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Summary 

Agricultural intensification and the loss of suitable habitats are drivers of insect declines. Besides the 

promotion of semi-natural habitats (SNH), the utilization of diversified crop rotations including 

flowering crops is an option to sustain pollinators. As flowering and nitrogen fixing crops, grain legumes 

provide several environmental benefits but are underrepresented in the EU. Since 2013 they are 

promoted within the greening reform of the Common Agricultural Policy (CAP). On-field biodiversity 

measures are often criticized, though their possible benefits for biodiversity are widely unknown. My 

PhD thesis aims at investigating the landscape-scale effect of conventional faba bean (Vicia faba L.) 

cultivation on wild bee communities, their resource utilization and their pollination services. 

Experiments were conducted in 1km x 1km study landscapes in Germany. For the first three chapters 

a paired study design was applied with one landscape of a pair comprising at least one faba bean field 

and the respective control landscape without grain legumes.  

In the first chapter we studied effects of faba bean cultivation on functional groups of wild bees. We 

conducted pollinator surveys at field margins of different crops in 30 study landscapes. Bumblebee 

densities were more than twice as high in faba bean compared to control landscapes, while non-

Bombus wild bees were only driven by the amount of SNH. These results indicate that a combination 

of on- and off-field greening measures is necessary to conserve farmland biodiversity and we 

recommend that the CAP should furthermore promote both. In the second chapter we investigated 

the effect of two mass-flowering crops (MFC) on the functional trait composition of bee communities 

in SNH. Faba bean cultivation promoted bumblebees, especially long-tongued species, social bees and 

bees foraging on Fabaceae. High oilseed rape (OSR) covers changed wild bee community composition 

in favor for solitary bees. Local flower cover of SNH was the main driver of non-Bombus wild bees and 

wild bee species richness. Thus, different MFC promote specific functional bee groups adapted to the 

crop`s flower morphology. Concluding, the cultivation of functionally diverse crops, combined with a 

high local flower cover of SNH needs to be targeted by management practices to sustain diverse 

pollinator communities. In the third chapter we studied landscape and faba bean cultivation effects 

on the colony development and resource utilization of bumblebees (Bombus terrestris L.). The 

colonies` reproductive success was not influenced by landscape composition but enhanced by 

landscape diversity. Faba bean cultivation and pollen diversity interacted and resulted in more young 

queens with increasing pollen diversity in landscapes without faba bean. In addition, colonies that 

collected a higher pollen diversity had a reduced A. sociella depredation. Increased parasitism had a 

cascading negative effect on the reproductive success of bumblebees by limiting colony growth. Our 

study shows that high landscape diversity and diverse pollen diets can enhance the reproductive 

success of bumblebees. A diverse diet even mitigated depredation by wax moths. To sustain vital 
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bumblebee populations and their pollination services, diverse and floral rich habitat types should be 

conserved or restored in agricultural landscapes. In the fourth chapter we investigated, how bee 

densities in OSR fields are affected by past and current MFC cultivation and how insect pollination 

affects OSR yield components. Bee densities were positively affected by past MFC covers and 

negatively affected by current OSR covers. Pollinator exclusion decreased seed number per pod and 

increased seed weight. Insect pollination interacted with the plants` pod number in shaping yields, 

while compensating for low pod numbers. In the fifth chapter we analyzed the effect of landscape 

composition on the densities of different functional bee groups and their foraging behavior in faba 

bean fields in 11 different landscapes. Moreover, the effect of insect pollination and of landscape 

composition was tested on faba bean yield components. Landscape composition affected the bees` 

foraging behavior in the crop. Increasing covers of faba bean and of semi-natural habitats in a 

landscape had a positive effect on bee densities and on faba bean yield, while oilseed rape cover had 

a negative effect. Our study emphasizes the importance of considering landscape management in 

order to maximize flowering crop yields. 

In conclusion, Vicia faba cultivation is an effective measure to promote wild bees, which are needed 

for high crop yields. Though, since benefits for pollinator groups depend on the crops` flower 

morphology, functional trait composition of wild bee communities can be changed in landscapes with 

a dominating mass-flowering crop species. Thus, landscape and local farm management should aim at 

increasing farmland plant diversity. The combination of a high cover and quality of semi-natural 

habitats as well as of diversified farming practices targeting a high spatial and temporal crop diversity 

is essential to conserve diverse pollinator communities and to sustain high crop yields.  
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General introduction 

Landscape effects on pollinators and pollination services 

Human induced global change impacts biodiversity and the loss of biodiversity threatens the 

provisioning of ecosystem services (Cardinale et al., 2012). Being a major land use type on earth, 

agriculture is one of the main drivers of this development (Foley et al., 2005). Since agroecosystems 

depend on ecosystem services, it is essential to conserve biodiversity and associated services, like 

pollination via a sustainable farm and landscape management (Power, 2010). The global insect decline 

has largely been attributed to agricultural intensification and the resulting loss of habitat heterogeneity 

(Benton et al., 2003; Seibold et al., 2019). Diversified farming systems and low intensity agriculture, 

like organic farming or the use of diversified crop rotations with flowering crops can on the other hand 

promote insects and lead to enhanced diversity in agroecosystems (Kennedy et al., 2013; Rosa-Schleich 

et al., 2019; Tscharntke et al., 2005).  

Pollinators are susceptible to landscape changes (Potts et al., 2010) and the composition and the 

configuration of a landscape affect pollinator densities and species richness in agricultural landscapes 

(Kallioniemi et al., 2017; Kennedy et al., 2013; Martin et al., 2019). An increased landscape 

heterogeneity positively impacts pollinators (Benton et al., 2003; Hass et al., 2018; Mallinger et al., 

2016) and landscape simplification has been shown to negatively affect pollinators and their 

pollination services (Dainese et al., 2019). Moreover, landscape simplification can lead to a functional 

homogenization of insect communities that will mainly be consisting of species with generalist feeding 

traits and large body size (Gámez-Virués et al., 2015; Perović et al., 2015). The provisioning of floral 

resources can however mitigate such developments (Grab et al., 2019). The availability and diversity 

of flowers is a major factor driving wild bee abundances and species richness (Ebeling et al., 2008; Potts 

et al., 2003). A high cover of semi-natural habitats has been shown to positively affect bees (Diekötter 

et al., 2014; Nayak et al., 2015; Steffan-Dewenter et al., 2002) and to enhance their reproductive 

success (Requier et al., 2020). This in turn has implications for crop pollination because enhanced 

pollinator densities have been observed in crop fields with increasing proportions of semi-natural 

habitats in the surrounding landscape (Carré et al., 2009; Nayak et al., 2015).  

Pollinators depend on a continuous supply of floral resources (Schellhorn et al., 2015) and have been 

shown to move between non-crop habitats and crop fields according to their changing resource 

availability (Bänsch et al., 2020a; Mandelik et al., 2012). The cultivation of mass-flowering crops 

provides temporally high pollen and nectar amounts for insects and has been shown to promote 

solitary bees and bumblebees (Diekötter et al., 2014; Jauker et al., 2012; Riedinger et al., 2015; 

Westphal et al., 2003). Bumblebee colonies mainly show increases of worker numbers in the literature, 

but no increased reproductive success, i.e. number of young queens or number of colonies (Herrmann 



General introduction 

9 
 

et al., 2007; Westphal et al., 2009). Moreover, mass-flowering crops can lead to a dilution by strongly 

attracting bees with negative impacts on the pollination of co-flowering crops or wild plants (Bänsch 

et al., 2020b; Grab et al., 2017; Holzschuh et al., 2016). Additionally, the composition of pollinator 

communities can be changed if certain species are predominantly promoted by a certain mass-

flowering crop (Diekötter et al., 2010). Different mass-flowering crops have been shown to be visited 

by different pollinator communities (Garratt et al., 2014). Generally, a high pollinator functional 

diversity is associated with high crop yields, since morphological traits of the crop and of the pollinator 

need to match in order to achieve successful pollination and maximum yields (Garibaldi et al., 2015; 

Woodcock et al., 2019). To maintain a high pollinator functional diversity, a high functional diversity of 

farmland plants is essential (Sutter et al., 2017), which requires high covers of semi-natural habitats 

and a high crop diversity (Aguilera et al., 2020).  

Diversified crop rotations with grain legumes 

Diversified farming systems promote biodiversity and ecosystem service provisioning, like pest control 

and pollination (Lichtenberg et al., 2017; Rosa-Schleich et al., 2019). One option are diversified crop 

rotations, which are temporal sequences of different crops grown on the same land (Rosa-Schleich et 

al., 2019). The inclusion of grain legumes into crop rotations results in a temporal and spatial farmland 

diversification. While environmental benefits of grain legume cultivation are generally known (Kremen 

and Miles, 2012; Preissel et al., 2015), the specific effects on biodiversity are understudied. 

Environmental benefits of grain legume cultivation 

The cultivation of grain legumes provides several agronomic and ecological benefits. Via biological 

nitrogen fixation, legumes can fix atmospheric nitrogen in symbiosis with rhizobia bacteria, which 

supplies ecosystems with biologically available nitrogen (Herridge et al., 2008; Vitousek et al., 2002). 

Thus, the cultivation of grain legumes can lead to a reduction of synthetic nitrogen fertilizer application 

and associated energy savings (Köpke and Nemecek, 2010; Kremen and Miles, 2012; Preissel et al., 

2015). Moreover, legumes are known to positively affect soil fertility and act as a break crop in simple 

cereal-based crop rotations (Böhm et al., 2020; Köpke and Nemecek, 2010; Kremen and Miles, 2012; 

Preissel et al., 2015). A diversification of crop rotations is known to reduce the occurrence of diseases, 

pests and weeds as well as the associated application of plant protection products (Kremen and Miles, 

2012; Rosa-Schleich et al., 2019). The cultivation of different crop species with varying sowing times, 

growing periods, management and competitive abilities can prevent the spread and interrupt the life 

cycle of weeds or pathogens and avoid resistances (Liebman and Dyck, 1993; Nichols et al., 2015). 

Furthermore, the inclusion of grain legumes into diversified farming systems can potentially enhance 

biodiversity and associated ecosystem services (Kremen and Miles, 2012; Rosa-Schleich et al., 2019). 

Beneficial arthropods, such as pollinators, predatory and parasitoid species might benefit from an 
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inclusion of grain legumes into cropping systems by supplying food resources (Böhm et al., 2020; 

Nuessly et al., 2004). Furthermore, the high protein content of grain legume seeds makes them a 

valuable domestic protein source for human and animal feed and the increased use of domestic 

protein plants can help to reduce the long-distance import of soy (DAFA, 2012; Zander et al., 2016). 

Moreover, grain legumes play a role in terms of healthy plant-biased diets (DAFA 2012; Zander et al., 

2016). Dietary changes with associated reduction in meat production and consumption would lower 

the negative environmental impacts of agriculture (Westhoek et al., 2014). Since legumes are an 

important part of a sustainable agriculture, their cultivation is promoted within current agricultural 

programs. The cultivation of domestic grain legumes coincides with the Protein Crop Strategy, which 

aims at the reduction of competitive disadvantages of protein crops, to increase the production of 

domestic protein plants in Germany and to increase biodiversity and associated ecosystem services 

(BMEL, 2020). Beyond that, the diversification of crop rotations goes along with the targets of the 

Arable Farming Strategy (BMEL, 2019a). Since the last Greening reform of 2013 grain legumes can be 

declared as Ecological Focus Area (EFA) within the first pillar of the Common Agricultural Policy (CAP). 

This recent development has resulted in increasing interest in grain legumes, which had been largely 

forgotten during the last decades. 

Grain legume cultivation in Germany 

Despite providing plenty environmental benefits, grain legume cultivation in Germany and in the whole 

EU is underrepresented. The cultivation area of the most important grain legumes in Germany, peas, 

faba beans, lupins and soybeans in 2020 made up only 1.7 % of the total arable land (Destatis, 2020). 

There has been a drop of legume cultivation during the last decades. Several reasons have been 

denoted, such as low yield stability of grain legumes, the availability of cheap imported soy, the lack of 

marketing and processing opportunities and the increased cultivation of cereals and maize (Böhm et 

al., 2020; DAFA, 2012; Preissel et al., 2015; Zander et al., 2016). As a consequence, grain legumes can 

often not compete with crops, such as cereals. In the EU, there is a deficit in domestic protein plant 

production and grain legumes are even undervalued in the EU feed market considering their high 

protein content (Jensen et al., 2010; Köpke and Nemecek, 2010; Nemecek et al., 2008; Zander et al., 

2016). When assessing the profitability of diversified crop rotations with grain legumes, the positive 

effects on the environment are often not considered and in terms of biodiversity largely unknown. 

In response to the promotion of nitrogen fixing crops withing the CAP Greening reform, the cultivation 

area of grain legumes almost tripled from 2013 to 2020 (Destatis, 2020). On-field (productive) greening 

measures are a common choice among farmers and made up approx. 80 % of the total area declared 

as EFA in 2019 in Germany (BMEL, 2019b). Off-field (non-productive) measures, like field margins or 

hedgerows, have however been shown to be more effective for biodiversity conservations than on-

field measures (Batáry et al., 2015). Thus, on-field measures are widely criticized to provide no benefit 
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for biodiversity (European Commission, 2017, 2020; Pe’er et al., 2019). Nevertheless, there is missing 

knowledge about the effect of grain legume cultivation on biodiversity, especially under conventional 

management.   

Faba bean - Relevance and pollination ecology 

Relevance and plant traits 

The faba bean or broad bean (Vicia faba L.) is an important grain legume crop originating from the 

Near East, which is grown world-wide for animal feed, human consumption or for green manure (Bond 

and Poulsen, 1983; Cubero, 2011; Jensen et al., 2012). With respect to production, faba beans are the 

second major pulse crop after peas in the EU and in Germany (Destatis, 2020; Eurostat, 2020). Faba 

beans belong to the genus Vicia within the family Fabaceae and they have a papilionaceous flower 

structure, which is typical for most species of the Faboideae subfamily (Fig. 1). The bilateral flowers 

consist of five petals, the standard petal or banner, the two wing petals and the two keel petals, which 

are fused to form a keel (Bond and Poulsen, 1983). The wing petals usually have a big dark melanin 

spot. Faba beans have ten stamens and nine of them form a sheath surrounding the ovary (Bond and 

Poulsen, 1983; Stoddard and Bond, 1987). During a pollinator` s visit, the wing and keel petals are 

depressed and release the stigma and the pollen, which is called “tripping”. Nectar is located at the 

base of the corolla tubes and short-tongued bumblebees often rob nectar by biting a hole into the 

calyx (Pond &Poulsen, 1983; Stoddard & Bond, 1987) (Fig. 1). Faba beans have extrafloral nectaries 

underneath the stipules (Fig. 1), which have been observed to be used by parasitic wasps and bees 

(Bond and Poulsen, 1983; Nuessly et al., 2004).  

 

Figure 1  Left: Papilionaceous flower structure of faba bean (from Bond & Poulsen, 1983). Right: Hole in the flower calyx, 

made by a nectar robbing short-tongued bumblebee and a bumblebee using an extrafloral nectary of a faba bean plant 

(photos: Nicole Beyer). 
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The protein content of the faba bean seeds is quite high, between 22 and 36 % (Burstin et al., 2011). 

Important pest species of faba beans are the black bean aphid (Aphis fabae Scopoli), the broad bean 

weevil (Bruchus rufimanus Boheman) (Fig. 2) and the pea leaf weevil (Sitona lineatus L.) (Demonetz 

Erbse/Bohne, 2020; Karkanis et al., 2018).  

Faba bean flower visitors and pollinators 

Most frequent flower visitors of faba beans in temperate regions are honeybees and bumblebees, 

predominantly long-tongued species (Bond and Poulsen, 1983; Garratt et al., 2014b; Marzinzig et al., 

2018) (Fig. 2). Next to bumblebees, also other bees have been observed to visit the plants. Bees of the 

genera Eucera, Anthophora and Xylocopa are known to be frequent visitors and pollinators of faba 

beans but also few Halictidae have been observed visiting and feeding on faba bean flowers (Aouar-

sadli et al., 2008; Marzinzig et al., 2018; Nuessly et al., 2004; Stoddard and Bond, 1987). The 

morphology of the faba bean flowers allows only visitors with certain functional traits to access their 

rewards. Force, as well as a long tongue are prerequisites to forage on faba bean flowers (Bailes et al., 

2018). Therefore, long-tongued bumblebees, like Bombus hortorum have been found to be most 

effective pollinators (Marzinzig et al., 2018). Nectar robbing is a way to circumvent the floral barrier, 

which is a very common behavior on flowers with tubular corollas (Irwin et al., 2010). Honeybees do 

not bite holes, but commonly use the holes made by bumblebees (Soper, 1952). Nectar robbing in faba 

beans has been observed to reduce the pod set compared to honeybee or bumblebee legitimate 

visitation. But still robbed flowers set more pods than flowers, which were not visited by any bees 

(Kendall and Smith, 1975). The authors suggest that nectar robbing might indirectly increase 

pollination success because robbers shake flowers and thereby facilitate self-fertilization. As partially 

allogamous plant species, faba beans can reproduce by self-fertilization and by cross-fertilization. 

Approx. one third of the plants in a faba bean field are hybrid plants, while two thirds are self-pollinated 

(Filippetti and Ricciardi, 1993; Kendall and Smith, 1975; Soper, 1952). The benefit from insect 

pollination for faba beans has been shown to vary from 16 % to 40 % yield increase in terms of seed 

weight per plant (Bartomeus et al., 2014; Bishop et al., 2016; Gasim and Abdelmula, 2018). Knowledge 

about how different pollinator communities with varying foraging behavior affect yield formation in 

faba beans is however scarce. 
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Figure 2  Different insects on V. faba. From left to right: Bombus terrestris and B. pascuorum foraging on faba bean flowers, 

foraging B. hortorum, B. lapidarius approaching a faba bean flower, foraging B. terrestris, a foraging non-Bombus wild bee 

and a broad bean weevil (B. rufimanus) on a faba bean plant. Photos: Nicole Beyer. 

 

Conservation effects of faba bean cultivation on pollinators 

The cultivation of faba beans plays a relevant role in terms of resource provisioning for beneficial 

insects in agricultural landscapes (Everwand et al., 2017; Köpke and Nemecek, 2010) (Fig. 3). Bees can 

use the pollen and the nectar from the flowers, as well as the extrafloral nectaries, whose nectar is 

commonly used by honeybees before the onset of the bean flowering (Bond and Poulsen, 1983; 

Stoddard and Bond, 1987). As mass-flowering crop, V. faba provides a large quantity of resources 

during a short time period. A beneficial effect of the mass-flowering crop oilseed rape on pollinators 

has been demonstrate in many studies (e.g. Diekötter et al., 2014; Jauker et al., 2012; Westphal et al., 

2003). This early flowering crop is the most grown mass-flowering crop in the EU (FAOSTAT, 2020). 

Resources in simplified agricultural landscapes are often scarce after the flowering of oilseed rape and 

faba beans can provide food sources for pollinators afterwards during midsummer. A study of 

Timberlake et al. (2019) showed that there are especially critical times in the year and mentioned a 

June-gap in food resource availability for bumblebees. V. faba flowers in that period and could 

therefore bridge this gap of low resource availability. Moreover, the late harvest of the beans enables 

the flowering of weeds late in the season and can therefore indirectly serve as food resource for insects 

also after their bloom (Köpke and Nemecek, 2010). There has been a strong decline of arable weeds 

during the last decades (Meyer et al., 2013) and their loss contributes to the floral impoverishment 

and biodiversity decline in agroecosystems (Storkey et al., 2012). The cultivation of faba beans has the 

potential to support bees in agricultural landscapes by the provisioning of resources during, before and 

after its flowering period (Fig. 3) and might contribute to the halting of the ongoing pollinator decline. 

A positive effect of faba bean cultivation on the colony density of Bombus pascuorum has already been 

shown (Knight et al., 2009) as well as higher bumblebee densities in field margins next to bean 

compared to wheat fields (Hanley et al., 2011). As legume species, faba beans might play a major role 

as forage plants for bumblebees. The decline of bumblebees, especially long-tongued species has been 

associated with the decline of leguminous plants (Goulson et al., 2005). However, there is a knowledge 

gap regarding the effect of conventionally faba bean cultivation on different functional groups of bee 

pollinators, especially studies at landscape scale are widely lacking. 
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Figure 3  Role of V. faba as floral resource for pollinators in agricultural landscapes. Pollinating insects can use the pollen and 

the nectar from the flower, as well as from the extrafloral nectaries. Faba beans provide resources in June, which are often 

scarce in simplified agricultural landscapes after oilseed rape has ceased flowering. Moreover, faba beans are harvested quite 

late, which enables the flowering of weeds, like thistles. Therefore, faba beans play an important role regarding the seasonal 

availability of flowers for pollinators. Photos: Nicole Beyer. 

 

Research aims and hypotheses 

The aim of my PhD thesis is to investigate the effect of the cultivation of faba beans (Vicia faba L.) 

within diversified crop rotations on bee pollinator densities, species richness and the functional trait 

composition of pollinator communities (Chapter 1 & 2), as well as on the colony development of 

bumblebees (Chapter 3). Moreover, I focus on the effects of landscape composition on bee pollinator 

communities in mass-flowering crops and the combined effects of landscape composition and insect 

pollination on crop yields, for two important entomophilous crops, oilseed rape (Brassica napus L.) 

(Chapter 4) and V. faba (Chapter 5). I tested following hypotheses: 

 

• The cultivation of faba beans enhances the density and species richness of bees at landscape 

scale and the reproductive success of bumblebee colonies. 
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• Faba bean cultivation predominantly promotes functional bee groups adapted to the 

morphology of its flowers, i.e. bumblebees, especially long-tongued species and bees with a 

foraging preference for Fabaceae. 

• Landscape composition, i.e. the cover of oilseed rape and of semi-natural habitats positively 

affects bees at landscape scale and influences bee densities in faba bean fields as well as the 

foraging behavior of different functional bee groups. 

• Mass-flowering crop cultivation in the past and in the current year shapes bee densities in 

oilseed rape fields. 

• Insect pollination enhances the crop yield of oilseed rape and of faba bean and interacts with 

landscape composition in shaping yield components and yield. 

 

In Chapter 1 I focus on the landscape scale effect of faba bean cultivation and landscape composition 

on pollinators. For this I recorded bees in field margins in 30 different landscapes with and without 

faba bean cultivation and discuss the effectivity of faba bean cultivation as biodiversity measure 

withing the CAP greening reform. For Chapter 2 bees were recorded within the same landscapes in the 

semi-natural habitats and I aim at investigating, whether different mass-flowering crops (oilseed rape 

and V. faba) differently affect the functional composition of pollinator communities. In Chapter 3, the 

focus is on the development and resource utilization of bumblebee colonies (Bombus terrestris L.) and 

whether faba bean cultivation and other landscape composition metrics can enhance the colonies` 

reproductive success. In Chapter 4 I address the influence of past and present mass-flowering crop 

cultivation on bee densities in oilseed rape fields and the effect of insect pollination on the crops` yield 

formation. For this, I conducted a pollinator exclusion experiment in 17 landscapes along a mass-

flowering crop gradient. Likewise, I conducted a pollinator exclusion experiment in faba bean fields in 

11 different landscapes, which is addressed in Chapter 5. Here, I study how the cover of oilseed rape, 

faba bean and semi-natural habitats influences the density of different bee functional groups and their 

foraging behavior with resulting effects on faba bean yield.  

Research approach 

All field studies took place in agricultural landscapes in Germany. For the field studies of Chapter 1-3 a 

paired study design was chosen. Landscape pairs consisted of a landscape with at least one faba bean 

field and one control landscape without any grain legumes (Fig. 4). Individual landscapes had a size of 

1 km x 1 km. Landscapes of a pair were at least 5 km apart to prevent pollinators from visiting both 

sites, because bees are known to forage up to several km away from their nests (Greenleaf et al., 2007; 

Westphal et al., 2006). Landscapes of a pair had similar landscape composition with regard to major 

land-use types.  
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Figure 4  Example of a landscape pair in which pollinator surveys took place. A landscape of a pair (FB+) contained at least 

one faba bean field, while the respective control landscape did not contain any grain legumes. Stratified sampling design with 

transects located at field margins of different crops (depicted as arrows) according to the area coverage of the respective 

crop types is shown. 

 

For Chapter 1 a stratified sampling design was used (Beduschi et al., 2015) and the number of 

standardized transects at different crop types was assigned according to the area coverage of the 

respective crop type (Fig. 4). For Chapter 2 variable transects in semi-natural habitats were chosen, 

which varied according to the flowering phenology of the semi-natural habitats to cover all suitable 

foraging habitats for wild bees at landscape scale (Westphal et al., 2008). For Chapter 3, two 

bumblebee colonies were placed in the center of each study landscape (Fig. 5). Their colony 

development was recorded, and pollen samples of foraging workers were taken at different time 

periods during the season. The approach for the last two chapters differed from the paired design 

described before. Landscapes along a mass-flowering crop and semi-natural habitat gradient were 

chosen and pollinator exclusion experiments took place in one oilseed rape or one faba bean field per 

landscape. Pollinators were excluded using bags made of fine mesh, which were put around the whole 

plants (Fig. 5). It is important to take the whole plant into account for yield analyses to account for 

plant compensation effects (Ouvrard and Jacquemart, 2019). Each bag was stabilized by four reed 

poles to prevent the bags from damaging the plants and bags were removed after plants had ceased 

flowering. After plants had matured, the yield components of bagged and open pollinated plants were 

assessed. 
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Figure 5  From left to right: Two bumblebee colonies, which were set up in the center of the study landscapes of Chapter 3, 

pollinator exclusion experiment in oilseed rape (Chapter 4) and in faba bean fields (Chapter 5). Photos: Nicole Beyer.  

All studies of this PhD project were conducted within the framework of the RELEVANT project 

(Regulating ecosystem services in crop rotations with field bean (Vicia faba) and pea (Pisum sativum): 

quantification, assessment and realization) (https://www.thuenen.de/en/bd/projects/relevant/).  
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Abstract 

Concerns about insect declines are growing and the provisioning of ecosystem services like pollination 

may be threatened. To safeguard biodiversity, greening measures were introduced within the reform 

of the EU's Common Agricultural Policy. One measure commonly applied by farmers is the cultivation 

of nitrogen fixing crops. Although underlying studies are largely missing, this measure is criticized as 

providing no significant biodiversity benefit. Using a landscape-scale approach, we selected 30 paired 

study landscapes (1 km × 1 km) in Germany, that is, 15 study landscapes with faba bean (FB) fields 

(Vicia faba L.) and 15 without any grain legumes. Flower-visiting wild bees were recorded with transect 

walks at the field margins of different crops using a stratified sampling approach. We analysed the 

effect of FB cultivation and landscape composition on the abundance and species richness of wild bees 

as well as on the functional composition of the bee communities. Bumblebee densities (Bombus spp. 

Latreille) were more than twice as high in FB compared to control landscapes after the flowering of 

the beans. Non-Bombus wild bee densities, however, were not affected by FB cultivation, but were 

enhanced by increasing amounts of semi-natural habitats (SNH). After the beans' blooming had ceased, 

FB landscapes had a higher proportion of wild bees collecting pollen from Fabaceae than control 

landscapes. The community weighted means for bee size, measured as intertegular distance, were not 

affected by FB cultivation, but we found smaller species and species with shorter tongues with an 

increasing percentage of SNH.  

The cultivation of faba bean Vicia faba L. strongly increased bumblebee densities throughout the 

season. This indicates that also on-field greening measures can support biodiversity. Nevertheless, 

since only functional groups adapted to faba bean benefit, measures to promote seminatural habitats 

in agricultural landscapes need to be implemented. We conclude that the combination of on- and off-

field measures is essential to maintain farmland biodiversity and the Common Agricultural Policy 

should furthermore promote both. 

 

Keywords 

bumblebee, ecosystem services, functional traits, grain legumes, greening, mass-flowering crops, 

oilseed rape, pollinators 

 

Introduction 

The increasing intensification of agriculture and the accompanying loss of habitat heterogeneity are 

main drivers of global insect declines and decreasing biodiversity in agricultural areas (Benton, Vickery, 

& Wilson, 2003; Seibold et al., 2019). Biodiversity loss involves the disruption of ecosystem functioning 

with potential negative effects on the provisioning of ecosystem services, such as pollination 
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(Tscharntke et al., 2005). Pollinators are declining globally and one of the main causes is the 

simplification of landscapes and the associated lack of nesting sites and floral resources (Potts et al., 

2016). Depending on specific species traits, like dietary specialization of oligolectic bees or body size, 

some pollinator species are more affected by habitat loss than others (Bommarco et al., 2010; 

Warzecha et al. 2016). The functional composition of insect communities might be altered by 

anthropogenic land use through filtering of specific species traits, leading to functional 

homogenization of communities (Gámez-Virués et al., 2015). However, agriculture can also contribute 

to biodiversity conservation, depending on local farm management and landscape context. Besides 

low intensity agriculture, like organic farming and the promotion of semi-natural habitats (SNH), the 

utilization of diversified crop rotations including flowering crops, such as legumes, can support insects 

in agroecosystems (Gabriel et al., 2010; Tscharntke et al., 2005). Yet, the effects of diversified farming 

systems have largely been studied in organic and not in conventional systems, which are the most 

common ones in the EU and other industrialized countries (e.g. Kremen & Miles, 2012; Lichtenberg et 

al., 2017). 

Since the introduction of the greening reform of the Common Agricultural Policy (CAP) in 2013 30 % of 

the direct payments in the first pillar are associated with greening measures aiming at biodiversity 

conservation, such as crop diversification, maintenance of permanent grassland and Ecological Focus 

Areas (EFA) (European Commission, 2017). Yearly approx. 12 billion € are spend on them by the EU 

(European Court of Auditors, 2017). However, the effectiveness of the greening measures has been 

questioned. Most commonly implemented EFAs are on-field measures, like nitrogen fixing crops and 

catch crops. They accounted for about 80 % of the total area declared as EFA in Germany in 2019 

(BMEL, 2019) but are criticized to provide no significant benefits for biodiversity (European 

Commission, 2017; Pe’er et al., 2019). The EU commission (2017) even assumes detrimental effects for 

pollinators from the cultivation of nitrogen fixing crops because they might act as ecological trap by 

attracting pollinators to simplified landscapes with lacking resources after the beans` flowering has 

ceased and by exposing them to insecticides in conventionally managed fields. Nevertheless, the effect 

of conventional grain legume cultivation as part of the current greening reform on pollinating insects, 

particularly at the landscape scale, is understudied (Everwand et al., 2017).  

The cultivation of grain legumes entails several environmental benefits, such as reduction of synthetic 

nitrogen fertilizer applications, increased yields of subsequent cereal crops and possible promotion of 

biodiversity (Everwand et al., 2017; Köpke & Nemecek, 2010). Nitrogen leaching however might 

increase (Köpke & Nemecek, 2010) and might affect biodiversity in adjacent field margins by improving 

conditions for a few competitive plant species (Bobbink et al., 2010). The cultivation of grain legumes 

has dropped in the last decades and the environmental benefits accompanying their cultivation are 
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often not considered. Although the promotion of grain legumes within the greening has increased their 

cultivation, they cover only 1.7 % of the arable land in Germany (Destatis, 2019).  

Faba bean (FB) (Vicia faba L.) is an important grain legume crop. It is a partially allogamous plant 

species and is grown world-wide for green manure or as protein source for humans and animal feed 

(Bond & Poulsen, 1983). Yield increases from 16 to 185 % due to insect pollination have been reported 

(Bartomeus et al., 2014; Bishop et al., 2016; Nayak et al., 2015). Due to long corolla tubes and the 

papilionaceous flower morphology (Bond & Poulsen, 1983), which requires force from pollinators to 

access the reward of the flowers (Bailes, Pattrick, & Glover, 2018), only big pollinators with long 

tongues can easily access the nectar. The most frequent and effective pollinators of FB in temperate 

regions are bumblebees, predominantly long-tongued species, like Bombus hortorum (Bond & Poulsen 

1983; Marzinzig et al., 2018). Short tongued bumblebees often rob nectar by biting holes in the base 

of the corollas (Bond & Poulsen, 1983; Garratt et al., 2014; Marzinzig et al., 2018). As demonstrated 

for other mass-flowering crops, such as oilseed rape (OSR) (Herrmann et al., 2007; Westphal et al., 

2003), the cultivation of V. faba might offer a potential food resource for pollinators during 

midsummer, when other floral resources are often lacking in simplified agricultural landscapes. While 

the effect of early and late mass-flowering crops on wild bees has already been studied (e.g. Kallioniemi 

et al., 2017; Westphal et al., 2003), we are not aware of studies investigating effects of conventionally 

cultivated faba beans on different taxonomic groups and functional diversity of wild bees.  

Here, we assess the potential benefits of the nitrogen fixing crop V. faba for wild bees, which might be 

a relevant contribution to future evaluations of the CAP greening reform. Since most studies analyze 

landscape impacts on pollinators at plot level without scaling-up effects to landscape level (Kleijn et 

al., 2018), we chose a novel landscape-scale approach. We compared pollinator communities in 30 

paired 1 km2 landscapes, i.e. 15 study landscapes with FB fields and 15 without grain legumes (Pascher 

et al. 2011). We hypothesize that the cultivation of FB enhances the abundance and species richness 

of wild bees at landscape scale. In addition to bumblebees, we expect non-Bombus wild bees to benefit 

from FB cultivation. They might use the nectar from the bean´s extrafloral nectaries or from bite holes 

in the corolla base. Due to the flower morphology of the beans, long-tongued bees and bigger bees 

with higher body mass and proportional longer tongues, which enables them to access the reward of 

the flowers, should be favored by FB cultivation. Moreover, FB cultivation should promote bees, 

frequently collecting pollen from Fabaceae. 

Materials and Methods 

Study design 

The study was conducted within 30 paired study landscapes of 1 km2 (1km x 1km) size each, which 

were situated in three regions of Germany (Fig. 1). Twelve study landscapes were in the surroundings 

of Göttingen in Central Germany (51°32´N, 9°56´E). Ten study landscapes were located close to the 
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North Sea in vicinity of the city Itzehoe (53°55´N, 9°30´E) and eight in the east of Germany close to 

Leipzig (51°20´N, 12°22´E). One landscape of every pair was selected around a FB field belonging to a 

conventional farm with diversified crop rotations, including grain legumes for at least three years (FB 

landscape: FB+). For the respective paired control landscape, it was assured that no grain legumes 

were present and that most fields belonged to conventional farms using standard crop rotations 

without grain legumes (control landscape: FB-). 

 

Figure 1  Location of the study landscapes in three regions of Germany. Landscapes with faba bean cultivation (FB+) are 

depicted in green and controls without grain legumes (FB−) in orange. One representative landscape pair is shown in detail.  

Different colours indicate different land use types and crops. OSR: oilseed rape, SNH: semi-natural habitat. Black arrows show 

the location of the seven standardized transects per landscape, located at field margins of different crop types following a 

stratified sampling design. 

 

Landscape selection was based on ATKIS land cover data (Digitales Basis-Landschaftsmodell). The 

landscape composition was analysed for the entire area (1 km2). Control landscapes were matched 

based on a similar landscape composition with respect to major land use types using Euclidean 

distance as similarity measure. Due to the large foraging ranges of up to several kilometres of some 

bee species (Greenleaf et al., 2007; Westphal et al., 2006) paired study landscapes (FB+ and FB-) had a 

minimum distance of 5 km to each other to prevent bees from visiting both landscapes.  

All crop and habitat types with a minimum area of 10 m2 were mapped for each study landscape. 

Landscape composition was characterized by two landscape metrics, known to affect wild bees and 

often used to quantify foraging and nesting opportunities (e.g. Diekötter et al., 2014): percentage of 

oilseed rape (OSR) (Brassica napus L.) and percentage cover of semi-natural and flower-rich habitats 

(SNH), including  sown flower strips and fields, hedgerows, groves, extensive grasslands, calcareous 
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grasslands, fallows, orchard meadows, ruderal sites, succession sites, and forest edges (4 m width 

based on a 2 m buffer along the forest polygons` outer border) (SNH). Forest was not included in SNH 

since it represented a rather unsuitable foraging habitat for pollinators (Proesmans et al., 2019). 

Calculations were done with QGIS version 2.18 (QGIS Development Team, 2016).   

Wild bee surveys 

In summer 2017, wild bees were sampled within seven standardized transect walks per study 

landscape (Westphal et al., 2008), located at field margins of different annual crop fields. Transect area 

was always 400 m2, mostly 100 m x 4 m, while for some smaller field margins transect length was 

adjusted accordingly. The number of transects assigned to the margins of each crop type was 

proportionally selected to its area in the study landscape (stratified sampling design) (Beduschi, 

Tscharntke & Scherber, 2015).  

The bee densities, i.e. the number of all foraging bees per transect area (bees/400m2) was recorded 

within 10 min, excluding handling time. If species could not be identified in the field, bees were taken 

to the lab for further identification. Due to the difficulty of distinguishing Bombus terrestris and B. 

lucorum in the field, these two species were aggregated. We identified sampled bumblebees in the lab 

(Mauss 1992; Amiet 1996) and sent non-Bombus bees to an expert for identification (Frank Creutzburg, 

Jena). Flower cover, i.e. the area covered with open flowers (m2) was estimated for every transect and 

did not differ between FB and control landscapes (p=0.52) (Fig. S1). 

Surveys were repeated three times between May and August: run 1 (22.05. - 19.06.), run 2 (22.06. - 

20.07.) and run 3 (27.07. - 22.08.). In run 1 almost all FB fields were in full bloom, in run 2 the bloom 

of most bean fields was ceasing and in run 3 FB was not flowering anymore. Transects per landscape 

were visited in a random order from 9 a.m. until 7 p.m. on days with suitable weather conditions for 

pollinators (i.e. air temperature > 15°C, low wind speed, no rain). As we focus on the effects of grain 

legumes on wild bees, we excluded managed honeybees from the analyses. 

Functional trait composition of bee communities 

To assess how V. faba cultivation and landscape composition affect the functional structure of bee 

communities, we focused on three functional traits: tongue length, body size and pollen collection 

behaviour, i.e. whether bee species are known to collect or not collect pollen from Fabaceae (lecty). 

