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• T. Köhler, J. Stolpp, and S. Paeckel. Efficient and flexible approach
to simulate low-dimensional quantum lattice models with large local
Hilbert spaces. SciPost Phys., 10:58, 2021.
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Chapter 1

Introduction

Atoms arranged in a periodic lattice structure are a common starting point
for the description of solid-state materials. The atomic cores (the nucleus +
the core electrons) form a periodic potential for the electrons. A fully rigid
and perfectly periodic lattice structure leads to Bloch states for the electrons,
under the condition that they are non-interacting. Although the assumptions
made seem to be very strong approximations (the electrons definitively in-
teract via screened Coulomb repulsion and the atoms will always have some
movement for non-zero temperature), the resulting band theory is able to
describe important phenomena like metals and band insulators [1].

The success of the non-interacting theory can be justified within Fermi-
Liquid theory. Including weak short-range repulsive interactions between the
electrons does not change the physics qualitatively. Important features, like
the existence of a Fermi edge, carry over, while the non-interacting electrons
have to be replaced by interacting quasi particles with a renormalized mass
but otherwise identical quantum numbers as the bare electrons [2].

The assumption of a rigid lattice structure on the timescales of the elec-
trons can be justified by noting that the mass of an atomic nucleus exceeds
the electron mass by orders of magnitude (proton mass ≈ 1u vs. electron
mass ≈ 5× 10−4u [3]). The movements of the atomic cores is therefore slow
compared to the electronic motion. The electronic state can instantaneously
adapt to changes in the potential landscape caused by core movements. For-
mally, this can be derived by first splitting off the kinetic energy term for the
cores from the full Hamiltonian to arrive at the Born-Oppenheimer Hamil-
tonian. Eigenstates of the Born-Oppenheimer Hamiltonian are coupled to
each other through the kinetic term of the cores when the full Hamilto-
nian is considered. Ignoring these so called derivative couplings leads to the
Born-Oppenheimer approximation (also referred to as adiabatic approxima-
tion) [4, 5]. As we will see below, the notion that electrons do always adapt
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instantaneously to the potential landscape generated by the atomic cores
can, however, break down.

In reality, lattice vibrations are always present at non-zero temperatures.
In a quantum mechanical description, lattice excitations are referred to as
phonons. The interaction between electrons and phonons plays a crucial
role in understanding basic phenomena like the finite electric conductivity
in metals [1]. Furthermore, strong electron-phonon coupling can lead to
more striking phenomena. Prominent examples include the emergence of
polarons and subsequent self trapping [6], the formation of charge-density-
wave states [7], or BCS superconductivity [8].

In addition, electron-phonon coupling plays a crucial role as a relaxation
channel after a system is taken far from equilibrium. Such situations come
up in so called pump-probe experiments that have become a popular scheme
in recent years to study solid-state materials [9,10]. These experiments bring
a solid-state system out of equilibrium by hitting it with a strong laser pulse
(pump pulse). After a variable waiting time, the sample is exposed to a sec-
ond laser pulse (probe pulse) and the diffracted light of the second pulse is
analysed. This experimental protocol allows for a time dependent study of
excitation dynamics in the sample. In particular, laser-pulse durations on the
femtosecond timescale allow for the direct observation of electron-relaxation
dynamics, which opened the field of so called ultrafast dynamics in solids [9].
With this technology, many novel phenomena could be explored. Fascinat-
ing are the reported observation of photo-induced enhanced superconductiv-
ity [11], or the emergence of superconductivity in non-equilibrium above the
critical temperature [12]. The melting of charge-density-wave order [13, 14]
and the switching between different charge-density-wave patterns [15] were
studied. Furthermore, metastable states can be accessed [16] and phase tran-
sitions between metallic and insulating states can be induced [17,18].

To describe the dynamics of the experiments in theory, the full solid-state
system is, in a first approximation, often treated as a collection of coupled
sub-systems [10]. These are the electronic sub-system, the lattice degrees
of freedom and possibly spin excitations. Specific modes in a selected sub-
system can be targeted by tuning the frequency of the pump pulse. In many
experiments, the pump pulse primarily couples to the electrons and excites
them to a non-equilibrium state. Then the scattering between the electrons
and their coupling to the lattice lets the system evolve to a steady state [10].
Understanding these competing relaxation channels is a task for theoreticians
to comprehend the observations.

To approach this problem, it is helpful to resort to simple model systems.
This ansatz allows to isolate certain aspects of more complicated solid-state
systems, giving the opportunity to understand the influence of specific system
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parameters on a phenomenon without disguise by other effects. The bulk of
this work is devoted to the study of exactly such a model system, namely the
Holstein model of spinless fermions in one dimension [19,20]. The model com-
prises of non-interacting spinless fermions hopping on a tight binding chain.
The fermions are locally coupled to harmonic oscillators. The harmonic os-
cillators at each site are decoupled from each other, thereby playing the role
of an idealized Einstein phonon branch. Hence, direct electron-electron in-
teraction or spin degrees of freedom are neglected. Further, phonons can
only propagate through the system by being absorbed by a fermion at one
site and then reemitted at another.

Despite its simplicity, the model hosts two phenomena that are typical
for electron-phonon coupled systems, namely polaron formation [21] and, at
half filling, a phase transition between a metallic Tomonaga-Luttinger liquid
phase to an insulating charge-density-wave phase [22–24]. This makes it a
popular platform in solid-state theory to explore these phenomena and to
test different analytical and numerical techniques tailored for systems with
electron-phonon coupling [22,24–38].

In this work, the Holstein model will be investigated by means of wave-
function based numerical techniques (exact diagonalization [39] and the density-
matrix renormalization group (DMRG) [40–42]). These require the Hilbert
space of the problem to be of finite dimension, however, the local harmonic
oscillators can in principle host arbitrarily many excitations, making already
the Hilbert space of a single site infinite dimensional. This problem is re-
solved by a hard cutoff of the maximal local phonon number that has to be
chosen appropriately depending on system parameters and the specific prob-
lem at hand. Still, the possibly large local Hilbert spaces pose a major chal-
lenge for the aforementioned numerical techniques and specialized algorithms
have been developed to overcome this problem [28–30, 37]. Here, two differ-
ent ansatzes to improve the performance of density-matrix-renormalization-
group methods will be introduced and used.

The first one is the so called local basis optimization (LBO) pioneered by
Zhang et al. in Ref. [29] that aims to dynamically transform the local bosonic
state space into a more efficient local basis that retains most of the state’s
information with a smaller local dimension. For this purpose, the single-
site reduced density matrix is computed and the state is locally transformed
into its eigenbasis. The new local basis can then be truncated according to
the eigenvalues of the single-site reduced density matrix, yielding an efficient
approximation of the state.

Early efforts to incorporate LBO into ground-state DMRG methods con-
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sisted of calculating the optimized local basis on small systems and then using
this basis for larger system sizes [43–45]. Further, DMRG-LBO algorithms
were developed that calculated the local basis more dynamically [29, 46, 47].
In his thesis, F. Dorfner [48] developed a ground-state DMRG-LBO method
by combining the ideas of Guo et al. [49] with the strictly single-site DMRG
by Hubig et al. [50]. This method is tested here in detail. Especially, the inner
workings and the interplay between algorithmic parameters with Hamiltonian
parameters are analysed (see also Ref. [38]). Furthermore, the time-evolution
DMRG-LBO ansatz developed by Brockt et al. [51–53] to investigate the dy-
namics of single electrons coupled to phonons, is extended in this work to
half filled systems (see also Ref. [54]). In both the ground-state and time-
evolution DMRG-LBO algorithms used here, the LBO is fully adaptive to
the system size, system parameters, and the specific task at hand.

The second method is referred to as projected purification and was re-
cently developed by Köhler, Paeckel, and the author [37]. In this method, the
strategy is to utilize the well known performance gains from exploiting parti-
cle number conservations in the density-matrix renormalization group [55,56].
Since the number of phonons in the Holstein model is not conserved initially,
the problem is projected to an enlarged Hilbert-space where a global U(1)
symmetry is restored. For this purpose, artificial phonon bath sites are in-
troduced for every physical site, so that the combined number of phonons on
every pair of physical and bath site is conserved.

To test the two methods, ground-state calculations are performed for
the Holstein model at half filling and compared to the established pseudo-
site method [28] (see also Ref. [38]). For the comparison, the energy in the
ground state as well as the displacement of the local oscillators is measured.
Different parameter sets of the Holstein model are chosen, corresponding to
distinct parts of the phase diagram. This way, a comprehensive overview of
the methods performance in the different regions can be given.

Overall, all three methods are able to provide very precise results for
every of the considered data points. The projected-purification method is
conceptually quite simple and a two-site solver for the density-matrix renor-
malization group is used here, which makes handling the code very straight
forward. In contrast, the local basis optimization introduces the number of
optimized basis states as a new parameter in the code and a single-site solver
with subspace expansion is used in the density-matrix renormalization group.
This makes the method more delicate to converge. On the other hand, the
local basis optimization yields a more compact representation of the ground
states compared to the projected-purification, which becomes important close
to the phase transition of the Holstein model.
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After testing the performance of the local basis optimization in a ground-
state calculation, DMRG-LBO is applied to a time dependent problem (see
also Ref. [54]). Motivated by the pump-probe experiments mentioned above,
the ultra-short-time dynamics of charge-density-wave ordered states in the
Holstein model is studied. Complementary to earlier work by Hashimoto
and Ishihara [57], no direct interaction between electrons is present here and
the emphasis is on the far-from-equilibrium regime. For this purpose three
different initial states are considered that are time evolved at different points
in the phase diagram. The first is a product state where every second site in
the Holstein chain is occupied with an electron and no phonons are present
initially; this one is termed bare charge-density-wave state. The second is
a product state as well, but in this case every second site is occupied by a
polaron. This one is referred to as dressed charge-density-wave state. As the
last initial state, correlated ground states in the charge-density-wave phase
of the Holstein model are considered.

The dynamics strongly depends on the parameters in the Hamiltonian and
on the initial states. Nevertheless, a melting of the charge-density-wave order
is found in all cases, as is expected in non-equilibrium. To track the melting,
the charge-density-wave order parameter (staggered electron density) is fol-
lowed as a function of time. In case of the bare charge-density-wave state, a
transient self trapping effect can be observed for large electron-phonon cou-
plings. This phenomenon results in a cascade like decay of the order param-
eter (a corresponding result was found in single-electron dynamics by Kloss
et al. [58]). When the system is prepared in a correlated charge-density-wave
ground state and quenched to the Tomonaga-Luttinger liquid phase, different
timescales in the relaxation of the initially present electronic and phononic
order can be detected. The electrons move through the lattice such that
the order parameter decays. However, the phonons can only move by being
absorbed by the electrons first and than emitted at a different location. This
process happens on longer timescales than the electron hopping, explaining
the persistent phononic order.

Complementary to the study of the short-time dynamics, one can ask
whether and how closed quantum systems thermalize in the limit of very long
times. A now well established theory for exactly this problem is the so called
eigenstate thermalization hypothesis pioneered by Deutsch [59] and Srednicki
[60]. One of its main statements is that thermalizing Hamiltonians share
characteristics of random matrices. This further implies that expectation
values of observables in states from the eigenbasis of the Hamiltonian are a
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smooth function of the energy of the respective states, only [61, 62]. Many
works that study the eigenstate thermalization hypothesis numerically focus
on Hamiltonians that are relevant for quantum gas experiments (Hubbard
models or spin systems) [63–66]. The systems studied in these experiments
are close to being isolated and, therefore, thermalization and its breakdown
in integrable systems can be tested directly [67–69].

Here, thermalization is investigated in the Holstein model as an example
for a more solid-state motivated system (see also Ref. [70]). Only a single
fermion in the chain is considered, making the coupling energy between elec-
trons and phonons, that breaks the integrability of the system, an intensive
term in the Hamiltonian. Both, the structure of the energy spectrum and ob-
servables are analysed by means of exact diagonalization of the Hamiltonian
for small systems with up to L = 8 sites and a maximum of Mph = 3 phonons
per site. Comparing the results to predictions of the eigenstate thermaliza-
tion hypothesis yields a very good agreement. The findings suggest thermal-
izing behavior for fixed Mph in the limit of large systems (L → ∞). These
results are non trivial, since there is only a single electron in the system and,
therefore, the integrability breaking electron-phonon energy is not extensive
but of order O(1) [71–76].

The subject of the last part of this thesis is somewhat detached from
the rest. There, mass transport in the 1d Fermi-Hubbard model is stud-
ied by means of a quantum gas experiment [77, 78] with additional support
from time-dependent DMRG simulations. The model describes electrons in
a tight-binding chain with onsite interactions, while a coupling to the lattice
degrees of freedom is neglected, in contrast to the Holstein model.

The experimental study presented here (see also Ref. [79]) is motivated
by preceding investigations of sudden expansion in the Bose-Hubbard model
[80,81]. The concept of these experiments is to prepare a cloud of particles in
the center of an otherwise empty lattice. Upon release, the particles tunnel
to the empty part. The expansion dynamics of the particle cloud is strongly
dependent on the interaction strength between the particles and the initial
state. In particular, a reduction of the expansion velocity for intermediate
interaction strengths was found in the 1d Bose-Hubbard model, when only
singly occupied sites are present in the initial state [80]. Furthermore, signa-
tures of quantum distillation [80–84] were detected in case the initial state
consists of a mixture of singly and multi occupied sites [80, 81]. This phe-
nomenon features an accumulation of multi occupations in the center while
single occupations escape.

In the experimental study presented here, clouds of fermions are prepared
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in local Fock states. If doubly occupied sites are present in the initial state,
a large interaction leads to the dynamical formation of a stable high density
core, while a low density background expands. This is clear signature of
fermionic quantum distillation. If all the sites in the initial cloud are only
singly occupied, double occupations are generated dynamically. Similar to
the bosonic case, the expansion velocity is then reduced for intermediate
interaction strengths. However, this reduction is far less pronounced here,
since two is the highest occupation possible in case of fermions.

The results of the quantum gas experiment are analysed with support
of numerical time-dependent DMRG calculations. These calculations show
that the efficiency of the quantum distillation mechanism is reduced by the
existence of completely unoccupied sites in the initial state. Furthermore, the
reduced expansion velocity in case of only single occupations in the initial
state can be traced back to converting kinetic energy into interaction energy.
This mechanism is found both in the fermionic and bosonic case.

This work is structured as follows. In Ch. 2, the origin of electron-phonon
coupling and resulting phenomena in solid-state systems are discussed. The
main study object of this thesis, the Holstein model of spinless fermions is
introduced in Ch. 3. Chapter 4 contains a recapitulation of matrix-product-
state methods for time evolution and ground-state calculations, before two
specialized ansatzes to optimize matrix-product-state methods for electron-
phonon systems, the local basis optimization and the projected purification,
are introduced in Ch. 5 and Ch. 6, respectively. These two methods are
used in Ch. 7 to calculate ground states of the half-filled Holstein model.
The local basis optimization is again employed for time evolution in Ch. 8
to study charge-density-wave melting in the Holstein model. In Ch. 9, the
eigenstate thermalization hypothesis is put to the test in the same model
but for a single itinerant charge carrier. The focus shifts from electron-
phonon coupling to dominating electron-electron interaction in Ch. 10 where
the sudden expansion of a fermion cloud in the 1d Fermi-Hubbard model is
discussed. This thesis ends with a conclusion and outlook in Ch. 11.
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Chapter 2

Electron-phonon coupling

The full Hamiltonian to describe a solid-state crystal comprises terms for
the movement of the atomic nuclei and all the electrons as well as terms for
the interaction between these constituents. However, in most materials, for
every nucleus, there are some electrons that are always tightly bound to it.
These electrons do not directly take part in the binding between the atoms
and, therefore, play a subordinary role for the electronic properties of the
solid. These electrons are the so called core electrons, and in the description
of solids the atomic nuclei and the core electrons are often merged to form
the atomic cores. The rest of the electrons, the so called valence electrons,
are kept explicitly in the description. This leads to the Hamiltonian [1, 85]:

H =
∑
i

P2
i

2Mi

+
∑
j

p2
j

2me

+
1

2

∑
i,i′

i 6=i′

V1(Ri,Ri′) +
1

2

∑
j,j′

j 6=j′

V2(rj, rj′) +
∑
i,j

V3(Ri, rj) , (2.1)

where Ri and Pi are the position and momentum operators of the atomic
cores and rj and pj are the position and momentum operators of the valence
electrons. Mi are the masses of the atomic cores and me is the electron mass.
The last three terms describe the interaction between the cores, the electrons,
and the cores with the electrons, respectively.

The full Hamiltonian Eq. (2.1) can be reduced to the so called Born-
Oppenheimer Hamiltonian by removing the kinetic energy term for the atomic
cores [4, 5]:

HBO =
∑
j

p2
j

2me

+
1

2

∑
i,i′

i 6=i′

V1(Ri,Ri′) +
1

2

∑
j,j′

j 6=j′

V2(rj, rj′) +
∑
i,j

V3(Ri, rj) . (2.2)
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The Born-Oppenheimer Hamiltonian is diagonal in the position basis of the
atomic cores. For a given spatial configuration of the atomic cores one is,
therefore, left with the electronic problem only.

The electronic problem alone is already a very demanding many-body
problem and in the most general form there is no hope of solving it. Never-
theless, let me assume that I got a solution for the electron problem somehow.
A generic wave function in position space is:

ψ(~r, ~R) = 〈~r, ~R|ψ〉 , (2.3)

where ~r = (r1, . . . rN) and ~R = (R1, . . .RM). The state |~r, ~R〉 is a basis state
in the position basis and can also be written as a product of the electronic
and core part:

|~r, ~R〉 = |~r〉|~R〉 (2.4)

Since the Born-Oppenheimer Hamiltonian is diagonal in the position basis
of the atomic cores, its eigenstates can be written as |n(~R)〉|~R〉 such that [5]:

HBO|n(~R)〉|~R〉 = εn(~R)|n(~R)〉|~R〉 . (2.5)

For fixed n the energies εn(~R) form surfaces in ~R-space, the so called Born-
Oppenheimer surfaces.

One can now write the full Hamiltonian, Eq. (2.1), in the eigenbasis of
the Born-Oppenheimer Hamiltonian, Eq. (2.5). In general, the kinetic term
for the atomic cores in Eq. (2.1) leads to a coupling between different ba-
sis states, the so called derivative couplings [5]. However, if the different
electronic eigenstates of the Born-Oppenheimer Hamiltonian, Eq. (2.2), are
well separated for a given core configuration, the coupling between the elec-
tronic eigenstates will be very weak. In this situation, the ansatz states from
Eq. (2.5) are close to being eigenstates of the full Hamiltonian, Eq. (2.1). If

one prepares the electrons in a specific eigenstate |n(~R)〉 these will stay in
the nth eigenstates, even if one slowly deforms the core configuration. The
situation where one ignores the electron-lattice coupling through the kinetic
energy term of the cores is also referred to as the adiabatic approximation [5].

If, however, the electronic levels come closer together, the situation is
different. A transfer between different electronic levels is then possible by
exchanging energy with the atomic core configuration. The states in Eq. (2.5)
will then no longer resemble the eigenstates of the full system. In particular,
the derivative couplings diverge in the vicinity of points in ~R-space where
Born-Oppenheimer surfaces touch [5]. In this case, electrons and atomic
cores have to be treated on equal footing.
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2.1 Phonons

For a quantum-mechanical description of the atomic cores, it is convenient
to use the language of phonons. The starting point for this description is a
collection of N atomic cores, arranged in a periodic lattice structure, that
are described classically. The cores are coupled with each other in such a
way, that a deviation of the equilibrium distance between the cores leads
to a linear restoring force. This approximation is certainly valid for small
deviations from the equilibrium distances. One ends up with a system of N
coupled harmonic oscillators. In d spatial dimensions the description leads
to dN oscillator modes [1].

The dispersion relation of the dN oscillator modes can be grouped into
different branches. As long as all atomic cores have the same mass and the
coupling between the cores along all spatial directions is homogeneous, only
acoustic branches appear. The dispersion relation of these acoustic branches
vanishes linearly when the wave vector goes to zero:

ωA(k) ∝ |k| for |k| → 0 . (2.6)

As soon as atomic cores with different masses are present in the system or the
coupling between the cores is not homogeneous, so called optical branches
show up. The dispersion of these optical branches does not vanish for long
wavelengths:

ωO(k)→ ω0 for |k| → 0 . (2.7)

A sketch of a typical phonon dispersion in 1D with an acoustic and optical
branch is shown in Fig. 2.1 [1].

Upon quantisation of the problem, each of the dN classical oscillator
modes can be treated as an independent quantum oscillator. These quantum
oscillators can be in certain excitation states specified by the occupation
numbers nkb and their energy is:

Ekb =

(
nkb +

1

2

)
ωb(k) , (2.8)

where b is a branch index and ωb(k) is the dispersion from the classical
description. Analogous to the description of excitations of the light field as
photons, the excitations of the oscillator modes in a solid are called phonons
[1].

Two rather radical approximations are frequently used when dealing with
phonons, so I will quickly recap them here. The first one was used by Debye
to describe the specific heat of a solid [86]. In the Debye description in d
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Figure 2.1: Sketch of a phonon dispersion in 1D with an acoustic branch
(blue) and an optical branch (red). The dashed green line represents the
Debye approximation for the acoustic branch and the purple dotted line
represents the Einstein approximation of the optical branch, where ωD is the
Debye frequency and ωE is the Einstein frequency.

dimensions, all phonon branches are replaced by d phonon branches with the
same linear dispersion (see Fig. 2.1):

ω(k) = c|k| , (2.9)

where c is a constant with units of a velocity. In addition, one defines a
maximum wave vector kD such that every branch contains exactly N phonon
modes. This cutoff replaces the restriction to a single Brillouine zone. The
volume of a single wave vector in k-space is (2π)d/V , where V is the volume
of the solid. N times this volume has to be equal the volume of a d dimen-
sional sphere in k-space with radius kD. Therefore, kD is defined through the
relation:

n =
N

V
=

Vd
(2π)d

kD
d , (2.10)

where Vd is the volume of the unit sphere in d dimensions. From kD, one can
define the Debye frequency ωD which is a measure for the highest frequency
in the solid:

ωD = ckD . (2.11)

Despite being a very crude approximation, the Debye model is commonly
used. By choosing as the constant c the average of the phase velocity in the
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long-wavelength limit of the acoustic branches, the model can, for example,
provide reliable results for low temperatures [1].

The second approximation that I want to mention goes back to Einstein
[87]. One envisions the solid as consisting of independent harmonic oscillators
whose frequency is ωE. The dispersion relation is therefore just a constant
(see Fig. 2.1):

ω(k) = ωE . (2.12)

Such a dispersion can be used to approximate the optical branches of the
phonon dispersion.

Electron-phonon interaction can be categorized into being short or long
range. In ionic and polar materials the potential for a charge carrier is formed
by the dipole fields of the constituents. Changing the distance between the
ions of a dipole alters the coulomb potential seen by a charge carrier, leading
to a long range coupling. A short range coupling results from a dependence
of the potential seen locally by a charge carrier on the strain at the respective
location in the material [6]. This scenario is described by the Holstein model
where the on-site energy level depends linearly on the displacement of a
harmonic oscillator at the site [19, 20] (see also Ch. 3).

2.2 Phenomena resulting from electron-phonon

interaction

The phonon picture is particularly helpful to describe the interaction between
electrons and lattice degrees of freedom. Electrons moving through the lattice
can bump into an atomic core and emit or absorb phonons in the process .
These processes lead to the relaxation of electrical currents in metals and are
the standard explanation for the temperature dependence of the resistivity
[1]. In the following, other prominent examples of phenomena resulting from
electron-phonon interactions are introduced.

The original notion of a polaron, going pack to a paper by Landau [88],
is that of an electron bound to a potential indentation. Such an indentation
can be caused by the electron itself attracting the surrounding polar lattice
ions and thereby deforming the lattice. The movement of the electron is,
therefore, hindered substantially since the deformation of the lattice has to
travel simultaneously. The response of the lattice to the electron attraction,
however, is rather slow on timescales of the electron movements. The result
is a so called self trapping effect with a large effective mass of the polaron
compared to the bare electron mass. This situation corresponds to the strong
coupling limit between electrons and phonons [6].

16



In a broader sense, polarons are electrons spatially correlated to phonon
excitations. If the coupling between electrons and phonons is weak this will
not impede the electron movement too much. Rather, the result is a moderate
increase of the effective mass [6].

Furthermore, a categorization of polarons can be made depending on the
extend of the induced lattice deformations. In the case of large polarons the
the lattice deformations are spread over several sites while for small polarons
these deformations are primarily confined to the location of the electron.

In addition to the change of the effective mass of the electrons, the de-
formation of the lattice can have an effect on the interaction between the
electrons. Bi-polarons are formed if it becomes favorable for two charge car-
riers to join forces and occupy the same self-trapping potential well [6]. On
the other end of the spectrum, a repulsive interaction between polarons can
lead to charge density waves. Such a situation is found in the Holstein model
of spinless fermions [22] as will be discussed later.

Electron-phonon coupling plays a key role in conventional BCS supercon-
ductors [89]. Cooper showed that a Fermi liquid is unstable against attractive
interactions between electrons at the Fermi edge [90]. Such an interaction
leads to the formation of bound states of two electrons with opposite mo-
mentum and spin, the so called Cooper pairs. The necessary attractive in-
teraction is a result of the interaction between electrons and lattice as shown
by Bardeen, Cooper, and Schrieffer [8, 85].

The superconducting gap in this theory takes the form [89]:

∆ ≈ ~ωce−1/(N0V ) , (2.13)

where ωc is a cutoff frequency, N0 is the density of states at the fermi edge,
and V is the attractive interaction strength between the electrons. As an
estimate for the cutoff frequency one can take the Debye frequency which in
turn depends on the mass of the atoms in the crystal as ωD ∝ 1/

√
M [1]. This

leads to the so called isotope effect. If one changes the isotope of an element
superconductor, this changes the size of the gap and therefore the critical
temperature as TC ∝ 1/

√
M . A necessary condition is of course that all other

parameters in Eq. (2.13) remain unchanged. The prediction of an isotope
effect in case electron-lattice interactions play a role in superconductivity by
Fröhlich [91, 92] and the subsequent measurement of such an effect [93, 94]
paved the way towards the development of the BCS-theory.

The role of electron-phonon coupling in the context of high-Tc super-
conductivity is less clear. The most widespread working hypothesis is that
spin excitations are responsible for the pairing mechanism at least in the
cuprate [95] and iron based superconductors [96]. The role of electron-phonon
coupling in these compounds is, therefore, less prominent.
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Figure 2.2: Sketch of the gap opening in a electronic dispersion as a conse-
quence of a periodic lattice distortion that doubles the unit cell. If the band
is half-filled, the electrons close to the Fermi edge lose energy because of the
gap opening, resulting in a band insulator (Peierls instability).

In one-dimensional systems exists a particular phenomenon associated
with electron-phonon coupling. It was pointed out by Peierls, that partially
filled bands in a one-dimensional conductor are unstable towards periodic
lattice distortions [7, 97]. Consider such a partially filled band (cf. Fig 2.2).
The Fermi surface consists of the two wave vectors ±kF.

Now also consider an acoustic phonon branch. If the lattice is periodically
distorted this leads to an enlargement of the unit cell and consequently the
Brillouin zone shrinks. If the wave vector of this periodic distortion is kph =
2kF the Fermi surface falls on the boundary of the new Brillouin zone. The
presence of the periodic potential leads to the well known gap opening in the
electronic spectrum at the edge of the Brillouin zone [1].

