
The reconstitution of visual cortical feature

selectivity in vitro

Dissertation
(Cumulative Dissertation)

for the award of the degree
“Doctor rerum naturalium”

Division of Mathematics and Natural Sciences of the
Georg August University Göttingen within the doctoral program GGNB
of the Georg August University School of Science (GAUSS) submitted by

Manuel Schottdorf

from Bad Kissingen

Göttingen 2017



Thesis committee:

• Prof. Dr. Fred Wolf (Thesis supervisor and 1st reviewer)
Max Planck Institute for Dynamics and Self-Organization

• Prof. Dr. Jörg Enderlein (2nd reviewer)
Third Institute of Physics, University of Göttingen

• Prof. Dr. Walter Stühmer (Thesis cosupervisor)
Max Planck Institute for Experimental Medicine

Further members of the examination board:

• Dr. Andreas Neef,
Max Planck Institute for Dynamics and Self-Organization

• Prof. Dr. Siegrid Löwel,
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Chapter 1

Introduction

“What I cannot create, I do not understand.”

Richard Feynman141, 1988

3



1. Introduction

1.1 Towards a synthetic neurobiology

Understanding system level functions, realized by the coordinated activity of large numbers of
biological elements, constitutes one of the greatest challenges to science in the 21st century.
Prime examples are the information processing functions of nervous systems, which typically
require the coordinated activity of nerve cells interacting in complicated networks called neu-
ronal circuits. Despite massive effort, the design principles underlying neuronal circuits in most
animal brains remain poorly understood because we can not control all contributing circuit el-
ements in the brain simultaneously. I aim to explore and possibly lay the foundation for a new
strategy to address this challenge.

While the physiology of individual neurons is important for circuit function it is probably its
wiring diagram, its connectome, that determines the function of neuronal circuits as information
processing device. If connectomes are in fact decisive, then thorough testing of the relationship
between circuit structure and function will be key for understanding neuronal circuit design. For
genes and proteins engineering approaches enable biological researchers to modify their biologi-
cal structure and assess the resulting loss and gain of function. Historically, studies on proteins
like hemoglobin showed that structural variations can lead to impaired function and disease and
these studies were key for the understanding of its molecular function210,381. Similarly, manip-
ulating the structure of various ion channels and monitoring the associated functional changes
lead to novel insights into their working mechanisms71,460. These early structure-function studies
evolved into synthetic biology, a “rigorous engineering discipline to create, control and program
cellular behavior [. . . ] poised to transform biotechnology and medicine.”64 by providing the bi-
ological engineer with specific genetic tools like toggle switches, oscillators and even logic gates.
In the case of living neuronal circuits, however, our capabilities of redesigning connectomes at
present are very limited. My aim is to develop a synthetic neurobiology approach to this problem
to create, control and program neuronal circuits, with the ultimate goal of performing a first
connectomic structure-function study.

The key to this novel approach is the incorporation of artificial components into a neuronal
circuit formed by living cells. I will use the reliability of engineered neuronal networks in silico to
specifically replace key elements of the connectome. The control over the artificial circuit then
allows me to design, switch and manipulate the connectome on the fly. The total network is thus
a synthetic hybrid circuit composed of simulated and living nerve cells in which key features
of its wiring diagram can be digitally manipulated. Taken together, the merged in silico and
in vitro components of this system can realize a recurrent and functional circuit of neurons
which is flexible enough for specific structure-function studies. Recent advances in optogenetics
together with digital phase-only holography and electrophysiology allow me to construct such a
hybrid circuit. This is what I call synthetic neurobiology of hybrid neuronal circuits.

I will focus on one fundamental and enigmatic neuronal circuit motive common to many
brain areas: a recurrently connected layer of neurons processing information arriving through
a feed-forward neuronal pathway. This large-scale circuit motive predominates in the cerebral
cortex, which is the seat of our conscious experience and our recognition, memory, and executive
control capabilities. The response properties of neurons in many regions of the cerebral cortex
have been extensively described. For most of them, however, it is still unclear which aspects of
circuit structure are critical to their function. In particular, it is a long-standing and highly con-
troversial question, what feed-forward inputs arriving from e.g. a sensory pathway and recurrent
connections within the target circuit specifically contribute to cortical information processing.
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1.2. Content

Let us consider the early visual system: after half a century of extensive study we have
gained substantial insights into its functional organization and its cellular composition. Yet, we
are far away from a deep understanding of the computational goals, the underlying algorithms
and the hardware implementation309,310. A landmark component of the visual system is the
primary visual cortex. Its constituting nerve cells are feature selective; they respond to specific
aspects of visual scenes. Feature selectivity has been studied for more than 50 years196 and most
V1 scientists agree that feature selectivity is a key property of cortical neurons, going so far as
to refer to it as “giant squid axon of cortical neurophysiology”66 to which both feed-forward and
recurrent circuits contribute. The interplay of both, however, is enigmatic because both circuits
are hard to selectively and specifically manipulate in vivo434. Here, I use synthetic neurobiology
of hybrid neuronal circuits as a novel research avenue for structure-function studies of neuronal
circuit design in the visual pathway which I hope might lead to genuine insights into the under-
lying logic of neuronal circuits.

Synthetic neurobiology enables a new and systematic approach to dissect the contributions
of feed-forward and recurrent connectomes to the generation of cortical feature selectivity, be-
cause: (1) The in vitro component realizes a dense medium scale recurrent circuit, composed
of thousands of neurons, so that collective processing functions can spontaneously emerge. (2)
The wiring diagram of the feed-forward input connectome can be freely designed and thus var-
ied from highly specific to completely random. (3) The system can be rapidly and reversibly
switched between different pathway connectomes. (4) Different pathway connectomes can be
connected to the same target circuit of living neurons, providing for an internal control. (5) High
quality optical access to the recurrent circuit for all-optical interfacing and optical monitoring
of activity can be achieved with relative ease.

1.2 Content

In the first part of this thesis, chapter 2, we review the mammalian visual system and the
technologies for interfacing living neuronal networks.

In chapter 3 we study a state-of-the-art model of the early visual pathway to both develop
a framework for the virtual connectome and to answer the question whether random wiring of
the afferent visual pathway alone suffices to generate (i) feature selectivity and (ii) determine
the functional architecture of the primary visual cortex. We find that weak orientation selectiv-
ity can be generated in the random wiring scheme, but to obtain the specific layout observed
across various mammalian species, the common design242, random wiring is insufficient. Self-
organization of recurrent connections during development determining the preferred orientations
remains the most likely candidate.

Next, in chapter 4, we will develop and assess two distinct approaches to construct an in
vitro surrogate cortex. We first assess the viability of what we call virtual networks, realized
by closed loop optogenetic connections162,348 between islands of individual neurons grown on
multielectrode arrays (MEAs). Virtual networks are artificial neural networks with biological
neurons as nodes. This approach seems promising because it allows in principle to construct
arbitrary networks. We develop a protocol to yield ≈ 60% populated islands on glass electrode
arrays, but find that recording electrical activity is partially impaired by the required surface
treatment of the glass chips. In the end, we observe only few islands with active electrodes.
Next, we design a system in which the local neuronal circuits are as realistic as possible. We
find that cortical cultures can be set up with the same cell density and cellular content as the
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1. Introduction

input layer of sensory cortex. As these cultures are easier to produce on a large scale and show
rich spontaneous activity, resembling the spontaneous activity in the young neocortex, our sec-
ond strategy was to wire this surrogate cortex to a virtual sensory pathway. We implemented
the virtual sensory pathway in silico and interfaced the living neurons by a custom build digital
phase-only holographic projection system.

In chapter 5, we show details of the in silico visual pathway and its interface to the surro-
gate cortex. We also find a generic scaling law for the layout of the early visual system which
allows us to transform the visual pathway of a cat into that of a mouse. We connect these differ-
ent pathways to the same target circuit of living neurons, providing for an internal control, and
find that shrinking the visual system leads to a substantial loss of orientation selectivity in the
afferent input, while surprisingly the total fraction of tuned cells changes little. The orientation
bias of neurons in the limit of homogeneous inputs is generated by the recurrent network alone.
These cells are mostly simple cells with a small fraction of complex and direction tuned cells.
We also find cells with receptive fields composed of excitatory and inhibitory subregions, and
these receptive fields have a typical spatial scale of ≈ 1 mm, consistent with the generic scaling
laws which we extracted earlier. Consistent with simple cells, the tuning can be predicted from
the receptive field. The spatial arrangement of spontaneously tuned cells resembles a sparse salt
and pepper pattern. This diversity of responses suggests that even in this most generic case, a
recurrent circuit is sufficient to spontaneously generate a basic level of orientation selectivity.

In chapter 6 we will present a new method to manipulate the circuits in the surrogate cor-
tex. The surrogate cortex is based on neuronal circuits generated in the absence of any input and
the processes by which neurons wire into circuits are most likely partially activity dependent.
One way to manipulate the circuit’s connectome is thus by controlling the prevalent activity
patterns during the course of circuit formation. In this chapter, we therefore ask whether the
local circuits can be configured differently by supplying external inputs during development. We
discover that external inputs during development change the collective dynamics of the surro-
gate cortex massively. This chapter concludes the synthetic neurobiology part of this thesis.

In chapter 7 we further test the random wiring hypothesis using experimental data from cat
and primate retinal ganglion cell mosaics. We compare it with an ensemble of bespoke ganglion
cell mosaics that can theoretically seed iso-orientation domains in the visual cortex and find
that the currently available data puts a strong quantitative constraint on the random wiring
hypothesis and the idea that the layouts of domains are already encoded in the geometry of the
retina. Considering the specificity and ubiquity of the common design, we next ask where the
selective forces that favor the common design can break down. Using the reinvention of colorvi-
sion among primates as natural experiment, we find a virtually identical layout of orientation
domains in trichromatic macaque and color-blind owl monkeys, highlighting that orientation
selectivity is truly a key player of functional cortical architecture, and likely orchestrates other
functional aspects of the cortex.

In chapter 8 we reveal distortions in the peer review process, specifically showing that a
scientist’s personal attributes matter. This chapter was originally motivated by personal obser-
vations, and made rigorous by web-crawling the publicly available article web pages from the
Frontiers Journal Series to obtain one of the largest datasets for the sociology of science available
today including more than 175,000 individuals.

Finally, we review the content of this thesis in chapter 9 together with an assessment of the
merits of a synthetic neurobiology approach for the reconstitution of living neuronal circuits.
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Chapter 2

Fundamentals

“Felix, qui potuit rerum cognoscere causas.”

Publius Vergilius Maro389: “Georgica”, Liber II, 490.

2.1 Content

Here, we review the building blocks of the early visual system and the currently available tech-
nologies for interfacing living neuronal circuits. Its content serves as the foundation of the work
in the following chapters. Reviewing these elements is critical to (1) construct the in vitro model
of the visual pathway, (2) interpret our subsequent findings and (3) assess the potential merits
of constructing a synthetic hybrid system of this specific sensory pathway.
The visual system is the paradigm of a sensory pathway and it is sequentially organized: A re-
currently connected layer of neurons in the brain is processing the information arriving through
the feed-forward neuronal pathway of retina and lateral geniculate nucleus, a thalamic process-
ing station. Most importantly, we will introduce orientation selectivity, a key element of what
is called the functional architecture of the visual cortex. It has recently been discovered that
this functional architecture exhibits a set of quantitative layout rules, called the common design,
that is likely to have been invented independently several times during mammalian evolution.
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2. Fundamentals

2.2 Eye and retina

The optical machinery of the eye projects an image of the visual world on the retina, a light-
sensitive layer of tissue, see Fig. 2.1A. On the retina, the two dimensional light pattern is
translated into variations of the membrane potential of rod and cone cells. These light detectors,
in humans on the order of 100 million, densely convert an image into electrochemical signals.
The signals are subsequently processed by a cascade of neurons, Fig. 2.1B and provide input
to retinal ganglion cells (RGCs). These cells generate complex sequences of action potentials
that provide input to the brain.

Ganglion cells

Every single RGC responds to specific aspects of a stimulus, located within a small region in the
visual field, the neuron’s so-called receptive field258. For many RGC types, the receptive field is
radially symmetric. Stimulation in the center of this receptive field increases the firing whereas
stimulation of the surround suppresses it. Such a cell is called an ON center cell, Fig. 2.1C.
Cells for which the activity increases upon presentation of a dark center are called OFF center
cells. The response of RGCs in the frequency domain reflects this behavior, Fig. 2.1D. For
small spatial frequencies that illuminate the entire receptive field, the response is suppressed
compared to intermediate spatial frequencies.

Ganglion cell mosaics

In the primate retina, there are several types of ganglion cells, most notably Parasol (10%-20%),
Midget (60%-80%) and Bistratified cells (10%-20%). Parasol and Midget cells have a center-
surround receptive field. Midget cells are color selective, often sampling from a single cone
only. They also have very small receptive fields. In the cat, nomenclature is different454,478.
There exists a ganglion cell type with a small and linearly summing receptive field, similar to
the primate midget cell, which is referred to as X-cell318. There is another type with larger
receptive field, resembling to some extent the primate parasol cell, and is called a Y-cell106.
Midget and parasol cells are distinguished according to their response properties, as are X- and
Y-cells. However, the cells are also different histologically and morphologically. Y-cells in the
cat correspond to α-cells in morphology, and X-cells correspond to β-cells318,465.
The mammalian retina contains so-called mosaics of retinal ganglion cells which tile the entire
surface100,101. This was found in rabbits114, rats13,421, cats378,506,508, primates99,142 including
humans100, and is illustrated in Fig. 2.2. Both the position of RGC somata, and of the receptive
fields, form an aperiodic pattern with a typical scale427. A cat’s α-cell mosaic is shown in
Fig. 2.2A. Notably, there are different types of RGCs that coexist, and that convey different
signals to the brain.

Ganglion cell projections

The ganglion cell’s axons form the optic nerve. The two optic nerves meet in the optic chiasm
where the nasal sides of the image are interchanged. The optic tract projects to a region in the
thalamus, the lateral geniculate nucleus (LGN). This is one of the key region of the brain where
retinal input arrives (the other being the superior colliculus and the pretectum). Thalamic
nuclei are thought to modulate the signal transduction depending on attention and sleep. This
selection is influenced by cortical projections that terminate in the thalamus. Neurons receiving
retinal input are termed relay cells as their response properties resemble retinal cells85,193,235,467.
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2.3. The LGN

Figure 2.1: Visual processing in the retina. A A saggital cut through the eye of a cat.
B The cellular inventory of the primate retina. Light enters from the left. C Receptive field
of an ON center X-type retinal ganglion cell. An illumination pattern (left) creates a certain
response (center and right). The bar corresponds to the time span when the stimulus is presented
(spike data reprinted with permission from518. Firing rates reprinted with permission from130).
D Response of a ganglion cell to different spatial frequencies. The decrease at small spatial
frequencies is the effect of surround suppression (reprinted with permission from130).

2.3 The LGN

Fig. 2.3A shows the location of the LGN within the early visual pathway of a primate. A
staining for cell bodies, Fig. 2.3B, shows a distinct six-layered structure, characteristic for
primates. LGN neurons are the target of a subset of retinal projections, and these retinal
projections are ordered with clear ocular dominance layering199. Layers 1,4,6 are contra-lateral,
and 2,3,4 ipsi-lateral. In the primate, parasol cells are part of the magnocellular pathway and
midget cells part of the parvocellular pathway, two distinct parallel pathways to the visual cortex.
In the literature, geniculate neurons of the parvocellular pathway are called P-cells and neurons
of the magnocellular pathway are called M-cells. Of the six histologically distinct layers of the
LGN, four belong to the parvocellular, and two belong to the magnocellular pathway. The
thalamic neurons respond similarly as retinal cells. M-cells of the magnocellular pathway are
not color sensitive and respond well to low luminance contrast. P-cells are color sensitive and
require a great luminance contrast. A loss of P-cells leads to a complete loss of color vision. LGN
neurons have center-surround receptive fields. This similarity is the main reason for modeling
the LGN as relay station, despite the fact that anatomically, only 10%-20% of the synaptic
connections to LGN neurons originate in the retina. The vast majority originate in different
brain regions233. Axons leaving the LGN follow the optic radiation to primary visual cortex.
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2. Fundamentals

Figure 2.2: Ganglion cell mosaics cover the retinal surface. A A full mount of a cat
retina, with visual streak and the fovea indicated (reprinted with permission from507). B Section
of the β-cell mosaic of a cat (reprinted with permission from506). The retinal position of this
mosaic is indicated in A. C Receptive field mosaic of a primate retina. Shown are contours of
Gaussian fits to the receptive fields at 1.3σ (reprinted with permission from142).

Expansion and convergence from RGCs to relay cells

Independent of retinal topography all α- and β-cells in the cat retina project through the optic
nerve to the thalamus. 70% of the fibers terminate in the LGN. In the A lamina of dLGN, there
are 240.000 X-cells (Retinal X-ganglion cells project mainly into the A-lamina of the LGN. Of
the approximately 450.000 cells in the LGN419, two-thirds are located in the A and Al layers,
and two-thirds of these are X-type). These receive input from at least around 90000 β-cells in
the retina203,209,406. Therefore, each retinal X ON center ganglion cell from one eye projects
to ≈ 3 geniculate relay cells. This is consistent with the estimate by487. Others estimate
an expansion of around 1.5-2.0 from X-cells in the retina to X-relay cells in the LGN209,382.
Moreover, geniculate neurons can receive input from several retinal afferents and these multiple
retinal inputs have mostly overlapping receptive-field centers487. Input is typically provided by
one or at most a few RGCs, RGC input drives LGN neurons effectively84 and ON and OFF
channels remain separated in the LGN191.

Functional considerations

Such divergence from the retina might be important in the light of synchronous activity in
the LGN which in turn might be particularly effective in driving layer IV cells in the visual
cortex (see below). Another hypothesis was recently brought forward by Martinez316 et al.
In their study, they inferred the mapping between RGC inputs and LGN relay cells using
a statistical connectivity approach: ON and OFF cell types were homogeneously distributed
and their polarity (ON or OFF) was inherited from the nearest retinal input. Connection
probability between RGCs and LGN neurons was modeled as an isotropic Gaussian function
of the relative distance between the RF centers of the presynaptic and postsynaptic partners.
With this simple wiring scheme, together with similar connectivity rules for the population of
inhibitory interneurons, several spatiotemporal properties of LGN RFs robustly agreed with the
experimental data. They deduce that the retinothalamic convergence provides an interpolated
map with improved coverage of visual space. Their model suggests that a typical relay cells gets
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2.4. The primary visual cortex

Figure 2.3: Position and anatomy of the LGN in the primate brain. A A trans-
verse sketch of the visual system (reprinted with permission from172). B Three Nissl stained
adult Macaca mulatta brain sections of the lateral geniculate nucleus (adapted from328). The
characteristic six layers in primates are numbered.

input from three to four RGCs.
The spike output of LGN relay cells is basically monotonic with contrast4. Notably, between
5% and 100% contrast, spike rates can change about 40% and the signal transmitted from the
LGN rides on a maintained spontaneous discharge. This is consistent with earlier reports361,
who found that “relay cells do not adapt to any significant degree, the signals they carry may
convey information about absolute contrast levels.”

2.4 The primary visual cortex

From the LGN, projection to the visual cortex are made through the optic radiation. Along
these fibers visual signals are sent to the primary visual cortex in the occipital lobe. This is the
first cortical processing station.

11



2. Fundamentals

Figure 2.4: Anatomy of the neocortex and retinotopic projections. A A transverse
cut through a nissl stained macaque monkey brain (adapted from328). The inset indicates the
six cortical layers. B Two LGN afferents to the visual cortex of a kitten (top) and an adult
cat (bottom) (adapted from267). C There exists a topographic map from the visual world to
the visual cortex, of which the magnification depends on the position in visual space (reprinted
with permission from484). D This is, for instance, directly visible by studying activity patterns
generated by geometric shapes (reprinted with permission from475).

Anatomy and inputs of the visual cortex

The mammalian cerebral cortex is a superficial layer of tissue and contains most of the neurons
of the Cerebrum, see Fig. 2.4A. The occipital lobe of the brain contains the primary visual
cortex, the first cortical area concerned with processing of visual information. The primary
visual cortex, sometimes referred to as the striate cortex, is a sheet of tissue with six layers,
each of which with substantial differences in cell density and cell composition391. Through
history and for other regions, other numbering schemes have been used. However, the division
into six layers is the most common one233. Layer IV receives thalamic input. In primates, it
is further subdivided into layer IVCα, to which the magnocellular pathway projects and IVCβ,
target of the parvocellular pathway. Fig. 2.4B shows two LGN projections into the cortex in a
cat’s brain, terminating in layer IV. In cat “virtually all” relay cells of X-type in the A lamina
project to area 17204. Thalamic X-cell axons terminate in single irregular clumps of size 0.6 mm2

to 0.9 mm2 in the primary visual cortex204 In young cats, thalamic projections are isotropic and
cover about 0.5 mm2. In adult cats, the geometry is similar but more patchy. The density
of binocular layer IV neurons is about 14000 mm−2 in layer IVC29. The projections from the
thalamus into the cortex preserve the topography of the visual world. Neighboring projections,
and neighboring neurons in the cortex respond to neighboring points of the visual world. This
is called retinotopy104,304,526. In mice, this mapping is rather uniform115,429, in contrast to
cats304,484, macaque476 or human412. The linear magnification factor in units mmc/deg is the
conversion factor between angle in the visual world and mm on the cortical surface. For most
animals, is depends on the position in visual space, Fig. 2.4C. Thus, any object in the real world
generates a distorted, but topographically identical activity pattern on the cortex526. This is
visualized with an autoradiograph from the metabolization of radioactive glucose in Fig. 2.4D.
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2.4. The primary visual cortex

The retinotopic thalamic inputs into the visual cortex are excitatory10,329 and specifically target
stellate neurons in layer IV137,157,268. As most of the stellate cells are spiny, excitatory spiny
stellate neurons are the major target of thalamic inputs152,294,314,322,382,459.
Thalamic synapses are neither special nor particularly strong4,35 and only ≈ 5% of spiny stellate
cell synapses come from thalamic axons. In numbers, about 100-200 from 5000 connections
come from the thalamus93 and do not dominate the activity of a particular cortical neuron382.
In the words of Kevan Martin: “We are connected to reality only through a tiny thread; the
cortex is spending a lot of time talking to itself”1. The median size of the synapses is slightly
larger than that of other synapses on the dendrites of spiny stellate cells, but they are not
located particularly proximal to the soma, nor cluster on the dendrites. A theoretical study
with a biologically realistic model spiny stellate cell of layer IV revealed that a large number
of thalamocortical synapses have to be activated roughly simultaneously to elicit a spike in this
cell21. This might imply that input alone cannot drive the stellate cells and lead researchers to
speculate about alternative mechanisms, such as synchronous activation of the sparse thalamic
synapses to boost the efficacy, or as intracortical inputs provide most of the excitation to spiny
stellate cells in layer IV, recurrent intracortical circuits may amplify the initial feed-forward
thalamic signal21,93,252,459.

The number of inputs

With this qualitative understanding, how many RGCs provide input to a single layer IV stellate
cell through the LGN? Quantitatively, it has been subject of ongoing debate for the past 30
years11,466. In the following few lines, we will try to estimate the number using several indepen-
dent ways.
(1) One can estimate it directly, for instance by analyzing published β-cell mosaics506,540. For
these mosaics, using known relations between visual angle25,37 and cortical magnification484,
we estimate the cortical magnification427 as ξ = 1.7mmc

mmr
. The mosaic w81s1427,506, shown in

Fig. 2.2B, measures 0.75 × 1.0 mm2
r and consists of 65 ON and 70 OFF cells. With perfect

retinotopy, it would provide input to a cortical area of about 1.3 × 1.7 mm2
c . X-cell input

into layer IVC is typically restricted to single clumps137 with a radial extend of ≈ 500 µmc.
This is roughly consistent with the presumably more precise findings by Humphrey and col-
leagues204, who specifically studied X- and Y-cell projections, by anatomically identification
of the cell and subsequent intracellular injection of horseradish peroxidase. They report that
thalamic X-cell axons terminate in single irregular clumps of size 0.6 mm2

c to 0.9 mm2
c in the

primary visual cortex. The number of projections accessible to a layer IV stellate cell is therefore

N = (65+70)×(0.75±0.15) mm2
c

1.3×1.7 mm2
c

' 45± 10. The other mosaic, m623427,540, measures 1.0× 1.1 mm2
r

and consists of 74 ON and 82 OFF cells, providing input to an area of about 1.7× 1.9 mm2
c . It

follows for this mosaic that N = (74+82)×(0.75±0.15) mm2
c

1.7×1.9 mm2
c

' 36± 7.

(2) A different approach would be anatomical. Peters and Payne measured the synaptic con-
nectivity between thalamus and cortex and from there estimated the number of inputs into a
cortical cell. They found that there are 115 ± 15 genicocortical synapses per layer IV stellate
cell382. Freund et al. measured the number of synapses that stellate cells form with thalamic
projections. They found typically 1 synapse per projecting X-cell axon, with a mean of 1.27 and
a maximum of 8147,382, so that one layer IV cell receives 15-125 different inputs. As the LGN
expands the number of retinal inputs by a factor of 2 to 3 (with some estimates11 going as high
as 3-6), there are effectively between 5 and 60 RGCs that could provide input into one layer IV
cell.
(3) Some researchers estimated the number of inputs using a random wiring hypothesis. The

1Comment at 113th International Titisee Conference 2016, in Titisee, Germany.
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first such estimation446 comes from Robert Soodak in 1987. Assuming a Gaussian distance func-
tion (which he defined as wiring strength as function of distance in retinotopic space between
RGC position, and cortical target), with a width of σ=150 µm (estimated from Ferster’s137

and Humphrey’s204 work), and counting connections only if the distance function > 0.01, he
estimated that a cortical neuron receives input from typically 27 RGCs through LGN relay cells.
In 2004, Dario Ringach406 estimated the number of LGN inputs to a simple cell to be around
10, and Troyer estimates it to 61± 5479.
(4) The number of effective geniculate inputs onto a simple cell can also be estimated from
the size of simple cell and geniculate receptive fields, the coverage and the wiring probability11,
N = A · C · p, where A is ratio of the visual space covered by a geniculate receptive fields over
a simple receptive field, C is the number of geniculate centers per point of visual space (i.e.
the Coverage of visual space), and p is the probability of connection between a geniculate cell
and a simple cell with overlapping receptive fields. A typical layer IV simple cell has two to
three subregions, each with a length/width ratio of ≈ 2.5. Therefore, six geniculate receptive
fields would suffice to cover a simple receptive field. The coverage factor for both, ON and OFF
center X-cells is ≈ 6 in the retina506 and 2.5× larger in the LGN209,382, therefore, C ≈ 15. The
probability of finding a monosynaptic connection between a geniculate cell and a simple cell with
overlapping receptive fields is approximately p = 0.33. Thus, N = 6 · 15 · 0.33 ≈ 30 geniculate
cells would converge onto a simple cell11.
(5) From the relation of visually stimuli, thalamic activity and LFPs in area 17, Jin et al. es-
timated the number of strong X inputs into one cortical column225. They found on average 26
strong inputs, with a range from 12-47, indicating in turn 4–25 RGCs
Taken together, these estimations point to at least 10, but probably much less then 100 RGCs
that effectively provide visual input to a layer IV cell. If there are in fact so few inputs with
which a given cell can construct a receptive field, would this not generate substantial receptive
field scatter on local scales?
It turns out that there is very small scatter of receptive field position. Hetherington and Swin-
dale found that typical scatter was half an average RF size (tetrode recordings in cat area 17)184.
This seems consistent with225 who found about 2.5 geniculate centers and346 who found typi-
cally 10%-20% of RF size. More recent studies using either electrode penetrations256 or calcium
imaging272,346 revealed that retinotopy is very precise, in the words of Ian Nauhaus: “close to
perfect on a microscale”2. Specifically in cats and treeshrews, OFF retinotopy is very precise
and the scatter is larger for the ON subregion. The relative displacement of the ON subregion
is consistent with the cell’s orientation preference225,256,272,393.

Feature selectivity in V1

Recording from neurons in the primary visual cortex, Fig. 2.5A, reveals a remarkable phe-
nomenon: orientation selectivity. Neurons in the primary visual cortex respond preferably to
edge-like stimuli or contours of a particular orientation194,197 (they also show spatial frequency
preference212, ocular dominance238,289 and others463). This feature preference distinguishes pri-
mary cortical neurons from cells in the retina and the thalamus467 and is reflected by both re-
ceptive fields from reverse correlation measurements107,487 with specific ON and OFF regions398

and the response to an elongated bar335, Fig. 2.5B. Measuring the response of a cell as function
of the stimulus orientation yields a tuning curve, Fig. 2.5C. Notably, the tuning of cortical cells
prevails even after silencing the cortex, for instance by cooling136 or pharmacological innerva-
tion77, indicating that the convergence of multiple thalamic projections on the target cortical
neuron has a substantial contribution to its tuning. These results have been confirmed more

2Comment at Cosyne 2015 in Salt Lake City, USA.

14



2.4. The primary visual cortex

Figure 2.5: Orientation selectivity in the visual cortex. A Retinal and LGN receptive
fields have a center surround structure. Cortical receptive fields are elongated (reprinted with
permission from398). B The presentation of an elongated stimulus at different angles elicits
different responses (reprinted with permission from196). C Orientation tuning in the cortex
persists even at low temperatures (reprinted with permission from136), consistent with D, the
Hubel and Wiesel scheme for the generation of orientation selectivity (reprinted with permission
from194). E In an independent study, the half width half height of various cells also remained
invariant under cooling (reprinted with permission from158).

recently with optogenetic inhibition in mice279. Furthermore, the receptive fields of the afferents
to some extent predicted the preferred orientation of the cortical cells225. These findings are
consistent with the first model of orientation selective responses that David Hubel and Torsten
Wiesel proposed194. They suggested that the convergence of several center–surround receptive
fields at different positions in the visual world can produce an elongated receptive field with dis-
tinct ON and OFF subregions, as observed in the cortex, Fig. 2.5D. The half-width-half-height
of the afferent tuning, scattering around the mean value of ≈ 35 deg136, is similar to the tuning
of cortical cells within the active cortex, Fig. 2.5E. Most cells in layer IV, the thalamic input
region, are simple cells315,329 with small receptive field376 and similar for various stimuli533.

The spatial organization of orientation selectivity

In the primary visual cortex of primates and carnivora, orientation selectivity is arranged in a
pattern across the cortical sheet. Electrode penetration experiments revealed a smooth progres-
sion tangentially to the cortex39,194,196,197, see Fig. 2.6A. Later, the advent of various imaging
techniques, most notably voltage sensitive dyes41, intrinsic signals39,46,50,51,166, and recently cal-
cium imaging207,360,442,519, revealed a remarkably complex layout, Fig. 2.6B,C: Tangentially
to the cortex, orientation preference changes smoothly194,195, except for so-called pinwheels,
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Figure 2.6: The spatial organization of orientation selectivity. A The preferred orien-
tation of neurons along an electrode penetration (adapted from39). B Intrinsic signal imaging
reveals a modulation of activity from stimulation with gratings of various orientations (adapted
from50). Darker regions are more active. C Color coded layout of the preferred orientations
from the measurement in B (adapted from50). D The averaged marginal powerspectra for sev-
eral different species extracted from the data in chapter 3. The inverse of the evident length
scale is called the column spacing. E The smooth progression of preferred orientations including
the pinwheels have cellular precision. In rodents, as the rat, the layout of preferred orientations
is disorganized (reprinted with permission from359,360).

around which the preferred orientations are arranged radially41,46,166,199. Pinwheels exist in two
chiralities, with either clockwise or counterclockwise progression of the preferred orientations.
Notably, pinwheels around which every possible orientation is represented more than once have
never been reported experimentally and are structurally not stable428. These layouts, inter-
rupted by discrete pinwheels, exist in a variety of mammals as monkeys, cats, ferrets, sheep,
treeshrews and humans41,76,77,83,190,242,360,482. Another property of the layout of orientation
domains is a typical scale41,46,47,50,166,241 that separates regions of neurons preferring similar
orientations. Their power spectra are dominated by a typical spatial frequency which sets a
natural length scale40,356, Fig. 2.6D.
In the primary visual cortex of rodents, electrode penetration experiments since the 1970s sug-
gested a disorganized layout of orientation preference. These experiments were conducted in the
visual cortices of various rodents as rat159,359,374, gray squirrel489, mouse327,349 and rabbits339.
More advanced imaging techniques112,458 revealed a true dichotomy in the layouts of visual
cortical architecture, Fig. 2.6E, between orientation domains and a salt and pepper pattern.
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2.4. The primary visual cortex

Figure 2.7: Orientation domains and the common design. A The layout of orientation
domains in a cat. Insets illustrate various measures of the spatial arrangement of pinwheels:
variability in a subregion of various size and nearest neighbor statistics for pinwheels of different
charges. B Two more examples for layouts of orientation domains in a ferret and a galago
(reprinted with permission from245). C The pinwheel density for different individuals of four
species: symbol size corresponds to the size of the dataset. D The column spacing for the same
animals as in C. Note that substantial variations cross individuals and across species. E The
pinwheel density in natural units (see text) is very similar. F The pinwheel density averaged
across individuals with bootstrapped 95% confidence intervals for the four species.

The common design

The layout of orientation domains in cats, galagos, ferrets, Fig. 2.7A,B, and others is quali-
tatively similar40,41,47,50,166,242,516. The layout, as described, consists of a smooth progression
of domains, interrupted by an irregular array of pinwheel positions. The number of pinwheels
per mm2, Fig. 2.7C, can be very different in various animals. Similarly, the columns spacing,
the typical distance separating columns of similar orientation preference, varies substantially,
Fig. 2.7D. It turns out that expressing the density of pinwheels in natural units, i.e. per col-
umn spacing squared, shows a common quantitative layout rule, Fig. 2.7E,F. At least for the
studied species, belonging to very different clades, there exists a common design, characterized
by the statistical identity of (i) pinwheel density, (ii) pinwheel density fluctuations as a function
of subregion size, and (iii) nearest neighbor distance distributions notably distinct from a ran-
dom process with the same spatial correlations132,242,423,528. The large degree of phylogenetic
separation highlights that these species in all likelihood evolved a layout of orientation domains
that adheres to the common design independently. A fundamental question for visual cortical
architecture is whether there are constraints that lead to this particular set of spatial layout.
This question is at the core of chapters 3 and 7.
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Orientation domains in the visual world

Convergent evolution of the common design suggests a potential functional benefit of layout of
orientation domains with specific layout rules including pinwheels. To assess whether pinwheels
could potentially be relevant, we have to address two points: how many pinwheels exist in a
typical field of view and how large is the cortical point spread function? (1) For macaques and
humans, cortical magnification horizontally follows M = λ

ε+ε0
where λ ≈ 12 mm and ε0 ≈ 1 deg.

For macaque, the column spacing is roughly 0.7 mm, thus the pinwheel density in visual space
is

ρ ' 3.14

(0.7 mm)2
×M2 (2.1)

' 3.14

(0.7 mm)2
(12 mm)2

(ε+ 1 deg)2
'
{

920/deg2, for center of vision ε ≤ 1 deg

920/ε2, otherwise
(2.2)

(2) In humans, the numbers are slightly different12,58,154,205,412,492, λ = 17.3 mm and ε0 =
0.71 deg. Close to the fovea, using the equation and column spacing above, there are 1900
pinwheels per deg2. In a typical reading distance, there are ≈ 200 pinwheels in the letter o
and every pinwheel is responsible for processing a circular region of radius 0.8′ (minutes of
arc). This number falls exactly in the range of visual acuities of healthy humans, 0.4′ − 2.0′.
It should be noted that this range is determined geometrically. An aperture with diameter 5
mm at a wavelength of 500 nm has a Rayleigh resolution limit of 0.4′, implying that pinwheels
might possibly help to sample the visual world at geometrically optimal resolution. (3) In
cats (and ferrets266), the situation is more complicated, because their cortical magnification is
not a complex logarithmic map304. Along the horizontal meridian, the cortical magnification
follows roughly a powerlaw, M = 2.9ε−0.6 where the eccentricity along the horizontal meridian
is measured in degree (numbers extracted from the figure in484), and the cortical magnification
in mmc/deg. Then for cats,

ρ =
3.14

1 mm2
×M2 ≈ 26.4ε−1, (2.3)

so at ε ≈ 10 deg, the cat has a pinwheel density of about 2.6/deg−2.
Next, how large is the cortical point-spread function? To answer this question, Ian Nauhaus
and colleagues346 measured receptive field size, receptive field scatter and cortical magnification,
using 2p-microscopy in layer II/III in a macaque. Independent of the region, around 6 deg to 10
deg of eccentricity they found 1.1±0.2 mm, close to the column spacing. If this measurement is
correct, any point in space provides direct input to at least 1 mm2 of cortex, thereby potentially
hiding orientation scotomas associated with the discretization of the pinwheel mosaic and the
layout of orientation domains.

The formation of orientation selective circuits

David Hubel and Torsten Wiesel proposed genetic predetermination of the circuits that gener-
ate orientation selectivity195, but this view has several “disadvantages” as Christoph von der
Malsburg phrased it305. Notably, it would require an extraordinary amount of genetic informa-
tion, and the genetically defined circuits would not necessarily be very plastic. Proposing an
alternative mechanism, he showed the self-organized emergence of orientation selectivity without
depending on a genetically predetermined connectome305.
Experimental studies have shown that visual experience has a crucial influence on cortical cir-
cuits95,278 and these circuits develop substantially after birth. Notably, the number and density
of synapses per volume of tissue increase massively94,522. In cats and ferrets, columnar layouts
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emerge around eye opening75,76,95,96 and the emergence of ordered layouts coincides with the
formation and development of horizontal connections50,63,121,516,517, originating from a diffuse
pattern63,292. Activity dependent mechanisms further specify the layout62,290. Without visual
input, visual cortical neurons show spontaneous activity, resembling to some extent evoked pat-
terns of activity15,483. The presence thereof seems plausible as major contributor for shaping
the structure of neocortical circuits431. For instance, the emergence of early horizontal clusters
occurs even with dark rearing, or intra-ocular injection of Tetrodotoxin. This lead Katz and
Callaway to speculate that spontaneous activity in the cortex might be sufficient to generate
the crude clusters, which are then refined by visual inputs243. Experimental evidence for the
robustness of the emergence of orientation selectivity is the emergence of ordered layouts of ori-
entation domains in the rewired ferret auditory cortex434 and their reappearance in the damaged
visual cortex539. Orientation selectivity in visual cortical neurons can be observed as soon as
kittens open their eyes195. Its basic spatial organization is innate, but visual input is necessary
for maintaining the layout and normal development74,95,96. Once a pattern of orientation pref-
erence is formed, its overall organization changes little76,160.

2.5 Interfacing neurons

To construct neuronal circuits in vitro we have to communicate effectively, specifically and
reliably with populations of living neurons. In other words, we have to use an interface that
can couple the domain of digital computers with living circuits of neurons. The combination of
tools required for this task became available only recently and is still under active development.
We use a state-of-the-art combination of electrical recordings with light sensitive ion channels
and genetically encoded calcium indicators to construct such an interface.

Evoking activity

More than 15 years ago, Francis Crick speculated about the ideal way to communicate with
neuronal circuits97. He wrote that “The ideal signal would be light, probably at an infrared
wavelength to allow the light to penetrate far enough. This seems rather far-fetched but it is
conceivable that molecular biologists could engineer a particular cell type to be sensitive to light
in this way.”. Today, his words appear almost prophetic, but one should note that light sensitive
proteins that allow the movement of charges across the membrane were discovered already in
1971 in the purple membrane of Halobacterium halobium358. Unfortunately, the potential of
this discovery was largely overlooked. The first light controlled activation of neurons was accom-
plished in 2002 using Drosophila photoreceptor genes538, but the use of genetically encoded light
sensitive channels remained a technical challenge. A game changer was the discovery of Chan-
nelrhodopsins, proteins expressed in the eyespot of the green algae Clamydomonas reinhardhii
by Georg Nagel and colleagues343 and the subsequent transfer of this protein into neurons with
a viral vector54. Channelrhodopsins can be expressed with a single gene and allowed to screen
for mutants with reduced inactivation level and a stronger sustained response in comparison the
wildtype, most notably the H134R mutant of ChR2282,283 and their biophysics become increas-
ingly well understood424. Today, optogenetics with all is facets became a useful and established
tool box for the dissection of neuronal circuits in vitro and in vivo , in health and disease, and
in awake organisms248,485.
With the availability of light sensitized cells, the next challenge is the design of an optical system
to generate arbitrary light patterns in a narrow range of wavelength. Various techniques are
known and used, most notably sequential scanning and digital micro-mirror devices, however,
they are known to be “horribly inefficient”161. We therefore use digital phase-only holography
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because it combines several advantages: high spatial resolution, high intensity, efficiency, the
correction of distortions in the optical system and the ability for simultaneous parallel illumi-
nation in two and even three dimensions129,161,317,532,537. Holographic projection systems have
been used in a variety of applications, most notably manipulations in an optical trap36,98,269,530.
The first studies using holography in a neuroscientific context appeared less than 10 years
ago161,295,350,401,537 and holography is currently on the rise as a method to provide precision
input into neural circuits129,317.

Recording activity

Arguably, the most established method to record neuronal activity is via extracellular elec-
trodes407 with which electrical activity of electrogenic cells can be monitored. While charge is
transported electronically in metals, in liquids this transport is typically ionic. Thus, the metal-
liquid interface forms an obstacle for charge transport and without electrochemistry, a metal
electrode submerged in a liquid behaves like a constant phase element for which Z ∝ ω−n where
Z is the impedance and ω is the frequency. For gold and many other metals43,324,408,426, n ≈ 0.9.
The alleged reason for this power-law behavior is a non-smooth and fractal surface topology of
the electrode material28,234,286. In the approximation of a capacitive coupling between electrode
and liquid, many of the interface properties can be calculated in closed form and the cell-sensor
interface for dish electrodes has been studied in one dimension394 as well as in two dimensions
511,512. Common models to calculate the electrical properties of a given cell-sensor interface are
the point-contact and the area-contact model 149,228,368,394,512. Both models represent elements
of the membrane, the electrode and the chip either as resistors or capacitors and many properties
follow essentially the cable equation. Notably, Weis and Fromherz coined the term “sandwich
cable”512 for the membrane-liquid-metal interface. While recording from electrogenic cells is not
a principle problem, one of the key limitations of the type of model is the spatial anisotropy of
many cell types, specifically neurons. Most notably, these cells generate substantial longitudinal
currents of O(nA) along the axon during the action potential, and the extracellular waveform
of neurons can be dominated by this lateral displacement of charges3. For a recent review on
microelectrodes, see449.
A more recent technique to record activity of neurons is via calcium indicators. The first record-
ings of intracellular calcium dynamics were done with a calcium-sensitive bioluminescent protein
from the jellyfish Aequoria victoria438. Aequorin injected into cells allowed for the first time to
record calcium dynamics by measuring changes in bioluminescence174. Such proteins together
with organic dyes like Arzenazo III were used, but turned out to be unstable with respect to
the chemical environment, and constrained by very limited accessibility. Pioneering work in the
lab of Roger Tsien in 1980s yielded new classes of organic dyes with vastly improved proper-
ties168,481 that are now used for various studies (for a review see 373). Starting in the 1990s,
several different genetically encoded calcium indicator proteins were described and studied311,
some based on fluorescent proteins333 and some on luminescent proteins like Aequorin312 and
also Obelin208. More recently, genetically encoded calcium indicators were engineered using
fluorescent proteins like GFP, fused to calmodulin (CaM) and the CaM-interacting M13 pep-
tide344. Specifically constructs derived from circularly permuted green fluorescent protein were
the founding fathers of the famous GCaMP family of genetically encoded calcium indicators6,81.
To combine optical excitation in the blue light channel, appropriate for Channelrhodopsins,
we use a red-shifted calcium indicator, originally derived from mRuby255, fused to calmodulin
(CaM) and the CaM-interacting M13 peptide in the construct RCaMP7. A recent large-scale
structure-guided mutagenesis and neuron-based screening study103 optimized this class of con-
structs and discovered a protein, jRCaMP1a, that is well suited for combination with ChR2.
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2.6 Reconstituting visual cortical feature selectivity

In the introduction, I wrote that synthetic neurobiology enables a new and systematic approach
to dissect the contributions of feed-forward and recurrent connectomes. What does that mean
specifically? We saw that a key component of cortical computations, which have been extensively
described, are feature selective responses. For the visual cortex and in the words of David Hubel,
they “were the first indication from a single-cell recording that the cortex might be doing some-
thing interesting, something that transcended what the geniculate could do.”198. In particular
orientation selectivity, i.e. the selective response to edge-like stimuli of a particular orientation,
is a property shared by many mammalian species. We also saw that in carnivores, primates and
their close relatives, orientation selectivity is arranged in patterns of iso-orientation domains
that exhibit a continuous, roughly repetitive arrangement of preferred orientations41,46,50,76,166

and that orientation specificity is at least in part generated by orientation selective feed-forward
projections. In the primary visual cortex of rodents, electrode penetration experiments since
the 1970s suggested a lack of orderly layouts of orientation domains159,327,339. More advanced
imaging techniques112,458 revealed a true dichotomy in the layouts of visual cortical architecture
between orientation domains and a salt and pepper pattern359,360. The nature of this transition
is not understood and might be related to constraints imposed by a small brain239,242,245. To
better understand the connection between visual pathway structure and function, specifically
the constraints invoked by finite brain size, we first re-engineered the early visual system of the
cat and then study how miniaturizing this circuit to the scale of a small animal like a mouse
or a eutherian common ancestor, would affect its functionality. The first critical step in this
agenda is the engineering of an in vitro model of the early visual pathway. We will develop the
necessary elements in chapter 3 before setting up any experiment. The wiring diagram of the
feed-forward input connectome can be freely configured and thus varied from highly specific to
completely random. In fact, we aim to replicate the evolutionary change of brain size which in
the living animal required tens of millions of years within a few hours in the same neural network.
Different pathway connectomes can be connected to the same target circuit of living neurons,
providing for an internal control. We will discover that shrinking the pathway leads to a loss of
orientation specificity of the afferents, and the only possible source of tuning are the recurrent
connections. In chapter 4, we will construct a in vitro surrogate cortex set up with the same
cell density and cellular content as the input layer of sensory cortex. We subsequently implement
the virtual sensory pathway in silico and interface the living neurons in vitro with a custom
build digital phase-only holographic projection system. Our work culminates in chapter 5,
where we show the results of our structure-function experiments.
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Chapter 3

Feed-forward orientation selectivity

“I would remind you that in other data intensive, phenomenological
areas–astrophysics and cosmology, for example–when you go off to spend ∼$100
million to collect data, there are theorists on the team for the design of the
instruments and observations. You think about what you’re looking for and what
framework you’re planning on analyzing it with before you collect the data, not
after.”

William Bialek33: “Perspectives on theory at the interface of physics and biology”.

3.1 Content

In this chapter we quantitatively study a state of the art biological model of the afferent visual
pathway. This chapter serves two purposes: (1) To develop the framework for the simulation of
the afferent visual pathway, (2) to elucidate the relative contributions of feed-forward seeding
and activity-dependent refinement in shaping feature selectivity in neuronal circuits.
It has long been controversial whether and how the emergence of ordered layouts of orientation
domains can be explained by self-organized activity-dependent development of cortical circuits
and to what degree their development is influenced or dominated by subcortical feed-forward
constraints. One of the most important hypotheses was recently rearticulated in several promi-
nent studies fostering this controversy and we derive predictions from this model analytically
and with mathematical rigor. We confirm these predictions numerically and show that while
weak orientation selectivity can emerge, its spatial arrangement is incompatible with experimen-
tal data. We find that the layout of visual cortical orientation domains cannot be explained by
generic random feed-forward wiring models, and that recurrent connections in the target circuits
must have an essential contribution.

3.2 Citation and original contribution

Manuel Schottdorf∗, Wolfgang Keil∗, David Coppola, Leonhard E. White, and Fred Wolf: “Ran-
dom Wiring, Ganglion Cell Mosaics, and the Functional Architecture of the Visual Cortex”,
PLoS Comput Biol 11(11): e1004602 (2015) [∗ eq. contribution]428

I conceived and designed the study together with W. Keil and F. Wolf. I analyzed the data,
performed the analytical study and the simulations and I generated all figures and all tables. I
wrote the manuscript as well as the supplemental information together with all authors.
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Abstract
The architecture of iso-orientation domains in the primary visual cortex (V1) of placental car-

nivores and primates apparently follows species invariant quantitative laws. Dynamical opti-

mization models assuming that neurons coordinate their stimulus preferences throughout

cortical circuits linking millions of cells specifically predict these invariants. This might indi-

cate that V1’s intrinsic connectome and its functional architecture adhere to a single optimi-

zation principle with high precision and robustness. To validate this hypothesis, it is critical

to closely examine the quantitative predictions of alternative candidate theories. Random

feedforward wiring within the retino-cortical pathway represents a conceptually appealing

alternative to dynamical circuit optimization because random dimension-expanding projec-

tions are believed to generically exhibit computationally favorable properties for stimulus

representations. Here, we ask whether the quantitative invariants of V1 architecture can be

explained as a generic emergent property of random wiring. We generalize and examine

the stochastic wiring model proposed by Ringach and coworkers, in which iso-orientation

domains in the visual cortex arise through random feedforward connections between semi-

regular mosaics of retinal ganglion cells (RGCs) and visual cortical neurons. We derive

closed-form expressions for cortical receptive fields and domain layouts predicted by the

model for perfectly hexagonal RGCmosaics. Including spatial disorder in the RGC positions

considerably changes the domain layout properties as a function of disorder parameters

such as position scatter and its correlations across the retina. However, independent of

parameter choice, we find that the model predictions substantially deviate from the layout

laws of iso-orientation domains observed experimentally. Considering random wiring with

the currently most realistic model of RGC mosaic layouts, a pairwise interacting point pro-

cess, the predicted layouts remain distinct from experimental observations and resemble
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Gaussian random fields. We conclude that V1 layout invariants are specific quantitative sig-

natures of visual cortical optimization, which cannot be explained by generic random feed-

forward-wiring models.

Author Summary

In the primary visual cortex of primates and carnivores, local visual stimulus features such
as edge orientation are processed by neurons arranged in arrays of iso-orientation
domains. Large-scale comparative studies have uncovered that the spatial layout of these
domains and their topological defects follows species-invariant quantitative laws, pre-
dicted by models of large-scale circuit self-organization. Here, we ask whether the experi-
mentally observed layout invariants might alternatively emerge as a consequence of
random connectivity rules for feedforward projections from a small number of retinal cells
to a much larger number of cortical target neurons. In this random wiring framework, the
semi-regular and spatially granular arrangement of retinal ganglion cells determines the
spatial layout of visual cortical iso-orientation domains—a hypothesis diametrically
opposed to cortical large-scale circuit self-organization. Generalizing a prominent model
of the early visual pathway, we find that the random wiring framework does not reproduce
the experimentally determined layout invariants. Our results demonstrate how compari-
son between theory and quantitative phenomenological laws obtained from large-scale
experimental data can successfully discriminate between competing hypotheses about the
design principles of cortical circuits.

Introduction
Processing high-dimensional external stimuli and efficiently communicating their essential
features to higher brain areas is a fundamental function of any sensory system. For many sen-
sory modalities, this task is implemented via convergent and divergent neural pathways in
which information from a large number of sensors is compressed into a smaller layer of neu-
rons, transmitted, and then re-expanded into a larger neuronal layer. When sensory inputs are
sparse, compression of the inputs through random convergent feedforward projections has
been shown to retain much of the information present in the stimuli [1–3]. On the other hand,
random expanding projections can lead to computationally powerful high-dimensional repre-
sentations of such compressed signals, which combine separability of the inputs with high sig-
nal-to-noise ratio to facilitate downstream readouts [4]. Given these computational benefits,
one might expect randomness to be a fundamental wiring principle employed by different sen-
sory systems. The most striking example of a random expansion so far has been observed in
the olfactory system of Drosophila melanogaster. Kenyon cells in the fly brain’s mushroom
body were shown to integrate input from various olfactory glomeruli in combinations that are
consistent with purely random choices from the overall distribution of glomerular projections
to the mushroom body [5].

What is the role of random projections between neural layers in mammalian sensory systems?
Sompolinsky and others have argued that the human visual system, for instance, implements a
compression-transmission-expansion strategy [3, 4]. In fact, visual stimulus information is trans-
mitted from about 5 million cone photoreceptors [6, 7] to 1 million retinal ganglion cells (RGCs)
[7] and then via the optic nerve to about 1 million lateral geniculate relay cells [8] to on the order
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of 100 million neurons in the primary visual cortex (V1) [9, 10]. We note that, while the overall
connectivity indeed suggests compression for peripheral retinal regions [11], close to the fovea
RGC density is higher than the density of photoreceptors [12, 13].

How much does randomness contribute to shaping the functional architecture of early
visual cortical areas? Projections between individual layers of the early mammalian visual path-
way are clearly not entirely random. Visual information is mapped visuotopically from the ret-
ina to V1 such that neighboring groups of V1 neurons process information from neighboring
regions in visual space. Yet, it has long been realized that many features of the spatial progres-
sion of receptive fields across V1 layer IV naturally emerge if random feedforward connections
from groups of RGC cells to layer IV neurons (via the lateral geniculate nucleus (LGN)) are
assumed (see [14] for an early example). The most important of such features is orientation
selectivity, i.e. the selective response to edge-like stimuli of a particular orientation. In carni-
vores, primates and their close relatives, orientation selectivity is arranged in patterns of iso-
orientation domains. Iso-orientation domains (orientation domains for short) in V1 exhibit a
continuous, roughly repetitive arrangement. A distance in the millimeter range, called the col-
umn spacing, separates close-by domains preferring the same orientation. The continuous pro-
gression of preferred orientations is interrupted by a system of topological defects, called
pinwheel centers, at which neurons selective to the whole complement of stimulus orientations
are located in close vicinity [15–20]. These topological defects exhibit two distinct topological
charges, indicating that preferred orientations change clockwise or counterclockwise around
the defect center [15, 18, 21–23].

More than 25 years ago, Soodak [24, 25] (see also [26]) proposed random wiring between
irregularly positioned retinal ganglion cells (RGCs) and layer IV neurons in V1 via the thala-
mus as a candidate mechanism defining the pattern of iso-orientation domains. According to
this statistical wiring hypothesis, a V1 neuron randomly samples feedforward inputs from
geniculate projections in the immediate vicinity of its receptive field center (see e.g. [27]). The
neuron then is likely to receive the strongest inputs from a central pair of ON/OFF RGCs,
forming a so-called RGC dipole [28–30]. In this scheme, one ON and one OFF subregion dom-
inate the receptive field (RF) of the V1 neuron and its response is tuned to the orientation per-
pendicular to the dipole axis. Thus, the preferred orientation of the neuron in this case is
determined by the orientation of the RGC dipole. Consequently, the key prediction of the sta-
tistical wiring hypothesis is that the spatial arrangement of ON/OFF RGC cells in the retina
essentially determines the spatial layout of orientation preference domains in V1.

Recently, Paik & Ringach showed that the statistical wiring hypothesis—when constructed
with a hexagonal grid of RGCs—predicts a periodic orientation domain layout with a hexago-
nal autocorrelation function [28]. Moreover, it predicts that orientation preference is differ-
ently linked to the visuotopic map around pinwheels of positive or negative topological charge
[29]. Qualitative signatures of both predictions were reported to be present in experimentally
measured patterns [28, 29]. Thus the statistical wiring model has conceptual appeal and is a
mechanistically particularly transparent candidate explanation for V1 functional architecture
(see however [31, 32]). Does the predictive power of the random wiring hypothesis for the
early visual pathway reach beyond this qualitative agreement?

The recent discovery of species-invariant quantitative layout laws for the arrangement of
pinwheel centers in tree shrews, galagos and ferrets [23] provides a unique opportunity to
address this question. Kaschube et al. demonstrated that in these species, the statistics of pin-
wheel defect layouts is quantitatively invariant, with potential deviations in geometrical layout
parameters of at most a few percent [23]. Specifically, the overall pinwheel density, defined as
the average number of defects within the area of one square column spacing Λ2 was found to
be virtually identical. Subsequently, orientation domain layouts from cat V1 were shown to
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exhibit pinwheel densities very close to those of the three species previously studied [33]. Addi-
tionally, Kaschube et al. found an entire set of local and non-local quantitative pinwheel layout
features to be species-invariant (see below). Following [23], we refer to this overall layout of
orientation domains as the common design.

During mammalian evolution, the common design most likely arose independently in car-
nivores and euarchontans and potentially even in scandentia [23, 34]. This is suggested by two
lines of evidence: (i) The four species in which the common design has been observed so far are
widely separated in terms of evolutionary descent, belonging to distinct supra-ordinal clades
that split already during basal radiation of placentals [35–42] (Fig 1A, see also [23, 33]). Their
last common ancestor was a small shrew-like mammal [40–42] that is unlikely to have pos-
sessed a columnar V1 architecture [23, 34]. (ii) Distinct neuronal circuits underlie the genera-
tion of orientation selectivity in galago, ferret, tree shrew, and cat (Fig 1B). Tree shrews, for
instance, lack orientation selectivity in the input layer IV of V1 [43, 44] and use intracortical
circuits to compute contour orientation. In contrast, cats exhibit both, orientation selectivity
and organization of selectivity into orientation domains already in layer IV and thus first gen-
erate orientation selectivity by thalamo-cortical circuits [45, 46] (see Fig 1B for further
differences).

Kaschube et al. used a dynamical self-organization model with long-range suppressive inter-
actions, the long-range interaction model, to explain all features of the common design [23].
The hypothesis that randomness of feedforward connections between the retina/LGN and V1
could explain the common design is conceptually diametrically opposed to large-scale self-
organization. In the long-range interaction model, the orientation preference of a neuron is
chosen from an, in principle, unlimited afferent repertoire of potential receptive fields. Single
neurons dynamically select a particular preferred orientation as a result of large-scale circuit
interactions involving millions of other cortical neurons. In the statistical connectivity model,
to the contrary, the preferred orientation of a cortical neuron is essentially imposed by the
alignment of only one pair of neighboring ON-OFF RGCs, a local process involving in princi-
ple not more than 5 cells. Can the invariant layout laws of iso-orientation domains and pin-
wheels be explained as the generic outcome of a locally stochastic feedforward wiring of the
early visual pathway? More generally, do iso-orientation domains and pinwheels in different
species adhere to identical layout laws because any mechanism that generates a retinotopic ran-
dom feedforward circuit will automatically set up a layout that adheres to the common design?

Here, we systemically investigate the arrangements of iso-orientation domains generated by
the statistical connectivity model and assess their consistency with the experimentally observed
common design invariants. First, we consider the statistical wiring model with perfectly hexag-
onal mosaics of RGCs, its most tractable form. We derive closed-form expressions for cortical
neuron receptive fields and orientation domain layouts resulting from the Moiré interference
effect of hexagonal ON and OFF ganglion cell mosaics [28, 29]. The pinwheel density of these

pinwheel layouts is r ¼ 2
ffiffiffi
3
p � 3:46, substantially larger than experimentally observed. We

then characterize the orientation domain layouts resulting from spatially disordered hexagonal
mosaics. We find that parameters of RGC position disorder can not be tuned such that the sta-
tistical wiring model’s layouts match the quantitative invariants of the common design. Next,
we examine a generalized class of noisy hexagonal mosaics that allows for spatially correlated
disorder of RGC positions. This correlated retinal disorder induces local variations in column
spacing, mimicking column spacing heterogeneity in the visual cortex [47, 48]. With these
mosaics, Moiré interference persists to larger disorder strength. Pinwheel densities, however,
are unaffected by low and intermediate levels of disorder and increase from a lower bound of
3.5 for stronger disorder. Finally, we characterize the statistical connectivity model with RGC
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mosaics generated by Eglen’s pairwise interaction point process (PIPP), the most realistic
model for RGC mosaics currently available [31, 32, 49]. The resulting arrangements of iso-ori-
entation domains and pinwheels are identical to those predicted by Gaussian random field
models [22, 50, 51]. Their pinwheel densities can be tuned by applying band pass filters of

Fig 1. Common laws for the layout of iso-orientation domains in different mammalian species. A Phylogenetic relationships and macroevolution of
laurasiatheria, euarchonta and glires [33–36, 52, 53]. B Key features of the thalamo-cortical pathway for cat [27, 45, 46, 54–65], macaque [66–73], treeshrew
[19, 43, 44, 74–76] and mouse [77–81] at the level of retina/LGN and layer IV and II/III of V1. All species show orientation selective neurons in layer II/III, but
only cat, ferret, and mouse exhibit orientation selectivity in input layer IV. Ocular dominance domain layouts differs greatly between all four species, macaque
is the only species listed possessing trichromatic color vision. Only cat and macaque V1 display cytochrome oxidase blobs. Non-classical receptive fields are
mediated by different circuits in cat, tree shrew and macaque. C Pinwheel density ρ in ferret (N = 82), dark-reared ferret (N = 21), cat (N = 13), tree shrew
(N = 26), and galago (N = 9). Light green shading indicates one–species consistency range, dark green shading indicates common design consistency range
(see text). D Illustration of the common design layout features, nearest neighbor (NN) distances, and pinwheel density in subregions of varying size. E, F
Standard deviations (SD) of pinwheel densities as a function of the area A of randomly selected subregions. SD(A) is well described by a power law with
variability exponent γ (F, top) and variability coefficient c (F, bottom). (G-J) Nearest neighbor distance distributions for pinwheels of arbitrary (G), opposite (H)
and equal (J) topological charge in units of the column spacing. Insets indicate species means. All error bars represent 95% confidence intervals of the
bootstrap distributions.

doi:10.1371/journal.pcbi.1004602.g001
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different bandwidths. However, for all plausible filter shapes, pinwheel densities are substan-
tially larger than experimentally observed.

Our findings demonstrate that the mechanism for seeding patterns of iso-orientation
domains described by the stochastic wiring model predicts column arrangements substantially
different from the long-range interaction model and distinct from the experimentally observed
invariant common design.

Results

A benchmark for models of orientation domains in V1
Our overall goal was to assess whether the layout of orientation domains predicted by the sta-
tistical wiring model are consistent with the observed common design invariants. To achieve
this, we first sought to establish a benchmark for models of orientation domain layouts in gen-
eral, to which predicted layouts can then be compared. To this end, we re-analyzed the data set
used in [23] using the fully automated method described in the same study. The data set con-
tains optical imaging of intrinsic signal experiments from tree shrew (N = 26), ferrets (N = 82),
dark-reared ferrets (N = 21) and galagos (N = 9). Because many previous studies used the sta-
tistical wiring model with parameters optimized to mimic the early visual pathway of the cat,
e.g. [82], we additionally analyzed data from 13 cat V1 hemispheres.

