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Abstract

Achieving interoperability of distributed systems offers means for the development of new
and innovative business solutions. Interoperability allows the combination of existing ser-
vices provided on different systems, into new or extended services. Such an integration
can also increase the reliability of the provided service. However, achieving and assessing
interoperability is a technical challenge that requires high effort regarding time and costs.
The reasons are manifold and include differing implementations of standards as well as the
provision of proprietary interfaces. The implementations need to be engineered to be inter-
operable. Techniques that assess and improve interoperability systematically are required.

For the assurance of reliable interoperation between systems, interoperability needs to
be assessed and improved in a systematic manner. To this aim, we present the Interoper-
ability Assessment and Improvement (IAI) process, which describes in three phases how
interoperability of distributed homogeneous and heterogeneous systems can be improved
and assessed systematically. The interoperability assessment is achieved by means of in-
teroperability testing, which is typically performed manually. For the automation of inter-
operability test execution, we present a new methodology including a generic development
process for a complete and automated interoperability test system. This methodology pro-
vides means for a formalized and systematic assessment of systems’ interoperability in an
automated manner. Compared to manual interoperability testing, the application of our
methodology has the following benefits: wider test coverage, consistent test execution, and
test repeatability.

We evaluate the IAI process and the methodology for automated interoperability test-
ing in three case studies. Within the first case study, we instantiate the IAI process and
the methodology for Internet Protocol Multimedia Subsystem (IMS) networks, which were
previously assessed for interoperability only in a manual manner. Within the second and
third case study, we apply the IAI process to assess and improve the interoperability of grid
and cloud computing systems. Their interoperability assessment and improvement is chal-
lenging, since cloud and grid systems are, in contrast to IMS networks, heterogeneous. We
develop integration and interoperability solutions for grids and Infrastructure as a Service
(IaaS) clouds as well as for grids and Platform as a Service (PaaS) clouds. These solutions
are unique and foster complementary usage of grids and clouds, simplified migration of
grid applications into the cloud, as well as efficient resource utilization. In addition, we
assess the interoperability of the grid-cloud interoperability solutions. While the tests for
grid-IaaS clouds are performed manually, we applied our methodology for automated inter-
operability testing for the assessment of interoperability to grid-PaaS cloud interoperability
successfully. These interoperability assessments are unique in the grid-cloud community
and provide a basis for the development of standardized interfaces improving the interoper-
ability between grids and clouds.





Zusammenfassung

Interoperabilität von verteilten Systemen ist eine Grundlage für die Entwicklung von neuen
und innovativen Geschäftslösungen. Sie erlaubt es existierende Dienste, die auf verschiede-
nen Systemen angeboten werden, so miteinander zu verknüpfen, dass neue oder erweiterte
Dienste zur Verfügung gestellt werden können. Außerdem kann durch diese Integration die
Zuverlässigkeit von Diensten erhöht werden. Das Erreichen und Bewerten von Interoper-
abilität stellt jedoch eine finanzielle und zeitliche Herausforderung dar. Zur Sicherstellung
und Bewertung von Interoperabilität werden systematische Methoden benötigt.

Um systematisch Interoperabilität von Systemen erreichen und bewerten zu können,
wurde im Rahmen der vorliegenden Arbeit ein Prozess zur Verbesserung und Beurteilung
von Interoperabilität (IAI) entwickelt. Der IAI-Prozess beinhaltet drei Phasen und kann die
Interoperabilität von verteilten, homogenen und auch heterogenen Systemen bewerten und
verbessern. Die Bewertung erfolgt dabei durch Interoperabilitätstests, die manuell oder au-
tomatisiert ausgeführt werden können. Für die Automatisierung von Interoperabilitätstests
wird eine neue Methodik vorgestellt, die einen Entwicklungsprozess für automatisierte In-
teroperabilitätstestsysteme beinhaltet. Die vorgestellte Methodik erleichtert die formale und
systematische Bewertung der Interoperabilität von verteilten Systemen. Im Vergleich zur
manuellen Prüfung von Interoperabilität gewährleistet die hier vorgestellte Methodik eine
höhere Testabdeckung, eine konsistente Testdurchführung und wiederholbare Interoperabil-
itätstests.

Die praktische Anwendbarkeit des IAI-Prozesses und der Methodik für automatisierte
Interoperabilitätstests wird durch drei Fallstudien belegt. In der ersten Fallstudie wer-
den Prozess und Methodik für Internet Protocol Multimedia Subsystem (IMS) Netzw-
erke instanziiert. Die Interoperabilität von IMS-Netzwerken wurde bisher nur manuell
getestet. In der zweiten und dritten Fallstudie wird der IAI-Prozess zur Beurteilung und
Verbesserung der Interoperabilität von Grid- und Cloud-Systemen angewendet. Die Be-
wertung und Verbesserung dieser Interoperabilität ist eine Herausforderung, da Grid- und
Cloud-Systeme im Gegensatz zu IMS-Netzwerken heterogen sind. Im Rahmen der Fallstu-
dien werden Möglichkeiten für Integrations- und Interoperabilitätslösungen von Grid- und
Infrastructure as a Service (IaaS) Cloud-Systemen sowie von Grid- und Platform as a Ser-
vice (PaaS) Cloud-Systemen aufgezeigt. Die vorgestellten Lösungen sind in der Literatur
bisher nicht dokumentiert worden. Sie ermöglichen die komplementäre Nutzung von Grid-
und Cloud-Systemen, eine vereinfachte Migration von Grid-Anwendungen in ein Cloud-
System sowie eine effiziente Ressourcennutzung. Die Interoperabilitätslösungen werden
mit Hilfe des IAI-Prozesses bewertet. Die Durchführung der Tests für Grid-IaaS-Cloud-
Systeme erfolgte manuell. Die Interoperabilität von Grid-PaaS-Cloud-Systemen wird mit
Hilfe der Methodik für automatisierte Interoperabilitätstests bewertet. Interoperabilitätstests
und deren Beurteilung wurden bisher in der Grid- und Cloud-Community nicht diskutiert,
obwohl sie eine Basis für die Entwicklung von standardisierten Schnittstellen zum Erre-
ichen von Interoperabilität zwischen Grid- und Cloud-Systemen bieten.
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1 Introduction

Interoperability of distributed systems is vital to succeed in today’s market. On one hand,
interoperability can be leveraged to open new markets, to foster innovation, and to enable
mass markets by creating new and innovative solutions through the composition of inter-
operable systems. This allows service enrichment by integrating services only available in
another system and to increase productivity by consuming such extended services. Further-
more, interoperability provides means to increase system availability and reliability. On the
other hand, customers demand interoperable and diverse systems as well as competition in
a market, which are both fostered by interoperability. An example for interoperability is the
possibility to use a cell phone in different networks implemented by different vendors. For
this scenario, the different networks are required to be interoperable.

The development of new solutions by combining purchased or in-house systems improves
the quality of the resulting system and allows a faster development of new solutions lead-
ing to a shorter time to market [69]. A system A that is developed by vendor X should be
able to interoperate with a system B, which provides the same or complementary function-
ality as system A but is implemented by vendor Y. Both systems need to be engineered to
be interoperable. An interim approach is an interoperability gateway solution that allows
communication between systems. An interoperability gateway converts messages received
by one system into a representation understandable by another system to allow their inter-
operation. The long-term approach to achieve interoperable systems is the implementation
of a common set of open standards1. Standards define architectures and interfaces as well
as specify protocols to be used for communication via these interfaces. Ideal standards
are independent of implementations and leave space for innovation. Even if standards are
assumed unambiguous, which is rarely the case, testing is needed to validate that imple-
mentations conform to standards. A further step is to test whether implementations are
able to interoperate, because the implementation of the same standard does not necessarily
mean that systems are able to interoperate. One of the reasons is that standards are often
specified ambiguously [144] and can, therefore, be interpreted differently by developers or
vendors. Furthermore, options within a standard might lead to inconsistencies. Therefore,
the standards themselves need to be assessed and engineered for interoperability, as well.

1Throughout the whole thesis we use “standard”, which can be exchanged with “specification” depending
on the progress of the standardization. We consider such a standard to be standardized and published
by an organization such as Open Grid Forum (OGF), World Wide Web Consortium (W3C), or European
Telecommunications Standards Institute (ETSI).
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Interoperability testing assesses the end-to-end service provision between systems pro-
vided by different vendors. Ideally, all participating systems are tested and assessed for
interoperability against one reference implementation, which is a fully functional imple-
mentation of one or more standards. Today’s interoperability testing is still largely per-
formed in a time consuming and resource intensive manual manner [14]. This is caused
by the high number of systems and standards that are involved in complex distributed sys-
tems. The implementations, their interfaces as well as standards need to be engineered to
be interoperable. In addition, interoperation needs to be reliable and, therefore, assessed for
correct functioning. The interoperability engineering and assessment has many constraints
regarding interoperability solutions and interoperable systems. Therefore, measures for in-
teroperability engineering and assessment can only be developed and applied by experts of
the systems. Techniques for a systematic assessment and improvement of interoperability
are required. In addition, interoperability testing is not transitive [146]: If a system A inter-
operates with a system B and system B interoperates with a system C, it does not necessarily
mean that system A interoperates with system C. This also results in a large amount of re-
quired test executions, which grows exponentially with the number of systems involved.
Furthermore, after a new version of one of the systems is released, all interoperability tests
need to be re-executed against all other participating systems to assess their interoperability.

In this thesis, we present a process to systemically assess and improve interoperability
of distributed homogeneous and heterogeneous systems in a systematic manner to cope
with the issues described above. We develop a new methodology for automated assessment
of interoperability that enables a systematic specification of an automated interoperability
test system. We show the practical application of the process and the methodology for
homogeneous systems, i.e., for interoperability of IP Multimedia Subsystem (IMS) networks
and for heterogeneous systems, i.e., for interoperability of grid and cloud systems.

1.1 Contribution of the Thesis

This thesis advances the state-of-the-art regarding improving and assessing interoperability
of distributed systems with the following contributions.

• The Interoperability Assessment and Improvement (IAI) process (Chapter 3) de-
scribes how systems are analyzed, improved, and assessed for interoperability in three
phases. The analyses are based on documents that specify the functionalities of the
systems as well as on interoperability initiatives. The improvement is either based on
standards or on interoperability gateways. The assessment is done by means of inter-
operability tests. The IAI process is applicable for homogeneous and heterogeneous
distributed systems. Homogeneous systems are systems that implement the same
standards. Heterogeneous systems do not implement the same standards, but provide
either common or complementary functionality as the basis for the interoperation of
the systems.
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• A methodology for automated interoperability testing (Chapter 4) that is com-
prised of four main parts. 1) We specify a generic environment for interoperability
tests with message checks, which builds the basis for a development of automated
interoperability tests. 2) We provide guidelines for interoperability test design and
test automation. 3) We describe a generic library for automated interoperability tests
using TTCN-3 that implements the generic environment as well as the guidelines.
4) We develop a generic development process for the systematic specification of a
complete and structured automated interoperability test system.
This methodology provides a first step towards a formalized and systematic assess-
ment of interoperability in an automated manner and can be utilized in the IAI pro-
cess.

We evaluate the two contributions in case studies. From the results of the case studies, we
present three further contributions to the state-of-the-art of interoperability testing of IMS
networks as well as of interoperable grid and clouds computing systems:

• Automated execution of interoperability tests for IMS networks with an interoper-
ability test suite for IMS implemented using TTCN-3 and developed by instantiating
the methodology for automated interoperability testing (Section 5.1). The automated
interoperability test execution avoids the previously performed manual execution and
improves the efficiency if IMS interoperability testing.

• Two feasibility studies of the integration of grid computing systems and clouds,
which show that grid systems and clouds are able to interoperate on different lev-
els, i.e., between grid systems and Infrastructure as a Service (IaaS) clouds (Sec-
tion 6.2) as well as between grid systems and Platform as a Service (PaaS) clouds
(Section 7.2). We present unique solutions to achieve their interoperability.

• The assessment of the interoperability of grid computing systems and clouds
by application of interoperability tests for interoperable grids and IaaS clouds (Sec-
tion 6.3) as well as for grids and PaaS clouds (Section 7.3). Both are unique in the
grid-cloud community and have neither been developed nor executed, yet. The results
of the assessment can be used as a basis for grid and cloud standardization.

1.2 Impact

The results of this dissertation have been peer-reviewed and published in three international
journals and three international conference proceedings. The subsequent list presents the
journal articles:

• Springer International Journal on Software Tools for Technology Transfer (STTT,
accepted, to appear in 2013): A Generic Interoperability Testing Framework and a
Systematic Development Process for Automated Interoperability Testing. Thomas
Rings, Patrick Poglitsch, Stephan Schulz, Luca Serazio, and Theofanis Vassiliou-
Gioles.
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• IARIA International Journal On Advances in Systems and Measurements (Vol.
3(1&2) 2011): A Testing Framework for Assessing Grid and Cloud Infrastructure
Interoperability. Thomas Rings, Jens Grabowski, and Stephan Schulz.

• Springer Journal of Grid Computing: Special Issue on Grid Interoperability (JoGC
Vol. 7(3) 2009): Grid and Cloud Computing: Opportunities for Integration with
the Next Generation Network. Thomas Rings, Geoff Caryer, Julian Gallop, Jens
Grabowski, Tatiana Kovacikova, Stephan Schulz, and Ian Stokes-Rees.

In the following, we list the conference publications:

• IEEE 5th International Conference on Cloud Computing (CLOUD 2012): Pragmatic
Integration of Cloud and Grid Computing Infrastructures. Thomas Rings and Jens
Grabowski.

• IARIA 2nd International Conference on Advances in System Testing and Valida-
tion Lifecycle (VALID 2010): On the Standardization of a Testing Framework for
Application Deployment on Grid and Cloud Infrastructures. Thomas Rings, Jens
Grabowski, and Stephan Schulz.

• 13th International Conference on Intelligence in Next Generation Networks (ICIN
2009): Grid/Cloud Computing Interoperability, Standardization and the Next Gen-
eration Network. Geoff Caryer, Julian Gallop, Jens Grabowski, Tatiana Kovacikova,
Thomas Rings, Stephan Schulz, Ian Stokes-Rees.

Furthermore, the author identified the topics for and supervised one Master thesis, one
Bachelor thesis, and one student project with relation to the overall topic of this thesis:

• Maik Doleys: Using Cloud Computing Resources in Grid Systems: An Integration of
Amazon Web Services into UNICORE 6. Bachelor Thesis. 2011.

• Dalia Dahman: Extension of a Globus Toolkit 4 Grid System by a Virtual Runtime
Environment based on Eucalyptus. Master Thesis. 2010.

• Dalia Dahman: Establishment and Configuration of a Grid Environment Based on
Globus Toolkit 4 (GT4) Using Torque Portable Batch System (PBS) and the Deploy-
ment of a Grid Application. Student Project. 2010.

1.3 Structure of the Thesis

This thesis is structured as follows. In Chapter 2, we introduce the prerequisites that are
needed across all chapters. We describe concepts related to interoperability and software
testing as well as to the systems under study. In Chapter 3, we present the IAI process
that is applied for assessing and improving interoperability of systems. The IAI process
comprises activities for analyzing interoperability, engineering interoperability, and inter-
operability testing. In Chapter 4, we present a methodology for automated interoperability
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testing that can be applied in the third phase of the IAI process. In Chapter 5, we apply
the IAI process and the methodology for automated interoperability testing for the IMS. In
Chapter 6, we apply the IAI process for grid systems and IaaS clouds with manual interop-
erability assessment due to their diverse interfaces. In Chapter 7, we assess and improve the
interoperability of grid and PaaS cloud systems by the application of the IAI process. We
conclude this thesis with a summary, a discussion, and an outlook in Chapter 8.





2 Prerequisites

This chapter describes the prerequisites that are the basis for this entire work. In Sec-
tion 2.1, we define interoperability and discuss the different categories and levels of in-
teroperability. In Section 2.2, we describe the main concepts of software testing includ-
ing types of testing, a test specification development process, as well as Testing and Test
Control Notation Version 3 (TTCN-3). Afterwards, in Section 2.3, we focus on the sys-
tems that we analyze and apply in our case studies. They include mainly cloud and grid
systems, as well as the telecommunication service IMS. This chapter is partly adapted
from [117, 118, 119, 120, 121, 122].

2.1 Interoperability

Interoperability is the “ability of two or more systems or components to exchange informa-
tion and to use the information that has been exchanged” [71]. The information is exchanged
across possibly standardized interfaces using communication protocols and procedures to
provide end-to-end functionalities to end users of the systems. These functionalities are
specified by standards and implemented within components of different systems, which
need to be assessed for interoperability with other systems. A system is “a collection of
components organized to accomplish a specific function or set of functions” [71].

Closely related but distinct to interoperability is portability. Portability is “the ease with
which a system or component can be transferred from one hardware or software environ-
ment to another” [71]. A software is portable in case the software does not rely on features
that are unique to a particular type of computer or software environment. For example, a
portable software can be installed on a Linux as well as on a Microsoft Windows operating
system. However, this does not inherently mean that the operating systems are interopera-
ble.

Interoperability is crucial to ensure delivery of services across systems from different
vendors. It can be distinguished into four levels, which are from the bottom to the top: tech-
nical, syntactical, semantical, and organizational interoperability [144]. The upper levels
rely on the lower levels, such as that semantical interoperability cannot take place without
syntactical interoperability.

Technical interoperability means to enable machine-to-machine communication based on
hardware or software systems. It focuses mainly on communication protocols and the in-
frastructure that is required for their operation. Syntactical interoperability considers the
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Figure 2.1: Types of interoperability

data formats that are used in communication protocols. This means that a well defined syn-
tax and encoding is required for messages that are transferred by communication protocols.
Semantical interoperability is related to the meaning of content. If semantical interoper-
ability is fulfilled, humans understand the same when interpreting the same content. It is
not centered on machine interpretation. Organizational interoperability is the ability of a
meaningful communication of data over different infrastructures between different orga-
nizations. Organizational interoperability includes the linking of business processes [85].
The objects for interoperability differ in each level: signals in technical interoperability, data
in syntactical interoperability, information in semantical interoperability, and processes in
organization interoperability [85]. In this thesis, we discuss technical and syntactical inter-
operability, which we both call “interoperability” in the remainder of this work. We do not
consider semantical or organizational interoperability [144].

Depending on the kind of distributed systems, interoperability can be interpreted differ-
ently. In general, we distinguish between three different types of technical interoperability:
interoperability within a system, between the same form of systems, and between different
forms of systems [34]. Figure 2.1 depicts these different types.

Interoperability within a system is the ability of services provided by a single system
to communicate by well defined interfaces (Figure 2.1–1a). This means that the services
within a specific system are able to interoperate through common, standardized, or other-
wise agreed upon interfaces inside the infrastructure. A practical example is the requirement
to utilize two different components such as a billing and a monitoring service implemented
by different vendors that need to communicate within one system. This type is also called
integration, which is “the process of combining software components, hardware compo-
nents, or both into an overall system” [71].

Interoperability between systems is usually located at user domain level, i.e., interoper-
ability between end users. Figure 2.1–1b shows the interoperation between two systems of
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the same form, such as two cloud environments. The systems X and X’ need to communi-
cate and exchange data through one or more standardized interfaces. More specifically, the
services provided by system X understand the services provided by system X’. In practice,
this means, for example, a service is able to use an execution service of another system
to reduce computational time. However, this also often involves interoperability of other
services such as authentication and authorization.

Another type of interoperability is interoperability between different forms of systems,
e.g., between a system X and a system Y of another form as depicted in Figure 2.1–1c. De-
spite other considerations, it needs to be determined if the services that need to interoperate
are provided by the systems in either a substitutable or complementary way. The systems
should be able to interact in order to exchange information and data, or provide access to
resources. This type could involve, for example, the interoperability between a grid and a
cloud system. A grid system could be extended with storage offered by a cloud computing
environment.

Within this thesis, we consider interoperability between the same form of systems, and
between different forms of systems. The integration within a single system is out of our
scope.

2.2 Software Testing

Software testing is an analytic activity for evaluating the quality of software [147], which is
part of the activities of Software Quality Assurance (SQA) [97]. SQA additionally contains
activities of organizing examinations of software to avoid errors [88]. They contain soft-
ware project management as well as constructive activities including software engineering
techniques.

Testing examines test objects by their execution to check if the test objects execute as
expected. A test object is a part of a software system or the software system as a whole.
The goal of testing is the detection of failures, which indicate defects of the tested software.
Therefore, testing itself provides a basis for debugging. Besides this, testing can increase
the confidence in a software product, measure quality, and avoid defects through analyzing
programs or their documentations [81, 132].

In the following, we define relevant terminology of software testing and discuss different
types of testing. In addition, we describe a process for the development of test specifications,
as well as TTCN-3, which is a standardized language for specifying test suites.
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2.2.1 Definition of Required Test Terminologies

The following terms and definitions are used throughout this thesis.

• Test: A test means “an activity in which a system or component is executed under
specified conditions, the results are observed or recorded, and an evaluation is made
of some aspect of the system or component.” [71].

• Implementation Under Test (IUT): An IUT is “an implementation of one or more
Open Systems Interconnection (OSI) protocols in an adjacent user/provider relation-
ship, being that part of a real open system which is to be studied by testing” [73].

• Equipment Under Test (EUT): An EUT corresponds to a complete system that can
consist of several soft- and hardware components. An EUT will be tested for inter-
operability against other EUTs. This definition updates the original definition for this
term provided in [36].

• System Under Test (SUT): An SUT is “the real open system in which the IUT” [73]
or respectively the EUTs “reside” [73]. The collection of all EUTs is called the
SUT [36].

• Requirement: A requirement is “(1) A condition or capability needed by a user to
solve a problem or achieve an objective. (2) A condition or capability that must
be met or possessed by a system or system component to satisfy a contract, standard,
specification, or other formally imposed documents. (3) A documented representation
of a condition or capability as in (1) or (2)” [71]. Related to testing, this means that
a requirement describes a specific behavior of the IUT or respectively EUT, i.e., a
series of stimuli to and expected outputs from the IUT or respectively EUT that can
be assessed by means of a test [118].

• Implementation Conformance Statement (ICS): A protocol ICS is “a statement
made by the supplier of an OSI implementation or system, stating which capabili-
ties have been implemented for a given OSI protocol” [73]. An ICS is basically a
“checklist for providing information about an implementation to a specification, by
presenting in a uniform manner the implemented capabilities (e.g., functions, fea-
tures) and options as well as limitations of the implementation” [152].

• Test Architecture: A test architecture is an “abstract description of logical entities
as well as their interfaces and communication links involved in a test” [35] related to
the SUT.

• Test Configuration: A test configuration is a “concrete instance of a test architecture
defined on the basis of test components, ports and their connection” [35] related to
the whole test system.

• Test Purpose: A test purpose is “a prose description of a narrowly defined objective
of testing, focusing on a single conformance requirement as specified in the appropri-
ate OSI International Standard or CCITT Recommendation (e.g. verifying the support
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of a specific value of a specific parameter” [73]. A test purpose specifies which cata-
loged requirement should be assessed in the context of a given test architecture. Each
test purpose includes at least one reference to the clause in a specification, where the
requirement to be assessed is described. It should have a unique identifier reflect-
ing its place in the test suite structure. A test purpose is also referred to as a test
condition [75].

• Test Description A test description is a detailed but informal specification of the pre-
conditions and test steps needed to cover one or more given test purposes. It also
specifies the equipment required for a test, equipment operations, observations, as
well as protocol messages or procedures to be checked between systems [122]. A test
description shall contain the following information [119]:

– Identifier: A unique identifier that relates a test to its group and sub-group.
– Summary: A unique description of the test purposes covered by this test.
– Test Architecture: A reference to all equipments required for the execution of

this test as well as their connections.
– Specification References: One or more references to clauses in the standard for

which the test purposes have been specified.
– Pre-test Conditions: A list of all conditions that have to be fulfilled prior to

the execution of a test. These conditions should identify the features that are
required to be supported by participating equipment to be able to execute this
test.

– Test Sequence: A test sequence is written in terms of external actors and their
ability to interact and observe the services provided by the system, i.e., end-to-
end behavior. Based on its success, a test verdict reflecting the interoperability
of all systems participating in a test is derived.

If further information is required to accurately describe a test, the list of information
fields can be extended.

• Test Case: A test case is “a set of test inputs, execution conditions, and expected
results developed for a particular objective, such as to exercise a particular program
path or to verify compliance with a specific requirement” [71]. A test case can be
generic, abstract, or executable as described in [73].

• Test Suite: A test suite is “a set of several test cases for a component or system under
test” [75].

2.2.2 Types of Testing

In the following, we describe the types of testing considered in this thesis. They are confor-
mance testing, interoperability testing, and their combination.
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2.2.2.1 Conformance Testing

Conformance testing is “testing the extent to which an Implementation Under Test (IUT)
satisfies both static and dynamic conformance requirements” [36]. This means that confor-
mance testing is generally used to check whether an implementation follows the require-
ments stated in a standard.

In conformance testing, one IUT is tested with functional black-box tests to check if the
IUT is conform to a standard. Figure 2.2 schematically depicts this test setup. The IUT
is embedded in the SUT, which is a testing environment that also includes parts that are
required by the IUT to provide its service or functionality to the user. Conformance testing
usually requires the development and implementation of sophisticated testing tools, e.g.,
based on TTCN-3 [32]. Such tools support the simulation of the environment, which is
needed for a proper execution of the IUT.