As long as electronic states above and below the newly opened gap are
occupied the total energy of the electronic system does not change. If kph =
2kF, however, only the states below the gap are occupied and the electronic
system lowers its energy. The state with the opened gap and periodic lattice
distortions will be the ground state of the combined electron-phonon system
if the energy required to distort the lattice is less than the energy gain of the
electronic system. In Ref. [98] it is argued that this is always the case for
small static displacements.
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Chapter 3

Holstein model

In his seminal work from 1959, Holstein develops a model for a linear chain
of identical diatomic molecules that is now commonly known as the Holstein
model [19, 20]. The center of mass and the orientation in space of all the
molecules is fixed. What is left are the vibrational modes of the molecules.
If one assumes a square potential for the relative displacement of the two
atoms in a molecule from their rest position one ends up with a collection
of uncoupled harmonic oscillators. Their Hamiltonian can be diagonalized
in the occupation number basis of the harmonic oscillators and one ends up
with:

Hph = ω0

L∑
l=1

b†l bl , (3.1)

where the bl [b†l ] are bosonic annihilation [creation] operators, ω0 is the fre-
quency of the oscillators, and L is the number of molecules (length of the
chain). The model, therefore, features a single branch of Einstein phonons.

Next, one introduces electrons that can move in this chain of molecules.
One chooses a tight binding ansatz for the electrons such that the electronic
state is a superposition of states that are localized on specific molecules.
For simplicity I will consider noninteracting spinless electrons here. In his
original paper [19, 20] Holstein considers just a single electron in the lattice
so the Hamiltonian in second quantisation takes the same form as the one
for spinless fermions:

Hel = −t0
L∑
l=1

(c†l cl+1 + c†l+1cl) , (3.2)

where the cl [c†l ] are fermionic annihilation [creation] operators and t0 is the
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Figure 3.1: Sketch of the different terms in the Holstein Hamiltonian
Eq. (3.4). Electrons hop from site to site with a hopping amplitude t0.
Every site has a harmonic oscillator attached to it with a frequency ω0. The
excitations of the harmonic oscillators constitute an Einstein phonon branch.
The density of the electrons at the sites couples to the displacement of the os-
cillators with a strength γ. Figure from Ref. [54]. c© 2020 American Physical
Society

hopping matrix element. In this form I assume periodic boundary conditions
and identify cL+1 as c1.

The last ingredient of the model is an interaction between the electrons
and the vibrations of the molecules. The basic consideration is that deforma-
tions of the lattice can change the energy levels of the electrons. In this case,
one assumes a linear dependence of the electron level at a specific molecule
on the relative displacement Xl from the rest distance of the atoms in the
molecule. The electron level is lowered when the atoms increase their relative
distance:

Hel−ph = −γ
L∑
l=1

nl(b
†
l + bl) , (3.3)

where nl = c†l cl and (b†l + bl) ∝ Xl. In the following, I will refer to (b†l + bl)
as the displacement, although it is only proportional to the operator Xl.

The full Hamiltonian of the Holstein model then reads (see also Fig. 3.1):

HHol = Hel +Hph +Hel−ph . (3.4)

The Hamiltonian implies that the hopping matrix element t0 does not de-
pend on the vibrational state of the molecules involved in the hopping. Im-
portantly, the number of fermions N =

∑L
l=1〈nl〉 is conserved but due to

Hel−ph, Eq. (3.3), the number of phonons Nph =
∑L

l=1〈b
†
l bl〉 is not.

It is evident, that the Holstein model with its many simplifications is
far from describing the dynamics in a real material. Nevertheless, it hosts
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a wealth of interesting physics typical for electron-phonon coupled systems
[21, 22]. Polarons with different characteristics can be found in the model,
ranging from weak to strong dressing and from spread out large polarons to
small polarons depending on the ratios of hopping t0, phonon frequency ω0

and coupling γ [21]. If the density of electrons in the system becomes consid-
erable, the phonons can mediate an effective interaction between the charge
carriers. At half filling, this leads to a quantum phase transition between a
metallic Tomonaga-Luttinger liquid phase and an insulating charge-density-
wave phase [22–24].

3.1 Limiting cases

The main focus of this work is on the case near half filling. To get a better
feeling of the model, it is helpful to consider the atomic limit t0 = 0 of
uncoupled molecules. The Hamiltonian of the molecule at site l reads:

hatomic,l = ω0b
†
l bl − γnl(b

†
l + bl) . (3.5)

In the trivial case when no electron is at site l, the Hamiltonian reduces
further to just the phonon part. In this case, the eigenstates can be written
as:

1√
n!

(b†l )
n |∅〉el,l |∅〉ph,l (3.6)

and the spectrum is equally spaced with spacing ω0. Here |∅〉el,l and |∅〉ph,l

are the respective electron and phonon vacuum states at site l.
If there is an electron present at site l, the second term in Eq. (3.5) has

to be considered and the local Hamiltonian reads:

hatomic,l |1〉el,l =
(
ω0b

†
l bl − γ(b†l + bl)

)
|1〉el,l , (3.7)

where |1〉el,l = c†l |∅〉el,l. The phononic part can be diagonalized by a Lang-
Firsov transformation [99]:

b̃†l := b†l −
γ

ω0

, (3.8)

which transforms Eq. (3.7) into:

hatomic,l |1〉el,l =

(
ω0b̃

†
l b̃l −

γ2

ω0

)
|1〉el,l . (3.9)
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The ground state can be found by demanding that b̃l |1〉el,l |g.s.〉ph,l = 0. In
terms of the original phonon operators, it has the form of a coherent state:

|1〉el,l |g.s.〉ph,l = e
− γ2

2ω20 e
γ
ω0
b†l |1〉el,l |∅〉ph,l . (3.10)

The ground-state energy is:

ε0 = −γ
2

ω0

= −εb , (3.11)

where εb is referred to as the polaron binding energy. The physical inter-
pretation of the Lang-Firsov transformation is that the rest position of the
harmonic oscillator is shifted by the presence of the electron.

The degenerate ground states of the full system are:

|g.s.({locc})〉 = e
−Nγ

2

2ω20

 ∏
l∈{locc}

e
γ
ω0
b†l c†l

 |∅〉el |∅〉ph , (3.12)

where N is the number of electrons and {locc} is the set of sites that are
occupied by an electron. A different ground states can be generated by
choosing a different set {locc}. |∅〉el and |∅〉ph are the respective electron and
phonon vacuum states of the full system.

The ground states Eq. (3.12) span a subspace of the full Hilbert space,
that can be the starting point for a perturbative treatment of the Hamiltonian
Eq. (3.4) in the small t0 limit [22]. The unperturbed Hamiltonian is taken
to be:

H0 = Hph +Hel−ph = ω0

L∑
l=1

b†l bl − γ
L∑
l=1

nl(b
†
l + bl) , (3.13)

and the perturbation is:

H1 = Hel = −t0
L∑
l=1

(c†l cl+1 + c†l+1cl) . (3.14)

Consider two orthogonal ground states of the form Eq. (3.12) that differ
only by the occupation of the two neighboring sites l and l + 1. In the first
state site l is occupied by a polaron and site l+ 1 is empty and in the second
state the occupations of the two sites are swapped. I denote the first state as
|g.s.({. . . , 1l, 0l+1, . . . })〉 and the second state as |g.s.({. . . , 0l, 1l+1, . . . })〉. In
first order perturbation theory one obtains a polaron hopping matrix element:

〈g.s.({. . . , 1l, 0l+1, . . . })|H1 |g.s.({. . . , 0l, 1l+1, . . . })〉 = −t0e
− γ

2

ω20 = −t̃0 ,
(3.15)
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hence a narrow polaron band to first order.
To second order, two processes have to be considered. An electron can

hop to a neighboring site and then back again. This process is of course only
possible if the neighboring site is empty and, therefore, leads to a nearest-
neighbor repulsion. The second process is the hopping of a polaron to the
next to nearest neighbor. In this case the process is only possible if the site
in between is empty. The corresponding matrix elements are given by [22]:

Ṽ = 2
t̃20
ω0

∫ γ2

2ω20

0

dg
e4g − 1

g
, (3.16)

t̃2 =
t̃20
ω0

∫ γ2

2ω20

0

dg
e2g − 1

g
. (3.17)

The resulting effective Hamiltonian is the one of repulsively interacting spin-
less fermions. For weak interactions, the model is in a metallic Tomonaga-
Luttinger liquid phase. If the repulsive interaction is strong enough, the
fermions do not want to reside on neighboring sites anymore and order them-
selves in a charge density wave. The phase transition happens at Ṽc

2t̃0
= 1

which can be seen by mapping the model to the XXZ-Hamiltonian via a
Jordan-Wigner transformation. In the XXZ-model the the phase transition
happens at the isotropic Heisenberg point [22].

Another interesting limiting case is the adiabatic approximation that one
recovers for a large mass of the molecules or ω0 → 0. A staggered displace-
ment of the oscillators leads to the opening of a gap in the electronic spectrum
and the formation of a charge density wave. This mechanism resembles the
situation of a Peierls instability (cf. Sec. 2.2). In a mean field treatment, the
charge density wave arises for all nonzero couplings γ and the size of the gap
is [22, 23]:

∆ = 8t0e
−πt0ω0

γ2 . (3.18)

In Ref. [25] a two-cutoff renormalization group scheme was used to argue that
for ∆ < ω0 nonadiabatic effects become relevant in the weak coupling regime.
Therefore, the charge-density-wave order will only survive for ∆ > ω0.

3.2 Phase diagram at half filling

To investigate the Holstein model away from limiting cases, a variety of differ-
ent techniques can be applied. For example, the momentum average approach
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introduced by Berciu and collaborators [32,34,100–103] is a specialized ana-
lytical method that has been successfully applied to the single electron prob-
lem in equilibrium. Quantum Monte Carlo techniques are maybe the most
successful ansatz when dealing with electron-phonon coupled systems like the
Holstein model [22,24,27,31,34,35,104,105]. They can produce very precise
results for equilibrium properties.

In the realm of wave-function based methods, the Holstein model is a
very challenging problem. The phonon number in the system is not con-
served and, since they are bosons, their occupation on a single site can be
very large. Using an occupation number basis results in huge local Hilbert
spaces that pose a problem for techniques like exact diagonalization or the
density matrix renormalization group. However, we have seen above that the
ground state in the atomic limit is a product state which requires just a single
state per site (cf. Eq. (3.12)). This result is a hint that the occupation num-
ber basis might not be the optimal one to describe eigenstates of the Holstein
model numerically and that changing the local basis can improve the perfor-
mance of wave-function based methods. In fact, numerical evidence suggests
that in low temperature states as well as in real-time dynamics choosing a
different local basis can reduce the necessary number of local states required
for an accurate description [106–108]. Several different strategies have been
developed to overcome the challenges posed by electron-phonon coupled sys-
tems to wave-function based methods [33] which will be discussed in Chs. 5
and 6.

In Fig. 3.2, the phase diagram of the Holstein model at half filling is
sketched in the t0-γ-plane. From the small t0 limit perturbation theory as
well as the adiabatic approximation, a phase transition between a metal-
lic Tomonaga-Luttinger liquid phase and an insulating charge-density-wave
(CDW) phase can be deduced. For a fixed hopping matrix element t0/ω0,
the transition happens at a critical γ/ω0. The phase diagram for inter-
mediate t0/ω0 was computed by using DMRG and quantum Monte Carlo
techniques [22–24,104].

In the charge-density-wave phase, polarons order in a regular fashion. A
gap opens to the excitation spectrum [23,104] and the order parameter

OCDW =
1

N

L∑
l=1

(−1)l〈nl〉 (3.19)

acquires a nonzero value [22], where N is the number of electrons in the
system, L is the number of lattice sites and 〈nl〉 is the electron density at
site l. The nonzero value of OCDW leads to nonuniform displacements of the
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Figure 3.2: Phase diagram of the Holstein model at half filling sketched
from the results in Refs. [23, 24]. For all nonzero values of the hopping
matrix element t0 there is a transition from a metallic Tomonaga-Luttinger
liquid phase to an insulating charge-density-wave phase upon increasing the
coupling γ.

local harmonic oscillators such that the staggered displacement:

Odisp =
1

N

L∑
l=1

(−1)l〈b†l + bl〉 (3.20)

acquires a nonzero value as well. In fact, there is an exact relation between
the expectation value of the electron density and the phonon displacement
in all eigenstates of the Holstein Hamiltonian [22,109]:

2
γ

ω0

〈nl〉 = 〈b†l + bl〉 , (3.21)

which connects the electronic order parameterOCDW with the phononic order
parameter Odisp.
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Chapter 4

Matrix-product-state methods

In the following sections, numerical methods to calculate the time evolution
of quantum states of lattice systems are introduced, as well as a technique
to find the ground state of such systems. The modern formulations of these
techniques are based on so called matrix product states (MPS) [110–112]
and I will introduce these below. In the following derivations it is helpful to
think of a collection of interacting spins or particles on a lattice as the system
under consideration. This work is primarily focused on describing lattice
models with electron-phonon coupling that pose special challenges to MPS
techniques because of the large local Hilbert spaces. In Ch. 5 and Ch. 6 two
extensions to the standard MPS techniques, introduced in this chapter, will
be presented that are designed to overcome these challenges. The derivations
in this chapter follow closely the review by Schollwöck Ref. [111].

4.1 Matrix product states

A general quantum state |ψ〉 on a lattice can be written in the following form:

|ψ〉 =
∑
{σl}

cσ1...σL |σ1 . . . σL〉 . (4.1)

Here, |σ1 . . . σL〉 = |σ1〉 ⊗ · · · ⊗ |σL〉, where |σl〉 is the state on a specific
lattice site and L is the total number of lattice sites. In the example of a
spin-1/2 system the σl would have the possible values ↑ or ↓. The sum runs
over all possible combinations of local states. If every local Hilbert space Hl

has a dimension dim(Hl) = d then the dimension of the full Hilbert space
H = H1 ⊗ · · · ⊗ HL is dim(H) = dL.

By regrouping the indices of the coefficients cσ1...σL , one can bring them
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into a matrix form:

|ψ〉 =
∑
{σl}

c[σ1][σ2...σL] |σ1 . . . σL〉 , (4.2)

such that c can be read as a d×dL−1 matrix. A singular value decomposition
(SVD) of this matrix can be performed:

c = USV † (4.3)

where U and V are (semi-)unitary matrices (U †U = 1, V †V = 1) and S is
a diagonal matrix. The entries on the diagonal of the matrix S are called
singular values. U and S are both d×d matrices and V † is a d×dL−1 matrix
(Note that V V † 6= 1). With A[1] = U and c̃ = SV † the state can be written
as:

|ψ〉 =
∑
{σl}

∑
a1

A[1]
σ1a1

c̃a1σ2...σL |σ1 . . . σL〉 . (4.4)

One can now proceed in a similar fashion with c̃. One again regroups the
indices such that it can be read as a matrix: c̃a1σ2...σL = c̃[a1σ2][σ3...σL] and
performs a SVD:

c̃ = Ũ S̃Ṽ † . (4.5)

With A[2] = Ũ and ĉ = S̃Ṽ † the state is in the form:

|ψ〉 =
∑
{σl}

∑
a1a2

A[1]
σ1a1

A[2]
a1σ2a2

ĉa2σ3...σL |σ1 . . . σL〉 . (4.6)

By performing overall L− 1 SVDs one can bring the state into the form:

|ψ〉 =
∑
{σl}

∑
a1...aL−1

A[1]
σ1a1

A[2]
a1σ2a2

. . . A[L]
aL−1σL

|σ1 . . . σL〉 . (4.7)

This form is called a matrix product state since one can get back every
coefficient by calculating the matrix product A

[1]
σ1A

[2]
σ2 . . . A

[L]
σL = cσ1...σL . The

first matrix A
[1]
σ1 is in fact a row vector and the last matrix A

[L]
σL is a column

vector such that the matrix product yields a scalar.
For a better readability, the labels [l] of the matrices A

[l]
σl will be omitted

here. They can be distinguished by their indices. Furthermore, the indices σl
that label the physical state at the sites will be written as superscript indices.
These are referred to as physical indices (their dimension is referred to as the
physical dimension). The other indices al are most commonly referred to
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as bond indices and their dimension is called the bond dimension. Finally,
the summation over the bond indices will be omitted, too. From here on a
summation over twice appearing indices is implied. Therefore, the state can
be written more compact as:

|ψ〉 =
∑
{σl}

Aσ1a1A
σ2
a1a2

. . . AσLaL−1
|σ1 . . . σL〉 . (4.8)

A graphical representation of such a state will be helpful further down
the road when equations and algorithms are explained. Such schematics have
now become common in the MPS community [111,112]. Writing out all the
summations over all the indices can be very confusing at times. Therefore,
a shape is drawn for every tensor in an equation and for every index a line
(these are called legs in the following) is attached to these shapes. If a leg
connects two shapes the corresponding index is summed over. With these
rules Eq. (4.8) results in Fig. 4.1.

To calculate the norm of the state |ψ〉 one has to evaluate:

〈ψ|ψ〉 =
∑

{σl},{σ′l}

〈σ1 . . . σL| (A†)σLaL−1
. . . (A†)σ2a2a1(A

†)σ1a1

× Aσ
′
1
b1
A
σ′2
b1b2

. . . A
σ′L
bL−1
|σ′1 . . . σ′L〉

= (A†)σLaL−1
. . . (A†)σ2a2a1(A

†)σ1a1A
σ1
b1
Aσ2b1b2 . . . A

σL
bL−1

(4.9)

A Graphical representation of Eq. (4.9) is shown in Fig. 4.2.
The properties of the SVD ensure that for the first A matrix:

(A†)σ1a1A
σ1
b1

= δa1b1 , (4.10)

and for the next L− 2 matrices:

(A†)σlalal−1
Aσlal−1bl

= δalbl . (4.11)

The evaluation of Eq. (4.9) then reduces to the product:

〈ψ|ψ〉 = (A†)σLaL−1
AσLaL−1

. (4.12)

Figure 4.1: Graphical representation of a matrix product state.
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Figure 4.2: Graphical representation of the contractions needed to calculate
the norm of a MPS.

The form Eq. (4.8) is therefore referred to as left-canonical or left-normalized.
There is also a right-canonical or right-normalized form. It can be obtained
by splitting off indices from cσ1...σL from the right and keeping the V † matri-
ces. The matrices in the right-canonical form have equivalent properties to
the left-canonical form.

Last, one can also have a mixed-canonical form:

|ψ〉 =
∑
{σl}

Aσ1a1 . . . A
σl−1
al−2al−1

Mσl
al−1al

Bσl+1
alal+1

. . . BσL
aL−1
|σ1 . . . σL〉 . (4.13)

Here, all the left-canonical tensors are written as A and all the right-canonical
tensors as B. The tensor M in the middle has neither of these properties
and will be refer to as the center of the mixed-canonical form. Calculating
the norm then reduces to:

〈ψ|ψ〉 = (M †)σlalal−1
Mσl

al−1al
. (4.14)

4.1.1 Entanglement entropy

So far, it is not clear why one would be interested in matrix product states.
All that was done is rewriting the state in a more complicated way. The
advantage of these states is that they provide a natural compression scheme
and are especially suited to represent states with low entanglement entropy
[111,113–116].

Entanglement entropy is a measure of how strong different parts of a
system are entangled with each other. To calculate the entanglement entropy
of part of a system (part A) with the rest (part B of the system, Fig. 4.3)
one first calculates the density matrix of the whole system and then traces
out one of the parts. By tracing out part B one obtains the reduced density
matrix of part A:

ρA = Tr
B

[|ψ〉 〈ψ|] . (4.15)
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The (von Neumann) entanglement entropy of A with B is then defined as
[115]:

SvN,AB = Tr [ρA ln ρA] . (4.16)

To calculate the entanglement entropy one can use the Schmidt decomposi-
tion of the state [111]. Again, one divides the system in two parts A and B
(Fig. 4.3) and writes the quantum state of the complete system in terms of
full basis sets on A and B:

|ψ〉 =
∑
α,β

Cαβ |α〉A |β〉B . (4.17)

After performing a SVD of the matrix C one obtains:

|ψ〉 =
∑
α,β

UαasaδabV
†
bβ |α〉A |β〉B . (4.18)

Here, the diagonal matrix S is written as its diagonal elements sa times a
Kronecker delta. Since U and V † are unitary matrices their action on the
basis states |α〉A and |β〉B is that they produce new orthonormal basis sets
of part A and B respectively. Therefore, the state can be written as:

|ψ〉 =
∑
a,b

saδab |a〉A |b〉B =
∑
a

sa |a〉A |a〉B . (4.19)

The rightmost form is called the Schmidt decomposition of the state |ψ〉.
It is now straightforward to see that the reduced density matrix of A can

be written as:

ρA =
∑
a,b,c

B〈c| sa |a〉A |a〉B sb A〈b| B〈b|c〉B =
∑
a

s2
a |a〉A A〈a| . (4.20)

This shows that the squares of the Schmidt values have to sum up to 1 for
the state |ψ〉 to be normalized. Furthermore, it is now easy to calculate the
entanglement entropy of A with B:

SvN,AB = Tr [ρA ln ρA] =
∑
a

s2
a ln s2

a . (4.21)

Figure 4.3: A quantum system separated in two parts A and B.
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Calculating the entanglement entropy of a matrix product state is also
very straightforward. Consider the mixed-canonical form Eq. 4.13. To calcu-
late the entanglement entropy between the first l sites with the rest one first
performs a SVD of the tensor M where its indices are grouped as [al−1σl][al]:

Mσl
al−1al

= Uσl
al−1b

sbδbc(V
†)cal . (4.22)

Because of the mixed-canonical form of the state |ψ〉 the diagonal elements
sb are the Schmidt values of this state for the considered bipartition and the
entanglement entropy can be calculated from them by using Eq. (4.21).

4.1.2 Compressing a matrix product state

Eq. (4.8) is just an exact rewriting of the coefficients. This also means that
the matrix dimensions get larger (more precisely exponentially large) towards
the middle of the system. However, the singular value decompositions guide
one towards a compression of the state. Eq. (4.21) means that if the entan-
glement in the system is small, there are few big Schmidt values and the rest
of them are much smaller. On the other hand, in a maximally entangled state
all the Schmidt values are equally large. For states with low entanglement it
is therefore sufficient to keep only the biggest Schmidt values without loosing
much of the information about the state.

Consider the Schmidt decomposition Eq. (4.19) with a dimension ζ where
all the Schmidt values are ordered such that a1 ≥ a2 ≥ · · · ≥ aζ . The state
is approximated by a compressed state |ψcomp〉 where only the χ < ζ biggest
Schmidt values are kept:

|ψcomp〉 =

χ∑
a=1

sa |a〉A |a〉B . (4.23)

The error that one makes is then:

‖|ψ〉 − |ψcomp〉‖2 =

ζ∑
a=χ+1

s2
a . (4.24)

The sum of the squares of the discarded Schmidt values
∑ζ

a=χ+1 s
2
a is referred

to as the discarded weight. If one performs a sequence of SVDs to obtain a
MPS it can be shown that the error is at most ‖|ψ〉 − |ψcomp〉‖2 ≤ 2εl(χ) [113],
where εl(χ) is the discarded weight at site l when truncating at a bond
dimension χ.
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These considerations show that MPSs can efficiently represent states with
low entanglement. It can be shown, that ground states of short range Hamil-
tonians that have an energy gap to the higher excited states have a so called
area law of entanglement [114, 115]. This means that the entanglement en-
tropy of a region of the system with the rest scales with the surface area of
this region and not with its volume. For one-dimensional systems the sur-
face of a connected region is at most two points such that the entanglement
entropy in an area law state does not scale at all with the size of the region.
In fact, the area law guarantees that the squares of the Schmidt values on
the surface have a fast algebraic decay [114].

4.1.3 Matrix product operators

Analogous to quantum states, quantum operators can be represented as a
collection of tensors as well. Consider a quantum operator O that acts on
the Hilbert space that the state |ψ〉, Eq. (4.1), lives in. Expanding the
operator O in the same basis one obtains:

O =
∑

{σl},{σ′l}

cσ′1σ1...σ′LσL |σ
′
1 . . . σ

′
L〉 〈σ1 . . . σL| . (4.25)

Now, two indices that belong to the same site are split off at a time and
SVDs are performed. This way one ends up with a matrix product operator
(MPO):

O =
∑

{σl},{σ′l}

W σ′1σ1
a1

W σ′2σ2
a1a2

. . .W
σ′LσL
aL−1 |σ′1 . . . σ′L〉 〈σ1 . . . σL| . (4.26)

A graphical representation of the MPO is shown in Fig. 4.4(a) and its action
on the state |ψ〉 in Fig. 4.4(b).

Putting the ingredients from above together one can formulate algorithms
to perform simulations of quantum systems. These algorithms are quite
straightforward to implement in a programming language because they just
require the manipulation of tensors. In the following Secs. 4.2 and 4.3 meth-
ods to time evolve quantum states and to find the ground state of Hamilto-
nians will be introduced, respectively. Both algorithms are most efficient for
one-dimensional systems.

4.1.4 U(1)-symmetric matrix product states

A lot of model Hamiltonians preserve a U(1)-symmetry like particle num-
ber conservation in Hubbard-type models, or conservation of total spin in
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Heisenberg-type models. It is common practice to use these symmetries in
exact diagonalization techniques to reduce the numerical complexity [39]. By
using basis states that belong to different symmetry sectors one can block
diagonalize the Hamiltonian.

A similar strategy can be used for matrix product states [55, 56]. Con-
sider a state |ψ〉N in the subspace with quantum number N . If one further
considers a bipartition of the system in part A and B similar to Eq. (4.17),
one can choose basis states on the parts that are labeled by corresponding
quantum numbers NA and NB:

|ψ〉N =
∑
α,β

Cαβ |α〉NA,A |β〉NB ,B . (4.27)

A matrix element Cαβ can only be non-zero if the corresponding quantum

numbers on the parts sum up to the total quantum number: N
!

= NA +NB.
By ordering the basis states on the parts with respect to NA and NB one can
block diagonalize the matrix Cαβ.

Now consider a tripartition of the state in a part A, a part B and one
site separating the two parts at site l. The state can be written as:

|ψ〉N =
∑
α,σl,β

Cασlβ |α〉NA,A |σl〉 |β〉NB ,B . (4.28)

In this case the condition for the quantum numbers on the parts reads: N
!

=
NA + σl +NB. From the values of NA and σl the allowed basis states in part
B are predetermined.

Figure 4.4: (a) Graphical representation of a matrix product operator. (b)
Action of a MPO on a MPS.
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From these considerations one can see that the MPS and MPO tensors
split into blocks with respect to the bond dimension and the local dimension.
Manipulations of the tensors may be done blockwise which evidently reduces
the numerical costs of MPS-based algorithms.

4.2 Time evolution with matrix product states

An algorithm for the time evolution of a quantum state that is particularly
easy to understand and straightforward to implement was developed Vidal
[41, 117]. It is nowadays known as time evolving block decimation (TEBD).
The algorithm, together with other closely related ones, is also referred to as
time-dependent density-matrix renormalization group (tDMRG).

