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Summary

A key research question in livestock research is how livestock’s phenotypic diversity is shaped by its
genomic diversity. Genomic diversity is thereby assessed through genomic markers. The use and
definition of genomic markers is strongly technology driven and therefore changes through time.
During the last years, single nucleotide polymorphisms (SNPs) have become the main marker class.
Additionally, SNP arrays have been the genotyping technology of choice during the last years due to
their early availability. They are, however, currently partially displaced by whole-genome-sequencing
(WGS) for SNP calling. Further, structural variants (SV) are moving more and more into the focus of
researchers. In this context, the thesis aims in evaluating the value of SNP markers in various ways with

its main focus on chickens as a diverse livestock species with major agricultural value.

In Chapter 1, the current knowledge of genomic variation, marker technologies, and their use in
livestock sciences, especially in chickens, is reviewed. Chapter 2 and 3 then address a systematic error
of SNP arrays, the SNP ascertainment bias. SNP ascertainment bias is a systematic shift of the allele
frequency spectrum of SNP arrays towards more common SNPs due to the pre-selection of SNPs in a

limited number of individuals of few populations.

Chapter 2 aims in assessing the magnitude of the bias for a standard chicken SNP array and the steps
of array design that created the bias. In the study, we therefore remodeled the design process of the
chicken array based on (pooled) WGS of various chicken populations. This revealed a sequential
reduction of rare alleles during the design process, which was mainly caused by the initial limitation of
the discovery set and a later within-population selection of common SNPs while aiming for equidistant
spacing. Increasing the discovery set had the largest impact on limiting ascertainment bias. Other

steps, as e.g. validation of the SNPs in a broader set of populations did not show relevant effects.

Correction methods for ascertainment bias are by now often unfeasible in studies. Chapter 3 therefore
proposes to use imputation of the array data to WGS level as an in silico correction method of the allele
frequency spectrum. The study revealed that imputation is able to strongly reduce the effects of
ascertainment bias, even when a very sparse reference panel was used. However, it became also
obvious that the reference panel then has the same effect as the discovery panel during array design.
Itis therefore crucial to select samples for the reference panel evenly spaced across the intended range

of populations.

SVs are harder to call and genotype than SNPs. Therefore, the question arises whether effects of SV
are captured by SNP-based studies due to strong linkage disequilibrium between SNPs and SVs. This is

assessed in Chapter 4 for three commercial chicken breeds, based on WGS data. The study showed
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that LD between deletions and SNPs was on the same level as LD between SNPs and other SNPs,
indicating that deletion effects are captured by SNP marker panels as good as SNP effects. LD between
SNPs and other SVs was strongly reduced. The main factor for this reduction was local differences to
SNPs in terms of minor allele frequency. However, a reduction of homozygous variant calls for non-
deletion SVs compared to the Hardy-Weinberg-expectation may indicate problems of the used SV

genotypers.

In the last chapter (Chapter 5), the impact of ascertainment bias and possibilities to deal with it in
chicken genomics (and also more general in livestock genomics) is discussed. Further, the potentials of
including SVs into studies are evaluated. It also discusses what is necessary to combine the information
of different genomic data sets to leverage the value of analyses. Finally, an outlook on what
information will be additionally available in near future based on recent technological advances is

given.
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Zusammenfassung

Eine zentrale Forschungsfrage in der Nutztierforschung ist, wie die phanotypische Vielfalt von
Nutztieren durch ihre genomische Vielfalt gepragt wird. Die genomische Vielfalt wird dabei durch
genomische Marker beschrieben. Die Verwendung und Definition von genomischen Markern ist stark
technologieabhdngig und dndert sich daher im Laufe der Zeit. In den letzten Jahren haben sich
Einzelnukleotidpolymorphismen (SNPs) zur wichtigsten Markerklasse entwickelt. AuBerdem waren
SNP-Arrays in den letzten Jahren aufgrund ihrer friihen Verfiigbarkeit die Genotypisierungstechnologie
der Wahl. Sie werden jedoch derzeit teilweise durch die Ganzgenomsequenzierung (WGS) zur SNP-
Bestimmung verdrangt. Darliber hinaus ricken Strukturelle Varianten (SV) mehr und mehr in den
Fokus der Forschung. In diesem Zusammenhang zielt die vorliegende Arbeit darauf ab, die
Aussagekraft von SNP-Markern auf verschiedene Weise zu bewerten, wobei der Schwerpunkt auf

Hihnern als einer vielfaltigen Nutztierart mit groRer landwirtschaftlicher Bedeutung liegt.

In Kapitel 1 wird der aktuelle Wissensstand Gber genomische Variation, Markertechnologien und
deren Einsatz in der Nutztierwissenschaft, insbesondere bei Hiihnern, dargestellt. Kapitel 2 und 3
befassen sich dann mit einem systematischen Fehler von SNP-Arrays, dem SNP Ascertainment Bias.
Der SNP Ascertainment Bias ist eine systematische Verschiebung des Allelfrequenzspektrums von SNP-
Arrays hin zu haufigeren SNPs aufgrund der Vorauswahl von SNPs in einer begrenzten Anzahl von

Individuen aus wenigen Populationen.

Kapitel 2 zielt darauf ab, das AusmaR des Bias fiir einen Standard-SNP-Array fir Hihner und die
Schritte des Array-Designs, die den Bias verursacht haben, zu bewerten. In der Studie haben wir daher
den Designprozess des Hihnerarrays auf der Grundlage von (gepoolten) WGS verschiedener
Hihnerpopulationen nachgestellt. Dabei zeigte sich eine sequentielle Reduktion seltener Allele
wahrend des Designprozesses, die vor allem durch die anfangliche Begrenzung des Discovery Sets und
eine spatere Selektion von haufigen SNPs innerhalb der Populationen bei gleichzeitigem anstreben von
dquidistanten Abstdanden verursacht wurde. Eine VergroRerung des Discovery Panels hatte den
groRten Einfluss auf eine Begrenzung des Ascertainment Bias. Andere Schritte, wie z. B. die Validierung

der SNPs in einem breiteren Set von Populationen, zeigten keine relevanten Auswirkungen.

Korrekturmethoden fiir den Ascertainment Bias sind in Studien bisher meist nicht durchfiihrbar. In
Kapitel 3 wird daher vorgeschlagen, die Imputation der Array-Daten auf WGS-Niveau als in silico
Korrekturmethode fiir das Allelfrequenzspektrum zu verwenden. Die Studie zeigte, dass die
Imputation in der Lage ist, die Auswirkungen von Erhebungsfehlern stark zu reduzieren, selbst wenn
ein sehr kleines Referenzpanel verwendet wurde. Es wurde jedoch auch deutlich, dass das

Referenzpanel dann den gleichen Effekt wie das Discovery-Panel wahrend des Array-Designs hat.
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Daher ist es von entscheidender Bedeutung, dass die Proben fiir das Referenzpanel gleichmalig tGber

das Populationsspektrum verteilt ausgewahlt werden.

SVs sind schwieriger zu bestimmen und zu genotypisieren als SNPs. Daher stellt sich die Frage, ob die
Effekte von SV auch durch SNP-basierte Studien erfasst werden. Das wdre der Fall, wenn zwischen
SNPs und SVs ein starkes Kopplungsungleichgewicht (LD) besteht. Dies wird in Kapitel 4 fiir drei
kommerzielle Hiihnerrassen auf der Grundlage von WGS-Daten untersucht. Die Studie zeigte, dass das
LD zwischen Deletionen und SNPs auf dem gleichen Niveau lag wie das LD zwischen SNPs und anderen
SNPs, was darauf hindeutet, dass Effekte von Deletionen von SNP-Marker-Panels genauso gut erfasst
werden wie SNP-Effekte. Das LD zwischen SNPs und anderen SVs war stark reduziert. Der Hauptfaktor
fiir diese Verringerung waren lokale Unterschiede zu SNPs in Bezug auf die Minor-Allel-Frequenz. Eine
Reduktion der homozygoten Varianten fiir Nicht-Deletions-SVs im Vergleich zur Erwartung unter
Hardy-Weinberg-Gleichgewicht kann jedoch auf Probleme der verwendeten SV-Genotypisierer

hinweisen.

