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Abstract:  

Perceptual decision-making refers to the act of choosing one option from 

a set of alternatives based on the available sensory information. In this 

manuscript, we used model-based functional magnetic resonance imaging and 

lesions studies to investigate auditory and visual perceptual decision-making.  

 In the first study, we demonstrated that spatially-specific sensory evidence, 

when decoupled from motor plans, accumulates in modality-specific sensory 

cortices: Occipital regions showed signals correlated to spatially-specific 

accumulated visual sensory evidence, and superior temporal regions showed 

signals correlated with spatially-specific accumulated auditory evidence. On the 

other hand, signals in the frontal and parietal regions were modulated by the 

level of accumulated sensory evidence in a spatially non-specific manner for 

both modalities; when the level of evidence was low, the signal in the frontal 

and parietal regions was stronger regardless of the sensory modality. Thus, the 

well-known signatures of evidence accumulation observed in frontal and parietal 

cortices described in the literature might reflect secondary decision processes 

such as saliency. 

In the second study, we investigated the neural correlates of visual confidence in 

the decision. We used model-based fMRI to investigate the neural correlates of 

visual perceptual decision-making and devised criteria based on predictions 

from integrate-and-fire attractor models to identify neural correlates of 
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confidence in the decision. We managed to disentangle the neural correlates of 

sensory evidence accumulation from neural correlates of decision monitoring; 

confidence in the decision and error detection. We found that the signal in the 

occipital cortex was modulated by visual sensory evidence accumulation while 

the frontal and midbrain regions had signals suggestive of decision monitoring.  

In the third study, we investigated the effect of cortical and subcortical lesions 

on auditory and visual perceptual decision-making. We formulated an fMRI-

driven hypothesis based on the findings from our fMRI studies. We used voxel-

based lesion-symptom mapping to investigate the role of lesions on patients' 

behavior in a voxel-by-voxel manner. Data from the patients suggests a role of 

the right parietal cortex in auditory task performance as predicted by the fMRI 

study. 

Together, our results help to reveal the neural correlates of auditory and visual 

perceptual decision-making in human beings, explore neural correlates of visual 

decision-monitoring, and provide insights into the underlying mechanisms of the 

auditory and visual hemispatial neglect syndrome. 
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1. General introduction:  

On a daily basis, people make hundreds of decisions. Imagine, for example, the 

decision to cross a street. Superficially such a decision might sound trivial. 

However, it has been shown that deciding when it is safe to cross a street based 

on potential gaps in the traffic is a complex everyday task involving several 

functional abilities (Tournier, 2016). In identifying a crossing-gap one has to 

wait, look around, gather visual and auditory information, and evaluate input, 

and then make the decision to cross. If it is foggy, it will be more difficult to 

make safe street-crossing decisions, and one might take longer to decide. 

Moreover, it is important to be able to determine how confident one is in the 

decision. A correct estimation of the confidence in the decision allows one to 

collect more information in case of uncertainty. This plays an important role in 

the optimization of decisions in general (Schwartenbeck, 2015). As such, 

forming even trivial decisions and evaluating the level of confidence in 

decisions are intricate, complex cognitive processes that are hard to study and 

crucial to understand. 
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1.1 Perceptual decision-making 

Perceptual decision-making refers to the act of choosing one option from a set of 

alternatives based on available sensory information (Heekeren, 2008). Making a 

perceptual decision involves several highly collinear parallel cognitive processes 

(Cisek, 2012) (Figure 1.1).  

 

Figure 1.1. Outline for studying perceptual decisions. (1) Task stage: stimuli designed by 

the experimenter are presented to the participant (2) Decision formation stage: several 

collinear cognitive processes are computed in the participant’s brain. (3) Motor response 

stage: the participant responds by hand movement, eye movement, or verbal response, which 

can be recorded by the examiner. (Modified from Hebart, 2014) 
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Perceptual decision-making processes can be categorized into core decision-

making processes (Erlich, 2015), and secondary decision-making processes 

(Katz, Yates, Pillow, & Huk, 2016) (Figure 1.2). One core decision-making 

strategy is sensory evidence accumulation. Brains reconstruct the external world 

on the basis of input from sensory receptors; this input is the sensory evidence. 

When choosing between two alternatives in the case of forming perceptual 

decisions the brain has to be able to retain the memory of previous sensory 

evidence favoring one alternative and has to have the ability to add new sensory 

evidence over time which supports that alternative; hence accumulation.  This is 

the origin of the term “sensory evidence accumulation”.  However, in order to 

disentangle the neural correlates of core decision-making processes such as 

sensory evidence accumulation from secondary decision-making processes such 

as saliency, or confidence in the decision is a challenging task (Gold & Shadlen, 

2007). To do so in a laboratory setup, we simulate complex reality using simple 

tasks involving controlled stimuli, record motor outputs, and record neural 

signals. 
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Figure 1.2. Taxonomy of processes in perceptual decision-making. Perceptual decision-

making processes can be categorized into core decision-making process such as sensory 

evidence accumulation and secondary decision-making process that can influence the decision 

making process such as attention, reward, and effort. Cognitive processes involved in decision 

formation are collinear and computed in parallel (Modified from Hebart, 2014). 

 

1.2 Tasks in the study of perceptual decision-making: 

Several tasks that allow controlled experimental manipulation were developed to 

study perceptual decision-making (Gold & Shadlen, 2007; Heekeren, 2008). 

Such tasks share their ability to test a subject’s performance with regard to 

accuracy and reaction time. The tasks used in the study of perceptual decisions 

are often visual tasks. In the visual domain, popular tasks are random dot motion 

(RDM) (Newsome & Pare, 1988) or feature distinction tasks involving faces and 

houses (Heekeren et al., 2004). One of the most successful tasks in the 

perceptual decision-making literature is the random dot motion (RDM) task 

(Newsome & Pare, 1988). In the RDM the subjects view a cloud of moving dots 
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which can move to the right or the left (Figure 1.3A). Typically, a few dots 

move in the same direction from one frame to the next while the rest serve as 

noise. If for example, ninety percent of the dots moved to the right the trial is 

considered to have high coherency. If sixty percent of the dots moved to the 

right, the trial has low coherency. Subjects are required to report the direction of 

motion. The reason for the test’s popularity is that  motion is a well-studied 

function of the visual system. Also, the neural basis of motion detection has 

been well characterized in primate and human studies. Moreover, the duration of 

the stimuli can be varied. This allows one to test free-response paradigms 

(reaction time paradigms) that study accuracy-speed tradeoffs, as well as 

delayed paradigms that target the role of working memory in perceptual 

decision-making.  

On the other hand, there are fewer tasks available to test other sensory 

modalities, i.e. somatosensory (Romo, 1998), olfactory (Uchida & Mainen, 

2003) and auditory modalities (Binder, 2004). In the Binder study, the auditory 

task was a syllable detection task. The subjects had to press a button indicating 

whether a syllable had been presented first or second. As such, this task is not 

ideal for specifically studying sensory evidence accumulation. Recently, an 

accumulator model, auditory two-alternative forced-choice task was developed 

to study the ability of rats to accumulate sensory evidence (Brunton, 2013) 

(Figure 1.3B).  The rats were trained to fixate their head, during which time 

spatially segregated trains of clicks drawn from a Poisson distribution were 
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presented discretely over time and space. The clicks were presented when the 

rats fixated. When the clicks stopped, the rats were trained to turn towards the 

side from which the most clicks had been presented after variable delay period. 

Afterward, the rats were rewarded for correct decisions. Fitting the rats’ 

behavioral data to a descriptive model showed that the rats were able to 

accumulate sensory evidence and use all the information presented over the 

duration of the stimulus to form the decision. Rats were not impulsive or 

forgetful; they did not rely on early or late trains of clicks to form the decision 

but used information presented over the duration of the entire trial. Thus, the 

study concluded that the rats used an accumulation strategy to form the decision 

similar to human subjects tested using the same task. This task is relevant for the 

current manuscript for the following reasons: (1) It is transferable to different 

species, which allow one to test non-human primates and humans. (2) It is easily 

performed and can be used to test patients. (3) It allows the fitting of behavioral 

data to descriptive models that has the potential to provide insights into the 

accumulation process dynamics on a behavioral and neural level (Brunton, 

2013). Therefore, we adopted this task for all the empirical studies describe 

below and implemented a visual variant of the task. A detailed description of the 

stimuli and the task is provided in Chapter 5, which discusses empirical studies. 
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Figure 1.3. Tasks in the study of perceptual decision-making (A) Random dot motion 

paradigm description. A subject views a cloud of moving dots. The dots move in different 

directions with variable levels of coherency. Subjects have to decide towards which side most 

of the dots are moving. (B) The Poisson clicks task. Trains of spatially segregated clicks are 

presented to the rats once the rat fixates its head. The rat has to accumulate evidence and form 

a decision on which side there had been more clicks. The rat responds with body orientation 

and is rewarded if the decision was correct.  

 



 

10 

 

1.3 Theoretical background and models:  

In recent years, the field of perceptual decision-making benefited from the 

development of phenomenologically and biophysically plausible models of 

perceptual decision-making.  

1.3.1 Signal detection theory 

Signal detection theory (SDT) arose from research on radar during the Second 

World War. It specifies the optimal observation and decision process for 

detecting electronic signals against a background of random noise (Marcum 

1948). SDT was applied to psychophysics for situations in which the human 

observer tries to discriminate between similar signals since this is viewed as a 

problem of inference (Green & Swets, 1966; Macmillan & Creelman, 2005). 

SDT introduced the analytical technique referred to as the receiver operating 

characteristic (ROC). ROC is a graphical technique that allows the measurement 

of two independent aspects of detection performance: (1) the decision criterion 

that represents the location of the observer’s cut-off point. (2) The observer’s 

ability to discriminate between signal-plus-noise and noise alone referred to as 

observer’s sensitivity. In a ‘yes-no’ paradigm, the measure of discrimination 

performance or observer’s sensitivity was denoted d’ (d prime), which is defined 

as the difference between the means of two implicit, overlapping, normal 

(Gaussian) functions of equal variance for signal (A) and noise (B). The 
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separation between these two distributions indicates the sensitivity to 

discriminate A from B (Green & Swets, 1966).   

d’= P(s/A)-P(s/B) 

d’ is the d prime (sensitivity measure), s is sensory evidence, P is probability 

density function. 

 In two-alternative forced-choice paradigms (2AFC), d prime can be calculated 

from the percentage correctly identified (percent correct) (Green & Swets, 1966; 

Macmillan & Creelman, 2005).  

d’= √2. z(pc) 

where z(pc) is the z-score transformation of percent correct.  

However, SDT fails to capture the development of sensory evidence towards a 

decision over time. Therefore, SDT is limited to measures of performance but 

cannot account for reaction time behavior (Gold & Shadlen, 2007). To address 

the temporal limitations of SDT, psychologists benefited from sequential 

probability ratio theory (Figure 1.4).  
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Figure 1.4. Signal detection theory framework. Curves represent probability density 

functions of sensory evidence for signal A, or noise B. The less overlap between the two 

probability density functions, the easier the discrimination. The subject has to infer the 

probability of the stimulus given the sensory evidence (S). The subject places a decision 

criterion (C) along the evidence axis. The decision is A if S>C.  

 

1.3.2 Sequential probability ratio theory (SPRT): 

Sequential probability ratio theory (SPRT) was developed as a classified 

military project by Abraham Wald in the mid-1940s. A major motivation for its 

development was to test whether the military equipment would satisfy a certain 

quality criterion.  The advantage of the theorem application is that the sampling 

number does not have to be predetermined before testing the hypothesis, 

allowing the testing process to be terminated once a criterion is met. This 

reduces the time required for testing and makes it possible to include “time” as a 

dimension of the testing process.  This characteristic motivated psychologists to 

implement SPRT in the field of perceptual decision-making. Models based on 

assumptions of SPRT were referred to as sequential sampling decision-making 

(SSDM) models. SSDMs have been implemented in the field of mathematical 

psychology since the 1960s (Stone, 1960). All models assume that evidence 
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gradually accumulates and that a decision is made whenever the evidence 

reaches a threshold (e.g., the diffusion model, (Ratcliff, 1978); and the linear 

ballistic accumulator model [LBA], (Heathcote & Love, 2012). However, the 

models differ according to whether there are one or two boundaries, and whether 

the boundaries are independent, i.e. whether they are assumed to be leaky or 

sticky. (e.g., (Ratcliff & Smith, 2004; Teodorescu & Usher, 2013). Such models 

have three central parameters: the drift rate, a measure of how fast evidence 

accumulates, a threshold that measures how much evidence needs to accumulate 

before a decision is made, and non-decision time, which is time taken up by 

processes not related to the decision-making process, e.g., the time needed to 

push a response button (Heathcote, Wagenmakers, & Brown, 2014). The first 

models of decision-making in humans or animals were accumulator models, 

often referred to as race models. In these models, evidence accumulates 

separately for each possible outcome. However, race models were not able to 

explain the response times for free-response paradigms, partially because the 

race models posit that there is no interaction between the different accumulators 

for the different options (Forstmann, Ratcliff, & Wagenmakers, 2016). These 

inconsistencies led to wider acceptance of Ratcliff’s drift-diffusion model 

(DDM) (Ratcliff, 1978). In the DDM the accumulation process follows a Wiener 

process with two absorbing boundaries. Importantly, the DDM successfully 

captured two key aspects of the behavioral data; the shape of response time 

distributions and the covariation of mean response times and response accuracy 
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with task difficulty (Ratcliff & McKoonn, 2008). DDM was developed further 

by adding different parameters. Among later iterations were the leaky competing 

accumulator models (LCA). The LCA were proposed to correspond better with 

neural data as suggested by (Usher & McClelland, 2001). In the LCA a ‘leaky’ 

parameter was introduced which represents a decay to baseline when new 

evidence input is lacking. The ‘competition’ means that evidence for one 

variable can reduce the evidence for other variables (Figure 1.5). 

 

Figure 1.5. Sequential models. Decision boundaries A in red, B in blue. Thick black line is 

decision variable (A) Race models assumes independent boundaries. (B) Drift-diffusion 

models assume two sticky boundaries; once threshold is met a decision is reached. (C) Leaky 

competing accumulator models boundaries are not sticky; the decision could change even 

after a threshold had been reached. 

 

1.3.3 Biophysically plausible models: integrate-and-fire attractor models. 

Previously discussed abstract, mathematical ‘phenomenological’ models 

provided a rich theoretical, descriptive background of processes involved in 

forming perceptual decisions. However, sequential sampling decision-making 
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did not provide details on the cellular, or network dynamics involved in 

decision-making. Thus, biophysically plausible models were developed to 

bridge the gap between the descriptive models, behavioral data, and the neural 

code underlying decision-making. Recently, biophysically driven network 

models have been developed and applied to various experimental paradigms, 

including perceptual tasks that involve both decision-making and working 

memory, action selection and preparation, and metacognition (Rolls & Deco, 

2010; Wang, 2002, 2008). Such models share similar basic assumptions: (1) 

‘‘Attractor states’’ which is a mathematical term referring to synaptic excitation 

that is sufficiently strong to generate stable steady states in neural populations 

representing categorical choices, (2) Reverberating excitation that gives rise to 

long ramping neural activity over time allowing the network to have a slow 

transient dynamics providing a neural mechanism of information accumulation, 

(3) Feedback inhibition that provides competitive dynamics underlying the 

formation of a categorical choice, and (4) Highly irregular spiking activity of 

neurons that makes it possible to capture neural dynamic underlying generating 

stochastic choice behavior (Wang, 2008). The “integrate-and-fire” attractor 

model was further implemented to explain behavioral and neural data in 

perceptual decision-making paradigms (Deco & Rolls, 2006; Rolls & Deco, 

2010) (Figure 1.6). 
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Figure 1.6. Architecture of the integrate-and-fire attractor model decision network. The 

network starts with spontaneous activity. High firing in pool DA represents decision A and 

high firing in pool DB represents decision B. Pool DA receives sensory input λA and pool DB 

receives input λB. Sensory input biases the attractor networks, which have an internal 

feedback produced by recurrent excitatory connections (w+). Pools DA, DB compete through 

inhibitory interneurons (w-). Noise in the network is the result of neurons randomly spiking. 

Noise makes the decision probabilistic (Insabato et al., 2010).  

 

1.4  Bridging the gap between neural processes and behavioral outcome: 

Previously described abstract and biophysically plausible models represent an 

important attempt to bridge the gap between the neural process and the observed 

behavioral outcome. Such models help translate behavioral outputs related to 

accuracy and reaction times into cognitive processes (Ratcliff & McKoonn, 

2008). In 1996, Hanes and Schall showed that the activity in single cells in the 

rhesus monkey motor cortex represented a specific link between the movement 

initiated and the activity of those neurons and they evaluated a model to describe 

the neural processes underlying reaction time behavior (Hanes & Schall, 1996). 

This was possibly one of the first attempts to explain the underlying neural 

processes involved in developing overt behavioral output with the help of 

descriptive models, although there had been earlier attempts (Newsome, Britten, 

& Movshon, 1989). One finding from that the Hanes and Schall study was that 



 

17 

 

movement occurred if the firing rate of the recorded neurons reached a threshold 

and remained at that threshold. This finding encouraged researchers to apply the 

principles of the drift-diffusion model (DDM) in order to understand the 

underlying neural processes of perceptual decision-making. The DDM proposes 

that evidence accumulates over time until a threshold is met. Shadlen and Gold 

in 2000 were able to show that the firing rate of single cells in decision-related 

areas reach a maximum and, as such, mimics the expectations of the DDM that 

sensory evidence accumulates towards a threshold. 

1.5 Neural correlates of sensory evidence accumulation in non-human 

primates:   

Electrophysiology studies investigating perceptual decision-making in primates 

suggest that the lateral intraparietal (LIP) region is a strong candidate for coding 

sensory evidence accumulation. LIP is defined as parietal region that projects to 

brain structures involved in the control of eye movements (Andersen, Asanuma, 

Essick, & Siegel, 1990). LIP receives input from the visual areas and the 

pulvinar, and its neurons can maintain activity for durations up to seconds when 

an animal is trained to withhold a saccade to a target (Gnadt & Andersen, 1988). 

A variant of random dot motion (RDM) with delayed saccade was tested in 

monkeys, and recordings from LIP showed that neural activity signaled the 

monkeys’ choice (Gold & Shadlen, 2007), i.e. the neurons signaled the intended 

saccade. Moreover, MT activity showed constant firing rates over time while 
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firing rate in LIP increased with time. Furthermore, activity in the LIP was 

dynamically modulated by choice difficulty as predicted by the DDM (Roitman 

& Shadlen, 2002). Additionally, electrical microstimulation of LIP led to a 

systematic bias towards ipsilesional choices but did not lead to saccade 

initiation, which suggests that activity in LIP is not motor-related (Hanks, 

Ditterich, & Shadlen, 2006). However, the role of LIP in the accumulation of 

sensory evidence is still under debate. It was recently shown that LIP activity 

correlates to evidence accumulation but has no causal contribution in the 

accumulation process once inactivated; suggesting a role of LIP in secondary 

decision-making processes (Katz et al., 2016). On the other hand, prefrontal 

cortex (Hunt et al., 2012) including frontal eye fields (FEF; (Kim & Shadlen, 

1999)), striatum (Ding & Gold, 2012), and superior colliculus (Horwitz & 

Newsome, 1999) exhibited activity that correlated with sensory evidence 

accumulation. However, it is hard to investigate auditory perceptual decision-

making in monkeys (Gold & Shadlen, 2007). A study investigating sound 

discrimination in rhesus monkeys found that activity in prefrontal regions was 

modulated by the monkey’s choice, and activity in the anterior superior temporal 

gyrus reflected representations of sensory evidence (Tsunada, Lee, & Cohen, 

2011). In the somatosensory domain, a study investigating the ability of 

monkeys to discriminate vibrotactile frequencies identified neural correlates of 

somatosensory evidence accumulation in prefrontal regions (Romo, 1998).  
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1.6 Sensory evidence accumulation: signals and task difficulty 

In studies of the neural correlates of sensory evidence accumulation using single 

unit recordings it was observed that neural activity reached threshold earlier in 

easy trials than in hard trials (Kim and Shadlen 1999). However, it remains 

debatable whether easy or hard trials are better suited for investigating neural 

correlates of sensory evidence accumulation. Simulations of neural activity from 

“integrate-and-fire” attractor models provide various explanations as to why 

neural activity during easy trials would be related to sensory evidence 

accumulation (Rolls, Grabenhorst, & Deco, 2010): (1) the network falls into its 

decision attractor faster on easy decisions, (2) the mean firing rate of a network 

that has settled into the correct decision attractor is higher with easy decisions 

compared to hard ones, or (3) the variability of the firing rate is greater with 

hard trials, suggesting that the network might have not even reached the attractor 

state in those trials. Based on the observations made by IFA one can conclude 

that neural signal during easy trials reflect sensory evidence accumulation.   
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1.7 Blood oxygen level dependent signal 

In electrophysiology, one can investigate the minute dynamics of recorded 

signals in fine-tuned temporal and spatial resolution. In contrast, functional 

magnetic resonance imaging (fMRI) allows one to visualize brain activity in 

human beings while they perform tasks but doesn’t exhibit fine-tuned temporal 

and spatial resolution (Logothetis, 2008). Neuronal activity induces 

hemodynamic changes via feed-forward neurovascular coupling and causes 

changes in blood inflow. Changes in blood inflow lead to changes in blood 

outflow, blood volume and deoxyhemoglobin content. Changes in blood volume 

and deoxyhemoglobin content are then visualized by the blood oxygen level 

dependent (BOLD) response (Havlicek et al., 2015) (Figure 1.7). Thus, it is 

challenging to infer the underlying neural processes of sensory evidence 

accumulation using the BOLD signal.  
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Figure 1.7. Schematic illustration of the neuronal activity and BOLD signal relationship. 

Neural activity (1) evokes hemodynamic changes via feed-forward neurovascular coupling (2) 

and causes changes in blood inflow. Changes in blood inflow lead to changes in blood 

outflow, blood volume, and deoxyhemoglobin content (3). Changes in blood volume and 

deoxyhemoglobin content are seen in the BOLD signal (4). Modified  from (Havlicek et al., 

2015). 
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1.8 Neural correlates of sensory evidence accumulation from human fMRI: 

As discussed in the earlier chapter, the firing characteristics of the neural 

population involved in sensory evidence accumulation are: (1) the threshold was 

met faster with easy decisions compared to hard decisions, and (2) the ramp-up 

of neural activity continued until a decision was reported. However, 

understanding of the BOLD responses related to the neural activity of sensory 

evidence accumulation is challenging due to the subtle nature of the BOLD 

signal (check previous chapter). Therefore, trying to understand BOLD signal 

related to sensory evidence accumulation gave rise to two schools of thought in 

the neuroimaging literature. The first of these suggests that easy trials will result 

in a stronger BOLD signal in accumulator regions (Filimon, 2013; Hebart, 

Donner, & Haynes, 2012; Heekeren, 2004; Philiastides & Sajda, 2007; Rolls et 

al., 2010), while the second suggests that hard trials will result in a stronger 

BOLD signal in accumulator regions (Ho & Brown, 2009; Liu & Pleskac, 2011) 

(Figure 1.8). However, it seems the field is agreeing on easy trials to be more 

suitable for investigating neural correlates of evidence accumulation 

(Forstmann, Ratcliff, & Wagenmakers, 2016). 
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Figure 1.8. BOLD signal related to difficulty. (A) Electrophysiology studies showed that 

maximum neural activity is reached later with the difficult task (Gold & Shadlen, 2007). (B) 

Drift-diffusion models show that the threshold is met faster in easy trials (Forstmann, Ratcliff, 

& Wagenmakers, 2016). (C) Signal of sensory evidence accumulation correlates with 

stronger BOLD signal in easy trials (Rolls et al., 2010). 

 

One of the first studies that applied assumptions from the accumulator models to 

investigate sensory evidence accumulation using fMRI reported a stronger 

BOLD signal in the dorsolateral prefrontal cortex (DLPFC) with easier decisions 

(Heekeren, 2004). In their study, Heekeren et al. proposed that the signal in the 

DLPFC represented a general mechanism for perceptual decision-making. Using 

effective connectivity analysis they showed that the DLPFC integrates 

information from early sensory cortices. Also, the lateral occipital cortex 

(Christophel, Hebart, & Haynes, 2012; Philiastides & Sajda, 2007), insular 

cortex (Ho & Brown, 2009), frontal eye field (FEF), and intraparietal sulcus 

(IPL) (Liu & Pleskac, 2011) were claimed to show accumulation signals.  In 

light of the various regions found to correlate with evidence accumulation, it 
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seems reasonable to contemplate upon reasons for this discrepancy in the 

literature. One of the reasons proposed was that different studies used different 

tasks, and thus the sensory evidence accumulation signal is task-dependent, (ref. 

previous chapter). According to another reason, the identified sensory evidence 

signal could depend on the motor modality tested. One study investigated how 

embodied the signal of sensory evidence accumulation was by asking subjects to 

respond to a face vs house discrimination task using either the eyes or the hands. 

It found that when eye and hand motor preparation is disentangled from 

perceptual decisions, the parietal regions are not involved in accumulating 

sensory evidence. Rather increased effective connectivity between inferior 

frontal gyrus and sensory regions represents the evidence (Filimon, 2013). In a 

third proposal, the use of different response protocols, i.e. delay response versus 

free-response could be responsible for the discrepancy. A recent study 

comparing signals of evidence accumulation in delayed tasks and the free-

response paradigm hypothesized that signals of evidence accumulation would be 

stronger for hard decisions compared to easy decisions in the free-response 

paradigm, while this would be reversed in the delayed paradigm, i.e. the signals 

would be stronger with easy decisions. They found that visual evidence 

accumulation is probably implemented in frontal and insular regions while the 

choice maintenance regions span frontal, temporal, and occipital cortices  

(Pedersen, 2015). Another reason is that decision signal is sensory modality 

dependent. However, there are fewer studies available that investigated the 
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sensory evidence accumulation signature for sensory modalities other than the 

visual modality. In an auditory fMRI study, Binder et al (2004) used fMRI to 

scan human participants while they performed an auditory discrimination task. 

Words were masked by varying level of noise resulting in different degrees of 

difficulty. Accuracy and reaction times were used to investigate the behavior 

and decision components of the auditory perceptual system. They found that the 

anterior superior temporal gyrus was involved in accuracy, while the inferior 

frontal gyrus was involved in response times. They interpreted the results as 

indicating a role of the superior temporal gyrus in object identification; thus 

involved in forming the decision, with a role of inferior frontal gyrus in the 

motor preparation of the speech response. In another study using magnetic 

encephalography participants were asked to report if two consecutive syllables 

were different and to identify the location of syllables (Kaiser & Lutzenberger, 

2004). Kaiser et al found that activity in the gamma frequency band in the left 

inferior frontal gyrus was higher for the discrimination part and activity in the 

inferior parietal lobule was higher for the spatial part of the task. Importantly, 

the level of activity was higher for easy tasks compared to harder ones (Kaiser & 

Lutzenberger, 2004). However, the stimuli used in those previous studies were 

not explicitly designed to study auditory sensory evidence accumulation per se. 

In the somatosensory domain, inspired by the vibrotactile frequency 

discrimination task used to investigate somatosensory perceptual decision-
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making in monkeys, Pleger et al. found correlates of tactile decision-making in 

the dorsolateral prefrontal cortex (Pleger et al., 2006). 

