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1. Introduction

1.1 Security and Biometry

In societies in which computer-aided communication is the norm, the transfer
of information is ubiquitous and easy. This raises questions about the intended use
and source of any particular piece of information. For example, if it is meant to be
private, how to keep it that way? Furthermore, how to reliably determine who actu-
ally created the information? The field of cryptography helps resolve these questions.
It provides techniques for the encryption and decryption of information using keys.
Moreover, protocols to exchange common keys through a possibly eavesdropped
channel are proposed. Both of these are important methods to enable privacy. In
addition, cryptography provides techniques that ensure confidence in authenticity.
For example, an individual can be authorized based on a key that he provides (e.g.,
personal identification number (PIN) or password). Such a criterion for authenticat-
ing identities can be said to be based on what they know. However, a password can be
forgotten or, if written down, can be stolen. To prevent these risks, many individuals
attempt to create easily memorable passwords. Unfortunately, this often results in
the individual choosing a weak password, typically constructed using personal infor-
mation (e.g., a birthday or the name of a significant other), which increases the risk
of others’ guessing the password — and therefore, of theft. An alternate criterion for
the verification of identity might be based on what they possess (e.g., a chip card).
However, such a token can be lost or stolen too. Hybrid solutions in which both
criteria — what they possess and what they know (e.g., a chip card in combination
with a PIN) — are fused, provide better protection from theft. In this case, in order
to be authorized, an intruder would have to steal the chip card and guess the correct
PIN. But this hybrid still does not address the problem of passwords being forgotten
by authorized individuals.

A popular alternative to what they know is what they are criteria. Here, bio-
metrics®, such as a fingerprint, the iris of the human eye, a palm, or the face serve
as evidence for what they are: a person’s true, unique identity. A digitized template
is created that functions similar to a password. Authentication protocols that incor-
porate biometric templates do not have the disadvantage that they can be forgotten

'For a comprehensive overview of biometrics we refer to Jain et al. (2007).



2 1. Introduction

or lost. Barring injuries, fingers are always with us; moreover, it is unlikely that
fingerprints change significantly during our lives.

Whatever the criteria, secure re-identification of individuals requires us to store
information that is related to them. The conventional system involves a party that
stores information about authorized individuals, called the server, while we refer to
the individuals as users (or system users).

In a password-based authentication scheme, user names along with their re-
spective passwords are stored on a server-side database. In such a scenario, we usu-
ally cannot prevent the fact that some persons will have access to the content of the
database. Such persons (for example, system administrators) are thus able to read
the password information related to enrolled users. To prevent such persons from
using password information to impersonate authorized users, a non-invertible trans-
formation? (e.g., a one-way hash function) of each password is stored rather than the
unprotected password. During authentication, the user sends his password to the ser-
vice provider, which computes the password’s non-invertible transformation. Next,
the service provider compares the transformation that is stored on the database
with the just-transformed password. If both agree, the authentication attempt is
accepted; otherwise it is rejected. So a would-be thief cannot find the passwords in
the database; he must either steal them from users or guess at them.

If a biometric-based authentication scheme is in place, a would-be thief pro-
ceeds a little differently: He might capture an authentic fingerprint, create a fake
finger, and then create a fake biometric fingerprint template, thus impersonating
the corresponding user. The situation is rather serious, because biometric templates
may correspond to human beings with nearly unique precision compared to mere
passwords. One consequence of this is that if the biometric templates are stored
in clear on a database, any person who is able to read its content might be able to
determine exact identities of corresponding human beings. Depending on the kind of
services the server provides or the delicate nature of the data involved, the identity
of a corresponding human being is especially worthy of protection. Thus, biometric
templates have especially to be stored protected. In addition, ineffective protection
of biometric templates has consequences beyond breach of privacy, as compared to
protecting passwords: For example, if a password is corrupted (e.g., discovered by
others) it can be replaced easily compared to replacing a biometric template. We
only have ten fingers, while keys (such as a PIN or password) can be replaced nearly
arbitrarily many times.

While the requirements for so-called biometric template protection schemes are
similar to those used for protecting passwords, they are more difficult to achieve.
With high confidence it must be efficiently verifiable whether a provided biometric
template matches the template that is encrypted by the stored data; furthermore,
it must be computationally infeasible to derive the unencrypted biometric template
from the stored data. Here there is a great difference between password and biometric
schemes: Accurate biometric authentication, contrary to password keys, necessarily
deals with inexact data. Biometric templates extracted from the same individual
are only reproducible within controlled error bounds, because each acquisition of
the same biometric modality is (at least) slightly different.

2Non-invertible transformation of a password means that it is easy to transform the password,
while on the contrary the derivation of a password with given transformation is computationally
hard.
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Overview of Biometric Template Protection Schemes

In this section, we offer a preliminary discussion of biometric template protec-
tion schemes and their respective function. For a comprehensive overview we refer
to Cavoukian and Stoianov (2009).

There is no such thing as an exact biometric template; each one is merely an
approximation of its source. Different measurements of the same biometric source
will differ within some bounds while also having some reasonable similarity. Con-
sequently, computerized matchers have to allow for these reasonable differences be-
tween biometric templates. These differences between two biometric templates of the
same individual can be usefully conceptualized as deviations or errors. In this way,
some proposals for biometric template protection schemes couple techniques known
from traditional cryptography with techniques from the discipline of error-correcting
codes.

The Fuzzy Commitment Scheme and the Fuzzy Vault Scheme

Probably the easiest scheme that combines traditional cryptography with error-
correcting codes is the fuzzy commitment scheme of Juels and Wattenberg (1999).
They assume that the biometric templates are encoded as vectors v of fixed length.
Independently from the template, a secret key « in terms of an error-correcting code
is generated. The offset k+v as well as a non-invertible hash h(k) forms the protect-
ed template. Assuming randomness of the templates v and a large pool for choosing
codewords k it is infeasible to derive either the template v or the secret key s only
from k + v. Upon authentication, a query template v is used to “shift” the offset
Kk + v back: If v and v’ are of sufficient similarity (in terms of Hamming distance)?,
i.e. if v and v" were extracted from the same individual, then x + v — ¢’ is close to
the key x and can be corrected to k. Successful recovery of the key x can be verified
using h(k) in the same way as for password-based authentication.

For a reasonably large error-correcting code, and assuming the hash function
h used to compute h(k) is non-invertible, then information-theoretic security of the
fuzzy commitment scheme can be asserted if the data within biometric templates is
both randomly as well as uniformly distributed. But of course, biometric templates
are usually non-uniformly distributed; e.g., they look like fingerprints, not noise. This
limits the amount of security that biometric template protection schemes are capa-
ble of providing, including the fuzzy commitment scheme. In any case, under ideal
assumptions, the fuzzy commitment scheme, despite its similarity, has proven se-
curity and enables good authentication performance for biometric modalities whose
instances can be easily encoded as fixed-length feature vectors (such as human iris-
es).

However, fingerprint templates seem to be not well-suited for protection by
the fuzzy commitment scheme. Fingerprint templates such as minutiae templates*
usually are encoded as feature sets without a specific order, rather than as ordered
feature vectors (see Figure 1.1). This is mainly due to the scanning process typically
used to acquire fingerprints. It is perhaps unavoidable that, during each scan, a user
will place different regions of his finger on the scanner’s surface, causing different

3The Hamming distance is the number of positions in which two strings/vectors differ, i.e.
dist(vy, ..., vp; w1, ..., wy) = Zv#wi 1
4Informally, a fingerprint minutia is a characteristic location on a fingerprint image.
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features to be present in the resulting feature set. Moreover, fingerprint images are
often of low quality due to noise, e.g., caused by dirt, skin conditions such as dry
or wet fingers, etc. Therefore, important or ground truth features might be miss-
ing in the feature set. In addition, spurious fingerprint features are easily extracted.
For these reasons, the similarity of fingerprint features better corresponds to a set
difference measure rather than to a measure correlating with Hamming distance.

Later, Juels and Sudan (2002) proposed
the so-called fuzzy wvault scheme. Here the au-
thors assume that the biometric templates are
encoded as unordered sets v, which makes the
fuzzy vault scheme a promising method to pro-
tect fingerprint templates. Furthermore a secret
key k is generated. Informally, again in terms of o ————
an error-correcting code, the key s is bound to
the elements of v in the sense that if sufficiently
many elements from v are known, then the se-
cret k can be recovered. The features v as well
as the key x are protected by generating a large
number of chaff features. Finally, the vault is the
union of genuine features v constituted with ad-
ditional information, i.e. x, all dispersed within
the chaff features. The security of the vault can
be described as the difficulty of distinguishing
genuine from chaff features. On authentication,
a second template encoded as a set v’ is provided.
If v" overlaps with v substantially then the infor-
mation that is linked to v can be used to recover
the key x and the entire template v. In this case,
thp agthentication attempt is successful. Other- Figure 1.1: Locations of a Fingerprint's
wise, if K cannot successfully be recovered then \inutiae
the query is rejected. Again, a criterion to verify
the correct k can be enabled by storing a cryptographic hash value h(x) along with
the vault.

Juels and Sudan (2002) proved that information-theoretic security of the fuzzy
vault scheme is possible using appropriate parameters.® In particular, for there to
be high information-theoretic security, successful genuine authentication occurs on-
ly when the feature sets v and v’ share quite a large number of common elements.
Unfortunately, for two genuinely matching fingerprints, far fewer feature correspon-
dences are able to be captured by the matcher than is required by theory to provide
proven security. As a consequence, realistic implementations of the fuzzy fingerprint
vault® usually do not have proven security as intended by Juels and Sudan (2002)
(see Merkle et al. (2010a)). But this does not necessarily imply that the fuzzy fin-
gerprint vault must be insecure, in particular for implementations where multiple

5Vault parameters comprise length size of the template, length of the key, and number of chaff
features.

8Fuzzy fingerprint vaults are implementations of the fuzzy vault scheme that protect fingerprint
features.
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fingers are used. Under reasonable assumptions’ that are commonly believed to be
true, certain security capacities of fuzzy fingerprint vaults may be established for
multiple fingers. But there are other risks that weaken effective protection of fin-
gerprint templates via current implementations of the fuzzy fingerprint vault, and
these cannot be solved by using multiple fingers. Implementations of the fuzzy fin-
gerprint vault have to be made secure against these vulnerabilities before one begins
designing multi-fingerprint vaults — which would require exhaustive evaluations on
appropriate databases (e.g., see Ortega-Garcia et al. (2003)).

Early Approaches

The fuzzy commitment scheme and the fuzzy vault scheme were not the first
approaches to implement biometric template protection.

Pioneer work goes back to Tomko et al. (1994). The authors proposed to pro-
tect an entire intensity image f : R? — R, such as a fingerprint image. In this
purpose, the authors encode a deterministic secret key as a two dimensional signal
s:R? - R. Now, if F = FT(f) and S = FT(s) denote the two-dimensional Fourier
transforms® of f and s, respectively, then the filter function H = S/F corresponds to
the protected template. On authentication, if a query fingerprint image g : R? — R
is provided and if G = FT(g) then let s’ = FT'(H - G) be the inverse transform
of H-G. If F and G are close, which is the case if f and g correlate well, then s is
close to the signal s, which can be reconstructed using certain properties of s.

The system is invariant to translation of f and ¢ due to the incorporated
Fourier transform. This is in particular useful for the biometric fingerprints in where
fingers are likely placed on different regions of the scanner’s surface.

At a first glance, it seems impossible to derive the template f or the signal
s from the fraction H = FT(s)/FT(f). However, due to the special shape of the
signal s an adversary who has intercepted H has quite a good chance to successfully
recover s and thus f. Moreover, the scheme is not very practical: It requires the
enrolled image and the query image to correlate very well.

Even if the scheme proposed by Tomko et al. (1994) lacks of effective template
protection it was the first attempt to protect biometrics. It had great influence on
subsequent research on biometric template protection.

Probably, Davida et al. (1998) were the first who proposed a scheme that pro-
vides biometric template protection using a combination of traditional cryptography
and error-correcting codes. They assumed, that biometric templates are encoded as
binary fixed-length vectors. In this way, the difference of biometric templates corre-
lates with the hamming distance of corresponding vectors, i.e. the number of vector
positions in where two vectors differ. Roughly, the scheme works as follows. On en-
rollment, for an encoding of a biometric template v check bits r (in terms of an
error-correcting code) are extracted from v. Furthermore, a signature h(v), e.g, in
terms of a cryptographic hash function, is computed. The public data is (7, h(v))
which corresponds to a protection of the biometric template encoded as v referred
to as the private template by Davida et al. (1998). On authentication, a second tem-
plate v’ is provided. If v and v" are of sufficient similarity then a decoding attempt
of v combined with the check bits r would be successful and reveals the enrolled v.

"These comprise certain intractability assumptions (see Bleichenbacher and Nguyen (2000) and
Guruswami and Vardy (2005)).
8Two-dimensional Fourier transform: FT(f)(u) = [g. f(x) - exp(27i - (x,u)) Oz
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In this case, the correctness of v can be verified using h(v) and the authentication
attempt is accepted; otherwise it is rejected.

The authors showed that their scheme provides effective template protection
under the following two assumptions. First, it must be infeasible to produce a bio-
metric template encoding v’ of sufficient similarity to the enrolled v. Second, it must
be infeasible to forge the signature h(v).

Given an appropriate error-correcting code, the scheme of Davida et al. (1998)
generates a private template solely from a biometric template while in the fuzzy
commitment scheme it is bound to a randomly generated key.

Biometric Template Protection Schemes as a Building Block

In this thesis we focus on fuzzy fingerprint vaults. But we give a brief discus-
sion on where to arrange them.

One may claim that biometric data, such as minutiae templates, is no private
but public data: We leave the traces of fingerprints on every surface we touch; mod-
ern cameras are even able to capture irises of the human eye of sufficient quality
from a reasonable distance such that the acquisition may be unseen. Thus, in a
candid scenario one may omit the assumption that biometric data is private da-
ta. Furthermore, for authentication, the question whether the templates stem from
living persons has to be resolved prior a deployed implementation of a biometric
authentication scheme, i.e. liveness detection.” Sarier (2011) states about biometric
template protection schemes, including fuzzy fingerprint vaults, the following.

Although the security of some these systems is questionable when they
are utilized alone, integration with other technologies such as digital sig-
natures or Identity Based Encryption (IBE) results in cryptographically
secure applications of biometrics.

This gives an idea that biometric template protection schemes play the role of a
building block but do not solve the problem of secure biometric authentication alone.
A comprehensive cryptographic discipline has been established over the last decade
which also uses biometric template protection schemes as a building block. A nice
source to get familiar with these topics may be the Ph.D. thesis of Neyire Deniz
Sarier (Sarier (2011)) who, in particular, refers to Bringer et al. (2007a,b) and Sahai
and Waters (2005).

In this thesis we face the challenge of a particular biometric, namely finger-
prints, and the efficacy of the fuzzy vault scheme to protect them.

1.2 Thesis Contribution

This thesis focuses on the fuzzy vault scheme and examines its efficacy in
protecting single fingerprint templates. We find inherent risks in current implemen-
tation of the fuzzy fingerprint vault — particularly, correlation attack — that are
not resolved by moving to multiple fingerprint templates. And so we propose a novel
minutiae fuzzy vault that is inherently resistant to correlation attacks.

9This is in fact a very delicate question. For some scenario, e.g., border control, it is assumed
that the biometric template are acquired under supervision in where it is hard to provide a faked
biometric source.
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We first examine brute-force attacks, which reflects the worst case for the at-
tacker and thus the best for system users. This is analyzed using vault parameters
found in the literature and is found to pose a threat. In addition, we provide detailed
analyses of different kinds of brute-force attacks against a hybrid implementation of
Nagar et al. (2008, 2010). The hybrid implementation incorporates so-called minu-
tiae descriptors'® in addition to minutiae, with the purpose of improving vault se-
curity. These minutiae descriptors are protected via the fuzzy commitment scheme
at a feature-level fusion.'' The particular error-correcting code used in the fuzzy
commitment scheme, however, has a very low sphere-packing density.'? In attacks, a
low sphere-packing density can be used to decouple the problem of attacking the in-
stances of the fuzzy commitment scheme from the problem of attacking the instances
of the fuzzy vault scheme. As a consequence, the partial securities essentially add up
but do not multiply as it has been assumed in an analysis given by the authors. As
a consequence, for codes of very low sphere-packing density the hybrid implementa-
tion does not have significant advantages over a standard implementation, which is
already very vulnerable even against naive brute-force attacks.

Actually, the observation that a low sphere-packing density decreases the se-
curity of the hybrid implementation is not new. Nagar et al. (2010) noted that their
analysis only holds in case a perfect code'® is used. Furthermore, they proposed how
to incorporate other error-correcting codes of higher sphere-packing density such
that the overall security could be effectively improved. However, brute-force attacks
are not the only risks, and a low sphere packing density was not taken into account
to analyze a reasonable false-accept attack, which are attacks taking advantage out
of the system’s false-acceptance rate.

In any authentication system there is a non-zero chance that a wrong user can
be falsely authenticated. This chance is referred to as the system’s false-acceptance
rate, and this rate can be exploited by an attacker. In a scenario in which a false-
accept attack is conducted, we assume that the attacker has previously established
a large database containing fingerprint templates that is accessible by him. Having
intercepted a vault record, the attacker can iterate through all the templates in the
database and simulate impostor authentication attempts. In accordance with the
particular false acceptance rate, the attacker will succeed in breaking a vault record
eventually. If the average time of a single impostor authentication attempt is known,
then the expected time for the attacker to successfully break the vault record can
be easily calculated. Therefore, we use the false-acceptance rate as well as the av-
erage time of an impostor authentication attempt determined for an own reference
implementation to deduce the effort required (measured in time) for a successful
false-accept attack. Moreover, we analyze the resistance of the hybrid implementa-
tion of Nagar et al. (2008, 2010), which mainly follows that of Nandakumar et al.
(2007a), in an attack scenario in which the false-accept attack is combined with
the information that is leaked by the sphere-packing density of the codes used for

OTnformally, minutiae descriptors describe global features of the corresponding fingerprint
around its corresponding minutia.

1 0On authentication, only if sufficiently many vault minutiae, i.e. encoded as vault features, can
be extracted in combination with their respective minutiae descriptors (of sufficient similarity),
can the correct secret key be successfully reconstructed.

12The sphere-packing density of an error-correcting code, informally, is the proportion of words
that are correctable to a valid codeword in comparison to all words in the ambient space.

I3Perfect codes are error-correcting codes with sphere-packing density equal to 100%.
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protecting the minutiae descriptors.

We find that the minimal effort required to successfully accomplish false-accept
attacks is highly alarming; such attacks can be conducted much faster than brute-
force attacks. For example, against our reference implementation, a brute-force at-
tack requires approximately 11-12 days, while a successful false-accept attack is
likely to consume between 35 seconds and 18 minutes.!* This is strong evidence
supporting the contention that a single finger cannot provide reasonable crypto-
graphic security via the fuzzy vault scheme, and that instead, multi-finger fuzzy
vaults should be investigated. Unfortunately, there remain problems that cannot be
resolved merely by switching to the use of multiple fingers.

Simply stated, in order to effectively protect two different fuzzy fingerprint
vaults, it should not be possible to determine whether both vaults protect the same
template. An intruder who has intercepted multiple applications’ databases can trace
user activities and determine identities that correspond. Given two matching in-
stances of a minutiae fuzzy vault the intruder can correlate them; genuine minutiae
tend to agree well in comparison to chaff minutiae, which are likely to be in disagree-
ment. Thus, an intruder may reliably determine whether two vault records match
or not, i.e. cross-matching. Even worse, via correlation an attacker can try to dis-
tinguish genuine minutiae from chaff minutiae. If in this way a set of vault minutiae
can be extracted that contains a reasonable proportion of genuine minutiae, then
the vault can efficiently be broken. Consequently, this attack is called a correlation
attack which is an attack via record multiplicity (see Scheirer and Boult (2007) and
Kholmatov and Yanikoglu (2008)). Current implementations of the fuzzy fingerprint
vault are inherently vulnerable to these apparent security risks.

In this thesis we derive a criterion for cross-matching vault records via corre-
lation, i.e. a criterion for determining genuine vault correspondences across different
applications’ databases. In combination with the correlation attack, this can pose a
great vulnerability when an intruder has stolen the content of multiple applications’
databases that he expects share common users. To investigate the practicability of
our cross-matching criterion in combination with the correlation attack we conduct
corresponding performance evaluations using our reference implementation. In par-
ticular, on an ordinary desktop computer, we are able to cross-match!® two vaults
within less than 0.05s, where the chance for successfully finding a particular genuine
vault correspondence is between 46% and 76%, depending on the security level. Giv-
en a genuine vault correspondence that has been positively cross-matched, we are
able to break the corresponding vaults in virtually all cases. The average time for
running a correlation attack was found to be between 1.15s and 222s, again depend-
ing on the vault security level. Furthermore, we argue that the risk of cross-matching
fingerprint fuzzy vaults can not be solved merely by switching to features different
from minutiae. Consequently, a properly implemented fuzzy fingerprint vault must
be resistant against the correlation attack. Preferably, mechanisms that protect fuzzy
fingerprint vaults against the correlation attack should be conceived before multiple
finger fuzzy vaults are implemented.

4The time interval for a successful false-accept corresponds to a Clopper-Pearson confidence
interval at a confidence level of 95%.

I5First, our cross-matcher checks whether the criterion for cross-matching is fulfilled, and if true,
a subsequent correlation attack is conducted.
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There has been a proposal for further improving the security of the single finger
fuzzy vault using additional user passwords (see Nandakumar et al. (2007b)). For a
successful authentication, the user must provide a matching fingerprint template as
well as the correct user password. One consequence of the use of a password is that
the correlation attack and cross-matching via correlation are effectively hardened.
However, this proposal again would require mechanisms for keeping the password
secret and reintroduces the problem of creating and remembering passwords intro-
duced earlier, which were some of the very drawbacks that were meant to be solved
by using biometrics.

In this thesis, a minutiae fuzzy vault is proposed that is inherently resistant
against the correlation attack. The approach is based on the simple idea of rounding
minutiae to a rigid grid. Each grid minutia to which a minutia is rounded encodes
a genuine vault feature, while all the remaining vault features encode chaff features.
In this way, chaff features do not have to be generated, because they are present. A
consequence of this is that the vault features of two vault records are equal. Thus,
an attacker cannot distinguish genuine features from chaff features by correlating
two matching vaults. The correlation will always produce the grid, conveying no
additional information.

During training tests we performed to achieve reasonable vault parameters,
authentication performance at first looked promising. However, upon authentication
the process for authorization of system users would be too time-consuming for a
practical implementation following the ordinary decoding approach proposed in the
literature, in which, in an intermediate step, a set containing candidates for genuine
vault features is obtained. These sets usually contain too many chaff features for
efficient genuine decoding. To deal with this impracticality we propose to modify
the conventional iterative decoder that has been used for fuzzy fingerprint vault
implementations throughout the literature. We propose to randomize the decoding
procedure. In this way, the more iterations the decoder performs, the more likely
it is that the correct key is output. The chance for a successful authentication also
depends on the amount of common elements of the enrolled template and the query
template. As well it depends on the number of decoding iterations: The more iter-
ations are performed the higher is the genuine acceptance rate. Furthermore, the
false acceptance rate converges to a fixed upper bound as the number of decoding
iterations increases. This bound agrees with the false acceptance rate that would
be achievable for the ordinary iterative decoder, although as we found, it would be
impractical to perform. A higher number of decoding iterations increases the false
acceptance rate but also the time needed to finish the authentication attempts. We
give arguments advocating that the expected time needed to perform a successful
false-accept attack is minimized when in each impostor authentication attempt only
a single iteration is conducted. Thus, the implementation’s vulnerability against the
false-accept attack may be analyzed for a single decoding iteration. A higher number
of decoding iterations is to improve the genuine acceptance rate. The only limiting
factor may be the time that one wants to provide for authorizing users.

We report the results of a performance evaluation that we conducted for our
implementation. The FVC 2002 DB2 fingerprint database that we used is the same
that has been used for performance evaluations in virtually all fuzzy fingerprint
vault implementations found in the literature (see Maio et al. (2002)). For most of
these implementations, the authentication rates were calculated using only a subset
of the database—those templates containing high-quality fingerprint images (which
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reflects the situation in which system users cooperate). In these cases, genuine accep-
tance rates were estimated using a sample size of only 100, compared to the entire
database yielding 2800 genuine authentication attempts. As might be expected, the
genuine acceptance rates were found to be higher than they would be if evaluated
over the entire set of fingerprints; but in addition these results are statistically less
significant than if the entire database is used. Therefore, we report authentication
rates that we measured for both the entire database as well as its subset containing
fingerprint images of high quality. The genuine acceptance rate as well as the false
acceptance rate that our implementation delivers turns out to perform very well
when compared to other implementations found in the literature. For example, our
implementation is capable of providing a genuine acceptance rate of 94% with no
false accepts observed. The implementation of Li et al. (2010), for which (to the
best of our knowledge) the best authentication rates using the FVC 2002 DB2 had
been achieved, reported a genuine acceptance rate of 92% given no observed false
accepts. For the entire FVC 2002 DB2 database we obtain a genuine acceptance rate
of approximately 85% while Li et al. (2010) achieved 72%.'% From these tests we
conclude that it is possible to implement fuzzy fingerprint vaults that are resistant
against the correlation attack without loss of authentication performance.

Furthermore, we evaluated the security of our implementation against brute-
force and false-accept attacks under ideal conditions for the attacker. While our im-
plementation provides good security against brute-force attacks, it does not provide
improved resistance, relative to other implementations, against false-accept attacks.
It appears that some measurable risk of a false-accept is inherent to the technique
of matching a single fingerprint, and can only be ameliorated by other means such
as the use of multiple fingers. We did not directly investigate our implementation
to assess its vulnerability against the correlation attack (and thus cross-matching
via correlation), since it is inherently resistant against it. But there is one last point
concerning cross-matching to consider.

A distinct benefit that arises from selecting vault features from a rigid feature
set is that the modified fuzzy vault construction of Dodis et al. (2008) can be used
to protect the templates. The modified fuzzy vault construction avoids storing chaff
features in the vault (which can become very large in number), and instead only
builds data of genuine vault features. This has the advantage that the storage size of
the vault is of the same order as the template size. Furthermore, from the modified
vault construction an instance of the ordinary vault construction can be obtained.
As a consequence, authentication performance, security against brute-force attacks,
and security against false-accept attacks remain the same. However, to some extent
an intruder might be able to cross-match, and so we discuss this point. Furthermore,
we propose a simple countermeasure, which hardens the aforementioned possibility
to cross-match, that applies a random permutation process to the templates which
is similar to the idea of Kelkboom et al. (2011) to prevent the decodability attack in
the fuzzy commitment scheme.!”

16Tt must be mentioned that we did not implement an automatic mechanism for aligning the
query fingerprints to the vault. Rather we evaluated vault performance in a well-solved alignment
framework. Probably, with an automatic alignment mechanism our genuine acceptance rate would
be worse.

17we refer to Kelkboom et al. (2011) for details of the decodability attack.
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1.3 Thesis Outline

In Chapter 2 we summarize the basic concepts used in the thesis concerning
traditional cryptography. In particular we focus on cryptographic hash functions
and how they can be used to provide secure password-based authentication. After
an overview of the discipline of fingerprint recognition, we address the concept of
error-correcting codes. Finally, we define the details of the function of the fuzzy
commitment scheme and discuss an implementation proposed by Hao et al. (2006)
that provides secure authentication based on the iris of the human eye.

In Chapter 3 we describe the general function of the fuzzy fingerprint vault
and then give an overview of implementations found in the literature. Most of these
implementations are based on fingerprint minutiae, which require an accurate align-
ment of the query fingerprints to the vault. Therefore, we give an overview of dif-
ferent proposals found in the literature for dealing with alignment in a minutiae
fuzzy vault. Afterwards, we describe the details of our own reference implementa-
tion, which mainly follows the description of Nandakumar et al. (2007a). A major
difference from the implementation of Nandakumar et al. (2007a) is that we did
not implement an automatic alignment of query fingerprints to the vault due to
the lack of satisfactory proposals given in the literature. Rather we conducted our
experiments in a well-solved alignment framework in which an accurate alignment
is presumed. Finally, we report the results of a performance evaluation that we
conducted with our reference implementation.

Chapter 4 contains security analyses of the fuzzy fingerprint vault. We be-
gin by establishing a simple brute-force attack as a reference and report expected
timings needed to perform a successful attack against vault parameters of differ-
ent implementations found in the literature. In particular, we analyze the hybrid
implementation of Nagar et al. (2008, 2010) against the brute-force attack. In an
intermediate section, we discuss how the additional data created to assist in vault
alignment can actually be used to accelerate attacks. Subsequently, we formulate the
details of the false-accept attack. To demonstrate its power we report results of an
evaluation of the false-accept attack against our reference implementation. Also, we
discuss how the false-accept attack in combination with a low sphere packing density
of the code used to protect minutiae descriptors can be used to break the hybrid
implementation of Nagar et al. (2008, 2010). Afterwards, we describe the correlation
attack in detail. A related criterion for cross-matching vaults is derived and then,
using our reference implementation as an example, we evaluate the performance of
a cross-matcher using this criterion.

In Chapter 5 we develop a minutiae fuzzy vault that is inherently resistant
against the correlation attack. Furthermore, a self-contained description of the mod-
ified fuzzy vault construction proposed by Dodis et al. (2008) is included in the
chapter. We report results of a training that we conducted to obtain reasonable
vault parameters. Moreover, we propose a randomized decoder with the purpose
to make vault authentication more practical. Results of a performance evaluation
that we conducted on a public domain fingerprint database are given. Analysis of
the brute-force and false-accept attack are given as well. Furthermore, the chapter
contains a discussion about remaining possibilities to perform cross-matching, in
particular when the modified vault construction is used. Finally, a comparison of
our implementations with other implementations found in the literature is given.
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Chapter 6 contains a final discussion as well as our view of the problems re-
maining to be solved before an implementation of the minutiae fuzzy vault provides
superior cryptographic security.
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2. Basics

In this chapter, we establish basic concepts that are needed during this thesis. We
start with an overview to cryptography and then give a summary of fingerprint
recognition with a focus of fingerprint minutiae. The concept of error-correcting
codes are reviewed afterwards which is an important tool to combine cryptography
with biometric recognition. Finally, the fuzzy commitment scheme is described and
an example implementation is discussed that is to protected templates of irises of
the human eye.

2.1 Cryptography

Cryptography is the science of keeping information secret. In recent decades, the
advent of computer-aided information exchange has greatly increased demands upon
the field, requiring it to mature quickly and develop flexible yet robust practices.
These practices address the following important objectives within cryptography:

1) Confidentiality: Information is made unreadable to unauthorized persons or
processes. This is, in part, achievable by encrypting data (see Section 2.1.1);

2) Authenticity: Access to stored data is controlled by verifying potential read-
ers. This is an example where cryptographic hashing techniques can be applied
(see Section 2.1.2);

3) Integrity: Information is prevented from being changed during transmission
or on storage. Integrity of data can be verified using check-sums, which are
related to hashing techniques;

3) Accountability: Information is definitely linked to its creator. Public-key
cryptography is a commonly used approach to implement such digital signa-
tures (E1 Gamal (1985); Rivest et al. (1983));

Details on cryptographic techniques and its theory can be found in a variety of
standard textbooks concerned or related with this topic (Buchmann (2003); Cormen
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et al. (2001); Shoup (2005); Joachim von zur Gathen, Jiirgen Gerhard (2003)). For
the purposes of this thesis, we give a brief summary of cryptographic encryption
of data, which is concerned with the above mentioned confidentiality. Afterwards
we review the concept of cryptographic hashing with its application of providing
authenticity.

2.1.1 Encryption/Decryption

The cryptography provides useful tools to implement privacy by providing
methods for encrypting and decrypting data, which are based on the mathemati-
cal concept of cryptographic systems or (for short) cryptosystem. A very important
concept, is the concept of block ciphers which are a special kind of cryptosystems.

Block Ciphers

A block cipher consist of block texts
B=Y" (2.1)

for an alphabet ¥ and a block length n. Furthermore, it contains a family of encryp-
tion functions

E = {enc, : B = B}.ck (2.2)

and decryption functions
D = {dec, : B — B}.ck (2.3)

where K is a universe of keys. Encryption and decryption functions have the property
that for each encryption key k. € K there exists a decryption key r, € K such that
for all texts m € B the identity

dec,, (enc,, (m)) =m (2.4)

holds. More informally, for each encryption key k. there exists a valid decryption
key kq.

A simple cardinality argument shows that encryption and decryption functions
for a fixed key x are necessarily permutations of B = ¥".

We will assume soundness of a cryptosystem throughout: It is infeasible to
derive m from enc,, (m) unless k4 is known.

A symmetric block cipher is a block cipher in where each encryption key « is
even a valid decryption key. Otherwise, if encryption keys are different from their
corresponding decryption keys and if the encryption keys can not be feasibly derived
from a given decryption key then the block cipher is referred to as an asymmetric
block cipher.

Asymmetric block ciphers are in particular useful for implementing digital
certificates for providing accountability: Assume a user received unprotected data
along with data that has been encrypted using an encryption key k,; if the decrypted
data using x4 agrees with the unprotected data he can be confident that it originated
from a person who knows k..
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Examples

The Rivest-Shamir-Adleman cryptosystem (RSA) is an asymmetric block ci-
pher (Rivest et al. (1983)) that achieves its robustness from the (assumed) hardness
of factoring a product of two large prime numbers.

The data encryption standard (DES) (National Institute of Standards and
Technology (1999)) is a symmetric block cipher of B = {0,1}%! that uses 56-bit
keys, i.e. K ={0,1}°¢. DES is a variation of the Feistel cipher (Feistel (1973)).

The 56 bit keys of the DES have become too small to ensure resistance against
cryptographic attacks using modern hardware. As a countermeasure the National
Institute of Standards and Technology (2001) announced the advanced encryption
standard (AES) which defines key-lengths of sufficient length to resist attack using
current hardware. Again, AES is a symmetric block cipher. It works on blocks of
128-bit length. The key-lengths are 128, 192, or 256 bits. AES is a specialized version
of the Rijndael cipher (Dacmen and Rijmen (2002)).

2.1.2 Cryptographic Hash Functions

Encryption of data prevents the information for being read by an unauthorized
person. But in times of computer-aided communication, how can one distinguish
between authorized and unauthorized persons? One solution used by server/client
applications requires the enrollment of a user with a password. To enable such an
authentication scheme, user names along with their corresponding password, respec-
tively, are stored on a database. Such a scheme is currently used by email providers,
on-line banking, on-line shops, on-line auctions, multi-user systems, and so on. Stor-
ing passwords in clear!, however, implies security issues: What happens if the con-
tent of the database is copied unnoticed? Will the theft be recognized? Who is even
allowed to read the content stored on the database?” What happens if the password is
also used for another account? One approach helping in resolving the above security
questions is provided by the concept of cryptographic hash functions.

Definition 2.1.1 (Hash Function). Let ¥ be a non-empty alphabet. A map
h:¥X—=Y" neN

1s called a hash function.

In the definition, ¥* denotes the space of all strings over the alphabet . Since
>* D X" hash functions are never injective. A hash function which is intended to
prevent the input to be recovered only if its hash value is known must have the
following additional property.

Definition 2.1.2 (One-Way Function). A function f: X — Y is called a one-way
function if
e for any x € X the value f(x) can be easily computed, but

e it is infeasible to find a collision, i.e. find ' € X such that h(x') = h(x). This
property is commonly referred to as weak collision resistance.

1In clear means unprotected.
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The above requirements on a one-way function can be defined more theoretical-
ly in terms of complezity theory (Papadimitriou (1994)). However, even if a function
is one-way in its asymptotic behavior, the computation of a collision might be fea-
sible due to parameter selected: In an implementation n is fixed and does not grow
towards infinity. For this reason we will keep our informal definition for a one-way
function.

Definition 2.1.3 (Cryptographic Hash Function). A hash function h : ¥* — X"
that in addition is one-way, is called a cryptographic hash function.

For some applications, such as for digital signatures, a cryptographic hash
function is required to have the stronger property of being strongly collision resistant,
i.e. it is hard to find any (x,z’) with h(x) = h(2’), not only if either x or 2’ is fixed.

Secure Hash Standard

The National Institute of Standards and Technology (1995) announced a stan-
dard for a cryptographic hash function which maps an input word to a 160-bit value.
This standard is referred to as the secure hash standard (SHS). The SHS can be
evaluated using the secure hash algorithm (SHA-1).

The National Institute of Standards and Technology (2002) announced addi-
tional secure hash standards, each collectively denoted as SHA-2, which map an
input word to a 224 (SHA-224), 256 (SHA-250), 384 (SHA-384), and 512 (SHA-
512) bit-value, respectively.

Recently in October 2012, there has been elected a winner of a competition to
become the successor of the SHA-2 family, for being announced as SHA-3.2

Password Authentication using Hash Functions

In a server/client application, the password = € {0,1}* in clear is not stored
along with the user-name, but rather its hashed value h(z) € {0,1}". Since h :
{0,1}* — {0, 1}"™is required to be a cryptographic hash function, an unseen impostor
who has intercepted a user’s hashed password h(z) will not be able to fake a login,
since he will not be able to reproduce an 2’ € {0,1}* with h(z’) = h(z) within a
feasible amount of time.

Usually, the user passwords are salted before the hash values are computed: The
passwords are concatenated with a string that is associated with the service provider
(e.g., by the web address). This is to prevent an impostor from cross-matching be-
tween different databases of different providers. Moreover, salting passwords prevents
the search of rainbow-tables® to quickly determine weak passwords.

2.2 Fingerprints

Even the most collision-resistant hash function becomes useless, when only
weak passwords are used for authentication. On the other hand, passwords that
users are able to keep in mind usually are of low entropy. Service providers as well

’http://csrc.nist.gov/groups/ST/hash/sha-3/winner_sha-3.html
3Rainbow tables are tables listing hash values along with weak or typical passwords.
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as authorized users usually have an interest that no impostor is able to intrude into
the system impersonating an authorized user. Currently, it is discussed to achieve
high-entropy evidence for securing user-logins by the of use biometric sources rather
than passwords. One biometric trait of a human being are his fingerprints. The secu-
rity questions, however, remain similar: An intruder who has intercepted a humans
fingerprint template might simulate an authorized user’s login. In order to prevent an
unencrypted biometric template from being read from the database, the templates
have to be protected.* Cryptographic hash functions, however, are not appropriate
for hashing biometric templates, since even small variations in the input will, with
overwhelming probability, produce completely different hash values.

In order to better understand the design and implementation issues that a
scheme for protecting fingerprint templates has to cope with, an overview of the par-
ticular biometric fingerprints is given in this section. For a comprehensive overview
we refer the reader to Maltoni et al. (2009).

A fingerprint consists of traces left on a surface® by the ridges on a fingertip.
It is very unlikely that the same traces could be left by the same finger a second
time due to its displacement, pressure on the surface, distortion (skin elasticity),
skin condition (dry/wet), and other reasons (such as noise/dirt).

e
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(a) normal traces of (b) displaced (c) heavy pressure (d) light pressure
ridges

Figure 2.1: different scans of the same fingerprint

When one has to decide whether two fingerprints have been acquired from
the same finger, the above effects have to be taken into account. One approach to
perform comparison, i.e. matching, is to decide how well two fingerprints agree. For
matching one has to tolerate for rotation, displacement, variation, and noise. These
side conditions emphasize that it is unlikely that an algorithm exists which is able
to positively match two fingerprints only if they have been extracted from the same
finger.

2.2.1 Minutiae

Prior to matching, it has become common to determine the positions where
the ridges along their flow of a fingerprint end or bifurcate. These characteristic
locations are known as minutiae and include ridge endings and ridge bifurcations.’

4Fven if there are other risks how an adversary can gain knowledge about a user’s fingerprint.

5For our purposes throughout, a fingerprint is acquired as a digital, grayscale, rastered image,
e.g., by a scanner.

6Some references use further classes.
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V4 ]
(a) Ridge ending directed to from (b) Ridge bifurcation directed to
where the ridge ends where a ridge bifurcates

Figure 2.2: Minutiae (red) which are directed endings and bifurcations of the fingerprint's ridge (gray);
the directions correspond to the flow of the ridges (blue)

A ridge ending is the coordinate where the ridge flow ends abruptly while a ridge
bifurcation is the coordinate where a ridge branches into two ridges. In addition to
mere coordinate, a minutia is usually associated with a minutia direction or angle.
The direction of a bifurcation can be defined as the angle parallel to the local ridge
flow directed to where the ridge bifurcates. Then the direction of an ending is defined
as the angle parallel to the local ridge flow directed oppositely to where the ridge
ends. The set of all minutiae extracted from a fingerprint image is called a minutiae
template.

Reliable extraction of minutiae is a challenging task. Usually, a preprocessing
step enhancing the fingerprint image is performed before features are extracted.
However, due to the side effects listed above, minutiae might be spurious or missing,
even if the most reliable extractor available has been used. An approach to separate
spurious minutiae from true minutiae is to associate a quality index (Chen et al.
(2005)) with each minutia that is extracted. But the problem of spurious and missing
minutiae is not solved completely: Minutiae might be of low quality although they
are not spurious and of high quality although they are spurious.

2.2.2 Matching

Matching can be done on the basis of two fingerprint’s minutiae templates.
A simple approach to compare two minutiae templates T' = {(a,b,0)} and T’ =
{(a’,¥',0")} is to sum up the scores of the n best matching minutiae correspondences.

For this purpose, the distance between two minutiae m = (a,b,0) and m’ =
(a',b',0") can be defined as

dm,m') =+/(a —a)2+ (b—V)2+w-min( |0 —¢|, 21 +60 -0 ). (2.5)

d(-,-) serves as a measure of similarity between two minutiae, where w is a weight
controlling how significantly the minutiae angles are taken into account. For each
correspondence of minutiae in 7" and 7" the distance d is computed and stored in a
list. The list is sorted increasingly and the first n distances in the list are summed up.
This sum is denoted by D(T,T"). This expression is then referred to as the distance
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(a) missing minutiae (b) spurious minutiae

Figure 2.4: The effect of dry and wet finger on minutiae extraction

between T and T”. A global threshold ¢ is consulted to decide whether T and 1" are

matching. If the sum is smaller than or equal to t, i.e.

D(T, T < t,

(2.6)

the template T" and T” are considered to match. Otherwise, if the sum is greater

than t, i.e.
D(T,T") > t,

T and T’ are considered not to match.

