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1 Introduction

The brain is wider than the sky,
For, put them side by side,

The one the other will include
With ease, and you beside.

Emily Dickinson [1]

Information is processed in the brain by the coordinated activity of large neural circuits. Yet, we
are still only starting to understand how this high-dimensional complex system gives rise to func-
tions such as processing sensory information, making decisions and controlling behavior. Tech-
nological advances such as optogenetics and cellular resolution imaging provide tools to measure
and manipulate the activity of many neurons simultaneously. These developments open novel
avenues for the interplay of theory and experiment in neuroscience and foster the development
of mathematical approaches for the systematic dissection and understanding of cortical informa-
tion processing. This will undoubtedly allow more systematic and comprehensive insights into
the brain’s structure, function, dynamics, and plasticity. But given the complexity of neural net-
work dynamics, it is not yet clear to what extent this will also give rise to a better conceptual and
quantitative understanding of principles underlying neural circuit information processing.

Depending on the specific question, we might need a diversity of theoretical concepts and per-
spectives. Among these are both mechanistic bottom-up approaches which assemble simplified
well-understood units into circuits giving rise to less-understood network dynamics and normative
top-down approaches, starting for example from information theoretic, geometric or evolutionary
constraints to infer how computations should be performed [2].

How information is encoded, processed and transmitted by neural circuits is intimately related
to their collective network dynamics. Therefore, it is desirable to better understand how different
factors shape the patterns of activity across neural populations. Prominent factors that shape circuit
dynamics include single-cell properties, synaptic features, network topology and external input
statistics.

In this thesis, we develop novel numerical and analytical techniques from dynamical systems,
stochastic processes and information theory to characterize the evoked and spontaneous dynam-
ics and phase space organization of large neural circuit models. Our target is to determine how
biophysical properties of neurons and network parameters influence information transmission. We
investigate the role and relevance of single-cell properties in the collective network dynamics and
study how the statistics of external input spike trains affect the chaoticity and reliability of bal-
anced target circuits. By varying the statistics of the streams of input spike trains and investigating
the scaling of properties of the collective dynamics with different network parameters, we identify
key parameters that regulate information transmission and the ability to control the activity states
in a driven network.
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1. Chapter Introduction

In Chapter 2, we present the biological and mathematical foundations of this thesis. We review
previous work on chaos, both in spiking and in rate networks. Finally, we motivate the scientific
questions addressed in the subsequent chapters.

In Chapter 3, we introduce a novel efficient method for numerically exact simulations of large
sparse networks of model neurons and the calculation of their Lyapunov exponents. Our algo-
rithm reduces the computational cost from O (N) to O (log(N)) operations per network spike for a
fixed number of synapses per neuron and Lyapunov exponents. This allows for numerically exact
simulations of large networks (N = 109 neurons) and the characterization of their chaoticity.

In Chapter 4, we study the role of action potential (AP) onset rapidness both for information
transmission in a feedforward architecture and for the collective dynamics in recurrent networks.
We quantify the bandwidth of information transmission in the feedforward architecture. Using the
novel approach introduced in Chapter 3, we investigate in large random recurrent networks how
AP onset rapidness affects the attractor dimensionality and the pairwise spike count correlations.
Our results demonstrate that AP onset has a drastic effect on the microscopic phase space structure,
which is not detectable by the pairwise statistics. We corroborate our results in simulations of more
realistic circuits having second-order motif statistics and a multilayered cortical column structure.

In Chapter 5, the role of the statistics of spiking input for the recurrent network dynamics and
its reliability across trials is analyzed. Our results show that structured streams of input spike trains
generally reduce dynamical entropy rate and attractor dimensionality of the dynamics of the driven
target circuit. Strong external input tames the chaos in the recurrent target circuit. For sufficiently
strong input, we find a transition towards network state control, which occurs for stronger input
than the transition to stability. We describe under which conditions streams of incoming spike
trains completely control the spike patterns in the target circuit. Intriguingly, we find that rapid AP
onset facilitates both suppressing chaos and controlling the network state.

In Chapter 6, we reanalyze a recent study on the dynamics of balanced spiking networks and
their relationship to rate networks [3]. The reexamined study considered spiking networks of leaky
integrate-and-fire (LIF) neurons and proposed that for strong coupling they would exhibit a chaotic
instability mathematically analogous to the well-known transition to chaos in rate networks [4].
We revisited the behavior of the spiking LIF networks and the matched rate networks and found
hallmarks of a chaotic instability in the rate network, but not in the spiking network. Changes of
network parameters revealed further differences between the mean-field theory for rate networks
and simulations of spiking networks. Thus, our reanalysis demonstrates fundamental differences
between the behavior of networks of pulse-coupled LIF neurons and matched rate networks. In
particular, there is no indication of a corresponding chaotic instability in the spiking networks.

In Chapter 7, for the first time to our knowledge, we calculate full Lyapunov spectra of random
rate networks. The dynamics of such networks and their transition from a stable state for small
couplings to a chaotic state for strong couplings has been studied extensively [5]. Our study al-
lows measuring the dynamical entropy rate and attractor dimensionality for such networks of rate
units. The mean Lyapunov exponent is calculated analytically. For several limiting cases analytical
random matrix approximations of the Lyapunov spectrum are presented. The Lyapunov spectrum
is also obtained for rate networks driven by frozen white noise, extending earlier studies, which
examined the behavior of the largest Lyapunov exponent upon time-varying external input [6–8].

In Chapter 8, we review recent advances in modeling the dynamics of cortical circuits [9]. Both
theoretical and experimental evidence for an inhibition-dominated operating regime of cortical cir-
cuits is discussed. Furthermore, we revisit progress in the theoretical understanding of microstate
dynamics, stimulus selectivity, response heterogeneity and spike count correlation.
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2 Fundamentals

2.1 Biophysics of neuronal activity

Figure 2.1 – First intracellular
recording of an action potential in
the squid giant axon by Hodgkin and
Huxley in 1939 [10].

Neurons are specialized cells that have excitable membranes
which allow them to communicate electrochemically with
other connected neurons. Excitability of neurons arises from
ion-selective voltage-sensitive channels that use the ion gradi-
ents across the semi-permeable membrane to change the trans-
membrane voltage. The concentration gradients are main-
tained by various transmembrane ion transporters acting as
solute pumps. If a threshold potential is crossed, fast sodium
channels open causing an inward current of Na+, followed by
the slower opening potassium channels that cause an outward
K+ current. The interplay of voltage-gated ion channels gives
rise to stereotypical all-or-nothing membrane depolarizations,
called action potentials (APs), or simply spikes, that travel as
unattenuated self-supporting waves along the axon. A mathe-
matical description of this interplay was first presented for the
squid giant axon in a seminal study by Hodgkin and Huxley
in 1952 [11]. Four coupled differential equations for voltage
and two hypothesized activation variables for potassium and sodium and an inactivation variable
for sodium captured remarkably accurately a series of voltage-clamp experiments performed by
Hodgkin, Huxley, and Katz [12–14].

From a dynamical systems perspective, excitability of neurons means that the voltage-gated ion
channels position their dynamics close to a bifurcation from a resting state to spiking activity [15].
APs are elicited at the axon initial segment (AIS) which is in the proximal part of the axon. The AIS
has a high density of sodium channels [16–21] with specialized kinetics with heightened sensitivity
that might facilitate spike onset. For example, the half-activation voltage and half-inactivation
voltage of sodium channels in the AIS was reported to be 10 to 15 mV lower compared to the
soma [22].

Different levels of detail in mathematical modeling Mathematical descriptions for neural
activity exist on different levels of detail. On the nanoscopic scale, single channels and the stochas-
tic switching between their different states is described by Markov chain models and stochastic
processes [23]. At a coarser scale are models that describe the dynamics of ions by reaction-
diffusion systems [24]. In multi-compartment models, several often cylindrical compartments are
modeled by finite-element methods which allow spatiotemporally detailed descriptions of spatially
extended neurons while usually ignoring the underlying stochasticity [25]. Such models can also
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2. Chapter Fundamentals

describe subcellular computations, e.g., dendritic computation [26, 27]. More simplified are zero-
dimensional models of cells, called point neurons, where the membrane potential and optionally
several latent variables – e.g., slow potassium currents or synaptic input currents – are modeled
as coupled differential equations [11, 28]. Spiking neuron models often ignore internal degrees of
freedom and provide an effective description of the internal dynamics [29,30]. Even more abstract
are rate models and neural field models where the compound activity of many neurons is subsumed
in a single activity variable that can vary in time and optionally in space [5,31]. Depending on the
specific scientific question, different levels of description can yield complementary insights. As
we are only beginning to understand neural information processing, for many questions it is not
clear which biophysical details can be left out and which details are necessary to capture the core
features of cortical information processing.

Which biophysical details matter? How strongly do the collective dynamics depend on
biophysical details of single neurons? One might expect that population dynamics are insensitive
to cellular details as in many instances the effect of single-cell properties can become negligible at
the macroscopic circuit level. This would be similar to statistical physics where the macroscopic
description of fluids and gases is often independent of the microscopic features of its elements. For
example, asynchronous irregular activity in idealized cortex models emerges robustly in inhibition-
dominated circuits and can be described by a mean-field theory whose mean rate at dynamical
equilibrium is insensitive to details of the neuron model [32, 33]. Collective dynamics rather are
expected to be strongly shaped by the wiring diagram – known as the connectome – and most
learning algorithms, in fact, operate at this level [34–36]. Can cellular properties have a similarly
strong effect on the collective dynamics? Could it be that single-cell properties are even amplified
by the network? An example where single element input-output functions determine the critical
properties of the collective dynamics are rate networks [5, 37]. A promising single-cell feature for
investigating the dependence of the collective dynamics on cellular details is the rapidness of the
onset of action potentials discussed next.

2.2 Action potential onset: a bottleneck for information
transmission

Action potential initiation is an important bottleneck for cortical information transmission. Only
the information a neuron encodes in its spike train can be used by its local network, by subse-
quent processing stages and, ultimately, to guide behavior. Experimental studies estimated that the
spiking output of a cortical neuron contains twenty- to one hundred fold less information about
the synaptic input than its membrane potential [38]. This might not come as a surprise because
the membrane potential carries more information about the dense stream of incoming postsynaptic
potentials than the temporally sparse sequence of outgoing action potentials. However, the finding
highlights the gatekeeping function of the action potential generation mechanism for the informa-
tion transmission: it decides which aspects of the membrane potential are reflected in the outgoing
spike train.

Experimental findings revealed a surprisingly broad encoding bandwidth of cortical neurons:
high-frequency input components of a stimulus immersed in noise are reliably encoded in the out-
going spike trains up to frequencies of several hundred Hertz. This has been first reported in acute
slice preparations of regular-spiking layer 5 pyramidal cells of the rat somatosensory cortex for
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2.2 Action potential onset: a bottleneck for information transmission

Figure 2.2 – Rapid action potential onset is necessary for broad encoding bandwidth (Figures adapted
from Ref. [44]). A Cortical neurons have a rapid action potential (AP) onset (red) with a characteristic
kink at AP onset (arrow). In the phase plot (middle column), the rate of membrane potential change dV

dt
takes off almost vertically. B The ensemble rate of neurons receiving an external current step embedded
in fluctuations responds ultrafast, indicating a broad encoding bandwidth, (red peristimulus time histogram
(PSTH)). Lowering the extracellular sodium concentration decreases the AP onset rapidness (blue lines).
Decreasing the AP onset reduces the ability to respond quickly to an external stimulus change (B, blue
PSTH).

mean-modulated fluctuations [39] and was also later found for variance-modulated fluctuations
later [40]. Independent studies confirmed the broad bandwidth using a protocol with weaker stim-
ulation strength both in the time and frequency domain [41–44].

Theoretical predictions Theoretical studies predict that a rapid spike onset is necessary for
the ultra-fast response in a feedforward architecture. Ensembles of neurons with instantaneous
spike onset, such as leaky integrate-and-fire neurons [29], can transmit signals in the variance
channel unattenuated for arbitrarily high frequencies [45, 46]. For the mean-modulation channel,
however, the output amplitude declines ∝

1√
f [45]. More generally, high spike onset rapidness in-

creases the population encoding bandwidth. This relationship between broad encoding bandwidth
and high action potential (AP) onset rapidness was first directly demonstrated in the exponential
integrate-and-fire model, whose AP onset rapidness is changeable [30]. A strong influence of
spike onset on high-frequency encoding was also predicted by Naundorf and colleagues [47, 48].
Wei and Wolf confirmed this analytically using a mathematically tractable piecewise linear neuron
model, which allows an analytical calculation of the frequency response for different AP onset
rapidness [49]. In numerical simulations of multi-compartment conductance-based models, which
reproduce the initiation of spikes in the axon initial segment, fast AP onset at the initiation site was
necessary for encoding high frequencies [44].

5



2. Chapter Fundamentals

Experimental confirmations These theoretical predictions on the importance of rapid AP on-
set for high-frequency encoding were confirmed in several experiments. In a recent study, different
ways of decreasing the AP onset rapidness all impaired the ability to encode high-frequency stimu-
lus components into the spike train [44]. In this experiment, the AP onset rapidness was decreased
in slices of rat visual cortex first by decreasing extracellular sodium concentration by partially
substituting NaCl by choline chloride in the extracellular solution (See Fig. 2.2). Secondly, the
effective density of voltage-gated sodium channels (NaV ) was reduced by blocking voltage-gated
sodium channels using small concentrations of tetrodotoxin (TTX) locally at the site of the axon
initial segment (AIS). Both manipulations had the effect of impairing the high-frequency encoding.
A similar impaired high-frequency encoding was observed in neurons from juvenile animals (P9
- P13), which naturally have a slower AP onset [44]. Complementing these experiments, a recent
experimental study investigated the effect of a reduced NaV channel density in the AIS caused by
the genetic mutation qv3J on the frequency response [50]. The genetic knockout selectively slowed
down the action potential onset without altering other somatic characteristics (peak potential, peak
rate of voltage rise) and impaired high-frequency encoding of mature hippocampal neurons [50]
was observed. In addition, a recent experimental study in cultured maturing hippocampal neurons
showed that the AP onset rapidness is strongly correlated with the density of NaV channels in the
AIS [51].

Biophysics of rapid AP onset The biophysics underlying the rapid action potential onset is a
topic of ongoing investigation in electrophysiology and biophysical modeling. Cooperative gating
between sodium channels in the AIS was suggested to account for both rapid AP onset and broad
encoding bandwidth [48, 52]. Although there exists evidence for such cooperative gating in other
tissues [53–55] and in CaV 1.3 channels of rat hippocampal neurons [56], there is no direct evidence
for cooperative gating in NaV channels in the central nervous system yet. Opposing this view, it
was proposed that the sharp rise of AP onset in the soma is an epiphenomenal effect resulting solely
from backpropagation of AP. Accordingly, spikes would have a slow onset at the AIS but become
sharper while invading the soma [57]. To test this backpropagation hypothesis, experimentally
measuring the high-frequency response of cortical neurons was proposed [58]. The experimental
results suggest that the backpropagation hypothesis fails to explain the broad encoding bandwidth
and the impaired high-frequency response resulting from experimentally manipulating the slowed
down AP onsets [44]. As an alternative, it was proposed that fast spike onset could be caused by a
loss of voltage control [59]. However, this model cannot account for the experimentally observed
high-frequency response [60]. Another study proposed that a large dendritic arbor causes a larger
impedance load and hence increases the AP onset rapidness and the cutoff frequency [61]. In
conclusion, the underlying mechanism of the rapid spike onset is still a largely open question of
interest for both biophysical modeling and electrophysiological experiments.

AP onset and recurrent dynamics While the role of broad encoding bandwidth and rapid
spike onset in a feedforward architecture sparked an intense debate, its role and relevance for the
dynamics of recurrently connected neuronal circuits is not well understood and has not yet been
studied systematically. Extending the analysis of an analytically solvable neuron model [62], we
will ask in Chapter 4: How can the role of spike onset rapidness for information transmission
in a feedforward architecture be quantified in information-theoretic quantities, i.e., the mutual in-
formation rate between a stimulus embedded in fluctuations and the spiking response? What is
the effect of changing the AP onset rapidness on the organization of the phase space of recur-
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2.3 Balanced state: A generic mechanism for asynchronous irregular activity

rently connected neurons? We study these questions in sparse random networks of spiking neuron
models in the balanced state. The balanced state is a generic mechanism to generate experimen-
tally observed asynchronous irregular activity in cortical circuits where individual neurons are in a
fluctuation-driven regime.

2.3 Balanced state: A generic mechanism for
asynchronous irregular activity

Origin of asynchronous irregular cortical activity Many neural circuits in the cortex
exhibit asynchronous, irregular activity whose origin has been puzzling theoreticians and experi-
mentalists for a long time. Neurons in the cortex emit sequences of action potentials in an irregular,
Poisson-like fashion in contrast to more peripheral afferent and efferent neurons that often display
tonic or bursty firing [63]. One hypothesis on the origin of such aperiodic, seemingly erratic ac-
tivity was that neurons are intrinsically unreliable devices whose activity can be described by a
random walk towards an absorbing barrier [64]. Although different intrinsic sources of membrane
potential fluctuations exist, for example, stochasticity of synaptic release, ion channel shot noise
and thermal noise [65]. Experiments showed that individual neuron’s spike times can respond reli-
ably to a time-varying external stimulus [66–69]. It thus appears somewhat implausible that these
or other internal noise contributions can account for the irregular spiking of cortical neurons. If
intrinsic variability cannot explain the observed irregular activity, it might be caused by input fluc-
tuations [70]. From a simple perspective of the central limit theorem, if K independent identical
quantities are summed up, their mean is

√
K times larger than their standard deviation. As exper-

imental data suggest that the average number of synapses per cortical neuron K is approximately
1000 to 10000 [71], one might expect that for such a large number of incoming synapses per neu-
ron the mean current is much larger than its fluctuations. This would result in tonic firing for excess
excitation or silence for excess inhibition [72, 73]. At a first glance, this seems to contradict the
hypothesis that input fluctuations are the source of the asynchronous irregular activity.

The balance hypothesis Shadlen and Newsome proposed that an approximate balance of
excitatory and inhibitory incoming synaptic currents could resolve this riddle: in that case, mean
excitation and inhibition would approximately cancel and only the residual fluctuations would
drive the cells to fire [74,75]. Despite explaining the origin of irregular activity, this solution raised
another question: How can excitatory and inhibitory synaptic currents be approximately balanced
for all cells? This balance should be kept in different brain activity states and with different external
input without rewiring or fine-tuning all synaptic strengths. In a seminal study, van Vreeswijk and
Sompolinsky showed that in a broad parameter regime, such a balance of excitatory and inhibitory
currents emerges robustly self-organized for strong synapses, sparse large networks and sufficiently
strong inhibition [33, 76, 77].

The balanced state theory The core mechanism of the balanced state is a fast strong nega-
tive feedback loop (Fig. 2.3). If there is an excess excitatory input current, the inhibitory network
increases its firing rate. As a consequence, the recurrent inhibitory currents grow until the excess
excitation is canceled. Conversely, if there is an excess inhibitory input current, the inhibitory
network decreases its firing rate until it is sufficiently low and balance is restored. If the synap-
tic strength is scaled with J = J0√

K
, where K is the number of synapses per neuron, the residual
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2. Chapter Fundamentals
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Figure 2.3 – The balanced states robustly emerge in local circuits of inhibitory and excitatory neurons.
Neurons in balanced networks are driven by residual input fluctuations that result from the mutual cancel-
lation of excitatory and inhibitory inputs (upper right). The balance of excitatory and inhibitory inputs is a
collective phenomenon and emerges from fast recurrent inhibition in the network. The balanced state was
first described in sparse random networks. Recent studies demonstrated that a balanced state also emerges
in structured and densely connected circuits where correlations are actively suppressed by a dynamic can-
cellation of correlations. Networks in the balanced state robustly exhibit irregular and asynchronous activity
patterns over a large parameter regime without any fine-tuning (lower right).

fluctuations of large excitatory and inhibitory input currents neither vanish nor diverge in the large
network size limit N → ∞ [33, 76]. The negative recurrent feedback loop therefore acts like an
operational amplifier and linearizes the system’s overall rate-current relation. Even if single units
have nonlinear input-output functions, the recurrent inhibitory interactions lead to an overall linear
stationary rate-current relation

ν̄ =
I0

J0τm

for large K [33, 76], where ν̄ is the mean population firing, I0 is the external input strength, J0 is
the coupling strength and τm is the membrane time constant. The derivation of this relation and
the generalization to excitatory-inhibitory mixed networks can be found in chapter 3. In case of
mixed networks an inequality involving the different inter- and intrapopulation coupling strengths,
external input strengths, and population firing rates has to be fulfilled to achieve a balanced state.
Similar to the purely inhibitory case, the mixed balanced state also requires no fine-tuning; it is
achieved over a large parameter regime. Purely inhibitory networks can also be balanced. In that
case, the recurrent inhibition balances the excitatory external input. The mean-field theory of the
original work required large sparse networks i.e., log(N)� K � 1, to guarantee that the input
current correlations arising from the shared input are negligible [78, 79]. Thus, in the mean-field
theory first N is sent to infinity, and in a second step, K→ ∞.

8



2.3 Balanced state: A generic mechanism for asynchronous irregular activity

Balanced state in dense networks It was later shown that even in dense networks, where
the connection probability p = K

N−1 is fixed independent of network size N, asynchronous irregu-
lar activity emerges self-organized because the recurrent inhibition actively decorrelates any input
correlation [32, 80]. Correlations generated by shared input and population-rate fluctuations are
canceled by negative correlations of the recurrent inhibition. The mean-field theory for dense
networks of binary neurons sends K and N to infinity simultaneously and predicts that mean pair-
wise spike count correlations decay ρ̄ ∝ 1/K, while their standard deviation decays much slower
σ̄ ∝ 1/

√
K. This implies a wide distribution of pairwise spike count correlations with a mean

close to zero [32]. This is consistent with the experimental finding that the mean pairwise spike
count correlations of cortical circuits can be low, especially in awake behaving animals [32,81,82].
Such low pairwise correlations were surprising because excitatory neurons in the same local circuit
share on average approximately 10% of their input [83–88], which by itself would result in strong
pairwise spike count correlations [32]. The balanced state theory provides a natural explanation
for this observation.

Balanced state with different neuron models Balanced state networks were studied in
different classes of neuron models. The initial mean-field theory considered networks of binary
neurons [33, 76]. Later, for networks of leaky integrate-and-fire neurons the transition from the
balanced state to other network states, for example to synchronous irregular activity (oscillations),
synchronous regular (network synchrony) and asynchronous regular (splay state) were studied
analytically [45, 89]. These studies also included an analysis of the role of external input spike
trains and synaptic delays. Balanced networks were also investigated with conductance-based
neuron models, where the effective time constant of the voltage dynamics decreases as a function
of the number of synapses per neuron [90, 91]. Firing-rate networks can also be in the balanced
regime if the balance inequality is fulfilled [37, 92].

Experimental evidence Several theoretical predictions for the balanced state were later tested
and confirmed experimentally. More refined recordings corroborated the hypothesis that irregular
spiking activity seems to originate from a fluctuation-driven high-conductance state [93]. Unfortu-
nately, directly measuring excitatory and inhibitory currents into the same neuron is currently not
possible. However, inhibitory and excitatory conductance (gI, gE) can be measured by clamping
the membrane voltage of neighboring neurons at the respective reversal potential of Na+ and K+

channels. Several experiments found that the average ratio gE/gI remains constant across different
stimuli and behavioral states [94–97]. Balanced networks can be seen as a subset of inhibition sta-
bilized networks (ISN) [98, 99] for which several, experimentally-testable predictions were made.
In ISNs the recurrent excitation is so strong that runaway excitation would occur for fixed inhibi-
tion but is dynamically stabilized by inhibitory feedback [9]. If recurrent excitation and inhibition
is sufficiently strong, a paradoxical response to an external drive of the inhibitory population is
predicted in ISNs [99]: Intuitively, one might expect that increased excitatory input into the in-
hibitory population would increase the inhibitory population firing rate and indirectly decrease the
excitatory firing rate by disynaptic inhibition. The opposite is the case for the inhibitory rate: in
ISNs with sufficiently strong recurrent excitation and inhibition, increasing excitatory input to the
inhibitory population paradoxically causes a decrease of the mean activity of both populations be-
cause of the strong recurrent connections [100, 101]. Such a paradoxical response was observed
experimentally in hippocampal CA1 recordings in rats [102] and in cat V1 when studying sur-
round suppression [98]. These findings provide evidence for an inhibition-stabilized operating
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2. Chapter Fundamentals

regime, but comparable surround suppression experiments in the rodent visual system gave less
clear evidence: while the firing rate of inhibitory Parvalbumin-expressing (PV+) interneurons was
decreased by an increasing stimulus size that suppresses excitatory neuron activity, mean firing
rates of Somatostatin-expressing (SOM+) interneurons showed ambiguous responses: they either
decreased [103], which would be consistent with ISNs, or they increased [104], which is incon-
clusive. Optogenetic perturbation experiments of cortical interneuron activity in mice provide a
promising avenue for testing ISN predictions, but they have resulted so far in a variety of different
effects without clear evidence for a paradoxical effect [105, 106].

Functional role of the balanced state “Why should the cortex simultaneously push on the
accelerator and on the brake [107]?” From an evolutionary perspective [108, 109], the prevalence
of an asynchronous irregular regime of cortical activity suggests that it endows advantages which
justify the high metabolic costs [110] of such a seemingly wasteful cancellation of large excita-
tory and inhibitory currents: Are there potential functional advantages of a balanced state as a
cortical operating regime? Firstly, a potential benefit of a balanced state is that it drives neurons
robustly into a fluctuation-driven regime which enables faster response to an external stimulus
change than populations in a mean-driven regime [111]. At any moment, a fraction of neurons
in the population has voltages close to threshold and therefore will respond quickly to an external
input change through the delay or advance of that the next spike. Secondly, balanced circuits are
able to quickly track an external time-varying input due to the strong mean input that scales ∝

√
K,

while the recurrent response keeps the network in the balanced regime as long as the speed of
input changes do not pass a limit [33]. Thirdly, the recurrent balance of an external large excitation
might be useful for certain cortical computations, e.g., adaptively subtracting a large untuned input
component from a weakly tuned signal. Such a mechanism was proposed to account for tuned
responses in rodent visual cortical neurons that receive only weakly tuned input due to their dis-
persed salt-and-pepper layout of orientation selectivity [112, 113]. While there is clear evidence
for feature-selective input into rodent visual cortical neurons, such an adaptive mean-subtracting
iceberg-effect might account for tuned responses in juvenile rodents where no feature-selective
wiring has been found [114, 115]. Fourthly, it was recently proposed that asynchronous, irregu-
lar activity of dense balanced networks could represent a high-dimensional population rate code,
which performs efficiently when assuming a linear readout [116, 117]. In this perspective, which
requires a tight balance, the voltage is interpreted as prediction error about a population signal.
The prediction error is kept small in the balanced state. Such a rate code would also be robust to
deletion of synapses or neurons.

Beyond balance The initial riddle about the origin of asynchronous irregular activity relied
on the assumption of many weak uncorrelated synaptic inputs whose fluctuations are much smaller
than their mean. Recently, it was pointed out that spiking of cortical neurons might predominantly
be driven by few, stronger synapses. In consequence, a balance of excitation by recurrent inhibition
might not be necessary to achieve irregular activity [118]. From such a perspective, inhibition-
stabilization might be sufficient to generate irregular activity even in large neural circuits. However,
different to the balanced state regime, it is not clear how in an inhibition-stabilized regime low
pairwise correlations can be explained, potentially another decorrelation mechanism would be
necessary for unbalanced inhibition-stabilized networks.

Another important extension to the balanced state theory is to include networks with nonran-
dom wiring, e.g., distance-dependent connection probabilities [119, 120], heterogeneity in inde-
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gree [121], inhomogeneous coupling [122] and feature-dependent wiring [112, 113].
In the following chapters on spiking network dynamics, we will consider balanced networks,

although the concepts and tools we develop for an ergodic theory of spiking neural circuits are
more generally applicable also for neural circuits beyond and out of the balanced regime.

The insensitivity of the balance equation to details of the neuron model might suggest that bio-
physical details are negligible for understanding the collective circuit dynamics. However, previ-
ous work suggests that depending on the neuron model, the dynamical nature of balanced networks
can be chaotic [33, 123] or stable [124–126]. In the following sections, we will describe previous
results on chaos in spiking and rate neurons in more details and discuss potential implications for
information processing in cortical circuits.

2.4 Chaotic dynamics in spiking neural networks

Chaotic dynamics and neural information processing The dynamic stability of spiking
neural circuits constrains the capability of information processing. In chaotic systems, a sensitive
dependence on initial conditions makes predictions of future states impossible if the initial con-
dition is known only with finite precision. This corresponds to a dynamical entropy rate because
nearby states, which could not be distinguished by a finite precision readout initially, are pulled
apart by the chaotic network dynamics and are distinguishable later on. Therefore, the dynamical
entropy rate quantifies the rate by which information about a microscopic perturbation becomes
accessible to the macroscopic state [127]. Its interpretation depends on the neural coding: If the
microscopic initial state contains a relevant signal, the dynamical entropy rate measures the rate
by which this information becomes accessible. If the microscopic initial state encodes merely
noise, the dynamical entropy rate measures the rate with which information in the macroscopic
state is overwritten by microscopic noise. Chaotic dynamics might be useful for computation to
amplify small differences of initial conditions. If such a mechanism is used by cortical circuits, it
would be important to find out how different factors regulate this. Certainly, dynamical entropy
rate contributes to noise entropy and can thereby impair encoding capacity. Because of this, it
is a challenge to understand how different factors affect this deterministic contribution to noise
entropy. It was argued that sensitivity to perturbations suggests rate coding in the cortex [128].
While this conclusion remains controversial, probing the stability of cortical dynamics by external
perturbations is a promising approach to constrain models on cortical information processing both
for experiments and theory.

Chaos in the balanced state? Previous work found seemingly contradictory results on
the stability of the balanced state. While balanced networks of binary neurons were shown to be
extremely chaotic (λmax =∞ for N→∞) [33], balanced networks of inhibitory pulse-coupled leaky
integrate-and-fire neurons exhibit stable dynamics (λmax = 0) but interestingly still asynchronous
irregular activity [124,125]. This phenomenon of aperiodic irregular activity despite stability with
respect to infinitesimal perturbations was – potentially misleading – called stable chaos [129]. In
small networks with fixed in-degree, the aperiodic activity was shown to be a transient towards
a periodic orbit [125]. The transient time until the periodic orbit is reached was shown to grow
exponentially with network size N. Consequently, one might expect a diverging transient time in
the large network limit N→ ∞.
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Dynamical flux tubes Stability to infinitesimal perturbations accompanied by instability to
sufficiently large perturbations yields an exotic phase space structure in pulse-coupled networks
of leaky integrate-and-fire (LIF) neurons [130]. Sufficiently strong state perturbations diverge
with an exponential rate λp ∼ Kν̄ , where K is the mean number of synapses per neuron and ν̄ is
the mean population firing rate, while small perturbations converge to the unperturbed trajectory
with exp

(
− t

τm

)
[130]. The average diameter of the basins of attraction, called flux tubes, was

numerically found to scale εft ∝
1√

NKν̄τm
, where N is the network size and τm is the membrane

time constant [130]. As a consequence, the flux tube radius εft becomes tiny for large networks
which results in high sensitivity even to microscopic state perturbations. Later, the scaling of
the flux tube radius was derived analytically [126]. Initially, flux tubes were found in random
inhibitory randomly-coupled networks of pulse-coupled leaky integrate-and-fire neurons driven
with constant external input. It is an interesting question how relaxing these different constraints
((i) random network architecture, (ii) purely inhibitory interactions (iii) pulse-coupled synapses
(v) LIF neurons (vi) constant external input) of the initial finding will affect diameter, shape and
fate of the flux tubes. Hence, related questions addressed in this thesis are: does this phenomenon
survive in more detailed neuron models with an active spike generation mechanism? How are flux
tubes affected by external time-varying input and different single-cell properties?

2.5 Chaotic dynamics in firing-rate networks
Rate chaos The cerebral cortex displays temporally irregular activity and heterogeneous re-
sponse properties. A seminal study showed that randomly connected rate units display a transition
from an inactive state to a highly heterogeneous, chaotic state with evanescent patterns of activity
for sufficiently strong couplings [5]. In this class of models, each rate unit maps its synaptic input
hi smoothly into a firing rate by a sigmoid input-output transfer function φ . Coupling strengths
are drawn from a Gaussian distribution with zero mean and standard deviation g/

√
N. When in-

creasing g, large networks exhibit a phase transition from stable to chaotic dynamics at a critical
coupling gcrit = 1. Recently, the classical study has been extended and the transition has been stud-
ied for different input-output functions [37], sparse and balanced network architectures [37] and
heterogeneous networks with different subpopulations [131]. The chaotic, heterogeneous state of
these rate networks possess high computational capabilities because rich internal dynamics provide
a substrate for complex nonlinear computations e.g. learning input-output relations [35].

Rate chaos in spiking networks Neurons in the brain, however, communicate via spikes
and it is a theoretical challenge to obtain similar rate fluctuations in networks of spiking neuron
models. It was proposed that in the limit of slow synaptic time constants (τs � ν̄−1), spiking
neurons behave like rate units and simply integrate the synaptic input [132]. Later, it was shown
that networks of spiking neurons with slow synaptic time constant can be treated using dynamical
mean-field theory developed for rate networks [92]. A different approach to obtain rate fluctuations
in networks of spiking neurons would be to group N/k spiking neurons together into k subpopula-
tions. In the large N limit, the subpopulations behave as rate units and their population averaged
firing rate can be interpreted as the output firing rate of the unit.

Rate chaos in pulse-coupled LIF networks? Recently the dynamics of a spiking balanced
network of pulse-coupled leaky integrate-and-fire (LIF) neurons was compared to a matched rate
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network with identical topology. The input-output transfer functions of the matched rate units were
chosen from isolated LIF neurons receiving Gaussian white noise input. A mathematical analogy
between the chaotic instability of the matched rate networks and spiking network dynamics was
proposed [4]. Finding a transition to chaotic slow-varying rate dynamics in spiking networks in
such a simple model would fill a gap in the current understanding of network dynamics. More-
over, it would potentially pave the road for harnessing the rich internal dynamics of the chaotic
heterogeneous state for computations in spiking networks [133].

We reexamine the behavior of LIF networks and ask [3]: Can we find fingerprints of a phase
transition mathematically analogous to the instability found in rate networks also in spiking net-
works? How generic is the described phenomenon? Do the predictions of the proposed mean-field
theory match numeric simulations if parameters are slightly changed? How sensitive is the phe-
nomenon to features of single neuron dynamics, e.g. the synaptic delay, the refractory period and
neuron models?

2.6 Ergodic theory of dynamical systems

Lyapunov exponents An autonomous dynamical system is usually defined by a set of or-
dinary differential equations dx

dt = F(x), x ∈ Ω in the case of continuous dynamics or as a map
xs+1 = f(xs) in the case of discrete dynamics. Ω is the phase space where every possible state
x of the system corresponds to one unique point. We focus here on discrete dynamical systems
as the spiking neural network dynamics studied in this work can be exactly solved between spike
times and can therefore be treated as iterated maps but it can directly be extended to continuous
systems [134]. An initial condition x0 forms an orbit. As a natural extension of linear stability
analysis, one can ask, how an infinitesimal perturbation x′0 = x0 + εu0 evolves in time. Chaotic
systems are sensitive to initial conditions, hence almost all infinitesimal perturbations εu0 of the
initial condition grow exponentially. Finite size perturbations therefore may lead to a drastically
different future behavior. The largest Lyapunov exponent measures the average rate of exponential
divergence or convergence of nearby initial conditions.

λmax(x0) = lim
t→∞

1
t

lim
ε→0

log
||εut ||
||εu0||

(2.1)

It is crucial to first take the limit ε → 0 and then t → ∞, as λmax(x0) would be trivially zero for
a bounded attractor if the limits are exchanged because limt→∞ log ||εut ||

||εu0|| is finite for finite-size
perturbations even if the system is chaotic. To measure N Lyapunov exponents, one has to study
the temporal evolution of N independent infinitesimal perturbations spanning the tangent space:

us+1 = Dsus (2.2)

where the Jacobian Ds(xs) =
df(xs)

dx characterizes the evolution of generic infinitesimal perturba-
tions during one step. As we are interested in the asymptotic behavior, we have to study the
long-term Jacobian:

Tt(x0) = Dt−1(xt−1) . . .D1(x1)D0(x0) (2.3)

Note that Tt(x0) is a product of generally noncommuting matrices.
The Lyapunov exponents λ1 ≥ λ2 · · · ≥ λN are defined by the logarithms of the eigenvalues of
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the positive-semidefinite symmetric Oseledets matrix

Λ(x0) = lim
t→∞

[Tt(x0)
>Tt(x0)]

1
2t , (2.4)

where > denotes the transpose operator. The expression inside the brackets is the Gram matrix of
the long-term Jacobian Tt(x0). When the Gramian Tt(x0)

>Tt(x0) is multiplied by a perturbation
vector u0 of unit length from right and its transpose u>0 from left and the log is taken, the first
Lyapunov exponent (Eq. 2.1) is obtained. Geometrically, the determinant of the Gram matrix is
the squared volume of the parallelotope spanned by the columns of Tt(x0) [135, 136]. Oseledets’
multiplicative ergodic theorem guarantees the existence of the Oseledets matrix Λ(x0) for µ-almost
all initial conditions x0 [135]. In ergodic systems, the Lyapunov exponents λi do not depend on the
initial condition x0. However, for numerically calculating the Lyapunov spectrum, Eq. 2.4 cannot
be used directly to calculate the Lyapunov spectrum because the long-term Jacobian Tt(x0) quickly
becomes ill-conditioned, i.e., the ratio between its largest and smallest singular value diverges
exponentially with time.

Algorithm for calculating Lyapunov spectrum For calculating the full Lyapunov spec-
trum, we can instead exploit the fact that the growth rate of an m-dimensional infinitesimal vol-
ume element is given by λ (m) = ∑

m
i=1 λi [137, 138], therefore λ1 = λ (1), λ2 = λ (2)− λ1, λ3 =

λ (3)−λ1−λ2, etc. The volume growth rates can be obtained via QR-decomposition. First one
needs to evolve an orthonormal basis Qs = [q1

s , q2
s , . . .qm

s ] in time using the Jacobian:

Q̃s+1 = DsQs (2.5)

Secondly, one performs the QR-decomposition

Q̃s+1 = Qs+1Rs+1 (2.6)

Hereby the non-orthonormal matrix Q̃s+1 is uniquely decomposed into an orthonormal matrix
Qs+1 of size N ×m so Q>s+1Qs+1 = 1 and an upper triangular matrix Rs+1 of size m×m with
positive diagonal elements.

Geometrically, Qs+1 describes the rotation of Qs caused by Ds and the diagonal entries of Rs+1

describes the stretching and/or shrinking of Qs, while the off-diagonal elements describe the shear-
ing. Figures 2.4 visualizes Ds and the QR-decomposition for m = 2. The Lyapunov exponents are
obtained from the diagonal elements of Rs:

λi = lim
t→∞

1
t

log
t

∏
s=1

Rs
ii = lim

t→∞

1
t

t

∑
s=1

logRs
ii

Note that the QR-decomposition does not need to be performed in every step, just sufficiently
often such that Q̃s+w =Ds+w−1 ·Ds+w−2 . . .Ds ·Qs is well-conditioned. An appropriate reorthonor-
malization interval wONS thus depends on the condition number, given by the ratio of the smallest
and largest singular value:

κ2(Q̃s+w) = κ2(Rs+w) =
σ1(Rs+w)

σm(Rs+w)
=

Rs+w
11

Rs+w
mm

.

The condition number can therefore be estimated based on the ratio of the largest and smallest Lya-
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Figure 2.4 – Geometric illustration of calculation of Lyapunov spectrum. An orthonormal matrix
Qs = [q1

s , q2
s , . . .qm

s ], whose columns are the axes of an m-dimensional cube, is rotated and distorted by
the Jacobian Ds into an m-dimensional parallelotope Q̃s+1 = DsQs embedded in RN. The figure illustrates
this for m = 2, in this case the columns of Q̃s+1 span a parallelogram. It can be divided into a right triangle
and a trapezoid, and rearranged into a rectangle. This means that the area of the gray parallelogram is the
same as that of the cyan rectangle. The QR-decomposition reorthonormalizes Q̃s+1 by decomposing it into
the product of an orthonormal matrix Qs+1 = [q1

s+1, q2
s+1, . . .qm

s+1] and the upper-triangular matrix Rs+1.
Qs+1 describes the rotation of Qs caused by Ds. The diagonal entries of Rs+1 give the stretching/shrinking
along the columns of Qs+1, thus the volume of the parallelotope formed by the first m columns of Q̃s+1 is
given by Vm =∑

m
i=1 Rs+1

ii . The time-normalized logarithms of the diagonal elements of Rs give the Lyapunov
spectrum: λi = limt→∞

1
t log∏

t
s=1 Rs

ii = limt→∞
1
t ∑

t
s=1 logRs

ii.

punov exponent that are calculated: κ2(Q̃s+w) ≈ exp(λ1−λm). Thus, an appropriate reorthonor-
malization interval is given by sONS =O

(
log(κ̂2)
λ1−λm

)
, where κ̂2 is some acceptable condition number.

The acceptable condition number depends on the desired accuracy of the entries of Rs+w. Here a
minimal example of this algorithm in pseudocode:

general algorithm for Lyapunov exponents (Benettin)
initialize x, Q
warmup of x
warmup of Q
for s = 1→ t do

x← f(x)

D← df(x)
dx

Q← D ·Q
if s % wONS = 0 then

Q,R← qr(Q)
γi += log(Rii)

end if
end for
λi = γi/t

Covariant Lyapunov vectors Covariant Lyapunov vectors describe the local orientation of
stable and unstable manifolds of a dynamical system. In contrast to the Gram-Schmidt vectors,
which are the orthonormal basis evolved during the standard calculation of the Lyapunov spec-
trum [137, 138], the covariant Lyapunov vectors are covariant with the dynamics, Dsvi

s = γivi
s+1
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and invariant under time-reversal vi
s− = v−i+N+1

s+ with λ
+
i =−λ

−
−i+N+1. Their time-average expo-

nential expansion and contraction rates are the Lyapunov exponents. Thus, they characterize how
a small volume element evolves locally in time.

Although Lyapunov vectors were already introduced by Oseledets (1968) and more formally de-
scribed by Ruelle as tangent directions of invariant manifolds in 1979, they received little attention
because there was no efficient algorithm to determine them. Only recently, efficient methods have
been introduced [139–141].

To obtain the covariant Lyapunov vectors using the dynamic algorithm [139], one iterates an
orthonormal basis Qs = [q1

s , q2
s , . . .qm

s ] forward in time, performs the QR decomposition and stores
the upper diagonal Rs matrices [139]. By backward iteration of a random vector in the subspace
of the first k columns of Qs, one can obtain the kth Lyapunov vector. The reason is that almost any
infinitesimal perturbation will asymptotically shrink with the largest Lyapunov exponent and align
along the fastest expanding direction, which is given by the largest Lyapunov vector, when evolved
forward. Similarly, if the system is backward iterated, almost any infinitesimal perturbation will
grow exponentially with −λN and align along the last Lyapunov vectors. To obtain the other
Lyapunov vectors, one can evolve a random perturbation contained in the subspace spanned by the
first k Gram-Schmidt vectors, which will converge along the kth Lyapunov vector.

Lyapunov vectors provide additional information about the local geometric structure of an at-
tractor, which is not contained in the Lyapunov spectrum. The direction of the first covariant
Lyapunov vector or more generally the orientation of the unstable manifolds can be used to assess
how localized the chaos is: Are there only a few degrees of freedom contributing to the exponential
expansion? Or is the chaos rather distributed in many directions? How fast are the unstable direc-
tions changing over time? Can they be related to other quantities of the dynamics? Furthermore,
the angles between unstable and stable manifolds can be used to numerically test whether a system
is hyperbolic. If a dynamical system is hyperbolic, there is always a finite angle between stable
and unstable manifolds. In this case, the existence of a SRB measure is guaranteed [142–144].

Entropy of a dynamical system Chaos of a dynamical system is always associated with a
dynamical entropy rate because nearby states, which could not be distinguished by a finite pre-
cision readout, are pulled apart by the sensitive dependence on initial conditions [127]. This
concept was formalized by Kolmogorov and Sinai in 1959 and termed metric entropy (also called
Kolmogorov-Sinai entropy or dynamical entropy rate). Let (Ω, Σ, µ) be a probability space, where
Ω is the N-dimensional phase space, Σ is a σ -algebra of subsets of Ω and µ is a probability measure
on (Ω, Σ) following conventional notation [135,145–147]. Let f : Ω→Ω be a measure-preserving
transformation, which means for all subsets A ∈ Σ, the following holds: µ( f−1A) = µ(A). Let
A = {A1, A2, . . . , Ak} be a finite measurable partition of Ω, i.e. Ai ∈Ω, Ai∩ A j = /0 for i 6= j and⋃

i Ai =Ω. In each iteration, the initial partition is refined A n = f−nA ∨ f−n+1A . . .∨ f−1A ∨A ,
where ∨ denotes the join A ∨B ={A∩B|A ∈A , B ∈B}. We use the preimage f−1A, as f A is
not a partition if f is not injective. A block entropy of the partition A of Ω with respect to the
measure µ is defined by

H(A ) :=−∑
i

µ(Ai) log(µ(Ai))

j is called the A -address of each x ∈ A j. For any trajectory, the associated symbolic dynamics can
be defined by tracking the sequence of A -addresses visited. The entropy of f with respect to A is

h( f , A ) := hµ( f , A ) := H(A n) = lim
n→∞

1
n

H( f−nA ∨ f−n+1A . . .∨ f−1A ∨A )
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The entropy of the generated symbolic dynamics measures the dynamic complexity of the system
with respect to A . For fixed points or limit cycles, the entropy is trivially zero as the future sym-
bolic dynamics can be perfectly predicted based on a sufficiently long past trajectory. In contrast,
in chaotic systems, the stream of symbols can’t be predicted based on the past as the sensitivity on
initial conditions constantly separates trajectories. If a partition A indefinitely refines itself under
the effect of the dynamics, such that

∨
∞
n=0 f−nA consists only of points, then an infinite symbolic

string uniquely identifies the initial condition and the partition is called a generating partition.
In some systems, such a generating partition was found, although for generic dynamical systems
finding a generating partition is believed to be difficult [145].

The Kolmogorov-Sinai entropy of f , written hµ( f ) is defined as:

hµ( f ) := sup
A

h( f , A ).

It is the supremum over all finite partitions and therefore does not depend on A . This means, hµ( f )
is the average amount of uncertainty as one attempts to predict the next A -address of a random
point. In conclusion, the KS entropy quantifies the average dynamic complexity of a typical trajec-
tory. Measuring the KS entropy of a high-dimensional system is difficult if no generating partition
is known. A brute force ansatz of partitioning the phase space into small boxes is doomed to fail as
the number of partitions grows exponentially with the degrees of freedom [148]. Fortunately, the
KS entropy can be related to the Lyapunov spectrum which is accessible even in high-dimensional
systems. This is the only known general way of accessing the entropy of a high-dimensional
differentiable dynamical system [145].

Relating entropy and Lyapunov exponents Ruelle showed that the sum of the positive
Lyapunov exponents give an upper bound to the Kolmogorov-Sinai entropy [144]:

hµ( f )6 ∑
λi>0

λi

Equality holds if and only if the system is endowed with an SRB (Sinai-Ruelle-Bowen) measure
(Pesin entropy formula) [149]. An f -invariant Borel probability measure µ is an SRB measure if
the conditional probability of µ on smooth manifolds is absolutely continuous [150]. The interpre-
tation is that uncertainty in the prediction of future states comes from positive Lyapunov exponents,
or more precisely from the expanding manifolds with smooth densities [147]. In several classes of
dynamical systems, the existence of an SRB measure was proved [151].

Measuring the attractor dimensionality of a dynamical system The trajectory of an
N-dimensional dissipative chaotic system does not cover the whole phase space. After a transient
period, it relaxes onto a strange attractor, which has a dimensionality D ≤ N. This can be a zero-
dimensional fixed point, a one-dimensional periodic orbit, a higher-dimensional quasi-periodic
orbit or a chaotic strange attractor with typically non-integer dimensionality. Such an attractor
is a special case of a fractal set and one classical approach to measuring its dimensionality is
box counting: the idea is to count the number M of N-dimensional boxes of side length a that
are necessary to cover the attractor (Fig. 2.5). The box-counting dimension is then defined as
D = − lim

a→0

log(M(a))
log(a) . Thus, the box-counting dimension is the exponent, by which the number of

covering boxes M is scaling up as one decreases the box size. By the same token the number of
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Figure 2.5 – Box counting dimension and the curse of dimensionality. The dimensionality D of a geomet-
ric object can be measured by evaluating the scaling of the number of boxes M of size a required to cover
the object when decreasing the box size: D = − lim

a→0

log(M(a))
log(a) . For increasing number of dimensions, the

number of boxes grows exponentially with the dimensionality. Therefore, this and similar sampling-based
methods are not suitable to characterize high-dimensional strange attractors (Figures modified from [152]).

boxes needed to cover the set scales exponential with its dimensionality. To sample the attractor,
the data necessary for the box counting therefore also scales exponentially with the dimensional-
ity. For increasing dimension, one runs into the curse of dimensionality. There are other related
techniques, e.g. the Grassberger-Procaccia algorithm [153, 154], which estimates the correlation
dimension D2. Similar to the case of box counting, a strict lower bound on the data required
to estimate the attractor dimensionality with a fixed desired accuracy scales exponentially in the
degrees of freedom N [155, 156]. Therefore, the computational complexity of this calculation is
exponential in N. It is well understood in nonlinear dynamics that such direct approaches of mea-
suring dimensionality are inappropriate for high-dimensional dynamical systems. In contrast, the
attractor dimensionality can be calculated in polynomial time based on the Lyapunov spectrum of
a dynamical system [135].

The Lyapunov dimension DL relates the attractor dimensionality to the Lyapunov spectrum. It
is given by the interpolated number of Lyapunov exponents that sum to zero:

DL = k+
∑

k
i=1 λi

λk+1
with k = max

n

{
n

∑
i=1

λi ≥ 0

}

It was conjectured that “in general”, if µ is an SRB (Sinai-Ruelle-Bowen) measure, DL is equiv-
alent to the information dimension [157–159]:

D1 = DL
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This Kaplan-Yorke conjecture is believed to be true for many systems, but it has been rigorously
proved only for certain classes of dynamical systems; there exists no general proof [160]. Geo-
metrically, one can think of k as the dimensionality of the highest dimensional hypersphere whose
volume does not shrink by the dissipative system dynamics. A different perspective is that all
points on the attractor are mapped back on the attractor by f . Expansion along unstable manifolds
and contraction along stable manifold need to be balanced on the attractor because of its invariance.

2.7 Random dynamical systems: merging stochastic and
dynamical systems

The dynamics of many systems is shaped by an interplay of deterministic and stochastic contribu-
tions. While dynamical systems theory often assumes purely deterministic equations of motion,
the theory of random dynamical systems (RDS) allows uniting these two perspectives. RDS studies
how an ensemble of initial conditions evolves in time under the influence of a frozen noise real-
ization. This allows extending concepts from ergodic theory like Lyapunov spectra, Kolmogorov-
Sinai entropy and attractor dimensionality to systems with a stochastic external input.

Random dynamical systems and neural reliability Random dynamical systems provide
a mathematical framework to study the reliability of a system and more specifically trial-to-trial
variability in neuroscience [161–164]. In this perspective, the stochastic external input is inter-
preted as a signal and one asks how reliably different initial states respond to this external signal.
A system is considered reliable if different initial conditions converge to the same trajectory. Con-
versely, if the system is unreliable, different initial conditions remain separated despite the same
external input [147, 161].

Random dynamical systems Consider a stochastic differential equation of the form:

dxt = a(xt)+
N

∑
i=1

bi(xt)◦dW i
t

where dW i
t represent independent Brownian motions (following the notation of [147, 161, 162,

165]). An associated stochastic flow map is a solution for the dynamics, i.e. Ft1, t2;ζ (xt1) = xt2 .
Instead of studying the temporal evolution of some initial measure µ , where each initial condi-
tion receives private noise, as it is usually done in a Fokker-Planck ansatz, the theory of random
dynamical systems studies the evolution of a sample measure µ t

ζ
, defined as

µ
t
ζ
= lim

s→∞
(F−s, t;ζ )∗µ

where the push-forward (F−s, t;ζ )∗ transports the initial measure µ for some fixed white noise
realization ζ (t) defined for all t ∈ (−∞,∞) along the flow F−s, t;ζ . In other words, the sample
measure µ t

ζ
is the conditional measure at time t given the infinite past history of ζ (t). Note that

in general, while µ t
ζ

depends both on time t and the noise realization ζ , it possesses invariant
properties, characterizing its structure. For example, the Lyapunov exponents λ1 > λ2 > . . .> λN
are independent of the input realization ζ [166].
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Figure 2.6 – Random dynamical systems: random strange attractor and random sink. A two-
dimensional projection perpendicular to the flow of a chaotic network of three neurons driven by a fixed
realization of random stream of incoming spike trains. Top panels: For weak input, uniformly distributed
independent initial conditions driven by the same frozen input realization converge to a time-dependent
random strange attractor (shown from left to right for t = 1, 2, 6, 10 s). Bottom panels: For sufficiently
strong input, the uniform initial conditions collapse into one single trajectory (shown from left to right for
t = 1, 2, 6, 10 s). In this example, the uniformly distributed initial conditions coalesce into a wandering
time-dependent sink after approximately 10 s.

