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ABSTRACT 

Methotrexate (MTX) was first introduced as a cytotoxic agent that inhibits nucleotide 

biosynthesis in various cancer disorders. Accumulating evidences suggest that MTX 

inhibits the proliferation of malignant cells by inhibiting 5-aminoimidazole-4-carbox-

amide ribonucleotide transformylase, isoprenylcysteine carboxyl methyltransferase and 

NF-κB transcription factor. These observations indicate that MTX could have additional 

molecular targets that are therefore unappreciated. To get insights into the complex 

molecular mechanisms of MTX induced apoptosis in acute promyelocytic leukemia cells 

(HL-60), we conducted an investigation incorporating cysteine labeled differential in-gel 

electrophoresis combined with mass spectrometry. Initial experimental analysis revealed 

that 24 proteins were differentially expressed (p < 0.05) in HL-60 cell proteome after 

addition of 2.5 µM MTX for 72 h. The majority of MTX induced proteins were ascribed 

to the endoplasmic reticulum (ER) chaperones, glycolytic enzymes and the mitochondrial 

transmembrane electron transport system (MTETS). In particular, we noted that three 

structural α4, α5, α7; a non-catalytically β3 and two 26S regulatory proteasome subunits 

were significantly down regulated in MTX treated HL-60 cell. We further showed in 
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HL-60 cells that MTX induces ER chaperones, suppresses the NF-κB subunit p65, 

disturbs the mitochondrial transmembrane potential (∆ψm) and generates reactive oxygen 

species (ROS) in a time-dependent manner. All together, our findings revealed that MTX 

alter the level of a variety of proteins involved in the NF-κB associated proteasome 

complex formation, ER stress, and the MTETS. Their identification as molecular targets 

of MTX may provide new impulse in the understanding of apoptotic activities in acute 

promyelocytic leukaemia cell line. 
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1 INTRODUCTION 

Leukaemias are malignant neoplasms of haematopoietic cells. They can be acute or 

chronic. The acute leukaemias are a heterogeneous group of neoplasm arising from 

transformation of uncommitted or partially committed haematopoietic stem cells. Acute 

leukaemias are in general divided into myeloid and lymphoid leukaemia. They differ not 

only in their clinical presentation but also substantially in response to therapy and 

following course. Although the French-American-British (FAB) morphologic 

classification of acute promyelocytic leukaemia (APL) vs. acute lymphoblastic leukaemia 

(ALL) has been accepted for many years (Leymarie et al., 2004), the important advances 

in cytogenetic, immunophenotype and genetic fields needed to be integrated in an updated 

approach to classify leukaemias. 

The recognition of distinctive morphologies that correlate with the specific chromosomal 

translocation and development of treatments are based on specific genetic defects (Lopez-

Terrada, 2006). Molecular genetic analysis of acute leukaemia has been at the forefront of 

research into the pathogenesis of cancer because the presence of recurring chromosomal 

translocations provides immediate clues to the genetic events and identifies the 

deregulated oncogenes leading to leukaemias (Ikeda et al., 2006). 

1.1 THE MOLECULAR BASIS OF LEUKAEMIAS 

Leukaemias are characterized by acquisition of recurring genetic aberrations. Important 

insights into the molecular basis of leukaemias have been obtained by inhibition of 

differentiation, deregulation of tyrosine kinases, and inappropriate proliferation in the 

absence of normal growth signals finally lead to cell death (Cline, 1994). These factors 

are often not sufficient to cause leukaemia and appear to be a part of the complex 

signalling network. Hence, understanding the impaired genes complex and related 
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aberrant oncogenic cell signalling proteins have paved the way for new treatment 

modalities that target specific gene products implicated in cancer. 

1.1.1 Differentiation blockade: The role of transcription factors in APL 

The most common targets of leukaemia-associated chromosomal translocations are genes 

that encode DNA-binding transcription factors or regulatory component of transcriptional 

complexes (Look, 1997). A number of recurrent chromosomal translocations have been 

cloned and characterized in specific subtypes of leukaemia. For example, t(15;17) is 

mainly found in APL patients (Chou and Dang, 2005), whereas t(1;19) is basically 

involved in B-cell precursor ALL patients (Hunger, 1996). 

Chromosomal translocations in APL can be broadly grouped into Hox family members, 

ETS family members, Core binding factors, and other transcriptional regulatory proteins. 

The most common translocation in APL is the fusion of the retinoic acid receptor-α chain 

either to the PML gene (PML-RARα) or to the promyelocytic leukaemia zinc finger 

protein (PLZF / RARα) (Chen et al., 1993). Transformation in each of these cases 

proceeds the generation of fusion protein that interferes in a dominant manner with the 

function of the wild type protein. This chromosomal rearrangements result in abnormal 

proliferation, lack of differentiation, and disruption of apoptosis thereby giving the 

leukaemia cells an advantage to expand abnormally in various in-vivo and in-vitro 

experimental models (Van Etten and Shannon, 2004). 

1.1.2 Core binding factors in APL 

Genes that constitute the core binding factors are essential for haematopoiesis. Cloning of 

the AML-associated t(8;21) translocation led to the identification of AML1. It encodes 

DNA-binding subunit of AML1-CBFβ, a transcription factor that regulates a number of 

haematopoiesis specific genes and is essential for the development of haematopoietic cell 
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system (Wang et al., 1996). Fusion gene products formed by t(8;21) translocation joins 

the N-terminal part of AML1 including the DNA-binding and CBFβ interaction domains, 

with the C-terminal portion of the 8;21 gene  (ETO) on chromosome 8 (Yergeau et al., 

1997). The resultant complex retains its ability to bind AML1-regulated target sequences 

and represses AML1-mediated transcription (Liu et al., 1993). Further evidences suggest 

that ETO's ability to repress transcription is mediated by its interaction with nuclear 

receptor corepressor (N-CoR) and recruitment of N-CoR / Sin3 / HDAC1 complex in the 

nucleus (Wang et al., 1998). By permanently tethering this repressive complex to 

AML1-responsive promoters, AML1-ETO actively suppresses transcription by 

maintaining the histones in a deacetylated conformation and making DNA inaccessible to 

the transcriptional apparatus. Hence, inhibition of AML1-responsive gene probably block 

myeloid development and leukaemic transformation in maturing haematopoietic 

progenitors (Wang et al., 1998). 

1.1.3 Molecular deregulation of receptor tyrosine kinases in APL 

Receptor tyrosine kinases (RTKs) are transmembrane proteins having ligand binding 

extra cellular domain and a catalytic intracellular kinase domain. In the absence of 

ligands, RTKs are monomeric, unphosphorylated and kinase domains are inactive. 

Binding of ligand to the extra cellular domain results in receptor oligomerization and 

autophosphorylation of the tyrosine residue within the activation loop of the kinase. Upon 

tyrosine phosphorylation, other signalling proteins are recruited to the membrane and 

intracellar signal cascade is activated (Ikeda et al., 2006). A common mechanism in 

leukaemias is the fusion of a receptor tyrosine kinase with a partner protein as a result of 

chromosomal translocation, e.g., BCR-ABL (Perrotti and Calabretta, 2004). 
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1.1.4 The BCR-ABL fusion gene and leukaemia 

Chronic promyelocytic leukaemia is a clonal stem cell disorder, which is characterized by 

a t(9;22)(q34;q11) chromosomal translocation known as the Philadelphia chromosome 

(Sawyers, 1992). This classical translocation in leukaemia cells occurs by the fusion of 

two genes, BCR and ABL results in a formation of fused gene known as BCR-ABL. The 

fusion product is generally expressed as chimeric protein of 210 kDa molecular weight 

(also known as p210) (Perrotti and Calabretta, 2004). p210 is over expressed in freshly 

isolated cells derived from patients with chronic promyelocytic leukaemia and contain 

tyrosine kinase activity (Lim et al., 1999). In addition to this, leukaemic cells expressing 

BCR-ABL are also protected from apoptosis by preventing cytosolic accumulation of 

cytochrome-c and inhibition of caspase 3 (Bedi et al., 1995; Bedi et al., 1994). Moreover, 

activation of Ras G proteins are required for transformation by ABL oncogenes, activate 

several signalling pathways such as the RAS signalling pathway, the JNK and STAT 

pathways as well as the phosphatidyl inositol-3-kinase pathway (Daley et al., 1990). 

Ras-GTP also contributes to the PI3-kinase pathway activation by binding a site within 

class I catalytic subunits (Rodriguez-Viciana et al., 1994). 

1.1.5 Activated mutation in Fms-like tyrosine kinase-3 receptor 

Fms-like tyrosine kinase-3 (FLT3) is a tyrosine kinase receptor, involved in stem cell 

proliferation, increase invasiveness, angiogenesis and metastasis (Krause and Van Etten, 

2005). FLT3 is a most common mutated gene in APL and is constitutively activated by 

acquired mutation in approximately 12-42 % of APL patients (Thiede et al., 2002). Two 

types of mutations have been attributed to the deregulated FLT3 receptor. Firstly, in most 

cases of APL, there are internal tandem duplication (ITD) mutations in the 

juxtamembrane domain of FLT3, ranging in size from several to > 50 amino acids 

(Grundler et al., 2005). These mutations are always in frame and the diversity of 
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mutations among patients has suggested that there may be the loss-of-function mutations 

in an auto inhibitory domain. ITD mutations occur exclusively within 27–amino acids 

stretch and lead to structural inactivation of the tyrosine kinase. Clinical studies identify 

ITD mutations in 17-26 % of APL cases (Moreno et al., 2003). 

Secondly, a small percentage of APL mutations occur in the activation loop of FLT3 

resulting in constitutive kinase activation. The most common activating point mutation is 

the substitution of tyrosine for aspartic acid at position 835 within the activation loop of 

the kinase domain (Yamamoto et al., 2001). Point mutations at other positions, such as 

836 and 841 have also been associated with FLT3 independent activation of tyrosine 

kinase activity (Thiede et al., 2002). The FLT3-D835 mutation is observed in 7 % of APL 

cases (Murphy et al., 2003; Levis and Small, 2003). Thus, FLT3 appears to be necessary 

for disease progression in APL and is therefore a potential target for leukaemic therapy. 

1.1.6 Inappropriate proliferation: The role of signalling molecules 

It has been proved in leukaemias that activation of specific genetic programs that are 

coordinated by signal transduction pathways of growth factor and cytokine stimulation 

can determine cell division, apoptosis, or differentiation. The RAS signalling pathway is 

mainly activated by a spectrum of haematopoietic cytokine receptors in response to ligand 

stimulation and play an important role in the proliferation of haematopoietic progenitors 

(Bartek and Lukas, 2001). Members of the RAS gene family (K-RAS, N-RAS and 

H-RAS) are key oncogene homolog, involved in a number of signal transduction 

pathways. Oncogenic N-RAS and K-RAS mutations are generally found in approximately 

25 % in APL, 30 % in myeloma and 6-20 % in ALL patients (Padua et al., 1998). These 

mutations frequently involve single amino acid substitution at codons 12, 13, or 61 in the 

GTP binding site that abrogate intrinsic RAS GTPase activity and lead to constitutive 

RAS activation (Neri et al., 1988; Gougopoulou et al., 1996). 
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RAS oncogenic proteins undergo a complex series of posttranslational modifications 

before they are fully functional. These modifications occur at the C-terminal CAAX motif 

and are initiated by the addition of an isoprenoid lipid through a process known as 

prenylation (Hancock et al., 1989). Following prenylation, these proteins usually undergo 

endoproteolytic processing by RCE1 protease and then carboxyl methylation by a unique 

methyltransferase known as isoprenylcysteine carboxyl methyltransferase (ICMT) 

(Winter-Vann and Casey, 2005). Although inhibitors targeting the prenylation step are 

now in advanced-stage clinical trials, but their therapeutic utility and efficacy seems to be 

limited (Morgan et al., 2003). Recent findings indicate that the inhibition of the post-

prenylation processing steps, particularly ICMT catalysed methylation might provide a 

better approach to the control of cancer cell proliferation (Winter-Vann and Casey, 2005). 

NF-κB (Nuclear factor-kappa B) signalling pathway is also commonly found in all 

haematopoietic cell types and involved in haematopoietic cell survival (Pyatt et al., 1999), 

erythropoiesis (Zhang et al., 1998), neutrophil activation (McDonald et al., 1997); B-cell 

and T-cell development (Grumont et al., 1998). Abnormalities in the NF-κB regulation 

has been associated with the development of human lymphomas (Neri et al., 1991). 

Furthermore, a number of reports have shown that activation of NF-κB is critical for the 

pathogenesis of leukaemias (Baumgartner et al., 2002; Braun et al., 2006; Bueso-Ramos 

et al., 2004; Guzman et al., 2001). 

It had already been shown that human leukaemic cells expressed abnormally high level of 

proteasomes as compared to normal peripheral blood cells (Kumatori et al., 1990) 

Therefore, it seems to be reasonable that proteasome inhibitors initiate apoptosis in 

leukaemic cells. While proteasome inhibitors function through multiple pathways, the 

most important one is the blocking of the survival signals regulated by NF-κB (Adams, 

2004). This observation is consistent with studies in many cancer types, indicating a 
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central role of NF-κB in promoting tumour growth and survival of cancer patients (Karin, 

2006). 

1.1.7 Escape from apoptosis 

In normal haematopoiesis, there is a fine balance between proliferation and apoptosis, 

reflecting coordination between pro and anti-apoptotic genes (Schulte-Hermann et al., 

1999). In cancer cells, this delicate balance is disrupted by a number of mutations result in 

increasing the anti-apoptotic gene expression and thereby shifting this balance in favour 

of proliferation. BCL-2 is a proto-oncogene that was originally cloned from a follicular 

lymphoma t(14;18) translocation (Tsujimoto et al., 1985). It encodes mainly 

mitochondrial protein and promotes cell survival by blocking the release of cytochrome-c 

thus preventing caspase activation (Rosse et al., 1998). BCL-2 also suppresses p53 and 

c-Myc dependent apoptosis (Sachs and Lotem, 1993). Small interfering RNA against 

BCL-2 has been found to be effective in primary APL cells (Reed, 2003). 

1.2 CURRENT THERAPIES AND FUTURE DIRECTIONS 

Initially, the combination chemotherapy for APL has consisted of induction with 

cytarabine (Ara-C) and anthracycline followed by consolidation with Ara-C (Stone, 

2002). While this approach achieves remission for a majority of APL patients, relapse is 

common and long-term survival rates remain low. Recent experimental evidences indicate 

that both Ara-C and anthracycline are less effective in primitive APL cells as compared to 

leukaemic blasts (Costello et al., 2000; Guzman et al., 2001). Therefore, targeted therapy 

is a frontline treatment for haematological malignancies and became the novel treatment 

modalities for leukaemia patients. The differential clinical outcomes associated with the 

APL can be attributed primarily to drug sensitivity or resistance of promyelocytic cells 

harbouring specific genetic abnormalities (Daley et al., 1990; Pyatt et al., 1999; Thiede et 
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al., 2002; Wang et al., 1998; Wang et al., 1996). Although the mechanism of leukaemic 

transformation is not precisely known, patients with this abnormality have a favourable 

prognosis when they are treated with folate analogues based regimens (Rots et al., 2001; 

Goker et al., 1995). The unique sensitivity of leukaemic cells to MTX correlates with their 

propensity to undergo spontaneous apoptosis when cultured in vitro and to have higher-

than-average intracellular concentrations of MTX and its active polyglutamate after in 

vivo treatment (Rots et al., 2001). 

1.3 ANTI-METABOLITES (FOLIC ACID ANALOGUES) 

Dihyrofolate reductase (DHFR) is a primary site of action for most folate analogues. 

Inhibition of DHFR leads to toxic effects through partial depletion of tetrahydrofolate 

(FH4) cofactors that are required for the purine and thymidylate synthesis (Genestier et 

al., 2000). Various chemotherapeutic agents have been identified having weak affinity 

with human DHFR and strong activity against bacterial and parasitic infections. By 

contrast, MTX is an effective inhibitor of DHFR in all species. Crystallographic and 

oligonucleotide-directed mutagenesis studies explained high affinity and species 

specificity of MTX with DHFR (Blakley and Sorrentino, 1998; Matthews et al., 1985; 

Schweitzer et al., 1989; Stone and Morrison, 1986). 

1.3.1 History of MTX 

MTX, a folate analogue, first synthesized by Sidney Farber in collaboration with Harriett 

Kilte and Lederle chemists. It was the first example of rational drug design developed for 

the treatment of ALL (Farber, 1950). It was further reported to cure choriocarcinoma 

(Berlin et al., 1963). The consistent cure of choriocarcinoma by MTX provided great 

impetus to investigations into the chemotherapy of cancer. Besides its anticancer activity, 

MTX is widely used in the treatment of psoriasis, rheumatoid arthritis (Takimoto and 
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Allegra, 1995) primary biliary cirrhosis, Crohn’s disease, and intrinsic asthma (Genestier 

et al., 2000). 

1.3.2 Chemistry and metabolic activities of folates 

The structural formula of pteroylglutamic acid (PteGlu) is shown in Figure 1. Major part 

of the molecule includes pteridine ring linked by a methylene bridge to paraminobenzoic 

acid, which is joined by an amide linkage to glutamic acid. While PteGlu is the common 

pharmaceutical form of folic acid, it is neither the principle folic acid congener in food 

nor the active coenzyme for intracellular metabolism. Following absorption PteGlu is 

rapidly reduced to dihydrofolate (FH2) and subsequently to tetrahydrofolate (FH4). Both 

these sequential reactions are carried out in the presence of DHFR. 

 

 

 

 

Figure 1. The chemical structure of pteroylglutamic acid (folic acid) 

In the form of a series of FH4 compounds, folate accepts one-carbon units from donor 

molecule and plays a specific role in the intracellular metabolism (Choi and Mason, 2000) 

summarized as follows: 
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A. Utilization or generation of formate. This reversible reaction utilizes FH4 and 

10-methyltetrahydrofolate (CH3FH4). 