The starting point is yet another form of MPS, namely Vidal’s ΓΛ-form
[41]. It can be obtained by performing the same sequence of SVDs as is done
to obtain Eq. (4.8). In the end, a unit matrix is inserted in between every
pair of tensors. The unit matrix is decomposed into the diagonal matrices
and their inverses that we obtained from the SVDs at the respective bonds:

1ala′l = Sala′′l (S−1)a′′l a′l . (4.29)

By defining Λala
′
l

= Sala′l and Γσla′l−1al
= (S−1)a′l−1a

′′
l−1
Aσla′′l−1al

for all l except

Γσ1a1
= Aσ1a1

the state has the Vidal or ΓΛ-form:

|ψ〉 =
∑
{σl}

Γσ1a1
Λa1a

′
1
Γσ2a′1a2

Λa2a
′
2
. . .ΛaL−1a

′
L−1

ΓσLa′L−1
|σ1 . . . σL〉 . (4.30)

A schematic of the state in the ΓΛ-form is depicted in Fig. 4.5.
The neat property of this form is that one can readily calculate the en-

tanglement entropy of every bisection of the state by just reading off the
Schmidt values at the corresponding bond. Furthermore, one can get a
mixed-canonical form that has its center at any site from the ΓΛ-form. By
construction, all the tensors left of the center except the first one have the
property that:

Aσlal−1al
= Λal−1a

′
l−1

Γσla′l−1al
, (4.31)

Figure 4.5: Graphical representation of a matrix product state in ΓΛ-form.
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where A is a left-canonical tensor (the first tensor is already a left-canonical
tensor). The center tensor can be calculated from the Γ at that site and the
two Λs left and right to it:

Mσl
al−1al

= Λal−1a
′
l−1

Γσla′l−1al
Λala

′
l+1
. (4.32)

From the SVDs we know that all the tensors to the right that remain now
form a semi-unitary. This is however true for every bisection we can do. So
by induction, starting at the second to last site as the center, one can show
that:

Bσl
al−1al

= Γσlal−1a
′
l
Λa′lal

, (4.33)

where B is a right-canonical tensor (with the exception of the last tensor
where BσL

aL−1
= ΓσLaL−1

).
The next step is to approximate the time-evolution operator by using

a Trotter decomposition. Consider a (time independent) Hamiltonian with
at most next nearest neighbour interaction in one dimension and with open
boundary conditions. Then one can separate the Hamiltonian into two parts:

H = Hodd +Heven =
∑
l odd

hl +
∑
l even

hl , (4.34)

where hl is the part of the Hamiltonian that acts on site l and l+ 1. Because
of the prerequisites all the summands in Hodd commute with each other, and
so do all the summands in Heven.

The time-evolution operator that evolves a state by a small time interval
δt under the Hamiltonian H is therefore:

e−iHδt = e−iHoddδt/2e−iHevenδte−iHoddδt/2 +O((δt)3)

=
∏
l odd

e−ihlδt/2
∏
l even

e−ihlδt
∏
l odd

e−ihlδt/2 +O((δt)3)

=
∏
l odd

Ul
∏
l even

Ul
∏
l odd

Ul +O((δt)3) , (4.35)

where a second-order Trotter decomposition was used. The advantage of
this decomposition is that the local operators Ul only act on two neighboring
sites. Fig. 4.6 shows a graphical representation of the tensor contractions
needed to evolve a state of a five site system by a time step δt.

To apply a local time-evolution operator to a state one first has to calcu-
late the two-site center tensor of a mixed canonical form:

M
σlσl+1

al−1a
′
l+1

= Λal−1a
′
l−1

Γσla′l−1al
Λala

′
l
Γ
σl+1

a′lal+1
Λal+1a

′
l+1
. (4.36)
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Figure 4.6: Graphical representation of the time evolution of a state of a
five site system by a time step δt.

The mixed canonical form ensures that the reduced density matrix of the two
sites can be calculated by just the tensor M and changes to M do not affect
the rest of the state. Therefore one can now apply the local time-evolution
operator Ul to the tensor M :

M̃
σ′lσ
′
l+1

al−1a
′
l+1

= (Ul)
σ′lσ
′
l+1σlσl+1M

σlσl+1

al−1a
′
l+1
. (4.37)

To go back to the original ΓΛ-form one performs a SVD of the tensor M̃ :

M̃
σ′lσ
′
l+1

al−1a
′
l+1

= U
σ′l
al−1al

Sala′l
(V †)

σ′l+1

a′la
′
l+1
. (4.38)

Then one can get the new Γ̃s by contracting the inverse of the original Λs to
U and V † from the left and right, respectively:

Γ̃
σ′l
a′l−1al

= (Λ−1)a′l−1al−1
U
σ′l
al−1al

(4.39)

Γ̃
σ′l+1

a′lal+1
= (V †)

σ′l+1

a′la
′
l+1

(Λ−1)a′l+1al+1
, (4.40)

and identify S by Λ̃.
In general, the bond-dimension between the sites l and l + 1 will grow

after the application of the local time-evolution operator Ul. In order for it
to not grow indefinitely and thus making all the calculations prohibitively
expensive one truncates the bond dimension after the SVD. The error one
makes is best controlled by setting a maximum truncation error and keeping
as many singular values such that the squares of the singular values one does
not keep is smaller than this maximum truncation error:

∆trunc < 1−
r∑

a=1

s2
a (4.41)
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where sr is the smallest singular value one keeps. It is good practice to keep
the truncation error smaller than the error from the Trotter decomposition.
After the truncation the sum of the squares of the singular values should be
normalized again to preserve the norm of the state.

4.3 Ground-state search with matrix product

states

The next algorithm that will be discuss here is the density matrix renor-
malization group (DMRG) algorithm. It goes back to the groundbreaking
work by White [40] (see also [42]). Later, the algorithm was reformulated in
the language of matrix product states [111]. The algorithm is an iterative
method to find the ground state of a given Hamiltonian and is again best
suited for one-dimensional systems with short-range interactions.

To find the ground state one starts out by writing the state in the mixed-
canonical form Eq. (4.13). In addition, one needs the Hamiltonian in MPO
form:

H =
∑

{σl},{σ′l}

V σ′1σ1
a1

V σ′2σ2
a1a2

. . . V
σ′LσL
aL−1 |σ′1 . . . σ′L〉 〈σ1 . . . σL| . (4.42)

The energy expectation value of the state |ψ〉, assuming it is normalized, is
(Fig. 4.7):

〈ψ|H |ψ〉 =
∑

{σl},{σ′l}

(B†)
σ′L
cL−1 . . . (B

†)
σ′l+1
cl+1cl(M

†)
σ′l
clcl−1(A

†)
σ′l−1
cl−1cl−2 . . . (A

†)σ
′
1
c1

×V σ′1σ1
b1

V
σ′2σ2
b1b2

. . . V
σ′LσL
bL−1

×Aσ1a1 . . . A
σl−1
al−2al−1

Mσl
al−1al

Bσl+1
alal+1

. . . BσL
aL−1

. (4.43)

The goal is to minimize the energy under the condition that the state is
normalized. Therefore, one introduces a Lagrange multiplier λ such that one

Figure 4.7: Graphical representation of the energy expectation value of a
mixed-canonical state.
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has to extremize the equation:

〈ψ|H |ψ〉 − λ 〈ψ|ψ〉 = 0 (4.44)

with respect to the state |ψ〉. This is done iteratively by optimizing the
tensor M and then shifting the center of the mixed-canonical form to the
next site to optimize the tensor on the next site.

Eq. (4.44) can be brought into the form of an eigenvalue equation where
the tensor M is the eigenvector and λ is the eigenvalue. A graphical repre-
sentation of the eigenvalue problem is shown in Fig. 4.8. The tensor M † has
been removed from both the expectation value of the energy and the norm.
By contracting the left part of the expectation value of the energy to L and
the right part to R one is left with:

Lcl−1bl−1al−1
V
σ′lσl
bl−1bl

RclblalM
σl
al−1al

= λδcl−1al−1
M

σ′l
al−1alδalcl (4.45)

Ξ
σ′lσl
cl−1al−1clalM

σl
al−1al

= λM
σ′l
cl−1cl (4.46)

where on the right side of the equation it was used that the tensors left
of M are left-normalized and the tensors right of M are right-normalized.
When reshaping the tensor Ξ into a matrix with indices [cl−1σ

′
lcl][al−1σlal]

and interpreting the tensor M as a vector with indices [al−1σlal] one can
use a standard diagonalization technique to diagonalize Ξ. One is here only
interested in the ground state so one can for example use the Lanczos algo-
rithm [39]. The lowest eigenvalue that one obtains is the current estimate
for the ground-state energy and the eigenvector is the improved tensor M .

If one sweeps from left to right through the system the updated tensor
M is then reshaped into a matrix with indices [al−1σl][al] and a SVD is
performed. This way the center of the mixed-canonical form is moved to the
next site to right. In a sweep from right to left the reshaping is done such
that the tensor has indices [al−1][σlal].

4.3.1 Two-site DMRG

The algorithm introduced in the last section has two big problems. The en-
ergy of the state can only go down as one improves the local tensors while
sweeping through the system which is good, but there is no guarantee that
one ends up in the ground state. Instead, one could just reach a local mini-
mum in the energy landscape. Furthermore, the bond dimension of the state
can not grow during the algorithm. The dimension of M before and after
the update are fixed. Therefore, the entanglement in the state can only grow
to a certain point determined by the bond dimensions in the initial state.
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One could try to artificially enlarge the tensor with zeros but there are more
promising techniques.

A simple ansatz to let the bond dimension grow during the optimization
is to optimize two site tensors at once. To do so one just has to build a mixed
canonical form with a two-site center. During the optimization step one then
has to solve the eigenvalue equation:

Ξ
σ′lσ
′
l+1σlσl+1

cl−1al−1cl+1al+1M
σlσl+1
al−1al+1

= λM
σ′lσ
′
l+1

cl−1cl+1 . (4.47)

After the optimization one has to perform a SVD of the improved tensor M .
The bond dimension between site l and l + 1 is then:

dim(ãl) = min(dim(σl)dim(al−1), dim(σl+1)dim(al+1)) . (4.48)

Assuming that the dimensions of al−1, al and al+1 before the update are of the
same order, the bond dimension can grow by a factor of the local dimension
d = dim(σl). This way, a bigger state space can be explored during the
optimization and it is less likely that one gets stuck in a local minimum.
To keep the numerical cost of the tensor manipulations at an acceptable
level one has to truncate the bond dimension after the SVD. However, the
numerical costs of the tensor manipulations that have to be done in the two-
site DMRG algorithm presented here scale with a factor of d2 worse than
the scaling of the manipulations in the single-site algorithm presented in the
previous section.

Figure 4.8: Graphical representation of the eigenvalue equation to be solved
in a DMRG step.
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The drawback of a worse scaling with the local dimension is not too severe
as long as only fermionic systems or spin systems are considered since the
local dimension is small in these cases (d ≤ 4 in most cases, if U(1) symme-
tries can be utilized often a linear scaling with d can be achieved). Problems
can arise if bosonic degrees of freedom that do not obey a conservation law
are present in a system. In this case the local dimension one has to consider
can be substantial and it is desirable to use a single-site algorithm.

4.3.2 Subspace expansion

As mentioned earlier one can try to enlarge the MPS-tensors ”by hand” to
allow the bond dimension to grow and to avoid local minima in the energy
landscape. The density-matrix perturbation developed by White [118] en-
larges the bond dimension by introducing fluctuations that are suitable to
allow for convergence. In modern MPS based algorithms a center-matrix
formulation can be used to implement this strategy [55].

In the following, the so called subspace expansion developed by Hubig
et al. [50] will be introduced. It is another strategy to enlarge the bond di-
mension and has a further improved scaling compared to the aforementioned
methods.

The basic concept of the subspace expansion is simple. Consider a left to
right sweep in a single-site DMRG calculation. After the optimization step
on site l one has a state in mixed-canonical form Eq. (4.13). Now the tensor
M on site l and the tensor B on site l + 1 are enlarged such that only the
bond dimension between those tensors grows. This way, when one does the
optimization on site l + 1, the new states that were added can be explored.

The expansion of M is done by enlarging it with:

M̂
σ′l
cl−1[blal]

= αLcl−1bl−1al−1
Mσl

al−1al
V
σlσ
′
l

bl−1bl
(4.49)

and by enlarging the tensor B on site l + 1 with zeros such that everything
fits together. Up to here the state and therefore its energy is not changed
since everything that was added is just multiplied by zeros. However, the
bond dimension is enlarged quite substantially and, therefore, a truncation
by SVD of the combined tensor [MM̂ ] is needed to keep the dimensionality
at a manageable level. The notation [MM̂ ] means that the tensor M is
enlarged by M̂ in such a way that the left bond dimension and the physical
dimension do not change while the right bond dimension grows.

After this truncation, the energy of the state is usually larger than after
the optimization on site l. This depends on the mixing factor α. Therefore,
the mixing factor has to be chosen such that it allows for enough new states to
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explore in the next optimization on site i+1 but does not hinder convergence
altogether. During the sweeping, the mixing factor has to be adapted in an
appropriate way.
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Chapter 5

Local basis optimization

The methods that I have described so far, namely TEBD and DMRG, are
efficient methods to time evolve MPSs or find ground states of Hamiltonians,
respectively. MPSs are used because they are able to efficiently represent
states with limited entanglement. As explained in Sec. 4.1.2, in ground states
of short-range Hamiltonians that have a gap to the excitation spectrum, the
entanglement entropy follows an area law [114, 115]. This results in the
saturation of the bond dimension for a fixed precision as the system size is
enlarged [114,115].

In most practical applications, the scaling of MPS-based algorithms with
the bond dimensions χ of the state is the limiting factor. In spin-1/2, spin-1,
or fermionic models the local dimension is of less concern since d ≤ 4. If
U(1) symmetries can be exploited for all degrees of freedom, the scaling is
at most linear in the local dimension even in the Bose-Hubbard model (cf.
Sec. 4.1.4). If, however, U(1) symmetries can not be used, a large physical
dimension slows down the algorithms, as two-site DMRG scales as O(χ3d3)
and TEBD as O(χ3d3) or O(χ2d4).

The main subject of this thesis will be the study of electron-phonon cou-
pled systems. In these systems, the number of phonons is not conserved and,
because of the bosonic nature of the phonons, the local physical dimension
is in principle infinite. If one uses an occupation-number basis for electrons
and phonons, this immediately leads to problems. To even be able to write
down the full Hamiltonian in matrix form, the Hilbert space has to have
finite dimension, which is not true here.

One introduces an ad-hoc cutoff Mph which is the maximal number of
phonons per site. Then, the Hilbert space is finite and one can write down
MPSs and MPOs in the usual way. Of course, one has to use the cut off Mph

as a variational parameter and increase it until the results of the calculations
are independent of Mph. Depending on the problem at hand, this means
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increasing d far beyond 10 and, therefore, calculations with wave-function
based methods (like DMRG/TEBD) become very challenging.

However, different strategies have been developed to find more efficient
basis sets than the naive occupation-number basis [33]. In the pseudo-site
ansatz the phonon degrees of freedom on every site are mapped on a set
of pseudo sites with two states each. This technique trades the large local
Hilbert spaces for a longer chain with longer range hopping but smaller local
Hilbert spaces which can be beneficial for DMRG [28, 109]. The pseudo-site
method will be discussed again in Ch. 7 where it will be used as a benchmark
for other DMRG methods.

In the inhomogeneous modified variational Lang-Firsov transformation
approach introduced by Weiße and Fehske [119], an effective Hamiltonian is
derived that includes variational parameters. The variational parameters are
then determined numerically [26].

A third method is the diagonalization in a limited functional space [30].
This ansatz generates a number of basis states by considering the action
of parts of the Hamiltonian on a trial state. One obtains a set of states
that are reachable by repeated action of the Hamiltonian on the state. The
method exploits the fact that, at least in the Holstein model, the electron-
phonon couplings are local and the existence of polarons means that there is
a spatial correlation between electrons and phonons. It was used in a number
of studies of Holstein-type models [106,120–127].

In this work, a very flexible method called local basis optimization (LBO)
will be described and used. This method was introduced by Zhang, Jeckel-
mann, and White [29] and is very much inspired by DMRG . The method
does not require any physical intuition about the system beforehand, how-
ever, I will discuss below under which circumstances the ansatz is especially
beneficial.

As in Sec. 4.1.1, consider a bipartition of a system, yet, this time just one
site is singled out. The single-site reduced density matrix at site l is then:

ρl = Tr
σm
m 6=l

[|ψ〉 〈ψ|] . (5.1)

By diagonalizing this single-site density matrix one gets a local basis transfor-
mation Pl and the spectrum of the single-site density matrix in the diagonal
matrix Dl:

ρl = PlDlP
†
l . (5.2)

If only a few of the eigenvalues of ρl have considerable size and the rest of
them is close to zero one can get away with only considering the eigenvectors
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of ρl that correspond to the large eigenvalues and neglect the others. This
yields a good approximation of the state |ψ〉 while the local physical dimen-
sion is reduced. The eigenvectors of the single-site reduced density matrix
will be called optimal modes in the following and the number of modes that
are kept are denoted by do as opposed to d for the full physical dimension.

Numerical data suggests that in electron-phonon problems the spectrum
of the single-site reduced density matrix falls off exponentially at least in
ground states [106, 107]. The physical intuition behind this is that in these
models polarons exist with a long lifetime. In this case, the diagonalization
of the single-site reduced density matrix rotates the state into a polaron basis
that is far more efficient in representing the state.

The advantage of this method is that the basis set that is chosen is lo-
cally always optimal. It is adapted to the state one considers and can be
recalculated if the state changes.

In early efforts to use this ansatz optimal modes were calculated on small
systems for a given parameter set. Then these optimal modes were used for
calculations on larger systems [43–45]. In other methods, the optimal modes
are calculated on a small subsystem of a larger system and the optimal modes
from the subsystem are used for the rest of the sites [29, 46], or the optimal
modes are calculated just once in a warmup sweep [47]. Later, fully adaptive
methods were developed that recalculate optimal modes whenever the state
changes and for every lattice site individually [49,51,54,108,128,129].

5.1 TEBD with local basis optimization

Now the local basis optimization is put to work and combined with the
TEBD algorithm for the time evolution of quantum states [41,117] described
in Sec. 4.2. The algorithm described here was used in Ref. [54] to study
nonequilibrium phenomena in the half-filled Holstein model. It is a slightly
modified version of the algorithm used by Brockt et al. [51–53] to study
single electrons coupled to phonons. In the algorithm used by Brockt et
al. the local time-evolution operators (4.35) are further approximated by
a series expansion of the matrix exponential [53]. This way the sparseness
of the Hamiltonian can be utilized in the application of the time-evolution
operators to the state which yields a better scaling in the local dimension.
In the algorithm outlined below the full matrix exponential is calculated and
the local time-evolution operators are applied in the standard way.

Again, a MPS in ΓΛ-form is used where additionally every physical leg
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has a truncated local basis transformation Q attached to it (Fig. 5.1):

|ψ〉 =
∑
{σl}

Qσ1σ̃1Γσ̃1a1
Λa1a

′
1
Qσ2σ̃2Γσ̃2a′1a2

Λa2a
′
2
. . .ΛaL−1a

′
L−1

QσLσ̃LΓσ̃La′L−1
|σ1 . . . σL〉 .

(5.3)

The truncated local basis transformations Q correspond to the respective
Pl from Eq. (5.2) where the d − do columns of Pl that correspond to the
smallest eigenvalues in the spectrum of ρl are dropped. The matrices Q have
dimension d× do.

For the time evolution on the bond between sites l and l + 1 one forms
the two-site center tensor as in Eq. (4.36). The local basis transformations
Q get contracted with the local time-evolution operator Ul (Eq. (4.35)) from
one site:

(Ũl)
σ′lσ
′
l+1σ̃lσ̃l+1 = (Ul)

σ′lσ
′
l+1σlσl+1Qσlσ̃lQσl+1σ̃l+1 . (5.4)

At this point, it is important to contract the local basis transformations only
from one site to the local time-evolution operator. The local basis might
change during the time evolution and one has to make sure that the full
local Hilbert spaces can be explored.

Nevertheless, the application of the transformed time-evolution operator
Ũl to the two-site center tensor now scales with χ2d2

od
2 as opposed to χ2d4

without the local basis optimization. After the application, one is left with
the new two-site center tensor M̃ in the original basis:

M̃
σ′lσ
′
l+1

al−1a
′
l+1

= (Ũl)
σ′lσ
′
l+1σ̃lσ̃l+1M

σ̃lσ̃l+1

al−1a
′
l+1
. (5.5)

The next step is to transform this tensor into an optimized basis. For that
purpose one has to calculate the single-site reduced density matrices on site
l and l + 1:

(ρl)
σ′lσ
′′
l = M̃

σ′lσ
′
l+1

al−1a
′
l+1

(M̃ †)
σ′l+1σ

′′
l

a′l+1al−1
(5.6)

(ρl+1)σ
′
l+1σ

′′
l+1 = M̃

σ′lσ
′
l+1

al−1a
′
l+1

(M̃ †)
σ′′l+1σ

′
l

a′l+1al−1
. (5.7)

Figure 5.1: Graphical representation of a matrix product state in ΓΛ-form
with additional local basis transformations.
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The diagonalization of ρl and ρl+1 provides new optimal modes on the sites l
and l+1 and one can form new truncated local basis transformations Q from
them. By contracting the Q†s with M̃ , the bond tensor gets transformed into
the new optimal basis. One can then continue with a SVD as in standard
TEBD (Eqs. (4.38) - (4.40)) to go back to the ΓΛ-form. The SVD scales as
χ3d3

o as opposed to χ3d3 without the local basis optimization.
The numerical penalty is that one has to calculate the two single-site

reduced density matrices which scales as χ2d3. However, in most cases d� χ
especially in the last time-evolution steps. Therefore, the numerical costs of
the SVDs dominate most of the time and local basis optimization is actually
beneficial.

A further benefit of this method is that all the observables can still be
written in terms of the original basis that is most natural to work with.
Whenever a measurement is necessary the corresponding MPOs can be con-
tracted with the local basis transformations which is numerically cheap. The
MPOs in the optimized basis can then be used to calculate expectation val-
ues.

In the implementation of the algorithm used in Ref. [54] and in this
work instead of working with a fixed number of optimal modes a maximum
discarded weight ∆loc in the optimal modes is fixed. In the truncation step
the r optimal modes with the biggest eigenvalues are kept such that the sum
of these eigenvalues

∑r
i=1 di > 1−∆loc.

5.2 Single-site ground-state DMRG with lo-

cal basis optimization

Now an algorithm will be introduced that combines the single-site ground-
state DMRG with subspace expansion [50] introduced in Sec. 4.3.2 with local
basis optimization. In later chapters the abbreviation DMRG3S+LBO will
be used to refer to this algorithm. The method is heavily inspired by the
one described in Ref. [49] but adjusted to work on electron-phonon systems.
The algorithm was implemented by F. Dorfner and is described in detail in
his doctoral thesis [48] and also in Refs. [38,54].

Consider a matrix product state in mixed-canonical form that has a single-
site center. As in the previous section, the MPS has additional local basis
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optimization tensors Q attached to every physical leg:

|ψ〉 =
∑
{σl}

Qσ1σ̃1Aσ̃1a1 . . . Q
σl−1σ̃l−1Aσ̃l−1

al−2al−1
Qσlσ̃lM σ̃l

al−1al

×Qσl+1σ̃l+1Bσ̃l+1
alal+1

. . . QσLσ̃LBσ̃L
aL−1
|σ1 . . . σL〉 . (5.8)

In the present form, the single-site reduced density matrix on site l depends
on the center tensor M only:

(ρl)
σ̃lσ̃
′
l = M σ̃l

al−1al
(M †)

σ̃′l
alal−1 . (5.9)

The goal is to optimize the local basis with a DMRG like step. To do this
the state is modified in such a way that the local reduced density matrix can
be calculated from the (modified) Q tensor only. This is done by SVD of the
M tensor where the physical index is one index and the two bond indices are
interpreted as the second index of a matrix:

M σ̃l
al−1al

= Y σ̃lτ
′
Λτ ′τXτ

al−1al
. (5.10)

Now, the tensors Y and Λ can be multiplied into the Q tensor such that
the single-site reduced density matrix can be calculated from the resulting
tensor:

Q̃σlτ = Qσlσ̃lY σ̃lτ
′
Λτ ′τ , (5.11)

(ρl)
σlσ
′
l = Q̃σlτ (Q̃†)

τσ′l . (5.12)

After these manipulations, an eigenvalue equation can be formulated similar
to Eq. (4.46) where in this case, the Q̃ tensor is the eigenvector that one is
searching for:

Ξ
ισ′lσlτ = Lcl−1bl−1al−1

(X†)ιcl−1cl
V
σ′lσl
bl−1bl

Xτ
al−1al

Rclblal , (5.13)

Ξ
ισ′lσlτ Q̃σlτ = λQ̃

σ′lι , (5.14)

where the tensors L and R are defined as in Eq. (4.45). In further analogy
to a standard DMRG optimization, the eigenvalue equation is solved for the
the lowest eigenvalue and eigenvector with the Lanczos algorithm [39].

In the next step, the mixed-canonical form Eq. (5.8) is restored by SVD
of the new optimized Q̃ tensor:

Q̃σlτ = Ỹ σlσ̃lΛ̃σ̃lσ̃
′
lX̃ σ̃′lτ . (5.15)
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One identifies Ỹ as the updated local basis transformation Q at site l and
the new center tensor as:

M σ̃l
al−1al

= Λ̃σ̃lσ̃
′
lX̃ σ̃′lτXτ

al−1al
. (5.16)

Here, a small subtlety arises since the number of optimal modes (the dimen-
sion of σ̃l) can not grow during the optimization. The problem is similar to
the one in conventional single-site DMRG Sec.4.3. This can be a problem,
for example, if one chooses an initial state with a simple structure and only
one optimal mode at every site. In further analogy to single-site DMRG, an
enrichment step has to be implemented to ensure convergence.

After the optimization of the local basis transformation, a single-site
DMRG step can be done to optimize the center tensor M (cf. Sec.4.3).
There is only one slight modification in Eq. (4.46), namely, that the MPO
tensor V is transformed to the new optimal basis:

Ṽ
σ̃′lσ̃l
bl−1bl

= (Q†)σ̃
′
lσ
′
lV

σ′lσl
bl−1bl

Qσlσ̃l . (5.17)

The optimization of the local basis and the center tensor can be done in a
loop until no further improvement can be detected. However, in the current
implementation the optimization of both tensors is done just once or twice.
After that one proceeds to the next site as explained in Sec. 4.3.2 by doing
a subspace expansion and truncation.
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Chapter 6

Projected purification

Very recently, an alternative ansatz to cope with large local dimensions in
case of matrix-product-state methods was suggested, the so-called projected
purification [37, 130]. As discussed in Sec. 4.1.4 the numerical expenses of
tensor manipulations in a MPS method can be reduced by exploiting U(1)
symmetries of Hamiltonians. The goal of the projected-purification ansatz is
to artificially introduce such symmetries although the Hamiltonian does not
have them in its original form.

Consider the Holstein Hamiltonian Eq. (3.4). It is evident that the num-
ber of fermions in the system is conserved by the Hamiltonian and, therefore,
the MPS tensors on a certain site separate into two blocks with respect to
the local dimension. However, the number of phonons in the system is not
conserved since there are unpaired bosonic ladder operators in the interaction
term of the Hamiltonian Eq. (3.3). With the aforementioned ad hoc phonon
cutoff Mph the effective local dimension of every tensor block is Mph + 1 and
it would be desirable to reduce this effective dimension even further.

1

physical site
bath site

Figure 6.1: Projected purification ansatz: for every physical site a phonon
bath site is introduced. The combined number of phonons on physical and
associated bath site is conserved.
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Inspired by the purification method for finite-temperature matrix product
states [131, 132] the projected purification ansatz introduces one additional
bath site for every physical site of the system (Fig. 6.1). The bath sites serve
as phonon reservoirs such that a phonon that is created on a physical site
hops to it from the corresponding bath site. Similarly, the phonon hops back
to the bath site if it is annihilated on the physical site. The sum of phonons
on the physical and bath site is conserved and, therefore, an artificial U(1)
symmetry is introduced.

Formally, the introduction of the bath sites maps the problem to an en-
larged Hilbert space with basis states of the form:

· · · ⊗ |nl, nph,l〉p ⊗ |nb,l〉b ⊗ . . . (6.1)

where nl is the electron number on site l, nph,l the phonon number, and nb,l

the phonon number on the corresponding bath site. By enforcing the phonon
number conservation on every pair of physical and bath site, one restricts the
states to a subspace of the enlarged Hilbert space:

nph,l + nb,l
!