Table 1.1 Neuroimaging studies of sensory evidence accumulation 

Study Task Sensory 

modality 

Response 

modality 

Protocol Number 

of 

subjects 

Regions  Statistical 

threshold 

(Heekeren, 

2004) 

Face vs house Visual Manual Delay 12 Dorsolateral 

prefrontal 

cortex 

p<0.001 

uncorrected 

(Philiastides & 

Sajda, 2007) 

Face vs cars, 

color 

discrimination 

Visual  Manual Delay 12 Occipital P<0.05 FDR 

corrected 

(Ho & Brown, 

2009) 

RDM Visual Manual 

Saccade 

Free  12 Insula P<0.05 

FDR corrected 

(Liu & Pleskac, 

2011) 

RDM Visual Manual  

Saccade 

Delay 9 Frontal eye 

field, 

intraparietal 

sulcus, insula, 

and inferior 

frontal sulcus 

P<0.005 

FWE corrected 

(Filimon, 2013) Face vs house Visual Manual 

Saccade 

Delay 19 Inferior frontal 

cortex 

P<0.001 

FWE 

corrected 

(Pedersen, 

Endestad, & 

Biele, 2015) 

Face vs house Visual Manual Delay 

Free 

20 Dorsomedial 

prefrontal 

cortex, right 

inferior frontal 

gyrus and 

bilateral insula 

P<0.05 FWE 

corrected 

(Binder, 2004) Syllable 

discrimination 

Auditory Manual Delay 18 Superior 

temporal gyrus 

P<0.1 

uncorrected 

(Pleger et al., 

2006) 

Frequency 

discrimination 

Somatosensory Manual Delay 10 Dorsolateral 

prefrontal 

cortex 

p = 0.0001 

uncorrected  
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Figure 1.9. Schematic illustration showing an overview of brain regions involved in 

perceptual decision-making as identified in seminal studies. 

 

From the detailed review of neuroimaging literature, we can conclude that most 

of what we know about perceptual decision-making stems from investigations of 

visual perceptual decision-making. Thus, it is not clear how different types of 

information are accumulated: Is a region involved in the accumulation of visual 

sensory evidence expected to accumulate auditory evidence as well?  
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2. Confidence in the decision 

In the street-crossing example, we explained that it is important to evaluate how 

sure we are of our decision that it is now safe to cross the street in order to cross 

safely. Such reflection allows us to gather more information, if necessary, when 

uncertain, and to optimize the decision, thus preventing accidents in this 

example we are discussing.  

2.1 Definition of confidence in the decision 

Confidence in perceptual decision making is defined as a subjective estimate of 

the accuracy of the decision (Mamassian, 2016). As such, confidence can be 

viewed as thinking of a thinking process and thus belongs to the metacognitive 

processes (Metcalfe & Shimamura, 1994). Recent evidence suggests that 

confidence in a decision is estimated similarly across tasks (Gardelle & 

Mamassian, 2014), across sensory modalities (Gardelle, Corre, & Mamassian, 

2016) and across observers (Bahrami et al., 2010).  
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2.2 Confidence rating measures  

Investigating confidence in a decision dates back to more than a hundred of 

years. In 1885 Peirce and Jastrow asked participants to discriminate between 

pressures applied to their finger and to rate how confident they were in their 

discrimination on a four-point scale. They found that confidence rating 

correlated with pressure discriminations. Studies consistently showed 

correlations between perceptual accuracy and confidence ratings (Vickers & 

Packer, 1982, Sandberg, 2010). Since the work of Peirce and Jastrow in 1885, it 

is common to ask participants to assess their confidence in a decision on a rating 

scale. Using confidence ratings (CR) has several advantages: (1) they are easy to 

obtain after the first decision, (2) they are easy for participants to understand, 

and (3) they are easy to analyze, as it is possible to simply plot correlations 

between decision accuracy and confidence ratings (Nelson 1984). Another 

paradigm for measuring confidence is to give the participants the opportunity to 

opt-out if they are uncertain (Gherman & Philiastides, 2015; Kiani & Shadlen, 

2009). The major advantage of such a paradigm is that it is widely used to study 

confidence in animals. However, the opt-out paradigm could be viewed as a 

three-alternative forced-choice. The subject must decide if it was clearly 

stimulus A, clearly stimulus B, or somewhere between A and B. A further 

paradigm is post-decision wagering (PDW) (Persaud, McLeod, & Cowey, 

2007). In PDW, participants are asked to bet on the outcome of the decision. If 

the participant is more confident that the decision is correct, then he will bet 
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more. However, it is important and challenging to set the reward matrix in the 

proper way to reward good bets and penalize bad one (Clifford, Arabzadeh, & 

Harris, 2008). An alternative paradigm is the perceptual awareness scale (PAS) 

(Ramsøy & Overgaard, 2004). In the PAS paradigm, the participants are free to 

create their own scale to describe the quality of their experience. Interestingly, 

participants ended up using a four-point scale. Participants described scales 

differently but they agreed on a similar definition of each level of the scale 

(Sandberg, 2010). However, this paradigm is particularly prone to the subjects’ 

capability for introspection. A systematic comparison of the confidence rating 

(CR), post-decision wagering (PDW), and perceptual awareness (PAS) 

paradigms was conducted by Sandberg 2010. Sandberg compared how sensitive 

and exhaustive each of the measures was by studying the ‘zero correlation 

criterion’ and the ‘guessing criterion’ (Dienes, 1995). Results have shown PAS 

is the most exhaustive and most sensitive scale, while PDW, despite claims that 

it is most objective scale, was the worst. It was the least sensitive scale in 

variations and promoted binary decisions with respect to accuracy. CR was 

shown to be reasonably sensitive and exhaustive scale with which participants 

could rate their confidence. 
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2.3 Methods for quantifying confidence  

As described in the previous chapter, many paradigms have been developed to 

measure confidence in a decision. Here we will focus on methods proposed for 

quantifying confidence in perceptual decisions: (1) Metacognitive sensitivity, 

also known as metacognitive accuracy, type 2 sensitivity, discrimination 

reliability (2) The confidence-accuracy correlation. Both measures give insights 

to how accurately subjects rate their performance accuracy (Fleming, 2014). 

Metacognitive sensitivity can be measured based on signal detection theory 

(SDT). SDT assumes that both perceptual choices and perceptual confidence are 

based on the continuous evaluation of accumulated evidence over time in favor 

of one perceptual interpretation of a stimulus (Gold & Shadlen, 2007; Green & 

Swets, 1966; Macmillan & Creelman, 2005). One makes a categorical choice 

(e.g., “motion left” vs. “motion right”) by comparing the sensory evidence 

against a criterion, and one generates his choice-independent confidence based 

on the absolute distance of sensory evidence to this criterion (meta d`) (Figure 

1.4). It is important to distinguish between metacognitive sensitivity and 

metacognitive bias; a subject reporting high confidence all the time has a high 

metacognitive bias but no discriminability between correct and erroneous 

decisions, and thus low metacognitive sensitivity (Fleming, 2014). On the other 

hand, the confidence-accuracy correlation is easier to calculate and more 

intuitive to understand, and makes it possible to understand the development of 

conscious awareness as function of stimuli levels (Koch & Preuschoff, 2007; 
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Sandberg, 2010). However, this analysis should be approached carefully due to 

the variability in the subjects’ confidence rating (Fleming, 2014). 

2.4 The Study of confidence in animals  

It is arguably challenging to train an animal to report confidence in the decision, 

and to interpret that as a subjective rating by the animal. In an influential study, 

(Kepecs, Uchida, Zariwala, & Mainen, 2008) investigated confidence in the 

decision in rats. The rats were trained to categorize two odors A and B as well a 

range of mixtures between the two. Accuracy in categorizations increased as the 

distance of odor mixture to the stimulus category boundary increased. To 

investigate the metacognitive ability of the rats the study measured how long the 

animals were willing to wait for a reward. The longer the rat waited for reward 

meant the surer the rat was that they would get the reward, meaning the rat was 

confident that it had made a correct choice. The rats were able to be more 

confident for correct decisions in easy tasks but less so for incorrect decisions in 

the same tasks. It is easy to understand why the rat would show a higher degree 

of confidence for correct decisions in easy trials, but hard to imagine the reason 

for their behavior when they erred in easy trials. Kepecs et al (2008) proposed 

that since confidence and decision-making are probabilistic in nature, the 

probability that the rat would make an error in the easy condition is low. If the 

rat made an error in the easy condition, the probability is low for it to be 

confident.  
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In primates the opt-out paradigm is popular. The animal is given the option not 

to choose any category if it is uncertain. If the animal used the opt-out choice 

when the task was difficult, for small but sure reward, the researchers would 

assume that it had the ability to monitor its uncertainty.  A study into the 

metacognitive ability of capuchin monkeys found that they only opted-out if the 

opt-out option was rewarded regardless of the difficulty; in easy and difficult 

trials. The study, therefore, concluded that capuchin monkeys have no 

metacognitive abilities, and that it is important to determine how the animal 

should be rewarded in opt-out paradigms (Beran, Smith, Coutinho, Couchman, 

& Boomer, 2009). In a seminal study, Kiani and Shadlen (Kiani & Shadlen, 

2009) trained rhesus macaque monkey on a random dot motion task. In half of 

the trials a sure target was present that the monkey could choose for safe and 

sure reward. The monkeys opt-out (choose the sure target) more often in hard 

trials. The Kiani study therefore concluded that monkeys do have metacognitive 

abilities.   

2.5 Neural correlates of confidence in animals 

As described in a previous chapter, advances in task design have made it 

possible to study confidence in decision-making in animals. Recordings from 

animals suggest that several brain regions show neural correlates of confidence 

in the decision; the orbitofrontal cortex in rats (Kepecs et al., 2008), and the 

lateral intraparietal (LIP) cortex in rhesus macaques (Kiani & Shadlen, 2009). 
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Another study showed that pulvinar neurons reduces their activity when the 

monkey decides to opt out, suggesting its role in confidence judgment (Komura, 

Nikkuni, Hirashima, Uetake, & Miyamoto, 2013). 

2.6 Architecture of confidence forming networks 

Interestingly the neural correlates of confidence reflected the behavior of 

confidence rating of the animals. In the study by Kepecs et al the rats were most 

confident for correct decisions in easy trials and least confident for incorrect 

decisions in easy trials. Similarly, activity in the orbitofrontal cortex was highest 

with correct decisions in easy trials compared to incorrect decisions in the same 

trials (Kepecs et al., 2008). It was shown that confidence in the decision arises 

as an emergent property in an integrate-and-fire attractor network model of 

decision making (Insabato, Pannunzi, Rolls, & Deco, 2010a). Insabato et al. 

have shown that confidence in the decision is formed in a second attractor 

network benefiting from the first decision network (Figure 2.1).  

 

 



 

35 

 

 

Figure 2.1. The architecture of integrate-and-fire attractor confidence in the decision 

network. The network starts with spontaneous activity. High firing in pool DA represents 

decision A and high firing in pool DB represents decision B. Pool DA receives sensory input 

λA and pool DB receives input λB. Sensory input biases the attractor networks, which have an 

internal feedback produced by recurrent excitatory connections (w+). Pools DA, DB compete 

through inhibitory interneurons (w-). Noise in the network is the result of neurons randomly 

spiking. Noise makes the decision probabilistic. The decision-making network that sends 

output to second network. The confidence forming network benefits from the output from the 

first decision network to form confidence in the decision. C is confidence forming pool LC is 

low confidence forming pool (Insabato et al., 2010). 

 

Integrate-and-fire attractor simulations were able to fit both the behavioral and 

neural activity of confidence in decision in orbitofrontal recordings (Kepecs et 

al., 2008), LIP (Kiani & Shadlen, 2009). Rolls et al. tested predictions of the 

attractor network theory of decision-making in two fMRI investigations. They 

studied choice decision-making about the reward value and subjective 

pleasantness of thermal and olfactory stimuli (Rolls et al., 2010). They showed 

how the firing rates of the winning and losing attractors reflected the easiness of 

the decision; those of the neurons of the winning attractor increased 

approximately linearly with decision easiness while those of the neurons of the 

losing attractor decreased approximately linearly with decision easiness.  
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2.7 Neural correlates of confidence in human fMRI  

To study the phenomenon of confidence in a perceptual decision is easier in  

humans than in animals, since humans can report their confidence in the 

decision. Fleming et al. 2012 asked subjects to perform near-threshold 

perceptual judgment tasks inside the fMRI scanner (Fleming & Dolan, 2012). In 

two-thirds of the trials, the subjects rated their confidence in their decision by 

moving a cursor on a scale. In one-third of the trials, the subjects were asked not 

to reflect on their confidence but move a cursor to any region of the scale. These 

follow-up trials provided control conditions for motor and perceptual decision 

requirements. The fMRI signal in the rostrolateral prefrontal cortex (rIPFC), 

dorsal anterior cingulate, and right posterior parietal cortex increased in 

metacognitive trails compared to control trials, and the signal was stronger for 

high confidence judgments. Only the rIPFC signal predicted individual 

differences in metacognition across individuals. Transcranial magnetic 

stimulation over the dorsolateral prefrontal cortex (DLPFC) temporarily 

inactivated DLPFC and decreased metacognitive accuracy but not performance 

accuracy (Rounis, Maniscalco, Rothwell, Passingham, & Lau, 2010). Hebart et 

al. (2014) showed that activity in the ventral striatum reflected the degree of 

perceptual confidence, with activity in the ventrolateral prefrontal cortex 

reflecting the decision variable being  connected to the ventral striatum    

(Hebart, Schriever, Donner, & Haynes, 2014). Heekeren et al (2015) 

investigated the possibility that the neural signal of confidence could be task-
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independent. They tested a random dot motion task and color discrimination 

tasks and asked subjects to rate their confidence before reporting their decision. 

They used confidence rating as a parametric regressor to explain their fMRI 

signal. They found that the signal increased with subjective certainty in the right 

lingual, calcarine, and left angular gyrus, and decreased with increasing 

subjective certainty in the left lingual gyrus, right inferior parietal lobule, 

bilateral DMPFC/SMA, and left post-central gyrus (Heereman, Walter, & 

Heekeren, 2015). As such, the literature seems to agree on a role of the 

prefrontal regions in metacognitive processes such as confidence in the 

perceptual decision.    

2.8 Efforts to disentangle neural correlates of confidence in the decision from 

neural correlates of sensory evidence accumulation in humans 

One should note the presence of similarity between brain regions thought to be 

involved in the coding of the perceptual decision (see Chapter 1) and brain 

regions thought to code confidence in the decision. To disentangle the processes 

underlying confidence judgment and decision making Hilgenstock et al (2014) 

tested a grating orientation task in which subjects were required to indicate the 

orientation of tactile gratings and rate their level of confidence on a scale of 1 to 

4 during the fMRI scan (Hilgenstock, Weiss, & Witte, 2014). To identify the 

neural correlates post-confidence and the decision itself they based their 

assumptions on the two-stage dynamic signal detection model (2DSD) (Pleskac 
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& Busemeyer, 2010). The model suggests that confidence in and metacognitive 

judgment about the decision only evolve post-decision by the ongoing 

accumulation of information (Hilgenstock et al., 2014). So, based on temporal 

evolution of the signal, it is possible to separate the neural correlates of 

confidence and decision. They found that DLPFC codes post-decision 

confidence. However, a study using EEG showed that, contrary to the 

Hilgenstock proposal, confidence emerges from the decision process itself and is 

computed continuously as the process unfolds and both confidence and the 

decision engage frontal and parietal cortices (Gherman & Philiastides, 2015). 

Therefore, it is still not clear if brain regions involved in sensory evidence 

accumulation as a core decision process are also involved in confidence in the 

perceptual decision.  

2.9 Methods in investigating confidence using fMRI:  

In this chapter, we will describe the theoretical background of the methods we 

used to disentangle the neural correlates of sensory evidence accumulation as a 

core decision process from the neural correlates of confidence in the decision. 

Integrate-and-fire models were able to fit behavioral and neural data of 

confidence in decision recorded from animals (Insabato., 2010). By convolving 

simulations of neuronal firing rate with hemodynamic response functions, it was 

possible to construct predictors of the BOLD signal behavior about confidence 

in the decision (Rolls et al., 2010). Integrate-and-fire attractor models propose 
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that confidence develops as a second layer over the decision forming nodes in an 

attractor network providing predictions of behavior and neural correlates of the 

perceptual decision and the confidence in the perceptual decision (Insabato., 

2010). Critically, It was determined that the BOLD response was a monotonous 

function of task difficulty (Rolls et al., 2010). Based on IFA BOLD signal 

predictions, we proposed two criteria for a region that qualified as being 

involved in confidence in decision-making. Number one was the difference of 

signal between correct trials and error trials. Number two, was that the signal 

exhibit an interaction between correctness and task difficulty that mimics 

confidence-rating behavior. In addition we added a criterion that is not based on 

integrate-and-fire attractor model assumptions. This third criterion, not based on 

the IFA assumptions, is that the confidence rating should modulate the signal at 

the same level of accuracy and difficulty. 
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3. Spatial decision-making: 

A key evolutionary survival asset is the ability of organisms to navigate through 

space, relying mainly on visual and auditory information to decide between 

alternative spatial choices (Pearson, Watson, & Platt, 2014). Despite the 

importance of an understanding of how the brain uses auditory information to 

form spatial decisions, spatial decision-making literature mainly focused on the 

visual decision-making (Heekeren, 2008).  

3.1 Anatomy of sound localization 

Studies of static sound source localization in animals have shown that the 

location of a sound source can be indicated by interaural time and/or intensity 

differences (ITD and IID respectively) (Phillips, Quinlan, & Dingle, 2012). 

Electrophysiology recordings studying interaural time difference have shown 

that the auditory information from left and right auditory afferents meets early in 

the auditory system, at the level of the superior olivary complex in the 

brainstem, and then projects to the medial geniculate nucleus of the thalamus via 

the inferior colliculus in the midbrain (Irvine, 1986). The auditory cortex is 

organized into four hierarchical levels: Heschal gyrus (core), belt, parabelt, and 

the projections of the parabelt regions, with information flowing from core to 

belt to parabelt (Kaas & Hackett, 2000). Efferent connections from the parabelt 

are arranged in two functional circuits. Relevant to the current study is the 

anterolateral parabelt, which sends projections to the inferior parietal lobule, 
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dorsolateral frontal cortex, frontal eye fields and the areas of the prefrontal 

cortex involved in spatial processing (Romanski et al., 1999). 

3.2 Functional anatomy of sound localization from human neuroimaging 

studies  

In humans, fMRI studies showed that sound localization in the horizontal plane 

depended on the interaural time difference that elicited activity at the level of the 

midbrain (Thompson et al., 2006). In a study investigating auditory motion 

detection, it was shown that the lateral parietal cortex, lateral frontal cortex, 

anterior midline and anterior insular cortex have signals correlated with moving 

auditory stimuli (Lewis, Beauchamp, & DeYoe, 2000). Their analysis depended 

on a comparison of task activation to resting conditions and was thus not aimed 

at investigating the properties of sound motion detection. Warren et al (2002) 

investigated sound motion with fMRI by contrasting different aspects of the 

auditory motion itself against each other. Their results support the notion of a 

role of the posterior temporal-parietal regions in sound localization processing 

(Warren, Zielinski, Green, Rauschecker, & Griffiths, 2002). Maeder and 

associates investigated sound localization using interaural time difference and 

sound recognition tasks in fMRI (Maeder et al., 2001). They found that the 

following regions were more strongly activated by sound recognition than by 

sound localization: bilateral middle temporal, the posterior part of the inferior 

frontal gyrus on the left side, inferoposterior part of the precuneus bilaterally. 
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During the localization task, they found activity in the inferior parietal lobule on 

both sides, but predominantly on the right, in the premotor cortex on both sides, 

in the ventral prefrontal cortex on the right and in the anterior part of the 

cingulate gyrus. Evidence from functional magnetic resonance imaging, 

electrophysiology studies, and positron emission graphic studies suggest that the 

posterior part of the superior temporal gyrus and inferior parietal lobule are 

involved in the localization of sound in space, and spatial orientation (Aron, 

Robbins, & Poldrack, 2004). Interestingly, it has been consistently shown with 

fMRI that the right inferior parietal lobule responds to both contralateral and 

ipsilateral stimuli, while the left inferior parietal lobule responds to contralateral 

stimuli (Griffiths, 1998; Maeder et al., 2001). 

3.3 Functional anatomy of visual-spatial processes  

In cognitive neuroscience, the visual system has been more extensively studied 

than other sensory modalities. Amassing proof suggests the presence of two 

pathways in the visual system, a ventral stream projecting from the striate cortex 

to inferior temporal regions which are involved in the identification of objects, 

and a dorsal stream that projects from the striate cortex to posterior parietal 

regions mediating sensorimotor transformations for visual guided choices 

(Goodale & Milner, 1992; Schneider, 1969). The dorsal stream was extended to 

include prefrontal regions with lesions affecting the dorsal stream lead to a 

specific deficit in spatial vision leading to considering the dorsal stream as the 
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‘where’ pathways (Macko et al., 1982). However, recent anatomical and 

functional evidence in primates indicates that the dorsal stream actually gives 

rise to three distinct, major pathways; a parietal prefrontal pathway primarily 

supporting spatial memory, a parietal premotor pathway involved in visually 

guided action, and a parietal medial temporal pathway supporting spatial 

navigation (Kravitz, 2011). Evidence from fMRI, MEG and lesion studies 

suggests that the posterior parietal cortex is an integral part of the circuit for 

visual spatial decisions (Andersen, Andersen, Hwang, & Hauschild, 2014; Bray, 

Arnold, Iaria, & MacQueen, 2013; Silver & Kastner, 2009; Vesia & Crawford, 

2012), and suggests an asymmetry between the two hemispheres with the right 

hemisphere being consistently reported to be involved in spatial visual 

processing (Corbetta & Shulman, 2011; Heilman, 1980; Silver & Kastner, 2009; 

Woldorff et al., 1999). 

3.4 Lateralization of spatial processing as a multimodal property of the brain 

One can conclude from the previous two chapters that there is converging 

evidence pointing to the hemispheric specialization of spatial processing as a 

multimodal property of the brain (Fritz, Elhilali, David, & Shamma, 2007). 

Insights into lateralization of brain processes were gained using invasive 

techniques such as the Wada test (1960) and callosotomy (Gazzaniga, 2005). 

However, those invasive techniques are not suitable for testing healthy subjects. 

With the advent of fMRI, it was possible to investigate the lateralization of brain 
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functions in healthy human subjects and to replace the Wada test for establishing 

hemisphere dominance preoperatively (2016). However, the conclusions about 

hemispheric asymmetries drawn from neuroimaging studies have been criticized 

(Nagata, Uchimura, Hirakawa, & Kuratsu, 2001). Early studies were not based 

on direct statistical comparisons of the magnitude of activation in the two 

hemispheres, so their results were influenced by statistical thresholding 

(Corbetta & Shulman, 2011). Evaluating hemispheric lateralization on the basis 

of fMRI data is problematic (Jansen et al., 2006). For fMRI to be a useful 

marker of brain organization, the analysis approach has to be robust and 

reproducible (Nagata et al., 2001). One way to calculate hemisphere 

lateralization is by calculating a laterality index (LI). The estimation of LI is 

often based on the extent of the activated brain region, i.e., the number of active 

voxels, or the magnitude of the fMRI signal change. Comparing which approach 

yielded the most robust and reproducible effect found that neither LIs based on 

active voxel counts at one single fixed statistical threshold nor LIs based on 

unthresholded signal intensity were robust or reproducible. The best approach is 

to use an LI based on thresholded signal intensity (Jansen et al., 2006).   

3.5 Hemispatial neglect syndrome as a model for studying causal contribution 

of lesions in spatial decision-making deficits 

The hemispatial neglect syndrome is defined as failure to report, respond, or 

orient to stimuli presented to the side opposite the damaged hemisphere that 
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cannot be solely attributed to primary motor or sensory deficits (Heilman & 

Valenstein, 1972). It is considered a frequent and debilitating outcome of lesions 

affecting both hemispheres (Kerkhoff, 2001). It affects up to two-thirds of 

patients with acute right hemisphere stroke (Parton, Malhotra, & Husain, 2004). 

Typically, neglect has been associated with lesions in the right posterior parietal 

cortex, particularly the inferior parietal lobe (IPL) or the temporoparietal 

junction (TPJ) (Vallar & Perani, 1986). However, other brain regions have been 

reported to lead to neglect. The right superior temporal gyrus (Karnath, 2001), 

the right frontal lobe (Husain & Kennard, 1996), subcortical lesions (involving 

the thalamus and basal ganglia) via indirect effects on connected cortical regions 

(Hillis, 2005; Hillis et al., 2002), and white matter pathways linking posterior 

cortical and frontal regions could be involved in individuals with neglect 

(Bartolomeo, Thiebaut De Schotten, & Doricchi, 2007). Despite the 

heterogeneity of lesions causing neglect, it has been consistently shown that 

neglect of the left side after a right hemisphere lesion is more frequent and 

severe than neglect of the right side after a left hemisphere lesion (Driver & 

Mattingley, 1998) 

3.6 Neglect and extinction 

Extinction is defined as an impairment of the ability to detect contralesional 

stimuli in the presence of a competing ipsilesional stimulus (Vossel et al., 2011). 

Extinction is often considered as part of neglect (Parton et al., 2004), however, it 
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is debatable whether neglect and extinction share similar neural mechanisms. It 

was shown that extinction can be distinguished from neglect behaviorally as 

well as at the neuroanatomical level (Vossel et al., 2011). It has been suggested 

that extinction results from a lesion to the temporoparietal junction (Karnath, 

Fruhmann Berger, Küker, & Rorden, 2004) or to subcortical regions (Vallar & 

Perani, 1986). An investigation into the degree of correlation between extinction 

and neglect in patients with right hemispheric lesions found that extinction and 

neglect occurred together in a subset of patients but were also observed 

independently (Vossel et al., 2011). Lesions within the right inferior parietal 

cortex were significantly associated with the severity of visual extinction, while 

lesions in frontoparietal regions correlated with the severity of visuospatial 

neglect (Vossel et al., 2011) 

3.7 Deficits in sound localization from the literature on neglect 

In contrast to lesions in the visual or the somatosensory system, lesions in the 

auditory cortices do not seem to cause specific contralesional deficits 

(Gutschalk, 2012). A study in patients with lesions in the right and left 

hemispheres performing a dichotic listening test with interaural time differences 

found a hemispheric asymmetry in auditory lateralization, but directional 

hearing was only impaired by lesions involving the right hemisphere (Bisiach, 

Cornacchia, Sterzi, & Vallar, 1984). Since the lesions spanned different brain 

regions it was not clear if the impairment was due to lesions involving the 
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primary auditory cortex or to those outside of it. A study of sound localization 

found that lesions in the primary auditory cortex had no effect on sound 

localization. However, a lesion in the right superior temporal gyrus located 

outside the primary auditory cortex was associated with disturbance of sound 

localization on both sides of space (Zatorre & Penhune, 2001). A more recent 

study on auditory localization compared the effect of lesions located in the 

primary auditory cortex to those located outside the auditory cortex in patients 

following a middle cerebral artery infarct. The authors found no effect of lesions 

in the primary auditory cortex itself, while lesions outside the primary auditory 

cortex were seen to have an effect, particularly when they involved the right 

hemisphere (Gutschalk, 2012). This converging evidence from literature on 

neglect and on neuroimaging suggests a role of the temporal and parietal regions 

in auditory spatial processing (Arnott, 2004, 2005; Barrett, 2010).   

3.8 Theories in neglect 

Several theories have been proposed to explain the phenomenon of neglect. 

Among these are the following: (1) Representational theories postulate a 

memory component resulting in a difficulty to mentally represent the 

contralesional space (Bisiach and Luzzatti, 1978, Bisiach et al., 1981, 

Bartolomeo et al., 1994). (2) Transformational theories hypothesize that neglect 

results as a failure to map multisensory inputs into motor commands (Karnath, 

1997, Colby, 1998) (3) Attentional theories propose that neglect is due to a 
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deficit in the allocation of attentional resources of the brain (Kinsbourne, 1970). 