Im letzten Kapitel (Kapitel 5) werden die Auswirkungen des Ascertainment Bias und die Mdglichkeiten,
damit in der Hihnergenomforschung (und auch generell in der Nutztiergenomforschung) umzugehen,
diskutiert. AuBRerdem werden die Moglichkeiten der Einbeziehung von SV in Studien bewertet. Es wird
auch erortert, was notwendig ist, um die Informationen aus verschiedenen genomischen Datensatzen
zu kombinieren damit der Aussagewert von Studien erhoéht wird. Abschliefend wird ein Ausblick
darauf gegeben, welche Informationen aufgrund der jlingsten technologischen Fortschritte in naher

Zukunft zusatzlich verfligbar sein werden.
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Source and types of genomic variation

The genomic information of eukaryotes is purely encrypted in form of deoxyribonucleic acid (DNA).
DNA consists of two counter-rotating strands of nucleotides, forming a double helix (Watson and Crick
1953). A single nucleotide is the combination of a central deoxyribose, a phosphate group and one out
of four nucleobases. The nucleobases are thereby either purine bases (adenine, A; guanine G) or
pyrimidine bases (thymine, T; cytosine, C). The phosphate group binds to the deoxyribose of the next
nucleotide via a covalent binding and thereby is responsible for establishing the backbone of the DNA
strand. The nucleobases connect the opposing strands via hydrogen bounds. In this scope, A always
binds to T via two hydrogen bounds, while C binds to G via three bounds (Knippers 2015). The sequence
of bases allows the coding of information in form of (protein-coding) genes and according regulatory
elements, available on both of the two complementary strands (Nordheim 2015). Further, the

existence of the two strands is the primary basis for replicative processes (Droge 2015a).

The nuclear DNA of animals is thereby organized in chromosomes. They can be divided into autosomes
and heterosomes. While autosomes exist pair-wise, one inherited by the sire and one by the dam,
heterosomes show a sex-linked pattern. In mammals, females carry two X chromosomes, while males
carry an X and a shorter Y chromosome (Graves and Watson 1991). In contrast, male birds carry two Z
chromosomes, and female birds have a Z and a shorter W chromosome (Stevens 1997). Genetic sex
determination in fish species is due to an XY, ZW, polygenic or clonal system, often combined with
environmental plasticity (Devlin and Nagahama 2002). Note that the larger heterosome regularly also
carries parts of the information of the smaller heterosome in the so-called pseudo-autosomal region
(Smeds et al. 2014; Raudsepp and Chowdhary 2015). Besides nuclear DNA, animal cells also carry
mitochondrial DNA, which is organized in circular form and, besides some rare and often pathogenic

cases, exclusively inherited from the dam (Hiendleder 2007).

Genomic variants are typically classified by the way they change the genome. The simplest and
currently most evaluated form of polymorphisms are single nucleotide polymorphisms (SNP), which
describe a single base exchange at a specified position in the genome. SNPs can thereby have up to
four states in a population, even though commonly only bivariate SNPs are analyzed. Mutations
generating SNPs are separated into transitions (Ti) and transversions (Tv). While Ti refers to the
exchange of a purine base by the other one (A¢<=>G) or of a pyrimidine base by the other one (C<>T),
Tv describes the switch between purine and pyrimidine bases. The Ti/Tv ratio is species-dependent,

but commonly larger than one, meaning that Ti are more common than Tv (Purvis and Bromham 1997).

Variants that are more than a simple base exchange are classified as structural variants (SV). However,
it is common to regard short (< 50 bp) insertion-deletion (InDel) polymorphisms separately due to

technical reasons. SV (> 50 bp) are generally separated into unbalanced SV, which change the overall
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genome size (deletions: DEL; duplications: DUP; insertions: INS) and balanced SV, which change the
structural confirmation, but not the overall size of the genome (inversions: INV; translocations: TRA).
Further classifications commonly tackle special cases of those variants, e.g. microsatellites, also called
simple sequence repeats (SSR), as multiple repetitions of short segments with variable repetition
number (Li et al. 2002), or have a purely technical basis, e.g. restriction site length polymorphisms
(RFLP; Botstein et al. 1980) that are length fragments of DNA after digestion by restriction
endonucleases and therefore effectively represent any possible mutation of restriction sites. Further,
classifications may be mainly used in a specific technical context, e.g. copy number variants (CNV) as
summary for DEL and DUP identified from sequencing read depth or array probe intensities (Wang et

al. 2007; Abyzov et al. 2011).

Genomic variation is initially generated by mutation (Falconer and Mackay 1996). Mutations either
change single bases, or insert, duplicate, delete, invert or translocate parts of the DNA up to the size
of the complete genome, or lead to complex rearrangements. Mutational events thereby can e.g.
happen due to repair mechanisms of strand breaks or due to errors in replication and crossovers
(Droge 2015b). Germline point mutations, which result in SNPs, are typically considered as being rare
events with their frequency being related to the genome size (Lynch 2010). So are mutation rates per
site in vertebrates estimated to be between 0.4 x 10® and 1.3 x 10 (Yoder and Tiley 2021). Mutation
rates can differ throughout the chromosome. Axelsson et al. (2005) held the increased CpG content
on micro chromosomes of chickens responsible for increased mutation rates compared to macro
chromosomes. Further, ltsara et al. (2010) estimated the mutation rate of CNV with 1.22 x 102
mutations per generation in humans much higher than the rate of single nucleotide variants (SNV).
This is in line with assumptions that the presence of segmental duplications, also called low copy
repeats, can trigger SV formation mechanisms as non-homologous allelic recombination (NAHR) and
thereby leads to hotspots of recurrent and non-recurrent mutation (Gu et al. 2008). Additionally,
Carvalho et al. (2013) found complex genomic rearrangements to trigger further mutation in
breakpoint junctions and thereby mutation rates of SNV to be increased by a factor of 10 in those

regions.

Newly mutated alleles can then increase or decrease in frequency by random drift or selection
(Falconer and Mackay 1996). Given the neutral theory of molecular evolution by Kimura (1968), most
of the mutations are selectively neutral and thereby have a high chance of quickly getting lost by
random drift, and only few get enriched in the population. This leads to a specific allele frequency
spectrum, which will be handled in detail later. Further, the few mutations that come with a selective
advantage leave distinct patterns in the genome (Nielsen 2005), allowing to trace them in the genome,

which will be handled also later.
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Mutations on the same chromosome of an individual are commonly inherited physically linked as a so-
called haplotype. Changes in the frequency of the haplotypes due to drift or selection affect those
linked variants therefore equally, leading to a non-random co-occurrence of alleles. This physical
linkage can be broken by events of crossing over, with the chance being higher the larger the distance
between the two variants is. The co-occurrence of alleles in terms of a correlation between alleles is
commonly referred to as linkage disequilibrium (LD), independently from the existence of physical
linkage (Qanbari 2020). The strength of LD thereby is a function of physical distance, recombination
rate, and effective population size of a population (Sved 1971). LD thereby also changes over
generations. The LD between variants allows to use an easy to genotype variant as a predictor (marker)
for a close-by, not necessarily known, variant of interest. This means that a part of the genomic
variance of interest can be predicted by a subset of the genomic variants, with the effectiveness being

due to the strength of LD between markers and variants of interest (los Campos et al. 2020).

