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systems
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The ability to perform human-like manipulation actions using artificial robots is a major

requirement in service robotics. This is a problem related to both high-level symbolic

reasoning and low-level control systems. This work proposes a multi-layer framework

to fully define and execute a wide range of such actions in a generic and generalizable

fashion. We present the details of action definition and execution and collect them into

a re-usable software library.

The first contribution of this thesis is definition of high-level and low-level components

of actions as well as a clear mechanism to link them in execution. To demonstrate the

ability of execution system to generalize on a wide range of actions and objects, a large

set of 300 trials is performed. The success rate of each action is calculated and the

failure cases are analyzed.

The second contribution is applying the concept of structural bootstrapping to get action

parameters from human demonstrations and previous experiences. Here, several human

demonstrations obtained by different methods are processed. New instructions are ex-

ecuted based on previous knowledge which enables system to go beyond hard-coded

actions.

Last contribution is to integrate the actions with a symbolic decision making framework

to benefit from the advantages of the state-of-the-art in planning. Here we deal with

grounding symbolic operators of planner to solve complex tasks such as making a simple

cucumber salad. We also feedback the faults of execution to the decision-making system

which enables learning new operators through a human operator.
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Chapter 1

Introduction

There is a growing need for intelligent service robots in different non-industrial sectors.

Examples are household robots able to help in cleaning and cooking, robots which are

able to interact with children and service robots able to help the seniors with simple

everyday-life tasks. This need is one factor contributing to the growth of the field service

robotics. One major requirement for a service robot is the ability to manipulate objects

found in human environments.

It is interesting that almost all the robots developed by experts in AI and robotics,

perform poorly in manipulating objects and performing tasks compared to a 5-year-old

child, let alone an adult who is professional in his/her field. The manipulation ability of

humans come from their high-performance and flexible sensors and actuators combined

with the unmatched processing capabilities of their brain.

In this thesis, we study the problem of replicating human-like manipulation actions with

artificial agents. Such agents usually take the form of human-like (anthropomorphic)

robotic manipulators which are able to move, push, grasp and carry around objects.

Recent advances in building redundant, light-weight and compliant robot arms (such

as KUKA LWR IV, Universal UR5, etc.) and dexterous robot hands (Schunk SDH2,

Robotiq hand, etc.) provide the necessary hardware to achieve this goal. Although

these manipulators are still far away from dexterity of the human arm and hand, they

are sufficient for building working systems.

Achieving human-like manipulation skills requires contributions from several computer

science and AI fields (e.g. planning and machine vision) as well as other fields like robotics

1
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(e.g. path planning and grasping) and control engineering (e.g. position and force con-

trol). In this thesis we try to contribute to the sub-field of manipulation planning,

learning and execution. Our specific goals are summarized as follows:

• To employ AI and robotics techniques to establish a framework for definition and

execution of manipulation actions.

• To develop mechanisms to bootstrap existing knowledge by using human demon-

strations and previous knowledge.

• To integrate the designed execution framework with other existing modules i.e. a

symbolic planner and computer vision.

The rest of this chapter is organized as follows: The problems which we want to deal

with are stated in 1.1. A review of the state-of-the-art in the literature on these topics

is provided in 1.2. The contributions of this thesis are summarized in 1.3 to conclude

this chapter.

1.1 Problem Statement

Previously we stated the goals of this thesis. Here we will expand these goals to several

sub-problems and discuss our proposed solutions in the remaining chapters.

1.1.1 Manipulation Action Definition

How to define a manipulation actions?

There have been two main approaches to this problem based on symbolic and geometric

(sub-symbolic) representations. The symbolic approach is most common within classic

AI and natural language communities. Engineers and roboticists usually prefer more

geometric approaches dealing with low-level signals.

Both approaches have advantages and drawbacks. The symbolic approach it is more

intuitive in defining tasks and relating them to humans. It also generates a discrete

state space which makes plannig tasks more tractable compared with the signal space

which is of continuous nature. However, the major problem is the grounding of these
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symbols in the environment. In signal space the main problem is to find a small subset

of features for manipulation actions. Two demonstrations of the same pick and place

action could look totally different in signals space, which makes it difficult to find a

conjoined symbolic representation for this.

More recent approaches, including our approach, try to combine both approaches to

have the benefits of the both. However this is far from a trivial problem. It is not

clearly known what constitutes the essence of an action and what parameters should

be adapted to deal with different situations. The question remains to separate “core”

action parameters from “situation-dependent” ones.

1.1.2 Manipulation Action Execution

How to execute manipulation actions?

This problem is much related to the previous question, since the representation of actions

affects their execution. The key question in execution is the ability to generalize over

different robot embodiments, actions, objects and poses. The execution should keep the

essence of action (e.g. pick and place) while being able to adapt the low-level signals to

new situations.

1.1.3 Learning Manipulation from Demonstration

How to learn actions and action parameters from demonstrations?

This question has both theoretical and empirical importance. There are many learning

methods for this but the most common is ... Theoretically it is challenging since it is in

general not known how the symbolic representation of an action is related to the low-

level trajectories. It is specially difficult when the demonstration is done in a cluttered

scene in which the effect of surrounding objects complicates the interpretation of signals.

In practice, it is important to develop algorithms applicable to a general robot platform

and deal with sensor noise and uncertainty.

1.1.4 Action Compilation

How to execute actions in new situations by using existing experience?
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It is desirable to use previous experience and apply it in novel situations, for which

there is no pre-programmed plan. This requires a data structure to store and retrieve

the experience of the robot. In addition we need an algorithm to systematically combine

the proper parameters from old experiences and to compile new actions.

1.1.5 Integrating Planning and Execution

How to use higher level knowledge (Planners) to solve more complicated tasks?

We want to use the existing symbolic decision making (planning) systems to enhance the

performance of action execution. This enhancement is achieved in two ways. First by

chaining the single actions and creating a longer sequence to perform more complex tasks

like making a salad. Second, the planner is used to deal with the faults and failures of

the execution. This requires detecting the failures at runtime and reporting them to the

higher level planner. The planner then analyzes the fault and makes the best decision.
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1.2 State-of-the-art

For each of the problems mentioned in 1.1 a review of the existing literature will be

presented.

• Manipulation Action Definition

There exists a large corpus of work in action representation and execution [2–6].

Two distinct approaches are commonly preferred in order to represent and execute

actions, one at the trajectory level [2] or the other at the symbolic level [7]. The

former gives more flexibility for the definition of actions, while the latter defines

actions at a higher level and allows for generalization and planning.

For trajectory level representation there are several well established techniques:

Splines [3], Hidden Markov Models (HMMs) [4, 8], Gaussian Mixture Models

(GMMs) [5], Dynamic Movement Primitives (DMPs) [2, 9]. With trajectory level

encoding, one investigates or learns different complicated trajectories, but it is

difficult to use them in a “more cognitive sense”. Generalization of the observed

trajectories is the main breaking point here, since even the same action can be

demonstrated by following various trajectories.

High-level symbolic representations many times use graph structures and rela-

tional representations, e.g. [10–12]. Alternative methods, such as in [13]), describe

a syntactic approach for learning robot imitation by capturing underlying task

structures in the form of probabilistic activity grammars. These approaches give

compact descriptions of complex tasks, but they do not consider execution-relevant

motion parameters (trajectories, poses, forces) in great detail. In this work, our

high-level action descriptor is based on the concept of Semantic Event Chains

(SECs) introduced in [12]. SECs are generic action descriptors that capture the

underlying spatio-temporal structure of continuous actions by sampling only deci-

sive key temporal points derived from the spatial interactions between hands and

objects in the scene. The SEC representation is invariant to large variations in tra-

jectory, velocity, object type, and pose used in the action. Therefore, SECs can be

employed for the classification of actions as demonstrated in various experiments

in [12, 14–17]. In contrast to works in [10, 11], we have already shown in [15] and
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[18] that actions encoded by SECs can be executed once the low-level data (object

positions, trajectories, etc.) are provided.

The concept of semantic event chains has also been successfully utilized and ex-

tended by others [19–23] for monitoring or execution purposes. [19] addressed the

reproduction of the obtained human action sequence by parameterizing semantic

conclusive sub-actions with the SEC framework. Active learning of goal directed

manipulation sequences, each was recognized using semantic similarities between

event chains, was presented in [22]. Scene graphs used in SECs were also repre-

sented with kernels in [20] to further apply different machine learning approaches.

Additional trajectory information was used in [21] to reduce noisy events in SECs.

In [23], SEC-like graphs are used to recognize categories of actions based on the

consequences. All these studies confirm the scalability of the event chains to vari-

ous monitoring tasks.

Many times trajectory-level descriptions of actions, object properties, and high-

level goals of the manipulation are brought together through STRIPS-like planning

[7], resulting in operational although not very transparent systems. The approach

in [24] attempts to integrate a symbolic action representation and planner with a

motor skill learner. The robot learns the goal of the human demonstrated actions

by using the Visuospatial Skill Learning (VSL) method which produces symbolic

predicates. Such predicates are directly fed to a standard planner to encode skills

in a discrete symbolic form. The proposed framework also considers sensorimotor

skills, such as the followed trajectory information from the observed action. In

[25], a symbolic description of robot tasks is constructed from continuous signals.

The work on [26] presents a probabilistic-flow-tubes representation of actions and

a method to recognize them in human demonstrations.

In contrast to these works, we do not require an additional symbolic planner since

SECs provide a fully observable state sequence which substitutes the symbolic

planner. Such approaches are also not evaluated on long and complex human

manipulation actions. Thus, how to bring these trajectory and symbolic levels

together remains a big challenge in robotics.

In [27] an overview of manipulation action literature and definitions are provided.

Our hierarchical definition of actions based on action primitives belongs to the

same line of research.
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• Manipulation Action Execution

There are also many works concentrating on executing manipulation actions using

robots. In [28] a finite state machine is designed to execute a pouring action.

[29] used guided motor primitives (GMP) to perform painting and cleaning tasks

with a simulated robot. Another approach to deal with the signal-symbol gap is

to combine motion and task planning such as the work of [30]. They generate

trajectories for tasks, like pick-up and put-down, to solve problems in different

domains. While the existing works show good results, they are usually limited in

the number of actions and objects used. One of the goals of our study is to develop

many actions and test them on many objects.

In Beetz et al. [31] a software toolbox called Cognitive Robot Abstract Machine

(CRAM) is proposed. This toolbox provides tools for develop programs for cog-

nitive robots specially mobile manipulation. In [32] actions are executed by se-

quencing the action primitives defined by DMPs.

• Learning from Demonstration

In learning from demonstration (LfD) the robot tries to learn how to perform a task

from examples provided by a human operator. The operator may interact with

the robot through different mechanisms: tele-operation, motion tracking, virtual

reality or kinesthetic guidance. However, the goal is to autonomously learn and

generalize through the provided examples and apply the skill in new situations.

There is a large body of research about this paradigm, also by the names program-

ming by demonstration (PbD) [7] and imitation learning. Here we summarize some

of the highlights related to the current thesis. In [33] an architecture is proposed

to integrate machine learning and LfD. They studied some problems of LfD such

as generalization of a task, given a set of examples. The operator has a key role

in their architecture. The work of [34] provides a framework for learning tasks

from multiple demonstrations. They use additional cues in the demonstrations to

have the attention of learner in the decisive moments. In [35], symbolic descrip-

tions are extracted from human demonstrations by segmenting the hand and arm

trajectories. The actions are described by macro operators (MO) and elementary

operators (EO) in a hierarchy. In [36] a learning method is proposed to enable

a human teacher to shape robot behavior. Another related work is [37] in which
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task precedence graph (TPG) is introduced to model the human demonstrated ac-

tions and reproduce them. In [38] a bottle opening task is segmented into different

control strategies and the contribution of each part is weighed.

Many of these approaches need to segment the trajectories from a demonstrated

action. For example in [39] an autonomous framework to segment robot trajecto-

ries are proposed based on GMMs. In [40] uses HMMs and DMPs to segment a

demonstrated task and generalization over repeated trials.

• Integrating Planning and Execution

Classic AI methods such as famous SHRDLU [41] tried to represent manipulation

actions by symbolic descriptions. However, these methods can not deal with the

complexity of real-world situations. To benefit from their reasoning capabilities,

the operators of a symbolic planner should be grounded in the real world. There

have been many attempts to designs an integrated system. In [42], a framework

is proposed to deal with the mobile manipulation problem. They decompose the

problem into symbolic and geometric parts. For an intuitive goal description,

they use a classical symbolic planner. On the other hand, to achieve collision-free

trajectories, a probabilistic road-map planner is used. However, the manipulations

contain only simple pick-and-place and grasps.

In [43] a mapping between geometric states and logical predicates is learned by

using labeled examples. Their mapping can be used in both directions, from

symbol to signal and vice versa. They could solve simple tasks in a limited domain.

However, the planner can not solve more complex tasks and the system fails.
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1.3 Overview and Contributions

The contributions of this thesis are summarized as follows:

1. A novel definition of manipulations actions using semantic event chains, object

roles and primitives. Similar actions are divided into three main categories.

2. A novel method for execution of actions generalizable to different robot embodi-

ments, actions, objects and poses.

3. Incorporating a structural bootstrapping concept to obtain the parameters of ac-

tions from human demonstrations.

4. Applying structural bootstrapping to re-using action parameters from previous

experience (action compilation).

5. Integrating a symolic decision-making framework with the manipulation actions.



Chapter 2

Library of Manipulation Actions

In this chapter we want to propose a library of manipulation actions based on the idea

of semantic event chains (SEC). The SEC framework has first been proposed in [14] and

applied successfully in action recognition and classification [12, 16]. It is also used to

execute simple actions on simulated robots in [15]. However a concrete framework to

execute actions based on the SEC concept was missing.

The library of actions provides both a full definition of actions and a mechanism to

execute them on robot manipulators. The actions in the library are also collected into

an ontology of actions with categories and sub-categories.

The first step to this end is to give a complete and detailed definition that covers both

symbolic and sub-symbolic aspects of actions. This is done in Section 2.1. In Section 2.2

the actions are enumerated and categorized. Section 2.3 is dedicated to the execution

mechanism. The performance of this framework is tested through a large set of experi-

ments presented in Section 2.4. Finally , a discussion of the results and conclusions are

given in Section 2.5.

2.1 Action definition

As illustrated in Fig.2.1, our proposed perception-action framework involves three main

levels: high-, mid-, and low-level action units. In this section we will provide the detailed

description of high and low levels together with their components.

10
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High-level

Mid-level

Low-level

SEC
Object Roles

Abstract Relations
Abstract Primitives

Real Objects

Real Relations
Real Primitives

Finite State Machine

Figure 2.1: Levels of the proposed action definition and execution framework. The
high-level components are symbolic and close to human language. The low-level com-
ponents are in the signal domain and connect to sensors, actuators and control systems.

The mid-level fills the gap between them and makes the execution possible.

2.1.1 High-level Action Definition

Here we will give a high-level action definition to encode the semantics of manipulations.

Note that at this level, definitions are mainly symbolic (abstract) and close to human

descriptions.

Take the example of a manipulation action “put a bucket on a box”. Figure 2.2 shows

some sample frames from human demonstration. This simple action may be described

by a human as follows:

1. Approach the bucket

2. Grasp the bucket

3. Lift the bucket from table

4. Place the bucket on the box

5. Release the bucket

This description is by no means unique. One could easily describe the same action in

different words, with different number of steps and details. However, one could still

extract some common and descriptive properties from such a naive description:
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Figure 2.2: A sample human demonstration and robot execution of a Put on top
action are shown to highlight different action components. At the top, snapshots and
segmented images of the human demonstration are shown. Next, a relational graph
sequence is computed. Each graph corresponds to one world state (S1 to S5). The
objects in the scene are recognized and their roles in the action are determined. Abstract
spatial relations and their values at each state are shown in the SEC matrix. Here, each
row represents a pairwise object relation such as N and T which stand for Not-touching
and Touching, respectively. Action primitives at each state are shown at the bottom of
the SEC matrix. Finally, some snapshots and segmented images of the robot execution

with different objects are shown.

• Property 1: The definition is still valid even if the manipulated objects are

(within reason) altered.

• Property 2: The action (here Put on top) can be broken into a sequence of

smaller sub-actions (primitives) such as Approach and Grasp.
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• Property 3: There are conditions to end one primitive and start with the next.

In the above example these conditions are not spelled out explicitly.

• Property 4: As humans, we intuitively know how to perform these primitives,

although our exact movements are only then produced when we see the objects

and are adapted to the scene context while we perform the action.

The main features that we use here to describe a scene are the touching relations between

its objects. During a manipulation action, these touching relations change from some

initial state to a final state. A manipulation action is, therefore, represented by a

sequence of changes in touching relations of the objects.

Our approach to represent and execute manipulation actions with robots has the fol-

lowing fundamental properties: We introduce a generic high-level definition of actions

which is independent of the manipulated objects in the action (Property 1), and consists

of a sequence of symbolic primitives (Property 2). The conditions to start and end each

primitive are defined by considering the touching relation between objects in the action

(Property 3). We also store the default action descriptive parameters (e.g. trajectory)

to execute actions at the high-level with symbolic definitions. When novel physical ob-

jects are observed at each specific instance of an action, these parameters are adapted

according to the situation to generate the required movements (Property 4).