Cleptoparasites were excluded from the analysis due to their different life-history strategy and because 

certain traits, like lecty are not defined for them (12 species). As a proxy for body size, we measured 

the intertegular distance (ITD) of minimum one and maximum five female individuals per species (in 

total 68 species) (Table S1). We focused trait measurements on pollen collecting female bees as main 

pollinators. For ten species only one or two single male individuals were caught and no ITD measures 

could be conducted. Since the tongue length of bees is difficult to measure, bee proboscis length was 

calculated on the basis of bee family and ITD which explain 91 % of the variance in proboscis length 
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between species (Cariveau et al., 2016). Calculations were performed with the R package BeeIT 

(Cariveau et al., 2016; Table S1). The information on dietary preferences (lecty) was obtained from 

Westrich (2018). 

Statistical analyses 

Analyses were conducted in R version 3.6.1 (R Core Team, 2019). For analyses of FB cultivation and 

landscape metrics on wild bees, data was summed up for each landscape and run. Our response 

variables were the density of bumblebees, non-Bombus wild bees, the species richness of all wild bees, 

community weighted means (CWM) of ITD and proboscis length and proportion of bee species foraging 

on Fabaceae (Fabaceae foragers). Data were analysed using mixed effects models with Poisson or 

negative binomial distribution for bee densities and species richness, gaussian distribution for CWM 

data and binomial family for proportion Fabaceae foragers. Explanatory variables included in all 

models were FB cultivation (FB+/ FB-), flower cover, sampling run (1-3), percentage of SNH and 

percentage of OSR in the study landscape, including all possible two-way interactions. Region, 

landscape pair and the study landscape were included as nested random effects. Following a 

multimodel inference approach (Burnham & Anderson, 2002), all models within delta AICc < 2 in 

comparison with the best fitting model were considered for interpretation. Akaike weights (wi) as 

measure of the relative likelihood of individual models and the sum of Akaike weights (Σwi) as measure 

of the relative importance of explanatory variables were used for interpretation (Burnham & 

Anderson, 2002). For detailed information about statistical analyses, see supplementary material. 

Results 

We observed 2198 wild bees of which 1794 were identified to species level. In total, 80 different 

species were recorded (Table S1). Bumblebees made up 63 % of all observed individuals. We found 

three threatened long-tongued bumblebee species: B. muscorum (red list category (RL) 2), B. 

ruderarius (RL 3) and B. subterraneus (RL 2) (Table S1) (Westrich et al., 2011). We recorded 980 

honeybees which densities did not differ between FB+ and FB- landscapes (Fig. S2). 

Bumblebee density  

There were two models with dAICc < 2 indicating a positive effect of FB cultivation and local flower 

cover on bumblebee densities (Table S2). Explanatory variables included in the best-fitting models 

were run (Σwi = 1), FB cultivation (Σwi = 0.97), their interaction (Σwi = 0.91) and flower cover (Σwi = 0.91) 

as well as the interaction between run and flower cover (Σwi = 0.32) (Table S2 & S3). Most bumblebees 

were observed in run 2, on average 28 individuals per study landscape (Table S4). In the second and 

third run more than twice as many bumblebees were present in FB landscapes compared to controls 

(Fig. 2A). Densities increased with increasing local transect flower cover. This effect was slightly more 

pronounced in run 2 and 3 than in run 1 (Fig. S3a).  
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Figure 2  Effects of faba bean cultivation on (A) bumblebee densities per landscape for the three sampling runs and on (B) 

non-Bombus densities. Different letters above groups indicate significant differences between landscapes with (FB+) and 

without faba bean cultivation (FB−; within each run for [A]). Effects of (C) proportion of semi-natural habitats (%) and (D) local 

flower cover (m2) on non-Bombus bee densities for the three sampling runs. Predicted mean values and 95% confidence 

intervals are displayed in red for boxplots and in different colours (according to different runs) for line graphs. All predictions 

are based on the second-best fitting model bb2 for (A) and nb2 for (B) and (C) (Table S2). Y-axes in (A) and (B) are sqrt- and in 

(C) and (D) log transformed for graphical reasons. 

 

Non-Bombus wild bee density 

The multi-model inference revealed two best fitting models explaining the effect of FB cultivation and 

landscape composition on non-Bombus densities (Table S2). Explanatory variables included in the best 

fitting models were run (Σwi = 1), local flower cover (Σwi = 1), SNH (Σwi = 1) and all possible interactions 

(Σwi between 0.93 and 1) as well as FB (Σwi = 0.44) (Table S2 & S3). We found similar average densities 

in FB and control landscapes (Fig. 2B) (Table S5). There was a positive relationship between percentage 

of SNH and non-Bombus wild bee densities with strongest increase in the second run (Fig. 2C). 

Densities increased with increasing flower cover in run 1 and 3 but decreased in run 2 (Fig. 2D). The 

effect of enhanced bee densities with increasing flower cover was strongest, when percentage of SNH 

was high (Fig. S3b).  
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Species richness of all wild bees 

There were three best fitting models indicating a positive FB cultivation and local flower cover effect 

on wild bee species richness (Table S2). Explanatory variables included were run (Σwi = 1), flower cover 

(Σwi = 1), their interaction (Σwi = 1), FB cultivation (Σwi = 0.81) and the interaction between FB and 

flower cover (Σwi = 0.35) (Table S2 & S3). Species richness increased with enhanced flower cover. This 

effect was strongest in run 3 (Fig. 3A) and more pronounced in control compared to FB landscapes (Fig. 

S4). Mean species richness per study landscape was 5.5 for FB and 4.4 in control landscapes (Table S5; 

Fig. 3B).  

 

 

Figure 3  Effects of (A) local flower cover (m2) on wild bee species richness for the three sampling runs. Effects of (B) faba 

bean cultivation on wild bee species richness. Predicted mean values and 95% confidence intervals are displayed in red for 

boxplots and in different colours (according to different runs) for line graphs. Same letters above groups indicate non-

significant differences between landscapes with (FB+) and without (FB−) faba bean cultivation. All predictions are based on 

the best fitting model sri1 (Table S2). Y-axis in (B) is sqrt-transformed for graphical reasons. 

 

Functional trait composition of bee communities 

The multi-model inference approach resulted in two best fitting models for the CWM ITD and in five 

best models for the CWM for proboscis length (Table S6). Run (Σwi = 0.82), SNH (Σwi = 0.90), flower 

cover (Σwi = 0.58) and the interaction between local flower cover and SNH (Σwi = 0.26) were the most 

important explanatory variables for CWM ITD (Table S6 & S7). We found that average body size in bee 

communities was smallest in run 3 (Table S4; Fig. 4A) and CWM ITD decreased with increasing 

percentage of SNH (Fig. 4B). This effect was more pronounced when local flower cover was low (Fig. 

S5a). The cultivation of FB did not affect CWM ITD. Due to the correlation between CWM ITD and 

proboscis length, the respective models show the same patterns (Fig. S5b & c). Additionally, compared 

to ITD models, mean proboscis length increased with increasing flower cover in control landscapes but 

decreased in FB landscapes (Σwi = 0.33) (Table S6 & 7) (Fig. S5d). 
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For the proportion of species foraging on Fabaceae we found a single best fitting model including FB 

cultivation, run and their interaction as most important explanatory variables, each with Σwi =1 (Table 

S6 & S7). There was a higher percentage of species collecting pollen from Fabaceae in landscapes with 

FB cultivation compared to controls during the second and third run, whereas the opposite was true 

for run 1 (Fig. 4C). The proportion of Fabaceae foragers was enhanced with increasing percentage of 

SNH in run 1, whereas it decreased in run 2 (Σwi = 0.99) (Fig. S6a). Moreover, the proportion of 

Fabaceae foragers was positively related with transect flower cover in run 2 and negatively in run 3 

(Σwi = 0.71) (Fig. S6b). 

 

 

Figure 4  Effects of (A) sampling run and of (B) semi-natural habitats (%) on community-weighted means (CWM) for 

intertegular distance (ITD; mm). Effects of (C) faba bean cultivation on the proportion of bee species foraging on Fabaceae 

for the different sampling runs. Predicted mean values and 95% confidence intervals are displayed in red. Predictions for (A) 

are obtained from the second-best model cmITD2 and for (C) from the best fitting model mL1 (Table S6). Different letters 

above groups indicate significant differences between runs in (A) and between landscapes with (FB+) and without faba bean 

cultivation (FB−) within each run in (C). 

 



Chapter 1 

35 
 

Discussion 

Bumblebee density 

We found a positive landscape scale effect of the cultivation of conventionally managed V. faba on 

bumblebees. While no effect was observed in run 1, when most FB fields were in full bloom, 

bumblebee densities were higher in FB than in control landscapes in the second and third run after the 

flowering of the beans. A possible reason for why we did not detect differences in run 1, is that 

bumblebee colonies still needed to grow after founding in spring. Throughout the season the colonies 

in FB landscapes were probably able to produce more workers due to the additional resource in June. 

This points towards a positive carry-over effect of the presence of the mid-season mass flowering crop 

V. faba on bumblebees, which has already been observed for late-flowering crops (Kallioniemi et al., 

2017). In comparison with wheat field margins, Hanley et al. (2011) found increased pollinator 

abundances in FB field margins. This positive FB effect was however restricted to the flowering period 

of the beans. Unlike Hanley et al. (2011), who investigated the local pollinator spill-over effect from a 

mass flowering crop into surrounding field margins, we sampled our data in the entire 1 km2 landscape 

and can depict effects at landscape level. For bumblebees, it has been shown, that there is a food gap 

with low resource availability in agricultural landscapes in June, in the time period between the bloom 

of early mass flowering crops and the floral resources in summer (Timberlake et al., 2019). Our study 

indicates that V. faba has the potential to bridge this resource gap and act as a valuable mid-season 

food source for bumblebees. For the case of faba beans and bumblebees, we cannot support the 

assumption that grain legumes act as ecological trap (European Commission, 2017). According to our 

findings, the resources provided by FB seem to compensate for possible negative management effects 

due to pesticide applications as indicated by increased bumblebee densities in FB landscapes. 

Nevertheless, we cannot preclude potential negative pesticide effects of conventionally managed 

beans on bees. 

Bumblebees can benefit from a high cover of SNH (Nayak et al. 2015; Öckinger & Smith, 2007). 

However, in accordance with other studies conducted in Central Germany (Herrmann et al., 2007; 

Westphal et al., 2003, 2006), we did not find any effect of the amount of SNH on bumblebee densities. 

Bumblebees, especially short-tongued species, are strongly attracted to mass-resources (Walther-

Hellwig & Frankl, 2000) and probably preferred those over the more sparsely distributed floral 

resources in SNH. However, cover of mass-flowering OSR did not have any effect on bumblebees, 

contrary to other investigations (Herrmann et al., 2007; Westphal et al., 2003, 2006). Bumblebee 

densities were only driven by mass-flowering FB and the local flower cover in our study. A positive 

effect between flower cover and bumblebees has already been reported in previous studies (e.g. 

Nayak et al., 2015; Öckinger & Smith, 2007).  
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Non-Bombus wild bee density 

Unlike bumblebees, non-Bombus wild bees did not benefit from FB cultivation, which might be due to 

the interplay of bean flower morphology and bees’ functional traits. A long tongue and force are 

needed to extract nectar from the front of the flowers (Bailes et al., 2018; Bond & Poulsen, 1983), 

making it difficult for small and short-tongued bees, like most observed non-Bombus bees, to forage 

on V. faba flowers. However, we found a positive effect of the amount of SNH on non-Bombus bees, 

which offer a diverse and continuous nectar and pollen supply. This result is in line with previous 

studies (Diekötter et al., 2014; Steffan-Dewenter et al., 2002). The simplification of agricultural 

landscapes with the loss of SNH has been stated as one of the reasons for the current pollinator 

diversity decline (Potts et al.,  2016). The strongest positive SNH effects became apparent in run 2, 

when we found highest densities of non-Bombus wild bees and when SNH displayed a high floral cover 

with grasslands and flower strips being in full bloom (F. Kirsch, unpublished data, Fig. S7). Moreover, 

bee densities were enhanced by an increasing local flower cover in run 1 and 3, in accordance with 

other studies (Ebeling et al., 2008; Potts et al., 2003). However, in the second run densities were not 

enhanced by a higher local flower cover. This might be explained by a dilution effect caused by an 

enhanced floral display in SNH that attracted non-Bombus bees during that period (F. Kirsch, 

unpublished data). This can however not be supported by a three-way interaction between SNH, 

flower cover and run. When including three-way interactions in models, none of them turned out to 

have an effect and results stayed the same. Nevertheless, the temporal shift of non-Bombus density 

responses to field margin flower cover suggests that wild bees prefer rewarding SNH over field 

margins, if available. Holzschuh et al. (2016) showed mass-flowering crops to cause dilution effects. 

Temporally high rewarding SHN caused similar effects in our study, which might impair pollination 

services in sparsely flowering wild plant populations in field margins or other SNH (Holzschuh et al. 

2016). Highest non-Bombus densities were found when the cover of SNH and the transect flower cover 

were high, which emphasizes the importance of heterogeneous landscapes with diverse and 

continuous flower supply and suitable nesting opportunities for wild bees within and across habitats 

(Schellhorn et al., 2015; Westrich, 2018). 

Species richness of all wild bees 

The cultivation of mass-flowering crops, like OSR, has been shown to increase wild bee species richness 

(Diekötter et al., 2014). A positive effect of FB cultivation on wild bee richness has never been shown, 

also not in our study. The species richness of our study landscape was generally very low, only on 

average five wild bee species. This indicates that agricultural landscapes in Germany are rather 

resource and species poor. Species richness was mainly driven by the local flower cover of field 

margins. Generally, positive relationships between bee species richness and local floral resource 

availability are well known (e.g. Ebeling et al., 2008; Kallioniemi et al., 2017; Potts et al., 2003). Besides 
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flower abundance, local floral diversity is known to support wild bee species richness as diverse plant 

communities offer food for a wider range of bee species with different flower preferences (Ebeling et 

al., 2008; Potts et al., 2003). Thus, the provision of sufficient and diverse floral resources is essential to 

conserve a high farmland bee species richness and abundance (Ebeling et al., 2008; Leidenfrost et al., 

2020). 

Functional trait composition of bee communities 

The cultivation of V. faba increased the proportion of bees foraging on Fabaceae after the bloom of 

the beans had ceased. During the flowering, Fabaceae foragers were probably attracted by bean fields 

and we detected lower densities of them in field margins of FB landscapes. The proportion of Fabaceae 

foragers varied in relation to interacting effects between sampling time and the amount of SNH and 

local flower cover, respectively. These interaction effects highlight that both local and landscape-scale 

resources moderate the functional composition of bee communities across the season presumably due 

to phenological fluctuations of flower availability (Ogilvie & Forrest 2017). 

The cultivation of FB did not affect the functional trait composition of bee communities in terms of bee 

size. But communities were composed of individuals with lower mean size and shorter tongues later 

in the season, which might be due to species-specific activity periods. Species belonging to the genera 

Osmia, Eucera and most of the observed Andrena species with high ITD, appear only early in the season 

(Westrich, 2018), whereas all observed Hylaeus, Halictus and Lasioglossum species with low ITDs were 

active throughout the whole season. Additionally, we found a higher proportion of smaller bees with 

increasing amounts of SNH in the surrounding landscape, in line with other studies (Jauker et al., 2013; 

Warzecha et al., 2016). Since the maximum foraging distance of bees increases with body size 

(Greenleaf et al., 2007), smaller bees are more susceptible to land-use change and habitat 

fragmentation, since large distances need to be covered to reach suitable floral resources (Jauker et 

al., 2013; Steffan-Dewenter et al., 2002; Warzecha et al., 2016). The effect of decreasing mean bee size 

with increasing percentage of SNH was mitigated by a high field margin flower cover highlighting the 

negative impact of low resource availability at local and landscape scale especially for bees with small 

foraging ranges in agricultural landscapes.  

Conclusions 

To our knowledge, this is the first study showing that conventionally grown faba beans enhance 

bumblebee densities at landscape scale. This finding helps to reduce the concern that grain legumes 

act as an ecological trap, at least for bumblebees. (European Commission, 2017). The inclusion of faba 

beans in diversified conventional crop rotations could thus be a reasonable measure to counteract 

bumblebee declines. 
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However, the beneficial faba bean effects are restricted to bee species adapted to the flower 

morphology of V. faba. Since non-Bombus densities were mainly driven by the availability of SNH, we 

conclude that faba beans alone cannot conserve wild bees in agricultural landscapes. On-field greening 

measures, like diversified legume-based crop rotations enhance temporal and spatial nectar and pollen 

availability in conventional farming systems and fall within a land-sharing approach. More importantly, 

CAP regulations should prioritize off-field measures aiming at the promotion of SNH, which can be 

considered as land-sparing approach at smaller spatial scales (Ekroos et al., 2016). Considering the 

human demand for agricultural products and the need for farmland biodiversity and ecosystem service 

conservation, we suggest a combined land-sharing and land-sparing approach in predominantly 

conventionally managed agricultural landscapes (Grass et al., 2019; Balmford et al., 2019). While 

diversified crop rotations with grain legumes sustain high crop yields and benefit generalist crop 

pollinators, the conservation of SNH promotes diverse wild bee communities.  
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Supplementary material 

Statistical analyses 

To test the effect of FB cultivation and different landscape metrics on the number and species richness 

of wild bees we fitted generalized linear mixed models with the glmmTMB package (Brooks et al., 

2017). To depict effects at landscape level, the number of all wild bees and the flower cover were 

summed up across all transects for each landscape and run, leading to observations per 2800 m2 and 

70 min. One transect turned out to be a flower strip and was excluded in further analyses. To account 

for different sampling effort at landscape scale (in three out of 90 cases we had only six transects), we 

included the log of the number of transects as offset into the models for bee densities and species 

richness. Our response variables were the density of bumblebees, the density of non-Bombus wild 

bees and the species richness of all wild bees. Bee densities included all observed bees, while for 

species richness of wild bees only identified individuals were used. The explanatory variables included 

in the models were FB cultivation (FB+/ FB-), flower cover, sampling run (1-3), percentage of SNH and 

the percentage of OSR in the study landscape, including all possible two-way interactions. To improve 

the convergence of the models, continuous explanatory variables (flower cover, SNH, OSR) were 

standardized to a mean of zero and a standard deviation of 1. Region, landscape pair and the study 

landscape were included as nested random effects (region/landscape pair/landscape). 

Model selection was based on second order Akaike Information Criterion (AICc). Global models 

containing all explanatory variables were fitted with Poisson and negative binomial distribution and 

when sensible with and without zero inflation terms to account for an excess of zeros. The model with 

lowest AICc was chosen as global model for each analysis (Bolker 2008; 2020). For the density of 

bumblebees this was the model with negative binomial distribution, for the species richness the model 

with Poisson distribution and for the density of non-Bombus wild bees the model with Poisson 

distribution and general zero inflation term. 

To assess the functional structure of bee traits in a community, we aggregated data at landscape level 

(i.e. the sum over all transects and runs) and calculated community weighted means (CWM) for ITD 

and proboscis length using the FD package (Laliberté & Legendre, 2010). CWM were analysed using 

linear mixed effects models and the nlme package (Pinheiro et al., 2019). To analyse lecty, bees were 

grouped into species collecting and not collecting pollen from Fabaceae. We used a generalized linear 

mixed model with binomial family and logit link to test the effect of FB cultivation and landscape 

metrics on the proportion of bee species foraging on Fabaceae (proportion of Fabaceae foragers). The 

global models for the trait data contained the same explanatory variables and random effects as 

described above for the abundance and species richness. Since we calculated proboscis length on the 

basis of ITD measurements and because bigger bees generally have longer tongues than smaller ones, 

the CWM of ITD and proboscis length are highly correlated (r Pearson correlation = 0.98, p < 0.001).  
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Based on the global models and following a multimodel inference approach (Burnham & Anderson, 

2002) candidate models containing all possible combinations of explanatory variables and their 

interactions were fitted using the dredge function of the MuMIn package (Barton, 2019). We restricted 

the number of parameters in the model comparison procedure to a maximum of seven variables. 

Candidate models were ranked by AICc and Akaike weights (wi) were used to estimate the relative 

support of individual models to have the best fit across all models (Burnham & Anderson, 2002). All 

models with a delta AICc < 2 in comparison with the best fitting model were considered to have 

substantial empirical support. The relative importance of each explanatory variable was assessed using 

the sum of Akaike weights (Σwi) over all models that include the respective explanatory variable. The 

larger the value, the more important is the variable. Σwi > 0.2 were considered for interpretation and 

are reported. Model assumptions were validated by inspecting residual plots. To evaluate the 

goodness of fit of our models we calculated the marginal (Rm
2) and conditional (Rc

2) R2 values 

(Nakagawa et al., 2017) with the performance package (Lüdecke et al., 2020). Post hoc tests were 

applied to test for differences in bee abundances, species richness and proportion of Fabaceae foragers 

between FB and control landscapes and for differences in the CWM between different sampling runs 

using the emmeans package (Lenth, 2019) and alpha level of 0.05. Predictions and confidence intervals 

in scatter plots were obtained from the effects package (Fox & Weisberg, 2019) and in the boxplots 

from the emmeans package. All graphics were generated with the ggplot2 package (Wickham, 2016). 
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Figures 
 

 

Figure S1  Local flower cover of all field margins for landscapes with (FB+) and without (FB-) faba bean cultivation. A linear 

mixed effects model with log- transformed flower cover as response, FB cultivation as predictor variable and region, 

landscape pair, landscape and run as nested random effects was conducted. Predicted mean values and 95% confidence 

intervals are displayed in red. Letters above groups indicate non-significant differences between FB+ and FB- landscapes 

(t=0.66; p=0.52) (n=627). Y axis is sqrt-transformed for graphical reasons.  

 

 

Figure S2  Honeybee density for landscapes with (FB+) and without (FB-) faba bean cultivation. A generalized linear mixed 

effects model with honeybee density as response, FB cultivation as predictor variable and region, landscape pair and 

landscape as nested random effects was conducted. Predicted mean values and 95% confidence intervals are displayed in 
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red. Letters above groups indicate non-significant differences between FB+ and FB- landscapes (z=1.40; p=0.16) (n=90). Y axis 

is sqrt-transformed for graphical reasons.  

 

     

Figure S3  Effect of local flower cover (m2) on (a) the bumblebee density per landscape for the three sampling runs. Effect of 

local flower cover (m2) on (b) bee densities for different levels of % semi-natural habitats (SNH). Dotted (low), dashed 

(medium) and solid (high) line represent 4.31, 8.12 and 11.76 % SNH, i.e. the vaules of the 10th, 50th and 90th percentiles 

respectively. Observed values are colored according to the SNH group (lower 33%, medium, upper 66%), to which they belong 

to. Predicted mean values and 95 % confidence intervals are displayed in different colours (according to different runs and 

different levels of SNH respectively).  Predictions are based on the second-best fitting model bb2 for (a) and nb2 for (b) (Table 

S2). Y-axis in (a) is sqrt- and in (b) log-transformed for graphical reasons. 

 

 

Figure S4  Effects of local flower cover (m2) on wild bees species richness for landscapes with (FB+) and without (FB-) faba 

bean cultivation. Predicted mean values and 95 % confidence intervals are displayed in different colors according to FB.  

Predictions are based on the best fitting model sri1 (Table S2). Y-axis is log-transformed for graphical reasons. 
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Figure S5  Effect of (a) percentage of semi-natural habitats (%) on community weighted means (CWM) for ITD for different 

levels of flower cover (FC). Dotted (low), dashed (medium) and solid (high) line represent 6.62, 48.44 and 176.34 % fc, i.e. the 

10th, 50th and 90th percentiles respectively. Effects of (b) sampling run and (c) the percentage of semi-natural habitats (%) 

on the community weighted means for proboscis length (mm). (d) Effect of flower cover (m2) on the CWM for proboscis 

length for the different landscapes with and without faba bean cultivation (FB+: landscapes with faba bean cultivation 

(depicted in green); FB-: landscapes without faba bean cultivation (depicted in orange). Predictions for (a) are obtained from 

the second-best model cmITD2 for (a) and cmto2 for (b)-(d) (Table S6). Predicted mean values and 95% confidence intervals 

are displayed in red in boxplots and in different colours (according to FB and different levels of fc respectively) in scatter plots. 

Different letters above groups indicate significant differences between runs. 
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Figure S6  Effect of (a) the percentage of semi-natural habitats (%) and (b) flower cover (m2) on the proportion of Fabaceae 

foragers in the three different sampling runs. Predicted mean values and 95 % confidence intervals are displayed in different 

colours (according to different runs). Predictions are obtained from the best fitting model mL1 (Table S6). A possible 

explanation for our results might be the temporal distribution of resources in the different semi-natural habitat structures. 

In our landscapes the woodland structures, like hedges had the highest floral display in the first sampling run, whereas the 

extensive grasslands had the highest flower cover during the second sampling run (F. Kirsch, unpublished data, Fig. S7). It 

might be that the bee species not foraging on Fabaceae were strongly attracted to the flower of semi-natural woodland 

structures early in the season, whereas Fabaceae foragers might have been strongly attracted to extensive grasslands, which 

often constitute of many Fabaceae plants, flowering later in the season. When flower cover was high, we found highest 

proportions of Fabaceae foragers in run 2 and lowest in run 3. Faba beans were in full bloom in the first sampling run and 

probably attracted the Fabaceae foragers into the bean fields, which led to lower proportions in the field margins in run 1 

compared to run 2. The decreased numbers in the last run probably mirror the phenology of the bee species. While in the 

first run our bee communities consisted of about 1.5 times as many bee species not using compared to bee species using 

Fabaceae, this number increased to almost twice as many in the last run. Therefore, the unproportional lower numbers of 

bee species using Fabaceae in the latest run may have driven the lower proportion of bee individuals using Fabaceae. 
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Figure S7  Boxplot showing percentage of local flower cover of semi-natural habitats (SNH) within the 30 1 km2 study 

landscapes for the three different sampling runs and different habitat types. Flower cover within SNH was recorded in a 

parallel study, conducting pollinator surveys in different grassy and woody SNH structures. grassy includes extensive 

grasslands, calcareous grasslands, flower strips, clover leys, orchards, succession sites with mainly grassy habitat; woody 

comprises hedges, forest edges, groves, succession sites with mainly woody habitat structures. Observations are shown as 

jittered points and arithmetic means are displayed in red. Data from F. Kirsch (unpublished data). 

 

Tables 

Table S1  Number of individuals, mean ITD (intertegular distance), calculated proboscis length, lecty Fabaceae (species 

collecting pollen from Fabaceae = 1, species not collecting pollen from Fabaceae = 0) and red list status for all 80 identified 

species of the transect walks. Cleptoparasites were excluded from analyses of functional traits and therefore no trait values 

are given for them. ITD was measured for maximum five female individuals per species. If only males of a species were caught 

(10 cases), ITD was not measured and tongue length not calculated. Red list information follow Westrich et al., 2011. * least 

concern, NT near threatened, 3 vulnerable, 2 endangered, 3 critically endangered. Note that the abundance of in total 2198 

wild bees got recorded, while 1794 wild bees were identified and used for species richness and trait analyses. We always 

recorded the abundance of all bees. However, sometimes wild bees escaped from the net but could still be recorded as wild 

bee or Bombus/non-Bombus observation (as specific as possible). Occasionally, when there were several bees present in the 

transect which could not be determined in the field, it was only possible to catch one of them and the others escaped because 

of the disturbance.  

species 
number of 
individuals 

ITD tongue 
lecty 

Fabaceae 
red list 
status 

Andrena chrysosceles (Kirby 1802) 1 2.04 2.10 0 * 

Andrena cineraria (Linnaeus 1758) 6 2.94 2.98 0 * 

Andrena dorsata (Kirby 1802) 1 1.90 1.96 1 * 

Andrena flavipes Panzer 1799 29 2.50 2.55 1 * 

Andrena fulva (Müller 1766) 1 2.95 2.99 0 * 

Andrena gravida Imhoff 1832 1 2.90 2.95 0 * 

Andrena haemorrhoa (Fabricius 1781) 5 2.44 2.50 0 * 

Andrena labialis (Kirby 1802) 1 2.80 2.85 1 NT 

Andrena labiata Fabricius 1781 1 NA NA 0 * 

Andrena lathyri Alfken 1899 6 2.44 2.50 1 * 

Andrena minutula (Kirby 1802) 12 1.38 1.44 0 * 

Andrena minutuloides Perkins 1914 1 1.40 1.46 0 * 

Andrena nigroaenea (Kirby 1802) 13 2.98 3.02 1 * 

Andrena nitida (Müller 1776) 5 2.90 2.95 0 * 

Andrena ovatula (Kirby 1802) 2 2.20 2.26 1 * 

Andrena proxima (Kirby 1802) 3 1.90 1.96 0 * 

Andrena scotica Perkins 1916 1 2.90 2.95 0 * 

Andrena subopaca Nylander 1848 5 1.44 1.50 0 * 

Anthophora aestivalis (Panzer 1801) 2 NA NA 1 3 

Bombus barbutellus (Kirby 1802) 1 NA NA NA * 

Bombus bohemicus (Seidl 1837) 4 NA NA NA * 

Bombus hortorum (Linnaeus 1761) 46 4.20 8.45 1 * 

Bombus hypnorum (Linnaeus 1758) 3 3.64 7.36 1 * 
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Bombus lapidarius (Linnaeus 1758) 216 3.70 7.48 1 * 

Bombus muscorum (Linnaeus 1758) 5 3.84 7.75 1 2 

Bombus pascuorum (Scopoli 1763) 423 4.02 8.10 1 * 

Bombus pratorum (Linnaeus 1761) 21 3.60 7.29 1 * 

Bombus ruderarius (Müller 1765) 9 3.42 6.93 1 3 

Bombus rupestris (Fabricius 1793) 13 NA NA NA * 

Bombus subterraneus (Linnaeus 1758) 2 4.00 8.06 1 2 

Bombus sylvarum (Linnaeus 1761) 21 3.20 6.51 1 NT 

Bombus terrestris (Linnaeus 1758) / 
Bombus lucorum (Linnaeus 1761) 

590 3.90 7.87 1 * 

Bombus vestalis (Geoffroy 1785) 7 NA NA NA * 

Colletes similis Schenck 1853 1 NA NA 0 NT 

Dasypoda hirtipes (Fabricius 1793) 2 2.90 NA 0 NT 

Eucera longicornis Linnaeus 1758 2 3.60 7.29 1 NT 

Eucera nigrescens Perez 1879 2 3.45 6.99 1 * 

Halictus eurygnathus Blüthgen 1931 2 NA NA NA * 

Halictus maculatus Smith 1848 2 1.50 2.04 1 * 

Halictus quadricinctus (Fabricius 1776) 1 2.90 3.84 0 3 

Halictus rubicundus (Christ 1791) 11 2.12 2.84 1 * 

Halictus scabiosae (Rossi 1790) 14 2.52 3.35 0 * 

Halictus simplex Blüthgen 1923 15 1.94 2.61 0 * 

Halictus subauratus (Rossi 1792) 4 1.60 2.17 0 * 

Halictus tumulorum (Linnaeus 1758) 23 1.42 1.93 1 * 

Hylaeus communis Nylander 1852 5 1.28 1.09 0 * 

Hylaeus confusus Nylander 1853 2 1.47 1.24 1 * 

Hylaeus gredleri Förster 1871 1 0.95 0.82 0 * 

Lasioglossum albipes (Fabricius 1781) 3 1.60 2.17 0 * 

Lasioglossum calceatum (Scopoli 1763) 52 1.74 2.35 0 * 

Lasioglossum fulvicorne (Kirby 1802) 1 1.35 1.84 0 * 

Lasioglossum laticeps (Schenck 1868) 4 1.50 2.04 0 * 

Lasioglossum lativentre (Schenck 1853) 2 1.50 2.04 1 NT 

Lasioglossum leucopus (Kirby 1802) 1 NA NA 0 * 

Lasioglossum leucozonium (Schrank 1781) 16 1.98 2.66 0 * 

Lasioglossum lineare (Schenck 1868) 1 NA NA 0 * 

Lasioglossum malachurum (Kirby 1802) 3 NA NA 1 * 

Lasioglossum minutissimum (Kirby 1802) 1 NA NA 0 * 

Lasioglossum morio (Fabricius 1793) 2 1.03 1.42 0 * 

Lasioglossum nitidiusculum (Kirby 1802) 2 1.25 1.71 0 NT 

Lasioglossum pauxillum (Schenck 1853) 120 1.12 1.54 1 * 

Lasioglossum villosulum (Kirby 1802) 8 1.38 1.88 0 * 

Lasioglossum xanthopus (Kirby 1802) 1 2.30 3.07 0 * 

Megachile ericetorum Lepeletier 1841 1 3.00 5.37 1 * 

Megachile versicolor Smith 1844 3 3.10 5.54 1 * 

Melitta nigricans Alfken 1905 3 2.70 NA 0 * 

Nomada flavoguttata (Kirby 1802) 2 NA NA NA * 

Nomada fucata Panzer 1798 1 NA NA NA * 

Nomada ruficornis (Linnaeus 1758) 1 NA NA NA * 
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Osmia bicolor (Schrank 1781) 1 2.80 5.02 1 * 

Osmia bicornis (Linnaeus 1758) 3 3.20 5.71 1 * 

Osmia cantabrica (Benoist 1935) 1 NA NA 0 * 

Osmia rapunculi (Lepeletier 1841) 1 1.65 3.02 0 * 

Osmia truncorum (Linnaeus 1758) 1 NA NA 0 * 

Panurgus calcaratus (Scopoli 1763) 4 1.84 1.90 0 * 

Sphecodes albilabris (Fabricius 1793) 1 NA NA NA * 

Sphecodes crassus Thomson 1870 1 NA NA NA * 

Sphecodes ephippius (Linnaeus 1767) 7 NA NA NA * 

Sphecodes gibbus (Linnaeus 1758) 1 NA NA NA * 

Sphecodes monilicornis (Kirby 1802) 1 NA NA NA * 

 

Table S2  Summary of the best fitting candidate (dAICc<2) and null-models for the effects of faba bean cultivation and 

landscape metrics on the number of bumblebees, number of non-Bombus wild bees and species richness of all wild bees. 

Marginal (Rm
2) and conditional (Rc

2) R2 values are given as a measure of the model´s goodness of fit. Data is summed up across 

all transects per landscape; FB: faba bean cultivation (FB+/FB-), run: sampling round (1-3), FC: local flower cover of transect 

area, OSR: percentage of oilseed rape, SNH: percentage of semi-natural habitats. 

Response 
variable 

Model DF AICc dAICc Akaike 
weight 

(wi) 

Explanatory variables Rm
2 Rc

2 

Number of 
bumblebees 

(n=90) 

bb1 11 646.64 0.00 0.17 FB + run + FC + 
FB:run  

0.36 0.57 

bb2 13 647.16 0.52 0.13 FB + run + FC + 
FB:run + run:FC 

0.41 0.57 

bb0 5 682.74 36.11 0.00 
 

1 - - 

Number of 
non-Bombus 

wild bees 
(n=90) 

nb1 14 485.44 0.00 0.42 Run + FC + SNH + 
run:FC + run:SNH + 
FC:SNH 

0.09 0.26 

nb2 15 485.51 0.97 0.41 FB + run + FC + SNH + 
run:FC + run:SNH + 
FC:SNH 

0.09 0.25 

nb0 5 832.14 346.70 0.00 
 

1 - - 

Species 
richness of all 

wild bees 
(n=90) 

sri1 11 424.13 0.00 0.10 FB + run + FC + FB:FC 
+ run:FC 

0.10 0.20 

sri2 10 424.26 0.13 0.10 FB + run + FC + 
run:FC 

0.10 0.20 

sri3 9 425.29 1.16 0.06 Run + FC + run:FC 0.09 0.18 

sri0 4 445.23 21.11 0.00 1 - - 

 

Table S3 The relative importance of explanatory variables expressed by Σwi  (sum of Akaike weights) for models to explain 

the effects of the different landscape metrics on the number of bumblebees, non-Bombus wild bees and the species richness 

of all wild bees (best fitting models are shown in Table S2). Only model parameters having Σwi > 0.2 are shown. FB: faba bean 

cultivation (FB+/FB-), run: sampling round (1-3), FC: local flower cover of transect area, OSR: percentage of oilseed rape, SNH: 

percentage of semi-natural habitats. 
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Mod
els 

Response 
variable 

FB run FC OSR SNH 
FB: 
run 

run: 
FC 

FB: 
FC 

run: 
SNH 

FC: 
SNH 

bb 
no. of 
bumblebe
es 

0.98 1.00 0.97 0.32 0.32 0.91 0.32 - - - 

nb 

No. of 
non-
Bombus 
wild bees 

0.44 1.00 1.00 - 1.00 - 1.00 - 1.00 0.93 

sri 

Species 
richness 
of all wild 
bees 

0.81 1.00 1.00 0.37 0.35 - 1.00 0.35 - - 

 

Table S4  Mean values, median, standard deviation (sd), minimum (min), maximum (max) and sample size (n) of observed 

pollinator numbers, species richness and of functional traits for each sampling run. 

response variable run mean median sd min max n 

number of bumblebees 

1 8.2 6.5 8.9 0.0 44.0 30 

2 27.9 20.5 24.9 0.0 100.0 30 

3 10.3 6.5 17.3 0.0 63.0 30 

number of non-Bombus wild 
bees 

1 6.6 1.0 17.6 0.0 94.0 30 

2 11.9 4.5 15.2 0.0 58.0 30 

3 8.4 4.5 12.2 0.0 53.0 30 

species richness of all wild bees 
1 4.4 3.5 2.9 0.0 12.0 30 
2 5.7 6.0 3.0 0.0 11.0 30 
3 4.7 3.5 4.1 0.0 19.0 30 

CMW ITD 

1 3.5 3.8 0.6 1.4 4.2 29 

2 3.4 3.7 0.6 2.1 4.0 29 

3 3.1 3.2 0.8 1.7 4.0 27 

CMW proboscis length 

1 6.4 7.3 1.9 1.5 8.5 29 

2 6.7 7.1 1.5 3.4 8.1 29 

3 5.8 6.1 2.1 2.4 8.1 27 

lecty Fabaceae 

1 0.8 1.0 0.3 0.0 1.0 29 

2 0.9 1.0 0.1 0.7 1.0 29 

3 0.8 0.9 0.2 0.0 1.0 27 

 

Table S5  Mean values, median, standard deviation (sd), minimum (min), maximum (max) and sample size (n) of observed 

pollinator numbers, species richness and of functional traits depending on faba bean cultivation (FB). FB+:  Landscapes with 

faba bean cultivation; FB-: control landscapes without faba beans. 

response variable FB mean median sd min max n 

number of bumblebees 
FB+ 19.9 9.0 23.2 0.0 100.0 45 
FB- 11.1 7.0 13.3 0.0 56.0 45 

number of non-Bombus wild 
bees 

FB+ 9.0 2.0 13.6 0.0 58.0 45 

FB- 8.9 2.0 16.7 0.0 94.0 45 

species richness of all wild bees 
FB+ 5.5 5.0 3.1 1.0 13.0 45 

FB- 4.4 3.0 3.6 0.0 19.0 45 

CMW ITD 
FB+ 3.4 3.6 0.7 1.4 4.1 45 

FB- 3.3 3.6 0.7 1.8 4.2 40 

CMW proboscis length 
FB+ 6.4 7.0 1.9 1.5 8.2 45 

FB- 6.3 7.0 1.9 2.5 8.5 40 

lecty Fabaceae 
FB+ 0.8 0.9 0.2 0.0 1.0 45 

FB- 0.9 1.0 0.2 0.0 1.0 40 
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Table S6  Summary of the best fitting candidate (dAICc<2) and null-models for the effects of faba bean cultivation and 

landscape metrics on the community weighted means (CWM) for ITD and proboscis length as well as for the proportion of 

bee species collecting pollen from Fabaceae (lecty Fabaceae). Marginal (Rm
2) and conditional (Rc

2) R2 values are given as a 

measure of the models goodness of fit. Data is summed up across all transects and runs per landscape. FB: faba bean 

cultivation (FB+/FB-), run: sampling round (1-3), FC: local flower cover of transect area, OSR: percentage of oilseed rape, SNH: 

percentage of semi-natural habitats. 

