. Maxbin2 was used with recommended settings and a 

sequence cut-off of 5,000 bp (Wu et al., 2016) and its bins were added to the anvi’o 

profile. All bins were optimised with DASTool v1.1.2 (Sieber et al., 2018) and 

manually refined in anvi’o up to a completion > 90% and redundancy >10%. The 
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resulting metagenome assembled genomes (MAGs) were taxonomically assigned by 

screening ribosomal single-copy core genes against the GTDB database (v95, 

17.07.2020) (anvi-run-scg-taxonomy). The most prevalent gene (ribosomal S11) was 

used to estimate the taxonomic composition of the samples (anvi-estimate-scg-

taxonomy). Information on taxonomy, bin completeness, mean coverage and 

redundancy was summarized using anvi-summarize (Eren et al., 2021). 

Data analysis and visualization 

Hmm-hits based on 71 bacterial single copy core genes (anvi-get-sequences-for-hmm-

hits) were aligned using muscle v3.8.1551 (Edgar, 2004). A Newick phylogenetic tree 

was generated using FastTree v2.1 (Price et al., 2010) through anvi-gen-

phylogenomic-tree and visualized with anvi-interactive (Eren et al., 2015). For 

heatmaps of the most abundant taxa, the 16S rRNA gene and short-read data were 

normalized using gmpr (Chen et al., 2018a) and MAGs using mean coverages (Eren 

et al., 2015). The count data were transformed into relative abundances for plotting in 

R. Heatmaps were generated in R-Studio (RStudio Team, 2021) using base R (R Core 

Team, 2020), ggplot2 (Wickham, 2016) and ampvis2 (Andersen et al., 2018). Figures 

were finalized in inkscape v1.0 (Inkscape Developers, 2020). Metabolic potential of 

the MAGs was estimated by screening the contigs using HMMs against the KOfam 

database (Aramaki et al., 2020). KEGG module completeness (Kanehisa et al., 2014) 

was estimated through anvi-estimate-metabolism. Heatmaps on selected metabolic 

features in the most abundant taxa were generated using both the estimated metabolism 

tables and the taxonomic abundance information from the anvi’o summary. 

 

Results and discussion 

Characteristics of the pools and sediments 

The porewater and bulk geochemistry in the CC sediment have been described 

previously (Chapter C.3). Their biogeochemical zonation was based on the Cl-/SO4
2- 

and C/N ratios along the sediment cores (Figure 2). The data suggest that the sediment 

column must have dried out in the past, leaving behind hypersaline and potentially 

oxygenated sediments (12.5-35 cm bsf), indicated by the positive Eh. The older 

sediment is covered by a recent sediment with cyanobacterial traces of former 

microbial mats from 5-10 cm bsf. It is covered by a current unlithified microbial mat 

(0-2.5 cm bsf). No porewater profiles are available for the biolfilm, microbial mat and 
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sediment at WPD. Key data for the stratified water column are depicted in Table 1. 

The water in WPD is derived from marine water indicated by the matching Na+/Cl- 

ratio with the open ocean. The water has evaporated to higher salinities during the dry 

season; however, recent rainfall caused a salt stratified water column. A bacterial 

bloom in the bottom water layer led to anoxic conditions with a lower pH and slightly 

lower Cl-/SO4
2- ratio in comparison to the seawater (Table 1). 

 

 

Figure 2. Selected porewater and bulk sediment geochemical profiles and extracted DNA 

concentrations from Cinq Cases. The current microbial mat is highlighted in green. The data 

were taken from Chapter C.3. 

Table 1 Key water column geochemistry at WPD and open seawater off Aldabra for 

comparison: 

Sample 
O2 

(mmol/kg) 

Eh 

(mV) 
pH TA 

Cl-/SO4
2- 

(mol/mol) 

Salinity 

(g/kg) 

Na+/Cl- 

(mol/mol) 

Surface 

Water 

0.18 169 8.2 5.8 19.5 63 0.86 

Pink Water 0.00 128 7.7 5.6 19.3 99 0.86 

Open 

seawater 

0.24 201 8.2 2.35 19.4 35 0.86 

 

General sequence data analysis and taxonomic classification 

Sequencing resulted in a total of 1,432,621,890 paired-end short reads of which 

1,377,038,838 reads remained after quality-filtering and adapter trimming (Table S1). 

Initial taxonomic assignment of the short-reads showed that bacteria contribute the 

majority of sequences ranging between 30-60%, followed by eukaryote reads (10-
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16%), archaea (1-4%) and viruses (0-4%) (Figure 3.A). The majority of eukaryotic 

reads was assigned to animals (Chordata) and plants (Streptophyta), which are native 

to the atoll. This includes the bioturbating molluscs (Mollusca), polychaete worms 

(Platyhelminthes), crabs (Arthropoda), tortoises, birds and different fish sequences 

(Chordata) (Figure 3.B). The most abundant fungi belonged to the Ascomycota and 

Basidiomycota at abundances below 2%. Archaea were most abundant in the 35 cm 

bsf sediment sample at CC and the stromatolite biofilm at WPD (Figure 3). Due to the 

first rainfall, the CC water column may have been subject to changes in the microbial 

community at the time of sampling. This was suggested by the high abundance of 

Pontibacillus in the active (RNA-based), but not the total (DNA-based) bacterial 

community (Chapter C.3) or MAGs. Changes in the microbial community 

composition may be caused by or lead to increased viral predation, explaining the high 

relative abundance of viruses in the water column (Figure 3.A). 

Taxonomy and metabolic features of metagenome-assembled genomes 

Co-assembly of the quality filtered sequences resulted in 5,761,716 contigs with a 

length ≥ 1,000 bp, a maximum contig length of 887,890 bp, and N50 of 2,889 bp 

(Table S2, Table S3). Binning and bin refinement resulted in a total of 1,093 MAGs 

across all samples covering 21% of the contigs ≥ 1,000 bp. 37% of the MAGs had a 

coverage > 90% and redundancy < 10% after manual refinement. The GTDB used for 

taxonomic classification is currently limited to bacteria and archaea (Chaumeil et al., 

2019). For this reason, only bacterial and archaeal MAGs were subsequently 

considered in the analysis. Taxonomic assignment placed 30 MAGs among the 

Archaea and 559 among the Bacteria. Phylogenetic clustering resulted in 21 main 

phyla present in the MAG dataset (Figure 4). Most MAGs derive from the most 

abundant phyla found in the 16S rRNA dataset of Aldabra. They comprise Alpha- and 

Gammaproteobacteria, Actinobacteriota and Desulfobacterota (Figure 5, Chapter 

C.3). Chloroflexota showed low relative abundances in the 16S rRNA dataset (Chapter 

C.3), yet a large number of MAGs (40), in comparison to other phyla, were assigned 

to this phylum (Figure 4). The MAGs may be derived from WPD where Chloroflexota 

were abundant in the sediment and microbial mat (Figure 5.B). Other Chloroflexota 

MAGs may reflect some of the ASVs which remained unclassified using 16S rRNA 

(Chapter C.3). 
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Figure 3. Distribution of kingdoms (A) and abundant phyla (B) among the quality-

filtered metagenome reads. The data were normalized using gmpr (Chen et al. 2018a). 

Unclassified taxa were removed for the phylum level visualisation (B). 
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Figure 4. Newick phylogenetic tree of all MAGs (n= 1,093). The tree is based on a set of 71 

bacterial and archaeal single copy core genes. Colour coding indicates phyla determined by 

classified MAGs on the tree. Numbers in brackets indicate the number of MAGs which were 

classified within each phylum branch. 

The most abundant genera among the MAGs show a good overlap with the most 

abundant genera identified in the 16S rRNA gene analysis (Figure 5). At CC they 

include Halomonas, Desulfovibrio, Vibrio and Salinivibrio (Figure 5.A). At WPD 

MAGs classified as Thiohalocapsa, Salinivibrio, Cyanobium, Francisella, 

Alkalispirochaeta and Arthrospira could be reconstructed from the metagenomes. 

Differences in taxonomic assignment between the NCBI, GTDB (Chaumeil et al., 

2019) and SILVA (Quast et al., 2013) database used for taxonomic assignment of 

short-reads, MAGs and 16S rRNA (Chapter C.3), respectively, may result in the 

observed differences in genus level taxonomy (Figure 5). 
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Figure 5. Most abundant 25 genera at CC (A) and WPD (B) in the bacterial 16S rRNA 

amplicons, short reads, and post-assembly binning (MAGs). Only bacteria and archaea 

were considered in the dataset. Taxa present in the 16S rRNA and MAG dataset are highlighted 

in bold. The amplicon and short-read data were normalized using gmpr (Chen et al., 2018a) 

and MAGs using read coverages (Eren et al., 2015). All genera were plotted as relative 

abundances with a minimum abundance of 0.25%. 

16S rRNA gene data provides a detailed picture of the bacterial community 

composition at high taxonomic resolution. Metagenomes and MAGs, on the other 

hand, allow us an insight into the potential metabolism of individual community 

members (Frioux et al., 2020). Metabolic assignment using KEGG orthologs and 

KEGG modules (Aramaki et al., 2020) show that MAGs encoding similar metabolic 

capabilities, i.e., dissimilatory sulphate reduction or photosynthesis, are sometimes 

limited to specific phyla (Figure 6). Differences in the number of genes within the 

pathway-modules may lead to different levels of completeness on the phylum level. 

However, they provide an approximation of the distribution of metabolic capabilities. 