B. Conversion of serine to glycine. This reaction requires FH4 as an acceptor of a 

methylene group from serine and utilizes pyridoxal phosphate as a cofactor 

resulting in the formation of 5, 10-methylenetetrahydrofolate (CH2FH4), an 

essential coenzyme for thymidylate synthesis. 

C. Histidine metabolism. FH4 also acts as an acceptor of a formimino group in the 

conversion of formiminoglutamic acid to glutamic acid. 

D. Conversion of homocysteine to methionine. Methionine is regenerated from 

homocysteine in a reaction catalysed by an enzyme known as CH3FH4 

homocysteine methyltransferase. This reaction requires CH3FH4 as a methyl donor 

and utilizes vitamin B12 as a cofactor. Further, methionine is converted into 

S-adenosylmethionine (SAM) in a reaction catalysed by methionine adenosyl 

transferase. SAM then donates the labile methyl group for over than 80 biological 

methylation reactions, including an array of reactions whereby specific sites 

within DNA and RNA become methylated (Figure 2). 

E. Nucleic acid metabolism. The synthesis and turnover of deoxynucleoside 

triphosphate (dNTP) pools are tightly coupled to DNA synthesis. dNTPs are the 

immediate source of substrates for the polymerase reactions involved in DNA 

replication. Therefore, deoxynucleotides are critical for DNA synthesis. Folate 

derived one–carbon groups are essential for the de novo synthesis of the 

thymidylate and the purines. 
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• Synthesis of thymidylate. CH2FH4 donates a methylene group and reducing 

equivalents to deoxyuridylate for the synthesis of thymidylate, a rate-

limiting step in DNA synthesis. 

• (b) Synthesis of purine. Two steps in the synthesis of purine nucleotides 

require the participation of derivatives of folic acid. Glycinamide 

ribonucleotide is formylated by 5, 10-methenyltetrahydrofolate (CHFH4); 

AICAR is formylated by 10-formyltetrahydrofolate (CHOFH4).  

 

 

 

Figure 2. Folate in nucleic acid metabolism 

FH4, tetrahydrofolate; FH2, dihydrofolate; SAM, S-adenosylmethionine; SAH, 
S-adenosylhomocysteine; (1) methyltetrahydrofolate homocysteine methyltransferase; 
(2) methionine adenosyl transferase; (3) methylenetetrahydrofolate reductase (Adapted 
from Choi and Mason, 2000) 
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1.3.3 Mechanism of action of MTX 

MTX is a potent inhibitor of DHFR (Ki ≈0.01 to 0.2 nM), prevents the formation of FH4, 

producing an intracellular deficiency of certain folate coenzymes leading to accumulation 

of the toxic inhibitory substrate known as polyglutamate (Figure 3). However, it has been 

noted in some experimental models that the inhibition of folic acid metabolism could not 

be completely responsible for the antiproliferative effect of MTX (Sant et al., 1992). The 

one-carbon transfer reactions play a crucial role in the de novo synthesis of purine 

nucleotides and thymidylate synthesis with the subsequent interruption of the DNA and 

RNA synthesis (Allegra et al., 1985) as depicted in Figure 2. A number of other 

important observations have been made which point towards the additional molecular 

influences of MTX such as inhibition of the ICMT (Winter-Vann et al., 2003) and 

suppression of the NF-κB subunits p65 and p50. The suppression of the NF-κB was 

accompanied by inhibition of IKBα phosphorylation and degradation (Majumdar and 

Aggarwal, 2001). Nevertheless, the molecular targets and their underlying pathways that 

are activated by MTX and lead to apoptosis in cancers are still not well defined. 
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Figure 3. Sites of action of MTX and MTX polyglutamates 

MTX enters into the cells by either the reduced folate carrier (1) or the membrane folate 
binding protein (2). MTX is then polyglutamylated by the enzyme folylpolyglutamate 
synthetase (3). MTX (glu)n is a potent inhibitor of dihydrofolate reductase (DHFR) (4). 
MTX polyglutamates are hydrolyzed to MTX in the lysosome by g-glutamyl hydrolase 
(GGH) (5). CH2FH4 = 5,10-methylene tetrahydrofolate; dTMP = deoxythymidine 
monophosphate; dUMP = deoxyuridine monophosphate/deoxyuridylate; FH2 = 
dihydrofolate; FH4 = tetrahydrofolate; MTX = methotrexate; MTX (glu)n = methotrexate 
polyglutamate with n glutamate residues (Adapted from Cancer Medicine 6, 2003). 
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2 AIM OF THE STUDY 

MTX was used to treat choriocarcinoma and trophoblastic cancers (Homesley et al., 

1988; Goldstein et al., 1976); cure rate was 90 % in early cases and 75 % in advance 

cases after exposure to MTX and dactinomycin. Beneficial effects were also observed in 

patients with osteosarcoma (Souhami et al., 1997) and mycosis fungoides (Groth et al., 

1979), when MTX was used as part of the combination therapy. High doses of MTX, with 

leucovorin rescue, can cause substantial tumour regression in Burkitt’s and 

non-Hodgkin’s lymphomas, and carcinomas of breast, head, neck (Frei, III et al., 1980). 

Recently, in many clinical trials MTX has been established as an effective treatment of 

leukaemias and other cancers (Levine et al., 2005; Winter et al., 2006; Whitehead et al., 

2005). 

Therefore, it is of utmost importance to understand the complete molecular mechanism of 

MTX in the treatment of cancer, particularly leukaemia. Towards this aim, the present 

study was design to identify the molecular targets and their underlying molecular 

mechanisms affected by MTX in different cancer cell types using functional proteomic 

approach. 
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3 MATERIALS 

3.1 REAGENTS 

L-glutamine, Penicillin, Streptomycin, MTX, DTT, and Iodoacetamide were purchased 

from Sigma-Aldrich Chemie GmbH, Steinheim, Germany. CHAPS [(3Cholamidopropyl) 

dimethyl-ammonio] –1-propanesulfonate] was obtained from Merck KGaA, Darmstadt, 

Germany. Precision plus protein marker was purchased from Bio-Rad Laboratories, CA, 

USA. Protease inhibitor Mix 100 was obtained from Amersham Biosciences GmbH, 

Freiburg, Germany. A Sequazym™ peptide Mass standard Kit was purchased from 

Applied Biosystems, CA, USA. 

3.2 CELL LINES 

HL-60 and A498 cell lines were obtained from DSMZ GmbH, Braunschweig, Germany 

and ATCC, Manassas, USA, respectively. Cell lines basic properties are briefly described 

as follow: 

3.2.1 HL-60 cell line (Human promyelocytic leukaemia cell) 

The HL-60 cell line, derived from an APL patient (Collins et al., 1977), proliferates 

continuously and consists predominantly of a neutrophilic promyelocyte with prominent 

nuclear / cytoplasmic asynchrony. These cells represent a transformed phenotype, form 

colonies in semisolid medium and produce subcutaneous myeloid tumours in nude mice. 

The morphological and histochemical karyotypic similarity; responsiveness to chemical 

induction of differentiation is essentially unchanged to the patient's leukaemic cells 

(Gallagher et al., 1979). Therefore, HL-60 cell line provides a continuous source of 

human cells for studying molecular events of APL proliferation and the effects of various 

physiological and pharmacological agents on this process. 
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URL link: 
http://www.dsmz.de/human_and_animal_cell_lines/info.php?dsmz_nr=3&term=ACC-
3&highlight= 
 

3.2.2 A498 cell line (Renal epithelial carcinoma cell) 

 
ATCC Number   HTB-44 ™ 
 
Species    Homo sapiens 
 
Source     Kidney 
 
Disease    Renal cell carcinoma 
 
Growth properties   Adherent 
 
Morphology    Epithelial 
 
Tumorigenic Nude mice; forms undifferentiated carcinoma; also 

forms tumours in anti thymocyte serum treated 
newborn mice. 

URL link: 
http://www.lgcpromochematcc.com/common/catalog/numSearch/numResults.cfm?atccN
um=HTB-44 
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3.3 BUFFERS AND SOLUTIONS 

Following buffers and solutions are most frequently used in the Experimental Procedures. 

Others are cited in the text. 

 

Standard Culture Medium  DMEM and RPMI 
 10 % (v/v) FCS  
 1 % (v/v) L-Glutamine 
 1 % (v/v) Penicillin /Streptomycin 
  
Cell Lysis Buffer (2D gel electrophoresis) 9.5 M urea 
 2 % w/v CHAPS 
 2 % v/v ampholytes 
 1 % w/v DTT 
 10 mM PMSF adjust pH 7.5 with appropriate 

acid/base 
  
Electrophoresis Buffer (5x) 125 mM Tris 
 1 M Glycine 
 0.5 % w/v SDS  
  
Colloidal Coomassie staining solution 40 % v/v Methanol 
 40 % v/v Water 
 20 % v/v Coomassie solution 
  
Silver staining solutions  
  
Fixation solution 50 % v/v Methanol 
 12 % v/v Acetic acid 
 38 % v/v Water 
  
Wash solution I 50 % v/v Ethanol 
 50 % v/v Water 
  
Wash solution II 30 % v/v Ethanol 
 70 % v/v Water 
  
Sensitising solution 0.02 % v/v Sodium thiosulphate 
 99.98 % v/v Water 
  
Silver nitrate solution 0.2 % w/v Silver nitrate solution 
 0.026 % v/v Formaldehyde solution 
 Rest water 
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Developing solution 6 % w/v Sodium thiosulphate 
 0.0185 % v/v Formaldehyde solution 
  
Stop solution 50 % v/v Methanol 
 12 % v/v Acetic acid 
 38 % v/v Water 
  
Storage solution 5 % v/v acetic acid solution 
  
Wash Buffer (1x) 10 mM Tris-HCl, pH 7.5 
 0.1 % v/v Tween-20 
 100 mM NaCl 
    
 

3.4 EQUIPMENTS 

Following equipments were most frequently used during the course of this study. Others 

are cited in the Experimental Procedures. 

Appliance Manufacturer 

Centrifuge Biofuge 15R Herapus Sepatech, Osterode, Germany 

Centrifuge Sigma 3-18K Sigma, Osterode, Germany 

Consort Power Supply E815 Sigma, Steinheim, Germany 

Electrophoretic Transfer Cell BioRad, Munich, Germany 

Filtration pump SM18059 Sartorius, Göttingen, Germany 

Gel chambers BioRad, Munich, Germany 

Heater IKAMAG REO Schütt Labortechnik, Göttingen, Germany 

Laboratory balance Sartorius, Göttingen, Germany 

Lab-Shaker Braun, Melsungen, Germany 

Laminar Air Flow Safety Workbench  
BSB 4A Gelaire Flow Laboratories, Opera, Italy 

Mini Trans-Blot® Electrophoretic  
Transfer Cell BioRad, Munich, Germany 
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pH meter PB-11 Sartorius, Göttingen, Germany 

Speed vac SVC 10CH Savant, Holbrook, USA 

Thermo mixer comfort Eppendorf, Hamburg, Germany 

Vortexer REAX 2000 Heidolph, Schwabach, Germany 

Water bath GFL 1003 GFL, Burgwedel, Germany 

Water-jacketed CO2-Incubator Labotect, Göttingen, Germany 

 

3.5 SCIENTIFIC ONLINE SEQUENCES AND SOFTWARE SERVICES 

The following scientific software and databank sequences were used during the course of 

this study. 

      
Program Use Reference 
      
   
Blast Protein sequence database http://www.ncbi.nlm.nih.gov/blast/ 
   
Entrez Pubmed Sequence retrieval http://www.ncbi.nlm.nih.gov/entrez/ 
   
Mascot Protein database search www.matrixscience.com 
   

WinMDI Flow cytometric applications 
http://facs.scripps.edu/help/html/read1pt
l.htm 
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4 EXPERIMENTAL PROCEDURES 

4.1 CELL CULTURE PROCEDURES 

HL-60 and A498 cell lines were maintained in RPMI and DMEM medium (Gibco, 

Paisley, UK) containing 5.5 mM D-glucose supplemented with 10 % fetal calf serum, 1 % 

L-glutamine and 1 % Penicillin/Streptomycin. Cells were routinely cultured and 

incubated until 70 % confluency in 75 cm² tissue culture flasks in a humidified 

5%CO2/95% air atmosphere at 37 °C. 

4.2 CELL VIABILITY ASSAY 

Cell viability was determined by standard trypan blue exclusion assay (Kaltenbach et al., 

1958). Briefly, control and MTX treated HL-60 cells were plated on 24-well dishes 

(Sarstedt, Newton, USA) at the density of 1×105 cells/mL in complete RPMI medium for 

72 hours at 37 °C. Subsequently, cells were harvested, washed with phosphate buffer 

saline (PBS) and 0.4 % trypan blue stain (Sigma-Aldrich, Missouri, USA) was added in 

equal volume of cell containing PBS buffer. Trypan blue positive and negative cells were 

counted using a haemocytometer (Hausser Scientific, Horsham, PA) under an ID 03 light 

Microscope (Zeiss, Oberkochen, Germany). 

4.3 DETECTION OF PHOSPHATIDYLSERINE BY ANNEXIN-V 

Apoptosis is associated by a loss of membrane phospholipids symmetry, resulting in the 

exposure of phosphatidylserine (PtdSer) at the plasma membrane (Fadok et al., 1992). 

This exposure of PtdSer was quantified by flow cytometry (Koopman et al., 1994), using 

the binding of fluorescein isothiocyanate (FITC) labeled annexin-V to PtdSer. Control 

and MTX treated HL-60 and A498 cells were incubated in complete RPMI and DMEM 

medium in a humidified 5 %CO2/95% air atmosphere at 37 °C for 72 hours. 
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Subsequently, cells were harvested, washed with PBS and centrifuged briefly for 200 x g 

at 4 °C. The annexin-V assay (Roche, Indianapolis, USA) was performed according to the 

manufacturer’s instructions. Briefly, cell pellet of each sample was resuspended in the 

provided binding buffer, centrifuged at 200 x g for 1 minute at 4 °C and again 

resuspended in 200 µL binding buffer. 5 µL of FITC labelled annexin-V conjugate was 

added into the sample and incubated for 15 min at 22 °C. The signal generated by 

FITC-labeled-annexin-V was analyzed in the FACSCalibur Flow Cytometer (BD 

Biosciences, Rockville, USA) using a single laser emitting excitation light at 488 nm. 

4.4 CELL LYSATE PREPARATION FOR TWO DIMENSIONAL GEL 

ELECTROPHORESIS 

Cell lysates were prepared as described by Dihazi and their colleagues (Dihazi et al., 

2005). Briefly, each group of HL-60 cells was centrifuged at 200 x g for 10 minutes at 

4 °C. The obtained cell pellet was further incubated in 0.3-0.5 mL lysis buffer containing 

9.5 M urea, 2 % w/v CHAPS, 2 % v/v ampholytes, 1 % w/v DTT, 10 mM PMSF at 4 °C 

for 30 minutes with intermittent vortexing. For removing cells debris, samples were 

centrifuged twice at 4500 x g for 45 minutes at 4 °C. The obtained lysates were either 

used immediately or were kept frozen at –80 °C until use. 

4.5 PROTEIN PRECIPITATION AND ESTIMATION 

Protein precipitation was done according to the instructions of Ready Prep 2D cleanup kit, 

provided by the manufacturer (Bio-Rad, Hercules, USA). Briefly, protein sample 

(100-500 µg) in a final volume of 100 µL was transferred into a 1.5 mL micro centrifuge 

tube. Then 300 µL of precipitating agent 1 was added and mixed by vortexing. After 

incubation on ice for 15 minutes, 300 µL of precipitating agent 2 was added and mixed by 

vortexing. The tubes were centrifuged at 4500 x g for 5 minutes to form a tight pellet. The 
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supernatant was decanted and the tubes were repositioned as before and centrifuged at 

4500 x g for 5 minutes. Any residual liquid at the bottom of the tubes was removed. Then, 

40 µL of wash agent 1 was added on top of the pellet and the tubes were further 

centrifuged at 4500 x g for 5 minutes. The supernatant was removed and discarded. Ultra 

pure water (25 µL) was added to the tubes and mixed by vortexing 10-20 seconds. An 

additional 1 mL of wash agent 2 (pre-chilled at –20 °C for > 1 hour) and 5 µL of washing 

additive 2 were mixed by vortexing for 1 minute. During the following incubation period 

(at –20 °C for 30 minutes), the tubes were vortexed for 30 seconds at every 10 minutes 

interval. The pellet was formed by centrifugation at 4500 x g for 5 minutes. The 

supernatant was discarded and the pellet air-dried for < 5 minutes. The pellet was 

resuspended by adding lysis buffer followed by vortexing for 1 minute, incubation at 

room temperature for 3-5 minutes and vortexing again for 1 minute. The tubes were 

centrifuged at 4500 x g for 15 minutes to clarify the protein sample. The supernatant was 

then ready for isoelectric focusing (IEF). The obtained pure supernatants were used 

immediately for experiments or stored at –80 °C until analysis. Total protein 

concentration was measured according to the Bradford method (Bradford, 1976) using 

bovine serum albumin (Sigma, Steinheim, Germany) as a standard. 