= Mph ∀ l . (6.2)

Within this subspace, every state can be uniquely identified with a state from
the original Hilbert space:

· · · ⊗ |nl, nph,l〉p ⊗ |Mph − nph,l〉b ⊗ . . . −→ · · · ⊗ |nl, nph,l〉 ⊗ . . . . (6.3)

To achieve the mapping, balancing operators that only act on the bath
sites have to be introduced. These balancing operators are defined by their
action on the bath sites:

b

〈
n′b,l
∣∣ β†b,l ∣∣nb,l

〉
b

= δn′b,l,nb,l+1 , (6.4)

b

〈
n′b,l
∣∣ βb,l

∣∣nb,l

〉
b

= δn′b,l,nb,l−1 , (6.5)

and commute with all operators on the physical sites:[
β

(†)
b,l , b

(†)
p,m

]
= 0 , (6.6)[

β
(†)
b,l , c

(†)
p,m

]
= 0 , (6.7)

where β†b,l/βb,l are the balancing operators acting on the bath sites, bp,l/b
†
p,l

are the phonon operators acting on the physical sites, and c†p,l/cp,l are the
fermionic operators acting on the physical sites.
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The Hamiltonian in the enlarged Hilbert space is then constructed by
replacing the ladder operators acting on the original Hilbert space as follows:

bl −→ bp,lβ
†
b,l , (6.8)

b†l −→ b†p,lβb,l , (6.9)

c
(†)
l −→ c

(†)
p,l . (6.10)

It is important to note that the balancing operators are chosen such that
the matrix elements of the operators in the original Hilbert space and the
corresponding matrix elements of the operators in the enlarged Hilbert space
are identical. Therefore, balancing operators do not fulfil standard bosonic
commutation relations.

The introduction of the balancing operators combined with the unique
identification of states between original and enlarged Hilbert space allows
one to completely work in the enlarged space. For example, the Holstein
Hamiltonian Eq. (3.4) takes the form:

HHol,p,b =− t0
L∑
l=1

(c†p,lcp,l+1 + c†p,l+1cp,l) + ω0

L∑
l=1

b†p,lbp,l

− γ
L∑
l=1

nl(b
†
p,lβb,l + bp,lβ

†
b,l) , (6.11)

and similarly, other operators can be constructed with the replacement rules
(6.8), (6.9), and (6.10).

By introducing artificial phonon number conservations on every pair of
physical and bath sites the projected-purification ansatz reduces the effec-
tive local dimension of every tensor block in the MPS to one. Therefore,
matrix manipulations can be done way more efficiently than without the
artificial symmetries. For example, it becomes feasible to use a standard
two-site DMRG algorithm to calculate ground states even with very large
local dimensions [37].

Integrating this method into an existing code, that is able to utilize U(1)
symmetries, is straight forward. One just has to include the additional bath
sites and needs to define the balancing operators, Eqs. (6.4) and (6.5), cor-
rectly.

The drawback of the algorithm is clearly the doubling of the system size
due to the introduction of the bath sites. This also means that nearest
neighbor interactions between physical sites become next nearest neighbor
interactions. Furthermore, the information that is stored in the local basis
transformations in case of the LBO method has to be stored in the MPS
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tensors here, as well. As we will see in Sec. 7.3 this enlarges the bond
dimension needed compared to an MPS with LBO. A detailed analysis of
this phenomenon with an estimate of the increase in bond dimension is given
in Refs. [37,130].
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Chapter 7

Ground-state calculations in
the Holstein model

In this chapter, the ground-state DMRG3S+LBO method introduced in
Sec. 5.2 will be put to work to study the half-filled Holstein model. As ex-
plained above the algorithm is especially tailored to tackle electron-phonon
coupled systems. The results that I will show should demonstrate the accu-
racy and capabilities of the method. Furthermore, I will discuss challenges
and pitfalls that one could encounter when working with this ansatz. The
content of this chapter is published in Ref. [38].

I will compare my results with results obtained by a projected-purificton
DMRG (PP-DMRG) method (Sec. 6) and with results obtained with a pseudo-
site DMRG (PS-DMRG) method. In the PP-DMRG method, a standard two
site DMRG solver was used. The maximal number of phonons per site is set
to Mph = 63 for all data shown in the following. This is done since ten-
sor blocks that have a vanishing occupation can be erased completely in
the used implementation and thus a local dimension that is too large does
not slow down the algorithm noticeably. The PP-DMRG data shown below
was provided by Sebastian Paeckel from the Ludwig-Maximilians-Universität
München and Thomas Köhler from the Uppsala University [133].

The PS-DMRG method was developed by Jeckelmann and White [28]
(see also Ref. [33]). In this ansatz the Mph + 1 phonon levels on every site
are mapped to a number of additional (pseudo) sites that have two states
each. The occupations of these pseudo sites represent the phonon level oc-
cupations as binary numbers (Fig. 7.1). Therefore, the ansatz cures the
problem of large local Hilbert spaces in electron-phonon coupled systems.
The penalty is that the system size is enlarged by L times the number of
pseudo sites and that the coupling terms become quite complicated as well
as long range. Furthermore, the bond dimension that one needs to account
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1

1 1 1 0

Figure 7.1: Pseudo-site ansatz: the phonon degrees of freedom are mapped
to a number of (pseudo) sites with two states each that represent the phonon
state as a binary number.

for a certain precision is enlarged for this method compared to the LBO
ansatz. Similar to the projected purification, the information that is stored
in the local basis transformations in case of the LBO has to be encoded in
the bond dimension in case of the pseudo-site method. The PS-DMRG pro-
duces reliable results and was successfully used to study ground states in
the Holstein and Hubbard-Holstein model (see e.g. Refs. [28, 109, 134, 135]).
The PP-DMRG data shown below was provided by Eric Jeckelmann from
the Leibniz Universität Hannover [136].

7.1 Properties of the DMRG3S+LBO imple-

mentation

The implementation of the DMRG3S+LBO algorithm used here [48] utilizes
the fermion number conservation of the Holstein Hamiltonian Eq. (3.4). This
means that the single site reduced density matrix Eq. (5.1) separates into two
symmetry blocks (cf. Sec. 4.1.4), one block for no fermion at the site and one
block for one fermion at the site. Optimal modes can be calculated for the two
blocks separately and in the DMRG calculations, the maximum number of
optimal modes do per block is fixed. In the truncation procedure, the weights
corresponding to the optimal modes from both blocks are combined in one
ordered list. The two blocks of the local basis transformation matrix are
then filled with the optimal modes according to the size of the corresponding
weights until one of the blocks reaches the maximum size of do optimal modes.
The other block is then filled with zeros until it reaches the same size as the
first block. This is done to allow the algorithm to explore the full number of
do optimal modes in both symmetry sectors the next time the optimal modes
at the site are adapted (cf. Sec. 5.2).

The truncation in the bond dimension of the matrix product states is
done in a simpler way. Again the singular values from the many symmetry
sectors (cf. Eq. (4.27)) are combined to one list and the states corresponding
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to the largest singular values are kept until the maximum bond dimension
is reached. Here, a small technical difficulty arises since it might happen
that whole symmetry blocks vanish which can spoil the consistency with the
tensors on neighboring sites. Therefore, the symmetry blocks that vanish are
kept with a single state and the weight of the block is set to zero. The bond
dimension χ that I will refer to in the following is the number of states kept
with non-zero weight.

Additionally to the maximum bond dimension, a maximum truncation
error ∆trunc is specified and the algorithm will add states until either the
maximum specified bond dimension is reached or the sum of the singular
values squared on the bond reaches 1 − ∆trunc. The maximum truncation
error is set to ∆trunc = 10−14, and, therefore, close to machine precision, in
the following calculations.

As already mentioned in Sec. 4.3.2, an appropriate adaption of the mix-
ing factor α in the subspace expansion is key to a fast convergence of the
algorithm that avoids local energy minima. It turns out that a large mixing
factor α ∼ 1 or even larger is beneficial in the first few sweeps of the simula-
tion to explore large regions of the Hilbert space. In later sweeps, the mixing
factor should be reduced to allow the algorithm so settle into a specific state.
As suggested in Ref. [50], the mixing factor is adapted after the truncation
step is finished and the center tensor of the mixed canonical form is shifted
to the next site (cf. Sec. 4.3.2). One compares three energies: the energy
after the truncation of the previous site Elast, the energy after the DMRG
optimization and before the subspace expansion is done Eopt, and the en-
ergy after the subspace expansion and truncation is done Etrunc. From the
comparison of these three energies, an adaption factor η for α is chosen as
follows:

∆opt := Elast−Eopt

|Eopt| , ∆trunc := Etrunc−Eopt

|Eopt|

if |∆opt| < 10−14 or |∆trunc| < 10−14 : η = 1

else if ∆trunc < 0 : η = 2(1 + |∆trunc|
|∆opt| )

else if |∆trunc|
|∆opt| < 0.05 : η = 1.2− |∆trunc|

|∆opt|

else if |∆trunc|
|∆opt| > 0.3 : η = 1

1.01

else : η = 1

The adaption factor η is then further restricted to be no smaller than 0.99
and no larger than 1.01. The new mixing factor is then α′ = ηα. How-
ever, the mixing factor is always kept between 10−9 and 100. Furthermore,
no subspace expansion is done if the mixing factor falls below 10−8. This

55



adaption strategy has proven to be successful in producing the results below.
The exact numbers in the adaption strategy are, however, results of practical
experience and trial-and-error. Therefore, if might be necessary to change
these numbers if other systems than the Holstein model are considered.

Furthermore, the chosen initial state for the ground-state search has a
huge impact on the convergence pace. One can speed up the convergence
by using an initial state that already has key features of the ground state
built into it. Of course, there is also a danger in this strategy since one
biases the algorithm towards a certain kind of state that might not sit in the
global energy minimum. A common strategy in DMRG simulations is to use
a procedure similar to infinite-system DMRG [40, 42] where sites are added
in the middle of the chain until the desired chain length is reached. This
approach produces an initial state that is already a very good guess for the
ground state.

To produce the ground-state data for the Holstein model at half filling
that I will show below, a different strategy was chosen. In a preparation run,
the coupling to the phonons is set to zero (γ = 0) and a ground state with
a rather small bond dimension χ is produced. Then, the ground state for
γ = 0 is used as the initial guess state for the next run where the coupling
is set to a small finite value. The bond dimension for this run is kept at a
similar small value.

This procedure of gradually increasing the coupling γ from run to run
and always taking the ground state from the last run as an initial guess for
the next is repeated until the desired coupling strength is reached. Then,
the maximal bond dimension χ is gradually increased from run to run until
the desired precision is reached. This procedure was found to be successful
in preventing the algorithm from getting stuck in local energy minima and
producing reliable results.

An example for this strategy at L = 51, N = 25, ω0/t0 = 1 and γ/t0 = 2
is shown in Fig. 7.2. The maximal bond dimension χ is set to 20, the maximal
number of phonons per site Mph is set to 31 and do = 5 optimal modes are
allowed.

Three datasets are shown. In the first run (R1, red dots), the initial
guess state is the ground state at ω0/t0 = 1, γ/t0 = 1.5, and χ = 20 and
the mixing factor α is fixed to 1 for the first 30 sweeps (sα=1 = 30). In the
second run (R2, blue stars), the initial guess state is the same as in R1 but
the mixing factor α is fixed to 1 only in the first run (sα=1 = 1). In the
third run (R3, green diamonds), the initial guess state is the ground state
at γ/t0 = 0 and χ = 15 and the mixing factor α is fixed to 1 for the first 30
sweeps (sα=1 = 30) as in R1.

The inset of Fig. 7.2(a) shows the density distribution in the initial guess
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Figure 7.2: (a) Evolution of the subspace-expansion mixing factor α during
the sweeping. (b) Evolution of the energy during the sweeping with respect
to the best energy estimate in the runs. (c) Evolution of the energy during
the sweeping with respect to the best energy estimate in run with initial state
|ψin,1〉 and sα=1 = 30. Inset of (a): electron density in the initial states. Inset
of (b): electron density in the final states. System parameters are L = 51,
N = 25, ω0/t0 = 1 and γ/t0 = 2. In all runs χ = 20, Mph = 31 and do = 5.

states. It is evident that the ground state at ω0/t0 = 1 and γ/t0 = 1.5 (
|ψin,1〉: R1 and R2) has more structure in the density profile than the ground
state at γ/t0 = 0 (|ψin,2〉: R3) where the density distribution is flatter. Since
the ground-state search here is for ω0/t0 = 1 and γ/t0 = 2 which is in the
CDW phase one would expect that |ψin,1〉 is a better initial guess state than
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|ψin,2〉 since |ψin,1〉 has already more of the expected structure for a CDW
state built in than |ψin,2〉.

The main panel of Fig. 7.2(a) shows the development of the subspace-
expansion mixing factor α during the sweeping. One can see how the mixing
factor is fixed to one for the first 30 sweeps and then decreases in case of R1

and R3. In R1 the mixing factor drops rapidly to a value close to 10−7 after
the adaption of α is turned on and stays close to that value for the rest of
the simulation. The development of α is different in R2 where the mixing
factor is allowed to change already after the first sweep. It also drops to a
value close to 10−7 with a small peak around the 40th sweep. In R3, the
mixing factor is again fixed for the first 30 sweeps. After that, it decreases
gradually until it also settles at a value close to 10−7.

In Fig. 7.2(b), the evolution of the energy guess during the sweeping with
respect to the best energy guess during the run is plotted:

δselfE =
Esweep − Emin,run

|Emin,run|
(7.1)

where Esweep is the energy guess in the middle of a specific sweep and Emin,run

is the minimal energy guess during the run. This is the energy evolution one
can monitor during the DMRG run.

For all three runs the energy eventually settles into a minimum, with
random fluctuations below a relative energy difference of 10−10. In R1 the
energy has an initial drop and then does not improve before the adaption of
the mixing factor is turned on. When the mixing factor is allowed to change,
the energy rapidly drops to its final value. The data for R2 actually looks
very similar although the mixing factor is allowed to change right away. In
R3 more sweeps are needed for the energy to settle but after 300 sweeps it
does and only random fluctuations are seen.

In Fig. 7.2(c) the evolution of the energy guess during the sweeping with
respect to the best energy guess between all the runs is plotted:

δE =
Esweep − Emin

|Emin|
(7.2)

where Emin turns out to be the best energy guess of R1.
Figure 7.2(c) reveals that, although the energies in all the runs settle to a

certain value, there are still large differences between them. R3 does not get
close in energy to R1 and a look at the inset of Fig. 7.2(b) reveals that the
electron density in the final state of R3 does not resemble a charge density
wave at all. In this case the algorithm got stuck. On the other hand, the
electron density in the final state of R2 and R1 are very similar and have
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the form of a nice charge density wave. Nevertheless, the relative energy
difference between R2 and R1 in the later sweeps is of the order 10−6 which
is way beyond the random fluctuations of 10−10.

There are several conclusions from Fig. 7.2. First of all, it becomes clear
that the initial guess state has a huge impact on the convergence. Especially
in the charge-density wave phase, it becomes hard for the algorithm to move
the polarons around due to their increased effective mass. Therefore, the
algorithm can get stuck as it happened for R3.

Second, it can be advisable to fix the mixing factor α to a large value
in the first sweeps. The energy will then stabilize after a few sweeps and
no major improvements will happen because the large α hinders a further
reduction of the energy. Only after this stabilization of the energy is seen
the mixing factor should be allowed to change.

Last, it becomes clear that judging the quality of the data can be very
challenging. Often, it is necessary to perform several runs with the same
initial guess state and different simulation parameters to test the quality.
Fortunately, it turns out that if the parameters of the Hamiltonian are kept
fixed and only the bond dimension is increased from run to run, the algorithm
behaves more predictable.

In general, it is not clear if the presented algorithm and especially the
outlined adaption strategy of the mixing factor is optimal. There are a lot
of simulation parameters that have to be chosen which makes working with
the algorithm quite demanding.

7.2 Test against exact diagonalization

As a validation that the implementation of the DMRG3S+LBO algorithm
provides correct results I will compare data produced by this algorithm with
ground-state data from a Lanczos algorithm [39]. The Lanczos data was
provided by J. Herbrych from the Wroc law University of Science and Tech-
nology [137]. This comparison also serves the purpose of getting a feeling for
the characteristics and capabilities of the specific implementation.

In Fig. 7.3, I compare ground-state data for the Holstein model Eq. (3.4)
at half filling and for open boundary conditions at system size L = 4, phonon
frequency ω0/t0 = 2, and coupling strength γ/t0 = 3. This parameter set
corresponds to the transition region between the metallic and the CDW phase
(cf. Ref. [24]). In Fig. 7.3(a), I plot the energy difference between the DMRG
estimate for the ground-state energy and the energy obtained by the Lanczos
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Figure 7.3: (a) Difference between ground-state energy estimate from
DMRG3S+LBO and ground-state energy from a Lanczos calculation [137]
and (b) variance of the energy plotted against the maximal bond dimension.
The different data sets correspond to different maximal phonon numbers Mph

and different numbers of optimal modes do.

algorithm on the y-axis:

δE =
EDMRG − ELz

|ELz|
(7.3)

where EDMRG is the energy obtained by the DMRG3S+LBO algorithm and
ELz is the energy obtained by the Lanczos algorithm. The energy obtained
from the Lanczos algorithm was computed with a maximal number of Mph =
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30 phonons per site and the error of the energy is of the order of the machine
precision (< 10−15). In Fig. 7.3(b), the variance of the energy expectation
value is plotted on the y-axis:

σ2
E =

〈H2〉 − E2
DMRG

E2
DMRG

. (7.4)

The variance can be taken as an estimate for the error in the energy as it gives
a measure for the proximity to an eigenstate of the Hamiltonian [138]. On
the mutual x-axis of the plots, the largest bond dimension χ in the respective
states is plotted.

Six different datasets are plotted in Fig. 7.3. The maximal number of
phonons per site is varied from Mph = 10 (blue symbols) to Mph = 20 (red
symbols) to Mph = 30 (green symbols). For each Mph, there are two data sets
with do = 5 (open symbols) and do = 11 (filled symbols). The larger number
of optimal modes do = 11 means that at Mph = 10, no truncation is done in
the physical dimension. The Lanczos data is computed with Mph = 30, as
well.

In Fig. 7.3(a), one can observe how the energy converges as a function of
the maximal bond dimension χ. It is evident that for ω0/t = 2 and γ/t = 3
with Mph = 10 the relative distance to the ground-state energy from Lanczos
does not decrease below δE ≈ 0.3×10−4. Upon increasing Mph to 20 and 30 a
higher accuracy can be reached. Furthermore, the number of optimal modes
plays a role in the convergence. With do = 5 an accuracy of δE ≈ 0.3×10−10

can be reached at the considered parameter set. Upon increasing the number
of optimal modes the accuracy is further increased until δE . 1× 10−13.

The convergence of the variance plotted in Fig. 7.3(b) is quite different.
For do = 5 the variance of the energy converges towards ≈ 0.5 × 10−10

irrespective of the size ofMph. After increasing do to 11 the variance decreases
to σ2

E ≈ 1× 10−13 for all Mph at the largest bond dimensions. This behavior
can be understood by noting that changing Mph changes the Hilbert space
and, therefore, strictly speaking the model one is investigating. Within a
certain Hilbert space the algorithm can find states that are very close to
being eigenstates of the Hamiltonian. However, the goal is to get results
that do not depend on the number of phonons per site any more and are
therefore indistinguishable from the results in the limit of infinite Mph within
the desired accuracy. Therefore, the combined results in Fig. 7.3(a) and in
Fig. 7.3(b) have to be considered to assess the precision of the calculations.

For example, the results suggest that Mph = 30 is actually enough to get
an accuracy of ≈ 1 × 10−13. The results for Mph = 20 and Mph = 30 differ
only by about δE ≈ 0.2 × 10−12 for the largest bond dimensions. A further
increase of Mph would not have a noticeable effect at this level of accuracy.
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This expectation was validated by running calculations with Mph = 40 (data
not shown here).

In general, it turns out that the implementation of DMRG3S+LBO used
here is capable of producing reliable results up to an accuracy of about δE ≈
10−12. The saturation of the accuracy can be detected from the fact that
the maximal bond dimension that one fixes for a specific DMRG run is not
exhausted by the algorithm.

7.3 Benchmark of DMRG3S+LBO against

other DMRG methods

To demonstrate the capabilities of the DMRG3S+LBO algorithm and to
illustrate dependencies on the internal control parameters Mph, do, and χ I
will compare ground-state data for large systems of L = 51 sites and N =
25 fermions with data from PS-DMRG and PP-DMRG. An odd number of
sites was chosen such that a nonzero value of the charge density wave order
parameter OCDW Eq. (3.19) develops in the charge density wave phase on
finite systems. The ground state of a finite system with open boundary
conditions in one dimension has to be mirror symmetric with respect to the
middle of the system unless this symmetry is explicitly broken. This means
that OCDW is automatically zero in the ground state of a system with an
even number of sites. Choosing an odd length of the system also has the
consequence that we do not work at exactly half filling but very close to it.

To get a feeling for how large the maximal phonon number Mph per
site has to be for a given parameter set it is helpful to inspect the exact
ground state in the atomic limit Eq. (3.12). The probability for the harmonic
oscillator at site l to be in the mth excited state if the site is occupied by an
electron is given by:

P
(
〈b†l bl〉 = m | l ∈ {locc}

)
=

∣∣∣∣ph,l〈m| e
− γ2

2ω20 e
γ
ω0
b†l |∅〉ph,l

∣∣∣∣2
= e

− γ
2

ω20
γ2m

ω2m
0 m!

, (7.5)

where |m〉ph,l = 1/
√
m!(b†l )

m |∅〉ph,l.
A plot of these probabilities as a function of m for different γ/ω0 can be

seen in Fig. 7.4. One can observe how the probabilities for larger m rises as
the coupling is increased. Of course, this can only be a rough indication on
how large the maximal phonon number has to be for a simulation in a certain
parameter regime. Close to the atomic limit and particularly in the CDW
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Figure 7.4: Plot of the probabilities for the harmonic oscillator of site l to
be in the mth excited state if the site is occupied by an electron Eq. (7.5) as
a function of the excitation m for different γ/ω0 in the atomic limit t = 0.

phase one would expect that the estimation of the necessary Mph based on
Eq. (7.5) is quite accurate. Away from these limits, the ground states of
Eq. (3.4) do not resemble the ground state in the atomic limit Eq. (3.12) and
thus the estimate of Mph based on Eq. 7.5 might be poor. Therefore, one
still has to justify a certain choice of Mph numerically.

In Figs. 7.5, 7.6, 7.7, 7.8, and 7.9, data obtained with DMRG3S+LBO,
PS-DMRG, and PP-DMRG is shown. In the respective panels (a), the rela-
tive energy difference is plotted compared to the minimal energy Emin found
across all the compared methods. The lack of a more precise ground-state
energy to compare to forces one to choose such an ansatz. The relative en-
ergy difference δE is then calculated by replacing ELz by the respective Emin

in Eq. (7.3). In the panels (b), the variance of the energy Eq. (7.4) is plotted.
The plots are organized as follows. In the Figs. 7.5, 7.6, and 7.7, data is

shown for ω0/t = 1 and γ/t = 0.5, 1.5, 2, respectively. The hopping matrix
element and the phonon frequency are equal and the parameter sets corre-
spond to the metallic Tomonaga-Luttinger liquid (TLL) phase, the transition
region and the charge-density-wave (CDW) phase, respectively. In Fig. 7.8,
data is shown for ω0/t = 4 and γ/t = 10 which is on the antiadiabatic side in
the CDW phase and in Fig. 7.9, data is shown for ω0/t = 0.2 and γ/t = 0.6
which is on the adiabatic side in the the CDW phase.

The maximal bond dimensions in the Figs. 7.5, 7.6, 7.7, 7.8, and 7.9 are
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Figure 7.5: TLL phase: (a) Relative energy difference between the lowest
energy found by PP-DMRG [133] and the energies found by PS-DMRG [136]
(stars), PP-DMRG [133] (crosses), and DMRG3S+LBO (bold symbols), re-
spectively, as a function of the bond dimension. (b) Variance of the energy
calculated with PP-DMRG [133] (crosses) and DMRG3S+LBO (bold sym-
bols) as a function of the bond dimension. Calculations done for the Holstein
model Eq. (3.4) close to half filling with system size L = 51, N = 25 elec-
trons in the system, ω0/t = 1, and γ/t = 0.5. All bond dimensions for the
PP-DMRG data are divided by 3.

rescaled by 3, 6, 7,10 and 10, respectively, in case of the PP-DMRG data.
This ad-hoc rescaling is done to fit the data from PS-DMRG, PP-DMRG,
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and DMRG3S+LBO into a single plot for a better comparability. As dis-
cussed earlier, the bond dimension in the PP-DMRG method has to be larger
for a comparable precision. The entanglement between the physical sites and
the phonon bath-sites have to be encoded in the MPS on top of the entangle-
ment between the physical sites. A detailed discussion of the enlarged bond
dimension in case of the PP-DMRG method is done in Refs. [37, 130].

Metallic TLL phase: ω0/t = 1, γ/t = 0.5

In Fig. 7.5(a), we see that the energy in the TLL phase for ω0/t = 1 and
γ/t = 0.5 converges with growing bond dimension. As anticipated from
Fig. 7.4, Mph = 7 is, however, not large enough to reach the full precision that
is possible with the used implementation of the DMRG3S+LBO algorithm.
On the other hand, a larger number of phonons of Mph = 15 is sufficient
to reach the maximal precision as a further enlargement of Mph to 23 does
not improve the precision. Furthermore, the number of optimal modes per
symmetry block of do = 5 is enough for a relative precision of δE ≈ 10−12.
This can also be concluded from Fig. 7.5(b) since the variance for do = 5 is
decreasing in the whole range of bond dimensions instead of getting stuck at
some point (cf. the do = 5 data in Fig. 7.3).

The energies obtained from DMRG3S+LBO, PP-DMRG and PS-DMRG
are overall consistent. As expected, the PS-DMRG needs a larger bond
dimension to accomplish a similar precision as the DMRG3S+LBO (this is
true for all parameter sets analysed in this chapter, cf. Figs. 7.5, 7.6, 7.7, 7.8,
and 7.9). Furthermore, the precision gets actually worse when increasing the
maximum phonon number in case of the PS-DMRG χ = 200 data. This
can be explained by the fact that the chain lengthens when Mph is increased
in case of the PS-DMRG. If the additional pseudo sites do not have any
occupation, there should be no effect. If, however, the added pseudo sites
are occupied, the precision with the same bond dimension can get worse.

Comparing the energies obtained from PP-DMRG with Mph = 63 and
DMRG3S+LBO withMph = 15, 23 in Fig. 7.5(a) one can see that the energies
scale similar with the maximal bond dimension if the bond dimensions in the
PP-DMRG method are divided by 3. This overall behavior, that a rescaling
of the bond dimensions from the PP-DMRG yields a similar scaling of the
energy as in the DMRG3S+LBO method can be seen for all parameter sets
shown here (cf. Figs. 7.5, 7.6, 7.7, 7.8, and 7.9).
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Figure 7.6: Phase transition region: (a) Relative energy difference between
the lowest energy found by DMRG3S+LBO and the energies found by PS-
DMRG [136] (stars), PP-DMRG [133] (crosses), and DMRG3S+LBO (bold
symbols), respectively, as a function of the bond dimension. (b) Variance of
the energy calculated with PP-DMRG [133] (crosses) and DMRG3S+LBO
(bold symbols) as a function of the bond dimension. Calculations done for the
Holstein model Eq. (3.4) close to half filling with system size L = 51, N = 25
electrons in the system, ω0/t = 1, and γ/t = 1.5. All bond dimensions for
the PP-DMRG data are divided by 6.

Phase transition region: ω0/t = 1, γ/t = 1.5

In Fig. 7.6(a), energies are compared close to the phase boundary between
the TLL phase and the CDW phase for ω0/t = 1 and γ/t = 1.5. It is evident
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that a larger bond dimension is needed in all methods to reach a similar
precision compared to the TLL phase (Fig. 7.5) which is expected close to
the phase boundary [115]. Combining the information from Fig. 7.6(a) and
(b), one can conclude that Mph = 15 and do = 5 is not enough to reach the
maximum precision with DMRG3S+LBO. However, Mph = 31 and do = 10
is sufficient.