To fully satisfy these four properties in our high-level action definition, we benefit from

the ontology of manipulation actions introduced in [44]. This ontology structures human

demonstrated manipulation actions, e.g. putting a bucket on a box, as sequences of

spatio-temporal interactions between objects (including the manipulator) in the scene

by using the concept of Semantic Event Chains (SECs) presented in [12].

Our hypothesis claims that the most important action-related information are encoded

at the decisive temporal anchor points, i.e. when touching relations between objects and

hands change. This ontology suggests about 30 fundamental and unique manipulations

that allow complex and chained activities, e.g. “making a salad” or “preparing breakfast”.

The ontology also introduces four constraints on the definition of manipulation actions,

which are stated as follows:
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• Constraint 1: The action is performed by one hand. This is true for most human

actions, since the second hand is usually used only as a support.

• Constraint 2: The hand touches exactly one object in the course of the action

and does not purposefully touch other objects in the scene unless the current action

ends.

• Constraint 3: The hand is free at the beginning and at the end of the action.

• Constraint 4: The action must lead to some changes in the touching relations

between objects and hands (e.g. human or robot hand). In other words, the hand

must interact with at least one object.

From the first two constraints one concludes that in each action there are at least two

entities: one hand and one object which is directly touched by the hand. This fact will be

used in section 2.1.1.1 to define object roles. The second and third constraints together

define actions in a way that they can not be further split into shorter actions. The last

constraint assures that there is at least one change in the touching relations. This is

essential since the whole framework relies on the touching relations between objects.

We extend this ontology by incorporating explicit object roles and adding action prim-

itives. This extended ontology is presented in more detail in Section.2.2. In the rest

of this section, we will describe several components of the high-level action definition

which are required to reach these descriptive properties.

For more details on the action ontology refer to [45] and Section.2.2 of this thesis.

2.1.1.1 Objects Roles

There exist many objects in the real world and actions can be performed with different

sets of object combinations. It is, however, not practical to define a separate action for

each possible object set. Instead, as stated in Property 1, we represent manipulation

actions in a generic way to make them applicable to any novel object. For this, we label

objects by their roles exhibited in the action. First of all, recalling Constraint 1, we need

an actor to perform the action, which is here called manipulator. As stated in Constraint

2, there exists exactly one object that is directly manipulated by the manipulator. This
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object is called main. Optionally, there are other objects in the action, which interact

with the main object in different ways.

The object roles can be better explained in an example. In the action “putting a bucket

on a box” depicted in Figure 2.2, the human hand is the manipulator, the bucket which

is directly touched by the hand is the main object. There are two more objects whose

relations with main change in the action: table and box. The relation of main and

the table changes from touching T to not-touching N . We call such objects primary or

source object. Conversely, the relation of main and the box changes from not-touching

N to touching T . These objects are called secondary or destination object.

The complete list of object roles with their definitions are shown in Table 2.1. Some

roles are defined by the changes in relations, like primary and secondary, while others

(like support objects) are defined based on constant touching relations. For instance

secondary support is the object on which the secondary object is located. In the above

example, the table plays also the role of secondary support. Note that not always all

objects are needed to define an action.

The role of objects are automatically detected with the method described in [46], which

explores the temporal evolution of spatial object relations embedded in SECs.

2.1.1.2 Semantic Event Chain (SEC)

At the highest symbolic-level, actions are represented by the concept of Semantic Event

Chains (SEC) which captures the essence of an action by focusing on the touching rela-

tion of object. These relations are calculated by employing computer vision techniques

described in [12, 47]. A summary of this process is shown in Figure 2.2 along with the

Put on top example. To calculate the SEC representation, an image sequence of an

observed action is first represented by 3D image segments, each of which corresponds to

one object in the scene and is consistently tracked during the action. Each frame in the

sequence is then converted into a graph: nodes represent tracked segments, i.e. objects,

and edges indicate the contact relation between a pair of objects. By employing an exact

graph matching method, the continuous graph sequence is discretized into decisive main

graphs, i.e. “states”, each of which represents a topological change in the scene. The

extracted main graphs form the core skeleton of the SEC, which is a matrix where rows
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Table 2.1: Object roles defined based on spatial relations. Each role is defined and
the constraints on the relations are presented. Note that main object is defined with
regard to the manipulator, unless the action is performed using a tool. In this case, the

main object is defined with regard to the tool.

Object Role Description Relation Constraints

manipulator The object that performs the
action

Not touching anything at the
beginning and the end of ac-
tion. During the action, it
touches at least one object.

main The object which is directly in
contact with the manipulator
(tool)

Not touching the manipulator
(tool) at the beginning and
the end of action. It touches
the manipulator (tool) at least
once.

primary The object from which the
main object separates

Initially touches the main and
makes a T to N transition

secondary The object to which the main
object joins

Initially does not touch the
main and makes a N to T
transition

load The object which is indirectly
manipulated

Does not touch the manipula-
tor. During the action leaves
the main and touches the con-
tainer or vice versa.

container The object whose relation
with load changes and it is not
the main object

Touches or untouches the load
object

main support The object on which the main
object is located

Touching the main object all
the time

primary support The object on which the pri-
mary object is located

Touching the primary object
all the time

secondary sup-
port

The object on which the sec-
ondary object is located

Touching the secondary ob-
ject all the time

container support The object on which the con-
tainer is located

Touching the container all the
time

tool The object which is used by
the manipulator to enhance
the quality of some actions

Grasped by the manipulator
at the beginning of action and
released at the end
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are the spatial relations between object pairs in the scene. Each column of the SEC

matrix is interpreted as a state of the scene, which is the combination of object relations

when a new main graph occurs.

Possible spatial relations in the SEC matrix are Not touching (N), Touching (T ), and

Absence (A), where N corresponds to two spatially separated objects, T represents

objects that touch each other. The value A occurs when there exists no information

about the relation, e.g. one object is not visible in the scene.

In a SEC, the progress of the action from the beginning to the end is stored in a compact

way. In addition, the SEC matrix is invariant to large variations in trajectory, velocity,

object type, and pose used in the action and, therefore, remains the same for different

instances of the same action.

Figure 2.2 shows a Put on top action from human demonstration to robot execution. The

snapshots of the demonstration are shown together with the tracked segments (colored

regions) and main graphs. The objects in the scene and the extracted SEC matrix are

shown with the corresponding states and primitives. At the bottom, the snapshots and

tracked segments of the robot execution are depicted.

Figure 2.3 depicts the event chain patterns of different actions in the library as color

coded images. These SEC patterns are stored as high-level action descriptors in the

action library. Although SEC patterns are very distinctive, some are semantically iden-

tical as in Push by grasp, Poke, and Push by holding actions. This semantic similarity

is natural since those actions have the same changes in the touching relation of objects.

However, they have different primitives with different object poses, trajectories, and

force parameters which are not captured by SECs.

This action descriptive object-, trajectory- and force-information is separately stored as

primitives (see Sections 2.1.1.4 and 2.1.2.3).

2.1.1.3 Abstract Relations

We continue with analyzing the spatial relations between each abstract object pair, e.g.

between the manipulator and the main object. Table 2.2 lists the abstract relations for

the action “putting a bucket on a box”, previously shown in Figure 2.2.
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Stir Cut

Push together 
by holding

Touching

Push with
 grasp Poke

Push with
 holding

Push apart
by holding

Take downPut on top

Unload Pour

Pick and place

Not touching
Absent
(dont'care)

( manipulator, main)=1

( manipulator, secondary)=2

( main, secondary)=4

( main, main support)=6

( main, primary)=5

( manipulator, primary)=3

( manipulator, main)=1

( manipulator, secondary)=2

( main, secondary)=4

( secondary, primary)=6

( main, primary)=5

( manipulator, primary)=3

( manipulator, tool)=1

( manipulator, main)=2

( tool, main)=4

( main, main support)=6

( tool, main support)=5

( manipulator, main support)=3

( manipulator, main)=1

( main, load)=2

( main, primary)=4

( container, container support)=6

( main, secondary)=5

( load, container)=3

( main, secondary support)=8

( main, primary support)=7

Figure 2.3: Extracted SEC matrices for 10 single atomic manipulation actions. The
abstract spatial relation associated to each SEC row is color coded in which blue and
yellow represent Touching (T ) and Not touching (N) respectively. The gray color shows
either an Absent (A) or a Dont-care relation. Note that the SEC matrix of three actions
push by grasp, poke and push by holding are the same, whereas their action primitives
and parameters are different. In the action Put on top the primary object is the same
as the secondary support, which makes the relations R5 and R8 identical. Similarly,
relations R4 and R7 in the action Take down are identical, since the secondary object

is the same as primary support.

Each relation has a type and a value. The type of a relation is determined by the

importance and variation of that relation throughout the action. For example, for the

action in Figure 2.2, the relation between the manipulator and the primary is always

not-touching and does not affect the outcome of the action. The type of such relations

is don’t-care.
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Table 2.2: Abstract relations and their attributes for the action “putting a bucket on
a box” shown in Figure 2.2.

Relation Name Abstract Relation Real Relation Type

R1 R(manipulator,main ) R(hand,bucket) Variable
R2 R(manipulator,secondary ) R(hand,box) Don’t-care
R3 R(manipulator,primary) R(hand,table) Don’t-care
R4 R(main ,secondary ) R(bucket,box) Variable
R5 R(main ,primary) R(bucket,table) Variable
R6 R(secondary ,primary) R(box,table) Constant
R7 R(main ,primary support) - Absent
R8 R(main ,secondary support) R(bucket,table) Variable

Other relations, which are important for an action, have variable or constant types.

For example, the relation between the manipulator (i.e. hand) and the main object (i.e.

bucket) in Figure 2.2 is variable since it naturally alters during the action. The variable

relations encode the dynamics of the action. On the other hand, the relation between

the secondary object (i.e. box) and the primary (i.e. table) remains constantly touching,

and hence is constant. We note that such constant relations highlight the necessary pre-

conditions to perform an action and any unexpected change in these constant relations

implies an error in the execution.

2.1.1.4 Abstract Primitives

As stated in Property 2 in Section 2.1.1, an action can be divided into several sub-actions

or primitives. In our approach we define the following abstract primitives:

• arm move(object): The robot arm moves to a pose relative to object .

• arm move periodic(): The robot arm moves periodically.

• arm rotate(): The robot arm rotates around a given axis.

• arm exert(): The robot arm exerts a force.

• hand preshape(): The robot hand moves to a certain pre-shape.

• hand grasp(): The robot hand performs a grasp.

• hand release(): The robot hand releases the already grasped object.
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These abstract primitives correspond to the basic functions of the robot manipulator,

which can be implemented in many different ways. Our implementations will be pre-

sented in Section 2.1.2.3. The focus of our work is, however, not a specific implementa-

tion, but rather we would like to propose a way to combine them to seamlessly perform

actions. In our approach a state transition in the SEC, i.e. a change from one column

to the next, needs at least one of these unique primitives. Thus an action is performed

when all of its primitives are sequentially executed while the relations change according

to the SEC matrix.

In Figure 2.2, the necessary primitives associated with each column of the SEC matrix

are shown. The reason of having multiple primitives is that sometimes more than one

primitive is required to induce the desired change in the spatial relation. For example,

the combination of arm move(main) and hand grasp() primitives is necessary to change

the relation of manipulator and main from N to T .

2.1.2 Low-level Action Definition

In this section, the abstract components of the high-level definition are related to their

real-world counterparts at the signal-level. This includes defining objects in the real

world, calculating their spatial relations from the sensor data, and implementing low-

level primitives such that proper commands are sent to the robot arm and hand control

systems. In the rest of this section, these elements are described in more detail.

2.1.2.1 Real objects

In real world experiments, abstract objects (i.e. manipulator, main, primary, etc.) are

instantiated by real objects in the scene. For the “putting a bucket on a box” example

depicted in Figure 2.2, these objects are hand (manipulator), bucket (main), table

(primary), and box (secondary). We need to identify the real-world objects in the

signal space in order to perform the low-level primitives.

For this task, we use our modular computer vision architecture described in [47], which

segments each object in the scene by employing the color and depth cues fed from the

RGB-D sensor. We further apply the instance based object recognition method from

[48] to identify extracted image segments. By incorporating the depth information, we
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also detect the background segment (supporting surface i.e. Table) which is in the form

of a planar surface.

Once real objects in the scene are detected, we compute each object pose in signal

space. In our work, two pieces of information are required to represent an identified

object: position and orientation. The position of each object is computed in Cartesian

space. To associate a position to an object, we model the object with a single point

located at the center of mass. The orientation of objects is defined as the angle that the

main axis of the object makes with respect to the X-axis of the reference frame. Note

that, we extract the orientation information only for elongated objects (e.g. cucumber)

but not for symmetric objects (e.g. apple). The abstract pose of the respective object

is finally estimated from its major axis derived by principle component analysis (PCA).

The orientation information is used to find the parameters of the primitives for elongated

objects.

Note that the position of the manipulator, i.e. robot end effector, is directly calculated

from position sensors and the kinematics of the arm.

2.1.2.2 Real Relations

The real relations are the values of relations between pairs of objects in the scene. To

detect these values, we use a combination of proprioceptive (e.g. position) and extero-

ceptive (e.g. tactile, force, and vision) sensors.

When it comes to detecting object relations, there are three phases: before, during,

and after the action. In the first and last phases, the only source of information is the

vision interface, which essentially computes the Euclidean distance between segmented

object point clouds to decide whether they touch each other or not. An example of this

detection is shown in Figure 2.4.

While the action is being performed, the data acquired by other sensors (position, force

and tactile) are used in addition to the vision system. The data collected from these

sensors are fused using several heuristic rules, which are conjunctions of individual con-

ditions on different sensor data. For example, the first rule to detect the relation of

manipulator with main object is a combination of conditions on two sensors: position

and tactile. This rule declares a touching relation when the Euclidean distance between
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Table 2.3: Rules for detecting the spatial relational changes during action execution.
Note that ‖manip,Oi‖ represents the Euclidean distance between manipulator end-
effector and position of object Oi. Similarly, ‖Oi, Oj‖ is the distance between objects
Oi and Oj . Oi and Oj are any pair of objects in the scene. contactz means that
the sensor sensed a contact in Z axis, while !contactz means there is no such contact.
grasped means the hand has grasped some object, while !grasped means the hand is
empty. The parameters Dij are the distance thresholds to decide whether two objects

are touching or not.

Rule Relation Change conditions
vision position force tactile R(manip,Oi)

1 R(manip,Oi) N to T - ‖manip,Oi‖ < D11 - grasped -
2 R(manip,Oi) N to T - ‖manip,Oi‖ < D21 contactz - -
3 R(manip,Oi) T to N - - - !grasped -
4 R(manip,Oi) T to N - - !contactz - -
5 R(Oi, Oj) N to T ‖Oi, Oj‖ < D51 ‖manip,Oj‖ < D52 contactz grasped T
6 R(Oi, Oj) N to T ‖Oi, Oj‖ < D61 ‖manip,Oj‖ < D62 - grasped T
7 R(Oi, Oj) T to N ‖Oi, Oj‖ > D71 ‖manip,Oj‖ > D72 - grasped T
8 R(Oi, Oj) N to T ‖Oi, Oj‖ < D81 - - - -
9 R(Oi, Oj) T to N ‖Oi, Oj‖ > D91 - - - -

Figure 2.4: Calculating the touching relation with our visual perception interface.
The red lid is touching the jar and the yellow cup is on top of the bucket (left). The
XZY point clouds of the same scene are shown. The red lines indicate a touching

relation exists between a pair of objects (right)

the two objects is less than a threshold (denoted by D11) and the tactile sensor detects

a grasp. These rules are listed in Table 2.3.

The rules of Table 2.3 use some intermediate signals which are abstractions of force and

tactile sensor data: contact and grasped. These are flags showing when the robot arm is

touching the environment (contact) or the robot hand is grasping an object (grasped).

The grasped flag is set to one if the average values of tactile sensors on all three fingers

exceed a threshold. An example of tactile sensor readings during an action are shown

in Figure 2.5 (top). The solid red line shows the raised grasped flag at the times that

the hand is grasping some object.

The contact flags raise when the external force applied to the end effector of the robot

arm exceeds a threshold. In the rules of Table 2.3, we have only used the contactz flag
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Figure 2.5: Intermediate exteroceptive sensory input in the process of analyzing the
spatial relation rules given in Table 2.3. The tactile sensor values are used to detect
when an object is grasped by the hand (top). The external force signals are processed

to detect the touching event (bottom). Here a contact in Z direction is detected.

Table 2.4: Rule consideration for detecting spatial object relations (See Table 2.3)
and Figure 2.3.

Action \ Relation R1 R2 R3 R4 R5 R6 R7 R8

Pick and place Rule 1,3 - - Rule 5 Rule 7 - - -
Put on top Rule 1,3 - - Rule 5 Rule 7 Rule 8,9 - Rule 7
Take Down Rule 1,3 - - Rule 5 Rule 7 Rule 8,9 Rule 5 -
Stir Rule 1,3 - - Rule 6 - Rule 8,9 - -
Cut Rule 1,3 - - Rule 5 Rule 6 Rule 8,9 - -
Poke Rule 2,4 - - - - Rule 8,9 - -
Push with grasp Rule 1,3 - - - - Rule 8,9 - -
Push with holding Rule 2,4 - - - - Rule 8,9 - -
Push apart by holding Rule 2,4 - - - Rule 9 Rule 8,9 - -
Push together by holding Rule 2,4 - - Rule 8 - Rule 8,9 - -
Pour Rule 1,3 Rule 8,9 Rule 8,9 Rule 7 Rule 5 Rule 8,9 - -
Unload Rule 1,3 Rule 8,9 Rule 8,9 Rule 7 Rule 5 Rule 8,9 - -

which shows contact along in Cartesian Z axis. Figure 2.5 (bottom) shows an example

of contact detected along Z axis.