Following [23], we first computed the average pinwheel densities (Fig 1C). Pinwheel densities
of all four species, including cat were statistically indistinguishable from each other and statisti-
cally indistinguishable from π (dark-reared ferrets excluded)—the value predicted for the aver-
age pinwheel density by the long-range interaction model [23]. As a measure of pinwheel
position variability, spanning all scales from single hypercolumn to the entire imaged region, we
calculated the standard deviation, SD, of pinwheel density estimates in circular subregions of
area A (see Fig 1D for an illustration). For all species, the function SD(A) was well described by

SDðAÞ ¼ c
r
A

� �g

ð1Þ

(Fig 1E) with ρ denoting the average pinwheel density. The variability exponents γ and variabil-
ity coefficients c were similar in all four species (Fig 1F). As a measure of relative pinwheel posi-
tioning on the hypercolumn scale, we computed the nearest neighbor (NN) distance statistics
for pinwheels of same or opposite topological charge as well as independent of their topological
charge (see Fig 1D for an illustration). Distance distributions were unimodal and very similar
(Fig 1G–1J). Importantly, the distributions obtained from cat V1 were indistinguishable from
the other three species. Mean NN distances, when measured in units of hypercolumns, were sta-
tistically indistinguishable (Fig 1G–1J, insets). These findings confirm the results of [23, 33] and
show that cat primary visual cortex follows the same quantitative layout laws as in tree shrew,
galago and ferret.

From the above results, we extracted two types of consistency ranges that can be used as a
benchmark for models of orientation domains in V1. To be consistent with an observed layout
of orientation domains, a model’s predictions should not be significantly different from experi-
mental observations in at least one species. We thus defined one species consistency ranges
spanned by the minimal lower and maximal upper margin of the single species confidence
intervals for each parameter. If a model’s predicted layout parameters are located outside one
or more of the one species consistency ranges, data from every species rejects this model at 5%
significance level. This criterion is thus conservative in nature and does not assume that there
is in fact one species invariant common design. If such a truly universal common design for
orientation domains in fact exists, it would be appropriate to pool data from different species
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and to consider the more precisely defined confidence intervals of the grand average statistics
as the relevant benchmark. To perform this more demanding test of model viability, we also
defined common design consistency ranges as the 95% bootstrap confidence intervals obtained
from the whole data set. If the layout parameters predicted by a model are within all of the
common design consistency ranges, the model offers a quantitative account of the bona fide
universal common design. If one or more layout parameters have predicted values outside the
common design consistency ranges the model is inconsistent with the common design. With
the current data set, if a model is common design consistent, it is also one species consistent.
One species (common design) consistency ranges are shaded in light (dark) green in Fig 1C,
1E–1J and summarized in Table 1. The tests of model viability defined above are most simply
performed if the parameter values predicted by a model are determined exactly or with a
numerical error that is much smaller than the empirical uncertainties. For models that can be
solved accurately numerically, this can in principle always be achieved by a sufficiently large
sample size of simulations. In the following, through analytical and numerical calculations, we
will perform a comprehensive search through the statistical wiring model’s parameter space to
identify regimes in which the model is one species consistent or common design consistent.

The statistical wiring model
The statistical wiring model formalizes the hypothesis that the spatial progression of orienta-
tion preference domains arises from the spatial distribution of RGC receptive fields on the ret-
ina via feedforward wiring. Fig 2A shows a simplified schematics of the early visual pathway in
the cat [27, 45, 46, 54–65], from the retina to layer IV of V1. A stimulus is focussed onto the
retina through the cornea and lens, is sampled by RGC RFs and transmitted to the LGN. LGN
neurons project to stellate cells in layer IV of V1, whose responses are orientation tuned. Orien-
tation tuning varies smoothly across the cortical surface.

In the model, RGCs are assumed to be mono-synaptically connected one-to-one to relay
cells in the LGN. Thus, the receptive fields of LGN neurons are similar to those of RGCs and
the spatial arrangement of ON/OFF receptive fields of relay cells in the LGNmirrors the RGC
receptive field mosaic. Neurons in the model visual cortex linearly sum inputs of LGN neurons

Table 1. The six orientation domain layout parameters characterizing the common design. Values were calculated with the code provided in the sup-
plemental material and intervals indicate 95% bootstrap confidence intervals. Also shown is the grand average and the associated one species and common
design consistency ranges (CR).

Pinwheel density
ρ

NN distance ind.
charge

NN distance same
charge

NN distance opp.
charge

Variab. exp. γ Variab. coeff.
c

Ferret 3.14 [3.06, 3.23] 0.355 [0.347, 0.363] 0.523 [0.521, 0.539] 0.393 [0.383, 0.403] 0.40 [0.37,
0.44]

1.07 [0.97,
1.15]

Dark-reared Ferret 3.30 [3.16, 3.42] 0.346 [0.334, 0.361] 0.511 [0.499, 0.528] 0.381 [0.366, 0.401] 0.39 [0.35,
0.46]

1.02 [0.90,
1.12]

Cat 3.24 [3.06, 3.42] 0.366 [0.352, 0.381] 0.534 [0.519, 0.551] 0.407 [0.388, 0.428] 0.48 [0.41,
0.58]

0.83 [0.68,
0.95]

Treeshrews 3.08 [2.99 3.16] 0.364 [0.359 0.370] 0.521 [0.514 0.528] 0.404 [0.396 0.411] 0.36 [0.34
0.39]

1.13 [1.05
1.19]

Galago 3.12 [2.93, 3.27] 0.363 [0.345, 0.381] 0.536 [0.522, 0.556] 0.396 [0.375, 0.417] 0.45 [0.42,
0.52]

0.85 [0.71,
0.99]

Ensemble Average 3.14 0.359 0.525 0.396 0.40 1.05

Common Design–
CR

[3.09 3.19] [0.344 0.357] [0.506 0.522] [0.387 0.399] [0.37 0.42] [0.99 1.11]

One Species–CR [2.93, 3.42] [0.334, 0.381] [0.499, 0.556] [0.366, 0.428] [0.34, 0.58] [0.68, 1.19]

doi:10.1371/journal.pcbi.1004602.t001
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(Fig 2B). Their spatial receptive fields and orientation preferences are assumed to solely depend
on the spatial arrangement of their afferent inputs. V1 neurons are assumed to receive domi-
nant inputs from a small number of geniculo-cortical axons. Most of them sample from a single
pair of ON/OFF RGCs, a so-called RGC dipole (Fig 2B). The neuron’s receptive field then con-
sists of one ON and one OFF subregion and its response to edge-like stimuli is tuned to an
edge orientation orthogonal to the RGC-dipole vector (Fig 2B). Within a mosaic of ON and
OFF center RGCs, many such dipoles are present and the spatial arrangement of dipoles on the

Fig 2. Early visual pathway, RGC dipoles, and Moiré interference of RGCmosaics. A Schematic illustration of the early visual pathway following the
organization in the cat (see text for details).BOrientation selective receptive fields can arise through summation of two adjacent rotationally symmetric
retinal/LGN receptive fields (RGC dipole). Shown are ON and OFF center mosaics from cat retina [26]. Colors indicate ON (red) and OFF (blue) regions of a
receptive field in the LGN (left and middle) and V1 (right). For illustration, the RGCmosaic is overlaid and the two RGCs whose RFs are summed are shown
as black and white dots. C Left: Moiré interference between a hexagonal ON (white dots) and OFF (black dots) RGC lattice with relative orientation Δα and
lattice constants r and r0 (black bars) creates a Moiré pattern with lattice constant S � r. Middle: sampling from this RGCmosaic as described in B (and text)
yields a periodic orientation preference pattern through Moiré interference. Right: Model layout predicted by the statistical wiring model, obtained by
thresholding and smoothing the pattern in the middle (see text).

doi:10.1371/journal.pcbi.1004602.g002
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retina determines how tuning properties, e.g. the preferred orientation, change along a two-
dimensional sheet parallel to the layers of the visual cortex. If ON and OFF RGCs are posi-
tioned on hexagonal lattices, the model predicts that a hexagonal pattern of orientation prefer-
ence can arise through Moiré interference (MI) between the two lattices (Fig 2C).

Following [28, 83], we model RGC receptive fields using a Gaussian function GRFj(x) of
width σr localized at the center position xj:

GRFjðxÞ ¼ � exp �ðxj � xÞ2
2s2

r

 !
; ð2Þ

where x indicates position in retinal space. All subsequent results remain qualitatively
unchanged if a biologically more realistic difference-of-Gaussians (see [84]) is used. A plus or
minus sign in Eq (2) indicates an ON or OFF center cell, respectively. The receptive field RFy of
a visual cortical neuron at position y in the two-dimensional cortical sheet is obtained by sum-
ming several ganglion cell receptive fields with positive synaptic weights wj:

RFyðxÞ ¼
X

j

wjðyÞGRFjðxÞ : ð3Þ

The synaptic weights are chosen as

wjðyÞ ¼ exp �ðxj � yÞ2
2s2

s

 !
: ð4Þ

The parameter σs sets the range from which a V1 neuron receives retino-thalamic inputs, xj
denotes the center of an RGC receptive field. According to Eq (3) the spatial distribution of
RGC locations determines how response properties change across cortex. For σs smaller than
the lattice spacing, each cortical cell receives substantial input only from a very small number
of ganglion cells. Inputs received by most cortical cells are dominated by one ON and one OFF
center RGCs (see inset in Fig 2A), forming an RGC dipole. The small σs regime is thus generally
referred to as the dipole approximation of the model. While the dipole approximation leads to
the robust emergence of simple-cell receptive fields with one (ON, OFF) or two (ON-OFF) sub-
fields in the model V1 layer, it is worth mentioning that simple cells in cat and macaque mon-
key sometimes have more than two aligned, regularly spaced subfields (e.g. ON-OFF-ON or
OFF-ON-OFF) (see [85, 86]). In the dipole approximation of the statistical wiring model, such
simple-cell RFs almost never occur. While the model as defined above implements a determin-
istic wiring scheme, it represents a simplification of a more detailed formulation of the statisti-
cal connectivity model proposed in [83]. In the more detailed formulation, the synaptic
weights between the cortical units and the retina/LGN are chosen at random from a Gaussian
distribution with the shape given in Eq (4). Ringach established in [83] that the spatial struc-
ture of the resulting domain layouts for the detailed and simplified model are nearly identical.
We therefore refer to the model as statistical connectivity model.

We used the linear response assumption [87, 88] to determine cortical stimulus responses.
A response R of a cortical neuron is modeled by the inner product between its receptive field
RFy(x) and the stimulus, in our case an illumination pattern L(x):

Ry ¼
Z

d2xRFyðxÞ LðxÞ : ð5Þ

Because Ry can become negative, a firing rate f of the cortical neuron is then defined through a
static nonlinearity, e.g. half-wave rectification [87]. For the purposes of the present study, this
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nonlinearity can be neglected assuming that it does not alter core properties of the receptive
field such as orientation preference and spatial frequency preference [82, 83].

We derived close-form expressions for the pattern of cortical receptive fields across V1 that
arises through Moiré interference in the case that ON and OFF center cells are localized on per-
fectly hexagonal lattices with different lattice constants r and r0 and relative angle α between
the lattices (see Fig 2C). Detailed derivations are provided in Methods, along with closed-form
expressions for receptive fields, the frequency response of orientation selective neurons, and
their spatial organization.

Fig 3A depicts the analytically calculated orientation preference pattern generated through
Moiré interference between two hexagonal ON/OFF RGC mosaics. Iso-orientation domains

Fig 3. Receptive fields and iso-orientation domains in the Moiré interference model. A Top: Moiré interference between two RGCmosaic (left) with ON
and OFF center RGCs illustrated as white and black dots. The corresponding orientation domain layout (Eq (52) in Methods) is shown on the right with the
mosaic overlaid. Bottom: low frequency contribution of the domain layout. Black arrows indicate the lattice constant S � r of the Moiré pattern, white hexagon
indicates the unit cell of the domain layout.B Inset of the layout shown in A with RFs of three closely spaced neurons. Scale bar indicates distance on the
retina.C Circular distance (see text) between the preferred angles of unfiltered and low-pass filtered domain layouts shown in A top and bottom. Bottom:
Histogram of differences in preferred angles. Model parameters: σr = 70 μm, σs = 20 μm, lattice constants r = r0 = 170 μm, and a relative angle Δα = 7° leading
to a scaling factor of S = 8.2 (Eq (10)), as proposed in [28, 29].

doi:10.1371/journal.pcbi.1004602.g003
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are organized in fine-grained parcellations on small scales and repeat in a hexagonal pattern on
a larger scale Λ. The larger scale is the predicted column spacing of the orientation domain lay-
out (see Methods), and model parameters are chosen such that Λ� 1mm as experimentally
measured (see Methods and [28, 29] for details). The scale of the small parcels therefore
is< 200μm. A magnified view of a small region of the domain layout is provided in Fig 3B
along with three analytically determined cortical receptive fields at closely spaced locations
roughly 100μm apart from each other. These receptive fields highlight that individual parcels
contain highly tuned units with vastly different preferred orientations. This means that orienta-
tion preference changes abruptly on scales< 200μm in the predicted patterns. Clearly, these
features distinguish the obtained pattern of orientation preferences from the experimentally
observed domain layouts. While orientation selectivity in V1 exhibits some small scale scatter
within orientation domains [89, 90], two-photon imaging suggests that orientation preferences
progresses rather smoothly across the cortical surface [65, 78].

Orientation preference maps from crystalline RGCmosaics
Paik & Ringach implicitly assumed that random feedforward wiring from the retina/LGN to
V1 effectively results in a smoothed version of the dipole layout (see Fig 2C). To extract this
smooth pattern of orientation preferences from the statistical connectivity model, they adopted
a two-step procedure to suppress the small-scale variation in the Moiré interference pattern:
First, locations with orientation selectivity index (OSI) larger than a threshold value are deter-
mined [28, 29, 82, 83]. Second, the orientation selectivity of all other location is set to zero. The
resulting layout is then filtered with a Gaussian lowpass filter resulting in continuous and
smooth array of iso-orientation domains [28, 29, 82].

We find that the thresholding/smoothing procedure effectively extracts the dominant lowest
spatial frequency Fourier components of the Moiré interference pattern. As derived in Meth-
ods, the lowest spatial frequency contribution to the Moiré interference pattern consists of six
Fourier modes with identical amplitude and wave number

kc ¼
4pffiffiffi
3
p

rr0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r02 � 2rr0 cos ðDaÞ

p
; ð6Þ

Here, r, r0 denote to the lattice constants and Δα the angle between the hexagonal ON/OFF lat-
tices (Fig 2C). The smooth orientation domain layout resulting fromMoiré interference can
therefore be summarized in a complex-valued field z(y) composed of six planar waves with
wave numbers kj and fixed phase factors uj,

zðyÞ ¼
X6
j¼1

exp ðikjyÞ � uj : ð7Þ

The pattern of preferred orientations across the cortical coordinate y is given by the phase of
this complex-valued field as,

Wpref ðyÞ ¼
1

2
arg zðyÞð Þ : ð8Þ

Fig 3A (bottom) depicts ϑpref(y) as analytically determined. The pattern of pinwheels and iso-
orientation domains is organized into a smooth hexagonal crystalline array. Interestingly, an
identical layout of iso-orientation domains was constructed by Braitenberg et al. [91] based on
an the idea that orientation preference is generated by discrete centers of inhibition in V1. It
was also found by Reich et al. to solve a symmetry defined class of models for the self-organiza-
tion of iso-orientation domains [92, 93]. Fig 3C shows the differences in preferred angle
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between the unfiltered domain layout of the Moiré interference pattern and its low frequency
contribution, together with a histogram of the differences. With Δ(x) = ϑ1(x) − ϑpref(x), the dif-
ference d(x) between the two preferred angles is defined as dðxÞ ¼ 1

2
abs arg e2iDðxÞð Þð Þ. The

bimodal shape of the histogram indicates that the orientation preference of a large fraction of
cortical locations differs substantially between unfiltered and smoothed layout. Roughly one
fifth of all locations exhibit differences of orientation preferences of more than 45°.

To compare our mathematical expression for the column spacing of the orientation domain
layout to previous results, Eq (6) can be rewritten by introducing a parameter β representing
the detuning between the two lattice constants in units of the lattice constant r0 ! (1 + β)r. The
expression for the column spacing becomes

Lc �
2p
kc
¼

ffiffiffi
3
p

2
� S � r ; ð9Þ

where S is the distance between two vertices of the Moiré pattern in units of r, called the scaling
factor [94–96]

S ¼ 1þ bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 2ð1� cos ðDaÞÞð1þ bÞ

q : ð10Þ

The difference between S � r and Λc is displayed in Fig 3A (bottom). Eqs (9) and (10) are identi-
cal to previous results for the spacing of hexagonal Moiré patterns derived via geometrical con-
siderations [95, 96].

Using these explicit expressions for the iso-orientation domain layout and its column spac-
ing Λc, we first evaluated the central quantity of the common design—the pinwheel density, i.e.

the number of pinwheels per unit area L2

c . Within each unit cell of area A ¼
ffiffi
3
p
2
ðS � rÞ2, there is

one “double pinwheel” of topological charge 1, around which each orientation is represented

twice, and two pinwheels of topological charge� 1
2
. With L2

c ¼ 3
4
ðS � rÞ2 and counting the pin-

wheel with charge 1 as two pinwheels (see below), the pinwheel density is

r ¼ 2þ 2 � 1ð Þ � L
2

c

A
¼ 2

ffiffiffi
3
p
� 3:46: ð11Þ

Notably, this value is outside of both, the common design consistency range and the single spe-
cies consistency range for the experimentally measured pinwheel densities (cf. Table 1). Since
the statistical connectivity model for perfectly hexagonal RGC mosaics results in a periodic
array of pinwheels, all three nearest neighbor distance distributions of pinwheels are sharply
peaked (see also Supplementary Material of [23]) and, thus, in disagreement with the distribu-
tions experimentally observed (cf. Fig 1).

We compared these analytical results to numerically evaluated Moiré interference patterns
(Fig 4). The fine-grained layouts of numerically and analytically obtained unfiltered layouts are
almost indistinguishable (cross-correlation coeff. 0.9, Fig 4A top). This confirms the analytical
treatment and indicates accuracy of the numerical implementation. A hierarchy of discrete spa-
tial frequency contributions is apparent in amplitude spectra of both domain layouts (Fig 4A

(bottom)). The peaks at larger spatial frequencies in Fig 4A and 4B are localized at
ffiffiffi
3
p

kc as ana-
lytically predicted (see Methods).

To numerically generate the smoothed array of orientation domains, the layout in Fig 4A
(top) was thresholded (OSI> 0.25, see Methods) and subsequently smoothed with a Gaussian
lowpass filter (Fig 4B top) [28, 82]. In general, strongly tuned locations are those exactly
between ON-OFF RGC pairs (Fig 4B, inset). Fig 4C depicts the crystalline pinwheel
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arrangement of the analytically calculated smoothed layout (Eq (8)) as well as the six dominant
low frequency Moiré modes in the amplitude spectrum. While the numerically obtained lay-
outs and its analytical approximation are similar (cross-correlation coeff. 0.6), one major dif-
ference can be observed: the pinwheel of topological charge 1 is replaced by two pinwheels of
topological charge 1

2
in the numerically obtained layouts, along with subtle deformations of

adjacent orientation domains (compare Fig 4B and 4C). To see why this is the case, we note
that the pinwheel with charge 1 in the analytically calculated pattern (Eq (8)) arises from a zero
of the field z(x) (Eq (7)) with multiplicity two. A phase singularity of a complex-valued field
arising from a zero with multiplicity N> 1 is structurally unstable and unfolds upon generic
infinitesimal perturbations into N closely spaced singularities of multiplicity one [97]. The
numerical procedure of discretizing V1 unit positions on a numerical grid, OSI thresholding,
and smoothing realizes such a perturbation and this explains why in the numerical solutions
the pinwheel of charge 1 unfolds into two adjacent pinwheels of charge 1

2
.

The impact of spatially uncorrelated disorder in RGC position
So far, we have studied the idealized situation of iso-orientation domains induced by perfectly
ordered hexagonal RGC mosaics. RGCmosaics in the eye, however, are not perfectly hexagonal

Fig 4. Comparison of analytically and numerically obtained solutions of the Moiré interferencemodel. A Top: unfiltered Moiré interference patterns.
Black line separates analytical (left, see Eq (52)) from numerical result (right). Bottom: amplitude spectrum of numerically obtained Moiré interference patterns.
Red circle marks kc (cf. Eq (6)), blue circle indicates

ffiffiffi
3
p

kc. Note the high frequency contributions, indicated by the small yellow circles.B Top: Numerically
obtainedMoiré interference pattern after thresholding for cells with OSI > 0.25 (left, see Methods for the OSI definition used) and subsequent smoothing (right,
see text). Inset shows a magnified region of the OSI-filtered domain layout together with the RGCmosaic from which the neurons sample. Bottom: amplitude
spectrum of the numerically obtained thresholded and smoothed layout. Red circle indicates kc (cf. Eq (6)).COrientation domain layout (top) and amplitude
spectrum (bottom) obtained by calculating the lowest spatial frequency contributions of the layout in A (Eq (8)). All model parameters as in Fig 3.

doi:10.1371/journal.pcbi.1004602.g004
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but exhibit substantial spatial irregularity [26, 98]. Therefore, we next turned to numerically
investigate the statistical connectivity model with hexagonal RGC mosaics subject to Gaussian
disorder in RGC position as previously described [28, 29]. The effect of ganglion cells displaced
by Gaussian distributed offsets with standard deviation σ = η � r is illustrated in Fig 5. The
parameter r is the lattice constant and η is the disorder strength. Fig 5 shows the unfiltered ori-
entation domain layout (far left), the layout thresholded for cells with an OSI> 0.25 (left), the
smoothed thresholded layout (right) as well as its amplitude spectrum (far right), numerically
obtained for η = 0.12. As in the perfectly ordered case, the unfiltered layout of the noisy Moiré
interference model exhibits a substantial scatter of orientation preferences across small scales.
For a disorder strength of η = 0.12 (Fig 5A), the domain layout is still dominated by the six low-
est spatial frequency Moiré modes also present in the perfectly ordered system. For a disorder
strength of η = 0.3 (Fig 5B), the amplitude spectrum (Fig 5B, far right) lacks any indication of
theses Moiré modes indicating that Moiré interference no longer takes place. As a consequence
the resulting layouts of iso-orientation domains lack a typical column spacing.

To characterize the model orientation domain arrangements, we first calculate amplitude
spectra for both, unfiltered and smoothed layouts (Fig 5A and 5B),

jRðkÞj ¼ jZ d2x zðxÞei kxj where zðxÞ ¼ e2i Wpref ðxÞ: ð12Þ

Normalizing and radially averaging yields the so-called marginal amplitude spectrum (Fig 5C
and 5D),

f ðkÞ ¼
R 2p

0
dW jRðk cos ðWÞ; k sin ðWÞÞj

maxk
R 2p

0
dW jRðk cos ðWÞ; k sin ðWÞÞj : ð13Þ

The sharp peak at kc corresponds to the dominant Moiré mode indicating that orientation
domain layouts exhibit a typical column spacing. For increasing disorder, the relative levels of
peak height to background decreases while the peak width remains small. As expected, mar-
ginal amplitude spectra of unfiltered and the smoothed layout mainly differ in the strength of
background components. The flat amplitude spectrum of the unfiltered iso-orientation domain
layouts for large disorder strength is transformed into a Gaussian amplitude spectrum by the
lowpass filtering. Based on this assessment, the disorder strength η has to be smaller than 0.3 to
ensure that layouts exhibit a typical spacing between adjacent iso-orientation domains.

We next systematically evaluated the core layout parameters of the common design—pin-
wheel density and pinwheel nearest neighbor distance distributions for the statistical wiring
model with disordered hexagonal RGC mosaics. To compare the model predictions with exper-
iments, we estimated the column spacing of the model orientation domain layouts as well as
pinwheel layout parameters using the exact same methods that we applied to the experimental
data (see Methods). For weak disorder, column spacing estimates closely match the theoretical
prediction Λc (Fig 6A), confirming the accuracy of the wavelet method. For disorder strengths
larger then 0.12, Moiré modes are no longer the dominant spatial frequency contribution in
the model layouts and the estimated column spacing increases with disorder strength.

Having estimated the column spacing, we analyzed model orientation domain layouts with
respect to the common design parameters (Fig 6B–6D). As expected, pinwheel densities

approach the analytical predicted value of 2
ffiffiffi
3
p

for weak disorder (Fig 6B) and increase with
increasing disorder strength. This increase is largely caused by the increase in the estimated
column spacing (Fig 6A) and does not involve a massive generation of additional pinwheels for
larger disorder strength. We next calculated the standard deviation of pinwheel densities as a
function of the area A of randomly selected subregions of the iso-orientation domain layouts.
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Generally, the standard deviation’s decay with subregion size followed a power law with
increasing area size, with larger exponents for weak disorder (Fig 6D).

Fig 6E and 6F show a complete characterization of pinwheel nearest neighbor (NN) distance
distributions of the noisy Moiré interference model. Histograms for NN distances for arbitrary
charge are bimodal for weak disorder (Fig 6E). The peak at smaller NN distances results from
the unfolding of pinwheels with topological charge 1 into two adjacent pinwheels of topological
charge 1/2 for finite disorder strength (see above and Figs 3 and 4). For the same reason, the
NN distance histogram for pinwheels of identical topological charge is also bimodal (Fig 6F).
With increasing disorder strength, both distributions become unimodal (Fig 6E and 6F left).
The NN distance distribution for pinwheels of opposite sign is unimodal for all parameter val-
ues, indicating that only very few additional piwheel pairs are added to the pinwheels of the

Fig 5. Spatially uncorrelated position disorder in hexagonal RGCmosaics induce broadband noise in iso-orientation domain layouts. A
Numerically calculated orientation domain layouts with disorder strength η = 0.12. From left to right: Moiré interference pattern, filtered Moiré interference
pattern (OSI > 0.25), smooth layout and the smoothed layout’s amplitude spectrum. Insets showmagnified regions. Circles in the amplitude spectrummark
kc (red) and

ffiffiffi
3
p

kc (blue) (cf. Eq (6)). B As A but for a higher disorder strength η = 0.30.C Radially averaged normalized amplitude spectra of the orientation
domain layouts for different disorder strengths. The fluctuation strength is color coded (legend). x-axis is given in units of kc (cf. Eq (6)). D As C but for the
smoothed layouts. All other model parameters as in Fig 3.

doi:10.1371/journal.pcbi.1004602.g005
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Fig 6. Pinwheel statistics in the Moiré interference model. A Column spacing Λ estimated by the wavelet method compared to the Moiré scale Λc for
different disorder strength. B The pinwheel density ρ as function of disorder strength. Dashed line shows theoretically predicted value r ¼ 2

ffiffiffi
3
p

. Dark green
line in inset shows experimentally observed mean value ρ = 3.14.C Pinwheel density in circular regions of increasing area for η = 0.12 (blue) and η = 0.02
(red). Lines show theoretically predicted and experimentally observed values as in B inset. D The standard deviation of pinwheel density estimates for
increasing subregion size. Red line shows a power law fit to the experimental data (γ = 0.5, [23]), purple line indicates a fit to the perfectly ordered hexagonal
pinwheel arrangement (γ = 0.75, [23, 92, 93]). E Nearest neighbor (NN) distances for pinwheels irrespective of topological charge. Left: distributions for two
disorder strengths (η = 0.11, blue; η = 0.02, purple) and the experimental data (red). Right: Distributions for different disorder strengths. Color encodes the
(normalized) fraction of pinwheels at this distance. Blue and purple lines indicate disorder strengths shown on the left. The white line marks the theoretically
predicted distance of NN pinwheels (2/3Λc) for vanishing disorder [92, 93]. F same as E for pinwheels of equal charge, data green curve.G same as E for
pinwheels of opposite charge, data blue curve. H squared deviation of NN distance distributions to the experimental estimates (shown in E-G, left) as function
of disorder strength. All other model parameters as in Fig 3.

doi:10.1371/journal.pcbi.1004602.g006
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Moiré layout for small and intermediate disorder strengths (Fig 6G). The overall decay in
mean NN distance for strong disorder in all three histograms mostly reflects the increase in
measured column spacing (see Fig 6A).

Based on these results, we attempted to identify a disorder strength for which all NN pin-
wheel distance distributions resembled the experimental data. To this end, we calculated the
squared error between the calculated histograms and the experimental data as a function of dis-
order strength (Fig 6H). Smallest deviations from experimental data were obtained around η�
0.11 for all three NN distance distributions.

Fig 7 summarizes all common design features determined for disordered Moiré interference
model layouts as a function of disorder parameter and compares them to the experimentally
observed values in tree shrew, galago, ferret, dark-reared ferrets, and cats. Light (dark) green
shaded areas indicate the single species (common design) consistency ranges (see Fig 1, cf.
Table 1). With increasing disorder, pinwheel density of model layouts steadily increases from

Fig 7. Pinwheel statistics of the disordered Moiré interference model fail to match V1 functional architecture. A Pinwheel density as a function of
disorder strength in the statistical connectivity model with noisy hexagonal mosaics. Error bars indicate standard deviation around the mean for 20 model
realizations, circles indicate the mean. Green shaded areas indicate the range consistent with the experiments (see Fig 1). B The variability exponent as
function of disorder strength in comparison to the common design. C As B for the variability constant. DMean nearest neighbor distance for pinwheels
independent of topological charge in comparison to common design. E As D but for pinwheels of equal charge. F As D for pinwheels of opposite charge.G
Summary of ranges of disorder parameters consistent with the common design. Disorder strengths larger than 0.3 can be excluded by the lack of typical
column spacing in the domain layouts (cf. Fig 5). Note that there is no disorder strengths for which all features of the common design are reproduced.

doi:10.1371/journal.pcbi.1004602.g007
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r ¼ 2
ffiffiffi
3
p � 3:46 (Fig 7A) and always lies above the single species consistency range. Thus, the

pinwheel density of model orientation domain layouts is inconsistent with pinwheel densities
observed in all species. Next, we fitted the empirically observed power law, Eq (1), to the stan-
dard deviation of the pinwheel density estimate in increasing subregions of area A (see Fig 6D)
[23]. The variability exponent γ is consistent with experiments for disorder levels exceeding η
= 0.15. The variability constant c is monotonically increasing up to η� 0.15 at which point the
model domain layouts lose their typical column spacing (cf. Fig 5) and the increasing pinwheel
density ρ causes a drop (Fig 7C). Fig 7D–7F displays the mean pinwheel NN distances as func-
tion of the disorder strength, all of which substantially decrease with increasing disorder
strength. This can be attributed to the increasing mean column spacing of the domain layouts
under increasing disorder (see Fig 6A). Mean NN distances for weak disorder strength are
close to the experimental data, but NN distance distributions for pinwheels of different topo-
logical charge and independent of topological charge are bimodal for weak disorder (Fig 6E
and 6F). The latter is clearly distinct from the experimental data (cf. Fig 1, [23]). Fig 7G shows
an overview of the consistency of model orientation domain layout parameters with the data
for various disorder strengths. As can be seen, no strength of disorder results in layouts that are
consistent with the common design for all layout parameters. Perhaps, even more surprising,
pinwheel density and NN distance for pinwheels of the same sign are inconsistent with the
individual values obtained for each species, no matter how the strength of disorder is chosen.

Iso-orientation domain layouts from hexagonal RGCmosaics with
spatially correlated disorder
The above results show that the statistical connectivity model with hexagonal mosaics is unable
to reproduce all features of the common design, even if spatially uncorrelated position disorder
is imposed on the RGC positions. Whatever the source of disorder that causes the irregularity
in the RGCs’ positions, it is plausible to assume that it is correlated on scales spanning several
RGCs. Such spatial correlations would preserve the Moiré effect locally, yet generate spatial
irregularity in orientation domain layouts.

To test whether correlated positional disorder can produce model arrangements of orienta-
tion domains that match experimental observations, we generalized the noisy hexagonal mosa-
ics proposed in [28, 83] to include spatial correlations. To obtain noisy hexagonal RGC
mosaics with spatial correlations, we started with a hexagonal array of RGC positions. The
position of each lattice point xi was then shifted depending on its position according to xi! xi
+ η y(xi). The shift η y(x) with amplitude η for y(x) = (y1(x), y2(x)) was chosen from a Gaussian
random field with vanishing mean hy1(x)i = hy2(x)i = 0, fixed standard deviation std(y1(x)) =

std(y2(x)) = 1 and correlation function hyðx1Þyðx2Þi ¼ 2 exp � jx1�x2 j2
2s2

� �
with correlation

length σ (see Methods) where y1 and y2 are statistically independent. The two parameters, cor-
relation length σ and amplitude η were expressed in units of the lattice constant r.

Fig 8A and 8B illustrates this procedure. RGCs are shifted in a coordinated manner across
the plane, correlated in both direction and magnitude of the shift. The determinant of the Jaco-
bian

det JðxÞ ¼ det

@y1ðxÞ
@x1

@y1ðxÞ
@x2

@y2ðxÞ
@x1

@y2ðxÞ
@x2

0
BBB@

1
CCCA ; ð14Þ

measures the local change of RGC lattice constant. In regions of negative det J, RGCs are closer
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Fig 8. Impact of spatially correlated positional disorder in hexagonal RGCmosaics on iso-orientation domain layouts. AGeneration of spatially
correlated disorder in hexagonal RGCmosaics (see text and Methods). White dots mark ON RGC cells, gray dots marks the perfectly hexagonal ON RGC
lattice before distortion. Colors of the arrows and underlay indicate direction of RGC displacements (right colorbar). Magnitude of displacement is indicated
by color saturation (bottom colorbar). Note that nearby RGCs move into similar directions and with similar magnitude. Scale bar indicates retinal distances,
assuming ON/OFF lattice constant of 170μm. B Larger region of the mosaic shown in A (black square). Colors as in A. Contour lines mark lines of constant
det(J(x)) (see text). Scale bar indicates retinal distances. C-E Unfiltered model domain layout (left), thresholded and smoothed layout (middle) its amplitude
spectrum (right) for noise correlation length ξ = 5 and different noise amplitudes (η = 0.1 (C), η = 0.2 (D), η = 0.4 (E)). White squares in middle panels indicate
wavelength of pattern as measured by wavelet analysis (see Methods). Scale bars indicate cortical distance with parameter choices as in Fig 2 and cortical
magnification factor� 1 (see [32]). FMarginal amplitude spectra of smoothed domain layouts for ξ = 5 and different disorder strengths.G Pinwheel density of
model layouts as a function of disorder amplitude and correlation length. Red surface indicates experimentally determined value (ρ = 3.14), green surface
indicates pinwheel density in the disorder-free case (r ¼ 2

ffiffiffi
3
p

). Values for ρ� 5 are drawn as a plane at ρ = 5. H As G, but pinwheels per square millimeter r̂.
Note that the absolute number of pinwheels is largely constant. All other model parameters as in Fig 2.

doi:10.1371/journal.pcbi.1004602.g008
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together than average, in regions of positive det J, RGCs are further apart (contour lines in Fig
8B). In primates, regions of higher density are predicted to have higher cortical magnification
and vice versa [12]. The RGC mosaics with correlated positional noise therefore imply local
fluctuations in the cortical magnification factor on the scale of the noise correlation length.

Fig 8C-8E display unfiltered and smoothed model layouts obtained with spatially correlated
noisy hexagonal mosaics as well as their amplitude spectra. As expected, orientation domain
layouts exhibit a typical column spacing up to higher disorder strengths, when the position dis-
order was correlated (compare Fig 8F with Fig 5D). Locally, Moiré interference leads to a
roughly hexagonal layout of columns that is distorted on larger scales. Both, the orientation of
the hexagons as well as column spacings change continuously across the layout. For weak dis-
order, the amplitude spectrum still exhibits six peaks, indicating a globally hexagonal layout
(Fig 8C, right). For intermediate disorder local column spacing and direction of the hexagons
varies to the extend that peaks can hardly be identified in the amplitude spectrum of the result-
ing domain layout. In particular, the spatially varying local column spacing leads to a broader
peak in the radially averaged amplitude spectrum with increasing disorder strength (Fig 8F).
This is in contrast to the case of uncorrelated disorder (cf. Fig 5D). Note that experimental iso-
orientation domain layouts exhibit a similarly broad peak in their marginal amplitude spectra
[99]. We quantified the pinwheel density of orientation domain layouts obtained with corre-
lated noisy hexagonal RGCs (Fig 8G) as a function of disorder correlation length and disorder
strengths. Independent of the disorder correlation length, pinwheel densities plateau around

2
ffiffiffi
3
p

for weak disorder and monotonically increase above a critical disorder strength. This criti-
cal disorder strength is higher, the larger the correlation length. Thus, model pinwheel densities
are inconsistent with the individual values obtained for each species, no matter what the
strength of disorder or correlation length is. Fig 8H illustrates that the pinwheel density
increases with increasing disorder strength largely because the overall measured column spac-
ing increases, not because additional pinwheels appear in the layouts. In fact, the number of
pinwheels per mm2 is almost independent of either correlation length or disorder strength.

Pinwheel densities of iso-orientation domain layouts derived from PIPP
mosaics
Finally, we examined whether the statistical connectivity model could reproduce the common
design invariants with RGCs distributed in space according to a pairwise interacting point pro-
cess (PIPP). The PIPP developed by Eglen et al. [49] is currently the experimentally best sup-
ported model for RGCs mosaics and was shown by several studies to generate RGC positions
which accurately reproduce a variety of spatial statistics of RGC mosaics [31, 32, 49, 82]. The
PIPP model generates samples from a statistical ensemble of RGC mosaics by iteratively updat-
ing RGC positions to maximize a target joint probability density, specified by pairwise interac-
tions between neighboring RGCs (for details see Materials & Methods). Each PIPP mosaic
represents a random realization of a regularly-spaced RGC mosaic with radially isotropic auto-
correlograms [31] and lacks long-range positional order. Fig 9A depicts a realization of a PIPP
with parameters choosen to reproduce cat RGC mosaics (for details see Materials & Methods).
We generated thresholded and smoothed iso-orientation domain layouts from PIPP RGC
mosaics as from the ordered mosaics (Fig 9A and 9B left). The lack of long-range positional
order in ON and OFF mosaics prevents any Moiré interference between them. Thus, no typical
spacing between adjacent columns preferring the same orientation is set in the model layouts
(Fig 9B, right, see also [31, 32]). Spectral power in these layouts is broadly distributed and
monotonically decays with increasing spatial frequency. As a consequence, one needs to apply
bandpass filtering to obtain orientation domain layouts that are at least qualitatively
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Fig 9. Iso-orientation domain layouts obtained from PIPP RGCs with the statistical connectivity model. AGenerating orientation domain layouts from
PIPP RGCs in the statistical connectivity model [83]. Top: Inset of a PIPP RGCmosaic (see Methods). Black (white) dots represent OFF (ON) cells. Middle
top: unfiltered layout with RGCmosaics overlaid. Middle bottom: thresholded layout with RGCmosaics overlaid. Bottom: thresholded and smoothed layout (β
= 0) with RGCmosaics overlaid. Scale bar indicates retinal distances, assuming PIPP parameters as in [49]. B Left: larger region of the unfiltered layout
shown in A (black square). Scale bar indicates retinal distances. Right: normalized amplitude spectrum of unfiltered layout shown on the left. C Thresholded
and smoothed layout (top) and corresponding amplitude spectrum (bottom) for filter function parameters (see Eq (15)) β = 0 (left), β = 2 (middle), and β = 10
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resembling the experimental data. We used a flexible band-pass filtering function f(k) of the
following form to the amplitude spectrum:

f ðkÞ ¼ ajkjb exp ð�jkj2bÞ ; ð15Þ

with a, b, β> 0. The filter function was normalized such thatZ
d2k f ðkÞ ¼ 2p : ð16Þ

With this normalization, one can define the mean column spacing of the resulting layout via

L ¼ 2p=�k with

�k ¼
Z 1

0

dk 2pkf ðkÞ ¼ 1 : ð17Þ

By increasing the parameter β, the shape of the filter can be changed from Gaussian lowpass (β
= 0, Fig 9C, left) to wide bandpass (β = 2, Fig 9C, middle) and to narrow bandpass (β = 10, Fig
9C, right). There is an additional degree of freedom in this filter definition, namely how the fil-
ter is scaled relative to the absolute physical units mm−1 of the amplitude spectrum. To scan a
wide range of filter shapes and column spacings, we varied β between 0 and 10 and choose the
scaling such that Λ varied between 0.6 mm and 1.2 mm, i.e. covering the entire range of experi-
mentally observed mean column spacings in tree shrew, galago, cat, and ferret [23, 33]. We
then measured the pinwheel densities of the resulting statistical connectivity model layouts
(Fig 9E, right), where pinwheel density was defined as the number of pinwheels within an area
Λ2. Pinwheel densities were independent of the scale Λ and increased monotonically with
increasing spectral width (decreasing β). They are in general substantially larger than the exper-
imentally observed value of 3.14 (see also Fig 9C) and outside of the single-species/common-
design consistency range.

Qualitatively, iso-orientation domain layouts generated with the PIPP RGC mosaics resem-
bled those generated from Gaussian random field (GRF) [22, 50, 51] (Fig 9C). In fact, we find
that this resemblance is quantitative. Fig 9E depicts the analytical prediction [51] for the pin-
wheel density of orientation domains obtained with GRFs with a marginal amplitude spectrum
corresponding to the filter function in Eq (15) (Fig 9E, left). Pinwheel densities for GRF layouts
and layouts obtained from PIPP mosaics with the statistical connectivity model are indistin-
guishable. For the pinwheel density to be consistent with at least the single-species consistency
range (ρ< 3.42), amplitude spectra had to be much more peaked (β� 17) than experimentally
observed [99]. Finally, we filtered statistical connectivity model layouts with the Fermi-Filter
function as used in [23, 33] with cut-off wavelengths of 0.3 mm and 1.2 mm (Fig 9D). Again,
pinwheel densities were much larger than those observed in the experimental data and outside
of the single-species and common-design consistency range.

In summary, iso-orientation domain layouts generated by the statistical connectivity model
using PIPP RGC mosaics quantitatively resemble layouts derived from Gaussian random fields.
Their statistics is distinct from the statistics of experimentally measured layouts.

(right). Scale bar indicates cortical distances, assuming cortical magnification factor� 1, and Λ = 0.9mm (see Eq (17) and text). Red circles indicate kc = 2π/
Λ. Black square indicates inset in A, white square indicates Λ2. D As C but filtered with Fermi band pass filters [23]. White square (top) indicates Λ = 0.68mm,
the column spacing as measured by wavelet analysis. Red circles (bottom) indicate low pass (1.2 mm) and high pass (0.3 mm) position. Pinwheel densities
are stated with standard error of the mean. E Left: Analytically predicted pinwheel density of orientation domain layouts derived from Gaussian random fields
[51] as a function of filter parameter β and spatial scale (see text). Right: Pinwheel density of orientation domain layouts obtained from PIPP mosaics with the
statistical connectivity model as a function of filter parameter β and spatial scale. Numbers 1–3 indicate parameter choices displayed in C.

doi:10.1371/journal.pcbi.1004602.g009
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Discussion
In this study, we examined whether the statistical connectivity model—a biologically plausible
scheme of circuit disorder—is able to explain the common design of spatially aperiodic arrange-
ments of orientation domains and pinwheels in the primary visual cortex. As an analytically
tractable limiting case, we first considered the model with perfectly ordered hexagonal RGC
mosaics (Moiré interference model). For this model we derived exact expressions for receptive
fields and tuning curves as well as for unfiltered and filtered layouts. We found that unfiltered
orientation domain layouts generated by Moiré-interference exhibited a fine-grained structure
of subdomains with substantial and systematic variation in orientation preference on scales
much smaller than the typical size of orientation domains. After smoothing, the resulting Moiré
interference pattern could mathematically be expressed as the phase of a complex-valued field
composed of six planar waves. The pinwheel density of this perfectly hexagonal pattern of orien-

tation domains is r ¼ 2
ffiffiffi
3
p � 3:46. Next, we studied the layout of numerically obtained domain

layouts derived from hexagonal mosaics that are randomly distorted by spatially uncorrelated
disorder. We found that pinwheel density and pinwheel nearest neighbor statistics vary substan-
tially with the degree of randomness. Nevertheless, there was no parameter regime in which all
of the common design parameters matched experimental observations. Most prominently, the
pinwheel density increased monotonically with increasing disorder strength. To examine the
effect of noisy RGCmosaics more broadly, we introduced a more general class of noisy hexago-
nal mosaics, which allows for the inclusion of spatial correlations in RGC positional disorder.
We found that, while RGC dipole patterns for such mosaics are inherently aperiodic, the model
still predicts domain layouts that substantially deviate from experimentally observed pinwheel
layouts. Finally, we studied the model with RGCmosaics derived from Eglen’s random pairwise
interacting point process. The resulting layouts lacked a typical spacing between neighboring
orientation domains and, after bandpass filtering, pinwheel densities were inconsistent with the
values observed for any of the four species investigated.

Alternative random wiring models
The statistical wiring model analyzed in the present study is only one representative of possible
random wiring schemes. One could argue that alternative, perhaps more realistic, schemes
might do a better job at reproducing the experimentally observed pinwheel layouts. There is
good evidence that the spatial statistics of RGC mosaics is well approximated by Eglen’s PIPP
[31, 32, 49], and, hence, there is little freedom of choice at the retinal level. In contrast, at the
next network layer, two main modifications or extensions of the statistical wiring model could
be considered: (i) adding an additional layer to the feedforward network implementing the
transformation of the retinal input structure by the lateral geniculate nucleus (LGN) (ii) choos-
ing different probabilistic connectivity rules between the retinal/LGN layer and the primary
visual cortex. We argue that both modifications of the random wiring approach are unlikely to
improve the consistency of the model with experimental data.

Regarding (i), Martinez et al. [100] have recently tried to infer the mapping between RGC
inputs and LGN relay cells using a statistical connectivity approach. In their model, ON and
OFF cell types were homogeneously distributed and their polarity (ON or OFF) was inherited
from the nearest retinal input. Connection probability between RGCs and LGN neurons was
modeled as an isotropic Gaussian function of the relative distance between the RF centers of
the presynaptic and postsynaptic partners. With this simple wiring scheme, together with simi-
lar connectivity rules for the population of inhibitory interneurons, several spatiotemporal
properties of LGN RFs robustly agreed with the experimental data. In the architecture between
the retina and the LGN proposed by these authors, the dipoles of ON- and OFF-center cells
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that characterize the retinal mosaic are transformed into small clusters of same-sign relay cells.
The LGN ON-OFF dipoles occur at the boundaries of these clusters with LGN dipole orienta-
tions strongly correlating but not necessarily matching dipole orientations in the retina. Nota-
bly, dipole density and dipole angle correlation length in the LGN is not increased compared to
the retina. The data and modeling by Martinez et al. suggest that the LGN mosaics do not sys-
tematically alter the spatial structure of RGC inputs beyond providing an additional source of
dipole disorder. Additional disorder imposed by the LGNmosaics would likely add a uniform
level of disorder to all spatial frequency components in the unfiltered orientation domain lay-
outs predicted by RGC dipole structure. When hexagonal mosaics are considered, the disorder
strength that has to be assumed to match the spatial distribution of RGC cells found in experi-
ment is already rather high [28, 29, 31, 32, 83]. Additional noise is likely to obstruct any
remaining Moiré interference. We therefore speculate that when considering an additional
LGN layer, after smoothing, domain layouts for both, the noisy Moiré interference model and
the model with PIPP mosaics would be similar to those obtained with PIPP mosaics [31, 32,
82]. As we have shown in the present study, the spatial statistics of these layouts resembles
those derived from Gaussian random fields and is inconsistent with the data obtained for any
of the four species analyzed (cf. Fig 9, see also [23, 50]).

A similar argument can be made for alternative probabilistic connectivity rules between the
retinal/LGN layer and V1. As our analysis shows, the dipole structure emerging from “realistic”
RGCmosaics (be it very noisy hexagonal mosaics or PIPP mosaics) is spatially fine-grained
because dipole angles vary over short distances in cortical space relative to the typical size of an
iso-orientation domain. For this reason, the statistical connectivity model requires an additional
smoothing step (cf. Figs 4, 5 and 9) to yield smooth orientation domain layouts as observed in
experiment [65, 78]. Unless the connectivity rule is assumed to specifically select dipoles with a
similar angle from a larger spatial region of the retina, or neurons within an iso-orientation
domain are assumed to choose one particular dipole to receive the input from and ignore all
other dipoles in the vicinity, such spatial averaging within the cortical layer will always be
required no matter what the actual probabilistic connectivity rule is. Domain layouts resulting
from such spatial averaging of weakly correlated dipole angles (see also [32]) are likely to follow
layout statistics that resemble those of Gaussian random fields, independently of the connectiv-
ity rule assumed. If neurons are assumed to select specific dipoles out of the repertoire of “avail-
able” ones, then the overall spatial layout of RGC dipoles is not informative about the resulting
domain layout, which contradicts the main hypothesis of the statistical wiring model.

Ultimately, the key experiment to provide support for the random wiring approach consists
of determining both, the orientation domain layout and the retinotopic map in a single animal
and, in a second step, correlate these with the spatial arrangement of RGCs in the same animal.
This challenging experimental task is still awaiting its completion.

Spatial irregularity by disorder or optimization
So far, the only model class able to robustly reproduce all common design parameters,
describes the formation of orientation domain layouts as a deterministic optimization process
converging to quasi-periodic pinwheel-rich orientation domain patterns associated with and
stabilized by a matching system of intrinsic horizontal connections [23, 101, 102]. Irregular lay-
outs of orientation domains dynamically emerge as a consequence of large-scale circuit optimi-
zation of domain patterns and intrinsic circuits. Is this agreement between model and data
good evidence for global circuit optimization or are there simple alternative explanations such
as the random feedforward wiring hypothesis that can explain the invariant statistical proper-
ties of orientation domains? Qualitatively, it is in fact tempting to attribute the spatial
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irregularity and apparent randomness of pinwheel layouts in V1 to some general kind of “bio-
logical noise”. In this view, the quantitative laws of pinwheel organization that Kaschube et al.
found [23] would then be conceived as outcome of a largely random process underlying the
emergence of orientation domains. By now, however, all proposals based on the assumption of
disorder as the determinant of spatial irregularity have failed to reproduce the common design
parameters and laws that have now been observed in four divergent species.

Orientation domain layouts obtained from statistical ensembles of Gaussian random fields
[22, 50, 51] as well as phase randomized layouts derived from experimental data [23], exhibit
pinwheel densities that are substantially higher than experimentally observed. Importantly,
most dynamical models for the development of orientation domains produce such Gaussian
random domain layouts during the initial emergence of orientation selectivity [22, 50]. There-
fore approaches based on “frozen” early states of such models are also ruled out by the existing
data (see [103]). The present study shows that a mechanistic and biologically plausible feedfor-
ward model of the early visual pathway based on (i) noisy hexagonal placement of RGCs or (ii)
a more realistic semi-regular positioning of RGCs generated by the PIPP also generates layouts
distinct from experimental observations. These findings illustrate that orientation domains and
pinwheels positions, although spatially non-periodic and irregular, follow a rather distinct set
of layout laws. These laws cannot easily be accounted for by a spatial irregularity or random-
ness in the structure of afferent projections to visual cortical neurons.

A further conceivable and potentially critical source of stochasticity that is often overlooked
is randomness within intracortical circuits. The field approach employed in various models for
orientation domain layouts, such as the long-range interaction model, represents an idealiza-
tion of a complex network, in which every neuron is characterized by its own set of inputs and
outputs. These inputs and outputs may, at least to some extent, be stochastic. How and to what
extent randomness in intracortical connections can affect and shape orientation domain lay-
outs is not well understood. In that respect, it is interesting to note that model networks for
largely stochastic intracortical circuits are able to generate and robustly maintain orientation
selective responses to afferent inputs and can lead to highly coherent orientation domains
[104, 105].

Hexagonal order of orientation domains
Paik & Ringach reported indications of hexagonal order in visual cortical orientation domain
patterns of tree shrew, ferret, cat, and macaque monkey [28, 29]. Two recent studies have casted
doubt on the hypothesis that this hexagonal order echoes hexagonal or quasi-hexagonal
arrangements of ganglion cell mosaics in the retina [31, 32]. Hore et al. showed that noisy hex-
agonal lattices do not capture the spatial statistics of RGCmosaic. Moreover, the positional cor-
relations in measured mosaics extends to only 200–350 μm, far less than required for generating
Moiré interference [31]. More generally, Schottdorf et al. studied the spatial arrangement of
RGC dipole angles in cat beta cell and primate parasol RF mosaics [32]. According to the statis-
tical wiring hypothesis, dipole angle correlations should follow the spatial correlations of pre-
ferred orientations in the primary visual cortex, i.e. be positively correlated on short scales (0–
300 μm) and negatively correlated on larger scales (300–600 μm) in the retina. By introducing a
positive control point process that (i) reproduces both, the nearest neighbor spatial statistics and
the spatial autocorrelation structure of parasol cell mosaics and (ii) exhibits a tunable degree of
spatial correlations of dipole angles, they were able to show that, given the size of available data
sets, the presence of even weak angular correlations in the data is very unlikely.

If not from the structure of RGC mosaics, where does the apparent hexagonal organization
in orientation domains come from? A variety of self-organization models on all levels of
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biological detail have been shown to generate orientation domains with hexagonal arrange-
ments, e.g. [14, 92, 93, 103, 104, 106, 107] (notably including the earliest theory for the self-
organization of orientation preference by von der Malsburg in 1973). Thus, hexagonal order,
even if present, would not provide specific evidence in favor of Moiré interference between
RGCs. Future work will have to elucidate whether the long-range interaction model for orien-
tation domains [23, 101, 102] can not only explain the common design statistics, but at the
same time account for the observed hexagonal order in the visual cortex.

The impact of retinal orientation biases on visual cortical architecture
Compared to the dense sampling of stimulus space by cortical neurons, the repertoire of
detectors on the retina that input into a given cortical area is limited. For the cat visual path-
way, Alonso et al. estimated the number of LGN X-relay cells converging onto a single simple
cell in V1 to be* 20–40 [27], based on measuring the probability of finding a connection
between individual geniculate and cortical neurons with overlapping receptive fields. This
estimate was later confirmed by directly measuring population receptive fields of ON and
OFF thalamic inputs to a single orientation column [108]. With an expansion of around 1.5–
2.0 from X-cells in the retina to X-relay cells in the LGN [109, 110], each simple cell in V1
receives on average input from only* 10–25 RGCs. This not only implies that random affer-
ent inputs to cortical neurons might seed groups of V1 neurons with similar orientation pref-
erences but also that they might in fact impose substantial biases on the preferred orientation
that can be adopted by the cortical neurons. The postnatal development of orientation col-
umns could then be imagined as a dynamical activity-dependent process which refines and
remodels an initial set of small biases provided by the RGC mosaic model through Hebbian
learning rules and other mechanisms of synaptic plasticity. The up to now most striking
experimental evidence that retinal organization can impose local biases in V1 function archi-
tecture was revealed by the finding that the pattern of retinal blood vessels can specifically
determine the layout of ocular dominance columns in squirrel monkey [111] (for a modeling
study see [112]).

Dynamical models of orientation column formation generally assume no a priori con-
straints or biases as to which preferred orientation a given position in the cortical surface can
acquire. Usually random initial conditions determine which instance from the large intrinsic
repertoire of stable potential domain layouts is adopted. Including seeds and biases derived
from RGC mosaics in such models for the dynamical formation of V1 orientation domain lay-
outs may elucidate the potentially complex interplay between a sparse set of subcortical feed-
forward constraints and self-organization in a dense almost continuum-like intracortical
network. The present study provides a detailed description of a candidate set of such subcorti-
cal biases and, therefore, can serve as a foundation for such future investigations.

The common design as benchmark for models of visual cortical
development and function
The common design invariants comprise four distinct functions in addition to the apparently
invariant pinwheel density. As such, they represent a rather specific quantitative characteriza-
tion of orientation domain layouts. It is, thus, not surprising that entire model classes have
been rejected based on whether their predictions match these invariants.

Since the discovery of visual cortical functional architecture more than fifty years ago, a
large number of models based on a variety of circuit mechanisms has been proposed to
account for their postnatal formation (see [113–115] for reviews). Many of these models are
explicitly or implicitly based on optimization principles and attribute a functional advantage
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to the intriguing spatial arrangement of orientation domains. Because many, even mutually
exclusive, models could qualitatively account for main features of orientation domain layouts
such as the presence of pinwheels or the roughly periodic arrangement of columns, theory
could not provide decisive evidence on whether to favor one hypothesis over another. It is
only in recent years that the large available data sets have started to allow for a rigorous quan-
titative analysis of visual cortical architecture and its design principles in distinct evolutionary
lineages.

To date, abstract optimization models have been analyzed most comprehensively, providing
in many case the complete phase diagram. For instance, Reichl et. al. systematically evaluated
energy-minimization-based models for the coordinated optimization of orientation preference
and ocular dominance layouts [92, 93]. By quantitatively comparing model solutions to the
common design, they were able to rule out a whole variety of otherwise intuitive and plausible
principles for their emergence. It is desirable to obtain a similarly quantitative understanding
of more detailed models for the formation of orientation domains. In this regard, the analysis
of abstract models is informative because there is a many-to-one relationship between detailed
models of the visual cortical pathway and those abstract formulations. Abstract models often
can be shown to be representative of an entire universality class and, once comprehensively
characterized, the questions becomes whether more complex modeling schemes are simply
complicated instantiations of such a class.

For models of an intermediate degree of realism, semi-analytical perturbation methods can
be employed to explicitly provide this mapping. Using this approach, Keil & Wolf studied ori-
entation domain layouts predicted by a widely used representative of a general optimization
framework [103]. According to this framework, the primary visual cortex is optimized for
achieving an optimal tradeoff between the representation of all combinations of local edge-like
stimuli, i.e. all positions in the visual field and all orientations, and the overall continuity of this
representation across the cortical surface [116]. While this framework has successfully
explained a variety of qualitative aspects of orientation domain design, e.g. [116–118], the
authors found quantitative disagreement with the common design in all physiologically realis-
tic parameter regimes of the representative model [103]. Their analysis enabled an unbiased
comprehensive search of the model’s parameter space for a match to the experimental data and
indicated alternative more promising optimization hypotheses to explain the experimentally
observed V1 functional architecture.

Although the statistical wiring model is still rather simplistic, it is hard to make analytical or
semi-analytical progress as soon as RGC mosaics with the necessary degree of realism are con-
sidered. In this case, the question of whether models account for the cortical architecture can
only be answered with the approach we have pursued here, i.e. by systematic comparison
between their solutions, experimental data, as well as predictions from minimal approaches.

The results presented here show that this approach can indeed be successfully applied to
rule out candidate mechanisms as sufficient explanations for the emergence of V1 functional
architectures. We expect a re-examination of the quantitative predictions of other modeling
approaches to be highly informative about candidate mechanisms for the formation of V1
functional architecture.

This present study provides the first systematic assessment as to whether the common
design of orientation domains could result from an inherently random process, as realized
through the local feedforward structure of the early visual pathway rather than an optimization
process coordinated on large scales. Given the disagreement between the layouts predicted by
the statistical wiring model and the data, global circuit optimization as proposed by the long-
range interaction model currently is the only theory known to be capable of explaining the
common design of orientation domains in the primary visual cortex.
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Methods

Analysis of model and experimentally obtained orientation domain
layouts
Column spacing and pinwheel statistics of both data and simulation were analyzed using the
wavelet method introduced in [47, 119]. This method specifically takes into account that exper-
imentally measured domain layouts often exhibit local variations in column spacing (as
opposed to most model layouts) and is thus well-suited to unbiasedly compare the pinwheel
layouts of model layouts and experimental data. Matlab source code for preprocessing of exper-
imentally obtained layouts, column spacing analysis, and the analysis of pinwheel layouts can
be found in the Supplemental Material, along with four example cases from ferret V1 to test
the code. The full data set used in the present study is available on the neural data sharing plat-
form http://www.g-node.org/.

For comparison between model orientation domain layouts and experimentally obtained
layouts, both were analyzed with the exact same wavelet parameters settings. Raw difference
images obtained in the experiments were Fermi bandpass filtered as described in [23]. Filter
parameters were adapted to the column spacings of the different species such that structures
on the relevant scales were only weakly attenuated (see [23]).

To determine the local column spacing of the layouts, we first calculated wavelet coefficients
of an image I(x), averaged over all orientations

Cðy;LÞ ¼
Z

dφ
p

Z
d2x IðxÞ � �yðx;L;φÞ

����
���� ð18Þ

where y is the position, φ the orientation and Λ the scale of the wavelet ϕy(x, Λ, φ). We used
complex-valued Morlet wavelets composed of a Gaussian envelope and a plane wave

�ðxÞ ¼ 1

s
exp � x2

2s2

� �
� exp ðik�xÞ ð19Þ

and

�yðx;L;φÞ ¼ �ðO�1ðφÞðy� xÞÞ: ð20Þ

The matrix O(φ) is the two dimensional rotation matrix (Eq (25)). To compute the wavelet ori-
entation average in Eq (18), 16 equally spaced wavelet orientations were used. For a given Λ,
the parameters of the Morlet wavelet were chosen as

k� ¼
2p
L

1

0

 !
ð21Þ

s ¼ xL
2p

: ð22Þ

ξ determines the size of the wavelet and was chosen to be ξ = 7, as in [23]. This captures column
spacing variations on scales larger than 4 hypercolumns while at the same time enabling robust
column spacing estimation. To obtain the map of local column spacing Λlocal(y), we calculated
the scale Λ with the largest wavelet coefficient

LlocalðyÞ ¼ argmaxL Cðy;LÞð Þ ð23Þ

for every position y.
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To estimate the pinwheel density and other pinwheel layout parameters, we used a fully
automated procedure proposed in [23]. We refer to the Supplemental Material accompanying
[23] for further details.

Amathematical treatment of the Moiré-interference model
Here, we examine the analytically most tractable variant of the statistical wiring model, in
which ON and OFF center cells are localized on perfectly hexagonal lattices L, (Fig 2B), that
may exhibit different lattice constants r and r0,

L ¼
1

0

 !
kþ 1

2

1ffiffiffi
3
p

 !
l

 !
f 8 k; l 2 Z; ð24Þ

where f = r, r0 is the lattice constant. Describing a rotation of the lattice vectors by the rotation
matrix

OðaÞ ¼
cos ðaÞ � sin ðaÞ

sin ðaÞ cos ðaÞ

 !
; ð25Þ

the ON mosaic is rotated by an angle α, the OFF lattice by an angle α0 (Fig 2B). Paik & Ringach
found in numerical simulations that in this case, Moiré interference between two hexagonal
RGC mosaics results in a hexagonal layout of orientation domains [28, 29, 83]. We now first
derive an explicit expression for cortical receptive fields RFy spatially varying with y predicted
by the model. Calculating the preferred orientation of these receptive fields then provides an
explicit expression for the hexagonal domain layouts.