A striking phenomenon of neglect is that the neuropsychological deficit 

characterized by ipsilesional bias is stronger and more frequent after lesions 

affecting the right hemisphere (Driver & Mattingley, 1998). Two theories have 

been proposed to explain this asymmetry: (1) the orientation bias model 

hypothesizes that attention is shifted toward the contralateral side of space via 

inhibition of the ipsilateral hemisphere (Kinsbourne, 1970). Evidence supporting 

this model is provided mainly by transcranial magnetic stimulation studies 

inducing “virtual lesions” in parietal areas while measuring attentional 

performance (Hilgetag et al., 2001, Oliveri et al., 2001, Koch et al., 2008). (2) 

the right-hemisphere dominance model states that the left hemisphere represents 

the right side of space, whereas the right hemisphere represents both sides 

(Heilman, 1980). This asymmetry is predicted by recent anatomical evidence in 

humans showing that the superior longitudinal fasciculus, which connects 

frontal and parietal cortices, has a right-hemisphere dominance with a positive 

correlation between performance during detection of visual targets in left and 

right hemifield and the volume of white matter tracts in the right hemisphere 

(Thiebaut de Schotten et al., 2011). 
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3.9 Causality and the study of lesions 

The brain is extremely complex. Most of what we know about it arose from 

techniques that differ in spatial and temporal resolutions. Functional MRI is 

usually assumed to establish a correlation between brain metabolic changes and 

behavioral output (Logothetis, 2008). Both critics and users of functional 

neuroimaging deny that it can establish causality. Causality means that a 

phenomenon A arises due to activity in region B. If region B were to be ablated, 

then phenomenon A would be extinct. However, functional neuroimaging can 

provide hints about causality, e.g., viewing a moving cloud of dots will lead to 

activity in the visual cortex. Nevertheless, supplementing functional 

neuroimaging studies with techniques that can manipulate neural activity is of 

great interest to neuroscience. In the study of causality it was traditionally 

fruitful to observe the effect of lesions on behavior. The, perhaps, first report 

was by Jean Cesar Legallios in 1812 who identified the role of the medulla in 

respiration. Charles Bell and Franqois Magendie demonstrated in 1822 that the 

spinal roots in dogs were anatomically and functionally distinct; sensory 

functions are ventral and motor functions are dorsal. Pierre Paul Broca in 1863 

reported language impairments in two patients linked to the left inferior frontal 

gyrus of the brain. At about the same time that Broca and Wernicke were 

defining the importance of the left hemisphere in language production and 

comprehension, John Hughlings Jackson (1874, 1876) described what he termed 

‘‘imperceptions,’’ in which patients suffered a ‘‘loss or defect of memory for 
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persons, objects, and places.’’ and associated this with damage to the right 

hemisphere. 

3.10 Issues in the study of lesions effect on cognitive tasks 

To understand effect of lesions, patients are usually grouped either by lesion or 

by behavior (Chao & Knight, 1998). The lesion approach gives valuable 

information regarding the role of regions of interest (ROI). However, it does not 

reveal much about the subregions in the ROI, and overlooks the role of regions 

outside the ROI. In the behavioral approach, patients are grouped by their 

behavior resulting in overlapping lesions based on the behavioral deficit 

(Dronkers, 1996). This approach provides information about brain regions that 

might contribute to cognitive processes. However, for continuous data a cut-off 

must be applied, possibly leading to a loss of information about performance.   
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3.11 Voxel-based lesion-symptom mapping  

Voxel-based lesion-symptom mapping (VLSM) was introduced to investigate 

the relation between lesions and cognitive skills on a voxel-by-voxel scale 

(Bates et al., 2003). It can overcome the problems mentioned above in (Chapter 

3.10). VLSM does not require patients to be grouped either according to lesion 

or behavior, as it benefits from continuous behavioral and lesion information 

(Bates et al., 2003). Important improvements have been made on the statistical 

tests used to implement VLSM (Rorden, Karnath, & Bonilha, 2007). In this 

manuscript, we applied voxel-based lesion-symptom mapping approach to 

investigate the causal contribution of cortical and subcortical lesions in the right 

hemisphere on auditory and visual spatial perceptual decision-making.  
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4. The scope of the manuscript:  

The scope of this manuscript is to advance the knowledge of the neural 

correlates of sensory evidence accumulation in auditory and visual perceptual 

decision-making using functional magnetic resonance imaging and lesions 

study. Specifically, it investigates if the neural signature of sensory evidence 

accumulation is a modality-specific phenomenon. It also disentangles neural 

correlates of visual sensory evidence accumulation from neural correlates of  

decision-monitoring; confidence in the visual perceptual decision. Finally, it 

explores the effects of cortical and subcortical lesions in the right hemisphere on 

auditory and visual perceptual decision-making. 
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5. Empirical studies:  

In the previous chapters, we detailed the literature on perceptual decision-

making, confidence in the decision, and auditory spatial processing. We 

concluded that one does not know if there is a brain region that accumulates 

sensory evidence regardless of sensory modality, nor does one know if the 

neural correlates of sensory evidence accumulation are also the neural correlates 

of decision-monitoring, confidence in the decision or error detection. 

In the following chapters, we summarize our three studies in which we 

investigated auditory and visual perceptual decision-making in healthy 

participants and stroke patients. In the first study, we investigated the modality-

specific signature of sensory evidence accumulation using model-based 

functional magnetic resonance imaging. In the second study, we explored neural 

correlates of perceptual decision and neural correlates of confidence in the 

decision. In the third study, we examined the causal role of cortical and 

subcortical lesions on visual and auditory perceptual decision-making. 
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5.1     Modality-specific neural signatures of perceptual evidence accumulation: 

a model-based fMRI approach 

ABSTRACT  

Neural correlates of perceptual sensory evidence accumulation have been 

observed in sensory, frontal and parietal cortices, as well as in subcortical brain 

regions. However, it remains unclear if these neural correlates actually evidence 

of sensory information, salience, or action planning. In this study, we measured 

event-related fMRI in humans performing perceptual decisions based on noisy 

visual or auditory evidence and reported by a button response. The subjects saw 

or heard flashes or clicks on both the left and the right side and had to decide on 

which side there had been more events. Accumulation processes were fit to a 

quantitative model to estimate the perceptual evidence on a trial-by-trial basis. 

We found that BOLD signals in the occipital cortices correlated with 

accumulated visual evidence while signals in the superior temporal gyrus 

correlated with accumulated auditory evidence. BOLD signals in the frontal and 

parietal cortices were not correlated with spatially-specific perceptual evidence 

but instead with decision difficulty, i.e. regardless of the location in space, the 

BOLD signal increased in the harder trials in both the visual and auditory tasks. 

This suggests that sensory evidence accumulates in modality-specific sensory 

cortices. Thus, the well-known signatures of evidence accumulation observed in 

the frontal and parietal cortices may have been activity relayed from the sensory 

cortices, and may thus reflect secondary decision-making variables such as 
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salience, or action preparation.  

INTRODUCTION 

For successful orientation in a multidimensional environment, the brain evolved 

and became able to receive and gradually accumulate sensory evidence to form 

perceptual decisions about the direction the animal should orient itself in space. 

Neuroimaging studies in humans investigating the neural correlates of sensory 

evidence accumulation have done so using mostly visual tasks (Filimon, 2013; 

Hebart et al., 2012; Heekeren, 2004, 2008; Philiastides & Sajda, 2007). 

Neuroimaging studies identified several brain regions as neural substrates of 

visual sensory evidence accumulation. These are e.g., the occipital cortex 

( Hebart ., 2012; Philiastides & Sajda, 2007) or  higher cortical regions such as 

dorsolateral prefrontal cortex (DLPFC) (Filimon, 2013; Heekeren, 2004), frontal 

eye fields, the inferior parietal lobule and insular cortex (Ho & Brown, 2009; 

Liu & Pleskac, 2011). In comparison, less is known about the neural correlates 

of auditory sensory evidence accumulation. It was shown that regions in the 

auditory sensory cortices contribute to object identification (Binder, Liebenthal, 

Possing, Medler, & Ward, 2004) and conscious perception of the auditory 

decisions (Kilian-hu et al., 2011). However, it remains unclear whether there is a 

brain region that accumulates spatial evidence regardless of the sensory 

modality.   
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Animal electrophysiology studies have shown that the neural correlates of 

evidence accumulation involve several brain nodes such as the posterior parietal 

cortex (PPC) (Roitman & Shadlen, 2002), the prefrontal cortex (PFC) (Hunt et 

al., 2012) such as frontal eye fields (FEF; (Kim & Shadlen, 1999; Purcell et al., 

2010), PPC and PFC (Hanks et al, 2015). Recently, auditory tasks have been 

developed, in which stimuli are presented discretely over time and space 

allowing one to investigate signals of auditory evidence accumulation in epochs 

of time (Brunton., 2013). A drift diffusion based model was developed to fit 

behavioral data from the auditory accumulator task and showed that rats 

accumulates sensory evidence (Brunton., 2013).  Despite recent developments in 

tasks and the importance of understanding the neural correlates of auditory 

sensory evidence accumulation, it is still not clear how auditory sensory 

evidence accumulates in the brain (Hanks & Summerfield, 2017).  

Thus, the goal of this study was to identify brain regions that are involved in the 

modality-specific accumulation of sensory evidence, and brain regions that are 

sensory modality non-specific.  Based on previously literature from previous 

neuroimaging studies in humans (Filimon, 2013; Hebart et al., 2012; Heekeren, 

2004, 2008; Philiastides & Sajda, 2007), we hypothesized that frontal and 

parietal cortices would show correlations with modeled sensory evidence 

regardless of sensory modality. To explore this hypothesis, we used event-

related model-based fMRI to test an auditory and a visual version of an 

accumulator task with two alternative choices, in which stimuli are presented 
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discretely over time and space allowing for use of a quantitative model to model 

accumulated evidence for each trial.  

MATERIALS AND METHODS: 

Participants 

Twenty-one right-handed healthy participants took part in the study. Four 

participants were excluded since they only finished one task and did not show 

up for the next session. Two participants were excluded because they showed 

systemic bias towards one choice. Fifteen of the participants finished all tasks 

(seven females, mean age 23.25 ± 3.72 years) and were included in the final 

analysis. Participants had normal hearing, normal or corrected vision, no history 

of neurological or psychiatric disease. All participants gave written informed 

consent. All procedures were performed according to the declaration of Helsinki 

and were approved by the local Ethics Committee of the University Medical 

Center Göttingen. Participants were given monetary compensation for 

participating in our experiments. 

Task and Stimuli 

Participants were asked to perform an auditory and a visual version of an 

evidence accumulation task. In both versions, they were asked to form spatial 

decisions, i.e. whether more stimuli had been presented on the right or left side. 

In the auditory task, participants wore a headset and were asked to determine 

which ear had received more clicks. In the visual task, participants were asked to 

determine the side of the screen that had shown most flickers. The stimuli were 
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drawn from a Poisson distribution for both modalities and adjusted for the 

adaptation dynamics of the visual or the auditory system (Brunton., 2013). They 

were presented discretely over time and space, allowing the fitting of a dynamic 

model that captures the accumulation of sensory evidence towards a spatial 

decision. Changes in the color of the fixation cross indicated different stages of 

the task, in order to keep the visual input throughout different task stages as 

constant as possible. Each trial started with the presentation of a central red 

fixation cross. After a mandatory stable fixation period of one second the stimuli 

were presented for three seconds, followed by a variable delay of six to eight 

seconds inside the scanner. The color of the fixation cross changed to green 

indicating the beginning of the response period. Participants were asked to 

respond with their right hand using the index and middle fingers. Participants 

responded by pressing key ‘1’ if they thought the trial had more stimuli on the 

left, or key ‘2’ if they chose the right side. No feedback was given to the 

subjects. The following rest period inside the scanner varied between six and 

eight seconds. The duration of delay and rest times were randomized (6-8) 

seconds to prevent the participants from forming a response strategy, and to 

increase design efficiency in this event-related design (by reducing multi-

collinearity between predictors that follow closely in time). Participants were 

asked to use the entire information presented to them in each trial to form their 

choice. In the actual experiments, the participants were required to finish four 

runs inside the scanner of each modality; a total of 128 trials for each modality. 
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Auditory stimuli 

Trains of 3ms clicks lasting three seconds were presented over headphones. 

Twenty clicks per second were presented randomly to each ear separately 

(#clicks right (CR) + #clicks left (CL) = 20). There was a minimum inter-pulse 

interval of 33ms to minimize adaptation. The first, and last clicks were presented 

to both ears simultaneously to prevent bias towards the side of the first or the 

last click presented (Brunton et al., 2013). Easy trials differed by 40 clicks 

between the ears (CR-CL), while harder trials had a five-clicks difference. 

Stimuli were generated using MATLAB, version R2011b using custom scripts. 

 Visual stimuli 

Trains of stereo flickers lasting three seconds were presented on the horizontal 

plane of the screen at an eccentricity of around 11 visual degrees. Each train had 

five flickers per second (#flickers right (FR) + #flickers left (FL) = five per 

second). Each flicker lasted 16.7ms and had a visual angle of approximately two 

degrees. Consecutive flickers had a minimum inter-pulse interval of 120 ms to 

minimize adaptation (Brunton et al., 2013). The first and last flickers were 

presented bilaterally to prevent bias towards the side of the first or the last 

flicker presented. Easy trials differed by ten flickers between the sides (FR-FL), 

while harder trials had a two flickers difference.  Stimuli were generated using 

MATLAB, version R2011b using custom scripts.  
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Data analysis 

Behavioral data analysis 

Repeated measures analysis of variance (rANOVA): To investigate the effect of 

modality, difficulty, and space on performance in the scanner we constructed an 

rANOVA with the following factors, each with two levels: modality (audio, 

visual), difficulty (absolute difference of stimuli presented to the right minus 

number of stimuli presented to the left resulting in two levels, i.e. hard, easy), 

and space (left and right). The percent correct decisions were calculated for each 

difference level for each participant across runs for each modality. Significant 

effects were followed up with post hoc t-tests. Moreover, the probability "press 

right" was plotted as a function of the number of stimuli presented to right 

minus number of stimuli presented to the left (Figure 5.1.1A). 

Accumulator model: 

A recent nine-parameter model based on the drift-diffusion model was 

developed to study sensory evidence accumulation, and we will refer to it in the 

manuscript as the accumulator model (Brunton., 2013). In order to verify that 

participants accumulated the sensory evidence presented over the whole trial as 

auditory clicks or visual flickers, an accumulator model using the individual 

click times and the participants’ choices in each trial was fitted (Brunton., 2013). 

Data was concatenated for all trials across all participants for the auditory task 

and the visual task separately. The accumulator model uses nine parameters to 



 

61 

 

transform the stimulus in each trial (input to the model are left and right stimulus 

times) into a probability distribution about the choice of the participant. For 

example, if for a given set of parameters, the model predicts that Trial 1 will 

result in a 75% chance of the participant choosing right, and the participant, in 

fact, did choose right, that trial would be assigned a likelihood of 0.75. In the 

case that the participant chose left, the trial would be assigned a likelihood of 

0.25. We fit the model under the assumption that the trials are independent. 

Therefore, for a model with parameters θ for all decisions D, the likelihood is 

given by:  

 

The product of the likelihood of the decision on trial i, di, given the times of the 

right stimulus, ti, R, times of the left stimulus ti, L, and the set of nine parameters, 

θ. A detailed description of the procedure for fitting the accumulator model can 

be found in the Modeling Methods section of the supplement to (Brunton et al., 

2013). The model includes a ‘lapse’ parameter, which represents a fraction of 

trials in which subjects will ignore the stimulus and choose randomly. The 

presence of the lapse parameter also puts a lower bound on the likelihood of any 

individual trial, and thus no individual trial can dominate the results and the 

consequent fits of the model. Moreover, the model estimates a leakiness 

parameter referred to as lambda parameter. A lambda close to zero indicates that 

participants used the entire information presented to them at the trial to reach 
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their decision, meaning a perfect accumulator strategy.  

The psychometric curves were generated by concatenating trial data across 

sessions for each participant and using Matlab’s nlinfit to fit a four-parameter 

sigmoid as follows: 

 

For these fits, x is the click difference in each trial (#Right stimulus − #Left 

stimulus), y is ‘P (Chose Right)’, and the four parameters to be fit are: x0, the 

inflection point of the sigmoid; b, the slope of the sigmoid; y0, the minimum 

‘P(Chose Right)’; and a + y0 is the maximum ‘P(Chose Right)’. 

Functional Magnetic Resonance Imaging (fMRI) 

General experimental setup inside the scanner 

Participants were placed in the MR scanner (3T, Siemens TIM Trio, Siemens 

Healthcare, Erlangen, Germany) in a supine position. In order to prevent the 

head from moving, it was stabilized inside the Siemens 12 channel head coil by 

means of cushions. Headphones were used to protect the ears from scanner 

noise. Auditory stimuli were played binaurally through insert earphones 

(Sensimetrics corporation, Malden, MA). For the visual task, the subjects wore 

additional in-ear foam plugs for further noise protection instead of the 

earphones. Visual stimuli were delivered using MR-compatible, liquid crystal 

display (LCD) goggles (Resonance Technology, Northridge, CA). The spatial 
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resolution was 800 × 600 pixels, covering a visual field of 32 × 24 degrees, at a 

refresh rate of 60 Hz. Eye position was monitored with an MR compatible 60 Hz 

eye tracking system (Arrington Research, Scottsdale, AZ). The participants 

responded using an MR-compatible, fiber optic, four-button response pad 

(Current Designs, Philadelphia, PA, USA). Trigger pulses from the MR Scanner 

were used to synchronize functional image acquisition and experimental tasks. 

The participants were invited to do either the visual or the auditory task on the 

measurement day. The order of days the participants performed the visual or the 

auditory task was counterbalanced.  

MRI data acquisition 

All images were acquired using a 3Tesla Magnetom TIM Trio scanner (Siemens 

Healthcare, Erlangen, Germany) with a 12-channel phased-array head coil. First, 

a high-resolution T1-weighted anatomical scan (three-dimensional (3D) turbo 

fast, low angle shot, echo time (TE): 3.26 ms, repetition time (TR): 2.250 ms, 

inversion time: 900 ms, flip angle 9°, isotropic resolution of 1 x 1 x 1 mm
3
) was 

obtained. All functional data were acquired using T2*-weighted gradient-echo 

echo-planar imaging (EPI) (TE: 30 ms, TR: 1.800 ms, flip angle 70°, 34 slices of 

3-mm thickness, 20% gap between slices, parallel imaging iPat2 with GRAPPA  

at an in-plane resolution of 3 x 3 x 3mm
3
). Four dummy scans were added at the 

beginning of each run to allow for T1 equilibrium. A total of 425 whole brain 

volumes were acquired in each functional run. Participants performed two fMRI 
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sessions of 4 runs each.  

MRI data pre-processing and analysis 

BrainVoyager QX Software version 2.8 (Brain Innovation, Maastricht, The 

Netherlands), and the Neuroelf 0.9c toolbox for Matlab (retrieved from 

http://neuroelf.net/) were used for preprocessing and analysis of the functional 

data. Standard preprocessing steps included 3D motion correction, slice scan 

time correction and temporal filtering [linear trend removal and high pass 

filtering (2cycles/run)]. The functional data were co-registered to the anatomical 

reference scans, transformed into Talairach space and spatially smoothed with a 

Gaussian kernel (full width at half maximum 6 x 6 x 6mm
3
). Further statistical 

analysis was performed using the general linear model (GLM) implemented in 

the BrainVoyager software. First level GLM was first estimated for each subject. 

For each run, stimulus presentation, delay period, and motor response were 

modeled based on the subjects’ choice as right easy, right hard, and left easy, and 

left hard. For the final presentation of figures, GLM models prepared in 

BrainVoyager environment were analyzed in Neuroelf toolbox and Matlab. For 

the group results, a random effects analysis using the GLM was performed with 

15 participants. For all statistical maps, multiple comparison corrections were 

performed at the cluster level. Maps were thresholded at an initial cluster-

forming threshold with P < 0.005. The size of the resulting clusters was assessed 

for significance using AlphaSim simulations as implemented in Neuroelf’s 
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cluster-level statistical threshold function. Reported clusters are significant at a 

level of P < 0.05 unless stated otherwise.  

Voxel-wise repeated measure analysis of variance (rANOVA) 

A voxel-wise repeated measures analysis of variance (rANOVA) was performed 

in BrainVoyager QX Software version 2.8 (Brain Innovation, Maastricht, The 

Netherlands) at the whole brain level with the modality, difficulty, and space as 

the within-subject factors. In the case of statistical significance, the significant 

clusters were defined as regions of interest (ROIs), and post hoc t-tests were 

implemented at the ROI level for evaluating the specific contrasts. Maps were 

thresholded at an initial cluster-forming threshold with P < 0.005. The size of the 

resulting clusters was assessed for significance using AlphaSim simulations as 

implemented in Neuroelf’s cluster-level statistical threshold function. Reported 

clusters are significant at a level of P < 0.05. For labeling the significant regions, 

the peak activation voxel from each cluster was entered into the Talairach client 

tool (http://www.talairach.org/client.html), a 6-mm range cube was defined 

around the peak voxel, and the cluster was labeled according to the region to 

which most of the defined voxels belong. 

Model-based analysis investigating regions accumulating sensory evidence 

In order to study which brain regions accumulated sensory evidence for each 

modality, a separate GLM was constructed with the following regressors: 

stimulus presentation, delay, response. The modeled estimates of sensory 
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evidence were used to build two predictors: (1) Signed evidence predictor: using 

the signed values of modeled evidence. (2) Absolute evidence predictor: using 

absolute values of the modeled evidence. Regions showing correlation with the 

signed evidence predictor were used as ROIs. Event-related averages were 

constructed from those ROIs. A region would qualify as an accumulator if the 

event-related averages were organized in a specific manner (i.e. an accumulator 

towards leftward decisions: left high evidence > left low evidence > right low 

evidence > right high evidence).  

Estimation of correlation level between beta estimates and modelled evidence: 

In order to systematically determine the level of correlation between beta 

estimates and accumulated sensory evidence as modeled from data inside the 

scanner, a scatter plot of mean beta values as a function of modeled evidence 

was plotted. Mean beta values from each participant were extracted from each 

ROI showing activity modulated by evidence.  Beta values of each subject were 

demeaned by subtracting the mean value of all subjects. A correlation coefficient 

was determined between evidence values and mean beta values using built-in 

MATLAB functions.  

Contralateral selectivity index: 

Frontal eye field and inferior parietal lobule coordinates were determined based 

on mean coordinates from Krafft et al. (Krafft et al., 2013). Beta values were 
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extracted from assigned ROIs. A contralateral selectivity index was calculated 

as follows: CS index = (Contra-Ipsi)/max[abs(Contra), abs(Ipsi)] for each ROIs.  

Results 

Participants were asked to perform an auditory and a visual version of an 

evidence accumulation task (Brunton et al., 2013). In both versions, participants 

were asked to decide whether more stimuli were presented to the left or right 

space. Two levels of difficulty were tested based on the absolute difference of 

the number of stimuli presented to the right minus number of stimuli presented 

to the left (Figure 5.1.1A).  
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Figure 5.1.1. Behavior of visual and auditory accumulator tasks. (A) Task description: 

after a mandatory one second fixation, trains of lateralized clicks in the auditory task, and 

trains of lateralized flickers in the visual task were presented. Participants decided which side 

of space has more stimuli - right or left. Participants responded with a button press. 

Participants performed the tasks on separate days with the order of modality randomly 

balanced. (B) Probability of participants choosing right as function of total flickers right 

minus left. For easy trials ≈100% for both modalities, grey circles are individual participants 

data, color circles are the means with 95% binomial confidence intervals across accumulator 

trials from all subjects. The thick line is the psychometric curve generated by the accumulator 

model. 

Behavioral results 

The psychometric curves show that the participants performed both tasks inside 

the scanner with high accuracy. For easy trials in both tasks, the participants 

were able to detect the side with the most stimuli ≈100% (Figure 5.1.1B). We 



 

69 

 

were interested in the effect of modality, difficulty, and space. Therefore, we ran 

a repeated measures analysis of variance (rANOVA) on percent correct with 

modality, difficulty, and space as within-subject factors. We found a significant 

main effect of modality on percent correct (F (1, 14) =5.01 p=0.04) and a 

significant main effect of difficulty (F (1, 14) =338.12 p<0.001). There was no 

significant main effect of space (F (1, 14) = 0.323 p = 0.57). No significant two-

way or three-way interaction between factors was found. Post hoc t-tests 

investigating the significant main effects revealed that mean percent correct in 

the visual task was significantly higher than the mean percent correct in the 

auditory task (t (14) =2.24, p=0.04). This was most likely due to the scanner 

noise. Importantly, mean percent correct was significantly higher for easy trials 

in both the visual and auditory modality as compared to harder trials (visual task 

(t (14) =10.11, p<0.001) and auditory task (t (14) =14.42, p<0.001)).  

Model fitting results 

To investigate whether the participants used an accumulation strategy to reach 

their decision we fitted behavioral data to a nine-parameter accumulator model 

(Brunton et al., 2013). Due to the low number of data points per subject inside 

the scanner, we fitted a single model to combined data from all participants. A 

key feature of this high-dimensional model is that different parameter regimes 

reflect different strategies. Thus, rather than assuming that the subjects are 

accumulating evidence, we fitted this model to their choices to test whether they 

actually were using an accumulation strategy. One critical parameter is , which 
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is the reciprocal of the time-constant of the accumulation process. If  is 

negative, it means that the process is "leaky" and early information is lost. If  is 

positive, then the process is "unstable" and early evidence dominates the 

decision,  = 0 reflects a perfect integrator. Model fits show that the participants 

adopted a perfect integrator strategy (Supplementary Table S5.1.1).  

fMRI results 

We performed two types of fMRI analysis: (1) In the 'Non-model-based’ 

analysis fMRI signals were submitted to a voxel-wise whole brain repeated 

measures ANOVA (rANOVA) with modality, difficulty, and space as within-

subject factors. (2) In the 'Model-based analysis' sensory evidence estimates 

from the model were used to modulate the stimulus presentation period 

parametrically. In both analyses, GLMs were calculated using random effects 

(RFX) analysis. Maps were thresholded at an initial cluster-forming threshold 

with p < 0.005 and corrected for multiple comparisons at the cluster level. 

Sensory cortices show modality-specific activity  

Voxel-wise whole brain rANOVA of the stimulus presentation period revealed a 

significant main effect of modality in the lentiform, precentral, and superior 

temporal gyri, the thalamus, the occipital gyrus, and the superior parietal lobule 

(Figure 5.1.2A, Supplementary Table S5.1.2). To explore effect of each 

modality, we extracted beta values of each modality from regions showing the 

main effect of modality. We performed post hoc t-tests for comparing auditory to 
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visual. Activity in superior temporal regions was significantly higher for 

auditory stimuli compared to visual stimuli (p<0.001), while occipital regions 

had significantly higher activity for visual stimuli compared to auditory stimuli 

(p<0.001). The activity in thalamus, precentral and lentiform gyri, and superior 

parietal lobule was significantly higher for the visual modality (p<0.0001).  

Frontal and parietal regions show multi-modal activity  

To investigate which brain regions showed activation in both auditory and visual 

modalities we conducted a conjunction analysis between the auditory stimulus 

presentation and resting, and visual stimulus presentation and resting. Brain 

regions with overlapping activity were: inferior frontal gyrus, medial frontal 

gyrus, insula, precentral gyrus, cingulate gyrus, inferior parietal lobule, superior 

temporal gyrus, and precuneus gyrus (Figure 5.1.2C, Supplementary Table 

S5.1.3). Post hoc t-tests comparing auditory to visual showed that there was no 

statistically significant difference between auditory and visual signals in the 

inferior frontal gyrus, medial frontal gyrus, insula, precentral gyrus, and 

cingulate gyrus. However, the posterior parietal and temporoparietal regions had 

a stronger signal for the visual modality. 
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Figure 5.1.2. Main effect of modality. (A) Statistical map of brain regions showing main 

effect of modality (F(1,14) >11.03 p=0.005) (B) Statistical map showing brain regions with 

overlapping signals of both modalities in purple, auditory stimulus>rest in red, and visual 

stimulus>rest in blue. Cluster forming threshold p=0.005 corrected p=0.05 size=17voxels. (C) 

Event-related averages visualize the effect of modality; sensory cortices show modality-

specific effects while frontal and parietal regions show effects of both modalities.  
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Prefrontal and parietal activity is modulated by task difficulty in both 

modalities 

Based on the predictions of the BOLD signal behavior in relation to task 

difficulty, it has been proposed that brain regions involved in perceptual sensory 

evidence accumulation would have higher activity in easier trials, i.e. when the 

absolute difference between the number of left and right stimuli was larger 

(Filimon, 2013; Heekeren, 2004; Philiastides & Sajda, 2007; Rolls u. a., 2010). 

