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Abstract

Fingerprint recognition plays an important role in many commercial applications and
is used by millions of people every day, e.g. for unlocking mobile phones. Fingerprint
image segmentation is typically the first processing step of most fingerprint algorithms
and it divides an image into foreground, the region of interest (ROI), and background.
Two types of error can occur during this step and both have a negative impact on
the recognition performance: ’true’ foreground can be labelled as background and fea-
tures like minutiae can be lost, or conversely ’true’ background can be misclassified as
foreground and spurious features can be introduced.

The contribution of this study is threefold:

1. We propose the feature extractors for fingerprint images with Fourier and varia-
tional based approaches (see Chapter 2 and Chapter 3).

In the Fourier domain (cf. [1]), we assume that fingerprint patterns mostly stay
in a specific range of frequencies. We introduce a novel factorized directional
bandpass (FDB) segmentation method based on the directional Hilbert transform
of a Butterworth bandpass (DHBB) filter interwoven with soft-thresholding for
feature extraction. Then, a morphological operator is applied on these extracted
features to obtain the ROI.

In the variational approach (cf. [2]), fingerprint images are characterized by a
smooth, curved and oriented pattern which has a sparse representation in certain
transform domains. Based on this assumption, we propose a model for global
three-part decomposition (G3PD) which takes the nature of the texture occur-
ring in real fingerprint images into account. The G3PD method decomposes the
original fingerprint image into a piecewise constant image, “texture image” and
noise image. The decomposition is obtained by finding the minimizer of the con-

vex minimization TV−G3/4
1,1 − `1−G

−3/4
∞,∞. After texture extraction by the G3PD

method, the ROI is attained by morphological operators.

2. We provide a manually marked ground truth segmentation for 10560 images of
the FVC database as an evaluation benchmark which is made publicly available.

3. We conduct a systematic performance comparison between our proposed meth-
ods and four of the most often cited fingerprint segmentation algorithms. The
evaluation shows that our approaches clearly outperform these four widely used

methods, especially the TV−G3/4
1,1 − `1 −G

−3/4
∞,∞ model.

Keywords: Fingerprint recognition, fingerprint image segmentation, evaluation bench-

mark, manually marked ground truth, directional Hilbert transform, Riesz transform, Butter-

worth bandpass filter, texture extraction, Besov space, Curvelet decomposition space, varia-

tional method, convex minimization, functional analysis
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Zusammenfassung

Fingerabdruckerkennung spielt in vielen kommerziellen Anwendungen eine wichtige
Rolle und wird von Millionen von Menschen täglich verwendet, z.B. für das Entsper-
ren von Handys. Die Segmentierung von Fingerabdrücken ist typischerweise der er-
ste Schritt der meisten Fingerabdruck-Algorithmen und teilt die Abbildung in den
Vordergrund, den interessierenden Bereich (ROI) und den Hintergrund auf. Zwei Arten
von Fehlern können bei diesem ersten Schritt auftreten, welche sich beide negativ auf
das Verfahren auswirken: “Wahrer” Vordergrund kann als Hintergrund gekennzeich-
net werden und Merkmale wie Minutien können verloren gehen oder umgekehrt kann
“wahrer” Hintergrund fälschlicherweise als Vordergrund klassifiziert und störende Merk-
male eingeführt werden.

Diese Arbeit leistet in dreifacher Weise einen Beitrag zum Lösen dieser Probleme:

1. Wir behandeln die Merkmalextraktion für Fingerabdrücke mit den auf Fourier-
transformation und Variationsrechnung basierenden Ansätzen, welche in Kapitel
2 bzw. Kapitel 3 beschrieben werden. Wir nehmen an, dass Fingerabdruckmuster
meistens in einem bestimmten Frequenzbereich bleiben. Deshalb führen wir
ein neuartiges “factorized directional bandpass” (FDB) Segmentierungsverfahren
basierend auf einer Richtung folgenden Hilberttransformation eines Butterworth-
Bandpasses (DHBB) verbunden mit weichem Thresholding zur Merkmalsextrak-
tion ein. Dann wird der morphologische Operator auf diese extrahierte Merkmale
angewendet, um den ROI zu erhalten.

Für den auf Variationsrechnung basierenden Ansatz werden Fingerabdrücke durch
glatte, kurvige und orientierte Muster, die eine dünn-besetzte Darstellung bezüglich
bestimmter Transformationen haben. Basierend auf dieser Annahme behandeln
wir ein Modell zur globalen “three-part decomposition” (G3PD), welche die Natur
der Textur berücksichtigt, die im Fingerabdruck vorkommt. Das G3PD-Verfahren
zerlegt den Fingerabdruck in die stückweise konstante Abbildung, Textur und
Rauschen. Die Zerlegung erhält man durch das Finden des Minimierers für das

konvexe Minimierungsproblem TV−G3/4
1,1 − `1−G

−3/4
∞,∞. Nach der Extraktion der

Textur durch das G3PD-Verfahren erhält man die ROI durch den morphologis-
chen Operator.

2. Wir liefern eine manuell markierte Segmentierung für 10560 Abbildungen in
der FVC-Datenbank als Bewertungsmaßstab, der öffentlich zugänglich gemacht
wurde.

3. Wir implementieren einen systematischen Leistungsvergleich zwischen unserem
vorgeschlagenen Verfahren und vier der meistzitierten Fingerabdrucksegmentierungsal-
gorithmen. Der Vergleich zeigt, dass unsere Methode diese weitverbreiteten Ver-

fahren deutlich übertrifft, besonders im TV−G3/4
1,1 − `1 −G

−3/4
∞,∞-Modell.
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1 Introduction

1.1 Feature for Fingerprint Segmentation

Nowadays, fingerprint recognition is used by millions of people in their daily life for
verifying a claimed identity in commercial applications ranging from check-in at work
places or libraries, access control at amusement parks or zoos to unlocking notebooks,
tablets or mobile phones. Most fingerprint recognition systems are based on minutiae
as features for comparing fingerprints [3]. Typical processing steps prior to minutiae
extraction are fingerprint segmentation, orientation field estimation and image enhance-
ment. The segmentation step divides an image into foreground, the region of interest
(ROI), and background. Two types of error can occur in this step and both have a neg-
ative impact on the recognition rate: ’true’ foreground can be labelled as background
and features like minutiae can be lost, or ’true’ background can be misclassified as
foreground and spurious features may be introduced. It is desirable to have methods
that control both errors.

The question is: what is the important feature of the fingerprint pattern to distinguish
with the non-fingerprint pattern, e.g. the homogeneous regions or the small scale
objects (noise), etc? The answer is: fingerprint image contains the repeated patterns,
called texture, which stays in a specific frequency range in the Fourier domain, called
frequencies occurring in true fingerprint images (FOTIs). The texture satisfies a certain
level of smoothness and sparsity in the spatial domain. Therefore, we consider the
fingerprint feature in two views:

1. In the Fourier domain, fingerprint pattern is considered as a smooth texture whose
frequency spectrum mostly stays in the FOTIs.

2. In the spatial domain, fingerprint images are characterized by a smooth, curved
and oriented pattern which has a sparse representation in certain transform do-
mains.

In the next section, we discuss some methods to adapt these ideas for fingerprint feature
extraction. Then, the ROI is obtained by the morphological operator.

1.2 The Fourier and Variational Based Approaches

Firstly, we consider the feature extraction for the fingerprint image in the Fourier do-
main. As mentioned before, the spectrum of fingerprint pattern almost stays in the
FOTIs, so we design the factorized directional bandpass (FDB) method to capture the
pattern in this FOTIs. Since the signal is known to be sparse in some transform do-
mains, we propose a novel FDB segmentation method based on the directional Hilbert

1



CHAPTER 1. INTRODUCTION

transform of a Butterworth bandpass (DHBB) filter to obtain the features in the dif-
ferent directional subbands. Due to the smoothness of fingerprint images, the classical
shrinkage operator is introduced in between to remove the small coefficients in these
subbands which correspond to non-prominent FOTI features, including: the small scale
objects (noise) and all FOTI features not due to the true fingerprint patterns. Finally,
the ROI is attained by applying morphological operators on the true fingerprint feature
in the FOTIs.

Secondly, in different view than the FDB method, the fingerprint pattern is rep-
resented as a sparse, smooth and oriented texture in the spatial domain. Thus, the
feature of fingerprint image contains only texture without homogeneous regions and
noise. Inspired by this idea, we propose a model for global three-part decomposition
(G3PD) to decompose the original image into the homogeneous regions (or cartoon),
texture and noise. The core of the G3PD is to find the solution of the convex mini-
mization, i.e. TV−G3/4

1,1 − `1−G
−3/4
∞,∞. The piecewise constant regions are measured by

total variation (TV) norm. The sparsity and smoothness of texture can benefit from

`1 and G
3/4
1,1 norms, respectively. The dual space of G

3/4
1,1 is G

−3/4
∞,∞ which relates to the

small curvelet coefficients. The space G
−3/4
∞,∞ is very suitable to capture the noise. By

experiment, we have found that the curvelet shrinkage captures the geometry of finger-
print pattern better than the classical wavelet thresholding in terms of over-estimation
and smoothness.

1.3 Contributions

In this thesis, we adopt the Fourier and variational based approaches to extract feature
for fingerprint segmentation. The contribution of this study is mainly threefolds:

The methods for fingerprint segmentation:

• The factorized directional bandpass (FDB) method (see [1]):

Since the frequency spectrum of fingerprint pattern mostly stays in the FOTIs,
we design the FDB method to capture this FOTIs. A novel FDB segmentation
method is based on the directional Hilbert transform of a Butterworth bandpass
(DHBB) filter interwoven with soft thresholding for texture extraction. Then,
the morphological operator is applied on this texture to obtain the ROI.

• The global three-part decomposition (G3PD) method (see [2]):

We consider fingerprint pattern as a smooth, curved and oriented pattern which is
sparse in some transform domains. In order to deal with this concept, we proposed

the G3PD method based on the variational model, TV −G3/4
1,1 − `1 −G

−3/4
∞,∞, for

the decomposition. Loosely speaking, the total variation (TV) norm measures the

homogeneity of the piecewise-smooth regions. The `1 norm and the G
3/4
1,1 norm

simultaneously measure the sparsity and the smoothness of texture, respectively.

The G
−3/4
∞,∞ measures the degree of the oscillation signal, i.e. noise. By solving the

convex minimization TV − G3/4
1,1 − `1 − G

−3/4
∞,∞, the smooth and sparse texture is

obtained. Then, the morphological operator is also implemented to get the ROI.

2



CHAPTER 1. INTRODUCTION

Benchmark: We provide a manually marked ground truth segmentation for all 12
databases of FVC2000 [4], FVC2002 [5] and FVC2004 [6]. Each databases consists of
80 images for training and 800 images for testing. Overall this benchmark consists of
10560 marked segmentation images. This ground truth benchmark is made publicly
available, so that other researchers can evaluate segmentation algorithms on it.

Evaluation against existing methods: In order to clarify the feasibility of our ap-
proaches, we conduct a systematic performance comparison with widely used segmen-
tation algorithms on this benchmark. In total, more than 100 methods for fingerprint
segmentation can be found in the literature. However, it remains unclear how these
methods compare with each other in terms of segmentation performance and which
methods can be considered as state-of-the-art. In order to remedy the current situation
we chose four of the most often cited fingerprint segmentation methods and compared
their performance: a method based on mean and variance of gray level intensities and
the coherence of gradients as features and a neural network as a classifier [7], a method
using Gabor filter bank responses [8], a Harris corner response based method [9] and
an approach using local Fourier analysis [10].

1.4 Organization

The cornerstone construction of the thesis - the Fourier and variational based ap-
proaches for fingerprint segmentation - are presented in Chapter 2 and Chapter 3,
respectively. In particular, the FDB method with the DHBB filter in the Fourier do-
main is introduced to extract the feature for the morphology operator to obtain the
ROI in Chapter 2. The fingerprint feature is considered as a sparse texture with a
certain smoothness which is decomposed by the convex minimization in Chapter 3 by
the G3PD model. The smoothness and sparsity correspond to `1 norm of curvelet co-
efficient and `1 norm of texture, respectively. We refer the reader to Chapter 3 for a
deep discussion about the smoothness and the sparsity of the texture. We finalize the
thesis with conclusion and an outlook to possible future works in Chapter 4.

3



2 Filter Design and Performance
Evaluation for Fingerprint Image
Segmentation

2.1 Introduction

As mentioned before, segmentation is the first step in the fingerprint recognition. In
this procedure, there are two types of error that impact on the recognition performance.
In order to controls both errors, a Fourier based method for fingerprint segmentation
is designed.

2.1.1 The Factorized Directional Bandpass Method, Benchmark and
Evaluation

In order to balance both errors we take the viewpoint that – loosely speaking – finger-
print images are highly determined by patterns that have frequencies only in a specific
band of the Fourier spectrum (prior knowledge). Focusing on these frequencies occur-
ring in true fingerprint images (FOTIs), we aim at the following goals:

1) Equally preserving all FOTIs while attenuating all non-FOTIs.

2) Removing all image artifacts in the FOTI spectrum, not due to the true fingerprint
pattern.

3) Returning a (smooth) texture image containing only FOTI features from the true
fingerprint pattern.

4) Morphological methods returning the ROI.

In order to meet these goals we have developed a factorized directional bandpass (FDB)
segmentation method.

The FDB method: At the core of the FDB method is a classical Butterworth bandpass
filter which guarantees Goal 1. Notably Goal 1 cannot fully be met by Gaussian based
filtering methods such as the Gabor filter. Obviously, due to the Gaussian bell shaped
curve, FOTIs would not be filtered alike. Because straightforward Fourier methods
cannot cope with curvature (as could e.g. curved Gabor filters [11]) we perform separate
filtering into a few isolated orientations only, via directional Hilbert transformations.
The composite directional Hilbert Butterworth bandpass filter (DHBB) incorporates our
prior knowledge about the range of possible values of ridge frequencies (between 1/3 and
1/25 pixels) or interridge distances (between 3 and 25 pixels) [11], assuming a sensor
resolution of 500 DPI and that adult fingerprints are processed. In the case of adolescent
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CHAPTER 2. FILTER DESIGN AND PERFORMANCE EVALUATION FOR
FINGERPRINT IMAGE SEGMENTATION

fingerprints [12] or sensors with a different resolution, the images can be resized to
achieve an age and sensor independent size – not only for the first segmentation step,
but also for all later processing stages. Our parameters can be tuned to reach an
optimal tradeoff between treating all realistic frequencies alike and avoiding Gibbs
effects. Moreover we use a data friendly rectangular spectral shape of the bandpass
filter employed which preserves the rectangular shape of the spatial image.

A second key ingredient is the factorization of the filter into two factors in the spectral
domain, between which a thresholding operation is inserted. After preserving all FOTIs
and removing all non-FOTIs in application of the first factor, all FOTI features not due
to the true fingerprint pattern (which are usually less pronounced) are removed via a
shrinkage operator: soft-thresholding. Note that albeit removing less pronounced FOTI
features, thresholding introduces new unwanted high frequencies. These are removed,
however, by application of the second factor, which also compensates for a possible
phase shift due to the first factor, thus producing a smoothed image with pronounced
FOTI features only.

At this stage, non-prominent FOTI features have been removed, not only outside
the ROI, but also some due to true fingerprint features inside the ROI. In the final
step, these “lost” regions are restored via morphological operations (convex hull after
binarization and two-scale opening and closing).

The careful combination of the above ingredients in our proposed FDB method yields
segmentation results far superior to existing segmentation methods.

Benchmark: In order to verify this claim, because of the lack of a suitable benchmark
in the literature, we contribute a manually marked ground truth segmentation for all
12 databases of FVC2000 [4], FVC2002 [5] and FVC2004 [6], totally 10560 marked
segmentation images.

Evaluation: Based on the ground truth benchmark, we compare the performance of
our proposed FDB method with four of the most often cited fingerprint segmentation
methods in the literature, cf. [7], [8], [9] and [10].

2.1.2 Related Work

Early methods for fingerprint segmentation include Mehtre et al. [13] who segment
an image based on histograms of local ridge orientation and in [14] additionally the
gray-level variance is considered. A method proposed by Bazen and Gerez [7] uses
the local mean and variance of gray-level intensities and the coherence of gradients
as features and a neural network as a classifier. Similarly Chen et al. [15] use block
based features including the mean and variance in combination with a linear classifier.
Both methods perform morphology operations for postprocessing. A method by Shen
et al. is based on Gabor filter bank responses of blocks [8]. In [11], all pixels are
regarded as foreground for which a valid ridge frequency based on curved regions can
be estimated. Wu et al. [9] proposed a Harris corner response based method and they
apply Gabor responses for postprocessing. Wang et al. [16] proposed to use Gaussian-
Hermite moments for fingerprint segmentation. The method of Zhu et al. [17] uses a

5



CHAPTER 2. FILTER DESIGN AND PERFORMANCE EVALUATION FOR
FINGERPRINT IMAGE SEGMENTATION

gradient based orientation estimation as the main feature, and a neural network detects
wrongly estimated orientation and classifies the corresponding blocks as background.
Chikkerur et al. [10] applied local Fourier analysis for fingerprint image enhancement.
The method performs implicitly fingerprint segmentation, orientation field and ridge
frequency estimation. Further approaches for fingerprint enhancement in the Fourier
domain include Sherlock et al. [18], Sutthiwichaiporn and Areekul [19] and Bart̊uněk et
al. [20, 21, 22]. Recently, segmentation methods for latent fingerprints were proposed,
see Zhang et al. [23], Cao et al. [24], and the references therein. It would be of interest
to see how these methods aiming at latent fingermarks perform on a benchmark of
plain fingerprint images.

2.1.3 Setup of Chapter 2

This chapter is organized as follows: in the next section, we describe the proposed
method beginning with the design of the DHBB filter for texture extraction in Section
2.2.1. Subsequently, the extracted and denoised texture is utilized for estimating the
segmentation as described in 2.2.2 which summarizes the FDB segmentation procedure.
In Section 2.3, the manually marked ground truth benchmark is introduced and applied
for evaluating the segmentation performance of four widely used algorithms and for
comparing them to the proposed FDB segmentation method. The results are discussed
in Section 2.4.

2.2 Fingerprint Segmentation by FDB Methods

Our segmentation method uses a filter transforming an input 2D image f(·) ∈ L2(R2)
into a feature image

f̃(x) :=

L−1∑
l=0

∑
x6=m∈Z2

T

{
〈f(·), φγ,nl (· −m)〉pvL2︸ ︷︷ ︸

cl[m]

, β

}
︸ ︷︷ ︸

dl[m]

·φγ,nl (x−m). (2.1)

Due to our filter design, the L2 product above as well as all convolutions, integrals and
sums are understood in the principal value sense

lim
ε→0

∫
‖y−m‖≥ε

f(y) · φγ,nl (y −m)dy = 〈f(·), φγ,nl (· −m)〉pvL2
= (f∗pvφγ,n,∨l )(m) .