The sum in Eq (3) can be evaluated analytically for rectangular lattices using Jacobi Theta
functions [120]. To solve the Moiré interference model, we used the fact that every hexagonal
lattice can be written as sum L ¼ L1 þ L2 of two rectangular lattices with orthogonal base vec-
tors by separating even and odd numbers in l and shifting the l-sum so that the x-component is
equal to zero. The two rectangular lattices are

L1 ¼
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3
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3
p

 ! !
f 8 k; l 2 Z:

ð26Þ

Evaluating the infinite Gaussian sum (Eq (3)) yields the result for a single sub lattice (either
ON or OFF)

RFON=OFF
a;r;y ðxÞ ¼ T Y3 be�; t

� 	
Y3 ber; kð Þ þY4 be�; t

� 	
Y4 ber; kð Þ� 	 ð27Þ

where

b ¼ xs2
s þ ys2

r

s2
s þ s2

r

ð28Þ
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p
r

cos ðaÞ

sin ðaÞ

 !
ð29Þ
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and Θ3 and Θ4 are the third and fourth Jacobi theta functions [120]. The cortical receptive
fields RFy(x) are obtained by summing the ON and OFF sublattices

RFyðxÞ ¼ RFON
a;r;yðxÞ � RFOFF

a0;r0 ;yðxÞ ; ð34Þ

where α (α0) and r (r0) are the angle and the lattice spacing of the ON (OFF) lattice. The inset of a
receptive field in Fig 3B shows a plot of Eq (34). These receptive fields resemble simple cell recep-
tive fields in V1 with a size of about 1° for our choice of parameters [121, 122]. An implementa-
tion/visualization of the equations for receptive fields can be found in the Supplemental Material.

Tuning curves from receptive fields
The response Ry of a neuron with receptive field RF(x) to a sine wave grating can be calculated
using L(x) = exp(−ik x) as a stimulus in Eq (5). Evaluating the integral then corresponds to
Fourier transforming the receptive field RF(x). Denoting the Fourier transform of the receptive
field as

RyðkÞ ¼
1

2p

Z
d2xRFyðxÞe�ikx; ð35Þ

we refer to the absolute value jRyðkÞj as the amplitude spectrum of the receptive field. Given

the above definition, the amplitude spectrum represents the response to a sine wave grating
with wave vector k = (k cos(ϑ), k cos(ϑ)), where ϑ is the grating orientation and k its spatial fre-
quency. A tuning curve for spatial frequencies k and orientations ϑ is given by

TCðW; kÞ ¼ jRyðk cos ðWÞ; k sin ðWÞÞj: ð36Þ

We calculated the Fourier transform of Eq (34) by transforming Eq (2) and subsequently sum-
ming over the two rectangular lattices L1 and L2 in Eq (26). Interchanging summation and
integration is valid because all infinite sums are uniformly convergent. The result is

RðkÞON=OFFa;r;y ¼ U Y3ðce�; nÞY3ðcer; zÞ þY4ðce�; nÞY4ðcer; zÞ
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The Fourier transform of cortical receptive fields is given by the sum of the ON and OFF sub-
lattice Fourier transforms

RyðkÞ ¼ RðkÞONa;r;y �RðkÞOFFa0 ;r0 ;y ; ð42Þ

where we suppressed the dependencies on α, α0, r, r0 on the left hand side. Receptive fields
depend on the two scales σr and σs. With increasing σs, more RGCs are pooled to form the corti-
cal receptive field. If the cortical receptive field is dominated by more than two RGCs, it can
exhibit multiple ON and OFF subregions. The spatial arrangement of these ON and OFF sub-
region mirrors the hexagonal lattices of the ON and OFF center RGCs. The parameter σs must
be of a minimal size since for very small values of many cortical cells are connected with only a
single, dominant RGC input and exhibit no orientation selectivity. Varying σr does not qualita-
tively change the shape of cortical receptive fields.

Extracting preferred orientation and spatial frequency from amplitude
spectra of receptive fields
For simple cell receptive fields with one ON and one OFF subregion, the amplitude spectrum
jRðkÞj will typically look as in Fig 10A. We follow [28, 82] and define the preferred angle as
ϑpref : = arg(μ)/2, where

m ¼
R
d2k jRðkÞj � e2i argðkÞkR

d2k jRðkÞj : ð43Þ

While there is consensus about the definition of the preferred orientation, methods for
extracting the preferred spatial frequency differ within the literature. Ringach proposed to use
kpref = jμj [82], referred to as Center-of-Mass Method. More commonly, the circular variance

Fig 10. A comparison of different methods for extracting RF parameters from their amplitude spectrum. A Amplitude spectrum jR(k)j of a simple cell
receptive field calculated with Eq (42) in the manuscript. Circles indicate the preferred spatial frequency as extracted by maximizing the CV (yellow), by the
Center-of-Mass Method (brown), and the MaximumMethod (pink). B The Tuning curves corresponding to the green, cyan and blue circles in A, normalized
relative to their maximum.C The Tuning curves corresponding to the brown, the yellow and the pink circles in A, normalized relative to their minimum.D
Circular variance of the various tuning curves calculated via Eq (44) as function of spatial frequency. The brown, the yellow and the pink line correspond to
the preferred spatial frequency as extracted by the three methods.

doi:10.1371/journal.pcbi.1004602.g010
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CV(k) [123–125]

CVðkÞ ¼ j
R 2p

0
dWTCðW; kÞe2iWjR 2p

0
dWTCðW; kÞ ; ð44Þ

is first computed as a measure of orientation selectivity at a given spatial frequency k. Maxi-
mizing the circular variance across all spatial frequencies is then performed to obtain an esti-
mate of preferred spatial frequency:

kpref ¼ argmax
fkg

CVðkÞð Þ: ð45Þ

We refer to this method as CV maximization. Finally, one can use the maximum of the ampli-
tude spectrum

kpref ¼ argmax
fkg

jRðkÞjð Þ; ð46Þ

as an estimate of the preferred spatial frequency (Maximummethod). We argue that Maximum
method and CVmaximization in most cases yield similar results. They extract preferred spatial
frequencies that one would obtain when searching for the “strongest response” by presenting a
set of gratings of varying orientation and spatial frequency to a subject [125–127]. In contrast,
estimates made with the center-of-mass method are usually substantially smaller then this intui-
tive measure (Fig 10C and 10D). As a consequence, the orientation selectivity index defined as

OSI ¼ j
R 2p

0
dWTCðW; kprefÞe2iWjR 2p

0
dWTCðW; kprefÞ

ð47Þ

for all three methods, will usually be substantially smaller, when estimated with the Center-of-
Mass method compared to the other two methods. Among all three methods, the Maximum
method has the advantage that its estimates are unaffected by monotonic nonlinearities applied
to R commonly used to convert it to a firing rate of a neuron. For this reason, the Maximum
method is our method of choice for extracting the preferred spatial frequency from amplitude
spectra of receptive fields.

Extracting the spatial progression of preferred orientation
Using the equations for the receptive fields of cortical neurons in the Moiré interference model,
we extracted the spatial progression preferred orientation and spatial frequency from their
squared amplitude spectrum:

jRyðkÞj2 / expð�k2ðs2
s þ s2

r ÞÞ � Ya;r
3 Ya;r

3 þYa;r
4 Ya;r

4 �Ya0 ;r0
3 Ya0 ;r0

3 �Ya0;r0
4 Ya0;r0

4|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
GyðkÞ

���������

���������

2

; ð48Þ

with abbreviationYa;r
i Ya;r

i ¼ Yiðce�ða; rÞ; tÞYiðcerða; rÞ; zÞ. jRðkÞj2 is composed of a rota-

tionally symmetric Gaussian envelope and a non-rotationally symmetric part Gy(k) varying in
space y. To calculate the preferred orientation ϑpref and spatial frequency kpref, we expanded
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the non-rotationally symmetric part jGy((k)j2 to quadratic order in k:

jRyðkÞj2 � exp �k2ðs2
s þ s2

r Þ
� 	 jG0

yj2 þ
1

2
k1 k2ð ÞHy

k1

k2

 ! !
; ð49Þ

whereHy is the Hessian matrix

Hy ¼

@2jGyj2
@k21

@2jGyj2
@k1 @k2

@2jGyj2
@k2 @k1

@2jGyj2
@k22

0
BBBBB@

1
CCCCCA

�����������
k ¼ 0

�
ay by

by cy

0
@

1
A ð50Þ

and G0
y ¼ Gyðk ¼ 0Þ. Since Gy(k) = Gy(−k), this Taylor expansion only contains terms of even

power in k.
Using the fact that

hðyÞ ¼ cos y sin yð ÞHy

cos y

sin y

 !
¼ ay cos

2yþ 2by cos y sin yþ cy sin
2y ð51Þ

yields the second directional derivative in the direction of (cos θ, sin θ), ϑpref can be found as
the maximum of h(θ), i.e. the direction of largest increase in amplitude spectrum,

Wpref ðyÞ ¼ atan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðay � cyÞ2 þ 4b2y

q
� ay þ cy

2by

0
@

1
A: ð52Þ

This formula for ϑpref(y) represents an expression for the orientation domain layouts produced
by the Moiré interference model for hexagonal RGC lattices.

To calculate the smoothed domain layout of the Moiré interference model analytically, we
identified the low frequency components of our analytical solution. To this end, we expanded
the Jacobi theta functions in Eq (42) [120]

jRyðkÞj2 ¼
X

j

Cj
y exp � 1

2s2
ðk� aj

yÞ2
� �

þ Cj
y exp � 1

2s2
ðkþ aj

yÞ2
� �� �

ð53Þ

where Cj
y and a

j
y are determined by Eq (42). According to this equation, the power spectra of

receptive fields in the Moiré interference model is represented by an infinite sum of Gaussians,
each mirrored at the origin (0, 0) of Fourier space. The preferred orientation of a receptive field
represented by such an infinite sum is set by the direction in which the “center-of-mass” of the
Gaussians is located. Due to the symmetry of the power under spatial inversion, there are two
peaks located at ϑ(y) and π + ϑ(y). The direction towards the center-of-mass of the peak is
obtained through the complex number

mðyÞ ¼
X

j

Cj
y � jaj

yj exp ð2i argðaj
yÞÞ ð54Þ

with Cj
y and a

j
y defined as in Eq (53). The preferred orientation then is arg(μ(y))/2. Rewriting

this sum and substituting the respective expressions for Cj
y and a

j
y, we obtained

mðyÞ ¼
X
m;n;o;p

f ðm; n; o; pÞ exp ð2iyðne� þmer � oe0r � pe0�ÞÞ; ð55Þ
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with coefficients f(m, n, o, p). This is a decomposition of the orientation domain layout of the
Moiré interference model into Fourier modes, indexed by four numbersm, n, o, p = 0, ±1, ±2, . . ..
Table 2 lists the first terms of this series in ascending spatial frequency order. By rewriting μ! z
and selecting only the lowest contributing spatial frequencies, we obtain Eq (7). The phase factor

u0 ¼ ei ðaþa
0Þ eia

0
r þ eiar0

� 	
eiar þ eia0r0

ð56Þ

is associated with an overall shift of all preferred orientations. Note that ju0j2 = 1.

Correlated noise on hexagonal RGCmosaics
Realization of a random distortion field y(x) were generated by finding a complex-valued field
z(x) of which real and imaginary part correspond to dislocations in x and y direction, respec-
tively. We constructed such a field using established methods (e.g. [51]) in the Fourier domain.
In short, we drew complex-valued amplitudes a(k) from a Gaussian distribution satisfying

haðkÞaðk0Þi ¼ ~f ðkÞ � dk;k0 , where ~f ðkÞ was a chosen power spectrum, in our case a Gaussian

with width 1/σ, σ being the desired correlation length. The corresponding amplitude spectrum
was then inversely Fourier transformed to obtain a complex-valued field z(x). Real and imagi-
nary part of this field constitute two independent real-valued Gaussian random fields, both
with the desired spatial statistics. We then transformed the coordinates of the hexagonal ON/
OFF lattice points ri = (xi, yi) according to xi ! xi þ Z<ðzðriÞÞ and yi ! yi þ ZIðzðriÞÞ. For
the displacements of ON and OFF lattices, we used two independent complex-valued Gaussian
random field realizations. Source code to generate hexagonal RGC mosaics with correlated spa-
tial noise along with Matlab code for visualization is part of the supplementary material to this
manuscript.

Generating PIPP RGCs mosaics
We generated RGC mosaics with a pairwise interacting point process using the code published
by Schottdorf et al. [32] derived from the method developed in [49, 82].

Supporting Information
S1 Code. Source code for pinwheel statistics analysis and simulating statistical connectivity
model layouts with a variety of RGC mosaics. Numerical implementation of the statistical

Table 2. Lowest frequency contributions of the orientation domain layout predicted by the Moiré inter-
ferencemodel. The vectors ki are the wave vectors and jkij their absolute values. ui denotes the phase fac-
tors of the complex-valued coefficient f(m, n, o, p) in Eq (55) (see also Eq (7)). The constant phase factor u0 is
given by Eq (56). n.d. means not determined.

m n o p ki jkij Phase factor ui

1 1 1 1 2ððer � e0rÞ þ ðe� � e0�ÞÞ kc u0e
i4π/3

-1 -1 -1 -1 �2ððer � e0rÞ þ ðe� � e0�ÞÞ kc u0e
i4π/3

1 -1 1 -1 2ððer � e0rÞ � ðe� � e0�ÞÞ kc u0e
i2π/3

-1 1 -1 1 �2ððer � e0rÞ � ðe� � e0�ÞÞ kc u0e
i2π/3

0 2 0 2 4ðe� � e0�Þ kc u0

0 -2 0 -2 �4ðe� � e0�Þ kc u0

2 0 2 0 4ðer � e0rÞ
ffiffiffi
3
p

kc n.d.

-2 0 -2 0 �4ðer � e0rÞ
ffiffiffi
3
p

kc n.d.

doi:10.1371/journal.pcbi.1004602.t002
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wiring model.We provide all necessary code to calculate single neuron properties and orien-
tation domain layouts along with a Mathematica program which contains the analytical solu-
tion for both, an example single neuron and the domain layout obtained from a perfect and
infinite lattice. The C-program ‘calculate_single_neuron.cpp’ calculates the same for a single
neuron numerically. The C-program is provided to illustrate the use of the rfanalyzer class.
The c-program ‘calculate_map.cpp’ calculates the same properties as ‘calculate_single_-
neuron.cpp’ but for a whole array of cells. After finishing a run, this program generates a set
of ascii files in which the output is stored. These files are read in and analyzed by the Matlab
program ‘plot_results.m’. It calculates the pinwheel density, pinwheel distance distributions,
mean pinwheel distance and pinwheel density fluctuations as a function of subregion size.
We compiled the code with gcc [g++ (Ubuntu 4.8.2-19ubuntu1) 4.8.2] and the gsl:

g++ ./calculate_single_neuron.cpp -lgsl -lgslcblas -O3 -march = native
g++ ./calculate_map.cpp -lgsl -lgslcblas -O3 -march = native

For this article, we have calculated orientation domain layouts with aspect ratio 22x22Λ, sam-
pled with 4096x4096 pixels. This corresponds to� 6.5 μm per cortical unit for our standard
combination of parameters (r = r0 = 170 μm and Δα = 7°). Experimental data The folder
‘map_data’ contains a data folder with single condition layouts and various ROIs for four fer-
rets cases. It also contains two Matlab files, ‘run_analysis.m’ and ‘plot_results.m’ to run the
analysis and display the results. The full data set used in the present study is available on the
neural data sharing platform http://www.g-node.org/.
(ZIP)
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Values were calculated with the code provided in the supplemental material and intervals
indicate 95% bootstrap confidence intervals. Also shown is the grand average and the associ-
ated one species and common design consistency ranges (CR).
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Table 1. The six orientation domain layout parameters characterizing the common design.

Pinwheel
density ρ

NN distance ind.
charge

NN distance same
charge

NN distance opp.
charge

Variab.
Exponent γ

Variab.
coeff. c

Ferret 3.14 [3.06, 3.23] 0.355 [0.347, 0.363] 0.530 [0.521, 0.539] 0.394 [0.383, 0.403] 0.40 [0.37, 0.44] 1.07 [0.97,
1.15]

Dark-reared Ferret 3.30 [3.16, 3.42] 0.346 [0.334, 0.361] 0.511 [0.499, 0.528] 0.381 [0.366, 0.401] 0.39 [0.35, 0.46] 1.02 [0.90,
1.12]

Cat 3.24 [3.06, 3.42] 0.366 [0.352, 0.381] 0.534 [0.519, 0.551] 0.407 [0.388, 0.428] 0.48 [0.41, 0.58] 0.83 [0.68,
0.95]

Treeshrew 3.08 [2.99 3.16] 0.364 [0.359 0.370] 0.521 [0.514 0.528] 0.404 [0.396 0.411] 0.36 [0.34 0.39] 1.13 [1.05
1.19]

Galago 3.12 [2.93, 3.27] 0.363 [0.345, 0.381] 0.536 [0.522, 0.556] 0.396 [0.375, 0.417] 0.45 [0.42, 0.52] 0.85 [0.71,
0.99]

Ensemble
Average

3.13 0.359 0.525 0.397 0.40 1.05

Common Design–
CR

[3.09 3.19] [0.354 0.363] [0.520 0.530] [0.391 0.403] [0.37 0.42] [0.99 1.11]

One Species–CR [2.93, 3.42] [0.334, 0.381] [0.499, 0.556] [0.366, 0.428] [0.34, 0.58] [0.68, 1.19]

doi:10.1371/journal.pcbi.1004758.t001
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Chapter 4

Which surrogate cortex?

“The way to understand a complicated system is to build it step by step, and each
step of building is a step of understanding.”

Idan Segev cited in468.

4.1 Content

In this chapter, we develop the surrogate cortex, the target circuit of the afferent pathway.

We first assessed the viability of what we call virtual networks, realized by closed loop
optogenetic connections162,348 between islands of individual neurons grown on multielectrode
arrays. Virtual networks are artificial neural networks with biological neurons as nodes. This
approach seemed promising because it allows in principle to construct arbitrary networks. To
generate such islands, we developed a patterning technique to constrain the growth of cells to
individual electrodes of a MEA. This patterning technique will provide a platform to predesign
arbitrary networks with high reproducibility, where the network itself can be manipulated on
the fly. We made substantial progress in designing the neuronal island system, the key contri-
bution of optogenetic closed loop virtual networks. However, we found that this is not the way
to go: Considering the finite yield of populated islands together with only a fraction of active
electrodes generates substantial variability and we would need to adapt the circuit to the culture.

A second path that we followed, was to design a neuronal circuit from dissociated neurons
in which the local neuronal circuits are as realistic as possible. We designed cultures with the
same cell density and cellular content as the neocortical input layer IV and let them develop
naturally. These cultures are easy to produce on a large scale and show rich spontaneous
activity, resembling the spontaneous activity in the young neocortex. To interface this surrogate
cortex with the virtual sensory pathway, we next constructed a digital phase-only holographic
projection system. Digital holography was used, because it is the most flexible technique to
generate spatially structured light pattern at specific wavelengths, and surpasses micromirror
arrays in terms of light-efficiency by orders of magnitude161.
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4. Which surrogate cortex?

4.2 Method I: µ-Contact printing of neuronal circuits

The first method is published. It should be noted that in this published part of the project, we
left out the idea of virtual networks. This topic will be covered in section 4.4.

4.3 Citation and original contribution

Robert Samhaber∗, Manuel Schottdorf∗, Ahmed El Hady∗, Kai Bröking, Andreas Daus, Chris-
tiane Thielemann, Walter Stühmer, and Fred Wolf: “Growing neuronal islands on multi-electrode
arrays using an accurate positioning-µCP device”, J Neurosci Methods 257(1): 194-203 (2016)
[∗ eq. contribution]418

I assembled the construction sheets and generated the overview figure (Fig. 1); I measured the
reproducibility of the patterning procedure by quantifying the PLL deposition on each stamping
site (Fig. 3) and I produced patterned cultures and performed the electrophysiological measure-
ments (Fig. 6). In addition, I designed the website for the supplemental online information,
wrote the text together with all authors and I am corresponding author.
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h  i g  h  l  i  g  h  t  s

• A  precision  patterning  protocol  for  hippocampal  neurons  on  Multielectrode  arrays (MEAs)  using  simple  and  widely  available  equipment.
• A  scalable  prototype  for  a versatile  mechanical  pattern  aligner.
• Increased  yield  of  electrical  activity  recording  in  patterned  neuronal  culture.
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a  b  s  t  r  a  c  t

Background:  Multi-electrode  arrays  (MEAs)  allow  non-invasive  multi-unit  recording  in-vitro  from  cul-
tured  neuronal  networks.  For  sufficient  neuronal  growth  and  adhesion  on  such  MEAs,  substrate
preparation  is required.  Plating  of  dissociated  neurons  on  a uniformly  prepared  MEA’s  surface  results
in  the  formation  of spatially  extended  random  networks  with  substantial  inter-sample  variability.  Such
cultures  are  not  optimally  suited  to  study  the  relationship  between  defined  structure  and  dynamics  in
neuronal  networks.  To  overcome  these  shortcomings,  neurons  can be  cultured  with  pre-defined  topol-
ogy  by  spatially  structured  surface  modification.  Spatially  structuring  a MEA  surface  accurately  and
reproducibly  with  the equipment  of  a typical  cell-culture  laboratory  is  challenging.
New method:  In this  paper,  we  present  a novel  approach  utilizing  micro-contact  printing  (�CP)  combined
with  a custom-made  device  to accurately  position  patterns  on  MEAs  with  high  precision.  We  call  this
technique  AP-�CP  (accurate  positioning  micro-contact  printing).
Comparison with  existing  methods:  Other  approaches  presented  in the literature  using  �CP  for  patterning
either  relied  on  facilities  or techniques  not  readily  available  in a standard  cell  culture  laboratory,  or  they
did  not  specify  means  of precise  pattern  positioning.
Conclusion: Here  we  present  a  relatively  simple  device  for  reproducible  and  precise  patterning  in a stan-
dard  cell-culture  laboratory  setting. The  patterned  neuronal  islands  on  MEAs  provide  a  basis  for  high
throughput  electrophysiology  to study  the  dynamics  of  single  neurons  and  neuronal  networks.
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1. Introduction

The culturing and survival of living cells in vitro requires the
preparation of suitable conditions in an artificial environment.
In particular, in order to study the electrophysiological proper-
ties of dissociated neurons, a close contact between the cells and
the recording electrodes has to be established. The negative sur-
face charge and hydrophobic nature of unmodified glass surfaces
are known to counteract attachment and growth of neurons. One
way to modify the surface properties in a favourable way  is by
coating with growth and adhesion promoting molecules to allow
attachment, development and cell survival. Multi-electrode arrays
(MEAs) offer a versatile and well-established tool for both, non-
invasively studying activity patterns in neuronal networks on a
wide range of spatial scales (Gross et al., 1977, 1995, 1997; Stett
et al., 2003; Hofmann and Bading, 2006; Hofmann et al., 2011;
Schottdorf et al., 2012) and biosensor applications (Keefer et al.,
2001; Chiappalone et al., 2003; Selinger et al., 2004; Martinoia et al.,
2005; Xiang et al., 2007).

MEAs  are devices in which a thin layer of a conducting mate-
rial in the form of an electrode array is embedded onto the surface
of a glass substrate, allowing for non-invasive parallel recording
and stimulation of electrical activity at multiple sites from a cell
culture. Plating dissociated neurons on a uniformly coated culture
substrate results in random network formation that are highly vari-
able in their detailed topology. A way to align the growth of cell
processes with the predefined topology of the MEA  and to reduce
inter-culture variability is to apply patterned substrate modifica-
tions that are aligned with the predefined topology of the MEA
layout.

Culturing neurons on MEAs for extracellular stimulation and sig-
nal recording, together with the ability to precisely and reliably
pattern neuronal networks, is thus a crucial step in the devel-
opment of neuroelectronic hybrids such as biosensors, neuronal
prostheses and neuroelectronic circuits.

Patterning neurons in a predefined topology requires that geo-
metric parameters like pattern layout, dimension and alignment
to a substrate can be adjusted reproducibly and precisely. Several
methods to achieve a predefined topology in cultured neuronal net-
works have been proposed in the past: topographical-patterning
and  chemical-patterning. Pioneered in the 1960s, different topo-
graphical patterning techniques included etching groves on a
substrate and lithographic procedures to directly model three
dimensional features on a culture substrate (Niemeyer and Mirkin,
2004). Chemical patterning methods include patterned deposition
of adhesion promoting proteins (Wheeler et al., 1999; Scholl et al.,
2000; Nam et al., 2004a,b). Using the cell repelling properties of
polyethylenglycol (PEG) through a photo-lithographic process was
also shown to effectively direct cell growth (Kumar and Whitesides,
1994). All of these methods, however, require specialised equip-
ment not readily available in a standard cell-culture laboratory
setting. Additionally, the alignment of the pattern to be cultured
with a given substrate layout requires additional high-precision
equipment.

More recently, seminal work on patterning using carbon
nanotubes has been performed by the group of Yael Hanein (Shein-
Idelson et al., 2011) where islands of carbon nanotubes were
deposited on the electrodes leading to the preferential growth
of clusters of neurons over the electrodes. One-dimensional neu-
ronal cultures, which provide a platform to study the propagation
speed of neuronal signals, have been realized on multielectrode
array using a combination of adhesive and protein repelling coat-
ing (Jacobi and Moses, 2007). Glial islands on which monolayers
of neurons or single neurons are grown have been widely used
in electrophysiological studies (Lau and Bi, 2005; Burgalossi et al.,
2012) and have provided a means to pattern neuronal cultures.

Micro-contact printing (�CP) through patterned Polydimethyl-
siloxan (PDMS) micro stamps allows for a relatively simple
approach to transfer adhesion promoting molecules such as
Laminin or poly-d-lysine to substrate surfaces at high spatial res-
olution (Wheeler et al., 1999; Lauer et al., 2001a,b; James et al.,
2004; Chang et al., 2006; Jun et al., 2007). While this method does
require a photo-lithography laboratory in order to produce a posi-
tive template for the stamps, continued access is not required once
the stamp has been produced.

In  the current method paper we  present a simple positioning
device and micro-contact printing technique (accurate positioning
micro-contact printing, AP-�CP).

To characterize the utility of the AP-�CP procedure, we designed
an island-pattern fitting the electrode layout of a MEA. Circular
patterns were established by micro-contact printing the adhesion
promoter on the MEA. The islands were aligned to the electrodes,
allowing for the growth of isolated populations of neurons. We
show that the AP-�CP technique yields reproducible and topo-
logically defined neuronal islands arbitrarily aligned with the
electrodes of a MEA. We  also patterned neurons in a one dimen-
sional geometry allowing electrophysiological measurement of
activity propagation through a one dimensional neuronal culture.

Our  study thus presents a simple, precise and reliable patterning
technique that can serve as an elementary but crucial component
for throughput electrophysiology of single neurons and neuronal
networks.

2. Materials and methods

2.1.  Master production through photo-lithography

According to the designed pattern, a chrome coated soda-lime
mask was produced by electron beam lithography (ML&C, Jena).
Photoresist layers (AZ 9260; Microchemicals, Ulm, Germany) of
20 �m were spin-coated on glass wafers and subsequently soft-
baked at 100 ◦C for 12 min. Structuring of the photoresist-layer was
obtained by exposure to UV irradiation for 12 min  in close contact
with the mask carrying the negative pattern. With proper care and
handling, no wear on the masters could be observed during the
course of this study. In this study, we  used three predesigned pat-
terns, two which realized “Islands” patterns of 64 islands of either
90 �m or 60 �m diameter each separated by 200 �m (Fig. 2A). The
second pattern was  designed as a “Highway” pattern (Fig. 6A) of
100 �m in width and 2 mm in length (Fig. 6A).

2.2. PDMS preparation

PDMS  preparation was  performed by mixing the PDMS Silicone
Elastomer Base and Curing Agent (Sylgard® 184; Dow Corning,
Wiesbaden Germany) in a proportion of 10:1. The prepared vol-
ume was stirred vigorously by hand and subsequently degassed
under a vacuum bell jar: The lidless volume containing the mixed
PDMS agents was placed in the bell jar and evacuated with a vac-
uum pump. After 3 min, the pump was turned off and the bell jar
left in low pressure (100–300 hPa) for 20 min  to allow all air bub-
bles to escape. The PDMS exhibits effervescence during evacuation.
Slower application of low pressure prevented this.

2.3.  The mould

The  stamps were cast from PDMS into a stainless steel mould,
the interior surfaces of which had been turned to a smooth fin-
ish. The mould was bored through, so that it could be placed onto
the negative pattern for the stamp that had been prepared by the
photolithographic process described above. The mould was  then
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Fig. 1. Mechanical and optical setup of the stamping device. The degrees of freedom of the device are distributed as follows: (A) The stamp can be moved in z-direction, whereas
the  MEA  (Multi-electrode array) can be translated in the xy-plane, and rotated around the C-axis (B) Optical setup: The transparent stamp is illuminated from above. The
positioning of the stamp can be controlled by means of a webcam, onto which the MEA  is imaged by means of an achromatic lens. (C) Photograph of the stamping device.
(D)  The stamp, as seen from below through a MEA  by the webcam. For clarity, a drop of blue ink has been placed on the electrodes. The stamp pattern is in even contact over
all  sites (E) Micrograph of the stamps and the mould.

filled to its upper edge with PDMS and the threaded holding fix-
ture pressed into the liquid polymer (Fig. 1E). Brushing the inside
of the mould with a small amount of 10% SDS facilitated removing
the stamps after the PDMS was fully cured. The masters bearing
the PDMS filled moulds were kept at room temperature for 48 h to
allow the mixture to polymerize. Faster curing at higher temper-
atures resulted in distortion of the pattern (Wu et al. 2003). The
cured stamps were removed from the moulds and stored in double
distilled water until needed.

2.4.  Mechanical setup

The  stamp is cast in an aluminium mould that allows for main-
taining parallelism of the micro stamp surfaces and the locating

face  of an aluminium holder moulded into the stamp. This face
presses against the contact surface machined onto the plunger. Pro-
vided the abutment is kept clean, the surface of the stamps can be
kept normal to the axis of the plunger within several seconds of
arc. Therefore, it is unnecessary to provide rotational degrees of
freedom around the A, and B axes in the stamping mechanism for
adjustment.

The stamping press, however, must provide adjustments for the
remaining four degrees of freedom: First, the MEA  must be rotated
around the C-axis, so that the electrode field can be brought into
the same orientation as the grid of micro stamps. Then, the MEA
must be movable in the x–y-plane to align the electrode field with
the stamps (Fig. 1A). The stamp must be depressed by the plunger
far enough for the micro stamps to have uniform contact all over
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the electrode field of the MEA  but only so far as not to squash the
pattern. This means that the end position of the stamp has to be
adjusted to an accuracy of ±10 �m.  Otherwise, the pattern will be
depressed so far that the micro stamps undergo an elastic deforma-
tion, similar to Eulerian buckling, which results in instantaneous
contact between the MEA  and the stamp substrate. To this end, a
stopping screw of suitably fine pitch was used to regulate the final
position of the stamp relative to the MEA  surface. The mechanical
setup thus consists of a micrometric cross-table, allowing for posi-
tioning of the MEA  within a few �m in the x–y-plain. This stage is
mounted on a rotary stage with fine movement, providing a rotary
degree of freedom along the C axis.

The stamp is fixed to another linear stage with cross-roller
bearings, allowing for precise movement in the z-axis. The stamp
consists of a clear block of Sylgard 184, cast onto a threaded stamp-
holder, the back of which is threaded to allow fixing it to the stamp
plunge. The back of this holder also has an accurate locating face
matching a similar face on the plunger. The stamp piston is actuated
by an eccentric acting against a roller-bearing, fixed to the slide of a
vertical stage. The plunger is held in a dovetail fixed to this slide. It
is being held there by a small magnet and can be clamped by means
of a small screw. This arrangement allows for some limited travel
between the slide and the actual plunger, at the same time ensur-
ing that the orientation of the plunger is kept as vertical as possible.
All adjustments can be monitored by an inverted microscope built
into the apparatus, consisting of an achromat (f = 18.5 mm,  f/1.5)
below the MEA, and a webcam fixed to the side of the mechanism
(see Fig. 1B). Since the stamp material is transparent, the stamp
piston and the aluminium have been bored out and an LED has
been fixed into the body of the plunger, providing enough light for
the contact of the stamp with the MEA  surface to be easily recog-
nized (Fig. 1D). A computer rendering of the stamping machine is
included along with the exact design of all parts of the setup and
a list of components on the following website: http://www.nld.ds.
mpg.de/∼manuel/website/index.html.

The cost of the setup is small in terms of materials used as many
of the elements can be harvested from available old machines or
components. Here, we used a cheap commercial webcam for the
inverted microscope and the C-axis manipulator has been taken
from a microscopy stage. It is important to note that the specific
choice of the manipulators, the webcam or the dichroic is not
important as long as the other machine components are modi-
fied accordingly. Publishing the construction sheets along with this
paper should allow adjusting our setup according to the materials
available.

2.5. Substrate & stamp surface preparation

Sterile MEAs (60MEA200/30iR-Ti; Multi Channel Systems, Reut-
lingen, Germany) were incubated in purified foetal calf serum (FCS;
Gibco) for 30 min  and washed once with double distilled water and
left to dry. A solution of 1% 3-glycidoxypropyltrimethoxysilane (3-
GPS Nam et al., 2004a,b; Sigma Aldrich, Taufkirchen, Germany) in
Toluene was added to the culture chamber of the MEA  for 20 min
and subsequently washed three times with Toluene. MEAs were
then baked at 100 ◦C for 1 h and left to cool down to room temper-
ature under a laminar flow hood prior to stamping. Subsequently
the prepared PDMS stamps were taken out of the double distilled
water and any remaining water was removed by suction. Stamps
were sterilized by dipping in 70% EtOH for 10 s. Excess EtOH was
removed by suction and stamps were left to dry for 5 min.

A drop of the anionic detergent sodium dodecyl sulphate (SDS;
10% w/v; Sigma Aldrich-Aldrich, Taufkirchen, Germany) was  added
for 20 min  on top of the patterned side of the stamp. This adds
a release layer between the PDMS & the adhesion promoters to
improve transfer to the glass surface, leading to enhanced cellular

growth  on micro-stamped substrates and increasing the durabil-
ity of the PDMS stamp (Chang et al., 2003). The SDS was  dried
under a nitrogen stream, washed with double distilled water
and dried with nitrogen again. Aliquots of a 0.1 mg/ml solution
of poly-l-lysine conjugated with the fluorescent label fluores-
ceinisothiocyanat (PLL-FITC) (70,000–150,000 MW;  Sigma Aldrich,
Taufkirchen, Germany) in phosphate-buffered saline (pH 7.4) were
thawed for 1 h at 37 ◦C in a water bath and vigorously shaken
by hand every 15 min  to dissolve clusters of coagulated PLL-FITC
(Wu et al. 2003). 50 �l droplets of the solution were added to the
patterned side of the stamps and incubated in the dark for 1 h.
Excess liquid was removed and the stamps were left to dry for
10 min  to allow all moisture to evaporate. It was critical to the
stamping process not to allow the PLL-FITC droplet to evaporate
before removing it by suction. The stainless steel moulds containing
the stamps were then placed into the plunger of the mechani-
cal stamping device, aligned with the MEA  and stamped unto the
substrate.

2.6. Cell culture

Cell  cultures were prepared according to Brewer et al. (1993).
Hippocampal neurons were obtained from Wisteria WU rat
embryos at 18 days of gestation (E18). The pregnant rat was anaes-
thetized by CO2. The embryos were removed by a caesarean section,
decapitated and transferred to cooled petri dishes. The skull cavity
was opened and the brain removed. Hippocampi were surgically
extracted and transferred to a HEPES (Invitrogen, Germany) buffer.
The supernatant was  removed and the extracted hippocampi
were trypsinized in a Trypsin/Ethylenediaminetetraacetic acid
(EDTA) (trypsin: 0.05%; EDTA: 0.02%; Sigma Aldrich, Taufkirchen,
Germany) buffer for 15 min  at 37 ◦C. Trypsinized cells were then
transferred to a 10% Foetal calf serum (FCS) solution. Thor-
ough trituration using a syringe and a needle with a diameter
of 1 mm followed. The cell suspension was then centrifuged at
1200 rpm for 2 min. The pellet was re-suspended in 2 ml  of serum-
free B27/Neurobasal (B27:5%; Gibco) medium supplemented with
0.5 mM glutamine and Basic Fibroblast Growth Factor (bFGF). Cells
were counted with a Neubauer improved counting chamber. A
droplet of ∼100 �l cell suspension containing 50,000 cells/ml was
added on top of the electrode field of the MEAs. This density was
chosen to prevent the formation of neuronal cell clusters, as dete-
rioration of the pattern was  observed at higher densities. Lower
densities led to lower survivability of neurons after more than 7
days in vitro. The MEAs were then kept in an incubator providing a
humidified atmosphere containing 5% CO2 at 37 ◦C for 4 h to allow
the cells to settle. 1 ml  of the B27/Neurobasal medium was then
added to the cell chamber. Medium was changed every seven days.

All animals were kept and bred in the animal house of the Max-
Plank-Institute of Experimental Medicine according to European
and German guidelines for experimental animals. Animal exper-
iments were carried out with authorization of the responsible
federal state authority.

2.7.  Immunocytochemistry

Patterned cultures on MEAs were used for immunocyto-
chemistry after 14 days in vitro. Cultures were fixed with 4%
paraformaldehyde in phosphate buffer (pH 7.4) for 3 min  at 4 ◦C
and subsequently washed three times with phosphate-buffered
saline (PBS). Unspecific binding sites were blocked by incubation
with 3% Albumin PBS for 30 min  at room temperature before cells
were permeabilized with Triton X-100 (0.5% in PBS, 5 min, 4 ◦C). Pri-
mary antibodies (mouse monoclonal anti-Neurofilament (Abcam,
1:100), rabbit monoclonal anti-GFAP (Abcam, 1:100)) were diluted
in 3% bovine serum albumin (BSA) and 0.1% Tween-20 in PBS and
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Table  1
Percentage of populated islands on the 60-island pattern.

No. populated islands (%)

37 62
36 60
35 58
38 63
34 57

Percentage of populated islands of the island pattern consisting of 60 islands aligned
to a standard MEA layout (60 electrodes) after 7 days in vitro (n = 5; mean = 60%;
standard  deviation = ± 3.9%).

then applied overnight at 4 ◦C. After rinsing with PBS, secondary
antibodies from donkey were applied for 2 h with a dilution of
1:1000 (alexa 647 anti-mouse IgG, alexa 488 anti-rabbit (Abcam)).
MEAs were sealed with round coverslips (15 mm diameter) and
mounting medium (ProLong Gold, Invitrogen, Carlsbad, USA), and
samples were imaged by fluorescence microscopy using a Zeiss
Axiovert 200 (Zeiss, Göttingen, Germany) with a 20× objective.

2.8.  Statistics

Cultures growing on patterned islands were assessed by phase
contrast microscopy after 7 days in vitro. Every island populated
by at least 1 neuron was counted as populated. Interconnected
islands showing more than one interconnection were omitted from
the dataset. Mean and standard deviation of the percentage of pat-
terned islands populated by neurons in a sample of X cultures are
shown in Table 1.

2.9.  Multielectrode array recording

Recordings were made on a 60 channel MEA  amplifier (MEA-
1060 Inv, Multichannel Systems, Reutlingen, Germany). Data from
MEAs were registered at 25 kHz using a 64-channel A/D con-
verter and MC  Rack software (Multichannel Systems, Reutlingen,
Germany). After high pass filtering (Butterworth second order,
100 Hz) events were detected in a cutout recorded 1 ms  before and
2 ms  after crossing a threshold of −4 sigma of the filtered electrode
signal. The threshold was evaluated for every channel individu-
ally and typically around −16 �V, The identified events were then
aligned at threshold-crossing and averaged. All data analysis was
performed in Python.

3. Results

3.1. Island pattern requirements

To  demonstrate our technique and the functionality of the
mechanical patterning device we chose an island pattern (Fig. 2A).
Sixtyfour circles with a diameter of 90 �m were designed to fit on
the electrodes of a 60-Channel MEA  layout. This pattern allows for
easy alignment and quick assessment of cell growth. The diameter
and spacing of the islands/electrodes was chosen in order to mini-
mize overlap of the populated islands, while simultaneously allow-
ing growth and adhesion of several neurons per island. The quality
of the produced masters was assessed by means of Scanning elec-
tron microscopy (SEM) (Fig. 2B and C). The negative pattern pro-
duced by the photo-lithographic process was checked for accuracy
of island diameter and freedom from distortion. The structures seen
in the figures represent holes in the photo resist layer. During stamp
casting, the PDMS flows into these holes and forms micro-pillars. As
printing the coated micro-pillars on the prepared substrate forms
the island pattern, it is crucial to assess the quality of photoresist
development before using the master as a mould for stamp cast-
ing. The steepness of the edges translates into structural integrity of

the PDMS micro pillars. This, in turn, affects the amount of pressure
the pattern field can tolerate before collapsing during stamping. At
the basis of the structures seen in Fig. 2B and C, the exposed sur-
face of the soda-lime substrate has no apparent residues of photo
resist. This is important, because incomplete development of the
photo resist layer leads to an uneven stamp surface and also uneven
printing of the adhesion promoting molecules to the MEA substrate.

After stamp casting and substrate preparation according to the
protocol described above, the PLL-FITC coated stamps were printed
on a MEA  substrate and assessed for complete application of the
islands pattern on the substrate (Fig. 2D and F). The patterning
and alignment made possible by the mechanical patterning device
described here lead to faithful, reproducible and highly controllable
patterning of the desired topology. Fluorescence imaging showed
that all sixty islands were printed on the electrodes without vis-
ible distortions or deformations of the pattern. The coating was
smooth and relatively homogeneous over all islands. The variabil-
ity between islands seems not to be affected by stamping rounds
and is most likely a related to inhomogeneity of the protein coating
on the PDMS columns or inhomogeneity of the chemical modifica-
tion of the glass surface (Figs. 2D, 2E and 3).Fig. 3 shows that islands
were coated with a variable degree of coating as measured by the
fluorescence intensity.

Fig.  4 illustrates that cells prefer to grow on PLL-FITC covered
regions over uncoated electrodes.

3.2. Neuronal cultures on patterned islands

Hippocampal neurons populated the Islands and showed nor-
mal neurite outgrowth (Fig. 2F and G). Cell bodies and processes
generally avoided uncoated areas, though some axons reached
neighbouring islands (Fig. 3A). Using the AP-�CP technique, the
pattern on the stamp can easily be aligned to any feature of the
substrate, as shown in Fig. 3B, in which hippocampal neurons are
located on islands patterned exactly between the electrodes. Five
MEAs were AP-�CP treated with the 64-islands pattern. The per-
centage of populated islands on the printed and aligned 60-island
layout shows that after 7 days in vitro on average 36 out of 60 (60%,
n = 5; standard deviation= ± 3.9%) islands were populated by one or
more neuronal cell bodies and their neurites (Table 1). These results
show that the presented patterning method, together with the cus-
tom made mechanical stamping device (AP-�CP) is well suited for
patterning neurons in a accurate and reproducible manner.

3.3.  Characterization of patterned neuronal cultures by
immunocytochemical staining

To determine whether the neuronal cultures populating the
islands patterns showed characteristics of typical neuronal net-
works grown in vitro, neurite structure and astroglial growth were
assessed by immunocytochemical staining after 14 days in vitro
(see Fig. 5).

Staining against neurofilament, a protein found in intermediate
filaments in the axons of neurons, labels axonal processes indicat-
ing, that neuronal wiring occurs (Fig. 2A and B). Single neurons
growing on the patterned islands enable useing the island pattern
in studies of autaptic neurons (Bekkers and Stevens, 1991; Pyott
and Rosenmund, 2002).

Astrocytes  are known to play a substantial role in neuronal
development i.e., in metabolic support of neurons, synaptic effi-
ciency and long-term potentiation (Tsacopoulos and Magistretti,
1996; Pfrieger and Barres, 1997; Henneberger et al., 2010). Islands
were stained after 14 days in vitro against glial fibrillary acidic pro-
tein (GFAP), an intermediate filament of the astroglial cytoskeleton.
Each island populated by neurons as marked by staining against
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Fig. 2. Patterning procedure validation. (A) CAD schematic of the Island pattern: 60 Islands cover the same number of electrodes. Diameter of Islands: 90 �m. Dots represent
electrodes. Scale bar: 200 �m.  (B and C) Quality of produced masters was assessed through scanning electron microscopy (SEM). Examination focused on the steepness of
the  edges, indicating a thorough development of the exposed photoresist. The Islands in this image are dissolved photo resist holes, showing the soda-lime surface of the
substrate at its bottom surrounded by an intact layer of photo resist. Scale bars: (B) 10 �m (C) 20 �m.  (D) Fluorescence of PLL-FITC on aligned and stamped MEA substrate.
(E) Higher magnification of (D), the part magnified is marked with a square. Scale bar: 50 �m.  (F) Neuronal islands on MEA  after 21 DIV. Scale bar: 200 �m (D). (G) Higher
magnification of (F), the magnified part is marked with a square. Scale bar: 50 �m.

Fig. 3. Reproducibility of the patterning procedure. (A) PLL-FITC coated islands stamped on a substrate. The islands have 60 �m diameter. Scale bar: 200 �m.  (B) Magnified
PLL-FITC coated islands from (A) along with the mean, standard deviation and coefficient of variation of the fluorescence intensity of the FITC. Scale bar: 100 �m. (C) The
histogram of distributions of the mean, standard deviation and coefficient of variation of fluorescence intensity.
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Fig. 4. Patterned neuronal cultures. (A) Neuronal islands on the electrodes of the MEA  after 14 DIV. Scale bar: 30 �m (B) Neuronal islands growing beside the MEA  electrodes.
Patterns were slightly displaced to the electrodes to show that neurons prefer to grow on patterned PLL-FITC over unpatterned electrodes. Scale bar: 30 �m.

Fig. 5. Immunocytochemical staining of patterned neuronal cultures. (A) Neurofilament staining of neuronal islands on MEA. Scale bar: 50 �m.  (B) Enlarged from the white
frame  in (A) Scale bar: 10 �m.  (C) GFAP staining of neuronal islands on MEA. Scale bar: 50 �m.  (D) Enlarged from the white frame in (C) Scale bar: 10 �m. (E) Overlay showing
Neurofilament and GFAP staining of neuronal islands on MEA. Scale bar: 50 �m.  (F) Enlarged from the white frame in (E) Scale bar: 10 �m.
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Fig. 6. Electrical activity propagation in patterned cultures. (A) The “Highway” pattern of a one dimensional neuronal culture on a multielectrode array. Scale bar: 200 �m.
(B)  The spike trains of neurons spanning several electrodes. Scale bar: 250 s with an inset showing the bursting activity on a shorter time scale. Scale bar: 200 �m. (C) The
waveform shapes recorded at electrodes 24, 36, 43, 35, 38, 63, 66. Scale bar: 20 �V. (D) Magnified neuronal line from (A) Scale bar: 200 �m (E). The waveforms from electrodes
52, 54, 55, 58.

neurofilament and thus was accompanied by supporting astrocytes
(Fig. 2E and F).

3.4.  Electrical activity in patterned cultures

In order to check the usability of these patterned neuronal cul-
tures for electrophysiological studies, we measured the electrical
activity in patterned cultures (Fig. 6A). We  found that cultures were
showing the stereotypical bursting behaviour observed in in-vitro
neuronal cultures (Fig. 6B). The recorded voltage wave forms had
relatively large amplitudes on multiple channel along the patterned
one dimensional culture. The recorded electrical activity confirms
the usability of these patterned cultures for electrophysiological
measurements  as it demonstrates that the substrate modification
did not affect the electrode impedance.

4. Discussion

We  presented a novel technique (AP-�CP) that enables repro-
ducible, precise patterning of neurones on MEAs. We  have shown
that it can produce patterns of high reproducibility while neuronal
growth remains intact. AP-�CP achieved a marked and significant
increase in pattern coverage, compared to other already established
methods. The percentage of populated islands on the printed and
aligned 60-island layout in our study shows that after 7 days in vitro,
on average 36 out of 60 (60%, n = 5; standard deviation= ± 3.9%)
islands are populated by one or more neuronal body and its pro-
cesses. To compare these numbers with the literature, previous
studies applying micro-contact printing techniques on MEAs were
taken into consideration (James et al., 2000, 2004; Chang et al.,
2003; Heller et al., 2005; Boehler et al., 2012). Few studies (Jungblut
et al., 2009; Jun et al., 2007) explicitly state the percentage of pat-
tern coverage over the standard MEA  layout: ∼47% and ∼25% of
electrodes covered in average respectively. The average coverage

of  60% achieved by AP-�CP thus suggests a significant improve-
ment upon previous methods. The coating is placed on all islands
and despite the variability in the coating homogeneity, the neu-
rons seem insensitive to the homogeneity and occupy the majority
of islands (60%). Nevertheless, we  expect that the method can be
further improved by increasing the homogeneity & reproducibility
of the coating.

The  electrode impedance did not change substantially as
evidenced by the recorded electrical activity that showed the hall-
marks of in-vitro spontaneous activity highlighting the feasibility of
using these patterned cultures for electrophysiological recording.
We also reproduced the observation of propagating activity in one
dimensional cultures that have been demonstrated previously by
Ca imaging (Feinerman et al., 2005).

Patterning of neuronal cultures is regarded as a promising tool
to address questions concerning network dynamics and signal
propagation. First devised in the 1960s and 1970s, topographi-
cal patterning methods on planar substrates were achieved by
etched or scribed grooves. These first patterning experiments
were hard to reproduce, lacking exact means and specifications
for placement and alignment. Since then, lithographic proce-
dures have been continuously refined during the past decade
(Niemeyer and Mirkin, 2004). Micron-sized arrays of silicon pil-
lars were used to guide the growth of neurons and astrocytes
(Turner et al., 2000). Electron beam lithography has been used to
define features in the nanometre scale for neuronal cell pattern-
ing (St John et al., 1997; Curtis and Wilkinson, 1998), requiring
highly specialized equipment. Another way  to direct cell growth
along topographical substrate modification is by immobilizing cells
in well-like structures. Lithographic methods developed for the
production of Micro-Electro-Mechanical Systems (MEMS) enable
the realization of these features with a good spatial-resolution.
Neuronal cells were grown at the bottom of deep pits on a
silicon substrate and recorded through metal micro-electrodes
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(Maher et al., 1999). Three-dimensional (3D) microfluidic arrays
of poly-dimethylsiloxane (PDMS) were also used to confine cell
topology to a certain pattern and were directly structured on sil-
icon wafers using a negative photo resist (Degenaar et al., 2001).
Building on the results of these experiments, defined networks
of cultured neurons from the pond snail Lymnaea stagnalis have
been grown in micro-structured polyester photo resist on a sil-
icon substrate to study interconnected nerve cell pairs using
electrophysiological methods (Jenkner et al., 2001). All of these
photo-lithographic approaches for physical cell patterning require
the continued availability of photo-lithographic facilities and other
techniques not generally available in standard cell-culture labora-
tories.

An alternative approach, chemical patterning methods were
introduced in 1965 by adhering fibroblasts to palladium islands
evaporated onto a poly-acetate surface (Carter, 1965). Adhe-
sion promoting molecules then can be transferred to the pattern
(Kleinfeld et al., 1988). Due to the techniques involved, organic
solvents and alkaline solutions may  interfere with the stabil-
ity of the adhesion promoters. Another method is the patterned
deposition of adhesion promoting proteins through silane- or alka-
noethiol based surface chemistry (Wheeler et al., 1999; Scholl
et al., 2000; Nam et al., 2004a,b). Here, the properties of alka-
nethiolate monolayers on a substrate are altered through UV-Light
exposition, which causes the oxidization to alkanesulfonate, thus
altering its solubility. In a second step the exposed area can be
linked to a second molecular layer by immersion, creating another
monolayer on top of the first (Dulcey et al., 1991). These self-
assembled monolayers (SAM) have been used to grow dissociated
rat hippocampal neurons on circuit-like patterns (Stenger et al.,
1998). SAMs of silanethioles have been used likewise to direct
cell growth in vitro (Ma et al., 1998a,b). However, this method
requires that the photo-lithographic process is run every time a
pattern is created, limiting routine applicability for many biological
laboratories. Uniformly coated MEA  culture chambers with poly(l-
lysine)-grafted-poly(ethylene glycol) (PLL-g-PEG), a polymer that
has cell repelling properties, were locally freed from the polymer
by electrical programmable desorption and in a multi process step
subsequently coated with poly-l-lysine to establish a pattern of cell
adhesive molecules. This method was developed for printing pat-
terns of alkanethiolates on a gold substrate (Kumar and Whitesides,
1994), and has been used afterwards to topographically confine cell
growth of neurons on a glass substrate (James et al., 2000; Lauer
et al., 2001a,b; Chang et al., 2006; Jun et al., 2007; Jungblut et al.,
2009). Previous work focused on confining cells to uniform pat-
terns of rectangular, striped or triangular shape (Ma et al., 1998a,b;
Branch et al., 2000; Liu et al., 2000; Thiebaud et al., 2002; Vogt et al.,
2003, 2005; James et al., 2004; Heller et al., 2005; Jungblut et al.,
2009).

Previous work describing micro-contact printing techniques
on MEAs utilizing alignment of the pattern to a given substrate
structure either required expensive microscopy precision placers
(Jungblut et al., 2009) or used unspecified custom-made devices
(Boehler et al., 2012). The mechanical stamping device presented
here relies on few components and a small number of optimized
parameters, enabling quick and reproducible alignment of a pat-
terned micro-contact stamp to a substrate layout. With AP-�CP,
we present a technique, which can be used in any standard cell-
culture laboratory, without expensive equipment and continued
access to photo-lithography laboratories.
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Introduction

On this website, you can find detailed instructions for building a micro con-

tact printing (µCP) machine and for using it to spatially structure neuronal

cultures. Its purpose is to allow any lab without access to a lithography

facility to structure cultures of neurons with the method developed in our

group.

You can find a detailed description as to the preparation of neuronal cultures,

the protocols used, and the construction of the µCP machine including all

CAD files (for Autodesk Inventor) to build your own!

This project has been carried out at the Max Planck Institute for Experi-

mental Medicine in the department of Molecular Biology of Neuronal Signals,

headed by Prof. Dr. Walter Stühmer. On the following pages, one can find a

detailed and illustrated protocol of the stamping process. In the downloads

section, all construction sheets for the stamping machine and the molds are

available.
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Fig. 1 Fig. 2 Fig. 3

Fig. 4 Fig. 5 Fig. 6

Stamp and MEA preparation

Fabrication of the stamps

The stamps are fabricated by applying freshly prepared and degassed PDMS

to molds which are placed on a photolithographically prepared mask. The

molds are covered from the inside with a thin film of SDS. This is done by

placing a drop of SDS solution in the inside and by spreading it evenly with

the finger. The molds are then placed onto the masks and filled with freshly

prepared and degassed PDMS. We add enough PDMs to fill the entire mold

with the viscuous liquid. Then a stamp-holder is inserted into the liquid.

This assembly is left for 48h to cure (see Fig. 1). After two days, the stamps

are removed from the mold by pulling at the stamp holder which is now

embedded into solid PDMS (see Fig. 2) and (see Fig. 3). In one run, we

usually prepare 8 stamps. After removal of the stamps they are placed for

30s in 70% Ethanol for both removal of excess SDS and sterilization. Then,

the pin is removed and they are placed in Teflon holders. Next, a single

drop of SDS is placed on each mold (see Fig. 4). It is left there for 20min,

sucked off by vacuum (see Fig. 5), the stamp is rinsed in ddH2O (see Fig. 6)

and thoroughly dried with dry nitrogen (see Fig. 7). This procedure should

create a thin layer of SDS to facilitate later stamping. Then, a drop of

2



Fig. 7 Fig. 8 Fig. 9

FITC-PLL is placed on the stamps and left there for an hour (see Fig. 8).

Subsequently, the drop of PLL is sucked off and the stamps are ready for use

(see Fig. 9)
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Preparation of the MEAs

First, used MEAs are cleaned for 12h to 24h in a 1% Terg-A-Zyme solution

in ddH2O (for instance as described by Multichannel Systems). They are

then thoroughly cleaned from any left Terg-A-Zyme, filled with ddH2O and

sterilized in an autoclave. After the autoclaving cycle has completed, they

are rinsed with sterile ddH2O (see Fig. 10) and filled with fetal calf serum

(see Fig. 11) to hydrophilize the surface. The FCS is left in there for at

least 30 min. Then, the FCS is sucked off, the MEA rinsed in ddH2O again

and left to dry (see Fig. 12). MEAs are conveniently dried in the air stream

of the bench under UV light to prevent contamination. After making sure

that all water residues have evaporated, the MEAs are filled with a 3-GPS

solution in Toluene. This solution is left in the MEAs for 20 min, removed

and the MEA quickly rinsed 3 times witch pure toluene. After sucking off all

excess toluene, the MEAs are dried with a dry nitrogen stream (see Fig. 13)

and placed in an oven at 100◦for 1 h to remove any remaining toluene (see

Fig. 14 and Fig. 15) After this procedure, the silanized surface is ready for

the stamping. The prepared MEAs and the stamps are kept on the bench,

in a sterile environment and the stamping process is immediately started.
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Chemicals & Tools

The tools and molds are available as CAD sheets in the download section

and to follow this protocol, you will need the following chemicals:

Chemical Supplier

Tergazyme Sigma-Aldrich

PDMS Sylgard 184 Dow Corning

10% w/v sodium dodecyl sulfate in ddH2O Sigma Aldrich

1% (3-glycidoxypropyl)trimethoxysilane Sigma Aldrich

Toluene Sigma Aldrich

Poly-L-lysine FITC labeled 1 mg/ml in PBS Sigma Aldrich

70,000-150,000 MW

Fetal Calf Serum (FCS) Biochrom

Trypsin/Ethylenediaminetetraacetic acid Biochrom

(EDTA) Trypsin: 0.05%; EDTA: 0.02%
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Stamping

Stamping – How to?

For the stamping, we first spray the stamping apparatus with plenty of 70%

ethanol and put it on the bench. We leave it to dry and connect it to a

computer for readout of the images (Fig. 16). Next, we place one stamp into

the stamp holder and place the stamp holder into its slot (Fig. 17). Then

we put one of the prepared MEAs onto the MEA holder of the stamping

machine (Fig. 18).

The build in inverted microscope with the webcam allows for inspection of

the position of the MEA. Next, the stamp is carefully lowered in such a

manner that it stops above the MEA without touching its surface. This can

be monitored by observing how the stamp comes into focus of the microscope.

After lowering the stamp, the stage is adjusted such that the stamp’s pattern

matches the adjusted orientation of the MEA (Fig. 19). After both, the

stamp and the MEA have been aligned, the stamp is lowered until it touches

the surface of the MEA (Fig. 20). Touching the MEA can easily be seen by

a change of color (Fig. 21). The stamp is left on the surface of the MEA for

2min, removed, and the MEA is finished. Next, 50.000 E18 neurons in 100

6



µl NB medium are placed onto the electrode field. The neurons are allowed

to settle for 4h and then the MEA is filled with 1ml of fresh medium. The

medium needs to be changed once a week. Every MEA is stamped with its

own PDMS stamp and every stamp is used only once.
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CAD Sheets & Download

Comments

The machine has several main components. The base plate is connected to

a column. On its top there is an eccentric which moves a linear guide with

the stamp. With this linear guide, the stamp is lowered onto a MEA which

is clamped into place on a table with x, y and C-axis manipulators. The

C-Axis manipulator of our machine is taken from a microscope and therefore

in the construction sheets, it is referred to as ’dummy’. The table assembly is

held in place with four pillars. Under the table assembly, there is an inverted

microscope consisting of a prism, an achromatic lens and a CCD Chip which

allows monitoring the position. The achromatic lens with f=18.5mm focal

length is roughly 2f away from the MEA and projects the MEA’s image in

2f distance onto a 1/4′′ CCD (Sony ICX098BQ) of a commercial webcam

(Philips ToUCam Pro II). The type and size of the CCD chip is not impor-

tant, but the focal length of the lens and the position of the CCD needs to

be adjusted accordingly.

Downloads

We have prepared a collection of the CAD construction sheets, see Fig. 8

of the stamping machine and its components as Autodesk Inventor Part

and Assembly files, a few more pictures and a Microsoft Excel list of its

components. You can find it for download online. Also, we have prepared a

collection of construction sheets for the stamps. You can find them online,

too.
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Fig. 8: Examples of the online supplemental material. A A rendering of
the CAD construction sheets. B A few example construction sheets of the
stamping machine. C A few example construction sheets of the stamp hold-
ers.
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4. Which surrogate cortex?

Figure 4.1: The assembled elements of a closed loop system. A Individual cells at the
stamping sites express the light sensitive ionchannel ChR2. Shown is a DIC image (red) together
with fluorescence of the YFP label of ChR2. B Neuronal signals can be recorded, processed,
and fed back to the cells using light. C An example of such an experiment, data courtesy of
Tūreiti Keith.

4.4 Closing the loop

Fig. 4.1A shows the elements of the closed loop system assembled. Islands of individual neurons
are grown on multielectrode arrays. They are made light sensitive using a viral vector to express
the construct ChR2-YFP under control of a Synapsin promoter. Using the electrodes, one can
record from the neurons. This system provides a platform to predesign arbitrary virtual net-
works of biological neurons as nodes, while the connections are made digitally with a patterned
illumination system, Fig. 4.1B. Fig. 4.1C shows first results with our current hardware; the
close loop time on the order of 100 ms is too long for passing single spikes to the nodes, but
with faster hardware we assembled all essential elements of an optogenetic closed loop virtual
network.
We next design a system in which the local neuronal circuits are as realistic as possible. We use
primary cortical cultures designed to have the same cell density and cellular content as the neo-
cortex. These cultures are easy to produce on a large scale and show rich spontaneous activity,
resembling the spontaneous activity in the young neocortex. To wire this surrogate cortex to
the virtual sensory pathway, we construct a digital phase-only holographic projection system,
because is the most flexible technique to generate spatially structured light pattern at specific
wavelengths, and surpasses micromirror arrays that are known to be “horribly inefficient”161.
Note that the holographic system could also be used to add virtual connections to the surrogate
cortex.
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4.5. Method II: Realistic local circuits

4.5 Method II: Realistic local circuits

Introduction

µ-Contact printing of neuronal circuits is a complex technique and it is not clear at all how to
implement a realistic cortical circuit within a virtual network. Therefore we developed a system
in which the local neuronal circuits are as realistic as possible. We designed cultures with the
same cell density and cellular content as the neocortex. These cultures are easy to produce on a
large scale and show rich spontaneous activity, resembling the spontaneous activity in the young
neocortex. To wire this surrogate cortex to the virtual sensory pathway, we then construct a
digital phase-only holographic projection system, because it is the most flexible technique to
generate spatially structured light pattern at specific wavelengths.