Response 
variable 

Model DF AICc dAICc Akaike 
weight (wi) 

Explanatory variables Rm
2 Rc

2 

CWM ITD 
(n= 85) 

cmITD1 8 163.26 0.00 0.13 Run + SNH 0.15 0.56 

cmITD2 10 
165.13 1.87 0.05 

Run + FC + SNH + 
FC:SNH 

0.17 0.56 

cmITD0 5 
170.58 7.32 

0.00 
 

1 
- - 

CWM 
proboscis 

length 
(n=85) 

cmto1 8 332.73 0.00 0.08 Run + snh 0.13 0.50 

cmto2 
11 

334.01 1.28 0.04 
FB + run + fc + snh + 
FB:fc 

0.16 0.52 

cmto3 6 334.25 1.52 0.04 Snh 0.09 0.44 

cmto4 7 334.53 1.80 0.03 Run 0.04 0.46 

cmto5 
12 334.68 1.95 0.03 

FB + run + fc + snh + 
FB:fc + fc:snh 

0.17 0.51 

cmto0 5 
336.17 3.44 

0.02 
 

1 
- - 

Lecty 
Fabaceae 

(n=85) 

mL1 15 328.74 0.00 0.70 
FB + run + fc + snh + 
FB:run + run:fc + 
run:snh 

0.18 0.32 

mL0 4 396.31 67.57 0.00 1   

 

Table S7  The relative importance of explanatory variables expressed by Σwi  (sum of Akaike weights) for models to explain 

the effects of faba bean cultivation and the landscape metrics on the community weighted means for ITD and proboscis 

length as well as for the proportion of bee species collecting pollen from Fabaceae (lecty Fabaceae) (best fitting models are 

shown in Table S6). Only model parameters having Σwi > 0.2 are shown. FB: faba bean cultivation (FB+/FB-), run: sampling 

round (1-3), FC: local flower cover of transect area, OSR: percentage of oilseed rape, SNH: percentage of semi-natural 

habitats. 

Model
s 

Response 
variable 

FB run FC OSR SNH 
FB: 
run 

FB:FC 
FC: 

SNH 
run: 
SNH 

run:
FC 

cmITD CWM ITD 0.39 0.82 0.58 0.37 0.90 - - 0.26 - - 

cmto CWM proboscis 
length 

0.53 0.69 0.61 0.33 0.81 - 0.33 0.21 - - 

mL Lecty Fabaceae 1 1 0.82 - 0.99 1 - - 0.99 0.71 
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Abstract 

Pollinator declines and functional homogenization of farmland insect communities have been 

reported. Mass-flowering crops (MFC) can support pollinators by providing floral resources. 

Knowledge about how MFC with dissimilar flower morphology affect functional groups and functional 

trait compositions of wild bee communities is scarce. We investigated how two morphologically 

different MFC, land cover and local flower cover of semi-natural habitats (SNH) and landscape diversity 

affect wild bees and their functional traits (body size, tongue length, sociality, foraging preferences). 

We conducted landscape-level wild bee surveys in SNH of 30 paired study landscapes covering an 

oilseed rape (OSR) (Brassica napus L.) gradient. In 15 study landscapes faba beans (Vicia faba L.) were 

grown, paired with respective control landscapes without grain legumes. Faba bean cultivation 

promoted bumblebees (Bombus spp. Latreille), whereas non-Bombus densities were only driven by 

the local flower cover of SNH. High landscape diversity enhanced wild bee species richness. Faba bean 

cultivation enhanced the proportions of social wild bees, bees foraging on Fabaceae and slightly of 

long-tongued bumblebees. Solitary bee proportions increased with high covers of OSR. High local SNH 

flower covers mitigated changes of mean bee sizes caused by faba bean cultivation. Our results show 

that MFC support specific functional bee groups adapted to their flower morphology and can alter 

pollinators` functional trait composition. We conclude that management practices need to target the 

cultivation of functionally diverse crops, combined with high local flower covers of diverse SNH to 

create heterogeneous landscapes, which sustain diverse pollinator communities. 
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Introduction 

Insects are declining worldwide (IPBES 2019) and the loss of insects acting as pollinators, such as wild 

bees, poses a threat to ecosystem services in natural and agricultural systems (Potts et al. 2010). In 

Germany alone, 53 % of all native bee species are red listed (Westrich et al. 2011). Agricultural 

intensification through increased use of pesticides, the simplification of landscapes and the vanishing 

of nesting sites and food resources poses a big challenge to most pollinators (Potts et al. 2010; 

Vanbergen and Insect Pollinators Initiative 2013). The loss of suitable habitats can lead to a functional 

homogenization of insect communities through filtering for specific species traits but local effects can 

be mitigated by increasing landscape heterogeneity (Gámez-Virués et al. 2015; Perović et al. 2015).  

The availability of floral resources is the main driver of wild bee abundances (Potts et al. 2003) and the 

loss of floral host species in the past century is a major reason for wild bee declines (Scheper et al. 
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2014). Heterogeneous landscapes with a high diversity of different habitats harbor diverse pollinator 

communities (Steckel et al. 2014; Shackelford et al. 2013) and increasing the amount of SNH in a 

landscape enhances wild bee abundance and species richness (e.g. Nayak et al. 2015; Steffan-

Dewenter et al. 2002). In addition to the amount of SNH in a landscape, the quality of SNH, in terms of 

flower cover of important forage plants might be an essential factor shaping pollinator responses 

(Bartual et al. 2019) since both a high local flower cover and plant species richness are positively 

correlated with wild bee abundances and species richness (Ebeling et al. 2008; Kallioniemi et al. 2017; 

Potts et al. 2003). 

Also, the cultivation of mass-flowering crops (MFC) can benefit wild bees by temporary providing high 

pollen and nectar amounts (Diekötter et al. 2014; Rundlöf et al. 2014; Westphal et al. 2003). The most 

commonly grown MFC in Europe is oilseed rape (OSR) (Brassica napus L.). But due to extreme drought 

during summer, cultivation area dropped by 28 % from 2018 to 2019, accounting for 7.4% of the total 

German cropland (Destatis 2020). Other MFC, like grain legumes, are rarely cultivated (1.7 % of 

cropland in Germany), although their cultivation area increased due to their promotion as ecological 

focus area (EFA) within the CAP greening reform of 2013 (Destatis 2020).  

Successful crop pollination depends on the availability of suitable pollinators, whose morphological 

traits match those of the crops` flowers (Garibaldi et al. 2015). Vice versa, flower visiting pollinator 

communities of different MFC vary (Garratt et al. 2014). While OSR is visited by a diverse pollinator 

community (Garratt et al. 2014), only a few pollinator species, mainly honeybees and bumblebees, 

forage on faba beans (Vicia faba L.) (Garratt et al. 2014; Marzinzig et al. 2018). This is due to the 

complex flower morphology of faba beans and nectar located deep in the corolla tubes (Bond and 

Poulsen 1983). Force and a long tongue are necessary to access the flowers` reward (Bailes et al. 2018). 

Long-tongued bumblebees are therefore most effective pollinators of faba beans (Marzinzig et al. 

2018), while solitary wild bees have been shown to be most effective pollinators for oilseed rape 

(Woodcock et al. 2013).  

Regarding biodiversity benefits of MFC, the identity of the flowering crop might determine, which 

pollinator species are promoted with possible implications for functional trait compositions of 

pollinator communities (Diekötter et al. 2010). Beneficial effects of early flowering OSR on bumblebees 

and solitary wild bees are widely known (e.g. Diekötter et al. 2014; Jauker et al. 2012; Westphal et al. 

2003, 2009), whereas there are only few studies, showing a positive effect of faba bean cultivation on 

bumblebees (Hanley et al. 2011; Knight et al. 2009). There is limited understanding of how MFC with 

differing flower morphologies, interactively affect wild bee communities in SNH of agricultural 

landscapes. Especially possible landscape-scale effects on the functional trait composition of wild bee 

communities are understudied. 
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In this study, we aim to investigate how crop identity of two MFC species affects wild bee densities, 

species richness and their functional traits in SNH at landscape-scale. Moreover, we focus on the 

relative importance of local flower cover of SNH, the amount of SNH and landscape diversity for wild 

bees. We established 30 paired 1 km2 study landscapes, i.e. 15 study landscapes with V. faba fields and 

15 without grain legumes.. We expect that faba bean cultivation increases mainly numbers of 

bumblebees, the main pollinators of V. faba, by offering mid-seasonal resources. Further, we 

hypothesize that all wild bees benefit from an enhanced coverage of OSR, from an enhanced amount 

and local flower cover of SNH in the study landscapes and high landscape diversity. We expect local 

and landscape resource availability to modify the functional trait composition of wild bee communities, 

regarding bee size, foraging preferences, sociality and bumblebee tongue length. With respect to faba 

bean flower morphology, bigger pollinators, which are heavier and have proportional longer tongues 

and bees known to forage on Fabaceae should be favored by its cultivation. In contrast, OSR with 

nectar being easily accessible from flowers might promote predominantly small bees with proportional 

shorter tongues and bee species with no preference for Fabaceae. We expect social bees to be 

attracted by and to benefit from both MFC stronger than solitary bees. In addition, we hypothesize, 

that especially long tongued and big bumblebees, might be favored by faba bean cultivation because 

their morphology facilitates access to the reward of the flowers. 

Material and Methods 

Study design 

We selected 30 paired 1 km x 1 km study landscapes in three different regions in Germany (see Beyer 

et al., 2020) (Fig. 1). Twelve landscapes were situated close to Göttingen in Central Germany (51°32´N, 

9°56´E), ten landscapes close to the North Sea in vicinity of the city Itzehoe (53°55´N, 9°30´E) and eight 

in eastern Germany close to Leipzig (51°20´N, 12°22´E). 15 landscapes were surrounding a 

conventionally managed faba bean field (faba bean landscapes: FB+). We ensured that the respective 

farmers applied diversified crop rotations, i.e. conventional crop sequences that included grain 

legumes as an additional component for at least three years. Respecting control landscapes (FB-) did 

not include any grain legumes. Landscape selection was based on a similar landscape composition of 

the study landscapes within a pair. For further details see Beyer et al., 2020. 
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Figure 1  Map showing the location of the study landscapes in the three regions of Germany. Landscapes with faba bean 

cultivation (FB+) are depicted in green and control landscapes (FB-) in orange. On the right, an example of a study landscape 

is shown with six transects located in grassy and woody semi-natural habitats. 

 

All landscape elements with a minimum size of 10 m2 were mapped within the study landscapes by 

site inspections. As landscape composition measures, we calculated the percentage cover of semi-

natural and flower-rich habitats (SNH, Table S1), landscape diversity (Shannon index of 14 land-use 

types; see appendix for further information) and percentage cover of mass-flowering OSR with QGIS 

version 2.18 (QGIS Development Team 2016). Our study landscapes covered an independent gradient 

of SNH and OSR (Fig. S1).  

Wild bee sampling 

The study was conducted during the summer of 2017 and wild bee sampling was repeated three times 

between May and August (early summer: 22.05. - 19.06., mid-summer: 22.06. - 20.07., late summer: 

27.07. - 22.08.). Oilseed rape full bloom was over when sampling started. Faba beans were in full bloom 

during the first sampling run in early summer and did not flower during the last two sampling runs for 

most of the study landscapes. During every sampling run six variable transect walks (50 m x 5 m, 5 min. 

excluding handling time) were conducted within the most attractive flower rich SNH in each study 

landscape to cover the entire spectrum of suitable foraging patches for wild bees at landscape scale 

(Westphal et al. 2008) (Fig. 1). Due to the high spatial and temporal floral variability in SNH, we think 

that varying the transect location according to floral availability is a good approach to capture the 

entire pollinator community in each study landscape across the season. To cover different structural 

SNH types, we distributed the transect walks, if possible, equally within both, woody and grassy SNH 

types (for details see Table S1&S2).  
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Transect walks were conducted between 9 a.m. and 7 p.m. on days with suitable weather conditions 

(no rain, low wind speed, temperatures > 15°C). Walking slowly through the transect in one direction, 

the number of flower-visiting bees was counted. Species, that could not be identified in the field, were 

caught and taken to the lab for further identification. To avoid excessive killing, we collected only the 

first five bumblebee individuals of every species/morphospecies per transect for confirmatory 

identification. Based on similar coloration, we defined three morphospecies: (1) Bombus terrestris, B. 

lucorum, B. hortorum, B. bohemicus and B. sylvestris, (2) B. lapidarius, B. ruderarius and B. rupestris, 

(3) B. pascuorum and B. muscorum. All other bumblebee species could be distinguished as separate 

species. We identified all bumblebees (Mauss 1994) and all non-Bombus wild bees (Amiet et al. 2001, 

2007, 2014) in the lab. Because Bombus terrestris, B. lucorum, B. cryptarum and B. magnus are difficult 

to distinguish, we aggregated them. The percentage of local flower cover within the transect area was 

estimated during each transect walk (mean: 28.7 %, range: 0 - 95 %). Flowering plants, on which we 

observed pollinator visits were recorded on family level (Fig. S2). 

Functional trait composition of pollinator communities 

To study the effects of faba bean cultivation and landscape metrics on the functional trait composition 

of wild bee communities, we chose three functional traits, likely to be affected by local and landscape 

resource availability: body size, foraging preferences and sociality. Trait analyses were conducted for 

all sampled wild bees. Since we collected only the first five individuals of every Bombus color group 

per transect, the sampled bumblebee individuals do not mirror the actual structure of the bumblebee 

community in a certain study landscape. To account for the community structure, we only considered 

the first five collected bumblebee individuals per transect for the trait analyses. We consider this sub-

sample to be representative as the mean density of recorded bumblebees per transect was 3.8 and in 

approx. 80 % of the cases we only caught five or less bumblebee individuals per transect. We excluded 

cleptoparasites from the trait analyses (six species) because of their different life-history strategy and 

undefined foraging preferences. We measured the intertegular distance (ITD) of at least one and 

maximum five worker individuals per species (57 species in total) as a measure of body size (Table S3). 

For four species we caught only one single male individual and thus were not able to measure ITD. For 

the foraging preferences, wild bees were categorized into species collecting pollen from Fabaceae (any 

species, known to forage on Fabaceae, not specifically Fabaceae specialists) and species not known to 

exploit Fabaceae (specialists of a different plant family or generalists, not known to visit Fabaceae). 

For sociality, wild bees were grouped into social and solitary bees. Foraging preference and sociality 

information were extracted from the literature (Westrich, 2018) (Table S3). 

Since bumblebees are the main pollinators of faba beans, we additionally tested whether MFC affect 

the functional trait composition of bumblebee communities concerning bumblebee body size and 

tongue length. The tongue length of maximum 12 bumblebee workers per species was measured and 
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the tongue length relative to the bees` body sizes were calculated. According to the mean relative 

tongue length, bumblebee species were assigned to the long- or short-tongued category (Table S4). 

Statistical analyses 

All analyses were conducted in R version 3.6.1 (R Core Team 2019) using generalized linear mixed 

models with the glmmTMB package (Brooks et al. 2017) and linear mixed effect models with the nlme 

package (Pinheiro et al., 2019). We followed a multimodel inference approach (Burnham and Anderson 

2002). Based on global models (see details below), we fitted candidate models containing all possible 

combinations of explanatory variables and their interactions with the help of the dredge function of 

the MuMIn package (Barton 2019). The number of variables in the single candidate models was 

restricted to a maximum of seven. Candidate models were ranked by Bayesian Information Criterion 

(BIC), which is an information criterion similar to the more commonly used Akaike information criterion 

(AIC), but with a penalty term that also considers the number of samples. BIC thus tends to select less 

complex models in comparison to AIC (Burnham and Anderson 2002; Link and Barker 2006). We 

considered all models with a delta BIC < 2 compared to the best fitting model to have important 

empirical support (Raftery 1995). We used BIC model weights (wi), to assess the posterior probability 

of each model (Link and Barker 2006) and derived the sum of BIC model weights (Σwi) across all models 

to rank the importance of explanatory variables. 

We used residual plots to validate model assumptions. As a measure of the model´s goodness of fit 

we calculated marginal (Rm
2) and conditional (Rc

2) R2 values with the MuMIn package. To test for 

collinearity, we used the variance inflation factor (VIF), which was below 3 for all cases (Zuur et al., 

2010). To test for differences between faba bean and control landscapes or between different runs we 

performed post hoc tests with the emmeans package (Lenth 2019) at alpha level of 0.05. All graphics 

were generated with ggplot2 package (Wickham 2016) and predictions and confidence intervals in 

scatter plots were obtained from the effects package (Fox and Weisberg 2019) and in the boxplots 

from the emmeans package. 

Wild bee densities and species richness 

To analyze the effect of local and landscape resource availability on pollinator densities, we performed 

two separate models for bumblebees and all other wild bees (non-Bombus wild bees). While all 

observed wild bees (excluding honeybees) were included in the wild bee densities, only identified 

individuals were used for the wild bee species richness. Overall species richness (see Fig. S3 for species 

accumulation curve) was analyzed at landscape scale (due to very low species numbers per transect), 

i.e. richness was calculated across  all six transects per study landscape and run and SNH flower cover 

was averaged across all transects per study landscape and run. Our response variables were: density 

of bumblebees, density of non-Bombus wild bees (per 250 m2 transect area and 5 min), species 

richness of all wild bees per study landscape (per 1500 m2 transect area and 30 min), and additionally, 



Chapter 2 

61 
 

density of the long-tongued B. pascuorum/ B. muscorum color group (hereinafter referred to as B. 

pascuorum densities, since B. muscorum made up only a small proportion of that group).  We included 

faba bean cultivation (FB+/ FB-), local flower cover of the SNH transect area (FC), sampling run 

(early/mid/late summer), percentage of SNH and of OSR per study landscape and landscape diversity 

as explanatory variables in the global models. Moreover, we added all possible two-way interactions, 

as we consider each of them as ecologically relevant. All continuous explanatory variables were 

standardized to a mean of zero and a standard deviation of 1 to improve model convergence. As nested 

random effects, we included study region, landscape pair, study landscape and sampling run 

(region/landscape pair/landscape/run) into the pollinator density models and region, landscape pair 

and study landscape (region/landscape pair/landscape) into the species richness model.  

Global generalized linear mixed models with all independent variables and two-way interactions were 

fitted with Poisson and in case of overdispersion with negative binomial distribution. For pollinator 

densities, models with and without zero inflation terms were compared and the model with lowest BIC 

was selected for multimodel inference. The zero inflation was either assumed to be constant across 

the data or to be related to the local flower cover (Brooks et al. 2017). The model with negative 

binomial distribution and without zero inflation term was selected for the bumblebee densities and 

for non-Bombus densities we chose the model with negative binomial distribution and zero inflation 

related to the local flower cover. For the species richness, we chose the model with Poisson 

distribution. To test for competition effects of honeybees on wild bee densities, we repeated density 

analyses as described above, with honeybee densities as additional predictor.  

Functional trait composition of wild bee communities 

To analyze the effects of faba bean cultivation and landscape metrics on the functional traits of wild 

bees at landscape level, we aggregated data across transects for each run. Using the FD package 

(Laliberté and Legendre 2010), we calculated the community weighted means (CWM) for ITD for the 

entire pollinator community and for bumblebees seperately. We applied linear mixed effect models 

with Gamma distribution and log link for the entire wild bee community and with normal distribution 

for the analysis of CWM ITD of bumblebees. Moreover, we used generalized linear mixed models with 

binomial familiy and logit link to test the effect of local and landscape wide floral resources on the 

following response variables: the proportion of wild bees collecting pollen from Fabaceae (Fabaceae 

foragers) and the proportion of social wild bees relative to all bees as well as the proportion of long-

tongued bumblebees relative to all bumblebees. The explanatory variables, random effects and 

multimodel inference procedure were the same as described above for the species richness.  
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Results 

In total we observed 2620 wild bees of which 78.0 % were bumblebees. 1342 wild bees were caught 

and used for species identification, resulting in 66 recorded species (Table S3). The most frequently 

caught wild bee was Bombus terrestris/lucorum accounting for about 29.7 % of all sampled bees, 

making up 64.6 % of all short-tongued bumblebees. B. pascuorum accounted for 24.4 % of all wild bees 

and represented 82.8 % of all long-tongued bumblebees. 12.2 % of all collected bees were Bombus 

lapidarius. Lasioglossum pauxillum was the most commonly found non-Bombus bee and accounted for 

5.2 % of all wild bees. Most visited families of all visited plants in early summer were Fabaceae, 

Boranginaceae and Rosaceae, while in mid and late summer Fabaceae, Boranginaceae and Asteraceae 

were most visited (Fig. S2). 44.3 % of all non-cuckoo species were categorized as Fabaceae foragers, 

which corresponded to 87.8 % of all caught individuals.  

Wild bee densities and species richness 

The multimodel inference revealed two models within dBIC < 2 explaining the effect of faba bean 

cultivation (Σwi = 0.96), local flower cover (Σwi = 1.00) and run (Σwi = 1.00) on bumblebee densities 

(Table 1, S5, S6). We found on average 1.6 times more bumblebees in faba bean compared to control 

landscapes (Fig. 2a).  

 

Table 1 Summary of the best fitting candidate models (dBIC<2) and null models for the effects of faba bean cultivation and 

landscape metrics on bee densities, species richness and functional traits of all wild bees and bumblebees. Marginal (Rm
2) and 

conditional (Rc
2) R2 values are given as a measure of the model´s goodness of fit. Data for species richness and for functional 

traits is summed up across all transects per study landscape. n: number of observations, FB: faba bean cultivation (FB+/FB-), 

run: sampling run (early/mid/late summer), FC: local flower cover, LD: landscape diversity, OSR: percentage of oilseed rape, 

SNH: percentage of semi-natural habitats. 

Response variable model df BIC deltaBIC BIC weight Explanatory variables Rm
2 Rc

2 

Pollinator densities and species richness 

Bumblebee density 
(n=540) 

m.bb1 11 2287.43 0.00 0.49 FB + FC + run + FB:FC 0.53 - 

m.bb2 10 2289.01 1.58 0.22 FB + FC + run 0.52 - 

m.bb0 7 - - - 1 - - 

Non-Bombus density 
(n=540) 

m.nb1 9 1268.77 0.00 0.59 FC 0.06 0.42 

m.nb0 7 1341.80 73.03 0.00 1 0 0.46 

Species richness of all 
wild bees (n=90) 

m.spr1 6 408.82 0.00 0.26 FC + LD 0.20 0.37 

m.spr2 5 409.69 0.88 0.17 FC 0.19 0.38 

m.spr0 4 421.61 12.79 0.00 1 0.00 0.33 

Functional traits of all wild bees 

CWM ITD (n=90) m.itd1 5 174.46 0.00 0.32 1 0.00 0.43 

Foraging preferences 
(n=90) 

m.l1 9 312.62 0.00 0.30 FB + run + FB:run 0.08 0.22 

m.l0 4 333.93 21.30 0.00 1 0.00 0.14 

Sociality (n=90) 

m.s1 9 326.64 0.00 0.16 FB + run + FB:run 0.16 0.31 

m.s2 10 327.76 1.12 0.09 FB + run + OSR + FB:run 0.17 0.30 

m.s3 12 328.25 1.61 0.07 FB + run + SNH + FB:run + run:SNH 0.18 0.33 

m.s0 4 413.84 87.21 0.00 1 0.00 0.14 

Functional traits of Bombus 

Proportion long-
tongued bumblebees 
(n=90) 

m.ltb1 7 361.28 0.00 0.33 FC + run 0.19 0.27 

m.ltb2 8 362.99 1.71 0.14 FC + FB + run 0.20 0.27 

m.ltb0 4 431.28 70.00 0.00 1 0.00 0.18 

CWM ITD Bombus 
(n=90) 

m.itdb1 8 -223.76 0.00 0.44 FB + FC + FB:FC 0.18 0.18 

m.itdb0 5 -219.62 4.15 0.06 1 0.00 0.00 
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The highest bumblebee densities were observed in run 2 and lowest in run 3 (Fig. S4). Moreover, 

bumblebee densities increased with increasing local flower cover and this effect was stronger in 

control compared to bean landscapes (Σwi = 0.66) (Fig. 2b). There was a single model within dBIC < 2, 

showing positive effects of local SNH flower cover (Σwi = 1.00), on the density of non-Bombus wild bees 

(Table 1, S5, S6, Fig. 2c). There were two best-fitting models, showing a positive effect of local SNH 

flower cover (Σwi = 1.00) and of landscape diversity (Σwi = 0.67) on the species richness of all wild bees 

(Table 1, S5, S6, Fig. 2d, e). 

Honeybees did not affect wild bee densities (see Table S7 & S8).  

 

 

Figure 2  Effect of faba bean cultivation on bumblebee densities in landscapes with (FB+) and without (FB-) faba bean 

cultivation (p<0.001) (a). Effect of local flower cover (%) on bumblebee densities in FB+ and FB- landscapes (b). Effect of local 

flower cover (%) on non-Bombus wild bee densities (c) and on species richness of all wild bees (d). Effect of landscape diversity 

on wild bee species richness (e). Predicted mean values and 95% confidence intervals are displayed (in red for (a)). Different 

letters above boxplots indicate significant differences between FB+ and FB- landscapes. Predictions are based on the 

respective best fitting models m.bb1, m.nb1 and m.spr1 (Table 1). Y-axes are sqrt-transformed in (a-c) for graphical reasons. 

 

Functional trait composition of wild bee communities 

All wild bees 

Functional composition of bee communities with respect to the bees’ body sizes (CWM of ITD) were 

not affected by local or landscape resource availability. No fitted model was superior to the null model 

(Table 1).  
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Three models with dBIC < 2 explained faba bean cultivation (Σwi = 0.99), run (Σwi = 1.00), OSR (Σwi = 

0.32) and SNH cover (Σwi = 0.40) effects on the proportion of social wild bees within the communities. 

(Table 1, S5, S6). We found a higher proportion of social bees in control compared to faba bean 

landscapes in run 1, whereas a higher proportion of social bees was recorded in bean landscapes in 

comparison with controls in the second and third run (Fig. 3a). The proportion of social bees decreased 

with increasing amounts of OSR in the surrounding study landscape (Fig. 3b). We found proportions of 

social bees to increase with increasing percentage of SNH in run 1 and to decrease in run 2 and 3 (Fig. 

S5).  

The multimodel inference resulted in one best model explaining faba bean cultivation (Σwi = 0.83) and 

run (Σwi = 1.00) effects on the proportion of Fabaceae foragers (Table 1, S5, S6).  Patterns were similar 

as for the proportion of social bees, which might be due to the correlation of the two response 

variables (spearman r=0.74, p<0.001). Proportions of Fabaceae foragers were higher in faba bean 

landscapes compared to controls in run 2 and 3, whereas the opposite was true for run 1 (Fig. S6). 

Besides, composition of the bee communities was unaffected by faba bean cultivation but changed by 

OSR cover, mainly due to common bumblebee species (for further details see supplementary material 

Table S9 & Fig. S7).   

 

 

Figure 3  Effect of (a) faba bean cultivation and of (b) oilseed rape cover on the proportion of social bees (for the three 

different sampling runs in (a)). Different letters above boxplots indicate significant differences between faba bean (FB+) and 

control (FB-) landscapes within each run. Predicted mean values and 95% confidence intervals are displayed (in red for (a)). 

Predictions are based on the second-best fitting model m.s2 (Table 1).  

 

Bumblebees 

There were two models within dBIC < 2 explaining the effect of faba bean cultivation (Σwi = 0.40), 

sampling run (Σwi = 1.00) and local flower cover (Σwi = 1.00) on the proportion of long-tongued 
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bumblebees (Table 1, S5, S6). We found 51 % of the bumblebee community to be long-tongued in faba 

bean landscapes and 42 % in control landscapes (p=0.07) (Fig. 4a). Highest proportions of long-tongued 

bumblebees were present in the last sampling run (Fig. S8) and the proportions decreased with 

increasing local flower cover (Fig. 4b). Focusing on the most dominant long-tongued species, we found 

higher B. pascuorum densities in faba bean compared to control landscapes (p<0.01) (Fig. S9). Densities 

were highest in run 2 and lowest in 1. 

The CWM for ITD of bumblebees was fitted by a single best model including faba bean cultivation (Σwi 

= 0.90), local flower cover (Σwi = 0.88) and their interaction (Σwi = 0.86) as predictors (Table 1, S5, S6). 

Mean size of bumblebees did not differ between faba bean and control landscapes (Fig. 4c). CWM ITD 

increased with increasing flower cover in control landscapes, whereas it decreased in faba bean 

landscapes (Fig. 4d). CWM ITD was higher in faba bean compared to control landscapes when local 

flower cover of SNH was low (p < 0.01), while at high local flower cover of SNH CWM ITD did not differ 

significantly (p=0.07). 

 

 

Figure 4  Effect of faba bean cultivation (p=0.07) (a)  and of local flower cover (%) (b) on the proportions of long-tongued 

bumblebees. Effect of faba bean cultivation (p=0.12) (c) and of local flower cover (%) (d) for faba bean (FB+) and control (FB-

) landscapes on the community weighted means (CWM) for intertegular distance (ITD) of bumblebees. Same letters above 

boxplots indicate non-significant differences between FB+ and FB- landscapes. Predicted mean values and 95% confidence 
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intervals are displayed (in red for (a&c)). Predictions are based on the second-best model m.ltb2 for the proportion of long-

tongued bumblebees and on the best fitting model m.itdb1 for CWM ITD of Bombus (Table 1).  

 

Discussion 

Wild bee densities and species richness 

We showed that faba bean cultivation enhances bumblebee densities in SNH, which is in accordance 

with our hypothesis. Accordingly, bumblebee densities were enhanced in faba bean landscapes, when 

sampling within field margins (Beyer et al., 2020). Bumblebees are known to preferentially forage on 

flowers, that offer high quality, protein-rich pollen, like Fabaceae (Somme et al. 2015) and are, next to 

honeybees, the most common flower visitors to faba beans in temperate regions (Bond and Poulsen 

1983; Garratt et al. 2014; Marzinzig et al. 2018). Due to their tongue length and body size, bumblebees` 

morphology fits the morphology of faba beans with its very long corolla-tubes. Force and a long tongue 

is necessary to easily access nectar of faba bean flowers (Bailes et al. 2018). An increased colony 

density of long-tongued Bombus pascuorum in the vicinity of faba bean fields (Knight et al. 2009) and 

a higher density of bumblebees in field margins adjacent to bean compared to wheat fields (Hanley et 

al. 2011) has already been shown. However, the effect of faba bean cultivation on biodiversity at 

landscape-scale is widely unknown. Our study provides evidence that conventionally managed faba 

beans increase bumblebee densities at landscape-scale by providing resources during mid-summer 

after the flowering of OSR. Resource continuity is of major importance for pollinators to persist in 

simplified agricultural landscapes (Schellhorn et al. 2015; Westphal et al. 2009) and March, June and 

August/September have been identified as critical times of nectar scarcity for bumblebees (Timberlake 

et al. 2019). Thus, faba beans might provide essential resources for wild bees in times of food scarcity 

during June. Resource continuity throughout the season might be especially important for colonial 

species, while most solitary bees have shorter life cycles and depend on resource availability at the 

time of their activity period. This might be one reason for why non-Bombus wild bees did not benefit 

from faba bean cultivation. Another reason is the beans` flower morphology with rewards not easily 

accessible for small bees with short tongues. Non-Bombus wild bees and bumblebees were closely 

linked to the quantity of floral resources within the SNH of our study landscapes. Bumblebee densities 

increased more strongly with increasing local flower cover in control compared to bean landscapes. 

Faba bean cultivation might have mitigated the concentration of bumblebees on highly attractive SNH 

through the provisioning of an alternative resource. In addition to common grassland species, woody 

plant species were frequently used by our wild bees (Rosaceae in run 1), emphasizing their importance 

as wild bee forage plants (Leidenfrost et al. 2020, Kämper et al. 2016). While SNH flower cover was the 

most important determinant for non-Bombus wild bee densities recorded in the respective SNH, the 

cover of SNH had no effect on wild bees. However, when investigating wild bees outside SNH, such as 
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field margins or crop fields, SNH cover has been shown to be an important driver of wild bee densities 

(Beyer et al. 2020; Nayak et al. 2015). Wild bees have been shown to shift between different crop and 

non-crop habitats in agricultural landscapes according to their flowering phenology and changing 

resource availability (Mandelik et al. 2012). Similarly, local floral resource availability drove wild bees 

in our study. However, only bumblebees but not non-Bombus wild bees were additionally affected by 

landscape metrics, which might be explained by the larger foraging ranges of bumblebees compared 

to smaller and less mobile solitary bees (Greenleaf et al. 2007). 

In addition to the local flower cover within SNH, landscape diversity enhanced wild bee species 

richness. More complex landscapes might offer more diverse nesting and foraging habitats supporting 

diverse pollinator communities with different resource requirements (Perović et al., 2015; Shackelford 

et al., 2013). Our study provides important evidence that diverse and flower-rich landscapes are 

prerequisites to promote and conserve species-rich pollinator communities in often species-poor 

agricultural landscapes.  

Contrary to our expectations, the cover of OSR did neither affect bumblebee, non-Bombus wild bee 

densities, nor wild bee species richness. OSR has been shown to be beneficial for wild bees (Diekötter 

et al. 2014; Westphal et al. 2003). Nevertheless, Westphal et al. (2009) showed that early positive 

effects on bumblebee colonies do not translate into a higher colony reproductive success later in the 

season. Similarly, the early resources provided by OSR in our study did not affect wild bees in SNH. Our 

sampling started after most OSR fields had ceased blooming in mid-May. Thus, a possible boost 

through an early resource pulse in April did not translate into persistent effects in our wild bee 

communities. 

Functional trait composition of wild bee communities 

All wild bees 

Faba bean cultivation affected the proportion of social bees and of faba bean foragers in SNH, 

depending on the sampling time. While we observed higher proportions in control than in bean 

landscapes when faba beans were in full bloom, the effect was reversed afterwards as also shown in 

Beyer et al. (2020). While a higher proportion of social bees might result from an increase of social 

bees or a decrease of solitary bees or both, those effects were probably driven by bumblebees, the 

most dominant group of social bees in our study landscapes. They are known to frequently forage on 

Fabaceae (Somme et al. 2015) and are attracted by mass-flowers (Walther-Hellwig and Frankl 2000). 

Most of them were likely to forage in faba bean fields instead of SNH, where we sampled, when beans 

were blooming. Such dilution effects driven by MFC have been already shown for OSR and might lead 

to diminishing pollination services for less attractive wild plant populations (Holzschuh et al. 2016). 

Similar effects are conceivable concerning faba bean flowering, pulling social bees away from SNH 

during their blooming period with possible negative implications for wild Fabaceae populations that 
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are adapted and dependent on bumblebee pollinators. After the flowering of V. faba, we observed a 

higher proportion of social bees and Fabaceae foragers in bean than in control landscapes. This 

indicates that faba bean cultivation generally promotes social bees and bees foraging on Fabaceae. 

Again, this effect might be driven by the bumblebees through an enhanced colony growth facilitated 

by the additional resources provided by beans in June, as already shown for later flowering crops 

(Rundlöf et al. 2014).  

High amounts of OSR in the surrounding landscape had a slightly negative effect on the proportion of 

social bees in wild bee communities found in SNH. OSR is visited by a variety of different pollinator 

groups, with solitary wild bees as most effective pollinators (Woodcock et al. 2013). Solitary bees, 

which are known to be promoted by OSR (Diekötter et al. 2014; Jauker et al. 2012) might have 

benefited more than social bees, like bumblebees, which are associated with Fabaceae (Goulson et al. 

2005). Our results indicate that high covers of OSR can modify the functional trait composition of wild 

bee communities in terms of sociality with resulting effects on the community composition.  

In contrast to faba beans that enhanced the proportion of social bees and Fabaceae foragers, oilseed 

rape promoted solitary wild bees. Consequently, a single species of MFC cannot conserve functionally 

diverse wild bee communities in agricultural landscapes. Biodiversity conservation measures should 

therefore aim at increasing crop diversity, which is already one of the three CAP greening practices, 

farmers receive payments for. The introduction of the crop diversification measure in fact might have 

led to a decreased cultivation of common cereals in favor of an increased cultivation area of rape, 

sunflower and leguminous crops in 2015 (European Commission 2017). Nevertheless, agricultural 

management should also target the cultivation of morphologically different MFC to increase functional 

farmland plant diversity, which enhances pollinator diversity (Sutter et al. 2017). 

Bumblebees 

In addition to higher bumblebee densities, there was a slight tendency of enhanced proportions of 

long-tongued bumblebees in faba bean compared to control landscapes. Additionally, we found 

enhanced densities of B. pascuorum in bean landscapes, which was the most dominant species of the 

long-tongued bumblebees (more than 80 %) in our study sites. Thus, faba bean cultivation promotes 

particularly long-tongued bumblebee species. Long-tongued bumblebees have been shown to be most 

effective faba bean pollinators, while short-tongued species often rob nectar by biting holes into the 

corolla base (Bond and Poulsen 1983; Marzinzig et al. 2018). Many long-tongued bumblebee species 

are threatened and the decrease of bumblebee forage plants, especially legumes, during the last 

decades has been postulated as a reason for their decline (Goulson et al. 2005). Most long-tongued 

bumblebee species emerge late (May/June) in contrast to the early emerging short-tongued 

bumblebees (Goulson et al. 2005). Likewise, we found highest proportions of long-tongued 

bumblebees in the latest run from mid-July to mid-August. Dietary specialization, a long tongue and a 
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late emergence time have been related to rarity in bumblebees (Goulson et al. 2005). Hence, the 

cultivation of faba beans could help to promote rare long-tongued bumblebee species, for which the 

faba bean provides valuable resources for colony establishment. 