Oxygenic photosynthesis is exclusively encoded by Cyanobacteria-derived MAGs, 

with exception of the Vampirovibrionia, which are obligate parasites of green algae 

(Soo et al., 2015). Genes for anoxygenic photosynthesis are limited to Chloroflexota 

and Alphaproteobacteria MAGs in this dataset. Dissimilatory sulphate reduction 
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genes are mainly a feature of the Desulfobacterota and Thermodesulfovibrionia 

(Nitrospirota) MAGs (Figure 6). Interestingly Acidobacteriota MAGs also harbour 

dissimilatory sulphate reduction (DSR) genes. In the Thermoanaerobaculia the KEGG 

module for DSR was annotated completely. Other classes of the phylum harboured 

MAGs with partial annotations, indicating that these taxa may play a role in sulphur 

cycling on Aldabra. Thiosulphate oxidation via the SOX pathway is limited to 

Gamma- and Alphaproteobacteria MAGs, while assimilatory sulphate reduction 

(ASR) is a common feature in most phyla. Genes involved in the production of acetate 

are also common among the MAGs. However, only few MAGs, classified as 

Desulfobulbia and Desulfomonilia, harboured the Wood-Ljungdahl pathway for 

acetogenesis. Potential methanogens were found among the Methanosarcina, 

Methanomicrobia, Lokiarchaeia and potentially Bathyarchaeia. Most samples 

indicated a slightly oxic milieu through the positive Eh (Figure 2). Methanogenesis is, 

thus, likely only a minor factor in the pools of Aldabra. In agreement with this, we 

only detected low completeness for methanotrophic pathways, which oxidize the 

methane produced by Archaea (Jørgensen and Kasten 2006). As they have often been 

found as nitrogen cyclers in soil, we expected the Actinobacteriota MAGs to harbour 

genes for i.e., N2-fixation (Sellstedt and Richau 2013). However, in opposition to 

sulphur, we did not find a specific phylum specialized on the use of nitrogen among 

their annotated energy metabolisms. Gene-modules for the different nitrogen cycling 

pathways (assimilatory nitrate reduction to ammonia (ANRA), dissimilatory nitrate 

reduction to ammonia (DNRA), denitrification, nitrification, complete ammonia 

oxidation to nitrate (comammox), N2-fixation) are encoded to varying completeness 

among the classes, explaining their overall low mean completeness (Figure 6). The 

exception to this are the two potential acetogens, which encode a wide metabolic 

capability regarding energy metabolism and harbour N2-fixation genes. The two 

uncultured classes Bin 61 and Mor1 of the Acidobacteriota are likely able to contribute 

to sediment ammonification via DNRA. 
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Figure 6. Mean completeness of selected energy metabolic pathways among the classes 

represented in the MAG dataset. The individual classes are sorted by their phylum 

affiliation. Colours match the phylogenetic tree in Figure 4 for reference. Abbreviations: PS/, 

II: photosystem I/II, APS: anoxygenic photosystem, ASR/DSR: assimilatory/dissimilatory 

sulphate reduction, SOX: thiosulphate oxidation to sulphate, ANRA/DNRA: 

assimilatory/dissimilatory nitrate reduction to ammonia, Comammox: complete oxidation of 

ammonia to nitrate or complete nitrification. 
 

Cinq Cases 

In lake sediments oxygen is usually rapidly metabolized leading to anoxic sediments 

within the first few centimetres of depth (Cai et al., 2002). The sediment Eh at CC 

suggests the opposite trend with negative values at the surface, which became positive 

by 10 cm bsf alongside a two-fold increase in salinity. Together with the bacterial 

community, which changes from sulphate reducers to facultatively anaerobic 

Halomonas, we concluded that the cores show a temporal progression from the current 

microbial mat at the surface to older, desiccated sediment below 10 cm (Chapter C.3). 

The metagenomic dataset further supports these observations and provides data on the 

major metabolic pathways encoded in the DNA. Starting at the surface, the water 

column at CC had a salinity of 45 g/kg and a pH of 8.5. The microbial community is 

dominated by bacteria, however, only few MAGs could be retrieved, as the data was 

limited to one sample. The MAGs include Pontimonas, which is likely an aerobic 

heterotroph, and Litoricola, which harbours the SOX genes for thiosulphate oxidation 

(Figure 7.A). The sediment surface was characterized by a microbial mat, which drove 

the sediment porewater geochemistry and harboured a taxonomically and 

metabolically diverse community (Chapter C.3; Figure 7.A). Cyanobium is the only 

abundant genus encoding carbon fixation through photosynthesis. While most 

cyanobacteria on Aldabra harbour N2-fixation genes, this is not the case for the 

Cyanobium MAGs. Like in other marine sediments (Garner et al., 2020; More et al., 

2019; Chapter C.3) their remnant cells and DNA can accumulate in sediments even 

past their lifetime. At Cinq Cases Cyanobium is most abundant directly below the 

microbial mat (Figure 5.A: 5-10 cm) where past mat layers remain as traces on the 

long-term, similar to Eleuthera, Bahamas (Glunk et al., 2011). Alongside 

cyanobacteria, the mat and underlying sediment are dominated by DSR-gene encoding 

Paradesulfovibrio and Desulfovibrio MAGs (Figure 5.A). In addition to the release of 

CO2 through anaerobic respiration of sulphate they may produce acetate from organic 

matter, thereby contributing to a lower pH around 7 in the sediment (Figure 7.A). 



RESULTS AND PUBLICATIONS 

136 

 

Further metabolic modules in MAGs of the mat and sediment encode anoxygenic 

photosynthesis (J054, Gammaproteobacteria), aerobic and anaerobic heterotrophy, 

i.e., MA-ANB-1 and T1-Sed10-7. The latter two are currently uncultured 

Actinobacteriota only available as MAGs. The two Vibrio MAGs in our dataset encode 

the genes to produce ammonia through N2-fixation as well as DNRA. Thus, they can 

gain energy under the reducing conditions and contribute to the strong ammonification 

(highest TA) observed in the mat (Figure 2: 0-2.5 cm bsf). The currently unclassified 

MAGs in the top 10 cm bsf harbour genes for diverse metabolic capabilities, including 

thiosulphate oxidation (SOX), acetogenesis, aerobic and anaerobic heterotrophy 

(Figure 7).  

Below the mat-driven sediment (0-10 cm bsf), the bacterial community 

changes to Halomonas and unclassified MAGs, including the most abundant MAG at 

CC, Bin MX 0199 (Acidimicrobiia). The sediment (12.5-20 cm bsf) represents the 

surface of the old, evaporated sediment (Chapter C.3) and has the highest percentage 

of unclassified reads (36-48%) in the entire dataset (Figure 3). Due to the presence of 

Halomonas and their metabolic flexibility, we previously hypothesized, that a shift in 

available organic matter and sediment oxygenation led to the shift in community 

composition (Chapter C.3). Desiccation of the sediment may have selected for highly 

resilient taxa represented by MAGs which could not be taxonomically assigned 

(Figure 7). Looking at their metabolic annotation, the most abundant MAGs (Bin MX 

0199, Bin MB 2388, 1623, 1965, 2135) likely do not rely on anaerobic respiration for 

their energy metabolism. In the case of Bin MB 1965 and Bin MB 2135 they may be 

able to contribute to nitrification in the sediments. Together with the positive redox 

values in the sediment, the large number of MAGs associated with an aerobic 

metabolism support the hypothesis of oxic sediment below 10 cm. The oxygenation of 

the sediment may have occurred upon desiccation, suggested by the high salinity. 

Reducing conditions may not have had time to re-establish since desiccation and were 

therefore restricted to the surface sediments at the time of sampling. 

In the sediment below (22.5 cm bsf), the phylogenetic assignments of the 

MAGs change again to Para-, Pseudodesulfovibrio and Desulfovibrio harbouring 

DSR genes. In addition, we find Clostridiisalibacter and Bin MB 1181. The former is 

likely a fermenter whereas the latter may depend upon sulphate and nitrate reduction 

for its energy metabolism (Figure 7.A). While the geochemical zones shift based on 



RESULTS AND PUBLICATIONS 

137 

 

total organic carbon (Chapter C.3), the abundant MAGs between 22.5-35 cm bsf 

remain the same (Figure 5.A). The similarity of MAGs between the upper 5-10 cm bsf 

and the bottom 25-35 cm bsf, suggests that the sediment between 15-22.5 cm of depth 

interrupts the pre-existing sediment and microbial community. This trend was also 

observed in the 16S rRNA-based community profiles (Chapter C.3). The sediment 

sample most affected by this is characterized by a substantial peak in C/N ratio and 

low phylogenetic diversity (Chapter C.3; Figure 2). The origin of this peak could not 

conclusively be reconstructed. We hypothesized that the change in organic material 

available for degradation may play a role in changing the bacterial community 

(Chapter C.3). Interestingly, the Eh in the deepest sediments remains positive, which 

suggests that oxygen is still present. This would generally have an inhibitory effect on 

the growth of sulphate reducers, as oxygen-based respiration yields more energy 

(Baumgartner et al., 2006). However, it has been shown, that sulphate reducers are 

able to tolerate low oxygen concentrations leading to reduced growth or are able to use 

oxygen and nitrate before switching to sulphate reduction (Baumgartner et al., 2006 

and references therein). An example for this are the Nitrospirota-derived MAGs, 

which increase in abundance from 22.5-35 cm bsf. They harbour DNRA as well as 

DSR genes (Figure 7.A), indicating that they may be able to switch their energy 

metabolism to cope with the conditions in these sediments.  
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Figure 7. Most abundant MAGs at CC (A) and WPD (B) and their encoded energy 

metabolism. MAGs with a coverage > 3 are grouped at the genus level using mean 

completeness of the encoded KEGG modules. In addition, all unclassified MAGs within the 

50 most abundant genera were plotted individually. Abbreviations: PSI/II: photosystem I/II, 

APS II: anoxygenic photosystem II, ASR: assimilatory sulphate reduction, DSR: dissimilatory 

sulphate reduction, SOX: thiosulphate oxidation to sulphate by SOX complex, ANRA: 

assimilatory nitrate reduction to ammonia, DNRA: dissimilatory nitrate reduction to ammonia, 

Comammox: complete nitrification of ammonia to nitrate. 

Westpool D 

WPD is a small pond located southwest of CC on Grand Terre. It is characterized by 

a stratified water column, overlying a jelly-like microbial mat and sediment, as well as 

stromatolites around the rim of the pond (Figure 1.D). The upper water layer of the 

pool had a greenish colour and harboured Spirochaeta 2, uncultured Rhizobiales and 

Cand. Izimaplasma according to 16S rRNA gene-based taxonomic profiling (Figure 

5.B). Cand. Izimaplasma and the uncultured Rhizobiales were likely represented by 

Bin MX 1191 and the Stappia MAGs. Most other MAGs, however, remained 

unclassified (Figure 5.B). Bin MX 1191 is most likely derived from an aerobic 

heterotroph. The Stappia-affiliated MAGs and most other alphaproteobacterial MAGs 

of WPD are derived from purple non-sulphur bacteria (Figure 7.B) harbouring the 

genes for anoxygenic photosynthesis (Imhoff et al., 2017). The bacterial bloom is 

formed of Thiohalocapsa, which is the most abundant genus in both the 16S rRNA 

gene and metagenome dataset (Figure 5.B). The purple sulphur bacteria caused an 

intense pink coloration of the water (Figure 1.B: PW) and fix carbon using anoxygenic 

photosynthesis (Figure 7.B). As the corresponding MAG encodes the genes for both 

DSR and SOX, it is strongly involved in carbon, nitrogen and sulphur cycling in this 

water layer. Simultaneously to thiosulphate oxidation it may be capable of using nitrate 

as electron acceptor (Li et al., 2018), as it harbours DNRA genes. Ammonia may be 

produced using the detected N2-fixation genes (Figure 7.B). It is, therefore, able to 

flourish in the anoxic bottom water layer, as well as the oxic water above, driving the 

local biogeochemical cycles.  