Since multiple rules exist to detect the same relation in Table 2.3, we should assign,

which rules need to be considered in each action. This is summarized in Table 2.4 for

the actions in the library.



Chapter Library of Manipulation Actions 24

2.1.2.3 Real Primitives

In Section 2.1.1.4 we defined the abstract primitives. Here, we re-introduce these prim-

itives by adding their parameters and describe their implementations at the low-level.

For the robot arm, we have the following primitives:

• arm move(object , Toff ,P)

• arm move periodic(ax, ay, az, bx, by, bz, ω),

• arm rotate(v, θ),

• arm exert(Fdes),

And for the robot hand we have defined the following primitives:

• hand preshape(q)

• hand grasp()

• hand release()

Here we explain these primitives in more detail and discuss their specific implementation

in our system:

arm move(object , Toff ,P)

This primitive moves the end effector from the current pose to a pose relative to

object. The offset of the target from object is stored in homogeneous transformation

Toff . Equation 2.1 shows how the goal of this primitive is calculated from the pose

of the object and the offset transformation.

Pgoal = Toff Pobj (2.1)

The parameters of the trajectory are stored in P . We use Dynamic Movement

Primitives (DMP) with joining [49] to generate trajectories. The following dynamic
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equations construct trajectory in one dimension from start s toward goal g. Using

the terms used in DMP papers the transformation system is defined by:

τ ż = αz(βz(r − y)− z) + f (2.2)

τ ẏ = z (2.3)

τ ṙ =


∆t
T (g − r) if t 6 T

0 otherwise

(2.4)

where αz, βz and αg are time constants and τ is a temporal scaling factor. ż,

ẏ and y are acceleration, velocity and position respectively. r is a linear goal

function which goes from s to g. The nonlinear function f is used to deflect the

trajectory from a straight line. In our application this function is used to shape

the trajectories.

f = αω

n∑
i=1

ψi ωi v∑
i ψi

(g − y0) (2.5)

The variable v has a dynamic defined by the canonical equation:

τ v̇ = − αsv e
αsv
∆t

(τT−t)

(1 + e
αsv
∆t

(τT−t)
)2

(2.6)

The other parameters of the function f are as follow. The Gaussian kernels ψi are

defined as:

ψi = e−( t
τT

−ci)2/2σ2
i (2.7)

where ci, hi are is the center and width of ith kernel. n is the number of kernels

and a set of n weights wi is used to shape the function f . The parameter αω scales

all of the weights to adapt to different start and end points. If the weights are

learned for a start and goal point sl and gl, the scaling factor will be:

αω =
|g − s|
|gl − sl|

(2.8)

These equations are described in one dimension. To generate trajectories in 3D,

we use three of these equations for X, Y and Z axes. An example of the resulting

trajectories are shown in Figure 2.6. If we diminish the function f by setting the
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weights wi to zero, we get a straight line from start point to goal point. Examples

of straight line trajectories are shown in Figure 2.6 starting from S1 to S4. By

using proper values of weights wi we can generate trajectories with desired shape.

For example in Figure 2.6 trajectories which start from S5 to S8 have a sine wave

shape in Z axis.

So far we showed only the position trajectories. To implement arm move primitive

we need to also generate smooth trajectories for orientation, i.e. the rotation of

end-effector. Since generating trajectories for Euler angles α, β, γ separately may

result in unwanted and unpredictable orientations, we use the “axis/angle“ repre-

sentation. We know from Euler’s rotation theorem that any rotation in 3D space

is equivalent to a single rotation θeq around a fixed unit vector keq. Calculating

the new variables θeq and keq from Euler angles, is straight-forward.

The benefit of using axis/angle representing is that we can use a single DMP to

generate a trajectory for θ(t) from zero to θeq, which results in valid rotations

along the path. In addition, since the axis keq is by definition fixed throughout

one rotation, a single DMP for θ(t) is enough. For this DMP, we always set the

weigths to zero.

The generated position and orientation trajectories are fed as desired values to the

low-level control system of the robot arm. In our setup we have a KUKA LWR

robot which has the following control policy to generate commanded joint torques
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Figure 2.6: Example of trajectories generated by DMPs in 3D space. There are
different starting points S1 to S8 and all end in the origin. The trajectories S1 to S4

are straight lines with zero weights while S5 to S8 have half-sine shape.
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τcmd:

τcmd = JT (kc(X
∗ −X)) +D(q) + fdyn(q, q̇, q̈) (2.9)

where X∗ is the desired pose, X is the measured actual pose of the robot. The

coefficient kc denotes the gain of the position control which determined the stiffness

of the arm during motion. The terms D(q) and fdyn(q, q̇, q̈) are the friction and

dynamics of the robot arm which are used in the control system.

arm move periodic(ax, ay, az, bx, by, bz, ω)

For some actions we need to perform some simple periodic motions. There are

comprehensive frameworks to create periodic (rhythmic) motions on robots such

as rhythmic DMPs. However in our system we only need simple back-and-forth

and circular motions, for which a combination of sine and cosine functions suf-

fice. Therefore we implement arm move periodic primitive using the following

equations:

x(t) = x(0) + ax sin(ω t) + bx cos(ω t)− bx (2.10)

y(t) = y(0) + ay sin(ω t) + by cos(ω t)− by (2.11)

z(t) = z(0) + az sin(ω t) + bz cos(ω t)− bz (2.12)

These equations generate smooth trajectories from initial position (which is [x(0),

y(0), z(0)]). The ax and bx determine the strength of sine and cosine components

on the X axis. The period of the motion is determined by the parameter ω.

Examples of periodic motion generated in actions are shown in Figure 2.7 The

back-and-forth motion happens in a cutting action and the circular motion in a

stirring.

arm rotate(v, θ)

This primitive is implemented as a special case of the arm move primitive, using

only the rotation part. It implements a pure rotation using the axis/angle con-

vention: A rotation around the axis v with the angle θ. This primitive is used in

actions like unscrew, rotate and align, where a pure rotation along a given axis is

necessary.
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Figure 2.7: Examples of periodic trajectories in actions. (a) In the cutting action
the following parameters are used to generate a back and forth motion: ax = 0. −
008 m, ay = −0.01 m, ω = 1.8 rad/s. The initial position is x(0) = −0.6 m and
y(0) = 0.7 m. (b) In the stirring action a circular motion is generated by using the
following parameters: bx = 0.03 m, ay = −0.05 m, ω = 1 rad/s. The initial position is

x(0) = 0.187 m and y(0) = 0.55 m.

arm exert(Fdes)

Manipulation actions sometimes need more than just pure position control. In

some tasks we need to also regulate the force exerted at the environment. Many

times it is important to have both position and force control at the same time. For

example in a cutting action, the robot arm keeps a force between the knife and

banana in the Z direction (constrained space), while moving the knife back and

forth in the XY -plane (unconstrained space).

This is possible by using parallel position-force control schemes such as one intro-

duced in [50]. The following control policy is used in this case:

τcmd = JT (kc(X
∗ −X) + Fcmd) +D(q) + fdyn(q, q̇, q̈) (2.13)

Here the term Fcmd implements a force control which is has feed-forward and PI

terms:

Fcmd = Fdes +Kp(Fdes − f) +KI ∗
∫

(Fdes − f) (2.14)

Example of force control is shown in Figure 2.8 where the desired force is Fdes =

[0, 0, 1]T N .
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Figure 2.8: Example of force control using the arm exert primitive. The desired
force is 1 N in Z direction.

hand preshape(q)

This primitive is used to create a desired shape of the robotic hand. Our robot

hand (Schunk SDH-2) has 3 fingers and in total 7 DOFs. The control system of

the hand has the ability to move to a desired configuration:

q = [q1 , q2 , q3 , q4 , q5 , q6 , q7 ]T (2.15)

Two sample configurations are shown in Figure 2.9 which are the power and pre-

cision grasps used for round and elongated objects, respectively.

(a) Precision Grasp (b) Power Grasp

Figure 2.9: Two pre-shape configurations are used in our system. The power grasp
(right) is used for symmetric objects while the precision grasp (left) is for elongated

objects.
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hand grasp()

To manipulate objects usually it is needed to grasp them first. For grasping, we

use velocity control of finger joints together with feedback from tactile sensors on

the fingers. The combination of hand preshape and hand grasp primitives enables

us to grasp simple objects, which is enough to demonstrate the functionality of the

proposed execution system. The complex problem of grasping arbitrary objects is

not in the scope of this research.

hand release()

This primitive is used to release a previously grasped object which is simply open-

ing the hand until the tactile sensors show that the object is released.
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2.2 Ontology of Actions

In Section 2.1 we listed the necessary components to define and execute manipulation

actions. Our goal in this section is to enumerate the actions within this framework and

categorize them. We use the object categories defined in Table 2.1 to derive all possible

manipulation actions and create an action ontology. The actions have three components:

1. Objects

2. SEC matrix (Relations)

3. Primitives

We try to enumerate all possible actions by starting from the simplest actions (involving

minimum required objects) and increase the complexity by adding more objects. From

constraints 1 and 2 derived in Section 2.1.1, we know that each action at least has the

manipulator and main objects. We also assume that the main object is not floating in

space at the beginning (and the end) of an action. It lies on some other object i.e. main

support or primary.

If the main object rests on another object throughout the action, the other object is

called main support. If otherwise there is a T to N transition between the main and its

support at the beginning, this object is called primary object. These two cases create

the first two categories. Another category arises when there is additionally a load object.

This is an object which is manipulated indirectly by the manipulator.

Category Sub-Category Example Actions

Actions with main support

Actions with hand, main and main support push, punch, flick
Actions with hand, main, main support and primary push apart, cut, chop
Actions with hand, main, main support and secondary push together
Actions with hand, main, main support, primary and secondary push from a to b

Actions without main
support.

primary 6= secondary and primary support 6= secondary support pick and place, break off
primary 6= secondary and primary support = secondary support pick and place, break off
primary 6= secondary and primary = secondary support put on top
primary 6= secondary and primary support = secondary pick apart
primary = secondary pick and place, break off

Actions with load and container
The relation of load and main changes from N to T (loading) Pipetting
The relation of load and main changes from T to N (unloading) Pour, Drop

Table 2.5: Summary of ontology of actions. Actions are divided into three categories
and further into sub-categories. There can be more than one action in each sub-category.

The categories are summarized in Table 2.5. The actions in the ontology are listed in

Appendix A. Here we briefly explain these categories:
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1

m.s

m

2

m.s

m

3

m.s

m

Relation / State 1 2 3

manipulator, main N T N

main, main support T T T

Abstract Primitives

P1 hand preshape arm move(main)

P2 arm move(main) -

Figure 2.10: The action Poke is an example from Category 1

Actions with main support

Actions with manipulator, main and main support. During the action, the main

object is always attached to the main support. The manipulator approaches the

main object, touches it and manipulates it. Then it retracts and the action ends.

Actions like push, rotate and cut are examples of this category. The structure of

a Poke action is shown in Figure 2.10.

Actions without main support

In the actions of this category, there is no main support. This usually means that

there is an air phase in these actions, in which the manipulator grasps the main

and lifts it. In these actions we can always identify a primary and a secondary

object (although sometimes they are the same object). Actions like Pick and place,

Put on top are in this category. The structure of a Pick and place action is shown

in Figure 2.11.

Actions with load

Actions of this category include an object which is manipulated or transfered

indirectly (load object). Here we have actions like load, unload and pour. The

structure of an Unload action is shown in Figure 2.12.
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Relation / State 1 2 3 4 5

manipulator, main N T T T N

main, primary T T N N N

main, secondary N N N T T

main, primary support N N N N N

main, secondary support N N N N N

Abstract Primitives

P1 hand preshape arm move(primary) arm move(secondary) hand ungrasp()

P2 arm move(main) - - -

P3 hand grasp() - - -

Figure 2.11: The action Pick and place is an example from Category 2
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Containers.sp.s
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Containers.sp.s

Relation / State 1 2 3

manipulator, main N T T

main, primary T T N

main, secondary T T N

main, load T T N

load, container T T N

Abstract Primitives

P1 hand preshape arm move(primary) arm move(container)

P2 arm move(main) - -

P3 hand grasp() - -

4

m

p s Load
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p s Load
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Relation / State 4 5 6 7

manipulator, main T T T N

main, primary N N N N

main, secondary N N T T

main, load T N N N

load, container T T T T

Abstract Primitives

P1 arm move(container) arm move(secondary) hand ungrasp()

P2 - - arm move(secondary)

P3 - - -

Figure 2.12: The action Unload is an example from Category 3
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2.3 Action Execution

In this section the details of action execution will be presented which relies on the

action definition presented in Section 2.1. The definition has symbolic and sub-symbolic

components which need to be connected in the execution phase. To this end we introduce

a mid-level whose main component is a finite state machine (FSM). We define the states,

inputs, outputs and transitions of the FSM in a way that it serves as a mid-level in the

action definition and enables us to execute them. Afterwards, we introduce an action

execution engine which is a state diagram implementing the execution in a robotic

software framework.

2.3.1 Mid-level sequencer: Finite State Machine

In order to execute the defined actions, the primitives need to be executed in a sequence,

taking into account the relations between objects. There should be a connection between

the high- and low-level components. This connection is established by introducing a FSM

as the middle layer of actions.

An FSM is a logic unit, that determines outputs and the next state of a system, based

on the current state and inputs. It is formally defined as a 6-tuple (S,U, Y, f1, f2, s1).

The following paragraphs show the definition of these variables. It is also shown how

these variables are related to the high-level and low-level components. In particular,

the variables for a Put on top action are derived to show a complete example. For the

Put on top example the resulting FSM is depicted in Figure 2.13.

2.3.1.1 States(S)

There exists a finite set of states in an FSM, denoted by Si. The interpretation of

these states depends on the application. In our application, the touching relation of

objects determines the state. In execution, the number of states is equal to the number

of columns of the SEC matrix. For example, the SEC matrix of Put on top has five

columns, therefore the FSM has five states : S = {S(1), S(2), · · · , S(5)} as shown in

Figure 2.13.
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2.3.1.2 Inputs(U)

The inputs of the FSM, should be mapped to the inputs of the system. The inputs help

to decide which state transition should be made. In action execution, the inputs are the

real relations of the object in the scene. The number of inputs depends on the number of

objects involved in the action. In our example, there are 5 abstract relations, therefore

we need 5 inputs U = [U(1), U(2), U(3), U(4), U(5)]T where:

U(1) = R(manipulator,main)

U(2) = R(main, secondary)

U(3) = R(main, primary)

U(4) = R(primary, secondary)

U(5) = R(main, secondary sup.)

The inputs U are shown near the transition arrows in Figure 2.13.

2.3.1.3 Outputs(Y )

An FSM can produce outputs depending on current state and inputs. These outputs

are defined in terms of defined commands of the application. In our application, the

outputs are a set of arm/hand primitives, which should be sent to the control system.

In the Put on top example there are five states, therefore there are five outputs Y =

{Y (1), Y (2) · · · , Y (5)}, shown in Figure 2.13:

Y (1) =
[
hand preshape() arm move(main) hand grasp()

]
Y (2) =

[
arm move(primary) − −

]
Y (3) =

[
arm move(secondary) − −

]
Y (4) =

[
hand release() arm move(secondary) −

]
Y (5) =

[ ]
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Since the last state is already the goal state, the last output is always empty.

2.3.1.4 State transition function(f1)

The state transition function determines the next state, based on current state and

inputs.

In action execution, the transition from state i to i + 1 happens when the inputs are

equal to the (i+1)th column of the SEC matrix. When checking the equality, the inputs

that correspond to don’t-care relations are not taken into account. Hence, the transition

function for Put on top example is as follows:

f1(S(i), U)
i=1,2,3,4

=

S(i+ 1) if U = SEC(:, i+ 1)

S(i) otherwise
(2.16)

2.3.1.5 Output function (f2)

In general, the outputs of an FSM depend on state and inputs. However, here we use a

specific kind of FSM called Moore machine, in which outputs depend only on the states.

Hence, we have a simple output function which associates outputs to each state:

f2(S(i))
i=1,2,3,4

= Y (i) (2.17)

2.3.1.6 Initial state(S(1))

The initial state is associated with the first columns of the SEC that represents the

initial relations between objects. It is assumed that at the beginning the real relations

match the first column of the SEC matrix, otherwise the action won’t start.
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S1 S2 S3 S4 S5

R ( manipulator, main)

R ( main, secondary)

R ( main, primary)

R ( secondary, primary)

Relation/State

R ( manipulator, primary)

R ( main, primary sup.)

R ( manipulator, secondary)

R ( main, secondary sup.)

S5

N
A
A
T
N
T
A
N

S1

N
A
A
N
T
T
A
T

Y(1)

S2

T
A
A
N
T
T
A
T
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T
A
A
T
N
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A
A
N
N
T
A
N

Primitive 1

Primitive 2

hand
_preshape

hand
_release

arm_move

(prim.)

- -

-

-

Primitive 3 hand_grasp - - -

arm_move

(main)

arm_move

(sec.)

arm_move

(sec.)