4.6 PROTEIN CYDYES SATURATION LABELLING 

The CyDyes for saturation labelling have maleimide reactive groups. These dyes were 

covalently bound to the cysteine residues of proteins via a thioether linkage. To achieve 

maximal labelling of the cysteine residues, we used a high fluorchrome to protein 

labelling ratio protocol. CyDyes stock solutions were prepared by dissolving the solid 

dyes separately in high standard anhydrous DMF, aliquoting into 10 µL working solutions 

and stored at –80 °C. 5 µg of the protein samples (lysates from untreated vs. MTX-treated 

cells) were equalized with lysis buffer (containing no ampholytes and DTT) and 
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separately adjusted to pH 7.5 with appropriate acid/base titrations. For the reduction of 

protein cysteines, cell lysates were incubated with 2 nmol Tris (2-carboxyethyl) 

phosphine hydrochloride (TCEP; Sigma, Steinheim, Germany) at 37 °C in the dark for 

1 hour. The mechanism of protein-dye labelling reaction is shown in Figure 4. 

 

 

 

 

 

Figure 4. Schematic diagram of labelling reaction of protein thiols with maleimide 
CyDyes 

4 nmol CyDyes (Amersham Biosciences, Freiburg, Germany) were added to the reduced 

sample, vortexed, centrifuged briefly and kept at 37 °C in the dark for next 30 minutes. 

The labelling reactions were stopped with sample buffer containing DTT and ampholyte 

3/10 solution (Bio-Rad, Hercules, CA, USA) and finally, the contents were mixed well 

and used for rehydration. The workflow of such proteomic analysis is shown in Figure 5. 
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Figure 5. Workflow for cysteine labelled differential in-gel electrophoresis analysis 

Cysteine labelled differential in-gel electrophoresis of untreated and MTX treated HL-60 
cells were performed using Cy3 (green colour) and Cy5 (red colour) dyes, respectively. 
The protocol outlined above allows comparison of protein expression profiles, protein 
quantification, and identification of proteins of interest. 
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4.7 TWO DIMENSIONAL GEL ELECTROPHORESIS 

Each sample was diluted to a final volume of 315 µL in rehydration buffer (8 M urea, 1 % 

w/v CHAPS, 0.2 % v/v ampholytes pH 3-10, DTT 15 mM and traces of bromphenol 

blue). This mixture was further used for rehydration of IPG strip. The ReadyStripTM IPG 

strips (pH 3-10, 17 cm) were allowed to rehydrate for 1 hour before adding mineral oil 

(Bio-Rad, Hercules, USA). The passive hydrations of the IPG strips were carried out 

overnight at room temperature in a focusing chamber. The tray was transferred to the 

cooling platform of a PROTEAN IEF cell and isoelectric focusing was performed at 20°C 

using the following multisteps protocol shown in Table 1: 

 

Table 1. Multisteps protocol for isoelectric focusing of IPG strips 

Method Linear 
Rehydration Passive 
Run Temperature 20 °C 
IPG Strip pH 3 ~ 10, 17 cm 
Step 1 500 V Ramp: Time: 01:00 hour 
Step 2 1,000 V Ramp: Time: 01:00 hour 
Step 3 8,000 V Ramp: V hour: 32,000 V 
Step 4 500 V Hold Time: 10:00 hours 
Focusing current 50 µA/strip 
  

 

 

After the first dimension, individual strip was equilibrated in 6 M urea, 30 % v/v glycerol, 

2 % w/v SDS, 0.05 M Tris-HCl, pH 8.8, and 15 mM DTT for 20 minutes. An additional 

incubation in the same buffer supplemented with iodoacetamide 400 mg/mL was carried 

out for another 20 minutes. The second dimension was performed overnight at 120 V 
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using a homogeneous polyacrylamide gel (12 % T, 200 mm x 230 mm x 1.5 mm) and 

applying continuous Laemmli buffer system (Laemmli, 1970). 

4.8 PROTEIN VISUALIZATION AND IMAGE ANALYSIS 

CyDyes labelled protein gels were scanned using a Fuji film FLA-5100 series imager 

(Fuji Photo, Kanagawa, Japan). The excitation and emission wavelengths are shown in 

Table 2. Silver staining was performed using a method described by Morrissey 

(Morrissey, 1981). Colloidal Coomassie staining was performed according to Neuhoff 

and their colleagues (Neuhoff et al., 1988). 

 

Table 2. Excitation and emission wavelengths used for imaging of fluorochrome 

labelled gels 

Bandwidths of the filters are shown in red and green colour 

FLA 5100 Series Imager 
 

Excitation filter (nm) Emission filter (nm) 
 
 

Cy3    532    Long pass 575 
 

Cy5   635   Long pass 665 
 

 

Fluorescent images were acquired in 16-bit TIFF files format and analysed by Delta2D 

software (Version 3.4; Decodon, Greifswald, Germany). For Coomassie and silver 

staining, digital images were obtained using Fuji film FLA-5100 series imager (Fuji 

Photo, Kanagawa, Japan). An image analysis was performed by Delta2D software 

(Decodon, Greifswald, Germany) and statistical analysis of protein variations was carried 

out using the Student's t-test and statistical significance was assumed for p-values less 

than 0.05. 
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4.9 IN-GEL DIGESTION AND MALDI-TOF MS ANALYSIS OF PROTEIN 

SPOTS 

To permit identification of differentially expressed proteins from the saturation labeled 

gels, Coomassie brilliant blue or silver stained gels were performed. Differentially 

expressed protein spots were manually excised from the gels and washed with distilled 

water for 15 minutes. The destaining procedure for Coomassie stained protein spots was 

carried out with 50 % v/v acetonitrile (ACN) and 100 mM ammonium bicarbonate for 

5 minutes. For silver stained protein spots, destaining procedure was performed as 

described by Gharahdaghi et al., 1999. After destaining, in-gel digestion was performed 

with trypsin and the resulting peptide mixture was extracted with various concentrations 

of ACN and trifluoroacetic acid (TFA). Extracted peptide mixture was further dissolved 

in TFA and co-crystallised with 2, 5-dihydroxy-benzoic acid (matrix) on a stainless steel 

target using 1 µL matrix and 1 µL sample. An Applied Biosystems Voyager-DE STR 

time-of-flight mass spectrometer, operating in delayed reflector mode with an accelerated 

voltage of 20 kV was used to generate peptide mass map. Indiviual peptide mass map was 

obtained by averaging 50 individual laser shots. Obtained peptide masses were externally 

calibrated with a peptide mix of des-Arg-bradykinin ([M+H]+ 904.46), angiotensin I 

[(M+H) + 1296.68, Glu1-fibrinopeptide B (M+H)+ 1570.67, ACTH (1-17) (M+H)+ 

2093.08, ACTH (18-39) (M+H)+ 2465.19] and produced to search against protein 

sequences database. 

4.10 PEPTIDE SEQUENCE ANALYSIS 

To confirm the data obtained from mass finger print analyses, all samples were subjected 

to peptide sequence analyses. After in-gel digestion, extracted peptide mixture was 

dissolved in 0.1 % formic acid (FA). One µL of sample was introduced using a CapLC 
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auto sampler (Waters) onto a µ-precolumnTM Cartridge C18 pepMap (300 µm x 5 mm; 

5 µm particle size) and separated through a C18 pepMap100 nano Series TM (75 µm x 

15 cm; 3 µm particle size) analytical column (LC Packing, Amsterdam, Netherlands). The 

mobile phase consisted of solution-A containing 5 % ACN in 0.1 % FA  and solution B 

(95 % ACN in 0.1 % FA). Total sample run time was 60 minutes per sample analysis. 

Initially, samples were injected into a precolumn and washed with 0.1 % formic acid 

(30 µL) for 5 minutes. The washing step was followed by an elution step with an 

exponential gradient starting with 10 % and ending with 95 % solution B. The flow rate 

was decreased by a flow splitter from 5 µL/min pump to 0.25 nL/min. The precolumn 

was re-equilibrated with 0.1 % FA (20 µL/min) for another 5 minutes. The nanospray 

needle was held at 2 kV and the source temperature was at 40 °C. After chromatographic 

separation, peptide sequencing was performed on a Q-TOF Ultima Global (Micromass, 

Manchester, UK) mass spectrometer equipped with a nanoflow ESI Z-spray source in 

positive ion mode. Multiple charged peptide parent ions were automatically marked, 

selected in the quadruple fragmented in the hexapole collision cell and their fragment 

patterns were analysed by time of flight. The data acquisition was performed using 

MassLynx (v 4.0) software on a Windows NT PC, while data were further processed on a 

Protein-Lynx-Global-Server (v 2.1), (Micromass, Manchester, UK). 

4.11 DATABASE SEARCH AND PROTEIN IDENTIFICATION 

The raw data files were deconvoluted and deisotoped using Max Ent™ lite algorithm. 

This file format was further produced to search against Swissprot database 50.5 (230150 

sequences, 84479584 residues) through the web based Mascot search engine (MASCOT 

2.1) using following parameters: trypsin as an enzyme, monoisotopic, 1 possible missed 

cleavage, a peptide mass tolerance of 100 ppm, fragment mass tolerance of 0.6 Da and 

carbamidomethyl and methionine oxidation were considered as variable modifications 
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(Oxford, UK, http://www.matrixscience.com.search_form_select.html) (Perkins et al., 

1999). Results were scored using Probability Based Mowse Score (Protein score 

is-10*Log (p), where p is the probability that the observed match is a random event. 

Individual ions scores > 26 indicate identity or extensive homology (p<0.05). Only 

proteins with a minimum of one peptide identified and a protein score are > 26 in the 

peptide summary report were included in the protein identification list. 

4.12 WESTERN BLOT ANALYSIS 

Validation of our proteomic data (for proteins of interest) was performed by Western blot 

analyses (Burnette, 1981). After SDS–PAGE, blotting was performed on nitrocellulose 

membrane (Amersham Pharmacia Biotech, Buckinghamshire, UK) at 250 mA for 

24 hours in transfer buffer (25 mM Tris-HCl, pH 8.4, 192 mM glycine, 0.5 % w/v SDS, 

20 % v/v methanol). The membranes were blocked in 5 % w/v non-fat dry milk in PBS 

containing 0.1 % v/v Tween-20 for 2 hours at 37 oC. The incubations with the following 

primary antibodies mouse anti-PDIA3 polyclonal antibody (Stressgen, Victoria, Canada), 

rabbit anti-PDIA4 polyclonal antibody (Stressgen, Victoria, Canada), mouse anti-ACTB 

monoclonal antibody, rabbit anti-HSPA5 polyclonal antibody (Sigma-Aldrich, Missouri, 

USA), mouse anti-CALR monoclonal antibody (BD Bioscience, Rockville, USA), rabbit 

anti-NF-κB subunit p65 monoclonal antibody (Santa Cruz, CA, USA) and mouse anti-

TPI polyclonal antibody (Abnova, Taiwan, China) were carried out for 1 hour at 37 °C. 

After washing, membranes were incubated with 1:1200 dilution of horseradish 

peroxidase-conjugated sheep anti-mouse antibody or 1:12000 horseradish peroxidase-

conjugated donkey anti-rabbit antibody (Amersham Biosciences, Freiburg, Germany) for 

another 60 minutes at 37 °C. To visualize the protein bands, nitrocellulose membranes 

were washed with PBS containing 0.1 % v/v Tween-20 and treated with Western blotting 

luminal reagent (Perkin Elmer, Boston, USA). Finally, results were obtained on a Kodak 
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film and quantified by densitometry using the Multi Analyst Software (Bio-Rad 

Laboratories, CA, USA). 

4.13 PYRUVATE KINASE ACTIVITY ASSAY 

Pyruvate kinase activity assay was assessed by continuous spectrometric rate 

determination method as described by Ainsworth et al. (Ainsworth and MacFarlane, 

1973). HL-60 and A498 cells were grown in 75 cm² culture flasks at the cell density of 

5x107 cells/mL in the corresponding medium. Cells were trypsinized and centrifuged at 

200 x g for 10 minutes at 4 °C. Obtained cell pellets were disrupted by vortexing in assay 

buffer (100 mM potassium phosphate buffer, pH 7.6 at 37 oC) with addition of an equal 

volume of glass beads. For removing cell debris, cell lysates were centrifuged twice at 

4500 x g for 10 minutes at 4 oC. Supernatants were used directly for enzymatic assay. An 

aliquot of supernatant from the disrupted cells was added to a solution containing 39 mM 

potassium phosphate, 0.58 mM phospho (enol) pyruvate, 0.11 mM NADH, 6.8 mM 

magnesium sulphate, 1.5 mM ADP, and 10 units of lactate dehydrogenase. Activity was 

determined through Lambda 25 UV/VIS Spectrophotometer (Perkin Elmer Life Sciences, 

Rodgau-Jügesheim, Germany) at the rate of absorbance decrease 340 nm with 1 unit 

corresponding to the oxidation of 1 pmol of NADH per minute at 37 oC. 

4.14 ANALYSIS OF MITOCHONDRIA MEMBRANES POTENTIAL 

Mitochondrial membrane potential (∆ψm) is measured in intact cell by loading the cytosol 

or the mitochondrial matrix with calcein, a hydrophilic 620 Da fluorochrome that 

normally does not cross the inner membrane (Kroemer et al., 1998; Bernardi et al., 1999). 

Alternatively, ∆ψm can be assessed indirectly using a fluorochrome 5,5′,6,6′-tetrachloro-

1,1′,3,3′-tetraethyl-benzimidazolcarbocyanine iodide (JC-1). JC-1 (Invitrogen, Karlsruhe, 

Germany), a cationic dye that indicates mitochondrial polarization by shifting its 
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fluorescence emission from green (~525 nm) to red (~590 nm) (Smiley et al., 1991). 

Untreated and MTX treated cells were resuspended in 1 mL culture medium, stained with 

a final concentration of 10 µg/mL JC-1 and incubated for 10 min at 37 °C. The 

elimination of unbound dye was carried out by washing the cells twice with culture media 

and immediately quantified by FACSCalibur Flow Cytometer (BD Biosciences, 

Rockville, USA). Cells in which the ∆ψm was maintained accumulate so-called J-

aggregates indicated by the red fluorescence, whereas those with a collapsed ∆ψm shown 

green fluorescence. Data analyses were performed by Cell Quest software that works 

under Windows 3.1 or Windows 95, i.e. WinMDI (written by Dr. Joe Trotter, Scripps 

Research Institute, La Jolla, CA, USA). 

4.15 DETECTION OF ROS 

Reactive oxygen species (ROS) formation was quantified by staining with 

dihydrorhodamine 123 (DH-123, Sigma-Aldrich Chemie GmbH, Steinheim, Germany), a 

cell-permeable non-fluorescent compound that is oxidized by cellular peroxides to 

fluorescent rhodamine (Dugan et al., 1995). Untreated and MTX treated A498 cells were 

resuspended in 5 mL culture medium, stained with 500 µM DH-123 and incubated for 

2 hours at 37 °C. After washing cells with culture medium, fluorescence images (Zeiss 

Axiovert 100 TV) were obtained using appropriate excitation and emission wavelengths. 

Images were captured immediately after illumination (25 msec exposure). 

Photomicrograph of random 40 x field was analysed using Analysis Doku(R) software 

(Soft imagine systems, Muenster, Germany). 
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4.16 STATISTICAL DATA ANALYSIS 

MTX dose dependent response curves were obtained by non-linear regression analysis 

using the software Sigma Plot 8.0 (SYSTAT software, Chicago, Illinois). The data were 

fitted to the sigmoid Emax model as described by (Bourgeois, 1988). 

 

Edrug is the measured effect of the drug at a certain dose. Edrug starts at Emax and goes to 

Emin with a sigmoid shape. Note that TD60 in our experiment indicates the dose that gives 

sixty-percentile maximal effect. Results are shown as means ± S.D. of three independent 

experiments. All the results were tested for significant differences by paired, one tailed, 

Student's t-test. 
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5 RESULTS 

APL cells serve as a paradigmatic cell model in biological and clinical leukaemic 

research. Several cell lines have been derived from APL patients. Some of these cell lines 

such as HL-60, NB-4 and PL-21 are most commonly used in leukaemic research. 

Especially, the HL-60 cell line has attracted the most leukaemic research interest. Its 

capacity to differentiate in vitro to a variety of different cell types of the myelomonocytic 

lineage is the characteristic feature of HL-60 cells. Therefore, studies with HL-60 cells 

have been proved to be invaluable in various areas, which include the following: 

1. Providing insights into the control of mechanisms of normal granulocytes 

/monocytes/macrophage differentiation. 

2. Suggesting an unique in-vitro model for studying the cellular and molecular 

events involved in the proliferation and differentiation of APL against various 

chemotherapeutic agents. 

3. Serving as an valuable model for studying the specific cellular oncogene 

expression in relationship to particular haematopoietic differentiative lineage 

(Collins, 1987; Birnie, 1988). 

5.1 MTX DEMONSTRATES CELL TOXICITY ON HL-60 CELLS 

To elucidate the effect of MTX on HL-60 cells, we treated these cells with increasing 

concentrations of MTX (0 to 11 µM) for 0, 24, 48, and 72 hours. Trypan blue exclusion 

assay showed a progressive decrease in cell viability with increasing concentrations of 

MTX for the indicated time periods (Figure 6). Minimum cell viability was obtained after 

exposing HL-60 cells to 11 µM MTX for 72 hours. The MTX concentration that led to a 

60 % mean reduction of cell viability (IC60) was calculated and found to be 2.5 µM. This 

concentration of MTX was further used in following experiments. 
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Figure 6. Impact of MTX on HL-60 cells 

HL-60 cells were treated with wide range of MTX concentrations (0.0 to 11 µM) for 24, 
48 and 72 hours. Cell viability was determined by standard trypan blue exclusion assay at 
above-mentioned time periods and presented as percentage in Y-axis. Results are given as 
the mean values ± S.D. of % cell viability from three independent experiments. 
* p < 0.05, ** p < 0.001. 