An increasing local flower cover led to higher proportions of short-tongued bumblebees. Short-

tongued bumblebee species are known to be particularly attracted by mass-flowers (Walther-Hellwig 

and Frankl 2000) which explains their dominance in bumblebee communities when flower cover of 

SNH was high. The cover of OSR did not affect the functional composition of the bumblebee 

communities. Contrary, Diekötter et al. (2010) found decreased densities of long-tongued bumblebees 

with increasing amounts of OSR in the landscape. This pattern probably arose from competition effects 

through short-tongued bumblebees, which strongly profited from OSR, leading to higher rates of 

nectar robbing on red clover (Diekötter et al. 2010). 

We found bumblebees to have higher mean sizes in faba bean compared to control landscapes when 

local flower cover of SNH was low. Faba beans provided additional resources in simplified agricultural 

landscapes, from which bumblebee colonies were likely to benefit (Knight et al. 2009). Bumblebees in 

complex landscapes with more floral resources have been shown to be larger than in simple landscapes 

(Persson and Smith 2011) since fewer resources result in smaller offspring (Oliveira et al. 2016; 

Radmacher and Strohm 2010). Another explanation might be that bigger bumblebees have 

proportional longer tongues and can apply more force, which is required to access the V. faba flower 

rewards (Bailes et al. 2018). The improved resource exploitation of big bumblebees is likely to have 

driven their dominance of the community. However, when local flower cover of SNH increased, the 

difference between bean and control landscapes regarding mean bee size disappeared. If bumblebees 

were resource limited in our study landscapes, more flower-rich SNH were likely to enable a bigger 

worker size through increased nectar and pollen supply, explaining increasing ITD of bumblebees in 

control landscapes. Accordingly, Grab et al. (2019) showed that the provisioning of floral resources can 

buffer against a decrease of bee body sizes due to the simplification of landscapes. Contrary, mean 

bumblebee size in faba bean landscapes decreased with increasing SNH flower cover. Increased 

alternative resource availability probably compensated for the dominance of big bumblebees, 

benefiting from faba beans and exerting competitive pressure on smaller bees. Potential wild bee 

functional trait composition changes driven by faba beans are therefore likely to be mitigated by a high 

floral resource supply of SNH, i.e. heterogenous, resource-rich landscapes. 

Conclusions 

Our study shows that the identity of MFC moderates functional trait compositions of pollinator 

communities. Different MFC promote different functional groups of wild bees and the dominance of 

one MFC cannot conserve diverse pollinator communities. High OSR covers shifted bee communities 

towards a higher proportion of solitary wild bees. Faba bean cultivation enhanced bumblebee densities 
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at landscape-scale and filtered for functional traits associated with Fabaceae. Social wild bees, bees 

foraging on Fabaceae and long-tongued bumblebee species were promoted. Increased floral resource 

availability can buffer against changes of the functional trait composition regarding bumblebee size, 

caused by a dominance of faba beans in resource-poor landscapes. It is already known that the loss of 

suitable foraging and nesting habitats in simplified agricultural landscapes results in a functional 

homogenization of insect communities (Gámez-Virués et al. 2015; Perović et al. 2015). Since crop yields 

are positively correlated with functional pollinator diversity (Garibaldi et al 2015; Woodcock et al. 

2019), it is desirable to conserve diverse pollinator communities, which requires a high landscape 

heterogeneity (Perović et al. 2015; Steckel et al. 2014) and a high functional diversity of farmland plants 

(Sutter et al. 2017). Farmland floral resources can be provided by either promoting SNH or by the 

cultivation of MFC and both approaches have already been shown to benefit pollinators (e.g. Diekötter 

et al. 2014; Westphal et al. 2003). Biodiversity conservation measures should therefore include both, 

off-field practices targeting SNH as well as on-field practices aiming at crop diversification, especially 

with respect to flowering crops with various flower morphologies. A high crop and landscape diversity, 

combined with a high quantity and quality of SNH can help to promote common crop pollinators, to 

conserve functional diverse pollinator communities and to ultimately secure crop yields.  
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Supplementary material 

Figures 

 

 
Figure S1  Scatterplot of explanatory variables: percentage cover of semi-natural habitats (SNH) and of oilseed rape (OSR) in 

our 30 paired study landscapes: 15 landscapes with faba bean cultivation (FB+) and 15 without (FB-). Landscapes were 

situated in three different regions of Germany: east (red circles), middle (green triangles) and north (blue squares) of 

Germany. Mean area of OSR of our study landscapes was 7.99 m2 (min: 0.00 m2, max: 30.38 m2). Mean area of SNH was 8.17 

m2 (min: 3.68 m2; max: 15.34 m2). 
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Figure S2  Number of observed flower visits on the eight most visited plant families for the three different sampling runs in 

early summer (22.05.-19.06.), mid-summer (22.06.-20.07.) and late summer (27.07.-22.08.). Note that x-axes are sqrt-

transformed for graphical reasons. Common plant species / genus in the eight most visited plant families were for example: 

Fabaceae: Cytisus scoparius, Lupinus polyphyllus, Medicago sativa, Trifolium incarnatum, Trifolium hybridum, Trifolium 

pratense, Trifolium repens. Boraginaceae: Borago officinalis, Echium vulgare, Phacelia tanacetifolia, Symphytum officinale, 

Myosotis spp. Asteraceae: Taraxacum officinale agg., Arctium tomentosum, Bellis perennis, Cichorium intybus, Helianthus 

annuus, Matricaria recutita, Tanacetum vulgare, Achillea spp., Cirsium spp. Rosaceae: Rubus idaeus, Rubus sect. Rubus, Rosa 

spp. Lamiaceae: Lamium album, Salvia pratensis, Stachys sylvatica. Onagraceae: Epilobium angustifolium. Apiaceae: Daucus 

carota, Heracleum sphondylium . Geraniaceae: Geranium spp. 
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Figure S3  Rarefaction curve across all transects and study landscapes using the specaccum command of the vegan package 

(Oksanen et al. 2019). 

 

 
Figure S4  Effect of sampling run on the density of bumblebees. Predicted mean values and 95% confidence intervals are 

displayed in red. Different letters above boxplots indicate significant differences between runs. Predictions are based on the 

best model m.bb1 (Table 1). Y-axis is sqrt-transformed for graphical reasons. 
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Figure S5  Effect of percentage semi-natural habitats on the proportion of social bees for the different sampling runs in early, 

mid and late summer. Predicted mean values and 95% confidence intervals are displayed. Predictions are based on the third-

best fitting model m.s3 (Table 1).  

 

 
Figure S6  Effect of faba bean cultivation on the proportion of Fabaceae foragers for the three different sampling runs in early, 

mid and late summer. Different letters above boxplots indicate significant differences between faba bean (FB+) and control 
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(FB-) landscapes within each run. Predicted mean values and 95% confidence intervals are displayed in red. Predictions are 

based on the best fitting model m.l1 (Table 1).  

 

 

Figure S7  Changes of bee communities due to mass-flowering crop cultivation. Non-metric multidimensional scaling (NMDS) 

using the metaMDS and envfit functions of the vegan package (Oksanen et al. 2019) and Bray-Curtis distance was used to 

visualize the results of the PERMANOVA (see Table S9). Red points and ellipse show communities of landscapes without faba 

bean cultivation (FB-) and green points and ellipse communities of landscapes with faba bean cultivation (FB+). Each point 

represents one study landscape per sampling run. The vector shows direction of the landscape metrics oilseed rape (osr) 

cover. 
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Figure S8  Effect of sampling run on the proportion of long-tongued bumblebees. Predicted mean values and 95% confidence 

intervals are displayed in red. Different letters above boxplots indicate significant differences between runs. Predictions are 

based on the second-best model m.ltb2 (Table 1). Y-axis is sqrt-transformed for graphical reasons. 

 

Figure S9  Effect of faba bean cultivation on Bombus pascuorum densities. Predicted mean values and 95% confidence 

intervals are displayed in red. Different letters above boxplots indicate significant differences between runs. Predictions are 

based on the first-best model. 
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Tables 

Table S1  Definitions of all grassy and woody habitat types considered as semi-natural habitat (SNH) in our study. 

Habitat type Habitat category Definition 

Hedge woody Linear woody structure; mainly shrubs; longer than 
wide; width ≤ 10 m 

Grove woody Areal woody structure; mainly trees; width > 10 m; 
not part of a larger forest patch but isolated in the 
arable matrix 

Forest edges woody 5 m wide strip; extends 2.5 m into and covers 2.5 m 
in front of a larger forest patch 

Succession site woody Areal habitat in a progressed state of succession; 
emerging shrubs covers most of the area 

Flower strip grassy Linear or areal habitat with flowering plants sown as 
an agri-environmental measurement 

Extensive grassland / 
calcareous grassland 

grassy Areal habitat; diverse, flower-rich and extensively 
managed grassland; no shrubs present 

Orchard meadows grassy Grass-dominated areal habitat with a stand of old 
fruit trees; extensively managed or abandoned 

Fallows grassy Areal fallow land; dominated by naturally occurring 
pioneer vegetation (e.g. Cirium spp.; Arctium spp.; 
Urtica dioica; Atriplex spp.) 

Succession site grassy Areal habitat in an initial state of succession; 
emerging shrubs are present but grassy vegetation 
still dominating most of the area 

Grass-clover leys grassy Areal habitat cultivated with a flower-rich grass-
legume mix; mostly Trifolium spp. but also other 
legumes like Medicago sativa  

 

Table S2 Number of transects per semi-natural habitat category (grassy/woody) for every landscape and sampling run 

(early/mid/late summer). Woody habitat category includes hedges, groves, forest edges, woody succession sites. The grassy 

habitat category includes flower strips, extensive and calcareous grasslands, orchard meadows, fallows, grassy succession 

sites, grass/clover leys. Two landscape pairs lacked woody habitat structures and all transects had to be assigned to grassy 

habitats. For the first run, the number of transects per habitat category for certain landscapes was not balanced (numbers in 

bold). l. pair = landscape pair ID; FB = faba bean cultivation 

  early summer mid summer late summer 

region l. pair FB grassy woody total grassy woody total grassy woody total 

east 3 FB- 3 3 6 3 3 6 3 3 6 

east 3 FB+ 3 3 6 3 3 6 3 3 6 

east 4 FB- 4 2 6 3 3 6 3 3 6 

east 4 FB+ 4 2 6 3 3 6 3 3 6 

east 15 FB- 2 4 6 3 3 6 3 3 6 

east 15 FB+ 2 4 6 3 3 6 3 3 6 

east 16 FB- 2 4 6 3 3 6 3 3 6 

east 16 FB+ 3 3 6 3 3 6 3 3 6 

middle 9 FB- 4 2 6 3 3 6 3 3 6 

middle 9 FB+ 4 2 6 3 3 6 3 3 6 

middle 10 FB- 4 2 6 3 3 6 3 3 6 

middle 10 FB+ 2 4 6 3 3 6 3 3 6 

middle 11 FB- 2 4 6 3 3 6 3 3 6 

middle 11 FB+ 4 2 6 3 3 6 3 3 6 

middle 12 FB- 2 4 6 3 3 6 3 3 6 

middle 12 FB+ 3 3 6 3 3 6 3 3 6 

middle 13 FB- 3 3 6 3 3 6 3 3 6 

middle 13 FB+ 3 3 6 3 3 6 3 3 6 

middle 14 FB- 4 2 6 3 3 6 3 3 6 

middle 14 FB+ 4 2 6 3 3 6 3 3 6 
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north 1 FB- 3 3 6 3 3 6 3 3 6 

north 1 FB+ 3 3 6 3 3 6 3 3 6 

north 2 FB- 6 0 6 6 0 6 6 0 6 

north 2 FB+ 6 0 6 6 0 6 6 0 6 

north 7 FB- 3 3 6 3 3 6 3 3 6 

north 7 FB+ 3 3 6 3 3 6 3 3 6 

north 23 FB- 3 3 6 6 0 6 6 0 6 

north 23 FB+ 6 0 6 6 0 6 6 0 6 

north 24 FB- 3 3 6 3 3 6 3 3 6 

north 24 FB+ 3 3 6 3 3 6 3 3 6 

 

Table S3  Density and functional traits of all 66 collected wild bee species. ITD: measured mean intertegular distance; foraging 

preference: species known to collect pollen from Fabaceae (1) or not known to do so (0). Sociality: Social species (1) or solitary 

species (0). Foraging preference and Sociality data is from Westrich (2018). Note that Bombus terrestris complex includes the 

following species: Bombus terrestris, B. lucorum, B. cryptarum and B. magnus. 

species density ITD 
foraging 

preference 
sociality 

Andrena bicolor Fabricius 1775 1 2.10 0 0 

Andrena carantonica Pérez 1902 4 2.98 0 0 

Andrena chrysosceles (Kirby 1802) 10 2.04 0 0 

Andrena cineraria (Linnaeus 1758) 8 2.94 0 0 

Andrena coitana (Kirby 1802) 1 1.70 0 0 

Andrena flavipes Panzer 1799 22 2.50 1 0 

Andrena fucata Smith 1847 1 2.60 0 0 

Andrena fulva (Müller 1766) 1 2.95 0 0 

Andrena fulvida Schenck 1983 2 2.55 1 0 

Andrena haemorrhoa (Fabricius 1781) 15 2.44 0 0 

Andrena helvola (Linnaeus 1758) 2 2.30 0 0 

Andrena labiata Fabricius 1781 2 2.30 0 0 

Andrena lathyri Alfken 1899 5 2.44 1 0 

Andrena minutula (Kirby 1802) 13 1.38 0 0 

Andrena nigroaenea (Kirby 1802) 28 2.98 1 0 

Andrena nitida (Müller 1776) 7 2.90 0 0 

Andrena nitidiuscula Schenck 1853 2 NA 1 0 

Andrena ovatula (Kirby 1802) 7 2.20 1 0 

Andrena proxima (Kirby 1802) 5 1.90 0 0 

Andrena viridescens Viereck 1916 2 1.55 0 0 

Anthidium manicatum (Linnaeus 1758) 1 3.50 1 0 

Anthophora furcata (Panzer 1798) 1 3.40 0 0 

Anthophora plumipes (Pallas 1772) 1 3.70 1 0 

Bombus bohemicus (Seidl 1837) 10 NA NA NA 

Bombus hortorum (Linnaeus 1761) 29 4.20 1 1 

Bombus hypnorum (Linnaeus 1758) 10 3.64 1 1 

Bombus lapidarius (Linnaeus 1758) 164 3.70 1 1 

Bombus muscorum (Linnaeus 1758) 18 3.84 1 1 

Bombus pascuorum (Scopoli 1763) 328 4.02 1 1 

Bombus pratorum (Linnaeus 1761) 36 3.60 1 1 

Bombus ruderarius (Müller 1765) 1 3.42 1 1 

Bombus rupestris (Fabricius 1793) 8 NA NA NA 

Bombus sylvarum (Linnaeus 1761) 10 3.20 1 1 

Bombus sylvestris (Lepeletier 1832) 1 NA NA NA 

Bombus terrestris (Linnaeus 1758) complex 399 3.90 1 1 

Chelostoma campanularum (Kirby 1802) 4 NA 0 0 

Chelostoma florisomne (Linnaeus 1758) 4 2.05 0 0 

Chelostoma rapunculi (Lepeletier 1841) 2 1.65 0 0 

Colletes daviesanus Smith 1846 2 2.30 0 0 

Dasypoda hirtipes (Fabricius 1793) 1 2.90 0 0 
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Eucera longicornis Linnaeus 1758 1 3.60 1 0 

Eucera nigrescens Perez 1879 2 3.45 1 0 

Halictus quadricinctus (Fabricius 1776) 1 2.85 0 0 

Halictus rubicundus (Christ 1791) 4 2.12 1 1 

Halictus scabiosae (Rossi 1790) 15 2.52 0 0 

Halictus simplex Blüthgen 1923 4 1.94 0 0 

Halictus tumulorum (Linnaeus 1758) 11 1.42 1 1 

Hylaeus communis Nylander 1852 4 1.28 0 0 

Hylaeus confusus Nylander 1853 3 1.46 1 0 

Hylaeus gredleri Förster 1871 3 0.97 0 0 

Hylaeus styriacus Förster 1871 1 NA 0 0 

Lasioglossum calceatum (Scopoli 1763) 25 1.74 0 1 

Lasioglossum fulvicorne (Kirby 1802) 1 1.35 0 0 

Lasioglossum leucozonium (Schrank 1781) 4 1.98 0 0 

Lasioglossum morio (Fabricius 1793) 3 1.03 0 1 

Lasioglossum pauxillum (Schenck 1853) 70 1.12 1 1 

Lasioglossum villosulum (Kirby 1802) 9 1.40 0 0 

Megachile centuncularis (Linnaeus 1758) 2 3.60 1 0 

Melitta haemorrhoidalis (Fabricius 1775) 1 NA 0 0 

Melitta nigricans Alfken 1905 1 2.70 0 0 

Nomada flavoguttata (Kirby 1802) 1 NA NA NA 

Nomada furva Panzer 1798 2 NA NA NA 

Osmia adunca (Panzer 1798) 3 2.80 0 0 

Osmia bicolor (Schrank 1781) 1 2.80 1 0 

Osmia bicornis (Linnaeus 1758) 1 3.20 1 0 

Osmia parietina Curtis 1828 1 2.00 1 0 

 

Table S4  Tongue length of bumblebee species. The length of the glossa was measured, starting from the end of the 

paraglossa. The number of measured bumblebee individuals per species is given, as well as their mean tongue length (TL), 

their mean intertegular distance (ITD) and their mean relative TL (tongue length divided by ITD) (to account for body size 

dependent tongue length variations). According to the mean relative TL, bumblebee species were categorized into short- and 

long-tongued. Species with a mean relative TL equal or higher 1.43 (the mean of all values) were assigned to the long-tongued 

category and species with a lower value to the short-tongued group. For all ITD and tongue measurements, we used a 

connected microscope and the Labscope Imaging Software (ZEISS). 

species 
number of 

bumblebees 
mean TL mean ITD mean relative TL TL category 

B. hortorum 12 8.87 4.14 2.15 long 

B. hypnorum 9 4.30 3.58 1.20 short 

B. lapidarius 12 4.39 3.68 1.20 short 

B. muscorum 7 5.66 3.79 1.49 long 

B. pascuorum 12 5.58 3.84 1.47 long 

B. pratorum 12 4.53 3.73 1.22 short 

B. ruderarius 9 5.08 3.41 1.49 long 

B. sylvarum 12 4.56 3.18 1.43 long 

B. terrestris/lucorum 12 4.80 3.92 1.23 short 

 

Table S5  The relative importance of explanatory variables expressed by Σwi (sum of BIC weights) for models to explain the 

effects of the different landscape metrics on bee densities and species richness and functional traits of all wild bees and for 

bumblebees (best fitting models are shown in Table 1). Model parameters having Σwi < 0.2 for all response variables are not 

shown. FB: faba bean cultivation (FB+/FB-), run: sampling run (early/mid/late summer), FC: local flower cover of transect 

area, LD: landscape diversity, OSR: percentage of oilseed rape, SNH: percentage of semi-natural habitats, CWM ITD: 

community weighted means for bee size (intertegular distance). 
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Models Response 
variable 

FB run FC LD OSR SNH FB:run run: SNH FB:FC 

 Pollinator densities and species richness 

m.bb Bumblebee 
density 

0.96 1.00 1.00 - - - - - 0.66 

m.nb Non-Bombus 
density 

- - 1.00 0.25 - - - - - 

m.spr Species richness 
of all wild bees 

- 0.21 1.00 0.67 - - - - - 

 Functional traits of all wild bees 

m.itd CWM ITD - - - 0.27 0.27 - - - - 

m.l lecty 0.83 1.00 0.25 - 0.30 0.24 0.81 - - 

m.s Sociality 0.99 1.00 0.34 0.27 0.32 0.40 0.98 0.24  

 Functional traits of Bombus 

m.ltb Prop. long-
tongued bb 

0.40 1.00 1.00 - 0.25 - - - - 

m.itdb CWM ITD 
Bombus 

0.90 - 0.88 - - 0.24 - - 0.86 

 

Table S6  Results of the best-fitting models (generalized linear mixed models and linear mixed effect models for the case of 

CWM ITD)  explaining landscape (FB: faba bean cultivation; SNH: semi-natural habitat cover; OSR: oilseed rape cover), local 

flower cover (FC) and sampling time (run) effects on wild bee densities, wild bee species richness and functional trait 

composition of all wild bees and of bumblebees only. Estimates, Standard Error (Std.Error), lower and upper 95 % confidence 

intervals (lower CI/upper CI), z and p values are displayed. Note that for CWM ITD t-values instead of z-values are displayed. 

FB_FB+: landscapes with faba bean cultivation. run_mid.summer: second sampling run. run_late.summer: last sampling run. 

CWM ITD: community weighted means for bee size (intertegular distance). Information on BIC and BIC weights of best-fitting 

models are given in Table 1.  

Response variable Model Explanatory variable Estimate Std.Error lower CI upper CI z-value P 

Bumblebee density m.bb1 
FB_FB+ 0.47 0.13 0.22 0.72 3.67 < 0.001 

FC 0.99 0.08 0.83 1.16 11.79 < 0.001 

run_mid.summer 0.60 0.15 0.31 0.90 4.08 < 0.001 

run_late.summer -0.52 0.16 -0.83 -0.20 -3.24 < 0.001 

FB_FB+ x FC -0.35 0.12 -0.60 -0.11 -2.82 < 0.01 

Intercept 0.52 0.13 0.26 0.77 3.98 < 0.01 

m.bb1 

FB_FB+ 

FC 

run_mid.summer 

run_late.summer 

Intercept 

0.41 

0.84 

0.57 

-0.55 

0.59 

0.12 

0.06 

0.14 

0.16 

0.12 

0.17 

0.72 

0.28 

-0.85 

0.35 

0.66 

0.96 

0.85 

-0.24 

0.84 

3.32 

13.68 

3.92 

-3.50 

4.74 

< 0.001 

< 0.001 

< 0.001 

< 0.001 

< 0.001 

Non-Bombus density m.nb1 
FC 0.47 0.09 0.29 0.65 5.18 < 0.001 

Intercept -0.58 0.64 -1.83 0.67 -0.91 0.36 

Species richness of all 
wild bees 

m.spr1 
FC 

FD 

0.22 

0.13 

1.57 

0.05 

0.05 

0.16 

0.12 

0.03 

1.26 

0.32 

0.24 

1.87 

4.20 

2.55 

10.05 

< 0.001 

0.011 

Intercept < 0.001 

m.spr2 
FC 

Intercept 

0.23 

1.56 

0.06 

0.13 

0.12 

1.30 

0.34 

1.82 

4.09 

11.66 

< 0.001 

< 0.001 

CWM ITD all wild bees m.itd1 - - - - - - - 

Foraging preferences 
all wild bees 

m.l1 
FB_FB+ -0.95 0.33 -1.59 -0.31 -2.90 < 0.01 

run_mid.summer 0.24 0.32 -0.38 0.86 0.77 0.44 

run_late.summer -0.20 0.33 -0.85 0.44 -0.61 0.54 

FB_FB+ x run_mid.summer 1.68 0.46 0.78 2.58 3.66 < 0.001 
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FB_FB+ x run_late.summer 1.45 0.45 0.57 2.34 3.23 < 0.01 

Intercept 2.03 0.46 1.13 2.93 4.44 < 0.001 

Sociality all wild bees m.s1 
FB_FB+ -0.72 0.25 -1.21 -0.23 -2.90 < 0.01 

run_mid.summer 0.93 0.27 0.40 1.45 3.44 < 0.001 

run_late.summer 0.45 0.29 -0.12 1.01 1.55 0.12 

FB_FB+ x run_mid.summer 1.68 0.42 0.86 2.50 4.01 < 0.001 

FB_FB+ x run_late.summer 1.68 0.42 0.85 2.51 3.98 < 0.001 

Intercept 1.14 0.48 0.21 2.08 2.40 0.02 

m.s2 
FB_FB+ -0.63 0.25 -1.13 -0.14 -2.51 0.01 

run_mid.summer 0.93 0.27 0.40 1.45 3.44 < 0.001 

run_late.summer 0.44 0.29 -0.13 1.01 1.53 0.13 

OSR -0.19 0.10 -0.40 0.01 -1.89 0.06 

FB_FB+ x run_mid.summer 1.63 0.42 0.80 2.45 3.88 < 0.001 

FB_FB+ x run_late.summer 1.63 0.42 0.80 2.46 3.87 < 0.001 

Intercept 1.11 0.47 0.19 2.03 2.36 0.02 

m.s3 
FB_FB+ -0.70 0.26 -1.20 -0.20 -2.72 < 0.01 

run_mid.summer 1.06 0.28 0.51 1.60 3.80 < 0.001 

run_late.summer 0.60 0.30 0.02 1.19 2.02 0.04 

SNH 0.17 0.15 -0.12 0.45 1.16 0.25 

FB_FB+ x run_mid.summer 1.55 0.43 72.00 2.39 3.64 < 0.001 

FB_FB+ x run_late.summer 1.52 0.43 0.67 2.36 3.53 < 0.001 

run_mid.summer x SNH -0.52 0.20 -0.91 -0.12 -2.57 0.01 

run_late.summer x SNH -0.60 0.21 -1.00 -0.19 -2.90 < 0.01 

Intercept 1.09 0.50 0.10 2.07 2.16 0.03 

Proportion long-
tongued bumblebees 

m.ltb1 
FC -0.59 0.12 -0.83 -0.35 -4.79 < 0.001 

run_mid.summer 0.4 0.2 0.01 0.8 2.01 0.04 

run_late.summer 1.53 0.23 1.08 1.98 6.65 < 0.001 

Intercept -0.78 0.21 -1.2 -0.37 -3.73 < 0.001 

m.ltb2 
FC -0.58 0.12 -0.81 -0.34 -4.84 < 0.001 

FB_FB+ 0.38 0.21 -0.04 0.79 1.79 0.07 

run_mid.summer 0.41 0.2 0.01 0.8 2.03 0.04 

run_late.summer 1.51 0.23 1.06 1.97 6.58 < 0.001 

Intercept -0.98 0.24 -1.45 -0.52 -4.12 < 0.001 

CWM ITD Bombus m.itdb1 
FB_FB+ 0.02 0.01 0.00 0.05 1.74 0.10 

FC 0.01 0.01 0.00 0.03 1.59 0.12 

FB_FB+ x FC -0.05 0.01 -0.07 -0.02 -3.76 < 0.001 

Intercept 3.83 0.01 3.81 3.85 439.52 < 0.001 

 

Table S7  Summary of the best fitting candidate models (dBIC<2) and null models for the effects of faba bean cultivation, 

landscape metrics and honeybee densities on wild bee densities. Marginal (Rm
2) and conditional (Rc

2) R2 values are given as 

a measure of the model´s goodness of fit. n: number of observations, FB: faba bean cultivation (FB+/FB-), run: sampling run 

(early/mid/late summer), FC: local flower cover of transect area. 

Response variable model df BIC deltaBIC BIC weight Explanatory variables Rm
2 Rc

2 

Pollinator densities and species richness 

Bumblebee density 
(n=540) 

m.bb1 13 2268.60 0.00 0.76 FB + FC + run +  FB:FC 0.38 - 

m.bb0 7 2483.42 214.82 0.00 1 0.00 0.16 

m.nb1 9 1268.77 0.00 0.56 FC 0.06 0.42 
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Table S8: The relative importance of explanatory variables expressed by Σwi (sum of BIC weights) for models to explain the 

effects of of faba bean cultivation, landscape metrics and honeybee densities on wild bee densities (best fitting models are 

shown in Table S7). Model parameters having Σwi < 0.2 for all response variables are not shown. FB: faba bean cultivation 

(FB+/FB-), run: sampling run (early/mid/late summer), FC: local flower cover of transect area, OSR: percentage of oilseed 

rape, SNH: percentage of semi-natural habitats, LD: landscape diversity. 

Models Response 
variable 

FB run FC OSR SNH LD FB:FC 

m.bb Bumblebee 
density 

0.88 1.00 1.00 - - - 0.86 

m.nb Non-Bombus 
density 

- - 1.00 - - 0.26 - 

 

Table S9  Results of permutational multivariate analysis of variance (PERMANOVA), testing the effect of mass-flowering crop 

cultivation on bee community composition. To test effects of mass-flowering crop cultivation on community composition, we 

performed a PERMANOVA using the adonis function of the vegan package (Oksanen et al., 2019) with Bray-Curtis dissimilarity 

and 999 permutations. Bee communities did not differ significantly between landscapes with and without faba bean 

cultivation. Contrastingly, oilseed rape cover of the study landscapes impacted composition of bee communities. Simper 

analysis (function simper of vegan package, Bray-Curtis dissimilarities) revealed that compositional differences between 

landscapes with a high (> 8 %) and a low cover (< 8 %) of oilseed rape were mainly caused by the common species (landscapes 

were split into two groups for the purpose of simper analysis based on the mean oilseed rape cover of all study landscapes). 

Bombus terrestris, B. pascuorum and B. lapidarius together accounted for approx. 26.9 % of the total dissimilarity between 

landscapes with a high and a low oilseed rape cover. For NMDS, visualizing the effects, see Fig. S7. 

Mass-flowering crop Df Pseudo-F R2 P 

Faba bean cultivation 1 1.767 0.019 0.063 

Oilseed rape cover (%) 1 2.015 0.022 0.029 

 

Calculation of landscape diversity 

Landscape diversity was calculated as the Shannon index (Krauss et al., 2003; Steffan-Dewenter et al., 

2002) of 14 different land-use types using the vegan package (Oksanen et al., 2019). Following land-

use types were utilized: arable land, settlement, water bodies, forest, forest edges, groves, hedgerows, 

intensive grasslands, extensive/calcareous grasslands, orchard meadows, succession sites, fallows/ 

ruderal sites, sown flower strips or fields, others.  
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Abstract 

Bumblebees are important pollinators in agricultural landscapes that are facing global declines. Main 

pressures include food scarcity mainly due to the reduction of semi-natural habitats (SNH) and 

parasite-induced vulnerability. Even though intensive agricultural landscapes are poor habitats for 

bumblebees, the cultivation of mass-flowering crops (MFC) can provide a high amount of floral 

resources and therefore can promote pollinators. In contrary to SNH, which provide a high diversity of 

floral resources, MFC provide only monofloral, short-term and unbalanced resources for bees. We 

explored the direct and indirect effects of landscape composition (proportions of MFC, SNH, urban 

areas), landscape diversity, diversity of pollen diets and wax moth depredation on the growth and 

reproductive success of bumblebee colonies. We placed 44 experimental Bombus terrestris L. colonies 

in 22 agricultural landscapes. The study landscapes represented gradients of the cover of SNH, urban 

areas and oilseed rape (OSR) and differed in the availability of the mid-season flowering MFC faba bean 

(Vicia faba L.). We recorded colony growth and reproductive success of the bumblebee colonies, 

diversity of collected pollen types and depredation by the specialized wax moth Aphomia sociella L.. 

We found no effects of landscape composition or landscape diversity on the diversity of pollen 

collected by the bees. However, we found a positive effect of landscape diversity on the reproductive 

success of bumblebees. Moreover, pollen diversity and the availability of faba bean interacted and 

resulted in higher numbers of young queens in landscapes without faba bean. In addition, colonies 

that collected a higher pollen diversity had a reduced A. sociella depredation. Increased parasitism had 

a cascading negative effect on the reproductive success of bumblebees by limiting colony growth.  Our 

study showed that high landscape diversity and diverse pollen diets can enhance the reproductive 

success of bumblebees. A diverse diet even mitigated depredation by wax moths. To sustain vital 

bumblebee populations and their pollination services, diverse and floral rich habitat types should be 

conserved or restored in agricultural landscapes. 

 

Keywords  

bee decline, pollen diet, mass-flowering crops, colony performance, landscape composition, semi-

natural habitats 

 

Introduction 

Bumblebees are one of the most abundant native pollinators in the temperate regions of the northern 

hemisphere (Goulson 2010). Not only in terms of their ecological service in maintaining plant 

communities and thereby ecosystems, but also in the context of food security and their role in crop 

pollination, they are a critically important functional group (Corbet et al. 1991, Delaplane and Mayer 
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2000). However, bumblebees are facing declining species richness and abundance all over the world 

with potentially detrimental effects on the ecosystem services they provide (Williams and Osborne 

2009, Cameron et al. 2011, Nieto et al. 2014). The main drivers of this declines are a lack of suitable 

food and nesting sources through the loss of natural habitats (Biesmeijer et al. 2006, Carvell et al.2006), 

changes in habitat quality due to climate change (Rasmont et al. 2015), exposure to pesticides (Banks 

et al. 2020, Baron et al. 2017), novel introduced parasites (Schmid-Hempel et al. 2014), or 

combinations of several of stressors (Goulson et al. 2015, Schweiger et al. 2010). Therefore, studies to 

understand the combined pressures on bumblebees are urgently needed, especially in agricultural 

landscapes where most pressures accumulate and which cover most land surface of the EU (39.1% in 

2018; Eurostat 2021). 

Bumblebee diets are composed exclusively of floral resources and need, in comparison to other wild 

bee species, a relatively high amount of pollen for successful colony development (Rotheray et al. 

2017). Hence, they need access to pollen and nectar during their whole colony development phase, 

usually from early spring to late summer (Alford 1975, Westrich 2018). Protein rich pollen is required 

by the developing larvae, freshly emerged workers and the queen, while nectar is the main source of 

carbohydrates and used for individual energy supply but also nest provisioning (Bohart and Nye 1956, 

Goulson 2010). Usually, most common bumblebee species are generalists and able to collect their 

floral resources from a wide range of different plant taxa (Kirk and Howes 2012, Leidenfrost et al. 

2020). However, for pollen collection they are generally more selective aiming for high-quality pollen 

(Leonhardt and Blüthgen 2012, Ruedenauer et al. 2016). The nutritive and chemical properties of 

pollen can considerably influence the colonies’ growth and reproductive success (Eckhardt et al. 2014, 

Génissel et al. 2002, Moerman et al. 2017, Tasei and Aupinel 2008). A high pollen diversity can enhance 

colony growth of bumblebees (Hass et al. 2018, Kämper et al. 2016), probably because foragers 

optimize the nutritional composition of the diets (Ruedenauer et al. 2016). Therefore, the analysis of 

bumblebees’ pollen diets can give important insight into crucial food resources for conservation 

management recommendations (Kämper et al. 2016, Bertrand et al. 2019). 

However, the amount and diversity of floral resources may strongly depend on the availability of 

different habitats at the landscape-scale. Semi-natural habitats (SNH) do not only enhance pollinator 

abundance and diversity (Kremen et al. 2002), but may also promote colony growth and reproductive 

success of wild bees through the provision of a continuous and diverse floral resource supply as well 

as nesting sites (Carvell et al. 2017, Williams et al. 2012). High covers of SNH can also help to reduce 

the energy investment for pollen collection of bumblebees and may explain the observed 

enhancement in queen production (Crone and Williams 2016, Requier et al. 2020). Likewise, villages 

embedded in agricultural landscapes can provide important floral resources that can be exploited by 

bumblebees (Udy et al. 2020). However, the cascading effects of landscape-scale habitat availability 
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on colony growth and reproductive success of bumblebees mediated by pollen diversity remain poorly 

understood. 

Agricultural intensification led to a substantial reduction of semi-natural habitats – one of the reasons 

why it is considered the major driver for pollinator losses (Williams and Osborne 2009). With respect 

to floral resources, intensively farmed areas often lack diverse and sufficient food supply for pollinators 

(Carvell et al. 2006). However, this undersupply can be mitigated through flowering monocultures, so 

called mass-flowering crops (MFC) such as oilseed rape or faba bean. MFC can enhance bumblebee 

colony performance as they provide short-term pulse of floral resources (Westphal et al. 2003, 2009). 

Bumblebees were shown to be highly attracted by large resource patches, such as MFC fields 

(Westphal et al. 2006b), but rely on alternative foraging resources after mass-blooming to guarantee 

continuous pollen availability (Proesmans et al. 2019). The timing of the mass-blooming event in 

relation to the seasonal colony cycle seems to be of major importance to predict the diverging 

influence of MFC on the colony performance (Hemberger et al. 2020, Hovestadt et al. 2019, Westphal 

et al. 2009). Early-flowering MFC have only been shown to influence the number of produced workers, 

but not the reproductive success (Westphal et al. 2009, Williams et al. 2012), while late-flowering crops 

could directly be linked to reproductive success (Rundlöf et al. 2014).  

In comparison to the early flowering MFC oilseed rape (Brassica napus L.), the effects of other MFC are 

much less studied. Legumes like faba beans (Vicia faba L.) can fix nitrogen allowing for a reduction of 

fertilizer input and are therefore politically promoted by the Common Agricultural Policy (CAP) 

(European Commission 2017). Legumes are known to efficiently increase the abundance and diversity 

of bees, especially bumblebees (Carvell et al. 2007), and V. faba fields were shown to have a positive 

effect on the density of bumblebees at the landscape-scale (Beyer et al. 2020). Besides nectar and 

pollen, V. faba provides extrafloral nectaries that provide an additional feeding source for pollinators 

(Veloso et al. 2016). Since V. faba fields provide a massive resource surplus during mid-season when 

other resources are scarce and bumblebees already invest in sexual reproductives (Hovestadt et al. 

2019), they could have an essential impact on the population growth of bumblebees.  