Chaos and Reliability Two theorems from random dynamical systems link sample measure
µ t

ζ
and Lyapunov spectrum in chaotic and stable systems respectively.

Firstly, Ledrappier and Young proved that if λ1 > 0, then µ t
ζ

is a random SRB (Sinai-Ruelle-
Bowen) measure [167].

As a consequence, in contrast to autonomous systems, for random dynamical systems the Pesin
identity hµ( f ) 6 ∑λi>0 λi is guaranteed to hold. Note that in contrast to SRB measures of au-
tonomous systems, random SRB measures are time-dependent. However, they have a similar
meaning: dynamical systems with SRB measure have smooth conditional measures along the un-
stable manifolds.

Secondly, Baxendale and Le Jan showed that if λ1 < 0 and the stationary measure is ergodic
and some nondegeneracy conditions on the measure are fulfilled [168], then µ t

ζ
is a random sink,

which means µ t
ζ
(x) = δ (x−xt), where xt is a solution of the stochastic dynamics for a given noise

realization ζ [168, 169].
This means that any trajectory of a stable random dynamical system will at some time be ab-

sorbed into one single trajectory, which is independent of the initial condition but depends only
the noise realization. Equally, any smooth initial measure will asymptotically coalesce into a wan-
dering time-dependent sink. Note that the theorems by Baxendale and Le Jan do not say when the
random sink will be reached. Its asymptotic existence might in the case of long transients therefore
have no practical relevance at the timescale of interest [170].
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2.8 Controlling chaos and variability in neural circuits receiving input spike trains

2.8 Controlling chaos and variability in neural circuits
receiving input spike trains

Controlling recurrent circuits by streams of input spike trains Understanding the in-
teraction of recurrent dynamics and external input is relevant for understanding information trans-
mission between neural circuits. The brain can be seen as a network of different networks driving

Figure 2.7 – Controlling spiking neural network by spatiotemporally structured external input. A It is
essential to understand how streams of incoming spike trains control the recurrent activity of a local circuit.
To obtain a better understanding of the functioning of cortical projections between different microcircuits,
it is vital to clarify how different features of the projection regulate the extent to which the input is able
to control the recurrent chaotic activity of recurrent target circuits. B Another neuroscientific application,
where a better understanding of the interaction of recurrent dynamics and external input is needed, is the
design of future optogenetic experiments. Novel tools and bidirectional neural circuit interfaces for the first
time allow selectively manipulating and monitoring the activity of vast numbers of neurons in behaving
animals. These technological advancements promote the perturbation of neural activity with millisecond
and single-cell precision and allow new approaches to fundamental questions. To fully harness the potential
of such tools and approaches, it is vital to build better theoretical models for the interaction of recurrent
circuit dynamics and artificial perturbations.

each other with streams of spike trains. Therefore, it is essential to understand how external input
controls the recurrent activity of a local circuit. If the driving circuit’s activity does not exert con-
trol over the recurrent activity, the target network is independent of the input. Consequently, no
information from the input to the recurrent system can be transmitted. In contrast, if the dynamics
of the target circuit is strongly controlled by the input, then information is transmitted along the
set of projections [171]. To obtain a better understanding of the functioning of cortical projections
between different microcircuits, it is therefore important to clarify how different features of the
projection regulate the extent to which the input is able to control the recurrent chaotic activity of
recurrent target circuits. What is the optimal projection design in terms of connection strength,
spike time irregularity and correlations to control activity in a subsequent circuit? What can we
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Figure 2.8 – The brain as a network of networks driving each other with streams of spike trains.
Different neural circuits in the brain communicate with streams of spike trains. Understanding what aspects
of a stream of incoming spike trains control the recurrent activity is relevant to understand information
transmission and the reliability of neural circuits.

learn about important projections in the brain, e.g. the hippocampal projection from dentate gyrus
to CA3, which is believed to be crucial for encoding and retrieval of memories [172, 173]? Such
questions can also be asked for sensory input from thalamus to the cortex, e.g. projections from
the lateral geniculate nucleus to layer 4 of the primary visual cortex [174].

Controlling cortical circuits optogenetically Another neuroscientific application, where
a better understanding of the interaction of recurrent dynamics and external input is needed, is
the design of future optogenetic experiments. Emerging techniques allow controlling and measur-
ing the activity of many of cortical neurons at the same time in an intact organism that performs
tasks [175]. Different optogenetic tools allow selectively activating and deactivating different sub-
populations or even single neurons [176]. Until now, optogenetic tools have mostly been used
for reversibly silencing or activating subpopulation. However, a potential application, which still
waits to be fully harnessed, are time-dependent optical stimulation protocols and closed-loop ex-
periments [176]. It is vital for hypothesis-driven research to build better theoretical models of the
interaction of recurrent circuit dynamics and external time-dependent artificial stimulation. Such
models would allow for the deduction of predictions that are testable in experiments. Scientific
questions that can be addressed in this way are, e.g.: Which optogenetic stimulation protocols are
most promising to obtain complete control of the recurrent cortical dynamics? Can such a control
also be obtained if only a fraction of the circuit is externally driven? How does the spatiotemporal
stimulus structure affect controllability of the recurrent activity? Which optogenetic stimuli can
shed light on the input-output function of a cortical circuit? How are single-cell features expected
to affect the controllability of neural circuits?

Reliability of neural activity It has been a longstanding question in neuroscience how reli-
able neurons can respond to an external stimulus. This has been studied experimentally in single
neurons. In vitro experiments found that isolated neurons can under many experimental conditions
respond reliably across trials to an external time-varying input [66–69]. In these studies, more
structured input tended to increase the response reliability. Technological advances bring experi-
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mental circuit-level investigation of reliability into reach. Theoretical studies in single neurons also
found that identical external stochastic forcing tends to synchronize unconnected copies of iden-
tical model neurons that were initialized with different states [68, 177–183] even if the dynamics
of the single neuron model was chaotic when driven by a constant external input. However, there
are interesting exceptions [177]. It is a challenge to extend this analysis to large recurrent neural
networks. The high dimensional and often chaotic dynamics of large recurrent networks requires
a type of analysis that can systematically assess the role of recurrent interactions and character-
ize the networks’ collective dynamics. Studies in rate chaotic networks suggest a suppression of
chaos by structured input [6–8] but in spiking networks, this has not yet been thoroughly analyzed.
Earlier studies of chaos in spiking networks used constant external input [9, 33, 76, 123–125, 184]
or white noise drive [162, 163]. The main finding of the latter was that even in chaotic systems,
individual neurons can respond surprisingly reliably to an external (white noise) stimulus when the
input variance is strong enough [162].

Our approach To address this challenge, we develop an approach to calculate the full Lya-
punov spectra of balanced networks driven by input streams of spike trains, thus yielding the
dynamical entropy rate in numerically exact event-based simulations. To explore how features of
input streams affect information transmission, we vary correlations, irregularity, coupling strength
and spike rate of the input, the number of externally driven cells and action potential onset rapid-
ness of recurrent neurons. Furthermore, we investigate how single neuron properties shape the
target circuits’ reliability.

2.9 Overview

This thesis aims to elucidate how the collective dynamics of neural circuits depend on both the
statistics of an external time-varying input and on biophysical properties of single cells. We will
investigate this with concepts from dynamical systems, stochastic processes and information theory
applied to large circuits of spiking model neurons.

To study the dynamics of such large circuits with high precision and reasonable computational
effort, we will first develop a novel algorithm for numerically exact event-based simulations of
large spiking circuits and the calculation of their Lyapunov exponents in Chapter 3.

We then investigate the role and relevance of action potential (AP) onset rapidness for the spon-
taneous collective dynamics of balanced recurrent circuits. While in a feedforward architecture AP
onset rapidness has a great impact on the bandwidth of information encoding both in theoretical
predictions and experimental observations [30,44,47–49,58,185,186], the role and relevance of a
broad encoding bandwidth and a rapid spike onset in the dynamics of recurrent networks has not
yet been studied systematically. We will analyze the effect of changing the AP onset rapidness on
the organization of the phase space of recurrently connected neurons with a constant external input
current in Chapter 4. Based on the Lyapunov spectrum of the network dynamics, we shall find a
drastic reduction of the attractor dimension for rapid AP onset, which is not detected by a pairwise
dimensionality estimate. This will be corroborated by simulations of more realistic circuits having
experimentally measured second order motif statistics and a multilayered cortical column struc-
ture. Furthermore, we present a systematic analysis how key features of the collective dynamics
scale with network parameters.

Based on the strong effect of AP onset rapidness in the spontaneous dynamics of balanced cir-
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cuits, we will investigate the effect of AP onset rapidness on information encoding into a recurrent
network driven by incoming streams of action potentials in Chapter 5. We will study what rate
and coupling strength of incoming streams of spike trains is sufficient to control the driven target
circuit and to suppress chaotic dynamics. Furthermore, we will investigate how the complete net-
work state control depends on network parameters and single-cell features. We shall find that rapid
AP onset facilitates the transition to complete network state control and the transition from chaos
to stability in driven balanced circuits.

In Chapter 6, a recent study that compared the dynamics of spiking balanced networks of pulse-
coupled leaky integrate-and-fire (LIF) neurons and matched networks of rate neurons will be re-
examined [3]. The reexamined study proposed an intriguing mathematical analogy between the
chaotic instability of the matched rate networks and the spiking network dynamics [4]. We will
ask for the spiking LIF network: Can we find fingerprints of a phase transition mathematically
analogous to the instability found in rate networks? How generic is the described phenomenon?
Do the predictions of the proposed mean-field theory match numeric simulations if parameters are
slightly changed? How sensitive is the phenomenon to details of single neuron dynamics, e.g. the
synaptic delay, the refractory period and neuron models?

In Chapter 7, for the first time to our knowledge, we will calculate full Lyapunov spectra of
random firing-rate networks. The dynamics of such networks and their transition from a sta-
ble state for small couplings to a chaotic state for strong couplings has been studied extensively
[3–7, 37, 92, 131, 187–194]. Our study allows for the measuring of dynamical entropy rate and at-
tractor dimensionality for such networks of firing-rate units. This approach provides a toolkit from
dynamical systems theory to analyze how these different factors shape the complex rate dynamics.
We will compare the Lyapunov dimension with a dimensionality estimate based on principal com-
ponent analysis (PCA), which is commonly used in neuroscience [7,188,195–197]. The Lyapunov
spectrum is also obtained for rate networks driven by frozen white noise, extending earlier stud-
ies, which examined the behavior of the largest Lyapunov exponent upon time-varying external
input [6–8].

In Chapter 8, we will review recent advances in modeling the dynamics of cortical circuits [9].
Both theoretical and experimental evidence for an inhibition-dominated operating regime of corti-
cal circuits will be discussed. Furthermore, we will revisit progress in the theoretical understanding
of microstate dynamics, stimulus selectivity, response heterogeneity and spike count correlation.

Finally, in Chapter 9, we will summarize our key findings, discuss their relation to previous the-
oretical and experimental studies and propose several potential future research directions building
on our results.
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3 Lyapunov exponents of spiking
balanced networks

3.1 Summary
The ergodic theory of chaotic dynamical systems allows to characterize the dynamics and com-
plex phase space structure of large-scale neural network models. Here, a brief introduction to the
mathematical theory of chaos and strange attractors will be given. This is followed by two exam-
ple calculation of the full Lyapunov spectrum of a spiking neural network of leaky and quadratic
integrate-and-fire neurons. Finally, we provide checks of the numerical implementation and intro-
duce a novel algorithm for an efficient numerical implementation of large sparse spiking networks.
Our new algorithm reduces the computational cost from O (N) to O (log(N)) operations per net-
work spike for a fixed number of synapses per neuron and Lyapunov exponents. This allows
numerically exact simulations of large spiking networks (N = 109 neurons) and the characteriza-
tion of their phase space structure. For example, calculating the largest Lyapunov exponent of a
spiking neural network with one million neurons is sped up by more than four orders of magnitude.
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Abstract

The ergodic theory of chaotic dynamical systems allows us to characterize the dynamics
and complex phase space structure of large-scale neural network models, including the
attractor dimensionality and dynamical entropy rate. Here, a brief introduction to the
mathematical theory of chaos and strange attractors will be given. This is followed by
example calculations of the full Lyapunov spectrum of spiking neural networks of both
leaky integrate-and-fire neurons and quadratic integrate-and-fire neurons. Finally, we
provide checks of the numerical implementation and introduce a novel algorithm for an
efficient numerically exact event-based implementation of large sparse spiking networks.
Our new algorithm reduces the computational cost from O (N) to O (log(N)) operations
per network spike for a fixed number of synapses per neuron and Lyapunov exponents.
This allows numerically exact simulations of large spiking networks (N = 109 neurons)
and the characterization of their phase space structure. For example, calculating the
largest Lyapunov exponent of a spiking neural network with one million neurons is sped
up by more than four orders of magnitude compared to earlier implementations.

Introduction 1

Motivation 2

How information is encoded, processed and transmitted by neural circuits is intimately 3

related to their collective network dynamics. Therefore, it is desirable to better 4

understand how different factors shape the patterns of activity across neural 5

populations. Prominent factors that shape circuit dynamics include single cell 6

properties, synaptic features, network topology and external input statistics. 7

Using concepts from dynamical systems theory, we calculate the attractor 8

dimensionality and dynamical entropy rate for spiking networks. The attractor 9

dimension measures the diversity of activity states. Dynamical entropy quantifies the 10

uncertainty amplification due to sensitivity to initial conditions. We obtain these two 11

canonical measures of the collective network dynamics from the full set of Lyapunov 12

exponents which measure the exponential sensitivity to small perturbations in the 13

tangent space along a trajectory. 14

Our new algorithm, which applies to arbitrary network topologies and many neuron 15

models, reduces the computational cost from O (N) to O (log(N)) operations per 16

network spike for a fixed number of synapses per neuron and Lyapunov exponents. We 17
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achieved this by changing the frame of reference of the neurons’ phase-representation 18

and by employing a data structure that avoids iterating through all neurons at every 19

network spike time to find the next spiking neuron. This allows numerically exact 20

simulations of large spiking networks (N = 109 neurons) and the characterization of 21

their phase space structure. This facilitates investigating the chaotic dynamics of 22

simplified cortical microcircuit models (e.g. [1]), which usually require a supercomputer 23

for simulations [2–4]. Efficient simulation of large networks might also be useful when 24

gradually experimentally obtained wiring diagrams known as connectomes become 25

available by novel circuit reconstruction methods [5, 6]. 26

Our approach opens a novel avenue to determine how biophysical properties of 27

neurons and network parameters influence the collective dynamics of large networks and 28

shape the geometric structure of the corresponding high-dimensional chaotic attractor. 29

Overview 30

We will first briefly introduce the dynamical entropy rate and attractor dimensionality 31

of dynamical systems and then show how they can be estimated based on the Lyapunov 32

spectrum. Next, we introduce Lyapunov exponents and how they can be calculated in 33

numerically exact event-based simulations in spiking neural networks using a novel 34

algorithm. We then show two example calculations of the Lyapunov spectrum for 35

networks of both leaky and quadratic integrate-and-fire neurons in the balanced state. 36

Finally, we discuss numerically efficient implementations and several checks of the 37

semi-analytic calculation. 38

Entropy and attractor dimensionality of dynamical systems 39

The dynamical stability of network activity constrains the capability of information 40

processing: In chaotic systems, a sensitive dependence on initial conditions makes 41

predictions of future states impossible, if the initial state is known only with finite 42

precision. This corresponds to a dynamical entropy rate because nearby states, which 43

could not be distinguished by a finite precision readout initially, are pulled apart by the 44

chaotic dynamics and are distinguishable later on [7]. Therefore, the dynamical entropy 45

rate quantifies the speed by which microscopic perturbations such as ion channel noise 46

affect global firing patterns. The concept of an entropy rate associated to the 47

amplification of uncertainty in a dynamical system was formalized by Kolmogorov and 48

Sinai in 1959 and termed metric entropy (also called Kolmogorov-Sinai entropy rate or 49

dynamical entropy rate). A rigorous introduction to Kolmogorov-Sinai entropy rate is 50

beyond our scope here, we refer instead to the literature [8–14]. 51

Measuring the Kolmogorov-Sinai (KS) entropy of a high-dimensional system is 52

difficult if no generating partition is known. A brute force ansatz of partitioning the 53

phase space into small boxes is doomed to fail as the number of partitions grows 54

exponentially with the number of degrees of freedom. Fortunately, the KS entropy can 55

be related to the Lyapunov spectrum which is accessible even in high-dimensional 56

systems. This is the only known general way of accessing the entropy of a 57

high-dimensional differentiable dynamical system [13]. 58

Ruelle showed that the sum of the positive Lyapunov exponents gives an upper 59

bound to the KS entropy [15]: 60

H 6
∑

λi>0

λi

Equality holds if and only if the system is endowed with an SRB (Sinai Ruelle Bowen) 61

measure (Pesin entropy formula) [16]. An f -invariant Borel probability measure µ is an 62

SRB measure if the conditional probability of µ on smooth manifolds is absolutely 63

PLOS 2/25



continuous. The interpretation is that uncertainty in the prediction of future states 64

comes from positive Lyapunov exponents, or more precisely from the expanding 65

manifolds with smooth densities [14]. In several classes of dynamical systems, the 66

existence of an SRB measure has been proven [17]. 67

Furthermore, the Lyapunov spectrum gives an estimate of the attractor 68

dimension [9, 16,18]. The trajectory of an N -dimensional dissipative chaotic system 69

does not cover the whole phase space. After a transient period, it relaxes onto a strange 70

attractor, which has a dimensionality D ≤ N . The Lyapunov dimension is given by the 71

interpolated number of Lyapunov exponents that sum to zero [19–21]: 72

DL = k +

∑k
i=1 λi
|λk+1|

with k = max
n

{
n∑

i=1

λi ≥ 0

}
.

It was conjectured that “in general”, if µ is an SRB (Sinai-Ruelle-Bowen) measure, DL 73

is equivalent to the information dimension [19–21]: D1 = DL. This Kaplan-Yorke 74

conjecture is believed to be true for many systems, but it has been rigorously proved 75

only for certain classes of dynamical systems; there exists no general proof [22].One can 76

think of it as the highest dimensional hypersphere, whose volume neither shrinks nor 77

expands by the dissipative system dynamics. A lower bound on the attractor dimension 78

is given by the number of positive Lyapunov exponents [23]. 79

Lyapunov spectrum of dynamical systems 80

An autonomous dynamical system is usually defined by a set of ordinary differential 81

equations dx
dt = F(x), x ∈ RN in the case of continuous dynamics or as a map 82

xs+1 = f(xs) in the case of discrete dynamics. For pedagogic reasons, we focus here on 83

discrete dynamical systems, but everything can directly be extended to continuous 84

systems [24]. An initial condition x0 forms an orbit. As a natural extension of linear 85

stability analysis, one can ask how an infinitesimal perturbation x′0 = x0 + εu0 evolves 86

in time. Chaotic systems are sensitive to initial conditions, therefore almost all 87

infinitesimal perturbations εu0 of the initial condition grows exponentially and may lead 88

to a drastically different future behavior. The largest Lyapunov exponent measures the 89

average rate of exponential divergence or convergence of nearby initial conditions. 90

λmax(x0) = lim
t→∞

1

t
lim
ε→0

log
||εut||
||εu0||

(1)

It is crucial to first take the limit ε→ 0 and then t→∞, as λmax(x0) would be trivially 91

zero for a bounded attractor if the limits are exchanged, as limt→∞ log ||εut||
||εu0|| is bounded 92

for finite perturbations even if the system is chaotic. To measure m Lyapunov 93

exponents, one has to study the evolution of m independent infinitesimal perturbations 94

spanning the tangent space: 95

us+1 = Dsus (2)

where the Jacobian Ds(xs) = df(xs)
dx characterizes the evolution of generic infinitesimal 96

perturbations during one step. Again, we are interested in the asymptotic behavior, 97

therefore we have to study the long-term Jacobian: 98

Tt(x0) = Dt−1(xt−1) . . .D1(x1)D0(x0) (3)

Note that Tt(x0) is a product of generally noncommuting matrices. 99

The Lyapunov exponents λ1 ≥ λ2 · · · ≥ λN are defined by the logarithms of the 100

eigenvalues of the positive-semidefinite symmetric Oseledets matrix 101
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Λ(x0) = lim
t→∞

[Tt(x0)
>

Tt(x0)]
1
2t , (4)

where > denotes the transpose operator. The expression inside the brackets is the Gram 102

matrix of the long-term Jacobian Tt(x0). Geometrically, the determinant of the Gram 103

matrix is the squared volume of the parallelotope spanned by the columns of Tt(x0). 104

Oseledets’ multiplicative ergodic theorem guarantees the existence of the Oseledets 105

matrix Λ(x0) for µ-almost all initial conditions x0. Here µ-almost all initial conditions 106

means that it applies to all conditions except from a set of measure zero with respect to 107

µ. In ergodic systems, λi does not depend on the initial condition x0. However, for 108

numerically calculating the Lyapunov spectrum, Eq. 4 can not be used directly because 109

the long-term Jacobian Tt(x0) quickly becomes ill-conditioned, i.e., the ratio between its 110

largest and smallest singular value diverges exponentially with time. 111

Algorithm to calculate the Lyapunov spectrum 112

To calculate the full Lyapunov spectrum, we can instead exploit the fact that the growth 113

rate of an m-dimensional infinitesimal volume element is given by λ(m) =
∑m
i=1 λi 114

therefore λ1 = λ(1) , λ2 = λ(2) − λ1, λ3 = λ(3) − λ1 − λ2, etc. The volume growth rates 115

can be obtained via QR-decomposition as illustrated in Fig. 1 [9, 12,25]. First, one 116

needs to evolve an orthonormal basis Qs = [q1
s, q2

s, . . .q
m
s ] in time using the Jacobian: 117

Q̃s+1 = DsQs (5)

then one performs the QR-decomposition 118

Q̃s+1 = Qs+1R
s+1 (6)

Hereby the non-orthonormal matrix Q̃s+1 is uniquely decomposed into an 119

orthonormal matrix Qs+1 of size N ×m so Q>s+1Qs+1 = 1m×m and an upper 120

triangular matrix Rs+1 of size m×m with positive diagonal elements. 121

Geometrically, Qs+1 describes the rotation of Qs caused by Ds and the diagonal 122

entries of Rs+1 describes the stretching and/or shrinking of Qs, while the off-diagonal 123

elements describe the shearing. Fig. 1 visualizes Ds and the QR-decomposition for 124

m = 2. The Lyapunov exponents are given by time-normalized logarithms of the 125

diagonal elements of Rs: 126

λi = lim
t→∞

1

t
log

t∏

s=1

Rs
ii = lim

t→∞
1

t

t∑

s=1

log Rs
ii (7)

Note that the QR-decomposition does not need to be performed in every simulation 127

step, just sufficiently often such that Q̃s+w = Ds+w−1 ·Ds+w−2 . . .Ds ·Qs is 128

well-conditioned [25]. An appropriate reorthonormalization interval wONS = tONS/∆t 129

thus depends on the condition number, given by the ratio of the smallest and largest 130

singular value: 131

κ2(Q̃s+w) = κ2(Rs+w) =
σ1(Rs+w)

σm(Rs+w)
=

Rs+w
11

Rs+w
mm

. (8)

The condition number can therefore be estimated based on the ratio of the largest and 132

smallest Lyapunov exponent that are calculated: κ2(Q̃s+w) ≈ exp (λ1 − λm). Thus, an 133

appropriate reorthonormalization interval is given by tONS = O
(

log(κ̂2)
λ1−λm

)
, where κ̂2 is 134

some acceptable condition number. The acceptable condition number depends on the 135

desired accuracy of the entries of Rs+w. Here we show a minimal example of this 136

algorithm in pseudocode: 137
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Fig 1. Geometric illustration of Lyapunov spectrum calculation. An
orthonormal matrix Qs = [q1

s, q2
s, . . .q

m
s ], whose columns are the axes of an

m-dimensional cube, is rotated and distorted by the Jacobian Ds into an m-dimensional
parallelotope Q̃s+1 = DsQs embedded in RN. The figure illustrates this for m = 2, in

this case the columns of Q̃s+1 span a parallelogram. It can be divided into a right
triangle and a trapezoid, which can be rearranged into a rectangle. Thus, the area of
the gray parallelogram is the same as that of the purple rectangle. The
QR-decomposition reorthonormalizes Q̃s+1 by decomposing it into the product of an
orthonormal matrix Qs+1 = [q1

s+1, q2
s+1, . . .q

m
s+1] and the upper-triangular matrix

Rs+1. Qs+1 describes the rotation of Qs caused by Ds. The diagonal entries of Rs+1

gives the stretching/shrinking along the columns of Qs+1, thus volume of the

parallelotope formed by the first m columns of Q̃s+1 is given by Vm =
∑m
i=1 Rs+1

ii . The
time-normalized logarithms of the diagonal elements of Rs give the Lyapunov spectrum:
λi = limt→∞ 1

t log
∏t
s=1 Rs

ii = limt→∞ 1
t

∑t
s=1 log Rs

ii.

General algorithm for Lyapunov exponents (Benettin)

initialize h, Q
warm-up of h
warm-up of Q
for t = 1→ tsim/∆t do

h← f(h)
D← df

dh
Q← D ·Q
if t % tONS = 0 then

Q,R← qr(Q)
γi += log(Rii)

end if
end for
λi = γi/tsim

0.0.1 Calculating the Lyapunov spectrum of a spiking neural network 138

The dynamics of a spiking recurrent neural network is usually described by a system of 139

coupled differential equations: 140

τm
dVi
dt

= F (Vi) + Iexti +
∑

j,s

Jij g(t− t(s)j ), (9)

thus, the rate of change of the membrane potential Vi depends on the internal dynamics 141

of membrane potential F (Vi), on some external input Iexti and on the recurrent input 142
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∑
j,s

Jij g(t− t(s)j ). Thus, when neuron j spikes at time t
(s)
j , the resulting membrane 143

potential change of the ith neuron is described by some temporal kernel g(τ) and 144

coupling strength Jij . The Lyapunov spectrum of a spiking neural network can be 145

calculated precisely, by choosing a single neuron model dVdt = F (V ) with an analytically 146

solvable solution between spikes. In this case, a map that evolves the network state 147

numerically exact from one spike to the next can be obtained [26–28], allowing an 148

event-based simulation with machine precision. This is possible for a variety of different 149

neuron models, also for some with temporally extended synapses (e.g. LIF [29–31] and 150

QIF [32]). In the following, we discuss the calculation of the Lyapunov spectrum for 151

networks of neurons that can be mapped to pulse-coupled phase oscillators. In this case, 152

the dynamics can be solved particularly simply and efficiently (See Fig. 3). For phase 153

oscillators, the network dynamics can be written as 154

f
(
φ+i (ts)

)
=

{
d
(
φ+i (ts) + ω(ts+1 − ts)

)
for i ∈ post(j∗)

φ+i (ts) + ω(ts+1 − ts) else
(10)

where ω is the phase velocity and d(φ) is the phase transition curve evaluated on the 155

neurons that are postsynaptic to the spiking neuron j∗ just before the next network 156

spike. The φ+ (φ−) denotes the phase of a neuron just after (before) evaluation of the 157

phase transition curve. The phase transition curve (PTC) tells each spike-receiving 158

neuron, how much their phase changes depending on their phase just before the next 159

network spike. Therefore, for an event-based simulation, just four simple steps have to 160

be performed iteratively: Finding the neuron that fires next, evolving all phases to the 161

next spike time, updating postsynaptic neurons using the PTC and finally resetting the 162

spiking neuron. All entries of the Jacobian Ds = df
dx follow immediately from Eq. 10. Its 163

elements are: 164

Dij(ts) =





d′i∗(t−s+1) for i = j = i∗

1− d′i∗(t−s+1) for i = i∗ and j = j∗

δij else,

(11)

Again t−s+1 denotes the state before evaluation of the PTC. The first case denotes 165

diagonal elements for all spike-receiving neurons, this corresponds to the effect of a 166

perturbation on a spike-receiving neuron on its own state at the next spike time, which 167

is given by the derivative of the PTC. The second case denotes off-diagonal entries in 168

the j∗th column of all spike-receiving neurons corresponding to the effect of a 169

perturbation of the spiking neuron and its spike time on the postsynaptic neurons. 170

Finally, the third case denotes all other trivial entries, where the Jacobian has zeros in 171

off-diagonal entries and ones in diagonal entries. 172
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Algorithm 1 Lyapunov spectrum for spiking network

1: initialize φ(t0), Q
2: warm-up of φ(t0)
3: warm-up of Q
4: for s = 1→ t do
5: find index of next spiking neuron: j = max

i
φi(ts)

6: calculate time to next spike: ts+1 = ts +
φth − φj(ts)

ω
7: evolve network states: φ−i (ts+1) = φ+i (ts) + ω(ts+1 − ts)
8: evaluate PTC: φ+i∗(ts) = d

(
φ−i∗(ts)

)

9: reset spiking neuron: φ−j (ts+1) = φre

10: calculate Jacobian elements d′i∗(ts+1)
11: evolve ONS: Q = D ·Q
12: if s % sONS = 0 then
13: Q,R← qr(Q)
14: γi += log(Rii)
15: end if
16: end for
17: λi = γi/tsim

Pseudophase representation of leaky integrate-and-fire neurons 173

For a network of pulse-coupled leaky integrate-and-fire neurons, Eq. 9 reads in 174

dimensionless notation 175

τm
dVi
dt

= −Vi + Iext + τm
∑

j,s

Jij δ(t− t(s)j ) (12)

If a membrane potential Vi reaches threshold Vth, it is reset to Vre. Without loss of 176

generality we set Vth = 0 and Vre = −1. Between two network spikes, the solution is 177

given by: 178

Vi(ts+1) = Iext − (Iext − Vi(ts) exp

(
− ts+1 − ts

τm

)
(13)

In this phase representation (slightly different from [31,33]), the phases φi ∈ (−∞, 0] 179

describe the neuron states relative to the unperturbed interspike interval. 180

To obtain the unperturbed interspike interval Ti, we have to solve Eq. 13 between 181

reset and threshold in the absence of synaptic input. 182

T free
i = −τm ln

(
VT − Ic
VR − Ic

)
(14)

= τm ln

(
Iext + 1

Iext

)
(15)

= τm ln

(
1 +

1√
KI0

)
. (16)

Its inverse is the phase velocity ω = 1/T free
i . The phase φi is thus given by 183

φi = −ω ln

(
Iext

Iext − Vi

)
(17)

The reverse transformation is 184

Vi = Iext
(
1− exp

(
− φiT free

i /ω
))
. (18)
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Therefore, the phase transition curve is 185

d
(
φi∗(t−s+1)

)
= −ω · ln

(
exp

(
−φi∗(t−s+1)/ω

)
+ c
)
, (19)

where c is the effective coupling strength c = J
Ic

, where J is the synaptic coupling 186

strength. Usually, as discussed later in on page 9, balanced networks this is scales with 187

J = J0√
K

, where K is the number of synapses per neuron. The derivative of the phase 188

transition curve is given by [34]: 189

d′(φi∗(t−s+1)) =
Ψ−s+1

Ψ−s+1 + c
= 1− c

Ψ−s+1 + c
. (20)

where Ψ−s+1 = e−φi∗ (t
−
s+1)/ω. In the last expression, Ψ−s+1 needs only to be evaluated 190

once and allows in-place evaluation. 191

Phase representation of quadratic integrate-and-fire neurons 192

The quadratic integrate-and-fire neuron has – in contrast to the LIF neuron – a 193

dynamic spike generation mechanisms and still allows to be solved exactly between 194

network spikes. 195

For a network of QIF neurons Eq. 9 reads in dimensionless voltage representation: 196

τm
dVi
dt

= V 2
i + Iexti + τm

∑

j,s

Jij δ(t− t(s)j ) (21)

The quadratic integrate-and-fire model can be mapped via a change of variables 197

V = tan(θ/2) to the theta model with a phase variable φ ∈ (−π, π] [35–37]. 198

The dynamical equation between incoming spikes is the topological normal form for 199

the saddle-node on a limit cycle bifurcation (SNIC) and allows a closed form solution of 200

the next network spike thanks to the exact derivation of the phase response curve [38]. 201

Therefore, the quadratic integrate-and-fire neuron is commonly used to analyze 202

networks of spiking neurons [34,39–42]. 203

When Iexti > 0 ∀ i, the right-hand side of the dynamics is strictly positive and all 204

neurons would spike periodically in the absence of incoming postsynaptic potentials. In 205

this case, we can choose another particularly tractable phase representation, called 206

phi-representation with Vi(t) = (K
1
2 Iexti )

1
2 tan(φi(t)/2), where the neuron has a 207

constant phase velocity [34]. Again K is the mean number of synapses per neuron using 208

the balanced scaling. This transformation directly yields the phase transition curve 209

g(φi) = 2 arctan

(
tan

φi
2

+ c

)
(22)

with the effective coupling strength c = −J0√
K
√
I0
√
K

. With Iext = −I0 ·
√
K, the phase 210

velocity is given by 211

ω = 2

√
I0 ·
√
K.

The derivative of the phase transition curve is given by [34]: 212

d′(φi∗(t−s+1)) =

(
tan

(
φi∗(t−s+1)/2

))2
+ 1

(
tan

(
φi∗(t−s+1)/2

)
+ Ji∗j∗/

(
K

3
2 Iexti∗

) 1
2

)2
+ 1

(23)
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Spiking networks in the balanced state 213

The pattern of action potentials in cortical tissue is asynchronous and irregular [43, 44], 214

although single neurons can respond reliably [45–48]. This is commonly explained by a 215

balance of excitatory and inhibitory synaptic currents [49, 50], which cancels large mean 216

synaptic inputs on average. A dynamically self-organized balance can be achieved 217

without the fine-tuning of synaptic coupling strength in heterogeneous networks, if the 218

connectivity is inhibition-dominated and the couplings are strong, meaning that a small 219

active fraction of incoming synapses can elicit an action potential [51]. The statistics of 220

this state is described by a mean-field theory, which is largely insensitive to the neuron 221

model [52]. 222

We studied large sparse networks of N leaky or quadratic integrate-and-fire neurons 223

arranged on a directed Erdős–Rényi random graph of mean degree K. All neurons 224

i = 1, . . . , N received constant external currents Iext and non-delayed δ-pulses from the 225

presynaptic neurons j ∈ pre (i). The external currents were chosen to obtain a certain 226

average network firing rate ν̄ using a bisection method. 227

Setup of the balanced network 228

The coupling strengths were chosen such that the magnitudes of the input current 229

fluctuations were identical in all studied networks. Assuming that inputs from different 230

presynaptic neurons are only weakly correlated, the compound input spike train 231

received by neuron i can be modeled by a Poisson process with rate 232

Ωi =
∑
j∈pre(i) νj ≈ Kν̄ ≡ Ω, where ν̄ is the network-averaged firing rate and K the 233

average number of presynaptic neurons. Under the assumption that the compound 234

input spike train is a Poisson process, the input current auto-correlation function reads 235

C(τ) = 〈δI(t)δI(t+ τ)〉t (24)

≈
(
J0√
K

)2

Ω

∫
δ(t− s)δ(t+ τ − s)ds (25)

=
J2
0

K
Ωδ(τ) (26)

≈ J2
0 ν̄δ(τ) (27)

Thus, the fluctuations in the input currents can be described as delta-correlated white 236

noise of magnitude 237

σ2 = J2
0 ν̄. (28)

Note that due to the scaling of the coupling strengths J = − J0√
K

with the square root of 238

the number of synapses K the magnitude of the fluctuations σ2 is independent of the 239

number of synapses. Therefore, the input fluctuations do not vanish in the 240

thermodynamic limit and the balanced state in sparse networks emerges 241

robustly [51,52]. 242

The existence of a balanced state fixed point in the large K-limit follows from the 243

equation of the network-averaged mean current 244

Ī ≈
√
K(I0 − J0ν̄). (29)

In the large K-limit, self-consistency requires the balance of excitation and inhibition 245

I0 = J0ν̄: If limK→∞(I0 − J0ν̄) > 0 the mean current Ī would diverge to ∞ and the 246

neurons would fire at their maximal rate. The resulting strong inhibition would break 247

the inequality, leading to a contradiction. If limK→∞(I0 − J0ν̄) < 0 the mean current Ī 248
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would diverge to −∞ and the neurons would be silent. The resulting lack of inhibition 249

again breaks the inequality. The large K-limit is self-consistent only if 250

I0 − J0ν̄ = O
(

1√
K

)
,

such that excitatory external drive and mean recurrent inhibitory current cancel each 251

other. Note that since I0 − J0ν̄ = O(1/
√
K) the network mean current has a finite large 252

K-limit. The average firing rate in units of the membrane time constant τ−1m is 253

approximately 254

ν̄ =
I0
J0

+O
(

1√
K

)
. (30)

This approximation generally becomes exact for large K. For excitatory-inhibitory 255

mixed network, an analogous self-consistency argument can be made which results in a 256

set of inequalities that must be fulfilled to achieve a balanced state [52]. 257

Novel efficient algorithm for large sparse networks 258

A basic implementation of Algorithm 1 is numerically costly, as for every spike in the 259

network, the matrix multiplication Q̃s+1 = DsQs, which has computational complexity 260

O
(
N3
)
, has to be performed. However, Ds is sparse: it can be written as a sparse 261

diagonal matrix plus a matrix which is nonzero at the jth column: 262

263

D(ts) =




1 0 . . . 0

0 1
...

d′ 1− d′

1 0

d′ 1− d′
1 0

. . .
...

. . . 0
1

...
...

. . . 0
0 . . . . . . 0 1




← postsynaptic i∗

← postsynaptic i∗

(31)

↑
column j∗

Further, only rows corresponding to the indices of the postsynaptic neurons have 264

nontrivial entries. Therefore, the matrix multiplication, which would have a numerical 265

time complexity of O
(
N2 ·m

)
in a basic implementation, can be reduced to O (K ·m), 266

where K denotes the number of synapses per neuron and m the number of Lyapunov 267

exponents to be calculated. 268

Another computationally costly step of numerical time complexity of O (N) is the 269

propagation of all phases f
(
φ+i (ts)

)
= φ+i (ts) +ω(ts+1 − ts) to the state right before the 270

next network spike. In homogeneous networks, where all neurons have the same phase 271
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Δϕ

ϕreset ϕth

Δϕ

ϕreset ϕthϕreset ϕth''

Δϕ

Fig 2. Change of reference frame allows efficient evolution of network state.

Conventionally, every phase is shifted by ∆φi = ωi∆t, where ∆t = min
i

(
φth−φi

ω

)
.

Instead, we propose just to change threshold and reset by ∆φ = φth − φi at every spike.
This gives a speedup of O (N/K), as instead of shifting N phases, one has to consider
the global phase shift only for evaluating the phase transition curve of the K
postsynaptic neurons (not shown in the figure). Crucially, for long simulations, all
phases and the global phase shift have to be reset when the global phase exceeds some
threshold to avoid numerical errors resulting from subtractive cancellation due to
floating-point arithmetics.

velocity ω this can be avoided, when instead, just threshold and reset are changed by 272

∆s+1 = ∆s + ω(ts+1 − ts), starting with ∆0(φ) = 0. Thus φths+1 = φth −∆s+1. Similarly, 273

φresets+1 = φreset −∆s+1. In inhibition dominated networks, the phases φ(ts) will thus 274

become increasingly negative. For long simulations, all phases and the global phase 275

should therefore be reset if the global phase exceeds a certain threshold ∆th, to avoid 276

numerical errors resulting from subtractive cancellation due to floating-point 277

arithmetics [53]. 278

Finally, finding the next spiking neuron is also an operation of numerical time 279

complexity of O (N), which can become the computational bottleneck in very large 280

sparse networks. A numerical efficient implementation to avoid iterating through all 281

neuron’s phases φi to find the maximum at every spike time is the implementation of a 282

priority queue. A priority queue is a data structure whose elements have a priority and 283

efficient operations for returning the elements with the highest priority and insertion of 284

new elements or updating of priorities are available [54]. Priority queues can be 285

implemented as a heap-ordered binary trees. A binary tree is heap-ordered if the value 286

in each node is larger than the values in that nodes two children. Returning the 287

elements with the highest priority has numerical time complexity of O (1) and insertion 288

of elements has complexity of O (log(N)) [55]. Thus, only O (K · log(N)) operations 289

have to be performed per network spike, as for K postsynaptic neurons and for one 290

spiking neuron, a new phase needs to be updated in the priority queue. 291
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Fig 3. A suitable data structure allows efficient search for next spiking
neuron for numerically exact simulation of large spiking networks. A By
using a priority queue, the next spiking neuron can be found without iteration through
all neurons of the network at every spike time. One implementation of a priority queue
is a binary heap, as the example shown. In a max-heap, each child node has a value less
or equal to its parent node. If an element is deleted, removed or added, the heap
property is restored by swapping parents and children systematically. Finding the node
with the highest priority has a numerical complexity of O (1) and changing the value of
any element has an amortized time complexity of O (log(N)). B Array implementation
of binary heap shown in A. As per spike all postsynaptic neurons and the spiking
neuron have to be updated, this requires on average K + 1 operation, thus an amortized
time complexity O (K · log(N)) [55].

Algorithm 2 Efficient calculation of Lyapunov spectrum for sparse spiking network

1: initialize φ(t0), Q,∆ = 0
2: heapify φ(t0)
3: warm-up of network φ(t0)
4: warm up of orthonormal set Q
5: for s = 1→ t do
6: get phase of next spiking neuron: j, φj = peek(φi(ts))
7: calculate phase increment: dφ = φth + ∆− φj(ts)
8: update global phase shift: ∆ += dφ
9: evaluate PTC: φ+i∗(ts) = Z

(
φ−i∗(ts) + ∆

)
−∆

10: reset spiking neuron: φj(ts+1) = φre −∆
11: calculate Jacobian elements di∗(ts+1)
12: evolve orthonormal set: Q = D ·Q
13: if s % sONS = 0 then
14: Q = Q ·R
15: γi += log(Rii)
16: end if
17: if ∆ > ∆th then
18: φ += ∆
19: ∆ = 0
20: end if
21: end for
22: λi = γi/tsim

As the number of network spikes for a given simulation time grows linearly with 292

network size, the overall computational cost for a given simulation time of the proposed 293

efficient numerical implementation scales O (K ·N · log(N)), which for sparse networks 294

is far more efficient compared to a conventional implementation (see Fig. 4). 295
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Fig 4. Benchmark of novel vs. conventional algorithm for calculating a
fixed number of Lyapunov exponents. The computational cost per network spike
scales linear with network size N in a conventional event-based implementation. In the
large sparse network limit, the computational bottleneck is to find the next spiking
neuron in the network and to propagate all neurons phases to the next network spike.
Both operations can be implemented efficiently. Firstly, instead of shifting all neurons
phases, instead the threshold and reset values can be shifted. Secondly, by using a
binary heap as a data structure for the phases, finding the next phase and keeping the
heap-ordering has computational complexity of O (K · log(N)). A: CPU time per
network spike for an inhibitory network of leaky integrate-and-fire neurons. Benchmark
was performed on an Intel® Xeon® CPU E5-4620 v2 @ 2.60 GHz and 512 GB RAM.
Parameters: ν̄ = 1 Hz, J0 = 1, τm = 10 ms, K = 100, m = 1.

Heterogeneous networks and further improvements Note that this can be 296

easily extended to mixed networks of excitatory and inhibitory neurons (or to k 297

population networks with different external input and resulting distinct phase 298

velocities). In that case, each population k needs its own priority queue and a distinct 299

global phase ∆k
s+1 as well as φthk and φresetk , as different populations can have distinct 300

phase velocities ωk. At each network spike, for all populations the next spike time has 301

to be calculated by returning the next spiking neuron from all priority queues. 302

Alternatively, for heterogeneous networks or for neuron models that are analytically 303

solvable between spikes but don’t allow a mapping to a phase oscillator, one can use a 304

priority queue of all the next unperturbed spike times for all neurons. In this case, the 305

algorithm for network simulation still consists of four steps: First finding the next 306

spiking neuron, then evolving the state of the postsynaptic neurons to the next network 307

spike time, followed by the update of the postsynaptic neurons by the incoming spikes. 308

Finally, resetting the spiking neuron to the reset value. This algorithm has also a 309

numerical complexity of O (K · log(N)) per network spike. Still, in cases where the 310

phase representation is applicable, it should be used because it is faster and numerically 311

more stable. Note that this algorithm can also be used for univariate neuron models 312

where no analytical solution between spike times is known, e.g., the exponential 313
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basic algorithm conventional algorithm novel algorithm

find next spiking neuron min(φth − φ/ω) min(φth − φ/ω) peek(φ)

evolve neurons φ += ω · dt φ += ω · dt ∆+ = ∆φ

update postsynaptic neurons K operations K operations K operations + K key updates

evaluate Jacobian K operations K operations K operations

evolve ONS N2 ·m 2K ·m 2K ·m
QR decomposition N ·m2 every N th step N ·m2 every N th step N ·m2 every N th step

reset spiking neuron one array operation one array operation O (log(N))

total amortized costs per
network spike

O
(
N2 ·m

)
O

(
N +K ·m+m2

)
O

(
K · log(N) +m2

)

total amortized costs for
fixed simulation time

O
(
N3 ·m

)
O

(
N2 +N ·K ·m+N ·m2

)
O

(
K ·N · log(N) +N ·m2

)

Table 1. Comparison computational cost for calculating Lyapunov
spectrum of spiking network different algorithms N denotes number of neurons,
K is the average number of synapses per neuron, m is the number of Lyapunov
exponents to be calculated. For large sparse networks (K � N) and a fixed number of
Lyapunov exponents to be calculated, the dominant term grows cubic with N for the
basic algorithm (also for Refs. [61–63]), quadratic for the conventional
algorithm [31,33,33,34,64,65] and linearithmic (O (log(N))) for our novel algorithm.

integrate-and-fire model. In this case, the phase transition curve can be calculated 314

numerically before the network simulation. During run time, the phase transition curve 315

and its derivative can be interpolated from the precomputed lookup tables. 316

For dense networks, where the number of synapses scales proportional to the number 317

of neurons [56], a priority queue implemented by a binary heap is unfavorable compared 318

to a conventional array in the large network limit, as every network spike involves 319

changing the priority of O (N) neurons, thus O ((N + 1) · log(N)) flops per network 320

spike which corresponds to O ((N + 1) ·N · log(N)) flops for a fixed simulation time. A 321

batch-update of all postsynaptic neurons might be faster for very large networks [57], 322

but is beyond the scope of this work. It would involve O (K + log(K) · log(N)) flops 323

corresponding to O (N + log(N) · log(N)) in dense networks. In the case of purely 324

excitatory sparse spiking networks, a Fibonacci heap might be a more efficient 325

implementation in the large network limit [58], as the decrease key operation takes 326

constant time O (1) compared to O (log(N)) in the case of a binary heap. Note that for 327

practical purposes, the asymptotic scaling of the computational complexity of Fibonacci 328

heaps has an unfavorably large prefactor [59]. Therefore, other heap structure 329

implementations might be faster [60]. 330

Implementation of reorthonormalization Finally, the QR-decomposition is a 331

numerical bottleneck. Although the QR-decomposition is unique when the diagonal 332

elements of the R matrix are chosen to be positive, there exist several ways to 333

implement the QR-decomposition, which have different features concerning accuracy, 334

speed, memory consumption and the availability of a parallel implementation [66]. 335

Three common implementations are the modified Gram-Schmidt procedure, the Givens 336

rotation, and the Householder reflection. The error of the Householder reflection scales 337

only with machine precision, while the error of the modified Gram-Schmidt procedure 338
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scales with machine precision times condition number. Imprecision in 339

reorthonormalization can be quantified by the deviation of the inner product of Qs from 340

the identity: Q>s Qs = I + E, where I is the identity matrix and E is the error matrix. 341

For the Householder reflection and the Givens rotation, ‖E‖ ≈ ε, where ε is machine 342

epsilon, while for the Gram-Schmidt procedure, ‖E‖ ≈ εκ2(R), where κ2(R) is the 343

condition number of the triangular matrix Rs, which is given by the ratio of the largest 344

and the smallest singular value of R: κ2(R) = σ1(R)
σm(R) . On the other hand, the modified 345

Gram-Schmidt procedure facilitates parallel implementation (e.g. [67]). 346

The computational cost for the Householder approach involve 2N ·m2 − 2m3/3 flops 347

to get Q in factored form and another 2N ·m2 − 2m3/3 to calculate Q. In comparison, 348

the modified Gram Schmidt procedure needs 2N ·m2 flops in total, thus it is 349

approximately twice as efficient as the Householder approach [66]. The 350

QR-decomposition only needs to be performed sufficiently often, such that Q does not 351

get ill-conditions. Thus, to keep the error constant with increasing network size, the 352

reorthonormalization interval can be increased linearly. Therefore, the QR step has a 353

numerical complexity of O
(
m2
)

per network spike on average. Therefore, for 354

calculating a fixed number of Lyapunov exponents in a large sparse network, the 355

computational bottleneck is not the QR-decomposition but heapifying the priority 356

queue after applying the phase transition curve to the postsynaptic neurons. In 357

contrast, for calculating a fixed finite fraction of Lyapunov exponents in a large sparse 358

network, the QR step has a numerical complexity of O
(
N2
)

per network spike and is 359

therefore the computational bottleneck. For a fixed simulation time this corresponds to 360

O
(
N3
)

flops. A further extension would be to perform the QR-decomposition on a 361

graphics processing unit (GPU). 362

Convergence of Lyapunov spectra 363

Lyapunov exponents measure rates of exponential divergence and convergence in the 364

long-time limit. While Oseledets’ multiplicative ergodic theorem guarantees the 365

existence of this limit, it does not say how fast the limit is approached. Heuristically, 366

the trajectory needs to sample a representative portion of the attractor to allow a good 367

estimate of the average rates of exponential divergence and convergence of nearby 368

trajectories. Although subsequent Jacobians can be correlated, in chaotic systems they 369

can generally be assumed to be independent for long times. Therefore, for sufficiently 370

large reorthonormalization intervals the Rs
ii follow a Gaussian distribution according to 371

the central limit theorem. Thus, the sampling error of the Lyapunov exponents 372

estimator λ̂(t)i = 1
t

∑t
s=1 log Rs

ii converges generally towards zero ∝ 1/
√
t. The 373

convergence of some Lyapunov exponents in an event-based simulation of a spiking 374

network of quadratic integrate-and-fire neurons is shown in Fig. 6. 375

There are two main contributions for the variability of numerically calculated 376

Lyapunov spectra. Firstly, variability arising from the fact that Lyapunov spectra are 377

asymptotic properties of dynamical systems. Secondly, variability arising from the 378

quenched noise of different random topologies. The first contribution vanishes in the 379

limit of infinitely long simulations for ergodic systems because Lyapunov exponents are 380

then independent of initial conditions. The second contribution vanishes in the large 381

networks limit due to self-averaging. Quantities that are self-averaging converge in the 382

limit of large system sizes to the ensemble average. The Lyapunov spectrum of one 383

realization of a large network is thus representative for the whole ensemble. Hence, 384

averaging over different network realizations is not necessary for large networks. 385
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Fig 5. Convergence of Lyapunov spectra versus time in inhibitory networks
of quadratic integrate-and-fire neurons. (logarithmic time scale) A Convergence
of the first five Lyapunov exponents for different network topologies realization.
B Convergence of the first five Lyapunov exponents for distinct initial conditions but
the same network topology. Note that for small networks different topologies have
slightly different Lyapunov spectra due to quenched noise. For large N , the Lyapunov
spectrum becomes increasingly independent of network realization. Simulations started
with different realizations of the orthonormal system quickly converge and are not
shown here. (parameters: N = 200, ν̄ = 1 Hz, K = 10, J0 = 1, τm = 10 ms).