Designing the surrogate cortex

The target of thalamic projections in the mammalian brain is the primary visual cortex. Thala-
mic inputs in vivo are excitatory10,329 and target stellate neurons in layer IV157,268. We therefore
use optogenetics54,110,135,343 to express ChR2, an excitatory light sensitive excitatory algal ion
channel2 under the control of a neuron specific promoter in a recurrent network of living cortical
neurons. Next, we designed a photostimulation setup to connect electronic and biological com-
ponents, based on phase-only digital holography161,295,369,401, see Fig. 5.3A. Here, we discuss
the cell culture and the neuroelectronic interface.
A primary cell culture of neurons can resemble in vivo neural tissue in structural features202, ac-
tivity88,366, development275 and composition26. We achieved cellular content and the cell density
corresponding to layer IV in area 17 of the cat, the primary target for projections from the LGN.
In the lower part of layer IV, the average cell density of binocular neurons, is 56, 000 mm−3 in
a layer about 250 µm thick29,150. 75% of these cells are excitatory150,473,523. Primary cultures
from dissociated rat E18 cortical neurons form circuits spontaneously. In cortical cultures, peri-
odic bursts of action potentials emerged after typically 10 days in vitro in 2D79,497,498 and also
3D cultures102,146 and increase in complexity with time308,498. Notably these bursts resemble to
some extent the spontaneous activity in the visual cortex before eye opening82,409. We designed
the surrogate cortex to a cell density of ≈ 60, 000 mm−3 with 75% excitatory cells (see Chap-
ter 10). The surrogate cortex expresses the light sensitive ion channel ChR2(H134R)283 and
the red-shifted calcium indicator jRCaMP1a103, to combine the optical excitation with calcium
imaging and use an all-optical interface129, see Fig. 5.3B. Fig. 5.3C shows that the culture
contains excitatory cells and inhibitory cells, expresses light sensitive ion channels and calcium
dependent fluorescent indicators, and contains neurons suspended in a matrix of glial filaments.
To count cell densities, we seed neurons on Poly-D-Lysine coated Marienfeld Superior cover
slips, �12 mm, # 1.5. We seed 1 million primary cells, after Tryptan blue stain identified as
membrane–intact, in typically around 100 µl medium. The cover slip preparations are identical
to the preparation on MEAs, but we resort to this technique, as MEAs are too thick for confocal
imaging, and for the higher throughput of coverslips in well plates. As with MEAs, on DIV2, we
transduced neurons with 6.6 · 1010 GC (genome copies) of the viruses AAV9.CamKII0.4.eGFP
and AAV9.hSyn.TurboRFP. We then take images (Progres MF firewire camera, Jenoptik, Jena,
Germany) in epifluorescence mode, at a low magnification of 10x, for a large field-of-view, see
Fig. 4.2A with standard GFP and RFP filter cubes (Zeiss, Jena, Germany). From these im-
ages, we count the number of cells positive for GFP, RFP and both respectively, see Fig. 4.2B.
The cell counting was done in Ilastik, Version 1.1.9 for Linux, and the pre and post processing
was performed in Python. First, every fluorescence microscopy image, recorded with 12 bit,
was normalized by cutting the 0.5% brightest, and the 10% darkest pixel, and rescaling of pixel
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4. Which surrogate cortex?

Figure 4.2: Raw data and analysis of Synapsin and CamKII positive cells. A Fluo-
rescence image of neurons, transduced with 6.6 · 1010 GC of each, AAV9.hSyn.TurboRFP and
AAV9.CamKII0.4.eGFP. B Using Ilastik for image classification (see text), we extract proba-
bilities for cells in each image. Integrating these probabilities gives an estimate of the total cell
count.

values into an 8 bit range for faster processing. Next, the image was projected into a high
dimensional space by (1) Gaussian smoothing, (2) calculating the Laplacian of the Gaussian,
(3) calculating the magnitude of the Gaussian gradient, (4) performing an edge detection with a
difference of Gaussians, (5) calculating the structure tensor Eigenvalues, and (6) calculating the
Hessian of Gaussian Eigenvalues. We then used Ilastik to train a Random Forest classifier (on
a sample of O(5) images), to estimate cell probabilities for every image. Finally, that density
was integrated to yield the total cell count. The obtained raw data is a time resolved portrait
of CamKII/Syn/both positive cells, see Fig. 4.3 (top). These numbers depend on the relative
number of excitatory and inhibitory cells, Nex and Nin, the transduction efficiency of the viruses
with Synapsin promoter α, and the transduction efficiency of the virus with CamKII promoter
β.

RFP positive = α(Nex +Nin) (4.1)

GFP positive = βNex (4.2)

GFP/RFP positive = αβNex (4.3)

From these numbers, we can directly estimate the Synapsin transduction rate and the total
number of neurons

α =
GFP/RFP positive

GFP positive
(4.4)

Nex +Nin =
RFP positive×GFP positive

GFP/RFP positive
(4.5)

The relative number of excitatory cells depends on the CamKII transduction rate β,

γ =
Nex

Nex +Nin
=

GFP/RFP positive

RFP positive
× 1

β
. (4.6)

With the constraint of γ ≤ 100% across all experiments, we find that β ≥ 93%. The expression of
the fluorescent construct after the CamKII promoter is substantially stronger than the expression
after the synapsin promoter even though we kept the number of genome copies constant. For
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4.5. Method II: Realistic local circuits

Figure 4.3: Quantitative assessment of the neuron content, transduction efficiency
and fraction of excitatory cells.. (top) Raw data of Synapsin, CamKII, and both posi-
tive cells. (bottom) From that data, we can estimate the total number of neurons, the viral
transduction rate, and the fraction of excitatory cells (see text).

further analysis we assumed β = 1. Note that the error from this approximation is substantially
smaller than the variability across measurements. This allows for a time resolved portrait of cell
densities, Fig. 4.3 (bottom).
Next, we performed the same experiment with 2.2 · 1010 GC of the virus AAV5.GFAP.eGFP
and AAV5.hSyn.TurboRFP, to estimate the fraction of GFAP positive glial cells, see Fig. 4.4.
As expected with the lower viral count, the fraction of transduced cells is lower. Note the cells
that are positive for both fluorescent dyes: cultured astrocytes are known to express a whole
array of synaptic proteins, including Synapsin-1302 and the cultures might contain neuronal
progenitors of various lineages and we might see an intermediate, non-fully differentiated stage
between glia and neuron, in which both genes are expressed. Assuming the same total number
of neurons, as derived from the measurement in Fig. 4.3, i.e. about 600 mm−2, we can estimate
the transduction rate of the virus, and in turn the total number of glial cells. These results are
shown in Fig. 4.5A. We should note that counting of GFAP positive cells with this methods
will give a lower bound, because only a small fraction of AAV genomes is integrated into the host
cell genome. These nonintegrated vector genomes would be lost in cell division441, consistent
with the drop in cell numbers. From the two experiments, with two different viral dosages, we
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Figure 4.4: Raw data and analysis of GFAP and Synapsin positive cells. (top) A
Example dataset of GFAP-positive glia and Synapsin-positive neurons, B sorted with Ilastik
(see text). (bottom) From the images we can extract the raw counts of GFAP and Synapsin
positive cells. Note that with at DIV7 no RFP label was detectable.

can estimate the transduction density, Fig. 4.5B. The two blue datapoints correspond to the
two experiments, where the error in transduction rate is the scatter across experiments, and the
error in viral dose is the pipetting error of ±0.1 µl. Fitting the datapoints with a line through
the origin, we get a transduction efficiency of the Synapsin promoter as 10.5 · 10−10 ×GC. The
red cross is the dose of AAV9.hSyn.hChR2(H134R) that we used for our experiments. The
default transduction on cultures on MEAs, prepared the same way, was done with 1 µl virus per
ml of medium. Notably, this is 25% more than in other studies.371 The viral stock solution had
a concentration of a 3.39 · 1013 GC/ml solution, yielding 3.39 · 1010 GC. These dosages are at
least an order of magnitude below what would elicit cytotoxic effects192,413.
To verify the measurements above with an independent method, we also studied the content
of primary cortical cultures with immunostained samples on a confocal microscope (Olympus
Fluoview FV1000), see Fig. 4.6. First, we compared the viral estimates of cell density with
immunostainings. To this end, we used a stain for NeuN. NeuN antibodies specifically recognize
the DNA-binding and neuron-specific protein NeuN (MAB377). As the NeuN protein is confined
to neuronal nuclei, this makes counting easy. Other classical stainings as Tau as axonal marker
and MAB2 as dendrite marker would have made counting very hard. We combined this stain
with an antibody against GFAP (ab33922). GFAP, glial fibrillary acidic protein, is a cell-
specific marker that reliably distinguishes astrocytes from other glial cells. Fig. 4.6A shows a
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Figure 4.5: Cellular content and transduction density in cortical cultures. A Shown
are the number of GFAP positive glia cells and neurons per area. B The transduction efficiency
as function of the viral dose in units GC (genome copies), pooled from the measurements above.

z-projection through the entire volume of cells and reveals how the neurons are surrounded by
dense glial fibers. In this field of view, there are 40 NeuN positive cells, corresponding to 890
Neurons/mm2, consistent with the measurements above. Fig. 4.6B shows why it is hard in such
dense cultures to directly count the number of hChR2(H134R)-eYFP positive cells. The dense
expression, resembling a membrane stain, shows ubiquitous expression of hChR2(H134R)-eYFP,
notably excluding the nuclei and regions that might be occupied by glial fibers. Fig. 4.6C shows
an entire z-stack from a cortical culture, the dimensions are 212 µm × 212 µm × 15 µm. From
this stack, we can calculate the z-profile, Fig. 4.6D that demonstrates that neurons grow mostly
on top of a glia layer. There are various classical staining techniques for excitation, as VGlut,
and a zoo of techniques for inhibition as Anti-GAD65, Anti-GAD67, Anti-GABA and Anti-
Gephyrin. Unfortunately, they are not very reliable. For instance, a direct staining revealed only
≈ 5% of neurons with anti-GABA immunoreactivity500, other studies arguably found Glutamate
and GABA release from a single nerve terminal52, or clouds of synapses with challenging cell
assignment214. In this study they found a saturation of antibody labeled terminals after 3-4
weeks of development but a quantitative measurement of excitatory versus inhibitory cells is
generally hard.
It is also possible to stain for synapses. Presynaptic terminals, or synaptic buttons, can be
labeled with antibodies against the synaptic vesicle protein synaptotagmin-1331. Only labeling
for presynapses does not necessarily highlight viable synaptic connections. Postsynaptically, one
can label the scaffold protein PSD-95. In addition to antibodies, this can be done elegantly with
PSD-95:GFP and a lentiviral transmission system331.

Designing the interface of the surrogate cortex

We will use optogenetics and digital phase-only holography to connect a virtual sensory pathway
to a dense network of cortical neurons cultured on a multi-electrode array. Technical descrip-
tion We use a 473 nm diode laser (DL-473, Rapp OptoElectronic) which is coupled via a single
mode fiber (Thorlabs P1-405B-FC-2) to the holographic projection system on an optical table
(see Fig. 4.7). The beam leaving the fiber is collimated (2x PCX, d=6 mm, f=12 mm, ARC
350-700 nm, Thorlabs) and polarization restored with a Glan Laser Prism 10 mm (350-600 nm
AR, NT47-256, Edmund Optics). Only vertically polarized light continues, the rest is sent to
a beam dump. The beam is expanded through a Kepler telescope from two PCX lenses, (PCX
f=20.0 mm LA1859-A, Thorlabs and PCX f=125.0 mm, LA1986-A, Thorlabs). It is then pro-
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Figure 4.6: The cellular composition in confocal microscopy. A Immunostaining for
NeuN and GFAP; this picture contains about 40 NeuN positive nuclei. B YFP fluorescence
reveals the dense expression of the hChR2(H134R)-eYFP construct. From these images, we
cannot just count transduction efficiency. Note the holes, filled by the DAPI positive nuclei,
and empty holes, presumably filled by glia. C An entire z-stack shows a substantial fraction of
dead nuclei from the culture preparation process. D From the data in C we can calculate the
z-profile. It reveals that the primary cultures are very thin, the dashed lines have a distance of
10 µm, and that neurons sit on a glia layer.

94



4.5. Method II: Realistic local circuits

Figure 4.7: Sketch of the holographic setup. The single mode fiber is connected to a DL-473
100 mW Laser from Rapp OptoElectronic. The beam path is set up on an optical table and
projecting to the conjugated plane at the epifluorescence port of a commercial Zeiss Observer.Z1
microscope.

jected with a periscope from two aluminum mirrors onto the spatial light modulator (SLM). Our
SLM is a liquid crystal on silicon spatial light modulator, (OEM SLM X11840, Hamamatsu).
This SLM has a resolution of 600 px × 800 px, a 12.5 µm pixel pitch and a fill factor of 95%.
Following the SLM, a Fourierlens (PCX f=125.0 mm, LA1986-A, Thorlabs) generates an image,
where a focal plane mask blocks the maximum of zeroth order. This aperture is custom made
by evaporation of a d=500 µm aluminum dot, through a bronze mask, onto a glass plate. For
protection it is covered with MgF2. The light then passes through a Lyot aperture, used to trap
scattered light that impairs contrast. This is a technique first used by Bernhard Lyot to study
the solar corona296. Finally, the light is projected (PCX f=40.0 mm, LA1422-A, Thorlabs) to
the conjugated plane of a Zeiss Axio Observer.Z1 inverted microscope.
Generation of Holograms This spatial light modulator is operated by a controller which
allows us to control the phase shift on each pixel via a standard DVI interface. To remove the
maximum of zeroth order, we employ an axial displacement of the hologram by a superimposed
Fresnel lens with a focal length of ≈ 2 mm. Thus, the hologram is spatially separated from
the focal point of the maximum of zeroth order. At the focal point of the maximum of zeroth
order, it is blocked with a mask. The axial displacement leaves the hologram intact, except
for a small loss of contrast and slight distortions. In comparison to other techniques to remove
the maximum of zeroth order as a shift of the holographic pattern in x/y direction and a beam
dump for the maximum, our setup’s advantage is keeping the pattern close to the optic axis, i.e.
where optics and the laser are most homogeneous. To create a hologram, we start with a target
matrix of size 2050 px × 2722 px, corresponding to 2050 µm × 2722 µm. We then multiply the
target intensity distribution with a correction mask, the simplest form of open-loop adaptive
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Figure 4.8: Intensity correction for the holographic system. A The procedure how the
correction mask was calculated. Without correction, the holograms are anisotropic, due to
inhomogeneities along the optic path. We extracted anisotropies from the holograms, inverted
the result and smoothed it with a Gaussian kernel. In all subsequent holograms, we first multiply
the goal with this correction mask. B The averaged hologram intensity in the entire field of view
reveals a relatively flat intensity profile. All images were taken with a Zeiss EC Plan-Neofluar
5x/0.16, that generates an approximate 2 mm × 3 mm field of view.

optics36,530, see Fig. 4.8A, that incorporates anisotropies of our particular experimental setup
and then rescale the pattern in (x,y) coordinates to SLM pixel coordinates (u,v) with an affine
transformation, i.e.

(
u
v

)
=

(
c1 c2 c3
c4 c5 c6

)xy
1

 (4.7)

where we obtained the parameters ci from a fit to O(10− 20) control points. Next we calculate
phase fields for the rescaled patterns with the Gerchberg-Saxon method; N=20 iterations156,
implemented in Matlab. This recursive optimization method is a robust tool to solve the phase-
only holography problem. After calculating the phase field, it is adjusted with a SLM specific
flatnes correction at 470 nm, provided by Hamamatsu. Fig. 4.8B illustrates the overall smooth-
ness of the holographic field of view. The images were taken with fluorescence in a Fluorescein
solution and a Jenoptik ProgRes 1.4 Megapixel CCD (monochrom, 2/3′′, firewire).
Measuring absolute intensities To measure absolute intensities, we used a calibrated pho-
todiode (Hamamatsu S2386-8K), see Fig. 4.9A,C,D. This specific diode yields 274 mA/W at
473 nm illumination. We measure currents with a Keithley 2100 short-circuiting the diode. We
use this method rather than a transimpedance amplifier and clamping the diode to 0 V, because
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Figure 4.9: Measurement of absolute light intensities I. A Currents from the photodiode
are measured with a Keithley 2100. B The spatial distribution of light is measured with a
SIV100B CMOS sensor on a Logitech C210 circuit board, glued to a piece of glass. The sensor
is exposed on the glass side. C The calibration curve of the Hamamatsu S2386-8K photodiode.
D The relevant section of the calibration data with a parabolic fit. At 473 nm illumination, the
photodiode produces 274 mA/W.

this is how the diode was calibrated by Hamamatsu. First, we measure the laser power at maxi-
mum output leaving the FC/PC fiber coupler of the DL-473 laser. This turned out to be 87 mW
(consistent with the measurement from Rapp in the documentation of the DL-473. They mea-
sured 90 mW). Leaving the 2 m long single mode fiber, after calibration, we measured 55 mW
(again consistent with their measurement of 56 mW). We next placed the photodiode above the
objective (either a Zeiss Plan-Apochromat 10x/0.45 M27 or a Zeiss EC Plan-Neofluar 5x/0.16
M27), with either a dichroic longpass at 495 nm or at 593 nm (FF593-Di03-25x36, Semrock)
reflecting the holograms into the optic path of the microscope, and measured the light intensity
leaving the microscope. We obtain the curves shown in Fig. 4.10A,B, illustrating the total
power in the object plane as function of the laser’s power setting. In total, about 2.0 mW make
it through the system, notably ≈ 2% of the light from the DL-473. Finally, we checked how
strongly the light power varies across holograms. Using the DCLP 593 with the 5x objective,
we checked gratings and checkerboards of various spatial extend with N = 10 samples. For the
checkerboards, we observed intensities of 2.08 ± 0.02 mW, and for the gratings, we observed
2.06± 0.06 mW (mean + standard deviation) total intensity across area.
Measuring spatial organization We analyze the spatial organization of the holograms with
the sensor of a commercial webcam, a Logitech C210, glued on a piece of glass with the size of
a MEA, that can be placed in the objectplane and mimics a MEA, see Fig. 4.9B. The sensor
is a SIV100B, a 1/7′′ VGA/ISP CMOS chip with an integrated RGB color filter, 8 bit output, a
pixel size of 3.2 µm×3.2 µm and a resolution of 640× 480 pixels. Notably, every pixel has only
one type of color filter on it, and color information is interpolated from that. Throughout the
measurement, we fixed the exposure time and the gain of the CMOS with v4l2 to the smallest
possible value. In addition, we analyzed only the Red-Channel, as a substantial fraction of the
473 nm light is absorbed by the R–color–filter, preventing an early saturation of the CMOS.
Despite these precautions, the CMOS was already saturated at a power-setting of about 20%.
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Figure 4.10: Measurement of absolute light intensities II. A Measurements of light intensi-
ties leaving the single mode adapter at the DL-473 laser as a function of the laser’s powersetting.
The drawn line is a linear fit. B Same as A but measured above the Axio Observer.Z1 objective,
as function of the powersetting of the laser. The lines are best fits. We selected two dichroics
and two objectives (see text).

To calibrate the CMOS of the Logitech C210, we first replaced the objective of the microscope
with a brass holder. In this holder, about 40 mm below the CMOS, a bright LED was glowing.
We choose the LED, a Luxeon rebel color from Philips Lumileds type “blue”, because it emits
light centered around 470 nm with a spectral half–width of ≈ 20 nm. On the small spatial scale
of the CMOS sensor, 2.6 mm diagonal, the illumination field should be roughly constant. This
way we obtain a flat frame, shown in Fig. 4.11A. We also record a dark frame, Fig. 4.11B,
by switching off the light source. Throughout our measurements, we kept the room lights off.
The corrected image, Fig. 4.11C vs. Fig. 4.11D, is then

I(x, y) =
ICMOS(x, y)− darkframe(x, y)

flatframe(x, y)− darkframe(x, y)
(4.8)

Given the corrected image, the intensity field in proper units is

I(x, y) =
I(x, y)∑
x,y I(x, y)

× P

A
(4.9)

where P is the measured total intensity in mW and A is the area of the CMOS in mm2.
Maximum light intensities in the system After the calibration of the Logitech camera’s
SIV100B, we look at actual light intensities, shown in Fig. 4.12A,B. With the DL-473 delivering
maximum output, we can reach light-intensities up to ≈ 2 mW/mm2 (which is more than
sufficient to drive ChR2282,283). Speckles, and the distortions from the mask to remove the
maximum of zero–order notably distort the image. With the measured intensity distributions,
we can estimate the contrast of the system,

C =
Ibright − Idark
Ibright + Idark

(4.10)

The minimum of the sinusoidal pattern was ≈ 0.1 mW/mm2, the maximum at ≈ 1.6 mW/mm2.
This yields a holographic contrast of C ≈ 90%. Note that in the experiments shown, we addi-
tionally applied a correction mask, shown in Fig. 4.8, to correct anisotropies along the beam

98



4.5. Method II: Realistic local circuits

Figure 4.11: Calibration of the CMOS Sensor. A The flat frame and B the dark frame for
the sensor of the Logitech C210. Both have been averaged from 50 individual measurements.
C The original picture from a holographic grating with wavelength 200 µm. D The intensity-
corrected picture. The scale corresponds to the size of the SIV100B CMOS.

path.
3D organization of holograms With the CMOS Chip in place, we can also measure the
3D distribution of light intensities of the holograms. To do this, we move the objective of the
inverted microscope and keep the sensor fixed on the microscopy table. We take an image every
250 µm in the range of ±3 mm. We monitor the position of the objective with the build-in tool
of the microscope. The result is shown in Fig. 4.13, to the left, Fig. 4.13A, as intensity plot,
to the right, Fig. 4.13B, with five example planes. What we can see is that indeed ≈ 1.5 mm
after the hologram is in focus, we find the image of the mask. Also, the light intensities are
highest in the focal plane, visible on the left in the central region (arrow).
Triggering. The holographic frame transitions were recorded from a screen receiving the same
signal as the SLM after a DVI splitter. We measured the screen signal with a OPT101 photodiode
and transimpedance amplifier (Texas Instruments) and recorded it with the electrophysiology
setup. We made sure that this signal is within 2 ms synchronous to the SLM, see Fig. 4.14A.
Fig. 4.14B shows the signal on the screen in comparison to a recording from blue light leaving
the objective. We first note that even at 30 frames per second, individual frames can be lost.
This is a problem for reverse correlation with uncorrelated stimuli. Therefore, we operated the
system at 10 frames per second, at which the reliability is higher than 1 missed frame in 10.000
frames. For this configuration we also plotted the automatically detected frame transitions.
Optical recordings For imaging, we used a microscope camera (ProgRes MF 1.4 Megapixel
CCD monochrom, 2/3′′, firewire, Jenoptik, Germany) connected to the same PC that provided
the phase field. It sends trigger pulses to the MEA amplifier, that we recorded digitally. For
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Figure 4.12: Patterns measured with the CMOS sensor. A Shown are two example
patterns, a checkerboard patter with box size 100 µm, and a grating with wavelength 200 µm
at maximum laser power. B The intensity along the blue line together with the sinusoid target
pattern. Note that these holograms were generated before application of the correction mask,
Fig. 4.8.

recordings of calcium dynamics, we use a red-shifted calcium indicator, jRCaMP1a, to com-
bine the optical excitation with calcium imaging103 and use an all-optical interface129,369. A
genetically encoded calcium indicator has the advantage of chronic imaging with low cyto-
toxicity in comparison with organic calcium dyes. To specifically target neurons, we express
jRCaMP1a under the control of a Synapsin promoter. ChR2 produces no photocurrent between
550 nm and 650 nm371, therefore we can excite jRCaMP1a in this window, while stimulating
the ChR2(H134R) channel at 473 nm without cross-talk, see Fig. 4.15A. Please note that the
ChR2(H134R) variant is slightly blue shifted in comparison to wildtype ChR2 with a excitation
maximum around 450 nm283, and jRCaMP1a is even more red shifted than typical organic dyes,
as Rhod-2. For comparison, we include the Rhod-2 excitation and emission spectra in the figure,
too371. Another notable dye that received some attention recently for deep optical imaging is
Cal-590472. The excitation filter for the jRCaMP1a fluorescence is a 572/28 bandpass (FF01-
572/28-25, Semrock), operated after a Zeiss HXP-120C metal halide light source. For calcium
fluorescence we targeted light intensities well below 0.5 mW/mm2, to avoid excessive bleach-
ing371. Using a calibrated photodiode (Hamamatsu S2386-8K), we measured light intensities at
our setup to 0.10± 0.01 mW/mm2. The excitation light is combined with the holographic light
through a 495 nm dichroic longpass (FF495-Di03-25x36, Semrock). The beam then enters the
microscope through the epifluorescence port. To record fluorescence, we project the beam with
a 593 nm dichroic longpass (FF593-Di03-25x36, Semrock) through the objective (a Zeiss Plan-
Apochromat 10x/0.45 M27 or a Zeiss EC Plan-Neofluar 5x/0.16 M27), and collect fluorescence
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Figure 4.13: The 3D distribution of intensities. A A density plot of light intensities. The
arrow indicates the highest intensities, reached in the focal plane. B A few selected example
planes. Note the shadow of the beam block that is used to remove the maximum of 0th order,
in focus about 1.5 mm below the focal plane of the holograms.

Figure 4.14: Precision of the trigger system. A We first recorded whether the signal after
the beam splitter to a second screen and the holographic projections are in synchrony with two
photodiodes. B The result of A, both signals are in synch to < 2 ms. We typically used a
framerate of 10 Hz, the inset shows the identified frame transitions.
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Figure 4.15: Spectral separation of ChR2 and jRCaMP1a. A Shown is the excitation
spectrum of ChR2(H134R) together with the excitation (dashed lines) and emission (drawn lines)
spectra of the genetically encoded calcium indicator jRCaMP1a and the organic calcium dye
Rhod-2. Indicated are our filter positions, optimized for jRCaMP1a. Note the shoulder of the
calcium indicators towards smaller wavelength, and the relative shift towards larger wavelengths
of the jRCaMP1a excitation spectrum in comparison to Rhod-2. B The entire assembly with
all trigger signals. PC indicates the electrophysiology Computer; we record the trigger signals
together with the electrode raw data to have both in sync.

after filtering with a 641/75 emission filter (# 67036, Edmund Optics) with the microscope’s
camera. The camera’s trigger pulses are used to open and close the shutter of the metal halide
lamp, to avoid excessive photobleaching. The trigger was set to level-up during exposure, and
is recorded together with the holography trigger with the MEA amplifier, see Fig. 4.15B. Note
that such light sources, despite being very bright, are notoriously unreliably and a major source
of noise in fluorescence recordings496.

Recordings

The electrophysiological activity of individual cells is generally observed using the patch clamp
technique. This technique and related methods yield very high signal-to-noise ratios and are
ideally suited to study the activity of ion channels. However, these techniques are limited with
regard to long-term measurements and the number of recording units in a single experiment.
Extracellular electrophysiological methods, on the other hand, yield weaker signals but allow
long-term and multisite recordings of cellular networks due to reduced interference with cell via-
bility. A well-established method for extracellular measurements relies on microelectrode arrays
(MEAs). MEAs are devices in which a thin layer of a conducting material in the form of an elec-
trode array is embedded onto the surface of a glass substrate, allowing for non-invasive parallel
recording (and stimulation) of electrical activity from a cell culture in a wide range of spatial
and temporal scales. In our study, we will not perform any stimulation through electrodes.
In order to study the electrophysiological properties of dissociated neurons, a close contact be-
tween the cells and the recording electrodes has to be established. We use a homogeneous coating
of the MEA surface with Poly-D-Lysine. An electrode immersed into an aqueous solution is an
interface, which separates electron charge carriers from ionic charge carriers. Given that applied
voltages are small enough to avoid electrochemical processes at the electrode, the coupling re-
sembles a capacitive coupling426 and one can measure action potentials from electrically active
cells. The electrode arrays are clamped into place by spring loaded contacts which connect the
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electrode leads to the amplifier. Spring loaded gold contacts are versatile and robust even at
extreme environmental conditions176.
Here, recordings were made on a 60 channel MEA amplifier (MEA-1060 Inv, Multichannel Sys-
tems, Reutlingen, Germany). Data from MEAs were registered at 25 kHz using a 64-channel
A/D converter and MC Rack software (Multichannel Systems, Reutlingen, Germany). After
high pass filtering (Butterworth second order, 100 Hz) events were detected in a cutout recorded
2 ms before and 4 ms after crossing a threshold of -5σ of the filtered electrode signal277, see
Fig. 4.16. The threshold was evaluated for every channel individually. The identified N events
were then sorted to remove false positives. This was done as follows: Every event is a point in
a 150 dimensional voltage space, corresponding to the temporal length of the waveform. All N
events are a cloud of points in this 150 dimensional space. To reduce the dimensionality of this
cloud, we first perform a principal component analysis and only keep the first two coefficients.
Subsequently we identify clusters using the mean-shift algorithm at a quartile of 0.390. For
the identified clusters, typically one or two, we calculate averaged waveforms. If the averaged
waveform within a cluster has a standard deviation larger than 5 µV and a maximum larger
than +4 µV, we accept this cluster as action potentials; if not, we label the cluster as noise
cluster. Please note that we only sort related to the rough shape of the waveform. The unit
activity might still be taken as multiunit activity.
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Figure 4.16: Extraction of spike times from the raw data. A The raw data is voltages,
amplified from each of the 59 electrodes and sampled at 25 kHz. B The data is highpass filtered at
100 Hz, and thresholded at 5σ. From the threshold-crossings, we remove false positives to obtain
spike times. C Sketch of the sorting scheme. To remove false positives, we take all individual
threshold crossings (average shown left), cut a window of 2 ms before and 4 ms after the spike,
and calculate the principle components of the cloud of waveforms in their 150 dimensional space.
The first two principle components reveal a noise and a signal cluster, identified with mean-shift
clustering at a quantile of 0.3 (middle). After averaging we obtain spike, and noise waveform
(right). D The automatic analysis, done for the culture in Fig. 6.3A. Two electrodes required
the removal of false positives.
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Chapter 5

A synthetic orientation selective hybrid
neural network

“Our brains are plugged, so to speak, into the external world, by means of sensory
receptors – the eyes, ears, nose, skin, and so on. However, these [machines] have
their own ’external world’, inside. [They] have receptor organs that function
analogously to our sight, smell, hearing, touch, and so on. And the wires from these
receptors are connected like nerves, but not to the external world, as our nerves are;
they are connected to the drum there in the corner.”

Prof. Corcoran in274.

5.1 Content

In this chapter we construct the in silico visual pathway and connect it to the surrogate cortex.
We use a generic scaling law for the layout of the early visual system to transform the visual
pathway of a cat to that of a mouse. These different pathway connectomes can be connected to
the same target circuit of living neurons, providing for an internal control.
We find that shrinking the visual system leads to a loss of orientation selectivity in the affer-
ent input. Surprisingly, we discovered that a number of neurons exhibited orientation biased
responses in the limit of homogeneous and unselective input and these orientation biased re-
sponses are generated by the recurrent network alone. These cells are simple cells with a small
number of complex and direction tuned cells. We also find cells with receptive fields composed
of excitatory and inhibitory subregions, and these receptive fields have a typical spatial scale
of ≈ 1 mm, consistent with the generic scaling laws which we extracted from already available
data. Consistent with simple cells, the tuning can be predicted from the receptive field. The
spatial arrangement of spontaneously tuned cells resembles a sparse salt and pepper pattern.
Finally, we show indications of contrast invariance.
This diversity of responses suggests that even in this most generic case, a recurrent circuit is
sufficient to spontaneously generate a basic level of orientation selectivity. This phenomenon,
already present in recurrent networks as disorganized as a primary culture, might provide a
robust and generic scaffold for input classification, potentially the first workpiece refined by
the selective forces of natural selection to form the basis of functional organization of neuronal
circuits across many species of mammals.
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5.2 Introduction

The visual system operates close to the limits of what is physically possible32 and it shows
evidence for convergent evolution of optical elements261,351 and the neuronal processing machin-
ery219,242. A well established approach to better understand the selective forces that govern
this evolution is by direct comparison of phylogenetically diverse model species180,242,245, but
this approach is fundamentally limited by the choice of model species that might have adapted
a complex visual system to their specific environmental needs428. A more general approach
for understanding visual system design would be based on thorough testing of the relationship
between visual pathway structure and function. For genes and proteins engineering approaches
enable biological researchers to modify their biological structure and assess the resulting loss
and gain of function64,128. Here, we pursue this idea and design a neuronal sensory system
re-engineering the layout of the mammalian early visual pathway with a hybrid of biological and
technological elements.
We focus on one fundamental and enigmatic large-scale neuronal circuit motive, common to the
early visual and many other sensory systems: a recurrently connected layer of neurons process-
ing information arriving through a feed-forward neuronal pathway, see Fig. 5.1. For this circuit
motive, it is a long-standing and highly controversial question what feed-forward inputs from
the sensory pathway and recurrent connections within the target circuit specifically contribute
to cortical information processing. A key component of these computations, that has been ex-
tensively described, are feature selective responses. For the visual cortex and in the words of
David Hubel, they “were the first indication from a single-cell recording that the cortex might
be doing something interesting, something that transcended what the geniculate could do.”198.
In particular orientation selectivity, i.e. the selective response to edge-like stimuli of a particular
orientation, is a property shared by many mammalian species.
In carnivores, primates and their close relatives, orientation selectivity is arranged in patterns
of iso-orientation domains that exhibit a continuous, roughly repetitive arrangement of pre-
ferred orientations41,46,50,76,166. In the primary visual cortex of rodents, electrode penetration
experiments since the 1970s suggested a lack of orderly layouts of orientation domains159,327,339.
More advanced imaging techniques112,458 revealed a true dichotomy in the layouts of visual
cortical architecture between orientation domains and a salt and pepper pattern359,360. The
nature of this transition is not understood and might be related to constraints imposed by a
small brain239,242,245. To better understand the connection between visual pathway structure
and function, specifically the constraints invoked by finite brain size, we first re-engineered the
early visual system of the cat, Fig. 5.1A, and then study how miniaturizing this circuit to
the scale of a small animal, Fig. 5.1B, like a mouse or a eutherian common ancestor, would
affect its functionality. We emulate this evolutionary transition by providing the same piece of
tissue with input following the same rules. As neither the miniaturization nor experiments with
the common ancestor can be done in a living animal, we use a hybrid system of biological and
electronic components, Fig. 5.1C. We simulate the visual pathway by generating visual stimuli
and then processing these patterns digitally, building on earlier work21,45,299,428,445,479,529. The
simulated LGN relay cells projected to a dense recurrent network of living cortical neurons in
vitro, a surrogate cortex. The recurrent network of cortical neurons is a primary cell culture
from embryonic rats, expressing the light sensitive ion channel ChR2(H134R) after viral trans-
duction282,283, so that projections can be made optically using high spatial resolution phase-only
digital holography161,295,369,401, connecting the electronic and the biological components.
We established a system with arguably the most classical sensory cortical connectivity motive,
the Hubel&Wiesel connectome194 for the generation of orientation selectivity in the primary
visual cortex of cat, one of the model animals of visual neuroscience. Taking this connectivity
motive seriously, we then miniaturize the pathway, shrinking eye size, cranium and the cortical
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Figure 5.1: Construction of a hybrid neuronal circuit. A Visual system of a cat with
high visual acuity. B Visual system of a mouse with poor sight and a very small visual cortex.
C Schematic structure of a neuronal sensory system and how we re-engineer this layout with
a hybrid system of biological and artificial elements such that the pathway connectome can
be experimentally controlled. D In the cortical miniaturization scenario, the total number of
hypercolumns is independent of cortex size; there exist many pinwheels (PW) in the field of
view (FOV). In the visual coarsening scenario the column spacing is constant while the visual
cortex shrinks. This leads to orientation scotomas at specific locations in the field of view.

target area, but preserving the total number of hypercolumns and therefore arguably the number
of processing units to process natural scenes, see Fig. 5.1D. We refer to these changes as the
cortical miniaturization scenario. The visual coarsening scenario in which the column scaling
is conserved while the cranium shrinks would lead to orientation scotomas at some locations in
the field of view. In the limit of a small brain in the visual coarsening scenario, the synthetic
visual system resembles a mouse visual pathway, or the layout of late cretaceous eutherians,
like Asioryctes, closely related to the eutherian common ancestor. We found that shrinking the
visual system leads to a massive loss of visual acuity, to a loss of the orientation specificity of
the afferent connectome and to a larger point spread function. Surprisingly, we also found that
a number of neurons exhibited orientation biased responses in the limit of homogeneous and
unselective input, that are generated by the recurrent network alone. We find that these cells
are mostly simple cells. In addition, we also find a small number of complex and direction tuned
cells while the majority of cells responds with irregular firing upon stimulation. This diversity
of responses suggests that even in this most generic case, a recurrent circuit is sufficient to
spontaneously generate a basic level of orientation selectivity.
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5. A synthetic orientation selective hybrid neural network

5.3 Results

The visual pathway

The visual world is sampled by various types of ganglion cells that form mosaics on the retina.
β-RGCs/X-cells in cats and midget cells in the monkey are thought to be the main vehicle of
acute vision due to their high density and the small dendritic field, dominating central V1 phys-
iology140,479. X-cells and midget cells are characterized by a typically circular receptive field
with a simple center (ON or OFF), linear summation of stimuli presented within the center and
a more or less sustained responses to light378. In cats, they account for 50% and in primates
75% of all retinal ganglion cells203,5051. To implement the sensory pathway from the retina to
the visual cortex in the cat, we choose ≈ 5 deg of eccentricity and focus on the β-RGCs/X-cell
pathway, as other theoretical model studies479,529. At this position, 1 mm2

r corresponds to 5 deg
× 5 deg of visual field37 and this region is covered by 1000 mm−2r ON and OFF X-cells378.
In Fig. 5.2 we illustrate the pathway. The grating shown in Fig. 5.2A has a spatial frequency
of 0.7 deg−1, a good stimulus across all eccentricities to drive visual cortical neurons in the
cat212,336. We model X-cell receptive fields with a difference of Gaussians model. This is a com-
mon model for the receptive field of ganglion cells107,130,410,529. Linsenmeier and colleagues284

quantitatively tested the accuracy of the difference of Gaussians model in fitting spatial tuning
data and concluded that it is “difficult to imagine any model fitting the X-cell data better”284,
even though more recent work showed that on a fine scale, receptive fields are neither as regu-
lar, nor as linear155. The difference of Gaussian model has been used for a series of modeling
studies21,299,447,479,529, and became a paradigms of a receptive field. It reads

Rret/LGN(y, t) =

[
R0 +A(C)

∫
d2x

∫
dτ (RFc(y − x, τ)− RFs(y − x, τ)) · I(x, t− τ)

]
+

(5.1)

where R is an estimate for the firing rate of a retinal ganglion cell, or the corresponding LGN
relay cell. y is position in space, t is time, I is the stimulus, A(C) is the contrast response
function with contrast C and R0 is the background firing rate. [. . . ]+ is a rectifier and RFc/s is
the center/surround receptive field,

RFc/s(s, τ) = Kc/s exp

(
− s2

2σ2c/s

)
(5.2)

with spatial scale σ, and temporal scale τ . These parameters generally depend on the eccen-
tricity. For 5 deg eccentricity, we choose a center size of 0.25 deg, and a surround size of 1
deg. The coefficients at this eccentricity are Kc = 17/σ2c and Ks = 16/σ2s , similar to the values
in21,479,529 and taken from170,284,378. Temporal frequency preference depends only weakly on
eccentricity402,477,529 and we will neglect this aspect.
These receptive fields cover the retina, but to this date, no retinal mosaic with the spatial extend
required for our model has been sampled; therefore we approximate the ganglion cell distribu-
tion using a pairwise interacting point process (PIPP)125,188. The PIPP is a method for the
generation of a spatial distribution of points specifying only pairwise interaction between indi-
vidual points. It has been shown to accurately reproduce the spatial statistics of experimentally
measured RGC mosaics125,188,427. The model mosaics are shown in Fig. 5.2B for ON and OFF

1One can identify cells with similar functional properties in the mouse retina417,457, however little is known
about them420. The mouse optic nerve contains only about 30% of the fibers of a cat optic nerve187, notably
only slightly less than the ferret181. The remarkable diversity of RGCs in mouse18 and uncommon distribution
patterns of particular RGCs highlight the possibility that mice sample the visual world differently than other
mammals42.
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Figure 5.2: The computational model used for the hybrid neuronal circuit. A The
typical stimulus for a visual neuroscience experiment: a grating of spatial frequency 0.7 cyc/deg.
B It is processed by the ON and the OFF center pathways, that stay separate through the
LGN191 and terminate in layer IV of the visual cortex. At 5 deg eccentricity, there are about
1000 mm−2 RGCs, leading to a dense representation. C A specific connectome of the thalamic
afferents into V1 neurons makes the input orientation selective. Shown here is a simple cell
receptive field, generated from fibers with Gaussian receptive fields. D A typical cortical cell
receptive field with a tuning width of ≈ 35 deg136,227. E In cat (top) the orientation of the
filters follows the layout of orientation domains; effectively modulating the gratings in A. In
mice, the layout of columns needs to be compressed into a small brain, effectively generating
moving gratings as an input (bottom).
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5. A synthetic orientation selective hybrid neural network

ε [deg] kpref [cyc/deg] M [mmc/deg] kpref [cyc/mmc] λ [mmc]

0 - 5 1.3 1.2 1.1 0.9
5 - 10 0.6 0.5 1.2 0.8
23 [m623] 0.7 0.4 1.8 0.6

Table 5.1: The preferred spatial frequency kpref and the cortical magnification M depend on the
eccentricity. Here, we calculate the scale of a corresponding grating in cortical coordinates.

pathway. The contrast response function of cat geniculate relay neurons extends over the entire
contrast range and there are substantial shifts in contrast-responses4,361 The contrast response
function (CRF) A(C) of the cat LGN (building upon earlier work by8) proposed by Ahmed et
al.4 is

A(C) = K · Cp

Cp50 + Cp
, (5.3)

with parameters slightly different for ON and OFF pathway479. C is the contrast between 0 and
1, K can reach rates up to 100 Hz. The exponent p ≈ 1.2 and C50 = 0.3±0.1 leading to a contin-
uous increase of firing with contrast4,21,430,479, as shown is many experiments113,276,534. Due to
the monotonic dependency in contrast, some studies do not incorporate this aspect113,276,529,534.
The LGN firing rate increase from typically 10/sec spontaneous discharge up to typically 50/sec-
100/sec at 100% contrast5,21,361,416, and firing rates for some cells can reach as much as 150 Hz48.
Depending on the choice of these numbers, there are two qualitatively different regimes. At low
contrast, the modulation of the firing rates does not exceed the DC component, and the mean
input into the cortex does not increase with contrast. Once the stimulus-evoked modulation
is larger than the background firing rate, the nonlinearity becomes important and the input
current scales with contrast. This transition occurs at about 5% contrast21,479,480.
For our model, we assume that each X-LGN cell receives input from a single X-RGC and that
there is no active processing. Therefore, we use the retinal receptive field properties together
with the LGN CRF. The LGN relay cells, in turn, project to the visual cortex where their axons
terminate in single irregular clumps147,148,204 of size 0.6 mm2 to 0.9 mm2 . We assume circular
patches of radius r = 0.48 mm, corresponding to an area of A = 0.72 mm2. With random
projections of the thalamic afferents, this would produce a Gaussian smoothing with a window
of that size, 2σt = 0.48 mm, so that

RIV(x, t) =
N∑
i

exp

(
−(x− yi)

2

2σ2t

)
RLGN(yi, t) (5.4)

where x is the layer IV cell’s position in space and yi is the LGN fiber’s position, Fig. 5.2B.
In principle, this input is scaled with the local cortical magnification9,304,484, Fig. 5.2B (right).
Cortical magnification depends on eccentricity, but across all eccentricities, a good stimulus for
the cat is about 0.7 deg−1 and consistent for electrical recordings of individual units at small
eccentricities336,520 with optical imaging experiments212. To which scales does such a grating,
shown in Fig. 5.2A, project? Tab. 5.1 summarizes the relevant cortical scales as a function
of eccentricity, specifically considering variations in preferred spatial frequency and cortical
magnification.

How specific are these considerations to the cat? In mouse, another common animal for the
study of visual circuits,349 receptive fields are big, the cortical magnification in units deg/mmc is
large, and to drive the system, one needs gratings with a substantially smaller spatial frequency.
The inputs are projected to a very small V1, ≈ 4 mm2

c (as opposed to the ≈ 380 mm2
c of
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the cat), covering about 5000 deg2153. A grating that drives the mouse visual system well
has a spatial frequency of 0.04 deg−1349. The cortical magnification is rather uniform and
about 32 deg/mmc

153. Thus, such a grating would elicit a wave of λ = 0.8 mmc. Across the
cells samples by Neill and Stryker, preferred spatial frequencies can be found in the range of
0.02 deg−1 and 0.08 deg−1, corresponding to cortical scales of λ = 0.4 mmc . . . 1.6 mmc. The
effective stimuli on a cortical scale for both cat and mouse are remarkably similar.
Next, we have to consider that convergent input from the thalamus is more complex than just
a single center-surround receptive field. Layer IV cells receive input from N = O(10) Thalamic
inputs (see chapter 2), constructing orientation tuned receptive fields. With specific connections,

RIV(x, t) =
N∑
i

wiRLGN(yi, t) (5.5)

where the wi are the specific weights of thalamic fibers, converging on a neuron in layer IV. The
contribution of this convergent input to tuning is apparent in several experimental studies. Tun-
ing in cortical neurons is robust against inactivation of the cortical circuits by cooling136. In this
study by David Ferster and others, the cortex was deactivated by cooling and using patch clamp
recordings the sub-threshold responses of layer IV simple cells were tested with oriented drifting
gratings. They showed that the orientation tuning curves of the sub-threshold response under
cooled and normal conditions have the same width. The tuning curves differed in amplitude,
because the cells responded much less in a cooled cortex. Some researchers commented that
considering the technical challenges of cooling, Fersters interpretation should be treated with
caution158, but the experimental evidence of convergent tuning grew considerably. Silencing the
cortex of ferrets with Muscimol or Kainic acid77 and optogenetic silencing of cortical circuits in
mice279,399 does not impair orientation selectivity. These experiments are consistent with the
first model of orientation selective responses: the Hubel&Wiesel connectome for the generation
of orientation selectivity in the primary visual cortex by the convergence of feed-forward inputs
into layer IV194. To effectively model this specific component of converging thalamic inputs, we
use Gabor receptive fields. These orientation selective receptive fields can be constructed from
simple Gaussian receptive fields, see Fig. 6.3C. For the example in Fig. 6.3C we constructed
an error function,

E =

∫
d2x

(∑
i

jiwi exp

(
−(x− xi)

2

2σ2r

)
+ exp

(
− x2

2σ2G

)
cos (kgx + φ)

)2

(5.6)

=
∑
k,l

wkwlAkl +
∑
k

wkBk + C (5.7)

where ji is the sign, corresponding to ON and OFF receptive field respectively, and wi are
positive synaptic weights and A,B are used as abbreviations. We find these weights solving the
constrained optimization problem

wmin = argmin

∑
i,j

wiwjAij +
∑
i

wiBi

 with wi ≥ 0. (5.8)

The quadratic problem can be solved analytically, but the nonholonomic constraint w ≥ 0 makes
the problem only numerically tractable. Thus, we solve it by simulated annealing in matlab.
In addition, we set the phase to zero, φ = 0, so that the receptive field is anchored by the
OFF pathway225,272,393, preserving perfect OFF retinotopy of the center. To simplify our model
further, we will only consider perfect Gabor receptive field and we assume the input through

111



5. A synthetic orientation selective hybrid neural network

the thalamus to be simple moving gratings,

L(x, t) = I0(1 + C cos(ksx− ωt)), (5.9)

where C is the contrast, I0 is the mean luminance and

ks =
2π

λ

(
cos(θ)
sin(θ)

)
, x =

(
x
y

)
. (5.10)

where λ is a spatial scale, and θ the direction in which the gratings move. Most of the principal
cells in layer IV have roughly Gabor like, elongated receptive fields227, that can be constructed
by the sum in Eq. (5.5), realizing the Hubel&Wiesel connectome479,529

φ(x, y) =
1

2πβ1β2λ2
exp

(
− x2

2(β1λ)2
− y2

2(β2λ)2

)
× cos

(
2π

αλ
x+ ψ

)
(5.11)

with numerical constants α, β1, β2. Locally, these filters are rotated

φy(x) = φ(Ωϑ(y)(y − x)). (5.12)

where Ω is the two dimensional rotation matrix

Ωϑ =

(
cos(ϑ) − sin(ϑ)
sin(ϑ) cos(ϑ)

)
. (5.13)

Then we can estimate the effective input currents into the neurons, here for ψ = 0

I(y) =

∫
d2xφy(x)× L(x, t) (5.14)

=
1

2

(
e

8π2β21
α

cos(ϑ(y)) + 1

)
e−

2π2

α2
(α2β2

2 sin2(ϑ(y))+(αβ1 cos(ϑ(y))+β1)2) × Ls + c. (5.15)

where Ls is the stimulus without the DC component and c is a constant. This result is well
approximated by a von-Mises function modulating the moving grating, see Fig. 5.2D.

I(y) ≈ exp (κ(cos(2ϑ(y))− 1))× Ls (5.16)

κ =
α

π2
(
β21tanh

(
4π2β2

1
α

)
− α(β1 − β2)(β1 + β2)

) (5.17)

For the case of non-vanishing ψ, the response is phase shifted by this value. For our model
of the visual pathway, we use receptive field parameters from the literature227, i.e. moving
gratings matched to the Gabor preferred spatial frequency α = 1 at a stimulus wavelength of
λ = 1.25 deg, the typical preferred spatial frequency at 5 deg eccentricity. We chose an elonga-
tion of the Gaussians of β1 = 0.189 and β2 = 0.325, so that the 5% envelop has a width of 2.0
deg and 1.2 deg respectively with phase ψ = 0479. With these values κ = 1.0, and we obtain a
Tuning curve with 35 deg HWHM (half-width-half-maximum) and 1− CV ≈ 0.45, close to the
experimental values136.
Looking at the membrane fluctuations of a simple cell in V1, the membrane potential approxi-
mates a full sine wave with dominant contribution of the frequency of the stimulating grating,
with clear presence of the negative-going part. Kevan Martin and colleagues4 speculate that this
might be generated via a push-pull interaction of excitation and inhibition67,138,139,185,191,370,440,503.
They also found that the membrane potential of a cortical cell only weakly adapts to contrast,
resembling the pattern for the LGN relay cells’ spike discharge, but the entire contrast range is
compressed into membrane fluctuations in the range of 5-10 mV and reflects the LGN contrast
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response function. They conclude that the cortical neurons use cortical circuits to amplify the
small input from the thalamus4. The spatial receptive field is a very good predictor of the pre-
ferred orientation measured with moving gratings, but typically underestimates the orientation
selectivity335.
Looking at these differences between a mouse and a cat visual system, can we scale one into the
other? The cat cortex covers 8000 deg2 of visual space484. The spatial scale of a cat hypercol-
umn is Λ ≈ 1.0 mm236,245, so that the visual world is processed with ≈ 18 deg2/Λ2. Assuming
the mouse would have the same cortical processing requirements to process its visual space, its
cortex should contain about 280Λ2, corresponding to Λ = 120 µmc, see Fig. 5.2E. We call this
the cortical miniaturization scenario, see Fig. 5.1D.

The surrogate cortex

Next, we designed a photostimulation setup to connect electronic and biological components,
based on phase-only digital holography161,295,369,401, see Fig. 5.3A and also chapter 4. The
target of thalamic projections in the mammalian brain is the primary visual cortex. Thalamic
inputs in vivo are excitatory10,329 and target stellate neurons in layer IV157,268. We therefore use
optogenetics54,110,135,343 to express Channelrhodopsin 2, an excitatory light sensitive ion channel2

under the control of a neuron specific promoter in a recurrent network of living cortical neurons.
A primary cell culture of neurons can resemble in vivo neural tissue in structural features202,
activity88,366, development275 and composition26. We can achieved cellular content and the cell
density corresponding to layer IV in area 17 of the cat, the primary target for projections from the
LGN. In the lower part of layer IV, the average cell density of binocular neurons, is 56000 mm−3

in a layer about 250 µm thick29,150. 75% of these cells are excitatory150,473,523. Primary cultures
from dissociated rat E18 cortical neurons form circuits spontaneously. In cortical cultures,
periodic bursts of action potentials emerged after typically 10 days in vitro in 2D79,497,498 and
also 3D cultures102,146 and increase in complexity with time308,498. Notably these bursts resemble
to some extent the spontaneous activity in the visual cortex prior to eye opening82,175,177,409. We
designed the surrogate cortex to a cell density of ≈ 60, 000 mm−3 with 75% excitatory cells (see
Chapter 10). The surrogate cortex expresses the light sensitive ion channel ChR2(H134R)283 and
the red-shifted calcium indicator jRCaMP1a103, to combine the optical excitation with calcium
imaging and use an all-optical interface129, see Fig. 5.3B. Fig. 5.3C shows that the culture
contains excitatory cells and inhibitory cells, expresses light sensitive ion channels and calcium
dependent fluorescent indicators, and contains neurons suspended in a matrix of glial filaments.
The light patterns are generated with the in silico model of the visual pathway, see Fig. 5.3D,
and there exists a quantitative relationship between thalamic inputs at different contrast levels
in the model visual pathway and light intensities in the setup. As discussed above, starting from
contrast values of≈ 5%, the mean LGN input increases, attributable to the rectification (and also
the amplitude of the first harmonic479). Kevan Martin et al.4 suggest for the geniculo-cortical
synaptic efficacy ≈ 500 pA somatic current at 100 events/s synaptic excitation. Assuming 5-10
active fibers provide input into a layer IV simple cell, each would fire with about 10 Hz - 20 Hz
at contrast values of ≈ 10% − 20%361 to generate this input current. Wang and colleagues502

studied how the light intensity changes the photocurrent to neurons in brain slices of transgenic
mice and found that it is well approximated by a Hill equation,

I = Imax
ln

kn + ln
(5.18)

where currents are measured in pA, l is the luminance in mW/mm2. For the peak response of
the photocurrent, they measured Imax = 642±38 pA, n = 0.76±0.1 and the half-maximal light
sensitivity is k = 0.84 ± 0.2 mW/mm2. These numbers are comparable to other studies which
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Figure 5.3: The experimental setup. A The holographic setup, integrated into a commercial
inverted microscope. B The excitation spectrum of the light sensitive ion channel, together with
the fluorescent probe jRCaMP1a. C The surrogate cortex consists of excitatory and inhibitory
cells, expresses ChR2 and jRCaMP1a, and is composed of neurons and glial cells (Images are
contrast adjusted). Note the typical donut-shape of the jRCaMP1a/calcium signal localized to
the cytoplasm surrounding a dark nucleus. D An example for a holographic stimulus, measured
with Fluorescein in water: Top three are three examples for single frames generated with mov-
ing horizontal gratings. Below: the averaged frame, reflecting domains that prefer horizontal
orientations. Below that: the preferred orientations of the input for all conditions.
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reported maximum peak currents of Imax ≈ 700 pA and EC50 of ≈ 1 mW/mm2, for instance
in250,283,524. With our setup, we can reach light intensities of ≈ 2 mW/mm2. This corresponds
to 400 pA − 500 pA as peak current. The sustained component of the ChR2(H134R) light
response is about 40% of the transient peak283, such that the sustained induced current with
our setup can reach 160 pA − 200 pA, corresponding to ≈ 10% contrast. Note that increasing
the contrast is equivalent to increasing the light intensity, because beyond ≈ 5% contrast, both
the DC and F1 component of LGN inputs increase proportionally479.

Imposed tuning in synthetic circuits

We first realized the Hubel&Wiesel connectome194 for the generation of orientation selectivity.
Specifically we used moving gratings, filtered with Gabor filters, see Fig. 5.4A, whose preferred
orientation changed in space, following the layout of an essentially complex planform, a solution
of the long-range interaction model525. Fig. 5.4B-F show the responses of several units in
the same culture as polar plots on top of the imposed layout of domains and a YFP fluores-
cence image of the electrode array. We used three different domain sizes, following the cortical
miniaturization scenario. The scales are 0.96 mm/Λ, 0.48 mm/Λ, 0.24 mm/Λ, 0.12 mm/Λ and
0.06 mm/Λ. For most of the cases, the preferred orientation is consistent with the stimulation.
Fig. 5.4G shows an example tuning curves together with its 95% bootstrapped consistency
intervals. Note that this specific neuron retains its orientation selectivity down to the smallest
domain size studied here. To study the fraction of orientation biased cells, we next calculate a
measure for orientation selectivity, derived from the circular variance (CV),

1− CV =

∣∣∫ dθ r(θ)e2iθ
∣∣∫

dθ r(θ)
(5.19)

for the observed tuning curve r(θ). The results are summarized in Fig. 5.5. Fig. 5.5A shows
all units collected from 15 experiments together with the shuffled control. For the shuffled
controls, we use the observed spike time, and randomize the grating assingment. The shuffled
controls allow to identify a significance threshold above which we consider units significantly
tuned. This is illustrated in Fig. 5.5B for a specific tuning curve. For a significance level of 5%,
the fraction of tuned cells are shown in Fig. 5.5C. We find that the fraction of tuned cells as
well as the tuning strength decreases with decreasing column size, but even though the overall
tuning strength decreases substantially, the overall fraction of tuned cells changes little. Note
that the selectivity of the input is 1− CV ≈ 0.5, and only few cells reach this tuning strength.
A cell at position y of size A receives the averaged input across its soma and dendrite,

I(y) =
1

A

∫
A

dp

∫
d2xφy+p(x)× L(x, t) (5.20)

=

∫
d2x 〈φy(x)〉A × L(x, t) (5.21)

where φy+p(x) is the Gabor receptive field at position y + p and 〈φy(x)〉A is the area average.
In the limit of large domains,

〈φy(x)〉A ≈ φy(x) (5.22)

because the gabor filters within area A are all identical. In the limit of small domains,

〈φy(x)〉A ≈ exp

(
−(x− y)2

2σ2

)
(5.23)
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Figure 5.4: Orientation selective inputs generate tuned responses. A We first provide
neurons with orientation tuned input, duplicating the specificity of the thalamocortical connec-
tome. B-F Providing the cells with a layout of orientation domains, we find orientation selective
responses on a number of electrodes. Remarkably, with smaller domains, there is still a surpris-
ing degree of orientation bias. G Example tuning curves taken from the unit in the blue box.
Note the substantial tuning in the limit of almost fully randomized inputs (far right). This cell
is spontaneously tuned and in parts of the experiment driven against its innate tuning. Errors
are 95% bootstrapped confidence intervals across randomized blocks of 16 directions each.

the superposition of many different Gabor filter orientations in the area A averages out the
orientation selective component. We refer to this limit as the randomized connectome. Thus,
in the linear feed-forward scheme, shrinking the visual system leads to a loss of orientation
selectivity. Surprisingly, cells as shown in Fig. 5.4G retain orientation selectivity even in the
effective absence of orientation tuned input.

Spontaneous tuning in synthetic circuits

To show that orientation biased responses are not caused by residual tuning of the input, we
next used exclusively moving gratings as input. Fig. 5.6 shows eight example tuning curves
together with the raw data. For these experiments, we completely randomized the presentation
sequence of the 16 grating directions while making sure that every grating was presented at
least 15 times. Fig. 5.6A shows the typical response to a single grating presentation. There is
some spontaneous activity and the cell becomes active with light onset. It remains active during
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Figure 5.5: Statistics of imposed tuning. A The distribution of orientation selectivities,
measured with circular variance, across all 15 experiments. Notably, for a cortical magnification
of 0.06 mm/Λ, there exists still a surprising fraction of tuned cells across experiments. B We
assess the tuning by comparing every single observed tuning curve (example shown top) with the
selectivities of the direction-randomized controls (example shown below) and obtain a p-value
for every cell. This is a weakly but significantly tuned cell. C Following the procedure in B
reveals a large fraction of significantly tuned cells across conditions.

the grating presentation, and then activity drops. This specific cells responds in phase with the
stimulating moving grating. Fig. 5.6B shows the order of plotting of the raw spike trains in
Fig. 5.6C-K. To assess the strength of orientation tuning, and to quantify the responses of
every single cell, we extract several metrics for every cell. We first calculate the mean firing rate
for every condition, and the 95% bootstrapped confidence intervals of the mean. This gives a
tuning curve, shown in blue in Fig. 5.6C-K. We refer to this tuning curve as the F0 tuning
curve. We next convolve the spike train with a rectangular function of width 100 ms to obtain
a firing rate. We next apply a Fourier transformation and extract the component at the drift
frequency, in our case 2 Hz. The mean of this F1 component together with its 95% bootstrapped
confidence intervals is shown as orange curve in Fig. 5.6C-K. After the extraction of F0 and
F1 tuning curves, we fit a sum of two Gaussians to the tuning curve, shown in Fig. 5.6E-I
and from the Gaussians extract the orientation selectivity index (OSI), the direction selectivity
index (DSI) and half width at half maximum (HWHM) as presented in349. We also calculate
1 − CV from the tuning curves, either directly (denoted as 1-CV F0 and 1-CV F1) or with
the spontaneous firing rate subtracted (1-CV F0 corr.). We also extract a measure of linearity,
F1/F0 at the preferred orientation. Across our experiments, we find cells that are orientation
unselective and respond typically in phase with the stimulus. We refer to these cells as linear
and orientation unselective, see Fig. 5.6C. We also find cells that are unselective, but not in
phase with the stimulus. We refer to these cells as nonlinear and orientation unselective, see
Fig. 5.6D. In our dataset, there is a surprising number of cells with linear and tuned properties,
see Fig. 5.6E-G which resemble simple cells of the visual cortex. Fig. 5.6H shows a direction
tuned, Fig. 5.6I a complex cell and Fig. 5.6K prefers cardinal orientations. How many of these
different cell types are there? The summary across all 39 experiments with 1117 units in total
is shown in Fig. 5.7. We first looked at the fraction of visually responsive neurons. Fig. 5.7A
shows the firing rate without stimulation plotted against the evoked firing rate. Most of the cells
(≈ 80%) increase their firing rate by at least 15% upon stimulation and we consider these cells
visually responsive. Fig. 5.7B shows 1-CV and the orientation selectivity index of all visually
responsive units. Fig. 5.7C shows the orientation selectivity, assessed with circular variance
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Figure 5.6: Examples of spontaneous tuning with randomized inputs. A Stacked are
independent trials of 8 s stimulation windows. This visually responsive unit typically responds
with a train of action potentials during presentation. Note the typical distance between spikes
of ≈ 500 ms, which is the temporal frequency of the stimulating moving grating. The frequency
of the response corresponding to the stimulating grating is is called F1 (orange, see text). The
total firing rate is F0 (blue). B The plotting order of the raw data for C-K. C An orientation
unselective, linear unit. It is linear, because the spiketrain is dominated by the F1 component
(orange). D An orientation unselective and nonlinear unit: the F1 component of the tuning
curve is small. E-G Three examples for simple cells with strongly tuned F0 and F1 tuning
curves. H A direction tuned cell. I A complex cell where the F0 component is tuned, but the
F1 component is not. K A cell which prefers cardinal orientations.

as function of the firing rate. Most of the orientation biased cells have firing rates of around
1 Hz. Fig. 5.7D shows the correlation coefficients of all extracted metrics. Fig. 5.7E shows
that the F1 tuning is typically stronger than the F0 tuning, indicative of simple cells, while the
preferred orientations of F0 and F1 tuning curve are highly correlated, Fig. 5.7F. Fig. 5.7G
shows a histogram of F1/F0, and Fig. 5.7H shows F1/F0 as function of the tuning strength of
the F0 component. We next sort the cells into 5 categories, using F1/F0 = 1 and 1−CV = 0.1
as thresholds for linearity and orientation tuning. Note that this choice is somewhat arbitrary
as long as the metrics considered are not bimodal. The categories thus only serve as a point
of reference for a comparison with other studies349,405. A pie chart summarizing our dataset
is shown in Fig. 5.8A. We observed a fraction of ≈ 5% of cells with firing rates > 10 Hz.
Considering the duration of our experiment, it is unlikely that these are pyramidal cells with
such high sustained firing rates. Even though we could not find any difference in the shape of the
waveform (see Fig. 5.14), we consider them as tentative fast-spiking inhibitory cells. Among
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Figure 5.7: Statistics of spontaneously tuned cells. A Firing rate during stimulation vs
spontaneous rate reveals that most cells are light responsive. B Across all experiments, OSI as
well as circular variance reveal tuned responses and are strongly correlated. C Tuning is weakly
anti-correlated with the firing rate. Tuned cells have firing rates of ≈ 1 Hz. D Correlation
coefficient of various metrics (see text). E Tuning of the F0 vs the F1 component reveals hint
at mostly simple cells. F The preferred orientation of F0 and F1 are highly correlated. G
The modulation ratio for the majority of units is above 1, indicating mostly simple cells. H
Modulation ratio vs. orientation selectivity shows that the well tuned cells are simple cells.

these cells, most are nonlinear and untuned, see Fig. 5.8B, which is consistent with their firing
rate being factor 5 larger than the drift frequency of the grating.