Advantages and limitations of genotyping and sequencing technologies

Since Watson and Crick (1953) published the basic structure of DNA, huge research effort was spent
to gain a deeper understanding of the blueprint of living organisms. Accompanied by revolutionary
technological breakthroughs (Sanger et al. 1977; Mullis et al. 1986), this led to the publication of the
first human reference genome less than 50 years later (Lander et al. 2001). The growing availability of
technology strongly shaped the use of genomic markers. For a long time, molecular insights were
constrained to markers like RFLP (Botstein et al. 1980) or microsatellites (Li et al. 2002) that are only
sparsely distributed over the genome, or to the sequencing of small genomic fragments like
mitochondria (e.g. Hiendleder et al. 2008). Their use was quickly replaced by single nucleotide
polymorphisms (SNP) with the beginning 21° century due to the development of SNP arrays and short-
read sequencing technologies (LaFramboise 2009; Novembre and Ramachandran 2011; Mardis 2017).
Especially the quick decrease in sequencing costs (NHGRI 2020), also known as genomic revolution, led
to the discovery of millions of SNPs and InDels (Table 1.1). Due to problems with resolving longer SVs
by short sequencing reads, recent discoveries of more than 30,000 SVs per human genome became
only possible by the development of long-read sequencing technologies as PacBio and Nanopore
sequencing (Ho et al. 2019). The following chapter will therefore explain the properties of some
current state-of-the-art technologies and the bioinformatics needs to call markers. The technologies

can be roughly divided into short and long-read sequencing as well as genotyping through SNP arrays.
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Table 1.1: Numbers of published short variants for selected vertebrate species

Species Reference Assembly length [Gb] # SNPs and InDels Number [kb™]
Human GRCh38.p13 3.099 700,532,304 226.05
Mouse GRCm39 2.728 82,972,037 30.41
Chicken = GRCgb6a 1.065 23,425,227 22.00
Turkey Turkey 5.1 1.115 5,390 <0.01
Cow ARS-UCD1.2 2.715 97,127,239 35.77
Goat ARS1 2.922 33,996,710 11.63
Horse EquCab3.0 2.506 20,355,608 8.12
Pig Sscrofall.l 2.501 63,845,860 25.53
Sheep Oar_v3.1 2.619 60,248,438 23.00

Numbers of published SNPs and InDels available on ENSEMBL 104 (Howe et al. 2021). Species were selected
based on data availability and relevance for farming. Human and mouse were added for comparison.

lllumina short-read sequencing

While enhanced variants of the original Sanger sequencing approach (Sanger et al. 1977) are still used
to re-sequence single genes, sequencing of complete vertebrate genomes is nowadays
overwhelmingly performed by the use of lllumina’s sequencing by synthesis. Briefly, this approach
starts from fragmenting extracted DNA into parts with a specific length distribution that has typically
an average (mean insert size) of several hundred bp and a specific variance. Oligonucleotide adapters,
which later enable binding to the flow cells and may contain library-specific barcodes for multiplexing,
are then bound to both ends of the fragments. The oligonucleotides then bind to matching
oligonucleotides on the surface of the flow cell and a step called bridge amplification generates spots
of multiple identical copies of the DNA fragments on the flow cell. The actual sequencing then happens
by using a polymerase to bind one fluorescence-marked nucleotide to the amplicons per sequencing
cycle, which emits a base-specific light signal that is captured by a camera. The process is typically
repeated for 100 — 300 cycles and leads to reads with according lengths. Optionally, this is followed by
a further round of bridge amplification to bind the fragments to the opposite side and repeat the same
round of sequencing cycles. This then results in read pairs with opposite read directions (paired-end

sequencing; Fuller et al. 2009; Mardis 2017).

There are some non-random error sources, appearing at different steps of the workflow, which affect
Illumina short-read sequencing. Ross et al. (2013) identified regions with extreme GC content to be
under-covered, most likely due to problems in DNA amplification by PCR. This, however, should be less
problematic with modern PCR-free library preparation. They additionally showed strongly increased

error rates in longer homopolymeric stretches. Nakamura et al. (2011) assumed inverted repeat
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sequences to lead to hairpin structures during sequencing and thereby to delays in nucleotide
elongation and accumulated sequencing errors. Finally, Li (2014) showed that low complexity regions

of the genome are highly affected by erroneous mapping of the short Illumina reads.

Calling variants from short-read data requires computationally expensive bioinformatics. It is mainly
done by re-sequencing based on a reference genome instead of de-novo assembling the genome if a
suitable reference genome is present. Pipelines for the discovery of short variants (SNPs and InDels)
are usually based on the GATK best practices workflow (van der Auwera et al. 2013). This involves
mapping of the reads to a reference genome (usually bwa-mem; Li 2013), marking of PCR and optical
duplicates, recalibration of base quality scores, per-sample calling of variants with minimal thresholds
followed by a consolidating population-wide joint calling and a final filtering step. This workflow
sometimes is modified, e.g. by the choice of the variant caller (GATK haplotype caller vs. freebayes;
McKenna et al. 2010; Garrison and Marth 2012), or whether the filtering approach relies on hard filters

or a supervised machine learning algorithm (van der Auwera et al. 2013).

In contrast to SNPs and short InDels, SVs cannot be called directly from short reads due to their size.
Instead, callers use combinations of auxiliary information as local read depth, insert size distributions
and orientation of paired-end reads, split read information, and local reassembly (Ho et al. 2019). The
strong algorithmic differences between the callers lead to different performances in regard to
sensitivity and specificity for various SV- and length classes (Ho et al. 2019; Kosugi et al. 2019). To
overcome those issues, ensemble approaches (e.g. parliament2; Zarate et al. 2020) try to combine the
results of multiple callers and to balance sensitivity and specificity based on the number of supporting
callers. Nevertheless, the calling of SVs from short-read sequencing is associated with a high rate of
false-positive calls, requiring strict filtering strategies. It is thereby still common to include time-
consuming visual scoring in those filtering procedures (Bertolotti et al. 2020; Bouwman et al. 2020). A
pipeline to reduce the time needed for scoring is SV-plaudit (Belyeu et al. 2018). It combines the
automated production of quality plots by samplot (Belyeu et al. 2021) with a cloud-based distribution
of work across different assessors. Possibilities to speed this process up by supervised machine
learning algorithms are currently evaluated (Chowdhury and Layer 2020). However, there are unsolved
problems with SV calling in regions with a high share of repetitive elements and the calling of INS
relative to the reference genome (Delage et al. 2020) due to the missing ability of short reads to

accurately resolve them.

Reduction of sequencing costs may be realized by reduced library approaches such as restriction site-
associated DNA sequencing (RADseq, Andrews et al. 2016) techniques such as genotyping by
sequencing (GBS, Elshire et al. 2011). They, however, only give insight into special regions of the

genome and results may be influenced by variations of the restriction sites that hinder cutting by the
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restriction enzymes (Davey et al. 2011; Andrews et al. 2016). Another method to reduce sequencing
costs may be sequencing of DNA that was pooled from multiple samples (Futschik and Schl6tterer
2010). Pooled sequencing, however, does not allow the observation of genotypes from single samples
and comes with a series of problems regarding biased allele frequencies and technical limitations for
variant calling (Futschik and Schlotterer 2010; Boitard et al. 2012; Chen et al. 2012; Gautier et al. 2013;
Schlotterer et al. 2014; see also the supplementary material to Chapter 2 and Chapter 3). Further, low-
coverage sequencing of populations combined with imputation techniques is discussed for larger

populations (Pook et al. 2021).