Therefore, we investigated the effect of task difficulty. In our task design, we 

used two levels of difficulty (easy vs. hard) for each modality based on the 

absolute difference of the number of stimuli presented to the right minus number 

of stimuli presented to the left. We found the main effect of difficulty in several 

brain regions: lentiform, claustrum, superior frontal gyrus, cingulate gyrus, 

cuneus gyrus, inferior parietal lobule, precentral gyrus, superior temporal gyrus, 

fusiform gyrus, and middle occipital gyrus (Figure 5.1.3A, Table 5.1.1). To 

investigate the role of modality, we extracted beta values from brain regions 

showing a main effect of difficulty and used follow-up t-tests comparing easy to 

hard trials in each modality. Post hoc t-tests showed that all regions exhibiting 

the main effect of difficulty had higher activity when the task was easier (Table 

5.1.1). To determine whether other brain regions also had a stronger signal when 

the task was harder but did not statistical significance due to a conservative 

cluster-forming threshold we calculated a whole brain, voxels-wise t-test 

comparing easy to hard at cluster forming with p=0.05 (Supplementary Figure 
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5.1.1). The following brain regions showed a stronger signal when the task was 

harder: left insula, right cingulate, right inferior frontal gyrus, right middle 

frontal gyrus, and right inferior parietal lobule. We formed ROIs from brain 

regions with stronger signal when the task was harder. Since it was possible that 

difficulty is handled differently for the different modalities, we explored the 

effect of difficulty separately for each modality in the aforementioned ROIs. For 

the visual task, all ROIs had a significantly stronger signal when the task was 

harder (p<0.05). For the auditory task, the signal was significantly stronger 

when the task was harder in the cingulate, inferior frontal and middle frontal 

gyri (p<0.05) (Figure 5.1.3B).   

 

 

 

 

 

 

 

 

 

 



 

75 

 

Table 5.1.1. Brain regions showing main effect of task difficulty 

Brain region BA #Voxels Post hoc  

easy vs. hard 

 

Post hoc 

Visual 

easy vs. 

hard 

 

Post hoc 

Auditory 

easy vs. hard 

 

Tal 

coordinates 

t(14)   P t(14)   P t(14)   P x y z 

R Lentiform - 237 4.30 <0.001 3.93 0.002 5.03 <0.001 25 -3 6 

L Claustrum - 407 5.11 <0.001 3.28 0.005 7.19 <0.001 -36 -10 18 

L SFG BA10 134 6.70 <0.001 3.16 0.007 7.90 <0.001 -30 52 10 

L Cingulate BA 

24 

20 3.35 0.004 1.18 0.25 4.02 0.001 -2 -11 48 

L Cuneus BA31 44 5.95 <0.001 2.91 0.01 4.47 <0.001 -8 -67 30 

L IPL BA40 56 5.23 <0.001 2.84 0.01 5.13 <0.001 -46 -55 49 

L Precentral BA4 17 4.96 <0.001 1.34 0.19 5.58 <0.001 -19 -26 56 

R STG BA22 39 4.16 0.001 2.72 0.02 3.82 0.001 50 -3 3 

L Fusiform BA19 37 5.24 <0.001 3.75 0.002 3.69 0.002 -31 -86 -7 

R MOC BA18 19 2.43 0.02 2.51 0.03 1.88 0.08 49 -22 11 

R STG BA41 22 3.41 0.004 0.60 0.55 3.61 0.003 34 -78 1 

Left (L), right (R), superior temporal gyrus (STG), superior parietal lobule (SPL), inferior 

parietal lobule (IPL), middle occipital (MO).   
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Figure 5.1.3. Main effect of task difficulty. (A) Statistical map of brain regions showing 

main effect of task difficulty (F1,14)>11.03 p=0.005). post hoc t-tests revealed a significant 

difference between easy and hard for both modalities in regions showing main effect of 

modality p<0.05. Post-hoc t-tests of regions with main effect of difficulty show higher in 

those regions when the task was easier  (B) Bar plots of mean beta values from regions 

showing higher activity for hard compared to easy trials of cluster forming threshold p=0.05. 

To visualize regions where bar plots were extracted from refer to supplementary figure 5.1.1, 

inferior frontal gyrus (IFG), superior temporal gyrus (STG), superior frontal gyrus (SFG), 

inferior parietal lobule (IPL), middle frontal gyrus (MFG), right (R), left (L). Cinuglate, IFG 

and MFG show higher signal for hard trials compared to easy trials.  
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Spatially selective activity in sensory cortices and higher spatial selectivity in 

left parietal cortices  

In the current study, the perceptual evidence was spatially lateralized. We, 

therefore, investigated the brain regions showing activity modulated by space of 

the sensory evidence. We observed a main effect of space in the left inferior 

parietal lobule (Figure 5.1.4A). We extracted beta values from the brain regions 

showing a main effect of space and conducted post hoc t-tests to determine the 

role of modality. For both modalities, activity in left inferior parietal lobule was 

higher for rightward trials p=0.05 auditory, p<0.001 visual (Supplementary 

TableS5.1.4).  

It is not considered advisable to base findings of hemispheric comparisons only 

on thresholded brain maps (Nagata et al., 2001). Thus, in order to investigate the 

degree of contralaterality in left and right frontal and parietal regions we 

calculated a contralaterality index (CS) = (Contra-Ipsi)/max[abs(Contra), 

abs(Ipsi)] from orthogonal ROIs in frontal and parietal regions using mean 

coordinates (Krafft et al., 2013) and from the auditory and occipital cortices 

using mean coordinates as described by (Lewis et al., 2000). We found primary 

visual sensory and primary auditory sensory cortices to have a contralateral 

preference in both modalities. We found an asymmetrical preference in frontal 

and parietal regions. The left inferior parietal lobule had a rightward preference 
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in both modalities. The right inferior parietal lobule did not show a clear 

preference towards left or right space (Figure 5.1.4C).  

      

 

Figure 5.1.4. Main effect of space (A) Statistical map of brain regions showing a main effect 

of space. (B) Event-related averages (ERA) of right (red) and left (blue) trials for each 

modality from the left inferior parietal lobule (LIPL). (C) Contralaterality index from 

orthogonal ROIs ((Krafft, 2013) and (Lewis 2000) plots. Left (L), right (R), frontal eye fields 

(FEF), occipital (OC), superior temporal gyrus (STG). 
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Sensory regions show an interaction between task modality, difficulty, and 

space 

In a search of multi-modal accumulator regions we hypothesized that such a 

multi-modal general accumulator would exhibit activity that is modulated by 

space and difficulty in a specific order, regardless of modality (for example for a 

region to qualify as accumulator towards left decisions its activity pattern will 

follow the order: left easy > left hard> right hard > right easy). We found no 

brain region exhibiting a two-way interaction between difficulty and space. To 

investigate if sensory evidence accumulated in a modality-specific manner we 

investigated brain regions exhibiting a three-way interaction between modality, 

difficulty, and space. We found the following region with this interaction: left 

cuneus region (Table 5.1.2). Visualizing time courses did not reveal an 

accumulator profile in the region identified by the three-way interaction. 

Table 5.1.2 Three-way interaction (difficulty, space, modality): 

Brain region BA #Voxels Post hoc Tal coordinates 

t(14) P x y z 

L Cuneus BA 18 28 -4.64 <0.001 -1 -96 16 
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Model-based analysis investigating brain regions accumulating sensory 

evidence: 

Our quantitative model allowed us to fit nine parameters using the precise 

timing of the sensory stimuli and the choices of the subjects. After fitting, we 

used the model to estimate the internal decision variable that the subjects 

computed in each trial. The model actually allowed us to calculate this variable 

at each moment of the trial (Hanks & Summerfield, 2017). However, the 

sluggish nature of the BOLD signal only enabled us to obtain one sample of 

neural activity per voxel/trial, so we compared the final amount of accumulated 

evidence with the BOLD signal at the end of the stimulus.  We constructed two 

predictors using the model's estimates of accumulated evidence. The first 

predictor represents evidence pertaining to the spatial decision, and we refer to it 

as the signed evidence. The second predictor is based on the absolute level of 

uncertainty of the model (or ‘difficulty’).  

Regions with activity modulated by spatially specific sensory evidence: 

In order to study brain regions accumulating sensory evidence, we 

parametrically modeled the stimulus presentation period using values 

representing signed accumulated evidence as modeled by the accumulator model 

for each trial (see Material and Methods). For the visual task, we found the 

following regions to show the effect of signed, i.e. spatially specific evidence: 

middle temporal gyrus, postcentral gyrus, fusiform gyrus, cuneus gyrus and 
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precuneus gyrus (Figure 5.1.5A).  We examined time courses and found that the 

occipital region exhibited an accumulator activity pattern (Figure 5.1.5B, Table 

5.1.3). 

 

 

Figure 5.1.5. Signal of visual sensory accumulation in the occipital cortex. (A) Statistical 

map of brain regions showing signals modulated by signed accumulated sensory evidence. 

Cluster-forming threshold p=0.005, corrected p=0.05 voxels = 11. (B) Event-related averages 

show signals in cuneus and fusiform being modulated by quality: side and quantity: level of 

sensory evidence. 
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Table 5.1.3 Visual accumulator regions 

ROIs signed visual evidence predictor BA #Voxels Tal 

coordinates 

Correlation 

x y z r p 

L MT 20 11 -54 -4 -14 0.3 0.02 

L Postcentral 3 16 -21 -25 55 -0.45 <0.001 

L MT 21 11 -63 -49 -2 -0.41 0.001 

L Fusiform 19 20 -33 -55 -11 0.53 <0.001 

R Cuneus 23 16 15 -73 10 -0.31 0.01 

R Precuneus 7 67 18 -76 34 -0.26 0.04 

ROIs main effect of visual stimulus        

L Fusiform 19 88 -39 -67 -14 0.28 0.02 

L IPL 40 178 -39 -40 40 0.28 0.03 

L MO 19 118 -51 -73 7 0.28 0.03 

L Fusiform 19 63 -27 -70 -14 0.40 0.001 

R MO 19 96 45 -73 4 -0.30 0.02 

L Lingual 18 74 -15 -64 -8 0.33 0.008 

L MO 19 82 -39 -64 10 0.28 0.02 

R MO 19 96 39 -70 10 -0.28 0.03 

R SPL 7 11 21 -64 64 0.30 0.02 

L IO 18 35 -33 -76 -2 0.36 0.004 

R Precentral 6 21 42 -4 58 0.30 0.02 

L MO 19 27 -51 -76 -5 0.29 0.02 

ROIs auditory accumulator        

R STG 41 17 51 -22 10 0.26 0.04 

ROIs main effect of auditory stimuli        

L IPL 40 116 -42 -34 40 0.29 0.03 

L insula 13 229 -48 -37 19 -0.25 0.04 

L IPL 40 53 -30 -31 40 0.42 0.007 
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In the auditory task, we found that the superior temporal gyrus exhibited signals 

modulated by signed auditory evidence (Figure 5.1.6A).  We examined the time 

courses for an accumulator activity profile (a region accumulating for rightward 

decisions: right high evidence > right low evidence > left low evidence > left 

high evidence). We found that the superior temporal gyrus had an activity 

pattern that fitted the accumulator profile (Figure 5.1.6B). We explored the level 

of correlation of beta activity in regions with accumulator profiles and modeled 

sensory evidence, and found a correlation for the superior temporal gyrus (r= -

0.48, p<0.001) for auditory evidence and occipital regions (r= 53, p<0.001)   for 

visual evidence (Table 5.1.4). To make sure we didn’t miss other regions with 

accumulator activity we investigated level of correlation between beta values 

and level of evidence in ROIs based of stimulus presentation as shown in (Table 

5.1.3) and (Table 5.1.4). Moreover to investigate possibility of a region 

accumulating evidence for both modalities, we investigated level of correlation 

using ROIs identified from the other modality (Table 5.1.3, 5.1.4). However, 

only superior temporal gyrus and occipital regions showed time courses with 

accumulator profile and significant correlation in a modality-specific manner.   
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Cluster-forming threshold p=0.005, corrected p=0.05 voxels = 11. 

Figure 5.1.6. Signal of auditory sensory evidence accumulation in the superior temporal 

gyrus (STG). (A) Statistical map of brain regions showing modulation by signed 

accumulated visual sensory evidence. (B) Event-related averages show signals in STG being 

modulated by quality and quantity of sensory evidence (quality and quantity). 
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Table 5.1.4 Auditory accumulator regions 

ROIs signed auditory evidence predictor BA #Voxels Tal 

coordinates 

Correlation 

x y z r p 

R STG 41 17 51 -22 10 -0.48 <0.001 

ROIs main effect of auditory stimuli        

R Cingulate 23 183 6 -22 28 0.26 0.04 

L Insula 13 106 -39 -16 -2 0.37 0.003 

R Transverse temporal 41 118  39 -31 10 0.33 0.009 

L STG 41 63 -35 -24 10 0.48 <0.001 

L IPL 40 87 -30 -31 40 0.30 0.02 

R Posterior Cingulate 31 37 9 -34 19 0.35 0.006 

ROIs visual accumulator        

L MT 21 11 -63 -49 -2  -0.26 0.03 

ROIs main effect of visual stimuli        

L Cingulate 23 63 9 -25 25 0.29 0.03 

L IPL 40 100 -42 -28 37 0.31 0.02 

L Thalamus - 42 -21 -22 10 0.32 0.01 

R Thalamus - 46 15 -22 13 0.28 0.03 

R Posterior Cingulate 31 15 15 -34 28 0.29 0.02 

L Cerebellar lingual - 54 0 -43 -11 -0.26 0.04 
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Regions with activity modulated by spatially non-specific sensory evidence: 

We investigated brain regions exhibiting activity that is modulated by the 

absolute values of the modeled evidence; values related to the level of sensory 

evidence regardless of its directionality; i.e. regions that would be modulated by 

difficulty regardless of space. We found, similar to the ANOVA analysis of the 

main effect of difficulty, that activity in the middle frontal gyrus, inferior frontal, 

and cingulate gyri,  and the inferior parietal lobule to be negatively correlated 

with the level of evidence regardless of modality; a stronger signal when 

evidence was low in both modalities; regardless of direction of evidence (Figure 

5.1.7A, B, C).  
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Figure 5.1.7. Frontal and parietal cortices show spatial non-specific modulation by level 

of sensory evidence regardless of modality. (A) Statistical map of brain regions showing 

modulation by level of sensory evidence (blue regions mean stronger signals for trials with 

low sensory evidence while red regions have stronger signals when the level of evidence is 

high). Cluster forming threshold p=0.005, corrected p=0.05 voxels = 11. (B) Event-related 

averages showing modulation of signal by level of visual sensory evidence without spatial 

preference. (C) Event-related averages showing modulation of signal by level of auditory 

sensory evidence without spatial preference. Time courses were extracted from right 

hemisphere. Middle frontal gyrus (MFG), inferior frontal gyrus (IFG), inferior parietal lobule 

(IPL).  
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Similarities and differences between ANOVA results and the model base 

findings:  

In this study, we investigated accumulator regions using two complementary 

analysis approaches; one that is based on ANOVA and another that is based on 

parametric modulation of GLM predictors using modeled sensory evidence. 

Both the ANOVA analysis and the model-based analysis approaches showed that 

the frontal and parietal regions had higher activity when the task was harder 

(ANOVA approach), and likewise when the evidence was low (model-based 

approach) for both modalities in a spatially non-specific manner. However, the 

parametric modulation by sensory evidence estimates was able to localize 

coordinates of voxels with time courses suggestive of a sensory evidence 

accumulation profile, which was not possible by only using the ANOVA based 

analysis.  

DISCUSSION 

The goal of the study was to identify brain regions involved in the accumulation 

of sensory evidence in either sensory modality-specific or sensory modality non-

specific manner.  

Perceptual evidence accumulation in sensory cortices 

We found that accumulation of sensory evidence in a given modality correlates 

with activity in the respective modality-specific sensory cortices. This finding is 

in line with previous visual imaging studies showing that regions in the occipital 

cortex are involved in the representation of sensory evidence and correlate with 
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the decision and perceptual report (Heeger, 2012; Philiastides & Sajda, 2007). It 

was shown that occipital regions contain signals of visual sensory evidence 

accumulation once disentangled from motor preparation (Hebart et al., 2012). 

On the other hand, previous auditory studies did not use auditory tasks that 

allow one to study sensory evidence accumulation in a discrete manner (Hanks 

& Summerfield, 2017). Thus, it was not possible to directly test for sensory 

evidence accumulation. In our study, we investigated an auditory accumulator 

task and showed that regions in the auditory cortex correlate with accumulated 

auditory sensory evidence.   

Supramodal and space-independent accumulation signals in the 

frontoparietal cortices  

In our data, activity in the prefrontal and parietal cortices correlated with 

stimulus presentation regardless of modality, and we concluded that those 

regions had a multi-modal role. However, activity in the frontal and parietal 

cortices was not modulated by the spatially-specific accumulated sensory but 

was modulated by the level of sensory evidence irrespective of space. Therefore, 

it is suggestive that activity in the frontal and parietal cortices reflects secondary 

decision-making processes such as handling task difficulty (Heekeren, 2008). 

Such a finding is consistent with previous reports from the literature proposing a 

role of the frontal, parietal cortices as a saliency map (Corbetta, Kincade, Lewis, 

Snyder, & Sapir, 2005). However, whether this effect is a bottom up (sensory  
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frontoparietal) or top-down (frontoparietal  sensory) activity is not clear due 

to the temporal resolution of the fMRI (Ptak, 2012). EEG-fMRI showed that the 

frontal, parietal, anterior cingulate, and insula regions have a top-down role in 

visual decision-making tasks (Philiastides & Sajda, 2007). Using dynamic 

causal modeling it was shown that the signal from parietal regions optimizes the 

through reallocation of attentional resources (Feldman & Friston, 2010b). 

Regions correlating with accumulated evidence versus decision difficulty 

comparison with previous studies 

In earlier reports on fMRI studies in humans, various brain regions were shown 

to accumulate sensory evidence (Mulder, van Maanen, & Forstmann, 2014). 

One of the first studies that applied assumptions from the accumulator models to 

identify brain accumulator regions using a faces vs. house discrimination task 

reported stronger BOLD signals  in the DLPFC with easier decisions (Heekeren, 

2004). Per se, the choice difficulty is closely related to how rapidly the evidence 

reaches a threshold, i.e. the drift rate parameter. It was shown that effects of 

difficulty appeared in the DLPFC and insula, while the lateral occipital cortex is 

the region of evidence accumulation (Philiastides & Sajda, 2007). However, 

other studies proposed that BOLD is negatively correlated with the drift rate and 

therefore with evidence accumulation. Thus, one would expect a weaker BOLD 

signal for higher drift rates (Ho & Brown, 2009). Such studies showed that the 

frontal eye field (FEF), and intraparietal sulcus (IPs) exhibited higher activity 
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when the task was harder (Ho & Brown, 2009; Liu & Pleskac, 2011). However, 

if we consider other studies that suggest that accumulation signals can be 

detected in difficult trials, it is also possible to view pre-SMA, inferior frontal 

gyrus, and right inferior parietal lobule activity as an accumulator signal. 

Nevertheless, we propose that, for our spatial accumulator tasks, regions 

considered as accumulators were the ones that exhibited modulation by level of 

evidence and direction of the evidence (i.e. an area accumulating evidence 

towards left decisions would be regarded as an accumulator region if it has the 

following signal profile: left high evidence > left low evidence > right low 

evidence > right high evidence). Only regions exhibiting such signal were 

sensory cortices in a modality-specific manner.  

Electrophysiological studies have shown that regions equivalent to the human 

IPL and FEF are involved in evidence accumulation (Hunt et al., 2012; Kim & 

Shadlen, 1999; Roitman & Shadlen, 2002). It is interesting that the IPL and FEF 

are also considered to be part of the saccade control network and attention (Li & 

Krishnamurthy, 2015). Thus, a buildup of activity in such regions could also 

reflect preparation of a motor response (Bennur and Gold, 2011). A recent 

electrophysiological study in monkeys showed a dissociation between 

correlation and causation in decision variables in the lateral intraparietal sulcus 

(LIP) activity, suggesting a role of LIP in secondary processes rather than one in 

perceptual decisions (Katz et al., 2016). Traditionally, monkey studies used 

speeded tasks, which make it difficult to disentangle motor preparation from 
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sensory evidence accumulation. We employed delayed tasks. Previous fMRI 

decision-making studies using delayed tasks came to a different conclusion than 

studies employing non-delayed tasks. Pederson et al. addressed this discrepancy 

by using delayed vs. non-delayed tasks in fMRI comparing easy and difficult 

trials (Pedersen, 2015). They made the following prediction based on firing 

patterns of LIP neurons in monkeys, which both accumulate evidence and 

maintain decisions. They proposed that if a region exists in humans that behaved 

similarly to the firing pattern of the LIP in monkeys, it would have the following 

signal: first, it would be more active for difficult than for easy decisions in a 

self-paced condition. Second, it would be more active during easy than during 

difficult decisions in a forced delay condition (Pedersen, 2015). They found no 

region with an activation pattern consistent with these predictions, thus 

suggesting a different decision-response mechanism in humans than the one 

observed in LIP neurons of monkeys. However, they did find that evidence 

accumulation is probably implemented in frontal regions and/or insula while 

potential choice maintenance regions span the frontal, temporal and occipital 

cortices (Pedersen, 2015).   

Regions showing supra-modal decision signal comparison with previous 

studies 

Previous literature investigating neural mechanisms of decision-making 

regardless of sensory modality; i.e. showing a supramodal signal investigated 
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combined tasks where effect of auditory stimuli on visual decision-making or 

vice versa could be explored (Rohe & Noppeney, 2015). In their study they 

relied on a spatial ventriloquist paradigm, were synchronous audiovisual 

originating from four possible locations were presented to the participants. 

Participants had to report the auditory or the visual stimuli location and ignore 

the other. They demonstrated a hierarchy of multisensory processes in the 

human brain. At the bottom of the hierarchy, signal is segregated in auditory and 

visual areas, location is represented on the basis that the two signals are 

generated by independent sources. At the next stage, at the level of posterior 

intraparietal sulcus, signal shows forced fusion where location is estimated 

under the assumption that the two signals are from a common source. While 

they show that only at the top of the hierarchy, in anterior intraparietal sulcus, 

the uncertainty about the causal structure of the world is taken into account and 

sensory signals are combined. The major difference between our study and the 

Noppeney study is that our study uses a clear accumulator task for each the 

auditory and visual modalities. Therefore, our experimental design investigates 

core decision-making strategies in each modality while their study is more 

focused on mechanisms of sensory integration. Our results agree on the 

possibility that regions in inferior parietal lobule exhibit a supramodal signal 

that deals with uncertainty due increased sensory noise resulting in harder trials. 

We argue that since sensory evidence accumulation towards a decision is highly 

correlated to the sensory processing that it is reasonable that accumulator signal 
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is carried in modality-specific sensory cortices and decision signal is relayed to 

higher cortical regions in a supramodal manner.  

Limitations of the study 

Despite the fact that fMRI is superior to single unit recording by its ability to 

view activity on a whole-brain scale, it has limitations in terms of temporal 

resolution and lack of fine-grained neural tuning on a voxel-based level 

(Logothetis, 2008). The low temporal resolution prevented us from measuring 

the dynamic buildup of the accumulation signal on a click-by-click basis or 

flicker-by-flicker basis. Our detected signal represents the summated evidence 

over the stimulus presentation period, and was not possible to study effect of 

each click or flicker on the accumulation process. Therefore, it is valid to 

assume that signal in proposed accumulator regions could be related to 

processing of spatial stimuli and not an accumulation signal. Also, frontal and 

parietal regions might carry an accumulator signal towards spatial choice but the 

spatial tuning of fMRI in the range of 3x3x3 mm voxel size could have obscured 

the signal. Moreover, scanner noise led to decrease in performance in the 

auditory task in comparison to the visual task particularly in the difficult trials. 

Nevertheless, performance in the easy trials was almost 100% in both 

modalities. Model fits showed a higher lapse rate in the auditory task explained 

by higher background noise, probably due to the scanner, which was impossible 

to eliminate. We had to fit all trials from all participants to one model, as it was 
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not possible to fit each participant data from inside the scanner due to the limited 

number of data points that can be acquired per session. 

Conclusions 

In this study, we provide answers to the question of how different types of 

sensory information are accumulated: is a region involved in the accumulation 

of visual evidence expected to also accumulate auditory evidence? 

We showed that sensory evidence accumulated in modality-specific sensory 

cortices. Thus, the well-known neural correlates of evidence accumulation in 

frontal and parietal cortices do not reflect evidence accumulation, but rather task 

difficulty. Therefore, our data show that evidence accumulates in a modality-

specific manner, and suggest a possible role of the frontal and parietal cortices in 

secondary decision-making processes. 
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Supplementary Table 5.1.1 Model parameters for most relevant parameters to study decision-

making strategy based on model fits for each modality 

Modality  sigma(a) sigma(s)  B Lapse rate 

Auditory 

 

-0.26505     

 

27.446       

 

64.062       

 

14.25     

 

0.032939     

 

Visual 0.2612     2.5280     0.0141    11.7675     0.0144 

 

σ2a A diffusion constant, parameterizing noise in a, the decision variable. 

σ2s parameterizes sensory noise when adding the evidence  

λ parameterizes consistent drift in the memory a. In the ‘leaky’ or forgetful case (λ < 0) drift is 

towards a = 0, and late stimuli pulses impact the decision more than earlier pulses. In the 

‘unstable’ or impulsive case (λ > 0), drift is away from a = 0, and early stimuli pulses impact 

the decision more than later pulses. The memory's time constant τ = 1/λ. 

B The height of the ‘sticky’ decision bounds and parameterizes the amount of evidence 

necessary to commit to a decision. 

Lapse rate The fraction of trials in which a random response is made 

For details on model fitting procedure and model parameters (Brunton, 2013). 
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Supplementary Table 5.1.2 Modality effect 

Brain region BA #Voxels Post hoc t(14) 

Audio vs. Visual 

 

Tal coordinates 

t-value P x y z 

L lentiform - 44 -5.57 <0.001 18 11 -5 

R precentral BA6 17 -5.81 <0.001 36 -1 37 

L precentral BA6 31 -5.19 <0.001 -48 -13 34 

R STG BA13 533 9.03 <0.001 36 -22 10 

L STG BA13 581 8.67 <0.001 -39 -22 7 

R Thalamus - 32 -6.74 <0.001 18 -28 4 

L Thalamus - 22 -5.27 <0.001 -18 -22 7 

R Occipital BA19 1436 -9.45 <0.001 42 -73 4 

L Occipital BA19 1107 -8.72 <0.001 -39 -61 -8 

L SPL BA7 146 -5.38 <0.001 -24 -58 46 

Left (L), right (R), superior temporal gyrus (STG), superior parietal lobule (SPL).  
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Supplementary Table 5.1.3 Conjunction between auditory stimulus and visual stimulus 

Brain region BA #Voxels Post hoc t(14) 

Audio vs. Visual 

 

Tal coordinates 

t-value P x y z 

R IFG BA13 1047 -1.73 0.11 38 12 24 

L Medial frontal BA32 323 -1.32 0.21 0 14 45 

L Insula BA13 200 -0.53 0.60 -32 16 10 

R Precentral BA6 104 -1.67 0.12 -26 -8 53 

R Cingulate BA23 144 -0.30 0.77 2 -26 25 

R IPL BA40 322 -2.83 0.01 -38 -42 41 

L IPL BA40 261 -2.93 0.01 -37 -43 43 

L STG BA13 47 2.90 0.01 -51 -41 13 

R STG BA22 193 2.62 0.02 54 -41 14 

L Precuneus BA7 51 -3.64 0.002 -15 -62 46 

R Precuneus BA7 37 -2.38 0.03 14 -64 44 

Left (L), right (R), superior temporal gyrus (STG), superior parietal lobule (SPL), inferior parietal lobule (IPL).  
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Supplementary Table 5.1.4 Main effect of space 

Brain region BA #Voxels Post hoc  

Right vs.Left 

 

Post hoc  

Visual 

Right vs. Left 

 

Post hoc  

Auditory 

Right vs. Left 

 

Tal coordinates 

t(14) P t(14) P t(14) P x y z 

L IPL BA40 24 4.77 <0.001 5.04 <0.001 2.20 0.05 -35 -33 44 

Left (L), right (R), superior temporal gyrus (STG), superior parietal lobule (SPL), inferior parietal lobule (IPL), 

middle occipital (MO).   