Oriented receptive field and the origins of tuning

To study the emergent tuning further, we next stimulated the cell culture with checkerboards
and assessed receptive fields using reverse correlation. For a typical culture, imaged and stim-
ulated through a 5x objective, Fig. 5.9A, we find spatial receptive fields as in the examples
above, in close vicinity to the recording electrode. Fig. 5.9A shows the uniform expression of
YFP labeled ChR2(H134R) across the electrode array. Fig. 5.9B shows the reverse correlation
receptive field 100 ms before the spike time. Fig. 5.9C shows the temporal dimension of the
reverse correlation dataset for a few example cells. Temporally, we find that most cells respond
strongest to sustained darkness, followed by a short flash of light, similar to other studies347. To
study receptive fields with higher spatial resolution, we repeated this experiment with a different
culture through a 10x objective. The culture is shown in Fig. 5.9D-F As before, the excitatory
subregion of the receptive fields closely trace the electrode field, with a few exceptions. One
receptive field (electrode 75) shows a functional connection across the entire grid, 1 mm long
(see also Fig. 10.1B). Another signal (electrode 17) reveals only an inhibitory region, and in
the temporal domain reacts inversely compared to the other cells. This cell arguably receives
input from an inhibitory cell that in turn reacts well to light.
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Figure 5.8: Pie charts showing the functional composition of the surrogate cortex.
A We group cells into linear tuned (F1>F0 and 1-CV≥ 0.1), nonlinear tuned (F1≤F0 and 1-
CV≥ 0.1), linear untuned (F1>F0 and 1-CV< 0.1), nonlinear untuned (F1≤F0 and 1-CV< 0.1)
and not visually responsive (rate on < rate off×1.15). B Same as A, but for tentative inhibitory
and fastspiking cells. Not surprisingly, most of the cells are nonlinear and untuned.

We found in the theory section of this chapter, that a generic scale of stimulation for the visual
system is ≈ λ = 0.8 mm. Is this consistent with our observations in the culture? We saw in
Fig. 5.9 receptive fields with a scale of 0.5 mm to 1 mm and we next averaged all biased recep-
tive fields, see Fig. 5.10A. The averaged receptive field is shown in Fig. 5.10B. Here, we only
colored regions with significant entries, compared to the 95% bootstrapped confidence intervals.
Note the central excitation, surrounded by an inhibitory region. Calculating the angular average
of Fig. 5.10B is shown in Fig. 5.10C with 95% bootstrapped confidence intervals. It reveals
an inhibitory region, extending to ≈ 500 µm. This typical scale is also apparent in Fourier
space. To this end, we calculated the spectra of the data in Fig. 5.10A, and averaged the
power spectra. The averaged power spectrum is shown in Fig. 5.10D and its marginal is shown
in Fig. 5.10E. We again find a typical spatial frequency of ≈ 1 mm. If these receptive fields
are responsible for the tuning, increasing the spatial frequency of the stimulus should lower the
fraction of tuned cells. Fig. 5.10F shows the fraction of orientation selective cells pooled across
moving gratings with λ ≥ 400 µm and for a high spatial frequency with a grating wavelength
of λ = 200 µm. Shown are box plots for the fraction of tuned cells across experiments, together
with the mean and the bootstrapped 95% confidence intervals of the mean. While the fraction
of tuned cells decreases significantly for the rate, the tuning for latency is always very small.
We identified most of the tuned cells as simple cells, and we showed that reverse correlation
from checkerboards yields receptive fields which resemble cortical simple cell receptive fields.
For a linear system, the receptive fields should provide a good proxy for the tuning curve. In
Fig. 5.11A, we show a measured tuning curve, together with its receptive field, measured con-
secutively twice. This is the same cell as shown in Fig. 5.6F. From the receptive field, one
can estimate a tuning curve either directly, i.e. by calculating the powerspectrum and from the
spectrum extract the expected response to a wave with specific spatial frequency. One can also
fit a model function, here a Gabor patch, to the data, and extract the predicted curve from the
Gabor fit. Both methods are shown in Fig. 5.11B. The tuning curve of this cell can be well
approximated from the receptive field, further highlighting their simple cell character. Note that
the receptive fields point not only to a typical spatial scale, but also a temporal scale. We have
observed only few direction tuned cells, but this low number might be related to our specific
choice of grating drift frequency. Considering that the receptive fields exist on temporal scales
of 100 ms, it might be more appropriate to screen for direction tuning with at least 10 Hz drift
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Figure 5.9: Spatiotemporal receptive fields. A Fluorescence image of the MEA. Fluores-
cence is generated by the YFP label of ChR2(H134R).B Receptive fields of all active electrodes,
in a time window 100 ms before the spike. Note that the excitatory region closely tracks the
recording electrode position. C The temporal component of several examples cells in B. Most
neurons respond strongest to darkness, followed by a flash of light, consistent with earlier stud-
ies347. However, some cells have excitatory and inhibitory subregions. D Same as in A, but for
a different culture with higher spatial resolution. E same as B for the culture shown in D. F
Same as C. Note the cell with only an inhibitory subregion (boxed). Such RFs can only form in
a network of cells.
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Figure 5.10: The typical receptive field is consistent with the theoretical estimate
of λ ≈ 0.8 mm. A Examples for simple-cell like receptive fields. B Averaging tuned receptive
fields reveals a weak mexican hat. All non-significant bins (bootstrapped 95% CIs) have been
set to zeros. C The radially averaged mean receptive field from B reveals a mexican hat.
Errorbars are 95% bootstrapped CIs across cells. D The averaged power spectrum of individual
receptive fields. Note the ring shape. E Marginal powerspectrum of D with bootstrapped 95%
confidence intervals across cells. F Increasing the spatial frequency removes tuning. Shown are
the fraction of tuned cells with tuning curves either extracted from firing rate or spike latency
for two different scales of stimuli. Shaded in red is the chance level. Note that the fraction of
tuning among spike latencies does not change significantly, and is barely significant.

frequency.
How are the orientation biased cells and mostly simple cells arranged in space? Fig. 5.12A
shows a recording with evident orientation biased responses on several electrodes. Notably,
neighboring cells can have very different preferred orientations. To further study their spatial
arrangement, we use the spectral separation of the calcium indicator and the light-sensitive ion
channel, Fig. 5.12B, to optically screen for orientation selective cells. Fig. 5.12C shows a few
examples of orientation biased cells. As expected from the electrode recordings, these cells are
relatively rare, and can be close to one another with different preferred orientation. The layout
of orientation selectivities thus resembles a very sparse salt and pepper pattern.
Receptive fields with excitatory and inhibitory subregions (cf. Fig. 5.10A) indicate that the un-
derlying mechanism of orientation bias are networks of excitatory and inhibitory cells, strongly
coupled together. Driving the inhibitory cells within these groups with spatially patterned il-
lumination would result in a net suppression of activity. Using calcium imaging, we can study
functional connectivity in large numbers of cells, and we asked whether there exist in our sur-
rogate cortex assemblies that could serve as candidates for such a mechanism. Fig. 5.12C
shows the spike triggered calcium activity of two electrode channels. Remarkably, we find small
networks with cells that have very similar calcium activity. The dF/F traces of the two groups
of cells are shown in Fig. 5.12E. Note that the typical size and small number of neurons within
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Figure 5.11: Tuning prediction from RF. A Example of a tuned unit with a tuning curve
shown on top, and its receptive field from reverse correlation shown bottom. The raw data for
this cell is shown in Fig. 5.6F. B From the receptive field, tuning can be estimated using the
Power spectrum (green) or a fit with model function (red). Both methods compared with the
data are shown on the bottom.

these groups is consistent with the spatial extend of the receptive fields. These groups are
therefore prime candidates to account for the observed tuning in the surrogate cortex. A key
aspect of orientation selectivity in the primary visual cortex is its invariance with respect to
contrast388. This phenomenon has long been considered a prime example of cortical processing
because most feed-forward models predict an increase of tuning width, i.e. a decrease of selec-
tivity, with increasing contrast. This invariance might be present in our surrogate cortex. To
test for contrast invariance, we stimulated a network, Fig. 5.13A, with various light intensities.
Fig. 5.13B shows the tuning curves for three different light levels. We find that above a certain
limit required to elicit a sufficient response in the ion channel, the overall orientation selectivity
is invariant. While this would be consistent with contrast invariance, these experiments should
be treated with caution because the light intensities and the dynamic range of Channelrhodopsin
naturally limit the scope of such experiments.

5.4 Discussion

First, we confirmed that the Hubel&Wiesel connectome is a viable circuit to generate orientation
specificity in the afferent connectome. We then miniaturize the early visual afferent pathway,
shrinking eye size, cranium and the cortical target area, but preserving the total number of hy-
percolumns and therefore arguably the number of processing units to process natural scenes in
the framework of the cortical miniaturization scenario. In the limit of a small brain, the synthetic
visual system resembles a mouse visual pathway, or the layout of late cretaceous eutherians, like
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Figure 5.12: The spatial organization of tuning is sparse. A Electrode recordings reveal no
similarity in tuning between neighboring electrodes. B Spectral separation between stimulation
and calcium light (see methods) allows simultaneous recording and stimulation. C Calcium
imaging also reveals a small subset of spatially unorganized and orientation tuned cells; shown
are two examples of tuned cells. Left is a polar map of tuned pixels. Shown right is a fluorescence
image. D Calcium imaging also reveals groups of neurons with highly correlated calcium activity,
shown in red and green. E The calcium fluorescence signals from the two groups of neurons in
D. The calcium data was processed by Julian Vogel.

Asioryctes, closely related to the eutherian common ancestor. We found that shrinking the
visual system leads to a massive loss of visual acuity, to a loss of the orientation specificity of
the afferent connectome and to a larger point spread function. Surprisingly, we also found that
a number of neurons exhibited orientation biased responses in the limit of homogeneous and
unselective input, that are generated by the recurrent network alone. We find that these cells
are mostly simple cells. In addition, we also find a small number of complex and direction tuned
cells. This diversity of responses suggests that even in this most generic case, a recurrent circuit
is sufficient to spontaneously generate a basic level of orientation selectivity. This phenomenon,
already present in recurrent networks as disorganized as a primary culture, might provide a
robust and generic scaffold for input classification and is potentially the first workpiece refined
by the selective forces of natural selection to generates the functional organization of neuronal
circuits across many species of mammals.

Orientation selectivity in this system might seem surprising, but is in fact consistent with
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Figure 5.13: Contrast invariant tuning. A Stimulating a patch of the surrogate cortex with
tuned inputs. B Four tuning curves recorded from the culture in A with three different contrasts
(see text). C Orientation selectivity index for the three contrast levels. Confidence intervals are
95% statistical CIs for the fits.

several models that build on very different ideas. While many models are hard to test experimen-
tally due to the precision connectome required68,323,445 or the interplay of intracortical dynamics
and plasticity of the projections305,456, other models that use generic mechanisms should work
in living recurrent networks, too. These models for orientation selectivity cannot be tested in
a living animal, but in vitro they can. It was shown that sharp orientation tuning can emerge
from only weakly tuned inputs in a random network in the balanced state. In this state, the
untuned fractions of excitation and inhibition roughly cancel and allow the tuned components
to render neurons strongly orientation selective. The result is a spatial structure of orientation
preference similar to the interspersed layout which is observed in rodents173,377. Furthermore,
a network with stochastic mexican hat interconnectivity can create layouts of orientation do-
mains, similar to the layout in carnivores and primates131, basically realizing a ring network in
two dimensions, that form bumps by spontaneous symmetry braking. Attractor models are used
for a variety of purposes22,23,521. Several experiments might yield deeper insights into the un-
derlying mechanisms of orientation selectivity in the cell culture. The application of a threshold
to a contrast dependent tuning curve appears to broaden orientation tuning. This broadened
orientation tuning with contrast is called iceberging or the Iceberg-effect411,529. Contrast in-
variance can be generated intracortically, or by mechanisms of synaptic depression between
thalamus and cortex388. For a long time, it has been considered a smoking gun of cortical
processing. The discovery of the alternative explanation shifted the interested away from the
field. However, for our system it is still an important property, as our holographic system, by
construction, does not have depressing synapses and contrast invariance is a feature in a variety
of models30,377,380. Also, considering that simple and complex cells might be generated with a
similar circuit with various contributions of recurrent connections72, our synthetic hybrid system
might contain neuronal circuits with functions, surprisingly similar to circuits in the living brain.

The scales of projections into the primary visual cortex seemed to imply a common organiz-
ing scheme. Is there more evidence to it? Let us first look at cortical coverage in cat and mouse.
Coverage here is defined as the number of geniculate centers covering every point in the visual
world. Area 17 in cats is typically around 400 to 500 mm2, and grows with age247,392. A cat has
a field of view of around 200 deg, and 140 deg of binocular overlap (very similar to humans with
180 deg field of view with also 140 deg binocular overlap)300. In the cat, there are 90.000 β-cells
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in the retina203,209, from a total of about 200.000 RGCs and a similar number of fibers in the
optic nerve203, so that across the entire cortex, ≈ 200 RGCs provide input into one hypercol-
umn. Note that the scaling of receptive field sizes with eccentricities145 might keep the number
of inputs in units of fibers into each column roughly constant. In cat, layer IV spiny stellate
cells are roughly isotropic with a radius of ≈ 200 µm93. In the mouse, V1 is typically 4 mm2153,
its binocular view of view is about 45 degrees. the total field of view exceeds 240 deg116. The
mouse retina contains 48000 to 70000 RGCs, has a radius of about 2 mm with a typical density
between 8000− 2000 mm−2116,117,223, which scales with distance from the optic disc. The optic
nerve of the mouse contains around 55000 axons (C57/B6), of which only a fraction targets
the dLGN509. In a mouse, the brain receives input from factor two to four less retinal fibers
than a cat, but projecting to a factor 225-fold smaller cortex443. Geniculocortical arbors in mice
are small, typically around 0.5 mm in diameter and not as finely branched as in cat14. In rats
and mice, the radius of a spiny stellate layer IV cell is about 100 − 150 µm31,124,169. There
are also genuine differences in the excitatory/inhibitory loop between mice and cat49,313 and
potentially even in cellular organization between cat, rat and mouse on one side and primates
on the other452. One should note at this point that the neurons in our surrogate cortex certainly
do not have apical and basal dendrites dendrites and thus the surrogate cortex forms a generic
proxy for the input layer of sensory cortex. At this scale of approximation, the neocortices of
mammals are remarkably similar regarding the typical size of cells and the cellular densities,
and consistent with measurements in our surrogate cortex. Despite a difference of O(100) in
size, we find that the scale of projections and cell densities are similar to O(1), and consistent
within the experimental error margins. This highlights the possibility of a common organizing
scheme.

The contributions from recurrent inputs change orientation selective responses and the ex-
istence of inhibitory OFF regions in the receptive fields highlights that the tuning is a network
effect. If anisotropic dendrites or fiber tracts mattered, the receptive fields would rather re-
semble single elongated ON regions, reflecting the expression of ChR2 across the dendrite or
across the fibers. An explicit test could be done using ChR2 expressed only in the axon initial
segment167, but the light intensities required would make long experiments and the collection
of large statistics challenging. We can not study the complete connectome of neurons in the
culture, but there is a set of rules for the thalamocortical connectome, referred to as Peter’s rule,
that might at least serve as a proxy. It states that the expected number of synapses between
neurons is proportional to the occurrence of possible synaptic targets, i.e. to the product of their
dendritic and axonal tree densities35. It would not be surprising to find such simple rules gov-
erning neuronal circuits in a dish, too, and as this overlap has a stochastic component, so should
the network. An additional source of feed-forward randomness are speckles in the holographic
patterns. Taking the hypothesis seriously that stochasticity in the network contributes criti-
cally to orientation bias, can we test this hypothesis? (1) We can pharmacologically potentiate
synapses using Phorbol esters189,338 and thus increase stochasticity in the network by increasing
synaptic strength. (2) Alternatively, cultures grown under Tetrodotoxin (TTX) blockade show
no activity during development, but connections between neurons form78,143. After washout
of the TTX, these cultures burst78 with larger synaptic currents, compared to untreated con-
trols143. (3) The strength of synapses also depends very much on the density of a culture215,
the denser a culture, the smaller the typical epsc and ipsc amplitude, and the more inputs. To
test this hypothesis, we would need to study various cell densities. (4) Finally, we could test
how removal of the contributions of single neurons pharmacologically impairs tuning, similar to
the methods in448.

Despite the relatively controlled system, there is still substantial variability across individual
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cultures. The most crucial step should therefore be reducing the variability of the living cell
component. One method would be to further abstract the network, for instance by designing
virtual networks using a single neuron as computing element162. The inter-sample variability
might be related to variations in cellular content and differences in the tissue extraction. These
points might be addressed using more homogeneous samples, for instance by FACS sorting of
neurons. Alternatively, with the advent of iPSC-technologies326, we might circumvent the prob-
lem by not using rodent tissue in the first place, but both methods do not come for free. FACS
sorting reduces the number of neurons massively, and neurons differentiated from stem cells
often come with peculiar gene expression patterns and protein composition.

We showed that recurrent networks as disorganized as in the surrogate cortex can generate
feature selectivity. Theoretically, neural networks with connections organized by probabilistic
rules are conceptually powerful model systems. Random neural networks have been shown to
generically exhibit computationally favorable properties for stimulus representation and infor-
mation processing, for instance by reservoir computing293, liquid state machines, a particular
type of a reservoir computer which consists of randomly connected spiking neurons298 and more
recently FORCE learning in random rate network461. Our experimental data highlights that
feature selectivity generated by the disorganized connections in living recurrent networks might
be a generic scaffold for input classification, and the first workpiece refined by the selective forces
of natural selection.

5.5 Supplemental

Several experimental studies label electrically active cells as either excitatory or inhibitory de-
pending on their waveform349. This is probably not a viable option in cell culture510, but the
broad distribution of firing rates made us wonder whether one can in principle define a sub-
population of fast spiking inhibitory cells. Sustained firing rates above 10 Hz seem unlikely for
pyramidal cells. To this end, we analyzed waveforms as function of the firing rate in Fig 5.14
in the hope that small and fast spiking cells might have shorter waveforms. We could not detect
any robust clusters depending on the waveform, and we therefore assign tentative inhibitory
cells only according to their firing rate.

5.6 Materials and Methods

Cell culture

We used commercially available multielectrode arrays (60MEA200/30iR-Ti; Multi Channel Sys-
tems, Reutlingen, Germany) after coating the surface with Poly-D-Lysine. To this end, we add
1 ml of a 50 µg/ml solution into the well of a MEA. The PDL solution was left on the MEAs
and coverslips for at least 24 h. Typically, we prepared MEAs and coverslips a few days in
advance, and stored them with PDL solution in an incubator in the dark at 37◦C and 5% CO2.
Cell cultures were prepared according to Brewer59. Briefly, cortical neurons were obtained from
Wisteria WU rat embryos at 18 days of gestation (E18). The pregnant rat was anesthetized
with CO2. The embryos were removed by a cesarean section, decapitated and transferred to
cooled petri dishes. The skull cavity was opened and the brain removed. Cortices were surgically
extracted, the hippocampus removed with iris scissors, and transferred to a HEPES (Invitrogen,
Germany) buffer. The supernatant was removed and the extracted cortices were trypsinized in
a Trypsin/EDTA (trypsin: 0.05%; EDTA: 0.02%; Sigma Aldrich, Taufkirchen, Germany) buffer
for 15 minutes at 37◦C. Trypsinized cells were then transferred to a 10% Fetal calf serum (FCS)
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Figure 5.14: There are no obvious clusters with discernibly different waveforms. A
A typical waveform and the extracted metrics: Total amplitude, width of the initial dip, and
scale of the positive fraction of the waveform. B All waveforms aligned to the negative peak
and with normalized voltage. C Same as B, but with color-coded firing rate. Fast spiking cells
do not have specific waveforms. D Width of the waveform vs. firing rate. Errors of the width
are ±1σ estimated from the fit covariance. Errors of the rate are errors of the mean, estimated
from binning the spiketrain in 10 sets of equal duration. E Same as D but for the scale of the
positive fraction of the waveform. F Same as D but for the voltage amplitude.

solution. Thorough trituration using a syringe and a needle with a diameter of 1 mm followed.
The cell suspension was then centrifuged at 1200 rpm for 2 minutes. The pellet was re-suspended
in serum-free B27/Neurobasal (Gibco) medium supplemented with Glutamax and Basic Fibrob-
last Growth Factor (bFGF). Cells were counted with a Neubauer improved counting chamber. A
droplet of ≈ 100 µl cell suspension containing 1.000.000 cells was added on top of the electrode
field of the MEAs. The MEAs were then kept in an incubator providing a humidified atmosphere
containing 5% CO2 at 37◦C for 4 hours to allow the cells to settle. 1 ml of the B27/Neurobasal
medium was then added to the cell chamber. After two days, we added 1 µl of a solution,
containing 3.4 × 1010 genome copies (GC) of AAV9-hSyn-hChR2(H134R)-eYFP-WPRE-hGH
(UPenn Vectorcore) and 1µl of AAV1.Syn.NES.jRCaMP1a.WPRE.SV40, containing 3.36×1010

GC of this construct. Half of the medium was changed every seven days. All animals were kept
and bred in the animal house of the Max Planck Institute of Experimental Medicine according
to European and German guidelines for experimental animals.

Stimulation and stimuli

The holographic projection system is constructed from a 473 nm diode laser (DL-473, Rapp
OptoElectronic) and a liquid crystal on silicon spatial light modulator (OEM SLM X11840,
Hamamatsu). This SLM has a resolution of 600 px × 800 px, a 12.5 µm pixel pitch and a fill
factor of 95%. To remove the maximum of zeroth order, we employ an axial displacement of the
hologram by a superimposed Fresnel lens of ≈ 2 mm. Thus, the hologram is spatially separated
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from the focal point of the maximum of zeroth order. At the focal point of the maximum of
zeroth order, it is blocked with a mask, a d=500 µm aluminum dot on a glass plate. The axial
displacement leaves the hologram intact, except a small loss of contrast and slight distortions.
The holograms are then projected in the conjugated plane of a Zeiss Axio Observer.Z1 inverted
microscope.
The SLM is operated by a controller which allows us to control the phase shift on each pixel via
a standard DVI interface. We calculate phase fields with the Gerchberg-Saxon method; N=20
iterations156, implemented in Matlab. The holographic frame transitions were recorded from a
screen receiving the same signal as the SLM after a DVI splitter. We measured the screen signal
with a OPT101 photodiode and transimpedance amplifier (Texas Instruments) and recorded it
with the electrophysiology setup. The reliability of this system in counting frames is higher than
1 missed frame in 10.000.
Recordings were made on a 60 channel MEA amplifier (MEA-1060 Inv, Multichannel Systems,
Reutlingen, Germany). Data from MEAs were registered at 25 kHz using a 64-channel A/D
converter and MC Rack software (Multichannel Systems, Reutlingen, Germany). After high
pass filtering (Butterworth second order, 100 Hz) events were detected in a cutout recorded 2
ms before and 4 ms after crossing a threshold of -5σ of the filtered electrode signal277. The
threshold was evaluated for every channel individually. The identified events were then sorted
to remove false positives (see chapter 6)
For recordings of calcium dynamics, we use a red-shifted calcium indicator, jRCaMP1a, to
combine the optical excitation with calcium imaging103 and use an all-optical interface129,369.
The excitation filter for the jRCaMP1a fluorescence is a 572/28 bandpass (FF01-572/28-25,
Semrock), operated after a Zeiss HXP-120C metal halide light source. For calcium imaging,
cells were illuminated with 0.10 ± 0.01 mW/mm2 (λ = 572 ± 14 nm) and holographically up
to 2 mW/mm2 (λ = 473 nm), close to371. The bandpass-filtered excitation light is combined
with the holographic light through a 495 nm dichroic longpass (FF495-Di03-25x36, Semrock).
The beam then enters the microscope through the epifluorescence port. To record fluorescence,
we project the beam with a 593 nm dichroic longpass (FF593-Di03-25x36, Semrock) through
the objective (a Zeiss Plan-Apochromat 10x/0.45 M27 or a Zeiss EC Plan-Neofluar 5x/0.16
M27), and collect fluorescence after filtering with a 641/75 emission filter (# 67036, Edmund
Optics) with a commercial camera (ProgRes MF 1.4 Megapixel CCD monochrom, 2/3′′, firewire,
Jenoptik, Germany). The camera’s trigger pulses are used to open and close the shutter of the
metal halide lamp, to avoid excessive photo bleaching. The camera trigger is recorded together
with the holography trigger with the MEA amplifier.
To study the response properties of the cultured neurons, we use the same set of stimuli as
presented in the literature47,212,422,439,464: we simulate the presentation of moving gratings in
pseudorandom order and to study circuits that formed in the culture dish, we use spike triggered
reverse correlation of white noise inputs107,487.

Numerical procedures for PIPP RGC mosaics

We generated RGC mosaics with a pairwise interacting point process using the code published by
Schottdorf et al.427 derived from the method developed in125,404. In short, we initially positioned
nOFF OFF cells and nON ON cells independently according to a two-dimensional Poisson point
process with fixed cell density. We then updated these positions according to the following loop:
For each ON center cell a new candidate position was generated at random. Considering the i-th
ON center cell, this new position was accepted with probability pi that depends on the distance
to the other cells. After updating all ON center cells’ positions, the procedure was repeated for
the OFF center cells. Both loops were repeated between 20 and 50 times at which point the cell
positions had converged to a stable pattern.
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Chapter 6

Developmental manipulation of the
surrogate cortex

“A good theoretical model of a complex system should be like a good caricature: it
should emphasize those features which are most important and should downplay the
inessential details. Now the only snag with this advice is that one does not really
know which are the inessential details until one has understood the phenomena
under study. Consequently, one should investigate a wide range of models and not
stake one’s life (or one’s theoretical insight) on one particular model only.”

Yakov Frenkel, cited in183.

6.1 Content

The surrogate cortex is based on neuronal circuits generated in the absence of any input. The
processes by which the neurons wire up to form these circuits are most likely partially activity
dependent. One way to manipulate the circuit’s connectome is thus by controlling the prevalent
activity patterns during the course of circuit formation. In this chapter, we therefore ask whether
the local circuits can be configured differently by supplying external inputs during development.
We first construct a device, a light disco, to provide a developing culture with spatiotemporally
complex input patterns inside the incubator for several weeks. Using this device, we find strong
evidence that self-organization in the presence of external, correlated inputs changes the collec-
tive dynamics of the surrogate cortex. Finally, we discuss whether these results have relevant
consequences for our current understanding of the role of spontaneous and driven activity in the
developing brain.
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6. Developmental manipulation of the surrogate cortex

6.2 Introduction

Spontaneous neural activity together with genetic programs in the developing brain are key
contributors governing functional and structural aspects of neuronal circuits, for instance in the
retina, the cochlea, the spinal cord, the cerebellum, the thalamus, the neocortex, and the hip-
pocampus1,38,201,249,450. In the mammalian visual system specifically, the functional architecture
and the development of neurons and their connections is laid out by spatiotemporal patterns
of neural activity82,89,171,332,513. Even in the earliest stages of the sensory periphery, so-called
retinal waves shape the topographic organization of projections from the retina to the brain.
Patterned activity is a fundamental prerequisite for the refinement of visual circuits, but not
always in the form of spontaneous activity. Retinal waves do not occur in all tetrapode verte-
brates during early development. Amphibians lack such waves but are visually responsive very
early on. This lead to the speculation that amphibians and amniotes, see Fig. 6.1A, evolved
different strategies to generate appropriately patterned retinal ganglion cell (RGC) activity;
where the spontaneous activity in mammals, chicks and turtles periodically spread across the
retina with highly correlated activity between neighboring RGCs without visual stimuli, young
amphibians as the Xenopus tadpole seem to rely on visual inputs for the development of orga-
nized topographic maps1,111. These findings highlight that for all tetrapods, patterned activity
is a necessity and the developing brain goes to great length to provide such patterns. In this
chapter, we will develop a system that allows us to experimentally dissect the contributions of
patterned activity on functional aspects of neural circuits.

Mammals have a very specific layout of their early visual pathway, see Fig. 6.1B, with
precise wiring from the retina through the thalamus to the visual cortex. What are the effects
of disrupting spontaneous activity for mammalian neural circuits? In mice, disruption of the
Munc13 proteins completely abolishes synaptic transmission, and with it the spatial structure
of spontaneous activity, but leaves the large scale organization and the synapse density of neural
tissue largely intact490. In contrast to this large scale organization, other aspects critically de-
pend on spontaneous activity. Interrupting retinal waves either genetically or pharmacologically
disrupts the orderly arrangement of thalamocortical projections65. In cats, pharmacological
blockade of activity in the lateral geniculate nucleus during early development leaves a majority
of LGN projections terminating not in the visual cortex. The small fraction reaching their orig-
inal destination are topographically disorganized70. In young ferrets82,513, spontaneous activity
in the LGN and the visual cortex is complex in space and time. In the cortex82,175,177, it is
composed of bursts and correlated on mm scales, see Fig. 6.1C. These bursts persist during the
blockade of external drive, but they become more synchronous, see Fig. 6.1D. The correlation
structure of the spontaneous activity has also been shown to form a scaffold for the functional
architecture of the adult ferret visual cortex175,177. These studies show that specific neural ac-
tivity is required for functional neural circuits, and that spontaneous activity in cortical circuits
has an endogenous and an exogenous component. The relative contributions of both remain
unclear and are hard to assess in vivo.

Here, we separate these activity patterns in vitro. Recent advances in Lab-on-a-Chip tech-
nologies, optogenetics and cell culture allow, for the first time, to study the effects of prolonged
optogenetic stimulation on developing circuits in vitro, and we build on these technologies.
In principle, activity can be evoked electrically44,224,308,367,488,498,499 and pharmacologically244.
Electrical stimulation has been shown to affect the behavior of cultured neuronal networks on
the scale of several hours488, up to several days44. More recently, optical tools and optogenetics
started to emerge371,400, which at least in principle can overcome fundamental limitations of
electrical interfaces, as the substantial subsampling, the effects of photochemistry, and the pho-
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Figure 6.1: Spontaneous activity in the visual system. A Macroevolution of the tetrapods;
amphibians might have evolved a different strategy for neural circuit development. B The typical
layout of the mammalian visual system, here the cat. Notably, spontaneous activity early in
development exists in the retina, the thalamus and the visual cortex82,280,513. C Electrical
recording from an awake ferret in the visual cortex at postnatal day 27, three to four days
before eye opening (adapted from82): Spontaneous activity is bursty with several temporal
components. Shown here is a macroburst (see text). D Optic nerve transsection changes the
spontaneous activity patterns into a more synchronous bursty regime (adapted from82).

toelectric effect at high light intensities403,437. In vitro systems recently developed include an
integrated platform of optrode arrays514 and multi well multielectrode arrays (MEAs) with few
LEDs86 or a single channel optogenetic feedback control348. Such technologies allow long-term
stimulation with a single LED for few days281 and the design of LED array approaches61 in
cultures that can be kept alive for more than a year385.

We explored neuronal circuits formed spontaneously from dissociated rat E18 cortical neu-
rons grown in culture. We analyzed how these circuits change during week-long stimulation
throughout development with spatiotemporally complex patterns of activity. In cortical cul-
tures, periodic bursts of action potentials emerge after typically 10 days in vitro in 2D497,498

and also 3D cultures102,146,307, notably resembling to some extent the spontaneous activity in
immature cortex after deafferentation82. With development, the patterns increase in complex-
ity308, but the activity remains highly synchronous. We show that the spontaneous behavior
of cultures subjected to external drive is fundamentally different to unstimulated control cul-
tures. The spontaneous electrical activity, recorded with multielectrode arrays (MEAs) in the
controls is bursty, i.e. highly irregular with large deviations in the interspike intervals. The
spikes on different channels, however, are highly correlated and show that these bursts are a
genuine network phenomenon. The cultures subjected to external inputs show similar firing
rates, and optical appearance. However, the electrical activity on single channels is much less
bursty. The coefficients of variation (the ratio of standard deviation to mean) of the interspike
interval distribution is close to 1, resembling a Poisson process. Also, the correlation between
individual channels is much smaller, implying an asynchronous and irregular regime. This study
shows that the functional aspects of a neural network massively depend on structured activity
patterns in development, and that an in vitro system can be a viable tool to disentangle the
relative contributions of recurrent and external influences.
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6.3 Results

To first evaluate the composition of the primary culture, we use immuno stainings and confocal
microscopy, as is shown in Fig. 6.2A. The cultures contain neurons of various types and glial
cells (here GFAP positive). The cultures are very thin, typically around 10 µm and composed of
about two cell layers. At 2 days in vitro (DIV) we transfect the cells with an Adeno-associated
virus (AAV) that expresses the Channelrhodopsin 2 variant ChR2(H134R), labeled with eYFP,
after a neuron specific Synapsin promoter. With our protocol, about 40% of neurons express
ChR2 (see methods). A fluorescence image of such a culture grown on a multielectrode array
(MEA) is shown in Fig. 6.2B. It illustrates a dense and uniform expression of the construct
across the surface of the electrode array. The expression of this light sensitive ion channel allows
us to generate spatially and temporally complex activity patterns in the layer of cells. Our
target is a continuous stimulation during development. Therefore we developed a small and
integrated device that fits into an incubator, Fig. 6.2C, and that can supply the culture for
weeks with inputs. It consists of an LED array of 16× 16 blue LEDs that is projected through
a single objective on the transparent multielectrode array. The LED array is controlled with
an Arduino 2560 and both are integrated into a moisture insulated box. The Arduino receives
commands from a laptop outside of the incubator. The LEDs are InGaN LEDs that emit light
of λ = 470 ± 18 nm, close to the excitation maximum of ChR2(H134R), Fig. 6.2D. To assess
the light patterns, we glued a CMOS Chip from a commercial web cam on a piece of glass with
the same spatial dimensions as the MEA. Fig. 6.2E shows that distribution of light intensities.
We projected the LEDs slightly out of focus, to generate approximately continuous illumination.
The anisotropies in the image of each SMD-LED are due to spherical aberration of the objective
lens. Fig. 6.2F shows a snapshot of a moving grating, the stimulus employed throughout this
study, modeling the spontaneous activity in the young ferret visual system.
Electrode recordings in vivo revealed a complex structure of this spontaneous activity. In the
cortex of young ferrets, one can observe spontaneous activity patterns covering at least three or-
ders of magnitude in time. On the largest timescales, there are typically two to three macrobursts
per minute. A macroburst consists of microbursts that vary in duration up to several 100 ms.
Within them, spike discharges can reach firing rates of 50 Hz or more, see Fig. 6.1C82. The
temporal scales of these bursts resemble spontaneous activity in the LGN513 and the retina280.
In the retina, the spontaneous firing rate of ganglion cells depends on the ganglion cell type. For
β-cells, the average spontaneous firing rate is close to 3 Hz280. For our experiment, to reduce
the number of parameters as much as possible, we modeled only the most basal contribution of
spontaneous activity: We chose moving gratings because they are defined by only two param-
eters, a wavelength and a periodicity. We choose a repetition rate of 3 Hz, consistent with the
data in82,280,513. In the developing ferret visual cortex, there are large scale spatial correlations
within the activity patterns, up to 1 mm82, so that we choose moving gratings with a periodicity
of λ ≈ 0.5 mm.
Right after the viral transduction on DIV 2, we placed the electrode array with the neurons on
top of the projection device. Note that this is earlier than the first expression of the ChR2 ion
channel, such that the neurons receive increasing input, the more ChR2 they express. The light
intensities here are high enough to activate the ChR2(H134R) variant, but not high enough to
elicit damage. We chose this channel because it is slightly more light responsive with larger
photocurrents than ChR2. It has a EC50 of 1.0± 0.1 mW/mm2 and a closing time of around 4
ms at 37◦C. With the light intensities of our system, we can reach 30% of the maximum response
of the channel282,283.
Next, we measured the spontaneous activity of cultured neurons subjected to external inputs vs.
controls. To this end, we removed the cultures from the incubator, and recorded electrical activ-
ity with a commercially available system, making sure that the cells are kept at 37◦C. Fig. 6.3A
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Figure 6.2: The light disco: Separating activity patterns from the genetic program. A
The primary culture of rodent cortical tissue contains neurons (NeuN positive) and glia (GFAP
positive). The typical neuron density is 60.000 mm−3. B We use neurons expressing the light
sensitive ionchannel ChR2 after viral transduction (see methods). Shown here is the fluorescence
of the YFP label of the channel, on a transparent multielectrode array (MEA). C The system
used to provide the developing circuits with spatiotemporal complex light patterns is similar to
an inverted microscope. The light source is a 16× 16 custom built LED grid, projected through
an objective lens. D The LED light emission is centered around the excitation maximum of the
ChR2(H134R) channel283. E With this system, we can produce arbitrary light densities of up
to 0.2 mW/mm2. The entire patterns is projected to an area of ≈ 9 mm2. F The excitation
pattern used throughout this study: a moving grating of one row on, and three rows off, with a
temporal frequency of 3 Hz.
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6. Developmental manipulation of the surrogate cortex

Figure 6.3: Correlated activity during development qualitatively changes sponta-
neous activity. A Spontaneous activity of a culture, subjected to continuous stimulation for
three weeks (23DIV). B Spontaneous activity of a control culture, also expressing ChR2, but
developing without perturbation in a dark incubator. This culture shows very typical bursts of
electrical activity.

and Fig. 6.3B show rasterplots of two 23 day old cultures, 21 days after viral transfection. We
identified events on the electrodes after threshold-crossings of −5σ of the noise on each electrode,
and a PCA-based scheme to remove a small fraction of false positives in the data. Notably, we
did not perform spike sorting, so the events could be generated by several neurons. The culture
subjected to external inputs shows a substantial variability in firing rates across channels. The
control shows a large number of bursts, i.e. synchronized events across different channels, that
occur irregularly. This behavior is well documented in a large number of other studies. To quan-
titatively assess the differences in synchrony and regularity, we next calculated correlograms of
the active channels. The correlograms measure the occurrence of a spike in channel (1), given a
spike in channel (2) occurred. If (1)=(2), then it calculates the autocorrelation, see Fig. 6.4A.
Such an analysis of the recordings in Fig. 6.3 is shown in Fig. 6.4B,C. It shows the absence
of high correlations among events in the cultures subjected to external stimuli, whereas there
are high correlations among the channels in the controls. In addition to the cross correlation
analysis, we also looked at the interspike interval distributions. For the two recordings, the data
is shown in Fig. 6.4D and Fig. 6.4E. The heavy tails in the control, Fig. 6.4E, highlight the
irregularity of the bursting process. We used the ISI distribution to calculate the coefficient of
variation, to measure the regularity of the spike train. The coefficient of variation (CV), i.e. the
standard deviation relative to the mean, of cultures subjected to external input, ’Disco’, and
controls are shown in Fig. 6.5A. In the controls, the CV increases continuously, indicating more
and more bursting of the cells. In the cultures subjected to external stimuli, the CVs remain
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Figure 6.4: Generating complex activity throughout development disrupts synchrony
across neurons. A To evaluate the cross-channel correlation, we calculate the cross correlo-
gram of the spike trains. This means: Triggering on channel 1, count when spikes occured in
channel 2. B For the data shown in Fig. 6.3A, this shows a very small cross-channel correlation
(notably except channel 7/12 and 5/3). C The control culture shows correlations across almost
all channels. D The interspike interval (ISI) distributions from Fig. 6.3A reveal irregular spik-
ing. Data of several electrodes (green) is superimposed. E The ISI distributions from Fig. 6.3B
reveal heavy tails, indicating highly irregular spiking.
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Figure 6.5: The individual units lose their burstiness. A The coefficient of variation (CV)
of the spike trains of the cultures with external input is substantially lower than the controls.
Note that this translates to a less bursty firing patters. B The firing rates increase with time, but
are comparable between conditions. C Raw data to A. Every dot corresponds to a spiketrain of
30 min to 90 min duration, recorded with an electrode array. D Raw data to B. E A scatterplot
of CVs versus firing rates reveals that the low CV end is almost esclusively populated by the
cultures subjected to external input during development (red).
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Figure 6.6: Asynchronous and irregular calcium fluorescence of individual cells. A
A DIC Image of a section of a culture after three weeks of external inputs reveals a dense
layer of cells. Indicated are cell positions for calcium fluorescence. B The neurons also express
fluorescent labels, indicating that their protein production machinery is intact. The expression
of jRCaMP1a specifically allows to measure neuronal activity via calcium fluorescence. C The
calcium fluorescence of N=12 individuals cells with cell position indicated in A and B; data
analysis by Julian Vogel.

close to 1, resembling a Poisson process. While the CVs are genuinely different for both types of
conditions, the firing rates are similar and reproduce the measurements in other labs79,214, see
Fig. 6.5B. To generate the two figures, we pooled all available spiketrains, see Fig. 6.5C,D.
Plotting the firing rate versus the CV shows that small CVs are almost exclusively found in
cultures subjected to external inputs. In Fig. 6.6A and Fig. 6.6B we show a DIC and a
fluorescence image of a 23 days old culture that received light input. The DIC image reveals a
dense layer of cells, and the fluorescence image shows that the protein biosynthesis of the cells is
intact. Together with the comparable firing rates, Fig. 6.5B,D, this indicates that there are no
obvious pathologies that stem from the continuous illumination with blue light, but see below for
a more detailed analysis. In Fig. 6.6C we show the integrated fluorescence of N=12 individual
cells as function of time over a course of 30 minutes. The irregular and asynchronous acticity
is clearly visible in the jRCaMP1a signal and considering that this is calcium activity of single
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Figure 6.7: Comparison of spike waveforms. A Spike waveforms from all active channels of
cultures subject to sustained stimulation. Inset shows two metrics extracted from each waveform:
width and amplitude. B Spike waveforms of the controls. C The spike width and the spike
amplitude D are very similar. E Averaged waveforms and ±1 std. dev. of all waveforms. F
Shown is the deviation from the average waveform of all controls for both conditions. There is
no measurable difference as far as the waveforms are concerned.

cell regions of interests, we can make this statement now on the single-cell level. Finally, one
might speculate that the observed qualitative differences in activity are caused by pathological
changes on the single cell level, such as photo damage induced by the sustained illumination. As
noted above, the stable expression of proteins (cf. Fig. 6.6B) and the comparable firing rates
(cf. Fig. 6.5B) make this unlikely, but to be certain, we analyzed extracellular spike waveforms
to see whether the waveforms as a proxy for the action potential waveform reveal any differences
between cultures grown in the dark, and those stimulated. While there was no obvious difference
comparing the waveforms, see Fig. 6.7A and Fig. 6.7B, we quantified every single trace by
fitting a Gaussian function with width σ to the initial negative dip. We find that for all cultures,
a typical width is around 0.1 ms. The results are summarized in Fig. 6.7C. We also measured
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the absolute amplitude of the signals. Their distributions are shown in Fig. 6.7D. Notably, both
distributions are indistinguishable with typical amplitudes between 20 µV and 40 µV. Next, we
calculated the average of all control waveforms wci (t), i.e. ac(t) = 〈wci (t)〉i. Assuming that this
function, shown in yellow in Fig. 6.7E, is a typical waveform, we next measured the distance
to every recorded waveform

di =

√∫
dt (ac(t)− wi(t))2. (6.1)

The distribution of these deviations is shown in Fig. 6.7F and shows that there is no noticable
difference between discos and controls. Remarkably the spread of values is higher for the controls
than it is for the disco dataset.

6.4 Discussion

Synchronous electrical activity is a fundamental phenomenon of circuits in the brain and shapes
its connectivity332. Driving neural networks throughout development in vitro can help to better
understand the specific mechanisms that connect activity with circuit elements. In principle,
this allows us to study the effects of specific observed activity patterns once their phenomenol-
ogy is established. A number of articles from the Lab of William Moody studies synchronized
electrical activity in neonatal mouse cortex in slices. These in vitro studies revealed the wiring
pathways and the phenomenology of such waves: Waves of activity within a coronal slice of the
mouse brain can start in the hippocampal formation and propagate through this part of the
brain and further through the neocortex. They can also originate in the neocortex, or remain
confined to the neocortex24. The spontaneous and synchronized activity has two components,
driven by AMPA and NMDA receptors. GABA mediated inhibition helps terminate activity
waves, and increases the likelihood of wave propagation to the neocortex321. These sponta-
neous waves have specific and complex spatiotemporal order91 and are found in the intact brain,
too273. Electrode recordings in the ferret in vivo revealed a complex structure of spontaneous
activity. In the cortex of young ferrets, one can observe spontaneous activity patterns covering
at least three orders of magnitude in time. On the largest timescales, there are typically two
to three macrobursts per minute. A macroburst consists of microbursts that vary in duration
up to several 100 ms. Within them, spike discharges can reach firing rates of 50 Hz or more,
see Fig. 6.1C82. The temporal scales of these bursts resemble spontaneous activity in the
LGN513 and the retina280. More recently, these findings have been corroborated with chronic
calcium imaging, further revealing how spontaneous activity forms a scaffold for the functional
organization of the adult brain175,177. In the retina, the spontaneous firing rate of ganglion cells
depends on the ganglion cell type and for β-cells, the average spontaneous firing rate is close
to 3 Hz280. For our experiment, to reduce the number of parameters as much as possible, we
modeled only the most basal contribution of spontaneous activity: We chose moving gratings
because they are defined by only two parameters, a wavelength and a periodicity. We choose
a repetition rate of 3 Hz, consistent with the data in82,280,513. In the developing ferret visual
cortex, there are large scale spatial correlations within the activity patterns, up to 1 mm82, so
that we choose moving gratings with a periodicity of λ ≈ 0.5 mm. An interesting next stage of
our experiments will involve variations of this stimulation paradigm. For instance: What are
the effects of uncorrelated stimulation, i.e. with a pattern without spatial and temporal scales,
for instance random checkerboards? This experiment can shed light on the relevance of specific
spatiotemporal components and the responsible underlying mechanisms.
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The absence of bursts in stimulated cultures shows that bursts might be a pathology associ-
ated with deafferentation, or sensory deprivation384. In primary cortical cultures, periodic bursts
of action potentials emerge after typically 10 days in vitro in 2D79,497,498 and also 3D cultures146,
notably resembling to some extent the spontaneous activity in brain slices, or the deafferenated
cortex82. They are a robust feature of mature spontaneous activity in cultures224,232,244,448.
With development, the patterns increase in complexity308,498, but the activity remains highly
synchronous. Cell cultures form complex networks383,455 with high synapse density, high synapse
turnover214,331,357 and a conceptual similarity to percolation56,133,448, highlighting the involve-
ment of synaptic transmission. Synchronized electrical activity is an extremely robust phe-
nomenon, for instance lowering the environmental temperature does not stop bursting. Cooling
decreases the overall activity, while cultures still remain bursty. Even at conditions of extreme
hypothermia at 12◦C, at which cultured cortical networks can survive for hours, they continue to
generate extremely sporadic bursts414,415. This is not too surprising, considering (1) activation
of a single neuron in a microculture can elicit a burst, (2) bursts terminate by exhaustion of
vesicle pools87 and (3) synaptic processes as the refilling rate of the readily releasable pool are
heavily temperature dependent390. One established methods to control bursts employs closed-
loop electrophysiology500, providing external input tuned to counteract global network activity,
but this ad hoc method does not address the responsible mechanisms. Alternatively, pharma-
cological interference with neuro modulators, antagonists to NMDA and non-NMDA receptors,
Tetrodotoxin, increasing extracellular Mg2+ and GABA agonists, can break the pattern of burst-
ing. Interfering with synaptic transmission165 by lowering extracellular calcium, revealed a dif-
ferent dynamical regime, in which single neurons behave oscillatory379. Neurobasal 1x Medium,
the standard neuronal culturing medium used in this chapter, has a Ca2+ concentration of 1.8
mM, as many classical media. This value is similar to calcium concentrations in the range of 1.5-
2.0 mM in the brain. These numbers are slightly higher than the ionized calcium concentration
in blood of 1.0-1.3 mM, and much higher than intracellular levels from 50 to 100 nM123. Bursting
in cell primary cultures requires at least ≥ 0.5 mM379. In addition to these methods, lowering
the cell density can stop spontaneous activity all together, but there is no cell density at which
spontaneous activity would be asynchronous and irregular498. To sustain spontaneous activity,
one needs a plating density of at least 250 neurons/mm2, correspondingly a living cell density
of at least 50 neurons/mm2213. This indicates that the robust emergence of asynchronous and
irregular activity is related to pushing the system to a different dynamical regime. If this is the
case, stimulation during development might be the key ingredient for setting up specific and
designed circuits and is a new tool in the toolbox of synthetic neurobiology.

Providing a developing culture with external input is a developmental circuit manipulation
tool, resembling the mechanisms at work in the living brain332. In contrast to other techniques
as micro contact printing (the technique used in chapter 4), external input seems a natural
choice to manipulate neuronal circuits. Other well established techniques to manipulate the
connectome in vitro involve patterned surfaces to constrain the topology, either by topography
or by chemical means. (1) Chemical patterning methods were introduced in 1965 by adhering
fibroblasts to palladium islands evaporated onto a poly-acetate surface69. Adhesion promoting
molecules can then be transferred to the pattern251. Another method is the patterned deposition
of adhesion promoting proteins through silane- or alkanoethiol based surface chemistry345,425,515.
Here, the properties of alkanethiolate monolayers on a substrate are altered through UV-Light
exposure, which causes the oxidization to alkanesulfonate, thus altering its solubility. In a
second step the exposed area can be linked to a second molecular layer by immersion, cre-
ating another monolayer on top of the first120. These self-assembled monolayers (SAM) have
been used to grow dissociated rat hippocampal neurons on circuit-like patterns453. SAMs of
silanethioles have been used likewise to direct cell growth297. Uniformly coated MEA culture
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chambers with Poly(L-lysine)-grafted-poly(ethylene glycol) (PLL-g-PEG), a polymer that has
cell repelling properties, were locally freed from the polymer by electrical programmable desorp-
tion and in a multi process step subsequently coated with Poly-L-Lysine to establish a pattern of
cell adhesive molecules. This method was developed for printing patterns of alkanethiolates on
a gold substrate259, and has been used afterwards to topographically confine cell growth of neu-
rons on a glass substrate73,220,230,231,265. Using the cell repelling properties of Polyethylenglycol
(PEG) through a photo-lithographic process was also shown to effectively direct cell growth259.
More recently, seminal work on patterning using carbon nanotubes has been performed by the
group of Yael Hanein436 where islands of carbon nanotubes lead to the preferential growth of
clusters of neurons over the electrodes. These techniques have been used for confining cells
to uniform patterns of rectangular, striped or triangular shape55,178,221,231,285,297,470,493,494. (2)
Lithographic methods with a precision down to tens of nm186,426 also allowed to grow neuronal
cells on the bottom of deep pits on a silicon substrate and recorded through metal microelec-
trodes301. Three-dimensional (3D) microfluidic arrays of poly-dimethylsiloxane (PDMS) were
also used to confine cell topology to a certain pattern372,400 and were directly structured on
silicon wafers using a negative photo resist109. Building on the results of these experiments,
defined networks of cultured neurons from the pond snail Lymnaea stagnalis have been grown
in micro-structured polyester photo resist on a silicon substrate to study interconnected nerve
cell pairs using electrophysiological methods222. The method developed here complements these
patterning techniques and might be the key ingredient to precisely manipulate the connectome
of neuronal circuits in vitro.

What can we learn from circuits in a dish? One-dimensional neuronal cultures provide
a platform to study the propagation speed of neuronal signals216 and glial islands on which
monolayers of neurons or single neurons are grown are widely used in electrophysiological stud-
ies60,264. One has to be cautious about the implications of such research, considering that the
circuits formed in a dish are substantially more disorganized than the precision wiring of the
intact brain. Yet, cultures of neurons resemble to some extent in vivo neural tissue in struc-
tural features202, activity88,366 and development275. Further, it has been shown that networks
of dissociated cortical networks can store information229 and perform computational tasks as
blind source separation211. They offer a simple, robust and very controllable model system for
developing circuits. Our results specifically show the substantial influence of patterned activity
during development for functional aspects of neuronal circuits. The asynchronous and irregular
activity, that we observed, has long been considered a specific aspect of the precise cortical
architecture in a healthy animal. Studies in vivo or ex vivo were restricted to the analysis of
pathologies of activity patterns. We can, for the first time, design particular activity patterns,
and study their influence on the development of circuits, an experiment that is impossible in
the intact brain.

6.5 Materials and Methods

MEAs and Cell Culture

We used commercially available multielectrode arrays (60MEA200/30iR-Ti; Multi Channel Sys-
tems, Reutlingen, Germany) after coating the surface with Poly-D-Lysine. To this end, we add
1 ml of a 50 µg/ml solution into the well of a MEA. The PDL solution was left on the MEAs and
coverslips for at least 24 h. Typically, we prepared MEAs and coverslips a few days in advance,
and stored them with PDL solution in an incubator in the dark at 37◦C and 5% CO2.
Cell cultures were prepared according to Brewer59. Briefly, cortical neurons were obtained
from Wisteria WU rat embryos at 18 days of gestation (E18). The pregnant rat was anes-
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6. Developmental manipulation of the surrogate cortex

thetized with CO2. The embryos were removed by a cesarean section, decapitated and trans-
ferred to cooled petri dishes. The skull cavity was opened and the brain removed. Cortices
were surgically extracted with iris scissors, and transferred to ice cold HEPES (Invitrogen,
Germany) buffered Neurobasal (Gibco) medium. The supernatant was removed and the ex-
tracted cortices were trypsinized in a Trypsin/EDTA (trypsin: 0.05%; EDTA: 0.02%; Sigma
Aldrich, Taufkirchen, Germany) buffer for 15 minutes at 37◦C. Trypsinized cells were then
transferred to a 10% fetal calf serum (FCS) in Neurobasal (Gibco) solution. Thorough trit-
uration using a syringe and a needle with a diameter of 1 mm followed. The cell suspension
was then centrifuged at 1200 rpm for 2 minutes. The pellet was re-suspended in serum-free
B27/Neurobasal (Gibco) medium supplemented with Glutamax and Basic Fibroblast Growth
Factor (bFGF). Cells were counted with a Neubauer improved counting chamber. A droplet
of ≈ 100 µl cell suspension containing 1.000.000 cells was added on top of the electrode field
of the MEAs. The MEAs were then kept in an incubator providing a humidified atmosphere
with 5% CO2 at 37◦C for 4 hours to allow the cells to settle. 1 ml of the B27/Neurobasal
medium was then added to the cell chamber. After two days, we added 1 µl of a solution,
containing 3.4 × 1010 genome copies (GC) each of AAV9-hSyn-hChR2(H134R)-eYFP-WPRE-
hGH AAV1.Syn.NES.jRCaMP1a.WPRE.SV40 (UPenn Vectorcore). Cultures were then directly
placed on the light disco. Controls were kept in darkness1. Half of the medium was changed
every seven days. All animals were kept and bred in the animal house of the Max Planck Insti-
tute of Experimental Medicine according to European and German guidelines for experimental
animals. We kept cultures until three weeks of age, when most developmental measures saturate.
We used cortical cultures as the cell yield is higher than hippocampal cultures79.

The light disco

We designed the light projection apparatus, the light disco, from components easily available
in any laboratory. It consists of a LED array comprising 256 high luminance LEDs (Typ 19-
213/B7C-AQ2S1B2/3T, Everlight Electronics, Karlsruhe, Germany), that are controlled by an
Atmega 2560 (ATMega 2560-16AU AVR-RISC-Controller, Reichelt Elektronik, Sande, Ger-
many). This chip provides 54 digital input/output pins and is takted with a 16 MHz crystal
oscillator. We use 32 of the digital output pins to control the 16×16 LEDs multiplexed at 10 kHz,
well above the time constant of ChR2. The LED-drivers are two 8-channel ULN2803 sink drivers
(ULN2803-D 8 channel Darlington sink driver, Reichelt Elektronik, Sande, Germany) and two
8-channel UDN2981 source drivers (A 2982 SLW-T Treiber IC, SO-20W, Reichelt Elektronik,
Sande, Germany). The Atmega is programmed with a FT232 USB-serial converter (FT232RL
USB UART IC, SSOP 28, Reichelt Elektronik, Sande, Germany). The entire system fits in
an incubator, see Fig. 6.8. The LED array is positioned 20 cm away from a 45 deg mirror
(40 × 30 × 1.3 mm coated Aluminium on glass, Astromedia, Germany), 3 cm above which a
lens assembly with focal length f=16 mm and 21.4 mm aperture (16/21.4 mounted condenser
combination, Spindler and Hoyer, Göttingen, Germany) projects the image in 1.7 cm distance on
a MEA. The lens assembly, the mirror and the electronics are housed in a 3D printed gas-tight
box.
We measured absolute light intensities with a calibrated photodiode (Type S2386-8K, Hama-
matsu, Japan) that produces 274 mA/W at 470 nm illumination. We measure currents with
a Keithley 2100 shortcircuiting the diode. We use this method, rather than a transimpedance
amplifier and clamping the diode to 0 V, because this is how the diode was calibrated by Hama-
matsu. We analyze the spatial organization of the holograms with the light sensitive chip of a
commercial webcam, a Logitech C210, glued on a piece of glass with the size of a MEA. The

1Pun intended.
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sensor of this camera is a SIV100B, a 1/7′′ VGA/ISP CMOS chip with an integrated RGB color
filter, 8 bit output, a pixel size of 3.2 µm×3.2 µm and a resolution of 640×480 pixels. Notably,
every pixel has only one type of color filter on it, and color information is interpolated from
that. Throughout the measurement, we fixed the exposure time and the gain of the CMOS with
video for linux 2 (v4l2) to the smallest possible value.
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6. Developmental manipulation of the surrogate cortex

Figure 6.8: The circuit of the light disco. A An Atmega 2560 drives a series of ULN2803
and UDN2981 source drivers, that can generate the required current to operate the LED array.
The ULN2803 is a low side driver to provide a current sink to ground. UDN2981 a high side
driver to provide a current source. The FT232 is a USB to serial converter, connected serially
to the Atmega and via USB to a Laptop (not shown). The inset shows the system in operation.
Power/data is supplied by a rainbow colored ribbon cable that fits between the rubber seal and
the door of the incubator. B The LED array.
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Chapter 7

Challenges to the common design

“The eye of man, with its pretty good accommodation, its fovea, its miscellaneous
yellow filters, and its capacity for color vision, possesses in substantial degree the
physiological capabilities of the standard sauropsidan eye as we see it in the lizard
or the bird. But it has gained these powers through a lengthy process of
re-differentiation, which was carried out largely within the confines of the primate
order itself.”

Gordon Walls501: “The vertebrate eye and its adaptive radiation”.

7.1 Content

In this chapter, we use an additional approach to study the organization principles of visual
cortical circuits.
In the first section, we take the random wiring hypothesis for granted and construct ganglion
cell mosaics that could within this framework seed iso-orientation domains in the visual cortex.
We then compare the predictions of this model with data from cat and primate ganglion cell
mosaics which imposes a strong quantitative constraint on the random wiring hypothesis. These
studies further highlight that the assumptions of the previous chapters were justified and that
the universality of self-organization is a simple and compelling explanation for the ubiquity of
the common design. In the second section, we use the reinvention of color vision among primates
as a natural laboratory experiments to study the selective forces that favor the common design.
Trichromatic vision might have been one of the most fundamental and most recent changes in
visual cortical circuitry potentially challenging the common design.
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7.2 The random wiring hypothesis revisited

Here we study whether it is in principle possible for retinal ganglion cell mosaics to seed iso-
orientation domains in the visual cortex. As presented in chapter 3, several studies explained
the emergence of roughly periodic orientation preference maps (OPMs) in the primary visual
cortex (V1) of carnivores and primates by a random wiring mechanism in which input to V1 neu-
rons is dominated by a small set of feed-forward projections from retinal ganglion cells (RGC).
In this model, the typical column spacing of cortical OPMs arises via Moiré-Interference between
hexagonal ON/OFF RGC mosaics and critically depends on long-range hexagonal order within
these mosaics. Here, we introduce a novel method to infer RGCs mosaics that within the statis-
tical wiring framework yield realistic OPMs. Inferred mosaics lack long-range positional order
yet lead to aperiodic OPMs. They are characterized by specific angular correlations between
ON/OFF ganglion cell pairs. Comparing the model prediction with ganglion cell mosaics of cats
and primates allows us to calculate a strong quantitative constraint on the retinal influence on
visual cortical OPMs.

7.3 Citation and original contribution

Manuel Schottdorf, Stephen J. Eglen, Fred Wolf, and Wolfgang Keil: “Can Retinal Ganglion
Cell Dipoles Seed Iso–Orientation Domains in the Visual Cortex?”, PLoS ONE 9(1): e86139
(2014)427

I analyzed all data and performed the numerical simulations. I generated all figures and all
tables, except Figure 6. I wrote the manuscript together with all authors.
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Abstract

It has been argued that the emergence of roughly periodic orientation preference maps (OPMs) in the primary visual cortex
(V1) of carnivores and primates can be explained by a so-called statistical connectivity model. This model assumes that input
to V1 neurons is dominated by feed-forward projections originating from a small set of retinal ganglion cells (RGCs). The
typical spacing between adjacent cortical orientation columns preferring the same orientation then arises via Moiré-
Interference between hexagonal ON/OFF RGC mosaics. While this Moiré-Interference critically depends on long-range
hexagonal order within the RGC mosaics, a recent statistical analysis of RGC receptive field positions found no evidence for
such long-range positional order. Hexagonal order may be only one of several ways to obtain spatially repetitive OPMs in
the statistical connectivity model. Here, we investigate a more general requirement on the spatial structure of RGC mosaics
that can seed the emergence of spatially repetitive cortical OPMs, namely that angular correlations between so-called RGC
dipoles exhibit a spatial structure similar to that of OPM autocorrelation functions. Both in cat beta cell mosaics as well as
primate parasol receptive field mosaics we find that RGC dipole angles are spatially uncorrelated. To help assess the level of
these correlations, we introduce a novel point process that generates mosaics with realistic nearest neighbor statistics and a
tunable degree of spatial correlations of dipole angles. Using this process, we show that given the size of available data sets,
the presence of even weak angular correlations in the data is very unlikely. We conclude that the layout of ON/OFF ganglion
cell mosaics lacks the spatial structure necessary to seed iso-orientation domains in the primary visual cortex.
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Introduction

Many neurons in the primary visual cortex (V1) respond

preferentially to edge-like stimuli of a particular orientation [1]. In

carnivores and primates, orientation preference exhibits a

columnar arrangement such that neurons positioned on top of

each other from the white matter to the pia typically prefer similar

orientations. Tangential to the visual cortical layers, orientation

preference changes smoothly and progressively [1] except at the

centers of so-called pinwheels where neurons exhibiting the whole

range of orientation preferences are located in close vicinity [1,2].