The microbial mat and sediment directly below the water column share most 

of their abundant genera (Figure 5.B). This includes MAGs affiliated to cyanobacteria, 

Arthrospira, Oscillatoria and Cyanobium, as well as unclassified MAGs. With the 

exception of Cyanobium, all cyanobacterial MAGs harbour N2-fixation genes 

alongside photosynthesis genes. Four of the unclassified MAGs belonged to the 

Actinobacteriota and one to the potentially phototroph Alphaproteobacteria. The 
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others remained unclassified at the phylum level (Figure 7.B). The only abundant 

MAG in the sediment with all genes for dissimilatory sulphate reduction, belongs to 

the purple sulphur bacteria (Chromatiaceae Bin MB 1279) and is likely linked to the 

brown-pink layer underneath the green surface of the mat (Figure 1.D). Dissimilatory 

sulphate reduction in the pond is almost exclusively found among the MAGs assigned 

to Gammaproteobacteria and to one Desulfonema (Figure 7.B). Genes for alternative 

energy metabolism to oxygen are not prevalent among the abundant classifiable or 

unclassifiable taxa (Figure 7.B). The lack of MAGs from sulphate reducers belonging 

to the Desulfobacterota is unexpected, as they harbour the most prevalent sulphate 

reducers across all other sampling sites of the atoll (Chapter C.3) and are a major 

component of microbial mats elsewhere (Schneider et al., 2013; Warden et al., 2016; 

Haas et al., 2018). The same applies to the only abundant MAG of the Chloroflexota, 

Oscillochloris. While they are not among the most abundant genera in the 16S rRNA 

gene data, its MAGs are present in the microbial mat and sediment, as well as the 

biofilm covering the stromatolite (Figure 5.B). Interestingly, even though 

Chloroflexota members are not among the most abundant genera across the atoll 

(relative abundance < 0.4%), a branch of 113 MAGs affiliated to this phylum was 

assembled from the dataset (Figure 4). This may be due to the fact that Chloroflexota 

are difficult to isolate in pure culture (Grouzdev et al., 2018). The result is a high 

proportion of incomplete genomes and MAGs from mixed cultures and environmental 

DNA in the databases, which may cause inaccuracies in taxonomic assignment. The 

main colonizers of the biofilm covering the stromatolite are represented by MAG MB 

1769 and MAGs from Salinivibrio and Francisella. They have no or low coverage in 

the water column, the mat and sediment (Figure 5.B). Bin MB 1769 was classified as 

the Cyanobacteriales and encodes N2-fixation and photosynthesis genes (Figure 7.B). 

Its high relative abundance in the biofilm suggests that the MAG is derived from the 

Gloeocapsa which were dominant in the biofilm 16S rRNA gene data (Figure 5). 

Salinivibrio and Francisella MAGs likely both belong to the aerobic heterotrophs 

living within the Gloeocapsa biofilm. Its photosynthetic activity produces oxygen and 

organic matter for the aerobic heterotrophs. Notably, Bin MB 1769 is not present in 

the unlithified microbial mat of WPD. As Gloeocapsa have previously been found in 

calcifying microbial mats (Dupraz et al., 2004), this suggests, that they drive 

microbially mediated precipitation of carbonates on the stromatolite they cover. 
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Pool development on Aldabra 

Taking together our results for CC and WPD, they represent variable pool 

environments on Aldabra potentially leading to the precipitation or dissolution of 

carbonates. WPD is a smaller, highly evaporated pool with stromatolites in the process 

of precipitation. The conditions in this pool exemplify which conditions must have 

prevailed at Cinq Cases in the past for stromatolites to form. The detected 

Thiohalocapsa bloom is likely a result of recent rainfall layering freshwater on top of 

the hypersaline pool water. This has also been observed elsewhere on the atoll, 

including puddles and shallow pools at CC (Potts and Whitton, 1979; Braithwaite et 

al., 1989). When not exposed to a bloom event, the low prevalence of genes for 

anaerobic energy metabolism among the prokaryotic community suggests, that the 

WPD water column and shallow sediment remain oxic. This would also explain the 

difference in abundant community members compared to the surface sediment of CC 

in both the 16S rRNA gene and metagenome dataset. CC is a more extensive pool 

system and has undergone long-term environmental changes, including sediment 

accumulation, then desiccation and again lagoonal flooding. While past descriptions 

of WPD are not available, the microbial mats of CC were described by Braithwaite et 

al. (1989). At the time, the area showed a similar sediment thickness as in 2017 and 

extensive stromatolite and oncolite cover around the rim of the pools. While we were 

not able to find any of the described precipitates in 2017, their description of CC shows 

parallels to WPD. In addition to the stromatolites there, the authors made a distinction 

between mats covering the sediment and mats covering the stromatolites. They suggest 

that lithification at the time only occurred in mats harbouring Entophysalis and 

Pleurocapsa (Braithwaite et al., 1989). We cannot confirm the specific taxa, as 

different methods for taxonomic description were used and classifications have 

changed in the last decades. Nevertheless, our results for WPD also support their 

observation, that different members of the Cyanobacteria are involved in the 

lithification process. 
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Conclusion 

Here we present the first metagenome dataset of the water column, microbial mats and 

sediments of two landlocked, moderately hypersaline pools on the Aldabra Atoll. The 

data elaborate on our previous results on sediments with regard to biogeochemical 

cycling at CC and place them into context with another landlocked pool, WPD. We 

found that the sediments of CC are mainly colonized by DSR-encoding MAGs, despite 

oxidizing conditions. A peak in C/N and enrichment of aerobic heterotrophs within the 

cores suggest a disrupting sediment layer with a high organic content. The source of 

this layer remains unknown but may be related to complete desiccation of the pool in 

the past. WPD shows similarities to CC in the 1970s as it harbours stromatolites and 

two types of microbial biofilm and mat covers. The MAGs reconstructed from this 

sampling site, show little overlap with the MAG data from CC. WPD exemplifies 

environmental conditions and microbial communities required for the development of 

stromatolites on Aldabra. CC represents an older system which has undergone 

substantial changes during its history, leading to both the precipitation and dissolution 

of carbonates. WPD therefore highlights conditions, which likely prevailed at CC in 

the past, when stromatolites were part of its landscape. 
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Supplement: 

Contents: 

Table S1. Sequencing information and read processing statistics.  

The table can be found on the enclosed CD and .zip folder:  

Supplement\Chapter_C5\Table_S1.xlsx. 

 

Table S2. Summary of bins, bin quality and taxonomic affiliation.  

The table can be found on the enclosed CD and .zip folder:  

Supplement\Chapter_C5\Table_S2.xlsx. 

 

Table S3. Post-assembly statistics and summary derived for contigs (a) and the anvi’o 
profile (b). a) The contig summary and statistics were generated using metaQUAST. b) 

the anvi’o profile summary was generated using anvi-summarize on the refined bins. 

The table can also be found on the enclosed CD and .zip folder:  

Supplement\Chapter_C5\Table_S3.xlsx. 
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Table S3. Post-assembly statistics and summary derived for contigs (a) and the anvi’o profile (b). a) The contig summary and statistics were generated 

using metaQUAST. b) the anvi’o profile summary was generated using anvi-summarize on the refined bins. 

Co-assembly Final contigs Anvi’o Key Value 

# contigs (>= 0 bp) 5761716 Created on  08.03.2021 09:53 

# contigs (>= 1000 bp) 5761716 Version  35 

# contigs (>= 5000 bp) 421247 Number of contigs  5,761,716 

# contigs (>= 10000 bp) 147300 Number of splits  5,791,598 

# contigs (>= 25000 bp) 33514 Contig length cutoff min  1,000 

# contigs (>= 50000 bp) 9025 Contig length cutoff max  9,223,372,036,854,770,000 

Total length (>= 0 bp) 14475009184 Samples in profile  47 

Total length (>= 1000 bp) 14475009184 Total nucleotides  14.48Gb 

Total length (>= 5000 bp) 5146533741 SNVs profiled  True 

Total length (>= 10000 bp) 3285585622 SCVs profiled  False 

Total length (>= 25000 bp) 1603112313 IN/DELs profiled  True 

Total length (>= 50000 bp) 774380607 Report variability full  False 

# contigs 5761716 Min coverage for variability  10 

Largest contig 887890 Total nucleotides  14.48Gb 

Total length 14475009184 Number of contigs  5,761,716 

Reference length 3782798 Number of splits  5,791,598 

N50 2889 Genes are called  True 

N75 1531 External gene calls  False 

L50 987063 External amino acid sequences  False 

L75 2778881 K-mer size  4 

# misassemblies 28 Split length  20,000 

# misassembled contigs 25 Splits consider gene calls  True 

Misassembled contigs length 537321 SCG taxonomy was run  True 

# local misassemblies 136 

Gene function sources  

KEGG_Class, 

COG20_CATEGORY, 

COG20_FUNCTION, KOfam, 

KEGG_Module, 

COG20_PATHWAY 

# scaffold gap ext. mis. 0 

# scaffold gap loc. mis. 0 
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Co-assembly Final contigs   

# unaligned mis. contigs 96   

# unaligned contigs 5760658 + 902 part   

Unaligned length 14472532636   

Genome fraction (%) 63.112   

Duplication ratio 1.073   

# N's per 100 kbp 0   

# mismatches per 100 kbp 4344.6   

# indels per 100 kbp 64.3   

Largest alignment 51108   

Total aligned length 2458572   
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D. GENERAL DISCUSSION 

In this thesis, microbial community composition and function are studied in carbonate 

sediments. Porewater and bulk sediment geochemical data are used to describe the 

different sediment settings at Lake Neusiedl and the Aldabra Atoll. The geochemical 

composition provides indications for the broad metabolic processes, which occur in 

each sediment zone. Microbial community analysis covers the living components of 

each of the investigated ecosystems. Taxonomic identification using both 16S rRNA 

genes and transcripts allows an insight into the bacterial communities from two 

standpoints. On the one hand, the 16S rRNA gene-based taxonomy, amplified from 

total DNA from the environmental samples, gives information on all bacterial taxa in 

the sediments. This includes extracellular DNA which has not been degraded yet, dead 

cells which have been preserved in the sediment or sedimented from the water column, 

as well as dormant microbes, which survive using a minimal metabolism (Lloyd, 2021; 

Torti, Lever and Jørgensen, 2015). On the other hand, amplicons derived from 16S 

rRNA gene transcripts reflect the part of the community, which is actively producing 

ribosomes. It is therefore used as a proxy for the metabolically active community. The 

amplicon data provide a detailed overview on the taxonomy of the bacterial 

community members. In addition, whole genome sequencing, metagenomes and 

metagenome assembled genomes (MAGs) are used to understand what the 

communities’ capabilities are. While the metagenome approach does not allow the 

identification of actively transcribed metabolic pathways, it provides an overview of 

the functions encoded and enriched within a microbial community. In addition, it 

allows the identification and characterisation of many uncultured and unclassified taxa 

(Frioux et al., 2020). All microbiological approaches are only as good as the databases 

which are used as references. For this reason, it is important to isolate and characterize 

novel bacterial species. Thus, the isolation and characterization of two novel bacterial 

species complements this study. It provides additional insights into microorganisms 

thriving in the studied ecosystems and enhances the public databases. 
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1. Microbiome of the Aldabra Atoll 

1.1.  Sampling sites on the Aldabra Atoll 

The sediments sampled on the Aldabra Atoll can be subdivided into three categories 

depending on location, sediment facies and bioturbation, in accordance with 

descriptions by Farrow (1971). Firstly, the carbonate sand in the West Lagoon (Figure 

4) categorized as polychaete sandflats. The sand consisted of medium to very fine sand 

with “fair“ sorting in the past (Farrow, 1971), as well as this study (Chapter C.3). It 

was classified as habitat with a moderate probability of lithification preserving it in the 

later limestone (Farrow, 1971).  