(2.7)
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Figure 2.5: Matching (a) and non-matching (b) minutiae templates

2.2.3 Alignment
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Figure 2.6: Minutiae need to be aligned before evaluating how well they agree.

Even if two minutiae templates are extracted from the same finger, their minu-
tiae might be in disagreement due to displacement, rotation, or partial overlap. In
order to assert that matching minutiae are spatially in agreement, one of the tem-
plate has to be rotated and moved. This task is performed in a preliminary step,

referred to as the alignment step.

A straightforward approach is to iterate minutiae correspondences: For each
reference minutiae correspondence (ag, by, 0p) <> (ay, by, 0) the spatial movement

i (8 208) (0)- () () e
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which maps (ag, bf,) to (ag, by) and is a rotation by the angle 6, — €[, is determined.
The template T” is spatially moved using f attempting to align its element to T.
More precisely, determine

f(T/> = {( f(alv bl) ) 0"+ o — 96) | (a,7 blv 9,) S T/}

A movement f resulting in a minimal D(T, f(T")) is selected and f(7”) is then
considered as the aligned minutiae template of 7" to T'. Further refinement steps
might be applied to decrease D(T,-) (Eggert et al. (1997)).

2.2.4 Other Matching Methods

The above method has the disadvantage that it does not account for non-
linear distortion, e.g., caused by varying pressure and skin elasticity. Jain et al.
(1997) proposed a method that can, given an initial alignment, account for non-
linear distortion by tracing minutiae matches and updating the alignment step by
step. Furthermore, to compute the initial alignment, Jain et al. (1997) proposed
to incorporate ridges associated with the reference minutiae correspondences rather
than merely minutiae correspondences.

Matching methods that are based on an alignment step, are commonly referred
to as global matching methods. In contrast to global matching methods there are
approaches that use structures that are invariant to rotation and translations. Such
methods are referred to as local matching methods, for examples the "minutiae local
structure proposed by Jiang and Yau (2000).

Local matching methods have been shown to be more robust against non-
linear distortion compared to global methods. Furthermore, local matching can be
done much faster than global matching since there is no alignment step. However,
local matching ignores the absolute positions of minutiae on a fingertip which add
a lot of individuality to fingers. Hybrid methods, e.g., local matching followed by a
consolidation step, have the potential to bring the best of both worlds together.

2.2.5 Identification Performance

There are several reasons why two fingerprint templates acquired from the
same finger are different. As a consequence, fingerprint matchers are expected to
make matching mistakes at some error rate. A fingerprint matcher makes two kind
of mistakes: First, it might decide that two fingerprint templates belong to the same
finger when they do not; second, it might decide that two fingerprint templates be-
long to different fingers when both have been extracted from the same finger.

To measure a fingerprint matcher’s accuracy, two rates are commonly asso-
ciated with it: the genuine acceptance rate (or genuine match rate) and the false
acceptance rate (or false match rate).

Genuine Acceptance Rate and False Non-Match Rate

The genuine acceptance rate is defined to be the average percentage of correct
positive matches. In other words, if the genuine acceptance rate is reported to be

"i.e. a feature vector built out of every minutia and its two nearest-neighbor minutiae
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GAR € [0,1] then within N genuine authentication attempts® the expected number
of successful matches of two different fingerprint templates from the same finger is
GAR - N. The error rate 1 — GAR is called false non-match rate.

False Acceptance Rate

Analogously, the false acceptance rate is the average percentage of incorrect
positive matches. A matcher of false acceptance rate FAR € [0,1] is expected to
wrongly report FAR - N positive matches within N comparisons of two fingerprint
templates from different fingers, i.e. within N impostor authentication attempts.

2.2.6 Confidence of Identification Performance

At this point it seems worthwhile to state some facts about the reliability of
genuine and false acceptance rates as defined above. Without loss of generality, we
can restrict our considerations to the false acceptance rate only.

Usually a system’s false acceptance rate FAR is determined by a point esti-
mation: Simulate a number, say NV, of random independent impostor authentication
attempts and count the number m of successful authentications. The false accep-
tance rate is then estimated as FAR = m /N. A critical question is how reliable such
an estimation can be.

Confidence Interval

Let FAR be the (unknown) false acceptance rate of a system. Assume that
within a test of N independent simulated impostor authentication attempts exactly
m false accepts occur. Assume the false acceptance rate is estimated as FAR =m /N.
The true false acceptance FAR rate might be smaller (FAR < FAR) or larger (FAR >
FAR) than estimated. However, it is 100% certain that the true false acceptance
rate FAR lies within [0, 1]. Rather than the whole interval [0, 1] it would be useful
to estimate a smaller range [FARg, FAR,| depending on the number of positive false
accepts m such that FAR € [FARg, FAR,| for most cases. More precisely, for a
fixed confidence level vy let FARy and FAR; (depending on m) be such that FAR €
[FARg, FAR,] is true in 1007% of all tests. The interval [FARy, FAR;] is called ~-

confidence interval.

Clopper-Pearson Interval

Clopper and Pearson (1934) derived a method for computing an exact -
confidence interval when m positive false accepts within N impostor authentication
attempts have been experienced.

The probability of m successful impostor authentication attempts can be mod-
eled by the probability mass function of the binomial distribution, i.e.

B(m |FAR,N ) = (Z) -FAR™ - (1 — FAR)" ™™, (2.9)

8 A genuine authentication attempt is a scenario where two templates extracted from the same
finger are compared.
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Consequently, write the binomial distribution function

|
P(z |FAR,N ) =) B(i|FAR,N). (2.10)

=0

Assume that 0 < m < N and let &« = (1—+)/2. Under the condition that m positive

false accepts within N impostor authentication attempts have been observed let
FAR; be such that

P(m | FAR;,N ) = a. (2.11)

As a consequence, when FAR; is chosen as above in all but 100a% of the tests one
can exclude the possibility that FAR > FAR,. Analogously, let FARy be such that

1—P(m—1|FARo, N ) =q, (2.12)

i.e. in all but 100a% of the tests it can be excluded that FAR < FARy. The interval
[FARy, FAR,] is called Clopper-Pearson interval.

Special cases occur if m = 0 or m = N. If m = 0 then FARy = 0, but to
still obtain a confidence interval of confidence level ~ the upper limit FAR; must
be chosen such that FAR > FAR, in all but 100(1 — v)% of the tests rather than
a = (1 —~)/2. Conversely, if m = N then FAR; = 1 but FAR < FARy in all but
100(1 — )% of the tests.

To summarize, for v € (0,1) assume that m false accepts have been observed
within N impostor authentication attempts. The limits of the Clopper-Pearson in-
terval FARy and FAR; are such that

0 ifm=20
P(m—1|FARy,N )=¢vy ifm=N
\HT“' else
, (2.13)
1—v ifm=0
P(m | FAR;,N )=<1 ifm=N.
\1_7”’ else

Rule of Three

In the case where no false accepts (m = 0) have been observed and if a 95%-
confidence interval is sought (which is a very commonly used confidence level), there
is a simpler way to compute a 95%-confidence interval (Hanley and Lippman-Hand
(1983)). The rule of three states that

[0,3/NV] (2.14)

is a confidence interval of confidence level at least 95% for the false acceptance
rate when no false accepts have been observed within N impostor authentication
attempts. For a derivation as well as a discussion of the rule of three we refer to
Jovanovic and Levy (1997).
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Example

For example, if no false accepts occurred within a test of 10,000 impostor
authentication attempts, for a confidence level of 95% with the help of the corre-
sponding Clopper-Pearson interval we can state that the false acceptance rate will
be less than 0.03%. Furthermore, the rule of three leads to an upper bound of 0.03%
of the false acceptance rate (with a confidence of 95%).

In Table 2.1, for varying confidence levels, upper bounds of the false acceptance
rate are listed.

Table 2.1: Upper bounds of the false acceptance rate for given confidence when no false accepts have
been observed within 10,000 impostor authentication attempts

confidence
Y = 1% = 50% = 90% = 95% = 99%

FAR <1.01-107% | <7-107° | <0.024% | 0.03% | < 0.047%

Discussion

In a test to determine the false acceptance rate of an authentication system
one can estimate it by a point estimation. However, when a false acceptance rate
originating from a point estimation is reported one should understand that the true
false acceptance rate varies from the estimated value with high probability. But for
a specific confidence the range of the true false acceptance rate can be described in
terms of a confidence interval.

In the above example we have considered upper bounds of the false acceptance
rate at different levels of confidence when no false accepts have been observed within
10, 000 impostor authentication attempts. We stress that no occurred false accepts
does not imply a zero false acceptance rate. Furthermore, the observation of zero
false accepts does not assume that the false acceptance rate to be negligible: When
10,000 impostor authentication attempts are considered then the false acceptance
rate will be at most 1.01 - 107% with a confidence of 1%; thus, if no additional
assumptions can be made one must conclude that with a confidence of 99% the true
false acceptance rate will be even larger than 1.01 - 107°.

On the other hand, usually a system’s matcher makes its decision depending
on a threshold (see (2.6) and (2.7)). The smaller the threshold the more agreement
between two biometric templates is required for the matcher to output a successful
match. Now if for some threshold no false accepts have been observed then the true
false acceptance rate will be non-zero with high probability. However, it is often safe
to assume that the true false acceptance rate for even a lower threshold will decrease.
Although, it will be still non-zero with high probability. Unfortunately, to the best
of my knowledge there is no substantiated method to bound the false acceptance
rate along with a similarity threshold.
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The above discussion emphasizes that a measured false acceptance rate alone is
not sufficient to verify a system’s security against impostor authentication attempts.

Another way to furthermore decrease a matcher’s false acceptance rate is to
fuse different features. In the following we give an overview to further fingerprint
features different to minutiae.

2.2.7 Further Features

Fingerprints contain more information than the established minutiae. Addi-
tional information can be incorporated to support matching of fingerprints, e.g., in
order to increase low genuine acceptance rate or to decrease high false acceptance
rates of a matcher. We outline the most commonly used among them.

Ridge Orientation

The local ridge orientation at the coordinate (z,y) of a fingerprint’s image
foreground is the angle that a line running parallel to the ridge flow at (x,y) forms
with the z-axis. The ridge orientation has no direction, i.e. it does not affect the
ridge orientation whether the lines parallel to the ridge orientation run in the op-
posite direction. Thus, the ridge orientation is an angle value in the range [0, 180),
[0,7), etc., depending on what system for representing angles is chosen.

A pixel’s ridge orientation can be estimated by different approaches, e.g., based
on gradients (Kass and Witkin (1987)), in the frequency domain (Kamei and Mi-
zoguchi (1995)), or global methods like using the line sensor (Mieloch et al. (2008))
as proposed by Gottschlich et al. (2009).

Ridge Frequency

The local ridge frequency is the inverse of the local average inter-ridge distance
perpendicular to the ridge orientation. Thus, since a local ridge frequency is defined
with the help of the local ridge orientation a good approximation to the inter-ridge
distance necessarily requires a good approximation of the local ridge frequency.

A first approach to estimate a pixel’s ridge frequency (Hong et al. (1998))
was to count the number of pixels between two consecutive mean intensity peaks in
the rows of a window oriented along the local ridge orientation. Unfortunately, this
approach lacks of robustness in regions where the ridge flow is strongly bending (i.e.
where the ridge curvature is high). In order to achieve more robustness in regions
of high ridge curvature, Gottschlich (2011) extended this approach by using curved
windows that are bending along the ridge orientation.

Orientation/Frequency Field

A fingerprint image’s orientation field (frequency field) consists of an estima-
tion of all its ridge orientations (ridge frequencies) on the foreground.

Good estimations of the orientation field as well as of the frequency field are
critical to fingerprint enhancement steps that are based, for instance, on the Gabor
filter (Hong et al. (1998)).
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Figure 2.7: Orientation field estimation using the line sensor (see Gottschlich et al. (2009); Mieloch
et al. (2008))
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Figure 2.8: Core (green diamond), delta (red triangle), and orientation field (blue)

Core/Delta

A ridge orientation does not have to exist for every location on the foreground
of a fingerprint image, even if the acquired image is of good quality. On most fin-
gerprints, there are points with no unique local ridge orientation, which are called
singular points. These can be classified into two types: core and delta. A core is a
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point around which a ridge makes a half-turn, and a delta is a point where three
ridges meet. The location as well as the type of singular points can be derived from
the ridge orientations surrounding the singular points (Kawagoe and Tojo (1984))
(e.g., using the Poincaré index).

To some extent, the converse, i.e. an orientation field is given by the location
and type of the singular points, also holds when some additional parameters are
given and further assumptions are made (Hotz (2007); Huckemann et al. (2008);
Sherlock and Monro (1993)). In Figure 2.8 orientation fields are extrapolated using
a model based on the quadratic differential approach by Hotz (2007); Huckemann
et al. (2008). The extrapolations fit well, albeit not everywhere.

Finger Classes

With the help of singular points, a fingerprint can be classified into types
including arch, right/left loop, double loop, and whorl. An arch is a finger whose
fingerprints contain no singular points; a right loop has a core at right to a delta (a
left loop is analogous); a double loop contains two deltas and two cores; and finally
a whorl is a double loop where two cores lie close together.

2.2.8 Minutiae Descriptor

Figure 2.9: Minutiae descriptors — thickness and orientation of yellow lines correspond to frequency
descriptor and orientation descriptor, respectively.

Orientation Descriptor

Along each minutia, Tico and Kuosmanen (2003) proposed to extract ridge
orientations on adjacent locations to support fingerprint matching. They proposed
to extract the ridge orientations from equidistant points uniformly spaced on cir-
cles arranged around the corresponding minutia. The authors tested the following
sampling point configurations:

1) 14, 20, and 26 equidistant points spaced on circles of radii 42, 60, and 78 pixels,
respectively;
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2) 14, 20, 26, and 32 equidistant points spaced on circles of radii 42, 60, 78, and
96 pixels, respectively;

3) 10, 16, 22, and 28 equidistant points spaced on circles of radii 27, 45, 63, and
81 pixels, respectively.

The third configuration tested produced the best result on the test database used
by Tico and Kuosmanen (2003).

A descriptor’s sampling point configuration can be arranged around its refer-
ence minutia depending on the minutia’s direction. In such a way, the sampling point
configuration is independent of translation and ration (i.e. alignment). Moreover, the
ridge orientations can be sampled with respect to the minutia’s direction. Hence, the
orientation descriptor is independent of the fingerprint alignment.

Frequency Descriptor

Other global features, independent of translation and rotation with respect
to the reference minutia, can be sampled along the ridge orientation as well. One
outstanding feature is the local ridge frequency (see Section 2.2.7).

In this way, finding true minutiae correspondences can be performed more
reliably.

2.3 Error-Correcting Codes

It may seem contradictory to couple techniques from cryptography with bio-
metrics to protect biometric templates. Classical cryptography relies on exact match-
es, while biometrics are inexact and at best produce statistical matches as has been
emphasized with the example of fingerprints.

A first approach to deal with the inexactness of fingerprint features is to coarse-
ly quantize a minutia’s position and angle. On authentication, due to coarsely quan-
tized minutiae of the query and reference fingerprint, the chance might be increased
that two fingerprint templates can be reproduced exactly. This would allow cryp-
tographic hash functions to be evaluated on a concatenation of quantized minutiae
directly and fingerprint based authentication reduces to password based authentica-
tion.

However, as demonstrated in the last section, minutiae may be missing or
spurious due to low-quality areas caused by skin conditions, noise, dirt, and other
factors, which would cause gross errors and therefore mismatches. For these reasons
it seems very unlikely that quantization alone will be sufficient to enable a secure
hash based authentication scheme with fingerprint minutiae.

The fuzzy commitment scheme and the fuzzy vault scheme are biometric cryp-
tosystems that have been designed to tolerate errors while protecting biometric
templates. Both schemes make use of error-correcting codes to tolerate errors. An
overview of the mathematical discipline of error-correcting codes is given in this sec-
tion. For details, comprehensive textbooks are available in the literature (Berlekamp
(1984); Blahut (2003); Roth (2006)).
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2.3.1 Preliminaries

An error-correcting code is a subset C C F™ where F is a finite field. The vector
space F" is called ambient space of C while the elements r € F" are called ambient
vector. The amount of errors a code is capable of correcting is commonly determined
by its minimal distance, i.e. the maximal d* such that d* < weight(v — w) for all
different v,w € F". By weight(-) we refer to the hamming weight.® Analogously,
dist(v, w) = weight(v — w) refers to the hamming distance.

2.3.2 Linear Codes

If C € F" is a k-dimensional vector space then C is called a linear error-
correcting code and is commonly denoted as an (n, k)-code. If the minimal distance
d* for C is known, then C can also be denoted as an (n, k, d*)-code.

The fraction k/n is called the rate of C and the difference n — k is called its
redundancy. Linear codes can be defined with the help of a generating matrix: Let
g1,---,9x € F™ be a basis for C; then the matrix G = (gy---gr) € FF¥", whose
columns successively consist of g1, ..., gx, is called a generator matriz. Analogously,
a linear code can be defined by a control matriz, i.e. a nonzero H € F=F)*" gych
that H - ¢ = 0 for all ¢ € C. The matrix H is also referred to as a parity check
matriz. Generator matrix G and control matrix H of a linear error-correcting code
fulfill H -G = 0.

Encoding

With the help of a generator matrix of a linear error-correcting code its encoding-
procedure can be described.

Let G € F¥" be a generator matrix of an (n, k)-code C C F". A message
vector m € F* is encoded by C as follows. Redundancy is added to m by mapping
m to its corresponding codeword using G, i.e. m — G'm. In such a way, the codeword
¢ = Gm uniquely encodes a message m that can be re-obtained from c.

Decoding

Let C C F" be an error-correcting code of minimal distance d* and let r € F".
If there is a unique codeword ¢ € C minimizing dist(c,r) then r is said to be
correctable to c. The search for a unique codeword nearest to the received vector r
is called mazimum likelihood decoding (MLD) of r.

It can not be guaranteed for all error-correcting codes of length n and for all
r € F" that a unique codeword closest to r exists. However, if for r € F" there exists
a codeword ¢ € C with dist(r,c) < [(d* — 1)/2] then r can be uniquely corrected
to ¢. The bound v* = |(d* — 1)/2] is called guaranteed error-correction bound or
error-correction bound of C.

We have not yet given an explicit algorithm for decoding an particular error-
correcting code but only mentioned under what circumstances it can be guaranteed
that a vector can be uniquely rounded to its closest codeword. In fact, the construc-
tion of efficient decoding algorithms is very challenging and efficient decoders for a
given error-correcting code may not even exist, even in case of linear codes.

9The hamming weight of a vector is the number of its nonzero entries, i.e. weight(vy,...,v,) =

Zvﬁﬁo L.
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One approach to correct » € F™ is to compute its syndrome first, i.e. compute
s = Hr where H is a control matrix for C. If s = 0 then r € C is the codeword
to which r is corrected. Otherwise, one aims to find a pattern e € F" of minimal
hamming weight, such that He = s: For the nearest codeword ¢ we have r = c+ e
and thus s = Hr = H(c+¢e) = Hc+ He = He. As a consequence, it suffices to
consider the syndrome for maximum likelihood decoding. However, it can be shown
that maximum likelihood decoding of a general linear code is NP-hard (Berlekamp
et al. (1978)) and thus it is also difficult in general to find an error pattern e of
minimal hamming weight.

BCH codes

A real breakthrough has been the discovery of a special kind of error-correct-
ing codes, the so-called Bose-Chaudhuri-Hocquenghem codes (BCH code) (Bose and
Ray-Chaudhuri (1960); Hocquenghem (1959)). There exist efficient decoding algo-
rithms that successfully decode BCH codes, provided that no more than |(d* —
1)/2] errors have occurred. The most notable are the Berlekamp-Massey algorithm
(Berlekamp (1966); Massey (1969)) and the Peterson-Gorenstein-Zierler algorithm
(Gorenstein et al. (1960)). However, these algorithms are not successful if the re-
ceived vector varies from its nearest codeword in more than |(d* — 1)/2] positions
even if a unique nearest codeword exists.

It is widely believed that there is no efficient algorithm performing maximum
likelihood decoding for BCH codes.

2.3.3 Perfect Codes

There are codes for that every ambient vector is of hamming distance at most
|(d* —1)/2] to a codeword.

A linear (n, k,d*)-code C C F™ is said to be perfect, if for all r € F™ there
exists a codeword ¢ € C such that dist(r,c) < [(d* — 1)/2]. If ¢ = #F then for any
codeword ¢ € C there is a total of

[(d*-1)/2] n
so- % - (}) (2.15)

=0

ambient vectors of hamming distance at most |(d* —1)/] to ¢ and thus correctable
to c. Hence, there are

S(C) =¢" - B(C) (2.16)

ambient vectors that are guaranteed to be correctable to a codeword. Thus, the code
C is perfect, if and only if the inequality, called sphere packing bound,

"> S(C) (2.17)
is sharp. Furthermore, the fraction
S(C
;n ) (2.18)

is called sphere packing density, which is equals 1 if and only if the code C is
perfect. Consequently, the perfectness of a linear code depends only on its parameters
(n, k,d*) and its finite field size q.

Unfortunately, there are only a few perfect codes. Any perfect linear code is of
either the following parameters:
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e Trivial codes, i.e. C = {0} or C = F™ which are of parameters (n,0,n) or
(n,n, 1);

e binary repetition codes of odd code-word length, i.e. of parameters (2m +
1,1,2m + 1) with ¢ = 2;

e hamming codes, i.e. ((¢"™ —1)/(¢ —1),n — m, 3)-codes;
e binary Golay code, i.e. (23,12,7) with ¢ = 2;

e ternary Golay code, i.e. (11,6,5) with ¢ = 3.

Any linear code of parameters different than above is imperfect. Depending on the
code’s size and error-correction capability the number of words that can be decoded
can become negligible when comparing the number of words that can not be decoded.
An impression of the effect is given by Table 2.2.

Table 2.2: Sphere packing densities — i.e. proportion of ambient vectors that can be corrected to a
codeword of an (n, k,d*)-code

n | k| d° | % correctable words
binary golay code || 23 |12 | 7 =100 %
ternary golay code || 11 | 6 | 5 =100 %
binary BCH code || 15 | 5 | 7 = 56.25 %

" 31 6 15 ~ 10.65 %
" 63 | 7 | 31 ~ 0.24 %
" 127 | 8 | 63 ~81-107° %
" 255 | 9 | 127 ~6.2-10712 %
" 511 | 10 | 255 ~2.5-107% %
" 511 | 19 | 239 ~1.3-1072" %

Golay Codes

Outstanding perfect codes are the Golay codes (Golay (1949)). They are the
only perfect non-trivial, non-repetition codes that are capable in correcting more
than 1 error.

For the binary Golay code a 23-bit vector can be decoded efficiently to its
nearest Golay codeword by searching its closest element in a table of size 2'2 = 4096.
Accelerations are possible using a low-complezity scheme (Ching-Lung et al. (2006))
to avoid exhaustive iterations through the codeword table.
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2.3.4 Reed-Solomon Codes

Reed-Solomon codes are the class of codes that are of direct importance to the
fuzzy vault scheme.

We give the definition of Reed-Solomon codes in their original view analogous
to Reed and Solomon (1960). For the view of Reed-Solomon codes as BCH codes
(classic view) and other relations, we refer to Roth (2006).

Definition 2.3.1 (Reed-Solomon Code). Let F be a finite field, ay,...,a, € F be
distinct, and k < n an integer. The set

C={(f(ar),..., flan)) | f € F[X] where deg f <k }. (2.19)

is called a Reed-Solomon code. The elements ayq, ..., «, are called code locators.

A Reed-Solomon code C C F" is a linear (n, k)-code. The remarkable property
of a Reed-Solomon code, is that its minimal distance is optimal in the sense that it
sharply meets the singleton bound'°:

d=n—k+1. (2.20)

Encoding of Reed-Solomon Codes

Assume one wants to transmit a message f € F*. The vector f = (fo,..., fx_1)
is interpreted as the coefficient vector of a polynomial in the indeterminate X with
coefficients in F for that we write f(X) = fo + fiX + ...+ fe_1X* 1. The corre-
sponding codeword ¢ € C is defined to consist of the evaluations on the locators

aty .., e c=(flag), ..., flay)).

To re-obtain the original message it suffices to find a polynomial f(X) inter-
polating the first pairs (aq, f(aq)),. .., (ag, f(ax)) and output its coefficient vector.
The remaining n — k pairs add redundancy by over-determining the polynomial f.

Decoding of Reed-Solomon Codes

When a vector b = (B4, ..., [,) has been received that differs from a Reed-
Solomon codeword in C in at most |(n — k)/2] positions, efficient algorithms have
been discovered to correct for these errors, i.e. they find the nearest codeword ¢ to
b. Among them, we mention the Berlekamp-Massey algorithm (Berlekamp (1966);
Massey (1969)), the Berlekamp-Welch algorithm (Welch and Berlekamp (1983)),
and the algorithm proposed by Gao (2002) that benefits from fast finite field and
polynomial arithmetic.

The Berlekamp-Massey algorithm runs in O(n?), while the Berlekamp-Welch
algorithm runs in O(n?). The algorithm of Gao (2002) can be implemented such
that it runs in O(n - log? n) which becomes faster for large n (n > 1000).

10The singleton bound, which holds for every linear error-correcting code, is the following: d* <
n—k+1
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Decoding of Reed-Solomon Codes beyond the Error-Correction Bound

As we will see later, the fuzzy vault for fingerprint provides its security via the
conjecture that maximum likelihood decoding of Reed-Solomon code is hard (Gu-
ruswami and Vardy (2005)).'" However, there are cases where maximum likelihood
decoding of Reed-Solomon codes is easy.

One obvious case where maximum likelihood decoding is easy is where the
received vector has a hamming distance to a Reed-Solomon codeword of at most
|(n — k)/2| and thus can be decoded using one of the efficient algorithms from
above.

Sudan (1997) discovered a polynomial time algorithm that outputs all Reed-
Solomon code words differing in approximately at most n — v/2nd positions from the
received word, where d = k — 1. This algorithm is thus able to correct errors beyond
the error-correction bound, provided the code’s rate is bounded by approximately
1/3.

Later Guruswami and Sudan (1998) generalized the Sudan algorithm to an
algorithm that can correct up to n — v/nd errors. In its original description, the al-
gorithm has a running time of O(n'?) in the worst case. However, the running time
can be reduced by implementing the main steps of the algorithm using a variety
of approaches (Alekhnovich (2002); Cohn and Heninger (2011); Gao et al. (1999);
Koetter and Vardy (2003a); McEliece, R. (2003); Roth and Ruckenstein (2000); Tri-
fonov (2010)). Furthermore, the worst case running time only holds if one wants to
tolerate precisely [n — v/nd — 1] errors. If only fewer errors are to be tolerated, the
Guruswami-Sudan algorithm can be implemented such that it may be feasible.

2.4 The Fuzzy Commitment Scheme

The fuzzy commitment scheme by Juels and Wattenberg (1999) is a simple
and elegant mechanism to couple the non-exactness of biometrics with well-known
techniques from cryptography. The scheme makes use of error-correcting codes (see
Section 2.3).

Throughout this section, let F be a finite field and C C F" be an error-
correcting code of minimal distance d* and of error-correction capability v*.

2.4.1 Enrollment

Assume a reference biometric template is encoded as a fixed-length vector
v € F*. A codeword ¢ € C is selected randomly (or encodes some secret). The
offset ¢ 4+ v is called a fuzzy commitment of v. Optionally, to allow safe recovery, a
cryptographic strong hash value h(c) of the secret is published along with ¢ + v. In
this case the pair (¢ + v, h(c)) is referred to as a fuzzy commitment of v and c.

2.4.2 Authentication

On authentication, a fresh query biometric template v € F" of the (alleged)
genuine user is provided to the server. The server attempts to use v’ to eliminate
most of the errors in ¢ 4 v, i.e. the server computes r = c+v —v = ¢+ (v — V).

HINP-hardness has been proven for large field sizes, but it is believed to be true also for arbitrary
field sizes.



34 2. Basics

Now, if weight(v —v") < v*, the server will succeed in correcting r to the codeword ¢
using a decoder that can correct v* errors. Otherwise, two cases are possible: First,
the decoder outputs a different codeword ¢ # ¢, or second, the decoder fails to
discover any codeword . Note that the second case is the more likely case for most
error-correcting codes (see Section 2.3.3). However, if h(c) is published along with
the commitment v+ ¢ and if the decoder outputs a codeword ¢, the server can verify
with high probability whether the authentication attempt is successful by checking
whether h(c) = h(c).

2.4.3 Security

To simplify analysis, assume that v was chosen uniformly at random from F"™.
Juels and Wattenberg (1999) define in their security analysis a fuzzy commitment
F(c,v) = (c+ v, h(c)) to be strongly binding'? if it is infeasible to produce a witness
collision. A witness collision is a fuzzy commitment (¢ + v, h(c)) and a pair vy # vq
such that v; and vy both decommit'® (c + v, h(c)) but dist(vy,ve) > d*. With this
definition they observe the following.

Proposition 2.4.1 (Juels and Wattenberg (1999), Claim 1). If an attacker is able
to find a witness collision then he can find a collision of the hash function h.

Proof. Let (c+wv,h(c)),v1,ve be a witness collision. Since dist(vy, v9) > d* then also
dist(c +v — vy, ¢+ v —v9) > d*. Thus, ¢+ v — vy and ¢+ v — vy correct to different
codewords ¢; and ¢y, respectively. Since ¢ and ¢y are decommitments, h(c;) = h(cg).
In particular, (¢, ¢;) is a collision of the hash function h. H

Effective security of a fuzzy commitment scheme is thus realized under the
assumption that 1) the templates encoded as v € F™ have been chosen uniformly at
random and 2) the hash function h is strongly collision resistant.!* While the second
assumption has been shown up to be realistic, the first assumption is not so clear, in
particular for biometric templates v € F". We will emphasize this with the example
of iris.

2.4.4 Protection of Iris Templates

As an example we carry out the implementation of Hao et al. (2006), which
can be considered as a two-layer fuzzy commitment scheme operating on a human’s
eye iris encoded as the famous 2048-bit iris code (Daugman (2004)).

Enrollment

The construction proposed by Hao et al. (2006) can be considered as a two-
layer fuzzy commitment scheme where the secret key is encoded in two stages.

First, for a fixed integer m, a 7 - m-bit key k is selected and divided into 7-
bit blocks k = (K1, ..., kn). Each block is next encoded as a (64,7, 32)-Hadamard

12This is a generalization of the concept of binding in a more general commitment scheme (Bras-
sard et al. (1988)).

B3Here, v’ is said to decommit c+v if c+v—1v' can be corrected to a codeword ¢’ and h(c’) = h(c).

14 Strongly collision resistant means it is infeasible to find any collision h(c;) = h(ca) — not just
for an either fixed ¢; or cs.



2.4. The Fuzzy Commitment Scheme 35

codeword r; € F = Faes. Second, r = (r1,...,7,) is encoded as a (32, m)-Reed-
Solomon codeword over the field F, i.e. ¢ € F32. Note, that ¢ can be interpreted as
a 2048-bit vector.

The user’s iris is provided and encoded as the famous 2048-bit iris code, i.e.
v € {1,0}2%48, The offset ¢ + v as well as a cryptographic hash value h(c) forms the
fuzzy commitment.

Authentication

The decoding, on authentication, also has to be performed in two stages.

A query iris template v' € {0,1}?*® is used to determine ¢ + v — v’, which
is divided into 64-bit blocks by, ..., b3s. Attempts are made to correct each block b;
to its nearest (64,7,32)-Hadamard codeword r,, respectively, to correct small local
bit-errors. In such a way a vector ' = (1, ...,75,) € F3 where F = Fys is obtained.
To correct global errors, r’ is attempted to be corrected to its nearest (32, m)-Reed-
Solomon codeword ¢ € F32. If no such ¢ can be discovered, the authentication
attempt is rejected. Otherwise, if ¢ comes out with h(c¢’) = h(c) the authentication
is accepted. Or if h(c’) # h(c) then it is rejected.

Note, the commitment scheme proposed by Hao et al. (2006) differs slightly
from the fuzzy commitment scheme because the error-correction is more dynamic
than simply tolerating a fixed number of errors.

The probability that a random r] 64-bit words is placed within a (64,7, 32)-
Hadamard codeword’s decoding are is approximately 99.84% (see Section 2.3.3).
There are two ways to deal with decoding failures for some 7.

First, the decoding of a (64, 7,32)-Hadamard code can be performed by ex-
haustive search, i.e. maximum likelihood decoding: For each block 7/ it is feasible to
iterate through all 27 = 128 codewords to find a codeword closest to /. This is the
way Hao et al. (2006) follow.

Another valid way would be to decode the subsequent Reed-Solomon code-
word by accounting for erasures: Assume it was not possible to correct e blocks 77;
then one can decode a (32 — e, m)-Reed-Solomon code by simply omitting the code
locators and the positions 77.

Authentication Performance

Hao et al. (2006) report authentication performances for m = 6, ..., 32 which
corresponds to a key of bit-length 42,...,224, respectively, encoded as a 2048-bit
vector. For instance, if m = 16 then a genuine acceptance rate of 99.85% at a false
acceptance rate of 0.02% was measured.

Security

If m = 16, the key-length corresponds to 112 bits. However, the vulnerability
against a simple false accept attack is estimated as —1og(0.02%) ~ 13 bits only. But
if the difficulty in guessing a matching template v' € {0,1}?%® was 112 bits, the
chance of a false accept should be much lower.

The genuine acceptance rate for m = 20 was measured as 99.53% at a false
acceptance rate’ of 0%. Hao et al. (2006) estimate the security for m = 20 as

15There have been no false accepts within 241,300 impostor authentication attempts.
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~ 44 bits in the worst case, where the attacker has perfect knowledge about each
individuals iris statistics. However, the security against the false accept attack is
likely to be much lower (= 16 bits with the rule of three; see Section 2.2.6).

Moreover, even if the security level of the implementation were 44 bits, for
some purposes this is not sufficient. To prevent an attack from successfully breaking
the implementation within & 2% iterations, Hao et al. (2006) propose to artificially
increase the computational cost for verifying whether h(c’) = h(c) by letting h be
a hash function evaluating their inputs, e.g., a million times. The purpose was to
add approximately 20 bits of security against brute-force attacks. Consequently,
the overall security would be 64 bits. Hao et al. (2006) do not consider the case
where 7’ can not be corrected to a valid Reed-Solomon codeword . However, the
chance that a random input 7’ € F32 can be corrected to a (32, 20, 13)-Reed-Solomon
codeword using traditional decoders (see Section 2.3.4) is at most 2.29- 1071 which
is negligible (see Section 2.3.3). This makes repeated hashing obsolete.

We finish this section with the remark that the authentication rates of the
above implementation to protect iris templates is quite good when compared to other
biometrics. For instance, the rates that are achievable for fingerprints are currently
much worse. The problems arising when one attempts to protect fingerprints are
treated through the rest of this thesis.



3. The Fuzzy Fingerprint Vault

3.1 The Fuzzy Vault Scheme

Juels and Sudan (2002) proposed a cryptographic construction called fuzzy
vault scheme. The fuzzy vault scheme and the fuzzy commitment scheme (see Section
2.4) are related. Both work by binding a secret key to the template that one wants
to protect. However, while the fuzzy commitment scheme requires the biometric
templates to be encoded as an ordered vector v with entries in a finite field F,
the fuzzy vault scheme differs in that: The encodings are unordered sets v C F.
This makes the fuzzy vault scheme more appropriate for biometric modalities where
matching templates may overlap. An example for such biometrics are fingerprints:
Minutiae might be extracted from different regions of the finger, where the finger
touches the scanner’s surface.

Before we discuss implementations of the fuzzy vault to fingerprint minutiae
templates, we describe its function in general terms.

3.1.1 Encoding

Let F be a finite field. Assume a template, encoded as v C F of cardinality
t, is given on enrollment. To protect the template v, a secret key encoded as a
polynomial f € F[X] of degree < k is selected, either randomly or by encoding a
secret password. A genuine set G is built that binds the template v to the secret f,
ie.

G ={(q, f(a) | @« € v}. (3.1)

Next, if ¢ > k then G uniquely encodes the template v (on the abscissa) as well as
the secret polynomial f which interpolates any k distinct points from G. In order
to protect both the template v and the key f both given by G, a set of chaff points
C of size r is generated at random, i.e.

C={(a,f)lz¢G, fla)#p}. (3.2)

Finally, the union of size n = t + r builds the vault, i.e.

V=GUC. (3.3)
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To simplify notation, write
V = {(a1, 1), - (o, Bu)} (3.4)

The vault V constructed this way can be considered as a received vector
(Bi1,..., Bn) of an (n, k)-Reed-Solomon code with code locators ay, ..., a,. The
(now unknown) positions i where (o, ;) € C are errors in the received vector.
We have already mentioned that if ¢ < \/n - (k — 1) finding the correct polynomial
becomes infeasible and is in general even an NP-hard problem (see Section 2.3.4).
This reduces the problem of recovering the secret f and, equivalently, the template
v to the NP-hard problem of the polynomial reconstruction (see Bleichenbacher and
Nguyen (2000)).

3.1.2 Decoding

On authentication, a second template encoded as v' C F of cardinality (say)
s is reproduced by an individual who is attempting to gain access to the system.
Using v’ the unlocking set U is extracted from the vault V| i.e.

U={(z,y) eV ]|z e} (3.5)
Again, to simplify notation, write

U= {(:L‘layl):"'a(xmaym)} (36)
where m < s. As above, U can be considered as a received vector (yi,...,¥m) of
the (m, k)-Reed-Solomon code with locators x1, ..., z,,. Now, if v" overlaps with the

enrolled template v substantially, the polynomial f and equivalently the template v,
can be recovered using an algorithm for decoding Reed-Solomon codes. Successful
recovery can be guaranteed if [v' Nwv| > (m + k) /2.

As with the fuzzy commitment scheme, on enrollment, it can be convenient to
store a cryptographic hash value h(f) together with the vault points V. This enables
safe recovery of the genuine polynomial.

3.1.3 Security

We have already mentioned above that the problem of discovering a polynomial
f in 'V of degree < k interpolating exactly ¢ vault points reduces to an NP-hard
problem. This, however, has only been proven for finite fields of sufficiently large
cardinality (see Guruswami and Vardy (2005)). Nonetheless, even for small finite
fields, no efficient algorithm for recovering the hidden polynomial in a vault V is
known for general parameters.

In fact, Juels and Sudan (2002) do not base their security analysis on the
hardness of the polynomial reconstruction problem but on the following information-
theoretic result whose proof can be found in (Juels and Sudan (2002)).

Lemma 3.1.1 (Juels and Sudan (2002)). Let V C F X F be a random vault instance
of size n and let ¢ = |F| be the finite field’s cardinality. For every pu > 0 with
probability at least 1 — p there exist at least

Ld (/1) (3.7)

polynomials g € F[X] of degree < k such that V contains exactly t points of the
form (z,g(x)) € F x F.
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F,

(a) Polynomial encoded by genuine points (b) Erroneous unlocking points (red) and re-

(red) which are hidden by chaff points (black)  constructed polynomial (red). The correctness
of the polynomial is confirmed by an additional
vault point (black).

Figure 3.1: Encoding and decoding in the fuzzy vault scheme

For example, if ¢ =~ 10*, n ~ ¢, t = 24, and k = 18 and a random vault V
with probability at least ~ 1 — 27% there are ~ 2% polynomials of degree < 18
interpolating exactly 24 points from V.

Roughly speaking, the security (of ~ 64 bits) is not achieved from the difficulty
in finding a polynomial of degree < k interpolating at least ¢ vault points, but via the
information-theoretic observation that if such a polynomial is found, the probability
that it is not the genuine secret polynomial is overwhelming.

Let us consider another example. Let ¢ = 2!6, n = 224, t = 24, and k = 9.
Then, the information-theoretic argument given by Lemma 3.1.1 cannot be used
to make a statement about the vault’s security, since the outcome of (3.7) is for
all u negligible small. In such cases, the security of the vault can still be asserted
from the assumed hardness of finding the genuine polynomial hidden in V. This
problem is believed to be hard, even for arbitrary finite fields. Vault security is then
conservatively estimated as the computational cost of a simple brute-force attack:
1) Try the interpolating polynomial f* of k randomly selected vault points; 2) if f*
interpolates at least t vault points, output f*; 3) otherwise continue with step 1).
Analogously to Clancy et al. (2003), the chance for successful recovery within a
single iteration is 1/bf(n,t, k) where

bf(n, £, k) = (Z) - (2)_1, (3.8)

which is approximately 23! in the example.

From a mathematical view, a security estimation that is asserted by Lemma
3.1.1 should be preferred to a security given by the size bf(n,t, k). It is not yet
clear whether brute-force attacks can be substituted for by significantly more effi-
cient attacks if Lemma 3.1.1 can not guarantee sufficient security. However, under
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assumptions widely believed to be true, the polynomial reconstruction problem can
be considered to be hard, even for small finite fields.

3.2 Implementations for Fingerprints

In this section, we will discuss implementations of the fuzzy vault to fingerprints
proposed by the literature. But first, we describe the function of minutiae fuzzy vault
in more general terms, without excluding modifications.

3.2.1 General Description of a Minutiae Fuzzy Vault

A basic way to build a fuzzy vault from fingerprint minutiae data works as
follows. Assume a user (say Alice) wishes to be identified by a server by her minutiae
template 7" = {m}, but does not want that it is stored publicly on the server. She
additionally chooses a secret encoded as a polynomial f € F[X] of degree < k. On
enrollment, ¢ > k minutiae are selected from 7" and encoded by elements in F using
some convention, i.e. using an encoding map

E : “set of all minutiae” — F, m — z. (3.9)

Analogously to our general description of the fuzzy vault scheme, the genuine set
G = {(z. f(2)) | & = B(m), me T} (3.10)

of cardinality ¢ is built. To hide G (and thus f as well as T) a chaff set C =
{(z,y) | y # f(x)} of cardinality r is generated at random and unified with the
elements of G to build the vault V=G U C.

On authentication, a user who is claiming to be Alice provides a fresh query
template 7" = {m’} aligned to the vault V. The authentication procedure is slightly
different from the general vault work, since it may comprise an extraction step in
contrast to mere exact vault point identification: That is, each vault point’s abscissa
r € F encodes a minutiae m"®!* chaff or genuine. Using this observation, those
elements of V are extracted corresponding to elements in {m"®*} that are well
approximated by elements from 7" to form the unlocking set U C V. The remaining
work in the same manner as above: If U overlaps with G substantially, then the
secret polynomial f can be recovered and the user will be positively authenticated
as Alice.