Besides resource limitations, parasites can severely impact bumblebee colonies (Carvell et al. 2008, 

Schmid-Hempel et al. 2014), regarding a reduction of colony growth and reproductive success (Brown 

et al. 2003). One specialized parasite is the wax moth Aphomia sociella L. (Lepidoptera: Pyralidae), also 

known as bumblebee moth, which can severely damage a bumblebee nest. The geographical origin of 

the Lepidoptera is not clear but it is widely distributed in Europe (Pouvreau 1967). Fertilized females 

can lay batches of eggs (between 50 and 500 eggs) in the bumblebees’ nests. There, the larvae hatch 

after some hours or days, infiltrate the nests and feed on the comb, and consume bee larvae and 

pupae. The polyphagous larvae are able to destroy a whole bumblebee colony in only a few weeks 

(Alford 1975, Goulson 2010). They spin silken tunnels that probably protect them from the 



Chapter 3 

92 
 

bumblebees. Infestation rates up to 80% were found in B. terrestris colonies in gardens in Southern 

England (Goulson 2010). In comparison, lower infestation of 20% (Goulson et al. 2002), 26% (Goulson 

et al. 2017) and 36% (Gervais et al. 2020) were detected in nests located in agricultural landscapes. So 

far, little is known about the effects of landscape composition on the depredation by wax moths and 

how these drivers interact and affect the colony development of bumblebees. A recent study could 

not find a relation between certain land-use types and infestation (Gervais et al. 2020).  

In our study, we placed commercial Bombus terrestris colonies in agricultural landscapes with and 

without mid-season flowering MFC faba bean fields (Vicia faba L.) along land cover gradients of oilseed 

rape (OSR), SNH and of urban areas. In a landscape-scale experiment, we investigated direct and 

indirect effects of landscape composition (availability of V. faba, cover of OSR, urban area and SNH) 

and landscape diversity on the growth and reproductive success of the bumblebee colonies. We also 

included two main drivers of bee declines, i.e. the bees’ diet and parasite infestation (Goulson et al. 

2015) and the interaction of both in our analysis to test relationships between landscape, pollen 

diversity, depredation by the parasite A. sociella and the performance of Bombus terrestris L. colonies.  

We expected that (1) the extended provision of floral resources provided by the mid-season MFC V. 

faba, flowering after OSR enhances colony performance (colony growth and reproductive success) due 

to enhanced resource continuity. Moreover, we hypothesized that (2) increasing cover of SNH and 

urban area providing diverse and continuous floral resources to have a positive impact on the colony 

performance of bumblebees. We also hypothesised that (3) higher landscape diversity, providing 

higher floral diversity, benefits colony performance. Furthermore, we expected (4) landscape metrics 

to impact the colonies’ parasite infestation due to a higher susceptibility to depredation under 

resource-poor conditions (e.g. low SNH cover) and (5) a negative impact of the parasitic wax moth A. 

sociella on colony performance. 

Material and Methods 

Study landscapes  

The study was carried out in 22 study landscapes (11 landscape pairs) in Central Germany (Fig. 1) and 

included agricultural fields of collaborating conventional farmers. The study landscapes were located 

in Lower Saxony (17), Hesse (3), Saxony-Anhalt (1) and Thuringia (1) and covered an area of 1km x 1km 

each, i.e. the foragers could exploit resources within the entire landscapes considering a mean foraging 

range of 551m (Redhead et al. 2016). All study landscapes had a minimum distance of 3 km to each 

other in order to avoid overlapping foraging ranges of bumblebees from different landscapes 

(Westphal et al. 2006a). We selected eleven landscapes pairs using ATKIS land cover data (Federal 

Agency for Cartography and Geodesy, 2018). All study landscapes comprised at least one OSR field 

along a cover gradient (Table 1). Only one study landscape of each pair included at least one faba bean 

field (FB+), while the other study landscape did not include any grain legumes (FB-). In addition to MFC, 
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our study landscapes comprised land cover gradients of flower-rich habitats, i.e. urban areas and semi-

natural habitats (Table 1). Study landscapes of a pair had a similar landscape composition regarding 

major land use categories (i.e. agricultural production area, forest, groves, grassland, 

settlement/traffic infrastructure, water bodies, heathland/moorland/swamp, remaining vegetation). 

Similarity was assessed based on Euclidian distances (Beyer et al. 2020). 

 

Figure 1  Map of the study landscapes located in central Germany. The landscape pairs that were located close to each other 

comprised either only B. napus (FB-) or both mass-flowering crops, B. napus and V. faba (FB+). 

 

During the field season, the study landscapes were mapped and all land cover types with a minimum 

size of 10m² were recorded (Fig. A.1). The percentage of flower-rich land cover types (i.e. cover of OSR, 

urban area or SNH) within a study landscape was calculated using QGIS version 3.10 (QGIS 

Development Team 2019) (Table 1). SNH included flower-rich habitats with extensive land use that 

provide nesting and foraging habitats for bumblebees (Holland et al. 2017) (for details see Table A.1). 

Urban area consisted mainly of settlements that provide floral resources for bees in private gardens 

and parks. Moreover, landscape diversity (i.e. Shannon index) of twelve land-use types that present 

potential nesting or foraging habitats for bees was calculated for each study landscape (see Appendix 

for further information). 
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Table 1  Mean, standard deviation (SD), minimum (Min) and maximum (Max) of all explanatory and response variables used 

in the structural equation model (SEM) with distances of the landscape metrics FB, OSR, urban area and SNH to the 

bumblebee colonies. FB+: landscape with faba beans; FB-: landscape without faba bean cultivation.  

variable measure mean SD min max 

landscape composition      

  availability of V. faba (FB) factor FB+ / FB-     

 distance to bumblebee 
colonies [m] 

100.37 159.58 14.13 579.19 

  oilseed rape (OSR) landscape cover [%] 13.77 9.96 1.86 37.08 

 distance to bumblebee 
colonies [m] 

186.61 156.64 10.1 575.8 

  urban area landscape cover [%] 8.39 10.35 1.28 37.54 

 distance to bumblebee 
colonies [m] 

103.65 110.01 0.00 347.15 

  semi-natural habitats (SNH) landscape cover [%] 4.98 3.42 0.82 12.42 

 distance to bumblebee 
colonies [m] 

35.55 63.09 0.00 205.14 

landscape diversity Shannon diversity index 
of the study landscapes 
of 12 different land-use 
types 

0.82 0.33 0.31 1.46 

pollen diversity Shannon diversity index 
of the study landscapes 
of 55 pollen types 
collected by bumblebee 
workers 

1.73 0.28 1.04 2.18 

weight of wax moth larvae weight [g] 89.76 122.39 0 408 

number of brood cells counted number 724.12 268.29 137 1412 

number of young queens counted number 9.47 12.75 0 43 

 

Bumblebee colonies 

44 colonies of the buff-tailed bumblebee (B. terrestris) were purchased from STB control (Aarbergen, 

Germany) and two colonies were placed next to each other in the centre of each squared 1km² study 

landscape in grassy field margins or margins of hedgerows on 3 and 4 May 2018. As bumblebees forage 

within a mean foraging range of 551m (Redhead et al. 2016), we expected that the workers were able 

to exploit all rewarding floral resources within our study landscapes despite variations in the distances 

to the faba bean and OSR fields as well as to SNH and urban areas (Table 1). 

At the start of the field experiment, all colonies had the same age (4-5 weeks) and a mean weight of 

616.8 ± 63.5 (SD) g (including the plastic box). The bumblebees were housed in ventilated plastic boxes 

with adjustable valves within cardboard boxes (Fig. A.2). In order to keep the colonies protected and 

dry, they were placed on stones and covered with water-resistant wooden roofs. Where applicable, 

the artificial nests were placed next to shrubs or hedges as they naturally nest in previous burrows of 

rodents or other belowground cavities in shady places (Alford 1975, Goulson 2010). Multiple factors 

determine the nutritional needs of bumblebee colonies that cannot be standardised within a 

landscape-scale experiment (Carnell et al. 2020). To minimize potential confounding effects due to 
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variability between the colonies, we standardized the origin, age and size of the colonies and placed 

them in one location to have the same abiotic and biotic conditions for both colonies per landscape. 

Pollen resources collected by the workers 

During sampling round 1-3 we caught ten bumblebee workers returning to the two neighbouring hives 

within a study landscape with an insect net (following Bertrand et al. 2019, Hass et al. 2018) and 

transferred them into honeybee queen marking tubes. The corbicular pollen pellets were removed 

from their hind tibia using spring steel tweezers. After this procedure, bumblebees were released 

again. We froze pollen samples until further examination. Pollen samples were taken when either 

oilseed rape (round 1) or V. faba (round 2, partly round 3) was in its mass-flowering stage. In the lab, 

we mixed pellets of the ten workers per round and landscape in an Eppendorf tube filled with 4ml of 

a 70% ethanol. Pollen type identification of the homogeneously mixed pollen solutions per round and 

landscape was conducted by Melissopal – Pollenanalytik (Hammoor, Germany). The first 500 pollen 

grains of three subsamples of each pollen mixture (overall 4500 pollen grains per landscape) were 

identified using a light microscope and following the guidelines of pollen identification in honey 

samples (Dustmann 2006). Identified pollen types indicate the lowest taxonomic level that could be 

assigned to the sampled pollen grains. Hence, pollen types represent different plant taxonomic levels 

(family, genus, species) or groups which may contain several plant species as it was not always possible 

to determine the pollen grains to species level or distinguish between species with very similar pollen 

morphology (Beug 2015). For example, the Brassica type contains B. napus and Sinapis spec. To 

minimize potential effects of pollen that has not been actively collected by the bees, pollen types had 

to be counted at least five times in a sample to be included in our further analysis (Hass et al. 2018). 

For each identified pollen type, mean grain number of the three pollen samples was calculated for 

each round and landscape. Pollen diversity was calculated as Shannon index of the pooled pollen grain 

counting over the three sampling rounds within each landscape. In addition, we assigned pollen types 

with the highest counted number (pollen types that were recorded with more than 500 pollen grains 

across all landscapes and all sampling rounds) and also the most frequently collected ones (collected 

in more than 30% of our landscapes) either herbaceous or woody character.  

Colony growth, reproductive success and parasite infestation 

In the following, we recorded the development of the colonies (including the plastic box) four times. 

After 1.5 weeks, 3.5 weeks, 5 weeks and 6.5 weeks, corresponding to sampling round 1-4 (Table A.2), 

the colonies were visited, the plastic boxes housing the colonies were taken out of the cardboard box 

and weighed. The colonies were sampled in the same order to have comparable intervals between 

sampling round. However, due to long travelling times and bad weather conditions the time of the day 

and also time intervals varied. To include most of the foraging workers, the flight hole was closed and 

the valve that allowed the bees only to enter but not to leave the box was opened for 30 to 40 minutes. 
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The field experiment was terminated after 7.5 weeks, between 22 June and 25 June 2018, when the 

colonies were weighed for the last time. At this time, with approximately three months, colonies 

started to produce reproductives. Thereafter, the colonies were killed and preserved in a freezer at -

20°C for further examination. During examination, the number of workers, queens, males, brood cells, 

pollen and nectar pots were counted and weighed. Since the number of workers and males correlated 

with the number of young queens, we only included the number of young queens as measure of 

successful reproduction in the analysis. As measure of parasite infestation, the weight of the wax moth 

larvae A. sociella was recorded. Due to a high infestation by A. sociella larvae with a maximum larvae 

weight of up to 408g which accounted for more than 50% of the colony’s weight, we decided not to 

include this measure in our analysis as colony weight was expected to be correlated with the weight 

of the wax moth larvae. Instead, we used the number of brood cells at the end of the experiment as a 

measure of colony growth. 

In our study, reproductive success refers only to the number of produced young queens as they are 

the founders of new colonies after hibernation in the following year and hence the main factor for 

reproductive fitness of bumblebee colonies (Alford 1975). As rearing young queens is energetically 

most demanding – for the development of young queens the food requirement is three times higher 

than to produce males (Williams et al. 2012) - only proper developing colonies with sufficient food 

resources in the landscape usually produce first males and then young queens (Duchateau and Velthuis 

1988, Pelletier and McNeil 2003).  

Statistical analysis 

All statistical analyses were performed using R version 3.6.3 (R Core Team 2020). When colony data 

were missing due to destruction, we excluded these colonies from the analysis (concerning two 

colonies). When both neighbouring colonies in a landscape were destroyed, we excluded the entire 

landscape pair. This was the case for two pairs (concerning additional eight colonies). Finally, this led 

to an exclusion of ten colonies and statistical analyses of 34 colonies in 18 different study landscapes 

(Schweiger et al. 2021). Piecewise SEM (package piecewiseSEM, Lefcheck 2016) was used to analyse 

the effects of pollen diversity and wax moth infestation on colony growth (number of brood cells) and 

reproductive success (number of young queens), as well as the effects of landscape metrics such as 

landscape composition (availability of V. faba, cover of SNH, OSR and urban area) and landscape 

diversity on colony performance (Table 1, Table A.4). These models allow to take also potential indirect 

effects (e.g. the effect of the landscape on reproductive success via the pollen diversity collected by 

the workers) into account. The theoretical SEM (Fig. 2a) shows all potential relationships tested in our 

global models (Table A.4). Following the d-rule (the total number of samples to the number of variables 

(d) should not fall below five) (Grace et al. 2015) the models were examined in pre-analyses with linear 

mixed effects models (package nmle, Pinheiro et al. 2020) with landscape pairs as random effect. As 
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our study design targets the influence of V. faba availability (FB+/FB-), all possible two-way interactions 

with other landscape metrics and pollen diversity were included in the pre-analysis. Furthermore, the 

two-way interactions between pollen diversity and landscape metrics as well as between pollen 

diversity and wax moth infestation were included in the global models (Table A.4). Differences 

between the amount of collected Vicia faba pollen between landscapes with and without faba bean 

cultivation (FB+/FB-) were tested using Kruskal-Wallis test. Number of queens and weight of A. sociella 

were log-transformed to achieve normality. Continuous explanatory variables were scaled to a mean 

of zero and a standard deviation of one to improve convergence of the models using the scale function 

(R Core Team 2020). The variance inflation factor (VIF) was calculated to test for potential 

multicollinearity between explanatory variables and showed a low correlation (VIF < 3) in all cases 

(Zuur et al. 2010) The best-fitting models (Table 2) were chosen using the dredge function (package 

MuMIn, Barton 2019) which performs an automated model selection with subsets of the supplied 

global models. We selected the respective best models ranked according to second order Akaike 

Information Criterion (AICc). This process resulted in the simplified SEM (Fig. 2b).  

 

Table 2  Significant models resulting from the model selection step and kept in the simplified structural equation model. (a) 

Model explaining the effect of wax moth larvae weight on number of brood cells. (b) Model explaining the effect of number 

of brood cells, pollen type richness, faba bean cultivation (FB+: landscape with faba beans; FB-: landscape without faba beans) 

and their two-way interactions on number of young queens. (c) Model explaining the effect of semi-natural habitat cover on 

weight of wax moth larvae. Estimates, lower and upper 95 % confidence intervals (CI) and p-values are presented. 

 Estimate Lower 95% CI Upper 95% CI p-value 

(a) Model 1: Response number of brood cells    
Intercept 0.00 -0.37 0.37 0.983 

weight of wax moth larvae -0.50 -0.84 -0.15 0.008 

(b) Model 2: Response number of young queens   
Intercept 1.42 0.99 1.86 0.000 

number of brood cells 0.43 0.10 0.75 0.013 

pollen diversity 0.90 0.35 1.45 0.008 

FB+ / FB-  0.02 -0.75 0.80 0.938 

pollen diversity: FB+/FB- -1.33 -2.13 -0.53 0.008 

landscape diversity 0.52 0.13 0.91 0.018 

     
(c) Model 3: Response weight of wax moth larvae    
Intercept -0.01 -0.43 0.40 0.942 

pollen diversity -0.55 -0.97 -0.12 0.019 

semi-natural habitat (SNH) -0.33 -0.72 0.06 0.088 
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Figure 2  Structural equation models showing the relationships between landscape metrics (availability of V. faba, cover of 

oilseed rape, urban area and semi-natural habitats and landscape diversity), diversity of pollen types collected by bumblebee 

workers, depredation of bumblebee colonies by parasitic wax moth larvae, colony growth (number of brood cells) and colony 

reproductive success (number of young queens). (a) Theoretical SEM showing potential interaction pathways by the 

explanatory variables. For simplification, we show only one arrow for all landscape metrics (all metrics as one box) pointing 

to colony parameters, wax moth infestation and pollen diversity each, instead of one arrow for each of the five landscape 

metrics. The same accounts for all interactions (faba bean availability (FB+/FB-) with the remaining landscape metrics and for 

pollen diversity with depredation as well as for pollen diversity and landscape metrics). All global models are shown in Table 

A.4. (b) Final SEM including all pathways after model simplification based on lowest AICc. Numbers next to arrows show 

standardized regression coefficients. 
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Results 

Pollen resources 

In total, we identified 55 pollen types in our pollen samples over all three sampling rounds which could 

be assigned to 32 different plant families (Table A.3). We found 27 herbaceous forbs and 26 woody 

plant taxa as well as graminoid Poaceae and Smilax (prickly ivy) a plant genus containing both woody 

and herbaceous species. Within the three sampling rounds the overall amount of woody pollen grains 

was higher (66.5%) than the amount from herbaceous plants (31.6%) (Fig. A.3a). This also accounted 

for the most frequently collected pollen (Fig. A.3b). 

Across all study landscapes, the most abundant pollen types (> 500 pollen grains across all samples) 

were Tilia accounting for 24.14%, Pyrus type (17.29 %), Rubus type (9.93%), Ranunculus acris (8.35 %), 

Brassica type (6.64%), Robinia pseudoacacia (5.52 %), Hydrangea (5.20 %), V. faba (3.65 %), Phacelia 

(2.43 %), Prunus type (2.00 %) and Poaceae (1.92%) (Fig. A.3a). Surprisingly, the collected amount of 

V. faba pollen in FB+ landscapes with 2.29% (620 ± 149 pollen grains) was relatively low and there was 

no significant difference found between FB+ and FB- landscapes in the amount of collected faba bean 

pollen (Kruskal-Wallis, p=0.150).   

Colony development and depredation by the wax moth A. sociella  

All analysed B. terrestris colonies gained weight during the experimental period of 7.5 weeks. Of the 

mean final colony weight (444.1 ± 186.5g) (mean ± SD), brood cells accounted for 53.2% (236.4 ± 

118.3g) and pots filled with pollen and nectar for 14.1% (62.4 ± 61.5g), followed by 1.9% (8.4 ± 7.1g) 

weight of males, 1.8% (8.1 ± 12.3 g) weight of young queens and 1.7% (7.4 ± 6.2 g) weight of workers. 

All colonies produced sexual reproductives, either males and young queens (n=27), or only males (n=7). 

The maximum number of young queens produced in a colony was 43. Half of the colonies (17 of 34 

colonies) were infested by the larvae of the wax moth (89.8 ± 122.4 g). Though, 14 of the infested 

colonies still produced young queens.  

Direct and indirect effects of landscape composition and landscape diversity on 

colony growth and reproductive success 

The best fitting SEM (Fisher’s C= 15.74, p=0.47) showed no independence claims, suggesting that no 

significantly important path was missing by our variables in the SEM. Neither the cover of flower-rich 

land-use types, nor landscape diversity influenced the diversity of collected pollen, with the null model 

showing the lowest AICc. Nevertheless, landscape diversity had a positive effect on the number of 

young queens (p=0.018) (Fig. 3a, Table 2). Moreover, faba bean cultivation was found to modulate the 

effect of pollen diversity on the number of young queens (p= 0.008) (Fig. 3b). Higher pollen diversity 

resulted in a higher number of young queens (p=0.008) but this effect was only present in landscapes 

without faba beans (p=0.008). We found a negative correlation of pollen diversity and depredation 

(p=0.019) (Fig. 3c). Bumblebee colonies that collected higher pollen diversity were less infested by the 
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parasite A. sociella. SNH cover also negatively influenced depredation, however this effect was not 

significant (p=0.088). In addition, wax moth depredation was found to have an indirect negative effect 

on the number of young queens (Fig. 3d, 3e). The number of brood cells was negatively affected by a 

higher infestation by A. sociella (p=0.008) (Fig. 3d), and the number of young queens increased with 

the number of brood cells (p=0.013) (Fig. 3e).  

 

 

Figure 3  Effects of the (a) landscape diversity on the number of young queens, (b) pollen diversity on the number of young 

queens for landscapes with faba bean cultivation (FB+) and without (FB-), (c) pollen diversity on the weight of wax moth 

larvae, (d) weight of wax moth larvae on the number of brood cells and (e) number of brood cells on the number of young 

queens. Please note: In (d) x-axis and in (a), (b), (c) and (e) y-axes are on log-scale. 
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Discussion 

Our study gives important insights into different drivers of bumblebee colony growth and reproduction 

in agricultural landscapes. We identified woody plants as important pollen sources for bumblebees. 

We found that pollen diversity was not affected by any of the metrics characterising the composition 

or diversity of agricultural landscapes with potential foraging habitats for bumblebees. Nevertheless, 

we demonstrated that landscape and pollen diversity are important predictors for queen production 

and therefore reproductive success. Moreover, we demonstrated that wax moth depredation had a 

harmful effect on reproductive success through their negative impact on colony growth but that 

infestation was mitigated by a higher diversity of collected pollen.  

Pollen from woody plants is more frequently collected than pollen from MFC 

The high amount of woody pollen across our different landscapes which considerably contributed to 

pollen diversity led us to the assumption that these plant taxa play a major role for the sufficient food 

provision and therefore also for reproductive success of bumblebees. These findings are in accordance 

with other studies who found B. terrestris collecting mainly woody pollen (Bailey et al. 2014, Kämper 

et al. 2016, Bertrand et al. 2019). Therefore, semi-natural and urban habitats that can offer pollen 

resources from woody plants might be crucial for bumblebees. 

Even though both MFC are regularly visited plants by bumblebees (Kirk and Howes 2012), they played 

only subordinate role as pollen resources in our landscapes. In comparison with pollen from woody 

plants, lower amounts of MFC pollen types were collected in a smaller fraction of study landscapes. As 

it was pointed out by Kämper et al. (2016), OSR might be rather visited by B. terrestris for nectar than 

for pollen. Our findings suggest that this might also account for V. faba. Short-tongued bumblebees 

such as B. terrestris are morphologically not adapted to the long corolla tubes of V. faba (Bond & 

Poulsen 1983). Therefore, they usually bite little holes through the corolla close to the base of the 

flowers to obtain the nectar through the back rather than the front of the flower. As they might not 

legitimately pollinate the flower through this act, they are considered as nectar “robbers” (Bond & 

Poulsen 1983, Garratt et al. 2014, Marzinzig et al. 2018). Nevertheless, results might be different for 

long-tongued bumblebees, which are morphologically adapted to forage on flowers with very long 

corollas and mainly conduct regular visits on faba beans (Marzinzig et al. 2018, Beyer et al. 2020).  

Pollen diversity is not affected by landscape metrics 

In contrast to our expectations, we found that landscape metrics do not influence the diversity of the 

pollen collected by B. terrestris workers. Neither cover of flower-rich and diverse land-use types such 

as SNH or urban area contributed to pollen diversity, nor did landscape diversity. Therefore, a more 

precise characterization of the landscape, for example finer habitat classes or the separation of woody 

and herbaceous semi-natural elements (Eckerter et al. 2020) might be needed to detect potential links 

between landscape and pollen diversity. We did not find correlations between landscape and pollen 
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on landscape-scale but we might have missed effects on local scale between pollen and plant diversity 

as this relationship was already shown by Matthias et al. (2015). The flowering period of single plant 

species is limited to a certain period and therefore bumblebees rely on a sequence of resource plants 

during their flight season (Bertrand et al. 2019). One land-use type might offer sufficient resources only 

at a certain time but resource continuity is needed to sustain insects and their services in agricultural 

landscapes (Schellhorn et al. 2015).  

Landscape and pollen diversity influence reproductive success of bumblebees 

Against our expectations, the number of young queens was not affected by the landscape cover of 

SNH, OSR and of urban area. This is in accordance with other studies which also found no direct effect 

of SNH and oilseed rape (Hass et al. 2018) or urban area cover on bumblebees (Vaidya et al. 2018). 

Even though, contradictory findings with higher bumblebee reproductive success in urban areas 

compared to agricultural landscapes were shown by Samuelson et al. (2018).  

Though, reproductive success of B. terrestris was related to landscape diversity, indicating that not the 

habitat quantity but quality with regard to floral resource diversity seems to be of major importance 

for the reproductive success of bumblebees (Carvell et al. 2017). Diverse landscapes can provide a 

higher diversity of floral resources and therefore a more diverse food supply at different times of the 

season for bumblebees (Bertrand et al. 2019). Nevertheless, as we found no direct link between 

landscape and pollen diversity, we assume that bumblebees might also benefit from other advantages 

provided by a diverse landscape structure such as nectar supply. 

There are other studies that already showed the importance of diverse habitats in providing a steady 

food supply for pollinators, indicating their benefit on the reproductive success of bumblebee colonies. 

Since diverse SNH provide a steady food supply, our study as others (e.g. Alford 1975, Williams et 

al.2012) indicate that it has beneficial influence on the colonies’ reproductive success. 

Colonies that collected and provisioned their larvae with a higher diversity of pollen types as protein 

source produced more queens. This is in accordance with previous findings of laboratory studies which 

showed a positive influence of diverse pollen diets on larval performance (Eckardt et al. 2014, Tasei 

and Aupinel 2008). Higher pollen diversity presumably increases the nutritional value of the 

bumblebees’ diets and thus represents a prerequisite to fulfil their nutritional requirements (Eckardt 

et al. 2014) as pollen from different taxa vary in their micro-nutritional components (Roulston and 

Cane 2000). Therefore, it is likely that the nutritional composition expressed by the collected pollen 

diversity drives the enhanced reproductive success (Moerman et al. 2017). Additionally, a higher pollen 

diversity collected throughout the season as in our experiment might indicate the continuous 

availability of different floral resources with different times of flowering peaks in the year, which might 

be essential for queen production (Alford 1975). Previous field studies already found a positive effect 

of a diverse pollen diet on the colony weight gain of bumblebees (Hass et al. 2018, Kämper et al. 2016) 
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and assumed that this would translate into higher reproductive success as larger colonies are thought 

to produce more queens (Pelletier and McNeil 2003, Vaidya et al. 2018).  

The observed interacting effects between pollen diversity and faba bean cultivation on reproductive 

success were unexpected. Increasing pollen diversity only had a positive effect on queen production 

in landscapes without V. faba cultivation. One plausible explanation for the contrary effect of pollen 

diversity in the landscape pairs is deduced from modelling results showing that mass-flowering events 

at different times can result in different colony dynamics (Hovestadt et al. 2019). It was predicted that 

early MFC result in an energetic overinvestment in workers that weakens the worker efficiency and 

finally results in a limited reproductive success. Although these predictions were made for early 

flowering MFC. Similar mechanisms might be responsible for the negative effect of the mid-season 

MFC V. faba when high pollen diversity was collected. The energetic overinvestment might mainly be 

driven by nectar and not pollen resources since MFC pollen grains were not recorded in all study 

landscapes (Table A.3). Besides, the lower number of queens in landscapes with V. faba cultivation was 

mainly due to two colonies in one landscape. Therefore, more data is needed to confirm this result 

and to understand the potential additive effects of such mass-flowering events in connection with 

other, temporally available plant sources in the landscape. 

Keeping in mind that more than one nutrient can simultaneously influence reproductive success 

(Sperfeld et al. 2012), further information about the chemical composition (e.g. lipid content, 

Ruedenauer et al. 2020) complementarity of the collected pollen and their nutrients is needed to 

detect the nutritional differences of pollen diets in landscapes with and without V. faba cultivation 

(Ruedenauer et al. 2016, Leonhardt and Blüthgen 2012). 

Depredation is not affected by landscape metrics but pollen diversity 

Bumblebee colonies are exposed to a high diversity of predators and parasites in nature but relations 

between infestation susceptibility and landscape context remains not entirely understood (Goulson et 

al. 2018). Higher infestation rates in urban areas than rural ones have been reported for B. terrestris 

by Goulson et al. (2002 and 2012) probably due to higher bumblebee colony densities in this land-use 

type (Goulson et al. 2002). In our study, we found no significant effect of urban area cover on 

depredation. As we do not know how dense natural bumblebee colonies occurred in the surrounding 

we cannot make a statement about this. No other landscape metrics had an influence on the 

infestation by A. sociella. Only SNH cover showed a non-significant tendency to decrease depredation. 

A plausible explanation is that natural enemies of A. sociella benefit from increasing amounts of SNH 

(Holland et al. 2017), leading to the observed negative trend of infestation rate with higher amount of 

SNH in the landscape. As depredation was lower in colonies which collected a higher diversity of pollen, 

we can emphasize the relationship between a diverse food supply and bumblebees’ health. Other 

studies already showed a connection between the content of bees’ food and reduced susceptibility to 
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pathogens or parasites of bumblebees (Manson et al. 2010, Spear et al. 2016). Our findings thus 

emphasize the importance of heterogeneous landscapes, providing a diverse diet in mitigating the 

negative effect of parasitism on bumblebee colonies. Multiple interacting stressors, such as parasitism 

and unbalanced diets in simplified agricultural landscapes might in contrast severely threaten 

pollinator survival (Vanbergen et al. 2013). 

Cascading negative effect of A. sociella on bumblebees´ reproductive success 

In our study, the number of queens increased with colony growth (number of brood cells) which is in 

accordance with other studies (Pelletier and McNeil 2003, Vaidya et al. 2018). When a bumblebee 

colony reaches a sufficient size, they usually switch to the rearing of sexuals (males and young queens) 

and generally no more workers are reared (Goulson 2010). As we determined our experiment at the 

end of the bees’ life cycles when already sexuals were produced, the number of queens correlated 

with the brood cell number, as expected. As the parasite A. sociella diminished colony growth (number 

of broodcells), we can infer a cascading negative effect of the parasite on the reproductive success of 

B. terrestris. Nevertheless, the insertion of the switching point itself, from producing workers to the 

production of sexual reproductives (males and young queens), did not seem to be influenced, because 

all infested colonies produced males and 79% of them produced queens. 

Conclusions 

We found different drivers of bumblebee colony growth and queen production in agricultural 

landscapes. Our study demonstrates that the surrounding landscape and pollen diversity collected by 

B. terrestris colonies directly affected their reproductive success. However, we found no clear links 

between the landscape metrics and collected pollen diversity indicating that various habitat types have 

the potential to offer diverse floral resources and habitat quality is more important than habitat 

quantity. These findings underline the importance of preserving a high amount of different plant taxa 

and habitat types in our agricultural landscapes to guarantee a balanced intake of essential nutrients 

through complementary feeding (Requier et al. 2020). Considering that individual bumblebee species 

differ in their response to the availability of plant taxa (Fussell and Corbet 1992), it is even more 

important to conserve flower diverse habitats to preserve a diverse wild bee fauna in our landscapes. 

Especially woody plant species should be considered in the future as they made up most of the pollen 

types collected in our study and are an important pollen resource for bumblebees (Bertrand et al. 

2019, Kämper et al. 2016). Successively flowering MFC did not improve the reproductive success of B. 

terrestris. As higher collected pollen diversity was correlated with a lower wax moth depredation, we 

can assume that a more diverse food provision strengthens bumblebees’ health and make them more 

robust against parasites such as A. sociella.  
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Overall, our study demonstrates the complexity of the relationship between predictors, shaping 

bumblebees’ reproductive success, and that more studies are needed to fully understand the interplay 

of major drivers for their reproductive success. Future conservation schemes and agri-environment 

measures should consider landscape composition and habitat quality, targeting floral resource 

availability and pest control services as we found that diverse diets and parasite infestation are major 

factors driving the reproductive success of generalist bumblebees that are important crop pollinators 

in agricultural landscapes. 
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Supplementary Material 

 

Calculation of landscape diversity 

For each study landscape, landscape diversity was calculated as Shannon index (Krauss et al., 2003; 

Steffan-Dewenter et al., 2002) of twelve different land-use types using the vegan package (Oksanen et 

al., 2019). Following land-use types were utilized: arable land, urban area, water bodies, forest, groves, 

hedgerows, intensive grasslands, extensive/calcareous grasslands, orchard meadows, succession sites, 

fallows/ruderal sites, sown flower strips or fields.  
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Figures 

 

 

Figure A.1  Example of a landscape pair (FB+ and FB- landscape) with mapped landscape composition and the position of two 

neighbouring bumblebee colonies in the middle of the 1x1 km study landscape.  
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Figure A.2  Experimental setup of the B. terrrestris colonies in the study landscapes. In each landscape two bumblebee 

colonies were placed next to each other. They were placed on stones and covered by wooden roofs for protection. 
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Figure A.3  Composition of the collected pollen samples. (a) Percentage of pollen types categorized according to plant 

functional groups giving the number of counted pollen grains added up over all landscapes and all sampling rounds. Pollen 

types with >500 pollen grains (see also Table A.3) were presented separately, pollen types with less than 500 grains were 

grouped. (b) The most frequently collected pollen types (collected in more than 30% of our landscapes) indicating dominant 

pollen sources for bumblebees. 
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Tables 

 

Table A.1  Definitions of all habitat types (grassy and woody) considered as semi-natural habitats (SNH) in our study. 

Habitat type Habitat category Definition 

Extensive grassland grassy extensively managed (calcerous) grassland with 
diverse and flower-rich character; no shrubs present 

Succession  woody or grassy initial state of succession; emerging shrubs are 
present but grassy vegetation still dominating most 
of the area 
habitat area is mainly covered with grassy 
vegetation (>50%) 
 

Grove woody woody structure; mainly trees; width > 10 m; not 
part of a larger forest patch but isolated in the arable 
matrix 

Hedgerow woody Linear woody structure; mainly shrubs; longer than 
wide; width ≤ 10 m 

Flower strip / area grassy Linear or areal habitat with flowering plants sown as 
an agri-environmental measurement 

Orchard meadows grassy Grass-dominated areal habitat with a stand of old 
fruit trees; extensively managed or abandoned 

Fallows grassy Areal fallow land; dominated by naturally occurring 
pioneer vegetation (e.g. Cirium spp.; Arctium spp.; 
Urtica dioica; Atriplex spp.) 

Ruderal site woody open soil; dominated by pioneer vegetation 
 

 

Table A.2  Time interval of the visitation rounds and MFC main blooming status at the time of visitation 

 

 

 

 

 

  

Visitation round Time period Mass flowering  

1 11/05 - 16/05/2018 B. napus 

2 28/05 - 03/06/2018 V. faba (in the most) 

3 05/06 - 11/06/2018 V. faba (only in some) 

4 15/06 - 21/06/2018 no 

5 22/06 - 25/06/2018 no 
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Table A.3  Pollen types with plant families, identified from the collected pollen samples (Beug 2015) of Bombus terrestris L. 

workers in our study landscapes within round 1-3, grouped by woody or herbaceous character. The total sum of counted 

pollen grains across all study landscapes was calculated as the sum of the mean numbers of grains per pollen type and 

landscape based on all three sampling rounds The number of landscapes where the pollen type was present is given. Pollen 

type Smilax could not be clearly attributed to woody or herbaceous because the genus contains species of both 

characteristics. Graminoid Poaceae were considered separately from the other herbaceous forbs. Pollen types were identified 

by Melissopal – Pollenanalytik (Hammoor, Germany). The first 500 pollen grains of three subsamples of each pollen mixture 

(overall 4500 pollen grains per landscape) were identified using a light microscope and following the guidelines of pollen 

identification in honey samples (Dustmann 2006). 

Pollen type Plant family Total sum of counted 
pollen grains 

Number of landscapes 

Herbaceous (forbs) 
   

Ranunculus acris Ranunculaceae 2266 16 

Brassica type Brassicaceae 1802 13 

Hydrangea Hydrangeaceae 1412 6 

Vicia faba Fabaceae 990 8 

Phacelia Boraginaceae 659 9 

Trifolium pratense Fabaceae 357 2 

Lotus corniculatus Fabaceae 267 1 

Liliaceae spec. Liliaceae 205 1 

Trifolium repens Fabaceae 178 2 

Papaver Papaveraceae 73 4 

Symphytum/Pulmonaria Boraginaceae 63 3 

Centaurea cyanus Asteraceae 60 2 

Nymphaea Nymphaeaceae 42 3 

Fragaria Rosaceae 37 2 

Allium Amaryllidaceae 20 2 

Viola tricolor Violaceae 20 4 

Potentilla Rosaceae 17 1 

Achillea Asteraceae 15 1 

Taraxacum Asteraceae 15 1 

Plantago Plantaginaceae 13 1 

Foeniculum Apiaceae 12 2 

Xanthium Asteraceae 12 1 

Filipendula Rosaceae 10 1 

Urtica Urticariaceae 7 1 

Centaurea jacea Asteraceae 5 1 

Echium Boraginaceae 5 1 

Scrophulariaceae spec. Scrophulariaceae 5 1 

Herbaceous (graminoid)    

Poaceae spec. Poaceae 521 7 

Woody plants 
   

Tilia Malvaceae 6550 17 

Pyrus type Rosaceae 4692 17 

Rubus type Rosaceae 2695 14 

Robinia pseudoacacia Fabaceae 1497 7 

Prunus type Rosaceae 542 9 

Buddleja Scrophulariaceae 465 2 

Castanea sativa Fagaceae 265 1 

Rhododendron Ericaceae 255 7 

Sambucus Adoxaceae 175 4 

Magnolia Magnoliaceae 165 2 

Aesculus Sapindaceae 137 3 

Quercus Fagaceae 108 2 

Pinus type (1) Pinaceae 93 11 

Cornus Cornaceae 88 5 
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Rhamnus frangula Rhamnaceae 78 2 

Lonicera Caprifoliaceae 62 5 

Acer Sapindaceae 48 3 

Pinus type (2) Pinaceae 32 3 

Salix Salicaceae 23 2 

Ilex Aquifoliaceae 18 2 

Liriodendron Magnoliaceae 13 1 

Corylus avellana Betulaceae 10 1 

Gleditsia Fabaceae 10 1 

Viburnum Adoxaceae 10 2 

Crataegus Rosaceae 5 1 

Vitis Vitaceae 5 1 

others 
   

Smilax Smilacaceae 5 1 
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Table A.4  Global models with response and explanatory variables which were pre-analysed for final structural equation 

model using linear mixed effect models. Landscape pairs were included in the models as random effect. 