Secondly, the mangrove mudflats in the South Lagoon. These are densely 

colonized by Uca marionis fiddler crabs, which leave behind burrows with mud 

chimneys and faecal pellets (Farrow, 1971). The sediment consists of grey, fine silt 

with “fair to poor” sorting. It was categorized as having a high potential of being 

preserved in lithified form (Farrow, 1971). The North Lagoon sediment resembles 

Farrows’ description for the mangrove mud at Bras Cinq Cases, which is characterized 

by red-brown mud rich in organic matter (Farrow, 1971). The sediment is strongly 

affected by the local mangroves and is acidic enough to leave traces of corrosion on 

local mollusc shells (Farrow, 1971). 

The third category of sediment from Aldabra was sampled at the landlocked 

pools. These harboured carbonate mud and silt with differing organic content (Chapter 

C.3) and hypersaline conditions. In the past, the pools harboured salinities from 

marine-influenced freshwater to hypersaline conditions (Braithwaite et al., 1989; 

Donaldson, 1978). The pools typically experience no bioturbation, allowing the 

development of microbial mats and stromatolites. This thesis includes the, to our 

knowledge, undescribed Westpool D which harboured stromatolites, and the Cinq 

Cases basin which has a history of stromatolites (Braithwaite et al., 1989). At the time 

of sampling in 2017, Cinq Cases no longer harboured stromatolites (Chapter C.5). 

 

1.2.  Carbonate sand flats in the lagoon of Aldabra 

The West Lagoon carbonate sand has a high porosity and is subject to strong tidal 

exchange of its porewaters. Neither the bacterial community in the bulk of the sand, 
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nor the porewater geochemical data showed substantial gradients with sediment depth. 

The bacterial community showed 20-60% of Gammaproteobacteria and 10-20% 

uncultured Actinobacteriota (Chapter C.3). These phyla have also been found to be 

abundant in the sands of South Carolina (Taylor and Kurtz, 2020), California (Boehm, 

Yamahara and Sassoubre, 2014), the North Sea (Degenhardt et al., 2020; Musat et al., 

2006) and the Bahamas (O'Reilly et al., 2017), however, always at lower abundances. 

The sand bacterial diversity was low on Aldabra in comparison to these other sites. 

Common sand associated Bacteroidetes, such as Flavobacteriales (Probandt et al., 

2018), were present in the water column, but virtually absent in the sediment. 

Pirellulaceae belonging to the Planctomycetes were associated with the total bacterial 

community but present only at low relative abundance (1-3%). Many environmental 

drivers may affect the sand bacterial community structure. Shared drivers among sand-

based community studies include the degree of disturbance through tidal mixing, 

porewater exchange and season (Boehm, Yamahara and Sassoubre, 2014; Böer et al., 

2009; Degenhardt et al., 2020; Chapter C.3). Differences in community type may also 

be a result of sampling time in relation to tidal status, as the sand-particle attached 

community differs strongly from the free-living porewater community (Gobet et al., 

2012; Chapter C.3). This may explain the low diversity in the West Lagoon (Chapter 

C.3), as the samples were taken from a virtually dried out core at low tide.  

In addition, geographical location could be an important factor for the 

community composition, as most of the aforementioned studies were based around 

temperate beaches. Microbial communities situated closer to tropical locations, such 

as Californian (Boehm, Yamahara and Sassoubre, 2014) or Hawaiian (Cui et al., 2013) 

beaches, contain higher proportions of Pseudomonas, Vibrio and Acidobacteria, 

similar to the sands of Aldabra (Chapter C.3). At a functional level, the sand 

environment selects for bacterial taxa which have the ability to flourish under 

constantly changing nutrient and oxygen conditions. They can persist in the sediment 

by attaching to sand grains or forming conglomerates (Probandt et al., 2018). This 

often leads to an enrichment of nitrogen cycling taxa (Boehm, Yamahara and 

Sassoubre, 2014; Chapter C.3; Figure 6), such as Pseudomonas, Halomonas, Vibrio 

and Planctomycetes. Most of these are denitrifiers which can use nitrate as alternative 

electron acceptor to oxygen (González-Domenech et al., 2010; Lalucat et al., 2006; 

Liu et al., 2020). In permeable coastal sediments, the fluctuating oxygen availability 
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has been shown to stimulate denitrification (Marchant et al., 2017), indicating that the 

same effect occurs in the West Lagoon sand. 

 

 

Figure 6. Potential bacterial metabolism along the sediments of Lake Neusiedl and the four 

sampling sites on Aldabra. The most abundant bacterial orders (Neusiedl > 1%, Aldabra > 5% 

relative abundance) were categorized by their potential energy metabolism according to 

literature on bacterial isolates within their order (Appendix 1.2). The line at 0 cm represents 

the sediment water interface. The dotted line at 15 cm indicates a transition depth in the 

bacterial profiles. 
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1.3. Biogeochemical cycling in carbonate mud and silt 

Different types of carbonate mud and silt were sampled during the course of this study. 

On Aldabra, this includes the mud and silt in the North and South Lagoon, the 

carbonate mud of Cinq Cases (Chapters C.3 and C.5), and the carbonate mud of Lake 

Neusiedl (Chapters C.1 and C.2). The most abundant bacterial phyla on Aldabra 

resemble other intertidal and mangrove sediments in the Indian Ocean (Chapter B.1, 

Figure 1). Lake Neusiedl harboured high relative abundances of Chloroflexota, similar 

to other lacustrine systems (Chapter B.1, Figure 1). All sediments initially followed 

the classical biogeochemical zonation pattern (Chapter B.2, Figure 2) with a sulphate 

reduction zone within the approximately first 15 cm of sediment. Sulphate reduction 

was clearly visible in the porewaters by a decrease in sulphate and concomitant 

increase in total sulphides. It was driven by members of the Desulfobacterota at all 

sites, which are the main sulphate reducers globally (Chapter B.1, Figure 1; Jørgensen, 

Findlay and Pellerin, 2019). Desulfobacterota show site-specific differences in the 

distribution of their families. At Neusiedl the main sulphate reducers within the 

sulphate reduction zone were Desulfarculales and Desulfobacterales (Chapters C.1 

and C.2). In the marine sediments of Aldabra, we identified Desulfobacterales and 

Desulfovibrionales instead (Chapter C.3). Desulfobacterales and Desulfovibrionales 

can both be found in marine (Jochum et al., 2018) as well as hypersaline and alkaline 

environments (Foti et al., 2007). This suggests that their distribution is not dependent 

on the lacustrine or marine setting. Desulfarculales has been classified as a strictly 

anaerobic mesophilic family with a preference for freshwater and marine environments 

(Waite et al., 2020). The elevated salinities over ocean values in the lagoon sediments 

and landlocked pools, as well as oxygenation of the sediment through bioturbation, 

may explain their absence from the Aldabra sediments. 

 Following the sulphate reduction zone, Neusiedl sediments transitioned to 

Dehalococcoidia, Anaerolineales and Syntrophobacterales (Chapter C.1, Figure 6). 

Dehalococcoidia are known for their organohalide respiration and Anaerolineales are 

highly abundant plant-degraders in anaerobic wastewater digesters (Hug et al., 2013; 

Xia et al., 2016), suggesting that fully anoxic conditions prevail at Neusiedl. The 

higher abundance of Syntrophobacterales below 15 cm of depth alongside increasing 

methane concentrations indicates the onset of methanogenesis by archaea to which 
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they are potential synthrophs (Kuever, 2014). This transition from sulphate reduction 

to methanogenesis at the bottom of the sediment, makes the Neusiedl sediment cores 

a perfect example of the classical geochemical zonation (Figure 6; Jørgensen and 

Kasten, 2006). 

The sediments on Aldabra show a different bacterial and biogeochemical 

succession with depth (Figure 6). As a result of bioturbation and tidal disturbance the 

upper 15 cm of depth showed a mixed surface and sulphate reduction zone. It 

harboured typically fermenting taxa (Propionigenium) and synthrophs 

(Synergistaceae EBM-39), alongside sulphate reducers (Desulfobacterota) and 

sulphide oxidizers (Campilobacterota) (Figure 6; Chapter C.3). Instead of increasing 

relative abundances of fermenting anaerobes and methanogens like in the proof-of-

concept study (Chapter C.1), we found Gammaproteobacteria known for their 

metabolic flexibility to be abundant (Chapter C.3 and C.5). Their abundance increased 

alongside a drop in phylogenetic diversity in comparison to the sulphate reduction zone 

(Chapter C.3). Porewater total alkalinity and ammonia concentrations also decreased 

in this sediment, indicating a decrease in metabolic activity. 

In the South Lagoon, the switch in dominant community type occurred upon 

transition from bioturbated sediment to older sediment harbouring mangrove debris 

below 15 cm of depth (Figure 6). At Cinq Cases, the change occurred alongside a peak 

in C/N ratio and intermittent carbonate-free sediment. While organic matter also 

increases in the deeper sediments of Lake Neusiedl, explaining the increase in 

fermenting Chloroflexota, the sediment showed no abrupt changes in geochemistry or 

sediment facies (Chapter C.2). For the South Lagoon and Cinq Cases, we linked the 

change in community type to a change in sediment age, availability and complexity of 

organic matter (Chapter C.3). Comparison with Lake Neusiedl suggests that sediment 

history may indeed influence the bacterial community by providing more stable or 

frequently disturbed environments. Stable ecosystem rich in nutrients are more 

habitable to a diverse bacterial community. A diverse bacterial community with a large 

variety of specialist taxa, such as sulphate reducers (Chen et al., 2021), can establish 

in their specific ecological niches. Frequently disturbed sediments or sediments with 

inaccessible nutrients are more inhabitable. Frequent disruption requires re-

establishment of the community, while environments with inaccessible nutrients or 

oligotroph conditions represent a kind of desert. Both environments harbour fewer, 
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generalist taxa, or pioneers, which are able to quickly colonize environments using 

their large metabolic repertoire (Chen et al., 2021). 

