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1. General Introduction 

 

In every higher being, the brain is the source of all higher perception, emotion, and 

cognition, and is the generator of behavior. In particular, the cortico-thalamic system of 

mammalians is capable of generating highly complex cognitive and behavioral processes, up 

to the complexity of human cognition and behavior. The most important cellular unit of the 

brain is the neuron, and all brain function is thought to be generated by the greater network 

of neurons. However, exactly how function is generated by the network has not yet been 

fully understood. Donald Hebb was among the first thinkers who explicitly stated that the 

brain’s ability to generate coherent thoughts derives from the spatiotemporal orchestration 

of neuronal activity (Hebb, 1949; Buzsáki, 2010). His idea was that not the neurons 

themselves but groups of strongly interconnected “cell assemblies” generate emergent 

function (Figure 1). A sequence of cell assembly activations would then in turn generate 

complex perceptual and cognitive processes, decisions, and, if required, behavioral output.  

 

Figure 1: Schematic view of Hebb’s neuronal “cell-assembly” idea. Intersections between arrows represent nodes 
and arrows represent directed links between the nodes, while the whole network represent a schematic ensemble. 
The number next to the links represents the order of activation within the cell assembly. Based on Hebb’s writing it is 
unclear if nodes represent single neurons or groups of neurons. Adapted from Hebb (1949). 
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Today, the idea of simple linear sequences is known to be too simplified and has been 

extended to also take into account parallel activations and higher order interactions 

(Buzsáki, 2010; Cunningham and Yu, 2014), yet the basic idea of neuronal ensembles 

remains relevant in the field. Unfortunately, the experimental identification of cell 

assemblies has proven highly difficult. This is in part due to practical reasons, such as 

limitations in recoding neuronal activity, as well as conceptual reasons, such as our limited 

understanding of the computations and transformations taking place in the brain.  

 

1.1. The neuronal signal  
A wide range of techniques to record neuronal activity has been developed. These 

techniques can be roughly classified into three groups: 1) electrophysiological techniques 

such as patch clamp, which measure the direct electric currents caused by the 

depolarizations of single neurons, up to recordings via microelectrodes and 

electroencephalography (EEG), which measure the cumulative population activity of large 

parts of the brain, (Buzsáki et al., 2011); 2) optical techniques where neuronal activity with 

single cell or larger resolution is filmed through a microscope, such as two-photon calcium-

imaging and voltage sensitive dye imaging (VSD) (Tsodyks et al., 1999; Harvey et al., 2012); 

and 3) functional imaging techniques, where brain activity is measured indirectly, such as 

positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) 

(Logothetis et al., 2001). Aside from differences in the recording techniques themselves, 

they also differ a lot in terms of spatial and temporal resolution (Figure 2) (Sejnowski et al., 

2014). Beyond these differences, two other factors must be considered, including the spacial 

coverage of neuronal tissue and the tissue damage caused by the recording technique. For a 

comprehensive assessment of neuronal activity, the ideal recording technique would have a 

high spatial and temporal resolution, paired with a high spatial coverage and a minimum 

damage caused by the technique. Unfortunately, the ideal recording technique does not yet 

exist and all mentioned techniques have their advantages and disadvantages. Patch clamp 

measuring of the intracellular membrane current allows for single neuron recordings with 

maximum temporal resolution, yet patching of several neurons in parallel is difficult and 

mainly performed in brain slices (Perin et al., 2011). EEG recordings have a high temporal 

resolution, cover the whole surface of the skull, and are non-invasive, but the spatial 

resolution is in the range of centimeters (Buzsáki et al., 2011). Although fMRI recordings 
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allow for a complete three dimensional measurement of the brain, still, their temporal and 

spatial resolution is poor. In addition, this method is only an indirect measurement of 

neuronal activity (Logothetis et al., 2001). VSD imaging, despite its high special and temporal 

resolution, strongly suffers from bleaching and photo-toxicity effects (Takagaki et al., 2008).  

 

Figure 2: The spatiotemporal resolution of neurophysiological recording techniques of the main methods available in 
neuroscience as of 2014. Adapted from Sejnowski et al. (2014). 

 
However, recent developments of new optical, electrophysiological, and 

computational tools have made it possible to record large populations of neurons with high 

temporal and single cell resolution, with an acceptable amount of damage to the neuronal 

tissue (Buzsáki, 2004; Sejnowski et al., 2014; Yuste, 2015; Pnevmatikakis et al., 2016). In the 

field of optical methods, technical advantages have made it possible to even recode the 

whole brain of zebrafish with cellular resolution (Ahrens and Keller, 2013), albeit with low 

sampling rates. Nevertheless, new faster microscopes combined with deconvolution 

algorithms, which approximate the spiking activity from the calcium signal of individual 

neurons, seem promising to overcome the limitations in temporal resolution of calcium-

imaging, at least to a certain extent.  

 Similarly, improvements to the classical microelectrode recording technique (Hubel, 

1957) have also made it possible to isolate and record large populations of neurons in 

parallel. This is due to the development of modern computers and amplification systems, 
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which allow investigators to amplify and store the signals from many microelectrodes 

simultaneously with a good signal-to-noise ratio, and the development of multielectrode 

arrays to overcome the spatial coverage limitation of classical microelectrode recording 

(Nicolelis et al., 2003). Multielectrode arrays are simply many recording contacts combined 

either on one shank (Buzsáki, 2004) or in the form of many microelectrodes exiting a small 

plastic clip (Rousche and Normann, 1998). One problem especially for chronically implanted 

microelectrodes is that the brain is constantly moving relative to the skull, which precludes 

fixing the electrodes or arrays to the skull; this configuration is prone to creating 

microlesions in the neural tissue. This problem was overcome through the development of 

floating arrays (Rousche and Normann, 1998; Musallam et al., 2007) (Figure 3). Floating 

arrays are only attached to the brain and move freely with it. Electrical signals are 

transmitted via a small, flexible goldwire-bundle leading to a plug outside of the skull. The 

advantage of these arrays is that they allow for long-term, robust recording even in awake 

animals performing a task (Barrese et al., 2013; 2016), making them one of the preferable 

methods to record neuronal ensembles.   

 

Figure 3: Picture of a floating microelectrode array with 36 electrodes, the goldwire-bundle and the plug to pick up 
the signals, manufactured by the company Microprobes. Adapted from https://www.microprobes.com/.  



1. General Introduction 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

 15 

 

 The signal recorded by extracellular electrodes is not necessarily straightforward to 

interpret, since any excitable membrane including dendrites, somas, and axons around the 

electrode contributes to the recorded signal (Buzsáki et al., 2011). The amplitude and the 

frequency of the measured voltage change depend on the superimposed activations of all 

the surrounding neuronal compartments with decaying influence over distance. Still, due to 

differences in the temporal dynamics of pre- and postsynaptic processes (initial segment and 

axonal potentials, and dendritic and soma potentials, respectively), these two components 

can be extracted from the signal. The postsynaptic integration processes, called local field 

potentials (LFP), occur at slower time scales in the range of <100Hz, while the presynaptic 

spiking activity is thought to be in the range of >300Hz, which allows for a clean separation 

of these two components by band-pass filtering (Figure 4).  

 

Figure 4: Extracellular recorded signal from ventral premotor cortex. The signal was low-pass filtered with a 100Hz 
Butterworth filter (4th order, non-causal) to extract LFP activity and high-pass filtered with a 300Hz Butterworth filter 
(4th order, non-causal) to extract spiking activity. 
 

However, recent studies have shown that the energy of spikes leaks into the LFP down to 

20Hz (Waldert et al., 2013; Schomburg, 2015), making the interpretation of the LFP more 

difficult. Even ignoring the bias from concurrent spiking, the LFP is difficult to interpret, since 

it reflects a nonlinear mixture of the surrounding postsynaptic processing, which in turn is 

dependent on the level of network synchrony, the cellular architecture, and volume 

conductance effects (Buzsáki et al., 2011). In contrast, the spiking activity of individual 

neurons is thought to be an all or nothing potential, which even allows the isolation of 

individual neurons via spike-sorting algorithms (Quiroga et al., 2004; Rossant et al., 2016). 
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Spike-sorters make use of the temporal and, in the case of multitrodes (several close 

recording sites which can pick up extracellular spiking activity of the same neuron), also of 

the spatial differences of spikes from different neurons recorded from the same site. Since 

the voltage deflection caused by spikes of distinct neurons is similar across occurrences, 

spikes from the same neuron should cluster together based on extracted features from 

individual spikes such as wavelet coefficients or principle components (Figure 5a). Yet, small 

changes of the electrode position to the nearby neurons have large nonlinear effects on 

amplitude and shape of the recorded extracellular spikes (Gold, 2006) (Figure 5b), which 

among other things makes proper and careful spike-sorting very important. 

 

Figure 5: (a) All recorded spikes from one channel aligned on their maximum peak or trough and either shown as 
decomposed into Wavelet coefficients by Wavelet transform, projected onto the first three principle components 
(PCs) estimated by principle component analyses or as individual spike waveforms over time. The different colors 
reflect the four units extracted by spike-sorting. (b) Shape and amplitude of the extracellular recoded spike 
waveform is dependent on the recording side. The magnitude of the spike is normalized to its minimum and 
maximum. The peak-to-peak voltage range is indicated by the colour of the traces. Note that the spike amplitude 
decreases rapidly with distance from the soma. Adapted from Buzsaki et al. (2012) 

 

1.2. Decision making  
The possibility to extract spikes of individual neurons even while animals perform a 

behavioral task has led to large number of studies correlating activity of individual neurons 

with behavior. One intensively studied behavior is decision making, since whether or not we 

react to a stimulus or intention involves a decision process. Decision making is regarded as 

the process of flexibly selecting or reacting to external sensory inputs or to internal drives 
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(Freedman and Assad, 2016). In the field of systems neuroscience, the goals in regard to 

decision making are: to find neuronal correlates of decision making, to develop ideas about 

the mechanism of the underlying decision process, to develop models resembling the 

decision process, and ideally being able to causally influence the process. In the last decades, 

many different processes have been suggested for many different types of decision making. 

However, which aspects such as rules, rewards, goals, and certainty are included in the 

decision process is still a matter of debate (Miller, 2000; Andersen and Cui, 2009; Shadlen 

and Kiani, 2013; Freedman and Assad, 2016). Classical studies suggested the prefrontal 

cortex (PFC) as the center of decision making (Miller, 2000), yet many different areas were 

determined to be involved in decision making, including many parietal areas (Andersen and 

Cui, 2009), even V4 and middle temporal cortex (MT) from the visual system (Shadlen and 

Kiani, 2013; Siegel et al., 2015), as well as subcortical structures such as the superior 

colliculus, the basal ganglia, the thalamus and the cerebellum (Andersen and Cui, 2009; 

Shadlen and Kiani, 2013). One useful classification to better understand decision processes is 

to distinguish different kinds of decision making, such as perceptual decision making and 

internally driven decision making.  

Perceptual decision making means that a decision has to be made about the 

perception of a stimulus or a property of a stimulus. One classic paradigm for perceptual 

decision making is the random dot motion task, where monkeys have to distinguish the 

direction of motion in a cloud of moving dots and signal their choice by making a saccade to 

the left or to the right (Newsome et al., 1989). Crucially, the percentage of dots moving in 

one direction (called the level of coherent motion) was varied from full up to zero percent 

coherent motion. The smaller the percentage of coherent motion, the more difficult it was 

for the monkey to choose the right direction. The firing rate of individual neurons recorded 

in area MT matched the corresponding psychometric function, which quantifies the ratio of 

choice in one direction relative to the other as a function of coherent motion. Even a weak 

but reliable correlation with the trial-to-trial variability was found (Sugrue et al., 2005). The 

activity of neurons in the lateral intraparietal area (LIP) was later found to reflect mainly the 

decision to make a saccade to the left or right by a ramping increase in firing rate for the 

neuron’s preferred target. This observation led to the idea that evidence is accumulated up 

to some threshold in the brain (Shadlen and Kiani, 2013). It was posited that once the 

threshold is reached the movement is elicited. Since evidence of a fixed threshold could not 
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be found, the model was later extended to a more dynamical threshold, which depends on 

the level of certainty of the monkey about the direction of motion (Kiani and Shadlen, 2009). 

However, even based on the assumption that the thresholds change over time, this theory 

seems to be too simplified and conflicts with other findings. Neurons in LIP were found to 

display strong, prolonged responses related to working memory, and even a saccade could 

be elicited while keeping another movement target in memory (Rishel et al., 2013). Both of 

these findings are difficult to unite with the accumulated evidence model. 

 Another classic paradigm for perceptual decision making is the somatosensory flutter 

task, in which monkeys had to report which of two temporally separated vibration stimuli 

delivered to one finger was higher in frequency (Romo and Salinas, 2003). This task involved 

several processing steps. The initial stimulus had to first be perceived, then kept in memory 

until the second stimulus was given and perceived, and finally the information could be 

combined to form a decision. Single neuron activity was recorded from many different areas 

for this task, including S1, S2, PFC, and medial premotor cortex (MPC). By using a 

multivariate linear regression model, it was possible to relate the activity of each recorded 

neuron to either the first stimulus, the second stimulus, and the overall decision if 

modulation for either parameter was strong enough (HernAndez et al., 2010). Interestingly, 

while neurons in S1 were only significantly modulated for the two stimuli during their 

presentation, neurons in the other three regions additionally showed significant modulation 

related to working memory and the decision. Memory related modulation was strongest in 

PFC and decision related activity was strongest for PFC and MPC. This clear overlap and 

similarity of neuronal responses across areas suggests a graded and not area-specific 

representation of task parameters and the decision process. Nevertheless, the presumptions 

made by this model could lead to a strong preselection of neurons and as a consequence a 

false interpretation of the data. In particular, the often described mixed selectivity of 

neurons (Mante et al., 2013; Rigotti et al., 2013; Womelsdorf and Everling, 2015) for many 

task parameters in PFC is not accounted for by this model. Further, these findings are rather 

descriptive and do not offer a mechanism for decision making.  

Another interesting group of perceptual decision making tasks are delayed match to 

category tasks (DMC). In DMC tasks, monkeys were trained to group a large, continuously 

varying set of visual stimuli into two categories and report their decision by a saccade to the 

corresponding target (Freedman and Assad, 2016). These tasks allow the dissociation of 
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neurons modulated by stimulus features from neurons modulated by categorical 

membership. In one version of the task, monkeys were trained to group images of 

continuous mixtures of cats and dogs into two arbitrary categorical groups (Freedman et al., 

2001). Neurons in PFC were predominantly category selective, while neurons recorded in 

inferior temporal cortex were predominantly visual feature selective. Yet, small numbers of 

neurons in the two areas also showed opposite selectivity, respectively.  

In summary, perceptual decision making tasks have provided insight into the 

temporal integration of ambiguous or noisy stimuli, which led to the accumulated evidence 

model, the implication of different areas across cortex in representing stimulus features as 

well as decision related activity, and the idea that a set of continuously varying stimuli can 

be arbitrary categorized based on behavioral demands. However, it can be argued that 

perceptual decisions are merely happening on the level of sensory perception. This would 

mean that in case of an ambiguous stimulus, noise either from the stimulus source itself, or 

in early sensory perception processing (e.g. in the retina, in the somatosensory receptor 

cells, or early on in the cortical sensory processing) can cause a bias towards one of the two 

sensory categories. Thus, from that point on, the whole transformation up to a final 

movement would be identical to that associated with an unambiguous stimulus (Andersen 

and Cui, 2009).  

In contrast, internally driven decisions, which are also referred to as “free choice,” 

are decisions where the sensory evidence is not in question. For such decisions, the choice of 

a final action is assumed to be based on the integration of different factors such as rules, 

goals, rewards, costs or others (Andersen and Cui, 2009; Cisek, 2012). Yet, the integration of 

many behaviorally relevant factors raises several important questions: How and where are 

these relevant factors represented and integrated? And which factors are really represented 

in the brain? In asking the second question, we also ask the central question of whether 

there is truly a representation of an abstract decision variable in the brain. Or, can the whole 

decision process be explained by a stimulus selection process directly being transferred into 

movement preparation (Andersen and Cui, 2009)? Several models have been proposed for 

internally driven decision processes based on the empirical evidence of single neuron 

recordings from different areas, while monkeys performed different kinds of decision 

making tasks. Three prominent models of these processes are the good-based model, the 

action-based model, and the distributed consensus model (Cisek, 2012). Note that the 
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distributed consensus model is an extension of the action-based model, and both are based 

on the idea of biased competition between potential movement or action plans (Figure 6).  

 

Figure 6: Three schemes for three different internal decision models. The red box highlights where and how the 
decisions are made. Arrows represent transformations and competitions with their strength indicated by line 
thickness. (A) A good-based model, in which decisions are made by comparing representations of offer values and 
only afterwards transformed into an action plan. (B) An action-based model, in which decisions are made through a 
biased competition between action plans. (C) A distributed consensus model, in which decisions are made through 
competition at multiple levels representing different factors such as goals and actions. Adapted from Cisek (2012). 

 
The good-based model is derived from economic theory and experimental 

psychology (Padoa-Schioppa, 2011). It suggests that all relevant factors for a decision such as 

action cost and expected reward are separately integrated into abstract absolute values for 

each possible option. The comparison of the absolute values determines the decision 

outcome, which is then transformed into a movement plan. The activity of neurons in 

orbitofrontal cortex and ventromedial prefrontal cortex was found to be correlated with this 

suggested absolute value (Padoa-Schioppa, 2011). However, several studies have shown 

neuronal activity in frontal and parietal areas represents movement plans before the final 

decision is made (Cisek and Kalaska, 2005; Scherberger and Andersen, 2007; Klaes et al., 

2011). The first evidence for a neuronal representation of motor plans preceding a final 

decision was provided by a study where monkeys were trained to perform a delayed center 

out reaching task while neuronal activity in dorsal premotor cortex (PMd) and M1 was 

recorded (Cisek and Kalaska, 2005). The final goal was to reach out for one of 8 cued targets 

after a certain delay. However, the cue for the correct reach direction was split into a spatial 

cue indicating two opposite targets, which was given first, and a color cue indicating the 

target to choose, given at a later time point of the task. Interestingly, after the ambiguous 

spatial cue was given, neurons spatially tuned for both targets became active, and only after 
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the color cue was presented just neurons tuned for the final direction remained active. 

These findings can hardly be explained by a good-based model, which does not include the 

coexistence of several action plans; these findings led to the idea of a competition between 

action or motor plans taking place within the sensorimotor network (Cisek, 2012). The 

action-based model reflects these findings by suggesting that the value of possible actions is 

immediately translated into parallel existing motor plans and the decision is made as a 

biased competition between them (Figure 6). Further evidence for this model was given by a 

study were only one spatial cue was displayed and at a later time point of the task a rule clue 

was given instructing the monkey to reach for the target or in the opposite direction (Klaes 

et al., 2011). This task allowed to disentangle the neuronal representation of the visual 

target from neuronal activity representing movement plans. After the spatial cue was 

presented, neurons recorded in PMd and the parietal reach region (PRR) tuned for both 

movement directions became active, while in case of rule dependent motor planning only 

neurons tuned for the spatial target location should have become active. 

Nevertheless, the action-based model fails to explain choices which do not result in 

movements, while the good-based model seems to be better suited for that. The distributed 

consensus model offers a possible solution by extending the biased competition of the 

action-based model into two or more levels (Figure 6) (Cisek, 2012). Instead of just having a 

competition between motor plans in sensorimotor areas, an additional competition takes 

place at the level of abstract goals in presumably anterior portions of the PFC. Due to the 

strong reciprocal connectivity of sensorimotor areas and more anterior parts of the PFC, a 

common distributed consensus resulting in a decision could be made with different 

influences at all levels. The biased competition occurring at each different level does not 

need to agree, since only one common decision is made as a result of the processing over all 

levels.  

However, the distributed consensus model is rather abstract and does neither 

explain how information is exactly encoded nor transformed into the final decision. This is in 

contrast to the accumulated evidence model, which nevertheless is too simple for many of 

the required transformations and observed results, as mentioned before. Yet, most of the 

assumptions and results on which the model is based rely on analyses of single neuron 

tuning analyses, which in all of the mentioned studies only explain a fraction of the neuronal 

population activity. Further, the assumed tuning function often only roughly matches the 
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neuron’s response (Churchland and Shenoy, 2007; Churchland et al., 2010). Even if we 

assume that tuning properly reflects the encoding of information, it does not tell us much 

about the generation of the encoding and necessary transformations that result in a 

decision.  

A recent study recording single neuron activity of PFC while monkeys performed a 

mixed rule based perceptual decision task proposed a new model for decision making taking 

all the previously mentioned points into account (Mante et al., 2013). Monkeys first received 

a rule in the form of a visual cue instructing them to decide based on either color or motion, 

immediately followed by a random dot motion pattern, as mentioned above, with different, 

independent levels of color and motion coherence. They found that the activity of many 

individual neurons was remarkably complex and their contribution to behavior could not be 

directly understood. Instead of analyzing the activity of individual neurons separately, they 

considered them as one interconnected assembly or population. On the level of the 

population, the complex response of individual neurons unfolded as one dynamic process 

evolving through independent subspaces for rule, motion, color and the decision variable. 

Interestingly, they found each kind of information represented simultaneously in the same 

neuronal population. Additionally, both kinds of sensory information (color and motion) 

were present regardless of which rule cue was given, arguing against any preselection 

mechanism. Instead, the different kinds of information were independent on the level of the 

population readout. Intriguingly, a trained recurrent neuronal network (RNN) model could 

reproduce the population dynamics (Figure 7). These findings suggest that the encoding and 

transformation of information for this task can be well characterized as a dynamical 

evolution of the whole neuronal population. However, the four subspaces were not derived 

from the neuronal activity, but assumed a priori based on the task design, which risks not 

properly capturing the flexibility of the population response. Still, this criticism also holds for 

analyses based on individual neuron tuning. 
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Figure 7: A RNN model for decision making including context dependent input selection and integration. The RNN 
model receives independent motion, colour and contextual inputs and generates a decision variable resembling the 
recoded neuronal activity of PFC. The network is fully recurrently connected, and each neuron receives all three 
inputs. The network output resembling the decision is generated as a linear, weighted sum over the responses of all 
neurons (red arrows). The network was trained with back-propagation to make a binary choice and initialized with 
random synaptic strengths. Adapted from Mante et al. (2013). 

 

Another study analyzing the neuronal population of the posterior parietal cortex 

(PPC) of rats performing a multisensory perceptual decision task was well in line with the 

previously described study (Raposo et al., 2014). They also found that neuronal activity could 

be best explained as a dynamic process evolving through independent subspaces for 

modality and decision variables, which in this case can be assumed to be identical to 

movement preparation or planning. Representation of different kinds of information was 

intermingled not only in the activity of individual neurons, but also randomly distributed 

across the whole neuronal population. Additionally, they also found neuronal activity to 

span a different subspace during active movement. Active movement control is another 

important aspect which must be considered when analyzing decision related activity in 

sensorimotor areas in order to form a complete picture of the underlying processes, since 

there is growing evidence that these areas are also involved in active movement control 

(Churchland et al., 2010; 2012; Menz et al., 2015; Elsayed et al., 2016). The mixed selectivity 

of neurons for many kinds of information was even confirmed across 7 different cortical 

areas (Siegel et al., 2015) for a nearly identical task to Mante et al. 2013. Interestingly, the 

information for task, motion, color, and choice was present in a graded manner in all 7 

areas, including the visual areas V4, and inferior temporal cortex, the lateral intraparietal 

area (LIP), PFC and the frontal eye field, strongly arguing against any preselection 

mechanism and in favor of a flexible, distributed decision process. Choice information was 

highest at the time point of movement initiation in all areas including FEF, which is known to 
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be involved in movement generation. This finding suggests that the observed choice 

information is at least to a certain degree movement related and not representing an 

abstract choice variable. 

The results described up to this point have mainly focused on the types of 

information encoded in neuronal populations, as well as the temporal development and 

transformation of this information (with the exception of the RNN model). However, 

another important aspect of study is the selective communication and coordination of 

information that takes place between neurons and different brain areas during decision 

processes (Pesaran, 2010). One way to investigate close-range selective communication 

processes is to analyze the LFP. As discussed, the LFP mainly represents a nonlinear mixture 

of the surrounding postsynaptic processing, yet it also reflects the level of synchrony in the 

nearby neuronal population, since any nonsynchronous component would simply average 

out.  

A study in which monkeys were trained on the flutter task (described above) while 

LFP activity in S1, S2, PFC, MPC, and M1 was measured, showed that oscillatory 

synchronization in the beta-band (15-30Hz) reflected the dynamics of decision making 

(Haegens et al., 2011). Local beta-band synchronization during the decision period of the 

task was reflective of the decision outcome and not the stimulus information, with the 

strongest effects found in MPC and weaker effects present in all other areas. In a study 

where monkeys had to reach to three targets either in a clear instructed order or in an order 

chosen by free choice showed increased long range beta synchronization between PRR and 

PMd for the free-choice condition (Pesaran et al., 2008). In another study analyzing cross 

area synchronization based on LFP activity in S1, S2, PFC, MPC, and M1 while monkeys 

performed the same flutter task, strong delta-band (1-4Hz) synchronization during the 

decision process was observed (Nácher et al., 2013). Similar to the findings for beta-band 

synchronization, delta-band synchronization was modulated by the decision process across 

nearly the whole network, indicating long range delta-band synchronization as an important 

communication mechanism during decision making.    

The research summarized in this section demonstrates that many different cortical 

areas are involved in many kinds of decision paradigms. The areas involved range from early 

sensory areas such as S1, secondary sensory areas such as S2, V4, and MT, up to many 

parietal and frontal areas, where the strongest correlates of decision processes were found. 
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Interestingly, similar areas across cortex were identified to be involved in internal and 

perceptual decision making, although perceptual decision making could possibly be 

explained by a noise based visual selection mechanism early on in processing. This speaks in 

favor of one common distributed decision network as suggested by the distributed 

consensus model. Still, the distributed consensus model is rather abstract, while some 

evidence was found that decision-related neuronal activity can be understood as a 

dynamical process on the population level evolving through different subspaces, at least 

within distinct areas. Additionally, synchronization of neuronal populations in the beta and 

delta range within and between areas seems to be important for the selective 

communication underlying decision processes. However, a comprehensive picture of 

decision making does not yet exist. Crucial reasons for this are that it is still unclear: (1) how 

and which information is encoded in the neuronal population, (2) how the information flow 

is coordinated in the neuronal population within and between areas and, based on that, (3) 

how information is transformed. 

 

1.3. Encoding of information  
The way in which information is thought to be encoded by the neuronal population cannot 

be uncoupled from the history of neuroscience. The idea that the neuron is the functional 

and structural unit of the brain, called the neuron doctrine, is credited to Cajal and 

Sherrington (Yuste, 2015). While Cajal was the first anatomist who identified individual 

neurons, proposing them as the structural unit of the brain, Sherrington was the first to 

suggest the neuron is also the functional unit by finding receptive fields on the skin. Analysis 

of single neuron properties was significantly advanced by the invention of the 

microelectrode (Hubel, 1957). The microelectrode allowed for the isolation of single 

neurons, as mentioned before, yet until the development of newer recording techniques 

only a few neurons could be recorded simultaneously. The responses of individual neurons 

were found to be correlated with many visual features, as well as of other sensory 

modalities. Even behavioral features including overt movement parameters were found to 

be correlated with individual neuronal responses, which led to the idea that individual 

neurons represent information about perception, cognition, and behavior. These findings 

formed the foundation of the representational framework (Buzsáki, 2010; Yuste, 2015).  
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 In contrast to the representational framework, neuronal network models assume 

that groups of strongly interconnected neuronal assemblies generate emergent function 

(Hebb, 1949). Although this idea was proposed as early as the 1940s and the first neuronal 

network models were developed soon after, the implementation of complex network 

models has only recently become possible through the development of modern computers 

(Sussillo, 2014; Yamins and DiCarlo, 2016). Furthermore, the ability to record large 

populations of neurons in parallel either with newly developed optical or 

electrophysiological tools (Sejnowski et al., 2014; Pnevmatikakis et al., 2016, Rousche and 

Normann, 1998) has enabled the development of novel population analyses such as 

dimensionality reduction methods (Cunningham and Yu, 2014). These new methods have led 

to a paradigm shift from single neuron to population analyses, allowing for exploratory 

analyses of the population structure even on the single trial level. The new insights based on 

neuronal network models as well as on population analyses have resulted in the proposal of 

the dynamical system perspective for neuronal population activity (Shenoy et al., 2013; 

Yuste, 2015).  

It is important to state that the representational and dynamical system view are compatible 

to a certain extent. While the former describes the information encoded by individual 

neurons in terms of physical parameters of the environment, the latter assesses the 

population activity from the perspective of its output and the need to interact with the 

environment, which allows for a high degree of similarity between the two frameworks. 

 

 

1.3.1. Representational view  

According to the classical representational framework, the firing rate of each neuron is 

described as a function of correlation with (or “tuning” to) various parameters. Tuning is 

defined as a systematic modulation of the firing rate of an individual neuron in relation to 

the systematic variation of a perceptual, cognitive or behavioral parameter. Based on this 

framework, the neuronal correlates of certain parameters of objects or movements are 

presumed to have clear boundaries between them in agreement with the neuronal 

substrate (Buzsáki, 2010). The idea is that elementary parameters of objects or movements 

are bound together by the network of neurons in a meaningful way to perform the required 

cognition or movement. However, an unsolved problem associated with this idea is that the 
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elementary parameters for this process are not universal properties of movements or the 

perceived world but created by the interaction with the environment.   

 Historically, the idea that individual cortical neurons are tuned to external 

parameters gained prominence due to recordings in the primary visual cortex (V1) (Hubel 

and Wiesel, 1968). In early studies performed by Hubel and Wiesel, a huge variety of visual 

stimuli were presented to anesthetized cats. One groundbreaking discovery attributed to 

this work was that the firing rate of neurons in V1 was only enhanced when the stimulus was 

presented at a certain spot in space relative to the eye. This observation marked the 

discovery of visual receptive fields in V1. Shortly thereafter, they found that neuronal 

responses systematically varied with the orientation of a presented bar of light, which was 

the first discovery of tuned neurons in the cortex (Figure 8).  

 

Figure 8: Orientation selectivity of a simple cell recorded in area 17 of the cat (corresponds to area V1 of the 
macaque monkey). Depending on the orientation of a light bar projected on a screen and moved through the 
receptive field of the neuron, the neuron responds with different firing rates. The orientation-dependent modulation 
of firing rate can be described with a with a Gaussian or cosine fit as shown on the right. Adapted from Hubel and 
Wiesel al. (1968). 

 

The finding of the receptive field together with orientation tuning became the corner stone 

of many studies describing the activity of individual neurons from the representational view. 

The representational framework remains the basis of many studies today. This framework 

has been especially successful in describing visual processing, but has also been useful in 

describing movement related activity of individual neurons. The most famous example is the 

activity of neurons in M1, PMd, and PRR while monkeys perform a center out reaching task, 
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which can be well described by tuning for the reach direction (Georgopoulos et al., 1982; 

Klaes et al., 2011), and is similar to the orientation tuning observed in V1. Further, neurons 

of the fronto-parietal network were classified into visual, visuomotor, and motor related 

based on which aspect of a reach-to-grasp task their activity was modulated by (Murata et 

al., 2000). More recent studies, conducted on monkeys passively viewing many different 

pictures, showed that individual neurons in several locations of the temporal cortex (the so-

called “face patches”) only increased their firing rate in response to pictures of faces 

(Freiwald et al., 2009). Individual neurons of the different face patches were found to be 

tuned for facial features ranging from simple orientation up to a complete generalized 

viewpoint in the face patch highest in the hierarchy (Freiwald and Tsao, 2010). In a similar 

experiment on human patients, neuronal activity was recorded in the medial temporal lobe 

and neurons were found which fired selectively for pictures of specific movie actors (Quiroga 

et al., 2005). In the motor system, including premotor and motor cortex, more modern 

approaches have tried to describe the activity of individual neurons as a combination of 

many parameters such as velocity, position, acceleration, and occasionally jerk (Todorov, 

2000). Yet, even these “complex kinematic” models only coarsely matched the observed 

complexity of individual neuron responses (Churchland et al., 2012). Additionally, there 

remains little agreement regarding even the basic parameters relevant to responses in the 

motor system (Shenoy et al., 2013).  

A common problem of the representation framework is that individual neuron tuning 

analyses often only explain a fraction of the recorded neuronal population and the assumed 

tuning function often only roughly matches the neuron’s response (Churchland et al., 2010; 

Mante et al., 2013). This leaves a large proportion of neuronal variance unexplained and 

calls into question the validity of this framework for explaining neuronal processing. 

Assuming that the tuning information of individual neurons is indeed behaviorally relevant, 

and that neurons exist that are tuned e.g. for particular individuals, how is this information 

linked to an equally complex network of movement related neurons? Since this would 

involve the unlikely necessity of dynamically linking or unlinking millions of different neurons 

within different networks, an encoding of information on the population level seems to be 

much more likely (Yuste, 2015).  
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1.3.2. Dynamical system perspective  

Considered from the dynamical systems perspective, neural circuit function is assumed to 

arise from the activation of the whole network of neurons to generation an output, which 

cannot be understood by studying one neuron at a time (Yuste, 2015). Instead, the firing 

rate of each recorded neuron is considered as one dimension in a state-space, and the 

population firing rates over time form a trajectory through this space (Shenoy et al., 2013). 

The evolution of neural population activity should be best captured in terms of dynamical 

rules by which the current state, its input, and possibly some noise cause the next state. 

Dynamical rules can be attractors, such as fixed points in state-space to which the 

population activity moves towards, converges, or rotates around, either across time or even 

across conditions. Attractors can also be seen as emergent states or subspaces guiding the 

evolution of the population activity. The emergent states may not be recognisable by looking 

at responses of individual neurons, since they arise from the interaction of the whole 

neuronal population. However, there are at least two reasons to assume that the number of 

subspaces through which the population activity evolves is smaller than, and distributed 

across, the number of neurons present in one area or even across areas. The first reason is 

the tight but widespread recurrent connectivity within areas and across cortex (Smith and 

Kohn, 2008; Markov et al., 2014) and the second reason is the need for a representation that 

is robust against any kind of external or internal distortion of the conducted neuronal 

process (Shenoy et al., 2013). In this sense, it is essential to find the underlying 

dimensionality or number of subspaces of the population response which governs the 

trajectory through state space. Many dimensionality reduction methods for large-scale 

neuronal recordings have been introduced with different advantages and disadvantages 

(Cunningham and Yu, 2014). One of the most frequently used methods is principle 

component analyses (PCA), which is an unsupervised method based on the covariance 

between all pairs of neurons. PCA can be used to project the full neuronal state space into a 

lower number of orthogonal dimensions which explain most of the covariance in the data in 

descending order. However, since PCA is based on covariance, it captures neuronal variance 

of all kinds, including firing rate differences between neurons and, even worse, probabilistic 

spiking variability between single trials (Cunningham and Yu, 2014). For this reason, PCA is 

usually applied to normalized conditionwise trail-averaged data (Churchland et al., 2010; 

2012; Elsayed et al., 2016). One unsupervised covariance based dimensionality reduction 
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method suitable for single trail analyses is Gaussian process factor analysis (GPFA) (Yu et al., 

2009). Yet, GPFA assumes an explicit noise model, which could be inaccurate and could 

result in arbitrarily broad temporal smoothing. Another problem with covariance based 

dimensionality reduction methods such as PCA and GPFA is that time-shifts in firing between 

neurons as well as graded transitions in the activation of neurons across the population can 

result in an artificially high number of estimated dimensions (Novembre and Stephens, 2008; 

Kobak et al., 2016). In contrast, supervised methods exist that are more robust to time-shifts 

and graded transitions in the population activity, and some of them are applicable to single 

trial activity and rely on dependent variables. In most cases, the dependent variables are 

parameters of the performed task such as stimulus color or the final decision (Mante et al., 

2013; Kaufman et al., 2015). Due to this constraint, there is the danger that the estimated 

dimensions do not explain a meaningful part of the neuronal population variance or miss 

important dimensions. Three commonly used supervised methods are support vector 

machines (SVM), linear discriminant analyses (LDA), and multivariate linear regression 

(Mante et al., 2013; Cunningham and Yu, 2014; Raposo et al., 2014). Basically, the first two 

find the projection which best separates the predefined groups of points from each other, 

while the third method estimates a linear fit of the activity of all neurons onto the 

dependent variable. Despite the pitfalls and restrictions of neuronal population 

dimensionality reduction methods, they hold potential for providing many new insights into 

the encoding and transformation of information in the cortical neuronal population.  