 

Response variable Explanatory variable 

Number of young queens ~ number of broodcells (Nbroodcells) 

 availability of faba bean (FB) 

 cover of oilseed rape (OSR) 
cover of semi-natural habitats (SNH) 
cover of urban area 

 pollen diversity 

 landscape diversity 

 weight of wax moth 

 FB: cover of OSR 
FB: cover of SNH 
FB: cover of urban area 
FB: pollen diversity 
FB: landscape diversity 

 pollen diversity: weight of wax moth 
pollen diversity: cover of OSR 
pollen diversity: cover of SNH 
pollen diversity: cover of urban area 
pollen diversity: landscape diversity 

Number of broodcells~ availability of faba bean (FB) 

 cover of oilseed rape (OSR) 
cover of semi-natural habitats (SNH) 
cover of urban area 

 pollen diversity 

 landscape diversity 

 weight of wax moth 

 FB: cover of OSR 
FB: cover of SNH 
FB: cover of urban area 
FB: pollen diversity 
FB: landscape diversity 

 pollen diversity: weight of wax moth 
pollen diversity: cover of OSR 
pollen diversity: cover of SNH 
pollen diversity: cover of urban area 
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Abstract 

The cultivation of mass-flowering crops (MFC) can promote pollinators by providing floral resources. 

However, there is missing knowledge about the effect of MFC cultivation history on bees and their 

pollination services in agricultural landscapes. We investigated how bee densities in oilseed rape 

(Brassica napus L.) (OSR) fields were affected by past (cultivation area of the preceding three years) 

and current MFC area coverages in the surrounding landscape. Moreover, we analyzed how insect 

pollination, its possible interaction with the plants` pod numbers and MFC covers influence yield 

components of individual OSR plants and calculated yields (t/ha). To test this, we conducted pollinator 

surveys and a pollinator exclusion experiment in one oilseed rape field in 17 agricultural landscapes in 

Germany. We found that wild bee densities were positively affected by past MFC covers and negatively 

impacted by current OSR covers, indicating enhanced pollinator populations due to previous MFC 

cultivation and contemporary pollinator dilution. In contrast, honeybees showed opposite responses 

to past and present MFC cultivation. Furthermore, seed weight per plant of open pollinated plants was 

positively correlated with past MFC covers. Pollinator exclusion decreased the seed number per pod 

and increased thousand-seed weight, while yields were unaffected. Pod number interacted with insect 

pollination in shaping yields, such that pollinator exclusion led to a steeper increase of yield with higher 

pod numbers. Insect pollination compensated for low pod numbers by increasing the plants` seed 

number per pod and ultimately yields. Our findings demonstrate a beneficial effect of high MFC covers 

in the past on bee densities and potentially yield components in the current year. Our study highlights 

the need for further research on how past and present landscape composition in terms of MFC 

cultivation interactively affect pollinator communities and their pollination services in agricultural 

landscapes. 

 

Keywords  

ecosystem services, honeybees, landscape history, landscape composition, Vicia faba, carry-over 

effects 

 

Introduction 

Insect pollination leads to yield increases in many agricultural grown crops and is essential for the 

preservation of wild plant diversity (Klein et al., 2007; Kremen et al., 2007). 75 % of the most important 

food crops worldwide benefit from animal pollination (Klein et al., 2007) and most essential nutrients 

are obtained from those plants (Eilers et al., 2011). The economic value of crop pollination has been 

estimated 153 billion € per year worldwide (Gallai et al., 2009).  Hence, to ensure high and stable yields 
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of pollinator-dependent crops, it is necessary to preserve diverse pollinator communities (Garibaldi et 

al., 2014; Woodcock et al., 2019).  

Wild pollinators are associated with heterogeneous landscapes comprising various resources and 

nesting sites that are threatened by landscape simplification (Potts et al., 2010). Thus, the landscape 

surrounding croplands is influencing yields of flowering crops via pollinators and their pollination 

services (Dainese et al., 2019; Martin et al., 2019). Diverse landscapes with high amounts of semi-

natural habitats and a higher habitat connectivity have been shown to increase yields in different crops 

(Castle et al., 2019; Petersen and Nault, 2014). Besides, the cultivation of mass-flowering crops (MFC), 

like oilseed rape (Brassica napus L.) or faba beans (Vicia faba L.) can enhance pollinator densities and 

species richness (Beyer et al., 2020; Diekötter et al., 2014; Westphal et al., 2003), alter plant pollinator 

interactions (Diekötter et al., 2010; Shaw et al., 2020) and affect the distribution of pollinators in 

agricultural landscapes (Holzschuh et al., 2016, 2011). The high attractiveness of MFC might also lead 

to pollinator dilution effects with negative implications for the pollination of co-flowering wild plants 

or crops (Bänsch et al., 2020a; Grab et al., 2017; Holzschuh et al., 2016, 2011; Riedinger et al., 2015). 

But, positive carry-over effects on wild bee densities from high covers of MFC in the previous year are 

also likely (Kallioniemi et al., 2017; Riedinger et al., 2015).   

Although short-term effects of MFC on pollinators and pollination services are well studied, less focus 

has been on the effect of land-use history on present biodiversity and associated ecosystem functions, 

which are highly relevant for ecosystem management and conservation (Foster et al., 2003). So far, 

only few studies tested the effects of land-use legacy on present-day diversity that might be the result 

of historic rather than of contemporary land-use or landscape structure (Harding et al., 1998; Lindborg 

and Eriksson, 2004). Historical land-use might also affect community responses to present-day 

landscape changes (Aguirre-Gutiérrez et al., 2015). More research is needed on whether land-use 

history, such as MFC cultivation history (i.e. the amount of MFC in the previous years) affects wild bee 

densities and their pollination services in agricultural systems.  

The most productive oleaginous crop and most grown MFC in the EU is oilseed rape (Brassica napus 

L.) (OSR) (FAOSTAT, 2020). OSR is predominantly self-pollinated but benefits from wind and cross-

pollination through insects (Becker et al., 1992; Perrot et al., 2018). Yields of OSR are known to be 

positively correlated with the abundance and diversity of pollinators (Jauker et al., 2012a; Perrot et al., 

2018; Zou et al., 2017). Yield increases, measured as seed weight per plant, between 12 and 20 % due 

to insect pollination have been reported (Bartomeus et al., 2014; Bommarco et al., 2012; Zou et al., 

2017) and even an 46 % higher seed weight per m2 following honeybee hive addition (Sabbahi et al., 

2005). Moreover, insect pollination has been shown to increase the OSR seed oil content (Bartomeus 

et al., 2014; Bommarco et al., 2012; Marini et al., 2015), resulting in a 20 % higher market value 

(Bommarco et al., 2012). OSR flowers are visited by a variety of different insects and honeybees are 
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most common visitors (Garratt et al., 2014; Marini et al., 2015; Perrot et al., 2018). Nevertheless, wild 

bees have been shown to be most effective pollinators of OSR due to a higher probability of stigmal 

contact (Woodcock et al., 2013).  

It has been shown that OSR plants compensate for lower seed numbers with a higher seed weight 

following pollinator exclusion (Geisler, 1988; Grosse et al., 1992; Hudewenz et al., 2014; Marini et al., 

2015; Zou et al., 2017). For this reason, it is important to consider the whole plant when analyzing 

pollination services and yield components (Ouvrard and Jacquemart, 2019). Another important 

determinant of OSR yield is the number of pods which besides leaves and stems, plays an important 

role in providing assimilates. 40 – 50 % of the assimilates stored in the seeds are obtained from 

photosynthesis of the pods (Geisler, 1988) and a higher assimilation area of pod hulls is positively 

correlated with the seed number per pod (Grosse et al., 1992). However, most recent studies do not 

consider effects of pod numbers on yield components. Hence, to fully understand how pod numbers 

shape OSR yields in interaction with biotic factors, like insect pollination, more knowledge is needed.  

We conducted a pollinator exclusion experiment and surveyed wild bees in one OSR field in 17 

landscapes in Germany with differing landscape composition in terms of MFC cultivation, in the current 

and the past three years. Regarding past MFC cultivation, we considered the last three years as we 

expected that it takes several years for wild bee populations to build up and thus for effects on bee 

densities and pollination services to be detected (three years according to Blaauw & Isaacs, 2014). We 

analyzed the effects of current and past MFC covers on honeybee and wild bee densities in OSR fields 

and the associated effects of insect pollination services on pod number, bee densities, past and present 

MFC covers on OSR yield components and yields. We tested the following hypotheses: (1) bee densities 

in OSR fields are diluted by high coverages of co-flowering OSR, (2) wild bee densities are enhanced by 

high coverages of MFC in the preceding years, (3) Insect pollination enhances OSR yield and interacts 

with the plants` pod number in determining yield and (4) past and present MFC cultivation interact 

with wild bee densities in shaping OSR yields. 

Material and Methods 

Study fields and landscape metrics 

The study was conducted in the summer of 2018. We selected seventeen conventionally managed OSR 

fields (Brassica napus L.) in Lower Saxony in Germany (Fig. A1). All OSR rape fields were sown with a 

hybrid winter OSR variety, but varieties differed between study landscapes and could not be controlled 

during recruitment of collaborating farmers. OSR fields were at least 3 km apart to prevent wild bees, 

with foraging ranges up to several kilometers, to visit more than one study OSR field (Westphal et al., 

2006). We characterized the landscape composition of the current and the past years within a buffer 

of 1000 m around each OSR field.. As landscape history metrics we utilized the area coverage (ha) of 

the two main MFC, grown in Germany, i.e. OSR (Brassica napus L.) and faba bean (V. faba L.) within 
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the preceding three years (2015 – 2017) (MFC cover history). Both MFC have been shown to impact 

pollinators in agricultural landscapes (e.g. Beyer et al., 2020; Westphal et al., 2003). We summed the 

area coverage of OSR and faba bean (ha) within the 1000 m buffer over the preceding three years. 

Landscape composition of the current year was determined by the area coverage of OSR (ha) in 2018 

(OSR cover). To test potential pollinator dilution effects through co-flowering MFC, we only focused 

on OSR here. That is because the bee surveys in our study OSR fields took place during the period of 

oilseed rape full bloom, which had already ended before V. faba started to bloom. Therefore, we do 

not expect faba beans to impact pollinator densities and yields of our study OSR fields. Since we 

focused on present OSR and MFC history, we did not record other landscape metrics. The amount of 

semi-natural habitats in a landscape is relatively stable over time and an analysis based on unpublished 

data from similar landscapes in the same study region, revealed that the cover of semi-natural habitats 

was not correlated with the cover of past and present MFC. 

Experimental design 

We randomly chose forty-four individual oilseed rape plants in every of the 17 oilseed rape fields 

before the onset of flowering during mid/end of April 2018. Plants were located in four different plots 

per field, i.e. 11 plants per plot (Fig. A2). Of the four plots, two were at the field border (maximum 5 m 

from field border) and two in the field center (at least 15 m from any field border). Individual plots 

were at least 10 m apart from each other. We assigned the 11 plants per plot to two different 

treatments: pollinator exclusion (five plants) and open pollination (six plants to account for potentially 

higher variability). We ensured that plants had a similar developmental stage and were at least 1 m 

apart from each other. For the pollinator exclusion treatment, we installed a bag made of fine mesh 

(mesh size 0.8 x 0.8 mm) around individual oilseed rape plants (20 plants per field) to prevent insects 

from visiting the flowers (bagged plants). Wind- and self-pollination was still possible. Every bag was 

fixed with four bamboo poles, which were fixed in the ground. Bags were big enough to prevent 

growing plants to be affected or damaged by the bag. We removed bags from oilseed rape plants after 

they had finished blooming (end of May) to enable plants to mature under natural conditions. The 

plants of the open pollination treatment (24 per field) were marked and not covered to enable natural 

insect pollination (open plants). Additionally, we recorded plant density at three different locations 

close to the field edge and at three locations in the field center by counting the number of all oilseed 

rape plants per m2. Mean plant density was calculated for the field edge and the field center.  

Pollinator surveys 

We surveyed bees within every study oilseed rape field with two standardized transect walks (50 x 2 

m, 5 min) per field: one close to the field edge and one in the field center, next to the experimental 

plots. Surveys took place on days with air temperature above 15 °C, low wind speed and no rain from 

10 a.m. until 6:15 p.m (Westphal et al. 2008). We repeated transect walks two times during the oilseed 
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rape bloom from 04 to 16 May 2018. The number of all flower visiting wild bees and honeybees was 

recorded and wild bees were sampled, when possible, for species identification. Since we observed 

very few wild bees, we focused on densities and did not analyze species richness. We additionally 

estimated the local flower cover (%) of the study OSR field during every transect walk.  

Yield components and yield 

Fully ripened plants were harvested manually just before fields got harvested at the beginning of July 

(in total 748). We counted the total number of pods per plant in the field and stored them in individual 

paper bags. Thereafter, we counted the total number of seeds per pod for 10 randomly chosen pods 

per plant. All counted seeds per plant were pooled and dried at 60 °C for 12 hours and weighted 

afterwards. This weight was divided by the respective total number of counted seeds (per 10 pods) to 

determine the average single seed weight per plant. Finally, we calculated the following yield 

components per plant: (1) the average number of seeds per pod, (2) the thousand seed weight (TSW) 

in g (average single seed weight * 1000), (3) the total seed weight per plant in g. Ultimately, we 

calculated the yields per plot in t/ha, which is the total seed weight per plant averaged across each 

individual plot, multiplied by the plant density of the respective plot location (edge or center), divided 

by 100.  

Statistical analyses 

Statistical analyses were done in R version 3.6.1 (R Core Team, 2019). To test the effect of landscape 

metrics on pollinator densities (bees per 100 m2 and 5 min) (Hypothesis 1 & 2), we used a generalized 

linear mixed effects models with the glmmTMB package (Brooks et al., 2017). Explanatory variables 

were percentage flower cover of the study OSR field (FC), area coverage of OSR of the current year 

(OSR cover), the area coverage of MFC in the previous years (MFC cover history) and bee group 

(honeybees/wild bees) as well as all possible two-way interactions including bee group and the 

interaction between OSR cover and MFC history. We included sampling run nested in field ID as 

random effect. The global model was fitted with negative binomial family due to overdispersion.  

To test how landscape composition and insect pollination affect yield components and yield in OSR, 

we conducted two separate analyses, using linear mixed effects models of the nlme package (Pinheiro 

et al., 2019). First, we analyzed the effect of insect pollination and plants` pod number on the yield 

components of OSR, comparing open pollinated and bagged plants (Hypothesis 3). Our response 

variables were the average number of seeds per pod, TSW, seed weight per plant and yield per plot. 

Predictor variables included in all models were treatment (bagged/open), bee density (honeybee and 

wild bees summed) and the plants` pod number and all possible two-way interactions with treatment. 

We analyzed yield components on plant level and yields on plot level by using the average number of 

pods per plant for every plot as response. Field ID and plot were included as nested random effects in 

all models. As we expect MFC cultivation to only affect open pollinated plants via pollinators, we 



Chapter 4 

125 
 

analyzed MFC cultivation effects and potential interactions with bee densities on yield parameters of 

open pollinated OSR plants in a second step (Hypothesis 4). We used the same response variables as 

described above. Explanatory variables were honeybee densities, wild bee densities, OSR cover, MFC 

cover history and the interactions between landscape metrics and wild bee densities, between 

landscape metrics and between honeybee and wild bee densities. Field ID and plot were added as 

random effects for yield components and for yields only field ID was included. To meet normality 

assumptions, seed weight per plant and yield were square root transformed and for the analyses with 

the open pollinated plants seed weight per plant was log transformed. Furthermore, we standardized 

all continuous explanatory variables (FC, OSR cover, MFC cover history, pod number) to a mean of zero 

and a standard deviation of one to improve model convergence. For the case of analyses for seed 

weight per plant and yield, the variable pod number was square root transformed to meet linearity 

assumptions. We used the variance inflation factor (VIF) to test for potential collinearity between 

explanatory variables and VIF was below 2 in all cases (Zuur et al., 2010). To address potential problems 

with spatial autocorrelation we fitted global models with and without exponential and Gaussian spatial 

autocorrelation structures and compared models via AICc. In all cases, the model without spatial 

autocorrelation had the lowest AICc. 

We followed a multimodel inference approach by Burnham & Anderson (2002). Based on the global 

models for pollinator densities and yield components, we fitted candidate models, containing all 

possible combinations of predictor variables with the dredge function of the MuMIn package (Barton, 

2019). Candidate models were ranked by second order Akaike Information Criterion (AICc). We used 

Akaike weights (wi) to estimate relative support of a model across all models (Burnham and Anderson, 

2002). Moreover, we calculated the sum of Akaike weights (Σwi) of all predictor variables across all 

models that included the variable as its relative importance. We interpreted all models with a delta 

AICc < 2 compared to the best fitting model and we report all predictor variables with Σwi > 0.2. In 

addition, if more than one best-fitting model was identified, we report full and conditional model 

averaged coefficients with 95 % confidence intervals in the supplementary material (Fig. A3), 

calculated with the MuMIn package (Barton, 2019). We inspected residual plots to validate model 

assumptions and calculated the marginal (Rm
2) and conditional (Rc

2) R2 values (Nakagawa et al., 2017) 

with the performance package (Lüdecke et al., 2020) to evaluate the goodness of fit of our models. To 

test for differences of yield components between pollinator exclusion treatments we applied post hoc 

tests with the emmeans package (Lenth, 2019) and alpha level of 0.05. Additionally, concerning seed 

weight per plant and yield we used post hoc tests to test for differences between treatments at a low 

and a high pod number per plant using the 10th and the 90th quantile respectively. We obtained 

predictions and confidence intervals in scatter plots from the effects package (Fox & Weisberg, 2019) 

and generated all figures using ggplot2 (Wickham, 2016). 
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Results 

Mass-flowering crop cover effects on pollinators 

In total, we observed 353 honeybee and 81 wild bee individuals (11 different species) visiting oilseed 

rape flowers. Sampled wild bees belonged to the genus Andrena (63.5 %) and Bombus. There were 

two best models explaining landscape composition and landscape history effects on honeybee and 

wild bee densities. The best-fitting model included pollinator group, the cover of OSR and the cover of 

MFC in the previous years, as well as their interactions with pollinator group (Table A1). All those 

variables had a sum of Akaike weights between 0.82 and 1.00 (Table A2). The second-best model 

additionally included the local flower cover (Σwi =0.40). Wild bee densities were negatively correlated 

with the cover of OSR in the surrounding landscape, while honeybees showed a slight increase (Fig. 

1a). Increasing cover of MFC in the preceding years had a positive effect on the densities of wild bees 

and a negative effect on honeybee densities (Fig. 1b). Bee densities (honeybees and wild bees) 

increased with enhanced local flower cover of the study OSR field (Fig. A4).  

 

 

Figure 1  (a) Effect of oilseed rape cover (ha) in the current year on honey- (HB) and wild bee (WB) densities. (b) Effect of 

mass-flowering crop (MFC) cover history (ha; area coverage of the preceding three years) on honey- and wild bee densities. 

Lines depict model predictions with 95 % confidence intervals. Predictions were obtained from the best-fitting model bee1 

(Table A1). 

 

Pollinator exclusion and pod number effects on yield components and yields 

The seed number per pod was explained by three-best fitting models, including the pollinator exclusion 

treatment (Σwi = 1.00), number of pods (Σwi = 1.00), their interaction (Σwi = 0.91), bee density (Σwi = 

0.61) and its interaction with treatment (Σwi = 0.43) (Table A3 & A4). The second and third best-fitting 

models were subsets of the best explaining model. The plants in the open pollinated treatment had on 

average 8.1 % more seeds per pod than bagged plants (Fig. 2a). The number of seeds per pod increased 
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with increasing number of pods per plant, while this increase was stronger for bagged than open 

pollinated plants (Fig. 3a). For plants with a low pod number, open pollinated plants had more seeds 

per pod than bagged plants (p<0.001), while this difference disappeared for plants with a high pod 

number. Higher bee densities increased the number of seeds per pod, but only for open pollinated 

plants (Fig. 3b).  

The best of the four candidate models within delta AICc < 2 for the thousand-seed weight included 

only treatment (Σwi = 1.00) (Table A3 & A4). The other best-fitting models contained, besides 

treatment, either bee density (Σwi = 0.58), the interaction between treatment and bee density (Σwi = 

0.25) or pod number (Σwi = 0.39) (Table A3 & A4). Open pollinated plants had on average 5.5 % lower 

TSW than bagged plants (Fig. 2b). Bee density tended to negatively affect TSW of open pollinated 

plants (Fig. A5a). The plants` number of pods had no effect on TSW. 

For seed weight per plant, there were seven best-fitting models (Table A3). The model with the lowest 

AICc contained treatment (Σwi = 0.69) and pod number (Σwi = 1.00). All best-fitting models were 

subsets of the last best-fitting model, which included treatment, pod number, bee density (Σwi = 0.48) 

and all interactions with treatment (Σwi ≤ 0.24) (Table A3 & A4). Seed weight per plant did not differ 

between open and bagged plants (Fig. 2c) but was positively correlated with the number of pods per 

plant (Fig. 3c). Bee densities did not affect seed weight per plant. 

The yields per plot were explained by four models within delta AICc < 2 (Table A3). The best fitting-

model included pod number (Σwi = 1.00) and bee densities (Σwi = 0.79). The other models included in 

addition to the variables in the best-fitting model treatment (Σwi = 0.64), the interaction between pod 

number and treatment (Σwi = 0.41) and the interaction between bee density and treatment (Σwi = 0.21) 

(Table A3 & A4). Yield between open and bagged plants did not differ (Fig. 2d) but was positively 

correlated with the plants` pod number with stronger increase for bagged plants (Fig. 3c). For plants 

with a low pod number open pollinated plants tended to have higher yields than bagged plants 

(p=0.07), whereas for plants with a high pod number this difference disappeared (Fig. 3d). Bee 

densities had a negative influence on yield (Fig. A5b).   
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Figure 2  Effects of pollinator exclusion treatment on the (a) seed number per pod, (b) thousand-seed weight (g), (c) seed 

weight per plant (g) and (d) the yield (t/ha) in oilseed rape. Model predictions and 95 % confidence intervals are shown in red 

and were obtained from the respective best-fitting models sn1, sw1, sp1 and the fourth best model y4 for the case of yield 

(Table A3). Different letters above boxes indicate significant differences between bagged plants and open pollinated plants.  
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Figure 3  Effect of (a) pod number and of (b) bee density on the seed number per pod for open pollinated and bagged plants. 

Effect of pod number on (c) the seed weight per plant (g) and (d) yield in oilseed rape for bagged and open pollinated plants. 

Lines depict model predictions with 95 % confidence intervals. Model predictions were obtained from the respective best-

fitting model sn1, sp1 and the second-best fitting model y2 for the case of yield (Table A3). Y- and x-axes in (c) and (d) are sqrt 

transformed. 

 

Mass-flowering crop cover and pollinator effects on yield components and yields 

Seed number per pod and yields of open pollinated plants were neither explained by past or present 

MFC cover, nor by honeybees or wild bee densities. In both cases, the null model was the model with 

the lowest AICc (Table A5). Thousand seed-weight was explained by the density of honeybees (Σwi = 

0.60) in terms of a decreasing seed weight of open pollinated plants with increasing bee densities. The 

null model was however the second-best fitting model with a dAICc of 0.18 and AIC weight almost as 

good as the best-fitting model (Table A5), which indicates a low support of the best model. For seed 

weight per plant, there were four best-fitting models within delta AICc < 2 (Table A5). The best-fitting 

model included MFC cover history (Σwi = 0.83) and honeybee densities (Σwi = 0.60), while additional to 

them, wild bee densities (Σwi = 0.53) were included in the second-best model (Table A5&A6). The other 
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models were subsets of the second-best one. MFC cover history (Fig. 4), honeybee densities and wild 

bee densities (Fig. A6) positively affected the seed weight per plant. 

 

 

Figure 4  Effect of mass-flowering crop (MFC) cover history (ha; area coverage of the preceding three years on the seed weight 

per plant (g) for open pollinated oilseed rape plants. Lines depict model predictions with 95 % confidence intervals. Model 

predictions were obtained from the best-fitting model spo1 (Table A5). 

 

Discussion 

In this study we investigated how past and present cover of availability of MFC affects pollinator 

densities and the provisioning of pollination services in OSR. We found that increasing OSR covers in 

the current year decreased wild bee densities in our study OSR fields, while a high cover of MFC in the 

past three years enhanced wild bee densities in OSR fields. Interestingly, compared to wild bees, 

honeybees showed contrasting effects to past and present MFC cultivation. Furthermore, seed weight 

per plant of open pollinated OSR plants was positively associated with high past MFC covers.  

Mass-flowering crop cover effects on pollinators 

High OSR covers dilute bee densities in OSR fields 

Wild bee densities were affected in an opposite manner by MFC history and current OSR cover in the 

surrounding landscape. Moreover, wild bees and honeybees responded contrarily to MFC cultivation 

(see 4.1.3). Unlike honeybees, wild bee densities declined with increasing OSR covers in the present 
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year. This suggests a dilution of wild bee pollinators due to high proportions of attractive OSR, which 

might negatively impact crop yields (Grab et al., 2017; Shaw et al., 2020). Considering that honeybee 

densities increased with higher OSR cover, bee densities would be similar in landscapes with a high 

and a low OSR cover. However, since wild bees are assumed to be the more effective OSR pollinators, 

(Woodcock et al., 2013), implications for crop yields are likely, independent of honeybees (Garibaldi et 

al., 2013). Besides pollination success of crops, also the pollination of wild plants might be adversely 

affected by a high amount of co-flowering crops in agricultural landscapes (Holzschuh et al., 2016, 

2011), because wild bees move between crop and non-crop habitats according to their changing 

resource availability (Mandelik et al.,  2012, Bänsch et al. 2020b). The contrasting positive effect of 

contemporary OSR cover on honeybee densities might mirror the number of hives in our study 

landscapes since beekeepers usually place honeybee hives in proximity to MFC. However, we did not 

record hive densities in the surroundings of the study fields. 

High MFC covers in the past increase bee densities in the current year 

In contrast, a high coverage of MFC in the past years enhanced wild bee densities in our study OSR 

fields. Similarly, a beneficial effect from high covers of MFC in the previous year has been shown to 

enhance wild bee densities (Kallioniemi et al., 2017; Riedinger et al., 2015). Moreover, landscape 

history can have an impact on current plant or insect species richness: Lindborg and Eriksson (2004) 

demonstrated that plant species richness is positively correlated with habitat connectivity 50 and 100 

years ago and Aguirre-Gutiérrez et al. (2015) showed that pollinator species responses to landscape 

change were modified by historic landscape characteristics. However, we are not aware of any study 

showing MFC cultivation in the previous three years to promote wild bees in the current year. This 

finding emphasizes the importance of continuously available flowering resources in agricultural 

landscapes for pollinators. OSR and faba beans are both known to promote pollinators by providing 

short-term pulses of floral resources (Beyer et al., 2020; Diekötter et al., 2014; Westphal et al., 2003). 

Jauker et al. (2012b) found that the number of produced offspring in a solitary bee was positively 

affected by OSR cover. Though, other studies showed that the positive effect of MFC on bumblebee 

densities translated to neither a higher reproductive success (Westphal et al., 2009), nor in higher 

numbers of colonies (Herrmann et al. 2007). In our study, wild bee densities in OSR fields were 

increased in the long-term by MFC cultivation, which hints towards positive effects of MFC on wild bee 

reproductive success. Nevertheless, we cannot exclude the influence of confounding, random factors 

about which we have no information, such as other landscape features or management practices. 

There is an urgent need for studies addressing past and present landscape effects on wild bee survival 

as population-level effects have rarely been quantified (but see Carvell et al., 2017). Besides, further 

studies are needed to test how past and present MFC cultivation interactively shape bee densities and 

communities in agricultural landscapes. Possible negative impacts on MFC yields arising from a high 
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percentage of co-flowering crops (Bänsch et al., 2020a; Shaw et al., 2020) might have been possibly 

outweighed by the positive long-term effect of MFC on pollinator densities. Nevertheless, we found 

no interaction effect of MFC history and OSR cover on bee densities.  

Wild bees and honeybees show contrasting effects in response to MFC cultivation 

Unlike wild bees, honeybee densities decreased with increasing historical cover of MFC. Though, the 

availability of floral resources at landscape scale determines the composition of honeybee diets 

(Bänsch et al., 2020c; Requier et al., 2015) and shortages in pollen availability can result in brood 

reductions and colony losses (Requier et al., 2017), honeybee densities are mainly correlated with the 

number of managed hives (e.g. Lindström et al., 2016). We did not record the number of honeybee 

colonies in and in proximity of our study landscapes. Therefore, we cannot preclude that study 

landscapes with a high MFC cover in the past simply contained fewer managed honeybee hives. The 

contrasting reactions of honey- and wild bee densities in response to landscape composition hint 

towards competition between the two pollinator groups. A displacement of wild bees in oilseed rape 

fields by increasing honeybee densities has already been observed (Lindström et al., 2016). Negative 

competition effects on wild bees from honeybees might be especially critical in homogenous 

landscapes with few floral resources (Herbertsson et al., 2016). Thus, a wildlife-friendly landscape 

management that aims at increasing heterogeneity and floral resource supply might reduce pressure 

on pollinators, which face multiple challenges and stressors (Potts et al., 2016; Vanbergen and Insect 

Pollinators Initiative, 2013).  

Pollinator, pod number and mass-flowering crop cover effects on yield 

parameters and yields 

Pollinator exclusion and bee densities affect yield components 

Insect pollination was an important factor explaining yields and yield components of our OSR plants. 

As expected, pollinator exclusion decreased the number of seeds per pod and enhanced the thousand-

seed weight .  Accordingly, an increased bee density enhanced the seed number per pod and decreased 

the seed weight, but only in open pollinated plants. A difference between open pollinated and bagged 

plants was only visible at high bee densities, which indicates that high pollinator densities are 

necessary to obtain yield increases. An enhanced pollinator density and visitation has already been 

shown to increase OSR yields (Bartomeus et al., 2014; Jauker et al., 2012a). Yields in our study were 

however not significantly increased by insect pollination or high bee densities. This might be due to 

the extreme weather conditions in 2018 with very high temperatures and drought during summer 

(DWD, 2019) with implications for plants and insects. Resulting low bee densities might have been the 

reason for the lacking yield increase in open pollinated compared to bagged plants (see also 

Samnegård et al., 2016). Temperature is an important predictor of insect pollinator activity, which 

decreases with extreme high temperatures (Kühsel and Blüthgen, 2015; Kwon and Saeed, 2003). We 
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only observed on average 1.2 wild bees and 5.2 honeybees per transect (100 m2 and 5 min). In contrast, 

Sabbahi et al. (2005) reports a yield increase of about 46 % due to the addition of three honeybee hives 

per ha, which led to 5.8 times higher bee densities than in our fields. Additional to low bee densities, 

heat stress due to elevated temperatures could have negatively impacted OSR seed set and yields 

(Peltonen-Sainio et al., 2010; Young et al., 2004). Extreme weather might have damaged OSR plants, 

which is indicated by the very low and variable plant densities recorded (range from 11 to 55 plants 

per m2, mean of 28.5). Since we calculated yields from the seed weight per plant (which did not 

respond to bee densities) multiplied by the plant density, diverging plant densities are likely to be 

responsible for patterns like declining yield with increasing bee densities. Other confounding factors, 

like pests or different varieties, which we did not account for, could be a further explanation (Grass et 

al., 2018; van Gils et al., 2016; Hudewenz et al., 2014). We cannot preclude possible variety effects on 

the plants` responses to insect pollination. Though, Perrot et al. (2018) used 28 different varieties of 

OSR for an pollination experiment and found no effect of OSR type (hybrid or conventional) on yield, 

as well as no evidence of an dependence of pollinator contribution to yield on plant variety or on 

fertilizer and pesticide input. Other studies however, show that pest control and fertilization can affect 

the contribution of pollinators to yield via changing resource availability of plants (Tamburini et al., 

2019).  

Pod number interacts with insect pollination in explaining yields 

Pod number was an important driver of OSR yields (Diepenbrock, 2000). Seed number, seed weight 

per plant and overall yield was positively correlated with pod number. Pods play an important role in 

providing assimilates to the seeds through photosynthesis of the pod hulls and high levels of 

assimilates increase yield (Geisler, 1988; Grosse et al., 1992). Accordingly, we found a positive 

relationship between number of seeds per pod and pod number and hence higher yields due to 

increased allocation of resources to seed number rather than to seed weight. Furthermore, we found 

the effect of pod number on yield parameters to be modulated by the pollination treatment. To our 

knowledge, there are no studies showing an interaction between insect pollination and pod number 

in explaining OSR yields.  For plants with few pods and therefore fewer assimilates to allocate to seed 

production, seed number per pod and yields were enhanced for open pollinated plants. This indicates 

that insect pollination can compensate for a low pod number and assimilate provisioning by enhancing 

seed number per pod and ultimately yields. Similar results have been shown by Marini et al. (2015), 

where insect pollination compensated for low nutrient inputs. 

High MFC covers in the past increase seed weight per plant 

We found a higher seed weight of open pollinated OSR plants in landscapes with a high cover of MFC, 

which might be driven by higher pollinator densities. We found enhanced wild bee densities in 

landscapes with high MFC covers and we found seed weight per plant to increase with honeybee- and 
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wild bee densities. While honeybees have been shown to be most common OSR visitors (Marini et al., 

2015; Perrot et al., 2018) wild bees might be the more effective OSR pollinators (Woodcock et al., 

2013) and honeybees cannot replace wild bees` contribution to crop yields (Bänsch et al., 2020b; 

Garibaldi et al., 2013, 2014). Thus, wild pollinator conservation is of mayor importance for food 

production (Garibaldi et al., 2014; Klein et al., 2007).  However, the contribution of other drivers to the 

observed seed weight increases, such as differing field management or climate conditions, cannot be 

ruled out. Management can interact with insect pollination in shaping yields (Marini et al., 2015; 

Tamburini et al., 2019). Since we do not have information about management practices of our fields, 

we cannot test those effects. Further research is needed to investigate if positive carry-over effects 

from past MFC cultivation on yields originate from the promotion of wild bees in the long term. 

Conclusions 

Our study shows that past and present MFC cultivation differentially affect wild bee densities in OSR 

fields and that insect pollination and high bee densities affect OSR yield components. Pollinator 

exclusion led to less, but heavier seeds, emphasizing the high compensation potential of OSR 

(Diepenbrock, 2000; Pinet et al., 2015). Moreover, the production of only few pods can be 

compensated by enhanced insect pollination. Further research is needed about how pod number 

interacts with environmental and biotic factors in shaping oilseed rape yields.   

While high OSR covers in the current year led to decreased wild bee densities, a high coverage of MFC 

in the past enhanced wild bee densities in the present year and was positively correlated with the OSR 

seed weight per plant. MFC are known to have beneficial effects on pollinators (e.g. Westphal et al. 

2003), but studies about long-term carry over effects are largely missing. There is a need for 

investigations about how landscape history interacts with present landscape metrics in shaping 

pollinator communities and how this in turn affects crop yields. Our results provide some evidence 

that past MFC cultivation has the potential to positively impact pollinators and MFC yields. Since co-

flowering crops can also dilute pollinators (Holzschuh et al., 2011) and since pollinator diversity is 

enhanced by functional diversity of farmland plants (Sutter et al., 2017), it might be important, to 

consider the diversity, morphology and phenology of flowering crops grown in a landscape to achieve 

maximum benefits for pollinating insects and for crop pollination.  
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Supplementary Material 

Figures 

 

Figure A1  Schematic map showing the location of the study landscapes in Lower Saxony, Germany (depicted as green circles).  
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Figure A2  Schematic map of the study design. Arrangement of the four plots at the edge and in the center of the oilseed rape 

fields. Within every plot five randomly chosen plants were covered with a bag to exclude all insect pollinators (bagged plants) 

and six randomly chosen plants were marked and not covered with a bag to enable natural insect pollination (open pollinated 

plants).  

 

 

Figure A3  Model averaged coefficients with 95 % confidence intervals (CI) for the best-fitting models examining (a) bee 

density and landscape effects on seed weight per plant for only open pollinated plants (Table A5) and for best-fitting models 

explaining pollinator exclusion, bee density and pod number effects on (b) seed weight per plant, (c) thousand-seed weight, 

(d) number of seeds per pod and (e) yield (per plot) in open and bagged oilseed rape plants (Table A3). MFC history: MFC 
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cover of the past three years, FC: local flower cover of study oilseed rape field, WB: wild bee densities, HB: honeybee densities, 

treatment: pollinator exclusion treatment (open/bagged), pods: number of pods per plant (average number of pods per plant 

per pod for yield), Bee: bee densities (HB and WB summed). The conditional average includes only the models in which the 

respective parameter appears. The full average uses the whole model set and for the models in which a parameter is absent 

a value of zero is substituted.  

 

 

 

Figure A4  Effect of local flower cover (%) of study OSR fields on bee densities (honey- and wild bees). Line depicts model 

predictions with 95 % confidence intervals. Predictions were obtained from the second-best fitting model bee2 (Table A1). 

 

 

Figure A5  Effect of bee density on (a) the thousand-seed weight (TSW) and (c) yield in oilseed rape for bagged plants and 

open pollinated plants. Line depicts model predictions with 95 % confidence intervals. Predictions were obtained from the 

third-best fitting model sw3 for TSW and the best fitting-model y1 for the case of yield (Table A3). 
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Figure A6  Effect of (a) honeybee density and (b) wild bee density on the seed weight per plant (g) for open pollinated oilseed 

rape plants. Line depicts model predictions with 95 % confidence intervals. Predictions were obtained from the second best-

fitting model spo2 (Table A5). 

 

Tables  

Mass-flowering crop cover effects on pollinators 

Table A1  Summary of the best fitting candidate models (dAIC<2) and null models for landscape metrics effects on bee 

densities. Models were fitted with negative binomial family. Marginal (Rm
2) and conditional (Rc

2) R2 values are given as a 

measure of the model´s goodness of fit. n: number of observations, FC: local flower cover of study oilseed rape field, OSR: 

area of oilseed rape in 2018, MFChist: area of mass-flowering crops from 2015-2017, group: bee group (honeybees/wild bees). 