3.2.2 Limitations of the Minutiae Fuzzy Vault

The more chaff minutiae are generated the higher is the corresponding vault’s
resistance against the brute-force attack. To enable a genuine user to safely extract
genuine vault points, minutiae corresponding to chaff points should keep sufficient
distance to genuine vault minutiae. As a consequence, each vault minutiae, chaff
or genuine, need to be sufficiently distant from genuine vault minutiae. As a con-
sequence, each vault minutia, chaff or genuine, must be a sufficient distance from
another (say at least § > 0). Otherwise chaff minutiae could be easily separated from
genuine vault minutiae. A further consequence is that the number of chaff points
can not be arbitrarily large. Otherwise genuine minutiae would appear isolated from
chaff minutiae (see Figure 3.3). A conclusion drawn from this is that pushing vault
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(a) Genuine minutiae (red) and chaff minutiae  (b) Chaff and genuine minutiae, are encoded

(gray)

on the abscissa

Figure 3.2: Minutiae Fuzzy Vault

parameters into extremes is not possible, which requires the vault security to be
limited due to the limitations of chaff points.

Clancy et al. (2003) deduced “optimal” parameters for a single-finger minutiae
fuzzy vault for the case where only the locations of minutiae (and no angle) are used

for vault construction. These are

with the notation from above.

n = 313,
k=15,

3.11
t = 38, and ( )
0 =10.7

3.2.3 Security of a Minutiae Fuzzy Vault

For a fuzzy fingerprint vault with parameters providing a usable fuzzy finger-
print vault, Lemma 3.1.1 can not be used to assert provable security (see Merkle
et al. (2010a)). In fact, something of a converse of Lemma 3.1.1 holds: It is very
unlikely for a second polynomial of degree < k to interpolate ¢ vault points, which

is shown in the following.

Let V = G U C be a random vault of cardinality n and genuine points

G: {(I’l,f(l’l)),...,(:L‘t,f(l’t))} (312)

for a polynomial f of degree < k.

Lemma 3.2.1. For simplicity, allow that C contains elements that lay on the graph
of f. The expected number of spurious vault polynomials, i.e. polynomials of degree
< k interpolating exactly t vault points, is

5 ()

—t
—S

) (W) (1= /g (3.13)
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() (h) r = 32000

Figure 3.3: Visualization of the effect of generating a different number 7 of vault chaff minutiae
locations: Genuine locations (red) appear isolated

Proof. Let f* be a polynomial of degree < k. Assume f* interpolates exactly s
genuine points (note, s < k otherwise f* would interpolate at least k genuine vault
points and thus f* = f). For f* to be spurious, it is necessary to interpolate exactly
t — s chaff points. The probability that f* interpolates exactly ¢ — s chaff points is

?__St (/)" (1= 1/g)" (3.14)

Furthermore, for a fixed s there are
BY s (3.15)

polynomials of degree < k that interpolate exactly s genuine points. The expected
number of spurious vault polynomials thus is as claimed. O

For the “optimal” parameters deduced by Clancy et al. (2003) the expected
number of spurious vault polynomials is approximately 2728 using the above result.
As a consequence, one can not expect vault security as intended by Juels and Sudan
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(2002). However, under reasonable assumptions that are commonly believed to be
truel, security of the fuzzy fingerprint vault can be achieved via the difficulty in find-
ing a polynomial of degree < k that interpolates exactly ¢ vault points. Furthermore,
using Lemma 3.2.1 if a polynomial of degree < k has been found interpolating exact-
ly ¢ vault points it is very likely that this polynomial will be the genuine polynomial.
This gives a criterion for identifying the genuine polynomial, even if an optional hash
value is not stored publicly along with the vault.

3.2.4 Minutiae Fuzzy Vault Implementations

Uludag et al. (2005) implemented the fuzzy vault scheme protecting the loca-
tions of a single fingerprint minutiae template. The authors achieved the minutiae
as well as the alignment manually to make their report of vault performance inde-
pendent from other error sources.

In their original description of the fuzzy vault scheme, Juels and Sudan (2002)
proposed the decoding to be based upon a Reed-Solomon decoder which can be
implemented to run very efficiently (see Section 2.3.4). For a conventional Reed-
Solomon decoder to successfully output the correct polynomial it is necessary that
more than 50% of the elements of the unlocking set consist of genuine points. How-
ever, to obtain useful genuine acceptance rates in a minutiae fuzzy vault a decoder
must be able to successfully decode even if 25%-33% of the unlocking points are
genuine points.

To meet this requirement, Uludag et al. (2005) proposed to iterate through
all combinations of k distinct unlocking points selected from the unlocking set U
of size t. Using a criterion for identifying the correct polynomial, only in the case
that at least one combination fully consists of k& genuine points will the decoding be
successful. This approach to decode the unlocking set requires to iterate through up

’ () s o1

candidates for the secret polynomials. As a consequence, if decoding the unlocking
set is sought to be feasible ¢t and k have to be chosen carefully.

The correct polynomial can be identified in several ways. For example it is pos-
sible to test how many vault points are interpolated by the candidate polynomial:
If the candidate polynomial interpolates exactly ¢ vault points, then for reasonable
vault parameters it will be the correct polynomial with very high probability (see
Lemma 3.2.1). Evaluating the candidate polynomial on all vault points, however,
can be very time consuming.

Thus, Uludag et al. (2005) proposed to identify the correct polynomial using
a 16-bit cyclic redundancy check. Uludag et al. (2005) report authentication perfor-
mances for vaults of size n = 218 hiding a polynomial of degree < k = 9 where
t = 18 minutiae encode genuine vault points. The genuine acceptance rate and false
acceptance rate have been measured as GAR = 79% and FAR = 0%, respectively.
Using Equation (3.8) the security can be estimated as approximately 23°.

Later Uludag and Jain (2006) proposed an automatic mechanism for dealing
with the alignment of query fingerprints to the vault by storing points of high ridge

'We assume that P C NP and that maximum-likelihood decoding of Reed-Solomon codes
remains NP-hard for arbitrary finite fields.
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curvature publicly along with the vault (see Section 3.3). The secret polynomial’s
degree is bounded by < k£ = 9 evaluated on ¢t = 24 genuine points encoded by
genuine minutiae locations. The genuine points are hidden within a vault of size
n = 224. The authors report a genuine acceptance rate of GAR = 72.6% where the
false acceptance rate has been measured as FAR = 0%. According to Equation (3.8)
the security of this implementation is conservatively estimated as 23'.

Nandakumar et al. (2007a) refined some of the details of the implementation of
Uludag and Jain (2006), in particular those concerning automatic vault alignment. A
major difference is that the authors also use minutiae directions. On enrollment, only
those template minutiae are used for vault construction that are well-separated from
all the other minutiae (with respect to Equation (2.5) on page 19 with w = 11.46)?).
Furthermore, at most the first ¢ = 24 minutiae of best minutiae quality (see Chen
et al. (2005)) are selected. While the incorporation of minutiae direction would allow
the generation of more chaff points, the authors nonetheless only report results where
the vault again has a size of n = 224. For authentication, the authors proposed the
use of a minutiae matcher (see Jain et al. (1997)) for extracting minutiae of a of
unlocking minutiae that are coarsely approximated by query minutiae. Nandakumar
et al. (2007a) report results for different polynomial degrees bounded by k& = 8,9, 11.
The genuine acceptance rates are GAR = 91%, 91%, 86%, respectively, while the
false acceptance rates vary between FAR = 0.13%, 0.01%, 0%, respectively. While
the security against a naive brute-force attack is estimated as (only) 227, 23! and
239 respectively, it must be mentioned that the incorporation of minutiae directions
leak even more information about the protected template: Spatially close minutiae
are unlikely to have inconsistent direction, but random generation of chaff points
does not account for this.

Nagar et al. (2008, 2010) proposed to incorporate minutiae descriptors (see
Section 2.2.8) as additional fingerprint features. The main purpose for this was to
improve the security of the fuzzy vault vault scheme against both brute-force attack
as well as false-accept attack. As in (Nandakumar et al. (2007a)) each minutia m is
mapped to a vault point (z,y) € FxF, where x encodes the minutia and y associates
the minutia with the secret polynomial. A minutiae descriptor associated with m is
encoded as a 511-bit vector v. The ordinate value y is encoded as a codeword of the
(511,19,2 - 119 + 1)-BCH code. The fuzzy commitment ¢ + v is published instead
of the clear value y. In this way, for each minutia an uncertainty of ~ 2 bits® is
added. If the (511,19)-BCH code were perfect then the security against the brute-
force attack would be increased by =~ k - 2 bits. For ¢t = 24, n = 224, and k = 9 the
security would increase from 23! to 2% at a genuine acceptance rate of GAR ~ 88%
where FAR =~ 0%. However, the (511,19)-BCH code is far from perfect. Nagar
et al. (2008, 2010) mentioned the imperfectness of the (511,19)-BCH code and in
fact concluded that the security estimate of 2% is not valid. The authors proposed
countermeasures to repair for the minor security gain if the (511, 19)-BCH-code is
used by replacing it with the (31, 6) and (15, 5)-BCH-code, respectively. This requires
dimension reductions of the minutiae descriptors. The effect of the imperfectness of
these codes then is lessened but the authentication performances again approaches

2In (Nandakumar et al. (2007a)) the weight w affects minutiae distances with respect to the
angular measure such that the weight w is 0.2 there.

3This corresponds to the difficulty in guessing a random minutiae descriptor encoded as a 511-bit
vector in all but 119 bits (see Nagar et al. (2010)).
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the performances of Nandakumar et al. (2007a). As a consequence, the improvement
of the implementation’s security or authentication performance is not as significant
as one might think from a cursory look at the corresponding paper.

Merkle et al. (2010b) investigated performance of a fuzzy vault implementation
based on using multiple fingers rather than a single finger. The implementation’s
resistance against the brute-force attack (see Section 3.1.3) is promising. The authors
reported that up to 92% (on average) genuine minutiae were successfully re-identified
on vault authentication in a test where their implementation and their privately
collected database was used. If ¢ = 90 genuine minutiae from three fingers were
used for vault enrollment and authentication dispersed in a vault of size n = 351
hiding a polynomial of degree < k = 42 then Equation (3.8) evaluates to ~ 2%.
While a successful identification of 92% genuine minutiae promises a reasonable
genuine acceptance rate, a complete investigation of authentication performance is
still missing.

3.3 Alignment

Given a fuzzy fingerprint vault protecting a fingerprint’s minutiae (with or
without direction) it is necessary to align a query fingerprint to the vault, i.e. to the
genuine vault minutiae. In contrast to aligning two minutiae templates in clear (see
Section 2.2), the problem of aligning a query template to a fingerprint template that
is encrypted by a fuzzy vault scheme is much more challenging.

In the following, we give an overview of proposals for dealing with the alignment
in a fuzzy fingerprint vault, which is one of the most critical factors that influences
the authentication performance of a minutiae fuzzy vault.

Yang and Verbaudwhede (2005) proposed to extract some reliable reference
minutiae from an enrolled minutiae template and publish them publicly along with
the vault. To filter out reliable reference minutiae, multiple scans are needed. For
each scan, a matcher is utilized to determine reliable minutiae correspondences. The
most reliable minutiae are stored publicly along with the vault. On authentication,
each query template’s minutiae is aligned to each of the vault’s reference minutiae,
each giving a candidate for alignment. If one of the attempted alignments opens the
vault, the authentication attempt is accepted, and is rejected otherwise.

Uludag and Jain (2006) proposed to store points corresponding to high curva-
ture in the fingerprint’s orientation field publicly along with the vault. These points,
called helper data* in the corresponding paper, are obtained from orientation field
flow curves (Dass and Jain (2004)). In such a way, the problem of aligning the
query to the vault is translated to the problem of registering point clouds (see Fig-
ure 3.4). The registration point clouds is implemented using the iterative closest
point algorithm (Besl and McKay (1992)) where for each point of high ridge cur-
vature its corresponding curvature is used as an alignment-invariant feature (Sharp
et al. (2002)). The method of Uludag and Jain (2006) for vault alignment has been
refined by Nandakumar et al. (2007a). A major difference from the alignment imple-
mentation of Uludag and Jain (2006) is that the authors use the trimmed iterative

4The concept of helper data here is not to be confused with the concept of helper data systems,
which is frequently used as a synonym to biometric template protection schemes in the literature.
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Figure 3.4: query fingerprint (blue) aligned to reference fingerprint (red) using high curvature points;
the high curvature points (red) are stored publicly along with the vault

closest point algorithm (Chetverikov et al. (2002)). As a consequence, the alignment
is more robust to outliers.”

Jeffers and Arakala (2007) investigated three different structures for their ca-
pability to assist vault alignment. All of these structures can be derived from the
corresponding minutiae template.

The first structure is the five nearest neighbor structure, which consists of the
reference minutiae and the five minutiae closest to it. Similarly, the Voronoi neigh-
bor structure has been investigated, which, as the five nearest neighbor structure,
consist of the reference minutiae and all its Voronoi neighbors (the Voronoi cells
are given by the template’s minutiae locations). The third structure investigated is
referred to as triangle based structure, which are triangles of where each vertex (each
constituted with the local ridge orientation) corresponds to a minutia’s location in
the template. Note, that each vertex thus corresponds to an undirected minutia, i.e.
a minutia with an undirected orientation.

For each structure type and for a different number of structure instances, Jef-
fers and Arakala (2007) investigated the enabled accuracy of alignment.5 Among
other results, it was reported that nine triangle based minutiae structures, respec-
tively, suffice to align all but 5% of the query templates with an accuracy of 5 pixels.

Actually, according to the description of Jeffers and Arakala (2007), the au-
thors did not store these structures publicly but created multiple fuzzy vaults for
each structure instance. Each structure defines a coordinate system which can be
reconstructed on authentication given a ground-truth matching structure can be
derived from the query. However, excepting the different generation of chaff points
in each vault instance, this is equivalent to storing the structures publicly along a
single vault.

5Qutliers might be caused by errors during the extraction or partial overlap of the fingerprints.
6 Alignment accuracy of two fingerprints was defined as the distance between its two core points
by Jeffers and Arakala (2007).
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Li et al. (2008) proposed to store topological information along with the vault.
This topo-structure is determined with the help of all minutiae that are of pre-defined
spatial distance to the fingerprint’s core, i.e. with the help of minutiae that beside in
the sampling area. Furthermore, ridges associated with these minutiae are used for
the construction of the topo-structure. The structure is constructed such that it does
not reveal the actual minutiae locations around the core. But it still contains enough
information such that a query fingerprint can be rotated with sufficient accuracy.
The translation is determined by mapping the query’s core point estimation to the
core point estimation of the enrolled finger.

Merkle et al. (2010b) proposed a method for pre-aligning fingerprints for en-
rollment and for authentication. The coordinate system’s origin is shifted to the
fingerprint’s foreground image center. Using the shifted coordinate system, the fore-
ground image is divided into four quadrants. If the area of the upper left and lower
right quadrants of the foreground image exceeds the area of the upper right and
lower left quadrants, the fingerprint image is rotated clockwise by 1°. Otherwise,
the fingerprint is rotated counterclockwise by 1°. The iteration stops if a subsequent
test would cause a change in the rotation. Using this approach, the fingerprints
are coarsely pre-aligned. In order to refine the alignment on authentication using
the pre-aligned query fingerprint, an isometry is determined which maximizes the
number of matches between minutiae in the query and the vault minutiae. To pre-
vent the isometry from completely dis-aligning the pre-aligned query fingerprint, the
isometry must have rotation and translation within pre-configured limits.

To avoid problems arising from the need to implement fingerprint alignment
under security aspects, Li et al. (2010) proposed a fingerprint fuzzy vault cryptosys-
tem that uses features that are independent of spatial movement. These features are
given by minutiae descriptors (see Tico and Kuosmanen (2003) and Section 2.2.8)
and minutiae local structures (Jiang and Yau (2000)). The authentication rates the
authors reported are rather good when compared to other implementations: The
genuine acceptance rate was reported as GAR = 92% at a false acceptance rate of
FAR = 0%.

3.4 Implementation

Investigations of the fuzzy fingerprint vault should be based on an implemen-
tation. We implemented the fuzzy fingerprint vault following different ideas found in
the literature. Our vault construction mainly follows the approach of Nandakumar
et al. (2007a), while the way we perform the vault unlocking is somewhat simpler.

3.4.1 Minutiae Selection

Given a minutiae template 7j, = {m} only those minutiae are selected as
candidates for vault construction that keep a reasonable distance from other minutiae
in the template. More precisely, for a bound §; > 0 a minutia m € T}, is selected only
if dim,m’) > ¢, for all m’ € T}, \ {m}. Here d(m, m’) measures the distance between
m and m’ as in Equation (2.5) on page 19 with some weight w incorporating minutiae
angles. For the set of well-separated minutiae we write

Twp={meT|dmm)>0d forallm" € T3, \ {m} }. (3.17)



48 3. The Fuzzy Fingerprint Vault

Moreover, we assume that Ty, is given as a list sorted by the minutiae’s quality
(Chen et al. (2005)). If Ty contains more than ¢ minutiae then only the first ¢
minutiae of best quality are selected. Otherwise, all well-separated minutiae are
selected. For the set of selected minutiae we write Tiqect-

3.4.2 Enrollment

Given a minutiae template Tpon genuine minutiae Tg, are selected from it as
described in Section 3.4.1.

In case it is not possible to extract at least t,,;, minutiae this way, the enroll-
ment is counted as a failure to capture. Otherwise if T, contains between t,;, and
t minutiae the construction of the vault continues as follows.

A set of well-separated chaff minutiae Ty,.¢ of sufficient distance to genuine
minutiae are generated at random such that T,,.¢ reaches a size of n — ¢’ where ¢t/ =
|Tyen|. More precisely, for all chaff minutiae m € Tip.q the inequality d(m, m’) < o,
for all Tyen U Tonag \ {m} holds. In this way, an adversary is not able to distinguish
genuine from chaff minutiae simply by considering the distances to their closest
neighbors.

Nandakumar et al. (2007a) proposed to generate a fixed number of chaff minu-
tiae, whereas in our implementation the number of chaff minutiae depends on the
number of genuine minutiae such that there is a total of n vault minutiae. Vault
minutiae consist of both genuine minutiae and chaff minutiae, i.e.

Toau = Tgen U Tehafr- (318)

Note that when T\, is represented as a list containing minutiae one has to assert
that it is not possible to distinguish genuine minutiae from chaff minutiae simply
from their respective list positions. A valid way to hide genuine points within T\,
is to sort its elements by some convention, e.g., the lexicographical order.

In contrast to the implementation of Nandakumar et al. (2007a) we do not
encode the elements of Ty, as elements of a finite field. Rather we encode only the
list positions in Ty, as elements of a finite field as follows. Write

Teaue = {my,...,m,}. (3.19)

Then the finite field element associated with m; depends on 7 only. An advantage of
this approach is that the minutiae do not need to be quantized furthermore, which
would cause loss of information. Moreover, there is more freedom in the choice of
the finite field (see Merkle et al. (2010a)).
The finite field is chosen as F = Fa1s although a smaller finite field would be
sufficient. By
E:Tyu — F (3.20)

we denote an injective map encoding the list positions of vault minutiae as elements
of the finite field as outlined above. Furthermore, a polynomial f € F[X] in the
indeterminate X and of degree < k is chosen as the secret key.

The genuine vault points are

G={(z,f(x) | m€& Ty, v=~FEm)} (3.21)
where the chaff points are generated randomly as

C={(z,y) | m€Tag, v=Em), ycr F\{f(2)} }. (3.22)
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The set of vault points
V=GUC (3.23)

consist of both genuine and chaff points.

To enable safe recovery of the secret polynomial, a hash value h( f) is computed
from a concatenation of the k coefficients of the polynomial f and stored along with
the vault. Although there exists more secure algorithms to compute cryptographic
hashes (see National Institute of Standards and Technology (2002)) we claim that the
secure hash algorithm (SHA-1) (see National Institute of Standards and Technology
(1995) and Section 2.1.1) is sufficient for our evaluation purposes.

Finally, the public vault data is

(V, Tvaute, h(f))- (3.24)

The construction of the vault depends on the following parameters:

e w controls how significant angles are accounted for measuring the distance of
minutiae;

e 01 controls the mutual distances between vault minutiae;

e ¢ is an upper bound on the number of genuine minutiae selected from the
enrollment template;

® {,i, 1S a lower bound on the number of genuine minutiae selected from the
enrollment template. If only fewer than t,;, minutiae can be selected, the
enrollment is aborted and counted as a failure to capture;

e 1 denotes the number of vault points. If ' = ¢, . .., t genuine minutiae have
been selected then r = n — ¢’ chaff points are generated such that there is a
total of n vault points;

k is the number of coefficients of the secret polynomial f;

3.4.3 Authentication

On authentication, a vault instance (V, Tyaut, h(f)) and a minutiae template
Tquery aligned to the vault are given. Using Tjery the aim is to reconstruct the secret
f- A subset Tyceess is selected from Tiyery in the same way as Tie, has been selected
from Typron on enrollment (see Section 3.4.1).

For all m € T,ccess @ minutiae nearest(m) € Ty, that best approximates m
is determined. In case nearest(m) is of distance to m below a threshold J, then
nearest(m) is chosen to unlock the vault. In this way the set of unlocking minutiae
Tuntock C Toaurt is extracted. The vault points corresponding to the elements of T} 100k
yield the unlocking set

U={(z,y) € V|mE Tyess, * = F(nearest(m)), d(m,m) <, }. (3.25)
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Decoding

Analogous to most implementations (see Section 3.2.4), for all combinations
of k unlocking points from the unlocking set of size |U| = |Thecess| < ¢, its unique
interpolation polynomial f* of degree < k is computed. If A(f*) = h(f) then f* = f
with very high probability and f* is output as the correct secret polynomial, in
which case the authentication is considered to be successful. This will be the case if
and only if the unlocking set U contains at least k£ genuine points from G. Otherwise
if no f* with hA(f*) = h(f) can be found, then the query is rejected.

3.4.4 Alignment

On decoding, we assume that the query fingerprints are aligned to the vaults.
To simulate our evaluations in a well-solved alignment framework, we decouple the
alignment work from the vault. Consequently, if an authentication of a genuine user
is simulated, the alignment is obtained by aligning both minutiae templates in clear.

We follow an alignment approach similar to the description of Section 2.2.2.
Every minutia of the query template is matched against every minutia of the enrolled
template. Incorporating the minutiae angles, an isometry is obtained (see Equation
(2.8) on page 19). The quality of the alignment is evaluated by scoring how well the
5 best ridge segment correspondences agree. Finally, the best of such alignments is
refined by minimizing the sum of the squared distances of matching points Eggert
et al. (1997). The point correspondences are obtained from the 5 best matching
segments. The valuation of the quality of an alignment using ridge segments has
been adopted from Jain et al. (1997).

The reasons why we decouple the alignment work from the vault are the fol-
lowing. Many minutiae fuzzy vault implementations propose a mechanism enabling
vault alignment using auxiliary alignment helper data (see, for example, Nandaku-
mar et al. (2007a); Uludag and Jain (2006); Yang and Verbaudwhede (2005)). Fur-
thermore, there are publications that propose alignment helper data structures to
assist alignment for an arbitrary minutiae fuzzy vault implementation (see Jeffers
and Arakala (2007); Li et al. (2008)). For a review of fuzzy vault alignment schemes
see Section 3.4.4. If our fuzzy vault implementation would use such additional aux-
iliary alignment helper data then the vault performance would also depend on the
performance of such an alignment scheme. Moreover, information leaked by the
alignment helper data about the finger affects overall vault security. In the litera-
ture, the security of a minutiae fuzzy vault is often related to the amount of infor-
mation that is leaked about the minutiae template. Even if alignment data would
leak no information about minutiae in the template, it does, however, leak infor-
mation about the finger’s individuality. This may help an intruder to cross-match
vaults only by matching the alignment helper data (see Chapter 4 for the concept of
cross-matching). The amount of leaked information from the alignment helper data
as proposed by Li et al. (2008); Nandakumar et al. (2007a); Uludag and Jain (2006),
for instance, have not been estimated.

For these reasons, it seems better for us to investigate vault performance and
security under a well-solved alignment framework assuming nothing is leaked about
the fingerprint. Vault alignment performance (or ideally, pre-alignment performance)
as well as the amount of leaked information about the corresponding finger can be
analyzed independently from the remaining vault work.
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3.4.5 Evaluation Database

We conducted performance evaluation of our vault implementation on the FVC
2002 DB2-A database (Maio et al. (2002)). The FVC 2002 DB2-A database consist
of a total of 800 scans from 100 different fingers (index 1,...,100). Eight scans of
each finger are contained in the database.

For vault encoding and decoding, minutiae templates are required where each
minutiae template is assumed to be given as a vector containing minutiae sorted in
descending order of their qualities. For the performance evaluation the extraction of
minutiae and the extraction of their respective qualities was accomplished with the
help of a commercial extractor.”

3.4.6 Configuration

For evaluation of the vault implementation on the FVC 2002 DB-A database
we adopted the configuration proposed by Nandakumar et al. (2007a), which is given
by the following parameters:®

w = 11.46,
5, = 25,
% = 30, (3.26)
t =24,
tmin = 18, and
n = 224;

the size of the secret polynomial k corresponds to a similarity threshold and authen-
tication performances were determined for varying £k in our experiments.

3.4.7 Evaluation Protocol

The genuine acceptance rate as well as the false acceptance rate have been
determined according to the FVC protocol (Maio et al. (2002)).

To determine the genuine acceptance rate, each template labeled j =1,...,7
of the ith finger (i = 1,...,100) was used to build a vault instance of configuration
as above. If a failure to capture was encountered, a vault for the next finger is
constructed. Otherwise for each vault instance successfully built this way and for
each 7 = j+1,...,8 the j'th template of the ith finger aligned to the vault was used
for an authentication attempt. If successful, the event was counted as a successful
genuine accept. The fraction of successful genuine accepts to the overall number of
genuine authentication attempts yielded the genuine acceptance rate. Note that if

no failure to capture has been encountered the number of genuine authentication
attempts was 100 - (7 - 8)/2 = 2800.

The false acceptance rate was determined by attempting to open all vault
instances for the ¢th finger being successfully built from the first templates, where
i = 1,...,99, using the first templates of all ¢/th finger with i/ = ¢ + 1,..., 100,

"We used Verifinger SDK 5.0 (Neurotechnology Ltd (2006)) for minutiae feature extraction.
8The weight w has been chosen as 0.2 by Nandakumar et al. (2007a) with respect to the angular
measure. This choice corresponds to w = 11.46 in radian.
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respectively. If one of these authentication attempts was successful, this was counted
as a false accept. The number of successful false accepts within the total number of
impostor authentication attempts yielded the false acceptance rate. Again note, if
no failure to capture has been encountered there were a total of 99 - 100/2 = 4950
impostor authentication attempts.

3.4.8 Sub-Database of Good Quality

Within the literature, for the majority of fuzzy fingerprint vault implemen-
tations, authentication performances on a subset of FVC 2002 DB2-A have been
reported but not on the complete database (see (Nagar et al. (2010); Nandakumar
et al. (2007a,b); Uludag and Jain (2006))). This subset consists of only the first two
impressions of each of the 100 fingers. If the sub-database is used to determine the
genuine acceptance rate according to the FVC protocol, then there is only one au-
thentication attempt per finger: The first scan is used to construct the vault and the
second scan is used to open the vault. As a consequence, for the majority of fuzzy
fingerprint vault implementations in the literature the estimation of the genuine ac-
ceptance rate has been obtained from a test set of size at most 100 only (assuming
no failure to capture occurred).

On the other hand, the first two impressions of the database have a bias to
be of better quality. Furthermore, there is less transformation between the first two
impressions of the same finger. Therefore, one expects to observe higher genuine
acceptance rates.

For the majority of fuzzy fingerprint vault implementations the evaluation of
the false acceptance rate has been performed differently from the FVC protocol.
Instead of using each i-th fingerprint for vault construction and then, correspond-
ingly, each j-th finger where j = ¢ + 1,...,100 as a query, they have used each
j-th finger with j = 1,...,100 but j # i as a query. As a result, the number of
impostor authentication attempts is increased from 4950 to 9900 (barring failure to
captures). However, for vault implementations, even if there is a difference between
using a template S for enrollment and another template 7" as query ans using 7" for
enrollment and S as a query both observations are not independent. For this reason,
we will report our false acceptance rates analogous to the FVC protocol.

3.4.9 Performance Evaluation

We determined authentication performance for both the whole FVC 2002 DB2-
A database as well as for the sub-database of good quality. The genuine acceptance
rate, false acceptance rate, and failure to capture rate on the entire FVC 2002 DB2-
A database are denoted by GAR, FAR, and FTCR, respectively. Consequently, on
the sub-database of good quality the genuine acceptance and the failure to capture
rate are denoted by sub-GAR and sub-FTCR, respectively. Moreover, the average
genuine decoding time and the average impostor decoding time are denoted by GDT
and IDT, respectively.

For example, when the FVC protocol on the whole database was applied with
a secret polynomial length of £k = 9 then

GAR ~ 62.51%,
FAR ~ 0.33%, and (3.27)
FTCR ~ 2.43%
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Table 3.1: Authentication and computational performance measured on the FVC 2002 DB2 (Section
3.4.7) and on the subset of good quality (Section 3.4.8). The rates measured on the subset of good
quality are indicated in brackets. The genuine acceptance rates correspond to the observation of 2761
genuine authentication attempts, whereas the false acceptance rate is based on 4856 impostor authen-
tication attempts. Furthermore, 99 genuine authentication attempts have been observed for the genuine
acceptance rates of the sub-database of good quality. The timings have been measured on a single core
of an AMD Phenom(tm) II X4 955 desktop processor.

length genuine false average average failure
of secret acceptance acceptance | genuine | impostor to capture
polynomial rate rate decoding | decoding rate
time time
GAR (sub-GAR) FAR GDT IDT FTCR (sub-FTCR)

k= ~ 77.04% (= 94%) | ~3.81% | ~0.056s | =~ 0.09s ~ 2.43% (= 1%)

k=8 ~ 70.26% (=~ 90%) ~ 1.69% ~0.132s | =~ 0.178s "

k=9 ~ 62.51% (= 87%) | =~ 0.33% ~ 0.26s | ~0.247s "

k=10 ~ 55.31% (=~ 85%) | ~0.21% | ~0.418s | ~0.291s "

k=11 ~ 47.74% (=~ 82%) ~ 0.04% ~ 0.58s | ~ 0.305s "

k=12 ~ 39.95% (=~ 73%) =0% ~ 0.677s | ~ (0.245s "

where the genuine acceptance rate and the failure to capture rate on the sub-database
were determined as

sub-GAR ~ 87% and

3.28
sub-FTCR = 1% ( )

respectively. Moreover, on a single core of an AMD Phenom(tm) II X4 955 the av-
erage time for a genuine user to be either authenticated or rejected were measured
as approximately

GDT = 260 ms (3.29)

where the average time for an impostor was experimentally observed as approxi-
mately

IDT = 247 ms. (3.30)

For different secret polynomials length k corresponding rates can be found in Table
3.1.

3.4.10 Discussion

Our implementation differs from the implementation of Nandakumar et al.
(2007a) in the following aspects:

First, minutiae locations and angles are not rounded to a coarser representation
system. Rather, we encode each minutia by its index in the list of vault points. The
reason why Nandakumar et al. (2007a) performed coarse minutiae quantization is
that it allows a minutia to be encoded as a 16-bit field element. Applying the simple
and elegant idea of encoding minutiae by its list position (Merkle et al. (2010a)),
the quantization step becomes obsolete.

Second, for vault decoding we assume that the queries are aligned to the vault.
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Nandakumar et al. (2007a) proposed a mechanism enabling automatic fingerprint
alignment. This is achieved by storing points of high ridge curvature publicly along
with the vault as auxiliary alignment helper data. However, to report vault perfor-
mance independently of alignment performance, we decouple the alignment (also see
Section 3.4.4).

Third, our method to decode the vault is somewhat simpler than the method
used by Nandakumar et al. (2007a). Nandakumar et al. (2007a) make use of a minu-
tiae matcher (Jain et al. (1997)) while our implementation works by extracting those
minutiae that are closest to a selected query minutiae. Although the genuine accep-
tance rate seems to be unaffected, the false acceptance rate increases if our simpler
decoder is used.

Finally, we note that the decoding for our implementation is faster. The aver-
age decoding timings of Nandakumar et al. (2007a) are reported as 8 s. Our imple-
mentation, however, requires an average genuine decoding time of only 677 ms, if
k = 12. The processor that was used by Nandakumar et al. (2007a) has a clock rate
of 3.4 GHz while we performed our tests on a 3.2 GHz processor. Therefore, one would
expect that the timings of Nandakumar et al. (2007a) substantially agree with our
timings. The reason that this is not the case can be explained by the fact that the
implementation of Nandakumar et al. (2007a) is based on Matlab (Gilat (2011))
while our implementation is based on C++ (Stroustrup (2000)).
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Authentication systems require that a server stores information about enrolled users.
In password based authentication schemes this information usually consists of cryp-
tographic hash values of user passwords stored along with their corresponding user
names. Similar assumptions can be made for biometric authentication systems that
are based on biometric template protection schemes, such as the fuzzy vault for
fingerprints: Vault records are stored along with their corresponding user names.
The aim for both cryptographic hash functions and biometric template protection
schemes are that a user to successfully authenticate must provide evidence for that
he is authorized. A password that differs from the one used to construct the hash
value will produce (with overwhelming probability) a different hash value. Similarly,
a fingerprint template differing too much from the one used on enrollment will not
succeed in opening the vault. Furthermore, it should be infeasible for any person to
find out a user’s password /template only from the data that is stored on the server’s
database.

Note that even if the database’s content is encrypted using techniques from
traditional cryptography there are persons who are able to read the decrypted data,
such as system administrators. Even worse, system administrators may even read
the database’s content such that the theft will not be recognized until user accounts
get broken eventually. For these reasons, the protection of biometric templates (pass-
words) via biometric template protection schemes (hash functions) is necessary.

The critical question is how difficult it is to reconstruct templates (passwords)
from vault records (hash values). Usually, the difficulty of performing such an attack
is expressed in terms of the number of operations that are needed to successfully per-
form the reconstruction. A more intuitive way to express the difficulty of an attack
is to report the time it consumes on a particular computer.

For example, if a hash value h(p) of a user password has been intercepted by
an intruder, he might try to find a collision, i.e. find a second password p* such that
h(p) = h(p*). In this way, the attacker can use the password p* to gain user access
to the system. If the SHA-1 hash function was used, finding such a password via
brute-force is expected to require approximately 2% iterations in where a random
password p* is chosen as a candidate for a collision. This corresponds to an effort
for that one commonly agrees that this is infeasible to perform for the attacker.
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However, for password based authentication schemes, as above, usually another
approach is more efficient to find a collision. Usually, the attacker can assume that
the passwords are chosen from a much smaller pool, say of size 10,000 in the case
of a four digit pin. Now, the attacker only needs to iterate through at most 10,000
passwords p* until p = p* and thus h(p) = h(p*). This corresponds to a security
of approximately 2'3, which is an affordable amount of time for the attacker. We
see that in the example the weakest link of the above authentication scheme is the
small pool of passwords and not the security that the hash functions would be able
to provide.

Similar observations can be made when one considers biometric authentication
schemes, such as one that is based on, say, the implementation described in Section
3.4. Assuming minutiae are distributed independently and uniformly at random,
guessing a minutiae template that is successful in opening a given vault record is
approximately as hard as running the naive brute-force attack introduced on page
39. Thus, if the configuration of Section 3.4.6 and a secret length k = 9 is used, the
difficulty to find an authenticating template would be approximately 23'.

However, as experimentally observed in Section 3.4.9 the probability that an-
other minutiae template successfully opens the vault is &~ 0.33%. Thus, if the attack-
er iterates through a database containing a large amount of preliminarily collected
minutiae templates extracted from real fingers he can expect to successfully open
the vault after log(0.5)/log(1 — 0.33%) = 28 iterations, which is much faster. We
already referred to such kinds of attacks as false-accept attacks.

In Section 4.1 we analyze the fuzzy vault for fingerprints against the brute-force
attack. In particular, we perform experiments against fuzzy vaults of parameters
that come from implementations found in the literature. Furthermore, variations
of brute-force attacks are analyzed against the hybrid implementation proposed by
Nagar et al. (2008, 2010), which incorporates minutiae descriptors protected via the
fuzzy commitment scheme. The error-correcting codes used for the fuzzy commit-
ment scheme are imperfect. This, however, can be used to attack the fuzzy commit-
ments before running the actual brute-force attack. As a consequence, there is less
security gain as it were possible when the error-correcting codes were perfect. Nagar
et al. (2010) considered the choice of other error-correcting codes of higher sphere
packing density (see Section 2.3.3) to preserve some of the potential security. As a
consequence there is a significant security gain against brute-force attacks but the
genuine acceptance rate drops correspondingly. Moreover, brute-force attacks are
just one of the risks of the fuzzy fingerprint vault.

In Section 4.3 we analyze how secure our implementation from Section 3.4 can
be against the false-accept attack. Although a single iteration in the false-accept
attack may require more computer-time than an iteration of the brute-force (since
it comprises the decoding of a perturbed unlocking set while the iterations in the
brute-force attack consist of a single polynomial interpolation) there remains a sig-
nificant gain for the attacker when he uses the false-accept attack (to compare the
efficiency of attacks, we compare their respective overall computing time they con-
sume on an AMD Phenom(tm) II X4 955 processor, which consist of four processor
cores with 3.2Ghz). Furthermore, we show how the hybrid implementation of Nagar
et al. (2008, 2010) can be attacked using the false-accept attack while the fuzzy com-
mitment scheme instances it incorporates are decoupled previously as it is possible
in a brute-force attack. We conclude that the security gain is not as significant as
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one may think from a cursory look in (Nagar et al. (2008, 2010)).

Fuzzy vaults to single-finger are currently too vulnerable against brute-force
attacks and even much more vulnerable against false-accept attacks to provide cryp-
tographic security. Consequently, there should be more investigations of the fuzzy
vault applied to multi-finger (see Merkle et al. (2010b)). However, there is anoth-
er difficulty with fuzzy fingerprint vaults that can not be solved merely by using
multi-finger.

A big security risk of the fuzzy fingerprint vault is its high vulnerability against
an attack via record multiplicity (see Scheirer and Boult (2007)): Experiments have
shown that an adversary has a chance to break two vault records with probability
~ 59% (see Scheirer and Boult (2007) and Kholmatov and Yanikoglu (2008)) given
both the vaults protect minutiae templates from the same finger using an attack that
makes use of correlating vault minutiae. This chance for a successful attack via record
multiplicity (Scheirer and Boult (2007)) is apparently too high to claim that the fuzzy
fingerprint vault is safe against attacks via record multiplicity. Furthermore, using
correlation the fuzzy vault for fingerprints is vulnerable against cross-matching: A
thief who has intercepted the database content of two or more applications that
contain fuzzy vault records can consider the correlation of vault minutiae to filter
out genuine vault correspondences. While mere cross-matching is already a security
issue (an intruder might attempt to trace a particular user’s activity) the ability for
an attacker to find genuine vault correspondences across different databases may be
a major help when he is attempting to attack vaults via record multiplicity.

In Section 4.4 we derive a criterion for cross-matching via correlation and thus a
criterion for when an attacker may decide to run the corresponding attack via record
multiplicity. Furthermore, the cross-matching criterion we give is independent from
which fingerprint features are used for the vault. It apparently applies to every vault
implementation where genuine feature in two vault records agree well in comparison
to non-genuine vault features. Thus, merely substituting minutiae features by other
features (such as alignment-free features as proposed by Li et al. (2008)) will not
suffice to secure a fuzzy fingerprint vault against cross-matching or the correlation
attack via record multiplicity. After we define the attacker’s approach to perform
cross-matching using the derived criterion and possibly a subsequent correlation
attack, we simulate it in an own experiment against our implementation of Section
3.4. The resulting cross-matching rates and successful correlation attack rates clearly
confirm that fuzzy vaults are highly vulnerable against cross-matching and an attack
via record multiplicity, i.e. the correlation attack, which requires a solution (see
Scheirer and Boult (2007) and Kholmatov and Yanikoglu (2008)) .

4.1 Brute-Force Attack

The estimate of a brute-force attack against a fuzzy fingerprint vault imple-
mentation is an irrefutable upper bound for the security of that implementation.
For this reason, we give an overview of the efficiency of brute-force attacks against
different implementations from the literature. Moreover, at the end of this section
we formulate two kinds of brute-force attacks against an implementation of Na-
gar et al. (2008, 2010). This implementation incorporates minutiae descriptors (see
Section 2.2.8) to improve security and to drop the false acceptance rate. An impor-
tant ingredient of the implementation is the fuzzy commitment scheme (see Section
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2.4), which is based on error-correcting codes (see Section 2.3). Our attacks make
use of information leaked from the imperfectness of the error-correcting codes (see
Section 2.3.3), i.e. a low sphere packing density of the code. In this way, attacking
the fuzzy commitment schemes can be decoupled from attack the remaining vault
to some extent. Furthermore, the decoupling can also be combined with the false-
accept attack that we will discuss later in Section 4.3. An impact from this is that
under some circumstances the false-accept attack against the implementation with
minutiae descriptor is almost as efficient as the false-accept attack without minutiae
descriptors.

4.1.1 The Ordinary Brute-Force Attack

Let V be a vault of size n with ¢ genuine points interpolated by a secret
polynomial of degree < k. An attacker might run the following brute-force attack as
we have it already seen in Section 3.1.3:

Algorithm 4.1.1 (Brute-Force Attack).

Input: vault instance V hiding a polynomial of degree k interpolating ¢ genuine
points;
a criterion for identifying the correct polynomial;

Output: a polynomial interpolating ¢ vault points;

1: select k different vault points at random;

2: determine its interpolation polynomial f*;

3: if f fulfills the criterion for being correct, output f*; otherwise, continue with
Step 1.

Depending on the vault implementation, there are multiple ways to identify f* as
the correct polynomial f.

Criterion for Identifying the Correct Polynomial

If a cryptographically strong hash value of the correct polynomial is stored
along with the vault, a criterion for deciding whether f* in Step 3 of the brute-force
attack is correct is to check whether h(f*) = h(f). The evaluation of hash functions
and comparison of hash values can be done very efficiently and eases the unlocking
work on an authentication attempt. However, the storing the correct polynomial’s
hash value enables the attacker also to run a faster brute-force attack.