Long read sequencing technologies

Recent developments in sequencing technology are intended to overcome the short read lengths and
the need for DNA amplification of Illumina sequencing by single molecule sequencing. The first
technology, Single Molecule Real Time (SMRT) sequencing of Pacific Biosciences (PacBio), also uses
DNA synthesis by fluorescence-marked nucleotides through a polymerase. However, in contrast to
Illumina, the polymerase is attached to a zero-mode waveguide and the unamplified DNA is led to the
polymerase, which allows getting rid of the amplification steps and increases read lengths to > 10 kb
(Rhoads and Au 2015). An advanced protocol, called circular consensus sequencing (CCS), ligates
hairpin adaptors to both ends of the DNA template to form a circular template that combines the
previous forward and backward strand separated by the hairpin sequences. This is sequenced multiple
times and allows for in silico error correction. CCS reads, also called high-fidelity (HiFi) reads, then can
have accuracies of >99.5 % which is comparable to lllumina short-reads (Wenger et al. 2019). Note

that the error profile is especially prone to InDels in a homopolymeric context (Wenger et al. 2019).

In contrast, nanopore sequencing from Oxford Nanopore Technologies (ONT) comes with a completely
different approach. For ONT nanopore sequencing, adapters are ligated to DNA strands. These
adapters then guide the DNA through a nanopore, located at a membrane and set under a certain
electric current. The passing of the DNA leads to characteristic changes of the current, which can later
be used to determine the base sequence of the DNA molecules (Jain et al. 2016). ONT nanopore
sequencing allows for huge read lengths with records of larger than one Mb, and thereby e.g. allowed
for the first telomere-to-telomere assembly of a human chromosome (Miga et al. 2020). However,
especially the translation to the base sequence, also called base calling, is computationally demanding
and prone to high error rates (Wick et al. 2019). Recent developments try to tackle this problem by
enhanced designs of the nanopore and advanced base-calling algorithms (Wick et al. 2019). Further,
the 1D2 protocol tends to sequence forward and reverse strand to correct for sequencing errors. This,
however, comes with reduced throughput of a flowcell and therefore increased costs. A special

advantage of ONT nanopore sequencing is its scalability and potential usability in the field as e.g.
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shown during the latest Ebola outbreaks (Quick et al. 2016) and also being available for the monitoring

of livestock disease outbreaks (Hansen et al. 2018).

SNP arrays

In contrast to sequencing technologies, microarray technology is only able to genotype previously
known SNPs. SNP densities are commonly either low (<10 k SNPs; e.g. Boichard et al. 2012; IMAGE
2020), medium (~50 k SNPs; e.g. Matukumalli et al. 2009; Groenen et al. 2011), or high (=500 k SNPs;
e.g. Kranis et al. 2013; Unterseer et al. 2014; lllumina 2015). Two platforms are common: Affymetrix
Genotyping Arrays and Illumina Bead Chips. They have both in common that they have multiple
oligonucleotides, the so-called probes, for each SNP attached to the surface of the array. In the case
of Affymetrix, there exist two different probes for each SNP, one for the A-allele and one for the B-
allele. The DNA then binds to the probes, resulting in specific match and mismatch patterns (Figure 1.1
a). The combination of the signals is then translated to the AA, AB, or BB genotype (LaFramboise 2009).
However, potential effects of off-target SNPs need to be taken into account (Wan et al. 2009). In
contrast, the recent generation of Illumina Bead Chips contain multiple probes that represent only one
flanking region of the SNP on the beads (Figure 1.1 b). The DNA then binds to the probes and the
probes are extended at the SNP position by the, to the template complementary, fluorescence-marked
base (Steemers et al. 2006). Thereby, A and T emit a red signal, and C and G a green signal. The
combinations of intensity and color signals per bead result in three distinct clusters for the three
genotypes (LaFramboise 2009). The restriction to two colors limits the SNPs on lllumina Bead Chips to
{AT}/{CG} SNPs (Steemers et al. 2006). Note that earlier lllumina platforms used two different bead
types per SNP, one for the A- and one for the B-allele, in combination with multi- instead of single-base

extension (Gunderson et al. 2005).



Chapter 1 General Introduction 16

e CRGBETE . GGG
(@) Affymetrix (b)  1lumina

m_
—
—
s

CAGA
o GTCT-r.
3 : 11 111l
T A TA . &.c
G C GC AT AT
OR
OR Nr——
... CAGC
o GTCGT
11 1111
TA T A
G C GC
G G GC AT AT

Figure 1.1: Comparison between the Affymetrix and lllumina SNP array platforms. The top represents
an example DNA fragment with an A/C SNP. The Affymetrix array (a) contains match probes for both
alleles with varying SNP locations. The DNA fragments then bind to the probes, resulting in perfect
matches (bright yellow) or mismatches (dimed yellow). The lllumina beads (b) contain only one probe
type per SNP. The DNA fragments bind to the probes, which are then extended by a single fluorescence
marked base. The emitted color signal allows distinguishing the SNP allele (source: LaFramboise 2009).

The design process of arrays is based on two main selection decisions. The one with major implications
on downstream analyses is the pre-selection of known candidate SNPs due to wanted characteristics,
which is described in detail in Chapter 2. The second decision is based on technical characteristics of

the platform such as invariable sites around the SNP for probe binding (Kranis et al. 2013).

CNV can be discovered from SNP arrays by analysis of auxiliary characteristics in populations. This may
be done by screening the genotypes of a population for physically clustering mendelian errors,
deviations from Hardy-Weinberg-Equilibrium, and missing genotypes as indications of DEL (Conrad et
al. 2006; McCarroll et al. 2006). The current default software PennCNV (Wang et al. 2007) directly
utilizes fluorescent intensity signals, SNP allele frequencies, and pedigree information in a Hidden
Markov Model to call CNVs. Callable length classes and breakpoint resolution are thereby dependent
on the SNP density of the array. Due to the bad breakpoint resolution, it is common to merge
overlapping CNVs into copy number variable regions (CNVR) in array-based analysis (Lee et al. 2020),

which implies that a CNVR may in fact consist of multiple independent CNVs.
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Imputation to switch between marker maps

As shown in the previous paragraphs, marker maps can heavily differ in the type of markers and density
due to the used techniques. This is especially prevailing in studies that need to combine datasets that
stem from different SNP arrays and potentially include WGS data for a subset of individuals. The
different maps typically show a certain share of overlap, and neighboring markers are not independent
of each other due to LD. This allows estimating missing marker genotypes in the less complete data set

by utilization of the information of the more complete set, known as imputation.

Imputation is typically performed by deriving information on haplotypes (Marchini et al. 2007,
Browning and Browning 2009; Howie et al. 2011; Sargolzaei et al. 2014; Browning et al. 2018) or LD
between markers (Money et al. 2015) in the denser set, the reference set. Sometimes, pedigree
information is also used (Sargolzaei et al. 2014). Based on those information sources, the tools impute
missing markers in the less dense set, the study set, with the most likely genotypes. Note that
haplotype-based imputation methods always require a phasing step, whose accuracy affects the later
imputation accuracy (Pook et al. 2019). This is commonly implemented as pre-phasing based on the
study genotypes alone (Browning et al. 2018), increasing the speed of imputation while having only a

minor impact on accuracy (Howie et al. 2012; Pausch et al. 2013).

Imputation results further strongly depend on the setup of the used reference panel. A general rule is
that the genetic distance between reference panel and study set should be as small as possible (Hickey
et al. 2012; Berry et al. 2014; Roshyara and Scholz 2015; Pook et al. 2019) and larger reference panels
increase imputation accuracy (Pausch et al. 2013; Pook et al. 2019). However, as increasing the
reference panel often means including more distant reference samples, the performance of multi-
breed reference panels is of major interest. While e.g. IMPUTE2 (Howie et al. 2011) should be robust
in this sense, as it limits the reference panel to k nearest haplotypes for an increase in speed, Beagle
(Browning et al. 2018) uses the complete reference panel. This resulted in reduced accuracies for multi-
breed reference panels in some studies (e.g. Berry et al. 2014; Korku¢ et al. 2019; Nolte et al. 2020).
Korku¢ et al. (2019) especially showed the need for a strongly increased multi-breed reference panel
to gain equal accuracies as for a small closely related panel. Other studies, however, could show
increased imputation performance for admixed breeds and rare SNPs when using multi-breed
reference panels (Brendum et al. 2014; Rowan et al. 2019; Ye et al. 2019). Alleles with low frequency
are further harder to impute (Hickey et al. 2012; Kreiner-Mgller et al. 2015) and profit more from

increased reference panel sizes (Kreiner-Mgller et al. 2015; Rowan et al. 2019).