Checks of numerical implementation 386

It is important to corroborate results with different approaches. Although for 387

high-dimensional systems, it is not possible to estimate the dynamical entropy rate or 388

attractor dimensionality using direct methods, there exist several independent checks for 389

the numerical implementation of the Lyapunov spectrum. 390

Firstly, the largest Lyapunov exponent can be checked by direct numerical 391

simulations [12]. Two sufficiently close initial states are evolved in time and their rate of 392

exponential separation or convergence is measured. When employing this method, one 393
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has to be careful to avoid arithmetic underflow and overflow. The perturbed trajectory 394

has to be reset after appropriate time intervals, to stay in a linear regime. 395

Secondly, in autonomous systems, which are not at a fixed point, there exists a zero 396

Lyapunov exponent corresponding to a perturbation in the direction of the flow. Thus, 397

in the Benettin scheme, there has to be one Lyapunov exponent that converges to zero. 398

Thirdly, the mean Lyapunov exponent λ̄ = 1
N

∑N
i=1 λi, which quantifies the mean 399

dissipation of a dynamical system, can often be obtained analytically using random 400

matrix theory [33,34]. For dissipative systems, λ̄ has to be smaller than zero. 401

Lastly, while obtaining an analytical expression for the full spectrum of Lyapunov 402

exponents is difficult because of the generally non-commuting product of Jacobians, 403

there exist some cases, where the full spectrum can be obtained from a product of 404

random matrices [12,68–70]. 405

In the case that the system of interest has a limit, in which the Jacobians commute, 406

this limit can be used to check the numerical results. It is important to stress that all 407

these checks just test necessary conditions for the numerical implementation to be 408

correct. 409

Poincaré maps of small chaotic network 410

A Poincaré map is the intersection of the trajectory of an N degree of freedom 411

dynamical system with a N − 1 dimensional subspace called the Poincaré surface or 412

section. Fig. 6 shows a Poincaré section through the chaotic strange attractor of a three 413

neurons network. Whenever one specific neuron fires an action potential, the values of 414

the other two neurons are stored. This results in a 2D section through the 3D phase 415

space. 416

Example code for Poincaré maps in Julia 417

The following code for Julia Version 0.7 demonstrates the event-based simulations in a network of three theta
neurons. Saving phases of neuron 2 and 3 whenever neuron 1 spikes yields a Poincaré map as displayed in Fig. 6.

function poincare()

ncalc = 10^7 # number of spikes in calculation

a = 0 .<[0 0 0;1 0 1;0 1 0] # define adjacency matrix

φ = rand(3) # initialize neurons

Φ = Float64[] # initialize phase history

for s = 1:ncalc

φmax,j = findmax(φ) # find next spiking neuron j

dt = pi/2-φmax # calculate next spike time

φ.+= dt # evolve phases till next spike time

p = a[:,j] # postsynaptic neurons

φ[p] = atan.(tan.(φ[p]).-1) # update postsynaptic neurons with PTC (QIF)

φ[j] = -π/2 # reset spiking neuron

j==1 && append!(Φ,φ[2:3]) # save neuron 2 & 3 when neuron 1 spikes

end

plot(Φ[1:2:end],Φ[2:2:end],".k",markersize=.01); axis("off")

end

418
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Fig 6. Poincaré section through phase space visualizes the chaotic strange
attractor in a small network (N = 3): Poincaré section of the phases of neuron 2
and 3 whenever neuron 1 spikes. The relative density of points is represented using a
color map, where high densities correspond to higher intensities. The x-axis gives the
value of φ2 ∈ (−π, π] and the y-axis the value of φ3 ∈ (−π, π] whenever neuron 1 spikes.
Axes are omitted for aesthetic reasons (parameters: ν̄ = 14.5 Hz, J0 = 1, τm = 10 ms,
N = 3, K = 1)
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Minimal code for efficient spiking network simulation in Julia 419

This code for Julia v0.7 implements the novel algorithm for efficiently simulating a spiking network (N = 105 LIF neurons).

using DataStructures, RandomNumbers. Xorshifts, StatsBase, PyPlot

function lifnet(n,nstep,k,j0,ratewnt,τ,seedic,seedtopo)
iext = τ*sqrt(k)*j0*ratewnt/1000 # iext given by balance equation

ω,c = 1/log(1. + 1/iext),j0/sqrt(k)/(1. + iext) # phase velocity LIF

φth, φshift = 1., 0. # threshold for LIF

r = Xoroshiro128Star(seedic) # init. random number generator

φ = mutable_binary_maxheap(rand(n)) # initialize binary heap

spikeidx = Int64[] #initialize time

spiketimes = Float64[] # spike raster

postidx = rand(Int,k)

for s = 1 : nstep # main loop

φmax, j = top_with_handle(φ) # get phase of next spiking neuron

dφ = φth - φmax - φshift # calculate next spike time

φshift += dφ # global shift to evolve network state

srand(r,j+seedtopo) # spiking neuron index is seed of rng

sample!(r,1:n-1,postidx;replace=false) # get receiving neuron index

@inbounds for i = 1:k # avoid autapses

postidx[i] >= j && ( postidx[i]+=1 )

end

ptc!(φ,postidx,φshift,ω,c) # evaluate phase transition curve

update!(φ,j,-φshift) # reset spiking neuron

push!(spiketimes,φshift) # store spiketimes

push!(spikeidx,j) # store spiking neuron index

end

nstep/φshift/n/τ*ω,spikeidx,spiketimes*τ/ω # output: rate, spike times & indices

end

function ptc!(φ, postid, φshift, ω, c) # phase transition curve of LIF

for i = postid

φ[i] = - ω*log(exp( - (φ[i] + φshift)/ω) + c) - φshift #(Eq. 19)

end

end

# set parameters:

#n: # of neurons, k: synapses/neuron, j0: syn. strength, τ: membr. time const.

n,nstep,k,j0,ratewnt,τ,seedic,seedtopo = 10^5,10^5,100,1,1.,.01,1,1

# quick run to compile code

@time lifnet(100, 1, 10, j0, ratewnt, τ, seedic, seedtopo);

# run & benchmark network with specified parameters

gc();@time rate,sidx,stimes = lifnet(n,nstep,k,j0,ratewnt,τ,seedic,seedtopo)

# plot spike raster

plot(stimes,sidx,",k",ms=0.1)

ylabel("Neuron Index",fontsize=20)

xlabel("Time (s)",fontsize=20);tight_layout()

420
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Supporting Information 421

S1 Code Source code for the Lyapunov spectrum of spiking networks of 422

leaky integrate-and-fire neurons in an efficient numerically exact 423

implementation. We provide all necessary code to calculate the full Lyapunov 424

spectrum with code written in Julia [71]. The efficient implementation is parallelized 425

using level-3 matrix-matrix operations from BLAS (Basic Linear Algebra Subprograms) 426

called via LAPACK (Linear Algebra PACKage). Furthermore, the program provides 427

bootstrapped 95 percentile confidence intervals for the first and the last Lyapunov 428

exponent, the KS entropy rate, and the Lyapunov dimensionality. Optionally, also a 429

principal component-based dimensionality estimate can be calculated. Finally, the 430

program provides the convergence of the Lyapunov spectrum in time. Input variables 431

are network size N , number of synapses per neuron K, coupling strength J0, simulation 432

time tsim, number of Lyapunov exponents to be calculate m, reorthonormalization 433

interval sONS, seed for initial conditions of recurrent network seedIC, seed for random 434

network topology seedTopo, seed for orthonormal system seedONS and finally the 435

subdirectory where the results are stored. 436

S2 Code Source code for Lyapunov spectrum of spiking networks of 437

quadratic integrate-and-fire neurons in efficient numerically exact 438

implementation. Similar to S1 Code, the full Lyapunov spectrum of a network of 439

quadratic integrate-and-fire neurons is obtained by a reorthonormalization 440

procedure [25], which is done in the tangent space along a semi-analytical solution of 441

the network dynamics obtained in event-based numerically exact simulations. 442
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4 Action potential onset rapidness and
spontaneous collective dynamics

4.1 Summary
Spike initiation is a bottleneck for neural information transmission. Recent studies showed that the
bandwidth of information encoding is limited by spike onset rapidness. Experiments revealed that
neocortical neurons have a surprisingly broad encoding bandwidth. How this impacts the collective
network dynamics is not well understood. Here we show that increasing the spike onset rapidness
leads to decreasing attractor dimension, chaos and dynamical entropy rate, which vanishes at a
critical value. We numerically calculated all Lyapunov exponents and derived exact upper and
lower bounds for attractor dimension and dynamical entropy rate of random spiking networks.
Analysis of large networks with more realistic structure indicate the generality of these findings.
This demonstrates that spike initiation drastically shapes the entropy rate by which information
about the initial state is erased by the chaotic recurrent network dynamics. The effect of spike
onset on chaotic entropy rate surpasses the effect on the bandwidth of information encoding by
orders of magnitude.
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Spike initiation is a bottleneck for neural information transmission. Recent studies showed that
the bandwidth of information encoding is limited by spike onset rapidness. Experiments revealed
that neocortical neurons have a surprisingly broad encoding bandwidth. How this impacts the
collective network dynamics is not well understood. Here we show that increasing the spike onset
rapidness leads to decreasing attractor dimension, chaos and dynamical entropy rate, which vanishes
at a critical value. We numerically calculated all Lyapunov exponents and derived exact upper and
lower bounds for attractor dimension and dynamical entropy rate of random spiking networks.
Analysis of large networks with more realistic structure indicate the generality of these findings.
This demonstrates that spike initiation drastically shapes the entropy rate by which information
about the initial state is erased by the chaotic recurrent network dynamics. The effect of spike onset
on the chaotic entropy rate surpasses the effect on the bandwidth of information encoding by orders
of magnitude.

PACS numbers: xx.xx.xx, xx.xx.-x, xx.xx.-x, xx.xx.-x

Information is processed in the brain by the spatio-
temporal activity of large spiking neural circuits. Only
information that is encoded in the spike train can be used
by the local network, subsequent processing stages and to
ultimately guide behavior. The spiking output of a corti-
cal neuron contains twenty- to hundredfold less informa-
tion about the synaptic input than its membrane poten-
tial [1]. Thus, spike initiation is an important bottleneck
for neural information transmission. Experiments re-
vealed that neocortical neurons have a surprisingly broad
encoding bandwidth: the high-frequency input compo-
nents of a stimulus are reliably encoded in the outgo-
ing spike trains [2–5]. As predicted theoretically and ob-
served experimentally, small changes to the spike onset
rapidness can have a great impact on the bandwidth of
information encoding in a feedforward architecture [5–
11]. The role of broad encoding bandwidth and rapid
spike onset in the dynamics of recurrent networks, how-
ever, has not yet been studied systematically. One might
expect that collective dynamics are insensitive to cellu-
lar details, as in many instances the effect of single cell
properties can become negligible at the macroscopic cir-
cuit level. For example, asynchronous irregular activity
in idealized cortex models emerges robustly in inhibition-
dominated circuits and can be described by a mean-field
theory, which is largely independent of the neuron model
[12, 13]. Collective dynamics rather is expected to be
strongly shaped by the wiring diagram known as connec-
tome and most learning algorithms in fact operate at this
level [14, 15]. An example where single element input-
output functions determine the critical properties of the
collective dynamics are rate networks [16]. These analyt-
ical approaches were recently extended to heterogeneous
networks, networks with bistable units and spiking net-
works with slow synaptic dynamics [17].

Here we use concepts from ergodic theory to analyze
how the collective network state of spiking networks is
shaped by spike onset rapidness. The dynamics of large
scale dissipative systems often evolve towards a low di-
mensional attractor and it is challenging to characterize
the collective modes on this lower dimensional manifold.
Ergodic theory provides an estimate of the attractor di-
mension with exact upper and lower bounds. It also
provides access to the dynamical entropy rate associated
with the chaotic network dynamics that can contribute to
the so-called noise entropy [20]. The dynamical stability
of network activity constrains the capability of informa-
tion processing: In chaotic systems a sensitive depen-
dence on initial conditions makes predictions of future
states impossible, if the initial state is known only with
finite precision. This corresponds to a dynamical entropy
rate, because nearby states, which could not be distin-
guished by a finite precision readout initially, are pulled
apart by the chaotic dynamics and are distinguishable
later on. Therefore, the dynamical entropy rate quanti-
fies the speed by which microscopic perturbations such
as ion channel noise affect global firing patterns.

Tunable spike onset model neuron.

To study the impact of spike onset rapidness on the
collective network dynamics, we constructed a novel an-
alytically solvable neuron model, in which the spike onset
rapidness r can be changed, as shown in Figure 1a. (See
methods for equations). Increasing r decreases the time
constant at the unstable fixed point VU leading to a larger
instability and a sharper spike initiation (Fig. 1b,c).
Figure 1d, e illustrates that high rapidness enables the
neuron to transmit high frequency information of a time-
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Figure 1: High spike onset rapidness r increases population encoding bandwidth. a Single neuron dynamics have
two fixed points: a stable fixed point (filled circle, resting potential) and unstable fixed point (white circle, spike threshold).
Slope at resting potential −1/τm, slope at spike threshold r/τm. b Voltage traces of neuron model with constant input currents
varying rapidness r. c Same for fluctuating input currents. Note that the spike waveform and initiation depends strongly
on r, while the subthreshold dynamics is insensitive to r. The inset shows a magnified window of the voltage traces and the
corresponding fluctuating input (gray) d Firing rates of an ensemble of rapid theta neurons with low and high rapidness for
fluctuating input currents. Note that high rapidness enables the ensemble to accurately track the high frequency components of
the input. e Linear firing rate response for different values of rapidness, direct numerical simulations (shaded line) and Fokker
Planck solution (dashed line) superimposed. (ν0 = 1 Hz) , f mutual information rate in Gaussian channel approximation based
on spectral coherence, Fokker Planck solution (full line) and direct numerical simulation (squares) for different mean ensemble
firing rates (ν0 = 1, 2, 5 Hz) (parameters: τm = 10 ms).

varying input current in its ensemble-averaged firing rate,
while a low rapidness allows only the transmission of low
and middle frequencies [4–11]. We find, as expected from
earlier studies [5–11], that the ability to transmit infor-
mation about a presynaptic signal embedded in noise is
limited by the rapidness. We obtained the mutual infor-
mation rate in the Gaussian channel approximation from
the spectral coherence of the input and output signal.
Moreover, we find that the information rate grows ap-
proximately logarithmically with rapidness (Fig. 1f and
Supplementary Information for analytical results). The
reason for the logarithmic scaling is that the rapidness
determines the cutoff frequency, up to which the spectral
coherence is proportional to f−1.

In contrast to many neuron models including the ex-
ponential integrate and fire model, our model can be
solved exactly between spikes, which is a crucial prereq-
uisite for the precise and efficient calculation of the Lya-
punov spectrum. To analyze the role of spike initiation
for dynamical stability, we calculate the full Lyapunov
spectrum of a spiking network of rapid theta neurons.
Lyapunov exponents measure the rate of exponential di-

vergence and convergence of nearby trajectories. The
Lyapunov spectrum gives a good estimate of the attrac-
tor dimension (Kaplan-Yorke conjecture) including ex-
act upper and lower bounds [22–24]. The trajectory of a
N -dimensional dissipative chaotic system does not cover
the whole phase space. After a transient period, it re-
laxes onto a strange attractor, which has a dimensionality
D ≤ N . The Kaplan Yorke attractor dimension is given
by the number of Lyapunov exponents that sum to zero.
One can think of it as the highest dimensional hyper-
sphere, whose volume does not shrink by the dissipative
system dynamics. A lower bound on the attractor di-
mension is given by the number of positive Lyapunov ex-
ponents. Another canonical measure for dynamical sys-
tems is the dynamic entropy rate, which is bounded from
above by the sum of positive Lyapunov exponents. This
bound becomes exact for smooth densities of the phys-
ical measure along the unstable directions (Pesin iden-
tity) [25]. We analytically calculate the Jacobian of the
flow of the dynamics, which determines how an infinites-
imal perturbation of the network state evolves from one
spike time till just after the next spike time in the net-
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work. We evaluate the Jacobians in numerically exact
event-based simulations. The product of the Jacobians
gives the long term Jacobian, which yields the spectrum
of all Lyapunov exponents using Oseledets’ multiplicative
ergodic theorem [26].

Impact on dynamical entropy rate.

We find that rapidness strongly shapes the dynami-
cal stability of recurrent networks in the balanced state
(Fig. 2). First, we will discuss results from inhibitory
random (Erdős–Rényi) networks, later we discuss mixed
excitatory-inhibitory random networks and more struc-
tured network topologies. One could expect that for in-
creasing rapidness r the collective chaos becomes stronger
as the single neurons become more unstable. This is
indeed the case for low rapidness: We find that the
largest Lyapunov exponent grows linearly with rapidness
(Fig. 2d) up to a peak rapidness. For high rapidness the
largest Lyapunov exponent decreases as 1/r (Fig. 2d).
Numerical simulation reveal the scaling of the peak rapid-
ness rpeak =

√
Kν0τm/J0. It occurs, where the diffusion

approximation breaks down and the finite connectivity
K and nonvanishing coupling strength J0 become im-
portant. For smaller rapidness r, the largest Lyapunov
exponent is independent of the connectivity K , the cou-
pling strength J and the mean firing rate ν̄.

At a critical rapidness, which scales rcrit ∝
N0.5K0.4ν̄0.8τ0.8

m J−0.7
0 , the largest Lyapunov exponent

turns zero and the network activity becomes dynamically
stable. Still, for any finite network size N , the largest
Lyapunov exponent can be reduced arbitrary by choosing
a sufficiently large r (Supplementary Section X). The dy-
namical entropy rate decreases monotonically with rapid-
ness reaching zero at rcrit (Fig. 2e). The full spectrum
reveals that the monotonic reduction can be explained
by the drastic reduction in the number of positive Lya-
punov exponents, which overcompensates the increase of
the first few Lyapunov exponents (Fig. 2c). Despite such
a drastic change in the collective dynamics, the statis-
tics of the spike trains are essentially unaffected (Fig. 2a,
b). This is very surprising, as for many other physical
systems, a transition from chaos to stability is strongly
reflected in the autocorrelations of the activity and in its
pairwise cross-correlations [16].

The scaling of the entropy rate with network size N re-
veals that the network chaos is extensive: For sufficiently
largeN , the entropy rate grows linearly with network size
N (Fig. 2f). The convergence of the Lyapunov spectra is
demonstrated in the Supplementary Section VIII. Using
random matrix theory, we calculated the mean Lyapunov
exponent analytically (Supplementary Section IX).

The transition from chaos to stability for increasing
rapidness also occurs for random networks with both
excitatory and inhibitory coupling. To isolate the ef-

fect of excitation, we parametrized the coupling matrix,
such that the input variance into each population stays
the same for different scaling ε of the excitatory cou-
plings. (See Supplementary Information for definition of
ε). When increasing the scaling ε of the excitatory cou-
plings, the dynamical entropy rate increases. If the exci-
tation is strong enough, rcrit diverges, so these networks
are always chaotic.
Interestingly, while the dynamical stability changes

drastically for different values of r, the statistics of the
spike trains remains almost unchanged. Both the dis-
tribution of firing rates and coefficients of variation are
insensitive to changes in r (Fig. 2b). The mean pairwise
Pearson correlation ρ̄ of the spike count is weak and goes
to zero for large networks with ρ̄ ≈ 1/N , while the width
of the standard deviation goes to zero as σ̄ ≈ 1/

√
N

(3e, f, g). This confirms theoretical results predicting
broadly distributed, but weak pairwise correlations in the
balanced state [13].

Attractor dimensionality.

How is the drastic change of the collective dynamics re-
flected in the attractor dimensional and the structure of
pairwise correlations? We find that increasing spike onset
rapidness reduces the attractor dimension including its
upper and lower bounds by orders of magnitude (Fig. 3a).
We found that this reduction is independent of network
size and also exists in mixed excitatory-inhibitory net-
works (Fig. 3b, c). The dimensionality of neural activity
is often measured by the number of principal components
required to explain a fixed fraction of variance [27–30]. In
this case, such a dimensionality estimate based on pair-
wise statistics vastly overestimates the attractor dimen-
sion (dotted lines in 3a and c). This implies the net-
work dynamics have strongly “entangled” statistics which
are hidden when inspecting only pairwise correlations
(Fig. 3e, f, g). Thus, the twisted low-dimensional strange
attractor is interlaced in a high-dimensional phase space
[31]. In the extreme case of very high rapidness beyond
the critical rapidness rcrit the network dynamics become
stable and the basins of attraction can be visualized by
random cross sections of the phase space along two ran-
dom N -dimensional vectors (Fig. 3d, h). Adjacent ini-
tial conditions that converge to the same trajectories are
assigned the same color. When approaching rcrit, the
basins of attraction get smaller and more curved, at rcrit
they vanish (Supplementary Information).

Cortical circuit models.

In the previous sections, we studied the dynamics
of random (Erdős–Rényi) balanced networks, which are
canonical idealized models of neocortical networks. As
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Figure 2: High spike onset rapidness spike r dramatically reduces chaos and dynamical entropy rate. a Spike
trains of 50 random neurons for low (upper panel) and high (lower panel) rapidness. b Distribution of firing rates (upper panel)
and coefficients of variation (lower panel) for different values of rapidness (ordered by time averaged single neuron firing rate)
c Lyapunov spectra reorganize with increasing rapidness, (inset: full Lyapunov spectra) d Largest Lyapunov exponent and e
Entropy rate h as a function of rapidness for different mean firing rates (ν̄ = 1, 2, 5 Hz), f Entropy rate h for different network
sizes (upper panel) and g different strengths of the scaling ε of the excitatory couplings (parameters: NI = 2000, NE = 8000,
K = 100, ν̄ = 1 Hz, J0 = 1, τm = 10 ms).
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Figure 3: Reduction of attractor dimensionality in the asynchronous state despite low pairwise spike count
correlations. a Attractor dimension for different mean firing rates and varying spike rapidness r, dotted line: dimensionality
estimate based on principal components of pairwise spike count correlations matrix (Supplementary Information), full line:
Kaplan-Yorke (KY) attractor dimension, dashed line: lower bound on attractor dimension (fraction of positive exponents) b
KY Attractor dimension grows linearly with network size N c same as a for different scaling ε of the excitatory couplings
d, h cross sections of basis on attraction in a plane perpendicular to the trajectory for r = 250, 500. Colors indicate basins of
attraction of different trajectories (N = 200, K = 100 rc ≈ 203) e Mean pairwise spike count correlations for different values of
rapidness r between excitatory (E) and inhibitory (I) neurons, excitatory-excitatory pairs (EE) in green, inhibitory-inhibitory
pairs (II) in red, mixed pairs in yellow f Mean pairwise spike count correlations decay ∝ 1/N , their standard deviations decays
∝ 1/

√
N , (color code as in b) g histograms of spike count correlations for different rapidness r (EE-pairs)(color code as in

b)(parameters as in Fig. 2, spike count window 20 ms)
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cortical tissue has a very distinct architecture with a mi-
croscopic motif structure that is far from random and a
layered structure where the layers have different wiring
probabilities and distinct thalamic input, we investigate
in the following, whether the previous findings are robust
with respect to a more realistic microscopic and macro-
scopic structure. To analyze the effect of a multilayered
topology, we took experimental data of wiring probability
and synapse count from [32] to build a full cortical col-
umn with 77,169 neurons, around 285 Million synapses
and four layers, each with an excitatory and inhibitory
neuron population. We obtained spiking dynamics with
layer-specific firing rates (Fig. 4a, b). For the first time,
we calculated Lyapunov spectra in more realistic large
networks, using an efficient massively parallelized imple-
mentation (Fig. 4e). We also constructed large mixed
excitatory-inhibitory circuits, which are equipped with
experimentally measured motif frequencies (Fig. 4f) [33].

In these more realistic network structures, our find-
ings from idealized random cortex models were confirmed
(Fig. 4). In the multilayered network the largest Lya-
punov exponent behaves similarly to the one from the
random network. It increases first as a function of rapid-
ness and then decreases (Fig. 4c). The entropy rate shows
a decline for growing rapidness (Fig. 4d). When compar-
ing a random topology to a network with experimentally
measured motif frequencies, we find a similarly strong
reduction of dynamical entropy rate for increasing spike
onset rapidness (Fig. 4g). Thus, the drastic reduction
of chaos and dynamical entropy rate by high spike onset
rapidness was independent of network structure. This
justifies the analysis of more idealized random networks.

Conclusion and summary

Theoretical and experimental studies showed in recent
years that cortical neurons have a surprisingly broad en-
coding bandwidth which depends on details of the spike
initiation mechanism. Here we investigated the effect of
this on the collective recurrent dynamics of neocortical
spiking circuits. We found that canonical measures of the
collective dynamics are not universal and insensitive to
single cell properties, but they show a strong dependence
on the spike onset rapidness. While slow spike onset leads
to strong extensive chaos, rapid spike onset stabilizes the
collective dynamics. The stabilization is accompanied by
a decrease in dynamical entropy rate and attractor di-
mension, despite low pairwise correlations. This holds
also in more realistic network structures including mul-
tilayered and second order motif networks. The effect of
spike onset on chaotic entropy rate is orders of magnitude
larger than the effect on the bandwidth of information en-
coding. The importance of single cell dynamics limiting

the encoding bandwidth in a feedforward architecture is
thus not washed out by the collective network dynamics.
The dimensionality of collective states in neural cir-

cuits is a fundamental quantity. Different measures of di-
mensionality might be necessary to characterize the com-
plex dynamics. Using concepts from ergodic theory, we
show that the attractor dimension decreases drastically
for increasing spike onset rapidness which is hidden from
conventional dimensionality estimates based on the cor-
relations of the activity. This implies that neuron states
have strong statistical dependencies. How such depen-
dencies can be used for computations in a neocortical
circuit is a question for future research.
As the spike threshold acts as unstable fixed point for

the single cell dynamics, one might expect that high sin-
gle cell instability (i.e. high spike onset rapidness r)
increases the network chaos. Surprisingly, we find the
opposite: A large single cell instability stabilizes the col-
lective dynamics. Chaotic dynamics might be useful for
computation to amplify small differences of initial condi-
tions. If such a mechanism is used by cortical circuits,
spike onset rapidness would be an important parameter
to regulate this. Certainly, the dynamic entropy rate con-
tributes to noise entropy and can therefore impair cod-
ing capacity. Therefore, it is remarkable that cortical
neurons seem to be tuned to reduce this deterministic
contribution to noise entropy.
Information in the cortex is processed by a deeply lay-

ered system of neuronal circuits. How well streams of
spikes from one circuit can control spiking dynamics in
the subsequent circuit limits its ability to encode infor-
mation. It is presumably harder to control very chaotic
networks by input spike trains. We therefore conjecture
that high spike onset rapidness facilitates network state
control and information transmission of subsequent cir-
cuits.
We are only beginning to use ergodic theory to under-

stand neural computation. By employing these concepts
in large scale neural circuits we have laid the foundations
for further investigation. Computational ergodic theory
of spiking networks has been until now the only way to
measure information theoretic quantities of large recur-
rent circuits. It is an important challenge, to extend this
to other quantities like transfer entropy and mutual in-
formation rate.

Methods

The governing piecewise differential equation for the
single neuron dynamics is

τmV̇i =
{
aU (Vi − VG)2 + Ii(t) V > VG

aS(Vi − VG)2 + Ii(t) V ≤ VG
(1)
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Figure 4: High spike onset rapidness r reduces chaos and entropy rate in cortical circuit models: a Multilayered
cortical column network model with layer- and cell type specific connection probabilities, 77,169 neurons, ∼285 Million synapses
b spike raster illustrating layer-specific firing rates c largest Lyapunov exponent vs. spike onset rapidness r d entropy rate h vs.
spike onset rapidness r, e positive Lyapunov exponents of multilayered model. f Second order network motif overrepresentation
estimated from experiments g dynamic entropy rate for random and realistic second order motif structure at different values
of spike onset rapidness r.

with the membrane time constant τm, the glue point
VG = 1

2
r−1
r+1 , the curvatures aS = r+1

2r and aU = r2aS
and the synaptic input current

Ii(t) = −IT + Iext + τm
∑

j∈pre(i)

Jδ(t− t(s)
j )) (2)

where IT = 1
2

r
r+1 , J = J0/

√
K. Iext is adapted to ob-

tain a desired target firing rate ν̄. The elements of the
Jacobian of the flow of the dynamics are

Dij(ts) =





1 + Z ′(φi∗(t−s+1) for i = j ∈ post(j∗)
−ωi∗
ωj∗ Z

′(φi∗(t−s+1)) for i ∈ post(j∗) and j = j∗

δij otherwise
(3)

where Z is the phase response curve, ω = 2
τm

√
Iext/aS

is the phase velocity and stars indicate the neuron spik-
ing at ts+1. The Kaplan-Yorke attractor dimension was
calculated from the interpolated number of Lyapunov ex-
ponents that sum to zero:

D = k +
∑k
i=1 λi
λk+1

with k = max
n

{
n∑
i=1

λi ≥ 0
}
.
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I. THE RAPID THETA NEURON MODEL

To examine the impact of the action potential (AP) onset rapidness on the collective dynamics of cortical networks,
we constructed a new neuron model with variable AP onset rapidness, called the rapid theta neuron model (Fig. 1,
main paper). This model is similar to the exponential integrate and fire neuron, but much more tractable for high
precision calculations. The rapid theta neuron model combines the advantage of the theta neuron model for the
analytical derivation of the phase-response curve with a modifiable AP onset rapidness r. For r = 1, the rapid theta
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neuron model is equivalent to the theta neuron model. Increasing r decreases the time constant at the unstable fixed
point VU (voltage threshold) leading to a larger instability and sharper AP initiation. The membrane time constant
τm, the time constant at the stable fixed point VS (resting potential) remains unchanged. This is achieved by gluing
two parabolas smoothly together at VG. In the dimensionless voltage representation, the resulting rapid theta neuron
model is described by the differential equation

τm
dV
dt =

{
aS(V − VG)2 − IT + I(t) V ≤ VG

aU(V − VG)2 − IT + I(t) V > VG.
(1)

In this equation, IT denotes the rheobase current and I(t) is the synaptic input current. The curvatures aU,S depend
on the AP onset rapidness r and together with VG and IT define the positions of the two branches of the parabolas.
The glue point, denoted VG, where the two branches are continuously and smoothly glued together divides the single
neuron phase space into two (V ≤ VG) (V > VG) parts. At the stable fixed point VS, the slope of the subthreshold
parabola is set to −1/τm and at the unstable fixed point VU the slope is r/τm. This leads to the expressions

∂V̇ (VS,U)
∂V

=
{
−1 = 2aS(VS − VG)
r = 2aU(VU − VG)

(2)

aS = 1
2

1
(VG − VS)

aU = r

2
1

(VU − VG) .

The rate of change of the voltage vanishes at the two fixed points VS and VU for zero synaptic inputs (I(t) ≡ 0). This
defines the gluing point VG and the rheobase current IT:

V̇ (VS,U) = 0 =
{
aS(VS − VG)2 − IT
aU(VU − VG)2 − IT = rVU−VG(r+1)+VS

2
(3)

IT = VG − VS
2

VG = rVU + VS
r + 1 .

Without loss of generality, the stable and unstable fixed points are set to VS = −0.5 and VU = +0.5, yielding:

VG = 1
2
r − 1
r + 1 (4)

IT = 1
2

r

r + 1 (5)

aS = r + 1
2r (6)

aU = r(r + 1)
2 = r2aS. (7)

With Eq. (4)-(7) the governing equation of the rapid theta neuron model (1) becomes

τm
dV
dt =





r+1
2r

(
V − 1

2
r−1
r+1

)2
− IT + I(t) V ≤ 1

2
r−1
r+1

r(r+1)
2

(
V − 1

2
r−1
r+1

)2
− IT + I(t) V > 1

2
r−1
r+1 .

(8)



3

II. STATIONARY FIRING RATE OF THE RAPID THETA NEURON

The stationary firing rate of the rapid theta neuron with constant input current follows directly from solving
equation 8. The inverse time from reset V = −∞ to threshold V =∞ gives the firing rate:

ν(Iext) =
√
Iext

πτm

√
2r
r + 1 (9)

Cortical neurons are driven by a dense stream of input spikes. The resulting compound spike train can be modeled
as a Poisson process, if the input spike trains are uncorrelated and random. Note, however, that the superposition of
many uncorrelated non-Poissonian spike trains deviates from a Poisson process in general [22, 23]. When many weak
and uncorrelated spikes arrive at a neuron, it is justified to treat the random component of the synaptic currents
as Gaussian white noise [24, 25]. In this diffusion approximation, we obtained the mean firing rate by solving the
stationary Fokker-Planck equation with additive Gaussian white noise input current. We start by writing a piecewise
Langevin equation for the rapid theta model:
τmwhere ξ(t) is Gaussian white noise with unit variance, σ

√
2τm is the noise intensity of the input and µ is a

constant input consisting of the constant external input, the rheobase current and the mean recurrent input. This
results in a piecewise Fokker-Planck equation:

∂P (V, t)
∂t

=





σ2

τm
∂2P
∂V 2 + ∂

∂V

(
−µ(t)−aS(V−VG)2

τm
P
)

V ≤ VG

σ2

τm
∂2P
∂V 2 + ∂

∂V

(
−µ(t)−aU(V−VG)2

τm
P
)

V > VG
(10)

where P (V, t) is the time-dependent probability density of finding a neuron at time t at voltage V . The station-
ary (time-independent) Fokker-Planck equation can be solved numerically using an efficient threshold integration
method [14]. Briefly, the Fokker-Planck equation is set to zero and rewritten in two first order equations for proba-
bility flux and probability in V :

τm
∂J0
∂V

= ν0δ(V − Vth)− ν0δ(V − Vre) (11)

− ∂P0
∂V

=





τm
σ2

0

(
−µ0−aS(V−VG)2

τm
P0 + J0

)
V ≤ VG

τm
σ2

0

(
−µ0−aU(V−VG)2

τm
P0 + J0

)
V > VG.

(12)

Here P0(V ) is the stationary probability distribution of membrane potentials and J0(V ) is the probability flux. As we
know the boundary conditions limV→∞ P0(V ) = 0 and limV→∞ J0(V ) = ν0, we can simultaneously integrate P0 and
J0 from threshold to some lower bound Vlb [40]. The rate ν0 is initially unknown, but can be scaled out p0 = P0/ν0.
The normalization

∫ Vth
Vlb

P0dV = 1 then yields the firing rate

ν0 =
(∫ Vth

Vlb

p0dV

)−1

(13)

Convergence of the numerical integration of the Fokker-Planck solution: Fig. 2c and d displays the steady-state
firing rate of the stationary solution of the Fokker-Planck approach. As the rapid theta model has neither finite
threshold nor finite reset in the voltage representation, the threshold, reset and lower bound of the numerical threshold
integration scheme have to be chosen sufficiently far away from zero such that the results do not change (Fig. 2c).
The integration step size ∆V has to be chosen sufficiently small (Fig. 2f). For higher rapidness, smaller step sizes are
necessary to get the same precision. This is because there is a drastic change of the dynamics at VG therefore close to
VG the voltage integration steps have to be small. To increase the numerical accuracy at high rapidness, we chose ∆V ,
such that both Vre and VG fall on a lattice point of the integration scheme. Code for Julia and MATLAB R©/Octave is
available upon request. We found that Vth = 1000 and ∆V = 10−3 are sufficient for a relative precision of the firing
rate of ∆ν0

ν0
< 10−2.
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Figure 1: Action potential onset rapidness r shapes stationary voltage distribution. a) Voltage distribution for
different rapidness for fixed external input obtained from the solution of the stationary Fokker Planck equation Eq. 11 and
Eq. 12 b) same as a, but for fixed mean firing rate. c) Voltage distribution obtained with inhibitory Poisson input spikes
trains. For small K, the shot noise nature of the Poisson input becomes important. (r = 100 ) d) Comparison of Poisson input
and Fokker Planck solution for K = 10000 and r = 10. e) same as c) zoomed in for r = 10. The probability density drops at
VG. f) same as c) for r = 3 (parameters: ν0 = 1 Hz, J0 = 1, τm = 10 ms).

Diffusion approximation and shot noise: The Fokker-Planck approach approximates the synaptic input by Gaus-
sian white noise. This is justified in the limit of uncorrelated input and large rate of infinitesimally strong received
postsynaptic currents per neurons. To investigate the impact of finite postsynaptic potentials, we replaced the Gaus-
sian white noise with inhibitory Poisson pulses of rate νp = ν0K and strength Jp = −J0/

√
K. We kept the variance

σ2
p = νpJ

2
p = ν0J

2
0 fixed and varied K. The mean firing rate ν0 was kept constant for different values of rapidness

r and K by adapting the constant input current µ. For large K, the diffusion approximation is valid, while for
small K, the shot noise nature of the Poisson input becomes relevant (Fig. 1c+f). This effect is particularly strong
for large rapidness r. For small K, the density just below VG obtained from direct numerical simulation is larger
than the probability density obtained from the Fokker-Planck solution. It drops at VG (Fig. 1e). This will help
later to understand the dependence of the largest Lyapunov exponent on K and r. In principle, a similar analytical
investigation of shot noise as in Ref. [15] could also be done but is beyond the scope of this work.

III. LINEAR RESPONSE OF AN ENSEMBLE OF RAPID THETA NEURONS

Figure 1 e of main paper. We calculated the linear response of ensembles of rapid theta neurons using three
different approaches: Firstly by solving the time-dependent Fokker-Planck-equation, secondly, by direct numerical
simulation using Poisson input and thirdly by direct numerical simulations using band-limited white noise. The same
efficient numerical threshold integration method as for the stationary response can be adapted to obtain the linear
response to a sinusoidal modulation of the input current. A modulation of the mean input current µ(t) = µ0 +µ1e

iωt

results in a firing rate modulation, which is in linear response ν(t) = ν0 + ν̂µe
iωt. The absolute value |ν̂µ(ω)| gives

the rate modulation strength and the phase of ν̂(ω) gives the phase lag between input and output modulation. The
expansion of the flux in first order therefore satisfies:

τm
∂Ĵµ
∂V

= iωP̂µ + ν̂µδ(V − Vth)− ν̂µδ(V − Vre) (14)
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Figure 2: Spike onset rapidness r mildly affects steady-state firing rate. a) Firing rate as a function of constant input
µ for different values of rapidness obtained from stationary Fokker-Planck solution for weak noise (σ =

√
0.05). Dashed line is

analytical noise-free result (Eq. 9). b) same as a for varying noise strength σ at µ = IT . c) rate deviation for different threshold
levels of numerical integration scheme. d) same as a) for strong noise (σ =

√
0.5) e) same as b) for strong constant input

µ = 0.1 + IT f) rate deviation for different integration step sizes in the numerical integration scheme (parameters: τm = 10 ms,
Vre = −Vth, ∆V = 10−3, Vth = 103).
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− ∂P̂µ
∂V

=





τm
σ2

0

(
−µ0−aS(V−VG)2

τm
P̂µ + Ĵµ + Fµ

)
V ≤ VG

τm
σ2

0

(
−µ0−aU(V−VG)2

τm
P̂µ + Ĵµ + Fµ

)
V > VG.

(15)

Fµ describes the inhomogeneous term given by Fµ = −∂J∂µP0 = −µ1P0
τm

. The boundary conditions are limV→∞ P̂µ(V ) =
0 and limV→∞ Ĵµ(V ) = ν̂µ. The solution can be separated into two parts, one proportional to ν̂µ and a second
proportional to µ1.

P̂µ = ν̂µp̂ν + µ1p̂µ and Ĵµ = ν̂µĵν + µ1ĵµ (16)

The resulting pair of equations can be numerically integrated yielding the linear response rate amplitude and phase
lag.

Similarly, for variance-modulations of the input current, the expansion of the flux satisfies in first order:

τm
∂Ĵσ2

∂V
= iωP̂σ2 + ν̂σ2δ(V − Vth)− ν̂σ2δ(V − Vre) (17)

− ∂P̂σ2

∂V
=





τm
σ2

0

(
−µ0−aS(V−VG)2

τm
P̂σ2 + Ĵσ2 + Fσ2

)
V ≤ VG

τm
σ2

0

(
−µ0−aU(V−VG)2

τm
P̂σ2 + Ĵσ2 + Fσ2

)
V > VG.

(18)

The inhomogeneous term Fσ2 is defined by Fσ2 = − ∂J
∂σ2P0. It is given by

Fσ2 =
{
σ2

1
σ2 (−µ− aS(V − VG)2 − VT) V ≤ VG
σ2

1
σ2 (−µ− aU(V − VG)2 − VT) V > VG.

(19)

The linear response is obtained with the same threshold integration scheme as above.
High-frequency limit: The high-frequency response is obtained by expanding P̂ (t) in 1

ω similarly to [14, 16]. The
response to modulations of the mean is:

ν̂µ(ω) = ν0µ1r(r + 1) 1
(iωτm)2 (20)

The high-frequency response for modulations of the variance is:

ν̂σ(ω) = 3ν0σ
2
1r

2(r + 1)2 1
(iωτm)3 (21)

The excellent agreement between analytical high-frequency response and the Fokker-Planck approach is shown in
Fig. 3. Extending previous work, the functional form of the voltage dependence of the activation variable of fast
sodium currents decides how well the spiking of a fluctuation-driven neuron can reflect high frequency input [16–20].
High spike onset rapidness allows neurons to precisely position its spikes in time. For low spike onset rapidness
neurons are susceptible to input fluctuations after crossing the unstable fixed point VU. High frequency components
in the input are then washed out and only weakly reflected in the spiking. Therefore, in the presence of noise, the
spikes of neurons with high action potential onset rapidness can convey more information about high-frequency input
currents. To make this statement quantitative, we calculated a lower bound on the mutual information rate between
input current and spike trains (Section IV).
Analytical high-frequency response for high rapidness limit: The high-frequency response in the limit of large

rapidness is also obtained by expanding P̂ (t) in 1
ω for r = ∞. In this case VG = VU acts as a hard threshold and

neurons crossing it spike instantaneously. The high-frequency response to modulations of the mean is, as for the leaky
integrate-and-fire neuron:

ν̂µ = ν0µ1√
iωτm

(22)
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IV. MUTUAL INFORMATION RATE AND ACTION POTENTIAL ONSET RAPIDNESS

Figure 1 h of main paper.
Lower bound on mutual information rate: With information theory we can treat a neuron as a noisy communication

channel transforming a signal embedded in a noisy current into a spiking response sent to its postsynaptic partners.
The mutual information rate measures how much the uncertainty about the input x(t) is reduced given the spiking
output y(t) per unit time:

R(X,Y ) = h(Y )− h(Y |X) = h(X)− h(X|Y ) = lim
T→∞

1
T

∫

X

∫

Y

p(x, y) log 2

(
p(x, y)
p(x)p(y)

)
(23)

where p(x, y) is the joint probability density function of x(t) and y(t), h(X) and h(Y ) are their entropy rates and
h(X|Y ) is the conditional entropy rate of x(t) given y(t). The continuous Gaussian channel gives a lower bound on
the mutual information rate for a Gaussian input signal [26, 27]:

R(X,Y ) = h(X)− h(X|Y ) ≥ h(X)− hGaussian(X|Y ) = Rlb(X,Y ) (24)

The inequality results from the property that a Gaussian process has the maximum entropy of all processes with
fixed variance. Recently it was shown that for moderate input modulation in a fluctuation driven regime this lower
bound is very close to the mutual information rate estimated from direct methods [11]. This is convenient, because
estimating the mutual information from empirical data is computationally costly, as the sample size has to be much
larger than the size of the alphabet [21]. Continuous processes usually have to be discretized resulting in very large
alphabets. In our case a Gaussian channel approximation to the mutual information rate between input current and
output spike train was estimated based on the spectral coherence between input current and output spike train, which
is based purely on second-order statistics.

Rlb(X,Y ) = −
∫ fcutoff

0
df log2 (1− Cxy(f)) (25)

Cxy(f) denotes the magnitude squared spectral coherence. The spectral coherence is the frequency-domain analog
of correlation and measures the linear relationship between frequency components of input and output signal. Its
magnitude square is

Cxy(f) = |Sxy(f)|2
|Sxx(f)||Syy(f)| (26)

Sxx(f) is the power spectrum of band-limited Gaussian white noise:

Sxx(f) =
{
σ2 f ≤ fcutoff

0 else.
(27)

Syy(f) is the power spectrum of the spike train. Syy(f) = limT→∞ 1
T 〈ỹỹ∗〉, where ỹ(f) is the Fourier transform of

the spike train. If and only if x(t) and y(t) are linearly scaled copies of each other, then Cxy(f)=1. If x(t) and
y(t) are independent, then Cxy(f)=0, the reverse generally does not hold. Nonlinear effects and noise reduce the
coherence. We calculated the spectral coherence in two independent ways: Firstly based on the numerical solution
of the time-dependent Fokker-Planck equation and secondly based on direct numerical simulations with band-limited
white noise. The time-dependent Fokker-Planck solution using the threshold integration scheme above yields a linear
response approximation of Sxy(f) directly from the linear response. Assuming weak modulations of the input, the
stationary power spectrum of the spike train is sufficient, which can be obtained using again threshold integration [14].
The dependence of Syy(f), Sxy(f) and Cxy(f) on rapidness r and mean rate ν0 are depicted in Fig. 4. At low rates,
due to our scaling, neurons are in the fluctuation driven regime, therefore Syy is flat. At high rates, which corresponds
to a more mean driven regime, the response amplitude ν1µ has a resonance close to ν0.

Fokker-Planck ansatz and direct numerical simulations with band-limited white noise are in excellent agreement
(Fig. 5).

The mutual information rate scales approximately logarithmically with r. For large rapidness, the mutual informa-
tion rate saturates. The saturation level is determined by the band limit of the incoming white noise (Fig. 6).
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Figure 4: Action potential onset rapidness r and ν0 shape frequency-response, spike power spectra and spectral
coherence: a) Linear response for mean modulation of input current for ν0 = 0.1Hz, b) Spike power spectra for different r
for ν0 = 0.1Hz. c) spectral coherence for different r for ν0 = 0.1Hz. d), e) and f) same as a, b and c for ν0 = 1Hz. At
low rates, neurons are in the fluctuation driven regime, therefore Syy is flat. At high rates (mean driven regime), the response
amplitude ν1µ has a resonance close to ν0 (parameters: ν0 = 10Hz, µ1 = 0.01, τm = 10ms, ∆V = 10−4, Vth = 104 = −Vr).
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r = 1. c) same as b) for r = 1000 (parameters: ν0 = 10Hz, µ1 = 0.01, τm = 10ms, ∆V = 10−3, Vth = 103 = −Vr).

Dependence of mutual information rate on spike rapidness We know Sxy(f) both in the high-frequency limit
from the analytical high-frequency response and in the low-frequency limit, because for very low frequency input
modulations (fτm ≪ 1), the spike rate follows adiabatically the input:

lim
f→0

Sxy(f) = µ1
∂ν0
∂µ

(28)

This is the slope of the ν0 − µ curve depicted in Fig. 2. For renewal processes, one can show that for high input
frequencies Syy is given by the firing rate

lim
f→∞

Syy(f) = ν0 (29)

and for low input frequencies

lim
f→0

Syy(f) = ν0cv
2 (30)

where cv is the coefficient of variation of the interspike intervals T : cv =
√
〈T 2〉 − 〈T 〉2/〈T 〉. For intermediate

frequencies at intermediate to high onset rapidness, an approximation of the frequency-response of the rapid theta
neuron can be obtained from the analytical high-frequency response for high rapidness (Eq. 22). The reason is that
for intermediate input frequencies the glue point VG acts like a hard threshold, if the time from threshold VU to spike
is smaller than the inverse frequency. Plugging these estimates into Eq. 26, we get an analytical approximation of the
spectral coherence for different frequency regimes:

C low
xy (f) = |Sxy(f)|2

|Sxx(f)||Syy(f)| =
|µ1

∂ν0
∂µ |2

σ2ν0cv2 = µ2
1

(
∂ν0
∂µ

)2

σ2ν0cv2 (31)

Cmid
xy (f) = |Sxy(f)|2

|Sxx(f)||Syy(f)| ==
| ν0µ1√
iωτm
|2σ4

σ2ν0
= ν0µ

2
1σ

2

2πfτm
(32)
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Figure 7: Analytical estimate of the mutual information rate and spectral coherence explains logarithmic scaling
with action potential onset rapidness r Rlb(r) ∝ log (r): a) Spectral coherence obtained from Fokker-Planck ansatz vs
analytical estimates for low mid and high frequency regime. Dashed line: high-rapidness scaling, dash-dotted line: high-
frequency scaling, dotted line: low frequency estimate. b) Deviation between Fokker-Planck ansatz and analytical estimates
for r = 1. c) comparison of mutual information rates obtained from Fokker-Planck ansatz vs. analytical estimate. d) Same as
b for r = 1000 (parameters: ν0 = 10Hz, µ1 = 0.01, τm = 10ms, ∆V = 10−3, Vth = 103 = −Vr).

Chigh
xy (f) = |Sxy(f)|2

|Sxx(f)||Syy(f)| =
|ν0µ1r(r+1)

(iωτm)2 |2σ4

σ2ν0
= ν0µ

2
1r

2(r + 1)2σ2

(2πfτm)4 (33)

These estimates are precise in their respective limits of low and high frequencies. In the intermediate transition
regimes, deviations occur (Fig. 7).

For intermediate mean firing rates the analytical low coherence estimate is overestimating the coherence, while at the
transition zone the analytical intermediate estimate is underestimating the coherence. These two errors approximately
compensate each other (Fig. 7b). For low rates, the overestimation in the analytical low coherence regime is smaller,
therefore the analytically obtained approach underestimates the mutual information rate (Fig. 8).

For high firing rates, the analytical coherence estimate is strongly underestimating the coherence, therefore the
analytical approach overestimates the mutual information rate (Fig. 9). The estimation errors are largely insensitive
to rapidness, therefore the slopes are still in good agreement with the Fokker Planck approach.

The transition point between the low and intermediate regimes are obtained by calculating the crossings between
C low
xy (f) and Cmid

xy (f). We obtain:

f lm(r, ν0) = ν2
0σ

4cv2
(
∂ν0
∂µ

)2
τm

(34)

For weak noise input, we obtain from Eq. 9 ∂ν0
∂µ = 1

πτm

√
r

2r(r+1)Iext
. The same is done for the second crossing with

Cmid
xy (f) and Chigh

xy (f):

fmh(r, ν0) =
[
r(r + 1)

√
(ν0τm

]2/3
(35)
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Figure 8: Analytical estimate of the mutual information rate and spectral coherence with action potential onset
rapidness r for low firing rate: ν0 = 1 (parameters same as Fig. 8).

To obtain an analytical estimate of the mutual information rate, we stitched analytic high-, middle- and low-frequency
estimates together at the transition points. Plugging into Eq. 25 gives us:

Rlb = Rlb +Rlb +Rlb

≈ −
∫ flm

0
df log2

(
1− C low

xy (f)
)
−
∫ fmh

flm

df log2
(
1− Cmid

xy (f)
)
−
∫ fcutoff

fmh

df log2
(
1− Chigh

xy (f)
)

(36)

Only the contribution of the intermediate frequency term changes strongly as a function of rapidness in the relevant
parameter regime. To obtain a simple analytical estimate for the dependence on the rapidness, we have to evaluate
only the second integral.

Rlb ≈ −
∫ fmh

flm

df log2
(
1− Cmid

xy (f)
)

= −
∫ fmh

flm

df log2

(
1− c1

f

)

=
[
c1 log2(f − c1)− f log2(1− c1

f
)
]fmh

flm

(37)

= c1 log2(fmh − c1)− flm log2(flm) + (flm − c1) log2(flm − c1)− fmh log2

(
1− c1

fmh

)

As short-hand notation, we defined c1 = ν0µ
2
1σ

2

2πτm . Only the first term changes strongly as a function of rapidness,
therefore
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Figure 9: Analytical estimate of the mutual information rate and spectral coherence for different values of action
potential onset rapidness r for high firing rate (ν0 = 100, other parameters same as Fig. 8).

Rlb(r) ≈ c1 log2(fmh − c1) + const

= c1 log2

([
r(r + 1)

√
(ν0τm

]2/3
− c1

)
+ const

r�c1≈ c1 log2

([
r(r + 1)

√
(ν0τm

]2/3)
+ const (38)

= c1
2
3 log2

(
r(r + 1)

√
(ν0τm

)
+ const

= c1
2
3 log2 (r(r + 1)) + const

r�1
≈ c1

4
3 log2 (r) + const

= 2ν0µ
2
1σ

2

3πτm
log2 (r) + const

We conclude that the mutual information rate scales approximately logarithmically with action potential onset
rapidness for sufficiently large rapidness, weak input and high band limit. Where does the logarithmically scaling
of the mutual information rate with rapidness arises from? The reason is that the rapidness determines the cutoff
frequency, up to which the rapid theta neuron transmits information approximately like a hard-threshold neuron (e.g.
leaky integrate-and-fire neuron). Contributions from frequencies beyond this cutoff are negligible to first order. As a
hard threshold always causes an asymptotic linear response ∝ 1/

√
f , which becomes proportional to 1/f in the squared

coherence, the integral that yields the lower bound of the mutual information (Eq. 25) always scales approximately
proportional to log (fcutoff), therefore Rlb(r) ∝ log (r). This conclusion is not restricted to the rapid theta model,
a similar line of argumentation holds also e.g. for the exponential integrate and fire model and the rapid-τ model
[16, 20]. For the exponential integrate and fire neuron model, the mutual information rate also scales approximately
logarithmically with the action potential onset rapidness parameter 1/∆T despite the different asymptotic linear
response, which scales ν̂µ ∝ 1

f [16]. In the case of the rapid-τ model the same holds, despite the asymptotic linear
response, which scales ν̂µ ∝ 1√

f
exp(ωr ) [20].
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V. PHASE REPRESENTATION OF THE RAPID THETA NEURON

A phase representation of the rapid theta neuron model similar to the classical theta neuron model is obtained with
the transformation tan θ

2 = V − VG and θ ∈ [−π, π), yielding

τm
dθ
dt =

{
r+1
2r
(
1− cos θ

)
+
(
I(t)− IT

)(
1 + cos θ

)
θ ≤ 0

r(r+1)
2
(
1− cos θ

)
+
(
I(t)− IT

)(
1 + cos θ

)
θ > 0.

(39)

For r = 1 the theta neuron model is recovered.
The exact solutions of the rapid theta neuron model for constant positive external currents and δ pulse coupling

allow us to write down a phase representation with constant phase velocity. Such a phase representation is convenient
both for efficient, numerically exact, event-based simulation and also for analytical tractability.