Having clarified this, the symbol “pv” will be dropped in the following. At the core
of (2.1) is the DHBB filter conveyed by φγ,nl (l counts directions, n and γ are tuning
parameters providing sharpness). In fact, we suitably factorize the filter conveyed by
φγ,nl ∗ φγ,n,∨l in the Fourier domain where φγ,n,∨l (x) := φγ,nl (−x) with the argument
reversion operator “∨” and apply a thresholding procedure T “in the middle”. Under-
lying this factorization is a factorization of the bandpass filter involved. The precise
filter design will be detailed in the following. Note that the directional Hilbert trans-
form is also conveyed by a non-symmetric kernel. Reversing this transform (as well as
the factor of the Butterworth) restores symmetry. It is inspired by the steerable wavelet

6
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Erro r = 2 .08%

binarization

morphology

Fourier
transform

2nd factor

1st factor

1st direction 16th direction

soft-thresholding

Figure 2.1: Overview over the segmentation by the FDB method: In the analysis step,
the original image (top row, left) is transformed into the Fourier domain
(second column) and filtered by the first DHBB factor obtaining 16 di-
rectional subbands (third and fourth columns). Next soft-thresholding is
applied to remove spurious patterns (second row, third and fourth columns).
In the synthesis step, the feature image (second column) is reconstructed
from these subbands using the second DHBB factor. Finally, the feature im-
age is binarized and the ROI is obtained by morphological operations. The
estimated ROI (third row, left) is compared to manually marked ground
truth segmentation (third row, right) in order to evaluate the segmentation
performance.
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[25, 26, 27] and to some extend similar in spirit to the curvelet transform [28], [29] and
the curved Gabor filters [11]. We deal with curvature by analyzing single directions l
separately before the final synthesis.

Via factorization, possible phase shifts are compensated and unwanted frequencies
introduced by the thresholding operator are eliminated, yielding a sparse smoothed
feature image. This allows for easy binarization and segmentation via subsequent mor-
phological methods, leading to the ROI.

Note that (2.1) can be viewed as an analog to the projection operator in sampling
theory with the analysis and synthesis steps (e.g. [30]). In this vein we have the
following three steps:

Forward analysis (prediction): A first application of the argument reversed DHBB
filter to a fingerprint image f corresponds to a number of directional selections
in certain frequency bands of the fingerprint image giving cl[m] above.

Proximity operator (thresholding): In order to remove intermediate coefficients
due to spurious patterns (cf. [31]) we perform soft thresholding on the filtered
grey values yielding dl[m] above.

Backward synthesis: Subsequently we apply the filter (non-reversed) again giving
f̃ assembled from all subbands. A numerical comparison to other synthesis meth-
ods, summation (corresponding to a naive reconstruction) and maximal response
in the appendix 2.5, shows the superiority of this smoothing step.

Due to the discrete nature of the image f [k] = f(x) |x=k∈Z2 , we work with the
discrete version of f̃(x) at x = k ∈ Z2 in Eq. (2.1).

2.2.1 Filter Design for Fingerprint Segmentation

The features of interest in a fingerprint image are repeated (curved) patterns which
are concentrated in a particular range of frequencies after a Fourier transformation. In
principle, the frequencies lower than these range’s limits correspond to homogeneous
regions and those higher to small scale objects, i.e. noise, respectively. Taking this
prior knowledge into account, we design an algorithm that captures these fingerprint
patterns in different directional subbands in the frequency domain for extracting the
texture.

In this section, we design angularpass and bandpass filters. The angularpass filter
builds on iterates of the directional Hilbert transformation, a multidimensional gener-
alization of the Hilbert transform called the Riesz transform. It can be represented
via principal value convolution kernels. The bandpass filter builds on the Butterworth
transform which can be represented directly via a convolution kernel. We follow here
a standard technique designing a bandpass filter from a lowpass filter which has an
equivalent representation in analog circuit design.

8
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(a) ĥnl (ω)
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(b) 1D: ĝγ(ω) (c) 2D: ĝγ(ω) (d) φ̂γ,nl (ω)

(e) Re{φγ,nl (x)} (f) Im{φγ,nl (x)} (g)
∣∣∣φ̂γ,nl (ω)

∣∣∣2 (h) (φγ,nl ∗ φγ,n,∨l )(x)

Figure 2.2: Image (a) displays the angularpass filter ĥnl (ω) with θ = 13π/16, n = 20.
Images (b-c) show the 1D and 2D Butterworth bandpass filters ĝγ(ω) and
ĝγ(ω) with ωL = 0.3, ωH = 1, γ = 2, (d) the spectrum of the DHBB filter
φ̂γ,nl (ω). Images (e-f) visualize the real and imaginary part of the DHBB
filter φγ,nl (x). Images (g-h) display the squared magnitude of the spectrum
of the DHBB in the frequency and spatial domains which acts somewhat
like a Gabor filter.

2.2.1.1 The nth Order Directional Hilbert Transform of a Butterworth Bandpass

Although a fingerprint image

k = [k1, k2] 7→ f [k], {−M, . . . ,M ]× {−N, . . . , N} → {0, . . . , 255}

is a discrete signal observed over a discrete grid, M,N ∈ N we start our considerations
with a signal

x = (x1, x2) 7→ f(x), D := [−a, a]× [−b, b]→ [0, 1]

assuming values in a continuum a, b > 0. The frequency coordinates in the spectral
domain will be denoted by ω = (ω1, ω2) ∈ R2.

As usual, the following operators are defined first for functions f in the Schwartz
Space of rapidly-decaying and infinitely differentiable test functions:

S(Rd) =

{
f ∈ C∞(Rd) | sup

x∈Rd

∣∣∣∣(1 +|x|m)
dn

dxn
f(x)

∣∣∣∣ < +∞ , ∀m,n ∈ Z+

}
,

and continuously extended onto

L2(Rd) =

{
f ∈ S(Rd) | ‖f‖L2 =

∫
Rd

∣∣f(x)
∣∣2 dx < +∞

}
.
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In our context we only need d = 1, 2. Further, we denote the Fourier and its inverse
transformations by

F [f ](ω) =

∫
Rd
f(x) e−j〈ω,x〉 dx = f̂(ω) , F−1[f ](ω) =

1

(2π)d

∫
Rd
f̂(ω) ej〈ω,x〉 dx

where j denotes the imaginary unit with j2 = −1.

Butterworth bandpass For γ ∈ N and frequency bounds 0 < ωL < ωH , setting ∆ =
ωH − ωL, p2 = ωHωL, the one-dimensional (d = 1) Butterworth bandpass transform is
defined via

B[f ](x) = F−1

[
ω 7→

√
(ω∆)2γ

(ω∆)2γ + (ω2 − p2)2γ︸ ︷︷ ︸
:=b̂(ω)

f̂(ω)

]
(x) ,

cf. [32]. It is easy to verify that b̂(ω) tends to zero for ω → 0 and ω → ∞ and has
unique maximum at the geometric mean p with value 1. In consequence, for high values
of γ, this filter approximates the ideal filter

b̂ideal(ω) =

{
1 if ωL ≤ ω ≤ ωH
0 else

.

The ideal filter, however, suffers from the Gibbs effect. Letting t = (jω)2+p2

jω∆ , we factorize
the bandpass Butterworth as

b̂2(ω) =
1

(−1)γ(t2)γ + 1
=

1

(−1)γ
∏γ
k=1(t2 − t2k)

=

γ∏
k=1

1

t− tk︸ ︷︷ ︸
H(t)

·
γ∏
k=1

1

−t− tk︸ ︷︷ ︸
H(−t)

,

with tk = eπj(γ+2k−1)/2γ (k = 1, . . . , γ), the negative squares of which representing
the γ different complex roots of (−1). Then, with the below complex valued factor of
0 ≤ b̂2(ω) = B(jω) ·B(−jω) called the transfer function,

H(t) = H

(
(jω)2 + p2

jω∆

)
=

γ∏
k=1

∆(jω)

(jω)2 −∆tk(jω) + p2
:= B(jω) ,

we use the approximation: jω = log ejω ≈ 2 e
jω−1
ejω+1

to obtain

B(jω) ≈
γ∏
k=1

2∆(e2jω − 1)(
4 + p2 − 2∆tk

)
e2jω +

(
2p2 − 8

)
ejω +

(
4 + p2 + 2∆tk

) := Bγ(ejω).

This approximation is often called the bilinear transform, which turns out to reduce
the frequency bandwidth of interest, cf. Figure 2.7.

The 1D filter Bγ(eiω) is then generalized to a 2D domain. The McClellan transform
[33], [34], [35], [36], would be one favorable method. Also, recently, bandpass filtering

10
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with a radial filter in the Fourier domain has been proposed by [37], [38] and [39] et
al. for enhancing fingerprint images. However, for a simpler reconstruction of 2D filter
and a data-friendly alternative to the polar tiling of the frequency plane, a Cartesian
array is used instead (see [28], [29], [40], [41]).

Thus, on a rectangular domain D = [−a, a]× [−b, b] with common cuttoff frequencies
0 < ωL < ωH and the two characteristic functions

χh(ω1, ω2) :=

{
1 if b|ω1| ≥ a|ω2|
0 else

, χv(ω1, ω2) :=

{
1 if b|ω1| ≤ a|ω2|
0 else

(see Figure 2.9), define

ĝγ(ω1, ω2) = Bγ(ejω1)χh(ω1, ω2) +Bγ(ejω2)χv(ω1, ω2) (2.2)

as the spectrum of our two-dimensional Butterworth filter gγ(x). Note that since
ĝγ(ω) ∈ L2(R2), there is a well defined gγ(x) = F−1

[
ĝγ(ω)

]
(x).

Figure 2.2 (b) and 2.2 (c) show an example of the 1D and 2D Butterworth bandpass
filters.

n-th order directional Hilbert transformations For more detail on the Hilbert trans-
form H and the Riesz transform R, we refer the reader to the literature for an in-depth
discussion [25], [27], [42], [43], [44], [45, 46, 47], [48], and [49].

Consider a vector u ∈ Rd and set and compute, respectively, for x ∈ Rd

R[f ](x) := F−1

[
ω 7→ −j ω

‖ω‖︸ ︷︷ ︸
:= ĥ(ω)

f̂(ω)

]
(x) (2.3)

Hu[f ](x) := 〈u,R[f ](x)〉 = F−1

[
ω 7→ −j 〈u,ω〉

‖ω‖︸ ︷︷ ︸
:= ĥu(ω)

f̂(ω)

]
(x)

Hu . . .Hu︸ ︷︷ ︸
n−times

[f ](x) = Hnu[f ](x) = F−1

[
ω 7→ (−j)n 〈u,ω〉

n

‖ω‖n︸ ︷︷ ︸
ĥnu(ω)

f̂(ω)

]
(x) , n ∈ N (2.4)

The first line (2.3) called the Riesz transform has a representation as a principal value
integral

R[f ](x) = (f∗pvh)(x) = lim
ε→0

∫
‖y−x‖≥ε

f(x− y)h(y) dy

where

h(y) :=


y

‖y‖d+1

Γ
(
d+1
2

)
π
d+1
2

for d > 1

1
πy for d = 1

11
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Setting hu(y) = 〈u, h(y)〉 and hnu(y) =
(
hu∗pv . . . ∗pvhu

)
(y) we haven for the third line

(2.4) called the n-order directional Hilbert transform that

Hnu[f ](x) = f∗pvhnu(x) .

Since −1 ≤ 〈u,ω〉
‖ω‖ ≤ 1 and high powers preserve the values near ±1 while forcing all

other values in (−1, 1) towards 0, this filter gives roughly the same result as an inverse
Fourier transform of a convolution of the signal’s Fourier transform with

Aα,u(ω) =

{
1 if |〈u,ω〉|‖ω‖ ≥ cosα

0 else

for small α > 0. The directional Hilbert transform, however, suffers less from a Gibbs
effect than this sharp cutoff filter.

In 2D, the direction vector is u = [cos(θ), sin(θ)]T with the discretized θ = πl
L ∈ [0, π)

and l = 0, 1, . . . , L − 1, where L ∈ N is the total number of orientation. Rewrite the
impulse response of the n-th ∈ N order directional Hilbert transform in (2.4) as

ĥnu(ω1, ω2) =

[
− j cos

(
tan−1

2

(ω2

ω1

)
− πl

L

)]n
:= ĥnl (ω1, ω2). (2.5)

Putting together (Eq. (2.2), (2.4), (2.5)), for a fixed bandpass ωL < ωH and L
directional subbands we have thus the DHBB filter of order γ, n:

Hnu[gγ ](x) = F−1

[
ω 7→ ĥnl (ω) · ĝγ(ω)︸ ︷︷ ︸

:=φ̂γ,nl (ω)

]
(x) := φγ,nl (x). (2.6)

2.2.1.2 Thresholding

For given β > 0, soft-thresholding is defined as follows

x 7→ T(x, β) =
x

|x|
·max

(
|x| − β, 0

)
. (2.7)

Thus, the thresholded coefficients are dl[m] = T{cl[m], β}. Note that dl[m] is a solution
of the `1-shrinkage minimization problem

min
u

{
β ‖ u ‖`1 +

1

2
‖ u− cl ‖2`2

}
yielding soft-thresholding (cf. [50]). Figure 2.4 visualizes the effect of the soft-thresholding
and the comparison with the others (such as: hard [50], semi-soft [51] and nonlinear
[52] thresholding operators).

2.2.2 Fingerprint Segmentation

After having designed the FDB filter, let us now ponder on parameter selection, image
binarization and morphological processing.
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2.2.2.1 Parameter Choice for Texture Extraction

A fingerprint image will be rescaled such that its oscillation pattern stays in a specific
range in the Fourier domain, the coordinates of which are ωi = [−π, π], i ∈ {1, 2}. For
choosing the cutoff frequencies ωL and ωH , we incorporate our prior knowledge about
adult fingerprint images at resolution of 500 DPI: Valid interridge distances remain
in a known range approximately from 3 to 25 pixels [11]. This corresponds exactly
to ωH = 1 as a limit for high frequencies. A limit of ωL = 0.3 for low frequencies
of the Butterworth bandpass filter corresponds to an interridge distance of about 12
pixels. The range |ωi| ∈ [ωH , π] contains the small scale objects which are considered
as noise. The range |ωi| ∈ [0, ωL] contains the low frequency objects, corresponding to
homogeneous regions.

The number of directions L in and the order n of the directional Hilbert transform
involves a tradeoff between the following effects. We observe that with increased order
n the filter’s shape becomes thinner in the Fourier domain. Although this sparsity
smooths the texture image in the spatial domain, in order to fully cover all FOTIs, L
needs to grow with n. However, a disadvantage of choosing large n and L is that errors
occur on the boundary due to the over-smoothing effect as illustrated in Figure 2.5 (o).

The next parameter to select is the order of the Butterworth filter γ. An illustration
of the filter for different orders γ ∈ {1, 2, 3, 10} and with cutoff frequencies ωL = 0.3
and ωH = 1 is shown in Figure 2.6, its bilinear approximation in Figure 2.7. As γ
increases the filter becomes sharper. For very large values of γ, it approaches the ideal
filter which is known to cause the unfavorable Gibbs effect.

The thresholding value β separates large coefficients corresponding to the fingerprint
pattern (FOTIs) (which are slightly attenuated due to soft-thresholding) from small
coefficients corresponding to non-FOTIS and FOTIs which are not features due to the
fingerprint pattern (these are eliminated). On the one hand, if β is chosen too large,
more prominent parts of true fingerprint tend to be removed. On the other hand, if β
is chosen too small, not all all unwanted features (as above) are removed which may
cause segmentation errors.

In order to find good trade-offs, as described above, n, L, γ and β are trained as
described in Section 2.3.1. In fact, since different fingerprint sensors have different
properties, β is adaptively adjusted to the intensity of coefficients in all subbands as

β = C ·max
l,m
{cl[m]}. (2.8)

Thus, instead of β, C is trained for each sensor.

2.2.2.2 Texture Binarization

In the first step, the texture is decomposed by the operator (2.1) to obtain the recon-
structed image f̃ [k]. Then, f̃ [k] is binarized using an adaptive threshold adjusted to
the intensity of f̃ [k]. Thus, the threshold is chosen as C ·max

k
(f̃ [k]), with C from (2.8).

If f̃ [k] is larger than this threshold, it will be set to 1 (foreground), otherwise, it is set
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to 0 (background) as illustrated in Figure 2.1.

f̃bin[k] =

1, f̃ [k] ≥ C ·max
k

(f̃ [k])

0, else
, ∀k ∈ Ω

2.2.2.3 Morphological Processing

In this final phase, we apply mathematical morphology (see Chapter 13 in [53]), to
decide for each pixel whether it belongs to the foreground or background. Firstly, at
each pixel f̃bin[k1, k2] ∈ {0, 1}, we build an s× s block centered at (k1, k2) and 8 neigh-
boring blocks (cf. Figure 2.3). Then, for each block, we count the white pixels and

check whether their number exceeds the threshold s2

t with another parameter t > 0. If
at least b blocks are above threshold, the pixel [k1, k2] is considered as foreground.

Figure 2.3: The mor-
phological
element.

f̃dilate[k1, k2] =

1, #
{∑

B[k1+m,k2+m] ≥ s2

t ,m ∈ {−s, 0, s}
}
≥ b

0, else

(2.9)

Then, the largest connected white pixel component is selected by a region filling
method. Its convex hull is then the ROI. For better visualization we have inverted
white and black, i.e. display the background by white pixels and the ROI by black
pixels, cf. Figure 2.1.

2.3 Evaluation Benchmark and Results

The databases of FVC2000, 2002 and 2004 [4, 5, 6] are publicly available and estab-
lished benchmarks for measuring the verification performance of algorithms for image
enhancement and fingerprint matching. Each competition comprises four databases:
three of which contain real fingerprints acquired by different sensors and a database of
synthetically generated images (DB 4 in each competition).

It has recently been shown that real and synthetic fingerprints can be discriminated
with very high accuracy using minutiae histograms (MHs) [54]. More specifically, by
computing the MH for a minutiae template and then computing the earth mover’s
distance (EMD) [55] between the template MH and the mean MHs for a set of real and
synthetic fingerprints. Classification is simply performed by choosing the class with the
smaller EMD.

14



CHAPTER 2. FILTER DESIGN AND PERFORMANCE EVALUATION FOR
FINGERPRINT IMAGE SEGMENTATION

The nine databases containing real fingerprints have been obtained by nine different
sensors and have different properties. The fingerprint image quality ranges from good
quality images (especially FVC2002 DB1 and DB2) to low quality images which are
more challenging to process (e.g. the databases of FVC2004). Some aspects of image
quality concern both the segmentation step and the overall verification process, other
aspects pose problems only for later stages of the fingerprint verification procedure, but
have no influence on the segmentation accuracy.

Aspects of fingerprint image quality which complicate the segmentation:

• dryness or wetness of the finger

• a ghost fingerprint on the sensor surface

• small scale noise

• large scale structure noise

• image artifacts e.g. caused by reconstructing a swipe sensor image

• scars or creases interrupting the fingerprint pattern

Aspects of fingerprint image quality which make an accurate verification more diffi-
cult, but do not have any influence on the fingerprint segmentation step:

• distortion, nonlinear deformation of the finger

• small overlap area between two imprints

Each of the 12 databases contains 110 fingers with 8 impressions per finger. The
training set consists of 10 fingers (80 images) and the test set contains 100 fingers (800
images). In total there are 10560 fingerprint images giving 10560 marked ground truth
segmentations for training and testing.