2.2.2.2 Interoperability Testing

Interoperability is assessed through interoperability testing, which is the “activity of proving
that end-to-end functionality between (at least) two communicating systems is as required
by the base standard(s) on which those systems are based” [36]. In interoperability test-
ing, all participating systems are usually tested and assessed for interoperability against a
qualified equipment [36], which is illustrated in Figure 2.3. A Qualified Equipment (QE)
is a reference implementation, which is a fully functional implementation of one or more
standards. But the determination of a reference implementation for interoperability testing
is difficult; because it needs to be assured that the reference implementation implements
the standards correctly. However, each participating system implementation should be able
to interoperate with all the others, not only with the reference implementation. Systems
should rather be tested for interoperability against each other. Therefore, we updated the
definition of interoperability testing described in [36]. We removed the QE and, therefore,
avoid its determination. Each tested system in interoperability testing is called an EUT.
The collection of all EUTs is called the SUT [36]. Figure 2.4 depicts the interoperability
test setup. Using this approach, interoperability testing provides a feasible way to assess if
two or more systems are able to communicate or interoperate, i.e., to understand exchanged
data.
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The EUTs interoperate via an abstract Means of Communication (MoC). It is generally
assumed that the communication services used between EUTs are compliant to underlying
standards. Interoperability testing is usually driven manually because of the proprietary
nature of end user interfaces.

Interoperability tests are applied at interoperability events, where vendors test the ability
of their systems for interoperation with systems provided by other vendors and based on
the same standards. The basis for each interoperability event is a previously agreed upon
interoperability test specification. During the event, implementations of different vendors
are plugged to each other and assigned to test sessions. The test sessions are executed in
a parallel manner and have usually a specific time limit. Within this limit, it is attempted
to execute as many applicable tests as possible. Examples for such interoperability events
are the PlugtestsTM [30] events that are organized by ETSI. Depending on the concrete
interoperability event, customers of the vendors and research partners are also allowed to
attend for observing the test sessions.

2.2.2.3 Interoperability Testing with Message Checks

Comparing interoperability testing to conformance testing, each of them has its advantages
and drawbacks. Conformance tests alone cannot guarantee system interoperability espe-
cially for the application layer. Even if the IUT passes the conformance tests, it does not
automatically prove that the IUT is interoperable with other systems implementing the same
standard, because the standards may contain implementation options and leave space for in-
terpreting requirement specifications, which can lead to interoperability problems [144].
The benefit of interoperability testing is that it can verify a correct service provision to end
users. However, it may require a complex setup, e.g., a Universal Mobile Telecommunica-
tions System (UMTS) network including the configuration of all involved nodes and does
not ensure adherence to standards.
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In our approach, we use interoperability testing in combination with conformance testing
so that it is possible to check the conformance to a standard related to the interoperation
and, in addition, to check if the EUTs are interoperable [119, 122]. This approach extends
interoperability testing with the monitoring of the communication among the EUTs and
updates the approach described by [36] by removing the QE as well as defining the SUT. In
the remainder of this thesis, we call this combination of testing interoperability testing with
message checks. This means that during the execution of interoperability tests, messages are
recorded within test execution traces at (possibly standardized) interfaces between different
EUTs by monitors to analyze the compliance of the recorded messages to the standards.
This allows the verification of the correctness of protocol procedures, while the assessment
of interoperability takes place. Message checks also provide a basis for fault analysis. In
contrast to traditional conformance testing, message checks assess requirements that are
only related to the interoperation. An interoperability test setup combining interoperability
tests with message checks is depicted in Figure 2.5. The end-to-end functionality is assessed
from the end user points of view while the message checks take place at the intermediate
interfaces. Although this approach is not a replacement for conformance testing, it offers
an economic alternative to gain insights about the conformance of equipment participating
in an interoperability test to a standard.

Interoperability tests with message checks are also described in the literature using differ-
ent terminologies. The main idea of combining conformance testing with interoperability
testing has been presented, e.g., by [140, 146, 148]. Viho et al. [146] provide a formal
framework for interoperability testing. They present a general architecture of interoper-
ability based on lower and upper testers as defined by the international ISO/IEC multipart
standard 9646 OSI Conformance Testing Methodology and Framework (CTMF) [74]. The
CTMF standards define the upper tester and the lower tester strongly related with the OSI
model. Interoperability testing with message checks can be used independent of the OSI
model.

If interoperability tests with message checks are applied in interoperability events, the
validation of standards can be performed in addition to the assessment of interoperability.
The results of the tests including interoperability issues as well as discrepancy of the applied
standards are reported to the responsible technical committee. This feedback is then used
to improve the standards.
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2.2.3 Test Specification Development Process

Based on the test specification development process for Internet Protocol (IP) testing estab-
lished by ETSI [31], we developed the generic test specification development process [118],
which is depicted in Figure 2.6. The steps of the process build a bridge over the large gap in
the levels of abstraction between a base standard and a final conformance or interoperability
test specification.

In Step 1, requirements are identified from relevant base specifications. Requirements
may be published in a requirements catalog. Then, in Step 2, the ICS is specified. This
step is essentially a high level check list of features and capabilities supported by the IUT.
The ICS can be used to quickly identify if two implementations of the same standard have
the potential to interoperate. In Step 3, test purposes are specified for the identified require-
ments and a logical grouping of the test purposes, the Test Suite Structure (TSS) is defined.
If a requirement can be assessed using a given form of testing then a test purpose specifies
verdict criteria for a test. After that, in Step 4, for each test purpose an informal test descrip-
tion is developed. In Step 5, either test purpose-based or test description-based test cases
are specified.

The final Step 6 includes the validation of the test cases and is normally not done by the
test developers. The validation ensures that the test cases are specified correctly. It may
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be done by executing the test cases at an interoperability event or by running test cases by
means of conformance test tools against a number of different implementations of a given
standard. Problems detected during the validation should be reported to the test developers
and can lead to changes in the test case specifications. The validated test cases form the
final interoperability or conformance test specification.

2.2.4 Testing and Test Control Notation Version 3 (TTCN-3)

TTCN-3 [43] is an internationally standardized language, which is specifically designed for
the specification of tests. It is developed and maintained by the ETSI Technical Committee
for Methods for Testing and Specification (TC MTS), a team of leading testing experts from
industry and research. TTCN-3 has been in use in standardization effort as well as in the
industry for over 10 years. TTCN-3 can be applied to a variety of application domains
and types of testing. It has been proven to work in very large and complex industrial tests,
e.g., for 3rd Generation Mobile Telecommunications (3G) network elements. There are
TTCN-3 test suites for, e.g., IMS, Long Term Evolution (LTE), and the Session Initiation
Protocol (SIP). TTCN-3 can be used not only for specifying and implementing functional
tests, but also for scalability, robustness, and stress tests. In this work, we apply TTCN-3
for interoperability testing.

The TTCN-3 language is similar to typical general purpose programming languages’
textual syntax. Most concepts of general purpose programming languages can be found
in TTCN-3 as well, e.g. data types, variables, functions, parameters, loops, conditional
statements, and import mechanisms. In addition, test related concepts ease the specification
of test suites.

TTCN-3 supports distributed testing through the notion of test components: Parallel Test
Components (PTCs) can be created dynamically in addition to the Main Test Component
(MTC). Each test component runs concurrently and may, therefore, execute test behavior
in parallel to other test components. For the communication between test components and
between test components and the SUT, operations such as send and receive can be used to
transfer messages via ports. The values of these messages are specified using templates.
TTCN-3 templates may involve wildcards and provide a powerful matching mechanism to
validate expected test data.

Further concepts that ease the specification of tests are: test verdict handling, logging,
timeout timers, and defaults. The first three concepts are self-explanatory. Defaults are
typically used for specifying alternative behavior that deals with unexpected events. Since
a receive operation blocks until it observes a message that matches the specified template,
defaults can be activated to catch, e.g. the expiration of a timer or any unexpected message.

To allow the automated execution of TTCN-3 test suites, TTCN-3 tools can be used to
compile TTCN-3 test specifications into executable tests. However, TTCN-3 test specifica-
tions use abstract communication mechanisms. Thus, to make TTCN-3 test specifications
executable, an adaptation layer is required. Figure 2.7 depicts the TTCN-3 test system archi-
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tecture. Test cases are specified in TTCN-3 within an Abstract Test Suite (ATS). A System
Adapter (SA) entity that implements operations of the TTCN-3 Runtime Interface (TRI) [32]
and a Coding/Decoding (CD) entity that implements operations of the TTCN-3 Control In-
terface (TCI) [32, 126] must also be realized. For those ports that are mapped to Points of
Control and Observation (PCOs), the SA realizes send and receive operations by using the
communication mechanisms of the SUT, e.g., sockets. The CD is responsible for the trans-
lation between the abstract TTCN-3 values and the concrete bit-level data encoding used by
the SUT.

Using TTCN-3 has the following advantages in comparison to proprietary test languages
or low-level test implementations. The high abstraction level speeds up test development.
The re-usability is higher, because both the abstract TTCN-3 test specifications and the
adapters can be re-used independent of each other. Furthermore, due to the fact that TTCN-3
is standardized and various TTCN-3 tools are available, a vendor lock-in is avoided. For
further introduction to TTCN-3, the reader is referred to [149].

2.3 Systems Under Study

The systems that we studied for interoperability in the case studies are distributed systems.
A distributed system is “a collection of independent computers that appears to its users as
a single coherent system” [137]. In this section, we describe the systems that we analyzed
and applied in the case studies: Web services, compute clusters, grid computing systems,
cloud computing systems, and IMS.

2.3.1 Web Services

Most grid and cloud systems commonly leverage Web service technology. According to
the World Wide Web Consortium (W3C), a Web service is “a software system designed to
support interoperable machine-to-machine interaction over a network. It has an interface de-
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scribed in a machine-processable format (specifically WSDL). Other systems interact with
the Web service in a manner prescribed by its description using SOAP messages, typically
conveyed using HTTP with an XML serialization in conjunction with other Web-related
standards” [153]. In the following, we describe five basic Web service standards relevant
for this work:

1. eXtensible Markup Language (XML) [150] is a markup language, that defines a set
of rules for encoding documents in a common format to which messages comply that
facilitates data sharing across different interfaces of Web services.

2. SOAP [151] is a protocol specification that defines XML grammar to allow com-
munication of Web services independent of their utilized platform. SOAP forms the
foundation of the Web service protocol stack. SOAP messages are usually transmitted
over Hypertext Transfer Protocol (HTTP).

3. HTTP “is an application-level protocol for distributed, collaborative, hypermedia
information systems” [52].

4. Web Services Description Language (WSDL) [17] is an XML dialect used for the
specification of the functionality that is offered by a Web service using XML. With
WSDL, methods of a service are described in an abstract and programming language
independent way to allow platform independent access.

5. Universal Description, Discovery and Integration (UDDI) [110] is used to specify an
XML-based registry that is utilized for finding Web services. It allows organizations
to publish information about their Web services, which can be found and bound by
other Web services.

A Web service by itself is stateless, i.e., the Web service cannot remember information,
or persist its state, from one invocation to another. The Web Services Resource Frame-
work (WSRF) [7] is a specification that provides means to keep the state of a Web service.
However, the state is not integrated into the Web service. A separate entity, which is called
resource, stores the state information. Each resource has a unique key for its identifica-
tion and can keep multiple values of, e.g., complex data types. The Web service together
with its belonging resource is called a Web Service Resource (WS-Resource). The Endpoint
Reference (EPR) is the address of a WS-Resource [130].

2.3.2 Cluster Computing Systems

Compute clusters are tightly interconnected but operationally independent computers, on
which user accessible software runs to manage and control concurrent computing tasks that
instantiate a common application program [134]. The independent computers are called
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worker nodes since they execute the actual task. A cluster system contains entities for
resource and queue management to control the worker nodes and to implement queues.

A generic cluster architecture is depicted in Figure 2.8. A user submits tasks to the
management entity using the submission client. Depending on the characteristic of the
task, the task is placed in an appropriated queue. A scheduler then distributes the tasks to
specific worker nodes. After the execution of a task is finished, the output is transferred to
a network-shared directory. A cluster is usually located in a private network and, therefore,
not directly accessible from the Internet.

An open source implementation of a local resource and queue management system
is the TORQUE Resource Manager [2], which is based on the Portable Batch System
(PBS) project [6]. Other implementations include IBM LoadLeveler [2], Oracle Grid En-
gine [109], and Microsoft Windows High Performance Computing (HPC) Server [94]. The
interfaces of the local resource and queue management systems are proprietary and not
standardized.

2.3.3 Grid Computing Systems

Grid systems allow efficient and dynamic sharing and management of local resources be-
tween any interested parties of different organizations. It relies heavily on a grid middle-
ware, which provides secure access to diverse resources that are managed in a decentralized
manner. A grid system provides nontrivial qualities of service through standardized, general
purpose protocols and interfaces [58].

Referring to the grid architecture defined in [57] and from our practical experiences [118],
we developed the conceptual model of grid computing as depicted in Figure 2.9. On the
bottom layer, the model includes local resources. In the sense of grid computing, local
resources are entities that fulfill job requests [84] and are usually deployed within private
networks. A job is usually a description of parallel and computing intensive tasks that are
executed on local resources. Grid systems integrate different types of resources including
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computing, storage, sensors, and services. These resources usually deploy a predefined
software stack. For example, on compute clusters, which belong to the computing resource
type, user accessible software runs to control computing tasks as described in Section 2.3.2.
Similarly, the other resource types deploy an already pre-configured infrastructure that is
usable within private networks by utilization of their specific protocols and interfaces. The
protocols are then utilized by the grid core services offered by a grid middleware to access
the local resources from a public network and of other organizations. The grid core services
include services for the management of information, data, execution, and resources.

The grid core services are utilized by grid schedulers that schedule jobs over several
grid infrastructures. In addition, these services are directly usable via grid portals or grid
applications. Grid middleware systems deploy security services that provide authentication
and authorization functionalities for the entire grid core services.

2.3.3.1 Open Grid Service Architecture (OGSA)

The Open Grid Services Architecture (OGSA) [56], which is maintained by the Open Grid
Forum (OGF) [104], is a Service Oriented Architecture (SOA) that defines and standardizes
the grid core services for the implementation of a basic grid computing system in an ab-
stract manner [56]. OGSA leverages existing Web service specifications and makes them
suitable for the grid environment by adding grid specific characteristics. These grid en-
hanced Web services are called grid services [91]. The grid core services are largely in-
dependent of each other and do not need to be present in an OGSA system. OGSA aims
to enable interoperability between heterogeneous and distributed grid systems as well as
reduce the administration complexity [56]. OGSA can be extended by other standards that
specify specific areas of the grid core services. The extensions include OGSA-Basic Execu-
tion Service (OGSA-BES) [54], OGSA-Resource Usage Service (OGSA-RUS) [101], and
OGSA-Data Access and Integration (OGSA-DAI) [24].
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2.3.3.2 Globus Toolkit 4

Globus Toolkit 4 (GT4) [59] is a grid middleware that provides all required components for
the deployment of a grid computing system. It is maintained by the Globus Alliance [63]
as a community-based and open-source set of services and software libraries. The toolkit
includes components for security, information infrastructure, resource management, exe-
cution management, data management, communication, fault detection, and portability. It
is packaged as a set of components that can be used either independently or together to
develop grid applications [55].

GT4 defines protocols as well as APIs for each component. In addition, it provides open-
source reference implementations in C and Java for client-side APIs. A wide variety of
higher-level services, tools and applications have been developed based on GT4. Several
of these services and tools are integrated in the components of GT4, while others are dis-
tributed through other sources [59]. GT4 implements the WSRF and meets the requirements
of the OGSA, which both foster interoperability [64].

2.3.3.3 UNICORE 6

Uniform Interface to Computing Resources (UNICORE) 6 is a grid middleware that pro-
vides access to distributed computing and storage systems [82]. It is maintained by the
Jülich Supercomputing Centre [53].

UNICORE implements a three-layered architecture: the client layer, the service layer,
and the system layer [136]. The client layer on the top of the architecture includes three
different kinds of clients [83] that can be utilized to access UNICORE resources: the UNI-
CORE command line client; the UNICORE rich client, a graphical user interface based on
the Eclipse Rich Client Platform [23]; and the open source High Level Application Pro-
gramming Interface (HiLA) shell that allows development of grid clients using Java.

The core of the architecture is the service layer. It comprises all services and components
that are required for accessing a UNICORE grid. They include an authentication service,
an information service, a central registry, and a workflow engine. UNICORE’s internal
execution management engine (XNJS) maps the abstract job description to concrete job
descriptions for a specific resource, e.g., a compute cluster.

The system layer on the bottom of the architecture includes the Test System Interface
(TSI) component, which provides the access to the actual resource management or compute
cluster system. This means that the TSI translates abstracted commands (from the upper
layer) into system specific commands (to the lower layer) [136].

Regarding interoperability, UNICORE supports a variety of standards. UNICORE im-
plements the full Web service stack based on WSRF and allows to access the XNJS via
standardized OGSA interfaces for job management. In addition, UNICORE supports the
Grid Laboratory for a Uniform Environment (GLUE) 2.0 information model and OGSA-
ByteIO for data transfer [136].
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2.3.3.4 Grid Component Model (GCM)

The provision of common interfaces for the allocation of resources for application deploy-
ment in different computing and storage systems is a crucial requirement, because users
wish to access multiple resources of several systems simultaneously and in a cost saving
way. An approach towards such an interface is described in the ETSI Grid Component
Model (GCM) standards. The main objective of GCM is the creation of a uniform interface
for allocating resources for applications, where resources may be provided across different
grid systems. The GCM is an interoperability gateway approach with a standardized and
abstract communication protocol based on XML descriptors, i.e., the GCM Deployment De-
scriptor (DD) [33] and the GCM Application Descriptor (AD) [40]. GCM DD and GCM
AD provide formal specifications of resource information for the involved and possibly
heterogeneous systems [34].

2.3.4 Cloud Computing Systems

Cloud computing “is a model for enabling ubiquitous, convenient, on-demand network ac-
cess to a shared pool of configurable computing resources (e.g., networks, servers, storage,
applications, and services) that can be rapidly provisioned and released with minimal man-
agement effort or service provider interaction” [92]. Cloud computing systems fulfill five
essential properties [92]:

• On-demand self-service: Consumers can instantiate computing, storage, and net-
work capabilities in an automated manner according to their demand;

• Broad network access: The capabilities can be used and accessed by common inter-
faces over the network by any kind of client platform;

• Resource pooling: Physical resources are pooled dynamically into virtual resources,
which are utilized in a multi-tenant manner having a sense of data location indepen-
dence without having control or knowledge about the exact data location;

• Rapid elasticity: Resources can be allocated and released rapidly (in the orders of
minutes) according to the demand;

• Measured service: Cloud systems utilize a metering capability to control and opti-
mize resources automatically [92].

Cloud systems are classified in a layered service model containing the following layers
from bottom to top as depicted in Figure 2.10: Infrastructure as a Service (IaaS), PaaS, and
Software as a Service (SaaS) [92]. Within the illustrated clouds on each level, the figure
depicts the interfaces to the services that are provisioned by each layer, respectively. IaaS
clouds include virtualized resources, e.g., storage, processors, and networks. Within the
virtualized resources, network architects are able to deploy and run arbitrary software via
resource management interfaces. Network architects check the status of the IaaS clouds
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Figure 2.10: Service model of cloud computing

via system monitoring interfaces. On the PaaS level, services for automated resource man-
agement, fault tolerance, dynamic provisioning, and load balancing are deployed. These
functionalities are utilized within the runtime environment in a transparent manner via a
control interface, e.g., an Application Programming Interface (API) that is used by an ap-
plication developer. The developer only has control over the deployed applications, but not
over the resources. The SaaS layer provides Web interfaces for end users to access ap-
plications without requiring local software installations. The users are only able to apply
application specific configurations, but cannot control the cloud infrastructure. Each layer
deploys security mechanisms to protect the resources and services they offer.

A cloud system is deployed in one of the following models: private, public, hybrid, and
community [79, 92]. Public clouds offer services for public use and are physically located
on the premises of the cloud provider. Public clouds serve multiple customers using a multi-
tenant model. Private clouds can be hosted on the premises of a single organization but also
off the premises managed by a cloud provider. The access to a private cloud is dedicated
and restricted to a single customer. A hybrid cloud is the mixed employment of private
and public clouds, e.g., to maintain control over sensitive data, which is only stored in the
private cloud [79] while also being able to use the computational power of a public cloud.
In addition, community clouds share their infrastructure by several organizations and sup-
port a specific community that has shared concerns, e.g., a mission, security requirements,
policies, and compliance considerations [92].
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2.3.4.1 Amazon Web Services (AWS)

Amazon Web Services (AWS) [3] offers a public IaaS cloud system. AWS provides various
Web services to access their cloud infrastructure and to allocate cloud resources on demand.
Basic AWS services are the Simple Storage Service (S3) that provides storage in the cloud,
the Elastic Compute Cloud (EC2) service that delivers compute capacity in the cloud, the
Simple Queue Service (SQS), which is a messaging service over HTTP, and the SimpleDB
service, which is a non-relational database store service. For a complete list of the cloud
services that are offered by AWS, the reader is referred to [87]. All AWS services can
be integrated and used in a complementary way to build an AWS cloud application. The
physical architecture of AWS has not been published, yet.

2.3.4.2 Eucalyptus

Eucalyptus [100], which is maintained by Eucalyptus Systems [46], is an open source IaaS
cloud software to build private clouds. A Eucalyptus cloud is based on Web services and
consists of the following components: node controller, cluster controller, cloud controller,
storage controller, and Walrus. The node controller manages, e.g., starts and stops one or
more Virtual Machines (VMs) on the physical machine, on which the node controller is in-
stalled. The cluster controller acquires information about node controller sets and schedules
instantiations of VMs on specific node controllers. The cluster controller controls only the
node controllers that are deployed in their subnet. The cloud controller is the entry point
to the Eucalyptus cloud. It gathers information about resources from the node controllers
and sends high-level scheduling requests to the cluster controllers [100]. The storage con-
troller provides functionalities to attach storage volumes to VMs. However, storage volumes
cannot be shared between VMs, but they store data persistently, i.e., the storage volumes
persists after the VM is terminated. Walrus provides mechanisms to store VM images and
user data persistently, which are accessible by all VMs as well as externally by a client [47].

The main advantage of the Eucalyptus cloud compared to the AWS cloud is the control-
lability of the physical resources. The Eucalyptus cloud allows the deployment of a private
cloud. However, the Eucalyptus cloud infrastructure needs to be maintained and updated
regularly by the deploying organization, which is not the case in the AWS cloud.

2.3.4.3 Google App Engine (GAE)

Google App Engine (GAE) [65] offers a public PaaS cloud system to allow the development
and execution of scalable cloud applications on Google’s infrastructure. GAE includes the
following cloud features: persistent cloud storage, automatic scaling and load balancing,
and dynamic Web serving.

GAE supports and provides runtime and development environments for Java, Python,
and Go [68]. Depending on the programming language choice, GAE offers APIs for var-
ious cloud services, e.g., a memory cache service for distributed in-memory data called
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memcache, prospective search that allows matching of a large set of queries simultaneously
against a stream of input documents, and capabilities that allow the detection of outages and
scheduled downtime of API capabilities [66]. Depending on the specific requirements of a
GAE application, GAE offers three different cloud storage options [68]:

1. GAE Datastore, which is a NoSQL schema-less object datastore,

2. Google Cloud SQL, which is a relational SQL database service,

3. Google Cloud Storage, which is a storage service for objects and files up to terabytes
in size.

2.3.5 Internet Protocol Multimedia Subsystem (IMS)

IMS [1] is a specification for a telecommunications service. Telecommunications is
“the transmission, between or among points specified by the user, of information of the
user’s choosing, without change in the form or content of the information as sent and
received” [50]. A telecommunications service is “any service provided by a telecommuni-
cation provider” [99], or “a specified set of user-information transfer capabilities provided
to a group of users by a telecommunications system” [99]. This means that when a telecom-
munications service is used, the user of the telecommunications service is responsible for
the content of transmitted messages while the provider of the telecommunications service
is responsible for the acceptance, transmission, and delivery of the messages created by the
user [99].

IMS provides services beyond voice calls that offer the capability to share video and
media content between users. IMS is based on the 3rd Generation Partnership Project
(3GPP) standard and is one of the key enablers of the next generation networks [113]. IMS
relies on an IP based peer-to-peer architecture, which is split into user, control, and service
layers. The signaling of IMS is mainly based on SIP [123], which is a text based signaling
protocol on the application level. SIP is used to set up, modify, and terminate real-time
sessions between users over an IP network [133]. SIP enables clients to invite other clients
to a session and negotiate control information about the media channels needed for the
session, which are required for IMS.

Figure 2.11 shows a simplified IMS network, which provides Call Session Control Func-
tions (CSCFs) that are basically SIP servers or proxies used to process SIP signaling pack-
ets in the IMS. Users access the IMS network with a User Equipment (UE), e.g., a mo-
bile phone, and connect through the Gm interface to the IMS network entry point. This
is the Proxy-CSCF (P-CSCF), which provides subscriber authentication. A P-CSCF is
connected to a Serving-CSCF (S-CSCF), which is a SIP server that also performs session
control. For example, an S-CSCF handles SIP registrations and provides routing services.
The IP address of an Interrogating-CSCF (I-CSCF) is published in the Domain Name Sys-
tem (DNS), where remote servers find the I-CSCF and use it to forward SIP packets. In
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Figure 2.11: IMS network architecture

addition, Network Address Translation (NAT) and firewall functions are provided by the
Interconnection Border Control Function (IBCF) so that the IBCF can be used as a gateway
to external networks through the Mw interface. The application server deploys services for
execution and is accessed via the ISC interface by the S-CSCF.



3 Assessment and Improvement of
Interoperability

Interoperability is a prerequisite to allow users to access systems implemented by different
vendors seamlessly. Interoperability needs to be implemented in a reliable manner to meet
customers’ requirements regarding systems’ interoperation. To this aim, we present a struc-
tured way to assess and to improve interoperability of systems in this chapter. We establish
the Interoperability Assessment and Improvement (IAI) process. We give an overview of the
process in Section 3.1 and describe the details of the process’ phases in sections 3.2– 3.4.
We conclude this chapter with related work in Section 3.5.