A common question is whether to impute low-density panels initially to an intermediate density and
then to the targeted density, or directly to the targeted density. Studies, that had an additional

intermediate reference panel (VanRaden et al. 2013; van Binsbergen et al. 2014; Kreiner-Mgller et al.
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2015) could show superior performance of the two-step procedure. However, subsetting the high-
density panel to an intermediate panel for a first imputation step could not compete with direct

imputation (Korku¢ et al. 2019).

A practical issue often lies in how to measure imputation accuracy. The probably simplest solution is
to calculate the mean number of imputation errors (genotype discordance), or its counterpart the
genotype concordance (one minus discordance). Since this penalizes homozygote to heterozygote
errors as much as homozygote to opposite homozygote errors, the allelic concordance is often used
as a refined measure (Pook et al. 2019; Zhang et al. 2021). It describes one minus the mean absolute
difference between the true and imputed number of alternative alleles divided by two. A problem of
concordance and discordance rates is that they do not evaluate the performance of a method relative
to simply imputing the most frequent genotype and thereby underestimate errors for rare alleles
(Hickey et al. 2012). Therefore, Pearson correlations between true and imputed alternative allele
counts are more appropriate (Hickey et al. 2012). However, if calculated per marker, and a marker
becomes fixed after imputation, correlations cannot be calculated (Pook et al. 2019). This may require

using more complex statistics as e.g. the imputation quality score (IQS; Lin et al. 2010).

The use of genomic markers in livestock sciences

Genomic prediction

Indicated by the Breeders Equation (Falconer and Mackay 1996), one of the main interests of a breeder
is to select the best parents for the next generation as early and as accurately as possible. This interest
has strongly driven the idea of not selecting based on the phenotype of an animal, or an auxiliary
phenotype if the phenotype of interest cannot be observed at the time point of selection. Those are
often bad estimators of the underlying genotypic background. Better estimates were initially achieved
by utilizing information of relatives to predict breeding values, first by the selection index theory (Lush
1933) and later by Henderson’s Best Linear Unbiased Prediction method (BLUP; development history
summarized by Schaeffer 1991). In the 1990s, the idea of using associations between sparsely
distributed genomic markers and phenotypes to assist traditional selection procedures, known as
marker-assisted selection (MAS), was heavily evaluated (Kumar et al. 2011; Wakchaure and Ganguly
2015). The limitation of MAS to marker effects above a certain significance threshold, however,
neglects the contribution of small effects to the total genetic value and furthermore results in a bias
towards overestimated effects (Meuwissen et al. 2001). However, as most of the variance of relevant
traits in animal breeding is based on those small and neglected effects, MAS did not establish in animal

breeding (Meuwissen et al. 2016).
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The limitations of MAS led to the groundbreaking suggestion of Meuwissen et al. (2001) to estimate
the breeding value of an animal as the sum of all available marker effects. Estimation of those effects
was based on a BLUP model that assumes the effects to come from a joint normal distribution and is
known as random (or sometimes ridge) regression BLUP (rrBLUP). Even though the necessary SNP array
technology to derive the needed dense set of markers was not available at that time (Koning 2016),
genomic breeding programs in dairy cattle were implemented within ten years. This was possible by
the proposal of a genomic dairy cattle breeding program by Schaeffer (2006), which implements the
use of young bulls before progeny testing and by this approximately doubles genetic gain per time,
and the availability of the first cattle array (Matukumalli et al. 2009). Successively, the genomic
selection was also adapted in other livestock (Meuwissen et al. 2016) and plant breeding programs

(Koning 2016).

The initial method of Meuwissen et al. (2001) is mainly implemented by a slightly changed method,
genomic BLUP (GBLUP; VanRaden 2008). It derives similar results by using the marker genotypes to set
up a genomic relationship matrix and then directly estimating genomic breeding values from a BLUP
model. This is more efficient if the number of individuals is less than the number of SNPs (Koning 2016;
Meuwissen et al. 2016). Further, a series of Bayesian nonlinear methods (also known as the Bayesian
Alphabet; Gianola et al. 2009) tries to break with the assumption of normally distributed SNP effects
by allowing a fraction of the SNPs to have zero effect (Meuwissen et al. 2001), or even to come from

different distributions (Erbe et al. 2012).

Besides the size of the training set and population structure, a key factor to derive high prediction
accuracies is the marker density (Erbe et al. 2013). This has driven the interest in whether an
investment in WGS data may lead to the best results. Ober et al. (2012) tested this in a Drosophila
dataset and showed an asymptotic trend of the accuracy when transitioning from low density to WGS.
The same was shown by Perez-Enciso et al. (2015) through simulation. Further, the assumption of
Meuwissen (2009) that Bayesian methods profit more from WGS data than GBLUP was not confirmed
by Ober et al. (2012). As large WGS training sets are still unavailable, van Binsbergen et al. (2015) tested
the performance of genotypes imputed to WGS, but they could not outperform high-density array

data.

Mapping of quantitative trait loci

Another interest is in revealing the genetic basis of phenotypic traits to gain a better insight in the
underlying biological mechanisms. Earlier linkage mapping methods relied on the decrease of marker-
QTL LD over time in experimental families (Mackay and Powell 2007). Fine mapping of QTLs thereby
required either large families or multi-generation breeding experiments (Mackay and Powell 2007).

The availability of dense marker maps in form of genotyping arrays and later WGS data for larger
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phenotyped populations has strongly modified the methodology for QTL detection by switching from
family-based linkage mapping, to population-based genome-wide association studies (GWAS; Visscher
et al. 2012). The basic principle of GWAS is to statistically test each marker (mostly SNPs, but may also
be other variants) of a dense marker map independently from the other markers in the panel for
association with the phenotypic variance of a trait. Significantly associated markers are then assumed
to be in strong LD and thereby close physical distance to a causal genomic variant, or even represent
the causal variant. Besides the choice of the statistical test, a main technical issue in GWAS is to
appropriately control for multiple testing and background effects due to population stratification.
GWAS are thereby well suited to identify QTLs of medium to large effect size that segregate with high
MAF in a population, but get problems when identifying effects of rare or fixated variants (Visscher et

al. 2012).

Other approaches to map QTL are selection signature analyses, by Qanbari and Simianer (2014) also
referred to as “genome to phenotype” approaches. The idea behind this is that artificial or natural
directional selection for certain traits increases the allele frequencies of effect alleles more than what
is expected from random drift. This also pulls frequencies of linked variants with it until recombination
events happen, known as hitchhiking effect (Smith and Haigh 1974; Fay and Wu 2000). Selection,
therefore, leaves specific patterns in the genome, e.g. increased regional differentiation between
populations (Akey et al. 2002), local differences to the expectation under neutral molecular evolution
(Tajima 1989), or the excessively high frequency of long haplotypes (Sabeti et al. 2002). See e.g. Nielsen
(2005) and Vitti et al. (2013) for detailed reviews. To overcome the problem that single selection
signature detection methods are specific for certain frequency- or age classes of alleles under
selection, combinations of the approaches as e.g. suggested by Ma et al. (2015) may be helpful. Note
that it is often not possible to connect selection signatures with a specific phenotype. Studies rather
discuss candidate regions based on known functions of genes in those regions (e.g. Qanbari et al. 2019;

Peripolli et al. 2020).