 

 

Supplementary Figure 5.1.1. Brain regions showing effect of difficulty (easy > hard).  

Cluster-forming threshold p=0.05, corrected for p=0.05 voxels = 50. Middle frontal gyrus 

(MFG), inferior parietal lobule (IPL).  
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5.2   Dissociated neural signature of visual sensory evidence accumulation and 

decision-monitoring.  

Abstract 

Monitoring of decisions accuracy through estimation of confidence in the 

decision or error detection optimizes the decision-making process. Behaviorally, 

it is established that confidence in a decision increases for correct decisions and 

decreases for error decisions as the level of available sensory evidence is higher 

(i.e. easy trials). However, it is still not clear whether sensory evidence 

accumulation and confidence in the decision engage the same brain regions. 

Here, we used a model-based, event-related fMRI approach to study neural 

correlates of visual sensory evidence accumulation and confidence in the visual 

decision. The participants performed a visual accumulator task, responding with 

a button press.  We devised criteria based on assumptions from integrate-and-

fire attractor models to identify the neural correlates of decision-monitoring, i.e. 

confidence in the decision and error detection. We hypothesized that activity in 

the frontal and parietal cortices will correlate with sensory evidence 

accumulation and/or confidence in the decision. We found that signals of 

sensory evidence accumulation could be disentangled from the neural signature 

of decision-monitoring; signals in the occipital region represented visual sensory 

evidence accumulation, while signals in frontal and midbrain regions were 

suggestive of decision-monitoring. The data suggest that the right middle frontal 

gyrus correlates with subjective reports of confidence in the decision. Our 
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finding is in line with previous neuroimaging studies which demonstrated a role 

of the frontal cortex in decision-monitoring.   

Introduction: 

Monitoring decision accuracy by estimating confidence in the decision or error 

detection optimizes the decision-making process (Schwartenbeck, 2015). The 

subjective ability to estimate the level of accuracy of a decision is referred to as 

confidence in the decision (Mamassian, 2016). As such, it is possible to view 

confidence in the decision or error detection as a judgment on a judgment. 

Therefore, confidence in a decision belongs to the domain of metacognition 

(Metcalfe & Shimamura, 1994). Confidence in decision increases for correct 

decisions and decreases for errorenous decisions as the task become easier 

(Pierce & Jastrow, 1884; Vickers & Packer, 1982). Signal detection theory 

(SDT) assumes that both perceptual choices and perceptual confidence are based 

on a continuous decision variable (DV) (Green & Swets, 1966; Macmillan & 

Creelman, 2005). One can measure estimates of decision-monitoring either by 

using the correlation between percent correct and confidence rating (Sandberg, 

2010) or by depending on calculating metacognitive accuracy using signal 

detection (Fleming, 2014).  In any case, it is hard to disentangle neural correlates 

of core decision processes such as sensory evidence accumulation from 

secondary decision processes that might influence the decision, such as 

confidence in the decision (Gold & Shadlen, 2007). It was recently shown that 
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confidence is part of the decision process and not a separate, post-decision 

process (Gherman & Philiastides, 2015). The neural signature of sensory 

evidence accumulation in humans involves several brain regions. Using 

functional magnetic resonance imaging (fMRI) it was shown that the 

dorsolateral prefrontal cortex (DLPFC) (Heekeren, 2004), the occipital cortex 

(Philiastides & Sajda, 2007), insular cortex, frontal eye fields, and inferior 

parietal lobule (Ho & Brown, 2009; Liu & Pleskac, 2011) exhibit signals 

suggestive of sensory evidence accumulation. On the other hand, neural 

correlates of confidence in the decision were consistently identified in prefrontal 

regions in human neuroimaging studies (Fleming, 2014; Hebscher & Gilboa, 

2015; Heereman et al., 2015). Moreover, several studies have shown the 

involvement of anterior cingulate, and prefrontal regions in error detection 

((Gehring & Fencsik, 2001; Kennerley, Walton, Behrens, Buckley, & 

Rushworth, 2006). However, it remains unclear whether activity related to 

sensory evidence accumulation and confidence in the decision is encoded in 

same brain regions, or if it rather engages different brain regions. 

Therefore, the aim of this study was to investigate the neural correlates of visual 

sensory evidence accumulation, and to investigate the neural correlates of 

decision-monitoring using fMRI. We intended to determine if the same brain 

regions which show neural correlates of sensory evidence accumulation also 

code confidence in the decision. For this propose, we used model-based, event-

related fMRI to study the neural correlates of sensory evidence accumulation 
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and propose criteria to localize the neural correlates of confidence in the 

decision based on integrate-and-fire attractor models (Insabato., 2010; Rolls., 

2010). We employed visual flickers accumulator task where we present trains of 

flickers to the right or the left side of screen and ask subjects to decide which 

side had more flickers presented to it after a delay using a button press. We 

maximized number of error trials in the easiest condition by using a difference 

that results in around 75% accuracy rate.   Therefore, for a region to qualify as 

involved in confidence in the decision we propose that it must fulfill the 

following criteria based on expectations from integrate-and-fire attractor models 

(Wang, 2002): (1) there is a difference between correct and error trials, (2) there 

is an interaction between correctness and difficulty mimicking confidence 

behavior. Based on earlier neuroimaging studies in the literature we hypothesize 

that activity in the frontal and/or parietal cortex will correlate with sensory 

evidence accumulation and/or confidence in the decision ( Fleming & Dolan, 

2012; Fleming & Dolan, 2014; Heereman et al., 2015). 

Materials and Methods 

Participants 

Fifteen right-handed, healthy participants took part in the study. They had 

normal hearing, normal or corrected vision, and no history of neurological or 

psychiatric disease. All participants gave written informed consent. Twelve 

participants (seven females) were included in the final analysis (mean age 26.5 
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yrs; SD ± 5.1 yrs). Three participants were excluded due to poor eye fixation. 

All procedures were performed according to the declaration of Helsinki and 

were approved by the local Ethics Committee of the University Medical Center 

Göttingen. Participants received monetary compensation for participating in our 

experiments. 

Task and Stimuli 

The participants were asked to perform a visual version of an evidence 

accumulation task. They were asked to form decisions about space, i.e. whether 

more stimuli had been presented to the right or left side of a screen. The stimuli 

were presented discretely over time and space, allowing for the fitting of a 

dynamic model that captures the accumulation of sensory evidence towards a 

spatial decision. Changes in fixation cross color were used for different stages of 

the task in order to keep the visual input throughout different task stages as 

constant as possible. Each trial started with the presentation of a central red 

fixation cross. After a mandatory, stable fixation period lasting one second, the 

stimuli were presented for three seconds, followed by a variable delay of six to 

eight seconds. The beginning of the response period was indicated by a change 

of the fixation cross color to green. The participants were asked to respond with 

their right hand using the index and middle fingers. Participants responded by 

pressing key ‘1’ if they thought the trial had more stimuli on the left, or key ‘2’ 

if they chose the right side. Afterwards, the fixation cross color changed to 
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yellow indicating confidence rating period. The participants had to rate their 

confidence on a scale of one to four with one as the lowest confidence and four 

as highest confidence. The following rest period varied between six and eight 

seconds. No feedback was given to the subjects. The duration of delay and rest 

times was random to prevent participants from forming a response strategy, and 

to increase design efficiency in this event-related design (by reducing multi-

collinearity between predictors that follow closely in time). The participants 

were asked to use the entire information presented to them in each trial to form 

their choice. Each participant completed four runs for a total of 196 trials as 

training before being asked to perform the task inside the scanner. The 

participants were required to finish four runs of each modality inside the 

scanner; each run consisted of 30 trials. 

Visual stimuli 

Trains of stereo flickers lasting three seconds were presented on the horizontal 

plane of the screen at an eccentricity of approximately 11 visual degrees. The 

flicker frequency was 5 Hz (#flickers right (FR) + #flickers left (FL) = five per 

second). Each flicker lasted 16.7ms and size of two visual degrees. Consecutive 

flickers had a minimum inter-pulse interval of 120 ms to minimize adaptation 

(Brunton et al., 2013). The first and last flickers were presented bilaterally to 

prevent bias towards the side of the first or the last flicker presented. Inside the 

scanner, easy trials differed by three flickers between the sides (FR-FL), while 
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hard trials had a one-flicker difference.  Stimuli were generated using MATLAB, 

version R2011b using custom scripts. To maximize the number of error trials 

easy trials had only 3 flickers difference while hard trials had only 1 flicker 

difference.  

 

General experimental setup inside the scanner  

The participants were placed in the MR scanner (3T, Siemens TIM Trio, 

Siemens Healthcare, Erlangen, Germany) in a supine position. In order to 

prevent the participant’s head from moving, it was stabilized inside the Siemens 

12 channel head coil by means of cushions. Headphones were used to protect the 

ears from scanner noise, and in-ear foam plugs were used for further noise 

protection. Visual stimuli were delivered using MR-compatible liquid crystal 

display (LCD) goggles (Resonance Technology, Northridge, CA). The spatial 

resolution was 800 × 600 pixels, covering a visual field of 32 × 24 degrees, at a 

refresh rate of 60 Hz. Eye position was monitored with an MR compatible 60 Hz 

eye tracking system (Arrington Research, Scottsdale, AZ). The participants 

responded using an MR-compatible fiber optic four-button response pad 

(Current Designs, Philadelphia, PA, USA). Trigger pulses from the MR scanner 

were used to synchronize functional image acquisition and experimental tasks.  
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Accumulator model 

A recent nine-parameter model based on the drift-diffusion model was 

developed to study sensory evidence accumulation, and we will refer to it in the 

manuscript as the accumulator model (Brunton et al 2013). In order to verify 

that participants accumulated the sensory evidence presented over the whole 

trial, an accumulator model using the individual flicker times and the 

participants’ choices in each trial was fitted (Brunton et al., 2013). The 

accumulator model uses nine parameters to transform the stimuli in each trial 

(input to the model are left and right stimulus times) into a probability 

distribution about the choice of the participant. For example, if for a given set of 

parameters, the model predicts that Trial 1 will result in a 75% chance of the 

participant choosing right, and the participant, in fact, did choose right, that trial 

would be assigned a likelihood of 0.75. In the case that the participant chose left, 

the trial would be assigned a likelihood of 0.25. We fit the model under the 

assumption that the trials are independent. Therefore, for a model with 

parameters θ for all decisions D, the likelihood is given by:  

 

The product of the likelihood of the decision on trial i, di, given the times of the 

right stimulus, ti, R, times of the left stimulus ti, L, and the set of nine parameters, 

θ. A detailed description of the procedure for fitting the accumulator model can 
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be found in the Modeling Methods section of the supplement to Brunton et al. 

(2013). The model includes a ‘lapse’ parameter, which represents a fraction of 

trials in which subjects will ignore the stimulus and choose randomly. The 

presence of the lapse parameter also puts a lower bound on the likelihood of any 

individual trial, and thus no individual trial can dominate the results and the 

consequent fits of the model. Different parameter value regimes of this model 

can implement many different strategies, such as responses based on the first or 

last few stimuli, or to a burst of stimuli, and many others.  

The psychometric curves were generated by concatenating trial data across 

sessions for each participant and using Matlab’s nlinfit to fit a four-parameter 

sigmoid as follows: 

 

For these fits, x is the stimulus difference on each trial (#Right stimulus −#Left 

stimulus), y is ‘P (Chose Right)’, and the four parameters to be fit are: x0, the 

inflection point of the sigmoid; b, the slope of the sigmoid; y0, the minimum 

‘P(Chose Right)’; and a + y0 is the maximum ‘P(Chose Right)’. 

Behavioral analysis 

The difficulty was assigned based on the absolute difference of flickers 

presented on the right minus the number of flickers presented on the left side. 

Two levels of difficulty were used; a three-flicker difference represented an easy 
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trial, and a one-flicker difference represented a hard trial. Probability correct and 

mean level of confidence were estimated for each difficulty and flickers 

difference bins (#FR-#FL=-3,-1, 1, 3). Mean confidence ratings were plotted as 

a function of stimulus difference Figure (1C). Scatter plots were used to plot the 

accuracy level of each participant as a function of mean confidence, and the 

level of correlation was estimated using Pearson correlation in MATLAB 

Figure (1D).  Moreover, data was categorized for correct or incorrect (error). 

Mean confidence levels were then calculated for each difficulty for correct and 

error trials Figure (1D).  

2-by- 2 Repeated Measures ANOVA 

Percent correct and mean confidence were calculated for each difficulty. To 

determine whether confidence rating was modulated by difficulty and accuracy, 

we performed a 2-by-2 repeated measures ANOVA on mean confidence with 

accuracy and difficulty as within-subject factors. 

MRI acquisition 

All images were acquired using a 3Tesla Magnetom TIM Trio scanner (Siemens 

Healthcare, Erlangen, Germany) with a 12-channel phased-array head coil. First, 

a high-resolution T1-weighted anatomical scan (three-dimensional (3D) turbo 

fast low angle shot, echo time (TE): 3.26 ms, repetition time (TR): 2.250 ms, 

inversion time: 900 ms, flip angle 9°, isotropic resolution of 1 x 1 x 1 mm
3
) was 

obtained. All functional data were acquired using T2*-weighted gradient-echo 



 

110 

 

echo-planar imaging (EPI) (TE: 30 ms, TR: 1.800 ms, flip angle 70°, 34 slices of 

3-mm thickness, no gap between slices at an in-plane resolution of 3 x 3 x 

3mm
3
). Four dummy scans were added at the beginning of each run to allow for 

T1 equilibrium. A total of 425 whole brain volumes were acquired in each 

functional run. Participants performed one fMRI session of four runs each.  

MRI data preprocessing and analysis 

BrainVoyager QX Software version 2.8 (Brain Innovation, Maastricht, The 

Netherlands), and the Neuroelf 0.9c toolbox for Matlab (retrieved from 

http://neuroelf.net/) were used for preprocessing and analysis of the functional 

data. Standard preprocessing steps included 3D motion correction, slice scan 

time correction and temporal filtering [linear trend removal and high pass 

filtering (2cycles/run)]. The functional data were co-registered to the anatomical 

reference scans, transformed into Talairach space and spatially smoothed with a 

Gaussian kernel (full width at half maximum 6 x 6 x 6mm
3
). Further statistical 

analysis was performed using the general linear model (GLM) implemented in 

the BrainVoyager software. For the final presentation of figures, GLM models 

prepared in BrainVoyager environment were analyzed in Neuroelf toolbox and 

Matlab. For the group results, a random effects analysis using the GLM was 

performed with 12 participants. For all statistical maps, multiple comparison 

corrections were performed at the cluster level. Maps were thresholded at an 

initial cluster-forming threshold with P < 0.005. The size of the resulting clusters 
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was assessed for significance using AlphaSim simulations as implemented in 

Neuroelf’s cluster-level statistical threshold function. Reported clusters are 

significant at a level of P < 0.05. First level GLM was first estimated for each 

subject. For each run, trial periods were modeled as regressors (stimulus, delay, 

motor response, rest). Stimulus presentation period was modeled as following: 

correct easy, correct hard, error easy, error hard. Contrasts of interest were 

correct > error for accuracy map. A separate GLM was calculated to study 

confidence effect at the same level of accuracy and difficulty. Trials were 

categorized into confident trials (when subjects rated confidence as 3, 4) and not 

confident (when subject rated confidence as 1, 2); first level GLM: confident 

correct easy, not confident correct easy, stimulus, delay, motor response, and 

rest. We expected the difference between confident and not confident to be 

largest in easy correct trials. This GLM was not used to calculate a statistical 

map but was used to extract beta values from ROIs satisfying the first two 

criteria to investigate whether any had activity modulated by confidence at the 

same level of accuracy and difficulty. 

Accumulator map 

To investigate brain regions with activity modulated by sensory evidence, 

likelihood estimates from model fits representing accumulated sensory evidence 

on a trial-by-trial basis were used to construct parametric predictors of the 

stimulus presentation period. Two such predictors were constructed: First, to 
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investigate brain regions with a spatially specific sensory evidence accumulation 

signal (we will refer to it is as the spatially specific sensory evidence 

accumulator map) and second, absolute likelihood values were used to construct 

a predictor to investigate brain regions modulated by the level of sensory 

evidence in a non-spatially specific manner (we will refer to it as the non-

spatially specific sensory evidence accumulator map).  

Decision monitoring regions  

In order to explore brain regions with activity correlating with decision-

monitoring we implemented the following criteria: (1) Difference in signal 

between correct and error trials, (2) An interaction between correctness and 

difficulty mimiking confidence behavior and (3) Signal has to show modulation 

by confidence rating of the subjects at the same level of accuracy and difficulty. 

Two GLMs were constructed to investigate the aforementioned criteria: (1) 

First, a GLM was constructed to study brain regions showing activity modulated 

by the level of accuracy with the main contrast Correct vs. Error (we will refer 

to as accuracy map), (2) A second GLM was constructed to study brain regions 

showing the effect of confidence at the same level of accuracy and difficulty.  

ROI analysis 

Seventeen separate, healthy, right handed participants were tested using the 

same visual accumulator task inside the scanner (seven females, mean age 23.25 

± 3.72 years). We fitted their data to the nine-parameter accumulator model. We 



 

113 

 

built the same GLM as described under Methods for investigating the spatially 

specific and non-spatially specific accumulator regions. We localized brain 

regions showing spatially specific signal of visual sensory evidence 

accumulation and a non-spatially specific signal of visual sensory evidence 

accumulation. We formed ROIs of a sphere around the peak voxel of resulting 

significant regions. We used those ROIs to determine whether brain regions 

showing modulation of localizer group would also show modulation in the 

current group. 

Results 

In order to investigate sensory evidence accumulation and confidence in the 

decision, we tested a visual accumulator task. We presented spatially segregated 

trains of flickers. Participants had to decide if there were more flickers presented 

to the left or the right side by pressing a button (Figure 5.2.1A). Afterward, 

participants were required to report how confident they were that their decision 

was correct using a scale from 1 to 4 (with 1 indicating least confident and 4 

indicating most confident). We used two levels of difficulty based on the 

difference between number of right and left flickers: easy trials had a three-

flicker difference, while hard trials had a one-flickers difference.  

Behavioral results  

We showed that the participants benefited from the difference between the 

number of right and left flickers when forming their decisions. When the 
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difference was larger for the right side, participants chose more flickers on the 

right and were most accurate for easy trials (large difference) (Figure 5.2.1B). 

Moreover, the participants were most confident in easy trials on both left and 

right side (Figure 5.2.1C). We also investigated the relationship between 

probability correct and confidence rating. We found a significant linear 

relationship between probability correct and confidence rating; when subjects 

were more accurate in their decision, they also reported higher levels of 

confidence R= 0.72 p<0.001 (Figure 5.2.1D). 

Confidence is greater for correct trials compared to error trials at the same 

level of sensory evidence:  

In the literature, it is proposed that confidence is greater for easy correct trials 

than for easy error trials (Kepecs et al., 2008). In order to investigate the relation 

between confidence rating, difficulty, and accuracy we arranged trials into 

correct and error trials. Moreover, we categorized trials into two levels; easy 

trials, i.e. trials with |#FR-#FL|=3 and hard trials |#FR-#FL|=1. We computed 

the mean confidence for correct easy trials, correct hard trials, error easy trials, 

error hard trials for each of our subjects. To study the effect of accuracy and 

difficulty on confidence rating, we conducted a repeated measure ANOVA with 

two factors: accuracy (correct, error) and difficulty (easy, hard) as the within-

subject factor. This showed a significant main effect of accuracy F (1, 11) = 

55.60 p<0.001 and no main effect of difficulty F (1, 11) = 3.74 p=0.079. 
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Importantly, ANOVA revealed a significant interaction between accuracy and 

difficulty F (1, 11) = 20.60 p=0.001. Participants were most confident in easy 

correct trials and least confident in correct error trials (Figure 5.2.1E) Post hoc 

t-tests within the same level of sensory evidence showed that the subjects had 

higher confidence ratings in correct easy trials compared to incorrect easy trials.t 

(11) = 6.97 p<0.001 (Figure 5.2.1F). 
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Figure 5.2.1.  Visual perceptual task performance. (A) Description of the trial: after an 

obligatory fixation period, streams of flickers were presented to the right and left visual fields 

and the subjects were asked to form a decision about which side had more flickers and to 

evaluate their level of confidence in the decision using a scale of 1 to 4; response was by 

button press. (B) Probability of choosing right as function of total right minus left flickers, 

For easy trials, performance is ≈75% correct, colored circles are the means with ±95% 

binomial confidence intervals across accumulator trials from all subjects. The thick line is the 

psychometric curve generated by the accumulator model. (C) Mean confidence as function of 

flicker difference; confidence was highest for easy trials. (D) Linear relationship between 

probability correct and confidence R=0.72 p<0.001, dots are individual subject accuracy at 

each confidence level, grey line is linear fit. (E)  Mean confidence is higher for correct trials 

compared to error trials t (11) = 7.46 p<0.001, and a significant interaction between 

probability  correct and difficulty (F(1,11)=20.60 p=0.001). (F) Mean confidence is higher for 

correct trials compared to error at the same difficulty level; easy trials t (11)= 6.97 p<0.001. 
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Model fitting results 

To investigate whether the participants used an accumulation strategy to reach 

their decision we fitted behavioral data to a nine-parameter accumulator model 

(Brunton et al., 2013). Due to the low number of data points per subject inside 

the scanner, we combined data from all participants and fitted a single model. In 

this model, different parameters reflect different decision-making strategies. 

Thus, it is possible to investigate if the subjects were accumulating sensory 

evidence rather than just assuming that they used an accumulator strategy in 

forming their decision. One critical parameter is , which is the reciprocal of the 

time-constant of the accumulation process. If  is negative, it means that the 

process is "leaky" and early information is lost. If  is positive, then the process 

is "unstable" and early evidence dominates the decision,  = 0 reflects a perfect 

integrator. Model fits show that participants adopted a perfect integrator strategy 

(Supplementary Table S5.2.1). Using output of model as probability of model 

choosing right and plotting it as function of flickers difference shows that model 

nicely fits the behavioral data (Figure 5.2.1B).  

fMRI Results 

The gradual accumulation of sensory evidence is a core decision-making process 

(Erlich, 2015). However, it is hard to disentangle the neural correlates of the 

various decision-making processes, such as decision-monitoring, confidence in 

decision or error detection, from sensory evidence accumulation (Gold & 
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Shadlen, 2007; Shadlen & Kiani, 2013). Thus, it is not clear whether activity 

related to evidence accumulation and confidence in the decision are encoded in 

the same brain regions, or rather engage different brain regions. To investigate 

the brain regions with activity modulated by the sensory evidence we used 

likelihood estimates from model fits representing accumulated sensory evidence 

on a trial-by-trial basis to build parametric predictors of the stimulus 

presentation period (Methods). All maps were formed using a cluster-forming 

threshold p=0.005 corrected for multiple comparisons at the cluster level at 

p=0.05 for significant clusters. 

Accumulator regions 

Spatially specific sensory evidence accumulator map 

The perceptual decision formed in our task is about spatially segregated streams 

of flickers. In order to investigate brain regions with activity correlated to 

accumulated evidence favoring right or left choices, we used likelihood 

estimates of the decision as modeled by a quantitative model to build a 

parametric predictor of accumulator regions. The following brain regions 

showed modulation by spatially specific accumulated sensory evidence: 

precentral gyrus, parahippocampal gyrus and middle occipital gyrus (Table 

5.2.1). A region is considered to accumulate sensory evidence for leftward 

decision if it shows the following signal profile: left strong evidence > left weak 

evidence > right weak evidence > right strong evidence. On the other hand, a 
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region accumulates sensory evidence for rightward decision if it shows the 

following signal profile: right strong evidence > right weak evidence > left weak 

evidence > left strong evidence. Investigating time courses from previous 

regions we found that the signal in the right middle occipital cortex followed the 

proposed accumulator profile towards rightward decisions (left strong > left 

weak > right weak > right strong) (Figure 5.2.2A, B). Also, the left precentral 

gyrus accumulates evidence for leftward decisions (Figure 5.2.3A, B).  We also 

extracted beta activity from the aforementioned regions and correlated it to 

modeled sensory. Scatter plots show a significant linear correlation between the 

signal in occipital regions and spatially specific evidence R=-0.43, p=0.002 

(Figure 5.2.2C) and for precentral region R=-0.36 p=0.03 (Figure 5.2.3C). 

Table 5.2.1 Spatially specific accumulator regions 

Regions name BA # 

voxels 

Talairach Correlation 

 x y z r p 

LH Precentral 6 90 -39 -4 31 -0.36 0.03 

RH Parahippocampal gyrus 19 43 21 -19 -5 -0.54 0.0006 

RH Middle occipital 19 29 33 -73 10 -0.43 0.002 
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Cluster thresholded at p=0.005 corrected at p=0.05 voxels= 29 

Figure 5.2.2. Spatially specific accumulator regions (A) Statistical map showing right 

hemisphere middle occipital (RH MO) with spatially specific accumulator activity. (B) Event-

related averages from MO showing this signal suggest that it is accumulating sensory 

evidence for leftward decisions. The signal is strongest in trials with strongest evidence 

towards the left, and is weakest in trials with strongest evidence towards the right. When the 

evidence does not clearly favor one side, the signal did not clearly favor one choice. Blue is 

strong evidence towards left, light blue is weak evidence towards the left, orange is weak 

evidence towards the right, red is strong evidence towards the right (C) Scatter plot of beta 

values extracted from a 6mm sphere around the peak voxel from MO as a function of 

modeled evidence shows a significant linear correlation towards the contralateral side R=0.43, 

p=0.002. 
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Cluster thresholded at p=0.005 corrected at p=0.05 voxels= 29. 

Figure 5.2.3. Spatially specific accumulator regions (A) Statistical map showing left 

hemisphere precentral (LH PC) region with spatially specific accumulator activity. (B) Event-

related averages from PC showing that signal suggest it is accumulating sensory evidence for 

leftward decisions. Signal is highest for trials with highest evidence towards left and signal is 

lowest for trials with strongest evidence towards the right. When the evidence does not clearly 

favor one side, the signal was also did not clear favor one choice. Blue is strong evidence 

towards left, light blue is weak evidence towards the left, orange is weak evidence towards 

the right, red is strong evidence towards the right. (C) Scatter plot of beta values extracted 

from a 6mm sphere around the peak voxel from PC as a function of modeled evidence shows 

a significant linear correlation towards the contralateral side R=0.36, p=0.03. 
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Non-Spatially specific sensory evidence accumulator map  

In order to investigate brain regions with a signal that is modulated by sensory 

evidence but in a non-spatially specific manner (i.e. difficulty), we used absolute 

values of likelihood estimates of the decision to build a parametrically 

modulated predictor for the stimulus presentation period. The following brain 

regions showed a signal that was positively modulated by non-spatially specific 

accumulated sensory evidence: Cuneus gyrus - strong signal when evidence was 

strong (i.e. easy trials) (Figure 5.2.4A). The following brain regions showed a 

signal that was stronger when the absolute level of evidence was low (i.e. hard 

trials): medial frontal gyrus (Figure 5.2.4B, Table 5.2.2).  

 

Cluster thresholded at p=0.005 corrected at p=0.05 voxels= 11. 
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Figure 5.2.4. Non-spatially specific accumulator regions. (A) Cuneus showed increase in 

signal strength when the absolute level of evidence was high. (B) Medial frontal region (BA6) 

show increase in signal strength when the absolute level of evidence was low.   