In a few relevant studies, monkeys were trained to perform a large variety of 

different straight and curved reach movements following a delay period, while populations 

of neurons were recorded in M1 and PMd. These studies have helped better understand 

movement preparation and movement generation. The first finding was that activity of 

individual neurons was complex and multiphasic during the movement epoch and 

heterogeneously distributed across the neuronal population, which could not easily be 

explained by the representational framework (Churchland and Shenoy, 2007). Surprisingly, 

by estimating the directional tuning of the whole population of neurons during the 

preparatory and movement periods, it was shown that tuning was only weakly correlated 

between these epochs, speaking in favor of an independent population encoding of 

information for the two periods (Churchland et al., 2010). However, using 10 PCA-based 

dimensions of the population preparatory activity, movement activity could be better 
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predicted than with any of the tested representational models. These findings suggested 

that preparatory activity could be an initial state of a dynamical system whose evolution 

controls movement. Through the development of a method called jPCA, which is an 

extension of PCA that projects the population response onto planes that capture rotational 

variance, it was possible to show that only a few dimensions could capture a considerable 

amount of neuronal population variance in the form of rotational population dynamics, with 

the preparatory activity as an initial state as suggested before (Churchland et al., 2012). 

Analyses of the single trial trajectories of the preparatory activity using GPFA revealed that 

the closer the single trail trajectory was to the “ideal” initial subspace, the faster a 

movement was initiated (Afshar et al., 2011). A recent study showed that neuronal 

population activity during preparatory and movement period evolves through independent 

but linked subspaces (Elsayed et al., 2016). Independent subspaces for different stimulus 

features and choice or preparatory activity were also found in rat PPC and monkey PFC as 

described before (Mante et al., 2013; Raposo et al., 2014). It is important to mention here 

again that the neuronal contributions to the different subspaces were randomly distributed 

across the whole recorded population of neurons in rat PPC.  

A strong indication that the network of neurons is well described as a dynamical 

system could be found by generating a model where we know by definition that it is a 

dynamical system. In order to be a valid model, given the same inputs, we should observe 

outputs closely resembling the recorded neuronal responses. Trained RNNs were shown to 

be suitable models for this approach, and were found to resemble the dynamics of PFC on 

the population level for a decision task (Mante et al., 2013), as described before in the 

decision making section. Intriguingly, in a recent study where a RNN received recorded 

preparatory activity as input, and was trained to produce the subsequently recorded muscle 

activity, and was additionally regularized, the dynamics of the RNN during movement 

resembled the dynamics seen in the recorded neuronal population at both the single-neuron 

and population levels (Sussillo et al., 2015). The results further strengthen the idea that 

motor cortex can be well described as a dynamical system generating muscle patterns.    

The notion of a global, rather than local, encoding and transformation of information 

raises the question of how these processes are coordinated across brain structures. For a 

limited network with a limited number of conditions, a dynamical system, modeled by a 

trained and regularized RNN receiving the same inputs and generating muscle patterns, 
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offers a remarkably parsimonious solution for the coordination of information. However, the 

coordination of information across many brain areas for a nearly endless number of 

different behaviors presumably requires a more complex coordination mechanism, which 

makes it essential to study the communication structure of neuronal populations within and 

across areas using functional connectivity measures. 

 

1.4. Functional connectivity 
Functional connectivity is defined as any quantifiable interaction estimated based on the 

synchronization of parallel recorded neuronal signals (Bastos and Schoffelen, 2016). In most 

cases, functional connectivity is estimated for the same condition to exclude influences from 

the average conditionwise activation profile, which is assumed to not reflect synchronization 

processes (Cohen and Kohn, 2011). Functional connectivity, in contrast to anatomical 

connectivity, does not necessarily imply direct synaptic connections since it can also reflect 

synchronization processes of distant neuronal populations.  

Many different metrics have been introduced to estimate functional connectivity, 

which can be categorized into groups on various levels. Two ways to categorize them are 

based on whether the method quantifies the direction of interaction or is undirected, and if 

the method is based on model assumptions of interaction or is model-free (Figure 9).  

 

Figure 9 A taxonomy of popular methods for quantifying 
functional connectivity. The methods are grouped first 
based on whether they quantify the direction of interaction 
or not and secondly whether they are model based or not. 
The classification is done for functional connectivity 
methods in the time domain. In case a frequency domain 
adaptation of the time domain method exists, it is shown 
below and underlies the same categorization into groups as 
the equivalent time domain method. Adapted from Bastos 
et al. (2016) 
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The most well known and commonly used method is the Pearson correlation coefficient 

(Bullmore and Sporns, 2009; Cohen and Kohn, 2011), which measures the non-directed 

interaction between pairs of neuronal signals under the model assumption of a linear 

interaction. The advantage of the Pearson correlation coefficient is that it is fast and easy to 

calculate and gives very robust results. However, the strength and even the detectability of 

functional interactions estimated with the Pearson correlation coefficient varies 

considerably with the chosen window size of temporally averaged neuronal signal, and 

entails the danger of missing fast interactions that switch sign over time (König et al., 1995; 

Cohen and Kohn, 2011). A model-free alternative to the Pearson correlation coefficient is 

mutual information, which in comparison takes longer to calculate and is more vulnerable to 

noise, since no assumption is made about the noise of the signal (Kraskov et al., 2004). Still, 

the Pearson correlation coefficient can also be used to calculate directional connectivity by 

calculating cross-correlation histograms (CCHs) between pairs of neuronal signals, which also 

solves the problem of window size(Kohn and Smith, 2005). CCHs are estimated by 

incrementally shifting the time series of the neuronal signals with respect to one another 

and calculating the Pearson correlation coefficient for every time lag. The timing of the 

peaks and troughs of the CCHs give information about the directionality of the interaction. 

However, the interpretation of peaks or troughs at each time lag between the two signals is 

difficult. Originally it was thought that no time shift in correlation between the two signals 

could indicate common input from another source (Ts'o et al., 1986), yet recent studies on 

complex network models have suggested that zero-lag peaks instead reflect reciprocal 

connectivity (Vicente et al., 2008; Gollo et al., 2014). Another group of methods to estimate 

directed functional connectivity is based on linear auto-regressive models such as 

generalized linear models (Okatan et al., 2005) and Granger causality (Dhamala et al., 2008; 

Seth, 2010). Granger causality allows for the separate estimation of functional interactions 

from signal x to signal y and vice versa, yet it can only be estimated properly with a high 

signal-to-noise level. Finally, a model-free method to estimate directed functional 

connectivity is transfer entropy (Lindner et al., 2011), but similar to mutual information it 

takes longer to calculate and it is more vulnerable to noise then the linear methods.   

 Another important aspect of functional connectivity estimation is the kind of signals 

between which the interaction is calculated. Depending on the signal, different assumptions 

have to be made with clear implications for the results and which method is best to choose. 
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Crucial factors are spatial and temporal resolution and the signal-to-noise ratio of the 

different signals (Bastos and Schoffelen, 2016), as well as whether the signal is continuous 

such as the BOLD signal, the signal from EEG and MEG, and the LFP, or binary signals such as 

spike trains of single neurons or a group of neurons (Cohen and Kohn, 2011; Bastos and 

Schoffelen, 2016).  

In general, the estimation of functional connectivity of continuous signals is much 

easier because most metrics can be directly applied. However, since the LFP as well as the 

EEG and MEG signal on a coarser scale predominantly represents a nonlinear sum of 

synchronization of the surrounding postsynaptic processing, as mentioned before, the 

strength of interaction of these signals is difficult to interpret. Nevertheless, LFP recordings 

in particular have a comparably good signal-to-noise ratio, which makes them a preferred 

choice of signal for many interaction studies, especially Granger causality estimations of 

directed interaction (Roelfsema et al., 1997; Fries et al., 2001; Womelsdorf et al., 2007; 

Salazar et al., 2012; Bastos et al., 2015). For BOLD signals measured with fMRI, which 

normally have a temporal resolution in the range of seconds, directional measures do not 

make much sense, since most neuronal interactions are known to take place in the 

millisecond range (Buzsáki, 2010). One disadvantage of all continuous signals mentioned so 

far is that they each represent an average signal of a neuronal population. Assuming that the 

interactions within the population are heterogeneous they could be averaged out or be 

strongly distorted on the population level resulting in an inaccurate estimation of functional 

connectivity. This makes single neuron functional connectivity analyses essential to 

understand the coordination taking place within a neuronal assembly (Yu et al., 2008; Nigam 

et al., 2016).  

 The most common single neuron signals are spike trains recorded from 

microelectrodes and isolated by spike sorting algorithms. Spike trains are binary signals 

(Okatan et al., 2005; Cohen and Kohn, 2011) for which the estimation of interaction is more 

complicated compared to continuous signals. Single neuron calcium-signals recorded with 

optical methods are also basically binary signals, since the calcium-signals have to be 

considered as low-pass filtered spike trains, which can be recovered by deconvolution 

methods (Pnevmatikakis et al., 2016). One disadvantage of analyzing spike trains is that only 

the spike events are known states while all other time points are hidden states of the 

neuronal activity, resulting in a low signal-to-noise ratio (Cohen and Kohn, 2011). Due to this 
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reason, Pearson correlation analyses of very short time windows can lead to an 

underestimation of the interaction strength between neurons. Additionally, average 

neuronal spike rates for different species, independent of the behavior or area where they 

were recorded from, were shown to be log-normally distributed across the population, 

spanning around three orders of magnitude (Buzsáki and Mizuseki, 2014). The large 

differences in firing rate result in large differences in signal-to-noise ratio between neurons. 

Unfortunately, this in turn results in an underestimation of interaction strength for neurons 

with low average firing rates (la Rocha et al., 2007; Cohen and Kohn, 2011). This bias cannot 

be corrected for and results in an average firing rate dependency of all functional 

connectivity measures between spike trains. The estimation of directed interaction by 

Granger causality is strongly dependent on the signal-to-noise ratio, as already mentioned 

before. Although implementations of Granger causality for spike train interactions do exist, 

their usage is questionable due to the extreme heterogeneity of firing rates and the modeled 

data they were tested on had unrealistically high and homogeneous average firing rates (Kim 

et al., 2011; Quinn et al., 2011). Pearson correlation analyses are comparably robust to rate 

differences, which makes this classical method still one of the best choices for single neuron 

functional connectivity estimations. In particular, CCHs are still commonly used for spike 

train based interaction estimates (Fujisawa et al., 2008; Smith and Kohn, 2008; Ecker et al., 

2010; Ramalingam et al., 2013). However, CCHs only allow for pairwise interaction estimates 

of spike trains, which cannot reveal more complex multivariate interactions of several spike 

trains. Nevertheless, this possibility was tested in a study where many neurons were 

recorded in parallel, and the multivariate Ising model (based on the principle of maximum 

entropy) as well as CCHs were applied to estimate neuronal interactions (Yu et al., 2008). 

The direct comparison of both methods showed that nearly all interactions could be reliably 

captured by pairwise CCHs.  

Out of the many studies estimating functional connectivity, studies focused on the 

coordination of information can be roughly grouped into studies analyzing the kind of 

synchronization between areas or neurons, suggesting oscillatory synchrony as a crucial 

mechanism for dynamic network coordination (Fries, 2005; 2015) and studies analyzing the 

network topology of the interactions of many areas or neurons (Bullmore and Sporns, 2009; 

Schröter et al., 2017). A review of studies in each category follows. 
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1.4.1. Oscillatory synchrony 

In the last decades, oscillatory synchronization between single neurons as well as neuronal 

populations has been found in many studies, suggesting oscillatory synchronization as an 

important mechanism involved in dynamic network coordination (Engel et al., 2001; Fries, 

2009; Engel and Fries, 2010; Buzsáki and Wang, 2012). Oscillatory synchronization in 

neuronal populations has been described in different distinct frequency bands, such as delta 

(1-4 Hz), theta (4-8 Hz), alpha (8-15Hz), beta (18-35Hz), and gamma (40-100Hz) (Engel and 

Fries, 2010), raising the question of whether these different frequency bands are coupled to 

distinct perceptual, cognitive, or motoric functions and whether they have different 

anatomical origins.  

 The first specific oscillatory synchronization processes in the gamma-band (40-120Hz) 

were described in a series of anesthetized cat experiments, while animals were passively 

observing different visual stimuli and neuronal activity was recorded in V1. Gamma-band 

synchronizations between neurons as well as neuronal populations were found to be 

stimulus specific (Gray and Singer, 1989). A few years later, long range synchronizations 

(>2mm) between neurons in V1 of one hemisphere as well as between the two hemispheres 

were found to be almost always in the gamma-band (König et al., 1995). Experiments 

conducted on awake monkeys that had to attend one of two visual stimuli on a monitor 

showed that neurons recorded in V4 within the receptive field of the attended stimulus 

showed increased gamma-band synchronization with their surrounding population (Fries et 

al., 2001). Interestingly, lower frequency synchronizations (< 17Hz) were also present, 

showing modulation in the opposite direction. In another study, the same modulation of 

gamma-band synchrony was found between FEF and V4 (Gregoriou et al., 2009). Recent 

experiments with monkeys performing a similar task revealed that populations of neurons in 

V1 within the receptive field of the attended stimulus were selectively synchronized in the 

gamma-band with populations in V4, while populations in V1 within the receptive field of 

the non-attended were not synchronized with V4 (Bosman et al., 2012). By using Granger 

causality, they could show that the direction of the synchronization was mainly from V1 to 

V4 and not the other way around, suggesting gamma-band synchronization as a bottom-up 

coordination mechanism in the visual system. The electrocorticogram grid arrays used in this 

study actually spanned large parts of the visual system, including parietal and frontal areas, 

allowing for a more systematic assessment of the information coordination across cortex. 
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Granger causality analyses of the directed functional connectivity across 8 areas revealed 

that bottom-up information flow is coordinated by gamma-band and theta-band 

synchronization, while the top-down information flow is coordinated by beta-band 

synchronization, with V1 as the lowest and parietal area 7a as the highest in the hierarchy 

(Bastos et al., 2015).  

The importance of beta-band synchronization originating from parietal areas was in 

fact shown many years earlier in a study were monkeys had to press and hold a hand 

leverfor variable amounts of time. The investigators showed directed functional connectivity 

via Granger causality from several parietal areas to motor areas (Brovelli et al., 2004). In a 

study where monkeys had to perform a mixed delayed center-out reach and saccade task 

while neuronal activity was recorded from PRR, two important findings regarding beta-band 

synchronization were established (Scherberger et al., 2005). First, the level of beta-band 

synchronization of neurons with their surrounding population was selective for the 

preparation of reach compared to saccade movements and, secondly, the level of beta-band 

synchronization was predictive of the task period, suggesting beta-band synchrony to be 

involved in intention or movement preparation coordination. These findings are well in line 

with the described results in the decision making section showing that beta-band 

synchronization of neuronal populations selectively reflected the decision outcome or 

intention, which is presumably the same as movement preparation (Pesaran et al., 2008; 

Haegens et al., 2011), as mentioned before. Also, findings from more recent studies where 

monkeys had to perform coordinated reach and saccade movements while single neuron 

and LFP activity were recorded simultaneously in PRR and LIP are in accordance with the 

idea that beta-band synchrony is involved in the coordination of movement intention or 

preparation (Dean et al., 2012; Wong et al., 2016). They found that only neurons 

synchronized with the larger populations in both areas were predictive of the movement 

initiation of coordinated reach and saccade movements. However, low frequency 

synchronizations of populations across areas seem to be involved in movement intention 

coordination as well (Nácher et al., 2013), as described before in the decision section.  

It is important to state that there are many more studies describing selective 

coordination mechanisms by oscillatory synchronization. Many experiments have been 

conducted on rats performing a vast assortment of different tasks while activity in the 

hippocampus, the entorhinal cortex, and different cortical regions was recorded, with 
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findings corroborating a coordinative role of gamma-band and theta-band oscillatory 

synchrony (Buzsáki, 2010; Buzsáki and Wang, 2012; Schomburg, 2015). The studies 

presented here were selected with regard to coordination of information across cortex 

spanning perceptual processing, decision making, and behavior generation. A possible 

interpretation of all presented results is that gamma-band synchronization and possibly 

theta-band synchronization coordinate the bottom-up attention control originating from the 

visual areas. In contrast, beta-band and possibly low-frequency synchronization could serve 

as coordinative mechanisms for intention or top-down control of the information flow with 

beta-band synchronizations originating from parietal areas. Additionally, beta-band 

synchronization could possibly be the coordinative mechanism of a putative distributed 

consensus across cortex, as suggested for decision making (Cisek, 2012).  

Two important questions remain unanswered. What is the advantage of oscillatory 

synchronization as a coordinate mechanism? And, how is the information flow coordinated 

by this synchronization? It is important to stress that so far, no common agreement or causal 

proof exists to answer these two questions. However, a convincing answer to the first 

question is the idea of feedforward coincidence detection (Fries, 2009). The number of 

synaptic inputs to a neuron is large (1000- 10000) and the postsynaptic potentials triggered 

by spikes are known to decrease rapidly after initiation, which effectively leaves only a few 

milliseconds for arriving spikes to be integrated to elicit a spike from the target neuron. If 

neurons are oscillatory synchronized to each other, then their spikes have on average a 

greater impact on their targets. The advantage of such a mechanism is not only a reduction 

of energy cost and an increase in spike efficiency, but also a rhythmic gain modulation. A 

rhythmic, synchronized activation of a population of neurons results in phases of high 

excitability when all neurons fire and phases of low excitability in between. As a 

consequence, the amount of excitation necessary to elicit spikes from the target neurons is 

rhythmically modulated or, in other words, the gain is modulated. This allows for a selective 

amplification of inputs from one group of neurons to another group of neurons, by simply 

changing the phase of synchrony of the target neural population to be in phase with one 

group of neurons and out of phase with the other group. This highly flexible mechanism of 

selective communication, which results in a coordination of information flow, is called 

communication through coherence and is a possible answer to the second question posed 

above (Fries, 2005).  
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Most studies to date have analyzed the kind of synchronization thought to 

coordinate information flow between pairs of neurons, areas, or local populations. Yet, the 

brain or brain areas are a strong interconnected network on the anatomical as well as 

functional scale (Berger et al., 2007; Bullmore and Sporns, 2009; Markov et al., 2014), which 

makes it essential to analyze the functional network structure to understand the 

coordination of information flow. However, due to the above-mentioned possibility that 

aspects of the communication can average out at the level of population signals, it is 

essential to analyze functional interaction on the level of single neurons to understand the 

formation of potential ensembles. 

 

1.4.2. Network topology 

The ability to record many neuronal signals simultaneously (e.g. with recently developed 

optical, electrophysiological, and computational tools (Buzsáki, 2004; Sejnowski et al., 2014; 

Yuste, 2015; Pnevmatikakis et al., 2016), see above), has allowed investigators to estimate 

functional networks using functional connectivity measures (Bastos and Schoffelen, 2016). 

However, identifying the functional connectivity of hundreds or thousands of neuronal 

signals presents a problem for analyzing these networks in terms of their structure and their 

organizational principles, referred to as network topology. Many useful analyses for this 

purpose were developed by mathematicians from the field of network science, which was 

only recently established in the late 1990s based on graph theory (Watts and Strogatz, 1998; 

Bullmore and Sporns, 2009).  

In the first study of the field of network science (Watts and Strogatz, 1998), three 

important network measures were defined. The first two are the cluster coefficient, which 

measures interconnectivity between direct neighbors of one node of a network, and the 

shortest path length, which measures the minimum number of nodes which have to be 

passed to get to another node. A simple regular network where each node is connected to 

its four spatial neighbors has a high average cluster coefficient but a long average shortest 

path length. In contrast, a random network has a small average cluster coefficient and a 

short average path length. An interesting finding of this study was that, by randomly 

switching pairs of connections of a regular network, an intermediate state of high average 

cluster coefficient and small average shortest path length was present before the network 

became random. Networks that combine both are referred to as small-world, which was the 
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third defined network measure. Interestingly, the anatomical single neuron network of C. 

elegans and who-played-with-whom network of Hollywood actors both turned out to be 

small-world. After this striking finding, many more topological principles were found and 

described which seem to be common principles of many natural networks and led to the 

definition of complex networks (Barabási and Oltvai, 2004; Barabási, 2009; Bullmore and 

Sporns, 2009). Natural networks were found to have a modular topology, which means that 

groups of nodes within a network are more strongly interconnected with each other than 

with the rest of the network (Ravasz et al., 2002). The importance of individual nodes for the 

network communication or the network coherence of natural networks can be measured by 

centrality metrics. Natural networks were shown to have heavy-tailed centrality 

distributions, with a small number of nodes connecting the network and coordinating the 

network function (these nodes are called “hubs”), while the majority of nodes are only of 

minor importance for the overall network function (van den Heuvel and Sporns, 2013). The 

first described and simplest measure of centrality is degree centrality, which is defined as 

the number of connections per node (Barabási et al., 1999; Jeong et al., 2000). A more global 

aspect of centrality is captured by betweenness centrality, an index of the number of 

shortest paths from all single units to all others that pass through that node (Freeman, 

1977). In some networks, hubs exhibit a strong tendency to link to each other, forming a so-

called rich-club (Colizza et al., 2006). This property can be measured by a rich-club 

coefficient that expresses the tendency of highly connected hub nodes to show above-

random levels of interconnectivity. 

Network analyses of anatomical and functional inter-area brain networks measured 

with tracers, EEG, MEG, or fMRI also revealed them to be topologically organized, as with 

complex networks (Bullmore and Sporns, 2009). The regional brain networks of humans and 

monkeys were found to have a modular and small-world topology (Hilgetag et al., 2000; 

Stephan et al., 2000; Bullmore and Sporns, 2009) Further, the centrality distributions of 

areas were found to be heavy-tailed with hub areas (Achard et al., 2006; Honey and Kötter, 

2007; Honey et al., 2007), which were strongly interconnected as a rich-club coordinating 

global brain communication (Harriger et al., 2012; van den Heuvel et al., 2012).  

However, functional network topology analyses of more localized neuronal signals of 

mammalian brains are lacking in the literature. Three studies analyzing the single neuron 

functional network of organotypic slices of rat brain showed that the single neuron 
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functional connectivity topology was modular, with functional hub neurons organized as a 

rich-club coordinating the network communication (Bonifazi et al., 2009; Shimono and 

Beggs, 2014; Schroeter et al., 2015). Nevertheless, the neuronal activity of oranotypic slices 

is altered compared to the intact brain (Steriade, 2001). Many of the original connections 

and many neurons in the slice die due to the slicing procedure, no natural sensory inputs are 

received by the neuronal network, and plasticity effects after the extraction of the slice even 

further change the neuronal connectivity. Only three studies analyzed the functional 

network topology of single neurons recorded in the intact brain. The first study was 

performed on anesthetized cats passively viewing visual stimuli while many neurons were 

recorded in parallel in V1, showing a small-world topology of functional connectivity (Yu et 

al., 2008). The second study was performed on awake monkeys also viewing visual stimuli, 

while neurons were recorded in parallel in V1. In contrast to the first study, these 

investigators suggested that single neuron functional small-world topology is an artifact of 

distance-dependent functional connectivity (Gerhard et al., 2011). However, the number of 

recorded neurons was small, and even that small number was most likely due to massive 

oversorting, questioning the validity of the results from this study. The last and most recent 

study was performed on awake rats under uncontrolled behavior while neurons were 

recorded in medial to lateral orbitofrontal cortex. It was reported that the functional single 

neuron topology could be described as a rich-club (Nigam et al., 2016). Yet, the uncontrolled 

behavior utilized in that study did not allow for a separation of behaviorally driven common 

neuronal network activations, such as those triggered by different movements or from 

synchronization processes reflecting the coordination of network interaction. In summary, it 

remains unclear how the functional network of local neuronal populations or single neurons 

is topologically organized within and across areas in order to coordinate information flow.  

Since it is so far not feasible to record the majority of neurons in the brain in parallel 

or of high numbers of areas, an important question is: what is an interesting cortical network 

from which to record many neurons in parallel? The network should be suitable for analyzing 

single neuron functional network topology and oscillatory synchronization process in regard 

to coordination of information flow, as well as the encoding and transformation of 

information from perception to behavior.  
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1.5. The fronto-parietal grasping network 
One potential way to select a cortical network to record from is based on the behavior which 

is generated and controlled by it. Ideally the behavior is measurable and quantifiable, such 

as overt motor movements. Grasp movements are one of the most important for interacting 

with our environment on an everyday basis. The cortical network which generates and 

controls grasp movements includes as some of its core areas of the anterior intraparietal 

area (AIP), the ventral premotor cortex (F5), and the primary motor cortex (M1). AIP and F5 

are part of the fronto-parietal network and are known to be strongly reciprocally connected, 

as are F5 and M1 (Luppino et al., 1999). Inactivation studies of area AIP and F5 showed 

deficits in pre-shaping of the hand during grasping, confirming them to be involved in grasp 

generation and control (Gallese et al., 1994; Fogassi et al., 2001). Several studies have been 

conducted on monkeys trained to do visual fixation tasks as well as visually guided delayed 

or non-delayed grasping tasks while single neuron activity was recorded in AIP and F5. These 

studies showed that neurons of both areas were modulated for visual object discrimination 

(Murata et al., 2000; Janssen and Scherberger, 2015), movement preparation (Baumann et 

al., 2009; Fluet et al., 2010), and movement related processing (Menz et al., 2015). These 

findings are well in line with the information representation of neurons recorded from the 

fronto-parietal networks for saccadic eye movements (LIP and FEF) (Freedman and Assad, 

2006; Siegel et al., 2015) and for reach moments (PRR and PMd) (Gail, 2006; Churchland et 

al., 2010; 2012). The presence of visual and preparatory activity within the same network led 

to the assumption that AIP and F5 play an important role in visuo-motor transformation 

(Janssen and Scherberger, 2015), also well in line with findings from studies of the fronto-

parietal saccadic eye movement and reaching network. Strong evidence for this idea was 

provided by two studies showing that, in the fronto-parietal grasping network including M1, 

visual information was found to be most strongly represented in AIP, followed by F5, and 

movement related information was most strongly represented in M1, followed by F5, and 

most weakly in AIP (Schaffelhofer et al., 2015; Schaffelhofer and Scherberger, 2016). These 

findings suggest a graded representation and transformation of neuronal information across 

the areas, again in agreement with studies of the fronto-parietal saccadic eye movement 

network (Siegel et al., 2015). Interestingly, information relevant to reach and eye position 

was found to be encoded by the population of neurons in F5 and AIP (Lehmann and 

Scherberger, 2013), further suggesting a graded representation for the controlled motor 
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moment across the whole fronto-parietal network. A potential reason for this overlapping 

representation, which was also found for eye and reach representation and coordination in 

LIP and PRR (Andersen and Cui, 2009), could be that flexible coordination of eye, reach, and 

grasp movements is necessary in everyday life. The high degree of similarity between the 

fronto-parietal saccadic eye movement, reaching, and grasping networks, as well as the 

overlap between them, suggests AIP and F5 are also involved in decision making.  

 Taken together, neurons in the fronto-parietal grasping network are selective for 

visual, preparatory, and grasp movement related information and are involved in the 

transformation from visual to preparatory activity, from preparatory to movement activity, 

and very likely also in the decision making process that are part of these transformations. 

Conveniently, the involvement of this network in grasp movement preparation and 

generation allows for the direct measurement and quantification of the output of the 

system. Furthermore, there is evidence for beta-band synchronization originating from 

parietal regions such as AIP, which potentially is an important coordinative mechanism 

involved in decision making and movement intentions, as mentioned before. However, the 

exact interplay of all these processes is currently not well understood (Janssen and 

Scherberger, 2015), positioning the fronto-parietal grasping network of macaque monkeys 

as a suitable structure to study the encoding, transformation, and coordination of 

information and decision making. Such studies will provide the characterizations needed to 

better understand the formation of functional neuronal ensembles. 

 In order to explore these processes leading to clearer comprehension of functional 

neuronal ensembles within the fronto-parietal grasping network large populations of 

neurons of this network were recorded in parallel as a databasis of this thesis, while 

monkeys performed different delayed grasping tasks. Four monkeys were trained on two 

different tasks and were chronically implanted with four to six floating microelectrode arrays 

with 36 electrodes (Figure 3) in AIP, F5 and in one case M1 (two per area). The signal of all 

electrodes were recorded in parallel and as a basis of all performed analyses large 

populations of neurons were extracted via spike-sorting algorithm (Figure 5).  

In chapter 2.1 the coordination of the information flow across the fronto-parietal 

single neuron network was analyzed by estimating the the directed functional connectivity 

between all pairs of single neurons. The kind of synchronization process was analyzed 

together with the functional network topology allowing for a unifying view of both aspects. 
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In chapter 2.2 the encoding of information across the neuronal population of AIP and 

F5 was analyzed, while two monkeys performed a mixed instructed and free-choice delayed 

grasping task. Analyses of the classical representational framework were contrasted with 

population analyses in line with the dynamical system perspective. Furthermore, a 

regularized RNN model was trained for the same conditions to produce muscle activity for 

the performed grip types. This model offered a biological plausible explanation for decision 

related transformation of information within the fronto-pariatal grasping network. 

In chapter 2.3 the neuronal population dynamics across AIP and F5 of two monkeys 

were analyzed of the transition between immediate and delayed grasp movements. 

Population analyses by using dimensionality reduction techniques revealed how dynamical 

as well as static aspects of movement preparation can be encoded simultaneously in 

different dimensions in the same neuronal state space.   
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2. Original Articles and Manuscripts  

This chapter contains the following research articles and manuscripts: 
 
 
2.1. Uniting functional network topology and oscillations in the fronto-parietal single unit  
network of behaving primates 

Dann B, Michaels JA, Schaffelhofer S, Scherberger H (2016). Uniting functional network 
topology and oscillations in the fronto-parietal single unit network of behaving primates.  

Published in: Elife 5:2870. Doi: 10.7554/elife.15719 

Author contributions: B.D., and S.S. collected the data. B.D., and H.S. designed and 
performed research. B.D., and J.A.M. analysed the data. B.D. wrote the manuscript. All 
authors revised the manuscript. 
 
2.2. Three information subspaces explain the category-free population dynamics in the  
fronto-parietal network 

Dann B*, Michaels JA*, Agudelo-Toro A, Scherberger H *Equal contribution 

Manuscript in preparation  

Author contributions: B.D., and A.A.-T. collected the data. B.D., J.A.M., and H.S. designed and 
performed research. B.D., and J.A.M. analysed the data. B.D., and J.A.M. wrote the 
manuscript. All authors revised the manuscript. 
 
2.3. Probing the continuum of immediate to withheld grasping movements in the macaque  
fronto-parietal network 

Michaels JA*, Dann B*, Intveld RW, Scherberger H (in preparation). *Equal contribution 

Manuscript in preparation  

Author contributions: B.D., and R.W.I. collected the data. J.A.M., B.D., and H.S. designed and 
performed research. J.A.M., and B.D. analysed the data. J.A.M., and B.D. wrote the 
manuscript. All authors revised the manuscript. 
 
Please note that a previous version of this chapter was already published by Jonathan A. 
Michaels as part of his dissertation with the title: Towards population coding principles in 
the primate premotor and parietal grasping network. However, in collaboration of Jonathan 
A. Michaels with me substantial changes have been made in the manuscript, Jonathan A. 
Michaels agrees to the usage of this chapter in my dissertation. 
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Additional coauthored published articles 

Appendix A Neural Population Dynamics during Reaching Are Better Explained by a  
Dynamical System than Representational Tuning  

Michaels JA, Dann B, Scherberger H (2016). Neural Population Dynamics during Reaching Are 
Better Explained by a Dynamical System than Representational Tuning.  

Published in: PLoS Comput Biol 12:e1005175–22. Doi: 10.1371/journal.pcbi.1005175 

Author contributions: J.A.M., B.D., and H.S. designed and performed research. J.A.M., and 
B.D. analysed the data. J.A.M. wrote the manuscript. All authors revised the manuscript. 
 
Appendix B Predicting Reaction Time from the Neural State Space of the Premotor and  
Parietal Grasping Network 

Michaels JA, Dann B, Intveld RW, Scherberger H (2015) Predicting Reaction Time from the 
Neural State Space of the Premotor and Parietal Grasping Network.  

Published in: Journal of Neuroscience 35:11415–11432. Doi: 10.1523/JNEUROSCI.1714-
15.2015 

Author contributions: B.D., and R.W.I. collected the data. J.A.M., B.D., and H.S. designed and 
performed research; J.A.M. and B.D. analyzed the data; J.A.M. wrote the paper. All 
authors revised the manuscript. 
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Abstract 

The functional communication of neurons in cortical networks underlies higher cognitive 

processes. Yet, little is known about the organization of the single neuron network or its 

relationship to the synchronization processes that are essential for its formation. Here, we 

show that the functional single neuron network of three fronto-parietal areas during active 

behavior of macaque monkeys is highly complex. The network was closely connected (small-

world) and consisted of functional modules spanning these areas. Surprisingly, the 

importance of different neurons to the network was highly heterogeneous with a small 

number of neurons contributing strongly to the network function (hubs), which were in turn 

strongly inter-connected (rich-club). Examination of the network synchronization revealed 

that the identified rich-club consisted of neurons that were synchronized in the beta or low 

frequency range, whereas other neurons were mostly non-oscillatory synchronized. 

Therefore, oscillatory synchrony may be a central communication mechanism for highly 

organized functional spiking networks.  
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Introduction 

Perception, cognition, and movement are generated by the functional interaction of 

neuronal circuits. In order to understand the basis of these processes, especially in highly 

complex networks such as the primate brain, it is essential to know their network structure, 

termed topology. Graph theoretical approaches have enabled analysis of the brain’s network 

topology (Watts and Strogatz, 1998; Bullmore and Sporns, 2009). Using such approaches in 

EEG, MEG, DTI or fMRI studies, anatomical regions have been grouped into functional and 

anatomically strongly connected modules, which are segregated from each other (Bullmore 

and Sporns, 2009). Still, every region can be reached by bypassing a few others (small-

world), a topology which is robust and allows efficient information processing (Hilgetag et 

al., 2000; Stephan et al., 2000; Bullmore and Sporns, 2009). A few regions of the brain are 

highly connected and centrally located within the network (van den Heuvel and Sporns, 

2013a) (hubs) as well as strongly connected to each other (van den Heuvel et al., 2012) (rich-

club). This rich-club forms a global communication pathway across the network, thereby 

cross-linking segregated modules (van den Heuvel and Sporns, 2013b).  