A special case is the identification of potentially lethal recessive haplotypes in livestock populations
without knowledge of the actual defect. The idea behind this is that haplotypes that carry a lethal
recessive allele, and are therefore used as markers for the unknown causal defect allele, do not appear
homozygous in vital populations. Methods, therefore, aim at identifying those haplotypes and test
whether the missing homozygosity is non-random (VanRaden et al. 2011). Sensitive and accurate
identification of (assumed to be overwhelmingly rare) lethal haplotypes thereby depends on very large
sample sizes (Hoff et al. 2017), by now only available through routine genotyping of major breeds.
Knowledge about those lethal haplotypes allows mating regimes that specifically avoid matings of two
carrier individuals and thereby ensures that no affected offspring are produced (Hoff et al. 2017).

Besides the avoidance of direct economic loss due to reduced fertility (VanRaden et al. 2011; Wobbe
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et al. 2019), this is also advised by animal welfare laws, as knowingly mating two carriers may be

classified as torture breeding.

Population genomics

Population genomics in livestock generally fulfill different goals. Interests are typically in inferring
knowledge about domestication history (Groenen et al. 2012; MacHugh et al. 2017; Orlando 2020;
Wang et al. 2020), describing current population structures (Bortoluzzi et al. 2018; Malomane et al.
2019; Perini 2020), monitoring small populations (Bortoluzzi et al. 2018; Reimer et al. 2020; Schaler et
al. 2020), or the characterization and delimitation of breeds (Upadhyay et al. 2019; Perini 2020; Reimer
et al. 2020).

The exploration of a population’s diversity commonly relates the population of interest to a
comparable ideal population given the Wright-Fisher model. This model assumes an isolated random
mating population with distinct generations and constant population size as a sample of an infinitely
sized base population. It further disregards mutation and selection (Falconer and Mackay 1996). Any
limitation of the size of a population will necessarily result in inbreeding, meaning that parents of an
individual have at least one common ancestor. The two alleles at a locus then have the chance to be
identical by descent (i.b.d.). As the handling of populations often differs from the idealized conditions
of the Wright-Fisher model (e.g. by overlapping generations or non-random mating), the comparison
between populations in regard to their size is commonly done by the effective population size (Ne). Ne
describes the size of an ideal population with the same rate of inbreeding (AF) as observed from the
population of interest (N, = 1/2AF; Falconer and Mackay 1996). As N. is often used to define the risk
status of livestock populations (e.g. for German livestock breeds; BMELV 2008), monitoring of
inbreeding development is a routine task. Classical pedigree-based methods are thereby gradually
replaced by marker-based methods. A relative straight-forward approach to derive inbreeding
coefficients of individuals (Fx) is to set up a genomic relationship matrix (e.g. VanRaden 2007) and to
extract them from the diagonal elements, which are 1+ E,. This, however, may sometimes be
problematic, as the accurate scaling of the approach by VanRaden (2007) relies on allele frequencies
of an unselected founder population. Further, note that this estimate describes identical by state
(i.b.s.) instead of i.b.d. probabilities. Another way to estimate inbreeding is by runs of homozygosity
(ROH). Longer homozygous stretches in the genome are signs of i.b.d. haplotypes (Broman and Weber
1999). The ROH-based inbreeding coefficient (Fron) is then the proportion of the autosomal genome
covered by ROH (McQuillan et al. 2008). ROH are, due to recombination, shorter if the common
ancestor of the parents can be found more distant in the pedigree (McQuillan et al. 2008). This allows
setting length restrictions for ROH to trace inbreeding over time (McQuillan et al. 2008). The

identification of ROH can thereby depend strongly on the density of the marker map (Herrero-
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Medrano et al. 2014) and parameter settings for identification algorithms (e.g. MAF filtering or LD

pruning; Meyermans et al. 2020).

Inbreeding in a population reduces the variance at loci. Two important measures that describe the
variance, and thereby the diversity, at a locus, are expected (He) and observed heterozygosity (Ho)
(Fernandez and Bennewitz 2017). He defines the expected proportion of heterozygote samples given
a certain allele frequency (p) and Hardy-Weinberg-Equilibrium (HWE). As H; = 2p(1 — p), it equals
the binominal variance and describes the expected allelic variance of a diploid individual at a certain
locus. Ho as the observed state may deviate on average, if the population is not in HWE. Reasons may

be non-random mating schemes or selection (Falconer and Mackay 1996).

Inferring information on population substructures can be done by Wright’s F statistics (Wright 1949),
which relate inbreeding coefficients of a structured population to the expectation given random
mating. Weir and Cockerham (1984) described it slightly differently in a variance-analytic framework
that relates the genomic variance of the total population, between subpopulations, between
individuals within subpopulations, and between gametes within individuals to each other in a way to
extract information on inbreeding and population subdivision. Population subdivision is thereby
expressed through Wright’s Fixation Index (Fst), which relates the between subpopulation variance to
the total variance. There exist multiple Fsr estimators, with © by Weir and Cockerham (1984) probably
being the most widely accepted one, which however requires individual-level genotype data and
therefore is not always usable. When Fsr is estimated from two populations, it can also be understood
as distance between the two populations. However, other pairwise distance measures rather try to
express differences in relation to coalescent times with different underlying model assumptions. So
does e.g. Nei’s distance (D; Nei 1972) assume constant mutation rates and Reynolds distance (Reynolds
et al. 1983) a pure drift-only model. Distance measures are generally based on estimates of allele

frequencies.

A problem of pairwise similarity/ distance measures is that they quickly create multidimensional
spaces when multiple individuals/ populations are involved. Techniques of dimension reduction as
prime component analysis (PCA) are therefore extensively used. PCA extracts a series of uncorrelated
vectors based on a genetic covariance matrix, the eigenvectors or prime components (PC; Patterson
et al. 2006). This rotates the observation space in a way that the first PC explains the maximum
variation that can be explained in a one-dimensional space, the second one opens the two-dimensional
space that explains as much variation as possible given the first PC and so on. The most famous
example of a PCA is by Novembre et al. (2008) who were able to show that the first two PCs of a PCA
on European humans were able to reflect the geographic sampling location. A problem of PCA is that

uneven sampling strongly affects the projections (McVean 2009). Further, when used for a broad set
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of populations, PCA may hide information due to a common reduction to only two dimensions. An
alternative to PCA is multidimensional scaling (MDS). MDS has the same intention as PCA, but is based
on a pairwise distance matrix (Backhaus 2003; Li and Yu 2008). By this, it is more flexible than PCA as

it allows the use of different distance measures.

A common population genetic question is whether a set of observed populations shares common
ancestry and how they cluster in that sense. Clustering of individuals/ populations may be performed
by reconstruction of phylogenetic trees. Based on genetic distance matrixes, classical hierarchical
clustering methods like the unweighted pair group method with arithmetic mean (UPGMA) iteratively
collapse the distance matrix for the least distant pair of populations and calculate new distances
between the collapsed group and the other remaining population(group)s. In the case of UPGMA, the
new distance is simply the arithmetic mean of the old distances. This is then graphically represented
by a dendrogram whose branch lengths reflect the coalescence time if mutation rates are equal along
all branches (Weir 1996). An alternative approach is the construction of a neighbor-joining tree (Saitou
and Nei 1987). The neighbor-joining algorithm thereby starts from a star-like phylogeny and iteratively
joins pairs of populations with the goal to minimize the total tree length. This results in an unrooted
phylogenetic tree. Additionally, there exist maximum parsimony methods, which simply cluster
populations by the least differences without obtaining branch lengths, and maximum likelihood
methods, which search for the tree that shows the maximum likelihood given a specific evolutionary
model (Weir 1996). A general problem of phylogenetic trees is that they depend on models of
bifurcating trees and, by this, deny the role of hybridization in evolutionary and domestic processes.
The Treemix (Pickrell and Pritchard 2012) method tries to overcome this issue by representing a
phylogeny as a directed network graph. Further, Patterson’s D statistic (Green et al. 2010; Patterson
et al. 2012) and related estimates of admixture fractions as implemented in the Dsuite tool (Malinsky

et al. 2021) allow testing for hybridization events.