The solution of the governing differential equation in the dimensionless voltage representation (1) for constant input
currents I(t) ≡ IT + I is

1
I

dV

1 +
(
V − VG√
I/aS,U

)2 = 1
τm

dt

1
I

√
I/aS,U

[
arctan

(
V − VG√
I/aS,U

)]V2

V1

= t2 − t1
τm

arctan
(
V2 − VG√
I/aS,U

)
= arctan

(
V1 − VG√
I/aS,U

)
+
√
I aS,U

t2 − t1
τm

. (40)

This equation represents the solution for both branches of Eq. (1) separated by VG as before. For the subthreshold
part (V ≤ VG), the curvature is aS = r+1

2r and for the suprathreshold part (V > VG), the curvature is U = r(r+1)
2 . In

the phase representation with phase φ ∈ [−π, π) and constant phase velocity, the phase evolution is given by

φ2 = φ1 + ω
t2 − t1
τm

. (41)

Identifying Eq. (40) and (41), enables us to derive the constant phase velocity ω and the gluing point φG to define
the transformation between the two representations

φ− φG
ω

= arctan
(
V − VG√
I/aS,U

)
1√
I aS,U

. (42)

During one complete cycle, the time TS spent in the subthreshold part (V2 = VG and V1 → −∞) and the time TU
spent in the suprathreshold part (V2 →∞ and V1 → VG) was obtained from Eq. (40):

TS = πτm√
2I(r + 1)/r

and TU = πτm√
2I(r + 1)r

.

The time spent in the subthreshold part is thus TS/TU = r times as long as the one in the suprathreshold part. The
total cycle length, or unperturbed interspike interval, is thus

T free = (r + 1)TU

= πτm√
I

√
r + 1

2r . (43)

Its inverse gives the firing rate for constant external input.
The constant phase velocity is then

ω = 2π
T free

= 2
√
I

τm

√
2r
r + 1 = 2

τm

√
I/aS (44)
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The phase corresponding to the gluing point is

φG = −π + ωTS

= π
r − 1
r + 1 . (45)

The constant phase velocity (44) and the gluing point (45) define the transformation (42) between the voltage repre-
sentation and the phase representation:

φ = φG +





2
aS

arctan
(
V−VG√
I/aS

)
V ≤ VG

2
raS

arctan
(
r V−VG√

I/aS

)
V > VG

(46)

V = VG +





√
I/aS tan

(
aS

φ−φG
2

)
φ ≤ φG

√
I/r2aS tan

(
raS

φ−φG
2

)
φ > φG.

(47)

This transformation between the two equivalent representations is now used to calculate the phase-transition curve
g(φ) and the phase-response curve Z(φ). Receiving a δ pulse of strength J leads to a step like change of the neuron’s
voltage V + = V − + J . If this change does not lead to a change from the subthreshold to the suprathreshold part or
reverse, the calculation of the phase-transition curve is straightforward. Some care needs to be taken, if the δ pulse
does lead to such a change.

An inhibitory pulse J < 0 can lead to a change from the suprathreshold to the subthreshold part. This happens if
the neuron’s phase is between φG and φ−. The phase-transition curve for inhibitory δ pulses of strength J and constant
external currents I with the effective coupling C = J/

√
I and φ− = φG + 2

raS
arctan

(
r(VG − J − VG)/

√
I/aS

)
=

φG − 2
raS

arctan
(
r
√
aSC

)
is

g−(φ) = φG +





2
aS

arctan
(

tan
(
aS

φ−φG
2

)
+√aSC

)
−π < φ ≤ φG

2
aS

arctan
(

1
r tan

(
raS

φ−φG
2

)
+√aSC

)
φG < φ < φ−

2
raS

arctan
(

tan
(
raS

φ−φG
2

)
+ r
√
aSC

)
φ− ≤ φ < π.

(48)

For excitatory δ pulses of strength J > 0, the phase can change from the subthreshold to the suprathreshold part
if the phase is between φ+ and φG. The phase-transition curve for excitatory δ pulses of strength J and constant
external currents I with the effective coupling C = J/

√
I and φ+ = φG − 2

aS
arctan(√aSC) (displayed in Fig. 10) is

g+(φ) = φG +





2
aS

arctan
(

tan
(
aS

φ−φG
2

)
+√aSC

)
−π < φ ≤ φ+

2
raS

arctan
(
r tan

(
aS

φ−φG
2

)
+ r
√
aSC

)
φ+ < φ < φG

2
raS

arctan
(

tan
(
raS

φ−φG
2

)
+ r
√
aSC

)
φG ≤ φ < π.

(49)

The phase-response curve is Z±(φ) = g±(φ)− φ. Thus, the infinitesimal phase-response curve is the same for both
excitatory and inhibitory pulses, since φ± → φG for C → 0:

Z(φ) C→0' C





2√aS
aS

1
1+tan

(
aS

φ−φG
2

)2 = 1 + cos (aS(φ− φG))√
aS

−π < φ ≤ φG

2r√aS
raS

1
1+tan

(
raS

φ−φG
2

)2 = 1 + cos (raS(φ− φG))√
aS

φG ≤ φ < π.
(50)

VI. SINGLE SPIKE JACOBIAN OF THE RAPID THETA NEURON NETWORK

The analytical expression of the derivative of the evolution map, called the single spike Jacobian, is necessary for
calculating the full Lyapunov spectrum with high precision. The single spike Jacobian describes the linear evolution
of infinitesimal perturbations of the neuron’s states and will be used to numerically calculate the Lyapunov spectra.
Since infinitesimal perturbations are considered here, the spike-order in the networks is preserved. This is true as long
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as there are no exactly synchronous spike events which generally should not occur in the considered asynchronous
network states. In a phase representation, the iterative map, which maps the state of the network at one spike time
to the state at the next spike in the network, reads

φi(ts+1) = φi(ts) + ωi(ts+1 − ts) + Z
(
φi(ts) + ωi(ts+1 − ts)

)
δi∈post(j∗), (51)

where δi∈post(j∗) is one if i is a postsynaptic neuron of the spiking neuron j∗ and zero otherwise and Z(φi) is the
phase-response curve.

Thus, the single spike Jacobian reads

Dij(ts) = dφi(ts+1)
dφj(ts)

=





1 + Z ′(φi∗(t−s+1)) for i = j = i∗

−ωi∗
ωj∗

Z ′(φi∗(t−s+1)) for i = i∗ and j = j∗

δij otherwise,
(52)

where j∗ denotes the spiking neuron in the considered interval, firing at time ts+1, i∗ ∈ post(j∗) are the spike
receiving neurons and δij is the Kronecker delta. The derivatives of the phase-response curves Z ′(φ) are evaluated
at the phases of the spike receiving neurons φi∗(t−s+1) = φi∗(ts) + ωi∗(ts+1 − ts) just before spike reception. To
investigate the collective dynamics of networks of rapid theta neurons, the derivative d(φi∗(t−s+1)) = 1 +Z ′(φi∗(t−s+1))
of the phase-transition curve is needed for the single spike Jacobians. The derivative d(φ) in case of inhibitory pulses
is

d−(φ) =





tan
(
aS

φ−φG
2

)2
+1(

tan
(
aS

φ−φG
2

)
+√aSC

)2
+1

−π < φ ≤ φG

tan
(
raS

φ−φG
2

)2
+1(

1
r tan

(
raS

φ−φG
2

)
+√aSC

)2
+1

φG < φ < φ−

tan
(
raS

φ−φG
2

)2
+1(

tan
(
raS

φ−φG
2

)
+r√aSC

)2
+1

φ− ≤ φ < π.

(53)

In the voltage representation, this derivative d(V ) will be useful for the analytical calculation of the mean Lyapunov
exponent in section IX:

d−(V ) =





r2(V−VG)2+ I0
√
K

aS

(V−VG+C
√
I)2+ I0

√
K

aS

V ≤ VG

r2(V−VG)2+ I0
√
K

aS

(V−VG+C
√
I)2+ I0

√
K

aS

VG < V < V−

r2(V−VG)2+ I0
√
K

aS

r2(V−VG+C
√
I)2+ I0

√
K

aS

V− ≤ V.

(54)

The derivative of the phase-transition curve in the case of excitatory pulses is

d+(φ) =





tan
(
aS

φ−φG
2

)2
+1(

tan
(
aS

φ−φG
2

)
+√aSC

)2
+1
− 1 −π < φ ≤ φ+

tan
(
aS

φ−φG
2

)2
+1(

r tan
(
aS

φ−φG
2

)
+r√aSC

)2
+1
− 1 φ+ < φ < φG

tan
(
raS

φ−φG
2

)2
+1(

tan
(
raS

φ−φG
2

)
+r√aSC

)2
+1
− 1 φG ≤ φ < π.

(55)

The derivative of the phase-response curve is Z ′±(φ) = d±(φ)−1 and the derivative of the infinitesimal phase-response
curve is

Z ′(φ) C→0' −C
{√

aS sin (aS(φ− φG)) −π < φ ≤ φG

r
√
aS − sin (raS(φ− φG)) φG ≤ φ < π.

(56)

The phase-transition curves (PTC, g(φ), Eq. (48) and (49)), the phase response curves (PRC, Z(φ) = g(φ)−φ) and
the infinitesimal phase-response curves (iPRC, Eq. (50)) of the rapid theta neuron model are displayed in Fig. 10.
The iPRC of the theta neuron (r = 1) is fully symmetric, whereas for increasing AP onset rapidness r the iPRC
becomes more and more asymmetric. In the limit r → ∞ it becomes monotonically increasing/decreasing and one
might expect that this can qualitatively change the collective network dynamics.
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Figure 10: Phase-transition curve (PTC), phase-response (PRC) and infinitesimal phase-response (iPRC) ex-
plain reduction of chaos for high AP onset rapidness r. a) The phase-transition curve (PTC) g(φ) shown with inhibitory
coupling C = −1 (full lines, Eq. (48)) and excitatory coupling C = +1 (dashed lines, Eq. (49)) for three values of spike onset
rapidness r = 1, 3, 100. b) Same for phase response curve (PRC) Z(φ) = g(φ)− φ. c) Same for infinitesimal PRC (Eq. (50)).
d) Derivative of PRC for excitatory coupling. e) Derivative of PRC for excitatory coupling. f) Derivative of derivative of
infinitesimal phase response curve (Eq. (56)). Note that in the limit r → ∞ the iPRC becomes monotonically increasing and
its derivative is positive almost everywhere.

VII. SETUP OF NETWORK AND EVENT-BASED SIMULATION

The pattern of action potentials in cortical tissue is asynchronous and irregular [29], despite reliable response of
single neurons [30]. This is commonly explained by a balance of excitatory and inhibitory synaptic currents [33],
which cancels large mean synaptic inputs. A dynamical self-organized balance can be achieved without fine-tuning of
synaptic coupling strength, if the connectivity is inhibition-dominated [1]. The statistics of this state is described by
a mean-field theory, which is largely independent of neuron model. We studied large sparse networks of N rapid theta
neurons arranged on a directed Erdős–Rényi random graph of mean indegree K. All neurons i = 1, . . . , N received
constant external currents Iext and non-delayed δ-pulses from the presynaptic neurons j ∈ pre (i). The external
currents were chosen to obtain a certain average network firing rate ν̄ using a bisection method in purely inhibitory
networks. In purely inhibitory networks the non-zero coupling strengths were set to Jij = −J0/

√
K and all neurons

received identical external currents. In two-population networks, the intra-population couplings were JEE = J0√
K
ηε

and JII = − J0√
K

√
1− ε2 for the excitatory (E) and inhibitory (I) population, respectively. The inter-population

couplings were JIE = J0√
K
ε and JEI = − J0√

K

√
1− η2ε2. At ε = 0, all excitatory neurons are completely passive.

They only receive inputs from the inhibitory neurons but do not provide feedback. Increasing ε > 0 activates the
excitatory feedback loops in the network. The specific choice of couplings preserves the temporal variance of the
input currents σ2

I = J2
0 ν̄ in the purely inhibitory networks for the two-population networks, as explained below. In

mixed networks, the external currents were adapted using two-dimensional Newton-Raphson root-finding, to obtain
the desired mean firing rate in the excitatory and inhibitory population.
Setup of balanced network with strong couplings and nonvanishing fluctuations. The coupling strengths in in-

hibitory and excitatory-inhibitory networks were chosen such that the magnitudes of the input current fluctuations
were identical in all studied networks. Assuming that inputs from different presynaptic neurons are only weakly
correlated, the compound input spike train received by neuron i can be modeled by a Poisson process with rate
Ωi =

∑
j∈pre(i) νj ≈ Kν̄ ≡ Ω, where ν̄ is the network-averaged firing rate and K the average number of presynaptic
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Figure 11: Phase-response (PRC) and infinitesimal phase-response (iPRC) of the rapid-theta neuron model for
different effective coupling strengths. a) The PRC is shown for different K corresponding to different coupling strengths
C = − J0√

K

√
aS
I

for inhibitory (full lines Eq. (48)) and excitatory couplings (dashed lines, Eq. (49)) for AP onset rapidness
r = 1 . The infinitesimal PRC (Eq. (50)) is also displayed for comparison (dotted lines) b) Same as a for AP onset rapidness
r = 3 c) Same as a for AP onset rapidness r = 100. d) Derivative of PRC normalized by C for r = 1. The derivative of
the infinitesimal PRC is shown as dotted line (Eq. (56)). e) Same as d for r = 3. f) Same as d for r = 100 (parameters:
I0 = 1, J0 = 1).

neurons. For inhibitory networks the nonzero coupling strengths were Jij = − J0√
K
. Under the assumption that the

compound input spike train is a Poisson process, the input current auto-correlation function reads

C(τ) = 〈δI(t)δI(t+ τ)〉t

≈
(
J0√
K

)2
Ω
∫
δ(t− s)δ(t+ τ − s)ds

= J0
K

Ωδ(τ)

≈ J2
0 ν̄δ(τ) (57)

Thus, the fluctuations in the input currents can be described as delta-correlated white noise of magnitude

σ2 = J2
0 ν̄. (58)

Note that due to the scaling of the coupling strengths J = − J0√
K

with the square root of the number of synapses K
the magnitude of the fluctuations σ2 is independent of the number of synapses. Therefore, the input fluctuations do
not vanish in the thermodynamic limit and the balanced state in sparse networks emerges robustly [1].

The existence of a balanced state fixed point in the large K-limit follows from the equation of the network-averaged
mean current

Ī ≈
√
K(II − J0ν̄).

In the largeK-limit, self-consistency requires the balance of excitation and inhibition II = J0ν̄: If limK→∞(II−J0ν̄) >
0 the mean current Ī would diverge to ∞ and the neurons would fire at their maximal rate. The resulting strong
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inhibition would break the inequality, leading to a contradiction. If limK→∞(II − J0ν̄) < 0 the mean current Ī would
diverge to −∞ and the neurons would be silent. The resulting lack of inhibition again breaks the inequality. The
large K-limit is self-consistent if

lim
K→∞

(II − J0ν̄) = O
(

1√
K

)
,

such that excitatory external drive and mean recurrent inhibitory current cancel each other. Note that since II−J0ν̄ =
O(1/

√
K) the network mean current has a finite large K-limit. The average firing rate in units of the membrane time

constant τm is approximately

ν̄ = II
J0

+O
(

1√
K

)
. (59)

Setup of mixed network The input current autocorrelations in networks with excitatory (E) and inhibitory (I)
populations are derived analogously to Eq. 57. They also display delta-correlated white noise. Assuming the same
average indegree K from each population, the magnitudes of the input fluctuations are

σ2
I = J2

II ν̄I + J2
IE ν̄E

σ2
E = J2

EE ν̄E + J2
EI ν̄I .

Choosing the couplings to be

J =
(
JEE −JEI
JIE −JII

)
= J0√

K

(
ηε −

√
1− (ηε)2

ε −
√

1− ε2

)
, (60)

and the average firing rates in both populations identical ν̄E = ν̄I ≡ ν̄ leads to

σ2
E = σ2

I ≡ σ2 = J2
0 ν̄.

Thus, the magnitude of fluctuations is identical in all networks considered independent of the excitatory feedback
loop activation ε. Accordingly, the statistical characteristics of the balanced state were preserved when activating the
excitatory loops. The dynamical features of the collective activity, however, changed upon activation of the excitatory
loops. Increasing the excitatory coupling enhanced chaoticity in the network dynamics. It is important to note that
the balanced state arises in an extended portion of parameters space in mixed networks. This region is constrained
by the following inequalities, which can be derived by self-consistency arguments similar to those as for the purely
inhibitory network:

JEE
JEI

<
JIE
JII

< min
{

1, ν̄I
ν̄E

}
and JEE

JIE
<
JEI
JII

<
E0
I0
. (61)

The particular parametrization with η and ε was just used to keep the input statistics fixed.
All simulations were run event-based following Ref. [3], where an exact map was iterated from spike to spike in the

φ-representation of the rapid theta neuron model with homogeneous coupling strengths and homogeneous external
currents for all neurons in each population. The next spike time occurring in each population is obtained by inverting
Eq. 41

ts = ts−1 + min
i

{
π − φi(ts−1)

ω

}
. (62)

The phase map f(~φ(ts−1)) = ~φ(ts), iterating all neuron’s phases between two successive spike events ts−1 and ts in
the network, is then the concatenation of Eq. 41 and the phase transition curve (Eq. 48 and Eq. 49 )

f(φi(ts−1)) =
{
φi(ts−1) + ω(ts − ts−1) if i /∈ post(j∗)
g(φi(ts−1) + ω(ts − ts−1)) if i ∈ post(j∗),

(63)

where post(j∗) denotes the set of neurons postsynaptic to the spiking neuron j∗ in the considered interval.
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Eq. 63 was used for all network simulations in an iterative event-based procedure [3]. At the beginning of an
iteration the next spike time in the network is calculated with Eq. (62). Then all neuron’s phases are evolved until
the next spike time with Eq. (63). Since the external currents are identical for all neurons of one population, it is
sufficient to search for the neuron with the largest phase and then calculate the corresponding next spike time.

The average number of spikes per simulation time gives the firing rate. We used the interspike intervals Ti between
subsequent spike times to calculate the coefficients of variation cvi =

√
〈T 2
i 〉 − 〈Ti〉2/〈Ti〉, with 〈. . .〉 denoting the

temporal average. The neurons’ firing rate and coefficient of variation distributions are shown in Fig. 2 in the main
manuscript.

VIII. CONVERGENCE OF THE LYAPUNOV SPECTRA

With the exact phases of the neurons before spike reception, the single spike Jacobians Eq. 52 were evaluated using
Eq. 53 and Eq. 55. These were used to numerically calculate all Lyapunov exponents with the standard procedure [4].
Following a warmup of the network dynamics, of typically 100 spikes per neuron on average, we started with a random
N -dimensional orthonormal system that was evolved in each iteration with the single spike Jacobian. Subsequently,
after a short warmup of the orthonormal system of about one spike per neuron, these norms were used to calculate
the N Lyapunov exponents λi = limp→∞ 1

tp

∑p
s=1 log gi(ts). The evolved vectors were reorthonormalized with the

Gram-Schmidt-orthonormalization procedure every O (N/K) network spikes yielding the norms of the orthogonalized
vectors gi(ts) and the orthonormal system to be used in the following iterations.

All full calculations were performed in custom code written in Julia and C++ with double precision. The GNU
Scientific Library (GSL) was used for the random number generator (Mersenne-Twister), the Automatically Tuned
Linear Algebra Software (ATLAS) for matrix multiplications in the Gram–Schmidt procedure and the Message Passing
Interface (MPI) for the parallel implementation of the simulations. The sparseness of the networks was used for the
efficiently storage of the coupling matrices, the updates of the postsynaptic neurons and the matrix multiplications
of the orthonormal system with the sparse single spike Jacobians. In the case of very large networks (N > 106), the
topology was not stored as a sparse matrix, but generated on the fly during the simulation employing the index of the
spiking neuron as a seed for the random number generator used to generate the indices of the postsynaptic neurons
[31]. For the reorthonormalization, we chose a parallel recursive blocked version of the Gram–Schmidt procedure [5]
and the BLAS (Basic Linear Algebra Subprograms) and LAPACK (Linear Algebra PACKage) routines.

One should note that the non-converged Lyapunov exponents generated during the transient are meaningless (they
neither reflect the local nor finite-time Lyapunov exponents). The converged Lyapunov exponents capture the network
dynamics on the balanced attractor. Fig. 12a displays the convergence towards the full Lyapunov spectrum on
logarithmic time scale. This calculation was repeated for different initial phases. Fig. 12b shows the results of ten
such runs for six of the Lyapunov exponents (gray lines), together with their averages λi = 1

10
∑10
n=1 λi,n (straight color

lines) and confidence intervals (dotted color lines) of the double standard error 24λi = 2
√

1
10
∑10
n=1(λi,n − λi)2. The

Lyapunov spectrum was independent of the initial phases as well as network realizations. Generally, all calculations
of the Lyapunov spectra were repeated ten times with different initial phases and network realizations. Numerical
errors were usually smaller than the symbol sizes in the presented figures in the main manuscript.
Fig. 14 shows the double standard error of Lyapunov exponents, dynamical entropy rate and attractor dimension

in random inhibitory networks across trials. Fig. 15 shows the same for mixed networks. There are two main
contributions for variability of numerically calculated Lyapunov spectra. Firstly, variability arising from the fact that
Lyapunov spectra are asymptotic properties estimated from finite calculations. Secondly variability arising from the
quenched disorder in different random network topologies. The first contribution would vanish in the limit of infinitely
long simulations for ergodic systems. The second contribution is expected to vanish in the large networks limit due
to self-averaging. Therefore, the Lyapunov spectrum of one realization of a large network is representative for the
whole ensemble. Hence, averaging over many network realizations is not a necessity in large networks.

We applied three independent checks of this semi-analytic numerically exact calculation of Lyapunov spectra.
Firstly, the largest Lyapunov exponent can be calculated numerically by measuring the exponential rate of divergence
or convergence of nearby trajectories [4, 32]. Secondly, in autonomous systems, there is always a neutral Lyapunov
vector in the direction of the flow with a zero corresponding Lyapunov exponent as the system can be shifted in
time. Thirdly, random matrix theory allows for a calculation of the mean Lyapunov exponent as is shown in the next
paragraph. All checks confirmed the results obtained from our implementation of the semi-analytic calculation of the
full Lyapunov spectrum.
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Figure 12: Convergence of Lyapunov spectra versus time in inhibitory networks for small AP rapidness (r=3).
(logarithmic time scale) a) Convergence of Lyapunov spectrum for one initial condition, b) gray lines: some Lyapunov exponents
for ten different network realizations, straight color lines: averages, dotted color lines: averages ± double standard errors
(parameters: N = 2000, ν̄ = 1 Hz, K = 100, J0 = 1, τm = 10 ms).

IX. RANDOM MATRIX THEORY OF THE MEAN LYAPUNOV EXPONENT

From the single spike Jacobian Eq. 52, we derived a random matrix approximation of the mean Lyapunov exponent
λ̄ = 1

N

∑N
i=1 λi. The mean Lyapunov exponent describes the rate of phase space volume compression, captured by

the determinant of the long term Jacobian T = D(ts) · · ·D(0):

λ̄ = 1
N

lim
s→∞

1
ts

ln
(

det T
)

= 1
N

lim
s→∞

1
ts

s∑

p=1
ln
(

det D(tp)
)
. (64)

The random matrix approximation is obtained by assuming the single spike Jacobians to be random matrices of the
form Eq. 52 with independent and identically distributed random elements obtained from the function d(V ), Eq. (54).
The probability distribution of the random elements is determined by the stationary membrane potential distribution
P (V ) in the network.

For inhibitory networks, the determinants of the random matrices can be approximated by det D =
∏
i∗ di∗ ≈

d(V )K , since on average there areK diagonal elements di∗ , one for each postsynaptic neuron. We assume homogeneous
coupling strengths Jij ≡ −J0 between connected neurons and identical external currents Iext

i ≡ I0 for all neurons.
The number of spike events per unit time is lims→∞ 1

ts

∑s
p=1 1 = Nν̄. Thus, in the random matrix approximation,

the mean Lyapunov exponent for inhibitory networks becomes

λ̄ ≈ 1
N
Nν̄

∫
ln
(
d(V )K

)
P
(
V
)
dV

= Kν̄

∫
ln d(V )P

(
V
)
dV. (65)

We obtain d(V ) from Eq. (53) using Eq. (47)
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Figure 13: Convergence of Lyapunov spectra versus time in inhibitory rapid theta networks for large AP
rapidness (r=100). (logarithmic time scale) a) Convergence of Lyapunov spectrum for one initial condition, b) gray lines:
some Lyapunov exponents for ten different network realizations, straight color lines: averages, dotted color lines: averages ±
double standard errors (parameters: N = 2000, ν̄ = 1 Hz, K = 100, J0 = 1, τm = 10 ms).

d−(V ) =





(V−VG)2+ I0
√
K

aS

(V−VG+C
√
I)2+ I0

√
K

aS

V ≤ VG

r2(V−VG)2+ I0
√
K

aS

(V−VG+C
√
I)2+ I0

√
K

aS

VG < V < V−

r2(V−VG)2+ I0
√
K

aS

r2(V−VG+C
√
I)2+ I0

√
K

aS

V− ≤ V.

(66)

In the large K-limit, d(V ) can be approximated by

d−(V ) K→∞'





1 + 2aSJ0(V−VG)
I0K

+O
(
K3/2) V ≤ VG

1 + aS(r2−1)(V−VG)2

I0
√
K

+ (2aSJ0−(r2−1)(V−VG)3)(V−VG)
I2
0K

+O
(
K3/2) VG < V < V−

1 + 2aSr
2J0(V−VG)
I0K

+O
(
K3/2) V− ≤ V.

(67)

These approximations and the balance equation (59) lead to

λ̄
K→∞' 2aS〈VV≤VG〉

τm
α+ 2U〈VV >VG〉

τm
(1− α) +O

(
1√
K

)
, (68)

where 〈VV≤VG〉 (〈VV >VG〉 ) denotes the average membrane potential below (above) VG and α is the fraction of neurons
below VG.

We have compared the derived random matrix approximations of the mean Lyapunov exponent in inhibitory
networks Eq. (65) and the large-K limits, Eq. (68), with the results from simulations (Fig. 16). They are in very
good agreement, indicating the validity of the random matrix approximation. This is probably the case because of
the commutativity of the determinants of the Jacobians, a property that generally does not hold for the product of
the Jacobians.
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Figure 14: Small double standard error of Lyapunov exponents, dynamical entropy rate and attractor dimension
in random inhibitory network a) double standard error of Lyapunov exponents across different network realizations for
different values of rapidness. b) double standard error across network realizations of largest Lyapunov exponent for different
values of rapidness. c) same as b for dynamical entropy rate. d) same as b for relative attractor dimension. Note that all
standard errors are orders of magnitude smaller than the mean values for the respective quantities. (N = 2000, K = 100,
J0 = 1, τm = 10 ms).

X. SCALING OF THE LARGEST LYAPUNOV EXPONENT WITH NETWORK PARAMETERS

The largest Lyapunov exponent exhibits a single maximum as a function of action potential onset rapidness. The
peak position scales approximately like (Fig. 17):

rpeak ∝
√
Kν0τm
J0

(69)

This behavior can be understood as a transition between two qualitatively different scaling regimes for the largest
Lyapunov exponent. For small values of K and ν̄ the largest Lyapunov exponent grows, while for large values of
K and ν̄ the largest Lyapunov exponent reaches a plateau. In the second regime the diffusion approximation is
valid even beyond the glue point VG during the fastest dynamical process in the neuron’s spike initiation. When the
diffusion approximation holds, the largest Lyapunov exponent thus becomes independent of K and ν̄ (Fig. 18a-c).
Consequently, at high values of rapidness, the plateau is reached only at very large values of ν̄ and K. Further, the
transition point depends on J0. For small J0, the plateau is reached for smaller values of K and ν̄ (Fig. 18c). These
observations conform with two other findings: Firstly, for large values of rapidness r, the shot-noise nature of spiking
input becomes especially relevant for the voltage distribution close to glue point VG both for the stationary and the
linear response solution of the Fokker-Planck equation (Fig. 1 and 3). Secondly, both the phase response curve and
its derivative show a more pronounced deviation from the infinitesimal PRC and its derivative for large values of spike
onset rapidness r (Fig. 11). Both these findings mean that for high spike rapidness r higher values of K and ν̄ or
smaller values of J0 are necessary for the diffusion approximation to hold.

The critical spike onset rapidness rcrit separates the chaotic dynamics from the stable dynamics. This transition
with network parameters has the following scaling behavior (Fig. 19):

rcrit = N0.5K0.4ν̄0.8τ0.8
m J−0.7

0 (70)
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Figure 15: Small double standard error of Lyapunov exponents, dynamical entropy rate and attractor dimension
in random mixed network a) double standard error of Lyapunov exponents across different initial conditions for different
values of rapidness (ε = 0.3 ). b) double standard error across network realizations of largest Lyapunov exponent for different
values of rapidness. c) same as b for dynamical entropy rate. d) same as b for relative attractor dimension. Note that all
standard errors are orders of magnitude smaller than the mean values for the respective quantities. (NE = 8 000, NI = 2 000,
K = 100, J0 = 1, τm = 10 ms).

This scaling indicates that in the thermodynamic limit of large K and large N , the critical rapidness rcrit diverges
and the network is always chaotic. This is in agreement with the scaling of the flux tube radius of networks of
leaky integrate and fire neurons, which goes to zero in the limit of large networks. Note however that even in the
thermodynamic limit it is possible to bring the largest Lyapunov exponent and thus also the Kolmogorov Sinai entropy
rate arbitrarily close to zero by increasing the AP onset rapidness r.
Extensivity of Lyapunov spectrum and asymptotic form: Figure 2 and 3 of the main paper show that for suffi-

ciently large networks the dynamical entropy rate and Kaplan-Yorke attractor dimension scales linear with network
size N indicating extensive deterministic chaos. While the dynamical entropy rate and Kaplan-Yorke attractor dimen-
sion converge to a linear scaling with N already for moderate network size, the largest Lyapunov exponent exhibited
a slower convergence to its large N limit (Fig. 20). While the peak rapidness rpeak is independent of N , λmax(N)
converges exponentially towards its large N limit. This exponential convergence allows an estimate of the asymptotic
value limN→∞ λmax(N), indicated in Fig. 20b by a dashed line. Note that the critical rapidness rcrit diverges with
N as shown in Fig. 19.

XI. PARTICIPATION RATIO AND LOCALIZATION OF CHAOS

To quantify how many neurons contribute to the chaotic dynamics at each and every moment in time, we investi-
gated properties of the covariant Lyapunov vectors ~δφc(t). The first Lyapunov vector, which corresponds to the first
Gram-Schmidt vector (

∑N
i=1 δφi(t)2 = 1) gives at any point in time the direction in which almost all initial pertur-

bations grow with asymptotic rate λmax. The number of neurons contributing to the maximally growing direction at
time t can be measure by the participation ratio P (t) =

(∑N
i=1 δφi(t)4

)−1
[37–39]. If all neurons contribute similarly

to the Lyapunov vector |δφi(t)| = 1/
√
N the participation ratio is P (t) = 1/(N/N2) = N . If only one neurons

contributes to the Lyapunov vector the participation ratio is P (t) = 1. We found that the participation ratio strongly
dependent on the spike onset rapidness. Increasing rapidness generally reduced the participation ratio (Fig. 21) for
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Figure 16: Good match between mean Lyapunov exponent in random matrix approximations and numerical
simulations in balanced theta neuron networks. a) Mean Lyapunov exponent from numerical simulations for different
K and r with N = 1000. b) K-dependence for r = 3. Straight lines: numerical simulations, dashed lines: random matrix
approximations with full membrane potential distributions, dotted lines: random matrix approximation in the large K-limit
c) K-dependence for r = 100. Eq. (68) (parameters: ν̄ = 1 Hz, J0 = 1, τm = 10 ms).

large networks. This means that for increasing rapidness fewer neurons contribute to the most unstable direction.
On the level of the single neuron dynamics, this can be explained by a decreasing fraction of (postsynaptic) neurons
that are in the unstable regime with voltages above the glue point VG for increasing values of r. Thus, there exist
on average fewer entries in the Jacobian with large entries d(Vi). Therefore, the first Lyapunov vector is on average
expected to have few entries with large values.

To further characterize the nature of the chaotic collective network state, it is crucial to investigate the scaling of
the participation ratio P̄ with network size. Whether the Lyapunov vector is called localized or delocalized depends
on how P (t) scales as a function of network size N . A delocalized state is indicated by a linear scaling P̄ ∼ N , while
in case of a localized state, the participation ratio would be independent of N .

In an earlier study of theta neurons, it was found that the Lyapunov vector was dominated by subsets of neurons
that changed over time [12]. The participation ratio exhibited a sublinear scaling P̄ ∼ Nα, with 0 < α < 1. Here, we
found a strong dependence of the participation ratio and localization on the spike onset rapidness r. For increasing
spike onset rapidness r, the exponential scaling parameter α deceased approximately logarithmically as function of r
and turned zero at a certain value of rapidness that depends on firing rate ν̄, coupling strength J0, number of synapses
per neuron K, and membrane time constant τm (Fig. 22). For larger values of rapidness, there was on average a fixed
number of neurons contributing to the larger Lyapunov vector, which was independent of network size N for large
networks. An extensive analysis of the scaling of the onset rapidness with network parameters where the localization
occurred coincided with the scaling of the rapidness where the Lyapunov exponents peaks

rlocalization ∝
√
Kν0τm
J0

. (71)

This scaling behavior indicates that localization of the first Lyapunov vector occurs when K, ν0 or τm is sufficiently
small or when J0 is sufficiently large. This could be interpreted as localization, when there are few postsynaptic
potentials per spike (K small), which occur infrequent (ν0 or τm small), and/or are strong ( J0 large). This is
consistent with a breakdown of the diffusion approximation close to the glue point VG, if the Lyapunov vector is
localized.
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Figure 17: Scaling of peak AP onset rapidness rpeak with network parameters in balanced inhibitory networks
rpeak ∝

√
Kν0τm/J0. At the peak onset rapidness rpeak the largest Lyapunov exponent has its maximum as a function of

rapidness (Fig. 2 of main paper). a) peak onset rapidness rpeak vs. J0, dashed red lines indicate power-law fit using the
Levenberg-Marquardt algorithm. b) peak onset rapidness rpeak vs. K. c) peak onset rapidness rpeak vs. J0. d) peak onset
rapidness rpeak vs. J0. e)-h) Second row: corresponding peak onset rapidness λmax (parameters: ν̄ = 1 Hz, J0 = 1, τm = 10 ms,
N = 1000, K = 100).

Note that despite the same scaling, localization occurs always at slightly larger values of rapidness than the peak
in the largest Lyapunov exponent. So the first Lyapunov vector seems to localize not until the largest Lyapunov
exponent is in the regime where it is independent of the number of synapses per neuron K.

For large values of spike onset rapidness r at a fixed network size N , we found that the participation ratio increases
with rapidness until it saturates at P̄ = N (Fig. 23a). This saturation occurred exactly at the critical spike onset
rapidness rcrit, when the largest Lyapunov exponent becomes zero (Fig. 23c).

XII. PAIRWISE CORRELATIONS IN RAPID THETA NETWORKS

Figure 3 e-g of main paper. We measured spiking correlations using zero-lag pairwise Pearson spike count
correlations. First we obtained spike counts n(t) by binning the spike train of each neuron i into bins of window size
Twin. The pairwise Pearson spike count correlation between spike trains of neuron i and j was then calculated using
the standard expression [6]:

rij = cov(ni, nj)
σiσj

, (72)

where cov(ni, nj) is the covariance between the spike counts of cells i and j and σi,σj are the respective standard
deviations. By definition, rij ∈ [−1, 1]. For figure 3 of the main paper, we chose a window size of Twin = 20 ms.

To estimate the effect of our limited sampling time, we generated jittered spike trains, where the total number
of spikes per neuron was fixed but the spike times drawn uniformly in the interval [0, Ttotal], where Ttotal is the
total simulation time. We calculated the correlation of the shuffled spike trains rshuffled

ij using the same binning and
definition for the correlation.

To provide a fair comparison of pairwise correlations for networks with different spike onset rapidness r, the mean
firing rate ν̄ was fixed by adapting the external current Iext.
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Figure 19: Scaling of critical AP onset rapidness rc between stable and chaotic dynamics in balanced inhibitory
networks rcrit ∝ N0.5K0.4ν̄0.8τmJ

−0.7
0 . The critical spike rapidness rcrit separates chaotic dynamics (above) from stable

dynamics (below). a) rcrit vs. N , b) rcrit vs. K, c) rcrit vs. ν̄, d) rcrit vs. τm, e)rcrit vs. J0 Power-law fits done using the
Levenberg-Marquardt algorithm (parameters: ν̄ = 10 Hz, J0 = 1, τm = 10 ms, N = 2000, K = 100).

Additional results: We characterized the effect of different count window sizes Twin on the mean and standard
deviation of the pairwise spike count correlation (Fig. 24).

At large count window size, the mean pairwise correlations tend to be smaller for large rapidness. This can be
explained by the faster inhibitory feedback for large action potential onset rapidness. As for large rapidness, rapid
theta neurons are capable of tracking input changes more quickly (Figure 1d, e of main paper). Therefore, the
dynamic decorrelation of balanced networks, which was described earlier [6], is more effective. For small bin size, the
mean pairwise correlations of rapid theta neurons with large rapidness are larger. This is because rapid theta neurons
which receive shared excitatory input and are kicked across the unstable fixed point will spike almost instantaneously,
which results in moderately increased correlations on very short time scales (Fig. 24b).
Cross-correlograms: The cross-correlogram between the pairs of the binned the spike trains ni(t) and nj(t) was

calculated as:
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Figure 20: Largest Lyapunov exponent converges to asymptotic shape for very large network size N : a) The
largest Lyapunov exponent exhibits a slow convergence with network size N (ν̄ = 1 Hz). b) The convergence of λmax(N) can be
accurately fitted by λmax(N) = λmax(∞)− c ·N

−1
γ , where λmax(∞) = limN→∞ λmax(N) (median (dots) across 10 topologies,

shaded error shadings indicate median bootstrapped 95% confidence intervals). The estimated λmax(∞) is indicated by a black
dashed line. (r = 10, ν̄ = 10 Hz) (parameters: J0 = 1, τm = 10 ms, K = 100).

cij(τ) = cov(ni(t), nj(t+ τ))
ν̄iν̄j

− 1. (73)

where cov(ni, nj) is the covariance between the spike counts of cells i and j and ν̄i, ν̄j are the respective mean firing
rates. By definition cij ∈ [−∞,∞], but lim

t→∞
cij = 0 for shuffled spikes.

XIII. ATTRACTOR DIMENSION AND “ENTANGLED” STATISTICS

In the main paper, we show both an upper and lower bound for the attractor dimension which both strongly
depend on the spike onset rapidness (Fig. 3). For increasing spike rapidness, the network dynamics has a transition
from chaotic to stable dynamics. While chaotic dynamics is accompanied in continuous dynamical systems by a
fractal attracting set with dimension D > 2, stable dynamics has an attractor dimension D = 1. Here, we compare
this to Gaussian estimates of the dimensionality, based on pairwise correlations, to evaluate higher order correlations.
Assuming Gaussian statistics, all dependencies between neurons would be captured by the pairwise correlations.
Based on the correlation matrix, an estimate of the dimensionality can be obtained. We use two common estimators
of the dimensionality: the number of principle components needed explain 95% of the correlation matrix’s variance
and a dimensionality based on the participation ratio of the correlation matrix that measures the effective number of
degrees of freedom over which power is distributed.
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Figure 21: Average participation vs rapidness r and network size N reveals localization of largest Lyapunov
vector at peak rapidness: a) The mean participation ratio P̄ versus rapidness r, colors encode network size N . b) P̄ versus
N , colors encode rapidness r. P̄ shows power-law scaling P̄ ∼ Nα, where the exponent α decreases as function of rapidness
r, dashed lines indicate power-law fits using the Levenberg-Marquardt algorithm (see Fig. 22 for comprehensive scaling of
α). c) The largest Lyapunov exponent vs rapidness r exhibits a peak approximately where the participation ratio becomes
independent of network size N in a. d) The largest Lyapunov exponent vs. N converges exponentially to asymptotic limit
(parameters: ν̄ = 3 Hz, J0 = 1, τm = 10 ms, K = 100).
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Figure 22: Scaling of participation ratio with network parameters shows that localization of largest Lyapunov
vector has same r-scaling as peak rapidness: a) power-law scaling exponent α from P̄ ∼ Nα fits mean firing rate ν̄
decreases approximately logarithmically as function of r. Dashed vertical lines indicate corresponding values of peak rapidness
rpeak. b) Same for different membrane time constants τm. c) Same for different number of synapses per neuron K. d) Same
for different coupling strengths J0 (parameters: N = 103 − 106, K = 100, ν̄ = 1 Hz, J0 = 1, τm = 10ms, ε = 0.3).
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Figure 23: Average participation vs rapidness r and network size N reveals delocalization of largest Lyapunov
vector at critical rapidness: Same as Fig. 21 for ν̄ = 1 Hz, J0 = 3. Note that for large spike onset rapidness r the
mean participation P̄ increases in small networks and saturates at P̄ = N , when the largest Lyapunov exponent becomes zero
(parameters: ν̄ = 1 Hz, J0 = 3, τm = 10 ms, K = 100).

Figure 25a+b shows the correlation matrix for two different values of spike onset rapidness. Principal component
analysis (PCA) yields the percentage of the total variance explained by each principal component (Fig. 25c). The
number of principal components necessary to account for 95% of the total variance gives an estimate of the number of
degrees of freedom of the underlying dynamics. If few principal components would explain most of the variance, most
of the dynamics is constrained to a hyperellipsoid with few large axes. If many principal components are necessary to
explain most of the variance, no such collective structures are detected. This excludes the possibility that the dynamics
is explained solely by pairwise correlations. A different estimate of the dimensionality based on the correlation matrix
is the inverse participation ratio of the eigenvalue spectrum of the correlation matrix. The inverse participation ratio
is defined as the normalized inverse squared sum of eigenvalues of the correlation matrix:

DPR = (
∑
λi)2

∑
(λ2
i )

(74)

where λi is the ith eigenvalue of the correlation matrix. Thus, DPR is 1 if one eigenvalue is dominating while the others
are zero. If all eigenvalues contribute equally λi = 1

N , the dimension is N [12, 13]. The dimensionality estimate based
on the participation ratio also shows that the pairwise correlations have very little localized structure independent of
spike onset rapidness (Fig. 26b+d). Furthermore, we show that this result is largely insensitive to the spike count
window of the correlation matrix (Fig. 26a+c). To conclude, we find a low attractor dimensionality based on the
Kaplan-Yorke dimension and our lower bound estimate coming from the number of positive Lyapunov exponents,
despite low and weakly structured pairwise correlations. To obtain a precise estimate of the pairwise spike count
correlations, we averaged the correlation matrix over 100 runs with different initial conditions but identical network
topology each with Ttotal = 1000 s.

XIV. FLUX-TUBE STRUCTURE OF PHASE SPACE, STABLE CHAOS AND SINGLE-SPIKE
PERTURBATIONS

Figure 3 d,h of main paper: For sufficiently large spike onset rapidness, we find that infinitesimal perturbations
decay exponentially but sufficiently strong perturbation lead to an exponential decorrelation of neighboring trajec-
tories. This exotic phase space structure was first described in balanced purely inhibitory networks of pulse-coupled
leaky integrate and fire neurons earlier and termed flux tubes [28]. Following Ref. [28], we find the critical pertur-
bation strength εft that is sufficient for an exponential decorrelation of trajectories by fitting the probability that a
perturbation of strength ε causes an exponential state separation to the function
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Figure 24: Pairwise correlations in balanced spiking networks with different values of spike onset rapidness: a)
Histograms of the pairwise count spike correlation rij for different cell pairs from excitatory and inhibitory populations (count
window Twin = 20ms. Jittered spike trains were generated by Poisson process of same rate. b) Mean of pairwise spike count
correlation vs. count window sizes Twin for different values of rapidness. c) Standard deviation of spike count correlations
vs. Twin for different values of rapidness. d) Histogram of pairwise correlations for different mean firing rates. e) Standard
deviation of pairwise spiking correlation as a function of rapidness for Twin = 20ms. f) Average spike cross correlogram of
different pair types for rapidness r = 10 g) same as f for r = 1000. h) Spiking cross correlogram of different pair types for
rapidness r = 10. i) same as h for r = 1000 (parameters as in Fig. 3 of main paper).

Ps(ε) = 1− exp(−ε/εft) (75)

εft is the average radius of a basin of attraction, called flux tube radius. We found that this flux tube radius strongly
depends on the spike onset rapidness r. For values of r only slightly larger than the critical rapidness rcrit, the flux
tube radius is small, but large r yield larger basins of attraction. This is depicted in Fig. 24.

We perturbed initial conditions along two random N-dimensional vectors orthogonal to the flow of the dynamics ~1.
These two vectors span a two-dimensional cross section of the N-dimensional phase space. Each pixel is a different
initial condition for a simulation. Neighboring initial conditions that converge to the same trajectory are assigned
same colors. For increasing values of r, the flux tubes radius increases and the boundaries become straighter. In the
limit of very large r, the flux tubes are similar to those in the leaky integrate and fire model (compare to Fig. 7 in
[28]). Overall, flux tube radii get smaller with increasing network size N , number of synapses per neuron K, mean



31

r = 3

Neuron index

100 200 300

N
e
u
ro

n
 i
n
d
e
x

50

100

150

200

250

300

-0.01

-0.005

0

0.005

0.01

0.015

0.02

r = 100

Neuron index

100 200 300

N
e
u
ro

n
 i
n
d
e
x

50

100

150

200

250

300

-0.01

-0.005

0

0.005

0.01

0.015

0.02

principle component

0 100 200 300

V
a
ri
a
n
c
e
 e

x
p
la

in
e
d
 (

%
)

0

0.1

0.2

0.3

0.4

0.5

principle component

0 100 200 300

C
u
m

u
la

ti
v
e
 v

a
ri
a
n
c
e
 e

x
p
la

in
e
d
 (

%
)

0

20

40

60

80

100

r = 3

r = 10

r = 100

shuffled

aaa b

c d

Figure 25: Weakly structured correlation matrix in balanced spiking networks with different values of spike
onset rapidness: a) Matrix of pairwise spike count correlations rij for rapidness r = 3. First 150 neurons are excitatory,
others inhibitory. b) same for r = 100. c) Variance explained per principal component for different rapidness. Jittered spike
trains were generated by a Poisson process of the same rate. d) Cumulative variance explained for different values of rapidness,
(parameters: Twin = 20 ms, Ttotal = 1000 s, other parameters as in Fig. 24).

firing rate ν̄ and decreasing spike rapidness r. At the critical rapidness rcrit the flux tubes vanish.

XV. POINCARÉ MAPS OF CHAOTIC NETWORKS

A Poincaré map is the intersection of the trajectory of a N degree of freedom dynamical system with a N − 1
dimensional subspace called the Poincaré surface or section.

Increasing the spike rapidness leads to a thinning of stable manifolds (Fig. 28). Beyond the critical spike rapidness,
the network settles after a transient period into a periodic orbit. Therefore, there is only a finite number of unique
points in the Poincare section. For increasing network size, the Poincaré sections did not capture the exotic structure
of the phase space. This stresses again that the attractor is a high-dimensional object, which is hard to visualize in
two dimensions.
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Figure 26: Correlation based dimensionality estimates of dynamics based on pairwise correlations indicates
weakly structured correlations: a) relative dimension based on participation ratio (Eq. 74) vs. window size Twin. b) same
as a as a function of spike rapidness r. c)+d) same as a+b for relative dimension based on PCA. (parameters as in Fig. 3)

XVI. LOCAL LYAPUNOV EXPONENTS REVEAL STABLE AND UNSTABLE MANIFOLDS

In the three-dimensional network, the local Lyapunov exponents (LLEs) can visualize further structural properties
of the strange chaotic attractor. In Fig. 31a, colors indicate the first local Lyapunov exponent, when neuron 1 spikes,
plotted at the location of phases of neuron 2 and 3 for rapidness r = 1. Red colors indicate a positive LLE, blue
colors indicate a negative LLE. The fine structure of the first LLE is similar to the density (Fig. 28), while the third
LLE has a fine structure which dissimilar to the density. A possible explanation is that the first LLE is smooth along
the unstable manifolds, while the third LLE is smooth along the stable manifolds. The spatial distribution of the
LLEs on the Poincaré surface is determined by the topology in combination with the single neuron properties. In the
displayed network, neuron 1 is only connected to neuron 2, therefore the LLEs mainly reflect the derivative of the
phase response curve evaluated at the respective value of neuron 2. This can also be observed at a higher rapidness
(rapidness r = 1 Fig. 32).



33

Figure 27: Random cross section through N-dimensional phase space for different values of spike onset rapidness
r: Phase space cross sections spanned by two random N-dimensional vectors x1and x2 orthogonal to the trajectory ~1 and to
each other. Initial conditions that converge to the same trajectory are drawn in the same color (parameters: ν̄ = 10 Hz, J0 = 1,
τm = 10 ms, N = 200, K = 100).

Figure 28: Poincaré sections through phase space reveal reorganization of chaotic strange attractor by AP onset
rapidness r in small networks N = 3: a) Poincare section of the phases of neuron 2 and 3 whenever neuron 1 spikes for
low rapidness (r = 1). The relative density of points is represented using a heat map, where hot colors indicate high densities.
b) Same as a for r = 4. c) Same as a for r = 25 (parameters: ν̄ = 14.5 Hz, J0 = 1, τm = 10 ms, N = 3, K = 1, r = 1, 4 , 25).
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Figure 29: Two-dimensional sections through phase space for different values of spike onset rapidness r for
N = 20: Surface of the phases of neuron 2 and 3 whenever neuron 1 spikes for low rapidness (r = 1). The relative density of
points is represented using a heat map, where hot colors indicate high densities. b) Same as a for r = 10. c) Same as a for
r = 25 (parameters: ν̄ = 14.5 Hz, J0 = 1, τm = 10 ms, N = 3, K = 1, r = 1, 10 , 25).

Figure 30: Two-dimensional sections through phase space for different values of spike onset rapidness r for
N = 200: Surface of the phases of neuron 2 and 3 whenever neuron 1 spikes for low rapidness (r = 1). The relative density of
points is represented using a heat map, where hot colors indicate high densities. b) Same as a for r = 25. c) Same as a for
r = 250 (parameters: ν̄ = 14.5 Hz, J0 = 1, τm = 10 ms, N = 3, K = 1, r = 1, 25 , 250).

XVII. CHAOS AND DYNAMICAL ENTROPY RATE IN STRUCTURED NETWORK TOPOLOGIES

Figure 4 a-e of main paper: To test whether spike onset also exerts a strong influence on the phase space
structure in more realistic network topologies, we used a previously established multilayered model of a cortical
column with 77169 neurons and around 285 million synapses [7]. Numbers of neurons per population and inter-
layer wiring probabilities were taken from a numerical model of a cortical column based on anatomically measured
synapse counts and connection probabilities between different cortical layers [7]. The cortical column model consists
of four layers (layers 2/3, 4, 5 and 6) each with an excitatory and an inhibitory population. The number of neurons
in each layer and the connection probability between layers are stated in Table 1. According to these numbers,
the connectivity for each population and each projection between the populations is generated as a directed sparse
Erdős–Rényi random graph (Table I). We calculated also for this large network the Lyapunov spectrum making use
of a parallelized implementation of the semi-analytic calculation described in section VIII. The sparseness of the
connectivity was utilized for the efficient storage of the coupling matrices, the updates of the postsynaptic neurons
and the matrix multiplications of the orthonormal system with the sparse single spike Jacobians implemented in
custom code written in Julia and C++ making use of the Automatically Tuned Linear Algebra Software (ATLAS)
for matrix multiplications in the Gram–Schmidt procedure and the Message Passing Interface (MPI) for the parallel
implementation of the simulations. For the reorthonormalization, we chose a parallel recursive blocked version of the
Gram–Schmidt procedure [5]. Constant external input currents were adapted to obtain a desired global firing rate,
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Figure 31: Local Lyapunov exponent reveal stable and unstable manifolds of chaotic attractor in small networks
N = 3, r = 1: a) Poincaré section of the phases of neuron 2 and 3 whenever neuron 1 spikes. The first local Lyapunov
exponents (LLE) at each point is color-coded, red colors indicate local instability, blue indicates local stability. b) Same as a
for third LLE. The second LLE is trivially zero (neutral direction, not shown). The associated density of states is depicted in
Fig. 28a (parameters: ν̄ = 14.5 Hz, J0 = 1, τm = 10 ms, K = 1, r = 1).