-

Y(2) Y(3) Y(4) Y(5)

Figure 2.13: The finite state machine (FSM) for Put on top action is shown. The
states of the FSM (S1 to S5)are related to the columns of SEC matrix and states of
the action. The action starts if initially inputs(real relations) match the first column
of the SEC matrix. At each state, the FSM outputs (Y1 to Y5) are executed which are
the defined primitives of each column. The transition to from state i to i + 1 occurs
when the inputs match the i + 1-th column of the SEC matrix. Otherwise, the next
state is the same as the current state (loop transitions). This process is continued until

reaching the final state which corresponds to the last column of the SEC matrix.
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Figure 2.14: State diagram of the execution engine which controls the execution
of actions. This state machine is the main component of the mid-level. The show the
diagram more clear, different colors are used for normal execution (blue), error handling

(orange), failure (red) and success (green) states and transitions.

2.3.2 Action Execution Engine

The finite state machine described in Section 2.3.1 must be implemented in a software

which is able to communicate with sensors and other robot hardware. We developed an

action execution engine as a component of the OROCOS (Open Robot Control Software)
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framework ([51, 52]). The OROCOS framework provides tools to develop real-time

robotic software.

The overview of the execution process is shown in Figure 2.14. The execution engine

starts by receiving an action command and after checking the initial relation, moves

forward and executes the primitives one by one in order to create the desired changes

in relations. The variables current column is used to track the progress of the action

and points to the current column of SEC matrix. The details of states and transitions

are as follows:

• Initialize: After receiving a new action command, the high-level definition of the

desired action is loaded. The variable current column is set to 1 to point to the

first column of SEC matrix. The action command consists of the action type, the

main and other objects involved in the action.

• Check Initial Relations: Here the current relations of objects are compared to

the first column of SEC matrix of the commanded action. The pre-condition of

executing the action is that the two are equal, otherwise the FSM transitions to

the Failure state.

• Go to Next Column: This state increments the variable current column and

causes the action to progress from one column of SEC to the next. If we are

already in the last column of SEC, it transitions to Success state, which means

the action is done successfully.

• Select Primitive: In this state the next primitive of the current SEC column is

selected. If available, we transition to the Execute Primitive state. Otherwise we

are entering the Error state and we need to handle the error, since this implies

that all primitives of the current SEC column are executed but the desired changes

in relations did not happen.

• Execute Primitive: The selected primitive is executed here. This state has

several sub-states, each performing one type of primitive. To keep the diagram

simple, they are not shown in Figure 2.14. In this state, the relations of ob-

jects are monitored and if they change to the desired values, we transition to the

Go to Next Column state. If relations change to unwanted values, the next state
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will be the Error state. Finally if the primitive is done and no change in rela-

tions is detected, it transitions to the Select Primitive state, to look for the next

primitive.

• Error: This state indicates that the execution of the current action is not pro-

gressing as expected. However, there is still hope to recover from the error, and

continue the execution. There are two ways to enter this state. First, the primi-

tives defined for the current SEC column are all executed but the desired change in

relations has not occurred. Second, during the execution of primitives an unwanted

change in relations happened.

In this state we try to go back to a previously known state of the action, and

continue from that point. Usually this means that the robot arm retracts from

the scene and receives new object poses and relations. After receiving the new

perception, we transition to Evaluate Relations state. In Section 4.1 we will

show some examples of handling errors.

• Evaluate Relations: After receiving the new perception in Error state, we

evaluate the current situation of the objects in this state. If for these relations, we

could continue from the last known state, we transition to Go to Next Column

state and continue the execution. Otherwise, we go to Failure state since we are

in an invalid state and can not proceed.

• Failure: If the relations of objects are in a way that there is no known way to

proceed the execution, we transition to Failure state. At this point we stop the

execution and announce failure. The failure is reported to the operator or the

high-level planner, so that a proper decision can be made. Note that there is no

high-level planner introduced here, since it is not in the scope of this work.

• Success: This state is entered if the action is successfully executed according to

the SEC matrix.
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2.4 Results

In this section, we will present various experimental results of our proposed action exe-

cution framework. Results cover execution of both, single actions (e.g. Cutting, Pushing,

etc.) and chained actions such as “making a salad”. Before presenting these results, we

briefly introduce our hardware and software tools used in the experiments.

2.4.1 Hardware

Our setup consists of a robot manipulator, a three-finger robotic hand and a vision

interface.

2.4.1.1 Robot Arm

Our robot arm is a KUKA LWR (Light Weight Robot) IV manipulator. It is a kine-

matically redundant anthropomorphic manipulator developed jointly by KUKA Robot

Group and the German Aerospace Center (DLR). It has 7 DOFs and is equipped with

position and torque sensors at each joint. It estimates the external torques applied to

each joint which also gives an estimate of external force and torque at the end-effector.

The robot can be controlled both in joint and Cartesian spaces with variable compliance

and damping.

2.4.1.2 Robot Hand

Our robot hand is a Schunk Dexterous Hand 2 (SDH-2) produced by the company

Schunk. It has three fingers and 7 degrees of freedom, which can be controlled in

position or velocity modes. It is equipped with two tactile sensors on each finger, that

provide feedback while grasping objects.

2.4.1.3 Vision System

Our vision system includes a static RGB-D (Asus Xtion) sensor and a DSLR camera

(Nikon D7200). The RGB-D sensor provides both color and depth cues which are

processed for image segmentation and tracking issues. The DSLR camera is further
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integrated into the vision system to capture high resolution images of the scene for the

purpose of object recognition. The vision system is developed using the ROS framework

(See [47] and [48]).

2.4.2 Single Actions

To quantitatively evaluate the proposed action execution framework, we conducted a

large set of experiments with several types of actions and objects. The central goal here

is to benchmark the success of the execution of actions provided in the library. Note,

to arrive at a useful characterization of this framework all actions are analyzed without

error handling. Only by this decisive percent-success values can be measured.

We are not concerned with complex computer vision, thus, colored and texture-less

objects were mostly preferred in the experiments to cope with the intrinsic limitations

of the imaging sensors and to have more reliable visual segmentation of perceived scenes.

Figure 2.15 illustrates the set of manipulated objects, which contains in total 19 different

objects in 8 categories:

1. round fruit

2. long fruit

3. cups

4. cubes

5. plates

6. knifes

7. spoons

8. boards

Figure 2.15: The set of objects used in our experiments. There are in total 19 objects
in 8 categories: 1-Round fruits 2-Long fruits 3- Cubes 4-Cups 5-Containers 6-Plates 7-

Spoons 8-Knives.
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Table 2.6: List of 10 atomic actions stored in the library and also used in experiments
introduced in Section.2.4.2. The last two columns show sample objects used in each

action.

# Action Name Explanation Main Tool Primary Secondary

1 Pick and Place The main object is cup, apple, orange, - table table
picked from primary cucumber, eggplant, -
and placed on the same object. bucket, plate, box -

2 Push with Grasp The main object is box, apple, orange - - -
pushed to the goal position cucumber - - -
after being grasped.

3 Push with Holding The main object is box, apple, orange - -
pushed to the goal position
after being held on top

4 Poke The main object is poked. box, apple, orange - -

5 Put on Top The main object is put on top cup, cucumber, - table box, bucket, cup
of the secondary object. apple, orange - table plate, board

6 Take Down The main object is taken down cup, banana, - box, bucket, cup table
from the primary object. apple, orange - board table

7 Push apart by holding The main object is pushed orange, box - apple, cup
apart from primary after
being held from top.

8 Push together by holding The main object is pushed apple, orange - box
to secondary after.
being held from top.

9 Cutting The main object is cut zucchini, cucumber knife
by the tool. banana

10 Stirring The main object is stirred bucket spoon, knife
by the tool object.

The first ten actions defined in Table 2.4 are performed using objects of various types,

sizes, shapes and poses (see Figure 2.15). The executed single actions with their brief

explanations and involved objects are listed in Table 2.6.

We evaluate the results of experiments in two ways. First, the success rate of execution

of each action type is measured. These results give an overview of the execution perfor-

mance of actions on different object categories presented in various scene contexts. Thus,

we can measure the robustness as well as the generalization capacity of the proposed

action library. Second, we plot variations in the low-level sensory input, such as tactile,

position, and contact signals, while the action is being executed. In these results, we

can obtain information on the underlying perception mechanism in the execution frame-

work and the discretization of the low-level continuous sensory data to reach high-level

symbolic action representation.

We have selected 10 actions from the ontology and applied them to 19 objects in 8

categories. To evaluate success rates, we repeated 10 single actions on 10 different

object sets and repeated each with 3 different poses. Thus, we obtained 30 trials for
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Figure 2.16: Overall success rate of 10 atomic action execution after 30 trials for
each.

each action, i.e. in total 300 experiments. The overall success rate per action type is

shown in Figure 2.16. Red bars in the figure depict the standard error of the mean.

The first result is that in 7 out of 10 actions, the success rate is equal or more that 50

percent. This shows that the system is able to cope with different objects and poses
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Figure 2.17: Success rate of executing actions in each object category. Each action
is executed 30 times using different object sets. The ratio of successful trials are shown
for each object category (middle columns). For actions involving grasp, the results are
separately shown for each grasp type. The overall success rates on each grasp type and
average success scores are shown in the last two columns. The values in the last column

match the final average accuracy rates shown in Figure 2.16.



Chapter Library of Manipulation Actions 46

for most of the actions. The second impression that the figure conveys is that there

is a prevalent failure, mostly observed, in the execution of pushing actions which were

mainly performed by just holding objects without applying any certain grasp, e.g. push

with holding described in Table 2.6. The overall accuracy was measured as 64.5% and

this value reached 75.8% in the case of excluding those failed pushing types. The main

reason of this accuracy drop in pushing actions is due to the shape of manipulated

objects. For instance, while the robot was gently holding the object, e.g. an apple,

to push it, the object slipped over the contact surface and, thus, led to a failure of the

action. It is known that such types of actions are exceedingly difficult for robots but also

for humans and we have often to reactively correct grasp and push to succeed. Hence,

building in reactive correction mechanisms would certainly mitigate this problem.

We also observed a low success rate of about 50% for the cutting and stirring action types.

In the stirring action, some of the failures occurred because the manipulated spoons were

slightly too big for the containers. In the case of the cutting action, failures were due

to inability to cut thick objects such as round fruits (apple or orange). Human cutting

operations are heavily dominated by reacting to the “feel” of cutting and correcting

force and angle.

A more detailed analysis on the execution of single actions is given in Figure 2.17. The

results are separately computed for each individual action and object category. For

those actions which require object grasping, the results are also categorized according

to the grasp type. We here note that object grasping is not in the focus of this study

and therefore in our experiments we only considered two types of grasps: power and

precision. The average success rate for each grasp type and for the entire experiment

are shown in the last three columns. For instance, in Pick and place action, 21 out of 30

trials were successfully performed with power grasp, which led to 67% average accuracy,

whereas it was computed as 100% for the precision grasp. The details of single action

experiments are provided in Appendix B.

We can further analyze the cause of failures. We divide failures into two groups: sys-

tematic and random. A systematic failure is the one that happens every time when

we perform a certain action on a certain object category. In other words, a systematic

failure is the indication of applying an action on a wrong object category. For example,

cutting cups with a knife or trying to stir with round fruits. On the other hand, a
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random failure may or may not occur depending on the pose or size of the manipulated

objects. This type of failure may be prevented by modifying the object size or pose. For

example, we could not stir with a big spoon in a small cup, but replacing with a smaller

spoon, stirring actions in the same cup succeeded.

In this regard, for the entries in Fig.2.17 indicating that the action does not succeed

regardless of the object sizes and poses, i.e. due to a systematic failure, we conclude

that the selected object category does not afford that action. In this sense, the proposed

framework can be used to explore action related affordances on different object types,

which can further be passed to any high-level task planner. Note that such reasoning

also plays a vital role for cognitive robots exploring grounded object affordances.

Next, we take a closer look at the low-level sensory data including the position, tactile,

and force contact signals of the robot arm during the experiments. Here, we aim at

topological changes in the perceived scene by fusing data from several sensors, and to

calculate object relations.

Figure 2.18 shows the position, tactile, and force sensor data together with detected

relational changes between objects and the robot arm during the execution of a sample

Put on top action. The first plot in Figure 2.18 confirms that due to the use of DMPs

with joining, the robot arm seamlessly follows the desired goal positions which are

indicated with circles. In the second plot in Figure 2.18 we also see that the tactile

sensor is activated once the primary object is grasped. In a similar manner, the force

sensor reports a contact when the object is placed. All these sensory data together with

the visual feedback are fused to detect final spatial relational changes in the scene as

described in section 2.1.2.2. Figure 2.18 at the bottom illustrates the extracted SEC

representation over time for the Put on top action as a colored matrix which is identical

to the one stored in the action library as shown in Figure 2.3. This plot confirms that

the proposed action execution framework can successfully process continuous sensory

data and extract descriptive states in the scene, which yields compact high-level action

representation, i.e. SEC.

In Figure 2.19, we show similar plots for a Cutting action in which the robot first grasps

a knife and then cuts a cucumber into pieces. The position plot on the top highlights the

oscillatory motion pattern of the robot arm during the actual cutting phase. Note that

in some cases the actual robot position does not meet the goal position. This is expected,
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Figure 2.18: Low-level sensory data in a sample put on top action. The position,
tactile and force contact signals are shown on the top. All changes in object contact
relations are shown in the bottom plot as a color coded SEC matrix. Here, blue and
yellow represent Touching (T ) and Not touching (N) respectively. The gray color shows
either Absence (A) or relations which are not important (dont-care). Some sample

snapshots at the bottom show the scene topology at each state of the action.

since whenever the desired relation changes happen, the current primitive is ended and

the state machine moves to the next primitive. The second row shows how the tactile

sensors detect the contact which happens at the hand grasp() primitive (grasping the

knife) and how this signal vanishes right after the hand release() primitive.

The force signal in Z direction is used to verify the contact between the tool and main
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Figure 2.19: Low-level sensory data in a sample cutting action. The position, tactile
and force contact signals are shown on the top. In the cutting action, a part of the
trajectory corresponding to the back and forth motion of knife is zoomed in to show
the oscillatory motion pattern. All changes in object contact relations are shown in the
bottom plot as a color coded SEC matrix. Here, blue and yellow represent Touching
(T ) and Not touching (N) respectively. The gray color shows either Absence (A) or
relations which are not important (dont-care). Some sample snapshots at the bottom

show the scene topology at each state of the action.

objects, in this case the knife and cucumber, which triggers the oscillatory motion. The

extracted SEC is again the same as the one stored in the action library (see Figure 2.3).

In Figure 2.20 and Figure 2.21 we show the 3D trajectory of the robot arm for both Put

on top and Cutting actions. The start and the end of the trajectory as well as position

of objects in the action, are highlighted with red circles and text labels.
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2.4.3 Chained Actions

To demonstrate the scalability and strength of the proposed framework, we further

benchmarked our system with execution of chained actions. For this purpose, we defined

two scenarios. In the first scenario, the robot arm was given the task of performing

three atomic actions: Take down, Push, and Put on top. The second scenario is a more

challenging task: making a salad.

Figure 2.22 shows the robot execution of the first chained action scenario. The first

three plots depict the low-level sensory data. Due to having three atomic actions, there

exist three peaks in the force sensor, whereas we obtain only two contact changes in

the tactile sensor. In each action there is one interval at which the contact in Z axis is

detected. However, we can see that in the second action there is no grasping.

In the second scenario, i.e. the salad making task, the robot performed a longer action

sequence, in which we additionally introduced the last two actions defined in Table 2.4:

pouring and unloading. Consequently, the salad scenario contains the following steps:

1. Pick up a cucumber and put it on a cutting board

2. Grasp the knife and cut the cucumber

3. Grasp the cutting board and unload the cucumber pieces into a bowl

4. Grasp the bottle and pour its content into the bowl

5. Grasp a spoon and stir ingredients in the bowl

The final results of the salad scenario are shown in Figure 2.23. The low-level signals

and high-level symbolic object relations are shown as usual. For the sake of clarity,

sample snapshots for all five actions are shown vertically with horizontal arrows on the

top showing the corresponding temporal interval of each action.

Note that in both scenarios, we assume that the high-level action plan is given in advance

since we are not addressing any planning related issue in this study. Our only aim is to

introduce a generic representation for the seamless execution of atomic and sequential

actions independent from variations in the scene context.
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Figure 2.22: Robot execution of three chained actions: 1- Taking down the red apple
from the box 2- Pushing the box by holding. 3- Putting the green apple on top of
the box. From top to bottom are shown the position, tactile, and force sensor data as
well as the changes which are detected in the relation of objects in the scene. Sample
snapshots for some SEC states are also depicted with numbers showing their order.

Black arrows represent temporal interval of each action.

The supplementary video is provided to show the execution of single and chained actions

and the error handling examples. (see the following page: https://sites.google.com/

site/aeinwebpage/actions/videos)

https://sites.google.com/site/aeinwebpage/actions/videos
https://sites.google.com/site/aeinwebpage/actions/videos
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Figure 2.23: Robot execution of a salad preparation scenario which involves 5 atomic
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the position, tactile, and force sensor data as well as the changes which are detected
in the relation of objects in the scene. Sample snapshots for some SEC states are also
depicted at the bottom. Black arrows represent temporal intervals for atomic actions.
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2.5 Conclusion

In this chapter we introduced a novel definition of manipulation actions with both sym-

bolic and sub-symbolic components. We also introduced a mechanism for executing

them on a generic robot arm/hand manipulator. We showed the execution results for

single actions as well as longer tasks in chained actions. (For more details of single action

results see Appendix B)

While actions are successfully executed with a variety of objects and poses, we have also

failures. By applying the actions on more objects with different sizes and poses, we can

separate the random failures from systematic ones and reach some conclusions about

object-action affordances. Random failures can be solved by altering the parameters

of the action execution. This motivates us to use parameters beyond the predefined

ones used so far. In the next chapter, we investigate two methods of improving the

parameters from human demonstrations and by using previous experiments.