2.3.1 Experimental Results

Segmentation Performance Evaluation Let N1 and N2 be the width and height of
image f [k] in pixels. Let Mf be number of pixels which are marked as foreground
by human expert and estimated as background by an algorithm (missed/misclassified
foreground). Let Mb be number of pixels which are marked as background by human
expert and estimated as foreground by an algorithm (missed/misclassified background).
The average total error per image is defined as

Err =
Mf +Mb

N1 ×N2
. (2.10)

The average error over 80 training images is basis for the parameter selection. In
Table 2.3, we report the average error over all other 800 test images for each database
and for each algorithms.

Parameter Selection Experiments were carried out on all 12 databases and are re-
ported in Table 2.3. For each method listed in Table 2.3, the required parameters were
trained on each of the 12 training sets: the choice of the threshold values for the Gabor
filter bank based approach by Shen et al. [8], and the threshold values for the Harris

15



CHAPTER 2. FILTER DESIGN AND PERFORMANCE EVALUATION FOR
FINGERPRINT IMAGE SEGMENTATION

Parameters Description

a constant for selecting the threshold β in Eq. (2.8)
C

which removes small coefficients corresponding to noise.

the order of the directional Hilbert transform which
n

corresponds to the angularpass filter in Eq. (2.4).

L the number of orientations in the angularpass filter in Eq. (2.4).

γ the order of the Butterworth bandpass filter in Eq. (2.2).

s the window size of the block in the postprocessing step in Eq. (2.9).

t a constant for selecting the morphology threshold T in Eq. (2.9).

b the number of the neighboring blocks in Eq. (2.9).

Table 2.1: Overview over all parameters for the factorized directional bandpass (FDB)
method for fingerprint segmentation. Values are reported in Table 3.2.

FVC DB C γ t

2000 1 0.06 4 5
2 0.07 2 5
3 0.06 4 4
4 0.03 1 5

2002 1 0.04 1 4
2 0.05 1 7
3 0.09 1 5
4 0.03 1 6

2004 1 0.04 1 7
2 0.08 2 5
3 0.07 1 6
4 0.05 1 5

Table 2.2: Overview over the parameters learned on the training set. The other four
parameters are n = 20, L = 16, s = 9 and b = 6 for all databases.
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FVC DB GFB [8] HCR [9] MVC [7] STFT [10] FDB

2000 1 13.26 11.15 10.01 16.70 5.51
2 10.27 6.25 12.31 8.88 3.55
3 10.63 7.80 7.45 6.44 2.86
4 5.17 3.23 9.74 7.19 2.31

2002 1 5.07 3.71 4.59 5.49 2.39
2 7.76 5.72 4.32 6.27 2.91
3 9.60 4.71 5.29 5.13 3.35
4 7.67 6.85 6.12 7.70 4.49

2004 1 5.00 2.26 2.22 2.65 1.40
2 11.18 7.54 8.06 9.89 4.90
3 8.37 4.96 3.42 9.35 3.14
4 5.96 5.15 4.58 5.18 2.79

Avg. 8.33 5.78 6.51 7.57 3.30

Table 2.3: Error rates (average percentage of misclassified pixels averaged over 800 test
images per database) computed using the manually marked ground truth
segmentation and the estimated segmentation by these methods: a Gabor
filter bank (GFB) response based method by Shen et al. [8], a Harris corner
response (HCR) based approach by Wu et al. [9], a method by Bazen and
Gerez using local gray-level mean, variance and gradient coherence (MVC)
as features [7], a method applying short time Fourier transforms (STFT)
by Chikkerur et al. [10] and the proposed method based on the factorized
directional bandpass (FDB).

corner response based method by Wu et al. [9]. The parameters of the method by
Bazen and Gerez are chosen as described in [7]: the window size of the morphology
operator and the weights of the perceptron which are trained in 104 iterations due to
the large number of pixels in the training database. For the method of Chikkerur et al.,
we used the energy image computed by the implementation of Chikkerur, performed
Otsu thresholding and mathematical morphology as explained in [53].

For the proposed FDB method, the involved parameters are summarized in Table 3.1
and the values of the learned parameters are reported in Table 3.2. Also, the mirror
boundary condition with size 15 pixels is used in order to avoid boundary effects. In
a reasonable amount of time, a number of conceivable parameter combinations were
evaluated on the training set. The choice of these parameters balances the smoothing
properties of the proposed filter attempting to avoid both under-smoothing and over-
smoothing.

This systematic comparison of fingerprint segmentation methods clearly shows that
the factorized directional bandpass method (FDB) outperforms the other four widely
used segmentation methods on all 12 databases. An overview of visualized segmentation
results by the FDB method is given in Figure 3.8. A few challenging examples for which
the FDB method produces a flawed segmentation are depicted in Figure 3.15. Moreover,
a comparison of all five segmentation methods and their main features for five example
images are shown in Figure 2.14 to 2.18.
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2.4 Conclusions

In this chapter, we designed a filter specifically for fingerprints which is based on the
directional Hilbert transform of Butterworth bandpass filters. A systematic comparison
with four widely used fingerprint segmentation showed that the proposed FDB method
outperforms these methods on all 12 FVC databases using manually marked ground
truth segmentation for the performance evaluation. The proposed FDB method for
fingerprint segmentation can be combined with all methods for orientation field esti-
mation like e.g. the line sensor method [56] or by a global model based on quadratic
differentials [57] followed by liveness detection [58] or fingerprint image enhancement
[11, 59]. It can also be used in combination with alternative approaches, e.g. as a pre-
processing step for locally adaptive fingerprint enhancement in the Fourier domain as
proposed by Bart̊uněk et al. [22] or before applying structure tensor derived symmetry
features for enhancement and minutiae extraction proposed by Fronthaler et al. [60].

Notably, the filter φn,γl ∗ φn,γ,∨l is similar to the Gabor filter which could have been
used instead of the DHBB filter. Similarly, Bessel or Chebbychev transforms as well as
B-splines as generalizations ([61]) could replace the Butterworth. We expect, however,
for reasons elaborated, relying on the DHBB filter gives superior segmentation results.

The manually marked ground truth benchmark and the implementation of the FDB
method are available for download at www.stochastik.math.uni-goettingen.de/

biometrics/.

In doing so, we would like to facilitate the reproducibility of the presented results
and promote the comparability of fingerprint segmentation methods.
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Supplementary Appendix

2.5 Comparison of the Operator in the FDB Method with the
Summation and Maximum Operators

We briefly illustrate the differences between the proposed FDB filter (2.1) and the
maximum and summation operators for the coefficients in all directional subbands.
Figure 2.10 compares the results of these operators for a low-quality and a good quality
example. The functions are described as follows

• The maximum operator without and with the shrinkage operator (2.7) (depicted
in the second and third row in Figure 2.10)

f̃ [k] =


max
l

{
cl[k] · (cl[k] > 0)

}
+ min

l

{
cl[k] · (cl[k] < 0)

} (
without (2.7)

)
max
l

{
dl[k] · (dl[k] > 0)

}
+ min

l

{
dl[k] · (dl[k] < 0)

} (
with (2.7)

)
,

with l = 0, 1, . . . , L− 1.

• The summation operator without and with the shrinkage operator (2.7) (displayed
in the fourth and fifth row in Figure 2.10)

f̃ [k] =



L−1∑
l=0

cl[k]
(
without (2.7)

)
L−1∑
l=0

dl[k]
(
with (2.7)

)
.

2.6 Additional Figures
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Figure 2.4: Four typical thresholding functions (red: hard, black: soft, green: semi-
soft, magenta: nonlinear) are compared (top left). The following six pairs
show an image and the visualization of the corresponding 1D cross section
along the red line. F.l.t.r and top to bottom: the original image f [k],
the coefficient cl[k] and the thresholded coefficients dl[k] for the soft, hard,
semisoft and nonlinear thresholding operators. Comparing the four cross
sections in the bottom row, we observe that soft-thresholding achieves the
sparsest solution.
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Figure 2.5: Angular bandpass ĥnl (ω) at θ = 7π
16 , γ = 3 and different orders n ∈

{3, 20, 100} and their responses (last row).
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Figure 2.6: Butterworth bandpass filter ĝγ(ω) at ωL = 0.3, ωH = 1 and different γ,
angular bandpass filter with n = 20, L = 16, θ = 5π

16 , and their responses.

1st row: 1D Butterworth, 2nd row: 2D Butterworth, 3rd row: φ̂γ,nl (ω), 4th

row:
∣∣φγ,nl (x)

∣∣, 5th row: (φγ,nl ∗ φγ,n,∨l )(x), 6th row: their responses.
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Figure 2.7: Image (a) displays a 1D Butterworth bandpass filter (blue) and its approxi-
mation (red). Image (b) shows the 2D Butterworth bandpass filter ĝγ(ω) at
n = 20, θ = 0, γ = 2, and the corresponding DHBB filter in the Fourier and
spatial domains (c, d) for the approximation by the bilinear transform. Im-
age (e) visualizes the 2D version of the original filter and the corresponding
DHBB filter (f, g).
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(a) (b) (c) (d)

Figure 2.8: The ground truth segmentation (a) and the binarized texture image (b)
for an example fingerprint. Applying a standard morphology operation
like closing (dilation followed by erosion) instead of the proposed method
connects in this example the white fingerprint texture with structure noise
close to the margin of the texture and the result is a defective segmentation
(c). The proposed morphology avoids this undesired effect by considering
neighborhoods on two scales: cells of size s × s pixels and blocks of 3 × 3
cells.

(a) (b)

Figure 2.9: The indicator functions in the horizontal direction (a) and vertical direction
(b).
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Figure 2.10: Comparison of five image reconstruction strategies and their effect on
the resulting segmentation. 1st, 2nd columns: segmented images (error
in percent) and reconstructed images for a low-quality image and 3rd, 4th

columns for a good quality image. 1st row: the proposed operator. 2nd, 3rd

rows: maximum operator without and with the shrinkage operator (2.7),
respectively. 4th, 5th rows: summation operator without and with the
shrinkage operator (2.7), respectively.
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Figure 2.11: Visualization of the coefficients in the 16 subbands of the DHBB filter for
n = 20, γ = 3, ωL = 0.3, ωH = 1.
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Figure 2.12: Segmented fingerprint images and the corresponding reconstructed texture
images by the FDB method for FVC2000 (first and second row), FVC2002
(third and fourth row) and FVC2004 (fifth and sixth row). Columns f.l.t.r
correspond to DB1 to DB4.
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Figure 2.13: Examples of incorrectly segmented fingerprint images due to: (a) a ghost
fingerprint on the sensor surface, (b) dryness of the finger, (c) texture
artifacts in the reconstructed image, (d) wetness of the finger. The first
row shows the segmentation obtained by the FDB method, the second row
displays the reconstructed image and the last row visualizes the manually
marked ground truth segmentation.
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Figure 2.14: Segmented fingerprint images and their features of different methods for
FVC2002 DB3 IM 15 1. (a) ground truth; (b, g) FDB, (c, h) Gabor, (d,
i) Harris, (e, j, k, l) Mean-Variance-Coherence, (f, m) STFT.
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Figure 2.15: Segmented fingerprint images and their features of different methods for
FVC2004 DB1 IM 24 7. (a) ground truth; (b, g) FDB, (c, h) Gabor, (d,
i) Harris, (e, j, k, l) Mean-Variance-Coherence, (f, m) STFT.
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Figure 2.16: Segmented fingerprint images and their features of different methods for
FVC2000 DB3 IM 17 3. (a) ground truth; (b, g) FDB, (c, h) Gabor, (d,
i) Harris, (e, j, k, l) Mean-Variance-Coherence, (f, m) STFT.
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Figure 2.17: Segmented fingerprint images and their features of different methods for
FVC2004 DB2 IM 56 8. (a) ground truth; (b, g) FDB, (c, h) Gabor, (d,
i) Harris, (e, j, k, l) Mean-Variance-Coherence, (f, m) STFT.
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Figure 2.18: Segmented fingerprint images and their features of different methods for
FVC2004 DB2 IM 65 7. (a) ground truth; (b, g) FDB, (c, h) Gabor, (d,
i) Harris, (e, j, k, l) Mean-Variance-Coherence, (f, m) STFT.
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3 Global Variational Method for
Fingerprint Segmentation By Three-Part
Decomposition

3.1 Introduction

On the analogy to Chapter 2 (or [1]) with the Fourier based approach, in this chapter we
design a variational based method to segment the fingerprint image into the foreground
and the background.

3.1.1 Global three-part decomposition (G3PD) method

Our proposed method is based on the philosophy that a fingerprint image can be
considered as a summation of three components: texture, homogeneous parts and small
scale objects. In this chapter, we propose a global three-part decomposition (G3PD)
method which aims to decompose a fingerprint image into the corresponding three
parts:

• Texture image: By texture we refer to the fact that fingerprint images are
highly determined by their oriented patterns which have frequencies only in a
specific band in the Fourier spectrum, see [1].

• Cartoon image: The homogeneous regions correspond to the lower frequency
response.

• Noise image: Small scale objects staying in the higher frequency band are
considered as noise, e.g. black dots with random position and intensity.

For the purpose of fingerprint segmentation, we are only interested in the texture
image as a feature for segmentation. After the decomposition, the cartoon and noise
images are ignored.

Therefore, the decomposition can be considered as a feature extraction step which has
the goal to obtain the best possible texture image from an input image. Subsequently,
the texture image is binarized with a global threshold of 0 and morphological operations
are adopted for attaining the region of interest (ROI), see Figure 3.1. In order to achieve
these goals, we propose a model for three-part decomposition with variational based
methods as described below. This variational approach follows the same philosophy of
texture image extraction, but in a different view as the Fourier based FDB method [1].
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decomposition

morphology

E rro r = 2.68%

binarization

Figure 3.1: Overview over the segmentation by the variational method: Firstly, the original
image (first row, left) is decomposed into the homogeneous regions (second col-
umn), texture (third column) and noise (fourth column). Secondly, the texture
image is binarized with a threshold T = 0 and the ROI is obtained by morpholog-
ical operations. In order to evaluate the segmentation performance, the estimated
ROI (second row, second column) is compared to manually marked ground truth
segmentation (second row, first column). The chosen parameters of the decompo-
sition is based on the training sets to avoid the halo effect on the texture image
which causes the error for segmentation. Thus, the homogeneous regions and noise
can contain some textures, but the result gives a better performance in the sense
of image segmentation.

Proposed variational model for G3PD Decomposition techniques are at the core of
variational methods. Decomposition is performed by finding the solution of a convex

minimization problem. Inspired by this idea, we propose the TV−G3/4
1,1 − `1 −G

−3/4
∞,∞

model for global three-part decomposition. Piecewise constant regions are measured
by the total variation (TV) norm. The sparsity of texture pattern is measured by the
`1 norm which relates to the shrinkage operator. The smoothness of texture image can

be carried out by G
3/4
1,1 norms which corresponds to `1 norm of curvelet coefficients [62].

The dual space of G
3/4
1,1 is G

−3/4
∞,∞ which relates to the small curvelet coefficients. This

space is very suitable to capture the noise. By experiment, we have discovered that the
curvelet shrinkage captures the geometry of fingerprint pattern better than the classical
wavelet thresholding in terms of over-estimation and smoothness.

The combination of the decomposition and morphology in our proposed G3PD method
yields segmentation performance superior to existing segmentation methods.

Performance Evaluation and Comparison to Existing Methods We conduct a sys-
tematic performance comparison of our proposed G3PD method with five state-of-the-
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art fingerprint segmentation methods. The segmentation accuracy of all methods is
measured on a manually marked ground truth database containing 10560 images [1].
A detailed description of the evaluation benchmark, training and test protocols and
experimental results is given in Section 3.3.

The five methods in the comparison are: a method based on mean and variance of
gray level intensities and the coherence of gradients as features and a neural network as
a classifier [7], a method using Gabor filter bank responses [8], a Harris corner response
based method [9], an approach using local Fourier analysis [10] and the factorized
directional bandpass method [1].

3.1.2 Related Work

With more than hundred methods, we refer the reader to [1] for an overview over the
literature of fingerprint segmentation methods. For image segmentation in general,
there is a plethora of approaches to solve this problem. These are based e.g. on the
intensity of pixels [63, 64, 65], or the evolution of curves for piecewise smooth regions in
images [66, 67, 68, 69]. Texture segmentation, however, is still an open problem, because
intensity values are inadequate, e.g. for segmenting fingerprint patterns. Methods based
on texture descriptors [70, 71] or finding other meaningful features in an observed image
for classification have been suggested.

Based on the classical Rudin-Osher-Fatemi (ROF) model [72], researchers have pro-
posed numerous approaches in which the regularization and fidelity terms are con-
sidered under different functional spaces, such as Besov, Hilbert and Banach spaces
[73, 74, 75, 76, 77, 78], as well as higher order derivatives instead of the gradient in
`1 norm of the fidelity term, such as high-order PDEs [79, 80], mean curvature [81],
and Euler’s elastica [82]. Especially, many signals have sparse or nearly-sparse rep-
resentations in some transform domain corresponding to `0 or its regularization `1
[83, 84, 85, 86, 87]. To solve the constrained minimization problems, various tech-
niques have been suggested such as Chambolle’s projection [88], splitting Bregman
method [89], iterative shrinkage/thresholding (IST) algorithms [90, 91, 92]. Wu et al.
[93] has proved the equivalence between augmented Lagrangian method (ALM), dual
methods, and split Bregman iteration. We have adopted ALM into our approach to
solve the proposed constrained minimization problem. [50], [94] and [95] show that the
shrinkage operator of multiresolution analysis is the solution of a variational problem
when considering signals in Besov space, i.e. Bα

p,q, relating to wavelet coefficients. How-
ever, Bα

p,q is only suitable for signals with point-like features. The curvelet transform
[96, 29, 97, 28], the contourlet transform [41], and steerable wavelet transform [98]
have recently been introduced to capture the geometrical mechanism of images. These
transforms are very suitable for image analysis, especially for fingerprint patterns with
oriented and curved lines. In our framework, we perform a multiresolution analysis by
the curvelet transform corresponding to an analysis of the signal under the curvelet
type decomposition space, i.e. Gαp,q, which has been suggested by Borup and Nielsen
[62].

There are many difficulties relating to the choices of the parameters for decomposi-
tion and minimization steps which ensure the convergence of the algorithm and extract
enough texture for segmentation under the various situations, such as different illumi-
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nation, noise, and ghost fingerprints (see Figure 3.2 for an illustration). Addressing
these problems is still a challenge in practice.

(a) (b) (c)

Figure 3.2: Difficult problems occur in images. (a) Small scale objects are modeled as
noise. (b) Ghost fingerprint image. (c) Image with different illumination.