If the vault does not store additional information about the correct polynomial,
a criterion, which always works for a fuzzy fingerprint vault, is to check how many
vault points f* interpolates. With high probability f* is the correct polynomial if ¢
vault points are interpolated by f* (see Lemma 3.2.1 on page 41).

For instance, Li et al. (2010) propose to use the SHA-2 hash function (see
Section 2.1.2).

In (Nagar et al. (2008, 2010); Nandakumar et al. (2007a); Uludag and Jain
(2006); Uludag et al. (2005)) the correct polynomial is constituted with information
for a cyclic redundancy check. The idea is similar to the idea of storing a crypto-
graphic hash value along with the vault: Once the polynomial f* is seen, it can be
efficiently verified whether f* carries the cyclic redundancy check information.
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Efficiency of the Ordinary Brute-Force Attack

For cryptanalysis it is interesting to compute the average number of iterations
an attacker has to run before he succeeds with breaking a random vault. The chance
that the interpolation polynomial of k randomly selected vault points will be the
correct polynomial is

bf(V)::bfout,k)::(Z) -(é>_1. (4.1)

As a consequence, the probability for an attacker to succeed after Z iterations is
1 —(1—=bf(n,t k) M (4.2)

The average number of iterations an attacker needs for successfully breaking the
vault coincides with the minimal number of iterations Z such that

1 —(1—=bf(n,t k)" H* >0.5. (4.3)

Thus, the expected number of iterations for a success is estimated by

log(0.5)
Log(l—-beut,k)l)w (4.4)

For example, consider the implementation of Uludag and Jain (2006) where
t = 24 minutiae are hidden within a vault of size n = 224 interpolating a polynomial
of degree < k = 9. According to Equation (4.4) an attacker can expect to break
such a random vault within Z ~ 1.76 - 10% iterations.

4.1.2 Experiments

Another important size affecting the efficiency of the brute-force attack is the
number of iterations per time unit an attacker is capable to perform. Therefore, we
have experimentally determined how many iterations in the brute-force attack are
possible to perform on an AMD Phenom(tm) II X4 955 processor with 3.2 Ghz using
an own C++ implementation.

Once the vault parameters n, t, and k were given we constructed 10 different
vault instances at random. For each vault instance we, first, randomly selected a
polynomial f of degree < k with coeflicients in the finite field Fy16. Second, we have
randomly chosen ¢ different abscissa values from the field Fs16. Third, the abscissa
values x were evaluated on f to obtain the genuine vault points (z, f(x)). Finally,
n—t chaff points (z., y.) were randomly generated with f(x.) # y. such that all z.. are
distinct and also no abscissa values of genuine points. Furthermore, the set of points
were randomly shuffled. To estimate the number of iterations an attacker is able to
perform each second, we measured the time consumed by the first 100, 000 iterations
of the brute-force attack. The final estimation has been deduced by averaging all of
these 10 measurements for each vault instance.

As in Algorithm 4.1.1, within each iteration of the brute-force attack we 1)
selected k random vault points, 2) determined its interpolation polynomial f*, and
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3) tested how many vault points are interpolated by f* by evaluating f* on n — k
additional vault points.

For example, against a vault instance of parameters as in Uludag and Jain
(2006), we were able to iterate through 37,160.9 polynomials per second. Thus, an
attacker can expect to succeed after approximately 1.76 - 109/30,459.9 ~ 47,432
seconds, which corresponds to ~ 13 hours. If all four processor cores were run in
parallel the genuine polynomial — and thus the template too — would show up
after an expected time of just approximately 3 — 4 hours.

Table 4.1: Brute-force attack performance on an AMD Phenom(tm) II X4 955 with four processor
cores of 3.2 Ghz. Within each iteration the correctness of the candidate polynomial is checked by testing
how many vault points it interpolates.

security polynomials expected time
parameters as in comment alignment GAR (FAR) in bits per second before successful
per core iteration
Uludag et al. (2005) manually 79% (0%) =~ 36 36,643.5 ~ 3 days
Uludag and Jain (2006) automatic 72.6% (0%) =~ 31 37,160.9 3-4 hours
Nandakumar et al. (2007a) automatic 91% (0.13%) ~ 27 43,047.8 = 13 minutes
" automatic 91% (0.01%) =~ 31 37,160.9 3-4 hours
automatic 86% (0%) =~ 39 21,588.9 ~ 52 days
Clancy et al. (2003) manually - (-) =~ 50 17,850.8 293-294 years
Li et al. (2010) alignment-free 94% (0.04%) ~ 48 13,900.5 ~ 102 years
" " 92% (0%) ~ 52 13, 269.6 ~ 1,693 years
Merkle et al. (2010b) 2 finger automatic - () ~ 72 8,859.75 ~ 4.1-10° years
Merkle et al. (2010b) 3 finger automatic - (=) ~ 95 3,348.63 ~ 8.51 - 106 years
Merkle et al. (2010b) 3 finger automatic - (-) ~ 95 4,924.17 ~ 5.15 - 100 years

In Table 4.1 for different implementations of the fuzzy fingerprint vault, the
expected times of a successful attack are reported.!

While the correct polynomial can be identified by counting the number of
vault points it interpolates, an attacker can often identify the correct polynomial
more efficiently.

Identification of the Correct Polynomial by its Hash Value

In the case a hash value h(f) of the secret polynomial is stored along with the
vault, within each iteration of the brute-force attack the step of evaluating f* at a
large number of vault points can be circumvented: It is sufficient to compute the
hash value h(f*) and to compare it with h(f).

We modified the above experiments to simulate this situation. For each vault
instance we additionally computed the correct polynomial’s SHA-1 hash value. With-
in each iteration, after interpolation, we did not evaluate the candidate polynomial
f* on vault points but computed its SHA-1 hash value instead and compared it with
the correct polynomial’s SHA-1 hash value.

For example, against vault instances of parameters as in Uludag and Jain
(2006), we were able to test 124,533 candidate polynomials per second on a single

In Table 4.1 the vault configuration referred by Uludag et al. (2005) corresponds to (n,t, k) =
(218,18,9), Uludag and Jain (2006) to (n,t, k) = (224,24,9), Nandakumar et al. (2007a) corre-
sponds to (n,t) = (224,24) where k = 8, 9, and 10 for FAR = 0.13%, 0.01%, and 0%, respectively.
Furthermore, the configuration referred with Clancy et al. (2003) corresponds to their “optimal”
configuration (n,t, k) = (313, 38,15) (see page 41). The configuration of Li et al. (2010) corresponds
to (n,t, k) = (440,40,12), and (440,40, 13). The configurations of the multi-finger implementation
of Merkle et al. (2010b) corresponds to (n,t, k) = (240, 52, 28), (351,90, 42), and (360, 70, 35).
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processor core. If all four processor cores were used, this would correspond to only
approximately 59 minutes of computing time in where an attacker can expect to
break the vault.

Table 4.2: Brute-force attack performance on an AMD Phenom(tm) II X4 955 with four processor
cores of 3.2 Ghz against our implementation of Section 3.4 with configuration as in Section 3.4.6 and
different polynomial degrees < k

length security | polynomials | expected time
of secret in bits | per second | before successful
polynomial per core iteration
k=T ~ 24 184,162 13-14 seconds
k=38 ~ 27 154, 560 3—4 minutes
k=9 ~ 31 124,533 ~ 59 minutes
k=10 ~ 35 111,359 15-16 hours
k=11 ~ 39 97,656.2 11-12 days
k=12 ~ 43 83,822.3 ~ 7 months

Our implementation of Section 3.4 also identifies the correct polynomial by its
SHA-1 hash value. For the vault parameters as in Table 3.1 the corresponding attack
complexities can be found in Table 4.2.

Table 4.3: Brute-force attack performance on an AMD Phenom(tm) II X4 955 with four processor
cores of 3.2 Ghz. Within each iteration the correctness of the candidate polynomial is checked by
comparing its SHA-1 hash value.

security | polynomials expected time
parameters as in in bits | per second | before successful
per core iteration
Uludag et al. (2005) ~ 36 129,032 19-20 hours
Uludag and Jain (2006) ~ 31 124,533 ~ 59 minutes
Nandakumar et al. (2007a) ~ 27 154, 560 3-4 minutes
" ~ 31 124,533 ~ 59 minutes
" ~ 39 97,656.2 11-12 days
Clancy et al. (2003) ~ 50 60, 350.0 ~ 87 years
Li et al. (2010) ~ 48 72,150.1 19-20 years
" ~ 52 66, 357.0 338-339 years
Merkle et al. (2010b) ~ T2 20,136.9 1.80 - 10? years
Merkle et al. (2010b) ~ 95 9,523.81 2.99 - 106 years
Merkle et al. (2010b) ~ 95 12,651.8 2.01 - 106 years

Table 4.3 lists the results of Table 4.1 correspondingly. The theoretical estima-
tion for ,optimal® parameters of Clancy et al. (2003) results in a rather good security
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against the brute-force attack. However, a similar high security is not provided by
any fuzzy vault implementation protecting single-finger minutiae templates in the
table. A reason for this curiosity might be that Clancy et al. (2003) determined the
parameters for minutiae extracted from fingerprints of sufficient good quality. Fur-
thermore, they assumed a good alignment of the query minutiae templates to the
vault.

Therefore, it is interesting to observe that the implementation of Li et al.
(2010) outperforms the implementations of Uludag et al. (2005), Uludag and Jain
(2006), and Nandakumar et al. (2007a) with respect to authentication performance
seemingly just because it does not require an alignment (see Section 3.3). Further-
more, the implementation’s security against the brute-force is rather good. On the
other hand, to claim that attacking and instance of the implementation of Li et al.
(2010) where GAR = 94% would last 19-20 years would be somewhat contradicting
due to a false acceptance rate of 0.04%. In fact, the false-accept attacks seems to be
the best choice when one attempts to attack an intercepted vault (see Section 4.3).
Furthermore, the resistance of the implementation by Li et al. (2010) against at-
tacks via record multiplicity is not addressed and is (most likely) vulnerable against
a correlation attack (see Section 4.4).

4.1.3 Fuzzy Vault with Minutiae Descriptors

Another single-finger fuzzy vault implementation is the one proposed by Na-
gar et al. (2008, 2010). This implementation aims for improving vault security by
protecting each vault point’s ordinate value using a fuzzy commitment of minutiae
descriptors (see Section 2.2.8 and Section 3.2.4). Therefore, in a brute-force attack,
if k candidates for genuine vault points are chosen, additionally the choices for k
corresponding minutiae descriptors must be correct. This increases the security.

The minutiae descriptors are encoded as m-bit vectors v. The 16-bit ordinate
values y € Faqie of vault points are encoded by an appropriate word c(y) of an
m-length code with error-correction capability e. Instead of only publishing a vault
point as (x,y) the pair (z, ¢(y)+v) is published. If the pair (z, ¢(y)+wv) is considered,
for an attacker to obtain the unprotected ordinate value y he has to guess a minutiae
descriptor v" of sufficient similarity to v: Only if dist(v,v’) is sufficiently small, the
attacker is able to obtain the codeword ¢(y) and thus y in clear. According to Nagar
et al. (2008, 2010) the difficulty in guessing a single minutiae descriptor is R ~ 4.27.
Therefore, for vaults of size n, t genuine points, and a polynomial of degree < k
an additional security of ~ log,(R) - k =~ 2 - k is added against an attack where
the adversary in addition guesses k£ minutiae descriptors within each iteration of the
brute-force attack above (Algorithm 4.1.1). For example, if n = 224, k = 24, and
k =9 instead of protecting fingerprints at a security level of 31 bits the resistance
is improved to 31 + 2 - 9 = 49 bits against this attack.

4.1.4 Information Leakage from Imperfect Codes

However, the above security analysis does only hold in case a perfect code (see
Section 2.3.3) is used. Therefore, we next give a heuristic on how much advantage
an attacker can achieve from an error-correcting code used in the fuzzy commitment
scheme that is of low sphere packing density.
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Let C be the underlying binary error-correcting code of error-correction capa-
bility v* = [(d* — 1)/2] and of length m. Let (z,c(y) + v) be a vault point with
ordinate value y protected by the minutiae descriptor v encoded as an m-bit vector.
Furthermore, let R denote the difficulty in guessing a random minutiae descriptor
of sufficient similarity (this depends on the error-correction capability). Then for
a random minutiae descriptor w such that dist(v,w) > v* the probability p’ that
c(y) + v — w can be corrected to another codeword ¢(z) # ¢(y) estimates as

S(C)—-B(C
,_ S(C) - B(C) (4.5)
2m — B(C)
where B(C) and S(C) are the sizes given by the equations (2.15) and (2.16), respec-
tively (see page 30). Thus, an attacker has found the correct ordinate value y given
c(y) + v —w can be decoded with probability

S(C) = B(C)

=1—p =1-
b P om — B(C)

(4.6)
Note that the above probability can be overwhelming depending on the parameters
of the underlying error-correcting code.

4.1.5 Decoupling Attack

For each vault point (x,c(y) + v) (genuine an chaff) an attacker may guess
a minutiae descriptor w such that ¢(y) + v — w can be decoded. In this way, the
attacker obtains a vault where the ordinate values are unprotected. With probability
p' (4.6) the reduced vault will contain all genuine points (i.e. constituted with their
correct ordinate value). In other words, with probability estimated as p' an attacker
is able to decouple the brute-force attack from the problem of guessing minutiae
descriptors. Therefore, we refer to this attack as decoupling attack.

Efficiency of the Decoupling Attack

We assume that an attacker has established a collection of well-separated minu-
tiae descriptors (encoded as m-bit vectors). We estimate the size of this set to be of
order R, which corresponds to the difficulty in guessing a random minutiae descrip-
tor. For each vault point (z,c(y) + v) (among n) and all pre-established minutiae
descriptors w the attacker attempts to round c¢(y) + v — w to its nearest codeword.
On successful decoding to a codeword ¢(z) the attacker keeps track of the value z as
a candidate for the correct ordinate value associated with the abscissa value z. In
this way, the attacker might obtain more than one candidate for the ordinate value
for each point. The efficiency of this reduction step is estimated as

rd(V)=n-R (4.7)

decoding attempts in C. For each vault point, the attacker selects one of the tracked
ordinate values to obtain a reduced vault instance with clear ordinate values. As a
next step, the attacker tries to break the vault using a generic attack (e.g., brute-
force) requiring at most, say, © operations. The attacker’s chance that a random
selection of the tracked ordinate values will enable him to break the vault is estimated
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as p' where p is as in Equation (4.6). Thus, the overall cost for conducting the
decoupling attack can be estimated as

de(V)=rd(V)-a+p -0 (4.8)

where o denotes the computation time for a decoding attempt in C. If 5 denotes
the computing time of a single step in the brute-force attack, the brute-force attack
against an ordinary vault instance requires at most © = bf(n,t, k) - 8 operations.
Finally, we can estimate the cost for the decoupling attack (with brute-force) as

dc(V) =rd(V)-a+p " -bf(n,t k)-8 (4.9)

Roughly speaking, for overwhelming p’, which is possibly caused by a low sphere
packing density of the code, the partial securities for guessing minutiae descriptors
essentially add up but do not multiply. An important impact from this is that
the overall security of the vault implementation remains similar to the base vault
implementation without minutiae descriptors.

Example

Nagar et al. (2008) implemented the fuzzy fingerprint vault with minutiae
descriptors using the (511,19,239)-BCH code C for protecting ordinate values on
the basis of the implementation of Nandakumar et al. (2007a) where the vaults are
of size n = 224 containing ¢t = 24 genuine points.

Using Equation (2.15) and Equation (2.16) on page 30 we get that B(C) =~
1.66 - 10"? and S(C) ~ 8.72 - 10'**. Therefore, the probability for a genuine vault
point with protected ordinate value to reveal its correct one is p = 1 — p’ where
p’ ~ 279 Thus, the probability of a successful reduction is p** ~ 1 — 279,

We have empirically determined that a single decoding attempt of a (511, 19)-
BCH codeword can be performed within a ~ 0.024 seconds.? For k = 9 the time
consumed by a single iteration of the brute-force attack has been determined as
B & 3.28 - 1075 seconds. Nagar et al. (2008, 2010) estimate the difficulty in guessing
a random minutiae descriptor as R = 4.27. Since

dc(V) = <rd(V) : % +p~" - bf(n,t, kz)) B~ 254-10° B (4.10)

~bf(224,24,9)

the time consumed by the decoupling attack is estimated as to take approximately
the time of an ordinary brute-force attack, which correspond to 31 bits (and not
49 bits). The security of the fuzzy fingerprint vault implementation with protect-
ed ordinate values is therefore similar to the fuzzy vault implementation without
protected ordinate values.

Nagar et al. (2010) in fact recognized that their analysis resulting in a security
of 49 is actually not correct in case the imperfect (511,19)-BCH code is used. To
fix this, they additionally analyzed the use of the (31,6,15)- and (15,5,7)-BCH

2The average time for a single decoding attempt of a (511,19)-BCH codeword has been deter-
mined using an own non-optimized C++ implementation based on NTL linked with libgf2x and
GMP (see http://www.shoup.net/ntl/, http://gforge.inria.fr/projects/gf2x/, and http:
//gmplib.org/). The test was performed on a single core of an AMD Phenom(tm) II X4 955.
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code.? We have empirically determined that the time « for decoding a (31,6)- and
(15,5)-BCH codeword is 107 and 2 - 10~® seconds, respectively. Analogous to the
estimation for the security of the (511,19)-BCH code, the overall security against
the decoupling attack is estimated as 35 and 59, respectively. An overview for the
results of our analysis is given by Table 4.4.

Table 4.4: Securities of the implementations by Nagar et al. (2008, 2010) for k¥ = 9 against the
decoupling attack

code probability successful security
parameters of correct reduction in bits
recovery of | probability (p')
single ordinate

(p)

(511, 19) ~1—27% ~1—27% ~ 31
(31,6) ~ 89.5% ~ 6.98% ~ 35
(15,5) ~ 44.53% ~3.7-107 ~ 59

The bit securities of Table 4.4 are reports with respect to the decoupling attack
as it has been described above. For the (15,5)-BCH code, the difficulty in running
the generic decoupling attack is 59 bits. We will next describe a decoupling brute-
force attack being more efficient than the decoupling attack with brute-force. In
particular, for the (15,5)-BCH code the difficulty in running the decoupling brute-
force attack turns out to be 45.

4.1.6 Decoupling Brute-Force Attack

As usual, let 'V denote a vault of cardinality n, containing ¢ genuine points
that are interpolated by a polynomial of degree < k. For the decoupling attack we
assumed that the identification of the genuine polynomial is given by the number
of vault points it interpolates. However, most fuzzy fingerprint vault implementa-
tions associate additional information with the vault or secret polynomial to allow
safe recovery, e.g., by storing a strong hash value. In other words, once the correct
polynomial is seen, with very high reliability its correctness can be verified. For
the decoupling attack we assumed correct recovery of protected ordinate values for
all genuine vault points. However, a slight modification of the brute-force attack
performs decoupling within each iteration more dynamically.

Algorithm 4.1.2 (Decoupling Brute-Force Attack).

Input: A vault V hiding a polynomial of degree < k interpolating ¢ vault points
where each vault point’s ordinate value is protected by a minutiae descriptor

3Using codes of smaller length requires dimension reduction of the representation of the minutiae
descriptors. Nagar et al. (2008, 2010) proposed principal component analysis to extract the most
reliable bits from initial encodings of minutiae descriptors, which are 684-bit vectors.
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encoded as a vector v of length m; a criterion for identifying the correct polyno-
mial.
Output: A polynomial f satisfying the criterion.

1: for each vault point, pre-compute candidates of ordinate values as in the decou-
pling attack;

2: select k different vault abscissas at random;

3: for each selected abscissa, choose one of the precomputed ordinate values at
random,;

4: find the interpolation polynomial f* of the k chosen points;

5. if f* can be verified to be correct, output f* and terminate; otherwise continue
with Step 2.

A major difference in the decoupling brute-force attack is that it contains an
additional step for choosing a candidate ordinate value for each vault point.

Efficiency of the Decoupling Brute-Force Attack

By R we use to denote the difficulty in guessing a random minutiae descriptor.
For each vault point, we assume the set of candidate ordinate values to contain at
least one element. Furthermore, for genuine vault points we assume that the correct
ordinate value is an element of the candidate set. Therefore we estimate the number
of candidate ordinate values associated with each vault point to be approximately

cov(V)=1+(R—-1)-p, (4.11)

where p’ is as in Equation (4.5) on page 62. Finally, the difficulty in choosing k
genuine vault points and their respective correct ordinate values estimates as

dbf(V) = cov(V)* - bf(n,t, k). (4.12)

Example

For the implementation of Nagar et al. (2010) (n = 224, t = 24) where the
(15,5)-BCH code C is used to protect ordinate values the probability that a minu-
tiae descriptor of sufficient dissimilarity will succeed in decoding the protected ordi-
nate value is estimated as p’ ~ 55.47% using Formula (4.5) where S(C) = 18,432,
B(C) = 576, and m = 15. By Equation (4.11) the set from where an attacker chooses
candidates for a vault point’s ordinate values is of size estimated as cov(V) ~ 2.81.
Thus, for k =9

dbf(V) ~ 2.79 - 10" ~ 2% (4.13)

Therefore, the decoupling brute-force attack supersedes the generic decoupling at-
tack (with brute-force) for the selected parameters. Since the security of a crypto-
graphic system is lower bounded by its resistance against the most efficient attack,
the bit security of the corresponding implementation can be at most 45 bit (and not
59 as suggested by Table 4.4).

In Table 4.5 the bit securities of the implementations by Nagar et al. (2008,
2010) against the decoupling brute-force attack are listed. Not surprisingly, the more
information is leaked by the imperfectness of the used error-correcting code (i.e. the
larger p’) the more the security against the decoupling brute-force attack drops.
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Table 4.5: Securities of the implementations by Nagar et al. (2008, 2010) for k = 9 against the
decoupling brute-force attack

code security
parameters || in bits

(511,19) ~ 31
(31,6) ~ 35
(15,5) ~ 45

We finish this section by noting that our analysis supports the analysis given
by Nagar et al. (2010) for the (31,6) and (15,5)-BCH code. For example, if k = 7
then Nagar et al. (2010) report a security gain of approximately 10 bits for the
(15,5)-BCH code. In fact, the formula in Equation (4.12) evaluates to

dbf(V) =~ 2.05 - 10" ~ 23 (4.14)

while
bf(224,24,7) ~ 1.48 - 10" ~ 2% (4.15)

in this case.

4.2 Auxiliary Alignment Data May Help to Im-
prove Attacks

The attacks above are brute-force attacks, which definitely can be improved.
For example, it is possible to make use of the statistics of fingerprint features or to
run a false-accept attack (see Section 4.3). Assuming hardness for the instances of
the polynomial reconstruction problem given by the vault (see Bleichenbacher and
Nguyen (2000)), the overall difficulty in breaking a fingerprint vault with similar
complexity of a brute-force attack can only be guaranteed if, first, vault minutiae
are independent and identically distributed and, second, no additional information
about the finger is stored along with the vault. For many implementations of the
fingerprint fuzzy vault there is, however, additional alignment helper data that is
stored along with the vault. This data leaks information about the finger and may be
used by an attacker to accelerate attacks. In the following we discuss approaches for
the attacker to gain advantage of auxiliary alignment data that we briefly reviewed
in Section 3.3.

Yang and Verbaudwhede (2005) proposed to store reliable reference minutiae
publicly along with the vault. Even if the reference minutiae are excluded from encod-
ing genuine vault points, they allow an adversary to cross-match vault records across
different application’s databases with unprotected minutiae. As already indicated at
the beginning of this chapter (see page 57), cross-matching belongs to the most se-
rious risks the fuzzy fingerprint vault is concerned with. Even worse, once genuine
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vault correspondences have been filtered out, they are highly vulnerable against the
correlation attack (Kholmatov and Yanikoglu (2008)), which is an attack via record
multiplicity (Scheirer and Boult (2007)): An attacker uses the correlation attack to
break vault records given multiple instances of the vault captured from the same
user are given to him. In Section 4.4 we will describe a cross-matching algorithm as
well as a correlation attack and conduct them against the implementation presented
in Section 3.4.

Uludag and Jain (2006) proposed to store points of high ridge curvature (see
Figure 3.4 on page 46) publicly along with the vault. This approach has been refined
later by Nandakumar et al. (2007a). Again, we feel that using points of high ridge
curvature might assist in cross-matching but there is another interesting point to
consider.

Clusters of high curvature points tend to appear near the singular points. From
those clusters, in many cases, it is possible to derive the type of the singular point
as well as its rough location. Using a model for a fingerprint orientation field (Hotz
(2007); Huckemann et al. (2008); Sherlock and Monro (1993)) it is possible to esti-
mate the orientation field to some extent. If an attacker can assume to have a good
estimation of the fingerprint protected by the vault then every vault minutiae of
direction inconsistent with the orientation field can be excluded from being a gen-
uine vault point (assuming vault features also use minutiae directions). This reduces
the effort for performing a subsequent brute-force attack. Furthermore, if minutiae
descriptors are used to protect the vault’s ordinate values by a fuzzy commitment
scheme (Nagar et al. (2008, 2010)) then parts of its corresponding orientation de-
scriptor are leaked. This reduces the difficulty in guessing a single minutiae descriptor
causing a reduction in the overall difficulty in successfully running the decoupling
brute-force attack (see Section 4.1.6).

For example. in Figure 4.1 the process of deriving an orientation field from
points of high ridge curvature is visualized. The points of high ridge curvature have
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been calculated according to Nandakumar et al. (2007a). The estimation fits very
well and leaks virtually the whole orientation field (depending on the level of quan-
tization).

For the three structures proposed by Jeffers and Arakala (2007) we make the
following remarks.

First, note that each structure the authors propose to enable vault alignment
leaks a certain number of template minutiae. For each five nearest neighbor structure
there are six minutiae leaked (reference minutia plus it five nearest neighbors). Sim-
ilarly, minutiae are leaked if Voronoi neighbor structures are used (reference minutia
plus its Voronoi neighbors). For the triangle based structure each vertex corresponds
to a location of a template minutiae. Furthermore, each vertex is constituted with a
ridge orientation such that the position as well as the undirected orientation of each
vertex minutia can be computed from a given triangle based structure.

In this way, an attacker is able to build a set of directed/undirected minutiae
leaked from the public minutiae structures. Assuming the set of leaked minutiae
significantly overlaps with the set of genuine minutiae, the attacker evidently can
gain great advantage to accelerate brute-force attacks. Moreover, again, we feel that
cross-matching on the basis of the proposed minutiae structures might help to quick-
ly determine genuine vault correspondences across different application’s databases.

The topo-structure proposed by Li et al. (2008) leaks an upper bound kg on
the number of minutiae laying within the sampling area. Even if the additional data
may not leak minutiae locations. In a brute-force attack (Step 1 of Algorithm 4.1.1),
the attacker can exclude any choice for k£ genuine vault minutiae where more than kg
lay within the sampling area. This will reduce the effort for an attacker to conduct a
brute-force attack against the corresponding minutiae fuzzy vault, which can already
be highly vulnerable.

Again, the topo-structure might weaken a fingerprint fuzzy vault against cross-
matching. Amongst other information, the alignment helper data encodes a set where
each element has been derived from a minutia’s location within the sampling area
of the corresponding fingerprint. From that we assume that matching two topo-
structures can be performed with similar accuracy as matching two fingerprints
where only the minutia’s locations within the sampling circle are taken into account.
Thus, again, cross-matching seems to be possible with sufficient accuracy to reliably
find most genuine vault correspondences across different application’s databases.

All the proposals for auxiliary alignment data above to deal with the challeng-
ing problem of aligning query fingerprints to the vault are causing problems. Either,
they leak information about the fingerprint, which furthermore decreases vault se-
curity, or they might help an adversary in cross-matching. In our opinion, publicly
storing individual fingerprint features to enable vault alignment (such as multiple
reference minutiae, high curvature points, minutiae structures, or topo-structure)
is problematic from a security perspective. The amount of information leaked from
alignment helper data about the template as well as their effects to support cross-
matching still have to be analyzed.

Merkle et al. (2010b) base their vault work on pre-alignment. Furthermore,
on authentication, they propose to refine the alignment by maximizing the number
of matching query minutiae with vault minutiae. However, the way the authors
rely on refinement in the pre-alignment, requires random generation of chaff points.
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This makes allows the vault records to be cross-matched via correlation (see Section
4.4). Furthermore, merely choosing vault features that are invariant to rotation and
translation (Li et al. (2010)), will not solve this problem.

A secure alignment scheme were enabled if fingerprint minutiae could be pre-
aligned to an intrinsic coordinate systems (Bazen and Gerez (2001)). Then no public
alignment data is needed. Unfortunately, current methods that extract intrinsic co-
ordinate systems lack of robustness to allow fingerprint pre-alignment of sufficient
accuracy. Although challenging, it seems to be worth to seek for more robust meth-
ods to extract intrinsic coordinate systems.

The discussion of this section emphasize that the alignment in a minutiae
based fuzzy vault is a not yet solved. When one chooses a particular solution to
deal with vault alignment, two main question arise. First, how much does vault
security suffer, and second, how does the alignment procedure affect the vault’s
authentication performance? To get rid of the open problem of vault alignment (as
already argued in Section 3.4.4), we investigate vault security and authentication
performance assuming no alignment data is stored and the query fingerprints are
well pre-aligned to the vault. Thus, throughout this thesis wherever vault alignment
is required we achieve it by aligning the corresponding minutiae templates in clear
as described in Section 3.4.4.

4.3 False-Accept Attack

The attacks of Section 4.1 are brute-force attacks, the worst case for the at-
tacker, and thus the best case for the user. The analyses of the brute-force attacks
against single-finger minutiae fuzzy vaults are indicators of the security limitation
for the fuzzy vault scheme applied to the biometric trait single-finger. Brute-force
attacks can definitely be improved. For example, it is possible to use some statis-
tics of fingerprint minutiae: Vault minutiae that lay within the images center may
have a higher chance to be genuine minutiae than vault minutiae that lay near the
boundary. Another example: If minutiae angles are used in the vault, it is unlikely
that spatially close minutiae have inconsistent direction. Thus, with some proba-
bility, combinations of vault minutiae can be excluded from being simultaneously
genuine. Evidence advocating the existence of attacks that are much more efficient
than brute-force attacks is for example given by a non-negligible false acceptance
rate even though the complexity for a brute-force attack would require much more
effort. For example, in Li et al. (2010) if n = 440, ¢t = 40, and k = 12 a successful
brute-force attack would require approximately 24® iterations whilst the false-accept
requires approximately 2'! iterations (for a false acceptance rate of 0.04%). Similar
to other attacks, an upper bound for the security of a fuzzy fingerprint vault imple-
mentation is given by the difficulty in running a successful false-accept attack.

An adversary might try to break an intercepted vault V by taking advantage
of the false acceptance rate € of the corresponding vault implementation. In such a
scenario, we assume the adversary to have access to a large database DB containing
fingerprint templates from real fingers. The attacker is able to iteratively use the
templates from DB and simulate authentication attempts until the vault V can be
opened.
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4.3.1 Algorithmic Description

We will next describe our version of the false-accept attack in algorithmic
terms.

Algorithm 4.3.1 (False-Accept Attack).

Input: An intercepted vault instance V hiding a polynomial of degree k interpo-
lating ¢ genuine points;
a pre-established database DB = {7}, ...,Tx} containing fingerprint templates
from different fingers;
a criterion for verfifying the correct polynomial;

Output: FAILURE or a polynomial interpolating ¢ vault points;

1: fori=1,...,N

2 use the template T; to extract the unlocking set U; C V;

3 try to decode a polynomial f* from the unlocking set U;;
4: if f* can be verified to be correct output f* and terminate;
5: endfor

6: output FAILURE and terminate the algorithm.

Note, if the attack is run against our implementation of Section 3.4 then Step 3
consists of the iteration through all polynomials interpolating k& points from U; and
checking whether the interpolation polynomial’s SHA-1 hash value is equals to the
hash value of the genuine polynomial.

The probability that Algorithm 4.3.1 outputs the correct polynomial is esti-
mated as

1—(1—e)V. (4.16)

A vault’s vulnerability against the false-accept attack can be easily calculated as the
false acceptance rate € is known. However, a reliable estimation for a vault imple-
mentation’s false acceptance rate is difficult to achieve but nonetheless important
for reliably analyzing a vault’s resistance against the false-accept attack. Anyway, it
is possible to compute confidence intervals for the false acceptance rate. For a closer
view on this topic see Section 2.2.6 on page 21.

4.3.2 Performance of the False-Accept Attack

If the average impostor decoding time 7 and the false acceptance rate e of
a vault implementation are known, the efficiency of the false-accept attack can be
easily calculated.
Assume that the database input to the false-accept attack is sufficiently large.
An attacker who is going to run the attack against an intercepted vault V will need
to spend
log(0.5)

log(1—¢€) ’

of computation time in average to successfully open the vault V.

(4.17)
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Examples

For example, if £ = 9, our implementation (see Section 3.4) requires an attacker
to wait approximately 247 ms (on a single processor core of an AMD Phenom(tm) II
X4 955) for a template 7; € DB until he can proceed with the next template 7T; ;.
Using Table 3.1 on page 53 we see that 16 among 4856 (i.e. a false acceptance rate
~ 0.33%) non-genuine templates successfuly opened the vault. Using the Clopper-
Pearson confidence interval (see Equation (2.13)) at a confidence level of 95% we
expect the false acceptance rate to lay in the range [0.19%, 0.53%]. Consequently,
with a confidence of 95% an attacker can expect to successfully break the vault within
32-91 seconds (see Equation (4.17)). If all four processor cores were used in parallel,
the attacker can expect to be successful after just 823 seconds. In comparison to
the time that is expected to be consumed by the brute-force attack (i.e. 59 minutes
according to Table 4.2) the false-accept attack significantly outperforms the brute-
force attack.

Table 4.6: Range of false-accept attack complexities for a confidence level of 95% on all four cores
of an AMD Phenom(tm) II X4 955

length expected time expected time range
of secret for a successful for a successful
polynomial || brute-force attack | false-accept attack

k= 13 — 14 seconds 348-466 milliseconds
k= 3 — 4 minutes 1.46-2.28 seconds
k= 59 minutes 823 seconds
k=10 15 — 16 hours 13-51 seconds
k=11 11 — 12 days 35 seconds — 18 minutes
k=12 ~ 7 months > 1 minute

In Table 4.6 the estimated complexities for a successful false-accept attack
against our implementation for different k are listed. It was not possible to estimate
an upper bound for the complexity when k£ = 12. This is due to the fact that the false
acceptance rate can be arbitrarily close to zero. However, under security aspects with
a confidence of 95% we can only expect that a false-accept attack will be successful
within 1 minute given the adversary is in possession of a sufficiently large database
containing fingerprint templates.

4.3.3 False-Accept Attack against Fuzzy Vault with Minu-
tiae Descriptors

In this section, we show how to attack the implementation of Nagar et al.
(2008, 2010) using a false-accept attack (note, the vault ordinate values are addi-
tionally protected using the fuzzy commitment scheme where the remaining is as in
Nandakumar et al. (2007a)). For example, if the (511, 19,239)-BCH code C is used,
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then for k = 7 the false acceptance rate is reported as to be 0.01% while it has been
reported to be 0.7% for the implementation without protected ordinate values. This
suggests a tremendous improvement of the implementation’s resistance against the
false-accept attack as well. However, as in the brute-force attack, an attacker has the
ability to decouple the false-accept attack from the problem of guessing minutiae
descriptors to break a vault V.

Combining the Decoupling Attack with the False-Accept Attack

We start with repeating some notions from Section 4.1.5.
Let V be a vault of size n and ¢ genuine points whose ordinate values ¢(y) + v are
protected using minutiae descriptors v via the fuzzy commitment scheme. Let the
fuzzy commitment scheme be based on the error-correcting code C. Assume p to be
the probability that ¢(y) = ¢(z) under the condition that w is a random minutiae
descriptor such that ¢(y) +v —w can be decoded to ¢(z) (see Equation (4.6) on page
63).

Next, if R is the difficulty for guessing a random minutia descriptor, an attacker
can expect to obtain a candidate set containing ordinate values of size rd(V) = n-R.
If «v is the time for a decoding attempt in C, this pre-computation step is estimated
as to last rd(V) - a. The probability, that a selection of n ordinate values from their
corresponding candidate sets will contain all ¢ genuine points correct ordinate value
is estimated as p’.

Assume that the false-accept attack is run to break the reduced vault (without
protected ordinate values). Let the time for a successful false-accept attack be ©.
Analogous to Equation (4.8) the decoupling attack is estimated as to take

dc(V)=rd(V)-a+p " -0 (4.18)
of computing time.

Example

For the implementation of Nagar et al. (2008), if the (511, 19)-BCH code C is
used, we have experimentally determined that a single decoding attempt in C can
be done within o = 0.024 seconds (see the example of Section 4.1.5). Thus, with an
effort of approximately n- R -« & 23 seconds (i.e. & 5 seconds if four processor cores
are used) and overwhelming probability of p* ~ 1 — 279 the vault implementation
with protected ordinate value is as vulnerable to the false-accept attack as if the
ordinate values were not protected.

Intermediate Discussion

Using the implementation of Nagar et al. (2008, 2010) the improvement of the
false acceptance rate from 0.7% to 0.01% at a genuine acceptance rate of 95% was
used as a teaser to advocate for the benefits of the implementation. The validity of
the reduction in the false acceptance rate is certainly true if using their authentica-
tion procedure. However, the report of the false acceptance rate is not valid under
security aspects. The reason is that the false-accept attack also applies in combina-
tion with the decoupling attack.

It is furthermore claimed in Nagar et al. (2010) that although the use of im-
perfect error-correcting codes will not cause a gain in security from an information
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theoretic point of view there would be a certain improvement for there is a signifi-
cant cost to the adversary to find decoding minutiae descriptors. According to our
tests, finding matching minutiae descriptors can be performed within approximate-
ly 5 seconds in a single pre-computation step using four processor cores of an AMD
Phenom(tm) II X4 955. This does not correspond to a significant cost an adversary
has to pay.

The work of Nagar et al. (2010) contains good analysis of how minutiae de-
scriptors can be used to improve fingerprint vault security. Valid countermeasures are
given to deal with the imperfectness of error-correcting codes. In fact, the problems
we have emphasized in terms of the decoupling attack and the decoupling brute-
force attack were also recognized by Nagar et al. (2010)—even though missing in
the abstract or in the final discussion. This might lead to confusion of the reader
and misunderstanding of the article’s benefit.

4.4 Cross-Matching and the Correlation Attack

The low amount of time needed to run a successful false-accept attack against
single-finger fuzzy vaults is highly alarming. Even brute-force attack can be feasi-
ble for reasonable genuine acceptance rates. This suggests that single-finger is not
sufficient to provide a cryptographically secure biometric authentication scheme. In-
stead analyses of multi-finger fuzzy vaults should have the focus for future research.
Unfortunately, there remain problems of the fuzzy fingerprint vault that can not be
solved merely using multiple finger.

One of the most serious risks the fuzzy fingerprint vault is concerned with is its
high vulnerability against a special kind of attack via record multiplicity (Scheirer
and Boult (2007)).

Two scenarios can be distinguished concerning attacks via record multiplicity.
The first scenario is where the attacker has intercepted two vault records V and W
for which he has to decide whether both protect templates from the same finger, i.e.
cross-matching. The second scenario is concerned with where the attacker already
knows that V and W do protect the same finger and he is attempting to get into
the possession of the template and/or key (i.e. secret polynomial f). The attacker’s
possibility to recover the templates and/or key is not necessarily at stake given the
attacker is able to cross-match vault records: Cross-matching, for instances, might
be enabled just by matching alignment helper data (for example as in (Li et al.
(2008); Nandakumar et al. (2007a); Uludag and Jain (2006))). The converse, on the
other hand, i.e. efficient cross-matching, is assumed by the possibility to efficiently
reconstruct vault templates via record multiplicity: Given the reconstruction of the
templates and/or key is successful the vaults are considered to match.

Cross-matching is always possible by, for instance, the brute-force attack: The
vault V is attacked until its template reveals; this template is then used to open
another vault W; if successful, V. and W are considered to match. While such
an approach is always possible there exists a more efficient method to separate
genuine points from chaff points if two vaults protecting the same finger are given:
By correlating the vaults, barring alignment, genuine minutiae have a bias to be in
agreement in both vaults while chaff minutiae are likely to be separate since they
have been generated randomly. An example illustrating this approach is given by
Figure 4.2.
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While correlation has the inadvertent effect that vault records can be cross-
matched, it is even possible for the attacker to efficiently break two vault’s templates
and keys given the vaults protect templates from the same finger. As a consequence,
separating genuine points from chaff points via correlation has the potential to be
much more efficient than merely attacking one of the vault separately.

r
x\. (\)\ o—{. e e o =~ (:\' o—‘\ ~ .\.\
(W IEIRES N VN \f‘\.'\)\\ =y %
’ ’
.1(3_. \\r}\ -1./“ \\_9/\
? Vd {rl ? 27 d «
el R EIRTSERN AN
poApS 1 » e hd 2 A A
Y el o~ 'S 34 - ~
SRR NS O ‘ G ¢l el
._(}’r Vd - -. -~ ~, r -- \ ~\~f‘l.' Vg v =y Q_‘k'
p JIT RN ! Y P Y o8
I DR P ' DI Dy
VIS B ‘ P ate
")f\' \*\"X"t_ ’ 1 o ._/"\.1\4 ~’1‘r~:—
R MRS RS ! SR N A R
L R OISR O > c 7, ;‘“.\\\ “[B g
1 -~ i 7 \ ! - i 7
RSN ';k) "\r\ ~ > \k M '*rw\)\\ ':f ﬁ\*:.
f,\*:{»\ ‘o, > )&*ki‘%\ Yo e,
t iy Y - - t A IR S
v > k\‘)' - o L >~ e \/'
_,\\_.;"'(Trr - “\\'._'z"{?«r

Figure 4.2: Two aligned vaults with chaff minutiae (gray and light-gray) and genuine minutiae (red
and blue). The genuine minutiae have a bias to be in agreement

4.4.1 The Correlation Attack

We describe the attack more generally, not only restricted to minutiae features.

Let V and W be two vaults. Each vault point v € V and w € W encodes
a fingerprint feature (on the abscissa) m and m’, respectively. Assume there is a
function d(m, m’) that measures the distance (or similarity) between m and m’.

For instance, if m and m” are minutiae, then d(m, m’) might correspond to the
minutiae distance map as in Equation (2.5) on page 19.