 However, single neurons and their functional network topology are the fundamental 

computational structure of the primate brain. While neuronal modules, hubs, and rich-club 

organization has been shown in organotypic slices of rats (Bonifazi et al., 2009; Shimono and 

Beggs, 2014; Schroeter et al., 2015), hardly anything is known about single neuron network 

topology in the intact brain during behavior. Limitations in recording high number of single 

neurons in parallel, incorporating distance-dependent connectivity, and addressing 

subsampling and firing rate biases makes it difficult to assess these networks. Only small-

world topology has been debated (Yu et al., 2008; Gerhard et al., 2011) and rich-club 

topology has been shown recently in mice (Nigam et al., 2016). 

Equally important to topology is the mechanism which coordinates and synchronizes 

neurons during cognitive or perceptual processes. Previous research has revealed oscillatory 

synchrony in time as a crucial feature of functional coordination (Fries, 2009; Buzsáki and 

Wang, 2012; Womelsdorf et al., 2014). Different distinct frequency bands for information 

transmission and functional network coordination have been identified, such as gamma (40-

100Hz) and theta (4-8 Hz) in the visual areas and up to frontal cortex for coordinated 

attention selection (Roelfsema et al., 1997; Bosman et al., 2012; Gregoriou et al., 2012), and 

beta (18-35Hz) and delta (1-4 Hz) in fronto-parietal regions for network coordination during 
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decision and working memory processes (Brovelli et al., 2004; Pesaran et al., 2008a; Haegens 

et al., 2011; Salazar et al., 2012; Nácher et al., 2013). Recently, gamma and theta oscillations 

have been proposed as feedforward communication frequencies across large parts of the 

visual network, while beta oscillations has been proposed for feedback communication 

(Bastos et al., 2015). However, firing rate correlations have also been found, independent of 

oscillatory synchronization, to be of importance for communication in the behaving brain 

(Fujisawa et al., 2008; Smith and Kohn, 2008). Yet, how functional network topology, 

described by graph theoretical approaches, relates to oscillatory and non-oscillatory 

synchronization remains unclear. This question must be answered at the level of single 

neurons, where oscillatory synchrony can be distinguished from non-oscillatory synchrony. 

Here, we recorded in parallel and assessed functional connectivity and network 

topology from a large number of single neurons (48 to 149 per session) from the primate 

grasping circuit (Luppino et al., 1999), including the ventral premotor (F5), primary motor 

(M1), and anterior intraparietal (AIP) cortex of three behaving macaque monkeys. Across the 

three cortical areas we found modular, small-world topology with a clear presence of hubs 

that were organized as a rich-club. Moreover, rich-club hub neurons predominantly spiked 

and communicated by oscillatory synchrony in the beta and low frequency range, while the 

remainder of the network predominately communicated by non-oscillatory synchrony, 

suggesting that oscillatory synchrony is a central coordination mechanism for functional 

network topology. 

Results 

The current study includes 12 recording sessions from three macaque monkeys (M: 

3, S: 6 and Z: 3). We recorded from the grasping motor network, including part of the ventral 

premotor (F5), anterior intraparietal (AIP), and additionally from primary motor (M1) cortex 

area for monkey M (Schaffelhofer et al., 2016) (Supplementary Table 1). To engage the 

grasping motor network, monkeys performed a visually-cued delayed grasping task in which 

the monkey grasped a handle with one of two different grasp types (Michaels et al., 2015) 

(Figure 1A,B; see Materials and Methods). An average number of 570 trials (SD: 177) were 

recorded in each session. 
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Figure 1. Task design and array implantation. (A) 
Choice/no-choice task. Setup: Monkeys were 
cued to grasp a target (handle) with one of two 
different grip types displayed on a monitor 
appearing superimposed on the handle. Task: 
Monkeys had to fixate a red disk for 600-1000ms 
(Fixation), followed by a cue period of 300ms 
(Cue). Then, either (‘Power’) a green disk was 
presented on the left indicating a power grip, 
(‘Precision’) a grey disk on the right indicating 
precision grip, or (‘Free-choice’) both disks were 
presented indicating a free-choice between both 
grips. After the cue a memory period followed 
(duration: 1100-1500ms) before the fixation dot 
was turned off (go-signal) indicating the monkey 
to execute the grasp movement (maximum 
duration:1000ms). (B) Electrode array 
implantation of monkey M with 6 floating 
microelectrode arrays (FMAs) in areas AIP, F5, 
and M1. Arrays were implanted at the lateral end 
of the intraparietal sulcus (IPS) in AIP, in the 
posterior bank of the arcuate sulcus (AS) in area 
F5, and in the anterior bank of the central sulcus 
(CS) in the hand area of M1. (C) Average firing 
rate across trials of two example units from area 

F5 (left) and AIP (right). Each colored line corresponds to the mean activity of one condition. Line shadings 
represent standard error. Inlays shows the corresponding waveforms displayed as density plots. 
 

In each area, recordings were obtained from two floating microelectrode arrays 

(FMAs), for a total of 64 channels (32 per microarray) per area (Figure 1B; see Materials and 

Methods) from which an average of 88 single units (SD: 32) were recorded in parallel. All 

recorded single units were modulated by the epochs of the task or the grasp types, clearly 

indicating the behavioral relevance of the performed task to the detected single units 

(Figure 1C). Nevertheless, in agreement with previous findings (Buzsáki and Mizuseki, 2014), 

firing rates of individual units were relatively stable for different behavioral states of the task 

following an approximate log-normal distribution (Figure 1-Figure Supplement 1). 

 

Functional connectivity 

The functional connectivity between all simultaneously recorded units of the grasping 

network was estimated by calculating cross-correlation histograms (CCHs) (Figure 2A, Figure 

2 - Figure Supplement 1,2; see Materials and Methods), one of the few methods also 

allowing analyses of the frequency domain (Bastos and Schoffelen, 2016) (see below). It is 

important to stress that the functional connections we describe here do not necessarily 

represent monosynaptic connections, but merely the influence of one unit onto another. For 
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each neuron pairing one single CCH was estimated over all task epochs and grasp types, 

since we were interested in the general network interaction and not grasp type or time 

specific modulations of the network. A general problem of all connectivity measures is 

common drive to the network, such as stimulus- or movement-locked, but not pairwise, 

correlations, causing an overestimations of connections. We corrected these biases by 

subtracting surrogate CCHs (Figure 2 - Figure Supplement 1A).  

Figure 2. Cross- and auto-
correlation histograms and 
frequency spectra. (A) 
Example crosscorrelation 
histograms (CCHs) for five 
example neuron pairs. 
Displayed amplitude is 
limited to +/-2.5x10-3 

coincidences per spike for 
better comparison. CCHs are 
color-coded based on their 
oscillatory synchronization 
frequency (red: beta band; 
blue: low frequencies; 
magenta: beta and low 
frequencies; black: no 
underlying frequency). (B) 
Corresponding frequency 
spectra of CCHs in a, 
frequency displayed on 
logarithmic scale (for better 
comparison limited to a 
power of 8x10-5) and color-
coded as in A. (C) Same as in 
A, but for auto-correlation 
histograms (ACHs). (d) Same 

as in B, but for the frequency spectra of the ACHs in C. (E) Illustration of different kinds of CCHs to a reference 
unit and the inferred connectivity. Upper left: No peak is present in the CCH so the unit is not connected to the 
reference unit. Upper right: A peak at positive time lags indicates a connection from the reference to the target 
unit. Lower right: A peak is present straddling the 0 time lag with a maximum peak at 0, indicating a 
bidirectional connection. Lower left: Several peaks and troughs are present with a clear underlying frequency 
and a maximum peak at a negative time lag, indicating an oscillatory connection from the target to the 
reference unit. 

 
Connections indicated by significant peaks or troughs in CCHs were identified by a 

cluster-based surrogate test (Maris et al., 2007) to all CCHs (see Materials and Methods), 

testing against surrogate CCHs. To control the family-wise error for the entire network, false 

discovery rate (FDR) correction was applied across all significant connections (Benjamini and 

Hochberg, 1995). For later topological analyses of oscillatory synchrony in the network, we 

applied Fourier transformations (Figure 2B-D; see Materials and Methods) to all CCHs and 

auto-correlation histograms (ACHs). The latter detected periodicity in the spiking of 
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individual units, (Figure 2C), allowing classifying them as oscillators or non-oscillators.  

 Directional interaction between pairs of units was inferred from the time delay of 

significant peaks or troughs in the CCHs (Figure 2E). In early studies, a peak or trough in a 

CCH with a non-zero time lag was classified as a unidirectional connection from one neuron 

to another while a peak or trough with a zero time lag was classified as common drive to 

both neurons (Moore et al., 1970). However, recent studies based on complex models rather 

suggest that zero time lag peaks or troughs in CCHs mainly represent bidirectional 

connections, which can be explained by the dynamical relaying mechanism, and only rarely 

reflect a common drive (Vicente et al., 2008; Gollo et al., 2014). For this reason, we defined 

zero time lag peaks and troughs in the CCHs as bidirectional connections. 

For additional validation of how well we could recover directed functional 

connectivity, we modeled two sets of “ground truth” networks with the same distribution of 

firing rates as recorded single units, one simple network (SN) and one complex network (CN) 

set (Equal rate model, see Materials and Methods). We could detect directed functional 

connections reasonably well (hits: 62% for SN, and 69% for CN) and hardly detected any false 

connections (correct rejections (CR) > 99% for SN and CN), independent of the underlying 

topology (Figure 2 - Figure Supplement 3B). To clarify if the missed connections were due to 

not detecting an existing interaction of a pair of neurons, or due to incorrect classification of 

directionality, we analyzed the detectability of connections independent of their direction 

(Figure 2 - Figure Supplement 3C), revealing similar results to the detect directed functional 

connections (hits: 58% for SN, and 69% for CN; CR: >99% for both). These findings suggest 

that the missed connections were due to not detecting an existing connection, in accordance 

with a high accuracy for extracting directionality of only detected connections (Figure 2 - 

Figure Supplement 3D; hits: 97% for SN, and 90% for CN; CR: 75% for SN, and 73% for CN).  

Our simulated networks also allowed for a closer evaluation of zero time lag peaks as 

a result of either common drive or bidirectional connections. In direct comparison, the 

average common drive CCH as well as the average bidirectional CCH had a maximum at the 

zero time lag, but with the average bidirectional CCH having a 24 times higher peak (10.89 

SD surrogate for bidirectional connections, and 0.45 SD surrogate for common drive; Figure 

2 - Figure Supplement 3E), which is well in line with around 1% of all common drive pairs 

were detected as significant. When analyzing the distribution of maximum peaks in more 

detail, we found more than 7 times more bidirectional connections having a peak at the 0 
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time lag than common drive pairs (Figure 2 - Figure Supplement 3F), in line with the results 

from the models described above (Vicente et al., 2008; Gollo et al., 2014). Taken together, 

all results from the modeled networks show an accurate detectability of directed functional 

interactions estimated from CCHs.   

For a physiological classification of all significantly detected connections, we also 

analyzed their maximum peak or trough time lag distribution (Figure 2 - Figure Supplement 

4A). Interestingly, the maximum peak or trough time lag distribution showed an exponential 

decay, with most of the peaks or troughs having a very short time lag (45.67% < 10ms, and 

85.12% < 100ms), indicating predominantly direct influences of the units on each other. In 

case of oscillatory synchronized single units, as strongly present in the data, the classification 

of the maximum peak or trough time lags was more complex. Given that the maximum peak 

or trough time lag could be greater than half a cycle of the underlying frequency, it became 

unclear which unit is leading and which lagging, due to the presence of side lobes (e.g., see 

Figure 2A top panel). Since we found high numbers of oscillatory synchronized single units, 

predominantly in the beta (20Hz) and in the low frequency range (4Hz), as described in 

detail below, we analyzed the distribution of maximum peaks or troughs phase with respect 

to the underlying oscillatory frequency (Figure 2 - Figure Supplement 4B), and also found an 

exponential decay, similar to the maximum time lag peak or trough distribution. The 

majority of phase lags were within half a cycle around the zero time lag for both frequencies 

(beta connections: 77.70% < π, low frequency connections: 87.66% < π), suggesting that for 

most oscillatory synchronized connections we could accurately determine which unit was 

leading and which unit was lagging.  

For analyzing the functional network topology, all units not connected to the largest 

inter-connected component were first discarded (mean number of units dropped: 17.75, SD: 

9.56; mean percentage: 23.5%, SD: 13.3%; Supplementary Table 1) and binary directional 

connectivity matrices were created for every dataset (Figure 3A). We did not quantify the 

connection strength, since it has been shown to be biased by different firing rates (Cohen 

and Kohn, 2011).  

Inter-area modular and small-world topology 

First, we tested if the networks could be subdivided into modules, such that the number of 

connections was maximized within and minimized between modules. To properly evaluate 

modular topology, the fact that connectivity decays with distance has to be considered 
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(Smith and Kohn, 2008; Gerhard et al., 2011). Figure 3B shows the distance-dependent 

decay of connectivity of our networks according to different subgroups: on the same 

electrode, on the same array, in the same area, between AIP and F5, between F5 and M1, 

and between AIP and M1. Connection density was not significantly different within all 

subgroups (Kruskal-Wallis test, p > 0.05).  

 

Figure 3. Connectivity characteristics and modular topology. (A) Connectivity matrix of one dataset from 
monkey M. Each dot represents a significant connection (Online Methods). Units are ordered by channel 
number of the recording system. (B) Distance dependent connectivity. From left to right: 56,7%, 11,5%, 5,6%, 
5,5%,2,6%, and 1,7%. Note the clear distance dependent decay. (C) The same matrix as in A, but with nodes 
ordered according to an optimal modularity partition. Colored rectangles surround different network modules. 
(D) Anatomical network representation of the connectivity matrix in A. The brain is viewed as in Figure 1B. 
Single units and connections are color coded by module. (E) Schematic illustration of modular topology. 
Modules (dashed regions) consist mainly of single units of one cortical area, but also include small fractions of 
units from other areas.  

 

 Modular topology can be quantified by the modularity index Q. If a network can be 

completely subdivided into modules, Q will be 1. In contrast, if there is no modular structure 

present at all, Q will be close to 0. We found significant modular topology present in most of 

the networks (Mean Q: 0.405, SD: 0.087; permutation test, p < 0.05, sig. 10/12 datasets), 

taking the distance-dependent decay of connectivity into account. Modules were 

significantly predominated by units from a single area (mean largest proportion: 81.4%, SD: 

14%; permutation test, p < 0.001), but 84% of all modules also included units from other 

areas, as became apparent when visualized as anatomical networks (Figure 3D, and Figure 3 

- Figure Supplement 1A) or when displayed as a web where the locations of all units is 
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determined by visualization of similarities (VOS) (Van Eck and Waltman, 2007) (Figure 3 - 

Figure Supplement 2A,B). These results reveal a functional modular topology partially not 

related to the anatomical boundaries between the different areas (Figure 3E).  

 Having shown that a modular topology is present, what is the detailed structure of 

how individual units are connected within the network? For this, we calculated the cluster 

coefficient C (with C=1 corresponding to every neighbor of every unit being interconnected, 

and C=0 indicating no interconnections between neighbors) and the average path length, L 

(defined as the average minimum number of units connecting one unit with another, across 

all pairs of nodes of the network; see Methods section). If units have dense local clustering 

(large cluster coefficient C) and can be reached from all other units via a short average path 

length, L, similar to random networks, the network is considered small-world (SW) (Watts 

and Strogatz, 1998; Bullmore and Sporns, 2009). Here, a value of SW >> 1 indicates a small-

world topology, whereas SW=1 corresponds to no small-world effect.  

We found significantly higher average cluster coefficients C in comparison to 

surrogate networks (mean: 0.266, SD: 0.068; permutation test, p < 0.001, sig. 12/12 

datasets) and on average similar path lengths L (mean: 3.451, SD: 0.823; mean difference to 

surrogate networks: -0.007; permutation test, p < 0.05, sig. higher 5/12, sig. smaller 5/12 

datasets). Consequently, all networks had a significant SW-coefficient (mean: 3.05, SD: 0.66; 

permutation test, p < 0.001, sig. 12/12 datasets), suggesting that despite a modular 

structure the neuronal network is efficiently processing and transmitting information (Watts 

and Strogatz, 1998). 

 

Degree centrality, betweenness centrality, and hubs 

Some networks, have been shown to exhibit heavy-tailed centrality distributions, with a 

small number of nodes strongly embedded in the network (hubs), which make a strong 

contribution to the network function (van den Heuvel and Sporns, 2013a). A simple and 

robust measure of centrality is degree centrality (k), which is the number of connections per 

unit. On average 6.27% (SD: 2.29%) of all possible connections were realized. The degree 

distribution (Figure 4A) was heavy-tailed and best described by an exponential truncated 

power law model (P(k) ~ kγ-1ek/kc, γ = 0.6839; cutoff degree of kc = 8.657; EXPTPL: adjusted R2 

= 0.9891, including a penalty for number of fitted variables), compared to a power law (P(k) 

~ k-γ; PL: adjusted R2 = 0.9177), exponential (EXP: adjusted R2 = 0.9742), or Gaussian (GAUS: 
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adjusted R2 = 0.6826) model. In contrast, surrogate networks with the same distance-

dependent connectivity were not heavy-tailed and were best described by a GAUS model 

(GAUS: adjusted R2 = 0.9655; PL: adjusted R2 = 0.3061; EXPTPL: adjusted R2 = 0.5006; EXP: 

adjusted R2 = 0.6419). In agreement with the EXPTPL model, networks had significantly more 

single units within the low, less within the intermediate, and especially more in the high 

degree range, than surrogate networks (cluster-based permutation test, p < 0.05), clear 

evidence of hubs, independent of distance-dependent connectivity.  

Figure 4. Centrality 
measures, hubs, and rich-
club topology. (A) Average 
degree centrality distribution 
of all networks (blue) and 
corresponding surrogate 
networks (red). Black lines 
reflect different models 
fitted to the data (see legend 
in B). The degree distribution 
of each dataset was 
normalized to the possible 
maximum number of 
connections per network. 
The area under the curve 
was normalized to 100% 
before averaging. Line 
shadings show standard 
error across datasets. 
Asterisks represent 
significant differences to 
surrogate networks. Inlay 
shows the same distribution 
and models on a log-log 
scale. (B) Same as in A, but 
for the betweenness 
centrality distribution. Note 
that the slopes for the 
EXPTPL and PL model are 
identical, since the 
exponential coefficient of the 
EXPTPL model was zero. (C) 
Schematic view of a rich-club 

topology connecting highly clustered modules. (D) Average rich-club level of all datasets relative to surrogate 
datasets. Asterisks represent significant differences of rich-club level to surrogate networks. (E) Anatomical 
network representation, as in Figure 3D, with connections and units color-coded based on rich-club 
membership (orange).  
 
 A more global aspect of centrality is captured by betweenness centrality (g), an index 

of the number of shortest paths from all single units to all others that pass through that 

single unit, normalized by the number of all shortest paths (van den Heuvel and Sporns, 

2013a). Similar to degree centrality, the betweenness centrality distribution (Figure 4B) was 
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heavy-tailed and best described by a PL model, with an estimated exponent of γ = 2.212 (PL: 

adjusted R2 = 0.9753; EXPTPL: adjusted R2 = 0.9745; EXP: adjusted R2 = 0.9593; GAUS: 

adjusted R2 = -0.1509). The betweenness centrality distribution of surrogate networks was 

also heavy-tailed and was best described by an EXPTPL model (EXPTPL: adjusted R2 = 0.99; 

PL: adjusted R2 = 0.9771; EXP: adjusted R2 = 0.9061; GAUS: R2 = -0.5511). Still, in contrast to 

the PL model, the EXPTPL model had smaller values in the high and low betweenness 

centrality range. Statistically networks showed a significantly higher number of single units 

in the low and fewer units in the intermediate betweenness range than surrogate networks 

(cluster-based permutation test, p < 0.05). These findings confirm the presence of hub 

neurons for betweenness centrality. Units with high degree centrality also tended to have 

high betweenness centrality (r = 0.75, p < 0.001, Spearman correlation), suggesting a 

coherent group of hub units. We found no significant differences in number of hubs per area 

(normalized k  9, g  0.03; Tukey's honest significant difference test on average group 

ranks, p < 0.05), indicating a distributed hub topology with no area acting as a network 

center. Together, we have shown that centrality of single units is strongly heterogeneous in 

the network, with a large group of units being marginally involved in the network and a small 

group of spatial distributed hub units being extremely central. The presence of hubs 

provides further evidence of a complex network topology at the single unit level.   

However, it has been shown that detectability of functional connections decreases 

with lower firing rates (Cohen and Kohn, 2011). Since the detected firing rates varied 

approximately across two orders of magnitude (Figure 1 - Figure Supplement 1B), this could 

lead to an underestimation of degree for low spiking units and an overrepresentation of high 

firing units as hubs. Therefore, we performed a careful examination of the influence of firing 

rates on degree and betweenness centrality based on our equal rate model (see Materials 

and Methods). Two sets of networks were tested, simple networks (SNs) and complex 

networks (CNs), as mentioned previously. SNs had normally distributed connectivity based 

on the best fitting Gaussian model for the surrogate network degree centrality distribution, 

while connectivity for CNs were set to precisely resemble the EXPTPL model for the average 

degree centrality distribution of the measured networks. CNs additionally had a small-world 

and rich-club topology, as described in the following section. 

Differences in firing rate and any possible biases due to the applied method to 

estimate directed functional connectivity had no effect on the shape of the degree centrality 
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distribution for both kind of networks (Figure 4 - Figure Supplement 1A). The betweenness 

centrality distribution for CNs was also unchanged and only slightly impaired for the SN 

(Figure 4 - Figure Supplement 1B). Nevertheless, the best fitting model for the betweenness 

centrality distribution of SNs was in neither case (modeled or detected) a PL, as it were for 

the measured data and the CNs, suggesting no distorting effect by differences in firing rate 

and the applied method to estimate directed functional connectivity. Importantly, also the 

average C, average L, and SW-coefficient were correctly detected for both kind of networks. 

It is also possible that subsampling, a natural limitation in electrophysiological 

recordings, could artificially cause a heavy tailed degree centrality distribution even if the 

underlying connectivity is random (Han et al., 2005; Gerhard et al., 2011). We simulated a 

neuronal layer of 32,000 neurons with the same distance-dependent connectivity density as 

detected in our data (Figure 3B), but with Poisson distributed connectivity (Figure 4 - Figure 

Supplement 2A; see Materials and Methods). Subsampling was performed in 

correspondence with our array configuration down to the number of neurons we recorded 

for real datasets, showing no change to the shape of the degree distribution (Figure 4 - 

Figure Supplement 2B). Only when we decreased the connection density of the model below 

the detected connectivity in our data was a false heavy-tailed degree distribution apparent 

(Figure 4 - Figure Supplement 2C), which was highly correlated with the networks breaking 

apart into unconnected components (R2 = 0.93). Additionally, this effect could not be 

present in our analyzed data since we only analyzed the largest component of the single unit 

networks. Theses controls suggest that the existence of hubs can neither be explained by 

distance-dependent connectivity, differences in firing rates, or subsampling. 

 

Rich-club topology 

In some networks hubs exhibit a strong tendency to link to each other, forming a rich-club 

(Colizza et al., 2006), which can be measured by a rich-club coefficient that expresses the 

tendency of highly connected hub nodes to show above-random levels of interconnectivity 

(Figure 4C). Hub units showed a significantly higher level of interconnectivity than surrogate 

networks, with up to 15% more connections (Figure 4D; cluster-based permutation test, p < 

0.05).  

For our equal rate model, we tested if differences in firing rate and the applied 

method to estimate directed functional connectivity could cause a false rich-club effect. The 
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present rich-club topology of CNs could be correctly detected, as well as no false rich-club 

topology was detected for SNs (Figure 4 - Figure Supplement 1C). Although the slope of the 

rich-club coefficient was changed for CNs, rich-club topology was only significant if present 

(cluster-based permutation test, p < 0.05), suggesting a correct representation of rich-club 

topology for the measured networks.   

The rich-club contained neurons from all areas with a rich-club level set to k >= 9% 

(Figure 4E, Figure 3 - Figure Supplement 1B, and Figure 3 - Figure Supplement 2C; mean rich-

club neurons: 27%, SD: 18%; similar results with k set to other levels). A rich-club that spans 

multiple areas, as described here, has been proposed as a robust structure facilitating 

efficient communication (van den Heuvel and Sporns, 2013a). 

 

Network topology of oscillatory synchrony 

Oscillatory synchronization has been proposed as a mechanism for efficient communication 

(Fries, 2009). As demonstrated above, oscillatory and non-oscillatory synchronized spike 

patterns for communication could be identified (Figure 2, Figure 2 - Figure Supplement 

1B,2). We therefore investigated if specific relationships between distinct frequencies and 

network topology emerged. Frequency spectra of ACHs of all units and of CCHs that had a 

significant connection were tested for significant frequency bins above chance (cluster-

based surrogate test, p < 0.05). We found beta (18-35 Hz) and low frequency (3-7 Hz) 

oscillations predominantly present in the spiking patterns of all datasets (Figure 5A, and 

Figure 5 - Figure Supplement 1C-E). Oscillatory synchrony in both frequency ranges was 

present more often in CCHs (mean beta: 38.3%, low: 44.3%) than in ACHs (mean beta: 

22.5%, low: 31.7%), suggesting that the group of oscillating single units (oscillators; 

Supplementary Table 2) communicates in their underlying frequency to a larger group of 

units.  

Interestingly, there was also a significant group of oscillating single units present in 

the gamma range (45-80Hz), which was not mirrored in the CCHs. One possible explanation 

could be that that these units communicate via long-range gamma synchronization with 

topographically distant areas we did not record, such as the visual cortex (Gregoriou et al., 

2009).  
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Oscillators and oscillatory connections were widely distributed and seemed to be 

very central across all areas (Figure 5B, Figure 3 - Figure Supplement 1C, and Figure 3 - Figure 

Supplement 2D), giving rise to the idea that oscillators could be the hubs of the networks.   

 

Figure 5. Low frequency and beta oscillators and their network topology. (A) Average number of significant 
frequency bins of all ACHs and CCHs over all datasets. Frequencies displayed on a logarithmic scale. Line 
shadings bars represent standard error across datasets. (B) Anatomical network representation as in Figure 3D 
with connections and units color-coded by underlying oscillations (see legend in C). (C) Degree centrality 
distribution of all datasets separately for beta and low frequency oscillators, non-oscillators, and single units 
oscillating in both frequency ranges. Upper panel, summed degree centrality distribution of all single units. 
Median degree is represented by arrows in corresponding color: beta units: 7.5, low frequency units: 6.3, beta 
and low frequency units: 8.9, and for non-oscillators: 2.7. (D) Same as in C but for the betweenness centrality 
distribution. Median for beta units: 0.023, low frequency units: 0.016, beta and low frequency units: 0.026, and 
for non-oscillators: 0.001. (E) Schematic view of the found network topology of oscillators. Oscillators form a 
rich-club spanning all areas. (F) Distribution of oscillators across areas. The number of single units is normalized 
to 100% per area. F5 has significantly less beta (red) and significantly more low frequency oscillators (blue) 
than M1 and AIP. Note that units oscillating in both frequency ranges are counted in both. Non-oscillators 
(black) still remain the largest group in all areas.  

 

 Figure 5C shows the average degree centrality distribution for all networks, as in 

Figure 4A, but separately for beta and low frequency oscillators, non-oscillators, and units 

oscillating in both frequencies. There was a clear dominance (high percentage) of oscillators 

in the high degree range, whereas non-oscillators dominated in the low degree range. The 

degrees of all three oscillator groups were significantly higher than for non-oscillators 

(Tukey-Kramer test for rank, p < 0.001). Betweenness centrality was also significantly higher 

for oscillators than for non-oscillators, similar to degree centrality (Figure 5D; Tukey-Kramer 

test for rank, p < 0.001). The number of units oscillating in both frequencies was not higher 
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than expected by coincidental overlap of the two frequency bands (permutation test, p > 

0.05).  

Nevertheless, it could be possible that CCHs are more sensitive to oscillatory 

synchrony than to non-oscillatory synchrony, which would induce a bias when comparing 

these two groups. At this point, it is important to emphasize that we first tested for 

significant connectivity independent of oscillatory behavior and only in a second step these 

connections were tested for their oscillatory behavior as described in the methods section. 

This ensured that any detected connection is based on a significant amount (or suppression) 

of coincidental spikes without any selective sensitivity for oscillatory coupling. As an 

additional test, we simulated pairs of neurons either with an oscillatory or non-oscillatory 

firing pattern (see Materials and Methods). Since peaks and troughs in CCHs reflect a 

systematic time lag in spiking between units across trials we simulated different degrees of 

coupling strengths by systematically varying the trial-wise time offset in spiking for both 

firing pattern types. Synchronization strength was simply a function of the variation in spike 

timing offsets between the two neurons and not whether the firing pattern was oscillatory 

or not (Figure 5 - Figure Supplement 2), confirming that oscillatory coupling is not a priori 

more detectable than non-oscillatory coupling. 

Besides these methodological issues already addressed, it is possible that higher 

firing rates introduce a bias in the statistical detection of significant frequency bins, To 

control for this possibility, we applied thresholds for the detection of beta and low 

frequency oscillations. Thresholds were chosen to give, as closely as possible, the same 

number of beta and low frequency oscillators as statistical methods. Using this method all 

three groups had a higher degree and betweenness centrality than non-oscillators, similar to 

statistical detection (Tukey-Kramer test for rank, p < 0.001). To rule out that firing rate 

dependent detectability of functional connections could cause a spurious inter-dependence 

of high centrality and detection of oscillatory synchrony, we repeated testing for differences 

in centrality only with units having a firing rate of 10Hz and above, confirming that oscillators 

had significantly higher centrality values (Tukey-Kramer test for rank, p < 0.001). Similar 

results were obtained when we tested the data of each monkeys individually (Tukey-Kramer 

test for rank, p < 0.01). To our knowledge, the current results represent the first evidence 

that oscillators have a higher centrality in the single unit network than non-oscillators. 

Consequently, the rich-club of all networks overlapped significantly with oscillating single 
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units (permutation test, p < 0.05), highlighting oscillators as the backbone (van den Heuvel 

et al., 2012) of single unit functional connectivity (Figure 5E).  

The number of oscillators did not differ between areas (Tukey-Kramer test for rank, p 

< 0.05), in agreement with the distribution of hubs as well as rich-club units across areas. 

Closer examination of oscillator types revealed significantly more beta oscillators in AIP and 

M1 than in F5, and more low frequency oscillators in F5 than in M1 and AIP (Figure 5F; 

Tukey-Kramer test for rank, p < 0.05), reinforcing the notion that different cortical areas 

operate more strongly in some frequency ranges than others (Brovelli et al., 2004).  

A further unresolved question is whether a direct relationship exists between 

oscillatory synchronization and functional rich-club topology. It is well known that oscillatory 

synchrony in frontal and motor areas appears in short bursts of only a couple of cycles with 

variable length and amplitude (Murthy and Fetz, 1996; Lundqvist et al., 2016). We used this 

property of oscillatory synchrony to split up our data into two equal blocks with high 

oscillatory and low oscillatory synchrony to investigate the effect on rich-club topology. 

Since a minimum number of trials are required to properly estimate the functional 

connectivity for topological analyses, we used the two datasets from monkey M were we 

recorded more than 900 trials (Supplementary Table 1). The data was split into two blocks 

with equal number of trials per condition to prevent any biases by different epochs or 

conditions. Instead of calculating unit-wise ACHs we pooled the activity of all units and 

estimated single trial population ACHs spectra, reflecting the trial-wise level of oscillatory 

synchronization. Single trial population ACHs calculations and frequency analyses were 

performed the same way as for single unit ACHs (see Materials and Methods) and divided by 

their average power in the beta (18-35 Hz) and low frequency (3-7 Hz) band (Figure 5 - 

Figure Supplement 3A). After separation into two blocks, the estimation of functional 

connectivity and network topological analyses were repeated as if they were two separate 

datasets. For a valid statement about changes in rich-club topology, the network structure 

and in particular the degree distribution, should not be changed. For both datasets the unit-

wise degree as well as the degree distribution were very similar (Figure 5 - Figure 

Supplement 3B,C), as well as the betweenness centrality distribution (data not shown). 

However, when comparing the rich-club level there was a striking difference for higher rich-

club levels (Figure 5 - Figure Supplement 3D). In both datasets, the high oscillatory state 

network showed a clear rich-club topology, whereas the low oscillatory state network hardly 



      2.1. Uniting functional network topology and oscillations 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

 64 

showed any rich-club effect. These results suggest that a rich-cub topology is only present 

when there is a high level of oscillatory synchrony in the network.    

 

Functional network topology and firing rate prediction 

Utilizing the identified network topology, the firing rate of individual units can be predicted 

by the firing rate of input units, providing an estimate on how much of the single unit activity 

can be explained by functional network connectivity. Each CCH can be understood as a 

transfer function of spike rates between two units, describing the coincidences per spike at 

every time point relative to each other. Negative time bins bin reflect input from the 

reference unit to the target unit while positive time bins reflect the output. To predict the 

firing rate of a unit, we convolved the spike trains of all units having a significant connection 

to the corresponding unit with their respective CCHs (output part). Assuming single units to 

be simple linear integrators, we summed up the individual convolved spike trains (Figure 

6A,B) and correlated these estimated signals with the original spike trains of the target units 

smoothed with a Gaussian kernel (SD: 3.66 ms), identical to the CCH smoothing. Ninety-nine 

percent of predicted firing rate curves were positively correlated with the real firing rates of 

the corresponding target units (Figure 6C). 

 

Figure 6. Prediction of firing rates based on network topology. (A) Average firing rate of one example single 
unit recorded in F5 in monkey S for the four conditions used in this study during the fixation (Fix), cue (Cue), 
memory (Mem), and movement period (Mov). The complex tuning patterns for the different task conditions 
(grip types; free-choice vs. instructed trials) is clearly visible. (B) Predicted firing rate of the same unit as in A 
based on the population activity of the connected neurons. Curves in (A-B) were smoothed with an additional 
Gaussian kernel (SD: 40ms). (C) Histogram of correlation coefficients between the true and predicted spike 
trains of all single units of all datasets. Significant correlations are marked in red. Note that hardly any 
correlation coefficient were negative. (D) Histogram of correlation coefficients of condition averaged firing 
rates. Coloring as in C. 

 

However, these correlations could also be due to synchronous up and down states of 

the brain (Gilbert and Sigman, 2007), which makes proper statistical testing obligatory. 

Three different permutation tests were applied: shuffling of trials, shuffling of the output 
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parts of CCHs, and shuffling of input units. Only if the correlation coefficient significantly 

exceeded all three permutation distributions (p < 0.05) was the correlation considered 

significant. Remarkably, 45% of the firing rate patterns of our single units could be 

significantly predicted by their inputs. The differences between grasp types and decision 

conditions could be significantly predicted in 9% of all cases (Figure 6D; positive correlation: 

79%; shuffling of the transfer kernels and input units, p < 0.05), even using this simple 

approach that involved no parameter fitting. The functional network topology presented 

here allows a surprisingly accurate prediction of temporal firing dynamics, suggesting that 

the network captured in our recordings, despite being a small subset of the entire network, 

accurately represents a large portion of the relevant communication in the fronto-parietal 

grasping network. 