The majority of this chapter and results are from our submitted paper [53].



Chapter 3

Bootstrapping Action Execution

In Chapter 2 we presented a multi-level definition and a mechanism for execution of

manipulation actions. In this chapter we want to enhance the performance of action

execution by incorporating the concept of structural bootstrapping [54].

Structural bootstrapping is an idea based on the concept of structural and syntactic

bootstrapping which exists in child language acquisition literature [55–57]. In linguistics

it means that children have innate language learning abilities in form of internal models.

In the context of robotics and AI, bootstrapping attempts to increase the speed and effi-

ciency of learning by building generative models, using existing structures or “scaffolds”

to learn novel concepts. This approach enables generalization and learning of new skills

from a small set of training data such as the method of [16]. Structural bootstrapping

can be employed at both high- and low-level components. We use our action definition

as the scaffold for bootstrapping.

We apply bootstrapping to go beyond actions with pre-programmed parameters. We

develop two mechanisms for bootstrapping, one which includes human demonstrations

and another by means of semantic compilation of previous experiences.

In the first mechanism, we propose a method to obtain the parameters of actions from

human demonstrations. We perform the human demonstration by different methods

and record the data from various sensors. Then by processing these data, we calculate

a sequence of primitives. These primitives are stored in a generalizable way, and can be

executed in a different situation.

55
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The second bootstrapping mechanism aims at combining and re-using parameters from

previous experiments, to execute new instructions. An algorithm is developed for this

and used in some illustrative examples. We call this process “compilation”. To im-

plement compilation we use a special data structure called action data table (ADT) to

represent and store a single action execution. An ADT file is an XML file defined with

a grammar which includes both high- and low-level action parameters. This format is

closely related and compatible to the proposed action definition and ontology in Chap-

ter 2. While action definition and ontology define actions in general, an ADT stores the

data for a specific example of an action with certain objects and poses.

This chapter is organized as follows. In Section 3.1 we give an overview of data acqui-

sition method. Next, in Section 3.2 we present an algorithm to automatically obtain

action parameters from human demonstrations. In Section 3.3 we show how we can

compile new actions by combining data from existing actions. We show some results in

Section 3.4 and conclude this chapter by a discussion in Section 3.5.

3.1 Data Acquisition

To perform bootstrapping, we need to analyze human demonstrations of action. In this

section we describe two methods to record data from human demonstrations. First,

we describe how we record actions by kinesthetically guiding the robot manipulator.

Second, we show that we can record similar data in an augmented reality environment.

3.1.1 Demonstration by Kinesthetic Guidance

Kinesthetic guidance is a method of human-robot interaction, in which the human op-

erator holds the robot and performs a task. By recording the trajectories of the robot

arm, it is possible to repeat the exact same task. Recent progress in building compliant

and kinematically redundant robots makes this kind of human-robot interaction more

important, since explicit modeling of these manipulators becomes more difficult. At

the same time, kinesthetic guidance becomes easier thanks to lightweight and compliant

manipulators.
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Figure 3.1: The operator performs a kinesthetically guided demonstration. The bottle
cap is being unscrewed from the bottle.

Since we use an RGB-D sensor to record point clouds, we record the data in two epochs:

once with the human operator, and once without.

1. First the human operator performs a task (like unscrew the cap of a bottle shown

in Figure 3.1) by holding the robot arm and moving it. The operator moves the

joints of robot hand for grasping or re-shaping the hand. The robot arm is made

compliant by setting its stiffness parameters to low values, so that the operator

can move it around easily. In this epoch the robot arm and hand joint values are

recorded so that the same task can be reproduced without the human.

2. In the second we perform the same action by replaying the recorded trajectories.

This time we record the point cloud with RGB-D sensor as well as all the available

data in configuration and task space. We record the arm joint angles and torques,

arm end effector pose and force, and the hand joint angles and tactile sensor

output. All of these data are stored in a file and stored for each demonstration.

Since we use ROS [58] as our communication framework, we store all data in ROS

data format (Rosbag).

The data recorded in the unscrew example is shown in Figure 3.2. These can be used to

do the exact same action on the same objects in the same positions. However to do any

kind of generalization, we need to analyze these data to find the semantics of actions.
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We do this by using our action definition framework and obtaining their parameters

from the recorded data in Section 3.2.
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Figure 3.2: The data recorded in the demonstrated Unscrew action of Figure 3.1.
(a),(b) Cartesian position and orientation of the end effector of the manipulator. (c)
The joint angles of the robot hand. (d) The tactile sensor readings during the action.

3.1.2 Demonstration in Virtual Reality

1 2 3

4 5

Figure 3.3: An example of Insert action demonstrated in the simulated environment.
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The second method we use for recording human demonstration is a virtual reality envi-

ronment introduced in [59]. Here the gazebo [60] simulator is used to benefit from its

realistic physics engine. The movements of operator’s hand are projected to a simulated

hand via a motion sensing game controller called Razer Hydra. The pose of objects

(including the robot gripper) and their touching relations are recorded at each time-step

of the simulation.

An example of Insert action performed in this environment is shown in Figure 3.3 The

data obtained in this demonstration are shown in Figure 3.4.
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Figure 3.4: The data recorded in the Insert example demonstrated in the simulated
environment. (a),(b) Cartesian position and orientation of the end effector of the ma-
nipulator. (c) The width of the robot hand. (d) The tactile sensor readings during the

action.
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3.2 Bootstrapping from Human Demonstration

The goal of this section is to process the recorded data and obtain generalizable descrip-

tions for the actions. From each experiment, we are looking for three components:

• SEC matrix

• Object Roles

• Action Primitives

Figure 3.5: The process of finding action description from human demonstrations.
The demonstrated action is recorded and three main components are calculated: 1-
SEC matrix 2-Object roles 3-Action primitives. The trajectories are further analyzed

to find the types, arguments and parameters of the primitives.

The block diagram of this process from demonstration to finding the parameters of

primitives are shown in Figure 3.5 In the following sub-sections we explain the methods

to calculate these components from the recorded data.
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3.2.1 Calculating the SEC matrix
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Figure 3.6: The relations of objects during the demonstrated Put on top action of
Figure 3.8 are shown. The SEC matrix is also derived.

The SEC matrix is introduced in Section 2.1.1.2. To calculate the SEC matrix we should

track the touching relations of objects in the scene. In the kinesthetically guided demon-

strations we use our vision system which segments and tracks objects [61]. Each object

is represented by a labeled 3D point cloud and the touching relations are calculated

by estimating the minimum distance between two objects. The relations are monitored

throughout the action. For our Put on top example of Figure 3.8, the resulting relations

and SEC matrix are shown in Figure 3.6.



Chapter Bootstrapping Action Execution 62
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Figure 3.7: The relations of object during the demonstrated Insert action of Figure 3.3
are shown. The SEC matrix is also derived.

In the simulated experiments, we have the exact poses of the objects in the scene and

calculating the relations is easier. The relation of objects and the SEC matrix for the

Insert example are shown in Figure 3.7.

3.2.2 Calculating the Object Roles

Here we want to find the role of each object in the action. The roles are defined in

Table 2.1. We find the roles based on only the relation changes, in a similar way to the
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method in [17]. Note that we do not assume that we know any of the objects, not even

the manipulator.

We follow the following steps and show this again by the Put on top example:

• The manipulator and main should make a sequence of N T N changes. We can

see that the only relation that has such a sequence is the relation of hand and

bottle. First we assume that the hand is the main object. We check the other

relations involving the hand: R(hand, bottle holder) and R(hand, table). Since

these relations are both constantly N , the hand can not be the main object.

Therefore the hand is the manipulator. Therefore we conclude that the bottle is

the main object.

• The primary object should make a T N transition to the main. This defines the

role of primary.

• The secondary object should make an N T transition with the main, which means

it is the bottle holder.

• The bottle holder is also touching the table, which means that the primary and

secondary object are also touching. By comparing the positions of bottle holder

and table, we find that the bottle holder is on top of the table. Therefore, the

primary object is also the secondary support.

For the Insert example of Figure 3.3, we can find the object roles in a similar way:

• We look for N T N changes in the relations. The relations R(hand, knife) and

R(hand, table) both have such transitions. We can first conclude that hand is the

manipulator since it does not make a touching relation at the beginning and the

end of the action.

• Both table and knife could be our main object but since the knife has both T N

and N T transitions, we know it is the main. We note also that table has several

other constant T relations with the bottle, the jar and the bottle cap.

• Since the knife is the main, we can identify table and jar to be primary and

secondary object respectively.
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Table 3.1: The object roles of two examples are obtained by analyzing the object
relations. The Put on top example is shown in Figure 3.8 and the Insert action is

performed in the simulation environment of Figure 3.3.

Object Role Put on top Insert

manipulator hand hand

main bottle knife

primary table table

secondary bottle holder jar

secondary support table table

• The table is also the secondary support since it constantly touches the jar.

The object roles of these two examples are summarized in Table 3.1. This type of simple

geometric reasoning generalizes to all analyzed actions and, thus, we can always find the

different object roles.

3.2.3 Calculating the Action Primitives

We process the trajectories and sensor data from the recordings to find primitives like

arm move(main), arm rotate() and hand grasp(). We are also interested in their pa-

rameters, timings and the column of SEC matrix they belong to. The demonstrated Put

on top action shown in Figure 3.8 will be used as an illustrative example.

We obtain the primitives in two steps described below.

1. Segmentation of the recorded trajectories.

The robot arm and hand trajectories are divided into segments and a primitive

is assigned to each of them. The criteria for segmentation is the direction of

movement. This means that within each segment, we want to have a motion

towards the same target.

2. Obtaining generalizable primitives from segmented data.

The goal of this step is to determine the type of the primitives and calculate their

parameters. For the robot arm primitives, we want to distinguish arm move() and

arm rotate() primitives. Furthermore for the arm move() primitives we want to

determine the target objects (main, primary, etc.) and calculate the offset trans-

forms Toff . In case of arm rotate() we would like to calculate the axis and angle

of rotation.
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Figure 3.8: The data recorded from the demonstrated Put on top action are shown.
At the top, the snapshots of the demonstration without the operator (second round) is
shown. The end effector position and orientation are shown in plots (a) and (b). For
the robot hand, the joint angles and tactile sensor readings are shown in plots (c) and

(d).

For the primitives of the robot hand, we would like to distinguish between

hand preshape(), hand grasp() and hand release() and find their parameters.

3.2.3.1 Segmentation of Trajectories

Segmentation of trajectories is a difficult task specially in presence of sensor noise and

vibrations in human demonstrations [62–64]. We use a method similar to [63] in which a
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Segment i
i

v(t)
Segment i-1

Figure 3.9: A simple 2D trajectory is segmented by comparing the velocity directions.
The velocity at v(t) diverges from the average velocity of segment i, V̄i, therefore a
new segment is created. Green circles show the segmentation points created by using

Equation 3.2.

trajectory is divided into segments with similar velocities. The velocity in each segment

is not necessarily constant, but shows some variance. We take into account only the

direction of the motion and not its amplitude.

To find the points of segmentation, we calculate the cosine of the angle between the

velocity of the current point v(t) and the average velocity of the current segment V̄i. If

we call the angle θ(t) we have:

cos(θ(t)) =
v(t).V̄i

‖v(t)‖
∥∥V̄i∥∥ (3.1)

The condition to create a new segment is that for a threshold value −1 < k < 1 we have:

cos(θ(t)) < k (3.2)

Otherwise the current point with velocity v(t) is part of the current segment, and we

update V̄i. An example trajectory segmented with this method is shown in Figure 3.9.

Real robot trajectories are noisy and have more dimensions, but we can segment them

with a similar approach. If the velocity signals are available we use them directly,

otherwise, we have to calculate them from pose 1 measurements. After applying a low-

pass filter to remove noise, we differentiate the pose signal to obtain the velocities.

1Here we use the term pose as combination of position (x,y,z coordinates) and orientation (represented
by quaternions).
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Figure 3.10: Initial segmentation of arm pose trajectories. The velocities are shown
on the top plot. The moving parts of trajectory are shown in the second plot. The
resulting segments are shown in the third plot. The last plot shows 3 large segments

which are kept after removing small (noisy) motions.

The velocities of the Put on top example (See Figure 3.8) are shown in the top plot of

Figure 3.10. By applying a threshold, we detect the parts where the robot manipulator

is moving. This binary signal is shown in the second plot. The start and the end of

moving parts are marked with green and black circles on the trajectory in the third plot

of Figure 3.10. We note that some of these movement segments result in very small

displacements. These small motions are usually unwanted vibrations generated by the

operator during the demonstration. We remove these segments and keep the 3 large

segments which are shown at the bottom of Figure 3.10.

The pose trajectory and its large segments are depicted again on top of Figure 3.11.

However, within each segment the direction of motion may have changed and we can

further divide them into smaller segments. To do this, we calculate the direction of
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velocity at each point and apply Equation 3.2 to detect segmentation points. The cosine

of the velocities are shown in second plot of Figure 3.11. The segmentation is done

with k = 0.8 and the resulting sub-segments are shown in the third plot of Figure 3.11.

Finally, by removing the small sub-segments, the segmentation is done and the result is

shown in the last plot of Figure 3.11. Now we assert that each of these large sub-segments

corresponds to one arm primitive. The average velocities are shown in Figure 3.12. The

average velocity of each segment is superimposed at the middle of the segment on the

3D pose trajectory.

We use the same method to segment the robot hand trajectories. In Figure 3.13, the

hand joint velocities are shown along with a flag showing the movement of hand. The

segments and the large segments of the trajectories are shown in the last two plots. At

this step the hand trajectory is divided into 3 segments. However, we can further divide

it to sub-segments by analyzing the direction of the velocities.

Starting from the 3 segments, we calculate the cosine of the velocity direction at each

point and generate a sub-segment when the cosines are below k = 0.3. Note that for

the hand trajectories, a lower threshold is selected since the changes in the hand angles

are more abrupt than the changes in arm pose. The resulting subsegments are shown in

the third plot of Figure 3.14. By removing the small sub-segments, the segmentation of

hand trajectories is completed and the final 6 sub-segments are shown in the last plot

of Figure 3.14.

To sum up the segmentation, we have segmented the arm pose trajectory into 10 and

the hand angle trajectory into 6 segments. Each segment is a candidate for a primitive.

In the next step, we find out the type of each primitive and obtain its parameters.



Chapter Bootstrapping Action Execution 69

Figure 3.11: The segmentation of arm pose trajectories using direction of velocities.
The 3 large segments (top) are divided into subsegments with different velocity direc-
tion. The cosine of angle between velocities are calculated according to Equation 3.1
and a threshold k = 0.8 is applied. The subsegments are shown in the third plot. After
removing the small subsegments, the final segmentation of pose trajectories are shown

in the bottom plot with 10 segments.
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point. The trajectory for this action is divided to 10 segments.
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Figure 3.13: Segmentation of the trajectories of robot hand. The velocities are
calculated (top plot) and the hand-is-moving flag is shown (second plot). Based on this
flag, the trajectory is segmented (third plot) and after removing the small segments, 3

segments are detected.
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Figure 3.14: The 3 segments of Figure 3.13 can be further divided into sub-segments.
The cosine of velocities is calculated and the segmentation points are calculated based
on Equation 3.2 with k = 0.3. (second plot) The resulting sub-segments are shown in
the third plot. After removing the small sub-segments, the final segmentation of hand

trajectory is shown in the last plot.
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Segment Translation (m) Rotation (Degree) Primitive type

1 0.0819 2.6585 arm move

2 0.1278 5.1108 arm move

3 0.1344 4.9733 arm move

4 0.1192 7.4771 arm move

5 0.2646 2.0798 arm move

6 0.0784 0.3266 arm move

7 0.0922 4.4175 arm move

8 0.1415 4.9561 arm move

9 0.2595 5.0077 arm move

10 0.1590 2.6643 arm move

Table 3.2: Translational and angular distances of each segment of arm pose trajectory.

3.2.3.2 Identify Arm Primitives

In the previous section we segmented the arm pose trajectories. Now we want assign

an arm primitive to each segment and gain more information about them. We want to

detect which arm primitive (See Section 2.1.2.3) best fits to each segment. We distinguish

between arm move(), arm move periodic() and arm rotate() primitives. Furthermore,

we want to find the arguments and parameters of each primitive.

First we check if we have any arm rotate() primitives. An arm rotate() primitive has a

negligible translation (less than 5cm) and a considerable rotation (more than 15 degrees).

Table 3.2 shows the translational and rotational distances of each segment. Since none

of the segments meets the criteria of arm rotate(), we can conclude that all segments

in this example are arm move() primitives.

Next, we should find the parameters of the arm move() primitives i.e. the goal object

and offset transform. For this, we associate the movement of each segment to an object

in the scene. In other words, we want to estimate which object in the scene has been

the target of the motion of the arm in each segment.