Since each vault pair (v, w) € V x W corresponds to a feature pair (m, m’) we
define the corresponding distance map on V x W by setting

d:VXW — Rzo, ('U, U)) — d(m, m’). (419)
For a vault point v € V consider

dw (v) := min d(v, w) (4.20)

weW
the minimal distance of v to one of its nearest points in W.

On the basis of the map dw(:) the correlation attack can be described as
follows.

Algorithm 4.4.1 (Correlation Attack).

Input: Two vaults V and W; a real number x > 0;
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Output: The secret polynomial f hidden by V or FAILURE;

U+ {veV|dwk) <z}

try to decode the unlocking set U;

on success, output the decoded polynomial f;
otherwise, output FAILURE.

Note, that there is no particular reason to only consider the unlocking set U to
consist of elements in V. It is also possible to let U consist of the elements in w € W
with dy (w) < x. For matter of notational convenience we restrict our considerations
on U as a subset of V.

Let H be the subset of the genuine vault points G C V that have a ground-
truth match in W: If a genuine vault point v € V encodes a scan of a minutia m and
there is a genuine vault point w € W encoding a scan m’ of the same ground-truth
minutia then H is defined to contain v.

If the values dw(H) have a bias to be significantly smaller than dw(V), an
attacker has good reason to expect the correlation attack to successfully output the
secret polynomial f — for a reasonable x > 0.

4.4.2 Criterion for Cross-Matching

In this section, we derive a criterion for an attacker to cross-match two vaults.
Just in case the vaults can be positively cross-matched using this criterion the at-
tacker runs the time-consuming step of decoding the unlocking set, i.e. Step 2 of
Algorithm 4.4.1. Otherwise, if both the vaults do not cross-match, the attacker con-
tinues with another pair of vaults.

As usual, let 'V be a fingerprint vault of size n hiding a polynomial of degree
< k which interpolates ¢ vault points. As a function in z, let 7y(x) be the distribution
function for a random v € G also to be an element in U, i.e.

Y(z)=P(dww) <z |veG). (4.21)

Analogously, let (x) be the distribution function for a random v € V \ G also to
be contained in U, i.e.

f(x) =P(dw(v) <z |veV\G). (4.22)

Now, if v € G then v either has a ground-truth match in W' (in this case we write
v € H) or v is a genuine point that does not have a ground-truth match in W. By

alz) =P(dw(v) <z |veH) (4.23)

denote the distribution function of genuine vault points v with a ground-truth match
in W being an element of the unlocking set U. Similarly, write

a(r) =P(dw(v) <z |veG\H) (4.24)

for the distribution function of a genuine vault point v with no ground-truth match
in W. Now, if tyy = |H| then

. tH . Oé(.T) + (t - tH) : O?(ZL’)

v(z) = ; . (4.25)
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Note that the elements of G \ H are closest to the elements in W that are not
confirmed by a ground-truth match in W. Therefore, we assume that the elements
in G \ H appear random to the attacker. As a consequence, an attacker can not
distinguish the elements in G \ H from the elements in V \ H. In other words, we
assume that

a(x) = B(z). (4.26)

So the probability v(x) for a genuine point to be an element of the unlocking set

fulfills . Py
'7(35) _ " Oé(l’) + (t - H) 5(x)

For random vaults V and W (but fixed z) in Step 1 of the correlation attack we
expect the size of the unlocking set u = |U| to have the following distribution given

(4.27)

ty
u=(n-—t) fx)+t-vy(x)
=(n—1t) B(x)+tu-ofz)+ (t —ta) - B(z) (4.28)
=n-B(x)+ (a(z) — B(z)) - ta.

In correlating two vaults, we assume that the elements in dw (H) have a bias to be
significantly smaller than the elements of dw(V \ G). More precisely,

a(z) > p(z). (4.29)
In particular, an implication of this assumption is a(x) # (). Hence

_u—n-B)
= L (4.30)

We build the conditional expectation given the size of the unlocking set u, i.e.

E(ulwu)—n-5)

E(ta|u)=

a(z) - B(z)
) (4.31)
a(r) = B(z)

Consequently, if in Step 1 the size of the unlocking set u = |U| is already known,
we expect the value for tg to be

u—n- B
a(z) = B(z)
Finally, in an unlocking set of size u we expect to find

tu) = tu(u) - oz) + (t — tu(u)) - 5(z)

= (a(z) = B(z)) - tu(u) +t- 5(z) (4.33)
u+t(t=n)-B()

genuine points.
In case

t(u) > k (4.34)
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the attacker has good reason to believe that decoding the unlocking set U (i.e. Step
2 in Algorithm 4.4.1) will be successful. On the other hand, for an adversary to
feasibly decode U a limiting factor is the size u of the unlocking set. Anyway, if
an attacker chooses a distance threshold z such that a(z) — f(z) is maximal he
can expect that the unlocking set U dominantly contains genuine vault points (see
Section 4.4.5 below).

The distribution «(x) is affected by the distribution of ground-truth matching
fingerprint features that are used for the vault work. In the following we describe
what the relation is.

4.4.3 Relation of a(x) to the Distribution of Ground-Truth
Matching Features of Distance < x

Let € consist of all pairs (m, m’) such that m and m’ are ground-truth matching
measurements of fingerprint features. By

d(z) =P(dmm) <z | (mm)eN) (4.35)
we denote the distribution function of the random variable
Q= Ry, (m,m’) — d(m,m’), (4.36)

which measures the distribution of ground-truth matching fingerprint features that
are bounded by the distance .

If v € Vand w € W encode the features m and m’, respectively, then d(v, w) =
d(m,m’). Since dw(v) < d(v,w) it follows by a coupling argument

a(z) > §(x). (4.37)

By (4.37) the size of H given u is bounded by
u—n- B)
) < 5 B

For an attacker it would be more useful to have a sharp upper bound on «(z) rather
than a lower bound. As a consequence, the value tg(u) could be lower bounded. For
simplicity, however, we will assume that for reasonable z the distributions a(z) and
d(z) are close, i.e.

(4.38)

a(x) = §(x), (4.39)
in which case B
ta(u) ~ m (4.40)

4.4.4 Cross-Matching prior the Correlation Attack

Assume an intruder has intercepted two databases DB; and DB, from differ-
ent applications that share common users. Furthermore, assume that the databases
DB, and DB, contain fuzzy vault records. The intruder might run the following
attack to gain user access to one (or both) of the applications.

For all (V,W) € DB; x DB, run Algorithm 4.4.1 with input V, W, and a
fixed x > 0. If the polynomial f protected by V has been discovered successfully,
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then the intruder is capable in discovering the template protected by V and has
thus broken the corresponding user account.

Running the correlation attack for all pairs (V, W) can become very time-
consuming. As a countermeasure the attacker could make use of the criterion (see
(4.34)) that we heuristically derived during Section 4.4.2. Depending on the size of
the unlocking set built up in Step 1 of the correlation attack, the attacker has a cri-
terion to cross-match. In algorithmic description the cross-matcher can be written
as follows.

Algorithm 4.4.2 (Cross-Matching Vault Records).

Input: Two vaults V and W; a real number x > 0; the distribution 5(z) as in
Section 4.4.2 of minimal distances of non-confirmed vault points.
Output: Either MATCH or NON-MATCH.

1. /* Initialization */
t < “number of genuine vault points in V”;
k < “length of secret polynomial hidden by V”;

2: /* Correlation */
U+ {veV|dwk) <z}

3: /* Apply criterion (4.34) */
u < [U];
Hu) -t (L —n) - Blo);
if t(u) >k
return MATCH;
else
return NON-MATCH;
endif

For a pair (V, W) an attacker may decide to run the correlation attack (see
Algorithm 4.4.1) only if Algorithm 4.4.2 outputs MATCH. The purpose for cross-
matching prior possibly running the correlation attack is to eliminate virtually all
pairs (V, W) where V and W protect templates acquired from different users whilst
for a preponderant amount of genuine pairs (V, W) the correlation attack is run by
the attacker.

4.4.5 Finding a Reasonable Distance Threshold =z

Before an attacker actually runs the decoding step in the correlation attack,
he might want to apply criterion (4.34) to decide whether decoding the unlocking
set U is worth it. For a fixed x, to apply the criterion, he must know the distance
distribution function §(x), which corresponds to the distance of vault points without
a ground-truth matching minutia. However, the attacker still needs to choose a good
distance threshold z. As already mentioned in Section 4.4.2, the attacker has a good
reason to expect a large amount of genuine points in the unlocking set U if x is
chosen such that a(z) — B(z) is maximal. Under the assumption «a(z) ~ d(x) (see
(4.39)) a reasonable choice for z is

r &~ argmax d(z) — f(x). (4.41)
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In the following we set our focus to the minutiae fuzzy vault implementation de-
scribed in Section 3.4.

4.4.6 Distance Threshold for a Minutiae Fuzzy Vault

IMS Minutiae Markup Tool
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Figure 4.3: Tool used for marking ground-truth minutiae correspondences where the minutiae have
been extracted by a commercial extractor

In order to choose a good distance threshold as in (4.41) an attacker should
have knowledge about the distribution functions d(z) and (). To measure both dis-
tribution functions, we consulted the FVC 2002 DB2-B dataset (Maio et al. (2002)),
which consists of 8 scans each of 10 different fingers.

To measure §(x), we only considered the first and the second respective impres-
sions of the 10 fingers contained in the FVC 2002 DB2-B database. For each finger,
the minutiae templates of the first and second impressions have been extracted using
a commercial extractor.* Afterwards, an expert marked ground-truth minutiae cor-
respondences between the first and the second impression for each of the ten fingers
(see Figure 4.3). After having determined all minutiae correspondence between two
matching templates, we determined an isometry that minimized the sum of squared
distances between point correspondence given by ground-truth matching minutiae
(see (Eggert et al. (1997)); see Section 2.2.3). Using the isometry, the second impres-
sions are aligned to the first impressions of the corresponding finger. In this way, a

4Verifinger SDK 5.0 (Neurotechnology Ltd (2006))
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set of ground-truth matching minutiae pairs D = {(m, m’)} of cardinality |D| = 377
was obtained. The distribution function §(z) then was measured as

5(z) ~ #{(m,m') € D | d(m,m') <z}

#D
where d(-,-) is as in (2.5) with w = 11.46.

To measure ((z) for each finger i = 1,...,9 in the FVC 2002 DB2-B database
and for each finger index j = ¢+ 1,...,10 two vaults V and W were built using
the implementation described in Section 3.4. For the ith finger let T\, denote the
set of vault minutiae where 77, . denotes the vault built from the first impression
of the jth finger. For each m € Ty let m’ € T, . denote a minutia closest (with
respect to d(+,-)) to Tyaut. Since both vaults protect templates from different fingers
it follows that (with the notation of Section 4.4.2) if v € V is encoded by the minutia
m then dw(v) = d(m, m’). All pairs (m, m’) occurring this way were collected up into
a set of non-matching close vault minutiae correspondences B = {(m, m’)}. Finally,
#B = 10 080. The distribution function of vault points without a ground-truth
match was measured as

ple) =

(4.42)

#{(m,m') € B | dmw') <z}
#B '

In this a way we were able to estimate the distribution functions §(z) and S(x)
for a minutiae fuzzy vault with respect to the distance measure as in Equation (2.5)
on page 19 with w = 11.46. A plot of the estimated d(z) and B(x) can be found in
Figure 4.4.

(4.43)

distribution

20 30

distance =

Figure 4.4: distance distribution of ground-truth matching minutiae §(z) and for vault minutiae
without a ground-truth mate 3(x)

Finally, an estimation for the optimal z, i.e. which maximizes 6(z) — 5(z), was
determined by a global iterative search through all

x; = 0.0001 - ¢ where 0 < z; < min(max B, max D). (4.44)
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The estimation z for the optimal x has been determined as

T = argmax 6(x;) — B(z;), (4.45)
which turned out to be
& = 11.0869. (4.46)

4.4.7 Correlating Minutiae Fuzzy Vaults

In the subsequent we demonstrate the effectiveness of cross-matching and the
correlation attack using the example of minutiae fuzzy vaults.

Experimental Database

The test we performed used the implementation of Section 3.4. The database
containing minutiae vault records have been built out of minutiae templates ex-
tracted from the images in the FVC 2002 DB2-A database (Maio et al. (2002)).
Analogously to Section 3.4.2 a minutiae fuzzy vault was built out of every minutiae
template unless a failure to capture was encountered. In this way, we established a
database containing minutiae fuzzy vaults.

Rates and Timings Measured by our Experiment

For all genuine cross-matching attempts (corresponding to genuine authentica-
tion attempts in the FVC protocol (see Section 3.4.7)) the second vault was aligned
to the first vault.® Whenever Algorithm 4.4.2 output MATCH, with the aligned vaults
and £ = 11.0869 as input, this was accounted as a genuine cross-match. In case of
a genuine cross-match the aligned vaults and & were input to Algorithm 4.4.1 and
the correlation attack was run. On success, the event was accounted as a successful
genuine correlation attack. The proportion of all genuine cross-matches within all
genuine cross-matching attempts is referred to as genuine cross-match rate and de-
noted by GCMR. The proportion of all successful genuine correlation attacks within
all genuine cross-matches is referred as the genuine correlation attack success rate
and denoted by GCASR.

Analogously, the impostor authentication attempts in the FVC protocol cor-
respond to false cross-matching attempts. For each false cross-matching attempt
whenever Algorithm 4.4.2 output MATCH this was accounted as a false cross-match.
For a false positive cross-match the vaults were input to Algorithm 4.4.1. Whenever
the correlation attack was successful this was accounted as a successful false correla-
tion attack. The proportion of all false cross-matches within all false cross-matching
attempts we refer to as false cross-match rate and denote it by FCMR. Consequent-
ly, the amount of successful false correlation attacks within false cross-matches is
referred to as false correlation attack success rate and denoted by FCASR. Note
that both the genuine correlation attack success rate and the false correlation at-
tack success rate are conditional probabilities: A correlation attack was conducted
only on a positive cross-match.

®As usual, we used minutiae features extracted with a commercial extractor (Verifinger SDK
5.0 (Neurotechnology Ltd (2006))).

6 Analogously to Section 3.4.4, we decoupled the alignment from the vault: The vault minutiae
of the second vault were mapped via the isometry aligning the second protected minutiae template
to the first protected minutiae template in clear.
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In addition to mere rates, we also report cross-match/correlation attack tim-
ings determined from our experiment. An attacker attempting to cross-match differ-
ent application’s database encounters mostly false cross-matching attempts before
he cross-matches genuine vault correspondence. Within all false cross-matching at-
tempts some wrongly cross-match resulting in a subsequent correlation attack. Hence
it seems reasonable to measure the average amount of time an attacker has to spend
for running the cross-matcher (Algorithm 4.4.2) and possibly the correlation attack
(Algorithm 4.4.1). This corresponds to an iteration procedure. Consequently, we re-
fer to this time as impostor iteration time and abbreviate it by IIT.

As a genuine cross-match attempt occurs (a priori unknown by the attacker)
and the cross-matcher positively matches them, the attacker needs to spend some
time in performing the subsequent correlation attack. The average time by perform-
ing a genuine correlation attack (given a positive cross-match) we refer to as genuine
correlation attack time and abbreviate it by GCAT. Note that the genuine correla-
tion attack time is not affected by whether the attack successfully breaks the vault
or not.

Results of our Experiment

Table 4.7: Performance of cross-matching/correlation attack against the implementation described
in Section 3.4 evaluated on the FVC 2002 DB2-A database. Rates in brackets correspond to results we
measured on the sub-database of good quality as described in Section 3.4.8. Due to failure to captures
the genuine cross-match rate corresponds to 2632 observed genuine authentication attempts (99 on
the sub-database of good quality) while the false cross-match rate is based on a total of 4851 false
cross-match attempts.

length genuine false genuine false
of secret cross-match cross-match correlation attack correlation attack
polynomial rate rate success rate success rate

GCMR (sub-GCMR) FCMR GCASR (sub-GCASR) FCASR

k= ~ 39.02% (=~ 74%) ~ 3.15% ~ 99.03% (= 100%) ~ 0.65%
k= ~ 33.24% (=~ 68%) ~ 1.69% ~ 98.51% (= 100%) =0%
k=9 A2 27.05% (= 67%) ~1.11% ~ 97.89% (= 100%) = 0%
k=10 ~ 22.6% (~ 64%) ~ 0.39% ~ 96.8% (~ 97%) = 0%
=11 ~ 18.92% (= 54%) ~ 0.21% ~ 96.59% (= 100%) = 0%
k=12 ~ 14.74% (~ 46%) ~ 0.08% ~ 97.68% (= 100%) = 0%

For example, if £ =9 an amount of
GCMR = 27.05% (4.47)
matching vault records have been successfully determined by Algorithm 4.4.2 while

FCMR = 1.11%. (4.48)

The genuine correlation attack success rate (given a genuine cross-match) has been
measured as

GCASR = 97.89% (4.49)
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Table 4.8: Computational performance of cross-matching/correlation attack against the minutiae
fuzzy vaults as in Table 4.7. The timings have been measured on a single core of an AMD Phenom (tm)
IT X4 955.

length of average genuine average impostor
secret correlation attack indexing time
polynomial time
GCAT (sub-GCAT) 1T
k= ~ 0.81s (=~ 1.15s) ~ 0.02s
k= ~ 3.5s (=~ 6.14) ~ 0.03s
k= ~ 12.94s (=~ 19.5s) ~ 0.05s
k=10 ~ 42.53s (~ 54.51s) ~ 0.04s
k=11 ~ 88.35s (=~ 157.35s) ~ 0.05s
k=12 A~ 172.2s (=~ 221.84s) ~ 0.03s

at a false correlation attack success rate (given a false cross-match) of
FCASR = 0%. (4.50)

The genuine cross-match rate corresponding to the sub-database of good quality has
been determined as
sub-GCMR = 67% (4.51)

where the corresponding genuine correlation attack success rate turned out to be
sub-GCASR = 100%. (4.52)
The false indexing time has been measured to be
IIT = 0.05s (4.53)
in average while the correlation attack of a genuine vault correspondence lasted
GCAT =~ 12.94s (4.54)

in average. The genuine correlation attack time on the database of good quality has
been measured as

sub-GCAT = 19.5s. (4.55)

For different £ = 7,...,12 corresponding rates can be found in Table 4.7 while
the timings are listed in Table 4.8.

Intermediate Discussion, Conclusion, and Outlook

According to our experiments, due to an impostor iteration time of II'T < 0.05s
the attacker is able to quickly eliminate false vault correspondences using the com-
bination of cross-matching and correlation attack. Furthermore, the genuine cross-
match rate GCMR > 14.74% (sub-GCMR > 46%) are of an order that is sufficient
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if the attacker aims for gaining user-access for just one or a few users. Note, that an
attacker can be quite certain to break at least one vault as the database share at
least a certain amount of common users.

A conclusion from our experiments is that, given a well performing alignment
mechanism, minutiae fuzzy vault implementations (as in Section 3.4) are highly
vulnerable against cross-matching via correlation. Even worse, the probability of a
successful correlation attack given a genuine vault correspondence is much too high
to claim that minutiae fuzzy vault implementations are resistant against attacks via
record multiplicity (see (Scheirer and Boult (2007))). For instance, for £ = 9 on minu-
tiae templates with good quality we were able to successfully break 67% of genuine
vault correspondences using the combination of the cross-matching algorithm and
possibly the correlation attack. With respect to successfully breaking genuine vault
correspondences, we can support the result of Kholmatov and Yanikoglu (2008),
who performed an experiment where the correlation attack successfully broke 59%
of genuine vault correspondences but with vaults built using the implementation of
Kholmatov et al. (2006).

Kholmatov and Yanikoglu (2008) additionally incorporate an exhaustive search
for vault alignment in their implementation of the correlation attack. In our exper-
iment, however, we assumed a well-solved alignment framework. If we would also
perform alignment based on vault minutiae, our cross-matching rates would proba-
bly drop. Moreover, the impostor iteration time would increase. On the other hand,
for most minutiae fuzzy vault implementations an automatic mechanism based on
auxiliary alignment data is proposed (see Section 3.4.4). The alignment, thus, could
be achieved using the public alignment helper data making exhaustive search ob-
solete. Moreover, auxiliary alignment helper data may help to filter out false vault
correspondences, i.e. it may assist cross-matching (see Section 4.2). For these rea-
sons, we decided to perform our experiments assuming the vaults are already aligned
well.

Either way, our experiments clearly confirm that the fuzzy vault implementa-
tion of Section 3.4 is vulnerable to attacks via record multiplicity—in particular, if
genuine vault correspondences are known in advance.

Furthermore, merely substituting minutiae features by other features (such as
alignment-free features as proposed by Li et al. (2010)) is not sufficient to secure
a fuzzy fingerprint vault against cross-matching or the correlation attack: As long
as similarity of ground-truth matching vault features is expected to be significant-
ly smaller than the similarity of non-matching vault features, correlating two vault
records is possible to some extent.

In Chapter 5 we propose a minutiae fuzzy vault implementation refusing vault
records to be correlated in the domain of vault minutiae. In this respect, via cor-
relation, the implementation is resistant against cross-matching and the attack via
record multiplicity.
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5. Cross-Matching Resistant
Minutiae Fuzzy Vault

In the last chapter, we have analyzed security of the fuzzy fingerprint vault. In par-
ticular, we simulated different attack scenarios by performing attacks against an own
reference implementation incorporating ideas found in the literature. Even for naive
brute-force attacks the fuzzy vault for fingerprints turns out to be highly vulnerable
and can be broken within a reasonable amount of time. To furthermore increase the
efficiency of an attack, the attacker can run statistical attacks or the false-accept
attack. The success rates achievable by the attacker are highly alarming: Even in
the best case for the system user we can only expect (with a confidence of 95%)
the attacker to run a successful false-accept attack within approximately 1 minute
(where the brute-force attack is expected to require approximately 7 months) on
an ordinary personal desktop computer. This necessarily requires to conclude that
single-finger are (with current methods) not sufficient to be incorporated in a secure
authentication scheme with usable authentication performance. Rather, with respect
to both security and usability, the capacity of multi-finger fuzzy vaults should be
investigated in more detail (Merkle et al. (2010b)). But the fuzzy fingerprint vault
has difficulties that can not be solved only by using multi-finger. If an intruder
has intercepted two application’s databases, he can expect to find genuine vault
correspondences (given both databases share common users) by cross-matching via
correlation. Even worse, with high probability he can even break a user’s account
given a genuine vault correspondence.

The problem of cross-matching and attacks via record multiplicity is not just
a problem for fuzzy vault but also concerns other authentication schemes. In a
password-based authentication scheme that are based on cryptographic hash func-
tions there exists a simple countermeasure against cross-matching: Each user pass-
word is concatenated with an additional public string uniquely linked with the ser-
vice provider, called salt; e.g., its web-address. Assume an adversary has to decide
whether two salted hash values (with different salts) are originating from the same
password. Both hash values, no matter if they came from the same or from differ-
ent passwords, are (with overwhelming probability) different. The only conclusion
the adversary can make, is that the salted passwords are different, which yields no
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additional insight to the adversary since the salts are indeed different.

In a biometric authentication scheme, based on the fuzzy commitment scheme,
without preventions, an adversary can cross-match too. Assume two commitments
¢+ v and ¢ + v are given where v and v’ are encodings of biometric templates
and ¢ and ¢ are codewords of a linear error-correcting code with error-correction
capability v. Now, the difference c4+v— (¢ +v') = (¢ —¢) + (v — ') can be corrected
to the codeword ¢ — ¢ if v — v is of hamming weight < v. Otherwise, if v — v’ is of
hamming weight > v with overwhelming probability (depending on the parameters
of the error-correcting code; see Section 2.3.3), the difference can not be corrected
to any codeword. Thus, only from whether the intruder is able to decode he has a
criterion to cross-match. Furthermore, the more v and v’ agree, the easier it is for
the attacker to even break both the commitments using a decodability attack, which
is an attack via record multiplicity (Kelkboom et al. (2011)). Fortunately, for each
application, an individual permutation of the positions in the vector v can effectively
prevent an attacker to cross-match across different application’s databases or to per-
form the decodability attack. The individual permutations in the fuzzy commitment
scheme can be considered as to play the role of password salts.

Most implementations of the minutiae fuzzy vault (see Section 3.2.4) are vul-
nerable to cross-matching and the correlation attack (see Section 4.4). In order to
achieve resistance against cross-matching we can incorporate a user password ad-
ditionally to the vault as proposed by Nandakumar et al. (2007b). Using a user
password, however, causes inconveniences we used to have with a password based
authentication scheme, e.g., efforts for the user to keep the passwords secret (see the
introducing discussion of Section 2.2).

In this chapter we develop an implementation of a minutiae fuzzy vault that
is resistant against cross-matching without additional passwords. Resistance against
cross-matching is achieved by rounding genuine minutiae to a rigid grid within the
image region. Instead of generating a few chaff features, i.e. selecting a few grid
points, at random, the vault features comprise the whole grid. In such a way, bar-
ring alignment, the feature set of two different vault instances are equal yielding no
criterion to an intruder to match vault features via correlation. As a consequence,
if an attacker has run Step 1 of Algorithm 4.4.1 the unlocking would consist of the
entire vault points. This makes the correlation attack at least as hard as attack-
ing one of the vault instances individually. Irrefutably, such an implementation is
resistant against the correlation attack, and with the same argument also against
cross-matching via correlation.

For our implementation we have deduced parameter configuration in a train-
ing stage that would result in good authentication performance. Unfortunately, on
authentication the decoding timings would be much too costly when performed anal-
ogously to the decoding mechanism used in most implementation from the literature
(Liet al. (2010); Nagar et al. (2008, 2010); Nandakumar et al. (2007a,b); Uludag and
Jain (2006); Uludag et al. (2005)). On the other hand, if one of the efficient polyno-
mial time algorithm for decoding Reed-Solomon codes were used (Guruswami and
Sudan (1998); Massey (1969)), the genuine acceptance rate would drop drastically.
As a trade-off we propose the use of a randomized decoder in where in each of a
preliminarily fixed number of iterations the candidates for interpolation points are
chosen randomly from the unlocking set rather to choose all combinations of all inter-
polation points systematically. For our proposed vault construction the randomized
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decoder turns out to have the potential of providing good genuine acceptance rate
at low false acceptance rate as we observed in an experiment conducted on a public-
domain database. Well conceived, the randomized decoder might be incorporated
into a multi-finger fuzzy vault implementation.

Another advantage of using exactly reproducible vault features (such as coarse-
ly quantized minutiae) is that the modified fuzzy vault construction proposed by
Dodis et al. (2008), which avoids the generation of chaff points, can be applied with-
out affecting authentication performance or security against the brute-force attack.
As a consequence, the storage size of each vault instance reduces significantly. On the
other hand, although we see no efficient way to perform an attack via record mul-
tiplicity, without prevention multiple instances of the modified vault construction
can be cross-matched to some extent. Fortunately, by choosing different encodings
from vault features to finite field elements for each application, cross-matching can
be effectively prevented (similar to as a permutation can prevent cross-matching in
a fuzzy commitment scheme (Kelkboom et al. (2011))).

This chapter is outlined as follows. In Section 5.1 we describe how minuti-
ae from an input minutiae template are selected and quantized. Furthermore, we
describe how they can be protected using a fuzzy vault scheme without weaken it
against cross-matching via correlation. Afterwards, in Section 5.2 the vault work of
the modified fuzzy vault scheme proposed by Dodis et al. (2008) is reviewed and we
describe how it can be used to protect the quantized minutiae templates we propose
in Section 5.1. Afterwards, in Section 5.3 we specify how we selected vault parameter
in a training conducted on the FVC 2002 DB2-B dataset (Maio et al. (2002)). In
Section 5.4 we define the randomized decoder and describe how it can be used on
authentication. After a description of the details of our proposed implementation in
Section 5.5, we report the result of a performance evaluation we conducted on the
FVC 2002 DB2-A database in Section 5.6. Subsequently, analyses of the three dif-
ferent attack scenarios that we discussed in Chapter 4 are given in Section 5.7. This
comprises a discussion on to what extent cross-matching is possible and how it can
be prevented when the modified vault construction of Dodis et al. (2008) is used for
building the vault records. Finally, in Section 5.8 we compare our implementation’s
authentication performance and security with those of other implementations of the
fuzzy fingerprint vault proposed in the literature.

5.1 Basic Vault Construction

We start with the description on how we encode a minutia as an element of a
finite field.

5.1.1 Vault Feature from a Single Minutia

Let Ry, ..., R,._1 be those coordinates of a hexagonal grid of distance A that lay
in the regions of a fingerprint’s image. We fix a parameter o controlling how coarsely
minutiae directions are quantized: Using «, we divide the range [0, 27) into equally
sized connected quanta; more precisely, for j = 0,...,2% — 1 define the interval

D;=1[j-2r/2%, (j+1)-21/2%).
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Now, for each i = 0,...,7r—1and each j =0,...,2% —1 we fix a unique element z;
of an appropriate finite field F.! More precisely, ¢ # i’ or j # j' implies z; ; # ;.
A minutia m = (a,b,0) at the location (a,b) and of direction # is then encoded as
follows. First, we determine which grid point R; is closest to (a,b).? Second, let j be
the unique index j such that 6 € D;. In such a way, we encode the minutia m via
the map

qg:me—= ;. (5.1)

Note, different minutiae can have an equal quantization, e.g., if they are very close
and have similar direction. In this way, minutiae quantizations can occur in the
universe

E={ qg(R,j-2n/2%) | i=0,....,7—1, 5=0,...2=1 } (5.2)

of size r - 2%,

In the following we describe how we encode a full minutiae template as the set
of genuine features.

5.1.2 Vault Feature Set from Minutiae Template

Let ¢ be a bound on the template size and T" be an input minutiae template.
In order to only quantize the most reliable minutiae from 7" we assume that T is
sorted in dependence of minutiae quality (Chen et al. (2005)). More precisely, write

T= {ml,mg,...} (53)

such that if m; is of better quality than m; then ¢ < j is assumed. We quantize the
minutiae from 7' successively collecting the quantization in a feature set A until it
reaches as size at most t.

More precisely, the feature set after the ¢th minutia has been quantized contains

A ={q(m),... q(my) | j=min(i, #7) }. (5.4)

Note, that
AL CA,C...CA,. (5.5)

If q(m)z c Ai—l then Ai—l = Az ThUS, |Az’ <.

We define the feature set to contain at most ¢ elements. Hence, we stop to
quantize minutiae from 7" if |A;| = t or if all minutiae from 7" have already been
quantized, i.e. if 1 = t. More precisely, the final feature set is defined to be

A = argmax{ #A,; | #A, <t }. (5.6)
A;

In Algorithm 5.1.2 (below) the construction of the set A is described in algorithmic
description.
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(a) minutiae template (b) genuine vault features (c) entire vault features

Figure 5.1: If @ = 0, depending on where minutiae locations occur (a) points of a hexagonal grid
are selected (b) to result in the template of coarsely quantized minutiae. Every possible grid point (c)
encodes a vault point such that the feature set between different vaults are equal. As a consequence,
correlation of multiple vault records (see Section 4.4) does not help to filter out chaff points.

5.1.3 Enrollment: Vault Construction

A simple way to protect A using a vault construction that is resistant against
cross-matching via correlation is to encode the genuine points by the elements of A
while the chaff points are encoded by the remaining elements in E, i.e. E\ A. In such
a way, an attacker is not able to gain any benefit from correlating two matching vault
records—mneither to cross-match nor to recover the templates via record multiplicity.
The reason is, that (barring alignment) the vault features are equal. Hence, the
unlocking set in Step 1 of Algorithm 4.4.1 consists of the entire vault, no matter
what x > 0 has been chosen. As a consequence, cross-matching two vault records
via correlation is at least as hard as breaking one of the vaults individually.

The remaining details to construct the vault can be implemented following the
formal description of Section 3.1: Given a secret, encoded as a polynomial f € F[X]
of degree < k, for every x € A the genuine set

G={(af@)|recA} (5.7)

consists of those vault points binding the feature set A to the polynomial f. The
genuine points are hidden by the chaff points, which are encoded by the elements of
E \ A, where the ordinate values are chosen randomly such that the corresponding
points do not lay on the polynomial’s graph. More formally,

C={(z,y) |z €cE\A, yer F\{f(2)} }. (5.8)

!Note, for the finite field F it is required that #F > r - 2%,
2Note, that there does not need to exist a unique nearest grid point. The grid point R; has to
be determined by a rounding-convention.
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Finally, the public vault data is
(V. h(f)) (5.9)

where V.= G U C and h(f) denotes a cryptographic hash value of the polynomial
f.

5.1.4 Authentication: Ordinary Iterative Decoder

Assume a minutiae template aligned to the vault (V, h(f)) is given on authen-
tication. Query vault features B C F are extracted in the same manner as genuine
vault features have been extracted on enrollment, i.e. B contains at most ¢ elements.
Next, the unlocking set is constructed by letting

U={(zr,y)y eV]zeB} (5.10)

Now, following the ordinary iterative decoding procedure that we already used for
our implementation of Section 3.4 (see Section 3.4.3), and which has been used in
most implementations of the fuzzy fingerprint vault from the literature (Li et al.
(2010); Nagar et al. (2008, 2010); Nandakumar et al. (2007a,b); Uludag and Jain
(2006); Uludag et al. (2005)), we iterate through all combinations of k different
unlocking points from U and determine its interpolation polynomial f*. If h(f*) =
h(f) then the secret f* is output and the authentication was successful. Otherwise,
we continue with the next combination of k different unlocking points until one of its
interpolation polynomial can be successfully re-identified with the help of its hash
value. If no combination yields a polynomial with hash value h(f) the authentication
is considered to be unsuccessful.

The ordinary iterative decoder requires the unlocking set U to have quite a
limited size, which contains as many elements as B, while the size of the secret k
must be well-balanced. More precisely, to feasibly decode the unlocking set U the

number of iterations
t t!
= 5.11
(k:) El-(t—E)! ( )

must be possible to perform within a reasonable amount of time.

We will see below, that the above expression becomes too large for parameters
that we determined in a training stage. As an effective countermeasure, we will
propose a randomized decoder that slightly differs from the systematic decoding
procedure above.

In other implementations of the fuzzy vault to fingerprints, on authentication,
there is an extraction step. For example, in the implementation described in Section
3.4 the query minutiae template is used to extract vault minutiae, and thus their
corresponding vault points. If among the extracted vault minutiae there are at least
k genuine vault minutiae the decoding procedure will be successful in recovering
the protected polynomial. For our vault construction, there is no extraction step on
authentication. Rather the success of authentication depends on how many genuine
vault features have been successfully reproduced and are contained in the query
feature set. In other words, if A N B contains at least k elements, the iterative
decoder will successfully recover the protected polynomial.



5.1. Basic Vault Construction 93

5.1.5 Implementation Details

It remains to specify some of the details how we build the feature sets from a
minutiae template.

Hexagonal Grid

Minutiae locations, for example, are rounded to the points of a hexagonal grid
laying in the region of the corresponding fingerprint image of dimension M x N.
Furthermore, this grid depends on the minimal distance A > 0 of grid points. Given
M x N and A the hexagonal grid we use for quantizing minutiae can be determined
by the following algorithm.

Algorithm 5.1.1 (Hexagonal Grid Points).

Input: The dimension in where minutiae locations can occur M x N; the minimal distance A > 0
of the hexagonal grid.

Output: A list Ry, ..., R-—1 of hexagonal grid points laying within the fingerprint image’s dimen-
sion M x N.

1: /* initialize */
dx + X -tan(60°)/2;
7 < 0;

2: /* shifts for centering grid points */
29 (M —|(M —1)/dz] - dx)/2;
Yo = (N = (N =1)/A] - A)/2;

3: /* loop on z-coordinate */
T < Zo;
while x < M

4: /* determine alternating offset of y-coordinate */
if 4 is even
Y+ Yo+ A/2;
else
Y < Yo;
endif

5: /* loop on y-coordinate */
while y < N

6: /* add to list */
Ry« (2,y);

7 /* increment y-coordinate */
Yyt
r— 1+ 1;
end

8:  /* increment z-coordinate */
T ¢+ dx;
endfor

9: /* output */
return Ry, ..., R.—1.

The values xy and gy are used to center the grid points such that the grid points do
well fit into the fingerprint’s image region.
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When the algorithm is run with input M = 296, N = 560, and A = 22 we
obtain a list of » = 405 grid coordinates centered in an image of dimension 296 x 560,
which is the dimension of the images contained in the FVC 2002 DB2 database as
visualized in Figure 5.1.

Finite Field

The quantization of minutiae are represented as elements of a finite field F'.
Except its size there is no particular restriction for the finite field. More precisely,
the finite field must have cardinality

F|>2%7, (5.12)

where « controls how significantly minutiae angles are taken into account and r
denotes the size of the hexagonal grid used for quantization. If the above inequality
is satisfied, the finite field is of sufficient size such that it can encode each minutia’s
quantization (index of grid point and a-bit quantization for the direction) following
the description of Section 5.1.1.

If @ and r are kept within reasonable limits (e.g, a < 4 and r < 22 = 4096)
then each minutia’s quantization can be encoded using 16 bits. Thus, it suffices to
use a finite field of cardinality 2!, which is widely used for many purposes. Further-
more, the size of this finite field is not too large. This makes the pre-computation
of logarithm and anti-logarithm multiplication tables possible, which significantly
accelerates subsequent finite field arithmetic.

For these reasons, throughout we use the finite field

F = Fa6 (5.13)
for computations with the vault, even if we do not mention this explicitly.?

Hash Value of Secret Polynomial

To allow safe recovery of the secret polynomial f we additionally store a crypto-
graphic hash value h(f) along with the vault. Again, there is no particular restriction
which cryptographic hash function we use for this purpose except security and per-
formance.

For simplicity, we use the secure hash algorithm (National Institute of Stan-
dards and Technology (1995)). Even though there are more secure hash algorithms
(National Institute of Standards and Technology (2002)), we claim that the SHA-1
is sufficient for our evaluation purposes.

Given the polynomial f, by h(f) we denote its SHA-1 hash value. The value
h(f) depends on how the data of f is represented. Write

fX)=fo+fi- X+ for X2+ + fa- X0 (5.14)
where d < k and fq # 0. Then fo,..., fs € F are 2-byte (16-bit) values. The values
fi are concatenated (fo|| - -||fa) such that an array of (d + 1) - 2 bytes is obtained.

This array is passed as input to the secure hash algorithm as described in (National
Institute of Standards and Technology (1995)) to obtain the corresponding hash
value as a 20-byte (160-bit) array.

3More specifically, we have chosen the isomorphy class F ~ Fo[X]/(1 + X + X3 + X5 4+ X16).
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Quantization of Minutiae

When the hexagonal grid, o, and the finite field are given, we can perform the
quantization of a single minutia. This quantization procedure corresponds to the
map ¢ : {m} — F as we have already generically used it in Section 5.1.1. We next
outline how we use to quantize minutiae, i.e. how we implement the map ¢g—even
though there are other valid ways to realize this.

Let m = (a, b, ) be a minutia at location (a, b) and of direction # € [0, 27). The
way the minutia m is quantized depends on both the minutia’s position (a,b) and
its direction #. More precisely, in numerical representation the minutia m quantizes
as

dtm) =g @~ 1) | (5.15)

or
where

j=min{i : [|R; — (a,b)|2 = d}

d = min{||R; — (a,b)||2}. (5.16)

Note, that there might be multiple ¢ such that R; is closest to (a,b), i.e. |[R; —
(a,b)||2 = d, where d is the minimal distance of the position to the hexagonal grid

points Ry, ..., R,_1. Since we desire that only a single hexagonal grid point should
be associated with (a,b), we extract the first hexagonal grid point occurring in the
list Ro, ..., R, that is of minimal distance to (a,b). In other words, the way we

defined the index j corresponds to a rounding convention.
To encode the a-bit quantization of the direction # of the minutia m indepen-
dently from the grid point index j the quantization of the direction

0
2 —1) - — 5.17
[ (5.17)
must be shifted by a multiple of . The sum gives the quantization in integer repre-
sentation.

The expression (5.15) interpreted bit-wisely as an element of the finite field F
finally encodes a quantization of the minutia m.

For the matter of completeness, we give an algorithmic description that quan-
tizes a full minutiae template according to (5.6). The description on how a minutiae
template is quantized is better understood by an informal description, so we give
such a description prior to an algorithmic description.

Roughly speaking, the procedure requires a list of minutiae (e.g., sorted by
their respective qualities achieved by some convention). The minutiae in the list are
quantized iteratively according to (5.15) and interpreted as an element of a finite
field. These elements are inserted into the set containing the minutiae quantization.
The iteration stops if there are no more minutiae contained in the list or if the set of
quantized minutiae has reached a size of a pre-determined bound ¢. More formally,

Algorithm 5.1.2 (Quantization of Minutiae Template).

Input: A minutiae template given as a list my, ..., my; a bound on the size t of the
set containing collecting quantized minutiae.
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Output: The set of A C F as in (5.6).

1. /* initialize */
A 0
14 1;

2: /* iterate */
while i < s and |[A] <t

/* if ¢(m;) is not contained in A the size of A will increase */
A — AU {q(m)};

141+ 1;
end

3: /* output */
return A;

5.2 Modified Vault Construction without Chaff
Points

An advantage of our construction is that it can be easily modified such that the
modified vault construction proposed by Dodis et al. (2008). Using the construction,
the generation of chaff points is avoided which results in significantly smaller record
sizes.

The modified vault construction is easily described. Let A C F be the set of
genuine quantized minutiae and f € F be the secret polynomial of degree < k. The
modified vault construction essentially is the polynomial

V(X)=f(X)+ [ (X - ) (5.18)

zeA

instead of points in F x F.
Note that if z € A then

V() = f(z) (5.19)
and thus (z,V(z)) is a genuine point. Conversely, if x ¢ A then
Vie) # f() (5.20)

and thus (z, V (z)) is a chaff point. Consequently, the genuine points for the modified
vault constructions are

G={(z,V(x) |z €A} (5.21)

and the chaff points are
C={(z,V(x) |z€E\A} (5.22)

where E C F is the universe in where vault features can occur (also see Equation
(5.2)). Using a vault polynomial that is of degree ¢t = |A| instead of vault points,
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the generation and storage of chaff points can be effectively avoided.

On authentication, an (alleged genuine) user provides a second minutiae tem-
plate aligned to the vault from where quantized minutiae B C F are extracted. The
unlocking set is obtained by letting

U={(2,V(z)) | z€B }. (5.23)

The success of decoding the unlocking set U, as for the basic vault construction,

depends on how many elements the genuine feature set A and the query feature set
B share.