An alternative cluster approach, which is not based on a tree-like representation, is the STRUCTURE
model by Pritchard et al. (2000). The model assumes a set of k unknown populations, characterized by
their allele frequencies. It then (partly) assigns individuals to these unknown populations through a
Bayesian clustering approach while simultaneously estimating the allele frequencies of the unknown
populations. This results in a vector Q for each individual that specifies which proportion of the genome
belongs to which of the k populations and, by this, allows for admixed individuals. As the computational
effort for the original STRUCTURE method is relatively high (Novembre and Ramachandran 2011;
Novembre 2016), nowadays default implementation is the faster maximum-likelihood-based
ADMIXTURE algorithm by Alexander et al. (2009). A still existing problem is to find the ‘right’ number
of k populations with different methods coming with unstable results (Novembre 2016). This often

results in studies that exploratory examine different k to interpret the results (e.g. Malomane et al.
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2019). Nevertheless, as the STRUCTURE model has some tight assumptions (e.g. linkage equilibrium
between markers, HWE, special population histories; Pritchard et al. 2000), Lawson et al. (2018)
showed that over-interpretation of the results may easily happen. Note that methods like HAPMIX
(Price et al. 2009) and RFMix (Maples et al. 2013), that allow local ancestry estimations of admixed
chromosomes based on haplotypes from phased reference populations, may also be of interest in this

context.

SNP ascertainment bias and mitigation procedures

Besides already noted potential impacts of marker density, a major drawback of using array SNPs as
markers for all kinds of genomic analyses is their non-random selection. As SNPs for arrays need to be
selected before array production, the first step of array design is to screen public databases and/ or a

limited set of sequenced discovery samples for potential SNPs.

Following Nielsen (2004), the unfolded allele frequency spectrum describes the probability to observe
a certain number of mutant alleles at a certain locus in a population of n haplotypes. Assuming neutral
evolution (Kimura 1991), the expected unfolded frequency spectrum (X) is defined as P(X = x) =
x~ /¥ 1H(1/i) (0 < x < 1; Nielsen 2004). Selection (ascertainment) of all variable SNPs in a subset
of the total population then biases the spectrum towards more common alleles, whereby the strength
of the bias increases with decreasing number of discovery samples (Figure 1.2). This bias is called SNP
ascertainment bias (Nielsen 2004; Clark et al. 2005; Albrechtsen et al. 2010) and is present for each
SNP array with different intensities. The bias can be further increased if multiple subpopulations are
present and ascertainment is only performed in one of those subpopulations. While for the discovery
population the effect of ascertainment bias is as described above, the shift towards common variants
is less in all non-discovery populations with extremes resulting in a shift towards rare variants (Nielsen
2004). The strength of this effect is thereby strongly affected by the distance of the population to the
discovery population (Dokan et al. 2021; Geibel et al. 2021b).
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Figure 1.2: Expected allele frequency spectra under different ascertainment schemes. The spectra
present the number of expected mutant (unfolded spectrum) and minor (folded spectrum; inset)
alleles in a population of n = 20 haplotypes, assuming neutral molecular evolution. The three scenarios
represent the unbiased case and ascertainment from discovery samples of d = 10 haplotypes vs. d = 2
haplotypes. The biased scenarios represent the case that the discovery samples are a subset of the
typed samples (adapted from Nielsen 2004).

As many population genetic statistics rely on the allele frequency spectrum, they are directly affected
by ascertainment bias with different intensities (Clark et al. 2005). The most direct impact of
ascertainment bias is present for estimators that are directly based on the observed allele frequency
spectrum, such as the neutrality test Tajima’s D (Tajima 1989; Ramirez-Soriano and Nielsen 2009) or
estimates of heterozygosity (Rogers and Jorde 1996; Clark et al. 2005; Albrechtsen et al. 2010;
Malomane et al. 2018; Geibel et al. 2021b). For example, Bradbury et al. (2011) observed that
ascertainment bias decreased expected heterozygosity in Atlantic Cod by up to 30 % the further away

the discovery population was.

When considering population differentiation, effects become less predictable, and different
ascertainment schemes lead to different results (Dokan et al. 2021). The fact that common SNPs across
different populations may be rather old variants (Wakeley et al. 2001) introduces biases towards lower
population subdivision estimates when ascertainment is conducted independently in multiple
subpopulations (Nielsen 2004; Dokan et al. 2021), or in a third population (Dokan et al. 2021). Upward
biased population differentiation is also present when ascertainment bias affects the subpopulations
differently strong (e.g. ascertainment in only one of the subpopulations; Dokan et al. 2021). In contrast,

if an ascertainment scheme preferentially selects variants that are common in multiple populations,



Chapter 1 General Introduction 26

the subdivision will be overestimated (Dokan et al. 2021). Nevertheless, estimators are influenced by
ascertainment bias to a different extent. So is Fsr less affected as an estimator compared to other
distance estimators that are not scaled by overall heterozygosity when the numerator and

denominator of Fsr are affected in the same direction (Albrechtsen et al. 2010; Geibel et al. 2021a).

Ascertainment that is performed unbalanced across subpopulations also rotates the principal
components of a PCA (McVean 2009; Malomane et al. 2018; Dokan et al. 2021). The variation within
the discovery populations, as well as differentiation between discovery and non-discovery populations,
will be overestimated compared to variation within non-discovery populations (Nielsen 2004;
Albrechtsen et al. 2010; Dokan et al. 2021), which has an effect comparable to uneven sampling

(McVean 2009).

Common variants are on average older variants that had already time to recombine more often than
younger variants (Clark et al. 2003; Nielsen and Signorovitch 2003). Ascertainment of medium frequent
variants, therefore, results in an SNP panel that is older than an unbiased panel. This, in turn, means
an underestimation of LD decay from frequency-independent estimators as |D’| (Nielsen and
Signorovitch 2003). Pairwise MAF differences, however, become on average smaller through
ascertainment bias. This, in turn, inflates LD estimates by r? (Nielsen and Signorovitch 2003; Qanbari

2020), as the upper limit of r? is defined by the MAF difference (VanLiere and Rosenberg 2008).

Other than bivariate SNPs, polymorphic markers as microsatellites are less affected by ascertainment
bias (Bradbury et al. 2011; Lachance and Tishkoff 2013). The same counts for haplotype-based
estimators (Lachance and Tishkoff 2013).

To cope with ascertainment bias, it may be advisable to correct the allele frequency spectrum by
reverse-engineering the ascertainment process (Nielsen et al. 2004; Clark et al. 2005; Albrechtsen et
al. 2010), or account for ascertainment bias in the estimators (Nielsen 2000; Nielsen and Signorovitch
2003; Ramirez-Soriano and Nielsen 2009). Those methods, however, rely on simplified ascertainment
schemes and require exact knowledge of the ascertainment process, which commonly conflicts with
reality (Albrechtsen et al. 2010). More versatile is the attempt to model ascertainment within
demographic simulations, as implemented into fastsimcoal2 (Excoffier et al. 2013) and used by
McTavish and Hillis (2015) to test different combinations of demographic models and ascertainment
schemes in cattle for the goodness of fit with observed data. Further, Quinto-Cortés et al. (2018)
described a comparable method that implemented a Bayesian optimization process to automate the

search for the best fitting demographic scenario.

However, with very broad demographic scenarios, these simulations also become too complex.

Malomane et al. (2018) tested therefore how different filtering strategies affect ascertainment bias.
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They identified LD-pruning as a promising approach, as it reduces redundant information of high-MAF
SNPs while keeping the information of rare SNPs. Further, Chapter 3 presents an approach to use

imputation based on a sparse WGS reference panel to mitigate the effects of ascertainment bias.