At Aldabra the metabolically versatile and ubiquitous Gammaproteobacteria, 

such as Pseudomonas, Halomonas and Vibrio, may represent bacterial generalists or 

pioneers. At Cinq Cases they colonize previously desiccated sediments ahead of the 

reducing bacterial community at the surface. In the South Lagoon, they persist in 

anoxic sediments of an older age (Chapter C.3). Gammaproteobacteria MAGs derived 

from Cinq Cases harboured genes for DNRA and denitrification. DNRA yields more 

energy than denitrification under nitrate limiting conditions (Strohm et al., 2007). The 

ability to switch between energy metabolic pathways, may therefore be an advantage 

during sediment colonization (Chapter C.5). Whether these taxa are selected by their 

ability to degrade more complex organic matter in the form of mangrove debris, 

survive in potentially more oligotrophic sediments, or simply endure, can however not 

fully be determined from the current dataset. Synergistic interactions with plant matter 

degrading fungi may be an additional factor, which has not been assessed in this study. 

Metagenomes, however, indicate that overall fungal abundance is low and decreases 

in the zones with low bacterial diversity (Chapter C.5). 

Sulphate reducers represent the group of highly specialized taxa (Chen et al., 

2021). The bioturbated surface sediments on Aldabra provide a multitude of ecological 

niches filled by specialized Desulfovibrio, Synergistota EBM-39 and Propionigenium. 

They are adapted to their individual niches by reducing sulphate for their energy 

metabolism (Galushko and Kuever, 2015), synergism with other specialists (He et al., 

2018) or association with burrowing fauna (Watson et al., 2000). Even though frequent 

bioturbation may create localised extinction events for individual taxa, their fast 

growth and specialization may lead to quick re-establishment within their specific 

ecological niche (Monard et al., 2016). At Cinq Cases specialized taxa can be found 

in the microbial mat and underlying sediments, as well as the bottom of the cores (30-

35 cm bsf). The mat harbours the highest bacterial diversity, including bacterial taxa 

with a multitude of metabolic traits (Chapter C.3). The bottommost sediment at Cinq 

Cases shows traces of the previous microbial community. Despite the positive redox 

conditions, MAGs derived from this sediment harbour sulphate reduction genes, and 

complete KEGG modules for methanogenesis (Chapter C.5). In this zone, archaea 

reach their highest abundance in the Cinq Cases metagenomes (3%). Together with 
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the nitrogen cycling Gammaproteobacteria above, this suggests that the sediment may 

have followed the standard biogeochemical zonation in the past (Figure 6). 

2. Carbonate precipitation and diagenesis 

The aim of this thesis was to determine the microbial taxa populating different 

carbonate environments and understanding their potential involvement in the 

precipitation and diagenesis of carbonates. First, we studied the alkaline Lake Neusiedl 

consisting of authigenic high magnesium calcite (HMC) and protodolomite (Chapters 

C.1 and C.2). The remaining carbonate sediments derive from five different areas on 

the limestone Aldabra Atoll (Chapters C.3 and C.5). They include fine-grained 

carbonate sand, coarse to fine carbonate silt, mud and shell debris, as well as a 

succession of sediments with varying degrees of carbonate content. Lastly, we focused 

on an actively precipitating, moderately hypersaline pool and its stromatolites (Chapter 

C.5). 

2.1.  Precipitation, diagenesis, and microbes 

Carbonate precipitation is dependent upon the saturation of its chemical components 

in the environment, as well as pH, alkalinity, and available nucleation sites (Dupraz et 

al., 2009). Carbonates can precipitate along creek surfaces (Schneider et al., 2015), in 

microbial mats and stromatolites (Baumgartner et al., 2009; Glunk et al., 2011), or in 

the water column (McCormack et al., 2018). Once formed and sedimented, carbonates 

undergo changes, for instance due to fluctuating pH conditions or microbial boring, 

leading to their dissolution, re-precipitation and recrystallization (Mackenzie and 

Andersson, 2011). These changes fall under the term diagenesis and lead to altered 

isotopic signatures (O, C) and exchange of ions (Mg, Ca, Sr) in the carbonate crystals. 

By cycling carbonate compounds or accumulating carbonates intracellularly, microbes 

can alter the isotopic signature of carbonates and potentially skew the data (Hesse and 

Schacht, 2011; Pederson et al., 2019). As isotopic signatures of carbonates are 

commonly used to reconstruct the climatic history of sediments (Pederson et al., 2019), 

it is therefore important to understand microbial succession and metabolism in present-

day sediments. 
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2.2.  Precipitation in the water column: Lake Neusiedl 

Lake Neusiedl has been the focus of various studies targeting its dolomite and high 

magnesium calcite (HMC) sediments (Müller, Irion and Förstner, 1972; Schroll and 

Wieden, 1960, Chapter C.2). The dolomite at Neusiedl is of particular interest, as 

dolomite is used as a proxy to understand past climatic conditions. It is also difficult 

to achieve its precipitation under laboratory conditions, leading to an ongoing 

discussion on the exact conditions required for its precipitation (McCormack et al., 

2018 and references therein). In our study of Lake Neusiedl (Chapter C.2), the 

sediments consisted of HMC, protodolomite and calcite, as well as almost 50% of 

detrital minerals including mica, feldspar, quartz, and clay (Chapter C.2). The 

microbial community within these sediments reflected the high amount of plant-based 

organic content with high abundances of Chloroflexota (Chapter C.1). Both 

Anaerolineales and Dehalococcoidia have been detected in anaerobic environments 

where they have been described as acetogenic primary fermenters and plant degraders 

(Hug et al., 2013; McIlroy et al., 2017), explaining their increasing abundance 

alongside plant detritus in the sediment. Sulphate reducing Desulfobacterota were 

present throughout the cores but changed from Desulfarculales and Desulfobacterales 

in the upper sediment (0-10 cm/Unit I) to SVA0485 and Syntrophobacterales in units 

II (15-22.5 cm) and III (25-40 cm) (Chapter C.1). As Syntrophobacterales populations 

have been found to increase in conjunction with methanogenic archaea (Ziels et al., 

2015), this indicates, that archaea may play an increasingly important role at the 

bottom of the cores (Unit II/III). While methanogenesis and anaerobic methane 

oxidation could potentially lead to further carbonate precipitation, acetate, and other 

acidic fermentation products of the Chloroflexota likely outweigh this process. At 

Lake Neusiedl, this means that the overall pH is significantly lower in the sediments 

than in the water column (7.6 in comparison to > 8.5) leading to signs of dissolution 

of diatoms and HMC crystals in the thin sections (Chapter C.2; Figure 7). 

The water column shows a different picture regarding carbonate precipitation. It 

is highly saturated in calcite, aragonite, and dolomite, and has a high pH, ideal for 

carbonate precipitation. The microbial community consists of aerobic heterotrophs, 

such as SAR11 Alphaproteobacteria, freshwater hgcI Actinobacteriota and 

Bacteroidota (Chapter C.1). Little is known about freshwater Actinobacteriota apart 
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from the fact, that they exhibit some of the smallest cell-sizes for freshwater bacteria 

and belong to the photoheterotroph picoplankton (Dwulit-Smith et al., 2018; 

Warnecke, Amann and Pernthaler, 2004). Their small cell size may facilitate abiotic 

precipitation in the supersaturated water column of Lake Neusiedl by acting as small 

nucleation sites. In addition, we detected freshwater Synechococcus, which are the 

photoautotrophic members of the microbial community able to actively precipitate 

carbonates in the form of S-layer sheaths (Thompson et al., 1997). In the water column, 

it has been observed that Synechococcus can shed their sheaths, ensuring their 

continued growth (Thompson et al., 1997). Their shed sheaths may represent first 

carbonate nuclei and form the basis for further precipitation and diagenetic alteration 

of the original cyanobacterial carbonate (Figure 7). 

 

Figure 7. Modes of carbonate precipitation and dissolution across the sampling sites discussed 

in this thesis. Abbreviations: HMC: high magnesium calcite, SRB: sulphate reducing bacteria, 

SOX: sulphide oxidizing bacteria, (Anox.) PS: (anoxygenic) photosynthesis. Sampling sites: WL: 

West Lagoon, WPD: Westpool D, CC: Cinq Cases, NL: North Lagoon, SL: South Lagoon. 
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To verify our hypothesis on the formation of carbonates at Lake Neusiedl, further 

studies should include the assessment of the archaeal community in the sediment, 

alongside sediment isotopic composition. If methanogenesis or anaerobic oxidation of 

methane play a significant role, this should lead to isotopically lighter carbonates 

(Reeburgh, 2007). 

2.3.  Precipitation and dissolution in sand and sediment:   

Aldabra Lagoon 

Tidal currents and protected embayments lead to the accumulation of sediments on the 

Aldabra Atoll (Farrow, 1971; Stoddart et al., 1971). Frequent tidal exchange, shallow 

water depth and evaporation lead to changes in sediment pH, carbonate saturation and 

alkalinity on the sand and mudflats. In the lagoon of Aldabra, we sampled three 

different sediment environments including carbonate sand in the West Lagoon, grey 

fine-grained carbonate mud in the South Lagoon, and red-brown coarse carbonate sand 

and silt in the North Lagoon (Chapter C.3).  

Based on the sediment facies, the North and South Lagoon have very different 

sediments. The bacterial community in the upper 0-15 cm of the two sampling sites 

show a highly similar community composition (Chapter C.3). The data showed that 

sulphate reducing Desulfobacterota, and other heterotrophs create a low pH, which 

leads to local dissolution of carbonates and high total alkalinity (Chapter C.3). 

Previous studies suggest that long-term sulphate reduction and the resulting increase 

in alkalinity and release of Ca2+ from EPS degradation should lead to precipitation 

favouring conditions (Dupraz et al., 2004; Gallagher et al., 2012). Additional 

metabolic products, such as CO2 and acetate from aerobic and anaerobic heterotrophs 

likely negate this effect. The resulting net dissolution of carbonates was previously 

found in the South Lagoon sediments (Dune Jean Louis sediment in Gaillard, Bernier 

and Gruet, 1994). In 2017, dissolution features on shell debris alongside algal borings 

were also found in the North Lagoon sediments (data not shown). These are in line 

with the description for acidic red-brown mangrove mud by Farrow (1971) and have 

the lowest pH of the lagoon sediments. As the sediments we encountered in the lagoon 

were not covered by microbial mats and photoautotrophs were present only at low 

relative abundances, the surface sediments will likely not change towards precipitating 

conditions. In addition, syntrophic taxa indicating the presence of methanogenic 
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archaea were only detected in the upper 15 cm of sediment, where heterotroph activity 

likely outweighs any pH increases by methanogens. The same applies to the deeper 

sediment (South Lagoon > 15 cm). While we expected the deeper sediments to favour 

methanogens, we detected mainly Gammaproteobacteria. Halomonas, 

Photobacterium and Vibrio MAGs derived from Cinq Cases harbour genes for DNRA, 

denitrification and N2-fixation, suggesting that their ability to cycle nitrogen is 

advantageous in these sediments (Chapter C.5). We linked their onset to the presence 

of mangrove debris and plant material, which is more challenging to degrade (Chapter 

C.3). The associated pH changes favour dissolution of carbonates. 