Discussion 

We analyzed single unit functional network topology across several cortical regions of three 

monkeys performing a delayed grasping task. The network was structured as a complex 

network (Bullmore and Sporns, 2009) with a modular SW topology, and highly central hub-

units localized in all three areas forming a rich-club. The advantage of such a topology is that 

it allows for fast and dynamical information processing combined with high robustness 

against errors (Barabási and Oltvai, 2004; Bassett and Bullmore, 2006; Bullmore and Sporns, 

2009; van den Heuvel et al., 2012). More detailed analyses of the kind of synchronization 

processes within the network revealed that the population of single units could be divided 

into two groups: oscillatory spiking and synchronized units in the low frequency range or in 

the beta range, and a group of non-oscillatory spiking units. Importantly, the hubs and 

therefore the rich-club consisted predominantly of oscillators, while the peripheral neurons 

were predominantly non-oscillators.  

Why is oscillatory synchrony such a central element of functional network topology? More 

and more evidence supports the hypothesis that information is propagated not only as a 

simple rate code, but by feed-forward coincidence detection accomplished by oscillatory 

synchrony (Fries, 2009), meaning that phase-synchronization of neurons with one another is 

used as a selection mechanism for information transmission. The advantage of this 

mechanism is not only a reduction of energy cost, but also rhythmic gain modulation. By 

changing the phase of a synchronous neural population, such as in high-order areas, the 

input of one group of neurons can be selectively amplified as inputs to another group of 
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neurons, allowing for high selectivity and high flexibility, which are exactly the requirements 

a hub has to fulfill (van den Heuvel and Sporns, 2013a). While feed-forward coincidence 

detection can theoretically also be accomplished by non-oscillatory processes (Fries, 2009), 

the coordination of a network spanning different areas requires a larger group of neurons to 

fire in a coherent manner (Buzsáki and Wang, 2012). A rich-club of oscillating neurons is 

exactly that, a coherent structure cross-linking functionally segregated modules (van den 

Heuvel and Sporns, 2013b), suggesting oscillators act as a backbone promoting and 

coordinating functional communication across different cortical areas (van den Heuvel et al., 

2012). This hypothesis is also in accordance with the finding that synchronization over larger 

distances (>2mm) is almost always oscillatory, whereas synchronization over short distances 

occurs also in the absence of oscillations (König et al., 1995). 

What are the roles of the two different distinct frequency bands present in this 

network? Parietal and motor areas have been found to communicate via ~20Hz beta 

synchronization (Pesaran et al., 2002; Brovelli et al., 2004; Pesaran et al., 2008b; Dean et al., 

2012) and an increment in beta band activity seems related to the maintenance of the 

current sensorimotor or cognitive state, in agreement with findings in the basal ganglia 

(Engel and Fries, 2010). Oscillatory synchrony in the low frequency range (1-4Hz) has been 

shown to be important for communication within and between the prefrontal and motor 

areas (Siegel et al., 2009; NAcher et al., 2013) and as a potential population mechanism of 

movement generation in motor and premotor cortex during reach initiation (Churchland et 

al., 2012). Therefore, beta seems to be a stabilizing signal, low frequencies a global 

coordination signal, and both are involved in movement initiation with opposing roles. One 

possibility is that a function of the rich-club, composed of beta and low frequency oscillators 

spanning parietal and prefrontal cortex, is coordinating movement generation and initiation. 

Another possible explanation is that the power of fast oscillations is modulated by the phase 

of slow oscillations, termed cross-frequency phase-amplitude coupling, which could serve as 

a neuronal syntax for information transmission (Buzsáki, 2010; Buzsáki and Mizuseki, 2014). 

Our observation of oscillators in both frequency ranges simultaneously (third row of Figure 

2C,D, and Figure 5C,D) support this concept.  

 Interestingly, we found that beta oscillators were present most frequently in AIP, 

followed by M1, hardly in F5, and in reverse order for low frequency oscillators (Figure 5F). 

This is in line with the previous findings that information via beta band is primarily 
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transmitted from the parietal to the frontal regions and not vice versa (Brovelli et al., 2004). 

In areas that are hierarchically lower than the parietal lobe, such as the visual system, beta 

was identified as a top-down communication frequency (Bastos et al., 2015). Therefore, the 

parietal lobe might be a center of beta generation. Low frequency oscillatory synchrony 

during active behavior has been found predominantly in prefrontal areas (Siegel et al., 2009; 

NAcher et al., 2013). We speculate that the center of low frequency oscillation could be in 

the prefrontal cortex, suggesting that different anatomical regions generate and 

communicate with different frequencies. The exact reason for the presence of distinct 

frequency bands for communication and their detailed interplay needs to be addressed in 

future studies.  

The single unit network topology was highly similar to the regional network of the 

brain measured by EEG, MEG, DTI or fMRI (Bullmore and Sporns, 2009; Rubinov and Sporns, 

2010; van den Heuvel et al., 2012; van den Heuvel and Sporns, 2013a), which strongly 

suggests that the observed topological properties are scale-invariant (Bullmore and Sporns, 

2009). Oscillatory synchrony may therefore act as a global coordination mechanism across 

the whole cortex.  

The modules of the network were primarily composed of the individual areas 

themselves. Yet, most modules also consisted of a small, but significant, proportion of units 

from other areas, indicating that the anatomical distance does not necessarily reflect the 

functional distance. This finding is in line with a recent study showing that the population of 

neurons within one area can be split up into “choristers,” which are strongly coupled to the 

rate of the whole population, and “soloists,” which are not (Okun et al., 2015). We speculate 

that “soloists” could be part of functional circuits centered in other brain areas, in 

accordance with the present modular topology.  

 Since we recorded only from a subpopulation of the actual network, it was important 

to evaluate whether the observed network topology sufficiently represented the fronto-

parietal grasping network. We demonstrated that a significant amount of the firing rate of 

single units could be predicted using only their network inputs, even for complex tuning 

patterns, suggesting that even a small fraction of the network is enough to characterize a 

reasonable amount of the spatio-temporal spiking dynamics. Furthermore, we 

demonstrated on a model that subsampling from a huge network with the same distance-

dependent connectivity density as detected in our data did not affect the shape of the 
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degree distribution (Figure 4 - Figure Supplement 2). For these reasons, we are confident 

that our analyzed single unit network constitutes a significant representation of the 

underlying network dynamics.  

One possible point of misinterpretation of the functional network structure could be 

common drive, resulting in an overestimation of connectivity. Our method to detect 

functional connectivity corrects for common drive due to stimulus- and movement-locked 

inputs as well as for trial-wise fluctuations in spiking. Nevertheless, there are two possible 

additional sources of common drive. The first is the possibility that two neurons receive 

input from a third neuron while themselves being functionally uncoupled, resulting in a 

significant peak in the CCHs due to their input similarity. We investigated this possibility 

using our equal rate model, which included physiologically plausible firing rates and pairwise 

correlations. Common drive pairs of simulated simple or complex networks were detected as 

being significant in only around 1% of all cases, suggesting that, irrespective of the 

underlying topology, our method for detecting functional connectivity is hardly biased by 

pairwise common drive. The second possibility is that cortical columns or areas could receive 

common drive input that would cause these neurons to fire in a synchronized fashion even if 

they were functionally uncoupled. In such a scenario two things would be expected: first, 

units on the same electrode, as well as units in the same area, should show a similar 

connectivity pattern. Second, all neurons in the network should show a similar number of 

functional connections, since they are synchronized by common drive, resulting in a uniform 

degree centrality distribution. However, we found 43% of all neurons on the same electrode 

to be not connected, and only sparse connectivity was found in the same area with strongly 

connected pairs of neurons next to unconnected pairs (e.g., Figure 2 – Figure Supplement 

1B,2). Most importantly, the degree distribution of the measured networks was highly 

heterogeneous and heavy-tailed in contradiction to what would be expected by a strong 

influence of column- or area-specific common drive. Therefore, it is unlikely that event 

unrelated common drive can account for a significant amount of the detected functional 

connections. Further evidence arises from the fact that we found beta, low frequency, and 

non-oscillatory synchronization with different maximum peak or trough time time and phase 

lags (Figure 2 – Figure Supplement 4), present simultaneously across all areas, also not 

consistent with a global common drive bias.   
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 To our knowledge, these results provide the first evidence of oscillatory synchrony as 

a central coordinating mechanism for the formation of functional network topology at the 

single neuron level. The combination of communication properties of oscillating single units 

and their functional topology adds an essential dimension to the understanding of neural 

circuits. By demonstrating that oscillating neurons form a backbone for functional 

connectivity, spanning several areas, we provide a unified basis for understanding the 

neuronal computations coordinating and generating behavior at the network level.  
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Materials and Methods 

Basic procedures  

Neural activity was recorded simultaneously from many channels in two female and one 

male rhesus macaque monkey (Animals S, Z, and M; body weight 9, 7, and 10 kg, 

respectively). Detailed experimental procedures have been described previously (Michaels 

et al., 2015). All procedures and animal care were in accordance with German and European 

law and were in agreement with the Guidelines for the Care and Use of Mammals in 

Neuroscience and Behavioral Research (Research et al., 2003).  

Behavioral Task 

Figure 1A illustrates the time course of the behavioral task as described previously (Michaels 

et al., 2015). Trials started after the monkey placed both hands on the resting positions and 

fixated a red fixation disk (fixation period). After 600 to 1000ms, cues in the form of disks 

were shown next to the fixation disk for 300ms to instruct the monkey about the required 

grip type (power or precision; cue period). During this epoch the grasp target, a handle, was 

also illuminated. In the instructed task one disk was shown, while in the free-choice task 

both disks were turned on, indicating that the monkey was free to choose between the two 

grip types. The monkey then had to memorize the instruction for 1100 to 1500ms (memory 

period). The switching off of the fixation light cued the monkey to reach and grasp the target 

(movement period) in order to receive a liquid reward. Importantly, during free choice trials 

the reward was iteratively reduced every time the monkey repeatedly chose the same grip 

type. All trials were randomly interleaved and executed in darkness. The behavioral task also 

contained delayed instructed trials, which were not analyzed in this study. 

Chronic electrode implantation 

Surgical procedures have been described previously (Michaels et al., 2015). In short, each 

animal was implanted with two floating microelectrode arrays per area (FMAs; Microprobes 

for Life Sciences; 32 electrodes; spacing between electrodes: 400μm; length: 1.5 to 7.1 mm 

monotonically increasing to target grey matter along the sulcus). Animal S and Z were 

implanted with four FMAs in area AIP and F5 in the left and the right hemisphere, 

respectively. Animal M was implanted with a total of six FMAs in the same cortical areas and 

two additional arrays in area M1, in the left hemisphere (Figure 1B).  
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Neural recordings and spike sorting  

Neural signals from the implanted arrays were amplified and digitally stored using a 128 

channel recording system (Cerebus, Blackrock Microsystems; sampling rate 30 kS/s; 0.6-

7500Hz band-pass hardware filter; for monkey S and Z) or a 256 channel Tucker-Davis 

system (TDT RZ2; sampling rate 24.414 kS/s; 0.6-10000Hz band-pass hardware filter; monkey 

M).  

For spike detection, data were first low-pass filtered with a median filter (window 

length 3ms) and the result subtracted from the raw signal, corresponding to a nonlinear 

high-pass filter. Afterwards the signal was low-pass filtered with a non-causal Butterworth 

filter (5000 Hz; 4th order). To eliminate common noise-sources principal component (PC) 

artifact cancellation was applied for all electrodes of each array as described previously 

(Musial et al., 2002). To ensure that no individual channels were eliminated, PCs with any 

coefficient greater than 0.36 (conservatively chosen and with respect to normalized data) 

were retained. Spike waveforms were detected and semi-automatically sorted using a 

modified version of the offline spike sorter Wave_clus (Quiroga et al., 2004; Kraskov et al., 

2009). 

Units were classified as single- or non-single unit based on five criteria: (1), the absence of 

short (1–2 ms) intervals in the inter-spike interval histogram for single units; (2), the 

homogeneity and SD of the detected spike waveforms; (3), the separation of waveform 

clusters in the projection of the first 17 features (a combination for optimal discriminability 

of PCs, single values of the wavelet decomposition, and samples of spike waveforms) 

detected by Wave_clus; (4), the presence of well-known waveform shapes characteristics for 

single units; and (5), the shape of the inter-spike interval distribution. 

 After the semiautomatic sorting process, redetection of the different average 

waveforms (templates) was done to detect overlaid waveforms (Gozani and Miller, 1994). To 

achieve this, filtered signals were convolved with the templates starting with the biggest 

waveform. Independently for each template, redetection and resorting was run 

automatically using a linear discriminate analysis for classification of waveforms. After spike 

identification, the target template was subtracted from the filtered signal of the 

corresponding channel to reduce artifacts during the detection of the next template. This 

procedure allowed us to detect spikes with a temporal overlap up to 0.2 ms. Unit isolation 

was evaluated again, based on the five criteria mentioned above, to determine the final 
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classification of all units into single or non-single units. Stationarity of firing rate was checked 

for all units and in case it was not stable over the entire recording session (more than 30% 

change in firing rate between the first 10 min and the last 10 min of recording) the unit was 

excluded from further analyses (~3% of all single units). Only single units fulfilling all of these 

criteria, and no multi-units, were further used in this study. 

Functional connectivity analysis  

After sorting, spike events were binned in non-overlapping 1-ms windows to produce a 

continuous firing rate signal (1 kHz) and aligned to cue and movement onset. Two time 

windows were chosen for further analysis (Cue onset: -700 to 1500ms; Movement onset: -

300 to 500ms), since neuronal activity was locked to both events, with a variable memory 

period between them. Note that all three monkeys had very consistent movement times 

(mean SD across datasets = 39ms).   

The functional network topology of single-unit populations was derived from analyses of 

pairwise correlations(Yu et al., 2008). We calculated cross-correlation histograms (CCHs; 

time lags: -500 ms to 500 ms) between all pairs of single units of each dataset(Bair et al., 

2001): 

 𝐶𝐶𝐻𝑛1,𝑛2
(𝜏) =

1

𝑀
∑ ∑

𝑥𝑛1
𝑖 (𝑡) 𝑥𝑛2

𝑖 (𝑡 + 𝜏)

(𝑁 − |𝜏|) √𝜆1𝜆2

𝑁

𝑡=1

𝑀

𝑖=1

 ( 1 ) 

where 𝑀 is the number of trials, 𝑡 is time, 𝑁 is the number of time bins in the trial, 𝑥𝑛1
𝑖 and 

𝑥𝑛2
𝑖 are the spike trains of single units 𝑛1 and 𝑛2 on trial 𝑖, 𝜏 is the time lag, and 𝜆1 and 𝜆2 are 

the mean firing rates of the two single units across the entire time interval 𝑀. The 

denominator is normalizing for the degree of overlap (𝑁 − |𝜏|) in the CCH and the 

geometric mean spike rate √𝜆1𝜆2, which is the most common normalization used for CCHs 

(Bair et al., 2001; Smith and Kohn, 2008). The normalized CCHs were then averaged across 

all time periods and task conditions (e.g., see Figure 2 – Figure Supplement 1A).  

  Subsequently, all CCHs were corrected for correlations induced by common stimulus 

drive or global state changes, such as arm and hand movements, as well as for trial-wise 

fluctuation in spiking, by simulating and subsequently subtracting surrogate CCHs. Surrogate 

CCHs contain the same stimulus locked correlation, but no pairwise temporal correlation. To 

this end, peri-stimulus time histograms (PSTH) were calculated for the same two time 
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windows and alignments (Cue and Movement onset) as mentioned above, separately for 

each single unit and task condition (smoothed with a Gaussian kernel, SD: 3.66 ms). Artificial 

spike trains were generated from an inhomogeneous Poisson process using the PSTHs as the 

rate function (Ramalingam et al., 2013). These artificial spike trains preserved the number of 

trials and the number of spikes per trial, but varied in the timing of individual spikes 

(surrogate data; e.g., Figure 2 – Figure Supplement 1A). Since the number of spikes per trial 

was preserved for all units recorded simultaneously, any trial-wise common drive is equally 

present and therefore accounted for in the surrogate data (Smith and Kohn, 2008). From 

these surrogate data, surrogate CCHs were calculated by replacing 𝑥𝑛
𝑖  with the trials of the 

artificial spike trains for the corresponding single unit (surrogate CCHs). This procedure was 

repeated 1000 times. The resulting surrogate CCHs reflected the level of correlation when 

both units are statistically independent. Finally, average surrogate CCHs were subtracted 

from the CCHs to yield the corrected CCHs.  

  Auto-correlation histograms (ACHs) were generated by setting 𝑥𝑛1
𝑖 = 𝑥𝑛2

𝑖  in Eq. 1 for 

all 𝑖, and corrected by generating artificial spike trains and substituting them for 𝑥𝑛1
𝑖  and 

𝑥𝑛2
𝑖  in Eq. 1 for the calculation of surrogate ACHs. 

Cluster-based surrogate test  

For statistical purposes, all surrogate CCHs were corrected by their own average to achieve 

an equally processed set compared to the corrected CCHs, containing just the chance level 

of correlation (corrected surrogate CCHs). These 1000 corrected surrogate CCHs were then 

used to run a nonparametric cluster-based surrogate test, a variation of the cluster-based 

permutation test (Maris and Oostenveld, 2007), to deal with the multiple comparison 

problem of testing all time lags. Cluster-based tests are tests for dependent variables, which 

consider contiguous values fulfilling a certain criterion as a cluster. Instead of calculating a 

test statistic for individual values, the accumulated values of clusters are tested against a 

null distribution of accumulated cluster values by chance. In our case, adjacent time lags are 

not independent, since functional coupling of neurons does not follow millisecond precision. 

We checked significance for a time window of -200ms to 200ms. Calculation of this test 

statistic involved the following steps: 

1. For every time bin the standard deviation of corrected surrogate CCHs was 

calculated. Subsequently, the corrected CCH and the corrected surrogate CCHs were 
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normalized by these standard deviations (z transformation of the data). 

2. A z-score of 2 corresponds to a p-value of ~0.05. So we marked all time lags 

exceeding a z-score of 2 or -2. Please note that the statistical inference is not directly 

based on this z-score criterion, but rather on the subsequent non-parametric test.  

3. As already mentioned, in CCHs neighboring time lags are not independent. Clusters 

of marked bins were selected on the basis of temporal adjacency. 

4. From each corrected surrogate CCH, the largest cluster was selected (independent of 

the sign) based on its accumulated z-score, creating a distribution of 1000 largest 

clusters. Since we used each unit as 𝑥𝑛1
𝑖 and as 𝑥𝑛2

𝑖 , we obtained two CCHs per pair of 

units. These two CCHs are identical, except for being inverted in time. We merged 

their distributions to a final distribution of the 2000 largest chance clusters. 

5. In a final step, cluster-level statistics were calculated. The accumulated z-score of 

each real cluster was tested against the distribution of biggest clusters occurring by 

chance. The obtained p-value of each cluster was saved for further corrections. 

This procedure was repeated for every CCH. A critical alpha-level of 0.05 was selected. 

Nevertheless, at this processing step we still have a total alpha-error equal to our set 

criterion times the number of single unit pairs tested. For complete multiple comparison 

correction, false discovery rate correction was applied on all found clusters across all 

compared pairs of single units (Benjamini and Hochberg, 1995) to yield 

 𝑃(𝑘) ≤  
𝑘

𝑚
𝑞 ( 2 ) 

where q is our set criterion of 0.05 false positives, m the total number of clusters, k = 1,…,m, 

and P(k) are the p-values of all clusters in increasing order. All clusters whose p-values did not 

fulfill Eq. 2 were rejected. By doing so we achieved a total alpha-level of 0.05 for each 

dataset. 

Network analysis 

For every pair of neurons it was evaluated if there were significant troughs or peaks in their 

CCHs. If there was only a trough or peak with negative (or positive) time lags, this pair was 

denoted as having a connection from the input to the target (or the target to the input) unit 

(Figure 2E). In case there were several clusters on both sides of the zero time lag, or a cluster 
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straddling the zero time lag, we checked the unsigned maximum peak of the corresponding 

CCH. If the maximum peak was shifted more than 2 ms to either side, the connection was 

considered unidirectional, as described before. Otherwise, the connection between the two 

single units was considered functional bidirectional (Figure 2E), since the units are driven by 

the circuit at the same time. We systematically varied the maximum peak shift (0-5 ms) for 

bidirectional classification with little to no change to the results. Repeating this procedure 

for all pairs of single units led to a binary directed connectivity matrix (Figure 3A).  

 To characterize brain networks on every scale, network measures from the 

multidisciplinary field of graph theory were utilized (Rubinov and Sporns, 2010).  

A network is defined by the nodes (𝑁) and connections between pairs of nodes. In our 

network nodes represented single units. For all following network measures, n is the number 

of nodes and l the number of connections. 𝑎𝑖𝑗 is the connection between nodes 𝑖 and 𝑗: 

𝑎𝑖𝑗 = 1 if the link (𝑖, 𝑗) exists and 𝑎𝑖𝑗 = 0 otherwise (𝑎𝑖𝑖 = 0 for all 𝑖). Furthermore, we 

define:  

Degree centrality, 𝒌𝒊, is the number of connections to a node i. 

 𝑘𝑖 =  ∑ 𝑎𝑖𝑗

𝑗∈𝑁

 ( 3 ) 

Shortest path length, 𝒅𝒊,𝒋, is the minimum number of nodes connecting nodes 𝑖 and 𝑗. 

where 𝑔𝑖 ↔𝑗 is the shortest path between 𝑖 and 𝑗. 

Characteristic path length, 𝑳, is the average shortest path length between all pairs of nodes 

of the network.  

 𝐿 =  
1

𝑛(𝑛 − 1)
∑ 𝑑𝑖𝑗

𝑖,𝑗∈𝑁
𝑖≠𝑗

 ( 5 ) 

Betweenness centrality, 𝒈𝒊, is the average fraction of shortest paths that pass through node 

𝑖.  

 𝑑𝑖𝑗 =  ∑ 𝑎𝑢𝑣

 

𝑎𝑢𝑣∈𝑔𝑖↔𝑗 

 ( 4 ) 
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𝑔𝑖 =  

1

(𝑛 − 1)(𝑛 − 2)
∑

𝜌ℎ𝑗
(𝑖)

𝜌ℎ𝑗ℎ,𝑗∈𝑁
ℎ≠𝑗,ℎ≠𝑖,𝑗≠𝑖

 
( 6 ) 

where 𝜌ℎ𝑗 is the number of shortest paths between ℎ and 𝑗, and 𝜌ℎ𝑗
(𝑖) is the number of 

shortest paths between ℎ and 𝑗 that pass through 𝑖.  

Clustering coefficient of the network, 𝑪, is the average fraction of existing to maximal 

possible interconnections between all directly connected nodes to node 𝑖. 

 𝐶 =  
1

𝑛
∑

2𝑡𝑖

𝑘𝑖(𝑘𝑖 − 1)
𝑖∈𝑁

 ( 7 ) 

Where 𝑘𝑖  are all connected neighbors to node 𝑖 and 𝑡𝑖 is the number of links between them. 

Small-worldness, 𝑺𝑾, is the ratio of 𝐶 and 𝐿 each normalized by the same measurements 

for a size matched random network. 

 𝑆𝑊 =  
𝐶/𝐶𝑟𝑎𝑛𝑑

𝐿/𝐿𝑟𝑎𝑛𝑑
 ( 8 ) 

Small-world networks are formally defined as networks that are significantly more clustered 

than random networks, yet have approximately the same characteristic path length as 

random networks (Watts and Strogatz, 1998). 

Modularity, 𝑸, is the proportion of all links within modules 𝑀 with links between modules, 

when the network is fully subdivided into non-overlapping modules in a way that maximizes 

the number of within-group connections and minimizes the number of between-group 

connections. 

 𝑄 =  ∑ [𝑒𝑢𝑢 − (∑ 𝑒𝑢𝑣

 

𝑣∈𝑀

)

2

]

 

𝑢∈𝑀

 ( 9 ) 

where 𝑒𝑢𝑣 is the fraction of all links that connect nodes in module 𝑢 with nodes in module 𝑣.  

Rich-club coefficient, 𝑹, at degree 𝑘 is the fraction of connections between all nodes of 

degree 𝑘 or higher, with respect to the maximum possible number of such connections.  

 𝑅(𝑘) =  
2𝐸>𝑘

𝑁>𝑘(𝑁>𝑘 − 1)
 ( 10 ) 
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where 𝐸>𝑘 is the number of connections among the 𝑁>𝑘 nodes having degree of 𝑘 or higher 

(Colizza et al., 2006). To reduce inaccuracy for large degrees we calculated the rich-club 

coefficient only in degree bins containing at least 5 single units (𝑁𝑘 ≥ 5). 

Statistics for network measures 

For statistical purposes we created two types of surrogate network sets per dataset (1000 

partitions each). All surrogate networks were created by shuffling the connectivity matrix. 

Since connectivity is a function of distance (Smith and Kohn, 2008; Gerhard et al., 2011), 

distance dependency was reflected in our surrogate data. During shuffling, the number of 

connections for single units on the same electrode, the same array, the same cortical area, 

and the different inter-area connections were always held constant (Figure 3B). For all 

surrogate networks, the total number of single units, number of connections, and the 

distance-dependent ratio of bi- and uni-directional connections were kept as similar as 

possible to the original connectivity matrix with only the required network parameter 

shuffled. We used these sets of surrogate networks to test the small-world coefficient, the 

degree centrality distribution, and the betweenness centrality distribution. Statistical testing 

of the rich-club coefficient and conservative testing of modularity requires surrogate 

networks with a matched degree centrality distribution. To this end, we generated a second 

set of surrogates networks with the degree distribution preserved. One issue that could arise 

due to shuffling is that the connectivity matrix of some units or groups of units could 

become disconnected from the main part of the network, since the calculation of most 

network measures requires a fully connected, not segregated, network. For this purpose, 

each surrogate network was tested for segregation into different components. If a network 

was segregated, it was discarded and the process repeated until 1000 non-segregated 

networks were generated. 

 To determine if the degree, the betweenness centrality distribution, or the rich-club 

level were significantly different to surrogate networks, we used a nonparametric cluster-

based permutation test (Maris and Oostenveld, 2007). Briefly, this test evaluates the t-

statistic (independent samples) between centrality or rich-club distributions and their 

surrogate distributions over all data points exceeding a critical alpha-level set to 0.05. In a 

second step, adjacent degree, betweenness values, or rich-club coefficients exceeding the 

set alpha-level are considered as clusters, extracted, and their t-value summed. A test 
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distribution was generated by randomly permuting the centrality or rich-club distributions 

across recording days and monkeys with the corresponding surrogate distributions by 

randomly reassigning them to one of the two groups while maintaining the group size. For 

each partition (1000 partitions) the t-statistics and clustering was repeated. From every 

partition the largest cluster-level statistic was used to generate a largest chance cluster 

distribution. For each real cluster-level statistic a nonparametric statistical test was 

performed by calculating a p-value under the largest chance cluster distribution. Thus, the 

multiple comparisons for each sample are replaced by a single comparison, replacing the 

need to make multiple comparisons.  

Since some electrode pairs between F5 and M1 are closer than some other pairs 

within M1 for monkey M, we repeated statistics for network measures for all datasets from 

monkey M with physical distance dependent shuffling instead of the above mentioned 

categories such as “same electrode”, “same array,” and “same area”. To this end, we 

calculated the pairwise physical distance between all pairs of electrodes based on an 

anatomical diagram (Figure 1B) and defined distance groups with a stepsize of 3.6mm 

including 0mm as one group. The physical distance between AIP and the two other areas is 

misleading, since the neuronal axons have to pass the central sulcus. Therefore, we set all 

distances between AIP and the two other areas as a separate maximum distance group. 

Note that we had to define groups to be able to shuffle connections. Nevertheless, the 

categorical distance dependent shuffling was subdivided into 8 groups, which is more 

conservative than the 6 groups defined in the original analysis. All statistics for network 

measures gave nearly identical results, with no case where a measure was significant when it 

was not for categorical distance dependent shuffling, and vice versa for non-significant 

measures. In addition, the normalized rich-club coefficient, which depends on the surrogate 

networks, was highly correlated (r = 0.98) between the two different ways of distance 

dependent shuffling.  

Equal rate model 

For validation of the estimates of directed functional connectivity, as well as to check for a 

possible bias in the detected network topology obtained using CCHs, we modeled artificial 

directed neuronal networks with the same firing rate distribution as the recorded single 

units. Two sets of networks were generated, one simple network (SN) set with normally 

distributed connectivity and one complex network (CN) set with heterogeneously distributed 



      2.1. Uniting functional network topology and oscillations 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

 79 

connectivity, and in agreement with previous studies both with weak connection strength 

between neuronal pairs (Cohen and Kohn, 2011). 

 For each simulated neuron, artificial spike trains were generated with Poisson 

distributed firing and an average rate randomly drawn from the real firing rate distribution. 

For the SN set, the number of connections from each neuron to other neurons was drawn 

randomly from a Gaussian distribution (mean: 5.22, SD: 3.214), mirroring the average degree 

centrality distribution of surrogate networks. For the complex network set (CN), the number 

of connections followed precisely the EXPTPL model for the average degree centrality 

distribution of the measured networks (Figure 4A), with a weak rich-club and small-world 

topology. In case one neuron was connected to another, spikes were added in a probabilistic 

manner for a certain amount of time, starting with time point 𝑡 + 1 in ms relative to the 

spike event, reflecting the axonal delay. The network was updated every millisecond, 

allowing for multiple interactions. Gamma functions were used as temporal transfer kernels, 

given by 

 𝑓(𝑡|𝑎, 𝑏) =  
1

𝑏𝑎𝛤(𝑎)
𝑡𝑎−1𝑒

−𝑡
𝑏  ( 11 ) 

where 𝑓 is the probability of an additional spike appearing, 𝑡 is time in ms, 𝑎 is a constant set 

to 5 and 𝑏 is randomly varied between 0 and 3 (Figure 2 – Figure Supplement 3A). The 

integral of each gamma kernel was set to 0.02, reflecting the connection strength. Since we 

added spikes to the network, which increases the average firing rates, we lowered the 

starting rates by a factor and repeated the process until the average rate resembled the rate 

before adding the connections. As a criterion for similarity we correlated the randomly 

drawn rates with the network rates and stopped when the residual error was below 0.005. 

For the results in Figure 2 – Figure Supplement 3 and Figure 4 – Figure Supplement 1 we did 

not vary the connection strength in order to avoid interaction effects between connection 

strength and firing rate. However, we varied connection strength randomly between 0.005 

and 0.035 with no detectible change to the results. Alternatively, we used a Boxcar kernel 

(20 ms, integral: 0.02) instead of gamma functions as transfer kernel, which did not degrade 

the results of this model. 

 For both sets of networks (SN and CN), ten artificial networks with 100 neurons were 

calculated and processed identically to the real data. Signal detection theory was used to 

evaluate detectability of connections based on significant CCH peaks or troughs with the 
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originally modeled networks as a reference. Each pairing was classified into one of four 

categories: “Hit”, if a connection was correctly detected, “Miss”, if a connection was not 

detected, “Correct rejection” (CR), if a non-existing connection was detected as no 

connection, and “False Alarm” (FA), if a non-existing connection was detected as a 

connection. 

Subsampling model 

We generated an artificial neuronal plane with random (Poisson distributed), distance-

dependent connectivity density based on our empirically collected data (Figure 3B). We 

modeled 2 cortical areas, each divided into 5 sub-regions coverable by an array, each sub-

region covered with 160 electrode positions, and 20 single units per electrode, giving a total 

of 32,000 neurons. Figure 4 – Figure Supplement 2A shows the degree centrality distribution 

of the full network with an average degree of 3000 and a standard deviation of 70. 

 Next, we randomly selected 12 subsamples from the neuronal plane with exactly the 

number of neurons detected as in the real datasets. Subsampling was done with the 

restriction that always both areas were chosen, with 2 array sub-regions per area and 32 

electrode positions per sub-region, reflecting the real recording configuration in most of the 

datasets. Subsampled networks were then analyzed with the same complex network 

measures as the real data.  

 To address the problem that subsampling could artificially cause a heavy tailed 

degree centrality distribution, even if the underlying connectivity is random, as described in 

(Han et al., 2005), we had a closer look at the parameters mentioned in this study. The 

average degree of their analyzed networks was 2.19 (SD = 0.45, min = 1.84, max = 2.98), in 

contrast to our average (non-normalized) degree of 8.28 (SD = 5.73, min = 3.87, max = 

25.59). Note that the highest average degree of their analyzed networks was smaller than 

the lowest average degree of our analyzed networks. More importantly, the underlying 

networks of their study were strongly fragmented into components (min = 70, max = 591 

components), while we excluded all single units which were not part of the largest 

component, resulting in one component for analysis, while their largest average component 

size was 20.2. Our network analysis was done on average on 70 single units (min 30, max 

148 single units). Based on these different network parameters we concluded that the 

detected topology, in particular falsely detected power law degree distribution, could be due 

to the fragmentation into different components. To evaluate this, we created neuronal 
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planes with distance dependent connection density of 1/5, 1/4, 1/3, 1/2, 1, 2, 3, 4, and 5 

times of the empirically collected data. After subsampling, we estimated the goodness of fit 

for the power law model to the degree centrality distribution, the size of the largest 

component relative to the whole network, and the level of compartmentalization, described 

by 

 𝐶𝑜𝑚𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =
𝑃 − 1

𝑁 − 1
 ( 12 ) 

where 𝑁 is the number of neurons in the network and P the number of separate 

components (Figure 4 – Figure Supplement 2C).  

Frequency analyses 

We estimated the oscillatory behavior of significant connections of single units (according to 

CCHs) and the spiking of single units themselves (Bair et al., 1994; Mureşan et al., 2008) 

(according to ACHs). Since different oscillation frequencies could be present, we computed 

power spectra of all corrected CCHs and ACHs (Mureşan et al., 2008). The power spectrum 

gives the magnitude of a signal as a function of frequency. To avoid distortions by sharp 

peaks with small delays that are occasionally present in CCHs (Fujisawa et al., 2008), which 

cause a broad band increase in power due to their impulse like properties, we cut out the 

time range from -5ms to 5ms and interpolated the segment linearly. Importantly, sharp 

peaks were only removed for spectral analyses and not for functional connectivity analyses. 

Frequency spectra were computed using a discrete Fourier transform algorithm (Siegel et al., 

2009) (100 logarithmically scaled frequencies from 3 to 100 Hz). Note that computing power 

spectra of CCHs and ACHs instead of raw spike trains reduced the influence of firing rate on 

the power spectrum as well as the problem of frequency leakage due to the binary 

properties of the spike train (Bair et al., 1994). In analyzing such a large range of frequencies 

we had to take the specific characteristics of CCHs into account. Underlying oscillation 

frequencies in physiology are not phase stable, which leads to a limited number of side lobes 

in the CCH or ACH. The number of side lobes are also strongly frequency dependent, which 

makes the ideal window length for Fourier transformation around the 0 time lag frequency 

dependent. We used Hanning windows of four times the frequency of interest period (with a 

maximum of 1000ms and a minimum of 150ms) aligned on the 0 time bin of the CCHs 

(Figure 5 – Figure Supplement 1A), resulting in approximately 1/frequency and half octave 
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spectro-temporal bandwidth. Each frequency bin was divided by its window length for 

correct scaling of all frequency bins. To determine significance, we repeated spectral analysis 

on the corrected surrogate CCHs and ACHs, subtracted their mean spectra from the 

corresponding spectra of real data and used a cluster-based surrogate test as described 

before to evaluate the significance of the underlying frequencies in the CCHs. 