The big advantage of the modified vault construction, is that the record sizes
are significantly smaller than those for the original vault construction.

For a discussion of the information theoretic security of the above construction
we refer to (Dodis et al. (2008)). We make the remark that an instance of the original
vault construction can be derived from the modified vault construction by letting

V={(z,V(z))|z€E }=GUC. (5.24)

In this way, the difficulty in breaking a modified vault construction is equivalent
to breaking an instance of the original vault construction. Yet the chaff points are
not generated randomly anymore. However, an adversary has a minor chance to
cross-match multiple instances of the modified vault construction even if this does
not necessarily enable an attack via record multiplicity. This point as well as a
countermeasure will be discussed during Section 5.7.

Anyway, on authentication the success of decoding the unlocking sets does not
depend on what vault construction is used and thus authentication performance is
not affected. But the modified vault construction is a simple and elegant solution to
avoid the storage of chaff points, which can become very large in number.

5.3 Training

For the parameters introduced in Section 5.1 we performed systematical tests
to find a good vault configuration.

5.3.1 Configuration

According to our description, vault configuration depends on

A, which controls the number of grid points r,

a determining how coarsely a minutia’s direction is to be taken into account,

t is the upper bound of the size of the genuine set, and

e k bounds the degree the secret polynomial can have.

5.3.2 Training Database

We used FVC 2002 DB2-B (Maio et al. (2002)), which is intended for training
purposes, to find a good parameter configuration. This set consists of scans of 10
different fingers (indexed 101, ..., 110). For each finger, 8 scans are contained in the
dataset yielding a total of 80 fingerprint images.

To obtain the corresponding minutiae templates (sorted with respect to their
estimated qualities), a commercial extractor (Neurotechnology Ltd (2006)) has been
used.
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5.3.3 (Genuine Acceptance Rate

For a given configuration, we determined the genuine acceptance rate and the
false acceptance rate according to the FVC protocol (Maio et al. (2002)).

More precisely, the genuine acceptance rate for a fixed configuration, was de-
termined as follows. For each finger index ¢ = 101,...110 and each scan j =1,...,7
the corresponding minutiae template T" was quantized as A following the procedure
of Section 5.1.2. Then for each j* = j 4+ 1,...,8 the j'th scan of the ith minutiae
template aligned to T" was quantized as B.

We counted how many elements the sets A and B share. If |A N B| > & then
the authentication attempt was counted as a success. Otherwise, if |A N B| < k the
authentication attempt was unsuccessful.

The proportion of successful genuine authentication attempts within the total
number of simulated genuine authentication attempts (i.e. 10-(7-8)/2 = 280) yielded
the genuine acceptance rate.

Note, it is not necessary to build the vaults (basic or modified construction) or
to perform the exhaustive decoding work for determining the authentication rates.
A successful decoding using the ordinary iterative decoding procedure occurs if and

only if [ANB| > k.

5.3.4 Alignment

In the protocol used to obtain the genuine acceptance rate, we assumed that
the query fingerprints were aligned to the vaults. To simulate authentication per-
formances in a well-solved alignment framework, we decoupled the alignment work
from the vault. Consequently, the alignment was obtained by aligning both minutiae
templates in clear.

For our training and experiments, we used the same alignment procedure as we
already used for the performance evaluation of our standard minutiae vault imple-
mentation (see Section 3.4.4). However, even if we performed our investigations by
assuming a well-solved alignment framework, fingerprint alignment under security
aspects still asks for a valid solution.

5.3.5 False Acceptance Rate

Analogously to the FVC protocol, the false acceptance rates for a given config-
uration were determined as follows: For each finger ¢ = 101, ...,109 and each finger
i =i+ 1,...,110 the templates T" and S corresponding to their respective first
impressions were acquired. 7" was quantized as A and S as B analogously to the
description of Section 5.1.2. If |A N B| > k, the impostor authentication attempt
was counted as a successful match and as a non-match otherwise. The number of
successful impostor authentication attempts within the number of totally observed
impostor authentication attempts ((10-9)/2 = 45) yielded the false acceptance rate.
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Figure 5.2: Genuine- and false acceptance rates on FVC 2002 DB2-B for A = 22, o = 2, t = 46, and
varying k

Table 5.1: Training result: Genuine acceptance rates and false acceptance rates for varying k on the
FVC 2002 DB2-B

size of genuine false security
secret acceptance | acceptance against
polynomial rate rate brute-force
in % in % attack
k GAR FAR bf (2% - n,t, k)
4 = 100% ~ 15.56% ~ 221
) ~ 99.64% ~ 2.22% ~ 226
6 ~ 99.29% =0 ~ 231
7 ~ 97.14% =0 ~ 236
8 ~ 94.64% =0 ~ 242
9 ~ 91.07% =0 ~ 247
10 ~ 89.29% =0 ~ 293
11 ~ 83.57% =0 ~ 258
12 ~ 77.14% =0 ~ 204




100 5. Cross-Matching Resistant Minutiae Fuzzy Vault

5.3.6 Training Results

We applied the protocols to determine the genuine acceptance rate and false
acceptance rate for all configurations of

A=38,...,32
a=0,...,3

5.25
t=10,...,60 , and ( )
k=1,...,t

The best configuration, with respect to the highest genuine acceptance rate (GAR)
at the zero false acceptance rate (FAR), was obtained as

A=22
a=2
5.26
t =46 (5.26)
k=6
with corresponding authentication rates
GAR =~ 99.29% and
(5.27)

FAR = 0%.

Note, the false acceptance rate is not identical to zero but there occurred no false
accept within 45 impostor authentication attempts.

For the configuration determined in the above training, the security against
the brute-force attack of Section 4.1 can be determined as follows. The images of the
FVC 2002 DB2 are of dimension 296 x 560 pixels. As a consequence, the number of
hexagonal grid points that fit in the images region is

r = 405. (5.28)

As a result, vault security against the brute-force attack of Section 4.1 estimates as

—1
bf(2* - 1., k) = bf(4 - 405, 46,6) = (16620) : (466) ~ 23, (5.29)

Higher resistances against the brute-force attack are achievable for higher k£ while
the genuine acceptance rate drops correspondingly as sketched by Figure 5.2.

Consequently, from our training the configuration we used for our experiments
is

(5.30)

and k is varying.
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5.4 Randomized Decoder

Even if the authentication performances as well as the brute-force securities
(for higher k) of our minutiae fuzzy vault implementation look promising (see Table
5.1), there remains a problem concerning the decoding work.

For example, if 249 security is sought, a secret size at least k = 8 should be used.
The ordinary iterative decoder (see Section 5.1.4) would require a computational cost

up to
(2) = (486> ~ 2% (5.31)

before a user gets authenticated or rejected. This, however, is far away from being
acceptable for a user-friendly authentication scheme. In the following, we propose a
mechanism to deal with this problem.

5.4.1 Bound the Number of Decoding Iterations

On decoding an unlocking set U of size t we fix a bound of iterations D. Instead

of iterating through all
t t!
= 5.32
(k‘) kL. (t—E)! (5:32)

combinations of k distinct unlocking points systematically, we randomize this pro-
cedure: For at most D iterations, we randomly select k elements from the unlocking
set U, determine its interpolation polynomial f*, and test whether h(f*) = h(f). If
R(f*) = h(f) then f* is output as the correct polynomial; otherwise, we repeat with
the next iteration.

The iteration bound D must be chosen such that decoding will be likely suc-
cessful if U contains a reasonable amount of genuine points.

5.4.2 Change in the Genuine Acceptance Rate

When using the randomized decoder, we first should investigate how genuine
acceptance rate and false acceptance rate change.

Within each iteration in the randomized decoder there is a non-zero chance
that the secret polynomial can be reconstructed if the unlocking set contains at
least k genuine points. More precisely, for a single iteration the chance that the
randomized decoder will output the secret polynomial if the unlocking set of size t
contains exactly w > k vault points is

bf(t, w, k) = (2) - (‘;) o (5.33)

Consequently, if D iterations are performed to decode, the probability for a success
is

e(w,t,k, D) =1— (1 —bf(t,w, k)™ HP. (5.34)

Let
GAR(w) =P( #(ANB) > w | A and B are true matches ) (5.35)

denote the chance for a genuine query template to overlap with the reference tem-
plate in at least w elements (note, these rates coincide with the rates for if the
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ordinary iterative decoder were used). Then the genuine acceptance rate using the
randomized decoder extrapolates as

GAR > e(w.t,k, D) - (GAR(w) — GAR(w + 1)). (5.36)

w>k

For a sharp estimate it would be necessary to make use of the distribution
function on the size of unlocking sets. Even more inconvenient, conditional proba-
bilities for an unlocking set to contain at least w genuine points given the size of
the unlocking sets would be required. Measurements for these conditional proba-
bilities can be done on very small test sets for the FVC 2002 DB2 database. As a
result, they are unreliable. For these reasons, we will use the bound (5.36) to relate
the change of genuine acceptance rate of our implementation using the randomized
decoder to the genuine acceptance rates that would be achievable for the ordinary
iterative decoder. Even if the genuine acceptance rate would be larger than (5.36)
it is safer to give a lower bound for the genuine acceptance rate rather an upper
bound. Thus, we will use (5.36) to estimate the genuine acceptance rate.

5.4.3 Change in the False Acceptance Rate

The false acceptance rate changes analogously.
For varying w let

FAR(w) =P( #(ANB) > w | A and B are false matches ) (5.37)

denote the chance for a non-genuine query template to overlap with the reference
template in at least w elements. Then the false acceptance rate fulfills

FAR > ) "€(w,t,k, D) - (FAR(w) — FAR(w + 1)). (5.38)

w>k

However, for the false acceptance rate it is safer to have an estimation as an upper
bound.

Easily, an upper bound of the false acceptance rate can be deduced by observing
that a necessary condition for a false accept is that the unlocking set contains at
least k genuine points. Thus,

FAR < FAR(k). (5.39)

However, this estimation is very coarse and it will allow us to report only quite high
false acceptance rates.

To give a sharper upper bound, we first establish notation. Let u(s) be the
distribution for unlocking sets of size smaller than s. The size of an unlocking set
is equals to the size of the corresponding query template B in our implementation.
Thus for random query templates B

u(s) =P( #B < s ). (5.40)

Furthermore, by FAR,(w) denote the chance for two non-matching templates to
contain at least w elements given the unlocking set contains exactly s < ¢ elements,
ie.

FARs(w) =P( #(ANB) > w | A and B are false matches, #B =s). (5.41)
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With this notation the false acceptance rate can be written as

FAR =Y > e(w,skD)- (u(s) —u(s — 1)) - (FAR,(w) — FAR,(w + 1))

w>k  s>w
<> ) ew, s,k D) (uls) — us — 1)) - FAR,(w).
w>k  s>w
(5.42)
We assume that
FAR;(w) < FAR;(w) (5.43)

as s < t. In other words, the assumption states that the more elements an unlocking
set contains the more genuine points it contains. Using this assumption it follows
that

FAR <Y Y e(w, s, kD) (u(s) — u(s — 1)) - FAR,(w)

w>k  s>w (5.44)
=) FAR,(w) > e(w,s, k. D) (u(s) —u(s — 1)).

The above bound might exceed 1. But (5.39) gives an upper bound for the false
acceptance rate in [0, 1]. Thus, the false acceptance rate fulfills

FAR < min{ ZFARt(w) . Ze(w, s, k, D) (u(s) —u(s—1)),
w>k s>w (545)

FAR(K) }.

Above, we derived a lower bound for the genuine acceptance rate and an up-
per bound for the false acceptance rate achievable using our proposed randomized
decoder. We related these bounds to the genuine and false acceptance rates that
would be achievable when the ordinary iterative decoder were used—although the
ordinary iterative decoder would consume an unrealistic large amount of computer
time for being implemented in practice. Therefore, we refer to these rates GAR(w)
and FAR(w) as hypothetical genuine acceptance rate and hypothetical false acceptance
rate as both reflect authentication rates. Below, for the performance evaluation using
the randomized decoder we additionally measured the hypothetical authentication
rates and used them to derive the bounds for the genuine and false acceptance rate.

Since the bound given in (5.45) can be used to estimate an upper bound for
the false acceptance rate, it is useful to find a reasonable vault configuration that
is based on the randomized decoder. In particular, it is useful to find a reasonable
choice for the number of iterations in the randomized decoder, as we discuss in the
following.

5.4.4 Configuration for the Randomized Decoder

As above, the vault’s configuration consists of the parameters

e )\, which controls the number of grid points r,

e « determining how coarsely a minutia’s direction is to be taken into account,
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e ¢ is the upper bound of the size of the genuine set, and

e L bounds the degree the secret polynomial can have.

Since we base our vault on the randomized decoder, there is a further parameter to
be taken into account for vault configuration, namely

e D, which is the number of decoding iterations.

To some extent, we are free in choosing D, for it does not influence the com-
plexity of the brute-force attack: The magnitude bf(n,t, k) is not affected by D.

The genuine acceptance rate and the false acceptance rate, however, are influ-
enced by D: With the notation of Section 5.4.2 and Section 5.4.3 for the genuine
acceptance rate GAR and the false acceptance rate FAR we have that

GAR  GAR(k), and

5.46
FAR " FAR(k), respectively, as D — co. (5.46)

In other words, the larger D the more GAR and FAR approach the hypothetical
genuine acceptance rate GAR(k) and the hypothetical false acceptance rate FAR(k),
respectively. This might have some impact for an attacker who is attempting to
perform a false-accept attack: The attacker also is free to choose a bound of iterations
such that he minimizes the time needed for a successful false-accept attack. On the
other hand, the time for a single iteration in the false-accept attack increases as
D increases. Thus, the attacker may choose the D that minimizes the overall time
for a successful false-accept attack. Anyway, in Section 5.7.2 we investigate how the
attacker may choose a D that yields the fastest false-accept attack.

5.5 Implementation

We implemented our proposed cross-matching resistant fuzzy vault for per-
forming evaluations. The implementation was realized in the C++ programming
language (Stroustrup (2000)) and is part of an own software library that we call
thimble. The main functionalities of thimble are described in the appendix in Sec-
tion A on page 127. In the following, we give algorithmic descriptions on how we
implemented vault construction and authentication.

5.5.1 Enrollment

On enrollment, a list of minutiae my, ..., my and a secret encoded as a polyno-
mial f € F[X] of degree < k are given. The minutiae are quantized using Algorithm
5.1.2 resulting in the reference template A C F. Using the modified fuzzy vault
scheme (see Section 5.2) a monic polynomial V' € F[X] is constructed by binding f
to the reference template A. If ' = |A|, then V has degree exactly ¢'. Moreover, the
SHA-1 hash value h(f) is stored publicly along with the vault to allow safe recovery.

In algorithmic description, the above can be described as follows.

Algorithm 5.5.1 (Enrollment).
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Input: A configuration as in Section 5.4.4; a minutiae template given as a list
my, ..., m, sorted by their respective qualities; a secret encoded as a polynomial
f € F[X] of degree < k.

Output: A monic polynomial V(X) of degree < t and the hash value A(f) or
FAILURE.

1. /* extract template */
use Algorithm 5.1.2 with input my,..., m, and ¢t to obtain the discretized set
A C F containing at most ¢ quantized minutiae;

2: /* test if the template can encode the secret */
t'«+ |A];
ift <k
return FAILURE;
end

3: /* polynomial interpolation */
determine the vault polynomial as described in Section 5.2, i.e.

V(X)  f(X)+ [ (X =) (5.47)
T€EA

4: /* output */
return V' and A(f).

5.5.2 Authentication

On authentication, the query minutiae template is quantized as in (5.6). The
vault polynomial V' is evaluated on the quantized query minutiae to obtain the un-
locking set U C F x F.

As the unlocking set U is extracted using the query template, we propose to
apply the randomized decoder (see Section 5.4). It works by choosing randomly k
different vault points from U that are used to determine its corresponding interpo-
lation polynomial f*. If h(f*) = h(f) then f* is output and the query is accepted.
Otherwise, we continue with a new iteration by randomly choosing a new subset
containing k different points from U. At most D = 2!6 iterations are performed this
way. If no polynomial f* with h(f*) = h(f) is seen in an iteration, the query is
rejected.

In algorithmic description, the randomized decoder can be formulated as fol-
lows.

Algorithm 5.5.2 (Randomized Decoder).

Input: An unlocking set U C F x F; a hash-value h(f); a bound on decoding
iterations D.
Output: A polynomial f* with h(f*) = h(f) or FAILURE.

1. /* test */
if |U| <k
return FAILURE;
end
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2: /* iterate */
fory=1,...,D

choose k points (z1,y1), ..., (Zk, yx) € U uniformly at random;

determine a polynomial f* of degree < k such that

@) =y, (@) = yns
if h(f*) = h(f)

return f*;
end

end

3: /* the decoding was not successful */
return FAILURE;

Consequently, the authentication procedure can be described as follows.
Algorithm 5.5.3 (Authentication).

Input: A vault (V(X),h(f)) as output by Algorithm 5.5.1 and its configuration as
in Section 5.4.4; a query minutiae template sorted increasingly by their qualities
my, ..., m,, respectively, aligned to the vault (V(X), h(f));

Output: Either a polynomial f* with h(f*) = h(f) or FAILURE.

1. /* quantize minutiae */
call Algorithm 5.1.2 with input m},..., m/, and ¢ to obtain a set B C F of size
at most ¢ containing quantized minutiae encoded as finite field elements;

2: /* unlocking set */
U « 0;
forallz € U
U= UU{(z, V(2)}
end

3: /* randomized decoding procedure */
return the result of Algorithm 5.5.2 with input U, h(f), and D.

5.6 Performance Evaluation

To evaluate the performance of our vault implementation, we conducted tests
on the FVC 2002 DB2-A dataset (Maio et al. (2002)).

5.6.1 Evaluation Configuration

For our experiments we have chosen the configuration according to the result
of our training (5.30) and for varying polynomial length k. Furthermore, we have
chosen D = 26, which corresponds to a number of decoding operations that is
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feasible to perform on current hardware. Therefore, the vault we used for evaluation
was configured by the following parameters:

A=22

o =2

L 46 (5.48)
D =2'°

where the length of the secret polynomial k is varying.

5.6.2 Evaluation Database

The FVC 2002 DB2-A database consists of a total of 800 images from 100
different fingers (index 1,...,100). As in FVC 2002 DB2-B, 8 scans of each fin-
ger are contained in the database. Again, as for the training stage, a commercial
extractor (Verifinger SDK 5.0 (Neurotechnology Ltd (2006))) has been utilized to
obtain the corresponding minutiae templates sorted by their qualities, which are
the very same templates that have been used for the performance evaluation of our
reference implementation described in Section 3.4. Furthermore, we assume that for
a genuine authentication attempt the query images are aligned to the vault. The
way we align query templates to the vault is described in Section 3.4.4 on page 50.
Moreover, the section also contains a discussion for the reasons why we investigate
vault performance in a well-solved alignment framework.

5.6.3 Evaluation Protocol

For a given vault configuration, the way we conducted performance evalua-
tion of our implementation follows exactly the description of Section 3.4.7, which
corresponds to the FVC protocol (Maio et al. (2002)). Moreover, to compare the
performance of our implementation with those of other implementations in the liter-
ature we also report rates on the sub-database whose templates have been extracted
from fingerprint images of good quality. This corresponds to the description of Sec-
tion 3.4.8. While the false acceptance rate (sample size is 4950) for both the entire
database and the sub-database is the same, the genuine acceptance rates differ. For
the entire database the genuine acceptance rate is estimated from 2800 samples while
for the sub-database there are 100 samples. Although the genuine acceptance rate
for the sub-database of good quality is statistical less significant, genuine acceptance
rates have been reported for this set for virtually all implementations of the fuzzy
fingerprint vault found in the literature (see Nagar et al. (2008, 2010); Nandakumar
et al. (2007a,b); Uludag and Jain (2006)), while for only a few implementations there
have been reports for the entire database (see Li et al. (2008)).

5.6.4 Prediction of Authentication Rates

For our implementation with the randomized decoder, using (5.36) and (5.45),
we can predict lower bounds of the genuine acceptance rate and an upper bound
of the false acceptance rate. This can be done without performing actual vault
construction or vault decoding but only by performing a simulation in where we
determine hypothetical authentication rates and the distribution of the size of the
unlocking sets. But before applying the aforementioned bounds, we have to measure
to hypothetical authentication rates.
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Figure 5.3: Hypothetical authentication rates GAR(w) and FAR(w) as in (5.35) and (5.37), respec-
tively. These are probabilities for two templates to share at least w elements. Note, these probabilities
are no authentication rates that we achieved in our implementation due to a missing efficient decoder.
Furthermore, sub-GAR(w) denotes the hypothetical genuine acceptance rate measured on the reduced
FVC 2002 DB2 consisting of the first two impressions per finger, only. FAR;(w) indicates the upper
bound for the hypothetical false acceptance rate where ¢t = 46.

Hypothetical Authentication Rates

Hypothetically, if the implementation with the ordinary iterative decoder were
used, the genuine acceptance rate GAR(w) and false acceptance rate FAR(w) can be
determined for varying w by counting how many elements corresponding minutiae
quantization sets share. As already pointed out in Section 5.3.3, it is not necessary to
perform actual vault construction or decoding to determine these rates. These rates
can be efficiently be deduced by counting common elements of quantized templates
on an authentication attempt.

For varying w = 0, ..., 46, we have determined the hypothetical genuine accep-
tance rate GAR(w), the hypothetical false acceptance rate FAR (w), the hypothetical
genuine acceptance rate measured on the reduced database sub-GAR(w) (see Sec-
tion 3.4.8), and the upper bound for the hypothetical false acceptance rate FAR;(w)
as it is used to predict an upper bound for the false acceptance rate of our imple-
mentation (Section 5.5).

According to the FVC protocol, GAR(w) has been determined from 2800 sam-
ples while sub-GAR(w) is based on only 100 observations. FAR(w) are results from
4950 tests. The upper bound FAR;(w) (where ¢ = 46) is the false acceptance rate
under the condition that the unlocking sets are of size exactly t = 46. Among 4950
unlocking sets 3049 unlocking sets were of size t = 46. The determined rates are
plotted in Figure 5.3. In addition, their values are listed in Table B.2 on page 148
in the appendix.

Although authentication rates look promising, a systematic decoder, however,
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would require an amount of computational cost which would be unacceptable (see
Section 5.4).

Distribution of the Size of Unlocking Sets
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unlocking size (s)
Figure 5.4: Distribution function on the size of unlocking sets, i.e. u(s) as in (5.40)

To predict upper bounds for the false acceptance rate of our implementation
using (5.45) we need to determine the distribution function of sizes of unlocking sets,
le.

u(s) =P(#U < s ). (5.49)

To determine the distribution, we only used the first impression of each finger
i = 1,...,100 of the FVC 2002 DB2-A database. Each corresponding minutiae
template was input to Algorithm 5.1.2 to obtain a sample of quantized minutiae.
Since the size of these templates, if they are used as a query, agree with the corre-
sponding size of the unlocking set, we inserted the size of the query templates into
an increasingly sorted vector. After this has been done for all 100 fingers, the final
vector was used to determine u(s) for each s =0, ..., 46.

For a particular s, we counted how many elements of the sorted vector were
smaller than or equals to s. This number divided by 100 yielded our estimation for
u(s).

The results for u(s) are plotted in Figure 5.4. Moreover, the estimated distri-
butions u(s) for s = 0,...,46 are listed in Table B.1 on page 147 in the appendix.

Predicted Bounds

To predict bounds of our implementation’s authentication rates, we may use
the hypothetical authentication rates as well as the distribution of the unlocking set
sizes from above. This enables us to use (5.36) and (5.45) to estimate a lower bound
of the genuine acceptance rate as well as to estimate an upper bound for the false
acceptance rate.
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Figure 5.5: Predicted genuine acceptance rate GAR and false acceptance rate FAR using (5.36) and
(5.45), respectively; sub-GAR denotes the prediction for the genuine acceptance rate on the reduced
FVC 2002 DB2 consisting of the first two impressions per finger, only.

For example, with the configuration as in Section 5.6.1 where £ = 8 using
(5.36) and (5.45) we can expect that

GAR > 65.24% and
FAR < 2.45-107°.

If the reduced FVC 2002 DB2-A database consisting of the first two impressions for
each finger is considered, we plug the estimated sub-GAR(w) instead of GAR(w)
into (5.36) to predict the lower bound of the genuine acceptance rate. Then

sub-GAR > 90.22%. (5.51)

(5.50)

For varying k, corresponding plots for predicted bounds on the genuine acceptance
rates and on the false acceptance rate are given in Figure 5.5. Moreover, the predicted
bounds are listed in Table B.3 on page 149 in the appendix.

5.6.5 Authentication Performance

In addition to predicted authentication rates and hypothetical authentication
rates, we have evaluated the performance of our proposed fingerprint vault imple-
mentation by performing actual vault construction (see Section 5.5.1) and actual
vault decoding (see Section 5.5.2). By actually performing these steps, we deter-
mined genuine acceptance rate as well as false acceptance rate according to the FVC
protocol (see Section 5.6.3). Furthermore, decoding timings have been determined.

For example, for the evaluation configuration (see Section 5.6.1) and secret
polynomial lengths up to k = 8 the genuine acceptance rate and the false acceptance
rate were determined as

GAR =~ 77.14% (> 65.25%) and

5.52
FAR = 0% (< 2.45-107%), >52)
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Figure 5.6: Genuine acceptance rate GAR and false acceptance rate FAR of our vault implementation
using the configuration of Section 5.6.1; sub-GAR denotes the genuine acceptance rate measured on
the reduced FVC 2002 DB2 consisting of the first two impressions per finger, only; the rates that have
been predicted only from the hypothetical authentication rates are indicated, correspondingly.

Table 5.2: Authentication performances for varying k of our cross-matching resistant minutiae fuzzy
vault implementation (see Section 5.5) evaluated on the FVC 2002 DB2-A database; the rates in
brackets correspond to the bounds predicted in Section 5.6.4.

size of secret || genuine acceptance rate | genuine acceptance rate false acceptance rate
polynomial on reduced dataset of
scans of good quality
k GAR sub-GAR FAR
0 = 100% (= 100%) = 100% (= 100%) = 100% (= 100%)
1 ~ 99.39% (> 99.39%) =100% (= 100%) ~ 85.13% (< 85.14%)
2 ~ 98.89% (> 98.89%) =100% (= 100%) ~ 60.12% (< 60.13%)
3 ~ 98.17% (> 98.2%) =100% (> 99.98%) ~ 38.18% (< 38.31%)
4 ~ 97.34% (> 96.92%) =99% (> 98.99%) ~ 13.39% (< 20.51%)
5 ~ 95.64% (> 93.6%) =99% (> 98.26%) ~ 2.62% (< 4.84%)
6 ~ 92.29% (> 86.49%) =97% (> 96.47%) ~ 0.38% (< 0.57%)
7 ~ 85.36% (> 76.59%) = 94% (> 93.46%) = 0% (< 0.05%)
8 ~ 77.14% (> 65.25%) =92% (> 90.22%) =0% (< 2.45-1075)
9 = 68.75% (> 54.75%) =91% (> 83.74%) ~ 0.02% (< 9.76 - 10_7)
10 ~ 60.14% (> 43.15%) =87% (> 76.58%) =0% (< 2.11-1079)
11 ~ 48.79% (> 34.01%) = 85% (> 70.79%) =0% (= 0%)
12 ~ 41.07% (> 26.65%) =79% (> 64.61%) =0% (= 0%)
13 ~ 32.29% (> 20.83%) = 75% (> 58.16%) =0% (= 0%)
14 ~ 25.96% (> 15.99%) = 63% (> 50.50%) =0% (= 0%)
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Table 5.3: Average decoding timings for varying k of our cross-matching resistant minutiae fuzzy
vault implementation (see Section 5.5) evaluated on the FVC 2002 DB2-A database; the timings have
been measured on a single core of an AMD Phenom(tm) II X4 955.

average average average
size of secret || genuine decoding time | genuine decoding time | impostor decoding time
polynomial on reduced dataset of
scans of good quality

k GDT GDT IDT

0 ~ (0.001s ~ 0.0007s ~ 0.001s
1 ~ 0.001s ~ 0.0015s ~ 0.01s
2 ~ 0.002 ~ 0.0013s ~ 0.04s
3 ~ 0.003 ~ 0.0018s ~ 0.09s
4 =~ 0.007s ~ 0.0045s ~ 0.17s
) =~ 0.015s ~ 0.0061s ~ 0.24s
6 =~ 0.032s ~ 0.012s =~ 0.29s
7 ~ 0.067s ~ 0.026s ~ 0.36s
8 ~ 0.14s ~ 0.053s ~ 0.50s
9 ~ 0.24s ~ 0.084s ~ 0.63s
10 ~ 0.31s ~ 0.11s =~ 0.65s
11 ~ 0.47s ~ 0.17s ~ 0.82s
12 ~ 0.58s ~ 0.25s ~ 0.89s
13 ~ 0.70s ~ 0.32s ~ 0.95s
14 ~ 0.81s ~ 0.48s ~ 1.04s

respectively, on the entire FVC 2002 DB2-A database. The values in brackets cor-
respond to the respective predicted rate. On the reduced database consisting of the
first two impressions per finger only the genuine acceptance rate was determined as

sub-GAR = 92% (> 90.22%). (5.53)

The average decoding time, on a single core of an AMD Phenom(tm) II X4 955, of
a genuine user before he is either accepted or rejected has been measured as

GDT = 140 ms (5.54)
while an impostor has to wait
IDT =~ 500 ms (5.55)

in average. Moreover, on the reduced database the average time a genuine user must
wait before being authenticated or rejected was determined as

GDT = 53 ms (5.56)

We determined corresponding rates for each secret size k = 0,...,14. The authen-
tication rates are plotted in Figure 5.6 and can additionally be found in Table 5.2.
The decoding timings are listed in Table 5.3.

5.7 Security Analysis and Evaluation

In this section, we evaluate the resistance of our implementation against the
attacks of Chapter 4.
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5.7.1 Brute-Force Attack

Table 5.4: Brute-force attack performance against our cross-matching resistant minutiae fuzzy vault
implementation with an AMD Phenom(tm) II X4 955 using all four processor cores in parallel

size of security | brute-force | expected time
secret polynomial || in bits | iterations | before successful
per second iteration

k per core

3 ~ 15 343,643 ~ 23 milliseconds

4 ~ 20 271,739 ~ 1 second

5 ~ 25 215,983 ~ 54 seconds

6 ~ 31 180, 180 ~ 43 minutes

7 ~ 36 147,059 ~ 35 hours

8 ~ 41 127,389 ~ 2 months

9 ~ 47 105, 820 ~ 10 years

10 ~ 52 95,328.9 ~ 472 years

11 ~ 58 83,194.7 ~ 24,177 years

12 ~ 63 74,571.2 | ~ 1.24-10° years

13 ~ 69 65,919.6 ~ 6.63 - 107 years

14 ~ 75 58,445.4 ~ 3.64 - 10° years

In this section, we report average attack timings against our cross-matching
resistant minutiae fuzzy vault implementation analogous to Section 4.1.%

For example, if a vault of configuration given in Section 5.6.1 with k = 8 was
intercepted, the difficulty in guessing k = 8 genuine vault points is

bf (1620, 46,8) ~ 4.43 - 10'? ~ 2%2, (5.57)

Thus, an attacker can expect to successfully break a vault hiding ¢ = 46 genuine
points within
T ~3.07-10"2 ~ 2 (5.58)

iterations. Analogous to the experiments in Section 4.1.2, on a single core of an
AMD Phenom(tm) II X4 955, we empirically determined that within one second it
is possible to make

127, 389 (5.59)

guesses for £k = 8 genuine vault points, determine its interpolation polynomial, com-
pute its SHA-1 hash-value, and to compare it with the stored hash of the correct
polynomial. Thus, if all four cores were used, an attacker can expect to successfully
break the vault after approximately 2 months (= 70 days). For varying k =0, ..., 14
corresponding expected attack timings are listed in Table 5.4.

4For a given configuration we randomly generated 10 vaults of corresponding parameters. For
each vault, the time needed for the first 100,000 iterations of the brute-force was measured.
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We see that our implementation provides good security against naive brute-
force attacks. However, we have seen during Section 4.3 that in comparison to the
false-accept attack, which could be conducted much more efficiently, the security
against the brute-force attack is yet of minor relevance.

5.7.2 False-Accept Attack at a First Glance

To evaluate the security of our implementation against the false-accept attack
we could follow the way as in Section 4.3: For a given configuration, let FAR be its
false acceptance rate and let IDT denote its average impostor decoding time. Then
the expected time needed for a successful false-accept attack estimates as

log(0.5)

——— - [DT. .
log(1 — FAR) (5.60)

For example, for the configuration we used throughout for examples (see Section
5.6.1), where k = 8 then FAR is between 0% and 0.06% with a confidence of 95% by
the rule of three (see Section 2.2.6). Furthermore, IDT = 0.5s. The time needed for
a successful false-accept attack thus is at least 571.67 s. If all four processor cores
were used in parallel, the false-accept attack would consume at least 142.92s, which
corresponds to 2-3 minutes. In comparison to the brute-force attack, which would
require approximately 2 months on the same processor, an attacker may prefer to
run the false-accept attack. For varying k, corresponding times can be found in Ta-
ble 5.5.

Against the false-accept attack our implementation does not provide significant im-
provement in comparison to other implementations. This highly advocates that a
single finger is not sufficient for cryptographic security. Rather fuzzy vaults pro-
tecting multiple finger should be investigated to achieve high resistance against the
false-accept attack.

In the above evaluation we assumed that the attacker who is performing a false-
accept attack uses the same decoder as used by the system for authorizing users.
But in fact, the attacker can use any decoder that works best for his purposes. In
particular, for each impostor authentication attempt that the attacker simulates he
may choose a number of decoding iterations D for that the expected number of time
consumed by the false-accept is minimized while in the evaluation above we assumed
that the attacker uses D = 216,

5.7.3 False-Accept Attack at a Second Glance

In the above evaluation, we assumed that the attacker also uses D = 26 for
simulating an impostor authentication attempt. But actually, he is free in choosing
whichever D he wants. For simplicity, we assume that the time needed for the at-
tacker to build the unlocking set on a simulated impostor authentication attempt
is negligible. Moreover, we assume that the attacker is in the possession of an over-
whelming large database containing real minutiae templates. This corresponds to an
ideal situation for the attacker. Therefore, we assume that the time for a successful
false-accept attack using the randomized decoder is

log(0.5)

—— D .61
log(1 — FAR) ¢ (5.61)
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Table 5.5: False-accept attack performance with D = 2'6 against our cross-matching resistant minu-
tiae fuzzy vault implementation with an AMD Phenom(tm) II X4 955 using all four processor cores in
parallel

size of number | interval for the average estimated time
secret of false | false acceptance | impostor for a successful
polynomial || accepts rate decoding false-accept
within time on a attack
4950 single core
samples
k IDT
1 4214 | 84.11%-86.11% | =~ 0.01s 3.5-3.8 milliseconds
2 2976 58.74%-61.49% | = 0.04s 29-31 milliseconds
3 1890 36.83%-39.55% ~ 0.09s 124-136 milliseconds
4 663 12.46%-14.37% | = 0.17s 759-886 milliseconds
5 130 2.2%-3.11% ~ 0.24s 5.26-7.48 seconds
6 19 0.23%—0.6% ~ 0.29s 33.5-86.8 seconds
7 0 0%-0.06% ~ 0.36s > 102 seconds
8 0 0%-0.06% ~ 0.5 > 142 seconds
9 1 0.0005%-0.11% ~ 0.63s | ~ 97 seconds — 6 hours
10 0 0%-0.06% ~ 0.65s > 3 minutes

where ¢ corresponds to the time for 1) selecting k unlocking points, 2) determine their
interpolation polynomial, 3) compute the polynomial’s hash value, and 4) compare
the hash value with the hash value of the correct polynomial. We assume that the
factor ¢ is constant. Thus, it can be omitted if for different number of decoding
iterations the expected time for a successful false-accept attack are compared.

We have the following conjecture.

Hypothesis 5.7.1. For a realistic implementation using our vault construction, the
expected time for a successful false-accept is minimized if the attacker chooses D = 1.

To see that the hypothesis is a realistic assumption, we derive a property for the
false-acceptance rate as a function in D such that the expected time for a successful
false-accept (also a function in D) is minimized at D. Therefore, we rename the
variable D as x and write v(z) = FAR as the false-acceptance rate as a function x.
Note that v is an increasing function that varies in (0, v*) where by v* < 1 we denote
the hypothetical false-acceptance rate FAR(k), i.e. v(x) — FAR(k) as © — oo (see
Equation (5.46) on page 104). Furthermore, let

~ log(0.5) .
- log(1 —v(z))

be the expected time (i.e. number of iterations each consuming constantly ¢ opera-
tions) for a successful false-accept attack.

L(z) (5.62)
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Proposition 5.7.2. If for all x > 1 the bound
v(z) <1—(1-wv(1))" (5.63)
is fulfilled then L is minimal at x = 1.

Proof. First note that L is minimal if and only if

L) = g = ety

which is negative for x > 1, is maximal. Assume by contradiction, there is an x > 1
such that

(5.64)

L(1) < L(z). (5.65)
Then (note that the logs are negative)

1 T
= log(1 - v(a))

log(1 = o(1))
log(1 — v(z)) _
log(1— v(1) ~
log(1 — v(2)) < - log(1 — (1)) (5.66)
exp(log(1 — v(x))) < exp(z - log(1 — v(1)))

1—v(z) < (1—-v(1)"

—ov(z) < (1—=w0(1))* -

v(z) >1—(1—0(1))".

This, however, would contradict our assumption (5.63). Thus the statement of the
proposition is true. []

A

Y

It is my belief that for a realistic implementation the false-acceptance rate as a
function of the decoding iteration is bounded as required by the above proposition.
Unfortunately, I was not yet able to derive a simple criterion that is 1) easily fulfilled,
2) one can easily verify it for an implementation, and 3) that implies (5.63).

I tried to derive such a criterion based on the following observations. Using the
arguments of Section 5.4.3, we see that false acceptance rate can be written as the

finite sum
v(z) = Z
S elworsikoa)- (uls) - uls — 1) (FARS@w) — FAR,w 1)) 07

where u(s) is the distribution of unlocking sets of size < s, FAR4(w) denotes the
hypothetical false-acceptance rate given the size of the unlocking set is of size s, and

e(w,s, k,x) =1— (1 —bf(s,w, k) )" (5.68)

bf(s,w, k) = (Z) : <°]:)_1. (5.69)

where
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To simplify notation, we write

bsw =1 —bf(s,w, k) and -
Csw = (u(s) —u(s — 1)) - (FARs(w) — FAR4(w + 1)). (5.70)

Then
v(r) =Y cow (L—1L,). (5.71)

S,w

At this point I got stuck. Although the above terms look similar to what is re-
quired by Proposition 5.7.2, I was not able to derive a simple bound for v(1) or
the coefficients c;,, that are easily fulfilled and that can be easily verified such that
v(x) <1—(1—v(1))*. However, it is my belief that v(z) < 1—(1—wv(1))*. In fact, as
xr — oo the false acceptance rate approaches a value, which is FAR(k), that is much
smaller than 1 for realistic vault parameters as confirmed within our performance
evaluation. On the other hand the right-handed expression of the assumption 5.63
approaches 1 as © — oo. For FAR(k) < 1 it is my belief that in fact Hypothesis
5.7.1 holds. Moreover, the following evaluation supports this conjecture.

Evaluation of the False-Accept Attack using a Single Decoding Iteration

Within our performance evaluation reported in Section 5.6 we also experimen-
tally observed for each impostor authentication attempt, how many genuine vault
points the corresponding unlocking set contained.

Assume the first impression of the ith finger of the FVC 2002 DB2 database
(see Section 3.4.7) was used for vault construction and the first impression of the
jth finger was used as a query. Assume the corresponding unlocking set U was of
size s and it contained w genuine points. For a fixed k let

5.72
0, w <k ( )

bf(s,w, k)™, w>k
Pij =
denote the chance to select k genuine unlocking points. We model the false accep-

tance rate as
1

1) — FAR — — . 5.73
U( ) 47950 ZZ;QQ pv] ( )
j=Z+i ...... 100

We measured the time for a million 1) choices of k unlocking points, 2) determination
of their interpolation polynomial f*, 3) computation of its SHA-1 hash value h(f*),
and 4) comparison of A(f*) with a preliminary randomly chosen 160-bit hash value
h*. Thereby, we preliminary generated a random set of U C F x F. Essentially, the
time that we determined this way is 10° - ¢ (see Equation (5.61)).

For example, if k£ = 6 using (5.73) we estimated the false acceptance rate as

v(l) ~ 7.84-1075. (5.74)
Furthermore, a million decoding iterations have been measured as

10° -0 = 4.47s (5.75)
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on a single core of an AMD Phenom(tm) II X4 955. Correspondingly, the expected
time for a successful false-accept attack is

log(0.5)

m -0 ~ 39.52s. (5.76)

If all four processor cores were used in parallel® the time for a successful false accept
becomes approximately 9.88s. In comparison to the false-accept attack with D = 216
decoding iterations (in where the time for a successful was estimated to last between
33.5-86.8s) our analysis for D = 1 yields a more efficient false-accept attack.

Of course, if the attacker is only in the possession of a small attack database,
he may run more than one decoding iterations to decrease the chance that he will
be unsuccessful with only simulating a few impostor authentication attempts. But
analyses of the false-accept should be performed by assuming ideal conditions for
the attacker in where he has access to arbitrarily many pre-processed minutiae tem-
plates.

For varying k, expected timings for a successful false-accept attack using a
single decoding iteration are listed in Table 5.6. Note that, some of the estimated
timings in Table 5.5 are smaller than in 5.6 which may be an effect caused by our
randomized experiments. In any case, we may not conclude that Hypothesis 5.7.1 is
not true.

For our evaluation of the false-accept using D = 26, we estimated a range of
the false acceptance rate for a confidence level of 95% using the Clopper-Pearson
confidence interval (see Section 2.2.6 on page 21). In the evaluation of the false-
accept attack for D = 1, we estimated the false acceptance rate in another way
using (5.73). This better involves the structure of the false acceptance rate and thus
we can estimate the false acceptance rate even if for a performance evaluation using
D =1 no false-accept would occur.