Suppose we have N segments in the trajectory and m objects (other than the manip-

ulator) in the scene. We use the following measures to detect the argument of the

primitive:

• Direction measure: For each segment, we calculate a vector Li from the start to

the end:

Li = Ei − Si i = 1, · · · , N (3.3)
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where Ei and Si are the position of the arm at the end and beginning of segment

i. We also calculate the vectors from start of each segment to each object.

aij = Pj − Si i = 1, · · · , N j = 1, · · · ,m (3.4)

where Pj is the position of the j-th object. Next we calculate the cosine of the

angle between Li and each aij .

cij =
Li.aij
‖Li‖ ‖aij‖

i = 1, · · · , N j = 1, · · · ,m (3.5)

The direction measure is calculated from this cosine:

mdir
ij = 1− |cij | (3.6)

If the movement of the manipulator in the i-th segment is towards (or away from)

object j, the value of cij is close to 1 (or -1) respectively. This makes the direction

measure mdir
ij approach zero. However, there could be cases where more than one

object have high cj values. For this we also use the distance measure, so that the

objects closer to the arm are preferred.

• Distance measure: For each segment, we calculate the vector from end of segment

to each object:

dij = Pj − Ei i = 1, · · · , N j = 1, · · · ,m (3.7)

The distance measure is simply the magnitude of this vector:

mdist
ij = ‖dij‖ (3.8)

• Combined direction and distance measure: To get a better estimate of the argu-

ment object, we combine the direction and distance measures:

mcombined
ij = α mdist

ij + (1− α) mdir
ij 0 < α < 1 (3.9)

In our Put on top example, we have N = 10 segments and m = 3 objects (main,

primary and secondary). The direction, distance and combined measures are shown
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in Figure 3.15. Based on the combined measure (bottom plot), we can estimate the

argument of each arm move() primitive. For example, the argument of the first primitive

is the primary object. The arguments of arm primitives in this example are shown in

the second plot of Figure 3.17.
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Figure 3.15: The direction, distance and combined measures for the Put on top
example. The object with the lowest combined measure is selected as the argument of

each primitive.

If no object could be associated to a segment, the argument of the arm move() primitive

is set as free, indicating an arbitrary pose. The exact value of the free poses can be

set during the action, to a convenient pose.

We also calculate the relative pose of the manipulator at the end of segments to the goal

object. This transform is the Toff parameter of arm move() primitives.

3.2.3.3 Identify Hand Primitives

The type of hand primitives is determined based on joint angles and tactile sensors. The

goal is to distinguish hand preshape(), hand grasp() and hand release() primitives.

The following conditions determine the primitive types:
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• hand grasp(): The velocity of the hand angles are negative (closing the hand) and

there is a positive tactile event.

• hand release(): The velocity of the hand angles are positive (opening the hand)

and there is a negative tactile event.

• hand preshape(): The primitive meets neither of the above conditions.

Figure 3.16 (top) shows the trajectories of hand joints superimposed by the detected

segments. The tactile events are shown at the bottom plot. Based on these data, the

hand primitives are identified and the results are shown in the top plot of Figure 3.17
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Figure 3.16: The primitives of hand are extracted by combining data from joint
angles and tactile sensors. Segmentation of joint trajectories reveals the number and
time of primitives (top). The tactile events (bottom) help us to distinguish between

hand preshape(), hand grasp() and hand release() primitives.

3.2.4 Combine Multiple Demonstrations

The above mentioned method gives a rather precise description of a single demonstration

by finding its primitives. However, a single demonstration is not enough to learn a

skill. Better generalization is achieved if multiple demonstrations of the same action

are analyzed and the results are combined. The combination removes the noise of single



Chapter Bootstrapping Action Execution 76

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

preshape

grasp

release

Hand Primitives
Start Point
End Point

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

free
secondary
primary

main
rotate

periodic

Arm Primitives
Start Point
End Point

N

T

Relation (manipulator,main)

N

T

Relation (main,primary)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

N

T

t (seconds)

Relation (main, secondary)

Figure 3.17: The obtained arm and hand primitives of the Put on top action demon-
strated by human operator. The top and middle plots shows the hand and arm prim-
itives. Start and end times are shown by green and red circles. The time of each
primitive is shown by a blue line. The type of primitives are shown in the Y-axis. For
the arm move primitives, the argument object is shown in the Y-axis. (free, main,
primary and secondary). In the last three plots, the observed relations of objects are

shown to give a better description of the action.

demonstrations and converges to the correct description of an action. This idea is applied

to the Put on top action to generate a description based on a few demonstrations.

For this, we analyzed 6 demonstrations of Put on top with different objects and poses

but the same SEC matrix and object roles. The snapshot of these experiments are shown

in Figure 3.18.

The extracted primitives of all demonstrations are shown for each columns of SEC matrix

in Table 3.3.
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Table 3.3: The primitives are 6 demonstrations of Put on top action are compared at
each state. The entries of table are the number that each primitive type and argument
appeared in each demonstration. The primitives which are more frequently repeated
across different demonstrations, are kept in the general description of the Put on top

action.

state
#

demo
#

arm move hand
main primary secondary preshape grasp release

1

1 2 2 3 1 -
2 2 1
3 2 1 1 1
4 3 1 1
5 4 2 1
6 1 1 1

2

1 1
2 1
3 1 1
4 1 1
5 1
6 1 1

3

1 1 1
2 1
3 2
4 2
5 2
6 1

4

1 1 2 1 1
2 1 1
3 2 2 1
4 1 2 1 1
5 1 2 1 1
6 1 1 1

If we keep the primitives seen frequently in the demonstrations, we obtain the result

shown in Figure 3.19.

It is interesting to compare this result with the pre-defined version of the same action

in Figure 2.2. We can see most of the primitives are similar, except the argument of

the arm move() primitive in the second column and an extra hand preshape() at the

end. The first difference is because the movement away from primary object is usually

continued toward the secondary object. The second difference comes from the human

operator moving the joints of the robot hand at the end of action, which is not so crucial.



Chapter Bootstrapping Action Execution 78

S1 S2 S3 S4 S5
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Figure 3.19: Primitives of Put on top action by combining the results of all demon-
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3.3 Bootstrapping by Action Compilation

Our aim in this section is to improve the quality of execution by using the knowledge

gained from previous experiments. In order to do this we use the structure of actions

introduced in Chapter 2, and try to get the parameters from a database of executed

actions which are stored in a special format.

First we briefly introduce the format in which we store the action data, and then proceed

with the method of using them in new situations.

3.3.1 Action Data Tables (ADT)

Based on the SEC framework and action definition given in Chapter 2, we have created

a data format to store all the data of an executed manipulation action in a structured,

re-usable and transformable way. This format is called action data table (ADT) which

contains high- and low-level data for a specific example of an action performed with

certain objects and poses.

Some of important fields of the ADT are summarized below:

• Instruction: The action described in a natural language sentence.

• Action name: The name of action.

• Objects: The objects in the action with their roles (main, primary, etc.) and their

name, CAD models and pose.

• SEC: The SEC matrix which describes the changes of relations of object through

the action.

• Action chunks: The SEC matrix divides the action into some chunks. The following

information are available at each chunk:

– The start and the end times.

– Pose of the objects at the start and the end times.

– The list of primitives their arguments and parameters.

• Sensor data: The recorded sensor data of each executed action is stored in a file.
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Figure 3.20: An example of a part of an ADT file for an Unscrew action. Actual
ADTs have more entries which are omitted here to save space.

An example of an ADT is shown in 3.20. We create one ADT for each executed action

and store them in a database which can be found in the following address: http:

//www.acat-project.eu/index.php?page=adt.

3.3.2 Compilation Process

Given a new instruction, we try to find the most similar action from the ontology and

then fill its parameters from the ADT database. The block diagram for the compilation

process is shown in Figure 3.21.

The different steps of the compilation are explained with an example. Given the scene

shown on top of Figure 3.22, we wish to execute the following instruction: Shake the

plastic bottle and put it on the tray.

http://www.acat-project.eu/index.php?page=adt
http://www.acat-project.eu/index.php?page=adt
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Figure 3.21: Block diagram of compilation process. We use two databases in this
process. First is the Action ontology introduced in Section 2.2. The second is the ADT

database which is the collection of our executed actions in the ADT format.

Figure 3.22: A scene with some objects to test the compilation algorithm. We want
to execute the following instruction: Shake the plastic bottle and put it on the tray.

• Parse the instruction:

A semantic parser [65] is used to associate different parts of the instruction sentence

to different components of action. For example, the verb Shake is extracted and

used as the action name. The result of parsing of the example is shown in Table

3.4.

• Analyze the scene:
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Instruction Shake the bottle and put it on the tray

Action Shake

main bottle

primary -

secondary tray

Table 3.4: Output of parsing of the example instruction

We use the same vision system that we used before in Chapter 2 to recognize

objects [48], find their positions and touching relations. Then we compare the

recognized objects with the objects in the instruction, in the second column of

Table 3.4, which come from the parser. If the parser objects are missing in the

scene, action execution is not possible. The method to deal with missing objects

will be presented in Chapter 4.

• Find the action template:

Here we should find the action which is similar to the action given by the parser.

We restore the definition of this action from the ontology introduced in Section 2.2

and use it as the template for execution. For this example, we restore the definition

of action Shake from the ontology, which is shown in Figure 3.23. The primitives

which are shown by P1 and P2 at each column, should be executed. However, we

still need to find their parameters from the ADT database.

• Find the candidate replacements for each primitive:

In this step we want to determine for each primitive of the desired action (Shake),

similar primitives from the ontology. We use the following measures to select

similar primitives:

– type of primitive

– argument of primitive

– SEC context at which the primitive occurs.

Trivially, the primitives of the same action can be re-used. For example, if we

want to execute the first primitive of action Shake which is arm move(main), we

look for primitives in all actions in the ontology (See Appendix A) which have:

– arm move()
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Figure 3.23: The definition of action Shake which is associated to the output of
parser, is fetched from the ontology. We use its SEC, abstract objects and primitives

in the compilation process

– The argument is main

– The relation of manipulator and main changes from N to T .

The replacements of for the primitives of the Shake action are listed in Table.3.5.

• Find the best matching primitive:

The previous step gives the candidate primitives from which we can re-use param-

eters. A necessary condition for re-use is that we have an example of that action

in our ADT database. These actions are marked with an asterisk in Table 3.5.

Table 3.5 may give multiple candidates for a primitive. In that case we sort them

to find the one most similar to the desired instruction. We use the following order

to sort the candidate primitives:

1. Same action, main, primary and secondary

2. Same action, main, secondary

3. Same action, main, primary

4. Same action, main

5. Same main and secondary

6. Same main and primary
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Desired Primitive Candidate Primitive

Action State
No.

Primitive
No.

Primitive Action State
No.

Primitive
No.

Shake 1 1 arm move(main) Put on top* 1 1

Shake 1 2 arm move(main) Put on top* 1 2

Shake 2 1 arm move(primary) Put on top* 2 1

Shake 4 2 arm move(secondary) Put on top* 4 2

Shake 1 1 arm move(main) Shake* 1 1

Shake 1 2 arm move(main) Shake* 1 2

Shake 2 1 arm move(primary) Shake* 2 1

Shake 3 1 arm move periodic() Shake* 3 1

Shake 3 2 arm move(secondary) Shake* 3 2

Shake 4 2 arm move(secondary) Shake* 4 2

Shake 1 1 arm move(main) Screw 1 1

Shake 1 2 arm move(main) Screw 1 2

Shake 2 1 arm move(primary) Screw 2 1

Shake 4 2 arm move(secondary) Screw 4 3

Shake 1 1 arm move(main) Unscrew* 1 1

Shake 1 2 arm move(main) Unscrew* 1 2

Shake 4 2 arm move(secondary) Unscrew* 4 2

Shake 1 1 arm move(main) Insert* 1 1

Shake 1 2 arm move(main) Insert* 1 2

Shake 2 1 arm move(primary) Insert* 2 1

Shake 4 2 arm move(secondary) Insert* 4 3

Shake 1 1 arm move(main) Drop* 1 1

Shake 1 2 arm move(main) Drop* 1 2

Shake 2 1 arm move(primary) Drop* 2 1

Shake 1 2 arm move(main) Align with grasp 1 2

Shake 1 1 arm move(main) Put over 1 1

Shake 1 2 arm move(main) Put over 1 2

Shake 2 1 arm move(primary) Put over 2 1

Shake 4 2 arm move(secondary) Put over 4 2

Shake 1 1 arm move(main) Lay 1 1

Shake 1 2 arm move(main) Lay 1 2

Shake 2 1 arm move(primary) Lay 2 1

Shake 4 2 arm move(secondary) Lay 4 2

Table 3.5: List of candidate primitives from all actions in the ontology which are
similar to primitives of Shake action. The actions for which we have at least one

example in ADT database are marked with an asterisk (*)

7. Same main

8. Same action, secondary

9. Same action, primary

10. Same action

Note that to sort the primitives which have the Primary (Secondary) object as their

argument, we modify the above order to prefer the actions with similar Primary

(Secondary)object.

For example, to find the parameters of the fist primitive, hand preshape() of the

desired action, we have the possibilities listed in Table 3.6. We have 5 possible

replacements with three of them equally similar to the desired action. In the
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Table 3.6: For the first primitive of the desired Shake action, the following candidates
exist in the ADT database. The first three options all have the same main and primary

objects.

# Action Main Primary Secondary Similarity

1 Put on top Bottle Table Cup Main + Primary

2 Put on top Bottle Table Cup Main + Primary

3 Put on top Bottle Table Jar Main + Primary

4 Drop Bottle Tray Box Main

5 Shake Measuring Beaker Table Table Action+ Primary

execution, we can try the highest ranked parameter, and if failing, we try the

other alternatives.

Similarly, we analyze the other primitives of the desired Shake action and find the

necessary parameters from previous experiments stored in the ADT database.
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3.4 Bootstrapping Results

We performed several experiments to evaluate both types of bootstrapping. First we

present some results on bootstrapping from human demonstrations (Section 3.2). We

analyze actions demonstrated by human operator both with kinesthetic guidance and in

virtual reality and try to find their descriptive parameters. Then, we apply the algorithm

presented in Section 3.3 to find execution parameters for new instructions.

3.4.1 Human Demonstration Results

We recorded 10 kinesthetically guided action and 20 simulated actions. The human

demonstrations are listed in Table 3.7.

For each action the SEC matrix, object roles and action primitives are obtained. We

do not evaluate the accuracy of calculating the SEC matrix, since these algorithms are

Table 3.7: The list of actions demonstrated by human operator. The method of
demonstration, the action name and the roles of objects in the action are specified.

Demonstration Method # Action main primary secondary

kinesthetic guidance

kin1 Put on top Bottle Table Bottle Holder
kin2 Put on top Measuring Beaker Table Tray
kin3 Put on top Jar Table Bottle Holder
kin4 Put on top Bottle Table Cup
kin5 Put on top Jar Table Pot
kin6 Put on top Plastic Bottle Table Pot
kin7 Unscrew Bottle Lid Bottle Table
kin8 Unscrew Jar Lid Jar Table
kin9 Unscrew Bottle Lid Bottle Table
kin10 Shake Measuring Beaker Table Table

virtual reality

vr1 Drop Pressure ring Ring support Mug
vr2 Drop Pressure ring Ring support Mug
vr3 Put on top Rotor cap Table Rotor Axle
vr4 Take Down Rotor Cap Fixture Table
vr5 Take Down Rotor Cap Fixture Table
vr6 Pick and place Rotor Axle Shelf Tray
vr7 Drop Bottle Tray Basket
vr8 Drop Rotor Cap Table Box
vr9 Push apart Bottle Box -
vr10 Push apart Cup Jar -
vr11 Drop Bottle Shelf Box
vr12 Pick and place Jar Tray Shelf
vr13 Shake Jar Tray Tray
vr14 Drop Bottle cap Tray Trash
vr15 Shake Bottle Tray Tray
vr16 Drop Spoon Plate Box
vr17 Insert Knife Table Jar
vr18 Invert Bottle cap Table Table
vr19 Stir Spoon Table Mug
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Figure 3.24: The results of primitive detection is evaluated by comparing the re-
sults with the human-generated ground truth. The accuracy and precision of both
kinesthetically guided experiments (top) and virtual reality experiments (bottom) are

shown.

not part of the current thesis. To evaluate the algorithms for finding object roles and

primitives, the results are compared with the ground truth which is obtained manually.

The ground truth object roles are shown in the last three columns of Table 3.7.

To evaluate the obtained primitives, we calculate the accuracy and precision of the

results:

• Accuracy: Number of correct primitives divided by total number of primitives in

ground truth.

• Precision: Number of correct primitives divided by number of all found primitives.

High accuracy means there are low false negatives and high precision means low false

positives. The accuracy and precision for all experiments are shown in Figure 3.24.

The results are impressive for kinesthetically guided experiments since in 8 out of 10

experiments the accuracy is 100%, which means that all ground truth primitives are

found (top plot). The precisions are also at least 50%.
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Table 3.8: Compilation results for the instruction Shake the plastic bottle and put it
on the tray. For each primitive we indicate the action in the ADT database and the

primitive from which the parameters are replaced.