 Spectral analysis of the ACHs differed in one point. Hanning windows covering only 

one half of the ACHs (with a maximum of 500ms and a minimum of 75ms) aligned on the 0 

time lag were used (Figure 5 – Figure Supplement 1B). By doing so, an accurate measure of 

the full frequency range with little distortion of refractory effects present in ACHs (Mureşan 

et al., 2008) was obtained. 

Oscillatory vs non-oscillatory synchronization model 

We generated pairs of neurons with 600 trials and a trial length of 3.1 seconds, similar to our 

recorded data. Spike trains of neurons were generated as a probabilistic process. In case of 

oscillatory firing neurons, the probability function was a 20Hz sinusoid. For non-oscillating 

neurons, we first randomized the 20Hz sinusoid, in a second step filtered it with a non-causal 

50 Hz low-pass filter (Butterworth filter, 4th order) in order to produce a similar decay in 

spiking probability, and in a last step the filtered probability vector was variance matched 

with the 20Hz sinusoid to have a maximum degree matching between the two kinds of 

probability functions. For each trial the same probability function was used for both neurons 

with a spiking probability of 0.05 per ms to stay in a physiological range. Independent 

Poisson distributed noise was added to both neurons representing background stochastic 

firing, resulting in an average rate of around 5 Hz per neuron. Varying the different 

parameters within physiological ranges did not alter the results. To simulate different 

degrees of coupling strengths we systematically varied the trial-wise time offset in spiking of 

the pair of neurons to each other from completely synchronized to a jitter of a complete 

cycle (50ms) in steps of 1 ms.   
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Supplementary Figures and Tables 

 
Figure 1 – Figure Supplement 1. Firing rate distribution and stability across task epochs and conditions. (A) 
Scatter plots of all pairs of condition- and epoch-wise average firing rates of all recorded single units of all 
datasets (fixation (Fix), cue power (Cue Po), memory power (Mem Po), movement power (Mov Po), cue 
precision (Cue Pr), memory precision (Mem Pr) and movement precision (Mov Pr)). Due to the high degree of 
similarity, free-choice and instructed trials were collapsed. In each panel the corresponding correlation 
coefficient is displayed (mean r = 0.85, SD = 0.08; for all: p <0.001). (B) Firing rate distribution averaged as in A, 
displayed on a logarithmic x-axis. The firing rate distribution is very similar for all conditions and epochs and 
close to log-normal. 

  



      2.1. Uniting functional network topology and oscillations 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

 89 

 
Figure 2 – Figure Supplement 1. CCH processing and statistics, and all connections of an example unit 
oscillatory synchronized in the low frequency range. (A) Processing steps of three example CCHs. From left to 
right: illustration of the processing steps involving surrogate subtraction, smoothing, and cluster statistics to 
evaluate if a peak or trough in a CCHs was significant. From top to bottom: A CCH with one significant peak, a 
CCH with multiple significant peaks and troughs having an underlying frequency in the beta range, and a CCH 
with no significant peak or trough. (B) An examples of all CCHs (small panels) and the ACH of one unit with all 
other units of one dataset of a unit communicating and oscillating in the low frequency range. The ACH is 
displayed in red, significant connections are indicated by dark lines in CCHs and not significant connections as 
transparent lines. Directionality information, which is also derived from the CCHs, is not represented.   



      2.1. Uniting functional network topology and oscillations 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

 90 

 
Figure 2 – Figure Supplement 2. All connections of two example units, one non-oscillatory synchronized and 
one oscillatory synchronized in the beta range. (A) Same as in Figure 2 – Supplementary Figure 1B, but for a 
non-oscillatory synchronized unit. (B) Same as in Figure 2 – Supplementary Figure 1B, but for a unit 
communicating and oscillating in the beta range.  
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Figure 2 – Figure Supplement 3. Detectability of directed functional connections using equal rate model 
simulations. (A) Transfer kernels of one modeled dataset. Gamma functions with different maxima and lengths 
were used as temporal transfer kernels. The area under the curve was always normalized to 0.02. (B) 
Histogram of detectability of directed connections. Average number of correct rejections and hits are shown 
for 10 simulated simple networks (SN) and 10 simulated complex networks. Error bars show the standard error 
across simulated networks. (C) Same as in B, but for detectability of connections. Any directional information 
was ignored and it was just estimated if a connection between two units was detected or not. (D) Same as in B, 
but for detectability of directionality for detected connections. The percent of correct rejections and hits is only 
for the correctly detected connections as displayed in B, thus a pure evaluation of directionality detectability 
unbiased by connection detectability. (E) Average CCHs for bidirectional connections and common drive pairs 
of all 20 simulations. The data was pooled, since no considerable difference between the two types of 
simulations was found. All simulated pairs of both groups are included irrespective of whether they were 
detected as significant. Error bars show the standard error across CCHs. Note that even though the average 
peak is at the zero time lag, many pairs had peaks on either side of the zero time lag. (F) Maximum peak count 
of bidirectional and common drive pairs (for each ms bin) displayed in E. In case CCHs had two peaks or just 
showed noise fluctuations, only the time lag of the maximum value was considered in order to avoid 
preselection biases.  



      2.1. Uniting functional network topology and oscillations 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

 92 

 
Figure 2 – Figure Supplement 4. Maximum peak or trough time and phase lag distributions. (A) Maximum 
peak or trough time lag distribution of all significant connections relative to the zero time lag. In case that more 
than one significant cluster was detected, only the cluster with the highest absolute value was considered. For 
bidirectional connections time lags were considered for both directions. Line shadings show standard error 
across datasets. (B) Maximum peak or trough phase relative to the zero time lag for all connections with 
significant underlying oscillation classified by a significant peak in their corresponding frequency spectra. 
Results are shown separately for beta at 20Hz (red) and low frequency at 4Hz (blue) oscillations. Note that 4pi 
(two cycles) corresponds to 100ms for beta and to 500ms for low frequency oscillations. Line shadings show 
standard error across datasets. 
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Figure 3 – Figure Supplement 1. Example anatomical networks from Monkey S and Z. Since no data were 
recorded from area M1 for these monkeys, the F5 and AIP arrays are presented closer together than in reality 
for better illustration (dashed line marks anatomical discontinuity). (A) Each node colored based on the 
module, as in Figure 3C. (B) Nodes and connections colored based on rich-clubness, as in Figure 4E. (C) Nodes 
and connections colored based on oscillatory components in the ACHs and CCHs, respectively, as in Figure 5B. 
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Figure 3 – Figure Supplement 2. Functional network connectivity of an exemplar data set displayed as a web 
where the locations of all neurons were determined using the visualization of similarities (VOS) approach 
(Van Eck and Waltman, 2007). (A) Each node is colored based on the area it was recorded. (B) Each node 
colored based on its module. (C) Nodes and connections colored based on oscillatory components in the ACHs 
and CCHs, respectively. (D) Nodes and connections colored based on rich-clubness. Each circle represents a 
single neuron and is scaled based on the degree of connectivity. VOS aims to find locations in a low-
dimensional space (in this case 2D) in such a way that the distance between each node reflects the similarity 
between these nodes. Similarity is typically found by calculating the association strength (also known as 
proximity index) on the co-occurrence matrix of items, which is in this case the weighted network connectivity 
matrix. Association strength is simply the co-occurrence of two items divided by the product of the number of 
occurrences of each item. The location of each node is then found by minimizing the sum of the squared 
distance between all nodes, weighted by the computed similarity between each node. To avoid trivial solutions 
in which all nodes are assigned the same location, there is an additional constraint that the average distance 
between all pairs of items must be equal to one. Mathematically, VOS bares much similarity to the method of 
multi-dimensional scaling (Van Eck et al., 2010). All implementations of VOS were performed using the freely 
available software, Pajek (http://mrvar.fdv.uni-lj.si/pajek/), and then plotted in Matlab.  
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Figure 4 – Figure Supplement 1. Detectability of the underlying network topology using equal rate model 
simulations. (A) Average degree centrality distribution of all networks simulated with the equal rate model 
(blue) and the corresponding detected networks with the described method for detecting directed functional 
connectivity (red). Results are shown for the same 10 simulated simple networks and 10 simulated complex 
networks as in Figure 2 – Figure Supplement 3. Error bars show the standard error across simulated networks. 
(B) Same as in A, but for the betweenness centrality distributions. (C) Same as in A, but for the rich-club level 
relative to surrogate datasets. Asterisks represent significant difference of rich-club level to surrogate 
networks. Two different sets of surrogate networks were calculated per dataset, one for the simulated network 
and one for the detected network.  
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Figure 4 – Figure Supplement 2. Subsampling model. (A) Average degree centrality distribution of the modeled 
neuronal plane (32000 neurons, 2 areas, each divided into 5 subregions coverable by an array, 160 possible 
electrode position, and a maximum of 20 single units per electrode) with distant dependent random 
connectivity (Figure 3B). The distribution could be best described by a Gaussian model (adjusted R2 = 0.98). (B) 
Average degree centrality distribution of 12 different subsamplings of the modeled neuronal plane with exactly 
the same number of neurons as in the real datasets. Line shadings show standard error across subsamplings. 
Datasets were processed as in Figure 4A. Average degree distribution could be best described by a Gaussian 
model (adjusted R2 = 1) and only poorly by a power law model (adjusted R2 = 0.17). (C) Dependency of 
goodness of power law fit, the size of the largest component relative to the whole network, and the level of 
compartmentalization on average degree k. Different average degrees were generated by varying the distance-
dependent connectivity density of the empirically gained data (Figure 3B) by factors of 1/5, 1/4, 1/3, 1/2, 1, 2, 
3, 4, and 5 times to create a neuronal plane. Goodness of power law fit was highly correlated with the size of 
the largest component (adjusted R2 = 0.93) and the compartmentalization (adjusted R2 = 0.93). 
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Figure 5 – Figure Supplement 1. Frequency dependent Hanning windows used for discrete Fourier transform. 
(A) Hanning windows used for discrete Fourier transform of all CCHs. All windows were aligned to the zero bin 
and span four times the frequency of interest period (with a maximum of 1000ms and a minimum of 150ms). 
Frequencies of interest were scaled logarithmically (100 frequencies from 3 to 100 Hz). (B) Hanning windows 
used for discrete Fourier transform of all ACHs. All windows were aligned to the zero bin and span two times 
the frequency of interest period (with a maximum of 500ms and a minimum of 75ms). (C) Significant frequency 
bins of power spectra of all ACHs of one example dataset per monkey. Frequencies were calculated and 
displayed on a logarithmic scale. (D) Significant frequency bins of power spectra of all CCHs of the same 
example datasets as in C. (E) Average number of significant frequency bins of all ACHs and CCHs of the same 
example datasets as in C and D.  
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Figure 5 – Figure Supplement 2. Sensitivity of CCHs in detecting oscillatory synchrony and non-oscillatory 
synchrony. (A) CCHs for pairs of simulated neurons with an average firing rate around 5Hz, either firing in an 
oscillatory (20Hz, red curve) or non-oscillatory manner (black curve). By jittering their trial-wise temporal offset 
in firing, we simulated different levels of coupling strength, without disturbing the firing pattern of the 
individual neurons nor the similarity in firing between the two neurons. Results are shown for a trial-wise jitter 
of 0ms (perfect synchronization), 25ms, and 50ms (hardly synchronized). (B) Maximum CCH peak heights of 
oscillatory and non-oscillatory neurons with a systematical trial-offset-jitter from 0 to 50ms.  
  



      2.1. Uniting functional network topology and oscillations 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

 99 

Datasets Trials Single 
units 
total 

F5 M1 AIP Single 
units 
used 

F5 M1 AIP 

M 1 958 149 48 57 44 148 48 57 43 

M 2 * 900 147 52 58 37 137 50 52 35 

M 3 621 107 49 32 26 79 41 20 18 

S 1 503 86 46 - 40 57 28 - 29 

S 2  565 76 39 - 37 64 30 - 34 

S 3 460 76 35 - 41 64 28 - 36 

S 4 460 82 35 - 47 64 26 - 38 

S 5 * 557 90 42 - 48 78 37 - 41 

S 6 374 83 42 - 41 47 25 - 22 

Z 1  400 52 29 - 23 33 21 - 12 

Z 2 436 48 24 - 24 30 17 - 13 

Z 3 * 608 59 30 - 29 41 21 - 20 

Average 570.2 87.9 39.3 49 36.4 70.2 31 43 28.4 

SD 177.4 31.2 8.5 12.0 8.5 35.8 10.3 16.4 10.5 

 

Table 1. Trial and single unit counts for all datasets. Marked datasets correspond to the displayed example 
networks in Figure 3-5 and Figure 3 – Figure Supplements 1 and 2. Columns 3-6 show the total and area specific 
number of units recorded. Columns 7-10 show total and area specific number of units of the largest component 
of the network, which is the basis for all topological analysis. 
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Datasets Oscillators 
total 

Non-
Oscillators 

Beta 
Oscillators 

Low 
Frequency 
oscillators 

Oscillators 
in both 
frequency 
ranges 

M 1 83 65 37 60 14 

M 2 * 60 77 28 37 5 

M 3 34 45 12 25 3 

S 1 31 26 14 26 9 

S 2 32 32 14 22 4 

S 3 31 33 15 20 4 

S 4 26 38 14 19 7 

S 5 * 40 38 22 25 7 

S 6 21 26 14 10 3 

Z 1  13 20 5 10 2 

Z 2 13 17 6 9 2 

Z 3 * 18 23 10 11 3 

Average 33.5 36.7 15.9 22.8 5.3 

SD 19.4 17.4 8.7 13.8 3.4 

 

Table 2. Number of oscillators in all networks analyzed. Marked datasets correspond to the displayed example 
networks in Figure 5 and Figure 3 – Figure Supplements 1 and 2. 
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Abstract 

The fronto-parietal network is known to be essential for sensory to movement 

transformations, including decision-related processes. However, how information is encoded 

in this neural circuit is still unclear. Here, we recorded many neurons in parallel in the fronto-

parietal grasping network of two macaque monkeys who were visually instructed, or freely 

choose, to grasp a handle in one of two different ways. Despite high numbers of tuned 

neurons, individual neuron response patterns were often complex, multiphasic, and 

heterogeneous across the neuronal population. In contrast, when we considered neural 

population activity as one dynamical process, all task-specific single trial activity could be 

explained by an evolution through subspaces representing visual, preparatory, and 

movement information, into which all neurons contributed uniformly. A recurrent neuronal 

network model with a decision-making process and generating muscle patterns reproduced 

the recorded neuronal dynamics. These results suggest that sensorimotor transformation 

can be well explained as a dynamic transformation between information-subspaces 

according to the behavioral demands.  
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Introduction 

Deciding to act on the environment involves the flexible preparation and execution of 

movements based on external and internal drives. To this end, different kinds of sensory 

information and internal motivations have to be transformed into the same movement 

plans1-4. Yet, the internal and external circumstances can change which requires the system 

to dynamically adapt to the new situation potentially resulting in a changed moment plan5. 

Furthermore, once the moment has come to move the movement plan needs to be 

transformed into movement related activity4,6-8. The fronto-parietal network has been 

identified to be strongly involved in the flexible transformation of visual information into 

movement plans and in turn into movement related activity, with its neurons being 

modulated for visual features1,9-11, movement preparation6,12-14, movement execution6,7,15, 

and decision making processes9,14,16-18. However, despite the high number of conducted 

studies it is still unclear how information is encoded and transformed in the network.  

 Based on the representational framework the firing rate of each neuron is described 

as tuning to various parameters19,20. The transformations taking place in the fronto-parietal 

network have been described as interactions between different categories of neurons, 

specifically visual, visuomotor, and motor neurons11. An increase in firing rate of the motor-

related neurons passing a threshold was thought to cause movement initiation21. However, 

individual neuron tuning analyses only explain a fraction of the rich heterogeneity of neural 

population response, and the assumed tuning functions only roughly match the individual 

neurons22-24, leaving a lot of neural variance unexplained. 

In contrast, from the dynamical system perspective neural circuit function is assumed 

to arises from the activation of the whole network of neurons, which cannot be understood 

by studying one neuron at a time25. In this perspective, neural population activity evolves 

through a lower-dimensional space where the current state causes the next state26. This 

framework explains crucial aspects of the preparatory activity and the transition to 

movement activity in premotor and motor cortex6,7,27-29, as well as decision process in 

prefrontal cortex (PFC)3,30. Furthermore, neural contributions to low-dimensional subspaces 

during preparatory activity have been found to be randomly distributed across neurons, 

eschewing specific neuron types or categories4,31. Interestingly, there is increasing evidence 

that population activity transitions through a limited number of independent subspaces, 

which was found for PFC activity during a perceptual decision task3, and was described for 
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the transition from preparatory to movement activity in premotor and motor cortex8. 

However, finding the underlying dimensionality of the population activity is difficult since 

time-shifts between neurons23,32, as well as uncontrolled moment-by-moment fluctuations, 

as present during decision processes5,33, can result in an artificial high number of estimated 

dimensions. For this reason, a proper estimate of the dimensionality explaining all task-

specific single trial variance during the encoding and transformation from sensory to 

movement activity is still missing.  

Here, we analyzed how information is encoded and transformed in the fronto-

parietal grasping network, while two monkeys performed different combinations of visually-

instructed or freely-chosen delayed grasping movements. Tuning analyses revealed all 

neurons to be significantly modulated by task parameters. However, single-neuron response 

patterns were often complex, multiphasic, strongly changing over time, and 

heterogeneously across the neuronal population with no sign of categories. Exploratory 

population analyses revealed a clear temporal and conditional structure with periods were 

only visual, preparatory, or movement information was present. We found that the 

population response for the three types of information explored orthogonal subspaces 

explaining nearly all task specific single trial variance, with neurons across areas contributing 

randomly, without evidence of categories, to the three information subspaces. Neurons 

from a regularized recurrent neuronal network (RNN) trained to generate muscle patterns 

for completing the same task strikingly resembled the recorded activity on the single-neuron 

and population level. These findings suggest that the encoding and transformation of 

information in the fronto-parietal network can be well understood as a dynamical evolution 

through subspaces allowing for an independent moment-by-moment readout of parallel-

encoded information.  

 

 

Results 
 

Task and Behavior 

Two monkeys (S and Z) were trained to perform three variants of a delayed grasping task 

where they had to grasp a handle with either a power and precision grip (Fig. 1a) as 

described previously 29,34. In the instructed-task monkeys were visual cued by one of two 

different discs displayed on a monitor to perform the associated grip type. In the free-
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choice-task both discs were displayed, but monkeys were ensured to switch grip types 

(mean power choice: 38.5±4.2% and 53.3±5.2% for S and Z respectively) by iteratively 

reducing the reward every time the monkey repeatedly chose the same grip type. In the 

delayed-instructed-task first both discs were displayed, but after a variable period of time 

one of the two discs were displayed again giving a clear instruction identical to the 

instructed-task. Equal number of trials of the three tasks were presented in in random order 

to the monkeys. For all following analyses 6 datasets from monkey S and 3 from monkey Z 

were used. Both monkeys learned to perform the task with high accuracy and high trial 

counts (mean successful trials: 95% and 96%, successful trials: 730±106 and 722±167 for S 

and Z respectively) and stable reaction and movement times across task types 

(Supplementary Fig. 1).  

Figure 1 (a) Setup: Monkeys 
were visually cued to grasp a 
target (handle) with one of 
two different grip types 
displayed on a monitor 
appearing superimposed on 
the handle. Task: Monkeys 
had to fixate a red disk for 
600-1000ms (Fixation), 
followed by a cue period of 
300ms (Cue). Then, either a 
clear instruction was given by 
a disk to the left or right of 
the fixation disc indicating a 
power or precision grip 
respectively, or a free-choice 
cue was given by turning on 
both disks. After the cue, a 
memory period followed 
(duration: 1100-1500ms) 
before the fixation dot was 
turned off (go-signal) 
indicating the monkey to 
execute the grasp movement 

(maximum duration:1000ms). In 50% of all cases where a free-choice cue was presented an instruction cue was 
presented for 300ms after 400-600ms in the middle of the memory period. (b) Distribution of number of consecutive 
trials for the free-choice-task. Note, that trials of the free-choice-task were randomly interleaved by trials from the 
other two tasks. The distribution was estimated separate per dataset and displayed is the average per monkey with 
standard error across datasets. (c) Electrode array implantation of monkey S with 4 floating microelectrode arrays in 
areas AIP and F5. Arrays were implanted at the lateral end of the Intraparietal Sulcus in AIP, and in the posterior bank 
of the Arcuate Sulcus in area F5. 

 
Different types of decision making have been described with different implications 

for the underlying neuronal mechanism14,18,35,36, which makes it essential to analyze the 

choice behavior of the free-choice-task. Intuitively one might expect the monkeys to switch 

their performed grasp type every trial (rule-based-decision), since this would be the ideal 
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solution to maximize the reward. However, both monkeys showed a graded decay in 

number of consecutive grasps (Fig. 1b), which still leaves two other possible types of choice 

behavior: reward-ratio-based-decisions or random-decisions. Both decision types would 

result in a graded, predictable decay of consecutive grasps with a faster decay for reward 

ration based decisions (see Online Methods). The switching distribution for all datasets of 

both monkeys was highly correlated with both decision type probability distributions 

(reward ratio based decision: r = 0.970±0.023, random decision: r = 0.989±0.009, which was 

expected due to their high similarity. Nevertheless, the random-decision distribution was 

significantly higher correlated (Wilcoxon signed rank test, p = 0.027), indicating random 

choice behavior.  

 

Neuronal recordings and single unit tuning 

We recorded from the grasping motor network, including part of the ventral premotor (F5) 

and anterior intraparietal (AIP). In each area, recordings were obtained from two floating 

microelectrode arrays (FMAs), for a total of 64 channels (32 per microarray) per area (Figure 

1c). For all analyses only well isolated single units with an average rate above 1Hz were used, 

resulting in an average number of single units per dataset of 31.0±3.2 and 21.6±3.2 for area 

F5 and 32.3±3.3 and 16.0±1.0 for area AIP for monkey S and Z respectively. Note that no 

other preselection criterion for units was applied.  

100% of single units of both areas and all datasets showed significant modulation 

from baseline (cluster-based surrogate t-test, p < 0.05, see Online Methods) and 98±3% of 

F5 units, and 89±7% of AIP units were significantly tuned for either grip-type, task-type or 

grip-task-interaction (Cluster-based permutation 2-way anova, p < 0.05, see Online 

Methods) with no significant difference between datasets of monkey S and Z (Wilcoxon 

ranksum test, p = 1 for F5 and p = 0.9 for AIP). The high number of task modulated as well as 

tuned neurons clearly proved that our arrays were implanted at grasp and task relevant 

spatial location of both areas.  

Based on the representational framework one might expect either visual units tuned 

to visual parameters, motor units tuned for movement related parameters, or visuomotor 

units tuning in a meaningful way to both1,10 and indeed some units in both areas showed the 

expected tuning characteristic (Fig. 2a). However, a large proportion of units was not 

classifiably in this way and showed complex, multiphasic tuning patterns (Fig. 2b) as 

previously described for reach movements6,7 in premotor and motor cortex as well as 
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prefrontal and parietal cortex3,4. Nevertheless, when we pooled all significant time points 

across units we found a high increasing number of grip type tuned units starting from cue 

onset with an maximum during movement (Fig. 2c), well in line with previous literature12,13. 

Task-type and grip-task interaction tuning was highest shortly after cue onset and dropped 

nearly to zero at the end of the memory epoch. The number of significant tuned neurons 

across time was highly similar for AIP and F5 (r = 0.90, r = 0.80 for significant tuning, tuning 

amplitude, respectively) with slightly less grip-type tuned neurons in AIP. In line with grip-

type tuning the number of significant task dependent modulated units showed a similar 

temporal sequence for all conditions and was also similar for both areas (Fig. 2d; r = 0.90, r = 

0.78, significant modulation, and modulation amplitude, respectively). Note that all 

following results were pooled across datasets from both monkeys due to their high degree 

of temporal similarity (AIP: r = 0.94, r = 0.89, r = 0.93, r = 0.88; F5: r = 0.96, r = 0.94, r = 0.96, 

r = 0.87 for significant tuning, significant modulation, tuning amplitude, and modulation 

amplitude, respectively). The relative high and stable number of significant tuned units could 

be easily misinterpreted as a clear sign for tuning stability well in line with the 

representational framework and the increasing number of tuning units with a maximum 

during movement even as sign for a movement threshold35, however, tuning preference was 

not stable over time for many units (Fig. 2a). 

 

Figure 2 Average firing rates per condition and significant temporal tuning characteristics of the population 
of recorded single units in AIP and F5. (a) Average firing rates across time and conditions of an example 
putative AIP visual unit tuned for the precision cue and an example putative F5 motor unit only modulated for 
grip-type differences. Line shadings represent standard error across trials. The lines on top represent significant 
tuning for grip-, task-, and grip-task-interaction. (b) Average firing rates across time and conditions of an AIP 
and a F5 example complex tuned units. Standard error and significances are displayed as in a. (c) Average 
number of significant tuned units for AIP and F5 units across time. Line shadings represent standard error 
across datasets. Note that the set of tuned units across time does not have to be the same. (d) Same as in c, 
but for significant modulation from baseline (fixation period).  
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Tuning stability, rate distributions and single unit tuning similarity 

In order to quantify tuning preference stability over time for the entire neuronal population 

we created tuning similarity matrices starting from cue onset (Fig. 3a, b). Each value within 

each matrix represent the tuning similarity between the two corresponding time points 

where a value of 1 reflects stable significant tuning preference over time, a value of 0 

independent tuning preference and a value of -1 an inversion of tuning preference. Across 

all datasets and for both areas tuning preference was highly dynamic over time for grip-type 

tuning (Fig. 3a) as well as significant modulation from baseline (Fig. 3b). Between epochs or 

between farer apart time points tuning similarity was even close to 0, indicating 

independent tuning of the neuronal population. Thus, despite of a stable number of tuned 

units with a maximum during movement these findings are not in line with a 

representational view were all epochs of the task should share similar tuning to at least a 

certain extend. Yet, under the dynamical systems view there is little reason why tuning 

should be similar for the initial and subsequent states of the system6.  

 

Figure 3 Tuning characteristics across the neuronal population and time. (a) Tuning stability of significant grip 
tuning across time separate for units from AIP and F5. Each value within each matrix represent the tuning 
similarity between the two corresponding time points where a value of 1 reflects stable significant tuning 
preference over time, a value of 0 independent tuning preference and a value of -1 an inversion of tuning 
preference. (b) Same as in a, but for significant modulation from baseline. Only tuning similarity for the 
instructed-power condition is shown as an example, since tuning similarity was highly similar for instructed-
precision, free-choice-power and free-choice-precision condition. (c) Tuning rate distribution of all four task 
periods separate for AIP and F5. Cue onset -300ms, +300ms, +1100ms and movement onset +150 were 
selected for fixation, cue, memory, and movement period respectively. The distribution from each dataset was 
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first normalized by the number of single units and then averaged across datasets. Line shadings represent 
standard error across datasets. (d) Same as in c, but for raw firing rates of the instructed-power condition. The 
raw distributions of the other instructed and the two free-choice conditions were highly similar. (e) Projection 
of all units from one example dataset per monkey onto the first 4 PCs. PCA was applied on the trial averaged 
responses of all single units recorded in parallel per dataset with conditions x time as variables and units as 
observations. The square root of average firing rates was taken before calculating PCA that is also why the first 
PC is plotted against the square root of the average firing rate. 

 

Another important property assumed from a representational framework is that first 

the distribution of firing rate difference between different condition should be multi- or at 

least bimodal distributed, since not all units are assumed to participate in the task, while 

from a dynamical system perspective modulation rate can be even randomly distributed 

across the entire population resulting an unimodal distribution of rate differences4. 

Displayed in Fig. 3c is the tuning rate distribution at four randomly picked time points during 

the four epochs of the task for both areas. Interestingly, tuning rate was unimodal 

distributed at any time point for all tuning types (Cluster-based surrogate Hartigans Dip test, 

p < 0.05, see Online Methods). Also, the firing rate was unimodal distributed for all time 

points of all conditions and for both areas (see for example Fig. 3d; Cluster-based surrogate 

Hartigans Dip test, p < 0.05). Tuning rate as well as firing rate distributions turned out to be 

best displayed on a log-scale which is well in line with previous findings showing that 

neuronal firing rates are log normal distributed across cortex34,37. Note that the Hartigans 

Dip test is a nonparametric test for multimodality, which makes the finding of unimodal rate 

distribution independent from the choice of scale. The unimodal distribution of tuning and 

firing rate critically questions the usage of tuned unit counts for AIP and F5, since in this case 

the number of tuned units is simply a function of recorded trials and spikes, which results in 

a misleading interpretation of information representation in the recorded areas.  

However, despite the lag of tuning stability and side lobes in the rate distributions 

across time, it is still possible that the temporal modulation in firing rate is similar for distinct 

categorical groups of single units. Dimensionality reduction using principal component 

analyses (PCA) as commonly used for spike-sorting is a suitable approach to detect any 

categorical structure in the neuronal space if present were each resulting dimension 

represents a linear combination of all time points across conditions. To exclude a possible 

biased of the results by different firing rate per area we tested for differences per dataset 

with no significant effect (Wilcoxon ranksum test, p < 0.05). Interestingly, the first PC already 

explained 74±7% of all variance and nearly perfectly resembled the average firing rate per 

neuron (Fig. 3e, Supplementary Fig. 2). In the space of PC 2-4 explaining together with PC 1 
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91±2% of all variance no signature of any neuronal clustering became apparent neither 

within or between areas for all datasets (Fig. 3e, Supplementary Fig. 2) rather showing a 

heterogeneous distribution of neuronal response patterns.  

In summary, the lack of tuning stability across time, the unimodal rate distributions 

at all time points, and the heterogeneity of single unit activity with no sign of suggests that 

the activity of the neuronal population of area AIP and F5 can not be properly described by a 

representational framework.  

 

Structure within the neuronal state-space 

By contrast, the presented findings are in line with the dynamical system perspective4,7,22 

where network function is assumed to arise from the neuronal population activity evolving 

through different states by which the current state causes the next state25,26. One common 

way to analyze the neuronal population activity is the state-space framework, in which the 

firing rate of each neuron is a dimension and the firing rates over time form a trajectory 

through this space4,6,7,27. 

In order to explore the evolution of condition wise neuronal trajectories we 

estimated the Euclidean distance between all time points of trial-averaged activity within 

and across conditions. The distance structure of the different datasets was similar (F5: r = 

0.88±0.7, AIP r = 0.71±0.14) and pooled for all further analyses. Displayed in Fig. 4a are the 

condition wise distance matrices were each value represents the distance between the two 

corresponding time points. Remarkably, the temporal structure of the condition wise 

neuronal trajectories was highly similar between conditions (AIP: 0.98±0.01, F5: 0.98±0.01) 

and even across areas (r = 0.92). The trajectories appeared to resemble the task structure 

with an expected temporal delay, which we tested for by applying an assumption free 

cluster algorithm (see Online Methods) on the full distance matrix including all time points of 

all conditions. Intriguingly, population activity within the four task periods were clustered 

across conditions (shown in light gray) in a similar way for both areas.   

To analyze condition dependent differences on top of the found temporal structure 

we compared the distance between conditional trajectories at the same time point of the 

task (Fig. 4b). For the instructed power and instructed precision conditions a significant split 

(Cluster-based permutation ttest, p < 0.05, see Online Methods) was present shortly after 

cue onset which remained stable through the task and peaked during movement. The 
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distance between free power and free precision condition was quite similar to the instructed 

trajectories. However, the trajectories split significant later in AIP compared to the 

instructed task and showed a slower rise in distance in both areas, suggesting that the task 

specific information in this early period is manly visual, since this this is only present in the 

instructed task. Interestingly, there was no significant split between free and instructed 

trajectories shortly before movement onset. The lack of task specific information at this time 

point where the monkeys still remained silence and no go cue was given yet, let us assume 

the neuronal activity only represented movement preparation free of any visual or task rule 

specific activity. Also, later on during the movement there was no task specific information 

present however a clear increase in distance for the two grip types during the movement 

was present.  

 

Figure 4 Euclidian distance structure of the full neuronal space of trial averaged population activity per area. 
(a) Condition wise distance matrices were each value represents the Euclidean distance between the two 
corresponding time points across the task. Distance matrices of the different datasets were collapsed due to 
their high degree of similarity. Low values correspond to the population activity at the two time points to be 
similar and high values represent correspond to the population activity two to be far apart from each other. 
The square root of average firing rates was taken before calculating the Euclidian distance and in order to 
compare days and areas the Euclidian distance was normalized to distance per single unit (see Online 
Methods). The gray boxes show the four identified clusters across conditions per area. (b) Dataset averaged 
Euclidian distance of the trial averaged population activity at the same time point of the task. Since only the 
same time points are compared global modulations across conditions are not visible. For the comparison of the 
instructed- and free-choice population response unit wise activity for the two grip types was collapsed. The 
lines on top represent significant distance for the corresponding distance comparison with the same colour. 
Line shadings represent standard error across datasets. 

 

Crucially, the three specific time periods for visual, preparatory and movement 

information were always within the found clusters for cue, memory and movement period 

and never between the clusters (Fig. 4a). One possible explanation for this distinct structure 

could be that the whole neuronal activity transitions through a low dimensional state-space 
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with subspaces for visual, preparatory and movement information. The high degree of 

similarity between the two areas even suggests that this is happening across the areas. 

 

Single trial neuronal trajectories 

For a proper evaluation of the temporal and conditional structure population activity 

structure moment-by-moment readouts of the population state on single-trials is 

required5,33. This is especially important out of two reasons, first since neuronal activity can 

be a function of internal cognitive processes as it is in particular the case for decision-making 

process, and secondly since single-trial activity reflects the ground truth of the ongoing 

processes in the neuronal population. Dimensionality reduction methods were shown to be 

well-suited for revealing low dimensional representations within high dimensional data with 

the additional advantage to be applicable on single trial data5,29,33.   

We used linear discriminant analysis (LDA) to project the single-trial neuronal 

population activity of both areas into a one-dimensional space best separating the task 

specific variance separate for each dataset (see Online Methods), which has been proven to 

be a robust method for single trial activity4,5,33. This was done is steps of 10ms through the 

time course to the task to always capture the optimal separating projections, which together 

corresponds to the whole task specific neuronal variance. For this purpose, we just used 

successful instructed task trials, since we know a priory that the population response is ether 

related to the power or precision condition. The degree of task specific information 

quantified by the degree of overlap of the population response for the two conditions was 

high at all time points and for all datasets after cue onset (94.4±5.8%) confirming the 

relevance of the neuronal population for the executed task.  