Figure 32: Local Lyapunov exponent reveal stable and unstable manifolds of chaotic attractor in small networks
N = 3, r = 4: Poincaré section of the phases of neuron 2 and 3 whenever neuron 1 spikes. The first local Lyapunov exponents
(LLE) at each point is color-coded, red colors indicate local instability, blue indicates local stability. b) Same as a for third
LLE. The second LLE is trivially zero (neutral direction, not shown). The associated density of states is depicted in Fig. 28b
(parameters: ν̄ = 14.5 Hz, J0 = 1, τm = 10 ms, N = 3, K = 1, r = 4).

for a fair comparison across different values of AP onset rapidness r. The convergence of the Lyapunov spectrum
across different initial conditions is shown in Fig. 33. The shaded lines correspond to different initial conditions,
dashed lines indicate standard error of the mean. Even for such large networks, the numerically precise event-based
implementation fully converges. The neutral Lyapunov exponent converges to zero across multiple orders of magnitude
(Fig. 33b). The dynamical entropy rate per spike of the multilayered network is considerably smaller than in random
networks. A reason for that might be the occurrence of very high firing rate in some neurons with low firing rates in
other neurons, possibly because the balance inequality (Eq. 61) is not satisfied. The dynamical entropy rate per spike
is known to decrease for high firing rates (See Fig. 18).
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Probability from

to

L2/3e L2/3i L4e L4i L5e L5i L6e L6i
L2/3e 0.101 0.169 0.044 0.082 0.032 0 0.008 0
L2/3i 0.135 0.137 0.032 0.052 0.075 0 0.004 0
L4e 0.008 0.006 0.050 0.135 0.007 0.0003 0.045 0
L4i 0.069 0.003 0.079 0.160 0.003 0 0.106 0
L5e 0.10 0.062 0.051 0.006 0.083 0.373 0.020 0
L5i 0.055 0.027 0.026 0.002 0.060 0.316 0.009 0
L6e 0.016 0.007 0.021 0.017 0.057 0.020 0.040 0.225
L6i 0.036 0.001 0.003 0.001 0.028 0.008 0.066 0.144

number of neurons external input
L2/3e 20683 3.6923
L2/3i 5834 12.272
L4e 21915 4.5737 94.0675
L4i 5479 16.5517 106.0455
L5e 4850 19.6825
L5i 1065 85.1521
L6e 14395 9.6156 99.1084
L6i 2948 34.0002 123.491

Table I: Wiring probabilities and number of neurons per population in cortical column model.
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Figure 33: Lyapunov exponents for cortical column model convergence over orders of magnitude: a) gray lines:
some Lyapunov exponents for ten different initial conditions, straight color lines: averages, dotted color lines: averages ± double
standard errors. r = 10, where the largest Lyapunov exponent is maximal. b) Convergence of the neutral Lyapunov exponent.
Grey lines: absolute value of neutral Lyapunov exponent for three initial conditions, black line: average of absolute values of
neutral Lyapunov exponents across initial conditions, red line: power law fit using the Levenberg-Marquardt algorithm with
exponent −0.7.

Figure 4 f, g of main paper: We also studied the dynamics of networks with a structured microscopic architecture
to corroborate our main results. We used second order networks (SONETS), which are random networks where
two synapse motifs and connection probabilities are varied, while keeping higher order structures random [9]. This
is achieved by using dichotomized Gaussian random variables with a desired covariance structure to generate the
topology [10]. In an Erdős–Rényi graph only the connection probability p = K/(N − 1) = P (Aij = 1) is fixed, hence
for any two synapses, the joint probability of being connected is P (Aij = 1, Akl = 1) = p2. In SONETS, also the joint
probability of two connections P (Aij = 1, Akl = 1) = p2(1 + αx) is fixed, where αx is the respective motif frequency
αx = {αreciprocal, αconverging, αdiverging, αchain}. αconverging is proportional to the variance of the indegree Kin, αdiverging
is proportional to the variance of the outdegree Kout and αchain is proportional to the covariance of the indegree Kin
and the outdegree Kout. Using this approach, we interpolated excitatory-excitatory connectivity from a random graph
to a graph with the second order motif structure found experimentally in superficial cortical layers [8]. Again we fixed
the average network firing rate by adapting the external current Iext. We used excitatory-inhibitory networks with
NI = 2000, NE = 8000, η = 0.9, ε = 0.3. The excitatory-excitatory adjacency matrix was interpolated between
a directed Erdős–Rényi graph and a SONET with the experimentally found motif structure. While varying second
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order motifs can generally change the largest Lyapunov exponent, dynamical entropy and the attractor dimensionality
by a factor of ≈ 3, we demonstrate that the importance of action potential onset rapidness prevails.

XVIII. MINIMAL EXAMPLE FOR JULIA

The following code for Julia (www.julialang.org) Version 0.7 demonstrates the event-based simulations by cal-
culating the Poincaré sections displayed in Fig. 28a. Performant code for calculating Lyapunov spectra is available
upon request.

function poincare()
Ncalc = 10^7 # number of spikes in calculation
A = 0 .<[0 0 0;1 0 1;0 1 0] # define connectivity matrix
phi = rand(3) # initialize neurons
pAll = Float64[]

for s = 1:Ncalc
pMax,j = findmax(phi) # find next spiking neuron j
dt = pi/2-pMax # calculate next spike time
phi.+= dt # evolve phases till next spike time
p = A[:,j] # postsynaptic neurons
phi[p] = atan.(tan.(phi[p]).-1) # update postsynaptic neurons
phi[j] = -pi/2 # reset spiking neuron to -π/2

j==1 && append!(pAll,phi[2:3]) # save neuron 2 & 3 whenever neuron 1 spikes
end
plot(2pAll[1:2:end], 2pAll[2:2:end],".k",markersize=0.01); axis("off")

end
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5 The transition to control in spiking
networks

5.1 Summary
We demonstrate that streams of input spike trains suppress chaos in the dynamics of balanced
circuits of neurons with adjustable spike mechanism. This analysis is based on an analytical ex-
pression for the Jacobian that enables us to calculate the full Lyapunov spectrum. We solved the
dynamics in numerically exact event-based simulations and calculated Lyapunov spectra, dynami-
cal entropy rate and attractor dimension. For sufficiently strong input, we find a transition towards
complete network control, where the network state is independent of initial conditions. Fast spike
onset of single neurons in the target network facilitates both control by external input and suppres-
sion of chaos. Our work opens a novel avenue to investigate the role of sensory streams of spike
trains in shaping the dynamics of large neural networks.
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Introduction: Information in the cortex is processed
by the orchestrated interplay of a deeply layered system
of neural circuits. How well streams of spikes from one
circuit can control the asynchronous irregular spiking dy-
namics in a subsequent circuit constrains its ability to
encode and process information. In particular noise en-
tropy arising from sensitivity to initial conditions lim-
its the amount of information conveyed about a stim-
ulus [1, 2]. Experiments in single cells revealed that a
structured external input enhance reliability of spiking
responses [3]. However, it is not well understood how
biophysical properties of neurons and the statistics of
incoming spike trains regulate information transmission
and the ability to control the activity in a driven network.

To address this challenge, we here investigate how
streams of input spike trains and AP onset rapidness af-
fects controllability and dynamical entropy rate in bal-
anced networks. Previous studies of the dynamic sta-
bility of the asynchronous irregular activity of balanced
networks used a constant external input [4, 5] or white
noise [1, 2]. We solved the dynamics in numerically exact
event-based simulations and calculated Lyapunov spec-
tra, which provide the dynamical entropy rate and at-
tractor dimension. We examined how the target circuit
activity changed from constant to structured input by
varying the external input coupling strength or input
spike rate, while keeping the firing rate of the target pop-
ulation fixed.

Increasing input rate or input coupling aids the control
of the driven circuit, reflected both in decreasing dynami-
cal entropy rate and reduced trial-to-trial variability. In-
triguingly, the control of spiking activity is facilitated
when the driven circuit has a rapid AP onset. For suffi-
ciently strong input, i.e. increased rate or coupling, we
observe a suppression of chaos and a transition to com-
plete network control. Surprisingly, suppression of chaos
does generally not imply complete network control.

Model We studied the dynamics of large networks of
N rapid theta neurons arranged on a directed Erdős-
Rényi random graph of mean degree K. Each neu-
ron receives an independent external spike train. The
rapid theta neuron model is a phase representation of the
quadratic integrate-and-fire model [6] with tunable spike
onset rapidness r which was shown to limit the informa-
tion encoding bandwidth [7]. Neurons have membrane
potentials Vi ∈ [−∞, ∞) that follow the dynamics:

τmV̇i =
{
aU(Vi − VG)2 − IT + Iext + τmIi(t) V > VG

aS(Vi − VG)2 − IT + Iext + τmIi(t) V ≤ VG
(1)

with the membrane time constant τm, the glue point
VG = 1

2
r−1
r+1 , the rheobase current IT = 1

2
r
r+1 , the curva-

tures aS = r+1
2r , aU = r2aS and the synaptic currents

Ii(t) =
∑

j∈pre(i)

∑

s

J rec
ij δ(t− t(s)j ) +

∑

u

Jext δ(t− t(u)).

(2)
All neurons i = 1, . . . , N received constant external

currents Iext, non-delayed δ-pulses from the presynap-
tic neurons j and stochastic δ-pulses from independent
Poissonian spike trains (Fig. 1a). The recurrent non-
zero coupling strengths were set to J rec

ij = −J rec
0 /
√
K

such that the input variance is independent of K [4, 11].
External incoming excitatory pulses of strength Jext

ex are
followed with delay ∆ by dominating inhibitory pulses
−Jext

in as observed experimentally in feedforward inhibi-
tion [15]. We considered the limit of short delay, s.t.
Jext = (Jext

ex − Jext
in )/

√
K = −Jext

0 /
√
K. The constant

current Iext was chosen to obtain a desired average recur-
rent network firing rate ν̄, for a given coupling strength
Jext and rate νext = νext0 ·K of the Poisson input. From
the analytical solutions of Eq. (1) with (2) in a phase
representation φi(V ), we obtained a map of the neu-
rons’ phases between successive spike times in the net-
work {ts} (see supplemental material). This map was
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Figure 1: Streams of input spike trains suppress chaos
in balanced target network. a Each neuron of the target
network receives an independent external input Poisson spike
train. b Asynchronous spike raster of 100 random neurons
from balanced target network. cMaximal Lyapunov exponent
as function of external coupling strength Jext

0 for different
recurrent spike onset rapidness (r = 3, 10, 100). d Spike train
of one random neuron across different initial conditions for
weak (top), intermediate, and strong (bottom) frozen Poisson
input realization (Jext

0 = 0, 2, 8, r = 10) (other parameters:
N = 2000, K = 1000, ν̄ = 1 Hz, νext

0 = 1 Hz, J0 = 1,
τm = 10 ms).

used for event-based, numerically exact simulations of
the network dynamics and allows us to access the Jaco-
bian D(ts) = ∂~φ(ts)

∂~φ(ts−1)
, which describes how an infinitesi-

mal network state perturbation evolves from one network
spike time until the next:

Di,j(ts) =





di∗(ts) for i = j = i∗ and j∗ ≤ N∗
1− di∗(ts) for i = i∗ and j = j∗ ≤ N
δij otherwise if j∗ ≤ N,

(3)
where j∗ denotes the neuron spiking at time ts, i∗ ∈
post (j∗) its postsynaptic neurons, δij is the Kronecker
symbol and di∗(ts) is the derivative of the phase tran-
sition curve of φi. With the Jacobian (3) we can de-
fine the long term Jacobian L(tp) =

∏p
s=1D(ts) and the

Oseledets matrix Λ = lim
p→∞

(
L>(tp)L(tp)

) 1
2tp [17]. The

logarithms of the eigenvalues of Λ are the Lyapunov
exponents, measuring the average exponential sensitiv-
ity to small perturbations in the tangent space along a
trajectory. As Λ quickly becomes ill-conditioned, the
Lyapunov exponents were calculated by the usual re-
orthonormalization procedure [16] (Code is in the sup-
plemental material). From the ordered Lyapunov expo-
nents λ1 > . . . > λN , we obtained the attractor dimen-
sion via the Kaplan–Yorke conjecture: D = d+Sd/|λd+1|
(for maximal d such that Sd =

∑d
i=1 λi ≥ 0 [17]) and

the Kolmogorov–Sinai entropy rate via Pesin’s formula:
H =

∑
λi>0 λi [10, 17, 22].

Suppression of chaos by spiking input We first investi-
gated the role of the coupling strengths Jext

0 of the incom-
ing spike trains on the collective dynamics and control-
lability of the asynchronous irregular recurrent network
dynamics (Fig. 1a+b). Generally, we find a suppression
of the chaotic dynamics by input spike trains. Increasing
the input coupling strength Jext

0 leads to decreasing the
largest Lyapunov exponent λ1 beyond zero, indicating
a transition from chaotic to stable dynamics (Fig. 1c).
High spike onset rapidness r in the target network fa-
cilitates the suppression of chaos, thus weaker external
input is sufficient to tame the chaos. The reduction of
chaos is accompanied by a reduced variability of spike
times across trials with different initial conditions but
same frozen input spike trains (Fig. 1d). For sufficiently
strong input, even independent initial network states col-
lapse to one time-dependent attractor, if they are driven
by a “frozen” realization of input spike trains. This al-
lows a direct interpretation for neural coding: The re-
sponse of the network becomes reliable across trials, if
the time-varying input is sufficiently strong and if the
target neurons have a sufficiently rapid AP onset.
Also the dynamical entropy rate H and the at-

tractor dimension D are decreasing for increasing the
external input rate νext

0 and coupling strength Jext
0

(Fig. 2b+d, f+g). The critical coupling strength where
chaos is suppressed scales numerically approximately
Jext

0 crit ∝ J0.75
0 νext−0.5

0 r−0.5 for large networks in the
chaotic regime and saturates with K and N (see supple-
mental material). This suggests that for large K there
is a critical input variance σext 2

crit = Jext 2
0 · νext

0 , where
the recurrent chaos is suppressed, which can be either
generated by sufficiently frequent or easier by sufficiently
strong input spike trains.
Transition towards complete network control: For

sufficiently strong input, we observe a transition to-
wards complete network control which is facilitated by
rapid AP onset. After a transient, the spike raster of
two independent initial conditions becomes identical and
their Euclidean distance collapses to machine precision
(Fig. 3a+c). Across many initial conditions and network
realizations, the probability of convergence over time fol-
lows an exponential decay after a transient (Fig. 3b).
The characteristic decay constant τc reduces as expected
for increasing input strength Jext

0 , but also for increas-
ing spike onset rapidness r (Fig. 3d). This indicates that
networks with rapid spike onset not only require weaker
spiking input to suppress chaos, but also that complete
network control is obtained faster.
Stability against finite-size perturbations: How does

spiking input affect the sensitivity to finite-size pertur-
bations of the recurrent network state? Stability to in-
finitesimal perturbations accompanied by instability to
sufficiently large perturbations was previously described
in balanced networks of pulse-coupled leaky integrate-
and-fire neurons with constant input [20]. In such non-
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Figure 2: Increasing input coupling and input rate decreases entropy rate and attractor dimensionality. a
Lyapunov spectrum for different input coupling strength (Jext

0 = 0, 2, 4, 8, r = 10). b Dynamical entropy rate H per spike
and c relative attractor dimension D/N as a function of input coupling strength Jext

0 . d - f Same as a-c for different input
firing rate (νext

0 = 0, 2, 4, 8Hz). Inset of d shows the largest Lyapunov exponent as function of input firing rate νext
0 for

r = 3, 10, 100 (other parameters as in Fig. 1).

chaotic networks [13, 20], the probability of separation Ps
of perturbed and unperturbed trajectories as function of
perturbation strength ε was very well fitted by Ps(ε) =
1− exp(−ε/εft). The characteristic perturbation size εft
gives the average diameter of the basins of attraction,
called flux tubes. This flux tube radius was numerically
and analytically found to scale εft ∝ J0√

NKν̄τm
[20, 21].

Thus, it becomes very small for large networks, which
results in sensitivity even to microscopic perturbations.
Here, we investigated the effect of streams of incoming
spike trains on flux tubes. We measured the probability
of separation Ps as a function of perturbation strength ε
for different values of spike onset rapidness r (Fig. 4a) and
different values of input coupling strength Jext

0 (Fig. 4b)
after 10 s of network simulation across different initial
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Figure 3: Transition towards complete network control
for strong input. a Example spike raster of two indepen-
dent initial conditions with same external Poisson input spike
trains converge fast. b Convergence probability as function
of time for different spike onset rapidness r c Euclidean dis-
tance between network states ~φ of example a. d Character-
istic convergence time τc vs. input strength Jext

0 for different
spike onset rapidness (r = 3, 10, 100) (other parameters as in
Fig. 1).

conditions and input realizations. Perturbations were
applied in the phase representation in random directions
perpendicular to the flow of the dynamics. We generally
found that external spiking input stabilizes against finite-
size perturbations, reflected in an increasing flux tube ra-
dius εft for increasing the coupling strength of externally
incoming streams of spike trains (Fig. 4c). Input spike
trains even lead to the emergence of flux tubes in net-
works that are chaotic without input (r = 100, 300). For
sufficiently strong input, the flux tube radius diverges,
thus the network dynamics becomes insensitive to arbi-
trarily strong perturbations (Fig. 4c) and no separate
flux tubes coexist any more. Intriguingly, this transition
to complete network control generally occurs at differ-
ent values of external input strength than the transition
from chaos to stability (Fig. 4c). Crucially, the flux tube
radius in strongly driven networks depends on the simu-
lation time (We chose 10 s above). While a sufficiently
strong perturbation might lead to a transient decorrela-
tion, the perturbed and the unperturbed trajectory can
coalesce later due to the external input.

Summary: We investigated how the statistics of in-
coming spike trains and the AP onset rapidness shape
chaos and controllability of balanced networks. We find
a suppression of chaos and vanishing Kolmogorov–Sinai
entropy rate in spiking balanced networks by streams of
input spike trains, which is facilitated by a rapid spike
onset dynamics. For strong external spiking input, we
find a transition to complete network control, which oc-
curs at higher external input coupling strength and rate
than the transition from chaos to stability. This is sur-
prising, because earlier studies suggested that a nega-
tive largest Lyapunov exponent implies that trajectories
formed by different initial conditions collapse on a ran-
dom sink [1, 2, 22, 23]. While this holds in the limit
of large time for random dynamical systems when cer-
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Figure 4: External spiking input reduces sensitivity to
finite-size perturbation in stable networks. a Proba-
bility Ps of separation of trajectories after a perturbation of
strength ε for different rapidness r = 100, 300, 1000 in log-
linear plot. Full lines: fit to Ps(ε) = 1 − exp(−ε/εft). b Same
as a for different input coupling strengths (Jext

0 = 2, 3, 4).
Note the deviations from the fits in a+b for small rapidness
and strong external input caused by non-exponential sepa-
ration probabilities. c Characteristic perturbation size εft as
function of input coupling strength Jext

0 for different rapidness
(r = 100, 300, 1000) (other parameters as in Fig. 1, average of
1000 input realizations and initial conditions with 10 random
perturbation directions each).

tain non-degeneracy conditions are satisfied [9], we find
that on neurobiologically relevant time scales, streams of
input spikes can suppress chaos without collapsing inde-
pendent initial conditions onto a random sink.

This is for the first time to our knowledge that for re-
current networks a clear link between single cell features
and their role in the collective information transmission
in a complex system was shown. This study extends ear-
lier works on chaotic networks of rate neurons [25–27]
to spiking neurons. Our results suggest that response
reliability of neuronal circuits to an external stimulus is
increased, the stronger the spatio-temporal input is. Our
study predicts that rapid spike onset decreases trial-to-
trial variability in a driven target circuit and therefore
augments information flow. These results can also be
used to understand and optimize emerging optogenetic
approaches to achieve network control. We thank G. La-
joie, A. Renart, H. Sompolinsky, C. van Vreeswijk, M.
Timme, J. Liedtke, A. Schmidt and M. Puelma Touzel for
fruitful discussions. This work was supported by MPG,
BMBF and Evangelisches Studienwerk Villigst.

∗ Electronic address: rainer@nld.ds.mpg.de
[1] G. Lajoie, K. K. Lin, and E. Shea-Brown, Phys. Rev. E

87, 052901 (2013).
[2] G. Lajoie, J.-P. Thivierge, and E. Shea-Brown, Front.

Comput. Neurosci 8, 123 (2014).
[3] H. L. Bryant and J. P. Segundo, J Physiol 260, 279

(1976); Z. F. Mainen, T. J. Sejnowski, Science 268, 1503
(1995).

[4] C. van Vreeswijk and H. Sompolinsky, Science 274, 1724

(1996); C. van Vreeswijk and H. Sompolinsky, Neural
Comput. 10, 1321 (1998); A. Renart et al., Science 327,
587 (2010).

[5] M. Monteforte and F. Wolf, Phys. Rev. Lett. 105, 268104
(2010).

[6] G. B. Ermentrout and N. Kopell, SIAM J. Appl. Math.
46, 233 (1986); B. S. Gutkin and G. B. Ermentrout, Neu-
ral Comput. 10, 1047 (1998); J. C. Brumberg and B. S.
Gutkin, Brain Res. 1171, 122 (2007).

[7] V. Ilin, A. Malyshev, F. Wolf, and M. Volgushev, J. Neu-
rosci. 33, 2281 (2013).

[8] M. Monteforte, PhD thesis, Georg-August-University
Göttingen (2011).

[9] Y. Le Jan, Annales de l’I.H.P. Probabilités et statistiques
23, 111 (1987); Baxendale, P. H. in Diffusion Processes
and Related Problems in Analysis, Volume II (eds. Pin-
sky, M. A. & Wihstutz, V.) 3–35 (Birkhäuser Boston,
1992).

[10] F. Ledrappier and L.-S. Young, Probability Theory and
Related Fields 80, 217 (1988).

[11] M. N. Shadlen, W. T. Newsome, Curr. Opin. Neurobiol.
4, 569 (1994); M. N. Shadlen and W. T. Newsome, J.
Neurosci. 18, 3870 (1998); W. R. Softky, Curr. Opin.
Neurobiol. 5, 239 (1995).

[12] M. Tsodyks and T. Sejnowski, Network 6, 111 (1995); D.
J. Amit and N. Brunel, Cereb. Cortex 7, 237 (1997); D.
J. Amit and N. Brunel, Network 8, 373 (1997); T. W.
Troyer, K. D. Miller, Neural Comput. 9, 971 (1997); N.
Brunel, J. Comput. Neurosci. 8 183 (2000); A. Lerchner
et al., Neural Comput. 18, 634 (2006).

[13] R. Zillmer, R. Livi, A. Politi, and A. Torcini, Phys. Rev.
E 74, 036203 (2006); S. Jahnke, R. M. Memmesheimer,
and M. Timme, Phys. Rev. Lett. 100, 048102 (2008);
R. Zillmer, N. Brunel and D. Hansel, Phys. Rev. E 79,
031909 (2009).

[14] A. Politi et al., Europhys. Lett. 22, 571 (1993).
[15] J. S. Isaacson and M. Scanziani, Neuron 72, 231 (2011).
[16] G. Benettin et al., Meccanica 15, 9 (1980).
[17] J.-P. Eckmann and D. Ruelle, Rev. Mod. Phys. 57, 617

(1985).
[18] D. Ruelle, Commun. Math. Phys. 87, 287 (1982).
[19] S. Panzeri et al., Neuron 29, 769 (2001).
[20] M. Monteforte and F. Wolf, Phys. Rev. X 2, 041007

(2012).
[21] M. Puelma Touzel, PhD thesis, Georg-August-University

Göttingen (2016).
[22] L.-S. Young, Comm. Pure Appl. Math. 66, 1439 (2013).
[23] K. K. Lin, in Nonautonomous Dynamical Systems in the

Life Sciences, edited by P. E. Kloeden and C. Pötzsche
(Springer International Publishing, 2013), pp. 135–161.

[24] B. D. Burns and A. C. Webb, Proc. R. Soc. B 194, 211
(1976); W. R. Softky and C. Koch, J. Neurosci. 13, 334
(1993); P. Kara, P. Reinagel, R. C. Reid, Neuron 27, 635
(2000).

[25] L. Molgedey, J. Schuchhardt, and H. Schuster, Phys. Rev.
Lett. 69, 3717 (1992).

[26] K. Rajan, L. F. Abbott, and H. Sompolinsky, Phys. Rev.
E 82, 011903 (2010).

[27] S. Goedeke, J. Schuecker, and M. Helias,
arXiv:1603.01880 [Nlin, Q-Bio] (2016).

[28] H. Kantz and E. Olbrich, Chaos 7, 423 (1997).



Supplemental Material for
“The Transition to Control in Spiking Networks”

Rainer Engelken∗ and Fred Wolf
Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany,
Faculty of Physics, Georg-August-Universität Göttingen, Göttingen, Germany,

Bernstein Center for Computational Neuroscience, Göttingen, Germany

Contents

I. Model: The rapid theta neuron model driven by external and recurrent spike trains 1

II. Phase representation of the rapid theta neuron 2

III. Single spike Jacobian of the rapid theta neuron network with incoming spike train 4

IV. Setup of balanced network and event-based simulation 6

V. Scaling of critical input strength 9

VI. Implementation and convergence of the Lyapunov spectra 9

VII. Bursty input spike trains reduce chaos 11

VIII. Input correlations reduce chaos 12

References 14

I. MODEL: THE RAPID THETA NEURON MODEL DRIVEN BY EXTERNAL AND RECURRENT
SPIKE TRAINS

To examine the effect of streams of incoming spike trains on the collective dynamics and reliability of cortical
networks with different action potential (AP) onset rapidness, we use a novel neuron model with variable AP onset
rapidness, called the rapid theta neuron model [1, 2]. This neuron model is similar to the exponential integrate-and-
fire neuron [12], but much more tractable for high precision calculations. The rapid theta neuron model combines
the advantage of the theta neuron model for the analytical derivation of the phase-response curve with a modifiable
AP onset rapidness r. For r = 1, the rapid theta neuron model is equivalent to the theta neuron model [4], which is
the phase representation of the quadratic integrate-and-fire neuron. Increasing r decreases the time constant at the
unstable fixed point VU (voltage threshold) leading to a larger instability and sharper AP initiation. The membrane
time constant τm, the time constant at the stable fixed point VS (resting potential) remains unchanged. This is
achieved by gluing two parabolas smoothly together at VG. In the dimensionless voltage representation, the resulting
rapid theta neuron model is described by the differential equation

τm
dV
dt =

{
aS(V − VG)2 − IT + I(t) V ≤ VG

aU(V − VG)2 − IT + I(t) V > VG.
(1)

In this equation, IT denotes the rheobase current and I(t) is the synaptic input current. The curvatures aU,S depend
on the AP onset rapidness r and together with VG and IT define the positions of the two branches of the parabolas.
The glue point, denoted VG, where the two branches are continuously and smoothly glued together divides the single
neuron phase space into two (V ≤ VG) (V > VG) parts. At the stable fixed point VS, the slope of the subthreshold
parabola is set to −1/τm and at the unstable fixed point VU the slope is r/τm.



2

Without loss of generality, the stable and unstable fixed points are set to VS = −0.5 and VU = +0.5, yielding:

VG = 1
2
r − 1
r + 1 (2)

IT = 1
2

r

r + 1 (3)

aS = r + 1
2r (4)

aU = r(r + 1)
2 = r2aS. (5)

With Eq. (2)-(5) the governing equation of the rapid theta neuron model (1) becomes

τm
dV
dt =





r+1
2r

(
V − 1

2
r−1
r+1

)2
− 1

2
r
r+1 + I(t) V ≤ 1

2
r−1
r+1

r(r+1)
2

(
V − 1

2
r−1
r+1

)2
− 1

2
r
r+1 + I(t) V > 1

2
r−1
r+1 .

(6)

II. PHASE REPRESENTATION OF THE RAPID THETA NEURON

A phase representation of the rapid theta neuron model similar to the classical theta neuron model is obtained with
the transformation tan θ

2 = V − VG and θ ∈ [−π, π), yielding

τm
dθ
dt =

{
r+1
2r
(
1− cos θ

)
+
(
I(t)− IT

)(
1 + cos θ

)
θ ≤ 0

r(r+1)
2
(
1− cos θ

)
+
(
I(t)− IT

)(
1 + cos θ

)
θ > 0.

(7)

For r = 1 the theta neuron model is recovered [4].
The exact solutions of the dynamics of the rapid theta neuron model between network spikes for constant positive

external currents and δ pulse coupling both for the recurrent and external spiking input allow us to write down a phase
representation with constant phase velocity. Such a phase representation is convenient both for efficient, numerically
exact, event-based simulation and also for analytical tractability. The description of the phase representation, the
single spike Jacobian and the setup of the balanced networks are adapted from Ref. [1, 2], taking into account streams
of external input spike trains.

The solution of the governing differential equation in the dimensionless voltage representation Eq. (1) for constant
input currents between two spikes I(t) ≡ IT + I is

1
I

dV

1 +
(
V − VG√
I/aS,U

)2 = 1
τm

dt

1
I

√
I/aS,U

[
arctan

(
V − VG√
I/aS,U

)]V2

V1

= t2 − t1
τm

arctan
(
V2 − VG√
I/aS,U

)
= arctan

(
V1 − VG√
I/aS,U

)
+
√
I aS,U

t2 − t1
τm

. (8)

This equation represents the solution for both branches of Eq. (1) separated by VG as before. For the subthreshold
part (V ≤ VG), the curvature is aS = r+1

2r and for the suprathreshold part (V > VG), the curvature is aU = r(r+1)
2 .

In the phase representation with phase φ ∈ [−π, π) and constant phase velocity ω, the phase evolution is given by

φ2 = φ1 + ω
t2 − t1
τm

. (9)

Identifying Eq. (8) and (9), enables us to derive the constant phase velocity ω and the glue point φG to define the
transformation between the two representations

φ− φG
ω

= arctan
(
V − VG√
I/aS,U

)
1√
I aS,U

. (10)
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During one complete cycle, the time TS spent in the subthreshold part (V2 = VG and V1 → −∞) and the time TU
spent in the suprathreshold part (V2 →∞ and V1 → VG) was obtained from Eq. (8):

TS = πτm√
2I(r + 1)/r

and TU = πτm√
2I(r + 1)r

.

The time spent in the subthreshold part is thus TS/TU = r times as long as the time spent in the suprathreshold part.
The total cycle length, or unperturbed interspike interval, is thus

T free = (r + 1)TU

= πτm√
I

√
r + 1

2r . (11)

Its inverse gives the firing rate for constant external input.
The constant phase velocity is then

ω = 2π
T free

= 2
√
I

τm

√
2r
r + 1 = 2

τm

√
I/aS (12)

The phase corresponding to the glue point is

φG = −π + ωTS

= π
r − 1
r + 1 . (13)

The constant phase velocity (12) and the glue point (13) define the transformation (10) between the voltage repre-
sentation and the phase representation:

φ = φG +





2
aS

arctan
(
V−VG√
I/aS

)
V ≤ VG

2
raS

arctan
(
r V−VG√

I/aS

)
V > VG

(14)

V = VG +





√
I/aS tan

(
aS

φ−φG
2

)
φ ≤ φG

√
I/r2aS tan

(
raS

φ−φG
2

)
φ > φG.

(15)

This transformation between the two equivalent representations is now used to calculate the phase-transition curve
g(φ) and the phase-response curve Z(φ). Receiving a δ pulse of strength J , irrespective whether it is a recurrently
connected neuron Jrec or an external input with Jin that leads to a step-like change of the neuron’s voltage V + =
V − + J . If this change does not lead to a change from the subthreshold to the suprathreshold part or reverse, the
calculation of the phase-transition curve is straightforward. Some care needs to be taken, if the δ pulse does lead to
such a change.

An inhibitory pulse J < 0 can lead to a change from the suprathreshold to the subthreshold part. This happens if
the neuron’s phase is between φG and φ−. The phase-transition curve for inhibitory δ pulses of strength J and constant
external currents I with the effective coupling C = J/

√
I and φ− = φG + 2

raS
arctan

(
r(VG − J − VG)/

√
I/aS

)
=

φG − 2
raS

arctan
(
r
√
aSC

)
is

g−(φ) = φG +





2
aS

arctan
(

tan
(
aS

φ−φG
2

)
+√aSC

)
−π < φ ≤ φG

2
aS

arctan
(

1
r tan

(
raS

φ−φG
2

)
+√aSC

)
φG < φ < φ−

2
raS

arctan
(

tan
(
raS

φ−φG
2

)
+ r
√
aSC

)
φ− ≤ φ < π.

(16)

For excitatory δ pulses of strength J > 0, the phase can change from the subthreshold to the suprathreshold part
if the phase is between φ+ and φG. The phase-transition curve for excitatory δ pulses of strength J and constant
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external currents I with the effective coupling C = J/
√
I and φ+ = φG − 2

aS
arctan(√aSC) (displayed in Fig. 1) is

g+(φ) = φG +





2
aS

arctan
(

tan
(
aS

φ−φG
2

)
+√aSC

)
−π < φ ≤ φ+

2
raS

arctan
(
r tan

(
aS

φ−φG
2

)
+ r
√
aSC

)
φ+ < φ < φG

2
raS

arctan
(

tan
(
raS

φ−φG
2

)
+ r
√
aSC

)
φG ≤ φ < π.

(17)

The phase-response curve is Z±(φ) = g±(φ)− φ. Thus, the infinitesimal phase-response curve is the same for both
excitatory and inhibitory pulses, since φ± → φG for C → 0:

Z(φ) C→0' C





2√aS
aS

1
1+tan

(
aS

φ−φG
2

)2 = 1 + cos (aS(φ− φG))√
aS

−π < φ ≤ φG

2r√aS
raS

1
1+tan

(
raS

φ−φG
2

)2 = 1 + cos (raS(φ− φG))√
aS

φG ≤ φ < π.
(18)

Note that for J rec
0 6= Jext

0 , the shape of the phase response curve and its derivative can look very differently,
depending on whether a recurrent or an external arriving pulse is considered.

III. SINGLE SPIKE JACOBIAN OF THE RAPID THETA NEURON NETWORK WITH INCOMING
SPIKE TRAIN

As we drive the rapid theta neuron network with streams of delta-function current pulses, we can solve the dynamics
between subsequent network events analytically. The analytical expression of the derivative of the evolution map,
called the single spike Jacobian, is necessary for calculating the full Lyapunov spectrum with high precision. The
single spike Jacobian describes the linear evolution of infinitesimal perturbations of the recurrent neuron’s states and
will be used to calculate the Lyapunov spectra numerically. Since infinitesimal perturbations of the recurrent network
are considered here, the spike-order in the recurrent network is preserved. This is true as long as there are no exactly
synchronous spike events which generally occur with probability zero in the considered asynchronous irregular network
states. In a phase representation, the iterative map, which maps the state of the network at one spike time to the
state at the next spike in the network, reads

φi(ts+1) = φi(ts) + ωi(ts+1 − ts) + Z
(
φi(ts) + ωi(ts+1 − ts)

)
δi∈post(j∗), (19)

where δi∈post(j∗) is one if i is a postsynaptic neuron of the spiking neuron j∗ and zero otherwise and Z(φi) is the
phase-response curve. Note that j∗ is a recurrent neuron if j∗ ≤ N . If j∗ > N , it is a spike of one of the external
neurons, which are modeled as Poisson processes.

Thus, the N ×N single spike Jacobian reads

Dij(ts) = dφi(ts+1)
dφj(ts)

=





1 + Z ′(φi∗(t−s+1)) for i = j = i∗ and j∗ ≤ N
−ωi∗
ωj∗ Z

′(φi∗(t−s+1)) for i = i∗ and j = j∗ ≤ N
δij otherwise if j∗ ≤ N,

(20)

where j∗ denotes the spiking neuron in the considered interval, firing at time ts+1, i∗ ∈ post(j∗) are the spike receiving
neurons and δij is the Kronecker delta. The derivatives of the phase-response curves Z ′(φ) are calculated at the phases
of the postsynaptic neurons φi∗(t−s+1) = φi∗(ts) + ωi∗(ts+1 − ts) where Z ′ is evaluated before they receive the spike,
denoted by t−s+1.

To make the structure of the Jacobian more clear, in case of an externally incoming spike, the full Jacobian takes
the following form:
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D(ts) =




1 0 . . . 0

0 . . . ...
1 + Z ′

1

1 + Z ′
...

... . . . 0
0 . . . . . . 0 1




← postsynaptic i∗

← postsynaptic i∗
(21)

Thus, in case of external input, the Jacobian is just a scaling of the rows i∗ of the orthonormal matrix Qij
corresponding to the postsynaptic neurons by the derivative of the phase transition curve evaluated for the respective
postsynaptic neurons. In case of a recurrent incoming spike it takes the following form:

D(ts) =




1 0 . . . 0

0 1
...

1 + Z ′ −ωi∗
ωj∗ Z

′

1 0

1 + Z ′ −ωi∗
ωj∗ Z

′

1 0
. . . ...

. . . 0
1

...
... . . . 0
0 . . . . . . 0 1




← postsynaptic i∗

← postsynaptic i∗

(22)

↑
column j∗

Thus, it can be written as a sum of the identity matrix, a sparse diagonal matrix with diagonal entries Z ′ and a
matrix with one nonzero sparse column j∗. This structure can be used both for efficient storage and for the efficient
evolution of the orthonormal basis Q during the calculating of the Lyapunov spectrum. To investigate the collective
dynamics of networks of rapid theta neurons, the derivative d(φi∗(t−s+1)) = 1 + Z ′(φi∗(t−s+1)) of the phase-transition
curve is needed for the single spike Jacobians. The derivative d(φ) in case of inhibitory pulses is

d−(φ) =





tan
(
aS

φ−φG
2

)2
+1(

tan
(
aS

φ−φG
2

)
+√aSC

)2
+1

−π < φ ≤ φG

tan
(
raS

φ−φG
2

)2
+1(

1
r tan

(
raS

φ−φG
2

)
+√aSC

)2
+1

φG < φ < φ−

tan
(
raS

φ−φG
2

)2
+1(

tan
(
raS

φ−φG
2

)
+r√aSC

)2
+1

φ− ≤ φ < π.

(23)

The derivative of the phase-transition curve in the case of excitatory pulses is
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Figure 1: Phase-transition curve (PTC), phase-response (PRC) and infinitesimal phase-response (iPRC) explain
reduction of chaos for high AP onset rapidness r. a) The phase-transition curve (PTC) g(φ) shown with inhibitory
coupling C = −1 (full lines, Eq. (16)) and excitatory coupling C = +1 (dashed lines, Eq. (17)) for three values of spike onset
rapidness r = 1, 3, 100. b) Same for phase response curve (PRC) Z(φ) = g(φ)− φ. c) Same for infinitesimal PRC (Eq. (18)).
d) Derivative of PRC for excitatory coupling. e) Derivative of PRC for excitatory coupling. f) Derivative of derivative of
infinitesimal phase response curve (Eq. (25)). Note that in the limit r → ∞ the iPRC becomes monotonically increasing and
its derivative is positive almost everywhere.

d+(φ) =





tan
(
aS

φ−φG
2

)2
+1(

tan
(
aS

φ−φG
2

)
+√aSC

)2
+1
− 1 −π < φ ≤ φ+

tan
(
aS

φ−φG
2

)2
+1(

r tan
(
aS

φ−φG
2

)
+r√aSC

)2
+1
− 1 φ+ < φ < φG

tan
(
raS

φ−φG
2

)2
+1(

tan
(
raS

φ−φG
2

)
+r√aSC

)2
+1
− 1 φG ≤ φ < π.

(24)

The derivative of the phase-response curve is Z ′±(φ) = d±(φ)−1 and the derivative of the infinitesimal phase-response
curve is

Z ′(φ) C→0' −C
{√

aS sin (aS(φ− φG)) −π < φ ≤ φG

r
√
aS − sin (raS(φ− φG)) φG ≤ φ < π.

(25)

The phase-transition curves (PTC, g(φ), Eq. (16) and (17)), the phase response curves (PRC, Z(φ) = g(φ) − φ)
and the infinitesimal phase-response curves (iPRC, Eq. (18)) of the rapid theta neuron model are displayed in Fig. 1.
The iPRC of the theta neuron (r = 1) is fully symmetric, whereas for increasing AP onset rapidness r the iPRC
becomes more and more asymmetric. In the limit r → ∞ it becomes monotonically increasing/decreasing and one
might expect that this can qualitatively change the collective network dynamics.

IV. SETUP OF BALANCED NETWORK AND EVENT-BASED SIMULATION

The pattern of action potentials in cortical tissue is asynchronous and irregular [25], despite experimental evidence
that single neurons can respond reliably to an injected time-varying external stimulus [26–29].
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Figure 2: Phase-response (PRC) and infinitesimal phase-response (iPRC) of the rapid theta neuron model for
different effective coupling strengths. a) The PRC is shown for different K corresponding to different coupling strengths
C = − J0√

K

√
aS
I

for inhibitory (full lines Eq. (16)) and excitatory couplings (dashed lines, Eq. (17)) for AP onset rapidness
r = 1 . The infinitesimal PRC (Eq. (18)) is also displayed for comparison (dotted lines) b) Same as a for AP onset rapidness
r = 3 c) Same as a for AP onset rapidness r = 100. d) Derivative of PRC normalized by C for r = 1. The derivative of
the infinitesimal PRC is shown as dotted line (Eq. (25)). e) Same as d for r = 3. f) Same as d for r = 100 (parameters:
I0 = 1, J0 = 1).

This is commonly explained by a balance of excitatory and inhibitory synaptic currents [33], which cancels large
mean synaptic inputs. A dynamical self-organized balance can be achieved without fine-tuning of synaptic coupling
strength, if the connectivity is inhibition-dominated [3]. The statistics of this state is described by a mean-field
theory, which is largely independent of neuron model. Originally, the balanced regime was explored in networks of
binary neurons, which receive constant external input to demonstrate that incoming variability is not necessary to
generate asynchronous irregular activity. Later, this was also studied in networks of leaky-integrate and fire neurons
with external Poisson input [8]. We studied large sparse networks of N rapid theta neurons arranged on a directed
Erdös-Rényi random graph of mean degree K. All neurons i = 1, . . . , N received constant external currents Iext and
non-delayed δ-pulses from the presynaptic recurrent neurons j ∈ pre (i) and external spikes with coupling strength
Jext = −Jext

0 /
√
K from a Poisson process with rate νext = νext

0 ·K. The external currents were chosen to obtain a
certain average recurrent network firing rate ν̄ using a bisection method. The non-zero recurrent coupling strengths
were set to J rec

ij = −J0/
√
K and all neurons received identical external currents.

Setup of balanced network with strong couplings and nonvanishing fluctuations. The coupling strengths were chosen
such that the magnitudes of the recurrent input current fluctuations were identical in all studied networks. Assuming
that inputs from different presynaptic neurons are only weakly correlated, the recurrent compound input spike train
received by neuron i can be modeled by a Poisson process with rate Ωi =

∑
j∈pre(i) νj ≈ Kν̄ ≡ Ω, where ν̄ is the

network-averaged firing rate and K the average number of presynaptic neurons. The nonzero coupling strengths were
Jij = − J0√

K
. Under the assumption that the compound input spike train is a Poisson process, the recurrent input
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current auto-correlation function reads

C(τ) = 〈δI(t)δI(t+ τ)〉t

≈
(
J0√
K

)2
Ω
∫
δ(t− s)δ(t+ τ − s)ds

= J0
K

Ωδ(τ)

≈ J2
0 ν̄δ(τ) (26)

Thus, the fluctuations in the input currents can be described as delta-correlated white noise of magnitude

σ2 = J2
0 ν̄. (27)

Note that due to the scaling of the coupling strengths J = − J0√
K

with the square root of the number of synapses
K the magnitude of the fluctuations σ2 is independent of the number of recurrent synapses. Therefore, the input
fluctuations do not vanish in the thermodynamic limit and the balanced state in sparse networks emerges robustly
[3].

The existence of a balanced state fixed point in the large K-limit follows from the equation of the network-averaged
mean current

Ī ≈
√
K(I0 − J0ν̄).

In the largeK-limit, self-consistency requires the balance of excitation and inhibition I0 = J0ν̄: If limK→∞(I0−J0ν̄) >
0 the mean current Ī would diverge to ∞ and the neurons would fire at their maximal rate. The resulting strong
inhibition would break the inequality, leading to a contradiction. If limK→∞(I0− J0ν̄) < 0 the mean current Ī would
diverge to −∞ and the neurons would be silent. The resulting lack of inhibition again breaks the inequality. The
large K-limit is self-consistent if

lim
K→∞

(I0 − J0ν̄) = O
(

1√
K

)
,

such that excitatory external drive and mean recurrent inhibitory current cancel each other. Note that since I0−J0ν̄ =
O(1/

√
K) the network mean current has a finite large K-limit. The average firing rate in units of the membrane time

constant τ−1
m is approximately

ν̄ = I0
J0

+O
(

1√
K

)
. (28)

All simulations were run event-based following Ref. [5], where an exact map was iterated from spike to spike in the
φ-representation of the rapid theta neuron model with homogeneous coupling strengths and homogeneous external
currents for all neurons in each population. The next spike time occurring in each population is obtained by inverting
Eq. 9

ts = ts−1 + min
i

{
π − φi(ts−1)

ω

}
. (29)

The phase map f(~φ(ts−1)) = ~φ(ts), iterating all neuron’s phases between two successive spike events ts−1 and ts in
the network, is then the concatenation of Eq. 9 and the phase transition curve (Eq. 16 and Eq. 17)

f(φi(ts−1)) =
{
φi(ts−1) + ω(ts − ts−1) if i /∈ post(j∗)
g(φi(ts−1) + ω(ts − ts−1)) if i ∈ post(j∗),

(30)

where post(j∗) denotes the set of neurons postsynaptic to the spiking neuron j∗ in the considered interval.
Eq. 30 was used for all network simulations in an iterative event-based procedure [5]. At the beginning of an

iteration, the next spike time in the network is calculated with Eq. (29). Then all neuron’s phases are evolved
until the next spike time with Eq. (30). In case external currents are identical for all neurons of one population, it
is sufficient to search for the neuron with the largest phase and then calculate the corresponding next spike time.
For efficient large network simulations, we changed the frame of reference of the neurons’ phase-representation and
employed a data structure that avoids iterating through all neurons at every network spike time to find the next
spiking neuron.
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Figure 3: Scaling of critical input strength with different network parameters: input rate νext
0 and Jrec

0 for r =
1, 10, 100, 1000 (other parameters: N = 2000, ν̄ = 1 Hz, K = 1000, νext

0 = 1 Hz, J0 = 1, τm = 10 ms).

V. SCALING OF CRITICAL INPUT STRENGTH

We found a suppression of chaotic dynamics by streams of input spike trains in a large parameter regime. The
critical input coupling strength Jext

0 crit separates the chaotic dynamics from the stable dynamics. We investigated
the scaling of the critical input coupling strength Jext

0 crit with different network parameters by performing a noisy
root-finding using a bisection search. This converged towards a critical coupling strength, where the largest Lyapunov
exponent changes sign. We then fitted a power law or an exponential to the critical input coupling strength Jext

0 crit as
a function of the respective parameter using the Levenberg-Marquardt algorithm.

While the critical input coupling strength Jext
0 crit exponentially saturated for large N and K (not shown), the

dependence on input rate νext
0 , rapidness r, recurrent coupling Jrec0 and membrane time constant τm follows a power-

law over several orders of magnitude.
This transition scales approximately (see Fig. 3):

Jext
0 crit ∝ J0.75

0 νext−0.5
0 r−0.5 (31)

This scaling behavior indicates that for large K there is a critical input variance σext 2
crit = Jext 2

0 · νext
0 , where the

recurrent chaos is suppressed, which can be either generated by sufficiently frequent or easier by sufficiently strong
input spike trains.

VI. IMPLEMENTATION AND CONVERGENCE OF THE LYAPUNOV SPECTRA

With the exact phases of the neurons before spike reception, the single spike Jacobians for recurrent and external
input spikes Eq. 20 were evaluated using Eq. 23 and Eq. 24. These were used to numerically calculate all Lyapunov
exponents with the standard reorthonormalization procedure [6]. After a warmup of the network dynamics, of typically
104 network spikes average, we started with a random N -dimensional orthonormal system that was evolved in each
iteration with the single spike Jacobian. To determine a suitable reorthonormalization interval, we started with an
reorthonormalization interval of O (max(νext

0 , νo) ·N) network spike iterations and the adapted it iteratively, such
that the evolved orthonormal matrix Q was well-conditioned. The evolved vectors were reorthonormalized, yielding
the norms of the orthogonalized vectors γi(ts) and the orthonormal system to be used in the following iterations.
After a short warmup of the orthonormal system of about one spike per neuron, these norms were used to calculate
the N Lyapunov exponents λi = limp→∞ 1

tp

∑p
s=1 log γi(ts).

All full calculations were performed in custom code written in Julia with double precision. We used the fastest
random number generator of RandomNumbers.jl (Xoroshiro128Star [30]), which is part of a novel class of random
number generators based on exclusive or and bit shift. For the evolution of the orthonormal system Q by the Jacobians,
we used a custom-written in-place sparse matrix multiplication that reduces cache miss and uses the sparse structure
of the Jacobian. Moreover, we used parallelized level-3 matrix-matrix operations from BLAS (Basic Linear Algebra
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Figure 4: Convergence of Lyapunov exponents versus time in inhibitory networks for low AP onset rapid-
ness and no external input (r = 1, Jext

0 = 0). (logarithmic time scale) a) Convergence of selected Lyapunov exponents
(λ1, λ50, λ100, λ150, λ200) across different network topologies, b) across different initial conditions of the recurrent network
state φi, c) across different realizations of the Poissonian stream of input spike trains, d) for different initial realizations of the
orthonormal system Q (parameters: N = 2000, ν̄ = 1 Hz, K = 1000, νext

0 = 1 Hz, J0 = 1, τm = 10 ms).

Subprograms) called via LAPACK (Linear Algebra PACKage). The sparseness of the networks was used for the
efficient storage of the coupling matrices in the Compressed Sparse Column (CSC) Storage format. For very large
network topologies, we generated the network topology during the simulation on the fly using the index of the spiking
neuron as the seed for the random number generator based on which the postsynaptic neurons are sampled [31].

One should note that the non-converged Lyapunov exponents generated during the transient are meaningless (they
neither reflect the local nor finite-time Lyapunov exponents). The converged Lyapunov exponents capture the network
dynamics on the balanced attractor, which is time-dependent in case of time-varying input. For different values of
rapidness r and external input strength Jext

0 , we checked the convergence of the Lyapunov spectra (Fig. 4-7). This
was done across different network topologies a, initial conditions of the recurrent network state b, different realizations
of the external spiking input c and different orthonormal system d, to systematically dissect different contributions to
variability. Generally, all calculations of the Lyapunov spectra were repeated ten times with different initial phases,
input spike train realizations, and network topology realizations. Numerical errors were usually smaller than the
symbol sizes in the presented figures in the main manuscript.

There are two main contributions to the variability of numerically calculated Lyapunov spectra. Firstly, variability
arising from the fact that Lyapunov spectra are asymptotic properties estimated from finite calculations. Secondly,
variability arising from the quenched disorder in different random network topologies. The first contribution would
vanish in the limit of infinitely long simulations for ergodic systems. The second contribution is expected to vanish in
the large networks limit due to self-averaging. A small deviation of the Lyapunov exponents calculated from different
initial conditions can also be inherited from the rate finding procedure which might give slightly different constant
external input currents depending on the initial condition. This can also result in small differences of the Lyapunov
exponents. As we typically used 104 network spikes during the rate finding per iteration, this error is usually < 0.1%.
Quantities that are self-averaging converge in the limit of large system sizes to the ensemble average. The Lyapunov
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Figure 5: Convergence of Lyapunov exponents versus time in inhibitory networks for high AP onset rapidness
and no external input (r = 1000, Jext

0 = 0). (logarithmic time scale) a) Convergence of selected Lyapunov exponents
(λ1, λ4, λ14, λ53, λ200) for across different network topologies, b) across different initial conditions of the recurrent network
state φi, c) across different realizations of the Poissonian stream of input spike trains, d) for different initial realizations of the
orthonormal system Q (parameters: N = 2000, ν̄ = 1 Hz, K = 1000, νext

0 = 1 Hz, J0 = 1, τm = 10 ms).

spectrum of one realization of a large network is thus representative for the whole ensemble. Hence, averaging over
many different network realizations is not a necessity in large networks.

We applied two independent checks of this semi-analytic numerically exact calculation of Lyapunov spectra. Firstly,
the largest Lyapunov exponent can be calculated numerically by measuring the exponential rate of divergence or
convergence of nearby trajectories [6, 32]. Secondly, in autonomous systems, there is always a neutral Lyapunov
vector in the direction of the flow with a zero corresponding Lyapunov exponent as the system can be shifted in time.
This neutral Lyapunov exponent vanishes as soon as the network is driven by spiking input. The checks confirmed
the results obtained from our implementation of the semi-analytic calculation of the full Lyapunov spectrum.

VII. BURSTY INPUT SPIKE TRAINS REDUCE CHAOS

Role of temporal irregularity of input: To corroborate our results from networks driven by Poissonian input spike
trains, we investigated the effect of changing the irregularity of the input. To this end, each rapid theta neuron
received external input from an independent gamma process. Thus, the interspike intervals of the external input were
drawn from a gamma distribution:

f(x;α, β) = βαxα−1e−xβ

Γ(α) for x ≥ 0 and α, β > 0.

This allows to adapt the irregularity of the spike trains by changing the shape parameters α of the gamma process,
while β allows to regulate the mean firing rate. The temporal irregularity is usually measured by the coefficient of
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Figure 6: Convergence of Lyapunov exponents versus time in inhibitory networks for low AP onset rapidness
and strong external input (r = 1, Jext

0 = 10). (logarithmic time scale) a) Convergence of selected Lyapunov exponents
(λ1, λ50, λ100, λ150, λ200) for across different network topologies, b) across different initial conditions of the recurrent network
state φi, c) across different realizations of the Poissonian stream of input spike trains, d) for different initial realizations of the
orthonormal system Q (parameters: N = 2000, ν̄ = 1 Hz, K = 1000, νext

0 = 1 Hz, J0 = 1, τm = 10 ms).

variation of the interspike interval distribution. For gamma processes it is cvi = 1/√αi, so for αi = 1, a Poisson
process is regained. Despite being a renewal process, for β 6= 1 the gamma process first has to be aged to start with an
equilibrated input to avoid artifacts. This was implemented by a warmup period of usually 104 spikes of the external
input starting with a random initial offset before the network simulation.