3.1 Process Overview

A process is “a set of interrelated activities, which transform inputs into outputs” [75]. In
addition, a process defines roles that are associated with activities and output documents.
An overview of our IAI process is depicted in Figure 3.1. The IAI process provides a
structured way to analyze systems for interoperability opportunities and implement interop-
erability solutions. The process consists of three phases: investigation of the fulfillment of
prerequisites for interoperability (Phase I), improvement of interoperability (Phase II), and
assessment of interoperability (Phase III).

Phase I includes the investigation of the fulfillment of prerequisites for interoperabil-
ity of systems. These prerequisites include the existence of common and complementary
functionalities, requirements on the system’s architecture, and the need of interoperability.
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Figure 3.1: Generic process for assessing and improving interoperability of systems
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Furthermore, Phase I contains the identification of involved standardization organizations,
interoperability initiatives, and already available interoperability solutions for the systems
under study.

Depending on the results of Phase I, the IAI process is either continued with the improve-
ment of interoperability (Phase II) or with the assessment of interoperability (Phase III). If
no interoperability solutions have been identified, the process continues in Phase II, where
an interoperability solution will be engineered. As soon as an interoperability solution is
available (either identified in Phase I, or engineered in Phase II), it needs to be assessed in
Phase III by means of interoperability testing.

We identified the following roles required for the IAI process: the interoperability analyst,
the interoperability engineer, and the interoperability tester. The interoperability analyst is
responsible for Phase I and identifies if the prerequisites of interoperability are fulfilled by
the involved systems. The interoperability engineer is responsible to implement or to im-
prove interoperability solutions of the involved systems in Phase II. The interoperability
tester develops and executes an interoperability test suite in Phase III to assess the imple-
mented interoperability solution. The results are analyzed by the interoperability engineer
in Phase II.

The process is generically applicable, e.g., to homogeneous and heterogeneous architec-
tures. Depending on the analyzed architecture, different techniques need to be applied to
establish as well as to assess their interoperability. The procedure, required documenta-
tion, and the content of the different phases of the IAI process are described in detail in the
subsequent sections.

3.2 Phase I: Prerequisites for Interoperability

Prerequisites for interoperability are the existence of common and/or complementary func-
tionalities of the systems that are required to interoperate. A common functionality is the
base for interoperation of systems while a complementary functionality is the base for their
interworking. We consider interworking as a type of interoperability and do not distinguish
between the terms.

In Phase I of the IAI process, the interoperability analyst identifies if the prerequisites
for interoperability are fulfilled by conducting an analysis to determine the current state of
the interoperability between the involved systems. The analyst evaluates the architecture
of the involved systems to determine common and complementary functionalities, which
are identified based on standards, manuals, and descriptive documents of the involved sys-
tems. These documents help to identify protocols and interfaces for the access to a system’s
functionality. The interoperability analyst needs to be an expert of the involved system
to determine if the prerequisites of interoperability between the involved systems are ful-
filled. If no common or complementary functionalities are identified, interoperability is not
achievable as well as not reasonable. Otherwise, the analysis report of the interfaces of the
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functionalities serves as input for Phase II and builds the foundation of the interoperability
engineering.

To report the results of this phase, the analyst prepares a document that describes each
externally accessible functionality of a system with at least the following attributes: name,
description, interface information, communication protocol including data formats of input
and output data, specification reference, and dependencies to other functionalities. From
such a list, the identification of interoperable functionalities between different systems can
be facilitated by pairing common attributes. In addition, the dependency relation attribute
is a hint for the identification of complementary functionalities if the other involved system
provides the depending functionality as well.

In addition to the identification of the common and complementary functionalities, a sur-
vey on already available approaches for achieving interoperability of the involved systems
should be done. This includes the identification of involved standard organizations, interop-
erability initiatives, and related research. We describe the approaches for achieving interop-
erability in the next section. They can be based on standards or interoperability gateways.
Identified interoperability approaches for the involved systems should be documented in a
report. This report is input for Phase III of the IAI process, where the quality related to the
interoperability of the approaches is assessed.

From the existing interoperable functionalities and from the results of the survey on al-
ready available interoperability approaches, interoperability gaps can be derived. The gaps
should be reported by the interoperability analyst so that the interoperability engineer can
fill them in Phase II.

If no interoperability approaches exist yet, the benefits of achieving interoperability of
the involved systems need to be determined and analyzed. Benefits for interoperation in-
clude facilitating migrations, gaining a greater business value by provision of high level
services and service enrichment, as well as increasing the productivity by leveraging idling
resources. The analysis should also include an estimation of the required effort to realize
an interoperability solution, as this needs to be weighed against the benefits. The analysis
if it is worth to implement an interoperability solution needs to be documented in a report.
This report and the report about the identified common and complementary functionalities
are inputs for Phase II of the IAI process, where an interoperability solution for the involved
systems is developed.

3.3 Phase II: Improvement of Interoperability

Based on the outputs of Phase I, the interoperability engineer designs and develops an inter-
operability solution. Several approaches for achieving interoperability between computing,
service, and storage systems exist. In general, these approaches are classified in interoper-
ability gateways and standardized interfaces [34].
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Figure 3.2: Interoperability gateway

An interoperability gateway contains several translators and adapters as depicted in Fig-
ure 3.2. Interoperation takes place on the same level of abstraction, i.e., implementations
need to adapt to the same communication protocol. The translator transforms data from a
source system into a common and agreed standard communication protocol, e.g., an XML
scheme to allow systems using different protocols to be connected to the interoperability
gateway. The adapter converts the standard communication protocol into the specific proto-
col used by the target system and communicates the information to the target system. Note
that the roles of source and target systems are not disjunctive. If a translator and an adapter
are both available for a system, this system can be both source and target, i.e., send and re-
ceive information. In a one-to-one scenario, it is possible to translate and adapt directly into
the required protocol of the target or source system instead of into an agreed intermediate
representation. This is commonly referred to as an adapter. The data of the involved pro-
tocols and the translation schemes can be stored in a translation and adaptation repository
that can be accessed for translating purposes. Figure 3.2 shows a many-to-many scenario,
where the interoperability gateway comprises all involved translators and the adapters.

Interoperability gateways should be considered as interim solutions, as they do not scale
well [51]. If the number of systems increases, the interoperability gateway performance
decreases. It is an expensive approach, because for each protocol, a translator and an adapter
need to be developed and integrated. Therefore, interoperability gateway solutions are not
viable in ad-hoc scenarios or emergency cases.

The long-term approach to address interoperability is the use of open and standardized
interfaces. The interfaces that need standardization can evolve from the interoperability
gateway deployment since the mapping to different infrastructures has already been iden-
tified. However, the drawback of this approach is that the different involved stakeholders
agree to a common set of standard interfaces that also meet production system requirements.
However, standardization can enable interoperability in a multi-vendor, multi-network, and
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multi-service environment without the scalability problems of the interoperability gateway
approach.

If the interoperability solution is based on an interoperability gateway approach, the in-
teroperability engineer needs to describe and specify the interoperability gateway including
translation rules and data formats adequately in a specification report, which is input for
Phase III. If the solution is based on standards, the standards’ documents are input for
Phase III. There are various reasons why the interoperability of implementations of the
same standards needs to be assessed in Phase III. Standards can be specified unintention-
ally incomplete so that features required for interoperability are not or only partly defined.
Relevant interfaces required for interoperability might not be clearly defined. This means
that the standards can be interpreted differently. In addition, consequences of options may
not clearly be stated, or if too many options are specified, inconsistencies between them
can arise [144]. This means that programmers can choose different kinds of options, which
are then not understood by the other implementation, for which these options were not
implemented. In addition, different versions of the standard might be incompatible. The
standards or respectively the specification report build the basis for the development of the
interoperability solution but also for the specification of interoperability tests, which assess
the developed solution.

3.4 Phase III: Assessment of Interoperability

In Phase III, the interoperability tester assesses developed interoperability solutions of sys-
tems by the application of interoperability testing with message checks, which we present
in Figure 2.5. This assessment is based on one of the following documents: the report about
identified interoperability solutions developed by the interoperability analyst in Phase I,
standards identified by the interoperability engineer in Phase II, or the specification report
of an interoperability gateway developed by the interoperability engineer in Phase II. These
documents are used by the test designer [132] to develop the test architecture and test de-
scriptions, which are both described in detail in Section 2.2.1. The test architecture builds
the base for the development of test configurations. The test descriptions are extended with
the attribute of conformance criteria to specify the conformance test purposes. Together
with the other attributes, this then leads to interoperability tests with message checks. The
test sequence specified in the test description is then executed by the tester [132] in a manual
manner. In Chapter 4, we present a framework to assess interoperability in an automated
manner.

When executing interoperability tests with message checks, a large amount of informa-
tion is gained during the tests due to the number of interfaces that are monitored. In addition,
conformance testing takes place on the level of the EUTs while interoperability testing takes
place on the level of the SUT. Because of these different abstractions, we separate the con-
formance and the interoperability test verdict management at the level of test descriptions.
This speeds up troubleshooting and identification of wrong behavior of the SUT.
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Interop-
erability
verdict

Confor-
mance
verdict

Evaluation

Pass Pass EUTs interoperate and communicate according to the stan-
dard.

Pass Fail

EUTs interoperate, but do not communicate according to the
standard. This can be due to a problem in the base standard,
the test system, or one of the EUTs, e.g., a mandatory check
is used optionally.

Pass or Fail Inconclusive

EUTs do or do not interoperate; all captured communication
conforms to the standard, but at least one interface with mes-
sage checks was not available for evaluation.

Fail Fail

EUTs do not interoperate and do not communicate according
to the standard. This can be due to a problem in the standard,
the test system, or one of the EUTs.

Table 3.1: Summary of the verdicts’ interrelations related to a single test description

First, we determine the interoperability verdict, which is based on the observation of the
behavior of the SUT at its end points for a single test description. The interoperability
verdict can be either pass or fail. A pass means that the EUTs interoperate when providing
end-to-end functionality, while a fail means they do not provide end-to-end interoperability.
The interoperability verdict is set for each test description and is related to the SUT.

Secondly, we determine the conformance verdict, which is based on the observation of
protocol procedures and messages exchanged at interfaces between EUTs of a single test
description. It can be either pass, fail, or inconclusive. A pass means that the test shows
conformance to the normative requirements tested by the associated test case. In case of a
fail, the test shows non-conformance to at least one of the normative requirements tested
by the associated test case. Inconclusive means that neither a pass nor a fail verdict can be
given, because the available information is insufficient. The conformance verdict is set for
a single test description and relates to single EUTs.

Both verdicts pursue different purposes and evaluate different and orthogonal aspects:
interoperability or conformance. Hence, it is not possible and not reasonable to determine
a single verdict that combines both aspects. Table 3.1 shows different possible scenarios
in verdict observations and potential errors for single test descriptions. For the assessment,
verdicts alone do not allow direct identification of the cause of a test failure. Resolution of
test failures is generally non-trivial and requires troubleshooting.

Each test step in an interoperability test can lead to an intermediate verdict. Inserting
a capture of intermediate verdicts for each significant event in a test can help to speed up
the evaluation of the test execution results. The verdict of a single component can also be
determined while the test runs.
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Interoperability tests with message checks are applied at interoperability events that pro-
vide opportunities for vendors of systems to assess and demonstrate the interoperability
with systems from other vendors directly. A reference implementation is not required.
However, not only the implementations, but also the interfaces are evaluated for possible
improvement. The developers and vendors give feedback to the interoperability tester. The
interoperability tester collects all the information and results of all executed tests from the
participating vendors. All executed tests, their results, and conclusions drawn from the re-
sults are documented. This report is input for Phase II to allow further improvements of the
interoperability solution and interoperable interfaces. The assessment and the improvement
build a circle in the process.

If the interoperability solution is based on the interoperability gateway approach, the
report with the test results is used by the interoperability engineer to improve the interop-
erability gateway. If the interoperability solution is based on standards, the report can be
committed to the committee in charge to maintain the tested standard. The report also con-
tains the results of the message checks, which validate if the systems follow the standards
related to the interoperability assessment. The interoperability of two systems is improved
indirectly through the message checks by the identification of ambiguousness of the in-
volved standard, e.g., by assessing two different implementations of a message specified
ambiguously in the standard. After the responsible committee removes the ambiguousness
from the standard, updates of system implementations, as required in the updated version
of the standard, improve the interoperability of the systems. Therefore, the standards them-
selves can be assessed by message checks. The updates are applied and developed by the
interoperability engineer based on the updated standards.

3.5 Related work

The European Commission presents an interoperability framework for the European pub-
lic services [48]. Within this framework, they describe twelve principles in the context
of deciding and implementing European public services including accessibility, security,
and multilingualism. Related to our work, they give recommendations on implementing
public services in an aggregated way. This means that the public services of the member
states need to be interoperable. The European Commission provides abstract guidelines on
achieving interoperability between public service implementations of different European
Union member states. We provide means and measures of assessing interoperability of sys-
tems. The interoperability assessment phase of the IAI process can be applied to assess the
interoperability of the public services of the European Union.

Sayogo et al. analyze the implementation of an interoperable data architecture providing
trusted product information to help consumers with their choices in purchasing sustainable
food products [125]. This study focuses on organic and fair trade coffee and analyzes the
different stakeholders involved in the supply-chain. The stakeholders are supposed to pro-
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vide the product information via interoperable means. Hence, their work mainly focuses on
analysis of organizational interoperability. However, the background for technical interop-
erability is described only in a schematic way. Their approach implements an interoperabil-
ity gateway to connect different stakeholders with each other. They map proprietary data
formats of the stakeholders’ systems to a generic format based on an XML scheme. Our
IAI process focuses on the assessment and improvement of interoperability in general on
the technical level. Their approach is similar to Phase II of the IAI process, but it is not clear
how they analyze the systems of the stakeholders. Such an analysis is similar to Phase I.
However, they focus on the stakeholder analysis based on the five-step process described by
Bunn et al. [13].

Bhuta and Boehm present a framework for identification and resolution of interoperabil-
ity mismatches in commercial-off-the-shelf (COTS) products [11]. They model a COTS
interoperability assessment framework based on three key components: attributes that de-
fine interoperability characteristics of COTS products, assessment rules for interoperability,
and a COTS interoperability evaluation process. They describe the successful application of
their framework in an empirical study. The application of their framework is similar to the
Phase I and II of our IAI process, but does not replace the need for thorough interoperability
testing, i.e., Phase III of the IAI process. Ma et al. assess interoperability of components
using translation rules that also consider the goals of stakeholders based on interoperability
requirements [89]. In their approach, declarative requirements of components are compared
to the stakeholders’ goals, which are both translated or respectively defined in the declara-
tive language called Alloy [78]. They focus on reusability of components and build a model,
from which conclusions about the interoperability of the components can be drawn. We as-
sess interoperability by the application of interoperability tests with message checks. Our
approach can be applied on system level.

Pokraev et al. describe a conceptual framework for modeling services and their inter-
faces [114]. The model is the basis for the assessment if a system composed of services
meets their identified requirements for interoperability. The main issue of this approach is
that already implemented systems are not specified using their modeling notation. In ad-
dition, the results of the assessment are only yes-no answers to their requirements. Our
interoperability assessment approach also assesses the messages. Furthermore, the applica-
tion of the IAI process is not limited to service compositions. Fang et al. also present an
interoperability assessment model for service compositions [49]. Their assessment model
considers the different levels of interoperability, for which they define interoperability in a
mathematical way. However, they only consider assessing interoperability of service com-
positions. Similar interoperability assessment of service compositions is also done by Quar-
tel and van Sinderen [115]. Both works only consider the interoperability of homogeneous
systems. Our IAI process can be applied to homogeneous as well as heterogeneous systems.
In addition, we focus on interoperability of already implemented systems.

Interoperability tests are usually applied in an ad-hoc fashion in interoperability events,
where the participants are usually known only weeks before. With Phase III of the IAI
process, we provide means that can be applied in interoperability events organized by, e.g.,
ETSI [30] or Open Mobile Alliance (OMA) [106].



4 A Methodology for Automated
Assessment of Interoperability

A strategic requirement in a competitive environment is the reduction of the time to market
for a new system, service, or architecture. An essential and feasible practice to decrease the
time to market of a system is to apply automation at several development steps. Automa-
tion considerably helps to minimize the time for testing and also avoids repetitive manual
activities, which are prone to error. Applying test automation techniques usually reduces
the usage of the test equipment and EUT resources, decreases the acceptance costs both for
suppliers and for customers, and limits manual interaction related to test execution, e.g., for
the analysis of test execution traces including message contents and reports. Compared to
manual interoperability testing, the application of our methodology has the following other
benefits: wider test coverage, consistent test execution, and repeatable interoperability tests.

However, assessing the interoperability of systems is usually done in a manual and ad-hoc
fashion with interoperability testing. Therefore, in this chapter, we present a methodology
for automated assessment of interoperability. The methodology comprises four main parts.
First, a generic environment for interoperability tests with message checks (Section 4.1),
which builds the basis for a development of automated interoperability tests. Second, guide-
lines for interoperability test design and test automation (Section 4.2). Third, a generic li-
brary for automated interoperability tests using TTCN-3 (Section 4.3) that implements the
generic environment as well as the guidelines. Fourth, a generic development process for the
systematic specification of a complete and structured automated interoperability test system
with message checks (Section 4.4). This methodology provides a first step to a formalized
and systematic assessment of systems’ interoperability in an automated manner. It can be
applied in Phase III of the IAI process to facilitate the assessment of interoperability, which
we describe in Section 3.4. This chapter is partially adapted from [8, 122].

4.1 A Generic Environment for Automated Interoperability Tests

As a basis for the development of automated interoperability test systems, we present
a generic environment for automated interoperability tests, which we adapted from the
methodology presented in [36]. The generic interoperability test environment is depicted
in Figure 4.1. It contains the SUT, which is composed of two or more EUTs, an intercon-
necting network, optionally one or more application support nodes, and different means of



4 A Methodology for Automated Assessment of Interoperability 36

Means of Interoperability Testing

Test Oracle

Test Coordinator

SUT

Application Support Nodes

EUT 1
EUT N

EUT 2Interface
Monitor

Equipment
User

EUT N

Interconnecting 
Network

Configuration 
interface

Monitoring 
interface

Stimulating 
interface

Verdict
interfaceinterface interface interface interface

Figure 4.1: Generic interoperability test environment

interoperability testing. We designed the environment independent of the SUT, as well as
of the test language used to implement the means of interoperability testing.

For the interoperation of the tested equipment, the interconnecting network and applica-
tion support nodes are essential. They usually belong to the service that is provided to the
end user. However, they are neither part of the SUT nor of the means of testing. Applica-
tion support nodes include all the devices involved in providing the service or functionality
to the end user, but which are not object of the test, e.g., a database with user data. The
interconnecting network includes all the devices needed to provide the required network
connections. These devices do not need to be tested, because we assume that they were pre-
viously tested and properly configured with an initial configuration. However, their initial
configuration can be changed during test execution.

The means of interoperability testing allow the structured specification of interoperability
tests with the focus on test automation and are comprised of four test entities: the equipment
user; the interface monitor; the test coordinator; and the test oracle. The equipment user pri-
marily acts as the end user of a service or functionality, but can also configure EUTs, the
interconnecting network, and application support nodes. The equipment user is mainly used
to trigger the interoperability tests in an automated way from end to end user. The interface
monitor checks messages and protocol procedures on communication links for their confor-
mance to a standard during the execution of an interoperability test. The test coordinator
coordinates and synchronizes all instances of the interface monitor and the equipment user
involved in a test execution. The test oracle collects all verdict information from the instan-
tiated interface monitor and equipment user to resolve the interoperability and conformance
verdicts of the executed test.
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4.2 Guidelines for Specifying Automated Interoperability Tests

The following guidelines contain two main aspects that need to be followed during the
specification of automated interoperability tests: the adherence to test design guidelines
and crucial aspects that need to be considered for test automation. The application of the
guidelines help the interoperability tester to structure and to automate interoperability tests.

4.2.1 Test Design Guidelines

We provide design guidelines for developing interoperability tests to keep the interoperabil-
ity test specification consistent and maintainable. These guidelines include concepts that are
already used in common software development. Therefore, in the following, we distinguish
between common guidelines and guidelines specific for automated interoperability testing.
The common test design guidelines are:

• The application of naming conventions increases code readability, consistency, and
maintainability. Naming conventions facilitate the detection of semantic errors and
allow a better understanding of the code for a distributed development team.

• Using an identical programming language version for the development of the test
suite avoids conflicts of concepts available in different versions.

• The modularization of the test suite enables the reuse of definitions for interoper-
ability testing, which should be isolated from definitions specific to the test suite. The
test suite should be designed in libraries [127].

• The use of functions clearly separates and isolates behavior specific to the test suite,
interoperability testing, specific protocols, and the SUT to their respective libraries.
This functional design approach maximizes the reuse of functions.

• Documentation of the source code of the test suite makes it easier to understand.
The documentation should be independent of Integrated Development Environments
(IDEs). For this purpose, standardized documentation tags [42] should be used.

The test design guidelines specific for automated interoperability testing are:

• The use of test case orchestration by specifying multiple test components in a test
suite. Each test component handles different and independent tasks. The test compo-
nents are only used if they are required. For example, one test component should be
specified for the configuration of the equipment during the preamble and another one
for monitoring an interface during the execution of the test body.

• The application of message template design allows the extension of message types
with additional message fields with minimal changes of the affected template. It
can be identified by analyzing the protocols and interfaces implemented by the SUT.
The design approach allows the extension of message types with additional message
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fields with minimal changes of the affected template. All other related templates do
not require updates. The adoption of this design approach in template additions to the
test suite helps to improve the maintainability and readability of the test suite.

• The abstract handling of proprietary interfaces allows their common and transpar-
ent access. Equipment operations should be implemented in an abstract way based
on a command request and response paradigm. Commands are abstract descriptions
of actions to be taken, e.g., “enter a contact” or “initiate a Voice over Internet Proto-
col (VoIP) call”. Abstract primitives can have abstract parameters, e.g., identifier of
the terminating user. The interfaces are then translated in the lower adaptation layer.

• The implementation of message skipping avoids analyzing messages that are in-
significant for the test. Message skipping is required if complex messages that are
part of a longer message exchange on the monitored interface need to be checked.
Dispensable messages may appear in between and can be part of the preamble or
other unanticipated traffic that offsets the message observation from its anticipated
occurrence in the test description call flow. The beginning of the sequence to be ana-
lyzed needs to be located, which means that all preceding messages are skipped. This
issue is unique to interoperability testing.

• The management of EUT interface information is needed as part of the test system,
because the configuration of a test suite with EUT interface information can be a
laborious and tedious task. Also, it is possible that the interface information changes
during different interoperability tests. Management of EUT interface information
facilitates updates of interface information quickly without introducing errors. The
management should be generic to make it applicable for interfaces of different EUTs.
It should be compilation independent so that information changes are applied without
rebuilding or recompiling the test system.

4.2.2 Test Automation

A typical application of test automation is regression testing, where the tests need to be
re-executed, because a functionality of the SUT was changed or added. In case the test
execution is automated, test experts can concentrate on the evaluation of test reports. During
interoperability events, test automation is also applied for the evaluation of test results to
highlight critical parts. This reduces the manual assessment of the test results and facilitates
the trace analyses for executions of the same test for different vendor pairings.

For test automation, the test interfaces need to be available and accessible so that they
can be used by the tests to stimulate, to observe, and to monitor the SUT. Ideally, these
interfaces are open and standardized to facilitate their access independent of vendors.

Before test automation is applied, a cost/benefit analysis must be performed to identify
to which degree the application of automation of interoperability test case execution is suit-
able and acceptable in terms of development costs and effort. This means that limitations
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regarding the test automation need to be identified. To this aim, several aspects regarding
the SUT, including its topology, involved protocols, the complexity of the protocols, and
the stability of the standards are considered. In addition, required resources to develop and
execute the automated interoperability test system, e.g., manpower, hardware devices, and
software are identified. The required resources are then adjusted to the available resources,
e.g., by increasing or decreasing the degree of test automation.

However, the degree of test automation is often a compromise between testing require-
ments and feasibility. The development of a fully automated test system and the entire
testing process may not be profitable since the resources required to implement all parts of
the tests need high effort and are, therefore, prohibitively expensive. There are cases, where
interfaces are easier accessible in a manual than in an automated manner. This is especially
the case if proprietary interfaces are involved in the test.

Different activities of interoperability testing can be automated:

• configuration of the EUTs and the interconnecting network,
• monitoring of relevant interfaces between EUTs,
• validation of the EUT communication,
• simulation or emulation of equipment (can be external),
• operation of all equipment involved in an interoperability test, e.g., EUTs,
• computation of test verdicts,
• execution of tests, and
• generation of test reports.

Ideally, all the tasks are automated. The degree of test automation depends on the iden-
tified limitations and on the test execution environment. For example, in interoperability
testing in the context of interoperability events, an emulation of complex interfaces of the
EUT can lead to the introduction of interoperability problems or even mask errors that exist
in the EUT. Therefore, real equipment should be used and its operation should ideally be
automated. In practice, automating all the activities mentioned above is rarely achieved.
Often, manual checks and actions complement automated test steps.