For example, in Table 5.6 where k£ = 11 the false acceptance rate was yielded
as follows. For only one impostor authentication attempt it was observed that an
unlocking set of size 45 contained exactly w = 11 genuine vault points. Using (5.73)

this yields
1 11\ [45\" 14
v(l) = 1950 (11) : (11) ~1.99-107" (5.77)

However, the problem of non-confident estimations also concerns our evaluation.
Therefore, an expected time for a successful false-accept attack of 20 days or 3 years
for k£ = 10 or k = 11, respectively, should be taken with caution and we may not
conclude that the need for multiple finger fuzzy vault does not exist anymore.

5.7.4 Correlation Attack and Cross-Matching

It is not necessary to evaluate our implementation’s resistance against the cor-
relation attack adopting the evaluations of Section 4.4.7 on page 80. An intruder
who has intercepted multiple vault records protecting minutiae templates extracted
from the same finger will apparently not be able to filter out chaff points by correlat-
ing the vaults. The reason is that chaff points and genuine points are encoded by a

5Note that a false-accept attack can be parallelized by running multiple false-accept attacks
each using a different query templates.
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Table 5.6: False-accept attack performance with D = 1 against our cross-matching resistant minutiae
fuzzy vault implementation with an AMD Phenom(tm) II X4 955 using all four processor cores in

parallel

length of false acceptance | time for a million estimated time
secret rate for a single | impostor decoding for a successful
polynomial || decoding iteration attempts false-accept attack
k FAR = v(1) 106 - ¢
1 ~ 5.11% ~ 1.1s ~ 3.63 - 10~ milliseconds
2 ~ 0.3% ~ 1.5s ~ 8.56 - 1072 milliseconds
3 ~ 0.02% ~ 2.06s ~ 1.78 milliseconds
4 ~1.42-107° ~~ 2.78s ~ 33.81 milliseconds
5 ~ 1.06 - 10~¢ ~ 3.57s ~ 586 milliseconds
6 ~7.84-1078 ~4.47s ~ 9.88 seconds
7 ~ 5.68-107° ~ 5.47s ~ 167 seconds
8 ~ 3.85-10710 ~ 6.62s ~ 50 minutes
9 ~2.18-101 ~ 7.8s ~ 17 hours
10 ~8.95-10713 ~ 9.13s ~ 20 days
11 ~1.99-10~% ~ 10.78s ~ 3 years

feature set which is equal for different vault instances (see Figure 5.1 on page 91). As
a consequence, via correlation, an attacker will neither be successful to cross-match
nor he will be able to filter out any chaff points to ease brute-force attacks.

Cross-Matching of Modified Vault Records

For the basic vault construction in where the ordinate values of the rigid chaff
features are generated randomly, we do not see an efficient way to even cross-match.
But if the modified vault construction by Dodis et al. (2008) (see Section 5.2) is
used, there might be a chance for an intruder to determine whether to vault records
protect templates from the same biometric source.

To see this, assume that a user is enrolled using the same template A C E C F
of size t for two applications.® Let

xaX)=J[X-2)=xo+x1-X+... +x X (5.78)

z€A

be the characteristic polynomial of A. For the first application a secret polynomial

FX)=fo+fi- X+ 4 fir - XF (5.79)

SNote, E is the subset of the finite field F in where the template features are encoded (see
Equation (5.2) on page 90).
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is generated randomly and the vault is published as the polynomial
V(X) =f(X) + xa(X)
Al . (5.80)

=xt X'+ X XD (fi+x) - X
=0

For the second application another secret polynomial
g X)=go+g- X +... +gr X! (5.81)
is generated and the vault polynomial is
W(X) =g(X) + xa(X)
k—1
; (5.82)
=xe X' XD (g4 xa) - X
i=0
Now, an intruder who has intercepted the polynomials V' and W may observe that
the upper t — k coefficients of V and W are equal if both protect the same template
A. Note, the lower k coefficients appear random as the polynomials f and g have
been generated randomly. We see that the upper ¢t — k only depend on the template
A. Therefore, an intruder may cross-match using the upper ¢t — k coefficients of
the polynomials V and W — although we do not see an efficient approach for the

attacker to attack the vaults via record multiplicity. The risk of cross-matching,
however, must be prevented.

Hardening Cross-Matching of Modified Vault Records

The mechanism we propose to harden cross-matching of modified vault records
is adopted from the idea of Kelkboom et al. (2011) who proposed to incorporate a
random bit-permutation process to prevent the fuzzy commitment scheme to become
vulnerable against cross-matching via the decodability attack.

Assume an individual public permutation is associated with each application.
Therefore, assume P : E — E to be an application’s individual permutation. Instead
of protecting A with the modified vault construction directly, its permutation is
protected. Therefore, let

PA)={ P(x) |z € A }. (5.83)
Let
xpa)(X) = [[(X = P(2)). (5.84)

If f is the secret polynomial of degree < k then the vault consists of the polynomial
V(X) = f(X) + xpa)(X). (5.85)

Using a public permutation this way (similar to a password salt), the possibility for
the attacker to cross-match vaults may be effectively hardened.

It would be interesting to mathematically analyze how much knowledge about
the templates an intruder can gain given multiple modified vault records protecting
templates generated from the same biometric source. In any case, if the risk for
cross-matching or attack via record multiplicity remains too high we can still use
the ordinary basic vault construction — although this requires more storage size for
the vault records. In this thesis we just draw attention to these open topics but do
not tackle them.
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5.8 Comparison with other Implementations

In this section, we compare our implementation that we developed in this chap-
ter with other implementations of the fuzzy fingerprint vault found in the literature.
For comparison we use the rates that have been evaluated empirically in the tests
of Section 5.6.5. Moreover, the common dataset we use for comparison is the re-
duced FVC 2002 DB2-A database consisting of the first two impressions per finger
only (see Section 3.4.8) as this is a dataset publicly available for that authentication
rates have been reported for most fuzzy fingerprint vault implementations found in
literature.

A major advantage of our finger fuzzy vault implementation is given by its
inherent property of being resistant against the correlation attack while most other
fingerprint fuzzy vault implementations proposed in the literature do not address
resistance against the correlation attack. To the best of our knowledge, the only
finger fuzzy vault implementation in the literature that proposes a solution causing
resistance against the correlation attack is the implementation of Nandakumar et al.
(2007b): They proposed to additionally incorporate a user password into the imple-
mentation of Nandakumar et al. (2007a) to improve security. The big advantage
of our implementation is that it does not need a password for being cross-matching
resistant which would require mechanism for keeping the additional password secret.

For our implementation we did not propose a solution to cope with the align-
ment of query finger to the vault. Although alignment would be enabled by storing
public alignment helper data (such as points of high ridge curvature (Nagar et al.
(2008, 2010); Nandakumar et al. (2007a); Uludag and Jain (2006))) this may easily
weaken vault security (see Section 4.2 for a discussion). To get rid of such issues
caused by additional alignment data one can use an approach in where only finger-
print features that are invariant to translation and rotation are used in the vault.
Such an implementation is provided by Li et al. (2010) who use minutiae descriptors
and minutiae local structures. However, the implementation may still be vulnerable
to the correlation attack (see Section 4.4).

Regarding authentication performance, we observe that our implementation
performs well when compared to other implementations found in the literature (see
Table 5.7), even though other implementations are not resistant against the corre-
lation attack. For instance, if at least 39 bits of security is sought, then the imple-
mentation of Nandakumar et al. (2007a) report a genuine acceptance rate of 86%
at no experienced false accept. Our implementation, even with a security of 41 bits
against the brute-force attack, performs with a genuine acceptance rate of 92% and
zero false accepts. For even a higher security of 47 bits we experienced an amount
of 91% of genuine accepts but even a single false accept.” The implementation of
Nagar et al. (2010) at a security level of 45 bits (see Table 4.5 on page 66) performs
with a genuine acceptance rate of 91% and no false accept.®

One may argue that our implementation is hardly comparable with other im-
plementations since the rates that we reported only hold under a well-solved align-
ment framework. In my opinion, a valid counterargument is that the security of the

"The single false accept was due to the randomness of our decoder. Note that the false acceptance
rate is never identically to zero.
8We obtained these rates from Figure 7 in (Nagar et al. (2010))
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Table 5.7: Comparison with other implementations from the literature; all authentication rates have
been measured on the reduced FVC 2002 DB2-A database which contains the first two impression for
each finger only (see Section 3.4.8).

implementation alignment cross- security GAR (FAR)
matching in bits
resistant
Uludag et al. (2005) manually no 36 79% (0%)
Uludag and Jain (2006) automatically no 32 72.6% (0%)
Nandakumar et al. (2007a) || automatically no 24 91% (0.13%)
31 91% (0.01%)
39 86% (0%)
Nandakumar et al. (2007b) || automatically yes 24+password 90% (0%)

31-+password 88% (0%)
39+password 81% (0%)

Nagar et al. (2010) automatically no 45 ~ 91% (= 0%)
Li et al. (2010) alignment-free no 52 92% (0%)
our implementation manually yes 36 94% (0%)
41 92% (0%)

47 91% (=~ 0.02%)
52 87% (0%)
58 85% (0%)
63 79% (0%)

other implementations may be lower than reported due to the information leaked
from additional alignment helper data (see Section 4.2). Furthermore, if alignment
invariant features are used, it is not yet clear whether they can be encoded as exactly
reproducible features (in the manner as quantized minutiae) such that a fuzzy vault
construction that is resistant against cross-matching via correlation can be applied
for template protection. Moreover, the genuine acceptance rates that we compare
in Table 5.7 only correspond to a sample size of 100 (barring failure to captures),
which is of low statistical significance.

If all impressions of the FVC 2002 DB2-A database are considered, the only
fuzzy fingerprint vault implementation for that authentication rates have been re-
ported, to the best of our knowledge, is the implementation of Li et al. (2010). They
achieve a genuine acceptance rate of 72% at zero false accepts. Our implementation



5.8. Comparison with other Implementations 123

performs even with a genuine acceptance rate of 85.36% at which no false accepts
have been observed in our experiment (see Table 5.2).



124 5. Cross-Matching Resistant Minutiae Fuzzy Vault




6. Discussion

6.1 Conclusion

We investigated the security of current implementations of the fuzzy finger-
print vault. We found that brute-force attacks are not only feasible but rather easy
to perform (see Table 4.3 on page 61). We also found that, even if the brute-force
attack is impractical against some implementations, this does not hold for the false-
accept attack. This attack is feasible for every authentication scheme in which the
false acceptance rate is non-negligible and thus it is for current implementations
of the fuzzy fingerprint vault. In addition, according to our observations, the false-
accept attack can be performed much more efficiently than the brute-force attack.
Apparently, this problem can only be solved when multiple fingers or even multiple
biometric modalities are combined. Therefore, multiple finger fuzzy vaults should be
investigated as a potential method wherever high security is important. And yet a
significant risk remains: In our view, the correlation attack cannot be solved merely
by using multiple fingers.

Therefore we endeavored to solve the problem of the correlation attack. In this
thesis we have demonstrated that it is possible to implement a minutiae fuzzy vault
that is resistant against the correlation attack without loss of authentication perfor-
mance. Our implementation primarily relies on the simple innovation of rounding
minutiae to a rigid grid while using the entire grid as vault features, thereby pre-
venting attackers from distinguishing genuine from chaff features via correlation.
Furthermore, to make vault authentication practical we proposed to use a random-
ized decoder rather than systematically iterating through all candidate polynomials.
Since the randomized decoder only affects vault authentication and not vault con-
struction, the randomized decoder does not adversely affect vault security. Well
conceived, the randomized decoder may be incorporated into a wide variety of fuzzy
vault implementations, not only fuzzy vaults with the express purpose of protect-
ing minutiae templates of a single finger. Furthermore, our single-finger fuzzy vault
construction that is resistant against the correlation attack may be generalized to
a construction that protects multiple fingers. However, an important step that we
did not explore, but which we suggest should be the focus of future research, is the
problem of finger alignment in the vaults.
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6.2 Outlook

We did not propose a mechanism for dealing with alignment for our vault
construction. Although it would have been possible to adopt the ideas available in
the literature that propose to store additional alignment-helper data publicly with
the vault (Jeffers and Arakala (2007); Li et al. (2008); Nandakumar et al. (2007a);
Uludag and Jain (2006); Yang and Verbaudwhede (2005)) it is not yet clear how
this would affect vault security. Moreover, some of the proposals find accurate align-
ment via multiple candidate alignments: During authentication, for each candidate
alignment an authorization attempt is performed until the correct secret is seen.
Translating this method to multiple fingers is problematic because the number of
candidate alignments grows exponentially with the number of fingers. For example,
if for a single-finger fuzzy vault there were an average of four such candidate align-
ments, the amount of candidate alignments for a three-finger fuzzy vault would be
approximately 56. Consequently, fingerprint alignment techniques for multi-finger
fuzzy vaults should be reconsidered.

Ideally, fingerprints could be pre-aligned. This would make iterations through
several candidate alignments obsolete. Moreover, fuzzy vaults protecting accurate-
ly pre-aligned fingers do not need to store additional alignment-helper data which
can cause unwanted information leakage regarding the corresponding finger. Pre-
alignment of fingerprints is strongly related to the concept of intrinsic coordinate sys-
tems (Bazen and Gerez (2001)). Unfortunately, current methods that extract intrin-
sic coordinate systems are not robust enough to produce fingerprint pre-alignment of
sufficient accuracy. Although challenging, it may be worthwhile to seek more robust
methods to extract intrinsic coordinate systems.

On the other hand, the vault performance achievable with pre-aligned fingers
may be less than that achievable using a well-solved alignment framework. So an
alternative would be to design fuzzy vaults which protect feature sets that are in-
variant to fingerprint alignment. In contrast to the construction of Li et al. (2010)
the vault features of different records must be equal to achieve resistance against the
correlation attack. It would be interesting to investigate these various approaches
and find out which provides the best performance. We plan to tackle these topics in
the future.

6.3 Open Problems

Even from a mathematical perspective, security of the fuzzy fingerprint vault
is not yet proven. While Juels and Sudan (2002) were able to show information-
theoretic security of the fuzzy vault scheme for appropriate vault parameters, the
fuzzy fingerprint vault has vault parameters for which no information-theoretic
security can be asserted (see Lemma 3.1.1 on page 38). Most likely, the lack of
information-theoretic security cannot be solved by using multiple fingers. The length
of the secret polynomial &k will likely remain small compared to the number of genuine
vault points ¢; consequently, Lemma 3.1.1 can not be used to assert vault security
(see Merkle et al. (2010b)).

It may be possible that the security of the fuzzy fingerprint vault can be as-
sumed because of the problem of the hardness of polynomial reconstruction, which
the difficulty of breaking a vault instance can be reduced to. In fact, Guruswami
and Vardy (2005) proved NP-hardness of the polynomial reconstruction problem for
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finite fields of very large cardinality. Moreover, it is known that random instances
of the polynomial reconstruction problem for random parameters are as hard as the
worst case (see Kiayias and Yung (2008)). But this does not prove security for the
fuzzy fingerprint vault barring additional contributions that clearly establish the
hardness of polynomial reconstruction in all relevant cases.

Although commonly believed to be true, it remains to be proven that the poly-
nomial reconstruction problem remains hard even for arbitrary finite fields. Further-
more, a solution to the famous P versus NP problem has yet to be found.!

6.4 Final Remarks

Even if the above questions were resolved, there remains an important addi-
tional one regarding the eventual obsolescence of all biometric protection schemes.
The number of fingers a single human can provide is obviously limited, and as a
consequence, the security capacity of the fuzzy fingerprint vault is limited.? Compu-
tational resources, however, become exponentially more powerful with time. There-
fore, it remains to be seen whether we can design any biometric template protection
scheme that will not eventually lose its effectiveness.

1Security of the polynomial reconstruction problem assumes that P # NP.
2Note, this observation can be generalized even for multiple biometric modalities.
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A. Software Library

In this section we give an overview to the implementation we used for the experi-
ments in this thesis. This implementation has been build up into a C++ library we
refer to as the 1ibthimble or thimble library in the following.

Not surprisingly, implementations of the fuzzy vault scheme and the fuzzy com-
mitment scheme require a comprehensive amount of sub-implementations for doing
number theory. A powerful library providing them is the Number Theory Library
(NTL) by Shoup (2009).

NTL provides a well-rounded programming interface that has the capability of
serving as the basis for many purposes. However, in case finite field arithmetic is
sought in very small binary finite fields, the computation can be heavily accelerated
by making use of logarithm and antilogarithm tables. The running times concern-
ing cryptanalysis of the fuzzy vault, for instance, strongly benefit from fast finite
field computations. For this reason, we decided to implement arithmetic of small
finite field by ourselves. Concerning basic number theory, 1ibthimble does not pro-
vide the functionalities as NTL does. A certain functionality has been included into
libthimble only if it was needed for a certain purpose. On the other hand, concern-
ing error-correcting codes, 1ibthimble provides functionalities that are not provided
by NTL. These are for instance different en- and decoders for error-correcting codes
such as Golay codes, BCH codes, and Reed-Solomon codes. Moreover, it is worth to
mention that our library even provides an interface for a Guruswami-Sudan decoder
(Guruswami and Sudan (1998)) which can correct a received Reed-Solomon code-
word even beyond the error-correction bound.

In the subsequent, we will give an excerpt of 1libthimble’s programming in-
terface providing only the most important functionalities.

A.1 Programming Interface

In an early version, our library was based upon NTL but has now reached a state
that gets along without any additional libraries, except the C++ standard library. For
this reason, the interface for the number theoretical part of our library looks similar
to that of NTL.
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The programming interface providing number theoretical functionalities, for
instances, are collected up in the header file nttools.h and can be included via the
directive

#include <thimble/nttools.h>

libthimble’s programming interface is wrapped into the namespace thimble. Con-
sequently, to avoid frequent use of thimble:: we can insert the command

using namespace thimble;

A minimal example of code implementing an executable using functionalities pro-
vided by 1ibthimble could thus have the following shape

#include <iostream>
#include <thimble/nttools.h>

using namespace std;
using namespace thimble;

int main( int argc , char xargs[] ) {
// Commands using thimble ’s functionalities

return 0;

We start with describing the interface of our library that provides simple finite
field arithmetic.

A.2 Number Theory

Number theoretical functions are provided by the nttools.h header.

A.2.1 Prime Fields

Roughly speaking, if p = 2,3,5,7, ... is a prime number, finite field arithmetic
is yielded by canonical addition/multiplication of integers in {0, 1,...,p — 1} whose
respective results are reduced modulo p afterwards, i.e. remainder of division by p.
Thus, the way we represent elements of finite prime fields is given by a representative
in {0,...,p—1} wrapped in a structure called gfp_t. Before prime field computation
can be performed, the modulus of the prime p must be set. This can achieved by
invoking the setter function

void gfp_init( uint32_t p );
to enable subsequent computations in the finite field of cardinality p. To access the
cardinality of the prime field we may consult the functions

uint32_t gfp_modulus();
uint32_t gfp_cardinality ();
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The structure gfp_t has the variable rep that is a uint32_t intended to hold the
representative of the corresponding finite field element in the range {0,...,p — 1}.
A declared gfp_t must be initialized before used, e.g., via

void SetZero( gfp_t & x ); // =z =0
void SetOne ( gfp_t & x ); // = =1

or by setting x.rep manually.

Arithmetic

Addition, subtraction, multiplication, and division can be performed using the
following functions.

// ¢ =a+b
void add( gfp_-t & ¢ , gfp_t a , gfp_t b );
gfp_t add( gfp_-t a , gfp_t b );

// ¢ =a—b
void sub( gfp_t & ¢ , gfp_t a , gfp_t b );
gfp_t sub( gfp_t a , gfp_t b );

// ¢ =a % b

void mul( gfp_t & ¢ , gfp_t a , gfp_t b );
gfp_t mul( gfp_-t a , gfp_t b );

// ¢ =a’e, if e<0 then a must be non—zero
void power( gfp_t & ¢ , gfp_t a , long e );

// ¢c=a /b

void div( gfp_t & ¢ , gfp_t a , gfp_t b );
gfp_t div( gfp_t a , gfp_t b );

Furthermore, the negative of an gfp_t can be obtained via
void negate( gfp_t & ¢ , gfp_t a ); // ¢ =—a
gfp_t negate( gfp_t a );

while the multiplicative inverse can be computed by

void inv( gfp_t & ¢ , gfp_t a ); // ¢ = a"(—1)
gfp_t inv( gfp_t a );

Random Elements

Sometimes we may want to generate a gfp_t at random. For this purpose, the
function

void random( gfp_t & ¢ , bool tryRandom = false );
is provided. If tryRandom is true then the function tries to use a random generator

with more entropy, e.g., /dev/urandom on a Unix systems; otherwise, if false, the
standard pseudo random generator is used.
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Miscellaneous

A gfp_t can be printed in a std: :ostream via the << operator, i.e.

std :: ostream & operator<<( std::ostream & out , gfp_t f );

A.2.2 Binary Polynomials of Small Degree

In a similar manner as for prime fields, arithmetic for binary fields is provided,
in particular for extension fields over 5. A convenient way to define binary fields is
with the help of polynomials over F,.

Binary polynomials of degree < 63 are wrapped in the class gf2x:

class gf2x {
uint64_t rep;

//zero polynomial
gf2x ();

) K

//polynomial encoded by ’rep
gf2x ( uint64_t rep );

//copy constructor
gf2x ( const gf2ex & x );

// a =b; copies b into a
gf2x operator=( const gf2x & x );

}s

The meaning of the variable rep, which defines a polynomial f as a gf2x, is as
follows. Write for a polynomial

fX)=fo- X0+ fi- X"+ fo- XP4 ...+ fo3- X5,
with f; € {0,1}. Then
rep:f0-20—|—f1-21+f2-22+...+f63-263.

To access the ith coefficient f; of a f, we can use the follow relation

fi=

1, (rep>i)&0xl !'= 0
0, (rep>i)&0xl == 0

This relation is implemented for our convenience in the function

bool coeff( const gf2x & f | long i );

which is true if f; = 1 and false if f; = 0. Similarly, if the coefficient of f; should
be set to either 1 (true) or 0 (false) we may use
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Listing A.1: Setting a coefficient

void SetCoeff( gf2x & f , long i , bool fi );
void SetCoeff( gf2x & f |, long i ); // fi =1
void ClearCoeff( gf2ex & f |, long i ); // fi =0

We may often need to know the degree of a certain polynomial. The function

long deg( const gf2x & f );

does the job. Sometimes a specific gf2x has to be set to zero, one, or the monomial
polynomial X. For such purposes, the following convenience functions are provided

void SetZero( gf2x & f ); // f =0
void SetOne( gf2x & f ); // f =1
void SetX( gf2x & f ); /) f=X

Conversely, testing a polynomial on whether it is zero, one, or the monomial poly-
nomial X can be achieved by

bool IsZero( gf2x & f ); // true iff f =10
bool IsOne( gf2x & f ); // true iff f =1
bool IsX( gf2x & f ); // true iff f =X

Arithmetic

// h = f+g, this corresponds to an xor—operation
void add( gf2x & h , const gf2x & f | const gf2x & g );

// h = f—h, which yields the same result as addition in
// the binary case
void sub( gf2x & h |, const gf2x & f |, const gf2x & g );

/) h = fxg, if deg(f),deg(g)<=31
void mul( gf2x & h , const gf2x & f | const gf2x & g );

Using mul, the correct product of two polynomials f and g is only guaranteed if
deg f, degg < 31 due to the limited size a gf2x can store. Furthermore, there are
functions that provide polynomial division.

// qxb+r=a with deg(r)<deg(b)

void DivRem( gf2x & q , gf2x & r , const gf2x & a
const gf2x & b );

void div( gf2x & q , const gf2x & a , const gf2x & b );

void rem( gf2x & r , const gf2x & a , const gf2x & b );

Extended Euclidean Algorithm

//Computes g, s, and t such that GCD(a,b)=g=s*xa+txb

void XGCD( gf2x & g , gf2x & s , gf2x & t
const gf2x & a , const gf2x & b );

Modular Arithmetic
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// h = (fxg) rem m
void MulMod( gf2x & h , const gf2x & f |, const gf2x & g |,
const gf2x & m );

// g =[f"(—=1) rem m, i.e. g with deg(g)<deg(m) such
// that (fxg) rem m = 1; this assumes that

// GCD(f,m)=1, deg(m) >= 1
void InvMod( gf2x & g , const gf2x & f | const gf2x & m );

// h = f"e rem m, if e<0 then m and f have to be co—prime
void PowerMod( gf2x & h |, const gf2x & f |, long e |,
const gf2x & m );

// h = [f(g) rem m
void CompMod( gf2x & h , const gf2x & f |, const gf2x & g |

const gf2x & m );

Miscellaneous

A representation of a gf2x can be printed to a std::ostream using the <<
command, i.e.

std :: ostream & operator<<( std::ostream & out , const gf2x & f );

A.2.3 Small Binary Field Extensions

The following is provided by the nttools.h header file.

Binary field extension are defined with the help of polynomials with coefficients
in a ground field that are irreducible. Given an irreducible polynomial f, the cor-
responding extension of the field with two elements, i.e. F = Fo[X]/(f(X) - Fo[X]),
can be initialized via

void gf2e_init( const gf2x & f );

This function globally establishes logarithmic and anti-logarithmic multiplication
tables to accelerate subsequent arithmetic in the corresponding finite field. It as-
sumes that all elements of the entire finite field F fit in memory. Barring computer
memory, the finite field can have cardinality at most 23°. For convenience, irreducible
polynomials to define finite fields are already provided by libthimble. These can
be obtained using

gf2x gf2_1();
gf2x gf2_2();

gf2x gf2_16();

gf2x gf2.29();
gf2x gf2_30();

For example, a finite field of cardinality 2'¢ can be easily initialized globally via

gf2e_init (gf2.16 ());
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If the irreducible polynomial defining the finite field is required during computation,
it can be obtained by

const gf2x & gf2e_modulus ();

Its degree and and the cardinality of the finite field are available by

long gf2e_degree ();
uint32_t gf2e_cardinality ();

If a list of all elements in the finite field is wanted,

gf2e_elements( std::vector<gf2e_t> & F );

may be useful.

An element of a small binary field is wrapped into the structure gf2e_t, which
contains a member variable rep encoded as an uint32_t. The variable rep defines a
polynomial gf2x which is the represantive of the corresponding finite field element.
Therefore, the zero element is given by rep=0 while the unity element is guaranteed
to be given by rep=1. As for a prime field element, an gf2e_t must be initialized
before it is used, e.g., via

void SetZero( gf2e_-t & x ); // z =0
void SetOne( gf2e_t & x ); // o =1

or by setting the member variable rep manually. Conversely, the following functions
allow for testing a gf2e_t of being zero or one.

bool IsZero( gf2e_t x ); // true if x = 1; false otherwise
bool IsOne( gf2e_t x ); // true if x = 0; false otherwise

Arithmetic

// ¢ = a+b, this corresponds to an zor—operation
void add( gf2e_t & ¢ , gf2e_t a , gf2e_t b );
gf2e_t add( gf2e_t a , gf2e_t b );

// ¢ = a=b, this is equivalent to a+b
void sub( gf2e_t & ¢ , gf2e_t a , gf2e_t b );
gf2e_t sub( gf2e_t a , gf2e_t b );

// ¢ = axb
void mul( gf2e_t & ¢ , gf2e_t a , gf2e_t b );
gf2e_t mul( gf2e_t a , gf2e_t b );

// ¢ =a’e, if e<0, a must be non—zero
void power( gf2e_t & ¢ , gf2e_t a , long e );

// ¢ =a/b, b non—zero
void div( gf2e_t & ¢ , gf2e_t a , gf2e_t b );
gf2e_t div( gf2e_t a , gf2e_t b );
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The inverse of a non-zero gf2e_t can be computed by

void inv( gf2e_t & b , gf2e_t a );
gf2e_t inv( gf2e_t a );

Random Elements

void random( gf2e_t & x , bool tryRandom = false );

If tryRandom is true then the function tries to use a random generator with more
entropy, e.g., /dev/urandom on a Unix systems; otherwise, if false, the standard
pseudo random generator is used.

Miscellaneous

A representation of gf2e_t can be printed to a std::ostream via the <<
command, i.e.

std :: ostream & operator<<( std::ostream & out , gf2e_t f );

A.2.4 Polynomials

The following is provided by the nttools.h header file.

Polynomials with coefficients in a finite field are essential for fuzzy vault. In
particular, they are important for many purposes related with coding theory and
error-correcting codes.

libthimble provides three classes of polynomials over finite fields. These are
polynomials with gfp_t and gf2e_t as coefficients as well as polynomials with coef-
ficients in Fy. All of these polynomials can have arbitrary degree that is only limited
by computer memory. The polynomials are wrapped in the classes

class gfpx; //polynomial over gfp_t
class gf2ex; //polynomial over gf2e_t
class GF2X; //polynomial over the binary field

GF2X provides much faster arithmetic compared to the arithmetic of gf2ex using the
finite field initialized with gf2e_init(gf2_1()).

For many functions provided for on the class there exists an analogous one
for the other two polynomial classes. Thus, if we write ELX, we mean one of the
polynomials gfpx, gf2ex, or GF2X. Furthermore, by EL we refer to the type over
that the polynomial of type ELX is defined, i.e. the type of its coefficient. Thus EL is
either gfp_t, gf2e_t, or bool as ELX is either gfpx, gf2ex, or GF2X, respectively.

With this notation, each polynomial over finite fields that 1ibthimble provides
has the following constructors.

ELX(); //zero
ELX( const ELX & f ); //copy constructor
ELX( EL b ); //constant polynomial equals b

Furthermore, GF2X has the constructor

GF2X( gf2x & f ); // conversion of f
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Each ELX implement the assignment operator such that polynomials can be copied,
ie.

ELX & ELX::operator=( const ELX & f );

Comparison of polynomials can be realized via the == operator, i.e.

// true if and only if f=g
bool operator==( const ELX & f |, const ELX & g );

The degree of an ELX can be accessed via

// if f=0 then returns —1, otherwise the position
// of the highest non—zero term
long deg( const ELX & f );

Polynomials can be tested on being zero or one using

bool IsZero( const ELX & f );
bool IsOne( const ELX & f );

Furthermore, a particular polynomial instance can be set to zero/one via

bool SetZero( ELX & f );
bool SetOne( ELX & f );

Setter and getter for the coefficients of polynomials are

//returns coefficient of the X"t monimial
EL coeff( const ELX & f |, long i );

// Sets coefficient of X"i to fi, i >=0
void SetCoeff( ELX & f |, long i , EL fi );

Arithmetic

// ¢ = a+b
void add( ELX & ¢ , const ELX & a , const ELX & b );

// ¢ = a—b
void sub( ELX & ¢ , const ELX & a , const ELX & b );

// ¢ = axb
void mul( ELX & ¢ , const ELX & a , const ELX & b );

// ¢ =a’e
void power( ELX & ¢ , const ELX & a , uint64_t & e );

// qxb+r=a with deg(r)<deg(b); assumes b is non—zero
void DivRem( EILX & q , ELX & r |

const ELX & a |, const ELX & b );
void div( ELX & ¢q , const ELX & a , const ELX & b );
void rem( ELX & r , const ELX & a , const ELX & b );
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Greatest Common Divisor via the Euclidean Algorithm

// g = ng(a/7b)
void GCD( EILX & g , const ELX & a , const ELX & b );

//Computes g, s, and t such that GCD(a,b)=g=s*xa+txb
void XGCD( EILX & g , EIX & s , ELX & t
const ELX & a , const ELX & b );

Modular Arithmetic

// h = fxg rem m
void MulMod( ELX & h |, const ELX & f | const EILX & g
const ELX & m );

// h = f(—1) rem m
void InvMod( ELX & h , const ELX & f | const ELX & m );

// h = f"e rem m, if e<0 then m and f must be co—prime
void PowerMod( ELX & h , const ELX & f |, long e ,
const ELX & m );

// h = [f(g) rem m
void EvalMod( ELX & h , const ELX & f | const EILX & g

const ELX & m );

Random Polynomials

void random( ELX & f |, long n , bool tryRandom = false );

Generates a random polynomial of degree < n. If tryRandom is true then the
function tries to use a random generator with more entropy, e.g., /dev/urandom on
a Unix systems; otherwise, if false, the standard pseudo random generator is used.

Miscellaneous
A representation of ELX can be printed to a std: : ostream via the << command,
ie.

std :: ostream & operator<<( std::ostream & out , const ELX & f );

A.2.5 Polynomial Evaluation, Interpolation, and Factoriza-
tion
The functions described here are provided by the nttools.h header file.

Functions for performing multi-point polynomial evaluation and polynomial
interpolation are implemented for the classes gfpx and gf2ex.

Multipoint Evaluation

/) oyli] = f(=[i])

void eval( std::vector<gfp_t> & y , const gfpx & f |
const std::vector<gfp_t> & x );

void eval( std::vector<gf2e_t> & y , const gf2ex & f |
const std::vector<gf2e_t> & x );



A.3. Cryptographic Tools 139

Interpolation

// computes f of minimal degree such that f(z[i])=y[i]
// the elements of = must be pairwise distinct;
// x© and y should have the same length
void interpolate( gfpx & f |
const std::vector<gfp_t> & x |
const std::vector<gfp_t> & y );
void interpolate( gf2ex & f |
const std::vector<gf2e_t> & x
const std::vector<gf2e_t> & y );

Factorization

Functions for root finding are provided for gf2ex and gfpx.

//Find all roots[i] such that f(roots[i])=0
void FindRoots( std::vector<gfp_t> & roots , const gfpx & f );
void FindRoots( std::vector<gf2e_t> & roots , const gf2ex & f );

For the classes gfpx, gf2ex, and GF2X methods for finding factors are provided.

// Finds an irreducible non—constant factor of f
void IrreducibleFactor( ELX & h , const ELX & f );

Irreducibility Testing

The following function tests whether a polynomial is irreducible.

bool Islrreducible( const ELX & f );

A.3 Cryptographic Tools

thimble provides some implementations related to cryptography. These func-
tions are provided by the cryptools.h header file.

A.3.1 SHA-1

The following method implements the secure hash algorithm (National Insti-
tute of Standards and Technology (1995)) of data message that holds n bytes. After
invocation hash holds the SHA-1 hash value of message.

void SHAI( uint32_t hash[5] , uint8_t xmessage , uint64_t n );

For convenience, thimble provides wrapper functions that compute the SHA-1 hash
value of the data of polynomials, which is frequently needed for authentication in
thimble’s fuzzy fingerprint vault implementations documented below.

void SHA1( uint32_t hash[5] , const gfpx & f );
void SHAI( uint32_t hash[5] , const gf2ex & f );
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A.4 Error-Correcting Codes

Classes, types, and functions related to error-correcting codes are provided by
the ecctools.h header file.

A.4.1 Binary BCH Codes

Prior encoding and decoding in a certain binary BCH code it must be gener-
ated. Therefore the class BCHCode is provided which has the following constructor.

BCHCode( long n , long nu );

BCH codewords are represented as binary polynomials, i.e. as GF2X. Given a poly-
nomial r of degree smaller than n we can compute its nearest BCH codeword (as a
polynomial) via the member function

// computes nearest codeword c¢ to r

// and returns true if possible;

// otherwise returns false

bool round( GF2X & ¢ , const GF2X & r ) const;

of the class BCHCode. Furthermore, the class BCHCode provides the following member
function which may be useful for encoding and decoding.

//generator polynomial of the BCH code
const GF2X & get_g () const;

A.4.2 Golay Codes

The following functions implement encoding and decoding of Golay codes.

//add redundancy to a 12—bit word
//and returns its corresponding
//25—bit Golay codeword

uint32_t GolayEnc( uintl6_t msg );

//rounds a 23—bit word to

//its mearest 25—bit Golay codeword
//and returns it

uint32_t GolayRound( uint32_t r );

//essentially performs
//GolayRound (r) but returns only
//the first 12 bits

uintl6_t GolayDec( uint32_t r );

The function GolayRound implements the low-complexity scheme proposed by Ching-
Lung et al. (2006) which is faster than exhaustive search.
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A.4.3 Reed-Solomon Codes

Given different code locators x[0], ..., z[n — 1] of a finite field F and an integer
k < n they define the Reed-Solomon code

C={(f@[0]),.... flzln = 1)) | f € FIX], degf <k}. (A1)

If we received y = (y[0],...,y[n — 1]) € F", we may ask for the polynomial f
that defines the nearest codeword ¢ = (f(z[0]),..., f(z[n — 1])) to y. The following
functions can be used to compute such a polynomial with coefficients in gfp_t and
gf2e_t in the case where dist(c,y) < (n —k+1)/2.

// finds f if there exist one which already interpolates

// at least (n+k)/2 pairs f(x[i])=y[i] and returns true;

// otherwise returns false

bool gaodecode( gf2ex & f , const std::vector<gf2e_t> & x |,
const std::vector<gf2e_t> & y , long d );

bool gaodecode( gfpx & f |, const std::vector<gfp_t> & x |,
const std::vector<gfp_t> & y , long d );

The above functions implement the algorithm of Gao (2002).

A.4.4 Guruswami-Sudan Decoder

thimble also provides a Guruswami-Sudan list decoder (Guruswami and Sudan
(1998)) for both gfp_t and gf2e_t. The interface is the following

GSDecTime gsdecode

( std::vector<gf2ex> & P |
const std::vector<gfle_t> & x |
const std::vector<gfle_t> & y |
long k , long m );

GSDecTime gsdecode

( std::vector<gfpx> & P |
const std::vector<gfp_t> & x |
const std::vector<gfp_t> & y |
long k , long m );

m is a parameter controlling how many errors the decoder can tolerate, i.e. the mul-
tiplicity in the interpolation step of the Guruswami-Sudan decoder. In particular, if
m has been chosen sufficiently large, the list P contains all polynomials f such that
f(z[z]) = yli] for more than vn - k elements.

thimble’s implementation of the Guruswami-Sudan decoder follows the de-
scription of Trifonov (2010) for the interpolation step and the description of Roth
and Ruckenstein (2000) for the factorization step.

The class GSDecTime contains timings a decoding attempt lasted. In particular,
the time in seconds needed for the entire decoding attempt is achievable via the mem-
ber function totalSecs (), for the interpolation step via interpolationSecs(), and
for the factorization step via rootSecs().
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A.5 Fingerprints

The main purpose of the thimble library is to implement fuzzy fingerprint
vaults and functionalities to support security analysis. In this respect thimble pro-
vides an interface for minutiae templates.

A.5.1 Minutiae

The header Minutia.h provides the class Minutia with the following construc-
tors.

//Minutia at (0,0) with angle 0 and unknown type
Minutia ();

//Minutia at (X,Y) with angle ’theta’ and unknown type
Minutia( long X , long Y , long theta )

//Minutia at (X,Y) with angle ’theta’ and type ’typ’
Minutia( long X , long Y , long theta , MINUTIATYPE.T typ );

//copy constructor
Minutia( const Minutia & minutia );

A MINUTIATYPE_T can have the values UNKNOWN_MT, ENDING_MT, and BIFURCATION_MT.
Angles are encoded as integers between 0 and 359. Furthermore, the attributes of a
Minutia can be assigned using its member functions

void setX( long X );

void setY ( long X );

void setAngle( long angle );

void setType( MINUTIATYPE.T typ );

Moreover, a Minutia can store a quality measure between 0 and 255 which can be
set via

void setQuality ( uint8_t q );

Correspondingly, the attributes can be obtained using the member functions

long getX () const;

long getY () const;

long getAngle() const;
uint8_t getQuality () const;

Minutiae Templates

A minutiae template in thimble is a std: :vector<Minutia>. We do not pro-
vide a documented interface for reading or writing minutiae templates. When using
our library, minutiae templates have to be converted manually.
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Alignment

Given two minutiae templates

std :: vector<Minutia> A | B;

we can compute an alignment of B to A via

void align

( std::vector<Minutia> & C |
const std::vector<Minutia> & A
const std::vector<Minutia> & B );

Note that for our experiments in Section 3.4.4 on page 50, the alignment was achieved
differently to the alignment given by the above function.

A.6 Fuzzy Vault

In the class FuzzyVault provided by the header FuzzyVault.h there are some
static functions that we implemented to perform tests in this thesis.

A.6.1 Brute-Force Attack

The following functions perform N iterations of the brute-force attack where
the “correct” polynomial is identified by the number of points it interpolates. The
attack attempts to find a polynomial f of degree d that interpolates at least D
points f(X[i]) = Y[i]. If such a polynomial can be successfully found in one of the
performed iteration, the functions return true and f contains the data of the found
polynomial; otherwise false is returned.

static bool bfattack

( gf2ex & f |, long d , long D |
const std::vector<gfle_t> & X |
const std::vector<gf2e_t> & Y |
long N );

static bool bfattack

( gfpx & f , long d , long D |
const std::vector<gfp_t> & X |
const std::vector<gfp_t> &Y ,
long N );

The following functions also perform N iterations of the brute-force attack. But this
time the correct polynomial is identified with its SHA-1 hash value. If a polynomial
with SHA-1 hash value equals to hash is found then the functions return true and
f contains the found polynomial; otherwise false is returned.

static bool bfattack

( gf2ex & f , long d |
const std::vector<gfle_t> & X |
const std::vector<gfle_t> &Y |
long N |, const uint32_t hash[5] );
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static bool bfattack

( gfpx & f |, long d ,
const std::vector<gfp_t> & X |
const std::vector<gfp_t> &Y |
long N | const uint32_t hash[5] );

We used these functions to predict the expected timings for a successful brute-force
attack of given vault parameters.

A.6.2 Ordinary Iterative Decoder

The following functions perform decoding by systematically iterating through
all candidate polynomials. Essentially this corresponds to a brute-force attack that
is run systematically.

Each of the following functions searches a polynomial f with SHA-1 hash value
hash of degree < d interpolating at least d + 1 points (z[i], y[¢]) and return true if
it is found; otherwise false is returned.

static bool bfdecode

( gf2ex & f , long d |
const std::vector<gfle_t> & x
const std::vector<gfle_t> & y ,
const uint32_t hash[5] );

static bool bfdecode

( gfpx & f , long d ,
const std::vector<gfp_t> & x
const std::vector<gfp_t> & y
const uint32_t hash[5] );

A.6.3 Randomized Decoder

Essentially, the randomized decoder of Section 5.4 agrees with the implemen-
tation of the brute-force attack in where the SHA-1 hash value is used for identi-
fying the correct polynomial. Nonetheless, to allow clear distinction of the meaning
thimble provides an interface for running the randomized decoder.