The West Lagoon carbonate sand is the only sampled environment within the 

lagoon with sediment conditions favourable for carbonate precipitation. This occurs in 

the first millimetres of sand, which are characterized by a lithified crust derived from 

a microbial biofilm (Chapter C.3). The biofilm is light pink and green in colour and 

harbours the highest bacterial diversity within the sediment column. It is inhabited by 

photoheterotrophic Alphaproteobacteria, sulphate reducing Desulfobacterota and 

cyanobacterial Gloeocapsopsis. These taxa are also found in the calcifying microbial 

mats of the Bahamas (Dupraz et al., 2004) and likely drive both biogenically induced 

and influenced precipitation. The most likely scenario for carbonate precipitation in 

the West Lagoon is linked to the outgoing tides. While these recede, the sediment 

desiccates leading to increased saturation of carbonates and their compounds around 

the microbial biofilm. Within the biofilm, the Gloeocapsopsis may either actively or 

passively precipitate carbonate in form of a sheath or removal of CO2, thereby shifting 

the carbonate equilibrium. At the same time, sulphate reducers and heterotrophic 

Alphaproteobacteria may degrade EPS and create local dissolution zones on the sand 

particles, leading to an increase of free Ca2+-ions in the biofilm. Together with the 

evaporitic conditions, precipitates are formed, ultimately leading to an initial 

cementation of the sand surface (Figure 7). The tidal influence on the sediment here 

may also be the limitation to lithification in the West Lagoon, as the porewater space 

will be diluted at hight tide and unbound precipitates may be washed away. An 

indication for the short-lived nature of lithified surfaces in the West Lagoon, are the 

past descriptions of these features nearby. Potts and Whitton (1980) described the 

crusts as lagoonal stromatolites, suggesting that they reached a larger thickness than 

the crusts we observed. Braithwaite et al. (1989) however, criticised this classification 



GENERAL DISCUSSION 

162 

 

of the crusts classifying them as laminated sediments, rather than stromatolites, as they 

lacked precipitated carbonate at the time.  

Of the three sites in the lagoon, only the West Lagoon showed recent carbonate 

precipitation in the form of cemented sand layers. Intermittent crusts throughout the 

cores suggest that parts of the lithifications may be preserved on a longer term. The 

North and South Lagoon mud represented environments where carbonate dissolution 

can currently take place. Particularly the North Lagoon sediments show signs of 

diagenesis through endolithic borings and traces of dissolution. While carbonates do 

not seem to precipitate in the water column and sediments of Aldabra’s lagoon, an 

alternative source of carbonates may be the fish sheltered within the lagoon. These 

have been shown to contribute low and high Mg-calcite and aragonite to the carbonate 

sediments at Great Bahama Bank (Perry et al., 2011), which is one of the closest 

present-day analogues to the Aldabra Atoll (Farrow, 1971). 

2.4.  Precipitation in microbial mats and stromatolites:    

Aldabras’ landlocked pools 

Westpool D and Cinq Cases are two moderately hypersaline pools on Grand Terre 

Island, which have a history of stromatolites. The Cinq Cases sediment, stromatolites 

and microbial mats were first described by Braithwaite (1989) including the 

geochemistry of the pool water column. In their study, Cinq Cases was sampled in the 

middle of the dry season (July/August 1984). In comparison, we sampled at the end of 

the dry season (November 2017) (Chapter C.3). The conditions in 1984 describe a 

higher pH and salinity than in 2017 (Table 2). The description of water and sediment 

depth, as well as sediment texture match our observations of light brown to grey, 

organic rich, fine-grained sediment. The main difference between now and then is the 

occurrence of stromatolites and oncolites, as well as bright pink bacterial blooms at 

the pool margins in 1984 (Braithwaite et al., 1989). In 2017, the stromatolites were no 

longer present and the blooms at Cinq Cases occurred in puddles as a result of first 

rain showers. Both the stromatolites and blooms, however, were found at a previously 

undescribed sampling site, Westpool D. Westpool D is a small pond in the South of 

Grand Terre Island (Chapter B.3, Figure 4). It harboured a stratified water column with 

a pink bacterial bloom in the bottom water layer, as well as partially submerged 

stromatolites around the rim (Chapter C.5). The pH and temperature at the time of 
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sampling were lower than present-day Cinq Cases, however alkalinity, Ca2+, Mg2+, 

and salinity were higher, particularly within the bacterial bloom (Table 2). The 

geochemical conditions at Westpool D closely resemble the conditions measured at 

Cinq Cases in 1984 (Table 2). 

Table 2. Chemical parameters of the water column at Cinq Cases and Westpool D at past 

(Braithwaite et al., 1989) and present conditions. TA, Ca2+, Mg2+ (mmol L-1) concentrations of 

1984 were calculated from the pTH, pCa and pTH (total hardness) by reversal of the negative 

logarithm used for p (p = -log [mol L-1]) and transformation into mmol L-1. Mg2+ was derived by 

subtracting Ca2+ from TH values, as described by Braithwaite et al. (1989). The salinity was 

approximated from Braithwaite’s specific conductivity (mS cm-1) measurements (Braithwaite 

et al., 1989) using the oceanlife water salinity converter (Oceanlife S.r.l, 2017). Actual salinities 

in 1984 may have differed slightly as the marine contributions to Cinq Cases used as 

calculation basis were suggested to be lower at the time (Braithwaite et al., 1989). 

 
pH 

TA 

(meq L-1) 

T 

(°C) 

Ca2+ 

(mmol L-1) 

Mg2+ 

(mmol L-1) 

Salinity 

(g kg-1) 
DIC 

Cinq Cases        

1984 
8.88 - 

9.51 

2.08 -

5.01 

22.5 - 

31.2 

19.4 -

28.2 

63.0 -

149.6 
~ 100 - 

2017 8.5 3.37 33.2 13.9 70.5 45.5 2.4 

Westpool D 

(2017) 
       

Surface 8.2 6.03 27.2 21.1 99.6 62.9 5.1 

Bottom 7.7 6.00 32.5 30.1 161.8 99.2 5.2 

 

Cinq Cases and Westpool D harboured different microbial mats covering 

lithified and non-lithified surfaces, both at present and in the past. The unlithified mats 

were either green and spongy at Cinq Cases or gelatinous in Westpool D and harboured 

multiple cyanobacterial genera, including Arthrospira, Cyanobium or Synechococcus 

(Chapter C.5). The filamentous cyanobacteria Lyngbya and Schizothrix described 

morphologically by Braithwaite (1989), only occurred at very low relative abundances 

in the dataset, although the “fluffy” nature of the microbial mat at Cinq Cases would 

suggest their presence (Chapter C.5). Some differences in cyanobacterial taxonomy 

are expected due to discrepancies between morphological identification and 16S rRNA 

gene analysis. In addition, 16S rRNA gene analysis and frequent phylogenetic 

rearrangements within the Cyanobacteria can lead to differences in taxonomic 

assignment (Willis and Woodhouse, 2020). 
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Previously observed lithifications at Cinq Cases were linked to the presence of 

coccoid cyanobacteria Pleurocapsa and Entophysalis (Braithwaite et al., 1989), as 

well as Plectonema gloeophilum (Riding, 1977) (now Leptolyngbya gloeophila). The 

lithifications, observed as stromatolites and oncolites, were no longer discoverable in 

2017. This may be a result of the increasing drought frequency on Aldabra leading to 

lower water levels at Cinq Cases throughout the year (Haverkamp et al., 2017). A 

climatic change to dryer conditions was previously suggested by Stoddart (1971), who 

observed that the pools were deeper and larger in the past. The subsequent exposure 

of stromatolites to wind and rain (which typically has an acidic pH) may have led to 

their erosion within the last 30 years.  

Coccoid cyanobacteria were also identified within the biofilm scraped directly 

off the living stromatolite at Westpool D. Using metagenomic assembly, we were able 

to assemble a MAG derived from the most abundant bacterial genus of the biofilm 

(Cyanobacteriales Bin MB 1769, completion 90.1%, redundancy 4.2%). The 16S 

rRNA gene analysis and scanning electron microscopical observations (data not 

shown) indicate that it is a coccoid Gloeocapsa, although its precise taxonomy remains 

to be verified (Chapter C.5). Gloeocapsa share the biofilm environment with 

Salinivibrio and Francisella, which potentially benefit from the cyanobacterial carbon 

fixation and produce additional EPS. In addition, Salinivibrio is able to locally increase 

the pH and was previously hypothesized to mediate the precipitation of high 

magnesium calcite in an evaporitic Sabkha (Al Disi et al., 2017). The Gloeocapsa in 

the calcifying biofilm at Westpool D are virtually absent in the microbial mat at the 

bottom of the pond. This jelly-like mat does not contain signs of precipitation, such as 

carbonate granules (Chapter C.5). The most abundant cyanobacteria are Arthrospira 

and Cyanobium, alongside Alphaproteobacteria with the ability to fix carbon through 

anoxygenic photosynthesis. Desulfobacterota are virtually absent from the mat, 

sediment and biofilm. Genes for dissimilatory sulphate reduction are almost 

exclusively encoded within the Thiohalocapsa and Thiocapsa responsible for the 

bacterial bloom (Chapter C.5). The bloom itself has a pH-lowering effect. It is 

therefore unlikely that sulphate reducers play a role in alkalinity increase and 

concomitant biogenically induced carbonate precipitation at Westpool D.  