To asses if the neuronal population evolves through the same or different subspaces 

over time and task-types we projected the activity of all other time points of all task-types 

into all optimal instructed-task spaces. In case of a stable representation across time and 

task-types the degree of task specific information should be high at all time points for all 

projections across task-types, while in case of a dynamic population response transitioning 

through different subspaces the task specific information of different projection should be 

time or task specific and up to independent for different projections. Task specific 

information turned out to be dynamic, with some stability during the memory period and an 

increasing degree of similarity between the conditions over time (Fig. 5a). The optimal 
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projections during the cue period were highly specific to this time period and not yielding 

any task specific information at any other time point of the instructed-task nor for any time 

point of the free-choice-task. However, when the same cues as for the instructed-task were 

shown at a later time point for the delayed-instructed-task selective information was 

present in exactly that period, indicating these projections to be specific for visual 

information. Task specific information was more sustained during the memory period for the 

instructed-task, with an increasing degree in information for the free-choice-task and once 

the determining cue was given also for the delayed-instructed-task. 

 

Figure 5 Optimal separating projections of the single trial population response for power and precision 
condition per time point of the instructed-task. (a) The degree of task specific information for all time points 
for all optimal instructed-task projections. In case of the instructed-task the estimation of the optimal 
projection was leave-one-out cross-validation to prevent overfitting (see Online Methods). Projections were 
estimated based on the square root of smoothed single trial firing rates. The degree of task specific information 
of the different datasets was collapsed due to their high degree of similarity. (b) The percentage of datasets 
with significant task specific information above chance level per time point, task-type and projection (see 
Online Methods). Each data point of the three matrices corresponded one to one to the matrices in a. (c) 
Average angle in degree between all optimal single trial population projections of the instructed task across 
datasets. 0 degree correspond to a complete overlap of the projections, while 90 degrees correspond to 
complete orthogonality. (d) Standard deviation across datasets of the angle between all optimal projections in 
c.   

 

This was to be expected since every specific information present before the second 

cue (Fig. 1a) would simply cancel out. Interestingly, the degree of task specific information 

for the same projections was task-type unspecific at later time points (Cue onset +1970 - 

+2500ms, Movement onset -300 - +500ms, Cluster-based permutation 1-way anova, p < 

0.05, see Online Methods). The projections estimated during late memory period were not 

giving any specific information during the cue and later movement period, suggesting them 
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to represent preparatory information. In contrast, projections from the movement period 

were highly selective just representing information during the movement period. As an 

additional control, we also estimated optimal separating projections based on the free-

choice-task. The degree of task specific information for the late memory and movement 

period was indistinguishable from the instructed-task results (Cluster-based permutation 1-

way anova, p < 0.05) confirming these periods to be task-type unspecific. The described 

pattern of task specific information was similar and significant above chance level for all 

datasets (Fig. 5b; permutation test, p < 0.01, see Online Methods). 

 Intriguingly, when we checked the projections from the three identified specific 

periods for their independence they turned out to be nearly perfectly orthogonal to each 

other for all datasets (Fig. 5c-d). Taken together, these results suggest that the population 

response of AIP and F5 evolves through three independent information-subspaces for visual, 

preparatory and movement activity.  

In order to evaluation the temporal evaluation of the single trial trajectories through 

the three information-subspaces and to compare the different task-types we took one 

projection from each orthogonal period (Fig. 6) in accordance with the 3 specific periods 

from the Euclidean distance analyses (Fig. 4) to ensure independence and selectivity based 

on both analyses. The task specific information for the three subspaces clearly overlapped 

before returning to baseline level (Fig. 6a), which is considered an important requirement 

for information transfer between them3,8. Note that preparatory- and movement-subspace 

were task-type unspecific as described earlier is now clearly visible by the nearly perfect 

overlap of task-specific-information at later time points. Displayed in Fig. 6b are 150 

randomly selected single trial trajectories per task-type from one dataset of monkey Z (see 

Supplementary Fig. 3 as example for monkey S). The specific separation for the three 

subspaces is clearly visible as well as the overlapped between the different subspaces. Note 

that the trajectories in the preparatory-subspace for the delayed-instructed-task and the 

free-choice-task showed the same heterogeneity up to cue2 as previously expected. In the 

same period for both tasks preparatory-trajectories showed a lot of vacillation in agreement 

with previous findings5. The forced switch of movement plans for the delayed-instructed-

task in case cue2 was not consistent with the pre-existing movement plan was nicely visible 

by a lot of crossings shortly after onset of cue2.  
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Figure 6 Projections of the population response into the three subspaces for visual, preparatory, and 
movement information. (a) The degree of task specific information for the three selected subspace projections 
for all time points and task-types (see Online Methods). The lines on top represent the percentage of datasets 
with significant task specific information above chance level per time point and task-type as in Fig. 5b, but just 
for the subspace projections. The different colours correspond to the different task-types. (b) Single trial 
trajectories for the projections into the three subspaces of one example dataset from monkey Z. 150 trials (75 
trials per grip-type) were randomly chosen per task-type. Not all single trial trajectories were displayed for a 
better overview. The range per subspace projection was fixed for better comparison between the different 
task-types.  

 

Given the confirmed specificity and independence of the visual-, preparatory- and 

movement-subspaces one key question is whether these three subspaces are enough to 

explain the whole task specific variance over time within the AIP-F5 single unit network or 

do we miss an essential part of it. A possible alternative could be a rapid series of state 

transitions which are not even orthogonal to each other but yet contain specific information 

not captured by the three orthogonal spaces as it was previously suggested for prefrontal 

cortex populations30. To this end, we estimated two sets of time point wise optimal 

projections for each task-type separately to be sure to catch all task-type specific variance if 

present. One set was estimated from the whole neuronal population as described before, 

while the other one was estimated just based on the three-dimensional trajectories from the 

visual-, preparatory- and movement-subspaces, which are as already mentioned just based 

on the same three projections for all task-types. The degree of task-specific information over 

time as well as the single trial trajectories of the two sets of optimal projection nearly 
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perfectly matched (Fig. 7a,b) and were highly correlated (degree of task-specific information: 

r = 0.97±0.02, average trajectories per condition: r = 0.98±0.01, and single trial trajectories: r 

= 0.86±0.04 with standard deviation over datasets). As a consequence of this analyses, 

nearly all task-specific variance of the whole neuronal population across time, task-types, 

and areas can be explained by just three orthogonal subspaces. Especially, the simplicity of 

just three subspace capturing nearly all task-specific variance on the network level speaks in 

favour of the dynamical system perspective, which would be much more complex if not 

impossible using a representational framework.  

Figure 7 Amount of task-
type specific variance 
explained by the three 
subspaces and the 
distribution of neuronal 
contributions to the 
subspaces. (a) The 
maximum degree of 
information estimated by 
the optimal projection at 
each time point of each 
task-type (3 x 310 
projections) in comparison 
to the combined degree of 
information from the three 
subspace projections (see 
Online Methods). Black 
lines represent the results 
from the optimal 
projections estimated from 
the whole neuronal 
population and purple lines 
results just based on the 
three-dimensional 
subspace trajectories. The 

average across all datasets is displayed with line shadings representing standard error across datasets. (b) 
Same as in a, but for condition wise average single trial trajectories. (c) Average neuronal weight distributions 
for the three subspace projections across datasets. For better comparison, the neuronal weights of each 
subspace projection were first normalized by the total absolute weight per projection. Line shadings represent 
standard error across datasets. (d) Average histogram of the distribution of angles between each single unit 
and its nearest neighbours across datasets. The blue line represents the distribution of nearest-neighbour 
angles of the neuronal weights for the three subspace projections and the red line represents the distribution 
of nearest-neighbour angles of random three-dimensional vectors. Line shadings represent standard error 
across datasets. (e) Same as in d, but for the first 15 PCs of trial averaged data.  

 

The weights of the three subspaces allowed for more assumption free estimation of 

area wise encoding of information, since they were independent of the length of time a 

certain information is present in the network, which in turn strongly depends on the task-

design. Visual information was stronger encoded in AIP, preparatory information was equally 

present in both areas and movement information was stronger in F5 (Supplementary Fig. 4). 
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However, the neuronal population of both areas contributed to all three subspaces and 

none was presented in just one area, which is well in line with current findings8,9. Both areas 

had the strongest encoding of movement information, followed by preparatory information, 

with the weakest representation for visual information, suggesting both areas to be stronger 

involved in movement related processing. 

Although we haven’t found any signature of neuronal categories jet (Fig. 3, 

Supplementary Fig. 2) it is possible that the projections for the individual subspaces are just 

based on distinct groups of units, which could not be detectible without unmixing their 

response. In this case, the weight distributions reflecting the individual contributions of all 

units for the three subspaces should be bi- or multimodal, which was not the case for any of 

the datasets or subspaces (Fig. 7c; Hartigans Dip test, p < 0.05). However, this still leaves the 

possibility that certain combinations of contributions across subspaces appear more often 

than by chance, which would be evidence for categories across subspaces. To test for this, 

we compared the weight vector of each unit for the three subspaces with its nearest 

neighbors. If there were any categories across as well as within subspaces there should be 

pairs of units which should have closer neighbors than expected by chance, which can be 

tested for by a new developed statistic called “PAIRS”4 (see Online Methods). The PAIRS test 

did not indicate any evidence of categories across the three subspaces and datasets (Fig. 7d; 

p = 0.45). Also, when we used PCA as an unsupervised method for dimensionality reduction 

(see Online Methods), there was no sign of categories (Fig. 7e; p = 0.60). The finding of 

randomly distributed neuronal contributions for the three subspaces were, which in turn 

capture nearly all task-specific variance across both areas gives even more evidence for this 

network to be a dynamical system.  

 

Comparison of a recurrent neuronal network model to data 

A crucial indication for the network of neurons to be a dynamical system is basically 

generating a model where we know that it is a dynamical system by definition. To be a valid 

model it should get the same inputs, create the same outputs and resembling the neuronal 

responses as close as possible. This has been recently done for the transition of preparatory 

activity to movement activity in the PMd-M1 reaching network by optimizing a regularized 

recurrent neuronal network (RNN)38 to produce muscle patterns. The dynamics of the RNN 

resembled the dynamics seen in the recorded neuronal population at both the single-neuron 
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and population levels. However, it is unclear how well such a model can resemble fronto-

parietal network activity for different task-types as in our case visual instructions as well as 

for a random free-choice task. We trained a similar network of 200 neurons to generate 

muscle patterns for the whole reach to grasp movement estimated from a musco-sceletal 

model based on recorded kinematics for the two grasps (Fig. 8a; see Online Methods). The 

network received randomly weighted independent inputs for the two cues resembling our 

visual stimuli with an identical temporal profile to our trained task (Fig. 1a), which means in 

case if a free-choice cue both inputs were given at the same time. Additionally, noise was 

added to the network. All time periods resembled the real task, which means it had to 

memorize the instruction or generate a movement from noise for the free-choice-task, as 

well being able to flip movement plans if necessary for the delayed-instructed-task. 

Importantly, we trained the network not just to generate the required muscle patterns but 

also to encourage extremely simple solutions by heavily regularizing it38 (see Online 

Methods).  

Figure 8 Recurrent neural 

network (RNN) for decision 

making. (a) The RNN 

containing 300 internal 

neurons receives four input 

signals. Three of the input 

signals represent the visual 

signal on individual trials, 

i.e. when the precision cue, 

power cue, and fixation cue 

were presented. The fourth 

input represents a hold 

signal that is released 200 

ms before the onset of 

movement. The output of 

the network is a 50-dimensional signal representing the condition-averaged velocity of each muscle during 

either power or precision grip. (b) The trial-averaged signal of both the recorded neural activity and the 

simulated activity of the RNN were compared using Principal Component Analysis followed by Canonical 

Correlation Analysis (CCA). CCA finds low-dimensional projections of the data that are most highly correlated 

and where each dimension is orthogonal. 

 

We were able to successfully train the network to generate the two grasp 
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movements for all three task-types. Intriguingly, the population activity as well as the single-

unit responses well matched the dynamics of the recorded data (Fig. 8b) with a high average 

canonical correlation for the first 8 dimensions (r = 0.73 for monkey Z, and r = 0,67 for 

monkey S). To our knowledge this is the first model including random decisions which also 

resembles the population and single-unit activity. Even if theresults from this modal are not 

a causal proof they strongly suggest that the encoding and transformations of information 

within the fronto-parietal grasping network can be well understood from a dynamical 

system perspective.  

 

Discussion 

 

In this study, we addressed the question how information is presented in fronto-

parietal grasping network for different tasks and grip types. By analyzing the population of 

neurons from the classical representational perspective describing the activity of neurons as 

a function of tuning for various parameters19,20 we found high numbers of tuned neurons in 

both areas. However, crucial aspects of neuronal activity could not be explained by this 

classical perspective. The tuning characteristic of many neurons were complex and the 

tuning of the population of single units changed dynamically and were even independent 

over time especially between different periods of the task. Also, neuronal responses were 

heterogeneously distributed with no evidence of distinct categorical groups of neurons 

tuned for any task parameters.  

In contrast, when we considered the population of neurons as one interconnected 

ensemble25,33 with its activity as a whole evolving through state-space in the framework of 

dynamical systems3-7,26,30,38-41 a clear temporal and conditional structure became apparent. 

Based on this data driven exploratory approach33, we could identify three orthogonal 

subspaces for visual, preparatory and movement information explaining nearly all task 

specific single trial variance across time, tasks-, grip-types, and even areas in form of a 

dynamical trajectory through this informational subspaces. Contributions to all subspaces 

were randomly distributed across all neurons of both areas tested with a new highly 

sensitive test PAIRS4, which showed an involvement of all neurons in the encoding and 

transformation of all three information types.  

Intriguingly, a regularized recurred neuronal network38 trained to produce muscle 
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activity for the two grasps, which is by definition a dynamical system, could well reproduce 

the neuronal dynamics on the single unit and population level.  

It is important to state that the representational view and the dynamical system view 

are not completely at odds6,26. Since the contributions to the three informational spaces are 

randomly distributed across the neuronal population (Fig. 7b) individual neurons could be 

indeed described to be mixed selective31 for visual, preparatory and movement selective 11,42 

to a certain extend. However this would always result in subselection on neurons not 

explaining an essential part of the neuronal variance22,23 and how information is transformed 

up to the generation of muscle movements26,38.  

The finding of the whole fronto-parietal population response evolving through three 

independent subspaces raises the question, what is the encoding advantage of such an 

encoding and transformation structure? An interesting concept is the idea that activity of 

different orthogonal subspaces cancel out at the level the population readout, which was 

shown for the communication of the motor cortex to the spinal cord and arm muscles to 

avoid causing involuntary movements40,43. From this point of view different subspaces would 

allow for multiplexed information encoding in the same network, which could be flexibly 

transformed on the bases of the behavioral demands3,4,31. This observed activity in the 

preparatory subspace flexibly driven by visual activity or presumable by noise in the system 

as well as the behavioral dependent interaction of visual and preparatory activity for the 

delayed-instructed-task (Fig. 6b, Supplementary Fig. 3) supports this idea.  

Interestingly, as assumed by many studies the encoding and transformation of information 

was not happening between areas10,18,40 but between subspaces spanning the two areas. 

This findings are in line with recent findings for preparatory and movement subspaces 

spanning premotor and motor cortex8 as well as a study showing that sensory as well as 

preparatory information were encoded across the entire visuomotor pathway, albeit with 

different strength9. A possible explanation is given by the distributed consensus model, in 

which decisions occur on multiple levels in parallel, and the final decision is achieved 

through a distributed consensus36. While the model itself is rather abstract about the exact 

encoding and transformation of information, a neuronal population activity evolving through 

subspaces for different information spanning different areas could be solution to it.  

 A rather global them local encoding and transformation of information raises the 

question how these processes are coordinated. For limited network with a limited number 
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of conditions a dynamical system, modeled by a trained regularized RNNs receiving the same 

inputs and generating muscle patterns, offer a remarkably solution how information is 

coordinated38. In particular, the high degree of similarity of population activity as well as the 

single-unit responses with the recorded data, makes this solution very convincing. However, 

the coordination of information across many brain areas for a nearly endless number of 

different behaviors requires presumably a more complex coordination mechanism. 

Oscillatory synchrony has been proposed as a key mechanism for global coordination of 

information44,45. Especially synchronization in the beta-band was shown to be involved in 

behavioral relevant coordination of information in the fronto-parietal network16,46. 

Intriguingly, we found that the same neuronal population analyzed in this study was 

coordinated by an area spanning strongly interconnected group of oscillatory synchronized 

neurons in the beta- and low-frequency range34, which let us assume that oscillatory 

synchrony could play a crucial role in the coordination of cross area information encoding 

and the transition of information between different subspaces.      

 Despite many aspects of the fronto-parietal encoding and transformation of 

information are still to be understood, the simplicity that nearly all single trial neuronal 

variance of all neurons across areas can be understood as a dynamical process through just 

three information subspaces offers a new perspective to analyze activity from this network. 

The independence of the subspaces if visual, preparatory, and movement information even 

allows to disentangle and analyze them separately, which could be useful for analytical 

studies as well as possible decoding approaches.  
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Materials and Methods 

Basic procedures  

Neural activity was recorded simultaneously from many channels in two female rhesus 

macaque monkey (Animals S and Z; body weight 9 and 7kg, respectively). Detailed 

experimental procedures have been described previously29,34. All procedures and animal 

care were in accordance with German and European law and were in agreement with the 

Guidelines for the Care and Use of Mammals in Neuroscience and Behavioral Research 47.  

Behavioral Task 

Figure 1A illustrates the time course of the behavioral task as described previously29,34. Trials 

started after the monkey placed both hands on the resting positions and fixated a red 

fixation disk (fixation period). After 600 to 1000ms, cues in the form of disks were shown 

next to the fixation disk for 300ms to instruct the monkey about the required grip type 

(power or precision; cue period). During this epoch the grasp target, a handle, was also 

illuminated. In the instructed-task (33% of all cases) one disk was shown, while in the free-

choice-task and the delayed-instracted-task (33% of all cases each) both disks were turned 

on, indicating that the monkey was free to choose between the two grip types. The monkey 

then had to memorize the cued condition for 1100 to 1500ms (memory period). In the 

delayed instructed-task a second cue identical to the instructed-task was given in the middle 

of the memory period after 400 to 600ms keeping the total memory period the same as for 

the other tasks. The switching off of the fixation light cued the monkey to reach and grasp 

the target (movement period) in order to receive a liquid reward. Importantly, during free 

choice trials the reward was iteratively reduced every time the monkey repeatedly chose the 

same grip type. All trials were randomly interleaved and executed in darkness.  

 

Chronic electrode implantation 

Surgical procedures have been described previously29,34. In short, each animal was implanted 

with two floating microelectrode arrays per area (FMAs; Microprobes for Life Sciences; 32 

electrodes; spacing between electrodes: 400μm; length: 1.5 to 7.1 mm monotonically 

increasing to target grey matter along the sulcus). Animal S and Z were implanted with four 

FMAs in area AIP and F5 in the left and the right hemisphere, respectively. Animal M was 
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implanted with a total of six FMAs in the same cortical areas and two additional arrays in 

area M1, in the left hemisphere (Figure 1B).  

 

Choice behavior  

In order to evaluate which choice behavior was present we compared the distribution of 

consecutive grasps (Fig. 1B) to the probability distribution of consecutive grasps of rule-

based-decision, reward-ratio-based-decisions or random-decisions separate for each 

dataset. The probability distribution of rule based decision is simply 1 for switching after one 

grasp and 0 for all other values. Since the histogram of consecutive grasps showed a graded 

decay ruled based decision behavior could be excluded right away. The probability 

distribution of reward-ratio-based-decision is given by: 

                                                  𝑃(𝑛) =  
1

(2𝑛 − 1) + 1
                                                    (1) 

In contrast, the probability distribution of random-based-decision is given by: 

                                                            𝑃(𝑛) =
1

2𝑛
                                                               (2) 

where n of the number of consecutive grasps. The distribution of consecutive grasps was 

correlated with both probability distributions per dataset giving a direct estimate how good 

the choice behavior can be described by both probability distributions. 

 

Neural recordings and spike sorting  

Neural signals from the implanted arrays were amplified and digitally stored using a 128 

channel recording system (Cerebus, Blackrock Microsystems; sampling rate 30 kS/s; 0.6-

7500Hz band-pass hardware filter; for monkey S and Z) or a 256 channel Tucker-Davis 

system (TDT RZ2; sampling rate 24.414 kS/s; 0.6-10000Hz band-pass hardware filter; monkey 

M).  

For spike detection, data were first low-pass filtered with a median filter (window 

length 3ms) and the result subtracted from the raw signal, corresponding to a nonlinear 

high-pass filter. The signal was then low-pass filtered with a non-causal Butterworth filter 

(5000 Hz; 4th order). To eliminate common noise-sources, principal component (PC) artifact 

cancellation was applied for all electrodes of each array, as described previously48. To ensure 
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that no individual channels were eliminated, PCs with any normalized coefficient greater 

than 0.36 (conservatively chosen) were retained. Spike waveforms were detected and semi-

automatically sorted using a modified version of the offline spike sorter Wave_clus43,49. 

Units were classified as single- or non-single unit based on five criteria: (1), the absence of 

short (1–2 ms) intervals in the inter-spike interval histogram for single units; (2), the 

homogeneity and SD of the detected spike waveforms; (3), the separation of waveform 

clusters in the projection of the first 17 features (a combination for optimal discriminability 

of PCs, single values of the wavelet decomposition, and samples of spike waveforms) 

detected by Wave_clus; (4), the presence of well-known waveform shapes characteristics for 

single units; and (5), the shape of the inter-spike interval distribution. 

 After the semiautomatic sorting process, redetection of the different average 

waveforms (templates) was done to detect overlaid waveforms50. To achieve this, filtered 

signals were convolved with the templates starting with the biggest waveform. 

Independently for each template, redetection and resorting was run automatically using a 

linear discriminate analysis for classification of waveforms. After spike identification, the 

target template was subtracted from the filtered signal of the corresponding channel to 

reduce artifacts during the detection of the next template. This procedure allowed us to 

detect spikes with a temporal overlap up to 0.2 ms. Unit isolation was evaluated again, 

based on the five criteria mentioned above, to determine the final classification of all units 

into single or non-single units. Stationary of firing rate was checked for all units and in case it 

was not stable over the entire recording session (more than 30% change in firing rate 

between the first 10 min and the last 10 min of recording) the unit was excluded from 

further analyses (~3% of all single units). Only single units fulfilling all of these criteria, and 

no multi-units, were further used in this study. 

 

Data preprocessing  

After sorting, single neuron spike events were binned in non-overlapping 1-ms windows to 

produce a continuous firing rate signal (1 kHz) and smoothed with a Gaussian window (𝜎 = 

60 ms). Data were aligned to cue and movement onset for the instructed- and free-choice-

task (cue onset: -800 to 1500 ms, and movement onset: -300 to 500 ms) and additionally for 

the second cue for the delayed-instructed-task (first cue onset: -800 to 1500 ms; second cue 

onset -150 to 750ms, and movement onset: -300 to 500 ms), since neuronal activity was 
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locked to these events, with variable memory periods between them. The time range of the 

alignments was chosen in order to have as small as possible overlap and an as smooth as 

possible transition between them. The different alignments were combined to produce a 

continuous signal. Average firing rates were then calculated by averaging over all trials and 

alignments per condition and single unit. 

 

Statistics 

For most statistics tests standard functions from MATLAB Statistics and Machine Learning 

Toolbox were used if not stated otherwise below. In order to test for unimodality we used 

the nonparametric Hartigan’s Dip Test51 implemented by F. Mechler and freely 

downloadable at: http://www.nicprice.net/diptest/. In case of time series where multiple 

time points were tested we used three versions of a non-parametric cluster-based 

permutation test52 (cluster-based permutation t-test, 1-way ANOVA and 2-way ANOVA) and 

two versions of a non-parametric cluster-based surrogate test34 (cluster-based surrogate t-

test, and cluster-based surrogate Hartigan’s Dip Test) to deal with the multiple comparison 

problem. Cluster-based permutation and surrogate tests are based on clustering of adjacent 

time-samples exceeding a set threshold. The four tests used by us only differ in the statistic 

used for selecting the threshold and whether they were used to compare different 

conditions with each other (permutation tests) or for testing against a surrogate condition 

(surrogate tests). For the cluster-based surrogate t-test, which was used to test for 

significant modulation from baseline (fixation period) for each condition, an equal number of 

trials was generated from a homogeneous Poisson process using the baseline firing rate 

distribution. In case of the cluster-based Hartigan’s Dip Test an equal sized set of random 

values, corresponding to the number of neurons and time points tested, was used as a 

surrogate condition. The clustering and testing for all four tests was carried out as follows:  

First, the statistic for selecting the threshold was estimated for all time points. Next, all 

values (t-values, F-values, and dip-values, respectively) exceeding a threshold corresponding 

to an alpha-level of 0.05 were selected. In the next step, adjacent values exceeding the set 

alpha-level were considered as clusters, extracted, and their values summed. A test 

distribution was generated by randomly permuting trials of the different conditions by 

randomly reassigning them to the different groups while maintaining the group size. For 

each partition (1000 partitions) the thresholding procedure and clustering was repeated. 

http://www.nicprice.net/diptest/
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From every partition the largest cluster-level statistic was used to generate a largest chance 

cluster distribution.  

The final statistical test was performed by calculating a p-value for each real cluster under 

the largest chance cluster distribution and comparing them with a critical alpha-level. 

Thus, the multiple comparisons for each sample are replaced by a single comparison, 

replacing the need to make multiple comparisons.  

 

Euclidean distance analyses 

The Euclidean distance was calculated between all time points of trial-averaged activity 

within and across conditions of all single units across both areas in steps of 10ms. The square 

root of average firing rates was taken before calculating the Euclidean distance to ensure 

that results were not dominated by a few high-rate neurons6,7. The square-root-transform 

was used although firing rates at all time were found to be approximately log normal 

distributed (Fig. 3d), since the log-transform distorts values close to 0 and is not defined for 

0, while the square-root-transform is robust in the range between 0 and 1 and commonly 

used in literature for the same purpose28,29,53. In order to make the Euclidean distance 

comparable between areas and datasets, for which different number of neurons were 

recorded, we normalized by the square root of number of neurons to obtain Euclidean 

distance per neuron. As a control, we also calculated the Euclidean distance of raw average 

rates as well as log average rates with minimum log-rates set to -3 and giving a similar 

temporal pattern as in Fig. 4b (data not shown).  

 For cluster analyses we used a well-known community structure analyses from 

Newman54 that iteratively finds non-overlapping groups of conditions that minimizes the 

within-group distance and maximizes the between-group distance implemented by M. 

Rubinov Mechler and freely downloadable at: https://sites.google.com/site/bctnet/. 

Importantly, no assumption on the number of clusters is required.  

 

Linear discriminant analyses (LDA) 

LDA was used to estimate projections of single trial activity of all parallel recorded single 

units into a one-dimensional space best separating the power and precision condition. We 

used the standard function from MATLAB Statistics and Machine Learning Toolbox to 

calculate linear discriminant analysis (LDA). In all cases LDA were weighted for number of 

https://sites.google.com/site/bctnet/
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trials of the power and precision condition and to prevent overfitting we applied leave-one-

out cross-validation. In agreement with the Euclidean distance analyses, LDA were calculated 

based on the square root of smoothed single trial firing rates. Projections were estimated in 

steps of 10ms separately for the three task-types. For most analyses only the projections 

from the instructed-task were used if not stated otherwise.  

The degree of task specific information was estimated as the percentage of correctly 

separated single trial trajectories for grip-type per task-type and dataset. Since only two 

grip-types were performed the chance level was 50%. In order to test if the degree of task 

specific information was significant different than chance level we applied a permutation 

test estimating the degree of task specific information for 10000 random separations. To this 

end, single trial trajectories for the two grip-types were randomly permuted into two equal 

sized sets of trajectories and the degree of task specific information was estimated again. 

Finally, the p-value was calculated under the distribution of all random degree of task 

specific information estimations separate for each time point of each projection and 

compared to an alpha-level of 0.01.  

The nearly orthogonal projections estimated from the instructed-task at the time 

points cue onset + 180ms, cue onset + 1170ms, and movement onset + 150ms were selected 

as visual, preparatory, and movement subspace projections, respectively. For the evaluation 

of how much task-specific information is captured by the three information subspaces 

compared to the optimal projection at each time point, another set of projections was 

estimated as described above, but using only the activity of the three subspaces as input, as 

opposed to all neurons. 

 

Projection angle index of response similarity (PAIRS) 

To test for clustering in the individual contribution of neurons to the three subspaces, we 

used the PAIRS analyses as described previously4 using freely available code at: 

http://repository.cshl.edu/30912/. The three projection vectors for the three subspaces 

were used as input for the PAIRS analyses separately per dataset. To ensure that they 

captured completely independent variance, although they were nearly orthogonal, we 

orthogonalized them using the Gram-Schmidt algorithm. Briefly, the PAIRS analysis 

computes the distribution of the average angle of each units n-dimensional weight vector to 

its k nearest neighbours. In our case n was three weights from the subspace projections and 

http://repository.cshl.edu/30912/
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k was set to 10. We set k to a fixed value to be in a comparable range for all datasets. Setting 

k to any value between 6 to15 had a negligible effect on the results (data not shown). The 

median of the nearest neighbour angle distribution was compared to median values of 

10,000 simulated datasets with the same number of neurons and dimensions randomly 

drawn from a Gaussian distribution, which were processed as described before. The 

percentile of instances where the simulated distribution values exceeded or undercut (two-

sided test) the empirical value corresponds to the p-value. One test across all datasets was 

performed by subtracting each real median value from the 10,000 simulated median value 

per dataset, pooling them, and testing against 0. As a control, we also tested the datasets of 

both monkeys separately and found the same results (data not shown).  

To test if there was any potential clustered neuronal variance missed by the three 

subspace projections, we repeated the PAIRS analysis by using unsupervised principle 

component analyses (PCA) for dimensionality reduction. We used the weight vectors of the 

first 15 PCs of each dataset explaining more than 99% of the trial-averaged variance and the 

number of k nearest neighbours was set to 3. As a control, we also used the weight vectors 

of the first 8, 10, and 12 PCs, with no effect on the results (data not shown). 

 

Recurrent neural network 

In order to model the planning and execution of a grasping task with a decision making 

component on a single trial basis, we implemented the dynamical system, 𝒙̇ = 𝑭(𝒙, 𝒖), 

using a standard continuous RNN equation of the form 

 𝜏𝒙̇𝑖(𝑡) = −𝑥𝑖 + ∑ 𝐽𝑖𝑘𝑟𝑘(𝑡)

𝑁

𝑘=1

+ ∑ 𝐵𝑖𝑘𝑢𝑘(𝑡)

𝐼

𝑘=1

+ 𝑏𝑖
𝑥 + 𝜀𝑖(𝑡) ( 3 ) 

where the network has 𝑁 units and 𝐼 inputs, 𝑥 are the activations and 𝑟 the firing rates in 

the network, which were related to the activations by the rectified hyperbolic tangent 

function, such that 𝑟 = {
0, 𝑥 < 0

tanh (𝑥), 𝑥 ≥ 0
 . The units in the network interact using the 

synaptic weight matrix, 𝐽. The inputs are described by 𝑢 and enter the system by input 

weights, 𝐵. Each unit has an offset bias, bi
x, and each unit receives normally distributed 

noise, εi, with standard deviation 0.01, at every time point. In order to allow for the 

emergence of “decisions” on individual trials, the noise injected to the system on each trial 
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was unique to that trial and remained fixed over training. The time integration constant of 

the network is 𝜏. 

 For all simulations N was fixed at 200. The three inputs were a condition-

independent hold signal that was released 200 ms before movement onset, and two inputs 

representing the visual presentation of the grip type, either power or precision grip. The 

elements of 𝐵 were initialized to have zero mean (normally distributed values with 𝑆𝐷 =

1 √𝑁⁄ ). The elements of 𝐽 were initialized to have zero mean (normally distributed values 

with 𝑆𝐷 = 𝑔 √𝑁⁄ ), where the synaptic scaling factor, 𝑔, was set at 1.555. We used a fixed 

time constant of 50 ms for 𝜏, with Euler integration every 10 ms. 

 In a separate recording session, the kinematics of multiple repetitions of power and 

precision grip were recorded using a tracking glove56 to produce 27 degrees of freedom in 

joint angles. These kinematics were further transformed into a set of 50 muscle length 

measurements using a musculoskeletal model57. The network was required to generate the 

average muscle velocities in 50 dimensions during power or precision grip over the first 300 

ms of movement, where movement onset was determined by a threshold crossing in elbow 

position. In order to account for neural conduction delays and muscle activation times, the 

desired kinematics were shifted 50 ms backward relative to the corresponding neural signal. 

The output of the network was defined as a linear readout of the internal network 

 𝑧𝑖(𝑐, 𝑡) = ∑ 𝑊𝑖𝑘𝑟𝑘(𝑐, 𝑡) + 𝑏𝑖
𝑧

𝑁

𝑘=1

 ( 4 ) 

where 𝑧 represents the two kinematic readouts (𝑖 = 1, 2) and is a linear combination of the 

internal firing rates using weight matrix 𝑊, which was initialized to all zero values, and bi
z, 

which is a bias term for each output dimension.  

 The input weights, 𝐵, internal connectivity, 𝐽, output weights, 𝑊, and all biases, were 

trained using Hessian Free Optimization58 (freely available code: 

https://github.com/sussillo/hfopt-matlab) also utilized in Sussillo et al.38 and Michaels et 

al.23. The error function used to optimize the network considered the difference between 

the output of the linear readout and the desired muscle velocity profiles, 𝑣, 

 𝐸𝑖(𝑐, 𝑡) = 𝑧𝑖(𝑐, 𝑡) − 𝑣𝑖(𝑐, 𝑡) ( 5 ) 

at each time point, 𝑡, each output dimensions, 𝑖, and each individual trial, 𝑐. We report 

normalized error, which is the sum of the squared error from Eq 3 over all times, 
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dimensions, and conditions, divided by the total variance of the target signal. In addition to 

the above error signal, we also implemented three regularizations designed to encourage 

the network to produce biologically-plausible activity (implemented as in Sussillo et al.38). 

The three penalties were a cost on the mean firing rate, the squared-sum of the input and 

output weights, and a penalty encouraging the network to avoid complex state trajectories 

(similar to local space contraction59). The hyper-parameters used for these regularizations 

were 3e-2, 1e-4, and 1e-4, respectively. 

 We opted not to model any feedback, since the goal of the study was to illustrate the 

main points parsimoniously and without relying on confronting the issue of what kind of 

feedback is most biologically plausible in such a network. 

 

Canonical Correlation Analysis 

Canonical Correlation Analysis (CCA) was undertaken to compare the simulated activity 

within the neural network to the recorded neural population data. While the simulation was 

carried out for individual trials, a single CCA analysis was carried out on trial-averaged data 

aligned to both grip cue onset and movement onset that was concatenated to form a single 

trajectory. Before CCA, all units in both the neural data and the simulated data were reduced 

to 8 principal components, where the data was of the form 𝑐𝑡 ×  𝑛, where 𝑐 is the number 

of conditions, 𝑡 is the amount of time per trial, and 𝑛 is the number of units. CCA produces 

new dimensions that are linear combinations of the principal components of each data set 

(neural or simulated) that are highly correlated between data sets and orthogonal to all 

other canonical variables. 
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Supplementary Figures 

 
Supplementary Figure 1 Reaction and movement times separate for monkeys, grip- and task-types. The 
average of all successful trials of all datasets per monkey is shown (4385 and 2167 for monkey S and Z, 
respectively) with standard deviation across trials. 