To create a suitable test system, it should be possible to control the degree of automation
related to the EUTs. The test system should be adaptable to the limitations of different
equipments. Therefore, it should be possible to adjust the interfaces that are monitored and
the interfaces that are operated for each test according to the SUT. In our approach, test
automation is controlled during the tests by setting the tests to live or to offline mode. The
differences between both modes are depicted in Table 4.1. In the live mode, the analyses of
messages are performed automatically on live capture during testing. The operation of an
equipment can be done either manually or automated. In the offline mode, relevant traffic of
all interfaces is captured in traffic capture trace files and the analyses of messages are done
automatically after test execution. Therefore, automated equipment operations are disabled
for test executions in the offline mode.
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Capture Mode offline live
Message checking Performed on traffic capture

files after testing
Performed on live capture dur-
ing testing

Equipment operation Disabled Manually or automatically

Table 4.1: Live and offline modes

4.3 TTCN-3 Library for Automated Interoperability Tests

We developed the TTCN-3 Interoperability Test Library (LibIot)2, which implements the
generic environment for automated interoperability testing and applies the test design guide-
lines. We choose TTCN-3 to specify the test suite, because TTCN-3 supports the definition
of concurrent tests, allows dynamic test configurations, and implements a rich type system,
which includes concepts like verdicts and native list types.

LibIot follows our test design rules and is the basis for test component types, test in-
terfaces, and test parameter definitions of automated interoperability tests. LibIot is used
together with other TTCN-3 libraries, e.g., the LibCommon and the LibUpperTester. The
LibCommon contains basic definitions for test suite implementation, e.g., type definitions,
verdict handling, timing, test components, and synchronization. The LibUpperTester is a
collection of reusable TTCN-3 definitions that are related to upper tester specification for
conformance and/or interoperability testing including an abstract equipment operation pro-
tocol. Figure 4.2 shows the library dependencies of a test suite, called SpecificATS, which
is an ATS that imports the generic libraries and specifies test cases specifically related to the
SUT. The protocols that are utilized within the SUT should also be developed in libraries
(LibSpecificProtocol) to allow their reuse for other systems based on the same protocols.

LibIot implements the basic functionalities of the means of interoperability testing, i.e.,
the test coordinator, the equipment user, the interface monitor, and the test oracle, as de-
picted in the generic environment for automated interoperability tests in Figure 4.1. Even
though we use TTCN-3, both the generic environment for automated interoperability testing
and the library are designed in a generic way and are, therefore, applicable in a variety of
domains.

The test oracle is implemented by an oracle server and one or more oracle client compo-
nents. The oracle server collects the verdict predictions from the oracle clients, which are
used by other components. Figure 4.3 depicts the relations between the component types
that are specified in LibIot. The oracle server TTCN-3 component type is extended by the
test coordinator component type. The test coordinator component is dedicated to coordinate
and synchronize the behavior of all other test components, which work on tasks indepen-
dently. The test coordinator also controls the overall execution and manages the testing
phases, as well as the final conformance verdicts and the interoperability verdicts.

2The TTCN-3 specification of LibIot can be downloaded from http://t3tools.informatik.

uni-goettingen.de/trac/browser/trunk/ETSI-Testsuites/ETSI_auto_IOT/ttcn/LibIot

http://t3tools.informatik.uni-goettingen.de/trac/browser/trunk/ETSI-Testsuites/ETSI_auto_IOT/ttcn/LibIot
http://t3tools.informatik.uni-goettingen.de/trac/browser/trunk/ETSI-Testsuites/ETSI_auto_IOT/ttcn/LibIot
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Figure 4.2: Library dependencies
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The oracle clients can be extended by the interface monitor or the equipment user to send
local verdicts to the oracle server. The equipment user acts as the end user of the service
and can be used for configuring or triggering an EUT, the interconnecting network, or an
application support node. The interface monitor component type is dedicated to monitor
a logical interface either between two EUTs or between an EUT and an application sup-
port node. It checks messages and procedures on communication links and also calculates
conformance verdicts.

Only a basic structure for test automation of the different types of interoperability testing
activities are defined in LibIot. Foremost, this is the definition of the aforementioned means
of interoperability testing. They are the basis for the test automation and are used and
specified in the ATS with consideration of the identified limitations for the SUT. In addition,
LibIot defines a basic structure for the configuration of the EUTs and the interconnecting
network. LibIot specifies test parameters for EUT interface information of each system
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participating in an interoperability event, e.g., supported interfaces, domain names, and
user identities. Furthermore, from a previously defined list, the systems participating in the
interoperability test are selected. This means that the test case specifications are independent
of specific EUT configuration information. It is also possible to disable observations of
specific interfaces in order to adjust tests in case an interface is not accessible. This results
in disabling the execution of the associated monitor component. The test parameters support
the setting of the capture mode, i.e., to switch between live and offline message checking
during the interoperability test execution.

Time limit parameters are set in general and are applied throughout the whole test suite.
They can be used to set the maximum time for a monitor test component to wait for an
incoming message.

4.4 Development Process for Automated Interoperability Tests

We present the Development of an Automated Interoperability Test System (DAITS) to show
how automated interoperability tests can be developed in a systematic and formalized man-
ner based on LibIot and the test design guidelines. The DAITS process contains methods for
the analysis of critical aspects that require considerations before and during the development
of a complete interoperability test system. The test system developed by the application of
the presented DAITS process can be implemented in any language and specified for any
distributed system.

Our DAITS process comprises four main phases: prerequisites, interoperability test de-
sign, test case specification, and validation. Figure 4.4 shows the complete DAITS process.
Throughout all phases, the generic environment for automated interoperability tests de-
scribed in Section 4.1 and the guidelines for specifying for automated interoperability tests
described in Section 4.2 are applied and form the basis of DAITS.

4.4.1 Roles

Roles in software testing are: test manager, test designer, test automator, test administrator,
and tester. Spillner et al. define and describe each of these roles in [132]. These roles
also apply for the development of a complete automated interoperability test suite, which
is developed by multiple stakeholders taking different roles. However, the development
of an automated interoperability test suite is mainly done by the test designer and the test
automator. For finer granularity and clearer matching of the roles on tasks of the DAITS
process, we split the role of the test automator into the following roles.

• Test library implementer defines generic test libraries.
• Test system architect specifies the test system.
• Test case implementer develops test cases.
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Figure 4.4: Process for the Development of an Automated Interoperability Test System

• System adapter and codec implementer implements the interface between the test
suite and the SUT.

For test automation purposes, all four roles of the test automator use a programming or
specification language. In the remainder of this section, we map the roles to the different
tasks of the DAITS process.

4.4.2 Prerequisites

The prerequisites for the DAITS process are the test architecture, test descriptions, the li-
brary for automated interoperability tests, and the identified limitations. The library for
automated interoperability tests is described in Section 4.3 specifically for TTCN-3 and
provides functionalities regarding interoperability testing for test system specifications. It
is the basis for the definition of test component types, the test interfaces, and the test param-
eters. It is developed by the test library implementer. If a standardized common protocol,
e.g., SIP, is involved in the test, a test library for this protocol can be implemented by the test
library implementer. This library is then input for the test development and can be reused
by other test suites.

The two inputs test architecture and the test descriptions are described in the previous
chapter in Section 3.4. As a further input to the DAITS process, the SUT is assessed for
limitations to determine the possible degree of test automation. This can include consid-
ering security issues, e.g., encrypted messages, accessibility of entities of other providers,
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and the configuration and operation of involved equipment. This assessment is especially
interesting when interfaces involved in the interoperability tests are not standardized. The
test designer develops the test architecture, specifies the test descriptions, and identifies the
limitations.

4.4.3 Interoperability Test Design

The test system architect conducts the interoperability test design, which leads to the defi-
nition of all structural information required for the definition of the test entities. This also
includes the specification of their behavior as well as the communication between them and
with the SUT. This means that the test system architect defines the test configurations, the
message structures, and the test parameters.

For the definition of a test configuration, the test system architect creates a concrete in-
stance of a test architecture on the basis of test entities, communication links and their con-
nection. For this, the test system architect identifies the EUTs, interfaces for monitoring,
and test entities in the test architecture. The test configuration defines the entity instances,
which realize the functionality of one or more test entity types. This increases reusability
of test behavior across a test suite and makes test case specification less dependent on the
availability of interfaces.

Afterwards, the test system architect defines the message structure for all interfaces based
on their respective protocol specification. In case the protocol specification standardizes the
abstract syntax of messages, e.g., by using Abstract Syntax Notation One (ASN.1), this step
is not needed. In case that proprietary interfaces need to be accessed, an abstract access
handler should be implemented.

The definition of test parameters is required to ensure the adaptability of the test speci-
fication for different execution environments or SUTs without modifying executable code.
In general, test parameters should be specified for different generic functionalities, e.g.:

• The EUT interface information parameter is used to set configuration data, e.g.,
identifiers and addresses of involved equipments, to allow an easy adaption of test
cases to equipment provided by a different vendor.

• Time limit parameters are used to set timeout values, e.g., for a response time or for
the time length of an activity in a test case.

• Message parameters allow adapting test cases to specific needs of a testing environ-
ment or of EUTs, e.g., the setting of specific user identities.

• Interface availability parameters allow enabling and disabling observations of spe-
cific interfaces that are not accessible in an automated manner.

• The capture mode parameter switches the message checks between live and offline
mode.
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4.4.4 Test Case Specification

The next phase of the DAITS process comprises the specification of test cases, which is
done by the test case implementer. A test case is a sequence of test steps that are executed
on different test entities. A test step is typically a group of elementary actions and checks
that together fulfill a specific goal. Similar to subroutines and functions in conventional
programming languages, it is useful that the test case implementer collects test steps in a
test step repository and reuses them across a test suite. The test step definitions should be
parameterized to improve their potential for reuse.

For the definition and specification of a test step, the following guideline should be fol-
lowed:

1. Select and isolate the sequence of actions and message checks that fulfill the same
abstract purpose.

2. Specify the content of the messages that are sent and expected as defined in the stan-
dard based on specific criteria.

3. Introduce guards to avoid deadlocks and define timeouts in case of no activity.

4. Handle exceptions.

5. Assign an appropriate test verdict type, i.e., interoperability or conformance verdict
type, to the test steps.

The selection of the actions and checks for their integration into a test step is mainly
determined from the testing experience of the test case implementer. Feasible sources for
the identification of test steps are test descriptions, which already specify abstract sequences
of actions and checks. Developing test steps from test descriptions and conformance test
purposes has the following advantages. The terminology and identifier naming is aligned
between a test case specification and a test description. With a test description, it is easy
to identify the relations between a test specification and an SUT specification. This allows
easier maintenance of the test steps in case the test description changes. In addition, the
readability of interoperability test execution traces is improved.

Reusable interoperability test steps are categorized and stored in two repositories. The
equipment operation repository includes all actions required to configure and operate a spe-
cific EUT as well as application support nodes and the interconnecting network. The mes-
sage check repository contains the message checks applied to the monitored interfaces. The
repositories are built on-the-fly during the specification of test cases.

An interoperability test case is specified from a test description. The specification of each
test case is structured into the following five successive parts.

1. The test configuration setup instantiates the interoperability test entities and their
communication links.



4 A Methodology for Automated Assessment of Interoperability 46

2. The preamble consists of a preliminary set of steps to put the SUT and the network
elements that are involved in a test into the state that is described in the pre-test
conditions. This includes configuration actions, e.g., the registration of a user.

3. The test body is the sequence of test steps and contains actions and checks for each
test entity instance. These are needed to achieve the interoperability and the confor-
mance test purposes.

4. The postamble includes a set of test steps to return the SUT and the involved network
elements into their initial configuration.

5. The tear down establishes the initial state of the test environment. The test system
resources, e.g., interfaces, users and memory, should be released by invoking a gen-
eral purpose function to release resources. The creation of the initial states prevents
abnormal test terminations on the following test case executions.

In general, tests should be specified in a way that handles abnormal test termination
properly. To this aim, general purpose functions to manage exceptional events are defined.
These functions are called in case a timeout occurs, i.e., the test system receives no input
for a specified amount of time.

The specification of the test coordinator behavior includes the creation and management
of test entities required for the tests. In addition, the management of final test verdicts based
on the execution of other test entities is specified.

The test case implementer specifies the test cases as part of the ATS. The ATS consists
of test suite specific definitions, e.g., test configuration management, test case statements,
and test purpose checking functions. Reusable definitions are isolated from ATS specific
definitions in libraries. The ATS and library specific modules are distinguished by their
prefix as “Ats” or “Lib” respectively. An ATS for interoperability tests is structured in a
systematic way and consists of the following modules:

1. The TypesAndValues module defines ATS specific types and values, without test
components.

2. The Templates module defines ATS specific templates.

3. The TestSystem module defines component types used to create MTC and PTCs, and
the test system component type.

4. The TestConfiguration module defines functions that establish the configuration of
the test system.

5. The Behavior module defines ATS specific functions for message checks related to
test purposes as well as conformance criteria associated with test descriptions.
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6. The Functions module defines ATS specific functions that are not directly related to
a specific test purpose.

7. The TestCases module defines test cases that can be split into multiple modules, e.g.,
for grouping test cases according to functionalities.

8. The TestControl module defines the control part for test case selection.

The test case specification completes the ATS specification. At this point, tests are writ-
ten in a formal manner, but are still not executable. Therefore, the codec and adaptation
functions are implemented by the system adapter and codec implementer to complete the
executable test system. Within these functions, messages that are exchanged with the SUT
are converted from the abstract representation into the transfer protocol syntax and vice
versa (encoding and decoding respectively). After encoding and decoding, messages are
transferred via test interfaces to and respectively from the relevant EUT in the SUT. The
adaptation functions also provide means for the test entities to communicate with other test
equipment including application support nodes and the interconnecting network. This can
be used to apply protocol analyzers or to jam the equipment, e.g., in stress testing. Fur-
thermore, related to the message checks, the message traffic of a monitored interface can
be filtered according to specific rules to a logical interface used by the traffic capture entity.
The adaptation layer also implements the mapping of abstract operations of an abstracted
EUT interface to a concrete, proprietary interface. This is used for the configuration of
EUTs. For each vendor, a mapping to their specific interfaces is implemented. Only on the
abstract level of the test case specification, the EUTs can be used independently from the
vendor. The adaptation layer makes it possible to actually execute the test cases and control
their execution. After compiling and linking the ATS with these functions, an executable
code, the Executable Test Suite (ETS) is obtained.

4.4.5 Validation

Validation assures that the test system faithfully reproduces the behavior specified for each
test description at its interface. First of all, the test system specification is reviewed against
the test descriptions by independent test experts. Second, the test system is connected and
executed against a real SUT by the tester. If no SUT is available, the test system can be
tested in a back to back configuration or with an SUT emulator. Afterwards, the results of
the tests are reviewed and validated. According to the results of the validation, improve-
ments of the test specification and corrections of errors in the system adapter are applied
after the validation step is completed.
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4.5 Related work

The foundations of this chapter are described in [36], where concepts for interoperability
testing, a description of a test architecture as well as a process for developing and execut-
ing interoperability test specifications are presented. However, the approaches described
in [36] focus on certification of systems. For this, a so called golden or reference imple-
mentation, against which all the other implementations are tested, is required to run the
tests. Our generic environment for automated interoperability tests and the DAITS process
is applicable in interoperability events. Therefore, our approach does not need a reference
implementation, since all implementations are tested against each other. Our generic en-
vironment, the test design guidelines, and the DAITS process complement and extend the
concepts described in [36] by covering aspects related to the testing of distributed systems
and the automation of interoperability testing for the purpose of validating standards and of
validating systems against standards. The concepts presented in this chapter are discussed
in detail in three ETSI documents: ETSI EG 202 810 [35], ETSI TR 102 788 [37], and an
ETSI white paper [8].

In the following, we compare our contribution to work that has been done in the field
of automated interoperability testing. Vega et al. present a design of a test framework for
automated interoperability testing of healthcare information systems [145]. Their approach
is not generic since it is only applicable in the healthcare area. Furthermore, it is not clear
to which degree they apply automation. The difference of the presented approach is that our
methodology is generic and, therefore, independent of the SUT. In addition, we provide a
definition of test automation and its degree.

Brammer investigates the automation of terminal interoperability tests [98]. He suggests
tasks, which can be automated in interoperability testing of mobile terminals from differ-
ent vendors. We discuss automation related to the automated test life cycle methodology
presented in [22]. However, our process and methodology focus on interoperability test-
ing and, therefore, take important interoperability aspects and concepts into consideration.
Brammer only presents a domain specific solution. Our interoperability methodology can
be used independent of the SUT.

Dibuz and Kremer present a framework for automated interoperability tests and its appli-
cation to Robust Header Compression (ROHC) [20]. This framework is defined in TTCN-3.
Our methodology and the test development process can be instantiated in the programming
language of choice. In addition, it is also unclear to which degree Dibuz and Kremer applied
automation of the tests.

Many papers consider automated generation of interoperability test cases, e.g., [10, 19,
128]. In contrast, we present an approach for automated interoperability test execution
and automated interoperability assessment, which does not consider interoperability test
generation.
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For the initial case study, we choose to analyze the interoperability of homogeneous systems
for which stable standards already exist, because the interoperability analysis and interop-
erability assessment is easier than for heterogeneous systems. A homogeneous system is
specified in the IMS standards [1]. The IMS standards comprise a set of specifications that
enable implementations of IP-based networks to use services simultaneously with equip-
ment that is attached to fixed and mobile networks. IMS standards already specify interfaces
for interoperation with other IMS networks.

In this case study, we instantiate the IAI process that we describe in Chapter 3 for IMS
networks. As part of the IAI process, we assess interoperability of IMS networks in an
automated manner as we describe in Chapter 4. Since IMS networks have well defined in-
terfaces, the development of an automated interoperability test suite is not as limited as in
heterogeneous environments. Before the utilization of our methodology, IMS interoperabil-
ity testing was largely performed in a costly and manual manner. Therefore, we advance
the state-of-the-art of IMS interoperability testing.

This chapter is structured as follows. In Section 5.1, we discuss Phase I of the IAI process,
which includes the identification of the prerequisites for interoperability of IMS networks.
As the standards are already engineered for interoperability, we can skip Phase II. We de-
scribe the development of an interoperability test system for IMS using TTCN-33 as part
of Phase III of the IAI process in Section 5.2. The test system assesses the interoperability
of IMS networks in an automated manner through the application of the generic method-
ology for automated interoperability assessment including the instantiation of the DAITS
process. Based on the results of Phase III, we briefly describe how interoperability of IMS
networks can be improved as part of Phase II of the IAI process in Section 5.3. We con-
clude this chapter with related work in Section 5.4. This chapter is partially adapted from
our previous publication [122].

3The IMS interoperability test system can be downloaded from http://t3tools.informatik.

uni-goettingen.de/trac/browser/trunk/ETSI-Testsuites/ETSI_auto_IOT

http://t3tools.informatik.uni-goettingen.de/trac/browser/trunk/ETSI-Testsuites/ETSI_auto_IOT
http://t3tools.informatik.uni-goettingen.de/trac/browser/trunk/ETSI-Testsuites/ETSI_auto_IOT


5 Interoperability of IP Multimedia Subsystems 50

5.1 Phase I: Interoperability Prerequisites

The interoperability analyst analyzes the IMS standards [1] from which the analyst extracts
common and complementary functionalities of IMS networks. Common capabilities of IMS
networks are, e.g., the registration in the IMS network, voice calls, message exchange, and
the usage of application servers.

An IMS core network is required to interoperate with other IMS core networks over IP.
The Network-to-Network Interfaces (NNIs) of IMS core networks are specified in the IMS
standards. From the analysis of the IMS standards and of the IMS architecture, which
is schematically depicted in Figure 2.11, the interoperability analyst determines that the
standardized Gm, ISC, and Mw NNIs, which are most important for IMS interoperability,
need to be assessed in Phase III. The input for Phase III are the IMS standards as well as
the report about interoperable interfaces of IMS.

5.2 Phase III: Automated IMS Interoperability Testing

The interoperability of IMS network implementations and the quality of the IMS standards
related to interoperability need to be assessed by means of interoperability testing with mes-
sage checks to identify interoperability gaps. Therefore, we developed an interoperability
test suite, which is used to assess the interoperability as well as the standards of IMS im-
plementations. We applied the methodology for automated interoperability assessment and
instantiated the DAITS process. The test suite comprise scenarios, where the interoper-
ability of two IMS network implementations is evaluated at their standardized NNIs. This
means that interoperability and conformance are assessed in different configurations, e.g.,
IMS interworking, IMS roaming, and topology hiding.

5.2.1 DAITS Process Prerequisites

For the development of an automated interoperability test system for IMS, four prerequisites
are required by the DAITS process as depicted in Figure 4.4. The test system architect uti-
lizes the LibIot library as the first prerequisite. The TTCN-3 ATS for IMS interoperability,
which is specified in the interoperability test design phase, imports the LibIot as Figure 4.2
shows.

As the second prerequisite, the test system architect receives the test architecture from
the test designer. Figure 5.1 depicts one example IMS test architecture, which is based
on the IMS network architecture. The IMS networks A and B are connected via the Mw
interface. Additionally, IMS network A is connected to User Equipment A (UE_A) and
IMS network B is connected to User Equipment B (UE_B). The test designer identifies IMS
network A as EUT_A and IMS network B as EUT_B. The tester maps IMS networks that
are implemented by different vendors to these abstract identifiers.
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Figure 5.1: Example test architecture - interworking IMS networks

As the third prerequisite, the test system architect receives the test descriptions from the
test designer. The test designer specifies the test descriptions based on the IMS standards,
IMS architecture, and the report of Phase I. Figure 5.2 shows an example of a test description
for the interoperability test “IMS Call Cancelation by Calling User”. The identifier of this
test description is TD_IMS_CALL_0014, which can be mapped to a concrete test case.
The interoperability test purpose is to check if the IMS network handles cancelations from
a calling user before the call is established correctly. The test architecture that is used in this
test is presented in Figure 5.1. The referenced standard, which will be assessed, is specified
in the document TS 124 229 [44]. Before executing the test, UE_A and UE_B are registered
in EUT_A and EUT_B respectively.

The test sequence includes the verification of end-to-end functionality. Figure 5.3 depicts
the test sequence in a sequence diagram. UE_A is used by user A to call UE_B of user B.
As a result, EUT_A contacts EUT_B to initiate the call. After UE_B started ringing and
before user B answers, user A decides to cancel the call.

Messages that are expected during the execution of the test sequence are specified in the
conformance criteria. In this case, the criteria refer to one conformance test purpose, which
checks the attributes of the CANCEL message received by EUT_B and sent by UE_A to
UE_B. We use this test description as a running example for the application of the DAITS
process throughout this section. For other test descriptions for IMS NNI testing, the reader
is referred to [41].

For the fourth prerequisite, which are the limitations, we identified three limiting factors
for the IMS network architecture.

1. Authentication and security: It is not possible to check encrypted messages on
the Gm interface. To enable monitoring, IPsec authentication has been disabled to
conduct this case study.

2. Interface accessibility: Although the ISC interface is standardized, it may not be ex-
ternally accessible when the IMS network and the application server are implemented
by the same vendor.
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Test Description
Identifier TD_IMS_CALL_0014
Summary IMS network handles cancels of a call by a calling user correctly 

before the call is established
Test Architecture Interworking IMS Networks (CF_INT_CALL)
Specification 
Reference

TS 124 229 [44], clause 5.4.3.2 ¶119 (item 1 in 8th numbered list)
Reference
Pre‐test 
Conditions

 Home Subscriber Server (HSS) of IMS_A and of IMS_B is 
configured according to table 1 of ETSI TS 186 011‐2 [41]

 UE_A is registered in IMS_A using any user identity
 UE_B is registered in IMS_B using any user identity

Test Sequence Step
1 User A calls User B
2 Verify that User B is informed of incoming call of User A 
3 Verify that User A is informed that UE_B is ringing y _ g g
4 User A cancels the call, before User B answers or before 

network timeout
5 Verify that User B is informed that call has been cancelled 
6 Verify that User A is informed that call is terminated 

Conformance 
Criteria

Check

1 TP_IMS_5107_03 in CFW step 24(CANCEL):

ensure that {

when { UE_A sends CANCEL to UE_B }

then { IMS_B receives the CANCEL

containing no Route_header

indicating the S-CSCF_SIP_URI g

of IMS_A }}

Figure 5.2: IMS test description: “IMS Call Cancelation by Calling User” [41]

3. Equipment accessibility: Interfaces to configure and operate UEs, e.g., to initiate
a call, as well as interfaces to configure the IMS network elements, e.g., to enter or
block a user in the Home Subscriber Server (HSS), are not standardized and, there-
fore, hard to automate.

The limited access from the test suite to specific IMS network entities and interfaces is
marked in Figure 5.4.
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Figure 5.4: Limitations for automation of IMS network interoperability tests

5.2.2 Interoperability Test Design

For the definition of an IMS test configuration, the required test entities for the test archi-
tecture, which are shown in Figure 5.1, are identified by the test system architect. The
following test component types are imported from LibIot and instantiated:
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Figure 5.5: Test entities, which constitute an IMS test configuration

• four instances of the EquipmentUser4 to trigger and configure two UEs and two IMS
networks, i.e., the EUTs,

• two instances of the InterfaceMonitor to monitor the Gm and Mw interfaces, and
• one instance of the TestCoordinator to manage the different instantiations of the

test entities.

For IMS, the test system architect extends the InterfaceMonitor component type to
the IMSInterfaceMonitor component type as well as the TestCoordinator to the IM-
STestCoordinator to add IMS specific ports. Figure 5.5 depicts the relations between the
test entities and the SUT. Each EUT participating in a test has a dedicated test component
of type EquipmentUser. In this test configuration, the UEs are part of the system adapter
and not assessed for interoperability. The IMSTestCoordinator acts as the MTC. Each
monitored IMS interface is paired with a dedicated PTC of component type IMSInter-

faceMonitor, which receives all relevant message information from the system adapter
via the abstract TSI. These PTCs check the correctness of the message information ac-
cording to the conformance criteria. The conformance criteria of the test description do not
require message checks on the ISC interface and on the Gm interface between EUT_B and
UE_B. Therefore, the test configuration that Figure 5.5 depicts does not consider the ISC
interface.