3.1.3 Setup of Chapter 3

The organization of this chapter is as follows:

In Section 3.2, we give a detailed description of the G3PD method in two main
steps: first, texture image extraction is treated in Section 3.2.1, followed by mor-
phological operations in Section 3.2.2, see Figure 3.1. To this end, we introduce the

TV−G3/4
1,1 − `1−G

−3/4
∞,∞ model in Section 3.2.1.1 which defines the objective function as

a constraint minimization problem for the decomposition of an image into three parts:
cartoon, texture and noise images. In Section 3.2.1.2 we prove the existence and we
discuss the uniqueness of the solution for the corresponding unconstraint minimization
problem. Next, in Section 3.2.1.3 we apply the augmented Langrangian method to
reformulate the constraint minimization into an unconstraint one. Subsequently, this
unconstraint minimization problem is solved by the alternating direction method of
multipliers (ADMM) in Section 3.2.1.4. The smoothness and sparsity of the obtained
texture image as a feature for segmentation is discussed in Section 3.2.1.5. In Section
3.2.2, we specify how to obtain the ROI from the texture image by morphological op-
erations. In Section 3.3 we describe the evaluation benchmark, the training and test
protocols and experimental results. Finally, in Section 3.4 we discuss the results of
the evaluation and we give conclusions. Notation, proofs and additional figures can be
found in the Appendix.

3.2 The G3PD Method for Fingerprint Segmentation

This section describes the G3PD method which consists of two main parts: in the

following Subsection 3.2.1, we introduce the TV−G3/4
1,1 − `1 −G

−3/4
∞,∞ model for three-
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part decomposition into cartoon, texture and noise images. Next, we formalize the
constraint minimization problem and we discuss the ALM for solving it.

In Subsection 3.2.2, we utilize the obtained texture image as our feature to perform
the segmentation by morphological operations.

3.2.1 Fingerprint Texture Extraction

3.2.1.1 The TV −G3/4
1,1 − `1 −G

−3/4
∞,∞ Model

As argued before, the fingerprint f is consists of the homogeneous region u, the repeated
patterns v staying in a frequency range in Fourier domain and corrupted by a certain
random noise ε. Fundamental for our analysis is that we assume that the fingerprint
pattern is sparse in the Fourier domain as the ridge lines form an oscillating signal at
essentially one frequency, locally. We assume that

f [k] = u[k] + v[k] + ε[k], k ∈ Ωd.

As laid out in Appendix 3.5, the space B1
1,1 relating to the `1 norm of the wavelet

coefficients, i.e. ‖v‖B1
1,1

=
∥∥W{v}∥∥

`1
, is very suitable to measure the smoothness of the

oscillation signals. However, due to a set of highly curved lines in the fingerprint pat-

terns, the space G
3/4
1,1 is considered instead to capture their curvature, called texture v.

Denoting C{v} =
[
Ci,l{v}

]
(i,l)∈I the curvelet transform of v in i different scales and l

orientations. The norm of v in the space G
3/4
1,1 is ‖v‖

G
3/4
1,1

=
∥∥C{v}∥∥

`1
. In order to get

the sparse texture v in the spatial domain, the `1 norm is adopted. In conclusion, the
norms {

∥∥C{v}∥∥
`1

+‖v‖`1} are considered to extract the fingerprint patterns. Then, the

bounded variation space with the discrete TV-norm, i.e. J(u) = ‖∇du‖`1 (∇d is the
discrete gradient operator in Appendix 3.7.1), is well-known to measure the roughness

of a piecewise constant image u [72]. Finally, the residual ε is considered in G
−3/4
∞,∞, the

dual space of G
3/4
1,1 , relating to small curvelet coefficients, i.e.

‖ε‖
G
−3/4
∞,∞

:=
∥∥C{ε}∥∥∞ = sup

i,l,k∈I

∣∣Ci,l{ε}[k]
∣∣ .

Thus, the constraint of the minimization problem is defined: the norm of the residual

in G
−3/4
∞,∞, i.e.

∥∥C{f − u− v}∥∥∞, is less than some level of noise δ. In summary, the
variational model is described in the Euclidean space X (cf. Appendix 3.5) as follows

(ū, v̄) = argmin
(u,v)∈X2

{
‖∇du‖`1+µ1

∥∥C{v}∥∥
`1

+µ2‖v‖`1 s.t. sup
i,l,k∈I

∣∣Ci,l{f − u− v}[k]
∣∣︸ ︷︷ ︸

= ‖C{f−u−v}‖∞

≤ δ
}
.

(3.1)
Note that the form of (3.1) is analogous to the statistical multiresolution estimator in
[99] (or [100]) where the nonlinear transformation is the absolute value of the curvelet
coefficients, i.e. Λ(·) =

∣∣C{·}∣∣, the length of subsets |S| = 1 and the weight-function
ωS = 1. The main difference is that our model has two variables (u ,v). With the
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residual ε = f − u− v, the constraint minimization (3.1) is rewritten as

(ū, v̄, ε̄) = argmin
(u,v,ε)∈X3

{
‖∇du‖`1 + µ1

∥∥C{v}∥∥
`1

+ µ2‖v‖`1 s.t.
∥∥C{ε}∥∥∞ ≤ δ ,f = u+ v + ε

}
.

(3.2)
Given δ > 0, denote the indicator function on the feasible convex set S(δ) of (3.2) by
G∗
(
ε
δ

)
(cf. Proposition 3.5.1), i.e.

S(δ) =

{
ε ∈ X |

∥∥C{ε}∥∥∞ ≤ δ} and G∗
(
ε

δ

)
=

{
0, ε ∈ S(δ)

+∞, ε ∈ X\S(δ).

By changing the inequality constraint into the indicator function G∗
(
ε
δ

)
, (3.2) is rewrit-

ten as a convex minimization of four convex functions and one equality constraint:

(ū, v̄, ε̄) = argmin
(u,v,ε)∈X3

{
‖∇du‖`1 + µ1

∥∥C{v}∥∥
`1

+ µ2‖v‖`1 +G∗
(
ε

δ

)
s.t. f = u+ v + ε

}
.

(3.3)

The original image f is therefore decomposed into the piecewise-constant image u,
the texture v and the small scale objects modeling as noise ε by minimizing the objective
function (3.3).

3.2.1.2 Existence and Uniqueness of the corresponding unconstrained
minimization of (3.3)

As mentioned before, the original image f is decomposed into u, v and ε by minimizing
(3.3). In this section, we describe how to turn the constrained minimization (3.3) into
unconstrained one by the ALM in the first paragraph. Then, we discuss the existence
and the uniqueness of solution for its corresponding unconstrained problem in the
second paragraph by Proposition 3.2.1 and 3.2.2, respectively.

Unconstrained minimization of (3.3) by Augmented Lagrangian method We have a
constrained minimization problem, and by analogy with Aujol et al. [101], the penalty
method is applied to turn (3.3) into an unconstrained minimization problem:

(ūpen, v̄pen, ε̄pen) = argmin
(u,v,ε)∈X3

{
‖∇du‖`1 + µ1

∥∥C{v}∥∥
`1

+ µ2‖v‖`1 +G∗
(
ε

δ

)

+
β

2
‖f − u− v − ε‖2`2

}
.

However, (ūpen, v̄pen, ε̄pen) is equivalent to (ū, v̄, ε̄) if and only if β is infinity which
causes difficulties for numerical computation. In order to overcome this, the aug-
mented Lagrangian method with the Lagrange multiplier λ ∈ X and the regularization
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parameter β ∈ (0 ,+∞) is applied instead:

(ūALM, v̄ALM, ε̄ALM) = argmin
(u,v,ε)∈X3

{
‖∇du‖`1 + µ1

∥∥C{v}∥∥
`1

+ µ2‖v‖`1 +G∗
(
ε

δ

)

+ 〈λ,f − u− v − ε〉`2 +
β

2
‖f − u− v − ε‖2`2

}
,

which is rewritten as

(ūALM, v̄ALM, ε̄ALM) := argmin
(u,v,ε)∈X3

Lβ(u ,v , ε ;λ) (3.4)

and

Lβ(u ,v , ε ;λ) = ‖∇du‖`1+µ1

∥∥C{v}∥∥
`1

+µ2‖v‖`1+G∗
(
ε

δ

)
+
β

2

∥∥∥∥f − u− v − ε+
λ

β

∥∥∥∥2

`2

.

Numerically, the minimizer of (3.4) is obtained through the number of iterations (n =
1 , 2 , . . .) with the updated Lagrange multiplier λ(n) initialized at λ(0) = 0:

(u(n) ,v(n) , ε(n)) = argmin
(u,v,ε)∈X3

Lβ(u ,v , ε ;λ(n−1)),

λ(n) = λ(n−1) + β(f − u(n) − v(n) − ε(n)).

If the number of iterations n goes to infinity, then the solution of (3.4) is equivalent to
the solution of (3.2) (or (3.3)):

(u(∞) ,v(∞) , ε(∞)) ≡ (ūALM, v̄ALM, ε̄ALM) ≡ (ū, v̄, ε̄)

Due to the appearance of λ, β can be much smaller than the infinity which avoids
the ill-possedness at infinity. In other words, the role of Lagrange multiplier λ is to
compensate for β 6=∞.

Discussion of the existence and uniqueness of (3.4) Similarly to [74], [101] and [102]
for the penalty method, in this section we discuss the existence and the uniqueness of
the minimization (3.4). Due to the compensation of the updated Lagrange multiplier
λ(n) for β 6= ∞ and the convergence of solution when n goes to infinity, λ(n) can be
considered as an updated constant. Therefore, we can say that the existence of a saddle
point of Lβ with the updated λ, i.e.

Lβ(ū , v̄ , ε̄ ;λ) ≤ Lβ(ū, v̄, ε̄ ; λ̄) ≤ Lβ(u,v, ε ; λ̄) ,∀(u ,v , ε ,λ) ∈ X4,

follows from the existence of solution of Lβ with considering λ as a constant in (3.4).

Proposition 3.2.1. For the minimization problem (3.4), there exists a minimizer
(ū, v̄, ε̄).

Proof. For simplicity of the notation, we call the objective function H(u,v, ε) =
Lβ(u ,v , ε ;λ) with β 6= ∞ and the updated constant λ. In order to prove the exis-
tence of a minimizer, we have to show that H(u,v, ε) is convex, lower semi continuous
and coercive.
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• The domain of u and v are u ∈ X,v ∈ X, respectively. If ε ∈ S(δ), then the
indicator function G∗

(
ε
δ

)
is 0, otherwise, i.e. ε ∈ X\S(δ), G∗

(
ε
δ

)
is infinity.

• Convexity of H(u,v, ε):

Obviously, the domain X × X × S(δ) is convex. If ε ∈ S(δ), then H(u,v, ε)
is convex on X × X × S(δ), because the sum of convex functions is convex. If
ε ∈ X\S(δ), then H(u,v, ε) = +∞. In conclusion, H(u,v, ε) is convex on
X ×X ×X.

• Lower semi continuity:

If ε ∈ S(δ), then H(u,v, ε) is continuous on X × X × S(δ); otherwise, i.e. ε ∈
X\S(δ), H(u,v, ε) = +∞. Thus, H(u,v, ε) is lower semi continuous on X×X×
X.

• f(x) is coercive, i.e. lim
‖x‖→+∞

f(x)→ +∞:

In order to prove this, we have to prove that

lim
‖(u,v,ε)‖

X3→+∞
H(u,v, ε)→ +∞ with

∥∥(u,v, ε)
∥∥
X3 =

√
‖u‖2X +‖v‖2X +‖ε‖2X .

If ‖ε‖X → +∞ as
∥∥(u,v, ε)

∥∥
X3 → +∞, then ε ∈ X\S(δ) and H(u,v, ε) = +∞ ,

i.e.
lim

‖(u,v,ε)‖
X3→+∞

H(u,v, ε)→ +∞.

If ε remains in S(δ), then ‖ε‖
G
−3/4
∞,∞
≤ δ and

∃c > 0 s.t. ‖ε‖X ≤ c‖ε‖G−3/4
∞,∞
≤ cδ.

Thus, ∥∥(u,v, ε)
∥∥
X3 → +∞ i.f.f. ‖u‖2X +‖v‖2X → +∞

Since H(u,v, ε) ≥ β
2

∥∥∥f − u− v − ε+ λ
β

∥∥∥2

`2
→ +∞, we have H(u,v, ε) → +∞.

Thus, H(u,v, ε) is coercive.

Proposition 3.2.2. A minimizer (ū , v̄ , ε̄) is not necessarily unique, but (ū + v̄ + ε̄)
is unique.

Proof. The objective function (3.4) is strictly convex as a sum of four convex functions‖∇du‖`1︸ ︷︷ ︸
:=J(u)

+µ1

∥∥C{v}∥∥
`1

+ µ2‖v‖`1 +G∗
(
ε

δ

)
and a strictly convex function

∥∥∥f − u− v − ε+ λ
β

∥∥∥2

`2
, except in the directions (w1 +

w2 ,−w1 ,−w2) for any w1 ,w2 ∈ X. Since J(u) is only convex, not strictly convex,
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we obtain that if (ū1 , v̄1 , ε̄1) and (ū2 , v̄2 , ε̄2) are minimizers, then ū1 + v̄1 + ε̄1 =
ū2 + v̄2 + ε̄2. Therefore, if (ū , v̄ , ε̄) is a minimizer, then (ū+ v̄ + ε̄) is unique.

Since (3.4) is only convex (and not strictly convex), its solution exists but is not
unique (cf. Proposition 3.2.1 and 3.2.2). Minimization (3.4) is solved by iteration with
the initial variables. Given different initializations, the minimization (3.4) has different
minimizers (u , v , ε). Analyzing which minimizer is more suitable is beyond the scope
of this chapter. Hence, we initialize for all variables as 0, as it is described later in
Algorithm 1.

3.2.1.3 Augmented Lagrangian Method to Reformulate the Constrained
Minimization Problem in Equation (3.4)

There are different kinds of norms in (3.4). In order to make a simple calculation, we
introduce new variables p = ∇du =

[
p1 ,p2

]T
,

w =
[
wi,l

]
(i,l)∈I = C{v},

and rename β3 = β and λ3 = λ for convenient computation.

Then, (3.4) becomes a constrained minimization. Again, we apply the ALM. The aug-
mented Lagrangian function of (3.4) with the three Lagrange multipliers (λ1 ,λ2 ,λ3)
is defined as(

u∗ ,v∗ , ε∗ ,w∗ ,p∗
)

= argmin
u,v,ε,w,p∈X3×R|I|×Y

L(u ,v , ε ,w ,p;λ1 ,λ2 ,λ3) , (3.5)

where

L(u,v, ε,w,p;λ1,λ2,λ3) = ‖p‖`1 + µ1‖w‖`1 + µ2‖v‖`1 +G∗
(
ε

δ

)

+
β1

2

∥∥∥∥p−∇du+
λ1

β1

∥∥∥∥2

`2

+
β2

2

∥∥∥∥w − C{v}+
λ2

β2

∥∥∥∥2

`2

+
β3

2

∥∥∥∥f − u− v − ε+
λ3

β3

∥∥∥∥2

`2

.

The minimizer of (3.5) is numerically computed through iterations n = 1 , 2 , . . .(
u(n) ,v(n) , ε(n) ,w(n) ,p(n)

)
= argmin

u,v,ε,w,p∈X3×R|I|×Y
L(u ,v , ε ,w ,p;λ

(n−1)
1 ,λ

(n−1)
2 ,λ

(n−1)
3 )

(3.6)
and the Lagrange multipliers are updated after every step n with a rate γ and the

initial λ
(0)
1 = λ

(0)
2 = λ

(0)
3 = 0:

λ
(n)
1 = λ

(n−1)
1 + γβ1(p(n) −∇du

(n))

λ
(n)
2 = λ

(n−1)
2 + γβ2(w(n) − C{v(n)})

λ
(n)
3 = λ

(n−1)
3 + γβ3(f − u(n) − v(n) − ε(n)).

When the number of iterations n goes to infinity, the solutions to (3.3), (3.4), (3.5)
and (3.6) are equivalent. However, due to the computational time in practice, we stop
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after a small number of iterations, i.e. the number of iterations n is bounded by some
N ∈ N, and we obtain an approximate solution (cf. Algorithm 1).

Algorithm 1: Augmented Lagrangian method (ALM) for the approximated
solution of (3.4)

Data: f
Result: u ,v , ε

Initialization: u(0) = v(0) = ε(0) = p(0) = w(0) = λ
(0)
1 = λ

(0)
2 = λ

(0)
3 = 0

for n = 1 , . . . , N do

1. Compute the approximated solution
(
u(n),v(n), ε(n),w(n),p(n)

)
:(

u(n),v(n), ε(n),w(n),p(n)
)

= argmin
u,v,ε,w,p

L(u,v, ε,w,p;λ
(n−1)
1 ,λ

(n−1)
2 ,λ

(n−1)
3 )

(3.7)

2. Update Lagrange multipliers
(
λ

(n)
1 ,λ

(n)
2 ,λ

(n)
3

)
:

λ
(n)
1 = λ

(n−1)
1 + γβ1(p(n) −∇du

(n))

λ
(n)
2 = λ

(n−1)
2 + γβ2(w(n) − C{v(n)})

λ
(n)
3 = λ

(n−1)
3 + γβ3(f − u(n) − v(n) − ε(n))

(3.8)

end

Note. (ū, v̄, ε̄) ≈ (u(N),v(N), ε(N))

Algorithm 2: Alternating direction method of multipliers (ADMM) for (3.7)

Data: u(n−1) ,v(n−1) , ε(n−1) ,p(n−1) ,w(n−1) ,λ1
(n−1) ,λ2

(n−1) ,λ3
(n−1)

Result: u(n) ,v(n) , ε(n) ,p(n) ,w(n) ,λ1
(n) ,λ2

(n) ,λ3
(n)

Fix Lagrange multipliers λ1 = λ
(n−1)
1 ,λ2 = λ

(n−1)
2 and λ3 = λ

(n−1)
3 , then

alternatively solve the following sub-problems:

• ”u-problem”: u(n) = argmin
u∈X

L(u,v(n−1), ε(n−1),p(n−1),w(n−1); λ1,λ2,λ3)

• ”v-problem”: v(n) = argmin
v∈X

L(u(n),v, ε(n−1),p(n−1),w(n−1); λ1,λ2,λ3)

• ”ε-problem”: ε(n) = argmin
ε∈X

L(u(n),v(n), ε,p(n−1),w(n−1); λ1,λ2,λ3)

• ”p-problem”: p(n) = argmin
p∈Y

L(u(n),v(n), ε(n),p,w(n−1); λ1,λ2,λ3)

• ”w-problem”: w(n) = argmin
w∈R|I|

L(u(n),v(n), ε(n),p(n),w; λ1,λ2,λ3)

In the following part, we will describe the algorithm to solve the minimization prob-
lem (3.7) by the alternating direction method of multipliers (ADMM).
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3.2.1.4 Alternating direction method of multipliers and numerical implementation

Similarly to [82, 80, 93, 103, 79, 81], this section will show how to solve the minimization
(3.7) and introduce the method to discretize the solution.

The solution of (3.7) is determined by alternatively minimizing the objective function:
We alternate

• minimizing the objective function w.r.t. p with u,v, ε,w fixed,

• minimizing the objective function w.r.t. w with u,v, ε,p fixed,

• minimizing the objective function w.r.t. v with u, ε,p,w fixed,

• minimizing the objective function w.r.t. ε with u,v,p,w fixed,

• minimizing the objective function w.r.t. u with v,p, ε,w fixed.