The chicken

Origin and domestication

It is commonly accepted that the wild origin of the domesticated chicken (Gallus gallus domesticus) is
the red jungle fowl (RJF) whose natural habitats stretch mainly across Southeast Asia. However, the
amount of contribution of the five wild Gallus gallus subspecies (G. g. gallus, G. g. spadiceus, G. g.
bankiva, G. g. jabouillei, G. g. murghi) is still content of scientific discourse. Some authors argue for
multiple independent domestication events, as reviewed by Tixier-Boichard et al. (2011). However, the
by now largest study on chicken domestication by Wang et al. (2020) argues based on 863 sequenced
chickens that domestication of chickens was based on G. g. spadiceus ~9,500 * 3,300 years ago with
later introgression by the other four subspecies (G. g. murghi and G. g. jabouillei > G. g. gallus > G. g.
bankiva). Note, however, that wild RJF samples, which are often even sampled in zoological parks, may
not be free from hybridization with domestic chickens, as e.g. shown by Mariadassou et al. (2021). This
could influence the results as well as a sampling bias in the study towards Asian chickens (Lawal and
Hanotte 2021). Additionally, later introgression from other Gallus species into domesticated chicken
populations seems also to have contributed significantly, as e.g. shown for the grey jungle fowl (Gallus
sonneratii) from India that seems to be the origin of the yellow skin color of domestic chickens

(Eriksson et al. 2008).

Dispersion across the world strongly followed human migration routes, as recently reviewed by Lawal
and Hanotte (2021). The broad diversity of breeds may thereby have been shaped by multiple
migration events and a rich crossbreeding history. This is e.g. reported from Europe, where many fancy
breeds were developed by crossing imported Asian breeds to local chicken populations in the 19"

century (Malomane et al. 2019).

Value in farming

The chicken is the agricultural vertebrate species with the most individuals worldwide (FAO 2021b). A
strongly increasing trend in the reported number of chickens can be observed especially in Asia since
the 1980s (Figure 1.1). For 2019, the Food and Agriculture Organization of the United Nations (FAO)
reported 25.9 billion chickens worldwide, 15.8 billion (61 %) in Asia, and 5.9 billion (23 %) on the
American continent. In contrast, the numbers have been only 2.2 billion on each of the two continents

in 1980 (FAO 2021b).
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Figure 1.3: Worldwide chicken numbers by continent and year (data source: FAO 2021b).

Commercial chicken breeding is done by nucleus hybrid breeding schemes with strong horizontal and
vertical concentrations of the market. Exemplarily for layers, a worldwide egg need of 900 billion
eggs/year could be satisfied by a four-line crossing scheme with theoretically only 15,000 purebred
grand-grand mothers (Preisinger 2018). This and the high costs of performance testing resulted in
currently only four companies sharing the laying hen market (Preisinger 2018). The intensive breeding
programs and negative correlations between growth and egg numbers (Willam and Simianer 2011)
also led to a strong specialization of commercial lines for egg (white and brown layers) vs. meat
production (broilers). Nevertheless, in developing countries backyard chicken farming with native

chicken breeds still plays a significant role (e.g. ~50 % in the Philippines in 2005; Chang 2007).

Global chicken diversity

The limitation to few chicken lines in commercial meat and egg production contrasts with a large
number of global chicken breeds. The Domestic Animal Diversity Information System (DAD-IS)
currently lists 1,823 chicken breeds worldwide with 125 counting as extinct and 524 as at risk in at
least one country (FAO 2021a). Breeding goals on a global scale extend the production of animal
protein (e.g. game birds or a large diversity of fancy breeds; Crawford 1993). Further, Malomane et al.
(2019) describe a gradual genetic separation between European and Asian breeds with African and

South American breeds clustering in between.

The within-breed diversity of chickens exhibits a decline with genetic distance to the wild populations
(Malomane et al. 2021) with European populations showing an on average lower diversity than Asian
ones (Malomane et al. 2019; Malomane et al. 2021). The premature assumption that commercial

populations generally exhibit very low levels of genetic diversity due to their intensive breeding history



Chapter 1 General Introduction 29

can thereby only be confirmed for white layers (Malomane et al. 2019). Commercial brown layers show
a medium heterozygosity and broilers a rather high heterozygosity (Malomane et al. 2019). This is
commonly explained by the single-breed origin of white layer lines in contrast to multi-breed origins

of brown layers and broilers (Crawford 1993; Malomane et al. 2019; Tixier-Boichard 2020).

Genome

The chicken genome consists of 38 autosomes, a Z/W heterosomal sex system, and the mitochondrial
genome, in total ~1.2 Gb. The first reference genome was published in 2004 based on a female from a
red jungle fowl inbreeding line (International Chicken Genome Sequencing Consortium 2004). The
initial build was successively updated through the last years and the current build GRCg6a (Genome
Reference Consortium GRCg6a 2018) consists of 32 autosomes, the heterosomes, and the

mitochondrial sequence.

A difference of avian genomes to mammalian genomes is the strong decay in chromosome lengths
across the genome. Autosomes are therefore often divided into macro- (1-5), intermediate (6-11), and
micro-chromosomes (12-38; International Chicken Genome Sequencing Consortium 2004). However,
the exact classification varies across publications. The micro-chromosomes show several differences
in comparison to macro-chromosomes. This includes elevated recombination rates (International
Chicken Genome Sequencing Consortium 2004; Groenen et al. 2009; Megens et al. 2009), elevated
rates of synonymous substitutions, higher GC content and gene density, and lower repeat density
(International Chicken Genome Sequencing Consortium 2004). A further feature of the chicken
genome is the known bad assembly quality of chromosome 16 due to the major histocompatibility

(MHC) complex with a strong repetitive genome content (Solinhac et al. 2010; see also Chapter 5).

There are currently 23.4 M SNPs and short InDels published on ENSEMBL (Table 1.1). However, this
seems to be an underestimation of the total number, as we already called >20 M bivariate SNPs just
on chrl —chr28 in our studies (Chapter 3). An accurate estimate of the number and length of chicken
SVs is not yet available. Although studies identified up to 12,955 SV (Sohrabi et al. 2018) after filtering,
the studies were all based on arrays or short-read data and limited to a single calling algorithm in a
limited set of breeds, most likely lacking from a high number of false positives and low sensitivity at

the same time.

For chickens, there exist currently four commercially available SNP arrays. The first array by Groenen
et al. (2011) contains 60 k SNPs on the lllumina platform that were selected from reduced library
sequences of four discovery populations (two broiler lines, a white layer line, and a brown layer line).
Kranis et al. (2013) created a 580 k Affymetrix array. They used a broader discovery set, including

multiple lines of white layers, brown layers, broilers, and inbreeding lines from the Roslin Institute, UK.
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The SNPs for the array were further validated in a broad set of fancy breeds. The 55 k Affymetrix array
by Liu et al. (2019) was developed with the intention to capture the variation of indigenous Chinese
chicken breeds while still showing overlap with the previously existing arrays. Further, recently
multispecies arrays with the purpose of monitoring small European populations were developed in the

scope of the EU project IMAGE (https://www.imageh2020.eu/). The IMAGEOO1 multispecies array

thereby contains ~10 k chicken SNPs (IMAGE 2020).

Aim of the thesis

The previous chapter highlighted the wide usability of genomic markers in livestock sciences. However,
the different marker classes and technologies come with their specific properties and problems.
Outstanding are especially the ascertainment bias of SNP arrays and the inaccurate SV calling pipelines.
Further, the chicken is an excellent model organism in livestock sciences due to its broad diversity of

populations. The thesis, therefore, aims in answering the following questions by using chicken data:

Chapter 2 asks which steps in the array design process created the SNP ascertainment bias. The

guestion is answered by remodeling the design process of a commercial SNP array-based on WGS data.

Chapter 3 investigates whether imputation of array data to WGS level allows for in silico correction of

SNP ascertainment bias.

Chapter 4 then assesses whether a separate SV calling is necessary for genomic studies, or whether

potential effects of SV would already be captured by SNPs in strong LD to the SV.
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