 

Table A2  The relative importance of explanatory variables expressed by Σwi (sum of Akaike weights) for models to explain 

landscape metrics effects on bee densities (best fitting models are shown in table A1). Model parameters having Σwi > 0.2 

for all response variables are shown.  FC: local flower cover of study oilseed rape field, OSR: area of oilseed rape in 2018, 

MFChist: area of mass-flowering crops from 2015-2017, group: bee group (honeybees/wild bees). 

model response variable group OSR MFChist FC group: OSR 
group: 
MFCpast 

OSR:MFChist 

a.bee Bee density 1.00 0.93 0.88 0.40 0.90 0.82 0.21 

 

Pollinator exclusion and pod number effects on yield components and yields 

Table A3 Summary of the best fitting candidate models (dAIC<2) and null models for the effects of treatment, bee densities 

and plants` pod number on yield components and yield in oilseed rape. Marginal (Rm
2) and conditional (Rc

2) R2 values are 

given as a measure of the model´s goodness of fit. Treatment: pollinator exclusion treatment (bagged/open pollinated), pods: 

number of pods per OSR plant, Bee: bee density. 

response 
variable 

model df AICc deltaAIC 
AIC 

weight 
explanatory variables Rm

2 Rc
2 

Bee density 
(n=136) 

bee1 9 564.18 0.00 0.35 group + OSR + MFChist + group:OSR + group:MFChist 0.31 0.61 

bee2 10 565.56 1.38 0.18 
Group + OSR + MFChist + group:OSR + group:MFChist + 
FC 

0.32 0.62 

bee0 4 582.82 18.64 0.00 1 - - 
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Table A4  The relative importance of explanatory variables expressed by Σwi  (sum of Akaike weights) for models to explain 

the effects of treatment, bee densities and plants` pod number on yield components and yield in oilseed rape for all 22 

study landscapes (best fitting models are shown in table A3). Model parameters having Σwi > 0.2 for all response variables 

are shown. Treatment: pollinator exclusion treatment (bagged/open pollinated), pods: number of pods per OSR plant, Bee: 

bee density. 

Model 
response 
variable 

treatment pods Bee pods: treatment Bee: treatment 

sn seed no. per pod 1.00 1.00 0.61 0.91 0.43 

sw TSW 1.00 0.38 0.58 - 0.25 

sp seed weight per 
plant 

0.69 1.00 0.48 0.24 0.22 

y yield 0.64 1.00 0.79 0.41 0.21 

 

Mass-flowering crop cover and pollinator effects on yield components and yields 

Table A5  Summary of the best fitting candidate models (dAIC<2) and null models for the effects of landscape metrics and 

bee densities on yield components and yield in open pollinated oilseed rape. Marginal (Rm
2) and conditional (Rc

2) R2 values 

are given as a measure of the model´s goodness of fit. HB: honeybee densities, WB: wild bee densities, MFChist:area of mass-

flowering crops from 2015-2017. 

response 
variable 

model df AICc deltaAIC 
AIC 

weight 
explanatory variables Rm

2 Rc
2 

seed no. 
per pod 
(n=712) 

sn1 9 4416.72 0.00 0.41 
Treatment + pods + Bee + pods:treatment + 
Bee:treatment 

0.12 0.15 

sn2 7 4417.04 0.32 0.35 Treatment + pods + pods:treatment 0.12 0.14 

sn3 8 4418.68 1.96 0.15 Treatment + pods + Bee + pods:treatment 0.12 0.14 

sn0 4 4475.68 58.96 0.00 1 - - 

TSW 
(n=708) 

sw1 5 1817.41 0.00 0.26 Treatment 0.02 0.17 

sw2 6 1817.84 0.43 0.21 Treatment + Bee 0.03 0.18 

sw3 7 1818.36 0.95 0.16 Treatment + Bee + Bee:treatment 0.03 0.18 

sw4 6 1819.18 1.78 0.11 Treatmtent + pods 0.02 0.16 

sw0 4 1830.60 13.19 0.00 1 - - 

seed 
weight per 

plant 
(n=707) 

sp1 6 1200.39 0.00 0.21 Treatment + pods  0.90 0.90 

sp2 5 1200.48 0.09 0.20 pods 0.90 0.90 

sp3 8 1201.36 0.97 0.13 Treatment + pods + Bee + Bee:treatment  0.90 0.90 

sp4 7 1201.73 1.35 0.11 Treatment + pods + Bee 0.90 0.90 

sp5 6 1201.78 1.39 0.11 Pods + Bee 0.90 0.90 

sp6 7 1201.84 1.45 0.10 Treatment + pods + pods:treatment 0.90 0.90 

sp7 9 1202.10 1.71 0.10 
Treatment + pods + Bee + pods:treatment + 
Bee:treatment 

0.90 0.90 

a.sp0 4 2657.15 1456.77 0.00 1 - - 

yield 
(n=136) 

y1 6 25.3 0.00 0.23 Pods + Bee 0.63 0.93 

y2 8 26.0 0.72 0.19 Treatment + pods + Bee + pods:treatment 0.63 0.93 

y3 9 26.4 1.06 0.16 
Treatment + pods + Bee + pods:treatment + 
Bee:treatment 

0.63 0.93 

y4 7 26.9 1.58 0.12 Treatment + pods + Bee 0.63 0.93 

y0 4 215.4 190.09 0.00 1 - - 

response 
variable 

model df AICc deltaAIC 
AIC 

weight 
explanatory variables Rm

2 Rc
2 
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Table A6  The relative importance of explanatory variables expressed by Σwi (sum of Akaike weights) for models to explain 

the effects of landscape metrics and bee densities on yield components and yield in open pollinated oilseed rape (best fitting 

models are shown in table A5). Model parameters having Σwi > 0.2 for all response variables are shown. HB: honeybee 

densities, WB: wild bee densities; MFChist:area of mass-flowering crops from 2015-2017, OSR: area of oilseed rape in 2018. 

Model response variable HB WB OSR MFChist 

sno seed no. per pod 0.37 0.40 0.34 0.45 

swo TSW 0.60 0.53 0.36 0.41 

spo seed weight per 
plant 

0.60 0.53 0.37 0.83 

yo yield 0.32 0.40 0.31 0.37 

 

 

 

seed no. 
per pod 
(n=397) 

sno0 4 2333.74 0.00 0.17 1 - - 

TSW 
(n=395) 

swo1 5 777.08 0.00 0.13 HB 0.03 0.22 

swo0 4 777.30 0.18 0.12 1 - - 

seed 
weight per 

plant 
(n=395) 

spo1 6 865.48 0.00 0.15 HB + MFChist 0.13 0.48 

spo2 5 866.23 0.76 0.10 HB + WB + MFChist 0.12 0.48 

spo3 7 866.48 1.01 0.09 MFChist 0.10 0.49 

spo4 6 867.33 1.86 0.06 WB + MFChist 0.10 0.50 

spo0 4 868.16 2.69 0.04 1 - - 

yield (n=68) yo0 3 104.66 0.00 0.22 1 - - 
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Abstract  

Wildlife-friendly management practices promote pollinators and pollination services in agricultural 

landscapes. Wild bee densities are driven by landscape composition, as they benefit from an increased 

availability of nesting and foraging resources at landscape scale. However, effects of landscape 

composition on bee foraging decisions and consequences for crop pollination have rarely been studied. 

We investigated, how landscape composition affects bee densities and foraging behavior in faba bean 

(Vicia faba L.) fields and how this impacts faba bean yield. We recorded densities and nectar robbing 

behavior of honeybees, long- tongued and short-tongued bumblebees in faba bean fields in eleven 

landscapes with varying landscape composition (e.g. land cover of oilseed rape, faba bean and semi-

natural habitats). Moreover, we assessed yield components of faba beans via pollinator exclusion 

experiments. Increasing covers of faba bean and semi-natural habitats positively influenced 

bumblebee densities, while high oilseed rape covers negatively affected short-tongued bumblebee 

densities in bean fields. Increased faba bean covers enhanced the proportion of nectar robbing short-

tongued bumblebees and honeybees. Yield components, i.e. number of beans per pod, seed weight 

per plant and dry matter yield (plot level) were increased by insect pollination, these effects however 

depended on variety. Yield components of open pollinated plants increased with increasing faba bean 

and semi-natural habitat cover, whereas we observed decreases in landscapes with high oilseed rape 

covers. Landscape composition interacted with bee densities in shaping yield formation in V. faba. Our 

study emphasizes the importance of considering landscape management to maximize crop yields, as 

shown for the case of faba beans. A high amount of semi-natural habitats in agricultural landscapes 

can promote both, wild bees and high crop yields.   

 

Keywords  

grain legumes, ecosystem services, mass-flowering crops, broad bean weevil, resource allocation 

 

Introduction 

Agriculture depends on ecosystem services, like crop pollination or pest control (Power, 2010) and the 

provisioning of such services is threatened by the loss of biodiversity, which has raised concerns 

(Cardinale et al., 2012). Thus, the topic has become an issue in EU agricultural policy and farmers get 

financial incentives for implementing biodiversity friendly farming practices. Most effective measures 

are those increasing the amount of semi-natural habitats in agricultural landscapes (European 

Commission, 2020). A high cover of semi-natural habitats benefits wild bees (Nayak et al., 2015; 

Steffan-Dewenter et al., 2002) and increases their densities in flowering crop fields (Carré et al., 2009; 
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Nayak et al., 2015) with implications for crop yields, which were shown to be enhanced in more diverse 

landscapes (Andersson et al., 2014; Petersen and Nault, 2014).  

Furthermore, mass-flowering crops, like oilseed rape or faba bean can enhance pollinator densities by 

providing ample nectar and pollen resources (Beyer et al., 2020; Westphal et al., 2003) which can have 

positive effects on colony development and increase worker numbers (Westphal et al. 2009). Mass-

flowering crops can also lead to pollinator shifts and dilution if individual plants or plant species 

compete for a limited number of pollinators (Holzschuh et al., 2011). Pollinators might be attracted to 

the flowering fields (Bänsch et al., 2021) and disperse within the crop when high covers are available. 

This can lead to a lower visitation of individual crop plants and of alternative co-flowering plants with 

negative implications for pollination services (Holzschuh et al., 2016; Shaw et al., 2020, but see Bänsch 

et al., 2021). Moreover, early mass-flowering crops can change the community composition of 

pollinators as it has been shown for a decreased density of long-tonged bumblebees on late-flowering 

red clover with increasing amounts of early-flowering oilseed rape in the landscape (Diekötter et al., 

2010). The authors explain the patterns with competition through short-tongued bees, which strongly 

profited from oilseed rape and increased their nectar robbing activity on red clover (Diekötter et al., 

2010). While the effect of landscape composition on pollinator densities and richness is well studied, 

landscape effects on foraging decisions of bee pollinators have been rarely examined (but see Bänsch 

et al., 2020; Grab et al., 2017; Raderschall et al., 2021). The availability of flowers within a certain 

habitat and the spatial distribution of foraging habitats at landscape scale affect the pollinators` 

foraging decisions and therefore drives the distribution of pollinators in the landscape (Holzschuh et 

al., 2011, Westphal et al., 2006). Also, the cover of semi-natural habitats in a landscape has been found 

to affect foraging decisions of bumblebees, as shown for a reduced proportion of pollen foragers when 

high amounts of semi-natural habitats are available (Requier et al., 2020). 

The faba bean (Vicia faba L.) is an example for a crop, in which flower morphology constrains the 

visiting pollinator community and thereby impacts the bees` foraging behavior. A long tongue and 

some force are necessary to reach faba bean nectar, which is located deep in the long corollas (Bailes 

et al., 2018). Thus, most efficient pollinators are long-tongued bumblebee species, like Bombus 

hortorum, which mainly conduct legitimate flower visits, leading to highest rates of cross-fertilization 

(Marzinzig et al., 2018). In contrast, short-tongued bumblebees usually rob nectar by biting holes into 

the corolla tubes, which are then commonly used by honeybees (Bond and Poulsen, 1983; Marzinzig 

et al., 2018). While nectar robbing can negatively impact plant reproduction (Irwin et al., 2010), 

robbers might also indirectly act as pollinators by shaking the flowers (Kendall and Smith, 1975; Maloof 

and Inouye, 2000). However, knowledge is scarce about how bee pollinators with species-specific 

foraging behaviors affect yield formation in faba beans while the combined effects of landscape 

composition and conspecific crop pollinator species on yield parameters are not well understood. 
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Insect pollination increases the seed weight per plant of faba beans by 16 - 40 % (Bartomeus et al., 

2014; Bishop et al., 2016; St-Martin and Bommarco, 2016) and yield is reduced by, on average, one 

third without pollination (Bishop & Nakagawa, 2020). The contribution of insect pollination to yield 

differs between varieties and interacts with other environmental factors or management practices 

(Bishop et al., 2020; Bishop & Nakagawa, 2020; St-Martin and Bommarco, 2016; Tamburini et al., 

2019).  

Here, we investigated landscape effects on bumblebees and honeybees and their foraging behavior in 

faba bean fields as well as the effect on faba bean yield. We tested following hypotheses: (1) High land 

covers of semi-natural habitats increase bumblebee densities in faba bean fields. (2) High covers of 

oilseed rape, blooming prior to faba beans, increase bumblebee densities in faba bean fields. (3)  

Increasing faba bean covers lead to a pollinator dilution and therefore lower bee densities in faba bean 

fields. (4) Landscape composition influences the bees` foraging behavior, i.e. nectar robbing of short 

tongued honeybees and bumblebees. (5) Insect pollination increases pod and bean number, seed 

weight, dry matter yield and protein yield of faba beans, dependent on the bean variety. (6) Landscape 

composition and bee densities interactively determine faba bean yield of open pollinated plants.  

Material and Methods 

Study fields and landscape metrics 

In 2018, eleven study landscapes of 1 km2 size were chosen in Germany (Appendix A: Fig. A1). Study 

landscapes were at least 8 km apart from each other. Each landscape contained at least one faba bean 

(Vicia faba L.) and oilseed rape (Brassica napus L.) field. Seven of the eleven bean fields were grown 

with the summer faba bean variety Fuego and four with Tiffany and all fields were conventionally 

managed. All crop and habitat types with a minimum area of 10 m2 were mapped in each study 

landscape by site inspections (on the basis of maps derived from Google (2018), DigitalGlobe, 

GeoBasis-DE/BKG, GeoContent). Landscape composition metrics (percentage land cover of oilseed 

rape, faba bean and semi-natural habitats) within the 1 km2 study landscapes were calculated using 

QGIS version 3.10 (QGIS Development Team, 2016). Semi-natural habitats were defined as hedgerows, 

groves, flower strips and flower fields, extensive grasslands, calcareous grasslands, fallows, orchards, 

ruderal and succession sites. 

Experimental design 

We established a pollinator exclusion experiment in one faba bean field per study landscape. The 

experiment was conducted in four different plots per field, two at the field edge (max. 5 m from field 

border) and two in the field center (at least 15 m from any border) (Appendix A: Fig. A2). In every plot 

13 faba bean plants with similar developmental stage were randomly selected. Five plants were 

covered with a fine mesh bag (mesh size 0.8 x 0.8 mm) to exclude all insect pollinators (bagged 
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treatment). Bags were big enough to cover whole plants and were fixed with four bamboo poles to not 

affect growth or to damage plants. Wind and self-pollination were still possible. Plants were bagged 

before the onset of flowering (mid/end of May) and bags were removed after flowering had ceased 

(mid/end of June) to allow plants and pods to mature under natural conditions. Eight study plants in 

each plot were left uncovered to allow natural pollination (open treatment). We counted the number 

of faba bean plants per 1 m2 close to the edge and center study plots of every field (three times per 

location) and calculated the mean plant density per field location.  

Pollinator surveys 

Within every faba bean field, we surveyed bees with two standardized transect walks (50 x 2m, 5 min) 

(one at the field edge and one in the center). Surveys were repeated twice during faba bean flowering 

(28.05. – 03.06.2018 and 05.06. – 10.06.2018). During survey period, full bloom of oilseed rape had 

already ended  with bloom completely finished by the end of May. Transect walks were conducted 

under weather conditions suitable for pollinators on days with air temperature above 15 °C, without 

rain and with low wind speed, from 10 a.m. until 6:15 p.m at the latest (Westphal et al., 2008). We 

recorded all flower visiting honeybees and bumblebees and their foraging behavior (legitimate visitors 

or nectar robbers). No other wild bee species were foraging on the bean flowers during our transect 

walks. Bumblebees were grouped into short-tongued (Bombus terrestris, B. lucorum, B. lapidarius) and 

long-tongued bumblebees (B. hortorum, B. pascuorum, B. sylvarum) following von Hagen and Aichhorn 

(2014). All bees visiting the front of the flowers were considered as legitimate visitors and potential 

pollinators, whereas all bees collecting nectar from the base of the corollas were considered nectar 

robbers. Additionally, we estimated the local flower cover (%) of the faba bean fields during every 

survey.  

Yield components 

We manually harvested all mature study bean plants at the end of July/beginning of August (in total 

572 plants). Twenty-two of our study plants died or got damaged during the experiment and 57 plants 

were heavily infested by aphids and were therefore excluded from the analyses. We counted the 

number of pods per plant and the number of seeds per pod (for every pod and plant). Seeds were dried 

at 80 °C for 24 hours, the weight of all seeds per plant was quantified (seed weight per plant [g]) and 

the mean seed weight of an individual seed was calculated (individual seed weight [g]). We calculated 

dry matter yield per plot by multiplying plant density with the average seed weight per plant (of all 

plants per plot), divided by 100 [t/ha]. Furthermore, we assessed the protein yield [t/ha] per plot for 

eight study landscapes (for details see Appendix B). Moreover, the numbers of seeds infested by the 

broad been weevil (Bruchus rufimanus Boheman) were counted as number of seeds with circular 

weevil exit holes (results on weevil infestation are presented in Appendix B: Table B1&B2, Fig.B1). 
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Statistical analyses 

Statistical analyses were conducted in R version 3.6.1 (R Core Team, 2019) using generalized linear 

mixed effects models with the glmmTMB package (Brooks et al., 2017). To test landscape composition 

effects on densities and foraging behavior of the three pollinator groups, we used following response 

variables: number of observed bees per 100 m2 transect area (bee density) and proportion of bees 

robbing nectar from bean flowers (proportion of nectar robbers) of all observed bees. Explanatory 

variables included in these models were the percentage cover of oilseed rape, of faba bean, of semi-

natural habitats, the local flower cover of the transect area, pollinator group (honeybees, short-, long-

tongued bumblebees) and all possible two-way interactions with pollinator group. For bee densities, 

we used a negative binomial distribution due to overdispersion, and for the proportion of nectar 

robbers a binomial distribution was chosen. Landscape and field location were used as nested random 

effects (landscape/location).  

Faba bean yield components were analyzed in two steps. First, we analyzed the effect of insect 

pollination and variety on plant yield for six different response variables, i.e. number of beans per pod 

(mean across all pods per plant), individual seed weight, number of pods, seed weight per plant, dry 

matter yield and protein yield. Pollinator exclusion treatment (bagged, open), bee density per field 

location (summed across all bee groups and runs), faba bean variety (Fuego, Tiffany) and all possible 

interactions were added as explanatory variables. Yield component analyses were conducted at plant 

level and dry matter yield and protein yield analysis at plot level.  

In a second step, we tested whether yield components, dry matter yield and protein yield are affected 

by landscape composition in interaction with bee densities. We only used the open pollinated plants 

and the same yield response variables as described above. We included all landscape composition 

metrics, bee density per field location and the interactions between bee density and each landscape 

composition metrics as explanatory variables. Models for number of beans per pod and individual seed 

weight were fitted with Gaussian family and for number of pods negative binomial distribution was 

used. For seed weight per plant, dry matter yield and protein yield we used Gamma family and log link. 

Landscape and plot were used as nested random effects (landscape/plot) but for the dry matter yield 

and protein yield model only landscape was added.  

After global models were fitted, we used the multimodel inference approach by Burnham & Anderson 

(2002) for model selection. Candidate models were ranked by second order Akaike Information 

Criterion (AICc) and we interpreted all models within delta AICc < 2. We used Akaike weights (wi) to 

estimate the relative support of a model to have the best fit across all models and sum of Akaike 

weights (Σwi) as measure of the relative importance of predictor variables. For more details see 

Appendix B. 
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Results 

Landscape composition effects on bee pollinator density and foraging behavior 

We observed in total 532 honeybees and 284 bumblebees, of which 70.8 % were short-tongued. Most 

observed honeybees (90.4%) and short-tongued bumblebees (85.0%), robbed nectar, while 84.1 % of 

all long-tongued bumblebee visits were legitimate visits (Appendix A: Table A1). 

The multimodel inference for landscape composition effects on bee densities revealed three best-

fitting models, including local flower cover (Σwi = 1.00), pollinator group (Σwi = 1.00) and all landscape 

composition metrics (Σwi between 0.55 and 0.85) and the pollinator group x faba bean cover and group 

x oilseed rape cover interaction (Σwi= 0.29 and 0.70 respectively) (Appendix A: Table A2 & A3). 

Increasing semi-natural habitat covers led to increasing bee densities (Fig. 1a). High faba bean covers 

positively affected bumblebee but not honeybee densities (Fig. 1b). High oilseed rape covers negatively 

influenced short-tongued bumblebee densities (Fig. 1c). Bee densities in faba bean fields increased 

with increasing local flower cover of the transect area (Appendix A: Fig. A3a). 

There were three models within delta AICc < 2 for the proportion of nectar robbers, including pollinator 

group (Σwi = 1.00), local flower cover (Σwi = 0.75), faba bean cover (Σwi = 0.56), group x faba bean and 

group x flower cover interaction (Σwi 0.42 and 0.61 respectively) (Appendix A: Table A2 & A3). The 

proportion of nectar robbing long-tongued bumblebees declined with increasing faba bean cover, 

while the opposite effect was observed for short-tongued bumblebees. (Fig. 1d). The proportion of 

nectar robbing long-tongued bumblebees increased with local flower cover contrary to honeybees 

(Appendix A: Fig. A3b). However, this effect was driven by an influential data point (at flower cover of 

60%). The analysis without the influential point shows the proportion of nectar robbing long-tongued 

bumblebees to decrease with local flower cover, while the effect of faba bean cover on the proportion 

of nectar robbers does not change (results of the analysis without the influential data point are shown 

in Appendix A: Table A2 & A3; Fig. A3c & d). 
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Figure 1  Effects of (a) semi-natural habitat cover, (b) faba bean cover and (c) oilseed rape cover on bee densities in faba bean 

fields. Effect of (d) faba bean cover on the proportion of nectar robbers. Different pollinator groups are depicted in different 

colors. Lines show predicted means with 95 % confidence intervals. Predictions are obtained from models bee1 (a-c) and rob3 

(d) (Appendix A: Table A2).  

 

Bee pollination effects on faba bean yield components 

The number of beans per pod was explained by three best-fitting models, which included pollinator 

exclusion treatment (Σwi = 1.00), bee density (Σwi = 0.95), variety (Σwi = 0.95), the bee density x variety 

interaction (Σwi = 0.65) and the variety x treatment interaction (Σwi = 0.41) (Appendix A: Table A4 & 

A5). Mean bean number per pod was 57.9 % higher in open pollinated compared to bagged plants for 

variety Fuego and 37.0 % higher for Tiffany (Fig. 2a). Bee densities increased the number of beans per 

pod for Fuego but not for Tiffany (Appendix A: Fig. A4a).  

For individual seed, the global model was the best-fitting model, including treatment, variety, bee 

density (Σwi between 0.90 and 0.98), all possible two-way interactions (Σwi between 0.42 and 0.70) 

(b) 
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and the three-way interaction (Σwi = 0.25) (Appendix A: Table A4 & A5). Individual seed weight was 

10.9 % higher in bagged compared to open pollinated plants for Fuego and did not differ between 

treatments for Tiffany (Fig. 2b). Individual seed weight increased with bee density, but stronger for 

bagged than open plants for the case of Fuego, while for Tiffany a decrease was detected (Appendix 

A: Fig. A4b). 

 

 

Figure 2  The effect of pollinator exclusion treatment on (a) the mean number of beans per pod, (b) the individual seed weight 

(g), (c) the number of pods, (d) the seed weight per plant (g) and (e) dry matter yield (t/ha) for the two faba bean varieties 

Fuego and Tiffany. Predicted means and 95 % confidence intervals are depicted in red. Different letters above boxplots 
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indicate significant differences between treatments. Predictions are obtained from the best-fitting models sw1 (b) and sp1 

(d) and the second-best models b2 (a), p2 (c) y2 (e) (Appendix A: Table A4). 

 

The best-fitting model for pod number included only treatment (Σwi = 0.99) (Table S3 & S4). The three 

other models within dAICc < 2 contained additionally variety (Σwi = 0.59), bee density (Σwi = 0.45) and 

the interaction between variety and treatment (Σwi = 0.42). The number of pods per plant was 12.4 % 

higher in bagged compared to open pollinated plants for Tiffany and did not differ between treatments 

for Fuego (Fig. 2c). Bee densities had no effect on pod number. 

Seed weight per plant was explained by one best-fitting model, including treatment (Σwi = 0.99), variety 

(Σwi = 0.85) and their interaction (Σwi = 0.79) (Appendix A: Table A4 & A5). The seed weight per plant 

was 17.6 % higher for open pollinated plants compared to bagged ones for Fuego, while no difference 

was detected for Tiffany (Fig. 2d). 

The best-fitting model for dry matter yield included only treatment (Σwi = 1.00). The other two models 

within dAICc < 2 contained additionally variety (Σwi = 0.59) and the interaction between treatment and 

variety (Σwi = 0.42) (Appendix A: Table A4 & A5). Dry matter yield was 57.5 % higher in open pollinated 

than in bagged plants for Fuego, but not higher for Tiffany (Fig. 2e).  

For protein yield the best-fitting model included treatment (Σwi = 0.67), but protein yield between 

open and bagged plants did not differ. The second-best fitting model was the null model with a dAICc 

of 0.97, indicating a low support of the best-fitting model. 

Landscape composition effects on faba bean yield components 

There were one to eight best-fitting models explaining the effect of landscape composition and bee 

density on the number of beans per pod, individual seed weight, number of pods per plant, seed weight 

per plant, dry matter yield and protein yield (Appendix A: Table A4). Bee density, all landscape 

composition metrics and various interactions were included in the models for all yield components. 

Oilseed rape cover (Σwi between 0.62 and 0.99) generally had a negative effect on yield components 

(Fig. 3c&f; Appendix A: Fig. A5a-d). Faba bean cover (Σwi between 0.34 and 0.93) and semi-natural 

habitat cover (Σwi between 0.47 and 0.88) generally had a positive effect on yield components (Fig. 3 

a&d; Appendix A: Fig. A5e-k). Bee density (Σwi between 0.73 and 0.97) positively affected yield 

components but effects depended on landscape composition (Appendix A: Table A4 & A6). 

Higher bee densities increased number of beans per pod (Fig. 3d), individual seed weight (Appendix A: 

Fig. A6d), number of pods (Appendix A: Fig. A6e) only in landscapes with a high cover of semi-natural 

habitats. Increasing bee densities had a positive effect on pod number in landscapes with a high cover 

of faba bean (Fig. 3e). Higher bee densities increased seed weight per plant (Fig. 3f), number of beans 

per pod (Appendix A: Fig. A6a), pod number (Appendix A: Fig. A6b) and dry matter yield (Appendix A: 

Fig. A6c) but only in landscapes with a high oilseed rape cover.  
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Figure 3  Effect of (a) semi-natural habitat cover (%) and of (b) faba bean cover (%) on yield per plot (t/ha). Effect of (c) oilseed 

rape cover (%) on protein yield (t/ha). Effect of bee density on (d) bean number/pod for high and low (equals 10.60 % (80th 

percentile) and 0.82 % (20th percentile) respectively; see Appendix B) covers of semi-natural habitats (SNH) (%). Effect of bee 

density on (e) pod number for high and low (equals 13.70 % (80th percentile) and 3.23 % (20th percentile) respectively) covers 

of faba bean (FB) (%). Effect of bee density on (f) seed weight per plant for landscapes high and low (equals 24.42 % (80th 

percentile) and 2.81 % (20th percentile) respectively) covers of oilseed rape (OSR) (%). Lines show predicted means with 95% 

confidence intervals. Predictions are obtained from the best-fitting models oy1 (a, b), opy1 (c), ob1 (d), op1 (e), osp1 (f) 

(Appendix A: Table A4).  

 

Discussion 

Landscape composition effects on bee pollinator density and foraging behavior 

Our study revealed that landscape composition influences densities and foraging behavior of 

pollinators. The positive effect of semi-natural habitat cover on bee densities in bean fields is in line 

with other studies (Carré et al., 2009; Nayak et al., 2015; Raderschall et al., 2021). Generally, semi-

natural habitats are known to promote wild bees (e.g. Steffan-Dewenter et al., 2002) and to improve 

their reproductive success (Requier et al., 2020). Landscapes with high semi-natural habitat covers 

presumably contained higher bumblebee densities, which foraged in bean fields during their flowering. 

Especially short-tongued bumblebees responded positively to high faba bean covers, which might be 

explained by their attraction to mass-resources (Walther-Hellwig and Frankl, 2000). Besides, high faba 

bean covers might have increased worker numbers of bumblebee colonies, similarly as known from 

mass-flowering oilseed rape (e.g. Herrmann et al., 2007; Westphal et al., 2003) and as indicated by 

higher bumblebee densities in landscapes with faba bean cultivation (Beyer et al., 2020). The cover of 

oilseed rape, which flowered prior to faba bean, had negative impacts on short-tongued bumblebee 
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densities in bean fields, which contradicts our expectations. Several studies show positive effects of 

oilseed rape on pollinator densities (e.g. Herrmann et al., 2007; Westphal et al., 2003) but Kallioniemi 

et al. (2017) found a negative relationship between the area of early flowering crops and bumblebee 

densities and species richness. The authors mention competition from honeybees (see Lindström et 

al., 2016) or agrochemical applications in early flowering crops as possible reasons. Alternatively, 

bumblebees might have been attracted to particularly attractive semi-natural habitats in landscapes 

with high oilseed rape covers, leading to lower densities in bean fields. However, we did not record 

flowering plants in semi-natural habitats. 

As expected, long-tongued bumblebees, which are most effective faba bean pollinators (Marzinzig et 

al., 2018), conducted lowest levels of nectar robbing. They conducted nectar robbing more frequently, 

when faba bean fields had higher local flower covers, analogously to Marzinzig et al. (2018). However, 

this effect was driven by one influential data point. If it is removed from the analyses, the effect 

reverses and thus needs to be interpreted with great care. Beyond, landscape composition affected 

bumblebees` foraging behavior in crop fields, which has rarely been observed (but see Raderschall et 

al. 2021). To our knowledge, no study to date has observed that landscape composition differentially 

affects the foraging behavior of different functional pollinator groups. With increasing V. faba land 

cover, short-tongued and long-tongued bumblebees increasingly conducted the foraging behavior 

related to their species-specific morphology. Short-tongued bumblebees increased their nectar 

robbing activity and thus made increased use of faba beans as nectar source. The lower nectar robbing 

activity of long-tongued bumblebees with increasing faba bean land covers might in contrast indicate 

an increased use of bean flowers as pollen source. 

Bee pollination effects on faba bean yield components 

Pollinator exclusion negatively affected yield components of V. faba. As expected, the number of beans 

per pod was enhanced in open pollinated plants compared to bagged plants (e.g. Bishop et al., 2016). 

This increase was stronger for variety Fuego and increasing bee densities led to more beans per pod in 

Fuego only. Individual seed weight did only differ between treatments for Fuego with heavier seeds in 

bagged plants. Surprisingly, seed weight in bagged plants increased with increasing bee densities, 

which might be the result of other interacting factors, such as differing management practices, which 

we could not control for. Bartomeus et al. (2014) observed enhanced yields with increasing bee 

densities for bagged flowers and suggest airborne pollen release by foraging bees as possible 

explanation (Pierre et al., 2010). While seed weight per plant and dry matter yield were not enhanced 

in open pollinated Tiffany plants, dry matter yield was enhanced by 57.5 % for Fuego. It is known that 

the effect of insect pollination is context and variety dependent (Bishop et al., 2020; Bishop & 

Nakagawa 2020). Fuego plants produced fewer but heavier seeds in response to insect exclusion (e.g. 

Geisler, 1988). Contrastingly, Li and Yang (2014) found no trade-offs between seed number and size in 
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faba bean but instead a negative correlation between pod number and seed number per pod, alike the 

response of Tiffany to insect exclusion. The contrasting reactions of Fuego and Tiffany demonstrate 

two different plant strategies of resource allocation in response to the lack of insect pollination. Since 

plants only have limited resources, trade-offs between yield components are commonly observed (Li 

and Yang, 2014). It is moreover known that different cultivars of the same crop species can differ in 

their level of pollinator dependency influencing pollinator effectiveness and yields (Bishop & Nakagawa 

2020; Kendall et al., 2020). 

Landscape composition effects on faba bean yield components 

High faba bean and semi-natural habitat covers enhanced faba bean yield components, which 

corresponds with higher bumblebee densities in such landscapes. It is known that the surrounding 

landscape can influence yield of flowering crops via pollinators (Dainese et al., 2019) and an enhanced 

availability of foraging and nesting habitats has been found to enhance faba bean seed set and yield 

(Andersson et al., 2014; Raderschall et al., 2021). Contrastingly, landscapes with increased oilseed rape 

covers had reduced yield components, which might result from lower bumblebee densities in those 

landscapes. Similarly, Diekötter et al. (2010) showed that high oilseed rape covers resulted in lower 

long-tongued bumblebee densities on red clover, but no effect on seed set was detected. 

Contrastingly, high oilseed rape covers positively affected the weight of strawberries flowering later in 

the season (Herbertsson et al., 2017). To our knowledge, our study is the first evidence of negative 

effects of early-flowering oilseed rape on pollinator densities in and yield of later flowering faba beans. 

Furthermore, we showed that the effect of increasing bee densities on faba bean yield formation was 

modulated by landscape composition. This might be the result of different pollinator communities in 

landscapes with high and low covers of the respective landscape composition metrics. Moreover, the 

foraging behavior of the different functional bee groups varied according to changing landscape 

composition (Bänsch et al., 2020). For instance, results indicate that in landscapes with low faba bean 

covers, honeybees outnumbered bumblebees, in contrast to landscapes with high bean covers where 

bumblebees were predominant. It is likely that the presence of bumblebees is decisive for successful 

pollination and yield formation in V. faba. Accordingly, long-tongued bumblebees are known to be 

most effective faba bean pollinators (Marzinzig et al., 2018) and pollination benefits tend to be higher 

for bumblebees than honeybees (Bishop & Nakagawa, 2020). Thus, visitor communities dominated by 

honeybees might be less effective, as indicated by our results. 

Concluding, this study contributes to increasing evidence that crop pollinators respond to resource 

availability at landscape scale and adapt their foraging behavior respectively (Bänsch et al., 2020, Grab 

et al., 2017). Landscape composition modulated bee densities, bees` foraging behavior and pollination 

services. Our study adds further evidence on the high value of semi-natural habitats on ecosystem 

services, such as crop pollination. Further research is needed on how pollinators` foraging behavior in 
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crops is affected by landscape composition and on how early flowering crops modulate pollinators` 

community composition and pollination services in later flowering crops. 

Acknowledgements 

We are grateful to all farmers who allowed us to conduct our research on their land. Furthermore, we 

thank Sandra Schweiger, Felix Kirsch and all student helpers for their support during field work and 

Stefan Mecke for his help during landscape selection. We also thank three anonymous reviewers for 

their valuable feedback on the manuscript. The study was conducted within the framework of the 

RELEVANT project. It is supported by funds of the Federal Ministry of Food and Agriculture (BMEL) 

based on a decision of the parliament of the Federal Republic of Germany via the Federal Office for 

Agriculture and Food (BLE) under the Federal Programme for Ecological Farming and Other Forms of 

Sustainable Agriculture (Project number 281 5EPSO 16). C.W. is grateful for being funded by the 

Deutsche Forschungsgemeinschaft (DFG) (Project number 405945293). 

References 

Andersson, G.K.S., Ekroos, J., Stjernman, M., Rundlöf, M., Smith, H.G., 2014. Effects of farming 
intensity, crop rotation and landscape heterogeneity on field bean pollination. Agric. Ecosyst. 
Environ. 184, 145–148. https://doi.org/10.1016/j.agee.2013.12.002 

Bailes, E.J., Pattrick, J.G., Glover, B.J., 2018. An analysis of the energetic reward offered by field bean 
(Vicia faba) flowers: Nectar, pollen, and operative force. Ecol. Evol. 8, 3161–3171. 
https://doi.org/10.1002/ece3.3851 

Bänsch, S., Tscharntke, T., Gabriel, D., Westphal, C., 2021. Crop pollination services: complementary 
resource use by social vs solitary bees facing crops with contrasting flower supply. J. Appl. Ecol. 
58, 476-485. https://doi.org/10.1111/1365-2664.13777 

Bartomeus, I., Potts, S.G., Steffan-Dewenter, I., Vaissière, B.E., Woyciechowski, M., Krewenka, K.M., 
Tscheulin, et al., 2014. Contribution of insect pollinators to crop yield and quality varies with 
agricultural intensification. PeerJ 2, e328. https://doi.org/10.7717/peerj.328 

Beyer, N., Gabriel, D., Kirsch, F., Schulz‐Kesting, K., Dauber, J., Westphal, C., 2020. Functional groups of 
wild bees respond differently to faba bean ( Vicia faba L.) cultivation at landscape scale. J. Appl. 
Ecol. 57: 2499-2508. https://doi.org/10.1111/1365-2664.13745 

Bishop, J., Garratt, M.P.D., Breeze, T.D., 2020. Yield benefits of additional pollination to faba bean vary 
with cultivar, scale, yield parameter and experimental method. Sci. Rep. 10, 1–11. 
https://doi.org/10.1038/s41598-020-58518-1 

Bishop, J., Jones, H.E., Lukac, M., Potts, S.G., 2016. Insect pollination reduces yield loss following heat 
stress in faba bean (Vicia faba L.). Agric. Ecosyst. Environ. 220, 89–96. 
https://doi.org/10.1016/j.agee.2015.12.007 

Bond, D.A., Poulsen, M.H., 1983. Pollination. In: Hebblethwaite, P. D., Ed., The Faba Bean (Vicia faba 
L.). Butterworths, London, 77-101. 

Brooks, M.E., Kristensen, K., Benthem, K.J. van, Magnusson, A., Berg, C.W., Nielsen, A., Skaug, H.J., et 
al., 2017. glmmTMB Balances Speed and Flexibility Among Packages for Zero-inflated Generalized 
Linear Mixed Modeling. R J. 9, 378–400. 



Chapter 5 

161 
 

Burnham, K.P., Anderson, D.R., 2002. Model Selection and Multimodel Inference. A Practical 
Information-Theoretic Approach, 2nd ed. ed. Springer-Verlag. 