4In the remainder of this work, we use the typewriter font to highlight TTCN-3 identifiers.
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Figure 5.6: Fully developed test configuration - interworking IMS networks

To allow message exchange between the test entities and the SUT, the ports of the test en-
tities are mapped and connected. TTCN-3 components can communicate with the adapter
via the abstract TSI, which is the system component. Within the ATS, test entities are
mapped to the TSI component via three ports: the adapter configuration port (acPort), the
data port (dPort), and the equipment access port (eaPort). The acPort is the interface
for TTCN-3 components to communicate with the adapter to perform general configura-
tions, to set filters for traffic monitoring in the lower test adapter, and to start and stop traffic
capture. The test adapter uses the dPort to send messages captured and filtered from EUT
traffic to IMSInterfaceMonitor test components. EquipmentUser test components use
the eaPort to request operations of an EUT via the adapter, e.g., for triggering a registra-
tion of an UE. In addition, the test components are connected to each other via two ports:
the icpPort and the vPort. The icpPort forwards test system internal messages to the
IMSTestCoordinator if required. It is of the type IMSCoordinationPort to allow re-
ceiving and sending of SIP messages. The vPort communicates local verdicts to the oracle
server. Figure 5.6 schematically shows the abstract port mappings and connections of the
test components comprising the fully developed test configuration. The test components
with dashed lines are only started in live mode. In the offline mode, the PTCs of component
type EquipmentUser are not started, because the EUTs are driven manually.

Within the interoperability test design, the test system architect defines the message struc-
tures. Listing 5.1 shows the SIP request type definition as an example for defining mes-
sage types. These definitions are based on generic request and response types. The type

record Request is a generic type of a SIP request message. Its definition includes the
following four fields.
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1 type record Request { // SIP Request from IETF RFC 3261
2 RequestLine requestLine,
3 MessageHeader msgHeader,
4 MessageBody messageBody optional,
5 Payload payload optional
6 }
7 type record RequestLine {
8 Method method,
9 SipUrl requestUri,

10 charstring sipVersion
11 }
12 type enumerated Method {
13 ACK_E,
14 BYE_E,
15 CANCEL_E,
16 INVITE_E
17 }

Listing 5.1: TTCN-3 types for a SIP Cancel

1. requestLine contains a method name, e.g., CANCEL; a Request-URI; and the proto-
col version.

2. msgHeader includes all possible header fields that are allowed to be present according
to the Request for Comments (RFC) 3261.

3. messageBody includes messages, e.g., Session Description Protocol (SDP) mes-
sages, which depend on the request method.

4. payload contains the whole message as it has been received in its text format.

After defining all required types, the test system architect defines basic templates in the
ATS based on these types. In our running example, the method field of the RequestLine

definition is set to the value CANCEL_E.
The definition of test parameters concludes the interoperability test design. In case of

TTCN-3, test parameters are module parameters. Listing 5.2 shows the module parameter
that captures the information for all supported interfaces of a system participating in an
interoperability event. The parameter defines the product name and specifies interfaces with
their IP addresses and ports. Within LibIot, the test library implementer defines module
parameters for the generic functionalities as described in Section 4.4.3.

To summarize, in the interoperability test design phase, the test system architect defines
test configurations, develops a basic and generic message structure for the SUT, and defines
all test parameters to configure the tests. All definitions of the interoperability test design
phase are reused during the test case specification.
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1 modulepar ProductList PX_PRODUCTS := {
2 { productName := "Super IMS",
3 monitorInterfaces := {
4 { interfaceName := "Mw",
5 interfaceInfo := {
6 IpInterfaceInfo := {
7 { domainName := "pcscf.ims.etsi",
8 IpAddress := "192.86.1.97",
9 portNumbers := {5060}

10 },
11 { domainName := "icscf.ims.etsi",
12 IpAddress := "192.86.1.98",
13 portNumbers := {5060}
14 }}}}}}}

Listing 5.2: Example TTCN-3 module parameter definition for EUT interface information

1 testcase TC_IMS_CALL_0014() runs on IMSTestCoordinator
2 system IOTSystemInterface {
3 // Part 1. Test configuration setup
4 // Part 2. Preamble
5 // Part 3. Test body
6 // Part 4. Postamble
7 // Part 5. Tear down
8 }

Listing 5.3: Interoperability test case specification structure

5.2.3 Test Case Specification

We exemplify the test case development with our running example. The test description,
which is shown in Figure 5.2, is transformed into a test case, which implements the five parts
as described in Section 4.4.4. Listing 5.3 schematically shows the test case IMS Call 0014
of our running example. The IMSTestCoordinator is chosen to be the MTC and the
IotSystemInterface reflects the interface to upper and lower test adapters.

The test begins with the establishment of the test configuration “Interworking IMS net-
works”, which is depicted in Figure 5.6. To check the conformance criteria as described in
the test description, the IMSInterfaceMonitor test components for the Gm A and the Mw
interfaces are configured and started. Since the test should be executed in live mode, the
lower test adapter is configured for using live mode. For this, a configuration message is
sent from the IMSTestCoordinator to the system component. After all lower test adapter
configurations are completed, traffic capture processing is initiated by the IMSTestCoor-

dinator.
The pre-test conditions of the test description are executed within the preamble. We as-

sume that the IMS networks were manually configured as required. UE_A and UE_B are
then registered in their respective home network. Figure 5.7 shows the message exchange
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Figure 5.7: Successful Registration of UE_A in EUT_A

1 function f_userRegistration(
2 in charstring p_publicId, in charstring p_privateId,
3 in charstring p_pw)
4 runs on EquipmentUser {
5 // LibIot function
6 f_sendEquipmentCmd(valueof(
7 m_EO_Request(c_UE_REGISTRATION,
8 {p_publicId, p_privateId, p_pw})));
9 }

Listing 5.4: User registration function

for performing the task of a registration of UE_A in EUT_A. The vPort is used to commu-
nicate the result of the task to the IMSTestCoordinator test component. Listing 5.4 de-
picts the function for the registration of a user. This function utilizes the generic equipment
operation function f_sendEquipmentCmd that is implemented in the LibIot. The constant
c_UE_REGISTRATION is used as an abstract equipment command for the test adapter to
trigger the registration of the UE.

Listing 5.5 depicts the function calls that specify the test body. The IMSTestCoordi-

nator triggers the behavior by starting the test components passed as a parameter within
each function call. Only after a specific input is sent as an equipment operation to the SUT,
e.g., initiate a call, it is possible to execute the message checks related to this input. In
the following, the function f_mtc_userInitiateCall is discussed as an example for an
equipment operation and the functions f_mtc_check_TP_IMS_5107_03_gm and f_mtc_-

check_TP_IMS_5107_03_mw as examples for the message checks. Other functions of the
test body and of other tests are specified in an analogous way.

Listing 5.6 depicts the specification of the function f_mtc_userInitiateCall. The
requested EquipmentUser test component is started to execute a function implemented in
the LibIms UpperTester library reflecting the action to be taken. In this case, the action
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1 f_mtc_userInitiateCall (v_ueA,v_userInfoB); // Step 1
2 f_mtc_userCheckRinging(v_ueB); // Step 2
3 f_mtc_userCheckPeerIsRinging(v_ueA); // Step 3
4 f_mtc_userTriggerCancelCall(v_ueA); // Step 4
5 f_mtc_check_TP_IMS_5107_03_gm(v_gmA,false); // Check1
6 f_mtc_check_TP_IMS_5107_03_mw(v_mw,false); // Check1
7 f_mtc_userCheckCallCancelled(v_ueB); // Step 5
8 f_mtc_userCheckCallEnded(v_ueA); // Step 6

Listing 5.5: Test body

1 function f_mtc_userInitiateCall (
2 EquipmentUser p_userCompRef, ImsUserInfo p_calledParty)
3 runs on IMSTestCoordinator return boolean {
4 var boolean v_success := false;
5 p_userCompRef.start(
6 f_userCallInitiation (p_calledParty.publicID));
7 p_userCompRef.done;
8 if ( f_getE2EVerdict() == pass) {v_success := true;}
9 return v_success;

10 }

Listing 5.6: Exemplified function specification for an equipment operation

implements the sending of a message to initiate a call from UE_A to UE_B. The func-
tion f_userCallInitiation is a wrapper function for the LibIot function f_sendEquip-
mentCmd, which is also called in Listing 5.4. Similar to the actions of the sequence diagram
depicted in Figure 5.7, the IMSTestCoordinator starts the PTC of UE_A. However, in
this case, the equipment operation with template m_EO_Request sent by user A to the sys-
tem component contains instruction parameters that initiate a call instead of registering a
user. In case the call is initialized successfully, the system component replies with a success,
which is communicated via the vPort to the IMSTestCoordinator.

For checking the conformance criteria of the test description, message checks are speci-
fied. Each message check requires checks on two interfaces as listed in Listing 5.5 (lines 5
and 6). The IMSTestCoordinator function starts relevant IMSInterfaceMonitor test
components for the interfaces involved in the message check - one for the Gm interface and
one for the Mw interface. The function specification of the Gm interface check is depicted
in Listing 5.7.

The IMSInterfaceMonitor test component executes a generic IMS checking function.
All message checks are realized by calling the same generic function f_imsIot_receive.
This function is customized via its parameters, which define checks that are performed
according to the respective test purpose listed in the test descriptions. Figure 5.8 visualizes
the meanings of the different parameters. The function sets the test component conformance
verdict and sends this verdict to the IMSTestCoordinator. It determines a pass if the
received message matches a pass-template and a fail if it matches a fail-template. If there
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1 function f_mtc_check_TP_IMS_5107_03_gm(
2 ImsInterfaceMonitor p_monitorCompRef,
3 boolean p_checkMessage )
4 runs on IMSTestCoordinator {
5 p_monitorCompRef.start(
6 f_imsIot_receive( // LibIms function
7 {mw_SipRequest(mw_CANCEL_Request_Base(?))}, {},
8 {0, omit},"TP_IMS_5107_03", false, p_checkMessage )
9 );

10 p_monitorCompRef.done;
11 }

Listing 5.7: Function for a message check

f_imsIot_receive( Pass template list Fail template list

{mw_SipRequest(mw_CANCEL_Request_Base(?))},   {}, 

{0, omit},  "TP_IMS_5107_03",   false,   p_checkMessage );

Message 
skipping

Test Purpose
identifier

Message 
forwarding?

Check or
Consume?

Figure 5.8: Meaning of the parameters of the generic receive function

is no match, it waits for the next message via the interface until a match arises or the guard
timer expires.

Additional function parameters allow configurations to skip messages, forward matched
messages to the IMSTestCoordinator, and check or consume messages. The function
skips messages in case capture traces contain insignificant traffic or known messages that
do not have to be checked, e.g., from the preamble. This traffic is ignored so that its assess-
ment does not lead to a fail conformance verdict. Matched messages are forwarded to the
IMSTestCoordinator in case that locally received content has to be compared or derived
from messages sent or received in another local scope. The last parameter either removes
or does not remove a message from the port queue. The latter is required in case another
check needs to be performed.

The mw_CANCEL_Request_Base5 is a base template for SIP message checks. Complex
checks are specified in templates derived from the base templates and often named after the
test purpose in the test description. For example, the template mdw_TP_IMS_5107_03_mw

modifies mw_CANCEL_Request_Base and is shown in Listing 5.8.
The invocation of the function f_mtc_check_TP_IMS_5107_03_mw of the test body

handles the part of the conformance test purpose relevant to the Mw interface. The function
uses the template mdw_TP_IMS_5107_03_mw, which Listing 5.8 shows. This template spec-

5The prefix mw is not referring to the Mw interface of IMS but a naming convention indicating a template or
message that contains wildcards. Further naming conventions and their explanations can be found in [37].
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Conformance 
Criteria

Check

1 TP_IMS_5107_03 in CFW step 24(CANCEL):

ensure that {

when { UE_A sends CANCEL to UE_B }

then { IMS_B receives the CANCEL

containing no Route_header

indicating the S-CSCF_SIP_URI 

of IMS_A }}

Figure 5.9: Conformance criteria of the test description for the Mw message check

1 template CANCEL_Request mdw_TP_IMS_5107_03_mw (
2 template CallId p_callId , template SipUrl p_SCSCF_SIP_URI)
3 modifies mw_CANCEL_Request_Base := {
4 msgHeader := {
5 route := (
6 omit,
7 { fieldName := ROUTE_E,
8 routeBody := {
9 ∗, complement(mw_routeBody(p_SCSCF_SIP_URI)), ∗

10 }})}}

Listing 5.8: Specification of the Mw message check

ifies the content of all mandatory fields as described in the conformance criteria of the test
description of our running example as Figure 5.9 depicts. Listing 5.8 and Figure 5.9 shows
the relation between the test description, which is only executable in a manual fashion, and
the test specification, which can be executed in an automated manner.

After the definition of the test body, the post condition that is executed within the postam-
ble is specified. In our running example, all involved IMS users are deregistered. These re-
quests are sent to the system adapter similar to the ones that establish the test configuration.

Furthermore, the initial state of the test environment that is specified in the tear down
part of the test case is established. This includes stopping traffic capture in the lower test
adapter, disconnecting and unmapping test component ports, and removing any selection
requirements for the next test to be executed.

In addition to the specification of the ATS, the system adapter and codec implementer
specifies the codec and adaptation functions for the ETS. To this aim, the system adapter and
codec implementer develops codec functions for SIP and extensions required by the IMS,
lower test adapter functions for capturing IP traffic, and upper test adapter functions for con-
verting equipment operation requests into instructions for equipment operators. However,
the interoperability test adapter is independent of IMS and SIP.
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Figure 5.10: System adapter for the IMS interoperability test suite

Figure 5.10 shows the mapping of the test adapter to the test components. The IMSTest-
Coordinator as well as each IMSInterfaceMonitor test component is mapped to the
lower test adapter via the acPort. The IMSInterfaceMonitor is also mapped to the
lower test adapter via the dPort. Each EquipmentUser test component is mapped via the
eaPort to the upper test adapter. The ETS is built by linking and compiling the ATS, the
codec, and the adapter functions. The ETS is then executed against the SUT.

5.2.4 Validation and Application of the Test System

Within the final phase of the DAITS process, the test system is validated. This was done
through reviews by test experts of ETSI. In addition, the tester executes the ETS against
a real SUT and evaluates the results according to the test specification. We applied the
IMS interoperability test system in the third ETSI IMS PlugtestsTM [28], where eight IMS
network vendors attended. At this event, the tester executed tests related to basic IMS call
functionality, messaging, IMS roaming, topology hiding, MMTEL supplementary services,
and the presence service.

The IMS PlugtestsTM series is organized in test sessions. Each test session is managed
by an independent test session chair, who is appointed by ETSI. The tests of each test
session are executed at match stations in the presence of two IMS network vendor teams
and observers. Before executing a test, each IMS network vendor team connects an IMS
UE to their IMS network. For the test execution, a member of each team operates the UE
based on instructions of the test session chair. The IMS network traffic at the Gm, Mw,
and ISC interfaces are monitored and saved by the test session chair according to the test
description and the test session.

For each test session, 52 tests were available for execution. In the first part of each test
session, the tester executed as many of these tests as possible having one IMS network
vendor in the role of EUT_A and another IMS network vendor in the role of EUT_B. Af-
terwards, in the second part, the roles of EUT_A and EUT_B were reversed and the tester
executed again as many of the 52 tests as possible. The first as well as the second part
had a time limit of 90 minutes. Within these two parts, the focus was on the assessment of
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the interoperability of the two involved systems and excluded conformance analysis. The
interoperability was determined on mutual agreement of all involved parties and recorded
by the test session chair.

In the third part, all test executions were stopped and a manual analysis of the confor-
mance according to the test descriptions was performed. This part was limited to 60 min-
utes. For the analysis, as many tests as possible were selected and reviewed by the par-
ticipating vendors and the test session chair using available trace capture tools. For each
reviewed test, a conformance verdict was determined. All remaining tests were checked
with an automated interoperability testing tool by ETSI representatives. The results of the
conformance assessment were recorded with comments and issues during the test execu-
tion and conformance analysis in ETSI test session reports. For the main interoperability
issues in IMS networks determined in this event and IMS interoperability test automation,
the reader is referred to [38].

495 of 2,805 potential IMS NNI tests were executed out of which 317 were automatically
analyzed for conformance. Analyses of the results of the test executions showed a high rate
of passed interoperability verdicts, which proves a high level of interoperability of IMS
networks. In total, 89% of the executed tests demonstrated interoperability. However, the
conformance of the involved systems to the 3GPP base standard was lower. Only 55% of the
tests showed conformance of the system to the standard. In addition, 13% of all potential
tests were not executed caused by issues outside of the IMS networks, e.g., by a lack of the
support of a feature by a participating IMS network.

5.3 Phase II: IMS Interoperability Improvement

The phase of improving the interoperability of IMS of the IAI process is based on the assess-
ment of the standards. For this, the implementations were assessed in the interoperability
event that we described above. The results of the interoperability event must be analyzed
and comparisons between the same tests applied to different equipments need to be done to
determine if the interoperability issues occurred are related to the implementation or to the
standards. This is done by experts of IMS and standardization such as representatives of
ETSI.

If interoperability issues are caused by the standards, the standards should be updated
regarding the identified issues. If interoperability issues are caused by the implementation,
the implementation needs to be updated according to the result of the assessment. The main
sources of interoperability issues related to the implementations are programming errors
caused by humans. If the issues were caused by the standards, the implementation needs to
be updated as well after the revised standards are released.

After all required updates and improvements related to the standards and their implemen-
tations are done, a new interoperability event can be executed. The test system described
above can be reused to assess the updated IMS implementations in Phase III. If new inter-
operability features are specified in a new release of the standards, the test system must be
extended.
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5.4 Related Work

This section extends the related work that we describe in Section 4.5 with focus on interop-
erability test systems and their development for IMS.

Several works have been done related to IMS conformance testing. These include the
Ixia’s IMS test solution, which is a tool that supports conformance tests but not interoper-
ability tests for IMS [77]. Mulyana et al. deployed a prototyped testbed only for research
purposes to identify issues of IMS implementations related to conformance [95]. However,
they also investigated interoperability of IMS networks with non-IMS clients. This is also
an important topic, but was not the focus of our work. Our focus was to test the interop-
erability between IMS implementations. Tang et al. developed a conformance test bed for
IMS [138]. Their case study is based on the open source IMS implementation Open IMS
Core [61]. They do not consider interoperability testing. Bormann et al. present a confor-
mance test framework for complex services that they applied only for the presence service
of IMS [12]. They only apply their framework to a fraction of IMS functionalities and do
not consider interoperability testing.

Maarabani et al. established a testbed for interoperability tests of the IMS presence ser-
vice [90]. Their experiments only cover the basic functionalities of the IMS presence service
within a single domain. They followed the test specification for the IMS presence service
described by OMA [105]. Our tests are based on the IMS test descriptions provided by
ETSI [41]. In addition, it is not clear if their test drivers are executed manually or auto-
matically. In our test system, the UEs can be stimulated and configured in an automated
manner by instantiations of the equipment user entity. Ernits et al. present an approach for
model-based testing for IMS [25]. They focus on the generation of tests from requirements,
but only cover a fraction of IMS. They provide a feasibility study. In contrast, we presented
a full test system for IMS interoperability that has successfully been applied in several inter-
operability events in an automated manner. In contrast to all listed related work with focus
on IMS interoperability testing, we apply interoperability tests with message checks that are
executed in an automated manner. This allows to check the conformance of messages that
are sent between the EUTs during interoperation. In addition, the discussed related work
does not consider automation. Our tests are executable in an automated manner.



6 Interoperability of Grid and IaaS Cloud
Systems

In this chapter, we analyze the interoperability between grid systems and IaaS clouds with
our IAI process. Both types of systems offer access to distributed and pooled computing
resources and services. In comparison to our study of the interoperability of IMS in Chap-
ter 5, grid systems and IaaS clouds are heterogeneous, which exhibits significantly greater
challenges for both the design of interoperability solutions and the assessment of interoper-
ability.

This chapter is structured as follows. In Section 6.1, we consider the prerequisites of
interoperability between grid systems and IaaS clouds as part of Phase I of the IAI process.
We compare both models based on their architectures to identify common and comple-
mentary functionalities. In Section 6.2, we apply Phase II of the IAI process and describe
solutions for interoperability. This includes the description of several grid-cloud interop-
erability gateway implementations. We show a unique solution for the integration of grids
within IaaS clouds, with which we advance the state-of-the-art of grid-cloud interoperabil-
ity. In Section 6.3, we assess one of the presented interoperability solutions based on the
GCM standards as part of Phase III of the IAI process. To the best of our knowledge, the
interoperability of several grids and clouds has not been assessed before. Based on the re-
sults, we identify characteristics of both system that can be used as a basis for grid-cloud
standardization. We conclude this chapter with related work in Section 6.4. This chapter is
partially adapted from our publications [116, 118, 119, 120].

6.1 Phase I: Comparison of Grid Systems and IaaS Clouds

In Phase I of the IAI process, we analyze the interoperability of grid systems and IaaS
clouds. We identify the prerequisites of interoperability as well as describe the survey about
interoperability solutions. This task is performed manually by the interoperability analyst.

6.1.1 Common and Complementary Functionalities

Based on the direct comparison of the grid and cloud models, which is depicted in Fig-
ure 6.1, we identify common as well as complementary functionalities. Both systems are
based on physical hardware. Within grid systems, the local resources are directly deployed
on physical hardware. In contrast, IaaS clouds offer a resource management interface to
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Figure 6.1: Comparing the layers of cloud with grid

install operating systems and applications dynamically within virtual machines and virtual
infrastructures that are deployed on the underlying hardware. The installation of operating
systems and applications is already done in our grid model, since the local resources on
the bottom layer deploy a pre-configured software stack directly on the physical hardware.
Therefore, a layer with similar functionalities as provided by IaaS clouds does not exist
in our grid model. All grid functionalities including local resource functionalities are on
the same level of abstraction as PaaS and SaaS clouds. However, the deployment of grid
resources on IaaS clouds offers a valuable opportunity for interoperation.

The needs for grid-cloud interoperability are manifold. A combined usage of grid and
IaaS clouds fosters an efficient resource use and resources on demand. IaaS clouds can
be used for data replication and to decrease costs by choosing the best suited solution. In
addition, a grid-cloud interoperability solution would allow the preservation of previous in-
vestment in grid application and system development. For example, it would be possible to
migrate a well engineered grid application and grid environment into an IaaS cloud without
any changes.

6.1.2 Survey Interoperability Solutions

To our best knowledge, standardization institutes do not consider the development of a grid-
cloud interoperability standard. This is mainly caused by the heterogeneity of both systems.
Additionally, there is only low commercial interest in grid systems that are mainly deployed
and applied for academic research. However, some researchers worked on the integration of
grid and cloud systems. In contrast to our work, these approaches usually do not distinguish
between the different cloud layers in relation to the grid model. We describe the related
work in Section 6.4.

In the grid and cloud domains, interoperability approaches exist mainly for interoper-
ability between systems of the same domain. These approaches lay the foundation for
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Standard Unicore 6 GT 4 GLite GOS v3.2 Fura
Security X.509

Security Assertion Markup Language (SAML)
extensible Access Control Markup Language (XACML)
Virtual Organization Membership Service (VOMS)
WS-Security (Transport Level Security (TLS))

Execution Job Submission Description Language (JSDL)
OGSA-BES (Basic Execution Service)
Distributed Resource Management Application API (DRMAA)

Data OGSA-ByteIO
GridFTP (defacto)

Information Web Service Resource Framework (WSRF)
OGSA RUS (Resource Usage Service)OGSA-RUS (Resource Usage Service)
OGSA-UR (Usage Record)

Table 6.1: Comparison of implemented standards in grid systems

grid-cloud interoperability. For interoperability between clouds, interoperability gateways
and standards have been proposed. Many interoperability gateways are implemented within
Cloud APIs. For example, Deltacloud [4] or Libcloud [5], define connectors for several
cloud systems. In addition to interoperability gateways, several cloud standards emerged,
e.g., Open Cloud Computing Interface (OCCI) [102] developed by the OGF and Cloud
Data Management Interface (CDMI) [135] published by the Storage Network Industry As-
sociation (SNIA) [129]. However, cloud standards are still in their infancy and need to be
improved further before global cloud stakeholders adapt them. Standardization effort by
different organizations for cloud systems is described in [96].

In the grid domain, the interoperability gateway approach is implemented, e.g., in the
HiLA for grid applications as well as in the Java Grid Application Toolkit (JavaGAT) [70]
that allow to access grid core services of different grid middleware implementations. Ta-
ble 6.1 illustrates the standards that are in use in popular grid software packages: GT4,
UNICORE 6, lightweight middleware for grid computing (gLite) [62, 86], Grid Operation
System (GOS) 3.2 [155], and Fura [131]. These are dominated by OGF standards asso-
ciated with OGSA and WSRF. Furthermore, the Public-Key-Infrastructure (PKI) X.509
certificate system has found wide-spread adoption in all grid domains. The table also shows
that the OGSA-BES, OGSA-RUS, and OGSA-Usage Records (OGSA-UR) standards have
the broadest adoption amongst the middleware under consideration.

One aspect that is not captured by this table are grid systems that utilize very few stan-
dards. In the United States of America (USA), TeraGrid [139] and Open Science Grid
(OSG) [107] are both dominated by custom-made software, or packages distributed through
the Virtual Data Toolkit (VDT) [141]. In these cases, the only visible standards are GridFTP
and the X.509 identity system. Even authorization by X.509 certificates is handled differ-
ently in different grids. In actuality, no operational grid systems rely exclusively (or even
predominantly) on grid standards, but instead use a patchwork of custom-made and third-
party software packages, expecting sites to be running the same version of the software to
be interoperable.
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It is also essential to note that higher level grid applications often rely on underlying
grid middleware services in a way that inhibits interoperability, even when two implemen-
tations support the same underlying set of standards. The reason for this are incomplete
implementations or patchwork standards environments.