Table 5.2.2 Non-spatially specific accumulator regions (i.e. difficulty) 

Regions name BA # Voxels Talairach Strong evidence  

(easy) > weak 

evidence (hard) 

t-test 

x y z t(11) p 

LH Medial frontal  6 11 9 -28 58 -0.92 0.38 

LH Cuneus 18 13 -3 -85 19 2.35 0.04 

 

ROI based spatially specific sensory evidence accumulation signal  

We constructed regions of interest (ROIs) based on the coordinates of peak 

activity of regions showing modulation by signed accumulated visual sensory 

evidence from a localizer group. We tested the same visual task in the localizer 

group with a wider evidence range (easy had ten flickers difference and hard had 

two flickers difference). ROIs showing a spatially specific sensory evidence 

accumulation signal from the localizer group were: left and right middle 

occipital, and right lingual. We extracted beta values from those regions and 

tested the correlation of the signal to modeled sensory evidence of participants 

in this group. We found that the right middle occipital (r= 0.37, p=0.008), and 

right lingual (r= 0.30, p= 0.03) were significantly modulated by sensory 

evidence in the current sample of participants as well.  
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ROI based spatially non-specific sensory evidence accumulation signal  

From the localizer group, ROIs of non-spatially specific sensory evidence 

accumulation were: right middle frontal gyrus, left lentiform, bilateral 

precentral, right post-central gyrus, left insula, right inferior occipital lobule, 

right angular gyrus, right middle occipital. We extracted beta values and 

comparing strong evidence > weak evidence using t-tests for each ROI. None of 

the regions localized by the localizer group showed the effect of non-spatially 

specific sensory evidence in the current group. Probably ROIs chosen didn’t 

overlap with voxels from current study showing effect of spatially non-specific 

sensory evidence accumulation signal.   

Decision-monitoring regions  

To explore brain regions with signal suggestive of decision-monitoring activity, 

we proposed triangulate criteria. The testing strategy was to identify ROIs based 

on one criterion and perform ROI analyses on the identified ROIs to see whether 

they met the other criteria. To investigate candidate regions that satisfied the 

first criterion, i.e. the presence of a difference between correct and error trials, 

we contrasted correct and error trials.  A trial was graded "correct" if it had a 3 

flickers difference or 1 flicker difference to the right, and the subjects chose 

right response, and "error", if the subjects chose left response. We found that the 

only brain region that showed a stronger signal for correct trials was the 
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midbrain (Figure 5.2.5A, Table 5.2.3). Moreover, brain regions that showed a 

stronger signal for error trials were the inferior and middle frontal gyrus, insula, 

cingulate (Figure 5.2.5B, Table 5.2.3).  

 

Cluster thresholded at p=0.005 corrected for p=0.05 voxels= 8 

Figure 5.2.5. Accuracy map contrast (Correct>Error). (A) Statistical map showing 

midbrain (MB) with higher signal for correct trials. (B) Statistical map showing middle 

frontal gyrus (MFG), inferior frontal gyrus (IFG), and insula with higher signal for error 

trials, left hemisphere (LH), right hemisphere (RH). Map cluster thresholded at p=0.005 

corrected for p=.0.05 voxels= 8. 
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Table 5.2.3 Decision monitoring regions  

Region BA # 

Voxels 

Talairach Correct vs. error 

t-test 

x y z t(11) p 

LH Inferior frontal gyrus 46 9 -42 35 13 -4.4269 0.0013 

RH Middle frontal gyrus 46 9 54 32 22 -6.7036 0.0001 

RH Insula 13 8 33 26 7 -6.0548 0.0001 

RH Cingulate 6 8 15 -1 49 -5.4147 0.0003 

Midbrain - 14 3 -25 -17 4.9955 0.0005 

 

We treated inferior frontal gyrus, middle frontal gyrus, cingulate, insula, and 

midbrain as regions of interests (ROIs). For demonstration purposes we 

examined the time courses of brain regions showing the effect of accuracy and 

found that the signal from inferior, middle frontal gyrus, cingulate, and insula 

were stronger for error trials during stimulus presentation period, while the 

midbrain had a stronger signal with correct trials (Figure 5.2.6A). Therefore, the 

aforementioned regions exhibited a difference between correct and error trials, 

thus satisfying the first criterion.  

To explore which brain regions satisfies the second criterion, i.e. an interaction 

between correctness and difficulty mimicking the behavior of confidence 

modulation by task difficulty; we extracted beta values from ROIs of the 

following predictors: correct easy, correct hard, error hard, error easy. We found 
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significant positive linear correlations in the inferior frontal gyrus (R= 0.44 p= 

0.002), middle frontal gyrus (R= 0.36 p= 0.01), cingulate (R= 0.51 p<0.001) and 

insula (R= 0.39 p= 0.006), which means that activity was highest for error easy 

trials and lowest for correct easy trials. On the other hand, there was a 

significant negative correlation in midbrain regions (R= -0.54 p <0.001), 

meaning that activity was highest for correct easy trials and lowest for error easy 

trials (Figure 5.2.6B). As such, those regions also satisfy the second criterion 

and reflect the behavioral results for confidence rating.  

To study which ROIs satisfied the third criterion, i.e. the presence of an activity 

difference between confident and not confident trials at the same level of 

difficulty and accuracy, we compared the extracted beta values from the ROIs of 

the following predictors: confident, correct easy trials, not confident correct easy 

trials. We studied this possibility in the correct easy trials since we expected the 

difference between confident and not confident trials to be largest when the 

evidence was stronger and subject was correct. We found that only the middle 

frontal gyrus exhibited a significant difference between confident and not 

confident trials at the same level of accuracy and difficulty t (11) = 2.37 p=0.03 

(Figure 5.2.6C). 

Thus, only the right middle frontal gyrus region showed a signal suggestive of 

subjective estimates of decision accuracy. Activity in middle frontal gyrus was 

higher in error trials than in correct trials. Moreover, we found a positive linear 
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correlation between the signal in the middle frontal gyrus and task difficulty. 

The signal was strongest for error trials and weakest for correct trials at the same 

level of difficulty; easy trials suggestive of a role in error detection. Lastly, the 

signal in middle frontal gyrus was modulated by the confidence rating of the 

participants at the same level of difficulty (easy) and accuracy (correct) trials. 
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Figure 5.2.6. Candidate regions of neural correlates of decision-monitoring. (A) Event-

related averages plots show a stronger signal for error trials in inferior frontal gyrus (IFG), 

middle frontal gyrus (MFG), cingulate, while there was a stronger signal for correct trials in 

the midbrain. (B) Scatter plots of beta values extracted from brain regions exhibiting an effect 

of accuracy show that the response in those regions was modulated by the difficulty level. The 

signal in MB is strongest for correct easy trials and weakest for error easy trials (t(11)= 3.1, 

p=0.009), while the signal in IFG (t(11)= 2.49, p=0.03), MFG (t(11)= 2.49, p=0.03), and 

cingulate (t(11)= 2.49, p=0.03) was strongest for error trials and weakest for correct easy 

trials. (C) Mean beta values for confident correct easy and not confident correct easy. Of the 

candidate regions with a signal suggestive of involvement in decision-monitoring, only the 

MFG showed a significant difference when the subjects were confident compared to not 

confident at the same level of difficulty and accuracy t(11)= 2.37 p=0.03. 

 



 

130 

 

It is reasonable to propose that decision-monitoring signal should be explored in 

time periods later than the stimulus presentation period. Therefore, we also 

applied same methodology used earlier to the delay and motor period by 

contrasting correct vs error trials for each of those time periods. We found that 

medial frontal region in the delay and the motor period to show modulation 

accuracy (Supplementary figure 5.2.7). Moreover, posterior parietal region 

showed higher signal for error trials in the motor period only (Supplementary 

figure 5.2.7). However, signal in the delay and motor period is influenced by 

motor preparation and motor response. Thus, based on recent findings 

suggesting that confidence in the decision builds up as a second layer of the 

decision formation network (Insabato, Pannunzi, Rolls, & Deco, 2010b) and in 

parallel to the decision formation itself (Gherman & Philiastides, 2015) we favor 

investigating the stimulus presentation period itself for the decision-monitroing 

signals.  

Discussion 

The aim of this study was to investigate if visual sensory evidence accumulation 

and confidence in the visual decision engages similar brain regions. We have 

presented data showing that visual sensory evidence engages occipital regions; 

middle occipital and lingual, in a spatially specific manner and frontal regions in 

a spatially non-specific manner. On the other hand, inferior frontal gyrus, middle 
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frontal gyrus, insula, cingulate, and midbrain showed signal suggestive of 

decision-monitoring; confidence in decision or error detection.  

Neural correlates of visual sensory evidence accumulation  

We used model-based fMRI to investigate neural correlates of sensory evidence 

accumulation. We found that the occipital regions were modulated by spatially 

specific accumulated sensory evidence; activity in the right occipital cortex was 

as follows: (left high evidence > right low evidence > left low evidence > right 

high evidence). In our task, we used a slow event-related design, which allowed 

us to identify the sensory response from the motor response. Previous 

neuroimaging studies investigating sensory evidence accumulation have shown 

that once the perceptual component was dissociated from the motor component, 

as in our task design, the occipital cortices would show activity correlated with 

sensory evidence accumulation (Hebart, 2014; Philiastides & Sajda, 2007). 

Moreover, we found that the left precentral cortex accumulated evidence in a 

spatially specific manner towards leftward decisions (left high evidence > right 

low evidence > left low evidence > right high evidence).  This is consistent with 

previous neuroimaging studies that proposed a role of prefrontal regions in 

sensory evidence accumulation (Heekeren, 2004, 2008; Liu & Pleskac, 2011; 

Philiastides, Auksztulewicz, Heekeren, & Blankenburg, 2011). However, since, 

in this task, the participants had to form a spatial decision, i.e. more flickers 

right or left, we assumed that the sensory evidence had to accumulate in a 
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spatially specific manner. Nevertheless, we investigated the possibility that 

sensory evidence would accumulate in a spatially non-specific manner. We 

found that medial frontal regions and the cuneus were modulated by the absolute 

level of sensory evidence, regardless of the spatial direction. Medial frontal 

activity was higher for low-level sensory evidence, while cuneus activity was 

higher for high-level sensory evidence. The absolute level of sensory evidence 

was highly correlated with decision difficulty; the stronger signal in the medial 

frontal gyrus was related to increasing task demands, such as effort or attention. 

This could be viewed in light of previous fMRI findings that suggest a role of 

the medial frontal gyrus in visual attention (Corbetta et al., 2005).  

The role of middle frontal gyrus in decision-monitoring  

Disentangling neural processes of decision-monitoring, i.e. confidence in the 

decision, from other decision-related processes, is challenging. We found that 

the right middle frontal gyrus was the only region in the brain that harbored 

activity fulfilling all three criteria for identifying a brain region of decision 

monitoring. Thus, we propose that activity in the middle frontal gyrus correlates 

with subjective estimates of decision-monitoring. Previous fMRI studies have 

shown that activity in the right rostrolateral prefrontal (rlPFC) cortex is related 

to metacognitive aspects of decision-making (Fleming & Dolan, 2014). In their 

study, they showed that the rlPFC showed greater activity during self-report 

compared to a matched control condition. In addition, functional connectivity 
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between right rlPFC and both contralateral PFC, and the visual cortex increased 

during metacognitive reports ( Fleming & Dolan, 2012).  

The role of anterior cingulate in error detection  

In our results, we found that activity in the anterior cingulate (ACC) region was 

higher for error trials than for correct trials. Studies investigating event-related 

brain potential (ERP) have reported error-related negative activity (ERN) that 

peaked 100 to 150 ms after electromyographic evidence of an error response that 

was localized to medial frontal regions (Ghering 1994, Falkenstein 1995). A 

seminal fMRI study investigating the role of the ACC in task performance, 

showed that activity in ACC was higher for error trials compared to correct trials 

in ACC (BA24/32) (Carter et al., 1998). Similarly, we showed that signal in 

ACC (BA24) is stronger for error trials compared to correct trials. We found that 

this activity was also modulated by task decision difficulty. This is in line with 

the increased activity in the ACC in trials with high response competition 

compared to low response competition.   

The role of the midbrain in confidence in the decision and decision 

optimization 

We found that midbrain activity satisfied the first two criteria: a difference in the 

signals between correct and error trials, and interaction between correctness and 

difficulty mimicking behavior of confidence. Signal strength was suggestive of 

generation of confidence in the decision (i.e. stronger in correct trials than in 
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error trials, strongest in easy correct and weakest in easy error trials). The 

midbrain includes the superior and inferior colliculi, tegmentum, substantia 

nigra, red nucleus and other nuclei and fasciculi. The basic function of the 

midbrain includes visual coordination (superior colliculi), auditory coordination 

(inferior colliculi), motor coordination (substantia nigra) and gait (red nucleus). 

Midbrain dopaminergic neurons are considered to be involved in reward 

(Schultz, 1998), working memory (Williams & Goldman-Rakic, 1995), and 

learning (Steinberg et al., 2013). Recent findings also showed that dopaminergic 

neurons are involved in certainty and precision of beliefs (Schwartenbeck, 

2015). Schwartenbeck designed an event-related fMRI study, in which the 

subjects had to decide whether to accept the current offer or wait for a possibly 

higher offer, with the risk of losing everything. In this task, precision can be 

regarded as confidence that a more valuable offer would appear in the future. 

They found that midbrain activity might be associated with the expected 

precision of beliefs, which can also be understood as confidence of reaching the 

desired goal and not reflecting reward prediction error. Nevertheless, whether 

the strong BOLD signal in this region truly reflects dopaminergic neuronal 

activity is still under debate (Düzel et al., 2009). However, the physiology of 

dopaminergic neurotransmission is more consistent with a role in mediating 

precision, since the expected precision needs to be widely broadcasted because it 

plays a crucial role in hierarchical inference (Feldman & Friston, 2010a). These 

features are anatomically and neurophysiologically consistent with the encoding 
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of precision by neuromodulators (Friston et al., 2012), and with dopaminergic 

activity, in particular. It is important to note that our task does not require 

reward learning. Therefore, there was nothing that would call upon reward 

prediction error (Schultz, Dayan, & Montague, 1997).  Such a view of the role 

of midbrain dopaminergic activity in precision fits with formulations in terms of 

signal-to-noise (Williams & Goldman-Rakic, 1995), uncertainty, and precision 

(Fiorillo, Tobler, & Schultz, 2003), and the crucial role that dopamine plays in 

selecting among alternative actions (Frank, 2005). Establishing a link between 

confidence and dopaminergic activity provides insights into the 

psychopathology of confidence in decision-making which has been discussed in 

the context of a number of disorders including psychosis (Adams, Stephan, 

Brown, Frith, & Friston, 2013) and Parkinson's disease (Frank, 2005; Friston et 

al., 2012).  

Disentangling decision correlates from post-decision confidence 

In this study, we aimed at disentangling the neural correlates of sensory 

evidence accumulation as a core decision process from the neural correlates of 

confidence in the decision. To disentangle the processes underlying confidence 

judgment and decision making Hilgenstock and colleagues (Hilgenstock et al., 

2014) used a grating orientation task, in which the subjects were required to 

indicate the orientation of tactile gratings and rate their level of confidence on a 

scale of 1 to 4 while they were being scanned with fMRI. To identify the neural 
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correlates of post-confidence and the decision itself, they based their 

assumptions on the two-stage dynamic signal detection model (2DSD) (Pleskac 

& Busemeyer, 2010). This model suggests that confidence and metacognitive 

judgment about decisions only evolve post-decision with the ongoing 

accumulation of information (Hilgenstock et al., 2014). So, based on the 

temporal evolution of signal it is possible to separate the neural correlates from 

the confidence from the decision. They found that DLPFC strictly codes post-

decision confidence. However, a study using EEG challenged their underlying 

assumption that confidence and decision are separated temporally. Gherman and 

Philiastides (Gherman & Philiastides, 2015) found that decision and confidence 

in the decision were generated simultaneously in the brain and they mapped 

neural correlates of the decision and confidence in the decision to frontal and 

parietal regions. Our criterion was based on predictions of integrate-and-fire 

attractor models (IFA) of the BOLD signal behavior. IFA proposed that 

confidence is an emerging property of the networks forming the decision 

(Insabato, 2010). IFA models were able to fit and explain behavioral data from 

animals and neural data from electrophysiology recordings in rats (Kepecs et al., 

2008) and monkeys (Kiani & Shadlen, 2009).  By convolving the firing rate 

with a hemodynamic response function, it was proposed that for a region to be 

involved in confidence, the BOLD signal had to be modulated by accuracy and 

difficulty levels (Rolls et al., 2010). We managed to disentangle the neural 

correlates of sensory evidence accumulation as a signal of regions involved in 
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the decision itself. We used the IFA criteria to show that the right middle frontal 

region was the only brain region that showed a signal of decision-monitoring.  

Relation of our findings to the literature:  

In this study we demonstrate that sensory evidence accumulation and decision-

monitoring although behaviorally correlated could engage different brain 

regions. This is in line with previous findings in neuroimaging literature 

showing the visual evidence accumulate in occipital regions while confidence in 

the decision is better coded in posterior parietal cortices (Hebart, 2014).  

Moreover, we investigated the decision-monitoring signal in the same time 

period of sensory evidence accumulation based on recent findings that decision 

formation and confidence in the decision occurs simultaneously (Gherman & 

Philiastides, 2015). Also, in our study we show that signal in midbrain is 

suggestive of confidence coding while signal in cingulate and prefrontal regions 

is suggestive of error detection. Previous studies investigating metacognition 

didn’t show whether metacognitive regions correlate with confidence in the 

decision or error detection (Fleming & Dolan, 2014).  

Limitations of the study 

In this study, we aimed at disentangling the neural process of sensory evidence 

accumulation from those of decision-monitoring. However, one major limitation 

of this study was the use of fMRI to investigate the neural correlates of sensory 

evidence accumulation (Hanks & Summerfield, 2017). fMRI has a low spatial 
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and temporal resolution (Logothetis, 2008), and we were therefore not able to 

benefit from the minute dynamics of sensory evidence buildup as modeled by 

the quantitative model that we applied. Moreover, it is conceivable that other 

brain regions outside of the occipital cortex, which have neural populations that 

are less spatially specific, to exhibit neural activity correlating with evidence 

accumulation. However, given the poor spatial resolution of fMRI, such detailed 

signal may have blurred. Moreover, our criteria were based on an assumption 

derived from predictions of the BOLD signal according to integrate-and-fire 

attractor models based on simulations of neural firing rates (Insabato, 2010). 

Such simulations have shown a linear relationship between the BOLD signal 

and neural firing rates (Rolls et al., 2010). However, the relation between neural 

activity and BOLD signal is still not fully understood. 
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Cluster thresholded at p=0.005 corrected for p=.0.05 voxels= 37 

Supplementary Figure 5.2.1. Accuracy map for delay and motor response periods (A) 

Statistical map showing medial frontal regions with higher signal for correct trials in the delay 

period. (B) Statistical map showing medial frontal region and posterior parietal regions with 

higher signal for error trials during the motor response period. 
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Conclusion: 

In this study we managed to disentangle the various brain regions involved in 

the build-up of the visual evidence accumulation signal from the regions 

involved in decision-monitoring.  
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Supplementary Table 5.2.1. Model parameters for the most relevant parameters in the 

study of decision-making strategy based on model fits. 

Modality  sigma(a) sigma(s)  B Lapse rate 

Visual 0.2612     2.5281 0.0135 24.8630 0.0144 

 

σ2a a diffusion constant, parameterizing noise in "a", the decision variable. 

σ2s parameterizes sensory noise when adding the evidence  

λ parameterizes consistent drift in the memory a. In the ‘leaky’ or forgetful case (λ < 0), drift 

is towards a = 0, and late stimuli pulses have a greater impact on the decision than earlier 

pulses. In the ‘unstable’ or impulsive case (λ > 0), drift is away from a = 0, and early stimuli 

pulses have a greater impact on the decision than later pulses. The memory's time constant τ = 

1/λ. 

B the height of the ‘sticky’ decision boundaries and parameterizes the amount of evidence 

necessary to commit to a decision. 

Lapse rate the fraction of trials in which a random response is made 

For details on model fitting procedure and model parameters (Brunton, 2013). 
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5.3 Voxel-based lesion-symptom mapping of the effect of cortical and 

subcortical lesions on auditory and visual perceptual decision-making.  

Abstract 

Neuropsychological studies revealed that hemispatial neglect patients have an 

ipsilesional choice bias in both auditory and visual tasks. However, most studies 

investigating hemispatial neglect use visual tasks, and the role of different 

cortical and subcortical lesions on auditory spatial perceptual decision-making is 

thus not entirely clear. In the fMRI study described above in this manuscript, we 

found that spatially specific sensory evidence accumulates in modality specific-

sensory cortices, while neural signatures of secondary decision processes such 

as saliency, or confidence in the decision appear in frontal and parietal regions. 

We used the same auditory and visual tasks as in the previous fMRI studies to 

calculate the probability of a rightward choice as a function of the stimuli 

difference "right minus left". We estimated bias, i.e. probability that a 

participant would choose "rightward" when the difference between left and right 

was minimal. We also estimated the performance measure "slope". Based on the 

fMRI findings we formulated specific predictions of the effect of lesions on 

visual and auditory perceptual decision-making: (1) a lesion in accumulator 

areas such as the superior temporal gyrus or occipital regions will result in an 

ipsilesional choice bias in a modality-specific manner. (2) A lesion in the frontal 

or parietal cortex will lead to slope changes that suggest an effect of the lesion 

on task performance regardless of modality. To investigate causality we tested 
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patients with cortical and subcortical lesions in the right hemisphere. We used 

voxel-based lesion-symptom mapping to analyze the relationship between 

lesions and behavior on a voxel-by-voxel basis.  We found data suggestive of a 

significant role of the parietal cortex resulting in a decrease of auditory task 

performance as shown by in slope change that conformed to our fMRI informed 

prediction. 

Introduction 

Despite the importance of auditory cues in guiding spatial behavior, much of 

what is known about how the brain utilizes sensory information to form spatial 

decisions is based on the results of visual tasks (Gokhale, Lahoti, & Caplan, 

2013). In the auditory domain, the brain’s ability to form auditory spatial 

decisions relies on its capacity to detect an interaural time difference between 

the two ears (Thompson et al., 2006). Auditory information from the left and 

right auditory afferents meets early in the auditory system at the level of the 

superior olivary complex in the brainstem, and then projects to the medial 

geniculate nucleus of the thalamus via the inferior colliculus in the midbrain 

(Irvine, 1986; Heffner and Masterton, 1990). The auditory cortex is organized 

into four hierarchical levels: Heschel’s gyrus (core), belt, parabelt, and the 

projections of the parabelt regions with information flowing from core to belt to 

parabelt (Kaas & Hackett, 2000). Efferent connections from the parabelt are 

arranged into two functional circuits. That relevant to the current study is the 

anterolateral parabelt which sends projections to the inferior parietal lobule, 
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dorsolateral frontal cortex, frontal eye fields and areas of the prefrontal cortex 

involved in spatial processing (Romanski et al., 1999). In humans, evidence 

from functional magnetic resonance imaging, electrophysiology, and positron 

emission tomography studies suggests that the posterior part of the superior 

temporal gyrus and the inferior parietal lobule are involved in the localization of 

sound in space and in spatial orienting (Arnott, 2004). Lesions in these 

structures would lead to auditory directional error and distorted spatial 

representation (Arnott, 2004, 2005; Barrett, 2010).  

Functional magnetic resonance imaging (fMRI) is usually assumed to establish a 

correlation between metabolic changes in the brain and some behavioral output, 

but it is difficult to infer causality based on fMRI alone (Logothetis, 2008). 

Therefore, supplementing functional neuroimaging studies with causality-

establishing methods such as studying the effect of lesions lead to a better 

understanding of disorders such as the hemispatial neglect syndrome (Corbetta 

et al., 2005; Heilman & Valenstein, 1972; Husain & Kennard, 1996; Jacobs, 

Brozzoli, & Farnè, 2012; Kinsbourne, 1970). 

The hemispatial neglect syndrome is defined as failure to report, respond to, or 

orient to stimuli that presented to the side opposite the damaged hemisphere that 

cannot be solely explained by primary motor or sensory deficits (Heilman & 

Valenstein, 1972). Neglect of the left side after a lesion to the right hemisphere 

is more frequent and severe than right side neglect after a left hemispheric lesion 
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(Driver and Mattingley, 1998). Two main theories have been proposed to 

explain this pathophysiology. (1) The orientation bias model hypothesizes that 

attention is shifted toward the contralateral side via inhibition of the ipsilateral 

hemisphere (Kinsbourne, 1970). (2) The right-hemisphere dominance model 

states that the left hemisphere represents the right side of space, whereas the 

right hemisphere represents both sides (Heilman, 1980). Studies investigating 

the ability of neglect patients to localize perception of sound sources in the free 

field or lateralized via headphones found a prominent deficit of lateralization 

perception in patients with neglect (Bisiach et al., 1984). Deficits are typically, 

and more severely, observed in right-hemisphere lesions (Zatorre & Penhune, 

2001). 

In the fMRI study described in the previous chapter, we investigated the neural 

correlates of sensory evidence accumulation in auditory and visual tasks and the 

neural correlates of confidence in the decision. We found that sensory evidence 

accumulates in modality-specific brain regions; the signal in the superior 

temporal gyrus correlated with auditory sensory evidence accumulation, while 

the signal in occipital cortex correlated with visual sensory evidence 

accumulation. Moreover, we showed that the signal in the frontal and parietal 

regions did not correlate with sensory evidence accumulation, but rather 

correlated with decision difficulty; when the decision was harder to form the 

fMRI signal was stronger in those regions. However, the causal contribution of 

the previously identified brain regions to auditory perceptual decision-making is 
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not clear. Based on empirical findings from two previous fMRI studies we 

expected the following effect of lesions: (1) A lesion affecting accumulator 

regions in sensory cortices will lead to an ipsilesional choice bias in a modality-

specific manner. (2) A lesion affecting the parietal or frontal cortex will 

decrease task performance regardless of modality (Figure 5.3.1).  

 Figure 5.3.1. Schematic illustration of 

fMRI-based predictions of the effect of 

lesions on auditory and visual perceptual 

decision-making.  (A) Lesions affecting the 

auditory accumulator in red will lead to 

auditory ipsilesional bias. (B) Lesions 

affecting the visual accumulator in blue will 

lead to visual ipsilesional bias. (C) Lesions 

affecting the parietal frontal cortex will lead 

to a performance decrease as demonstrated 

by slope changes. 

 

To examine the fMRI-driven predictions, we tested patients with right 

hemispheric lesions affecting cortical and subcortical structures with the same 

auditory and visual tasks previously used. We estimated two behavioral 

measures based on the probability of participants to choose "right" as function of 

the stimuli difference" right minus left". First measure is rightward bias. 

Rightward  bias is the probability of participants to make a rightward choice 

when the trials had the least difference between right and left. The second 

measure is slope. We use slope as a measure of task performance and estimate it 

from the 75% and 25% recognition points. We use voxel-based lesion-symptom 

mapping (VLSM) (Bates et al., 2003) to study the relationship between the 
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lesions and the behavioral estimates; bias and slope, for auditory stimuli in a 

voxel-by-voxel basis.  

Materials and Methods  

Patients and age-matched healthy controls:  

A total of 25 participants were tested (18 patients, and seven healthy, age-

matched volunteers as controls). We included nine patients in the final analysis. 

Seven patients had a right-sided cortical lesion (four males, mean age 58.7, SD 

10.1 years).  Two patients had a right subcortical lesion (one male, mean age 55, 

SD 5.67 years). Nine patients were excluded (four due a disease etiology other 

than stroke, e.g. tumor, trauma, dementia, sarcoidosis), five were excluded 

because they did not participate in all of the sessions. The patients were tested in 

the sub-acute or chronic stage after a stroke (> one month after the stroke). 