We found that for slightly increasing input irregularity the chaos is suppressed even stronger, while for very regular
input (cvin ≈ 0 ) the dynamical entropy rate and largest Lyapunov exponent are close to the case of constant input
(Fig. 8). If the input spike trains are very irregular (cvin � 1), both entropy rate and attractor dimensionality rise
again. Note that in this case, the single neuron receives no input for an extended period of time, followed by a barrage
of incoming spikes in a short time interval. We further note that the impact of burstiness of the input spike trains
also seems to depend on the network size N (not shown).

VIII. INPUT CORRELATIONS REDUCE CHAOS

Role of shared input: How do spatial correlations of the external input spike trains affect chaos and entropy rate
in the recurrent network? In our usual scenario, all neurons received either independent Poisson or gamma spike
trains. As cortical neurons receive a substantial fraction of shared input, we extended our analysis to investigate
the effect of spacial input correlations. To study the role of spatial correlations, each neuron receives input from a
random subset of Kext out of N Poisson neurons, each firing with a mean rate of νext = νext

0 K/Kext, so the rate of
incoming Poisson spikes is independent of Kext. Increasing the mean fraction of shared input p = N/Kext thus lead
to an increase of input correlations, similar to the scenario studied in [9].

We found that increasing the input correlations to a moderate level had only a small effect on the Lyapunov
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Figure 7: Convergence of Lyapunov exponents versus time in inhibitory networks for high AP onset rapidness
and strong external input (r = 1000, Jext

0 = 10). (logarithmic time scale) a) Convergence of selected Lyapunov exponents
(λ1, λ50, λ100, λ150, λ200) for across different network topologies, b) across different initial conditions of the recurrent network
state φi, c) across different realizations of the Poissonian stream of input spike trains, d) for different initial realizations of the
orthonormal system Q (parameters: N = 2000, ν̄ = 1 Hz, K = 1000, νext

0 = 1 Hz, J0 = 1, τm = 10 ms).

Figure 8: Bursty input aids the reduction of dynamical entropy rate and attractor dimensionality, while regular
and extremely bursty input spike trains have a weaker effect. a Lyapunov spectrum for different input irregularity
cvin(coefficient of variation of interspike interval distribution) b dynamical entropy rate H and c attractor dimension D as a
function of input irregularity cvin(parameters: N = 2000, K = 1000, ν̄ = 1 Hz, J0 = 1, τm = 10 ms).
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Figure 9: Shared inputs increase dynamical entropy rate and attractor dimensionality. a Lyapunov spectrum for
different of fraction of shared input p. b Dynamical entropy rate H/Nν̄ and c attractor dimension D as a function of shared
input p (parameters: N = 2000, K = 1000, ν̄ = 1 Hz, J0 = 1, τm = 10 ms, νext

0 = 1 Hz).

spectrum and thus also the dynamical entropy rate and Lyapunov dimensionality. For very large input correlations,
we observed that the overall network state tended to synchronize, which interestingly lead first to a slight increase of
dynamical entropy rate. A possible explanation for the small effect of input correlations might be that dense balanced
networks are very efficient in decorrelation time-varying external inputs, because of fast strong recurrent inhibition
that leads to canceling of correlations [9, 34], which results in weak mean pairwise spike count correlations. If in
contrast to the scenario studied here, all neurons are externally driven by one external spike train whose strength
or rate is gradually increased, the recurrent network dynamics is much less capable of decorrelating the input and
network partial synchrony gradually increases while the attractor dimensionality and entropy rate gradually decrease
(not shown).
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6 Reanalysis of “Two types of
asynchronous activity in networks of
excitatory and inhibitory spiking
neurons”

6.1 Summary
We reanalyzed a recent study that investigated networks of leaky integrate-and-fire neurons and
suggested that they would exhibit a chaotic instability mathematically analogous to rate networks
with matched topology and single unit characteristics for strong synaptic coupling [4]. We found
expected hallmarks of a chaotic instability in the rate network. Close to the transition to chaos,
we observed critical slowing down in response to small external perturbations. In contrast, in the
spiking network rate deviations resulting from small input perturbations rapidly decayed. When
approaching the alleged chaotic instability, the decay speeds up contrary to observation in the
rate network. We further found a quantitative mismatch between predictions of the mean-field
theory and numerical simulations, for a variation of different network parameters, e.g. synaptic
delay, fraction of inhibition and number of synapses per neuron K. In conclusion, our reanalysis
demonstrates fundamental differences between the behavior of networks of pulse-coupled spiking
LIF neurons and rate networks with matched topology and input-output function. In particular,
contrary to the reanalyzed study [4], we found no indication of a corresponding chaotic instability
in the spiking network [3].
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Abstract
Neuronal activity in the central nervous system varies strongly in time and
across neuronal populations. It is a longstanding proposal that such fluctuations
generically arise from chaotic network dynamics. Various theoretical studies
predict that the rich dynamics of rate models operating in the chaotic regime
can subserve circuit computation and learning. Neurons in the brain, however,
communicate via spikes and it is a theoretical challenge to obtain similar rate
fluctuations in networks of spiking neuron models.

A recent study investigated spiking balanced networks of leaky integrate and
fire (LIF) neurons and compared their dynamics to a matched rate network with
identical topology, where single unit input-output functions were chosen from
isolated LIF neurons receiving Gaussian white noise input. A mathematical
analogy between the chaotic instability in networks of rate units and the spiking
network dynamics was proposed.

Here we revisit the behavior of the spiking LIF networks and these matched
rate networks. We find expected hallmarks of a chaotic instability in the rate
network: For supercritical coupling strength near the transition point, the
autocorrelation time diverges. For subcritical coupling strengths, we observe
critical slowing down in response to small external perturbations. In the spiking
network, we found in contrast that the timescale of the autocorrelations is
insensitive to the coupling strength and that rate deviations resulting from small
input perturbations rapidly decay. The decay speed even accelerates for
increasing coupling strength.

In conclusion, our reanalysis demonstrates fundamental differences between

the behavior of pulse-coupled spiking LIF networks and rate networks with
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the behavior of pulse-coupled spiking LIF networks and rate networks with
matched topology and input-output function. In particular there is no indication
of a corresponding chaotic instability in the spiking network.
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Introduction
Slow neural dynamics are believed to be important for behav-
ior, learning and memory (Churchland & Shenoy, 2007; Fee & 
Goldberg, 2011; Murray et al., 2014). Rate models operating in 
the chaotic regime show rich dynamics at the scale of hundreds 
of milliseconds and provide remarkable learning capabilities 
(Barak et al., 2013; Sussillo & Abbott, 2009; Toyoizumi & Abbott, 
2011). Understanding the conditions of such a transition to chaos 
in more detailed network models has recently attracted a lot of 
interest (Harish & Hansel, 2015; Kadmon & Sompolinsky, 2015). 
However, neurons in the brain communicate via spikes and it is 
a challenge in computational neuroscience to obtain similar slow 
rate dynamics in networks of spiking neuron models.

This question was recently addressed in a paper by Ostojic (2014) 
published in Nature Neuroscience (Ostojic, 2014). It argues that 
an “unstructured, sparsely connected network of model spiking 
neurons can display two fundamentally different types of asyn-
chronous activity”. When the synaptic strength is increased, net-
works of leaky integrate-and-fire (LIF) neurons would undergo 
a transition from the “well-studied asynchronous state, in which 
individual neurons fire irregularly at constant rates” to another 
“heterogeneous asynchronous state” in which “the firing rates of 
individual neurons fluctuate strongly in time and across neurons”  
(Ostojic, 2014). These two regimes would differ in an essential man-
ner, the rate dynamics being chaotic beyond the phase transition.  
Finding a transition to chaotic slow-varying rate dynamics in  
spiking networks in such a simple model would be an important 
step towards an understanding of the computations underlying 
behavior and learning and would fill a gap in the current under-
standing of network dynamics. Here we re-examine the behavior of  
random LIF networks and demonstrate that there is no such phase 
transition to chaos in the spiking network analyzed in (Ostojic, 
2014). While we confirm the observed deviation from the mean 
field theory description that assumes uncorrelated Gaussian fluc-
tuations in time and among neurons, we controvert the validity of 
the presented analysis. We provide a series of tests of dynamical  
behavior that refute the existence of a chaotic instability and show 
that the analogy between the spiking network and the rate network 
is conceptually misleading and mathematically flawed.

The paper (Ostojic, 2014) starts with simulations of a network of 
LIF neurons for different values of the synaptic strength, J, while 
all other parameters are fixed to specific values. It is observed that 
the population mean firing rate of the neurons, ν0, is well described 
by a mean field calculation only below a certain coupling strength 
J*. At this value, the average firing rate starts to deviate from the 
mean field prediction more than 5%. (Figure 1a in (Ostojic, 2014), 
denoted Figure P1a; hereafter figures in (Ostojic, 2014) are denoted 
by their numbers preceded by a “P”). In (Ostojic, 2014), it was 
claimed that the “classical” asynchronous state exhibits an instabil-
ity at J=J*. Above J*

 
the dynamics would still be asynchronous, but 

in a way which would be essentially different from the “classical” 
asynchronous state. To assess this claim, the author replaced the 
full dynamics of the spiking LIF network by a rate model of similar 
connectivity, the “Poisson network”. Simulations indicate that as J 
increases, there is a value, J=Jc, at which the dynamics of the latter 
undergo a phase transition between a state in which the rates are 

constant in time (fixed point) and a state in which they fluctuate 
chaotically with long network generated time-scales. The author 
then derives an equation for a critical value J

c
 which is in agreement 

with the simulations of the Poisson model. For the parameters used 
in Figure P1 and P2 the value of Jc is rather close to J*. Apparently 
the author felt that this similarity, gives sufficient reason to justify 
two conclusions: (i) in the LIF network an instability occurs near 
J* which is of the same nature as the one occurring at Jc in the 
Poisson network. (ii) The asynchronous states below and above J* 
are essentially different in the LIF network.

However, as we now show, the reported agreement between the 
predicted transition at Jc 

and the spiking network simulation results 
is coincidental and only valid for the chosen parameters used in 
the paper (Ostojic, 2014) but not in general. We start by providing 
two counter-examples to statements (i) and (ii).

Methods and results
Our first counter-example is the LIF model considered in (Ostojic, 
2014), we take N=40000 neurons and C=4000 synapses per neuron  
instead of N=10000 and C=1000 (all other parameters as in 
Figure P1, except for the network size, keeping the connection 
probability constant). The population firing rate, ν0 (J), is plotted in 
Figure 1a. It deviates from the mean field prediction at J*≅0.3 mV 
by more than 5%. Nonetheless, the critical point in the correspond-
ing Poisson rate network is J

c
≅0.96 mV and thus it is more than 

three times larger than J*.

Our second counter-example is the LIF network of Figure P1 and 
P2 with the same parameters except for the delay, Δ. We note that 
the delay does not affect the existence of the asynchronous state 
and importantly plays no role in the mathematical considerations 
of Ostojic (2014). As these yield identical results irrespective of 
delay we consider the simplest case: Δ = 0 ms. Strikingly, the 
spiking network shows no longer a large deviation from the mean-
field prediction (Figure 1a). However, the proposed analogy with 
the Poisson rate network still predicts that a deviation should occur 
at J*≅0.49 mV, since the transition to chaos in the Poisson network 
is independent of the delay. The author seems to be somewhat 
aware of this discrepancy. Indeed, it is stated in the Online Methods 
that delays must be larger than the refractory period, because “if 
the delays are shorter, spikes that reach a neuron while it is refrac-
tory do not have an effect and the overall coupling is effectively 
reduced” (Ostojic, 2014). If this was correct, this effective reduc-
tion should be reflected in the formula for predicting Jc (Equation 
16). This is not the case: the latter does not depend on Δ. In addi-
tion, the spiking network for Δ = 0 ms in fact exhibits no increased 
level of network synchrony measured by the common synchrony 
measure χ (Figure 2a) (Hansel & Mato, 2003).

It is also argued in the paper (Ostojic, 2014) that the results plot-
ted in Figure P3a and b support the analogy between the rate  
dynamics of the Poisson model and the dynamics of the LIF  
network. However, the comparison made in this figure is conceptu-
ally misleading. In the Poisson model, the rate as a function of time 
is an unequivocally defined quantity. It is the dynamical variable 
of the model and the time scale over which the rate fluctuates for  
strong enough coupling is fully determined by these dynamics. 
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Figure 1.  (a) Population averaged firing rate in the network vs. coupling strength J. Solid lines: Ricciardi mean field for C=1000 (red) and 
C=4000 (blue). Predictions for Jc (Equation 16) are indicated by the corresponding dashed vertical lines. Simulation results (event-based 
simulation implemented in Julia programing language) are also plotted. Dots: Δ=0.55 ms synaptic delay. Triangles: Δ=0.0 ms. Results for 
C=1000, N=10000 (red marker) and C=4000 and N=40000 (blue marker). (b) Averaged normalized AC of neuronal rate functions for J= 
0.8 mV and C=1000 (red) and C=4000 (dashed blue) LIF networks. The rate functions were computed by filtering the spike trains of the 
neurons (1 ms time bin) with a Gaussian filter with 10 ms (the thinnest lines), 50 ms (moderated lines) and 100 ms (the thickest lines) standard 
deviation. (c) Autocorrelation function of the spike trains (no filtering) normalized to the second pick. Solid lines: LIF network. Dashed lines: 
Poisson network. The results are shown for J = 0.5 mV (dark green), J=0.6 mV (dark orange), J = 0.7 mV (magenta) and J=0.8 mV (dark red). 
For the LIF the AC is also shown for J=0.4 mV (solid black). To compute the ACs for the Poisson network we simulated a network for 100 s 
(time step 1 ms) and averaged the results over 40 realizations of the initial conditions. The network size is N=100000 for 0.5≤J≤0.6mV and 
N=10000 for J>0.6 mV. For the LIF network we averaged spike autocorrelation of 3000 randomly chosen neurons with a 1 ms bin following 
Equation 23 in the paper. All parameters are as in Figure P3. (d) Subcritical behavior of the systems. Rate network and spiking network are 
both perturbed in the constant feed-forward input current µ0 in the least stable direction of the linearized rate dynamics (Equation 16) for 
different coupling strengths J. The resulting rate deviation is projected onto the perturbation direction. Dashed lines reflect the normalized 
decay of this perturbation in the rate network and the solid lines those of the spiking network (averaged over 1.42 million perturbations). The 
perturbation was applied to the constant feed-forward input µ0 for 2 ms where the standard deviation of the perturbation vector was 1 mV. 
Longer perturbation durations (10 ms) and weaker perturbation strengths (standard deviation 0.1 mV) gave very similar results (not shown). 
Perturbation direction, strength, duration and network realization were exactly the same for rate and spiking network. Other parameters as in 
(Ostojic, 2014).

This is not the case in the LIF model where the “rate” and its 
“dynamics” depend on the temporal width over which the spiking  
activity is filtered. The width of the Gaussian filter used in (Ostojic, 
2014) is 50 ms. This choice is arbitrary and is the reason for the 
similarity observed in the rate autocorrelations (ACs) plotted in the 
upper and lower panels in Figure P3b which depends on this choice 
(Figure 1b). The rate functions were computed by filtering the spike 
trains of the neurons (1 ms time bin) with a Gaussian filter with  
10 ms (the thinnest lines), 50 ms (moderated lines) and 100 ms  
(the thickest lines) standard deviation. Moreover, the spike 
ACs plotted in Figure P3c for the two models exhibit essential  
differences as we now show.

For J=0.2 and 0.4 mV, the spike AC in the Poisson rate model  
(Figure P3c, upper panel) is close to a Dirac function reflecting 
that the dynamics are at fixed point - that is the rate variable from 
which the Poisson process of the spikes is generated is constant. For 
J=0.6 mV the spike AC is very different: a broad component has 
now appeared. It is flat at zero time lag and has a negative curvature 
at short time lags (Figure 1c and Figure P3c). A detailed analysis 
reveals that this change has all the characteristics of a true phase 
transition. It shows that close to the phase transition, the amplitude 
vanishes proportionally to J-Jc and the decorrelation time diverges 
as 1/ cJ – J  (Figure S1a). To compute the ACs for the Poisson 
network we simulated a network for 100 s (time step 1 ms) and 

a b

c d
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averaged the results over 40 realizations of the initial conditions. 
The network size is N=100000 for 0.5≤J≤0.6mV and N=10000 
for J>0.6 mV. For the LIF network we averaged spike autocorrela-
tion of 3000 randomly chosen neurons with a 1 ms bin following 
Equation 23 in the paper. All parameters are as in Figure P3.

The spike AC behaves very differently in the LIF network. For  
J=0.2 mV it exhibits at zero time lag a sharp peak flanked by a 
trough which reflects the refractoriness (absolute and relative) of 
the single neuron dynamics. As J increases, there is a progressive 
change in the AC shape. Eventually, the trough disappears. The 
flanks of the zero peak are now decreasing exponentially (Figure 1c,  
solid lines). A careful analysis reveals that the typical time  
constant of this decrease depends only weakly on J (Figure 1c, solid 
lines). It is always on the order of the membrane time constant of the 
neurons (20 ms). Note also that by contrast with what is observed 
in the Poisson network, for J=0.5 to 0.8 mV, the spike AC curva-
ture is always positive and peaked around zero time lag (Figure 1c,  
dashed lines).

How do the “strong fluctuations” in the “heterogeneous regime” 
emerge? For increasing J, the spiking activity of single neurons 
becomes increasingly irregular, quantified by the mean coefficient 
of variation (cv) of the interspike interval distribution (Figure 2b). 
At the same time, the distribution of membrane potentials develops 

a very long tail towards negative voltages (Figure 2c). For strong 
coupling (J=0.8 mV), voltage traces of individual neurons show 
long very negative voltage excursions, followed by short bursts of 
action potentials (Figure 2d). This explains the super-Poissonian 
irregularity (CV>1). The super-Poissonian nature of spiking irregu-
larity and the unphysiological negative voltage deviations are prop-
erties related to the linear V

.
-V-relationship of the LIF model. A 

mean-field description of this phenomenon requires self-consistent 
spike train autocorrelations (Lerchner et al., 2006; Wieland et al., 
2015). For other integrate-and-fire neurons e.g. the quadratic- 
integrate-and-fire model, even for very strong coupling J, e.g. 
J = 20 mV, the mean coefficient of variation does not increase 
beyond one and no strongly negative voltage excursions are 
observed. All parameters are as in Figure P1.

Additionally, in order to compare the behavior of spiking and rate 
models below the postulated phase transition, we perturbed rate 
and spiking networks of identical topology in the least stable direc-
tion of the linearized rate dynamics, predicted by Equation 16 in 
the paper (Ostojic, 2014). The resulting rate deviation is projected 
onto the perturbation direction. The perturbation was applied to the 
constant feed-forward input µ

0
 for 2 ms where the standard devia-

tion of the perturbation vector was 1 mV. Figure 1d shows that the 
decay of the perturbation in the rate network slows down near the 
transition, indicating a critical slowing down (Figure 1d, dashed 

Figure 2. (a) Synchrony measure X vs. coupling strength J. Dots: Δ=0.55 ms. Triangles: Δ=0.0 ms for N=10000, C=1000. X is defined as in 
(Hansel & Mato, 2003) on the phases of neurons. Note that zero delay does not increase network synchrony. (b) Coefficient of variation of the 
interspike intervals vs. coupling strength J. (c) Distribution of membrane potentials for different coupling strength J (in mV). (d) Example voltage 
trace for J=0.8 mV shows very negative excursions followed by short bursts of action potentials. Red dots indicate spike times. Numerically 
exact event-based simulation were implemented in Julia programing language. Other parameters are chosen as in (Ostojic, 2014).
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lines). If there were a “mathematically analogous” transition in 
the spiking network, also its perturbation should decay slower as 
the transition is approached. Our result (Figure 1d, solid lines) 
shows that the decay time-scales of the perturbation (averaged over  
1.42 million perturbations) is insensitive to J and it stays close to 
the membrane time constant (similar to solid lines in Figure 1c). 
Longer perturbation durations (10 ms) and weaker perturbation 
strengths (standard deviation 0.1 mV) gave very similar results  
(not shown). All other parameters are chosen as in (Ostojic, 2014).

Conclusion
We therefore conclude that, contrary to what was argued by the 
author, the spiking LIF network studied in (Ostojic, 2014) does 
not exhibit a phase transition to a chaotic state similar to the one 
occurring in the studied rate model. The reported mismatch  
between the average firing rate in this LIF network simulations  
and the mean-field calculation is unrelated to such a transition.
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Supplement material

Figure S1. (a) The decorrelation time (τ0 , violet diamond, left y-axis) and amplitude at zero time lag (beta, orange circles, right y-axis) of the 
baseline-subtracted population averaged spike AC are plotted vs. J for the Poisson network. These parameters were obtained by fitting the 
spike AC with ACF(τ) = β/cosh(τ/τ0)2 (see Figure S1b). Inset: the rescaled estimated τ0

-2 (left axis, violet) and β values (orange, right axis) 
for J=0.5, 0.5125, 0.525, 0.5375, 0.55, 0.5625, 0.575, 0.5875 and 0.6 mV, to show that they vanish linearly near the phase transition. (b) The 
non-normalized spike AC can be very well fitted by ACF(τ) = β/cosh(τ/τ0)2. Dashed lines: Simulation results; J=0.525 mV (cyan, right y-axis) 
and J=0.8 mV (dark red, left y-axis): Black solid line: The fits.
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The origin and possible computational role of neuronal noise has been the focus of considerable scientific
effort during the past decades. In particular, the transition to chaos has been extensively studied using
simplified rate-models and much is known about this transition.
A recent work studied the dynamics of a sparsely connected network of excitatory and inhibitory spiking
neurons in the balance regime and a compelling mapping between spiking neural network and rate model
was proposed. Following analysis and numerical simulations it was suggested that a novel type of
asynchronous state exists and it was further hypothesized that this novel state is useful for complex
information processing in the central nervous system.
Here the authors reevaluate this claim. Several counter examples are provided to prove that the claim of a
transition to a second type of asynchronous state does not hold. Furthermore, the origin of ‘strong
fluctuation’ super-Poisson irregular firing is studied and is found to be related to extremely negative
voltage fluctuations that are beyond the typical physiological range.
The work is timely. The results are solid and well presented. I also find the effort devoted to reproduce
and re-evaluate results refreshing. I believe this paper will contribute to the scientific debate.
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Characterizing the dynamics of spiking neural networks and their transitions is currently a prominent issue
in computational neuroscience. The question is largely non-trivial and riddled with subtleties: numerical
simulations are often delicate to interpret, and theoretical tools to analyze these dynamics are still being
developed. 

The theoretical community have devoted important effort to address this question. Indeed, progresses on

this question would advance our understanding of the brain and its computations. A question of particular
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this question would advance our understanding of the brain and its computations. A question of particular
interest is to characterize phase transitions to chaotic regimes in spiking networks. Indeed, since the
seminal work of Sompolinsky, Crisanti and Sommers  on rate networks, chaotic regime were shown to
have rich dynamics able to support efficient computations and learning (see e.g. Sussillo & Abbott 2009 ).
Whether spiking networks do show a similar transition and thus share similar properties as rate networks
has recently been the focus of several researches and is an important endeavor in computational
neuroscience .

The present paper addresses a few important questions on the interpretations and conceptual approach
of a theoretical article appeared in Nature Neuroscience in 2014  dealing precisely with dynamics and
transitions in spiking networks. That paper argued for the existence a transition in a balanced spiking
network, between an asynchronous and a "new highly fluctuating regime", using in particular transitions of
an associated rate model. The present article comes back to this comparison between spiking and rate
network, and argues that, in contrast with the approach of Ostojic (2014) , it is not possible to extract
accurate information on the spiking network from an analysis of the particular rate network studied, by
showing a mismatch between their qualitative dynamics. Moreover, using relevant numerical quantities to
identify phase transitions (synchrony measure and effect of perturbations), the authors establish the
absence of phase transition in the spiking network, while the rate network does present the hallmarks of
phase transitions. 

The present paper thus contributes to an important scientific debate on the characterization of the
dynamical regimes of spiking networks. This question has been the topic of very recent important works
that advance our understanding of spiking networks and the associated mean-field limits (to cite a few,
see Kadmon & Sompolinsky 2015 , Harrish & Hansel 2015 ,  Goedeke, Schuecker & Helias 2016 ). 

For its contribution to the scientific debate on a timely and important topic in theoretical neuroscience, this
paper shall be helpful to the readers interested in the existence and nature of transitions in spiking
networks.
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7 Dimensionality and entropy of
spontaneous and evoked rate activity

7.1 Summary
Cortical circuits exhibit complex activity patterns both spontaneously and evoked by external stim-
uli. Finding low-dimensional structure in this high-dimensional population activity is a challenge
both for experiments and theory. What is the diversity of the collective neural activity and how is
it affected by an external stimulus?

We present a novel approach to answer these long-standing questions in firing-rate networks.
Using concepts from dynamical systems theory, we calculate the attractor dimensionality and dy-
namical entropy rate for these networks. The dimensionality measures the diversity of collective
activity states. Dynamical entropy quantifies the uncertainty amplification due to sensitivity to
initial conditions. We obtain these two canonical measures of the collective network dynamics
from the full set of Lyapunov exponents which measure the exponential sensitivity to small per-
turbations in the tangent space along a trajectory. Our approach is applicable for arbitrary network
topology and firing-rate dynamics.

For concreteness, we consider a randomly-wired firing-rate network that exhibits chaotic rate
fluctuations for sufficiently strong synaptic weights. We show that dynamical entropy scales loga-
rithmically with synaptic coupling strength, while the attractor dimensionality exponentially satu-
rates. Thus, despite the increasing dynamic uncertainty, the diversity of collective activity saturates
for strong coupling. We find that a time-varying external stimulus drastically reduces both entropy
and dimensionality. Finally, we analytically approximate the full Lyapunov spectrum in several
limiting cases by random matrix theory. This reveals how coupling strength, autocorrelations and
noise affect the chaotic network dynamics.

Our study opens a novel avenue to characterize the complex dynamics of rate networks and the
geometric structure of the corresponding high-dimensional chaotic attractor. This not only gives a
deeper understanding of the dynamics but also helps to harness its computational capacities, e.g.
for plasticity and learning of stable trajectories.
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Abstract

Cortical circuits exhibit complex activity patterns both spontaneously and evoked by
external stimuli. Finding low-dimensional structure in this high-dimensional population
activity is a challenge both for experiments and theory. What is the diversity of the
collective neural activity and how is it affected by an external stimulus?

We present a new approach to answer these long-standing questions in firing-rate
networks. Using concepts from dynamical systems theory, we calculate the attractor
dimensionality and dynamical entropy rate for these networks. The dimensionality
measures the diversity of collective activity states. Dynamical entropy quantifies the
uncertainty amplification due to sensitivity to initial conditions. We obtain these two
canonical measures of the collective network dynamics from the full set of Lyapunov
exponents, which measure the exponential sensitivity to small perturbations in the
tangent space along a trajectory. Our approach is applicable for arbitrary network
topology and firing-rate dynamics.

For concreteness, we consider a randomly-wired firing-rate network that exhibits
chaotic rate fluctuations for sufficiently strong synaptic weights. We show that
dynamical entropy scales logarithmically with synaptic coupling strength, while the
attractor dimensionality exponentially saturates. Thus, despite the increasing dynamic
uncertainty, the diversity of collective activity saturates for strong coupling. We find
that a time-varying external stimulus drastically reduces both entropy and
dimensionality. Finally, we analytically approximate the full Lyapunov spectrum in
several limiting cases by random matrix theory. This reveals how coupling strength,
autocorrelations and noise affect the chaotic network dynamics.

Our study opens a novel avenue to characterize the complex dynamics of rate
networks and the geometric structure of the corresponding high-dimensional chaotic
attractor. This not only gives a deeper understanding of the dynamics but also helps to
harness its computational capacities, e.g. for plasticity and learning of stable
trajectories.

Author Summary for Kids

When you dream, think or read this sentence, in your brain gazillions of tiny cells called
neurons are active and talk to each other. These neurons process the messages coming
from your five senses by sending patterns of tiny electric pulses to each other or to your
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big toe if you need to run. Neuroscientist try to make sense out of this complex chatter
and want to understand the language the neurons speak. I am using math to build a
super simplified model of this chatter. I connected thousands of neurons randomly in
my boss’ computers into a network, which looks like a giant cobweb of a drunken spider.
Each neuron has a very simple rule, by which it turns incoming signals of other neurons
into an activity. The neuron then sends the activity to thousands of other neurons it is
connected to. The rule looks like a snake, crawling up a step or like a slightly crooked S
like this: v. Other scientists found out using pen and paper instead of computers that
such networks are quiet as a mouse when the connections are weak, but they start a
tumult of chatter, when the connections between the neurons are strong enough.

I discovered (using my boss’ computers ;-)) that although the activity of the whole
network looks like a complete mess, there is a hidden pattern. I reveal this using tools
from chaos theory, which people came up with to describe complex systems with many
interacting small things, like for example turbulences of gazillions of water drops in
clouds on a rainy day. Such a system is called chaotic if a tiny poke is enough to make
it do something very different than it would have done without.

Lyapunov exponents – named after a Russian mathematician – measure, how fast
things fly apart in a chaotic system after tiny poking or tickling. There is an almost
magic link between these Lyapunov exponents and the universe of all imaginable
gibberish the neurons could possibly ever talk about. I use this link and show that
although the activity of a chaotic network looks like a random jumble of gibberish, there
is a lot more structure than what you would expect when only listening to the neurons
one by one. In the space of all imaginable network activity states, there are lots of holes,
like in old socks. Actually, in the model I studied, this space is almost empty, it is made
up mostly of ”thin air”. This means that certain network activity states can never
occur. But the neurons didn’t secretly agreed never to chatter together about certain
topics. It’s rather that the wiring of the random network (the giant cobweb of the
drunken spider) and the neuron rule (the snake on the step) somehow don’t allow them
to chat about certain things. In the following pages, I propose some ideas how to find
out more about this hidden activity structure using other cool tricks and tools from
chaos theory. If you want to learn more, just write me an email :-)

Introduction 1

Cortical circuits display temporally irregular asynchronous activity patterns even in the 2

absence of external input [1]. The time-scale of associated cortical rate fluctuations are 3

often slow compared to the typical time-scale of individual neurons’ membrane 4

dynamics [2, 3]. Mean pairwise spike-count correlations can be very low indicating an 5

active decorrelation of local microcircuit activity [4–6]. 6

Behavioral responses to nanostimulation of single cell spiking indicate that behaving 7

animals can be sensitive to single neurons’ activity [7] and even to the structure of their 8

spike trains [8, 9]. It has also been proposed that adding a single spike produces a 9

cascade of extra spikes in the local circuits [10]. While the conclusions of such 10

experiments for cortical information coding strategies remain controversial, they suggest 11

a high sensitivity of the circuit dynamics with respect to small perturbations and raise 12

questions about network mechanisms underlying dynamic activity amplification. 13

It is a major challenge to develop mathematical concepts to characterize 14

high-dimensional circuit activity, find collective degrees of freedom and information 15

representations on the population level. Theoretical work suggested that asynchronous 16

rate activity originates from chaotic dynamics in recurrent networks. A seminal study 17

showed that randomly connected firing-rate units display a transition from an inactive 18

state to a heterogeneous, chaotic state [11] (Fig. 1). In this class of models, each rate 19
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unit maps its synaptic input hi smoothly into a firing rate by a sigmoidal input-output 20

transfer function φ. Coupling strengths are drawn independently from a Gaussian 21

distribution with zero mean and standard deviation g/
√
N . A self-consistent mean-field 22

theory (MFT) was developed for the large network limit where the number of neuron 23

N →∞. For small coupling g < 1 the trivial fixed point hi = 0 ∀ i is the only stable 24

solution to the MFT (Fig. 1A+B). For increasing coupling strength the trivial fixed 25

point looses stability and chaos emerges from the nonlinear interaction of unstable 26

activity modes (Fig. 1C+D). Using dynamical mean-field theory, Sompolinsky, Crisanti 27

and Sommers showed that above a critical strength gcrit = 1, the only stable 28

self-consistent solution to the MFT has chaotic dynamics [11]. The transition to chaos 29

occurs, when the largest real part of the eigenvalues λ̂max of the stability matrix 30

obtained from the linearized rate dynamics crosses unity (Fig. 1A+C). 31
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Fig 1. Transition to chaos for sufficiently strong coupling g in rate
networks. A Linear stability of rate dynamics around fixed point. Real vs imaginary
part of eigenvalues λ̂i of the stability matrix for g = 0.99. B For subcritical couplings
(g = 0.99) the trivial fixed point of the neuron states hi = 0 is the only stable solution.
C The trivial fixed point looses stability at gcrit = 1 and chaos emerges from the
nonlinear interaction of rate units. In large networks this occurs when the eigenvalues
λ̂max with the largest real part cross unity. D Rate chaos for g = 1.2 (other parameters:
Network size N = 1000, integration step ∆t = 10−2τ).

Recently, this classical work has been extended and the transition has been studied 32

for heterogeneous networks with different subpopulations [12,13], various input-output 33

transfer functions [12], bistable units [14], sparse balanced network 34

architectures [12,15,16] and external stimuli [17–20]. For networks of spiking model 35

neurons, a quantitative agreement with a corresponding chaotic rate network in the 36

limit of slow synaptic dynamics was found [15,16] (see also [21]). 37

The chaotic, heterogeneous state of these rate networks possess high computational 38

capabilities. These arise from the rich internal dynamics that can provide a substrate 39

for complex nonlinear computations, e.g. implementing input/output maps [22–24] and 40

learning temporal sequences [25]. It is a challenge to extend this to spiking neural 41

network [26–29]. Some studies proposed that computational features are favorable 42

closely above the so-called edge of chaos [24, 30–34]. Recent developments in machine 43

learning including the renaissance of deep networks also sparked new interests into 44

principles of information processing in recurrent rate networks [35,36]. 45

Here we use concepts from the ergodic theory of dynamical systems to characterizing 46

the complex collective network dynamics of rate networks. Often large-scale dissipative 47

systems evolve towards a low-dimensional attractor and it is a challenge to find 48

collective modes on this lower dimensional manifold. Ergodic theory provides an 49
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estimate of the attractor dimensionality, which characterizes the diversity of collective 50

network activity states [37]. It also provides access to the dynamical entropy rate 51

measuring the dynamical uncertainty amplification due to sensitivity to initial 52

conditions. The dynamical entropy rate constrains the capability of information 53

processing: In chaotic systems a sensitive dependence on initial conditions makes 54

predictions of future states impossible, if the initial state is known only with finite 55

precision [38,39]. This corresponds to a dynamical entropy rate, because nearby states, 56

which could not be distinguished by a finite precision readout initially, are pulled apart 57

by the chaotic dynamics and are distinguishable later on. Therefore, the dynamical 58

entropy rate quantifies the speed by which microscopic perturbations affect macroscopic 59

rate fluctuations [38]. Both of these topological invariants of dynamical systems can be 60

obtained from the set of Lyapunov exponents, which measure the evolution of small 61

perturbations in the tangent space along a trajectory [40].This is the only known 62

general way of accessing the entropy of a high-dimensional differentiable dynamical 63

system [37]. Sampling-based estimates of entropy and dimensionality, e.g. the 64

Grassberger-Procaccia algorithm [41–43], which estimates the correlation dimension D2 65

are intractable for systems with many degrees of freedom. A strict lower bound on the 66

data required for such sampling-based estimates of the attractor dimensionality with a 67

fixed desired accuracy scales exponentially in the degrees of freedom N [44, 45]. 68

From a neural coding perspective, the dynamical entropy rate can contribute to the 69

so-called noise entropy [46], because the dynamic amplification of microscopic noise by 70

chaotic dynamics can impair coding capacity. 71

For the first time, we calculate the full Lyapunov spectrum of rate networks. Our 72

approach holds for arbitrary network topology and smooth transfer functions φ. We 73

show that dynamical entropy scales logarithmically with synaptic gain g, while the 74

attractor dimensionality saturates exponentially. Thus, despite the increasing 75

uncertainty gain due to sensitivity to initial conditions, the diversity of network activity 76

states saturates for strong coupling. We analytically approximate the full Lyapunov 77

spectrum in several limiting cases using random matrix theory. Finally, we find that 78

time-varying input reduces both entropy and dimensionality. 79

Results 80

We study the dynamics of a randomly-wired network of nonlinear firing-rate units. The 81

dynamics of the state of each firing-unit hi follows [11,12,23]: 82

τ
dhi
dt

= f(hi) = −hi +
N∑

j=i

Jijφ(hj). (1)

Here hi is the total synaptic current received by neuron i and τ is the characteristic 83

time constant, which we set to 1 in the following without loss of generality. We draw 84

independent identical entries of the coupling matrix Jij from a Gaussian distribution 85

Jij ∼ N (0, g2/N) and choose the transfer function φ(h) = tanh(x) [11]. 86

To calculate the Lyapunov spectrum, we evaluate the Jacobian of the flow of the 87

dynamics. It measures, how infinitesimal perturbations of the network state evolve in 88

the tangent space along the trajectory hi. The Jacobian is given by 89

Dij(ts) =
∂f(hi)

∂hj

∣∣∣
t=ts

= −δij + Jijφ
′(hj(ts)). (2)

Thus, in our case the Jacobian is a negative identity matrix plus the coupling matrix 90

with rows scaled by the squared hyperbolic secant φ′(x) = sech2(x) of the network 91
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activity states hi. In case of strong g, sech2(hi) ≈ 0 for most i and hence most rows of 92

Dij(ts) are close to zero. We can make use of this simple structure for several analytical 93

approximations. The full Lyapunov spectrum is obtained by a reorthonormalization 94

procedure [47], which is described in detail in the Materials and Methods section 95

including a detailed analysis of the convergence of the Lyapunov spectra. 96

Strong coupling intensifies chaos 97

We first investigate the role of the scaling of the synaptic coupling strength g (Fig. 2).
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Fig 2. Entropy rate and dimensionality of firing-rate dynamics. A Full
Lyapunov spectra of rate networks for different coupling strengths g, where g is color
coded from blue (small g) to red (large g). The Lyapunov spectrum is point-symmetric
around the mean Lyapunov exponent λ̄ = −1/τ (See derivation in Materials and
Methods). B The largest Lyapunov exponent shows the theoretically predicted linear
scaling for g < 1 and first quadratic and then logarithmic scaling for g � 1 as function
of g [11]. (Green dots: direct numerical simulations, black line: Jacobian-based method,
orange: log fit.) C The dynamical entropy rate H grows logarithmically with coupling
g. D Relative attractor dimensionality D/N scales as a− b · exp(−c · g) and saturates
at ∼ 10%. (Averages over 20 network realizations, red error bars indicate double std
across 20 network realizations, orange fits, parameters: N = 1000, ∆t = 10−2τ ,
tsim = 104τ , tONS = τ).

98

The full Lyapunov spectrum, which is calculated here for the first time, shows an 99
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interesting dependence on g (Fig. 2A). For increasing g, the first half of the Lyapunov 100

spectrum is increasingly bent upwards (Fig. 2A). The Lyapunov spectrum is symmetric 101

around its constant mean value −1/τ for all g. 102

The largest Lyapunov exponent shows the theoretically predicted linear scaling in 103

the stable regime g < 1 (Fig. 2B). In the chaotic regime g > 1 it scales first quadratic 104

and then logarithmically with g in agreement with previous work [11]. This is confirmed 105

both by tracking the amplitude of a small perturbation in direct numerical simulations 106

and by using the Jacobian-based method [47] (Fig. 2B). 107

This means that while the exponential separation rate of nearby trajectories 108

increases for growing g, the overall dissipation of the system, measured by the mean 109

Lyapunov exponent λ̄ stays the same independent of g. We will later gives reasons for 110

this and first focus on the entropy rate and attractor dimensionality. 111

Entropy rate growths logarithmically with coupling strength 112

The entropy rate gives the dynamical uncertainty amplification by the chaotic dynamics. 113

It can be estimated by the sum of the positive Lyapunov exponents (Pesin identity). A 114

rigorous upper bound on the Kolmogorov-Sinai entropy rate is given by the sum of the 115

positive Lyapunov exponents [48], which becomes an equality if the system has smooth 116

densities along the unstable manifolds [49–51]: 117

H 6
∑

λi>0

λi

The dynamical entropy rate is zero for g ≤ 1 and grows monotonically for increasing 118

values of g (Fig. 2C). Our results indicate that for large g, the dynamical entropy rate 119

grows approximately logarithmically with g (See fit in Fig. 2C). While the number of 120

positive Lyapunov exponents decreases for large g, their growth overcompensates the 121

decreasing number, thus the entropy rate does not saturate. The logarithmically 122

increasing entropy rate can be considered as contribution to the noise entropy, if the 123

microscopic network state does not encode relevant information [46]. 124

Attractor dimensionality saturates for strong synaptic gain 125

The Lyapunov dimension relates the attractor dimensionality to the Lyapunov 126

spectrum. It is given by the number of Lyapunov exponents that sum to zero: 127

D = k +

∑k
i=1 λi
|λk+1|

with k = max
n

{
n∑

i=1

λi ≥ 0

}
.

The Lyapunov dimension was conjectured to be in general equivalent to the information 128

dimension D1 [40, 52–54]. One can think of it as the highest dimensional hypersphere, 129

whose volume does not shrink by the dissipative system dynamics. 130

We found that the dimensionality of the strange chaotic attractor also increases 131

monotonically with g (Fig. 2D). Surprisingly, in contrast to the entropy rate, the 132

relative attractor dimensionality appears to exponentially saturate as a function of g at 133

around 10% of the number of phase space dimensions N (Fig. 2D, orange fit). This 134

means that although with increasing g the dynamic uncertainty amplification increases, 135

the diversity of network states quantified by the dimensionality saturates. 136

Comparison of Attractor dimensionality and PCA dimension 137

We compared the Lyapunov dimension with a dimensionality estimate based on second 138

order statistics of the activity hi and tanh(hi) (See the Materials and Methods section 139
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for details). Such dimensionality estimates based on Principal Component Analysis 140

(PCA) are commonly used in experimental and theoretical neuroscience [18,19,55,56], 141

e.g. to quantify the spatiotemporal complexity of a data set. 142

We found that a PCA-based dimension strongly differs depending on whether it is 143

estimated based on the statistics of the ”firing rates” tanh(hi) or based on hi (Fig. 3). 144

Generally, we find a quantitatively different but qualitatively similar scaling of the 145

PCA-based dimensionality and the Lyapunov dimension: Both exponentially saturate 146

with synaptic scaling for g > 1 but they saturate at a different level and with distinct 147

exponents (Fig. 3A). The PCA-based dimensionality seems to grow extensive in network 148

size N (Fig. 3B). 149

Note that covariance-based dimensionality estimates are generally not invariant with 150

respect to changes of variables and can be misleading if applied to a limited data sets. 151

Also, they obviously miss low-dimensional structured hidden in higher-order 152

correlations. 153
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Fig 3. Comparison of PCA dimension and Lyapunov dimension A Principal
Component Analysis (PCA)-based dimensionality estimate (green) and attractor
dimension based on Lyapunov spectrum (black) for different values of g. With synaptic
scaling g both PCA dimension exponentially saturate for g > 1 but they saturate at a
different level and with distinct exponents (shaded lines are fits to a− b · exp(−c · g),
red errors are double std across 20 network realizations). PCA dimension measured by
localization of eigenvectors of covariance matrix of activity Chij and Ctanhh

ij (See
definition in Materials and Methods). PCA dimension estimate of dynamics depends on
whether tanh(hi) or hi is considered. B Both PCA-based dimensionality estimates seem
to be extensive as indicated by the approximately linear growth with N (other
parameters: N = 1000, g = 10, ∆t = 0.1τ , tONS = τ , tsim = 104τ).

Extensive spatiotemporal network chaos 154

The firing-rate network exhibits extensive deterministic chaos, indicated by the 155

invariance of the Lyapunov spectrum with respect to network size N (Fig. 4A). The 156

largest Lyapunov exponent quickly saturates as a function of network size (Fig. 4B) and 157

both dynamical entropy rate and attractor dimensionality grow linear with network size 158

N over two orders of magnitude (Fig. 4C+D). 159

The extensivity of the Lyapunov spectrum for rate networks was already conjectured 160

earlier [11], but for the first time demonstrated here. Extensive chaos is often found in 161

extended systems that are decomposable into weakly interacting subsystems, whose 162
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Fig 4. Extensive chaos revealed by size-invariance of Lyapunov spectrum
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indicating a same shape. B The largest Lyapunov exponent quickly saturates with
network size. C Kolmogorov-Sinai entropy rate H grows linear with N over two orders
of magnitude. D The same holds for the Lyapunov attractor D dimensionality (other
parameters: g = 10, ∆t = 0.1τ , tONS = τ , tsim = 103τ).

number grows linearly with system size [57]. As this is not fulfilled for this fully 163

randomly connected rate network, extensive chaos in our networks is not a trivial 164

property. Globally coupled networks for instance can in fact exhibit nonextensive 165

chaos [58]. 166

Lyapunov spectrum of externally driven firing-rate network 167

Until now, we analyzed the autonomous dynamics of a deterministic firing-rate network. 168

It is of great interest to extend this to a nonautonomous system driven by time-varying 169

input [17,19,20,59,60]. The external drive can represent e.g. an artificial optogenetic 170

stimulus, streams of neural activity coming from a cortical projection or the effect of a 171

sensory stimulus. The dynamics of each firing-rate unit now follows: 172

dhi
dt

= f(hi) = −hi +

N∑

j=i

Jijφ(hj) + ξi(t) (3)
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where ξi are fixed realizations of independent Gaussian white noise processes with 173

autocorrelation function 〈ξi(t)ξi(t+ t′)〉 = σ2δ(t′). Again, despite the generality of our 174

approach for arbitrary network topology Jij and any differentiable transfer functions 175

φ(h), we choose for concreteness a Gaussian connectivity with Jij ∼ N (0, g2/N) and 176

the transfer function φ(h) = tanh(x). 177

To assess the dynamic stability of the stochastic differential equation we employ the 178

theory of random dynamical systems (RDS), where for a frozen input realization, one 179

studies how reliable different initial states respond to this external signal. A system is 180

considered reliable, if different initial conditions converge to the same trajectory and 181

unreliable, if different initial conditions remain separate despite the same external 182

input [61]. More formally, the evolution of a sample measure µtξ is studied for a frozen 183

noise realization ξ(t) with t ∈ (−∞,∞). This is described in more detail in the 184

Materials and Methods section. 185

The mathematical expression of the Jacobian of the flow of the dynamics is the same 186

as in the autonomous case: 187

Dij(ts) =
∂f(hi)

∂hj

∣∣∣
t=ts

= −δij + Jij sech2(hj). (4)

While the mathematical expression is the same as in the autonomous case, noise can 188

have a strong effect both on the distribution of hi and on their autocorrelations 189

∆i(τ) = 〈δhi(t)δhi(t+ τ)〉. The full Lyapunov spectrum, which is independent of input 190

realization ξ [62], is again obtained by a reorthonormalization procedure of the 191

Jacobians along a numerical solution of the stochastic differential equation integrated 192

with the Euler-Maruyama method [47]. For details see the Materials and Methods 193

section. 194

Time-varying input reduces chaoticity 195

We explored the effect of increasing noise strength σ on the Lyapunov spectrum (Fig. 5). 196

By increasing input noise strength σ, the Lyapunov spectrum is increasingly pushed 197

towards the mean Lyapunov exponent −1/τ (Fig. 5A). Increasing the input noise 198

strength σ monotonously reduces the largest Lyapunov exponent of the network 199

dynamics as previously observed in discrete [17,60] and continuous time [20] (Fig. 5B). 200

A similar effect has been observed in rate networks driven by periodic input [18,19]. 201

Input fluctuations reduce dynamical entropy rate 202

The conditional entropy rate, which is calculated from the sum of the positive Lyapunov 203

exponents, decreases for increasing external noise strength σ. Thus, time-varying input 204

impedes the flow of information from the microscopic state to the macroscopic network 205

state. If the information in the microscopic state is considered to be noise, one can 206

conclude that stronger external input fluctuations reduces the noise entropy arising 207

from sensitivity to initial conditions. For strong input, the entropy rate is suppressed 208

(Fig. 5C). 209

Input fluctuations reduce the attractor dimensionality 210

The attractor dimensionality also decreases for increasing input fluctuation strength σ 211

(Fig. 5D). For sufficiently strong input σ, there is a suppression of chaos, which means 212

that the sample measure collapses on a random sink of conditional dimension 213

zero [63, 64]. Thus, while the network dynamics with strong input noise still might seem 214

very high-dimensional, the conditional attractor dimensionality can shrink drastically by 215

a time-varying external input. Such a transition is important for information processing, 216
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∆t = 10−2τ , tONS = τ , tsim = 103τ , averages across 10 network realizations).

because the network looses its dependence on initial conditions, which might be a 217

desirable feature, if the network should generate reliably controlled output trajectories 218

for certain input patterns after learning [23–25]. 219

Lyapunov spectrum of discrete-time firing-rate network 220

Finally, we assess the effect of introducing a finite temporal discretization. The 221

dynamics of discrete-time rate networks has attracted much attention in the past, 222

because it is mathematically more tractable [17, 60, 65–67]. Here we want to understand 223

the effect of time-discretization on the chaotic dynamics. We study the evolution of the 224

map 225

hi(t+ ∆t) = f(hi(t)) = (1−∆t) · hi(t) + ∆t ·
N∑

j=i

Jijφ(hj(t)) + ξi
√

∆t (5)
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where ξ is Gaussian white noise with 〈ξi(t)ξj(t+ τ)〉 = σ2δtτδij . In the limit ∆t→ 0 226

the continuous-time dynamics [11,12,20] is recovered. For ∆t = 1, the discrete-time 227

network [17,17,60,67] is obtained. 228

The Jacobian for the discrete-time case is 229

Dij(ts) =
∂f(hi(t))

∂hj(t)

∣∣∣
t=ts

= (1−∆t)δij + ∆t · Jij sech2(hj(ts)). (6)

The full Lyapunov spectrum is again obtained by a reorthonormalization procedure of 230

the Jacobians along a numerical solution of the stochastic map [47]. For details see the 231

Materials and Methods section. 232

Time discretization breaks the spectral symmetry 233

We found a drastic effect on the Lyapunov spectrum coming from the 234

time-discretization (Fig. 6). For finite ∆t, the Lyapunov spectrum looses it central 235

symmetry (Fig. 6A). While the largest Lyapunov exponent changes only moderately by 236

larger step size, the dynamical entropy rate and attractor dimensionality both grow for 237

large ∆t. This growth of entropy rate and dimensionality is caused by an increasing 238

number of positive Lyapunov exponents (6C+D). At the same time, the other end of 239

the Lyapunov spectrum decreases drastically (6A). This also strongly lowers the mean 240

Lyapunov exponent (Fig. 6A and Fig. 7B). The mean Lyapunov exponents λ̄ converges 241

for small ∆t towards −1/τ . For finite ∆t, the mean Lyapunov exponent can be 242

approximated using random matrix theory by 243

λ̄(∆t) =
log(1−∆t)

τ∆t
(7)

This analytical result agrees well with numerical simulations (Fig. 7B). The derivation 244

can be found in the Materials and Methods section. 245

For ∆t = 1 and small g the Jacobians become close to independent Gaussian 246

matrices and the full Lyapunov spectrum can be approximated by the triangle law for 247

products of random matrices [68,69] (See Materials and Methods section). 248

Discussion 249

Cortical circuits exhibit spatiotemporally complex rate dynamics whose origin and 250

computational properties have puzzled both theoreticians and experimentalists for 251

decades. 252

Here we used canonical measures from ergodic theory of strange attractors to 253

characterize the chaotic dynamics of randomly-wired networks of firing-rate units. This 254

is to our knowledge the first time the full Lyapunov spectrum of a continuous-time 255

random rate network was calculated and used to obtain the dynamical entropy rate and 256

attractor dimensionality. 257

We show that dynamical entropy scales logarithmically with synaptic coupling 258

strength, while the relative attractor dimensionality saturates exponentially for strong 259

coupling. Thus, despite the increasing uncertainty gain due to sensitivity to initial 260

conditions, the diversity of network activity states saturates for strong coupling. We 261

analytically approximate the full Lyapunov spectrum in several limiting cases using 262

random matrix theory. Finally, we find that time-varying input reduces both entropy 263

and dimensionality. 264

We demonstrate that the shape of the Lyapunov spectrum is size invariant and 265

exhibits a linear growth of attractor dimensionality and entropy rate with network size 266

N . This is clear evidence of extensive chaos, which was already conjectured in the 267
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Fig 6. Full Lyapunov spectrum for different time-discretisation ∆t. A The
full Lyapunov spectrum reveals a drastic change for increasing ∆t. For finite ∆t, the
Lyapunov spectrum looses its symmetry (See also Fig. 7). While the majority of
Lyapunov exponents decrease for increasing ∆t, the number of positive exponents
increases. For ∆t = τ and small g, the distribution of Lyapunov exponents follows a
shape close to the triangular distribution, obtained from products of random
matrices [68,69] (see Materials and Methods section). B The largest Lyapunov
exponent saturates for small ∆t. For increasing ∆t, it first decreases and then increases
moderately. C The dynamical entropy rate saturates for small ∆t and increases for
large ∆t. D The Attractor dimensionality behaves similar to the dynamical entropy
rate, (other parameters: N = 1000, g = 10, tONS = τ , tsim = 104τ , σ = 0 averages
across 10 network realizations).

seminal initial work [11]. We further found the Lyapunov spectrum to be symmetric 268

around the mean Lyapunov exponent −1/τm, which we derived analytically using 269

Random Matrix Theory. Symmetry of Lyapunov spectra around zero are usually found 270

in dynamical systems with a symplectic structure [70, 71]. Symmetry around a negative 271

value were previously described in a class of dissipative dynamical systems with viscous 272

damping [70]. They were shown to be symmetric with respect to a constant determined 273

by the dissipation of the system. 274
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spectrum approaches point-symmetry, shown by the convergence of
|λi − λ̄+ λN+1−i − λ̄| towards zero. Note that even for very small ∆t, there exist a
small asymmetry because of the neutral Lyapunov exponent. Removing the neutral
Lyapunov exponent improves the point-symmetry of the Lyapunov spectrum. Thus, the
Lyapunov spectrum is only symmetry in the limits N →∞ and ∆t→ 0. Right: The
mean Lyapunov exponents λ̄ converges for small ∆t towards −1/τ . For finite ∆t, the
mean Lyapunov exponent can be approximated using random matrix theory (See
Materials and Methods section), (other parameters: N = 1000, g = 10, tONS = τ ,
tsim = 104τ , σ = 0 averages across 10 network realizations).