Thus, we need to solve five subproblems denoted as ”w-subproblem”, ”p-subproblem”,
”v-subproblem”, ”ε-subproblem”, ”u-subproblem” as in Algorithm 2. The iterative
scheme is following:

”p-subproblem”: Fix u,v, ε,w and

min
p∈Y

{
‖p‖`1 +

β1

2

∥∥∥∥p−∇du+
λ1

β1

∥∥∥∥2

`2

}
. (3.9)

Let ∇d = ∇+ be the forward gradient operator. This (3.9) is solved by (cf. Proposi-
tion 3.6.1 in Appendix 3.6)

p̃1 = Shrink

(
∂+

1 u−
λ1,1

β1
,

1

β1

)
and p̃2 = Shrink

(
∂+

2 u−
λ1,2

β1
,

1

β1

)
, (3.10)

where ∂+
mu =

[
∂+
mu[k]

]
k∈Ωd

, m ∈ {1, 2}.

”w-subproblem”: Fix u,v, ε,p and

min
w∈R|I|

{
µ1‖w‖`1 +

β2

2

∥∥∥∥w − C{v}+
λ2

β2

∥∥∥∥2

`2

}
. (3.11)

The solution of (3.11) at the scale i and the orientation l is (cf. Proposition 3.6.1 in
Appendix 3.6)

w̃i,l = Shrink

(
C{v} −

λ2,i,l

β2
,
µ1

β2

)
, i, l ∈ I. (3.12)

”v-problem”: Fix u, ε,p,w and

min
v∈X

{
µ2‖v‖`1 +

β2

2

∥∥∥∥w − C{v}+
λ2

β2

∥∥∥∥2

`2

+
β3

2

∥∥∥∥f − u− v − ε+
λ3

β3

∥∥∥∥2

`2

}
. (3.13)
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This (3.13) is solved by (cf. Proposition 3.6.3 in Appendix 3.6)

ṽ = Shrink

(
A,

µ2

β2 + β3

)
, (3.14)

where

A =
C∗
{
β2w + λ2

}
+ β3(f − u− ε+ λ3

β3
)

β2 + β3
. (3.15)

”ε-problem”: Fix u,v,p,w and

min
ε∈X

G∗
(
ε

δ

)
+
β3

2

∥∥∥∥∥ε−
(
f − u− v +

λ3

β3

)∥∥∥∥∥
2

`2

 . (3.16)

This (3.16) is solved by (cf. Proposition 3.6.4 in Appendix 3.6)

ε̃ =

(
f − u− v +

λ3

β3

)
− CST

(
f − u− v +

λ3

β3
, δ

)
. (3.17)

”u-problem”: Fix v,p, ε,w and

min
u∈X

{
β1

2

∥∥∥∥p−∇du+
λ1

β1

∥∥∥∥2

`2

+
β3

2

∥∥∥∥f − u− v − ε+
λ3

β3

∥∥∥∥2

`2

}
. (3.18)

This (3.18) is solved by (cf. Proposition 3.6.5 in Appendix 3.6)

ũ[k] = Re
[
F−1

{ D
(
ejω
)

β3 + 4β1

[
sin2(ω1

2 ) + sin2(ω2
2 )
]}][k], ∀k ∈ Ωd and ω ∈ Ωω.

and the vector form of ũ[k] is ũ = [ũ[k]]k∈Ωd .

The updated Lagrange multiplier λ
(n)
1 , λ

(n)
2 and λ

(n)
3 in (3.8) are

λ
(n)
1,1 = λ

(n−1)
1,1 + γβ1

(
p̃

(n)
1 − ∂+

1 ũ
(n)
)
,

λ
(n)
1,2 = λ

(n−1)
1,2 + γβ1

(
p̃

(n)
2 − ∂+

2 ũ
(n)
)
,

λ
(n)
2,i,l = λ

(n−1)
2,i,l + γβ2

(
w̃

(n)
i,l − Ci,l{ṽ

(n)}
)
,

λ
(n)
3 = λ

(n−1)
3 + γβ3

(
f − ũ(n) − ṽ(n) − ε̃(n)

)
.
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The summary of the numerical implementation is presented in Algorithm 3.

Algorithm 3: The numerical implementation for the solution of (3.4) by ADMM

Data: f
Result: u ,v , ε

Initialization: u(0) = v(0) = ε(0) = p(0) = w(0) = λ1
(0) = λ2

(0) = λ3
(0) = 0

for n = 1 , . . . , N do

1. Compute solution (u(n) ,v(n) , ε(n) ,p(n) ,w(n)):

D(n) = β3

[
F − V (n−1) −E(n−1) +

Λ
(n−1)
3

β3

]

− β1

[(
1− e−jω1

)(
P

(n−1)
1 +

Λ
(n−1)
1,1

β1

)
+
(
1− e−jω2

)(
P

(n−1)
2 +

Λ
(n−1)
1,2

β1
)
]

u(n) = Re

[
F−1

{ D(n)

β3 + 4β1

[
sin2(ω1

2 ) + sin2(ω2
2 )
]}]

A(n) =
C∗
{
β2w

(n−1) + λ
(n−1)
2

}
+ β3(f − u(n) − ε(n−1) +

λ
(n−1)
3
β3

)

β2 + β3

v(n) = Shrink

(
A(n) ,

µ2

β2 + β3

)

ε(n) =
(
f − u(n) − v(n) +

λ
(n−1)
3

β3

)
− CST

(
f − u(n) − v(n) +

λ
(n−1)
3

β3
, δ
)

p
(n)
i = Shrink

(
∂+
i u

(n) −
λ

(n−1)
1,i

β1
,

1

β1

)
, i ∈ {1 , 2}

w
(n)
i,l = Shrink

C{v(n)} −
λ

(n−1)
2,i,l

β2
,
µ1

β2

 , i, l ∈ I

2. Update Lagrange multipliers (λ1
(n) ,λ2

(n) ,λ3
(n)):

λ
(n)
1,i = λ

(n−1)
1,i + γβ1(p

(n)
i − ∂

+
i u

(n)) , i ∈ {1 , 2}

λ
(n)
2,i,l = λ

(n−1)
2,i,l + γβ2(w

(n)
i,l − Ci,l{v

(n)}) , i , l ∈ I

λ
(n)
3 = λ

(n−1)
3 + γβ3(f − u(n) − v(n) − ε(n))

end
Note.

(
F ,V ,E ,P ,Λ1 ,Λ3

)
are the discrete Fourier transform of(

f ,v , ε ,p ,λ1 ,λ3

)
, respectively; and (ω1 ,ω2) ∈ [−π , π].
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For a given γ in Algorithm 1, the solution of (3.3) is obtained by applying alter-
natively the above formulas in the subproblems. This is a convex program with the
alternating minimization procedure. However, the choice of parameters (µ1, µ2, δ) and
(β1, β2, β3) affects the solution. Since the texture information is the essential feature
for the segmentation process, the parameters µ1 and µ2 are important, especially µ2,
since it controls the sparsity of the fingerprint texture. In this context, µ2 is adaptively
designed to cancel (β2 + β3) in the shrinkage operator (3.14) and it depends only on
the maximum of A and the constant C as follows

µ2 = C(β2 + β3) · max
k∈Ωd

(A[k]), (3.19)

where A[k] is defined in (3.15). Since the fingerprint images are captured by four
kinds of sensors, their qualities are different. Therefore, C is obtained empirically from
training sets for different types of sensors.

The parameter δ is used to remove the small scale objects (the noise). In order to
reduce these noise in v so that v contains mainly the fingerprint pattern (cf. Figure
3.1), the noise is modeled as Gaussian and the parameter δ is determined from the
asymptotic distribution of the maximum of the curvelet coefficients. Let

∥∥C{εn}∥∥∞ be
the maximum of an i.i.d. sequence of Gaussian random variables εn ∈ Ωd ∼ N (0, σ2),
where n = N1 × N2 is the level of discretization and In = I are the frame elements.
Based on the extreme value theory the limiting distribution of

∥∥C{εn}∥∥∞ is given by:

lim
n→∞

P

{∥∥C{εn}∥∥∞ ≤ anz + bn︸ ︷︷ ︸
:= δ

}
= exp(−e−z) , z ∈ R, (3.20)

with an := σ
1√

2 log|In|
and bn := σ

√
2 log|In| − σ

log log|In|+ log π

2
√

2 log|In|
.

We rewrite (3.20) as

lim
n→∞

P

{∥∥C{εn}∥∥∞ ≤ z} = exp(−e−
z−bn
an ) , z ∈ R. (3.21)

Note that r.h.s in (3.21) depends on n, l.h.s does not. According to the extreme value
behavior of the curvelet coefficients (cf. [31]), the threshold δ is defined as the 70%-
quantile of the limiting distribution, that is:

δ = σ
√

2 log|I|+ σ
2z − log log|I| − log π

2
√

2 log|I|
and z = − log log

( 1

1− α
)
, (3.22)

where |I| is total number of curvelet coefficients and σ is commonly calculated from
the first level of the Cohen-Daubechies-Feauveau 9/7 wavelet high-frequency diagonal
coefficient (HH1) (cf. [104]):

σ =
median( |HH1| )

0.6745
.

Note that this approximation depends on the normality assumption of the noise, which
may not always be true in practice. More sophisticated noise modeling is left for future
investigation, in principle the threshold can always be obtained via simulation.
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The limiting distribution of the maximum of an i.i.d. sequence of Gaussian ran-
dom variables is the Gumbel distribution, as in (3.20). Since the curvelet frame is
overcomplete, the

∥∥C{εn}∥∥∞ is the maximum of dependent Gaussian random variables
(curvelet coefficients). If the dependence is weak enough (see the conditions D(nu)
and D′(nu)) in [105]), the limiting distribution is the same as in the i.i.d. situation.
When considering the Cohen-Daubechies-Feauveau 9/7 wavelet coefficients instead, we
are in the i.i.d. case and the asymptotics are standard (see Figure 3.3, second row).
The influence of the dependence and the non-normalized curvelet coefficients is most
likely the cause of the very slow convergence to the limit distribution, which causes the
large distance between theoretical and the empirical distribution of the maximum (see
Figure 3.3, third row).
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Figure 3.3: The plots f.l.t.r. in the first row are 10000 realizations of random variable‖εn‖∞, its
histogram (blue) and its empirical cumulative distribution function (ecdf) (blue),
respectively. Similarly, the second and third rows are 10000 realizations, histogram
and ecdf of random variable

∥∥W{εn}∥∥∞ and
∥∥C{εn}∥∥∞, respectively. The magenta

line is the universal threshold δut = σ
√

2 log|In| (cf. [50]). The black line is the
threshold with 90% quantile. The red line is the extreme value threshold δ in
(3.22). The green dash curve is the Gumbel distribution.
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3.2.1.5 Smoothness and Sparsity of the Extracted Texture

The oscillation signal corresponding to fingerprint patterns is considered as a sparse
and smooth texture which is decomposed by the G3PD model of the original fingerprint
image f into three parts satisfying the constraint f = u + v + ε (cf. Figure 3.6),

including: the piecewise-constant image u with TV-norm, the texture v with {G3/4
1,1−`1}

norms, and noise ε with G
−3/4
∞,∞ norm.

In this section, we will analyze how G
3/4
1,1 and `1 norms in (3.3) affect the smoothness

and sparsity of the extracted texture v. In order to do that, a closed form of v is found
by putting (3.12) and (3.15) into (3.14), letting θ = β2

β2+β3
and the thresholds T1 = µ1

β2
and T2 = µ2

β2+β3
:

ṽ = Shrink

(
θ C∗

{
Shrink

(
C{v} − λ2

β2
, T1

)
+
λ2

β2

}
︸ ︷︷ ︸

:= vsmooth ≈ CST
(
v , T1

) + (1−θ)
(
f − u− ε+

λ3

β3

)
︸ ︷︷ ︸

:= vupdate

, T2

)
,

(3.23)
where CST(· , ·) is the curvelet shrinkage operator (see Appendix 3.6). We see that
the estimated texture ṽ contains two shrinkage operators: respectively, the inside and
the outside correspond to the smoothness and sparseness terms resulting from ‖Cv‖`1
and‖v‖`1 in (3.3). (cf. Figure 3.4 for the effects of the smoothness and sparseness of v
through different iterations). Note that the estimates (u ,v ,n) (cf. Figure 3.4: 1st row,
2nd to 4th columns) is obtained at 20 iterations (approximately the starting convergence
point, cf. 1st column of 2nd row in Figure 3.5). These effects can be obviously seen in
the binarized texture (Figure 3.4, first row third column). The parameter θ ∈ (0 , 1) in
(3.23) plays as a regularized parameter to make a balance between the smoothing term
vsmooth and the updated term vupdate.

Figure 3.5 shows the effect of the curvelet smoothing measurement in G
3/4
1,1 for texture

v, i.e.
∥∥C{v}∥∥

`1
in (3.1), and its comparison with wavelet smoothing term in B1

1,1,

i.e.
∥∥W{v}∥∥

`1
, and without smoothing measurement. The estimate texture v with∥∥W{v}∥∥

`1
in (3.1) is worse (in the sense of smoothness and sparseness) than in G

3/4
1,1 ,

i.e.
∥∥C{v}∥∥

`1
(cf. 1st and 2nd columns of 3rd and 4th rows in Figure 3.5). Luckily,

in this example, the performance of segmentation is better due to the effect of the
morphological operator, but the roburstness doesnot satisfy. Moreover, it contradicts
our assumption for texture v, i.e. v should be as smooth and sparse as possible. In
order to evaluate the convergence of the algorithm, we denote the relative error of
texture v through different iterations n as

Err
(n)
v =

∥∥∥v(n) − v(n−1)
∥∥∥
`2∥∥v(n−1)

∥∥
`2

. (3.24)

In Figure 3.5, we see that if there is no smoothing measurement, the convergence is
much slower than the others (cf. 2nd row) and the algorithm tends to eliminate texture
(cf. 3rd and 4th columns of 3rd and 4th rows). In particular, at 50 iteration, v still
does not converge and the segmentation error is higher than without smoothing term
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at 20 iterations (cf. 3rd and 4th columns of 1st row). Note that for the smoothing
measurement

∥∥C{v}∥∥
`1

, the proposed method starts to converge at around 20 iteration.

Hence, the estimate of v (or its binarization and segmented image) with between 20
and 50 iterations are almost similar (cf. Figure 3.4 (a, c, e) and 1st column of Figure
3.5).

3.2.2 Morphological Operations

The smooth and sparse texture v is obtained by the combination of G
3/4
1,1 and `1 norms,

simultaneously. Post-processing, which is similar to [1], is applied to obtain the ROI.
However, the threshold is simply set to “0” for texture binarization instead because it
uses the advantage of sparse solution v (cf. Figure 3.1). In other words, it is similar to
project the thresholding value to the parameter µ2 that has been desired adaptively to
intensity of image by (3.19).

3.3 Evaluation: Benchmark, Protocol and Experimental
Results

3.3.1 Benchmark and Evaluation Metric

The publicly available fingerprint images of the FVC competitions from 2000, 2002 and
2004 are used as benchmark for evaluating segmentation performance. Each compe-
tition consists of four databases: three databases are acquired from real fingerprints
and the fourth database of each competition is synthetically generated. In total, there
are 12 databases and each database contains 880 images (80 for training and 800 for
testing). The ground truth segmentation has been manually marked for these 10560
images as described in [1].

Let N1 and N2 be the width and height of image f in pixels. Let Mf be number of
pixels which are marked as foreground by human experts and estimated as background
by an algorithm (missed/misclassified foreground). Let Mb be number of pixels which
are marked as background by human experts and estimated as foreground by an algo-
rithm (missed/misclassified background). The average total error per image is defined
as

Err =
Mf +Mb

N1 ×N2
. (3.25)

3.3.2 Parameter Selection

Parameters for all methods considered in the comparison are selected on the training
set of 80 images for each database. More specifically, those parameters are chosen
to minimize the segmentation error defined in (3.25) for the respective training set.
Choosing the parameters for each database is appropriate, because the nine databases
consisting of real fingerprints have been acquired using nine different sensors and the
images of each database have sensor-specific properties. The parameter selection for
the FDB [1], GFB [8], HCR [9], MVC [7] and STFT [10] methods are discussed in [1].
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Parameters Description

N the number of iterations in the Algorithm 1.

µ1 the regularized parameter for `1 norm of curvelet coefficients C{v}
in Eq. (3.2).

C the adaptive constant in Eq. (3.19) for the regularized parameter µ2

in `1 norm of v in Eq. (3.2).

β1 , β2 , β3 the parameters in the augmented Lagrangian function (3.5).

γ the speed rate of the updated Lagrange multipliers in Eq. (3.5).

s the window size of the block in the postprocessing step in [1, Eq. (8)].

t a constant for selecting the morphology threshold T in [1, Eq. (8)].

b the number of the neighboring blocks in [1, Eq. (8)].

p the mirror boundary condition to avoid the boundary effect.

Table 3.1: Overview over all parameters for the global three-part decomposition
(G3PD) method for fingerprint segmentation. Values are reported in Ta-
ble 3.2.

FVC DB C β2

2000 1 0.045 0.0005
2 0.045 0.0100
3 0.055 0.0010
4 0.025 0.0010

2002 1 0.020 0.0010
2 0.035 0.0005
3 0.070 0.0010
4 0.020 0.0500

2004 1 0.015 0.1000
2 0.025 0.0010
3 0.035 0.0010
4 0.035 0.0005

Table 3.2: Overview over the parameters learned on the training set. The other eight
parameters are µ1 = 1, β1 = β3 = γ = 10−3, s = 9, t = 5, b = 6 and p = 15
for all databases.
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For the proposed G3PD method, the involved parameters are summarized in Ta-
ble 3.1 and the values of the learned parameters are reported in Table 3.2. In a rea-
sonable amount of time, a number of conceivable parameter combinations was tried on
the training set.

For different numbers of iterations, we have applied the following training scheme:

• Firstly, C, an adaptive constant for µ2 in (3.19) to define a threshold for the
sparseness of v, is trained while fixing the other parameters.

• Secondly, with the obtained C, we train the other parameters one by one while
fixing the rest.

In our experiments, the minimum error on the training set averaged over all 12
databases is obtained for N = 4 iterations (cf. Figure 3.13b). Given N = 4 iterations,
the training error is further reduced by choosing β2 (cf. Figure 3.13a). Figure 3.10
displays the fingerprint segmentation result for different numbers of iterations. In
these practical applications of our proposed model, stopping before convergence leads
to better segmentation results which are also influenced by the combination with the
morphological operations.

Note that the solution of (u ,v , ε) depends severely on the choices of (µ1 , µ2 , δ),
as well as the parameters of the optimization step (β1 , β2 , β3 , γ). To achieve a good
decomposition in which cartoon, texture and noise are separated is difficult in practice,
because there are no models for both the noise and the texture. Fortunately, this
chapter focuses on the segmentation of fingerprint images for which the texture v is
important. After the decomposition, there can still be pattern contents in the cartoon
image u and the noise image ε (see Figure 3.1), but the important aspect is that the
texture image v is adequate for segmentation.

The choice of aforementioned parameters balances the amount of pattern in the
texture image with the smoothness of the cartoon image. Selecting parameters which
increase the smoothness of the cartoon image u, also tend to cause the halo effect
in the texture image v. We observe that especially β1 influences this trade-off: if u
contains only homogeneous regions (cf. Figure 3.6d), it tends to generate the halo effect
on the boundary of fingerprint pattern in v (cf. Figure 3.6e). Particularly, the halo
effect results from the blurred homogeneous region u. However, this effect impacts the
segmentation error which is obvious as depicted in Figure 3.11 for different iteration
with the same β1 = 0.06. In order to reduce this effect in v, the parameters are chosen
such that the algorithm assign “enough” texture to v. Hence, u and ε can contain
some partial textures, but this yields better a segmentation performance as illustrated
in Figure 3.10.