5.2 MTX INDUCES APOPTOSIS IN HL-60 AND A498 CELLS 

To address the question, whether the initial cell death observed in MTX treated HL-60 

cells was due to apoptosis or necrosis, we investigated the morphological features of 

HL-60 cells during the exposure to MTX using normal light microscopy and flow 

cytometry. Several investigators have previously shown that cells undergoing apoptosis 

have decrease in forward light scatter and increase in side light scatter depicting loss of 

cell volume and increase in cell granularity, respectively (Dive and Hickman, 1991; 
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Nicoletti et al., 1991; Zamai et al., 1993). Our microscopic and flow cytometric analysis 

in HL-60 cells revealed the same cell shrinkage and induction of cellular granularity after 

addition of 2.5 µM MTX for 72 hours (Figure 7A&B). 

 

 

Figure 7. Morphological changes observed in HL-60 cells after MTX treatment 

HL-60 cells were incubated without or with 2.5 µM MTX in RPMI medium for 72 hours 
and morphological changes were observed using: (A) Normal light microscopy. 
Apoptotic cells are shown in upper right panel and depict by black and white arrows. The 
photograph was documented at an exposure of 20x magnification. (B) Flow cytometry. 
Results are plotted as forward scatter (FSC) against side scatter (SSC). Increased cellular 
granularity (%) is shown inside the marked oval circle (lower panels). 

We further confirmed our preliminary apoptotic observations by PtdSer exposure. 

Exposure of PtdSer in untreated and MTX treated HL-60 cells were measured using 

FITC-labelled-annexin-V staining assay as described in the Experimental Procedures. An 

increase in the percentage of apoptotic cells having PtdSer exposure was detected in MTX 

treated HL-60 cells. When these cells were treated with 2.5 µM of MTX, 40 % of the 

B. 

A. 
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cells showed an increase in translocation of PtdSer at the plasma membrane as compared 

to untreated cells (Figure 8A). To establish whether other cancer cells show MTX 

induced PtdSer exposure, we investigated the effect of MTX on A498 cells. MTX 

resulted in differential degree of PtdSer exposure in A498 cells (Figure 8A). Moreover, 

both PtdSer translocation and cell membrane permeability (trypan blue positive cells) 

occurred simultaneously in MTX treated HL-60 cells. This was illustrated by plotting the 

percentages of cells having undergone PtdSer translocation and cell permeability in 

HL-60 cells on the same graph (Figure 8B). 
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Figure 8. Assessment of apoptosis by FITC-labelled-annexin-V staining assay 

HL-60 and A498 cells were incubated with or without 2.5 µM and 45 µM MTX 
respectively for 72 hours, stained with FITC-labelled-annexin-V and analysed by flow 
cytometry. (A) MTX induces PtdSer exposure. Numbers above the histogram markers 
indicate the percentage of apoptotic cells in a representative experiment. Similar results 
were obtained in two additional experiments with different passages of cells. 
(B) Percentage of MTX affected HL-60 cells having translocated PtdSer (annexin V 
positive cells) and died (trypan blue positive) cells shown in Y-axis as a function of the 
indicated time periods (X-axis), obtained by replotting the data on the same illustration. 

B. 

A. 
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To determine the sequence of apoptotic events, we replotted MTX treated HL-60 cell data 

(∆ψm, cell morphology and PtdSer exposure) in the same graph. In HL-60 cells, cell 

shrinkage, PtdSer exposure and induction of cellular granularity induced by MTX were 

preceded by the loss of ∆ψm. HL-60 cells exhibited a reduction in the ∆ψm at 24 hours 

after MTX treatment, whereas at this time point no loss of cell shrinkage has occurred and 

neither translocation of PtdSer nor induction of cellular granularity were detected; yet 

∆ψm was already perturbed (Figure 9). 

 

 

Figure 9. Morphological events of apoptosis examined by flow cytometry 

HL-60 cells were incubated without or with 2.5 µM MTX in RPMI medium for 24, 48 
and 72 hours. ∆ψm disruption (MMP), cell shrinkage (FSC), cell granularity (SSC) and 
translocation of PtdSer at the cell surface (FITC-labelled-annexin-V) were evaluated by 
flow cytometry (described in the Experimental Procedures) as a function of the indicated 
time periods (X-axis). These morphological events of apoptosis were observed by 
replotting the obtained data in the same graph. 
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5.3 EVALUATING EXPERIMENTAL REPRODUCIBILITY OF THE 

CYSTEINE LABELLED IN-GEL ELECTROPHORESIS APPROACH 

To characterize the molecular targets of MTX induced apoptosis in the analysed cancer 

cell lines, we performed cysteine labelled differential in-gel electrophoresis approach. In 

this approach, a new set of cysteine labelled CyDyes has been used for labelling protein 

samples. Wide dynamic wavelength, high sensitivity and reproducibility (Shaw et al., 

2003) appeared to make these dyes suitable to identify intracellular protein changes 

involved in MTX induced apoptosis. Moreover, these dyes enable to visualize large scale 

protein expression profile from small amounts of protein samples such as those obtain 

from laser-micro dissected tissues (Kondo et al., 2003) and primary cultured hepatocytes 

(Fujii et al., 2005). In addition to this, cysteine labelling CyDyes have been successfully 

implicated in the proteomic study of adenoma of Min mice (Kondo et al., 2003), 

hepatocellular carcinoma tissue (Fujii et al., 2005), haematopoietic cells (Evans et al., 

2004), and identifying free thiols from native protein extract of seeds (Maeda et al., 

2004). 

To control the CyDyes labelling artifacts, we compared CyDyes labelled protein spots 

profile with traditional silver stain. Although, the overall protein spots pattern between the 

silver staining and CyDyes labelled was quite similar, yet subtle differences were 

detected. These differences in the protein spots were probably dependent on the high/low 

abundance of cysteine residues in the proteins. For example, some proteins such as 

fructose-bisphosphate aldolase A (ALDOA) and ATP synthase subunit α (ATP5A1) on 

the silver stain gels consistently showed reduce labelling intensity on the Cy5 labelled gel 

image section in MTX treated HL-60 cells (Figure 10). This has been a criticism of 

cysteine-modifying fluorophores (Berggren et al., 2001), when used for global proteomic 
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studies. In spite of this drawback, the cysteine labelling CyDyes still offer promising 

advantages over other conventional protein detection techniques. 

 

 

Figure 10. Partial view of two-dimensional gel electrophoresis; gels obtained from 
MTX treated HL-60 cell lysates visualised by silver stain or Cy5 dye 

2.5 µM MTX treated samples were prepared, resolved on two-dimensional gel 
electrophoresis and visualised by silver staining or Cy5 labelled as described in the 
Experimental Procedures. The type of protein detection technique is indicated in the top 
right corner of each gel image section. Marked arrows and circles depict visible protein 
spots in silver stained HL-60 cells as compared to Cy5 labelled gel image section. 
Labelling of the spots correspond to the genes name as assigned in Table 4. 

In order to evaluate the experimental reproducibility of cysteine labelled two-dimensional 

gel spot profiles, four independent untreated samples of HL-60 cell lysates were labelled 

with Cy3 dye. Cysteine labelled differential in-gel electrophoresis was performed as 

described in the Experimental Procedures. After analysing the gels with Delta 

2D software, approximately 500 spots from a well-resolved area of the gels were selected 

(those spots could be matched on all control gels) and quantified the protein 

spot % volume data by Delta 2D software. The resulted data were plotted on a log scale in 

both axis and correlation coefficients were calculated for the data sets using Sigma Stat 

version 8. We observed a good experimental reproducibility by comparing of the different 

gel images with correlation coefficients between 0.74 - 0.92 (Figure 11) confirming that 
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consistent protein profiles could be obtained using cysteine labelled differential in-gel 

electrophoresis. 

 

 

Figure 11. Evaluation of experimental reproducibility by Scatter Plot analysis 

Scatter plots analysis of four independent untreated (control) samples of HL-60 cell 
lysates were labelled with Cy3 dye and resolved on two-dimensional gels as described in 
the Experimental Procedures. Cy3 labelled control gels were analysed with Delta 2D 
software. Approximately 500 protein spots from a well-resolved area of the gels were 
selected, quantified and plotted on a log scale in both axis. Correlation coefficient (Rsqr) 
was further calculated for each paired protein data set of two control sample lysates and 
shown in above-mentioned figure. 
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5.4 IDENTIFICATION OF DIFFERENTIALLY EXPRESSED PROTEINS 

IN MTX TREATED HL-60 CELLS 

After establishing the protocol in a reproducible manner, we prepared three independent 

sets of protein cell lysates from untreated and 2.5 µM MTX treated HL-60 cells obtained 

after 72 hours. Each set of cell lysate was labelled with Cy3 and Cy5 dyes, respectively. 

The corresponding Cy3 and Cy5 labelled samples were mixed and co-resolved on the 

two-dimensional gel electrophoresis (as described in the Experimental Procedures), to 

achieve high accuracy for the protein quantification. Figure 12 represents an example of 

large dual colour two-dimensional image of HL-60 cell proteome obtained from untreated 

and MTX treated HL-60 cell lysates labelled with CyDyes. Cy3 labelled proteins are 

shown in green colour (represent untreated HL-60 cell proteome) and Cy5 labelled 

proteins are in red colour (represent 2.5 µM MTX treated HL-60 cell proteome). 845 and 

878 protein spots were detected by Delta 2D software in untreated and 2.5 µM MTX 

treated samples, respectively. Significant differences in the proteins expression were 

found in the untreated and MTX treated samples as shown in Table 3. Although, we 

found more than 800 paired overall protein spots in the different sample sets, 492 protein 

spots were present in all the three sets of untreated and MTX treated gels. Therefore, we 

included 492 protein spots in the differential proteome analysis of untreated and MTX 

treated HL-60 cells to achieve statistical confidence. Altogether, 230 protein spots were 

almost equally abundant in both cell proteomes leading to the yellow colour overlay. 

81 protein spots were differentially expressed (p < 0.05) in the MTX treated HL-60 cell 

proteome. We considered significant all the quantitative differences with a variation of at 

least three times in % spot volume data with the Student's t-test statistical probability less 

than 0.05 (p < 0.05). Using Q-TOF Ultima Global (Micromass, Manchester, UK) 

equipped with a nanoflow ESI Z-spray and an Applied Biosystems Voyager-DE STR 
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time-of-flight mass spectrometer, we identified 24 differentially expressed proteins from 

MTX treated HL-60 cell proteome having different biological functions. Table 4 shows 

the list of the proteins identified by database search, which are arranged according to their 

respective role in metabolic or signalling pathways. It could be precluded that the 

detection limits of the applied mass spectrometry would limit the identification of 

proteins of the less-intense spots. 
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Figure 12. Large dual colour two-dimensional image of proteins expression profile 
obtained from untreated and MTX treated HL-60 cell lysates labelled with 
corresponding CyDyes 

HL-60 cells were incubated without or with 2.5 µM MTX in RPMI medium for 72 hours. 
Cysteine labelled differential in-gel electrophoresis was performed using CyDyes as 
described in the Experimental Procedures. Differentially expressed protein spots were 
excised out. After in-gel digestion with trypsin, extracted peptide mixture was analysed 
by mass spectrometry and identified by database search. Cy3 labelled proteins are shown 
in green colour (represent untreated HL-60 cell proteome) and Cy5 labelled proteins are 
in red colour (represent 2.5 µM MTX treated HL-60 cell proteome). Arrow marked spots 
are the differentially expressed proteins obtained after 72 hours MTX treatment. 
Labelling of the spots correspond to the genes name as assigned in Table 4. 
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Table 3. Summary of untreated and MTX treated HL-60 proteome analysed by Delta 2D software 

  
Number of protein spots detected in the control HL-60 proteome 845 
  
Number of protein spots detected in the MTX treated HL-60 proteome 878 
  
Number of protein spots matched in all gels 492 
  
Number of high abundant protein spots in MTX treated HL-60 proteome (fold change more than 5.0) 36 
  
Number of up regulated protein spots in MTX treated HL-60 proteome (fold change 1.5-5.0) 89 
  
Number of low abundant protein spots in MTX treated HL-60 proteome (fold change less than 0.5) 45 
  
Number of down regulated protein spots in MTX treated HL-60 proteome (fold change 0.3-0.5) 92 
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Table 4. List of the proteins that were differentially expressed in HL-60 cells during treatment with 2.5 µM MTX for 72 hours 

Abbreviation Swiss Prot (Acc. No.) Name of protein Molecular weight (Da) pI value No. of peptide matched** MS Score*§ 

              

 
Endoplasmic Reticulum Chaperones 

$CALR P27797 Calreticulin precursor 48112 4.3 3 89 

HSPA5 P11021 78 kDa Glucose regulated protein precursor 72288 5.0 23 989 

Proteasome Complex subunits 
PSMA4 P25789 Proteasome subunit alpha type 4 29465 7.2 9 236 

PSMA5 P28066 Proteasome subunit alpha type 5 26394 4.8 8 274 

PSMA7 o14818 Proteasome subunit alpha type 7 27870 7.8 6 255 

PSMB3 P49720 Proteasome subunit beta type 3 22933 5.9 7 215 

PSMC5 P62195 26S Protease regulatory subunit 8 (p45/SUG) 45597 7.1 9 300 

PSMC6 P62333 26S Protease regulatory subunit S10B 44145 7.0 10 362 

       

Mitochondrial Transmembrane Electron Transport System 
ACO2 Q99798 Aconitate hydratase 85372 7.3 8 177 

ATP5B P06576 ATP synthase subunit beta 56525 5.3 19 677 

ATP5A1 P25705 ATP synthase subunit alpha 59714 7.7 7 141 

HSPA9B P38646 Stress-70 protein, mitochondria precursor 73635 6.0 19 831 

SOD2 P04179 Superoxide dismutase (Mn) 24707 6.9 1 34 

UQCRC1 P31930 Ubiquinol-cytochrome-c reductase complex core protein I 52612 5.6 6 135 

HADHSC Q16836 Short chain 3-hydroxy-CoA dehydrogenase 34256 8.3 4 121 

PDHB P11177 Pyruvate dehydrogenase E1 component subunit beta 39194 5.5 11 392 

 
 

      

Glycolytic Cycle 
$ALDOA P04075 Fructose-bisphosphate aldolase A 39264 8.3 8 242 

GAPDH P04406 Glyceraldehyde-3-phosphate dehydrogenase 35899 8.5 24 536 

LDH-A P00338 L-lactate dehydrogenase A chain 36534 7.9 8 349 
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PKM2 P14618 Pyruvate kinase, isoenzymes M1/M2 57769 7.9 15 690 

       

Signal Transduction Related Proteins 
ARHGDIB P52566 Rho-GDP-dissociation inhibitor 2 22843 5.1 4 121 

RANBP1 P43487 Ran-specific GTPase-activating protein 23296 5.1 7 283 

CALM2 P62158 Calmodulin 16696 4.1 7 187 

Others 
AHSG P02765 Alpha-2-HS-glycoprotein precursor 39300 5.2 4 149 

FUBP1 Q96AE4 Far upstream element-binding protein 1 67431 7.1 9 268 

       
* Ions score is -10*Log (P), where P is the probability that the observed match is a random event. Individual ions scores >27 indicate identity or extensive homology (P < 0.05).  

§ All proteins identified by Q-TOF MS      
** Detailed peptides information are provided in Appendix 
$ Not visualised in Cydyes labelled gel images     
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5.4.1 MTX down regulates proteasome subunits in HL-60 cells 

The proteasome, an ATP-dependent protease, modulates intracellular protein degradation 

(Voges et al., 1999). The multi-enzyme protease consists of a 20S core catalytic complex 

and two 19S regulatory subunits. The 20S core is a hollow, barrel shaped protein complex 

(Kisselev and Goldberg, 2001) composed of four stacked rings with an overall 

architecture of α (1-7) β (1-7) β(1-7) α(1-7). The two outer α rings form-gated channel 

through which substrates enter and products exit the catalytic core. In addition, α subunits 

are also required for the recognition of ubiquitin tagged substrates and the unfolding of 

substrates prior to their threading into the proteolytic chamber (Glickman and 

Ciechanover, 2002). Interestingly, cysteine labelled differential in-gel electrophoresis 

analysis revealed that MTX significantly decreased the protein expression (% spot 

volume data) of two structural proteasome subunits type α4, and α7 (PSMA4 and 

PSMA7), a non-catalytically proteasome subunit type β3 (PSMB3) and two 26S protease 

regulatory subunits 8 (p45/SUG) and S10B (PSMC5 and PSMC6) from MTX treated 

HL-60 cells (Figure 13A&B). One structural proteasome subunit type α5 (PSMA5) 

showed a statistical tendency of down regulation (% spot volume data) in MTX treated 

HL-60 cells. In contrast, the % spot volume data of 78 kDa glucose regulated protein 

precursor (HSPA5) was found to be 0.46 ± 0.02 (p < 0.05) in MTX treated HL-60 cells as 

compared to untreated where the % spot volume data was 0.375 ± 0.005 (Figure 12). 

Similarly, the % spot volume data of calmodulin-2 (CALM2), a calcium binding protein 

was found to be 0.29 ± 0.06 (p < 0.09) in MTX treated HL-60 cells as compared to 

untreated where the % spot volume data was 0.075 ± 0.01 (Figure 12). 
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Figure 13. Down regulation of six proteasome subunits in MTX treated HL-60 cells 

HL-60 cells were incubated without or with 2.5 µM MTX in RPMI medium for 72 hours. 
Samples were then subjected to cysteine labelled differential in-gel electrophoresis using 
corresponding CyDyes for each sample. (A) Boxed areas in representative dual colour 
two-dimensional fluorescent image (A-B) have been enlarged and the corresponding 
close up mark areas (arrow and circle) of the gel image showing decrease expression of 
proteasome subunits (PSMA4, PSMA5 and PSMA7) in MTX treated HL-60 cell 
proteome. (B) Boxed areas in representative dual colour two-dimensional fluorescent 
image (C-D) have been enlarged and the corresponding close up mark areas (arrow and 
circle) of the gel image showing decrease expression of proteasome subunits (PSMB3, 
PSMC5 and PSMC6) in MTX treated HL-60 cell proteome. The protein expression 
quantification is presented as % volume of spot (Y-axis) in front of enlarged boxed areas. 
Labelling of the spots correspond to the gene names as assigned in Table 4. Cy3 labelled 
proteins are shown in green colour (represent untreated HL-60 cell proteome) and 
Cy5 labelled proteins are in red colour (represent 2.5 µM MTX treated HL-60 cell 
proteome). Results are given as the mean values ± S.D. of % volume of spot from three 
independent experiments, * p < 0.05, n.s designates non-significant p-value. 