6.2 Phase II: Integration of Grid Systems and IaaS Clouds

In the following, we describe the integration of grid systems and IaaS clouds, which is ap-
plied by the interoperability engineer in Phase II of the IAI process. We present evolutionary
steps towards a feasible solution. Ideally, the different cloud and grid systems implement
standards to allow an extension with systems implementing the same standards.

IaaS clouds provide virtual infrastructures for the deployment of virtual machine images
to start and instantiate virtual machines. If several instances of a virtual machine are started,
software for their balanced utilization as well as for executing and managing parallel tasks
needs to be installed and configured so that the instances can be accessed via abstracted
interfaces. In order to reuse the services provided by a grid system, we deploy grid core
services into the IaaS cloud. The grid system can then be utilized to execute already existing
grid applications within the cloud system and offer new services based on grid technology
within the cloud.

An IaaS cloud that utilizes grid protocols can also be used to extend existing and config-
ured grid systems on-demand during peak times. This setup is depicted in Figure 6.2. For
utilizing the IaaS cloud as well as the grid system, applications and clients communicate
via the same grid core service protocols. This allows an indirect communication between
the grid and the IaaS cloud system based on the protocols implemented in the grid core
services. The management of the cloud environment includes the instantiation of the virtual
machine images, on which the grid core services are readily pre-configured. After cloud re-
sources are instantiated, the grid core services are automatically started and registered with
the information service of the existing grid. Afterwards, these services can be used by the
grid client. In addition, cluster and storage resources can be deployed in the cloud system
as local resource management systems and connected to the grid core services of the cloud.
Through the deployment of the grid core services and the local resources management soft-
ware stack, the IaaS cloud becomes a PaaS cloud that offers computing services as well as
an API provided by the grid middleware.

To increase the usability of managing the grid resources deployed in the cloud, we inte-
grate the management of cloud computing resources into the client layer of the grid envi-
ronment. Figure 6.3 shows the extension of the grid client with the cloud client using the
API of the cloud environment as well as the deployment of the grid core services into the
cloud. The user uses only one client to setup the cloud environment and to send computa-
tional tasks to the grid core services deployed in a cloud environment. In the remainder of
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Figure 6.2: Grid-cloud integration on the infrastructure level

this thesis, we call the grid core services deployed in a cloud environment shortly grid-in-
cloud-services.

Depending on the cloud deployment model, we identified different connectivity options
for the integration. For the initial connectivity option, we deploy the grid-in-cloud-services
in a public cloud. The public cloud is configured and managed through the cloud exten-
sion of the grid client via a custom-made cloud interface. After deployment, the grid-in-
cloud-services are available directly within a public network and can be accessed via a grid
gateway, which is an intermediate access point to multiple grid systems and their local re-
sources. The grid gateway is required if more than one grid system is accessed, because
the grid core services of both grid deployments do not interact directly with each other. A
management entity, e.g., a grid scheduler is required to schedule tasks between the two grid
deployments from an upper layer. In our case, the grid client offers scheduling function-
alities to utilize both grid systems in parallel. The grid-in-cloud-services register with the
information service inside the existing grid via the grid gateway. Then, the grid client polls
this registry to utilize both systems through the grid gateway.

If the public domain of the cloud is accessible via the Internet, the grid-in-cloud-services
are exposed to threats. For the protection of the grid-in-cloud-services, security measures
on instance level are required. Each cloud instance needs to be treated with a specific
security configuration. This includes the application of firewalls and security software for
each instance. This design has a high complexity and overhead for security configurations
and is, therefore, error prone.

We overcome these security issues through the deployment of the grid-in-cloud-services
within a private cloud, which is itself located in a public cloud as shown in Figure 6.3.
The grid-in-cloud-services are only accessible via the cloud gateway, which offers means
to access the resources located in a virtualized dedicated network of our private cloud.
All communications between the grid-in-cloud-services and the grid core services of our
existing grid take place through the cloud gateway. The resources of the private cloud
are not publicly visible, because they are logically separated from the public cloud. Each
resource is protected by the security concepts of the private cloud. Only the cloud gateway
needs to be properly configured to fulfill security requirements.
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Figure 6.3: Grid core services deployment in a private IaaS cloud

The connection between the cloud gateway and the grid gateway is also exposed to
threats. Encryption mechanisms can be applied on transferred data using an encryption
service of a grid middleware. Another possibility is the extension of the local network of
the existing grid with the private network of the cloud via an encrypted Virtual Private
Network (VPN) tunnel. In the VPN scenario, the cloud gateway becomes obsolete. The
grid-in-cloud-services appear locally inside the existing grid environment. This solution
provides a complete separation from public networks and, therefore, a high level of secu-
rity.

In the following, we describe the integration of specific grid implementations with spe-
cific IaaS cloud systems. We integrated several implementations with the aim to identify
commonalities. A major commonality is that the interoperability gateway is implemented
as a cloud extension in the client layer. The user can control and manage grid and IaaS
cloud resources with an integrated client.

6.2.1 Integration of UNICORE and Amazon Web Services

In the first integration scenario, we integrated the grid middleware UNICORE 6 (Sec-
tion 2.3.3.3) and the IaaS cloud AWS (Section 2.3.4.1). We decided to use these imple-
mentations because they are widely used. AWS interfaces are widely adopted by other
cloud systems and can, therefore, be seen as de-facto cloud standards. UNICORE imple-
ments major grid standards, e.g., OGSA-BES and HPC-BP. In contrast, OCCI is still in its
infancy and covers only basics of cloud interfaces.

Figure 6.4 shows the concrete integration based on the abstract solution depicted in Fig-
ure 6.3. Both the existing grid system and the private cloud deploy UNICORE, which can
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Figure 6.4: Deployment of the UNICORE grid middleware in the IaaS AWS cloud

be accessed via OGSA-* interfaces that access the XNJS. The UNICORE User Database
(XUUDB) service performs authentication and authorization in the respective grid envi-
ronment. In addition, the existing grid provides a central registry, where all UNICORE
services are registered. In both environments, we deployed the open source TORQUE Re-
source Manager.

The HiLA shell allows for the development of grid clients using Java. Such clients can
be extended with the cloud extension with little effort. To this aim, we utilize the HiLA
shell to implement our grid client, which we extended by utilizing the AWS API. HiLA
provides a uniform way to access grid core services of different grid middlewares including
UNICORE. This facilitates the goal to support more than one grid system or cloud system
using the same cloud-extended grid client.

The AWS cloud extension needs to fulfill two functionalities: the management of the
AWS environment as well as the control of UNICORE resources in the cloud in an auto-
mated manner. These functionalities are implemented as AWS extension for the HiLA shell
in a package of Java classes. The classes for the automatic AWS cloud management contain
methods to configure, start, and stop the AWS environment utilizing the AWS API.

The classes also allow the instantiation of more than one UNICORE server in the AWS
environment. Figure 6.5 shows the configuration of our solution. We establish a private
subnet for each UNICORE server. We use a 24-bit subnet mask to be able to configure 20
private subnets, which is the maximum number of allowed AWS subnets. In each subnet, a
maximum of 254 instances can be started. The instances can be used for the deployment of
either TORQUE resources or further UNICORE servers. The UNICORE servers communi-
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Figure 6.5: Deployment of the UNICORE grid middleware in the IaaS AWS cloud in mul-
tiple private subnets

cate with the UNICORE gateway of the existing grid system through the internal UNICORE
gateway, which uses the AWS Internet gateway. The UNICORE gateway is part of the UNI-
CORE package and can be used for the communication of several UNICORE grid systems.
Public IP addresses are not needed for the UNICORE servers within the private subnets.
Only the UNICORE gateway within the private cloud needs a public IP address to register
directly with the external UNICORE gateway. To access the UNICORE servers deployed
in a private subnet, a NAT instance with a public IP address can be started. Afterwards,
all instances within a private subnet can be accessed as well as communicate with services
outside the private cloud using the NAT service.

By separating UNICORE servers into different subnets, we can serve organizations inde-
pendent of each other. The separation provides load balancing, isolates behavior of different
applications, and gives flexibility in arranging UNICORE and TORQUE resources.

The classes for the automated deployment of UNICORE resources on AWS instances
contain methods to configure and to start the UNICORE components within the AWS cloud
environment. This includes the configuration of appropriate users on each instance, as well
as the configuration of the UNICORE gateway and the automatic registration of the started
UNICORE components in the registry of the existing grid system. In addition, we config-
ured the UNICORE TSI [142] for using the TORQUE resource management system. We
deployed the TORQUE software manually.
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Figure 6.6: Deployment of GT4 grid middleware on Eucalyptus cloud resources

6.2.2 Integration of Globus Toolkit 4 and Eucalyptus

In the second integration scenario, we deployed GT4 (Section 2.3.3.2) and TORQUE clus-
ter resources in a cloud configured with the open source cloud software Eucalyptus (Sec-
tion 2.3.4.2). We choose GT4 since it is also a commonly used grid middleware implement-
ing OGSA standards. In addition, Eucalyptus allowed us to have full control of our cloud
environment.

For the integration of GT4 and Eucalyptus, Figure 6.6 shows the instantiation of the
design depicted in Figure 6.3. We built the cloud system from scratch. Figure 6.6 shows the
physical machines that are not directly visible in the cloud. The virtual machine image of
the grid front end is configured with the GT4 middleware and a TORQUE server. Both are
pre-configured with default values.

We developed a command line client based on shell scripts for the management of the
cloud system and task management for the grid layer, since GT4 does not support HiLA.
This client utilizes the command line client of GT4 for job submission and the command
line tool euca2ools [45] to configure and start the Eucalyptus cloud. It also includes a
scheduling module. The process to be performed and the deployment of the GT4 resources
on Eucalyptus cloud resources are similar to the ones of UNICORE on AWS resources.
The Eucalyptus cloud is deployed as a private cloud. The GT4 server and the TORQUE
services are started and configured automatically. The GT4 resources in the Eucalyptus
cloud can be used independent of the existing grid or in combination with it. The grid client
is responsible to schedule tasks to both systems.
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Figure 6.7: GCM Architecture

6.2.3 ETSI Grid Component Model

In the third scenario, we propose an integration of grid-cloud interoperability based on the
ETSI GCM standards (Section 2.3.3.4). The GCM standards GCM DD and GCM AD pro-
vide formal specifications of resource information for the involved and possibly heteroge-
neous systems, e.g., grids and clouds. The content and concepts used in the GCM DD have
been derived by abstracting different proprietary interfaces offered by commercial products
in the grid, cloud, and cluster computing domains. The key aspect of the GCM specification
is the mapping of this abstract interface to different proprietary interfaces of these systems
as well as interfaces standardized for this purpose outside of ETSI, e.g., OGSA-BES. Fig-
ure 6.7 shows a generic GCM architecture, which focuses on the GCM AD and GCM DD.
It introduces the deployment manager to illustrate the likely separation of GCM descriptor
processing and provision of the actual resource by the involved systems.

The GCM deployment manager forms an interoperability gateway. The deployment man-
ager itself is not standardized and an implementation of it does not exist, yet. Ideally, the
deployment manager should provide scheduling and application management functionali-
ties to administrate all connected systems and execute distributed applications based on the
GCM AD and GCM DD. Even if a deployment manager is not implemented, the GCM AD
and GCM DD standards provide a good baseline for grid and IaaS cloud interoperability.
The GCM standards define the specification of deployment information and not an interface
for the deployment.

The GCM DD describes the resources that can be requested for the deployment of an ap-
plication on one or more systems. It is converted conceptually by the deployment manager
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into the invocation of specific system services or commands to reserve resources from the
specified system(s). The GCM differentiates between systems with direct access to their
computing resource, as in the case of an IaaS cloud or a set of desktop computers, and
indirect access by using a job scheduler, as in the case of a grid system.

For the application deployment, a GCM AD specifies the mapping of virtual nodes to
real resources as well as the location(s) of input and output data server(s). If a GCM AD is
provided, it is used to establish the runtime environment, which is required for executions
of an application [34].

An example deployment scenario of GCM for the grid system GT4 and the IaaS cloud
AWS EC2 is shown in Figure 6.8. The attributes for describing a GCM DD for GT4 have
already been specified in the GCM standard [33]. An exemplified GCM DD is depicted in
Listing 6.1. GT4 is contacted via a Secure SHell (SSH)-bridge to access the GT4 frontend.
A UNIX-based operating system runs on each computing node, where each contains four
processors, which are represented by the element hostCapacity of the attribute host.
Since GT4 is a system with indirect resource access, the total number of available processors
is not specified.

A GCM DD for the AWS EC2 is depicted in Listing 6.2. The scheme was not available
and had to be developed for this setup. The successful deployment of this GCM DD builds
the foundation for the extension of the GCM standards for AWS EC2. Since AWS EC2 is
a system with direct resource access, the number of included computing nodes needs to be
specified. In our example, the AWS EC2 contains ten computing nodes, which are based on
a Windows operating system. The system is accessed via an SSH-bridge. Both presented
DDs can be merged into one GCM DD file.



6 Interoperability of Grid and IaaS Cloud Systems 76

1 <?xml version="1.0" encoding="UTF-8"?>
2 <GCMDeployment xmlns="urn:gcm:deployment:1.0"
3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
4 xsi:schemaLocation="urn:gcm:deployment:1.0
5 http://etsi.org/schemas/GCMDDSchemas/extensionSchemas.xsd ">
6 <environment>
7 <javaPropertyVariable name="user.home" />
8 </environment>
9 <resources>

10 <bridge refid ="globusGateway" />
11 <group refid="globusGrid">
12 <host refid ="ComputeNodeUnix" />
13 </group>
14 </resources>
15 <infrastructure >
16 <hosts>
17 <host id="ComputeNodeUnix" os="unix" hostCapacity="4">
18 <homeDirectory base="root" relpath="${user.home}" />
19 </host>
20 </hosts>
21 <groups>
22 <globusGroup id="globusGrid"
23 hostname="globus.grid.local"
24 bookedNodesAccess="ssh"
25 queue="free">
26 <maxTime>5</maxTime>
27 <stdout>./output</stdout>
28 <stderr>./ error</stderr >
29 </globusGroup>
30 </groups>
31 <bridges>
32 <sshBridge id="globusGateway"
33 hostname="grid.informatik.uni-goettingen.de"
34 username="globususer" />
35 </bridges>
36 </infrastructure >
37 </GCMDeployment>

Listing 6.1: GCM Deployment Descriptor for Globus Toolkit

6.3 Phase III: Interoperability of the Grid Component Model

We only applied simple test frameworks to the integration scenarios for UNICORE and
AWS as well as for GT4 and Eucalyptus. We checked if the configuration of the cloud
environment and the deployment of the UNICORE resources in the AWS cloud were per-
formed as expected by the cloud extension of the grid client. In addition, we submitted
computational tasks into the UNICORE grid deployed in the cloud successfully. We vali-
dated the GT4-Eucalyptus system and client by submitting parallel grid tasks to resources
of the existing GT4 grid system and on GT4 resources deployed in the Eucalyptus cloud
successfully. This shows that it is feasible to integrate grid systems with IaaS clouds.
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1 <GCMDeployment>
2 <environment>
3 <javaPropertyVariable name="user.home" />
4 </environment>
5 <resources>
6 <bridge refid ="amazonCloudGateway" />
7 <group refid="amazonCloud">
8 <host refid ="ComputeNodeWindows" />
9 </group>

10 </resources>
11 <infrastructure >
12 <hosts>
13 <host id="ComputeNodeWindows"
14 os="windows" hostCapacity="1">
15 <homeDirectory base="administrator" relpath="${user.home}" />
16 </host>
17 </hosts>
18 <groups>
19 <amazonCloudGroup id="amazonCloud"
20 hostList ="node-[01-10]">
21 </amazonCloudGroup>
22 </groups>
23 <bridges>
24 <sshBridge id="amazonGateway"
25 hostname="aws.amazon.com"
26 username="amazonuser" />
27 </bridges>
28 </infrastructure >
29 </GCMDeployment>

Listing 6.2: GCM Deployment Descriptor for Amazon Elastic Compute Cloud

In Phase III of the IAI process, we focus on the interoperability assessment of the GCM
AD and GCM DD standards, because they provide a good base for interoperable grid and
cloud systems. The use of the GCM standards as a basis for interoperability test spec-
ification allows the development of a generic interoperability test system independent of
the concrete system implementation of grid and cloud. Within our test executions, the de-
ployment manager was simulated by manual activities of the interoperability tester. The
advantage of a standard is that we can obtain testable requirements easier than from sev-
eral specifications of proprietary system interfaces. Such an assessment also allows us to
validate the GCM AD and GCM DD. We mainly focus on application deployment and
application execution on grid and cloud systems based on the GCM AD and GCM DD.
We will partly follow the DAITS process that is presented in Section 4.4 (as long as it is
applicable for manual testing). We only specify the test descriptions but will not implement
an ETS and ATS. Even if we utilize the GCM standards, a variety of proprietary interfaces
implemented by the different IaaS clouds and grid systems lacking common standards are
involved.
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6.3.1 DAITS Process Prerequisites

As prerequisites of the DAITS process, test descriptions and test architectures are required.
The library of automated interoperability tests and the identification of limitations are re-
lated to automation of the assessment and of EUT configurations and are, therefore, not
needed. Instead, test applications that are executed on all involved systems are required to
determine the real usage of resources and the behavior relevant to a test purpose covered by
a test. The result of the test applications is evaluated manually.

6.3.1.1 Test Architectures

For GCM interoperability testing, i.e., more specifically GCM-based application deploy-
ment, we determined four GCM test architectures. The test architectures specify structural
aspects of a test and define EUTs that participate in a test as well as their communication.
In all test architectures, the SUT consists of the deployment manager that is conceptually
an EUT and at least one system that is an EUTs. The presented test architectures can also
be used to assess other standards related to the deployment and execution of applications on
grid or cloud systems, e.g., an OGSA-BES based interface between the deployment man-
ager and the EUTs. The four test architectures are described in the following.

• Single system: In the test architecture “Single system”, which is depicted in Fig-
ure 6.9 (a), the EUT contains a single system and the deployment manager. Access to
the deployment manager, the system, the application, the GCM DD, and the GCM AD
are available from one single physical machine. The purpose of this test architecture
is to keep the complexity low to allow basic testing with minimal effort to establish
the test architecture. The user uses the deployment manager to load the GCM DD and
in case the test application is a GCM application, also the GCM AD as input. The
user is logged locally into the system to establish the GCM runtime environment and
submit jobs related to the application and the system. If a system provides indirect
access to its resources, e.g., a grid system, a frontend is used to access its resources.

• Single system with a bridge: The test architecture “Single system with a bridge”
depicted in Figure 6.9 (b) has two EUTs, where EUT A contains a deployment man-
ager, which is connected via a bridge to EUT B, which contains a single system. In
contrast to the test architecture “Single system”, access to the deployment manager,
the system, the test application to be executed, the GCM DD, and the GCM AD are
distributed across two different physical machines. The user is connected remotely
to the system in order to establish the GCM runtime environment and to submit jobs
related to the application from the remote machine.

• Two systems and bridges: This test architecture is depicted in Figure 6.9 (c) and ex-
tends the test architecture “Single system with a bridge” with a second system. This
test architecture has three EUTs, where EUT A contains the deployment manager,
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EUT B contains the system X, and EUT C contains the system Y. Since the deploy-
ment manager controls both systems at the same time, it has to be connected to both
systems via a bridge. This test architecture can be extended with several systems,
which are then mapped to EUTs.

• Single system with a bridge and I/O servers: This test architecture is depicted
in Figure 6.9 (d) and extends the test architecture “Single system with a bridge” with
input and output data servers. The application can access the input/output data servers
from the system.

6.3.1.2 Test Applications

For the assessment of the success and validity of each application deployment, a test appli-
cation is executed on all involved systems. The purpose behind these applications is not to
perform complex, real world, computational tasks but to produce output that allows deter-
mining the real usage of resources and the behavior relevant to a test purpose covered by a
test. The test application is parameterizable to allow its reuse across multiple tests.

We determined four different kinds of test applications: single process batch job, parallel
job, virtual node GCM application, and data manipulation GCM application [39].

The single process batch job starts a single process on a single processor and consumes
the processor and memory for a given amount of time. The application’s behavior including
its execution time, the amount of memory to allocate, and the number of threads can be
controlled by parameters. The application prints all information required to determine if a
test execution has succeeded or failed either to the standard output or a file. This includes
the application start time, the value of each parameter, and the identifier of the application.
With this test application, resource deployment and resource usage can be evaluated.

The parallel job invokes an application that starts multiple processes. Each process is
mapped to a single processor. The multiple processes application consists of one master
process and multiple worker processes. The worker processes communicate with the mas-
ter process so that the master process receives notifications from all worker processes. A
notification should include the host name where the worker process runs and a timestamp.
The number of worker processes to be created by the parallel application should be param-
eterizable. By default, the master process starts up as many worker processes as processors
are available, i.e., one node less than specified in the GCM DD. That means that a parallel
application requests all available resources. The parallel job prints all the information re-
quired to determine if a test execution has succeeded or failed either to the standard output
or a file.

The virtual node GCM application starts a deployment as specified in the GCM AD and
GCM DD. Once the deployment has been performed, it prints the information provided by
each virtual node either to the standard output or a file. For each virtual node, the virtual
node name, current number of nodes, and the information about each used node is required.
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TP ID: TP_GCM_DD_DA_PA_001
Clause Ref: ETSI TS 102 827 V1 1 1 clause 7 1Clause Ref: ETSI TS 102 827 V1.1.1 clause 7.1
Test 
Architecture: Single system or single system with a bridge

Ensure that a system with direct resource accessSummary: Ensure that a system with direct resource access 
provides a single processor as specified in the GCM DD

Figure 6.10: Test purpose “Single processor with direct resource access”

The data manipulation GCM application starts a deployment as specified in the GCM
AD and GCM DD. It deploys a worker on each available node. Each worker reads the same
input file from the remote or local input location as specified in the GCM AD. It creates
a file with the same content as the input file into the remote or local output location as
specified in the GCM AD. Workers should avoid file name conflicts and collisions in the
output directory.

6.3.1.3 Test Purposes and Test Descriptions

Before we define the test descriptions, we develop test purposes that build the baseline of
the test descriptions. We analyze the base standard and extract testable requirements that
are used to specify test purposes. However, the GCM standard only defines the specifi-
cation of deployment information and not an interface for the deployment. Therefore, the
specification of test purposes for GCM descriptors is not a trivial task. In the case of GCM
DD, the primary source for specifying test purposes is general information associated with
resources, such as the number of offered processors or the number of threads per processor
available for execution. The secondary source for specifying test purposes includes parame-
ters that are common to a number of standardized GCM mappings to different systems, e.g.,
wall time and maximum memory. However, these might not be supported by each system.
Therefore, a test purpose should not be specific to a single mapping. A third source for
additional test purposes are variations of the sources for specifying test purposes mentioned
above. The variations are based on resource access methods, i.e., direct vs. indirect and
local vs. remote access. In this assessment, each test purpose is dedicated to one aspect of a
specific requirement or concept defined in the GCM standard.

In Figure 6.10, an exemplified test purpose for GCM DD is depicted. In this case, the
support of the direct resource access is a precondition and a GCM DD with a single pro-
cessor reservation is the stimulus. The success of the application execution determines the
success of the resource reservation.

A test purpose for GCM AD is exemplified in Figure 6.11. For this test, the support of
the GCM AD is required. A GCM AD with a virtual node reservation is the stimulus. The
test was successful if the test application is able to allocate the capacity of a virtual node as
specified in the GCM AD.
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TP ID: TP_GCM_AD_VN_001
Clause Ref: ETSI TS 102 828 V2 1 1 clause 5 2 2Clause Ref: ETSI TS 102 828 V2.1.1 clause 5.2.2
Test 
Architecture: Single system or single system with a bridge

Ensure that a specific capacity of a virtual node (VN) isSummary: Ensure that a specific capacity of a virtual node (VN) is 
enforced as specified in the GCM AD

Figure 6.11: Test purpose “Specific capacity of a single virtual node”

In the development of GCM AD test purposes, (re)assessing of GCM DD information
should be avoided. For example, the test purposes for GCM AD should be applicable in-
dependent of the method with which the resources of a system are accessed (directly or
indirectly). This means that these test purposes focus on information and concepts specified
in the GCM AD. Example sources for test purposes are the handling of virtual nodes and
input/output data location.

Based on the test purposes, we develop the test descriptions that are a detailed but infor-
mal specification of the pre-conditions and test steps that are needed to cover one or poten-
tially more given test purposes. The test description can also include a list of checks that
should be performed when monitoring the EUT communication on standardized interfaces
during the end-to-end test. In the case of GCM testing, this option is not directly relevant
since the GCM standard does not intentionally define the interfaces between a deployment
manager and a system. However, checks can be formulated if a system implements inter-
faces standardized for resource reservation and application execution by other standardiza-
tion organizations, e.g., OGF and Distributed Management Task Force, Inc. (DMTF).

An exemplified test description for the GCM DD test purpose shown in Figure 6.10 is
depicted in Figure 6.12. This test description details a test to check if a system with direct
resource access provides a single processor as specified in the GCM DD. The pre-test con-
ditions identify in addition to the features that are required to be supported by participating
equipment to be able to execute this test, the requirements on GCM descriptors, as well
as requirements on the parameterization of the test application. A complete list of the test
descriptions can be found in [39].