Let us consider the comparison of the proposed model with the standard ROF TV−L2

model [72] and the TV − L1 model [106] for feature decomposition (see Figure 3.9).
For simplicity, let λTVL2 and λTVL1 be the regularization parameters for TV−L2 and
TV − L1, respectively. The ROF TV − L2 model has been introduced by [72] for the
purpose of image denoising. The ROF model has been designed to obtain a smooth
cartoon image u. For fingerprint image segmentation we are interested in a texture
image which is as useful as possible in terms of a feature for segmentation. However,
the ROF model or the TV − L1 model cannot produce a sparse and smooth texture
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image from a noisy fingerprint image f no matter how the corresponding parameter
is selected. On the one hand, if the ROF model decomposes f into a very smooth
cartoon image u, than v contains both noise and texture. On the other hand, for a
different choice of λTVL2 or λTVL1 , v contains mostly noise and u includes texture
and large scale objects. In neither of the two situations, u or v is useful as a feature
for fingerprint segmentation. A comparison of the G3PD method with TV − L1 and
TV−L2 two-part decomposition is shown in Figure 3.9. Zhang et al. [23] have tried to
solve this problem by proposing a locally adaptive two-part decomposition which also
takes the orientation of the pattern into account.

Aujol and Chambolle [101] introduced a model for three-part decomposition which
can produce a texture image v using the G-norm. For fingerprint image segmentation

we have adopted their approach into our TV−G3/4
1,1 − `1 −G

−3/4
∞,∞ model with the goal

of obtaining a texture image v which is both smooth and sparse. The smoothness

is measured by the G
3/4
1,1 -norm (corresponding to the shrinkage operator of curvelet

coefficients) and the sparsity is measured by the `1-norm (corresponding to shrinkage
operator in the spatial domain).

In summary, the proposed G3PD method yields a satisfactory performance judged by
visual inspection (see Figure 3.8 for one example from each database) and it outperforms
the other methods on ten of twelve databases. This demonstrates the robustness of the
G3PD method for fingerprint segmentation. Figure 3.16 - 3.24 show the comparison of
the proposed G3PD method with the other approaches.

3.4 Conclusions

We have presented a global framework for the fingerprint segmentation problem which
is to separate the foreground from background based on texture analysis. We have
proposed the G3PD method for three-part decomposition of fingerprint images. The
texture pattern is analyzed under the variational approach considering sparsity and
smoothness at the same time: with the `1-norm for sparsity and curvelet type de-

composition space G
3/4
1,1 for smoothness. The resulting texture image is binarized and

postprocessed by morphology to obtain the region of interest.

We have proposed a model for three-part decomposition which also takes into account
the nature of the texture occurring in real fingerprint images. Fingerprint images are
characterized by a smooth, curved and oriented pattern which has a sparse representa-
tion in certain transform domains.

The G3PD method is somewhat similar in spirit to the FDB method [1] which also
makes allowance for the properties of fingerprint patterns. Frequencies occurring in
real fingerprints are mostly located in a specific range in the Fourier domain and the
corresponding texture is extracted by an elaborate bandpass filtering process involv-
ing forward prediction, proximity operator and backward projection. Similarly, the
three-part decomposition can be regarded as lowpass, bandpass and highpass filter-
ing of signals corresponding to u, v and ε, respectively (see images (g-i) in Figure
3.6). Figure 3.7 shows the evolution of (u ,v , ε) and their spectrums at iterations
n = 1 , 4 , 7 , 10. This illustrates the connection between classical bandpass filtering in
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FVC DB GFB [8] HCR [9] MVC [7] STFT [10] FDB [1] G3PD

2000 1 13.26 11.15 10.01 16.70 5.51 5.69
2 10.27 6.25 12.31 8.88 3.55 4.10
3 10.63 7.80 7.45 6.44 2.86 2.68
4 5.17 3.23 9.74 7.19 2.31 2.06

2002 1 5.07 3.71 4.59 5.49 2.39 1.72
2 7.76 5.72 4.32 6.27 2.91 2.83
3 9.60 4.71 5.29 5.13 3.35 3.27
4 7.67 6.85 6.12 7.70 4.49 3.63

2004 1 5.00 2.26 2.22 2.65 1.40 0.88
2 11.18 7.54 8.06 9.89 4.90 4.62
3 8.37 4.96 3.42 9.35 3.14 2.77
4 5.96 5.15 4.58 5.18 2.79 2.53

Avg. 8.33 5.78 6.51 7.57 3.30 3.06

Table 3.3: Error rates (average percentage of misclassified pixels averaged over 800 test
images per database) computed using the manually marked ground truth
segmentation and the estimated segmentation by these methods: a Gabor
filter bank (GFB) response based method by Shen et al. [8], a Harris corner
response (HCR) based approach by Wu et al. [9], a method by Bazen and
Gerez using local gray-level mean, variance and gradient coherence (MVC)
as features [7], a method applying short time Fourier transforms (STFT) by
Chikkerur et al. [10], the factorized directional bandpass (FDB) [1] and the

proposed method based on the TV−G3/4
1,1 − `1 −G

−3/4
∞,∞ model.
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the Fourier domain and the variational approach.

In conclusion, we have performed an extensive comparison of the G3PD method with
five state-of-the-art fingerprint segmentation algorithms on a large benchmark with a
variety of different challenges and have found that the G3PD method outperforms its
competitors on ten out of twelve database in terms of segmentation accuracy.

Our future work includes to work on modifications of the TV − G3/4
1,1 − `1 − G

−3/4
∞,∞

model in order to adopt a multiscale (or locally adaptive) approach for image decom-
position. This work opens the way for further research in areas like latent fingerprint
segmentation in which we deal additionally with other kinds of noise like large scale
structure noise, or to better deal with the few low-quality examples which still pose
problems to the method (see Figure 3.15). We believe that further improvements can
be achieved by combining the G3PD method with additional features, e.g. the texture
image obtained by the FDB method.
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(a) (b) (c) (d) (e)

(f) k = 3 (g) k = 6 (h) k = 8 (i) k = 20

Figure 3.4: (a) the original image (the yellow line is the boundary of the ROI); (b, c, d)
the estimates (u ,v , ε) at 20 iterations, respectively; (e) the smooth and sparse
binarized texture is obtained by setting the non-zeros coefficients of v (c) to 1. The
second row is vsmooth in (3.23), the smooth term of v, in different iteration k =
{3 , 6 , 8 , 20} which is obtained by the shrinkage operator of the curvelet coefficient
(correspond to

∥∥C{v}∥∥
`1

in (3.1)). The third rows is vupdate in (3.23). Both of
them are balanced by the parameter θ which follows by the shrinkage operator to
obtain the the sparse texture ṽ in the fourth row (correspond to ‖v‖`1 in (3.1)).
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(a) Err = 3.65 (b) Err = 2.45 (c) Err = 7.4 (d) Err = 31.49
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Figure 3.5: The effect of the smoothness term for v in (3.1). 1st column: `1 norm of curvelet
coefficients, i.e.

∥∥C{v}∥∥
`1

, with 50 iterations. 2nd column: `1 norm of wavelet

coefficients, i.e.
∥∥W{v}∥∥

`1
, with 50 iterations. 3rd and 4th columns: without

smoothing term (no
∥∥C{v}∥∥

`1
in (3.1)) at 20 and 50 iterations, respectively. 1st

row: the segmented images. 2nd row: the plots of convergence for v with curvelet
(a), wavelet (b), without smoothing terms (c & d). 3rd & 4th rows: the estimated
texture v and their binarization, respectively. It shows that the convergence with-
out smoothing term is too slow and texture starts being destroyed in comparison
with the others.
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(a) f (b) F (ejω)
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(g) U(ejω) (h) V (ejω) (i) E(ejω)

Figure 3.6: The decomposition model with µ1 = 1, iteration = 20, level = 5, β1 = 0.06 , β2 =
β3 = γ = 10−3. The original image and its Fourier spectrum are in (a) and (b),

respectively. The relative error of v in (c), i.e. Err(n)v , shows that the algorithm
starts to converge after 10 iterations. The second and third rows display the ho-
mogeneous, texture and noise, together with their Fourier spectrums, respectively.
We see that the algorithm can separate u, v and ε with this choice of parameters,
especially for the homogeneous region. In Fourier domain (cf. third row), u, v
and ε are similar to the responses after lowpass, bandpass and highpass filters.
Especially, Figure (e) and (f) shows that the fingerprint pattern mostly stays in a
specific range of frequencies in bandpass filter which has been reported in [1].
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(a) k = 1 (c) k = 4

(m) k = 7 (o) k = 10

Figure 3.7: The evolution of (u ,v , ε) with n = 1 , 4 , 7 , 10 and their Fourier coefficients at
10-th iteration with β1 = 0.06.
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Figure 3.8: Segmented fingerprint images and the corresponding texture images by the
variational method for FVC2000 (first and second row), FVC2002 (third and
fourth row) and FVC2004 (fifth and sixth row). Columns f.l.t.r correspond
to DB1 to DB4.
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(a) (b) G3PD: β1 =
0.005

(c) (d)

(e) λTVL2 = 0.1 (f) (g) λTVL1 = 1 (h)

(i) λTVL2 = 0.02 (j) (k) λTVL1 = 0.6 (l)

(m) λTVL2 = 0.005 (n) (o) λTVL1 = 0.1 (p)

Figure 3.9: A comparison of G3PD with TV−L2 and TV−L1: First row: images f.l.t.r are the
original image f and the three-part decomposition by G3PD with N = 50 , β1 =
0.005 (see Table 3.2 for the other parameters): the cartoon image u, texture image
v and noise image ε. The first and second column of rows two to four show images
u and v, respectively, for TV − L2 two-part decomposition with different values
of λTVL2 . The third and fourth column show the corresponding images u and v
for TV − L1 two-part decomposition. The number of iterations for TV − L2 and
TV − L1 is N = 350. Note that for no choice of λTVL2

or λTVL1
, TV − L2 or

TV− L1 produce a good feature image for segmentation of this noisy fingerprint,
while the G3PD model provides a useful texture image v for the segmentation
procedure.
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(u) Iter = 4, Err =
1.51

(v) Iter = 10, Err =
1.53

(w) Iter = 16, Err =
1.61

(x) Iter = 20, Err =
1.69

Figure 3.10: Compare in different iteration with different training parameters for each iter-
ation. Note that the error is lower for 4 iteration (not convergence), perhaps
because of the combination with post-processing in segmentation application.
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Figure 3.11: The effect of large β1 for different iterations. (a)-(f) for 4 iterations with β1 =
0.06 , C = 0.055 , β2 = 0.001 ,Err = 8.09%: the plot of the convergence of v
versus error, the homogeneous region u, texture v, noise ε, binarization of v and
the segmented image, respectively. (g)-(l) for 10 iteration with β1 = 0.06 , C =
0.045 , β2 = 0.001 ,Err = 9.37%. The large β1 will generate the halo effect on
the boundary of object in v which impact on the segmentation result. In order
to reduce the segmentation error due to this effect, we choose a small β1, e.g.
β1 = 10−3. So, the homogeneous region u or noise v may contain some texture,
but the performance is better. Moreover, we see that the choice of parameters
effects severely on the way of decomposition, not the number of iteration. The
iteration only guarantees that the solution (u ,v , ε) is obtained at the convergence
with the chosen parameters, if the solution exists.
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(a) k = 1 (c) k = 2

(m) k = 3 (o) k = 4

Figure 3.12: The evolution of decomposition of (u ,v , ε, respectively from top to bottom) with
iteration k = 1 , 2 , 3 , 4 and their Fourier coefficients with β1 = 0.001. Row 1-3 in
1st column is u ,v , ε and in 2nd column is their Fourier spectrum at 1st iteration,
respectively. Similar for the other pairs with the 2nd, 3rd and 4th iterations.
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Figure 3.13: The training procedure: Firstly, C is trained while the other parameters are fixed.
Secondly, given the trained C, we train the other parameters one by one through
different iterations while fixing the rest. Image (a) shows that the minimum of
the average error over the training set is obtained at β2 with N = 4 iterations.
Given different number of iterations, Image (b) depicts that the average error
over the training set of C and β2 is minimum at N = 4 iteration.
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(a) (b) Err = 8.36 (c) Err = 14.31 (d) Err = 13.94

(e) Err = 10.05 (f) Err = 14.07 (g) Err = 22.05

(h) (i) (j) (k)

(l) (m) (n) (o)

Figure 3.14: Segmented fingerprint images and their features of different methods for
FVC2004 DB2 IM 46 7. (a) ground truth; (b, h) TV , (c, i) FDB, (d, j) Ga-
bor, (e, k) Harris, (f, l, m, n) Mean-Variance-Coherence, (g, o) STFT.
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(a) Err = 6.1 (b) Err = 12.86 (c) Err = 9.49 (d) Err = 18.72

Figure 3.15: Examples of incorrectly segmented fingerprint images due to: (a) the con-
vex hull of the morphological operator, (b) dryness of the finger, (c) a
ghost fingerprint on the sensor surface, (d) wetness of the finger. The first
row shows the segmentation obtained by the variational method, the sec-
ond row displays the texture v and the last row visualizes the manually
marked ground truth segmentation.
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Supplementary Appendix

3.5 Mathematical preliminaries

3.5.1 Notation

For simplification, we use a bold symbol to denote the coordinates of a two-dimensional
signal, such as x = (x1, x2),ω = (ω1, ω2), ejω = [ejω1 , ejω2 ],k = [k1, k2]. A two-
dimensional continuous signal f(x) : Ωc → R+ is defined on the finite domain with the
size N1 ×N2:

Ωc =
{

(x1, x2) = (N1 − 1)× (N2 − 1) ⊂ R2
+

}
.

Whereas, a two-dimensional image f [k] : Ωd → R+, the discretization of f(x) (i.e.
f [k] = f(x) |x=k∈Ωd), is specified on the lattice:

Ωd =
{

(k1, k2) =
{

0, N1 − 1
}
×
{

0, N2 − 1
}
⊂ N2

}
.

Denote f = (f [k])k∈Ωd as the vector form of f [k] on the discrete domain Ωd. The
discrete finite frequency domain with the coordinates ω ∈ [−π, π]2 is determined as

Ωω =

{
(ω1, ω2) =

(
2πn1

N1
,
2πn2

N2

)
| (n1, n2) =

[
−N1

2
,
N1

2

]
×
[
−N2

2
,
N2

2

]
⊂ N2

}
.

Let X be the Euclidean space whose dimension is given by the size of the lattice Ωd,
i.e. X = R|Ωd|, and Y = X×X be the vector space. The 2D discrete Fourier transform
F acting on a signal f [k] is expressed as

f [k]
F←→ F (ejω) =

∑
k∈Ωd

f [k] · e−j〈k,ω〉`2 , ω ∈ Ωω.

Let a, b ∈ X, the discrete Hilbert space `2(Ωd) is equipped with the norm and the
inner product:

‖ a ‖2`2 =
∑
k∈Ωd

a[k]2,

〈a, b〉`2 =
∑
k∈Ωd

a[k] · b[k].

3.5.2 Functional Space

3.5.2.1 The discrete bounded variation space BV (Ωd)

BV (Ωd) =

f ∈ `1(Ωd) | J(f) =
∑
k∈Ωd

∣∣∇f [k]
∣∣ < +∞

 .
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3.5.2.2 The Besov space Bα
p,q and curvelet type decomposition space Gαp,q

Based on [96], [29] and [97], we give a short brief about the orthogonal wavelet transform
and the curvelet transform which correspond to the Besov space and the curvelet type
decomposition space, respectively (cf. [94], [107], [62]).

Orthogonal Wavelet Transform The orthogonal basis ϕi,k(x) ∈ L2(Ωc) at the scale
ith and the translation kth in I =

{
(i,k) = [0, I]× Ωd ⊂ N× N2

}
is

ϕi,k(x) = 2i/2ϕ(2ix− k), (i,k) ∈ I,

where ϕ(x) is the ”mother” wavelet function (see [94]). Since ϕi,k(x) is orthogonal,
the linear expansion of a function f ∈ L2(Ωc), i.e.

f(x) =
∑
i,k

〈f, ϕi,k〉L2︸ ︷︷ ︸
Wi{f}[k]

ϕi,k(x)

=
∑
k

〈f, ϕ0,k〉L2ϕ0,k(x) +
∑

i∈[1,I],k

〈f, ϕi,k〉L2ϕi,k(x),

satisfies a Parseval relation, i.e.

‖f‖2L2(Ωc)
=
∑
i,k

∣∣Wi{f}[k]
∣∣2

:=
∥∥W{f}∥∥2

`2(Ωd)
, with W{f} = (Wi{f}[k]) |(i,k)∈I .

Curvelet Transform The frame ϕi,l,k(x) ∈ L2(Ωc) of the curvelet transform C at the
scale i, the orientation l and the translation kth in

I =

{
(i, l,k) = [0, I]×

[
−2di/2e, 2di/2e − 1

]
× Ωd ⊂ N× Z× N2

}
,

is
ϕi,l,k(x) = ϕi

(
Rθl(x− x

(i,l)
k )

)
, i, l,k ∈ I

where the position is

x
(i,l)
k = R−1

θl

(
2−ik1, 2

−i/2k2

)
,

the rotation matrix is

Rθ =

(
cos θ sin θ
− sin θ cos θ

)
, R−1

θ = RTθ = R−θ,

and ϕi(x) is the ”mother” basis function (see [96]).
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The curvelet function ϕi,l,k(x) is a tight frame because the expansion of a function
f ∈ L2(Ωc) in the curvelet frame, i.e.

f(x) =
∑
i,l,k

〈f, ϕi,l,k〉L2︸ ︷︷ ︸
Ci,l{f}[k]

ϕi,l,k(x),

=
∑
k

〈f, ϕ0,0,k〉L2ϕ0,0,k(x) +
∑

i∈[1,I],l,k

〈f, ϕi,l,k〉L2ϕi,l,k(x),

satisfies a Parseval relation, i.e.

‖f‖2L2(Ωc)
=
∑
i,l,k

∣∣Ci,l{f}[k]
∣∣2

:=
∥∥C{f}∥∥2

`2(Ωd)
, with C{f} =

(
Ci,l{f}[k]

)
|(i,l,k)∈I .

In summary, denote T as the wavelet W or the curvelet C transform. The index
set is

I =

{
(i, l,k) = [0, I]×

[
−2di/2e, 2di/2e − 1

]
× Ωd ⊂ N× Z× N2

}
.

Given a function f(x) ∈ L2(Ωc), the T transform is

f(x)
T←→ Ti,l{f}[k], (i, l,k) ∈ I,

such that the Parseval condition holds, i.e.

‖f‖2L2(Ωc)
=
∑
i,l,k

∣∣Ti,l{f}[k]
∣∣2

:=
∥∥T {f}∥∥2

`2(Ωd)
, with T {f} = ( Ti,l{f}[k] ) |(i,l,k)∈I .

Note that there is no orientation l if T is the wavelet transform W.