 

B. 
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5.4.2 Differential effect of MTX on glycolytic and MTETS pathways 

Another important finding of this study revealed the impact of MTX on the carbohydrate 

metabolism in both type of cancer cells analysed by combined approaches. Cysteine 

labelled differential in-gel electrophoresis combined with mass spectrometry analyses 

showed that the protein expression (% spot volume data) of several glycolytic enzymes 

such as glyceraldehydes-3-phosphate dehydrogenase (GAPDH), pyruvate kinase 

isoenzymes M1/M2 (PKM2) and L-lactate dehydrogenase A chain (LDH-A) were 

significantly increased in MTX treated HL-60 cells (Table 5). The inductions of the 

pyruvate kinase (PKM2) activity (p < 0.05) and triosephosphate isomerase (TPI) were 

confirmed with enzyme activity assay and Western blotting, respectively 

(Figure 14A&B).  This reflected to a stimulation of the glycolytic pathway by MTX in 

both cancer cell lines. In contrast, the expression (% spot volume data) level of pyruvate 

dehydrogenase E1 component subunit beta (PDHB) showed a statistical tendency of 

down regulation in MTX treated HL-60 cells (Table 5). 

Table 5. Over expression of glycolytic enzymes in MTX treated HL-60 cells 

Name of the protein Control MTX treated Detection Method Figure Reference 

ALDOA -- Up regulated SS         Not shown 

TPI §1.00 ± 00.00 1.69 ± 0.07 WB Figure 15B 

GAPDH $10.14 ± 0.005 13.91 ± 0.33* CL-DIGE Figure 12 

PKM2 ∆0.99 ± 0.09 8.00 ± 0.18* CL-DIGE & EAA Figure 12&15A 

LDH $0.08 ± 0.01 0.22 ± 0.03* CL-DIGE Figure 12 

PHDB $0.36 ± 0.018 0.27 ± 0.01 CL-DIGE Figure 12 

§ The protein expression quantification of spots is presented as % volume of spot in CL-DIGE. 
$ Protein expression profile of TPI was quantified by densitometry and presented as densitometric units of 

the probe/densitometric units of the ACTB. 
∆ PKM2 activity was assessed by spectrophotometer and result is presented as units/mg of protein 
   All results are given as the mean values ± S.D. of three independent experiments, * p < 0.05. 
   Abbreviations: SS, silver staining; WB, Western blotting; CL-DIGE, Cysteine labelled differential in-gel 

electrophoresis; EAA, Enzyme activity assay 
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Figure 14. MTX induces pyruvate kinase activity and increases the expression of 
triosephosphate isomerase (TPI) in HL-60 and A498 cancer cells 

HL-60 and A498 cells were incubated without or with 2.5 µM and 45µM MTX 
respectively in corresponding mediums for 72 hours. Pyruvate kinase activity assay and 
western blotting were performed as described in the Experimental Procedures. (A) Effect 
of MTX on pyruvate kinase activity shown in above mentioned cancer cell lines. Pyruvate 
kinase activity was measured by spectrophotometer at the wavelength of 340 nm and 
presented as units/mg of protein in Y-axis. Results are given as the mean values ± S.D. of 
three independent experiments, * p < 0.05. (B) Representative blots and bar diagrams 
depict the induction of TPI expression in MTX treated HL-60 and A498 cell lines in a 
time dependent manner whereas β-actin (ACTB) was used as an internal standard. Protein 
expression profile was quantified by densitometry and presented as densitometric units of 
the probe/densitometric units of the ACTB. The protein expression quantification was 
presented as grouped bar chart with error bars. Each bar represents the mean ratios ± S.D. 
of protein intensity on the blots from three independent experiments. 
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Similarly, seven mitochondrial-localized proteins were differentially expressed in MTX 

treated HL-60 cells that attributed to MTETS and beta-oxidation pathways. The protein 

expression (% spot volume data) level of one mitochondrial precursor ATP synthase 

subunit beta (ATP5B; oxidative phosphorylation), (Figure 17A) two enzymes such as 

aconitate hydratase (ACO2; tricaboxylic acid cycle) and short chain 3-hydroxy-CoA 

dehydrogenase (HADHSC; beta-oxidation pathway) were significantly decreased in MTX 

treated HL-60 cells as compared to untreated. Similarly, the protein expression (% spot 

volume data) of superoxide dismutase Mn (SOD2) belonging to the intra-mitochondrial 

free radical scavenging enzyme was markedly down regulated (p < 0.05) in MTX treated 

HL-60 cells (Figure 15). In contrast, the expression (% spot volume data) of three-

mitochondrial proteins such as mitochondrial precursor ATP synthase subunit alpha 

(ATP5A1) (Figure 17A), Ubiquinol cytocrome-c reductase complex core protein I 

(UQCRC1), and one stress-70 mitochondrial precursor (HSPA9B) were significantly 

increased in HL-60 cells after exposure to MTX for 72 hours (Figure 15). To elucidate 

whether MTX induced apoptotic protein profiles were cell specific, we performed the 

conventional proteomic analysis in A498 cells with and without MTX treatment for 72 

hours. We found the similar results with majority of the proteins, yet subtle differences 

were detected. Moreover, the differences in protein expression profiles were found to be 

less intense in A498 as compared to MTX treated HL-60 cells (data not shown). 
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Figure 15. Differential expression of mitochondrial proteins in MTX treated HL-60 
cell line 

HL-60 cells were incubated without or with 2.5 µM MTX in RPMI medium for 72 hours. 
Samples were subjected to cysteine labelled differential in-gel electrophoresis using 
specific CyDyes for each sample. Differentially expressed protein spots were quantified 
with Delta 2D software and plotted it on a bar diagram. The protein expression 
quantification data is presented as % volume of spot (X-axis) and labelling of the spots 
corresponds to the gene names as assigned in Table 4. Results are given as the mean 
values ± S.D. of % volume of spot from three independent experiments, * p < 0.05. 

5.5 MTX INDUCES ER STRESS IS LINKED TO ALTERATION IN THE 

PROTEASOME PROTEIN EXPRESSION 

The proteasome is responsible for degradation of many intracellular proteins, thereby 

helping to maintain the cellular homeostasis during biological processes such as cell 

cycle, signal transduction, response to stress and gene transcription (Hershko and 

Ciechanover, 1998). Among other functions, the proteasomal complex rapidly degrades 

misfolded proteins to avoid accumulation of dysfunctional proteins (Kaufman, 2002; Ron, 

2002). Moreover, proteasome inhibitors are known to act through the NF-κB pathway. 
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This pathway is constitutively active in many types of cancer cells and is associated with 

cell proliferation, survival and protection from chemotherapy induced apoptosis (Wang et 

al., 1999). According to our Western blot and proteomic findings, MTX treated cancer 

cells showed decrease expression of the NF-κB subunit p65 (Figure 16B), which might 

be associated with an inhibition of proteasome subunits. This could lead to an increased 

accumulation of misfolded proteins in ER resulting in an ER stress response. To confirm 

the biological significance of our protein data, Western blot analyses were further 

performed to directly examine changes of the protein expression of ER chaperones. 

Interestingly, ER chaperones such as calreticulin precursor (CALR), protein disulphide 

isomerase A3 precursor (PDIA3), protein disulphide isomerase A4 precursor (PDIA4) 

and 78 kDa glucose regulated protein precursor (HSPA5) were continuously up regulated 

in MTX treated HL-60 and A498 cells in a time dependent manner (Figure 16A). 

 



RESULTS 

 56

 

 

Figure 16. Western blot analyses of ER chaperones and NF-κB affected by MTX in 
HL-60 and A498 cancer cells 

Representative bar diagrams and blots depict the changes of protein expression profile in 
MTX treated HL-60 and A498 cells, whereas β-actin (ACTB) was used as an internal 
standard. (A) Calreticulin precursor (CALR), protein disulphide isomerase A3 precursor 
(PDIA3), protein disulphide isomerase A4 precursor (PDIA4) and 78 kDa glucose 
regulated protein precursor (HSPA5) (B) NF-κB. Protein expression profile was 
quantified by densitometry and presented as densitometric units of the 
probe/densitometric units of the ACTB. The expression quantification is presented as 
grouped bar chart with error bars. Each bar represents the mean ratios ± S.D. of protein 
intensity on the blots from three independent experiments. 
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5.6 MTX ALTERS MITOCHONDRIAL MEMBRANE POTENTIAL AND 

GENERATES ROS 

The ATP synthase subunits catalyse ATP synthesis, utilizing an electrochemical gradient 

of protons across the inner membrane during oxidative phosphorylation and thus provide 

its function in energy transduction. In addition to these well established functions, 

multisubunits complex ATP synthase was recently shown to have a role in determining 

the ultrastructure of mitochondria (Arselin et al., 2003; Giraud et al., 2002; Paumard et 

al., 2002; Soubannier et al., 2002). Cysteine labelled differential in-gel electrophoresis 

analysis revealed that two proteins such as ATP synthase subunits alpha and beta 

(ATP5A1 and ATP5B) were differentially expressed in term of the % spot volume data in 

MTX treated HL-60 cells (Figure 17A). Furthermore, to determine the impact of ATP 

synthase subunits on MTX mediated apoptosis, the cationic cell-permeable JC-1 dye was 

utilized to calculate the electric potential of the membrane in both cell lines. We found 

that ∆ψm was continuously dissipated in MTX treated HL-60 and A498 cells during the 

indicated time periods (Figure 17B). The differential proteins expression of ATP 

synthase subunits by MTX might causes structural alterations in the ∆ψm. These 

alterations in the ATP synthase subunits may play an important role in the collapse of 

∆ψm in MTX treated HL-60 and A498 cells. 
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Figure 17. MTX induces apoptosis is associated with altered mitochondrial 
membrane potential 

(A) HL-60 cells were incubated without or with 2.5 µM MTX in RPMI medium for 72 
hours. Cysteine labelled differential in-gel electrophoresis was performed using specific 
CyDyes for each sample. Boxed areas in representative dual colour two-dimensional 
fluorescent image (A&B) have been enlarged and the corresponding close up mark areas 
(arrow and circle) of the gel showing differential expression of ATP synthase subunits 
alpha & beta (ATP5A1 and ATP5B) in MTX treated HL-60 cell proteome. The protein 
expression quantification was presented as % volume of spot (Y-axis) in front of enlarged 
boxed areas. Labelling of the spots correspond to the gene names as assigned in Table 4. 
Cy3 labelled proteins are shown in green colour (represent untreated HL-60 cell 
proteome) and Cy5 labelled proteins are in red colour (represent 2.5 µM MTX treated 
HL-60 cell proteome). Results are given as the mean values ± S.D. of % volume of spot 
from three independent experiments, * p < 0.05. (B) Influence of MTX on ∆ψm. 
Time-dependent loss of ∆ψm was detected by flow cytometry in MTX treated HL-60 and 
A498 cells for the indicated time periods. 

B. 
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Accumulating evidences suggest that alteration of ATP synthase biogenesis may cause 

two types of isolated defects: qualitative when the enzyme is structurally modified and 

does not function properly, and quantitative when it is present in insufficient amounts. In 

both cases the cellular energy formation is impaired and mitochondria promotes ROS 

generation by the mitochondrial respiratory chain (Houstek et al., 2006; Chen et al., 

2003). Consistent with this notion we showed that SOD2 (useful marker of oxidative 

stress) is significantly down regulated in MTX treated HL-60 cells (Figure 15). To 

validate our previous finding, we analysed the production of the two most abundant ROS 

such as hydrogen peroxide (H2O2) and peroxide nitrite anion (ONOO-) using 

ROS-sensitive fluorescent dye DH-123 (Henderson and Chappell, 1993; Ichiki et al., 

1994; Briviba et al., 1996) in A498 cells. We found that MTX treated A498 cells 

displayed a readily detectable increase in H2O2 and ONOO- levels compared to untreated 

cells in a time dependent manner (Figure 18A&B). This induction in H2O2 and ONOO- 

levels were generated in two distinct phases following MTX treatment. Initially, there 

was a small but consistent increase in H2O2 and ONOO- levels persisted for at least 

72 hours (Figure 18A). This was further associated by substantial two-fold increase in 

H2O2 and ONOO- levels at 120 hours following MTX treatment in A498 cells 

(Figure 18A). 

 

A.
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Figure 18. Induction of ROS formation in MTX treated A498 cells 

(A) Representative graph shows the kinetics of oxidative stress in 45 µM MTX untreated and treated A498 cells for the indicated time periods. Cells 
were stained with DH-123 for 2 hours, visualized by fluorescence microscopy using specific filter set for rhodamine. The fluorescence was calculated 
(in units) by randomly selected 100 cells. (B) Fluorescence microscopy comparing DH-123 stained untreated and treated A498 cells with 45 µM MTX 
for 72 hours and visualized by using specific filter sets for phase contrast, rhodamine. The obtained figures were merged to observe cell morphology. 
These photographs were documented at an exposure of 40x magnification. 
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6 DISCUSSION 

Since 1948, Farber et al. showed that MTX could produce remission in acute leukaemia, 

the folate-dependent enzymes have been the curative regimen in acute lymphocytic 

leukaemia and other leukaemias (Farber, 1950). Various molecular targets have been 

proposed in MTX treated different cell types. However, the complete understanding of 

the molecular basis of drug action of MTX in cancer cells still remains unclear. In this 

study, we investigated a part of the cascade signalling involved in MTX induced 

apoptosis using novel proteomic approaches in acute promyelocytic leukaemia (HL-60) 

and renal epithelial carcinoma (A498) cells. 

6.1 SEQUENTIAL EVENTS OF APOPTOSIS INDUCED IN MTX TREATED 

CANCER CELLS 

Cancer chemotherapeutic drugs initiate cytotoxicity through pro-apoptotic signals 

incoming from various endogenous factors and converge upon pathways mediating 

programmed cell death or apoptosis. MTX, one of the earliest cancer chemotherapeutic 

agents showed cytotoxicity in acute lymphocytic leukemia (Farber, 1950) and other 

cancers (Frei, III et al., 1980). In our experimental model, we showed that MTX also 

causes cytotoxicity in acute promyelocytic cells (HL-60), which was mediated by 

induction of apoptosis. MTX exhibits apoptosis via changes in cellular morphology 

including cell shrinkage and induction in cellular granularity along with biochemical 

event leading to increase translocation of PtdSer at the surface of the plasma membrane 

(Figure 7A&B; Figure 8A). It has been shown in numerous models that these 

morphological and biochemical alterations refers to an apoptosis (Kroemer et al., 2005; 

Martin et al., 1995). Irrespective to these morphological features, mitochondrial 

membrane permeabilization is an universal feature of cell death and is considered as a 
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consequence of charge difference (mitochondrial membrane potential ∆ψm) between the 

mitochondrial matrix and cytosol (Kroemer et al., 1998). Our preliminary results revealed 

that MTX potentially disrupts ∆ψm in HL-60 cells (Figure 17B). Structural irregularities 

due to the differential protein expression of ATP synthase subunits might be a critical 

factor participated in the ∆ψm disruption in MTX treated HL-60 cells (Figure 17A). This 

∆ψm disruption constitutes an early event of apoptosis that precedes cell shrinkage, PtdSer 

translocation and induction of cellular granularity (Figure 17A). Similar findings have 

been obtained in freshly isolated splenocytes stimulated with dexamethasone (Zamzami et 

al., 1995). Following ∆ψm dissipation and mitochondrial membrane permeabilization, an 

increase in mitochondrial matrix volume occurs as a consequence of the massive entry of 

solutes and water. This swelling give rise to a distention and disorganization of the 

mitochondrial membranes resulting in mitochondrial membranes fragmentation (Kroemer 

et al., 1998). In-vivo, such ultrastructural alterations have been previously observed in rat 

liver after exposure to MTX (Al Ali et al., 2005). Taking together, these data argue in 

favor of the possibility that besides morphological alterations, ∆ψm disruption and partial 

lysis of the mitochondrial membranes participated in the apoptotic cascade induced by 

MTX.  

To establish whether other cancer cells also showed MTX cytotoxicity, we investigated 

the effect of MTX on renal epithelial carcinoma (A498) cells. Similar findings i.e. 

induction of PtdSer translocation and ∆ψm disruption were also observed in MTX treated 

renal epithelial carcinoma cells (A498) at a relatively lower rate than in HL-60 cells. This 

is probably due to the well-known differences in the expression of multi-drug resistance 

genes. Over expression of P-glycoprotein, multidrug resistance proteins and decreased 

expression of DNA topoisomerase-II are responsible for expression of the multidrug 
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resistance phenotype in various cancer cells (Naito et al., 2000; Reinecke et al., 2000; 

Nishiyama et al., 1999). 

6.2 MOLECULAR TARGETS AND PATHWAYS INVOLVED IN CELL 

RESPONSE TO MTX 

Due to the wide therapeutic applications of MTX, it is reasonable to speculate that MTX 

may have a number of intracellular protein targets, converging into an apoptotic process. 

The inhibitory action of MTX on NADP-dependent enzymes has been extensively 

investigated by several authors (Babiak et al., 1998; Oliveira et al., 1989). Moreover, a 

number of important observations have been made which reflect towards the additional 

molecular influences of MTX such as inhibition of the ICMT (Winter-Vann et al., 2003) 

and suppression of the NF-κB subunits p65 and p50 (Majumdar and Aggarwal, 2001). 