Control subjects were seven healthy, aged-matched volunteers (six males, mean 

age 62.6, SD 9.3 years). All participants gave their written informed consent. All 

procedures were performed according to the Declaration of Helsinki and were 

approved by the local Ethics Committee of the University Medical Center 

Göttingen. The participants received a monetary compensation for their 

participation in the experiments (Table 5.3.1). 
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Table 5.3.1 Demographic data 

Lesion Age Sex Handedness Clinical 

symptoms 

Time of testing 

after stroke in 

months 

Parietal      

AD 52 M L H, A 17 

PJ 60 M R H, A 18 

CG 63 F L - 1 

VH 48 M R H 17 

GB 63 M R H 21 

AE 53 M R H, A 2 

SJ 53 M R H, D 2 

Parietal 

 Mean ± SD 

(yrs) 

58.6 ± 10.1     

Subcortical       

CT 56 F R H 3 

JE 49 M R H, A 2 

Subcortical  

Mean ± SD 

(yrs) 

52.5 ± 4.9     

Healthy 

controls n=7 

     

Mean  62.6 ± 9.3 6 M R - - 

H= hemiparesis, A= hemianopia, D = hearing deficit. All patients had a stroke affecting the right brain 
hemisphere.  
 

Neglect test battery  

Visual neglect test battery 

As screening tests for visual neglect, we used the following tests: line bisection, 

line cancelation and star cancelation (Fels & Geissner, 1996). The tests were not 

used to categorize patients.  

Auditory neglect test battery (dichotic test) 

For evaluating auditory neglect, we used the Uttenweiler test (Uttenweiler, 

1980). This German dichotic test was originally developed for children, but we 

used it here since it is most appropriate for auditory testing neglect in the patient 

population (Gutschalk, 2012). 
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Pure-tone audiometry 

Each of the patients was evaluated for a primary sensory hearing deficit using a 

pure tone auditory hearing-test mobile phone application (Masalski & Kręcicki, 

2013). A Sennheiser HD pro 380 headset was used after calibration to 

30-year-old healthy participant with no hearing deficit. The tone was presented 

at different frequencies. The tone with the frequencies 250, 500, 1000, 2000, 

4000, 6000 and 8000 Hz was presented to each ear separately beginning with an 

amplitude of 40 dB. The amplitude was then reduced in 5 dB steps, and the 

participants had to indicate that they heard the tone after each reduction, either 

verbally or by raising their hand until they were no longer able to hear the tone. 

The results of the right and left ear were compared to a published database of 

hearing tests results. A difference of 10db between the left and right ear at 

frequencies of 1000 or 2000 Hz was considered to be a deficit.  

Experiment setup 

The participants sat in a small, closed quite room with their head position 

stabilized on a chin rest. They were instructed to fixate a central cross with their 

eyes. Eye position was monitored using the SMI RED system 120 Hz, and by 

the experimenter sitting in front of the patient. Matlab 2010Rb and 

Psychophysical Toolbox (www.psychotoolbox.org) was used to control stimulus 

delivery with a customized script. The clicks were presented using a headset 

(Sennheiser HD 380 pro headset). Monitor (Dell, Ultrasharp U2711b) with an 

http://www.psychotoolbox.org/
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eye-screen distance of 57 cm. The spatial resolution was 1920 × 1200 pixels, 

and the monitor had a refresh rate of 60 Hz. The participants responded to the 

task by pressing buttons on the mouse pad. 

Task 

The participants were asked to determine whether the right or left side of the 

headset received more clicks during the auditory task. They were asked to 

determine whether the left or right side of the screen had had more flickers 

presented to it. Each run was started by the participant pressing a key on the 

keyboard. Fixation cross color changes indicated the different stages of the task. 

The task began with a red cross, and the participant was to answer when the 

cross turned green. The cross stayed red while the stimuli were being presented 

and also for a delay period of one to four seconds after the end of stimuli 

presentation. The participants used their right hand to respond by pressing either 

the left mouse button if more stimuli had been on the left, or the right mouse 

button if there had been more stimuli on the right. No feedback was given to the 

participants after completing the trial. There was a rest period of one to four 

seconds between response and beginning of the next trial. The duration of delay 

and rest times was random to prevent the participants from forming a response 

strategy. Each patient finished at least one run of 48 trials in total.  
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Auditory stimuli 

Trains of 3ms clicks lasting one to four seconds were presented over 

headphones. Twenty clicks per second were presented randomly to each ear 

separately (#clicks right (CR) + #clicks left (CL) = 20). There was a minimum 

inter-pulse interval of 33ms to minimize adaptation. The first, and last clicks 

were presented to both ears simultaneously to prevent bias towards the side of 

the first or the last click presented (Brunton et al., 2013). Stimuli were generated 

using MATLAB, version R2011b using custom scripts. 

 Visual stimuli 

Trains of stereo flickers lasting one to four seconds were presented on the 

horizontal plane of the screen at an eccentricity of around 11 visual degrees. 

Each train had five flickers per second (#flickers right (FR) + #flickers left (FL) 

= five per second). Each flicker lasted 16.7ms and had a visual angle of 

approximately two degrees. Consecutive flickers had a minimum inter-pulse 

interval of 120 ms to minimize adaptation (Brunton et al., 2013). Stimuli were 

generated using MATLAB, version R2011b using custom scripts.  

Behavioral data analysis  

Cut-off estimation  

To investigate spatial bias we binned the data into seven bins based on the click 

differences (#right - #left). The centers of the bins were as follow: -40, -20, -5, 

0, 5, 20 and 40 for the auditory task and -10, -5, -2, 0, 2, 5, and 10 for the visual 
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task. We calculated the probability of rightward choice (ipsilesional choice, 

since all of our patients had a right-side lesion) for each bin. We calculated the 

probability of rightward choice for each bin. Bias was percent rightward choice 

at the central bin with 0 differences. We calculated the slope as: y-value of 75% 

recognition point minus y-value of 25% recognition point) / (x-value of 75% 

recognition point minus x-value of 25% recognition point). We calculated the 

2.5 and 97.5 percentiles for the healthy control group bias and slope values. We 

used percentiles as a cut-off point for estimating which patients had a bias and 

slope changes.  

Auditory group analysis  

To investigate the role of cortical or subcortical lesions on choice bias in the 

auditory tasks, we calculated a 2-by-7 mixed ANOVA with cortical stroke vs. 

healthy as the between-subject factor, and probability rightward choice for click 

difference bins as the within-subject factor. The patient SJ was excluded from 

auditory group analysis due to a primary auditory sensory deficit. We binned the 

click differences (#clicks right - #clicks left) into the following bin centers -40, -

20, -5, 0, 5, 20, and 40 and calculated percent rightward choice for each bin. 

ANOVA was run for cortical lesions. The degrees of freedom were corrected for 

non-normally distributed data. 
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Lesion analysis  

MRI data acquisition 

Scans were performed either in Göttingen or in Seesen. All images in Göttingen 

were acquired using a 3Tesla Magnetom TIM Trio scanner (Siemens Healthcare, 

Erlangen, Germany) with a 12 channel, phased-array head coil. High-resolution 

T1-weighted anatomical scans (three-dimensional (3D), turbo fast low angle 

shot, echo time (TE) 3.26 ms, repetition time (TR) 2.250 ms, inversion time 900 

ms, flip angle 9°, isotropic resolution of 1 x 1 x 1 mm
3
) were obtained.   

Probability map  

To visualize the lesions in the patients, we used the regions of interest tool for 

estimating probability maps in BrainVoyager QX Software version 2.8 (Brain 

Innovation, Maastricht, the Netherlands). The lesions in each patient were 

mapped into Talairach space using Neuroelf toolbox. The estimates of eight 

patient lesions were formulated as a volume of interest and used in the regions 

of interest analysis tool in BrainVoyager to estimate probability maps. 

Voxel-based lesion-symptom mapping  

We used voxel-based, lesion-symptom mapping to investigate the effect of 

lesions on auditory task behavioral measures in a voxel-by-voxel way. Patient SJ 

was excluded due to a primary auditory sensory deficit. Patient AE was not 

included in the voxel-based, lesion-symptom mapping because he had no scans 

of his lesion. We used MRIcron for VLSM analysis (Rorden et al., 2007).  The 
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lesions were manually mapped onto MNI templates in a slice-by-slice manner. A 

non-parametric design with four predictors was employed using the NPM plugin 

for MRIcron. Predictors were: bias auditory, slope auditory. We used Brunner 

Munzel statistical rank tests, running 1000 permutations tests on continuous 

values of slope and bias. Since the software assumes higher values to indicate 

better performance, we inverted the magnitude of the bias values by multiplying 

with -1. The resulting statistical maps were overlaid on the same template used 

for drawing the lesions.  
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Results  

Nine patients and seven healthy, age-matched control persons were included in 

the final analysis (for details of patients and participants Table 5.3.1). 

Lateralized trains of flickers were presented to the left and right visual hemifield 

in the visual task. In the auditory task, lateralized clicks to the left and right 

headset were presented. Participants had to decide on which side there had been 

more stimuli (Figure 5.3.2).  

 

Figure 5.3.2. Visual and auditory accumulator tasks. Streams of spatially segregated 

stimuli were presented to the left or the right space (flickers for the visual task, and clicks for 

the auditory task). Patients were asked to make a decision on which side had had the most 

stimuli. After a delay time, the participants were asked to respond with the right hand by 

pressing a button. The durations of the delay and rest periods were randomized to prevent 

patients from developing response strategies. 

 

We calculated the probability of participants choosing right as function of the 

stimuli difference "right minus left". We estimated bias (percent rightward 

choice in central bin with least difference between left and right) and slope (75% 
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discrimination – 25% discrimination point) for all participants (Table 5.3.2). 

The lesions affected cortical and subcortical structures (Figure 5.3.3).  

Table 5.3.2 Behavioral measures results of individual patients  

Lesion Auditory task Visual task Dichotic Auditory  
 

Visual 
 

Star 
cancelation 

Parietal  ML C MR ML C MR (R-
L)/(R+L) 

Slope Slope (R-L)/(R+L) 

AD 0.53 0.88 0.66 0.14 0.53 0.87 -0.09 0.003 0.034 0 

PJ 0.05 0.66 0.89 0.30 0.72 0.83 1 0.008 0.005 0.03 

CG 0.17 0.55 0.66 0.07 0.66 1 0 0.003 0.026 0 

VH 0.10 0.95 1 0 0.58 1 0.03 0.009 0.036 -0.07 

GB 0.87 0.94 1 0.10 1 1 0.88 0.004 0.010 -0.15 

AE 0.17 0.55 0.66 0.33 0.75 0.75 0.15 0.004 0.025 0.15 

SJ 0.17 0.95 1 0 0.67 1 0.03 0.01 0.046 0 

Parietal  
mean ± SD 

0.29 
± 
0.30 

0.78 
± 
0.19 

0.83 
± 
  
0.17 

0.13 
±  
0.13 

0.70 
± 
0.15 

0.92 
± 
0.10 

0.32 
+/. 
0.48 

   0.007 
± 
   0.004 

   0.026 
± 
  0.020 

0 
± 
0.1 

Subcortical            

CT 0 0.54 1 0 0.44 0.75 
 

0.05 0.01 0.050 0 

JE 0 0.30 1 0 0.60 1 0 0.015 0.036 0 

Subcortical  
Mean ± SD 

0.02 
± 
0.03 

0.32 
± 
0.21 

0.92 
± 
0.13 

0 0.52 
± 
0.11 

  0.88 
± 
0.17 

0   0.01 
± 
0.003 

0.04 
± 
0.001 

0 

Healthy 
controls n=7 

          

Mean ± SD 0 
± 
0.02 

0.56 
± 
0.17 

1 
± 
0 

0 
± 
0 

0.57 
± 
0.01 

1 
± 
0 

0 0.014 
± 
0.001 

0.015 
± 
0.001 

0 

Most left (ML), central (C), most right (MR). Right (R), Left (L).  
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Figure 5.3.3. Probability map (PM) of lesions. The lesions were not localized to specific 

brain regions. The lesions affecting cortical and subcortical structures including accumulator 

and saliency regions identified by fMRI studies. 

We applied three analytical approaches using cut-off estimates, auditory group 

analysis, and voxel-based lesion-symptom mapping (VLSM). We focused on the 

auditory task for the group analysis and for the VLSM. It was not possible to 

investigate the visual task in a group manner nor in patients with VLSM since 

only two patients had no primary visual sensory deficits. However, we obtained 

psychometric curves showing the probability of a rightward choice as a function 

of stimuli difference "right minus left" in all patients for the auditory and visual 

tasks. For the single patient analysis we excluded the following patients because 

of hemianopia: AD, AE, CG, PJ, and JE. We excluded patient SJ due to a 

history of left ear tinnitus and a difference of more than10dB between the left 

and right ear in pure-tone audiometry.  
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Single subject cut-off estimates results  

Since each patient had a unique medical history and lesion anatomy we 

investigated behavior in a single patient manner. We focused on the following 

three patients in the single patient analysis approach: VH, GB, and CT. This 

gave a low number of patients who fulfilled the inclusion criteria and finished 

the visual and auditory tasks. To categorize the patients based on behavior, we 

estimated cut-off points by determining the 97.5 percentile based on bias and 

slope values from the healthy participants group. For the auditory task, the bias 

cut-off point was 0.87 while the slope cutoff point was 0.13 (Figure 5.3.4A). 

For the visual task, the bias cut-off was 0.76 and 0.13 (Figure 5.3.4B). Patients 

GB, VH, CT had a slope shallower than healthy controls in the auditory task, 

while patient GB had a slope below cut-off point for the visual task meaning that 

the performance of aforementioned patients was worse than that of healthy 

controls. Only patients with cortical lesions had a rightward bias (ipsilesional 

bias) beyond cut-off. Patients VH and GB had a bias in the auditory task beyond 

cut-off (Figure 5.3.4C), while patient GB exhibited a bias in the visual task 

(Figure 5.3.4C, D).  
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Figure 5.3.4. Psychometric curves of the probability of choosing right as function of 

stimuli difference "right minus left" for auditory and visual tasks (A) Probability of 

healthy, age-matched participants choosing right as a function of clicks difference in the 

auditory task; participants chose more to the right when more right clicks were presented. (B) 

Probability of healthy, age-matched participants choosing right as function of flickers 

difference in the visual task; participants chose more to the right when more right flickers 

were presented. Based on healthy, age-matched behavior we estimated rightward bias, i.e. 

probability of rightward choice in bin with the least difference of stimuli between right and 

left.  Moreover, we estimated the slope of the curve as 75% detection - 25% detection. To 

evaluate pathological bias and slope we calculated the 97.5 and 2.5 percentiles for bias and 

slope. (C) Four patients with cortical lesions showed bias above cut-off in the auditory task.  

(D) One patient with a cortical lesion showed bias above cut-off for the visual task. Patients 

with cortical and subcortical lesions showed shallower slopes than healthy, aged matched 

controls in both modalities. 
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Patient VH: 

VH was a 48-year-old male patient, who was diagnosed with a right-sided 

infarct, left spastic hemiparesis, depression, epilepsy, and left-sided 

hemineglect. His lesion was localized in the right frontal-temporo-parietal 

regions due to occlusion of the middle cerebral artery (Figure 5.3.5A). The 

patient had a history of metabolic syndrome. We tested the patient 17 months 

after the stroke incident. 

The results of the paper and pencil tests for neglect were as follows: line 

bisection score was 9/9, line cancelation test (L 18/18, R 18/18), star cancelation 

score (L 26/27, R 20/27). This indicates that the patient did not exhibit left-sided 

visual spatial neglect. Left monaural score 100%, right monaural score 100%, 

dichotic testing score ((R-L)/(R+L)) 0.03, indicating no sign of auditory 

hemispatial neglect.  

The ipsilesional bias in the auditory task was 0.95. The mean bias in the auditory 

task in the age-matched control group was 0.56 Std ± 0.17 (mean ± SD). The 

patient's ipsilesional bias in the visual task was 0.57, while the mean bias in the 

visual task in the age-matched control group was 0.51 ± 0.01.  

The slope for the patient in the auditory task was 0.009, while the mean slope 

for the auditory task in the age-matched control group was 0.014 ± 0.001, The 

patient had a slope in the visual task of 0.04 (mean slope for the visual task in 

the age-matched control group 0.015 ± 0.001). Thus, VH exhibits bias and 



 

161 

 

performance decrease in the auditory, but not in the visual task. (Figure 5.3.5B, 

Table 5.3.2).   

 

Figure 5.3.5. Patient VH: lesion and behavior in auditory and visual tasks (A) Depiction 

of lesion anatomy in patient VH. His lesion (in blue) involved the right hemisphere (RH), the 

inferior parietal lobule (IPL), superior temporal gyrus (STG), and inferior frontal gyrus (IFG). 

The lesion affected auditory accumulator regions (x) but not visual accumulator regions. (B) 

The psychometric curve of probability that the patient chooses right as function of stimuli 

difference (right-left). Number of trials = 96 for each modality. VH exhibited bias in the 

auditory task, but not in the visual task. His bias is consistent with the fMRI prediction of a 

role of sensory cortices in modality-specific sensory evidence accumulation. VH also had a 

lesion in frontal and parietal regions. His slope was lower than the cut-off value only in 

auditory modality. The decrease in the auditory task is in line with the fMRI prediction of a 

role of frontal and parietal cortices in task performance. 
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Patient GB  

GB was a 63-year-old male patient, who was diagnosed with a right Art. media 

infarct on August 8, 2012, with left-sided hemiparesis, frontal lobe syndrome, 

symptomatic epilepsy, left sided hemineglect, anosognosia, and organic brain 

syndrome. The patient presented with a lesion extending from right frontal-

temporal-parietal to occipital following the occlusion of the right middle 

cerebral artery (Figure 5.3.6A). We tested the patient 21 months after his stroke. 

The results of the paper and pencil tests for neglect results were as follows: line 

bisection score was 9/9, line cancelation test (L 18; R 18), star cancelation score 

(L 27/27; R 25/27), indicating that there was no evidence of spatial neglect in 

the paper and pencil tests. The left and right monaural scores were 100%, and 

the dichotic testing score ((R-L)/(R+L)) was 1 meaning that the patient had a 

left-sided auditory hemispatial neglect.  

GB had an ipsilesional bias in the auditory task of 0.94. The mean bias in the 

auditory task in the age-matched control group was 0.56 ±0.17. The patient's 

ipsilesional bias in the visual task was 1 (mean bias in the visual task in the age-

matched control group was 0.51 ± 0.01). The patient's slope in the auditory task 

was 0.004, while the mean slope in the auditory task in the age-matched control 

group was 0.014 ± 0.001.  The slope of the patient in the visual task was 0.01 

with a corresponding value in the age-matched control group of 0.015 ± 0.001. 



 

163 

 

Thus, GB exhibited an ipsilesional choice bias as well as decreased performance 

in both modalities (Figure 5.3.6B).   

 

Figure 5.3.6. Patient GB: lesion and behavior in auditory and visual tasks (A) Depiction 

of lesion anatomy of patient GB. The lesion involved the right inferior parietal lobule (IPL), 

right inferior frontal gyrus (IFG), right superior temporal gyrus (STG), and right occipital 

gyrus (OC). The lesion affected auditory accumulator regions (x) and visual accumulator 

regions (xx) (B) The psychometric curve of the probability of the patient choosing "right" as 

function of stimuli difference (right-left). Number of trials = 144 for each modality. GB 

showed a pathological bias and slope in both modalities. His ipsilesional bias and 

performance decrease were consistent with the fMRI findings predicting ipsilesional choice 

bias after lesion affecting the accumulator regions in a modality-specific manner and a 

performance decrease after a lesion to the frontal and parietal regions. 
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Patient CT: 

CT was a 56-year-old female patient, who was diagnosed with a right Art. media 

infarct due to occlusion of the right internal carotid artery on Dec. 12, 2015 

resulting in a lesion in the right caudate nucleus (Figure 5.3.7A with left 

hemiparesis. We tested the patient February 5, 2016. 

The results of the paper and pencil tests for neglect were as follows: line 

bisection score was 9/9, line cancelation test (L 18; R 18), star cancelation score 

(L 27/27; R 27/27), left and right monaural score was 100%, and the dichotic 

score ((R-L)/(R+L)) was 0, indicating that patient CT had no auditory or visual 

hemispatial neglect. 

The patient's bias was 0.54 in the auditory task and 0.44 in the visual task; both 

were not above the cut-off point. The slope in the auditory test was 0.01 (below 

the cutoff point), but was above the cutoff point with a visual slope of 0.05. This 

patient with ssubcortical lesion did not exhibit spatial bias in either task, and no 

performance change in the visual task, but a slope change in the auditory task  

(Figure 5.3.7B).   
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Figure 5.3.7. Patient CT: lesion and behavior in auditory and visual tasks. (A) Depiction 

of lesion anatomy of patient CT. Her lesion was confined to the right caudate nucleus (B) The 

psychometric curve of probability of the patient choosing "right" as a function of stimuli 

difference (right-left). Number of trials = 48 for each modality. Patient CT showed no bias in 

either tasks. She had an auditory slope lower than cutoff, but visual slope was not affected. 

From fMRI predictions one would not expect a lesion in the caudate to cause an ipsilesional 

choice bias in the auditory and visual tasks, or performance decrease. The slope change in the 

auditory task is more likely due to external noise. 
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Auditory group analysis 

To understand effect of cortical lesions on the ability of patients to benefit from 

sensory evidence, we investigated the probability of rightward ipsilesional 

choice as a function of bins of click differences between the right minus left. 

Clinicians usually evaluate visual or somatosensory signs of hemispatial neglect 

syndrome but do not usually evaluate auditory neglect (Gokhale et al., 2013). 

Moreover, it was not possible to run this analysis on the visual group because 

several patients presented with a primary visual sensory deficit. Therefore, we 

focused on the auditory task for group analysis. One patient SJ was excluded 

from the auditory group analysis because of a primary auditory sensory deficit. 

We binned the clicks difference (#clicks right - #clicks left) into the following 

bin centers -40, -20, -5, 0, 5, 20, and 40. We calculated the probability of a  

rightward choice for each bin. For the statistical comparison, we performed a 

2x7 mixed ANOVA with stroke vs. healthy as the between-subject factor 

(‘group’) and percent rightward choice for click difference as the within-subject 

factor ('evidence'). The ANOVA showed a main effect of evidence [F (2.65, 

29.20) = 89.73 p < 0.001], meaning more frequent rightward choices when there 

were more clicks on the right. More importantly, there was a significant 

interaction between group and evidence [F (2.65, 29.20) = 17.93 p < 0.001] 

meaning that patients with cortical lesions and healthy controls dealt with clicks 

difference in a different manner. As a follow up, we ran two-sample t-tests 

comparing patients to healthy controls with regard to percent rightward choice 
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for each bin. For all bins with more clicks towards the left, the patients showed a 

statistically significant rightward ipsilesional bias compared to age-matched 

healthy controls p<0.05 (Figure 5.3.8).  

 

Figure 5.3.8. Auditory group analysis. Mean 

probability of choosing "right" as a function of 

clicks difference (right-left) showing patients 

with cortical lesions with an ipsilesional 

rightward bias for stimuli that had larger 

number of clicks on the left side compared to 

controls. Error bars are SEM across subjects. 

Patient SJ was excluded from analysis because 

of a primary auditory sensory deficit.  

 

Voxel-based lesion-symptom mapping (VLSM) 

It is challenging to establish a relationship between a lesion and cognitive 

processes. Lesion studies usually group patients either by lesion location or by 

behavior using cut-off estimates (Chao & Knight, 1998). However, such 

approaches have their drawbacks possibly resulting in a loss of information 

regarding behavior or lesion role (Bates et al., 2003). VLSM overcomes such 

obstacles by using continuous estimates of behavioral parameters, and benefits 

from all lesions data to investigate the relation of the lesion to behavior in a 

voxel-by-voxel manner (Bates et al., 2003; Rorden et al., 2007). Results from 

the permutation tests showed that lesions affecting voxels in the parietal cortex 

led to slope changes in the auditory modality (Figure 5.3.9). Moreover, it 

showed the effect of lesions in frontal temporal and parietal voxels leading to 
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ipsilesional choice bias in the auditory modality (Figure 5.3.10). We did not run 

the VLSM on the visual task due to an insufficient number of patients without 

primary visual sensory deficit. 

Figure 5.3.9. Colorized depictions of results of permutation tests using Brunner Munzel 

(BM) rank statistics evaluating effect of patient lesion on slope of each patient on a 

voxel-by-voxel basis. Lesion affecting voxels in right posterior parietal cortex lead to 

significant decrease in auditory task performance as evaluated by slope. We predicted a 

decrease in performance in the presence of a parietal or frontal lesion based on fMRI findings.  

 

Figure 5.3.10. Colorized depictions of results of permutation tests using Brunner Munzel 

(BM) rank statistics evaluating effect of patient lesion on bias of each patient on a voxel-

by-voxel basis. Lesions affecting voxels in right frontal, temporal, and parietal cortices right 

posterior parietal cortex led to a significant rightward choice bias in the auditory task. The 

VLSM results are consistent with fMRI predictions proposing a role of the superior temporal 

gyrus in auditory accumulation. However, fMRI did not predict a role of parietal and frontal 

regions in sensory evidence accumulation.   
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Summary of results 

In summary, results from the VLSM analysis suggest a causal role of the parietal 

cortex in auditory task performance as predicted by the fMRI results. However, 

due to the limited number of patients who were included in the final analysis, we 

approach our findings in this chapter carefully and avoid strong conclusions 

based on the patients’ lesions.  

Discussion  

In this study, we examined the causal contribution of right-sided cortical and 

subcortical lesions on auditory and visual perceptual decision-making 

accumulator tasks. We derived fMRI-based predictions of the effect of lesions in 

sensory cortices and parietal cortices on auditory and visual perceptual decision-

making. We tested patients with lesions affecting cortical and subcortical 

structures in the right brain hemisphere. We investigated effect of lesions in 

single patients who managed to perform both the auditory and visual tasks and 

had no primary auditory or visual sensory deficits. We focused on the auditory 

task and performed auditory group analysis and voxel-based lesion-symptom 

mapping analysis. Lesions in frontal temporal and parietal voxels led to an 

ipsilesional choice bias in the auditory task, and lesion in parietal cortex lead to 

auditory task performance decrease.  
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Discussion of single patients results in relation to fMRI predictions  

In first fMRI study, we found that the neural correlates of sensory evidence 

accumulation are modality-specific. The superior temporal signal correlated 

with auditory sensory evidence accumulation, while the occipital cortex signal 

correlated with visual sensory evidence accumulation. Thus, we hypothesized 

that a lesion affecting these accumulator regions would result in a modality-

specific deficit, ipsilesional bias. In patient VH the lesion affected the right 

temporal gyrus and parietal cortex but not the visual cortex. Thus, based on 

fMRI predictions one would predict a bias in the auditory task but none in the 

visual task. Indeed, Patient VH showed an ipsilesional choice bias in the 

auditory task but none in the visual task. Moreover, the lesion also extended to 

frontal and parietal regions. Thus, one would expect his lesion to effect task 

performance, shown by a shallower slope in both modalities. VH only showed a 

performance decrease in the auditory task. It could be that his lesion affected a 

subset of neurons that are tuned more to auditory tasks in the frontal and parietal 

regions. However, since his lesion was not localized in a specific node it is hard 

to conclude the patient's data that the frontal and parietal regions play no role in 

sensory evidence accumulation in the auditory task. But, nonetheless, the single 

dissociation between the visual and auditory ipsilesional bias remains 

interesting. 
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On the other hand, the lesion in patient GB affected the visual and auditory 

accumulator regions, the parietal cortex, and frontal regions. One might 

therefore expect an ipsilesional bias in both modalities. GB did exhibit 

ipsilesional bias in both the visual and auditory tasks. Moreover, his lesion 

involved the parietal and frontal regions. As predicted by fMRI, he showed a 

performance decrease in both modalities. Nonetheless, since his lesion involved 

several brain regions it is hard to infer any dissociation from his data.  