The progression of orientation preferences across the visual

cortical surface (Orientation preference map, OPM) appears as

organized by a semiregularly spaced system of pinwheels and

adjacent columns preferring the same orientation over roughly a

millimeter distance [3–11].

Most models for the emergence of OPMs during postnatal

development assume that their layout is determined by intracor-

tical mechanisms (e.g. [12–17]). However, several recent studies

advance the notion that the structure of OPMs may result from a

statistical wiring of feed-forward inputs from the mosaic of ON/

OFF retinal ganglion cells (RGCs) to V1 [18–21] (Fig. 1A), an idea

pioneered by Soodak [22,23]. ON/OFF ganglion cells are

arranged in semiregular mosaics across the retina and project to

the lateral geniculate nucleus (LGN) of the thalamus. Thalamic

receptive fields resemble RGC receptive fields in shape, size, and

spatial distribution [24,25]. The retinotopic map [26–29] allows

neighboring retinal/thalamic ON and OFF center cells to project

to neighboring neurons in the primary visual cortex. Most nearest

neighbor RGCs are ON/OFF pairs [30]. According to the

statistical connectivity model, a V1 neuron predominantly samples

feed-forward inputs from geniculate projections in its immediate

vicinity [31]. If so, it is likely to receive input from a single pair of

ON/OFF RGCs, a so-called dipole [20] (Fig. 1A, left). The

neuron’s receptive field would then be dominated by one ON and

one OFF subregion (Fig. 1A, middle left) and its response

orientation-tuned [18–20]. In this picture, the preferred orienta-

tion is determined by the orientation of the RGC dipole (Fig. 1A,

middle right, right). Consequently, a key prediction of the

statistical connectivity model is that orientation preference across

the surface of the primary visual cortex should mirror the spatial
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distribution of the ON/OFF dipole angles in the RGC mosaics

[18,20,22,23] (Fig. 1B).

Paik and Ringach [20,21] showed how this model can explain

the experimentally observed roughly periodic structure of visual

cortical OPMs. In their model, ON and OFF cell mosaics are

assumed to form two independent noisy hexagonal lattices.

Superposing these two lattices leads to a hexagonal pattern of

dipole orientations via Moiré interference [32]. The statistical

connectivity hypothesis then implies that this hexagonal pattern is

mapped onto the cortex creating a roughly hexagonal OPM [20].

Hore et al. recently cast substantial doubts on the presence of

hexagonal order in experimentally measured RGC receptive field

mosaics [33]. They found that the positions of receptive fields of

ON/OFF RGCs in monkey retina are inconsistent with long-

range hexagonal order and are much better described by a so-

called pairwise interacting point processes (PIPP) in a parameter

regime where long-range positional correlations are absent [33–

35]. Such PIPP mosaics lack the long-range order necessary to

create a Moiré-Interference pattern and hence OPMs predicted by

the statistical connectivity model with PIPP mosaics do not exhibit

the experimentally observed spatially repetitive arrangement of

orientation columns [18,19,33].

Moiré-Interference of hexagonal RGC lattices constitutes one

particular way of creating an ordered arrangement of regularly

Figure 1. RGC dipoles and the statistical wiring model according to [20]. A Most left: A dipole of an ON center (empty circle) and OFF center
(filled circle) retinal ganglion cell (RGC). The black line connecting the two cells indicates that the two cells form a dipole. A V1 cell with input
dominated by this dipole has a receptive field with side-by-side subregions of opposite sign (middle left) and is consequently tuned to a specific
orientation w (middle right). We represent the preferred orientation of the V1 cell by the color of the bar connecting the two RGCs (most right). Note
that the preferred orientation of the V1 is orthogonal to the bar connecting the two RGCs. B The statistical connectivity model for orientation
preference maps. The receptive field midpoints of ON/OFF center RGCs are arranged in semiregular mosaics. The input to a cortical cell is dominated
by a single pair of ON/OFF dipole and the cortical units have oriented receptive fields. If RGC dipole orientations are locally correlated, orientation
preference h within layer 4 of V1 is predicted to vary smoothly resulting in a smooth and continuous map of orientation preferences. C Parametrized
definition of RGC dipoles. ON/OFF pairs with distance smaller than a parameter d are considered dipoles (black lines). For the centered OFF cell,
preferred orientations of dipoles are indicated. With increasing d, the number of dipoles increases and one RGC can form multiple dipoles.
doi:10.1371/journal.pone.0086139.g001
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spaced orientation columns in the statistical connectivity model.

Other spatial arrangements of RGCs are conceivable that might

lead to spatially repetitive cortical orientation maps resembling the

ones experimentally measured. Therefore, the lack of hexagonal

structure in RGC mosaics found by Hore et al. does not per se

dismiss the statistical connectivity hypothesis.

Here, we investigate a fundamental requirement on the spatial

structure of RGC mosaics to seed the emergence of spatially

repetitive cortical OPMs: a spatial correlation of RGC dipole

angles across the retina. RGC dipole angle correlations are

predicted to exhibit a spatial structure similar to that of OPM

autocorrelation functions. This means that RGC dipole angles

have to be locally positively correlated and anti-correlated on

intermediate scales. The precise values for both of these scales

depend on the column spacing of the OPM as well as the cortical

magnification factor. We first systematically analyze two previ-

ously published mosaics of cat beta cell somata positions [30,35] as

well as one primate parasol mosaic of RGC receptive field centers

[36] with respect to their dipole angle correlation functions. In

both species, we are unable to detect any statistically significant

positive or negative correlation. Since all three mosaics analyzed

each contain only around 100 cell positions (or RFs center

positions), the absence of detectable correlations might be a

consequence of the small size of the data sets. To address this

question, we introduce a novel point process that generates

mosaics with a tunable degree of spatial correlations of dipole

angles. The spatial structure of these angular correlations is

designed such as to match the autocorrelation functions of

experimentally measured OPMs. At the same time, the local

spatial statistical properties of the resulting model RGC mosaics

agree well with the experiment. On the one hand, the mosaics

generated by this process demonstrate that hexagonally organized

RGCs are indeed not necessary to obtain realistic OPMs within

the statistical connectivity model. On the other hand, the mosaics

generate by the point process can be used as reference mosaics to

access the amount of data needed to detect the presence or

absence of correlations. Finally, by statistical comparison of

mPIPP model mosaics and data, we show that, given the size of

our data sets, the presence of even weak angular correlations in the

data can be ruled out. We conclude, that the layout of ON/OFF

ganglion cell mosaics apparently lack a fundamental feature

necessary to explain the emergence of spatially repetitive

orientation preference maps in V1 within the dipole approxima-

tion of the statistical connectivity model. Our results suggest that

the ordered arrangement of orientation columns is unlikely to

originate from the spatial layout of RGCs and, hence, likely set by

intracortical mechanisms.

Results

Dipole Orientation Correlation Function in Cat and
Primate RGC Mosaics

We first determined the correlation function of dipole orienta-

tions in the two published cat beta cell mosaics. These mosaic

fields will be referred to by their keys: w81s1 and m623. Field

w81s1 was created by digitizing the map shown in Figure 6 of [30].

Field m623 was taken from [35]. To limit the restriction of

considering only nearest neighbor ON/OFF cells pairs, we

followed the flexible dipole definition introduced in [37]

(Fig. 1C). In this definition, a parameter d is introduced,

describing a distance below which neighboring pairs of ON/

OFF cells are considered as dipoles (see Eq. (4)). The larger d, the

more dipoles are formed by each RGC cell (cf. Fig. 1C). The

nearest neighbor distance distribution of the mosaic defines a

range of sensible d-values for each mosaic. For instance, the

nearest neighbor distribution of cat beta cell mosaics peaks around

60mm [30] and, therefore, d-values smaller than 60mm lead to the

extraction of only very few dipoles. On the other hand, values

larger than 100mm lead to many dipoles between non-nearest

neighbors.

Figures 2A–C show the m623 mosaic along with all the dipole

pairs, color-coded according to their orientation extracted for

d~60mm (A), d~80mm (B), and d~100mm (C) (see Materials and

Methods). Figures 2D–F display the dipoles found for the mosaic

w81s1. For d~80mm and 100mm, dipoles in both mosaics appear

as organized into linear chains which, at first sight, one might take

as an indication of spatial correlation in the dipole orientations

[37]. However, a quantitative analysis reveals that such correla-

tions are absent for all d-values (Figs. 2G–J). The only statistically

significant correlation present in both mosaics is a weak anti-

correlation on very short scales (v100mm) for d~100mm. This

finding will be explained in more detail below.

The two mosaics analyzed so far are based on the position of

cell bodies and not those of the actual RGC receptive fields. Since

these two do not match necessarily, it is important to test whether

RGC receptive field mosaics substantially differ from cell position

mosaics with respect to their dipole correlation structure.

Therefore, we next repeated the above analysis for a previously

published primate parasol cell receptive field mosaic (referred to

by its key G09 [36] in the following). Figures 3A–C show the G09

mosaic along with all the dipole pairs, color-coded according to

their orientation extracted for d~60mm (A), d~80mm (B), and

d~100mm (C). Again, a quantitative analysis reveals that dipole

angular correlations are absent for all d-values (Figs. 3D–F).

To analyze local correlations more systematically, we varied the

parameter d for all three mosaics in the data set over the entire

range of sensible values and determined angular correlations in

each of the mosaics in the first distance bin (see Materials &

Methods). Figures 4A and B depict the results of this analysis.

Interestingly, for small d-values, all mosaics exhibit a weakly

positive local correlation, whereas for larger d-values dipoles

appear anti-correlated in all three mosaics (see Fig. 2J for an

example). Intuitively, this dependency of correlation values can be

understood is a consequence of our flexible dipole definition

together with a typical distance between nearest neighbor RGC

(Fig. 4A). For small and intermediate d-values, an ON-cell

positioned between several OFF-cells forms dipoles with mostly

one or two of them. If dipoles are formed with two OFF cells, due

to the regular spacing of OFF cells, the angles formed by these two

dipoles are likely positively correlated (Fig. 4A, left inset). For

larger d-values, more than two dipoles are typically formed. In this

case, the regular spacing leads to an effective anti-correlation

between their angles (Fig. 4A, right inset). To investigate whether

such correlations suffice to seed the development of spatially

repetitive and smooth OPMs in V1, we compared the correlation

traces found in the experimentally measured mosaics to model

mosaics obtained by a pairwise interacting point process (PIPP)

[33,34]. The PIPP is a method for the generation of a spatial

distribution of points specifying only pairwise interaction between

individual points. It has been previously shown to accurately

reproduce the spatial statistics of experimentally measured RGC

mosaics [33,34]. With parameters fitted to experimental data, the

PIPP generates regularly spaced RGC mosaics with radially

isotropic autocorrelograms and lack of long-range positional order

[33]. For such mosaics, the statistical connectivity framework

predicts OPMs that lack a typical column spacing and are

qualitatively different from experiment [18,33]. Figures 4D,E

show that the local correlation of dipole angles in the model

Can RGC Dipoles Seed Iso-Orientation Domains?
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mosaics exhibit the same d-dependence as the data. For small d-

values mosaics exhibit a weakly positive local correlation, whereas

for larger d-values dipoles are weakly anti-correlated. We conclude

that the weak local correlations found in experimental mosaics are

a consequence of our flexible definition of RGC dipoles together

with a typical spacing between neighboring cells. The quantitative

match between PIPP mosaics and experimental data together with

the fact that PIPP mosaics seed unrealistic cortical OPMs in the

statistical connectivity model indicate that these correlations are

not sufficient to explain the layout of realistic cortical OPMs.

An OPM-modulated Pairwise Interacting Point Process
One might wonder whether the absence of detectable positive

or negative correlations in dipole angles is merely a consequence of

the small sizes of each of these data sets. In fact, all three mosaics

analyzed each contain only about 100 cell positions (or RF center

positions) and a similar number of dipoles. To clarify whether such

small data sets are sufficient to detect both relevant dipole

correlations, it is necessary to design model mosaics, e.g. defined

by a some point process, with realistic spatial statistics and with a

known degree of dipole angle correlations. Using such a point

process, one can then ask whether the size of the available data sets

in principle permits detection of such correlations. However, up to

this point, a suitable point process with a known degree of dipole

Figure 2. Spatial correlations of dipole orientations are absent in cat beta cell mosaics. A ON/OFF cells (empty/filled circles) for the cat
beta cell mosaic m623 [35]. Preferred orientation of dipoles extracted for d~60mm are shown as colored bars. Colorcode as in Fig. 1C. B as A but for
d~80mm. C as A but for d~100mm. D–F as A-C but for cat beta cell mosaic w81s1 [35]. G Correlation of dipole orientations for m623 (red) and w81s1
(blue), calculated from dipoles extracted for d~60mm. Error bars indicate 95% confidence intervals of bootstrap distributions. H as G but for
d~80mm. J as G but for d~100mm.
doi:10.1371/journal.pone.0086139.g002

Can RGC Dipoles Seed Iso-Orientation Domains?

PLOS ONE | www.plosone.org 4 January 2014 | Volume 9 | Issue 1 | e86139



angle correlations has not been proposed. We now introduce a

pairwise interacting point process (PIPP) with such characteristics,

and start by briefly outlining the definition of the conventional

PIPP for RGC mosaics as introduced in [34].

The PIPP is a method for the generation of a spatial distribution of

points specifying only pairwise interaction between individual points.

Interactions between points are usually specified in pairwise

interaction functions. The product of these pairwise interaction

functions for a specific location for all possible pairs of points gives

the probability of finding a point at a particular position. For

bivariate data such as the positions xi
ON and xi

OFF of a mosaic of

ON-cells and a mosaic of OFF-cells, the PIPP is characterized by two

intra-mosaic interaction functions hON,ON(Dxi
ON{x

j
OND),

hOFF,OFF(Dxi
OFF{x

j
OFFD) and one inter-mosaic interaction

hON,OFF(Dxi
ON{x

j
OFFD). To describe the positioning of beta cells in

the cat retina, Eglen et al. [34] used a parametric form of repulsion

h(r) ~
0 if rƒd

1 { exp {D
r{d

Q
Da

� �
if rwd

for all three interaction functions, with r~Dxi
ON{x

j
OND,

r~Dxi
OFF{x

j
OFFD or r~Dxi

ON{x
j
OFFD for hON,ON, hOFF,OFF or

hON,OFF, respectively. By fitting the parameters a and Q to

experimental data, they showed that inter-mosaic interactions are

sufficiently described by solely ensuring that two cells are not less

than the soma distance apart, i.e.

hON,OFF(r)~
0 if rƒd

1 if rwd,

�
ð1Þ

with d being the soma diameter. Intra-mosaic interactions were best

fit by values for a and Q which ensure a semiregular placement of

RGC cells without long-range positional order [34]. Such mosaics

lack non-local spatial order in their dipole angles and, hence, the

statistical connectivity framework predicts orientation maps that lack

a typical column spacing [18,33].

To introduce correlations of dipole angles into the PIPP, we

start by formalizing the illustration in Fig. 1A. The dipole vector

xi
ON{x

j
OFF between an ON/OFF pair of RGCs points in the

direction arg (xi
ON{x

j
OFF) in the interval ½{p,p). The preferred

orientation of the dipole (Fig. 1A, most right) can then be

mathematically expressed as

Figure 3. Spatial correlations of dipole orientations are absent in a primate parasol receptive field mosaic. A ON/OFF cells (empty/
filled circles) for primate parasol cell receptive field mosaic G09 [36]. Preferred orientation of dipoles extracted for d~60mm are shown as colored
bars. Colorcode as in Fig. 1C. B as A but for d~80mm. C as A but for d~100mm. D Correlation of dipole orientations for mosaic G09, calculated from
dipoles extracted for d~60mm. Error bars indicate 95% confidence intervals of bootstrap distributions. E as D but for d ~80mm. F as D but for
d~100mm.
doi:10.1371/journal.pone.0086139.g003
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w(xi
ON,x

j
OFF)~mod arg(xi

ON{x
j
OFF)zp=2,p

� �
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varying in the interval ½0,p). The main idea is now to modify the

inter-mosaic interaction function (Eq. (1)) to add a dipole

correlational structure that matches the spatial correlations of

orientation preferences in visual cortical OPMs. A visual cortical

OPM can be represented as h(x) with h[½0,p). Note that x here

describes positions on the retina. An OPM measured with optical

imaging of intrinsic signals [3,38] is naturally given as h’(X), where

X specifies cortical position. The retinotopic map x~R(X)
associates a cortical position X with a position x on the retina.

Via the inverse transformation, the representation of the OPM in

retinal coordinates is obtained, i.e. h(x):h’(R{1(x)). In the

following, only small subregions of OPMs were considered and the

retinotopic map was assumed to be linear.

Using the OPM representation h(x), we modify the inter-mosaic

interaction function Eq. (1) by multiplying it with a function

hc(xi
ON,x

j
OFF) that depends on the difference between the

preferred dipole angle w(xi
ON,x

j
OFF) and the preferred orientation

specified in the OPM at position (xi
ONzx

j
OFF)=2 (half way

between the two RGCs):

HON,OFF(xi
ON,x

j
OFF)~hON,OFF(r):hc(xi

ON,x
j
OFF): ð3Þ

We choose

hc(xi
ON,x

j
OFF)

~
exp c cos w(xi

ON,x
j
OFF){h (xi

ONzx
j
OFF)=2

� �� �
{1

h in o
if rƒd

1 if rwd:

8<
:

ð4Þ

In addition to ensuring that two cells are not less than the soma

distance apart, this new inter-mosaic interaction function enforces

that the positioning of an ON cell at position xi
ON and an OFF cell

at position x
j
OFF is such that the preferred orientation

w(xi
ON,x

j
OFF) of the ON/OFF pair is similar to preferred

orientation specified in the OPM at the corresponding point. In

this way, the OPM h(x) is expected to modulate the positioning of

ON/OFF cells when numerically simulating the positioning of the

RGC mosaics with a Monte-Carlo procedure [34] (Fig. 1D) such

that preferred orientations of dipoles align with preferred

orientations given in the OPM. Note that the preferred orientation

Figure 4. Measured local correlation values depend on choice of dipole distance parameter d. A Local correlations in cat beta cell
mosaics (red: m623, blue: w81s1) as a function of the dipole extraction parameter d (see Fig. 1C). B As A but for primate parasol cell receptive field
mosaic G09. C Weak local positive or negative correlations emerge in the same RGC configuration, depending on dipole extraction parameter d . D As
A but for simulated PIPP mosaics with parameters fitted to cat beta cell mosaics m623 (red) and w81s1 (blue). E As B but for simulated PIPP mosaics
with parameters fitted to primate parasol receptive field mosaics G09. All error bars indicate 95% confidence intervals of bootstrap distributions.
doi:10.1371/journal.pone.0086139.g004

ð4Þ
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of a dipole is orthogonal to the dipole vector xi
ON{x

j
OFF (see

Fig. 1A). With respect to the PIPP, this model has two additional

parameters. The strength of modulation through the OPM is

specified by a modulation parameter c. If c is zero, the positioning

of ON/OFF pairs is not influenced by the OPM region and the

model is equivalent to the PIPP model. The larger the value of c,

the stronger the penalty for OPM and dipole angle differing. We

refer to the process specified by this inter-mosaic interaction

function as modulated PIPP (mPIPP). The second parameter is the

distance d below which neighboring pairs of ON/OFF cells are

considered as dipoles (see Eq. (4)). This parameter is taken to be

the same as the parameter for defining dipoles (cf. Fig. 1C). Again,

the larger d, the more dipoles each RGC cell is assumed to form

with surrounding cells (cf. Fig. 1C). The nearest neighbor distance

distributions of the different mosaics imply sensible values for the

choice of d.

We would like to emphasize that by defining the mPIPP as

above, we by no means imply any influence of cortical orientation

preference upon the positions of ON/OFF RGCs during postnatal

development. The mPIPP merely is a phenomenological algorithm

to attempt to ‘‘reverse engineer’’ one plausible realization of an

RGC mosaic with the necessary spatial structure to yield an OPM

with realistic spatial properties within the statistical connectivity

model as considered in [20].

Statistical Characterization of mPIPP Mosaics
To characterize the mPIPP defined above, we first investigated

how the positioning of ON/OFF RGC dipoles is altered by the

modulation through realistic OPMs. To this end, we extracted

small regions of previously published OPMs from cat area 17 (data

courtesy of Z. Kisvarday, see Materials and Methods) and used

them to modulate the PIPP according to the above description.

Rectangular OPM regions must be chosen such that the size of the

retinal region corresponding to the OPM fits the two cat beta cell

somata position mosaics w81s1 and m623 [30,35]. Thus, the size

of the extracted cortical region depends on the cortical magnifi-

cation factor mmc=mmr at the position the mosaic has been

recorded from. The larger the magnification factor, the larger the

extracted cortical region has to be.

The center of mosaic w81s1 was located 19
0

below the mid line

of the visual streak, 4mm from the area centralis [35]. The mosaic

m623 has been obtained from 5 mm eccentricity and 5:5
0

below

the mid line of the visual streak. Both fields are situated at positions

in the visual field with similar cortical magnification factor (see

Materials and Methods), estimated to be j~1:7mmc=mmr, where

mmc is mm on the cortex and mmr is millimeter on the retina.

Both RGC fields are of similar linear extent (&1 mm). Hence,

extracted visual cortical regions were of &1.7 mm linear extent

corresponding to an area of approximately 3 hypercolumns [9,39].

Figure 5A show mosaics obtained by simulating an mPIPP with

a Monte-Carlo procedure for a cortical magnification of

j~1:7mmc=mmr, modulated by a cat OPM region for c~0
(left), c~2:5 (middle) and c~30 (right). ON/OFF pairs less than

d~80mm apart were considered to form dipoles. All other

parameters were chosen as in [34] for m623 (see also Table S1).

In the case c~0 (original PIPP), the dipole orientations are not

correlated with the preferred orientations specified in the OPM.

For c~2:5, some dipoles tend to locally align their orientation to

match the orientation preference given in the OPM but most

dipoles have random orientations. For c~30, the dipole orienta-

tions are strongly correlated with preferred angles specified in the

OPM. mPIPP realizations generally display fewer dipoles than the

experimental mosaic m623 for the same d-values (cf. Fig. 2B). This

is true even for the conventional PIPP process (m623: 109 dipoles;

mPIPP c~0: 98.6 dipoles on average; c~2:5: 77.8 dipoles on

average; c~30: 55.4 dipoles on average). This can be attributed to

a slightly increased inhomogeneity of both the PIPP and mPIPP

compared to the experimental data (see also Fig. 2 in [34]).

Figure 5B shows the spatial correlation of dipole angles for all

three c-values (see Materials and Methods). With increasing c,

dipole orientations become locally correlated for distance smaller

than 200mm. Correlation drops to zero around 200mm distance

and negative values are obtained between 200 and 500mm.

Moreover, the correlation function of dipole orientations ap-

proaches the correlation function of the OPM for increasing c
(solid dark red lines in Fig. 5B). Similarly, the cross-correlation

between the preferred orientation given by the OPM and the

orientation of the dipole rapidly increases with c (Fig. 5C). Finally,

we considered mPIPP mosaics modulated by larger OPM regions

(size 363 column spacings L, Fig. 5D). Again, spatial correlations

of preferred dipole orientations approach the correlation of

preferred orientations in the OPM for increasing c (Fig. 5E).

The dipole angle correlation function periodically modulates

around zero because in mPIPP mosaics dipole angles roughly

repeat within a typical distance. This shows that the mPIPP can

generate RGC mosaics that within the statistical connectivity

framework predict orientation maps with a typical distance

between adjacent column preferring the same orientation. The

typical distance upon which dipole angles roughly repeat depends

on the column spacing of the OPM used to modulate the PIPP as

well as the assumed cortical magnification factor. Smaller column

spacing or larger magnification factors will lead to a smaller scale

of periodicity in the dipoles and vice versa. Importantly, however,

dipole angle correlations decay to zero for distances larger than 2–

3 L, even for large c (Fig. 5E). Hence, long-range spatial order in

the dipole angles are absent in the mPIPP mosaics. This clearly

distinguishes the mPIPP dipoles from a pattern of dipoles obtained

by Moiré interference of two noisy hexagonal lattices where long-

range order is expected [33].

We next wondered whether the short-range spatial statistics of

ON/OFF cell positions was affected by placing dipoles such that

their preferred orientation tends to align with realistic OPMs. To

answer this question, we compared the nearest neighbor distance

distributions, autocorrelograms of cell positions as well as spatial

regularity of mPIPP mosaics with the data using statistical

measures defined in [33,34] (see Materials and Methods).

Figure 6 depicts the results of this analysis for c~0; 2:5; 30 for

the m623 OFF cell mosaic. Voronoi polygons and autocorrelo-

grams of all simulated mPIPP mosaics bear close resemblance to

the data (Figs. 6A and B). The nearest neighbor statistics of all

three mPIPP mosaics are statistically indistinguishable from each

other and all three are statistically indistinguishable from the m623

field (Figs. 6C and D). Figure 6E plots a topological disorder

parameter [33,40], m2, measuring the spread of the distribution of

the number of sides in each Voronoi polygon (Fig. 6A, see

Materials and Methods). m2 is plotted for 99 simulated mosaics as

dots along with the value obtained from the data as a blue

horizontal line. For each value of c this line falls within the

distribution of simulated values, indicating a good fit between

mPIPP model mosaics and the data. Similar results were obtained

when considering the w81s1 mosaic (data not shown). We

conclude that the local statistics of cell positions is independent

of the modulation parameter c and matches the statistics of

experimentally observed mosaics.

In summary, the proposed modulated PIPP generates semi-

regular mosaics of ON and OFF center cells with realistic spatial

statistics that within the statistical connectivity model predict

experimentally observed OPMs. For increasing c the local spatial
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Figure 5. Statistical properties of mPIPP mosaics. A mPIPP RGC mosaics obtained with modulation parameter c~0 (left), c~2:5 (middle) and
c~30 (right). ON (OFF) cells are displayed as empty (filled) circles. Dipoles are indicated as colored bars with colors indicating their preferred
orientation. OPM in the background is the region used to modulate the PIPP. Colorcodes as in Fig. 1C. Parameters for the PIPP were chosen as in [34]
for cat beta cell mosaic m623 [35]. The cortical magnification is j~1:7mmc=mmr . Dipoles were extracted with d~80mm (see Materials and Methods).
B Correlation of dipole angles for the mosaics shown in A (red circles: c~0 (left), 2.5 (middle), 30 (right)). Dark red line indicates correlation function of
the modulating OPM region in A. C Cross-correlation between dipole orientations and modulating OPM region for different values of the modulation
parameter c. Red line: numerical simulations. Blue line: analytical prediction (see Materials and Methods). D RGC dipole pattern obtained for an mPIPP
with c~20 from a 3L|3L-OPM. All other parameters as in A. For clarity, only the dipoles formed by the mosaics are shown as colored rectangles.
The modulating OPM region is shown in the background. Black square indicates the OPM region used to simulated the mPIPP in A. E As B for the
mosaic in D (c~20). Note, that the dipole correlation function closely follows the correlation function of the modulating OPM. All error bars indicate
95% confidence intervals of bootstrap distributions.
doi:10.1371/journal.pone.0086139.g005

Can RGC Dipoles Seed Iso-Orientation Domains?

PLOS ONE | www.plosone.org 8 January 2014 | Volume 9 | Issue 1 | e86139



correlation between dipole orientations increases yet long-range

positional order remains absent in the generated mosaics (Fig. 5).

By varying a modulation parameter c, we are able to tune cross-

correlations between dipole orientations in the RGC mosaics and

the preferred orientations given in the modulating regions of

OPMs. The spatial statistics of ON/OFF cells positions, however,

Figure 6. Spatial properties of cell positions in mPIPP mosaics are independent of c and in agreement with experimental data.
Spatial statistics of the experimental OFF cells in mosaic m623 (column 1) and mosaics obtained by simulating an mPIPP model for three different c
values (columns 2–4) and fixed j~1:7mmc=mmr and d~80mm. A Central region of the mosaics. Each point denotes one receptive field midpoint and
is surrounded by its Voronoi polygon. Scale bar: 250 mm. B Autocorrelogram of the points in A, with annuli drawn 25 mm apart. C Cumulative
distribution of nearest neighbor distances (G-function, see Materials and Methods). The gray region shows the 95% confidence interval of
distributions from mPIPP simulations, and the solid line reflects the data (reprinted from column 1). D L-functions for data and models, drawn in the
same format as for panel C. The dashed line indicates the expectation for Poisson point process (complete spatial randomness), L(t)*t. E Topological
disorder parameter m2 for 99 realizations of the mPIPP (black dots) and for the data (horizontal blue line).
doi:10.1371/journal.pone.0086139.g006
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is unaffected by this modulation and all c-values yield mosaics with

spatial statistics consistent with the data.

Using mPIPP Mosaics to Assess the Statistical Power of
Correlation Analysis

Having characterized its statistical properties, we used the

mPIPP to estimate the size of a data set necessary to detect

correlations between dipole angles that could seed the emergence

of locally smooth and repetitive OPMs. More specifically, we

wanted to estimate the so-called false negative rate of a test for

dipole angle correlations, i.e. the rate of rejecting the presence of

correlations when correlations of a certain degree are present in

the ensemble the data is drawn from. In principle, testing the

presence of positive local dipole angle correlations will require

fewer and smaller mosaics than the detection of presumably

smaller negative correlations on larger spatial scales. To estimate

the necessary size of a data set, we generated a number of N

mPIPP mosaics with known degree of spatial correlation (cf.

above) and varied their spatial extent. We then statistically

compared these ensembles to N conventional PIPP mosaics of

the same spatial extents [34] (see Materials & Methods for details).

Since PIPP mosaics lack the spatial dipole structure necessary for

seeding cortical OPMs, this comparison can be employed to

estimate a lower bound for detectable relevant dipole angle

correlations, given a data set with N mosaics of fixed size, all

measured at similar eccentricity. The latter implies that correla-

tions functions of the mosaics can be averaged to improve the

statistical power of the test. The two cat beta cell mosaics come

from different eccentricities. Therefore, their correlation functions

cannot be averaged.

Figure 7 depicts the estimates of the false negative error rate b of

the statistical test for the presence of dipole angle correlations.

Figure 7A shows the false negative rate for the detection of positive

local correlation in mPIPP mosaics simulated with different

modulation parameters c as a function of the number of mosaics

and their area. Even for small c, already one mPIPP mosaic of an

area of 1 mm2 (the size of the cat beta cell data sets) yields

b~0:07. This means that 93% of the realizations of such mosaics

are statistically distinguishable in terms of local dipole angle

correlations from an ensemble of PIPPs. Similarly, 5 mosaics with

an area of around 0.4 mm2 would be sufficient to reliably detect

even weak local correlations (c~3). Figure 7B displays the

probability of failing to detect negative correlation of dipole angles

around a distance of 300mm in the mPIPP mosaics. As expected,

averaging over more mosaics or, alternatively one larger mosaic is

needed to detect such anti-correlations. From the above analysis,

we conclude that both cat beta cell mosaics analyzed here are

sufficiently large to detect even weak local positive correlations of

dipole angles that could seed iso-orientation domains in V1, if

present. However, a larger data set (e.g. Nw9 mosaics of 1 mm2

measured at the same eccentricity) is needed to reliably test for the

negative correlations that would be indicative of seeding spatially

repetitive OPMs. Note that, since the mPIPP mosaics generally

contain slightly fewer dipoles than experimental RGC mosaics (cf.

Fig. 5A), all of the above estimates of statistical power are

conservative and most likely even fewer or smaller samples of real

mosaics would suffice to detect the presence of the respective

correlations.

Comparison between mPIPP Mosaics and Cat Beta-cell
Mosaics

The absence of spatial correlations in dipole orientations in both

published cat RGC mosaics can be employed to determine an

upper bound for the modulation parameter c of the mPIPP. To do

so, we synthesized mPIPP mosaics for a wide range of cortical

magnification factors j between 0:2
mmc

mmr

and 2:5
mmc

mmr

(estimated

value for both mosaics is j~1:7) and for a wide range of

modulation parameters c between 0 and 30. The maximum dipole

distance was fixed at d~80mm. However, similar results were

obtained with d~60mm and d~100mm. Each mPIPP mosaic

realization was modulated by a randomly chosen rectangular

OPM region from cat area 17. The size of the OPM region was

determined by the respective magnification factor j (see Materials

and Methods). For each pair of values (j, c), we generated 100

mPIPP realizations and calculated their dipole orientation

correlation functions. Figures 8A and B depict these correlation

functions for j~1:7mmc=mmr and c~30 (A) and c~0 (B). For

c~0, dipole orientation correlations of mPIPP mosaics and the

experimentally measured mosaic perfectly overlap. For c~30,

correlation values of experimental data lie far outside the min/

max range of correlation values obtained with the mPIPP mosaics.

To determine the range of c for which mPIPP mosaics are

consistent with the data, we then asked for each pair of values (j,

c), how likely the correlation values in the data for distances

smaller than 200mm are generated by the corresponding mPIPPs.

For each pair (j, c) this resulted in a Monte-Carlo p-value,

indicating the likelihood of finding the correlation value of the

experimental mosaic in the ensemble of mPIPPs. The p-values for

different (j, c) are depicted in Figures 8C (m623) and D (w81s1).

For both mosaics, pv0:05 if cw3, indicating that the experimen-

tal data is only consistent with very small values of c. For these

values, positioning of RGC cells in the mPIPP is only very weakly

modulated by the OPM region (see Figs. 5A and B). In fact, the

data from both RGC mosaics w81s1 and m623 are most consistent

with c~0, i.e. the previously described PIPP [34] with complete

absence of modulation from the OPM region. As emphasized

before, in this regime the V1 OPM predicted by the statistical

connectivity model does not exhibit a typical column spacing and

therefore the model cannot account for the experimentally

observed semiregular structure of visual cortical orientation maps.

Discussion

In this paper we tested a fundamental prediction of the

statistical connectivity model [18–23]. When considered in the so-

called dipole approximation, i.e. when each V1 neurons receives

input from only a few number of RGCs, the statistical connectivity

model predicts that RGC dipole angles exhibit spatial correlations

similar to the spatial correlations of orientation preferences in V1

OPMs. This means that dipole angles should be locally positively

correlated and anti-correlated on larger scales. We analyzed two

cat beta cell mosaics as well as one primate parasol receptive field

mosaic searching for the presence of such correlations. All three

mosaics lack spatial correlations on the relevant spatial scales

(Figs. 2, 3). Weak local correlations can be attributed to receptive

fields being semi regularly spaced and are not sufficient to seed

realistic cortical OPMs (Fig. 4).

To investigate whether the absence of detectable correlations

was merely a consequence of the small size of the available mosaic

data sets, we used a novel point process (mPIPP) which generates

realizations of an ON/OFF ganglion cell mosaic that could seed

realistic OPMs [18–20]. By modulating the positioning of ON/

OFF cells with experimentally obtained OPMs, the mPIPP

generates semi-regular ganglion cell mosaics which within the

statistical connectivity model will generate realistic spatially

repetitive OPMs. Notably, no Moiré-Interference mechanism
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needs to be invoked to generate periodicity of the OPMs. The

process extends previous work on PIPPs [33,34] to generate ON/

OFF cell mosaics with realistic spatial properties. By varying a

modulation parameter c, the influence of the OPM region on the

ON/OFF cells’ position could be arbitrarily and predictably tuned

(Fig. 5). The local spatial statistics of the model mosaics agree well

with experiment (Fig. 6). They are essentially insensitive to the

modulation through the OPM. However, the inferred mosaics are

characterized by a salient local correlation between neighboring

dipole orientations, anti-correlation at intermediate distances and

correlation at greater distances (Fig. 5), an effect of the typical

distance between adjacent columns preferring the same orienta-

tion in the OPM.

The mPIPP mosaics were then used as reference mosaics with a

predictable degree of dipole correlations to determine the

statistical power of inferring the presence/absence of correlations

from finite samples of RGC mosaics. We find that both cat beta

cell mosaics are sufficiently large to reliably detect even weak local

positive correlations of dipole angles that could seed iso-orientation

domains of the size observed in experimental OPMs (Fig. 7).

However, a larger data set of mosaics measured at the same

eccentricity would be needed to reliably detect the anti-correla-

tions on larger spatial scales that would be indicative of seeding

spatially repetitive OPMs. These findings then prompted us

determine an upper bound for the local dipole angle correlations

in the data (Fig. 8). Our results show that even weak correlations

are ruled out by the data. Thus, experimentally measured RGC

mosaics lack the local dipole structure to seed iso-orientation

domains of the size observed in experimental OPMs.

As explained above the data sets analyzed in the present study

are not sufficiently large to rule out a weak periodicity of dipole

angles in experimentally measured RGC mosaics. However, we

would like to emphasize that the presence of local correlations in

ON/OFF dipole angles appears as a necessary prerequisite for the

statistical connectivity model to yield spatially repetitive OPMs.

When hexagonal RGC mosaics are considered, dipole angle

correlations emerge via Moiré Interference of hexagonal mosaics,

that are positionally ordered over long distance (w1mm) [20,21].

Our algorithm to ‘‘reverse engineer’’ plausible realizations of

RGCs from measured OPMs shows that the statistical connectivity

model does not necessarily rely on such long-range positional order.

In the PIPP model, correlations of neighboring ON/OFF dipole

angles could instead be build into the mosaics by a simple

modification of the intra-mosaic interaction function studied in

[34]. The absence of angular correlations in the data not only

constrains the modulation parameter c of the mPIPP to very small

values. It also provides further evidence against the seeding of

Figure 7. Estimating the statistical power of the test for the presence of spatial correlations in RGC dipole angles. A False negative
rate (probability of failing to detect the positive local correlation) for mPIPP mosaics simulated with different modulation parameters c as a function
of the number of mosaics N and their area size (see Materials & Methods for details). Green box indicates size of cat RGC mosaic data sets analyzed in
the present study (N = 1, area size & 1 mm2). Note that even for c~3, the false negative rate with this data set size is very small. B False negative rate
for detecting negative correlation of dipole angles mPIPP mosaics around a distance of 300mm (see Fig. 5, see Materials & Methods for details). In all
panels, a cortical magnification of j~1:7mmc=mmr was assumed and PIPP parameters were taken from the fit to the m623 mosaic [34].
doi:10.1371/journal.pone.0086139.g007
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cortical OPMs via feed-forward projection of a Moiré interference

pattern from the retina.

One main simplification of the statistical connectivity approach

is that the transformation of visual inputs by the LGN is usually

ignored. RGC afferent terminal axons diverge in the A-lamina,

providing a one-to-many mapping between one X-RGC axon and

several X-type geniculate relay cells in cat LGN. Moreover,

geniculate neurons often receive input from several retinal

afferents [41]. However, these multiple retinal inputs have mostly

overlapping receptive-field centers [41]. This has important

implications for how the pattern of retinal dipoles might be

transformed into a pattern of LGN dipoles. The increased density

of LGN dipoles might not interpolate the sparsely sampled dipole

pattern of the retina. Therefore, the size of the iso-orientation

domains set by the LGN dipoles does not increase with respect to

the iso-orientation domains set by the RGCs. Instead domains of

dipoles of equal orientation sharply confined around RGC dipoles

(similar to a Voronoi tessellation of the dipole center positions)

might be the most likely outcome of the thalamic transformation.

If so, the thalamic transformation would not be able to transform

the uncorrelated dipole pattern in the retina into a pattern with

angular correlations on the relevant scales.

The statistical connectivity model has been advanced as a

theory explaining the establishment of a blueprint for the V1

orientation preference map during early visual development based

on retinal inputs from the contralateral eye [20]. In fact, the spatial

layout of initially established contralateral eye dominated OPM is

similar to the binocular OPM of the mature animal [42]. Hence,

retinal inputs from the contralateral eye alone should be

sufficiently structured to generate a spatially repetitive OPM with

typical column spacing in the millimeter range. These findings

usually justify the analysis of properties of mosaics from one eye

only while, of course, in the adult most visual cortical neurons are

binocular [1]. If, as our analysis suggests, mosaics in the individual

eyes lack the spatial structure necessary to seed realistic OPMs, it

appears unlikely to us that by combining inputs from ipsilateral

and contralateral eye, a correctly spatially structured seed could be

established. To establish the necessary spatial structure from two

spatially unstructured inputs, a considerable fraction of V1

neurons would have to receive their OFF subfield input from

one eye and their ON subfield input from the other. If this were

the case, the OPMs measured by stimulating the ipsilateral or

contralateral eye only in the adult animal should be considerably

different. This is, however, not what Crair et al. have shown [42].

We conclude that competing eye inputs are unlikely to offer an

alternative non-cortical mechanism for generating the structure of

experimentally measured OPMs.

The hypothesis (in this study called statistical connectivity

model) that cortical OPMs could emerge from a spatially

structured retinal organization has been previously considered

with three different RGC mosaic classes and in two different

regimes in terms of the number of feed-forward retinal inputs N

that a V1 neuron samples from. Both, Soodak and Ringach

considered noisy hexagonal RGC mosaics and a large number of

inputs to each cortical V1 cell (N& 20) [18,23]. In this setup, the

statistical wiring model results in OPMs without a typical column

Figure 8. Constraining the modulation parameter c with experimental data. A Correlation functions of dipole preferred orientations for 100
mPIPP realizations (pale pink dots, c~30, cortical magnification j~1:7mmc=mmr, d~80mm). Black drawn line indicates average correlation function,
dashed lines show +1s deviation from the mean. Red dots indicate correlation function of dipole orientations for the mosaic m623 (redrawn from
Fig. 2H). Insets show the T-distribution for Monte-Carlo data (blue) to estimate the p-value for the observed value (red) (see Materials and Methods).
Note the correlation-anti-correlation-correlation structure of the correlation function. B As A but for c~0. C Monte-Carlo p-values (see Materials and
Methods) for different values of c and the cortical magnification factor j for m623. Red line indicates p~0:05 significance value. D as C but for mosaic
w81s1.
doi:10.1371/journal.pone.0086139.g008
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spacing and, hence, cannot account for the spatial structure

observed in experimentally measured OPMs. Paik & Ringach

considered the model with noisy hexagonal RGC mosaics in the

so-called dipole approximation, where input to a V1 cell is

dominated by on average a close-by pair of one ON and one OFF

cell [20,21]. In this regime, OPMs predicted by the model exhibit

a typical spacing between adjacent columns. However, as outlined

in the introduction, the positional statistics of RGC mosaics is not

well described by noisy hexagonal lattices [33] and the PIPP

mosaics provide a much better fit to the data. The statistical

connectivity model considered with these more realistic mosaics

fails to generate maps with a typical column spacing [19,33]. Our

study introduces a third class of RGC mosaics (mPIPP mosaics)

with realistic positional statistics and a repetitive structure of

cortical OPMs. The improved match between data and model,

however, comes at the natural expense of spatial correlations in

dipole angles in the mPIPP mosaics which are not found in

experimentally measured mosaics.

The statistical connectivity model’s mismatch with empirical

evidence in each of the above mentioned parameter regimes

suggests that the spatial layout of OPMs is not determined by the

structure of RGC mosaics and may instead result from intracor-

tical mechanisms. One of the most striking demonstrations of how

such intracortical mechanisms can shape visual cortex architecture

comes from cat primary visual cortex. Using pharmacological

treatments, Hensch and Stryker [43] locally altered the balance

between intracortical inhibition and excitation during OPM

formation. Enhancement of inhibitory circuits locally widened

column spacing in V1 while local reduction of inhibition

broadened the spacing of columns. While those findings are

difficult to reconcile with the statistical connectivity hypothesis,

theories in which cortical columns arise from an intracortical

interplay between inhibition and excitation, e.g. [15,16,44,45],

could provide simple and plausible explanations for such an effect.

Similarly, the progressive interareal and interhemispheric match-

ing of features of columnar architecture such as the local column

spacing in cat V1 suggests a strong influence of activity-dependent

intracortical and even interareal interactions during postnatal

column formation and critical period refinement and reorganiza-

tion [9] (see also [46]).

The fact that RGC mosaics lack the spatial structure to seed

realistic cortical OPMs does a priori not rule out the possibility

that retinal/thalamic receptive field mosaics might exert an

influence on the layout of OPMs during postnatal development

or even provide a rough blueprint of visual cortical maps. In fact,

the representations of retinal blood vessel angioscotomas in the

visual cortex in some squirrel monkeys are a striking demonstra-

tion of the influence of retinal features on cortical selectivity

layouts [47] (see [48] for a theoretical treatment in terms of

activity-dependent mechanisms). If this is the case, preferred

orientations of RGC dipoles on the retina might still be a fairly

good predictor of cortical orientation preference for a substantial

fraction of neurons, and intracortical network interactions might

serve to organize a retinal seed of orientation preference into a

pattern with a typical spacing and a semi regular arrangement of

pinwheel centers. Furthermore, it remains possible that a higher

order statistical structure of RGC mosaics beyond simple dipoles

(or their thalamic transformation) is capable of driving the

formation of realistic OPMs. Including retinal biases or constraints

into existing models for the activity-dependent self-organization of

visual cortical orientation preference is needed to elucidate the

interplay between subcortical feed-forward constraints and intra-

cortical network self-organization.

Finally, our conclusions are necessary limited by the fact that we

do not have retinal fields and corresponding orientation maps

from the same animal. This is clearly a large task, and one outside

the scope of our current paper. Since anatomical RGC mosaics

were first presented in 1981, there have been only a few mosaics

published [30,35]. In particular, we have analyzed all retinal

mosaic data available to us from the two recent publications

[20,33]. Our results from the theoretical modeling presented here

should thus also be viewed as predictions that we would like to

revisit once more suitable data are available.

Materials and Methods

Optical Imaging Data & Preprocessing
Optical imaging data from twelve adult cat area 17 hemispheres

were used in this study. No experiments were carried out for the

sole purpose of the present study. We reanalyzed partially

published data, collected by the laboratory of Z. Kisvárday at

Ruhr University Bochum. The original animal license for these

experiments was issued to Prof. Ulf Eysel (Dept. Neurophysiology)

and the research program was supported by SFB509. All

experiments were conducted according to ethical regulations

issued by the Ruhr University Bochum and conformed to the

guidelines of the European Communities Council Directives, 1986

(86/609/EEC) as well as the German Animal Welfare Act. All

animals derived from in house animal farm or from registered

breeders for experimental animals.

Surgery and preparation protocols have been described in detail

elsewhere [49,50]. Briefly, optical imaging of intrinsic signals were

conducted on anesthetized (initial anesthesia: a mixture of

ketamine, 7 mg/kg Ketanest (Parke-Davis, Berlin, Germany),

and Xylazine, 1 mg/kg (Rompun, Bayer Belgium, Sint-Truiden,

Belgium), i.m.; prolonged anesthesia: 0.4–0.6% halothane in a 1:2

mixture of O2 and N2O using artificial ventilation) and paralyzed

(alcuronium chloride (0.15 mg/kg/h, Alloferin, Hoffman-La

Roche, Grenzach-Whylen, Germany, i.a.) animals using the

imaging system Imager 2001 (Optical Imaging, Germantown,

NY) and the data acquisition software VDAQ (Version No.

VDAQ218k, Optical Imaging). A craniotomy was performed on

one hemisphere between stereotaxic coordinates (Horsley–Clarke)

P7–A12 and L0.5–L6.5 to expose the cortical region correspond-

ing to the representation of the central and lower parts of the

visual field in both area 17 and area 18 [27]. Animals were

monitored continuously throughout all procedures to ensure that

adequate anesthesia was maintained. Area 17 identification was

made on the basis of stereotaxic coordinates. Before acquiring

data, the camera was focused at 650–750mm below the cortical

surface that was illuminated with 609+5 nm light. Visual stimuli

were presented to one eye. Full-field visual stimuli were presented

on a video screen (SONY, Pencoed, UK) in 120 Hz noninterlaced

mode. High contrast, square-wave gratings were generated at

optimal spatial (0.1–0.2 cycle/deg) and temporal frequencies (1–

2 Hz), using the stimulus generator systems VSG Series Three

(Cambridge Research Systems, Rochester, UK). After the

recording session, the animals were euthanized with an overdose

of anesthetics (Nembuthal). High vs. low spatial frequency stimuli

characteristic, respectively, for area 17 and area 18 were used to

visualize the area border.

Difference maps were obtained from single-condition maps as

described previously [49,50]. For each hemisphere a region of

interest (ROI) was defined containing the imaged part of area 17.

ROIs typically contained around 10–20L2 were L is the typical

column spacing of the OPM. Each raw difference map was Fermi-

bandpass filtered as in [10,11]. Low-pass cut-off was chosen as
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1:5mm, high-pass cut-off was chosen as 0:4mm. This preprocess-

ing ensured efficient removal of high-frequency noise from the

CCD-camera and low frequency variations in signal strength while

only weakly attenuating structures on the relevant scales.

Experimental Mosaics
All RGC mosaics used in the present study are available for

download from the website of Dr. Stephen J. Eglen (http://www.

damtp.cam.ac.uk/user/sje30/data/mosaics/).

Numerical Procedures for mPIPP Mosaics
Numerical procedures to obtain mPIPP ON/OFF mosaics were

chosen as previously described [19,34]. In short, we initially

positioned nOFF OFF-cells and nON ON-cells independently

according to a two-dimensional Poisson point process with cell

density matched to the density of cells in m623 and w81s1

respectively. We then updated these positions according to the

following loop (see Fig. 9A): For each ON-center cell a new

candidate position was generated at random. Considering the i-th

ON-center cell, this new position was accepted with probability

pi~

P
nON

j~1,i=j
hON,ON(jxi

ON{x
j
ONj): P

nOFF

j~1
HON,OFF(xi

ON,x
j
OFF),

ð5Þ

where HON,OFF is defined as in Eq. (3). After updating all ON

center cells’ positions, the procedure was repeated for the OFF

center cells, here for the cell number i

pi~

P
nOFF

j~1,i=j
hOFF,OFF(jxi

OFF{x
j
OFFj): P

nON

j~1
HON,OFF(x

j
ON,xi

OFF)
ð6Þ

with different parameters for hOFF,OFF and hON,ON. Both loops

were repeated between 20 and 50 times. Note that from one

complete iteration of the algorithm to the next, the absolute

positions of all cells show no correlation (cf. Fig. 9). However, the

spatial statistics of the pattern including dipole angle correlations

are stable characteristics of the mosaics after only a few iterations.

Model parameters besides c and d were chosen as to match the

local spatial statistics of m623, w81s1 [34] and g09 [33],

respectively, and are summarized in Table S1. RGCs close to

the boundary of the simulated domain can only form dipoles in a

subset of all possible directions, potentially leading to boundary

effects in the mPIPP simulations. Since the dipole orientation is

enforced by a given OPM, we usually observe a slight decrease in

the dipole density towards the very edge of the retinal patches.

However, for the rather small beta-values that are consistent with

the experimental data (cf. Fig. 8), such boundary effects were

observed to play a negligible role. Source code for generating

mPIPP mosaics along with Matlab code for visualization is

provided as supplementary material to the manuscript.

Dipole Extraction and Correlation Function
Following [37], we assumed a pair of ON/OFF ganglion cells at

position x and y respectively to form a dipole if their distance was

smaller than a parameter d, i.e. Ex{yE2vd. A dipole’s preferred

orientation was defined as in Eq. (2). Note that this orientation is

orthogonal to the orientation of the dipole vector connecting the

ON/OFF pair (see Fig. 1A). A dipole’s position was defined as

(xzy)=2, i.e. half way between the ON and the OFF cell. Note

that one RGC can form multiple dipoles depending on the choice

of d. Spatial correlations C(R) between dipole angles w(x) and

w(y) were calculated as [51,52]

C(R)~ cos w(x){w(y)ð Þ
(R{b=2)ƒEx{yE2v(Rzb=2)

,

where b is a fixed bin size. To obtain Fig. 5B, Figs. 2G–J and Fig. 8,

for a given mosaic, the bin size was chosen such that the diagonal

of the rectangular retinal section considered contained 20
equidistant bins. Cross-correlation between the modulating

OPM h(x) and the dipole orientations w(x) (Fig. 1D, lower panel)

were determined with

Ccross~ cos w(x){h(x)ð Þ
dipoles

:

where the average is taken over all dipoles in the retinal region

considered. The expected value of Ccross for an mPIPP with a

given c can be estimated using the probability p of positioning an

ON/OFF cell

p(Dh)~
1

N
exp (c( cos (Dh){1)),

where Dh is the difference between the dipole orientation w and

the preferred orientation specified in the orientation map h(x) and

N is a normalizing factor, i.e. N~
Ð

d(Dh) exp (c( cos (Dh){1)).

For large enough retinal regions, we have

cos (Dh) dipoles ~

ðp

{p

d(Dh)p(Dh) cos (Dh)~
I2(c)

I0(c)
,

where Ij(c) is the j-th modified Bessel function of the first kind.

This function is depicted in Fig. 5C (blue line) along with the

numerically obtained cross-correlation values (red line).

Cortical Magnification Factor at the Position of the
Measured Mosaics

To determine the V1 OPM region sizes to which the two

published cat beta cell mosaics correspond, we estimated the

cortical magnification factor at the respective retinal positions. The

center of mosaic w81s1 was located 19
0

below the mid line of the

visual streak, 4mm from the area centralis [35]. With respect to a

cartesian coordinate system with origin at the area centralis and x-

axis along the visual streak this position is

4mmr cos (19
0
)

4mmr sin (19
0
)

 !
~

1:3mmr

3:8mmr

� �

In the cat retina, 1mm r roughly corresponds to 4:4 deg visual

angle [53,54]. Thus

1:3mmr

3:8mmr

� �
?

5:9
0

17:2
0

 !
:

From [27], we determined the cortical magnification for

elevation 5:9
0

and azimuth 17:2
0

to be about 0:15mm2
c=deg2.

Thus, via
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j~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:15

mm2
c

deg2

s
:4:4

deg

mmr

~1:7
mmc

mmr

,

we estimate that, at the location of w81s1, 0:6mm on the retina

correspond to 1mm visual cortex. The typical column spacing of

cat OPMs is Lc&1mmc [39,55]. Hence, we would expect a

periodicity of about Lr~0:6mmr on the retina.

The mosaic m623 has been obtained from 5 mm eccentricity

and 5.5 deg below the mid line of the visual streak. This

corresponds to the point (2:1
0
,22:6

0
) in the visual field, which

again has 0:15mm2
c=deg2 cortical magnification. Thus

0:6mmr~̂~1mmc for m623.

Figure 9. Constructing RGC mosaics from measured OPMs with an mPIPP. Upper panel: OPM measured in cat V1. Below, left: Inset of OPM
used for modulating the mPIPP; right: Initial condition of the Monte-Carlo optimization procedure. ON/OFF RGC mosaic are specified by a
homogeneous Poisson process. Positioning of RGCs is irregular. The preferred orientations of dipoles (colored bars) do not match the orientation
preferences of the OPM region. Lower most panel: ON/OFF RGC mosaic after 20 iterations of the Monte-Carlo procedure with c~30 and
j~0:6mmc=mmr for mosaic m623 (see Materials and Methods). Positioning of RGCs is semiregular and preferred orientation of dipoles are almost
perfectly aligned with orientation preferences of the OPM region (background). Colorcode as in Fig. 1C. B Orientation map region, superimposed
mPIPP mosaics (left) and corresponding dipole correlation function (right) for 0,5,40, and 80 iterations (upper most to lower most panels). Note that
the dipole angle correlations settle around their final values within only a few iterations of the process, whereas the precise positions of the ON/OFF
cells continues to change.
doi:10.1371/journal.pone.0086139.g009
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The mosaic g09 was measured at 9 mm eccentricity (temporal

retina) at 41
0

visual angle in Macaca mulatta, Macaca fascicularis.

At this point 1:4mmr~̂~1mmc ([20], Suppl. Inf.).

Spatial Statistics of mPIPP Mosaics
We have analyzed the spatial statistics of mPIPP mosaics using

previous methods [33,34]. In short, to obtain the G-function, for

each point in a mosaic the distance to its nearest neighbor was

calculated and the cumulative distribution of these distances was

computed. The L-function is the scaled expectation of the number

of points observed within a given distance of any point. In

Figures 6C and D, we have drawn the 95% confidence levels from

99 mPIPP simulations (gray shading). Informally, if the measure

from the observed mosaics (solid lines in Fig. 6) falls within the

confidence intervals, then the model is a good fit to the observed

mosaic. Topological disorder, m2 was quantified using [40]

m2~
X

n

(n{6)2Pn,

where Pn is the probability of a Voronoi polygon having n edges.

Calculation of p-values for Local Spatial Statistics
All p-values used in the present study are Monte Carlo P values

[34,56]. Each model is run, using the same parameters but with

different initial conditions, 99 times. Each mosaic (both observed

and simulated) is then compared against the other 99 mosaics, and

a certain measure T is calculated. The 99 T values are sorted, and

the rank of the T measure corresponding to the observed field is

divided by 99 to calculate a p-value. p-values of 0.05 and smaller

indicate that the model does not fit the observed data at the 5%

significance level. The smallest p-value calculated is thus 0.01 with

99 simulations.

Calculation of p-values for Spatial Correlation of Dipole
Angles

From N~100 independent realizations of the mPIPP, we

obtained circular correlation functions Ci(R) with i[½1,100� and R
being the binned distance (see above). We introduced a measure

Ti~
X200mm

R~0mm

Ci(R){ C(R)
� 	2 ð7Þ

where C(R) ~
1

N

X
i
Ci(R) is is the average correlation of

the mPIPP simulations. Note that only bins with Rƒ200mm were

used (the region of strong positive correlation). The distribution of

values T quantifies how much the test ensemble of Ci deviates

from the average. Next, we repeated this evaluation with the

correlation function M(R) obtained from the cat mosaics:

S~
P200mm

R~0mm

M(R){ C(R)ð Þ2 ð8Þ

From the distribution of the Ti’s and value of S, the Monte-

Carlo p-value was estimated as described above.

Estimation of the Statistical Power of Hypothesis Test
The null hypothesis of the statistical test is that RGC dipole

angles are correlated in space. To estimate the statistical power

of our hypothesis test for the presence of correlations, it is

necessary to estimate the probability that the test will reject the

presence of correlations when the alternative hypothesis is true,

i.e. the RGC mosaics stems from an ensemble of correlations.

To do so, we simulated an ensemble of mPIPP mosaics with

known correlational statistics. Different realizations of the

mPIPP were then compared to a PIPP control ensemble with

respect to their dipole angle correlations. In some mPIPP

realizations, the angular correlation of the mPIPP will be within

the range of correlations of the PIPP ensemble. Comparing

these correlations values and concluding that the mPIPP

realization stems from a PIPP ensemble without angular

correlations would constitute a type II statistical error (false

negative). The probability of such an error, i.e. false negative

rate, is a measure of the statistical power of the test. This

probability was estimated by repeatedly comparing mPIPP

realizations to PIPP ensembles.

More precisely, we first chose a value c, an area size A and a

number of mosaics N. Within the area A of the retinal patch,

the RGC density was fixed to the values of mosaic m623,

rON~67mm{2 and rOFF~74mm{2. Then, we calculated 500

realizations of mosaics for this area and c~0 to obtain the

PIPP ensemble. From this ensemble, we randomly drew 100

mosaics with replacement and calculated their correlation

functions. From the 100 correlation functions, N were drawn

and averaged, in total a 100 times. From this set of averaged

correlation functions we calculate the distribution of Ti

according to Eq. (7). Next, we compare these Ti with an S

(Eq. (8)) obtain from averaging correlations functions of N

random mPIPP realizations of the chosen c and with the same

A. This resulted in a single p-value for this particular set of

realizations. To estimate the probability of falsely rejecting the

presence of angular dipole correlation, we calculated a

distribution of such p-values by repeating the above stated

steps a 1000 times. p-values larger than 0.05 (our significance

level) in this distribution indicate the occurrence of type II

statistical error. Fig. 7A shows the percentage of p-values larger

than 0.05 (i.e. the false negative rate, b) as function of A and N
for different values of c. Fig. 7A shows the same analysis for

periodicity. It is done analogously with correlations evaluated

between 200mm and 400mm.

Supporting Information

Figure S1 Spatial properties of ON cell positions in
mPIPP mosaics are independent of c and in agreement
with experimental data. Same as Fig. 6, but for ON cells in

RGC mosaic m623.

(TIF)

Table S1 Model parameters for PIPP and mPIPP
simulations used in the current study. Parameters are

chosen such that PIPP mosaics match the local spatial statistics of

m623, w81s1 (see [34]) and G09 (see [33]).