Despite an increasing knowledge on the molecular targets of MTX in different cell types, 

little is known regarding its apoptotic influences in cancer cells. 

Cysteine labelled differential in-gel electrophoresis combined with mass spectrometry has 

been successfully implemented in the proteomic study of adenoma of Min mice (Kondo et 

al., 2003), hepatocellular carcinoma tissue (Fujii et al., 2005), haematopoietic cells (Evans 

et al., 2004) and in the pathogenesis of the cancer (Kondo et al., 2003; Fujii et al., 2005). 

From a molecular targets point of view, there is currently substantial interest in 

implementing platforms for drug target discovery. Although the proteomic field is in the 

early stages, current proteomic tools such as cysteine labelled differential in-gel 

electrophoresis has the potential to be a major technique in identifying new molecular 

targets of various pharmacological therapeutic agents. In order to characterize the 

molecular targets of MTX induced apoptosis in HL-60 cells, we conducted experiments 

incorporating cysteine labelled differential in-gel electrophoresis. Initial experimental 

analysis revealed a number of differentially expressed proteins in acute promyelocytic 
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leukemia HL-60 cells after exposure to MTX. These proteins were mainly ascribed to the 

ER chaperones, glycolytic enzymes and the mitochondrial transmembrane electron 

transport system (Table 4). Additionally, we observed that several proteasome subunits 

were significantly down regulated in MTX treated HL-60 cells (Figure 13A&B). These 

results provide a broader view of intracellular protein changes accompanying the 

apoptotic effect of MTX in HL-60 cells. 

6.2.1 MTX induced inhibition of NF-κB subunit p65 and proteasome subunits 

correlate with the induction of ER chaperones 

NF-κB, a stress-regulated transcription factor belonging to the Rel family, has a pivotal 

role in the control of various responses. More than 200 physiological, pharmacological 

and chemotherapeutical stimuli are known to activate the NF-κB signalling pathway 

(Tergaonkar, 2006). The NF-κB activation pathways are broadly classified into two 

pathways commonly known as the canonical and non-canonical pathways, depending on 

whether activation involves the IκB degradation or p100 processing (Pomerantz and 

Baltimore, 2002). NF-κB activation and translocation into the nucleus induces the 

transcription of a variety of genes encoding cell adhesion molecules, inflammatory and 

chemotactic cytokines, cytokine receptors, and enzymes that produce inflammatory 

mediators. Accumulating evidences suggested that activation of NF-κB is critical for the 

pathogenesis of leukaemia’s (Baumgartner et al., 2002; Braun et al., 2006; Bueso-Ramos 

et al., 2004; Guzman et al., 2001). Hence, suppression of NF-κB and its associated 

signalling proteins could play an important role in cancer cell death. It has been shown 

that MTX down regulated NF-κB subunits p65 and p50 in Jurkat cells and was implicated 

in cell death (Majumdar and Aggarwal, 2001). Similiarily, MTX inhibits the expression 

of NF-κB subunit p65 in acute promyelocytic leukaemia (HL-60) and renal epithelial 

carcinoma (A498) cells (Figure 16B). The results are in good agreement with what was 
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previously reported for MTX treatment in Jurkat cells (Majumdar and Aggarwal, 2001). 

Majumdar and Aggarwal further demonstrated that the suppression of NF-κB subunits 

p65 and p50 was accompanied with the inhibition of IKBα degradation, suppression of 

IKBα phosphorylation, abrogation of IKBα kinase activation, and inhibition of NF-κB 

dependent reporter gene expression (Majumdar and Aggarwal, 2001). Recently, it has 

been shown that p65 subunit of NF-κB knockout (p65-/-) mouse embryonic fibroblasts 

(MEFs) cell line was found to be more susceptible to apoptosis with MTX as compared to 

wild type MEFs (Brengauz-Breitmann et al., 2006). Our findings combined with other 

studies (Brengauz-Breitmann et al., 2006; Majumdar and Aggarwal, 2001) indicate that 

MTX induced apoptosis in various cancer cell types is probably due to blocking NF-κB 

activation. However, until recently how these pathways are integrated to each another is 

still to be determined. 

In order to identify link between inhibition of NF-κB subunit p65 and apoptosis, we 

treated HL-60 cells with MTX and performed cysteine labelled differential in-gel 

electrophoresis combined with mass spectrometry. The important observations of this 

study were the down regulation of structurally (α4, α5 and α7, β3) and regulatory 

proteasome subunits in MTX treated HL-60 cells (Figure 13A&B). Although the main 

catalytic activity of the proteasome is mediated by the β subunits; the α and some 

regulatory subunits are thought to maintain the framework for correct assembly of β 

subunits during biogenesis of the 20S proteasome (Coux et al., 1996). Impairment of α 

and regulatory subunits thereby lead to instability in the 20S proteasome complex 

resulting in impairment in proteasome mediated proteolytic activity (Bulteau et al., 2001; 

Grune et al., 1996; Voges et al., 1999). These evidences emphasize the possible 

involvement of MTX in the integrity of α and regulatory subunits to the normal function 

of proteasome in HL-60 cells. 
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After observing the protein expression of proteasome subunits and its ability to induce 

apoptosis in MTX treated HL-60 cells, we therefore reasoned that lack of proteasomal 

activity might induces an abnormal accumulation of ubiquitinated proteins in ER finally 

causes ER stress. The resulting ER stress is characterized by over expression of ER 

chaperones, also known as unfolded protein response (Ron, 2002; Kaufman, 2002). The 

unfolded protein response includes three mechanisms to handle the vast accumulation of 

unfolded proteins: general transcriptional repression, translational induction of target 

proteins enhancing protein folding and ER-associated degradation pathway to eliminate 

misfolded proteins (Mori, 2000). If the overload of unfolded or misfolded proteins in the 

ER is not resolved, prolonged activation of the unfolded protein response would lead to 

apoptosis (Ron, 2002). In our study MTX activates unfolded protein response in HL-60 

cells by inducing the expression of ER chaperones in a time dependent fashion 

(Figure 16A). Similar findings were also observed in MTX treated renal epithelial 

carcinoma cells (Figure 16A). The effects of MTX on ER chaperones are in accordance 

with earlier findings seen in various cancer cells after treated with proteasome inhibitors 

(Fribley and Wang, 2006; Obeng et al., 2006). These data confirmed the up regulation of 

ER chaperones in MTX treated HL-60 and A498 cells. How these proteins are integrated 

to each another by MTX is yet not clear. 

6.2.2 MTX induced MTETS proteins impairment reveal glycolysis involvement 

Most cancer cells exhibit increased glycolysis and use this metabolic pathway for the 

generation of the ATP as a main source of their energy supply in the absence of oxygen. 

This phenomenon is widely known as the Warburg effect and is considered as one of the 

fundamental metabolic alterations during malignant transformation (Garber, 2006; 

Wallace, 2005). Molecular studies imply several possible mechanisms by which this 

metabolic alteration may evolve during the cancer development. These mechanisms 
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include adaptation to hypoxic tumour environment, oncogenic signalling, abnormal 

expression of the metabolic enzymes and mitochondrial defects or malfunction (Kim and 

Dang, 2005). As this metabolic alteration is frequently seen in cancer cells of various 

tissues, targeting the glycolytic pathway may cause apoptosis in malignant cancer cells.  

The effect of MTX on carbohydrate metabolism, in particular glycolytic enzymes have 

been investigated by several authors (Carpentier et al., 1978; Desoize et al., 1978; 

Kaminskas and Nussey, 1978). Some reports demonstrated that MTX enhances the 

intracellular levels of glycolytic enzymes in leukaemia L1210 cells (Desoize et al., 1978 

and Carpentier Y and 1978). Conversely, there was a report suggesting that glycolysis 

was inhibited by MTX at growth inhibitory concentrations. The effect of MTX in cultured 

Ehrich ascites carcinoma cells was severe in low glucose containing media and 

intermediate in high glucose containing media (Kaminskas and Nussey, 1978), suggesting 

the importance of glucose in MTX pharmacological activity. Our proteomic data revealed 

that MTX significantly induces the expression of several glycolytic enzymes in HL-60 

cells (Table 5; Figure 14A&B). This is in concordance with earlier findings where MTX 

potentially enhances glycolysis in leukaemia L1210 cells (Desoize et al., 1978). 

Earlier studies have shown that MTX can affect several aspects of mitochondrial energy 

metabolism, particularly oxidative phosphorylation and induces apoptosis in cancer cells 

(Oliveira et al., 1989; Gosalvez et al., 1974). The inhibitory effect of MTX on several 

mitochondrial enzymes such as 2-oxoglutarate and isocitrate dehydrogenase has been 

reported in the HeLa cells (Caetano et al., 1997). To explore the boarder view of 

mitochondrial-localized changes induced by MTX, we made cysteine labelled differential 

in-gel electrophoresis. We observed that MTX impaired seven additional mitochondrial-

localized proteins (Figure 15) including ATP synthase subunits alpha and beta resulting 

in the ∆ψm collapse as compared to control cancer cells (Figure 17A&B). This study 
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extends the list of mitochondrial-localized proteins affected by MTX in HL-60 cells. With 

the results shown herein, we may speculate that the biological significance resulting from 

the treatment with MTX leads to a reduction of the effectiveness of the MTETS followed 

by high glycolytic flux. The experimental data that indicate these are: Firstly increased 

expression of several enzymes such as ALDOA, GAPDH, PKM2 LDH-A and TPI, that 

will together contribute to increased glycolytic flux. Secondly differentially expression of 

mitochondrial proteins such as ATP5B, ACO2, ATP5A1, UQCRC1, SOD2 and HSPA9B 

besides 2-oxoglutarate, isocitrate and malate dehydrogenases (Caetano et al., 1997) were 

observed when the cancer cells were treated with MTX.  

There are several reports demonstrating that apoptosis caused by MTX may be mediated 

by the production of ROS in Jurkat and HL-60 cells (Phillips et al., 2003; Huang et al., 

2005). Conflicting evidences surround the effect of MTX on the generation of ROS in cell 

line models. One possible mechanism is that MTX decreases the cellular levels of 

glutathione and reduces the effectiveness of the antioxidant enzyme defence system 

(Babiak et al., 1998). In another study, MTX causes ∆ψm disruption and causes apoptosis 

by increased the amount of cytosolic peroxide formation in HL-60 and Jurkat T cells 

(Huang et al., 2005). Our findings support latter study and showed that one of the 

mechanisms of MTX-induced apoptosis may be through a ROS-dependent, mitochondria-

mediated pathway.  
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7 CONCLUSION 

To conclude our findings, we demonstrate for the first time that structural non-

catalytically and regulatory proteasom subunits were down regulated in MTX treated 

HL-60 cells. These evidences suggest the possible involvement of MTX in the integrity of 

α subunits to the normal function of proteasomes. Moreover, MTX down regulates 

NF-κB subunit p65 and induces the expression of the ER chaperones in HL-60 and A498 

cells. Additionally, MTX leads to a reduction of the effectiveness of the MTETS followed 

by high glycolytic flux by altering mitochondrial-localized proteins and glycolytic 

enzymes. This leads to the generation of ROS in both cancer cell lines. 
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8 APPENDIX 

Protein Name:    Calreticulin precursor 
Gene name:    CALR 
Taxonomy:    Homo sapiens 
Swiss Prot No:   P27797 
Mass:     48112 
Score:     89 
Queries matched:   03 
 
Summarized table of matched peptides: 
 
 Query   Observed   Mr(expt)   Mr(calc)    Delta  Miss  Score  Expect  Rank  Peptide 
 
 15   488.2570   974.4994   974.4781   0.0213  0   33   0.027  1   K.GLQTSQDAR.F 
 17   496.7465   991.4784   991.4611   0.0174  0   33   0.026  1   R.QIDNPDYK.G 
 22   565.7599   1129.5052   1129.4927   0.0125  1   23   0.16  1   K.FYGDEEKDK.G 
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Protein Name:    Calmodulin 
Gene name:    CALM2 
Taxonomy:    Homo sapiens 
Swiss Prot No:   P62158 
Mass:     16696 
Score:     187 
Queries matched:   07 
 
Summarized table of matched peptides: 
 
 Query   Observed   Mr (expt)   Mr (calc)    Delta  Miss  Score  Expect  Rank  Peptide 
 
 4   411.2409   820.4672   820.4113   0.0560  0   4   13  1   K.ELGTVMR.S + Oxidation (M) 
 16   478.7747   955.5348   955.4651   0.0698  0   47   0.0007  1   K.EAFSLFDK.D 
 21   547.2792   1092.5438   1092.4571   0.0868  0   42   0.0023  1   K.DTDSEEEIR.E 
 23   633.3598   1264.7050   1264.6047   0.1003  0   43   0.0016  1   K.DGNGYISAAELR.H 
 27   456.9017   1367.6833   1367.5874   0.0958  1   34   0.017  1   K.MKDTDSEEEIR.E + Oxidation (M) 
 34   585.6729   1753.9969   1753.8634   0.1334  1   11   1.9  1   R.VFDKDGNGYISAAELR.H 
 35   923.0095   1844.0044   1843.8839   0.1205  1   6   8  1   K.EAFSLFDKDGDGTITTK.E 
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Protein Name:    78 kDa Glucose regulated protein precursor (Bip protein) 
Gene name:    HSPA5 
Taxonomy:    Homo sapiens 
Swiss Prot No:   P11021 
Mass:     72288 
Score:     989 
Queries matched:   23 
 
Summarized table of matched peptides: 
 
 Query   Observed   Mr(expt)   Mr(calc)    Delta  Miss  Score  Expect  Rank  Peptide 
 
 17   459.7444   917.4742   917.4706   0.0037  0   33   0.022  1   K.VLEDSDLK.K 
 18   491.2532   980.4918   980.4814   0.0104  0   10   3.8  1   K.ETAEAYLGK.K 
 19   493.7692   985.5238   985.5080   0.0159  0   27   0.08  1   R.LTPEEIER.M 
 24   523.7980   1045.5814   1045.5655   0.0159  1   47   0.00099  1   K.VLEDSDLKK.S 
 27   537.7851   1073.5556   1073.5465   0.0091  0   45   0.0013   1   K.ITITNDQNR.L 
 33   596.3239   1190.6332   1190.6295   0.0038  0   52   0.00028  1   K.VYEGERPLTK.D 
 34   609.3318   1216.6490   1216.6234   0.0257  0   32  0.024   1   K.DAGTIAGLNVMR.I 
 35   614.8340   1227.6534   1227.6207   0.0327  0   48   0.00065  1   R.VEIIANDQGNR.I 
 36   617.3259   1232.6372   1232.6183   0.0190  0   41   0.0031   1   K.DAGTIAGLNVMR.I + Oxidation (M) 
 45   658.8332   1315.6518   1315.6295   0.0223  0   76   1.1e-06   1   R.NELESYAYSLK.N 
 51   699.4104   1396.8062   1396.7813   0.0250  0   62   1.6e-05  1   K.ELEEIVQPIISK.L 
 52   715.8542   1429.6938   1429.6837   0.0101  0   48   0.00064 1   R.TWNDPSVQQDIK.F 
 56   730.8893   1459.7640   1459.7518   0.0123  0   47   0.0008  1   K.SDIDEIVLVGGSTR.I 
 61   768.9067   1535.7988   1535.7905   0.0084  0   49   0.000461   K.TFAPEEISAMVLTK.M 
 62   776.9102   1551.8058   1551.7854   0.0204  0   44  0.0012  1   K.TFAPEEISAMVLTK.M + Oxidation (M) 
 63   783.8982   1565.7818   1565.7725   0.0093  0   50   0.00036 1   R.ITPSYVAFTPEGER.L 
 64   794.8961   1587.7776   1587.8467   -0.0691  1   4  15 1   K.KSDIDEIVLVGGSTR.I 
 65   530.2718   1587.7936   1587.8467   -0.0532 1   20   0.36  1   K.KSDIDEIVLVGGSTR.I 
 70   830.4575   1658.9004   1658.8879   0.0126  0   93   1.5e-08  1   R.IINEPTAAAIAYGLDK.R 
 71   839.4112   1676.8078   1676.8005   0.0073  0   92   2.2e-08  1   K.NQLTSNPENTVFDAK.R 
 79   918.9685   1835.9224   1835.9265   -0.0040 0   103   1.9e-09  1   K.SQIFSTASDNQPTVTIK.V 
 82   629.9977   1886.9713   1886.9638   0.0074  0   26   0.074  1   K.VTHAVVTVPAYFNDAQR.Q 
 84   1088.4921   2174.9696   2174.9855   -0.0158 1   23   0.14  1   K.LYGSAGPPPTGEEDTAEKDEL 
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 Protein Name:   Proteasome subunit alpha type 4 
Gene name:    PSMA4 
Taxonomy:    Homo sapiens 
Swiss Prot No:   P25789 
Mass:     29465 
Score:     236 
Queries matched:   09 
 
Summarized table of matched peptides: 
 
 Query   Observed   Mr(expt)   Mr(calc)    Delta  Miss  Score  Expect  Rank  Peptide 
 
 15   429.7823   857.5500   857.4858   0.0643  0   6   7.9  5   K.EVEQLIK.K 
 24   451.7991   901.5836   901.5233   0.0604  0   37   0.0036  1   K.VEIATLTR.E 
 29   500.2776   998.5406   998.4821   0.0585  0   40   0.0036  1   K.QAYTQFGGK.R 
 30   504.3059   1006.5972   1006.5083   0.0889  0   10  2.9  1   R.TTIFSPEGR.L 
 31   504.3088   1006.6030   1006.5083   0.0947  0   30   0.026  1   R.TTIFSPEGR.L 
 41   557.8675   1113.7204   1113.6393   0.0811  1   3   7.2  1   K.QKEVEQLIK.K 
 46   613.8656   1225.7166   1225.6230   0.0936  0   66   7e-06  1   K.LLDEVFFSEK.I 
 56   477.6494   1429.9264   1429.8140   0.1124  1   3   2.7  1   K.LSAEKVEIATLTR.E 
 61   804.4542   1606.8938   1606.7807   0.1132  0   53   0.00015 1   K.ATCIGNNSAAAVSMLK.Q + Carbamidomethyl (C) 
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Protein Name:    Proteasome subunit alpha type 5 
Gene name:    PSMA5 
Taxonomy:    Homo sapiens 
Swiss Prot No:   P28066 
Mass:     26394 
Score:     274 
Queries matched:   08 
 