Instruction

Replacement

state # primitive # primitive Action state primitive #

1 1 hand preshape vr19 1 1

1 2 arm move (main) vr19 1 2

2 1 arm move (primary) kin10 2 1

3 1 arm move periodic vr19 3 1

3 2 arm move (secondary) vr19 3 2

4 2 arm move (secondary) vr19 4 2

For the virtual reality experiments, the accuracy is still high but the precision is low in

some experiments. The reason for this low accuracy is that in these experiments the

operator had many noisy and unnecessary movements, which introduces several false

primitives and makes the detection of arguments difficult.

3.4.2 Action Compilation Experiments

The result of compilation algorithm for the Shake the plastic bottle and put it on the

tray instruction are shown in Table C.6. To obtain these results we use our database

of ADTs which contains the actions listed in Table 3.7. We also obtained the execution

parameters for the following instructions and the results are shown in Appendix C.

• Push the bottle away from the jar.

• Take the jar and place it into the box.

• Drop the bottle into the wastebasket.

• Insert the spoon into the jar.

• Unscrew the lid from the mug

• Invert a jar
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3.5 Conclusion

To go beyond predefined actions parameters and improve the performance of execution,

we used the concept of bootstrapping to obtain execution related parameters from human

demonstrations and previous experiments. We conclude that:

• The action descriptive parameters can be obtained from human demonstrations

with an acceptable confidence. However, if the quality of execution is very poor,

we lose precision (increased false positives). The algorithm remains quite accurate

even when the quality of demonstration is not good and the operator introduces

lots of noise.

• By combining the results of multiple demonstrations of the same action, even on

different objects, we can filter out most of the noise of single demonstrations. This

generates a near-perfect description of the action.

• The obtained description is generalizable and can be applied (within reason) to

other robot platforms, objects and situations.

• To obtain the parameters of an action, we can search databases of previously

executed actions provided that they are described in a compatible format.

• The parameters depend both on the action and the specific objects used. It is not

trivial to detect which one should be given a higher priority in compilation. How-

ever, our proposed method generates multiple possible parameters for a primitive,

and if the first one fails in execution, we can try the others.



Chapter 4

Error handling and Planning

In the previous chapters we proposed our definition of manipulation actions and pre-

sented our method of execution. Here we want to discuss the following related topics:

• Dealing with errors and failures in the execution of actions.

• Integrating manipulation actions with symbolic planning.

In Section 2.4.3 we showed the ability of our system to execute chained actions. Such

chains of actions are produced by a symbolic planner. The symbolic planner generates

a plan (a sequence of actions) to reach the goal states, considering the pre-conditions

and the effects of the actions. To achieve this, we should define the state and actions

(planning operators) by logical predicates.

This chapter is organized as follows: In Section 4.1 we present the details of error

handling in the execution engine. Then, we define a symbolic planning domain which is

compatible to the proposed ontology of actions in Section 4.2. In Section 4.3, we show

cases of executing a plan even when some objects are missing. The conclusion of this

chapter can be found in Section 4.4.
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4.1 Fault Detection

The execution of an action can go wrong due to various problems. There could be

an error in perception resulting in incorrect segments, object poses, relations or mis-

recognized objects. The position or force control of the robot may be imprecise or the

communication to the robot could be lost. It is also possible for the robot arm to hit a

singularity or collide with itself or other objects. A major problem for the robot hand

is grasping of objects which could easily fail due to its inherent complexity. Even worse,

an initially successful grasp could fail at a later time due to slippage.

It could also be the case that the desired action is not afforded by the scene. For example,

if there is a lid on a pot, it is not possible to put something in it.

These faults occur at different levels with different criticality. For instance a lost commu-

nication with the robot arm is a critical fault which is considered a software engineering

problem. If the connection is lost, there should be a automatic mechanism to pause the

execution, establish the connection again and continue the execution. Otherwise the

system cannot cope with this kind of fault and the operator may need to intervene and

restart manually.

Categorizing and giving solution to all possible faults in such a system is out of scope

of this thesis. In general it is currently not possible to achieve full fault tolerance for

robot actions outside factory floors, because situations can vary widely in unconstrained

environments leading to unforeseen contingencies. However, we pay special attention to

the faults which are reflected in the object relations. We show that the definition of

actions based on relations between objects, provides two specific ways to detect errors,

which are not present in other action definitions. Both of these are detectable from

sensor data and action components described before.

In Section 2.3.2 we described the Error state in the execution engine (See Figure 2.14),

which is entered under these conditions:

1. The execution of the primitives does not result in the expected change in relations

(From Select Primitive state)

2. The execution of the primitives causes unexpected changes in object relations

(From Execute Primitive state).
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Figure 4.1: Error handling after failure in grasping an object. 1- The initial Scene. 2-
Perception of the objects by vision system. 3,4,5- When the manipulator approaches to
grasp the apple, we move it to cause the grasp to fail. 6- The robot hand opens and the
robot arm moves up waiting for a new perception. 7- New perception of the objects by
vision system. 8,9- Approaching the apple in its new position and performing a grasp.

To deal with these errors, first we undo the primitives of the current state (SEC column)

to reach the previous known state. Then, we evaluate the object relations again and

transition to the Check Current Relations state and continue the execution. This

results in a new perception of the position and relations of objects, by which the system

decides which primitive should be executed next.

Here some examples of error handling are shown. The first two examples show errors

when expected changes in relations do not happen. In Figure 4.1, the robot hand ap-

proaches the apple to grasp it, but fails, since the apple is not in the expected position.

The manipulator retracts and receives the new position of the apple from the vision sys-

tem and repeats the grasp. Another example is shown in Figure 4.2 during a Put on top

action. Here, the secondary object (the cutting board) is displaced just before the main

object (apple) is placed on top of it. The absence of the cutting board is detected and

the manipulator retracts. After receiving the new position of the cutting board, the

manipulator completes the action successfully.

An example of the second type of error, is shown in Figure 4.3,
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Figure 4.2: Error handling after failure in Put on top action. 1- The initial Scene. 2-
Perception of the objects by vision system. 3,4- When the manipulator tries to put the
apple on top on the board, we move the board to cause the failure. 5- The manipulator
moves up and waits for a new perception. 6- New perception of the objects by vision

system. 7,8,9- The manipulator puts the apple on the board in the new position.

The action is Push by holding in which the main object (apple) is held from top and

pushed. During the pushing, the apple slips and the action is interrupted. The error

is detected and the manipulator retracts and repeats the action after receiving the new

position of the apple. The second example of these errors is shown in Figure 4.4 in which

after a successful grasp, the object is taken away from the robot hand. The robot detects

the absence of the grasped object and reacts to it by opening the hand and moving up.

After receiving the new position of the object, the grasp is repeated.

There are cases where error handling can not help, for example if we try to cut an

uncuttable object (like a cup). The error handling would try to repeat cutting the

cup without success. After a few unsuccessful repetitions, the system transitions to the

Failure state.
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Figure 4.3: Error handling after failure in the push by holding action. 1- The initial
Scene. 2- Perception of the objects by vision system. 3,4,5- When the manipulator
tries to hold the apple from top and push it. However, this fails due to inaccuracy in
perception and the geometry of the apple. 6- The manipulator moves up and receives
a new perception of the objects from the vision system. 7,8,9- The manipulator tries

the pushing again and this time it succeeds.
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Figure 4.4: Error handling after the grasped objects slips through the robot hand. 1-
The initial Scene. 2- Perception of the objects by vision system. 3,4- The manipulator
approaches the apple and grasps it successfully. 5- The grasped object is taken out of
the robot hand to cause the error. 6,7- The robot hand opens and the manipulator
retracts. 8- New perception of the objects is received from the vision system. 9- The

grasp is repeated successfully.
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4.2 Planning with Ontology of Actions

To solve complex tasks by using the proposed execution framework, we use artificial

intelligence (AI) techniques for planning and decision making.

To perform symbolic planning, we create a planning domain which is related to the

manipulation actions in the ontology. This domain has the following components:

• State: The state of the environment is defined by the touching relation of objects in

the scene. This means that a set of touching(obj1, obj2) and !touching(obj1, obj2)

defines the state.

• Planning operator: For each action in the ontology, an operator is defined which

transforms the state of the scene from initial to final. The initial and final states

are the first and last columns of the SEC matrix of the action.

Since we defined object roles based on the touching relations, we have a general planning

operator which is valid for all the actions:

operatorAction(main, primary, secondary) :

Precondition :

!touching(manipulator,main)

touching(main, primary)

!touching(main, secondary)

Effect :

!touching(manipulator,main)

!touching(main, primary)

touching(main, secondary)

Individual planning operators may have additional arguments, preconditions and effects.

For example, the planning operators for Put on top and Take Down actions can be
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formalized as following:

operatorPutOnTop(main, primary, secondary, secondary support) :

Precondition :

!touching(manipulator,main)

touching(main, primary)

touching(primary, secondary)

touching(main, secondary support)

!touching(main, secondary)

Effect :

!touching(manipulator,main)

!touching(main, primary)

touching(main, secondary)

touching(primary, secondary)

!touching(main, secondary support)
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operatorTakeDown(main, primary, secondary, primary support) :

Precondition :

!touching(manipulator,main)

touching(main, primary)

touching(primary, secondary)

touching(main, primary support)

!touching(main, secondary)

Effect :

!touching(manipulator,main)

!touching(main, primary)

touching(main, secondary)

touching(primary, secondary)

!touching(main, primary support)

The perception calculates the relations of the objects (initial state) which is the input to

the planner. The goal is provided in the same format and the planner uses the available

planning operators to search for a plan. An example is shown in Figure 4.5 in which the
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initial and goal states are as follows:

Initial :

!touching(applegreen, box)

touching(applered, box)

!touching(applered, table)

touching(applegreen, table)

!touching(applegreen, applered)

touching(box, table)

Goal :

touching(applegreen, box)

!touching(applered, box)

touching(applered, table)

!touching(applegreen, table)

If we try to plan 1 using only the two actions Put on top and Take Down, we will get

the following solutions:

• 1− PutOnTop(apple green, table, box, table)

2− TakeDown(apple red, box, table, table)

• 1− TakeDown(apple red, box, table, table)

2− PutOnTop(apple green, table, box, table)

Both solutions are correct given the current preconditions of the actions. However the

first plan will not succeed since it tries to put the green apple on top of the box before

removing the red apple. We can conclude that the preconditions which come from the

SEC matrices, are not sufficient for allowing an action. As a consequence we need to

learn more preconditions by integrating planning and execution which is explained in

the following.

1We use the PKS (Plan with knowledge and sensing) planner introduced in [66].
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Figure 4.5: The initial and goal states for a simple planning problem.

We can learn additional preconditions by using a teacher interface. The teacher interface

is part of a decision making framework developed in Agostini et al. [67]. The diagram

in Figure 4.6 shows an overview of this decision making system. In this system, the

planner generates a plan given the current and goal states. If it is possible to generate

a plan, the robot executes it. However, if there is no possible plan or the execution

fails, the teacher interface can help. The teacher (a human operator who knows the

domain) solves the problem by executing the next action. Based on the observed state

transitions, the systems learns the additional preconditions. Its planning operators are

added or updated so that the next time, in a similar situation, a plan can be generated.

In our example, if we try to perform the Put on top action first, the action fails. The

failure is sent to the decision making system and the teacher is asked to help. The

teacher then performs the Take down action. A new plan can be generated now which

has only one Put on top action. Now, since the learning module compares the state of

the scene, which leads to failure, with the state of the scene in which the Put on top

succeeds. The difference is that in the former the green apple touches the red apple

and it does not touch the table. Now we can add to the preconditions of Put on top

action that no other object should be on top of the secondary object. This way we can

complete the preconditions of actions, through the teacher.
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Figure 4.6: General diagram for plan generation and object replacement. (Reference:
[1])
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Figure 4.7: ROAR is an intelligent database which updates its content. (Reference:
[1])

4.3 Object Replacement

In this section we demonstrate the capability of our integrated system to replace missing

objects in a generated plan. This is a usual problem that is easily solved by humans

provided their natural knowledge to find object substitutions: using a knife as a screw-

driver or a book as a cutting board. On the other hand, in robotic applications, objects

required in the task should be included in advance in the problem definition. If any

of these objects is missing from the scenario, the conventional approach is to manually

redefine the problem according to the available objects in the scene.

Our approach, presented in detail in [1], uses a logic-based planner to generate a plan

from a prototypical problem definition and searches for replacements in the scene when

some of the objects involved in the plan are missing.

This is done by means of a repository of objects and attributes with roles (ROAR) [68],

which is used to identify the affordances of the unknown objects in the scene. The

structure of ROAR database is shown in Figure 4.7. Here we discuss the following

planning problems, related to the execution framework.

• Replace Cucumber: Here we use the same salad making problem which is shown

in Figure 2.23. In the original planning problem, a cucumber is cut and moved to

a bowl. In the scene shown in Figure 4.8, there is no cucumber. However there

are two additional objects: The cup and the banana.

The cucumber is used in several actions in the original plan: Put on top, Cut and

Unload. We make queries to ROAR about the jar and the banana, to see which of

them can play the role of a cucumber. The ROAR detects that the banana may
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Figure 4.8: The modified scene for salad making in which the cucumber is missing.
There are two additional objects, the jar and the banana.

Figure 4.9: The modified salad making which uses the banana instead of cucumber.

replace the cucumber, while the jar is not proper for this. The plan is updated

and sent for execution. The result is shown in Figure 4.9.

• It is also possible to replace tools. In Figure 4.10 we show execution of a plan

with two actions: unload and stir. The stir is done by using a spoon. In the scene

in Figure 4.11 we have a similar scene without the spoon. However, there are a

knife and a bottle in the scene which we query ROAR to check their affordances.

ROAR confirms that a knife can also be used for stirring, therefore we can execute

stirring by a knife.
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Figure 4.10: The execution of chained actions: Unload and Stir by using the spoon.

Figure 4.11: The replacement of the spoon by the knife. The plan is updated to use
knife instead of spoon.
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4.4 Conclusion

In this chapter we tried to explore error handling and integration of our execution frame-

work with symbolic planners. The error handling can deal with random errors which

happen in the execution by repeating the action from a trusted point after receiving

a new percept of the system. The systematic errors, however, can not be dealt with

this way and after a few unsuccessful repetitions we declare the failure of the execution.

These errors are either impossible to solve or they need intervention of a higher level

entity in the system (either an operator or a planner) to change the strategy.



Chapter 5

Short Summary and Final

Remarks

This chapter concludes this thesis with a short summary and final remarks. Here we

highlight the most important points of the thesis. The summary of each chapter is

already provided in their conclusion sections.

5.1 Summary

This work is based on previous research on manipulation actions especially the SEC

framework [14] and ontology of actions [45]. The main goal is to provide means of

executing a range of human-like manipulation actions using a arm-hand robot system.

First we provided a layered definition of manipulation actions with both high-level and

low-level components. To enable the execution, we proposed a mid-layer and imple-

mented the whole framework in an integrated ROS-OROCOS software framework.

The quality of execution is improved by using parameters of actions obtained from

human demonstrations. To further enable the robot to execute new instructions we

designed a process to search previous experiments and find proper parameters which are

applicable in the current situation.

The execution framework is integrated with a symbolic planner so that both can benefit.

The execution receives a plan (chain of actions) from the planner which means more

105
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complex tasks can be performed. The execution also provides feedback to the planner

and raises errors when something goes wrong in the execution. The execution framework

does not depend on the specific object which enables the planner to even update the

plan in case of missing object.

5.2 Discussion of Results

The different methods are applied on a real robot arm-hand system to evaluate the

performance. Several experiments on single and chained actions show that the system

is able to perform a variety of actions. The single actions have success rates from 30%

to 100% depending on the type of actions.

The analysis of human demonstrations show promising results especially in the kinesthet-

ically guided experiments. The obtained primitives match the ground truth primitives

in more than 70% of the times. The results are not as good for the virtual reality

demonstrations, due to excessive noise in the demonstrations. Combination of multiple

demonstrations of a single action, however, can remove most of this noisy results and

generate a good description of actions.

5.3 Future Work

Based on the experience gained in this work the following paths are suggested to improve

the results:

• We can improve the description of actions by adding more relations other than

touching/not-touching relations. However, this should be done with care not to

lose the advantages of the SEC framework. We can add simple relations like on(),

in() and around() provided that the perception can consistently detect them.

• We can use approaches similar to motor babbling at the level of action primitives

to find more about the state transitions induced by performing sequence of random

primitives.

• The extension of the current ontology to bi-manual tasks enables us to perform

more/better actions while introducing new challenges.



Appendix A

Ontology of Actions

The ontology of actions is summarized in Table A.1. The categories, sub-categories and

actions are as follows:

• Actions with main support:

• Actions with hand, main and main support:

1

m.s

m

2

m.s

m

3

m.s

m

Action Name: Poke, Press

Relation / State 1 2 3

manipulator, main N T N

main, main support T T T

Abstract Primitives

P1 hand preshape arm move(main)

P2 arm move(main) -
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Category Sub-Category Example Actions

Actions with main support

Actions with hand, main and main support push, punch, flick
Actions with hand, main, main support and primary push apart, cut, chop
Actions with hand, main, main support and secondary push together
Actions with hand, main, main support, primary and secondary push from a to b

Actions without main
support.

primary 6= secondary and primary support 6= secondary support pick and place, break off
primary 6= secondary and primary support = secondary support pick and place, break off
primary 6= secondary and primary = secondary support put on top
primary 6= secondary and primary support = secondary pick apart
primary = secondary pick and place, break off

Actions with load and container
The relation of load and main changes from N to T (loading) Pipetting
The relation of load and main changes from T to N (unloading) Pour, Drop

Table A.1: Summary of ontology of actions. Actions are divided into three categories
and further into sub-categories. There can be more than one action in each sub-category.