Cardinale, B.J., Duffy, J.E., Gonzalez, A., Hooper, D.U., Perrings, C., Venail, P., Narwani, A., et al., 2012. 
Biodiversity loss and its impact on humanity. Nature 486, 59–67. 
https://doi.org/10.1038/nature11148 

Carré, G., Roche, P., Chifflet, R., Morison, N., Bommarco, R., Harrison-Cripps, J., Krewenka, K., Potts, 
S.G., et al., 2009. Landscape context and habitat type as drivers of bee diversity in European 
annual crops. Agric. Ecosyst. Environ. 133, 40–47. https://doi.org/10.1016/j.agee.2009.05.001 

Dainese, M., Martin, E.A., Aizen, M.A., Albrecht, M., Bartomeus, I., Bommarco, R., Carvalheiro, L.G., et 
al., 2019. A global synthesis reveals biodiversity-mediated benefits for crop production. Sci. Adv. 
5, eaax0121. 

Diekötter, T., Kadoya, T., Peter, F., Wolters, V., Jauker, F., 2010. Oilseed rape crops distort plant-
pollinator interactions. J. Appl. Ecol. 47, 209–214. https://doi.org/10.1111/j.1365-
2664.2009.01759.x 

European Commission, 2020. Evaluation of the impacts of the CAP on habitats, landscape, biodiversity. 
Final Report. Publications Office of the European Union. Luxembourg. 

Geisler, G., 1988. Pflanzenbau: Ein Lehrbuch - Biologische Grundlagen und Technik der 
Pflanzenproduktion, 2nd ed. Paul Parey, Berlin; Hamburg. 

Grab, H., Blitzer, E.J., Danforth, B., Loeb, G., Poveda, K., 2017. Temporally dependent pollinator 
competition and facilitation with mass flowering crops affects yield in co-blooming crops. Sci. 
Rep. 7, 1–9. https://doi.org/10.1038/srep45296 

Herbertsson, L., Rundlöf, M., Smith, H.G., 2017. The relation between oilseed rape and pollination of 
later flowering plants varies across plant species and landscape contexts. Basic Appl. Ecol. 24, 77–
85. https://doi.org/10.1016/j.baae.2017.08.001 

Herrmann, F., Westphal, C., Moritz, R.F.A., Steffan-Dewenter, I., 2007. Genetic diversity and mass 
resources promote colony size and forager densities of a social bee (Bombus pascuorum) in 
agricultural landscapes. Mol. Ecol. 16, 1167–1178. https://doi.org/10.1111/j.1365-
294X.2007.03226.x 

Holzschuh, A., Dainese, M., González-Varo, J.P., Mudri-Stojnić, S., Riedinger, V., Rundlöf, M., Scheper, 
J., et al., 2016. Mass-flowering crops dilute pollinator abundance in agricultural landscapes across 
Europe. Ecol. Lett. 19, 1228–1236. https://doi.org/10.1111/ele.12657 

Irwin, R.E., Bronstein, J.L., Manson, J.S., Richardson, L., 2010. Nectar Robbing: Ecological and 
Evolutionary Perspectives. Annu. Rev. Ecol. Evol. Syst. 41, 271–292. 
https://doi.org/10.1146/annurev.ecolsys.110308.120330 

Kallioniemi, E., Åström, J., Rusch, G.M., Dahle, S., Åström, S., Gjershaug, J.O., 2017. Local resources, 
linear elements and mass-flowering crops determine bumblebee occurrences in moderately 
intensified farmlands. Agric. Ecosyst. Environ. 239, 90–100. 
https://doi.org/10.1016/j.agee.2016.12.039 

Kendall, A.D.A., Smith, B.D., 1975. The Pollinating Efficiency of Honeybee and Bumblebee Visits to Field 
Bean Flowers (Vicia faba L.) 12, 709–717. 

Kendall, L.K., Gagic, V., Evans, L.J., Cutting, B.T., Scalzo, J., Hanusch, Y., Jones J., Rocchetti, M., Sonter, 
C., Keir, M., Rader, R. 2020. Self-compativle blueberry cultivars require fewer floral visits to 
maximize fruit production than a partially self-incompatible cultivar. J. Appl Ecol. 57: 2454-2462. 
https:// doi.org/10.1111/1365-2664.13751   



Chapter 5 

162 
 

Li, X., Yang, Y., 2014. A novel perspective on seed yield of broad bean (Vicia faba L.): Differences 
resulting from pod characteristics. Sci. Rep. 4, 1–6. https://doi.org/10.1038/srep06859 

Lindström, S.A.M., Herbertsson, L., Rundlöf, M., Bommarco, R., Smith, H.G., 2016. Experimental 
evidence that honeybees depress wild insect densities in a flowering crop. Proc. R. Soc. B Biol. 
Sci. 283, 1–8. https://doi.org/10.1098/rspb.2016.1641 

Maloof, J.E., Inouye, D.W., 2000. ARE NECTAR ROBBERS CHEATERS OR MUTUALISTS? Ecology 81. 

Marzinzig, B., Brünjes, L., Biagioni, S., Behling, H., Link, W., Westphal, C., 2018. Bee pollinators of faba 
bean (Vicia faba L.) differ in their foraging behaviour and pollination efficiency. Agric. Ecosyst. 
Environ. 264, 24–33. https://doi.org/10.1016/j.agee.2018.05.003 

Nayak, G.K., Roberts, S.P.M., Garratt, M., Breeze, T.D., Tscheulin, T., Harrison-Cripps, J., Vogiatzakis, 
I.N., et al., 2015. Interactive effect of floral abundance and semi-natural habitats on pollinators 
in field beans (Vicia faba). Agric. Ecosyst. Environ. 199, 58–66. 
https://doi.org/10.1016/j.agee.2014.08.016 

Pierre, J., Vaissière, B., Vallée, P., Renard, M., 2010. Efficiency of airborne pollen released by honeybee 
foraging on pollination in oilseed rape: A wind insect-assisted pollination. Apidologie 41, 109–
115. https://doi.org/10.1051/apido/2009056 

Power, A.G., 2010. Ecosystem services and agriculture: Tradeoffs and synergies. Philos. Trans. R. Soc. 
B Biol. Sci. 365, 2959–2971. https://doi.org/10.1098/rstb.2010.0143 

QGIS Development Team, 2016. QGIS Geographic Information System. Open Source Geospatial 
Foundation Project. Retrieved from http:// qgis.osgeo.org. 

R Core Team, 2019. R: A language and environment for statistical computing. 

Raderschall, C.A., Bommarco, R., Lindström, S.A.M., Lundin, O., 2021. Landscape crop diversity and 
semi-natural habitat affect crop pollinators, pollination benefit and yield. Agric. Ecosyst. Environ. 
306, 107189. https://doi.org/10.1016/j.agee.2020.107189 

Requier, F., Jowanowitsch, K.K., Kallnik, K., Steffan-Dewenter, I., 2020. Limitation of complementary 
resources affects colony growth, foraging behavior, and reproduction in bumble bees. Ecology 
101, 0–3. https://doi.org/10.1002/ecy.2946 

Shaw, R.F., Phillips, B.B., Doyle, T., Pell, J.K., Redhead, J.W., Savage, J., Woodcock, B.A., et al., 2020. 
Mass-flowering crops have a greater impact than semi-natural habitat on crop pollinators and 
pollen deposition. Landsc. Ecol. 35, 513–527. https://doi.org/10.1007/s10980-019-00962-0 

Soper, M.M.H., 1952. A study of the principal factors affecting the establishment and development of 
the field bean (vicia faba). J. Agric. Sci. 42, 335–346. 
https://doi.org/10.1017/S0021859600057233 

St-Martin, A., Bommarco, R., 2016. Soil compaction and insect pollination modify impacts of crop 
rotation on nitrogen fixation and yield. Basic Appl. Ecol. 17, 617–626. 
https://doi.org/10.1016/j.baae.2016.07.001 

Steffan-Dewenter, I., Münzenberg, U., Bürger, C., Thies, C., Tscharntke, T., 2002. Scale-dependent 
effects of landscape context on three pollinator guilds. Ecology 83, 1421–1432. 
https://doi.org/10.1890/0012-9658(2002)083[1421:SDEOLC]2.0.CO;2 

Tamburini, G., Bommarco, R., Kleijn, D., van der Putten, W.H., Marini, L., 2019. Pollination contribution 
to crop yield is often context-dependent: A review of experimental evidence. Agric. Ecosyst. 
Environ. 280, 16–23. https://doi.org/10.1016/j.agee.2019.04.022 

von Hagen, E., Aichhorn, A., 2014. Hummeln. bestimmen, ansiedeln, vermehren, schützen, 6th ed. 



Chapter 5 

163 
 

Fauna Verlag, Nottuln. 

Walther-Hellwig, K., Frankl, R., 2000. Foraging habitats and foraging distances of bumblebees, Bombus 
spp. (Hym., Apidae), in an agricultural landscape. J. Appl. Entomol. 124, 299–306. 
https://doi.org/10.1046/j.1439-0418.2000.00484.x 

Westphal C., Steffan-Dewenter I. & Tscharntke T., 2009. Mass flowering oilseed rape improves early 
colony growth but not sexual reproduction of bumblebees. Journal of Applied Ecology, 46, 187-
193. 

Westphal, C., Bommarco, R., Carré, G., Lamborn, E., Morison, N., Petanidou, T., Potts, S.G., et al., 2008. 
Measuring bee diversity in different European habitats and biogeographical regions. Ecol. 
Monogr. 78, 653–671. https://doi.org/10.1890/07-1292.1 

Westphal C., Steffan-Dewenter I. & Tscharntke T., 2006. Foraging trip duration of bumblebees in 
relation to landscape-wide resource availability. Ecological Entomology, 31, 389-394. 

Westphal, C., Steffan-Dewenter, I., Tscharntke, T., 2003. Mass flowering crops enhance pollinator 
densities at a landscape scale. Ecol. Lett. 6, 961–965. https://doi.org/10.1046/j.1461-
0248.2003.00523.x 

 



Chapter 5 

164 
 

Supplementary material 

Appendix A 

Figures 

 
Figure A1  Schematic map showing the location of the study landscapes in Germany (depicted as purple squares) Below, the 

composition of the individual study landscapes is shown: the area proportion (%) of faba bean (FB, in puple), of oilseed rape 

(OSR, in yellow) and of semi-natural habitats (SNH, in green) of each study landscape.   
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Figure A2  Study design of pollinator exclusion experiment. In each faba bean fields four individual plants per plot (two at 

field center and two at field edge) were bagged (see photograph) and eight open pollinated plants were marked and left 

unbagged to allow natural pollination.   
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Figure A3  The effect of local flower cover (%) of transect area on (a) bee density and on (b) the proportion of nectar robbers 

for the three pollinator groups (depicted in different colors) - for the whole data set. Effect of (c) faba bean cover (%) and of 

(d) local flower cover (%) on the proportion of nectar robbers for the three pollinator groups - for the data set without the 

influential data point at flower cover = 60 %. Lines show predicted means with 95 % confidence intervals. Predictions are 

obtained from the respective best-fitting models bee1 (a) and rob1 (b) and from the third-best fitting model robB3 (c, d) 

(Table A2).  
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Figure A4  The effect of bee density on (a) the number of beans per pod for the two different bean varieties and the effect of 

bee density on (b) the individual seed weight (g) for open and bagged plants and for both varieties. Predicted means and 95 

% confidence intervals are shown. Predictions are obtained from the second-best model b2 (a) and the best-fitting model 

sw1 (b) (Table A4).  

 

 

 
Figure A5  Effects of (a-d) oilseed rape cover (%), (e-g) faba bean cover (%) and of (h-k) semi-natural habitat cover on yield 

components. Predicted means and 95 % confidence intervals are shown. Predictions are obtained from models ob1 (a&h), 

ob3 (e), osw1 (b), osw2 (i), osw7 (f), op3 (c), op4 (f), op6 (j), osp1 (d), osp2 (g), osp3 (k) (Table A4). 
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Figure A6  The effect of bee density (a) on the mean number of beans per pod, (b) on the number of pods per plant and (c) 

on yield (t/ha) for a high and a low (equals 24.42 % and 2.81 % respectively) level of oilseed rape cover. The effect of bee 

density on (d) the individual seed weight (g) and on (e) the number of pods per plant for high and low (equals 10.60 % and 

0.82 % respectively) covers of semi-natural habitats. Lines show predicted means with 95% confidence intervals. Predictions 

are obtained from models ob5 (a), op5 (b, e), oy1 (d) and osw1 (d) (Table A4). 

 

Tables 

Table A1  Total number of observed honeybees, short-tongued bumblebees and long-tongued bumblebees as well as their 

observed pollination behavior on faba beans (during transect walks). 

 Honeybees Short-tongued 
Bumblebees 

Long-tongued 
Bumblebees 

observed in total 520 201 83 

legitimate visit 49 29 69 

nectar robbing 471 163 14 
 

 

Table A2  Summary of the best fitting candidate models (dAIC<2), null and full models for the effects of landscape composition 

on bee densities and foraging behavior in faba bean fields. Analyses of the proportion of nectar robbers were conducted with 

the full data set (rob) and without an influential data point (robB). Marginal (Rm
2) and conditional (Rc

2) R2 values are given as 

a measure of the model´s goodness of fit. group: pollinator group (honeybees, long-tongued bumblebees, short-tongued 

bumblebees), FB: faba bean cover (%), FC: local flower cover of faba bean fields, OSR: oilseed rape cover (%), SNH: semi-

natural habitat cover (%). 

response 
variable 

model df AICc deltaAIC 
AIC 

weight 
explanatory variables Rm

2 Rc
2 

Bee 
densities 
(n=120) 

bee1 14 600.67 0.00 0.19 group + FB + FC + OSR + SNH + group:FB + group:OSR 0.66 0.74 

bee2 11 600.69 0.02 0.18 group + FB + FC + SNH + group:FB 0.63 0.71 

bee3 12 601.37 0.70 0.13 group + FB + FC + OSR + SNH + group:FB 0.64 0.73 

bee0 4 656.96 56.29 0.00 1 0.00 0.51 

bee.full 18 611.15 10.48 0.00 
group + FB + FC + OSR + SNH + group:FB + 
group:sOSR + group:sSNH + group:sFC 

0.66 0.74 
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Table A3  The relative importance of explanatory variables expressed by Σwi (sum of Akaike weights) for models to explain 

the effects of landscape composition on bee densities and foraging behavior of bees in faba bean fields (best fitting models 

are shown in Table A2). Analyses of the proportion of nectar robbers were conducted with the full data set (rob) and without 

an influential data point (robB). Model parameters having Σwi > 0.2 for all response variables are shown. group: pollinator 

group (honeybees, long-tongued bumblebees, short-tongued bumblebees), FB: faba bean cover (%), FC: local flower cover of 

faba bean fields, OSR: oilseed rape cover (%), SNH: semi-natural habitat cover (%). 

Model 
response 
variable 

group FB FC SNH OSR 
group: FB group: FC group: 

SNH 
group: 

OSR 

bee Bee densities 1.00 0.85 1.00 0.85 0.55 0.70 - - 0.29 

rob Prop. robbers 1.00 0.56 0.75 0.26 0.25 0.42 0.61 - - 

robB Prop. robbers 1.00 0.45 0.73 0.25 0.25 0.27 0.47 - - 

 

Table A4  Summary of the best fitting candidate models (dAIC<2) and null models for the effects of bee pollination on faba 

bean yield components and for bee density and landscape composition effects on yield components of open pollinated faba 

bean plants. Marginal (Rm
2) and conditional (Rc

2) R2 values are given as a measure of the model´s goodness of fit. Treatment: 

pollinator exclusion treatment (bagged/open pollinated), Bee: bee densities, variety: faba bean variety (Tiffany/Fuego), FB: 

faba bean cover (%), OSR: oilseed rape cover (%), SNH: Semi-natural habitat cover (%), Bee: bee densities. 

Proportion 
of nectar 
robbers 
(n=83) 

rob1 8 260.75 0.00 0.19 group + FC + group:FC 0.53 0.60 

rob2 11 261.68 0.93 0.12 group + FB + FC + group:FB + group:FC 0.55 0.62 

rob3 8 262.63 1.88 0.07 group + FB + group:FB 0.55 NA 

rob0 3 451.61 190.86 0.00 1 0.00 0.11 

rob.full 17 269.26 8.50 0.00 
group + FB + FC + OSR + SNH + group:FB + group:OSR 
+ group:SNH + group:FC 

0.66 0.71 

Proportion 
of nectar 
robbers 
(n=82; 

without 
influential 
data point) 

robB1 8 242.57 0.00 0.14 group + FC + group:FC 0.58 0.63 

robB2 6 243.61 1.03 0.09 group + FC 0.55 0.61 

robB3 11 243.61 1.04 0.09 group + FB + FC + group:FB + group:FC 0.59 0.64 

robB4 5 243.82 1.25 0.08 group 0.55 0.61 

robB0 3 448.61 206.04 0.00 1 0.00 0.11 

robB.full 17 255.37 12.79 0.00 
group + FB + FC + OSR + SNH + group:FB + group:OSR 
+ group:SNH + group:FC 

0.61 0.66 

response 
variable 

model df AICc deltaAIC 
AIC 

weight 
explanatory variables Rm

2 Rc
2 

Bee pollination effects on yield components 

Beans per 
pod 

(n=493) 

b1 8 1145.89 0.00 0.28 Bee + treatment + variety + Bee:variety 0.25 0.28 

b2 9 1146.65 0.76 0.19 
Bee + treatment + variety + Bee:variety + 
treatment:variety 

0.25 0.28 

b3 7 1147.87 1.98 0.10 Bee + treatment + variety 0.24 0.28 

b0 4 1261.61 115.71 0.00 1 0.00 0.08 

b.full 11 1150.51 4.62 0.03 
Bee + treatment + variety + Bee:treatment + 
Bee:variety + treatment:variety + 
Bee:treatment:variety 

0.25 0.28 

Individual 
seed 

weight 
(n=493) 

sw1 & 
sw.full 

11 -765.24 0.00 0.25 
Bee + treatment + variety + Bee:treatment + 
Bee:variety + treatment:variety + 
Bee:treatment:variety 

0.22 0.36 

sw2 9 -764.86 0.38 0.21 
Bee + treatment + variety + Bee:treatment + 
Bee:variety 

0.21 0.36 

sw3 8 -763.76 1.48 0.12 Bee + treatment + variety + Bee:variety   0.20 0.35 

sw0 4 -756.22 9.02 0.00 1 0.00 0.36 

Seed 
weight per 

plant 
(n=480) 

sp1 7 2879.79 0.00 0.43 treatment + variety + treatment:variety 0.02 0.46 

sp0 4 2888.39 8.60 0.01 1 0.00 0.43 

sp.full 11 2886.47 6.68 0.02 
Bee + treatment + variety + Bee:treatment + 
Bee:variety + treatment:variety + 
Bee:treatment:variety 

0.03 0.46 

Pod 
number 
(n=493) 

p1 5 2803.62 0.00 0.25 treatment 0.01 0.44 

p2 7 2803.90 0.28 0.21 treatment + variety + treatment:variety 0.02 0.45 

p3 6 2805.27 1.64 0.11 Bee + treatment 0.02 0.42 

p4 8 2805.61 1.98 0.09 Bee + treatment + variety + treatment:variety 0.03 0.42 

p0 4 2812.40 8.77 0.00 1 0.00 0.43 
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Table A5  The relative importance of explanatory variables expressed by Σwi (sum of Akaike weights) for models to explain 

the effects of bee pollination on faba bean yield components (best fitting models are shown in Table A4). Model parameters 

having Σwi > 0.2 for all response variables are shown. Treatment: pollinator exclusion treatment (bagged/open pollinated), 

sBee: bee densities, variety: faba bean variety (Tiffany/Fuego). 

Insect pollination effects on yield parameters and yield 

Model 
response 
variable 

treatment variety Bee 
treatment: 

variety 
Bee: 

treatment 
Bee:variety 

Bee:treatment
:variety 

b Beans per pod 1.00 0.95 0.95 0.41 0.28 0.65 - 

sw 
Individual Seed 
weight 

0.98 0.93 0.90 0.41 0.65 0.68 0.23 

sp 
Seed weight per 
plant 

0.99 0.85 0.43 0.79 - - - 

p Pod number 0.99 0.59 0.44 0.42 - - - 

y Dry matter yield 1.00 0.59 0.42 0.41 - - - 

p.full 11 2809.72 6.10 0.01 
Bee + treatment + variety + Bee:treatment + 
Bee:variety + treatment:variety + 
Bee:treatment:variety 

0.03 0.43 

Dry matter 
yield (n=85) 

y1 5 301.76 0.00 0.25 treatment 0.05 0.69 

y2 7 301.96 0.19 0.23 treatment + variety + treatment:variety 0.09 0.71 

y3 6 303.75 1.98 0.09 treatment + variety 0.07 0.69 

y0 4 311.73 9.97 0.00 1 0.00 0.61 

y.full 11 308.93 7.17 0.01 
Bee + treatment + variety + Bee:treatment + 
Bee:variety + treatment:variety + 
Bee:treatment:variety 

0.13 0.70 

Protein 
Yield 

(n=43) 

py1 5 440.74 0.00 0.23 treatment 0.03 0.68 

py0 4 441.72 0.97 0.14 1 0.00 0.64 

py.full - - - - - 0.57 0.73 

Landscape composition effects on yield components (open pollinated plants) 

Beans per 
pod 

(n=344) 

ob1 9 746.39 0.00 0.11 Bee + FB + OSR + SNH + Bee:SNH 0.10 0.11 

ob2 5 746.67 0.29 0.10 Bee 0.05 0.16 

ob3 6 747.70 1.31 0.06 Bee + FB 0.06 0.16 

ob4 7 747.82 1.44 0.05 Bee + FB + OSR 0.07 0.16 

ob5 8 747.94 1.55 0.05 Bee + FB + OSR + Bee:OSR 0.09 0.17 

ob6 10 748.09 1.70 0.05 Bee + FB + OSR + SNH + Bee:OSR + Bee:SNH 0.10 0.11 

ob7 6 748.22 1.83 0.04 Bee + OSR 0.05 0.16 

ob0 4 748.84 2.45 0.03 1 0.00 0.17 

ob.full 11 750.18 3.79 0.02 Bee + OSR + SNH + FB + Bee:OSR + Bee:SNH + Bee:FB 0.10 0.11 

Individual 
seed 

weight 
(n=342) 

osw1 8 -606.73 0.00 0.20 Bee + OSR + SNH + Bee:SNH 0.23 0.39 

osw2 5 -605.38 1.35 0.10 SNH 0.12 0.38 

osw0 4 -602.56 4.17 0.02 1 0.00 0.38 

osw.ful
l 

11 -600.42 6.31 0.01 Bee + OSR + SNH + FB + Bee:OSR + Bee:SNH + Bee:FB 0.23 0.39 

Seed 
weight per 

plant 
(n=342) 

osp1 7 2036.95 0.00 0.20 Bee + OSR + Bee:OSR 0.27 0.51 

osp2 8 2037.54 0.59 0.15 Bee + FB + OSR + Bee:OSR 0.30 0.51 

osp3 9 2037.90 0.95 0.12 Bee + FB + OSR + SNH +  Bee:OSR 0.32 0.52 

osp4 8 2038.71 1.76 0.08 Bee + OSR + SNH + Bee:OSR 0.27 0.52 

osp0 4 2042.07 5.12 0.02 1 0.00 0.51 

osp.full 11 2041.42 4.47 0.02 Bee + OSR + SNH + FB + Bee:OSR + Bee:SNH + Bee:FB 0.32 0.51 

Pod 
number 
(n=344) 

op1 9 1887.55 0.00 0.14 Bee + FB + OSR + Bee:FB + Bee:OSR 0.28 0.50 

op2 7 1887.96 0.41 0.12 Bee + OSR + Bee:OSR 0.25 0.52 

op3 8 1888.02 0.47 0.11 Bee + FB + OSR + Bee:FB 0.22 0.46 

op4 8 1888.08 0.53 0.11 Bee + FB + OSR + Bee:OSR 0.28 0.52 

op5 9 1888.40 0.85 0.09 Bee + OSR + SNH + Bee:OSR + Bee:SNH 0.27 0.52 

op6 9 1888.94 1.39 0.07 Bee + FB + OSR + SNH + Bee:FB 0.24 0.47 

op7 10 1889.14 1.59 0.06 Bee + FB + OSR + SNH + Bee:FB + Bee:OSR 0.28 0.50 

op8 10 1889.28 1.72 0.06 Bee + FB + OSR + SNH + Bee:OSR + Bee:SNH 0.30 0.52 

op0 4 1892.97 5.42 0.01 1 0.00 0.48 

op.full 11 1890.39 2.83 0.03 Bee + OSR + SNH + FB + Bee:OSR + Bee:SNH + Bee:FB 0.29 0.50 

Dry matter 
yield (n=40) 

oy1 8 152.72 0.00 0.44 Bee + FB + OSR + SNH + Bee:OSR 0.67 0.68 

oy0 3 163.60 10.88 0.00 1 0.66 0.00 

oy.full 10 159.17 6.45 0.02 Bee + OSR + SNH + FB + Bee:OSR + Bee:SNH + Bee:FB 0.67 0.68 

Protein 
Yield 

(n=22) 

opy1 4 22.65 0.00 0.53 OSR 0.60 - 

opy0 3 31.99 9.34 0.00 1 0.00 0.54 

opy.full - - - - Bee + OSR + SNH + FB + Bee:OSR + Bee:SNH + Bee:FB 0.70 - 
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py Protein yield 0.67 0.39 0.51 - - - - 

 

Table A6  The relative importance of explanatory variables expressed by Σwi (sum of Akaike weights) for models to explain 

the effects of landscape composition and bee density on faba bean yield components of open pollinated plants (best fitting 

models are shown in Table A4). Model parameters having Σwi > 0.2 for all response variables are shown. FB: faba bean cover 

(%), OSR: oilseed rape cover (%), SNH: semi-natural habitat cover (%), Bee: bumblebee densities. 

Landscape composition effects of yield parameters and yield (open pollinated plants) 

Model response variable Bee FB OSR SNH Bee:FB Bee:OSR Bee:SNH 

ob Beans per pod 0.87 0.63 0.64 0.53 - 0.23 0.28 

osw 
Individual Seed 
weight 

0.73 0.34 0.62 0.88 - - 0.51 

osp 
Seed weight per 
plant 

0.92 0.61 0.95 0.52 0.24 0.77 - 

op Pod number 0.96 0.71 0.96 0.47 0.47 0.71 0.22 

oy Dry matter yield 0.97 0.93 0.99 0.84 - 0.80 0.25 

opy Protein Yield - 0.20 0.99 - - - - 

 

 

Appendix B 

Details on the statistical approach 

We used the multimodel inference approach by Burnham & Anderson (2002) for model selection. 

Based on the global models, candidate models, containing all possible combinations of predictor 

variables were fitted with the dredge function of the MuMIn package (Barton, 2019). They were ranked 

by second order Akaike Information Criterion (AICc) and Akaike weights (wi) were used to estimate 

relative support of a model to have the best fit across all models (Burnham and Anderson, 2002). The 

number of variables in the candidate models for all protein yield models was restricted to a maximum 

of five. The sum of Akaike weights (Σwi) of all predictor variables across all models that include the 

respective variable were used as measure of the relative importance. We interpreted all models with 

a delta AICc < 2 compared to the best fitting model and we interpret the effects of all predictor 

variables with Σwi > 0.2. We calculated the marginal (Rm
2) and conditional (Rc

2) R2 values (Nakagawa et 

al., 2017) with the performance package (Lüdecke et al., 2020) to evaluate the models’ goodness of fit. 

We inspected residual plots to validate model assumptions. We used the variance inflation factor (VIF) 

to test for collinearity and VIFs were below 3 for all cases (Zuur et al., 2010). We tested for spatial 

autocorrelation in residuals using the Moran`s I test, which was non-significant (p > 0.05) for all models. 

To test for differences between pollinator groups and between pollinator exclusion treatments, we 

applied post hoc tests with the emmeans package (Lenth, 2019) and alpha level of 0.05. To visualize 

interaction effects between bee density and landscape composition metrics (two continuous 

explanatory variables) on yield components, we plotted predictions of the effect of bee density on 

yield components for a low and a high level of the respective landscape composition metrics. Those 

levels represent the 20th and 80th percentile of the landscape composition metrics, respectively. 
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Measurement of the beans` nitrogen content and calculation of protein yield 

The seeds` nitrogen (N) content was assessed using 79 samples from eight study fields. For 3-6 bagged 

and open pollinated plants per landscape, beans of different pods were milled. N content of flour was 

determined by high temperature combustion (analysis with Vario el cube, Elementar). Two samples 

per plant were analyzed and averaged (in total 158 individual samples). We calculated protein yield 

[t/ha] per plot by multiplying dry matter yield with the mean bean protein content (N*6.25 (Jones, 

1941)), averaged across all plants per plot. 
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Landscape composition effects on seed infestation with the broad been weevil (Bruchus rufimanus 

Boheman) 

Results 

The multi-model inference revealed eight models within delta AICc < 2 explaining landscape 

composition effects on seed infestation with the broad bean weevil (Appendix B: Table B1). The 

proportion of seeds infested with B. rufimanus decreased with the cover of semi-natural habitats in 

the landscape (Σwi = 0.94), slightly stronger so at the field edge compared to the field center (location 

x SNH: Σwi = 0.41; Appendix B: Table B2, Fig. B1a). Weevil infestation decreased with increasing faba 

bean cover (Σwi = 0.73) and this decrease was stronger at the field edge (Appendix B: Fig. B1b). Weevil 

infestation did not differ between the field edge and the field center (Σwi = 0.89; p=0.10). The 

proportion of weevil infested seeds decreased with increasing number of pods per plant (Σwi = 0.81; 

Appendix B: Fig. B1c) and increased with increasing oilseed rape land cover (Σwi = 0.47; Appendix B: 

Fig. B1d). 
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Table B1  Summary of the best fitting candidate models (dAIC<2) and null models for the landscape composition effects on 

seed infestation with the broad bean weevil. Marginal (Rm
2) and conditional (Rc

2) R2 values are given as a measure of the 

model´s goodness of fit. FB: faba bean cover (%), SNH: Semi-natural habitat cover (%), location: field location (edge/center), 

pods: number of pods per faba bean plant. 

 

Table B2  The relative importance of explanatory variables expressed by Σwi  (sum of Akaike weights) for models to explain 

the effects of landscape composition and plants` pod number on the seed infestation with the broad bean weevil (best fitting 

models are shown in Table B1). Model parameters having Σwi > 0.2 for all response variables are shown. FB: faba bean cover 

(%), OSR: oilseed rape cover (%), SNH: semi-natural habitat cover (%), location: field location (edge/center), pods: number of 

pods per faba bean plant.  

Landscape composition effects on seed infestation with the bread been weevil (open pollinated plants) 

Model response variable location pods FB OSR SNH location:FB location:SNH 

we Prop. weevil infest. 0.89 0.81 0.90 0.47 0.94 0.45 0.41 

 
 

Landscape composition effects on seed infestation with the bread been weevil (open pollinated plants) 

response 
variable 

model df AICc deltaAIC 
AIC 

weight 
explanatory variables Rm

2 Rc
2 

Proportion 
of weevil 
infested 

seeds 
(n=343) 

we1 8 1811.35 0.00 0.08 location + FB + pods + SNH + location:FB 0.15 0.29 

we2 9 1811.98 0.63 0.06 location + FB + OSR + pods + SNH +  location:FB 0.17 0.29 

we3 8 1811.99 0.64 0.06 location + FB + pods + SNH + location:SNH 0.15 0.29 

we4 9 1812.40 1.05 0.05 
location + FB + pods + SNH + location:FB + 
location:SNH 

0.15 0.29 

we5 7 1812.66 1.31 0.04 location + FB + pods + SNH 0.15 0.29 

we6 9 1812.89 1.54 0.04 location + FB + OSR + pods + SNH + location:SNH 0.17 0.29 

we7 10 1813.08 1.73 0.04 
location + FB + OSR + pods + SNH + location:FB + 
location:SNH 

0.17 0.29 

we8 6 1813.19 1.84 0.03 FB + pods + SNH 0.15 0.29 

we0 3 1819.13 7.78 0.00 1 0.00 0.28 

we.full 12 1817.31 5.96 0.00 
location + FB + OSR + pods + SNH + location:FB + 
location:OSR + location:pods + location:SNH 

0.17 0.29 
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Fig. B1  The effect of (a) cover of semi-natural habitats (%), (b) faba bean cover (%), (c) number of pods per plant and (d) 

oilseed rape cover (%) on the proportion of seeds infested with the broad bean weevil. In (a, b) for plants at the field edge 

and in the field center. Lines show predicted means with 95% confidence intervals. Predictions are obtained from model we1 

(Appendix B: Table B1). 

 

Discussion 

The broad bean weevil is a major pest in faba beans and infestation lowers the seed quality as food or 

feed product with resulting price declines (Bachmann et al., 2020). We found the proportion of seeds 

with B. rufimanus damage to decrease with increasing number of pods per plant and with increasing 

faba bean cover. This might be the result of a dilution of weevils if more faba bean pods or plants are 

available in a landscape. The decrease of weevil infestation with increasing faba bean cover was 

stronger at the field edge, from which beetles migrate into the field from the surroundings. Bean 

weevils overwinter under tree bark, in leaf litter, in seeds or in the soil and move into bean fields 

usually in May (Pölitz and Reike, 2019; Seidenglanz and Huňady, 2016). Pölitz and Reike (2019) 

observed that weevils particularly used plants at the field edges for oviposition. Contrary, our results 

do not show a higher infestation of plants at the field edge compared to the field center. Field center 
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in our study was defined as 15 m from the field edge, which might have been a too short distance from 

the edge to observe significant differences between field edge and field center. Furthermore, the 

proportion of infested seeds decreased with increasing covers of semi-natural habitats. The promotion 

of natural enemies of weevil pests in heterogeneous landscapes might have been the reason for that. 

For aphids for instance, a positive effect of landscape heterogeneity on pest control has been found 

(Plećaš et al., 2014). However, we did not record the occurrence of the weevil`s natural enemies and 

the parasitism rates. A parasitism by the wasp Triaspis thoracicus might lower weevil densities 

(Seidenglanz and Huňady, 2016). Since weevil larvae bore into seeds directly after hatching and 

develop within the seeds, a control of the larval stage through insecticides is difficult (Pölitz and Reike, 

2019; Seidenglanz and Huňady, 2016). Therefore, it might be promising to gain more knowledge on 

how B. rufimanus infestations can be lowered through biological pest control. Further research is 

needed on whether the availability of semi-natural habitats in agricultural landscapes can indeed 

enhance pest control and lower pest pressure of weevils on faba beans. Finally, we found an increased 

weevil infestation with increasing oilseed rape land covers. A possible explanation is that weevils fed 

on the pollen of oilseed rape during its bloom until the end of May. Pölitz and Reike (2019) observed 

broad been weevils to feed on faba bean nectar and pollen but also on the pollen of flowers in the 

surroundings with no preference for specific flower species. Weevils might have been benefited from 

the resources of a nearby oilseed rape field flowering directly before faba beans start to bloom. 
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Synthesis 

In this thesis, I studied the effect of faba bean cultivation on bee pollinators, i.e. their densities, species 

richness, reproduction, resource utilization and their functional community composition. Furthermore, 

I focused on the effect of landscape composition on bee pollinators and analyzed how insect 

pollinators shape yield components of mass-flowering crops in interaction with landscape 

composition. I found evidence for a beneficial effect of the cultivation of V. faba on bees and thereby 

I provide an example for an effective on-field greening measure. Nevertheless, the cultivation of a 

single mass-flowering crop alone cannot sustain insect diversity in agroecosystems. As demonstrated, 

mass-flowering crops promote certain functional groups of pollinators, which are associated with the 

morphology of the crops` flowers. While faba beans promoted predominantly bumblebees and bees 

with foraging preferences for Fabaceae, oilseed rape enhanced the proportion of social bees in the 

pollinator communities. These findings indicate that crop diversity is an important factor for sustaining 

a high pollinator diversity, as it has been already indicated in regard of a high functional diversity of 

farmland plants (Sutter et al., 2017).  

Another major aspect for bee conservation is the presence of large amounts of high quality semi-

natural habitats in agricultural landscapes. I found semi-natural habitats to enhance bee densities. 

Moreover, I observed indications for enhanced pest control in landscapes with a high semi-natural 

habitat cover, in terms of lower proportions of weevil infested bean seeds. Beyond the quantity of 

semi-natural habitats, their quality might be decisive for bee conservation. I found the flower cover of 

semi-natural habitats to be the main driver of non-Bombus wild bee densities in these habitats and 

landscape diversity to enhance wild bee species richness. Furthermore, the cover of semi-natural 

habitats did not affect the reproduction of bumblebee colonies, but landscape diversity positively 

affected the number of young queens. These findings indicate that in addition to the quantity of semi-

natural habitats, their quality as well as the diversity of agricultural landscapes are essential 

prerequisites for the promotion of bees. Concluding, I recommend the implementation of both, on-

field and off-field biodiversity measures to conserve beneficial insects in agricultural landscapes. High 

amounts and diversity of semi-natural habitats provide a continuous supply of resources for the whole 

pollinator community, while mass-flowering crops merely promote certain pollinator groups and 

predominantly the common crop pollinators (Kleijn et al., 2015).  

Beyond that, I found evidence for legacy effects, i.e. that landscape composition in the current year 

and even in the past years affects actual bee pollinators in crop fields and the crop yield. Mass-

flowering crop cultivation in the past enhanced bee densities in oilseed rape fields, whereas mass-

flowering crops in the actual year led to a pollinator dilution. Insect pollination and past mass flowering 

crop cover positively affected crop yield. This emphasizes the importance of taking landscape 

composition history into account when analyzing crop pollination services in agricultural landscapes.  
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Moreover, I found landscape composition to affect bee densities and bees` foraging behavior in faba 

bean fields as well as faba bean yield components. The landscape cover of semi-natural habitats and 

of faba bean positively affected bee densities and crop yield, while oilseed rape had negative impacts. 

Additionally, landscape composition interacted with bee densities in shaping faba bean yield, 

indicating that landscape composition needs to be considered for achieving maximum crop yields.  

My results add further evidence to the role of landscape complexity on beneficial insects in agricultural 

landscapes (Benton et al., 2003; Bukovinszky et al., 2017; Tscharntke et al., 2005). My thesis provides 

new insights into the complex relationships between landscape composition, bee densities, bees` 

foraging behavior and mass-flowering crop yields. Moreover, it indicates that on- and off-field 

management practices can improve landscape composition and promote pollinators and their vital 

pollination services. I encourage the implementation of biodiversity measures aiming at a high semi-

natural habitat quantity and quality and at increasing temporal and spatial crop diversity as well as 

high landscape diversity in order to sustain beneficial insects in agricultural landscapes and to conserve 

ecosystem services, such as pollination for future generations.   
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