Summarized table of matched peptides: 
 
 Query   Observed   Mr(expt)   Mr(calc)    Delta  Miss  Score  Expect  Rank  Peptide 
 
 14   494.7848   987.5550   987.5124   0.0427  0   40   0.0039  1   K.EELEEVIK.D 
 17   532.2729   1062.5312   1062.5094   0.0219  0   25   0.16  1   R.GVNTFSPEGR.L 
 22   608.8397   1215.6648   1215.6234   0.0415  1   25   0.12  1   K.EELEEVIKDI 
 28   712.4234   1422.8322   1422.7758   0.0564  0   65   7.9e-06  1   R.LFQVEYAIEAIK.L 
 29   716.3946   1430.7746   1430.7327   0.0420  0   37   0.0067  1   R.ITSPLMEPSSIEK.I 
 30   724.3927   1446.7708   1446.7276   0.0433  0   30  0.034  1   R.ITSPLMEPSSIEK.I + Oxidation (M) 
 31   981.5009   1960.9872   1960.9490   0.0383  0   82   1.9e-07  1   R.AIGSASEGAQSSLQEVYHK.S 
 32   654.6804   1961.0194   1960.9490   0.0704  0   5  9.1  1   R.AIGSASEGAQSSLQEVYHK.S 
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Protein Name:    Proteasome subunit alpha type 7 
Gene name:    PSMA7 
Taxonomy:    Homo sapiens 
Swiss Prot No:   o14818 
Mass:     27870 
Score:     255 
Queries matched:   06 
 
Summarized table of matched peptides: 
 
 Query   Observed   Mr(expt)   Mr(calc)    Delta  Miss  Score  Expect  Rank  Peptide 
 
 6   426.2604   850.5062   850.4436   0.0627  0   17   0.46  1   K.YVAEIEK.E 
 16   486.3261   970.6376   970.5698   0.0678  0   43   0.00084  1   R.DIVVLGVEK.K 
 21   542.8480   1083.6814   1083.5811   0.1003  0   42   0.0011  1   K.ILNPEEIEK.Y 
 22   550.8622   1099.7098   1099.6237   0.0862  0   46   0.00039  1   K.ALLEVVQSGGK.N 
 27   817.9969   1633.9792   1633.8563   0.1230  0   46   0.00043  1   R.LTVEDPVTVEYITR.Y 
 30   870.9689   1739.9232   1739.8101   0.1131  0   63   1.7e-05  1   K.NYTDEAIETDDLTIK.L 
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Protein Name:    Proteasome subunit beta type 3 
Gene name:    PSMB3 
Taxonomy:    Homo sapiens 
Swiss Prot No:   P49720 
Mass:     22933 
Score:     215 
Queries matched:   07 
 
Summarized table of matched peptides: 
 
 Query   Observed   Mr(expt)   Mr(calc)    Delta  Miss  Score  Expect  Rank  Peptide 
 
 14   446.7784   891.5422   891.5065   0.0357  0   10   2.5  1   R.LNLYELK.E 
 19   495.2643   988.5140   988.4760   0.0381  0   32   0.03  1   K.NCVAIAADR.R + Carbamidomethyl (C) 
 25   784.4592   1566.9038   1566.8439   0.0600  0   42   0.0016  1   R.DAVSGMGVIVHIIEK.D 
 26   815.4222   1628.8298   1628.7868   0.0430  0   23   0.18  1   R.FGIQAQMVTTDFQK.I + Oxidation (M) 
 27   883.9803   1765.9460   1765.8926   0.0534  0   50   0.00032  1   R.FGPYYTEPVIAGLDPK.T 
 30   630.3754   1888.1044   1888.0417   0.0626  0   15  0.55  1   R.LYIGLAGLATDVQTVAQR.L 
 31   945.0665   1888.1184   1888.0417   0.0767  0   58   2.3e-05  1   R.LYIGLAGLATDVQTVAQR.L 
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Protein Name:    26S Protease regulatory subunit 8 (p45/SUG) 
Gene name:    PSMC5 
Taxonomy:    Homo sapiens 
Swiss Prot No:   P62195 
Mass:     45597 
Score:     300 
Queries matched:   09 
 
Summarized table of matched peptides: 
 
 Query   Observed   Mr (expt)   Mr (calc)    Delta  Miss  Score  Expect  Rank  Peptide 
 
 3   401.2498   800.4850   800.4068   0.0782  0   4   17  1   R.QYYLSK.I 
 15   463.8220   925.6294   925.5484   0.0811  0   20   0.056  1   K.EVIELPVK.H 
 17   473.8017   945.5888   945.5131   0.0758  0   47   0.00045  1   R.VSGSELVQK.F 
 20   489.2747   976.5348   976.4614   0.0735  0   7   10  1   R.NDSYTLHK.I 
 26   579.8720   1157.7294   1157.6444   0.0851  0   30   0.02  1   K.GVLLYGPPGTGK.T 
 28   645.8521   1289.6896   1289.5847   0.1049  0   67   7.4e-06  1   R.LEGGSGGDSEVQR.T 
 29   649.8703   1297.7260   1297.6302   0.0958  0   14   1.1  1   K.IEFPPPNEEAR.L 
 30   657.4189   1312.8232   1312.7238   0.0995  0   59   1.8e-05  1   K.IEELQLIVNDK.S 
 34   715.8962   1429.7778   1429.6620   0.1159  0   53   0.00016  1   K.NIDINDVTPNCR.V + Carbamidomethyl (C) 
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Protein Name:    26S Protease regulatory subunit s10B (Proteasome subunit p42) 
Gene name:    PSMC6 
Taxonomy:    Homo sapiens 
Swiss Prot No:   P62333 
Mass:     44145 
Score:     362 
Queries matched:   10 
 
Summarized table of matched peptides: 
 
 Query   Observed   Mr(expt)   Mr(calc)    Delta  Miss  Score  Expect  Rank  Peptide 
 
 6   418.7894   835.5642   835.4916   0.0727  0   4   1.4  1   K.IHAGPITK.H 
 15   467.3053   932.5960   932.5178   0.0782  0   47   0.00031  1   K.VVSSSIVDK.Y 
 19   485.2583   968.5020   968.4199   0.0821  0   50   0.0004  1   R.FSEGTSADR.E 
 21   504.7979   1007.5812   1007.5036   0.0777  1   26   0.073  1   R.DKALQDYR.K 
 25   582.8313   1163.6480   1163.5571   0.0910  0   63   1.7e-05  1   K.LSDGFNGADLR.N 
 27   610.3530   1218.6914   1218.6066   0.0848  0   31   0.027  1   K.GCLLYGPPGTGK.T + Carbamidomethyl (C) 
 29   637.3812   1272.7478   1272.6350   0.1129  0   31   0.021  1   K.HGEIDYEAIVK.L 
 34   683.3949   1364.7752   1364.6758   0.0995  0   61   2.7e-05  1   R.AVASQLDCNFLK.V + Carbamidomethyl (C) 
 35   692.8710   1383.7274   1383.6275   0.1000  0   17   0.85  1   R.NVCTEAGMFAIR.A + Carbamidomethyl (C) 
 41 899.5498   1797.0850   1796.9672   0.1179  0   33   0.0057  1   R.EVIELPLTNPELFQR.V 
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Protein Name:    Aconitate hydratase, mitochondrial precursor 
Gene name:    ACO2 
Taxonomy:    Homo sapiens 
Swiss Prot No:   Q99798 
Mass:     85372 
Score:     177 
Queries matched:   08 
 
Summarized table of matched peptides: 
 
 Query   Observed   Mr(expt)   Mr(calc)    Delta  Miss  Score  Expect  Rank  Peptide 
 
 4   400.7866   799.5586   799.5167   0.0420  0   1   12  1   K.VAGILTVK.G 
 17   461.7712   921.5278   921.4668   0.0611  0   20   0.31  1   R.EHAALEPR.H 
 18   468.2798   934.5450   934.4872   0.0578  0   22   0.2  1   R.DGYAQILR.D 
 23   493.2851   984.5556   984.5029   0.0528  0   15   1  1   K.EGWPLDIR.V 
 24   501.8082   1001.6018   1001.5545   0.0473  0   30   0.032  1   K.DFTPGKPLK.C 
 47   732.4156   1462.8166   1462.7416   0.0751  0   25   0.087  1   K.SQFTITPGSEQIR.A 
 50   533.9355   1598.7847   1598.7285   0.0562  0   23   0.2  1   K.DSSGQHVDVSPTSQR.L 
 51   801.4456   1600.8766   1600.7845   0.0922  0   40   0.003  1   R.NAVTQEFGPVPDTAR.Y 
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Protein Name:    ATP synthase subunit beta, mitochondrial precursor 
Gene name:    ATP5B 
Taxonomy:    Homo sapiens 
Swiss Prot No:   P06576 
Mass:     56525 
Score:     677 
Queries matched:   19 
 
Summarized table of matched peptides: 
 
 Query   Observed   Mr(expt)   Mr(calc)    Delta  Miss  Score  Expect  Rank  Peptide 
 
 9   450.2942   898.5738   898.5123   0.0615  0   42   0.0012  1   K.VLDSGAPIK.I 
 11   488.3246   974.6346   974.5548   0.0798  0   29   0.016  1   K.IGLFGGAGVGK.T 
 14   519.8387   1037.6628   1037.5869   0.0759  0   44   0.00037  1   K.IPVGPETLGR.I 
 20   544.8633   1087.7120   1087.6277   0.0843  0   46   0.00021  1   K.VVDLLAPYAK.G 
 29   631.8668   1261.7190   1261.6336   0.0855  0   41   0.0029  1   R.TIAMDGTEGLVR.G 
 30   639.8633   1277.7120   1277.6285   0.0835  0   37  0.0066  1   R.TIAMDGTEGLVR.G + Oxidation (M) 
 35   693.4084   1384.8022   1384.7020   0.1003  0   37   0.0054  1   R.IMNVIGEPIDER.G 
 37   701.4039   1400.7932   1400.6969   0.0963  0   35  0.0091  1   R.IMNVIGEPIDER.G + Oxidation (M) 
 38   469.6003   1405.7791   1405.6738   0.1053  0   21   0.25  1   K.AHGGYSVFAGVGER.T 
 39   718.4271   1434.8396   1434.7466   0.0930  0   95   8.1e-09  1   R.FTQAGSEVSALLGR.I 
 41   720.4430   1438.8714   1438.7820   0.0895  0   87   2.9e-08  1   R.VALTGLTVAEYFR.D 
 43   729.4686   1456.9226   1456.8323   0.0904  0   40  0.00096  1   K.TVLIMELINNVAK.A 
 46   737.4821   1472.9496   1472.8272   0.1225  0   50   6.3e-05  1   K.TVLIMELINNVAK.A + Oxidation (M) 
 57   801.4634   1600.9122   1600.8031   0.1092  0   44  0.0012  1   K.VALVYGQMNEPPGAR.A 
 60   809.4618   1616.9090   1616.7980   0.1110  0   47   0.00056  1   K.VALVYGQMNEPPGAR.A + Oxidation (M) 
 62   826.0221   1650.0296   1649.9100   0.1196  0   52   4.6e-05  1   R.LVLEVAQHLGESTVR.T 
 63   551.0172   1650.0298   1649.9100   0.1198  0   36  0.0023  1   R.LVLEVAQHLGESTVR.T 
 76   994.5826   1987.1506   1987.0262   0.1245  0   46   0.00043  1   R.AIAELGIYPAVDPLDSTSR.I 
 85   1149.6022   2297.1898   2297.0667   0.1231  0   39   0.0033  1   R.IPSAVGYQPTLATDMGTMQER.I + 2 Oxidation (M) 
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Protein Name:    ATP synthase subunit alpha, mitochondrial precursor 
Gene name:    ATP5A1 
Taxonomy:    Homo sapiens 
Swiss Prot No:   P25705 
Mass:     59714 
Score:     141 
Queries matched:   07 
 
Summarized table of matched peptides: 
 
 Query   Observed   Mr(expt)   Mr(calc)    Delta  Miss  Score  Expect  Rank  Peptide 

 6   423.2734   844.5322   844.5018   0.0305  0   14   1.2  1   R.STVAQLVK.R 
 14   438.7756   875.5366   875.4899   0.0468  0   20   0.3  1   R.QMSLLLR.R + Oxidation (M) 
 20   500.8151   999.6156   999.5712   0.0444  0   6   6.9  1   R.VLSIGDGIAR.V 
 22   513.8162   1025.6178   1025.5869   0.0309  0   22   0.13  1   K.AVDSLVPIGR.G 
 25   586.3336   1170.6526   1170.6244   0.0283  0   38   0.0062  1   R.VVDALGNAIDGK.G 
 27   658.8932   1315.7718   1315.7347   0.0371  0   19   0.39  1   K.TSIAIDTIINQK.R 
 29   812.9684   1623.9222   1623.8831   0.0391  0   23   0.13  1   R.TGAIVDVPVGEELLGR.V 
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Protein Name:    Fructose-bisphosphate aldolase A 
Gene name:    ALDOA 
Taxonomy:    Homo sapiens 
Swiss Prot No:   P04075 
Mass:     39264 
Score:     242 
Queries matched:   08 
 
Summarized table of matched peptides: 
 
 Query   Observed   Mr(expt)   Mr(calc)    Delta  Miss  Score  Expect  Rank  Peptide 
 
 3   401.2808   800.5470   800.4756   0.0715  0   12   0.81  1   R.ALQASALK.A 
 13   464.2510   926.4874   926.4167   0.0707  0   4   13  1   R.CQYVTEK.V + Carbamidomethyl (C) 
 20   522.8375   1043.6604   1043.5611   0.0993  0   39   0.0025  1   R.QLLLTADDR.V 
 24   547.3272   1092.6398   1092.5563   0.0835  1   44   0.0011  1   K.AAQEEYVKR.A 
 27   566.8320   1131.6494   1131.5706   0.0788  0   64   1.3e-05  1   R.ALANSLACQGK.Y + Carbamidomethyl (C) 
 34   666.9040   1331.7934   1331.6932   0.1002  0   47   0.00054  1   K.GILAADESTGSIAK.R 
 37   717.9208   1433.8270   1433.7191   0.1080  0   32   0.015  1   -.PYQYPALTPEQK.K 
 40   549.6471   1645.9195   1645.8019   0.1175  1   2   18  1   R.LQSIGTENTEENRR.F 
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Protein Name:    Glyceraldehyde-3-phosphate dehydrogenase 
Gene name:    GAPDH 
Taxonomy:    Homo sapiens 
Swiss Prot No:   P04406 
Mass:     35899 
Score:     536 
Queries matched:   24 
 
Summarized table of matched peptides: 
 
 Query   Observed   Mr(expt)   Mr(calc)    Delta  Miss  Score  Expect  Rank  Peptide 
 
 6   403.2310   804.4474   804.4242   0.0233  0   33   0.022  1   K.VGVNGFGR.I 
  7   403.2445   804.4744   804.4242   0.0503  0   8  5.1  2   K.VGVNGFGR.I 
 8   403.2482   804.4818   804.4242   0.0577  0   25  0.097  1   K.VGVNGFGR.I 
 10   403.2496   804.4846   804.4242   0.0605  0   19  0.4  1   K.VGVNGFGR.I 
 11   403.2508   804.4870   804.4242   0.0629  0   14  1.1  1   K.VGVNGFGR.I 
  12   403.2525   804.4904   804.4242   0.0663  0   5  9.1  2   K.VGVNGFGR.I 
 18   415.2531   828.4916   828.4341   0.0576  0   17   0.83  1   K.QASEGPLK.G 
 25   435.2781   868.5416   868.5018   0.0399  0   32   0.0082  1   K.VIPELNGK.L 
 50   601.3527   1200.6908   1200.5995   0.0914  0   8   5.2  1   R.VVDLMAHMASK.E 
 63   706.4012   1410.7878   1410.7830   0.0048  0   57   5.4e-05  1   R.GALQNIIPASTGAAK.A 
 64   706.4482   1410.8818   1410.7830   0.0988  0   22  0.07  1   R.GALQNIIPASTGAAK.A 
 65   706.4482   1410.8818   1410.7830   0.0988  0   28  0.021  1   R.GALQNIIPASTGAAK.A 
 66   706.4504   1410.8862   1410.7830   0.1032  0   27  0.023  1   R.GALQNIIPASTGAAK.A 
 67   706.4508   1410.8870   1410.7830   0.1040  0   24  0.048  1   R.GALQNIIPASTGAAK.A 
 68   706.4528   1410.8910   1410.7830   0.1080  0   32  0.0064  1   R.GALQNIIPASTGAAK.A 
 69   706.4571   1410.8996   1410.7830   0.1166  0   5  3.3  1   R.GALQNIIPASTGAAK.A 
 77   765.9047   1529.7948   1529.7871   0.0077  0   92   2.1e-08  1   R.VPTANVSVVDLTCR.L + Carbamidomethyl (C) 
 78   765.9556   1529.8966   1529.7871   0.1095  0   53  0.00013  1   R.VPTANVSVVDLTCR.L + Carbamidomethyl (C) 
 88   807.5146   1613.0146   1612.8936   0.1210  0   58   1.2e-05  1   K.LVINGNPITIFQER.D 
 96   882.4482   1762.8818   1762.7950   0.0868  0   71   3.6e-06  1   K.LISWYDNEFGYSNR.V 
 97   882.4657   1762.9168   1762.7950   0.1218  0   55  0.00012  1   K.LISWYDNEFGYSNR.V 
 98   882.4754   1762.9362   1762.7950   0.1412  0   62  2.4e-05  1   K.LISWYDNEFGYSNR.V 
 108   917.5035   1832.9924   1832.9124   0.0800  0   135   8.8e-13  1   K.IISNASCTTNCLAPLAK.V + 2 Carbamidomethyl (C) 
 128   1139.0968   2276.1790   2276.0306   0.1484  0   32   0.017  1   K.WGDAGAEYVVESTGVFTTMEK.A 
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Protein Name:    L-lactate dehydrogenase A chain 
Gene name:    LDH-A 
Taxonomy:    Homo sapiens 
Swiss Prot No:   P00338 
Mass:     36534 
Score:     349 
Queries matched:   08 
 