Insulating CDW phase: ω0/t = 1, γ/t = 2

In Fig. 7.7, data is shown for ω0/t = 1 and γ/t = 2 which corresponds to
the CDW phase. The bond dimensions needed here are smaller than the
ones needed in Figs. 7.5 and 7.6 to reach a similar precision which can be
attributed to the existence of an energy gap between the ground state and the
excitation spectrum [115]. As discussed in Sec. 4.1.2, these conditions lead
to an effective representation of the ground state by matrix product states.
It is evident that do = 5 is not sufficient. On the other hand, Mph = 31 and
do = 10 is adequate for the DMRG3S+LBO method and a further increase
of Mph is not necessary.

Insulating CDW phase - antiadiabatic: ω0/t0 = 4, γ/t0 = 10

Figure 7.8 shows the convergence of the energy and energy variance in the
antiadiabatic region of the CDW phase at ω0/t0 = 4 and γ/t0 = 10. First
of all, one notices that the bond dimensions here are again much smaller
compared to the previous datasets. With the increase of ω0/t0 one approaches
the atomic limit where the ground state takes the form Eq. (3.12) which is a
product state and, therefore, the small bond dimensions come as no surprise.

Furthermore, the convergence of the energy with respect to the bond
dimension appears to be not as smooth in case of the DMRG3S+LBO method
compared to the other datasets (cf. Figs. 7.5, 7.6, and 7.7). It turns out that
it is quite challenging to get the DMRG3S+LBO method to converge to the
correct ground state in the antiadiabatic region. In this limit, the polarons
are very small [21] and their effective mass is quite high. Therefore, the
energy penalty for having two polarons next to each other is not as high
compared to the other datasets and it can easily happen that the algorithm
gets stuck in very stable states away from the ground state.

Insulating CDW phase - adiabatic: ω0/t = 0.2, γ/t = 0.6

The last figure of this series is Fig. 7.9 where the energy and energy variance is
plotted in the adiabatic region of the CDW phase at ω0/t = 0.2 and γ/t = 0.6.
Here again the situation is similar to the one at ω0/t = 1. One can clearly
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Figure 7.7: CDW phase: (a) Relative energy difference between the lowest
energy found by PP-DMRG [133] and the energies found by PS-DMRG [136]
(stars), PP-DMRG [133] (crosses), and DMRG3S+LBO (bold symbols), re-
spectively, as a function of the bond dimension. (b) Variance of the energy
calculated with PP-DMRG [133] (crosses) and DMRG3S+LBO (bold sym-
bols) as a function of the bond dimension. Calculations done for the Holstein
model Eq. (3.4) close to half filling with system size L = 51, N = 25 elec-
trons in the system, ω0/t = 1, and γ/t = 2. All bond dimensions for the
PP-DMRG data are divided by 7.

see that one needs to converge in both the maximal phonon number per site
Mph and the number of optimal modes do to reach the maximal precision
possible with DMRG3S+LBO. This is also the only one of the considered

68



cases where Mph = 31 is clearly not enough to get the full precision and one
needs to increase the maximal phonon number beyond that.

Observables

To conclude this chapter I compare the expectation value of the displacement
of the oscillators at ever site

√
2ω0〈Xl〉 = 〈b†l + bl 〉 calculated in the ground

states from PP-DMRG and DMRG3S+LBO in Fig. 7.10. In Fig. 7.10(a), the
displacement is plotted for the three different parameter sets ω0/t = 1 and
γ/t = 0.5, 1.5, 2. The results from the DMRG3S+LBO method are plotted
in open symbols and the results obtained from the PP-DMRG method are
plotted as black filled symbols. The results in Fig. 7.10(a) correspond to
the highest bond dimension results in Figs. 7.10(b),(c),(d), respectively. The
data from both methods coincide nicely. The displacements have very little
structure and are quite small in the TLL phase at ω0/t = 1 and γ/t = 0.5.
For ω0/t = 1 and γ/t = 1.5 close to the phase transition more structure can
be seen. In the CDW phase at ω0/t = 1 and γ/t = 2, a charge density wave
is formed which is accompanied by a large displacement on all sites occupied
by an electron and almost no displacement for all empty sites. Furthermore,
small boundary effects can be seen in the results from the CDW phase.

In the Figs. 7.10(b),(c),(d) the difference between the displacements cal-
culated by DMRG3S+LBO and PP-DMRG is plotted:

∆〈b†l+bl 〉
= |〈b†l + bl 〉DMRG3S+LBO,χ − 〈b†l + bl 〉PP−DMRG,χ′ | , (7.6)

where 〈b†l + bl 〉DMRG3S+LBO,χ and 〈b†l + bl 〉PP−DMRG,χ′ are the displacements
obtained with DMRG3S+LBO and PP-DMRG in a state with a certain
bond dimension χ, χ′ respectively. The bond dimensions were chosen such
that they are of the same size if the bond dimension used in the PP-DMRG
method is divided by 3 in Fig. 7.10(b), by 6 in Fig. 7.10(c), and by 7 in
Fig. 7.10(d).

As expected, the difference between the calculated displacements de-
creases as the bond dimensions are increased. The smallest differences are
seen for the largest bond dimensions at γ/t = 0.5 in Figs. 7.10(b). In
Figs. 7.10(c) at γ/t = 1.5 the differences do not decrease as far. Especially
between the two largest bond dimensions there is barely any improvement
visible. The lower precision for these parameters was expected since also the
energies are less precise (cf. Fig. 7.6). In Figs. 7.10(d) for γ/t = 2, there
is again a reduction of the differences between the methods as the bond
dimension for both of them is increased.
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7.4 Summary

This chapter was devoted to the test of the DMRG3S+LBO method and a
comparison to the PP-DMRG method. To this end, ground-state data was
obtained for the half-filled 1d Holstein model in different regions of the phase
diagram and benchmarked against results calculated with PS-DMRG. Over-
all, the DMRG3S+LBO and the PP-DMRG are equally capable of producing
very precise results for all parameter sets considered here, both with respect
to ground-state energies and observables.

Especially close to the phase boundary, the DMRG3S+LBO benefits from
its ability to represent the ground state with a smaller bond dimension com-
pared to the PP-DMRG results at the same precision. This advantage comes
at the cost of a more delicate handling of the method. The algorithm is very
sensitive to the initial state and the management of the subspace expansion
mixing factor, which can make it hard to get it converged. Furthermore, con-
vergence with respect to the number of optimal modes do has to be checked
in addition to the convergence with respect to the bond dimension.

The PP-DMRG is conceptually simpler than the DMRG3S+LBO. A stan-
dard two-site solver can be used in the DMRG and the bond dimension is
the sole control parameter for convergence.
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Figure 7.8: CDW phase - antiadiabatic: (a) Relative energy difference be-
tween the lowest energy found by DMRG3S+LBO and the energies found
by PP-DMRG [133] (crosses), and DMRG3S+LBO (bold symbols), respec-
tively, as a function of the bond dimension. The orange dashed line is the
relative energy difference calculated by PS-DMRG [136] with a bond dimen-
sion of χ = 100. (b) Variance of the energy calculated with PP-DMRG [133]
(crosses) and DMRG3S+LBO (bold symbols) as a function of the bond di-
mension. Calculations done for the Holstein model Eq. (3.4) close to half
filling with system size L = 51, N = 25 electrons in the system, ω0/t0 = 4,
and γ/t0 = 10. All bond dimensions for the PP-DMRG data are divided by
10.
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Figure 7.9: CDW phase - adiabatic: (a) Relative energy difference between
the lowest energy found by PP-DMRG [133] and the energies found by PS-
DMRG [136] (stars), PP-DMRG [133] (crosses), and DMRG3S+LBO (bold
symbols), respectively, as a function of the bond dimension. (b) Variance of
the energy calculated with PP-DMRG [133] (crosses) and DMRG3S+LBO
(bold symbols) as a function of the bond dimension. Calculations done for
the Holstein model Eq. (3.4) close to half filling with system size L = 51,
N = 25 electrons in the system, ω0/t = 0.2, and γ/t = 0.6. All bond
dimensions for the PP-DMRG data are divided by 10.
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Figure 7.10: (a) Expectation value of the oscillator displacement 〈b†l + bl 〉
at every site for L = 51, N = 25, ω0/t = 1, γ/t = 0.5, 1.5, 2 calculated
with DMRG3S+LBO (open symbols) and PP-DMRG [133] (filled symbols).
(b) - (d) Difference between the oscillator displacements calculated with
DMRG3S+LBO and PP-DMRG [133] for different maximal bond dimensions
χ. (b) ω0/t = 1, γ/t = 0.5, (c) ω0/t = 1, γ/t = 1.5, (d) ω0/t = 1, γ/t = 2.
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Chapter 8

Charge-density-wave melting in
the Holstein model

As we have seen in Ch. 2, modeling solid-state materials can be a challenging
task for theoreticians. Here the dynamics in the Holstein model as an example
for an electron-phonon coupled system is studied. The study of such model
systems can help to understand experiments on ultrafast dynamics in solids.

In these types of experiments, energy is deposited in the material by an
external excitation and then the response of the sample is monitored over
time. A common setup are so called pump-probe experiments where the
sample is excited by a strong laser pulse, the pump pulse. After a waiting
time a second laser is shone on the sample to probe the response. By varying
the time delay between pump and probe pulse the course of the response in
time can be recorded [10].

Due to resonance effects, different degrees of freedom can be targeted
for the deposition of the energy. Often the laser pulse primarily couples
to the electrons of the systems. Then the electrons couple to each other
and to the lattice degrees of freedom, such that after some time the system
relaxes back to a steady state. A wide variety of phenomena have been found
in these types of experiments such as photoinduced phase transitions [17],
accessing metastable states [16], or the melting of CDW or antiferromagnetic
order [13, 14,139].

On the theoretical side, the challenge is to understand different decay
channels and timescales of the relaxation. In this context, the Holstein model
is appealing since it features few free parameters which holds the chance to
understand microscopic phenomena in detail. Furthermore, it hosts polarons
[21] and at half filling a phase transition between a metallic and insulating
CDW phase [22–24] which are typical phenomena in electron-phonon coupled
systems.
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Figure 8.1: Order parameter OCDW as a function of time when starting
from the state |1, 0, 1, 0〉el|∅〉ph. L = 4, N = 2, ω0/t0 = 2 and γ/t0 = 1, 3, 4.
Open symbols are TEBD-LBO data with δtt0 = 0.025, ∆trunc = ∆loc =
10−7 and Mph = 15, 30, 40, respectively. For clarity, only every fourth data
point computed with TEBD-LBO is shown. Small filled symbols are time-
dependent Lanczos data [137].

To understand the dynamics in the Holstein model one should note that
only the electrons can move around in the system. If phonons travel through
the system they can do so only by being absorbed by an electron and then
reemitted by it at another location.

In this chapter, I will recapitulate the results of Ref. [54]. The data
shown here features slightly larger system sizes, however, the conclusions
from Ref. [54] do not change. A discussion of the local harmonic oscillators
movement in phase space will complement the already existing analysis.

The study presented here focuses on electron-phonon coupling as the sole
channel for relaxation and, thus, can be seen as complementary to the work
by Hashimoto and Ishihara [57]. They study the melting of charge order
as a result of an optical excitation in a system with dominating nearest
neighbor electron-electron interaction. The overall effect of an additional
weak coupling to phonons is a slowing down of the dynamics due to an
increased effective mass of the solitons that cause the melting.
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As in Ch. 7 odd system sizes are used to pin the charge density wave in
the CDW ground states and open boundary conditions are considered. For
the time evolution the TEBD with local basis optimization (cf. Sec. 5.1) is
used. The time step is set to δtt0 = 0.025 and the maximal truncation error
in both the bond dimension and the optimal modes is set to 10−7. The bond
dimension is then no further restricted and always stays below 2000 for all
the simulations below.

The maximal times that are shown in the plots is choses such that finite-
size effects do not affect the behavior at the end of the simulations quali-
tatively (see App. A). At later times reflections from the boundaries would
become visible in the data. Furthermore, the bond dimensions then grow
above 2000 which makes calculations prohibitively expensive in this case
and, therefore, enlarging the system size would not give more information.
It was checked that errors due to the size of the time steps, truncation errors
and maximal phonon numbers per site are not visible on the scale of the
figures below.

As an illustration of the accuracy, TEBD-LBO data is compared to data
obtained from a Lanczos time evolution [140] for a small system size of L = 4
in Fig. 8.1. The Lanczos data was again provided by J. Herbrych from
the Wroc law University of Science and Technology [137]. In the Lanczos
time evolution the time step is δtt0 = 0.01, MLz = 20 Lanczos steps are
used, and the maximum phonon number is set to Mph = 30. In the initial
state, every second site is occupied by a fermion and no phonons are present
|1, 0, 1, 0〉el|∅〉ph. The phonon frequency is ω0/t0 = 2 and three different
electron-phonon couplings of γ/t0 = 1, 3, 4 are used. In the TEBD-LBO the
maximum phonon number is set to Mph = 15, 30, 40. On the scale of the
plot, no differences between the TEBD-LBO data and the Lanczos data are
visible.

8.1 Bare charge-density-wave melting

In the first initial state that is considered to study charge-density-wave melt-
ing, every second site is occupied by a fermion without having any phonons
in the system. The state is referred to as bare CDW state (BCDW) and
takes the form:

|BCDW〉 =

(L−1)/2∏
l=1

c†2l

 |∅〉el |∅〉ph . (8.1)

The time evolution is done according to the Hamiltonian of the Holstein
model, Eq. (3.4), with ω0/t0 = 2 and γ/t0 = 1, 3, 4. The position of the three
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Figure 8.2: Phase diagram of the Holstein model at half filling sketched
from the results in Refs. [23, 24] (cf. Sec. 3.2). The orange dots represent
the parameter sets that are considered for the BCDW and DCDW melting
in Secs. 8.1 and 8.2, respectively. The arrows represent the frequency quench
(FQ) and coupling quench (CQ) discussed in Sec. 8.3.

parameter sets in the phase diagram of the Holstein model at half filling are
roughly marked in Fig. 8.2 as orange dots.

To track the CDW melting the CDW order parameter OCDW, Eq. (3.19),
is plotted in Fig. 8.3(a) as a function of time in units of the hopping matrix
element t0. As a comparison the time evolution of a BCDW in the thermo-
dynamic limit without coupling to phonons is considered. In this case, the
time evolution of OCDW follows [141]:

OCDW,γ=0 = J0(4tt0) , (8.2)

where J0 is the zeroth-order Bessel function of the first kind (see eg. [141]).
It is plotted as black dots in Fig. 8.3(a).

For the smallest coupling γ/t0 = 1 the order parameter, starting out at
OCDW = 1, tends to zero with damped oscillations around that value. It
roughly follows the γ = 0 curve until tt0 ≈ 3 and after that the frequency
of the oscillations is still similar to the ones at γ = 0. It is evident that the
time evolution of OCDW is mostly controlled by the hopping matrix element
t0 with moderate alterations due to the coupling to the phonons.

In contrast, the progression of the order parameter is strongly altered in
case of the larger couplings γ/t0 = 3 and 4. After an initial drop of OCDW,
it stabilizes at ≈ 0.6 between tt0 ≈ 1 and tt0 ≈ 2.5 for γ/t0 = 4. Then
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Figure 8.3: Bare CDW melting: (a) order parameter OCDW (b) number
of phonons in the system Nph/N as a function of time. L = 15, N = 7,
ω0/t0 = 2 and γ/t0 = 1, 3, 4. Mph = 15, 30, 40. For clarity, only every fifth
data point computed with TEBD-LBO is shown. The small black dots in
(a) correspond to exact analytical results for γ = 0 in the thermodynamic
limit [141]. The dashed lines in (b) mark the phonon numbers in the ground
state at the respective parameters.

the order parameter changes again until it plateaus around ≈ −0.1 between
tt0 ≈ 4.2 and tt0 ≈ 5.8. At least the first plateau of OCDW can similarly be
observed for γ/t0 = 3, although, in this case the plateau appears at a smaller
value of OCDW and is shorter in time.
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Figure 8.4: Bare CDW melting: (a) order parameter OCDW (b) number
of phonons in the system Nph/N as a function of time. L = 15, N = 7,
ω0/t0 = 10 and γ/t0 = 5, 15, 20. Mph = 15, 30, 40. For clarity, only every
fifth data point computed with TEBD-LBO is shown.

The plateaus in the order parameter are related to oscillations of the
number of phonons in the system plotted in Fig. 8.3(b). At the start, no
phonons are present in the system and the electrons can move freely from
site to site. They delocalize across the neighboring sites which reduces the
order parameter. After some time the electrons start dressing themselves
with phonons thereby forming heavy polarons. The number of phonons in
the system far exceeds the respective ground state phonon numbers plotted
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Figure 8.5: Bare CDW melting: order parameter OCDW as a function of
time. L = 15, N = 7, ω0/t0 = 2 and γ/t0 = 4. Mph = 10, 20, 40. For clarity,
only every fifth data point computed with TEBD-LBO is shown.

as dashed lines in Fig. 8.3(b). In case of the large couplings γ/t0 = 3 and 4
the increased effective mass of the electrons resulting from the dressing with
phonons impedes their movement so much that a plateau can be seen in the
order parameter.

However, the electrons reabsorb the phonons after some time thus accel-
erating their movement again. The period of the oscillations in the phonon
number is related to phonon frequency as 2π/ω0. This phenomenon can be
seen as a temporal self trapping of the electrons [54].

In Fig. 8.4, the melting of the bare CDW state is shown for a larger phonon
frequency of ω0/t0 = 10. The increased frequency leads to several shorter
plateaus in the decay of OCDW in case of the stronger coupling strengths
γ/t0 = 15, 20 [Fig. 8.4(a)]. As in the case of ω0/t0 = 2, the length of the
plateaus in the order parameter are locked to the oscillations in the number of
phonons [Fig. 8.4(b)]. For the weaker coupling strength γ/t0 = 5, the melting
is again comparable with the γ = 0 case but with damped oscillations. These
slow oscillations are superimposed by faster oscillations with the period of
the oscillations in the phonon number.

To illustrate the convergence of the TEBD-LBO method in the local
phonon cutoff, Fig. 8.5 shows the bare CDW melting for L = 15, ω0/t0 = 2,
and γ/t0 = 4 simulated with three different phonon cutoffs Mph = 10, 20, 40.
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Figure 8.6: Bare CDW melting: phase-space dynamics of the local harmonic
oscillators at sites l = 8, 9 that are initially occupied and not occupied,
respectively. The time evolution can be followed by the shade of the symbols
filling, where no filling corresponds to t = 0 and completely filled corresponds
to tt0 = 6.5. L = 15, N = 7, ω0/t0 = 2 and γ/t0 = 1, 3, 4. Mph = 15, 30, 40.

It is evident that the simulation with Mph = 10 is not able to capture the
first plateau in the order parameter and fails for t > 1/t0. By doubling
the cutoff to Mph = 20 the results can be improved, but the plateau is
still shorter than in the converged results with Mph = 40. Note that the
simulation with Mph = 40 uses only up to do = 12 optimal modes. This
comparison demonstrates the capabilities of the TEBD-LBO method to pro-
duce converged results in parameter regimes where a large phonon cutoff is
necessary.

The temporal self trapping can be further understood by considering the
movement of the local harmonic oscillators in phase space. In Fig. 8.6 the
expectation value of the momentum:

pl = i(b†l − bl) (8.3)
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is plotted versus the expectation value of the displacement

xl = b†l + bl (8.4)

of the local oscillators. The time evolution can be followed by the shade of
the symbols filling, where no filling corresponds to t = 0 and completely filled
corresponds to tt0 = 6.5. Figs. 8.6(a),(b), and (c) correspond to site 8 in the
system where there is an electron in the initial state while Figs. 8.6(d),(e),
and (f) correspond to site 9 which is initially empty. The black cross marks
the phase space position of the oscillators in the corresponding ground states.

In the initial state, the expectation values of xl and pl of all oscillators
are zero since the initial state is an eigenstate of Hph, Eq. (3.1). As time
evolves, the expectation values move through phase space. At γ/t0 = 1
[Figs. 8.6(a) and (d)] the trajectory of the expectation values in phase space
revolves around the ground-state expectation value. The behaviour is similar
to a free harmonic oscillator initially displaced from its rest position.

For the larger couplings γ/t0 = 3 [Figs. 8.6(b) and (e)] and γ/t0 = 4
[Figs. 8.6(c) and (f)] the initial behavior of the oscillators is similar to the
one at γ/t0 = 1. However, the coupling to the electrons is apparent here
since the amplitude of the oscillations are damped as the time evolves. From
the phase space perspective, the self trapping happens if there is a mismatch
of the displacement on neighboring sites. The displacements shift the energy
of the local electronic states due to Hel−ph, Eq. (3.3). Therefore, a mismatch
between neighboring sites means that the electron has to loose or gain en-
ergy when moving from one site to the next. This mechanism can strongly
suppress the electron movement.

8.2 Dressed charge-density-wave melting

The second initial state considered here is the ground state of the Holstein
Hamiltonian Eq. (3.4) in the atomic limit t0 = 0. As discussed in Sec. 3.1
it has the form Eq. (3.12) where some of the sites are occupied by a small
polaron while the rest of the sites are completely empty. The distribution
of the polarons is completely arbitrary and every such state is a degenerate
ground state at t0 = 0. Here, the distribution is chosen such that the CDW
order parameter Eq. 3.19 takes the value 1 in the initial state such that it
takes the form:

|DCDW〉 = e
− (L−1)γ2

4ω20

(L−1)/2∏
l=1

c†2l e
γ
ω0
b†2l

 |∅〉el |∅〉ph , (8.5)
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which will be referred to as dressed CDW state (DCDW). The initial state
is prepared by constructing the bare CDW state and then performing an
imaginary time evolution according to the Holstein Hamiltonian with t0 = 0
and γ/ω0 set to the same value as in the later real time evolution. The
apparent difference of the dressed CDW state compared to the bare CDW
state Eq. (8.1) is that the electrons here are dressed with phonons already in
the initial state while such a dressing has to appear dynamically in case of
the bare CDW state.

The time evolution of the order parameter OCDW when starting from the
dressed CDW state is plotted in Fig. 8.7(a). For smallest coupling γ/t0 = 1
it can again be seen as a damped version of the case without coupling to the
phonons plotted as black dots in Fig. 8.7(a). The order parameter tends to
zero with oscillations around that value whose frequency is mainly controlled
by the hopping matrix t0. In contrast, for the larges coupling γ/t0 = 4, the
order parameter changes only very little over the course of the simulation
time because the initial state is very close to the ground state in this case.
For the intermediate coupling γ/t0 = 3 the behavior interpolates between
the small and large coupling behavior as OCDW tends to zero slowly without
large fluctuations.

The number of phonons in the system over time is plotted in Fig. 8.7(b).
In the initial states, the number of phonons is relatively close to the respec-
tive ground states for all couplings. In case of the strongest couplings the
number of phonons in the system does not change considerably during the
time evolution. This reflects the proximity of the initial state to the ground
state. Different from that, the phonon number increases by a factor of two or
three in the beginning of the simulation for γ/t0 = 1. In this case the initial
state is not that close to the ground state where polarons are delocalized over
the whole lattice. The behavior of the phonon number at γ/t0 = 3 is close
to the one at γ/t0 = 4 as it stays more or less stable over the course of the
simulation time with small fluctuations.

In Fig. 8.8 the time evolution of the order parameter is plotted again but
in contrast to Fig. 8.7(a) the time axis is in units of the effective hopping
matrix element t̃0, Eq. 3.15, obtained in the small t0 perturbation theory. The
rescaling of the time axis reveals that the different timescales in Fig. 8.7(a)
can be understood as stemming from the different effective masses of the
polarons. As the coupling strength γ/t0 is increased, the polarons become
heavier and move slower through the lattice. Of course, the rescaling of
the time axis does not yield a perfect collapse which is expected since the
parameter sets used here are far away from the small t0 limit.

One feature that stands out in Fig. 8.7(a) are peaks around tt0 ≈ 3.1 and
around tt0 ≈ 6.1 for γ/t0 = 4. Similar peaks can be found for γ/t0 = 3.
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Figure 8.7: Dressed CDW melting: (a) order parameter OCDW (b) number
of phonons in the system Nph/N as a function of time. L = 15, N = 7,
ω0/t0 = 2 and γ/t0 = 1, 3, 4. Mph = 15, 30, 40. For clarity, only every fifth
data point computed with TEBD-LBO is shown. The small black dots in (a)
correspond to exact analytical results for γ = 0 in the thermodynamic limit
when starting from the BCDW state [141]. The dashed lines in (b) mark the
phonon numbers in the ground state at the respective parameters.

The positions of the peaks in time are roughly multiples of 2π/ω0. This
relation can be checked by running similar simulations with different ω0/t0
(not shown here). Despite this connection, the precise origin of the peaks
remains unclear.
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Figure 8.8: Dressed CDW melting: order parameter as function of time in
units of the effective hopping matrix element t̃0 Eq. 3.15. L = 15, N = 7,
ω0/t0 = 2 and γ/t0 = 1, 3, 4. Mph = 15, 30, 40. For clarity, only every fifth
data point computed with TEBD-LBO is shown for γ/t0 = 3 and every
twentieth data point is shown for γ/t0 = 4.

The movement of the harmonic oscillators on sites 8 and 9 are plotted
in Fig. 8.9 for ω0/t0 = 2, γ/t0 = 1 in panels (a) and (b), for γ/t0 = 3 in
panels (c) and (d) and for γ/t0 = 4 in panels (e) and (f). Note that in this
case the displacement in the initial state depends on weather an electron is
on the site or not. The panels (a), (c), and (e) correspond to sites that are
initially occupied by a fermion and therefore the expectation values of the
displacements at tt0 = 0 is nonzero. The panels (b), (d), and (f), however,
correspond to sites that are initially empty such that the expectation values
of the displacements are zero in the initial state. This is in contrast to the
bare CDW state where the expectation values of the displacements on all
sites are zero irrespective of whether there is a fermion on the site or not (cf.
Fig. 8.6).

Note also the different ranges of values on the x and y-axes for the different
coupling strengths. This is done to reveal more detail in the phase space
movement and reflects the very different behavior for the different coupling
strengths.

As is the case for the evolution of the order parameter, the phase space
movement for the weakest coupling γ/t0 = 1 is comparable when starting
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Figure 8.9: Dressed CDW melting: phase-space dynamics of the local har-
monic oscillators at sites l = 8, 9 that are initially occupied and not occupied,
respectively. The time evolution can be followed by the shade of the symbols
filling, where no filling corresponds to t = 0 and completely filled corresponds
to tt0 = 6.5. L = 15, N = 7, ω0/t0 = 2 and γ/t0 = 1, 3, 4. Mph = 15, 30, 40.

from the bare CDW state [cf. Fig. 8.6(a) and (d)] and when starting from
the dressed CDW state. The trajectory orbits the expectation value in the
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Table 8.1: Energy difference between the ground states and the initial states
∆EBCDW[DCDW] = EBCDW[DCDW] − Egs for the BCDW [DCDW] state with
L = 15 and ω0/t0 = 2.

γ/t0 ∆EBCDW/(t0N) ∆EDCDW/(t0N)
1 1.670 1.170
3 4.877 0.377
4 8.153 0.153

ground state, however, it spirals inwards for later times.
The behavior is very different for the intermediate coupling γ/t0 = 3

[Fig. 8.9(c) and (d)]. The trajectories do not resemble persistent oscillations
at all. Rather, the movement can be compared to the movement in the pres-
ence of friction. The trajectory moves towards the ground state displacement
and even overshoots it but the momentum is always comparably small.