1

m.s

m

2

m.s

m

3

m.s

m

Action Name: Push

Relation / State 1 2 3

manipulator, main N T N

main, main support T T T

Abstract Primitives

P1 hand preshape arm move(main)

P2 arm move(main) arm move(main)

1

m.s

m

2

m.s

m

3

m.s

m

Action Name: Rotate

Relation / State 1 2 3

manipulator, main N T N

main, main support T T T

Abstract Primitives

P1 hand preshape arm rotate()

P2 arm move(main) hand release()

P3 hand grasp() arm move(free)
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1

m.s

m

2

m.s

m

3

m.s

m

Action Name: Stir (using a tool)

Relation / State 1 2 3

manipulator, tool T T T

tool, main N T N

main, main support T T T

Abstract Primitives

P1 arm move(main) arm periodic()

P2 - hand move(main)

2

m.s

m

1

m.s

m

Action Name: Cut (using a tool)

3

m.s

m

4

m.s

m

5

m.s

m

Relation / State 1 2 3 4 5

manipulator, tool T T T T T

tool, main N T T T N

main, main support T T T T T

tool, main support N N T N N

Abstract Primitives

P1 arm move
(main)

arm periodic() arm move
(main sup.)

arm move
(main)

P2 - arm exert() - -
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• Actions with hand, main, main support and primary:

1

m.s

mp

p.s

2

m.s

mp

p.s

3

m.s

p

p.s

m

4

m.s

p

p.s

m

Action Name: Push apart

Relation / State 1 2 3 4

manipulator, main N T T N

main, primary T T N N

main, main support T T T T

primary, primary support T T T T

Abstract Primitives

P1 hand preshape () arm move
(primary)

arm move (main)

P2 arm move (main) - -

1

m.s

m

3

mp

2

m.s

m

m.s

4

p m

5

p m

m.s m.s

Action Name: Cut away (using a tool)

Relation / State 1 2 3 4 5

manipulator, tool T T T T T

tool, main N T T T N

main, main support T T T T T

tool, main support N N T N N

main, primary A A T N N

Abstract Primitives

P1 arm move
(main)

arm periodic() arm move
(primary)

arm move
(main)

P2 - arm exert() - -
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• Actions with hand, main, main support and secondary:

1

m.s

m s

s.s

2

m.s

m s

s.s

3

m.s

m s

s.s

4

m.s

m s

s.s

Action Name: Push Together

Relation / State 1 2 3 4

manipulator, main N T T N

main, secondary N N T T

main, main support T T T T

secondary, secondary sup. T T T T

Abstract Primitives

P1 hand preshape () arm move
(secondary)

arm move (main)

P2 arm move (main) - -

• Actions with hand, main, main support, primary and secondary:

1

m.s

m s

s.s

p

p.s

2

m.s

m s

s.s

p

p.s

3

m.s

m s

s.s

p

p.s

4

m.s

m s

s.s

p

p.s

5

m.s

m s

s.s

p

p.s

Action Name: Push From To

Relation / State 1 2 3 4 5

manipulator, main N T T T N

main, primary T T N N N

main, secondary N N T T N

main, main support T T T T T

Abstract Primitives

P1 hand preshape () arm move
(primary)

arm move
(secondary)

arm move
(main)

P2 arm move (main) - - -
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• Actions without main support:

• primary 6= secondary and primary support 6= secondary support:

1

mp

p.s

s

s.s

2

mp

p.s

s

s.s

3

m
p

p.s

s

s.s

4

mp

p.s

s

s.s

5

mp

p.s

s

s.s

Action Name: Pick and place (side to side)

Relation / State 1 2 3 4 5

manipulator, main N T T T N

main, primary T T N N N

main, secondary N N N T T

main, primary support T T N N N

main, secondary support N N N T T

Abstract Primitives

P1 hand preshape () arm move
(primary)

arm move
(secondary)

hand release
()

P2 arm move (main) - - arm move
(secondary)

P3 hand grasp () - - -
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1

m

p

p.s

s

s.s

2

p.s

s

s.s

3

p

p.s

s

s.s

m

p

m

4

p

p.s

s

s.s

5

m

p

p.s

s

s.s

m

Action Name: Pick and place (top to top)

Relation / State 1 2 3 4 5

manipulator, main N T T T N

main, primary T T N N N

main, secondary N N N T T

main, primary support N N N N N

main, secondary support N N N N N

Abstract Primitives

P1 hand preshape () arm move
(primary)

arm move
(secondary)

hand release
()

P2 arm move (main) - - arm move
(secondary)

P3 hand grasp () - - -
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• primary 6= secondary and primary support = secondary support:

mp

1

s

p.s s.s=

mp

2

s

p.s s.s=

m

p

3

s

p.s s.s=

mp

4

s

p.s s.s=

mp

5

s

p.s s.s=

Action Name: Pick and place (side to side)

Relation / State 1 2 3 4 5

manipulator, main N T T T N

main, primary T T N N N

main, secondary N N N T T

main, primary support T T N T T

main, secondary support T T N N N

Abstract Primitives

P1 hand preshape () arm move
(primary)

arm move
(secondary)

hand release
()

P2 arm move (main) - - arm move
(secondary)

P3 hand grasp () - - -
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• primary 6= secondary and primary = secondary support:

1

m s

p = s.s

2

m s

p = s.s

3

m
s

p = s.s

4

m

s

p = s.s

5

m

s

p = s.s

Action Name: Put on top

Relation / State 1 2 3 4 5

manipulator, main N T T T N

main, primary T T N N N

main, secondary N N N T T

main, secondary support T T N T T

Abstract Primitives

P1 hand preshape () arm move
(primary)

arm move
(secondary)

hand release
()

P2 arm move (main) - - arm move
(secondary)

P3 hand grasp () - - -
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• primary 6= secondary and primary support = secondary:

1

m

p

p.s = s

Action Name: Take Down
2

m

p

p.s = s

3

m

p

p.s = s

4

mp

p.s = s

5

mp

p.s = s

Relation / State 1 2 3 4 5

manipulator, main N T T T N

main, primary T T N N N

main, secondary N N N T T

main, primary support N N N T T

Abstract Primitives

P1 hand preshape () arm move
(primary)

arm move
(secondary)

hand release
()

P2 arm move (main) - - arm move
(secondary)

P3 hand grasp () - - -
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• Actions with load and container:

• The relation of load and main changes from N to T (loading):

1

m

p s Load

Containers.sp.s

2

m

p s Load

Containers.sp.s

3

m

p s Load

Containers.sp.s

4

m

p s Load

Containers.sp.s

5

m

p s

Load

Containers.sp.s

6

m

p s

Load

Containers.sp.s

7

m

p s

Load

Containers.sp.s

Action Name: Load

Relation / State 1 2 3 4 5 6 7

manipulator, main N T T T N T N

main, primary T T N N N T N

main, secondary N N N N N T T

main, load N N N T T T T

load, container T T T T N N N

Abstract Primitives

P1 hand preshape () arm move
(primary)

arm move
(load)

arm move
(container)

arm move
(secondary)

hand release
()

P2 arm move (main) - - - - arm move
(secondary)

P3 hand grasp() - - - - -
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• The relation of load and main changes from T to N (unloading):

1

m

p s

Load

Containers.sp.s

2

m

p s

Load

Containers.sp.s

3

m

p s

Load

Containers.sp.s

4

m

p s Load

Containers.sp.s

5
m

p s Load

Containers.sp.s

6

m

p s Load

Containers.sp.s

7

m

p s Load

Containers.sp.s

Action Name: Unload, Pour

Relation / State 1 2 3 4 5 6 7

manipulator, main N T T T N T N

main, primary T T N N N T N

main, secondary N N N N N T T

main, load T T T T N N N

load, container N N N T T T T

Abstract Primitives

P1 hand preshape () arm move
(primary)

arm move
(container)

arm move
(load)

arm move
(secondary)

hand release
()

P2 arm move (main) - - - - arm move
(secondary)

P3 hand grasp() - - - - -
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Execution of Single Actions

The detail of single-action experiments are presented here.

Table B.1: Pick and place

Results

# main category main object success failure total success rate % failure rate %

1 round fruit red apple 3 0 3 100 0

2 cup yellow cup 3 0 3 100 0

3 cup blue cup 3 0 3 100 0

4 round fruit orange 3 0 3 100 0

5 container orange bucket 0 3 3 0 100

6 cube box 3 0 3 100 0

7 long fruit cucumber 3 0 3 100 0

8 long fruit eggplant 3 0 3 100 0

9 plate plate 0 3 3 0 100

10 cube small cube 2 1 3 66.7 33.3

Total 23 7 30 76.7 23.3

Table B.2: Push with Grasp

Results

# main category main object success failure total success rate % failure rate %

1 round fruit apple 3 0 3 100 0

2 cup Blue cup 3 0 3 100 0

3 cube Small cube 3 0 3 100 0

4 cube box 3 0 3 100 0

5 round fruit orange 3 0 3 100 0

6 long fruit banana 3 0 3 100 0

7 cup yellow cup 3 0 3 100 0

8 round fruit red apple 3 0 3 100 0

9 long fruit zucchini 3 0 3 100 0

10 long fruit eggplant 3 0 3 100 0

Total 30 0 30 100 0
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Table B.3: Push by Holding

Results

# main category main object success failure total success rate % failure rate %

1 cube box 3 0 3 100 0

2 round fruit green apple 3 0 3 100 0

3 long fruit zucchini 1 2 3 33.3 66.7

4 long fruit eggplant 0 3 3 0 100

5 long fruit banana 1 2 3 33.3 66.7

6 cup yellow cup 0 3 3 0 100

7 round fruit orange 1 2 3 33.3 66.7

8 cube small cube 3 0 3 100 0

9 plate green plate 0 3 3 0 100

10 cup blue cup 0 3 3 0 100

Total 12 18 30 40 60

Table B.4: Poke

Results

# main category main object success failure total success rate % failure rate %

1 cube box 3 0 3 100 0

2 round fruit apple 3 0 3 100 0

3 cup blue cup 0 3 3 0 100

4 long fruit zucchini 3 0 3 100 0

5 long fruit eggplant 3 0 3 100 0

6 cup yellow cup 0 3 3 0 100

7 round fruit orange 3 0 3 100 0

8 cube small cube 3 0 3 100 0

9 plate gray board 3 0 3 100 0

10 plate green plate 0 3 3 0 100

Total 21 9 30 70 30

Table B.5: Put on Top

Results Rate

# main category main object primary/
secondary
category

primary/
secondary
object

success failure total success failure

1 round fruit red apple cube box 3 0 3 100 0

2 cup blue cup container bucket 3 0 3 100 0

3 round fruit orange container bucket 3 0 3 100 0

4 round fruit apple cup yellow cup 3 0 3 100 0

5 round fruit apple plate plate 3 0 3 100 0

6 round fruit orange plate plate 3 0 3 100 0

7 cup blue cup plate plate 3 0 3 100 0

8 cube small cube plate plate 0 3 3 0 100

9 long fruit cucumber plate gray board 3 0 3 100 0

10 cup blue cup plate gray board 3 0 3 100 0

Total 27 3 30 90 10
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Table B.6: Take Down

Results Rate

# main category main object primary/
secondary
category

primary/
secondary
object

success failure total success failure

1 round fruit red apple cube box 3 0 3 100 0

2 cup blue cup container bucket 3 0 3 100 0

3 round fruit orange container bucket 3 0 3 100 0

4 round fruit apple cup yellow cup 3 0 3 100 0

5 round fruit apple plate plate 0 3 3 0 100

6 round fruit orange plate gray board 3 0 3 100 0

7 cup blue cup plate gray board 3 0 3 100 0

8 cube small cube cup yellow cup 3 0 3 100 0

9 long fruit banana plate gray board 3 0 3 100 0

10 cup blue cup cube box 3 0 3 100 0

Total 27 3 30 90 10

Table B.7: Push apart by Holding

Results Rate

# main category main object primary/
secondary
category

primary/
secondary
object

success failure total success failure

1 cube box round fruit green apple 3 0 3 100 0

2 round fruit green apple cube box 3 0 3 100 0

3 long fruit zucchini cube box 1 2 3 33.3 66.7

4 long fruit eggplant cube box 0 3 3 0 100

5 long fruit banana cube box 1 2 3 33.3 66.7

6 cup yellow cup cube box 0 3 3 0 100

7 round fruit orange cube box 0 3 3 0 100

8 cube small cube round fruit green apple 3 0 3 100 0

9 plate green plate cube box 0 3 3 0 100

10 cup blue cup cube box 0 3 3 0 100

Total 11 19 30 36.7 63.3

Table B.8: Push together by Holding

Results Rate

# main category main object primary/
secondary
category

primary/
secondary
object

success failure total success failure

1 cube box round fruit green apple 3 0 3 100 0

2 round fruit green apple cube box 3 0 3 100 0

3 long fruit zucchini cube box 1 2 3 33.3 66.7

4 long fruit eggplant cube box 0 3 3 0 100

5 long fruit banana cube box 1 2 3 33.3 66.7

6 cup yellow cup cube box 0 3 3 0 100

7 round fruit orange cube box 0 3 3 0 100

8 cube small cube round fruit green apple 3 0 3 100 0

9 plate green plate cube box 0 3 3 0 100

10 cup blue cup cube box 0 3 3 0 100

Total 11 19 30 36.7 63.3
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Table B.9: Cutting

Results Rate

# main category main object primary/
secondary
category

primary/
secondary
object

success failure total success failure

1 knife yellow knife long fruit cucumber 3 0 3 100 0

2 knife yellow knife long fruit zucchini 3 0 3 100 0

3 knife yellow knife long fruit carrot 0 3 3 0 100

4 knife yellow knife long fruit banana 2 1 3 66.7 33.3

5 knife yellow knife long fruit eggplant 0 3 3 0 100

6 knife yellow knife round fruit apple 0 3 3 0 100

7 knife yellow knife round fruit orange 0 3 3 0 100

8 knife red knife long fruit cucumber 3 0 3 100 0

9 knife red knife long fruit zucchini 3 0 3 100 0

10 knife red knife long fruit banana 2 1 3 66.7 33.3

Total 16 14 30 54 46

Table B.10: Stirring

Results Rate

# main category main object primary/
secondary
category

primary/
secondary
object

success failure total success failure

1 spoon black spoon cup blue cup 0 3 3 0 100

2 spoon black spoon cup yellow cup 0 3 3 0 100

3 spoon black spoon container orange
bucket

3 0 3 100 0

4 spoon black spoon container white bowl 3 0 3 100 0

5 spoon black spoon plate green plate 0 3 3 0 100

6 spoon orange spoon cup blue cup 0 3 3 0 100

7 spoon orange spoon cup yellow cup 3 0 3 100 0

8 spoon orange spoon container orange
bucket

3 0 3 100 0

9 spoon orange spoon container white bowl 3 0 3 100 0

10 spoon orange spoon plate green plate 0 3 3 0 100

Total 15 15 30 50 50
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Compilation Results

Here the compilation results of 10 instructions are presented.

Table C.1: Instruction: Push the bottle away from the jar.

Instruction

Replacement

state # primitive # primitive Action state primitive #

1 1 arm move (main) vr9 1 1

2 1 arm move (primary) vr10 2 1

3 1 arm move (main) vr9 3 1

Table C.2: Instruction: Take the jar and place it into the box.

Instruction

Replacement

state # primitive # primitive Action state primitive #

1 1 hand preshape kin5 1 1

1 2 arm move (main) kin5 1 2

2 1 arm move (primary) kin5 2 1

3 1 arm move (secondary) kin5 3 1

4 2 arm move (secondary) kin5 4 2

Table C.3: Instruction: Drop the bottle into the wastebasket.

Instruction

Replacement

state # primitive # primitive Action state primitive #

1 1 hand preshape vr7 1 1

1 2 arm move (main) vr7 1 2

2 1 arm move (primary) vr8 2 1

3 1 arm move (secondary) vr14 3 1
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Table C.4: Instruction: Insert the spoon into the jar.

Instruction

Replacement

state # primitive # primitive Action state primitive #

1 1 hand preshape vr16 1 1

1 2 arm move (main) vr16 1 2

2 1 arm move (primary) vr17 2 1

3 1 arm move (secondary) vr17 3 1

4 3 arm move (secondary) vr17 4 3

Table C.5: Instruction: Unscrew the lid from the mug.

Instruction

Replacement

state # primitive # primitive Action state primitive #

1 1 hand preshape kin9 1 1

1 2 arm move (main) kin9 1 2

2 1 arm rotate kin9 2 1

2 2 arm move (primary) kin8 2 2

3 1 arm move (secondary) kin8 3 1

4 2 arm move (secondary) kin8 4 2

Table C.6: Instruction: Invert a jar

Instruction

Replacement

state # primitive # primitive Action state primitive #

1 1 hand preshape kin5 1 1

1 2 arm move (main) kin5 1 2

2 1 arm move (primary) vr18 2 1

3 1 arm rotate vr18 3 1

3 2 arm move (secondary) vr18 3 2

4 2 arm move (secondary) vr18 4 2
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Pedram Azad, Aleš Ude, Sven Schmidt-Rohr, and Martin Lösch. Advances in
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