And, finally, patient CT had a lesion localized in the right caudate, and, based on 

fMRI predictions, we would expect there to be no change in ipsilesional bias or 

slope. The patient exhibited no ipsilesional bias for both modalities, but a 

decrease in performance for the auditory task. Her slight slope decrease might 

have been ambient external noise.  

Discussion of voxel-based lesion-symptom mapping for the adutoiry task in 

relation to fMRI predictions 

Based on the fMRI results we expected the effect of the lesion in the parietal 

region to cause slope changes indicating a performance decrease in both 

modalities. However, due to the large number of patients with primary visual 

sensory deficit we were only able to perform VLSM for the auditory task 

behavioral measures. Consistent with the fMRI predictions of a role of the 

parietal cortex in performance, the VLSM results showed that patients with 

lesions in voxels in the parietal cortex had a slope decrease in the auditory 
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modality. However, contrary to fMRI, VLSM did not indicate a role of frontal 

regions. This is could be a false negative, due to the small number of patients. 

Moreover, VLSM showed that a lesion involving the superior temporal gyrus 

would lead to an ipsilesional choice bias, consistent with the fMRI prediction 

that a lesion in the auditory accumulator region, i.e. the superior temporal gyrus, 

would cause in ipsilesional bias. On the other hand, VLSM showed that a lesion 

in parietal and frontal regions will also result in an ipsilesional bias, and that this 

was not predicted by fMRI. Since the fMRI signal has a low spatial resolution it 

is possible that fMRI signal blurred the fine-grained tuning of neurons at a 

higher cortical level.   

Limitation  

The major limitation was the small number of patients in the final analysis. We 

tested 18 patients, and only nine were included in the end (ref. Methods for 

details on excluded patients). Another limitation was the presence of primary 

sensory deficit. Of the nine patients, five had a primary sensory visual deficit, 

and one had a primary sensory auditory deficit. It is hypothetically possible to fit 

behavioral data of patients to quantitative descriptive models, and correlate 

specific parameters to patient lesions and performance. However, the small 

number of data points from each patient hindered us from fitting the data to such 

a high-dimensional descriptive model. As such, we benefited from the fMRI 

findings of previous experiments to provide hints as to what to expect from the 
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lesions. To investigate fMRI driven predictions, we applied VLSM in the study 

of the effect of lesions on behavioral parameters on a voxel-by-voxel basis. 

Nevertheless, due the small number of patients in the final VLSM analysis we 

refrained from drawing strong inferences regarding the lesion results. As such, 

we approach the results of this chapter carefully and abstain from drawing 

strong conclusions and inferences based on the lesions study. 

Conclusion  

Voxel-based, lesion-symptom mapping is a promising analytical method to 

understand the effect of lesions on a voxel-by-voxel basis. Moreover, 

formulating fMRI-driven expectations on the role of specific brain nodes in the 

cognitive process could help in the understanding of individual patient's deficits. 

Consequently, such an approach would aid in devising individualized recovery 

predictions and rehabilitation plans. However, for such analyses to yield 

conclusive results it is important to have a sufficient number of patients with 

liberal inclusion criteria.  

 

 

 

 

 



 

174 

 

ACKNOWLEDGEMENTS 

This work was supported by the Hermann and Lilly Schilling Foundation, German Research 

Foundation (DFG) grants WI 4046/1-1 (M.W.). Prof. Dr. Thomas Crozier proof read and 

edited this manuscript. 

Contributions 

Ahmad M. Nazzal (A.N.), Melanie Wilke (M.W.), and Carsten Schmidt-Samoa (C.S.) 

designed the study and interpreted the results. A.N wrote the paper. Manfred Holzgraefe 

(M.H), Gerhard Wiebold (G.W.), Jonas Koch (J.K.), C.S., and A.N. supervised and/or 

performed neurophysiological and neuropsychological examinations of the patients. A.N 

planned, performed and supervised behavioral data collection from the patients and age-

matched healthy controls. Mathias Bähr (M.B), and Kai Kallenberg (K.K.) gathered imaging 

data of patients acquired in other medical centers other than Göttingen. A.N programmed, 

performed and analyzed behavioral and imaging data. M.W and C.S. provided corrections to 

the paper. A.N prepared all figures. 

 

 

 

 

 

 

 

 

 

 

 



 

175 

 

6. General discussion  

In this manuscript, we explored the neural signatures of auditory and visual 

perceptual sensory evidence accumulation, confidence in the visual decision, 

and investigated the effect of cortical and subcortical lesions on auditory and 

visual spatial perceptual decision-making. In Chapter 1, we introduced a 

theoretical framework and important terminology, and reviewed the existing 

literature on perceptual decision-making. In Chapter 2, we reviewed definitions, 

measures, neuroimaging and animal literature on confidence in decision-making. 

In Chapter 3, we discussed visual and auditory spatial processing systems and 

introduced hemispatial neglect as a model for studying spatial perceptual 

decision-making. We concluded that little is known with regard to how auditory 

sensory evidence accumulates and leads to the formation of perceptual spatial 

decisions in the human brain.  In Chapter 4, we stated the scope of the 

manuscript. In Chapter 5, we presented the research performed by ourselves that 

investigated the correlates of auditory and visual perceptual evidence and 

confidence in decision. In the first study, we showed that spatially specific 

sensory evidence accumulated in a modality-specific manner. We demonstrated 

the presence of visual sensory evidence accumulating signals in occipital 

regions, while auditory sensory evidence accumulating signals were seen in the 

superior temporal cortex. Moreover, we showed that activity in frontal and 

parietal regions is modulated by the level of sensory evidence in a spatially non-

specific manner for both visual and auditory modalities; the signal in frontal and 
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parietal regions was stronger when the level of evidence was low in both 

modalities suggesting a role of frontal and parietal regions in secondary 

deicsion-making processes. In the second study, we were able to disentangle the 

neural correlates of sensory evidence accumulation from neural correlates of 

confidence in the decision. We showed that visual sensory evidence accumulates 

in the occipital cortex. In this study with a different group of subjects, we were 

able to replicate the major findings from the first study.  In addition, we found 

that the middle frontal region signal fits the criteria proposed for localizing brain 

activity related to decision-monitoring. In the third study, we investigated the 

effect of various brain lesions on bias and slope estimates of the auditory and 

visual spatial perceptual decision-making tasks. We found inconclusive 

evidence of a causal role of the right parietal cortex in dealing with auditory task 

performance.  

6.1 How the studies are related to each other 

Across all studies, we used the same novel auditory and visual accumulator task. 

Stimuli were drawn from the same distribution and presented discreetly over 

time and space, and were adjusted for the adaptation dynamics of each modality. 

Moreover, the participants in all studies gave their response with their right hand 

by pressing a button after a variable delay period. The reason for the delayed 

response was to isolate the perceptual component from the motor component, 

and to prevent participants from forming decision-making strategies. Using 
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comparable task designs consistently across the fMRI and the patient studies 

allowed us to formulate a data-driven hypothesis and to test it.  

In the first study, we formed a hypothesis based on the results of earlier studies 

that the frontal and parietal cortex would contain the neural signature of sensory 

evidence accumulation for different sensory modalities. Interestingly, we found 

that spatially specific sensory evidence accumulated in a modality-specific 

manner, i.e. that visual evidence accumulated in the occipital cortex, and 

auditory evidence accumulated in the superior temporal gyrus. On the other 

hand, spatially non-specific sensory evidence modulated activity in the frontal 

and parietal regions with both visual and auditory modalities, i.e. when evidence 

level was low signal was stronger, suggesting a role of these regions in 

secondary decision processes such as dealing with task difficulty. Such frontal 

and parietal activity could be also be interpreted as related to confidence in the 

decision. Since confidence in the decision is, from a signal detection point of 

view, the absolute distance between sensory evidence and criterion. Our second 

study was focused on the visual task and investigated the possibility that frontal 

and parietal regions code for confidence in the decision. We showed that the 

signal of sensory evidence accumulation could be dissociated from the signal of 

decision-monitoring. We found neural correlates of visual sensory evidence 

accumulation in occipital regions while the neural correlates of decision-

monitoring were seen in the middle frontal region. Our finding is consistent with 

previous neuroimaging and neuropsychology reports of a role of prefrontal 
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regions in confidence in the decision (ref. Chapter 2). From the first two fMRI 

studies, we derived an fMRI-driven hypothesis to predict the effect of lesions in 

specific brain regions. We implemented voxel-based lesion-symptom mapping 

to establish links between lesion and behavioral measures (Bates et al., 2003). 

VLSM results suggested a role of the right posterior parietal auditory task 

performance.  

6.2 Relation of our studies to the literature on perceptual decision-making  

We studied the literature on auditory and visual perceptual decision-making and 

will discuss here the relation of our studies published reports on animal and 

human perceptual decision-making.   

6.2.1 Relation to the literature on perceptual decision-making in rodents  

Our auditory task was inspired by a study by Brunton and co-workers (Brunton 

et al., 2013), who investigated the possibility that the rat could benefit from 

sensory information to form perceptual decisions using an accumulation 

strategy. They found that the rat did use an accumulation strategy to form its 

perceptual decisions. They also tested the auditory task in human subjects. Our 

behavioral results with the auditory task represent a successful replication of 

their results in human. We developed a visual task as a modification of their 

auditory task by using flickering stimuli instead of clicks. One major difference 

between our tasks and theirs was that we did not give our subjects any feedback 

or rewards. This is an important difference, since in their case their aim was to 
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compare rat behavior to human behavior. In our case, however, it was less 

important since we only studied performance in humans. Since our results were 

consistent with their human findings, it seems that offering a reward did not 

affect behavior. We did give our subjects a monetary compensation at the end of 

the session, but this did not depend on performance.  Nevertheless, the auditory 

task we implemented in an fMRI environment is, to our knowledge, the first use 

of an accumulator auditory task in the fMRI. Moreover, we extended the task 

and added post-decision confidence rating as discussed in the second study. It 

was shown that rodents were able to opt-out, suggesting that rats are able to 

monitor their own performance (Kepecs et al., 2008). Interestingly, the rat were 

more certain when the task was easy and correct, and least certain when the task 

was incorrect and easy (Kepecs et al., 2008). However, rodents are not closely 

related to humans evolution-wise. Nevertheless, confidence behavior in our 

human subjects was similar to that in rats suggesting that confidence in the 

decision is a phenomenon conserved across species, which illustrates its 

importance for the survival of a species.  

The greatest  advantage of using rodents to elucidate neural mechanisms of 

perceptual decision-making is that rodents are very well suited for the use of 

cutting-edge breakthroughs in neural measurement and manipulation, such as 

optogenetics (Hanks & Summerfield, 2017). Several brain nodes in the rat brain, 

such as the rat posterior parietal cortex (PPC) and frontal orienting fields (FOF), 

have been shown to exhibit signal-dependent neural buildup during auditory 
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sensory evidence accumulation. These are homologs of the monkey posterior 

parietal cortex and frontal eye fields, respectively (Erlich, 2015). Inactivation 

studies of the PPC have shown that it plays no role in sensory evidence 

accumulation in the rat (Erlich, Bialek, & Brody, 2011). Optogenetic studies 

have shown that inactivation of FOF leads to bias in ipsilateral choices late in 

the accumulation process but not early on. This suggests more of a motor 

preparatory role of FOF (Hanks et al., 2015). Thus, it is still debatable which 

region is the accumulator. We are unaware of any study that recorded the 

activity of neurons in the sensory cortices while the rats performed such auditory 

accumulator tasks. We expect our data to motivate researchers using rodents as 

study animals, to explore the role of the sensory cortices in sensory evidence 

accumulation.  

6.2.2 Relation of studies to the literature on non-human primate perceptual 

decision-making  

The field of perceptual decision-making benefited from studies investigating the 

dynamics of decision formation in the monkey (Gold & Shadlen, 2007). Neural 

correlates of sensory evidence accumulation in the monkey were traditionally 

proposed to involve parietal and frontal regions (ref. Chapter 1).  However, the 

reign of LIP has been recently challenged with advances in analytical methods 

and recording technologies (Hanks & Summerfield, 2017). In the literature 

involving primates, the most popular experimental paradigm is random dot 
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motion (RDM). In early studies, monkeys were trained to respond using eye 

movements (saccades) in the RDM. The neural correlates of evidence 

accumulation were proposed to involve the same oculomotor network 

encompassing FEF, LIP, SC. Such overlap between the correlates of sensory 

evidence accumulation and motor network raised concerns that evidence of 

accumulation neural correlates in the LIP perhaps rather reflected motor 

preparation. Therefore, later studies attempted to address the possibility that LIP 

has neural activity related to evidence accumulation regardless of the effector. 

De Lafuente and colleagues (2015) trained monkeys to perform the RDM task 

by responding using either with a saccade or a reach (de Lafuente, Jazayeri, & 

Shadlen, 2015). They recorded from the LIP area as well as from the medial 

intraparietal (MIP) area, which is considered to be the reach region and not part 

of the oculomotor system (Andersen & Cui, 2009). They showed that LIP 

accumulates evidence regardless of the effector modality, while MIP only 

accumulates for the reaching task. However, it is worth mentioning that they had 

also trained their monkeys on a saccade task earlier, so it is possible that even 

though the oculomotor system was not required for the reach trials, information 

still flowed to that system. Such activity could be interpreted to indicate that the 

monkeys were still planning saccades even though the desired output was a 

reaching movement consistent with the intentional framework of the decision-

making process. Moreover, such activity could be interpreted as attention, i.e. 

the monkey was paying attention to a spatial location (Li & Krishnamurthy, 
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2015). One limitation is the long time required to train a monkey to perform a 

task. Such long training phases will eventually lead to changes in the network 

underlying the cognitive processes related to decision-making, such as evidence 

accumulation. Indeed, it was shown that the training history has a strong effect 

on the neural responses of the LIP (Law & Gold, 2008). Recent literature 

examining the causal contribution of LIP in perceptual decision-making tasks 

found that microstimulation of LIP leads to choice and reaction time biases in an 

oculomotor decision-making task (Hanks et al., 2006), while unilateral 

pharmacological inactivation eliminating activity in the LIP had little effect on 

performance (Katz et al., 2016).  Interestingly, reports consistently showed that 

LIP inactivation resulted in an ipsilesional bias in free saccadic choices 

(Wardak, Olivier, & Duhamel, 2002; Wilke, Kagan, & Andersen, 2012). Thus 

recent findings challenge the propositions that LIP has a role in evidence 

accumulation. They rather suggest its involvement in secondary decision-

making processes. Our findings are in line with recent reports which suggest that 

posterior parietal regions, specifically the inferior parietal lobule, play no role in 

sensory evidence accumulation, but that the inferior parietal lobule does play a 

role in secondary decision-making processes.  
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6.2.3 Relation of studies to literature on human neuroimaging perceptual 

decision-making  

There is no consensus in the neuroimaging literature whether there are brain 

regions that are involved in accumulation of sensory evidence regardless of 

sensory modality (Forstmann., 2016). This study provided a direct answer in this 

debate. We show that sensory evidence accumulates in modality-specific 

sensory cortices. Our data is consistent with recent reports suggesting a role of 

sensory cortices in core decision-making processes such as sensory evidence 

accumulation, and a role of frontal and parietal regions in secondary decision-

making processes (Christophel., 2012; Hebart., 2014; Philiastides & Sajda, 

2007). Previous studies have shown that the auditory cortex plays a role in the 

formation of perceptual decisions (Binder et al., 2004). However, the specific 

role of the auditory cortex in sensory evidence accumulation had not been 

explored before this current study. Our study showed that signals in auditory 

cortex reflect core decision-making processes such as auditory sensory evidence 

accumulation. In the confidence study, our data  agrees with consistent 

neuroimaging and neuropsychological reports which suggest that the prefrontal 

cortex plays a role in coding confidence in the decision (Fleming & Frith, 2014). 

Recent efforts to disentangle the neural correlates of decision from those of 

confidence in the decision gave different results based on different assumptions 

as discussed in Chapter 5.2. Our results are consistent with propositions that 



 

184 

 

confidence emerges as a property of the decision-making network; highly 

correlated yet localized in different regions of the brain.    

6.3 Dealing with the crisis of reproducibility and interpretability 

In recent years, concerns were raised regarding the validity of most published 

research (Ioannidis, 2005). Several factors could render the findings of seminal 

studies irreproducible, and the results could have been biased towards finding a 

true positive. Factors leading to a high incidence of false positives, thereby 

contributing to the crisis of reproducibility are: small sample size, low prior 

probability of the effect being true, the large number of statistical tests 

performed, flexibility in task design analysis, financial and prestige interests in a 

specific finding, and competition to publish in competitive fields (Ioannidis, 

2005). Functional magnetic resonance imaging (fMRI) revolutionized 

neuroscience, as it made it possible to localize brain signatures of complex 

cognitive processes in healthy human in a non-invasive way (Logothetis, 2008). 

Recently, long-time acknowledged concerns regarding the validity of analysis 

methods in fMRI studies have been raised (Eklund, Nichols, & Knutsson, 2016). 

Several issues render the field of fMRI studies particularly susceptible to the 

aforementioned factors contributing to high rates of false positives among which 

are, i.e. small sample sizes. Another factor is the vast number of statistical 

comparisons, which leads to a large number of false positives. To manage such 

large numbers of statistical tests, techniques such as multiple comparison 

analysis have been proposed. However, it was shown that even one of the most 
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common approaches for multiple comparison correction, namely family-wise 

error, could still yield invalid cluster inferences because certain analysis 

packages used functions that did not follow an assumed Gaussian distribution 

(Eklund et al., 2016). One other reason for large number of false positives in 

fMRI is p-hacking (kunda, 1990), which means that the experimenters would 

simply increase the sample size until the hypothesis was confirmed. Another 

factor contributing to false positives in fMRI studies is circularity or "double 

dipping"; voxel selection bias and running statistical tests on already significant 

voxels. However, the brain is a complex organ, and knowledge about its 

function is a result of techniques that differ in temporal and spatial resolution 

(Weber & Thompson-Schill, 2010). Neuroimaging provides a rich amount of 

data, and therefore, careful task design, proper methods for analysis, and mining 

databases to establish valid reverse inference is important (Poldrack, 2006).  

Fortunately, several solutions have been proposed to investigate reproducibility 

and improve inference. Among these solutions is replication of findings in 

independent samples, use of orthogonal contrasts for voxel selection to avoid 

selection bias, and overcome "double dipping" and the issue of circularity,  and 

usage of data splitting. Lately, an increasing number of studies have applied 

meta-analysis techniques to improve their inference reliability and validate their 

results (Wager, Lindquist, & Kaplan, 2007). Meta-analysis can increase the 

likelihood of true positives and help generalize findings across studies. It relies 

on summary statistics across studies based on reported values such as the 
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coordinates of specific contrasts. Techniques such as multi-level kernel density 

analysis help confirm that the consistency of findings across studies exceeds 

chance level (Wager u. a., 2007).  

In our studies, we dealt with those concerns in the following manner: (1) We 

managed to reproduce major findings in different samples of subjects. We 

showed that sensory evidence accumulates in modality-specific sensory cortices 

in three separate groups of participants. (2) We used ROIs from the first study to 

investigate correlations with evidence in the second study and found a 

significant correlation (details in Chapter 5.2). (3) Moreover, we used meta-

analysis techniques to confirm the consistency of findings across studies. We 

applied multi-level kernel density analysis to the difficulty map from three 

different samples (Wager et al., 2007). We found that, across studies, the frontal 

and parietal regions were more active when the task was more difficult (Figure 

6.1A Table 6.1).  
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Table 6.1 Coordinates based the meta-analysis of contrast hard > easy 

across empirical studies 

Study Coordinates Coordinate 

System 

Number 

of 

subjects 

Contrast Fixed/Random  

effects x y z 

Pilot -3 5 55 Tal 17 Hard >Easy Random 

Pilot 27 -1 40 Tal 17 Hard >Easy Random 

Pilot 24 -49 37 Tal 17 Hard >Easy Random 

Pilot 36 -61 -29 Tal 17 Hard >Easy Random 

Pilot -30 -7 49 Tal 17 Hard >Easy Random 

1st Study -6 11 43 Tal 15 Hard >Easy Random 

1st Study 42 8 25 Tal 15 Hard >Easy Random 

1st Study 36 -1 58 Tal 15 Hard >Easy Random 

1st Study 45 -28 61 Tal 15 Hard >Easy Random 

1st Study 3 17 37 Tal 15 Hard >Easy Random 

1st Study 39 -1 40 Tal 15 Hard >Easy Random 

1st Study -24 -46 43 Tal 15 Hard >Easy Random 

1st Study 24 -37 46 Tal 15 Hard >Easy Random 

2nd Study 0 14 46 Tal 12 Hard >Easy Random 

2nd Study -36 -49 37 Tal 12 Hard >Easy Random 

2nd Study 48 8 16 Tal 12 Hard >Easy Random 

 

To improve inference, we used a database of 10,000 neuroimaging studies 

(neurosynth.org) and generated a difficulty map based on the reverse inference 

from 391 studies (Figure 6.1B). From the Neurosynth difficulty term reverse 

inference map we demonstrated that the medial frontal, prefrontal, parietal, and 

insula are regions consistently reported in the literature in relation to difficulty. 
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Therefore, we felt it safe to conclude that regions consistently reported in our 

studies for the hard > easy contrast reflect dealings with task difficulty. 

 

 

Figure 6.1. Meta-analysis to prove reproducibly and improve inference. (A) Results of 

multi-level kernel density analysis of difficulty contrast (difficult > easy) showing brain 

regions that are consistently active when the task was difficult in three different group 

samples.  Regions active are consistent with brain regions of the Neurosynth difficulty term 

map. (B) The brain map of difficulty term from 391 studies shows an effect of task difficulty 

in medial frontal, precentral, middle frontal gyrus (MFG), inferior frontal gyrus (IFG), insula, 

and inferior parietal lobule (IPL). 
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6.4 General limitations 

fMRI is beneficial for imaging whole brains and investigating healthy human 

participants in a non-invasive manner. However, it has a limited spatial and 

temporal resolution. Therefore, it was not possible to regress the fMRI signal to 

capture the minute dynamics of the accumulation process and benefit from the 

discreteness of stimuli over time and space. One way to overcome this issue is to 

take advantage of simultaneous EEG-fMRI recordings.  

With regard to the model, due to the small number of data points per subject 

inside the scanner and small amount of data for each patient it was not possible 

to fit a separate model for each individual patient or participant. However, since 

healthy participants had similar psychometric curves, we fitted one model for 

the data from all participants inside the scanner. Moreover, due to the low 

temporal resolution of the fMRI, the modeled evidence represented the total 

evidence accumulated by the end of each trial. It was consequently highly 

correlated to the stimulus difference between the right and left sides. As such, it 

is possible to obtain similar accumulator brain maps without use of the modeling 

part by simply using stimuli difference to parametrically modulate the predictor 

of interest. However, the beauty of the model is that it contains several 

parameters that signify various decision-making strategies. Fitting the model to 

our data from inside the scanner revealed that the participants used an 

accumulation decision-making strategy in both visual and auditory task. 
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6.5 Closing remarks and outlook  

There have been exciting breakthroughs in neuroscience in recent years. 

However, translating those breakthroughs into practical clinical applications 

takes a long time and great patience. In this manuscript we provided a fresh 

view of how the brain utilizes sensory information to form perceptual decisions, 

especially in the auditory domain. We predict that our data will motivate 

electrophysiologists in the field of perceptual decision-making to record from 

the regions of interests that we were able to localize in our studies.  

It remains interesting to understand the interactions between the brain regions 

identified in our study as an exciting future prospect. For this reason, it is 

possible to use dynamic causal modeling and effective connectivity methods to 

test interactions between frontal, parietal, and sensory regions.  

In general, a better understanding of the neural networks underlying complex 

cognitive behaviors, such as decision-making, will help to devise regimens for 

the therapy of neuropsychological patients, and perhaps help in the advancement 

of artificial intelligence research.   
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7. Appendix 

7.1  Figures list 

1. Figure 1.1. Outline for studying perceptual decisions 

2. Figure 1.2. Taxonomy of processes in perceptual decision-making 

3. Figure 1.3. Tasks in the study of perceptual decision-making 

4. Figure 1.4. Signal detection theory framework 

5. Figure 1.5. Sequential models 

6. Figure 1.6. Architecture of the integrate-and-fire attractor model 

decision network 

7. Figure 1.7. Schematic illustration of the neuronal activity and BOLD 

signal relationship 

8. Figure 1.8. BOLD signal related to difficulty 

9. Figure 1.9. Schematic illustration showing an overview of brain regions 

involved in perceptual decision-making as identified in seminal studies 

10. Figure 2.1. The architecture of integrate-and-fire attractor confidence in 

the decision network. 

11. Figure 5.1.1. Behavior of visual and auditory accumulator tasks 

12. Figure 5.1.2. Main effect of modality 

13. Figure 5.1.3. Main effect of task difficulty 

14. Figure 5.1.4. Main effect of space 

15. Figure 5.1.5. Signal of visual sensory accumulation in the occipital 

cortex 

16. Figure 5.1.6. Signal of auditory sensory evidence accumulation in the 

superior temporal gyrus (STG) 

17. Figure 5.1.7. Frontal and parietal cortices show spatial non-specific 

modulation by level of sensory evidence regardless of modality 

18. Supplementary Figure 5.1.1. Brain regions showing effect of difficulty 

(easy > hard).  

19. Figure 5.2.1.  Visual perceptual task performance 

20. Figure 5.2.2. Spatially specific accumulator regions occipital 

21. Figure 5.2.3. Spatially specific accumulator regions prefrontal 

22. Figure 5.2.4. Non-spatially specific accumulator regions 

23. Figure 5.2.4. Accuracy map 

24. Figure 5.2.6. Candidate regions of neural correlates of decision-

monitoring 

25. Supplementary Figure 5.2.1 Accuracy map for delay and motor 

response periods. 

26. Figure 5.3.1. Schematic illustration of fMRI-based predictions of the 

effect of lesions on auditory and visual perceptual decision-making 

27. Figure 5.3.2. Visual and auditory accumulator tasks 

28. Figure 5.3.3. Probability maps of lesions 

29. Figure 5.3.4. Psychometric curves of patients behavior 
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30. Figure 5.3.5. Patient VH lesion and behavior in auditory and visual 

tasks 

31. Figure 5.3.6. Patient GB: lesion and behavior in auditory and visual 

tasks 

32. Figure 5.3.7. Patient CT: lesion and behavior in auditory and visual 

tasks 

33. Figure 5.3.8. Auditory group analysis 

34. Figure 5.3.9. Colorized depictions of results of permutation tests using 

Brunner Munzel (BM) rank statistics evaluating effect of patient lesion 

on slope of each patient on a voxel-by-voxel basis 

35. Figure 5.3.10. Colorized depictions of results of permutation tests using 

Brunner Munzel (BM) rank statistics evaluating effect of patient lesion 

on bias of each patient on a voxel-by-voxel basis 

36. Figure 6.1. Meta-analysis to prove reproducibly and improve inference 
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1. Table 1.1 Neuroimaging studies of sensory evidence accumulation 

2. Table 5.1.1. Brain regions showing main effect of task difficulty 

3. Table 5.1.2 Three-way interaction (difficulty, space, modality) 

4. Table 5.1.3 Visual accumulator regions 

5. Table 5.1.4 Auditory accumulator regions 

6. Supplementary Table 5.1.1 Model parameters for most relevant    

parameters to study decision-making strategy based on model fits for 
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7. Supplementary Table 5.1.2 Modality effect 

8. Supplementary Table 5.1.3 Overlap between modalities 

9. Supplementary Table 5.1.4 Main effect of space 

10. Table 5.2.1 Spatially specific accumulator regions 

11. Table 5.2.2 Non-spatially specific accumulator regions (i.e. difficulty) 

12. Table 5.2.3 Decision monitoring regions  

13. Supplementary Table 5.2.1. Model parameters for the most relevant 

parameters in the study of decision-making strategy based on model 

fits. 

14. Table 5.3.1 Demographic data 

15. Table 5.3.2 Behavioral measures results of individual patients  

16. Table 6.1 Coordinates based the meta-analysis of contrast hard > easy 
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