  



      2.2. Three information subspaces explain the category-free population dynamics 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

 135 

 

Supplementary Figure 2 Projection of all units from all datasets but the two displayed in Fig. 3 onto the first 4 
PCs. PCA was applied on the trial averaged responses of all single units recorded in parallel per dataset with 
conditions x time as variables and units as observations. The square root of average firing rates was taken 
before calculating PCA that is also why the first PC is plotted against the square root of the average firing 
rate. The results of the PCAs is valid despite the number of variables being higher than the number of 
observations, since the first 4 PCs already explain more than 90% of the condition and temporal variance.  
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Supplementary Figure 3 Single trial trajectories for the projections into the three subspaces of one example 
dataset from monkey S. 150 trials (75 trials per grip-type) were randomly chosen per task-type. Not all single 
trial trajectories were displayed for a better overview. The range per subspace projection was fixed for 
better comparison between the different task-types.  
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Supplementary Figure 4 Contribution the three information subspaces per area. The subspace projection 
vectors per dataset were first split per area, then the absolute value was taken since negative weights 
contribute as much as positive weights, and finally the individual weights per single unit were averaged 
separate for AIP and F5. Displayed is the average across datasets with errorbars representing standard error 
across datasets.  
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Abstract 

Our voluntary grasping actions lie on a continuum between immediate action and waiting 

for the right moment, depending on the context. Therefore, studying grasping requires 

investigating how preparation time affects this process. Two macaque monkeys performed a 

grasping task with a short instruction followed by an immediate or delayed go cue (0-1300 

ms) while we recorded in parallel from neurons in the hand area (F5) of the ventral 

premotor cortex and the anterior intraparietal area (AIP). Initial population dynamics 

followed a fixed trajectory in the neural state space unique to each grip type, reflecting 

unavoidable preparation, then diverged depending on the delay. Although similar types of 

single unit responses were present in both areas, population activity in AIP stabilized within 

a unique memory state while F5 activity continued to evolve, tracking anticipation. 

Intriguingly, activity during movement initiation clustered into two trajectory clusters, 

corresponding to movements that were either ‘as fast as possible’ or withheld movements, 

demonstrating a widespread state shift in the fronto-parietal grasping network when 

movements must be withheld. Our results reveal how dissociation between static and 

dynamic components of movement preparation as well as differentiation between cortical 

areas is possible through population level analysis. 
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Introduction 

Some actions, such as reacting to a spilling cup of coffee, demand an immediate response. 

Others, such as waiting before a traffic light, require withholding our actions for the right 

moment. Most of our actions lie on the continuum between the two, and although many 

actions are carefully planned before they are executed (Kutas and Donchin 1974; Ghez et al. 

1997), we are often required to act with little or no warning. Various studies have examined 

how movements are planned and held in memory in the primate brain (Wise 1985; Riehle 

and Requin 1989), but only a few have contrasted well planned movements with situations 

where little to no preparation is possible (Wise and Kurata 1989; Crammond and Kalaska 

2000; Ames et al. 2014). None, to our knowledge, have systematically probed the transition 

between immediate and planned grasping movements in the behaving primate. 

 Understanding how specific brain areas contribute to movement planning requires 

being able to dissociate the neural preparation that occurs before a movement and the 

movement activity itself. Delayed movement paradigms in which actions must be withheld 

before they are executed have shown that preparatory activity in premotor and parietal 

cortex can be used to decode and disentangle object properties and hand shapes (Baumann 

et al. 2009; Fluet et al. 2010; Townsend et al. 2011; Schaffelhofer et al. 2015; Schaffelhofer 

and Scherberger 2016), as well as arm and hand kinematics during movement itself (Menz et 

al. 2015), implicating them in reach and grasp generation. Furthermore, preparatory activity 

in the premotor cortex (Churchland et al. 2006; Afshar et al. 2011) and parietal cortex 

(Snyder et al. 2006; Michaels et al. 2015) is correlated with reach and grasp reaction time 

(RT), and perturbing this preparation state in premotor cortex delays subsequent movement 

(Day et al. 1989; Churchland and Shenoy 2007; Gerits et al. 2012), a clear indication of a 

functional contribution to action planning. 

 While relating the responses of single neurons to behavior has been vital in the past, 

a neuron-by-neuron characterization cannot reveal the dynamics of whole brain regions, or 

how they interact with one another (for a review see Yuste 2015). A recent study showed 

that task features are randomly distributed over many neurons of an area, questioning the 

neuron doctrine (Raposo et al. 2014). These recent studies are made possible by the 

increasing implementation of large-scale sequential and parallel recordings employing a 

state space framework of population activity (for a review see Cunningham and Yu 2014). 

Under this framework, the firing of each neuron represents a dimension in a high-
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dimensional space of all neurons where the firing of all neurons at a particular time 

represents a single point in the space of all potential network states. One study showed how 

preparatory activity in motor cortex acts as an initial state for subsequent movement 

dynamics (Churchland et al. 2012). However, another revealed that when reaches are cued 

immediately, the neural population in dorsal premotor cortex (PMd) does not need to 

achieve the specific state attained during delayed movements (Ames et al. 2014), suggesting 

that successful preparation of the same reach may be achieved through different neural 

trajectories. After adequate preparation time activity stabilized in the state space, while 

other studies have shown that premotor cortex may track time or expectation (Carnevale et 

al. 2015). Only analyzing the full continuum of preparation from immediate to fully planned 

movements can provide an understanding of the complex interaction between planning and 

movement. Furthermore, it has been proposed that delayed and immediate movements are 

controlled quite differently (Braver 2012), a feature that has not been investigated in 

premotor cortex. Crucially, to understand how diversely the motor system encodes and 

executes movements, multiple distributed brain regions known to be involved in the 

preparation of the same movement must be investigated together. 

To address these questions, we recorded neural populations from the grasping circuit 

(Luppino et al. 1999) consisting of the hand area (F5) of the ventral premotor cortex (PMv) 

and the anterior intraparietal area (AIP) while two macaque monkeys performed a delayed 

grasping task, with a memory component, in which the amount of preparation time was 

systematically varied using 12 discrete delays (0-1300 ms). We found that the neural states 

achieved during longer delays were bypassed during immediately cued grasps. However, the 

initial trajectory was specific to each grip type, but the same regardless of delay, providing 

evidence that this activity may be required for successful movement. Activity in AIP 

stabilized during long delays, but activity in F5 was highly dynamic and well matched the 

subjective probability of a cue throughout the memory period, implicating differing 

functional roles of the two areas. Interestingly, activity in both areas formed distinct long 

and short delay trajectory clusters following the go cue, demonstrating that a network-wide 

shift occurs when movements are withheld and executed from memory. Crucially, our 

findings highlight the dissociation of static and dynamic components of movement 

preparation as well as the function of cortical areas through population analysis. 
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Results 

Task and behavior 

To investigate the continuum of grasp movement preparation, we trained two macaque 

monkeys (B and S) to perform a delayed grasping task, with a memory component, in which 

the amount of preparation time was systematically varied between non-delayed (0 ms) and 

a long delay (1300 ms) in 12 distinct increments (Materials and Methods). Monkeys fixated a 

central point (red), received a grip cue (300 ms) corresponding to either precision (white) or 

power grip (green), and were cued to perform this grip following a variable delay when the 

central fixation point turned off (Fig. 1a-b). The performance of both monkeys was high, 

correctly completing trials after receiving grip information 95% and 98% of the time for 

monkeys B and S, respectively (Table S1). In addition to the normal task, we also randomly 

inserted no-movement trials to ensure that monkeys waited for the go cue before acting. 

Both monkeys completed these trials successfully (monkey B: 100%; monkey S: 97.7%). 

 

Fig 1. Task design, implantation, and behavior. (a) Illustration of a monkey in the experimental setup. The cues 
were presented on a masked monitor and reflected by a mirror such that cues appeared super-imposed on the 
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grasping handle. (b) Delayed grasping task with two grip types (top: power grip, bottom: precision grip). Trials 
were presented in pseudorandom order in darkness and with the handle in the upright position. (c and d) 
Scatter plots of reaction time and movement time against delay length for both monkeys. The solid line 
represents the mean for each delay bin. (e and f) Array locations for monkey S (e) and B (f). Two arrays were 
placed in F5 on the bank of the arcuate sulcus (AS) and two were placed in AIP toward the lateral end of the 
intraparietal sulcus (IPS). In monkey B two more arrays were placed on the bank of the Central sulcus (CS), but 
not used in this study. The cross shows medial (M), lateral (L), anterior (A), and posterior (P) directions. Note 
that monkey S was implanted in the left hemisphere and monkey B the right hemisphere. 

 
 In addition to number of correctly executed trials, reaction times (RTs) and 

movement times (MTs) of the monkeys provided useful insight into the performance of the 

task. RT decreased steadily with increasing amounts of preparation (Rosenbaum 1980), 

approaching a minimum after approximately 400 ms of preparation (Fig. 1c), well in line with 

previous findings (Churchland et al. 2006). RT increased slightly for the longest delay. For 

monkey S, MT did not correlate with length of the delay period (Fig. 1d, p = 0.9), indicating 

that although RT was slower for short delays, movements were only initiated once they were 

fully prepared. In monkey B there was a small positive correlation between delay and MT 

(Fig. 1d, r = 0.11). Movement kinematics were likely similar regardless of delay, since the 

variability in mean movement times between different delay lengths were extremely small. 

The standard deviations in mean movement times (Monkey S, precision grip: 3.5 ms SD, 

power grip: 1.8 ms SD; Monkey B, precision grip: 14.2 ms SD, power grip: 10.8 ms SD) 

provide evidence that the kinematics of the movements did not vary between delays, 

especially for monkey S. The number of errors showed no clear relationship to the length of 

the delay period, and the number of errors was extremely low, providing evidence that the 

monkeys could complete all conditions equally well. 

 

Neural responses 

We recorded six sessions of each monkey using floating microelectrode arrays for a total of 

128 channels (64 in each area) simultaneously in F5 and AIP (Fig. 1e,f) and single- and multi-

unit activity was isolated (Materials and Methods). There were significantly more units 

recorded in area F5 of monkey B than in AIP (Paired t-test, p < 0.001), while there was no 

significant difference for monkey S (Paired t-test, p = 0.81). For individual session 

information see Table 1. For all analyses we pooled single- and multi-units together (mean 

recorded per session: 75 single and 102 multi). We evaluated grip type tuning in both areas 

to ensure that the task successfully elicited task-related tuning. The average percentage of 

units tuned for grip type during the 200 ms following cue onset was 29% in F5 and 29% in 
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AIP, 28% and 26% in the 200 ms preceding go cue, and 55% and 45% in the 200 ms following 

movement onset (t-test, p < 0.05), conservatively measured only for movements with a 

distinct memory period (i.e. ≥500 ms delay). Amounts of grip tuning were very similar 

between monkeys and to previous studies of both F5 and AIP (Lehmann and Scherberger 

2013; Michaels et al. 2015; Schaffelhofer et al. 2015), confirming their involvement in grasp 

coding. 

 If the brain areas we investigated were specifically coding task-related visual 

features, we would expect similar responses to the grip cue regardless of whether grasps 

were cued immediately or not. Conversely, if single units were related to execution of the 

correct motor plan, we should observe similar neural responses during movement regardless 

of when go cues were presented. Interestingly, a wide variety of mixed activity patterns 

were present in both areas (Fig. 2). In many cases the initial cue response was suppressed 

when the go cue appeared concurrently with the grip information (Fig. 2a,d), while in other 

cases the initial cue response was present regardless of delay (Fig. 2b,e). Other interesting 

responses were observed, such as a peak in activity during the memory period (Fig. 2c), and 

activity during the movement period which differed between delayed and non-delayed 

grasps (Fig. 2c,f). All of these diverse types of responses were present in both F5 and AIP. 

The broad variety of unit responses reveals a complex interaction between differing 

amounts of preparation, making strict categorization of individual neurons difficult. 

 

Fig 2. Example average firing rate curves of single-units for delayed (1300 ms) vs. non-delayed (0 ms) grasps. 
(a-c) Example single-units from area F5 of monkey B showing (a) a completely suppressed cue response during 
non-delayed grasps, (b) an identical cue response for either delay, (c) differing movement period activity 
between delayed and non-delayed grasps. (d-f) Similar single-unit examples from AIP of monkeys B and S. 
Delayed data were aligned to two events, grip cue onset and movement onset and are separated by a gap, 
which marks the go cue. Non-delayed data were only aligned to movement onset. Dotted gray line represents 
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approximate time of cue onset and go cue for non-delayed grasps. The cue was always presented for 300 ms 
regardless of delay. Curves and shaded bands represent mean and standard error of the mean, respectively. 

 

Visualizing the population response 

An alternative approach to categorizing single units is the state space framework, in which 

all units are considered as a high-dimensional space in which the firing of each unit 

represents one dimension. In order to visualize the complex interactions between planning 

and movement, we projected the population activity of all units across both areas for all 

trials into a lower dimensional space of 10 latent dimensions using Gaussian Process Factor 

Analysis (GPFA; Materials and Methods). These 10 latent dimensions well captured the 

variance of both areas. Once the latent dimensions were found, the activity of each area was 

independently projected into these dimensions in order to compare the contribution of each 

area. Fig. 3a,c shows the neural trajectories of exemplar data of each monkey (sessions B4, 

S2) from 100 ms before grip cue onset to 400 ms after movement onset. 

 In both monkeys the first dimension was a mostly condition-independent movement 

signal, especially large in F5, a feature observed previously in motor cortex (Kaufman et al. 

2016). The other dimensions show varying levels of grip-specific cue responses, delay- or 

grip-specific memory responses, and strong movement activity. Particularly interesting is 

latent 3 in Fig. 3a and latent 4 in Fig. 3c, which showed in both monkeys sustained grip 

selectivity through memory into movement. Plotting latents 2-4 against each other revealed 

other features (Fig. 3b,d, 100 ms before cue onset to 50 ms after movement onset). 

Trajectories began in a tight cluster at grip cue onset and remained overlapped for the initial 

response (200-300 ms) regardless of delay, but specific to each grip type. The trajectories for 

longer delays continued to evolve for hundreds of milliseconds, but the short delays 

proceeded to movement onset, bypassing the part of the space achieved by long delays. 

Interestingly, while activity in AIP congregated in a stable state 500-600 ms after the grip 

cue, activity in F5 continued to evolve for the entire memory period, never congregating in 

an area of low variability. Finally, for each grip type short and long delays grouped into two 

clusters during movement initiation (Fig. 3b, AIP; Fig 3d, F5). 

 

Unique memory state for delayed grasping movements 

 As we saw in Fig. 3, unique memory states were traversed by the neural trajectory 

during trials with long delays. To test this possibility statistically, we used a continuous 
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distance analysis (Materials and Methods). We measured the minimum Euclidean distance 

(known as point-to-curve) between each time point on the trajectory of a delayed condition 

(1000 ms delay condition in steps of 50 ms) and the entire non-delayed trajectory (0 ms 

delay condition). This was done for the 10 latent dimensions of each area to determine 

which points in the state space were traversed by both conditions and which were unique to 

longer delayed movements, separately for each recording session and each grip type. After 

the cue, distance between delayed and non-delayed trajectories rose and remained 

significantly above chance level until around movement onset or later in example data sets 

of both areas and monkeys (Fig. 4a; sessions B3, S2; Bootstrapping procedure with 1000 

resamples, p < 0.05, cluster-based permutation test; Materials and Methods). Over all grip 

types and data sets the same effect is present (Fig. 4b), showing that distance between the 

trajectories was most prevalent until shortly before movement onset. The amount of 

divergence between the delayed and non-delayed trajectories was very similar in F5 and AIP, 

indicating that when grasps are cued without a delay the neural population of both areas 

bypass the states achieved by longer delays. Performing the same analysis on the full neural 

space without dimensionality reduction produced similar results (data not shown). 



      2.3. Probing the continuum of immediate to withheld grasping movements 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

 147 

 

Fig 3. Low-dimensional latent space trajectories of F5 and AIP. Population data of all conditions were 
projected into a 10 dimensional latent space as determined by GPFA. (a) A single session trial-averaged 
example from monkey S is shown for the first 4 latent dimensions (S4). Trajectories begin 100 ms before the 
grip cue and end 400 ms after movement onset. (b) A 3D plot of the second to fourth latent dimensions plotted 
from 100 ms before cue onset to 50 ms after movement onset. (c-d) same as (a-b) for a single session from 
monkey B (B2). 

 

 As mentioned earlier, it appeared in Fig. 3 that the difference between grip types was 

present before the difference between delays. In other words, the effect of the grip cue 

appeared before the effect of the go cue. To test this, we repeated the distance analysis with 
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a finer time resolution around cue onset (GPFA using steps of 20 ms) and additionally tested 

the Euclidean distance between grip conditions (Fig. 4c, Materials and Methods). Comparing 

the first onset of significance between delay and grip effects for each data set separately 

revealed that grip separation consistently appeared before delay separation in both areas 

and monkeys (Wilcoxon sign-rank test, F5 monkey S, p < 0.001; AIP monkey S, p < 0.001; F5 

monkey B, p = 0.003; AIP monkey B, p = 0.016). On average across monkeys and areas, grip 

separation occurred 128 ms after cue onset and delay separation occurred 352 ms after cue 

onset. 

 

Fig 4. Point-to-curve distance between delayed (1000 ms) and non-delayed (0 ms) trajectories. (a) Minimum 
Euclidian distance in the latent space between each time point on the delayed trajectory (in steps of 50 ms) 
and the entire non-delayed trajectory over time for 2 example data sets (B2-Power, S3-Power) from both areas 
and monkeys. The black line represents the minimum point-to-curve distance between the delayed and non-
delayed trajectory, while the gray lines represent the chance level (Materials and Methods). Black bars along 
the top of plots denote times when the distance is significantly greater than chance level (Bootstrapping 
procedure with 1000 resamples, p = 0.05, Cluster-based permutation test; Materials and Methods). Error bars 
represent the 5th and 95th percentiles of the distances generated by the bootstrapping procedure. (b) Fraction 
of significant distances over all data sets and grip types (6 data sets x 2 grip types). Error bars represent the 
standard error of the mean over data sets and grip types. (c) Difference in onset of grip and delay separation 
over all data sets and grip types (6 data sets x 2 grip types) at a higher temporal resolution (20 ms bins). 

 

 Taken together, these results provide evidence that large portions of the state space 

that are traversed after the first ~300 ms do not seem to be necessary for successfully 

executing grasping movements, and the activity in the first ~300 ms likely represents 

unavoidable processing. 

 

Static and dynamic memory states 

Given that the trajectories of delayed and non-delayed grasps only overlap for the first ~300 

ms of preparation, what is the function and dynamics of the memory period activity? A 
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striking feature of the visualization in Fig. 3 was that the F5 activity continually evolved 

throughout the course of the memory period, while activity in AIP congregated in an area of 

low variability. To analyze when and if the neuronal trajectory of the two areas stabilized, we 

systematically compared the Euclidean distance between all pairs of time points along the 

trajectories for the no-movement trajectories (Fig. 5a, example data sets S6 and B5). 

Dynamic activity should appear as large distances between trajectories everywhere except 

the diagonal (points close in time), while static activity should appear as a ‘block’ of activity 

with a small distance between trajectories. 

 

Fig 5. Neural trajectory stability over the course of no-movement trials. (a) Mean Euclidean distance in the 
latent space for the no-movement trials between all pairs of time points over both grip types for example data 
sets in each monkey (sessions B5, S6). For each pair of time points, distance results were tested for a significant 
difference using a bootstrapping procedure (10000 resamples in steps of 50 ms, p = 0.01). The abbreviations 
Cue, Mem, and Rew, correspond to the cue, memory, and reward epochs, respectively. All plots are clipped at 1 
sp/s for visualization. The times where a significant difference was found (in no conditions, one grip type, or 
both grip types) are shown in (b). (c) Percentage of time points showing a significant difference over all data 
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sets and grip types (6 data sets x 2 grip types) of each monkey separately. (d) Mean distance between all time 
points during the stable portion of the memory period (600 ms – 1800 ms after cue onset) for all individual 
data sets and grip types (6 data sets x 2 grip types) across areas and paired according to recording session. 
Stars indicate a significant difference (Wilcoxon sign-rank test, p < 0.001). 

 

 The strongest differences occurred shortly after cue onset and near reward. Most 

remarkably, the neuronal trajectory during the memory period in F5 continuously and 

uniformly progressed in the absence of behavioral events. On the contrary, the neuronal 

trajectory in AIP stabilized 200-300 ms after cue offset. The effect becomes clearer when 

visualizing the time points that significantly differed (Fig. 5b, Materials and Methods), 

showing a stereotypical ‘block’ pattern in AIP and also visible over all data sets (Fig. 5c). 

Taking the average distance between all time points during the portion of the memory 

period unaffected by cue or reward (600 ms – 1800 ms after cue onset) showed a 

significantly more dynamic representation in F5 than AIP (Fig. 5d; Wilcoxon signed-rank test, 

p < 0.001). Similar results were obtained using the full neural space (data not shown). These 

results indicate a considerably different code at the population level in AIP and F5. 

 It is also important to consider that the probability of having to perform a movement 

did not remain constant, since the probability of being in the no-movement condition 

increased with time spent in the memory period. Therefore, could it be that the dynamic 

nature of the memory period in F5 is due to the change in necessity of the motor plan. To 

rule out this possibility, we repeated the current analysis on data of a similar experiment in 

which movements were required in all conditions (Michaels et al. 2015). We found that the 

same inter-area difference reported here were present (S1 Fig.), lending support to the 

observed dissociation between areas.  

 

Memory period dynamics 

 Given the dynamic nature of activity during the memory period, does this activity 

follow any predictable pattern? As mentioned earlier, some units appeared to change their 

activity strictly during the memory period (Fig. 2c), even in the absence of behavioral cues. 

The observed pattern appears similar to the hazard rate, which in the current experiment is 

the probability of a go cue occurring at any moment, given that the go cue has not appeared 

yet (Janssen and Shadlen 2005). The form of the hazard rate during no-movement trials and 

corresponding subjective anticipation function, which takes the monkey’s uncertainty about 

time into account (Materials and Methods), is shown in Fig. 6a. We fit the average activity of 
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each latent dimension (over both areas) to subjective anticipation. The best fitting 

dimension per data set had an average adjusted R-square of 0.73 for monkey S and 0.88 for 

monkey B, indicating that anticipation may be significantly represented (mean time shift: -11 

ms, 𝑤3 in Eq. 3). Example data sets are shown in Fig. 6b,e (data from session S2 and B4). 

 

Fig 6. Representation of subjective anticipation across F5 and AIP. (a) Illustration of the probability of a go cue 
at all times during the delay, the hazard rate (Eq. 1), and the subjective anticipation function (Eq. 2 substituted 
into Eq. 1). (b) subjective anticipation (Eq. 3) fit to an example latent dimension during the no-movement 
condition (session S2). (c) Mean contribution per unit in each area to the best latent dimension of each data 
set. Stars indicate a significant difference (Wilcoxon sign-rank test, p < 0.001). (d) Example latent dimension at 
go cue correlated with single-trial reaction time for delays of at least 800 ms. (e-g) Same as (b-d) for monkey B 
(session B4). 

 

 When comparing the mean contribution per unit (weight in GPFA loading matrix) 

between areas across data sets to the best fitting latent dimensions, F5 clearly contributes 

more (Fig. 6c,f, Wilcoxon signed-rank test, p < 0.001), with an average of 1.5 times the 

contribution per neuron, supporting the finding that F5 memory activity was much more 

dynamic. On average across data sets, the best fitting latent dimension explained the 4th 

most variance of the 10 dimensions extracted for each data set, corresponding to on average 

11% variance explained. 

Interestingly, activity on single trials in the ideal latent dimensions at the go cue was 

correlated with reaction time (Fig. 6d,g; trials with a delay of at least 800 ms), with a mean 

R-square of 0.17 in monkey S and 0.16 in monkey B, similar to results obtained in F5 with 

other state space methods (Michaels et al. 2015). For this analysis only the causal portion of 

all GPFA smoothing kernels were used so that activity at the go cue conservatively reflected 

only past spikes. Given that the activity in this latent dimension is predictive of reaction 

time, does being closer or farther away from the movement state predict reaction time in a 

consistent way? When the absolute difference between the go cue activity and mean 
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activity during movement initiation (100 ms before movement onset) was correlated with 

reaction time, 11 out of 12 data sets produced a positive correlation (mean R-square of 0.1), 

providing evidence that being closer to the movement initiation state on a given trial led to 

shorter reaction times. 

 

Converging on movement 

As was clearly visible in Fig. 3, the population state at the time of go cue varied greatly 

between delays, especially in F5. However, activity converged towards a state of lower 

variability at movement onset. Taking a closer look at a few single units over all delay lengths 

(Fig. 7a), we can see a large variety of paths before movement initiation. 

 

Fig 7. Rapid decrease in trial-to-trial variability during movement initiation. (a) Example average firing rates of 
single-units in F5 and AIP from both monkeys showing large firing rate differences between the various delay 
conditions of a single grip type (sessions – top left: B1-precision, top right: S4-precision, bottom left: S6-power, 
bottom right: S1-power). Error bars represent standard error of the mean across trials. (b) (Top) Mean firing 
rate before (gray) and after (black) mean-matching for all units (pooled over monkeys, data sets, and 
conditions). (Bottom) Mean-matched Fano Factor over all units (pooled over monkeys, data sets, and 
conditions), showing a decrease to near Poisson spiking variability in the 150 ms before movement onset. Error 
bars represent 95% confidence interval from regression. 
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 To quantify how trial-to-trial variability changed leading up to movement onset, we 

calculated the Fano factor over this interval for all trials of all delays, but separately for each 

grip type (Materials and Methods). The Fano factor provides a normalized measure of trial-

to-trial spiking variability and has already been used to show that external stimuli decrease 

spiking variability in many cortical areas (Churchland, Yu, et al. 2010). Since the firing rate 

increases during movement (Fig. 7b upper panel, gray line), which could possibly affect 

variability due to saturation of neurons at high firing rates, data were mean-matched (Fig. 7b 

upper panel, black line) before calculating the Fano factor. Variability based on Fano factor is 

rapidly reduced 150-200 ms prior to movement onset (Fig. 7b bottom panel), reaching levels 

almost equivalent to the spontaneous spiking patterns of neurons, which inherently do not 

spike in a completely predictable way, following a Poisson process. When comparing the 

Fano factor 300 ms before and 100 ms after movement onset, Fano factor was significantly 

lower after movement onset for both areas and monkeys tested separately (p < 0.001, 

confidence interval of regression; Materials and Methods), with a stronger effect in F5. 

These results show that although the pre-movement activity is initially quite variable, this 

variability is significantly decreasing around movement onset, implicating an internal 

mechanism that brings trajectories onto a similar path while the movement is being 

initiated. 

 

Clustering of immediate and withheld movements from memory 

In the population visualization in Fig. 3 we saw that the trajectories of short and long delays 

formed two distinct clusters leading up to movement onset. To visualize the clustering for 

example data sets in F5, we plotted the activity of all linearly spaced delays (0-1000 ms) of a 

single grip type around movement onset in an example latent dimension (Fig 8a). Looking 

specifically at around 100 ms before movement onset, trajectories from the conditions with 

a delay of 0-400/500 ms and from the conditions with a delay of 400/500-1000 ms seem to 

form two clusters. This effect is also present in AIP, where trajectories deflect into two 

distinct groups in a similar fashion (S2 Fig.). 

 To quantify clustering at the population level, we calculated the Euclidean distance 

between all pairs of delay lengths for each grip type separately in the space of all latent 

dimensions (Fig. 8b) and looked for clusters in the distance matrices without assuming 

clustering a priori (Materials and Methods). Two clusters were identified for the example 
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data set (Fig. 8c), showing a split around the 400-500 ms delay point that lasts until shortly 

before movement onset (permutation test, p < 0.01; Materials and Methods). This pattern 

was very similar over all data sets (Fig. 8d, S2 Fig.), did not differ between grip types, and 

was present in both areas and monkeys, indicating that the state change that occurs 

between short and long delays spans both the frontal and parietal lobes. 

 

Fig 8. Clustering of movement initiation activity in F5. (a) Example latent projection population activity in F5 
over all linearly spaced delays (0-1000 ms) for precision grip trials for an example data set from each monkey 
(sessions S4, B2), aligned to movement onset. (b) Euclidean distance between all pairs of delays in the full 
latent space for two example time points of the example data set including identified clustering using a 
clustering analysis that finds community structure (Materials and Methods). (c) Clusters identified in the 
distance matrices over time (in steps of 50 ms) for the example data set. Black significance bar shows time 
points where the modularity statistic exceeded chance level (permutation test, p < 0.01). (d) Same analysis as 
(c) averaged over all data sets and grip types (6 data sets x 2 grip types). 

 

 Clustering is not likely due to different movement kinematics, since the movement 

times were nearly identical for all delay lengths (Fig. 1d), especially for monkey S. However, 

since the time of movement onset is determined by the monkey’s behavior, the time that 
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has elapsed since the visual grip cue was presented could introduce a potential confound. 

Yet, differences in how long ago the grip cue was presented is unlikely to explain the two 

clusters, since repeating the same clustering analysis on the behavioral data, i.e. the mean 

time between cue presentation and movement onset for all delays, does not produce 

significant clustering for either grip type (permutation test, Precision grip: p = 0.97, Power 

grip: p = 0.97). These controls suggest that the separation of the neural trajectories into two 

distinct clusters reflects a robust effect of delay length in F5 and AIP. 

Discussion 

To systematically probe the interplay between planning and movement in the grasping 

network, we recorded neural populations in premotor area F5 and parietal area AIP while 

two macaque monkeys performed a delayed grasping task with 12 distinct preparation times 

(0-1300 ms). Firstly, the initial part (~300 ms) of the neural space traversed was the same for 

all delays, but was grip specific, providing evidence that this activity was an unavoidable part 

of preparing the correct movement. Next, population activity shifted into a separate state 

that was not achieved during short delays. The memory state was more dynamic in F5 than 

in AIP, tracking subjective movement anticipation over time. Lastly, activity during 

movement initiation formed two distinct clusters that were eliminated after movement 

onset, demonstrating a network-wide shift when movements need to be withheld. Our 

findings reinforce the notion that more global aspects of movements, such as the movement 

plan, as well as dynamic aspects, such as cue anticipation, can be well extracted at the 

population level.  

 As shown in Fig. 4, separation between the neural trajectories occurred more than 

200 ms earlier between the two grips than between long and short delays. This novel result 

indicates that while grip information is swiftly encoded in F5 and AIP following the cue, 

responses to the go cue are delayed at least 200 ms relative to the grip information in order 

to facilitate the completion of the motor plan, after which areas of the state space traversed 

by longer delays are not strictly necessary to produce successful movements, similar to the 

results of Ames et al. (2014) in dorsal premotor cortex (PMd). 

In F5 the memory period activity did not congregate in a specific region of the state 

space, a feature of the ventral premotor cortex never before observed to our knowledge. 

This finding differs to the results of Ames et al. (2014) in nearby PMd, who postulated that 

delay period activity may act as an attractor state into which all trials would congregate 
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given enough preparation time. It is possible that PMd activity would be more dynamic if an 

experimental design with a memory period were utilized, a point supported by a study 

showing that PMd activity can encode prior knowledge of when events are likely to occur 

(Mauritz and Wise 1986). However, given current evidence our results support the notion 

that strongly dynamic memory period activity is a unique feature of F5. 

 It could be that the temporal dynamics during the memory period are a result of an 

internalized representation of the likelihood of task events occurring at specific times 

throughout the memory period, known as hazard rate and previously observed in the lateral 

intraparietal cortex (LIP) (Leon and Shadlen 2003; Janssen and Shadlen 2005). We observed 

significant fits of latent dimensions to the subjective anticipation rate across both areas, 

although F5 contributed significantly more to this activity. Furthermore, activity in these 

dimensions was predictive of reaction time, supporting the role of this activity in increasing 

or decreasing sensitivity to an external stimulus. 

Time dependence has been identified in prefrontal areas (Genovesio et al. 2006), and 

increasing literature suggesting that time keeping is an intrinsic property of all neural 

networks (for a review see Goel and Buonomano 2014), as well as a feature of some sub-

cortical areas (Gouvêa et al. 2015). A mechanistic explanation for the dynamics observed 

during the memory period could be that recurrent networks of neurons in these areas 

generate temporal dynamics similar to a time code. The strongest evidence for this view 

comes from a recent study in which the presence or absence of a sensory stimulus on a 

given trial had to be reported (Carnevale et al. 2015). The authors found that the neural 

state space of premotor cortex evolved over the course of the trial and was more sensitive 

to incoming sensory information during the fixed window that the monkeys knew would or 

would not contain the stimulus. Importantly, Carnevale et al. (2015) showed that a recurrent 

neural network model trained for optimal response sensitivity well explained the behavior of 

the monkey. A number of recent studies have shown that timing is a robust feature of 

chaotic recurrent networks (Buonomano and Laje 2010; Laje et al. 2013; Goudar and 

Buonomano 2014), suggesting that F5 is able to track the course of time internally and use 

this information to predict when an action is likely to be required. Furthermore, even though 

activity continues to change throughout memory, a stable representation of the desired 

action remains at the population level (Druckmann and Chklovskii 2012), consistent with the 

constant separation between grip types observed in some latent dimensions (Fig. 3). 
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 One of the most striking features in both areas, but especially in F5, was that the 

population activity of a single grip type was highly variable at the time of go cue, yet 

converged rapidly leading up to movement onset (Fig. 7), raising the question of how the 

correct movement can be successfully initiated. Recently, alternative theories of movement 

generation have arisen, suggesting that preparatory activity in motor cortex may serve to set 

the initial conditions of a dynamical system (Churchland et al. 2012; for a review see Shenoy 

et al. 2013; or Churchland and Cunningham 2014). However, the large variability at go cue 

cannot directly be explained by a rotational dynamical system (Churchland, Cunningham, et 

al. 2010; Churchland et al. 2012), since, under this model, all trials of a particular performed 

movement (e.g. power or precision grip) should have very similar preparatory activity and 

the movement activity should follow predictably from this state. We propose that the 

broadly tuned nature of activity at the go cue provides the motor system with a large 

flexibility in movement initiation. Similar to the dynamics observed during the memory 

period, it could be that once movement is triggered, recurrent networks of neurons within 

these areas rapidly reduce variability within particular regions of the neural space in order to 

ensure correct muscle activation during initiation (Sussillo et al. 2015; Michaels et al. 2016). 

Under this framework, selecting between multiple movement plans would only require the 

neural population to be within a general region of activity. Such a framework is also in line 

with the finding that preparatory activity in PMd/M1 projects into the null-space of upper 

limb muscles and transitions into the potent-space during movement (Kaufman et al. 2014), 

as this transition likely takes place during movement initiation when variability between 

movement plans is heavily reduced (Elsayed et al. 2016). Once movement is initiated, 

activity would fall onto a common trajectory unique to each action plan and rotational 

dynamics could proceed. Future work must tackle the question of to what degree local 

circuit features or extrinsic inputs can account for the rapid decrease in trial-to-trial 

variability taking place before movement execution. 