The Bα
p,q and the Gαp,q spaces The Besov space Bα

p,q relates to orthogonal wavelet
coefficients. The curvelet type decomposition space Gαp,q corresponds to curvelet coef-
ficients which is more advantage to capture the geometry of the objects.

Denote Aαp,q represent for Bα
p,q or Gαp,q with α > 0, 0 < p, q ≤ ∞. T is the wavelet W

or the curvelet C transform of a function f(x) ∈ L2(Ωc):

f(x)
T←→ Ti,l{f}[k], (i, l,k) ∈ I.

Let T {f} = ( Ti,l{f}[k] ) |(i,l,k)∈I be the vector form.
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The space Aαp,q is defined as

Aαp,q(Ωc) =
{
f ∈ L2(Ωc) | ‖f‖Aαp,q < +∞

}
,

where the norm is

‖f‖Aαp,q =

(∑
k

∣∣T0,0{f}[k]
∣∣p) 1

p

︸ ︷︷ ︸
‖T0,0{f}‖`p

+

( ∑
l,i∈[1,I]

(∑
k

wi
∣∣Ti,l{f}[k]

∣∣p ) qp) 1
q

,

with the weight

wi =


2
ip

(
α+2

(
1
2
− 1
p

))
, T =W (wavelet transform)

2
ip

(
α+ 3

2

(
1
2
− 1
p

))
, T = C (curvelet transform)

.

If p = q, this norm is rewritten as

‖f‖Aαp,p =

(∑
k

∣∣T0,0{f}[k]
∣∣p) 1

p

+

( ∑
l,i∈[1,I]

∑
k

wi
∣∣Ti,l{f}[k]

∣∣p) 1
p

�
[∑
k

∣∣T f0,0[k]
∣∣p +

∑
l,i∈[1,I]

∑
k

wi
∣∣Ti,l{f}[k]

∣∣p ] 1
p

=

[ ∑
l,i∈[0,I],k

wi|Ti,l{f}[k]|p
] 1
p

:=
∥∥T {f}∥∥

w,`p

It shows that the norm in the Bα
p,p and Gαp,p spaces is the weighted `p norm of the

wavelet and curvelet coefficients, respectively, i.e.

‖f‖Aαp,p �
[∑
i,l,k

wi
∣∣Ti,l{f}[k]

∣∣p ] 1
p

︸ ︷︷ ︸
‖T {f}‖

w,`p

, (i, l,k) ∈ I,

Notice that the dual space of Aαp,q is Aα
′
p′,q′ with satisfying the dual pair

α′ = −α, p′ = p

p− 1
and q′ =

q

q − 1
.

Example 3.5.1. Some examples of the norm in the Bα
p,q or Gαp,q spaces with a function

f ∈ L2(Ωc):
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• The Besov space with α = p = q = 1:

‖f‖B1
1,1

=
∥∥W{f}∥∥

`1
.

• The curvelet type decomposition space with α = 3
4 , p = q = 1:

‖f‖
G

3/4
1,1

=
∥∥C{f}∥∥

`1
.

• The supremum of the coefficients of T transform with q =∞

‖f‖Aαp,∞ =
∥∥T0{f}

∥∥
`p

+ sup
i∈[1,I]

∥∥Ti{f}∥∥w,`p .
Note that B−1

∞,∞ and G
−3/4
∞,∞ are the dual space of B1

1,1 and G
3/4
1,1 , respectively.

In summary, the space Aαp,q =
{
Bα
p,q , G

α
p,q

}
of the transform T = {W , C}

with

I =

{
(i, l,k) = [0, I]×

[
−2di/2e, 2di/2e − 1

]
× Ωd ⊂ N× Z× N2

}
is Aαp,q(Ωc) =

{
f ∈ L2(Ωc) | ‖f‖Aαp,q < +∞

}
, and its norm is

‖f‖Aαp,q =

(∑
k

∣∣T0,0{f}[k]
∣∣p) 1

p

︸ ︷︷ ︸
‖T0,0{f}‖`p

+

( ∑
l,i∈[1,I]

(∑
k

wi
∣∣Ti,l{f}[k]

∣∣p ) qp) 1
q

, (i, l,k) ∈ I,

where wi =

2
ip
(
α+2( 1

2
− 1
p

)
)
, T =W

2
ip
(
α+ 3

2
( 1
2
− 1
p

)
)
, T = C

.

If p = q : ‖f‖Aαp,p �
[∑
i,l,k

wi
∣∣Ti,l{f}[k]

∣∣p ] 1
p

︸ ︷︷ ︸
‖T {f}‖

w,`p

.

The dual space of Aαp,q is Aα
′
p′,q′ with α′ = −α, p′ = p

p−1 , q
′ = q

q−1 .

3.5.3 The Legendre Fenchel transform and the Indicator function

In this section, we give a short outline about how to obtain the indicator function of
a closed convex set from the Legendre - Fenchel transform. For more details, we refer
the reader to [108] and [109].
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Definition 3.5.1. The Legendre - Fenchel transform of a convex or nonconvex function
f : U → R ∪ {±∞} is a convex function f∗ : U∗ → R ∪ {±∞}:

f∗
(
u∗

µ

)
= sup

u∈U

{〈
u,

1

µ
u∗
〉
U
− f (u)

}
, µ > 0.

Note that the Legendre - Fenchel transformation of‖·‖U in a Banach space U is called
”indicator function”.

Proposition 3.5.1. Let
(
U,‖·‖U

)
be a real Banach space. Given µ > 0, the indicator

function of a closed convex set U(µ) =
{
u ∈ U |‖u‖U ≤ µ

}
is

f

(
u

µ

)
=

{
0, u ∈ U(µ)

+∞, u ∈ U\U(µ)

Proof. Let
(
U∗,‖·‖U∗

)
be a dual space of a real Banach space

(
U,‖·‖U

)
. Given u ∈ U

and u∗ ∈ U∗, the generalized Cauchy Schwarz inequality is

〈u, u∗〉U ≤ ‖u‖U ·
∥∥u∗∥∥

U∗
. (3.26)

Let µ > 0 such that ‖u∗‖U∗ ≤ µ. Thus, (3.26) is rewritten as follows

‖u‖U ≥
〈
u,

1

µ
u∗
〉
U

(3.27)

Let U∗(µ) =
{
u∗ ∈ U∗ |‖u∗‖U∗ ≤ µ

}
be a closed convex set. (3.27) is equivalent to

sup
u∈U

{〈
u,

1

µ
u∗
〉
U
−‖u‖U

}
=

{
0, u∗ ∈ U∗(µ)

+∞, u∗ ∈ U∗\U∗(µ)

Let f(u) =‖u‖U . As Definition 3.5.1, the Legendre - Fenchel transform of F (u) is the
indicator function:

f∗
(
u∗

µ

)
=

{
0, u∗ ∈ U∗(µ)

+∞, u∗ ∈ U∗\U∗(µ)
.

We rewrite as

f

(
u

µ

)
=

{
0, u ∈ U(µ)

+∞, u ∈ U\U(µ)
,

where a closed convex set is U(µ) =
{
u ∈ U | ‖u‖U ≤ µ

}
.
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3.6 The propositions and their proofs

Proposition 3.6.1. The solution of the `1 minimization problem is the shrinkage op-
erator:

ũ = argmin
u∈X

{
‖u‖`1 +

α

2
‖f − u‖2`2

}
(3.28)

=
f

|f |
·max

(
|f | − 1

α
, 0

)

:= Shrink

(
f ,

1

α

)
.

Proof. The minimization is rewritten as follows

ũ = argmin
u∈X

{ ∑
k∈Ωd

∣∣u[k]
∣∣ +

α

2

∑
k∈Ωd

(f [k]− u[k])2

}

The minimization reduces to |Ω| scalar minimizations, separately:

ũ[k] = argmin
u[k]∈R

{∣∣u[k]
∣∣ +

α

2
(f [k]− u[k])2

}

The solution ũ[k] is the discrete version of the continuous minimization:

ũ(x) = argmin
u(x)∈R

{∣∣u(x)
∣∣+

α

2
(f(x)− u(x))2︸ ︷︷ ︸

:=F (x,u(x))

}

F : Ωd × R → R ∪ {±∞} is a non-differentiable convex function. According to

Theorem 4 [108, p. 247], the minimizer is obtained by 0 ∈ ∂F (x,u(x))
∂u(x) :

0 =


1 + α(u(x)− f(x)), u(x) > 0

−1 + α(u(x)− f(x)), u(x) < 0

ν + α(u(x)− f(x)), u(x) = 0 and ν ∈ [−1, 1]

⇔ ũ(x) =


f(x)− 1

α , f(x) > 1
α > 0

f(x) + 1
α , f(x) < − 1

α < 0

0, f(x) ∈ [− 1
α ,

1
α ]

=


f(x)

|f(x)| ·
(∣∣f(x)

∣∣− 1
α

)
, f(x) < − 1

α or f(x) > 1
α

0, f(x) ∈ [− 1
α ,

1
α ]

=
f(x)∣∣f(x)

∣∣ ·max

(∣∣f(x)
∣∣− 1

α
, 0

)
.
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The discrete version ũ[k] = ũ(x) |x=k∈Ωd is

ũ[k] =
f [k]∣∣f [k]

∣∣ ·max

(∣∣f [k]
∣∣− 1

α
, 0

)
The vector form of ũ[k] |k∈Ωd with the point-wise operators (−,×, /,max,|·|) is

ũ =
f

|f |
·max

(
|f | − 1

α
, 0

)

:= Shrink(f ,
1

α
),

Proposition 3.6.2. The solution of the regularization in the curvelet type decomposi-

tion space G
3/4
1,1 is the curvelet soft thresholding operator:

ũ = argmin
u∈X

{
‖u‖

G
3/4
1,1

+
1

2δ
‖f − u‖2`2

}
(3.29)

= C∗
{

Shrink
(
C{f}, δ

)}
:= CST (f , δ) .

Proof. Instead of the Besov space in [94], this proof is for the curvelet type decompo-

sition space G
3/4
1,1 . As mentioned before, the norm of a function belongs to Gαp,q is the

weighted `p norm of the curvelet coefficients; especially with G
3/4
1,1 , it is equivalent to

the `1 norm of the curvelet coefficients, i.e.

‖u‖
G

3/4
1,1

=
∥∥C{u}∥∥

`1
,

and the curvelet transform is the unitary operator on `2(Ωd), i.e.

‖f − u‖`2(Ωd) =
∥∥C{f} − C{u}∥∥

`2(Ωd)
, ∀f, u ∈ `2(Ωd).

Thus, the minimization is reformulated as follows

ũ = argmin
u∈X

{∥∥C{u}∥∥
`1

+
1

2δ

∥∥C{f} − C{u}∥∥2

`2

}
Let t = C{u}, we have

t̃ = argmin
t

{
‖t‖`1 +

1

2δ

∥∥C{f} − t∥∥2

`2

}
As in Proposition 3.6.1, the solution of this `1 minimization is

t̃ = Shrink
(
C{f}, δ

)
.
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Thus, the solution in the vector form is obtained by the inverse curvelet transform
as follows

ũ = C∗{t̃} = C∗
{

Shrink
(
C{f}, δ

)}
:= CST(f , δ), ∀ u,f ∈ `2(Ωd).

Proposition 3.6.3. The solution of the ”v-problem”:

min
v∈X

{
µ2‖v‖`1 +

β2

2

∥∥∥∥w − C{v} +
λ2

β2

∥∥∥∥2

`2

+
β3

2

∥∥∥∥f − u− v − ε+
λ3

β3

∥∥∥∥2

`2

}

is

ṽ = Shrink

(
A,

µ2

β2 + β3

)
with A =

C∗{β2w + λ2}+ β3(f − u− ε+ λ3
β3

)

β2 + β3
.

Proof. Due to the curvelet transform C is unitary on `2(Ωd), i.e.∥∥∥∥w − C{v}+
λ2

β2

∥∥∥∥
`2(Ωd)

=

∥∥∥∥C∗{w} − v +
C∗{λ2}
β2

∥∥∥∥
`2(Ωd)

,

and the separability property of the pixels, the minimization reduces to performing
separately Ωd scalar minimizations with k ∈ Ωd:

ṽ[k] = argmin
v[k]∈R

{
µ2

∣∣v[k]
∣∣+β2

2

(
C∗{w}[k]− v[k] +

C∗{λ2}[k]

β2

)2

+
β3

2

(
f [k]− u[k]− v[k]− ε[k] +

λ3[k]

β3

)2
}

The solution of this minimization is the discrete version of the continuous minimization:

ṽ(x) = argmin
v(x)∈R

{
F (x, v(x)) := µ2

∣∣v(x)
∣∣+β2

2

(
C∗{w}(x)− v(x) +

C∗{λ2}(x)

β2

)2

+
β3

2

(
f(x)− u(x)− v(x)− ε(x) +

λ3(x)

β3

)2
}

where F : Ωc × R → R ∪ {±∞} is the non-differentiable convex function. The subdif-
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ferential at the optimality, i.e. 0 ∈ ∂F (x,v(x))
∂v(x) , is

⇔ 0 = µ2
v(x)∣∣v(x)

∣∣ − β2C∗
{
w +

λ2

β2

}
(x) + β2v(x)− β3

(
f(x)− u(x)− v(x)− ε(x) +

λ3(x)

β3

)

⇔ ṽ(x) =
β2

β2 + β3
C∗
{
w +

λ2

β2

}
(x) +

β3

β2 + β3

(
f(x)− u(x)− ε(x) +

λ3(x)

β3

)
− µ2

β2 + β3

v(x)

|v(x)|

:= Shrink

(
β2

β2 + β3
C∗
{
w +

λ2

β2

}
(x) +

β3

β2 + β3

(
f(x)− u(x)− ε(x) +

λ3(x)

β3

)
︸ ︷︷ ︸

:= A(x)

,
µ2

β2 + β3

)
.

The discrete version ṽ[k] = ṽ(x) |x=k∈Ωd is

ṽ[k] = Shrink

(
A[k],

µ2

β2 + β3

)
.

Finally, we obtain the vector form of ṽ[k] |k∈Ωd with the component-wise operators
(+,−,×, /):

ṽ = Shrink

(
A,

µ2

β2 + β3

)
,

with

A =
β2

β2 + β3
C∗
{
w +

λ2

β2

}
+

β3

β2 + β3

(
f − u− ε+

λ3

β3

)
.

Proposition 3.6.4. The solution of the ”ε-problem” is as follows

ε̃ = argmin
ε∈X

{
G∗
(
ε

δ

)
+
β3

2

∥∥∥∥∥ε−
(
f − u− v +

λ3

β3

)∥∥∥∥∥
2

`2

}

=

(
f − u− v +

λ3

β3

)
− CST

(
f − u− v +

λ3

β3
, δ

)
.

Proof. The proof for the ”ε-problem” is based on [101] with the extension to the curvelet
type decomposition space instead of the Besov space. The minimization is reformulated
as

ε̃ = argmin
ε∈S(δ)

{∥∥∥∥∥ε−
(
f − u− v +

λ3

β3

)∥∥∥∥∥
2

`2

}

= PS(δ)

(
f − u− v +

λ3

β3

)
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To compute this projection, the dual problem is considered instead

ε̃d = argmin
εd∈X

{
δ‖εd‖G3/4

1,1

+
1

2

∥∥∥∥∥εd −
(
f − u− v +

λ3

β3

)∥∥∥∥∥
2

`2

}
.

According to the Proposition 3.6.2, the solution of the above minimization for the
curvelet decomposition space is the curvelet soft thresholding as follows

ε̃d = C∗
{

Shrink

(
C
{
f − u− v +

λ3

β3

}
, δ

)}

:= CST

(
f − u− v +

λ3

β3
, δ

)
.

From Proposition 4.7 (see [101]), the solution of the primal problem is

ε̃ =

(
f − u− v +

λ3

β3

)
− ε̃d

=

(
f − u− v +

λ3

β3

)
− CST

(
f − u− v +

λ3

β3
, δ

)
.

Proposition 3.6.5. The solution of the ”u-problem” is as follows

ũ = argmin
u∈X

{
β1

2

∥∥∥∥p−∇du+
λ1

β1

∥∥∥∥2

`2

+
β3

2

∥∥∥∥f − u− v − ε+
λ3

β3

∥∥∥∥2

`2

}
,

= Re
[
F−1

{ D
(
ejω
)

β3 + 4β1

[
sin2(ω1

2 ) + sin2(ω2
2 )
]}][k], ∀k ∈ Ωd and ω ∈ Ωω,

Proof. Due to the separability property of the pixels, the minimization with k ∈ Ωd

reduces to |Ωd| scalar minimizations as

ũ[k] = argmin
u[k]∈R

{
β1

2

∣∣∣∣p[k]−∇du[k] +
λ1[k]

β1

∣∣∣∣2 +
β3

2

(
f [k]− u[k]− v[k]− ε[k] +

λ3[k]

β3

)2
}
.

The solution ũ[k] is the discrete version of the continuous minimization with the

continuous gradient operator ∇u(x) =
(∂u(x)
∂x1

, ∂u(x)
∂x2

)
:

ũ(x) = argmin
u(x)∈R

{
β1

2

∣∣∣∣p(x)−∇u(x) +
λ1(x)

β1

∣∣∣∣2 +
β3

2

(
f(x)− u(x)− v(x)− ε(x) +

λ3(x)

β3

)2

︸ ︷︷ ︸
:=F (x,u(x),∇u(x))

}
,
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where the convex function F : Ωc × (R× R2)→ R ∪ {±∞} is addressed as

F (x, u(x),∇u(x)) =
β1

2

[(
∂x1u(x)− p1(x)− λ1,1(x)

β1

)2

+

(
∂x2u(x)− p2(x)− λ1,2(x)

β1

)2
]

+
β3

2

(
f(x)− u(x)− v(x)− ε(x) +

λ3(x)

β3

)2

.

In order to simplify the notation, we abbreviate F (x, u(x),∇u(x)) as F . According
to [109, p. 286], at the optimality condition, the Euler-Lagrange equation is expressed
as

− ∂F

∂u(x)
+

[
∂

∂x1
· ∂F

∂(∂x1u(x))
+

∂

∂x2
· ∂F

∂(∂x2u(x))

]
= 0.

where:

∂F

∂u(x)
= −β3

(
f(x)− u(x)− v(x)− ε(x) +

λ3(x)

β3

)
∂F

∂(∂x1u(x))
= β1

(
∂x1u(x)− p1(x)− λ1,1(x)

β1

)

⇒ ∂

∂x1
· ∂F

∂(∂x1u(x))
= β1

(
∂2
x1u(x)− ∂x1p1(x)− ∂x1λ1,1(x)

β1

)
∂F

∂(∂x2u(x))
= β1

(
∂x2u(x)− p2(x)− λ1,2(x)

β1

)

⇒ ∂

∂x2
· ∂F

∂(∂x2u(x))
= β1

(
∂2
x2u(x)− ∂x2p2(x)− ∂x2λ1,2(x)

β1

)
Therefore, the Euler Lagrange equation is

β3ũ(x)− β1∆ũ(x) = β3

(
f(x)− v(x)− ε(x) +

λ3(x)

β3

)
− β1div

(
p(x) +

λ1(x)

β1

)
.