Summarized table of matched peptides: 
 
 Query   Observed   Mr(expt)   Mr(calc)    Delta  Miss  Score  Expect  Rank  Peptide 
 
 14   457.3351   912.6556   912.5756   0.0800  0   38   0.00067  1   K.LVIITAGAR.Q 
 15   465.3272   928.6398   928.5745   0.0653  0   8   0.99  1   K.FIIPNVVK.Y 
 19   506.2862   1010.5578   1010.4669   0.0910  0   49   0.00045  1   K.DYNVTANSK.L 
 22   559.8436   1117.6726   1117.5768   0.0959  0   33   0.012  1   K.SADTLWGIQK.E 
 23   560.3669   1118.7192   1118.6335   0.0857  0   31   0.0083  1   K.DQLIYNLLK.E 
 24   567.8273   1133.6400   1133.5564   0.0837  0   56   9.3e-05  1   K.VTLTSEEEAR.L 
 26   624.8496   1247.6846   1247.5928   0.0919  0   66   8.6e-06  1   R.VIGSGCNLDSAR.F + Carbamidomethyl (C) 
 27   632.8881   1263.7616   1263.6710   0.0906  0   69   2.2e-06  1   K.QVVESAYEVIK.L 
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Protein Name:    Pyruvate dehydrogenase E1 component subunit beta, mitochondrial precursor 
Gene name:    PDHB 
Taxonomy:    Homo sapiens 
Swiss Prot No:   P11177 
Mass:     39194 
Score:     392 
Queries matched:   11 
 
Summarized table of matched peptides: 
 
 Query   Observed   Mr(expt)   Mr(calc)    Delta  Miss  Score  Expect  Rank  Peptide 
 
  1   410.2821   818.5496   818.4902   0.0595  0   8   1.2  2   K.DIIFAIK.K 
 10   451.8052   901.5958   901.5273   0.0686  0   16   0.33  1   K.DFLIPIGK.A 
 22   616.3432   1230.6718   1230.5880   0.0838  0   29   0.05  1   K.VVSPWNSEDAK.G 
 24   628.3926   1254.7706   1254.6819   0.0887  0   47   0.00034  1   K.ILEDNSIPQVK.D 
 25   632.8622   1263.7098   1263.6169   0.0930  0   24   0.14  1   R.VTGADVPMPYAK.I + Oxidation (M) 
 27   676.3417   1350.6688   1350.5907   0.0781  0   32   0.021  1   K.EGVECEVINMR.T + Carbamidomethyl (C); Oxidation (M) 
 29   768.3867   1534.7588   1534.6569   0.1019  0   36   0.0087  1   R.DAINQGMDEELER.D + Oxidation (M) 
 38   882.4966   1762.9786   1762.8712   0.1075  0   86   7.6e-08  1   R.IMEGPAFNFLDAPAVR.V + Oxidation (M) 
 40   901.5106   1801.0066   1800.8933   0.1133  0   66   6.8e-06  1   K.VFLLGEEVAQYDGAYK.V 
 41   922.5328   1843.0510   1842.9338   0.1173  0   43   0.0013  1   K.TYYMSGGLQPVPIVFR.G + Oxidation (M) 
 42   634.0153   1899.0241   1898.8787   0.1453  0   5   9  1   R.TIRPMDMETIEASVMK.T + 3 Oxidation (M) 
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Protein Name:    Pyruvate kinase, isoenzymes M1/M2 E1 component subunit beta, mitochondrial precursor 
Gene name:    PKM2 
Taxonomy:    Homo sapiens 
Swiss Prot No:   P14618 
Mass:     57769 
Score:     690 
Queries matched:   15 
 
Summarized table of matched peptides: 
 
 Query   Observed   Mr(expt)   Mr(calc)    Delta  Miss  Score  Expect  Rank  Peptide 
 
 12   442.7211   883.4276   883.4698   -0.0421  0   23   0.16  1   R.MQHLIAR.E + Oxidation (M) 
 13   456.7120   911.4094   911.4461   -0.0366  0   50   0.00027  1   K.ASDVHEVR.K 
 14   477.2236   952.4326   952.4726   -0.0399  0   39   0.0047  1   K.IENHEGVR.R 
 16   495.7355   989.4564   989.5029   -0.0464  0   3   21  1   K.GSGTAEVELK.K 
 18   510.2402   1018.4658   1018.5083   -0.0425  0   1   34  1   K.GDYPLEAVR.M 
  19   520.7584   1039.5022   1039.5410   -0.0388  1   1   28  2   K.ASDVHEVRK.V 
 22   559.7850   1117.5554   1117.5978   -0.0424  1   62   2.7e-05  1   K.GSGTAEVELKK.G 
 23   571.2844   1140.5542   1140.6026   -0.0484  0   28   0.063  1   R.GDLGIEIPAEK.V 
 25   597.3013   1192.5880   1192.6373   -0.0492  1   45   0.0014  1   R.SVETLKEMIK.S + Oxidation (M) 
 26   599.3040   1196.5934   1196.6401   -0.0466  0   55   0.00013  1   R.LDIDSPPITAR.N 
 27   607.2697   1212.5248   1212.5696   -0.0448  0   54   0.00012  1   K.ITLDNAYMEK.C + Oxidation (M) 
 35   680.3224   1358.6302   1358.6976   -0.0674  0   60   4e-05  1   R.NTGIICTIGPASR.S + Carbamidomethyl (C) 
 38   731.8821   1461.7496   1461.8078   -0.0582  0   78   5.6e-07  1   K.IYVDDGLISLQVK.Q 
 39   734.8108   1467.6070   1467.6704   -0.0633  0   46   0.00055  1   K.CDENILWLDYK.N + Carbamidomethyl (C) 
 41   818.9216   1635.8286   1635.8831   -0.0545  0   60   3.8e-05  1   K.GVNLPGAAVDLPAVSEK.D 
 42   821.8513   1641.6880   1641.7634   -0.0754  0   61   1.9e-05  1   K.DPVQEAWAEDVDLR.V 
 44   882.9604   1763.9062   1763.9781   -0.0718  1   29   0.043  1   K.KGVNLPGAAVDLPAVSEK.D 
 50   1088.0200   2174.0254   2174.1106   -0.0852  0   90   2.6e-08  1   R.LAPITSDPTEATAVGAVEASFK.C 
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Protein Name:    Stress-70 protein, mitochondria precursor (75 glucose regulated protein) 
Gene name:    HSPA9B 
Taxonomy:    Homo sapiens 
Swiss Prot No:   P38646 
Mass:     73635 
Score:     831 
Queries matched:   19 
 
Summarized table of matched peptides: 
 

Query   Observed   Mr(expt)   Mr(calc)    Delta  Miss  Score  Expect  Rank  Peptide 

 
 10   431.7600   861.5054   861.4443   0.0611  0   34   0.017  1   R.ETGVDLTK.D 
 17   479.7805   957.5464   957.4879   0.0585  0   45   0.0011  1   K.VLENAEGAR.T 
 18   490.2579   978.5012   978.4328   0.0685  0   3   22  1   K.DDIENMVK.N + Oxidation (M) 
 20   497.2690   992.5234   992.4451   0.0784  0   10   4.7  1   R.YDDPEVQK.D 
 23   575.3174   1148.6202   1148.5462   0.0741  1   26   0.098  1   R.RYDDPEVQK.D 
 25   616.3730   1230.7314   1230.6568   0.0747  0   85   8.3e-08  1   R.QAASSLQQASLK.L 
 26   621.8849   1241.7552   1241.6727   0.0825  0   46   0.00053  1   K.DAGQISGLNVLR.V 
 27   645.8797   1289.7448   1289.6728   0.0721  0   56   7.9e-05  1   K.VQQTVQDLFGR.A 
 31   447.9034   1340.6884   1340.6109   0.0775  0   1   32  1   R.ASNGDAWVEAHGK.L 
 32   681.4254   1360.8362   1360.7350   0.1012  0   37   0.0026  1   R.AQFEGIVTDLIR.R 
 33   725.9097   1449.8048   1449.7099   0.0949  0   73   1.5e-06  1   R.TTPSVVAFTADGER.L 
 34   731.9410   1461.8674   1461.7497   0.1178  0   24   0.087  1   K.SDIGEVILVGGMTR.M + Oxidation (M) 
 35   737.4470   1472.8794   1472.7834   0.0960  0   52   0.00012  1   R.EQQIVIQSSGGLSK.D 
 36   784.9376   1567.8606   1567.7630   0.0976  0   53   0.00015  1   R.QAVTNPNNTFYATK.R 
 37   536.9615   1607.8627   1607.7613   0.1014  1   2   22  1   K.MKETAENYLGHTAK.N + Oxidation (M) 
 39   823.4917   1644.9688   1644.8722   0.0966  0   97   3.7e-09  1   R.VINEPTAAALAYGLDK.S 
 40   847.9773   1693.9400   1693.8423   0.0977  0   24   0.11  1   K.NAVITVPAYFNDSQR.Q 
 42   905.0099   1808.0052   1807.8952   0.1101  0   92   1.7e-08  1   K.SQVFSTAADGQTQVEIK.V 
 45   1028.5375   2055.0604   2054.9545   0.1060  0   71   2.2e-06  1   K.STNGDTFLGGEDFDQALLR.H 
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Protein Name:    Superoxide dismutase (Mn) 
Gene name:    SOD2 
Taxonomy:    Homo sapiens 
Swiss Prot No:   P04179 
Mass:     24707 
Score:     34 
Queries matched:   01 
 
Summarized table of matched peptides: 
 
 Query   Observed   Mr(expt)   Mr(calc)    Delta  Miss  Score  Expect  Rank  Peptide 
 
 16   712.9363   1423.8580   1423.8034   0.0546  0   34   0.0059  1   K.GDVTAQIALQPALK.F 
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Protein Name:    Ubiquinol-cytochrome-c reductase complex core protein I, mitochondrial precursor 
Gene name:    UQCRC1 
Taxonomy:    Homo sapiens 
Swiss Prot No:   P31930 
Mass:     52612 
Score:     135 
Queries matched:   06 
 
Summarized table of matched peptides: 
 
 Query   Observed   Mr(expt)   Mr(calc)    Delta  Miss  Score  Expect  Rank  Peptide 
 
 1   405.2478   808.4810   808.4079   0.0732  0   15   0.69  1   R.FTGSEIR.H 
 2   405.2639   808.5132   808.4443   0.0690  0   10   1.4  1   R.SLLTYGR.R 
 13   486.3088   970.6030   970.5195   0.0835  0   15   0.84  1   K.NRPGSALEK.E 
 16   529.8335   1057.6524   1057.5767   0.0757  0   32   0.017  1   R.IAEVDASVVR.E 
 18   662.3639   1322.7132   1322.6136   0.0996  0   60   3.8e-05  1   R.LCTSATESEVAR.G + Carbamidomethyl (C) 
 21   560.9692   1679.8858   1679.7573   0.1285  0   6   9.4  1   K.EVESMGAHLNAYSTR.E + Oxidation (M) 
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Protein Name:    Short chain 3-hydroxy-CoA dehydrogenase mitochondrial precursor 
Gene name:    HADHSC 
Taxonomy:    Homo sapiens 
Swiss Prot No:   Q16836 
Mass:     34256 
Score:     121 
Queries matched:   04 
 
Summarized table of matched peptides: 
 
 Query   Observed   Mr(expt)   Mr(calc)    Delta  Miss  Score  Expect  Rank  Peptide 
 
 15   447.7512   893.4878   893.4130   0.0748  0   35   0.014  1   K.AGDEFVEK.T 
 16   466.3039   930.5932   930.5134   0.0799  1   7   4.1  1   K.KGIEESLR.K 
 19   509.8076   1017.6006   1017.5243   0.0763  0   33   0.015  1   K.DTPGFIVNR.L 
 22   586.8350   1171.6554   1171.5761   0.0794  0   48   0.00055  1   K.TFESLVDFSK.A 
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Protein Name:    Alpha-2-HS-glycoprotein precursor (Fetuin-A) 
Gene name:    AHSG 
Taxonomy:    Homo sapiens 
Swiss Prot No:   P02765 
Mass:     39300 
Score:     149 
Queries matched:   04 
 
Summarized table of matched peptides: 
 

Query   Observed   Mr(expt)   Mr(calc)    Delta  Miss  Score  Expect  Rank  Peptide 
 

 11   424.2310   846.4474   846.4269   0.0205  0   17   1  1   K.CNLLAEK.Q + Carbamidomethyl (C) 
 32   669.2881   1336.5616   1336.5201   0.0415  0   65   9.4e-06  1   K.CDSSPDSAEDVR.K + Carbamidomethyl (C) 
 36   489.2238   1464.6496   1464.6151   0.0345  1   67   5.7e-06  1   K.CDSSPDSAEDVRK.V + Carbamidomethyl (C) 
 37   733.3438   1464.6730   1464.6151   0.0580  1   16  0.94  1   K.CDSSPDSAEDVRK.V + Carbamidomethyl (C) 
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 Protein Name:   Ran-specific GTPase-activating protein (Ran-binding protein 1) 
Gene name:    RANBP1 
Taxonomy:    Homo sapiens 
Swiss Prot No:   P43487 
Mass:     23296 
Score:     283 
Queries matched:   07 
 
Summarized table of matched peptides: 
 
 Query   Observed   Mr(expt)   Mr(calc)    Delta  Miss  Score  Expect  Rank  Peptide 
 
 16   485.2460   968.4774   968.4385   0.0389  1   14   1.5  1   K.TKFEECR.K + Carbamidomethyl (C) 
 20   517.7781 1033.5416   1033.5192   0.0224  0   45   0.0015  1   R.FLNAENAQK.F 
 21   517.7903   1033.5660   1033.5192   0.0468  0   8   6.5  1   R.FLNAENAQK.F 
 25   593.8829   1185.7512   1185.6968   0.0544  1   24   0:063  1   K.VAEKLEALSVK.E 
 34 668.3370 1334.6594 1334.6142 0.0452 0 87 8.5e-08 1 R.FASENDLPEWK.E 
 40 691.3442 1380.6738 1380.6296 0.0442 0 99 4.5e-09 1 K.TLEEDEEELFK.M 
 56 984.2092 3932.8077 3932.7096 0.0981 0 14 0.51 1           K.DTHEDHDTSTENTDESNHDPQFEPIVSLPEQEIK.T 
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Protein Name:    Rho-GDP-dissociation inhibitor 2 
Gene name:    ARHGDIB 
Taxonomy:    Homo sapiens 
Swiss Prot No:   P52566 
Mass:     22843 
Score:     121 
Queries matched:   04 
 
Summarized table of matched peptides: 
 
 Query   Observed   Mr(expt)   Mr(calc)    Delta  Miss  Score  Expect  Rank  Peptide 
 
 5   428.2708   854.5270   854.4974   0.0297  0   41   0.0012  1   K.APNVVVTR.L 
 11   483.7654   965.5162   965.4719   0.0444  0   15   1.1  1   K.YVQHTYR.T 
 15   542.8330   1083.6514   1083.6077   0.0438  0   4   10  1   K.LNYKPPPQK.S 
 17   656.3851   1310.7556   1310.7081   0.0475  0   60   2.5e-05  1   K.TLLGDGPVVTDPK.A 
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Protein Name:    Far upstream element-binding protein 1 
Gene name:    FUBP1 
Taxonomy:    Homo sapiens 
Swiss Prot No:   Q96AE4 
Mass:     67431 
Score:     268 
Queries matched:   09 
 
Summarized table of matched peptides: 
 
 Query   Observed   Mr(expt)   Mr(calc)    Delta  Miss  Score  Expect  Rank  Peptide 

 
 13   436.7511   871.4876   871.4511   0.0365  0   6   12  1   K.IQNDAGVR.I 
 18   479.3060   956.5974   956.5542   0.0432  0   39   0.0029  1   R.LLDQIVEK.G 
 20   509.7973   1017.5800   1017.5528   0.0272  0   11   3.2  1   K.EMVLELIR.D + Oxidation (M) 
 22   534.3174   1066.6202   1066.5771   0.0432  0   49   0.00036  1   R.IAQITGPPDR.C 
 23   574.8113   1147.6080   1147.5622   0.0459  0   48   0.00072  1   R.GTPQQIDYAR.Q 
 24   597.8048   1193.5950   1193.5499   0.0452  0   3   20  1   R.NPPPNADPNMK.L 
 28   668.8921   1335.7696   1335.7146   0.0550  0   63   1.2e-05  1   R.IGGNEGIDVPIPR.F 
 29   676.8860   1351.7574   1351.7095   0.0479  0   39   0.0038  1   K.IQIAPDSGGLPER.S 
 30   501.9442   1502.8108   1502.7365   0.0743  0   11   3  1   R.IQFKPDDGTTPER.I 
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