Yet another behavior can be observed for the largest coupling γ/t0 = 4
[Fig. 8.9(e) and (f)]. Here the trajectories resemble circles again but the
midpoint of the circle moves along the x-axis towards to displacement in the
ground state.

Comparison between bare CDW and dressed CDW melting

In conclusion, there are large similarities between in the charge density wave
melting when starting from the bare CDW state and the dressed CDW state
in case of the small coupling γ/t0 = 1. A fast decay of the order parameter
OCDW to zero can be observed and the frequency of the oscillations in the
order parameter are controlled by the hopping matrix element t0 in both
cases. The behavior for the larger couplings γ/t0 = 3, 4, on the other hand,
is very different for the two initial states. The time evolution of the bare CDW
state shows plateaus in the CDW order parameter that can be associated to a
temporal self trapping of the polarons. The electrons undergo an oscillation
between a bare electron without phonon dressing and a heavy polaron with
a large phonon dressing and strongly modified effective mass. In case of
the dressed CDW state as the initial state, the electrons already have a
large phonon dressing from the start. This initial dressing gets stronger the
larger the coupling γ/t0 is. Therefore, the dynamics gets slowed down as the
coupling strength is increased. Both of these strong coupling behaviors were
similarly found by Kloss et al. [58] in the dynamics of single localized charge
carriers placed in an otherwise empty Holstein lattice.

A further understanding of the dynamics can be gained by considering
the energetic distance of the initial states from the respective ground states.
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In Table 8.1 these energy differences are given for the six considered cases.
It is evident that the bare CDW states distance to the ground state grows
as the coupling increases in contrast to the dressed CDW state that closes in
on the ground state as γ/t0 is increased. Energetic proximity of the initial
state to the ground state means that few states in the many-body spectrum
are available in the time evolution. This can explain the slow dynamics in
case of the dressed CDW state at large γ/t0.

8.3 Quenches from the CDW to the metallic

phase

In the last two sections, the decay of CDW order was studied by considering
initial product states with perfect CDW order. In this section, the initial
state is a many-body ground state in the CDW phase with all its correlations.
At t = 0 the parameters of the Hamiltonian are quenched into the metallic
TLL phase to start the dynamics.

The arrows in the phase diagram sketch Fig. 8.2 illustrate the two different
quenches that are considered. The initial state for both of the quenches is the
ground state at ω0/t0 = 2 and γ/t0 = 4. In the frequency quench (horizontal
arrow in Fig. 8.2, FQ), the phonon frequency is quenched to ω0/t0 = 0.1
and the coupling is quenched to γ/t0 = 0.2, such that the ratio γ/ω0 stays
constant before and after the quench. In the coupling quench (vertical arrow
in Fig. 8.2, CQ), only the coupling is quenched to γ/t0 = 1 while the phonon
frequency remains unchanged.

To further understand the nature of the two quenches it is instructive
to compare the quench energies ∆Equ = Einit − Egs as well as their kinetic
∆Equ

kin = Einit
kin − Egs

kin and phonon parts ∆Equ
ph = Einit

ph − Egs
ph. The quench

energies are the difference between the energy of the initial state after the
quench Einit and the ground state at the respective parameters Egs, where
Eα = 〈Hα〉 [cf. Eqs. (3.1) and (3.2)]. These energies are listed in Table 8.2.

There is a large difference between the total quench energies. This is due
to the large difference in the phonon quench energy while the kinetic part

Table 8.2: Total quench energies ∆Equ/(t0N) and the contributionsfrom
the kinetic part ∆Equ

kin/(t0N) and the phononic part ∆Equ
ph/(t0N).

∆Equ/(t0N) ∆Equ
kin/(t0N) ∆Equ

ph/(t0N)

FQ 0.819 1.002 0.195
CQ 5.187 0.948 7.398
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of the quench energy is very similar. In the frequency quench the phonon
frequency is reduced in comparison to the electron bandwidth which keeps
∆Equ

ph small although there is a phonon excess. In contrast, the phonon
frequency remains unchanged with respect to the electron bandwidth in the
coupling quench. The reduction of the coupling γ/t0 leads to a phonon excess
such that ∆Equ

ph predominates in ∆Equ .

Frequency quench - FQ

In Fig. 8.10(a) the CDW order parameter OCDW is plotted as a function
of time after the quench. After the frequency quench the order parameter
decays towards zero with oscillations around a value slightly larger than zero.
The frequency of the oscillations is again controlled by the hopping t0 as the
comparison to the BCDW melting without phonon coupling reveals that is
plotted as black dots in Fig. 8.10(a).

To understand this behavior the staggered displacement Odisp Eq. (3.20)
is plotted in Fig. 8.10(b). As mentioned earlier a discrepancy between the
displacements on neighboring sites leads to a mismatch between the electronic
energy levels on these sites. A positive value of the staggered displacement
means that it is energetically favorable for the electrons to sit on all the even
sites, while a negative Odisp means that on the odd sites the electron levels
are lower. As one can see in Fig. 8.10(b), the staggered displacement does not
change much over the course of the simulation time in case of the frequency
quench and at the end Odisp is still at ≈ 2.8. This behavior is due to the
small phonon frequency after the quench. The lattice just did not have time
to react to the quench yet, while the electrons move around quicker but in
front of a potential background given by the staggered displacement.

The slow movement of the oscillators can also be seen in Figs. 8.11(a)
and (c) where the phase space movement of the oscillators on sites 8 and
9 is plotted over the course of the simulation time. One can see how the
oscillators start moving in circles around the ground-state displacement but
the movement is very slow and at the end of the simulation the displacement
has only changed slightly.

To sum up, we see here very different timescales of the electrons and the
local operators after the quench. The electrons have already relaxed to an
almost steady state over the course of the simulation time. This relaxation is
however only with respect to the remaining background potential generated
by the slow local oscillators. These move on far longer timescales and are
thus still far away from any relaxation. Therefore, a full relaxation of the
system happens on timescales beyond the reach of the current method.
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Figure 8.10: Quench from CDW phase to metallic phase: (a) electron
order parameter OCDW (b) staggered displacement Odisp as a function of
time. L = 15, N = 7, Mph = 40. For clarity, only every fifth data point
computed with TEBD-LBO is shown. The small black dots in (a) correspond
to exact analytical results for γ = 0 in the thermodynamic limit when starting
from the BCDW state [141]. The dashed lines in (b) mark the staggered
displacement Odisp in the ground state at the respective parameters.

Coupling quench - CQ

The dynamics after the coupling quench is very different. The CDW order
parameter shows slow oscillations in Fig. 8.10(a) whose amplitude is almost
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Figure 8.11: Quench from CDW phase to metallic phase: phase-space dy-
namics of the local harmonic oscillators at sites l = 8, 9 that are initially
occupied and not occupied, respectively. The time evolution can be followed
by the shade of the symbols filling, where no filling corresponds to t = 0 and
completely filled corresponds to tt0 = 6.5. L = 15, N = 7, Mph = 40

constant. The oscillations in OCDW are simultaneous to the oscillations in
the staggered displacement plotted in Fig. 8.10(b).

Again the dynamics can be understood by considering the displacement
structure in the model as a background potential for the electrons. In this
case the oscillations of the local oscillators are faster and change from positive
to negative. When the sign of the Odisp changes from positive to negative
the electrons are pushed away from the even sites to the odd sites. When the
sign of the staggered displacement changes back to positive also the electrons
are pushed back from the odd to the even sites.

The larger frequency of the local oscillators is evident in Fig. 8.11(b)
and (d). The oscillator on site 8 performs two full oscillations during the
simulation time with a slight damping. The oscillator on site 9 also starts
moving but with smaller amplitude then the one on site 8. Furthermore,
there is a phase shift between the two oscillators of about π/2 while the
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phase shift in case of the frequency quench is π.

Comparison between frequency and coupling quench

Comparing the two quenches, the transient dynamics studied here clearly
depends on the initial state and the post quench parameters. The frequency
quench can be understood by different timescales of the electron and oscillator
movement. Electrons delocalize over the system quickly and the remaining
order is due to the slower response of the phonon degrees of freedom to the
quench. It is, however, interesting to see that the oscillators on both even and
odd sites move by similar amounts in response to the faster moving electrons.

This is in contrast to the coupling quench where OCDW and Odisp are
locked and in the beginning most of the oscillator movement is on the even
sites that are initially occupied by electrons. The oscillators on the odd
sites start moving significantly only after the electrons are pushed to the
odd sites by the even site oscillators. These phenomena nicely demonstrate
that transport in the Holstein model happens solely through motion of the
electrons. Spatial inhomogeneities in the phonon distribution can only be
dissolved through coupling to the electrons.

8.4 Summary

In this chapter, melting of CDW order was studied in the 1d Holstein model
by starting from different initial states and simulating the real-time evolution
with TEBD-LBO. In contrast to Ref. [57], the focus here was on the regime
far from equilibrium and no direct interaction between electrons was present.
Compared to completely free particles, overall the dynamics of charge carriers
is slowed down. This is a common observation in Holstein-type systems,
attributed to polaron formation resulting in an increased effective mass [57,
58,125,142] (see also [143]).

For weak electron-phonon coupling, the time evolution of the order pa-
rameter qualitatively follows the case of no coupling, with an additional
damping. This behavior is found for both the bare and dressed CDW state.
When γ/t0 is larger, the behavior of OCDW in time differs drastically for the
two initial states. In case the system is initialized in the bare CDW state, a
transient self trapping effect occurs and plateaus can be observed in the time
evolution of the order parameter. This phenomenon is not found when start-
ing from the dressed CDW state. Here, the melting of the order parameter
is just drastically slowed down as γ/t0 is increased.

Quenching the system from the CDW to the TLL phase reveals different
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timescales for the relaxation of electron and phonon order. Phonons need
to be absorbed and reemitted by electrons to move around the system and,
therefore, inhomogeneity in the phonon sector can persist longer while the
electronic order is mostly molten.

This study illustrates the capabilities of the TEBD-LBO method to ac-
count for a large number of local phonons in the time evolution while keeping
the computational costs at a manageable level [51,52].
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Chapter 9

Thermalization in the Holstein
model

A related aspect to the short time dynamics after an excitation discussed
in the previous chapter is the question weather and how closed quantum
systems thermalize at later times. The unitary time evolution of quantum
states ensures that a system, once prepared in a pure state and without
contact to a heat bath will remain in a pure state. Thermalization can,
therefore, only happen in the sense of subsystem thermalization, that is,
parts of a system act as the bath for the complement of that part. The
fundamental notion of how closed quantum systems thermalize is given by
the eigenstate thermalization hypothesis (ETH) going back to the seminal
works by Deutsch [59] and Srednicki [60]. In the following, I will review
important aspects of the ETH, that become important in Sec. 9.2 where the
ETH is tested in the Holstein polaron model [70]. The results presented here
and in Ref. [70] are based on the bachelor and master thesis of D. Jansen.
The author contributed to the production and independent verification of
numerical data, as well as the analysis, discussion and writing of the paper.

9.1 Eigenstate thermalization hypothesis

Consider the unitary time evolution of a nonequilibrium state |ψ〉 under the
Hamiltonian H:

|ψ(t)〉 = e−iHt |ψ〉 =
∑
n

e−iEntαn |n〉 , (9.1)

where in the last step the state |ψ〉 was expanded into eigenstates |n〉 of
the Hamiltonian H with eigenenergies En and coefficients αn. The question
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whether this state thermalizes during the time evolution can be reformulated
as the question whether the time average of a local observable coincides with
the thermal expectation value at late times [144]:

Ō = lim
t→∞

1

t

∫ t

0

dt′ 〈ψ(t′)|O |ψ(t′)〉 ?
= 〈O〉th , (9.2)

where 〈O〉th is a thermal expectation value, for example the microcanonic
one [144]:

〈O〉mc,E =
1

Ω

∑
{n : En∈[E,E+∆E]}

〈n|O |n〉 . (9.3)

The sum runs over all eigenstates |n〉 of the considered Hamiltonian whose
energy lies in a small energy window around the energy E and Ω is the
number of states within this window. For Eq. (9.2) to have any chance to
hold, the energy E has to be matched with the energy of the state |ψ(t)〉.

Using Eq. (9.1), the expectation value of the observable O as a function
of time is:

〈ψ(t)|O |ψ(t)〉 =
∑
n,m
n6=m

e−i(Em−En)tα∗nαm 〈n|O |m〉+
∑
n

|αn|2 〈n|O |n〉 . (9.4)

Under the assumption that no degeneracies exist in the spectrum of H, the
time average is equal to the second term of Eq. (9.4):

Ō =
∑
n

|αn|2 〈n|O |n〉 . (9.5)

Therefore, the time average depends on the exact initial state through all
the coefficients αn and on the expectation values of the observable O in the
eigenstates |n〉. It remains the question, under which condition this time
average is equal the microcanonical average.

The ETH can give an answer to this question. It actually provides a set
of conditions that guarantee the equality of the microcanonical average and
the time average. It can even give a far stronger statement, namely that
the expectation value of the operator O, Eq. (9.4), is almost always equal to
the microcanonical expectation value, Eq. (9.3), for all times later than some
thermalization time [61,62].

9.1.1 Quantum chaos

The thermalization of classical systems is connected to their behavior being
ergodic and chaotic [145]. To get a notion of how this carries over to the
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quantum case, one can study quantum systems which have a classical coun-
terpart whose behavior is chaotic. It has been found that in certain systems
of this type, the Hamiltonian of the quantum system shares properties with
random matrices [62, 146]. In particular, energy level repulsion appears and
for time reversal symmetric problems the distribution of differences between
consecutive levels s follows a Wigner-Dyson distribution [62]:

PWD(s) =
πs

2
e−πs

2/4 . (9.6)

This distribution can be rigorously derived for 2×2 matrices form the Gaus-
sian orthogonal ensemble (GOE) [62]. For larger matrices from the GOE
no closed form for the level spacing distribution exist but the statistics are
qualitatively and quantitatively close to Eq. (9.6) [62]. For quantum sys-
tems without a classical counterpart the property that the distribution of
the energy level spacings follow a Wigner-Dyson distribution can be taken
as a definition for quantum chaos [62].

9.1.2 ETH ansatz

Based on the assumption that thermalizing many-body Hamiltonians look
like random matrices, Srednicki formulated the ETH ansatz for matrix ele-
ments of (local) observables in semiclassical systems [61]:

〈n|O |m〉 = O(Ē)δnm + e−S(Ē)/2fO(Ē, ω)Rnm , (9.7)

where Ē = (En + Em)/2, ω = En − Em, and S(Ē) is the thermodynamic
entropy at Ē. The functions O(Ē) and fO(Ē, ω) are required to be smooth.
Rnm are random numbers with mean zero and unit variance. This ansatz
is now used in the test of thermalization in generic quantum systems (see
eg. Refs. [62, 63, 65, 66, 70, 147–149]). The derivation of Eq. (9.7) is not
rigorous but its form can be inferred from random matrix theory [61, 150].
Especially the exact properties of the function fO(Ē, ω) are still discussed
(see eg. Refs. [76,151,152].

It is apparent that the ETH ansatz Eq. (9.7) guarantees thermalization
according to Eq. (9.2). Under the assumption that the distribution of the
coefficients αn in Eq. (9.1) are peaked around a the energy expectation value
of |ψ〉 the time average Eq. (9.5) will indeed yield the microcanonical average
Eq. (9.3). The smooth function O(Ē) will not vary much in the small energy
window such that the exact distribution of the coefficients αn does not affect
the result of Eq. 9.5 as long as the distribution is narrow enough such that
it fits in the microcanonical energy window of Eq. (9.3).
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The form of the offdiagonal matrix elements in the ETH ansatz further
predicts the stronger form of thermalization mentioned above, that the ex-
pectation value of local observables for almost every point in time is the
same as the microcanonical prediction [61, 62]. The level spacings are ran-
dom numbers drawn from a Wigner-Dyson distribution Eq. (9.6) which tells
us that the offdiagonal part of Eq. (9.4) is subject to dephasing and therefore
will average to zero. This is at least true if there are no single offdiagonal
elements that are of the same order as the diagonal elements which is exactly
what the ETH ansatz ensures.

A further implication of Eq. (9.7) is that every eigenstate from the bulk
of the spectrum of a Hamiltonian that is quantum chaotic is already thermal.
Since the function O(Ē) is smooth it is enough to calculate the expectation
value of O in a single eigenstate that lies in the microcanonical window to
predict the microcanonical expectation value Eq. (9.3).

So far no proper definition was given for which observables the ETH
ansatz Eq. (9.7) is actually valid (see eg. Ref. [153] for a discussion of this
problem). There are of course certain observables that certainly do not have
the given structure. An important example are the projectors on eigenstates
of the Hamiltonian |n〉 〈n|. The expectation values of the projectors are the
absolute values squared of the coefficients αn which are conserved quanti-
ties. These quantities certainly do not thermalize and, therefore, have to be
excluded.

9.1.3 Exceptions from ETH

Importantly, there are exceptions from the thermalizing behavior discussed
above. These include integrable models. In these models there exists an
extensive number of conserved quantities that prevent them from thermal-
izing in the conventional manner. Furthermore, there is no level repulsion
and therefore the distribution of the level spacings can be shown to follow a
Poissonian shape [62]:

PPoi(s) = e−s . (9.8)

9.2 ETH test in the Holstein polaron model

In the this section the ETH will be tested in the Holstein model Eq. (3.4)
(see also Ref. [70]). The number of electrons in the system will be restricted
to one (Holstein polaron model). This restriction, however, makes this study
particularly interesting since the coupling energy, which renders the model
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non integrable, is not extensive in this case. At first glance one could expect
that such a perturbation of O(1) does not affect the model in the thermo-
dynamic limit and therefore the model should look less quantum chaotic the
larger the system is. However, it is known that perturbations of O(1) can in
fact be enough to render a system quantum chaotic [71–76].

Since a full diagonalization of the Hamiltonian is necessary for the ETH
study presented here the system size has to be restricted to relatively small
clusters of up to L = 8 sites. Further, no more than Mph = 3 phonons
per site can be accounted for. Periodic boundary conditions are used and
by utilizing the translation invariance of the Hamiltonian the dimension of
every k sector of the Hilbert space is dim(H{k}) = (Mph + 1)L while the full
Hilbert space has dimension D = dim(H) = L(Mph + 1)L. Therefore, largest
matrices that have to be diagonalized have dim(H{k}) = 65 536.

9.2.1 Quantum chaos indicators

The first task is to check whether the spectrum of the Holstein Hamiltonian
follows the predictions from random-matrix theory. This is done as a function
of the parameters in the Hamiltonian, the system size L, and the maximum
number of phonons per site Mph to see how a quantum chaotic behavior
arises. The average energy of a state in the Holstein polaron model is [70]:

Eav =
1

D
Tr [HHol] =

LMphω0

2
(9.9)

To choose an energy-density window around the center of the spectrum
a parameter η is introduced, such that

Eav − Eα
Eav − Emin

< η if Eα < Eav (9.10)

and

Eα − Eav

Emax − Eav

< η if Eα > Eav . (9.11)

The set of eigenstates within the target energy-density window is then:

Zkη = {|α〉 : Eα/Eav ∈ [1− η, 1 + η]} . (9.12)

To study the statistical properties of the spectrum one has to restrict the
states to a single symmetry sector [62,154]. Therefore, the following study of
quantum chaos indicators will be restricted to the k = 2π/L quasimomentum
sector and η = 2/3 is used.
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To analyse the statistics of the energy level spacings δα = Eα+1 − Eα
an unfolding procedure is necessary [155, 156]. The unfolding is done to
normalize the mean level spacing to one and a comparison with the Wigner-
Dyson distribution Eq. (9.6) is possible. To circumvent the unfolding one
can instead consider the dimensionless gap ratio:

rα =
δα
δα−1

(9.13)

and define the restricted gap ratio from it [157]:

r̃α =
min{δα, δα−1}
max{δα, δα−1}

= min{rα, r−1
α } . (9.14)

In case of a non chaotic system with Poisson statistics of the level spacings
the distribution of the restricted gap ratio is [158]:

PPoi(r̃) =
2

(1 + r̃)2
(9.15)

with the average r̃Poi = 2 ln 2 − 1 ≈ 0.38629 [158]. In case of matrices from
the GOE a closed form can be derived for 3× 3 matrices [158]:

PGOE(r̃) =
27

4

r̃ + r̃2

(1 + r̃ + r̃2)5/2
(9.16)

with average r̃GOE = 4− 2
√

3 ≈ 0.5359 [158]. A slightly different result can
be obtained by numerically diagonalizing 1000× 1000 random matrices with
from the GOE which yields r̃GOE,num = 0.5307 [158].

An example for the distribution of the restricted gap ratios in case of
a quantum chaotic system is shown in Fig. 9.1(b). The blue line shows
the histogram of the occurrence of r̃α for a system with L = 8, Mph = 3,
ω0/t0 = 1/2, and γ/t0 = 1/

√
2. The histogram follows the prediction for

random matrices from the GOE (solid black line) and is clearly distinct from
the result for Poisson distributed level spacings shown as dashed line.

The analysis in Figs. 9.1(a), (c), and (d) focuses on the the average re-
stricted gap ratio r̃av = 〈r̃〉η which is the average over the set Zkη . The
average gives a measure of the proximity of the distribution of energy gaps
to a Poisson or Wigner-Dyson distribution. In Fig. 9.1(a), r̃av is plotted
against the coupling strength γ/t0 at ω0/t0 = 1/2 and for different system
sizes L = 6, 7, 8 with Mph = 3. It is evident that r̃av converges to the large
GOE matrix prediction r̃GOE,num = 0.5307 (solid line) in a wide range of γ/t0
as the system size is increased. Clearly, the difference to the analytic result
for 3× 3 matrices r̃GOE ≈ 0.5359 (dashed line) can be resolved.
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Figure 9.1: Average of the restricted gap ratio r̃av as a function of γ/t0 (a)
for different system sizes at ω0/t0 = 1/2 and Mph = 3, (c) for different phonon
frequencies ω0/t0 at L = 8 and Mph = 3, and (d) for different system sizes
at ω0/t0 = 1/2 and Mph = 1. The dashed line in (a) represents the GOE
prediction for 3 × 3 matrices r̃GOE ≈ 0.5359 [158]. The solid lines in (a),
(c), and (d) represent the numerical GOE result for 1000 × 1000 matrices
r̃GOE,num = 0.5307 [158]. (b) Histogram of the restricted gap ratios r̃ for
L = 8, Mph = 3, ω0/t0 = 1/2, and γ/t0 = 1/

√
2. The dashed line shows

the expectation from a Poisson statistics PPoi(r̃), while the solid line shows
the prediction for 3 × 3 matrices from a GOE PGOE(r̃) [158]. Figure from
Ref. [70].

For small γ/t0 the proximity to the integrable point γ = 0 becomes
noticeable as r̃av is reduced in this limit especially for small systems. This
effect is reduced as the system size increases.

In Fig. 9.1(c), r̃av is again plotted against γ/t0 but this time for different
phonon frequencies ω0/t0 at a fixed system size of L = 8 and Mph = 3. The
overall effect of increasing the phonon frequency is that the agreement with
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the GOE prediction gets worse. This is particularly evident for the largest
couplings γ/t0 studied here. In this case a connection to the atomic limit
t0 = 0 (large γ/t0 and ω0/t0) of the Holstein model can be made which is a
second integrable limit (cf. Sec 3.1).

In Fig. 9.1(d) the influence of the phonon cutoff is analysed. Here, Mph =
1, ω0/t0 = 1/2, and the system sizes are L = 12, 14, 16. The system sizes are
chosen such that the Hilbert space dimensions for the three datasets are the
same as the ones in Fig. 9.1(a) for L = 6, 7, 8. Although, the agreement with
the GOE prediction is less good as in Fig. 9.1(a) for Mph = 3 the fluctuations
still decrease as the system size is increased.

The results from Fig. 9.1(a) and (d) bring confidence that the thermal-
ization analysis done here allows for conclusions in the thermodynamic limit.
A truly infinite system would of course mean that both the system length L
as well as the phonon number per site Mph have to be taken to infinity and
the question remains in which order the limits have to be taken. However,
already the case of Mph = 1 (hard core bosons) shows convincing agreement
with GOE predictions. A systematic study of the limit Mph → ∞ and its
influence on quantum chaos indicators remains an open question. In the fol-
lowing, the analysis of the operators in the Holstein model will be restricted
to Mph = 3 and the influence of the phonon cutoff is neglected.

9.2.2 Diagonal elements of observables

To check the applicability of the ETH ansatz (9.7) to the Holstein model it
has to be tested whether matrix elements of observables in the eigenbasis of
the Hamiltonian follow the predictions in the thermodynamic limit. In this
section the diagonal elements will be analysed while the following section is
devoted to the offdiagonal matrix elements.

The analysis focuses on four different observables. Two of these observ-
ables measure properties of the fermion in the system, namely the fermion
kinetic energy Hkin, Eq. (3.2), and the quasimomentum occupation:

mq =
1

L

L∑
j,l=1

ei(l−j)qc†jcl (9.17)

at q = 0. The two observables are of course related, however, thermalization
of mq=0 does not immediately imply thermalization of Hkin. Both electronic
observables are intensive quantities since there is only one electron present
in the system.

The other two measure properties from the phonon sector, namely the av-
erage phonon number per site in the systemNph = 1/L

∑L
l=1 b

†
l bl = Hph/(Lω0)
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and the nearest-neighbor offdiagonal matrix element of the phonon one-body
correlation matrix:

T1 =
1

L

L∑
j

(b†jbj+1 + b†j+1bj) . (9.18)

From the four observables there are two that are part of the Hamiltonian
(Hkin and Nph), one from each sector, and two are not (mq=0 and T1).

In Fig. 9.2(a)-(d) the diagonal matrix elements of the aforementioned
observables 〈α|O |α〉 in the eigenbasis of the Hamiltonian (eigenstate expec-
tation values) are plotted against the energy of the respective eigenstates
Eα/Eav in the k = 2π/L sector. The parameters of the Hamiltonian are
ω0/t0 = 1/2, γ/t0 = 1/

√
2, Mph = 3, and different system sizes L = 6 (red

dots), L = 7 (dark blue dots), and L = 8 (light blue dots). The dots for
L = 6 are plotted in the background, the dots for L = 7 in the middle,
and the dots for L = 8 in the foreground. For all four observables one can
observe that the distribution of the eigenstate expectation values becomes
narrower in the bulk of the spectrum as the system size is increased (arrows
in Fig. 9.2(a)). As expected the fluctuations at the edges of the spectrum
are larger. These observations suggest that the eigenstate expectation values
indeed become smooth functions of the energy in the thermodynamic limit
as the ETH ansatz predicts.

To quantify this convergence of the distribution of the eigenstate expec-
tation values towards a smooth function the eigenstate-to-eigenstate fluctu-
ations of the expectation values can be analysed [65,159]:

zα(O) = 〈α + 1|O |α + 1〉 − 〈α|O |α〉 . (9.19)

In Figs. 9.3(a)-(d) two different quantities are analysed. The average fluctu-
ation defined as:

〈z〉η(O) =
1

||Zη||
∑
|α〉∈Zη

|zα(O)| , (9.20)

where ||Zη|| is the number of states in the set Zη, and the maximal fluctua-
tion:

zmax(O) = max
|α〉∈Zη

|zα(O)| . (9.21)

The energy density window fixed by the parameter η means that the
set Zη includes an increasing fraction of all states in as the system size is
increased. In fact, this fraction will approach 1 as L → ∞ and for L = 8
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Figure 9.2: Diagonal matrix elements in the Hamiltonian eigenbasis of (a)
the fermion kinetic energy Hkin, (b) the quasimomentum occupation at q = 0,
mq=0, (c) the average phonon number in the system Nph, and (d) the operator
T1. The matrix elements 〈α|O |α〉 are plotted agains the eigenenergy Eα/Eav.
The diagonal elements for L = 6 (red dots) are plotted in the background,
those for L = 7 (dark blue dots) in the middle, and those for L = 8 (light blue
dots) in the foreground. The arrows in (a) represent the reduced fluctuations
of the diagonal elements as the system size is increased. The parameters in
the Hamiltonian are ω0/t0 = 1/2, γ/t0 = 1/

√
2 and Mph = 3. Figure from

Ref. [70].

it is already approximately 0.9 at η = 2/3. The Figs. 9.3(a)-(d) show an
exponential decay as a function of the L for both the average fluctuation
〈z〉η(O) and the maximum fluctuation zmax(O) for all the observables studied
here. This is true for η = 2/3 and also for η = 1/3. This result suggests that
all eigenstates in the bulk of the spectrum of the Holstein polaron model are
thermal in the ETH sense.
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Figure 9.3: Average of the eigenstate-to-eigenstate fluctuations 〈z〉η(O) and
maximum fluctuation zmax(O) in the set Zη with η = 1/3, 2/3 as a function
of the system size for (a) the fermion kinetic energy Hkin, (b) the quasimo-
mentum occupation at q = 0, mq=0, (c) the average phonon number in the
system Nph, and (d) the operator T1. All eigenstates from the symmetry
sectors 0 ≤ k ≤ π/L are included. The parameters in the Hamiltonian are
ω0/t0 = 1/2, γ/t0 = 1/

√
2 and Mph = 3. The solid lines are guides to the

eyes, representing an exponential decay. Figure from Ref. [70].