The following functions attempt to determine a polynomial f with SHA-1 hash
value hash that is of degree < d and that interpolates at least d + 1 pairs (z[i], y[i]).
They perform at most [ iterations. If such a polynomial is found, the returned value
will true and the decoded polynomial will be stored in f; otherwise false will be
returned.

static bool RandDecode

( gf2ex & f , long d |
const std::vector<gf2e_t> & x |,
const std::vector<gfle_t> & y
const uint32_t hash[5] , long I );

static bool RandDecode
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( gfpx & f , long d ,
const std::vector<gfp_t> & x |
const std::vector<gfp_t> & y |
const uint32_t hash[5] , long I );

A.7 Minutiae Fuzzy Vault

The header file MinutiaeFuzzyVault.h provides the interface of our reference
implementation mainly following the description of Nandakumar et al. (2007a) (see
Section 3.4 on page 47).

An instance of a minutiae fuzzy vault is constructed from the class MinutiaeFuzzyVault.

A.7.1 Initialization

Before minutiae can be protected via a MinutiaeFuzzyVault we should specify
the region in where minutiae locations can occur. For this purposes the method

void setFixedBounds( long x0 , long y0 , long x1, long yl );

is provided. If invoked, the fuzzy vault is deemed to protect a minutiae template
whose minutiae are at the locations (z,y) € [20, 1] % [y0, y1]. For minutiae templates
from the FVC 2002 DB2 database a MinutiaeFuzzyVault thus has to be initialized
with

MinutiaeFuzzyVault V;

V.setFixedBounds (0,0,295,559);

The length of the secret polynomial (default is k = 9) can be specified via
void set_k( long k );

A.7.2 Enrollment

Enrollment at a vault can be realized via

bool enrol
( const std::vector<Minutia> & T | const std::string & s );

using a minutiae template 7" and a secret string s. The minutiae template T' is
assumed to be ordered with respect to the quality of its minutiae. If no sufficient
many minutiae could be selected from 7', the function returns false; otherwise,
after successful enrollment true is returned.

A.7.3 Authentication

An authentication attempt using a query template (aligned to the vault) can
be achieved via

bool open
( std::string & s , const vector<Minutia> & Q ) const;

If @ is of sufficient agreement with the enrolled template T', the function returns
true and s contains secret specified on enrollment; otherwise false is returned.
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A.7.4 Correlation Attack

The correlation attack (i.e. Algorithm 4.4.1 on page 75) can be run via the
function

CORRATTACK.T CorrelationAttack

( std::string & s
const MinutiaeFuzzyVault & V |
const std::vector<Minutia> & W |,
double x );

The result can either be CORRATTACK_SUCCESS in case the vault V' could be suc-
cessfully broken, or CORRATTACK_FAILED if unsuccessful. On success, s contains the
secret string that was used on enrollment.

A.8 Cross-Matching Resistant Minutiae Fuzzy Vault

In CMRMinutiaeFuzzyVault.h the interface of our implementation of the cross-
matching resistant minutiae fuzzy vault is provided (see Chapter 5 on page 87).

The vault implementation is wrapped in the class CMRFminutiaeFuzzyVault.
The following variables are members of the class.

long alpha , t , k , I;
std :: vector<std :: pair<long double,long double> > grid;

alpha controls how significant minutiae angles are taken into account (default is 2);
t bounds the number of genuine vault points (default is 46); k controls the length of
the secret polynomial (default is 8); I corresponds to the number of iterations that
are performed with the randomized decoder (default is 65,536) on authentication;
grid contains the rigid points to where minutiae locations on quantization (default
is the hexagonal grid visible in Figure 5.1 on page 91 of distance A = 22 centered in
the region [0,295] x [0, 559]).

A.8.1 Quantization of Minutiae

The interface of our implementation that quantizes a minutia is given by the
member function

uint32_t quantize( const Minutia & minutia ) const;

where the result (as a uin32_t) encodes a quantization of the specified minutia as
an element of the vault’s finite field. An entire template can be quantized using

void quantize
( std::set<uint32_t> & Q ,

const std::vector<Minutia> & T )
const ;

or equivalently

void quantize

( std::vector<uint32_t> & Q
const std::vector<Minutia> & T )

const ;
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A.8.2 Enrollment
Binding a minutiae template 7" to a secret key s on enrollment can be performed
with

bool enrol
( const std::vector<Minutia> & T |,
const std::string & s );

which will return false if it was not able to obtain a quantization set of sufficient
size; otherwise the result will be true.

A.8.3 Authentication
Similarly, authentication using a query template ¢T" (aligned to the vault) is
provided as

bool open
( std::string & s , const std::vector<Minutia> & qT );

which returns true if s contains the correct secret and false otherwise.

A.9 Miscellaneous

In mtools.h there is the function

void HexaGrid

( std::vector< std::pair<long double,long double> > & grid |,
long double x0 , long double y0 ,
long double x1 , long double y1 |,
long double g );

which implements Algorithm 5.1.1 on page 93. That is, it computes points of a
hexagonal grid grid that are centered in the region [0, y0] x [x1, y1].
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B. Tables

Table B.1: Distribution of unlocking set sizes u(s) as described in Section 5.6.4

w(0) =0% | u(10) =0% | u(20) =1% | «(30) =8% | wu(40)=28%
u(1l) =0% | u(11l) =0% | w(21) =2% | u(31) =8% | wu(4l)=32%
u(2) =0% | u(12) = 0% | u(22) =2% | u(32) =9% | wu(42) = 36%
w(3) =0% | u(13) =0% | w(23) =2% | w(33) =11% | u(43) = 38%
u(d) = 0% | u(14) = 0% | w(24) = 3% | u(34) = 13% | wu(44) = 43%
u(5) =0% | u(15) = 0% | u(25) =3% | u(35) =13% | u(45) = 50%
u(6) = 0% | u(16) = 0% | u(26) = 4% | u(36) = 18% | u(46) = 100%
w(?) =0% | w(17) =1% | w(27) = 6% | u(37) =19%

u(8) = 0% | u(18) = 1% | u(28) = 6% | u(38) = 21%

w(9) = 0% | w(19) = 1% | w(29) = 7% | u(39) = 26%
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B. Tables

Table B.2: Hypothetical Authentication Rates of the Cross-Matching Resistant Fuzzy Vault Imple-
mentation of Chapter 5. The rates reported have been determined on the FVC 2002 DB-A database

(Maio et al. (2002))

minimal hypothetical hypothetical genuine hypothetical | upper bound
overlap genuine acceptance rate on false of hypothetical
of templates acceptance reduced dataset acceptance false
rate consisting of the first two rate acceptance
impressions per finger only rate
w GAR(w) sub-GAR(w) FAR(w) FAR;(w)
0 = 100% = 100% = 100% =100%
1 ~ 99.39% = 100% ~ 85.14% ~ 85.64%
2 ~ 98.89% = 100% ~ 60.13% ~ 62.09%
3 ~ 98.21% =100% ~ 38.31% ~ 41.13%
4 ~ 97.53% =99% ~ 20.51% ~ 22.47%
5 ~ 96.82% = 99% ~ 10.27% ~ 11.84%
6 ~ 95.89% =99% ~ 4.99% ~ 5.97%
7 = 94% = 99% ~ 1.84% ~ 2.33%
8 ~ 92.1% = 98% ~ 0.69% ~ 0.92%
9 ~ 89.14% = 98% ~ 0.27% ~ 0.33%
10 ~ 85.21% = 96% ~ 0.11% ~ 0.14%
11 ~ 81.14% = 94% ~ 0.03% =0
12 ~ 77.21% = 94% =0 =0
13 ~ 72.07% = 92% =0 =0
14 = 66.75% =91% =0 =0
15 ~ 61.46% = 90% =0 =0
16 ~ 56.21% =8"% =0 =0
17 ~ 49.92% =81% =0 =0
18 ~ 44.92% =T77% =0 =0
19 ~ 39.03% = 73% =0 =0
20 = 34.5% =72% =0 =0
21 ~ 29.1% = 69% =0 =0
22 ~ 24.92% = 63% =0 =0
23 ~ 21.42% = 60% =0 =0
24 ~ 18.03% = 55% =0 =0
25 ~ 14.46% =51% =0 =0
26 ~ 11.28% = 40% =0 =0
27 ~ 8.78% = 35% =0 =0
28 ~ 6.67% =31% =0 =0
29 ~5.21% = 28% =0 =0
30 ~ 4.32% =27% =0 =0
31 ~ 3.1% = 24% =0 =0
32 ~ 2.39% =16% =0 =0
33 ~ 1.57% =12% =0 =0
34 ~ 0.96% = 8% =0 =0
35 ~ 0.64% =6% =0 =0
36 ~ 0.35% = 4% =0 =0
37 ~ 0.14% =1% =0 =0
38 ~ 0.07% =0% =0 =0
39 ~ 0.07% =0% =0 =0
40 ~ 0.07% =0% =0 =0
41 ~ 0.03% =0% =0 =0
42 ~ 0.03% =0% =0 =0
43 ~ 0.03% =0% =0 =0
44 =0% =0% =0 =0
45 =0% =0% =0 =0
46 =0% =0% =0 =0
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Table B.3: Predicted Authentication Rates of the Crossmatching Resistant Fuzzy Vault Implemen-
tation of Chapter 5. The rates reported have been determined on the FVC 2002 DB database (Maio
et al. (2002)). The predictions make use of the values in Table B.2

size of secret || predicted genuine | predicted genuine predicted false
polynomial acceptance rate acceptance rate acceptance rate
on reduced dataset

k GAR sub-GAR FAR

0 = 100% > 100% < 100%
1 > 99.39% > 100% < 85.14%
2 > 98.89% > 100% < 60.13%
3 > 98.2% > 99.98% < 38.31%
4 > 96.92% > 98.99% < 20.51%
5 > 93.6% > 98.62% < 4.84%
6 > 86.49% > 96.47% < 0.57%
7 > 76.59% > 93.46% < 0.05%
8 > 65.24% > 90.22% <2.45-107°
9 > 53.75% > 83.74% <9.76-1077
10 > 43.15% > 76.58% <211-1078
11 > 34.01% > 70.79% = 0%
12 > 26.65% > 64.61% =0%
13 > 20.83% > 58.16% =0%
14 > 15.99% > 50.5% =0%
15 > 12.07% > 42.48% = 0%
16 > 9.08% > 36.06% = 0%
17 > 6.91% > 31.62% =0%
18 > 5.38% > 28.6% =0%
19 > 4.23% > 25.65% =0%
20 > 3.32% > 21.9% =0%
21 > 2.58% > 17.87% = 0%
22 > 1.97% > 14.23% =0%
23 > 1.47% > 11.21% =0%
24 > 1.1% > 8.88% =0%
25 > 0.82% > 7.09% = 0%
26 > 0.6% > 5.6% = 0%
27 > 0.43% > 4.18% =0%
28 > 0.3% > 2.83% =0%
29 > 0.2% > 1.711% =0%
30 > 0.13% > 0.9% =0%
31 > 0.1% > 0.41% = 0%
32 > 0.08% > 0.16% = 0%
33 > 0.07% > 0.05% =0%
34 > 0.07% > 0.01% =0%
35 > 0.07% > 0% =0%
36 > 0.06% > 0% = 0%
37 > 0.05% > 0% = 0%
38 > 0.04% > 0% =0%
39 > 0.03% > 0% =0%
40 > 0.03% > 0% =0%
41 > 0.03% > 0% =0%
42 > 0.03% > 0% = 0%
43 > 0.03% > 0% = 0%
44 > 0% > 0% =0%
45 > 0% > 0% =0%
46 > 0% > 0% = 0%




152 B. Tables




Bibliography

Alekhnovich, M. (2002). Linear diophantine equations over polynomials and soft
decoding of reed-solomon codes. In Proc. of the 43rd Symp. on Foundations
of Computer Science, FOCS 02, pages 439-448, Washington, DC, USA. IEEE
Computer Society.

Arakala, A., Jeffers, J., and Horadam, K. J. (2007). Fuzzy extractors for minutiae-
based fingerprint authentication. In Proc. Int’l Conf. on Biometrics, LNCS
4642, pages 760-769.

Bazen, A. M. and Gerez, S. H. (2001). An intrinsic coordinate system for fingerprint
matching. In Proc. Int’l Conf. on Audio- and Video-based Biometric Person
Authentication, pages 198-204.

Bazen, A. M. and Gerez, S. H. (2001). Segmentation of fingerprint images. In PROR-
ISC 2001 WORKSHOP ON CIRCUITS, SYSTEMS AND SIGNAL PROCESS-
ING, pages 276-280.

Berlekamp, E. (1966). Nonbinary BCH decoding. Institute of Statistics mimeo series.
University of North Carolina. Dept. of Statistics.

Berlekamp, E. R. (1984). Algebraic coding theory. Aegean Park Press, Laguna Hills,
CA, USA.

Berlekamp, E. R., McEliece, R. J., and Van Tilborg, H. C. A. (1978). On the inherent
intractability of certain coding problems. IEEE Trans. Inf. Theory, 24.

Besl, P. J. and McKay, N. D. (1992). A method for registration of 3-d shapes. IEEE
Trans. Pattern Anal. Mach. Intell., 14(2):239-256.

Blahut, R. (2003). Algebraic Codes for Data Transmission. Cambridge University
Press.

Bleichenbacher, D. and Nguyen, P. Q. (2000). Noisy polynomial interpolation and
noisy chinese remaindering. In Proc. of the 19th Int’l Conf. on Theory and
application of cryptographic techniques, EUROCRYPT 00, pages 53—69, Berlin,
Heidelberg.

Bose, R. C. and Ray-Chaudhuri, D. K. (1960). On a class of error correcting binary
group codes. Information and Control, 3(1):68-79.

Bose, R. C. and Shrikhande, S. S. (1959). A note on a result in the theory of code
construction. Information and Control, 2(2):183-194.



B Bibliography

Brassard, G., Chaum, D., and Crépeau, C. (1988). Minimum disclosure proofs of
knowledge. J. Comput. Syst. Sci., 37(2):156-189.

Brent, R., Gaudry, P., Thome, E., and Zimmermann, P. (2010). GF2X: a library
for multiplying polynomials over the binary field, version 1.0. available from
http://gforge.inria.fr/projects/gf2x/.

Bringer, J., Chabanne, H., Izabachene, M., Pointcheval, D., Tang, Q., and Zimmer, S.
(2007a). An Application of the Goldwasser-Micali Cryptosystem to Biometric
Authentication. In Pieprzyk, J., Ghodosi, H., and Dawson, E., editors, The
12th Australasian Conf. on Information Security and Privacy (ACISP °07),
volume 4586 of Lecture Notes in Computer Science, pages 96-106, Townsville,
Queensland, Australia. Springer.

Bringer, J., Chabanne, H., Pointcheval, D., and Tang, Q. (2007b). Extended private
information retrieval and its application in biometrics authentications. In Proc.
of the Int’l Conf. on Cryptology and Network Security (6th), CANS’07, pages
175-193, Berlin, Heidelberg. Springer-Verlag.

Buchmann, J. (2003). Einfihrung in die Kryptographie. Springer-Verlag, Berlin,
third edition.

Cavoukian, A. and Stoianov, A. (2009). Biometrics: theory, methods, and appli-
cations, chapter 26 - Biometric Encryption: The New Breed of Untraceable
Biometrics. John Wiley & Sons, Inc., Hoboken, NJ, USA.

Chang, E.-C., Shen, R., and Teo, F. W. (2006). Finding the original point set hidden
among chaff. In Proc. ACM Symp. on Information, computer and communica-
tions security, ASTACCS ’06, pages 182-188, New York, NY, USA. ACM.

Chen, Y., Dass, S., and Jain, A. (2005). Fingerprint quality indices for predict-
ing authentication performance. In Proc. Int’l Conf. Audio- and Video-Based
Biometric Person Authentication (5th), pages 160-170.

Chetverikov, D., Svirko, D., Stepanov, D., and Krsek, P. (2002). The trimmed
iterative closest point algorithm. In Proc. Int’l Conf. on Pattern Recognition,
pages 545-548.

Chien, R. (1964). Cyclic decoding procedures for bose- chaudhuri-hocquenghem
codes. IEEFE Trans. Inf. Theory, 10:357-363.

Ching-Lung, C., Szu-Lin, S., and Shao-Wei, W. (2006). Decoding the (23, 12, 7)
golay code using a low-complexity scheme. IEICE Trans. Fundam. Electron.
Commun. Comput. Sci., 89-A(8):2235-2238.

Clancy, T. C., Kiyavash, N., and Lin, D. J. (2003). Secure smartcardbased fingerprint
authentication. In Proc.s of the 2003 ACM SIGMM workshop on Biometrics
methods and applications, WBMA 03, pages 4552, New York, NY, USA. ACM.

Clopper, C. J. and Pearson, E. S. (1934). The use of confidence or fiducial limits
illustrated in the case of the binomial. Biometrika, 26(4):pp. 404-413.


http://gforge.inria.fr/projects/gf2x/

Bibliography C

Cohn, H. and Heninger, N. (2011). Ideal forms of coppersmith’s theorem and
guruswami-sudan list decoding. In Innovations in Computer Science - ICS
2010, pages 298-308.

Cormen, T., Leierson, C., Rivest, R., and Stein, C. (2001). Introduction To Algo-
rithms. MIT Press, Cambridge, Massachusetts, 2 edition.

Daemen, J. and Rijmen, V. (2002). The Design of Rijndael: AES - The Advanced
Encryption Standard. Springer.

Dass, S. C. and Jain, A. K. (2004). Fingerprint classification using orientation field
flow curves. In Proc. Indian Conf. on Computer Vision, Graphics and Image
Processing, pages 650-655.

Daugman, J. (2004). How iris recognition works. IEEE Trans. Circuits Syst. Video
Technol., 14(1):21-30.

Davida, G. I., Frankel, Y., and Matt, B. J. (1998). On enabling secure applica-
tions through off-line biometric identification. In IEEE Symp. on Security and
Privacy, pages 148-157. IEEE Computer Society.

Dodis, Y., Ostrovsky, R., Reyzin, L., and Smith, A. (2008). Fuzzy extractors: How to
generate strong keys from biometrics and other noisy data. SIAM J. Comput.,
38(1):97-139.

Eggert, D. W., Lorusso, A., and Fisher, R. B. (1997). Estimating 3-d rigid body
transformations: a comparison of four major algorithms. Mach. Vision Appl.,
9:272-290.

El Gamal, T. (1985). A public key cryptosystem and a signature scheme based on
discrete logarithms. In Proc. of CRYPTO 84 on Advances in cryptology, pages
10-18, New York, NY, USA. Springer-Verlag New York, Inc.

Feistel, H. (1973). Cryptography and computer privacy. Scientific American,
228(5):15-23.

Feng, J. (2008). Combining minutiae descriptors for fingerprint matching. Pattern
Recognition, 41(1):342-352.

Gao, S. (2002). A new algorithm for decoding reed-solomon codes. In Communi-
cations, Information and Network Security, V.Bhargava, H.V.Poor, V. Tarokh,
and S. Yoon, pages 55-68. Kluwer.

Gao, S., Shokrollahi, A., and Joyner, D. (1999). Computing roots of polynomials
over function fields of curves. In Proc. of the Annapolis Conference on Number
Theory, Coding Theory, and Cryptography, pages 214-228. Springer-Verlag.

Gilat, A. (2011). MATLAB: An Introduction with Applications. John Wiley & Sons
Ltd, 4 edition.

Golay, M. J. E. (1949). Notes on digital coding. Proc. IRE, 37:657.



D Bibliography

Goldwasser, S. and Micali, S. (1982). Probabilistic Encryption and How To Play
Mental Poker Keeping Secret All Partial Information. In Proc. 14th ACM Symp.
on Theory of Computing, pages 270-299. ACM.

Gorenstein, D., Peterson, W. W., and Zierler, N. (1960). Two-error correcting bose-
chaudhuri codes are quasi-perfect. Information and Control, 3(3):291-294.

Gottschlich, C. (2011). Fingerprint Growth Prediction, Image Preprocessing and
Multi-level Judgment Aggregation. PhD thesis, University of Gottingen, Ger-
many.

Gottschlich, C., Mihailescu, P., and Munk, A. (2009). Robust orientation field esti-
mation and extrapolation using semilocal line sensors. IEEFE Trans. Inf. Foren-
sics Security, 4:802-811.

Gray, F. (1953). Pulse code communication. US Patent 2,632,058.

Guruswami, V. and Sudan, M. (1998). Improved decoding of reed-solomon and
algebraic-geometric codes. IEEE Trans. Intell. Transp. Syst., 45:1757-1767.

Guruswami, V. and Vardy, A. (2005). Maximum-likelihood decoding of reed-solomon
codes is np-hard. In Proc. of the ACM-SIAM Symp. on Discrete algorithms
(16th), SODA ’05, pages 470-478, Philadelphia, PA, USA. Society for Industrial
and Applied Mathematics.

Hanley, J. and Lippman-Hand, A. (1983). If nothing goes wrong, is everything
allright? interpreting zero numerators. Journal of the American Medical Asso-
ciation, 249(13):1743-1745.

Hao, F., Anderson, R., and Daugman, J. (2006). Combining crypto with biometrics
effectively. IEEE Trans. Comput., 55(9):1081-1088.

Hasse, H. (1936). Theorie der hoheren Differentiale in einem algebraischen Funktio-
nenkorper mit vollkommenem Konstantenkorper bei beliebiger Charakteristik.
J. Reine Angew. Math., 175:50-54.

Hocquenghem, A. (1959). Codes correcteurs d’erreurs. Chiffres (paris), 2:147-156.

Hong, L., Wan, Y., and Jain, A. K. (1998). Fingerprint image enhancement: Algo-
rithm and performance evaluation. IEEE Trans. Pattern Anal. Mach. Intell.,
20(8):777-7809.

Hotz, T. (2007). Modelling and Analysing Orientation Fields of Fingerprints. PhD
thesis, University of Gottingen, Germany.

Huckemann, S., Hotz, T., and Munk, A. (2008). Global models for the orientation
field of fingerprints: An approach based on quadratic differentials. IEEE Trans.
Pattern Anal. Mach. Intell., 30(9):1507-1519.

Jain, A., Hong, L., and Bolle, R. (1997). On-line fingerprint verification. IEEFE
Trans. Pattern Anal. Mach. Intell., 19:302-314.

Jain, A. K., Flynn, P., and Ross, A. A. (2007). Handbook of Biometrics. Springer-
Verlag New York, Inc., Secaucus, NJ, USA.



Bibliography E

Jeffers, J. and Arakala, A. (2007). Fingerprint Alignment for a Minutiae-Based
Fuzzy Vault. In Proc. Biometrics Symp., pages 1-6.

Jiang, X. and Yau, W.-y. (2000). Fingerprint minutiae matching based on the local
and global structures. Proc. of the 15th Int’l Conf. on Pattern Recognition
ICPR, 2:1038-1041.

Jovanovic, B. D. and Levy, P. S. (1997). A look at the rule of three. The American
Statistician, 51(2):137-139.

Juels and Sudan (2002). A fuzzy vault scheme. In Lapidoth, A. and Teletar, E.,
editors, Proc. IEEE Int’l Symp. Inf. Theory, page 408.

Juels and Wattenberg (1999). A fuzzy commitment scheme. In CCS ’99: Proc. of
the 6th ACM Conf. on Computer and Communications Security, pages 28-36,
New York, NY, USA. ACM.

Kamei, T. and Mizoguchi, M. (1995). Image filter design for fingerprint enhancement.
In Proc. Int’l Symp. on Computer Vision, pages 109-114.

Kass, M. and Witkin, A. P. (1987). Analyzing oriented patterns. Computer Vision,
Graphics, and Image Processing, 37(3):362-385.

Kawagoe, M. and Tojo, A. (1984). Fingerprint pattern classification. Pattern Recog-
nition, 7:296-303.

Kelkboom, E. J., Breebaart, J., Kevenaar, T. A., Buhan, I., and Veldhuis, R. N.
(2011). Preventing the decodability attack based cross-matching in a fuzzy
commitment scheme. IEEE Trans. Inf. Forensics Security, 6(1):107-121.

Kholmatov, A. and Yanikoglu, B. (2008). Realization of correlation attack against
the fuzzy vault scheme. In Proc. SPIE.

Kholmatov, A., Yanikoglu, B. A.; Savas, E., and A., L. (2006). Secret sharing
using biometric traits. In Proc. of SPIE, Biometric Technology For Human
Identification III, 6202, 18 April.

Kiayias, A. and Yung, M. (2008). Cryptographic hardness based on the decoding of
reed-solomon codes. IEEE Trans. Inf. Theory, 54(6):2752-2769.

Knuth, D. E. (1981). The Art of Computer Programming, Volume 11: Seminumerical
Algorithms, 2nd Edition. Addison-Wesley.

Koetter, R. and Vardy, A. (2003a). Algebraic soft-decision decoding of reed-solomon
codes. IEEE Trans. Inf. Theory, 49(11):2809-2825.

Koetter, R. and Vardy, A. (2003b). A complexity reducing transformation in alge-
braic list decoding of reed-solomon codes. In Proc. of IEEE Information Theory
Workshop, pages 200-203.

Li, J., Yang, X., Tian, J., Shi, P., and Li, P. (2008). Topological structure-based
alignment for fingerprint Fuzzy Vault. In Proc. Int’l Conf. on Pattern Recogni-
tion, pages 1-4.



F Bibliography

Li, P., Yang, X., Cao, K., Shi, P., and Tian, J. (2009). Security-enhanced fuzzy
fingerprint vault based on minutiae’s local ridge information. In Proc. Int’l
Conf. on Advances in Biometrics, ICB ’09, pages 930-939, Berlin, Heidelberg.
Springer-Verlag.

Li, P., Yang, X., Cao, K., Tao, X., Wang, R., and Tian, J. (2010). An alignment-free
fingerprint cryptosystem based on fuzzy vault scheme. J. Netw. Comput. Appl.,
33:207-220.

Maio, D., Maltoni, D., R., C., J.L., W., and A.K., J. (2002). FVC2002: Second Fin-
gerprint Verification Competition. In Proc. Int’l Conf. on Pattern Recognition
(16th), pages 811-814.

Maltoni, D., Maio, D., Jain, A. K., and Prabhakar, S. (2009). Handbook of Finger-
print Recognition. Springer Publishing Company, Incorporated, 2nd edition.

Massey, J. L. (1969). Shift-register synthesis and bch decoding. IEEE Trans. Inf.
Theory, 15(1):122-127.

McEliece, R. (2003). The guruswami-sudan decoding algorithm for reed-solomon
codes.

Merkle, J. et al. (2010a). Provable security for the fuzzy fingerprint vault. In Proc.
Int’l Conf. on Internet Monitoring and Protection, ICIMP ’10, pages 65-73,
Washington, DC, USA. IEEE Computer Society.

Merkle, J., Thmor, H., Korte, U., Niesing, M., and Schwaiger, M. (2010b). Perfor-
mance of the fuzzy vault for multiple fingerprints (extended version). CoRR,
abs/1008.0807.

Mieloch, K. (2008). Hierarchically linked extended features for fingerprint processing.
PhD thesis, University of Goettingen, Germany.

Mieloch, K., Munk, A., and Mihailescu, P. (2008). Hierarchically linked extended
features for fingerprint processing. In Proc. SPIFE.

Mihailescu, P. (2007). The fuzzy vault for fingerprints is vulnerable to brute force
attack. CoRR, abs/0708.2974.

Mihailescu, P., Munk, A., and Tams, B. (2009). The fuzzy vault for fingerprints is
vulnerable to brute force attack. In BIOSIG, pages 43-54.

Nagar, A., Nandakumar, K., and Jain, A. K. (2008). Securing fingerprint template:
Fuzzy vault with minutiae descriptors. In Proc. Int’l Conf. on Pattern Recog-
nition.

Nagar, A., Nandakumar, K., and Jain, A. K. (2010). A hybrid biometric cryp-
tosystem for securing fingerprint minutiae templates. Pattern Recogn. Lett.,
31:733-741.

Nandakumar, K., Jain, A. K., and Pankanti, S. (2007a). Fingerprint-based fuzzy
vault: Implementation and performance. IEEE Trans. Inf. Forensics Security,
2(4):744-757.



Bibliography G

Nandakumar, K., Nagar, A., and Jain, A. K. (2007b). Hardening fingerprint fuzzy
vault using password. In Proc. Int’l Conf. on Biometrics, LNCS 4642, pages
927-937.

Nandakumar, K. (2008). Multibiometric systems: Fusion strategies and template se-
curity. PhD thesis, Department of Computer Science and Engineering, Michigan
State University.

National Institute of Standards and Technology (1995). Announcing the Secure
Hash Standard. available online http://csrc.nist.gov/.

National Institute of Standards and Technology (1999). FIPS PUB 46-3: Data
Encryption Standard (DES). National Institute of Standards and Technology.
supersedes FIPS 46-2.

National Institute of Standards and Technology (2001). FIPS PUB 197: Announcing
the Advanced Encryption Standard (AES). National Institute for Standards and
Technology.

National Institute of Standards and Technology (2002). FIPS 180-2: Secure Hash
Standard. National Institute for Standards and Technology.

Neurotechnology Ltd (2006). Verifinger SDK 5.0. http://www.neurotechnology.
com.

Ortega-Garcia, J., Fierrez-Aguilar, J., Simon, D., Gonzalez, J., Faundez-Zanuy, M.,
Espinosa, V., Satue, A., Hernaez, 1., Igarza, J. J., Vivaracho, C., Escudero, D.,
and Moro, Q. I. (2003). MCYT baseline corpus: a bimodal biometric database.
IEE Proc. on Vision, Image and Signal Processing, 150(6):395-401.

Papadimitriou, C. H. (1994). Computational complexity. Addison-Wesley.

Ratha, N. K., Chen, S., and Jain, A. K. (1995). Adaptive flow orientation-based
feature extraction in fingerprint images. Pattern Recognition, 28(11):1657-1672.

Ratha, N. K., Pandit, V. D., Bolle, R. M., and Vaish, V. (2000). Robust finger-
print authentication using local structural similarity. In Proc. Workshop on
applications of Computer Vision, pages 29-34.

Reed, I. S. and Solomon, G. (1960). Polynomial codes over certain finite fields.
Journal of the Society for Industrial and Applied Mathematics, 8(2):300-304.

Rerkrai, K. and Areekul, V. (2000). A new reference point for fingerprint recognition.
In Proc. Int’l Conf. on Image Processing.

Rivest, R. L. (1991). The md4 message digest algorithm. In Proc. of the 10th
Annual Int’l Cryptology Conference on Advances in Cryptology, CRYPTO 90,
pages 303-311, London, UK, UK. Springer-Verlag.

Rivest, R. L., Shamir, A., and Adleman, L. (1983). A method for obtaining digital
signatures and public-key cryptosystems. Commun. ACM, 26:96-99.

Roth, R. (2006). Introduction to Coding Theory. Cambridge University Press.


http://csrc.nist.gov/
http://www.neurotechnology.com
http://www.neurotechnology.com

H Bibliography

Roth, R. M. and Ruckenstein, G. (2000). Efficient decoding of reed-solomon codes
beyond half the minimum distance. IEEE Trans. Inf. Theory, 46:246-257.

Sahai, A. and Waters, B. (2005). Fuzzy Identity-Based Encryption. Advances in
Cryptology — EUROCRYPT 2005, pages 457-473.

Sarier, N. (2011). Biometric Cryptosystems: Authentication, Encryption and Sig-
nature for Biometric Identities. PhD thesis, Rheinische Friedrich-Wilhelms-
Universitdt Bonn, Germany.

Scheirer, W. J. and Boult, T. E. (2007). Cracking fuzzy vaults and biometric en-
cryption. In Proc. of Biometrics Symp., pages 1-6.

Sharp, G. C., Lee, S. W., and Wehe, D. K. (2002). Icp registration using invariant
features. IEEE Trans. Pattern Anal. Mach. Intell., 24(1):90-102.

Sherlock, B. G. and Monro, D. M. (1993). A model for interpreting fingerprint
topology. Pattern Recognition, 26(7):1047-1055.

Shoup, V. (2005). A Computational Introduction to Number Theory and Algebra.
Cambridge University Press.

Shoup, V. (2009). NTL: A library for doing number theory, version 5.5.2. available
from http://www.shoup.net/ntl/.

Soutar, C., Roberge, D., Stoianov, A., Gilroy, R., and Kumar, B. (1998a). Biometric
encryption: Enrollment and verification procedures. In Proc. of SPIFE, volume
3386, pages 24-35.

Soutar, C., Roberge, D., Stoianov, A., Gilroy, R., and Kumar, B. (1998b). Biometric
encryption using image processing. In Proc. of SPIE, volume 3314, pages 178~
188.

Stroustrup, B. (2000). The C++ Programming Language. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 3rd edition.

Sudan, M. (1997). Decoding of reed solomon codes beyond the error-correction
bound. Journal of Complexity, 13:180-193.

Joachim von zur Gathen, Jiirgen Gerhard (2003). Modern Computer Algebra. Cam-
bridge University Press, Cambridge (UK), second edition.

The GMP Team (2011). GMP: the GNU Multiple Precision Arithmetic Library,
verston 5.0.2. avaiable from http://gmplib.org/.

Tico, M. and Kuosmanen, P. (2003). Fingerprint matching using an orientation-
based minutia descriptor. IEEE Trans. Pattern Anal. Mach. Intell., 25:1009—
1014.

Tomko, G., Soutar, C., and Schmidt, G. (1994). Fingerprint controlled public key
cryptographic system. US Patent 5,541,994.

Trifonov, P. (2010). Efficient interpolation in the guruswami-sudan algorithm. /EEE
Trans. Inf. Theory, 56(9):4341-4349.


http://www.shoup.net/ntl/
http://gmplib.org/

Bibliography I

Uludag, U. and Jain, A. K. (2006). Securing fingerprint template: fuzzy vault with
helper data. In Proc. IEEE Workshop on Privacy Research In Vision, pages
163-169.

Uludag, U., Pankanti, S., and Jain, A. (2005). Fuzzy vault for fingerprints. In Proc.
Int’l Conf. on Audio- and Video-Based Biometric Person Authentication, pages

310-319.

Welch, L. R. and Berlekamp, E. R. (1983). Error correction for algebraic block codes.
US Patent 4,633,470.

Yang, S. and Verbaudwhede, I. (2005). Automatic secure fingerprint verification
system based an fuzzy vault scheme. In Proc. Int’l Conf. on Acoustics, Speech
and Signal Processing, pages 609-612.

Zhang, T. Y. and Suen, C. Y. (1984). A fast parallel algorithm for thinning digital
patterns. Commun. ACM, 27:236-239.



Bibliography




Index K
Index
A control matrix
advanced encryption standard ... .. 15 ~ of a linear code ............. 28
AES......... see advanced encryption core point ...... ... i, 25
standard correlation attack.................. 75
ambient space..................... 28 cross-matching................. 57,73
ambient vector ............ ... ..., 28 cryptographic hash function ....... 15
angle cryptographic system.............. 14
~ of a minutia................. 18 cryptography ............. ... .. ... 13
arch........... ... . 26 cryptosystem ...................... 14
attack via record multiplicity .. 57, 73 D
B data encryption standard.......... 14
BCH code. ... ... see Bose-Chaudhuri- decoupling attack.................. 63
Hocquenghem decoupling brute-force attack
code ~ against the fuzzy vault...... 65
bifurcation decryption function................ 14
ride ~ 18 delta point ............ ... .. ... ... 25
binary Golay code................. 30 DES. ... see data encryption standard
binomial distribution digital signature................... 13
~ function..................... 22 direction
probability mass function of the ~ of a minutia................. 18
~ 929 double loop.......... ...l 26
block cipher E
ASYMIMEIic ~ ... 14 encryption function................ 14
symmetric N 14 encryption key .................... 14
Bose-Chaudhuri-Hocquenghem code ending
29 Tide ~ 18
brute-force attack error-correcting code............... 28
~ against the fuzzy vault...... 39 linear ~....................... 28
decoupling ~ against the fuzzy error-correction bound............. 29
vault ... 65
F
C false acceptance rate............... 21
check-sum......................... 13 false match rate. . see false acceptance
Clopper-Pearson interval .......... 22 rate
code locators false non-match rate............... 21
~ of a Reed-Solomon code..... 31 false-accept attack .............. 7, 56
collision .............. ... ... 15 false-acceptance rate................ 7
strong ~ resistance ........ 15, 33 feature-level fusion.................. 7
weak ~ resistance ............. 15 Feistel cipher............... ... ... 14
confidence interval................. 22 five nearest neighbor minutiae
confidence level.................... 22 structure .................. 45



L Index
Fourier transform minutia. ... 18
two-dimensional ~........... ... 5 ~ angle..... see minutia direction
frequency field..................... 25 ~ direction.................... 18
fuzzy commitment scheme ...... 3, 32 triangle based ~ structure..... 46
fuzzy vault scheme.................. 4 undirected ~....... ... 46
minutiae
G ~ local structure .............. 47
Gabor filter ............. ... ... ... 25 ~ template . ... 18
generator matrix .................. 28 five nearest neighbor ~ structure
genuine acceptance rate ........... 21 45
genuine authentication attempt....21 Voronoi ~ neighbor structure . . 46
genuine match rate....... see genuine minutiae descriptor ............. 7, 26
acceptance rate minutiae local structure ........... 21
genuine set ................oo oL 37 MLD ... . .. .. see maximum likelihood
global matching ................... 21 decoding
Golay code modified vault construction........ 96
binary ~ .......... oo o 30
ternary ~ ... 30 N
guaranteed error-correction bound . 29 non-invertible transformation....... 2
NTL..... see Number Theory Library
H Number Theory Library.......... 127
hamming code..................... 30
hamming distance................. 28 O
hamming weight................... 28 one-way function .................. 15
hash function...................... 15 orientation field ................... 25
cryptographic ~............... 15
hypothetical false acceptance rate 103 P
hypothetical genuine acceptance rate parity check matrix................ 28
103 password
~salt ..o 16, 87
1 perfect code .................. ... ... 7
impostor authentication attempt...21 personal identification number ... ... 1
inter-ridge distance................ 25 PINsee personal identification number
intrinsic coordinate system ........ 69 Poincaré index .................... 25
iriscode...........ooooiiiiiii 33 point estimation................... 22
polynomial reconstruction problem 38
L private template.............. .. .. 5
left loop ..o 26 public-key cryptography ........... 13
libthimble......... see thimble library
linear code ........... ... .. ... .. 28 Q
liveness detection................... 6 quality index ...................... 18
local matching..................... 21
local structure R
minutiae ~ . oo 47 rainbow-table...................... 16
locators rate
~ of a Reed-Solomon code.. . . .. 31 ~ of a linear code ............. 28
redundancy
M ~ of a linear code ............. 28
maximum likelihood decoding ... .. 29 Reed-Solomon code................ 31
minimal distance .................. 28 repetition code ............... ..., 30



Index

ridge

~ bifurcation.................. 18

~ending...................... 18
ridge curvature.................... 25
ridge frequency .................... 25
right loop ...l 26
Rijndael cipher.................... 15
Rivest-Shamir-Adleman cryptosystem

14
RSA ..... see Rivest-Shamir-Adleman
cryptosystem

rule of three....................... 23
S
salt

password ~................ 16, 87
secure hash algorithm ............. 16
secure hash standard .............. 16
SHA ....... see secure hash algorithm
SHS ........ see secure hash standard
singleton bound ................... 31
singular point ..................... 25
sphere packing bound ............. 30
sphere packing density............. 30
sphere-packing density.............. 7
strong collision resistance...... 15, 33
strongly binding................... 33
Sudan algorithm................... 32
syndrome. .......... ... 29
System users........................ 2
T
ternary Golay code................ 30
thimble library ................... 127
topo-structure................... .. 46

triangle based minutiae structure .. 46

U

undirected minutia ................ 46
unlocking set ............ ... ... .. 38
USET ettt e e et e e 2
A%

Voronoi neighbor minutiae structure

46
\%\%
weak collision resistance........... 15



Index




Curriculum Vitae

Berend-Benjamin Tams
born 9 July 1981 in Géttingen, Germany

September 1988 — June 2001
Schooling
General Qualification for University Entrance
Berufsbildende Schulen Osterholz-Scharmbeck (Fachgymnasium Technik)

September 2001 — June 2002
Civil Service
Kreiskrankenhaus OHZ in Osterholz-Scharmbeck

October 2002 — December 2008
Study of Mathematics and Computer Science (minor)
Faculty of Mathematics, University of Gottingen
diploma thesis: Diskreter Logarithmus mittels Zahlkéorpersieb
(in Erweiterungskorpern)
supervised by Prof. Dr. Preda Mihailescu

April 2005 — March 2008
Student Assistant
Faculty of Mathematics, University of Gottingen

since January 2009
Ph.D. Studies in Mathematics
Faculty of Mathematics, University of Gottingen
supervised by Prof. Dr. Preda Mihailescu

January 2009 — December 2011
member of the DFG Graduate Program 1023
“Identification in Mathematical Models”

since January 2012
Research Assistant (wissenschaftliche Hilfskraft)
Institute for Mathematical Stochastics, University of Géttingen



	Contents
	1 Introduction
	1.1 Security and Biometry
	1.2 Thesis Contribution
	1.3 Thesis Outline
	1.4 Acknowledgments

	2 Basics
	2.1 Cryptography
	2.2 Fingerprints
	2.3 Error-Correcting Codes
	2.4 The Fuzzy Commitment Scheme

	3 The Fuzzy Fingerprint Vault
	3.1 The Fuzzy Vault Scheme
	3.2 Implementations for Fingerprints
	3.3 Alignment
	3.4 Implementation

	4 Vulnerabilities
	4.1 Brute-Force Attack
	4.2 Auxiliary Alignment Data May Help to Improve Attacks
	4.3 False-Accept Attack
	4.4 Cross-Matching and the Correlation Attack

	5 Cross-Matching Resistant Minutiae Fuzzy Vault
	5.1 Basic Vault Construction
	5.2 Modified Vault Construction without Chaff Points
	5.3 Training
	5.4 Randomized Decoder
	5.5 Implementation
	5.6 Performance Evaluation
	5.7 Security Analysis and Evaluation
	5.8 Comparison with other Implementations

	6 Discussion
	6.1 Conclusion
	6.2 Outlook
	6.3 Open Problems
	6.4 Final Remarks

	A Software Library
	A.1 Programming Interface
	A.2 Number Theory
	A.3 Cryptographic Tools
	A.4 Error-Correcting Codes
	A.5 Fingerprints
	A.6 Fuzzy Vault
	A.7 Minutiae Fuzzy Vault
	A.8 Cross-Matching Resistant Minutiae Fuzzy Vault
	A.9 Miscellaneous

	B Tables
	Bibliography
	Index
	Curriculum Vitae