6.3.2 Test System Design

From the test system design phase of the DAITS process, we can only conduct the definition
of test configurations. For manual assessment, we also define compliance levels to classify
up to which stage the functionalities are provided by an SUT.
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Test Description
Identifier: TD_GCM_DD_DA_PA_001
Summary: Ensure that a system with direct resource access provides 

a single processor as specified in the GCM DD
Test 
Architecture: Single system or single system with a bridge 

Specification 
References: ETSI TS 102 827 V1.1.1 clause 7.1

T t A li ti Si l b t h j bTest Application: Single process batch job
Pre-test 
Conditions:

 System provides direct resource access
 GCM DD contains a direct group description with 

hostList containing one host and host description 
with hostCapacity=1 for the system

 System has a processor available for use
Test Sequence: Step DescriptionTest Sequence: Step Description

1
User loads the GCM DD and starts the test 
application on the system using the deployment 
manager

2 Verify that the system has created and executed 
the process

3 Verify that returned application output is correcty pp p

Figure 6.12: Test description “Single processor with direct resource access”

6.3.2.1 Test Configuration

Test configurations are a refinement of the test architecture and are referenced during the
specification of tests, which mainly specify behavioral aspects. Figure 6.13 shows a test
configuration for GCM-based deployment based on the test architecture: “Single system
with a bridge and I/O servers”. The SUT consists of at least two EUTs, which are the
deployment manager and at least one system.

The different types of entities that compose the means of testing handle the provision of
the GCM DD and GCM AD files to the deployment manager. These entities associated with
the system to be tested evaluate responses from the deployment manager, and analyze the
output produced by the application via their PCOs. In addition, the processes executed on
each system, their interface(s) to the deployment manager, and the input/output server(s)
are monitored during tests execution. The monitors are Points of Observation (PoOs).

6.3.2.2 Compliance Levels

The general test objective is to check that applications can be deployed and executed on a
given system based on the information provided in GCM AD and GCM DD. A system can
either provide direct or indirect resource access. To access a system, its protocol needs to
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Figure 6.13: A test configuration for GCM-based deployment

be followed as specified in the GCM standard [33]. For a classification of functionalities
that are provided by an SUT, we define compliance levels as follows:

Compliance by the system:

1. A system does not support properties described in GCM AD and GCM DD.

2. A system supports properties described in GCM AD and GCM DD, but these are
converted in a manual manner.

3. A system supports properties described in GCM AD and GCM DD, and these are
converted in an automated manner.

Compliance by the deployment manager:

1. Support of multiple systems fulfilling system compliance level 2.

2. Support of multiple systems where at least one of them fulfills system compliance
level 3 and the others system compliance level 2 (at least one).

3. Support of multiple systems fulfilling system compliance level 3.
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Figure 6.14: Test configuration for Globus Toolkit and Amazon Elastic Compute Cloud

6.3.3 Example Test Session

For an example test session and based on the test architecture “Two systems and bridges”,
we developed a test configuration for the grid system GT4 and the IaaS cloud AWS EC2
derived from the scenario depicted in Figure 6.8. In the test configuration, which is depicted
in Figure 6.14, EUT A is the deployment manager. EUT B contains the GT4 grid system
and EUT C includes AWS Elastic Compute Cloud (EC2) cloud. For each system, a GCM
DD is required.

We exemplify the test specified in the test description depicted in Figure 6.15. It will be
checked if both systems provide multiple processors for a parallel application. Therefore,
the parallel application allocates more than one processor in each system. The execution
of the application will be logged by the monitor in order to evaluate the result of the test.
The AWS EC2 system includes ten nodes as described in the GCM DD. The number of
nodes in the GT4 system is not specified in the GCM DD. We configured the parallel test
application to start ten processes on the AWS EC2 cloud and secondly four processes in the
GT4 system, because the GT4 system needs to have at least one node with four processors.
If all the processes have been started successfully and if the test application writes its output
as expected, the test can be evaluated as successful.
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Test Description
Identifier: TD_GCM_DD_DA_IA_PA_001
Summary: Ensure that a system with indirect resource access and a 

system with direct resource access provide multiple pro-
cessors for a parallel application as specified in the GCM DD

Test 
Architecture: Two systems and bridges

Specification 
R f ETSI TS 102 827 V1.1.1 clause 7.1, 7.2References: ,

Test Application: Parallel job
Pre-test 
conditions:

 One system provides indirect resource access
 One system provides direct resource access
 GCM DD contains one direct group description and one 

indirect group descriptions
 Communication between the systems is supported Communication between the systems is supported
 Systems have multiple processors available for use

Test Sequence: Step Description

1
User loads the GCM DD and starts the test 
application on both systems using the deployment 
manager

2 Verify that the processes have been created and 2 y p
executed in both systems 

3 Verify that returned application output is correct

Figure 6.15: Test description “Multiple processors in systems with indirect and direct re-
source access”

6.3.4 Validation and Application of the Test System

The validation of interoperability test specifications usually takes place in testing events.
For the GCM interoperability assessment, this validation took place in November 2009 as
part of the ETSI Grids, Clouds, and Service Infrastructures event [29]. It provided a unique
opportunity for standardization experts, operators, IT service providers, telecommunication
equipment vendors to see available systems running. However, the tests need to be carefully
selected according to the features of the involved systems. All pre-conditions of a test need
to be evaluated to determine the applicability of the test. To speed up this process, an ICS
should be established to allow system providers to specify supported features prior to a test
execution and support automatic test selection. A test should be selected for execution if all
of its pre-conditions have been ensured. Common types of pre-conditions in the GCM tests
include constraints on:

• the GCM DD and/or GCM AD specifications,
• the system relating to the type of resource access, features that need to be supported

by the EUTs, and available amount of resources,
• and the test application parameterization.
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A test should be recorded as being not applicable if one or more pre-conditions are not
met by one or more EUTs. A collection and specification of Protocol Implementation Extra
Information for Testing (PIXIT) can be used to capture system specific aspects of a GCM
DD such as the access details to a system and resource identifiers, and used to significantly
speed up the execution of tests. The developer of an EUT states the PIXIT that includes
information according to the
acEUT and its testing environment to enable runs of an appropriate test suite against the
EUT [74].

Each grid and cloud system will be assessed under the same conditions based on the
formalism of test descriptions. Applicable tests are executed by uploading a test specific
application, providing system and deployment information, e.g., via GCM descriptors, and
observing the execution of the application as specified in the test specification.

6.3.4.1 Application in an Interoperability Event

A requirement of the application of the GCM test specification is that a possible SUT needs
to include an implementation of the GCM standard, which was not the case during the
November 2009 event. However, the interoperability event included a variety of state-of-
the-art systems that implement grid, cloud, cluster, or related technologies, which fit the
idea of the GCM standard. Therefore, we compared and executed different state-of-the-art
systems to determine and evaluate their similarities and differences. The goal was to feed
the result of the demonstrations of the systems of the participated vendors back into the
standard to make GCM applicable for these systems, which results in their interoperability.

In total, six exhibitors demonstrated their grid or cloud environments. One part of the
demonstrations was the resource reservation and application deployment onto different sys-
tems. The basis for the evaluation was a questionnaire as well as use case scenarios defined
in the ETSI GCM test specification. The questionnaire assessed interfaces for resource
reservation and preparation of systems as well as standard support. The use cases included
scenarios for systems offering direct and indirect access. Systems were not required to
support ETSI GCM standards so that custom-made interfaces were used for application
deployment.

The systems of the vendors who participated in the event mainly implemented a de-
ployment manager for IaaS clouds. All the solutions provided a portal or Graphical User
Interface (GUI) for resource reservation. For automated use, these have been realized either
as a RESTful Web service, a Command Line Interface (CLI), or a Java/XML based API .
In general, all the demonstrated systems shielded users from complex details of resource
reservation. Resource provision and resource requests were handled separately. Handling
of data transfer to and from the computing node was mostly done by the application, e.g.,
using the Secure CoPy (SCP) protocol or FTP.
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6.3.4.2 Results from the Interoperability Event

We identified several issues of grid-cloud interoperability during the interoperability event.
We categorized these issues into four main areas: resource request and access, standard
support, identified needs in cloud standardization, and test automation.

Resource request and access were based on different requirements on resources such as
computing, storage, or network resources and assessed by the test application referenced
in the test description. The resources were selected based on requirements such as per-
formance, Service Level Agreement (SLA), application types, and objectives. Fixed or
common concepts between the systems could not be identified. The reason may be the
application domain specific implementations of the systems. For example, while one sys-
tem needed a detailed specification of resource requirements, another system only required
a specification of a class defined for resource requirements. In addition, the transparency of
the resource management differed. Therefore, there is a need for an appliance independent
hypervisor that manages resources independent of the application.

Related to standard support, mainly ETSI GCM, OGF Distributed Resource Manage-
ment Application API (DRMAA), and DMTF Open Virtualization Format (OVF) have been
implemented for resource request and access. Most systems used a non-compliant default
configuration, but also allowed adaptation to DMTF OVF. A few basic standards are sup-
ported by commercial cloud systems, since cloud computing is an emerging technology and
standards are only slowly evolving. Most of the cloud systems provided proprietary REST-
ful Web Service and XML based interfaces to resources. This provides a good foundation
for further standardization and extensions. Weak points of existing standards are that they
allow too many options such as in the OGF Job Submission Description Language (JSDL)
or that they require to fix the location of resources.

In the conducted interoperability event, we identified several standardization needs for
cloud computing systems related to interoperability. A key area for standardization is an
API for the provision of resources and for requests of resources. Open issues are the
achievement of portable appliances of the hypervisor, i.e., the management of different vir-
tual machine images and resources. Minor concerns include the lack of agreed terminology
and the need for a strong common denominator.

For IaaS clouds, functionalities such as the management of resources, applications, and
data but also common security (authentication and authorization), billing, and accounting
interfaces need to be standardized. A cloud resource management standard should consider
interfaces for the deployment of virtual machines including their start, stop, status requests,
image format, monitoring, performance measurement, and access.

According to interoperable grid and cloud systems, an application should be able to use
them simultaneously. For this, commonly agreed protocols are required to exchange infor-
mation and to allow their management. A result would be a cloud/grid broker, which the
user accesses to use functionalities of grid and cloud systems.
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According to test automation, the presented test system has been mainly developed for
the application in interoperability events. The tested systems can be seen as black boxes
connected and accessible only by their interfaces. Automating test executions in such a
configuration is challenging since agreed standards are not available for the usage of grid
systems or clouds. Furthermore, in the setting of such events participants are usually known
as late as two weeks before the event. However, test specification effort usually is concluded
months before an event. Therefore, in this case study we conducted the test manually.

6.4 Related Work

We divide the work related to our contributions into the following areas: comparisons and
integration as well as interoperability assessment of grid systems and clouds.

6.4.1 Comparisons and Integration of Grid Systems and Clouds

Foster et al. compare grid systems and clouds in a detailed analysis from different per-
spectives including architecture, security, and programming model [60]. Our contribution
extends their architecture comparison by describing the direct relations of the architecture
layers. Sadashiv and Kumar compare clusters, grids, and clouds by determining if the re-
spective system has specific functionalities [124]. They do not describe the reasons for their
determination. In contrast, we describe the comparison of grids and clouds based on the
technical architecture of grids and clouds. Similarly, the comparison of Zhang et al. [156]
does not provide a direct comparison as in our contribution.

Yamini et. al. present a method for scheduling jobs in an IaaS cloud extended grid en-
vironment [154]. Their approach is similar to our contribution. However, we determine
connectivity options for IaaS cloud-grid. Jha et al. describe how clouds can be used as
a semantical abstraction of grids [80]. It is not clear on which level of the cloud service
model they operate. We give a technical description and implementation of the integration
of IaaS clouds and grids. Ostermann et al. present an approach to extend the ASKALON
grid with instances from three different IaaS clouds [111]. In contrast, we developed a
generic model for the cloud and grid integration on different service levels, and implement
two case studies for the infrastructure level integration for other grid system implementa-
tions than ASKALON. Nimbus Infrastructure [143] builds a compute grid only based on
virtual machines. It mainly utilizes AWS and is deployed within a WSRF container. This
approach is different to ours, because they create a computational cloud as a service inside
the grid systems while we deploy the grid core services within a cloud.
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6.4.2 Interoperability Assessment of Grid Systems and Clouds based on the
Grid Component Model

Several interoperability and standard initiatives for grid and cloud computing systems exit.
For cloud systems, these include the OGF OCCI Working Group [102], the IEEE Standards
Association [72], the DMTF Cloud Management Standards [21], and the Open Cloud Con-
sortium (OCC) [103]. The activities of major cloud standardization initiatives have been
summarized in a report by the International Telecommunication Union (ITU) [76]. These
standardization activities are diverse and each initiative chooses the flavors of cloud comput-
ing that fit their requirements best. This is one reason why the concepts of cloud computing
are not fully agreed upon on.

Bernstein et. al. identified areas and technologies of protocols and formats that need to be
standardized to allow cloud interoperability [9]. They call this set of protocols and formats
Intercloud protocols because they should allow cloud computing interoperability. If this
set of protocols will be commonly accepted, the GCM and the interoperability test system
presented in Phase III of the IAI process could be adapted to improve cloud interoperability.

Merzky et. al. present application level interoperability between clouds and grids based
on SAGA, a high-level interface for distributed application development [93]. The inter-
operability is achieved by cloud adapters. These adapters are specific to AWS EC2 and
GT4.

Interoperability initiatives such as OGF Grid Interoperability Now (GIN) and standard
bodies in grid computing are described in [118]. OGF interoperability test specifications
for grids are often not defined and if so only for selected standards such as GridFTP. Also,
they rather follow ETSI’s notion of conformance testing than interoperability testing. To
the best of our knowledge, an interoperability test system for such diverse domains of grid
systems and clouds has not been published.



7 Interoperability of Grid and PaaS Cloud
Systems

In this chapter, we analyze the interoperability between grid systems and PaaS clouds with
our IAI process. Usually, PaaS clouds scale with the number of users, but not with com-
puting intensive tasks. In our interoperability scenario, we use grids to scale PaaS clouds
by submitting such tasks into the grid for processing. Therefore, no new instances for HPC
need to be started in the cloud. The virtualization of the resources in the cloud weakens
the computational performance and, therefore, lessens the efficiency of the computational
resource utilization. We present a solution for grid-PaaS cloud interoperability, which is
unique and has, to the best of our knowledge, never been implemented before. Therefore,
we advance the state-of-the-art of grid-cloud interoperability. Because grid systems and
PaaS clouds both provide access via Web services, we assess their interoperability with our
methodology for automated interoperability testing. With this assessment, we contribute to
the state-of-the-art of interoperability testing in grid and cloud systems. The results can be
used to improve both systems and provide a basis for standardization.

In Section 7.1, we describe Phase I of the IAI process, which includes the comparison of
grid systems with PaaS clouds. In Section 7.2, we develop a solution for interoperability
of grid systems and PaaS clouds as part of Phase II of the IAI process. We exemplify the
development with the UNICORE grid system and the GAE PaaS cloud. In Section 7.3, we
apply Phase III of the IAI process and assess the interoperability solution for UNICORE
and GAE. We conclude this chapter with related work in Section 7.4.

7.1 Phase I: Comparison of Grid Systems and PaaS Clouds

By direct comparision of grid systems and clouds, we map the abstracted functionalities of
the conceptual grid model to the cloud layers. The mapping is depicted in Figure 7.1. The
core services as well as low level computing and storage management services of the local
resources of the grid reside in the PaaS cloud level, because they provide interfaces to use
and manage resources similar to the functionality exposed by the control interfaces of PaaS
clouds. While in grid systems, the interfaces are exposed directly to the developer, in clouds
they are offered transparently via control interfaces. In grid systems, the grid core services
provide delegated control over the local resources.

A PaaS cloud varies highly in its abstracted functionalities and usually hides the com-
plexity of scheduling inquiries from users or developers. Hence, a grid scheduler providing
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Figure 7.1: Comparison of the conceptual models of grid and cloud systems

similar functionality in the grid resides in the same layer as in a PaaS cloud. PaaS clouds
scale with the number of users using applications deployed on the platform. In a PaaS
cloud, the users are not able to manage the underlying server or operating systems. They
have only limited possibilities to configure the application-hosting environment [92]. On
top of the grid model are grid portals and applications, which are on the same level as SaaS
clouds. They provide transparent access to resources via interfaces that are usually imple-
mented using Web protocols. An application that is developed with a PaaS cloud is an SaaS
application.

To our knowledge, no solutions for interoperability between grid systems and PaaS clouds
exit. We can only refer to the standards organizations and interoperability initiative that we
described in Section 6.1.2. None of them considers interoperability between grid and PaaS
clouds.

Regarding PaaS cloud interoperability, an initiative of several companies that develop an
open API for PaaS Application Management was started very recently [18]. In August 2012,
they released the first version of the Cloud Application Management for Platforms (CAMP)
specification [15]. The implementation of the CAMP specification facilitates the portation
of a developed PaaS cloud application from one PaaS cloud provider to another.

7.2 Phase II: Interoperability of Grid Systems and PaaS Clouds

In the following, we describe how grid systems and PaaS clouds can interoperate. The
application developer can utilize the control interface of a PaaS cloud to deploy a grid
library within the PaaS cloud to access the grid core services. Alternatively, the grid library
is integrated into the runtime environment by the PaaS cloud provider. The grid library can
be imported by the cloud application to access grid resources. Figure 7.2 shows the design,
where the grid core services are accessed via a grid library from the level of the PaaS cloud.
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The HiLA for grid applications and JavaGAT are examples for libraries to access grid core
services of different grid middleware implementations.

We determined a generic workflow how to access a grid system from an SaaS cloud
application that has been created with a PaaS cloud. First, the user selects the SaaS cloud
application, which invokes computing intensive tasks specified in a job description. The
cloud application is executed with the parameters in the PaaS environment that the user
entered through the SaaS cloud interface. These parameters can include the specification of
input data that is uploaded to the cloud storage and used by the cloud application. Before
the job is sent from the PaaS cloud to the grid system, preambles need to be executed.
These include the polling of the grid information service for available grid resources and
the transfer of uploaded or required input data from the cloud storage to the grid system.
After the management environment for the job is configured, the job is executed in the grid
system. After completion of the grid job, the output is transferred to the cloud storage and,
afterwards, presented to the user in the SaaS cloud interface. Depending on the length of
the job run-time, the user could also be notified via email after termination of the job.

Related to the security, we identify major issues in this scenario. A user needs to be
authenticated to be able to submit a job to a grid and authorized for the execution on a grid
resource. The same applies for the input and output data that needs to be read as well as
written in the respective other system. Ideally, both the grid system and the PaaS cloud use
the same authentication service. Otherwise, a mapping between the user’s credentials needs
to be implemented.

Compared to the number of executions of the job in the grid system, the output of the grid
application is usually accessed more often, because usually the results have a higher value
than the input data. Our solution also provides a user SaaS interface within the PaaS cloud
that allows to access data that has been calculated in the grid. This way the scalability with
respect to the user access of the PaaS cloud is utilized to facilitate repeated and an increasing
number of accessing the data produced in the grid. If the cloud system implements the five
essential properties of cloud [92], it is ensured that the data is always accessible via the
PaaS cloud. The data can be shared in the cloud with other users and be integrated using
cloud interfaces.

We selected a UNICORE grid system and GAE as a PaaS cloud provided by Google for
the implementation of an interoperability solution for grids and PaaS clouds. UNICORE
implements already a set of standards and is also widely utilized by researchers. GAE
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Figure 7.3: Schematic design of gateway-based GAE-UNICORE interoperability

does not implement a standard API similar to other PaaS cloud providers. The reason is
that standards organizations focus on the standardization of the interfaces of the IaaS cloud
layer. Only recently, CAMP was specified. However, within GAE, it is possible to use
OpenID [108], which is an open standard that describes how users can be authenticated in
a decentralized manner using a single digital identity for the authentication with multiple
providers.

A deployment of libraries, e.g., HiLA, in the GAE PaaS cloud is not feasible, since GAE
enforces the following restrictions [67]. GAE does not allow invoking threads. In addition,
the communication takes only place over a specific port using HTTP. This means that
socket connections, which are required for the HiLA library, are not allowed. Therefore,
we implement an interoperability gateway for GAE-UNICORE interoperability. Another
minor limitation is that GAE stops running Web applications in the cost-free version after a
30 second timeout automatically.

Figure 7.3 shows a schematic design of the integration of UNICORE and GAE. Since
both systems are based on Web services, we implemented the interoperability gateway as
a Web service as well. This offers many benefits as the interoperability gateway is on the
same level of abstraction as both systems. Therefore, the protocols to communicate with
the interoperability gateway resemble the protocols of the grid and cloud services, which
simplifies the translation.

The deployment of the different services within the GAE and UNICORE systems as well
as their interoperability gateway Web service is shown in Figure 7.4. GAE deploys different
Web services, e.g., for authentication and for storing data on the GAE cloud storage named
Blobstore. Using these services, service-based SaaS cloud applications can be developed. In
our case, this cloud application uses computational resources of the UNICORE grid system.
It sends a request to start a UNICORE computational job to the Web service interoperability
gateway via HTTP to the Apache HTTP Server, which is deployed on a physical machine.
The HTTP server deploys an application server (Apache Tomcat), which hosts the Web
service for translating messages between GAE and UNICORE. The Web service interoper-
ability gateway builds standardized JSDL descriptions that are used within HiLA calls that
are sent to the already running UNICORE environment to start computational jobs.

A workflow of using a UNICORE grid system from a GAE PaaS cloud is depicted in
Figure 7.5. After the user opened the related SaaS application, the Web server of GAE in-
vokes the underlying GAE-UNICORE service that makes a request to the GAE-UNICORE
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Figure 7.4: Architectural design of gateway-based GAE-UNICORE interoperability

gateway service to get data about available UNICORE resources and services. The GAE-
UNICORE gateway service itself translates the request and sends it to the respective UNI-
CORE service. For the response, the interoperability gateway translates the messages into
a format understandable by the GAE-UNICORE service. Based on the response and the
availability of UNICORE services, specific GAE-UNICORE services are presented to the
user within the SaaS cloud application. The user selects one of these services, specifies
parameters that will be transparently translated for the UNICORE service, and possibly
uploads a file as an input for the UNICORE service. The file is stored via the GAE blob-
store on GAE storage using the StoreSingleFile service. The user initiates the UNICORE
grid job indirectly by sending a request with required parameters to the GAE-UNICORE
service, which sends the job request to the interoperability gateway. The interoperability
gateway accesses the GAE Blobstore via the BlobServe service and puts the input file on
storage that is accessible by the UNICORE services. It creates the corresponding JSDL
description from the user request and submits the job to the UNICORE system. Afterwards,
the interoperability gateway polls for job completion and stores the output on GAE storage.
The output is then presented within the SaaS cloud application. If the job execution time is
relatively high, the user is notified about job completion. The output is accessible via the
BlobServe service.

We used the application Persistence of Vision Raytracer (POV-Ray) [112] that renders
scenes into images in the UNICORE grid systems. The size, the scene file, and other render
related data required by POV-Ray is specified or uploaded respectively in the GAE cloud
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Figure 7.5: Message flow for a GAE-UNICORE interoperability scenario

system via the SaaS application. The render job is done within the UNICORE grid from
which the output image is transferred via the GAE-UNICORE gateway to the GAE Blob-
store.

7.3 Phase III: Automated Interoperability Testing of Grid
Systems and PaaS Clouds

In this section, we assess the interoperability gateway for UNICORE grid systems and GAE
PaaS clouds by utilizing the methodology for automated interoperability testing. Both sys-
tems provide Web service interfaces that can be assessed in an automated manner through
protocols like HTTP and SOAP, which are open and whose basic structures are standardized.
Following the test design guidelines and applying the generic environment for automated
interoperability tests, we instantiate the DAITS process to develop an interoperability test
system using TTCN-3. This test system builds the baseline for the assessment as well as im-
provement of grid–PaaS cloud interoperability exemplified with GAE-UNICORE systems.

7.3.1 DAITS Process Prerequisites

For the development of an automated interoperability test system for GAE-UNICORE in-
teroperability, four prerequisites are required: the LibIot library, the test architecture, the
test descriptions, and the limitations. The LibIot library is imported by the TTCN-3 ATS
for GAE-UNICORE interoperability. A GAE-UNICORE interoperability test architecture
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Figure 7.6: Test architecture: interworking grid–PaaS cloud system exemplified with GAE
and UNICORE

is depicted in Figure 7.6. The test designer identified the GAE PaaS cloud as EUT_A and
the UNICORE grid system as EUT_B. Both are connected to each other via networks as
well as via the GAE-UNICORE gateway. The GAE PaaS cloud system is also connected to
the UE_A, e.g., a Web browser.

Based on the scenario depicted in Figure 7.5, the test designer developed the test de-
scription for the interoperability test “GAE submits a grid job to the UNICORE system”.
Figure 7.7 shows this test description, which is used as a running example for the applica-
tion of the DAITS process throughout this section. The interoperability test purpose is to
check if the GAE cloud sends a computational grid job to a UNICORE system correctly as
well as receives its output. The test description does not contain the referenced standard,
since we apply the test to proprietary non-standardized interfaces.