Comparing the lithifying with non-lithifying surfaces, coccoid cyanobacteria 

were be associated with precipitated surfaces in 2017 (Chapter C.5), as well as in the 
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past (Braithwaite et al., 1989). This matches results derived from microbial mats at 

Kiritimati atoll (Kiribati, Schneider et al., 2013) and Eleuthera (Bahamas, Dupraz et 

al., 2004), microbialites at Lake Van (Turkey, López-García et al., 2005) and 

Alchichica crater (Mexcico, Saghaï et al., 2016), thrombolites at Lake Clifton 

(Australia, Warden et al., 2016) and stromatolites at Niuafo’ou Island (Tonga, 

Kazmierczak and Kempe, 2006). At all sites, coccoid cyanobacteria including 

Gloeocapsa, Cyano- or Halothece, and Pleurocapsa were implicated with 

calcifications or precipitation of carbonates. This was linked to their carbonate 

capsules, which showed outward signs of crystallization or were observed in 

association with nanoprecipitates (López-García et al., 2005). Filamentous 

cyanobacteria, on the other hand, have been found in many unlithified microbial mats, 

including Niuafo’ou (Kazmierczak and Kempe, 2006), Aldabra Atoll (Braithwaite et 

al., 1989), and Eleuthera (Dupraz et al., 2004). An exception to this are the 

thrombolites at Highbourne Cay (Bahamas, Mobberley et al., 2015), karst-water tufa 

(Germany, Schneider et al., 2015) and Shark Bay (Australia, Wong et al., 2015). These 

thrombolites are formed through trapping of ooids and other existing carbonates within 

a network of filamentous cyanobacteria (Leptolyngbya, Microcoleus, Phormidium) 

covering their surface (Mobberley et al., 2015). Thereby they can provide additional 

precipitation surfaces within the biofilm or microbial mat, besides their calcifying 

sheaths.  

Interestingly, the definition of stromatolites and thrombolites indicate the 

opposite developmental history. According to Kennard and James (1986) laminated 

stromatolites are formed by filamentous microbes in mat-like communities, which trap 

sediments and internally precipitate carbonate. Thrombolites on the other hand are 

characterized by individual clusters of coccoid, precipitating communities (Kennard 

and James, 1986). This suggests that there are differences between precipitating and 

preserved members of the community. A notion which is supported by the observed 

successions of bacterial biofilms on Highbourne Cay stromatolites (Baumgartner et 

al., 2009; Reid et al., 2000). Different members of the community are responsible for 

trapping, binding, and subsequent calcification of each stromatolite layer. Petryshyn 

et al. (2021) linked the different microbial taxa detected in 16S rRNA genes and 

metagenomes from stromatolites to different stages of stromatolite development. This 

follows the sequential action of builders, tenants, and squatters. According to this, the 
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squatters and tenants degrade the cell and DNA remnants of the original builders, 

leaving behind only their own traces in the stromatolite (Petryshyn et al., 2021). 

Based on this information, we propose the following model for the growing 

stromatolite at Westpool D. Gloeocapsa in the biofilm at the stromatolite surface 

represent the builders, which provide the initial localized biologically induced 

carbonate precipitation. The tenants are Salinivibrio and Francisella, which cause 

localized pH changes and influence precipitation (Al Disi et al., 2017). As the pond 

contains only low quantities of sediment, trapping and cementation of carbonate 

particles is unlikely. Sulphate reducers play no role in the precipitation process (Figure 

7). 

2.5.  Role of the water column in carbonate precipitation at Westpool D 

and Cinq Cases 

At Westpool D, the precipitation of carbonates may be supported by the moderately 

hypersaline water conditions and bacterial bloom within the water column. The 

reconstructed MAG, affiliated to Thiohalocapsa at the centre of the bloom, harbours 

genes for anoxygenic photosynthesis, sulphate reduction and thiosulphate oxidation 

(Chapter C.5). In the first instance, the bacterial bloom had a significant pH-lowering 

effect on the water column (Table 2). This indicates that pH reduction due to sulphide 

oxidation and/or sulphate reduction outweigh the pH increase of anoxygenic 

photosynthesis. During the bloom and its biological degradation immediately 

afterwards, conditions may therefore not favour carbonate precipitation. After the 

bloom, the situation may change, as Thiohalocapsa are able to deposit elemental 

sulphur in their cells (Anil Kumar et al., 2009; Hubas et al., 2017). Any sulphur 

globules that are released by the breakdown of the bloom, may provide post-mortem 

precipitation nuclei for abiogenic precipitation in the water column. 

In addition to purple sulphur bacteria, other members of the water column, such 

as Psychroflexus, may influence carbonate precipitation. Psychroflexus ALD_RP9 

was isolated from the Thiohalocapsa bloom (Chapter C.4). Microscopic analysis 

showed that its cells are encased in a jelly-like layer of EPS. The strategy to produce 

large amounts of protective EPS has been described for other members of its genus, 

including the type-strain Psychroflexus torquis isolated from Antarctic sea ice 

(Bowman et al., 1998; Feng et al., 2015). Our genomic analysis revealed additional 
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EPS genes encoded in regions absent from other Psychroflexus genomes, suggesting 

that this is an adaptation to the high salinity and sun exposure in Westpool D (Chapter 

C.4). The degradation of large quantities of EPS produced by Psychroflexus and other 

members of the water column and bloom community will release EPS-bound Ca2+ into 

the already saturated water column. The calcium release can induce spontaneous 

abiotic precipitation in the water column or on the randomly ordered, degraded EPS 

matrix (Figure 7). 

 Our data on the water geochemistry of Cinq Cases was potentially influenced 

by a downpour of rain on the day of sampling. The rain, as well as its runoff from the 

surrounding area will have pooled at Cinq Cases leading to a dilution of the water 

column. In addition, the bacterial community did not suggest that precipitation 

inducing taxa, i.e., cyanobacteria, were particularly abundant in the water column. 

Assuming that dilution was caused by the rain, any precipitation that occurred within 

the water column at Cinq Cases is of an abiotic nature. Potential nucleation sites could 

be provided by microbes, such as Pontibacillus sp. ALD_SL1. This moderately 

halophilic bacterium had a high relative abundance in the water column (Chapter C.3) 

and is able to thrive at salinities up to 20%. Upon degradation its endospores may 

provide nuclei for abiotic precipitation in the water column (Chapter C.4). 

 

3. Sediment microbial communities and contamination 

Anthropogenic contamination is an important topic in sediments studies. This includes 

both contamination from a methodological and a diagnostic point of view. The first 

case tackles potential biases caused by wet and dry lab methods, as well as potential 

reagent contaminations. The second aspect focuses on microbial communities that are 

frequently used to determine the effects of an anthropogenic impact on sediments. 

They are used either in the context of pollutants, such has hydrocarbons from oil spills 

(Dell’Anno et al., 2020; Rodriguez-R et al., 2015), or heavy metal contamination 

(Gough and Stahl, 2011; Quero et al., 2015). The aim is to understand potential effects 

on the base of the food chain, or to determine the microbial remediation potential for 

the contaminants. The second type of community studies assesses the microbial load 

in sediments. They aim to determine the sediments’ potential as reservoir for infectious 

agents or existing level of human and other potential faecal contaminants (Boehm, 
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Yamahara and Sassoubre, 2014; Cui et al., 2013; Hatvani et al., 2018; Kopprio et al., 

2020).  

3.1.  Method-based biases and contaminations 

Field-based studies are never perfectly sterile. While cleanliness and purity of many 

aspects can be controlled for in a laboratory environment, it is virtually impossible to 

avoid small amounts of contamination in the field. These may be introduced by the 

equipment, researcher, or pre-existing reagent contamination from the manufacturers 

(Davis et al., 2018; Knight et al., 2018). Even when everything is sterilized and 

decontaminated, small amounts of amplifiable DNA may persist on tools and in 

reagents or through cross-contamination, particularly when a high number of PCR 

cycles is used (Salter et al., 2014). Most of the time low amounts of contamination are 

not a problem, as they are masked by the, in comparison, large amount of input 

material. In low-biomass samples, DNA contamination is more relevant than in high-

biomass samples and can even result in misleading microbiomes (Goffau et al., 2018; 

Perez-Muñoz et al., 2017). The low-biomass problem particularly affects biomedical 

studies (Perez-Muñoz et al., 2017), but also environmental samples from, e.g.: the deep 

biosphere (Peoples et al., 2019; Suzuki et al., 2020). In order to cope with potential 

biases, different approaches have been established. One method is the utilization of a 

relative abundance cut-off of 0.25-0.3% to remove spurious or less abundant 

contaminating sequences (Reitmeier et al., 2021; Willner et al., 2012). Another method 

is the exclusion of “known contaminants” (Peoples et al., 2019). This means post-

sequencing filtering of reads associated with taxa from the reagent microbiome or a-

typical environments. In the case of environmental samples this means filtering of 

reads by taxonomic affiliation. Known human or faecal-associated contaminants, such 

as Escherichia-Shigella, Pseudomonas and Vibrio are thereby excluded. Alternatively, 

statistical tools have been developed to remove contaminant taxonomic units based on 

the logic, that their abundance increases in low biomass sediments, or on their presence 

in control samples (Davis et al., 2018).  

In some cases, the sediments and water samples studied in this thesis also 

harboured a low biomass. However, removal of specific taxa by known association 

was counterintuitive as this may remove real members of the community. For instance, 

Pseudomonas have been associated with reagent contamination (Salter et al., 2014), 
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but also form a large proportion of the bacterial community in both pristine (Chapter 

C.3) and anthropogenically contaminated sediments (Rodriguez-R et al., 2015). In the 

case of Escherichia and other Enterobacteriaceae, the taxonomy cannot be fully 

resolved using V3-V4 16S rRNA gene primers or even primers amplifying the full 

sequence (Jovel et al., 2016). Furthermore, a “natural input” by the gut microbiota of 

the surrounding fauna on Aldabra cannot be excluded. We therefore decided against a 

filtering of known contaminants and evaluated the samples by merging replicates and 

using abundance cut-offs to investigate abundant community members. In the case of 

rare-biosphere members, which may be lost using abundance cut-offs, samples were 

evaluated in the ecological context of their environment, as recommended by Goffau 

et al. (2018). 

 

3.2.  Environmental pollution and microbial community response 

With increasing global pollution, a large number of studies focus on microbial 

communities in relation to pollutants. Common pollutants of interest are heavy metals, 

including mercury or lead (Quero et al., 2015; Sun et al., 2013), as well as polycyclic 

aromatic hydrocarbons (PAHs) from oil spills (Rodriguez-R et al., 2015) and factory- 

or urban-associated sediments (Obi et al., 2016; Sun et al., 2013). Generally, a high 

proportion of Gammaproteobacteria and Desulfobacterota are found in these studies. 

Gammaproteobacteria are mostly linked to the degradation of PAHs (Obi et al., 2016; 

Sun et al., 2013), and certain members of this phylum have been shown to harbour the 

ability to degrade these (Dell’Anno et al., 2020; Mason et al., 2014). Desulfobacterota 

and Chloroflexota (Anaerolineaceae) were found at higher relative abundances in 

heavy metal contaminated sediments. This was proposed to be linked to sulphate 

reduction and anaerobic oxidation of methane while using methane or iron (Sun et al., 

2013). It should be noted that these genera are highly prevalent in most sediments 

worldwide, including the pristine sediments of Aldabra. Unless individual strains or 

consortia are tested, as in (Dell’Anno et al., 2020), any association to contamination is 

likely tenuous.  