The discrete version of the Euler Lagrange equation at x = k ∈ Ωd is

β3ũ[k]− β1∆dũ[k] = β3

(
f [k]− v[k]− ε[k] +

λ3[k]

β3

)
− β1divd

(
p[k] +

λ1[k]

β1

)
,

where ∆d and divd are the discrete Laplacian and discrete divergence operators (cf.
Appendix 3.7).

The vector form with the point-wise operators (+,−,×, /) is

β3ũ− β1∆dũ = β3

(
f − v − ε+

λ3

β3

)
− β1divd

(
p+

λ1

β1

)
, (3.30)

where ∆du =
[
∆du[k]

]
k∈Ωd

and divdu =
[
divdu[k]

]
k∈Ωd

.
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By employing the discrete Fourier transform, the partial differential equation (3.30)
is solved. Let F

(
ejω
)
, V
(
ejω
)
, E
(
ejω
)
,Λ3

(
ejω
)
, P1

(
ejω
)
, P2

(
ejω
)

and Λ1

(
ejω
)

be the
discrete Fourier transform of f [k] , v[k] , ε[k] , λ3[k] , p1[k] , p2[k] and λ1[k], respectively.
Due to the discreteness of the pixels, (3.30) is rewritten as

β3ũ[k]− β1∆dũ[k] = β3

(
f [k]− v[k]− ε[k] +

λ3[k]

β3

)
− β1divd

(
p[k] +

λ1[k]

β1

)
F←→ β3Ũ

(
ejω
)

+ β14
[

sin2(
ω1

2
) + sin2(

ω2

2
)
]
Ũ
(
ejω
)

:= D
(
ejω
)
, ω ∈ Ωω, (3.31)

where

D
(
ejω
)

= β3

[
F
(
ejω
)
− V

(
ejω
)
− E

(
ejω
)

+
Λ3

(
ejω
)

β3

]

− β1

[(
1− e−jω1

)(
P1

(
ejω
)

+
Λ1,1

(
ejω
)

β1

)
+
(
1− e−jω2

)(
P2

(
ejω
)

+
Λ1,2

(
ejω
)

β1

)]
.

(3.32)

Thus, the solution of the ”u-problem” is

ũ[k] = Re
[
F−1

{ D
(
ejω
)

β3 + 4β1

[
sin2(ω1

2 ) + sin2(ω2
2 )
]}][k], ∀k ∈ Ωd and ω ∈ Ωω.

Although the solution of the “u-problem” is obtained in the continuous setting and
then is discretized as in the proof, it is not difficult to show that its solution can be
directly solved in the discrete setting.

Denote m and n as the size of the domain Ω and given the matrix of difference
operator as

Dm =


−1 1 0 . . . 0
0 −1 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
1 0 0 . . . −1

 ∈ Rm×m,

we have ∇du =
[
uDT

n︸ ︷︷ ︸
:=∂+x u

,Dmu︸ ︷︷ ︸
:=∂+y u

]
and |∇u| =

√
u2
x + u2

y,

ũ = argmin
u∈X

{
F (u) =

β1

2

∥∥∥∥p−∇du+
λ1

β1

∥∥∥∥2

`2

+
β3

2

∥∥∥∥f − u− v − ε+
λ3

β3

∥∥∥∥2

`2

}
,

where ∥∥∥∥p−∇du+
λ1

β1

∥∥∥∥2

`2

=

∥∥∥∥p2 − uDT
n +

λ12

β1

∥∥∥∥2

`2

+

∥∥∥∥p1 −Dmu+
λ11

β1

∥∥∥∥2

`2

.

Thus,

ũ = argmin
u∈X

{
F (u) =

β1

2

∥∥∥∥p2 − uDT
n +

λ12

β1

∥∥∥∥2

`2

+
β1

2

∥∥∥∥p1 −Dmu+
λ11

β1

∥∥∥∥2

`2

+
β3

2

∥∥∥∥f − u− v − ε+
λ3

β3

∥∥∥∥}
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The Euler-Lagrange equation is

0 =
∂F (u)

∂u
= −β1

(
p2 − uDT

n +
λ12

β1

)
Dn − β1D

T
m

(
p1 −Dmu+

λ11

β1

)
− β3(f − u− v − ε+

λ3

β3
)

⇔ β1uDT
nDn + β1D

T
mDmu+ β3u = β1

(
p2 +

λ12

β1

)
Dn + β1D

T
m

(
p1 +

λ11

β1

)
+ β3(f − v − ε+

λ3

β3
) .

Thus, the Sylvester equation is

β1uDT
nDn+

(
β1D

T
mDm+β31mn

)
u = β1

(
p2+

λ12

β1

)
Dn+β1D

T
m

(
p1+

λ11

β1

)
+β3(f−v−ε+λ3

β3
)

(3.33)
The solution of Eq. (3.33) can be solved in the discrete Fourier domain as[

β1

[(
e−jω1 − 1

)(
ejω1 − 1

)
+
(
e−jω2 − 1

)(
ejω2 − 1

)]
+ β3

]
U(ejω)

= β1

[(
e−jω1 − 1

)(
P1(ejω) +

Λ11(ejω)

β1

)
+
(
e−jω2 − 1

)(
P2(ejω) +

Λ12(ejω)

β1

)]

+ β3

[
F (ejω)− V (ejω)− E(ejω) +

Λ3(ejω)

β3

]
= D(ejω) ,

where

A(ejω) = β3 + β1

[ (
e−jω1 − 1

)(
ejω1 − 1

)
+
(
e−jω2 − 1

)(
ejω2 − 1

)︸ ︷︷ ︸
= 4

[
sin2 ω1

2
+ sin2 ω2

2

]
]

Thus, the solution of the “u”-problem in the Fourier domain is

U(ejω) =
D(ejω)

β3 + 4β1

[
sin2 ω1

2 + sin2 ω2
2

] .

3.7 Discrete version of the gradient, the divergence and the
Laplacian operators

Based on [103], this section introduces the discrete version of the gradient, the diver-
gence and the Laplacian operators, as well as their Fourier transform.
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3.7.1 The forward and backward gradient operator

Given f ∈ X and k ∈ Ωd, the discrete gradient operator ∇df with periodic boundary
condition is a vector in Y given by

∇df [k] := ∇±f [k] =
[
∂±1 f [k], ∂±2 f [k]

]T
,

where the forward differential operators are

∂+
1 f [k1, k2] =

{
f [k1 + 1, k2]− f [k1, k2], k1 < N1 − 1;

f [0, k2]− f [N1 − 1, k2], k1 = N1 − 1,

∂+
2 f [k1, k2] =

{
f [k1, k2 + 1]− f [k1, k2], k2 < N2 − 1;

f [k1, 0]− f [k1, N2 − 1], k2 = N2 − 1.

and the backward differential operators are

∂−1 f [k1, k2] =

{
f [k1, k2]− f [k1 − 1, k2], k1 ≤ N1 − 1;

f [0, k2]− f [N1 − 1, k2], k1 = 0,

∂−2 f [k1, k2] =

{
f [k1, k2]− f [k1, k2 − 1], k2 ≤ N2 − 1;

f [k1, 0]− f [k1, N2 − 1], k2 = 0.

Their Fourier transforms are

∂±mf [k]
F←→ ±

(
e±jωm − 1

)
F (ejω), ω ∈ Ωω and m ∈ {1, 2}.

By the 1st order Maclaurin approximation, the approximated gradient operator is
the continuous version:

∂±mf [k]
F←→±

(
e±jωm − 1

)
F (ejω)

≈ (jωm) F (ejω)
F−1

←→ ∂xmf(x) |x=k∈Ωd .

3.7.2 The backward divergence operator

Given g = [g1, g2]T ∈ Y , k ∈ Ωd and ω ∈ Ωω, the discrete backward divergence
divd : Y → X is

divd(g[k]) := div−(g[k]) = 〈∇−, g[k]〉`2 = ∂−1 g1[k] + ∂−2 g2[k]

F←→
(
1− e−jω1

)
G1

(
ejω
)

+
(
1− e−jω2

)
G2

(
ejω
)
.

By the 1st order Maclaurin approximation, the continuous divergence operator is

div−(g[k])
F←→
(
1− e−jω1

)
G1

(
ejω
)

+
(
1− e−jω2

)
G2

(
ejω
)
.

≈ (jω1) G1

(
ejω
)

+ (jω2) G2

(
ejω
) F−1

←→ div(g(x)) |x=k∈Ωd .
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3.7.3 The discrete Laplacian operator

Given f ∈ X, k ∈ Ωd and ω ∈ Ωω, the discrete Laplace transform ∆d(·) = div−∇+(·)
is

∆df [k] = div−∇+f [k] = 〈∇−,∇+f [k]〉`2 = (∂−1 ∂
+
1 + ∂−2 ∂

+
2 )f [k].

The Fourier transform is

F{∆df [k]} =

F{∂−1 } · F{∂+
1 }+ F{∂−2 } · F{∂

+
2 }︸ ︷︷ ︸

L
(
ejω
)

 · F (ejω),

where

L
(
ejω
)

= −
(
e−jω1 − 1

)(
ejω1 − 1

)
−
(
e−jω2 − 1

)(
ejω2 − 1

)
=
(
ejω1 + e−jω1

)
+
(
ejω2 + e−jω2

)
− 4

= 2
[
cos(ω1) + cos(ω2)− 2

]
= −4

[
sin2

(ω1

2

)
+ sin2

(ω2

2

)]
:= −4‖ sin

(ω
2

)
‖2`2 .

By the first order Maclaurin expansion of the cosin function, the approximated Lapla-
cian operator (or the continuous Laplacian operator) is

L
(
ejω
)
≈ −

(
ω2

1 + ω2
2

)
= −‖ω‖2`2

The generalized version of order s
2 ∈ R+ is

∆
s
2
d f [k]

F←→ (−1)
s
2 2s‖ sin

(ω
2

)
‖s`2 · F

(
ejω
)

≈ (−1)
s
2 ‖ω‖s`2 · F

(
ejω
) F←→ ∆

s
2 f(x) |x=k∈Ωd .
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Given f ∈ X, g ∈ Y , k ∈ Ωd and ω ∈ Ωω:

• The discrete gradient operator:

∂±mf [k]
F←→±

(
e±jωm − 1

)
F
(
ejω
)
, m ∈ {1, 2},

≈ (jωm) F (ejω)
F−1

←→ ∂xmf(x) |x=k∈Ωd .

• The discrete divergence operator:

div−(g[k]) = ∂−1 g1[k] + ∂−2 g2[k]

F←→
(
1− e−jω1

)
G1

(
ejω
)

+
(
1− e−jω2

)
G2

(
ejω
)
.

≈ (jω1) G1

(
ejω
)

+ (jω2) G2

(
ejω
) F−1

←→ div(g(x)) |x=k∈Ωd .

• The sth order discrete Laplacian operator (s ∈ R):

∆
s
2
d f [k] = (div−∇+)

s
2 f [k] = (∂−1 ∂

+
1 + ∂−2 ∂

+
2 )

s
2 f [k]

F←→ (−1)
s
2 2s‖ sin

(ω
2

)
‖s`2 · F

(
ejω
)

≈ (−1)
s
2 ‖ω‖s`2 · F

(
ejω
) F−1

←→ ∆
s
2 f(x) |x=k∈Ωd .

3.8 Additional Figures
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(a) (b) Err = 0.53 (c) Err = 2.42 (d) Err = 14.53

(e) Err = 7.8 (f) Err = 4.73 (g) Err = 1.91

(h) (i) (j) (k)

(l) (m) (n) (o)

Figure 3.16: Segmented fingerprint images and their features of different methods for
FVC2004 DB1 IM 4 7. (a) ground truth; (b, h) G3PD , (c, i) FDB, (d, j) Gabor,
(e, k) Harris, (f, l, m, n) Mean-Variance-Coherence, (g, o) STFT.
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(a) (b) Err = 0.72 (c) Err = 0.86 (d) Err = 8.64

(e) Err = 2.19 (f) Err = 1.3 (g) Err = 2.38

(h) (i) (j) (k)

(l) (m) (n) (o)

Figure 3.17: Segmented fingerprint images and their features of different methods for
FVC2004 DB1 IM 4 8. (a) ground truth; (b, h) G3PD , (c, i) FDB, (d, j) Gabor,
(e, k) Harris, (f, l, m, n) Mean-Variance-Coherence, (g, o) STFT.
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(a) (b) Err = 0.46 (c) Err = 2.03 (d) Err = 2.2

(e) Err = 2.21 (f) Err = 4.01 (g) Err = 2.15

(h) (i) (j) (k)

(l) (m) (n) (o)

Figure 3.18: Segmented fingerprint images and their features of different methods for
FVC2004 DB1 IM 49 5. (a) ground truth; (b, h) G3PD , (c, i) FDB, (d, j)
Gabor, (e, k) Harris, (f, l, m, n) Mean-Variance-Coherence, (g, o) STFT.
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(a) (b) Err = 2.57 (c) Err = 4.78 (d) Err = 10.87

(e) Err = 8.52 (f) Err = 9.5 (g) Err = 6

(h) (i) (j) (k)

(l) (m) (n) (o)

Figure 3.19: Segmented fingerprint images and their features of different methods for
FVC2004 DB2 IM 43 6. (a) ground truth; (b, h) G3PD , (c, i) FDB, (d, j)
Gabor, (e, k) Harris, (f, l, m, n) Mean-Variance-Coherence, (g, o) STFT.
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(a) (b) Err = 3.01 (c) Err = 5.6 (d) Err = 11.78

(e) Err = 6 (f) Err = 9.33 (g) Err = 20.4

(h) (i) (j) (k)

(l) (m) (n) (o)

Figure 3.20: Segmented fingerprint images and their features of different methods for
FVC2004 DB2 IM 47 6. (a) ground truth; (b, h) G3PD , (c, i) FDB, (d, j)
Gabor, (e, k) Harris, (f, l, m, n) Mean-Variance-Coherence, (g, o) STFT.
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(a) (b) Err = 2.83 (c) Err = 8.16 (d) Err = 12.05

(e) Err = 7.06 (f) Err = 16.65 (g) Err = 7.31

(h) (i) (j) (k)

(l) (m) (n) (o)

Figure 3.21: Segmented fingerprint images and their features of different methods for
FVC2004 DB2 IM 47 7. (a) ground truth; (b, h) G3PD , (c, i) FDB, (d, j)
Gabor, (e, k) Harris, (f, l, m, n) Mean-Variance-Coherence, (g, o) STFT.
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(a) (b) Err = 1.51 (c) Err = 2.73 (d) Err = 6.21

(e) Err = 3.75 (f) Err = 2.71 (g) Err = 3.92

(h) (i) (j) (k)

(l) (m) (n) (o)

Figure 3.22: Segmented fingerprint images and their features of different methods for
FVC2004 DB3 IM 1 7. (a) ground truth; (b, h) G3PD , (c, i) FDB, (d, j) Gabor,
(e, k) Harris, (f, l, m, n) Mean-Variance-Coherence, (g, o) STFT.
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(a) (b) Err = 1.09 (c) Err = 3.33 (d) Err = 6.6

(e) Err = 3.23 (f) Err = 3.7 (g) Err = 4.03

(h) (i) (j) (k)

(l) (m) (n) (o)

Figure 3.23: Segmented fingerprint images and their features of different methods for
FVC2004 DB3 IM 1 8. (a) ground truth; (b, h) G3PD , (c, i) FDB, (d, j) Gabor,
(e, k) Harris, (f, l, m, n) Mean-Variance-Coherence, (g, o) STFT.
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(a) (b) Err = 1.75 (c) Err = 2.37 (d) Err = 6

(e) Err = 5.99 (f) Err = 3.06 (g) Err = 3.74

(h) (i) (j) (k)

(l) (m) (n) (o)

Figure 3.24: Segmented fingerprint images and their features of different methods for
FVC2004 DB3 IM 19 4. (a) ground truth; (b, h) G3PD , (c, i) FDB, (d, j)
Gabor, (e, k) Harris, (f, l, m, n) Mean-Variance-Coherence, (g, o) STFT.
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4 Conclusion

We have proposed the two models for fingerprint feature extraction, including: the
Fourier based and variational based methods. We have demonstrated their potential
application to fingerprint segmentation. The main contributions of this thesis are sum-
marized in the following section and we also discuss the future work to conclude the
study.

4.1 Main Contributions

There are threefolds of our contribution in this thesis:

• Firstly, we consider the methods for fingerprint feature extraction in the Fourier
and the spatial domains. Based on the properties of fingerprint patterns, e.g.
sparsity, smoothness and FOTIs, we design the FDB method [1] and the G3PD
method [2] to compromise these properties. In particular, we design the FDB seg-
mentation method for the feature extraction based on the DHBB filter interwoven
with soft thresholding. In the different view with the FDB, the G3PD method
is proposed to consider fingerprint pattern as a texture for the decomposition

under the convex minimization, TV−G3/4
1,1 − `1−G

−3/4
∞,∞. After feature extraction

by both approaches, the morphological operator is applied on these textures to
obtain the ROI.

• Secondly, in order to clarify the performance of our proposed methods, we provide
a manually marked ground truth segmentation for all 12 databases of FVC2000
[4], FVC2002 [5] and FVC2004 [6]. Each databases consists of 80 images for
training and 800 images for testing. Overall this benchmark consists of 10560
marked segmentation images.

• Finally, we perform a systematic comparison of our proposed approaches with the
four well-known fingerprint segmentation methods on this benchmark: a method
based on mean and variance of gray level intensities and the coherence of gradients
as features and a neural network as a classifier [7], a method using Gabor filter
bank responses [8], a Harris corner response based method [9] and an approach
using local Fourier analysis [10].

From the performance result in Table 3.3, we see that our proposed approaches give
better results than the others in the literature. Especially, the performance of the
variational based method for fingerprint segmentation gives the best result in general.
The reason is that the convex minimization function simultaneously takes into account
the balance between the sparsity and the smoothness of texture staying in different

spaces, e.g. `1 space and G
3/4
1,1 space, together with noise and homogeneous region in

different kinds of norm.
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Data accessibility:

• Benchmark for Fingerprint Segmentation Performance Evaluation:

http://dx.doi.org/10.6084/m9.figshare.1294209

• Matlab Implementation of the FDB Method for Fingerprint Segmentation

http://dx.doi.org/10.6084/m9.figshare.1294210

• Matlab Implementation of the G3PD Method for Fingerprint Segmentation

http://dx.doi.org/10.6084/m9.figshare.1418020

• FVC databases

http://bias.csr.unibo.it/fvc2000/

http://bias.csr.unibo.it/fvc2002/

http://bias.csr.unibo.it/fvc2004/

4.2 Future Work

Based on the properties of fingerprint pattern, we have considered the problem from
the theoretical point of views to the practical application for fingerprint segmentation.
However, there are many challenging issues in practice for further investigations:

• dryness or wetness of the finger

• a ghost fingerprint on the sensor surface

• small scale noise

• large scale structure noise

• image artifacts e.g. caused by reconstructing a swipe sensor image

• scars or creases interrupting the fingerprint pattern

• latent fingerprint image segmentation

• overlapped fingerprint segmentation

A relevant future direction is to build the mathematical model to overcome these dif-
ficulties in practice under different views, e.g. statistical methods, stochastic processes,
partial differential equation, non-convex minimization and multiscale approach, etc.
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