(PDF)

Source Code S1 Source code for simulating mPIPP
mosaics

(C)

Source Code S2 Source code for simulating mPIPP
mosaics

(DAT)

Source Code S3 Source code for simulating mPIPP
mosaics

(M)
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7.4 The evolution of color vision and the functional
architecture of the visual cortex

Content

Color vision was lost in mammals during the nocturnal bottleneck when our ancestors were small,
dark–dwelling animals between 205 to 65 Million years ago (Ma). Among modern mammals old
world monkeys and great apes (re–)invented trichromacy 30–40 Ma. The newly developed color
vision inserted new pathways into cortical functional architecture, potentially perturbing the lay-
out of orientation domains in the primary visual cortex (V1) through non–orientation selective
cytochrome oxidase (CO) blobs. How much impact color vision had on the overall functional
architecture of V1 remains unclear. We investigate this question focusing on orientation do-
mains, a key characteristic of V1 functional architecture. Orientation domains are arranged
around pinwheel singularities, whose spatial distribution in ferrets, shrews, galagos and cats is
quantitatively indistinguishable. At least for dichromats, there exists a common design.
Here, we show that trichromacy might leave a detectable fingerprint in the metrics of the com-
mon design by analysing a coupled optimization model between orientation and color selective
cells. We therefore compared trichromatic macaque (N=6) and monochromatic owl monkeys
(N=8) orientation domains against a background of normal (N=82) and dark-reared (N=21)
ferret, shrew (N=25), galago (N=9), and cat (N=13) and found that their layout adheres to the
common design. The common design is a specific and arguably small set of quantitative layout
rules and we next asked whether other metrics can reveal a difference between orientation do-
mains of trichromatic vs. color-blind species. To this end, we next develop a phenomenological
model to incorporate orientation unselective and color selective cells into a layout of orientation
domains using geometric distortions. Models of this type leave the measures of the common de-
sign invariant and make the prediction that randomization of the Fourier components decreases
the pinwheel density. In our data, however, we find a statistically identical and highly significant
increase of the pinwheel density across all Euarchontans and primates, showing that the evolu-
tionary invention of the color vision machinery in primates induced only a minor perturbation
to the modular organization of V1. The selective forces that favor the common design might
thus be so powerful as to preserve it under major transformations of the retinocortical pathway.
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Introduction

Neuronal circuits in the mammalian primary visual cortex have been shaped during the last
200 million years to effectively extract visual information from natural scenes. One approach to
further our understanding of these circuits is by comparative studies of phylogenetically distant
species. Two large groups of mammals, Carnivora and Euarchonta, have evolved large brains
independently and are widely separated in terms of evolutionary descent, belonging to distinct
supra-ordinal clades that split already during basal radiation of placentals34,257,325,342,353,354,451,
Fig. 7.1A. In all studied species within these two groups of animals, neurons in the primary
visual cortex respond selectively to edge-like stimuli of a particular orientation. Its spatial lay-
out reveals a patterns of iso-orientation domains, Fig. 7.1B, that exhibit a continuous, roughly
repetitive arrangement. A distance in the millimeter range, called the column spacing, separates
neighboring domains preferring the same orientation. The continuous progression of preferred
orientations is interrupted by a system of topological defects, called pinwheel centers. At a
pinwheel, neurons selective to the whole complement of stimulus orientations are located in
close vicinity41,46,50,76,166, see Fig. 7.1B. These topological defects exhibit two distinct topolog-
ical charges, indicating that preferred orientations change clockwise or counterclockwise around
the defect center46,166,242,462,527. Kaschube et al. demonstrated that in Carnivorans and Euar-
chontans, the statistics of the pinwheel configuration is quantitatively invariant, with potential
deviations in geometrical layout parameters of at most a few percent242. Specifically, the overall
pinwheel density, defined as the average number of defects within the area of one square column
spacing was found to be virtually identical. Subsequently, orientation domain layouts from cat
V1 were shown to exhibit pinwheel densities very close to those of the three species previously
studied245. During mammalian evolution, this common design most likely arose independently
in Carnivorans and Euarchontans and potentially even in Scandentia242,245, Fig. 7.1A, despite
the differently organized visual systems, Fig. 7.1C. This highlights the potential advantages of
this type of architectural layout in large brains239,242,245, but the strength of the selective forces
that favor the common design over other layouts of orientation selectivity is not known. Here,
we use the reinvention of color vision in primates as a natural laboratory experiment because it
required both the wiring of a new afferent pathway into the visual cortex and the rearrangement
of the visual cortical processing machinery. Considering this scale of modification, the reinven-
tion of color vision, possibly multiple times219, might have been one of the most fundamental
and most recent changes in visual cortical circuitry.

Many animals among fish, birds and insects are tetrachromats. Mammals lost most of their
color seeing ability in the nocturnal bottleneck, a period in time during which our common an-
cestor was a small and dark-dwelling creature (a process that might have occurred again when
some mammals returned to the ocean, losing their S-cone, further deteriorating their color-seeing
abilities164). As a rule of thumb, most current day mammals are dichromats and arguably the
most relevant exception to this rule exist among the primates. For a phylogeny of primates see375

and Fig. 7.1A. All primates share the same S (short wavelength, blue) opsin that they express
in retinal cone detectors. Catarrhines have two additional adjacent opsin genes on the X chromo-
some that express the L (long wavelength, yellow-green) and the M (medium wavelength, green)
opsin. Therefore, old world monkeys are routinely trichromats and both males and females
express three opsins (cf. Fig. 7.2A,B). Most Platyrrhini (new world monkeys) as for instance
the marmoset have a single polymorphic M/L opsin; males are dichromatic and heterozygous
females are trichromats534. Known exceptions to these rules are the Howler monkey, which is
routinely trichromatic, and the Owl monkey and the galago with only one middle-wavelength
opsin. M and L photopigments probably emerged as duplication of the original X-chromosome
opsin gene, believed to have occurred at the base of the catarrhine radiation, some 30 to 40
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Figure 7.1: Phylogenetic relationships and macroevolution of mammals. A The evolu-
tionary lineage of mammals diverged in the Triassic. Our early ancestors were small with poor
sight and small brains. Color vision was lost during this time, the Nocturnal bottleneck, and only
reinvented among few species. Colors indicate color vision abilities, type gray: monochromats,
blue/green: dichromats, blue/green/red: trichromats. The phylogenetic relationship between
separated species enables to critically test the convergent evolution hypothesis of orientation
domains and the impact of the reinvention of trichromatic vision in primates. B The layout of
orientation preference in five different species. Layouts of orientation domains exist in dichro-
mats, and monochromats, with the exception of rodents. C Qualitative differences of the early
visual pathway in cat, macaque, treeshrew and mouse, see428. The only trichromatic animal is
the macaque monkey.
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million years ago219. The selective advantages of trichromacy are not clear and neither are
the circuit modifications that correlate with complex color vision334,495. Color selective cells
in the higher primates exist in the retina, the thalamus113 and the cortex287. For primates,
luminance and color might go through different pathways, see Fig. 7.2A,B. Retinal parasol
cells respond well to luminance changes, and midget cells respond to changes in red-green color.
The S-cone pathway is distinct and part of the konio pathway. In the primate visual cortex,
there exist cells with color selective receptive fields, Fig. 7.2C. This example cell is a red-ON
green-OFF double-opponent cell, located in a region of the visual cortex, called a Cytochrome
Oxidase (CO) blob287. These blobs are regions with high metabolic activity that stand out in a
cytochrome oxidase stain. The clustering of color selective neurons in CO blobs together with
the two distinct pathways that terminate in different cortical layers287 could indicate the exis-
tence of a distinct color pathway in primates270, that is relying on the CO blob system present
in many other mammals340,352,474. Other evidence supports this idea of a distinct and parallel
color pathway. Gerald Jacobs and colleagues engineered knock-in mice that can express a third
L-cone photopigment, and gained improved chromatic discrimination. The authors speculate
that their experiment indicates inherent plasticity of visual circuits, that can incorporate a new
sensory modality without further evolutionary adaptation217,218,303. A more recent study with
Squirrel monkeys, a new world monkey with a polymorphic M/L opsin, described how the viral
expression of a third cone pigment in color–blind animals, made them color-sensitive306. If these
results hold, this would be consistent with a cortical machinery adaptable enough to process
information from an additional chromatic channel.

What are the signatures of the color vision machinery? Remarkably, when Margaret Liv-
ingston and David Hubel studied orientation selectivity of neurons within CO blobs, they found
that orientation tuning in these regions is weaker, Fig. 7.2C, and that the smooth progression
of orientation domains is interrupted by CO blobs, Fig. 7.2D. More recent experimental stud-
ies show that the fraction of V1 neurons that clearly prefer a chromatic stimulus are usually
insensitive to orientation and have homogeneous receptive fields226,433,444 Also, color-selective
neurons were found to be clustered and correlated with CO blobs92,262,263, a finding supported
by preliminary two-photon microscopy and histology80 which also indicated that color-selective
cells might exist in a specific spot within the cortical column. Theoretically, the presence of
CO blobs certainly breaks homogeneity and isotropy most notably changing the dynamics of
the system if coupled57. In addition, a number of theoretical models for the joined organization
of feature preferences245,395,396,397,427, most notably dimension-reduction models253, generically
predict that the presence of color vision directly affects the layout of orientation preference.
Several studies have shown that the common design is a very specific set of layout rules and
most models fall short in a direct quantitative comparison with data245,428. The common design
might therefore be the ideal tool to assess the impact of color vision on the layout of orientation
domains.
Here, we first develop a model for the joined organization of feature preferences. This model
predicts a detectable signature by groups of color-selective cells in the layout of orientation
domains reflected by the metrics of the common design. We therefore compare (N=6) orien-
tation domains from trichromatic macaques and monochromatic owl monkeys (N=8) against a
background of normal (N=82) and dark-reared (N=21) ferret, treeshrew (N=25), galago (N=9),
and cat (N=13). We first find that the evolutionary invention of the color vision machinery
induced only a minor perturbation of the system of orientation domains as far as the measures
of the common design are concerned. The common design is a specific and arguably small set
of quantitative layout rules and we next asked whether other metrics can reveal a difference
between orientation domains of trichromatic vs. color-blind species. To this end we develop
a phenomenological model class for the geometric insertion of cytochrome oxidase blobs into
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Figure 7.2: Color vision in higher primates. A Color pathways in primates. The P-Pathway
connecting retinal midget cells to neurons in layer 4 of the primary visual cortex is responsible
for color vision270. B The input from distinct cone types generates color selective responses92,444.
C An example for a color selective receptive field of a cell in an upper layer blob in macaque
striate cortex. This is a red-ON green-OFF double-opponent cell. D Neurons within cytochrome
oxidate blobs have impaired orientation selectivity. This figure shows example tuning curves with
the associated region on the surface of the visual cortex. E An electrode penetration, indicating
the preferred orientation and the occurrence of CO blobs as vertical bars. Panels C, D and E
are adapted from287.
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a layout of orientation domains that leaves the measure of the common design invariant. We
find that layouts generated by such models are particularly sensitive to phase randomization
which generically decreases their pinwheel density while in the data, phase randomization sig-
nificantly increases the pinwheel density. This increase of the pinwheel density is comparable in
all Euarchontan species studied here. Our results therefore show that the selective forces that
favor the common design are so powerful as to preserve it under a major transformations of the
retinocortical pathway.

Results

Symmetry based optimization model for CO blobs and orientation domains

To assess the conceivable signatures of the presence of orientation unselective and color selective
CO blobs in a layout of orientation domains, we first model the joined dynamics of an orientation
field z(x, t) and a cytochrome oxydase field c(x, t) as an optimization process of an unknown
energy functional F [z, c] by

∂tz(x, t) = F̂z[z, c] = −δF [z, c]

δz̄(x, t)
(7.1)

∂tc(x, t) = F̂c[z, c] = −δF [z, c]

δc(x, t)
. (7.2)

In order to ensure equity of orientation preference, orientation field solutions z(x) shifted globally
by a phase φ, that is eiφz(x), are required to be an additional solution of the dynamics. This
requirement can be realized by equivariance of the nonlinear operators to a global phase shift
F̂z[e

iφz, c] = eiφF̂z[z, c] and F̂c[e
iφz, c] = eiφF̂c[z, c]. Thus, only odd operators in z remain and the

vanishing orientation field z(x) = 0 becomes a solution of the dynamics. Cytochrome oxydase
is observed to evolve around an homogeneous equilibrium point c0. Orientation preference and
cytochrome oxydase is observed to be arranged into continuous and roughly repetitive domains.
The emergence of these patterns can be mimicked by a linear operator of Swift-Hohenberg type
L̂z/c = rz/c − (k2c + ∆)2. Expanding the unknown energy functional242,396,397,525 around the
equilibria up to third order yields the simplest optimization model for the emergence of an
orientation preference and cytochrome oxydase pattern

F [z, c] = −
∫

d2x

(
z̄(x, t)L̂zz(x, t)−

1

2
|z(x, t)|4

)
(7.3)

−
∫

d2x

(
1

2
c(x, t)L̂cc(x, t) +

1

3
γ̃c(x, t)3 − 1

4
c(x, t)4

)
(7.4)

−
∫

d2xU [z(x), o(x)]. (7.5)

where U [z(x), o(x)] = −κ̃c(x, t) |z(x, t)|2 is a coupling energy. The coupling energy of U [z(x), o(x)] =
−κ̃c(x, t) |z(x, t)|2 is minimal if the roots of |z|, pinwheels, co-localizes with maxima of o and
roots of o co-localize with maxima of |z| and captures the phenomenology of grouping orientation
unselective cells in CO blobs and vice versa. The variational dynamics of orientation preference
and cytochrome oxydase are given by

∂tz(x, t) = L̂zz(x, t)− z(x, t) |z(x, t)|2 − κ̃c(x, t)z(x, t) (7.6)

∂tc(x, t) = L̂cc(x, t) + γ̃c(x, t)2 − c(x, t)3 − κ̃ |z(x, t)|2 . (7.7)
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Figure 7.3: A joined optimization model for cytochrome oxidase and orientation
preference. A Stable closed-form solutions of orientation preference layouts in the absence of
CO coupling. B Stable closed-form solutions of CO. Above γ∗, hexagons are stable solutions.
C Phase diagram of orientation preference layout. At γ∗ CO hexagons become stable solutions,
and at γ∗2 , stripes lose their stability. In the region with hexagonal CO layouts, orientation
domains are dominated by various rhombic and stripe solutions.

Close to symmetry breaking 0 < rz/c � 1, the equations can be analyzed by weakly nonlinear
analysis and solutions are superpositions of plane waves

z(x, t) =
∑n

j=1

(
Aj(t)e

ikjx +Aj−(t)e−ikjx
)

(7.8)

c(x, t) =
∑n

j=1

(
Bj(t)e

ikjx + B̄j(t)e
−ikjx) . (7.9)

The stability of the solutions can be calculated by adding small perturbations to the solutions
(see methods). For decoupled fields U = 0, the orientation preference field z(x) is a classical
Swift-Hohenberg equation. In the expression for the CO-field, inversion symmetry o → −o is
broken by the constant γ. With increasing γ, CO-layouts formed by blobs on a hexagonal layout
become stable solutions, see Fig. 7.3A. This transition occurs at a critical value of γ∗. Beyond
γ∗2 waves become unstable. Fig. 7.3B shows the model’s phase space maped by solving coupled
amplitude equations. The solution space for CO blobs is in large parts dominated by hexagonal
crystals, see Fig. 7.3B, and the orientation domains by stripy and rhombic solutions. Both
crystals leave strong signatures in the metrics of the common design and should be detectable
in the data242.

Signatures of distortions in experimental layouts of orientation domains

We first analyzed the layout of orientation domains, measured with intrinsic signal imaging from
N=8 owl monkeys and either with intrinsic signal imaging (N=4) or voltage sensitive dyes (N=2)
from a total of six trichromatic macaque monkeys using the fully automated method described
in242. Pinwheel densities of macaque were statistically indistinguishable from each other and
statistically indistinguishable from π the value predicted for the average pinwheel density by the
long-range interaction model242, see Fig. 7.4A. As a measure of pinwheel position variability,
spanning all scales from single hypercolumn to the entire imaged region, we calculated the
standard deviation, SD, of pinwheel density estimates in circular subregions of area A. For all
species, the function SD(A) was well described by

SD(A) = c
( ρ
A

)γ
(7.10)
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Figure 7.4: Pinwheel statistics of macaque monkey V1. A An example layout of orienta-
tion domains from M. fuscata. B Shown are pinwheel densities of individual animals from six
species as function of the respective animal’s column spacing. The pinwheel density of individual
macaque monkeys is comparable to other mammals. C Averaging across all individuals reveals
that within statistical errors, the layouts of orientation domains are indistinguishable. D Shown
are the nearest neighbor distributions between pinwheels independent of their topological charge
d, between pinwheels of equal charge d++, and pinwheels of opposite charge, d+−. The drawn
lines are fit functions from242. E Shown is the scatter of pinwheel densities in subregions of
varying size. The standard deviation follows an approximate power law. Note that layouts of
macaque monkeys are slightly more irregular, although not significantly so: the prefactor c and
the exponent γ are within errorbars consistent with other Euarchontans.

(Fig. 7.4B) with ρ denoting the average pinwheel density. The variability exponents γ and
variability coefficients c were similar in all five species (Fig. 7.4D). As a measure of relative
pinwheel positioning on the hypercolumn scale, we computed the nearest neighbor (NN) distance
statistics for pinwheels of same or opposite topological charge as well as independent of their
topological charge. All three distance distributions were unimodal and very similar. Importantly,
the distributions obtained from macaque and aotus V1 were indistinguishable from the other
three species (Fig. 7.4C, insets) and are summarized in Tab. 7.1. These findings confirm the

Measure Macaque Owl monkey

Mean pinwheel density 3.19 [3.03, 3.42] 3.01 [2.79, 3.21]
Mean NN distance, independent of sign 0.347 [ 0.320, 0.367] 0.351 [0.341, 0.363]
Mean NN distance, equal sign 0.527 [ 0.502, 0.542] 0.539 [0.522, 0.561]
Mean NN distance, opposite sign 0.384 [ 0.350, 0.412] 0.387 [0.373, 0.403]
Mean gamma 0.34 [ 0.30, 0.46] 0.43 [0.36, 0.55]
Mean c 1.26 [ 0.90, 1.51] 0.95 [0.80, 1.04]

Table 7.1: The metrics of the common design measured for N=6 macaque and N=8 owl monkeys.
Shown are mean and 95% bootstrapped confidence intervals.

results of242,245,428 and show that macaque primary visual cortex follows the same quantitative
layout laws as cat, tree shrew, galago, ferret and aotus.
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We find that the evolutionary invention of the color vision machinery induced only a minor
perturbation of the system of orientation domains as far as the measures of the common design
are concerned. Considering that earlier studies, most recently by Schottdorf et al.428 and Keil et
al.245 revealed that the common design is a set of very specific layout rules that imposes serious
constraints on models, does the consistency of the macaque data with the common design rule
out any effect of the color vision machinery on the layout of orientation domains? To answer
this question we next construct a phenomenological model with several degrees of freedom which
leaves the measures of the common design invariant.

Distortions of orientation domains

While large scale distortions in layouts of cortical columns would be detectable by finite sized
wavelets237, local distortions with the same scale as orientation domains might have been
overlooked because our finite sized wavelet-based tools average across finite regions to take
anisotropies of the column spacing across several hypercolumns into account242. It is thus con-
ceivable that in order to incorporate orientation unselective CO blobs into a layout of orientation
domains, local geometric distortions can free space for color-selective and orientation-unselective
cells, while being undetectable with the common design.
To assess the merit of this idea, we model layouts of CO blobs as a smooth, real valued field
c(x), where the absolute value corresponds to intensity of the CO staining and x is the position
on the surface of the visual cortex. We represent a layout of orientation domains as complex
field z(x) where the half the phase is the preferred orientation, and the absolute value is the
orientation selectivity462. The simplest framework to conceptualize distorted domains is

z(x) = z0

(
x + ε

∂

∂x
c(x)

)
(7.11)

where z0 is the undistorted, free, layout of orientation domains. We choose the distortion field
to be the gradient of the scalar field c(x). The amplitude ε has to be small enough for the map
into distorted coordinates

y = x + ε
∂

∂x
c(x) (7.12)

to remain bijective (generating a one-to-one correspondence). We write ∂
∂x and ∂

∂y instead of ∇
to clearly differentiate between derivatives in respect to x and y. The distortions of the layout
are given by the Jacobian of the map,∣∣∣∣∂y

∂x

∣∣∣∣ = 1 + ε∆c(x). (7.13)

With a Taylor–expansion of c(y),

c(y) = c

(
x + ε

∂

∂x
c(x)

)
= c(x) + ε

∣∣∣∣ ∂∂x
c(x)

∣∣∣∣2 +O(ε2), (7.14)

we can write the inversion of the map to leading order in ε as

x = y − ε ∂
∂x

c(x) = y − ε ∂
∂y

c(y) +O(ε2). (7.15)

Then, the power spectrum of the distorted map is

z̃(k) =

∫
d2x eikxz(x) (7.16)

= z̃0(k)− ε
∫

d2y eikyz0(y)

(
∆c(y) + ik

∂

∂y
c(y)

)
+O(ε2) (7.17)
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The same result can be obtained by expanding

z0

(
x + ε

∂

∂x
c(x)

)
= z0(x) + ε

∂

∂x
c(x)

∂

∂x
z0(x) +O(ε2) (7.18)

and then moving the term ∂xz0(x) by integration by parts, assuming a vanishing surface term.
We see that the first correction of the distorted layout is a mixture of the distortion field and
the unperturbed layout.
To illustrate this, we distort the simplest layout of an orientation domains field z0(x) = exp(ikx)
with CO blobs modeled as Gaussians of finite width σ on a hexagonal lattice, see Fig. 7.5A. The
distorted layout is shown to the right. Layouts of orientation domains that fit the experimental
data best are so-called essentially complex planforms (ECPs). These planforms are solutions of
a symmetry defined class of models for the self-organization of iso-orientation domains240,242,525.
ECPs are monochromatic superpositions of plane waves and reproduce the measures of the
common design with remarkable precision. They are defined by

z(x) =
n∑
j=1

ei(ljkjx+φj) (7.19)

where

kj =
2π

Λ

cos
(
π jn

)
sin
(
π jn

) (7.20)

and lj = ±1 and the phase are chosen randomly. Planforms are essentially complex because
they can not be real valued. With a more complex free field, here a superposition of n = 9
ECP, the distortions are more subtle, Fig. 7.5B. The spectrum of the distorted map reveals
the contributions of the nine modes of the layout of domains and the hexagonal distortion field,
Fig. 7.5C.

Distorted orientation domains and the measures of the common design

The algorithm to analyze experimental data specifically takes into account that experimentally
measured domain layouts often exhibit local variations in column spacing237,242. Accordingly,
the metric of the common design might be robust against distortions of the layout of orientation
domains which are generated by the method above. To assess whether this is the case, we
designed a set of model layouts, calculated from ECPs with Λ = 0.6 mm, the reported column
spacing of orientation columns in macaque. In our data we measured the column spacing as
Λ = 0.66 (0.61, 0.73) mm for M. fuscata and Λ = 0.94 (0.85, 0.99) mm for M. fascicularis. This
difference between M. fuscata362 and M. fascicularis263,365 has been reported in the literature,
but note that the numerical value is not a critical parameter, because all results are normalized
with respect to Λ. We modeled the CO layout as a hexagonal lattice with the same spacing as
orientation domains341 and modeled each CO blob as a Gaussian with width σ = Λ/3 = 0.2 mm,
so that the layout consists of individual peaks57,341, see Fig. 7.6A. To analyze these model
maps, we used the fully automated procedure in242 in a circular region of interest to emulate
the geometry of experimental data. The resolution of our simulation is 50 pixels per mm and
close to experimental values. We study ensembles of 30 randomly chosen planforms with n = 8
and n = 20 modes (as in the supplemental material of242), see Fig. 7.6B. Fig. 7.6C shows
a n = 20 ECP, distorted with the layout of CO blobs in Fig. 7.6A. For both, ECPs with
n = 8, see Fig. 7.6D and n = 20, see Fig. 7.6E we found no deviation from the measures of
the common design as a function of the average distortion strength (in units of hypercolumns),
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7. Challenges to the common design

Figure 7.5: The distortion model. A The simplest layout of orientation domains, z0 =
exp(ikx), (left) is distorted by a hexagonal grid of CO blobs (center), yielding a distorted layout
(right). B The same as A but for a pinwheel rich layout of orientation domains. The insets show
magnified regions of the layouts, and white lines indicate contour lines of the CO field. C The
powerspectra of the layouts in B, before and after warping. Not the N=8 modes of the ECP.

despite obvious distortions in the layout of domains (cf. Fig. 7.6B vs. see Fig. 7.6C). This
results shows that even though the layout properties of orientation domains in most models can
easily be distinguished by the measures of the common design, there exist other models where
this is not the case. Given the multitude of options to extend the common design, we next
developed a generic method to assess structure in the experimental data. One viable approach
is based on phase randomization387 where the ad-hoc method is via a rotation of the phase at
each frequency242:

zrnd(x) =
1

(2π)2

∫
d2k e−ikx × eiφ(k)

∫
d2y z(y)eiky (7.21)

where φ(k) ∈ [0, 2π[ is a uniformly distributed random number. By construction, layouts gen-
erated with Eq. (7.21) have the same powerspectrum and the same autocorrelation function
as the original dataset, however, the linear correlation between real and imaginary part of the
complex field is not conserved. This correlation might be critical, and we therefore follow a dif-
ferent route: One can show that the linear correlation between multivariate data only depends
on relative phase differences387. Therefore we calculate a set of uniform random phases in the
interval φs(k) ∈ [0, 2π[ which fulfill

φs(−k) = −φs(k) (7.22)
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and apply this set of phases to both real and imaginary part of z(x) separately,

<zrnd(x) =
1

(2π)2

∫
d2k e−ikx × eiφs(k)

∫
d2y<(z(y))eiky (7.23)

=zrnd(x) =
1

(2π)2

∫
d2k e−ikx × eiφs(k)

∫
d2y=(z(y))eiky. (7.24)

Note that the symmetry of φs(k) constrains both <(zrnd(x)) and =(zrnd(x)) to be real-valued.
The randomized layout obtained has exactly the same two-point correlation functions as the
original data. For the subsequent measurement of the pinwheel density, we restrict the new map
to a geometry identical to the measured maps.

zrnd(x) = [<zrnd(x) + i=zrnd(x)] · roi(x) (7.25)

Note that the last step influences both phase and amplitude, but is necessary to construct a
fair control ensemble. Using this technique, we can generate an arbitrary number of surrogate
maps. In Fig. 7.7A, we show one example. The layout to the left is distorted and its Fourier
spectrum shows complex structure. Phase-shuffling destroys parts of this structure, and the
layout of domains appears more disorganized, see Fig. 7.7B. Notably after low pass filtering
(one of the critical steps of the analysis of experimental data) large regions can become devoid
of pinwheels. A more formal argument shows why randomization of the phases should decrease
the pinwheel density. We first assume that after shuffling the layout of orientation domains is
composed of two contributions

z(x) = z0(x) + zl(x) (7.26)

where z0(x) is the field from contributions around the critical circle and zl(x) are the components
with small spatial frequencies (cf. Fig. 7.7C and Fig. 7.5A). These fields are defined through
their correlation functions,

C0/l(x) = 〈z0/l(0)z̄0/l(x)〉. (7.27)

For isotropic and shift-symmetric Gaussian random fields, the pinwheel density is given527 by

ρ = − 1

4π

∆C(0)

C(0)
. (7.28)

For long spatial correlations of the low-frequency contributions, ∆Cl(0) � ∆C0(0) and for
moderate strength Cl(0) ≤ C0(0). The pinwheel density can then be approximated by

ρ = − 1

4π

∆C0(0) + ∆Cl(0)

C0(0) + Cl(0)
≈ ρ0

(
1− Cl(0)

C0(0)

)
with ρ0 =

−∆C0(0)

4πC0(0)
. (7.29)

The pinwheel density of an isotropic and monochromatic Gaussian randomfields is ρ0 = π; any
uncorrelated additive low-frequency noise will decrease the pinwheel density. The same technique
can also be applied to data. Fig. 7.7C shows the layout of orientation domains of a macaque
together with the Fourier spectrum. The phase shuffled layout is shown below. Qualitatively,
both layouts appear similar. Fig. 7.7D shows the same for a galago. Note the small artifacts
from blood vessels in the raw data. Fig. 7.7E summarizes the results for model and data.
Across all species, pinwheel density increased significantly in the data, Fig. 7.7F. In Fig. 7.7F,
we show both, the shuffled pinwheel densities obtained with Eq. (7.24) and Eq. (7.21). Note
that the pinwheel densities increase slightly, but not significantly so. Across all Euarchontans,
i.e. tree shrews and primates in our dataset, the pinwheel density is highly sensitive to phase
perturbation and increases significantly and comparably. In our model, phase randomization
has the opposite effect, and necessarily so. This more general test shows that the model is
incompatible with the data.
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that phase shuffling increases the pinwheel density. Phase shuffling the model layouts decreases
the pinwheel density. F Same as E as ensemble average.
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Discussion

In this study, we analyzed the layout of orientation domains in macaque monkeys and found it
to be consistent with the common design. The common design is a specific and arguably small
set of quantitative layout rules and we next developed a phenomenological model class for the
geometric insertion of cytochrome oxidase blobs into a layout of orientation domains that leaves
the measure of the common design invariant. We found that layouts generated by such models
are particularly sensitive to phase randomization which generically decreases their pinwheel den-
sity. In the data, we found phase randomization to significantly increase the pinwheel density
and this increase is comparable across all Euarchontan species studied here.

The universality of self-organization is a plausible mechanism to account for the common
design in trichromatic mammals. In addition, Tab. 7.1 verified the prediction of a univer-
sal solution set of a large symmetry defined class of self-organization models and highlights
that self-organization is a simple and attractive answer to account for the remarkable similarity
and robustness of orientation domains across diverse species with differently organized visual
systems (cf. Fig. 7.1C). The comparison with the phase shuffled ensembles further shows
that the experimentally observed layouts are also distinct from Gaussian random fields242,423.
Most theoretical models generate layouts and crystals with vastly different pinwheel statistics
57,131,163,254,271,305,319,320,395,396,397,525 and therefore there exist currently no plausible alterna-
tives428.

In this study, we used a precision measurement of the layout of pinwheels to constrain the
relative influence of the color vision machinery on the layout of orientation domains. Another
example is a study by Matthias Kaschube and colleagues236, in which they used a wavelet tool
to measure column spacing, and stripiness of orientation domains in young cats. They found a
highly significant correlation between litter mates. A precision measurement also presented evi-
dence for distorted layouts of orientation domains, most notably associated with the anisotropic
coverage of visual space237. This study found three contributions to the anisotropy: a mean
column spacing, a systematic topographic variation (that correlations with the visuotopic map)
and an additional individual topographic variation, notably the largest contribution. The preci-
sion measurement of a pinwheel density close to π, that emerges naturally from monochromatic
waves240,423,525, was difficult to reconcile with the finite power spectrum of experimentally ob-
served layouts330 and the model developed here can serve es a key building block to incorporate
wavelength anisotropy into existing models, while being consistent with the common design
within the confidence intervals.

In fact, a key finding of this study are phase correlations in the waves constituting the layout
of orientation domains. These correlations are required to generate orientation domains consis-
tent with the common design and distinguish them from Gaussian random fields423. A potential
mechanism to generate a finite power spectral width with organized phases are self-organizing
systems with boundaries, spatial anisotropies or other forms of disorder427,428. The specific
phase and amplitude structure of the Fourier components that give rise to layouts consistent
with the common design are currently unknown and hard to assess given the finite quality of
the data. In principle there are two ways to shed more light on these structures: (1) Novel
theoretical model types like the distortion model developed here might be a first step towards
a revised common design, that is even more sensitive to small deviations in the layout of orien-
tation domains. The distortion model moves pinwheels relative to one another, so that it is not
surprising that density and mean distance between pinwheels do not change massively. Higher
moments, for instance the variance of the pinwheel distance distributions, might be much more
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Figure 7.8: Two conceptually different views on the organization of functional archi-
tecture A The layout of ocular dominance, o(x), orientation domains z(x), spatial frequency
domains k(x), the retinotopic map r(x) and direction selectivity D(x) all interact with each
other. B In this picture, the orientation domains z(x) and the connectome w(x) govern the
spatial layout of the other layouts.

susceptible to small differences. Such models might also help to systematically understand the
relation between phase-correlation of the Fourier representation and the measures of the com-
mon design. (2) Experimental data with substantially improved signal-to-noise, most notably
calcium imaging, will make pinwheel analysis simpler and more robust. Our current pinwheel
analysis routine scans through spatial filter settings to find an optimal filtering condition. If
pinwheels were extractable from the data without this trouble, we can expect novel insights into
pinwheel layouts and the structure of its Fourier representation. Until now, both are obfuscated
by finite experimental precision.

The common design hints towards a hierarchy of cortical maps with orientation preference
as one of the key players. There are substantial and qualitative differences in the visual sys-
tems of animals that give rise to statistically indistinguishable layouts of orientation domains
(cf. Fig. 7.1C) even though there is an apparent tendency of iso-orientation lines to intersect
OD borders perpendicularly and the preferential positioning of pinwheels at ocular dominance
maxima27,40,200,355. The quantitative resemblance of orientation domains in ferret242, three-
shrew242, galago242, cat245,428 and macaque together with the similarity of the superficial patch
system337 and the synchronous emergence of ordered layouts and the formation and develop-
ment of horizontal connections50,63,121,516,517, originating from a diffused pattern63,292, implies
that there is a subset of models, in which the selective responses to various features, mapped
on the two dimensional surface, interact in an all to all fashion, see Fig. 7.8A. The most rele-
vant examples in the literature include Kohonen’s self-organized maps253, the elastic net122,246,
dimension reduction463,536 and symmetry coupled map formation471. Qualitatively different are
hierarchical models in which the layout of orientation domains provides the scaffold for the other
layouts, see Fig. 7.8B. This class of models includes the work of Lars Reichl395,396,397 building
on the joint optimization framework where the dynamic connectome w(x,y, t) and the layout of
orientation domains z(x, t) provide a scaffold525 for other functional aspects of cortical feature
selectivity. The absence of any significant deviation from the common design in trichromatic
macaque, dichromatic treeshrews and monochromatic galagos indicates that the latter class of
models might be more relevant and also explains the apparent absence of an obvious relation
between CO blobs and the layout of orientation domains in various species27,531.
To further test how strong the selective forces are that favor the common design, one can in
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the future look into more exotic animals, more specifically along the marsupial branch of the
mammals, see Fig. 7.1A, that diverged from the placental mammals 150 million years ago504.
In fact, the only other known cases for trichromacy in mammals exists in marsupials17. Devia-
tions from the common design in this branch of mammals might yield key insights into cortical
evolution and evolutionary principles of brain organization. If any deviations exist, this will
be a key insight for the selective pressures and evolutionary constraints that shape visual cor-
tical architecture. The two examples show in Fig. 7.1A are specifically interesting because
the fat-tailed dunnart (Sminthopsis crassicaudata) is a highly visual animal with trichromatic
vision16,17, a carnivorous diet and a small brain. The quokka wallaby (Setonix brachyurus) is
a nocturnal herbivore with a very high visual acuity491 and trichromacy17. It has a large brain
and patchy long-range horizontal connections in the visual cortex486. At some point the selective
forces favoring the common design are known to break down. In the primary visual cortex of
rodents, electrode penetration experiments since the 1970s suggested a lack of orderly layouts of
orientation domains. These experiments were conducted in the visual cortices of rat159,359,374,
gray squirrel489, mouse327,349 and rabbits339. More advanced imaging techniques112,458 revealed
a true dichotomy in the layouts of visual cortical architecture, Fig. 7.1B, between orientation
domains and a salt and pepper pattern. Filling “the evolutionary tree of orientation maps”330

can help to answer some of the open theoretical questions.

Conclusion

Despite the massive variations of visual cortical circuits in all these animals, salt and pepper,
and orientation domains are the only known layouts of orientation preference. Adding the
macaque to animals that adhere to the common design highlights the need for a new generation
of measurements and theoretical tools, ultimately challenging the selective forces that govern
the common design. Alternative layouts might ultimately lead to a genuine insight into the
computations performed by neuronal circuits in the primary visual cortex.

Materials and Methods

Solving the symmetry based optimization model for CO blobs and
orientation domains

To find solutions to Eq. (7.9), we use a multi-scale expansion of

z(x, t)→ √εz(x, t), c(x, t)→ √εc(x, t), rz/c → εrz/c, t→ t/ε, κ̃→ √εκ̃, γ̃ → √εγ̃ (7.30)

with a [arameter ε such that εrz/c is small. This leads to dynamics on the critical circle ‖k‖ = kc.
The field dynamics are hence described by modes on the critical circle

z(x, t) =
∑n

j=1

(
Aj(t)e

ikjx +Aj−(t)e−ikjx
)

(7.31)

c(x, t) =
∑n

j=1

(
Bj(t)e

ikjx + B̄j(t)e
−ikjx) (7.32)

with kj = kc(cos(jπ/n), sin(jπ/n))T and j− = j+n the mode on the opposite site of the critical
circle. Note that the coefficients of c(x, t) are identical so that c(x, t) is real valued and z(x, t)
is complex. The rescaled amplitude dynamics of Aj →

√
rzAj and Bj →

√
rcBj in units of the
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rescaled time t→ t/rz are given by

∂tAj = Aj −Aj
2n∑
j=1

gjk|Ak|2 − Āj−
2n∑
j=1

fjkAkAk− −

−κ (Aj−νBj+ν +Aj+νBj−ν)

τ∂tBj = Bj −Bj
n∑
j=1

hjk|Bk|2 − κ2
(
Aj−νĀj−2ν +Aj+νĀj+2ν

)
+ γBj−νBj+ν

with ν = n/3, τ = rz/rc, gjk = 2(1 − δjk/2), fjk = (1 − δjk − δjk−), hjk = 6(1 − δjk/2),
κ = κ̃

√
rc/rz, κ2 = κ̃/rz and γ = 2γ̃/

√
rc. Notice that quadratic coupling is only present if

the total number of modes are multiples of 6, that is n = 3Z. If κ2 � 1, the coupling becomes
unidirectional from cytochrome oxydase to orientation selectivity

∂tAj = Aj −Aj
2n∑
j=1

gjk|Ak|2 − Āj−
2n∑
j=1

fjkAkAk− −

−κ (Aj−νBj+ν +Aj+νBj−ν)

τ∂tBj = Bj −Bj
n∑
j=1

hjk|Bk|2 + γBj−νBj+ν .

Stable closed-form solutions in the absence of coupling

In order to analysis closed-form solutions and their stability, it is convenient to decompose
the amplitude equations of cytochrome oxydase and orientation preference into amplitudes and
phases Aj → Ajeiφj and Bj → Bjeiϕj , respectively. In the absence of mutual coupling, cy-
tochrome oxydase dynamics are given by

τ∂tBj = Bj − Bj
∑n

j=1 hjkB2k + γBj−νBj+ν cos (ϕj−ν + ϕj+ν − ϕj) (7.33)

τBj∂tϕj = γBj−νBj+ν sin (ϕj−ν + ϕj+ν − ϕj) (7.34)

and orientation preference dynamics by

∂tAj = Aj −Aj
2n∑
j=1

gjkA2
k −

−Aj−
2n∑
j=1

fjkAkAk− cos
(
φk + φk− − φj − φj−

)
Aj∂tφj = −Aj−

2n∑
j=1

fjkAkAk− sin
(
φk + φk− − φj − φj−

)
.

Notice that uncoupled amplitude equations with local interactions are typically converging to
solutions with only a few modes and quadratic interactions are only present for n = 3Z. Hence,
we restrict the analysis to n = 3 in the following.

Cytochrome oxidase stripes Cytochrome oxydase stripes are closed-form solutions with
a single non-vanishing mode of amplitude Bst = 1/

√
3, see Fig. 7.9B. The stability of cy-

tochrome oxydase stripes is determined by the amplitude dynamics, because perturbations in
the phase dynamics are of quadratic order. The dynamics of a small perturbation in amplitudes
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Figure 7.9: Bifurcation diagrams and solutions of the joined optimization model
for cytochrome oxidase and orientation preference. A Stable closed-form solutions of
orientation preference layouts in the absence of CO coupling. B Stable closed-form solutions of
CO. C Amplitude and stability region of closed-form CO solutions. Grey area: Co-existence of
CO stripes and CO hexagons, see Eq. (7.36). D Bifurcation diagrams of orientation preference
layouts with varying CO coupling strength κ and distinct initial closed-form solutions. Top row
for stripy CO layouts, bottom row for hexagonal CO blobs. Shown as lines are the amplitudes of
the constituting plane waves that solve the orientation amplitude equations. Note that some of
the amplitudes can be degenerated. Blue lines in the upper row are calculated for an intersection
angle of the initial condition of CO and orientation stripes of 90◦ and orange for an intersection
angle of 0◦.
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(Bst, 0, 0)T → (Bst, 0, 0)T + b and phases (ϕ1, ϕ2, ϕ3)
T → (ϕ1, ϕ2, ϕ3)

T + ψ is in linear order
given by

τ∂tb =

−2 0 0

0 −1 γ/
√

3

0 γ/
√

3 −1

 b. (7.35)

The eigenvalues of the stability matrix are given by λ1 = −2, λ2 = γ/
√

3−1 and λ2 = −γ/
√

3−1.
Cytochrome oxydase stripes are hence stable in the regime γ ∈ (−2γ∗, 2γ∗) with γ∗ =

√
3/2 as

illustrated in Fig. 7.9C.

Cytochrome oxydase hexagons Cytochrome oxydase hexagons are closed-form solutions
with three non-vanishing modes of equal amplitude

Bhex = |γ|/30 +
√

(γ/30)2 + 1/15. (7.36)

The phase of the amplitudes fulfill the condition ϕj−ν + ϕj+ν − ϕj = 2Zπ for γ < 0 and
ϕj−ν + ϕj+ν − ϕj = 2Zπ + π for γ > 0, see Fig. 7.9B. Phase dynamics of a small pertur-
bation in amplitudes (Bhex,Bhex,Bhex)T → (Bhex,Bhex,Bhex)T + b and phases (ϕ1, ϕ2, ϕ3)

T →
(ϕ1, ϕ2, ϕ3)

T +ψ is in linear order given by

τ∂tψ = |γ|Bhex

−1 1 −1
−1 −1 1
1 −1 −1

ψ. (7.37)

The eigenvalues are given by λ1 = −1, λ2 = −1+ i
√

3 and λ3 = −1− i
√

3. Perturbed amplitude
dynamics are given by

τ∂tb =

 1− 21B2 −12B2 + |γ|B −12B2 + |γ|B
−12B2 + |γ|B 1− 21B2 −12B2 + |γ|B
−12B2 + |γ|B −12B2 + |γ|B 1− 21B2

 b (7.38)

with the eigenvalues λ1/2 = 6B2−2|γ|B and λ3 = −30B2 + |γ|B. Cytochrome oxydase hexagons

are hence stable in the regime |γ| ∈ (γ∗,∞) with γ∗ =
√

3/2 as illustrated in Fig. 7.9C.

Orientation preference stripes Orientation preference stripes are closed-form solutions
with a single non-vanishing mode Ast = 1, see Fig. 7.9A. A perturbation around orienta-
tion preference stripes in the amplitudes (Ast, 0, 0, 0, 0, 0)T → (Ast, 0, 0, 0, 0, 0)T + a and phases
(φ1, φ2, φ3, φ4, φ5, φ6)

T → (φ1, φ2, φ3, φ4, φ5, φ6)
T +ψ leads in linear order to

∂ta = Ma (7.39)

∂tψ = 0 (7.40)

with (M)kl = −δkl(1+δk1). Thus, orientation preference stripes are stable closed-form solutions.

Orientation preference rhombs Orientation preference rhombs are closed-form solutions
with four non-vanishing modes of equal amplitude A2 = A2− = A3 = A3− = Arh = 1/

√
5 and

phases φ3− = φ2 + φ2− − φ3 + π, see Fig. 7.9A. A perturbation around orientation preference
stripes in the amplitudes (0,Arh,Arh, 0,Arh,Arh)T → (0,Arh,Arh, 0,Arh,Arh)T + a and phases
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(φ1, φ2, φ3, φ1− , φ2− , φ2 + φ2− − φ3 + π)T → (φ1, φ2, φ3, φ1− , φ2− , φ2 + φ2− − φ3 + π)T +ψ leads
in linear order to

∂ta = 1
5



−3 0 0 0 0 0
0 −4 −2 0 −2 −2
0 −2 −4 0 −2 −2
0 0 0 −3 0 0
0 −2 −2 0 −4 −2
0 −2 −2 0 −2 −4

a (7.41)

∂tψ = 1
5



0 0 0 0 0 0
0 −2 2 0 −2 2
0 2 −2 0 2 −2
0 0 0 0 0 0
0 −2 2 0 −2 2
0 2 −2 0 2 −2

ψ (7.42)

with eigenvalues of the amplitude stability matrix λ1 = −2, λ2/3 = −3/5 and λ4/5/6 = −3/5

and of the phase stability matrix λ1 = −8/
√

5
3

and λ2−6 = 0. Thus, orientation preference
rhombs are stable closed-form solutions.

Impact of cytochrome oxydase on orientation preference layout

A realistic account for hexagonal cytochrome oxydase patterns is the regime γ > 0. The impact
of cytochrome oxydase on the layout of orientation preference is examined by simulating the
amplitude equations of orientation preference, while fixing cytochrome oxydase to the closed-
form solutions. The gradual increase of cytochrome oxydase coupling κ with initial conditions
of orientation preference taken from weaker coupling with small additional noise results in the
bifurcation diagram shown in Fig. 7.9C.

Data

We analyzed four data sets obtained with intrinsic signal imaging from Macaca fuscata originally
published in362 and processed with the generalized indicator function method535. The other two
data sets were recorded from their southern cousins, Macaca fascicularis, with voltage sensitive
dyes365. The Aotus dataset was originally published in531. The other datasets are publicly
available with428.

Analysis of model and experimentally obtained orientation domain layouts

Column spacing of both data and simulation were analyzed using the wavelet method introduced
in236,238,241. This method specifically takes into account that experimentally measured domain
layouts often exhibit local variations in column spacing. This method is also the foundation
for an unbiased comparison of the pinwheel layouts in experimental data242. To estimate the
pinwheel density and other pinwheel layout parameters, we used a fully automated procedure
in242. We refer to its Supplemental Material for further details.
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Chapter 8

Gender bias in peer review

Y = λf.(λx.f(xx))(λx.f(xx))

Haskell Curry.

8.1 Content

Peer review is the “life-blood of research in academia [. . . ] the social structure that subjects
research to the critical assessment of other researchers”53. In a merit-based scientific world,
scientific results should be validated without regard to a scientist’s personal characteristics.
This chapter is a metascientific study whether this is actually the case.
Based on a large data set of more than 40.000 articles published in the last 10 years we found that
during the peer review process especially male editors select male reviewers to assess an article’s
merit. Hence, female scientists are participating even less in the scientific publishing process
than expected by their numerical underrepresentation alone. We also found that the mechanisms
of homophily differ between male and female editors. While this same-gender preference is
restricted to a small number of female editors, it is wide-spread among male editors. The large
majority of female editors, thus, already selects reviewers without gender-bias. We show that
homophily will persist even if numerical parity between genders is reached, highlighting the
need for increased efforts to combat distortion effects in general and gender bias in particular
in scholarly publishing.

8.2 Citation and original contribution

Markus Helmer, Manuel Schottdorf, Andreas Neef, and Demian Battaglia: “Gender bias in
scholarly peer review”, eLife 6: e21718 (2017)179

I conceived and designed the study together with all authors. I contributed to the formal
analysis, the validation, the methodology and the analysis tools. I wrote the manuscript together
with all authors.
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Gender bias in scholarly peer
review
Abstract Peer review is the cornerstone of scholarly publishing and it is essential that peer reviewers

are appointed on the basis of their expertise alone. However, it is difficult to check for any bias in the

peer-review process because the identity of peer reviewers generally remains confidential. Here,

using public information about the identities of 9000 editors and 43000 reviewers from the Frontiers

series of journals, we show that women are underrepresented in the peer-review process, that editors

of both genders operate with substantial same-gender preference (homophily), and that the

mechanisms of this homophily are gender-dependent. We also show that homophily will persist even

if numerical parity between genders is reached, highlighting the need for increased efforts to combat

subtler forms of gender bias in scholarly publishing.

DOI: 10.7554/eLife.21718.001
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Introduction
Peer review has an important role in improving

the quality of research papers. It is the “life-

blood of research in academia [. . .] the social

structure that subjects research to the critical

assessment of other researchers” (Bour-

dieu, 1975). This structure relies on self-regu-

lated interactions within the scientific

community, in which a journal editor appoints

peer reviewers with expertise in the subject of a

particular manuscript to report on the quality of

that manuscript and to provide recommenda-

tions for its improvement. Other attributes of

the peer reviewer, such as their gender, should

be irrelevant (Moss-Racusin et al., 2012;

Nature, 2013). However the identities of peer

reviewers and editors are usually confidential, so

previous work on gender balance in the peer-

review process has relied on small, monodiscipli-

nary data sets and these studies have given

partly contradictory reports (Lloyd, 1990;

Gilbert et al., 1994; Budden et al., 2008;

Borsuk et al., 2009; Knobloch-

Westerwick et al., 2013; Larivière et al., 2013;

Buckley et al., 2014; Demarest et al., 2014;

Handley et al., 2015b; Fox et al., 2016).

Frontiers journals (www.frontiersin.org) differ

from most journals in that they generally disclose

the identities of peer reviewers and associate

editors alongside each published article in an

attempt to increase the transparency and quality

of the publication process (Poynder, 2016). This

allowed us to extract the names of associate edi-

tors, peer reviewers and authors for articles pub-

lished in Frontiers journals between 2007 (when

the first Frontiers journal was published) and the

end of 2015. This data set included the names of

more than 9000 editors, 43,000 reviewers, and

126,000 authors for about 41,000 articles pub-

lished in 142 journals in Science, Health, Engi-

neering and the Humanities and Social Sciences

(see Materials and methods). This data set is one

of the largest available to date, and contains at

least an order of magnitude more information

than most data sets used in previous studies of

peer review (see Supplementary file 2 for

comparison).

Analysis of this data set reveals that women

are underrepresented in the peer-review pro-

cess, and that editors of both genders operate

with substantial same-gender preference (homo-

phily) when appointing reviewers. Moreover, our

analysis suggests that this homophilic tendency

will persist even when men and women are fairly

represented in the peer-review process. Our

results confirm the need for increased efforts to

Reviewing editor: Peter

Rodgers, eLife, United Kingdom

This is an open-access article,

free of all copyright, and may be

freely reproduced, distributed,
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fight against subtler forms of gender bias in

scholarly publishing and not just focus on numer-

ical under-representation alone.

Results
To assess whether our data set was representa-

tive of an active and mature research commu-

nity, we created directed networks (Figure 1a1),

in which individual scientists appeared as verti-

ces, while arrows denoted interactions between

them (“is appointing” in the editor-to-reviewer

network, and “is editing (reviewing) a manu-

script of” in the editor (reviewer)-to-author net-

work). As a whole, the networks had an

exponentially fast growth in time, with a large

fraction of people participating in a connected

component of the graph reaching 90% of the

total network size. Furthermore, graph theoreti-

cal metrics such as shortest path length, small-

world index as well as several other network

properties have changed little in the 3-5 last

considered years (Figure 1—figure supplement

1). Thus, peer-reviewing interactions in the Fron-

tiers journal series gave rise to a mature, topo-

logically stable and integrated community, even

though its contributors constitute only a small

subset of researchers worldwide.

We then looked for signatures of gender bias

and of its evolution across time in the structure

of these large networks. We study first the frac-

tions of assignments for reviewing or editing

given to female or male scientists and, for com-

parison, we also show the fractions of author

contributions. Figure 1b reveals that the frac-

tions of authoring, reviewing and editing contri-

butions by women — amounting to 37%, 28%

and 26%, respectively, in the complete accumu-

lated data until 2015 — are always significantly

smaller than the corresponding fractions for

men. The unbalance between male and female

contributions thus worsens when gradually

ascending through the peer-review hierarchy.

Apart from a few outlier countries, this pattern

was dominant worldwide (Figure 1—figure sup-

plement 2). It was also largely present in all the

considered journals when looking at them indi-

vidually (Figure 1c). Overall, the number of con-

tributions by female authors varies between

about 15% (Frontiers in Neurorobotics) and 50%

(Public Health), by female reviewers between

about 15% (Surgery) and 50% (Public Health),

and by female editors from ca. 5% (Robotics AI)

to 35% (Aging Neuroscience). Globally, we

observed a trend towards gender parity across

time. The rates of change were, however, very

slow. Linear extrapolation based on the fractions

observed from 2012 to 2015 would predict that

exact parity could be achieved as late as 2027

for authoring, 2034 for reviewing and 2042 for

editing.

We wondered whether these lower fractions

of contributions to the different roles were just

due to the fact that overall there are numerically

less female than male authors, reviewers and

editors (39%, 30% and 28% out of all available

authors, reviewers and editors, respectively,

were women, closely mirroring the observed

fractions of assignments). To test this hypothe-

sis, we took the exact same network of peer-

review interactions in the Frontiers journals for

given, and randomly permuted gender labels

among scientists of a given role (Figure 1a2).

This procedure maintained the ratio of female

and male scientists acting in the different roles,

but destroyed all direct correlations between

gender and numbers of contributions. Repeat-

edly drawing random genders for the scientists

in the network generated a surrogate ensemble

that we used to estimate the expected number

of contributions in a gender-blind control net-

work. Author and reviewing contributions by

women lay significantly below the confidence

intervals obtained through this permutation test-

ing procedure since 2009 and 2011, respectively.

For female editing contributions we found the

same, though non-significant, trend. Thus, the

mere overall smaller number of female actors

cannot explain the observed unbalanced frac-

tions of female contributions to the peer-review

chain.

We then looked for possible differences over

the entire distributions of the number of peer-

review tasks and authoring contributions for

men and women. These distributions are fat-

tailed (Figure 2a-c), indicating that some individ-

uals provided a large number of contributions to

the publication chain, while a majority of scien-

tists authored, reviewed or edited only a small

number of manuscripts. Moreover, comparing

the observed degree distributions to the expect-

ations derived from the same null hypothesis

used above, women had a significantly smaller

than chance probability to review (and author)

more than one article, while their probability to

act as single-time reviewer or author exceeded

the expected chance level (Figure 2e-f). In the

editing role, women underrepresentation was

significant only for a high number of contribu-

tions. Furthermore, we found significant devia-

tions from chance-level expectations across the

Helmer et al. eLife 2017;6:e21718. DOI: 10.7554/eLife.21718 2 of 18
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Figure 1. Women review and author even less articles than expected from their numeric underrepresentation. (a1) We represent peer-reviewing

interactions as directed graphs, in which vertices denote scientists. In the editor-to-reviewer network every edge represents the act of an editor (source

vertex) appointing a reviewer (target vertex) to review a manuscript (and the reviewer has accepted the invitation). Analogously, in the reviewer-to-

author network edges represent a reviewer reviewing a manuscript of an author. (b) The development of the fraction of contributions for each gender

Figure 1 continued on next page
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entire studied time-span (Figure 2—figure sup-

plement 1).

The differences in assignment numbers may

reflect behavioral or psychological differences

between the groups of male and female scien-

tists — either intrinsic or due to sociocultural

context (Moss-Racusin et al., 2012;

Nature Neuroscience, 2006; Ceci et al., 2009;

Ceci and Williams, 2010; Goulden et al., 2011;

Ceci and Williams, 2011; Bloch, 2012; Ray-

mond, 2013; Shen, 2013; Handley et al.,

2015a). Nevertheless, assignment numbers are

also ultimately influenced by the editors’ active

choices. To reveal whether any bias exists in the

reviewer assignment relation, we first analyzed

gender correlations between directly connected

pairs of nodes in the editor-to-reviewer appoint-

ment network (Figure 3a) and found a marked

gender homophily bias for both male and female

editor nodes. Specifically, 73% of reviewers

appointed by men were also men, 33% of

reviewers appointed by women were women,

but, importantly, both these numbers laid above

the expectations drawn from the assumption

that genders were randomly distributed in the

given editor-to-reviewer network topology. Simi-

larly, in the reviewer-to-author network

(Figure 3b), male (female) reviewers assessed

articles authored by male (female) authors signif-

icantly more often than expected.

While these findings seem to point at homo-

phily created by choices, they might also stem

from “baseline” homophily (McPherson et al.,

2001), i.e. subtle but unavoidable bias caused

by disproportions in the number of reachable

male and female nodes due to heterogeneous

network structure. We first checked for the influ-

ence of local subnetwork structure on apparent

gender bias by looking at different scientific

fields, including those with relatively mild under-

representation of women, and found homophily

widespread across disciplines (Figure 3c). Sec-

ond, a more detailed analysis of inter-node gen-

der correlations in the editor-to-reviewer

appointment network detected a clear tendency

to gender homophily already at the level of the

narrow neighborhood of individual nodes

(Figure 3d). Specifically, to control for baseline

homophily at the level of a narrow local neigh-

borhood, we measured, for each editor node,

the actual number of reviewer assignments given

to women. We then subtracted from this number

its chance expectation, derived individually for

every node from the frequency of locally reach-

able female reviewers, i.e. reviewers situated at

most five links away (which is a short distance

relative to the average shortest path length of

12 steps for the editor-to-reviewer network, cf

Figure 1—figure supplement 1e). Even at this

local neighborhood level, we continued to find

that male (female) editors generally appointed

female reviewers at a lower (higher) rate than

expected. Both independent analyses – by topic

or localized – validate the existence of a so-

called “inbreeding” homophily, i.e. an active

preference to connect with same-gender net-

work nodes, on top of “baseline” homophily

(McPherson et al., 2001).

Finally, we wondered whether the observed

inbreeding homophily in the network was due to

the presence of a few strongly homophilic edi-

tors or whether, alternatively, homophilic attach-

ment was a feature shared by most editors. To

that end, we defined an index of

inbreeding homophily at the local level of each

editor node. For each considered editor node,

we first evaluated the number k of connected

same-gender reviewers. We then evaluated the

Figure 1 continued

are shown for editors, reviewers and authors. Since the start of the Frontiers journals in 2007 until 2015, women (circles) edit, review and author much

less than 50% of manuscripts, as expected from their numeric underrepresentation. However, the actual numbers of reviewing and authoring

contributions by women are even smaller than expected by chance, taking into account their numeric underrepresentation. This is revealed by

comparison with a null hypothesis in which gender and number of contributions are assumed to be independent. To this end, we generated surrogate

ensembles by shuffling the genders of scientists appearing in a given role in the network (a2). From the surrogate ensembles, we obtained 95%

confidence intervals (CIs; shaded areas in b). *, **, *** over (under) the data symbols denote the data lying over (under) the 95%, 99%, 99.9% CIs. Note

that for all three subnetworks, there is a noticeable, but extremely slow trend towards equity (dashed line) for the fraction of contributions. (c) The

fraction of female contributors, ranked in increasing order of authoring contributions, for the 47 frontier journals, whose published articles were handled

by at least 25 distinct editors. Women were underrepresented consistently across all fields and particularly severely in math-intensive disciplines.

DOI: 10.7554/eLife.21718.002

The following figure supplements are available for figure 1:

Figure supplement 1. Analysis of network topology.

DOI: 10.7554/eLife.21718.003

Figure supplement 2. Gender disparities vary between countries.

DOI: 10.7554/eLife.21718.004

Helmer et al. eLife 2017;6:e21718. DOI: 10.7554/eLife.21718 4 of 18

Feature article Research Gender bias in scholarly peer review



Figure 2. Women are underrepresented in the fat tail of contributions. A break-down of the number of individuals contributing a given number of

times as editors, reviewers and authors (binned, x-axis is marking the bin edges) shows that the majority of scientists (a) edited, (b) reviewed or

(c) authored (corresponding zooms for small contribution numbers are shown in e-f) only a small number of manuscripts. Chance levels (shaded) were

derived from an ensemble of reference networks constructed as shown in Figure 1a. The underrepresentation of women in relation to these chance

levels tends to increase towards the fat tail of the distribution, associated to the relatively few individuals that made many contributions. In the group of

one-time authors or reviewers however, women are overrepresented. Time resolved distributions are shown in Figure 2—figure supplement 1.

DOI: 10.7554/eLife.21718.005

The following figure supplement is available for figure 2:

Figure 2 continued on next page
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probability 0 � Fhom � 1 that k (or more) homo-

philic connections could arise by baseline homo-

phily only, taking into account the editor-specific

basin of locally reachable male and female

reviewers (defined as for Figure 3d). Such Fhom

can serve as an index tracking the strength of

inbreeding homophily in shaping the actual

reviewer appointments by an editor. Large val-

ues of Fhom approaching 1 indicate that the

observed gender homophilic choices of a given

editor are plausibly just due to “passive” base-

line homophily. In contrast, small values of Fhom

approaching 0 hint at a stronger tendency to

“active” – consciously or unconsciously, see Dis-

cussion – inbreeding homophily. Figure 3e

shows the histograms of the index Fhom for male

and female editors, compared with expectations

from gender-shuffled networks. For male edi-

tors, most histogram bins for Fhom < 0.6 dis-

played node counts significantly larger than

gender-shuffled estimations. The histogram of

Fhom for female editors showed much fewer sig-

nificant overrepresentation and most of them at

very low values of Fhom, however it remained

compatible with gender-shuffled estimations for

most of the Fhom range.

These different distributions of inbreeding

homophilic tendencies resulted in a gender-

dependent impact of the reviewer-appointment

choices of male and female editors in determin-

ing the overall number of female reviewer

appointments. To determine this impact we

pruned links originating from editors with

inbreeding homophily index Fhom below a grow-

ing threshold Fthr (retaining only editors whose

Fhom satisfies 0 � Fthr � Fhom � 1) and we did so

separately for male and female editors

(Figure 3f). After pruning the most homophilic

male or female editors, we evaluated the new

resulting probabilities of appointing a female

reviewer. On the one hand, we found that it was

enough to remove the few most homophilic

female editors with the lowest values of Fhom

from the network, to bring the probability for a

female editor to appoint a female reviewer back

to chance-level. On the other hand, the probabil-

ity for a male editor to appoint a female reviewer

increased only very slowly by pruning more and

more male editors. In particular, it remained sig-

nificantly below chance expectations for all the

considered thresholds for inclusion, 0 � Fthr �

0.5. This means that the overall smaller-than-

chance probability of appointing female

reviewers for male editors is due to inbreeding

homophilic tendencies that are widespread

among male editors, although at varying degrees

of strength. In contrast, the overall larger-than-

chance probability to appoint female reviewers

for female editors is driven by the action of just a

small number of strongly homophilic female edi-

tors, with most other female editors showing only

“passive” baseline homophily.

Discussion
In this study, we found that apart from a few

outliers depending on country and discipline,

women are underrepresented in the scientific

community with a very slow trend towards bal-

ance, which is consistent with earlier studies

(Larivière et al., 2013; Fox et al., 2016;

Topaz and Sen, 2016; Lerback and Hanson,

2017; Nature Neuroscience, 2006; Shen, 2013;

Nature, 2012). In addition, we found that

women contribute to the system-relevant peer-

reviewing chain even less than expected by their

numerical underrepresentation, revealing novel

and subtler forms of bias than numeric dispro-

portion alone. We reported clear evidence for

homophily beyond the expected baseline levels

in both genders (Figure 3) using a very large

trans-disciplinary data set that allowed us to clar-

ify a previously ambiguous picture (Lloyd, 1990;

Gilbert et al., 1994; Borsuk et al., 2009;

Buckley et al., 2014; Fox et al., 2016). This net-

work-level inbreeding homophily is driven by a

large fraction of male editors, together with only

a few highly homophilic female editors.

Evolution of participation rates by
gender and causes for remaining inequity

To start our discussion on a positive note, we

found that the participation of women in science,

at least in terms of their numerical representation,

has increased during the last years, which is con-

sistent with other studies. The number of female

doctoral recipients at US institutions increased

by, on average, 0.1% - 0.6% per year between

2005 and 2015, depending on broad field of

study (National Science Foundation, 2016).

Ley and Hamilton (2008) reported that the num-

ber of fraction of women in medical schools

Figure 2 continued

Figure supplement 1. Time- and gender-resolved histograms of the number of contributions.

DOI: 10.7554/eLife.21718.006
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Figure 3. Editors have a same-gender preference for appointing reviewers. (a) Female editors (orange) appoint significantly more female reviewers than

expected under the gender-blind assumption (shaded area). At the same time, male editors (green) appoint less women than expected. The

development of this trend over time is shown, including articles cumulatively until the indicated year. (b) Likewise, female/male reviewers review

significantly more female/male-authored articles than expected. (c) Homophily is widespread across scientific fields, including those with relatively mild

underrepresentation of women. We here report four example disciplinary groupings, with large numbers of contributions (from left to right,

respectively, 13416, 4721, 4020, 5680) and the propensity of appointing a female reviewer depending on the editor’s gender for each of these

groupings. Only assignments by female neuroscience editors were not homophilic, otherwise the occurrence of same-gender preferences was general,

arguing against heterogeneity between subfields as a cause for homophily in assignments. (d) Plotted here are distributions of a measure of inbreeding

homophily. To control for baseline homophily at the level of a narrow local neighborhood, we measure, for each editor node, the actual number of

Figure 3 continued on next page
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increased by, on average, 0.6% to 0.8% per year

(depending on the scientists’ rank) between 1996

and 2007. Percentages of women professors has

increased at a rate of 0.5%-1% per year in the

European Union (ETAN Expert Working Group

on Women and Science,ETAN Expert Working

Group on Women and Science, 2000). The frac-

tion of publishing female scientists in Germany

increased by, on average 0.7% from 2010 to

2014, it is now 30.9% (Pan and Kalinaki, 2015).