 While variability decreased leading up to movement onset, trajectories clustered into 

two distinct groups splitting between delay conditions less than or greater than 400-500 ms 

(Fig. 8). Given that full preparation likely takes ~400 ms, evidenced by the leveling of the RT 

curve after ~400 ms (Fig. 1d), the two clusters could correspond to movements executed ‘as 

fast as possible’ and movements executed from memory where the monkey must first wait 

for the go signal. Our results indicate that shifting between immediate movements and 
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withheld movements from memory may cause a state shift in the fronto-parietal network 

that produces the two clusters during movement initiation. Once the state has been 

changed, the trajectories continue to cluster for the entirety of movement initiation (up to 

movement onset). Specifically, the underlying cause of the shift is likely the transition from 

reactive to proactive control, i.e., the increased ability to properly anticipate a go cue after 

sufficient preparation times (Braver 2012). This sensitivity to task timing is inherent in highly 

trained tasks, and has been shown in supplementary motor area (SMA; Chen et al. 2010) and 

medial frontal cortex (Stuphorn and Emeric 2012). Execution of timed behavior is reduced in 

humans with SMA lesions (Halsband et al. 1993) and supports our findings, since F5 is 

especially connected to the pre-SMA (Luppino et al. 1993). 

It remains a possibility that systematic differences in hand-shaping latencies or final 

posture between different delay lengths could contribute to the observed clustering. 

However, clustering of delay conditions was almost non-existent after movement onset, 

especially in F5, making differences in final posture improbable. Although differences in 

hand-shaping during movement cannot be ruled out, the extreme similarity in movement 

times between delays (Results), especially for monkey S, make this possibility unlikely. 

 Given that the current task also involved a large reaching component, reach planning 

is likely a significant part of the observed activity. Still, the presence of grip type tuning in all 

epochs (Results), as well as previous research employing a grasp-only task (Hepp-Reymond 

et al. 1994) and a grasp-reach dissociation task (Lehmann and Scherberger 2013), indicates 

that F5 encodes grasping quite independently of reaching. Furthermore, reversibly 

inactivating F5 (Fogassi et al. 2001) or AIP (Gallese et al. 1994) selectively impairs hand-

shaping and not reaching, providing evidence that our results are an accurate representation 

of the grasping network. 

 In summary, our results provide novel insights building on delayed reaching and 

grasping literature in premotor (Cisek et al. 2003; Lucchetti et al. 2005; Fluet et al. 2010) and 

parietal cortex (Murata et al. 1996; Snyder et al. 2006; Baumann et al. 2009). We show that 

dissociation of global and dynamic aspects of movement, such as the movement plan and 

the anticipation over time, respectively, can be coherently extracted at the level of neural 

populations and allow for comparison and dissociation between interacting cortical areas.  
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Materials and Methods 

Basic procedures 

Neural activity was recorded simultaneously from area F5 and area AIP in one male and one 

female rhesus macaque monkey (Macaca mulatta, monkeys B and S; body weight 11.2 and 

9.7 kg, respectively). Animal care and experimental procedures were conducted in 

accordance with German and European law and were in agreement with the Guidelines for 

the Care and Use of Mammals in Neuroscience and Behavioral Research (National Research 

Council 2003). 

 Basic experimental methods have been described previously (Michaels et al. 2015; 

Dann et al. 2016). We trained monkeys to perform a delayed grasping task. They were 

seated in a primate chair and trained to grasp a handle with the left (monkey B) or the right 

hand (monkey S) (Fig. 1a). A handle was placed in front of the monkey at chest level at a 

distance of ~26 cm and could be grasped either with a power grip (opposition of fingers and 

palm) or precision grip (opposition of index finger and thumb; Fig. 1b insets). Two clearly 

visible recessions on either side of the handle contained touch sensors that detected thumb 

and forefinger contact during precision grips, whereas power grips were detected using an 

infrared light barrier inside the handle aperture. The monkey was instructed which grip type 

to make by means of two colored LED-like light dots projected from a TFT screen (CTF846-A; 

Screen size: 8” digital; Resolution 800x600; Refresh rate: 75Hz) onto the center of the handle 

via a half mirror positioned between the monkey’s eyes and the target. A mask preventing a 

direct view of the image was placed in front of the TFT screen and two spotlights placed on 

either side could illuminate the handle. Apart from these light sources, the experimental 

room was completely dark. In addition, one or two capacitive touch sensors (Model 

EC3016NPAPL; Carlo Gavazzi) were placed at the level of the monkey’s mid-torso and 

functioned as handrest buttons, preventing any premature movement of the hands. The 

non-acting arm of monkey B was placed in a long tube, preventing it from interacting with 

the handle. Monkey S was trained to keep her non-acting hand on an additional handrest 

button. 

 Eye movements were measured using an infrared optical eye tracker (model AA-ETL-

200; ISCAN) via a heat mirror directly in front of the monkey’s head. To adjust the gain and 

offset, red calibration dots were shown at different locations at the beginning of each 
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session for 25 trials that the monkey fixated for at least 2 seconds. Eye tracking and the 

behavioral task were controlled by custom-written software implemented in LabView 

Realtime (National Instruments) with a time resolution of 1 ms. An infrared camera was used 

to monitor behavior continuously throughout the entire experiment, additionally ensuring 

that monkeys did not prematurely move their hands or arms. 

 

Task Design 

The trial course of the delayed grasping task is shown in Fig. 1b. Trials started after the 

monkey placed the acting hand on the resting position and fixated a red dot (fixation 

period). The monkey was required to keep the acting hand, or both hands (monkey S), 

completely still on the resting position until 150 ms after the go cue. After a variable period 

of 400 to 700 ms two flashlights illuminated the handle for 300 ms, followed by 600 ms of 

additional fixation. In the cue period a second light dot was then shown next to the red one 

to instruct the monkey about the grip type for this trial (grip cue). Either a green or white dot 

appeared for 300 ms, indicating a power or a precision grip, respectively. After that, the 

monkey had to either react immediately or memorize the instruction for a variable memory 

period (also referred to as delay length). This memory period lasted for 0 to 1300 ms, in 

discrete memory period bins of 0, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, or 1300 

ms (i.e. the go cue could appear simultaneously with the grip cue, which was always 

presented for 300 ms regardless of the length of the delay). Switching off the fixation light 

then cued the monkey to reach and grasp the target (movement period) in order to receive a 

liquid reward. Monkeys were required to hold the appropriate grip for 300 ms. A failed trial 

occurred if the monkeys stopped fixating the central point before movement onset, moved 

their hand from the hand rest sensor, performed the incorrect grip, or took longer than 1100 

ms to complete the movement following the go cue. Additionally, no-movement trials were 

randomly interleaved (8% of trials), in which a go cue was never shown and the monkey only 

received a reward if it maintained fixation and the hands on the hand rests for 2000 ms 

following the grip cue. All trials were randomly interleaved and, apart from the 300 ms 

handle illumination period, in total darkness. 
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Neural recordings and spike sorting 

Signals from the implanted arrays were amplified and digitally stored using a 128 channel 

recording system (Cerebus, Blackrock Microsystems; sampling rate 30 kS/s; 0.3-7500Hz 

hardware filter; see Supplementary Methods). Data were first filtered using a median filter 

(window-length: 3ms) and the result subtracted from the raw signal, corresponding to a 

nonlinear high-pass filter. Afterwards, the signal was low-pass filtered with a non-causal 

Butterworth filter (5000 Hz; 4th order). To eliminate movement noise (i.e., common 

component induced by reference and ground), PCA artifact cancellation was applied for all 

electrodes of each array (Musial et al. 2002; Dann et al. 2016). In order to ensure that no 

individual channels were eliminated, PCA dimensions with any coefficient greater than 0.36 

(with respect to normalized data) were retained. Spike waveforms were extracted and semi-

automatically sorted using a modified version of the offline spike sorter Wave_clus (Quiroga 

et al. 2004; Kraskov et al. 2009).  

 Units were classified as single- or non-single unit, based on five criteria: (1) the 

absence of short (1–2 ms) intervals in the inter-spike interval histogram for single units, (2) 

the homogeneity and SD of the detected spike waveforms, (3) the separation of waveform 

clusters in the projection of the first 17 features (a combination for optimal discriminability 

of principal components, single values of the wavelet decomposition, and samples of spike 

waveforms) detected by Wave_clus, (4) the presence of well known waveform shapes 

characteristics for single units, and (5) the shape of the inter-spike interval distribution. 

 After the semiautomatic sorting process, redetection of the average waveforms 

(templates) was done in order to detect overlaid waveforms (Gozani and Miller 1994). 

Filtered signals were convolved with the templates starting with the biggest waveform. 

Independently for each template, redetection and resorting was run automatically using a 

linear classifier function (Matlab function: classify). After the identification of the target 

template, the shift-corrected template (achieved by up and down sampling) was subtracted 

from the filtered signal of the corresponding channel to reduce artifacts for detection of the 

next template. This procedure allowed a detection of templates up to an overlap of 0.2 ms. 

Unit isolation was evaluated again as described before to determine the final classification of 

all units into single- or multi-units. Units were only classified as single if they unambiguously 

met the five criteria. 
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Data preprocessing 

Although units were classified as single- or multi-units, all recorded units were used for all 

analyses. A detailed list of data set information can be found in Table 1. After spike sorting, 

spike events were binned in non-overlapping 1 ms windows. For individual unit plotting (Fig. 

2), spike trains were smoothed with a Gaussian window (𝜎 = 50 ms), but for all analyses 

spike trains were further reduced to a set of latent dimensions (see next section). Data were 

aligned to two events, the presentation of the grip cue and movement onset, i.e. the time 

when the monkey’s hand left the handrest button. The cue alignment proceeded from 200 

ms before cue onset until the go cue, and the movement onset alignment from movement 

onset minus the median reaction time for each delay condition until 400 ms after movement 

onset. These two alignments were combined to produce a continuous signal. In this case the 

two signals were simply concatenated in time. Average firing rates were then calculated by 

averaging over all trials of the same condition. 

 

Dimensionality reduction 

In order to extract a set of smooth single-trial neural trajectories in our neural populations 

we applied Gaussian Process Factor Analysis (GPFA; Yu et al. 2009) to all neurons of both 

areas over all successful trials from 200 ms before cue onset to 400 ms after movement 

onset for each recording session separately. Performing a single dimensionality reduction 

over both areas allows a direct comparison of each area’s contribution to the common 

signals. Units within each session were recorded simultaneously across both areas. GPFA is 

similar to factor analysis in that it finds an explanatory set of orthogonal dimensions based 

on the covariance structure between units that is a linear combination of binned neural 

data. However, in GPFA, each dimension de-noises data with a Gaussian smoothing kernel of 

unique width learned from the data. For our GPFA analysis, neural spiking data on single 

trials were binned into 50 ms bins and square-rooted before being transformed through 

linear combination into 10 latent dimensions. Units with an average firing rate less than 1 Hz 

were discarded before the analysis. These 10 dimensions, each based on an individual 

smoothing kernel, were further orthonormalized to produce a set of 10 orthogonal 

dimensions, each containing a combination of all smoothing kernels. Cross-validation 

procedures were undertaken to determine the optimal number of latent dimensions (Yu et 

al. 2009). Beyond 10 latent dimensions very little shared variance was explained by further 
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addition of dimensions (<3% per dimension), and visualization of these dimensions showed 

almost no modulation. Since GPFA was carried out across both recorded areas 

simultaneously, the neural data of each area were separately transformed into the 

previously found latent dimensions to identify the specific contribution of each area to each 

latent dimension. For most analyses the extracted single trials were then cut into two 

alignments (previous section) and averaged over all trials of the same condition. In general 

at the boundary of alignments the signals matched very well to each other, showing almost 

no jumps in activity. 

 

Distance analysis 

In order to find the neural distance between two conditions over time, we calculated the 

minimum Euclidean distance (point-to-curve distance) between the two trajectories in the 

space of the 10 latent dimensions extracted through GPFA separately for each area. Three 

versions of this analysis were performed. For the distance in Fig. 4a, we iterated through all 

time points on delayed trajectory (in steps of 50 ms) and calculated the Euclidean point-to-

curve distance from the delayed (1000 ms) trajectory to the non-delayed (0 ms) trajectory, 

where the point-to-curve distance is the minimum distance from a specific time point on the 

delayed trajectory to all points on the non-delayed trajectory. Minimum distance, as a 

conservative measure, was used in order to overcome the different time courses of the 

conditions being compared. Small distances indicate that the two trajectories achieve a 

similar point in neural space at some point in time, while large distances indicate that the 

two trajectories do not pass through a similar point in the high dimensional space. Euclidian 

distances were normalized by the square root of the number of neurons in order to make 

spaces with different number of neurons comparable. 

 For the distance analysis in Fig. 4c, GPFA was recalculated on a smaller portion of the 

data (200 ms before cue onset to 800 ms after) with a shorted bin width of 20 ms. Distance 

was then calculated as before between the delayed and non-delayed trajectories. In 

addition, to determine when grip information becomes present in the population, distance 

between the delayed trajectories (1000 ms) of each grip type was calculated in the same 

manner. 
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 For the distance analysis in Fig. 5, the Euclidean distance was calculated between all 

pairs of time points on the same trajectory (no-movement) and used in conjunction with the 

bootstrapping procedure (next section) to determine if two points significantly differed.  

 

Bootstrap procedure 

In order to gain an estimate of underlying trial-to-trial variability, we performed a bootstrap 

analysis. This procedure was in general the same, but with slight variations for the different 

distance analyses presented above. We resampled trials from each condition randomly, with 

replacement, of the same size as the number of recorded trials in that condition. We then 

constructed average firing rates for each condition and carried out the appropriate distance 

analysis as described above (e.g., minimum distance between delayed and non-delayed 

trajectory). This resampling was done 1000 times, producing a distribution of distances. 

 To obtain an estimate of how much distance is expected between trajectories by 

chance, we carried out another resampling in which a trajectory was resampled from itself 

to determine its underlying variability. Trajectories were resampled once with the number of 

trials observed in that condition, and once using the number of trials recorded in the other 

trajectory in the comparison, then the Euclidean distance was calculated as described in the 

previous section. 

To determine when the observed distance distribution was significantly greater than the 

self-sampled distribution, we used a cluster-based permutation test (CBPT; Maris and 

Oostenveld 2007). Briefly, we used a modification of the original test that evaluates the area 

under the receiver operator characteristic curve (AUC) between the distance distribution 

and the self-sampled distribution over all time points and extracts clusters (consecutive time 

segments) of activity whose AUC exceeds a predefined threshold (𝛼 = 0.1), then the absolute 

AUCs within each cluster were summed to produce cluster-level statistics. To generate a 

chance-level distribution from which the cluster-level statistics could be calculated, trials 

were randomly partitioned between the two conditions and the AUC and clustering redone 

(1000 partitions). From every partition the largest cluster was used to generate a largest 

chance cluster distribution. Cluster-level statistics were calculated by comparing the real 

cluster-levels against the largest chance cluster distribution. Real clusters were considered 

significant if they exceeded 95% of all largest chance cluster values corresponding to a p = 

0.05. In this way, sensitivity to short or small time-scale differences is greatly reduced, but 
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the overall false-alarm rate across time points remains below the designated p-value. This 

analysis allowed us to determine when an observed distance was significantly greater than 

the distance expected if two trajectories were generated from the same underlying 

distribution. 

For chance analyses in Fig. 5, resampling of trials was carried out 10000 times, with 

replacement, for each condition and data set. For each of the 10000 resampling steps the 

same trajectory was resampled twice, termed 𝒑 and 𝒑′. Then, for every pair of time points 

(𝑡1 and 𝑡2), the resampled distance along the first trajectory 𝑑 = 𝑑(𝒑(𝑡1), 𝒑(𝑡2)) was 

compared to the two inter-trajectory distances at time 𝑡1 and 𝑡2: 𝑑1 = 𝑑(𝒑(𝑡1), 𝒑′(𝑡1)) and 

𝑑2 = 𝑑(𝒑(𝑡2), 𝒑′(𝑡2)). We determined the percentile of resamples (across all 10000) for 

which the along-trajectory distance 𝑑 exceeded both inter-trajectory distances: 

𝑑 > 𝑚𝑎𝑥 (𝑑1, 𝑑2). This percentile determined a specific p-value for each time pair (𝑡1, 𝑡2). 

The resampled distance, 𝑑, was then considered significant if p < 0.01. In this way, the 

significance level was dependent on which time points were compared along the trajectory, 

establishing a conservative estimate of the underlying trial-to-trial variability. 

 

Hazard rate 

To classify the temporal evolution of activity during the memory period, the mean firing rate 

of each latent dimension for the no-movement condition from cue onset until reward onset 

was fit with an anticipation function, which can be described as the conditional probability 

that a movement will be required at a given moment, given that it has not occurred until this 

point. This type of anticipation has been termed the hazard rate, and we present it here 

precisely as in Janssen and Shadlen (Janssen and Shadlen 2005). The hazard rate can be 

expressed as 

 ℎ(𝑡) =
𝑓(𝑡)

1 − 𝐹(𝑡)
 ( 13 ) 

where 𝑓(𝑡) is the probability that a go cue will come at a given time after cue onset, and 𝐹(𝑡) 

is the cumulative distribution, ∫ 𝑓(𝑠)𝑑𝑠
𝑡

𝑠=0
. 

 As in Janssen and Shadlen (2005), to obtain an estimate of the monkey’s internal 

representation of anticipation we calculate ‘subjective anticipation’ based on the 

assumption that the animal is uncertain about time and that this uncertainty scales with 

time since an event. Therefore, before calculating hazard rate we smoothed our probability 
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density function, 𝑓(𝑡), with a normal distribution where standard deviation is proportional to 

elapsed time. 

 𝑓(𝑡) =
1

𝜙𝑡√2𝜋
∫ 𝑓(𝜏)𝑒

−(𝜏−𝑡)2

2𝜙2𝑡2  𝑑𝜏

∞

−∞

 ( 14 ) 

The coefficient of variation, 𝜙, is a Weber fraction under the assumption that the experience 

of elapsed time carries uncertainty that is proportional to the true duration (Weber’s Law). 

For all analyses we used a value of 0.26, as has been calculated from behavioral experiments 

and used previously (Leon and Shadlen 2003; Janssen and Shadlen 2005). To obtain the final 

subjective anticipation function, 𝑓(𝑡) was then substituted into Eq. 1, along with its 

cumulative distribution, F̃(𝑡).  

 𝑟(𝑡) = 𝑤1 + 𝑤2ℎ̃(𝑡 − 𝑤3) ( 15 ) 

 All fitting procedures were performed by fitting Eq. 3 to the average activity of each 

latent dimension over both areas, where 𝑤 are constant terms obtained during the fitting 

procedure (Matlab function: fit), and ℎ̃ is Eq. 2 substituted into Eq. 1. 

 

Fano factor 

In order to obtain a measure of how spike rate variability changes over time, we employed 

the frequently used measure of Fano factor. The current analysis was performed using a 

freely available toolbox (http://churchlandlab.neuroscience.columbia.edu/code/) that was 

originally introduced by Churchland et al. (2010). Briefly, Fano factor is based on the ratio of 

spiking variance (across trials) to spiking mean rate. The total data set consisted of all units 

(pooled over recording sessions), pooled over all delays, but separately for each grip type. 

Spike counts were computed in a 100 ms sliding window in steps of 50 ms from 400 ms 

before movement onset to 600 ms after. 

For each time point, the variance across all trials of each grip type was plotted 

against the mean spike count (one point per unit x grip type). The weighted regression was 

calculated through these points. For the regression, values were weighted by the estimated 

sampling error of the variance, which is the square of the mean divided by the number of 

trials, and the resulting slope of the regression represented the raw Fano factor. A value of 

one indicates purely Poisson spiking. 
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In order to control for increases in firing rate over time, which could bias spike 

timing, data were first mean-matched. The mean-matching procedure consisted of 

calculating the histogram of mean rates over all units and grip types for each time point, 

then finding the largest common distribution over all time points, i.e., the height of each bin 

in the common distribution was equal to the smallest height of that bin over all time points. 

Afterwards, spikes were randomly discarded from each bin until the distribution at each 

time point matched the common distribution. This procedure was carried out 50 times and 

the resulting Fano factors averaged to produce the mean-matched Fano factor. During 

mean-matching, 21% of data points were discarded in F5 and 15% in AIP. This procedure 

ensures that the overall mean does not increase over time, thereby eliminating any 

reduction in Fano factor that is purely a result of an increase in the mean. 

To evaluate if the reduction in Fano factor was significant, the sampling distributions 

estimated from the 95% confidence intervals provided by the regression were compared 

between 300 ms before movement onset and 100 ms after movement onset to produce a p-

value. 

 

Clustering analysis 

To evaluate whether or not delay trajectories leading up to movement onset clustered in a 

distinct way, we calculated the Euclidean distance between all pairs of linearly spaced delays 

(0-1000 ms, in steps of 50 ms) in the 10 latent dimensions determined by GPFA and looked 

for community structure (i.e. distinct clusters of similar value) in the resulting distance 

matrix. We employed a well-known modularity analysis that iteratively finds non-

overlapping groups of conditions that minimizes the within-group distance between 

conditions and maximizes the between-group distance (Newman 2004; Reichardt and 

Bornholdt 2006) with a gamma sensitivity of 0.75. Each distance matrix was normalized to 

the maximum value over all time and subtracted from a matrix of ones in order to prepare 

them for analysis. Using this analysis, the number of clusters obtained is purely data-driven 

and not specified by the experimenter. To ensure that the found structure was not due to 

chance, we randomly permuted the distance matrix (1000 permutations, while conserving 

matrix symmetry) and compared the modularity index 𝑄 between the empirical and 

permuted data. The percentile of instances where the permuted distribution values 

exceeded the empirical value corresponds to the p-value. 
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Supplementary Figures and Tables 

 
S1 Fig. Neural trajectory stability over the course of instructed trials for an additional experiment. Same 
layout as Fig 5. (a) Mean Euclidean distance in the latent space for the Instructed trials between all pairs of 
time points over both grip types for an example data set in monkey Z. For each pair of time points, distance 
results were tested for a significant difference using a bootstrapping procedure (10000 resamples in steps of 50 
ms, p = 0.01). The abbreviations Cue, Mem, and Move, correspond to the cue, memory, and movement 
epochs, respectively. All plots are clipped at 1 sp/s for visualization. The times where a significant difference 
was found are shown in (b). (c) Percentage of time points showing a significant difference over all data sets and 
grip types (6 data sets x 2 grip types). (d) Mean distance over the stable portion of the memory period (600 ms 
after cue onset – go cue) for all individual data sets and grip types (6 data sets x 2 grip types) across areas and 
paired according to recording session. Stars indicate a significant difference (Wilcoxon signrank test, p < 0.001). 
As described in Michaels et al. (2015), monkey Z performed a similar task to the current study (6 data sets x 2 
grip types, Instructed condition). The same grip types were cued and the memory period was also variable. 
However, all trials resulted in movement, regardless of condition. Therefore, if the dynamic nature of the 
memory period observed in the present experiment were due only to the changing expectation of having to 
execute a movement over the course of the trial or the deterioration of a motor plan, we should observe stable 
activity. Yet, in this additional experiment the highly time dependent nature of the memory period activity in 
F5 is maintained, suggesting that this variability is not due to the varying chance of subsequent movement, but 
represents features of the examined areas. 
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S2 Fig. Clustering of movement initiation activity in AIP. (a) Example latent projection population activity in 
AIP over all linearly spaced delays (0-1000 ms) for precision grip trials for an example data set from each 
monkey (S3, B4), aligned to movement onset. (b) Euclidean distance between all pairs of delays in the full 
latent space for two example time points of the example data set including identified clustering using a 
clustering analysis that finds community structure (Materials and Methods). (c) Clusters identified in the 
distance matrices over time (in steps of 50 ms) for the example data set. Black significance bar shows time 
points where the modularity statistic exceeded chance level (permutation test, p < 0.01). (d) Same analysis as 
(c) averaged over all data sets and grip types (6 data sets x 2 grip types). 
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Supplementary Table 1. Trial counts, performance, and number of units recorded for all 
data sets. 
 

 Trial 
Count 

Correct 
Performance 

Units Recorded 
in F5 

Units Recorded 
in AIP 

B1 485 91% 65 29 
B2 685 96% 88 35 
B3 586 96% 43 25 
B4 814 96% 64 28 
B5 775 96% 46 19 
B6 745 97% 72 33 
Mean: 682 95.3% 63.0 28.2 
     
S1 502 98% 124 134 
S2 514 97% 136 148 
S3 571 97% 142 137 
S4 658 99% 121 97 
S5 590 99% 115 104 
S6 546 98% 156 165 
Mean: 564 98.0% 132.3 130.8 
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3. General Discussion  

 

In this dissertation the encoding, transformation, and coordination of information across the 

fronto-parietal grasping network was investigated while monkeys performed two different 

tasks. In the first task monkeys were either instructed or free to choose to grasp a target in 

two different ways, allowing for an investigation of internal decision making. In the second 

task monkeys performed the transition of immediate and delayed grasp movements, 

allowing for a detail investigation of this transition. In order to analyse the exact nature of 

the neuronal process within and across the fronto-parietal network including area AIP and 

F5 (and in chapter 2.1 also M1) large populations of neurons were recorded in parallel across 

all areas. Especially the possible to analyses the simultaneous activity of this area-spanning 

neuronal population gave new insights into the encoding, transformation and coordination 

of the behavioural relevant information within the network. In the following paragraph the 

results are summarized in detail.  

 

3.1. Summary 
In chapter 2.1 it was analyzed how the information flow is coordinated across the fronto-

parietal single neuron network. Large numbers of single neurons were recorded in parallel 

across AIP, F5, and M1 while monkeys performed a delayed grasping task and the functional 

connectivity between all pairs of neurons was calculated based on cross-correlation 

histograms. To achieve a reliable estimate of the functional network connectivity, a new 

statistical procedure that corrected for multiple comparisons across different temporal 

delays and neuronal pairings was developed. This procedure allowed us to analyze the form 

of synchronization together with the functional network topology. The functional fronto-

parietal single neuron network was nowhere near randomly organized, but appeared as a 

complex network, with a modular and small-word topology. Interestingly, the centrality 

distributions of all datasets were highly heterogeneous based on degree centrality as well as 

betweenness centrality, which could not be explained by distance-dependent connectivity. 

This indicated that functional hub neurons likely coordinated the network activity. The hub 

neurons were equally distributed across all three areas and strongly interconnected, forming 

an area-spanning coordinative rich-club. Surprisingly, when we analyzed the form of 
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synchronization, neurons were either synchronized by oscillatory synchrony in the beta-

band, in the low-frequency range, or synchronized in a non-oscillatory manner. Intriguingly, 

the hub neurons forming a rich-club were oscillatory synchronized nearly without exception, 

while large parts of the rest of the network were non-oscillatory synchronized. When we 

analyzed the rhythmicity of the spiking of hub neurons, they were nearly exclusively 

rhythmically active in the beta- or low-frequency band, defining them as oscillators. Thus, 

the findings of this study suggest that the information flow of the fronto-parietal grasping 

network is coordinated by an area-spanning oscillatory-synchronized rich-club.  

In chapter 2.2 it was investigated how information is encoded and transformed in the 

fronto-parietal grasping network while monkeys were either visually instructed or freely 

choosing to grasp a handle with one of two grip types. When analyzing the neuronal 

population from the classical representational view, describing activity of individual neurons 

as a function of various parameters, a large number of neurons were significantly tuned in 

AIP and F5 of the fronto-parietal grasping network and during all time points of the task. 

However, tuning changed dynamically over time and tuning parameters were uniformly 

distributed across the population; both findings were at odds with the classical 

representational view. In contrast, when considering the whole neuronal population as one 

strongly interconnected network, in which neural population activity evolves dynamically 

through space-space over time and conditions as suggested by the dynamical system 

perspective, a clear low dimensional structure became apparent. All task specific single trial 

activity could be explained by an evolution through just three independent informational 

subspaces representing visual, preparatory, and movement activity. Interestingly, for free-

choice trials, where no specific visual information was given, all task specific activity during 

the decision process was explained by the preparatory space, suggesting that decision 

related activity and preparatory activity were the same for this task. Furthermore, changes 

of mind, e.g. when enforced by a later given second visual instruction, were clearly visible in 

the preparatory space. Crucially, contributions to all three informational spaces were 

randomly distributed across neurons with no significant category structure. A regularized 

recurrent neuronal network trained to produce muscle activity for the two grasps could 

accurately reproduce the neuronal dynamics both at the single unit and the population level. 

These results indicate that instead of addressing the attributes of individual neurons, 

neuronal activity can be more completely understood at the population level, where a 
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neuronal population can encode different processes at different and overlapping times. 

These processes can be dynamically transformed according to the behavioral demands, 

including free choices. 

In chapter 2.3 the neuronal population encoding in AIP and F5 of the transition 

between immediate and withheld movement was examined. Single neuron responses of 

both areas were complex and difficult to characterise from the representation view. 

However, when considered on the population-level and visualized by dimensionality 

reduction techniques, a clearly describable temporal and conditional population dynamics 

became apparent. Neuronal population dynamics of both areas first followed a grip specific 

defined trajectory indistinguishable for immediate up to long delayed grasps. Theses 

trajectories properly represented unavoidable processing from visual to preparatory 

information. However, after this initial phase, population activity in AIP tended to stabilize, 

whereas activity in F5 continued to evolve through state space, likely reflecting movement 

anticipation. Interestingly, population activity of both areas evolved through two distinct and 

significantly separate spaces for immediate movements and withhold delayed movements, 

suggesting a unique state for movements performed from memory. However, trajectories 

for the different grasp movements were maintained in separate spaces. These findings 

suggest that the complex interplay of dynamical and static aspects of movement 

preparation, such as anticipation and planning of a particular grasp type, can be understood 

as an evolution of neuronal population activity through specific dimensions of a higher 

dimensional state space.     

In the work presented in Appendix A we evaluated how representational models 

based on single neuron characterizations, and dynamical system models based on the 

neuronal population activity describing the generation of reach movements in PMd and M1, 

can be integrated and better tested for their validity. This study builds upon the results of 

Churchland M. et al. 2012 showing that population dynamics during reach movements can 

be described by a dynamical system model, with the preparatory state serving as an initial 

state of a rotation dynamic. However, by simulating simple velocity-tuned neurons for a 

center-out reaching task and incorporating variable latencies between kinematics and 

individual neuronal activities, rotational dynamics appeared on the population level. Yet, 

meaningful rotational dynamics should depend on the conditional population structure, 

while this should be irrelevant for representational models. To distinguish between these 
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two possibilities, we developed a covariance-matched permutation test (CMPT) that 

reassigned neural data between task conditions independently for each neuron while 

maintaining overall neuron-to-neuron relationships. While the rotations of representational 

models of neuronal activity did not depend on the conditional structure, they did strongly 

depend on the conditional structure for recorded data as well as a RNN trained to produce 

kinematics. These findings speak in favour of the dynamical systems perspective in 

describing motor cortex population dynamics. Interestingly, directional tuning was an 

emergent property of our RNN model simply as a consequence of the generated output 

parameters. Yet, the directional tuning was found to change over time and neuronal tuning 

was often only roughly matched by a cosine tuning function, similar to recorded neurons. 

These observations suggest that, even if representational models can describe single neuron 

data to a certain extent, their results can nonetheless be misleading, and the neuronal 

population dynamics can potentially be better explained by a dynamical system model. 

Finally, in the study described in Appendix B we showed that the reaction time to 

initiate a grasp movement could be predicted from the activity of large numbers of 

simultaneously recorded neurons in AIP and F5. Single-trial preparatory activity of both 

areas was predictive of reaction time, although results differed strongly based on the 

method of analysis used. Population-based methods for predicting reaction time were found 

to give better and more reliable results then single neuron based predictions for both areas. 

Interestingly, in comparing different population-based methods, those which were not 

based on the assumption that shorter reaction times are associated with higher firing rates 

performed much better. Furthermore, the predictive information was distributed across the 

whole population of neurons of both areas with no evidence for distinct subpopulations 

tuned to reaction time. However, neuronal populations of F5 were more predictive than 

populations of AIP, suggesting that F5 populations are more directly related to grasp 

initiation. These observations indicate that aspects of movement initiation are distributed 

across neuronal populations and even across different brain areas.   

 

3.2. Outlook 
A great deal of new insight into how ensembles of neurons generate emergent functional 

states has been obtained by considering the activity of large populations of neurons as one 

dynamical trajectory, which evolves in time within a low dimensional state space. This leads 
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to the generation of movements, resulting in a transition from the representational view of 

neuronal activity to a dynamical systems perspective (Shenoy et al., 2013; Yuste, 2015). On 

the other hand, there is also increasing evidence that, globally as well as locally, information 

flow is coordinated by oscillatory synchronization in distinct frequency bands (Buzsáki, 2010; 

Engel and Fries, 2010; Fries, 2015; Schomburg, 2015). The studies of this thesis emphasize 

the view that neuronal population activity of the fronto-parietal network can be best 

described as a dynamical process evolving through a limited number of subspaces. Each 

subspace represents different aspects such as visual, preparatory, and moment related 

information. Information about the anticipation of an upcoming event or the timing of 

movement initiation is also represented by these processes. Analyses performed on the 

same single neuron population, which revealed the different information subspaces, showed 

that the information flow within and across the fronto-parietal network was coordinated by 

a rich-club of oscillatory synchronized neurons. Yet, how these two findings are interrelated 

is currently unclear. A possible explanation is given by two groups of investigators who 

independently described a similar concept of information transformation on the population 

level (Womelsdorf et al., 2013; Elsayed et al., 2016). However, one comes from the field of 

neuronal state space analyses, while the other comes from the field of oscillatory synchrony 

analyses. The first study (Elsayed et al., 2016) suggests that the same neural population acts, 

at different times, as two separate circuits with very different properties spanning 

orthogonal but lawfully related subspaces. This relationship was shown for the transition 

from preparatory to movement related activity (Figure 1a).  

 

Figure 1 Information transformation on the population level (a) Activity of three hypothetical neurons for the 
transition from preparatory to movement related activity. Each axis represents the firing rate of one neuron and 
each dot represents the neural state for one of six conditions. The activity of the three neurons occupies a subspace 
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of the full state space for preparatory activity, which is orthogonal to the subspace occupied during movement 
related activity. However, the relationship between conditional responses is lawfully linked between the two states. 
The panel below is a one-dimensional illustration of the firing rate change at the transition between the two states. 
The colors correspond to the dots in the panels above and indicate the different condition identities. Adapted from 
Elsayed al. (2016). (b) In the second model, the firing rates of single neurons are coupled in a sigmoidal relation to 
the amplitude of beta-band activity of the LFP. Some neurons fire stronger during high beta amplitudes (gray 
shading, left panel), while other neurons fire more weakly during high beta amplitudes (gray shading, right panel). 
These findings suggest that a high beta amplitude cortical state (left panels) activates a selected subnetwork of 
neurons, while a low beta amplitude cortical state activates another selected subnetwork of neurons (right panels). 
This was found for the transition from preparatory to movement related activity. Adapted from Womelsdorf (2013). 

The coordinative mechanism introduced in the second article (Womelsdorf et al., 2013) is 

that subnetworks are selected by a change in beta rhythmic activity, serving as a true switch 

in the local network by causally modulating single neuron firing rates. This process is called 

cross-level coupling (Figure 1b). Surprisingly, this was shown as well for the transition from 

preparatory to movement related activity (Canolty et al., 2012). What if the described 

subnetworks are the orthogonal subspaces of the first study and a rich-club of coordinative 

beta synchronized neurons is causing the subspace transition by cross-level coupling? 
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