Relation to previous work 275

Firing-rate networks can generate spontaneous rate-fluctuations by recurrent chaotic 276

dynamics [11]. Mechanisms underlying rate chaos recently attracted substantial 277

attention in studies of network heterogeneity [13], bistability [14], external 278

stimuli [17–20] and the role of single unit transfer function [12] and slow synaptic 279

dynamics [15,16] for the collective network state. See also e.g. [60, 67,72–76]. 280

Our approach provides a toolkit from dynamical systems theory to analyze how 281

these different factors shape the complex rate dynamics. 282

We compared the Lyapunov dimension with a dimensionality estimate based on 283

Principal Component Analysis, which is commonly used in 284

neuroscience [18,19,55,56,77]. Generally, we find a quantitatively different but 285

qualitatively similar scaling of the PCA-based dimensionality and the Lyapunov 286

dimension: Both exponentially saturate with synaptic scaling for g > 1 but they 287

saturate at a different level and with distinct exponential rates. Note that Lyapunov 288

exponents and thus also the Lyapunov dimension is invariant under diffeomorphisms on 289

the phase space [78], while covariance-based dimensionality estimates are generally not 290

invariant with respect to changes of variables and can be misleading if applied to a 291

limited data sets [79]. 292

Further, our approach also allows interpolating from continuous-time to discrete 293

dynamics. Discrete-time dynamics of rate networks has previously been studied in 294

random diluted network topologies [67], noise-driven networks [17] and on a ring 295

topology. 296

It is also increasingly appreciated that chaotic rate dynamics provide a substrate for 297

complex nonlinear computations, e.g. learning input-output 298
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relations [22,24,26,34,80,81], and learning temporal sequences [25]. Intriguingly, 299

transient rate chaos yields exponential expressivity in deep networks [36]. Our tools 300

allow to quantify the reorganization of the collective network dynamics during learning 301

and to dissect underlying mechanisms of different reservoir computing strategies. 302

A suppression of chaos by time-dependent input was studied earlier both with white 303

noise input in discrete-time [17] and continuous-time networks [20] and with sinusoidal 304

input [19]. Such a transition has relevance for information processing, because the 305

network looses its dependence on initial conditions, which might be a desirable feature, 306

if the network should generate reliably controlled output trajectories for certain input 307

patterns after learning [23–25]. The transition to complete control by an external 308

stimulus and the associated independence from recurrent initial conditions was earlier 309

studied in rate networks in the context of echo state networks for reservoir computing 310

and termed echo state property [82–85]. 311

Outlook 312

We are only beginning to use ergodic theory to understand neural computation. By 313

employing these concepts in large scale rate networks we have laid the foundation for 314

further investigation. Computational ergodic theory of firing-rate networks has been 315

until now the only way to measure information theoretic quantities of large recurrent 316

circuits. It is an important challenge to obtain a more comprehensive understanding 317

how different factors shape the collective network dynamics. 318

To this end, our analysis of dimensionality and dynamical entropy rate should be 319

extended to other input-output transfer functions φ and other network topologies. One 320

should e.g. study the role of excess of bidirectional connections [86], other second order 321

motifs [87]and strong self-coupling [14]. The analysis should also be extended to circuits 322

in a balanced state, where large excitatory and inhibitory currents dynamically cancel 323

each other. This has been investigated both in spiking [88–91], and rate 324

networks [12,15,72] (But see also [92]). 325

The existence of a transition to rate chaos and its critical properties strongly depend 326

on the onset of the nonlinear transfer function φ(h) [12]. A similar important role of the 327

transfer function is expected both for the attractor dimensionality and the dynamical 328

entropy rate. 329

The link between firing-rate networks and spiking neural networks was recently 330

studied by investigating networks in the limit of very slow synaptic dynamics. In this 331

limit the synaptic input current integrates over a long time and the network dynamics is 332

analogous to a rate network [16] with quantitatively similar activity fluctuations. An 333

interpolation from spiking to rate dynamics with increasing τs and a comparison of the 334

associated Lyapunov spectra of rate and spiking networks might improve our 335

understanding of chaos both in spiking and rate networks. 336

Recent work suggested a link between dynamical and topological complexity [73]. 337

One should explore the attractor dimensionality and dynamical entropy rate to 338

investigate this suggested link. 339

It is also important to investigate how different features of a time-dependent 340

external stimulus shape dimensionality and dynamical entropy [17–19,60,67]. (See 341

also [46,93–95] for driven spiking networks). 342

Which features of the input statistics facilitate complete network state control and 343

govern a transition from chaos to stability? How do spatial and temporal correlations in 344

the input affect entropy rate and attractor dimensionality? Answering such questions 345

does not only deepen our understanding of driven network dynamics, but also helps to 346

harness the computational capabilities of cortical circuit models [22, 24, 25, 34, 80, 81, 96]. 347

This applies both to rate networks and to learning in spiking networks [26–29]. 348
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Earlier studies investigated learning capabilities of rate networks by linearizing the 349

rate dynamics e.g. around fixed points [80,96]. Our approach would allow to study the 350

dynamics in the tangent space along a trajectory. For tracking the orientations of stable 351

and unstable manifolds and the associated instantaneous exponential rates of expansion 352

and contraction time, one should calculate the Lyapunov vectors and the local 353

Lyapunov exponents [97–99]. How does the Lyapunov spectrum change from before to 354

after learning for different task types? What does the Lyapunov spectra reveal about 355

why some network topologies are better at learning than others? Is it – for example– 356

desirable to have many Lyapunov exponents close to zero? How is learning performance 357

reflected in the Lyapunov spectrum? Is there some optimal chaotic reservoir to learn 358

many or long patterns? How are transient stable periods reflected in the Lyapunov 359

spectrum? 360

Answering such questions would provide a deeper understanding of the 361

reorganization of the phase space underlying different learning strategies in recurrent 362

circuits. 363

Materials and Methods 364

We first give a brief summary of the mathematical foundations of Lyapunov spectra and 365

our concrete implementation for rate networks. We then check the convergence of the 366

Lyapunov spectra with various system parameters. Afterwards, we extend the approach 367

to random dynamical systems and the implementation of Lyapunov spectra for 368

nonautonomous networks with time-dependent input. Finally, we calculate the mean 369

Lyapunov exponent analytically and give analytical approximations of the Lyapunov 370

spectra in several limit cases. 371

Lyapunov spectrum of a dynamical system 372

An autonomous dynamical system is usually defined by a set of ordinary differential 373

equations dx
dt = F(x), x ∈ RN in the case of continuous dynamics or as a map 374

xs+1 = f(xs) in the case of discrete dynamics. We focus here on discrete dynamical 375

systems, which are numerically studied in the limit of small time steps, but everything 376

directly extends to continuous systems [100]. In our specific case, we study the discrete 377

network dynamics in the limit of small ∆t. This corresponds to the usual Euler method 378

in the autonomous case or to the Euler-Maruyama method [101] in the nonautonomous 379

case. More generally, the dynamics could also be solved using e.g. a fourth order 380

Runge-Kutta method, but their stochastic counterparts become increasingly complex. 381

An initial condition x0 forms an orbit. As a natural extension of linear stability analysis, 382

one can ask, how an infinitesimal perturbation x′0 = x0 + εu0 evolves in time. Chaotic 383

systems are sensitive to initial conditions, therefore almost all infinitesimal perturbations 384

εu0 of the initial condition grow exponentially. Finite size perturbations therefore may 385

lead to a drastically different future behavior. The largest Lyapunov exponent measures 386

the average rate of exponential divergence or convergence of nearby initial conditions. 387

λmax(x0) = lim
t→∞

1

t
lim
ε→0

log
||εut||
||εu0||

(8)

It is crucial to first take the limit ε→ 0 and then t→∞, as λmax(x0) would be trivially 388

zero for a bounded attractor, if the limits are exchanged, as limt→∞ log ||εut||
||εu0|| is 389

bounded for finite perturbations even if the system is chaotic. To measure N Lyapunov 390

exponents, one has to study the evolution of N independent infinitesimal perturbations 391

spanning the tangent space: 392
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us+1 = Dsus (9)

where the N ×N Jacobian Ds(xs) = df(xs)
dx characterizes the evolution of generic 393

infinitesimal perturbations during one step. Again, we are interested into the 394

asymptotic behavior, therefore we have to study the long-term Jacobian: 395

Tt(x0) = Dt−1(xt−1) . . .D1(x1)D0(x0) (10)

Note that Tt(x0) is a product of generally noncommuting matrices. The Lyapunov 396

exponents λ1 ≥ λ2 · · · ≥ λN are defined by the logarithms of the eigenvalues of the 397

positive-semidefinite symmetric Oseledets matrix 398

Λ(x0) = lim
t→∞

[Tt(x0)
>

Tt(x0)]
1
2t , (11)

where > denotes the transpose operator. The expression inside the brackets is the Gram 399

matrix of the long-term Jacobian Tt(x0). Geometrically, the determinant of the Gram 400

matrix is the squared volume of the parallelotope spanned by the columns of Tt(x0). 401

Oseledets’ multiplicative ergodic theorem guarantees the existence of the Oseledets 402

matrix Λ(x0) for µ-almost all initial conditions x0. In ergodic systems, the Lyapunov 403

exponents λi do not depend on the initial condition x0. However, for numerically 404

calculation of the Lyapunov spectrum, Eq. (11) can not directly be used, because the 405

long-term Jacobian Tt(x0) quickly becomes ill-conditioned, i.e. the ratio between its 406

largest and smallest singular value diverges exponentially with time. 407

Algorithm for calculating Lyapunov spectrum of rate networks 408

For calculating the first m Lyapunov exponents, we instead exploit the fact that the 409

growth rate of an m-dimensional infinitesimal volume element is given by 410

λ(m) =
∑m
i=1 λi. Therefore, λ1 = λ(1), λ2 = λ(2) − λ1, λ3 = λ(3) − λ1 − λ2, etc [47]. 411

The volume growth rates can be obtained via QR-decomposition. Firstly, one needs to 412

evolve an orthonormal basis Qs = [q1
s, q2

s, . . .q
m
s ] in time using the Jacobian: 413

Q̃s+1 = DsQs (12)

Secondly, one performs the QR-decomposition 414

Q̃s+1 = Qs+1R
s+1 (13)

Hereby the non-orthonormal matrix Q̃s+1 is uniquely decomposed into an orthonormal 415

matrix Qs+1 of size N ×m so Q>s+1Qs+1 = 1m×m and an upper triangular matrix 416

Rs+1 of size m×m with positive diagonal elements. 417

Geometrically, Qs+1 describes the rotation of Qs caused by Ds and the diagonal 418

entries of Rs+1 describes the stretching and/or shrinking of Qs, while the off-diagonal 419

elements describe the shearing. Fig. 8 visualizes Ds and the QR-decomposition for 420

m = 2. The Lyapunov exponents are obtained from the diagonal elements of Rs: 421

λi = lim
t→∞

1

t
log

t∏

s=1

Rs
ii = lim

t→∞
1

t

t∑

s=1

log Rs
ii (14)

Note that the QR-decomposition does not need to be performed in every simulation 422

step, just sufficiently often such that Q̃s+w = Ds+w−1 ·Ds+w−2 . . .Ds ·Qs is 423

well-conditioned. An appropriate reorthonormalization interval wONS = tONS/∆t thus 424
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Fig 8. Geometric illustration of Lyapunov spectrum calculation. An
orthonormal matrix Qs = [q1

s, q2
s, . . .q

m
s ], whose columns are the axes of an

m-dimensional cube, is rotated and distorted by the Jacobian Ds into an m-dimensional
parallelotope Q̃s+1 = DsQs embedded in RN. The figure illustrates this for m = 2, in

this case the columns of Q̃s+1 span a parallelogram. It can be divided into a right
triangle and a trapezoid, and rearranged into a rectangle. Thus, the area of the gray
parallelogram is the same as that of the orange rectangle. The QR-decomposition
reorthonormalizes Q̃s+1 by decomposing it into the product of an orthonormal matrix
Qs+1 = [q1

s+1, q2
s+1, . . .q

m
s+1] and the upper-triangular matrix Rs+1. Qs+1 describes

the rotation of Qs caused by Ds. The diagonal entries of Rs+1 gives the
stretching/shrinking along the columns of Qs+1, thus volume of the parallelotope

formed by the first m columns of Q̃s+1 is given by Vm =
∑m
i=1 Rs+1

ii . The
time-normalized logarithms of the diagonal elements of Rs give the Lyapunov spectrum:
λi = limt→∞ 1

t log
∏t
s=1 Rs

ii = limt→∞ 1
t

∑t
s=1 log Rs

ii.

depends on the condition number, given by the ratio of the smallest and largest singular 425

value: 426

κ2(Q̃s+w) = κ2(Rs+w) =
σ1(Rs+w)

σm(Rs+w)
=

Rs+w
11

Rs+w
mm

. (15)

The condition number can therefore be estimated based on the ratio of the largest and 427

smallest Lyapunov exponent that are calculated: κ2(Q̃s+w) ≈ exp (λ1 − λm). Thus, an 428

appropriate reorthonormalization interval is given by tONS = O
(

log(κ̂2)
λ1−λm

)
, where κ̂2 is 429

some acceptable condition number. The acceptable condition number depends on the 430

desired accuracy of the entries of Rs+w. Here we show a minimal example of this 431

algorithm in pseudocode: 432
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Jacobian-based algorithm (Benettin)

initialize h, Q
warm-up of h
warm up of Q
for t = 1→ tsim/∆t do

h← f(h)
D← df

dh
Q← D ·Q
if t % tONS = 0 then

Q,R← qr(Q)
γi += log(Rii)

end if
end for
λi = γi/tsim

Convergence of the Lyapunov spectrum 433

We checked the convergence of the Lyapunov spectrum as a function of different 434

simulation parameters. Firstly, the Lyapunov exponents were checked to be converged 435

with simulation time tsim (Fig. 9). Figure 9 shows the temporal convergence of selected 436

Lyapunov exponents for ten network topologies for different values of g and σ. The 437

Lyapunov spectra were independent of initial conditions, but showed some variability 438

across different network topology realizations. There are two main contributions for 439

variability of numerically calculated Lyapunov spectra, finite-time sampling noise and 440

quenched fluctuations: Lyapunov exponents are asymptotic properties numerically 441

estimated from finite time calculations. 442

In addition, variability is arising from the quenched disorder in different random 443

topologies. The first contribution would vanish in the limit of long simulations for 444

ergodic systems. The second contribution is expected to vanish in the large network 445

limit due to self-averaging. Quantities that are self-averaging converge in the limit of 446

large system size to the ensemble average. Secondly, we confirmed that the 447

orthonormalization interval was chosen sufficiently small (Fig. 10a). If the 448

reorthonormalization is not carried out sufficiently often, the long-term Jacobian Tt(x0) 449

becomes ill-conditioned. As a consequence, the orthonormalization becomes numerically 450

instable beginning from the end of the Lyapunov spectrum and errors start to 451

accumulate (Fig. 10d). As described, a suitable orthonormalization interval inversely 452

scales with the difference between smallest and largest Lyapunov exponent to be 453

calculated |λ1 − λk|. Therefore, it is no surprise that for large ∆t, the errors in the 454

Lyapunov spectrum grow faster with tONS (Fig. 10d), because the difference |λ1 − λk| is 455

larger (Fig. 7). 456

Thirdly, we checked convergence with integration time step ∆t (Fig. 6A). For large g, 457

the integration time step ∆t has to be chosen smaller, because the autocorrelations of 458

the Jacobians become very short (τAC � τ), although the autocorrelations of the 459

dynamics variables hi stays finite even for g →∞ [11]. 460

Fourthly, we confirmed the convergence of the shape of the Lyapunov spectrum with 461

network size N (Fig. 4B). Note that even for very small ∆t, there exist a small 462

asymmetry in the Lyapunov spectrum because of the neutral Lyapunov exponent. Thus, 463

the Lyapunov spectrum is only symmetric in the limits N →∞ and ∆t→ 0. 464

Fifthly, we confirmed numerically that the neutral Lyapunov exponent associated to 465

a perturbation in the direction of the flow converges towards zero in the limit of small 466

∆t (not shown). 467
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Fig 9. Convergence of Lyapunov spectrum with simulation time tsim.
A: Convergence of selected Lyapunov exponents λi for ten different network realizations
with simulation time (in units of τ)(i = 1, 100, 200, . . . 1000) for σ = 0 and g = 3.
B same as top left, but for σ = 1 and g = 3. C σ = 0 and g = 0.6. D σ = 1 and
g = 0.6. (Other parameters: N = 1000, ∆t = 0.01τ , tsim = 104τ , tONS = τ).

Random Dynamical Systems and trial-to-trial variability 468

Consider a stochastic differential equation of the form: 469

dxt = a(xt)dt+

N∑

i=1

bi(xt) ◦ dW i
t

where dW i
t are independent Brownian motions. An associated stochastic flow map is a 470

solution for the dynamics, i.e. Ft1, t2;ζ(xt1) = xt2 . Instead of studying the temporal 471

evolution of some initial measure µ, where each initial condition receives “private” noise, 472

as it is usually done in a Fokker-Planck approach, the theory of random dynamical 473

systems studies the evolution of a sample measure µtζ , defined as 474

µtζ = lim
s→∞

(F−s, t;ζ)∗µ

where the propagator (F−s, t;ζ)∗ transports the initial measure µ for some fixed white 475

noise realization ζ(t) defined for all t ∈ (−∞,∞) along the flow F−s, t;ζ . In other words, 476

the sample measure µtζ is the conditional measure at time t given the infinite past 477

history of ζ(t). Note that in general, while µtζ depends both on time t and the noise 478
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Fig 10. Convergence of Lyapunov spectrum with reorthonormalization
interval tONS. The reorthonormalization does not need to be carried out in every
simulation step. One has to reorthonormalize sufficiently often such that
Q̃s+w = Ds+w−1 ·Ds+w−2 . . .Ds ·Qs is well-conditioned. If the reorthonormalization is
not performed sufficiently often, the error of the Lyapunov exponents grow. This is
reflected in a flattening of the Lyapunov spectrum for too large tONS. A Lyapunov
spectra for tONS ∈ {0.1, 0.2, 0.3, 0.5, 1, 2, 5, 10, 20, 50, 100}τ for ∆t = 0.01. B ∆λmax
shows the deviation of the largest Lyapunov exponent for different tONS from the
smallest tONS = 0.1τ . Same is shown for H and D. For our typical parameter sets an
orthonormalization interval of tONS = 1τ is sufficient to keep errors in H and D orders
of magnitudes smaller than the deviations across topologies due to quenched
fluctuations. C Same as A for ∆t = 1. D Deviations of full Lyapunov spectra for
different tONS from the smallest tONS = 0.1 for ∆t = 0.01. (Other parameters:
N = 1000, ∆t = 0.01τ , g = 10, tsim = 104τ , averages across 10 network realizations).

realization ζ, it posses invariant properties, characterizing its structure. For example, 479

the Lyapunov exponents λ1 > λ2 > . . . > λN are independent of the input realization 480

ζ [62]. 481

Two theorems for random dynamical systems link sample measure µtζ and Lyapunov 482

spectrum in chaotic and stable systems respectively. 483

Firstly, Ledrappier and Young proved that if λ1 > 0, then µtζ is a random SRB 484

(Sinai-Ruelle-Bowen) measure [50]. 485

As a consequence, in contrast to autonomous systems, for random dynamical 486
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systems the Pesin identity H =
∑
λi>0

λi is guaranteed to hold. Note that in contrast to 487

SRB measures of autonomous systems, random SRB measures are time-dependent. 488

However, they have a similar meaning: Systems with SRB measure have smooth 489

conditional measures along the unstable manifolds. 490

Secondly, Baxendale and Le Jan showed that if λ1 < 0 and the stationary measure is 491

ergodic and some nondegeneracy conditions on the measure are fulfilled [63], then µtζ is 492

a random sink, which means µtζ(x) = δ(x− xt), where xt is a solution of the stochastic 493

dynamics for a given noise realization ζ [63, 64]. 494

This means that any trajectory of a stable rate network driven by white noise will at 495

some time be absorbed into one single trajectories, which is independent of the initial 496

condition but depends only the noise realization. Equally, any smooth initial measure 497

will asymptotically coalesce into a wandering time-dependent sink. 498

Note that the theorems by Baxendale and Le Jan do not say, when the globally 499

attracting random sink will be reached, which means in case of very long transients, its 500

asymptotic existence might have no practical relevance on the timescale of interest [39]. 501

Principal component-based dimensionality estimate 502

We compared the Lyapunov dimension to a principal component-based dimensionality 503

estimate. Principal component analysis (PCA) has been widely used as dimensionality 504

reduction technique both in experimental and theoretical neuroscience [18,19,55,56]. 505

PCA provides for a data set the succeeding orthogonal directions that account for 506

most of the variance in the data and the associated fraction of variance explained. 507

Mathematically, PCA is given by the eigenvalue decomposition of the covariance matrix. 508

From the eigenvalues one can obtain the percentage of the total variance explained by 509

each principal component. The number of principal components necessary to account 510

for the majority of the total variance gives an estimate of the number of degrees of 511

freedom of the underlying dynamics. If few principal components explain most of the 512

variance, the dynamics is mostly constrained to a hyperellipsoid with few large axes. If 513

many principal components are necessary to explain most of the variance, no such 514

localized structures in the second order statistics of the collective dynamics are detected. 515

To avoid choosing an arbitrary threshold of variance, one can use a participation ratio, 516

commonly used in physics to quantify e.g. localization of collective activity modes [102], 517

Anderson localization of waves in a disordered medium [103] or localized Lyapunov 518

vectors [91,97]. We calculated PCA-based dimensionality estimates both based on the 519

covariance of the total synaptic currents hi and of the ”rates” ri = tanh(hi): 520

Chij = 〈(hi − 〈hi〉)(hj − 〈hj〉)〉 (16)

A covariance-based dimensionality estimate is then given by the inverse participation 521

ratio 522

Dh
PCA =

(
∑N
n=1 µ

h
n)2

∑N
n=1 µ

h2
n

(17)

where µhn is the nth eigenvalue of the covariance matrix Chij . If all eigenvalues contribute 523

equally (i.e.
µh
n∑

i µ
h
n

= 1/N), the dimension estimate is Dh
PCA = N . Conversely, if only 524

one eigenvalue contributes then Dh
PCA = 1 [18,55,91]. Dtanhh

PCA was calculated the same 525

way, but for the covariance matrix Ctanhh. 526
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Random matrix theory of Lyapunov exponents 527

We first derive the mean Lyapunov exponent both in the continuous-time and 528

discrete-time case. We then give approximations of the full Lyapunov spectrum in 529

several limiting cases. 530

Random matrix theory of mean Lyapunov exponent 531

From the Jacobian, we derive a random matrix approximation of the mean Lyapunov 532

exponent λ̄ = 1
N

∑N
i=1 λi. The mean Lyapunov exponent describes the average 533

dissipation rate of phase space compression, captured by the determinant of the long 534

term Jacobian Tt = Dt · · ·D0: First, we calculate the distribution of entries of the 535

Jacobian analytically. In the discrete-time case the Jacobian is given by: 536

Dij(ts) =
∂f(hi(t))

∂hj(t)

∣∣∣
t=ts

= (1−∆t)δij + ∆t · Jij sech2(hj(ts)). (18)

Thus, the Jacobian is a negative scaled identity matrix plus the coupling matrix with 537

rows scaled by the squared hyperbolic secant of the network activity states hi. It is 538

known that in the chaotic regime, the activity variables hi follow for large N 539

approximately a Gaussian distribution both in discrete and continuous time 540

h ∼ N (0,∆0), where for large N , ∆0 solely depends on g [11,12,17,20]. The variance of 541

hi grows with g, thus the squared hyperbolic secant of hi is close to zero for most i. For 542

this reason, in case of strong g, most rows of Dij(ts) are close to zero and Dij becomes 543

sparse. 544

The long-term Jacobian Tt(h0) is 545

Tt(h0) = Dt−1(ht−1) . . .D1(h1)D0(h0) (19)

=
t−1∏

s=0

Ds (20)

=

t−1∏

s=0

[
(1−∆t)1+ ∆t · J · sech2(h(ts))

]
(21)

(22)

Thus, the mean Lyapunov exponent is 546

λ̄ =
1

Nτ
lim

tsim→∞
1

tsim
ln
(

det Tt

)
(23)

=
1

Nτ
lim
t→∞

1

t∆t
ln
(

det Tt

)
(24)

=
1

Nτ
lim

t∆t→∞
1

t∆t
ln

(
det

[
t−1∏

s=0

(1−∆t)1+ ∆t · J · sech2(h(ts))

])
(25)

=
1

Nτ
lim

t∆t→∞
1

t∆t
ln

(
t−1∏

s=0

det
[
(1−∆t)1+ ∆t · J · sech2(h(ts))

]
)

(26)

u
1

Nτ
lim

t∆t→∞
1

t∆t
ln
(

det [(1−∆t)1+ ∆t · J · y]
t
)

(27)

u
1

τ
lim
τ∆t

1

t∆t
ln
(
(1−∆t)t

)
(28)

=
1

τ∆t
ln (1−∆t) (29)

(30)

In the limit ∆t→ 0, the mean Lyapunov exponent thus becomes − 1
τ . 547
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Random matrix approximations of full Lyapunov spectrum 548

The full Lyapunov spectrum is given by the eigenvalues of the Oseledets matrix 549

Λ = lim
t→∞

[Tt
>Tt]

1
2t . (31)

As the long term Jacobian Tt(h0) is a product of generally noncommuting matrices, it 550

is considered to be difficult to calculate the full Lyapunov spectrum analytically [104]. 551

However, we identified several limits, where correlations between subsequent Jacobians 552

vanish and random matrix approximations are justified [104]. The autocorrelations 553

∆i(τ) = 〈δhi(t)δhi(t+ τ)〉 (32)

can be solved self-consistently [11]. In the limit of large g, expanding the 554

self-consistency equation near t = 0 yields 555

∆(τ) = g ·∆0 + g · (∆0 − 1)
t2

2
+ . . . (33)

with ∆0 = 2(1− 2/π) [11]. Close to the chaotic instability g → 1+, the autocorrelations 556

are approximately [11] 557

∆(τ) u
g2 − 1

2
sech

(
t · (g2 − 1)

2
√

3

)
. (34)

As hi follows a Gaussian distribution h ∼ N (0,∆0), we can calculate the distribution of 558

the off-diagonal entries y of the Jacobians analytically: 559

p(y) =

∫
dh δ(y − sech2(h))

e−
h2

2∆0√
2π∆0

=

exp

(
− ln

(
1/y±
√

1/y−1
)

2∆0

)

√
2π∆2

0|2y
√

1− y|
(35)

We can thus write the Jacobian as 560

Dij(ts) = (1−∆t)δij + ∆t · Jijyj . (36)

where yi are drawn from p(y). But how can we deal with correlations between 561

subsequent Jacobians? Firstly, we note that the autocorrelations of the Jacobians 562

become arbitrary short in the limit of large g, although the autocorrelations of the 563

activity variables h approach Eq. (33). For large g, the model behaves like the fully 564

asymmetric Ising spin glas model [105]. Substituting ∆(t) = ∆0 exp(−t/τh) into the 565

self-consistency equation and taking the large t limit yield a relaxation of the 566

autocorrelation of τ−1
h =

√
1− 2/π [11]. Thus, the autocorrelation of Dij relax 567

approximately like τD ∼ 1
g . We numerically confirmed that for large g the Jacobians 568

approximately commute and the Lyapunov spectrum obtained after shuffling the 569

sequence of Jacobians is almost the same. Thus, the long-term Jacobian can be 570

approximated by a product of random matrices of the form of Eq. (36). 571

In the continuous-time limit g → 1+, the timescale of the autocorrelations of hi 572

diverges with τh = (g2 − 1)/(2
√

3) [11]. Because limg→1+ ∆0 = g − 1, the 573

autocorrelations of Dij diverge with the same time constant τD = (g2 − 1)/(2
√

3). 574

Numerical simulations also showed that in the limit g → 1+ the Jacobian approximately 575

commute and the Lyapunov spectrum obtained after shuffling the sequence of Jacobians 576

is almost the same. Thus, the Lyapunov spectrum is given by the logarithms of the 577

eigenvalues of a product of almost identical random matrices, which follows the 578

celebrated Wigner semicircle distribution [104,106]. 579
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In the discrete-time limit g → 1+ and ∆t = 1 subsequent Jacobians are close to 580

uncorrelated. The Lyapunov spectrum can thus be obtained from a product of 581

uncorrelated Gaussian matrices, whose eigenvalue distribution follow a triangle 582

law [68,69]. The full Lyapunov spectrum in this limit can thus be approximated by 583

λi = log

(
exp(λ1) ·

√
1− i

N

)
= λ1 +

1

2
log

(
1− i

N

)
(37)

where the largest Lyapunov exponent λ1 can be obtained analytically as described 584

earlier both in the discrete and continuous-time case with constant input and frozen 585

white noise drive [11,12,17,20]. 586

Supporting Information 587

S1 Code Source code for Lyapunov spectrum of rate networks. We 588

provide all necessary code to calculate the full Lyapunov spectrum with code written in 589

Julia [107]. The efficient implementation is parallelized using level-3 matrix-matrix 590

operations from BLAS (Basic Linear Algebra Subprograms) called via LAPACK (Linear 591

Algebra PACKage). The code also provides an alternative estimate of the largest 592

Lyapunov exponents by tracking the evolution of a small but finite initial perturbation 593

and resizing it iteratively [40]. Furthermore, the program provides bootstrapped 95 594

percentile confidence intervals for the first and the last Lyapunov exponent, the 595

Kolmogorov-Sinai entropy rate and the Lyapunov dimensionality. Optionally, also a 596

principal component-based dimensionality estimate can be calculated. Finally, the 597

program provides the convergence of the Lyapunov spectrum in time. Input variables 598

are network size N , coupling strength g, time discretization ∆t, simulation time tsim, 599

number of Lyapunov exponents to be calculate nLE, orthonormalization time interval 600

tONS, seed for initial conditions seedIC , seed for random network topology seedTopo, 601

seed for orthonormal system seedONS and finally the subdirectory where the results are 602

stored. Code written in MATLAB®/Octave is available upon request. 603

S2 Code Source code for Lyapunov spectrum of noise-driven rate 604

networks. Similar to S1 Code, the full Lyapunov spectrum of a noise driven rate 605

network is obtained by a reorthonormalization procedure [47], which is done along a 606

numerical solution of the stochastic differential equation obtained with the 607

Euler-Maruyama method [101]. The noise strength σ is now an additional input 608

parameter. Code written in MATLAB®/Octave is available upon request. 609
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indépendants. Annales de l’IHP Probabilités et statistiques. 1987;23(1):111–120.

65. Amari SI. Learning Patterns and Pattern Sequences by Self-Organizing Nets of
Threshold Elements. IEEE Transactions on Computers.
1972;C-21(11):1197–1206. doi:10.1109/T-C.1972.223477.

66. Parisi G. Asymmetric neural networks and the process of learning. Journal of
Physics A: Mathematical and General. 1986;19(11):L675.
doi:10.1088/0305-4470/19/11/005.

67. Doyon B, Cessac B, Quoy M, Samuelides M. Control of the transition to chaos
in neural networks with random connectivity. International Journal of
Bifurcation and Chaos. 1993;03(02):279–291. doi:10.1142/S0218127493000222.

68. Newman CM. The distribution of Lyapanov exponents: exact results for random
matrices. Communications in mathematical physics. 1986;103(1):121–126.

69. Isopi M, Newman CM. The triangle law for Lyapunov exponents of large random
matrices. Communications in mathematical physics. 1992;143(3):591–598.

70. Dressler U. Symmetry property of the Lyapunov spectra of a class of dissipative
dynamical systems with viscous damping. Physical Review A.
1988;38(4):2103–2109. doi:10.1103/PhysRevA.38.2103.

71. Wojtkowski MP, Liverani C. Conformally Symplectic Dynamics and Symmetry
of the Lyapunov Spectrum. Communications in Mathematical Physics.
1998;194(1):47–60. doi:10.1007/s002200050347.

72. Ostojic S. Two types of asynchronous activity in networks of excitatory and
inhibitory spiking neurons. Nature Neuroscience. 2014;17(4):594–600.
doi:10.1038/nn.3658.

73. Wainrib G, Touboul J. Topological and Dynamical Complexity of Random
Neural Networks. Physical Review Letters. 2013;110(11):118101.
doi:10.1103/PhysRevLett.110.118101.

74. Mastrogiuseppe F, Ostojic S. Intrinsically-generated fluctuating activity in
excitatory-inhibitory networks. PLOS Computational Biology.
2017;13(4):e1005498. doi:10.1371/journal.pcbi.1005498.
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8 Dynamical models of cortical circuits

8.1 Summary
Cortical neurons operate within recurrent neuronal circuits. Dissecting their operation is key to
understanding information processing in the cortex and requires transparent and adequate dynam-
ical models of circuit function. Convergent evidence from experimental and theoretical studies
indicates that strong feedback inhibition shapes the operating regime of cortical circuits. For cir-
cuits operating in inhibition-dominated regimes, mathematical and computational studies over the
past several years achieved substantial advances in understanding response modulation and het-
erogeneity, emergent stimulus selectivity, inter-neuron correlations, and microstate dynamics. The
latter indicate a surprisingly strong dependence of the collective circuit dynamics on the features
of single neuron action potential generation. New approaches are needed to definitely characterize
the cortical operating regime.
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Introduction
Cortical circuits are built of two main neuron classes —

excitatory and inhibitory — that comprise about 80% and

20% of nerve cells respectively. An intricate network of

synaptic connections links neurons within and across

cortical layers. Long-ranging inputs drive and modulate

activity in the local circuit, including afferent drive by

specific thalamic nuclei and modulation by remote cor-

tical cells [1,2]. Recurrent excitation in cortical circuits is

believed to underlie the amplification of specific input

patterns and the generation of persistent activity. In view

of the large recurrently connected excitatory cell popu-

lation, feedback inhibition appears indispensable for sta-

bilizing recurrent cortical circuits. Recent functional and

anatomical studies demonstrated that inhibitory connec-

tions in the local cortical circuit appear in general strong

(see e.g. Ref. [3]) and dense [4–6]. This suggests that the

inhibitory population as a whole can provide a dense

‘blanket of inhibition’ as a prerequisite for the utilization

of recurrent excitation [7]. Over the past several years

dynamical models of cortical circuits started to reveal

unanticipated and counterintuitive roles of dominant

feedback inhibition.

As any mathematically formalized model, models of cor-

tical circuits have to strike a balance between idealization

and detail. Current experimental approaches harnessing

the ongoing progress in optophysiology, genetics and

connectomics are beginning to picture cortical circuits

in unprecedented detail. Substantial efforts in theoretical

neuroscience are dedicated to laying the foundations for

integrating and dissecting the emerging wealth of data.

No amount of detail, however, can be expected to offset

the need for idealization. Idealization — even counter-

factual idealization, that is the neglect of known fea-

tures — is required whenever the essential ingredients

of a phenomenon need to be identified or when a quali-

tatively novel type of behavior demands conceptual ad-

vancement. For such challenges the ultimate aim is not

realism but clarity, mathematical control, and the trans-

parent penetration of complex phenomena. Recent work

on the operating point of cortical circuits provides intri-

guing examples of paradoxical effects such as the sup-

pression of activity by withdrawal of inhibition and

excitation [8] or the emergence of response selectivity

in random networks [9��]. The emerging understanding

of such counterintuitive aspects of cortical operation

promises to guide cortical circuit models to a mature

balance of idealization and detail.

Balanced circuits, inhibition-stabilized
networks (ISNs) and paradoxical responses
Dominant feedback inhibition plays a central role in

virtually every dynamical model of cortical operation.

Prime examples are models exhibiting balanced states,
in which strong feed forward and recurrent excitation

are balanced by equally strong recurrent and feedback
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inhibition [10,11] (Fig. 1). Under such conditions spiking

is driven by residual temporal fluctuations of net synaptic

input and as a result is temporally irregular and only

weakly correlated between cells. A related class of models

are ISNs [8,12] (Fig. 2). ISNs are defined by recurrent

excitation being so strong that runaway excitation cannot

be prevented by any fixed amount of inhibition and

stabilization can only be achieved if the activity of the

inhibitory neuron population dynamically tracks every

fluctuation in excitatory population activity. Balanced

networks are in general ISNs but not all ISNs generate

balanced states, strong input fluctuations and irregular

asynchronous firing patterns. Above a threshold strength

of recurrent excitation and inhibition, ISNs predict a

paradoxical response to an additional external drive

impinging on the inhibitory population (Fig. 2). One

may naively expect that such a drive increases inhibition

and reduces activity in the excitatory population by

disynaptic inhibition. In a strongly coupled ISN, however,

both activity levels drop leading to an effective ‘with-

drawal’ of excitation and a paradoxical reduction of the

level of feedback inhibition. Ozeki et al. recently found

that this paradoxical response apparently underlies the

phenomenon of surround suppression in cat V1 [8]. As the

suppression of activity by a simultaneous reduction of

excitation and inhibition in the local circuit seems hard to

explain in any other way, this phenomenon represents an

intriguing piece of evidence for an inhibition stabilized

operating regime in which excitation and inhibition are

strong and dynamically matched. While feedback inhi-

bition also appears strong in rodent sensory cortex, a

recent study reported evidence for the simpler scenario

of increased inhibition as the basis of surround suppres-

sion in mouse visual cortex [13]. Furthermore optogenetic

activation of interneurons in mouse visual cortex can

generate a wide variety of effects but so far has not

provided evidence for paradoxical responses [14,15].

Further work is needed to clarify the phenomenology

and determine whether similar or distinct mechanisms

mediate surround suppression in rodent, carnivore and

primate visual cortex.

Independent lines of experimental and theoretical evi-

dence further support a cortical operating regime of

strong feedback inhibition and recurrent excitation.

Experimentally, London et al. found that inducing an

additional spike in a single excitatory neuron in rodent

barrel cortex can trigger a substantial rate response in the

local circuit that indicates an intrinsically unstable level

of recurrent excitation [16]. Intracellular studies of layer

IV neurons in mouse visual and auditory cortex provide

direct evidence for the recruitment of strong, amplifying
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Balanced states robustly emerge in local circuits of inhibitory and excitatory neurons. Neurons in balanced networks are driven by residual input

fluctuations that result from the near cancelation of excitatory and inhibitory inputs (upper right). The balance of excitatory and inhibitory inputs is a

collective phenomenon and emerges from the recurrent interactions in the network. Balanced states were first found in sparse randomly connected

networks. Recent work demonstrated the emergence of balanced states also in structured and more densely connected circuits and revealed that

they actively suppress the occurrence of correlated activity. Cells in balanced networks robustly exhibit irregular and asynchronous activity patterns

(lower left).
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recurrent excitation [17–19] (discussed in Ref. [20]). In

addition, theoretical studies that constructed compre-

hensive models for the contextual modulation of

responses to grating stimuli in primate V1 ([21,22], see

also Refs. [23,24]) are converging to a inhibition domi-

nated local circuit structure. The same conclusion is

supported by a study that tuned detailed recurrent circuit

models to match the orientation tuning of subthreshold

and spiking activity in pinwheel centers and orientation

domains [25]. Finally, Persi et al. performed a compre-

hensive search for local circuit models that successfully

reproduce contrast response functions in primate V1.

They also conclude that cortical circuits without strong

feedback inhibition are unable to match experimental

observations [26].

Do visual cortical circuits operate in a
balanced state?
In an attempt to extend the study of ISNs toward defining

the operating regime of V1 circuits, Ahmadian et al.
recently studied networks of model neurons with expan-

sive nonlinear input–output relations [27�]. These net-

works, called stabilized supralinear networks (SSNs),

exhibit supralinear responses for weak inputs and sub-

linear and non-monotonic responses for strong inputs (see

also Ref. [26]). This crossover from supralinear to sub-

linear responses promises a novel theoretical account for a

wide range of normalization phenomena found in V1 [28].

Classical models of cortical circuits in the balanced state

are known to behave distinctly different. In these models,

the condition of small average net input implies that the

firing rates of the neuronal populations depend linearly on

the external inputs. Ahmadian et al. therefore raised the

question of whether the observed response non-linearity

indicates that visual cortical networks are not operating in

a balanced state. Two recent studies, however, show that

response linearity is not a critical prediction of the

balanced state [29��,30]. In these studies Mongillio, Han-

sel and coworkers for the first time presented a consistent

treatment of balanced states in networks, in which synap-

tic inputs exhibit short-term plasticity such as synaptic

depression and facilitation. Because of short-term

plasticity the condition of small mean net input becomes

nonlinear in the population firing rates and assumes a

form that is similar to the equations that determine the

firing rates in nonlinear rate models of the type used in

[27�]. It is thus conceivable that a synaptic source of

nonlinearity within a balanced network could result in

similar normalization effects as predicted by a SSN.

Further studies are needed to conclusively examine these

alternative scenarios.

Feature selectivity and response
heterogeneity in random circuits
Recently Hansel and van Vreesweijk showed that

balanced states can lead to the emergence of sharp tuning

for stimulus features even in randomly connected net-

works [9��]. They examined randomly wired networks of
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Inhibition-stabilized networks (ISNs) predict paradoxical responses beyond a threshold level of recurrent interactions. In ISNs recurrent excitation is so

strong that runaway self-excitation can only be prevented if the inhibitory population tightly tracks fluctuations in the activity of the excitatory

population. The schematic phase diagrams (left) indicates the occurrence of paradoxical responses in a section through the parameter space of a non-

balanced and a balanced two population network, a special case of an ISN. The balanced network phase diagram also illustrates that parameter tuning

is not required because balanced activity emerges from the network dynamics for an entire volume (grey) of parameter space. For strong recurrent

interactions both the activity of the excitatory and the inhibitory population drop when the inhibitory population is subjected to an increased external

drive (right, SR simple response, PR paradoxical response).
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neurons receiving weakly orientation tuned net input as a

result of random wiring. The emergent balance in the

network, however, cancels the mean input and adjusts

the population activity such that output firing is tuned

as sharply as observed in V1 (Fig. 3). This study con-

stitutes an important contribution towards understand-

ing the operation of rodent visual cortex. In all rodents

examined so far orientation selective V1 neurons are not

organized into an orientation map but are arranged in an

interspersed layout (reviewed in Refs. [1,31] see also

Ref. [32]). Locally neurons are preferentially but not

exclusively connected to neurons of similar orientation

preference and receive inputs from cells exhibiting the

full complement of preferred orientations [33–35]. Thus

mature mouse V1 can be viewed as composed of inter-

mingled subcircuits that are partially but not completely

segregated (reviewed in Ref. [1]). So mouse V1 is

certainly not per se a random network. It remains,

however, an open question whether or not the observed

specificity contributes to response selectivity. Interest-

ingly, mature-like oriented receptive fields are observed

already at eye opening when the preferential connec-

tivity is not yet established [36]. This is consistent with

the finding of Hansel and van Vreesweijk that the

specific connectivity is not a necessary prerequisite

for the sharp orientation tuning. It is an important open

question which neuronal operations are generated or

enhanced by the selective excitatory connectivity in

mouse visual cortex.

Balanced circuit models typically exhibit highly hetero-

geneous response properties that result from random

variations in connectivity across neurons [10,11,37].

For instance, the balanced model for orientation tuning

in rodent V1 [9��] exhibits substantial heterogeneity in

orientation selectivity that is similar to the biologically

observed heterogeneity in mouse visual cortex [38].

Balanced network models also robustly predict the most

elementary kind of response heterogeneity: firing rate

heterogeneity. Firing rate distributions have been

examined in various cortical areas and appear to be

generally broad and skewed toward low firing rates

(reviewed in Ref. [39]). Roxin et al. recently presented

a systematic analysis of firing rate distributions in

balanced networks of neurons with expansive input–
output relationships. Under a wide range of conditions

these networks were found to robustly predict realisti-

cally broad firing rate distributions [40]. A slightly more

complicated analysis can be performed to characterize

the distribution of orientation selectivity in balanced

Dynamical models of cortical circuits Wolf et al. 231
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Randomly connected networks in the balanced state driven by a random projection from a population of orientation-tuned neurons can generate highly

selective responses. The total excitatory input to each neuron in the network is only weakly tuned. The balance of mean excitation and inhibition

emerging in the network, however, largely cancels the untuned mean input. As a result, the neurons input output function can generate highly selective

orientation tuning.
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circuit models [37]. Such analyses will facilitate the

quantitative comparison of balanced circuit predictions

and population measurements. While the experimen-

tally observed degree of response heterogeneity is con-

sistent with generic predictions of balanced state models,

biological response heterogeneity can in principle result

from a wide range of sources. Dissecting the predicted

response heterogeneity systematically should uncover

more specific signatures of the distinct mechanisms.

Correlations and network structure
Correlations between the activities of different cortical

neurons in a local circuit are on average relatively weak

with correlation coefficients of 0.1 and below [41,42]. The

classical models of balanced state networks are based on

sparse random graphs in which the number of neurons in a

population is much larger than the average number of

synapses which is itself a large number. Numerical stu-

dies of balanced networks of spiking neurons, however,

have for a long time indicated that a very sparse connec-

tivity is not a strict requirement for the emergence of

weakly correlated asynchronous states. Renart et al.
recently extended the theoretical treatment of balanced

networks to the case of dense connectivity, in which the

number of connections per neuron scales proportional to

the number of neurons in the population [43��]. They

showed that even with dense connectivity correlations are

weak and vanish in the large network limit. The basis for

this robust suppression of interneuron correlations is the

capability of the inhibitory and excitatory inputs to not

only cancel on average but also to track each other

dynamically, canceling a substantial fraction of common

input fluctuations [43��,44]. This feature seems to be a

general property of balanced circuit models but so far has

been analytically derived only for idealized networks of

binary neurons [43��].

Refined concepts for analyzing network generated pat-

terns of correlations in spiking neuron networks have

emerged over the past years. The transmission of input

correlations into spike output correlations has been

characterized for a diverse set of model neurons clarifying

the dependence of correlation transmission on parameters

of background input fluctuations, spike generation and

synaptic characteristics [45–51]. Simple threshold neuron

models apparently mimic correlation transmission in cor-

tical neurons surprisingly well [48]. Using theses

approaches recent studies have started to dissect self-

consistent patterns of inter-neuron spike correlations in

networks with random and structured connectivity [52–
55]. These studies are building a coherent mathematical

foundation for future analyses on how single neuron and

synaptic dynamics together with the circuit’s connectome

shape the structure and strength of emergent correlations.

Notably, they generally presuppose that the emergent

states are statistically stationary. Litwin-Kumar and

Doiron, however, discovered that introducing clustering

motifs into balanced networks can lead to the emergence

of slow firing rate fluctuations that deviate from a station-

ary process [56�]. It is thus an important open question

how ubiquitous this phenomenon is and how structured

or random a network needs to be to spontaneously gen-

erate slow rate fluctuations [72].

Chaotic dynamics, temporal-decorrelation
and the bandwidth of neural population
responses
Neuronal circuit models in the balanced state are non-

linear high dimensional dynamical systems. They are

thus expected to evolve chaotically in time. The first

balanced circuit models in fact exhibited an extremely

strong form of chaotic dynamics in which trajectories

starting from similar initial conditions diverged faster

than exponential [11]. Recent analyses of balanced cir-

cuits of spiking neuron models have revealed that the

strength and nature of deterministic chaos can qualitat-

ively depend on the choice of single neuron model

[57,58,59,60��,61��]. Balanced networks in which recur-

rent inhibition balances an external drive exhibit

temporally irregular asynchronous spiking patterns.

The generated sequences of spikes and subthreshold

voltage fluctuations, however, can nevertheless be dyna-

mically stable such that the network returns to a unique

and invariant voltage trajectory and spike sequence after

small perturbations [57,58,59,61��] (Fig. 4). This stable

irregular spiking dynamics was first found in purely

inhibitory networks of pulse-coupled leaky integrate-

and-fire neurons (LIF), but appears to persist when

synaptic currents decay sufficiently fast and when some

amount of recurrent excitation is included [58,59]. By

contrast, balanced networks of exactly the same structure

but composed of units that explicitly model the process of

spike initiation exhibit irregular asynchronous activity

with chaotic dynamics such that perturbed trajectories

exponentially separate [60��,62]. The single neuron

instability underlying spike initiation that is neglected

in simple threshold neurons such as the LIF can appar-

ently substantially contribute to the divergence of

network state trajectories. These advances in the micro-

scopic characterization of spiking network dynamics have

started to provide new avenues for an information theor-

etical characterization of the repertoire of activity patterns

that large spiking circuits generate. Monteforte and Wolf,

for instance, were able to calculate the total entropy of

distinct spike sequences that a balanced random network

of LIF neurons can generate from a characterization of

the network’s phase space [61��]. Studies of temporally

driven balanced circuits (such as Refs. [62,63,73]) are

needed to clarify the relationship of different types of

chaotic dynamics and the representation of sensory infor-

mation in patterns of network activity. Studies of network

phase space organization have so far been performed

mostly in networks of simple pulse coupled neurons.

There are, however, no rigid limitations to generalizing
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the concepts and computational approaches to networks

composed of more complex neuron models as long as they

allow for an exact integration of the single neuron model

between spike events.

A high speed of signal propagation is one basic advantage

of asynchronous network states. In a large, asynchro-

nously firing neuronal population a subset of cells is

always close to threshold and thus ready to convey infor-

mation rapidly. In balanced networks the speed of popu-

lation responses is further increased by the strong net

synaptic interactions [10,11]. Balanced networks are thus

capable of rapid population responses even if the con-

stituent neurons exhibit pronounced low pass character-

istics. Recent experimental studies have started to

address the bandwidth of spike encoding in fluctuation

driven populations of real cortical neurons [64–68]. These

studies consistently report that population responses are

surprisingly rapid even in the absence of recurrent inter-

actions. Even in response to very weak stimuli, popu-

lations of pyramidal cells can change their firing rate

within less than a millisecond — at least an order of

magnitude faster than expected from their membrane

time constant [67]. Such rapid responses to weak stimuli

have been theoretically predicted for simplified neuron

models such as the leaky integrate-and-fire neuron, but

seemed to be absent in biophysically more realistic

models (see discussion in Ref. [67]). The biophysical

basis of the high bandwidth of neural population encod-

ing in the fluctuation driven regime is currently not

understood and calls for a reinvestigation of the basic

processes of action potential generation [69–71]. Further

theoretical work is needed to disentangle the relative

contributions of strong recurrent interactions and single

neuron bandwidth to the processing speed of cortical

circuits.

Conclusions
Many lines of current evidence indicate an inhibition

dominated operating regime of cortical circuits in which

recurrent excitation and feedback inhibition are strong

and dynamically matched. Counter-intuitive theoretical
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The nature of collective chaos in balanced networks is sensitive to single neuron dynamics. The left panels represent the single neuron membrane

potential dynamics of the leaky integrate-and-fire neuron (a) and the quadratic integrate-and-fire neuron (d). The middle panels show spectra of

Lyapunov exponents (LEs) that characterize the divergence/convergence of state trajectories in the phase space of otherwise identical balanced

networks of these model neurons (b,e). Positive LEs demonstrate a chaotic dynamics in which trajectories exponentially diverge. Negative LEs

characterize the decay of perturbations in particular directions in phase space as indicated in the lower right scheme (f). In the LIF network all LEs are

negative demonstrating that the irregular firing sequences generated by the network are stable. The upper right scheme (c) summarizes the

geometrical properties of the basins of attraction of the different stable irregular firing sequences exhibited by the network. N is the number of neurons

in the network, and K is the mean number of synaptic connections (modifed from refs. 60,61).
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predictions such as the paradoxical response of ISNs

[8,12] or the emergence of orientation selectivity from

balanced random networks [9��] are contributing to our

understanding cortical circuit operation. Theoretical stu-

dies over the past several years have strongly expanded

the toolbox for a mathematically accurate and controlled

dissection of cortical circuit models in balanced and

inhibition-dominated network states. Together with

the current development of powerful new approaches

for the experimental interrogation of cortical networks

this progress provides a strong basis for discerning the

mode of operation of cortical networks with a balance of

theory and experiment.
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9 Discussion

9.1 Summary of results

In this thesis, the chaotic dynamics of large networks of spiking neuron models and rate units have
been studied using concepts from the ergodic theory of dynamical systems.

Information encoding, processing and transmission in neural circuits are intimately linked to
the collective network dynamics. Therefore, a better understanding of the mechanisms that shape
dynamically generated activity patterns in nervous systems is crucial. In this thesis, we studied how
single-cell properties and streams of input spike trains influence chaoticity, dynamical entropy rate
and attractor dimensionality in recurrent spiking neural networks.