9.2.3 Offdiagonal elements of observables

In this section the offdiagonal matrix elements of observables 〈α|O |β〉 with
α 6= β are analysed. The eigenstates are restricted to the symmetry sector
k = 2π/L with D′ = (Mph + 1)L states. The pairs of eigenstates that are
considered have a similar average energy Ē. For example, if the set of pairs
is restricted such that Ē ≈ Eav, the the matrix elements cover a region of
the matrix similar to the shaded region in Fig. 9.4.

In Fig. 9.5(b), the matrix elements | 〈α|Hkin |β〉 | of the kinetic energy
are plotted against the energy difference ω in such a region (only the matrix
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Figure 9.4: Sketch of a matrix with dimension D′. (a) The shaded region
represents the matrix elements included in the sum in Eq. (9.22). (b) The
highlighted domain indicates the sets of matrix elements included in the
variances Eq. (9.24) and Eq. (9.26). Figure from Ref. [70].

elements with ω > 0 are plotted). The set is defined by the energy window
|(Eα − Eβ)/(2Eav) − 1| < ∆/2 with ∆ = 10−3. The strong fluctuations
of the matrix elements are a manifestation of the random factor Rαβ in
Eq. (9.7). The moving average of the matrix elements, plotted as a dashed
line in Fig. 9.5(b), shows an almost flat behavior for small ω/Eav and a fast
decay for larger ω/Eav which is consistent with previous studies of offdiagonal
matrix elements of observables in the two-dimensional transverse field Ising
model [66] and the hard-core boson model with dipolar interactions [160].

The prefactor for the offdiagonal matrix elements from the ETH ansatz
Eq. (9.7) is e−S(Ē)/2. In the bulk of the spectrum the entropy of a micro-
canonical energy window should scale as the Hilbert-space dimension D′ and
therefore the prefactor should scale as ∼ 1/

√
D′. To check this prediction

the average offdiagonal matrix element is analysed:

|Oαβ| =
1

N
∑

α,β;α 6=β
|(Eα+Eβ)/(2Eav)−ε̄|<∆/2

| 〈α|O |β〉 | , (9.22)

where N is the number of matrix elements included in the sum and ε̄ =
Ē/Eav. In Fig. 9.5(a) the average offdiagonal matrix elements of the different
observables are plotted against the subspace dimension D′ at ε̄ = 1 for ∆ =
10−1 (open circles) and for ∆ = 10−3 (filled symbols). It is evident that the
width ∆ of the energy window has almost no influence on the position of
the data points. The lines in Fig. 9.5(a) are fits to the data with a fitting
function a(D′)−b. It turns out that the fit for all observables is consistent
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Figure 9.5: (a) Average offdiagonal matrix elements of the operators Hkin,
mq=0, Nph, and T1 in the eigenbasis of the Hamiltonian as a function of the
subspace dimension D′. The averages are calculated at ε̄ = 1 for ∆ = 10−1

(open circles) and for ∆ = 10−3 (filled symbols). The solid lines are fits to
the data with the fitting function a(D′)−b for L ≥ 6 and ∆ = 10−3. (b) Offdi-
agonal matrix elements of the kinetic energy | 〈α|Hkin |β〉 | in the eigenbasis
of the Hamiltonian as a function of ω in the energy window defined by ε̄ = 1
and ∆ = 10−3. The dashed red line is the moving average of the matrix
elements. (c) Moving average FO(Ē, ω), Eq. (9.23), for the observables Hkin,
mq=0, Nph, and T1 in the energy window defined by ε̄ = 1 and ∆ = 10−3

as a function of ω. The parameters in the Hamiltonian are ω0/t0 = 1/2,
γ/t0 = 1/

√
2 and Mph = 3. Eigenstates are restricted to the symmetry

sector k = 2π/L and L = 8 in (b) and (c). Figure from Ref. [70].

with the prediction b = 1/2 from Eq. (9.7).
To study universal properties of the function fO(Ē, ω) from Eq. (9.7) the
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Figure 9.6: (a) Average offdiagonal matrix elements of the operators Hkin

and T1 in the eigenbasis of the Hamiltonian as a function of the number of
states in the energy window Nε̄. Different symbols correspond to different
target energy densities ε̄ and ∆ = 10−1 is used. The solid lines are fits to
the data with the fitting function a(D′)−b for L ≥ 6 and ε̄ = 1. (b) Moving
average FO(Ē, ω), Eq. (9.23), for the observables Hkin and T1 as a function
of ω. Different line styles correspond to different target energy densities ε̄
and ∆ = 10−1 is used. The moving average is calculated by using a window
δω/Eav = 0.1. The parameters in the Hamiltonian are L = 8, ω0/t0 = 1/2,
γ/t0 = 1/

√
2 and Mph = 3. Eigenstates are restricted to the symmetry sector

k = 2π/L. Figure from Ref. [70].

system size dependence through the subspace dimension D′ and randomness
have to be eliminated from the matrix elements 〈α|O |β〉. To do so the
moving average of the matrix elements can be defined as that is, up to a
constant factor, identical to fO(Ē, ω) of Eq. (9.7):

FO(Ē, ω) = MA

(
| 〈α|O |β〉 |
|Oαβ|

)
. (9.23)

The moving average is plotted in Fig. 9.5(c) as a function of the energy
difference ω/Eav for the different observables. The scaling of the function
with ω is very similar for both the observables from the electron and phonon
sector.

A possible dependence of the results in Fig. 9.5(a)-(c) on the target energy
density ε̄ is studied in Fig. 9.6(a) and (b). The analysis is focused on the two
observables Hkin and T1 from both electron and phonon sector. In Fig. 9.6(a)
the average offdiagonal matrix elements |Oαβ| are plotted against the number
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of states Nε̄ in the microcanonical window that is analysed. This is done for
different target energy densities ε̄ = 1, 0.8, 0.6, 0.4 using ∆ = 10−1. As the
target energy density is moved away from the middle of the spectrum the
number of states in the energy window [ε̄−∆/2, ε̄+∆/2] decreases. The ETH
ansatz Eq. (9.7) predicts the prefactor e−S(Ē)/2 for the offdiagonal matrix
elements, where in this case S(Ē) is exactly the logarithm of the number of
states in the energy window. The data for the different ε̄ almost collapse
in Fig. 9.6(a) and the fits with the function a(Nε̄)

−b yield results close to
b = 0.5 here, as well.

The dependence of the function FO(Ē, ω) on the pair energy Ē is studied
in Fig. 9.6(b). The results suggest that there is actually no dependence
on Ē in case of the Holstein model, which gives numerical support for the
assumption of a slow varying FO(Ē, ω) with Ē in Ref. [161].

9.2.4 Variances of diagonal vs. offdiagonal matrix ele-
ments

The variance of an observable O in a set of consecutive diagonal matrix
elements is:

[σ
(α,µ)
diag (O)]2 = 〈(Oαα)2〉µ − 〈Oαα〉2µ , (9.24)

where α is the first index and µ is the number of matrix elements in the set
the expectation values are taken over, such that:

〈Oαα〉µ =
1

µ

α+µ−1∑
ρ=α

〈ρ|O |ρ〉 . (9.25)

The variance of the offdiagonal matrix elements of O is correspondingly
defined as:

[σ
(α,µ)
offdiag(O)]2 = 〈|Oαβ|2〉µ − |〈Oαβ〉µ|2 , (9.26)

where:

〈Oαβ〉µ =
1

µ2 − µ

α+µ−1∑
ρ,ρ′=α

ρ6=ρ′

〈ρ|O |ρ〉 . (9.27)

The sets of matrix elements considered in both variances is sketched in
Fig. 9.4(b). To every microcanonical window defined by (α, µ) there is a
corresponding mean energy eα,µ = 〈Hαα〉µ.
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Figure 9.7: Ratio of variances between diagonal and offdiagonal matrix
elements Σ2

α,µ(O), Eq. (9.28), for the observables (a) Hkin, (b) mq=0, (c) Nph,
and (d) T1 as function of the index α for µ = 100. The dashed red line
is the average in the of the ratios calculated from all α with eα,µ=100/Eav ∈
[1/3, 5/3]. The insets show a histogram of all the values in the set the average
is calculated from, as well as, a histogram for L = 7 and the set defined
as before. The parameters in the Hamiltonian are L = 8, ω0/t0 = 1/2,
γ/t0 = 1/

√
2 and Mph = 3. Eigenstates are restricted to the symmetry

sector k = 2π/L. Figure from Ref. [70].

The ratio of the variances is:

Σ2
α,µ(O) =

[σ
(α,µ)
diag (O)]2

[σ
(α,µ)
offdiag(O)]2

. (9.28)

The prediction from random matrix theory is that Σ2
GOE(O) = 2 for generic

local observables in the GOE [62]. The question is then whether this value
can be found in real physical systems that obey the ETH and for which part
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of the spectrum [162].
For the analysis done in Fig. 9.7(a)-(d) µ = 100 is fixed and the Σ2

α,µ(O) is
calculated for all α ∈ [1,D′−µ]. The system size is L = 8 and Mph = 3 which
yields a Hilbert-space dimension D′ = 65 536 and, therefore, µ� D′. These
numbers are consistent with the numbers used in a corresponding analysis of
observables in the two-dimensional transverse field Ising model in Ref. [66].
One can see that for all observables considered here the ratio of variances is
close to 2 in a wide range of energies in the bulk of the spectrum.

The dashed red line the four panels shows the average of Σ2
α,µ=100(O) over

all α for which eα,µ=100/Eav ∈ [1−η, 1+η] and η = 2/3 is used. The averages
are 2.05, 2.04, 2.07, and 2.03 for Figs. 9.7(a)-(d) respectively, which is in very
good agreement with the GOE prediction. The histograms in the insets of
Figs. 9.7(a)-(d) show the distribution of Σ2

α,µ=100(O) in the set used for the
calculation of the average. Additionally a histogram of the Σ2

α,µ=100(O) for
L = 7 and Mph = 3 is shown where again eα,µ=100/Eav ∈ [1 − η, 1 + η] and
η = 2/3 is used. One can observe how the increase of system size leads to
a distribution that is peaked sharper and that the maximum approaches the
GOE prediction 2.

Figure 9.8: (a) Ratio of variances between diagonal and offdiagonal matrix
elements Σ2

α,µ(O), Eq. (9.28), for the observables T1 as function of the mean

energy eα,µ where µ = 100. (b) Average ratio of variances Σ2
µ(O) for the

observables T1 as function of the parameter µ for different system sizes L =
6, 7, 8. The shaded region in panel (a) is the region that is averaged over in
(b). The parameters in the Hamiltonian are ω0/t0 = 1/2, γ/t0 = 1/

√
2 and

Mph = 3. Eigenstates are restricted to the symmetry sector k = 2π/L and
L = 8 in (a). Figure from Ref. [70].

Figure 9.7(a)-(d) shows very good agreement to the GOE prediction for
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a vast number of α values also away from the middle of the spectrum. How-
ever, the presentation of the data might be a bit misleading since the spec-
trum is denser in the middle. Therefore, Fig. 9.8(a) shows the same data
as Fig. 9.7(d) on the y-axis but the x-axis shows the mean energy eα,µ=100,
here. The data reveals a clear disagreement with the GOE prediction at the
very edges of the spectrum only. For a large portion of the spectrum towards
the center of it Σ2

α,µ=100(T1) ≈ 2. This observation might be surprising since
eigenstates towards the boundary of the spectrum are no complete random
superpositions of basis states from a simple basis, while such randomness is
expected for states in the center of the spectrum [62,156,163].

To study the dependence of Σ2
α,µ on µ and the systems size the average

is calculated:

Σ2
µ(O) =

1

||Sµ||
∑

Σ2
α,µ∈Sµ

Σ2
α,µ(O) , (9.29)

where the sum runs over the set:

Sµ = {Σ2
α,µ : eα,µ/Eav ∈ [1/3, 2/3]} . (9.30)

The set is sketched in Fig. 9.8(a) as the shaded region. In Fig. 9.8(b) the
average Σ2

µ(T1) is plotted against the parameter µ for different system sizes
L = 6, 7, 8 and Mph = 3. The results show that as the system size is increased
larger portions of the spectrum can be included in the calculation of Σ2

α,µ to
still yield an agreement with the GOE prediction. Furthermore, the results
are consistent with the assumption that Σ2

α,µ → Σ2
GOE as L → ∞ even very

close to the edge of the spectrum.

9.3 Summary

To summarize, eigenstate thermalization and quantum chaos in the Holstein
polaron model was studied in this chapter. The model serves as an example
for a solid-state like closed quantum system which features an electron on a
lattice coupled to phonons. To this end, the Hamiltonians of systems with
up to L = 8 sites and up to Mph = 3 phonons per site were diagonalized
numerically and the spectrum of eigenenergies as well as matrix elements of
observables in the Hamiltonian eigenbasis were analyzed.

The level spacing statistics shows characteristics of matrices from the
Gaussian orthogonal ensemble indicating quantum chaotic behavior. This is
true for a wide range of coupling strengths γ/t0 and phonon frequencies ω0/t0
and even persists if the maximum number of phonons per site is restricted
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to Mph = 1. Analysing the behavior for different system sizes with fixed
Mph gives indications for quantum chaos and the ETH in the limit L → ∞
while the thermodynamic limit would correspond to taking both the limits
Mph → ∞ and L → ∞. These findings strengthen the conjecture from
previous numerical studies that a non extensive integrability breaking term
of O(1) is actually enough to induce quantum ergodicity and thermalization
[71–76].

Further, the matrix elements of different observables in the eigenbasis
of the Hamiltonian were analysed and their distribution was compared to
the ETH ansatz [61]. The investigation of the distribution of diagonal ele-
ments shows a convergence towards a smooth function of the energy. This
conclusion was drawn from the exponential decay of eigenstate-to-eigenstate
fluctuations as a function of the system size.

The dependence of the ’universal’ part of the offdiagonal elements on the
energy difference between pairs of eigenstates is comparable for all considered
observables. Moreover, there is at most a very weak dependence on the
average energy. The chapter closes with an analysis of the ratio between
fluctuations of diagonal and offdiagonal elements. Here, the predictions from
random matrix theory are met in a broad energy window around the center of
the spectrum. Combined, the results show robust features of thermalization
in the ETH sense.
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Chapter 10

Sudden expansion in the 1d
Fermi-Hubbard model

In the previous chapters different phenomena in the 1d Holstein model were
discussed and studied numerically. The model consists of a simple tight-
binding chain coupled to a phonon branch and is designed to study the
influence of phonons on the properties of non-interacting electrons in a simple
model system, while the direct interaction between electrons is neglected.

In this chapter, the Fermi-Hubbard model is studied which is a differ-
ent model system designed to study the direct interaction of the electrons
amongst each other [164], while lattice vibrations are ignored. In 1d the
Hamiltonian is:

HFH = −J
∑
l,σ=↑,↓

(c†lσcl+1σ + c†l+1σclσ) + U
∑
l

nl↑nl↓ , (10.1)

where c†lσ/clσ are creation/annihilation operators of electrons with spin σ at

site l and nlσ = c†lσclσ. J is the hopping matrix element and U the onsite
interaction strength.

The work presented here is published in Ref. [79]. It contains the study of
transport properties in the 1d Fermi-Hubbard model by means of a sudden
expansion setup in a quantum-gas experiment. The results of the experiment
are compared to tDMRG calculations. The author contributed to the pro-
duction of the numerical data in all figures and in particular the analysis of
the velocities in Figs. 10.6, 10.7, and 10.8. Furthermore, he was involved in
the discussions, interpretation of the experimental data, and the writing of
the paper including the figures.

Quantum-gas experiments have become a powerful tool to study the
physics of model Hamiltonians in a controlled environment [77, 78]. One
unique aspect of these experiments is the possibility to explore the influence
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Figure 10.1: Sketch of the protocol to initiate the dynamics in a sudden
expansion experiment. The particles are prepared in a trapping potential
that keeps them in the center of an optical lattice. When the trapping
potential is removed, the particles can expand into the empty lattice.

of dimensionality on the properties of quantum systems, by realizing 1d, 2d,
or 3d geometries and even tune between those [80,165].

1d systems differ from higher dimensional ones in several aspects. Im-
portantly, Fermi liquid theory breaks down in 1d [166] and numerous inte-
grable models exist that cease to thermalize [167–169]. The realization of
the integrable Tonks-Girardeau gas [170] and the observation of the peculiar
dynamics in this system [67] demonstrate the capabilities of quantum gas
experiments to study low dimensional systems.

In an optical lattice, transport properties can be investigated by means
of so called sudden expansion experiments [79–81, 171]. The particles in the
lattice are initially confined to a limited space. This may be achieved by a
harmonic trapping potential. The dynamics is initialized by removing the
trapping potential while keeping the optical lattice in place. As a result,
the atoms tunnel into the empty lattice sites (the experimental protocol is
sketched Fig. 10.1). The impact of dimensionality and Hamiltonian param-
eters on the mass transport may be studied by tuning the lattice depth and
interaction strength. Furthermore, different initial states can be realized
(close to product states or correlated states) by varying the loading proce-
dure [79–81,171].

The work presented here and in Ref. [79] is the first realization of a sudden
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expansion of fermions in 1d. It is motivated by earlier experiments on the
Fermi-Hubbard model in higher dimensions [171] and on the Bose-Hubbard
model [80, 81]. The results of these earlier experiments are summarized in
the following, before the results of Ref. [79] are recapitulated.

10.1 Earlier sudden expansion experiments

in the Fermi- and Bose-Hubbard model

In Ref. [171], Schneider et al. realized the sudden expansion of fermions. The
initial state is prepared such that the particles are localized at single sites
and the density distribution in the center of the cloud is flat. Crucially, the
initial state is independent of the parameters in the Hamiltonian during the
expansion. After the confining potential in the horizontal directions is turned
off, the particles start spreading into empty lattice sites as a result of the
density gradient. The effect of different values of the interaction parameter
U/J (cf. Eq. (10.1)) on the spreading of the cloud is studied by measuring
the real space density of the particles.

In the non-interacting case the spreading of the localized particles is bal-
listic. The effect here is that the initially spherical cloud inherits the lattice
geometry and turns into a square shaped cloud.

In the interacting case the behavior is different. The particles in the outer
part of the cloud still spread ballistically since the density in this region is low
and, therefore, the interaction does not have a large impact. The inner part
of the cloud constitutes a higher density core. In this core, the interactions
lead to diffusive spreading which is slow compared to the ballistic spreading
of the outer cloud part. For the largest interaction strengths investigated a
shrinking of the core is observed. This is explained by a slow melting of the
core. Particles that detach from the core escape ballistically. Furthermore,
a symmetry with respect to the sign of the interaction is observed. In con-
trast to the behavior in free space, the dynamics for attractive and repulsive
interaction are identical.

A similar experiment was conducted by Ronzheimer et al., Ref. [80], but
in this case the Bose-Hubbard model was realized in the optical lattice in 1d
and 2d:

HBH = −Jx
∑
〈l,m〉x

b†l bm − Jy
∑
〈l,m〉y

b†l bm +
U

2

∑
l

nl(nl − 1) , (10.2)

where b†l [bl] are bosonic creation [annihilation] operators at site l and Jx [Jy]
are the hopping matrix elements. The first two sums run over the nearest
neighbors in the x and y direction, respectively, and in the case of 1d Jy = 0.
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Again, atoms are initialized such that they are localized in the central
part of the lattice. The state can be described by local Fock states:

|ψ0〉 =
∏
l∈trap

1√
νl!

(b†l )
νl |∅〉 , (10.3)

where νl ∈ {0, 1, 2, . . . }. Depending on the loading procedure, there are only
single occupied sites (singlons) or there can be sites with occupation > 1
(doublons, triplons, . . . ), while the average density is one (unit filling).

The central quantity studied in this work is the spreading velocity of
the core vc. It is obtained by following the half width at half maximum
(HWHM) of the measured density distribution in time. For intermediate
times, the time evolution of the HWHM is linear and vc is calculated from
fitting a straight line to this linear part.

If there are only single occupied sites in the initial state the key obser-
vations are as follows: In the non-interacting case the spreading is again
ballistic in both 1d and 2d. This is the case, where the fastest expansion ap-
pears. When the interaction is turned on, the expansion velocity is reduced
monotonically as a function of U in 2d. In 1d, however, vc is reduced for
small interactions and then increases again for larger interactions. The slow-
ing down is explained by the dynamical generation of higher occupations.
Although these dynamically generated doublons and triplons (and higher oc-
cupations) are not completely stable, they nevertheless move slower and act
as impurities where singlons can scatter. A further effect is the transfor-
mation of kinetic energy into interaction energy in the formation of higher
occupations, which is another explanation of the slowing down. For very large
interactions U/Jx/y the Bose-Hubbard model approaches the hard core limit
U →∞. In 1d, the hard core boson model can be mapped to non-interacting
spinless fermions, which show again ballistic spreading. Therefore, the ex-
pansion velocity approaches the value from the non-interacting case for large
U/Jx in 1d.

By tuning the ratio Jy/Jx one can investigate the crossover from 1d to
2d. In fact, the core velocities interpolate between the two different cases. In
the 2D case the behavior is very similar to the Fermi-Hubbard case studied
in Ref. [171] where a diffusively expanding round core has a background of
a ballistically expanding dilute cloud with an emerging square shape.

As a third scenario the admixture of higher occupations into the initial
state in 1d is studied. While there is no effect on the expansion velocity in
the non-interacting case, the higher occupations decrease the velocities with
increasing interaction strength U/Jx. The effect is articulated for very large
U/Jx. In this case, multi occupations can be seen as stable objects that can
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only move with a very small effective hopping in an empty lattice. The stabil-
ity comes from the fact that the interaction energy has to be transformed into
kinetic energy if a multi occupation is broken up. In a situation where the
interaction energy is larger than the bandwidth of the constituents, this leads
to stable objects that can only be broken up in higher order processes. Simi-
larly, the hopping to a neighboring site of a multi occupation requires higher
order processes that are suppressed by the interaction strength. Therefore,
the high occupations stay at their original positions on the timescales of the
experiment while the single occupations can escape.

10.1.1 Quantum distillation

Figure 10.2: Sketch of the basic hopping mechanisms in the Fermi- and
Bose-Hubbard model. Singlons can hop to empty neighboring sites with
amplitude J . In the limit U � 4J , doublons can hop to neighboring sites
with an effective hopping amplitude Jeff ∝ J2/U . Singlons and doublons on
neighboring sites can swap places with a hopping amplitude ∝ J .

The effects mentioned above can even lead to the multi occupations mov-
ing toward the center of the cloud, a phenomenon called quantum distilla-
tion [81–84]. It can be understood from the basic hopping mechanisms in
the Fermi- and Bose-Hubbard model sketched in Fig. 10.2. Singlons move
through the empty lattice with the hopping J . Doublons are more or less im-
mobile for large U/J (they move with an effective hopping ∝ J2/U through
an empty lattice). However, a doublon and a singlon on neighboring sites
can exchange places with the hopping J in the Fermi-Hubbard model and
with 2J in the Bose-Hubbard model. Therefore, doublons can move rather
freely on a singlon background but get stuck when no singlons assist them.
If a mixed cloud of singlons and doublons expands this leads to the doublons
being concentrated (distilled) in the center of the cloud while the singlons
escape from the edges of the cloud. The effect was suggested as a means of
producing low entropy states in quantum-gas experiments [82].
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10.1.2 Probing quantum distillation in the 1d Bose-
Hubbard model

Quantum distillation in the 1d Bose-Hubbard model was studied in a quantum-
gas experiment by Xia et al. in Ref. [81]. In contrast to the previous ex-
periments, the particles were not prepared in local Fock states in this case.
Instead, the quench involved the trapping potential only, so that the particles
were in local equilibrium after the quench.

As mentioned above, singlons in the Bose-Hubbard model move with a
hopping matrix element J through an empty lattice, while singlons and dou-
blons exchange places with the matrix element 2J . The doubled bandwidth
within a doublon core means that singlons can only escape if they sit in the
middle of the band. In contrast, the hopping matrix elements for singlons
in the Fermi-Hubbard model is equal inside and outside a doublon block
and therefore singlons can escape easier. It is therefore expected that quan-
tum distillation is more effective in the Fermi-Hubbard model than in the
Bose-Hubbard model [81,83].

Three different interaction strengths were studied in Ref. [81]. The cores
of the cloud contain a mixture of singlons and higher occupations where most
of the higher occupations are doublons. Again, one can observe that only
the singlons escape from the core and spread ballistically with a velocity
independent of the interaction strength, as expected. The doublons (and
triplons) in the core stay at their position on the timescales of the experiment
but the density of the doublons slowly decreases. The higher the interaction
U/J the more stable the doublons (and triplons) are.

For all three interaction strengths doublons and triplons dissociate into
singlons in the early stages of the expansion. However, in later stages dou-
blons are stable in case of the largest interaction. In this case quantum
distillation effects become important. The number of singlons confined in
the core steadily decreases but for the latest times studied, the decrease lev-
els off. This effect can be explained by the mismatch of the bandwidth of
singlons inside and outside the core. Singlons with small quasi momentum k
cannot escape which inhibits quantum distillation.

In the time evolution of the doublon-cloud width (measured as full width
at half maximum) there are three stages; first an increase, because doublons
expand on the singlon background while they dissolve as well; then a de-
crease because of quantum distillation. In case of the largest interaction, the
width after the distillation stage is rather stable, while for the smaller inter-
actions the shrinking is overtaken by expansion because higher occupations
eventually dissolve.
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10.2 Sudden expansion of a fermion cloud

As mentioned above, fermionic quantum distillation is expected to be more
effective than its bosonic counterpart. Furthermore, it could be used for
cooling by generating low entropy states in the center of a fermionic cloud.
This idea is rather intriguing since evaporative cooling, which is the standard
cooling techniques to ultra cold temperatures in quantum-gas experiments,
is less effective for fermions than it is for bosons [78].

The experimental protocol in Ref. [79] is similar to the one in Ref. [80].
The atoms are prepared in a deep optical lattice that is superimposed by a
harmonic potential. The loading procedure is such that the initial state is
close to a product state of the form:

|ψ0〉 =
∏
i∈trap

(c†i↑)
νi↑(c†i↓)

νi↓ |∅〉 (10.4)

where νiσ ∈ {0, 1}.
The dynamics is started by turning off the confining harmonic potential

and adjusting the lattice depth in such a way that a certain interaction
strength U/J is accomplished. After these adjustments the atom cloud that
was initially confined to the center of the lattice spreads out into the empty
lattice sites according to the Fermi-Hubbard Hamiltonian Eq. (10.1).