The test sequence includes the verification of the interoperable functionality, which was
specified in Phase II. UE_A invokes the cloud service of EUT_A, which itself submits a
job to EUT_B. As a result, EUT_B executes the job and sends the produced output back to
EUT_A. In order to verify the job submission, the job execution, as well as the transmission
of the output, the verification steps that are described in the Steps 2, 3, 4, and 5 of the test
description need to be done. Messages that are expected while executing the test sequence
are specified in the conformance criteria. The criteria refers to one conformance test pur-
pose, which checks the attributes of the HTTP message received by EUT_B and sent by
UE_A. Therefore, we check the messages of the interface between EUT_A and EUT_B, as
well as between UE_A and EUT_A.
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Test Description
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Figure 7.7: GAE-UNICORE test description

We identified one main limitation for GAE-UNICORE interoperability. We base our as-
sessment on a custom-made interoperability solution with the involvement of proprietary
interfaces that are utilized to access the EUTs. These proprietary interfaces limit the au-
tomation of the test execution for other grid and cloud systems. However, HTTP is an open
protocol format, which is used as an input for the EUT_A and can be monitored if the mes-
sages are not encrypted. We specified the content of the HTTP messages, which is the basis
for the interoperation and possibly a standardized API.
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Figure 7.8: Test configuration for GAE-UNICORE interoperability tests

7.3.2 Interoperability Test Design

For the definition of a test configuration for GAE-UNICORE interoperability, the test sys-
tem architect identifies required test entities. The test component types that are imported
from LibIot are the same as for the IMS interoperability test suite as described in Sec-
tion 5.2.2. They comprise the EquipmentUser, the InterfaceMonitor, and the Test-

Coordinator. The EquipmentUser is not instantiated for the EUTs, since the APIs of
the EUTs are subject to frequent changes by the provider. In addition, the EquipmentUser
should be able to handle EUTs in an abstract way independent of the provider. Implement-
ing a handling of each involved system and its proprietary interfaces is hard to achieve and
not the purpose of this test system. The InterfaceMonitor is used to monitor the HTTP
interfaces between UE_A and EUT_A and between EUT_A and EUT_B.

For GAE-UNICORE interoperability, the test system architect extends the Interface-

Monitor component type to the GCInterfaceMonitor component type and the Test-

Coordinator to the GCTestCoordinator to add specific ports for cloud-grid interoper-
ability. Figure 7.8 depicts the developed test configuration schematically. Each monitored
HTTP interface is paired with a dedicated PTC of component type GCInterfaceMonitor,
which receives all relevant message information from the system adapter. The UE is part of
the system adapter and not assessed for interoperability. The GCTestCoordinator acts as
the MTC.
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1 type record Fields {
2 charstring fieldName,
3 charstring fieldValue,
4 charstring contentType optional
5 }
6 type set of Fields FieldsList ;
7 type record RequestHeader {
8 charstring method,
9 charstring requestURI,

10 charstring requestVersion,
11 charstring pragma optional,
12 charstring accept optional,
13 charstring acceptEncoding optional,
14 charstring acceptLanguage optional,
15 charstring userAgent optional,
16 charstring contentLength optional,
17 charstring contentType,
18 charstring referer optional,
19 charstring connection optional,
20 charstring host optional
21 }
22 type record HTTPRequest {
23 RequestHeader header,
24 FieldsList listOfFields optional
25 }

Listing 7.1: TTCN-3 types for an HTTPRequest

For message exchange between the test entities and the SUT, the same ports as for the
IMS interoperability test suite are used as described in Section 5.2.2. They are the acPort,
the dPort, and the eaPort. The test components are connected to each other via two ports:
the commPort and the vPort. The commPort is used for communication between the test
entities and vPort for sending local verdicts.

In addition, the test system architect defines the message structures. The message struc-
tures include the data types for HTTP: HTTPRequest and HTTPResponse. Both types
define the structure for the header as well as for the body. The definition of HTTPRequest
record type and its related type definitions are depicted in Listing 7.1. The HTTP type
definitions are defined in a TTCN-3 library.

Based on the type definitions, the test system architect defines basic templates in the
ATS. In our running example for the message check between the UE_A and EUT_A, the
method field of the RequestHeader is set to the value POST and the requestURI field to
/resourceaclientjaxws, which is the service to access the GAE-UNICORE gateway.

To finalize the interoperability test design, the test system architect needs to specify the
module parameters that were defined by the test library implementer in LibIot. This in-
cludes especially the specification of the IP addresses of the involved EUTs as well as of
the interfaces that need to be monitored.
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1 f_mtc_userInvokeWebsite(v_ueA, v_accessInfo) // Step1
2 f_mtc_check_TP_GC_100_01_clientGae(v_clientGae, false); // Check1, Step2
3 f_mtc_check_TP_GC_100_01_GaeGateway(v_gaeGateway, false); // Check1, Step3
4 f_mtc_check_TP_GC_100_01_GatewayUnicore(v_gatewayUnicore, false); // Check1, Step4
5 f_mtc_checkOutput(v_ueA, v_accessInfo) // Step 5

Listing 7.2: Test body

7.3.3 Test Case Specification

Using our running example, we only highlight the main parts of the test case development,
because it is very similar to the one described in Section 5.2.3 for IMS interoperability. A
test case implements one test description and contains the three parts: test configuration
setup, test body, and tear down. Within the test configuration setup, we instantiate the test
configuration depicted in Figure 7.8, which relates to the test architecture specified in the
test description. The preamble and the postamble are not specified within the test case, since
they need to be executed manually. The tear down releases the test configuration.

The most important part is the test body, which is depicted in Listing 7.2. The
GCTestCoordinator triggers the behavior by starting the test components passed as
a parameter within each function call. The function f_mtc_userInvokeWebsite in-
vokes the SaaS application that was developed with the GAE PaaS cloud to send jobs to
UNICORE grid systems with application specific parameters. The rendering application
POV-Ray is invoked. The variable is of component type EquipmentUser. The next three
functions check the conformance criteria statement specified in the test description. The
function f_mtc_check_TP_GC_100_01_clientGae checks the message sent by the SaaS
application via HTTP between the UE_A and EUT_A. v_clientGae is instantiated as a
component of type GCInterfaceMonitor. Within the monitored message, we expect the
path to the POV-Ray, the UNICORE server, and the size of the output image. The other
two functions check the correct translations of this message. The checks are implemented
with a generic function, similar to the one we use for IMS interoperability testing, which is
described in detail in Section 5.2.3. The last function depicted in Listing 7.2 checks if the
output image has been transferred after job completion from EUT_B to EUT_A correctly.

In addition to the specification of the ATS, the system adapter and codec implementer
specifies adaptation and codec functions to complete the ETS. This final step allows the
automated execution of the interoperability test suite. The mapping between the test adapter
and the test components is shown in Figure 5.10 and described in Section 5.2.3.

7.3.4 Validation and Application of the Test System

The test system is a prototype implementation and only contains three test cases. However,
we validated the test system through reviews. Additionally, we applied the interoperability
test system for an interoperating GAE-UNICORE system. We successfully executed the



7 Interoperability of Grid and PaaS Cloud Systems 102

test case represented by the test description depicted in Figure 7.7 in an automated manner.
The test invokes the SaaS application that invokes the POV-Ray render application within
a UNICORE grid. After the job is finished, the output of the POVRay render application
is successfully written from the UNICORE grid into the GAE cloud storage. The messages
were checked during interoperation in live mode automatically.

7.4 Related Work

To the best of our knowledge, no other approaches for achieving interoperability between
grid systems and PaaS clouds exist. Hence, test systems to test the interoperability of grid
systems and PaaS clouds do not exist either.



8 Conclusion

In this last chapter, we summarize and discuss the thesis and its contributions. Beyond
that, we investigate possible research items, which extend or refine the results and methods
presented in this thesis.

8.1 Summary

End-users expect services that are accessible at any time independent of their location.
These services usually rely on services of other service providers and also on a variety
of systems developed by different vendors. These services and systems constitute complex
distributed systems and need to be able to interoperate.

In this thesis, we presented the IAI process, which is applicable to improve and to assess
interoperability of homogeneous and heterogeneous distributed systems. The IAI process
comprises three phases: investigation of the fulfillment of prerequisites for interoperabil-
ity (Phase I), improvement of interoperability (Phase II), and assessment of interoperability
(Phase III). For Phase III, we presented a methodology for automated interoperability test-
ing. The methodology comprises four main parts: 1) We defined a generic environment
for interoperability tests with message checks. This environment is the basis for automated
interoperability tests. 2) We determined guidelines for interoperability test design and test
automation. Both should be considered when specifying automated interoperability tests.
3) We developed a generic library for automated interoperability tests using TTCN-3 that
implements the generic environment as well as the guidelines. 4) We created the DAITS
process, which is a generic development process for a systematic specification of a complete
and structured automated interoperability test system with message checks. The method-
ology for automated interoperability testing provides a first step towards a formalized and
structured interoperability assessment of systems in an automated manner. An interoper-
ability test system that is developed by applying our methodology lowers the costs for exe-
cuting interoperability tests, because less human resources are required for their execution
and evaluation.

We applied three case studies that instantiate the IAI process. In our first case study,
we applied the IAI process successfully to IMS networks, which are implemented based
on stable IMS standards by different vendors. The IMS standards specify open interfaces
for interoperation. For the third phase of the IAI process, we applied the methodology for
automated interoperability testing using TTCN-3 successfully to develop interoperability
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tests with message checks for IMS network interoperability. The tests were successfully
executed in the third ETSI IMS PlugtestsTM.

To evaluate the applicability of the IAI process for heterogeneous systems, we utilized
the IAI process to assess and to improve the interoperability of grid and cloud systems. In
our second case study, we focused on interoperability between grid and IaaS cloud sys-
tems. After the analysis and the comparison of both systems, we concluded that both can
be integrated based on the communication protocol provided by the grid system through
instantiating a grid system within an IaaS cloud system based on the interoperability gate-
way approach as part of Phase II of the IAI process. We integrated the AWS cloud with
the UNICORE grid system and the Eucalyptus cloud with the GT4 system. In addition, we
analyzed the ETSI GCM standards, which provide abstract descriptions of interfaces for the
allocation of resources and for application deployment in different computing and storage
systems. However, these interfaces still need an interoperability gateway to be able to com-
municate with the target system. We assessed the GCM for interoperability in Phase III of
the IAI process. However, because of the different involved proprietary interfaces, we were
only able to perform the interoperability tests manually based on test descriptions. Due to
the proprietary interfaces and the high abstraction of the GCM standards, it was only partly
possible to show interoperability. Therefore, another goal of the assessment was to identify
commonalities of the different interface implementation of the target systems.

In our third case study, we applied the IAI process to a grid system and a PaaS cloud.
In Phase I of the IAI process, we identified a common use case scenario applicable if both
systems are able to interoperate. The responsibility of the PaaS cloud system is to scale
with the number of requests and users while the grid environment executes computation-
ally intensive tasks. In addition, the PaaS cloud provides means to publish the results of
the computationally intensive tasks to cloud users. For Phase II, we selected the grid sys-
tem UNICORE and the PaaS cloud GAE, for which we implemented an interoperability
gateway. The cloud application that we developed with the GAE platform successfully sub-
mitted a computationally intensive task to the UNICORE system via the interoperability
gateway. After termination of the task execution, the results were written to the GAE cloud
storage. The interoperability gateway is implemented as a Web service that communicates
via SOAP messages over HTTP. The structure of SOAP and HTTP is standardized and pro-
vided the basis for the assessment of the interoperability gateway with our methodology for
automated interoperability testing. We developed an interoperability test system to assess
GAE and UNICORE interoperability in an automated manner. Since their communication
is based on HTTP, the test system can be reused for interoperability solutions based on Web
services.
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8.2 Discussion

While the case studies described in Chapters 5, 6, and 7 proved the applicability and the
suitability of the IAI process as well as of the methodology for automated interoperability
testing, they also raised a number of questions regarding the effort to implement interoper-
ability solutions and interoperability test systems, but also regarding the extent to which the
developed solutions are reusable. In the following, we discuss the results of the case stud-
ies regarding the application of the IAI process, the interoperability improvement between
grids and clouds, and the automation of interoperability test execution.

8.2.1 Application of the IAI process

In our first case study, we applied the IAI process for interoperability assessment and im-
provement to homogeneous systems, i.e., IMS networks. Even though IMS networks im-
plement common standards, a relatively high effort is required for analyzing the standards
to identify common and complementary functionalities. However, compared to our second
and third case study, where we applied the IAI process to grid and cloud systems, i.e., het-
erogeneous systems, the effort for performing Phase I of the IAI process was still low. The
application of the IAI process was challenging for grids, IaaS clouds, and PaaS clouds, due
to their implementation of proprietary interfaces. Even though standards for grids and IaaS
clouds exist, they are not commonly adopted. In PaaS clouds only one standard initiative
(CAMP) exists, which was released only recently.

In IMS as well as in the cloud domain, a variety of service providers exist. The dif-
ference is that IMS is clearly defined through standards. In the cloud domain, different
vendors might have a different view on a cloud than other vendors. As a result, only broad
definitions about clouds exist, which makes it difficult to identify commonalities and com-
plementations between the clouds themselves as well as between grids and clouds. For
grid and cloud interoperability, one needs to understand the communication protocols, in-
terfaces, and architectures of both domains. After successful identification of common and
complementary functionalities, their communication protocols and data formats need to be
matched against each other. In addition, the common and complementary functionalities
usually rely on other functionalities such as authentication and accounting in order to be
interoperable. The interoperability of these dependent functionalities needs to be taken into
account as well, e.g., with an interoperability gateway that maps user credentials between
systems.

A limitation of the IAI process is that it does not take semantical and organizational in-
teroperability into account. The reason is that both terms are only vaguely described in the
literature [85]. In addition, if the meaning of information is preserved (semantical interop-
erability) and if business processes are linked together in a meaningful way (organizational
interoperability) is difficult to assess. The technical and syntactical interoperability that we
consider with the IAI process are both necessary conditions for semantical and organiza-
tional interoperability.
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8.2.2 Interoperability of Grid Systems and Clouds

In two case studies, we analyzed and implemented interoperability solutions for grids with
IaaS and PaaS clouds. For grid-IaaS cloud interoperability, we deployed the grid core ser-
vices and the local resources management software stack in an IaaS cloud, which then
becomes a PaaS cloud that offers computing services as well as an API provided by the grid
middleware. This is especially interesting in application domains, where computing power
is needed spontaneously and in unpredictable time intervals. It is also a step towards the
migration of grid applications into IaaS cloud environments. Another benefit of achieving
interoperability between grids and clouds is that existing grid systems are leveraged to se-
cure previous and valuable investments of the development of well-engineered grid systems
and applications.

We integrated the AWS cloud with the UNICORE grid system and the Eucalyptus cloud
with the GT4 system. The integration effort for both grids with the respective cloud is
similar, but high. The reason for the high effort is that the integration resulted in the man-
agement of two kinds of resources: the resources within the grid and within the IaaS cloud.
We integrated the management of the IaaS cloud within the grid client. We developed a
default configuration for the IaaS cloud that was instantiated automatically within the IaaS
cloud. The configuration included virtual networks, instance selection, credentials, and user
setup.

The IaaS cloud instantiation is based on a specific build of a virtual machine image that is
configured with grid software. This virtual machine image was then instantiated in the IaaS
cloud by the grid client. Ideally, during the instantiation, all configurations are triggered
automatically, which we achieved with bash scripts. This allows the automatic connection of
the grid-in-cloud services to the grid gateway of the existing grid. The effort for the building
of the virtual machine images was high, since all required parts within the grid system
needed to be configured and compiled into a virtual machine image. The configuration of a
grid system has many complex constraints and includes the setup of users and their profiles,
service and host certificates, and of specific grid containers and services. In addition, to
change the grid configuration, we needed to build the virtual machine image again, which
is very time intensive. GT4 was harder to configure than UNICORE. UNICORE provides
a full installation and configuration documentation while GT4 was configured by trial and
error. After the virtual machine images for both systems are configured and created, they
can be reused in the same cloud, but not in different clouds. If the cloud provider decides
to change the format and type of the virtual machine image, the virtual machine images
need to be created with high effort again. This, as well as potential vendor lock-in, limits
our approaches of integrating grid and IaaS cloud systems. The alternative is to deploy
an own private cloud system, e.g., by installing Eucalyptus. However, the configuration
and maintenance of an own private cloud is complex and time consuming as well. The
issue of changing interfaces applies here as well as in public clouds, since the software is
continuously developed and subject to potential interface changes as well.
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In the third case study, we developed an interoperability solution for grid and PaaS sys-
tems based on UNICORE and GAE. We determined a specific and useful interoperability
scenario for grid systems and PaaS clouds. Computational jobs are swapped out from the
PaaS cloud into the grid system. As a result, the PaaS cloud provides a user friendly inter-
face within SaaS, which hides the complexities of grid computing systems. The effort to
implement the GAE-UNICORE gateway was very high. The infrastructure for the interop-
erability gateway needed to be deployed and configured. In addition, the interoperability
gateway needed to be updated and adapted to changes of the interfaces of both systems,
which makes this solution hard to maintain. Ideally, the PaaS cloud provider deploys the
interfaces to the grid services natively into the PaaS cloud environment. This allows the
PaaS cloud service to use grid services via a possibly standardized API. A limitation of
our approach is that we only analyzed GAE. It needs to be further analyzed if the restric-
tions that the GAE PaaS cloud enforces are the same for other providers. In this case, our
interoperability solution can be extended.

The presented grid-PaaS cloud usage scenario is limited and competes with similar cloud
services. Cloud providers already offer virtualized HPC environments in the cloud. How-
ever, this would raise the cost for utilizing cloud resources considerably, since in case of
heavy usage, it is cheaper to use grid or cluster resources as described by Carlyle et al. [16].

We identified the following common limitations of the grid-IaaS and the grid-PaaS inter-
operability solutions:

• Portability: If grid resources are connected with cloud resources, the portability of
the application in the PaaS cloud or the virtual machine image in the IaaS cloud can-
not be assured. One of the reasons is that grids and clouds are implemented and
provided by different stakeholders usually implementing proprietary and often com-
peting interfaces and data formats. The responsibility and the effort to change the
cloud provider is on the side of the user. For porting the application from one PaaS
cloud to another PaaS cloud, the user would need to implement the application again
by utilizing the specific PaaS API of the new provider. However, if it comes to grid-
cloud interoperability, it is unfeasible to change the grid system or the cloud provider.
The main reason is that high effort needs to be invested to adapt the same solution for
the new provider or system. However, if the cloud providers would adopt the OCCI,
CDMI, or CAMP standards, the user would be able to port the application or virtual
machine image with low effort to other cloud providers.

• Reusability: Resulting from the limited portability, interoperability solutions are also
limited in their reusability. An interoperability solution can only be reused between
different providers, if they implement the same standards. But, our solutions are
based mainly on custom-made interfaces providing a feasibility study on their inter-
operability.

• Performance: We did not measure the performance of the grid-cloud interoperability
solutions. Our approach lacks methods to assess the impact on the overall system,
e.g., the determination of the latency when utilizing grid and cloud systems in an
interoperable way.
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• Stress tests: We did not apply stress tests on our solutions. However, since clouds
scale up by definition, the bottleneck would be exposed by the interoperability gate-
way.

• Costs: The use of on-demand cloud resources is relatively expensive when using the
resources in a 24/7 manner. The extension of a grid system by an IaaS cloud should,
therefore, only be used in peak times with a limited duration. In contrast, the grid-
PaaS cloud interoperability, can be used to submit jobs in the existing grid, which
would save costly on-demand resources in the PaaS cloud.

• Reliability: Clouds do not provide a 100% reliability. Therefore, the interoperability
solution can be extended with specific reliability measures so that the overall relia-
bility is improved. For example, data should be stored on geographically distributed
sites of the cloud system. Our current approaches do not consider reliability.

• Data security: Sensitive experiment data should not be sent into the cloud. Depend-
ing on the regulations and the openness of the cloud provider, the data might be read
by a third party or never be deleted physically. Our interoperability gateways could
take care of specific data security measures.

• Deprecated API methods: A common issue in the development of the interoper-
ability solutions is that parts of the cloud API can become deprecated in subsequent
versions. This happened frequently during the development of our interoperability
solutions, since a cloud was not defined uniquely. This makes it hard to develop
an up-to-date application for PaaS cloud and to implement an accurate cloud exten-
sion for a grid client when using IaaS clouds. However, the cloud definition became
clearer recently [92]. Therefore, we expect that cloud interfaces become stable.

8.2.3 Interoperability Test Automation

We applied the methodology for automated interoperability testing in two case studies
within Phase III of the IAI process. For the IMS interoperability case study, the tests were
successfully executed in the third ETSI IMS PlugtestsTM. In contrast to the previous ETSI
IMS Plugtests [26, 27], we were able to assess the conformance to the IMS standards dur-
ing testing for interoperability automatically. In the first and second ETSI IMS Plugtests,
the interoperability tests were driven manually and the conformance to the standards was
assessed manually for each test case. The latter means that the traces of the communica-
tion between the EUTs was recorded during the executions of an interoperability test and
analyzed after termination in a manual manner. The time required for manual conformance
analysis is in the order of minutes and it can be performed only by an expert in the involved
protocol. If the assessment of the conformance is done in an automated manner using our
methodology, the time required for the automated analysis for one test case is in the order
of milliseconds. Only if a conformance test fails, a manual analysis is required. The results
of the automated assessment simplify the analysis. However, the test specification for auto-
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mated interoperability tests with message checks needs to be developed, which can only be
done by experts. The time required for such a development is rather high. But since the test
specification is reusable, the development effort is amortized within several executions.

The reusability of an automated interoperability test system for systems that are not based
on the same standards but providing common and complementary functionalities is lim-
ited depending on the interoperability solution, involved protocols, and data formats im-
plemented by the systems. The test system usually needs to be updated to allow message
checks and to trigger EUTs and UEs. We implemented an automated interoperability test
system to assess the interoperability between grids and PaaS clouds exemplified by UNI-
CORE and GAE. The developed test system can be reused for interoperability solutions
based on Web services. The interoperability gateway needs to be updated regarding the uti-
lized grid system and PaaS cloud to account for the standards and customized interfaces of
the systems under consideration. In both case studies, we reused our generic LibIot library.

A main issue is the handling of proprietary interfaces, which is also related to the limita-
tions of test automation. Limitations related to the automation of executing interoperability
tests are discussed in detail in Section 4.2.2.

An interoperability test system that is developed by applying our methodology lowers
the costs for executing interoperability tests, because less human resources are required for
their execution and evaluation. More interoperability tests can be applied in interoperability
test events, because an automatically executed test finishes faster than a manually executed
test. This allows a more thorough testing. Furthermore, the scope of test scenarios can be
extended, e.g., by the application of load tests. Compared to manual testing, the benefits of
test automation are wider test coverage, consistency, and repeatability.

8.3 Outlook

Future research directions of the presented work are manifold and can be related to the
following three topics: extension of the IAI process, extension of the methodology for
automated interoperability testing, and the integration of grid and cloud systems.

Extension of the IAI process

The IAI process can be extended in the following directions. First of all, it needs to be
investigated whether Phase I and Phase II can be automated to reduce the required effort
for their application. The basis for the automation could be a formal specification of the
interoperating systems. For Phase I, formal specifications can be used to map common
and complementary functionalities of different systems, which would decrease the effort to
apply Phase I. A prerequisite would be the use of the same or compatible formal specifica-
tion techniques for all involved systems. For Phase II, an interoperability gateway may be
generated automatically from the formal specifications and their mappings.
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It also needs to be investigated to which degree the IAI process can be extended to se-
mantical and organizational interoperability. Each phase of the process needs to be adapted
and then applied to a specific level of interoperability. If the process is extended to or-
ganizational interoperability, business processes need to interoperate over organizational
boundaries, which is currently not considered by the IAI process. Technical and syntactical
interoperability is not sufficient if business processes require to interoperate over organi-
zational boundaries. A challenge is that vendors with the market dominance pursue the
objective of sustaining the dominance by rejecting measures to enable interoperability with
their system. In such an environment, organizational interoperability is hard to achieve.

Additionally, we only show the substantiation of the IAI process for IMS, grid systems,
and cloud systems. Further case studies need to be performed on additional systems to
gain further evidence of the general applicability of the IAI process. Such case studies may
include the application of the IAI process to IPv6 systems, smart grids, public services of
eGovernment, medical devices, and emergency devices for public safety.

Extension of the Methodology for Automated Interoperability Testing

Regarding the methodology for automated interoperability testing, further possibilities for
the automation of interoperability test executions need to be investigated. This includes the
improvement of accessing proprietary interfaces and the reduction of manual interactions.
If the interoperating systems are modeled using a formal specification technique, it might
be possible to generate components that handle the interfaces during test execution in an
abstract way. As a result, the components for handling equipment operations do not need to
be implemented manually.

Another research direction is the derivation of automated interoperability tests from for-
mal specifications. Ideally, the abstraction level of the formal specification is chosen appro-
priately to enable the generation of an executable test suite. The effort would then have to
be invested into creating the formal specification of the systems and its transformation to
an interoperability test system. This can speed up the creation of the interoperability test
system.

The methodology for automated interoperability testing can be further extended to test
the interoperability of User Equipments (UEs). Thus, the UEs become a part of the SUT.
However, the automated handling of the UE’s interfaces is challenging due to differing
implementations of user interfaces.

In addition, the methodology may be extended with support for testing non-functional
properties. This will help to understand performance relations to interoperability. For test-
ing the reliability of EUTs, automatic workloads can be generated and injected as back-
ground load into the SUT by the test system while the interoperability test is executed.

We implemented the test systems in TTCN-3. It needs to be investigated if other test lan-
guages are also suitable for the implementation of our methodology. This includes studies
whether these languages are able to cope with complex and distributed interoperability test
setups.
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Further Investigations for the Integration of Grid and Cloud Systems

The interoperation of grid and cloud systems may impact non-functional properties such as
security, performance, reliability, or usability. Investigations on these properties is an inter-
esting research direction, which will help to determine the real benefit of an interoperability
solution. For example, for the integration of a grid system with an IaaS cloud, a perfor-
mance analysis can measure the impact on the integrated systems and determine whether
the time to complete a task is affected. In addition, the effects of indirections that result
from the grid-cloud integration need to be explored further.

According to our results from the grid-cloud integration, new standards need to be devel-
oped to support their interoperation. More formal specifications regarding interoperability
interfaces between grid and cloud systems will enable common means for accessing differ-
ent heterogeneous systems.
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