Fox et al. (2016) found that the number of

selected female reviewers in Functional Ecology

increased by, on average, 0.8% per year between

2004 and 2014, while, notably, the number of

female editors increased by, on average, 3.8%

per year. Caplar et al. (2016) noted that the

number of female first authors of astronomy

articles increased by about 0.4% per year

between 1960 and 2015. In the Frontiers series of

journals, we found that the number of contribu-

tions by female authors, reviewers and editors

increased by, on average, 1.1% / year, 1.2% /

year and 0.9% / year between 2012 and 2015,

respectively, similar to the numbers above.

What could be the reasons for the remaining

inequity? It has been argued that underrepresen-

tation of women in science may be due to con-

scious career choices by female researchers

(Ceci et al., 2009; Ceci and Williams, 2010,

2011), even if it is not clear to which extent these

choices are really free or rather constrained by

society. Previous studies reported that, measured

by their number of publications, women are gen-

erally less productive than men (Cole and Zucker-

man, 1984; Zuckerman, 1991; Long and Fox,

1995; Xie and Shauman, 1998; Pan and Kali-

naki, 2015; Caplar et al., 2016) and it has been

suggested (Xie and Shauman, 1998) that this

might be due to personal characteristics, struc-

tural positions, and marital status. Moreover, the

fraction of female scientists decreases with rank

or age (ETAN Expert Working Group on

Women and Science, 2000; Ley and Hamilton,

2008; Goulden et al., 2011) and this shorter

career length might contribute to the drop of

female-to-male ratio for a high number of contri-

butions. Nevertheless, women who persevere

longer in their career despite obstacles are highly

performing. While the productivity of young pub-

lishing female scientists in Germany was 10%

lower than that of their male counterparts, the

discrepancy reduced to just 3% for more senior

scientists (Pan and Kalinaki, 2015). Also, it has

been reported that women with children are not

less productive than those without

(Hamovitch and Morgenstern, 1977;

Cole, 1979; Cole and Zuckerman, 1987),

although young children might decrease produc-

tivity (Kyvik, 1990; Kyvik and Teigen, 1996).

The low number of women among senior scien-

tists might be particularly detrimental for a gen-

der-neutral evaluation of scientific work, as the

implicit association of “male” and “science” is

strongest in the group of 40-65 year olds

(Nosek et al., 2007). Moreover, declining an invi-

tation to review is often due to a lack of time

(Tite and Schroter, 2007) and it is possible that

female scientists spend more time with duties

beyond research (e.g. teaching, mentoring,

service; ETAN Expert Working Group on

Women and Science, 2000; Knapp, 2005;

Misra et al., 2011). On the other hand, a com-

pensating factor seems to be that female editors,

in contrast to authors, have been reported to be

more productive than male editors

(Gilbert et al., 1994). Interestingly, men and

women who are invited to review a manuscript

have very similar propensities to accept the invi-

tation (Fox et al., 2016; Lerback and Hanson,

2017), suggesting: (1) that simply increasing the

number of invitations to female reviewers would

have a direct and proportional effect; and, (2)

that the low number of female reviews in our data

is caused in part by a lower number of invitations.

The underrepresentation and discrimination of

women in the scientific community is a problem

Figure 3 continued

reviewer assignments given to women and subtract the expected number, which would be observed if the considered editor appointed women with

the same frequency as in his/her local vicinity. For male editors (green) the distribution is skewed towards an underrepresentation of female

assignments (left-leaning), while for female editors the distribution is skewed towards an overrepresentation of female assignments. This highlights that

homophily bias is detectable even at the level of the reachable narrow surrounding of each editor. (e) Histogram of the probability that an editor

assigns as least as many reviews to people of the same gender as he/she actually does reveals that there’s an excess of strongly inbreeding-homophilic

editors (small Fhom -values) among both men and women compared to expectation (shaded area). Note that below Fhom < 0.1 there are only few

strongly homophilic female editors. For male editors, significant homophily extends through many more editors until Fhom < 0.6. (f) Using all data until

2015, the probability that a women is appointed is above expectation (shaded areas) only for female editors and only when all or all but the most

extremely inbreeding-homophilic editors are included in the analysis.

DOI: 10.7554/eLife.21718.007
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that will not solve by itself, given the pervasive,

generally unconscious nature of gender bias.

Women have been reported to be less likely to

be hired (Moss-Racusin et al., 2012), to receive a

grant (Wennerås and Wold, 1997), and to

receive higher salaries (Shen, 2013). Still today,

most people implicitly associate science with

men, and liberal arts with women more than the

other way round (Nosek et al., 2007), and this

tendency, for both men and women, is apparent

from a very young age (del Rı́o and Strasser,

2013; Bian et al., 2017) and possibly reinforced

by social dynamics in school education

(American Psychological association, 2007;

Duru-Bellat, 2008). Beyond that, men are more

reluctant than women to believe that such a bias

exists (Handley et al., 2015a), manifesting lack of

interest for the problem (“negligence”) or, even,

consciously assuming that gender discrimination

cannot be avoided (“philosophical acceptance”)

more often than females (Parodi, 2011).

How representative are the Frontiers
journals?

The data analyzed here comprises a wide spec-

trum of scientific topics and the findings should

generalize. However, Frontiers articles are

unusual insofar as they undergo open peer

review, whereas the identity of reviewers is not

revealed in most other journals. Ambiguous

reports exist whether open-peer review (as

opposed to single- or double-blind peer-review)

affects potential reviewers’ willingness to assess

a paper (Nature Neuroscience, 1999,

van Rooyen et al., 1999; Ware, 2008;

Baggs et al., 2008). In particular, a primary con-

cern in disclosing reviewer’s identity is the possi-

bility that a rejected author may also become a

prospective employer for the reviewer and

hence a possible reluctance of peers in more vul-

nerable positions to accept an invitation to

review. While it is conceivable that assignment

rejection due to non-anonymity is more likely for

early career scientists, we do not see any reason

for a direct effect of gender and such an effect

has not been reported to the best of our

knowledge.

Then, how does the population of scientists

contributing to the Frontiers series of journals

compare to other scientometric populations?

First, we compared our authorship data to that

of Larivière et al. (2013) who analyzed gender

bias in articles from a wide range of journals that

were published between 2008 and 2012, com-

prising about 3 million authors. While no analysis

of peer review is performed therein, this study

comprises an order of magnitude more authors

than in our study. It can therefore serve as a

benchmark for gender-composition among

authors. They reported that 42% of authors in

their analyzed scientific articles were women,

whereas we found that number to be 39% in the

Frontiers journals. Given uncertainties in deter-

mining a person’s gender these numbers are

comparable. Broken down by country, we find

overall similar fractions of female authors,

although, for some countries, the relative devia-

tions can rise up to 29% (Supplementary file 1).

However, small sample sizes, together with, pos-

sibly, a varying popularity of the Frontiers jour-

nals in different countries, might contribute to

such deviations.

Second, not much data was available con-

cerning gender bias among reviewers and edi-

tors, until very recently. Many previous studies

(cf. Supplementary file 2) were self-diagnoses

performed by editorial boards of the corre-

sponding journal and, as a consequence, tended

to be based on mono-disciplinary data of rela-

tively small sample size. Larger sample sizes, but

limited to editors, were considered in an analysis

of the composition of editorial boards of 435

mathematical journals (Topaz and Sen, 2016).

Only 9% of editors were women. Other reported

numbers for the fraction of women editors in

journals of different disciplines range from 38%

to 54% (cf. Supplementary file 2). These num-

bers lie at the lower and upper end of the

female editor fractions across the Frontiers jour-

nals, ranging between 6% (Frontiers in Robotics

and AI) and 37% (Frontiers in Aging Neurosci-

ence), with an average of 28%. Concerning

female reviewers or female reviewer appoint-

ments, fractions reported in the literature range

between 16% and 48% (cf. Supplementary file

2), to be compared with the range between 11%

and 48% for the Frontiers journals with an aver-

age of 30%. Concerning female authors,

Pan and Kalinaki (2014) report fractions ranging

from 15% in computer science to 57% in veteri-

nary science. These numbers are once again

comparable to female author fractions in Fron-

tiers journals, ranging from 17% (Neurorobotics)

to 48% (Public Health). Overall, our study pro-

vides thus a global account on the prevalence of

women among editors and reviewers and ranks

previous reports in a continuum of field-specific

participation numbers. Importantly, our data is

consistent with these diverse reports, highlight-

ing that the Frontiers peer-review networks are

well representative of widespread patterns.
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Our work calls for a detailed comparison

with another recently published report about

peer reviewer assignments in 20 journals of

the American Geophysical Union (AGU), based

on a slightly smaller sample size compared to

ours (Lerback and Hanson, 2017). This study

reports information about aspects that our

study could not have access to, breaking

down women’s underrepresentation by age

and showing that the decline rate for invited

reviews is only slightly smaller for women than

men. Overall, relative fractions of female par-

ticipation reported by this study are compati-

ble with numbers we found for the journal

Frontiers in Earth Science, with e.g. a match-

ing female reviewer appointments fraction

close to 20%, suggesting that women play a

larger role in other fields compared to that

report (cf. Figure 1c). For the AGU journals

the authors conclude that editors, especially

male ones, appoint too few female reviewers.

Male editors’ behavior in that study thus

agrees with our findings for the entirety of

Frontiers journals, while we find an opposite

trend for female editors. We note here that

Lerback and Hanson (2017) reached their

conclusion of women’s underrepresentation by

comparing actual reviewer appointment num-

bers to the fraction of female first authors.

This comparison, however, might be question-

able, because reviewers in low age groups are

rarely invited by editors (3% of times) whereas

first authors tend to be young. To account for

such differences, we determined expectation

levels by gender shuffling among the reviewers

and editors in the fixed network of actual

reviewer-editor interactions and find that the

fraction of female authors (the expectation

value that Lerback and Hanson used) is much

higher than the expected number of female

reviewer contributions (our expectation value;

cf. Figures 1b and 3a). For that reason, Ler-

back and Hanson may have quantitatively

overestimated the female editors’ bias against

female reviewer appointments. Still, despite

this overestimation, even Lerback and Hanson

reported female editors’ preference for female

reviewers for certain age classes (although not

commented upon).

Homophily in society and science

The phenomenon of gender homophily in peer-

reviewing networks have already been

described, but these previous reports have

reached ambiguous conclusions. Lloyd (1990)

found that female reviewers accepted female-

authored papers at a higher rate than those of

male authors, whereas male reviewers did not

show such a bias. In contrast, Borsuk et al.

(2009) reported that male and female reviewers

were equally likely to reject a female-authored

paper. The probability that a female editor

appoints a female reviewer was reported to be

31%-33%, whereas male editors appointed

female reviewers in 22%-27% of cases

(Gilbert et al., 1994; Buckley et al., 2014;

Fox et al., 2016). Here, for the whole spectrum

of Frontiers journals we found these numbers to

be similar: 33% and 27%, respectively. However,

our study concludes for the existence of signifi-

cant inbreeding homophily in the reviewer

appointing behavior for both male and female

editors, and does so based on a pluri- rather

than mono-disciplinary data set, substantially

larger than all previous accounts of homophily in

peer review.

Socrates, in Plato’s Phaedrus, already

asserted that: “similarity begets friendship”.

Homophily – or “attraction for the similar”, not

only limited to the gender attribute – is ubiqui-

tous in social networks. Since the classic studies

of Park and Burgess (1921) and Lazarsfeld and

Merton (1954), gender homophily has been

found in groups of playing children (Bott, 1928;

Shrum et al., 1988) and adult friends (Ver-

brugge, 1977) and is also present in work envi-

ronments (Brass, 1985; Bielby and Baron,

1986; Ibarra, 1992) and voluntary organizations

(Popielarz, 1999). Since focused interactions

between co-workers favor the formation of rela-

tions, operation in already homophilic environ-

ments will lead to an amplification of homophily

(Feld, 1981; Feld, 1984). In particular, homo-

philic styles of professional interaction with

peers may persist since the time in which they

were (un-)consciously learned in homophilic

school environments (Vinsonneau, 1999).

Importantly, even a slight homophily can

influence and alter the way in which information

spreads (Yava and Yucel, 2014) and opinions

form through the social network of interactions,

leading to the emergence of “dead-end” cul-

tural niches (Mark, 2003). Homophilic groups

indeed tend to vote together when asked to

decide for something (Caldeira and Patterson,

1987) and have similar prospective evaluations,

a same mindset (Galaskiewicz, 1985). While

homophily can in principle be put to good use,

as for instance in the education about good

health practices (Centola, 2011), the uncon-

trolled effects of homophily may constitute a
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threat to the universalism of the peer-review sys-

tem, and thus to science.

Gender-specific mechanisms of
homophily

We observed very different patterns of homo-

phily for male and female editors, with a wide-

spread homophily across men, while dominated

by very few highly homophilic editors for

women. After removal of their contribution,

homophily became insignificant (cf. Figure 3e,f).

This suggests that there is only baseline homo-

phily for the majority of female editors and most

assignments are gender-blind (for instance in the

neuroscience community, cf. Figure 3c). Differ-

ences between men’s and women’s homophily

patterns are classically known, finding their root

in different styles of social network construction.

For instance, in situations where a mutual friend-

ship exists between A and B a friendship initia-

tion with C tends to be reciprocated by boys,

but not by girls (Eder and Hallinan, 1978). Such

differences in attachment strategies tend to gen-

erate gender-segregated worlds for children to

preadolescents in which girls evolve in small

homogeneous groups and boys form larger but

more heterogeneous cliques, with boundaries

made looser only later by romantic ties

(Shrum et al., 1988). Professional social net-

works of men are more homophilic than wom-

en’s, especially in work environments in which

men are dominant (Brass, 1985; Ibarra, 1992).

Another source of asymmetry may be that both

men and women tend to form connection routes

passing through a male node when reaching

toward distant domains (Aldrich, 1989).

One could speculate that other factors might

contribute, like friendship or (perceived) status,

competency and reputation. These factors

might, in turn, be partly depending on gender,

e.g. through implicit biases (Nosek et al., 2007;

Merton, 1968; Paludi and Bauer, 1983). Multi-

ple categories of relationships were analyzed,

for instance, by Ibarra (1992) who reported

that, in a company setting, men named mostly

men as points of contact for five different busi-

ness-relationship categories, whereas for women

the preferred gender was category-dependent.

A similar situation could be at work here: one

could speculate that a set of other, hidden, vari-

ables influence reviewer appointment decisions,

and that these variables have a different impor-

tance for male and female editors. Determining

which factors are most important for male and

female editors in the choice of the reviewer and

how these factors are or are not, in principle,

related to gender, might thus aid in reducing

homophily in the peer-review system.

Our finding of strongly homophilic “topol-

ogy-organizer” female editors is reminiscent of

the notion of “femocrat” introduced in political

studies, referring to the role played by isolated

feminists who, after having managed to inte-

grate inside men-dominated decisional organ-

isms, provide a bridge to the spheres of power

for the requests of activists outside of them

(Yeatman, 1990). Now, while the active engage-

ment of these femocrats is very useful in pushing

forward technocratic (i.e. top-down) solutions

aiming at reducing gender discriminations, espe-

cially at an early stage, on the long-term, the

effects of their action may be precarious. Indeed

political experiences have shown that when an

external event reduces the influence of these

isolated driver women, the situation can quickly

deteriorate again (Outshoorn, 2005), aggra-

vated by the suspicious look toward femocrats

held by formerly dominant men or, paradoxi-

cally, even women, finding them too prone to

compromise or too aggressive (Outshoorn and

Kantola, 2007). It is thus important to devise

strategies ‘healing’ network topology in depth,

and in a bottom-up fashion, via pervasive educa-

tion campaigns targeted to the deciders (Sains-

bury, 1994), in our case chiefly the editors. Such

strategies are required to protect the acquire-

ments of top-down actions against gender dis-

criminations: increasing the number of women

will not be enough to overcome gender bias

(Isbell et al., 2012; Avin et al., 2015).

Conclusions
Ideally, all scientific interactions are gender-

blind. A scientist’s status and the provision of

resources to scientists should not be influenced

by gender but solely depend on the value of the

scientific contributions. Access to the publication

systems is a critical determinant of a scientist’s

success. Accordingly, reviewers and editors, the

gatekeepers of the scientific canon, should be

particularly sensitive to base their judgment

solely on the merit of scientific work. This merit,

however, is difficult to determine and any assess-

ment is necessarily influenced by the assessor’s

view of the field, including his or her personal

position in the network of colleagues and the

interactions with them (Mulkay, 1979;

Cole, 1992).

Inbreeding homophily, an increased affinity

between persons with similar attributes, appears

to be a sociological, population-level trait of
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human societies. It is only natural, thus, that we

find gender homophily in interactions between

editors, reviewers and authors. Nonetheless, this

inbreeding homophily is damaging to female sci-

entists, whose work ends up being overlooked,

due to unconscious negative bias. The phenom-

enon of inbreeding homophily is also likely not

restricted to the peer review of manuscripts, so

it needs to be taken into account for grant eval-

uation, hiring, or when designing mentoring pro-

grams. Importantly, it is likely to persist even

when numerical balance between genders is

achieved (Isbell et al., 2012). Altogether,

inbreeding homophily negatively affects science

as a whole because a stronger involvement of

women would increase the quality of scientific

output (Merton, 1973; Woolley et al., 2010;

Nature, 2013; Campbell et al., 2013). Conse-

quently, all scientists should wholeheartedly sup-

port the endeavor to remove gender bias from

science - but how could that be achieved?

Initiatives to remove gender-based inequality

can roughly be divided into two different cate-

gories. On the one hand, “gender mainstream-

ing” (Special Adviser on Gender Issues and

Advancement of Women, 2002) promotes the

consideration among actors at all levels of every

action’s and policy’s implications on women and

men and is geared towards creating long lasting

“bottom-up” changes. On the other hand, fast

progress could be attempted through “top-

down” implementation of technocratic instru-

ments such as quota. This politically issued

‘state feminism’ (Mazur and McBride Stetson,

1995), is suboptimal in that it might even “pro-

vide an alibi” for not modifying attitudes in

depth (Squires, 2008). As inbreeding homophily

is an expression of a state of mind it is likely lit-

tle amenable to change by externally enforced

measures. Raising awareness, in comparison,

seems to be the most promising route. The goal

should be to motivate all scientific actors to

“integrate thinking about gender discrimination

in every decisional process” (translated from

Woodward, 2008). Educative actions should be

conducted with tact, not based uniquely on

inducing feeling of guilt and shame, in order not

to be perceived as annoying (Woodward, 2003).

At the same time, existing formal actions to

reduce bias should be upheld.

In the field of peer review two more specific

strategies are available to reduce bias: blind

review and automated editorial management.

However, both strategies are of limited accep-

tance and use. First of all, removing the authors’

names is often not sufficiently blinding.

References to the authors’ previous publications

or to the approving ethics committee all but

spell out the authors. Second, while removal of

the authors’ names does indeed blind the

reviewers to all irrelevant attributes, it also

blinds them to relevant meta-data, such as the

scientific experience of the authors, which might

be considered as relevant by many reviewers. In

an attempt to assist editors of Frontiers journals,

keyword-based reviewer suggestions are auto-

matically provided to them but the editors

remain free to make their own choices. While

these gender-blind automated suggestions

could already contribute to an assignment that is

less influenced by homophily, an editorial man-

agement software is also the ideal platform to

routinely direct the editor’s attention to the

issue of homophily. It could display statistics sim-

ilar to our Figure 3 and encourage non-homo-

philic choices of reviewers. Such a strategy

maintains full editorial freedom and could easily

be evaluated, either internally or, in the case of

open review as in the Frontiers journals, through

analysis of the publicly available data.

Given how engrained homophily is in our

nature, the path towards a gender-blind science

will be arduous. Yet, with the joined effort of the

scientific community to overcome partisanship

and discrimination, a merit-based system with

equal opportunities for all scientists might just

be within reach. After all, which social enterprise

would be more apt to follow ratio over instinct

than science?

Materials and methods

Collection and parsing of data

All article data were exclusively obtained from

the publicly available articles web pages from

the Frontiers Journal Series (RRID:SCR_007214),

which was listed (at the date of last data down-

load in March 2016) on: http://www.frontiersin.

org/SearchIndexFiles/Index_Articles.aspx, as

well as the associated XML file if the HTML code

of the article web page contained a correspond-

ing reference. Subsequently, articles’ metadata

(article id, authors, reviewers, editors, publica-

tion date, etc.) were extracted from the XML

files and the web pages. All gathered personal

identity information was deleted after inference

of individual genders (see later), resulting thus in

a fully anonymized data set. In total, we analyzed

41’100 articles published before January 1st,

2016, covering 142 Frontiers journals from Sci-

ence, Health, Engineering, and Humanities and
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Social Sciences. Our parsing routine was able to

find information about authors in 41’092 of

these articles, about reviewers in 39’788 articles

(note that some articles, like editorial articles,

might not have been reviewed), and about edi-

tors in 40’405 articles. The anonymized network

data is provided as Supplementary file 3.

To recognize and identify people re-occurring

in more than one article, every person was

assigned a unique identifier number (UID). When

a contributor was found to be associated to an

official profile identification number in the Fron-

tiers database, then we relied on it, directly

translating it into a UID (this happened for 71%

of contributors). In the remaining cases, we

decided whether a record matched another

based on the names and affiliations of people.

Specifically, for two names to be matched, we

required that the surnames coincided and that

each given name of the contributor with less

given names needed to have a corresponding

match in the other contributor’s name (a match

could also be an initial like “J” with a fully speci-

fied name like “John”). In case both contribu-

tors’ given names consisted of only initials, we

required, in addition, that their affiliations were

sufficiently similar. Newman (2001) found that

name-matching in the absence of UIDs, and

even abbreviating all given names to initials,

resulted in errors on the order of few percent in

a data set comprising more than a million peo-

ple. Correspondingly, as we expect the UIDs to

be correctly associated with a contributor in the

vast majority of cases, erroneously matching or

not matching people is likely relatively

uncommon.

Determination of gender

Each UID was assigned a gender based on their

associated given names (note that after the

steps described in the previous section, at least

one first name was fully specified for 99.6% of

the UIDs, while for the remaining 0.4% of UIDs

all given names consisted of only initials so that

no gender could be attributed). The extracted

given names were compared with an extensive

name list, assembled from public web-sources,

such as:

. http://japanese.about.com/library/blgirls-
name_[a-z].htm,

. http://japanese.about.com/library/blboys-
name_[a-z].htm (retrieved December 9,
2015)

. http://www.top-100-baby-names-search.
com/chinese-girl-names.html,

. http://www.top-100-baby-names-search.
com/chinese-boys-names.html

. http://www.babynames.org.uk (retrieved
December 11, 2015)

. US census data (https://www.ssa.gov/oact/
babynames/limits.html; retrieved March
17, 2016).

Note that some given names (like Andrea)

are in use for both men and women. Gender-

ambiguous given names present in the US cen-

sus database were categorized to the gender to

which they were more frequently attributed.

When a name appeared as both male and

female in one of the other sources, or when dif-

ferent sources did not agree on the gender for a

name, we decided not to associate that given

name with a gender.

We validated the gender assignment proce-

dure by performing a web search for 1053 ran-

domly selected people from our data set, and

determining their gender based on a picture or

the use of gender-specific pronouns in a bio-

graphical text. We were able to find such infor-

mation for 924 out of the 1053 people (88%). The

gender automatically assigned by our algorithm

to those identified was correct in 96 % of cases.

For comparison, we note that the name-gender

algorithm used in Larivière et al. (2013) misclas-

sified male and female names in 8% of cases.

Our list thus comprised 66605 female and

43482 male names. In addition to the name list,

we manually assigned the non-automatically-

identified gender of 643 people with a high

number of re-occurrences. In total, we were

thereby able to assign gender to 131885, that is

87 % of UIDs. All further analyses were done

ignoring the remaining 13% of scientists.

Network construction

We represented the available data in directed

networks (Figure 1a), in which vertices were

individual scientists and edges denoted peer-

reviewing interactions: is appointing in the edi-

tor-to-reviewer network, and is editing (review-

ing) a manuscript of in the editor (reviewer)-to-

author network. Year-resolved graphs were con-

structed by deleting all links representing

articles that were published later than the given

year.

Graph analytics

All graph analyses (Figure 1—figure supple-

ment 1) were performed with the freely-avail-

able Python igraph package.

Helmer et al. eLife 2017;6:e21718. DOI: 10.7554/eLife.21718 13 of 18

Feature article Research Gender bias in scholarly peer review



In graph theory, a connected component is a

subgraph in which any two vertices are con-

nected to each other by at least one path, and

which is connected to no additional vertices in

the full graph. The largest of all the connected

components of a graph is called its giant compo-

nent. One can distinguish between the weak

giant component (in which the direction of

edges is ignored when building inter-node

paths) and the strong giant component (in which

the direction is taken into account). All the fol-

lowing graph analyses have been performed on

the weak giant component of the networks

observed at each time.

Transitivity undirected (clustering coefficient)

is calculated as the ratio of triangles to con-

nected triangles (triplets) in the graph, consider-

ing connections between nodes independent of

their direction.

Average path length calculates the mean of

the geodesic directed path lengths between all

pairs of nodes in a connected component. The

geodesic path length between a given pair of

nodes is the minimum number of links needed to

travel between the nodes along connected

edges.

Small-worldness S is defined in

Humphries and Gurney (2008), as S=g/l. g is

the undirected transitivity of the graph divided

by k/n, which is an approximation for the

undirected transitivity of an Erdös-Rényi random

graph with n nodes and average degree (in+out)

of k. l is the ratio of the average shortest path

length of the graph to ln(n)/ln(k), which is the

average shortest path length of an Erdös-Rényi

graph with n nodes and average degree k.

Statistical testing

Statistical significance was established by com-

paring a feature of the data to its confidence

interval (CI). The graphic notations *, ** and ***

denote that this feature lay outside the 95%, 99%

and 99.9% CI, respectively. Confidence intervals

were calculated by recalculating the given feature

10000 times, after permuting gender labels (with

the exception of Figure 3e where, for computa-

tional reasons, only 100 recalculations were per-

formed). Specifically, Figures 1 and 2 are derived

from a table with a column given the number of

contributions (up to a specified time point) in a

given role for each person, and another column

of each person’s gender, and the latter column

was permuted keeping the former constant. On

the other hand, confidence intervals in Figure 3

were obtained by repeatedly permuting genders

among all nodes in a given graph, independent

of their associated roles. The underlying graph

used for Figure 3a and Figure 3c-f was a suitably

pruned editor-to-reviewer graph, out of which:

we first removed all self-loops (i.e. editor and

reviewer are identical); second, we deleted all

leaf nodes, i.e. scientist who never edited or

reviewed anything and had therefore a null out-

degree; third, for Figure 3c, we removed cross-

disciplinary assignments from journals not

belonging to the indicated category. Similarly,

Figure 3b was derived from a deleafed reviewer-

to-author graph.

Inbreeding homophily at a local level

Figure 3d shows two histograms, one over all

male editor nodes, the other over all female edi-

tor nodes. For each editor i who appointed at

least 2 distinct reviewers we calculated a mea-

sure Hi of inbreeding homophily. To compute it,

we first measured the actual number of reviewer

assignments given to women nodes by the con-

sidered editor i, Wi. The next step was to sub-

tract the expected number of reviewer

assignments given to women, which would be

observed if the given editor node appointed

women with the average frequency pi they are

appointed in its local vicinity. To evaluate pi we

took the set of all editors (both males and

females) at a distance of at most 5 directed

edges from the considered editor node i. We

counted the overall number Aall of reviewer

assignments made by these editors (i.e. the total

number of edges originating from editor nodes

in the neighborhood shell), and neglected those

editors for which Aall < 62 (i.e. we required that,

on average, at each of the 5 steps away from

the considered editor at least 2 novel reviewers

are encountered that could not have been

reached in a shorter step count). We then deter-

mined the number Afemale � Aall of reviewer

assignments made toward female nodes. We

finally assumed pi = Afemale / Aall.

We could then compute the local inbreeding

homophily measure Hi=Wi – Ai pi, where Ai was

the total number of assignment made by each

considered editor i.

We used a similar technique to assess the

impact of the most homophilic editors on the

overall network-homophily in the female editor-

to-reviewer and male editor-to-reviewer net-

works. Let qi be the probability a person of the

same gender is chosen by an editor i, where qi is

calculated exactly as pi in the previous para-

graph, i.e. by considering all people at most 5

directed edges away from editor i in the editor-

to-reviewer network, counting the number of
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assignments these people gave to people of the

same gender and dividing by the total number

of assignments these people made. Next, let ki
denote the number of assignments editor i gives

to a person of the same gender and ni the total

number of assignments editor i makes. Assum-

ing editor i chooses the gender of a reviewer at

random, the probability that i assigns ki out of

the ni reviewers to have the same gender follows

a binomial distribution binom (ki; ni, qi) and Fhom

=

Pni

n¼ki

binomðn; ni; qiÞ measures how likely it is that

editor i assigns at least ki reviews to a person of

the same gender.
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approaches technocratiques et d’addiction des
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Chapter 9

Summary and outlook

“No practical biologist interested in sexual reproduction would be led to work out
the detailed consequences experienced by organisms having three or more sexes; yet
what else should he do if he wishes to understand why the sexes are, in fact, always
two.”

Ronald Fisher144: “The genetic theory of natural selection”.
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9. Summary and outlook

9.1 Summary

Synthetic biology is the engineering of biology64. This emerging field was established barely 10
years ago and is already a growing focus of attention in the academic world with extraordinary
scientific and technological output. I would like to mention three particular examples of such
engineering which I believe highlight its value. One of the first synthetic genetic circuits was the
Repressilator, a system of three coupled genes that inhibit each other generating oscillatory gene
expression128. Even though this is not how bacteria measure time, it was one of the first genetic
circuits with bespoke functionality. More recently, the complete construction of a minimal or-
ganism from scratch206 made it explicit how many genes are actually necessary for life. Third,
recent work on organoids260, organized heaps of tissue grown from stem cells, shows a growing
interest in the self-organizing properties of tissue formation and even medical applications by
engineering neurons from human donor cells326.

In this thesis, we developed a synthetic neurobiology and created, controlled and designed
neuronal circuits while performing a first connectomic structure-function study. To design neu-
ronal circuits, we used a hybrid system of in silico and in vitro components. The model system
for this study was the mammalian early visual system, for which we first confirmed that the
Hubel&Wiesel connectome is a viable circuit to generate orientation specificity. We then minia-
turize the early visual afferent pathway, to some extend modeling an evolutionary transition
within a few hours of a typical experiment. To this end, we virtually shrinked eye size, cra-
nium and the cortical target area of the simulated pathway, but preserved the total number of
hypercolumns and therefore arguably the number of processing units to process natural scenes.
In the limit of a small brain, the synthetic hybrid visual system resembles a mouse visual path-
way, or the layout of late cretaceous eutherians, like Asioryctes, closely related to the eutherian
common ancestor. We found that shrinking the visual system leads to a massive loss of visual
acuity, to a loss of the orientation specificity of the afferent connectome and to a larger point
spread function. Surprisingly, we also found that a number of neurons exhibited orientation
biased responses in the limit of homogeneous and unselective input, that are generated by the
recurrent network alone. We find that these cells are mostly simple cells. In addition, we also
find a small number of complex and direction tuned cells. This diversity of responses suggests
that even in this most generic case, a recurrent circuit is sufficient to spontaneously generate a
basic level of orientation selectivity. This phenomenon, already present in recurrent networks as
disorganized as a primary culture, might provide a robust and generic scaffold for input classi-
fication, potentially the first workpiece refined by the selective forces of natural selection. The
synthetic neurobiology nature of these experiments enabled us to systematically approach the
contributions of feed-forward and recurrent connectomes to the generation of cortical feature
selectivity, because (1) the in surrogate cortex realizes a dense medium scale recurrent circuit,
composed of thousands of neurons, with spontaneously emerging collective processing functions.
(2) We freely configured the wiring diagram of the feed-forward input connectome in the limits
from highly specific to completely random to assess the degree of spontaneous orientation tun-
ing. (3) We switched the system rapidly and reversible between different pathway connectomes,
identifying various tuned responses and receptive fields. (4) We connected different pathway
connectomes to the same target circuit of living neurons, which provided us with an control and
made the different experimental conditions comparable. (5) We used the high quality optical
access to the recurrent circuit for all-optical interfacing and optical monitoring of activity which
revealed a spatial organization resembling a sparse salt and pepper pattern. We also used the
all-optical interface to confirm that a surrogate cortex, provided with spatiotemporally complex
input patterns during development, changes its spontaneous activity patterns. In the following
paragraphs, I will summarize the content of each chapter and provide an outlook.
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9.1. Summary

In chapter 3 we first developed a framework for the afferent visual pathway. It has long been
controversial whether and how the emergence of orientation preference maps (OPMs) can be ex-
plained by self-organized activity-dependent development of cortical circuits and to what degree
their development is influenced or dominated by subcortical feed-forward constraints. Several
recent studies foster this controversy. On the one hand, OPMs in species widely separated in
evolutionary terms have been shown to exhibit invariant spatial statistics, which are in quanti-
tative agreement with predictions from a class of self-organization models. On the other hand,
two recent studies found evidence in experimental maps in favor of a hexagonal arrangement
underlying OPM layouts. These hexagonal arrangements could be qualitatively accounted for
by a purely linear feed-forward model in which OPMs arise as a constraint from the structure of
retinal inputs. The idea that orientation preference across primary visual cortex should mirror
the distribution of the ON/OFF center retinal ganglion cells (RGCs) dates back to pioneering
work by Soodak446. Without spatially irregular arrangements of ON and OFF RGCs across
the retina, the spatial layout of the resulting OPM lacks a typical distance between orientation
columns188,404 - a salient feature of experimentally measured OPMs. When ON/OFF RGCs are
placed on two independent hexagonal lattices, periodic OPMs arise with a typical column spac-
ing set by a Moiré-Interference effect between the two lattices. We employed the theory of the
Moiré-Interference phenomenon to analytically determine OPMs predicted by this interference
effect, their representation in Fourier space, as well several spatial statistics. In particular, we
show that the model’s predicted pinwheel density for OPMs is 2

√
3 ≈ 3.46 - a value far from

matching experimental observations. When noise of increasing strength is added to the lattice
positions of the RGCs, the Moiré-Fourier-Modes dissolve into an isotropic background, decay-
ing as a Gaussian with increasing spatial frequency. Hence, for small amount of spatial noise,
OPMs exhibit a typical column spacing and an excess hexagonal order compared to spatially
isotropic maps. Above a critical noise strength, OPMs become spatially isotropic and lack a
typical column spacing. These findings prompted us to perform a quantitative assessment of
pinwheel statistics in a large data set of experimentally measured OPMs from tree shrew, galago
and ferret and also cat. We show that the the statistics of pinwheels in OPMs are indistinguish-
able from one another and from quasi-periodic solutions of models for the activity-dependent
development of OPMs. We conclude that the spatial structure of real OPMs provides no prima
facie support for the retinal constraint hypothesis. Consequently, the contribution of subcortical
constraints to the spatial layout of OPMs is likely to be small compared to activity-dependent
processes during postnatal development.

In chapter 4, we connected the computational model of the early visual pathway to the
surrogate cortex. We first assessed the viability of what we call virtual networks, realized by
closed loop optogenetic connections162,348 between islands of individual neurons grown on mul-
tielectrode arrays. Virtual networks are artificial neural networks with biological neurons as
nodes. This approach seemed promising because it allows in principle to construct arbitrary
networks. To generate such islands, we developed a patterning technique to constrain the
growth of cells to individual electrodes of a MEA. This required substrate preparation in order
to constrain neuronal growth and adhesion. We developed a novel and reproducible approach
utilizing micro-contact printing (µ-CP) combined with a custom-made device to fine-place pat-
terns on MEAs with high precision. Neuronal islands grown on multielectrode arrays combined
with optical neurostimulation can provide a unique tool, but we found that this is not the way
to go: Considering the finite yield of populated islands together with only a fraction of active
electrodes generates substantial variability and we would in turn need to adapt the circuit to
the culture. A second path that we followed, was to design a neuronal circuit from dissociated
neurons in which the local neuronal circuits are as realistic as possible. We designed cultures
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with the same cell density and cellular content as the neocortical input layer IV and let them
develop naturally. These cultures are easy to produce on a large scale and show rich spontaneous
activity, resembling the spontaneous activity in the young neocortex. To interface this surrogate
cortex with the virtual sensory pathway, we next constructed a digital phase-only holographic
projection system. We use digital holography, because it is the most flexible technique to gener-
ate spatially structured light pattern at specific wavelengths, and surpasses micromirror arrays
in terms of light-efficiency by orders of magnitude161.

In chapter 5, we constructed the in silico visual pathway and connected it to the living
surrogate cortex. The neurons in this recurrent neural network are derived from the cortices of
embryonic rats expressing the light-sensitive ionchannel ChR2(H134R) after viral transduction.
We monitor neural responses both optically with a redshifted genetically encoded calcium indi-
cator and extracellularly with a multielectrode array. We use a generic scaling law for the layout
of the early visual system to transform the visual pathway of a cat into that of a mouse. These
different pathway connectomes can be connected to the same target circuit of living neurons,
providing for an internal control. We find that shrinking the visual system leads to a loss of ori-
entation selectivity in the afferent input. Surprisingly, we discovered that a number of neurons
exhibited orientation biased responses in the limit of homogeneous and unselective input and
these orientation biased responses are generated by the recurrent network alone. These cells are
simple cells with a small number of complex and direction tuned cells. We also find cells with
receptive fields composed of excitatory and inhibitory subregions, and these receptive fields have
a typical spatial scale of ≈ 1 mm, consistent with the generic scaling laws which we extracted
from already available data. Consistent with simple cells, the tuning can be predicted from
the receptive field. The spatial arrangement of spontaneously tuned cells resembles a sparse
salt and pepper pattern. This diversity of responses suggests that even in this most generic
case, a recurrent circuit is sufficient to spontaneously generate a basic level of feature selectivity.
Theoretically, neural networks with connections organized by probabilistic rules are conceptu-
ally powerful model systems. Random neural networks have been shown to generically exhibit
computationally favorable properties for stimulus representation and information processing,
for instance by reservoir computing293, liquid state machines, a particular type of a reservoir
computer which consists of randomly connected spiking neurons298 and more recently FORCE
learning in random rate networks461. Our experimental data highlights that feature selectivity
generated by the disorganized connections in the surrogate cortex might be a generic scaffold
for input classification, and the first workpiece refined by the selective forces of natural selection.

In chapter 6 we developed the technology to manipulate the remaining degree of freedom:
the structure of the recurrent connections in the surrogate cortex. We provided a developing
culture with external input as a developmental circuit manipulation tool, resembling the mech-
anisms at work in the living brain332. In contrast to other techniques as micro contact printing
(the technique used in chapter 4), external input seems a natural choice to manipulate neuronal
circuits. We construct a device, a light disco, to provide a developing culture with spatiotem-
porally complex input patterns inside the incubator for several weeks. Using this device, we
find strong evidence that self-organization in the presence of external, correlated inputs changes
the collective dynamics of the surrogate cortex. These results might have relevant consequences
for our current understanding of the role of spontaneous and driven activity in the developing
brain, highlighting the need for appropriate input to tune a neuronal circuit to its working point.
We find that activity in cell cultures, resembling cortical waves, generates a state of irregular
activity, while the overall neuronal firing rates do not change. This finding indicates that the
asynchronous irregular activity in the healthy brain is mediated by recurrent circuits that are
shaped during development by correlated activity patterns. This chapter is the last chapter
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where we used synthetic hybrid circuits, composed of a in silico feed-forward connectome pro-
viding input to a living neural network in vitro .

In chapter 3 we showed that a Moiré mechanism is unlikely to yield layouts of orientation
domains consistent with experimental data. This does, however, not rule out the principal
mechanism, leaving open whether the statistical wiring framework can in principle explain the
formation of aperiodic layouts of domains consistent with the common design. In chapter 7, we
introduce a novel method to infer RGCs mosaics that within the statistical wiring framework
yield realistic OPMs. Inferred mosaics lack long-range positional order yet lead to aperiodic
OPMs. They are characterized by specific angular correlations between ON/OFF ganglion cell
pairs. Comparing this model’s prediction with X ganglion cell mosaics of a cat and parasol cell
mosaics of a primate allows us to calculate a strong quantitative constraint on the retinal influ-
ence on visual cortical OPMs and in fact the observed ganglion cell mosaics are best explained
by a total absence of angular correlation between ON/OFF cell pairs. From this study, together
with chapter 3, we conclude that V1 layout invariants are specific quantitative signatures of
visual cortical optimization, which cannot be explained by generic random feed-forward mod-
els. Considering the relation to cortical optimization, we next asked whether the specific layout
rules of the common design can in principle break down. We use the reinvention of color vision
in primates as a natural laboratory experiment because it required both the wiring of a new
afferent pathway into the visual cortex and the rearrangement of the visual cortical process-
ing machinery. Considering this scale of modification, the reinvention of color vision, possibly
multiple times219, might have been one of the most fundamental and most recent changes in
visual cortical circuitry. Color vision was lost in mammals during the nocturnal bottleneck when
our ancestors were small, dark–dwelling animals between 205 to 65 Million years ago (Ma).
Among modern mammals old world monkeys and great apes (re–)invented trichromacy 30–40
Ma. The newly developed color vision inserted new pathways into cortical functional archi-
tecture, potentially perturbing the layout of orientation domains in the primary visual cortex
(V1) through non–orientation selective cytochrome oxidase (CO) blobs. We first show that
trichromacy might leave a detectable fingerprint in the metrics of the common design by ana-
lyzing a coupled optimization model between orientation and color selective cells. We therefore
compared trichromatic macaque (N=6) and monochromatic owl monkeys (N=8) orientation do-
mains against a background of normal (N=82) and dark-reared (N=21) ferret, shrew (N=25),
galago (N=9), and cat (N=13) and found that their layout adheres to the common design. The
common design is a specific and arguably small set of quantitative layout rules and we next
asked whether other metrics can reveal a difference between orientation domains of trichromatic
vs. color-blind species. To this end, we next develop a phenomenological model to incorporate
orientation unselective into a layout of orientation domains using geometric distortions. Models
of this type leave the measures of the common design invariant and make the prediction that
randomization of the Fourier components decreases the pinwheel density. In our data, however,
we find a statistically identical and highly significant increase of the pinwheel density across
all Euarchontans and primates, showing that the evolutionary invention of the color vision ma-
chinery in primates induced only a minor perturbation to the modular organization of V1. The
selective forces that favor the common design might thus be so powerful as to preserve it under
major transformations of the retinocortical pathway.

Finally, in chapter 8 we reveal distortions in the peer review process, specifically showing
that a scientist’s personal attributes matter. This chapter was originally motivated by personal
observations, and made rigorous by web-crawling the publicly available article web pages from
the Frontiers Journal Series to obtain one of the largest datasets available in to sociology of
science including more than 175,000 individuals. While it is not related to synthetic neurobiology,
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it is of critical importance that peer reviewers are appointed on the basis of their expertise
alone. We show that specifically homophily is widespread and our analysis suggests that without
focused effort, the homophilic tendency in the scientific community will persist. Revealing such
distortions is imperative to improve the quality of published articles, and science as a whole.

9.2 Outlook

Over the past 10 years, several studies used living neuronal networks for information processing,
some to control robots19,20,108,386 and others to compute, for example using only one neuron in
a virtual network162 or by designing logic elements in particular topographies134. More recent
studies showed the ability of living neural network to classify inputs in space and time118,119,229.
These approaches appear to me fundamentally limited by the current lack of specific circuit
elements available to a biological engineer. We overcame this obstacle and designed neuronal
circuits with bespoke functionality which allowed us for the first time to perform a structure-
function study with a neuronal circuit, and more specifically to experimentally study an evolu-
tionary transformation between a small and a large brain. Synthetic neurobiology thus comple-
ments classical neurobiology and extends the realm of questions which can be experimentally
addressed.

I see potential applications of this method in vivo in neuroprosthetics and neuroenhance-
ment. Recent studies use single fibers for optogenetic stimulation, but such stimuli are simple
and unspecific. Our approach for holographic stimulation could serve to provide 3D input into
the visual cortex of a living organism317,369,401. A potential application might lay in an opto-
genetically based intracortical visual prosthesis, circumventing a substantial part of the visual
system and specifically targeting the input layer of sensory cortex. The artificial replacement
and reconstitution of fundamental building blocks of the nervous system in vivo might lead to
genuine insights into the logic of neuronal circuits, and neuronal codes. I am positive that such
experiments are within reach using technologies developed here.

Future applications in vitro rest in novel diagnostics from optically interfaced networks of
patient derived neuronal cultures using induced pluripotent stem cells260,326. Optogenetic tools
were also recently used to control intracellular signals and transcription within a cell127. Simi-
larly, gene expression signals can be controlled optically151,363 with the potential to extend the
methodology developed here to intracellular processes and hybrid gene regulation.
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Chapter 10

Materials and Methods

“To the natural philosopher there is no natural object unimportant or trifling. From
the least of nature’s works he may learn the greatest lessons.”

John Herschel182: “The Study of Natural Philosophy”.

213
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10.1 Experimental protocols

Primary culture of neurons

Primary cell cultures were prepared from embryonic rat cortices. We use Wisteria WU rat
embryos at 18 or 19 days of gestation. All animals were kept and bred in the animal house of
the Max Planck Institute for Experimental Medicine according to the guidelines for experimental
animals. We use a protocol derived from the procedure by Brewer et al.59

• We sacrificed a pregnant rat with CO2 at gestation day 18 or 19. Next, we performed a
cervical dislocation. This was done by placing the animal belly down on the operation
table, fixing the neck with a pair of tweezers, firmly pulling its tail and bending the body
over the head. This step requires some force. Then, the animal is flipped belly up and the
fur is sterilized by flushing with 70% ethanol.

• Next, we cut through the fur and the skin of the rat. This reveals muscular tissue covering
the intestines. Cutting through the muscles opens the abdominal cavity and the embryos
in the uterus are visible right away. They are removed by graping an edge of the uterus
with surgical tweezers and pulling the uterus out of the body. The distribution of the
number of embryos for our animals is shown in Fig. 10.1A. The filaments connecting the
uterus with the body are cut with a pair of scissors. After this procedure, the uterus is
put in a petri dish on ice. The embryonic sacks are cut one by one and the embryos are
extracted with a pair of surgical tweezers. The embryos are decapitated and the heads
transferred to a petri dish on ice. There were typically 10 embryos per rat. All following
steps were performed in a sterile environment.

• The heads were processed one after the other on a second petri dish on ice. First, under
a microscope, the skull cavity was opened and the brain removed. Then, the cortex was
separated from the brain using a sharp spoon and sharp tweezers. This was done by putting
the brain in a small petri dish, cutting the brain along the central line with a sharp spoon
and opening the brain along the central line. First, we removed the meninges and then
cut the cortex, making sure not to include parts of the striatum or the hippocampus. The
cortices were stored in ice cold buffered neurobasal medium (100 mM HEPES) until all
hemispheres from all embryos were processed.

• After the surgical preparation of the cortices, the supernatant was removed and the pre-
pared cortices were trypsinized in Trypsin/EDTA for 15 minutes at 37◦C. Then, the
Trypsin/EDTA was removed and replaced with a 10% FCS solution in Neurobasal medium.
The cells were homogenized 10 times with a syringe and a needle of 1 mm diameter.
The cell suspension was then centrifuged at 1200 rpm for 2 minutes. The pellet was
re-suspended in serum free B27/Neurobasal medium supplemented with Glutamax and
Basic Fibroblast Growth Factor (bFGF), see Tab. 10.1. Typically, 1 ml medium was
used for two embryos / four hemispheres. This generates a cell density of roughly 10
million cells/ml.

• To measure the cell density, 50 µl of the cell suspension was mixed with 50 µl of a 0.4%
Tryptane blue solution (Prepared in 0.81% sodium chloride and 0.06% potassium phos-
phate, dibasic.). A drop of this mixture was placed on a Neubauer counting chamber.

• We seed 1 million primary cells, after Tryptan blue stain identified as membrane–intact, in
100 µl medium. The cells were placed on multielectrode arrays coated with poly-D-lysine.
A droplet with 1 million cells (in typically around 100 µl cell suspension) was added in
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Figure 10.1: Typical number of embryos and size of neurons grown in culture. A The
distribution of the number of embryos for the animals used here, outbred Wistar (WU) rats. The
typical number scatters around 11. B Neurons grown for 20 days on a coverslip. Transduction
with AAV9.hSyn.TurboRFP on DIV 2. The connection between both cells (b) and the filament
with the growth cone (a) are equally long and measure 1.70± 0.05 mm. C Magnification of the
insets in A, raw data, reveal growth cones291.

the middle of the multielectrode array to cover the recording area and the MEAs were
placed in an incubator for 2h to 5h. The droplet extends to about 1 cm2 so that the final
seeding cell density is typically 10.000 cells/mm2 After several hours, the arrays were filled
up with 1 ml of the aforementioned serum free B27/Neurobasal medium.

The cells were kept in an incubator at 37◦C and a mixture of 8% CO2+ 92% ambient air. Half
of the medium was changed once a week. The MEAs were capped385 with a Teflon membrane
(ALA-science caps, ALA Scientific Instruments, USA). Cell cultures were typically prepared on
Wednesdays, transduction and medium changes were done on Fridays. The cells can be trans-
duced virally and neurons grow long filaments, Fig. 10.1B, including growth cones, Fig. 10.1C.
In comparison to the literature, our preparation yields very high cell densities. Below we will
measure neuron and glia density to around 2000 cells/mm2, i.e. 80% of cells are lost during
the preparation. Most other studies only report the seeding density. Tetzlaff et al.469, study-
ing self-organized criticality, use a density of 5000 mm−2. Yaron Penn and colleagues seed
3000 − 4000 mm−2 of which around 800 mm−2 survive379. The fraction of surviving cells is
consistent with our measurements. Soriano et al.448 probe the effects of various densities by
seeding between 1300 and 21000 mm−2, however, typically obtained < 1000 mm−2 in the end.
This is the same density as with the cortical cultures in275 or the study of213 in which they
varied the seeding density between 100 mm−2 and 2500 mm−2. The highest reported measured
cell densities are by498 with about 2500 mm−2.

Cleaning and Coating of MEAs/Coverslips

MEAs were produced by MultiChannel Systems (MCS), 60MEA200/30iR-TiN, and Coverslips
were Marienfeld Superior, �12 mm, # 1.5.

• We cleaned MEAs, and MEA-caps following the MCS recommendation, by immersing
them in a 1% Tergazym solution in ddH2O for a few hours. Typically, this was enough to
remove any dirt, cellular debris and contamination, such as mold. If any residues remained
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Agent Stock Solution Storage

B27 400 µl −20◦C
Glutamax 50 µl +4◦C
bFGF 2 µl of (10 µg in 100 µl 0.1% BSA in 10mM TRIS pH 7.6) stock −20◦C

Table 10.1: Constituents of the supplemented Neurobasal Medium. B27, Glutamax and Ba-
sic Fibroblast Growth Factor (bFGF) were added to 20 ml of NB Medium, yielding as final
concentrations 1:50 B-27, 1:400 Glutamax (0.5 mM L-alanyl-L-glutamine dipeptide), 10 ng/ml
bFGF.

in the well, we gently removed debris with a Q-Tip. We then flushed them thoroughly
with ddH2O and left them in a beaker with ddH2O over night to remove all left traces of
Tergazym. After drying the MEAs, they were autoclaved at 120◦C for 25 min.

• We heat sterilized coverslip at 200◦C for 4h and placed them in sterile 12-Well plates (Cell
Star Cat. 665 180, Greiner).

Before usage, we coated the surface of both, MEAs and coverslips, with Poly-D-Lysine (PDL).
For MEAs this is the recommended procedure by Multichannel Systems. To this end, we add
1 ml of a sterile filtered 50 µg/ml Poly-D-Lysine Hydrobromide solution in ddH2O into the well
of a MEA. We also tried variations of this technique, for instance by first hydrophilizing the
surface with FCS, or adding Laminin to the coating solution126. Both did not substantially affect
culture development and therefore we decided to use the simple protocol. The PDL solution was
left on the MEAs and coverslips for at least 24h. Typically, we prepared MEAs and coverslips a
few days in advance and stored them with PDL solution in an incubator at 37◦C and 5% CO2.
Before plating the cells, we sucked off the PDL solution, flushed the coverslips/MEAs twice with
sterile ddH2O , and left them to dry under the UV light of the sterile bench.

Recordings

We recorded data from 30 µm diameter TiN-MEAs with the commercial Multichannel systems
setup (a 60 channel MEA amplifier, MEA-1060 Inv, Multichannel Systems, Reutlingen, Ger-
many). Briefly, the electrode signals were preamplified and sampled with 25 kHz from each of
the 60 electrodes. We further used two additional analog channels to synchronize stimulation,
recording, and trigger pulses from the camera (Progres MF firewire, Jenoptik, Jena, Germany)
for calcium imaging. We first filtered the electrode data with a Butterworth filter of 2nd order
at 100 Hz. We identified events as points in time where the filtered potential exceeded a given
threshold. Typically, we chose a threshold of −5σ, individually for every electrode277, corre-
sponding to about -20 µV. We removed the fraction of accidental threshold crossings with a
simple sorting scheme, see Fig. 4.16. Around every threshold crossing, we cut a segment 2 ms
before and 4 ms after the event with 150 voltage values. On the collection of all N datapoints
of an electrode, i.e. a cloud of N points in a 150 dimensional voltage-space, we first perform a
principal component analysis and subsequently identify clusters using the mean-shift algorithm
at a quartile of 0.390. For the identified clusters, typically one or two, we calculate averaged
waveforms. If the averaged waveform within a cluster has a standard deviation larger than 5
µV and a maximum larger than +4 µV, we accept this cluster as action potentials; if not, we
label the cluster as noise cluster. Please note that we only sort related to the rough shape of
the waveform. The unit activity might still be taken as multiunit activity.
The holographic frame transitions were recorded from a screen receiving the same signal as
the SLM after a DVI splitter. We measured the screen signal with a OPT101 photodiode and
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Toxin Concentration Final Concentration

Na2-NBQX 4 mg/ml ddH2O→ 10 mM 10 µM
APV 10 mg/ml ddH2O→ 50 mM 100 µM
Picrotoxin 30.1 mg/ml DMSO → 50 mM 100 µM
Bicuculline 18.4 mg/ml DMSO → 50 mM 50 µM

Table 10.2: Neurotoxins for blockade experiments.

transimpedance amplifier (Texas Instruments) and recorded it with the electrophysiology setup.
We verified that this signal is within 2 ms synchronous to the SLM.

Toxins and synaptic blockade

For synaptic blockade, we used a mixture of the artificial NMDA receptor antagonist 2-Amino-
5-phosphonovalerianic acid (APV) as free acid105,364, the AMPA/kainate receptor antagonist
(2,3-Dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione) (NBQX) as disodium salt435

and the plant-toxin and GABA receptor antagonist Picrotoxin (PTX) or Bicuculline. The agents
were either dissolved in ddH2O or in Dimethyl sulfoxide (DMSO). We kept the toxins in stock
concentrations aliquoted and frozen at -20◦C. Just before an experiment, we added 2 µl of PTX
and APV together with 1 µl of NBQX per ml of medium. Note that the DMSO concentration
reaches about 0.2%.

Perfusion

Perfusion is needed after about 12h experiments281,331,432, with a small flow rate of 1.5-3.5
µl/min. We used a Gibson Minipulse 3 Perfusion pump, operated at 0.01 RPM, the smallest
setting. With a narrow silicone tube, this yielded a steady flow of 2.7 µl/min. The medium was
supplemented Neurobasal medium, with an additional 100 U/ml, 100 µg/ml Pen/Strep (200 µl
of the Pen/Strep Stock Solution to 20 ml medium). The medium was kept warm in an oil bath,
and all components were autoclaved and assembled on a sterile bench before use.

Immunostainings

For the immunostainings, we follow a standard protocol418. Buffers are listed in Tab. 10.3.

• We take the cells from the incubator and wash them once with PBS

• We add 4% Formaldehyde, buffered at pH 6.9, to the cells. Fixation for 7 min at 4◦C

• Next, we wash 3 times with PBS for 5 min each. This is done at room temperature on a
shaker

• For permeabilization, we incubate the fixated cells with Triton-X for 5 min at room tem-
perature on a shaker.

• Wash two times with PBT for 5 min at room temperature on a shaker.

• Next, we block unspecific binding sites by incubating the cells for about 2h with a BSA
solution at room temperature.

• Then we apply the primary antibodies, diluted to the specified concentration in BSA. We
do this by placing a drop of the antibody containing solution on a piece of parafilm and
flipping the coverslip on top. This is left over night at 4◦C.
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Buffer Stock solution Storage

Triton-X 100 mL PBS with 500 µl Triton-X 100 +4◦C
PBT 500 mL PBS with 500 µl Tween-20 +4◦C
BSA 0.75 g BSA powder in 25 mL PBT made freshly
FA Commercial Formaldehyde solution, 4 % +4◦C

Table 10.3: Buffers for immunostainings.

Name Viral construct GC/ml

jRCaMP1a AAV1.Syn.NES.jRCaMP1a.WPRE.SV40 3.36× 1013

GCaMP6f AAV1.Syn.GCaMP6f.WPRE.SV40 2.65× 1013

Syn.RFP AAV5.hSyn.TurboRFP.WPRE.rBG 4.40× 1013

GFAP.GFP AAV5.GFAP.eGFP.WPRE.hGH 1.06× 1013

CamKII.GFP AAV9.CamKII0.4.eGFP.WPRE.rBG 3.49× 1013

Syn.RFP AAV9.hSyn.TurboRFP.WPRE.rBG 6.64× 1013

ChR2(H134R)-YFP AAV9.hSyn.hChR2(H134R)-eYFP.WPRE.hGH 3.39× 1013

Chronos-GFP AAV9.Syn.Chronos-GFP.WPRE.bGH 3.51× 1013

Table 10.4: Viruses used in this thesis. GC refers to the number of genome copies per volume.

• The next day, we flush out the primary antibody by washing twice with PBT for 5 min at
room temperature on a shaker.

• We then apply the secondary antibody, again in BSA solution, at room temperature for
at least 120 min.

• Finally we wash the sample 3 times with PBT for 5min at room temperature.

• We mount the slides to an objective slide with ProLong Gold + DAPI. To this end, we
place a drop of Prolong Gold + DAPI on the objective slide, flip the coverslip on top and
let it dry over night at 4◦C.

• The next day, we seal the coverslip with clear nail polish (Jade Express Finish, Typ 10
Brilliant Transparent, Tegut, Göttingen, Germany).

10.2 Agents

The water used is ASTM Type 1 ultrapure and was cleaned by activated carbon and deionization
in a Satorius Arium pro filter. Typical conductivities are 0.055 µS/cm with < 50 µg/l organic
carbon. The other agents used are listed in Tab. 10.5. All viruses were procured at UPenn
Vectorcore and the number of genome copies was measured with quantitative PCR288. They
are listed in Tab. 10.4. Before use, the viruses were thawed once, aliquoted into 5 µl portions,
and then stored frozen at −80◦C.
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Manufacturer Number

Chemicals
B27 Suppl. 50x Gibco 17504-044
Basic fibroblast growth factor (bFGF) Gibco 13256-029
Bicuculline Sigma-Aldrich 14340
Bovine serum albumin (BSA) Sigma-Aldrich A3059
D-AP5 Sigma-Aldrich A5282
Dimethyl Sulfoxide (DMSO) Sigma-Aldrich D8418
Fetal Calf Serum (FCS) Biochrom Cat. 0115
Fluorescein Sigma-Aldrich F2456
Formaldehyde, phosphate buffered at pH 6.9 Merck 100496
Glutamax 100x Gibco 35050-038
(3-glycidyloxypropyl)trimethoxysilane (3-GPS) Sigma-Aldrich 440167
HEPES 1M Gibco 15630-056
Laminin Sigma-Aldrich L2020
NBQX Disodium salt Sigma-Aldrich N183
Neurobasal Medium Gibco 12348-017
PBS Tablets for 500 ml ddH2O Gibco 18912-014
Pen/Strep 10.000 U/ml, µg/ml Gibco 15140-122
PDMS Sylgard 184 Dow Corning Base/Curing Agent
Picrotoxin Sigma-Aldrich P1675
Poly-D-lysine, Hydrobromide (PDL) Sigma-Aldrich P7886
Poly-L-lysine, FITC labeled (PLL-FITC) Sigma-Aldrich P3069
Prolong Gold + DAPI Molecular Probes P36931
Sodium dodecyl sulfate Sigma Aldrich L4509
Tergazym Alconox Sigma-Aldrich 242985
Toluene Merck 107019
Triton X-100 Sigma-Aldrich X100
Trypsin/EDTA 0.05%/0.02% in PBS Biochrom L2143
Tryptanblue 0.4% Sigma-Aldrich T8154
Tween-20 Sigma-Aldrich P7949

Antibodies (diluted in 3% BSA/PBT)
Goat-Anti-GFP Rockland 101-215 1:200
Rabbit-Anti-RFP Rockland 401-379 1:200
Mouse-Anti-NeuN EMD Millipore MAB377 1:50
Rabbit-Anti-GFAP Abcam, ab33922 1:50
Donkey-Anti-Goat 647 Invitrogen A-21447 10 µg/ml
Donkey-Anti-Rabbit 488 Abcam, ab150061 1:1000
Donkey-Anti-Mouse 546 Invitrogen A-10036 10 µg/ml
Donkey-Anti-Mouse 647 Abcam, ab180111 1:1000

Table 10.5: Chemicals and Antibodies used in this thesis.
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Andreas Daus and Christiane Thielemann. I particularly want to thank Robert Samhaber,
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and Yorck-Fabian Beensen, Denny Fliegner and Hecke Schrobsdorff for the great IT support. I
am grateful to Ayse Bolik, Viktoryia Novak, Regina Wunderlich, Zrinka Gattin and the GGNB
office for all their support in administrative issues.

I would also like to specifically acknowledge the Genetically-Encoded Neuronal Indicator and
Effector (GENIE) Project and the Janelia Research Campus of the Howard Hughes Medical In-
stitute which have generously allowed the jRCaMP1a material to be used. Specifically I would
like to express my gratitude towards Vivek Jayaraman, Douglas S. Kim, Loren L. Looger, and
Karel Svoboda. I would also like to thank Karl Deisseroth for allowing to use the ChR2(H134)
construct.

I would like to thank Bettina Hein, Walter Stühmer, Fred Wolf and Juan Daniel Flórez
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