The most striking effect of single-cell features on the collective dynamics we found in recur-
rent networks driven by streams of input spike trains: the collective state becomes much easier to
control by spiking input when the neurons in the driven network had a rapid action potential (AP)
onset dynamics. To our best knowledge this is the first time that for recurrent networks a clear
link between spike onset dynamics and their role in the collective flow of information through
neuronal circuits has been demonstrated. To achieve this, we first investigated the role of action
potential initiation (AP) for information transmission in a feedforward circuit architecture and for
the spontaneous recurrent activity with constant input. We showed that recurrent circuits com-
posed of neurons with rapid AP onset have a surprisingly low attractor dimension. This is hidden
from correlation-based dimensionality estimates. To study with high precision the dynamics of
large spiking balanced circuits, we developed a novel efficient algorithm for calculating Lyapunov
exponents in event-based numerically exact network simulations. Recently, the hypothesis was
put forward that such spiking networks exhibit two qualitatively distinct irregular state for strong
and very strong couplings and that the transition to this “heterogeneous state” is analogous to the
classical chaotic instability of random rate networks [4]. In our reanalysis of such systems [3],
we found no indication of a corresponding chaotic instability in the spiking network. Finally, for
random firing-rate networks, we for the first time to our knowledge calculated entropy rate and
attractor dimensionality. This opens a novel avenue to characterize the complex dynamics of rate
networks and the geometric structure of their high-dimensional chaotic attractor.

Efficient algorithm for calculating Lyapunov exponents of large spiking networks
We first introduced a novel efficient method for numerically exact simulations of large sparse
spike networks and the calculation of their Lyapunov exponents (Chapter 3). Our new algorithm
reduces the computational cost from O (N) to O (log(N)) operations per network spike for a fixed
number of synapses per neuron and Lyapunov exponents. We achieved this by changing the frame
of reference of the neurons’ phase-representation and by employing a data structure that avoids
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9. Chapter Discussion

iterating though all neurons at every network spike time to find the next spiking neuron. The
proposed algorithm also generalizes to heterogeneous networks and arbitrary neuron models that
can be solved analytically between spikes. This allows numerically exact simulations of large
spiking networks (N = 109 neurons) and the characterization of their phase space structure. For
example, calculating the largest Lyapunov exponent of a spiking neural network with one million
neurons is sped up by more than four orders of magnitude.

High AP onset rapidness increases the information encoding rate In a feedforward
architecture, we found that the AP onset rapidness limits the capability to encode high-frequency
stimuli (Chapter 4). We confirmed with four independent methods that high-frequency signal
components encoded in mean- and variance-modulations of a fluctuating input current are more
reliably encoded into the outgoing spike train if the single neurons have a rapid action potential
generation mechanism. We estimated the mutual information rate between a noisy stimulus and the
outgoing spike train in the Gaussian channel approximation from the spectral coherence between
input and output signal. The coherence was calculated by solving the time-dependent Fokker-
Planck equation and confirmed in direct numerical simulations. We found that the information
rate grows approximately logarithmically with AP onset rapidness: I ∝ log(r). The reason for the
logarithmic scaling is that the rapidness determines the cutoff frequency up to which the spectral
coherence is proportional to f−1. We confirmed the logarithmic scaling analytically using the
high-frequency and high-rapidness responses of the single neurons.

Rapid AP onset reduces chaoticity and entropy rate in recurrent networks In re-
current networks, we characterized the role and relevance of AP onset for the collective network
dynamics (Chapter 4). We calculated the Lyapunov spectrum in numerically exact event-based
simulations of random networks using the novel efficient method mentioned above. We find that
the largest Lyapunov exponent grows linearly with rapidness up to a peak value rpeak. For higher
rapidness, the largest Lyapunov exponent decreases as 1/r. Numerical simulations reveal the
scaling of the peak rapidness rpeak ∝

√
Kν̄τm/J0. It occurs where the diffusion approximation

breaks down and shot noise due to the finite connectivity K and nonvanishing coupling strength
J = J0/

√
K becomes relevant. For smaller rapidness r, the largest Lyapunov exponent is indepen-

dent of the connectivity K and the mean firing rate ν̄ and proportional to r.
The stabilization of the network dynamics for large r is accompanied by a decrease in dynamical

entropy rate and attractor dimension. Intriguingly, the drastic decrease of attractor dimension is
not detected by a conventional dimensionality estimate, based on the pairwise correlations of the
activity. This implies that neuron states have strong statistical dependencies. To corroborate these
results from idealized random (Erdős–Rényi) networks, we calculated for the first time, Lyapunov
spectra in large networks with more realistic connectivity structure: we analyzed dynamical en-
tropy rate of a multilayered cortical column network model and of large networks equipped with
experimentally measured excitatory-excitatory motif frequencies. Our results demonstrate that the
drastic reduction of chaos, dynamical entropy rate and attractor dimensionality by high AP onset
rapidness observed in random networks also occurs in these more realistic network structures.

Input spike trains suppress chaos and lead to a transition to complete network
state control In Chapter 5, we studied the effect of streams of input spike trains on the dy-
namics of balanced target circuits. To address this challenge, we developed an approach for bal-
anced networks driven by external streams of spike trains and calculate their full Lyapunov spec-
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9.1 Summary of results

tra, yielding the dynamical entropy rate and attractor dimensionality in efficient, numerically exact
event-based simulations introduced in Chapter 3. To explore how features of input streams affect
information transmission, we varied correlations, irregularity, coupling strength and spike rate of
the input and action potential onset rapidness of the recurrent neurons.

We found that increasing the input rate or coupling strength aids in controlling the driven target
circuit, reflected both in reduced trial-to-trial variability and in a decreasing dynamical entropy
rate. For sufficiently strong input, we observe a transition to complete network state control. Sur-
prisingly, this transition generally does not coincide with the transition from chaos to stability but
occurs at larger values of external input strength than the transition from chaos to stability. Intrigu-
ingly, controllability of spiking activity is facilitated when neurons in the target circuit have a rapid
action potential initiation.

Our study predicts that rapid AP initiation of target neurons decreases trial-to-trial variability
and augments information flow. These results can also be used to develop testable predictions for
emerging optogenetic approaches towards the causal interrogation of circuit function and activity
control.

Reanalysis of “Two types of asynchronous activity in networks of excitatory and
inhibitory spiking neurons” In Chapter 6, we reanalyzed a recent study that investigated
networks of leaky integrate-and-fire neurons and suggested that they would exhibit a chaotic insta-
bility mathematically analogous to rate networks with matched topology and single unit charac-
teristics for strong synaptic coupling [4]. We found expected hallmarks of a chaotic instability in
the rate network. Close to the transition to chaos, we observed critical slowing down in response
to small external perturbations. In contrast, in the spiking network rate deviations resulting from
small input perturbations rapidly decayed. When approaching the alleged chaotic instability, the
decay speeds up contrary to the critical slowing down exhibited in the rate network. We further
found a quantitative mismatch between predictions of the mean-field theory and numerical simula-
tions, for a variation of different network parameters, e.g. synaptic delay, fraction of inhibition and
number of synapses per neuron K. In conclusion, our reanalysis demonstrates fundamental differ-
ences between the behavior of networks of pulse-coupled spiking LIF neurons and rate networks
with matched topology and input-output function. In particular, contrary to the original study [4],
we found no indication of a corresponding chaotic instability in the spiking network [3].

Entropy rate and attractor dimensionality of firing-rate network dynamics In Chap-
ter 7, we calculated for the first time to our knowledge the full Lyapunov spectra of random firing-
rate networks. The dynamics of such networks and their transition from a stable state for small
synaptic couplings g to a chaotic state for strong coupling has been studied extensively. We found –
as conjectured in the original publication [5] – extensive chaos. Thus, for sufficiently large network
size N, the shape of the Lyapunov spectrum is invariant with respect to network size N and only de-
pends on the coupling strength g. We found that the Kolmogorov-Sinai entropy scales H ∝ log(g)
and the relative attractor dimensionality D/N saturates exponentially ∝ (1−a · exp(−c ·g)), where
c > 0 is the exponential rate by which the saturation value of approximately 10% of N is ap-
proached. Interestingly, the Lyapunov spectrum is point-symmetric around its negative mean. We
derived an analytical expression for the mean Lyapunov exponent, both for continuous time and
for discrete network dynamics. Our results show that for sufficiently large g and large time steps
∆t the Jacobians commute. This suggests that in these cases the full Lyapunov spectrum can be
calculated analytically. Larger time steps ∆t generally lead to a more negative Lyapunov spec-
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trum, which can be explained by less correlated subsequent Jacobians. We found that for large ∆t,
the Lyapunov spectrum follows approximately the Marchenko-Pastur distribution, for small g and
small ∆t the Wigner semicircle law and for large ∆t and small g the triangle law [198–200].

Adding frozen Gaussian white noise to the dynamics reduced chaos, dynamical entropy rate and
attractor dimensionality, but the mean exponent does not change. If the noise is much stronger than
the recurrent coupling parameter g, all Lyapunov exponents approached −1

τ
, which is the negative

inverse of the intrinsic single unit timescale.

9.2 Relation to previous work

In the following we relate our findings to previous computational, theoretical and experimental
work. Our results regarding the role of AP onset rapidness for the information bandwidth in a
feedforward architecture and chaos in recurrent circuits confirmed and extended earlier findings.
For the first time to our knowledge, we linked these interesting mathematical findings to their
relevance to cortical information processing: when driving recurrent networks by strong external
spiking input, we found a suppression of chaos and a transition to complete network state control,
which are both facilitated by rapid AP onset. We will discuss the relation to earlier theoretical
findings and suggest experimental tests of our predictions. Lastly, we discuss our results on rate
networks and describe how our approach to calculate the full Lyapunov spectrum of rate networks
could be used as a toolkit from dynamical systems theory to analyze how different factors shape
the complex rate activity and to quantify the reorganization of the collective network dynamics
during learning.

Efficient exact large spiking networks simulations In Chapter 3 we introduced a novel
efficient event-based algorithm for simulating the network dynamics and calculating the Lyapunov
spectrum that reduces the computational cost from O (N) to O (log(N)) operations per network
spike for a fixed number of Lyapunov exponents and synapses per neuron compared to earlier
implementations [62, 125, 126, 201, 202]. This facilitates investigating the chaotic dynamics of
simplified cortical microcircuit models (e.g. [203]), which usually require a supercomputer for
simulations [204–207]. Efficient simulation of large networks might also be useful when gradually
experimentally obtained wiring diagrams known as connectomes become available by novel circuit
reconstruction methods [208, 209]. It also facilitates exploration of the scaling of e.g. the largest
Lyapunov exponent or the average firing rate with network size N across many orders of magnitude
(see Chapter 3 and 4). There are also limitations for our novel algorithm: it requires that the single
neuron dynamics can be exactly solved between spike times, which excludes most multivariate
neuron models (e.g. [210–214]) and networks driven by continuous time-varying input signals that
prohibit event-based simulations.

AP onset rapidness & information bandwidth In our analysis of the role of action poten-
tial (AP) onset dynamics for the frequency response and information transmission in a feedforward
architecture (Chapter 4), we found that the AP onset rapidness limits the high-frequency response.
Our findings are in qualitative agreement with earlier studies which demonstrated this in differ-
ent neuron models with variable AP onset rapidness. A limiting effect of AP onset rapidness on
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high-frequency encoding was shown before in the exponential integrate-and-fire model [30, 186],
a different generalization of the quadratic integrate-and-fire model [47] and in an analytical study
of a piecewise linear integrate-and-fire model, called the rapid-τ-model [49].

Distinct from these earlier studies, we quantified the rapidness-dependence of the mutual in-
formation rate between a stimulus immersed in fluctuations and the outgoing spike train using
a Gaussian channel approximation based on the spectral coherence (Chapter 4). We found that
the mutual information rate increases logarithmically with increasing AP onset rapidness (both by
solving the Fokker-Planck equation numerically and by an analytical approximation). This extends
earlier numerical studies that calculated the mutual information rate in different integrate-and-fire
type neuron models [46,215–217], both by the direct method [218] and by using a Gaussian chan-
nel approximation. Our analytical approximation extends the previous studies which approximated
the mutual information rate for a stochastic rate neuron that was modeled as exponential-Poisson
processes [219,220]. It is to our knowledge the first fully analytical estimation of the mutual infor-
mation rate in a spiking neuron model. To solve the time-dependent Fokker-Planck equation, we
extended a threshold integration method to piecewise Fokker-Planck equations and improved the
numerical implementation with respect to memory consumption and speed (see also [221–224]).

AP onset rapidness & recurrent spiking network dynamics In our analysis of the role
of AP onset rapidness for the recurrent network dynamics (Chapter 4) we confirmed the importance
of AP onset for the recurrent chaotic dynamics in an independent reimplementation of the full Lya-
punov spectrum of rapid theta neurons, which have a tunable AP onset rapidness (earlier work on
rapid theta neurons can be found in [62]). This also allowed us to confirm that dynamical entropy
rate and Kaplan-Yorke attractor dimensionality decay for increasing AP onset rapidness. In an ex-
tension of the earlier work in random Erdős–Rényi networks [62], we studied chaos and dynamical
entropy rate in microscopically and macroscopically structured networks [203,225]. Both in a mul-
tilayered cortical column model with approximately 80000 neurons [203] and in mixed networks
with realistic excitatory-excitatory second-order circuit motif frequencies [225], we confirmed that
for high AP onset rapidness the entropy and dimensionality are drastically reduced. In a further
extension to the earlier work [62], we calculated pairwise spike count correlations as a function
of AP onset rapidness and bin size with high precision. This yielded a correlation-based dimen-
sionality estimate which we found to be insensitive to AP onset rapidness. We concluded that the
rapidness-dependent, microscopic phase space reorganization reflected in the Lyapunov spectrum
and attractor dimensionality is not detected by the second order statistics. In addition to earlier
work, the novel efficient algorithm (Chapter 3) allowed us to calculate the large N asymptotic form
of the largest Lyapunov exponent as a function of AP onset rapidness. We further performed a sys-
tematic analysis of the scaling of the critical rapidness rcrit, at which the network dynamics turns
stable; rpeak, where the largest Lyapunov exponent peaks as a function of rapidness; and the scaling
of the largest Lyapunov exponent with network parameters. To assess the convergence within a
single simulation, we introduced a novel single trial confidence and convergence estimator based
on bootstrapping the finite-time Lyapunov exponents [226]. This allows estimating the degree of
convergence on the fly during a simulation instead of comparing results across different runs with
independent initial conditions and thus also reduces computational costs.

Moreover, using random matrix theory, we analytically calculated the mean Lyapunov exponent
of the rapid theta network and studied its scaling with rapidness r and the number of synapses K.

We further analyzed the phase space structure of small networks and visualized the decreas-
ing dimensionality for increasing rapidness using Poincaré sections. A single-cell parameter not
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considered in this thesis is the synaptic time constant τs, which was shown to moderately influ-
ence chaoticity in earlier studies [62, 125, 126, 184, 227]. Moreover, we didn’t consider synaptic
delays, which were found to slightly reduce chaos in LIF networks with exponentially decaying
synapses. A stronger reduction of chaos is observed, when the collective network state changes
e.g. to oscillations or phase-locking [125].

In inhibitory LIF networks, earlier studies found an exotic phase space structure of flux tubes
where the network state is insensitive to sufficiently small perturbations, while large perturbations
grow exponentially [62,123,126,130]. For the first time, we also demonstrated the existence of flux
tubes in networks where the single neuron dynamics have an active spike generation mechanism.
We found the flux tube diameter to grow quadratically as a function of AP onset rapidness r closely
above the critical rapidness rcrit, and visualized their cross-section, revealing a decreasing mean
flux tube radius and curved flux tube boundaries when approaching the critical rapidness rcrit from
above.

Evoked dynamics of balanced networks driven by streams of input spike trains
For nonautonomous network models, we extended earlier approaches in balanced theta neuron
networks driven by white noise [162,163] to an external input composed of streams of spike trains
and a numerically exact simulation method. For input spike trains with sufficiently strong coupling
and high rate, we for the first time to our knowledge found a suppression of chaos in spiking
neural networks. A similar transition was previously found in networks of rate units [6–8], but
not in spiking networks. Intriguingly, we found that suppression of network chaos occurs at a
weaker input fluctuation strength than the transition to complete control of the network state. This
is surprising, because earlier studies suggested that a negative largest Lyapunov exponent implies
that trajectories formed by different initial conditions collapse in a random sink [161, 162, 165,
170]. While this holds in the limit of large time for random dynamical systems when certain
non-degeneracy conditions are satisfied [168,169], we find that on neurobiologically relevant time
scales, streams of input spikes can suppress chaos without collapsing independent initial conditions
onto a single globally attracting random sink. Thus, even if driven network dynamics are stable
with respect to infinitesimal perturbations, reliability across trials with different initial conditions
but frozen external input is not guaranteed. It was found earlier that reliable spikes exist even
in the chaotic regime [162]. We can hence conclude more generally that the largest Lyapunov
exponent alone is not a sufficient indicator of trial-to-trial reliability both in the chaotic and in
the stable regime of spiking networks. This insight raises a new perspective on earlier studies,
where negative Lyapunov exponents were often linked to reliability [147, 162, 170, 228–232]. A
transition to complete network state control by time-varying input which we found in balanced
spiking networks with streams of input spike trains was earlier reported in rate networks in the
context of echo state networks for reservoir computing and termed echo state property [233–236].
For the first time to our knowledge we systematically examined the scaling of the chaoticity with
various parameters of both external input and the recurrent network. We found that for increasing
mean recurrent firing rate, recurrent coupling strength and membrane time constant, it becomes
more difficult to suppress the recurrent chaos by the streams of input spike trains. Similarly, the
critical external coupling Jext

0crit where the largest Lyapunov exponent becomes zero increases for
stronger external spiking input. In contrast, the critical coupling strength decreases for higher
firing rates of incoming spike trains and for more irregular input spike trains. In a low-noise limit
of high input rates and low input coupling strength, we showed that the Lyapunov spectrum of the
driven network approaches the Lyapunov spectrum of a network without spiking input. We further
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extended the flux tube concept from constant [62, 126, 130] to time-dependent external input and
analyzed the radius of the flux tubes as a function of external input coupling strength Jext

0 (Also
see [237]). We hypothesized a growth of flux tube diameter for increasing external input variance.
This was confirmed by direct numerical simulations (Chapter 5 and [237] for LIF neurons).

Relations to previous experimental results In agreement with experimental observa-
tions [44, 238, 239], we confirmed that AP onset rapidness limits the high-frequency encoding.
Accordingly, we found that the mutual information rate between input and outgoing spike train
of a neuron in a fluctuation-driven regime for fixed firing rates. While mutual information rates
between stimulus and response have previously been measured experimentally [218,240], the spe-
cific role of AP onset dynamics on information transmission has not directly been assessed.

More generally, our study contributes to the investigation of reliability of neuronal activity,
which was extensively studied at the single neuron level in experiments [66–69]. Novel tools
and bidirectional neural circuit interfaces for the first time allow experimentalists for selectively
manipulating and monitoring the activity of vast numbers of neurons in the intact brain and even in
behaving animals [175, 176, 241]. Previous experimental studies found that external drive reduces
trial-to-trial spiking variability compared to the spontaneous activity state [242]. We found in our
theoretical work that sufficiently variable external input is able to completely control the network
state of a recurrent balanced target circuit. In the outlook section 9.3, we will discuss potential
avenues to explore this experimentally.

Earlier studies investigated sensitivity of cortical circuits with respect to the addition of a sin-
gle spike [128]. While the conclusions remain controversial, the experiments certainly reveal an
important research direction: interrogating the neural code by perturbation experiments. In our
analysis, we concluded that single neuron properties affect the sensitivity of circuits both to in-
finitesimal and finite size perturbations (Chapter 4) and that sufficiently strong time-varying input
reduces the dynamic sensitivity of cortical circuits.

Reanalysis of the “heterogeneous balanced state” In our reanalysis of the “heteroge-
neous balanced state” [4], we added how firing rate, coefficient of variation of the interspike inter-
val distributions and network synchrony scale with different system parameters, e.g. the synaptic
delay time, the refractory period, the relative inhibitory strength and the number of synapses per
neuron. Our results indicate that the mean-field theory, which is valid for the Poisson rate networks,
quantitatively deviates from network simulations of spiking LIF neurons for slight variations of
system parameters. This result contradicts the claim that “the Poisson network [...] exhibits an
instability identical to that of the LIF network, at the same critical value of synaptic coupling” [4].
In addition to the earlier work [4], we also added an analysis of response of the network firing
rate to small perturbations, where we found critical slowing down close to the phase transition
in the firing-rate network but not in the corresponding circuit of leaky integrate-and-fire neurons.
We thus corrected the original study, with respect to claim that the behavior of the spiking LIF
networks is “mathematically analogous to the chaotic instability in rate networks” [4]. The mean-
field theory of the original work assumes individual firing rates for each spiking neuron, ad hoc,
which are claimed to rest at a fixed point below the critical coupling strength Jcrit and to lose their
stability above Jcrit. Such a linear stability analysis is justified in the case of a rate network, where
firing rates exist as dynamical variables. In contrast, in the LIF network, the dynamical variables
are membrane potentials, which are driven to threshold due to the external input and are not at a
fixed point. Therefore, a linearization around a stable fixed point is mathematically inappropri-
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ate. The burstiness of single LIF neurons in the network for strong recurrent coupling is related
to unphysiological, negative voltage excursions allowed by the linear V -V̇ -relationship of the LIF
neuron model. If a physiological lower bound on the voltage is introduced reflecting e.g. the re-
versal potential of potassium channels, then the “heterogeneous” firing rate fluctuations caused by
single-cell bursting vanish. Concomitantly, the coefficient of variation of the interspike interval
distribution, which measures irregularity, becomes smaller than 1. More evidence in support of
this explanation of the observed “heterogeneous activity” is that the phenomenon of a “heteroge-
neous state” does not occur in networks of quadratic integrate and fire neurons even for extremely
strong synaptic couplings. While the reanalysis conclusively shows that there is no analogous re-
lationship between the chaotic instability of rate networks and the behavior of the LIF network,
the phenomenon of increasing firing rates for strong coupling in LIF networks itself is not fully
understood. Temporally correlated fluctuations seem to be necessary for the increasing mean firing
rate, but the role of the synaptic delay in this phenomenon is not clear. For a better analytical un-
derstanding, a self-consistent theory of spiking neurons which includes nontrivial autocorrelations
appears needed. Until now, this was only achieved numerically [243, 244].

Chaos in firing-rate networks A seminal study showed that randomly connected rate units
display a transition from an quiescent state to a highly heterogeneous, chaotic state with spon-
taneous rate fluctuations for sufficiently strong couplings [5]. Mechanisms underlying rate chaos
have recently attracted a lot of attention in studies of network heterogeneity [131], bistability [187],
external stimuli [6–8, 188] and the role of single unit transfer function [37] and slow synaptic dy-
namics [37, 92] for the collective network state (see also [3, 4, 8, 189–194]).

It is also increasingly appreciated that chaotic rate dynamics provide a substrate for complex
nonlinear computations e.g. learning input-output relations [6,35,133,245–248] and learning tem-
poral sequences [249]. Intriguingly, transient rate chaos yields exponential expressivity in deep
networks [250]. Our tools allow us to quantify the reorganization of the collective network dy-
namics during learning and to dissect the underlying mechanisms of different reservoir computing
strategies.

A suppression of chaos by time-dependent input was studied earlier both with white noise input
in discrete-time [6] and continuous-time networks [8] and with sinusoidal input [7]. Such a transi-
tion has relevance for information processing because the network loses its dependence on initial
conditions, which might be a desirable feature, if the network should generate reliably controlled
output trajectories for certain input patterns after learning [35, 249, 251]. The transition to com-
plete network state control by an external stimulus and the associated independence from initial
conditions was earlier studied in rate networks in the context of echo state networks for reservoir
computing and termed echo state property [233–236].

Our approach provides a toolkit from dynamical systems theory to analyze how these different
factors shape the complex rate dynamics. We compared the Lyapunov dimension with a dimen-
sionality estimate based on principal component analysis (PCA), which is commonly used in neu-
roscience [7, 188, 195–197]. Generally, we find a quantitatively different but qualitatively similar
scaling of the PCA-based dimensionality and the Lyapunov dimension: Both exponentially satu-
rate with synaptic strength for g but they saturate at a different level and with distinct exponential
rates. Crucially, Lyapunov exponents and thus also the Lyapunov dimension are invariant under
diffeomorphisms on the phase space [252], while covariance-based dimensionality estimates are
generally not invariant with respect to changes of variables and can be misleading if applied to
limited data sets [253].
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Furthermore, our approach also allows for interpolating from continuous-time to discrete dy-
namics. Discrete-time dynamics of rate networks has previously been studied in random diluted
network topologies [189], on a ring topology [254] and with external white noise input [6]. One
effect of temporal discretization is that subsequent Jacobians have lower correlation (see Chapter
7), which facilitates their treatment with random matrix theory.

9.3 Outlook
We are only beginning to use ergodic theory to understand neural computation. By employing
these concepts in large scale spiking and rate networks we have laid the foundation for further
investigation. Until now computational ergodic theory of neural networks appears to be the only
way to measure information theoretic quantities of large recurrent circuits. It is an important
challenge to obtain a more comprehensive understanding of how different factors shape collective
network dynamics and constrain information processing. In this final section, we propose several
direct extensions of the work presented in this thesis followed by a discussion of two more general
potential future research directions.

9.3.1 Extensions

Efficient numerically exact large network simulations Our novel efficient algorithm for
large network simulations based on binary heaps and a change of the frame of reference of the
neurons’ phase-representation introduced in Chapter 3 could be further improved for large K by
using one heap merge after every spike time instead of K+1 percolations through the binary heap.
This would result in an expected speedup by O (K/ log(K)). Especially for large excitatory net-
works, a Fibonacci heap might also be an efficient implementation [255], but for practical purposes,
the asymptotic scaling of the computational complexity has an unfavorably large prefactor [256].
Therefore, other heap structure implementations might be faster in practice [257].

AP onset rapidness We propose four extensions to our analysis of the effect of action poten-
tial (AP) onset rapidness both for information transmission in a feedforward architecture and its
role and relevance for recurrent circuit dynamics.

Firstly, we propose to investigate the effect of synaptic shot noise both on information trans-
mission and on the recurrent network dynamics. The purpose of such an investigation would be
to better understand the implications of strong synapses for information processing, as experi-
ments indicate that few strong synapses – potentially at the tail of a lognormal weight distribu-
tion [84, 258–262] – are functionally particularly important [263]. In the analysis of the role of
onset rapidness for the collective network dynamics, we found that for sufficiently high rapid-
ness, the diffusion approximation breaks down and the effect of shot noise becomes significant.
To obtain deeper understanding of the effect of synaptic shot noise, to start with, the single-cell
characterization of the rapid theta model (Chapter 4) could be extended to include incoming shot
noise instead of Gaussian white noise [264–266]. Besides the stationary voltage distribution under
the influence of shot noise, also the impact of excitatory and inhibitory shot noise on the frequency
response should be studied in more detail. Our preliminary results indicate that synaptic shot noise
can amplify the high-frequency response both in the mean- and variance-channel especially for
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high rapidness (Chapter 4, Supplementary figure 3). Analytical understanding of the effect of
synaptic shot noise might also yield an analytical derivation of the scaling of the AP rapidness at
which the largest Lyapunov exponent peaks. The stationary voltage distribution with synaptic shot
noise would also further improve the analytical estimation of the mean Lyapunov exponent using
the random matrix approach described in Chapter 4.

Secondly, also for the full Lyapunov spectrum or at least for the largest Lyapunov exponent,
analytical expressions are desirable. As it is generally considered difficult to calculate the full
Lyapunov spectrum [145], it might be advisable to first calculate the full Lyapunov spectrum of a
model with simpler internal dynamics, e.g. the Gauss neuron [267–271] or the rapid-τ-model [49],
using analytical methods [79, 200, 272–274]. Earlier results for leaky integrate-and-fire neurons
might be useful to this end [126].

Thirdly, one should include temporally extended synaptic currents into the rapid theta model, to
investigate the effect of synaptic dynamics on dynamical entropy rate and attractor dimensionality.
Such an extension is not only indicated because depending on the synaptic dynamics can vary
between millisecond for AMPA [185,275,276] and tens of millisecond timescales for NMDA [185,
277–279], but also because the synaptic dynamics affects chaoticity of spiking networks [62, 125,
126, 184, 227]. The rapid theta model dynamics between network spikes can still be analytically
solved with exponentially decaying synaptic currents [280], yielding the correlated rapid theta
model. The Lyapunov spectrum as a function of the two-dimensional parameter space spanned
by AP onset rapidness r and synaptic timescale τs would be interesting to analyze. In the case of
purely inhibitory random (Erdős–Rényi) networks of leaky integrate-and-fire neurons, increasing
the synaptic time constant results in a transition from an asynchronous irregular state with a semi-
definite negative Lyapunov spectrum – a state called stable chaos – to a slightly chaotic state
for slow synaptic dynamics [62, 125, 126, 184, 227]. Therefore, for networks of correlated rapid
theta model neurons in the balanced state, one might expect a semi-definite negative Lyapunov
spectrum for high rapidness and short synaptic time constants and extensive chaos, as soon as
either rapidness is reduced or the synaptic time constant τs is sufficiently large. In the limit of
slow synaptic dynamics, the synaptic input current integrates over a long time and the network
dynamics behave similar to a rate network in several quantitative comparisons, e.g. with respect
to the firing rate distributions, the population autocorrelations and the synaptic current distribution
in the large K-limit [92]. An interpolation from spiking to rate dynamics with increasing τs and
a comparison of the associated Lyapunov spectra of rate with spectra of spiking networks should
improve our understanding of chaos both in spiking and rate networks and of their relationship.

Fourthly, as biophysical properties of neurons are diverse, the effect of heterogeneity of AP onset
rapidness should be studied. While rapid spike onset was discovered in in excitatory neurons [39–
44,238,239], recent unpublished work also indicates rapid AP onset dynamics and high bandwidth
in inhibitory neurons. As more data becomes available, the functional differential implications
of AP onset rapidness in excitatory and inhibitory neurons should be investigated theoretically
both in a feedforward architecture and in recurrent networks. For a feedforward architecture, we
hypothesize that a small fraction of neurons with fast AP onset rapidness are enough to transmit a
high-frequency signal.

Fifthly, to further corroborate and generalize the results from the rapid theta networks, one
should also study the role of AP onset rapidness on the collective dynamics in other classes of
neuron models. In a preliminary study of type II neurons, we found that similar to type I neurons
high AP onset rapidness reduces chaos and dynamical entropy rate in spiking balanced networks.
A similar result would be expected in conductance-based neuron models given the generality of
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our findings in type I and type II neuron models.

Dynamics of balanced networks with input spike trains In addition to our analysis of
spiking networks driven with input spike trains, we propose six extensions both towards experi-
mental applications and a deeper theoretical understanding.

First, to make more predictions for experiments, beyond the general predictions from Chapter
5, answers to the following questions would be desirable: for concrete optogenetic experiments
[176, 241, 281], what quantifiable predictions can be made? What fraction of neurons has to be
externally driven to achieve complete network state control of a recurrent network, e.g. in cultured
neuronal networks? Based on preliminary results, we hypothesize that it is not necessary to drive
all recurrent neurons by a time-varying external input, because controlling a sufficient fraction of
the network also controls the recurrent input to the other neurons. But additional factors need to
be taken into account, e.g. stochastic synaptic transmission.

Second, a further challenge would be to investigate the response to a partially non-frozen input.
In such a architecture, the relationship between trial-to-trial reliability and stimulus discriminabil-
ity can be investigated: if only a fraction of the spiking input is the same across trials and the rest is
different across trials, how much would the variability across trials of the driven network activity
go down for strong input (see also [164])? What is the role of single neuron dynamics (AP onset
rapidness and synaptic dynamics) in this case?

Third, the random dynamical systems approach to spiking neural networks could be extended
to quantify the relative contribution of different sources of variability to noise entropy [65] (see
also [163]). One way to investigate this would be to endow synapses with an intrinsic dynamical
entropy rate. This approach would make it possible to quantify the relative contributions of dy-
namical entropy rate from unreliable synaptic release compared to the collective dynamical entropy
rate.

Fourth, for a better understanding of the mathematical aspects of perturbed circuits, finding
analytical conditions for complete network state control in spiking networks would be desirable.
When is the network state of a spiking balanced network independent of initial conditions? Under
which conditions does the Baxendale theorem still hold in shot noise driven systems [168]? In
the thermodynamic limit, there is a diffusion across different initial conditions pulling trajectories
apart arising from uncorrelated recurrent synaptic currents and at the same time a synchroniz-
ing effect across different initial conditions arising from the common external input and thereby
self-consistently generated correlations. Our results indicate that there is a critical external input
strength Jext

0 , at which the correlations induced by the external drive become so strong and conse-
quently the diffusion across trials so weak that different initial states collapse onto one trajectory.
Note that this it is a one way street, if the largest Lyapunov exponent is negative: once two network
states are critically close together, they collapse. The large existing body of literature on chaos syn-
chronization might provide further inspiration for appropriate analytical approaches [68,177–183].

Fifth, in order to investigate the flow of information between different recurrent networks, one
should extend our approach to two or more spiking neural networks that drive each other by streams
of spike trains and calculate both the Lyapunov spectrum of the full system and the conditional
Lyapunov spectrum of the driven subnetworks. This way indirect network state control via one or
more intermediate networks could be investigated.

Finally, one remaining challenge is to make use of the networks’ sensitivity to initial conditions
for computation. One task where a sensitivity to initial conditions might be useful is discrimina-
tion or classification, e.g. in sensory processing: two signals, which are nearby in the input space
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with respect to a certain metric are dynamically distinguished based on subtle differences. For
example, the difference between the odor of a ripe and a slightly overripe fruit might activate a
largely overlapping set of sensory neurons, but this nearby initial state could be pulled apart by
the recurrent dynamics in subsequent processing stages [282–285]. Sensitivity to initial conditions
in spiking neural networks thus might serve as a dynamical mechanism to pull nearby trajectories
apart [286–288]. The challenging part would be to amplify useful informative differences, but not
irrelevant ones by designing the phase space accordingly such that behaviorally relevant differ-
ences are being pulled apart while other differences of initial conditions are not. It is currently not
clear how such a phase space structure could be learned in a spiking neural network. A second way
would be to pull apart everything and have a readout which ignores irrelevant differences. Similar
problems have been investigated in machine learning and it might be fruitful to join the efforts (see
e.g. [250, 289]).

Experimentally testable predictions and proposals for experiments According to
our analysis of information transmission in feedforward architectures, a reduced AP onset rapid-
ness should also reduce the mutual information rate between input and outgoing spike train of
a neuron in the fluctuation-driven regime for fixed firing rates. Depending on the experimental
setup and on the number of spikes collected, the information rate in such an experiment should be
calculated using the direct method [218, 290] or using a lower bound [240].

For recurrent circuits, we predict that the AP rapidness is a factor crucial for the recurrent dy-
namics. One scenario where this could potentially be tested experimentally is our prediction that
high AP onset rapidness facilitates the complete control of the network state. If a reversible tool
for manipulating the AP onset rapidness becomes available [175, 176, 241], our analysis would
suggest that networks with high AP onset are more easily controlled by an external e.g. optoge-
netic or electrical stimulation. In other words, we predict that the trial-to-trial variability decreases
when driving networks with high AP onset rapidness. This hypothesis could be tested in differ-
ent scenarios: for bidirectional neural circuit interfaces [175, 176, 241], we predict that slowed
down AP onset, which could be induced genetically or pharmacologically [44, 238, 239], leads
to an increased trial-to-trial variability, when a frozen time-varying stimulus is driving the sys-
tem repeatedly. Alternatively, it can also first be tested in vitro in networks of cultured neurons
established experimental setups (e.g. [291–293]). One challenge would be to carefully design con-
trol experiments in order to isolate the effect and assert that changes of trial-to-trial variability
can unambiguously be attributed to changes of AP onset rapidness and are not induced by other
confounding variables.

More generally, our study contributes to the investigation of reliability of neuronal activity,
which was extensively studied at the single neuron level in experiments [66–69]. Novel tools
and bidirectional neural circuit interfaces now for the first time allow experimentalists to selec-
tively manipulate and monitor the activity of large numbers of neurons even in behaving ani-
mals [175, 176, 241]. These technological advancements promote the perturbation of neural ac-
tivity with millisecond and single-cell precision and allow new approaches to study trial-to-trial
variability and controllability on a circuit level. Previous experimental studies found that external
drive reduces trial-to-trial spiking variability compared to the spontaneous activity state [242]. We
found in our theoretical work that sufficiently variable external input is able to completely con-
trol the network state of a recurrent balanced target circuit. Experimentally investigation of which
stimulation methods and what spatiotemporal stimuli are best suited for manipulating and control-
ling recurrent cortical dynamics seems to be an appealing scientific question for future optogenetic
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experiments both in vivo and in vitro. To fully harness the potential of such tools and approaches,
it is vital, to make more specific experimentally testable and falsifiable predictions from models
for the interaction of recurrent circuit dynamics and artificial perturbations. More specifically, the
role of partially frozen input spike trains, input to only a part of a recurrent network, and the effect
of including stochastic synaptic release should be further investigated (see also the outlook section
9.3). Another scenario where the role of stimulus statistics on trial-to-trial variability on the cir-
cuit level should be investigated are behavioral experiments with controlled stimulus statistics, e.g.
perceptual decision-making in two-alternative forced choice tasks with random moving dot pat-
terns [294]. In such an experiment, one could freeze the realization of the time-varying random dot
pattern and study the response variability across presentation of the same stimulus as a function of
stimulus statistics. Without overstretching the scope of application of our study, one might expect
that spatiotemporally more structured stimuli reduce the trial-to-trial variability (see also [242]).
In connection with perturbation experiments, one should investigate at what time during a trial
both network dynamics and decision making are most susceptible to artificial perturbations and
what kind of perturbation is most effective. These indicated links between emerging experimen-
tal paradigms and theoretical advances have to be deepened to foster progress towards the causal
interrogation of circuit function.

Entropy and attractor dimensionality of firing-rate network dynamics Our study on
entropy and attractor dimensionality of firing-rate networks opens a novel avenue to characterize
their complex dynamics and the geometric structure of the corresponding high-dimensional chaotic
attractor. This approach does not only promise a deeper understanding of the dynamics but also
helps to harness its computational capacities, e.g. for plasticity and learning of stable trajectories.
We propose several applications and extensions of our study.

First, our analysis of dimensionality and dynamical entropy rate in chaotic firing-rate networks
should be extended to biologically more realistic asymmetric input-output transfer functions φ(h),
e.g. threshold-power-law transfer functions. It was shown earlier that the existence of a transition
to rate chaos and its critical properties strongly depend on the onset of the nonlinear transfer func-
tion φ(h) [37]. A similar significant role of the transfer function is expected both for the attractor
dimensionality and the dynamical entropy rate.

Second, entropy and attractor dimensionality should be studied in different network topologies.
One should e.g. investigate the role of excess bidirectional connections [295], other second order
motifs [225] and strong self-coupling [187]. The analysis should also be extended to circuits in a
balanced state, where large excitatory and inhibitory currents dynamically cancel each other. This
has can be investigated both in spiking [33, 76, 77, 89, 123] and rate networks [4, 37, 92, 194] (but
see also [3]).

Third, the link between chaos in spiking and rate networks should be studied using the full
Lyapunov spectrum of spiking networks and rate networks. The link between firing-rate networks
and spiking neural networks was recently studied by investigating networks in the limit of very
slow synaptic dynamics. In this case the synaptic input current integrates over a long time window
and the network dynamics is analogous to a rate network [92] with quantitatively similar activity
fluctuations. An interpolation from spiking to rate dynamics with increasing τs and a comparison
of the associated Lyapunov spectra of rate and spiking networks might improve our understanding
of chaos both in spiking and rate networks.

Fourth, a recent work suggested an intriguing link between dynamical and topological com-
plexity [190] of random neural networks, Briefly, this study found that the number of unstable
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fixed points grows exponentially with system size closely beyond the transition to chaos. The link
between this topological complexity and the dynamical complexity could be examined using the
attractor dimensionality and dynamical entropy rate.

Fifth, it is also important to investigate how different features of a time-dependent external
stimulus shape dimensionality and dynamical entropy rate [6, 7, 188, 189, 193]. (See also [162,
163] and Chapter 5 for driven spiking networks). Which features of the input statistics facilitate
complete network state control and govern a transition from chaos to stability? How do spatial
and temporal correlations in the input affect entropy rate and attractor dimensionality? Answering
such questions does not only deepen our understanding of driven network dynamics, but can also
help to harness the computational capabilities of cortical circuit models [35, 245–248, 296, 297].
This applies both to rate networks and to learning in spiking networks [133, 298–300].

Sixth, one should extend our work to study the change of network dynamics induced by learning.
We will describe this in more detail in the final paragraph after discussing how Lyapunov vectors
should be used to investigate the chaotic dynamics of rate and spiking networks.

9.3.2 Exploring stable and unstable manifolds using Lyapunov
vectors and local Lyapunov exponents

Covariant Lyapunov vectors describe the local orientation of stable and unstable manifolds of a dy-
namical system. In contrast to the Gram-Schmidt vectors, which are the orthonormal basis evolved
during the standard calculation of the Lyapunov spectrum [137,138], the covariant Lyapunov vec-
tors are as their name suggests covariant with the dynamics, thus Dsvi

s = γivi
s+1 and invariant under

time-reversal vi
s− = v−i+N+1

s+ with λ
+
i = −λ

−
−i+N+1. Their time-averaged exponential expansion

and contraction rates are the Lyapunov spectrum. Thus, they characterize how a small volume
element evolves locally in time.

Although Lyapunov vectors were already introduced by Oseledets in 1968 [301] and more for-
mally described by Ruelle as tangent directions of invariant manifolds in 1979 [302], they received
little attention because there was no effective algorithm to determine them. Only recently, efficient
methods have been introduced [139–141] (see also Chapter 2, 3 and 4).

Both for spiking and firing-rate networks, Lyapunov vectors and local Lyapunov exponents al-
low new approaches to fundamental questions. Six promising research directions are given in the
following.

First, in small networks, one can visualize stable and unstable manifolds and study the emer-
gence and spatial organization of chaos. This might help to foster a quantitative and analytical
understanding of key factors at the single-cell level that shape network chaos. It might also help to
find necessary conditions for a network topology such that network chaos can arise.

Second, in stable networks with a phase space consisting of flux tubes, the time-resolved phase
space structure should be further investigated using Lyapunov vectors. Are their corresponding
local Lyapunov exponents related to the distance to the flux tube boundary or to the next decorre-
lation event [126]? How do the local Lyapunov exponents along a stable trajectory change over
time? In rapid theta networks with AP onset rapidness sufficiently high such that flux tubes exist,
can positive local Lyapunov exponents be related to the granular dispersed regions of the flux tube
cross sections observed when approaching the critical AP onset rapidness rcrit? How do local Lya-
punov exponents change when the critical rapidness rcrit is approached? Are there longer episodes
of positive local Lyapunov exponents or do they just grow in magnitude? (We would hypothesize
the former, because increasing rapidness means that the fraction of neurons in the unstable convex

184



9.3 Outlook

part of their phase decreases, but the single-cell instability is increasing (see Chapter 4).) Is there
a systematic reorganization of Lyapunov vectors when approaching rcrit? How do the autocorre-
lations and cross-correlations of the local Lyapunov exponents change as a function of AP onset
rapidness?

Third, also in the chaotic regime a time-resolved understanding of stability and chaos is de-
sirable. The Lyapunov spectrum is defined in the asymptotic limit of long times, but cortical
information processing takes place on short to intermediate timescales � 50 ms. To understand
the relationship of transient dynamics and information processing, local Lyapunov exponents can
be used to study when and where exactly nearby phases are pushed apart following microscopic
perturbations. Are there specific activity sequences associated with local phase space expansion?
One might expect that an incoming inhibitory perturbation pushes a neuron’s phase apart once the
spike-receiving neuron is in the convex segment of its unperturbed single neuron trajectory Vi(t). In
case of the rapid theta neuron this is expected once it is beyond the glue point VG, where the deriva-
tive of the phase transition curve d becomes negative (See Chapter 4). Studying the spatiotemporal
structure of local Lyapunov exponents can help us to obtain a better quantitative understanding of
this mechanism in large circuits extending earlier work [62,126,162,201,202]. How are single-cell
properties, e.g. indegree, outdegree, average firing rate, mean membrane potential related to their
average contribution to the network chaos measured by e.g. their inverse participation ratio, which
quantifies localization of chaos [62, 162, 201]? Do these properties in time correlate to network
chaos contribution?

Fourth, as biophysical properties of cortical circuits are heterogeneous, the effect of heterogene-
ity e.g. with respect to AP onset rapidness, synaptic coupling strength, neuron types and external
input should be investigated using Lyapunov vectors. This way, the role of various neuron (e.g.
inhibitory ) cell types in neural circuit computations can be investigated. If different neurons in
a network model have distinct values of AP onset rapidness, are the unstable manifolds localized
along the directions of neurons with low and intermediate AP onset rapidness which are expected
to contribute more to the recurrent chaos? Are Lyapunov vectors in a multilayered network local-
ized within the dynamics of the different layers? In a network with two or more unidirectionally
connected subnetworks, are there Lyapunov vectors associated with unstable manifolds oriented
along the projection? Can the corresponding local Lyapunov exponents be related to the infor-
mation flow between the subnetworks? To what extent are the macroscopic directions of large
variability in a driven target network across different initial conditions reflected in the orientation
of unstable manifolds (see also [162])?

Finally, the relation between collective modes of activity and unstable manifolds should be in-
vestigated [303–307]? For various dissipative systems, it was shown using covariant Lyapunov
vectors that the tangent space is split into two hyperbolically decoupled subspaces [305, 306]: one
comprising a finite number of frequently entangled physical modes, which carry the physically
relevant information of the trajectory, and a residual set of strongly decaying spurious modes. It
was conjectured that the physical modes may constitute a local linear description of the inertial
manifold at any point of the global attractor. Thus, covariant Lyapunov vectors are a promising
approach to investigate collective degrees of freedom of neural circuits including their dimension-
ality, spatial organization and relation to information processing. This is especially of interest
when the circuits have a nontrivial mesoscopic spatiotemporal rate dynamics, e.g. multistability
or attractor networks [308]. Lyapunov exponents and covariant Lyapunov vectors characterize
the network dynamics on the finest spatial scale. To examine dynamics on a mesoscopic scale,
one promising approach is to use related tools that enable a smooth interpolation to a coarser
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scale both temporally and spatially. Bred vectors, which are commonly used in weather prediction
models [309], are a finite-time and finite-size perturbation analogue of the largest Lyapunov vec-
tor [310, 311]. Therefore, they promise to offer insights into the response of neural networks to
mesoscopic perturbations.

9.3.3 Applications to plasticity and learning

In this thesis, we focused on the dynamics and neglected plasticity and adaptation, because these
usually take place over longer timescales compared to the microscopic network dynamics. How-
ever, recent progress in the theoretical understanding of short-term synaptic plasticity (STP) and
spike-time dependent plasticity and its role for spiking network dynamics raises questions about
the interplay between network dynamics on the millisecond time-scale and adaptation and plas-
ticity on longer timescales [36, 308, 312]. The tools presented in this thesis could be applied to
study this interplay. For simple linear plasticity rules, e.g. the one proposed by Tsodyks and
Markram [313], one should extend earlier studies of chaos in spiking networks to plastic networks.
Instead of N dynamic variables, there are now N · (K + 1) dynamic variables (all neurons and all
synapses) and the corresponding number of Lyapunov exponents. In this way, one could study the
collective activity modes of plastic networks with the concepts from computational ergodic theory.
Concerning long-term plasticity, one aim could be to identify conditions for stabilization of the
network connectivity despite chaotic network dynamics and a better understanding of the interplay
between synaptic turnover with the chaotic network activity. Concerning short-term synaptic plas-
ticity (STP), one could study the relation of microscopic dynamic stability and multistability in the
balanced state originating from STP induced synaptic nonlinearities [308].

In rate networks, the Lyapunov spectrum could also be used to study the effects of dynamics and
the phase space reorganization through learning. The complex chaotic dynamics of rate networks
have been used as a reservoir for learning complex input-output relationships [35, 245–249, 296].
Earlier studies investigated the learning capabilities of rate networks by linearizing the rate dy-
namics e.g. around fixed points [248,296]. Our approach could be extended to study the dynamics
in the tangent space along a learned trajectory. For tracking the orientations of stable and unstable
manifolds and the associated instantaneous exponential rates of expansion and contraction time,
one should calculate the Lyapunov vectors and the local Lyapunov exponents [139–141]. How
does the Lyapunov spectrum change from before to after learning for different task types? What
does the Lyapunov spectra reveal about why some network topologies are better at learning than
others? E.g. Is memory lifetime improved when the first Lyapunov exponents are close to zero
(See also [247])? How is learning performance reflected in the Lyapunov spectrum? Is there some
optimal chaotic reservoir to learn many/long patterns? How are transient stable periods reflected
in the Lyapunov spectrum? Answering such questions would provide a deeper understanding of
the reorganization of the phase space underlying different reservoir computing strategies.

The network topology – known as the connectome – is a crucial factor influencing the collective
dynamics of neural networks and most learning algorithms, in fact, operate at this level [34–36].
Thus, to understand the effects of plasticity on the network dynamics, it is important to under-
stand how different features of the network topology shape the dynamics. We showed that in-
troducing both a more realistic microscopic second order motif structure and an experimentally
inspired macroscopic structure with multiple layers with respective excitatory-inhibitory circuits
has a rather mild effect on attractor dimensionality, dynamical entropy rate and chaoticity com-
pared to the single-cell dynamics. But in general, more drastic changes to the network topology
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can have a strong effect on the network dynamics and consequently also on entropy and dimen-
sionality. For example, an embedded feedforward structure in a balanced network or increasing
the symmetry of the adjacency matrix leads to less chaotic network dynamics. Also, interpolating
from a random network to a regular lattice structure via a small-world network reduces entropy
rate and chaoticity gradually. As an extension, one should investigate the dynamics of networks
using the adjacency matrix obtained experimentally from circuit mapping and reconstruction as
they become available (see e.g. [121]). As in most cases, we found that a more structured topology
leads to a less chaotic network – except for small world networks – a similar decrease might be
expected for reconstructed cortical network structures. We would still expect a strong effect of the
AP onset rapidness as described before. A promising approach to studying the effect of differ-
ent topologies on network chaos is to use a suitable high-dimensional optimization technique to
minimize or maximize the largest Lyapunov exponent, the dynamical entropy rate or the attractor
dimensionality. Note that the space of possible adjacency matrices grows quickly O

(
2

N·(N−1)
N!

)
.

Therefore, a brute force method like simulated annealing is not suitable even for a moderate net-
work size. This obviously becomes worse, if synaptic strengths are allowed to be heterogeneous.
Instead, a suitable optimization scheme, e.g. genetic algorithms, might be useful. By analyzing the
resulting optimized topologies, such an exploratory approach might give insights into how differ-
ent microscopic, mesoscopic and macroscopic features of the network topology affect the network
dynamics and the Lyapunov spectrum. Major effects are expected to arise due to changes of the
collective network state, e.g. transition to population synchrony or regular periodic firing. The
interesting challenge would be to detect and understand – e.g. by constrained optimization – more
subtle effects by which features of the connectome interplay with biophysical properties of neurons
to shape the coordinated activity of large neural circuits that process information in the brain.
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proofreading. I acknowledge financial support by honest taxpayers redistributed via ES Villigst.

Three cheers for the free libre open source community (GNU/Linux, Python, Julia, Inkscape,
git, vim and more)! Particularly Tim Holy, Christopher Rackauckas, Scott P. Jones from the Julia
community for advice and Duane Nykamp for sharing his SONET code. Thanks for fruitful input
by Tobias Stöber and his team. Thanks to Alexandra Elbakyan for sharing so much knowledge. I
appreciated the generous input from Petra, Uwe et al. and occasional Fassberg rides by friendly
GöVB drivers. Thanks to Ed Snowden and the pope Francis for keeping the spirits up.

I am very grateful to those who sustained me through joy and sorrow, especially my family and
my friends Cornelia, Dankrad, Norma, Wilhelm, Nora, Johannes, Sophie, Martin, Sarah, Patrick,
Johanna, Felix, Julia and Henning.

Finally and most especially I would like to thank Cosima TT. Mattner for her support, tolerance
and love during the last years.



List of Symbols
ν̄ The network-averaged firing rate.

χ The synchrony measure.

η The ratio of inter-population excitatory coupling.

λi The i-th Lyapunov exponent.

D The single spike Jacobian.

ω The constant phase velocity of a neuron.

φ The phase of a neuron.

τm The membrane time constant.

ε The ratio of inter-population excitatory coupling.

cv The coefficient of variation.

D The attractor dimension.

Dφ The phase-distance between trajectories.

h The dynamical entropy rate.

I0 The strength of the constant external currents.

IT The rheobase current.

J0 The strength of the synaptic coupling.

K The average number of synapses per neuron.

N The number of neurons in the networks.

NE The number of excitatory neurons.

NI The number of inhibitory neurons.

P The ratio of inter-population excitatory coupling.

r The action potential onset rapidness.

V The membrane potential (voltage) of a neuron.

Z(φ) The phase-response curve.

AP Abbreviation for action potential.

LIF The leaky integrate and fire model.
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