In many cases, studies on microbial populations in polluted environments use a 

closely situated sediment as reference for comparison but ignore their different 

sediment settings. As the availability of organic matter or connectivity to the ocean 
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may impact the community, as shown in Chapter C.3, the sediment setting first needs 

to be taken into consideration when analysing these environments. In the case of Lake 

Neusiedl for instance, mercury has been found to be enriched in plants and fish. In 

Chapters C.1 and C.2 we also detected Chloroflexi members, which have been shown 

to be hydrocarbon degraders (Dombrowski et al., 2017) and organohalide respirers 

(Hug et al., 2013). Yet, it is unlikely that their abundance is related to pollution in the 

lake and is rather linked to the fermentation of plant matter that has accumulated in the 

sediments (Chapter C.1). One common feature of many polluted environments is a 

decreased species richness in comparison to their control environments. This indicates 

that pollution has an inhibitory effect on microbial growth, favouring highly 

specialized or resilient taxa. In eutrophic environments a decrease in diversity may be 

observed when these are dominated by highly adapted and fast-growing community 

members. One solution to further disentangle the main drivers of polluted sediment 

communities is to study metagenomes to discover potential pollution adaptations. 

Genes conveying resistance to heavy metals, for instance, should be more prevalent in 

the polluted microbial community. Alternatively, functional arrays, such as the 

GeoChip, may provide this information without the need for metagenomes (Shi et al., 

2019). 

 

3.3.  Clinically relevant microbial pollution 

A third focal point of sediment studies is the detection of clinically relevant microbes 

in recreational environments, such as beaches (Boehm, Yamahara and Sassoubre, 

2014; Cui et al., 2013) or lakes (Hatvani et al., 2018), and urbanized areas, such as the 

Karnaphuli estuary (Kopprio et al., 2020). The main bacterial taxa of interest comprise 

potentially pathogenic and opportunistic pathogenic organisms, such as Aeromonas, 

Escherichia, Salmonella, Shigella, and Vibrio, amongst others (Abia, Ubomba-Jaswa 

and Momba, 2016; Kopprio et al., 2020; Zhang et al., 2015; Zhang et al., 2020). Initial 

assessment within the microbial community is often done using 16S rRNA gene 

analysis to estimate the overall pathogenic load in sediments. In addition, counts of 

colony forming units (CFUs) and species-specific markers are used to capture the most 

important members (Cui et al., 2013; Hatvani et al., 2018; Kopprio et al., 2020). 

Sediments are targeted, as they are regarded as bacterial reservoirs. They essentially 
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seed the water column at the marine or aquatic sites and trigger bacterial blooms and 

outbreaks under the right conditions (Criminger et al., 2007; Whitman and Nevers, 

2003). It is therefore necessary to monitor bathing and recreational sites on a regular 

basis.  

Input of clinically relevant taxa and particularly of faecal contaminants in the 

environment can occur through efflux from wastewater treatment plants (Hatvani et 

al., 2018), sewage (Kopprio et al., 2020), or agricultural run-off (Abia et al., 2016). In 

addition, natural faecal input from local and visiting birds and animals can lead to 

increased amounts of gut-associated taxa. This applies to touristic environments, such 

as Lake Neusiedl where Vibrio species may be introduced by migrant birds (Pretzer et 

al., 2017), as well as protected environments, such as Aldabra, where we detected an 

increase in phosphate levels and Arcobacter in mangrove sediments in the proximity 

of a bird colony (Chapter C.3). While the monitoring of potentially pathogenic taxa is 

important, it should be noted, that often only a few strains within a bacterial species 

lead to infection. For instance, only a few specific serogroups of Vibrio cholerae cause 

the cholera disease (Pretzer et al., 2017), while other Vibrio spp. are common and even 

abundant in the environment, including sediments (Chapter C.3), surface seawater 

(Wietz et al., 2010), marine rhizosphere (Criminger et al., 2007) and corals (Chimetto 

et al., 2008). This also applies to Escherichia-Shigella, which are difficult to 

distinguish using 16S rRNA gene amplicons (Devanga Ragupathi et al., 2018). Their 

ubiquity, growth-rates and robustness has led to the idea, that they may represent 

microbial weeds together with taxa, such as Pseudomonas putida, Mycrocystis 

aeruginosa, Salinibacter ruber, fungal Saccharomyces cerevisiae and Aspergillus spp. 

(Cray et al., 2013). Using these taxa as indicators for human and animal faecal 

pollution should therefore be carefully considered. Screening for specific serotypes for 

verification becomes a necessity for the verification of these data. 

 

4. Conclusion & Outlook 

This study demonstrates the breadth of microbial communities in lacustrine and marine 

carbonate sediments. The data are based on 16S rRNA genes and transcripts, 

metagenomes and bacterial isolates, highlighting different aspects of the communities. 

16S rRNA gene analysis showed the transition of bacterial communities along 
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biogeochemical gradients at Lake Neusiedl and the Aldabra Atoll. The data was 

supported by metagenome analysis, indicating the metabolic capabilities of abundant 

community members. Lastly, two bacterial isolates were characterised from a 

physiological and genomic standpoint and placed into the overall context of Aldabra. 

Together with an extensive geochemical dataset, our data highlight changes in 

microbial communities and their potential involvement in biogeochemical cycling, 

carbonate precipitation and dissolution. 

Although taxonomically a comprehensive assessment of the bacterial 

communities was performed, additional studies are needed to fully understand their 

metabolic activity. On the one hand, the metagenomes should be investigated in more 

detail to uncover the metabolic potential of currently uncultured taxa. On the other 

hand, further isolate-based studies or enumeration of the community and specific 

functional genes using cell counts and qPCR may provide further evidence for our 

taxonomy-based observations. 

Currently growing amounts of plastic pollution are threatening the natural beauty of 

the Aldabra Atoll. Further studies may therefore quantitatively assess the load of 

microplastics on the sediments and how these affect structure, function, and adaptation 

of the microbial communities. 
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E. APPENDIX 

1. Supplement 

1.1.  Supplementary Data Chapter B.1 Figure 1 

Sampling information and most abundant bacterial phyla in all studies used in 

the generation of Figure 1. The data is based on studies using 16S rRNA 

amplicons, which are referenced underneath the table. 

The table can also be found on the enclosed CD and .zip folder:  

Supplement\Chapter_B_1\Supplementary_Data_B_1_Figure_1.docx. 

1.2.  Supplementary Data Chapter D.1 Figure 6 

Metabolic assignment of abundant orders, relative abundances and summed 

metabolism based on metabolic features of cultured bacteria in each order. Page 

1: Categories Aldabra: Abundant bacterial orders (>5% relative abundance), their 

metabolic affiliation, source of metabolic information and relative abundance 

table. Page 2: Categories Neusiedl: Abundant bacterial orders (>1% relative 

abundance), their metabolic affiliation, source of metabolic information and 

relative abundance table. Metabolic assignments and sources are adapted from 

Fussman et al. (2020). Page 3: Relative abundances summed by sample in the 

Aldabra and Neusiedl sediment cores. 

The table can be found on the enclosed CD and .zip folder:  

Supplement\Chapter_D_1\Supplementary_Data_D_1_Figure_6.xlsx. 
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Supplementary Data Figure 1. Sampling information and most abundant bacterial phyla in all studies used in Figure 1. The data is based on 

studies using 16S rRNA amplicons, which are referenced underneath the table. 

Sampling site Country Latitude Longitude Category 
α-

Proteo 

γ-

Proteo 

δ-

Proteo 

Bacte-

roidetes 

Chloro-

flexota 

Plancto-

mycetes 
Other Source 

Arctic Mid-

Ocean Ridge 
Atlantic 73.21 7.34 seafloor 0 0 1 0 1 1 4 1 

Pigeon Cay Bahamas 24.53 -75.61 intertidal 1 1 1 1 0 0 3 2 

Cananeia Brazil -25.05 -47.57 mangrove 1 1 1 0 0 0 4 3 

Plymouth England 50.34 -4.148 seafloor 0 1 1 1 1 1 2 4 

Cedar Key Florida 29.75 -83.18 mangrove 1 1 1 0 1 1 2 5 

Spiekeroog Germany 53.78 7.71 intertidal 0 1 0 1 0 1 4 6 

Godthåbsfjord Greenland 64.29 -50.42 seafloor 0 1 1 1 1 0 3 7 

Gloucester 
Virginia, 

USA 
37.25 -76.51 intertidal 0 1 1 0 1 1 3 8 

Caspian Sea Eurasia 39.99 51.5 seafloor 0 1 1 0 1 1 3 9 

Xuande Atoll China 16.57 112.14 atoll 1 1 1 1 0 0 3 10 

Yap Trench China 8.05 137.6 
deep sea/ 

seafloor 
1 1 0 0 1 1 3 11 

Beilun China 21.31 108 mangrove 0 1 1 1 1 1 2 12 

Jiaolong 

Methane Seep 
China 22.7 119.17 seafloor 0 1 1 0 1 0 4 13 

Potrok Aike Argentina -51.96 -70.38 lake/river 0 0 1 0 1 1 4 14 

Lake Neusiedl Austria 47.48 16.42 lake/river 0 1 1 0 1 0 4 15 

Pavilion Lake Canada 50.51 -121.44 lake/river 1 0 0 1 0 0 5 16 

Kinneret Israel 32.83 35.59 lake/river 0 1 0 1 1 0 4 17 

Australia Australia -33.62 115.12 intertidal 1 1 1 1 0 0 3 18 

Bhitarkanika India 20.4 86.54 mangrove 1 1 1 1 0 0 3 19 

Goa India 15.3 73.52 mangrove 1 1 1 0 0 0 4 20 

Aldabra Seychelles -9.44 46.39 atoll 1 1 1 0 0 0 4 
Chapter 

C.3 
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Serrana Bank Colombia 14.27 -80.15 atoll 1 1 0 0 0 0 5 21 

Spermonde Indonesia -5.02 119.3 atoll 1 1 1 0 0 0 4 22 

Kiritimati Kiribati 1.9 -157.4 atoll 0 0 0 1 1 1 4 23 

Kermadec 

trench 

New 

Zealand 
-35.9 -178.96 

deep sea/ 

seafloor 
1 1 0 1 1 1 2 24 

Hydrate Ridge 
Oregon, 

Canada 
44.4 -125.06 seafloor 1 1 1 0 1 1 2 25 

Dorado 

Outcrop 
Pacific 9.5 -87.5 seafloor 1 1 1 0 1 1 2 26 

South Pacific 

Gyre, Pacific 
Pacific -27.54 -123.1 seafloor 1 1 0 0 0 0 5 27 

Mariana 

trench 
USA 12.63 144.72 

deep sea/ 

seafloor 
1 1 0 1 1 1 2 24 

Mertz Glacier 

Plynya 
Antarctica -66.312 143.38 seafloor 1 1 1 1 0 1 2 28 

California USA 37.096 -122.279 intertidal 1 1 1 1 0 1 2 29 
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