After a waiting time, the density at the sites is frozen out by ramping up
the lattice depth. Then an in situ image of the cloud is taken. By varying
the waiting time in repeated experiments, the dynamics of the system can
be mapped out. The doublons can be removed or not before the imaging, so
that the spreading of singlons and doublons can be followed separately [79].

To obtain the integrated line densities ρs[ρd] of singlons [doublons] the
image is integrated in one spatial direction. Together with the imaging this
means that the integrated line densities are sums over many 1d systems.
From these line densities the singlon radius Rs and doublon radius Rd can
be extracted as HWHM [80].

Two different initial states are considered. In the first case [cf., Fig. 10.3(a)],
singlons and doublons as well as holons (non occupied sites) are present in
the initial atom cloud. In this case, quantum distillation is expected to ap-
pear in the large U/J limit. Doublons move toward the center of the cloud,
while singlons escape to the empty lattice. However, holons that are trapped
in between doublons are expected to weaken the quantum distillation.

In the lower part of Fig. 10.3(a) a numerical (tDMRG) simulation of the
dynamics is shown. In x-axis direction the position on a 1d chain is plotted,
while on the y-axis the time is plotted in units of the tunneling time τ = 1/J .
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(a) Initial state with doublons (b) Initial state without doublons 
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Figure 10.3: Sketch of the experimental protocol in Ref. [79]. (a) Initial
state with a mixture of singlons, doublons and holons. After the confining
potential is removed and the interaction strength is quenched to a finite value,
doublons and singlons can exchange places with the hopping amplitude J .
The fact that singlons escape at the edges of the cloud lets the doublons
concentrate in the center. Holons can prevent a further concentration of the
doublons. In the lower part, a tDMRG simulation of an expanding singlon-
doublon mixture at U/J = 20 is shown. The colorcode represents the density
〈ni〉 as a function of the lattice site i on the x-axis and the time on the y-axis.
A high density core evolves, while singlons travel outwards. (b) Initial state
with only singlons. After the quench, doublons emerge dynamically and the
cloud expands into the empty lattice. The lower part displays a tDMRG
simulation of a pure singlon cloud at U/J = 20. Figure from Ref. [79].
c© 2018 American Physical Society

The color represents the density. At U/J = 20 the doublons in the initial
cloud get concentrated in the center, while the singlons fly out.

In the second case [cf., Fig. 10.3(b)], only singlons are present in the initial
particle cloud. Upon release, doublons are generated dynamically while the
cloud expands. In this case, the dependence of the expansion velocity on
the interaction strength is studied. Again, a numerical simulation of the
initial state without doublons at U/J = 20 is shown in the lower part of
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Fig. 10.3(b).

10.2.1 Expansion with doublons in the initial state

Figures 10.4(a)-(d) show experimental results from the expansion of a fermion
cloud with a mixture of singlons and doublons in the initial state with a
doublon fraction of nd = 0.40(2). The doublon fraction nd is the fraction of
particles on double occupied sites defined as:

nd =
Nd

Ns +Nd

(10.5)

where Ns[Nd] is the number of particles on single [double] occupied sites. For
the data in Fig. 10.4(a) the interaction strength is set to U/J = 5. The radius
of the singlon cloud Rs and the radius of the doublon cloud Rd is plotted as
a function of the expansion time as red and blue dots, respectively.

It is evident that the singlon cloud expands more rapidly than the doublon
cloud. The dynamics of the doublon cloud is roughly comparable to the
expansion of non-interacting particles with an effective hopping amplitude
Jeff = 2J2/U [172] plotted as a dashed blue line in Fig. 10.4(a).

The dynamic separation of singlons and doublons is even more pronounced
at U/J = 20 [cf., Fig. 10.4(b)]. The time evolution of the singlons radius is
not vastly different from the one at U/J = 5. However, the doublon radius
shrinks in this case giving a first indication towards quantum distillation hap-
pening. To exclude the possibility of the doublon cloud shrinking happening
because of a simple melting of the doublon cloud, the number of singlons and
doublons as a function of time is plotted in the insets of Figs. 10.4(a) and
(b). At U/J = 5, the number of particles on double occupied sites shrinks
over the course of the first 5 tunneling times, while the number of particles
on single occupied sites increases by the same amount. After this initial con-
version of doublons into singlons is finished the numbers stay constant. In
contrast, the number of singlons and doublons stay roughly constant over
the full expansion time in case of the larger interaction U/J = 20 such that
the shrinking of the doublon cloud cannot be explained by melting.

To get a better impression of what happens in the clouds at U/J = 20, the
integrated line densities of singlons and doublons are presented in Fig. 10.4(b)
in the initial state (t = 0) on the left and at t = 40τ on the right. The singlon
cloud expands over the course of the expansion time while a change of the
doublon cloud is barely visible.

The scenario of quantum distillation is further supported by Fig. 10.4(c)
where the ratio of particles on doublon and singlon sites in a central region
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Figure 10.4: Experimental results for the expansion of a singlon-doublon
mixture. (a) Singlon radius Rs (red) and doublon radius Rd (blue) as a
function of time at U/J = 5. The blue dashed line represents the expansion
of a cloud of non-interacting fermions with a hopping matrix element Jeff =
2J2/U . The solid lines are guides to the eye. The inset shows the number
of particles on single and double occupied sites as a function of time. (b)
Same as in (a) but for U/J = 20. (c) Integrated line density of singlons
and doublons in the initial state (left) and at t = 40τ (right) at U/J = 20.
(d) Ratio of the number of particles on double and single occupied sites in a
central region of the cloud (marked region in the inset) as a function of time
at U/J = 20. The solid line is a guide to the eye. To obtain a datapoint four
measurements are averaged and the standard error of the mean is calculated
yielding the error bars. Figure from Ref. [79]. c© 2018 American Physical
Society
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Figure 10.5: Relative change in doublon radius ∆Rd as a function of time at
U/J = 20 obtained from tDMRG simulations. The different colors represent
different densities in the initial cloud. The lower densities are accomplished
by introducing holons into the initial cloud. The transition from solid to
dashed line marks the time when the singlon cloud has doubled in size. Inset:
Relative change in doublon radius at t = 40τ measured in the experiment as
a function of the interaction strength U/J . Figure from Ref. [79]. c© 2018
American Physical Society

(the red box in the inset) is plotted as a function of time. The ratio mono-
tonically increases as doublons move toward the center of the cloud while
singlons move outwards. 1d systems with a low doublon density at the edges
of the cloud could provide an alternative explanation of the increased dou-
blon to singlon ratio. This effect is, however, too small to account for the
signal seen in Fig. 10.4(c) [79].

The occurrence of the quantum distillation effect, crucially depends on the
interaction strength U/J . Doublons become stable objects if the interaction
energy is considerably larger than the bandwidth (W � U , where W = 4J)
[173].

The relative change in the doublon cloud radius can be defined as:

∆Rd(t) =
Rd(t)

Rd(t)
− 1 . (10.6)

This quantity at t = 40τ is plotted in the inset of Fig. 10.5 as a function of
U/J . As already anticipated from Fig. 10.4(a) and (b), the doublon cloud
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expands for small interaction strengths. Only for the largest interaction
strength U/J = 20 studied here, a clear shrinking of the doublon cloud is
observed.

The influence of the initial cloud density on the efficiency of quantum
distillation is studied by means of numerical tDMRG simulations in the main
panel of Fig. 10.5. Different from the experiment, an exact box trap for the
preparation of the initial state is assumed. A compact core of only singlons
and doublons with nd = 0.4 yields a particle density of n = 1.25. The
lower densities are achieved by adding additional holons in the core. In
the experiment the exact distribution of singlons and doublons in the initial
state is random and the measuring process averages over many 1d tubes. To
mimic this situation in the numerics, every dataset in Fig. 10.5 is an average
over 120 samples of random distributions of singlons, doublons and holons
in the core where the spin of the singlons is also random. The distributions
are chosen such that the average over the initial states yields a flat density
distribution in the core.

Introducing holons into the initial state influences the shrinking of the
doublon core in two ways. First of all, the efficiency of the quantum distil-
lation is reduced. Holons in between doublons inhibit their ability to move
further toward the center and, therefore, the reduction of the radius is dimin-
ished as the density is reduced. Furthermore, the speed of the shrinking is
reduced in the lowerd density cases. This is important for the interpretation
of the experimental data. The maximum time in the experiment is limited.
As the singlons travel to the outer parts of the lattice, they reach regions
where the lattice is not completely flat anymore. The maximum time in the
experiment is given by the time when the singlon cloud radius is approxi-
mately doubled [see Fig.10.4(a) and (b)]. In the numerical data in Fig. 10.5
this is indicated by the change from a full to a dashed line. In case of the
lower densities, ∆Rd is still decreasing when the singlon cloud has doubled in
size. Both of the above observations suggest that the efficiency of quantum
distillation is reduced in the experiment.

10.2.2 Expansion without doublons in the initial state

In this section, the effect of the interaction strength U/J on the asymp-
totic expansion velocity is studied for the case of no doublons in the initial
state (see Fig. 10.3(b)). For that purpose, the second moment of the time
dependent density distribution is calculated:

r2 =
∑
l

ρl(lc − l)28.32d2 , (10.7)
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Figure 10.6: Radial velocities vr for a cloud without initial doublons as a
function of the interaction strength U/J . The dark red points are results from
the experiments. The diamonds are tDMRG results with N = 10 particles.
The red diamonds are results for the full average over all spin configurations.
The orange diamonds represent results for a initial Néel state. The green
diamonds are results for the Bose-Hubbard model. The grey dashed line
represents the exact result vr =

√
2d/τ in the non-interacting and hard core

limit. Figure from Ref. [79]. c© 2018 American Physical Society

where ρl is the normalized density at a pixel extracted from the in situ
images, lc is the central pixel, d is the lattice constant, and every pixel is
8.3 lattice sites wide. The second moment is better suited for a comparison
with numerical data since it takes into account the full density distribution.
Therefore, it is less affected by the initial cloud shape and size than the core
radii Rs and Rd [79,80]. The asymptotic radial velocity vr is then extracted
by fitting the function

√
r2 =

√
r2

0 + v2
r t

2 to the data, where r0 is the initial
cloud radius.

The radial velocities measured in the experiment are plotted against the
interaction strength U/J as red dots in Fig. 10.6. In the non-interacting limit
the measured velocity is compatible with the expected analytical value

√
2.

Upon increasing the interaction the velocity shows a slight dip at U/J ≈ 4.
For even larger U/J the velocity approaches again the value

√
2 which is

expected in the hard core limit [174].
The experimental data is compared to numerical tDMRG data. As be-

fore, a box trap is assumed for the numerical simulations. The initial state
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Figure 10.7: Fitting procedure to obtain the radial velocity from the tDMRG
data. (a) The reduced radius r̃(t) as a function of time (see Eq. (10.9)) as
red solid line and the linear fit as black dashed line. (b) Numerical time
derivative of r̃(t) as a function of time. The shaded region indicates the
fitting window. Figure from Ref. [79]. c© 2018 American Physical Society

containes N = 10 particles with equal amount of up and down spins in the
center of a L = 100 site system. For every possible spin configuration with
N↑ = N↓ a separate simulation is run and the densities are then averaged
over all spin configurations.

The time dependent reduced radius r̃(t) is calculated as:

r2(t) =
1

N

L∑
i=1

〈ni〉(t) (i0 − i)2 , (10.8)

r̃(t) =
√
r2(t)− r2(0) , (10.9)

where 〈ni〉(t) is the time dependent density at site i averaged over all spin
configurations.

The fitting procedure to obtain the velocity vr from the linear part of r̃(t)
is illustrated in Fig. 10.7(a) and (b). The time evolution of r̃(t) is plotted in
Fig. 10.7(a) and the numerical time derivative of r̃(t) in Fig. 10.7(b). The
shaded region in Fig. 10.7(b) indicates the fitting window where the velocity
has settled to a basically constant value.

The velocities calculated in this fashion are plotted in Fig. 10.6 as red
diamonds. As a function of the interaction strength, vr first decreases until

126



0 1 2 3 4 5 6 7
Eint (tJ=8)/J

1.10

1.15

1.20

1.25

1.30

1.35

1.40

v r
(d
/¿
)

U=20J
U=10J
U=5J

0.0 0.5 1.0
Eint (tJ=8)/U

1.1

1.2

1.3

1.4

v r
(d
/¿
)

Figure 10.8: Radial velocity vr obtained from tDMRG simulations as a
function of the interaction energy Eint generated in the quench. Different
colors represent different interactions strengths U/J . The different diamonds
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initial cloud in case of the Fermi-Hubbard model. The dots are results for the
Bose-Hubbard model. Inset: Same data as the main panel but the interaction
energy on the x-axis is plotted in units of the interaction strength U . Figure
from Ref. [79]. c© 2018 American Physical Society

U/J ≈ 1.5 and then it increases again to approach the asymptotic value
√

2
in the hard core limit. The experimental results are overall compatible with
the numerical predictions.

The decrease in velocity is due to the dynamical generation of doublons
after the quench. Doublons can only be created when singlons of opposite
spin occupy neighboring sites. Therefore, the amount of velocity reduction
depends on the precise spin configuration in the initial state. To backup this
reasoning the velocities of the configuration with the maximum number of
neighboring opposite spins (Néel state in the initial cloud) is plotted as orange
diamonds in Fig. 10.6. In this case, the dip in the velocity for intermediate
U/J values is more pronounced. Furthermore, the velocity in the case of
bosons is plotted as green diamonds in Fig. 10.6 (see also Ref. [80, 174]). In
the bosonic case, there is only one initial configuration since they do not carry
any spin. Doublons can be generated at all bonds and, additionally, even
higher occupations can be created. The result is an even stronger reduction
of vr at intermediate coupling strengths compared to the fermionic case.
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As mentioned above, different causes for the velocity reduction are pro-
posed in Ref. [80]. One of them is the conversion of kinetic energy to interac-
tion energy in the quench. The reduced kinetic energy then leads to a slower
expansion of the cloud. The interaction energy in the Fermi-Hubbard model
is defined as:

Eint = U

L∑
i=1

〈ni↑ni↓〉 (10.10)

where niσ = c†iσciσ. In the Bose-Hubbard model, the interaction energy is
defined in a similar fashion:

Eint =
U

2

L∑
i=1

〈ni(ni − 1)〉 (10.11)

where ni = b†ibi.
In Fig. 10.8, vr is plotted as a function of the interaction energy for differ-

ent values of U/J . The different diamonds for one value of U/J correspond
to different amounts of up-down neighbors in the initial state where the left-
most diamond corresponds to just one neighbor and the rightmost diamond
to the Néel state. The dots correspond to the Bose-Hubbard model. In
the expansion the interaction energy decreases toward an asymptotic value.
While our simulations do not reach the asymptotic regime, the time when
Eint is calculated is chosen so that the initial fast drop of Eint is excluded.

A clear dependence of the velocities on Eint can be observed in Fig. 10.8
with an additional dependence on the interaction strength [175, 176]. Plot-
ting the interaction energy in units of U results in an almost collapse of the
data (see the inset of Fig. 10.8). The U -dependence can be explained by
the nonzero expansion velocity of the doublons at smaller U/J and the fact
that they are only stable for W � U . The stability and immobility of dou-
blons are, however, the assumptions used in Ref. [64] to explain the velocity
reduction in the Bose-Hubbard model.

10.3 Summary

In summary, this chapter was concerned with the sudden expansion of parti-
cle clouds in the 1d Fermi-Hubbard model. Starting from product states with
a mixture of singlons and doublons, a dynamical phase separation between
the two could be observed in a quantum gas experiment. The findings are
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consistent with the phenomenon of fermionic quantum distillation. Compar-
ing the experimental results to tDMRG calculations, the low efficiency in the
experiment could be linked to additional holons in the initial state.

When the system is initialized with only singlons, a reduced radial ve-
locity of the cloud is observed at intermediate coupling strengths which is
consistent with tDMRG calculations. The reduction of the velocity can be
explained by the generation of doublons after the release of the cloud. Here,
the comparison of numerical results for fermions and bosons reveals that
the slowing down can be explained by a conversion of kinetic energy into
interaction energy for both particle statistics.
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Chapter 11

Conclusion and outlook

The bulk part of this thesis was concerned with analysing both the ground
state and time evolution of the half-filled 1d Holstein model of spinless
fermions coupled to an Einstein phonon branch. DMRG in the MPS lan-
guage was used to conduct the numerical calculations [40,41,111]. The large
local Hilbert spaces due to the phononic degrees of freedom without num-
ber conservation pose a special challenge to the aforementioned numerical
techniques. To this end, the LBO was adopted to make the MPS techniques
more efficient. Within the LBO, the site tensors of a MPS are dynamically
transformed into the eigenbasis of the single-site reduced density matrix and
a truncation of the local basis can be performed according to the spectrum
of the single-site reduced density matrix [29].

In his thesis, F. Dorfner combined the ideas by Guo et al. [49] with the
single-site DMRG with subspace expansion introduced by Hubig et al. [50],
to the DMRG3S+LBO suited for ground-state calculations with LBO on ex-
tended systems [48]. Here, the inner workings of this algorithm were analysed
in detail, in particular the interplay between the subspace-expansion mixing
factor and initial states, and their influence on the convergence was studied.
It was found, that it is beneficial to first calculate the ground state for an
easy case and then gradually change the parameters in the Hamiltonian from
one DMRG run to the next, until the desired parameter set for a potentially
more challenging case is reached.

In addition to the LBO, a new technique to deal with large local Hilbert
spaces, the projected purification [37], was introduced in this work, where the
author contributed to the developement. The idea within this technique is to
project the state into an enlarged Hilbert space where a number conservation
of the phonons can be established. For this purpose, additional phonon bath
sites are introduced for every physical site. Reestablishing a global U(1)
symmetry results in an effective local dimension of one.
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The DMRG3S+LBO method and the PP-DMRG method were compared
to the established pseudo-site DMRG ansatz by conducting ground-state
calculations in the half-filled Holstein model [38]. While all methods are able
to provide comparable results for all regions in the phase diagram considered,
there are also notable differences. The PP-DMRG is conceptually simple and
allows for the use of a standard two-site solver. This makes it straight forward
to use, however, the additional bath sites cause the MPS bond dimensions
to be larger for a given target precision compared to the LBO technique.
In contrast, the DMRG3S+LBO utilizes a single-site solver with subspace
expansion. The additional internal parameters, the mixing factor in the
subspace expansion and the number of optimized local basis states kept,
makes converging the code more demanding. As mentioned above, the upside
of the LBO ansatz is the smaller bond dimension compared to the PP method,
which is especially beneficial close to the phase transition in the Holstein
model at half filling.

A TEBD-LBO ansatz [51] was then used to study the melting of CDW
order in the Holstein model [54], which is the first time this method is applied
to a half-filled system. The work presented here is complementary to the one
by Hashimoto and Ishihara [57], where the melting of CDW order after an op-
tical pulse in the Hubbard-Holstein model was investigated. In contrast, the
pure Holstein model of spinless fermions without direct interaction between
the charge carriers was considered here. Furthermore, larger quench energies
occur in our work (0.1t0N ≤ ∆E ≤ 8t0N) compared to the excess energy
pumped into the system by the optical pulse in Ref. [57] (∆E ≤ 0.1t0N).

Overall, it is found that a coupling to phonons slows down the electron
dynamics due to polaron formation, similar to the results in Ref. [57]. When
starting from the bare CDW state with no phonons, a transient self trapping
effect can be found for large electron-phonon couplings that is analogous to
the one found by Kloss et al. in Ref. [58], where the spreading of a single
localized charge carrier in the Holstein model was studied. In the CDW
melting scenario, the self trapping results in a cascade like decay of the order
parameter, where the length of the plateaus in the cascade are given by the
period of the harmonic oscillators 2π/ω0. Quenches from the CDW to the
TLL phase result in different timescales for the relaxation of the electronic
and phononic system. Electrons hop between sites rather freely such that
the CDW order melts, while the phonons are left behind and the order in
the phonon sector persists for longer times. Here, it would be interesting to
explore, whether an additional phonon hopping can accelerate the relaxation
of the phonon inhomogeneities.

To consider a scenario closer to experiments, one could expand this study
by implementing a Peierls pulse, analogous to Ref. [57]. From a technical
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point of view this is more demanding since the Hamiltonian becomes time
dependent. Therefore, the gates for the time evolution in the TEBD-LBO
algorithm have to be recalculated at every time step (at least for the duration
of the pulse) which becomes increasingly expensive for large Mph.

Furthermore, the exact result from the TEBD-LBO can be taken as
benchmark data to test hybrid quantum-classical methods for the time evo-
lution of electron-phonon coupled systems, where the lattice dynamics is
propagated classically while the electron dynamics is treated quantum me-
chanically (e.g. Ehrenfest dynamics [177,178]). These methods are typically
more capable concerning system size as well as timescales compared to full
quantum mechanical treatments and not restricted to 1d. The exact quan-
tum mechanical results of the TEBD-LBO can offer valuable insights on
parameter sets and times where the hybrid methods are reliable.

Subsequently, the question of thermalization in the Holstein model was
investigated. To this end, the ETH was tested in the Holstein polaron model
by using exact diagonalization in small systems of up to L = 8 sites and up
to Mph = 3 phonons per site. Although the integrability breaking term in the
Hamiltonian does not scale with the system size, quantum chaos indicators
suggest that the system thermalizes already for very small electron-phonon
coupling strengths. This result holds even when the maximal phonon number
per site Mph is restricted to just one.

In the following, the ETH ansatz for observables in the eigenbasis of
the Hamiltonian was examined by focusing on a single parameter set in the
Hamiltonian. The considered observables were the kinetic energy and quasi-
momentum occupation in the fermionic sector as well as the average phonon
number in the system and the nearest-neighbor offdiagonal matrix elements
of the phonon one-body correlation matrix. The diagonal elements showed
the expected behavior of converging to a smooth function of the energy. This
was checked by looking at eigenstate to eigenstate fluctuations of the diago-
nal elements, which exhibit an exponential decay as a function of the system
size for all eigenstates in the bulk of the spectrum.

The offdiagonal elements of the considered observables followed the ETH
prediction as well and in particular the universal function FO(Ē, ω) showed
only a very slight dependence on the average energy Ē. Furthermore, predic-
tions from the random matrix theory were met concerning the ratio between
variances of fluctuations of diagonal to offdiagonal matrix elements of ob-
servables.

Overall, the results established thermalizing behavior of the Holstein-
polaron model, where the integrability breaking term in the Hamiltonian is of
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the order O(1) [71–73,75]. Extensions of this study might go in the direction
of making the phonon system less degenerate by introducing a dispersion
or disorder. In fact, Schönle et al. [152] considered the case of dispersive
phonons.

The topic of the last part of this thesis approaches transport from a dif-
ferent angle and the perspective of ultracold quantum gas experiments. The
dynamics of interacting fermions without a coupling to phonons was inves-
tigated in the Fermi-Hubbard model. Specifically, the spreading of initially
confined fermion clouds into an empty 1d lattice was studied experimentally
and numerically, where the initial states were prepared such that the fermions
are in local Fock states [79]. In case of a mixture of singlons and doublons
in the initial cloud, the phenomenon of quantum distillation [81–84] was de-
tected in the experiment, that was previously found for bosons [80,81]. With
the help of the numerics, the low efficiency of the quantum distillation in the
experiment could be traced back to additional holons in the initial cloud.

When considering only singlons in the initial state, the radial velocity of
the cloud depends on the onsite interaction strength U between the particles,
where the lowest velocities emerge for intermediate U/J in 1d [80,174]. This
phenomenon is connected to the fact that doublons are created dynamically
after the release of the cloud and the emerging interaction energy is then no
longer available as kinetic energy. It was established numerically that this
explanations holds for both the integrable Fermi-Hubbard model and the
nonintegrable Bose-Hubbard model.

As mentioned above, important steps to improve the performance of
ground-state and time-dependent DMRG methods for electron-phonon cou-
pled systems were discussed throughout this thesis. This includes the LBO as
an effective ansatz both for ground-state DMRG and time-dependent DMRG.
Recently, the LBO was also combined with finite-temperature DMRG [108].
Further, the newly developed PP promises to be an additional technique
to tackle these problems efficiently. Here, it was used to calculate ground
states, but it is also compatible with time-evolution and finite-temperature
methods. It will be exciting to see how competitive PP can be in those areas.
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Appendix A

Charge-density-wave melting in
the Holstein model: Finite-size
dependence

Here, results for different system sizes L are compared for the charge-density-
wave melting discussed in Ch. 8. In Fig. A.1, data for the bare CDW melt-
ing is presented for ω0/t0 = 2, γ/t0 = 1, 3, 4, and system sizes L = 7, 11, 15.
Overall, there are no qualitative differences between the system sizes concern-
ing the behavior of the order parameter for all coupling strengths considered.
The largest quantitative deviations appear for γ/t0 = 1 [Fig. A.1(a)]. For
the larger coupling strengths γ/t0 = 3, 4 [Fig. A.1(b),(c)] differences are only
visible after the first plateau in the order parameter for tt0 & 3. Such a
dependence of finite-size effects on the coupling strength is expected since
the dynamics gets slowed down as γ/t0 is increased.

This trend is even more pronounced when comparing results for different
system sizes in case of the dressed CDW melting [Fig. A.2]. Discrepancies are
only visible for the smallest coupling γ/t0 = 1 [Fig. A.2(a)]. For γ/t0 = 3, 4
[Fig. A.2(b),(c)] the data points for the different L lie on top of each other
over the course of the entire simulation. Only very small deviations can be
seen for γ/t0 = 3 and tt0 & 5.5. As discussed in the main text, the initial
dressed CDW state is very close to the ground state for large γ/t0 and,
therefore, there is only very slow dynamics.

The OCDW data for the frequency and coupling quenches exhibit very
little finite-size dependence as well (Fig. A.3). Here, data for L = 9, 13, 15
are presented. The largest deviations are seen for the frequency quench
[Fig. A.3(a)]. In this case, the electron dynamics is comparatively fast since
it is fairly decoupled from the phonon dynamics. In contrast, the electron
dynamics is dictated by the phonon dynamics after the coupling quench
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Figure A.1: Bare CDW melting: order parameter OCDW as a function of
time for different system sizes L = 7,11,15. (a) ω0/t0 = 2, γ/t0 = 1, and
Mph = 15. (b) ω0/t0 = 2, γ/t0 = 3, and Mph = 30. (c) ω0/t0 = 2, γ/t0 = 4,
and Mph = 40. For clarity, only every fifth data point computed with TEBD-
LBO is shown.

[Fig. A.3(b)] and only very small finite-size effects are visible.
To summarize, the comparisons in Figs. A.1, A.2, and A.3 establish the

robustness of the phenomena discussed in Ch. 8 against finite-size effects.
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Figure A.2: Dressed CDW melting: order parameter OCDW as a function
of time for different system sizes L = 7,11,15. (a) ω0/t0 = 2, γ/t0 = 1,
and Mph = 15. (b) ω0/t0 = 2, γ/t0 = 3, and Mph = 30. (c) ω0/t0 = 2,
γ/t0 = 4, and Mph = 40. For clarity, only every fifth data point computed
with TEBD-LBO is shown.
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Figure A.3: Quench from CDW phase to metallic phase: order parameter
OCDW as a function of time for different system sizes L = 9,13,15. (a) Fre-
quency quench: ω0/t0 = 2, γ/t0 = 4 to ω0/t0 = 0.1, γ/t0 = 0.2. (b) Coupling
quench: ω0/t0 = 2, γ/t0 = 4 to ω0/t0 = 2, γ/t0 = 1. For clarity, only every
fourth data point computed with TEBD-LBO is shown.
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[5] P. E. Blöchl. ΦSX: Advanced Topics of Theoretical Physics I: In-
troduction to Solid-State Theory (Lecture Notes). http://www2.pt.

tu-clausthal.de/atp/phisx.html (visited 18/05/2020).

[6] D. Emin. Polarons. Cambridge University Press, 2012.
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